
IeeeCC754++
An Advanced Set of Tools

to Check IEEE 754-2008
Conformity

Matthias Hüsken

Dissertation

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)
Vorgelegt und genehmigt an der

Fakultät für Mathematik und Naturwissenschaften
der Bergischen Universität Wuppertal

Gutachter:
Prof. Dr. Andreas Frommer
Prof. Dr. Dirk Pleiter

Prüfungskommission:
Prof. Dr. Andreas Frommer
Prof. Dr. Dirk Pleiter
Prof. Dr. Bruno Lang
Prof. Dr. Michael Günther

Wuppertal, 06.12.2017

Die Dissertation kann wie folgt zitiert werden:

urn:nbn:de:hbz:468-20180213-104430-5
[http://nbn-resolving.de/urn/resolver.pl?urn=urn%3Anbn%3Ade%3Ahbz%3A468-20180213-104430-5]

Danksagungen

Am Anfang dieser Arbeit möchte ich die Gelegenheit nutzen, mich bei denen
zu bedanken, die mich über die Jahre begleitet haben und ohne die es nicht
zur Entstehung dieses Werkes gekommen wäre. Mein Dank gilt zuerst Prof.
Dr. Andreas Frommer für die Möglichkeit, diese Arbeit zu verfassen, für seine
Betreuung und die wertvollen Hinweise sowie die angenehme Atmosphäre in seiner
Arbeitsgruppe. Darüber hinaus ermöglichte er mir die Mitarbeit an verschiedens-
ten interessanten Projekten, allen voran QPACE und QPACE3. Ebenso danke
ich Prof. Dr. Dirk Pleiter für die wertvollen Anregungen zu dieser Arbeit, die
langjährige gute Zusammenarbeit im QPACE-Projekt und das unkomplizierte
Zurverfügungstellen einer Reihe von Testplattformen. Prof. Dr. Bruno Lang danke
ich vor allem für die zahlreichen inspirierende Unterhaltungen jedweder Art.

Dank netter (ehemaliger und aktueller) Kollegen durfte ich in der Arbeitsgruppe
Angewandte Informatik in angenehmer Umgebung arbeiten. Namentlich nennen
möchte ich hier Brigitte Schultz, ohne die diese Arbeitsgruppe schon längst
zusammengebrochen wäre, Katrin, Holger, Peter, Sonja, Marcel, Jan, Claudia,
Artur und Martin. Vielen Dank auch an Willi für die Bereitstellung weiterer
Testplattformen sowie an Sonja, Martin, Sarah, Jared und meinen Vater für das
Korrekturlesen und die Hilfe bei diversen LATEX- und Englisch-Fragen.

Weiterer Dank gilt meinen Freunden, mit denen ich die Abenteuer Musik (new
challenge) und Kirche (NORDSTERN.kirche) erleben durfte und darf: Alex und
Heike, Andre und Anne, Simon und Bine, Gary und Nic, Gerrith und Miri (und
meinen wunderbaren Patenkindern Noah, Leah und Ewah), Sontka, Stephan und
Verena, Kris und vielen weiteren.

Vielen Dank meiner Familie: meinen Geschwistern und deren Ehepartnern
und Kindern, und vor allem meinen Eltern, ohne deren vielfältige Unterstützung
es diese Arbeit nicht gegeben hätte.

Jen – du bist das Beste, was mir passieren konnte. Danke für alles!
Und das Wichtigste zum Schluss – meinem Gott: „Denn von ihm und durch

ihn und für ihn sind alle Dinge.“ (Die Bibel, Römerbrief, Kapitel 11, Vers 36)
Soli deo gloria.

Contents

Introduction 1

1 Floating-point numbers, standards, and the user environment 5
1.1 The foundation: Floating-point numbers 6
1.2 The standards: IEEE 754 and 854 8

1.2.1 IEEE 754 . 8
1.2.2 IEEE 854 . 14
1.2.3 IEEE 754-2008 . 15
1.2.4 IEEE 754-2018 . 19

1.3 Rounding and error analysis . 19
1.3.1 Some basic properties . 20
1.3.2 Stability . 22
1.3.3 Use cases for rounding . 22

1.4 The user environment . 24
1.4.1 Limitations of the user environment definition 26
1.4.2 Floating-point hardware 26
1.4.3 The operating system . 28
1.4.4 Floating-point libraries . 30
1.4.5 Programming languages 31
1.4.6 The compiler’s role . 32
1.4.7 Interpreters . 35
1.4.8 In-network floating-point computations 36
1.4.9 Resilience . 37
1.4.10 Comparing and testing floating-point environments 38

2 IeeeCC754 39
2.1 History . 39
2.2 IeeeCC754 . 41

ii CONTENTS

2.3 Testsets . 43
2.3.1 Addition and subtraction 43
2.3.2 Multiplication . 44
2.3.3 Division . 44
2.3.4 Square root . 44
2.3.5 Remainder . 45
2.3.6 A note on conversions . 45
2.3.7 Conversions between floating-point formats 45
2.3.8 Rounding floating-point numbers to integral values 46
2.3.9 Conversion between floating-point and integer formats . . 46
2.3.10 Decimal to binary and binary to decimal conversion 46

2.4 Results . 47
2.4.1 Intel and AMD . 47
2.4.2 SUN Sparc . 48
2.4.3 FMLib . 49
2.4.4 MpIeee . 49

3 IeeeCC754++ 51
3.1 IeeeCC754++: Introducing extensions 52

3.1.1 Testing IEEE-conformity 52
3.1.2 Testing the user environment: Default mode 53
3.1.3 Testing parts of a floating-point environment 56
3.1.4 Testing distributed floating-point environments 57
3.1.5 Supporting arbitrary floating-point environments 58
3.1.6 Building for arbitrary environments 61
3.1.7 Large-scale testing and analysis 62
3.1.8 Studying the influence of compiler options 63
3.1.9 Testing modes . 64
3.1.10 Input and output . 66
3.1.11 Support for IEEE 754-2008 68
3.1.12 Analysis capabilities . 70
3.1.13 Preserving backwards compatibility 73
3.1.14 Technical changes . 75

3.2 Input and output . 77
3.2.1 Test vector formats . 77
3.2.2 Output formats . 80

3.3 Testing modes . 80
3.3.1 Classic mode . 81
3.3.2 Verbose mode . 84
3.3.3 Default mode . 88
3.3.4 Distributed computing modes 89
3.3.5 Miscellaneous modes . 93
3.3.6 Common command line options 93

CONTENTS iii

3.4 The evaluation framework . 96
3.4.1 Using the evaluation framework 97
3.4.2 Analysis modules . 112
3.4.3 Tools for (semi-)automated testing 119

3.5 The optimisation framework . 128
3.5.1 Using the optimisation framework 130
3.5.2 Fitness modules and adding fitness functions 134
3.5.3 Timing the effect of compiler options 143

4 Extended testsets 147
4.1 General considerations . 147

4.1.1 The Table Maker’s Dilemma 148
4.1.2 Adding operators and test vectors 148

4.2 Fused multiply-add . 150
4.2.1 Testset . 150
4.2.2 Considerations concerning portability 153

4.3 Powers and roots . 153
4.3.1 Testsets . 154

4.4 Trigonometric functions . 154
4.4.1 Testsets . 155

4.5 Exponentials and logarithms . 156
4.5.1 Testsets . 156

4.6 Miscellaneous functions . 157
4.6.1 Testsets . 157

4.7 Generating testsets . 157
4.7.1 A note on precisions . 158
4.7.2 convertTestsets.py . 158
4.7.3 genUCB.sh . 160

5 Architecture ports 165
5.1 The default architecture . 168

5.1.1 The default port . 168
5.1.2 The dummy port . 172

5.2 The x86 architecture . 173
5.2.1 The x86 port . 174
5.2.2 The mic port . 178

5.3 The ARM architecture . 179
5.3.1 The arm port . 180
5.3.2 The aarch64 port . 181

5.4 The Power Architecture . 182
5.4.1 The ppc port . 184
5.4.2 The cell port . 186
5.4.3 The bgq port . 188

iv CONTENTS

5.5 GPUs and accelerators . 190
5.5.1 The nv port . 191
5.5.2 The opencl port . 193

5.6 In-network computations . 194
5.6.1 The mpi port . 194

5.7 Virtual machines and software libraries 195
5.7.1 The java port . 195
5.7.2 The softfloat port . 197
5.7.3 The mpfr port . 197
5.7.4 The crlibm port . 199

6 Selected results 201
6.1 A detailed example . 202

6.1.1 User environments . 202
6.1.2 Manual testing procedure 203
6.1.3 (Semi-)Automated testing procedure 214
6.1.4 Analysing the logfiles . 217

6.2 Different compilers . 223
6.3 x86 . 226

6.3.1 Xeon . 226
6.3.2 Xeon Phi: KNL . 231

6.4 ARM . 232
6.4.1 ARM: VFP, NEON . 232
6.4.2 AARCH64: ASIMD, SVE 239

6.5 PowerPC . 245
6.5.1 POWER8 . 246
6.5.2 Cell . 250

6.6 Accelerators . 253
6.6.1 CUDA . 253
6.6.2 OpenCL . 254

6.7 Software . 256
6.7.1 SoftFloat . 257
6.7.2 MPFR . 259
6.7.3 Java . 260

6.8 Elementary functions . 262
6.8.1 C99 vs. C++11 . 263
6.8.2 Trigonometric operators 264
6.8.3 Exponentials and logarithms 266
6.8.4 Power operators . 267
6.8.5 roundTiesToEven results 271

6.9 Optimisation framework . 273
6.9.1 User environments . 274
6.9.2 Two-step process . 274

CONTENTS v

6.9.3 Example run with sixloops 277
6.9.4 Example run with HPCG 279

6.10 Result summary . 280
6.10.1 Basic operations and conversions 281
6.10.2 Elementary operators . 282
6.10.3 Some notes on applications 283

Summary and outlook 285

A The IeeeCC754++ build system 289
A.1 Changes to the code base . 289

A.1.1 IeeeCC754 code structure 290
A.1.2 IeeeCC754++ code structure 291

A.2 The build system . 292
A.3 Configuring and building IeeeCC754++ 295

A.3.1 Building overview . 295
A.3.2 Choosing an architecture 296
A.3.3 Choosing FPUs . 296
A.3.4 Choosing the compiler and compiler options 297
A.3.5 Generic build features . 298
A.3.6 Additional build options 300
A.3.7 Cross compilation . 301
A.3.8 Building historic modes 303
A.3.9 A detailed example . 304

B Adding a new architecture to IeeeCC754++ 307
B.1 File structure . 307
B.2 Build system: configure.ac . 308
B.3 Build system: Makefile.am . 311
B.4 Implementing the new architecture 311

B.4.1 src/xyz/DriverFloat_main.h 312
B.4.2 src/xyz/fpu_main.cc . 315

B.5 Adding an FPU . 316
B.6 Implementing an operation . 317
B.7 Handling vector FPUs . 321
B.8 Initialising an FPU . 323

B.8.1 Registering operations and rounding modes 323
B.8.2 Enabling vector FPUs . 327

B.9 Example code for the new architecture and FPU 328
B.10 Setting up main() . 330
B.11 Setting up and building the new architecture 331

vi CONTENTS

C Reference material 333
C.1 fma example . 333
C.2 IeeeCC754++ usage . 334
C.3 IeeeCC754++ classic mode usage 335
C.4 Error codes used in IeeeCC754++ 336
C.5 Reference task files . 338
C.6 Evaluation function example . 346
C.7 Fitness function example . 348

List of Figures 351

List of Tables 354

List of Listings 355

Bibliography 361

Introduction

The “IEEE Standard for Binary Floating-Point Arithmetic” IEEE 754 has arguably
been one of the most influential standards for the broad area of scientific computing.
Since its publication in 1985, it is the benchmark for the quality of floating-point
implementations of processors and floating-point units. Floating point arithmetic
conforming to the standard implies that numerical algorithms behave identically
across the various computing platforms (or at least in a predictable manner)
and that developers of numerical algorithms can rely on the standard when
addressing stability issues that might otherwise depend on the floating-point
environment. The standard thus facilitates the portability of numerical algorithms
across platforms.

With this thesis, we provide a contribution to evaluating the conformity of a
given floating-point environment to the latest valid version of the standard. In
particular, we extended the well known testing tool IeeeCC754 with a large number
of features, such as support for the current incarnation of the standard called
IEEE 754-2008, new analysis facilities, additional floating-point operators, and
new test vectors to verify that these operators are implemented in a conforming
manner. Furthermore, we heavily expanded the selection of supported floating-
point environments and provide facilities to easily extend our new tool IeeeCC754++
with new ports targeted at future floating-point platforms. We meticulously
documented the process of adding a new architecture port and demonstrate its
applicability with a port for the ARM SVE floating-point unit (for which hardware
is not yet available). Additionally, we developed a testing framework that enables
large-scale evaluation of floating-point environments, the graphical application
IeeeCC754++LogViewer that provides convenient access to the generated logfiles,
and a variation of the testing framework tailored to studying the influence of
compiler options on the behaviour of numerical applications regarding floating-
point accuracy as well as application performance.

2 CONTENTS

Former testing tools including IeeeCC754 serve a rather technical purpose, i. e.
they enable developers and implementers of floating-point units (be it hardware
units or software libraries) to verify proper functionality of their implementation.
This use case is also supported by IeeeCC754++; however, our tool takes a more
user centric point of view by enabling the average researcher with the possibility
to check her default floating-point environment (which is called default user
environment in this thesis) for IEEE 754-2008 conformity.

The thesis is organised as follows: In Chapter 1, we give a short introduction of
floating-point numbers and their properties and take a look at the different incar-
nations of IEEE 754-2008. Afterwards, we define the term user environment and
discuss the components that constitute such an environment. Chapter 2 presents
former work in providing tools for testing the IEEE-conformity of a floating-point
implementation. In particular, we describe IeeeCC754 which represents the tool
that IeeeCC754++ is based upon, discuss its testing model, and briefly summarise
results from former conformity testing.

Chapters 3 to 5 constitute the main part of this thesis in which we describe our
contributions to IEEE-conformity testing. Chapter 3 starts with a more detailed
discussion of testing strategies and our definition of a user environment, followed
by an in-depth look at the new features which we implemented in IeeeCC754++.
Additionally, we discuss different testing modes targeted at a range of applications
such as default user environment testing or IEEE-conformity evaluation of specific
floating-point units. We introduce the evaluation and optimisation frameworks
which support large-scale testing and studying the influence of compiler options,
and present a few additional tools that ease the analysis of the resulting logfiles
such as the graphical application IeeeCC754++LogViewer. Chapter 4 starts with
a description of the floating-point operators which were not part of the original
IEEE 754 standard, but which were introduced with IEEE 754-2008, e. g. a fused
multiply-add operator and a range of elementary operators such as trigonometric
functions or exponentials. We then describe the test vectors which we added to
the original IeeeCC754 testsets in order to check the new floating-point operators.
The discussion of the numerous architecture ports which we implemented in
IeeeCC754++ is the subject of Chapter 5. We describe the various underlying
classes of platforms such as hardware floating-point units of different processors,
accelerators, or software libraries, give a short overview of the history and the
corresponding instruction sets or implementations of the respective platforms, and
finally discuss their integration into our testing tool IeeeCC754++.

In order to demonstrate the use of our contributions regarding IEEE-conformity
testing, Chapter 6 presents results for a selection of the architecture ports described
in Chapter 5. We also show how to apply the extended tools such as the evaluation
and optimisation frameworks or IeeeCC754++LogViewer during the testing process.
We conclude this thesis by summarising the contributions presented in this thesis
and discussing further possible research areas.

CONTENTS 3

Since the extension with further architecture ports is an integral part of our
contributions to IEEE-conformity testing, we add three corresponding appendices
to this thesis. Appendix A discusses the structure of the IeeeCC754++ source
code together with the newly written build system and describes the process of
building and running IeeeCC754++ executables. In Appendix B, we give detailed
instructions on how to add a new architecture port to IeeeCC754++. Finally,
Appendix C lists some reference material such as the command line options of
IeeeCC754++, the error codes used within IeeeCC754++, and reference files for the
evaluation and optimisation frameworks.

4 CONTENTS

Chapter 1

Floating-point numbers, standards,
and the user environment

The basics of floating-point arithmetic as an approximation for real-valued arith-
metic can be introduced with a simple description in just a few words: Given
some base β, a number x is represented with a sign Sx, a significand sx, and an
exponent e such that

x “ Sx ˆ sx ˆ β
e. (1.1)

However, making such an arithmetic reliable, fast, and portable is far from
simple. Between the 1960s and the 1980s, vast numbers of different floating-
point arithmetics were designed and implemented on a wide range of computing
platforms, all of them handling issues like binary formats, rounding, overflow,
and underflow, in individual and often incompatible manners. Porting numerical
code to another platform and verifying the correctness of the resulting program
was a highly complex and time-consuming process. This situation led W. Kahan
to write his article “Why do we need a floating-point standard?” [Kah81] in
which he underlines the need for a common standard that could be both useful
for programmers and practical for implementers. Furthermore, he explains the
rationale behind the standard draft which was proposed in 1981 after three years
of work in the corresponding IEEE subcommittee. It still took another four years
of work and discussions to finally release the standard as IEEE 754 in 1985.

In this chapter, we introduce the basic ingredients for the following chapters:
floating-point numbers and some of their basic properties, the main IEEE standard
concerning floating-point numbers (IEEE 754-2008 and its former incarnations),
and what we call the “user’s environment”: the programming and execution
environment a programmer experiences when writing numerical code using floating-
point numbers on a given platform. Furthermore, we take a look at what is actually
available to the programmer in a given user environment (on some hardware
platform).

6 Floating-point numbers, standards, and the user environment

1.1 The foundation: Floating-point numbers
As [Mul+10, p. xv] notes, “floating-point arithmetic is by far the most widely used
way of approximating real-number arithmetic for performing numerical calculations
on modern computers.” Consequently, a vast selection of material on floating-point
arithmetic has been written, including excellent introductions and comprehensive
treatises. To avoid giving yet another introduction to floating-point arithmetic,
we only introduce floating-point numbers and their features as far as they are
needed in this thesis, and refer to [Gol91] and e. g. [Mul+10] for more detailed
treatise. As IeeeCC754++ is based on IeeeCC754, most of the notation used in
this thesis is borrowed from [VCV01a] and [VCV01b].

Let Fpβ, t, L, Uq be the set of floating-point numbers in base β ě 2, precision
t ą 0, and exponent range rL,U s with L ă U . Every floating-point number
x P Fpβ, t, L, Uq consists of a sign Sx P t´1, 1u, a significand1 sx “ x0.x1x2 . . . xt´1
(which has t digits), and an exponent ex P rL,U s. In this thesis, we will only
consider the case β “ 2.

Floating-point representations of a number x P Fpβ, t, L, Uq are not necessarily
unique: For example, both 0.01ˆ 101 and 1.00ˆ 10´1 represent the number 0.1
in Fp10, 3,´1, 1q. Setting x0 ‰ 0 makes the representation of x unique and is
called normalisation of x. For β “ 2, this is equivalent to setting x0 “ 1. This
means that all floating-point numbers in Fp2, t, L, Uq with exponent ex P rL,U s
are normalised, i. e. x0 “ 1 ñ sx “ 1.x1x2 . . . xt´1.

The value of a normalised floating-point number x P Fp2, t, L, Uq is then given
by

x “ Sx ˆ sx ˆ β
ex “ Sx ˆ

t´1
ÿ

i“0
xi2ex´i

“ Sx ˆ 1.x1x2 . . . xt´1 ˆ 2ex .

(1.2)

One must be aware of one drawback of using normalisation: 0 cannot be
expressed as a normalised number. This can be solved by reserving a special
exponent to represent 0. The most common choice (and that of IEEE 754) is
ex “ L´ 1; see page 9.2

Given fixed precision and exponent range, Fpβ, t, L, Uq obviously contains
only a finite number of floating point numbers. Fpβ, t, L, Uq is not closed, i. e. if

1The significand has also been called mantissa.
2Usually, ex “ 0 is chosen, resulting in 0 ă L ă U . This is mainly due to technical reasons:

In most cases, the exponent is encoded as an integer bitstring. To allow for negative exponents,
common approaches like two’s complement representation are avoided for performance reasons.
Instead, an appropriate bias is chosen that divides the bitstring into positive and negative
numbers and that can be decoded by using simple and therefore fast bit shifts. For details and
further reasons for choosing L´ 1 “ 0, see page 9.

1.1 The foundation: Floating-point numbers 7

x, y P Fpβ, t, L, Uq, the result z “ x Ÿ y of an operation Ÿ does not necessarily lie
in Fpβ, t, L, Uq for one of the following reasons:

• z is too large (in magnitude) to be represented, i. e. z ą
řt´1

i“0pβ ´ 1qβU´i.
This is called overflow.

• z is smaller (in magnitude) than the smallest representable number in
Fpβ, t, L, Uq, i. e. 0 ă |z| ă pβ ´ 1q ˆ βL. This is called underflow; z is then
called subnormal or tiny.3

• z needs more than t digits to be represented. This might be the case because
z needs an infinite number of digits (consider e. g. transcendental numbers
like π or periodic numbers like 1

3 for β “ 10 or 0.110 for β “ 2) or because
the representation of z in base β is finite, but z lies between two numbers
representable in Fpβ, t, L, Uq. In the latter case, z effectively belongs to
Fpβ, r, L, Uq for some r ą t.

To implement a closed version
`

F˚pβ, t, L, Uq,o
˘

of
`

Fpβ, t, L, Uq, Ÿ
˘

, all three of
the mentioned cases need to be addressed:

• Overflow might naively be handled by setting z to the largest representable
normalised number. However, this is dangerous as it might introduce an
error of arbitrary magnitude. More commonly, some kind of exception or
a special value to represent 8 (or both) are utilised to notify the user of
potential problems and provide some meaningful insight. A common choice
for a representation of a special value is using an exponent of U ` 1.

• In case of underflow, the easiest approach is to simply set the significand of
the resulting value to zero (i. e. z “ 0, called flush to zero). This introduces
an error of magnitude OpβLq.
Another approach is to use the special exponent L ´ 1 (also commonly
used for representing 0, see above) to represent z without normalising the
significand, thus making use of all potential values of the significand. This
fills the gap between 0 and the smallest representable (normalised) floating-
point number with evenly spaced numbers, effectively decreasing the error
to a magnitude of OpβL´t`1q.
In both approaches, an additional exception might be raised to notify the
user.

• In the case of z lying between two (adjacent) floating-point numbers z1, z2 P

Fpβ, t, L, Uq, z must be rounded to either x or y. For a discussion of rounding
strategies, see page 10. The error introduced by rounding is of magnitude
Opβ1´tq. More precisely, the following holds for the relative error εpxq:

3Historically, z has also been called denormalised.

8 Floating-point numbers, standards, and the user environment

εpxq ď 1
2β

1´t in round to nearest mode, and εpxq ď β1´t for the other
rounding modes, cf. Section 1.3 and [Mul+10, pp. 23 sq.].

For actual implementations, the issue of illegal operations has to be handled.
Given x P Fpβ, t, L, Uq, consider e. g. x{0 or

?
x for x ă 0 whose result is not

defined. Common approaches are to raise an exception and/or to return a special
value (usually called NaN = Not a Number) to notify the user that no proper
floating-point number can be returned. Furthermore, the propagation of values
like NaN or 8 (if used) has to be considered. In the next section, we discuss the
way IEEE 754-2008 handles these issues.

In the following, we will denote the extended set of floating-point numbers
with base β ě 2, precision t ą 0, and exponent range rL´1, U`1s, 0 ă L ă U , by
F˚pβ, t, L, Uq, which includes the special exponents L´ 1 and U ` 1 to represent
values of 0, 8, and NaNs.

1.2 The standards: IEEE 754 and 854
In this section, we present the requirements that the “IEEE Standard for Floating-
Point Arithmetic” IEEE 754-2008 demands from conforming floating-point imple-
mentations. Starting with the first revision of this standard, IEEE 754 [IEEE85],
we present the main principles and concepts of this standard which introduced
strict requirements for conforming floating-point implementations for the first
time. In order to understand the state of some current implementations and their
conformity to the (current) standard, we then discuss the small additions done in
the second revision, IEEE 854 [IEEE87], and in more detail the current incarnation
of the standard, IEEE 754-2008 [IEEE08]. Finally, we briefly comment on the
revision that is currently ongoing to produce IEEE 754-2018.

1.2.1 IEEE 754
When IEEE 754 was released as “IEEE Standard for Binary Floating-Point
Arithmetic” in 1985 after years of work, it stated its rationale in the foreword:
“This standard defines a family of commercially feasible ways for new systems
to perform binary floating-point arithmetic. The issues of retrofitting were not
considered.” [IEEE85] It aims at providing a sane and understandable way of
performing floating-point operations in a well-defined floating-point arithmetic,
while at the same time enabling this arithmetic to be implemented in a cost-
efficient manner. And, as [Mul+10] notes, it indeed “was a key factor in improving
the quality of the computational environment available to programmers.”

Nowadays, virtually all processor designs, compilers, and mathematical libraries
implement IEEE 754 (at least to some extent) and provide for a predictable
computing environment for programmers designing numerical software.

1.2 The standards: IEEE 754 and 854 9

In the following, we explain how IEEE 754 addresses the issues raised in the
previous section.

Representations

IEEE 754 starts by specifying two binary number formats for floating-point
calculations, the so-called “basic formats” single precision and double precision.
Conforming implementations must implement at least the single format.

Furthermore, it defines two extended formats which can be used for interme-
diary computations to achieve better accuracy compared to when using target
precision in intermediary computations. The standard recommends the use of an
extended format for the widest implemented precision only. In practice, this means
that most platforms implement single, double, and double-extended precision.

The basic formats make use of the base being β “ 2: The first digit of every
normalised number’s significand is always equal to 1, whereas the first digit of
a subnormal number is 0. Given a way to distinguish between normalised and
subnormal numbers without looking at the significand (which is possible in IEEE
formats, see below), this first digit needs not be explicitly stored but is implied.
Due to this clever implementation, the length of the significand is increased by
one bit. The implicitly stored bit is called hidden bit.

Given a floating-point number x “ Sx ˆ sx ˆ ex P F˚p2, t, L, Uq, IEEE 754
reserves the extremal values L´ 1 and U ` 1 of the exponent ex for special values:

• If ex “ L´ 1 and the significand sx “ 0, then x is a signed zero (depending
on the value of the sign Sx).

• If ex “ L´ 1 and sx ‰ 0, then x is a subnormal number.

• If ex “ U ` 1 and sx “ 0, then x is infinite, i. e. x “ Sx ¨ 8.

• If ex “ U ` 1 and sx ‰ 0, then x is not a number, i. e. it is an NaN.

Additionally, the exponent is stored as a biased exponent with bias b, meaning
that, when interpreting the stored exponent Ex P r0, 2q ´ 1s of q bits length as an
unsigned integer, the value ex of the exponent is interpreted as follows:

• If Ex “ 0 p“ L´ 1q, then x is a signed zero or a subnormal number.

• If Ex “ 2q ´ 1 p“ U ` 1q, then x is an infinity or an NaN.

• If 0 ă Ex ă q´ 1, then x is a normalised number with exponent ex “ Ex´ b.

The bias is then given by b “ 2q´1 ´ 1.
With this floating-point encoding, 0 is represented by a bitstring only containing

zeroes (or by a bitstring with a leading one and then followed by all zeroes in case
of a negative 0), and it is easy to distinguish between normalised and subnormal

10 Floating-point numbers, standards, and the user environment

numbers, zeroes, infinities, and NaNs. Furthermore, using a biased encoding
for the exponent makes it possible to represent positive and negative exponents
without using two’s complement or sign-magnitude representations, which would
have made comparing floating-point numbers harder. Another advantage is that
positive floating-point numbers including `0 and `8 are ordered like their binary
representation (interpreted as integers). This makes it possible to obtain the next
floating-point number (i. e. the floating-point successor) by interpreting the binary
representation of a floating-point as an integer and adding one to that integer.

Given these representations, IEEE 754 defines the following formats:

• Single precision: 32 bits wide, with 1 sign bit, 8 bits for the exponent, and
23 bits for the significand. This means the following values are used: t “ 24
with hidden bit, L “ ´126, U “ 127, b “ 127, i. e. the standard implements
F˚p2, 24,´126, 127q.

• Double precision: 64 bits wide, with 1 sign bit, 11 bits for the exponent,
and 52 bits for the significand. This means the following values are used:
t “ 53 with hidden bit, L “ ´1022, U “ 1023, b “ 1023 i. e. the standard
implements F˚p2, 53,´1022, 1023q.

• Single-extended: p ě 32, hidden bit optional, L ď ´1022, U ě 1023.

• Double-extended: p ě 64, hidden bit optional, L ď ´16382, U ě 16383.

As a side note, we give the definition of the most widely used double-extended
format which is implemented in Intel’s x87 floating-point unit (cf. Section 5.2.1):

• Intel x87 double-extended: 80 bits wide, with 1 sign bit, 15 bits for the
exponent, and 64 bits for the significand. This means the following values
are used: t “ 64 without hidden bit, L “ ´16382, U “ 16383, b “ 16383 or
F˚p2, 64,´16382, 16383q.

Rounding modes

As discussed in Section 1.1, the result of an operation involving floating-point
numbers does not necessarily lie in the set of representable floating-point numbers
in the target format. If the precise result is a valid real number, it can be rounded
to a permissible floating-point number: “Rounding takes a number regarded as
infinitely precise and, if necessary, modifies it to fit in the destination’s format”
[IEEE85]. IEEE 754 defines four rounding modes: the default rounding mode
round to nearest and three directed rounding modes round toward `8, round
toward ´8, and round toward 0 :

• In round to nearest mode, “the representable value nearest to the infinitely
precise result shall be delivered”. If the magnitude of the precise result is at

1.2 The standards: IEEE 754 and 854 11

least 2Up2´2´tq, an infinity with no change in sign is returned. If the precise
result lies exactly between two representable floating-point numbers, the
number with the least significant bit zero is returned (tie to even). Therefore,
this rounding mode is also called round to nearest even.

• In the three other modes, the number closest to and no less (round toward
`8), no greater (round toward ´8), or no greater in magnitude (round
toward zero) than the infinitely precise result is returned.

Operations

IEEE 754 defines a set of operations on floating-point numbers and mandates that
conforming implementations return correctly rounded values for these operations.
Correctly rounded means that each operation must be performed as if it first
produced an intermediate result correct to infinite precision and with unbounded
range, and then this intermediate result is rounded to the target format according to
the currently selected rounding mode. Care has to be taken to cover ˘0, infinities,
and NaNs; furthermore, IEEE 754 defines “exceptions caused by exceptional
operands and exceptional results”, see below.

The operations can be categorised into the following groups:

• Arithmetic operations: These include addition, subtraction, multiplication,
division, remainder, and square root. In the following, they are also referred
to as basic operations.

• Conversion operations. The following conversions must be supported:

˝ Conversions between all supported floating-point formats. Conversion
to a wider format is always exact; conversions to a narrower format
must be rounded.

˝ Conversion operators between all supported floating-point and integer
formats must be provided.

˝ Rounding a floating-point number to integral value: A given floating-
point number is rounded so that it is exactly convertible to an integer.
It is stored in the same floating-point format as the original number.

˝ Conversion between binary numbers and decimal representations (also
known as binary to decimal conversion and vice versa): To interpret
numerical values given as binary floating-point numbers or to input
numerical values into a floating-point program, a conforming imple-
mentation must provide conversion routines between the supported
floating-point formats and a decimal representation. At the time of
releasing the standard, efficient algorithms to perform these conversions
were not yet known (see [Mul+10, pp. 43 sqq.]). Therefore, IEEE 754

12 Floating-point numbers, standards, and the user environment

mandates that these conversions are to be correctly rounded only for
certain ranges of numbers. For details, see [IEEE85, pp. 7 sq.].

• Comparisons: It must be possible to compare floating-point numbers in all
supported formats. Comparisons are always exact. To enable handling of
NaNs when comparing floating-point numbers, IEEE 754 introduces the
relation unordered to describe comparisons between NaNs and any other
floating-point number. The usual relations like equal, greater than, equal
greater than etc. are available. The sign of a zero is ignored when comparing.

When one of the operands is an infinite value or an NaN, special rules apply:

• Infinities are interpreted as limiting cases for real arithmetic, i. e. ´8 ă x ă
8 with x P Fpβ, t, L, Uq. Arithmetic on infinite operands is performed in
this sense; it is always exact.

• IEEE 754 distinguishes between two types of NaNs: signalling and quiet
NaNs. If an operand is a quiet NaN, it is propagated by all operations. If
an operation encounters a signalling NaN, the invalid exception (see below)
is signalled and a quiet NaN is returned.

It should be noted that a few additional “helper” functions are recommended,
such as copy, negate, abs, and class. As these only serve more technical purposes
and are not influenced by rounding or exceptions, they are of no further relevance
in this thesis.

Exceptions and traps

When executing operations on floating-point numbers, it is not always possible
that the result of the given operation yields a floating-point number representable
in the target format or that it is a number at all. Consider e. g. division by 0 or
computing a square root of a negative number. In order to enable the user to
appropriately handle exceptional circumstances arising during a floating-point
computation, IEEE 754 defines “five types of exceptions that shall be signalled
when detected” [IEEE85]. It allows for two types of signals: either setting an
appropriate status flag or taking a trap. While it must be possible for the user
to catch these traps, the default is to continue without trapping. The status flag
must collect all exceptions that happened since the last reset of its contents; such
a reset must be initiated by the user. This way of handling the status flags enables
the user to control the program’s behaviour even in the presence of exceptions.
IEEE 754 defines the following five exceptions:

• Invalid operation: This exception is signalled if an operand is invalid for
the operation to be performed. This includes the divisions 0{0 and 8{8,
the multiplication 0ˆ8, taking a square root of a number less than zero,

1.2 The standards: IEEE 754 and 854 13

certain comparisons between unordered operands, magnitude subtraction of
infinities, and a few more. For a complete list, see [IEEE85, p. 11].
When an invalid exception occurs, a quiet NaN is returned for operations
with a floating-point target format.

• Division by zero: “If the divisor is zero and the dividend is a finite nonzero
number, then the division by zero exception shall be signalled. The result,
when no trap occurs, shall be a correctly signed 8.”

• Overflow: “The overflow exception shall be signalled whenever the destina-
tion format’s largest finite number is exceeded in magnitude by what would
have been the rounded floating-point result were the exponent range unboun-
ded.” When no trap occurs, the result is determined by the rounding mode
and the sign of the intermediate result. For trapped overflow, IEEE 754
aims to preserve as much information from the operation as possible by
requiring the implementation to include as many sensible bits as possible.
For details on the returned result, see [IEEE85, p. 11].

• Underflow: When a result in the subnormal range is returned, i. e. its
absolute value is less than 2L, in many cases the result is exact (cf. [Mul+10,
p. 124]). However, in some circumstances, a significant loss of accuracy
can occur. IEEE 754 defines two events which contribute to an inaccurate
very small result: loss of accuracy and tininess (i. e. a subnormal number is
returned). Tininess can be detected either before or after rounding, whereas
loss of accuracy can be detected when the result differs from what would have
been attained were either the exponent range unbounded or the exponent
range and the precision unbounded.
In [Cuy+02], the three cases are categorised as follows: For an arithmetic
operation x o y with x, y P F˚pβ, t, L, Uq, let re be the exact result (un-
bounded precision and unbounded exponent range), rt the normalised result
rounded to a precision of t digits (with unbounded exponent range), and
r P F˚pβ, t, L, Uq the returned result (which might be a subnormal number).
Then,

˝ u-underflow occurs when |rt| ă βL and r ‰ rt,
˝ v-underflow occurs when |rt| ă βL and r ‰ re, and
˝ w-underflow occurs when |re| ă βL and r ‰ re.

Note that u-underflow always implies v-underflow (since denormalisation
loss implies inexactness), and v-underflow implies w-underflow (since tininess
after rounding implies tininess before rounding).
In absence of an underflow trap, the underflow exception is only signalled
when both tininess and loss of accuracy occur; with trapped underflow, it is

14 Floating-point numbers, standards, and the user environment

signalled when tininess is detected, and similar to the overflow case, a result
is returned that preserves as much information as possible (cf. [Mul+10]).

• Inexact: To cite IEEE 754 once more, “If the rounded result of an operation
is not exact or if it overflows without an overflow trap, then the inexact
exception shall be signalled. The rounded or overflowed result shall be
delivered to the destination or, if an inexact trap occurs, to the trap handler.”

It should be noted that of these exceptions, only overflow with inexact and
underflow with inexact can occur at the same time.

If a trap handler is implemented to allow direct reaction to exceptional circum-
stances, the standard requires it to be a “subroutine-like function” that provides
the user with information about the type of exception that occurred, the opera-
tion, as well as the destination format. For underflow, overflow, and inexact, the
correctly rounded result, possibly including additional information (see above),
needs to be returned; for invalid and divide by zero, the operand values must be
supplied by the trap handler.

Miscellaneous

IEEE 754 concludes with Annex A that recommends a number of functions and
predicates as “aids to program portability across different systems”. These include
functions to copy the sign of one operand to another operand or to generate the
next representable floating-point number of an operand, classification functions
to find out whether an operand is finite or an NaN, and additional comparison
functions.

1.2.2 IEEE 854
IEEE 754 deals only with binary floating-point numbers, i. e. with base β “ 2.
However, most of the principles described in the standard can also be applied to
arbitrary bases. Therefore, two years later a new standard called “IEEE Standard
for Radix-Independent Floating-Point Arithmetic” was published as IEEE 854.
It allows for bases β “ 2 and β “ 10 by generalising all definitions that formerly
only applied to β “ 2. Furthermore, a few clarifications were added.

The differences between both standards from a practical point of view can be
best summarised by citing the foreword of IEEE 854: “The committee believes
that, except for a possible conflict with the requirements in 5.6 and 7.2 that
unrecognisable decimal input strings signal an exception, and in 6.3 that the
sign of zero be preserved in certain conversion operations, any implementation
conforming to ANSI/IEEE Std 754-1985 will also conform to this standard. In
addition, the definition of logb has been enhanced in the Appendix, and two new
functions, conv and nearbyinteger, have been added.”

1.2 The standards: IEEE 754 and 854 15

1.2.3 IEEE 754-2008
After publication of IEEE 754 and IEEE 854, the new standard was widely adopted.
While not all designers of floating-point hardware and software implemented all
features required by IEEE 854, e. g. providing only one rounding mode (usually
round to nearest) or not supporting exceptions, the new standard raised the bar for
floating-point implementations considerably and succeeded especially in providing
standard formats, exceptions, and rounding modes, as well as requiring the basic
operations to be rounded correctly. Virtually all floating-point arithmetic since
IEEE 754 has been implemented adhering to its basic principles and incorporating
most of its requirements, leading indeed to better portability, comprehensibility,
and reliability of numerical algorithms.

Approaching the end of the last millennium, it was deemed necessary to revise
the standard in order to merge IEEE 754 and IEEE 854, extend the old standards
where necessary, and render some definitions and requirements more precise (e. g.
conversion from binary to decimal representation). The revision process started
in 2000 and culminated in the approval of the “IEEE Standard for Floating-Point
Arithmetic”, also called IEEE 754-2008, on 12 June 2008.

It is important to note that not only did the principal design goals (numerical
robustness, reliability, and portability) remain the same, but that it was aimed to
provide a standard that still accepted all platforms as conforming that conformed
to IEEE 754 and IEEE 854, i. e. the new standard should not invalidate any
hardware that conformed to its older versions [Mul+10, p. 79].

That being said, the revision provided for the opportunity to reformulate the
standard’s principles in a more precise manner, while at the same time accounting
for advances in floating-point design and the underlying numerical methods by
requiring or recommending new operations and alternative exception handling
facilities. Citing from its foreword, “This standard provides a discipline for
performing floating-point computation that yields results independent of whether
the processing is done in hardware, software, or a combination of the two. For
operations specified in the normative part of this standard, numerical results and
exceptions are uniquely determined by the values of the input data, the operation,
and the destination, all under user control.” The foreword ends by expressing
hope “that language designers will look on the full set of operation, precision, and
exception controls described here as a guide to providing the programmer with
the ability to portably control expressions and exceptions. It is also hoped that
designers will be guided by this standard to provide extensions in a completely
portable way.” [IEEE08]

IEEE 754-2008 consists of two parts: a normative part that conforming
implementations must adhere to, and a recommendatory part that describes
operations and facilities that provide for better numerical results and better
portability. The standard notes what is needed for an implementation to be
called conforming: A “programming environment” must support the required

16 Floating-point numbers, standards, and the user environment

operations, formats, and features of the normative part in either of the two
supported bases β “ 2 or β “ 10. It goes on by listing some programming
environment considerations: “Conformance to this standard is a property of a
specific implementation of a specific programming environment, rather than of a
language specification.” [IEEE08]

Formats

IEEE 754-2008 distinguishes between basic, interchange, extended, and extendable
formats. It defines three binary basic formats called binary32, binary64, and
binary128, as well as two decimal basic formats (in binary representation, called
decimal32 and decimal64). Interchange formats are fixed-width encodings that
can be used for the exchange of floating-point data between implementations; they
are identified by their size. An extended precision format extends a basic format
by using a representation with both larger exponent range and a longer significand.
For an extendable precision format, the range and length of the significand can be
specified by a user.

A conforming implementation must at least implement one of the basic formats
with means to initialise this format and convert values between that format and
all other supported formats, and a corresponding interchange format with means
to read and write that format. Furthermore, the required operations for the
implemented basic format(s) must be supported.

It should be noted that IEEE 754-2008 does not define completely new formats.
In fact, binary32 is IEEE 754’s single format, and binary64 is IEEE 754’s double
format. Furthermore, Intel’s x87 double-extended 80 bit format is called binary64
extended in IEEE 754-2008. While most programming languages do not offer
extendable formats, additional floating-point libraries can support such formats,
such as MPFR (see Section 5.7.3 and [GNU16d]). Table 1.1 lists the formats used
in this thesis as well as their names. For historical reasons and the current naming
conventions in programming languages, the “old” names such as single and double
will be used instead of binary32 and binary64.

Format Name Width Exponent Significand Exponent bias
binary16 half 16 5 11 24 ´ 1 “ 15
binary32 single 32 8 24 27 ´ 1 “ 127
binary64 double 64 11 53 210 ´ 1 “ 1023
binary128 quadruple 128 15 113 214 ´ 1 “ 16382

binary64 ext. extended 80 15 64 214 ´ 1 “ 16382

Table 1.1: (Binary) Floating-point formats. Partly taken from [WIK17q]. Width,
exponent, and significand are given in bits; with the exception of the extended format,
the significand includes the hidden bit.

1.2 The standards: IEEE 754 and 854 17

Attributes and Rounding

IEEE 754-2008 defines attributes that are “logically associated with a program
block to modify its numerical and exception semantics. A user can specify a
constant value for an attribute parameter” [IEEE08, p. 15]. In particular, these are
rounding-direction attributes, alternate exception handling attributes (which both
existed in the former standards, albeit without being called attributes), preferred
width attributes, value-changing optimisation attributes, and reproducibility
attributes. The standard mandates that rounding-direction attributes must be
supported.

For binary floating-point arithmetic, the four rounding modes described in
IEEE 754 remain in IEEE 754-2008 as they are. Additionally, when rounding
to nearest, a new tie-breaking rule is added, leading to a new rounding mode
round to nearest, ties to away: When an exact value lies exactly between two
representable floating-point numbers, the one with larger magnitude is returned.
This rounding mode is especially relevant for decimal floating-point arithmetic
as this introduces the so-called ‘‘kaufmännische Rundung” [DIN92]. For binary
implementations, it is not required. Table 1.2 lists the rounding modes and their
respective attribute names which will be used in this thesis.

IEEE 754-2008 rounding-direction attribute IEEE 754 rounding mode
roundTiesToEven round to nearest
roundTiesToAway —

roundTowardPositive round toward `8
roundTowardNegative round toward ´8
roundTowardZero round toward 0

Table 1.2: Rounding modes and attributes.

Operations

IEEE 754-2008 clarifies some of the operations listed in the former standards,
especially concerning comparisons, and adds new required functions like nextUp,
nextDown, minNum, and maxNum. Additionally, some formerly recommended func-
tions like copy, negate, abs, or copySign are now mandatory. For decimal floating-
point arithmetic, some specialised operations like sameQuantum and quantize are
added, as well as preferred exponents for decimal results for all operations.

From an arithmetic point of view, the most notable change with regard to
required operations is the incorporation of the fusedMultiplyAdd (fma) operation
which has found its way into numerous processor designs as many scientific
workloads require the multiplication of two values directly followed by an addition.
IEEE 754-2008 mandates fmapx, y, zq “ pxˆyq`z to be calculated with unbounded
range and precision, and rounded only once to the destination format.

18 Floating-point numbers, standards, and the user environment

Concerning conversion between binary floating-point numbers and decimal
representations, IEEE 754-2008 requires correctly rounded base conversions for all
possible values. This is a stricter requirement compared to the older standards
(cf. page 11).

At the time when IEEE 754 and IEEE 854 were published, efficient algorithms
and implementations for trigonometric, exponential, and logarithmic functions
were not known, so these operations were not mentioned at all in these standards.
Although at the time of the revision process enough knowledge and computing
power was available to implement and compute correctly rounded versions of
these operations in an efficient manner (cf. e. g. [Lau08]), they were only added to
IEEE 754-2008 as recommended operations, including definitions for special cases.

Furthermore, IEEE 754-2008 recommends reduction operations that take a
vector of operands in one format and return a result in the same format, thus
reducing a vector of operands into a single result. These operations include
e. g. sum, dot, sumSquare, sumAbs, or scaledProd and are recommended for all
supported arithmetic formats.

Exceptions and infinity arithmetic

With regard to exceptions and arithmetic with special values such as infinities
and NaNs, the definitions of the older standards were revised and clarified, but no
substantial changes were introduced.

The clause about alternative exception handling was extended to allow optional
exception handling in various forms, including traps and other models such as
try/catch [WIK16].

Reliability and portability

To facilitate better reliability and portability of numerical programs, IEEE 754-2008
adds some clauses to address different facets of modern programming languages
and compilers, such as expression evaluation rules, assignments, function values,
and optimisations. It recommends guidelines and principles to handle these in
portable manners. Furthermore, it adds optional preferredWidth attributes which
can be used to change the format of intermediate computations for program blocks.
This enables the user to increase the intermediate precision for accuracy-sensitive
parts of an algorithm.

Furthermore, a clause was added dedicated to the reproducibility of floating-
point computations. It notes that “reproducible results require cooperation from
language standards, language processors, and users” [IEEE08, p. 51] and suggests
means to control how floating-point operations are (reproducibly) performed.

Finally, IEEE 754-2008 concludes with Annex B about program debugging
support, giving guidelines about which features are needed from a debugger to
efficiently find numerical bugs in a floating-point program.

1.3 Rounding and error analysis 19

This overview of IEEE 754-2008 concentrated on the main differences to its
earlier versions IEEE 754 and IEEE 854 as far as they are needed for this thesis.
For an overview of the revision process and a more detailed analysis see [WIK16];
for detailed information about the entire standard, the reader is referred to the
revision website [Hou08].

1.2.4 IEEE 754-2018
According to the rules of the IEEE, standards have a limited validity of 10 years.
After this period, the standard must either be revised or withdrawn, otherwise it
is assigned an inactive status (see [IEEE17b]). To maintain a valid active floating-
point standard, IEEE 754-2008 needs to be revised by 2018. Therefore, mid-2015
“a minor revision has been undertaken, to clean up its errata and republish it mostly
unchanged” [Hou17b]. During the first meeting, the scope of this minor revision
was explicitly stated as follows: “The scope of this activity is to produce a timely
correction to the 2008 standard, fixing errors and ambiguities and avoiding major
restructuring, additions, deletions, changes in behaviour, or other controversial
actions.” [Hou15] It is intended to start a more thorough revision process in 2019
towards producing the next iteration (tentatively called IEEE 754-2028).

The list of errata of IEEE 754-2008 has been chosen as a starting point for the
current revision [IEEE17a], with additional topics being raised during meetings.
The most notable topics discussed for IEEE 754-2018 so far are unifying the use of
the terms function, operation, and predicate, special cases for the pown operator4,
setting minimum values for small extendable formats (precision t ě 3 and U ě 2
for β “ 2), and the addition of definitions for asinPi and acosPi5 (which are
missing in IEEE 754-2008). Suggestions deemed to be out of scope for the current
process are postponed to IEEE 754-2028.

1.3 Rounding and error analysis
Executing numerical computations on any platform with limited precision arith-
metic (such as floating-point arithmetic) inevitably leads to errors. [Hig02]
mentions three main causes for these errors:

• Rounding errors. These are unavoidable due to the limited precision.

• Data uncertainty. This may stem from measurement or estimation errors
when working on “real-world” data, from perturbations while storing or
converting the data (which basically comes down to rounding errors), or
from earlier computations performed on the original data.

4pownpx, nq “ xn for x P R and n P N.
5For x P r´1, 1s, these are defined as asinPipxq “ arcsinpxq{π and acosPipxq “ arccospxq{π.

20 Floating-point numbers, standards, and the user environment

• Truncation (discretisation) errors. These errors are introduced by modelling
the problem and choosing an algorithm to perform the calculation. For
instance, many standard numerical methods can be derived by taking finitely
many terms of a Taylor series. The number of terms used to compute the
result directly influences the precision (and thus the error) and the speed of
the computation.

In the context of this thesis, we only focus on the errors caused by rounding.
In the following, we introduce basic terms and definitions related to error analysis
and also shortly cover stability of algorithms. For a more detailed analysis, see
chapters 1 and 2 of [Hig02] and chapter 2 of [Mul+10] (where most of this section
is based upon).

1.3.1 Some basic properties
Definition 1.1. Let x P R and ˝ : R Ñ F˚pβ, t, L, Uq one of the five rounding
functions required by IEEE 754-2008. Then the absolute error is given by

εabspxq “ |x´ ˝pxq| (1.3)

and the relative error by

εpxq :“ εrelpxq “

ˇ

ˇ

ˇ

ˇ

x´ ˝pxq

x

ˇ

ˇ

ˇ

ˇ

. (1.4)

♦

For x P R and ˝pxq in the normalised range of Fpβ, t, L, Uq, it holds

εpxq ă β1´t, (1.5)

whereas εpxq can be as large as 1 if ˝pxq is subnormal. In that case, the following
bound holds:

εabspxq ă βL´t`1. (1.6)
When round to nearest is used, these error bounds can be further improved:

εpxq ď
1
2β

1´t (1.7)

and
εabspxq ď

1
2β

L´t`1 (1.8)

for ˝pxq in the normal or subnormal range, respectively.
The above results can be generalised by combining the relative and absolute

error bounds: If z “ ˝pz1 Ÿ z2q for z1, z2 P Fpβ, t, L, Uq and no overflow occurs,
then

z “ pz1 Ÿ z2qp1` δq ` γ (1.9)

1.3 Rounding and error analysis 21

with |δ| ă β1´t and |γ| ă βL´t`1 (or, in case of round to nearest, |δ| ď 1
2β

1´t

and |γ| ď 1
2β

L´t`1). Moreover, when z is subnormal, then δ “ 0, and when
z P Fpβ, t, L, Uq, then γ “ 0 [Kah96b]. The bound on δ (i. e. δ “ β1´t and
δ “ 1

2β
1´t for round to nearest) is also called unit roundoff, see Definition 1.4.

When analysing the quality of floating-point operations, it is more useful to
evaluate the relative error introduced by an operation (due to the dependency of
the precision relative to the floating-point number’s exponent). However, when
trying to assess if the result of a floating-point operation is correctly rounded, the
following measure gives accurate insight into the operation’s performance:

Definition 1.2. If x P R with x P rβe, βe`1q, then

ulppxq “ βmaxpe,Lq´t`1. (1.10)

ulp is also called unit in the last place. ♦

Note that when x is a floating-point number, the definition of ulp coincides
with the quantum of x:

Definition 1.3. Every floating point number x can be represented as

x “ Sx ˆ ŝx ˆ β
ex´t`1 (1.11)

with Sx the sign of x, ŝx the integer significand, and ex the exponent. Then,

βex´t`1 (1.12)

is called the quantum of x. ♦

Note that the definition in equation (1.11) is equivalent to that in equation (1.2)
(with base β instead of base 2).

Another term closely related to ε and ulp that is widespread in the analysis of
numerical algorithms is the term unit roundoff :

Definition 1.4. Given a floating-point system Fpβ, t, L, Uq, the unit roundoff u
is defined as

u “

$

&

%

1
2 ulpp1q “ 1

2β
1´t in round to nearest mode,

ulpp1q “ β1´t in the other rounding modes.
(1.13)

The unit roundoff is also sometimes called machine epsilon. ♦

For any arithmetic operation Ÿ P t`,´,ˆ, {u, for any rounding mode ˝, and
for all floating-point numbers z1, z2 such that z1 Ÿz2 does not underflow or overflow,
we have

˝pz1 Ÿ z2q “ pz1 Ÿ z2qp1` ε1q “
pz1 Ÿ z2q

p1` ε2q
(1.14)

with |ε1|, |ε2| ď u.

22 Floating-point numbers, standards, and the user environment

1.3.2 Stability
To evaluate the correctness of a floating-point operation, i. e. to verify that the
result of a floating-point operation is correctly rounded, it is sufficient to regard
the error in terms of ulps: If the returned result is off by more than one ulp, it
surely is not correctly rounded. Furthermore, even for operations that are difficult
to round (such as elementary functions), it suffices to regard either the error in
ulps or the relative error ε.

However, the situation is different when evaluating the quality of a result
gained by executing a number of floating-point operations (in other words, the
quality of the result of a numerical algorithm). When computing an approximation
ỹ to y “ fpxq for x, ỹ P Fpβ, t, L, Uq and y P R, the best possible error bound
would be a small absolute error εabs, but in general, such an error bound will not
be possible to achieve due to the limited precision of floating-point numbers. The
next best possible result would be small bounds on the relative error ε, ideally
with a magnitude of Opuq, i. e. εpỹq « u. If such error bounds can be achieved,
the algorithm is said to be forward stable, and the errors are called forward errors.

It is not always possible to achieve such error bounds. In that case, a different
approach is helpful by asking “For what set of data have we actually solved our
problem?” In other words, one tries to find a minimal perturbation ∆x of the input
x such that ỹ “ fpx`∆x). If such a minimal |∆x| or, depending on the situation,
the relative variant |∆x|{|x| exists, it is called backward error. An algorithm for
computing y “ fpxq is called backward stable if, for any x, it produces a computed
result ỹ with a small backward error, i. e., ỹ “ fpx`∆xq for some small ∆x.

A result of the form

ỹ `∆y “ fpx`∆xq, |∆y| ď δ|y|, |∆x| ď γ|x| (1.15)

is called a mixed forward-backward error result. In other words, ỹ is almost the
right answer for almost the right data, provided that δ and γ are sufficiently small.

Finally, an algorithm is called numerically stable if it is stable in the mixed
forward-backward error sense of equation (1.15). With this definition, a backward
stable algorithm is numerically stable (set ∆y “ 0 in equation (1.15)).

1.3.3 Use cases for rounding
In this section, we briefly touch a few reasons why IEEE 754-2008 demands
different rounding modes. Especially when considering equation (1.7) and (1.13),
it is a legitimate question to ask why using round to nearest mode might not be
the best choice.

Interval arithmetic

Interval arithmetic is “an approach to putting bounds on rounding errors and
measurement errors in mathematical computation and thus developing numerical

1.3 Rounding and error analysis 23

methods that yield reliable results” [WIK17r]. This is achieved by bounding all
variables into intervals consisting of upper and lower bounds. To ensure that all
values are indeed kept inside these bounds, the rounding mode is switched to
round towards ´8 when calculating the lower bound and to round towards `8
for the upper bound. Although a higher relative error ε might be produced, the
correct solution is guaranteed to stay inside the interval. When using round to
nearest mode, slightly tighter bounds could be achieved, but the correct solution
might be just outside the interval bounds. For more details on interval arithmetic,
see e. g. [Moo66], [Kul89], or the recently adopted “IEEE Standard for Interval
Arithmetic” (IEEE 1788-2015 [IEEE15], which relies on the underlying floating-
point implementation to be conforming to IEEE 754-2008).

Analysing numerical stability

Using different rounding modes is also useful in diagnosing numerical stability: If
the results of a subroutine do not vary substantially between variants that use
roundTiesToEven, roundTowardNegative, roundTowardPositive, or roundToward-
Negative, it is likely numerically stable. Also, if results vary substantially, the
method might be unstable and affected by rounding errors (see also [WIK17m]).
This reasoning is the basis for techniques like repeated randomised rounding (see
e. g. CESTAC [Vig93], CADNA [LCJ10], and VERROU [FL16]) or MCA (Monte
Carlo Arithmetic, see e. g. [Par97] or Verificarlo [DDP15]). These techniques
randomly change the rounding mode during the runtime of the algorithm whose
stability is to be analysed.

However, Kahan vehemently states that rounding errors are not uniformly
distributed and that repeated randomised rounding and MCA sometimes destroy
useful numerical properties such as the Exact Cancellation Theorem ([Kah98,
p. 17], cf. also [Kah06]). He argues that randomised rounding can increase the
confidence that a given method is numerically stable if the results vary only slightly
between different runs, provided they are compared with known correct results.
If on the other hand results vary significantly, Kahan strongly advises to employ
other means of analysis to verify the numerical stability of the algorithm

Numerical algorithms

Finally, we mention two examples of numerical algorithms that rely on being able
to switch the rounding mode. [Kor+12] proves that for a, b, c P Fpβ, t, L, Uq and
RN : RÑ F˚pβ, t, L, Uq the roundTiesToEven rounding function, no algorithm
exists that calculates RNpa` b` cq using only computations in roundTiesToEven
mode. Instead, they present an algorithm relying on round-to-odd addition (cf.
[BM08]) which uses roundTowardPositive and roundTowardNegative.

In [Rum13b], a variant of an algorithm that uses extra-precise accumulation
of dot products to solve ill-conditioned linear systems accurately is presented (cf.

24 Floating-point numbers, standards, and the user environment

[Rum13a]). The results of that algorithm are significantly improved by permitting
directed rounding modes.

1.4 The user environment
This thesis is about IEEE 754-2008 conformity regarding platforms as well as
IEEE 754-2008 support of the components necessary to execute (numerical)
programs on that platform. Running numerical algorithms involves a lot more
components than visible at first glance, amongst which are the programming
language of choice, the compiler, and the hardware on which the program is
executed. Ideally, it should not be necessary for a user to fully understand all parts
involved, but rely on the means provided by the chosen programming language
and trust that all other components work together following the philosophy of the
standard, or more precisely, that all components adhere to the standard as far as
needed to supply a conforming platform as a whole.

With this in mind, IEEE 754-2008 explicitly specifies that it “provides a
discipline for performing floating-point computation that yields results independent
of whether the processing is done in hardware, software, or a combination of the
two” [IEEE08, p. iv], and it states that “conformance to this standard is a property
of a specific implementation of a specific programming environment, rather than
of a language specification” [IEEE08, p. 2]. This means conformance is regarded
as a property of a platform in its entirety.

A platform cannot be conforming to the standard if at least one component
does not support all relevant parts of the standard: Consider for instance processor
hardware that supports the required rounding modes, but does not signal excep-
tions. In this case, it is not possible6 to gain insight into (numerical) problems
encountered inside an algorithm, e. g. it might not be possible to understand why
a subroutine returned an NaN. Of course, such a platform cannot be considered
fully IEEE-compliant.

Note though that if parts of the execution chain are known to be incompatible, it
might be possible to make the platform conforming by replacing the computations
done on non-conforming components with adequate software implementations.
Furthermore, only those parts of the involved components which are actually
exercised when running a specific numerical program need to be IEEE-conforming.

What we call the user environment comprises a platform in its entirety: A
set of computer hardware, operating system, numerical and system libraries, a
programming language and the respective compiler, and even the compiler switches
used. In the following, we examine the components involved in executing programs
incorporating floating-point calculations, and in which part of hardware or software
floating-point operations are executed. This directly influences reproducible and

6In theory, it is possible to emulate or recover exceptions purely in software; in reality
however, this is far too costly in terms of performance.

1.4 The user environment 25

reliable execution of floating-point programs and the IEEE-conformity of a given
user environment or the parts it consists of.

Before describing the components of a floating-point environment in detail, we
define the term user environment:

Definition 1.5. A (floating-point) user environment consists of everything that
influences how a floating-point program is executed. More specifically, the following
components constitute a user environment:

• the computer hardware, consisting of a CPU and optional FPUs or acceler-
ators,

• the operating system enabling programs to execute on that hardware, in-
cluding mathematical libraries that come with the operating system,

• the programming language in which the user program is written,

• the compiler that is used to compile source code into machine instructions,
including all compiler options set during compilation,

• mathematical libraries supplied by the compiler,

• optionally an interpreter needed to execute code,

• and additional mathematical libraries linked into the program.

Such an environment in its entirety is also called floating-point environment (or
simply environment if the context is clear) in this thesis.

Note that we use the term platform in this thesis when we refer to the underlying
computing hardware of a user environment. ♦

This definition allows for a broad range of fundamentally different floating-point
environments: software packages that perform all floating-point computations
in software; “normal” office computers that use some kind of spreadsheet pro-
gram (which might use the CPU’s floating-point or multimedia unit to execute
floating-point operations); specialised supercomputers used for large-scale scientific
simulations that can schedule floating-point calculations to different execution
units, e. g. vector extensions or accelerators such as GPUs or FPGAs; or even
virtual machines running inside a virtualised computing environment (consider
e. g. cloud computing). While it is not feasible to assess the quality of the floating-
point operations on every floating-point environment,7 this definition allows for a
standardised way of analysing the components involved in executing floating-point
operations.

7This is valid especially for floating-point software packages as it might be difficult or even
impossible to interface a software package from an external testing program.

26 Floating-point numbers, standards, and the user environment

1.4.1 Limitations of the user environment definition
Definition 1.5 takes a rather CPU-centric point of view: The user environment
is considered to be a set of one piece of computer hardware with some CPU,
an operating system, and further software that is needed to execute numerical
algorithms. It also allows for the addition of some FPUs or (probably internal)
accelerators (cf. Section 1.4.2) which are in most cases accessed by using special
library commands. However, it does not account for the most common model
in High Performance Computing (HPC) systems where programs are executed
on a (possibly very large) set of identical compute nodes, i. e. when the user
environment does not consist of one but rather several computers.

This mode of execution poses two main challenges for tools that analyse the
floating-point conformity of such an environment: If the IEEE-conformity of this
whole floating-point environment (or rather set of environments) is to be evaluated,
every computing node must be evaluated on its own, thus ensuring that the nodes
behave identically when given the same (numerical) computing task. Some of the
challenges that arise are discussed in Sections 1.4.3 and 3.1.4.

Additionally, parallel programs need to exchange data between different com-
pute nodes, thereby employing another set of libraries handling these commu-
nications. It is reasonably safe to assume that copying floating-point numbers
from one compute node to the next does not change the values of these numbers.
However, to speed up communication between nodes and to relieve the CPU of
some of its compute burden, vendors start employing an offload approach that
shifts computation of certain operations from the compute node to the network
switch. For a detailed discussion of network offloading, in-network computations,
and the impacts on IEEE-conformity, see Section 1.4.8.

1.4.2 Floating-point hardware
Although a fully IEEE-conforming floating-point environment can be written in
software regardless of the underlying hardware, it is highly desirable, especially
from a performance point of view, that the hardware provides means to execute
floating-point operations in an efficient manner. The more IEEE 754-2008 features
are supported in hardware, the less work has to be emulated in software which
would significantly slow down numerical programs.

In the beginnings of floating-point computations in the 1960s, the only ex-
ecution unit available on computers of that era was the CPU which typically
consisted of a few registers to store data, commands to control the program flow
and move the data, and commands to process the data, including instructions
to perform integer operations. Floating-point operations had to be written in
software by utilising the available commands, especially those of the integer unit.
If a floating-point standard had existed at that time, it would have been the
emulating software’s responsibility to ensure conformance to that hypothetical

1.4 The user environment 27

standard.
Since then, processor hardware designs have become much more complex,

providing comprehensive instruction sets, specialised processing units for different
needs (like floating-point instructions or cryptographic operations), and complex
memory hierarchies. Virtually all modern processors targeted either directly for
scientific computing or for all-purpose computing include some type of floating-
point unit (FPU) specifically designed to perform floating-point operations. As a
consequence, of all floating-point operations available to the user, those for which
an implementation exists either in the CPU’s instruction set or in an FPU can be
executed in hardware, which usually results in faster performance.

FPUs

Since doing floating-point computations purely in software is very costly and
therefore slow, designers of computer hardware started developing dedicated
floating-point units that execute floating-point instructions in hardware, thereby
massively reducing the execution time of basic floating-point calculations. Al-
though already available in the 60s in mainframes such as the IBM System/360,
widespread adoption of such specialised floating-point units even in consumer
hardware started only in the 80s with the introduction of Intel’s 8087 floating-point
coprocessor (which was a separate piece of hardware complementing the 8086
processor). The 8087 consisted of floating-point registers to hold floating-point
values, an instruction set, and a status register that contained information about
the currently selected rounding mode and all exceptions that occurred since the
last reset of the register. The instruction set contained instructions to trans-
fer floating-point data between main memory and the floating-point registers,
mathematical operators such as addition or square root, comparisons between
floating-point numbers, conversions between floating-point and integer values, and
instructions to operate on the status register like reading and setting values. For
a more detailed description, see Section 5.2.1.

Already one of the next generations of Intel CPUs incorporated the then-called
487 FPU extension into the 486 design and kept it on the same processor die.
This is highly advantageous from a memory transfer point of view because the
CPU gains direct access to the floating-point registers. Since then, the majority
of processor designs unite some type of floating-point execution unit and special
floating-point registers together with all-purpose execution units on the same
processor die to support fast-performing numerical calculations. Examples of FPU
units are Intel’s SSE and AVX units, ARM’s VFP extensions, or the AltiVec and
VSX instructions in POWER processors.

The design of these FPUs however has advanced to reflect current needs:
Vectorised FPUs support performing floating-point operations on a vector of
floating-point values at the same time, and deep pipelines increase FPU through-
put.

28 Floating-point numbers, standards, and the user environment

(External) Coprocessors/Accelerators

Although specialised (external) numerical coprocessors like the x87 are not common
any more, a new class of coprocessors which at least partially support floating-point
operations has surfaced: accelerators like GPUs or FPGAs. GPUs (Graphics
Processing Units), which were originally designed to speed up graphics calculations,
have gained much interest as floating-point units due to their excellent price/per-
formance ratio. They have become widespread under the term GPGPUs (General
Purpose GPUs) after they started supporting IEEE-conforming floating-point
calculations.

FPGAs (Field Programmable Gate Arrays) are processing units which can be
reprogrammed to support arbitrary tasks. Due to their programmability, they
are deployed in industry for a wide range of tasks such as audio DSP (Digital
Signal Processing), real-time video engines, ASIC prototyping, industrial imaging,
network switching and routing, hardware security modules, or data mining systems
(for more applications and a coarse overview, cf. [WIK17l]). While possible in
theory, it is not common to use an FPGA as a dedicated FPU. This is due
to the fact that an IEEE-conforming floating-point implementation takes up a
considerable amount of the logic gates (and registers) available on an FPGA, and
the resulting performance is at best in the order of current FPUs.

Usually, execution of floating-point operations on these types of accelerators
needs to be explicitly enabled, e. g. by using special compiler switches or linking
corresponding libraries. This means that the user can control where floating-point
calculations are performed.

1.4.3 The operating system
The operating system and its system libraries play a vital role as the link between
user software and the actual hardware that is used to execute the software. It
provides programs and compilers with programming interfaces to enable portability
without recompilations and serves as an abstraction layer between the actual
hardware and these programming interfaces. As a consequence, this means that
the exact execution location of a floating-point operation might be hidden from
the user, and it might not always be possible to determine in advance where the
operation is performed:

• Depending on the actual hardware, especially the CPU model and available
FPUs, the operating system might schedule floating-point instruction calls
differently between systems. This is done either for performance reasons
or to avoid known CPU bugs. One prominent occurrence of such a known
error with different code paths depending on the actual CPU model is the
infamous Intel Pentium 90 FDIV bug [INT04; Nic11; Ede97]: Most operating
systems diverted the FDIV call to a slow, but correct software routine when

1.4 The user environment 29

an affected CPU was encountered, whereas on “clean” Pentiums, the FDIV
instruction implemented in the x87 FPU was called.
On Unix systems, such calls and routines are collected in the libc, such as in
glibc on Linux systems. This approach has the advantage of transparently
hiding bugs and other hardware quirks from the user. On the other hand, it
might be difficult to trace which parts of a numerical algorithm are executed
in software or in hardware (or even which part of the hardware).
Also, this approach might hide the fact that although the underlying CPU or
FPU is IEEE-conforming, the software routines which are actually executed
in favour of their hardware equivalents might be not.

• All relevant modern operating systems employ multitasking, i. e. the available
computing time is split between different tasks. As a consequence, any task
is assigned time slices in which it is executed. When the time slice is up,
the current task is stopped, and execution is transferred to a different task.
To guarantee that the stopped task is resumed exactly where it left off,
the full task state needs to be conserved between context switches. This
might be extremely expensive e. g. on RISC architectures with large amounts
of registers. Thus, depending on the operating system and the platform’s
architecture, a tradeoff might be used to only save “important” registers
and values.
Consequently, whether and which registers related to floating-point oper-
ations are preserved between context switches depends on the operating
system and the CPU of a platform and might be difficult to determine in
advance.

• The same applies to multiprocessing and multithreading: As context switches
might result in resuming the current task on a different core or even processor,
full program information must be preserved between these context switches.
This problem is especially severe on CPUs which use SMT (Simultaneous
Multi-Threading): To perform context switches as efficiently as possible,
usually only the minimally needed amount of registers is saved. Whether
floating-point registers are affected depends again on the CPU and the
operating system.

• Although on most modern operating systems special care is taken that
context switches indeed preserve all relevant data, there is another con-
sequence from multiprocessing and multithreading: Without taking extra
measures like explicitly specifying processor/core affinity (if supported by
the operating system), it is not possible to know in advance which core on
which processor will be used to execute the program or whether the same
core is used throughout the runtime of the program.

30 Floating-point numbers, standards, and the user environment

In most cases, this should not lead to severe consequences as processor cores
on a given platform are usually identical; on the other hand, a faulty core
could lead to completely non-deterministic behaviour of the program, some-
times yielding correct (and reproducible) results, sometimes yielding wrong
values. That being said, faulty hardware always has adverse consequences
for program correctness and reliability.

1.4.4 Floating-point libraries
In addition to the operating system’s libraries, there are several other types of
libraries which need to be considered regarding floating-point execution.

• Libraries needed to execute code on special hardware such as accelerators
were already mentioned above. This type of libraries only serves as a
gateway for the hardware execution units, and when targeted, it is clear
that floating-point operations are executed on the hardware.

• System libraries have been shortly covered above. The most important
system library with regard to floating-point calculations is the system’s
math library which includes calls for all types of mathematical operators
like trigonometric, exponential and logarithmic functions, as well as power,
remainder, and rounding functions. In most cases, calls to operators that
are also implemented in an available FPU are directly passed to that unit,
while operators which are not available in hardware are executed in software.
There are two caveats: If a platform supports more than one hardware
FPU, is is not clear which of those will be chosen to perform the calculation.
Depending on the math library implementation, the best FPU unit might
not be used although it exists in hardware. But even if the math library
includes calls to all FPUs on the platform, there might not be a “best” choice:
Consider e. g. a recent Intel Xeon server CPU which typically features an
x87 FPU as well as SSE and AVX vector units. Favouring AVX over SSE
should be the best choice between these two in terms of fastest code path,
register usage, and execution time, but choosing the x87 FPU might yield
better accuracy since all intermediate calculations are performed in extended
format.

• Some compilers implement mathematical operators in their own math library.
For details, see below.

• For many numerical algorithms, fast implementations exist for a wide
range of platforms, such as BLAS [BLAS17], LAPACK [LAP17], MKL
[INT17c], ARM Performance Libraries [ARMb], IBM ESSL an PESSL
[IBM03a; IBM03b], Eigen [G+10], and many more (see also [WIK17t]).

1.4 The user environment 31

• As an alternative to the floating-point formats used in programming lan-
guages (which usually directly map to hardware formats, see below), several
software libraries with fully IEEE-conforming implementations of floating-
point formats, operations, and attributes have been written. Using these
libraries, perfect portability, reproducibility, and IEEE-conformity can be
reached. Furthermore, some of these libraries offer fully customisable floating-
point formats and precisions for intermediate calculations, resulting in cor-
rectly rounded results for all operations. From a performance perspective,
these libraries are usually less than ideal due to management overhead and
the library not being able to exercise special floating-point hardware.

The most notable floating-point libraries in this context are MPFR [GNU16d],
Berkeley SoftFloat [Hau17], and CRlibm [Dar+06], all of which are covered
in detail in Chapter 5.

1.4.5 Programming languages
The programming language and its features are the main interaction point for
a user with a given user environment. In general, it is not trivial to choose the
best programming language for a given project, and this also holds when the
desired goal is to implement numerical algorithms. The choice heavily depends on
personal preferences as well as general considerations. If best possible performance
is important, interpreted languages like Java or script languages like Perl or
Python are at an disadvantage (for the the latter, this might not be true if special
libraries like numPy [Num17] are used). Additionally, not all environments support
compilers for all programming languages, so the choice may be limited. This is
especially true for supercomputers like the Blue Gene/Q installation JUQUEEN
at the Jülich Supercomputing Center [JSC17a] which might only offer C, C++ or
FORTRAN as possible programming languages.

From a floating-point point of view, the programming language influences how
conforming a floating-point environment in its entirety can be since it provides the
mapping between features available by the environment (be it hardware, libraries
etc.) and the operations provided by the language. The following areas are of
special concern:

• Supported formats: As stated above, IEEE-conforming environments must
support at least one of the basic formats. Typically, all modern programming
languages provide support for the single and double formats. Some languages
such as C or C++ also support an extended format called long double.
Unfortunately, the exact format of long double sometimes depends on
the underlying hardware platform: On Intel x86 processors, usually Intel’s
extended 80 bit format is used, whereas on SUN SPARCs long double maps
to quadruple precision (emulated in software).

32 Floating-point numbers, standards, and the user environment

• Intermediate formats: Of special interest is the language’s choice of in-
termediate formats: The standard recommends calculating intermediate
results with higher precision and rounding towards the target format only
at the end. For instance, when evaluating an expression with only single
precision operands, all intermediate calculations should be performed in
double precision. Common combinations are single/double, double/extended
or double/quadruple.

Java only supports single and double numbers, resulting in double expressions
always being evaluated in double format. Furthermore, expressions involving
only singles are also always evaluated in single, although it would be possible
to use double as an intermediate format. This (among other things) led
W. Kahan and J. Darcy to give the talk “How JAVA’s Floating-Point Hurts
Everyone Everywhere” [KD98] at the 1998 ACM “Workshop on Java for
High-Performance Network Computing” about why this is a bad idea from
a numerical point of view.

• Rounding modes: Choosing a rounding mode is usually done by performing
a respective function call. This function (or family of functions) is sometimes
supplied by the programming language (e. g. in C99 [C99]) and sometimes
by the compiler (e. g. g++ for C++).

• For exceptions, the same as for rounding modes applies: Support is usually
supplied by a family of functions either directly by the programming lan-
guage or by the compiler/system libraries. This of course assumes that the
underlying hardware supports exceptions.

• Available operators: Not all language standards supply mappings for all
operators listed in IEEE 754-2008. However, in reality this does not limit
the available range of operators since these can be supplied either as an
extension by the compiler or through libraries.

1.4.6 The compiler’s role
Another vital component when writing and executing floating-point algorithms
on a given user environment is the compiler. Its role is particularly important as
the compiler translates the means defined by the language into actual function
or hardware calls and provides the mapping between language statements and
execution unit. This is especially important on systems which provide more than
one FPU or where more than one numerical support library is present. Also, the
default execution targets for floating-point calculations might change between
compiler releases. In the following, we give an (incomplete) enumeration of areas
of concern:

1.4 The user environment 33

• Evaluation of constants: Most programming languages provide means to
define constants as mathematical expressions involving floating-point oper-
ations, which are converted into floating-point constants at compile time.
As an example, a floating-point constant twopi with a value of 2 ¨ π might
be defined in C as follows: const twopi = 2 * M_PI. Other languages even
provide means to perform full floating-point algorithms at compile time, like
C++ via template meta-programming. How these calculations are performed
is completely compiler dependent, and in general it should be checked that
results are indeed calculated (and rounded) correctly. Often, a software
floating-point library is used for this task (e. g. GNU gcc uses MPFR).

• The same applies for input and output of floating-point numbers (as decimal
human-readable values): The routines used for these conversions are either
directly supplied by the compiler, or a floating-point library providing the
necessary means (like MPFR) is employed. The correctness of the necessary
conversions is then completely dependent on these libraries, as well as on
whether means to choose the rounding mode or to retrieve exceptions are
available.

• For operations not supplied by the currently available hardware execution
units on a given user environment, most compilers either use math libraries
supplied by the operating system or implement their own (possibly higher
performing) math libraries. Which of these libraries is chosen is compiler
dependent.

Of course, compilers do not have to be regarded as black boxes which magically
(and obliquely) choose which libraries or FPUs are employed to perform floating-
point operations. Rather, they provide means to influence this choice, usually via
compiler switches. Given these switches, completely differently behaving programs
can be compiled out of the same source code. In the following, we discuss the
most influential areas concerning compiler switches:

• The most obvious difference achieved by employing compiler switches was
already mentioned: The FPU targeted for execution as well as the math
library linked can usually be chosen via respective options.
Sometimes, explicitly choosing the FPU is the only way of achieving consist-
ent portable behaviour between different compiler versions: GNU gcc up
to version 4.7 chooses SSE units as default FPUs on x86 platforms even on
platforms supporting AVX, whereas from version 4.8 on, AVX is targeted
by default.

• Some compilers provide compiler switches to turn off certain aspects of
IEEE-conformity, e. g. ignoring exceptions or turning off subnormal num-
bers. By employing these compiler switches, faster performing code can be

34 Floating-point numbers, standards, and the user environment

generated or faster performing versions of the underlying algorithms (e. g.
for multiplying floating-point numbers) can be selected which usually trade
accuracy against execution time.

• If several sets of registers are available in the CPU, e. g. general purpose
registers as well as special floating-point registers, compiler switches might
be available to specify which registers are used for floating-point calculations
and intermediate results. One well-known example is the switch -ffloat-
store which gcc uses for x86 targets: If the x87 FPU is used in conjunction
with this switch, all intermediate results are stored in the CPU’s general
purpose registers which are 64 bits long, effectively forcing rounding to
double precision. Otherwise, the special x87 floating-point registers with
extended precision can be used for intermediate results.

• The by far most influential compiler switches concerning floating-point cal-
culations are optimisation switches: All modern compilers feature routines
to optimise code for specific platforms in order to enable maximum per-
formance. Unfortunately, many features necessary for IEEE-conforming
calculations either prevent certain optimisations or perform tasks which
are rarely needed, but deteriorate performance. When enabling aggressive
optimisations, many floating-point relevant features are turned off, therefore
reducing IEEE-conformity of the whole user environment. This especially
applies to the evaluation of exceptions which are often dropped on higher
optimisation levels. Additionally, the support of subnormal numbers might
be turned off in some floating-point environments for performance reasons,
e. g. on GPUs or in some Intel processors where floating-point computations
involving subnormal numbers might be some orders of magnitude slower
than calculations without subnormal numbers (see e. g. [HE02; MG14]).

Furthermore, some optimisations might not affect conformity directly, but
might alter floating-point semantics (and thereby affect portability):

˝ Order of evaluation: Optimisers try to rearrange the order of execution
of operations in an algebraically equivalent manner. However, as the
associative law does not hold in general for floating-point numbers,
these kind of optimisations might lead to different results compared to
the same program compiled without optimisation.

˝ Combining operations: When a fused multiply-add operation (fma) is
natively available in the FPU, the compiler might combine multiplica-
tions and additions into fused multiplications and additions, thereby
increasing performance. Additionally, numerical accuracy is usually
better due to having to perform one less rounding per fma. On the
other hand, results will be different compared to a version without fma.

1.4 The user environment 35

Lastly, it should be noted that we slightly over-simplified the compilation
process by ignoring the linking stage which also influences which math libraries or
execution units are chosen. This is of some importance since, although the linker
is a vital part of the build chain, it is usually part of the operating system and
not of the compiler. However, the choice of libraries and execution units is usually
done by the compiler, which then directs how the linker works by supplying the
libraries to be linked via linker options, thus we feel this step can be ignored in
this context.

1.4.7 Interpreters
Most programming languages are compiled to machine code and then executed
directly on the target hardware. However, some languages introduce an interme-
diate step that either eliminates the need for explicit compilation (e. g. Python,
Perl, Matlab) or improves portability by compiling to an intermediate format
that can be executed on different hardware architectures via an interpreter, such
as Java. In this case, the hardware abstraction and translation between hardware
and language features is the responsibility of the interpreter.

The following models can be distinguished:

• Precompilation to an intermediate format. In this model, source code is
compiled as usual. However, the compiler does not emit machine instructions,
but intermediate code targeted at an interpreter (sometimes called virtual
machine). When executing a program, its precompiled code in intermediate
representation is then translated to machine instructions during runtime.
The most prominent example for such a language is Java.

• Transparent compilation to an intermediate format during runtime. Source
code can be executed directly via the language’s interpreter, but the inter-
preter compiles whole source files into intermediate format before executing
the resulting code.
This is the standard compilation model of Python and Matlab.

• “On the fly” translation, i. e. source code is executed directly via an inter-
preter, and whenever an instruction is encountered (usually after parsing
the whole file), it is translated into machine instructions and then executed.
Most scripting languages (not all of which are arguably programming lan-
guages) employ this model, e. g. Perl and Javascript.

In the latter two cases, mixed models exist: While e. g. Python source code is
usually compiled to a binary intermediate format during runtime, it is also possible
to precompile modules to machine code and call these from “normal” Python code.

36 Floating-point numbers, standards, and the user environment

It is clear that aside from general language and compiler concerns (see above)
the interpreter determines to what extent the user environment conforms to
IEEE 754-2008 since only features offered by the interpreter are available to the
user. This is different to other programming models where additional functionality
can be added via external library calls. As an example, the C++ and Java standards
do not offer the possibility to set different rounding modes or to retrieve information
on exceptions. However, in the C++ case, this functionality is added by library
calls that access the relevant CPU or FPU registers, whereas in Java, there is no
possibility to extend a user program with these facilities.

Furthermore, how features provided by the language are mapped to actual
hardware calls completely depends on the interpreter and its implementation
for a given hardware architecture. Due to this reason, Java implements two
base classes for floating-point operations, one for fast operations which may not
yield identical results between different environments, and one that is aimed at
portability and that guarantees that results are always identical regardless of the
underlying hardware (but which may be slower). For a detailed analysis of Java’s
floating-point capabilities and in how far the mapping between virtual machine
and actual processor hardware influences IEEE-conformity, see Sections 5.7.1 and
6.7.3.

1.4.8 In-network floating-point computations
In their quest to simulate nature in the form of e. g. physical, chemical, or
biological processes, scientists need to solve models of ever-increasing complexity
and size, therefore creating demand for huge amounts of memory and computing
power. This need can only be met by supercomputers consisting of several
hundreds or thousands of compute nodes connected via high-speed networks. As
a consequence, a typical scientific simulation will be executed as a single program
running simultaneously on a large number of compute nodes, exchanging data via
the high-speed interconnect.

Communicating data over any network involves some processing power to
prepare the data according to the corresponding network protocol, sending the
data, receiving it, and verifying its integrity. To alleviate the burden on the
CPU, modern network implementations offload the handling of the communication
protocol to the network interface card, thereby freeing valuable CPU cycles.
For most communication operations such as copying data from one node to the
other, this approach yields massive performance improvements. For certain global
operations such as reductions (where values from all nodes or a subset need to
be combined into one result, e. g. by summing all values) however, the values
involved must be passed to the CPU, summed there, and then passed back into
the network. To speed up this type of communication operation, vendors have
started to offload the numerical part of the operation into the network, i. e. either
the network interface card or the network switches (cf. e. g. [Mel17] where the

1.4 The user environment 37

actual floating-point computations are performed inside the network switches).
While this approach is clearly desirable from a performance point of view, a

number of questions arise with regard to the quality of the floating-point operations.
For instance, which floating-point formats are supported fully depends on the
network switch (or interface card) and the communication protocol/library, as well
as the choice of available floating-point operations or the support of overflow and
underflow, exceptions, or NaNs. Therefore, in order to assess the IEEE-conformity
of such a supercomputer, not only the floating-point quality of the compute nodes
needs to be evaluated, but it is vital to also check the computations done in the
switch for IEEE-conformity. In the worst case, it might be necessary to avoid
the reductions offered by the communication protocol and implement a custom
reduction operation (which would be orders of magnitude slower, but known to
be IEEE-conforming).

1.4.9 Resilience
As supercomputers have reached an execution speed of Op10q Petaflops and
scientists are striving to develop an exascale computer, resilience has become a
research topic of special interest. [Sni+14] This is due to the large scale of the
existing and expected machines: The more components (i. e. nodes) are involved
in the execution of a compute job, the higher the probability of at least one of
the components failing during run time. Additionally, it becomes more likely that
errors happen which either are not detected due to missing detection capabilities
or because there exist no technical means to detect them at all. If a case of
this so-called SDC (silent data corruption) happens in critical parts of the data,
the numerical algorithm will be impacted, and the results might be rendered
meaningless.

There are quite a number of approaches dealing with data corruption on
an algorithmic level (e. g. [BS08; EHM14; Bou+15]) as well as tools to detect
(and correct, if possible) errors introduced while transporting data (e. g. [Fia+12;
NG13]) and to provide estimates how often it is feasible to checkpoint the current
program state in order to enable rollback possibilities in case of errors, see e. g.
[Dal06; Moo+10].

From an IEEE 754 point of view, not too much can be done with respect to
resilience. When an FPU fails only occasionally or produces incorrect results only
for certain (rare) combinations of operators and operands, it is almost impossible
to detect these failures during run time, especially if the results are off only by
a small number of ulps. If algorithms provide plausibility checks, it is at least
possible to warn the user that parts of the computation might have produced
wrong results and that further checks need to be executed.

In this context, a testing tool like IeeeCC754++ can be of invaluable help as it
might enable detection of such faulty CPUs or FPUs. For trivial cases, e. g. when
every value that is returned by a FPU is wrong, a tool like IeeeCC754++ might

38 Floating-point numbers, standards, and the user environment

not be necessary as the failures can be detected by simpler means. However, for
more subtle cases, IeeeCC754++ might able to detect errors which might otherwise
go unnoticed. Extensions aimed at this use case are described in Section 3.1.4.

1.4.10 Comparing and testing floating-point environments
The former paragraphs illustrate clearly how complex a modern floating-point
environment can be and emphasise the need to test the current environment
from a user’s point of view as well as the individual components that the user
environment consists of. In this thesis, we will show how both of these aspects can
be approached: by providing a flexible test tool that can either run in a generic
mode (whose results are heavily dependent on the compiler and compiler switches
set during building the application) or employ ports targeted at specific hardware
FPUs or software libraries (see Section 3.3.3 and Chapter 5).

However, the discussion also shows that not all parts of the execution chain for
performing floating-point calculations can be controlled by the user. Some of these
concerns can be covered by testing the floating-point environment as a whole, but
aspects such as data corruption or potential problems due to e. g. multithreading
or processor affinity are almost impossible to detect and therefore hard to check.

Chapter 2

IeeeCC754

This chapter deals with the foundations of IeeeCC754++ and particularly with its
ancestry. Most of the material presented here is based on [VCV01a] and [VCV01b].

2.1 History
As with all complex hardware or software conforming to a given standard (or only
to a promised feature set), it is an extremely hard problem to prove the correctness
of a given implementation. To prove in a mathematical sense full compliance to
the IEEE 754 standard, one would need to prove that every single floating-point
operation for every possible combination of floating-point input operands yields
the correct result. Although this approach has in fact been proposed for single
precision operations on a single operand (e. g. in [Daw14] for ceil1), it is still
not possible for operations with two or three operands, especially as far as the
double or quadruple formats are concerned. The reason is simply combinatorial:
Whereas there are 232 « 4.3 billion single floating-point numbers and thus 232

ceil operations, which can be executed in a few seconds on a modern computer,
there are 264 « 1.8ˆ1019 distinct double floating-point numbers and thus 264 ceil
operations, which even under ideal circumstances would take more than 8 years
to execute on a single processor, see the following example:

Example 2.1. Assuming a processor with 2 GHz clock frequency and only regarding
the pure execution of the floating-point operation — neglecting data transfer from
main memory to registers and the time needed to compare the results to known
correct results — executing the ceil function for all possible single operands
would take about 2 seconds on a single processor with only one floating-point
execution unit (further assuming that one ceil execution per clock cycle can be

1The C library function double ceil(double x) returns the smallest integer value greater
than or equal to x.

40 IeeeCC754

performed). Even if we assume a processor with 8 cores and 4 double floating-
point execution units per core, executing ceil for all double numbers would take
227 ¨ 2 “ 228 “ 268, 425, 456 seconds, which is about 3,107 days or 8.5 years. ♦

Still, it is highly desirable to check a given floating-point implementation
for correctness and/or compliance to IEEE 754. In hardware development, a
range of formal verification techniques are employed to verify the circuit layout
before committing it to silicon [MLK98; Rus98; Rus99; Rus00; Har00a; Har00b].
Unfortunately, depending on the thoroughness of the verification model used, this
process does not necessarily lead to correctly working processors (or, more precisely,
floating-point units), as the infamous Pentium 90 division bug demonstrates
[INT04].

Especially from the perspective of a computer user writing numerical code
using floating-point numbers, it is a good principle not to simply assume (or
trust) that the current user environment she or he is developing for conforms to
IEEE 754. Therefore, it is important to have test tools available to check the given
floating-point implementation (or only certain aspects of the implementation, e. g.
the used underflow mode).

Furthermore, as described in detail in Section 1.4, the floating-point environ-
ment the user has access to is a complicated mixture of interacting software and
hardware components consisting of the processor (possibly with some additional
floating-point units), mathematical libraries, the operating system (which might
call mathematical libraries), and the compiler. As not all parts of the compilation
and execution chain are visible or even accessible by the end user, a floating-point
environment is often experienced more or less as a “black box” in the sense that
the user writes a numerical program in the programming language of choice, uses a
compiler that is available (and maybe recommended) for the target computer, and
simply executes the resulting program on that computer without further thinking
of how and where exactly the floating-point operations used inside the program
are executed.

Since the beginning of the 1980s, a number of tools have been developed to
determine the basic characteristics of a floating-point environment and assess
its IEEE-conformity. We briefly cover the tools which IeeeCC754 is based upon,
namely Paranoia, UCBTest, and a test suite developed by J.T. Coonen, while
referring to [VCV01a, Chapter 2] for a closer look at these tools. We also refer
to [Mul+10, Chapter 3.8] where a few other floating-point related test tools are
listed which are less relevant for this work.

Originally developed by W. Kahan, Paranoia [Kar85] was one of the first
programs to assess the quality of a floating-point implementation. It determines
basic properties of a given floating-point implementation, such as its precision,
exponent range, supported underflow and rounding modes, etc. For a detailed
example of Paranoia at work, see [Mul+10, pp. 111-115].

Paranoia has been integrated into UCBTest [Hou+88], which presents a “whole

2.2 IeeeCC754 41

set of programs for testing certain difficult cases of IEEE floating-point arithmetic”
[VCV01a]. Additional programs included in UCBTest “generate difficult test cases
for multiplication, division, and square root, respectively” [VCV01a]. They are
chosen in a way that they are “difficult” to round in the sense that the exact results
lie halfway or almost halfway between two floating-point numbers representable in
the chosen precision. The test vectors in UCBTest are represented in hexadecimal
form. For a complete description of UCBTest, see [Hou+88].

The third tool which IeeeCC754 is based upon is a test suite developed by
J.T. Coonen [Coo84]. It shares the idea of difficult test cases with UCBTest and
consists of a driver program and a large database of test vectors which are stored
in a precision independent format. To execute these tests, the driver program
first converts the test vectors into (binary) floating-point numbers in the target
precision (single, double, or extended). The database contains test cases for
the basic operations and the different conversions between floating-point formats
and integer formats (see Section 1.2.1). [VCV01a] notes that “when decoding
the format independent set of test vectors from [Coo84] into double precision
representation, the intersection with the battery of hexadecimal double precision
vectors from UCBTest is rather large.”

A fourth tool should be briefly mentioned as some of its ideas were used
while designing IeeeCC754: the NAG Floating-Point Validation package FPV
[Cro+89], which is a commercial package developed for testing floating-point
implementations. It “creates an extensive number of test operands by varying
a limited number of floating-point patterns . . . ” [VCV01a]. These patterns are
identical for the supported operations `, ´, ˆ, {, and square root.

2.2 IeeeCC754

IeeeCC754 is an extensive test tool written in C++ to check floating-point imple-
mentations for conformity with different aspects of IEEE 754 and IEEE 854. It
was developed at the University of Antwerp by a team led by B. Verdonk and
A. Cuyt [VCV01a; VCV01b] with the idea to combine the approaches of the four
test tools described in Section 2.1 (which are “rather complementary in nature”
[VCV01a]) into a driver program that has access to a “very large set of precision
independent test vectors” [VCV01a]. The driver program supports a large number
of parameters to control the range and precision of the floating-point numbers,
the rounding mode(s) used, whether exceptions should be checked, and to handle
the two different input formats (see below).

IeeeCC754 closely follows the UCBTest philosophy to check a floating-point
implementation’s IEEE-conformity by executing test vectors which are difficult
to round. In order to provide a comprehensive testset and to support arbitrary
precision and exponent ranges, the testsets are described in a precision independent
format largely based on the format Coonen used in [Coo84]. Additionally, the

42 IeeeCC754

format has been extended to better describe test vectors used to check conversions
between different floating-point (and integer) formats. For a full description of
this format (which we will refer to as Coonen format), see [VCV01a; VCV01b].
All UCBTest test vectors have been converted from their hexadecimal format
(which we will refer to as UCB format) into Coonen format. In a next step, the
testsets from Coonen and UCBTest have been integrated into a large test vector
database.

Test sets Driver program Output

Conversion to
UCB format

Testing engine:

• convert vector
• execute test
• check result
• record error

Coonen
format

UCB
format

UCB
format

Logfile
format

Figure 2.1: Architecture of IeeeCC754

Testing a given floating-point implementation for a particular precision works
as follows (see Figure 2.1): The driver program is called with a suite of test vectors,
either in Coonen (range- and precision-independent) or in UCB (hexadecimal)
format and possibly some additional command line options, e. g. to select a
particular rounding mode or exclude some exceptions. If the test vectors are given
in Coonen format, they are internally converted into UCB format in the desired
precision. At this stage, it is possible to export the converted vectors into a testset
file in UCB format.

After rendering the test vectors for the target precision, every test case is
considered: First, the contained floating-point numbers (operands and correct
result) are encoded into floating-point numbers in the target floating-point en-
vironment’s binary format, taking endianness issues into account. Then the
requested operation is performed and the results are checked. This involves com-
paring the result returned by the environment to the known correct value, as well
as checking whether exceptions were raised and comparing these to the known
standard-conforming exceptions. Last, this information is used to generate logging
output. In IeeeCC754, output is only generated for test vectors where errors were
encountered. For these, the following information is logged: the operation, the
operands, the correct and the returned result, expected exceptions, and finally

2.3 Testsets 43

returned exceptions.2

During the execution of suitable test vectors, IeeeCC754 not only checks for
errors in the operations themselves, but also detects “which of the three IEEE-
compliant underflow modes is used [. . .] and checks whether that underflow mode
is used consistently” [VCV01a] (cf. also Section 1.2.1). In this way, the Paranoia
philosophy is employed by IeeeCC754.

Finally, the test vector database was greatly extended with test vectors for
almost all operations, partly precision dependent (especially for conversions),
partly in the new precision independent format. The operations and the testsets
covering them are discussed in the next section.

2.3 Testsets

In the following, we summarise how the testsets included in IeeeCC754’s test
vector database are chosen and constructed, closely following [VCV01a; VCV01b].

2.3.1 Addition and subtraction

Addition and subtraction are basically the same operation, except for the sign
of the second operand. Thus, IeeeCC754 only includes test vectors for addition.
Commutativity is implicitly checked by executing two tests for every test vector:
One for x` y and one for y ` x (if x ‰ y).

The testset includes vectors to check for the exceptions which can be raised
when executing an addition: overflow, inexact, and invalid. As described by the
IeeeCC754 authors, “the underflow exception cannot arise for the operations when
the floating-point number set includes denormalised numbers, as required by the
IEEE standard” [VCV01a].

The testset for addition contains test vectors with all possible combinations
of the special representations (quiet and signalling NaNs, ˘8, ˘0). These are
needed to check for the invalid exception which should only be raised in case of
magnitude subtraction of infinities or when one of the operands is a signalling
NaN.

For thorough testing of the overflow exception, many new test vectors were
included. These especially contain test vectors where, depending on the rounding
mode, the result is either the largest representable floating-point number (in the
given exponent range) or an infinity (where the overflow exception should be
raised).

2For example output, cf. Listing 3.3, page 82 in Section 3.3.1.

44 IeeeCC754

2.3.2 Multiplication
Checking multiplication is handled similarly to addition. Commutativity is again
handled implicitly by reversing the order of the operands, and the overflow, invalid
and inexact exceptions are covered by test vectors based on similar ideas (i. e.
checking all possible combinations of special representations and using test vectors
for which the result is only slightly larger than or equal to the largest representable
floating-point number).

For multiplication, the underflow case has to be handled. IeeeCC754 includes
an extensive set of test vectors that check which of the three IEEE compliant
detection methods (u-, v, or w-underflow, cf. Section 1.2.1 and [Coo84; Cuy+02])
is used and whether the applied method is used consistently. For a more detailed
discussion including descriptions of the test vectors, see [VCV01a, Chapter 5.1].

2.3.3 Division
IeeeCC754 includes test cases for all possible combinations of special representa-
tions from [Coo84] and [Hou+88], some of which raise the invalid exception, others
the divide by zero exception, and others raise no exception at all.

In [VCV01a, Chapter 6.1, Lemma 1], it is shown that “floating-point operands
x and y, when divided, generate an (exact) result equal to the largest representable
floating-point number followed by one or more nonzero bits, such that rounding
determines whether overflow will occur or not”, do not exist. Thus, it is not possible
to construct test cases for overflow in analogy to the addition and multiplication
cases.

To the set of “several tricky test cases [. . .] included in the original Coonen
testset” (which are based on a power series expansion, see [VCV01a]) to check in-
exact cases, several precision independent test vectors with denormalised operands
were added based on a similar expansion.

2.3.4 Square root
When computing the square root, the invalid exception should be raised for negative
numbers as well as for NaNs and infinities. Since the number of test vectors for
these cases in the original Coonen testset was deemed sufficient, IeeeCC754 only
includes those test vectors for square root. It should be noted that overflow and
underflow cannot occur.

For the inexact exception, it is shown that cases exactly halfway between
representable floating-point numbers cannot occur for the square root ([VCV01a,
Chapter 7.2, Lemma 2]). Due to the nature of iterative square root algorithms, it
is tricky to get the last rounding error right by less than 1{2 ulp (see [Kah96a]).
It is almost impossible to expose a flaw in the algorithm by random testing. For

2.3 Testsets 45

this reason, IeeeCC754 includes precision independent test vectors derived from
hard cases generated by the program UCBsqrttest [Hou+88].

2.3.5 Remainder
For the remainder operation, IeeeCC754 generalises test vectors from the Coonen
suite and includes them in the precision independent format. The results of the
remainder operation are always exact and, as indicated in IEEE 754, not affected
by the current rounding mode. Operations on NaNs are the only cases where the
invalid exception can occur.

2.3.6 A note on conversions
For the conversions defined in IEEE 754 and IEEE 854 (namely between floating-
point formats, integers, and decimal numbers, and rounding to integral values),
no test vectors in precision independent format were available before IeeeCC754.
Coonen’s test vectors (test vectors for single, double, and quadruple formats) have
been generalised for arbitrary floating-point sets and complemented by almost the
same amount of new precision independent test vectors, as well as with a large
number of precision dependent vectors to test binary to decimal conversion (and
vice versa). These vectors are centred around the testing of (see [VCV01b])

• the appropriate handling of special representations (signed zeroes, NaNs,
etc.);

• the appropriate detection of exceptions such as overflow, underflow, and
invalid (where relevant for the operation);

• exact rounding and the corresponding detection of the inexact exception.

Details about the different conversion operations are given in the following sections.

2.3.7 Conversions between floating-point formats
When a floating-point implementation supports more than one floating-point
format, the IEEE standards require that conversion between all of these formats
is possible. Obviously, conversion from a smaller format (i. e. a format with a
smaller significand and an identical or smaller exponent range) to a larger format
is always exact, whereas the result of rounding to a smaller format depends on
the current rounding mode and might overflow, underflow, or be inexact.

IeeeCC754 includes test cases to check all three exceptions, as well as to check
the rounding in near halfway cases and almost exactly representable floating-point
results. It should be noted that not all of the test vectors encoded in precision
independent format can be applied to floating-point conversions between arbitrary

46 IeeeCC754

formats as for some of these vectors, special conditions may apply, e. g. same
exponent range and the significand in the source format at least 3 bits wider (cf.
[VCV01a; VCV01b]).

2.3.8 Rounding floating-point numbers to integral values
If one assumes that the precision t and the bias B of the considered floating-point
set satisfies t´ 1 ď B, performing rounding to an integral value cannot lead to
overflow. As IeeeCC754 implicitly assumes this condition (and it is met for the
basic and extended formats defined in IEEE 754), only the inexact exception has
to be regarded. Corresponding test vectors are included in the test suite.

2.3.9 Conversion between floating-point and integer formats
Whereas the IEEE standard defines the exact precisions of a number of floating-
point formats like single and double, it only specifies that implementations “shall
provide conversion operations from all supported arithmetic formats to all suppor-
ted signed and unsigned integer formats” [IEEE08]. IeeeCC754 restricts itself to
the most frequently available hardware formats: integers which are 32 and 64 bits
wide, with signed integers encoded in two’s complement. [VCV01b] notes that
vectors to test conversion between floating-point and integers formats are precision
dependent more often than is the case for the other conversions. Consequently,
the testsets mainly include test vectors for conversions between single and double
formats and 32 and 64 bit integers. For these conversions, underflow and overflow
cannot occur.3 When converting floating-point numbers larger than the largest
representable number in the target integer format, the IEEE standard mandates
raising the invalid exception. Test vectors to check this case and other cases
raising the invalid or inexact exception are included in the testsets.

2.3.10 Decimal to binary and binary to decimal conversion
While usually not needed inside numerical programs, conversion between binary
and decimal representations of floating-point formats occur when interacting with
the user, e. g. when generating human readable output or when floating-point
numbers are entered textually into a program. As discussed in section Section 1.2.3,
IEEE 754-2008 mandates correct rounding for these operations. Although this
was not the case in the IEEE 754 and 854 standards and thus when IeeeCC754
was developed, the authors designed test vectors for all rounding modes. Most of
these are derived from algorithms designed to find numbers in the input bases 2
and 10 which, in the output case, lie close to representable numbers or exactly

3Underflow cannot occur for obvious reasons, and the largest representable 64 bit integer is
smaller than the largest representable single number.

2.4 Results 47

halfway between adjacent representable numbers [PK91]. Additionally, test cases
are included where the results are exact or induce either underflow or overflow.

2.4 Results
To actually be able to execute the tests for a given floating-point environment,
the driver program needs to know a) which operations are supported and b) how
to translate the test vectors in UCB format to actual floating-point numbers for
the current floating-point environment (especially taking endianess issues into ac-
count). The original IeeeCC754 program described in [VCV01a; VCV01b] provides
implementations for x86 processors from Intel and AMD (little endian) and Sparc
processors from SUN (big endian), as well es for two software multiprecision
floating-point libraries: FMLib, a FORTRAN library developed by D. Smith [Smi91],
and MpIeee, a C++ package which has been developed by the authors of IeeeCC754
[Cuy+00].

It should be noted that availability especially of the conversion functions
heavily depends on the user environment that is used. For conversion operations
on three environments, SUN UltraSparc-II combined with FORTRAN and C/C++,
and Intel processors with x87 mathematical coprocessor combined with C/C++,
[VCV01b] gives a detailed overview which combinations of operations, precisions
and rounding modes are supported.

2.4.1 Intel and AMD
At the time when IeeeCC754 was developed and the tests in [VCV01a; VCV01b]
were executed, the only available FPU in Pentium compatible (and earlier) pro-
cessors was the x87 mathematical coprocessor. It is extended based, i. e. the
internal floating-point format is IEEE 754’s extended format (see Table 1.1). Op-
erations performed purely in single and double format are supported by limiting
the length of the significand to 23 and 52 bits, respectively. It should be noted
though that the exponent cannot be limited to 8 or 11 bits and that all internal
calculations are executed in extended precision.

Tests of the basic operations `, ´, ˚, {, remainder, and square root resulted
in no errors for the extended formats, whereas for single and double formats,
some irregularities were encountered, such as double roundings and a change in
the underflow strategy (cf. [VCV01b]). Results for the square root depended on
the implementation: When using the C function sqrtl from the GNU compiler
g++ v2.95.2, superfluous exceptions were raised, which disappeared when directly
calling the square root routines implemented in the x87 coprocessor via inline
assembler.

Testing conversion revealed no problems for the conversions implemented
in hardware, whereas conversions between binary and decimal formats (cf. Sec-

48 IeeeCC754

tion 2.3.10) are implemented in software and only support round to nearest.
Furthermore, when converting floating-point numbers in decimal format to binary
format, some numbers were flushed to zero (which should be subnormals), whereas
in other numbers the last bits of the significand were not calculated correctly.

2.4.2 SUN Sparc
For the basic operations, tests were executed on SUN SuperSparc and UltraSparc
workstations in single, double, and quadruple formats, with the first two being
executed in hardware and the latter implemented in software [SUN97]. On all
machines and for all precisions, IeeeCC754 reported no errors for these operations
[VCV01a].

As discussed in Section 1.4.6, test results for conversions are heavily dependent
on the compiler choice. In [VCV01b], conversion tests were executed on an
UltraSparc-II workstation with three compilers: the FORTRAN compiler SUN f95
and the C++ compilers SUN CC and GNU g++.

SUN f95

For the FORTRAN 95 compiler SUN f95 from Forte Developer 6 update 1, IeeeCC754
reported a few exception errors for conversions to 32 and 64 bit signed integers.
Furthermore, the only error reported for binary to decimal conversion for all three
tested precisions occurred for the negative zero ´0 which was converted to a
positive decimal zero.

SUN CC

When converting to 64 bit signed and unsigned integers and to 32 bit unsigned
integers, some exception errors were reported by IeeeCC754 for SUN CC. Also,
another irregularity concerning zeroes was detected: When copying an integer
zero to a floating-point number in round down mode, the result depended on the
combination of formats involved, sometimes returning ´0 and sometimes `0.

GNU g++

For GNU g++, IeeeCC754 reported the same errors as for SUN CC for conversions
to integers. For these conversions, some additional exception errors were detected
in quadruple precision. Furthermore, quite a few errors ranging from exception
errors to incorrect results were found for conversions between binary and decimal
formats in round to nearest rounding mode, even though it is the only rounding
mode g++ supports for these conversions. This once again shows the influence of
the compiler for those operations not implemented in hardware.

2.4 Results 49

2.4.3 FMLib
In addition to the hardware platforms mentioned above, IeeeCC754 was also
applied to the FORTRAN multiprecision library FMLib [Smi91]. It only supports a
limited set of features required in IEEE 754, e. g. only the rounding modes round
to zero and round to nearest. Also, IEEE compliant special representations such
as signed zeroes (˘0), denormalised numbers, and exception handling are not
supported.

To check only the supported features for IEEE compliance, all test vectors
involving unsupported features were excluded by calling IeeeCC754 with the
appropriate command line options. Still, IeeeCC754 detected errors in both
rounding modes and revealed that the errors were caused by using an insufficient
number of guard digits in the implementation of FMLib.

2.4.4 MpIeee
Another multiprecision floating-point package has been checked with IeeeCC754:
MpIeee, which was developed by IeeeCC754’s authors in the framework of the
Arithmos project [Cuy+00]. The goal of developing MpIeee was to provide a high-
performance multiprecision floating-point implementation in C++ fully conforming
to IEEE 754. As IeeeCC754 was heavily used while developing MpIeee, it comes
as no surprise that no errors are reported by IeeeCC754 when applying the test
vectors contained in IeeeCC754’s testsets to MpIeee.

50 IeeeCC754

Chapter 3

IeeeCC754++

IeeeCC754 was developed in order to assess the quality of a given floating-point
environment. In this chapter, we present our tool IeeeCC754++ which extends
IeeeCC754 in a number of crucial areas: It provides support for IEEE 754-2008
(which was not available when IeeeCC754 was written), including support for
trigonometric, exponential, and logarithmic functions, extends the facilities for
analysing a floating-point environment and testing results, adds a testing model to
assess the IEEE-conformity of generic environments, and introduces numerous new
ports for common hardware and software floating-point environments. Further-
more, we present additional facilities aimed at easing the effort needed to interpret
the results of IeeeCC754++ test runs, as well as tools to enable (semi-)automated
testing for a large number of floating-point environments.

As discussed in chapters 1 and 2, testing a floating-point environment can be
a quite complex task. Additionally, it is not always clear what exactly should
be tested: the floating-point environment as a whole, certain hardware parts or
parts of an execution unit, the influence of compiler options on floating-point
behaviour, the (numerical) reliability of nodes in a parallel high-performance
computer, differences or even regressions between compiler versions, or CPUs
with the same instruction set architecture (ISA), but different manufacturers.
IeeeCC754++ aims at providing a comprehensive tool box that enables testing for
all of these use cases.

In this chapter, we introduce the extensions that we added to IeeeCC754 in
order to support these quite different but valid testing approaches. Furthermore,
we discuss our new facilities to provide IEEE-conformity, enable deeper analysis of
floating-point environments, and to offer easy extensibility for new floating-point
environments. Afterwards, we briefly describe the input and output formats
used by IeeeCC754++ and introduce the testing modes which we implemented in
IeeeCC754++ to support the use cases described before. We conclude this chapter
by introducing a framework that enables mass testing of a large number of different
(floating-point) architectural features. We also describe the new analysis facilities

52 IeeeCC754++

that help evaluating test results and introduce a variant of the testing framework
which significantly eases the analysis of the influence of compiler options on
floating-point performance and conformity.

For details about the supported architectures and FPUs as well as how testing
these has been implemented in IeeeCC754++, we refer to Chapter 5; for a detailed
analysis of their floating-point performance and conformity, see Chapter 6 which
describes results for a selection of the supported architectures.

3.1 IeeeCC754++: Introducing extensions
The complexity of a floating-point environment as discussed in Section 1.4 raises
the question what can and should be tested when checking the conformity of a
given floating-point environment. In this section, we discuss our approaches to
address different testing needs, give an overview of the features that we added in
IeeeCC754++ to support these approaches, and explain the motivation that led us
to the addition of the new features. We start with some general considerations on
testing the IEEE 754-2008 conformity of a given floating-point environment.

3.1.1 Testing IEEE-conformity
IeeeCC754 and IeeeCC754++ check the conformity of a floating-point environment
by executing floating-point operations for carefully selected operands whose results
(correct floating-point number and floating-point exceptions that need to be raised)
are encoded in so-called test vectors, together with the operands and the operation
(cf. Section 2.2). Testing is done on testsets comprising of collections of these
test vectors. The testsets can be loosely categorised into two groups: tests for
numerical correctness and testing of special cases. The first group consists of test
vectors whose result is difficult to compute or difficult to round (or both), mainly
in the sense that the infinitely precise result lies either halfway between or really
close to two neighbouring floating-point numbers. The second group covers a
range of special cases that an IEEE-conforming floating-point environment must
support correctly, such as overflow (i. e. handling infinities), exceptions that should
be raised (e. g. in the case of overflow and underflow), and handling NaNs. The
quality of the IEEE-conformity assessment depends crucially on the choice of
test vectors – only a comprehensive set of test vectors leads to a meaningful
conformity assessment. This problem arises for every application for which it
is only feasible to execute a limited number of test scenarios in order to assess
correct functionality of the whole application. As a result, with poorly chosen
combinations of IeeeCC754++ test vectors, only those parts of IEEE-conformity
that these test vectors cover can be evaluated. For a more detailed description
of the testsets employed by IeeeCC754++ and the reasons why they form a solid
basis for IEEE-conformity assessment, we refer to Section 2.3 and Chapter 4.

3.1 IeeeCC754++: Introducing extensions 53

Another area to consider is the evaluation of the results of a test run with
a carefully selected testset, assuming that it covers a sufficiently broad range of
test vectors: If all tests can be successfully executed (in the sense that executing
the operation encoded in that test vector on the given operands returns the
correct result and the correct exception flags), we assume that all parts of the
floating-point environment are as carefully (and correctly) implemented as those
parts that were actually tested.

The situation is different when errors are encountered. In that case, the
errors must be carefully analysed: Since test vectors are chosen with a specific
target area in mind (such as testing special cases, see above), one must carefully
examine the operations which could not be successfully completed and the type
of error that occurred during execution. If e. g. all (or a large percentage of)
test vectors that employ roundTowardPositive return an error, but all other
test vectors execute successfully, one would conclude that the implementation
of the roundTowardPositive rounding mode is flawed. Since examination of a
large number of environments for errors is a tedious process, IeeeCC754++ offers
approaches to ease this process:

• Specialised testing modes and output formats: IeeeCC754++ contains a
number of testing modes and corresponding output formats that cover
testing of different aspects of a floating-point environment, such as a verbose
mode that produces parsable, but still readable error output that is very
detailed, or checksum and fingerprint modes which return a single output
value for a full test run. For details, see Section 3.3.

• The evaluation framework: an extensive framework that can summarise
the errors returned by an IeeeCC754++ run in verbose mode. By using
the evaluation framework, it becomes easier to recognise specific erratic
behaviour of the test floating-point environment (such as rounding modes
that are not supported or no exceptions available). The evaluation framework
is explained in Section 3.4.

3.1.2 Testing the user environment: Default mode
Goal Provide a tool that can be used in an easy way to assess the IEEE-conformity
of a given user environment without deeper (prior) knowledge of the underlying
floating-point implementation.

Reasoning Before adoption of IEEE 754 as a common standard regulating
floating-point calculations, knowledge of the underlying platform and the pitfalls of
its floating-point implementation was vital in designing robust and stable numerical
algorithms. Although IEEE 754 improved this situation in the sense that common
(and well-known) floating-point formats and high-quality implementations of
floating-point operators are used on all major platforms, actual knowledge of the

54 IeeeCC754++

platform and numerical pitfalls have become less common as researchers simply
assume that their target floating-point environment behaves “as expected”, i. e.
IEEE-conformity is relied upon without checking this assumption.

In an ideal academical world, developing numerical algorithms should depend
neither on the development nor on the target user environment, and the choice of
programming language or the compiler used should not influence the performance
of the algorithm with regard to numerical quality. However, in practice all of
these choices can lead to subtle numerical problems which might go undetected
since the differences between the different resulting environments (in the sense of
Definition 1.5) are difficult to recognise or test (and even worse, these environments
might not be checked for comparability at all).

One goal of IeeeCC754++ is to provide a testing tool that checks the IEEE-
conformity of the default environment a researcher uses. The typical “black box”
experience of such an environment is as follows: The user writes an algorithm in
the programming language of choice, uses one of the compilers available in that
user environment to generate an executable, and runs the resulting binary file to
retrieve results. Usually, the code is executed on the local environment, at least for
development and debugging purposes. The subtleties of how exactly floating-point
operations are executed, e. g. in different FPUs or in software, are mostly lost
to the typical researcher. Actually, one could even argue that this is the ideal
approach to numerical computing, assuming that all parts of the execution chain
are IEEE-conforming.

Realisation With these considerations in mind, we can define the term default
user environment as used in this thesis:

Definition 3.1. A default user environment is a floating-point environment
consisting of the following parts:

• a programming language used to write a numerical program,

• a computing platform used to execute this numerical program,

• and a compiler (possibly including compiler switches) that translates the
user program into code which can be executed on that platform. ♦

Note that this definition is deliberately vague concerning the underlying
computing platform. It focuses on the part of the development process that a
typical researcher experiences: the programming language and the compiler, since
these are usually the areas that can be chosen by the researcher and which she
uses to interface with the computing platform.

In order to test such a default user environment for IEEE-conformity, we
implemented the default mode which employs a specific architecture port (cf.
Sections 3.3 and 5.1) that tries to mimic the default user experience as much as
possible, i. e. it employs only the default arithmetic operators and mathematical

3.1 IeeeCC754++: Introducing extensions 55

functions as found in the programming language. The choice of the exact execution
point of floating-point operations is left to the compiler. In that way, it provides
the user with a tool to test her default environment with the exact settings she or
he uses in the normal development process.

When running on a given user environment, the results of testing depend
on the underlying computing platform itself and on the choice of compiler and
compiler options. Since the environment is seen as a “black box”, the default
mode focuses mainly on the influence of the compiler and the compiler options
employed. This view is crucial in understanding testing results as the compiler
might choose different floating-point execution units depending on the chosen
options.

Sometimes, the default user environment consists of more than one platform:
For development purposes, a local platform like the researcher’s workstation might
be used, whereas the resulting algorithms would be run on a remote platform, e. g.
on a supercomputer such as JUQUEEN [JSC17a]. In this case, the default mode
can be employed in two variants: The local platform is regarded as the default user
environment and tested with the default mode. Afterwards, the locally generated
IeeeCC754++ executable can be transferred to the remote platform and used for
testing the default environment on that floating-point environment. Comparing
the testing results from both environments yields interesting insight into the
degrees of IEEE-conformity of the environments and, more importantly, into the
differences in conformity between the environments. More details regarding this
approach can be found in Section 3.1.4.

The second approach views the local and the remote platform as two default
user environments. This means that both platforms should be individually tested
for conformity, including compilation of IeeeCC754++ on both platforms, possibly
with different compilers or compiler switches. Note that this approach allows
for the local and remote platform to be of a different computer architecture, e. g.
when developing code on a typical x86 computer which is ultimately intended to
be run on a POWER based supercomputer such as JUQUEEN.

It is important to understand the default mode approach as a holistic approach
to conformity testing: Its scope is limited to checking the floating-point quality of a
researcher’s floating-point environment as the researcher experiences it. If checking
single components of the user environment is desired, specialised architecture
ports such as those introduced in Section 3.1.3 below and Chapter 5 should be
used.

Since IeeeCC754++ is written in C++ and C and C++ represent the most wide-
spread programming languages in the scientific computing world, the default
mode only supports these two languages. However, for all programming lan-
guages which support calling functions from C/C++, it is possible to implement
custom architecture ports that check the operators supported by that language.
IeeeCC754++ itself comes with support for testing the floating-point facilities of

56 IeeeCC754++

Java (see Section 5.7.1).
For a detailed description of how the default mode has been implemented in

IeeeCC754++, see Sections 3.3.3 and 5.1.

3.1.3 Testing parts of a floating-point environment
Goal Provide means to not only test the default user environment, but also
certain parts that, put together, constitute the floating-point environment a user
experiences.

Reasoning The scope of IeeeCC754++’s default mode that was presented in
the previous section is limited to checking the IEEE-conformity of a given user
environment “as is”, i. e. as a user would experience it. Often, it is more desirable
to check specific parts of a floating-point environment, e. g. when deciding which of
the available execution units of a given floating-point environment should be used
or when developing new FPUs or software floating-point libraries. IeeeCC754++
strives to provide a testing tool that covers as many aspects of a floating-point
environment as possible (see also Section 1.4):

Realisation In order to provide for such a diverse testing tool, IeeeCC754++
offers the following features to check parts of a floating-point environment:

• Single FPUs: The most obvious execution targets are the dedicated floating-
point execution units found in most modern CPUs. In order to check the
IEEE-conformity of an FPU regardless of the compiler used, the routines
for testing most FPUs are implemented via intrinsics or inline assembler
commands (see also Chapter 5).

• When floating-point operations are executed via software libraries, the
operators in these libraries are accessed via function calls. Additionally,
if a library uses custom floating-point data formats, conversions between
IeeeCC754++’s internal floating-point format and the format native to the
library are implemented.

• Accelerators: Since accelerators such as GPUs play an important role espe-
cially in supercomputing, IeeeCC754++ supports checking accelerators via
special architecture ports (cf. e. g. Sections 5.2.2 and 5.5,

• Hardware architectures: IeeeCC754++ supports a number of different hard-
ware architectures, such as x86, POWER, or ARM. Although the checking
process will be done on actual hardware platforms, it is important to note
that these hardware platforms (e. g. a certain type of processor) constitute
specific implementations of an ISA. IeeeCC754++ implements support for
ISAs and can therefore be run on all platforms that implement that ISA,
such as Intel or AMD processors implementing the x86 ISA.

3.1 IeeeCC754++: Introducing extensions 57

• IeeeCC754++ also includes support for some programming languages and
interpreters. As discussed in the previous section, these languages include C,
C++, and Java.

• As discussed in Section 1.4.8, some parts of a floating-point algorithm might
be offloaded to the network fabric (in case of the user environment being
a parallel computing environment such as most HPC supercomputers). In
that case, systematic and deterministic testing of these operations is out
of scope of IeeeCC754++’s usage model. However, IeeeCC754++ includes an
architecture port for MPI that can be used to check the IEEE-conformity of
MPI collective operations. For details, see Section 5.6.

3.1.4 Testing distributed floating-point environments
Goal Introduce concepts for testing the IEEE-conformity of computing environ-
ments consisting of more than one platform.

Reasoning Especially in scientific computing, the typical floating-point environ-
ments used to execute large numeric simulations consist of more than one platform,
which we call distributed environments or distributed computing. This can e. g. be
the case when executing an application on several computers in a local network,
on an HPC supercomputer, or in a cloud environment. Note that we use the term
distributed computing differently and in a much looser manner as compared to
the traditional sense where distributed computing is a field of computer science
that studies “a model in which components located on networked computers
communicate and coordinate their actions by passing messages” [WIK17i].

Analysing the floating-point behaviour and the IEEE-conformity when more
than one floating-point user environment is involved poses unique challenges:
Sometimes, applications are developed in one user environment, but are targeted
to be executed on a large supercomputer that features a completely different user
environment. In that case, both environments have to be evaluated separately
to gain enough trust that executing numerical code on both environments yields
comparable results (see also Section 3.1.2). If on the other hand several identical
(or at least similar) user environments are involved, one can employ a more ad-
vanced checking model that generates a local IEEE-conformity result by executing
IeeeCC754++ in the local environment before transferring the IeeeCC754++ execut-
able to the remote environment, repeating the testing process in that environment,
and comparing the local and remote results.

Realisation For the approach of comparing results for the local and remote
environment, we assume the researcher is familiar with the floating-point envi-
ronment in which she develops the target numerical application. The “numerical
compatibility” can then be assessed as follows: First, a suitable architecture port,

58 IeeeCC754++

testing mode, and testset have to be chosen (e. g. the default mode or a hardware
architecture port for the involved environments such as x86, together with e. g. a
testset that covers basic operations in double precision, cf. Section 4.1.2). Addi-
tionally, the compiler used to build the target application as well as the compiler
switches used during compilation have to be known. IeeeCC754++ can then be
built with these settings and executed in the local environment, yielding a result
file. As a second step, the newly built IeeeCC754++ executable is transferred to
the remote environment and executed with identical settings. Now, evaluating
the numerical comparability is equivalent to comparing the results generated on
both platforms.

This approach is also suited to verify that a given number of nodes behave
identically with regard to the floating-point environment, e. g. on HPC supercom-
puters consisting of a large number of identical computing nodes: One node is used
to generate an IeeeCC754++ executable. This executable is then run on all nodes
that are to be evaluated, and the results are compared. If indeed all nodes yielded
identical testing results, it is reasonably safe to assume that the nodes also behave
identically when executing numerical applications. Furthermore, the concept of
generating a IEEE-conformity result in a known environment and comparing with
results generated with an identical executable in different environments can be
used as a safety measure before starting the target application: If the results are
not identical, one must be aware that results generated in the remote environment
might not be of the same quality as those produced in the local environment.
If desired, the application could even be aborted prior to execution. In fact,
this approach has been used with an early version of IeeeCC754++ in the LHC
Computing Grid ([WLCG], cf. [Mül+07]).

Of course, this approach can be applied to a wide range of distributed environ-
ments: HPC computers, grid and cloud computing, or distributed computing in
the original sense (cf. [WIK17i]).

IeeeCC754++ provides two testing modes that are specifically target at the
presented approach: the checksum mode that, instead of using large logfiles,
generates a condensed binary report usable for faster comparison of environments,
and the fingerprint mode that yields a fingerprint of only a few bytes suitable for
e. g. being stored in a database. For details on these modes, see Section 3.3.4.

3.1.5 Supporting arbitrary floating-point environments
Goal Supply means to test arbitrary environments and provide a framework that
enables easy extensibility for platforms not yet supported.

Reasoning IeeeCC754 already implemented support for a number of floating-
point environments such as x86 and SUN Sparc, split into basic operations and
conversions (cf. Chapter 2). To cater for different execution options for the
remainder and square root functions on x86 platforms (C++ function call vs.

3.1 IeeeCC754++: Introducing extensions 59

assembler implementation), one set of the respective functions was placed in
the implementation for basic operations while the other was placed inside the
conversions implementation.

However, this selection does not reflect the currently available computing
platforms (such as POWER or ARM processors or NVidia or ARM GPUs) nor
relevant floating-point software libraries (such as MPFR). Arguably, supporting
a comprehensive set of current floating-point environments is a moving target
at best and simply impossible at worst, due to the rapidly changing computing
landscape (from a hardware perspective as well as from a software or operating
system perspective). Additionally, placing different function calls for the same
operator into parts that were originally logically divided into arithmetic operations
and conversion feels counter-intuitive.

Therefore, we redesigned the internal structure of IeeeCC754++ in a way that
it supports extensions for arbitrary new computing platforms. A wide range of
current hardware and software floating-point environments is already supported
by IeeeCC754++, and the source code is structured in a way to enable future
additions of newly designed platforms or FPUs.

In fact, this feature is already demonstrated in the current implementation:
As of writing this thesis, no hardware is available for the new ARM SVE SIMD
instruction set. However, with the help of instruction simulators, IeeeCC754++
includes an implementation able to check the IEEE-conformity of ARM SVE
hardware once it is released. For details, see Section 5.3.2. The same approach
was used in the past to add an AARCH64 implementation to IeeeCC754++ prior
to hardware being available.

In Section 3.1.3, we shortly discussed a variety of floating-point environments
which differ in the details how operations in these environments are implemented
and executed, with the differences sometimes being substantial. Supporting
e. g. accelerators generally requires using specific toolkits or libraries, employing
function calls from these libraries, and even might require initialising the device
driver in order to execute floating-point operations on an accelerator. On the
other hand, checking the default user environment only requires the availability of
a suitable C++ compiler. With this in mind, the old IeeeCC754 implementation
model is clearly not sufficient to support such a variety of different floating-point
environments.

Realisation From a conceptional point of view, all execution points of some
floating-point operation can be considered as part of some FPU, be it a software
routine, a function call to an accelerator library, or an instruction inside a hardware
FPU. Consequently, all operations with similar execution points can be collected
into one logical FPU. This approach renders checking the IEEE-conformity of
such an FPU feasible by collecting similar operations into one logical unit which
can be handled in a unified manner, i. e. the implementation, initialisation, and
execution of the operations inside a logical FPU are done in a similar manner.

60 IeeeCC754++

Taking this concept further, several FPUs with similar features can be combined
into one architecture port. IeeeCC754++ makes extensive use of this approach to
support all varieties of floating-point environments, according to the following
definitions:

Definition 3.2. An FPU (also called logical FPU) inside IeeeCC754++ consists
of a group of floating-point operations that are called in an identical manner
and in identical execution units and which can be compiled into one executable.
Furthermore, it must be possible to handle the setting and retrieval of rounding
modes and exception flags in an identical manner. ♦

The meaning of FPU in this thesis depends on the context: It might refer
either to a specific hardware execution unit inside a processor or to a collection
of floating-point operators in the sense of this definition. We therefore annotate
FPUs with either hardware or logical if the meaning of FPU might be ambiguous.

Definition 3.3. An architecture port inside IeeeCC754++ consists of one or more
IeeeCC754++ (logical) FPUs. If the context is clear, it is simply called architecture.

The obligatory FPU contained in every architecture port is called the main
FPU. Additional FPUs must be compilable into one common executable together
with the main FPU. ♦

Note that Definition 3.3 does not state that all additional FPUs inside an
architecture must be compilable into one executable at the same time, i. e. the
case that only subsets of FPUs are compilable together with the main FPU is
explicitly allowed. In other words, a newly added FPU must only be compilable
together with the main FPU. Also note that an architecture in IeeeCC754++ sense
can be almost anything that comprises a floating-point environment, e. g. a “real”
hardware platform or ISA such as x86, POWER or ARM, a software floating-point
library, or a programming language/interpreter combination such as Java. For
more details, we refer to Chapter 5.

With these concepts, building IeeeCC754++ for one user environment and
checking that environment for IEEE-conformity works then as follows:

• The first step is to choose an architecture port appropriate for the environ-
ment to be tested. Furthermore, the subset of logical FPUs for which code
should be compiled must be selected.

• A suitable compiler must be chosen.

• Then, the build system (see Appendix A) is set up for this choice of ar-
chitecture, FPUs, and compiler, possibly incorporating necessary compiler
switches or libraries which must be linked into the resulting IeeeCC754++
executable. Afterwards, the IeeeCC754++ source code is compiled.

3.1 IeeeCC754++: Introducing extensions 61

• Now IeeeCC754++ is prepared to execute IEEE-conformity checks for the
selected FPUs. IeeeCC754++ is executed for every combination of FPU and
testset (cf. Section 2.3 and Chapter 4), and the resulting output files are
available for further analysis.

Note that although one IeeeCC754++ binary is built for each architecture port,
the actual testing is always performed on (logical) FPUs. As an example, the
default mode discussed in Section 3.1.2 is implemented as an architecture that can
be built on any user environment with a suitable C++ compiler. C99 and C++11
support is built into this architecture as additional FPUs. All three FPUs (main,
C99, and C++11 FPUs) are available for testing. For details on the implementation,
see Section 5.1.1.

Depending on the floating-point environment, it is possible to build several
IeeeCC754++ executables with different architectures for that environment. Taking
once more a typical x86 workstation as an example, an executable for the default
architecture can be built to test the default user environment as well as a specific
x86 architecture executable capable of testing e. g. the SSE FPU inside that
workstation

A comprehensive list of the architectures and their FPUs which we implemented
in IeeeCC754++ can be found in Chapter 5, together with detailed descriptions
of their implementation. Since it is impossible to supply implementations for all
floating-point environments, IeeeCC754++ has been restructured in a way that
support for new environments can be implemented with moderate effort. In
order to be able to compile IeeeCC754++ for arbitrary environments, a new build
system has been added to IeeeCC754++, including support for the floating-point
environments currently implemented in IeeeCC754++. The process of implementing
new architectures and FPUs is explained in Appendix B. Details on the build
system and how it can be extended to build code for the new architecture can be
found in the next section and Appendix A.

3.1.6 Building for arbitrary environments
Goal Support building IeeeCC754++ on all supported environments and enable
compilation on future environments.

Reasoning As described in Section 2.4, IeeeCC754 supports only a limited
number of floating-point environments. Therefore, it was sufficient to use a custom
handwritten configure script to build the driver program for these environments.
For the development of IeeeCC754++, this represented a major restriction especially
in terms of portability since for almost every combination of CPU or software
library, FPU, compiler, and host (i. e. the computer where tests were executed), it
would have been necessary to add custom configure/build code.

Providing a testing tool that supports a virtually unlimited number of floating-
point environments poses a number of challenges:

62 IeeeCC754++

• Every supported environment is implemented as an architecture including
at least one FPU. Especially accelerators such as GPUs or software floating-
point libraries need specific header files and libraries in order to be compiled
and executed. This means that build system setup for every architecture
needs code specific to the chosen environment and FPUs.

• Furthermore, the software environment can vastly differ between platforms,
even when the same architecture port is used. The build system must cater
for these specific needs or at least provide means to configure the build
system in a way that IeeeCC754++ can be built.

• Finally, different compilers need to be accounted for: Header files might
have different names, or different compiler switches might be necessary to
build IeeeCC754++.

Realisation In order to overcome these challenges, a build system that supports
a huge number of user environments and provides flexible setup possibilities must
be used. For maximum portability, the Autotools family of configure/build scripts
[WIK17o; GNU16a] was chosen. It is supported on virtually any UNIX-like
system and provides the flexibility to add setup options as needed. For a detailed
description of the IeeeCC754++ build system, see Appendix A.

3.1.7 Large-scale testing and analysis – the evaluation frame-
work

Goal Enable testing of a large number of combinations of floating-point en-
vironments, architectures and FPUs, compilers, and testsets with reasonable
effort.

Reasoning For most architectures that are implemented in IeeeCC754++, there
exist several different FPUs that test either different aspects of a hardware FPU
or the different hardware FPUs available in that architecture. Furthermore, in
most floating-point environments, IeeeCC754++ can be built for several different
architectures, such as the default architecture, an architecture reflecting the
underlying platform’s ISA, an architecture for an accelerator such as a GPU, or
architectures for one or more software floating-point libraries. Moreover, different
compilers (or compiler versions) can be used to compile IeeeCC754++ for these
environments. Finally, different testsets can be used to check certain aspects of
floating-point environments.

Checking all these combinations of architectures, FPUs, and compilers for
IEEE-conformity can thus become quite a tedious and time-consuming task, let
alone the analysis of the resulting logfiles. In order to provide a tool that covers
creation and execution of a large number of test runs as well as facilities to assist

3.1 IeeeCC754++: Introducing extensions 63

with deep analysis of the results of this large-scale execution, we developed the
evaluation framework.

Realisation In order to help with the evaluation process of a large number of
result files, the evaluation framework features extensive parsing and analysis
capabilities. For maximum flexibility, the framework offers the possibility to
build (and evaluate) arbitrary combinations of architectures, FPUs, compilers,
compiler options, and testsets. The results of the test runs can be evaluated
and analysed with one (or more) of the supplied evaluation functions which
aggregate and summarise the error information contained in the log files. The
included evaluation functions cover a wide range of evaluation needs, such as
success rates for the individual operations or rounding modes, error types that
were encountered, summaries for groups of operations, or a list of all errors that
occurred. Furthermore, the analysis facilities can easily be extended with custom
analysis and aggregation functions tailored specifically to the user’s evaluation
requirements.

The evaluation framework is described in detail in Section 3.4, including the
input files that drive the different tasks performed by the evaluation framework.
All results presented in Chapter 6 have been generated and analysed using this
evaluation framework.

In addition to the evaluation framework, several scripts have been developed
that automate the (mass-)generation of test description files and ease the execution
of a large number of evaluation framework runs. Finally, a log file viewer GUI
(Graphical User Interface) is provided that enables convenient access to the log
and analysis files generated by IeeeCC754++ and the evaluation framework. For
details, see Section 3.4.3.

3.1.8 Studying the influence of compiler options – the optimi-
sation framework

Goal Provide a tool to conveniently study the influence of compiler options on
application performance and floating-point behaviour.

Reasoning When “fixing” the underlying platform with the default mode’s
black-box approach (cf. Section 3.1.2), the reasons for differences in floating-point
performance lie in the choice of the compiler and its options. When limiting oneself
to one compiler, the default mode can therefore be used to study the influence of
compiler options by running IeeeCC754++ with different sets of options. Since the
influence of compiler options on floating-point performance and IEEE-conformity
is an interesting subject by itself and manually analysing even a moderate number
of log files generated with IeeeCC754++ in default mode is tedious, we developed
a specialised tool called the optimisation framework which offers an automated

64 IeeeCC754++

way of exploring the effect of compiler options not only using the default mode,
but every architecture port that is supported by IeeeCC754++.

Realisation The evaluation framework is mainly focused on varying the para-
meters architecture, FPU, and compiler (and compiler version) as well as easing
the subsequent analysis. However, an especially interesting topic is the influence
of compiler options, mainly with two regards: how can performance of a user
program be increased (or, in other words, how can the execution time be reduced),
and the effect of these options on floating-point conformity, i. e. how compiler
options that increase performance affect the accuracy and IEEE-conformity of a
floating-point environment. Using the evaluation framework to study this influence
for a given architecture and compiler suffers from two drawbacks:

• Essentially, for every set of compiler options, a new set of input files needs
to be generated, resulting in a huge number of files and test runs which have
to be handled.

• The effect of the chosen compiler options on application performance (espe-
cially the effect on the application’s runtime) have to be studied externally,
i. e. the application has to be compiled with the same compiler options
as used in the corresponding IeeeCC754++ run, and the runtime has to be
recorded manually.

In order to overcome these drawbacks, we developed the optimisation framework
which constitutes a variant of the evaluation framework specifically tailored to
study the influence of compiler options. Besides offering simple facilities to
test a large number of compiler option combinations, it offers the possibility to
automatically compile a user application with the chosen combination of compiler
options, execute it, and record the runtime. Afterwards, it is possible to choose
the most appropriate combination using either one of the pre-supplied fitness
functions or a custom fitness function written by the user. Since potentially a
huge number of individual test runs are necessary to study the effect of even
a reasonably sized set of compiler options, the optimisation framework avoids
the creation of task description files to drive execution of the compile, test, and
evaluation tasks. Rather, it features an efficient implementation making use of
in-memory data structures.

We have given an in-depth introduction of the optimisation framework in
Section 3.5; for selected results, see Section 6.9.

3.1.9 Testing modes
Goal Provide a flexible tool which enables testing the different aspects that con-
stitute floating-point environments, such as the default user environment, different
parts of the floating-point stack, or distributed environments (cf. Section 1.4).

3.1 IeeeCC754++: Introducing extensions 65

Reasoning To support the large amount of use cases and provide for a flexible
testing tool, it was necessary to carefully structure IeeeCC754++ in a way that
the code base is easily maintainable and extensible. This has been achieved by
introducing testing modes together with specialised input and output formats,
targeted at specific use cases. Figure 3.1 gives an overview of the testing modes
and the different input and output formats that provide coverage of the mentioned
wide range of testing applications. A short specification of the testing modes
is given below, while a detailed description of the modes and input and output
formats can be found in Section 3.3.

Coonen

UCB

classic
-c
-u
-o

verbose

fingerprint

checksum
dropped_checksum

classic

UCB

-vio, -vix
-vin, -vout
-vcc

hex digest

bin digest

checksum

Input format Testing mode Output format

Figure 3.1: Overview of IeeeCC754++ input and output formats and testing modes.
Note that the UCB output format of the classic conversion mode is identical to the
UCB input format that is used as input for most of the testing modes.

Realisation In order to support the afore mentioned quite different use cases,
we developed and implemented testing modes targeted at specific use cases:

• In default mode, the current user environment is tested with a “black box”
approach, possibly influenced by compiler switches (cf. Definition 1.5, page 25
and Definition 3.1, page 54). This can be used to check the platform’s IEEE-
conformity under the current user’s build settings.
Additionally, the default mode includes facilities to check for the compatibility
of several versions of programming language standards, in particular C99
and C11. These are implemented as logical FPUs in the default architecture,
see Section 5.1.1.

66 IeeeCC754++

• For backward compatibility with IeeeCC754, the three different original
testing modes (featuring the original IeeeCC754 calling syntax) are conserved:
testing with both supported test vector formats and converting from precision
independent to precision dependent format. This mode is called classic mode.

• The verbose mode is designed as the most general testing mode. Its strength
lies in a carefully designed output format that contains detailed information
on the executed test vectors, including some analysis of the type of error,
which is easily parsable and human-readable at the same time.

• The checksum and fingerprint modes generate short summarised information
of the IEEE-conformity of a specific floating-point environment. They
are particularly suited for use in distributed computing environments (see
Section 3.1.4).

Note that the testing modes are independent of the floating-point environment
that IeeeCC754++ is built for (with the exception of the default mode which
is a combination of the verbose mode with the default architecture port, cf.
Section 3.3.3). This means that all architecture ports described in Chapter 5 can
be used together with the verbose, classic, checksum, and fingerprint modes. A
detailed description of the testing modes is given in Section 3.3.

3.1.10 Input and output
Goal Choose and design input and output file formats that support all testing
needs covered by IeeeCC754++.

Reasoning IeeeCC754++ follows IeeeCC754’s philosophy and employs an exten-
ded driver program to test the floating-point environment. The extent to which the
IEEE-conformity of a given user environment can be assessed then depends on the
test vectors fed into the driver program (cf. Section 3.1.1), and consequently, the
input file format must enable efficient input of suitable test vectors. Furthermore,
the information gathered during test execution must be provided in a way that
enables efficient analysis, ideally for manual and automated inspection at the same
time. In other words, output should be easily human- and machine-readable. The
various testing needs introduced in the last sections such as evaluation of a default
user environment (Section 3.1.2) or analysis of the IEEE-conformity of distributed
environments (Section 3.1.4) are supported by introducing output formats tailored
to the particular testing focus. Differentiation for the different use cases is then
mainly achieved via two complementary means: on the one hand using specialised
testing modes together with corresponding output formats and on the other hand
calling architecture ports which represent IeeeCC754++’s implementations for a
given hardware or software FPU (cf. Chapter 5).

3.1 IeeeCC754++: Introducing extensions 67

Realisation In contrast to the presentation of the other additions to IeeeCC754++,
we deviate here in the description of the realisation of IeeeCC754++’s input and
output facilities by first introducing the corresponding file formats and then
discussing in detail the reasoning behind choosing and developing these specific
formats and their realisation in IeeeCC754++. These facilities consist of two input
file formats containing the test vectors which perform the actual IEEE-conformity
testing and various output formats which support the different testing use cases.

Input: test vector formats

IeeeCC754++ knows two formats for test vectors that are fed into the driver
program via input files: the Coonen format which features range- and precision-
independent descriptions of the test vectors, and the UCB format in which each
test vector is rendered in hexadecimal notation for exactly one combination of
one precision and one rounding mode.

In order to be applicable to the largest possible range of precisions and rounding
modes, the native format used to encode IeeeCC754++’s vectors is the Coonen
format. However, as described in Section 2.2, all test vectors are internally
converted into UCB format before executing the corresponding floating-point
operation (see also Figure 3.1). Therefore, the UCB format was chosen as input
format for all extended modes that we added to IeeeCC754++ due to the following
reasoning:

• Using the UCB format improves efficiency as input in Coonen format is
always internally converted to UCB format before testing. The overhead of
creating the same UCB test vectors every time IeeeCC754++ is executed can
be avoided. This is especially relevant when a larger number of architectures,
compilers, or FPUs are tested.

• When checking for IEEE-conformity, only a moderate number of floating-
point formats needs to be considered: Many floating-point architectures
only support single and double precision formats, and some additionally one
of extended or quadruple precision (cf. Table 1.1). In the last years, use of
the half precision format has become popular especially in machine learning
applications. When checking for IEEE-conformity, it is therefore sufficient
to regard at most five different floating-point formats, and it is feasible to
generate the needed test files from Coonen format in advance and use them
as input files. If desired, all input files can even be integrated into one single
input file.

• Finally, when reading input from UCB encoded files, the line number of
the current test vector can be included in the testing output. This renders
mapping between the result and corresponding input vector trivial. With
Coonen format, this mapping would be ambiguous since one input line in

68 IeeeCC754++

Coonen format can result in up to ten different test vectors (taking the five
rounding modes and commutativity into account).

Note that the syntax of Coonen and UCB files as employed by IeeeCC754++ has
been extended compared to the formats used in IeeeCC754 in order to reflect
the new features added with IeeeCC754++, cf. e. g. Section 3.1.11. For a detailed
description of the expanded syntax, see Section 3.2.1.

Output: specialised output formats

During the testing process, the original IeeeCC754 generates output on individual
test vectors only when discrepancies between the computed and the correct result
(including exception flags) are detected. This is done in an informative, but tedious
plain text format not particularly suited for further (automatic) analysis since it
cannot be parsed efficiently. To support all features described in this section, we
designed and implemented a number of different output formats targeted at the
different use cases:

• The plain output format is basically the plain text format used in original
IeeeCC754 logfiles. The output is enhanced compared to IeeeCC754 to
account for IeeeCC754++’s extended analysis facilities (see Section 3.1.12).

• The verbose output format has been designed as an all-purpose format that
enables convenient parsing, but is still easily human-readable. It is mainly
used in the verbose and default testing modes (Sections 3.3.2 and 3.3.3)
and provides the output format used in the evaluation and optimisation
frameworks (cf. Sections 3.4 and 3.5).

• The checksum and fingerprint output formats are short formats that can
be efficiently used together with the distributed computing modes (see
Section 3.1.4).

Since these specialised output formats are closely related to the corresponding
testing modes, we postpone the discussion of the formats including their syntax
and examples to Section 3.3.

3.1.11 Support for IEEE 754-2008
Goal Update the feature set for testing IEEE 754 conformity and analysing
the underlying floating-point environment to the latest revision of the standard,
namely IEEE 754-2008.

3.1 IeeeCC754++: Introducing extensions 69

Reasoning As noted in Section 1.2.3, the IEEE 754-2008 standard was formulated
in a way that all floating-point implementations conforming to IEEE 754 also
conform to IEEE 754-2008. As a consequence, the testing facilities implemented
in IeeeCC754 with IEEE 754 in mind still represent a valid approach to test
IEEE 754-2008, i. e. the correct results stored in IeeeCC754++’s test vectors are
still correct results in the sense of IEEE 754-2008. Furthermore, the internal
analysis facilities such as detection of the underflow mode used in the tested user
environment or the detection of returned exceptions still work as expected, even
under the new standard.

However, IEEE 754-2008 adds some significant changes to the older standards,
such as new operators and a new rounding mode.

Realisation IeeeCC754++ reflects the additions to IEEE 754-2008 by implement-
ing the following features:

• Test vectors with three operands: All operations that are required in IEEE 754
have at most two operands. IeeeCC754 supports these operations by having
two operands in each test vector. When the operation only needs one
operand (like e. g. sqrt), a zero is recorded as second operand, and the value
is simply ignored when parsing the corresponding test vectors.

In order to maintain backward compatibility and leave current test vectors
untouched, IeeeCC754++ extends the parser in a way that the test vector
description can contain two or three operands – two for all operations with
one or two operands (as before) and three for all operations that need three
operands (currently only fma, see below).

• RoundTiesToAway: IEEE 754-2008 adds a fifth rounding mode called
roundTiesToAway (see Section 1.2.3). While this rounding mode is only
mandatory for decimal floating-point operations, it is a valid rounding mode
also for binary floating-point implementations. The parser and the test vector
syntax of IeeeCC754++ have been enhanced to allow for roundTiesToAway.
Furthermore, when a test vector in Coonen format is applicable to all
rounding modes, an additional test vector in UCB format is generated with
roundTiesToAway as rounding mode.

In addition to enhancing the parser, the existing test vector files have been
extended by test vectors that check rounding in roundTiesToAway mode.

• Fused multiply-add (fma): IeeeCC754 supports the operations that are re-
quired in IEEE 754, which are the basic operations `, ´, ˚, {, remainder,
and square root, and conversion operations from floating-point formats to
floating-point, integer, and decimal formats. IeeeCC754++ adds support for
fma which is required in IEEE 754-2008.

70 IeeeCC754++

• New operators: In addition to fma, IEEE 754-2008 recommends a number of
arithmetic functions to be correctly implemented, i. e. it recommends that
IEEE-conforming floating-point environments implement these operators
with correct rounding. The recommended operators include trigonometric,
exponential and logarithmic as well as power functions, cf. [IEEE08, Section
9.2]. All of these functions are now supported in IeeeCC754++. For a list of
the newly supported operands and the newly added test vectors, we refer to
Table B.1, page 325, and Chapter 4.

• Half precision: IEEE 754-2008 adds support for a 16 bit floating-point format
called binary16 or half since this format has gained attention for applications
like machine learning where small precision is sufficient in early stages of the
algorithm and high throughput is desirable (assuming two operations on half
numbers can be executed in the same time as one single precision operation).
This extension is noteworthy because it lifts a limit imposed by IeeeCC754:
All test vectors that come with IeeeCC754 are only guaranteed to be valid
for operands of at least 32 bits (i. e. for single and larger precisions). While
most test vectors were also valid for 16 bit floating-point numbers, for some
of the other vectors, there are mathematical reasons for this 32 bit limit
(see [VCV01a; VCV01b]). Note that verification whether the test vectors
contained in the current testsets constitute valid half precision test vectors
is pending. However, all test vectors added in this thesis (as long as they
are not precision dependent) represent valid test vectors (cf. Chapter 4).
Furthermore, the parser discards test vectors whose operands or results are
not representable in half format due to the exponent or significand being
too large.

3.1.12 Analysis capabilities
Goal Use the information gained during the testing process to extract additional
information about the underlying floating-point environment.

Reasoning IeeeCC754 mainly concentrates on evaluating carefully chosen test
vectors to verify correct rounding for difficult cases. Additionally, it uses the
information gathered during the testing process to detect the underflow mode
used in the current floating-point environment, see Section 2.2, [VCV01a], and
[Cuy+02]. IeeeCC754++ expands on this analysis and collects further data during
the comparison step between a returned and the corresponding correct result.
After the testing process has been finished, the results gained from analysing the
test vectors are then written into the summary line(s) of the log file.

Realisation In addition to the underflow information that is already available in
IeeeCC754, the following new analysis facilities have been added to IeeeCC754++:

3.1 IeeeCC754++: Introducing extensions 71

• Flush to zero detection: IeeeCC754++ counts the number of operations whose
correct result is a subnormal number (tiny operations, ctiny). Out of these, the
number of operations whose returned result is either zero (czero, indicating
that it might have been flushed to zero) or the smallest normalised number
(csmallest, indicating that it was intended to set it to zero in FTZ mode, but
was incorrectly rounded to a normalised number instead) is counted.
After the completion of the testing process, these counts are evaluated:
When czero`csmallest

ctiny
ą 2

3 , i. e. more than two thirds of the tiny operations
returned an error, it is assumed that the current floating-point environment
flushes subnormal values to zero, and a respective error is written to the
summary. When 0 ă czero`csmallest

ctiny
ď 2

3 , a warning is logged that FTZ might
have been used. Finally, ctiny ą 0 and czero “ csmallest “ 0 means that
the floating-point implementation under investigation supports subnormal
values in an IEEE-conforming manner.

• Deviations from correct results: Whenever an operation is not correctly
rounded and the correct result is either a subnormal or normalised number,
the returned value differs from the expected one. When only a small number
of leading digits of the significand are valid or when the exponent differs
by more than 1, we assume that the implementation of the operation is
flawed, and it should be further analysed in how far this implementation
can be trusted. However, a rather small discrepancy between the returned
and the correct result indicates that the implementation basically works,
but that rounding is not as precise as it should be. In that case, the relative
error ε will be small, typically in the order of a few ulps. IeeeCC754++
tries to determine which of these cases occurs more often in the current
floating-point environment, and if values are only slightly off, it evaluates
by how much the wrong results are off.
In order to achieve this, IeeeCC754++ calculates the difference between the
correct and the returned results for every test vector where the returned
result differs from the correct one. If this difference is small enough (i. e. if
the difference is smaller than a threshold of 8 ulps1,2), it is recorded to the log
file together with other information about the test vector, cf. Section 3.3.2.
If the difference is larger than this threshold, only the fact that a large
deviation was found is logged.
Note that the exact evaluation of the difference in ulps does not rely on the
user environment’s floating-point capabilities (which are under investiga-
tion during the test run), but rather exploits the binary representation of
IEEE 754-2008 conforming floating-point numbers by interpreting the values

1This choice is rather generous: A relative error ε of 8 ulps accounts for the last three digits
being wrong, depicting a quite inexact rounding accuracy.

2The actual threshold that is used by IeeeCC754++ is configurable, see Section 3.3.6.

72 IeeeCC754++

as integers (see Section 1.2.1). Therefore, it suffices to use integer subtrac-
tions to compute the deviation in ulps between the correct and returned
results.

Further analysis of the differences is left to other tools such as the evaluation
framework, see Section 3.4.

• Vector support: To achieve better performance and floating-point throughput,
modern floating-point hardware often supports vectorised floating-point
operations, i. e. instead of performing a single floating-point operation,
vector operand registers which are n times as wide as a regular floating-
point register are first filled with n operands, and then one floating-point
operation is executed that simultaneously works on the operand registers,
thus performing n floating-point operations at the same time. In most cases,
the same operation is executed for all operands contained in the vector
registers (SIMD, Single Instruction Multiple Data).

IeeeCC754++ supports this type of floating-point operations by filling the
vector registers with identical operands so that the same operation is executed
n times. In addition to the normal checking process (i. e. checking the
returned result and exceptions as usual), it is also tested whether all n
results are identical. If this is not the case, a vector error is logged in order
to indicate that there might be a problem in the FPU.

Of course, it is also possible to execute a single operation on a vectorised FPU
(i. e. on vector registers) by only using the first entry of the vector registers.
If such a scalar operation is performed, IeeeCC754++ offers facilities to check
whether the unused entries of the result vector registers are left untouched,
i. e. that they contain the same data as before the execution of the operation.
If a value in one of these n´ 1 entries was changed, a scalar error is logged.

Note that the goal of this SIMD style vector support is not to provide
exhaustive testing of all possible error variations. In particular, due to the
way IeeeCC754++ executes test vectors, generates results, and analyses them,
possibly with the help of the evaluation framework, testing IEEE-conformity
of a SIMD vector unit by executing different test vectors at the same time
by placing operands in different vector entries is technically not viable.
Furthermore, only basic checking of vector exceptions is done. This is mainly
due to the fact that all current SIMD units that we are aware of do not
feature exception registers containing separate values for the different entries
in a SIMD vector. Often, only summarised exceptions are returned, i. e.
every exception flag that is raised by one of the sub-operations is contained
in the exception flags returned (cf. e. g. [INT17b]). However, in order to
prepare for inconsistent exception flags being returned by SIMD operations,
a vector exception error has been added to IeeeCC754++’s error flags and

3.1 IeeeCC754++: Introducing extensions 73

the evaluation framework (although this error is currently not generated by
any architecture port).

• Zero values: Especially when using FPUs not inside the processor (as e. g.
accelerators, cf. Section 1.4.2), the FPU might not have been initialised cor-
rectly before computing on it. The results generated on an uninitialised FPU
are meaningless and might be completely random (which nothing can be done
about). Typically, however, the result of executing floating-point operations
on an uninitialised FPU would be that all returned floating-point values be
zero due to the operations returning default memory locations (which are
usually zero). To ease the detection of this latter case, IeeeCC754++ counts
the number of zeroes returned as the result of a floating-point operation
and warns the user of too many zeroes being generated by emitting two
types of warnings: when either all values are zero (indicating that in fact no
floating-point operations were performed by the FPU) or when more than
30% of the returned values are zero (which should only happen in abnormal
cases).

• fma error : When performing an fma operation, IEEE 754-2008 mandates that
only one final rounding be executed, i. e. that the intermediate result must
be calculated with infinite precision. When a floating-point implementation
does not perform “real” fused fmas, but instead simulates the operation by
executing a multiplication followed by a separate addition, the results will
be wrong for some test vectors. When IeeeCC754++ detects wrong values as
the result of an fma operation, an fma error is logged to warn the user that
the fma might actually not be fused at all.
Note that test vectors targeted at checking this property have been added
to the fma testset, see Section 4.2.1.

These new additions are mainly targeted at the verbose mode in combination
with the evaluation framework to ease the analysis and the evaluation of a larger
number of test runs, e. g. when different compilers or compiler versions should be
compared. However, all of the new analysis capabilities have been backported to
the classic modes (see Sections 3.1.13 and 3.3.1) so they can be used to check e. g.
vectorised FPUs or attain information about inconsistencies in fma or FTZ. As a
consequence, IeeeCC754++ writes extended information to the plain format log
files compared to IeeeCC754, resulting in slightly larger log files.

3.1.13 Preserving backwards compatibility
Goal Keep features proven in IeeeCC754, but which are not in the primary focus
of IeeeCC754++, working in IeeeCC754++, and backport relevant features that are
compatible to IeeeCC754, or more precisely, to the classic modes.

74 IeeeCC754++

Reasoning In order to provide a testing tool for IEEE 754-2008 conformity of cur-
rent floating-point environments, IeeeCC754++ enhances and updates IeeeCC754
in a number of areas, such as support for floating-point features not in IEEE 754
or architectural changes to enable easy extensibility. However, care was taken to
provide backwards compatibility where IeeeCC754++ can benefit from a mature
and well-tested tool as IeeeCC754 is. This applies primarily to two areas: the
support of IeeeCC754’s test vector format and the support for arbitrary precisions.

Realisation One of the main efforts of IeeeCC754 development was the unifica-
tion of test vectors in a variety of formats into one common range and precision
independent format (Coonen) while providing routines to convert from Coonen
format into UCB format that is closer to actual hardware implementations (and
therefore range and precision dependent, i. e. every UCB test vector has fixed
range and precision, cf. Section 2.2). IeeeCC754++ makes use of the range and
precision independent test vectors in Coonen format, although the syntax had
to be slightly extended to support IEEE 754-2008 (for both Coonen and UCB
format, see Section 3.2.1). However, this change has been done in a way that all
test vectors that are valid in IeeeCC754 are also valid in IeeeCC754++, i. e. the
old syntax is still a valid subset of the new syntax. Moreover, test vectors from
IeeeCC754++’s testsets that do not make use of the newly introduced IEEE 754-
2008 features are still valid IeeeCC754 input test vectors (in Coonen as well as
UCB format). As a consequence, a user that developed test vectors for IeeeCC754
can continue using these test vectors with IeeeCC754++.

Although IeeeCC754++ has been extended with additional testing modes in
order to support advanced analysis facilities (cf. Section 3.3), backwards compatib-
ility has been preserved with regard to the three original IeeeCC754 modes: testing
with test vectors in either Coonen or UCB syntax and converting from Coonen
to UCB format. This has been done in a way that the original syntax for calling
IeeeCC754 (see Listing C.3, page 335) can still be used with IeeeCC754++ such
that IeeeCC754++ can behave (almost) identically to IeeeCC754. This approach
enables IeeeCC754++ to convert test vectors in Coonen format into UCB format
(which is needed for the new modes added to IeeeCC754++, see Section 3.2) in
arbitrary precisions. As a consequence, IeeeCC754++, which primarily focuses on
standard precisions (namely, half, single, double, extended, and quadruple, cf.
Table 1.1), can be used to check floating-point implementations with non-standard
range and precision. Note that in this case (i. e. non-standard precisions), the use
of IeeeCC754++’s extended analysis capabilities is not possible without further
changes to IeeeCC754++ itself. The newly introduced IEEE 754-2008 features are
directly available in IeeeCC754++’s classic mode (for details, cf. Section 3.3.1).

3.1 IeeeCC754++: Introducing extensions 75

3.1.14 Technical changes
Goal Update and restructure the IeeeCC754++ source code to support the new
features explained above and enable future extensibility.

Reasoning The implementation of IeeeCC754 evolved as a series of student’s
programming projects at the University of Antwerp. It started off as a C program
and was later ported to C++, at least partly. The evolutionary nature of the
development resulted in a quite diverse code base. In order to support the new
features presented in this thesis, especially the ability to add new architectures
and ports (see Section 3.1.5), the new analysis facilities (see Section 3.1.12), and
IEEE 754-2008 support (see Section 3.1.11), this code base needed to be cleaned
up. C++03 [C++03] (which mainly was a bug-fix version of C++98 [C++98]) was
chosen as the program language for IeeeCC754++ since parts of IeeeCC754 were
already written in C++. Furthermore, using object orientation to implement the
concepts of architectures and FPUs is an obvious choice (and IeeeCC754 already
used inheritance for the implementation of the internal floating-point number
representation). Using C++03 as programming language enables compilation of
IeeeCC754++ with older compiler versions.

Realisation In order to clean up the code base and enable extensibility and
portability, the following additional changes were introduced:

• New program features:

˝ Support for comments in UCB format: Test vector files in Coonen
format support comment lines, i. e. all lines starting with “!” (after
some possible whitespace) are ignored by the parser. This functionality
has been added to test vector files in UCB format.

˝ To ease development and testing of new test vectors, a new option was
added to the conversion mode -o in classic mode (cf. Section 3.3.1)
to annotate the resulting UCB file with the source line number of the
corresponding Coonen file. A detailed description can be found in
Section 3.2.1.

• Parser changes:

˝ Support for hexadecimal floating-point number input: In Coonen
format, floating-point numbers are specified by entering a base num-
ber and manipulating this base with a range of modifiers. However,
test vectors checking difficult cases for the elementary functions are
only given as binary or hexadecimal numbers in the literature (cf. e. g.
[LM01b] or [Mul+10]). Hexadecimal output was only allowed for integer
numbers which are needed to encode test vectors for conversion between

76 IeeeCC754++

floating-point and integer numbers. We extended the parser to support
hexadecimal output for all operands for all operators.

˝ Support for operators with three operands has been added to the parser
(see Section 3.1.11). Currently, this feature is only needed for the fma
operation.

• Consistent use of C++03:

˝ While I/O (input/output) to the system console had been rewritten to
use C++ iostreams, file I/O still relied on C functions. Of course, the
program worked as expected, but it was not possible to redirect I/O
from the console to files and vice versa. Therefore, all I/O was changed
to use iostreams.

˝ Modern C++ compilers favour the C++ string class over C strings (i. e.
char arrays terminated by a 0 byte) and emit warnings when the
latter are used. Furthermore, in C++ constant strings defined in the
source code are of type string. Occurrences of char* arrays have been
rewritten to use string.

˝ All occurrences of dynamic memory allocation were rewritten to use
C++’s new and delete operators instead of C’s malloc/calloc and free
functions.

• Necessary fixes:

˝ Using Valgrind [VAL17], a number of memory leaks could be identified
and fixed.

˝ In the parser function ReadALine(), the definition of some local vari-
ables overshadowed global variables. As a consequence, in rare cases
concerning NaN handling, parsing did not work correctly. The error
has been fixed.

• Code cleanup:

˝ The internal platform independent floating-point format of IeeeCC754++
is encapsulated in the class FP (cf. Figure A.1 and Figure A.2 for an
overview of IeeeCC754++’s class hierarchy). Due to the grown nature
of IeeeCC754’s code base, its naming scheme was rather inconsistent,
and several functions existed in slightly different versions (like e. g.
two functions isNaN() and isNan() with different implementations
to detect if the current FP number is an NaN). These inconsistencies
have been removed, and in case of double implementations, the faster
performing versions have been chosen.

3.2 Input and output 77

˝ Overall, the code was transformed into a more readable code base
by using consistent indentation and formatting and adding comments
where necessary to improve legibility.

˝ Furthermore, data locality was exploited as far as possible. To achieve
this, many of the variables that were formerly declared globally have
been moved into the corresponding functions (where possible without
changing semantics).

˝ Especially in the classes implementing IeeeCC754++’s internal data
structures (like class FP, see above, but also in the Error classes, see
Figure A.2), the code relies on integers having a fixed (and known) size.
Since C/C++ do not require exact sizes for integers, but only certain rules
like minimum sizes and relations between the different integer datatypes
like int or long, the size of integers is user environment (and compiler)
dependent. Therefore, it is necessary to know the exact specifications
of the currently used user environment at compile time. All relevant
occurrences of integer types where the exact size (and/or signedness)
matter have been rewritten to use the standard header cinttypes (or
inttypes.h as a fallback) which provide datatypes such as int32_t,
uint64_t etc. The availability of these headers and alternative handling
methods are detected and implemented via Autoconf, see Appendix A.

3.2 Input and output
IeeeCC754++ follows IeeeCC754’s philosophy and employs an extended driver
program to test the floating-point environment. Differentiation for the different
use cases described in Section 3.1 is mainly done via two complementary means:
on the one hand using specialised output modes (see Section 3.3) and on the other
hand calling architecture ports which denote IeeeCC754++’s implementations for
a given hardware or software FPU (cf. Chapter 5).

In this section, we briefly describe the input formats used to feed test vectors
into IeeeCC754++ and the various output formats employed by IeeeCC754++ in
conjunction with the corresponding testing modes.

3.2.1 Test vector formats
Tests in IeeeCC754++ are executed in the following way: A test vector is read
from file and encoded into target format. The desired operation in the requested
rounding mode as described in the test vector is executed with the encoded
operands. The returned result is then compared to the correct result (which is
also stored in the test vector), and it is checked whether the correct exceptions
were flagged. For more details on the testing process, see Chapter 2.2.

78 IeeeCC754++

This above description is actually slightly simplified. There exist two different
input file formats for describing test vectors, the Coonen format which features
range- and precision-independent descriptions of the test vectors, and the UCB
format in which each test vector is rendered in hexadecimal notation for exactly
one precision and one rounding mode. IeeeCC754++ accepts test vectors in both
formats. When UCB input is used, one test vector per input line is converted
from hexadecimal into binary machine format, possibly taking endian issues into
account, and is executed afterwards. An input line in Coonen input is treated
differently: The input vector is first translated into up to ten vectors in UCB
format, one for each of five possible rounding modes and taking commutativity
into account for addition, multiplication, and fma3. Afterwards, it is treated
exactly as if read from an input file in UCB format.

IeeeCC754++’s test vectors are stored in the most general format, i. e. in Coonen
format. To generate input files in UCB format, IeeeCC754++ uses the conversion
mode (contained in the classic mode) that writes the internally generated UCB
test vectors into a file. For an overview of the input and conversion facilities as
well as the testing process, see Figure 2.1, page 42.

In the following, we give short descriptions of the changes applied to the test
vector file formats in order to support the features introduced with IeeeCC754++,
together with the resulting grammars in BNF (Backus-Naur Form) [Knu64]. Note
that a detailed description of the syntax, including grammars of the original
syntax, can be found in [VCV01a] and [VCV01b].

Coonen input files

The Coonen test vector syntax has been extended to allow for the following new
features in IeeeCC754++:

• Support for roundTiesToAway: The parser now accepts the character “~” as
a valid rounding mode and generates UCB test vectors for roundTiesToAway
mode accordingly.

• We added all floating-point operators recommended (but not required)
by IEEE 754-2008 (cf. e. g. Section 3.1.11) to the test vector syntax and
the parser. A detailed list of the operators can be found in Table 4.6;
the corresponding names are given in the Coonen format grammar, see
Listing 3.1.

• The half precision format can be chosen by using the newly introduced
precision specifier “h”.

• Finally, “W” (as in “Wuppertal” has been added as version specifier to denote
test vectors that were added within this thesis.

3Note that for fma, commutativity can only be exploited in the multiplication due to the
fixed ordering of operands.

3.2 Input and output 79

The extended grammar in BNF form is shown in Listing 3.1.

<line> ::= <testvector> | <comment>
<testvector> ::= <version><operation> <prec> <rounding> <fp> <fp> {<fp>}

<exceptions> <fp>
<version> ::= <digit> | "H" | "A" | "W"
<operation> ::= "+" | "-" | "*" | "/" | "%" | "S" | "fma" | <conv> | <elem>
<conv> ::= "r" | "c" | "i" | "d2b" | "b2d" | <intconv>
<intconv> ::= "ci" | "ri" | "cu" | "ru" | "cI" | "rI" | "cU" | "rU"
<elem> ::= <pow> <trig> <hyper> <exp> <log> <misc>
<pow> ::= "cbrt" | "rootn" | "pow" | "pown" | "powr"
<trig> ::= "sin" | "cos" | "tan" | "sinpi" | "cospi" | "atanpi" | "atan2pi"

| "asin" | "acos" | "atan" | "atan2"
<hyper> ::= "sinh" | "cosh" | "tanh" | "asinh" | "acosh" | "atanh"
<exp> ::= "exp" | "expm1" | "exp2" | "exp2m1" | "exp10" | "exp10m1"
<log> ::= "log" | "log2" | "log10" | "logp1" | "log2p1" | "log10p1"
<misc> ::= "hypot" | "rsqrt" | "comp" | "erf" | "erfc" | "gam" | "lgam"
<prec> ::= {"e" | "o" | "h{ieee}" | "s{ieee}" | "d{ieee}" | "l{ieee}"

| "q{ieee}" | "m{ieee}"}
<rounding> ::= "ALL" | "0" | "<" | ">" | "=" | "~" | "0<" | "0>"

| "=<" | "=>" | "=0>" | "=0<" | "0<~" | "0>~"
| "=<~" | "=>~" | "=0>~" | "=0<~" | "UN"

<exceptions>::= "OK" | "x" | "xo" | "xu" | "xv" | "xw" | "i" | "z"
<fp>::= {<sign>}<root>{<suffix>}* | <decimal> | <integer>
<integer>::= {"?"}"0x"{<hex>}+
<decimal>::= <sign> {<hex>}+{"_"{<digit>}+"&"} "E"<sign>{<digit>}+
<sign>::= "+" | "-"
<root>::= "Q" | "H" | "T" | {<digit>}+
<suffix>::= "p"<literal> | "m"<literal> | "i"<spec> | "d"<spec> | "u"<digit>
<spec>::= <digit> | (<pos>)<digit>
<pos>::= <literal>{"+"<digit>} | <literal>{"-"<digit>}
<literal>:: = <digit> | "t" | "h" | "B" | "B"<digit> | "u" | "C"
<hex>::= <digit> | "a" | "b" | "c" | "d" | "e" | "f"
<digit>::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
<comment> ::= "!" .*

Listing 3.1: Grammar in BNF form for test vector files in Coonen extended
syntax.

UCB input files

The changes introduced to the UCB test vector syntax are slightly more extensive
than in the Coonen case, although most of the changes reflect the features that
were already addressed with the extensions to the Coonen syntax:

• Support for roundTiesToAway: The parser now accepts the character “a” as
a valid rounding mode in UCB files.

• The list of operators added to the UCB syntax is identical to that in the
Coonen case.

• The half precision format can be specified by “h”, and test vectors added
within this thesis can be marked with “W”.

80 IeeeCC754++

• The new extended UCB syntax allows for floating-point numbers to be given
in hexadecimal format. In the older syntax, this was only possible for integer
values (i. e. only in the case of conversions from and to integer format).

• Finally, comment lines have been introduced. Similar to the Coonen syntax
(which borrows the comment character “!” from FORTRAN), every line starting
with “!” is ignored.

The extended grammar in BNF form is shown in Listing 3.2.

<line> ::= <testvector> | <comment>
<testvector> ::= <op><format> <rounding> <compare> <exceptions>

<fp> <fp> {<fp>} <fp>
<op> ::= "add" | "sub" | "mul" | "div" | "rem" | "sqrt" | "fma"

| <conv> | <elem>
<conv> ::= "r" | c" | "i" | "d2b" | "b2d" | <intconv>
<intconv> ::= "ci" | "ri" | "cu" | "ru" | "cI" | "rI" | "cU" | "rU"
<elem> ::= <pow> | <trig> | <hyper> | <exp> | <log> | <misc>
<pow> ::= "cbrt" | "rootn" | "pow" | "pown" | "powr"
<trig> ::= "sin" | "cos" | "tan" | "sinpi" | "cospi" | "atanpi" | "atan2pi"

| "asin" | "acos" | "atan" | "atan2"
<hyper> ::= "sinh" | "cosh" | "tanh" | "asinh" | "acosh" | "atanh"
<exp> ::= "exp" | "expm1" | "exp2" | "exp2m1" | "exp10" | "exp10m1"
<log> ::= "log" | "log2" | "log10" | "logp1" | "log2p1" | "log10p1"
<misc> ::= "hypot" | "rsqrt" | "comp" | "erf" | "erfc" | "gam" | "lgam"
<format> ::= "h" | "s" | "d" | "l" | "q" | <exp> <hidden> <prec>
<exp> ::= <digit>+
<hidden> ::= "0" | "1"
<prec> ::= <digit>+
<rounding> ::= "n" | "p" | "m" | "z" | "a"
<compare> ::= "eq" | "uo"
<exceptions> ::= "-" | "x" | "xo" | "xu" | "xa" | "xb" | "v" | "d"
<fp> ::= {<hex><hex><hex><hex><hex><hex><hex><hex>}* {<hex><hex><hex><hex>}+
<hex> ::= <digit> | "a" | "b" | "c" | "d" | "e" | "f"
<digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
<comment> ::= "!" .*

Listing 3.2: Grammar in BNF form for test vector files in UCB syntax.

3.2.2 Output formats
The output formats used in IeeeCC754++ have already been mentioned in Sec-
tion 3.1.10. Since these specialised output formats are closely related to the
corresponding testing modes, they are discussed in the next section.

3.3 Testing modes
In this section, we discuss the testing modes that have been implemented in
IeeeCC754++ to test floating-point environments according to the various use cases
described in Section 3.1. Before introducing these modes, we need to define the
corresponding terms:

3.3 Testing modes 81

Definition 3.4. An input mode is a collection of test vectors in either Coonen or
UCB format that are fed into IeeeCC754++ in order to assess the IEEE-conformity
of a user environment, while an output mode depicts an output format containing
the information gathered during the testing and analysis stage, specifically process
for the target use case.

A testing mode then consists of the combination of an input mode together with
an output mode. Additionally, it may optionally include a specific architecture
port. ♦

Note that for all testing modes added to IeeeCC754++, the UCB format has
been chosen as input mode. For a detailed discussion, cf. Section 3.1.10. An
overview of all testing modes and their relation to input and output formats can
be found in Figure 3.1.

3.3.1 Classic mode
We start the discussion of testing modes with the classic mode which actually
consists of three modes: IeeeCC754++ includes all three modes that were already
available in IeeeCC754. This approach provides backwards compatibility and
provides the only means to convert test vectors from Coonen to UCB format. The
syntax for these modes is as follows:

> IeeeCC754++ <MODE> <OPTIONS> [-f <LOGFILE>] <INFILE>

and
> IeeeCC754++ -o <OUTFILE> [-a] <OPTIONS> <INFILE>

where <LOGFILE> is an optional name for the log file (default is ieee.log), <INFILE>
is the input file in Coonen or UCB format, and <OPTIONS> are additional options
to influence the testing phase as described in Listing C.3, page 335.

<MODE> determines the testing mode:

• Coonen mode is called by specifying -c as <MODE>. In this mode, test vector
files are expected to be in Coonen format, and the output format of the text
file <LOGFILE> is IeeeCC754’s description of errors that were encountered
during the testing process (see below).
Since input is read in the range- and precision-independent Coonen format,
the exact floating-point format to be tested must be specified, e. g. by using
the options -h, -s, -d, -l, or -q for numbers in half, single, double, extended,
or quadruple format.

• When -u is used, IeeeCC754++ works in UCB mode which is almost identical
to Coonen mode. The main difference is the expected test vector format:
input is expected to be in UCB format, and consequently these (hexadecimal)
test vectors are immediately converted to machine format. The output format

82 IeeeCC754++

however is the same as in Coonen mode, namely the plain format (see below).
Additional floating-point format specifications are not necessary as the range
and precision information is encoded into the test vectors. Therefore, it is
possible to test multiple floating-point formats during one IeeeCC754++ run
(which is not possible in Coonen mode).

• The mode switch -o selects output or conversion mode. After reading test
vectors in Coonen format, the corresponding test vectors in UCB format
are generated and written into the output file. It should be noted that the
syntax is slightly different in this case as the file name of the output file
must be specified directly after the option -o.
Like in Coonen mode, the target floating-point format must be explicitly
given via the respective command line options.

The output format of the conversion mode is a test vector file in UCB format,
whereas in Coonen and UCB mode, a plain format log file is generated containing
the following information: the command line that IeeeCC754++ was called with,
a summary including the total number of vectors tested as well as the number
of errors, warnings, and skipped vectors processed, and the underflow mode that
was detected (if it could be detected). Furthermore, for every error that was
encountered, detailed information about the operands as well as the correct and
the computed result are printed, including operation and rounding mode used and
description of every error that was detected. Listing 3.3 shows (heavily shortened)
example output that was produced by running IeeeCC754++ in UCB mode on a
large set of test vectors in single format.

Testrun: ./IeeeCC754++ -u -f IeeeCC754-UCB-output.log alls

¨ ¨ ¨

Error Line 33881: inexact flag not returned
Operation: b2d
Round to nearest (ties to even)
Operand 1: 4604d000
Operand 2: 00000000
Flags expected: x
Flags returned:
Correct result: +8E+3
Returned result: +8E+3

¨ ¨ ¨

Error Line 33949: inexact flag not returned
Error Line 33949: different decimal representation
Operation: b2d
Round to nearest (ties to even)
Operand 1: 5fad78ec
Operand 2: 00000000
Flags expected: x
Flags returned:
Correct result: +3E+19

3.3 Testing modes 83

Returned result: +2E+19

¨ ¨ ¨

Summary:

Implementation signals underflow in case the result
(1) is tiny after rounding and
(2) raises the inexact exception
(’v’ - underflow)
Errors: 3930/24573
Warnings: 0/24573
Skipped: 0/24573

Listing 3.3: Example output in plain format generated with IeeeCC754++ -u
alls. The operation in the shown examples is conversion from binary to decimal
(b2d), so the results are printed in decimal notation.

To ease development and testing of new test vectors, a new option was added
to the conversion mode -o in classic mode (cf. Section 3.3.1): When -a is added
to the command line, the output UCB file will be annotated with the source line
numbers of the Coonen file. More precisely, before writing a converted test vector
in UCB format to the output file, a comment line including the line number of
the (unconverted) test vector in the Coonen input file is written to the UCB file.
Listing 3.5 shows example UCB output in single precision generated from the
Coonen input file shown in Listing 3.4. Please note that line 1 is ignored as it is a
comment line and that the test vector in line 2 is valid for all rounding modes
(“ALL” in column 2). Therefore, ten test vectors in UCB mode are generated (two
vectors for each of the five rounding modes to check commutativity), and each
test vector line is preceded by a comment line showing that it was generated from
line 2 of the input file.

!!!! first some easy cases
2+ ALL 1 2 OK 4

Listing 3.4: coonen.in: Example Coonen test vector file.

! ./IeeeCC754++ -o ucb.out -a -s ./coonen.in
! line 2
adds n eq - 3f800000 40000000 40400000
adds n eq - 40000000 3f800000 40400000
! line 2
adds z eq - 3f800000 40000000 40400000
adds z eq - 40000000 3f800000 40400000
! line 2
adds p eq - 3f800000 40000000 40400000
adds p eq - 40000000 3f800000 40400000
! line 2
adds m eq - 3f800000 40000000 40400000
adds m eq - 40000000 3f800000 40400000
! line 2
adds a eq - 3f800000 40000000 40400000

84 IeeeCC754++

adds a eq - 40000000 3f800000 40400000

Listing 3.5: Annotated UCB test vector file in single precision generated with
IeeeCC754++ -o ucb.out -a -s coonen.in.

3.3.2 Verbose mode
The verbose mode has been developed as an all-purpose mode for a wide range of
testing applications. To achieve this goal, it features a specially designed output
format that provides an extensive overview of the testing process while at the
same time being machine parsable and therefore enabling further evaluation of the
test results. When paired with specific architecture ports, it serves as the main
platform for testing specific hardware parts or FPUs. The default mode is basically
the verbose mode together with the default architecture, see Section 3.3.3.

The verbose mode takes an input file in UCB format, executes the specified
operations in the target floating-point environment, and writes information about
the test vectors into the output file in the newly developed verbose output format..
The syntax is a variant of the classic mode syntax:

> IeeeCC754++ -v<MODE> <INFILE> [-f <LOGFILE>] [<OPTIONS>]

with <INFILE> in UCB format and the possibility to change the default name for
<LOGFILE> (which is <INFILE>.log). <OPTIONS> describes further general options
(see Section 3.3.6) or options that depend on the architecture port being used.

The main difference between the verbose mode and the other modes is the
format of the log file. IeeeCC754’s output format describing all errors encountered
during the testing process is not particularly well-suited for parsing. In order
to achieve better machine-readability while at the same time keeping human
legibility, we developed the verbose output format whose grammar is described in
Listing 3.6:

<line> ::= <pre> <input> "=>" <output> <errors>
<pre> ::= <out spec> <lineno>
<input> ::= <prec> <operation> <rounding> <fp> <fp> [<fp>] <fp> [<exceptions>]
<output> ::= <errchar> <fp> [<exceptions>]
<errors> ::= [<vectorerrorspec>] [<errorspec>]
<out spec> ::= "[" <outputspecifier> "]"
<outputspecifier> ::= "io" | "ix" | "cc" | "i_" | "_o"
<lineno> ::= "l."<integer>
<prec> ::= "h" | "s" | "d" | "l" | "q"
<operation> ::= "add" | "sub" | "mul" | "div" | "rem" | "sqrt" | "fma"

| "rt" | "ct" | "i" | "b2d" | "d2b"
| "ri" | "ru" | "rI" | "rU" | "ci" | "cu" | "cI" | "cU"
| "cbrt" | "rootn" | "pow" | "pown" | "powr"
| "sin" | "cos" | "tan" | "sinpi" | "cospi" | "atanpi" | "atan2pi"
| "asin" | "acos" | "atan" | "atan2"
| "sinh" | "cosh" | "tanh" | "asinh" | "acosh" | "atanh"
| "exp" | "expm1" | "exp2" | "exp2m1" | "exp10" | "exp10m1"
| "log" | "log2" | "log10" | "logp1" | "log2p1" | "log10p1"
| "hypot" | "rsqrt" | "comp" | "erf" | "erfc" | "gam" | "lgam"

3.3 Testing modes 85

<rounding> ::= "n" | "p" | "m" | "z" | "a"
<exceptions> ::= ["i"]["z"]["x"]["o"]["u"]["v"]["w"]
<errchar> ::= "+" | "-"
<vectorerrorspec> ::= [<vectorerror>][<vectorexceptionerror>][<scalarerror>]
<vectorerror> ::= "*"
<vectorexceptionerror> ::= "/"
<scalarerror> ::= "#"
<errorspec> ::= <errordelim> <errordesc> <integer>
<errordelim> ::= "|"
<errordesc> ::= {<char> | ">"}*

<summary> ::= <preamble> <counts> <underflow> <ftz> [<zeroes>]
<preamble> ::= "[sum] total/err/warn/skip"
<counts> ::= <integer>"/"<integer>"/"<integer>"/"<integer>
<underflow> ::= "m" | "u" | "v" | "w" | "ov" | "ow" | "ovw" | "nv" |"nw" | "nvw"

| "i" | "k"
<ftz> ::= {"[ftz]" | "ftz?"} <integer>"/"<integer>"/"<integer> | "[noftz]" |

"[FTZ]" | "[FTS]"
<zeroes> ::= "[ZEROES]" | "[ZEROES30]"

<integer> ::= {<digit>}+
<fp> ::= {<hex><hex><hex><hex>}+
<hex> ::= <digit> | "a" | "b" | "c" | "d" | "e" | "f"
<digit> ::= "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
<char> ::= "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j"

| "k" | "l" | "m" | "n" | "o" | "p" | "q" | "r" | "s" | "t"
| "u" | "v" | "w" | "x" | "y" | "z"

Listing 3.6: Syntax for the verbose output format in Backus-Naur form.

For every test vector, one line of output is generated. Every line consists of up
to four sections: a general part including the source line number, an input part
which shows the operands, the (correct) result, and expected exception flags (if
any), an output part which shows the returned result and exceptions, and an error
part which shows more detailed information on the type of error if one occurred
for the corresponding test vector.

• The general part shows information which helps to trace back what operation
was performed from which input line. It starts with a four character long
descriptor showing the chosen output mode (see below) and the source line
number. It then lists the precision of the operands and the operation and
rounding mode under consideration.

• The input part consists of hexadecimal representations of the operands and
the correct results. Additionally, the exceptions flags expected to be returned
are listed.

• If input and output parts are present, the delimiter “=>” is printed.

• The output part starts with a “success character”, i. e. either a “+” if a
correct result was returned or a “-” if the returned result was not fully
IEEE-conforming, thus making it easy to calculate success and failure rates.

86 IeeeCC754++

Furthermore, the computed result and the returned exception flags are
shown.

• Finally, if an error occurred (i. e. for every line that includes a “-” as success
specifier), additional information is printed, starting with the delimiter
“|” and followed by a sequence of characters describing the nature of the
error that occurred. These characters are shorthands for the errors used in
IeeeCC754++’s classic modes, for details see Table C.2, page 338. The error
part concludes with the difference between the correct and the returned result
in ulps iff the returned result is a number (either normalised or subnormal),
the exponents do not differ by more than one, and the difference does not
exceed a given threshold. This way, very large differences are not recorded
(because the result is wrong to an extent that the difference to the correct
result in ulps is meaningless), and it is possible to evaluate by how much
the returned results differs from the expected result. For a more detailed
discussion, see Section 3.1.12.

Additionally, a summary line starting with [sum] is printed showing the
number of vectors tested, how many out of those produced errors, warnings, or
were skipped, and the detected underflow mode. Furthermore, if too many of
the generated results were 0 (which might indicate an error like missing driver
initialisation for GPUs, cf. e. g. Section 5.5.1), a warning is emitted. IeeeCC754++
also tries to detect if FTZ is used and generates corresponding output: [noftz]
indicates that FTZ was not detected, [FTZ] and [FTS] denote that IeeeCC754++
was started in “flush to zero” and “flush to signed zero” mode via the command
line options --ftz and --ftzsigned (cf. Section 3.3.6), respectively, and [ftz]
and [ftz?] report that FTZ was (or, in the second case, was maybe) switched on.

In order to achieve a high degree of flexibility, IeeeCC754++ provides the
following variants of the verbose output format, selectable via the <MODE> specifier:

• -vio, also -v: This is the default variant of the verbose mode. It uses all
four output sections to show a comprehensive overview of testing results,
beginning with a prefix of “[io]”. In this format, all information included
in the classic modes is also available, albeit in a condensed format that is
efficiently parsable. In addition to that, information about all test vectors is
kept, especially about those which returned IEEE-conforming results.
Listing 3.7 shows heavily shortened example output, containing one output
line for a test vector where no errors occurred and the two test vectors also
shown in Listing 3.3.

[io] l.3 s add n 3f800000 3f800000 40000000 => + 40000000

¨ ¨ ¨

[io] l.33881 s b2d n 4604d000 00000000 +8E+3 x => - +8E+3 | j 0

3.3 Testing modes 87

¨ ¨ ¨

[io] l.33949 s b2d n 5fad78ec 00000000 +3E+19 x => - +2E+19 | jd 0

¨ ¨ ¨

[sum] total/err/warn/skip 24573/3930/0/0 v [noftz]

Listing 3.7: Example verbose format output generated with IeeeCC754++ -v
alls.

• -vix calls a variant of -vio showing basically the same output, with one
notable exception: Test vectors for which only errors related to exceptions
are reported (i. e. for which expected exceptions were not raised or for which
additional exceptions were flagged) are not counted as errors. This means
that a “+” is shown as success specifier, and the error counter is not increased.
Lines written in -vix mode are prefixed with “[ix]”.
To still be able to retrieve information about which errors happened, the error
part of a -vio output line is still printed. Listing 3.8 shows the differences
to -vio mode.

[ix] l.3 s add n 3f800000 3f800000 40000000 => + 40000000

¨ ¨ ¨

[ix] l.33881 s b2d n 4604d000 00000000 +8E+3 x => + +8E+3 | j 0

¨ ¨ ¨

[ix] l.33949 s b2d n 5fad78ec 00000000 +3E+19 x => - +2E+19 | jd 0

¨ ¨ ¨

[sum] total/err/warn/skip 24573/175/0/0 v [noftz]

Listing 3.8: Example verbose format output generated with IeeeCC754++
-vix alls.

• -vcc is a technical variant developed in order to enable fast comparison
of results to the known correct result. Although the same testing process
is performed as in the other verbose modes, the known correct result and
exceptions as stored in the source test vector and printed in the input section
are mirrored to the output section. In this variant, the only part of the
output file depending on the testing process is the summary line where
underflow mode, FTZ, and zeroes are shown as detected.
Listing 3.9 shows example output. Note that to ease using commands like
diff on the command line, the prefix is identical to the one in -vio mode.

[io] l.3 s add n 3f800000 3f800000 40000000 => + 40000000

¨ ¨ ¨

[io] l.33881 s b2d n 4604d000 00000000 +8E+3 x => + +8E+3 x

¨ ¨ ¨

88 IeeeCC754++

[io] l.33949 s b2d n 5fad78ec 00000000 +3E+19 x => + +3E+19 x

¨ ¨ ¨

[sum] total/err/warn/skip 24573/0/0/0 v [noftz]

Listing 3.9: Example verbose format output generated with IeeeCC754++
-vcc alls.

• Finally, there exist two shorter output variants which include either only
the input part (-vin) or the output part -vout of a “full” verbose output.
Listings 3.10 and 3.11 show the corresponding example lines.

[i_] l.3 s add n 3f800000 3f800000 40000000

¨ ¨ ¨

[i_] l.33881 s b2d n 4604d000 00000000 +8E+3 x | j 0

¨ ¨ ¨

[i_] l.33949 s b2d n 5fad78ec 00000000 +3E+19 x | jd 0

¨ ¨ ¨

[sum] total/err/warn/skip 24573/3930/0/0 v [noftz]

Listing 3.10: Example verbose format output generated with IeeeCC754++
-vin alls.

[_o] l.3 s add n + 40000000

¨ ¨ ¨

[_o] l.33881 s b2d n - +8E+3 | j 0

¨ ¨ ¨

[_o] l.33949 s b2d n - +2E+19 | jd 0

¨ ¨ ¨

[sum] total/err/warn/skip 24573/3930/0/0 v [noftz]

Listing 3.11: Example verbose format output generated with IeeeCC754++
-vout alls.

3.3.3 Default mode
The default mode is the only testing mode that combines an output mode (the
verbose output format) with an architecture port: It relies on IeeeCC754++ having
been built with the default architecture, i. e. an implementation of the floating-
point operators that uses only the native operators supplied by C/C++. The goal is
to mimic a “standard” user’s computing environment as far as possible. Therefore,
the choice of the exact execution location of the floating-point commands is
left to the compiler, possibly influenced by optimisation and other compiler

3.3 Testing modes 89

options supplied at build time. This approach makes it possible to test the native
environment in an easy manner and to evaluate the influence of compiler options
on the numerical performance immediately.

To employ the default mode, IeeeCC754++ must be built using the default
architecture, and the resulting executable is executed in verbose mode. Details
on the build process and how custom compiler options can be incorporated are
given in Appendix A. Additionally, the actual implementation of the operators is
discussed in Section 5.1.1.

As the calling conventions are identical to those of the verbose mode, all
different output formats of the verbose mode can be used in the default mode.

3.3.4 Distributed computing modes
IeeeCC754++ includes two modes aimed specifically at distributed computing.
In this section, we give a short overview of these modes including the calling
conventions for completeness reasons. A short overview of distributed computing
as used in this thesis is given in Section 3.1.4.

Checksum mode

The checksum mode’s goal is to provide an easy means to prevent execution of a
numerical program on a user environment where the floating-point behaviour is
different from a known “local” user environment. It works in a manner similar
to the UCB mode (cf. the classic mode, Section 3.3.1), but features a condensed
binary output format that keeps almost all information of the classic mode’s plain
output format, but uses only exactly 16 bytes per error plus an additional 37
bytes for the summary header, cf. Tables 3.1 and 3.2 for the exact format. This
approach drastically decreases the size of the log file especially in case of many
errors and thus increases comparison performance. Note that an early version of
this mode is discussed in more detail in [HF06].

The syntax of the checksum mode is as follows:
> IeeeCC754++ -s <INFILE> [-f <LOGFILE>] [<OPTIONS>]

with the default name for <LOGFILE> again being <INFILE>.log and <INFILE>
being in UCB format. Possible options are described in Section 3.3.6.

Similar to the difference between -vio and -vix in verbose mode, a variant of
the checksum mode called dropped checksum mode exists in which test vectors
for which only errors related to exception flags were detected are not counted as
errors. The syntax is almost identical to checksum mode:

> IeeeCC754++ -d <INFILE> [-f <LOGFILE>] [<OPTIONS>]

In case not only the comparison between checksums generated on different
nodes is desired but also insight into the actual nature of the errors encountered,
we developed a small utility called decode that takes a checksum mode log file as

90 IeeeCC754++

Encoded information Number of bytes
Endianess 1
Number of errors 4
Number of warnings 4
Number of skipped vectors 4
Total number of vectors 4
Summary (underflow mode) 4
Number of tiny operations 4
Number of FTZ operations 4
Number of FTZ errors 4
Number of zero values 4
Total number of bytes 37

Table 3.1: Checksum mode header.

Encoded information Number of bytes
Precision 1
Operation 1
Rounding mode 1
Errors 4
Expected exceptions 1
Returned exceptions 1
Errorlevel 1
Deviation in ulps 2
Source line number 4
Total number of bytes 16

Table 3.2: Checksum mode error. For every error that is encountered during the
testing process, one entry with the information listed here is written to the logfile.

input and generates an output file in (almost) the classic mode plain format. The
only difference lies in the fact that in checksum mode, the operands and results
are not stored and therefore can not be recovered and printed in the log file.

The decoding utility is called as follows:
> decode [-s|-d] <INFILE> [-f <OUTFILE>]

with -s and -d specifying the decoding mode. If the name of <OUTFILE> is not
explicitly specified via the -f option, the default name <OUTPUT>.decoded is
used. If <INFILE> was encoded in checksum mode (IeeeCC754++ -s), decode -s
recovers all information as stored in the binary checksum, whereas decode -d
behaves exactly as if <INFILE> had been encoded in dropped checksum mode, i. e.
it drops all errors only related to exceptions. When <INFILE> was encoded in

3.3 Testing modes 91

dropped checksum mode, both decoding modes produce identical output.
Listings 3.12 and 3.13 show examples of decoded log files which were produced

by IeeeCC754++ -s and IeeeCC754++ -d respectively.

Error Line 33881: inexact flag not returned
Operation: b2d
Round to nearest (ties to even)
Flags expected: x
Flags returned:

¨ ¨ ¨

Error Line 33949: inexact flag not returned
Error Line 33949: different decimal representation
Operation: b2d
Round to nearest (ties to even)
Flags expected: x
Flags returned:

¨ ¨ ¨

Summary:

Implementation signals underflow in case the result
(1) is tiny after rounding and
(2) raises the inexact exception
(’v’ - underflow)
Errors: 3930/24573
Warnings: 0/24573
Skipped: 0/24573

Listing 3.12: Example checksum mode plain format output generated with
IeeeCC754++ -s alls ; decode alls.log

Error Line 33949: different decimal representation
Operation: b2d
Round to nearest (ties to even)
Flags expected:
Flags returned:

¨ ¨ ¨

Summary:

Implementation signals underflow in case the result
(1) is tiny after rounding and
(2) raises the inexact exception
(’v’ - underflow)
Errors: 175/24573
Warnings: 0/24573
Skipped: 0/24573

Listing 3.13: Example dropped checksum mode plain format output generated
with IeeeCC754++ -d alls ; decode alls.log

Note that the output in Listing 3.13 could have also been produced with the
following two commands:

92 IeeeCC754++

> IeeeCC754++ -s alls
> decode -d alls.log

Fingerprint mode

If IeeeCC754++ reports a large number of errors for a given test set, the checksum
files generated in checksum mode can still be of substantial size. Under certain
circumstances, it can be advantageous to work with a further reduction of the
checksums, e. g. when checksum information should be stored in some database. To
support this use case, IeeeCC754++ features the fingerprint mode that generates
a hash digest of the recorded error information and stores it (in binary format)
together with the checksum mode header. The size of this fingerprint is then
37 bytes for the header plus the size of the chosen digest mode (typically 128 or
256 bit), i. e. it is in the range of Op50q bytes.

The syntax is very similar to that of the checksum mode:
> IeeeCC754++ -h[<DIGEST>] <INFILE> [-f <LOGFILE>] [<OPTIONS>]
> IeeeCC754++ -m <INFILE> [-f <LOGFILE>] [<OPTIONS>]

with <INFILE>, <LOGFILE>, and <OPTIONS> as in checksum mode. -h stands for
hash digest; the default digest is SHA1. It is possible to select a different hash
digest by specifying <DIGEST>, e. g. using -hsha512 generates an SHA512 digest.
Consequently, -hsha1 is identical to -h. -m is a shortcut for -hmd5 and selects the
MD5 digest.

To generate a readable version of the hash digest in hexadecimal format and
to retrieve the information encoded in the summary header, decode can be used
with the following syntax:

> decode -h[<DIGEST>] <INFILE> [-f <OUTFILE>]
> decode -m <INFILE> [-f <OUTFILE>]

It is important to note that decode has no knowledge of the hash digest that
was used to generate the fingerprint. It will therefore transform the digest into
hexadecimal format assuming that the digest specified on the command line was
the one used during the encoding process. If the digest length of the selected
digest is (by chance) identical to that of the digest used in IeeeCC754++ -h mode,
decode will print the right value, albeit with a wrong digest name. If digest
lengths differ, appropriate warnings are printed.

Listing 3.14 shows example output for a fingerprint encoded with SHA1 digest.

Summary:

Implementation signals underflow in case the result
(1) is tiny after rounding and
(2) raises the inexact exception
(’v’ - underflow)
Errors: 3930/24573
Warnings: 0/24573
Skipped: 0/24573

3.3 Testing modes 93

SHA1 Hash digest:
f584bd2c488d687b36bdb52416f564a08c3f7998

Listing 3.14: Example fingerprint mode output generated with IeeeCC754++
-hsha1 alls ; decode -hsha1 alls.log

3.3.5 Miscellaneous modes
In addition to the modes listed above, there exist two modes serving more technical
purposes:

> IeeeCC754++ -q <INFILE> [<OPTIONS>]
> IeeeCC754++ -t

-q calls the quiet mode that does not generate output at all; it can be used
to evaluate the difference in execution speed when applying different levels of
optimisation during compilation. If a log file would be generated, the performance
would be largely I/O bound. By dropping all output, the tests are executed as
usual, but performance is not impeded by generating potentially large output files.

When called with -t, IeeeCC754++ prints technical information about itself to
the command line such as a version number, the architecture port it was compiled
with and the compiler used, the subversion revision it was compiled from, and the
Autotools versions used to setup the build system. Listing 3.15 shows example
output.

Calling main implementation (no FPU kernel requested).
IeeeCC754++ driver executable v0.9.5-dev.
64 bit version compiled for architecture "default" on x86_64 with gcc (4.8.5).
Built against revision r947
autotools version:
autoconf: autoconf (GNU Autoconf) 2.69
automake: automake (GNU automake) 1.13
m4: m4 (GNU M4) 1.4.17

Listing 3.15: Output of IeeeCC754++ -t

3.3.6 Common command line options
So far, we have discussed the different testing modes supported by IeeeCC754++
which can be called with the following syntax:

> IeeeCC754++ -<MODE> <INFILE> [-f <LOGFILE>] [<OPTIONS>]

Via the [<OPTIONS>] parameters that are available in all extended modes, i. e.
in all modes with the exception of the classic modes from Section 3.3.1, several
additional options can be used that either provide the user with information on
IeeeCC754++ usage or that add further functionality common to all extended
modes.

94 IeeeCC754++

Informational options

This class of command line options can be called without <MODE> or <INFILE>
parameters with the following syntax:

> IeeeCC754++ <OPTION>

The available options can be used to retrieve information about basic usage, the
supported modes, or the current version of IeeeCC754++. The following options
are supported:

• --help: Shows general usage information.

• --modes: Displays and explains the different testing modes supported by
IeeeCC754++. This corresponds to the <MODE> parameter.

• --args or --options: When one of these options is used, a list of the
command line options supported by IeeeCC754++ is shown. This includes
all options discussed in this section.

• --version: This option causes IeeeCC754++ to show information on the
current build of IeeeCC754++ itself. The output is identical to that produced
by IeeeCC754++ -t (cf. Listing 3.15).

FTZ

When IeeeCC754++ is executed in a floating-point environment not supporting
subnormal numbers, it will report errors for all test vectors whose results are
in the subnormal range. While reporting these errors is certainly the correct
behaviour, it does not yield extra insight since it was known beforehand that
subnormal values are not supported (and the floating-point environment is not
fully IEEE-conforming).

When subnormal numbers are not available in a floating-point environment,
a result that would be subnormal after rounding must be set to a representable
floating-point number, i. e. it must be set to zero.4 IeeeCC754++ offers the possibil-
ity to check whether rounding before obtaining a subnormal number is performed
correctly, i. e. in an IEEE-conforming manner, and whether values are consistently
flushed to zero. Within IeeeCC754++, this behaviour is achieved by altering the
correct result of the corresponding test vector to a zero with unchanged sign and
then proceeding with testing as with unmodified test vectors. The option --ftz
enables this behaviour, while --noftz explicitly restores the default behaviour.

Since there is no general definition how flushing to zero is to be performed (such
a definition is certainly not part of IEEE 754-2008 as the standard aims at providing

4FTZ is usually not influenced by the currently chosen rounding mode: First, the result is
computed and rounded. If the result is subnormal after rounding (i. e. it is smaller in magnitude
than the smallest normalised number, but larger than the respective zero), it then is set to zero,
see e. g. [INT17b] or [Cas08].

3.3 Testing modes 95

the most accurate results possible, i. e. it requires conforming implementations
to support subnormal numbers), there is ambiguity in the flushing process due
to floating-point zeroes being signed. Therefore, implementers can either flush
every subnormal result to `0 regardless of the number’s sign, or they can respect
the sign and flush to ´0 in case of a negative subnormal result. IeeeCC754++
supports both variants with the command line options --ftz which flushes to `0
and --ftzsigned which correctly flushes to signed zeroes.

Some floating-point implementations avoid handling subnormals in an even
stricter way by not only flushing subnormal results to zero, but also replacing
subnormal input values with zeroes (also called DAZ or “denormals are zero”, cf.
e. g. [Cas08]). IeeeCC754++ does not support DAZ due to its testing model via
test vectors: Setting input operands to zero changes the value of the (correct)
result and might also influence (and therefore change) which exceptions should
be returned. Since IeeeCC754++ has no knowledge of the relation between input
values and correct result apart from that encoded in the test vectors, it is not
possible to adapt the expected result and exceptions according to the changed
input operand(s).

However, IeeeCC754++ provides the command line option --skipsubnormal
(and its synonymous option --skiptiny) which causes the testing engine to skip
all test vectors containing subnormal values, either in the operands or the result.

ULP thresholds

As discussed in Section 3.1.12, IeeeCC754++ tries to determine if an incorrect
returned result is only rounded incorrectly, i. e. if it is only a few ulps off, or if a
more serious error occurred. The default threshold for regarding the difference
between the correct and the returned result as critically wrong is 8 ulps (or, in
other words, the last three binary digits being wrong).

However, when the floating-point result is computed correctly (to infinite
precision) and only rounded incorrectly afterwards (to target precision), the
difference between correct and returned result will only be 1 ulp. In order to allow
for analysis of these tighter requirements, the threshold can be changed via the
command line parameter --ulp=<ULP> where <ULP> is the new threshold in ulps.

Message digests

IeeeCC754++ offers the option to calculate hash digests of the log files generated
during the testing process in verbose mode. For a chosen digest mode <DIGEST>,
an additional output file called <LOGFILE>.<DIGEST> will be written containing
the hashed messaged digest of <LOGFILE>.

The syntax for these options is as follows:
> IeeeCC754++ ... --digest[=<DIGEST>]
> IeeeCC754++ ... --hexdigest[=<DIGEST>]

96 IeeeCC754++

with <DIGEST> being the chosen digest algorithm. If <DIGEST> is not given, the
default digest SHA1 will be used.

Both variants write the message digest into the output file; however, they
generate different formats: --digest writes the digest in binary form, whereas
--hexdigest generates a hexadecimal representation of the same value.

Message digests via the described options are only available in verbose mode. It
should be noted that while conceptually similar to fingerprint mode, the generated
fingerprint is considerably different: A fingerprint produced in verbose mode with
one of the digest options contains no summary information and may be written
in hexadecimal representation, whereas the digest part of a fingerprint generated
in fingerprint mode always contains a header with additional information and is
written in binary format. Furthermore, the source content for which the digest
is calculated differs: In verbose mode, it consists of the output file in one of the
verbose output formats described in Section 3.3.2, while in fingerprint mode, only
error information in checksum mode format is used to compute the digest.

Suppressing log file generation

Via the option --nolog, it is possible to suppress the generation of a log file.
While the option is available in all extended modes, it is mainly useful in verbose
mode when used together with one of the message digest options --digest or
--hexdigest. In this case, it is possible to avoid writing the (considerably larger)
log file to disk while still being able to generate a file containing the hash digest.

When using --nolog without generating a hash digest, IeeeCC754++ behaves
exactly as in quiet mode, see Section 3.3.5.

Mode and option overview

We conclude the discussion of IeeeCC754++’s testing modes and command line
options by referring to Appendix C.2 where a short overview of the modes and
options is given.

3.4 The evaluation framework
The goal of IeeeCC754++ and its included set of tools is to help an end user to
evaluate the IEEE-conformity of a given floating-point environment and therefore
the expected numerical quality that can be achieved in this environment (or to
identify potential problems). While it is possible to execute single test runs, in
many cases it can be desirable to test different combinations of FPUs, compilers,
and floating-point formats in order to assess which combination should be given
preference (with the usual tradeoff between performance and numerical quality
in mind). It can even be sensible to test the current environment with different

3.4 The evaluation framework 97

architectures such as the default architecture in addition to the native architecture
of that specific environment.

This section starts with a description of the framework’s structure and its
configuration files which control the testing and evaluation process. Afterwards,
we describe the analysis modules built into the evaluation framework and the
process of adding (and calling) custom modules that can be used for a deeper
analysis when necessary. We conclude this section by presenting several small
helper scripts that further ease the setup and execution of a large number of
test runs, including the graphical tool IeeeCC754++LogViewer which provides a
convenient way of viewing the (possibly large amount of) output generated by the
framework in as much detail as required.

3.4.1 Using the evaluation framework
Every test run (including the analysis of the results) consists of a number of actions
that need to be performed, such as compiling a suitable IeeeCC754++ instance and
executing test runs with appropriate testsets. The evaluation framework abstracts
these actions into separate tasks:

• Job task: A job consists of a list of tasks to be executed. All tasks explained
in this section (and shown in Table 3.3) can be called as jobs, including a
job task itself which will then be executed as a sub job.

• Compile task: A compile task configures and builds IeeeCC754++ for the
specified set of parameters, including the target architecture, a compiler
with compiler options, and FPUs.

• Execute/test task: A test task executes an IeeeCC754++ binary for the
specified FPUs and test vector sets. Since an appropriately built execut-
able is mandatory, a compile task file is needed as a parameter, and the
corresponding compile task must have been executed prior to calling the
test task.

• Evaluation task: An eval task analyses the results of a previously (success-
fully) executed test task. The parameters needed for an eval task consist of
a test task file and an evaluation function that is applied to the output files
generated by the test task. All information needed to locate the log files is
retrieved from the test task file.

Additionally, the evaluation framework knows two “fake” tasks which can be used
for technical reasons:

• Mode task: The evaluation framework allows for the application of three
of the testing modes described in Section 3.3: the classic mode (-u, see
Section 3.3.1) and the verbose mode with and without consideration of

98 IeeeCC754++

exceptions (-v and -vix, cf. Section 3.3.2). The default mode is “full”
verbose mode (-v). To change the mode used during the testing process, a
mode task with an appropriate parameter can be executed.

• Delimiter task: In addition to the output files generated by the different
tasks, a master log is generated containing information about the executed
tasks and the results of the evaluation functions called by eval tasks. In
order to structure this log, a delimiter can be added to this output with a
delimiter task.

For completeness reasons, we briefly mention a supplementary task belonging
rather to the optimisation framework (cf. Section 3.5), but nonetheless connected
to the evaluation framework:

• Optimisation task: The optimisation framework is a variation of the evalu-
ation framework specifically tailored to studying the influence of different
compiler options on runtime and floating-point conformity. Since the evalu-
ation framework provides the technical basis for the optimisation framework,
opt tasks can be used as input to the evaluation framework. An extens-
ive description of the optimisation framework can be found in Section 3.5,
together with a detailed specification of opt jobs.

Table 3.3 shows the tasks supported by the evaluation framework, together
with their descriptors which are needed inside job task files and the file formats
that define the possible parameters for the different tasks.

Descriptor Task name Purpose File format
j job Call other tasks. <FILE>.job
c compile Build an executable. <FILE>.com
t test Execute a test. <FILE>.test
e eval Evaluate results of a test. <FILE>.eval
m mode Change testing mode. –
d delimiter Add delimiter into output. –
o opt Call the optimisation framework. <FILE>.opt

Table 3.3: Tasks supported inside the evaluation framework.

The order of tasks executed during an evaluation framework run are controlled
by the contents of a “master” job file. To start a run, the Python script job.py
must be called with such a master job file which includes a list of tasks (and
corresponding configuration files). This list is then executed in the order given in
the job file. Listing 3.16 shows the syntax of a job.py invocation including all
possible options.

3.4 The evaluation framework 99

> python job.py --help
Looking for SQLite and pySQLite.
Try system install (sqlite3)... found SQLite v3.7.17 and pySQLite v2.6.0.
job.py: IeeeCC754++ job starter

Usage is:
job.py [-m <MODE>] [-e <EVALFUNC>] [-d <DEBUGLEVEL>] [-i] [-q] [-s] <JOBFILE>
job.py -l|--list
job.py -h|--help

where
-d <DEBUGLEVEL> sets the level of debugging output:

-1 equivalent to -q [quiet]
0 normal
1 show "file found" messages
2 show path information
3 show info about tasks/actions etc.
4 full output: e.g. show content of generated scripts

-m <MODE> sets the output mode:
c classic IeeeCC754 mode (no eval!)
v verbose mode (default)
x verbose mode, ignore exceptions

-e <EVALFUNC> set evaluation function (overriding settings in files)
-i show information about IeeeCC754++ executables
-q quiet: suppress almost all job.py output
-s show output of subprocesses (compile & test)
-l list all known eval functions
<JOBFILE> name of the job file whose contents will be executed

Listing 3.16: Output of job.py -help

The only mandatory parameter is the master <JOBFILE> that controls which
further tasks are called and in which order. Additionally, there are three main
groups of parameters:

• Parameters influencing the testing and evaluation process: -m <MODE> changes
the default IeeeCC754++ testing mode to <MODE>, whereas the evaluation
function used during the analysis stage (which is usually set in the eval files
that are called by the master job) can be overridden with -e <EVALFUNC>.
Note that when choosing a specific evaluation function via the -e parameter,
all eval tasks will only use this selected function to analyse the log files.
It offers an easy way to temporarily change the evaluation function used
during a framework run. On the other hand, -m only changes the default
testing mode, i. e. when a mode task is encountered in a job file, the testing
mode is then changed to the mode specified in the mode task.

• Parameters influencing the output of the evaluation framework, especially
what is printed and with how much detail: -q selects quiet mode, i. e. the
amount of output is reduced compared to a normal run.
The output of the subprocesses that actually perform the build and test
tasks is only shown when these subprocesses return a non-zero exit value,

100 IeeeCC754++

indicating that something went wrong during the execution. The option
-s causes the evaluation framework to display this output unconditionally,
thereby enabling the possibility of tracing exactly what happens during the
runtime of each subprocess.
When -s is not specified, the parameter -i can be used to execute a small
helper script that runs the built IeeeCC754++ binary in order to retrieve
information about this executable.
Finally, when the evaluation framework does not behave as expected and
some debugging information is needed in order to analyse the faulty be-
haviour, the amount of (internal) information printed can be increased by
specifying suitable debug levels via -d <DEBUGLEVEL>. Possible values and
their explanation are listed in Listing 3.16.

• Finally, there are two parameters serving informative purposes which are
used without a <JOBFILE>: -h or --help prints the usage information shown
in Listing 3.16, and -l or --list displays a list of all evaluation functions
available to the evaluation framework, including custom functions. For an
example of such output and for details on implementing custom evaluation
functions, see Listing 3.32 and Section 3.4.2.

Prerequisites

In order to implement a light-weight framework that is easily extensible, the
evaluation framework has been implemented in Python. Since Python2 is the
most widespread version and Python3 is not available on some older platforms,
Python2 was chosen as the framework’s language. Therefore, a suitable Python2
interpreter must be installed on the platform on which the evaluation framework
is executed. The minimum required Python version for the evaluation framework
is 2.5. Furthermore, the following modules (which should be built into every
Python2 installation) are necessary:

• Modules for basic OS support and properties: os, os.path, platform, sys.

• Modules to call external functions or commands: subprocess, ctypes
(Python version 2.5 and newer), dl (Python versions before 2.5).

• Modules for efficient use of Python’s internal data types: copy, time.

• To enable an efficient way of checking which of the log files generated by
IeeeCC754++ are identical, the evaluation framework calculates checksums of
these log files via message digests. Therefore, the module hashlib is needed.

• In order to use IeeeCC754++LogViewer (see Section 3.4.3), wxPython version
2.8 must be installed.

3.4 The evaluation framework 101

The evaluation framework executes the compile and test tasks via shell scripts.
These assume that GNU bash version 2 or newer is installed, together with the
command line tools ldd and make. Obviously, a compiler with corresponding
linker is needed as well.5

The prerequisites discussed so far should be relatively easy to meet. There
is however one requirement which might not be pre-installed by default: The
analysis process inside the evaluation framework uses an in-memory database for
efficient storage, retrieval, and evaluation of the results. Since it is in widespread
use6, SQLite [SQL16a] was chosen as the database system. Consequently, SQLite
must be installed on the platform, as well as a corresponding Python module (the
modules sqlite3 and pysqlite2 are suitable) to provide a native interface to the
evaluation framework.

Unfortunately, not all platforms provide such an SQLite Python module. In
order to enable easy installation (and execution) of the evaluation framework, a
custom module called importPySQLite.py is provided that searches the current
system for a suitable Python module, imports it into Python when it is found, and
tries to build it from source (which is also contained in the IeeeCC754++ source
tree, see Figure 3.2) otherwise. Although this module is automatically imported
when running the evaluation framework, it can also be used as a standalone script
to enable advance testing of whether the current platform supports a suitable
SQLite module. Listing 3.17 shows output of a successful standalone execution, i. e.
on a platform where SQLite including a corresponding Python module is installed
and works as expected.

> python importPySQLite.py
importPySQLite.py: Trying to import SQLite module.
Looking for SQLite and pySQLite.
Try system install (sqlite3)... found SQLite v3.7.17 and pySQLite v2.6.0.
Running test procedure for importSQLite.py:
(u’arm’, u’neon’)
(u’bgq’, u’qpx’)
(u’x86’, u’avx’)
(u’x86’, u’x87’)
Deleted 4 rows.

Listing 3.17: Output of successfully importing SQLite.

Finally, it is important to understand how the evaluation framework uses and
locates the testsets for the test runs: Since the evaluation framework employs
IeeeCC754++’s verbose mode to generate easily parsable log files as a basis for the
analysis stage, the testset files that are fed into IeeeCC754++ must be in UCB
format. Furthermore, the location of these files cannot be arbitrarily chosen: They

5Actually, the helper scripts described in Section 3.4.2 need some more command line tools
such as cp, grep, date, mkdir, or rm. However, these should be available on virtually any platform
that bash has been installed on.

6SQLite claims to be the most widely deployed and used database engine, see [SQL16b].

102 IeeeCC754++

must be located in the directory testsets/ inside the IeeeCC754++ source tree.
Appropriate testset files in UCB format can be generated from the testset files in
Coonen syntax that are provided by IeeeCC754++ in the directory src/testsets/.
For details on how to convert testsets in manual or automated manner and prepare
corresponding testset files for use in the evaluation framework, see Section 4.7. For
convenient testing of all operations with the most common floating-point formats,
IeeeCC754++ includes the files allh, alls, alld, alll, and allq in testsets/,
enabling testing of the half, single, double, extended, and quadruple formats (cf.
Table 1.1) by specifying the names of the testset files in the corresponding test
and eval task files, see next section.

Configuration files

For a typical (single) run of the evaluation framework, a set of four configuration
files is needed: a job task file controlling the execution of the sub tasks, a
compile task file building IeeeCC754++, a test task file running the newly created
executable with the specified testset(s), and an evaluation task file applying at
least one evaluation function to the log files generated by the test task. In this
section, we discuss the structure of these configuration files and the possible
parameters. Heavily commented example files for the different tasks can be found
in Appendix C.5.

The basic syntax rules for the configuration files are defined as follows:

• All lines beginning with “#” are comments.

• Comments and empty lines (i. e. lines only containing whitespace) are ig-
nored.

• Parameters must be contained on a single line and must be given in the
form “<KEY> = <VAL>”.

• <KEY> denotes the name of the parameter and <VAL> the given value.

• <KEY> includes everything before the first “=”; everything after that character
is considered as <VAL>.

• <KEY> and <VAL> will be trimmed before evaluation, i. e. whitespace at the
beginning and end of these values is removed.

• Unknown parameters (i. e. unknown values for <KEY>) will be ignored, but a
warning will be printed.

• The case of <KEY> is irrelevant.

• The case of <VAL> is taken “as is”, i. e. no changes will be applied.

3.4 The evaluation framework 103

• Lines that are neither a comment (or empty) nor contain a valid <KEY>/<VAL>
pair are ignored, but a warning will be printed.

• File names (such as the name of environment scripts, see below) must not
include spaces.

Job task files A job file consists of a list of tasks that will be executed in the
given order. A list of valid tasks can be found in Table 3.3. Note that job files are
the only type of configuration files which follow a different, simpler syntax:

• Lines must have the form “<CHAR> <VAL>” where <CHAR> is a single character,
followed by whitespace, and <VAL> the rest of the current line, excluding
trailing whitespace.

• Only the job descriptors listed in Table 3.3 are allowed.

• For job, compile, test, and eval tasks, <VAL> is the name of the corresponding
configuration file. The appropriate file ending is automatically appended to
the name if not specified.

• For a mode task (<CHAR> is equal to m), only the values v, x, or c are allowed,
switching the testing mode to either verbose mode (v), verbose mode without
considering exceptions as errors (x), or classic mode (c).

• When a delimiter job is called, a section delimiter is printed into the log file,
including the given string <VAL> as heading.

Since job tasks are valid parameters inside a job file, it is possible to write a
master job file containing a list of further job files as sub tasks. If several jobs
are set up in this manner, one can easily enable or disable certain test runs while
calling the evaluation framework with the same job file by simply (un)commenting
the appropriate sub tasks in the master job file.

Listing 3.18 shows an example of a simple job file that first prints a delimiter
with the string “EXAMPLE - EVALUATION FRAMEWORK” into the log file, and then
compiles IeeeCC754++ with the settings given in the compile file ex.com. Before
executing tests or analysing results, the testing mode is changed to “verbose”.
Afterwards, IeeeCC754++ is executed according to the parameters in ex.test,
before finally the resulting log files are analysed and evaluated as configured in
ex.eval.

Note that for this example to work, the compile task ex.com must be a
parameter in ex.test and that ex.test must be a parameter inside ex.eval (see
below).

show delimiter including the heading "EXAMPLE - EVALUATION FRAMEWORK"
d EXAMPLE - EVALUATION FRAMEWORK

104 IeeeCC754++

compile IeeeCC754++
c ex

change IeeeCC754++ testing mode to verbose
m v

execute test and eval tasks
t ex
e ex

Listing 3.18: Example job task file.

Compile task files In order to build IeeeCC754++, a number of settings are
needed, in particular the architecture and FPUs to build for, the compiler that
should be used, and relevant compiler and environment settings. All valid para-
meters are listed in Table 3.4, together with default values.

Parameter Mandatory? Default Purpose
ENV no — Environment scripts.
MODULE yes — Environment modules.
ARCH yes — Architecture.
FPU no — List of FPUs.
CFLAGS no — Flags for the C-compiler.
CPPFLAGS no — Flags for the preprocessor.
CXXFLAGS no — Flags for the C++-compiler.
LDFLAGS no — Flags for the linker.
LIBS no — Extra libraries.
ARGS no — Extra arguments passed to configure.
CORES no 1 Number of parallel build processes.
MODE no main Build mode.
BITS no — 32 or 64 bit build?

Table 3.4: Compile task file parameters.

For the meaning of MODE and BITS, see Appendix A.3. If extra options are
needed for the configuration process, they can be passed to configure by adding
them to ARGS.

The mechanism that is used to choose a compiler (and its relevant compiler
options) requires some explanation: As described in Appendix A.3.4, page 297,
the compiler can be chosen by setting the environment variables MYCC and MYCXX
(or alternatively CC and CXX). While this can be done by setting the values in the
global environment before executing an evaluation framework run, this approach
does not lend itself to batch testing of different compiler actions without user
interaction. Therefore, IeeeCC754++ supports so-called environment scripts which
are bash scripts that are sourced into the bash scripts executed by the evaluation

3.4 The evaluation framework 105

framework (or, more precisely, the corresponding compile and test jobs). Inside
an environment script, the chosen values for the compiler can be set and exported,
see Listing 3.19.

#!/bin/bash
export MYCC = gcc-4.7
export MYCXX = g++-4.7

Listing 3.19: Example environment script gcc47_env.sh.

This approach is necessary to set the compiler in an automated way, but
introduces an alternative way of setting the environment variables that influence
the compilation and linking stages during the build process, namely CFLAGS,
CPPFLAGS, CXXFLAGS, LDFLAGS, and LIBS. These can either be exported in the
environment script or set as parameters of the compile file.

Note that the environment script that is specified in ENV can also be used for
further setup that might be necessary to enable execution in the current testing
floating-point environment, such as setting up accelerators or adapting the search
path for shared libraries. Furthermore, more than one environment script may be
given via ENV. Each of the given scripts is then sourced in the given order prior to
configuring and building IeeeCC754++. For every environment script that should
be sourced, a separate line with an ENV entry must be specified.

Additionally, the evaluation framework supports so-called Environment Mod-
ules (see [MOD17; WIK17k]) which manipulate the current environment as needed
for the specified module. Every module that should be loaded must be specified
as a separate line with a corresponding MODULE entry.

Listing 3.20 shows an example of a compile script using the environment script
gcc47_env.sh (cf. Listing 3.19) that builds IeeeCC754++ with gcc 4.7 for the
default architecture with the additional C99 FPU (see Section 5.1.1), using four
parallel build processes during compilation.

ENV = gcc47_env.sh
ARCH = default
FPU = c99
CORES = 4

Listing 3.20: Example compile task file.

Test task files For every compile task, there should be (at least) one test task
that runs the IeeeCC754++ executable with the specified testsets for every FPU
(usually including the main FPU) that IeeeCC754++ was built for. Table 3.5 shows
the parameters known to a test task.

Since a test task needs an executable built by a compile job as well as some
of the settings used during the build process (such as the architecture that
IeeeCC754++ was built for), a COMPILE parameter is mandatory that contains the

106 IeeeCC754++

Parameter Mandatory? Default Purpose
ENV no — Environment scripts.
MODULE yes — Environment modules.
COMPILE yes — Compile task.
TESTSET yes — List of testsets.
FPU no main List of FPUs.
ARGS no — Extra arguments passed to IeeeCC754++.
BATCH no — Batch system for remote execution.
EXECPREFIX no — Execution prefix, e. g. mpiexec call.

Table 3.5: Test task file parameters.

corresponding compile task file. The test job then extracts those values that are
needed for the test run.

While it would be possible to extract the values of the environment scripts used
during compilation from this compile task file, it might not always be desirable to
use these same scripts during IeeeCC754++ execution. To allow for more flexibility
when configuring an evaluation framework run, environment scripts that should
be sourced before executing the actual test run must be explicitly specified via
ENV. That being said, in most cases the scripts passed here will be identical to
those given in the corresponding compile file. Like in the compile task case, each
environment script must be specified on a separate line by adding an ENV value.
The same reasoning applies to Environment Modules, and as a consequence, all
modules needed to execute the previously built IeeeCC754++ must be specified
via separate MODULE lines.

If additional parameters should be passed to IeeeCC754++ as command line
options (e. g. to choose between accelerator devices), these can be specified in
ARGS.

TESTSET and FPU take lists of testsets and FPUs, respectively. IeeeCC754++
will then be run with all combinations of testsets and FPUs.

Not all user environments allow for direct execution of executables, but re-
quire the use of a batch system, such as most supercomputers, or can only be
executed through a wrapper executable such as mpiexec for execution on sev-
eral hosts via MPI. The latter case is addressed by the parameter EXECPREFIX
that denotes the string that the execution command line should be prefixed
with, i. e. for a value of EXECPREFIX = mpiexec -n 2 --hostname host1,host2
to execute IeeeCC754++ via MPI on the hosts host1 and host2, the command
line “mpiexec -n 2 --hostname host1,host2 IeeeCC754++ <PARAMETERS>” will
be executed instead of “IeeeCC754++ <PARAMETERS>”.

For batch system execution style support, the evaluation framework includes
modules for some of the most widely spread batch execution systems, namely
LoadLeveler [IBM01], PBS/Torque [PBS16; Sta06], and SLURM [YJG03]. When

3.4 The evaluation framework 107

the corresponding values ll, pbs, or slurm are given in BATCH, the evaluation
framework generates adequate job files, submits the jobs into the execution queue,
waits for the end of the job, and finally retrieves the result. Therefore, it might
be advisable to limit the number of test tasks executed on such an environment,
depending on the waiting time before the batch job is scheduled to run in the
environment.

Listing 3.21 shows an example test file that executes the IeeeCC754++ binary
produced by the compile job ex.com. For consistency reasons, the same environ-
ment file is sourced. Both FPUs available in the IeeeCC754++ executable (main
and C99) are tested with the testsets t1s and t1d (see Listing 4.6). However,
the test script generated by the test task (which calls IeeeCC754++ for the four
combinations of testset and FPU) is not executed directly in the environment that
the evaluation framework runs on, but through Slurm.

ENV = gcc47_env.sh
COMPILE = ex.com
TESTSET = t1s t1d
FPU = main c99
BATCH = slurm

Listing 3.21: Example test task file.

Eval task files After completing compile and test tasks, the resulting log files can
be fed into the evaluation framework for analysis and evaluation. In contrast to
compile and test tasks, an eval task only requires a minimal amount of information,
namely the log files and at least one evaluation function that will be applied to
these files. For maximum flexibility, we provide the following three ways of
executing an eval task:

• Standalone execution: The eval task part of the evaluation framework can
be called as a standalone script which analyses one log file with the specified
evaluation functions. For details, see below.

• Specifying a test task: When a test task is given as a parameter in the eval
task file (TEST, see below), the evaluation framework retrieves the log files
generated during the runtime of the test task and applies the requested
evaluation functions to these files.

• Alternatively, a list of log files (either with relative or absolute path) and an
optional log path can be given together with the evaluation functions. The
evaluation framework then tries to open the files specified in LOGFILES and
LOGPATH and analyses them.

When both an eval task and a list of log files are specified in the eval task
file, the eval task file parameter takes precedence, i. e. the evaluation framework

108 IeeeCC754++

Parameter Mandatory? Default Purpose
EVALFUNCTION no basic List of evaluation functions.
TEST no — Test task.
LOGFILES no — List of log files.
LOGPATH no — Path to log files.

Table 3.6: Eval task file parameters.

ignores the parameters LOGFILE and LOGPATH in this case. Table 3.6 shows the
(short) list of parameters allowed in eval task files.

Each log file can be analysed with more than one evaluation function by either
specifying multiple evaluation functions, using multiple eval task files, or by using
aggregated evaluation functions, see Section 3.4.2.

EVALFUNCTION = basic
TEST = ex.test

Listing 3.22: Example eval task file.

Executing tests

When an evaluation framework run is performed, i. e. when job.py is executed
with an appropriate job task file, job.py writes a number of status messages and
the output of the evaluation function reports to the console. It is advisable to
redirect this output into an appropriate log file for further reference. By default,
the evaluation framework informs the user about the currently performed action,
the log files and evaluation reports that were generated (and written into files),
and the output of these reports. However, with the command line switches shown
in Listing 3.16, the amount of output can both be increased (via the options -s,
-i, and -d) or decreased (-q).

During an evaluation framework run, the following information is recorded for
later analysis:

• Errors encountered, e. g. when compile tasks fail or an IeeeCC754++ execut-
able cannot be executed.

• Summaries of the analysed log files.

• Names of the generated files, especially the output files of the evaluation
function reports.

After all tasks in the master job file have been executed, the evaluation
framework generates and prints a number of summaries in order to enable a quick
overview of testing results:

3.4 The evaluation framework 109

• A global summary, including the name of the corresponding log file, a hash
message digest of this file, and the summarised test results.

• The same summary, but sorted according to the name of the test file.

• A list of all evaluation report files, grouped by the evaluation function that
was used to create the analysis result.

• A list of all errors that were encountered during runtime. This list provides
a very quick means to verify whether all tasks were properly executed (when
the list is empty) or to get pointers at potential problems.

• Finally, the testing summary that was already printed at the top of the
summary list is displayed again, this time sorted according to the hash
value of the corresponding log file. This approach is especially helpful when
different compiler versions are tested for the same architecture as identical
log files can be quickly identified because of the sorting order.

A detailed example including these summaries can be found in Section 6.1.
When the tasks that implement the evaluation framework functionality are

executed, a large number of files is created, such as the directory tree for the config-
uration and compilation of a suitable IeeeCC754++ binary or the log files generated
by a test task. In order not to clutter the directory containing the evaluation
framework (cf. Section 3.4.1), all generated files are collected in the subdirectory
run/. Whenever a run of the evaluation framework is performed and a job task
is encountered, a corresponding subdirectory (called run_<JOBNAME>_<DATE>) is
created directly in run/ (for the master job file) or in the subdirectory in which
the current job resides. For compile, test, and eval tasks, additional subdirectories
of the currently active job task are created. All log files and evaluation function
reports (as well as the executables and scripts used to generate these files) can
therefore be found in this directory. Since the paths involved tend to get long and
cryptic, the full names of the generated files are written to the console for easy
access (see above).

Standalone evaluation

As discussed in the last section, an eval task requires only a log file and an
evaluation function as parameters. Therefore, the script eval.py can be called
as a standalone script with the parameters shown in Listing 3.23. Syntax and
parameters are mostly identical to those of job.py (cf. Listing 3.16), with one
notable difference: <FILE> can either be an eval task file (named <FILE>.eval)
or a log file. In the latter case, the file is directly passed to the evaluation stage,
whereas in the first case, the eval task file is parsed as usual. In particular, the log
files to be analysed must be specified via the LOGFILES parameter. The method

110 IeeeCC754++

of automatic retrieval of log files via a test task file (specified with the parameter
TEST) is not permitted in standalone mode.

> python eval.py --help
Looking for SQLite and pySQLite.
Try system install (sqlite3)... found SQLite v3.7.17 and pySQLite v2.6.0.
eval.py: IeeeCC754++ job analyser

Usage is:
eval.py [-e <EVALFUNC>] [-d <DEBUGLEVEL>] [-q] <FILE>
eval.py -l|--list
eval.py -h|--help

where
-d <DEBUGLEVEL> sets the level of debugging output:

-1 equivalent to -q [quiet]
0 normal
1 show "file found" messages
2 show path information
3 show info about tasks/actions etc.
4 full output: e.g. show content of generated scripts

-e <EVALFUNC> set evaluation function (overriding settings in files)
-q quiet: suppress almost all eval.py output
-l list all known evaluation functions
-h this message
<FILE> name of either

* an .eval file whose contents will be executed
* a log file that will directly be analysed

Listing 3.23: Output of eval.py -help

Note that when passing a log file directly to eval.py, the only way of choosing
an evaluation function consists of specifying the desired one with the command
line option -e <EVALFUNC>. A list of all available evaluation functions as retrieved
with python eval.py -list can be found in Listing 3.24.

> python eval.py --list
Looking for SQLite and pySQLite.
Try system install (sqlite3)... found SQLite v3.7.17 and pySQLite v2.6.0.
eval.py: IeeeCC754++ job analyser

Known eval functions:

all => all v0.1
basic => basic v0.2
basic_near => basic_near v0.1
detailed => detailed v0.2
error_list => error_list v0.2
error_report => error_report v0.2
example => Example evaluation function v0.01
operation_report => operation_report v0.2
opteval => Evaluation function for the optimisation framework v0.01
roundings => roundings v0.2
ulp => ulp v0.1
very_detailed => very_detailed v0.2

Listing 3.24: Output of eval.py -list

3.4 The evaluation framework 111

Code structure

For reference purposes, we briefly discuss the code structure of the evaluation
framework. It is located in the IeeeCC754++ source tree in the directory eval/;
the files and directories implementing the evaluation framework are shown in
Figure 3.2.

eval/
evalfunc/
files/
run/
submit/

ll.py
pbs.py
slurm.py

action.py
job.py
compile.py
test.py
eval.py
globals.py
settings.py
structures.py
tools.py
importPySQLite.py
pysqlite_src/

buildPySQLite.sh
pysqlite-2.6.3.tar.gz
sqlite-autoconf-3071300.tar.gz

genJobs.py
startTests.sh
checkErrors.sh
updateJobs.sh

Figure 3.2: Code structure of the evaluation framework.

The source code consists of files implementing the different tasks (and cor-
responding base classes in action.py), the batch modules needed for remote
execution of test tasks (all files in submit/), and global settings and structures.
Furthermore, importPySQLite.py and the corresponding directory pysqlite_src/
implement the import functionality for SQLite described in Section 3.4.1.

The different evaluation functions usable for the analysis of the log files pro-
duced by IeeeCC754++ are implemented in the directory evalfunc/; for details on
these functions and how to implement custom evaluation routines, see Section 3.4.2.
The directory files/ contains reference examples of task files, see Appendix C.5.

112 IeeeCC754++

The directory run/ is created whenever an evaluation framework run is performed
and it does not already exist. During the runtime of the framework, run/ is filled
with all files generated by the corresponding job, compile, test, and eval tasks.

Finally, the four files shown at the end of Figure 3.2 implement useful helper
scripts which are described below, see Section 3.4.3.

3.4.2 Analysis modules
The evaluation framework contains extensive analysis facilities in order to enable
easy analysis and evaluation of a large number of test runs. Each test execution
consists of an IeeeCC754++ run in verbose mode that generates a log file containing
information about every test vector encountered during the testing process. The
evaluation framework parses these log files and pushes the retrieved information
into an in-memory SQLite database. This approach provides a fast and simple
way to extract and aggregate the floating-point errors and properties of the test
run via a standardised interface (i. e. via SQL queries).

The evaluation framework uses analysis modules to analyse the floating-point
properties of the underlying floating-point environment with the data stored in
the in-memory database. Inside these modules, an evaluation function retrieves
and aggregates the relevant information via an SQL call. Additionally, further
processing is applied for extensive evaluation and to generate a human readable
report of the analysis results. The evaluation framework provides a number of
evaluation functions that cover a range of different relevant properties.

The information generated by an evaluation function is dropped into a log file
for later access. Furthermore, the SQL table containing the parsed contents of
the test vector file is saved in CSV format7 to a corresponding .csv file in case
further (external) analysis is required.

Each analysis module contains exactly one evaluation function tailored for
a specific analysis task. Additionally, it is possible to aggregate the output of
several evaluation functions from different analysis modules for a more extensive
inspection of a single test run (see e. g. the detailed evaluation function below).

In this section, we describe the analysis modules contained in the evaluation
framework. When the supplied evaluation functions are not sufficient for the
desired evaluation of a floating-point environment, it is possible to extend the
evaluation framework with custom evaluation functions. This process is also
described later in this section.

An overview of the pre-installed evaluation functions can be retrieved with
the --list parameter of job.py or eval.py, see Listings 3.16 and 3.23; example
output can be found in Listing 3.24. Figure 3.3 shows the files that imple-
ment the different evaluation functions as Python modules: __init__.py and

7Comma Separated Values: a plain text table format that separates values by a delimiter
(originally a comma “,”). IeeeCC754++ uses a semicolon “;” as delimiter.

3.4 The evaluation framework 113

list_evalfuncs.py initialise the evalfunc module and implement the listing
functionality. evaltools.py and error.py provide common functionality and
information about the different error types that can occur during an IeeeCC754++
test run; the provided functions can be used in the analysis modules. Finally, all
other files are named after an evaluation function and contain the corresponding
implementation, e. g. the file basic.py contains the basic evaluation function.

eval/
evalfunc/

__init__.py
all.py
basic.py
basic_near.py
detailed.py
error_list.py
error_report.py
errors.py
evaltools.py
example.py
list_evalfuncs.py
operation_report.py
opteval.py
roundings.py
ulp.py
very_detailed.py

Figure 3.3: Code structure for the analysis modules inside the evaluation frame-
work.

Available evaluation functions

While every analysis module presents itself as a single module to the evaluation
framework, there are actually two types of modules: the modules that retrieve
and analyse the data stored in the database, and the modules that aggregate the
reports of other modules into a single report. We discuss the “analysing” modules
in detail and then briefly describe the aggregation modules.

In the following, success describes the execution of the operation contained
in a test vector that returned the correct floating-point result and raised all
expected exceptions (and no other exceptions). Consequently, an error describes
an execution where the returned result is not correct or wrong exceptions were
returned. Note that in -vix testing mode, error only refers to cases where the
returned result is not correct, regardless of what exceptions are (or are not)
returned (cf. Section 3.3.2). Although the information about exceptions is still
contained in the log file, all test vectors which returned the correct floating-point

114 IeeeCC754++

number are counted as a success (even when errors concerning exceptions occurred).
All examples shown in this section were generated with IeeeCC754++ built for the
default architecture and executed on an x86 platform. The testset contained only
test vectors for the addition and fma operations.

basic The basic evaluation function provides basic information about the un-
derlying IeeeCC754++ run and its testing results. It calculates the success rate
for each operation contained in the testset, as well as an overall success rate.
Furthermore, the success and error counts are shown.

In addition to the operation success rates, the basic module aggregates the
operations (and their respective counts) into groups: basic (`, ´, ˚, {), extra
(remainder, square root, and fma), conv (all conversions involving floating-point
and integer formats), output (conversions between binary and decimal formats),
and elem (elementary functions such as trigonometric, power, root, exponential,
and logarithmic functions), cf. Section 4.1.2.

Example output can be found in Listing 3.25. Due to the choice of the test
vector set, the error counts are identical between the individual and the grouped
versions.

(Success rates shown)

add 100.00% 3152/3152
fma 97.60% 4277/4382
RESULT 98.61% 7429/7534

GROUPED

basic 100.00% 3152/3152
extra 97.60% 4277/4382

Listing 3.25: Output of eval.py -e basic ex.log

basic_near All information provided by the basic module is also provided
by basic_near, with one important difference: Only test vectors that test the
roundTiesToEven rounding mode are regarded, since this denotes the default and
most widely employed rounding mode.

error_list The evaluation function error_list prints a list of all errors that
occurred during the test run. The format is identical to the output format
of IeeeCC754++ -vio. This analysis module enables review of the exact errors
without needing to open the corresponding log files (where additionally the errors
need to be localised). Listing 3.26 shows heavily shortened example output for
only three of the 105 errors.

3.4 The evaluation framework 115

[__] l.7479 s fma n 80800000 00800000 00000000 80000000 xu => - 00000000 xu |
sa 0

[__] l.7480 s fma z 80800000 00800000 00000000 80000000 xu => - 00000000 xu |
sa 0

[__] l.7481 s fma u 80800000 00800000 00000000 80000000 xu => - 00000000 xu |
sa 0

Listing 3.26: Output of eval.py -e error_list ex.log

error_report As can be seen in Listing 3.26, IeeeCC754++ records the type of er-
ror that occurred when executing a test vector. The analysis module error_report
groups all errors according to the error type and shows detailed information for
which of the operations (and how many times) this type of error occurred. Fur-
thermore, the letters that encode the error type are decoded and printed into the
report for easy viewing. The output in Listing 3.27 shows that the 105 errors in
the example log file are of the same type, namely the sign of the returned result
being wrong.8 As these errors occurred for the fma operation, an additional fma
error was recorded. In addition to the error count (105 in this example), the sum
of ulps that the correct floating-point value differed from the returned value is
printed (0 in this example).

(Operations, ulps, error count shown)

sa - fma error
- Different sign

fma 0 105

Listing 3.27: Output of eval.py -e error_report ex.log

operation_report The evaluation function operation_report shows basically
the same information as error_report, but grouped according to the operations
that produced at least one error. This enables easy assessment of the types of
errors that were encountered for a specific operation and therefore complements
the information provided by error_report. The corresponding example output
can be found in Listing 3.28.

(Errors, ulps, error count shown)

fma
sa 0 105

a - fma error
s - Different sign

Listing 3.28: Output of eval.py -e operation_report ex.log

8The presence of sign errors and the absence of errors in exponent or significand mean that
the recorded errors are related to signed zeroes being returned with the wrong sign.

116 IeeeCC754++

roundings The analysis modules explained so far focus on generating summaries
and a detailed view on errors, but from a rather operation-centric point of view.
The roundings evaluation function aggregates test results according to the tested
rounding modes tested in order to provide a quick overview whether one of the
rounding modes is implemented in a less IEEE-conforming manner than the
other rounding modes or whether errors are distributed homogeneously between
rounding modes.

The example output in Listing 3.29 shows quite interesting results in this regard:
Whereas errors are spread uniformly between roundTiesToEven, roundTowardPos-
itive, and roundTowardZero, no errors occurred at all for roundTowardNegative
(for the vectors tested here). The letters that are used to describe the rounding
modes are explained in Table B.2.

(Success rates shown)

n 98.78% 1859/1882
z 97.81% 1835/1876
u 97.83% 1847/1888
d 100.00% 1888/1888
RESULT 98.61% 7429/7534

Listing 3.29: Output of eval.py -e roundings ex.log

ulp As part of the analysis extensions, IeeeCC754++ records the difference in
ulps for test vectors where the returned value differs from the correct result,
provided the returned result is close enough to the correct result (with a default
threshold of 8 ulps, cf. Section 3.1.12). With this information, one can see which
of the test vectors were in principle calculated correctly, but not properly rounded
(1 ulp difference), which were calculated almost correctly (deviation between 2 and
8 ulps), and for which the returned result is completely wrong. The reasons for
these cases are different: In the first case, the algorithm used for the computation of
the result seems to be correct, but one or more rounding modes are not supported
or not properly implemented, while in the second case, the algorithm does not
provide the required accuracy. Finally, the third case can hint at more fundamental
problems with the affected floating-point operators.

The ulp evaluation function retrieves the corresponding ulp values from the
test results and displays the values for the three cases. Additionally, the number
of executed test vectors is shown. In order to discern which rounding modes are
affected by deviations in the significand, this information is generated for all tested
rounding modes and is shown together with overall counts.

The example output in Listing 3.30 shows that cases with moderate deviations
(greater than 1 ulp) only occur in seldom cases, whereas the case of the returned
result being 1 ulp off is quite common. Note that the testset used to produce the
output in Listing 3.30 is different from the testset used for the other examples
in this section. It contains results for all test vectors (including the elementary

3.4 The evaluation framework 117

functions, cf. Chapter 4); the results were generated with the c99 FPU of the
default architecture (see Section 5.1.1) on an x86 platform with gcc 4.8.1. A
deeper analysis reveals that most of the 1 ulp differences stem from test vectors
for the elementary functions in rounding modes other than roundTiesToEven,
indicating that the internal precision used to compute the elementary functions
might not be high enough to round all cases correctly (probably due to the Table
Maker’s Dilemma, cf. Section 4.1.1). This assumption is strengthened by the
counts for 1 ulp deviation being significantly larger for roundTowardPositive,
roundTowardNegative, and roundTowardZero compared to roundTiesToEven.

This demonstrates that, when deviations in the returned results are found,
this evaluation function can show the distribution of errors, but a more detailed
analysis is needed to unveil the reasons for the deviations.

(vectors with 1, 2-8, and >8 ulps difference shown)

n 23 0 194 8122
z 411 2 210 7664
u 547 8 201 7572
d 893 4 208 7585
RESULT 1874 14 813 30943

Listing 3.30: Output of eval.py -e ulp ex2.log

Aggregated evaluation functions

The evaluation functions described so far provide insight into one specific aspect of
a test run (and thereby into the IEEE-conformity of the underlying floating-point
environment). In order to gain a more comprehensive overview without having to
perform several eval tasks, the evaluation framework provides three evaluation
functions that do not add further analysis facilities, but aggregate some of the
other evaluation functions.

The detailed function collects the output of the modules basic, roundings,
ulp, operation_report, and error_report into one report. If additionally direct
evaluation of the exact errors is needed, the very_detailed evaluation function
can be used which aggregates the detailed and error_list functions.

Finally, the all module searches the evalfunc/ directory for analysis modules
and uses every evaluating function that was found to provide a report including the
output of all functions. Note that in the default IeeeCC754++ setup, the evaluation
functions contained in the detailed module are printed three times (one time
when executed on their own and again when the detailed and very_detailed
functions are called). For similar reasons, the error list generated by error_list
is printed twice. As this list tends to be quite long, the all evaluation function
should only be used to check if all evaluation functions work as expected.

118 IeeeCC754++

Adding custom analysis modules

The analysis modules supplied by IeeeCC754++ cover a wide, but nonetheless
basic range of analysis needs particularly helpful towards evaluating the basic
floating-point conformity and properties of a given floating-point environment
in a quick manner, something especially important when a large number of test
runs needs to be evaluated. For more specific and elaborate analysis tasks, the
evaluation framework can easily be extended by adding custom analysis modules.
In this section, we give a short description of the steps required to implement
such a module. For further details, we refer to the implementation of the example
module implemented in the file evalfunc/example.py (see Figure 3.3, page 113).
This file does not implement a working analysis module, but explains the basic
steps necessary to retrieve the relevant data from the database, and performs
example queries against the table containing the testing results. The (heavily
commented) full source code can also be found in Appendix C.6.

All analysis modules are located in the directory evalfunc/ (see above). The
first step towards creating a custom module is to generate a new Python source
file in that directory (or to copy one of the other analysis modules). In this short
example, we name this file minimal.py

In order to transform this empty file into an evaluation module, two mandatory
functions need to be implemented: version() that returns a string contain-
ing information about the current module, such as version information, and
evaluate(db). The latter function takes an SQLite database db as a parameter
and returns a string containing the report of the evaluation function. Listing 3.31
contains a minimal implementation of an analysis module.

Version information
def version():

return "Minimal analysis module v0.01"

The actual evaluation function
def evaluate(db):

return "Empty evaluation report of the minimal analysis module."

Listing 3.31: minimal.py: Minimal implementation of an analysis module.

The first step towards verifying that the new module works as expected consists
of ensuring that the evaluation framework properly detects the module:

[src]> cd eval/
[src/eval]> python eval.py --list
Looking for SQLite and pySQLite.
Try system install (sqlite3)... found SQLite v3.7.17 and pySQLite v2.6.0.
eval.py: IeeeCC754++ job analyser

Known eval functions:

all => all v0.1

3.4 The evaluation framework 119

¨ ¨ ¨

minimal => Minimal analysis module v0.01

¨ ¨ ¨

very_detailed => very_detailed v0.2

Listing 3.32: Listing the new analysis module.

If the module is not shown in this list, it is not detected by the evaluation
framework and can therefore not be executed. Most likely, either one of the two
mandatory functions has not been implemented, or the module itself cannot be
parsed properly. The easiest way to remove syntax errors consists of executing
the module directly and analysing Python’s error messages:

[src/eval]> python evalfunc/minimal.py
File "evalfunc/minimal.py", line 6
def evaluate(db:

^
SyntaxError: invalid syntax

Listing 3.33: Searching for errors in the new analysis module.

In the short example in Listing 3.33, a closing brace has been forgotten in the
signature of evaluate(db).

When the evaluation framework successfully lists the new analysis module,
it can be tested in standalone mode with a log file generated by IeeeCC754++’s
verbose mode:

[src/eval]> python eval.py -e minimal logfile.log

¨ ¨ ¨

>>> 2016-07-18 19:13:09 [eval] Eval results:
Empty evaluation report of the minimal analysis module.

¨ ¨ ¨

>>> 2016-07-18 19:13:09 [main] Done.

Listing 3.34: Testing the new analysis module.

When the standalone execution is successful and the evaluation function
produces the desired report, the new module can be used inside the evaluation
framework to help in the analysis of IeeeCC754++’s log files.

3.4.3 Tools for (semi-)automated testing
The evaluation framework is aimed at providing an efficient way of testing various
user environments and configurations in an automated manner. However, when
the number of different settings that should be considered is large (which almost
inevitably occurs especially when checking different architectures, FPUs, and

120 IeeeCC754++

compiler versions in one environment), a huge number of test task files is required
(at least four for every combination of architecture and compiler). When these
test files are available, it is easy to collect the corresponding job task files into
one master job file (or a few at most) so that a run of the evaluation framework
covering all the different test runs can be performed by a single job.py execution.
Therefore, the challenge of efficient automated testing with IeeeCC754++ and the
evaluation framework lies in the efficient generation of task files.

In this section, we describe some valuable tools that assist the user with the
mass-generation of task files as well as with the execution of the tests and the
analysis of the resulting log files.

genJobs.py

In a typical automated testing setup towards checking the IEEE-conformity of
a given user environment, only a limited number of parameters varies for one
architecture, such as the FPUs, the compilers or compiler versions, and the
testsets that should be regarded. Most of the other necessary parameters tend to
be identical between different test runs. Due to this reasoning, the tool genJobs.py
was developed to generate all needed task files for one architecture from a single
input file specifying all relevant parameters. Of course, this approach still limits
the number of variations able to be produced from such a single setup, i. e. it
might be necessary to generate more than one input file for a single architecture
in the following cases:

• Not all FPUs that should be regarded can be built at the same time, e. g.
due to different compiler settings.

• Only some of the compiler versions that should be tested are compatible
with some FPUs.

• Different compilers need different compiler switches.

For the first two cases, separate input files are necessary in order to test all
combinations. For the third case, one or more environment scripts can be used to
set up the environment in a suitable manner (cf. Section 3.4.1).

For a given input file, genJobs.py generates task files as follows:

• For every compiler specified, a compile task file is generated, as well as a job
task file containing this compile task file and further test and eval task files.

• For every given testset, two test task files and two eval task files are generated
and added to the job task file, together with mode tasks that execute v
and x mode tasks. This results in the following entries in the job task file
(with <NAME> denoting the name of the job that includes the architecture
and compiler):

3.4 The evaluation framework 121

m v
t <NAME>-v
e <NAME>-v
m x
t <NAME>-x
e <NAME>-x

• Finally, one master job task file is generated for the architecture simply
including all job task files for the different compilers.

Table 3.7 shows all parameters permissible inside a valid input file for genJobs.py.
Note that the syntax rules are identical to those of the regular task files, see
Section 3.4.1.

Parameter Needed? Default Purpose
_archname yes — Displayed name of the architecture.
_arch yes — IeeeCC754++ architecture name.
_compilers yes — List of compilers.
_fpu no main List of FPUs.
_cores no 1 Number of cores for the build step.
_bits no — 32 bit, 64 bit, or native build.
_cflags no — C compiler flags.
_cppflags no — Preprocessor flags.
_cxxflags no — C++ compiler flags
_ldflags no — Linker flags
_libs no — Library flags.
_env no — List of environment scripts.
_envtemplate no (*) Template for the naming of environment

scripts.
_mod no — List of environment modules.
_modtemplate no (*) Template for the naming of environment

modules.
_buildargs no — Additional switches passed to configure.
_testargs no — Additional switches passed to

IeeeCC754++.
_batch no — Batch system used for job submission.
_execprefix no — Execution prefix, e. g. mpiexec call.
_mode no main Build mode (see compile task files).
_testsets no t1s, t1d List of testsets to be used.
_testsetstemplate no [t] Template for the naming of testset files.
_evalfunc no — Evaluation function.

Table 3.7: Parameters for genJobs.py input files.

122 IeeeCC754++

_arch denotes the architecture as used in IeeeCC754++, e. g. default or x86.
However, since it is possible to have multiple input files for one architecture as
discussed above and the task file names include the name of the architecture,
the parameter _archname is provided which sets the displayed architecture name,
i. e. it affects only the naming of the task files. As an example, when the x86
architecture should be tested with SSE and AVX FPUs (whose instructions can not
be built at the same time), one input file could use _archname = x86-sse and the
other _archname = x86-avx, while both input files would include _arch = x86 so
IeeeCC754++ knows which architecture source tree should be used.

Most other parameters should be self-explanatory since their meaning is
identical to their equivalents in the corresponding task files, but the testset and
environment script handling requires further explanation. _testsets contains
a list of testsets that will be used as testset parameters during IeeeCC754++
execution. The given values are then applied to a testset name template whose
default is [t], i. e. [t] is replaced by one entry of the testset list. In the default
configuration, this results in the testsets t1s and t1d to be used (cf. Table 3.7). If a
different naming scheme should be used, it can be specified via _testsetstemplate.
This parameter must include [t] which will be replaced with the entries in
testsets. In the default setting, the names of the testsets are taken “as is”, i. e.
“_testsetstemplate = [t]”. The default behaviour could also be achieved by
setting “_testsetstemplate = t1[t]” and “_testsets = s d”.

The approach taken to name the environment scripts is similar in the regard
that if _envtemplate is not empty, the current compiler is substituted in this
string, i. e. an entry for an environment script “ENV = switchcc [c]” is generated
(with [c] being replaced by the current compiler). For every entry <MYENV> in
_env, an additional line “ENV = <MYENV>” is generated. This means that when only
the entries for environment files given in _env should be used (or no environment
scripts at all), the environment template must explicitly be cleared by specifying
“_envtemplate =” in the input file. Finally, if neither _env nor _envtemplate are
given, only the default entry “ENV = switchcc [c]” is added to compile and test
task files.

For finer grained control over the naming scheme in _envtemplate, the three
variables shown in Table 3.8 are substituted. Note that we assume that the
compiler is given in the form “[c] = [cn]-[cv]”, with everything before the last
“-” being the compiler name and everything after that the compiler version.

Parameter Substitution
[c] Full compiler name.
[cn] Short compiler name.
[cv] Compiler version.

Table 3.8: Parameters substituted in environment and module templates.

3.4 The evaluation framework 123

The same logic in the generation of environment script entries also applies to
environment modules, the names of the corresponding input parameters being
_mod and _modtemplate. By default, genJobs.py generates only one environment
script entry “ENV = switchcc [c]”, see above. If the compiler should be loaded
via an environment module, specify a corresponding template via _modtemplate
or set “_modtemplate = default” to use the default template. This setting
causes a line “MODULE = compiler/[cn]/[cv]” to be written. Additional mod-
ules should be specified via _mod. If only a module entry should be used, set
_modtemplate to an appropriate value and explicitly disable environment scripts
by using “_envtemplate =”.

The logic behind choosing environment scripts and modules can be summarised
as follows:

• Only default environment script: No settings needed.

• Environment script with non-standard naming: Specify _envtemplate.

• Additional environment scripts: Specify in _env.

• Additional environment modules: Specify in _mod.

• Environment module to load compiler settings: Set “_modtemplate =
default” (or explicitly set _modtemplate to desired template scheme).

• Only environment module for compiler: Set _modtemplate as described
before and disable environment scripts by adding a line “_envtemplate =”.

updateJobs.sh

The script updateJobs.sh is a more specialised tool that searches input files for
genJobs.py in a specific location and calls genJobs.py for every input file that
was found. Its usage is as follows:

[eval]> ./updateJobs.sh --help
Takes all files in host/arch/<HOST>/*.in and uses
genJobs.py to create task files in eval/<TARGETDIR>.

Usage is: updateJobs.sh [-d] <HOST> [<TARGETDIR>]
When -d is given, delete all files in <TARGETDIR>.
Default target path is current dir.

Listing 3.35: Output of updateJobs.sh -help

As described in Listing 3.35, the input files must have the file ending .in and
be located in the directory host/arch/<HOST>/ inside the IeeeCC754++ source
tree, with <HOST> being the only mandatory parameter. If <TARGETDIR> is not
given, the task files are created in the current directory, otherwise the specified

124 IeeeCC754++

directory is used for the output files. In order to clean up the <TARGERTDIR> before
creating new files, the switch -d can be used.

Since specifying correct parameters is important to avoid deleting or overwriting
files that should be kept, updateJobs.sh shows the chosen settings and waits for
confirmation of the values before actually calling genJobs.py or deleting all files
in the target directory. After this confirmation, updateJobs.sh changes into the
target directory and passes every file with ending .in inside host/arch/<HOST>/
to genJobs.py. The latter then creates the desired task files inside that target
directory.

For each input file, a master job task file called <_archname>.job is generated
inside the target directory. To initiate an evaluation framework run for this
architecture including all sub tasks (compile, test, and eval tasks), this file must
be passed to job.py as follows:

> python job.py <TARGETDIR>/<_archname>.job

startTests.sh

The script startTests.sh takes the automation of evaluation framework runs one
step further by providing a one-stop solution to execute test runs for all known
architectures and to (re-)generate the corresponding task files. It keeps all task
files in an appropriate subdirectory, and it collects the output of the evaluation
framework (which is written onto the console by default) into separate log files
for each architecture. Furthermore, the most relevant command line options that
influence an evaluation framework run are mirrored from job.py and can therefore
be used as parameters for startTests.sh.

startTests.sh needs some basic settings which are set either via environment
variables or via settings in an environment script called mytests.local. The
preferred method is via mytests.local which is imported at the beginning of
a startTests.sh execution. If this file cannot be found, the script uses the
corresponding settings from the environment and quits if not all three needed
variables are set. Listing 3.36 shows the variables that need to be set in an example
mytests.local file on a host testhost. The corresponding task and log files are
kept in the directory testdir (via ARCH), and the evaluation framework will be run
for the architectures default, x86, and x86-avx. Note that these are architectures
in the sense of <_archname>, not in the sense of architecture implementations
inside IeeeCC754++.

local file that collects available tests for the current host/arch

HOST="testhost"
MYTESTS="default x86 x86-avx"
ARCH="testdir"

Listing 3.36: Example of a mytests.local file.

3.4 The evaluation framework 125

In order to explain the features supported by startTests.sh, we start by
discussing its syntax:

[eval]> ./startTests.sh --help
Importing default arch/tests from mytests.local.
Usage is: startTests.sh [OPTS] [TEST [...]]
Usage is: startTests.sh --refresh
Usage is: startTests.sh --save
Usage is: startTests.sh --list
Usage is: startTests.sh --help

--refresh Update arch dependent files.
--save Save log files to log/YYYYMMDD_HHMMSS.
--list Lists supported tests.
--help Shows this message.

[OPTS] can be one of
-c Test in classic mode.
-x Test in verbose mode, ignoring exceptions
-s Show output of subprocesses.
-i Show information about IeeeCC754++ executables.
-d <LEVEL> Use debug level <LEVEL> (0-5).
-v Use "very_detailed" eval function and use -i.

Listing 3.37: Output of startTests.sh -help

If called without parameters, all tests defined in the variable MYTESTS are
executed one after the other. Single tests out of these can be performed by simply
specifying their names on the command line. A list of the available tests can
be obtained by using the parameter --list as shown in Listing 3.38 for the
mytests.local file in Listing 3.36.

[eval]> ./startTests.sh --list
Importing default arch/tests from mytests.local.
Supported tests: default x86 x86-avx

Listing 3.38: Output of startTests.sh -list

The following switches are mirrored from job.py in order to influence how the
evaluation framework performs during the building, testing, and evaluation tasks:

• -c/-x: By default, the evaluation framework employs the verbose mode
as default testing mode. Similar to job.py’s -m switch, -x and -c can be
used to change the default testing mode to verbose mode without regarding
exceptions (-x) or classic mode (-c). For a more detailed discussion of how
the testing mode can be influenced, see Section 3.4.1.

• -s: If the output of the subprocesses started by the evaluation framework
should be further analysed, especially the output of the configuration and
execution stages, it can be written to the log files. This behaviour is enabled
by the switch -s.

126 IeeeCC754++

• -i: This switch enables the execution of an information script in the testing
stage of the evaluation framework that prints information about the built
IeeeCC754++ executable into the log files.

• -d: If an evaluation framework run cannot be successfully finished and the
log files do not contain enough information about the problem, or if an error
inside the evaluation framework is suspected, the debug level can be raised,
resulting in significantly more detailed output on the log files.

• -v: The switch -v does not switch the evaluation framework to verbose
mode (as could be surmised from -x/-c), but enables the evaluation function
very_detailed and switches on the option -i (see above). It serves as a
means to quickly raise the verbosity of the evaluation framework analysis
to a very detailed level, allowing for a deeper inspection without having to
change task files.

For detailed information about the corresponding job.py switches and its default
behaviour, see Section 3.4.1.

checkErrors.sh

When a large number of evaluation framework runs is performed via start-
Tests.sh, it can be quite cumbersome to manually analyse the resulting logfiles
and verify that the test runs were executed successfully. In order to enable a
quick overview of this more technical side, the script checkErrors.sh searches
the generated log files for errors and warnings indicating problems during the
execution of the test runs.

As the script is tailored especially towards working together with startTest.sh,
it relies on the same basic setup: It looks for the environment variable ARCH in the
file mytests.local (if it is located in the current directory) or in the environment
and searches for all occurrences of the words “ERROR”, “WARNING”, and a few more
in all log files in ARCH, i. e. in ARCH/*.log.

If the switch -o is supplied, checkErrors.sh opens the log files in an editor for
further analysis. The default setting for this editor is vi, but it can be changed
by setting an appropiate value for the environment variable IEEECC_EDITOR such
as less, emacs, or any other viewer/editor that accepts the file to be opened as
the first command line parameter.

IeeeCC754++LogViewer

Since checkErrors.sh’s focus is mainly the retrieval of a quick overview of errors
that might have happened during execution of the evaluation framework, such
as tests not able to be compiled or files not found, it is not an ideal tool to
analyse the resulting log files in deeper detail. IeeeCC754++ provides a much
more advanced application for the analysis of evaluation framework log files

3.4 The evaluation framework 127

called IeeeCC754++LogViewer. It is written in Python2 with the toolkit wxPython,
version 2.8, and is located in the tools/ subdirectory of the IeeeCC754++ source
tree. IeeeCC754++LogViewer retrieves the environment variable ARCH either from
mytest.local or from the environment and looks for all log files located inside this
directory, similar to checkErrors.sh. Every log file is then parsed for .log and
.csv files created during the evaluation framework execution, i. e. for IeeeCC754++
output files, evaluation function reports, and the scanned output files in csv
format. Afterwards, the main application is started, and all mentioned files can
conveniently be viewed inside IeeeCC754++LogViewer.

Figure 3.4: IeeeCC754++LogViewer main window.

Figure 3.4 shows the main window after the start of the viewer for the example
tests shown in Listing 3.36. On the left, a tree-like structure shows the detected
tests (or, more precisely, the detected log files generated by an evaluation framework
run started via startTests.sh). Clicking the “>” sign expands the tree to show
all files generated by the corresponding test run that generated the respective log
file. Double clicking one of the entries in the tree displays the contents of that file
in the right panel.

The files generated during a test run can be viewed inside that panel; navigating
through these requires use of a mouse, either via the scroll wheel or the scroll
bar on the right. For deeper inspection, all log files can be opened in an external
editor by right-clicking on the file name and selecting “Open externally”. This
menu also offers a few further options: Choosing “Copy” puts the full path of the
file into the clipboard, while “To Slot 1” and “To Slot 2” copy these file names
into the corresponding slots in the lower left corner. Finally, “Display” has the
same effect as double-clicking the file name, i. e. the file is displayed in the right

128 IeeeCC754++

panel.
For the display and navigation of the “main” log files, an extensive set of

keyboard shortcuts and further tools exist for jumping to the next marker which
consist of the separators inserted by the evaluation functions, the section separators
inserted via delimiter tasks, and the files generated by the evaluation framework.
All shortcuts can be viewed by selecting the help dialog either via the “Help”
item in the “Help” menu or via the shortcut “Ctrl + H”. The generated files are
displayed in blue and can be right-clicked, opening a context menu with basically
the same options as discussed above.

The two slots in the lower left of the main window serve to collect the names
of files which should be compared via an external compare/diff program such as
Meld [Wil12], Diffuse [MM13], Kompare [FBS17], or Kdiff3 [Eib14]. Clicking on
one of these slots opens a context menu with entries for comparing the two files
(i. e. opening the files in the external diff program), opening the file in an external
editor, pasting the file name into the clipboard, or clearing the corresponding slot.

Finally, the default choices for the font used in IeeeCC754++LogViewer as well
as the external programs for viewing and comparing files can be changed via a
settings file called logviewer.conf that must be located in the same directory
as the IeeeCC754++LogViewer application itself. Listing 3.39 shows the allowed
values together with the default values (which can be omitted, since they are built
into IeeeCC754++LogViewer).

set font
FONT = Adobe Courier
SIZE = 8

set preferred editor and diff applications
EDITOR = kwrite
DIFF = meld

Listing 3.39: logviewer.conf

3.5 The optimisation framework
The choice of compiler crucially influences the performance of a user application
in a number of areas, especially the choice of execution units, the runtime of the
application, and its numerical IEEE-conformity. All of these parameters can be
varied and controlled by switches supplied by the compiler. Unfortunately, there is
an inherent tradeoff between faster execution and supporting full IEEE-conformity:
For instance, support for (floating-point) exception handling involves checking
for the occurrence of situations where exception flags should be raised. and thus
imposes extra instructions to be performed. In some floating-point environments,
support of subnormal numbers significantly slows down floating-point calculations

3.5 The optimisation framework 129

(cf. [MG14; HE02]). Therefore, disabling subnormal support might tremendously
speed up the application.

The optimisation framework depicts a comprehensive attempt towards provid-
ing a tool for the evaluation of the influence of compiler options on both application
performance (i. e. runtime) and floating-point conformity (i. e. IEEE-conformity).
This is achieved by extending the evaluation framework with an optimisation task
that executes all necessary IeeeCC754++ runs from a single opt task file.

The rationale behind the optimisation framework is the following: Given a
number of compiler options (specified in a hierarchical manner, see next section),
it generates appropriate compile, test, and eval tasks. The eval tasks execute
a specialised evaluation function that retrieves the results of the IeeeCC754++
run and writes them into an optimisation database. After all tasks have been
processed, one or more fitness functions are applied to the results in the database,
and a “best” set of compiler options can be chosen for the user application.

While IeeeCC754++ can be used to extract a user environment’s floating-point
conformity with regard to the chosen compiler and compiler options, it cannot
be used to benchmark the target application’s runtime performance. To cater
for this need, the optimisation framework features facilities towards building the
target application with the specified compiler settings and executing the resulting
program. For maximum flexibility, the runtime can be recorded by the application
itself (or some wrapper script) and be read from the application’s output, or
it can be measured by IeeeCC754++. Furthermore, it is possible to repeat the
measurement process a few times in order to gain better statistics.

The process of setting up and executing an optimisation framework run is
explained in Section 3.5.1. Afterwards, we explain how the optimisation framework
can be extended with custom fitness functions, and finally, we discuss in detail
the timing facilities and procedure used to measure application performance.

In order to use the optimisation framework, it is important to understand its
limitations. These arise from IeeeCC754++’s approach to test IEEE-conformity
itself: IeeeCC754++ can only guarantee that (in case no errors are returned for
a given testset) the tested operations are implemented in a manner conforming
to IEEE 754-2008. This has two consequences: First, conformity can only be
guaranteed for the specific test vectors executed during the testing phase, i. e.
it is still possible that an operation will return e. g. an incorrectly rounded
significand for a given combination of operands. Second, the evaluation of the
effect of reordering operations (or whole loops) on the accuracy of an algorithm
is out of IeeeCC754++’s scope. This means that, even when the floating-point
environment is fully IEEE-conforming, the numerical results of an algorithm
can change dramatically, depending on the environment, the algorithm and its
stability, and the input data. An optimisation framework run (or, more precisely,
an IeeeCC754++ run) can never ensure optimal numerical results in some floating-
point environment. However, it can assure the researcher that the environment’s
underlying floating-point implementation is performed in a thorough manner or

130 IeeeCC754++

raise suspicions if too many errors are returned, and that under the specified
compiler options relevant floating-point properties are not destroyed.

3.5.1 Using the optimisation framework
Since the optimisation framework is an extension of the evaluation framework, it
shares the same configuration and execution philosophy. As a consequence, one
run of the optimisation framework equals the execution of an opt task configured
by an opt task file. This opt task can either be executed inside an evaluation
framework run, or it can be executed standalone via opt.py.

When the optimisation framework is executed, it reads the given opt task file
and generates compile, test, and eval tasks for every combination of compiler
options. For performance reasons the optimisation framework does not generate
task files, but uses in-memory data structures describing the respective tasks. This
avoids the unnecessary creation of a huge number of task files. After executing the
tasks for one combination, the target application is compiled with these compiler
settings and executed a few times, and its runtime is recorded. Finally, the results
need to be rated according to some criteria in order to choose an optimal set of
compiler options. To achieve this, the optimisation framework provides fitness
functions which assign each result a fitness value and sort the results according to
the calculated values.

All parameters valid inside an opt task file are listed in Table 3.9, together
with default values.

The meaning of most values is identical to those in the evaluation framework,
see Section 3.4. In the following, we discuss the other parameters in greater detail:

• The optimisation framework allows for the evaluation of more than one
compiler, specified via COMPILERS. Note however that all compilers listed here
must accept all of the compiler switches given in the respective parameters.

• Since one result (or rather, one set of results) is needed for each set of
compiler options in order to evaluate the floating-point conformity of the
current floating-point environment, only one testset is allowed in TESTSET.
This testset should comprise a sufficiently large selection of test vectors to
enable a comprehensive evaluation of the environment’s IEEE-conformity,
such as the t1 or t3 testsets (cf. Listing 4.6).

• The compiler options that should be regarded during an optimisation frame-
work run are specified in a hierarchical manner. This is due to the fact
that some compiler options are mutually exclusive (such as -O1, -O2, etc. in
gcc) and should not be combined. The optimisation framework allows for a
maximum of three levels with every option on a lower level generating com-
binations with the options from the next level. The settings in Listing 3.40
result in the 8 combinations given in Listing 3.41.

3.5 The optimisation framework 131

Parameter Mandatory? Default Purpose
ARCH yes — IeeeCC754++ architecture.
ARCHNAME no ARCH Displayed architecture name.
COMPILERS yes — List of compilers.
MODULE no — Environment module.
FPU no main List of FPUs.
TESTSET yes — Testset.
LEVEL1 no — List of compiler options, level 1.
LEVEL2 no — List of compiler options, level 2.
LEVEL3 no — List of compiler options, level 3.
COMBINATIONSLEVEL no 0 How to apply combinations.
APP_BUILD no (*) Architecture.
APP_EXEC no (*) Architecture.
APP_REPEATS no 1 Architecture.
APP_TIMING no internal Architecture.
USE_EXTERNAL_APP no yes Architecture.
FITNESS no success_rate Architecture.
EVALFUNCTION no opteval Architecture.
CFLAGS no — Flags for the C-compiler.
CPPFLAGS no — Flags for the preprocessor.
CXXFLAGS no — Flags for the C++-compiler.
LDFLAGS no — Flags for the linker.
LIBS no — Extra libraries.
ARGS no — Extra configure arguments.
CORES no 1 Number of parallel builds.
MODE no main Build mode.
BITS no — 32 or 64 bit build?

Table 3.9: Compile task file parameters.

LEVEL1 = -a
LEVEL2 = -b1 -b2
LEVEL3 = -c1 -c2
COMBINATIONSLEVEL = 0

Listing 3.40: Example settings for compiler options.

[no options]
-a
-a -b1
-a -b1 -c1
-a -b1 -c2
-a -b2
-a -b2 -c1

132 IeeeCC754++

-a -b2 -c2

Listing 3.41: Compiler option combinations resulting from Listing 3.40.

Note that not all levels need to be defined, but if one level stays empty,
the following levels are ignored. This means, if LEVEL1 is empty, only one
combination is tested, namely the one with empty options.
To provide for more flexibility in the generation of compiler option com-
binations, it is possible to test all combinations of options on levels 2
and 3. This behaviour is controlled by COMBINATIONSLEVEL according to
Table 3.10. Listing 3.42 shows a variation of the example in Listing 3.40
with COMBINATIONSLEVEL set to 1, resulting in the combinations shown in
Listing 3.43.

Value Meaning
0 No combinations used (default behaviour).
1 Combinations used on the last level (either 2 or 3).
2 Combinations used from level 2 on, i. e. on levels 2 and 3).
3 Combinations used only on level 3.

Table 3.10: Possible values for COMBINATIONSLEVEL.

LEVEL1 = -a
LEVEL2 = -b1 -b2
LEVEL3 = -c1 -c2
COMBINATIONSLEVEL = 1

Listing 3.42: Example settings for compiler options.

[no options]
-a
-a -b1
-a -b1 -c1
-a -b1 -c2
-a -b1 -c1 -c2
-a -b2
-a -b2 -c1
-a -b2 -c2
-a -b2 -c1 -c2

Listing 3.43: Compiler option combinations resulting from Listing 3.42.

• In order to measure the runtime of the target application, the optimisation
framework supports a number of variables for the specification of the ne-
cessary settings: APP_BUILD denotes a build script that controls the build
behaviour of the target application, whereas APP_EXEC specifies an execution

3.5 The optimisation framework 133

script. APP_REPEATS controls how often the APP_EXEC script is repeated,
and APP_TIMING can be set to either “internal” or “external” for different
timing methods (runtime either measured by IeeeCC754++ or supplied by
APP_EXEC). Finally, setting USE_EXTERNAL_APP to “no” can be used to disable
the runtime measurement altogether. Details on these variables and the
measurement procedure can be found in Section 3.5.3.

• Via FITNESS, it is possible to specify one or more fitness functions which will
be applied to the results database at the end of an optimisation framework
run. The fitness functions accompanying the optimisation framework are
discussed in the next section, together with the process of extending the
optimisation framework with custom fitness functions.

• Finally, EVALFUNCTION provides the possibility of specifying a custom evalu-
ation function to be used inside the optimisation framework. However, this
option should be used with extra care, since the default evaluation function
opteval is specifically designed to extract results from IeeeCC754++ log files
in a manner that these can be fed into the results database. Specifying
a different evaluation function might break the optimisation framework’s
rating process. This parameter should therefore generally be avoided.

With these parameters, a (standalone) optimisation framework run can be
started with the syntax shown in Listing 3.44.

> python opt.py --help
Looking for SQLite and pySQLite.
Try system install (sqlite3)... found SQLite v3.7.17 and pySQLite v2.6.0.
opt.py: IeeeCC754++ compiler options optimiser

Usage is:
opt.py [-d <DEBUGLEVEL>] [-q] <FILE>
opt.py -l|--list
opt.py -h|--help

where
-d <DEBUGLEVEL> sets the level of debugging output:

-1 equivalent to -q [quiet]
0 normal
1 show "file found" messages
2 show path information
3 show info about tasks/actions etc.
4 full output: e.g. show content of generated scripts

-q quiet: suppress almost all opt.py output
-l list all known fitness functions
-h this message
<FILE> name an .opt task file whose contents will be executed

Listing 3.44: Output of opt.py -help

The only mandatory parameter is the opt task file <FILE> containing the
settings for the current optimisation framework run. The parameters -d and

134 IeeeCC754++

-q work exactly as in the evaluation framework (cf. Listing 3.16). Furthermore,
-l shows a list of available fitness functions in a manner similar to the list of
evaluation functions emitted by eval.py -l (see Listing 3.23).

3.5.2 Fitness modules and adding fitness functions
Similar to analysis modules in the evaluation framework (cf. Section 3.4.2), every
fitness function known to the optimisation framework is contained in a fitness
module. The process of selecting a “best” set of compiler options according to
some criteria works as follows: First, the optimisation framework executes all
necessary compile, test, and eval tasks, filling the optimisation database with
the specially designed evaluation function opteval during execution of the eval
tasks. opteval retrieves the results of an IeeeCC754++ run, counts successes and
errors, and pushes the following values into the optimisation database: overall
count of test vectors, success and error counts (i. e. number of test vectors which
returned a success or error), success and error rates, and success and error rates
without regarding exceptions (cf. verbose mode -vix, Section 3.3.2). Additionally,
the (average) runtime of the external application is recorded in the database.
After all tests have been executed, all specified fitness modules are applied, i. e.
the fitness function inside the fitness modules are called with the optimisation
database as the only parameter. The fitness functions then evaluate all entries
in the database, assign a fitness value according to the criteria implemented in
the fitness function, and push that fitness value into the database. Finally, the
optimisation framework sorts the optimisation database according to these fitness
values and prints the resulting output table (higher fitness value meaning “better”
set of compiler options according to the currently applied fitness function).

In this section, we describe the fitness modules contained in the optimisation
framework. When the supplied fitness functions and their contained selection
criteria are not sufficient to choose a “best” set of compiler options, it is possible
to extend the optimisation framework with custom fitness functions. This process
is also described later in this section.

An overview of the pre-installed fitness functions can be retrieved with the
--list parameter of opt.py, see Listing 3.44; example output can be found in
Listing 3.45. Figure 3.5 shows the files that implement the different evaluation func-
tions as Python modules: __init__.py and list_fitnessfuncs.py initialise the
fitnessfunc module and implement the listing functionality. fitnesstools.py
provides common functionality able to be used in the fitness modules. Finally,
all other files are named after a fitness function and contain the corresponding
implementation, e. g. the file runtime.py contains the runtime fitness function.

python opt.py --list
Looking for SQLite and pySQLite.
Try system install (sqlite3)... found SQLite v3.7.17 and pySQLite v2.6.0.
opt.py: IeeeCC754++ compiler options optimiser

3.5 The optimisation framework 135

Known fitness functions:

error_rate => error_rate fitness function v0.1
noexp_runtime => success (without exceptions) + runtime fitness function v0.1
runtime => runtime fitness function v0.1
runtime_noexp => runtime + success (without exceptions) fitness function v0.1
runtime_success => runtime + success fitness function v0.1
success_rate => sucess_rate fitness function v0.1
success_runtime => success + runtime fitness function v0.1
weighted => weighted fitness function v0.1

Listing 3.45: Output of opt.py -list

eval/
fitnessfunc/

__init__.py
error_rate.py
example.py
fitnesstools.py
list_fitnessfuncs.py
noexp_runtime.py
runtime.py
runtime_noexp.py
runtime_success.py
success_rate.py
success_runtime.py
weighted.py

Figure 3.5: Code structure for the fitness modules inside the optimisation frame-
work.

Output of results

After applying a fitness function to the optimisation database at the end of an
optimisation framework run, the resulting table is sorted according to the fitness
value and printed onto the console. A plain text format is used for easy readability.
The values displayed and their meaning are shown in Table 3.11.

An example is shown in Listing 3.47 for two compilers, two FPUs, and only
one compiler option (to keep the output short). Note that in this example, no
runtime information has been recorded. The exact settings used in the example
are shown in Listing 3.46.

Available fitness functions

The supplied fitness functions focus mainly on two parameters: the application’s
runtime (where shorter runtime means better performance, which is usually

136 IeeeCC754++

Parameter Data type Purpose
name string Unique name of current set of compiler options.
successrate float Success rate in percent.
errorrate float Error rate in percent.
noexp_rate float Success rate without regarding errors only related to

exceptions.
runtime float Runtime of test application.
overall int Number of test vectors.
success int Number of test vectors without errors.
errors int Number of test vectors that returned errors.
noexp int Number of test vectors without errors, not regarding

exceptions.
fitness float Fitness values computed by select fitness module.
arch string Architecture (ARCHNAME, see Table 3.9).
fpu string FPU.
compiler string Compiler.
compiler options string Current compiler options.

Table 3.11: Entries in output table.

ARCH = x86
COMPILERS = gcc-4.8
MODULE = compiler/[cn]/[cv]
FPU = main x87
TESTSET = t3d
LEVEL1 = -O3
USE_EXTERNAL_APP = no
FITNESS = success_rate

Listing 3.46: Opt task file example_short.opt.

highly desirable), and error or success rates with regard to floating-point accuracy
(or, more specifically, IEEE-conformity). In order to not punish floating-point
environments that do not support floating-point exceptions and to provide a means
of ignoring exceptions, most modules exist in a variant where all errors reported
by IeeeCC754++ are counted as errors, and a second one where only errors related
to the binary representation of the returned floating-point number are regarded.

The examples for the different fitness modules shown in this section were
generated on an x86 platform with the settings shown in Listing 3.48. sixloops
was used as external application, see Section 3.5.3. For detailed results for selected
user environments, see Section 6.9.

Note that selecting a “best” set of compiler options for a specific target
application is not a trivial task: In most cases, maximum performance is desired,

3.5 The optimisation framework 137

success_rate

x86_gcc48_main_set00001 99.86 0.14 100.00 0.00 16661 16638 23
16661 | 99.86 [x86 main gcc-4.8]

x86_gcc48_main_set00002 98.75 1.25 100.00 0.00 16661 16452 209
16661 | 98.75 [x86 main gcc-4.8] -O3

x86_gcc48_x87_set00003 97.51 2.49 98.72 0.00 15483 15098 385
15285 | 97.51 [x86 x87 gcc-4.8]

x86_gcc48_x87_set00004 97.51 2.49 98.72 0.00 15483 15098 385
15285 | 97.51 [x86 x87 gcc-4.8] -O3

Listing 3.47: Output of opt.py example_short.opt.

ARCH = x86
COMPILERS = gcc-4.7
MODULE = compiler/[cn]/[cv]
FPU = main
TESTSET = t3d
LEVEL1 = -O3
LEVEL2 = -funroll-loops -funsafe-math-optimizations
LEVEL3 =
COMBINATIONSLEVEL = 1
APP_BUILD = sixloops_build.sh
APP_EXEC = sixloops_execute.sh
APP_REPEATS = 3
APP_TIMING = external
FITNESS = runtime success_rate error_rate runtime_success runtime_noexp

success_runtime noexp_runtime weighted

Listing 3.48: Example task file example.opt.

i. e. shorter runtimes would be a strong criterion in the selection step. However,
one has to carefully weigh the consequences and the severity of accepting too many
floating-point errors in the application: Consider e. g. a floating-point environment
where handling subnormal numbers imposes an increase in processor instructions
that must be executed for every floating-point computation, and a compiler that
provides a switch for turning off subnormal support. If using that compiler switch,
the performance of the program might increase dramatically from a floating-point
throughput point of view, but being much more inaccurate with numbers close
to zero might either destroy results or lead to higher iteration counts in iterative
numerical algorithms. Therefore, using numerical quality (i. e. high success rates)
as the dominant criterion would in most cases lead to better numerical results.

runtime The runtime fitness function sorts the entries in the optimisation data-
base according to their runtime. No further sorting criteria are used. The
corresponding example is shown in Listing 3.49.

138 IeeeCC754++

runtime

x86_gcc47_main_set00008 73.86 26.14 78.42 15.33 16661 12305 4356
13065 | 265.67 [x86 main gcc-4.7] -O3 -funroll-loops
-funsafe-math-optimizations

x86_gcc47_main_set00006 98.75 1.25 100.00 15.41 16661 16452 209
16661 | 265.59 [x86 main gcc-4.7] -O3 -funroll-loops

x86_gcc47_main_set00005 98.75 1.25 100.00 16.53 16661 16452 209
16661 | 264.47 [x86 main gcc-4.7] -O3

x86_gcc47_main_set00007 73.86 26.14 78.42 16.62 16661 12305 4356
13065 | 264.38 [x86 main gcc-4.7] -O3 -funsafe-math-optimizations

x86_gcc47_main_set00001 99.86 0.14 100.00 181.45 16661 16638 23
16661 | 99.55 [x86 main gcc-4.7]

x86_gcc47_main_set00002 99.86 0.14 100.00 181.48 16661 16638 23
16661 | 99.52 [x86 main gcc-4.7] -funroll-loops

x86_gcc47_main_set00003 73.31 26.69 77.27 181.70 16661 12215 4446
12874 | 99.30 [x86 main gcc-4.7] -funsafe-math-optimizations

x86_gcc47_main_set00004 73.31 26.69 77.27 181.95 16661 12215 4446
12874 | 99.05 [x86 main gcc-4.7] -funroll-loops -funsafe-math-optimizations

Listing 3.49: Output of opt.py example.opt with runtime fitness function.

success_rate Another pre-supplied fitness function that evaluates the generated
results according to only a single criterion is called success_rate. This function
serves as an example how to select the “best” combination of compiler options
with regard to only one criterion already contained in the optimisation database.
Since the success rate will usually be identical for typical sets of compiler options,
due to the fact that most compiler options do not change floating-point semantics,
this fitness function might not yield meaningful results in most cases. Listing 3.50
shows example output.

success_rate

x86_gcc47_main_set00001 99.86 0.14 100.00 181.45 16661 16638 23
16661 | 99.86 [x86 main gcc-4.7]

x86_gcc47_main_set00002 99.86 0.14 100.00 181.48 16661 16638 23
16661 | 99.86 [x86 main gcc-4.7] -funroll-loops

x86_gcc47_main_set00005 98.75 1.25 100.00 16.53 16661 16452 209
16661 | 98.75 [x86 main gcc-4.7] -O3

x86_gcc47_main_set00006 98.75 1.25 100.00 15.41 16661 16452 209
16661 | 98.75 [x86 main gcc-4.7] -O3 -funroll-loops

x86_gcc47_main_set00007 73.86 26.14 78.42 16.62 16661 12305 4356
13065 | 73.86 [x86 main gcc-4.7] -O3 -funsafe-math-optimizations

x86_gcc47_main_set00008 73.86 26.14 78.42 15.33 16661 12305 4356
13065 | 73.86 [x86 main gcc-4.7] -O3 -funroll-loops
-funsafe-math-optimizations

x86_gcc47_main_set00003 73.31 26.69 77.27 181.70 16661 12215 4446
12874 | 73.31 [x86 main gcc-4.7] -funsafe-math-optimizations

x86_gcc47_main_set00004 73.31 26.69 77.27 181.95 16661 12215 4446
12874 | 73.31 [x86 main gcc-4.7] -funroll-loops -funsafe-math-optimizations

Listing 3.50: Example output with success_rate fitness function.

3.5 The optimisation framework 139

error_rate The error_rate fitness function works exactly like success_rate,
but uses the error rate instead of the success rate as the selection criterion. Since
lower error rates are regarded as “better” than high error rates, the resulting
output is always identical to that generated by the success_rate function.

runtime_success Even when the target application’s runtime is chosen as dom-
inant selection criterion (which in general is not a good idea, see above), it makes
sense to use the quality of floating-point results as a secondary criterion.The eval-
uation function runtime_success implements this idea: It sorts the optimisation
database according to runtime, and in case of identical runtimes favours the entry
with higher success rate. Listing 3.51 demonstrates the effect on the example from
Listing 3.48.

runtime_success

x86_gcc47_main_set00008 73.86 26.14 78.42 15.33 16661 12305 4356
13065 | 999.99 [x86 main gcc-4.7] -O3 -funroll-loops
-funsafe-math-optimizations

x86_gcc47_main_set00006 98.75 1.25 100.00 15.41 16661 16452 209
16661 | 999.98 [x86 main gcc-4.7] -O3 -funroll-loops

x86_gcc47_main_set00005 98.75 1.25 100.00 16.53 16661 16452 209
16661 | 999.97 [x86 main gcc-4.7] -O3

x86_gcc47_main_set00007 73.86 26.14 78.42 16.62 16661 12305 4356
13065 | 999.96 [x86 main gcc-4.7] -O3 -funsafe-math-optimizations

x86_gcc47_main_set00001 99.86 0.14 100.00 181.45 16661 16638 23
16661 | 999.95 [x86 main gcc-4.7]

x86_gcc47_main_set00002 99.86 0.14 100.00 181.48 16661 16638 23
16661 | 999.94 [x86 main gcc-4.7] -funroll-loops

x86_gcc47_main_set00003 73.31 26.69 77.27 181.70 16661 12215 4446
12874 | 999.93 [x86 main gcc-4.7] -funsafe-math-optimizations

x86_gcc47_main_set00004 73.31 26.69 77.27 181.95 16661 12215 4446
12874 | 999.92 [x86 main gcc-4.7] -funroll-loops -funsafe-math-optimizations

Listing 3.51: Example output with runtime_success fitness function.

Note that using the runtime as returned by the optimisation framework (even
when averaged over some runs) does not constitute a particularly meaningful
criterion when used as primary sorting parameter in conjunction with secondary
parameters: Since the returned runtimes will be identical only in very few and
highly unlikely cases, sorting according to this criterion will only consider the
secondary criteria in those rare cases. As a remedy, an algorithm for clustering
“similar” runtimes should be used as first selection criterion. However, this
approach has not been implemented in the optimisation framework in favour of
fitness functions better suited for this purpose, especially the weighted fitness
function. The runtime_success fitness function therefore serves only as a simple
implementation example.

runtime_noexp The fitness function runtime_noexp works in a manner similar
to runtime_success, i. e. it uses the runtime as primary selection criterion and
a floating-point success rate as secondary criterion. However, a test vector is

140 IeeeCC754++

counted as success when the returned result is numerically correct, i. e. when sign,
exponent, and significand have the correct value. In other words, all information
regarding exception flags is ignored. Listing 3.52 shows the corresponding example.

runtime_noexp

x86_gcc47_main_set00008 73.86 26.14 78.42 15.33 16661 12305 4356
13065 | 999.99 [x86 main gcc-4.7] -O3 -funroll-loops
-funsafe-math-optimizations

x86_gcc47_main_set00006 98.75 1.25 100.00 15.41 16661 16452 209
16661 | 999.98 [x86 main gcc-4.7] -O3 -funroll-loops

x86_gcc47_main_set00005 98.75 1.25 100.00 16.53 16661 16452 209
16661 | 999.97 [x86 main gcc-4.7] -O3

x86_gcc47_main_set00007 73.86 26.14 78.42 16.62 16661 12305 4356
13065 | 999.96 [x86 main gcc-4.7] -O3 -funsafe-math-optimizations

x86_gcc47_main_set00001 99.86 0.14 100.00 181.45 16661 16638 23
16661 | 999.95 [x86 main gcc-4.7]

x86_gcc47_main_set00002 99.86 0.14 100.00 181.48 16661 16638 23
16661 | 999.94 [x86 main gcc-4.7] -funroll-loops

x86_gcc47_main_set00003 73.31 26.69 77.27 181.70 16661 12215 4446
12874 | 999.93 [x86 main gcc-4.7] -funsafe-math-optimizations

x86_gcc47_main_set00004 73.31 26.69 77.27 181.95 16661 12215 4446
12874 | 999.92 [x86 main gcc-4.7] -funroll-loops -funsafe-math-optimizations

Listing 3.52: Example output with runtime_noexp fitness function.

success_runtime and noexp_runtime If floating-point quality (in the sense
of IEEE-conformity) is more desirable than absolutely shortest execution time,
success rates should be used as dominant criterion when choosing the “best” set
of compiler options. The optimisation framework provides two fitness functions
executing this type of selection: success_runtime and noexp_runtime, the first
using success rate as primary criterion and the second success rates without
regarding errors only related to (floating-point) exception handling. In both fitness
functions, the application’s performance is used as second criterion. Listings 3.53
and 3.54 show corresponding examples.

success_runtime

x86_gcc47_main_set00001 99.86 0.14 100.00 181.45 16661 16638 23
16661 | 999.99 [x86 main gcc-4.7]

x86_gcc47_main_set00002 99.86 0.14 100.00 181.48 16661 16638 23
16661 | 999.98 [x86 main gcc-4.7] -funroll-loops

x86_gcc47_main_set00006 98.75 1.25 100.00 15.41 16661 16452 209
16661 | 999.97 [x86 main gcc-4.7] -O3 -funroll-loops

x86_gcc47_main_set00005 98.75 1.25 100.00 16.53 16661 16452 209
16661 | 999.96 [x86 main gcc-4.7] -O3

x86_gcc47_main_set00008 73.86 26.14 78.42 15.33 16661 12305 4356
13065 | 999.95 [x86 main gcc-4.7] -O3 -funroll-loops
-funsafe-math-optimizations

x86_gcc47_main_set00007 73.86 26.14 78.42 16.62 16661 12305 4356
13065 | 999.94 [x86 main gcc-4.7] -O3 -funsafe-math-optimizations

x86_gcc47_main_set00003 73.31 26.69 77.27 181.70 16661 12215 4446
12874 | 999.93 [x86 main gcc-4.7] -funsafe-math-optimizations

3.5 The optimisation framework 141

x86_gcc47_main_set00004 73.31 26.69 77.27 181.95 16661 12215 4446
12874 | 999.92 [x86 main gcc-4.7] -funroll-loops -funsafe-math-optimizations

Listing 3.53: Example output with success_runtime fitness function.

noexp_runtime

x86_gcc47_main_set00006 98.75 1.25 100.00 15.41 16661 16452 209
16661 | 999.99 [x86 main gcc-4.7] -O3 -funroll-loops

x86_gcc47_main_set00005 98.75 1.25 100.00 16.53 16661 16452 209
16661 | 999.98 [x86 main gcc-4.7] -O3

x86_gcc47_main_set00001 99.86 0.14 100.00 181.45 16661 16638 23
16661 | 999.97 [x86 main gcc-4.7]

x86_gcc47_main_set00002 99.86 0.14 100.00 181.48 16661 16638 23
16661 | 999.96 [x86 main gcc-4.7] -funroll-loops

x86_gcc47_main_set00008 73.86 26.14 78.42 15.33 16661 12305 4356
13065 | 999.95 [x86 main gcc-4.7] -O3 -funroll-loops
-funsafe-math-optimizations

x86_gcc47_main_set00007 73.86 26.14 78.42 16.62 16661 12305 4356
13065 | 999.94 [x86 main gcc-4.7] -O3 -funsafe-math-optimizations

x86_gcc47_main_set00003 73.31 26.69 77.27 181.70 16661 12215 4446
12874 | 999.93 [x86 main gcc-4.7] -funsafe-math-optimizations

x86_gcc47_main_set00004 73.31 26.69 77.27 181.95 16661 12215 4446
12874 | 999.92 [x86 main gcc-4.7] -funroll-loops -funsafe-math-optimizations

Listing 3.54: Example output with noexp_runtime fitness function.

weighted All fitness functions presented so far share a common trait: Their
results can easily be generated by executing simple SQL statements to select and
sort the data. For a more fine-grained selection of the “best” set of compiler
options, the weighted fitness function can be used. The approach works as follows:
For every entry in the optimisation database (i. e. for every set of compiler options
and the corresponding results), four criteria are computed and normalised: the
success rate, the success rate without regarding exceptions, the runtime, and
the number of compiler options used. Each of these values is multiplied by a
corresponding weight factor, and the fitness is then computed as the sum of these
values.

With S the success rate, N the success rate without regarding exceptions,
T the runtime of the external application, O the number of compiler options,
and wX the weight factor of criterion X with wX P r0, 1s, the fitness value f is
computed as

f “ wSS ` wNN ` wT

ˆ

1´ T

Tmax

˙

` wOdO

ˆ

1´ O

Omax

˙

. (3.1)

Note that Tmax and Omax denote the maximum runtime and maximum number
of compiler options (if either of these values is 0, it is set to 1 instead) and that
dO is an additional damping factor depending on Omax. Ideally, the sum of the

142 IeeeCC754++

weights should be identical to 1. If one or more of these criteria should not be
used, the corresponding weight can be set to 0.

The use of the number of compiler options as a selection criterion demands a
short explanation: Whenever two sets of compiler options yield an identical fitness
value, i. e. they are regarded to be equally “good” under the currently selected
weight values, it is better to reach this result by applying fewer compiler options.
To prevent this criterion from being too dominant, an additional damping factor
dO is used.

Listing 3.55 shows example output for the following weights: wS “ 0.5, wN “ 0,
wT “ 0.3, wO “ 0.2, and dO “ 0.5.

weighted

x86_gcc47_main_set00006 98.75 1.25 100.00 15.41 16661 16452 209
16661 | 79.83 [x86 main gcc-4.7] -O3 -funroll-loops

x86_gcc47_main_set00005 98.75 1.25 100.00 16.53 16661 16452 209
16661 | 79.65 [x86 main gcc-4.7] -O3

x86_gcc47_main_set00007 73.86 26.14 78.42 16.62 16661 12305 4356
13065 | 67.19 [x86 main gcc-4.7] -O3 -funsafe-math-optimizations

x86_gcc47_main_set00008 73.86 26.14 78.42 15.33 16661 12305 4356
13065 | 64.40 [x86 main gcc-4.7] -O3 -funroll-loops
-funsafe-math-optimizations

x86_gcc47_main_set00001 99.86 0.14 100.00 181.45 16661 16638 23
16661 | 53.01 [x86 main gcc-4.7]

x86_gcc47_main_set00002 99.86 0.14 100.00 181.48 16661 16638 23
16661 | 53.01 [x86 main gcc-4.7] -funroll-loops

x86_gcc47_main_set00003 73.31 26.69 77.27 181.70 16661 12215 4446
12874 | 39.70 [x86 main gcc-4.7] -funsafe-math-optimizations

x86_gcc47_main_set00004 73.31 26.69 77.27 181.95 16661 12215 4446
12874 | 39.66 [x86 main gcc-4.7] -funroll-loops -funsafe-math-optimizations

Listing 3.55: Example output with weighted fitness function.

Adding custom fitness modules

The optimisation framework’s built-in fitness functions comprises a set of very
basic fitness functions, as well as a more elaborate weighted fitness function offering
a much more general selection process. For most needs, it should be sufficient to
edit this weighted fitness module implemented in fitnessfunc/weighted.py (see
Figure 3.5, page 135) and adapt the weight factors for the desired effect.

However, in case a different selection process is desired, the optimisation
framework can be easily extended by adding custom fitness modules. Since
the process is similar to adding a custom analysis module to the evaluation
framework, we refer to Section 3.4.2 for a general guideline. For details, the file
fitnessfunc/example.py which implements the example fitness function can be
used as reference. It contains a thorough description of the process of retrieving
the necessary data, computing corresponding fitness values, and pushing them
back into the optimisation database. The (heavily commented) full source code
can also be found in Appendix C.7.

3.5 The optimisation framework 143

A custom fitness module custom must be implemented conforming to the
following rules:

• The file implementing the module must be called identically to the module
name, and it must be located in eval/fitnessfunc/. In other words, the
custom module must be implemented inside eval/fitnessfunc/custom.py.

• custom.py must contain exactly two methods: version() which returns
a string containing version information, and fitness(db) which takes the
SQLite database as single parameter. The latter method should then retrieve
the contents of the optimisation database, compute a fitness value for every
entry, and push these values back into the database. For more details, cf.
example.py (see above) and the implementation files of the supplied fitness
modules in eval/fitnessfunc/.

3.5.3 Timing the effect of compiler options
In order to select a “best” set of compiler options for a given application, the
optimisation framework can be used to study the effect of compiler options on
floating-point accuracy and IEEE-conformity, and the most promising sets of
compiler options can be applied while compiling the target (user) application in
order to study the effect on application performance. However, performing this
process manually can be cumbersome. Therefore, the optimisation framework
provides facilities towards integrating the measurement of application performance
into the framework.

This integration is achieved with the following approach: For every set of
compiler options, the optimisation framework generates compile, test, and eval
tasks to build and execute IeeeCC754++ with the current compiler options and to
retrieve the results from the IeeeCC754++ run. Afterwards, the external application
is built with the current compiler options and is run a few times to gain reliable
statistics (up to 10 repeats, see below). The average of these runtimes is then
recorded into the optimisation database and passed to the fitness modules for
evaluation.

Timing approach

To retrieve the runtime of the program, two methods can be used: If APP_TIMING
is set to internal, the optimisation framework records the time between triggering
the execution of the application and the return (i. e. end) of the application
run. While this approach is simple to implement, it may not be the best way to
measure application performance, since for every execution of the application, the
time needed to initialise the application (e. g. filling a test matrix with values) is
measured together with the performance-critical parts of the application, thereby
influencing the measurement. As a remedy, APP_TIMING can be set to external. The

144 IeeeCC754++

optimisation framework then reads the output of the application and assumes that
the last non-empty line of the output contains the application runtime as a string
representation of a floating-point number. With this method, the application itself
can decide when to trigger the performance measurement to record the runtime of
performance-critical parts of the algorithm executed. In case the runtime cannot
be retrieved (e. g. due to parsing errors), the internally recorded runtime is used
as a fallback.

The optimisation framework must know how to build and execute the external
application. This is achieved with build and execution scripts specified via
APP_BUILD and APP_EXEC. These scripts must also accept the following environment
variables and command line parameters:

• The compiler name is passed to the script as the first (and only) command
line parameter.

• The compiler options are passed via the usual corresponding environment
variables. In other words, the environment variables CFLAGS, CPPFLAGS,
CXXFLAGS, LDFLAGS, and LIBS are set according to the settings in the opt
task file, and the build and execute scripts must read and use these variables
when compiling and running the target application.

Note that the scripts are responsible for setting up their build and execution
environment, following the parameters passed by the optimisation framework. In
particular, when the compiler settings need to be set up via an environment script
or environment modules, the build and execute scripts must contain corresponding
instructions.

Note that, depending on the target application’s runtime, an optimisation
framework run can take up a significant amount of time, especially when a
significant number of compiler options is passed to the optimisation framework
and a large number of application repeats is used to gain better statistics concerning
the performance of the application. In order to mitigate the latter effect, the
optimisation framework allows for a maximum of 10 repetitions for every set of
compiler options.

A sensible way of cutting down the time needed to arrive at a “best” set of
compiler options is to first feed all compiler options that seem sensible for the
chosen target application into the optimisation framework, while disabling use of an
external application by setting “USE_EXTERNAL_APP = no”. With the information
retrieved from such an optimisation framework run, a smaller selection of compiler
options that yield good numerical results (i. e. a high degree of IEEE-conformity)
can be used in another optimisation framework run, this time using the target
application to record its performance.

3.5 The optimisation framework 145

External applications provided by the optimisation framework

The optimisation framework includes two applications which can be used to study
the influence of compiler options on IEEE-conformity and application performance:

sixloops We implemented sixloops as a simple matrix-matrix multiplication
on real matrices, done in a tiled manner with six loops to exploit caching. More
precisely, it performs C “ A ¨B with A,B,C P Rnˆn with a block size of nb with
n, nb P N and nb ! n, using ikj-form. For more details, see e. g. [GV96].

Although sixloops is not representative of a "real world" application, the
effects of some common command line options influencing caches, vectors units,
and ordering of loops, such as -O3 or -funroll-loops (for gcc), can be studied
with this small example application.

The optimisation framework includes two sets of scripts to support building
and executing an appropriate sixloops binary: The scripts sixloops_build.sh
and sixloops_execute.sh compile and run sixloops using environment scripts,
while the scripts sixloops_mod_build.sh and sixloops_mod_execute.sh set up
compiler and further variables via environment modules, cf. Section 3.4.1, page 104.

HPCG As a second (more complex) application, the optimisation framework
includes HPCG [DHP15] which “is an effort to create a new metric for rank-
ing HPC systems. [. . .] HPCG is designed to exercise computational and data
access patterns that more closely match a different and broad set of important
applications, and to give incentive to computer system designers to invest in capa-
bilities that will have impact on the collective performance of these applications”
[HPCG]. HPCG is “based on a simple additive Schwarz, symmetric Gauss-Seidel
preconditioned conjugate gradient solver. [. . .] HPCG generates a regular sparse
linear system that is mathematically similar to a finite element, finite volume or
finite difference discretisation of a three-dimensional heat diffusion equation on
a semi-regular grid. The problem is solved using domain decomposition with a
conjugate gradient method that uses an additive Schwarz preconditioner. Each
subdomain is preconditioned using a symmetric Gauss-Seidel sweep.” [DHP15]

If no “real-world” external (user) application is available, HPCG gives valuable
insight into the performance of the user environment. This especially applies
to multicore or multiprocessor platforms as HPCG is designed for large HPC
installations comprising up to thousands of nodes and processors. For a thorough
discussion why HPCG represents a suitable benchmark for real-world applications
(especially in contrast to HPL, see [Pet+16]), cf. [DHP15].

To make use of HPCG and multicore facilities available in the user environment,
the optimisation framework includes four build scripts and two execution scripts:

• hpcg_build_serial.sh builds a serial version of HPCG that is executed on
one core on the current user environment via hpcg_execute.sh.

146 IeeeCC754++

• hpcg_build_omp.sh builds a version parallelised with OpenMP. Once more,
hpcg_execute.sh serves as execution script.

• The HPCG binaries produced with the scripts hpcg_build_mpi.sh and
hpcg_build_parallel.sh are both executed via hpcg_execute_mpi.sh as
they are both compiled with MPI support. hpcg_build_parallel.sh addi-
tionally builds HPCG with MPI and OpenMP support, making use of all
available compute resources (regarding CPUs).

Note that these scripts make use of environment scripts to set up the compiler and
additional variables (cf. Section 3.4.1, page 104). In order to support environment
modules, another set of scripts exist whose names start with “hpcg_mod_” instead
of “hpcg_”, i. e. the modules equivalent of e. g. hpcg_build_parallel.sh is called
hpcg_mod_build_parallel.sh.

Adding an external application to the optimisation framework

When adding a custom target application to the optimisation framework, the
build and execution scripts supplied for sixloops and HPCG can be used as a
starting point. Figure 3.6 shows the code structure for external applications inside
the optimisation framework. Custom build and execute scripts must be added to
their default location eval/app/scripts/. They must support the requirements
listed above, especially reading the compiler name from the command line and
using the values supplied via the relevant environment variables.

eval/
app/

hpcg/
README
...

scripts/
hpcg_build_mpi.sh
hpcg_build_omp.sh
hpcg_build_parallel.sh
hpcg_build_serial.sh
hpcg_execute.sh
hpcg_execute_mpi.sh
...
sixloops_build.sh
sixloops_execute.sh

sixloops/
README
sixloops.cc

Figure 3.6: Code structure for external applications inside the optimisation frame-
work.

Chapter 4

Extended testsets

Since IeeeCC754++ employs test vectors to check different aspects of a floating-
point environment, the quality of the results depends on the quality and choice
of these test vectors. For the operators supported by the original IeeeCC754, a
sufficiently large number of test vectors was already available (cf. Chapter 2). In
this chapter, we describe the operators that we added to IeeeCC754++, as well as
the test vectors complementary to the IeeeCC754 testsets in order to support the
new operators. We start this chapter with some general considerations concerning
the choice of operators added, as well as the difficulty of generating appropriate test
vectors for certain operators (especially for the elementary functions). Afterwards,
we give detailed descriptions of the new operators and test vectors. Finally, we
present a tool to generate collections of test vectors (i. e. different variants of
testsets) from the test vectors supplied with IeeeCC754++.

4.1 General considerations
Test vectors have to be chosen carefully in order to enable appropriate assessment
of the IEEE-conformity of a given floating-point environment (cf. the discussion in
Section 3.1.1). We follow the design decision already made with IeeeCC754: using
test vectors for which it is difficult to achieve correctly rounded results. Further-
more, some simple test vectors checking fundamental operator functionality are
provided as well as test vectors verifying correct behaviour concerning exceptions
and special values such as NaNs and infinities. Finally, for some operators it is
possible to reuse test vectors originally designed for other operators, such as using
square root test vectors for the nth root n

?
x (with n “ 2) and nth power xn (with

n “ 0.5) functions.
Ideally, the testsets should include test vectors especially challenging to round.

However, for many floating-point operators, it is difficult to achieve worst cases
due to the Table Maker’s Dilemma.

148 Extended testsets

4.1.1 The Table Maker’s Dilemma
The Table Maker’s Dilemma can be described as follows: Let x P F˚pβ, t, L, Uq
be a floating-point number, f : R Ñ R a floating-point operator and ˝ : R Ñ

F˚pβ, t, L, Uq one of the five rounding functions required by IEEE 754-2008.
When computing fpxq “: y P R, we expect the resulting floating-point number
˝pfpxqq “: ỹ P F˚pβ, t, L, Uq to be correctly rounded, i. e. we expect the returned
result to be the floating-point number closest to the correct (real) value y according
to the current rounding mode, rounded to target precision t. For “simple” operators
such as addition or multiplication, the intermediate precision m necessary for
the calculation of this result is known beforehand (cf. e. g. [VCV01a; VCV01b]).
However, for transcendental functions such as sine, exponentials or logarithms,
it is difficult to achieve upper bounds on m. This is especially true if y lies very
close to a breakpoint: either a floating-point number (for roundTowardPositive,
roundTowardNegative, and roundTowardZero) or the exact middle between two
adjacent floating-point numbers (for roundTiesToEven and roundTiesToAway, see
e. g. [Mul+10, Chapter 12]). In this case, the intermediate precision m needed
to guarantee correct rounding can be significantly higher than for other inputs
x. For performance reasons, it is highly desirable to use the smallest value for m
sufficiently large enough to produce a correctly rounded result ỹ. The problem
of finding a suitable m depending on x and f is known as the Table Maker’s
Dilemma.

All floating-point numbers x that require the largest m to correctly compute
ỹ “ ˝pfpxqq with target precision t constitute worst cases for the function f . If
they (or cases that require slightly smaller m) are known, they can serve as ideal
test vectors for the verification of correctly rounded results with IeeeCC754++.
However, for some functions and a given floating-point format it is extremely
difficult and time-consuming to compute these worst cases. We translated known
results (as published e. g. in [LM01a], [LM01b], or [Mul+10]) into test vectors in
Coonen format for use with IeeeCC754++.

For a more detailed discussion on the Table Maker’s Dilemma, see [LT98] and
[Mul+10, Chapter 12].

4.1.2 Adding operators and test vectors
Since one of the main goals of IeeeCC754++ is to support IEEE 754-2008, we
added all “recommended correctly rounded functions” mentioned in section 9.2 of
IEEE 754-2008 [IEEE08]. Additionally, five operators were added belonging to
the C99 standard [C99]: the cube root, error functions, and gamma functions. For
details, see Sections 4.3 and 4.6.

In the following sections, we give detailed explanations of the new operators
supported by IeeeCC754++ and the test vectors which have been added to the
testsets in order to verify whether implementations support the new operators in

4.1 General considerations 149

an IEEE-conforming way.
In this thesis, we often refer to groups of operators using the following terms:

Definition 4.1. We define categories for the floating-point operators supported
by IeeeCC754++ as follows (see also Section 1.2.1, page 11):

• Basic operations, also called arithmetic operators: addition, subtraction,
multiplication, division, (floating-point) remainder, and square root, as well
as fused multiply-add (fma).

• Conversions, which can be sub-categorised as follows:

˝ Conversion between floating-point formats: round to format with smal-
ler precision, convert to format with larger precision, and round to
integral value.

˝ Conversion from and to integer formats, i. e. conversion from a floating-
point format to 32 or 64 bit integers or vice versa.

˝ Conversion between binary and decimal values, i. e. rounding a binary
floating-point number to the closest decimal number or rounding a
decimal number to a floating-point number.

• Elementary functions: In this thesis, we denote all newly added operators
(with the exception of fma which belongs to the basic operators) as elementary
functions. These operators include trigonometric, exponential, logarithmic,
power, and root functions, as well as error and gamma functions. ♦

Note that the term “conversion” is used in a loose sense here: It describes the
process of transforming numbers from one format into another. As an example,
conversion from one floating-point format into another floating-point format with
larger precision is a real conversion (exponent and significand merely have to be
rewritten), whereas conversion to a floating-point format with smaller precision
might need to be rounded, thereby changing the original value in order to fit the
value into the narrower format. The term “elementary” is also used in a loose
sense: Traditionally, only trigonometric functions, exponentials and logarithms
are regarded as elementary functions.

All new test vectors have been encoded in the precision independent Coonen
format. This is especially relevant for all vectors checking special cases such
as handling of infinities, NaNs, etc. However, research on worst cases for the
elementary functions is mostly limited to double precision (e. g. in [LM01a],
[LM01b], or [Mul+10]), and consequently, the corresponding test vectors only
apply to double precision. They are encoded in Coonen format nonetheless in
order to also be applicable when testing with IeeeCC754++’s classic mode (see
Section 3.3.1).

150 Extended testsets

4.2 Fused multiply-add
One of the most notable operator additions to IeeeCC754++ is the fused multiply-
add (fma) operator: It performs a multiplication followed by an addition with the
intermediate result calculated with infinite precision.1 It is noteworthy, since it is
only rounded once (after performing both operations) and therefore can return
results different from the results achieved by issuing separate operations (which
would include a rounding step to t bits precision between the multiplication and
the addition). fma was added to IEEE 754-2008 to reflect that many hardware
FPUs already contained a fma instruction since scientific computations hugely
benefit from a high-performing fma, which is typically used for operations of whole
vectors of floating-point numbers such as saxpy() (cf. [LAP17]).

Table 4.1 shows the name of the function, the computed value, the name of
the operator inside IeeeCC754++, and the signature of the corresponding function.

Name Operation OP name Signature
fma x ˚ y ` z OP::fma T T::fma(T & y, T & z)

Table 4.1: The fma operation.

4.2.1 Testset
Since fmapx, y, zq “ x ˚ y ` z includes a multiplication and an addition, all test
vectors for multiplication and addition can be reused with z “ 0 for multiplication
and either x “ 1 or y “ 1 for addition (the latter being used in IeeeCC754++ test
vectors): In the first case, the multiplication is performed exactly as a regular
multiplication, but without rounding. Adding z “ 0 does change neither exponent,
significand, nor exceptions, and the final rounding leads to the same result as if
only the multiplication had been performed. Note that when the correct result
is a negative zero ´0 and the second operand in the original multiplication test
vector is 0, the third operand has to be set to z “ ´0 to promote the signed zero.

For the addition case, the multiplication in the fma is performed with the first
operand of the addition test vector and y “ 1. The result of this multiplication
is exactly the first operand without any changes, and no exceptions are raised.
Performing the addition with z (the original second operand of the addition test
vector) is then performed exactly as a regular floating-point addition.

This already large set of test vectors from the addition and multiplication
testsets is complemented by new test vectors helpful towards distinguishing between
implementations of the fma operator that are indeed fused, i. e. when only one final
rounding is used, as well as implementations performing a regular floating-point

1Note that the intermediate precision is not indeed infinite, but a precision of m “ 3t` 5 is
sufficient to return a result correctly rounded to t bits (cf. e. g. [Mul+10, pp. 259-262]).

4.2 Fused multiply-add 151

multiplication followed by a regular addition (with the intermediate result being
rounded).

In the following example, we describe the principle used to build these test
vectors. Note that not only this test vector is contained in the testsets, but
also scaled variants with different exponents verifying that a fused fma is used.
The example also demonstrates how test vectors are encoded in the precision
independent Coonen and the precision dependent UCB format. In order to be
applicable for arbitrary precision, the test vectors are stored in Coonen format:

Wfma = 1i1 1i(2)2 -1i1 OK 1m1i1

Listing 4.1: fma test vector in Coonen format.

The test vector starts with a letter denoting the origin (in this case, “W” for
our own test vectors) and the operator. It is followed by the specification of the
rounding modes for which the test vector is valid, in this case roundTiesToEven
mode, denoted by the “=” sign. The rest of the test vector contains the operands,
the expected exceptions, and the correct result: The first operand x is the number
1 whose last bit in the significand is raised by 1 (denoted by “i1”), whereas
the second operand is the number y “ 1.5. The third operand is equal to the
first operand, but with the sign bit set, i. e. z “ ´x. The “OK” denotes that no
floating-point exception flags should be raised. Finally, the (correct) result in
roundTiesToEven mode is almost equal to 0.5, i. e. 1 with exponent decreased
by 1 (“m1”), but with the last bit in the significand set. For details on the exact
syntax, see Listing 3.1.

Converting the test vector to UCB format with IeeeCC754++ in conversion
mode (cf. Section 3.3.1) results in the following line for single precision:

fmas n eq - 3f800001 3fc00000 bf800001 3f000001

Listing 4.2: fma test vector in UCB format, single precision.

The UCB test vector starts with the operator and the precision (“s”), followed
by the rounding mode (“n” for roundTiesToEven) and a specifier making it clear
that the result is to be checked for equality (i. e. the returned result is to be
compared to the correct result, indicated by “eq”). The “-” sign specifies that no
exception flags are expected. After these general specifications, the three operands
and the correct result are given in hexadecimal notation. Details on UCB syntax
can be found in Listing 3.2.

With these values, we can perform the multiplication and addition operations,
as well as see the difference whether the intermediate step is rounded (or not).
Multiplying x and y with infinite intermediate precision results in the intermedi-
ate result i1 (the vertical line separates trailing bits not representable in single

152 Extended testsets

precision):

i1 “ x ˚ y “ 1.000000000000000000000012

˚ 1.12

“ 1.10000000000000000000001|12

(4.1)

Still computing with infinite intermediate precision, adding z to i1 yields the
intermediate result i2:

i2 “ i1 ` z “ 1.10000000000000000000001|12

´ 1.000000000000000000000012

“ 0.10000000000000000000000|12

“ 1.000000000000000000000012 ¨ 2´1

(4.2)

Note that in the last step, the result has been normalised. The last bit in i1
(which is not representable in single precision) is cancelled out when adding z, and
therefore i2 is representable in single precision, yielding the final result rfma “ i2.

On the other hand, when computing r “ x ˚ y ` z with regular floating-
point operations (called mla here for multiply-add), i. e. when rounding after
computing x ˚ y, the situation changes (here, RN : RÑ F˚pβ, t, L, Uq denotes the
roundTiesToEven rounding function): The last bit has to be rounded upwards,
resulting in

i3 “ RNpi1q “ 1.100000000000000000000102. (4.3)
The final addition of z then yields

i4 “ i3 ` z “ 1.100000000000000000000102

´ 1.000000000000000000000012

“ 0.100000000000000000000012

“ 1.000000000000000000000102 ¨ 2´1

(4.4)

After normalising, i4 is again representable as a single precision number, so
rmla “ i4. Obviously, rfma ‰ rmla. Consequently, when the test vector is executed in
a floating-point environment, it can be deduced from the returned value whether
the fma operator in that environment is indeed fused (i. e. no intermediate rounding
is used when rfma is returned).

If neither rfma nor rmla are returned, it is possible that some even more serious
problem concerning the computation of sums and products exists. In that case,
the floating-point environment should be checked for other flaws with a deeper
analysis using the other test vectors for addition and multiplication (and probably
other operators).

A version of this example where the involved floating-point numbers are shown
as IEEE 754-2008 single precision numbers in binary notation) can be found in
Appendix C.1.

4.3 Powers and roots 153

Using the principle demonstrated with this test vector, we added 38 precision
independent test vectors to the fma testset aimed at verifying whether the fma
implementation is indeed fused. These have been verified to be working correctly
in single and double precision. Additionally, we added 22 more test vectors which
only work for odd precision t, i. e. for precisions where the number of bits t used to
represent the significand (including hidden bit) is odd. In particular, this means
that the latter test vectors work in double precision (53 bit significand), but not
in single precision (24 bit significand).

For debugging purposes, all of these 60 test vectors2 that distinguish between
fma and regular multiply-add are additionally contained in a test vector file called
mla, together with 5 simple test vectors able to help verifying whether the order
of input operands has been chosen correctly.3

4.2.2 Considerations concerning portability
The introduction of the fma operator into IeeeCC754++ raises interesting questions
concerning portability: Typical numerical programs involving inner products will
contain sums of a large number of products. Therefore it is highly desirable to
use an existing fma operator (especially if it is implemented in hardware) for
performance reasons. However, this changes floating-point semantics, since these
operations are computed with higher intermediate precision. In general, this
will lead to better performing and more accurate computations, but the results
will be different when executed in a floating-point environment lacking a fma
operator. Note that this behaviour is similar to environments that compute
intermediate results with higher precision, such as x86 platforms with x87 FPUs
(where intermediate computations on double precision variables are computed
with extended precision). The difference is that fma is by design not affected by
double-rounding (cf. [Mul+10, pp. 75 sqq.] and [MMM13]).

4.3 Powers and roots
Table 4.2 lists the power and root functions added to IeeeCC754++. For the power
function, three versions exist: the “normal” power function powpx, yq “ xy with
x, y P F˚pβ, t, L, Uq, a version with integral exponent powpx, nq “ xn, n P Z, and
a variant with non-negative x, i. e. x P r0,8s X F˚pβ, t, L, Uq. The latter two
versions were introduced by IEEE 754-2008, since they can be implemented more
efficiently than the more general version pow.

2Note that these are Coonen test vectors, resulting in 300 UCB test vectors overall (one for
each of the five IEEE 754-2008 rounding modes).

3fma assembler instructions may consist of three or four operands, with one operand (register)
used as return value in four operand fma. As a result, the ordering of operands is not obvious in
all cases.

154 Extended testsets

In addition to the “pure” root and power operators (the first six rows in
Table 4.2), two compound functions often used in geometrical or graphical compu-
tations were added: comppx, nq “ p1` xqn and hypotpx, yq “

?
x2 ` y2.

With the exception of the cube root (that is mandated by the C99 standard),
all other operators are recommended but not required by IEEE 754-2008. Note
that all arguments are floating-point numbers, but arguments called n must be
integral, i. e. n P Z.

Name Operation OP name Signature
Roots 3

?
x OP::cbrt T T::cbrt()

1{
?
x OP::rsqrt T T::rsqrt()

n
?
x OP::rootn T T::rootn(T & y)

Power xy OP::pow T T::pow(T & y)
xn OP::pown T T::pown(T & y)
xy, x ą 0 OP::powr T T::powr(T & y)

Compound p1` xqn OP::comp T T::comp(T & y)
Hypotenuse

a

x2 ` y2 OP::hypot T T::hypot(T & y)

Table 4.2: Power and root operations.

4.3.1 Testsets
For the three power functions, some basic test cases were added, as well as a
range of test vectors based on the special cases listed in section 9.2.1 of the
IEEE 754-2008 standard. [Mul+10, p. 458] gives the worst case (i. e. hardest to
round case, see Section 4.1.1) for the power functions in double precision. [Kor+10]
gives another hard to round case for integer power functions in double precision.
These have also been added as test vectors to the testsets for all three power
functions. Additionally, the pow testset has been complemented by all test vectors
from the square root testset with the second operand set to y “ 0.5.

The rootn testset consists of basic simple cases, special cases from IEEE 754-
2008, as well as all square root test cases with the second operand set to y “ 2.
The rsqrt testset contains test vectors which check exception handling and worst
cases for single and double precision from [LM01a]. For the cube root, only simple
test vectors checking basic functionality have been added.

Finally, the testsets for the comp and hypot operators consist of simple test
cases and all special cases given in IEEE 754-2008.

4.4 Trigonometric functions
The IEEE 754-2008 standard recommends a large range of trigonometric functions
that should be implemented by conforming floating-point environments: mainly

4.4 Trigonometric functions 155

the basic functions sine, cosine, and tangent as well as their inverse operators,
the hyperbolic trigonometric sinh, cosh, and tanh and their inverse operators.
Furthermore, for some of these functions, versions were added that take multiples
of π as arguments, such as sinpi, cospi, and atanpi. Note that some obvious
candidates such as asinpi, acospi, or tanpi were omitted as they were not deemed
important enough to be included in the standard.

The collection of trigonometric functions is rounded off by atan2 and atan2pi:
Both atan2pipy, xq and atan2py, xq describe the angle subtended at the origin by
the point px, yq and the positive x-axis. atan2 measures angles in radians and its
unbounded range is r´π, πs, whereas atan2pi measures angles in half-revolutions
with a range of r´1, 1s [IEEE08].

Table 4.3 shows a detailed list of the supported trigonometric operators and
their signatures.

Name Operation OP name Signature
Trigonometric sinpxq OP::sin T T::sin()
functions cospxq OP::cos T T::cos()

tanpxq OP::tan T T::tan()
atan2py, xq OP::atan2 T T::atan2(T & y)
sinpπxq OP::sinpi T T::sinpi()
cospπxq OP::cospi T T::cospi()
arctanpxq{π OP::atanpi T T::atanpi()
atan2py, xq{π OP::atan2pi T T::atan2pi(T & y)

Inverse arcsinpxq OP::asin T T::asin()
trigonometric arccospxq OP::acos T T::acos()
functions arctanpxq OP::atan T T::atan()
Hyperbolic sinhpxq OP::sin T T::sinh()
functions coshpxq OP::cos T T::cosh()

tanhpxq OP::tan T T::tanh()
Inverse arsinhpxq OP::asin T T::asinh()
hyperbolic arcoshpxq OP::acos T T::acosh()
functions artanhpxq OP::atan T T::atanh()

Table 4.3: Trigonometric operations.

4.4.1 Testsets
For the testsets for the trigonometric functions, there are three main sources: As
usual, we encoded the special cases mentioned in section 9.2.1 of the IEEE 754-
2008 standard as test vectors, providing full coverage of exception handling and
corner cases. Additionally, all worst cases for the trigonometric functions described
in [LM01b] and [Mul+10, pp. 451-457] are included in the IeeeCC754++ testsets.

156 Extended testsets

Finally, [Mul+10] gives input values for a number of functions for which no
computation is necessary since the value is known beforehand, such as cospxq “ 1
for small input values, i. e. |x| ă RNp

?
2q ˆ 2´27 (cf. [Mul+10, pp. 417-418]).

From these relations (which are only valid for double precision), we generated
corresponding test vectors for double precision.

Finally, some simple test vectors which check obvious values have been added.

4.5 Exponentials and logarithms
The IEEE 754-2008 standard recommends exponential and logarithmic operators
for the most common bases, i. e. e, 2, and 10. Furthermore, it recommends
variations of these functions that are in numerical computations: For exponentials,
bx ´ 1 is provided, whereas logbp1 ` xq should be supported for logarithms (b P
te, 2, 10u). Table 4.4 shows the resulting functions.

Name Operation OP name Signature
Exponentials ex OP::exp T T::expx()

ex ´ 1 OP::expm1 T T::expm1()
2x OP::exp2 T T::exp2()
2x ´ 1 OP::exp2m1 T T::exp2m1()
10x OP::exp2 T T::exp10()
10x ´ 1 OP::exp10m1 T T::exp10m1()

Logarithms lnpxq OP::log T T::log()
log2pxq OP::log2 T T::log2()
log10pxq OP::log10 T T::log10()
lnp1` xq OP::logp1 T T::logp1()
log2p1` xq OP::log2p1 T T::log2p1()
log10p1` xq OP::log10p1 T T::log10p1()

Table 4.4: Exponential and logarithmic operations.

4.5.1 Testsets
The test vectors used in the exponentials and logarithms testsets stem from the
same sources as the trigonometric test vectors: Section 9.2.1 of the IEEE 754-2008
standard, [LM01b], [Mul+10, pp. 451-457], and [Mul+10, pp. 417-418]. Addition-
ally, we added simple tests for easy cases, as well as vectors checking exceptions,
overflows, and underflows. The vectors from [LM01b] and [Mul+10] are only
valid in double precision, whereas all other test vectors are encoded for arbitrary
precision.

4.6 Miscellaneous functions 157

4.6 Miscellaneous functions
The final four functions that are new in IeeeCC754++ are not mentioned in the
IEEE 754-2008 standard, but have been added to IeeeCC754++ since they are
required by the C99 standard: the error functions erf and erfc, as well as the
gamma functions gam and lgam.

The error function erfpxq and the complementary error function erfcpxq are
defined as follows:

erfpxq “ 2
?
π

ż x

0
e´t2

dt (4.5)

and
erfcpxq “ 1´ erfpxq “ 2

?
π

ż 8

x

e´t2
dt, (4.6)

while the gamma functions gampxq and lgampxq are given as

gampxq “ Γpxq “
ż 8

0
tx´1e´tdt (4.7)

and
lgampxq “ ln |Γpxq|. (4.8)

The functions and their signatures are listed in Table 4.5.

Name Operation OP name Signature
Error erfpxq OP::erf T T::erf()
function erfcpxq OP::erfc T T::erfc()
Gamma Γpxq OP::gam T T::gam()
function ln |Γpxq| OP::lgam T T::lgam()

Table 4.5: Miscellaneous operations.

4.6.1 Testsets
To our knowledge, no literature on worst (or bad) cases for the four functions exist.
As a consequence, the testsets contain only basic cases to verify basic functionality
of the operators.

4.7 Generating testsets
The basic requirement for executing IeeeCC754++ directly or via the evaluation
framework is the availability of adequately prepared testsets in UCB format. For
a maximum of flexibility concerning supported floating-point precisions, the basic
IeeeCC754++ testsets are encoded in Coonen format, which is precision independent

158 Extended testsets

(cf. Section 3.1.11). In order to avoid cumbersome conversion by directly calling
IeeeCC754++ in conversion mode (cf. Section 3.3.1), IeeeCC754++ comes with two
tools to automate the conversion process and to generate collections of test vectors
that target different sets of operations: convertTestsets.py converts test vectors
from Coonen to UCB format, whereas genUCB.sh selects sets of operations from
all generated UCB test vectors.

Before presenting these tools, we briefly discuss the choice of the precisions
and the layout of the testsets used in this thesis.

4.7.1 A note on precisions
Most of the test vectors contained in the Coonen test vectors in the directory
src/testsets/ are encoded in precision independent format. The exception are
test vectors denoting worst cases for a specific precision, such as those for worst
cases of elementary functions described earlier in this chapter. In other words,
most test vectors are applicable to arbitrary floating-point formats. However, in
practice only a very limited number of floating-point formats is used: Virtually
all floating-point environments support single and double precision, and many
environments supply a larger format, usually double-extended (e. g. Intel) or
quadruple (e. g. POWER) precision. Additionally, half precision is being added to
platforms in order to support machine learning applications. As a result of this
reasoning, we only support these five precisions: half, single, double, extended,
and quadruple.

In order to provide well-arranged collections of testsets, the tools presented
below contain test vectors for one of these five precisions. However, composing
testsets in this manner poses a problem for operations working on operands
of different precision, especially conversion from one floating-point format into
another: These could be placed in the testsets of either of the involved precisions
(e. g. conversions between single and double precision might belong either to
the single precision or the double precision testsets). We avoid duplicating test
vectors in multiple testsets by choosing the following convention: Test vectors
with operands in different precisions are placed in the testset with the widest
precision (i. e. with the largest exponent and significand range). This means that a
testset for a specific precision includes only test vectors which convert to and from
narrower precision. We give two examples: A testset for half precision contains
no conversions between floating-point formats at all, while a double precision
testset contains test vectors converting between half and double precision as well
as between single and double precision.

4.7.2 convertTestsets.py

The helper tool convertTestsets.py is located in src/testsets, which is the
same directory where the Coonen encoded testset files are stored. It can be called

4.7 Generating testsets 159

with the following syntax:

Usage is:
convertTestsets.py [--annotate] [--path <path>] [--exe <exe>] <type> <prec>
convertTestsets.py --list
convertTestsets.py --help

Convert testsets from Coonen to UCB format for the given <type> and <prec>.
File name for the output file will be <type><prec>

Options:
--annotate use IeeeCC754++ -a to add line numbers to UCB file
--path path to directory containing the testset files (in Coonen format)
--exe name of IeeeCC754++ executable
--list list types & precisions
--help show this help

Listing 4.3: Output of convertTestsets.py -help

In almost most cases, <type> should be “all” in order to include test vectors
for all operations into the new testset. If only a subset of operations is to be
regarded, these should be selected via genUCB.sh (see below).

<prec> denotes the floating-point precision for which the new testset will be
generated. All possible values for <type> and <prec> can be seen in Listing 4.4.
The meaning for the precision specifiers is shown in Listing 4.6.

Types: all basic conv elem fma
Precisions: h s d l q

Listing 4.4: Output of convertTestsets.py -list

When called with “all” and a precision letter, convertTestsets.py generates
testset files called “all<prec>”. These should be copied to the testsets directory4.

Please note that convertTestsets.py relies on a compiled IeeeCC754++ execut-
able being available, either located in the same directory as convertTestsets.py
itself and called “IeeeCC754++”, or its location and name specified via the para-
meter --exe. The conversion mode -o (cf. Section 3.3.1) is contained in every
IeeeCC754++ regardless of the user environment it was built for. Therefore, it is
sufficient to build IeeeCC754++ with any available compiler in default without
extra configuration options like this:

> configure
> make
> cp src/def/IeeeCC754++_default <TESTSETPATH>/IeeeCC754++

(with <TESTSETPATH> being the path where convertTestsets.py resides, i. e.
src/testsets).

4testsets is the directory in which the evaluation framework looks for testsets.

160 Extended testsets

4.7.3 genUCB.sh

When the quality of a given floating-point environment should be evaluated or
analysed, all available test vectors for the precisions to be regarded would be
incorporated into the analysis. However, this might not be desirable in all cases:
Consider e. g. a comparison of several FPUs of some floating-point environment in
which only one of the FPUs supports conversion between binary floating-point
formats and decimal output (as is the case for most user environments since the
main FPU usually supports all conversions whereas most other FPUs do not).
In this case, excluding the test vectors applicable to these conversions results in
more convenient direct comparison between the FPUs, since exactly the same test
vectors are executed for all FPUs (leading e. g. to identical test vector counts).

The script genUCB.sh offers the possibility to select predefined sets of test
vectors from the “full” testset files generated with convertTestsets.py. Further-
more, by fixing a naming convention for the filtered testsets, it is easy to see
which type of test vectors were regarded during a specific IeeeCC754++ run. Since
the generated testsets are aimed at being used inside the evaluation framework,
genUCB.sh is located in the directory where the evaluation framework searches for
testsets, i. e. in testsets. Listing 4.5 shows the syntax of a genUCB.sh invocation.
Note that genUCB.sh assumes the availability of testset files called all<prec>
containing test vectors in UCB format for the selected precision.

genUCB.sh - select test vectors from an input testset file in UCB format.

Usage is: genUCB.sh <type> <prec>|<inputfile> [<round>]
genUCB.sh --help
genUCB.sh --list

where:
type operations in the output file
prec precision of the test vectors
round rounding mode used
inputfile name of an input file

When <prec> is given, genUCB.sh expects input from a file called "all<prec>".
When <inputfile> is given, input is taken from that file.

--help shows this help
--list lists possible values for <type>, <prec> and <round>.

Listing 4.5: Output of genUCB.sh -help

Listing 4.6 shows the possible values for <type>, <prec>, and <round> in order
to specify the desired set of operations, precision, and an optional rounding mode.
If no rounding mode is specified, test vectors for all five rounding modes are
included.

For easy readability, the sets of operations are assigned distinctive characters
hinting at the context of the currently selected testset. The sets are grouped as
follows:

4.7 Generating testsets 161

Format for output files: t<type><prec>[<round>]

with
type 0 custom

1 all
2 basic + conv [B + C]
3 basic + conv (fp + int) [B + F + I or 2 - D]
4 trig + exp + log + pow + misc [T + E + L + P + M]
A arithmetic (+ - * / fma)
B basic (+ - * / rem sqrt fma)
C conv [F + D + I]
D conv (dec)
F conv (fp)
I conv (int)
T trig
E exp
L log
Q exp + log (E + L)
P pow
M misc

prec h half (binary16)
s single (binary32)
d double (binary64)
l long (binary64 extended)
q quad (binary128)

round n near (roundTiesToEven)
u up (roundTowardPositive)
d down (roundTowardNegative)
z zero (roundTowardZero)
a near, ties to away (roundTiesToAway)

Listing 4.6: Output of genUCB.sh -list

• Most testsets assigned a capital letter denote a set of operations that do not
overlap with other testsets. The exception are group A which is a subset of
B, group C which collects all conversions into one testset, and group Q which
combines exponential and logarithmic operators (see below).

• The testset denoted by B collects the basic arithmetic operations addition,
subtraction, multiplication, and division, together with the very common
remainder and square root operations. Since fma uses only addition and
multiplication, it is also placed in this testset.
If only the “purely arithmetic” operations should be tested, the testset A can
be used which includes all test vectors from testset B, with the exception of
remainder and square root (but includes fma).

• The conversions required by IEEE 754-2008 have been categorised into three
disjoint testsets: F consists of the conversions between different floating-point
formats, D denotes conversions between binary and decimal formats, and I

162 Extended testsets

collects all conversions between floating-point and integer formats, including
the “round to integral” operation which rounds a floating-point value to an
integer value and returns this value as a floating-point number.
If all three of these conversions should be tested, the testset C which contains
all test vectors of the conversion testsets F, D, and I can be used.
Note that the testset F contains only conversion to “smaller” floating-point
formats, i. e. floating-point conversions from the selected precision <prec>
into other floating-point formats are only contained for precisions with
shorter significand. In other words, the testset tFh contains no test vectors
for floating-point conversions and is thus empty, whereas tFq contains test
vectors to convert quadruple precision floating-point numbers into half,
single, double, and double extended precision numbers.

• Test vectors for trigonometric, exponential, and logarithmic operations are
placed in the testsets T, E, and L, respectively. The testset P contains all
operations related to power and root functions, with the exception of the
square root which is contained in testset B. Furthermore, a testset containing
both exponentials and logarithms is available with the letter Q.

• All operations that have not been placed into one of the other “capital
letter testsets” comprise the miscellaneous testset M. Currently, this testset
consists only of operations computing the gamma and error functions (cf.
Section 4.6).

• In addition to these (mostly) disjoint testsets, four testsets collecting larger
sets of operations exist, denoted by single-digit numbers. They consist of
sets of operations typically used as input to the evaluation framework.
The first of these testsets (denoted by 1) comprises all operations. When
no rounding mode is specified, it is an almost identical copy of the input
testset file all<prec> (comment lines added by genUCB.sh are different).
Testset 2 exists to test the functionality that IEEE 754-2008 requires from
a conforming implementation, namely the basic operations (testset B) and
all conversions (testset C). Since typically not all FPUs support conversion
between binary and decimal formats, 3 contains the same operations as 2
with the exception of the test vectors contained in testset D.
Finally, testset 4 contains test vectors for the operations which IEEE 754-2008
recommends, but does not require to be implemented, i. e. the elementary
functions. Thus, testset 4 contains all test vectors from the testsets T, E, L,
P, and M.

• In order to distinguish between the testsets generated by genUCB.sh, thus
consisting of well-defined sets of test vectors and testsets that contain a

4.7 Generating testsets 163

custom collection of test vectors, the letter 0 should be used. If 0 is specified
as the <type> specifier, genUCB.sh will emit a message that a custom set of
test vectors must be built with means external to the script.

Table 4.6 gives a detailed overview of the mapping between testsets generated
by genUCB.sh and the operations that are contained in these testsets.

Operation A B C D F I T E L Q P M 1 2 3 4

OP::add ˆ ˆ ˆ ˆ ˆ

OP::sub ˆ ˆ ˆ ˆ ˆ

OP::mul ˆ ˆ ˆ ˆ ˆ

OP::div ˆ ˆ ˆ ˆ ˆ

OP::rem ˆ ˆ ˆ ˆ

OP::sqrt ˆ ˆ ˆ ˆ

OP::ct ˆ ˆ ˆ ˆ ˆ

OP::rt ˆ ˆ ˆ ˆ ˆ

OP::b2d ˆ ˆ ˆ ˆ

OP::d2b ˆ ˆ ˆ ˆ

OP::i ˆ ˆ ˆ ˆ ˆ

OP::ri ˆ ˆ ˆ ˆ ˆ

OP::rI ˆ ˆ ˆ ˆ ˆ

OP::ru ˆ ˆ ˆ ˆ ˆ

OP::rU ˆ ˆ ˆ ˆ ˆ

OP::ci ˆ ˆ ˆ ˆ ˆ

OP::cI ˆ ˆ ˆ ˆ ˆ

OP::cu ˆ ˆ ˆ ˆ ˆ

OP::cU ˆ ˆ ˆ ˆ ˆ

OP::fma ˆ ˆ ˆ ˆ ˆ

OP::cbrt ˆ ˆ ˆ

OP::rootn ˆ ˆ ˆ

OP::pow ˆ ˆ ˆ

OP::pown ˆ ˆ ˆ

OP::powr ˆ ˆ ˆ

OP::sin ˆ ˆ ˆ

OP::cos ˆ ˆ ˆ

OP::tan ˆ ˆ ˆ

OP::sinpi ˆ ˆ ˆ

OP::cospi ˆ ˆ ˆ

OP::atanpi ˆ ˆ ˆ

OP::atan2pi ˆ ˆ ˆ

OP::asin ˆ ˆ ˆ

Continued on next page. . .

164 Extended testsets

Operation A B C D F I T E L Q P M 1 2 3 4

OP::acos ˆ ˆ ˆ

OP::atan ˆ ˆ ˆ

OP::atan2 ˆ ˆ ˆ

OP::sinh ˆ ˆ ˆ

OP::cosh ˆ ˆ ˆ

OP::tanh ˆ ˆ ˆ

OP::asinh ˆ ˆ ˆ

OP::acosh ˆ ˆ ˆ

OP::atanh ˆ ˆ ˆ

OP::exp ˆ ˆ ˆ ˆ

OP::expm1 ˆ ˆ ˆ ˆ

OP::exp2 ˆ ˆ ˆ ˆ

OP::exp2m1 ˆ ˆ ˆ ˆ

OP::exp10 ˆ ˆ ˆ ˆ

OP::exp10m1 ˆ ˆ ˆ ˆ

OP::log ˆ ˆ ˆ ˆ

OP::log2 ˆ ˆ ˆ ˆ

OP::log10 ˆ ˆ ˆ ˆ

OP::logp1 ˆ ˆ ˆ ˆ

OP::log2p1 ˆ ˆ ˆ ˆ

OP::log10p1 ˆ ˆ ˆ ˆ

OP::hypot ˆ ˆ ˆ

OP::rsqrt ˆ ˆ ˆ

OP::comp ˆ ˆ ˆ

OP::erf ˆ ˆ ˆ

OP::erfc ˆ ˆ ˆ

OP::gam ˆ ˆ ˆ

OP::lgam ˆ ˆ ˆ

Table 4.6: Mapping between testsets and operations.

Chapter 5

Architecture ports

The original IeeeCC754 supported only a selected number of architecture ports
and (logical) FPUs, namely generic x86 (both Intel and AMD) and SUN SPARC
processors as well as the software libraries FMLib and MpIeee. This selection
reflects the hardware platforms and software libraries available (and reasonably
widespread at mathematical departments) during the time when IeeeCC754 was
originally developed.

Since then, the computing landscape has changed considerably, becoming
much more diverse, and computing resources of all performance levels are available
to a multitude of researchers. To reflect these changes and to cover a range
of architectures as broad as possible, IeeeCC754++ adds support for many of
the most widespread architectures. Furthermore, it provides facilities to add
further architectures in order to enable checking the IEEE-conformity of future
architectures and architectures not yet implemented in IeeeCC754++.

This chapter is organised as follows: Each section is devoted either to a specific
hardware architecture/ISA such as x86 (Section 5.2) or POWER (Section 5.4) or
a class of similar user environments, e. g. GPUs and accelerators (Section 5.5) or
virtual machines and software libraries (Section 5.7). In each section, we briefly
describe the underlying architecture and its history. Afterwards, we examine in
detail the corresponding ports that have been implemented as combinations of
architectures and FPUs inside IeeeCC754++.

Before discussing the different platforms, it is important to note that an
architecture port in IeeeCC754++ sense abstracts from the underlying floating-
point implementation (cf. Definition 3.3). As a result, an architecture port can be
anything from a software floating-point library (such as MPFR, cf. Section 5.7.3,
or SoftFloat, Section 5.7.2), the “standard” arithmetic operators in a programming
language (e. g. Java, see Section 5.7.1), or the hardware implementation of an ISA
(such as x86, Section 5.2). The last case is noteworthy insofar as the corresponding
architecture ports in IeeeCC754++ are implemented according to the ISA (especially
when intrinsics or inline assembler implementations are used), but the compilation

166 Architecture ports

process usually results in an executable for a specific hardware implementation of
an ISA (which can still be generic or valid for a range of hardware), and testing
is always performed on specific processors or arithmetic units. As an example,
the x86 architecture port (see Section 5.2.1) is targeted at the x86 ISA [INT17b],
which can then be compiled for e. g. current Intel Xeon CPUs. Finally, testing
takes place on a specific processor out of the Xeon range, such as an Intel Xeon
E5-2650 v4 [INT16c].

The architectures discussed in the next sections can be roughly categorised into
the following groups: the most common hardware architectures such as processors
with x86 ISA, platforms based on some variant of the POWER architecture (e. g.
Cell and Blue Gene/Q), and ARM processors representing the most common
architecture for smartphones, tablets etc.; some common accelerators such as GPUs
(which are accessed through programming models such as CUDA and OpenCL);
software libraries in the widest sense (MPFR, SoftFloat, CRlibm, and Java which
is not software but virtual machine based), one architecture port specifically
targeted at testing in-network floating-point computations (cf. Section 1.4.8); and
finally the default architecture which enables analysing default floating-point
environments, cf. Definition 3.1.

Note that this chapter is not aimed at giving an in-depth architecture de-
scription of the different platforms that are supported by IeeeCC754++. Although
IeeeCC754++ can help finding underlying hardware problems in specific FPUs,
or even parts of an FPU like a floating-point pipeline, the goal of this thesis is
to discuss the means via which a deep analysis is enabled, rather than looking
at the hardware itself. A short overview of the respective platforms and their
history is given. If details on specific architectures or FPUs are needed in order to
understand a user environment’s floating-point behaviour, we refer to the wealth
of reference material available on the web.

In order to understand the architectures that are supplied with IeeeCC754++
and what will actually be tested when the code for some FPU is executed, the
following areas of the corresponding implementations are covered:
• Operators: The main differentiation between architectures is the way floating-

point operators are supported in the respective user environment. If know-
ledge of the IEEE-conformity of the usual mathematical operators as supplied
by C++, C, or the operating system as library function calls is desired, the de-
fault architecture should be used (or its relevant FPUs, see next section). In
the other architectures, generally only those operators with specific hardware
implementations are supported. For each architecture and FPU, we discuss
which operators are implemented and why the specific implementation (such
as an assembler or intrinsics version) has been chosen. We often refer to
groups of operators such as basic operations or elementary functions; these
are defined in Section 4.1.2.

• Rounding modes: Most of the architecture ports support the four rounding

167

modes required in IEEE 754, i. e. all rounding modes with the exception of
roundTiesToAway (cf. Table 1.2). If an implementation deviates from this
selection, we discuss the reasons and which rounding modes are supported.
These four rounding modes are called the classic rounding modes in this
chapter.

• Conversion to native format: Before executing a test vector, the floating-point
values involved must be translated from IeeeCC754++’s internal floating-
point format to the format(s) native to the corresponding architecture.
In most cases, a conversion to C++’s floating-point formats is sufficient,
taking endianess issues into account. The default architecture features an
implementation supporting both little and big endian architectures. This
implementation is also used in all architectures where the underlying platform
supports both endianess variants, whereas architectures such as x86 provide
only the variant used on that architecture (in that case little endian).
When no special implementation is necessary for the conversion into the
native format (and vice versa), either the generic version or the version
targeted at a specific endianess is assumed. These functions are called
translation functions throughout this section.

• Floating-point formats: Virtually all floating-point environments support
the single and double formats, so in general, both formats are supported
in all architectures and FPUs. Additionally, some environments support
a larger floating-point format: either the double-extended format (x86) or
the quadruple format (POWER). Currently, only the SoftFloat architecture
provides an implementation for the half format (cf. Section 5.7.2). When no
mention of supported formats is made, only single and double are supported.

• Environment handling functions: In order to set the correct rounding mode
and to retrieve exception flags, a set of functions called SetLibRound(),
ClearLibExceptions(), and GetLibExceptions() must be implemented,
cf. Appendix B.4. For easy handling of the floating-point attributes, C99
standardised a set of floating-point environment handling functions such
as fegetround()/fesetround() or feclearexcept/fegetexcept() (which
were usually already present before as library functions e. g. in the Linux
operating system) in the header file <fenv.h>. Since most current C++
compilers support this header file and the corresponding library, the standard
approach of handling the operating system execution environment inside
IeeeCC754++ is an implementation making use of these functions.
Only deviations from this approach are mentioned in the description of the
architectures.

• Vector support: Some of the implemented FPUs support SIMD operation,
i. e. executing the same operation simultaneously on vector operands. Vector

168 Architecture ports

support in IeeeCC754++ is discussed in Section 3.1.12 and Appendix B.7. In
the following, only those FPUs that support SIMD operation are marked as
vector units.

• Additional command line options: Some of the architectures support ad-
ditional command line switches necessary for further setup, such as the
accelerated architectures nv, opencl, and mic which provide for means to
e. g. select between accelerated nodes. These options and their meaning are
discussed for architectures where they are available.

Finally, we discuss the operators b2d and d2b (i. e. conversion between binary
and decimal representation) which need special treatment: First, these conversions
are (to our knowledge) always implemented in software, and the final code is
almost always generated by the compiler of the chosen programming language.
Consequently, they are usually not architecture dependent, so the canonical place
to implement these functions is the default main FPU, since it serves as the
basis for evaluating a user’s default environment. In the other architectures, the
main FPU is mostly a copy of this FPU. Therefore, b2d and d2b are copied over
as well. However, for software floating-point environments that implement their
own versions of these conversion operators, these are used instead of the generic
versions in the default main FPU, such as in MPFR (see Section 5.7.3) and Java
(see Section 5.7.1). Second, after using the conversion operators from binary to
decimal representation, the resulting string must be transformed into a format
that is parsable by IeeeCC754++. This postprocessing has been implemented into
all versions of the conversion operators in the main FPUs. For details, see the
implementation of d2b() in the default main FPU. As a last note, conversion
between binary and decimal representations has only been implemented into the
main FPU, so no other FPUs inside IeeeCC754++ contain these operators.

Table 5.1 gives an overview of all architectures that have been implemented in
IeeeCC754++ as well as their respective FPUs.

5.1 The default architecture
We start the discussion of the different architectures and ports with two of the
most basic variants: the default architecture which implements the default
mode (cf. Sections 3.1.2 and 3.3.3) and the dummy architecture which serves as an
implementation blueprint in case IeeeCC754++ should be extended with a custom
architecture (cf. also Appendix B).

5.1.1 The default port
The default architecture tries to mimic as far as possible the default user envi-
ronment experienced by the user, cf. Definition 3.1. To achieve this goal, most

5.1 The default architecture 169

Architecture Additional FPUs
default generic, c99, cpp11, near
dummy generic
x86 x87, 3dnow, sse, ssei, sses, sse3, sse3i, sse3s, avx,

avxi, avxsse, avxssei, avx512, avx512i
mic avx, avxi
arm vfp, vfps, vfpv4, vfpv4s, neon, neonq, neoni,

neonqi
aarch64 neoni, neonqi, asimd, sve
ppc altivec, vsx, ppu, ppusimd, ppusimdi
cell spu, spusimd, spusimdi
bgq qpx, scalar
nv cuda, cuda_rn, cudai
opencl opencl, opencl_rn, opencl_round
mpi
java strict
softfloat
mpfr mpfrdef
crlibm

Table 5.1: Overview of the architectures and FPUs implemented in IeeeCC754++.
Note that every architecture includes an implementation of the main FPU.

of the operators are implemented without using any library function calls, solely
relying on the means supplied by C++ itself. The reasoning behind this approach
was explained in Section 3.3.3.

The three basic floating-point formats defined in C++ are usually available
in most environments: float, double, and long double. However, the imple-
mentation of these formats may differ significantly. Whereas on x86 platforms
long double is mostly mapped to Intel’s 80 bit double-extended format (and
would be executed in hardware inside the x87 FPU, see below), in other environ-
ments it might be mapped to a 128 bit quadruple format (which would most likely
be executed in software since there are virtually no hardware FPUs for quadruple
precision). In almost all cases, float is mapped to single precision and double to
double precision.

All operations implemented inside the default main FPU support the three
discussed C++ floating-point formats. Note that due to the ambiguity of the
mapping between long double and native formats, feeding quadruple test vectors
to IeeeCC754++ on an x86 platform will result in tons of errors, whereas using
double-extended test vectors on e. g. POWER will lead to similarly erroneous
behaviour. This means, that although the default architecture is aimed at
being as general as possible, some knowledge of the underlying user environment

170 Architecture ports

(cf. Definition 1.5) is needed in order to retrieve meaningful results for larger
floating-point formats.

The basic operations are implemented using the usual C++ operators, i. e. +, -,
*, and /. Furthermore, most conversions are done using simple assignments to the
new data type via the assignment operator = or using explicit C-style casts such
as “float a = (float)b”.

For conversions and operators where this approach is not possible, the library
functions from <cmath> are used, such as sqrt(), remainder(), or rint().

Note that the main FPU implements a “fake” fma operator, i. e. it simulates a
fma operation by using a * b + c to compute FMApa, b, cq with regular floating-
point multiplications and additions. However, since this operator produces a
significant number of errors during an IeeeCC754++ test run due to the intermediate
rounding (cf. Section 4.2), it is deactivated inside the main FPU. The default
generic FPU (see below) enables this multiply-add implementation to support
testing of this kind of “fake” fma operator, e. g. to check if a compiler combines
multiplications and additions into fma operations (or to create new test vectors). In
order to test a real fma operator (if available in the current user environment), the
c99 or cpp11 FPUs can be used which call the fma implemented in the respective
programming language’s standard library.

Finally, one caveat concerning rounding modes should be mentioned: As
roundTiesToAway is not required by IEEE 754-2008 as a rounding mode for
binary floating-point implementations, most languages and operating systems do
not support this rounding mode. Therefore, even when an underlying environment
provides for roundTiesToAway, it is not possible to target this rounding mode via
the default architecture, as this would break compatibility with almost all other
environments. If roundTiesToAway support is necessary for some floating-point
environment, one of the following implementation variants can be used:

• Adding a new architecture to IeeeCC754++. This is the preferred variant,
although it might be too laborious if only the additional rounding mode is
necessary. For details on how to add a new architecture, see Appendix B.

• Adding a new FPU to the default architecture. As described in Section 5.1.1,
all operators can simply be forwarded to those of the main FPU. In order
to support roundTiesToAway, only the function SetLibRound() must be
overloaded (and all rounding modes registered inside Register() by calling
registerRDallIEEE()), cf. Appendix B.4 and B.8.

• Changing the default architecture itself: Adding roundTiesToAway to
SetLibRound() and registering the rounding mode can also be done to
the main FPU of the default architecture. However, this approach is not
recommended since the behaviour of the default architecture is changed,
having an impact on the execution of IeeeCC754++ in other floating-point

5.1 The default architecture 171

environments. Therefore, using one of the former variants is considered a
cleaner approach.

The near FPU

When using IeeeCC754++’s default mode in floating-point environments in which
only the default rounding mode roundTiesToEven is supported, IeeeCC754++ will
detect incorrectly rounded results for some of the test vectors that check the other
rounding modes. This is to be expected; nonetheless, in order to enable a clear
view on actual errors in the underlying floating-point environment, IeeeCC754++
implements the near FPU that inherits all operators from the main FPU, but
registers only roundTiesToEven as rounding mode.

The c99, cpp11 FPUs

In addition to the default user environment support implemented in the main
FPU, IeeeCC754++ supports two FPUs which use the mathematical operators
as supplied by the languages C++ and C themselves. For the cpp11 FPU (which
implements C++11 support), this results in the operators looking almost identical
to those in the main FPU, except that the functions from <cmath> are called via
explicit scoping, i. e. by calling e. g. the square root function as std::sqrt() (or
as ::sqrt for those compilers that put the corresponding functions into the global
namespace instead of the namespace std).

The elementary functions like trigonometric functions, exponentials or logar-
ithms were standardised in C99. However, the same functions from the C standard
library have only been added to the official C++ standard with C++17, cf. [BNS16].
Since most compilers have been supporting these functions since C++11 nonethe-
less,1 we provide implementations for those functions in the cpp11 FPU. The rare
case of a compiler not supporting these functions can be recognised easily since
compilation of the cpp11 FPU would fail.

The implementation of the c99 FPU follows the same philosophy as the main
FPU in that it makes use of the operators built into C and otherwise calls the
respective library functions. In order to actually test the floating-point behaviour
of the C compiler, the implementation of the operators call functions declared as
“extern "C"” and implemented in C source files. Inside these C files (which are
compiled by the C compiler declared in MYCC, cf. Table A.2), the mathematical
functions declared in <math.h> and required in the C99 standard are called.

Both FPUs support the long double format.
Note that both the c99 and cpp11 include the most comprehensive set of imple-

mentations for the mathematical operators supported by IeeeCC754++ (compared
with the other architecture ports and their FPUs): basic operations (including

1The decision to not include the elementary mathematical functions unconditionally into
the standard library was made during the C++11 standardisation process, see [BNS16].

172 Architecture ports

remainder, square root, and fma), conversions (with the exception of conversions
from and to decimal representation, cf. the note on page 168), and elementary
functions, including those defined in C99, but not in IEEE 754-2008 (namely
cube root, error functions, and gamma functions, see Section 4.1.2). However,
note that a quite substantial number of elementary functions recommended by
IEEE 754-2008 are missing from C99: the exponential and logarithmic functions
exp10, exp2m1, exp10m1, log2p1, and log10p1, the reciprocal square root and nth
root, the compound function, the pown and powr operators that compute powers
for integer and positive exponents, and some trigonometric functions that take
multiples of π as arguments, i. e. sinPi, cosPi, atanPi, and atan2Pi (for details
on all these functions and operators, cf. Sections 4.2 to 4.6).

The generic FPU

The generic FPU serves as an example of how to implement a copy of another
FPU. Since all FPUs in an architecture are inherited (either directly from the
main FPU or one of the derived FPUs, see Appendix B.5), this can be achieved
by forwarding all operations inside that FPU to the implementations of the FPU
it was inherited from. Here, all operators inside the generic FPU simply call
the operators defined in the main FPU. In addition to this, only the relevant
conversion constructors need to be implemented, see Appendix B.5.

Since the generic FPU inherits all operators from the main FPU, it behaves
identically, with one notable exception: The “fake” fma operator which is deac-
tivated in the main FPU is available for testing in the generic FPU, e. g. for
comparison purposes during the development of new fma test vectors.

5.1.2 The dummy port
One of IeeeCC754++’s main features is the possibility to extend the program with
custom architectures. The dummy architecture serves as a blueprint for adding such
an architecture. As such, its main FPU registers no operations at all, none of the
functions handling environmental setup (rounding modes and exception flags) are
implemented, and none of the conversion functions to translate floating-point values
from IeeeCC754++’s internal format to a native format. Furthermore, there exists
only a commented implementation of the addition operator for demonstration
purposes.

For details on how the dummy architecture and its generic FPU are implemented
to support extension with a custom architecture, see Appendix B

The generic FPU

The implementation of the generic FPU follows the same philosophy as the
generic FPU in the default architecture, albeit with an even more basic approach:

5.2 The x86 architecture 173

Only the conversion constructors needed to translate between internal and native
floating-point formats are implemented.

5.2 The x86 architecture
The x86 architecture represents probably the most widespread computer architec-
ture of all time with regard to desktop and server computing systems. Its ancestry
reaches back to 1978 when Intel introduced the 8086 processor. Since then, the
x86 instruction set has been significantly increased with different additions and
extensions, albeit in a manner that preserves backwards-compatibility [WIK17aj].
Although commonly associated with Intel, the x86 architecture has also been
implemented in processors from Cyrix, AMD, VIA, and other companies, with
AMD being the only current (as of 2017) competitor for Intel.

The modern x86 lineage started in 1985 with the introduction of the IA-
32 architecture [INT03] which was first implemented in Intel’s 80386 processor.
In 2003, AMD introduced its Athlon 64 processor which implemented a 64 bit
extension to the IA-32 instruction set called x86-64 [AMD05]. Since then, virtually
all consumer PCs and a significant fraction of servers world-wide feature processors
from Intel or AMD implementing this architecture. In this thesis, we summarise
IA-32 and x86-64 under the term x86. For more details on the current x86
instruction set, see [INT17b].

To cater to the needs of current computing and software trends, a number
of extensions to the x86 architecture have been introduced, such as extensions
for multimedia processing (MMX, 3DNow!, SSE, AVX), virtualisation, or crypto-
graphy. From a floating-point arithmetic point of view, the most relevant features
of the x86 architecture are the x87 coprocessor as well as the newer SIMD vector
units called SSE and AVX. To check different aspects of these extensions, a number
of FPUs have been implemented inside the x86 architecture. The FPUs and their
implementation inside IeeeCC754++ are described below.

Another noteworthy variant of the x86 architecture is the Intel MIC (Many
Integrated Cores) microarchitecture which was first released in 2012 with the Xeon
Phi KNC (Knights Corner) chips, marketed by Intel as Xeon Phi x100 product
family [INT15]. It is a manycore design based on the x86 ISA, with processors
having 57 to 61 cores. In order to reach high floating-point throughput, each core
has a 512 bit wide vector SIMD unit with an ISA called Intel ICMI (Initial Many
Core Instructions) which is based on AVX and thus similar to a 512 bit variant
of AVX2. KNC processors were only released as accelerators, i. e. as extension
boards that supplement a host processor. It allows for two programming models:
a native model where code is compiled for direct execution on a KNC processor,
and an offload model where only certain parts of an application running on the
host CPU are offloaded to the KNC and executed on the device.

The next incarnation of the MIC architecture was released in 2016 as Xeon

174 Architecture ports

Phi x200 family of processors [INT17d], with 64 to 72 cores with an x86 compatible
ISA having two AVX-512 SIMD units (see Section 5.2.1). These KNL chips were
released initially as processors in a bootable form-factor, with an accelerator version
being announced. However, in August 2017, Intel announced the discontinuation
of the KNL coprocessor cards, resulting in KNL not being available in accelerator
form [Shi17].

Support for KNL and KNC is described in Section 5.2.2.

5.2.1 The x86 port
Since x86 is a little endian based architecture, only a little endian version of the
translation functions is implemented. The environment handling functions make
use of the library functions defined in <fenv.h>. One peculiarity of the x86 design
needs to be mentioned here: Until SSE became widespread enough for compiler
vendors to use SSE as the standard floating-point execution unit, all floating-point
calculations were scheduled to be executed inside the x87 execution unit. However,
as discussed below, all floating-point registers inside the x87 FPU are 80 bits
wide (double-extended precision). To mimic calculations done in pure single and
double precision (i. e. with 32 and 64 bit wide registers), IeeeCC754++ explicitly
instructs the FPU to use only the same significand widths as in the single and
double formats (i. e. 24 and 53 bits, cf. Table 1.1). Note that the width of the
exponent cannot be influenced.

This default behaviour (which concerns only the x87 FPU and the main
FPU when the compiler maps floating-point instructions to x87 instructions) can
explicitly be set via the command line option --no-extended; when the option
--extended is given, all intermediate calculations are done in double-extended
precision. IeeeCC754++ uses --no-extended by default.

Finally, the implementation of the x86 main FPU is largely identical to that of
the default main FPU (see Section 5.1.1); however, the “fake” fma implementation
is missing.

The x87 FPU

The term x87 has been commonly used for the 8087 FPU (which was initially
introduced as a separate coprocessor for the 8086 CPU) and its descendants which
were integrated into the CPU on the same die starting with the 80486 processor.
For details on the history of the x87 FPU, see [WIK17ak].

For maximum accuracy when executing floating-point operations, the x87 FPU
features a so-called double-extended design, implementing an 80 bit FPU with
all registers being 80 bits wide. When executing calculations in single or double
format, intermediate results are rounded to double-extended precision and only
rounded to target precision when writing results back to memory. Although this
approach yields better numerical accuracy, it may lead to portability issues, since

5.2 The x86 architecture 175

results might not be identical when computed on a double-based architecture (for
a more detailed discussion, cf. e. g. [MMM13] or [Mul+10, pp. 75 sqq.]).

Note that it is possible to switch the x87 FPU into a state in which operations
are not performed in extended precision before rounding to target precision, but
correct significand length of the chosen precision is used. This approach avoids
double roundings, since only one rounding to correct significand size is needed.
However, the size of the exponent is not influenced by this setting. This means that
in this state, operations on double precision operands would be performed with a
significand length of 53 bits, but with an exponent that is 15 bits wide (instead
of the 11 bits used in double precision). This mode of operations was chosen as
default since IeeeCC754++ tries to assess the best possible IEEE-conformity of
a user environment, i. e. by default, the IeeeCC754++ x87 FPU will always use
the correct significand size when executing tests. The “extended” precision mode
can be selected by using the command line option --extended. As a final note
concerning precision, the choice of using correct significand length for intermediate
calculations has to be kept in mind when executing IEEE-conformity tests since by
default (i. e. when a user uses the x87 FPU without enabling this mode), extended
precision is used for intermediate calculations.

In order to ensure that floating-point instructions are indeed executed inside
the x87 execution unit, the IeeeCC754++’s x87 FPU implements those operations
present in the x87 instruction set as inline assembler calls. Amongst these are all
basic and conversion operations (cf. Section 1.2.1, page 11) with the exception of
conversions between binary and decimal representations. The supported formats
are single, double, and extended.

The 3dnow FPU

3DNow! represents an extension to the x86 instruction set proprietary to AMD
and implemented in AMD processors from 1998 to 2010 [AMD00a; AMD00b;
WIK17a]. It consisted of a limited number of floating-point instructions that
operate on its native data type, a vector of two packed single operands. Only
roundTiesToEven is supported.

The 3dnow FPU in IeeeCC754++ uses inline assembler implementations of
addition, subtraction, multiplication, and conversion to and from integers by
directly using the corresponding instructions in the 3DNow! instruction set. For
division and square root, no direct equivalents are available, but 3DNow! provides
instructions for reciprocal division and square root estimates, as well as instructions
for further iteration steps in a Newton-Raphson iteration (see [Sco85; HP11]).
Consequently, the IeeeCC754++ implementation uses an inline assembler version
of the corresponding iterations to compute division and square root.

Note that this FPU is implemented only for historical reasons since only
computers featuring legacy AMD processors are able to execute instructions from
the 3DNow! instruction set.

176 Architecture ports

It should be mentioned that 3DNow! does not represent the first extension
to the x86 instruction set aimed at speeding up multimedia computations (such
as video and audio processing). In 1997, Intel introduced MMX as a multimedia
extension to the Pentium processor. However, since MMX only supports integer
instructions, it is not relevant for IeeeCC754++.

The sse, ssei, sses FPUs

In 1999, Intel presented the SSE (Streaming SIMD Extensions) instruction set
[INT17b, Chapter 10] [WIK17ae], followed by SSE2 in 2000 [INT17b, Chapter 11]
[WIK17aa]. SSE introduced a completely new stack for floating-point calculations,
including 128 bit wide SIMD registers and a new register for floating-point status.
SSE only supports single precision floating-point numbers, which results in the
ability to execute four single precision operations with one SIMD call. Support
for double precision was added with SSE2.

IeeeCC754++ implements three FPUs with SSE and SSE2 support, namely
sse, sses, and ssei. All three use the instructions supported by SSE: addition,
subtraction, multiplication, division, and square root, as well as conversions
between floating-point formats and floating-point and integer numbers. While sse
and sses use inline assembler routines for the operator calls, ssei implements the
operators via compiler intrinsics. The sse and ssei FPUs make use of the SSE
SIMD registers, thereby working on four single or two double values simultaneously.
The sses FPU implements a scalar version which executes only one floating-point
operation on the first entry in the SIMD vector. For details on testing vector
units and their scalar versions, cf. Section 3.1.12

Note that this feature (using the SSE units with scalar operands) is also
employed by recent compilers for floating-point calculations on x86 platforms:
Although the x87 FPU uses larger intermediate precision and therefore yields
more precise results, the SSE units offer much higher performance and are chosen
by compilers as the default execution unit for floating-point instructions. As an
example, gcc from version 4.0 on executes floating-point instructions inside the
SSE unit if not otherwise directed (and if compiled on a platform that features
SSE support).

As a final note, all four classic rounding modes are supported (see above),
whereas only single and double precision operands are possible.

The sse3, sse3i, sse3s FPUs

Intel released further instruction set extensions to SSE called SSE3, SSSE3, and
SSE4 between 2004 and 2006, adding only a few instructions relevant for floating-
point calculations (cf. [INT17b, Chapter 12] and [WIK17ab; WIK17ad; WIK17ac]).
IeeeCC754++ implements only the most relevant functions inside the sse3, sse3i,

5.2 The x86 architecture 177

and sse3s FPUs:2 the instruction ADDSUBPX which subtracts the values in the
first entries of the operands and adds the values in the second entries, HADDPX and
HSUBPX that perform “horizontal” operations on the SIMD vectors,3 and ROUNDSX
which rounds values to integral format (X standing for either S or D to denote
single or double target precisions). In order to evaluate these instructions, only
addition, subtraction, and rint() are implemented in the FPUs.

Note that in order to support the ADDSUBPX, HADDPX, and HSUBPX instruc-
tions, IeeeCC754++ features the function fillVecHorizontal() that spreads the
operands into the SIMD vectors into the appropriate locations (cf. Appendix B.7).

Similar to the SSE case, three variants of the SSE3 FPUs exist: One imple-
menting the operations as inline assembler instructions on SIMD vectors (sse3),
one using inline assembler on scalars (sse3s), and finally an intrinsics vector
version (sse3i). Note that the sse and ssei FPUs use HADDPX and HSUBPX to
implement addition and subtraction, whereas the sses FPU uses the addition and
subtraction parts of the ADDSUBPX instruction for the corresponding operation.

The avx, avxi, avxsse, avxssei FPUs

Since 2011, another major addition to the x86 instruction set has been supported by
processors from both AMD and Intel: AVX (Advanced Vector Instructions) which
supports SIMD vectors which are 256 bit wide [INT17b, Chapter 14] [WIK17b].
The supported instructions are mostly AVX variants of all SSE instructions, albeit
working on the new larger registers, thereby being able to perform eight single or
four double operations with one function call.

AVX2 extended the support for some SSE integer instructions missing in AVX,
as well as adding an fma instruction fully conforming to IEEE 754-2008. The avx
FPU once again features an inline assembler implementation targeting the AVX
SIMD vectors, while the avxi FPU employs compiler intrinsics.

In addition to the “native” mode, the AVX unit in x86 processors can also be
used in a legacy SSE mode by using a special instruction prefix (the VEX prefix,
see [WIK17ai]) and the first 128 bits of the 256 bit wide AVX registers. The
corresponding FPUs inside IeeeCC754++ are called avxsse and avxssei (inline
assembler and intrinsics versions).

Note that due to compiler limitations, it is not possible to build IeeeCC754++’s
SSE and AVX FPUs at the same time. Consequently, if the SSE and AVX
FPUs should be checked for conformity in the same user environment, two x86
IeeeCC754++ executables need to be built.

2Since only a few floating-point instructions were added to the SSE instruction set with
SSE3, SSSE3, and SSE4, they are all collected as “SSE3” FPUs into IeeeCC754++.

3Given double input vectors x “ px0, x1q and y “ py0, y1q, a regular SIMD addition would
yield a result addpx, yq “ x ` y “: z “ pz0, z1q with z0 “ x0 ` y0 and z1 “ x1 ` y1. In the
horizontal case, the operands for the underlying scalar addition are not taken from both input
SIMD vectors, but the values located inside each vector are summed: haddpx, yq “: z “ pz0, z1q
with z0 “ x0 ` x1 and z1 “ y0 ` y1. For details, see [INT17b].

178 Architecture ports

The avx512, avx512i FPUs

In 2013, Intel proposed 512 bit extensions to the AVX ISA called AVX-512
[INT17b, Chapter 15] [WIK17d]. They consist of a family of extensions supporting
vectors of 512 bit length; not all processors implementing AVX-512 must support
all extensions. Since the only mandatory extension AVX-512F (AVX-512 Founda-
tion) contains all instructions which are relevant for floating-point computations,
IeeeCC754++ only supports AVX-512F. Currently, AVX-512 is only supported in
the Intel Xeon Phi x200 product family [INT17d], also called Knights Landing
(KNL), and processors with Skylake microarchitecture [INT17a].

Similar to the SSE and AVX FPUs, IeeeCC754++ implements avx512, an FPU
that uses inline assembler instructions, and avx512i, a variant employing intrinsics.
They are vector FPUs and support all four classic rounding modes.

5.2.2 The mic port

IeeeCC754++ includes support for KNC and KNL chips, albeit in different form:
Since KNL processors are released in a bootable form factor and running the
main operating system, the execution model is identical to usual x86 platforms.
Therefore, support for KNL is built into IeeeCC754++’s x86 architecture with the
avx512 and avx512i FPUs; for details, see Section 5.2.1 above.

For KNC support, the mic architecture has been implemented by employing
KNC’s offload model: IeeeCC754++ itself is run on the host CPU, and only the
actual floating-point operations are offloaded to the KNC accelerator device via
compiler pragmas. The main FPU is implemented in a manner similar to the x86
main FPU, but the actual floating-point operations are offloaded to the KNC.

For all three FPUs, an IeeeCC754++ executable built for the mic architecture
supports two additional command line arguments: -scan scans for KNC devices
attached to the host system and prints the number of devices found, and -
device=<DEVICE> selects the attached KNC device number <DEVICE> for the
execution of the offloaded floating-point operations. If n devices are found on the
platform, a value in the range of 0, . . . , n´ 1 selects the respective device whereas
a value of ´1 leaves the choice to IeeeCC754++ (or rather, the software library
responsible for initialisation and setup of the KNC devices).

The avx, avxi FPUs

The mic port contains two variants of FPU that make use of the SIMD units
built into KNC processors: avx which has been implemented with inline assembler
instructions, and avxi using intrinsics.

5.3 The ARM architecture 179

5.3 The ARM architecture
“ARM [. . .] is a family of reduced instruction set computing (RISC) architectures
for computer processors, configured for various environments.” [WIK17c] Processors
based on the ARM architecture still play a comparatively minor role in HPC,
despite its dominant role in the mobile market where almost all smartphones
and most tablets feature CPUs based on some variant of the ARM ISA. The
architecture is developed by the company ARM Holdings which itself does not
manufacture semiconductor chips. Instead, it develops the ISA and hardware
designs for processor cores based on that ISA and licenses the IPs of these
components according to the following models [Shi13]:

• A processor license is the license to use a CPU design from ARM Holdings.
How the design is implemented into silicon is up to the licensee, as long as
the design itself is not changed. ARM Holdings provides general guidelines
as to how these designs should be implemented, but the process can be
adapted as needed.

• With a processor optimisation pack (POP), ARM Holdings licenses an op-
timised processor design manufacturable at a specific semiconductor foundry.
POPs are available for various processor/foundry/process node combinations.
This model denotes the easiest way to produce a CPU with ARM ISA, but
it does not allow for application specific optimisation e. g. with regard to
maximum performance or increased power efficiency.

• An architecture license allows for the custom implementation of the licensed
ARM ISA into the customer’s product. It can be freely designed and
implemented into the resulting processor as long as it follows the respective
ISA.

Due to these licensing models, a huge variety of slightly different processors based
on ARM ISA exists. Furthermore, different ISAs have been developed over the last
decades, mainly aimed at scenarios where low power consumption is desired, e. g.
embedded devices such as control boxes modules in manufacturing or automotive
applications, or smartphones or tablets for which extended device runtime with
one battery charge is desirable. According to [WIK17c], “ARM is the most widely
used instruction set architecture in terms of quantity produced.”

Starting in the 1980s, different variants of the ARM architecture have been de-
veloped as 32 bit architectures, the currently most widespread one being ARMv7-A.
In 2011, ARM Holdings announced ARMv8-A which introduced a new 64 bit ISA,
sometimes also called AARCH64. IeeeCC754++ supports both variants, but due to
differences in the instruction sets in separate architectures: The arm architecture
supports all 32 bit variants, whereas the aarch64 architecture supports ARMv8-A
in 64 bit mode.

180 Architecture ports

5.3.1 The arm port
With regard to floating-point computations in the arm architecture, two extensions
to the ARM ISA are most relevant: VFP and NEON (see below). In order to
check ARM processors without these extensions for IEEE-conformity, the main
FPU can be used which is implemented in a manner almost identical to the main
FPU in the default architecture.

The vfp, vfps, vfpv4, vfpv4s FPUs

VFP (vector floating point) is a coprocessor floating-point extension to ARM
instruction sets up to ARMv7-A. It provides instructions for the basic arithmetic
operations including square root and fma for single and double precision floating-
point numbers, as well as corresponding VFP floating-point registers. Note that
the “vector” acronym is slightly misleading, since VFP operates on vectors of
size up to 256 bits, albeit not in true SIMD fashion: The operations on vector
elements are not executed in parallel, but one after the other.

IeeeCC754++ implements two FPUs which support two variants of VFP: vfp
which can be built for VFP up to version 3, and vfpv4 which supports version 4
and includes support for actually fused fma (i. e. multiply and addition without
intermediate rounding – earlier VFP version include a multiply-add instruction
that is not fused). Furthermore, IeeeCC754++ provides scalar variants of both
FPUs named vfps and vfpv4s that do not operate on VFP vectors, but instead on
single VFP values stored in VFP registers, and that add support for conversions
between floating-point numbers and conversions to and from 32 bit integer values.
All VFP instructions are implemented as inline assembler calls, including setting of
the requested rounding mode and retrieval of floating-point exceptions. Finally, one
caveat regarding vector support in newer ARM needs to be mentioned: ARMv7-A
deprecates use of vectors in the VFP FPUs, i. e. VFP should only be used with
scalar operands (cf. [ARM14]).

The neon, neonq, neoni, neonqi FPUs

In ARMv7-A, NEON denotes an extension to ARM instruction sets geared towards
speeding up multimedia applications. In contrast to VFP, it is not specifically
tailored for floating-point computations, resulting in a much broader instruction
set including integer and fixed-point instructions. Floating-point instructions are
included only for single precision. NEON is usually implemented in true SIMD
fashion, i. e. it supports parallel execution. NEON and VFP need not both be
implemented at the same time; however, when both extensions are present, they
share the same set of processor registers. The NEON unit can view a register
bank as either sixteen 128-bit quadword registers called Q0-Q15 or thirty-two
64-bit doubleword registers called D0-D31.

5.3 The ARM architecture 181

IeeeCC754++ implements the following operations contained in the NEON
instruction set: the basic arithmetic operations including square root and con-
version to and from 32 bit integers. Variants using inline assembler instructions
and intrinsics exists, as well as variants working on D type registers (64 bit, i. e.
vectors of two singles) and Q type registers (128 bit, i. e. vectors of four singles).
The four resulting FPUs are then called neon, neonq, neoni, and neonqi, with q
indicating Q type registers and i denoting the intrinsics version.

5.3.2 The aarch64 port
The aarch64 architecture denotes IeeeCC754++’s implementation of the 64 bit
ARMv8-A instruction set (cf. Section 5.3). With ARMv8-A, VFP is no longer
supported, and NEON has been renamed to Advanced SIMD and significantly
expanded: ASIMD now includes full double precision and 64 bit integer support,
and the number of registers has been doubled. Furthermore, in contrast to
ARMv7-A, the ASIMD/NEON unit is a mandatory part of the ARMv8-A ISA.
In addition to these FPUs, ARM Holdings recently introduced a new vector unit
called SVE aimed primarily at HPC applications (for details, see below).

IeeeCC754++ supports all these FPUs as well as a general implementation of
the main FPU (which is identical to the arm architecture main FPU).

The neoni, neonqi, asimd FPUs

IeeeCC754++ implements NEON/ASIMD support by using inline assembler and
intrinsics versions. All FPUs support the basic arithmetic operations including
square root and fma, as well as the full set of conversions (excluding conversion
between binary and decimal formats).

The inline assembler version is called asimd to follow the new naming. However,
since compilers still use the NEON intrinsics naming scheme for backwards com-
patibility with programs written for ARMv7-A, the ASIMD FPUs in IeeeCC754++
using intrinsics to execute floating-point operations reflect this naming and are
called neoni and neonqi, with i denoting the use of intrinsics and q indicating that
Q type registers have been used (cf. Section 5.3.1). In contrast to the ARMv7-A
version of these FPUs, operands are supported in single and double precision. As
a consequence, the neoni FPU operates on vectors of either two singles or one
double (thereby not being a “real” vector operation), whereas Q type vectors in
neonqi comprise four singles or two doubles. Vectors in the asimd FPU are always
128 bit wide.

The sve FPU

In 2016, ARM Holdings announced SVE (Scalable Vector Extension), a SIMD
vector unit targeted at HPC applications. It operates on vectors ranging from
128 to 2048 bit length and claims full IEEE 754-2008 support for floating-point

182 Architecture ports

operations. The choice of actual vector width inside the processor hardware is
left to the manufacturer (as long as the vector size is a multiple of 128 bits).
However, in order to avoid recompiling applications for processors with SVE
implementations with differing vector sizes, the ARM ISA supports a VLA (vector
length agnostic) programming model enabling users to write programs for SVE
which can be executed on every platform that supports SVE, regardless of actual
(hardware) vector length.

As of the writing of this thesis, no hardware implementations of SVE exist,
although SVE enabled versions of clang and gcc are already available. The
sve FPU implemented inside IeeeCC754++ has been developed and tested for
functionality with the ARM instruction emulator armie [ARMa]. In order to
accommodate for the VLA programming model, IeeeCC754++ always operates on
vectors that are 2048 bit wide. As a consequence, while hypothetical hardware
using 2048 bit vectors would execute a floating-point operation on all vector
elements inside the sve FPU with only one instruction, another processor with
(again hypothetical) 512 bit vector length might need four instructions for the
same result.

The sve FPU implements all basic arithmetic operations including square root
and fma for single and double operands, as well as all conversions between floating-
point and integer formats. Note however that when converting a floating-point
value to an integer, rounding support is only available for roundTowardZero.

5.4 The Power Architecture
Processors and computers based on some variant of the Power Architecture
have a long and ramified history, making identification of the ISA of a given
“Power” processor non-trivial due to various instantiations of instruction sets and
architectures, various similar names for these, and features of different versions of
the respective ISAs being inherited and shared by only some ISAs. The POWER
history starts in 1990 when IBM introduced their first computer based on the
“POWER architecture” denoting a RISC ISA developed for mid-range workstations
and servers. A few years later, an alliance of Apple, IBM, and Motorola developed
a mass-market version of the POWER processor based on a so-called “PowerPC
architecture”. Since then, different variants of processors based on similar but
differing POWER ISAs have been released by different manufacturers, with IBM
being the most prominent developer. In 2004, IBM and 15 other companies founded
Power.org [WIK17w] “as an organisation with the mission of developing products
revolving around the Power Architecture and with the purpose of developing,
enabling and promoting Power Architecture technology” [WIK17v]. Processors
based on some variant of POWER ISA have been deployed in a broad range of
computing devices from desktop gaming consoles (e. g. Cell in the Sony PS 3,
Xenon in the Microsoft XBOX 360, and Broadway in the Nintendo Wii), desktops

5.4 The Power Architecture 183

and notebooks (especially in Apple products such as iBook, PowerBook, iMac,
Mac Mini, etc.), servers (IBM System i, System p, and Power Systems), and HPC
systems such as IBM’s Blue Gene line or QPACE which was based on the Cell
processor. In order to gain better access into the x86 dominated server market,
IBM founded the OpenPOWER Foundation in 2013, which opens up the POWER8
(and POWER9) ISA for licensing to different manufacturers. Table 5.2 shows an
overview of the different names and ISAs related to the Power Architecture. For
more details on the history and variants of the POWER ISA, cf. [WIK17v].

Term Description
POWER Performance Optimization With Enhanced RISC. An old

microprocessor instruction set architecture designed by IBM.
PowerPC Power Performance Computing. A 32/64-bit instruction set

for microprocessors derived from the POWER ISA, including
some new elements. Designed by Apple, IBM and Motorola.

PowerPC-AS PowerPC-Advanced Series. Codename “Amazon”. A purely
64-bit variant of PowerPC, including some elements from the
POWER2 version of the POWER ISA. Used in IBM’s RS64
family processors and newer POWER processors.

POWERn Where n is a number from 1 to 9. A series of high-end
microprocessors built by IBM using different combinations of
POWER, PowerPC, PowerPC-AS and Power ISAs.

Cell Cell Broadband Engine Architecture (CBEA), a micropro-
cessor architecture designed by IBM, Sony and Toshiba, which
has Power Architecture as a part.

Power Architecture The broad term designating all that is POWER, PowerPC and
Cell including software, toolchain and end-user appliances.

Power ISA A new instruction set, combining late versions of POWER and
PowerPC instruction sets. Designed by IBM and Freescale.

Table 5.2: Power Architecture: Names and ISAs. Mostly taken from [WIK17v].

Originally developed as a 32 bit big-endian RISC ISA, IBM introduced the first
64 bit variant with POWER2 in 1995. Current Power Architecture processors are
bi-endian, i. e. they support loading and storing both big-endian and little-endian
data. With the release of POWER8 in 2014, IBM chose little-endian as the default
access type. For more details, see [WIK17j]. Most POWER processors support
single and double floating-point numbers in hardware, while extended precision is
available in software with the IEEE 754-2008 quadruple format, i. e. the C data
type long double maps to an 128 bit quadruple format (in contrast to x86 where
long double usually maps to Intel’s 80 bit double extended format).

IeeeCC754++ tries to support the different variants of POWER ISA by supply-
ing a “generic” POWER architecture port called ppc4 which has been successfully

4The acronyms ppc for PowerPC and ppc64 for the respective 64 bit variant are used by the
Linux operating system. The naming in IeeeCC754++ reflects this choice.

184 Architecture ports

tested on Cell, POWER7, and POWER8 processors. It includes support for dif-
ferent SIMD units, namely altivec and vsx, as well as ppu FPUs mainly relevant
for the Cell processor, but also able to be used on POWER7 with correspond-
ing libraries. The ppc architecture features implementations of the conversion
operators between IeeeCC754++’s internal floating-point format and the machine
formats for both big- and little-endian configurations (although the big-endian
mode is only needed for POWER8 currently).

In addition to the ppc architecture, IeeeCC754++ implements two architecture
ports aimed at POWER architectures, differing to such a degree that supporting
these architectures inside the ppc architecture is technically not viable: Blue
Gene/Q, which denotes an architecture targeted at large-scale HPC applications
including a specialised SIMD unit called QPX (see Section 5.4.3 for the bgq
architecture), and the Cell processor which was developed by a consortium of
Sony, Toshiba, and IBM for a broad range of applications, cf. Section 5.4.2 which
describes the cell architecture.

5.4.1 The ppc port
The main FPU in the ppc architecture supports single, double, and quadruple
formats in little- and big-endian formats. All operators implemented in the
default main FPU are also supported in the ppc main FPU, with the exception
of fma. Since the other ppc FPUs add support for different hardware floating-point
extensions, they do not implement quadruple precision.

The altivec, vsx FPUs

AltiVec is a single precision floating-point and integer SIMD instruction set
designed and owned by Apple, IBM, and Freescale (formerly Motorola) which
was developed between 1996 and 1998. Since AltiVec is a trademark owned by
Freescale, it is also referred to as Velocity Engine by Apple and VMX (Vector
Multimedia Extension) by IBM. It provides 32 registers of 128 bit length and
instructions for the most common floating-point operations, including fma. Note
that there is no direct support for division and square root. Instead, instructions
for estimates of reciprocals and reciprocal square roots are provided. IeeeCC754++
emulates division and square root by using these instructions together with a
Newton-Raphson iterative approach, cf. Section 5.2.1.

In 2010, IBM introduced a SIMD unit called VSX (Vector Scalar Extension)
which extends AltiVec/VMX to support up to 64 floating-point registers, operations
on doubles, and instructions for floating-point division and square root. It was
first implemented in POWER7 processors.

IeeeCC754++ implements support for AltiVec/VMX inside the altivec FPU
which allows only for single operands and uses Newton-Raphson for division and
square root. Only conversion instructions from and to 32 bit integers are supplied

5.4 The Power Architecture 185

(by AltiVec and consequently the implementation inside IeeeCC754++), as well
as rounding a floating-point number to an integral value. The implementation is
done via intrinsics; all four classic rounding modes are supported.

The vsx FPU is also implemented using compiler intrinsics. However, due to
gcc and IBM XLC using different mnemonics for load and store operations, two
versions exist (which are automatically chosen by the IeeeCC754++ build system
depending on the chosen compiler): vsxgcc and vsxxlc. The same operations
and rounding modes as in the altivec FPU are supported; however, the vsxxlc
variant additionally supports conversion between single and double floating-point
formats and converting to 64 bit integers. Note that for gcc 4.3, only intrinsics
for single precision operations are available.

The ppu FPU

The PPU (Power Processing Unit) is the main processing unit used in the Cell
processor. A more thorough description of the PPU design (and the Cell design
in general) is given in Section 5.4.2. The ppu FPU (and the corresponding SIMD
variants ppusimd and ppusimdi, see below) are implemented as FPUs for the ppc
Architecture for the following reasons: Since it represents an implementation of a
64 bit Power Architecture, some of its features, especially concerning floating-point
execution, are available in other POWER ISAs, and IBM makes the corresponding
intrinsics available via the C header file ppu_intrinsics.h. Consequently, these
FPUs are not implemented as Cell FPUs, but for the more generic ppc architecture,
although not all of these PPU instructions are necessarily available on every
POWER platform (such as a (scalar) square root implementation). The ppu FPU
has been confirmed to work on Cell and POWER7 CPUs.

The ppu FPU is a scalar FPU supporting the following floating-point operations
for single and double operands: multiplication, square root, fma, and conversion
from and to 64 bit integers. Furthermore, IeeeCC754++ implements addition and
subtraction by using fused multiply-add (and multiply-subtract5), since there are
no regular addition and subtraction operators. Division is once more supported
via a reciprocal estimate operation and a following Newton-Raphson iteration. All
classic rounding modes are supported.

The ppusimd, ppusimdi FPUs

In the Cell CPU, the main floating-point compute capabilities and performance
is provided by up to eight SPUs (see Section 5.4.2). These are usually accessed
using a specifically tailored set of function calls, collected in a SIMD library
called spusimd. In order to provide for an (almost) identical way of accessing the

5Fused multiply-subtract is a variant of fused multiply-add where a multiplication is followed
by a subtraction instead of an addition. Note that this “fms” operator can make use of fma
hardware since only the sign bit of the third operand needs to be flipped.

186 Architecture ports

floating-point capabilities in the PPU, IBM provides identically named functions
inside the SIMD library ppusimd. These instructions target the VMX FPU inside
the PPU (which supports only single precision operands), and the following
operations are supported for all rounding modes (implemented in the ppusimd
FPU in IeeeCC754++): division, remainder, square root, fma, round to integral
value, and conversion to (32 bit) integers.

There are two ways to make the instructions available inside a C program:
by either importing all function definitions via the header file simdmath.h, or by
importing only specific functions via single header files such as simdmath/fmaf4.h
to use the _fmaf4 intrinsic that executes an fma operation on a vector of four single
floating-point numbers. IeeeCC754++ supplies two FPUs to reflect these different
ways of accessing the floating-point instructions: The ppusimd FPU imports
all function definitions by using the header file simdmath.h, and the ppusimdi
FPU uses the second variant, i. e. it includes header files for every supported
floating-point instruction. Apart from this, the FPUs are identical.

5.4.2 The cell port
“Cell is a multi-core microprocessor microarchitecture that combines a general-
purpose Power Architecture core of modest performance with streamlined co-
processing elements which greatly accelerate multimedia and vector processing
applications, as well as many other forms of dedicated computation. [. . .]. It was
developed by Sony, Toshiba, and IBM [. . .]. Cell is shorthand for Cell Broadband
Engine Architecture, commonly abbreviated CBEA in full or Cell BE in part.”
[WIK17f] The most notable deployments of the Cell processor (or its newer and
slightly modified successor PowerXCell 8i) are in the Sony PS 3 gaming console and
the IBM Roadrunner [WIK17p] and QPACE [Bai+09; WIK17x] supercomputers.

The Cell consists of an PPU (see Section 5.4.1) which serves as main CPU
and up to eight coprocessing elements called SPU (Synergistic Processing Unit)
which provide computing performance for multimedia and scientific workloads.
The PPU includes a VMX unit that supports single precision SIMD floating-point
operations on 128 bit wide vectors (cf. Section 5.4.1), but due to its limited
performance, it is rarely used for floating-point computations. On the other hand,
each SPU consists of a SIMD unit working on vectors that are 128 bit wide, and
a moderately sized but very fast memory called local store. It allows for SIMD
floating-point operations on either single or double precision operands, with the
double precision operations being up to eight times slower compared to operations
on single precision operands in the earlier Cell versions, and only taking twice the
time on the PowerXCell 8i.

The floating-point facilities of the SPU are not fully IEEE-conforming. For
single precision, not being conforming was a design decision to allow for fast and
consistent execution times of the floating-point operations. Therefore, only the
roundTowardZero rounding mode is supported (implemented by simply truncating

5.4 The Power Architecture 187

the result, i. e. by dropping all bits after the last place of the significand), and
all subnormal numbers are flushed to zero (FTZ and DAZ). Additionally, no
NaNs are supported. Instead, the (unbiased) exponent ex “ U ` 1 “ 255 is
used as a regular exponent, allowing for larger normalised floating-point numbers
than specified by IEEE 754-2008. For double precision, the implementation is
almost IEEE-conforming: All four classic rounding modes are supported, and the
maximal exponent is used for infinity and NaN representation. However, FTZ and
DAZ are also used for double precision operands and results. For details on the
implementation of the floating-point capabilities of the SPU, we refer to [Mue+05].

Since the PPU is based on POWER ISA, its normal floating-point capabilities
including the VMX unit can be tested via the ppc architecture and its main and
altivec FPUs. Furthermore, the special capabilities built into the PPU can be
tested by using the ppu, ppusimd, and ppusimdi FPUs (cf. Section 5.4.1). As a
consequence, IeeeCC754++ implements only SPU support with the spu, spusimd,
and spusimdi FPUs inside the cell architecture and does not make use of the
main FPU (i. e. is does not implement any operations).

Note that to compile IeeeCC754++ with the cell architecture and either of
the three FPUs, the Cell SDK version 3.1 is needed. The cell architecture inside
IeeeCC754++ contains the code necessary to create and spawn threads on an SPU,
as well as code that handles data transfer from main memory to local store and
executes the desired floating-point operation on a SIMD vector inside an SPU.
The resulting executable provides two additional command line parameters: By
default, every test vector is executed simultaneously on all SPUs (and the results
are evaluated) before proceeding with the next test vector. --spus=<SPUs> limits
the number of SPUs used for the floating-point execution to <SPUs> SPUs. In
particular, with --spus=1, only the first SPU is employed for IEEE-conformity
testing. Additionally, the parameter --nosched binds the SPU contexts created by
IeeeCC754++ to the respective SPUs on which they have been created and prevents
the operating system from scheduling a context on a different SPU. This approach
ensures that indeed all execution units on all SPUs are tested by spawning one
context on every SPU and using that context for testing.

The spu FPU

The spu FPU employs the intrinsics supplied by the Cell SDK to target the
floating-point operations in the SPU instruction set as directly as possible. As a
consequence, the list of supported operations and precisions reflects the choices
of the SPU ISA designers: `, ´, ˚ and fma are supported for single and double
operands. There are no operations that directly supply division and square
root, but only reciprocal and reciprocal square root estimates, and those are
only supplied in single precision. The spu FPU therefore implements single
precision division and square root via the Newton-Raphson iterative approach.
Also, conversion between floating-point and integer formats is only supported

188 Architecture ports

between singles and 32 bit integers. Finally, converting from double to single
precision floating-point numbers is contained in the instruction set.

Due to Cell being a discontinued architecture that is not widely deployed any-
more, IeeeCC754++ does not implement handling of rounding modes or exceptions
on the SPUs. Therefore, the spu FPU only supports roundTowardZero for single
precision (due to SPU limitations, see above) and roundTiesToEven (the default
rounding mode) for double precision operators. It should be kept in mind that
the SPU uses FTZ and DAZ, i. e. for meaningful testing results, the command
line option --nosubnormal should be used.

The spusimd, spusimdi FPUs

Since the intrinsics provided for the SPU are incomplete from an IEEE-conformity
point of view, the Cell SDK provides an (almost) complementary SIMD library
called simdmath that supports the following operations: division, remainder, square
root, and fma, as well as rounding to integral value and converting floating-point
numbers to 64 bit integers. All of these are available for single and double operands
for all four classic rounding modes.

The simdmath library can be used for computations on the PPU and the
SPU; depending on the context, either VMX instructions (or software equivalents)
or SPU SIMD instructions are generated by the compiler. The functions are
provided in one of two ways: The whole simdmath library can be imported into a
C program via the header file simdmath.h, and it is also possible to only include
specific functions by including their prototype via specific header files such as e. g.
simdmath/sqrtf4.h and simdmath/sqrtd2.h for single and double square roots.
The spusimdi FPU uses the latter approach while the spusimd FPU includes
all functions at once. The naming is thus identical to that of the ppusimdi and
ppusimd FPUs in the ppc architecture (cf. Section 5.4.1).

5.4.3 The bgq port
IBM’s Blue Gene [IBM11b; WIK17e] is a line of supercomputers designed for
the HPC space. Numerous installations of the three models that have been
available since 2004 (Blue Gene/L, Blue Gene/P, and Blue Gene/Q) topped
the Top500 [TOP500b], Green500 [Green500], and Graph500 [Graph500] lists,
with Blue Gene/Q installations leading all three lists at the same time in June
2016 [WIK17e]. All Blue Gene machines are massively parallel multiprocessing
computers with custom highspeed networks, enabling the parallel execution of
jobs with up to hundreds of thousands of cores.

The latest incarnation Blue Gene/Q [IBM11a] employs processing cores called
IBM A2 that are based on POWER ISA. Each processor contains 18 computing
cores, 16 of which are used for actual computations, one is reserved for the
operating system and input/output, and one is designated as spare should one

5.4 The Power Architecture 189

of the other cores fail. Each core contains four double precision pipelines with
256 bit wide vector registers usable for scalar operations or SIMD operations on
four double precision vectors.

IeeeCC754++ implements the main FPU in the bgq architecture as a big-endian
version of the default main FPU. This means it supplies support for all operations
and rounding modes on single, double, and quadruple floating-point numbers.

An additional note is needed for Blue Gene/Q’s execution model: Since Blue
Gene/Q is targeted at HPC applications, the system design allows for a smallest
subset of one node (which consists of 32 A2 processors) to be allocated as compute
resources. In order to run IeeeCC754++ (which is a serial program), the bgq
architecture must be compiled with MPI support. Upon start, IeeeCC754++
determines which processor (rank in MPI terms) it is running on and terminates
itself on all but the first processor.

The qpx, scalar FPUs

In IeeeCC754++, Blue Gene/Q’s SIMD unit is supported by two FPUs which
use different sets of intrinsics: The scalar FPU employs intrinsics that perform
scalar floating-point operations on single and double operands via an interface
similar to the PPU intrinsics used in the ppc ppu FPU (cf. Section 5.4.1). The
arithmetic operations `, ´, ˚, square root, and fma are supported, as well as
rounding to integral value and converting from floating-point numbers to integers.
Furthermore, instructions for division exist; as their names __swdiv and __swdivs
imply, the actual division routines do not call equivalents implemented in hardware,
but rather emulate the operation in software. All four classic rounding modes are
supported.

The SIMD unit implemented in the Blue Gene/Q processor is called QPX (Quad
Processing eXtension to the Power ISA)[Fox12]. Every QPX vector is 256 bits
wide and contains four double precision floating-point numbers. Consequently,
only instructions performing floating-point operations on doubles are supplied.
The IeeeCC754++ qpx FPU makes use of these instructions when testing double
precision operations; single precision operations are implemented inside the qpx
FPU by converting the operands from single to double, performing the QPX
operation, and converting the resulting double value back into single format.
Obviously, this double rounding (the first rounding occurring during the floating-
point operation and the second when converting to single) might lead to wrong
results. Therefore, this special setup for the qpx FPU has to be kept in mind
when evaluating the IEEE-conformity of QPX.

QPX supports all four classic rounding modes, and the following floating-point
operations are supplied in hardware (and implemented inside IeeeCC754++): `,
´, ˚, fma, rounding to integral value, and converting double into single values.
Furthermore, software instructions are provided for division and square root. In
this manner, it is possible to use division and square root inside algorithms which

190 Architecture ports

are implemented for QPX, although the execution times for these operations are
higher than the hardware implementations for e. g. addition or fma. Finally, since
only double values are allowed in QPX vectors, the QPX instruction set contains
no routines to convert between floating-point numbers and integers.

5.5 GPUs and accelerators
In this section, we discuss accelerators in the sense of hardware that complements
the main processor built into a computing environment by supplying additional
computing power, typically targeted at specific computing needs (see also Sec-
tion 1.4.2, page 28). In this thesis, we consider only two types of accelerators:
GPUs (see below) and the Intel KNC chips (cf. Section 5.2.2). Note that sup-
port for other accelerators such as FPGAs can be added to IeeeCC754++ by
implementing a custom architecture port, see Section 3.1.5 and Appendix B.

Originally, GPUs (graphics processing units) were developed as extension
cards dedicated exclusively to generating video output for computer monitors,
e. g. to support graphically demanding computer games or CAD (computer aided
design) programs where using a dedicated GPU card would result in tremendously
faster video output. Around 2001, GPUs gained support for programmable
shaders and floating-point numbers, originally to enable more complex graphics
calculations [WIK17n]. Since GPUs offered an excellent price versus (theoretical
peak) performance ratio, scientists soon began to port numerical algorithms to
GPUs. In order to achieve this, toolkits and APIs such as OpenGL and DirectX
had to be used targeted at and more suitable for actual graphics processing
on GPUs. General purpose computing on GPUs (also called GPGPU) reached
mainstream status when NVidia released the first version of CUDA (Compute
Unified Device Architecture) in 2007. The importance of computing on GPGPUs
is illustrated by the publication of books such as [SK11] or [CS15].

Technically, GPGPUs can be seen as accelerators which execute a large number
of numerical calculations concurrently. Memory and computing units in GPUs
are organised in blocks that contain a large number of identical execution units.
Typically, each block can execute a certain number of computations in a manner
similar to the SIMD programming model used in vector execution units. All
current GPUs and toolkits support floating-point computations and claim to be
IEEE-conforming. Usually, floating-point operations on half, single, and double
operands are implemented. The dominant frameworks are CUDA for NVidia GPUs
and OpenCL that supports GPUs from all major vendors (as well as computations
on the CPU through the same API).

The execution model for algorithms on GPUs is significantly different from
the CPU execution model: Algorithms are implemented as compute kernels which
are then compiled into code that is executable on the GPU. The execution of the
kernels is triggered by the CPU through the API used (e. g. CUDA or OpenCL).

5.5 GPUs and accelerators 191

The data on which the computation operates must either be already available on
the GPU or explicitly transferred to and from the device. The smallest execution
unit is one block of shaders (i. e. numerical execution units). Each block can run a
certain number of threads executing the same kernel concurrently on the desired
data. From a programming point of view, the execution of a kernel can be seen as
a SIMD operation on numerical data.

IeeeCC754++ adopts this execution model: The floating-point operations to be
tested are implemented as GPU compute kernels and executed as threads inside
blocks. To achieve this, the number of blocks and the number of threads per
block can be explicitly given via the commandline parameters --blocks=<BLOCKS>
and --threads=<THREADS> (with defaults of 16 blocks and 16 threads per block).
The resulting vector length lv is then given by lv “ <BLOCKS> ¨<THREADS> , with
a default of lv “ 256. IeeeCC754++ initialises the respective input vectors with
the operands, transfers the data to the GPU, executes the requested number of
threads, and retrieves the result vector. Afterwards, the result is evaluated as
usual.

Two additional parameters are important when executing IeeeCC754++ on
GPUs: --scan tries to detect the respective accelerators (GPUs in the case of
CUDA and GPUs and CPUs in the case of OpenCL) and lists the available
devices. The complementing parameter --device=<DEVICE> triggers execution
of the floating-point operations on the selected device, with <DEVICE> being the
device number as reported by --scan.

5.5.1 The nv port
The nv architecture in IeeeCC754++ targets NVidia GPUs via CUDA, which “is a
software layer that gives direct access to the GPU’s virtual instruction set and
parallel computational elements, for the execution of compute kernels” [WIK17h].
Since the first introduction of CUDA, GPUs have improved significantly, resulting
in more and advanced functionality available. CUDA handles the differing feature
sets resulting from different versions of the CUDA toolkit, as well as different
GPU cards, by collecting features in so called “compute capabilities”. A backward-
compatible approach is used, i. e. programs compiled with support for lower
versions of compute capability can be run on newer hardware supporting higher
versions of compute capability. From a floating-point point of view, operations
on single precision operands have been supported from compute capability 1.0.
The most notable changes with newer versions are double support starting with
compute capability 1.3, rounded versions of division and square root which are
fully IEEE-conforming from compute capability 2.0, and finally half precision
support implemented in compute capability 5.3 and newer (cf. [NVi17a]).

It is important to note that code compiled for compute capability versions
higher than available on a specific GPU will result in incorrect numerical output –
in tests, all vectors returned by such an executable were always zero. Therefore, it is

192 Architecture ports

advisable to compile IeeeCC754++ targeting a certain GPU with the exact compute
capability version supported by that GPU by using the configure parameter
--with-sm=<CC> where <CC> is the supported compute capability version. The
default for <CC> when configure is called without a --with-sm parameter is 2.0,
thereby enabling full double support.

The cuda, cuda_rn FPUs

CUDA supports the usual floating-point operations such as the basic operations
`, ´, ˚, {, remainder, square root, fma, and all conversions except between binary
and decimal formats (which are not relevant on an accelerator). In addition, all
elementary functions defined by C99 are implemented. However, no floating-point
exceptions are supported. Since compute capability 2.0, all operations support
IEEE 754-2008 (except exceptions) and in particular subnormals – in older versions,
some operations such as division and square root were lacking subnormals support,
resulting in subnormal results being flushed to zero.

The main FPU adopts an implementation style similar to the default main
FPU: The basic arithmetic functions are executed by using the regular C operators,
and conversions are supported by functions with the same names as the corres-
ponding C functions. Floating-point operations are executed on scalar operands,
not on vectors. Note that setting rounding modes by modifying the environment is
not supported. Therefore, all operations are executed in roundTiesToEven mode.
IeeeCC754++ implements support for single and double precision operations for
all FPUs inside the nv architecture.

The cuda FPU is basically identical to the main FPU, but executes floating-
point operations on vectors in a SIMD fashion, launching the requested number
of blocks and threads on the GPU. Finally, the cuda_rn FPU accommodates for
the fact that only roundTiesToEven is supported: It uses the regular cuda FPU
implementation by directly calling the operators contained in latter FPU, but it
registers only the roundTiesToEven rounding mode.

The cudai FPU

In addition to the CUDA C-style operators which only support roundTiesToEven,
the CUDA API provides intrinsics versions of all operators except floating-point
remainder. These intrinsics exist in four versions, each supporting one of the four
rounding modes roundTiesToEven, roundTowardPositive, roundTowardNegative,
and roundTowardZero. The cudai FPU inside IeeeCC754++ makes use of these
intrinsics to implement a fully rounded version of CUDA operands. Note that
since exceptions support is not implemented on GPUs, it also not available for
these functions.

5.5 GPUs and accelerators 193

5.5.2 The opencl port
While NVidia’s CUDA supports only GPUs (and only those built by NVidia
itself), the OpenCL (Open Computing Language) API targets a much broader
spectrum of computing devices: “OpenCL is a framework for writing programs
that execute across heterogeneous platforms consisting of central processing units
(CPUs), graphics processing units (GPUs), digital signal processors (DSPs),
field-programmable gate arrays (FPGAs), and other processors or hardware
accelerators. OpenCL specifies programming languages (based on C99 and C++11)
for programming these devices and application programming interfaces (APIs) to
control the platform and execute programs on the compute devices.” [WIK17u]

OpenCL views a platform as consisting of a number of compute devices, which
might be CPUs or accelerators such as GPUs, attached to a host processor (usually
the CPU). Similar to CUDA, functions are executed as compute kernels and must
be compiled for the target device prior to execution. The smallest computing
unit in an OpenCL device is called PE (processing element), with a compute unit
consisting of several PEs. In practice, OpenCL is mainly used to write portable
code for GPGPUs, since OpenCL denotes an open standard adopted by all major
CPU and GPU vendors (in contrast to NVidia’s proprietary CUDA API). In
order to describe the execution units in GPUs that actually perform floating-point
operations, IeeeCC754++ uses the more general notion of blocks and threads even
in the opencl architecture.

In order to provide a uniform interface to GPUs regardless of the API used
(either CUDA or OpenCL), IeeeCC754++ implements a set of commandline para-
meters in the opencl architecture almost identical to the nv architecture, i. e. the
parameters --threads, --blocks, --scan, and --device are supported to select
block size and number of threads and to detect which devices are present on
the current platform. Additionally, due to OpenCL targeting a broader range of
devices, two additional parameters are supported: --platform=<PLATFORM> selects
a platform as detected by --scan (the available choices usually consisting of the
host CPU and an accelerator such as a GPU), and --type=cpu|gpu selects either
the first CPU or the first GPU found on the current platform as target device for
the execution of floating-point operations.

The opencl, opencl_rn FPUs

Similar to IeeeCC754++’s nv architecture (see Section 5.5.1), the main FPU inside
the opencl architecture implements scalar operations on the target device via the
OpenCL API. It calls the usual C operators, as well as conversion routines named
after the corresponding C functions. Setting rounding modes or retrieving floating-
point exceptions is not supported; all operations are executed in roundTiesToEven
mode. The main FPU nonetheless registers all four classic rounding modes.
The reason for this decision lies in four operators being available that perform
rounding a floating-point number to an integral value in different manners, namely

194 Architecture ports

opencl_rint, opencl_ceil, opencl_floor, and opencl_trunc. Therefore, the
round to integral operator has been implemented in IeeeCC754++ by making use
of these functions. IeeeCC754++ supports single and double precision operands in
all FPUs in the opencl architecture.

Mimicking the implementation of FPUs in the nv architecture, two additional
almost similar FPUs exists for OpenCL: The opencl FPU uses the same operators
as the main FPU, but works on SIMD vectors (whose length is determined by the
requested numbers of blocks and threads, see above), and the opencl_rn FPU
uses all operators from the opencl FPU, but registers only the roundTiesToEven
mode.

The opencl_round FPU

OpenCL only provides versions of the arithmetic functions using roundTiesToEven.
However, for conversions between floating-point formats and between floating-point
and integer formats, directed rounded versions exist. Similar to the intrinsics
with rounding support in the nv cudai FPU, every conversion routine exists
in four versions, each implementing one of the four classic directed rounding
modes. IeeeCC754++ implements rounded versions of these conversions inside the
opencl_round FPU by selecting the corresponding OpenCL function depending
on the currently tested rounding mode. Once again, floating-point exceptions are
not supported.

5.6 In-network computations
In Section 1.4.8, we discuss the advent of in-network floating-point computations
which might under certain circumstances be executed somewhere in the network
stack connecting different (typically homogeneous) computing platforms, in most
cases without control of the exact execution by the user. This means that the
actual floating-point computation might be performed on the processor, on the
network interface card, or even inside a network switch.

5.6.1 The mpi port
The mpi architecture in IeeeCC754++ is a proof-of-concept implementation to
check network style reductions (cf. Section 1.4.8) for IEEE-conformity. It makes
use of the widespread MPI API [MPI15] to trigger floating-point operations inside
the network with a master/slave approach in the following manner:

• At the start of IeeeCC754++, it is checked that exactly two instances of MPI
have been launched via mpiexec -n 2 IeeeCC754++.

• Rank 1 (the second IeeeCC754++ instance) is regarded as the slave process.
It runs an infinite loop waiting for messages sent via MPI.

5.7 Virtual machines and software libraries 195

• Rank 0 (the first IeeeCC754++ instance) is the master process. It executes
the usual IeeeCC754++ initialisation and testing process.

• For every test vector, the master process sends the second operand to the
slave process. Afterwards, a reduction operation (i. e. an MPI_REDUCE) is
triggered on both processes, executing the requested floating-point operation
inside the MPI stack.

• When the reduction operation has finished, the master process evaluates the
result with the usual IeeeCC754++ analysis process.

• After the testing loop has been executed, the master process writes the
testing summary into the output file, sends a termination message to the
slave process, and both processes exit.

Note that the only supported floating-point operators are addition and multiplica-
tion in roundTiesToEven mode. Furthermore, the MPI execution (and reduction)
model does not allow to control at which point in the MPI stack the actual reduc-
tion (i. e. the floating-point operation under consideration) is actually executed.
Depending on the interconnect that is used to transport the MPI messages and
the actual model of interface card and network switch, the floating-point operation
might be executed either in software (with high probability in the MPI layer on
the master process), on the network adapter, or on the network switch.

IeeeCC754++ implements only the main FPU inside the mpi architecture; it
registers the addition and multiplication operators with roundTiesToEven rounding
mode. Note that in order to execute a test run, IeeeCC754++ must be executed
via mpiexec with exactly two MPI processes, ideally on two nodes connected over
a network such as InfiniBand ([IBTA17]) with a network switch supporting direct
execution of reduction operations inside the switch (cf. [Mel17]).

5.7 Virtual machines and software libraries
In this section, we discuss architecture ports targeted at user environments that are
software-defined, i. e. they do not (directly) depend on the underlying computing
hardware. These environments include virtual machine based computation (Java,
see Section 5.7.1) and software libraries which provide implementations for the
floating-point operators done purely in software, such as SoftFloat (Section 5.7.2,
MPFR (Section 5.7.3), and CRlibm (Section 5.7.4).

5.7.1 The java port
Java is “a general-purpose computer programming language [. . .] specifically
designed to have as few implementation dependencies as possible. It is intended
to let application developers ‘write once, run anywhere’ (WORA), meaning that

196 Architecture ports

compiled Java code can run on all platforms supporting Java without the need
for recompilation. Java applications are typically compiled to bytecode that
can run on any Java virtual machine (JVM) regardless of computer architecture.
As of 2016, Java is one of the most popular programming languages in use,
particularly for client-server web applications.” [WIK17s] While employing an
execution model making use of a virtual machine instead of code compiled to
machine instructions leads to outstanding portability, it comes with the penalty of
decreased efficiency, especially for numerically intense workloads such as scientific
simulations. Therefore, Java never gained much momentum in the scientific
computing community. Furthermore, Java has often been criticised for the design
choices regarding its floating-point implementation, see Section 1.4.5 or e. g. [KD98]
and [WIK17g].

IeeeCC754++ nonetheless implements a java architecture port since studying
the floating-point conformity of such a widespread programming language is im-
portant, and it adds support for an interpreted type floating-point implementation
to the architectures available in IeeeCC754++. However, Java’s floating-point
support is limited: All operations are executed in roundTiesToEven mode, and ex-
ceptions are not implemented. The usual basic arithmetic operations are supported,
as well as all conversions with the exception of conversions between floating-point
numbers and unsigned integers (due to unsigned integers not being present in
Java). Note that the conversions have been implemented in IeeeCC754++ using
Java style casts since Java does not supply specific conversion operators.6 Java
supports floating-point numbers in single and double precision.

The IeeeCC754++ java architecture supports the mathematical operators
available up to Java 8. Java 9 adds support for an additional mathematical
operator, namely fma. However, supporting this operator in IeeeCC754++ poses a
serious technical hurdle: Since Java does not support conditional compilation, it
would not be possible to compile code that makes use of the new fma operator with
older Java versions. If testing the Java 9 fma is desired, it is possible to implement
an java9 architecture port that requires at least Java 9 for compilation. Note that
the fma routine in the main and strict FPUs (see below) is implemented with
“normal” floating-point operators, i. e. a multiplication followed by an addition.

In order to use IeeeCC754++’s testing and analysis facilities, IeeeCC754++ im-
plements access to Java’s native mathematical operators via Java JNI (Java Native
Interface, [Ora16a]). To achieve this, an instance of a wrapper class providing
an interface to the respective native Java methods contained in java.Math and
java.StrictMath (see below) is created.

6Since Java does not support switching the rounding mode, casts (which use the default
rounding mode) and conversion routines (which here also use the default rounding mode) yield
the same result.

5.7 Virtual machines and software libraries 197

The strict FPU

The java architecture in IeeeCC754++ provides two almost identical FPUs: The
main FPU uses Java’s floating-point operators such as ` or ˚ as well as casts
for conversions between data types. In addition, functions such as square root,
remainder, or rounding to integral value are taken from java.Math. Note that the
Java specification does not require methods in java.Math to be exactly rounded,
but allows for a deviation of up to 2 ulps [Ora16b]. Although these relaxed
requirements enable faster execution on some platforms, results need not be bit by
bit compatible between different platforms. In order to provide fully portable (and
correctly rounded) mathematical operators, the class java.StrictMath can be
used which guarantees bit-identical results on every virtual machine regardless of
the underlying platform. The strict FPU inside IeeeCC754++ makes use of this
class. It is almost identical to the main FPU, except for those methods for which
a java.StrictMath version is provided: square root, remainder, and rounding
to integral value. Note however that the virtual machines on most platforms
call identical underlying hardware routines for the functions in both java.Math
and java.StrictMath, and consequently, testing with the main and strict FPUs
(usually) yield identical results.

5.7.2 The softfloat port
Berkeley SoftFloat is “a free, high-quality software implementation of binary
floating-point that conforms to the IEEE Standard for Floating-Point Arithmetic”
[Hau17] by John Hauser. It supports the most common precisions half, single,
double, double extended, and quadruple (cf. Table 1.1) as well as all five rounding
modes and all exceptions specified in IEEE 754-2008. Furthermore, all basic
arithmetic operations, as well as all conversions with the exception of conversion
to and from binary to decimal formats, are implemented.

The softfloat architecture in IeeeCC754++ implements tests for all operations
and rounding modes supported by SoftFloat in half, single, and double precision
in the main FPU. In order to correctly initialise SoftFloat’s internal floating-point
representations, IeeeCC754++ implements conversion routines to convert the C
types half (aliased to int16_t), float, and double to SoftFloat’s float16_t,
float32_t, and float64_t data types. Note that since support for half precision
floating-point numbers is available in SoftFloat starting with version 3b, at least
this version of the library must be used.

5.7.3 The mpfr port
GNU MPFR [MPFR16] is an efficient arbitrary-precision binary floating-point
library with well-defined semantics and correct rounding [Lef11]. It is fully
portable in the sense that results are identical on every supported platform. The

198 Architecture ports

four rounding modes and the floating-point exceptions defined in IEEE 754 are
supported,7 as well as all arithmetic functions defined in C99. The design principles
of MPFR are similar to those of IEEE 754-2008, but extend format support to
arbitrary precision. In particular, each operand as well as the result can have their
own precision, and the result of an operation will be correctly rounded to target
precision. In addition to yielding accurate results, it aims to be fast, i. e. MPFR
is as fast as comparable software libraries and even faster in many cases [Fou+08].
MPFR is used in many projects which require correctly rounded results of high
accuracy (cf. [MPFR16] for an extensive list). One notable use case is gcc which
evaluates math functions with constant arguments during compile time by calling
respective MPFR functions.

MPFR uses a custom binary format for the representation of floating-point
numbers in order to provide arbitrary precision support, making use of GMP
[GNU16c]. Subnormal numbers are not supported in the default configuration
since MPFR floating-point numbers can be arbitrarily small by design. As a
consequence, MPFR is not fully IEEE-conforming in its default configuration.
However, it is possible to emulate IEEE 754-2008 support by setting the precision
of operands to the values corresponding to e. g. IEEE 754-2008 single and double
precision and activating subnormal emulation (which is available in MPFR).

The version of the MPFR library used when building IeeeCC754++ can be
determined by using the --version command line argument that is built into
the mpfr architecture. Finally, note that MPFR supports a fifth rounding mode
called “round away from zero” which is different from roundTiesToAway: roundTi-
esToAway only rounds away from zero when the correct result is halfway between
two representable floating-point numbers (rounding to nearest in all other cases),
whereas MPFR round away always rounds in the direction opposite of roundTo-
wardZero. Since IEEE 754-2008 does not specify this rounding mode, IeeeCC754++
does not make use of it.

The mpfrdef FPU

In order to verify that MPFR does indeed yield correctly rounded results for the
provided operators, IeeeCC754++ implements two FPUs: In both the main and
mpfrdef FPUs in the mpfr architecture, single, double, and quadruple precision
numbers are tested by using MPFR floating-point numbers with the precision
settings shown in Table 5.3 (cf. also Section 1.2.1). In particular, the precision
(length of significand plus hidden bit) has to be specified, as well as minimum and
maximum values of the exponent (in order to enable properly working overflow
and underflow). IeeeCC754++ implements all basic arithmetic functions and all
conversions, including those from binary to decimal formats and vice versa, as
well as support for the four classic rounding modes. There is only one notable
difference between the two FPUs: The main FPU enables full IEEE 754-2008

7Support for the division by zero exception is available in MPFR since version 3.0.0.

5.7 Virtual machines and software libraries 199

support by enabling subnormals support, whereas the mpfrdef FPU operates in
the default MPFR mode without subnormal numbers.

Format t emin emax

single 24 ´148 128
double 53 ´1073 1024

quadruple 113 ´16493 16384

Table 5.3: Values that are necessary to enable IEEE 754-2008 support in MPFR.
t is the precision in bits, and emin and emax are the minimal and maximal values
for the (unbiased) exponent. Note that emin takes the subnormal range into account,
i. e. it shows the exponent value for the smallest representable subnormal number.
Furthermore, the values of the exponents are shifted by 1 due to MPFR using
significands in the range of 0.5 and 1 (compared to significands between 1 and 2 in
IEEE 754-2008). For details, cf. [Res16].

5.7.4 The crlibm port
Rounding of the basic arithmetic functions, such as addition, multiplication, or
square root, is possible with moderate effort, and bounds for the intermediate
precision necessary to correctly round to target precision have been known for a
long time. This is reflected (among other things) in the fact that even the first
incarnation of IEEE 754 required these functions to be rounded correctly. For
the elementary functions, the situation is quite different: For the majority of the
possible operands, it is easy to compute correctly rounded results; but due to the
Table Maker’s Dilemma (see Section 4.1.1) it is very difficult to know (and prove)
by how much the precision in intermediate calculations has to be increased in
order to provide correctly rounded results for the worst possible cases.

The CRlibm project aims at developing a portable, proven, correctly rounded,
and efficient mathematical library for double precision [Dar+06]. Together with
thoroughly implemented algorithms, it provides proofs for the correctness of the
chosen algorithms and their implementation (see e. g. [Lau08]). CRlibm provides
operators only for double precision, but it supports the four classic rounding
modes by supplying each operator in four versions (one for each rounding mode).
Overflow and underflow exceptions are properly raised, while support for the other
exceptions has not been implemented: “Raising the other flags (especially the
Inexact flag) is possible but considered too costly for the expected use, and will
usually not be implemented.” [Dar+06] The following arithmetic functions are
supported (for details on these functions, cf. Chapter 4):

• Trigonometric functions and their inverse functions: sine, cosine, tangent,
arcsine, arccosine, and arctangent.

200 Architecture ports

• Hyperbolic functions: sinhpxq and coshpxq.

• Exponential functions: ex and ex ´ 1.

• Logarithmic functions: lnpxq, log2pxq, log10pxq, and lnp1` xq.

IeeeCC754++ provides the crlibm architecture which implements these oper-
ators inside its main FPU. Support for the four rounding modes is achieved by
choosing the correct version of the operator under consideration, according to the
currently selected rounding mode. Since the mathematical operators in CRlibm
support only double operands, IeeeCC754++ also implements only tests in double
precision.

Chapter 6

Selected results

As discussed in the last chapters, IeeeCC754++ comprises an extensive set of tools to
test user environments for IEEE-conformity. Since each user environment consists
of a unique combination of computing hardware, operating system, mathematical
libraries, and compiler, it is virtually impossible to give a comprehensive overview
of the state of IEEE-conformity of current computing environments. Therefore,
the main goal of this thesis, as well as this chapter, is not to provide results for
as many user floating-point environments as possible, but to provide for a tool
set that enables the user to check her own environment. After describing the
components of this tool set in the former chapters, we are now able to discuss
typical evaluation framework and optimisation framework runs in order to generate
conformity results and analyse these. In addition, we present results for a number
of selected platforms covering a broad range of different user environments and
computer architectures.

In the first section of this chapter, we present a comprehensive example of
testing a typical x86 workstation from scratch, including the generation and
choice of test vectors, deciding on suitable architectures (in IeeeCC754++ sense)
and FPUs, corresponding evaluation framework runs, and finally analysis of the
generated result files with the help of IeeeCC754++LogViewer. Afterwards, we
(briefly) discuss the role of compilers and show the effect on floating-point results
using the former example. The rest of this chapter deals with the results of
selected platforms: user environments of some of the most widely spread hardware
architectures and FPUs, namely x86 (x87, SSE, AVX) on Xeon and Xeon Phi
processors, ARM/AARCH64, and POWER, as well as accelerated devices such
as NVidia GPUs. Furthermore, we analyse the IEEE-conformity of software
libraries such as SoftFloat and compare the differences of libraries implementing
the elementary operators, including math.h from C99, MPFR, CRlibm, and CUDA.
We conclude this chapter with an optimisation framework example and a summary
of the results.

It should be noted that although the tools introduced in this thesis can be

202 Selected results

of immense help in the process of checking a floating-point environment for
IEEE-conformity, it is usually still necessary to inspect the test vectors and
the returned results for a conclusive analysis of the mechanisms responsible for
errors encountered during the testing process. In other words, although especially
the analysis modules of the evaluation framework provide convenient means to
summarise different aspects of the testing results, an inspection of the logfiles
generated by IeeeCC754++, and ultimately an examination of the actual floating-
point numbers and exceptions of the errors and their source test vectors cannot
be avoided. An example of this process is given in Section 6.1.2.

6.1 A detailed example
Although IeeeCC754++ and the accompanying tools substantially ease checking
the IEEE-conformity of a given user environment, the process of performing the
corresponding tests requires a non-negligible number of steps. In this section, we
present an extensive example of the complete testing process, including checking
the default user environment and FPUs of the underlying platform, i. e. FPUs
contained in the actual computer hardware. Furthermore, we take a deeper look
at the results and analyse some properties of the floating-point implementations.

6.1.1 User environments
The platform used for this example consists of our (slightly dated) workstation
which features a 4th generation Intel Core i7-4770 processor (Haswell microarchi-
tecture, cf. [INT13a]) with openSUSE 13.1 (x86_64 with Linux kernel 3.12.62-55).
The default compilers provided by openSUSE 13.1 are gcc 4.8.1 and clang 3.3.
Additionally, clang version 3.1 to 5.0, gcc 4.0 to 7.2, and Intel icc 13.0 have been
installed onto the workstation.

In this section, we will only use the default compilers. Out of the theoretically
possible user environments, we will examine the following:

• The default user environment, i. e. the default architecture (cf. Section 5.1.1)
paired with the gcc compiler.

• The x86 architecture (i. e. the “native” architecture of the underlying plat-
form) together with the gcc and clang default compilers. In order to retrieve
as much information as possible, the verbose mode (cf. Section 3.3.2) is used.

Other user environments which would be possible on this specific computing
platform, which include accelerated environments such as NVidia or OpenCL and
software environments such as SoftFloat, MPFR, CRlibm, or Java, are not part
of this example. For all checks performed in this section, the t2s and t2d testsets
together with the main FPUs and the t3s and t3d testsets with all other FPUs

6.1 A detailed example 203

are used (cf. Section 4.7). In other words, basic operations and conversions are
checked in single and double precision. Note that this choice excludes test vectors
for the elementary functions from the example. A detailed analysis of results for
various architectures supplying the floating-point elementary functions can be
found in Section 6.8.

6.1.2 Manual testing procedure
Tests can be executed in a number of different manners: directly using IeeeCC754++
and the evaluation modules from the evaluation framework to perform every step
manually, writing task files for the evaluation framework, or using the supplied
startTests.sh to specify general settings and execute all necessary tasks. We
start by using the first method for the default architecture with the main FPU,
in order to demonstrate how to manually check a user environment if desired,
followed by a thorough description of the third approach for the user environments
listed above.

Preparations

Since all steps are to be performed manually, no other preparations are needed
than the generation of the desired testsets with the script genUCB.sh:

> cd testsets
> ./genUCB.sh 2 s
Using the following settings:
type 2
round
input alls
output t2s

Writing "t2s": add sub mul div rem sqrt fma ct rt b2d d2b i ri rI ru rU ci cI cu
cU

Done.
> ./genUCB.sh 2 d
Using the following settings:
type 2
round
input alld
output t2d

Writing "t2d": add sub mul div rem sqrt fma ct rt b2d d2b i ri rI ru rU ci cI cu
cU

Done.

Listing 6.1: Generating testsets.

Building IeeeCC754++

The next step is to configure the IeeeCC754++ source tree for the chosen architec-
ture and FPUs. In this example, we employ the default mode (cf. Section 3.3.3),

204 Selected results

i. e. the default architecture port together with the verbose output format. In
addition to the main FPU, we build code for the generic and c99 FPUs.

Note that it is advisable to avoid the configuration and compilation directly
inside the source tree. This can e. g. be achieved by using an appropriate subdir-
ectory:

> mkdir build
> cd build
> ../configure --enable-arch-default --enable-fpu-generic --enable-fpu-c99
configure: loading site script /usr/share/site/x86_64-unknown-linux-gnu

¨ ¨ ¨

configure:

Build summary:

Build tests? no
Use hashing? yes

Compilers: CC=gcc -std=gnu99, CXX=g++ (g++)
32/64 bit: native
Cross compile? no
Default flags: no

Modes: main
Architecture: default
FP units: generic c99

Compilation flags:
CFLAGS:
CPPFLAGS:
CXXFLAGS:
LDFLAGS:
LIBS: -lssl -lcrypto

> make
Making all in src

¨ ¨ ¨

make[3]: Entering directory ‘/tmp/example/build/src/common’
CXX Bitstring.o
CXX DriverFloatRepr.o
CXX FP.o
CXX FPregistry.o
CXX FileOps.o
CXX Hex.o
CXX IeeeCC754++_util.o
CXX Checksum.o
CXX Error.o
AR libIeeeCC754++.a
CXX IeeeCC754_classic.o
AR libIeeeCC754classic.a
CXX decode.o
CXXLD decode

make[3]: Leaving directory ‘/tmp/example/build/src/common’
Making all in default
make[3]: Entering directory ‘/tmp/example/build/src/default’

6.1 A detailed example 205

CXX fpenv_default.o
CXX fpu_main.o
CXX fpu_generic.o
CXX fpu_c99.o
CXX fpenv_c99.o

../../../src/default/fpenv_c99.cc:110:0: warning: ignoring #pragma STDC
FENV_ACCESS [-Wunknown-pragmas]
#pragma STDC FENV_ACCESS ON

^
../../../src/default/fpenv_c99.cc:139:0: warning: ignoring #pragma STDC

FENV_ACCESS [-Wunknown-pragmas]
#pragma STDC FENV_ACCESS ON

^
CC fpenv_c99_c.o
CXX main_default.o
CXXLD IeeeCC754++_default

make[3]: Leaving directory ‘/tmp/example/build/src/default’

¨ ¨ ¨

> ./src/default/IeeeCC754++_default --version
IeeeCC754++ driver executable v0.9.8-dev.
64 bit version compiled for architecture "default" on x86_64 with gcc (4.8.1

20130909 [gcc-4_8-branch revision 202388]).
Built against revision r983
Built against revision r983
autotools version:
autoconf: autoconf (GNU Autoconf) 2.69
automake: automake (GNU automake) 1.13
m4: m4 (GNU M4) 1.4.17

Listing 6.2: Configuring and building IeeeCC754++.

Note that after successful compilation, IeeeCC754++ is called with the para-
meter --version that displays information about the executable.

Executing the tests

To check the IEEE-conformity of the default user environment, we can now execute
the necessary tests for the two testsets t2s and t2d. Note that we employ the
generic FPU (cf. Section 5.1.1) which includes an fma operator not contained in
the main FPU. The testing results in verbose output format are written into the
logfiles t2s.log and t2d.log.

> ./src/default/IeeeCC754++_default -v ../testsets/t2s -f t2s.log --fpu=generic
Calling code for "generic" fpu.
Using logfile: t2s.log

fma_op: 4410
fma_err: 257
inf_op: 1556
inf_err: 4
inf_nan_err: 0
tiny_ops: 3453
ftz_ops: 0
ftz_errs: 0
ulpCount: 152
ulpLarge: 105
iulpSum: 180

206 Selected results

fulpSum: 180
avgiULPi: 1
avgiULPf: 1.18422
avgfULP: 1.18422
ULPs: 257 (152 with avg: 1.18422; too large: 105)

[sum] total/err/warn/skip 25059/4082/0/334 v [noftz]
> ./src/default/IeeeCC754++_default -v ../testsets/t2d -f t2d.log --fpu=generic
Calling code for "generic" fpu.
Using logfile: t2d.log

fma_op: 4527
fma_err: 302
inf_op: 1584
inf_err: 4
inf_nan_err: 0
tiny_ops: 3555
ftz_ops: 0
ftz_errs: 0
ulpCount: 197
ulpLarge: 0
iulpSum: 225
fulpSum: 225
avgiULPi: 1
avgiULPf: 1.14214
avgfULP: 1.14214
ULPs: 197 (197 with avg: 1.14214; too large: 0)

[sum] total/err/warn/skip 26206/4793/0/334 v [noftz]

Listing 6.3: Executing tests in the default user environment.

A first coarse analysis can be performed with the console output of the
IeeeCC754++ invocation: The user environment properly supports subnormal
numbers, indicated by Op3500q tiny operations for which no errors occurred. For
both precisions, a small number of overflow errors were encountered. Furthermore,
a small percentage of fma operations resulted in errors, indicating some problem
with the fma implementation. Interestingly, only 257 test vectors in single precision
and 197 test vectors in double precision contained errors in the significand (denoted
by the ulp count displayed on the last line), indicating that the other errors are
caused by the sign or exceptions being wrong. Note that the 334 skipped test
vectors are conversions from and to half precision, cf. Section 4.7.1.

For a deeper analysis of the testing results, the logfiles need to be examined.

Examining the logfiles

The evaluation modules built into the evaluation framework can be utilised
without performing a full evaluation framework run (for details, see Section 3.4.1).
Listing 6.4 shows the complete output when executing eval.py for the single
precision logfile t2s (the switch -q is used to shorten the output generated by
eval.py).

> python eval.py -q ../build/t2s.log
Looking for SQLite and pySQLite.
Try system install (sqlite3)... found SQLite v3.7.17 and pySQLite v2.6.0.
eval.py: IeeeCC754++ job analyser

6.1 A detailed example 207

>>> 2017-11-06 14:25:07 [debug] Changed debug level to -1.
>>> 2017-11-06 14:25:07 [evalmain] Running on host wmai15 - x86_64(x86_64), Linux
>>> 2017-11-06 14:25:07 [eval] Log file detected, executing standalone mode.
>>> 2017-11-06 14:25:07 [eval] Examining file: t2s.log
>>> 2017-11-06 14:25:07 [eval] t2s.log: Read 24726 lines.
>>> 2017-11-06 14:25:07 [results] Found Summary: total/err/warn/skip

25059/4082/0/334 v [noftz]
>>> 2017-11-06 14:25:07 [results] SumLine OK.
>>> 2017-11-06 14:25:07 [eval] Eval results:
(Success rates shown)

add 100.00% 3152/3152
sub 100.00% 1622/1622
mul 100.00% 5408/5408
div 100.00% 2153/2153
rem 100.00% 1364/1364
sqrt 100.00% 1784/1784
fma 94.33% 4277/4534
b2d 1.63% 8/492
d2b 1.60% 54/3372
i 100.00% 350/350
ri 89.13% 164/184
rI 100.00% 47/47
ru 92.59% 25/27
rU 96.43% 27/28
ci 100.00% 56/56
cI 100.00% 56/56
cu 100.00% 48/48
cU 100.00% 48/48
RESULT 83.49% 20643/24725

GROUPED

basic 100.00% 12335/12335
extra 96.65% 7425/7682
conv 97.27% 821/844
output 1.60% 62/3864

>>> 2017-11-06 14:25:08 [eval] READ FILES: 1, GOOD FILES: 1 ()
>>> 2017-11-06 14:25:08 [evalmain] Completed run in 0:00:01.
>>> 2017-11-06 14:25:08 [evalmain] Done.

Listing 6.4: Standalone evaluation for single precision.

As can be seen from the output, the basic evaluation function indeed only
shows basic analysis information. However, even this output reveals further insight:
The execution of all test vectors for the basic operations yields correct results
in all rounding modes, with the exception of about 5% of the fma test vectors
(the extra group shows square root, remainder, and fma results). Additionally,
some of the conversions exhibit rather unexpected behaviour: For the conversions
between decimal and binary representation, almost no correct results were returned
(operators b2d and d2b), and there are errors in conversions to integers (ri, ru,
and rU).

208 Selected results

In order to gain further insight, additional evaluation modules need to be
employed. Listing 6.5 shows the output of the operation_report evaluation
function for all operations, generated with python eval.py -e operation_report
t2s.log:

(Errors, ulps, error count shown)

b2d
j 0 420
jd 0 64

d - different decimal representation
j - inexact flag not returned

d2b
emh 0 4
j 0 3312
n 0 2

e - exponent different
h - result is not an infinity
j - inexact flag not returned
m - mantissa different
n - result is not a NaN

fma
ma 1 56
sa 0 105
xma 1 96

a - fma error
m - mantissa different
s - Different sign
x - inexact not expected

rU
x 0 1

x - inexact not expected
ri

p 0 20
p - invalid flag not returned

ru
p 0 2

p - invalid flag not returned

Listing 6.5: operation_report evaluation function results for t2s.log.

For the d2b operator, i. e. for conversion from decimal to binary representation,
the vast majority of errors is related to test vectors where the resulting floating-
point number is correctly rounded, but the inexact flag was not returned. For the
conversion in the other direction, all of the errors missed the inexact flag, with a
small number showing also incorrect (decimal) floating-point numbers. All errors
concerning rounding to integer formats (ri, ru, and rU) stem from exception
errors, meaning that the returned floating-point number is correct.

Concerning the fma operation, three types of errors occurred (note that every
error in an fma test vector is marked as fma error and therefore contains the
error code “a”): operations with incorrect significand, operations with incorrect
significand in which the inexact flag was also erroneously returned (which means
that the result should have been exact, but was rounded instead), and errors in
which only the sign is wrong. The root causes for these phenomena can only be

6.1 A detailed example 209

revealed by further inspection (see below), but there is reason to suspect two
different causes: The sign errors might be related to signed zeroes, i. e. the fma
implementation might not correctly preserve the sign of signed zeroes. The number
of errors with incorrect binary representations hints at the possibility that the fma
operator might not be fused at all, since it roughly corresponds with the number
of test vectors expected to yield wrong results when a multiplication is followed
by an addition with rounding the intermediate result (about half of the 240 test
vectors aimed at this purpose). This suspicion is supported by the fact that the
incorrect fma test vectors are approximately 1 ulp off (on average).

In order to analyse these small deviations, Listing 6.6 shows the output of the
ulp evaluation function:

(vectors with 1, 2-8, and >8 ulps difference shown)

n 24 14 2 6365
z 38 0 0 6175
u 31 7 1 6090
d 31 7 1 6095
RESULT 124 28 4 24725

Listing 6.6: ulp evaluation function results for t2s.log.

The output reveals that the number of errors with incorrect binary representa-
tion is slightly larger than the number of errors for fma. However, the number
of errors with 1 ulp and 2´ 8 ulps deviation add up to the exact number of fma
errors (excluding the sign errors). In order to locate the test vectors causing the
errors, it is helpful to generate a testset only containing fma test vectors, ideally
annotated with the line numbers from the original Coonen test file. Listing 6.7
shows the commands with which such a UCB input file and the corresponding
output were generated.

> cd build
> ./src/default/IeeeCC754++_default -o fmas -a -s ../src/testsets/fma
> ./src/default/IeeeCC754++_default -v fmas -f fmas.log --fpu=generic
> cd ../eval
> python eval.py -e ulp ../build/fmas.log

Listing 6.7: Generating annotated results for the fma testset.

Listing 6.8 shows the corresponding output file fmas.log:

(vectors with 1, 2-8, and >8 ulps difference shown)

n 24 14 0 1135
z 38 0 0 1129
u 31 7 0 1135
d 31 7 0 1135
RESULT 124 28 0 4534

Listing 6.8: ulp evaluation function results for fmas.log.

210 Selected results

First, it can be seen that the deviations up to 8 ulps are indeed related
exclusively to the fma operation. Additionally, it is now possible to locate the
source Coonen vectors that caused the errors by looking either directly at the logfile
fmas.log or by using output from the error_list analysis module. Listing 6.9
contains an excerpt of the errors. It shows the first and last four test vectors with
errors related to ulp deviations. Listing 6.10 shows the corresponding lines from
the UCB input testset file fmas, i. e. lines 51-58, 421-424, and 427-430.

[__] l.52 s fma n 3f800001 3fc00000 bf800001 3f000001 => - 3f000002 x | xma 1
[__] l.54 s fma z 3f800001 3fc00000 bf800001 3f000001 => - 3f000000 x | xma 1
[__] l.56 s fma u 3f800001 3fc00000 bf800001 3f000001 => - 3f000002 x | xma 1
[__] l.58 s fma d 3f800001 3fc00000 bf800001 3f000001 => - 3f000000 x | xma 1

¨ ¨ ¨

[__] l.422 s fma n c3800001 3fb00000 43800001 c2c00002 x => - c2c00000 x | ma 2
[__] l.424 s fma d c3800001 3fb00000 43800001 c2c00002 x => - c2c00004 x | ma 2
[__] l.428 s fma z c3800001 3fb00000 43800001 c2c00001 x => - c2c00000 x | ma 1
[__] l.430 s fma u c3800001 3fb00000 43800001 c2c00001 x => - c2c00000 x | ma 1

Listing 6.9: error_list evaluation function results excerpt for ulp deviations
in fmas.log.

! line 210
fmas n eq - 3f800001 3fc00000 bf800001 3f000001
! line 210
fmas z eq - 3f800001 3fc00000 bf800001 3f000001
! line 210
fmas p eq - 3f800001 3fc00000 bf800001 3f000001
! line 210
fmas m eq - 3f800001 3fc00000 bf800001 3f000001

¨ ¨ ¨

! line 275
fmas n eq x c3800001 3fb00000 43800001 c2c00002
! line 275
fmas m eq x c3800001 3fb00000 43800001 c2c00002

¨ ¨ ¨

! line 276
fmas z eq x c3800001 3fb00000 43800001 c2c00001
! line 276
fmas p eq x c3800001 3fb00000 43800001 c2c00001

Listing 6.10: Excerpt from the UCB input file fmas.

The Coonen test vectors resulting in the observed errors can be found in the
original Coonen fma file located in src/testsets/fma between lines 210 and 276.
These lines contain the test vectors which we specifically designed to identify fma
implementations that are implemented correctly (and distinguish between those
that use an intermediate rounding), cf. Section 4.2.1. With this reasoning, we can
finally conclude that the errors are caused by the fma implementation inside the
default generic FPU not being fused at all.

6.1 A detailed example 211

Analysing the further contents of the error_list analysis module output
reveals that the sign errors are indeed related to signed zeros: All errors are caused
by multiplications whose correct result is a negative zero due to underflow, i. e. the
correct result is too small to be represented by the smallest subnormal number.
Furthermore, the errors do not occur with the roundTowardNegative rounding
mode. Actually, this behaviour is expected from an implementation with separate
multiplication and addition (instead of a fused operator), since the addition of
´0 and 0 (in this order) results in a negative zero only in roundTowardNegative
mode and a positive zero otherwise. Consequently, the 105 sign errors also reveal
that the fma implementation is not fused. Listing 6.11 shows the first three
corresponding test vectors in the error_list analysis function output.

[__] l.7510 s fma n 80800000 00800000 00000000 80000000 xu => - 00000000 xu | sa 0
[__] l.7512 s fma z 80800000 00800000 00000000 80000000 xu => - 00000000 xu | sa 0
[__] l.7514 s fma u 80800000 00800000 00000000 80000000 xu => - 00000000 xu | sa 0

Listing 6.11: error_list evaluation function results excerpt for sign errors in
fmas.log.

Actually, the conclusion that the fma operator in the default generic FPU is
not fused comes at no surprise when taking a look at the actual implementation of
the operator (see Listing 6.12 for the single precision code branch): As described
in Section 5.1.1, the fma operation implemented in the default main FPU (which
is only accessible via the default generic FPU) is simulated by using ordinary
multiplication and addition operators.

if (isIEEEbinary32())
{

float res, op1, op2, op3;

op1 = tofloat();
op2 = T2.tofloat();
op3 = T3.tofloat();

SetLibEnvironment();
res = op1 * op2 + op3;
GetLibExceptions();

DriverFloat_main r(res);
return r;

}

Listing 6.12: Excerpt from the fma operator implementation of the default
generic FPU.

Finally, we compare the fma testing results gained with the main FPU with
those of the c99 FPU. Listing 6.13 shows how these results can be generated
with the formerly built IeeeCC754++ executable and fmas UCB input file (cf.
Listing 6.7):

212 Selected results

> cd build
> ./src/default/IeeeCC754++_default -v fmas -f fmas.c99.log
Calling code for "c99" fpu.
Using logfile: fmas.c99.log

fma_op: 4410
fma_err: 0
inf_op: 388
inf_err: 0
inf_nan_err: 0
tiny_ops: 921
ftz_ops: 0
ftz_errs: 0
ulpCount: 0
ulpLarge: 0
iulpSum: 0
fulpSum: 0
avgiULPi: 0
avgiULPf: 0
avgfULP: 0
ULPs: 0 (0 with avg: 0; too large: 0)

> cd ../eval
> python eval.py ../build/fmas.c99.log

Listing 6.13: Generating results for the main c99 FPU with the fma testset.

The output of the basic analysis module generated by the eval.py invocation
can be found in Listing 6.14. It reveals that the fma operator contained in the
C99 implementation in the selected default user environment is indeed fused (as
expected).

(Success rates shown)

fma 100.00% 4534/4534
RESULT 100.00% 4534/4534

GROUPED

extra 100.00% 4534/4534

Listing 6.14: basic evaluation function results for fmas.c99.log.

We conclude the manual testing procedure with a short analysis of operators
with double precision operands in the default user environment. Listings 6.15,
6.16, and 6.17 show the output of the basic, operation_report, and ulp analysis
modules for the t2d.log logfile as generated in Listing 6.3. As can be seen
immediately, the types of errors are identical and the number of errors similar to
the single precision case. Performing a deeper analysis as shown above reveals that
the errors are indeed produced by the same root causes, which means that the
single and double precision floating-point operators in this default user environment
are implemented in a consistent manner.

(Success rates shown)

6.1 A detailed example 213

add 100.00% 3152/3152
sub 100.00% 1622/1622
mul 100.00% 5408/5408
div 100.00% 2153/2153
rem 100.00% 1364/1364
sqrt 100.00% 1784/1784
fma 93.51% 4349/4651
ct 100.00% 80/80
rt 100.00% 270/270
b2d 1.64% 8/488
d2b 2.06% 84/4072
i 100.00% 350/350
ri 89.13% 164/184
rI 100.00% 47/47
ru 92.59% 25/27
rU 96.43% 27/28
ci 100.00% 48/48
cI 100.00% 56/56
cu 100.00% 40/40
cU 100.00% 48/48
RESULT 81.47% 21079/25872

GROUPED

basic 100.00% 12335/12335
extra 96.13% 7497/7799
conv 98.05% 1155/1178
output 2.02% 92/4560

Listing 6.15: basic evaluation function results for t2d.log.

(Errors, ulps, error count shown)

b2d
j 0 416
jd 0 64

d - different decimal representation
j - inexact flag not returned

d2b
emh 0 4
j 0 3980
n 0 4

e - exponent different
h - result is not an infinity
j - inexact flag not returned
m - mantissa different
n - result is not a NaN

fma
ma 1 101
sa 0 105
xma 1 96

a - fma error
m - mantissa different
s - Different sign
x - inexact not expected

rU
x 0 1

x - inexact not expected
ri

p 0 8

214 Selected results

xp 0 12
p - invalid flag not returned
x - inexact not expected

ru
p 0 1
xp 0 1

p - invalid flag not returned
x - inexact not expected

Listing 6.16: operation_report evaluation function results for t2d.log.

(vectors with 1, 2-8, and >8 ulps difference shown)

n 39 14 2 6652
z 38 0 0 6463
u 55 7 1 6374
d 37 7 1 6383
RESULT 169 28 4 25872

Listing 6.17: ulp evaluation function results for t2d.log.

6.1.3 (Semi-)Automated testing procedure
In this section, we make use of the evaluation framework to perform IEEE-
conformity checks for both environments listed in Section 6.1.1. This example
employs the script startTests.sh (cf. Section 3.4.3) in order to generate the
necessary task files and execute the resulting test runs. Although the graphical
application IeeeCC754++LogViewer was used in analysing the results, we show
excerpts of the logfiles similar to the manual case reported above.

General preparations

As a first step, a number of general choices have to be made, such as which user
environments should be tested with which compilers or which testsets should be
employed. The environments for this example are described in Section 6.1.1. Before
starting the actual testing process, input files according to these settings are needed
for startTests.sh. These files are created in the directory hosts/arch/example/
as shown in Listing 6.18:

> cd hosts/arch
> mkdir example
> cd example
> touch default.in
> touch x86.in

Listing 6.18: Creating input files for use with startTests.sh.

6.1 A detailed example 215

_archname = def
_arch = default
_compilers = gcc
_fpu = main c99
_cores = 4
_testsets = t2s t2d

Listing 6.19: Input file default.in.

_archname = x86
_arch = x86
_compilers = gcc clang
_fpu = main
_cores = 4
_testsets = t3s t3d
_cxxflags = -mno-avx

Listing 6.20: Input file x86.in.

Listings 6.19 and 6.20 show the contents of the input files, reflecting the choices
for architecture, FPUs, compilers, and testsets. For the meaning of the keywords
used, see Table 3.7. The testsets t2s and t2d were chosen for the default
architecture to include conversions between binary and decimal conversions and
t3s and t3d for the x86 architecture to exclude these. To speed up the compilation
process, all 4 cores contained in the test workstation are utilised. Note that for
the default architecture, “def” will be used to display results. Also note that
in contrast to the manual testing example in Section 6.1.2, we use the default
main FPU which does not include the (by design faulty) fma operator. Finally,
the x86 architecture is compiled with the additional compiler option -mno-avx,
causing the compiler to emit (legacy) SSE instructions instead of their newer AVX
equivalents.

Preparing the evaluation framework

To prepare the evaluation framework for the execution of the desired tests, a local
file is needed that tells startTests.sh which architectures should be considered
when generating evaluation framework input task files and executing the tests.
Additionally, a directory has to be supplied containing the task files and can
be used by the evaluation framework to place the result logfiles. Listing 6.21
depicts the setup process, while Listing 6.22 shows the mytests.local file used
by startTests.sh to read the corresponding settings.

> cd eval
> mkdir ex
> touch mytests.local

Listing 6.21: Creating a setup file for use with startTests.sh.

216 Selected results

HOST="example"
MYTESTS="def x86"
ARCH="ex"

Listing 6.22: Input file mytests.local.

Note that HOST must be set to the directory in hosts/arch/ containing the input
files, ARCH denotes the subdirectory in eval/ containing evaluation framework task
and log files, and that the tests specified in MYTESTS correspond to the displayed
architecture names specified via _archname in the input files. Listings 6.23 shows
the process of generating the task files from these settings.

> ./startTests.sh --refresh
Importing default arch/tests from mytests.local.
Using the following settings:
HOSTPATH: /tmp/example/hosts/arch/example
TARGETPATH: /tmp/example/eval/ex

Continue? (y/n) y
genJobs.py: Starting.
Generating files for arch ’def’:
Generating files for def-gcc:
Writing file def-gcct2s.test... done.
Writing file def-gcct2s.eval... done.
Writing file def-gcct2d.test... done.
Writing file def-gcct2d.eval... done.
Writing file def-gcc.job... done.
Writing file def-gcc.com... done.
...done (def-gcc).
Writing file def.job... done.

...done (def).
genJobs.py: Done.
genJobs.py: Starting.
Generating files for arch ’x86’:
Generating files for x86-gcc:
Writing file x86-gcct3s.test... done.
Writing file x86-gcct3s.eval... done.
Writing file x86-gcct3d.test... done.
Writing file x86-gcct3d.eval... done.
Writing file x86-gcc.job... done.
Writing file x86-gcc.com... done.
...done (x86-gcc).

Generating files for x86-clang:
Writing file x86-clangt3s.test... done.
Writing file x86-clangt3s.eval... done.
Writing file x86-clangt3d.test... done.
Writing file x86-clangt3d.eval... done.
Writing file x86-clang.job... done.
Writing file x86-clang.com... done.
...done (x86-clang).
Writing file x86.job... done.

...done (x86).
genJobs.py: Done.

Generated jobs for the following archs:
def x86

Listing 6.23: Generating evaluation framework task files.

6.1 A detailed example 217

Executing the tests

With everything properly set up, the actual tests can be performed with the
evaluation framework:

> ./startTests.sh
Importing default arch/tests from mytests.local.
Mon Nov 6 18:16:21 CET 2017
Starting test: def
Mon Nov 6 18:16:41 CET 2017
Starting test: x86
Mon Nov 6 18:16:59 CET 2017

Listing 6.24: Running the evaluation framework.

If testing was successful, the directory eval/ex/ contains the two logfiles
def.log and x86.log, and IeeeCC754++LogViewer can be started in the directory
eval/ to view these logfiles:

> ls ex/*.log
ex/def.log ex/x86.log
> ../tools/IeeeCC754++LogViewer
Using ARCH = ex (from mytests.local).
Using FONT = Adobe Courier (from logviewer.conf).
Using SIZE = 9 (from logviewer.conf).
Reading logfiles...
Starting UI...
Choosing font (size 9): "Adobe Courier": OK.

Listing 6.25: Results of the evaluation framework run.

6.1.4 Analysing the logfiles
When generating the task files needed by the evaluation framework in the described
way with startTests.sh, all test runs will be executed in two testing modes: the
normal verbose mode and the verbose mode without regarding exceptions, i. e. the
modes -v and -vix (see Section 3.3.2). This approach enables a quick comparison
between the results generated in both modes and therefore easy recognition whether
the underlying platform supports exceptions (and to what extent). Furthermore,
it reveals how many of the test vectors reported by IeeeCC754++ as errors resulted
in incorrect floating-point numbers being returned (as opposed to missing or
superfluous exception flags).

Default environment

As a starting point for the analysis of an evaluation framework run, the end of the
corresponding logfile should be examined as it contains summaries of the testing
results. Listing 6.26 shows one of these summaries for the default environment
(which was tested with gcc and the main and c99 FPUs):

218 Selected results

[eval] 098b8c7e9b583174bf2e9518051a84a1 def-gcct2d_c99_t2d_v total: 17.43% 25872
4510 ulp: 857 (1) ftz: ??? (1 out of 3555 zero, 0 errors)

[eval] 649365c18e533ac5cf5c6a7d9e357cac def-gcct2d_c99_t2d_x total: 6.60% 25872
1707 ulp: 857 (1) ftz: ??? (1 out of 3555 zero, 0 errors)

[eval] c7961890fb119b4ac43c0d209c6aa2b3 def-gcct2s_c99_t2s_v total: 15.53% 24725
3840 ulp: 681 (1) ftz: no

[eval] d99b8ab772aeef99f4085de1b743d973 def-gcct2s_c99_t2s_x total: 6.59% 24725
1629 ulp: 681 (1) ftz: no

[eval] 59afc5309478c9bd2edb70adf0252bb1 def-gcct2d_main_t2d_v total: 18.60% 25872
4813 ulp: 197 (1) ftz: no

[eval] 7f8bb5456ac4ea07789dab4a5a62310b def-gcct2d_main_t2d_x total: 4.46% 25872
1154 ulp: 197 (1) ftz: no

[eval] 824ecfc667e1911e97ddf87944debe7c def-gcct2s_main_t2s_v total: 16.57% 24725
4098 ulp: 152 (1) ftz: no

[eval] 0f01a69de40e9832e181ba1de5969a6b def-gcct2s_main_t2s_x total: 4.88% 24725
1207 ulp: 152 (1) ftz: no

Listing 6.26: Summary of testing the default architecture.

The summary contains the following entries: an MD5 hash digest of the
corresponding logfile (used for quick recognition of identical logfiles, i. e. identical
testing results), a name identifying the test run, the error percentage, the total
number of test vectors and the number of test vectors with errors, the total and
average deviation in ulps, and additional information e. g. about FTZ and vector
errors (as far as such information is available). The trailing _v and _x in the test
run name denote -v and -vix mode, see above.

In the following, we use a condensed version of this summary as shown in
Listing 6.27: the leading “[eval]” is omitted, the value of the hash digest is
shortened to 8 digits (which should be enough digits to identify identical logfiles
in this thesis), and additional information that may be given after the FTZ
specification is omitted. The omission is denoted by including the result of the
FTZ analysis in square braces. The following values can be displayed: “ftz: no”
represents the case where nothing was omitted, and “ftz: [no]”, “ftz: [FTZ]”,
and “ftz: [FTS]” denote the omission of further information such as vector or
scalar errors when either FTZ is not used or the command line options --ftz or
--ftzsigned (cf. Section 3.3.6) were given. Finally, the FTZ analysis information,
such as number of subnormal results, has been omitted when “ftz: [yes]” or
“ftz: [???]” are shown. When more than the FTZ analysis information is missing,
we show the full output in order to analyse the floating-point behaviour of the
tested floating-point environment.

c3241401 def-gcct2d_c99_t2d_v total: 17.35% 25872 4490 ulp: 989 (1) ftz: [???]
bcad9b8a def-gcct2d_c99_t2d_x total: 4.09% 25872 1059 ulp: 989 (1) ftz: [???]
57daacd9 def-gcct2s_c99_t2s_v total: 15.47% 24725 3824 ulp: 827 (1) ftz: no
cbc6ab77 def-gcct2s_c99_t2s_x total: 3.62% 24725 895 ulp: 827 (1) ftz: no
6be35c5c def-gcct2d_main_t2d_v total: 21.16% 21221 4491 ulp: 0 (0) ftz: no
42050d77 def-gcct2d_main_t2d_x total: 0.34% 21221 72 ulp: 0 (0) ftz: no
60590e9c def-gcct2s_main_t2s_v total: 18.94% 20191 3825 ulp: 0 (0) ftz: no
3f540e87 def-gcct2s_main_t2s_x total: 0.35% 20191 70 ulp: 0 (0) ftz: no

Listing 6.27: Short summary of testing the default architecture.

In this example, most of the errors are related only to exception handling
(denoted by the significantly smaller error rates for the -vix runs), and if deviations
are found, they are in the order of Op1q ulp. The error rates for the c99 FPU are

6.1 A detailed example 219

slightly smaller than for the main FPU. Finally, this environment does not employ
FTZ, but properly supports subnormal number handling.

For more information, the output of the analysis functions for the different
test runs needs to be consulted. For the -v runs with the main FPU, they are
almost identical to the output shown in Section 6.1.2 (since fma was not tested
here). Listing 6.28 shows that indeed test vectors with binary representation are
only returned for conversions between binary and decimal formats. The reasons
for this behaviour are discussed in detail in Section 6.1.2.

(Success rates shown)

add 100.00% 3152/3152
sub 100.00% 1622/1622
mul 100.00% 5408/5408
div 100.00% 2153/2153
rem 100.00% 1364/1364
sqrt 100.00% 1784/1784
b2d 86.99% 428/492
d2b 99.82% 3366/3372
i 100.00% 350/350
ri 100.00% 184/184
rI 100.00% 47/47
ru 100.00% 27/27
rU 100.00% 28/28
ci 100.00% 56/56
cI 100.00% 56/56
cu 100.00% 48/48
cU 100.00% 48/48
RESULT 99.65% 20121/20191

GROUPED

basic 100.00% 12335/12335
extra 100.00% 3148/3148
conv 100.00% 844/844
output 98.19% 3794/3864

Listing 6.28: basic evaluation function results for the main FPU in -vix mode
with the t2s testset.

Listing 6.29 shows the situation for the c99 FPU in -v mode for single precision
test vectors. The main difference to the main FPU lies in proper support for fma
and different errors for the b2d operation, cf. Listing 6.30.

(Success rates shown)

add 100.00% 3152/3152
sub 100.00% 1622/1622
mul 100.00% 5408/5408
div 100.00% 2153/2153
rem 100.00% 1364/1364
sqrt 100.00% 1784/1784
fma 100.00% 4534/4534
b2d 1.63% 8/492
d2b 1.63% 55/3372

220 Selected results

i 100.00% 350/350
ri 89.13% 164/184
rI 100.00% 47/47
ru 92.59% 25/27
rU 96.43% 27/28
ci 100.00% 56/56
cI 100.00% 56/56
cu 100.00% 48/48
cU 100.00% 48/48
RESULT 84.53% 20901/24725

GROUPED

basic 100.00% 12335/12335
extra 100.00% 7682/7682
conv 97.27% 821/844
output 1.63% 63/3864

Listing 6.29: basic evaluation function results for the c99 FPU in -v mode
with the t2s testset.

d2b
em 0 1
emh 0 1
j 0 2486
jm 1 826
m 1 1
n 0 2

e - exponent different
h - result is not an infinity
j - inexact flag not returned
m - mantissa different
n - result is not a NaN

Listing 6.30: operation_report evaluation function excerpt for the c99 FPU
in -v mode with the t2s testset.

The operation_report reveals that in the decimal to binary conversion routine,
a large number of results seem to be incorrectly rounded (denoted by the average
deviation from the correct result of 1 ulp). Looking at the ulp report output
shown in Listing 6.31 supports this assumption. In fact, this type of conversion
in the c99 implementation seems to better support the roundTiesToEven and
roundTowardZero rounding modes as compared to roundTowardPositive and
roundTowardNegative.

(vectors with 1, 2-8, and >8 ulps difference shown)

n 0 0 0 6365
z 0 0 0 6175
u 414 0 1 6090
d 413 0 1 6095
RESULT 827 0 2 24725

Listing 6.31: ulp evaluation function excerpt for the c99 FPU in -v mode with
the t2s testset.

6.1 A detailed example 221

Further analysis for the c99 FPU in -vix mode, as well as for double precision
test vectors, reveals no additional insight. Therefore, we refrain from showing
more output.

x86 architecture

For the analysis of the x86 architecture in the selected user environment with
the default gcc and clang compilers, we once again choose one of the summaries
at the end of the evaluation framework run logfile eval/ex/x86.log as shown in
Listing 6.32 as starting point.

fa527e35 x86-clangt3d_main_t3d_v total: 0.22% 16661 37 ulp: 0 (0) ftz: no
d2a38004 x86-clangt3d_main_t3d_x total: 0.01% 16661 1 ulp: 0 (0) ftz: no
f1a26455 x86-gcct3d_main_t3d_v total: 0.14% 16661 23 ulp: 0 (0) ftz: no
95846b32 x86-gcct3d_main_t3d_x total: 0.00% 16661 0 ulp: 0 (0) ftz: no
751059c3 x86-clangt3s_main_t3s_v total: 0.21% 16327 35 ulp: 0 (0) ftz: no
edf315f3 x86-clangt3s_main_t3s_x total: 0.00% 16327 0 ulp: 0 (0) ftz: no
2d23461c x86-gcct3s_main_t3s_v total: 0.14% 16327 23 ulp: 0 (0) ftz: no
71514d10 x86-gcct3s_main_t3s_x total: 0.00% 16327 0 ulp: 0 (0) ftz: no

Listing 6.32: Summary of testing the x86 architecture.

The most evident difference between the x86 and default architecture runs
lies in the significantly lower number of errors. The discrepancy is mainly due to
two reasons (notwithstanding a deeper analysis, see below): The testsets t3s and
t3d do not contain test vectors for the conversions between binary and decimal
representation, and the x86 main FPU does not include an fma implementation.
These operations (i. e. b2d, d2b, and fma) were responsible for the large majority
of errors when checking the default environment.

Further examination of the summary in Listing 6.32 reveals that all errors for
clang except one are related to exceptions only, implying that the floating-point
numbers returned by the x86 main in the testing environment are (in principle)
all correctly rounded. Another observation from the summary is that error counts
for clang are slightly higher than for gcc. In the following paragraphs, we will
once again use output from selected analysis modules to examine the reasons for
this behaviour.

We start by looking at the operation_report output for clang with double
precision test vectors which is shown in Listing 6.33 (which incidentally is the
only case that shows an error not related to exceptions, see the summary above).

cU
s 0 1

s - Different sign
rU

i 0 1
x 0 13

i - invalid not expected
x - inexact not expected

ri
p 0 8
xp 0 12

222 Selected results

p - invalid flag not returned
x - inexact not expected

ru
p 0 1
xp 0 1

p - invalid flag not returned
x - inexact not expected

Listing 6.33: operation_report output for the x86 architecture in -v mode for
clang and the t3d testset.

The only floating-point number for which the returned binary value is wrong
occurs in the cU operator, i. e. converting a 64 bit integer to a double floating-point
number, and wrong bits are not in the exponent or significand, but the number
has incorrect sign. Listing 6.34 reveals that, strangely enough, the integer 0 is
converted into the floating-point number ´0 in roundTowardNegative rounding
mode.

All other errors are found in conversion from floating-point to integer values
and return correct binary representation of the resulting integer, but either raise
exception flags that were not expected or miss flags that are necessary.

[__] l.27209 d cU d 0000000000000000 0000000000000000 0000000000000000 => - 8000000000000000 | s
0

Listing 6.34: error_list excerpt for the x86 architecture in -v mode for clang
and the t3d testset.

Listing 6.35 shows the same analysis function output as Listing 6.33, albeit
generated with gcc. The types and numbers of errors are mostly identical, except
concerning the cU error analysed above and 13 test vectors where an inexact or
invalid flag was erroneously raised. Comparing the corresponding error_list
outputs (i. e. comparing the returned floating-point numbers and exceptions; these
are not shown here) reveals that the errors produced by gcc and clang are identical,
i. e. both compilers return the same (wrong) exceptions for some of the input test
vectors. These are shown in Listing 6.36; all errors occur for the same combination
of parameters: test vectors for the rU operation (rounding floating-point numbers
to 64 bit integers) in roundTowardZero rounding mode for which floating-point
numbers exactly representable as integers cause an inexact (and in one case an
invalid flag) to be raised. Additionally, clang generates a few more errors as
discussed before.

rU
x 0 1

x - inexact not expected
ri

p 0 8
xp 0 12

p - invalid flag not returned
x - inexact not expected

ru

6.2 Different compilers 223

p 0 1
xp 0 1

p - invalid flag not returned
x - inexact not expected

Listing 6.35: operation_report output for the x86 architecture in -v mode for
gcc and the t3d testset.

[__] l.26990 d rU z 3ff0000000000000 0000000000000000 0000000000000001 => - 0000000000000001 x |
x 0

[__] l.26991 d rU z 4000000000000000 0000000000000000 0000000000000002 => - 0000000000000002 x |
x 0

[__] l.26992 d rU z 4008000000000000 0000000000000000 0000000000000003 => - 0000000000000003 x |
x 0

[__] l.26993 d rU z 4030000000000000 0000000000000000 0000000000000010 => - 0000000000000010 x |
x 0

[__] l.26994 d rU z 4030000000000000 0000000000000000 0000000000000010 => - 0000000000000010 x |
x 0

[__] l.26995 d rU z 4070000000000000 0000000000000000 0000000000000100 => - 0000000000000100 x |
x 0

[__] l.26996 d rU z 40f0001000000000 0000000000000000 0000000000010001 => - 0000000000010001 x |
x 0

[__] l.26997 d rU z 40efffe000000000 0000000000000000 000000000000ffff => - 000000000000ffff x |
x 0

[__] l.27003 d rU z 43efffffffffffff 0000000000000000 fffffffffffff800 => - fffffffffffff800 i |
i 0

[__] l.27013 d rU z 41d0000000400000 0000000000000000 0000000040000001 => - 0000000040000001 x |
x 0

[__] l.27014 d rU z 4340000000000001 0000000000000000 0020000000000002 => - 0020000000000002 x |
x 0

[__] l.27015 d rU z 433fffffffffffff 0000000000000000 001fffffffffffff => - 001fffffffffffff x |
x 0

[__] l.27016 d rU z 4330000000000001 0000000000000000 0010000000000001 => - 0010000000000001 x |
x 0

Listing 6.36: Another error_list excerpt for the x86 architecture in -v mode
for gcc and the t3d testset.

A similar analysis for the single precision case is left out here since it reveals
identical behaviour, i. e. gcc and clang produce identical errors in conversion to
integer operators, and additionally clang signals exceptions in a few more cases
for rounding to 64 bit integers vectors in roundTowardZero mode.

6.2 Different compilers
As discussed in Section 1.4.6, the compiler plays a vital role in the selection of the
execution points of floating-point operations for a given user environment, e. g.
choosing hardware routines or software libraries. Furthermore, some features may
be implemented directly in the compiler or incorporated into it via libraries, e. g.
for input/output or evaluation of constant expressions.

In this section, we take a look at the results of IEEE-conformity testing on
the x86 workstation described in Section 6.1.1. Note that the influence of using
different compiler options is postponed to Section 6.9, in which the optimisation
framework is used to study the interaction of performance and IEEE-conformity
with regard to selected compiler switches.

224 Selected results

In order to examine the differences between compilers and compiler versions,
the tests in this section are performed with the x86 main FPU which is identical to
the default main FPU and almost identical to the default generic FPU tested
in the last section, except for the missing fma operator (which is a “fake” fma
operator, cf. Section 5.1.1 and Listing 6.12), with the following compilers: GNU
gcc versions 4.0, 4.7, 4.8, and 7.2, clang versions 3.1, 3.8, 4.0, and 5.0, Intel icc
13.0.0, and PathScale EkoPath 5.0.5. The corresponding evaluation framework
input file is shown in Listing 6.37. Note that we use the t2 testsets that include
binary to decimal conversions in single, double, and extended precision (t2s, t2d,
and t2l).

_archname = com
_arch = x86
_compilers = gcc-4.0 gcc-4.7 gcc-4.8 gcc-7.2 clang-3.1 clang-3.8 clang-4.0

clang-5.0 icc-13.0.0 path-5.0.5
_fpu = main
_cores = 8
_testsets = t2s t2d t2l

Listing 6.37: Input file compilers.in.

We once again show the summary of the testing process with the different
compilers and versions able to be found at the end of the evaluation framework
run logfile. Note that the summary is sorted according to the MD5 hash digest
with the following reasoning: When testing results are identical, the corresponding
logfiles (and therefore the hash digests) are equal. Sorting by this digest then
enables quick recognition of test runs with identical results. Indeed, Listing 6.38
reveals that the four clang versions yield identical results for single and double
precision, and only the clang 3.1 (the oldest version tested here) returns different
testing results for extended precision. Comparing the relevant logfiles reveals that
clang 3.1 returns the exact same floating-point numbers, but for eight test vectors
raises an inexact flag when it is not expected. This also explains why error counts
are identical between all clang compiler version for the -vix output.

71e23287 testl-gcc48t1d_x87_t1d_v total: 2.49% 15483 385 ulp: 190 (1) ftz: [???]
8b4c00ed testl-gcc48t1d_x87_t1d_x total: 1.28% 15483 198 ulp: 190 (1) ftz: [???]
023c3fff com-path505t2s_main_t2s_x total: 1.05% 20191 212 ulp: 129 (1) ftz: no
0264f597 com-gcc40t2d_main_t2d_v total: 21.19% 21221 4496 ulp: 0 (0) ftz: [???]
3156d53c com-gcc40t2d_main_t2d_x total: 0.36% 21221 77 ulp: 0 (0) ftz: [???]
3d42297e com-path505t2d_main_t2d_v total: 39.41% 21221 8364 ulp: 440 (1) ftz: [???]
42e00aa4 com-clang31t2d_main_t2d_x total: 0.34% 21221 73 ulp: 0 (0) ftz: no
42e00aa4 com-clang38t2d_main_t2d_x total: 0.34% 21221 73 ulp: 0 (0) ftz: no
42e00aa4 com-clang40t2d_main_t2d_x total: 0.34% 21221 73 ulp: 0 (0) ftz: no
42e00aa4 com-clang50t2d_main_t2d_x total: 0.34% 21221 73 ulp: 0 (0) ftz: no
4a592119 com-gcc47t2l_main_t2l_v total: 12.57% 19501 2451 ulp: 0 (0) ftz: no
4a592119 com-gcc48t2l_main_t2l_v total: 12.57% 19501 2451 ulp: 0 (0) ftz: no
4a592119 com-gcc72t2l_main_t2l_v total: 12.57% 19501 2451 ulp: 0 (0) ftz: no
4c285afd com-icc1300t2l_main_t2l_v total: 12.73% 19501 2482 ulp: 0 (0) ftz: no
594fff7b com-icc1300t2l_main_t2l_x total: 0.06% 19501 12 ulp: 0 (0) ftz: no
6b09a654 com-path505t2d_main_t2d_x total: 2.54% 21221 538 ulp: 440 (1) ftz: [???]
752250dd com-clang38t2l_main_t2l_x total: 0.06% 19501 12 ulp: 0 (0) ftz: no
752250dd com-clang40t2l_main_t2l_x total: 0.06% 19501 12 ulp: 0 (0) ftz: no
752250dd com-clang50t2l_main_t2l_x total: 0.06% 19501 12 ulp: 0 (0) ftz: no
7535249c com-gcc47t2d_main_t2d_x total: 0.34% 21221 72 ulp: 0 (0) ftz: no
7535249c com-gcc48t2d_main_t2d_x total: 0.34% 21221 72 ulp: 0 (0) ftz: no
7535249c com-gcc72t2d_main_t2d_x total: 0.34% 21221 72 ulp: 0 (0) ftz: no

6.2 Different compilers 225

7b5b853b com-gcc40t2s_main_t2s_v total: 18.98% 20191 3832 ulp: 0 (0) ftz: no
7cbef488 com-gcc40t2s_main_t2s_x total: 0.38% 20191 77 ulp: 0 (0) ftz: no
86dbe53a com-icc1300t2d_main_t2d_x total: 0.34% 21221 72 ulp: 0 (0) ftz: no
8f3ff57f com-path505t2l_main_t2l_v total: 45.25% 19501 8825 ulp: 0 (0) ftz: no
9c85512b com-clang38t2l_main_t2l_v total: 12.57% 19501 2452 ulp: 0 (0) ftz: no
9c85512b com-clang40t2l_main_t2l_v total: 12.57% 19501 2452 ulp: 0 (0) ftz: no
9c85512b com-clang50t2l_main_t2l_v total: 12.57% 19501 2452 ulp: 0 (0) ftz: no
a54cf742 com-gcc40t2l_main_t2l_x total: 0.09% 19501 17 ulp: 0 (0) ftz: [???]
b16b11a8 com-gcc40t2l_main_t2l_v total: 12.59% 19501 2456 ulp: 0 (0) ftz: [???]
be26c1b4 com-gcc47t2s_main_t2s_x total: 0.35% 20191 70 ulp: 0 (0) ftz: no
be26c1b4 com-gcc48t2s_main_t2s_x total: 0.35% 20191 70 ulp: 0 (0) ftz: no
be26c1b4 com-gcc72t2s_main_t2s_x total: 0.35% 20191 70 ulp: 0 (0) ftz: no
bfaff2ae com-clang31t2d_main_t2d_v total: 21.23% 21221 4505 ulp: 0 (0) ftz: no
bfaff2ae com-clang38t2d_main_t2d_v total: 21.23% 21221 4505 ulp: 0 (0) ftz: no
bfaff2ae com-clang40t2d_main_t2d_v total: 21.23% 21221 4505 ulp: 0 (0) ftz: no
bfaff2ae com-clang50t2d_main_t2d_v total: 21.23% 21221 4505 ulp: 0 (0) ftz: no
cf548995 com-clang31t2l_main_t2l_x total: 0.06% 19501 12 ulp: 0 (0) ftz: no
cfa0a6b6 com-gcc47t2l_main_t2l_x total: 0.06% 19501 12 ulp: 0 (0) ftz: no
cfa0a6b6 com-gcc48t2l_main_t2l_x total: 0.06% 19501 12 ulp: 0 (0) ftz: no
cfa0a6b6 com-gcc72t2l_main_t2l_x total: 0.06% 19501 12 ulp: 0 (0) ftz: no
d2bf5b8a com-path505t2l_main_t2l_x total: 0.04% 19501 8 ulp: 0 (0) ftz: no
d9363a0c com-icc1300t2d_main_t2d_v total: 21.29% 21221 4519 ulp: 0 (0) ftz: no
da9e546c com-icc1300t2s_main_t2s_x total: 0.35% 20191 70 ulp: 0 (0) ftz: no
e10893d8 com-path505t2s_main_t2s_v total: 34.98% 20191 7062 ulp: 129 (1) ftz: no
e87ac0fe com-gcc47t2d_main_t2d_v total: 21.16% 21221 4491 ulp: 0 (0) ftz: no
e87ac0fe com-gcc48t2d_main_t2d_v total: 21.16% 21221 4491 ulp: 0 (0) ftz: no
e87ac0fe com-gcc72t2d_main_t2d_v total: 21.16% 21221 4491 ulp: 0 (0) ftz: no
ebf54c0c com-clang31t2l_main_t2l_v total: 12.51% 19501 2440 ulp: 0 (0) ftz: no
ed76b8a3 com-clang31t2s_main_t2s_v total: 19.00% 20191 3837 ulp: 0 (0) ftz: no
ed76b8a3 com-clang38t2s_main_t2s_v total: 19.00% 20191 3837 ulp: 0 (0) ftz: no
ed76b8a3 com-clang40t2s_main_t2s_v total: 19.00% 20191 3837 ulp: 0 (0) ftz: no
ed76b8a3 com-clang50t2s_main_t2s_v total: 19.00% 20191 3837 ulp: 0 (0) ftz: no
f04a55f4 com-gcc47t2s_main_t2s_v total: 18.94% 20191 3825 ulp: 0 (0) ftz: no
f04a55f4 com-gcc48t2s_main_t2s_v total: 18.94% 20191 3825 ulp: 0 (0) ftz: no
f04a55f4 com-gcc72t2s_main_t2s_v total: 18.94% 20191 3825 ulp: 0 (0) ftz: no
f33cb833 com-icc1300t2s_main_t2s_v total: 19.08% 20191 3852 ulp: 0 (0) ftz: no
fe591597 com-clang31t2s_main_t2s_x total: 0.35% 20191 70 ulp: 0 (0) ftz: no
fe591597 com-clang38t2s_main_t2s_x total: 0.35% 20191 70 ulp: 0 (0) ftz: no
fe591597 com-clang40t2s_main_t2s_x total: 0.35% 20191 70 ulp: 0 (0) ftz: no
fe591597 com-clang50t2s_main_t2s_x total: 0.35% 20191 70 ulp: 0 (0) ftz: no

Listing 6.38: Summary of testing different compilers.

From the summary, the following can also be concluded:

• The newer gcc versions 4.7, 4.8 and 7.2 behave identically for all three
testsets. This is noteworthy since the default execution unit chosen by the
compiler changed between version 4.7 and 4.8: Where gcc 4.7 targeted the
SSE unit, gcc 4.8 by default emits AVX instructions. This means that in
the default environment of the tested platform, gcc 4.7 and newer provide
consistent results regardless of the underlying FPU (SSE or AVX) being
employed.

• gcc 4.0 shows slightly higher error counts for all three precisions. Comparing
the output files in verbose format reveals that a few errors in the d2b operator
are fixed in the newer releases.

• Most of the errors returned by all compilers are related to exceptions only,
i. e. overall, the returned floating-point numbers are correctly rounded.

• Error counts are comparable for clang, gcc, and icc, whereas the (older)
EkoPath compiler generates higher error counts (sometimes higher by a
factor of 2). For single and double precision, gcc yields the fewest errors,
followed by clang and icc (in this order). For extended precision, clang and

226 Selected results

gcc produce similar error counts, directly followed by icc. Again, EkoPath
produces a significantly higher error rate.

Once again using the output of the different analysis modules, especially the
basic, operation_report, roundings, and ulp evaluation functions, reveals the
following deficiencies in the results returned by the different compilers:
• For all compilers, most of the errors are generated for input and output

of floating-point numbers, i. e. for conversions between binary and decimal
formats. Almost all of these are related to exceptions only (mostly the inexact
flag not being returned). Additionally, all compilers return (a few) errors
only related to exceptions for conversions from integer into floating-point
formats.
Note that the quality of returned test vectors for the operators d2b and b2d
is comparable between clang, gcc, and icc, whereas EkoPath generates
significantly more errors (wrong return values) for these operations.

• Wrong result values are almost exclusively returned by the conversions
between binary and decimal format, the exception being clang and EkoPath
which return one test vector with incorrect sign for cU in double precision
(see the analysis in Section 6.1.2).

• clang, gcc, and icc return a few test vectors signalling the inexact exception
for remainder and square root in extended precision in addition to the invalid
exception (which should be and is signalled). Interestingly, these test vectors
for sqrt return correct exceptions with clang 3.1

• In single and double precision, EkoPath returns zeroes with incorrect sign for
a small number of test vectors for the remainder operation. Some additional
errors were found for this operation in double precision where, instead of
the correct result, the first operand was returned.

6.3 x86
In this section, we take a look at the IEEE-conformity of a few x86 platforms.
Since the x86 main FPU has already been analysed in the former sections, we
concentrate on the (hardware) FPUs built into x86 CPUs. We start by discussing
test results for the x87, SSE and AVX FPUs on two common platforms before
examining AVX-512 results generated on a Xeon Phi (KNL) processor.

6.3.1 Xeon
For the x86 results, we chose the following two environments to be tested with
the x86 architecture port (see Section 5.2.1) since they represent typical CPUs
which are widely deployed in desktop workstations and servers:

6.3 x86 227

• The Intel Core i7-4770 workstation described in Section 6.1.1.

• An x86 server with an Intel Xeon E5-2620 v4 CPU (Broadwell microarchi-
tecture, cf. [INT16b]) that is running CentOS Linux 7.3.1611 (x86_64 with
Linux kernel 3.10.0-514.26.1.el7.x86_64).

The platforms are tested with the t3s and t3d testsets. Additionally, the t3l
testset is used to test IEEE-conformity of the x87 FPU. The same set of compilers
was used on both platforms, namely gcc versions 4.7, 4.8, 4.9, 5.5, 6.4, 7.2, and
8-20171105 (the last being a pre-release version of the upcoming gcc 8), and clang
versions 4.0 and 5.0. Additionally, Intel icc 13.0.0 20120731 was tested on the
Intel Core workstation.

SSE, AVX

The analysis for the SSE and AVX FPUs can be kept short: All of the executed test
vectors returned correct results, i. e. for all variations of the corresponding logical
FPUs in the x86 port (sse, ssei, sses, sse3, sse3i, sse3s, avx, avxi, avxsse,
and avxssei), no errors were encountered. Two conclusions can be drawn from
this result: First, the SSE and AVX (hardware) FPUs have been implemented on
these processors in an IEEE-conforming way. Second, all tested compilers generate
valid SSE and AVX instructions and make full use of the IEEE-conformity of the
underlying hardware.

Listing 6.39 shows example summary for the avx FPU (which uses inline
assembler instructions to call the FPU’s floating-point operators) on the Intel
Core workstation.

af5dd5ff avx-clang40t3d_avx_t3d_x total: 0.00% 19352 0 ulp: 0 (0) ftz: no
af5dd5ff avx-clang50t3d_avx_t3d_x total: 0.00% 19352 0 ulp: 0 (0) ftz: no
af5dd5ff avx-gcc47t3d_avx_t3d_x total: 0.00% 19352 0 ulp: 0 (0) ftz: no
af5dd5ff avx-gcc48t3d_avx_t3d_x total: 0.00% 19352 0 ulp: 0 (0) ftz: no
af5dd5ff avx-gcc49t3d_avx_t3d_x total: 0.00% 19352 0 ulp: 0 (0) ftz: no
af5dd5ff avx-gcc55t3d_avx_t3d_x total: 0.00% 19352 0 ulp: 0 (0) ftz: no
af5dd5ff avx-gcc64t3d_avx_t3d_x total: 0.00% 19352 0 ulp: 0 (0) ftz: no
af5dd5ff avx-gcc72t3d_avx_t3d_x total: 0.00% 19352 0 ulp: 0 (0) ftz: no
af5dd5ff avx-gcc8t3d_avx_t3d_x total: 0.00% 19352 0 ulp: 0 (0) ftz: no
af5dd5ff avx-icc130t3d_avx_t3d_x total: 0.00% 19352 0 ulp: 0 (0) ftz: no
cb5e73da avx-clang40t3s_avx_t3s_x total: 0.00% 18893 0 ulp: 0 (0) ftz: no
cb5e73da avx-clang50t3s_avx_t3s_x total: 0.00% 18893 0 ulp: 0 (0) ftz: no
cb5e73da avx-gcc47t3s_avx_t3s_x total: 0.00% 18893 0 ulp: 0 (0) ftz: no
cb5e73da avx-gcc48t3s_avx_t3s_x total: 0.00% 18893 0 ulp: 0 (0) ftz: no
cb5e73da avx-gcc49t3s_avx_t3s_x total: 0.00% 18893 0 ulp: 0 (0) ftz: no
cb5e73da avx-gcc55t3s_avx_t3s_x total: 0.00% 18893 0 ulp: 0 (0) ftz: no
cb5e73da avx-gcc64t3s_avx_t3s_x total: 0.00% 18893 0 ulp: 0 (0) ftz: no
cb5e73da avx-gcc72t3s_avx_t3s_x total: 0.00% 18893 0 ulp: 0 (0) ftz: no
cb5e73da avx-gcc8t3s_avx_t3s_x total: 0.00% 18893 0 ulp: 0 (0) ftz: no
cb5e73da avx-icc130t3s_avx_t3s_x total: 0.00% 18893 0 ulp: 0 (0) ftz: no
d8bb83b7 avx-clang40t3s_avx_t3s_v total: 0.00% 18893 0 ulp: 0 (0) ftz: no
d8bb83b7 avx-clang50t3s_avx_t3s_v total: 0.00% 18893 0 ulp: 0 (0) ftz: no
d8bb83b7 avx-gcc47t3s_avx_t3s_v total: 0.00% 18893 0 ulp: 0 (0) ftz: no
d8bb83b7 avx-gcc48t3s_avx_t3s_v total: 0.00% 18893 0 ulp: 0 (0) ftz: no
d8bb83b7 avx-gcc49t3s_avx_t3s_v total: 0.00% 18893 0 ulp: 0 (0) ftz: no
d8bb83b7 avx-gcc55t3s_avx_t3s_v total: 0.00% 18893 0 ulp: 0 (0) ftz: no
d8bb83b7 avx-gcc64t3s_avx_t3s_v total: 0.00% 18893 0 ulp: 0 (0) ftz: no
d8bb83b7 avx-gcc72t3s_avx_t3s_v total: 0.00% 18893 0 ulp: 0 (0) ftz: no
d8bb83b7 avx-gcc8t3s_avx_t3s_v total: 0.00% 18893 0 ulp: 0 (0) ftz: no
d8bb83b7 avx-icc130t3s_avx_t3s_v total: 0.00% 18893 0 ulp: 0 (0) ftz: no
ea227caf avx-clang40t3d_avx_t3d_v total: 0.00% 19352 0 ulp: 0 (0) ftz: no
ea227caf avx-clang50t3d_avx_t3d_v total: 0.00% 19352 0 ulp: 0 (0) ftz: no
ea227caf avx-gcc47t3d_avx_t3d_v total: 0.00% 19352 0 ulp: 0 (0) ftz: no

228 Selected results

ea227caf avx-gcc48t3d_avx_t3d_v total: 0.00% 19352 0 ulp: 0 (0) ftz: no
ea227caf avx-gcc49t3d_avx_t3d_v total: 0.00% 19352 0 ulp: 0 (0) ftz: no
ea227caf avx-gcc55t3d_avx_t3d_v total: 0.00% 19352 0 ulp: 0 (0) ftz: no
ea227caf avx-gcc64t3d_avx_t3d_v total: 0.00% 19352 0 ulp: 0 (0) ftz: no
ea227caf avx-gcc72t3d_avx_t3d_v total: 0.00% 19352 0 ulp: 0 (0) ftz: no
ea227caf avx-gcc8t3d_avx_t3d_v total: 0.00% 19352 0 ulp: 0 (0) ftz: no
ea227caf avx-icc130t3d_avx_t3d_v total: 0.00% 19352 0 ulp: 0 (0) ftz: no

Listing 6.39: Summary of testing the x86 avx FPU.

x87

For the x87 FPU, the situation is slightly different. Listing 6.40 shows the
corresponding summary generated on the Intel Core workstation, albeit with
only one version of the different compilers (the results generated by the different
versions of clang, gcc, and icc are identical).

02c0ecac x87-clang50t3l_x87_t3l_v total: 0.00% 15483 0 ulp: 0 (0) ftz: no
02c0ecac x87-gcc72t3l_x87_t3l_v total: 0.00% 15483 0 ulp: 0 (0) ftz: no
02c0ecac x87-icc130t3l_x87_t3l_v total: 0.00% 15483 0 ulp: 0 (0) ftz: no
04c30c1a x87-clang50t3l_x87_t3l_x total: 0.00% 15483 0 ulp: 0 (0) ftz: no
04c30c1a x87-gcc72t3l_x87_t3l_x total: 0.00% 15483 0 ulp: 0 (0) ftz: no
04c30c1a x87-icc130t3l_x87_t3l_x total: 0.00% 15483 0 ulp: 0 (0) ftz: no
3ef04163 x87-clang50t3s_x87_t3s_v total: 0.12% 15483 18 ulp: 0 (0) ftz: [???]
3ef04163 x87-gcc72t3s_x87_t3s_v total: 0.12% 15483 18 ulp: 0 (0) ftz: [???]
3ef04163 x87-icc130t3s_x87_t3s_v total: 0.12% 15483 18 ulp: 0 (0) ftz: [???]
74fe87bc x87-clang50t3s_x87_t3s_x total: 0.12% 15483 18 ulp: 0 (0) ftz: [???]
74fe87bc x87-gcc72t3s_x87_t3s_x total: 0.12% 15483 18 ulp: 0 (0) ftz: [???]
74fe87bc x87-icc130t3s_x87_t3s_x total: 0.12% 15483 18 ulp: 0 (0) ftz: [???]
96d92363 x87-clang50t3d_x87_t3d_x total: 0.12% 15483 18 ulp: 0 (0) ftz: [???]
96d92363 x87-gcc72t3d_x87_t3d_x total: 0.12% 15483 18 ulp: 0 (0) ftz: [???]
96d92363 x87-icc130t3d_x87_t3d_x total: 0.12% 15483 18 ulp: 0 (0) ftz: [???]
c5634a66 x87-clang50t3d_x87_t3d_v total: 0.12% 15483 18 ulp: 0 (0) ftz: [???]
c5634a66 x87-gcc72t3d_x87_t3d_v total: 0.12% 15483 18 ulp: 0 (0) ftz: [???]
c5634a66 x87-icc130t3d_x87_t3d_v total: 0.12% 15483 18 ulp: 0 (0) ftz: [???]

Listing 6.40: Summary of testing the x87 FPU on an Intel Core workstation.

Again, all three compilers generate identical results. In extended precision
(i. e. for the t3l testset), no errors were encountered, whereas in single and double
precision, a small number of errors were reported. The output of the basic and
roundings evaluation functions shown for the t3d testset in Listings 6.41 and 6.42
reveal that the errors occur for multiplication and division in roundTiesToEven
mode.

(Success rates shown)

add 100.00% 3152/3152
sub 100.00% 1622/1622
mul 99.70% 5392/5408
div 99.91% 2151/2153
rem 100.00% 1364/1364
sqrt 100.00% 1784/1784
RESULT 99.88% 15465/15483

Listing 6.41: basic evaluation function results for the x87 FPU, t3d testset,
double intermediate precision.

6.3 x86 229

(Success rates shown)

n 99.56% 4057/4075
z 100.00% 3793/3793
u 100.00% 3806/3806
d 100.00% 3809/3809
RESULT 99.88% 15465/15483

Listing 6.42: roundings evaluation function results for the x87 FPU, t3d testset,
double intermediate precision.

Listing 6.43 points at the cause for the 18 reported errors: Due to the exten-
ded size of the exponent even in the double precision mode of the x87 FPU (cf.
Section 5.2.1, page 174), these test vectors are rounded to zero instead of being
rounded to the smallest subnormal number (in magnitude), or are rounded to the
smallest normalised number instead of being rounded to the largest subnormal
number. This phenomenon can only happen with roundTiesToEven (or roundTi-
esToAway), since for the directed rounding modes it is clear whether a subnormal
or a regular floating-point number (i. e. either zero or the smallest normalised
number) must be returned.

(Operations, ulps, error count shown)

emft - exponent different
- flush to zero detected
- mantissa different
- result is normalized number, expected tiny (underflown)

div 0 2
mul 0 8

mf - flush to zero detected
- mantissa different

mul 0 8

Listing 6.43: error_report evaluation function results for the x87 FPU, t3d
testset, double intermediate precision.

A similar analysis for the t3s testset reveals that the 18 errors reported in
single precision are caused by the same reasons as in the double precision case.

When explicitly enabling extended precision for intermediate computations in
the x87 FPU with the IeeeCC754++ option --extended,1 the results are different
as shown in Listing 6.44.

1The default behaviour of IeeeCC754++’s x87 FPU concerning intermediate precision is
different from the behaviour of code that is generated by compilers in default configuration.
IeeeCC754++ switches the x87 FPU to intermediate precision corresponding to the test vector
currently under inspection, i. e. when executing a double precision test vector, double intermediate
precision is used. In contrast, when the intermediate precision is not explicitly set in the user
program, all compilers use the native extended format of the x87 FPU for all intermediate
results.

230 Selected results

02c0ecac x87-clang50t3l_x87_t3l_v total: 0.00% 15483 0 ulp: 0 (0) ftz: no
02c0ecac x87-gcc72t3l_x87_t3l_v total: 0.00% 15483 0 ulp: 0 (0) ftz: no
02c0ecac x87-icc130t3l_x87_t3l_v total: 0.00% 15483 0 ulp: 0 (0) ftz: no
04c30c1a x87-clang50t3l_x87_t3l_x total: 0.00% 15483 0 ulp: 0 (0) ftz: no
04c30c1a x87-gcc72t3l_x87_t3l_x total: 0.00% 15483 0 ulp: 0 (0) ftz: no
04c30c1a x87-icc130t3l_x87_t3l_x total: 0.00% 15483 0 ulp: 0 (0) ftz: no
71e23287 x87-clang50t3d_x87_t3d_v total: 2.49% 15483 385 ulp: 190 (1) ftz: [???]
71e23287 x87-gcc72t3d_x87_t3d_v total: 2.49% 15483 385 ulp: 190 (1) ftz: [???]
71e23287 x87-icc130t3d_x87_t3d_v total: 2.49% 15483 385 ulp: 190 (1) ftz: [???]
8b4c00ed x87-clang50t3d_x87_t3d_x total: 1.28% 15483 198 ulp: 190 (1) ftz: [???]
8b4c00ed x87-gcc72t3d_x87_t3d_x total: 1.28% 15483 198 ulp: 190 (1) ftz: [???]
8b4c00ed x87-icc130t3d_x87_t3d_x total: 1.28% 15483 198 ulp: 190 (1) ftz: [???]
d14c1fc4 x87-clang50t3s_x87_t3s_v total: 0.00% 15483 0 ulp: 0 (0) ftz: no
d14c1fc4 x87-gcc72t3s_x87_t3s_v total: 0.00% 15483 0 ulp: 0 (0) ftz: no
d14c1fc4 x87-icc130t3s_x87_t3s_v total: 0.00% 15483 0 ulp: 0 (0) ftz: no
e1a5832a x87-clang50t3s_x87_t3s_x total: 0.00% 15483 0 ulp: 0 (0) ftz: no
e1a5832a x87-gcc72t3s_x87_t3s_x total: 0.00% 15483 0 ulp: 0 (0) ftz: no
e1a5832a x87-icc130t3s_x87_t3s_x total: 0.00% 15483 0 ulp: 0 (0) ftz: no

Listing 6.44: Summary of testing the x87 FPU on an Intel Core workstation,
extended intermediate precision.

Here, no errors were encountered in single and extended precision (t3s and
t3l testsets), whereas in double precision, a small number of errors were reported.
Listing 6.45 shows that errors again happen only in the roundTiesToEven rounding
mode, and Listing 6.46 reveals that the errors occur in all basic operations except
remainder and are typical double-rounding cases where in target precision, the
floating-point number closest to the returned value would have been chosen
differently.

(Success rates shown)

n 95.14% 3877/4075
z 100.00% 3793/3793
u 100.00% 3806/3806
d 100.00% 3809/3809
RESULT 98.72% 15285/15483

Listing 6.45: roundings evaluation function results for the x87 FPU, t3d testset,
extended intermediate precision.

(Operations, ulps, error count shown)

em - exponent different
- mantissa different

add 1 4
sqrt 1 28
sub 1 2

emft - exponent different
- flush to zero detected
- mantissa different
- result is normalized number, expected tiny (underflown)

mul 0 8
m - mantissa different

add 1 4
div 1 22
mul 1 16
sqrt 1 112

6.3 x86 231

sub 1 2

Listing 6.46: error_report evaluation function results for the x87 FPU, t3d
testset, extended intermediate precision.

Finally, Listings 6.47 and 6.48 show summaries of the testing results from the
second user environment generated on the Xeon server described above. Comparing
the (shortened) hash digests shows that the results are identical to those generated
on the Intel Core workstation, with only the icc results missing.

02c0ecac x87-clang50t3l_x87_t3l_v total: 0.00% 15483 0 ulp: 0 (0) ftz: no
02c0ecac x87-gcc72t3l_x87_t3l_v total: 0.00% 15483 0 ulp: 0 (0) ftz: no
04c30c1a x87-clang50t3l_x87_t3l_x total: 0.00% 15483 0 ulp: 0 (0) ftz: no
04c30c1a x87-gcc72t3l_x87_t3l_x total: 0.00% 15483 0 ulp: 0 (0) ftz: no
3ef04163 x87-clang50t3s_x87_t3s_v total: 0.12% 15483 18 ulp: 0 (0) ftz: [???]
3ef04163 x87-gcc72t3s_x87_t3s_v total: 0.12% 15483 18 ulp: 0 (0) ftz: [???]
74fe87bc x87-clang50t3s_x87_t3s_x total: 0.12% 15483 18 ulp: 0 (0) ftz: [???]
74fe87bc x87-gcc72t3s_x87_t3s_x total: 0.12% 15483 18 ulp: 0 (0) ftz: [???]
96d92363 x87-clang50t3d_x87_t3d_x total: 0.12% 15483 18 ulp: 0 (0) ftz: [???]
96d92363 x87-gcc72t3d_x87_t3d_x total: 0.12% 15483 18 ulp: 0 (0) ftz: [???]
c5634a66 x87-clang50t3d_x87_t3d_v total: 0.12% 15483 18 ulp: 0 (0) ftz: [???]
c5634a66 x87-gcc72t3d_x87_t3d_v total: 0.12% 15483 18 ulp: 0 (0) ftz: [???]

Listing 6.47: Summary of testing the x87 FPU on an Intel Xeon server, native
intermediate precision.

02c0ecac x87-clang50t3l_x87_t3l_v total: 0.00% 15483 0 ulp: 0 (0) ftz: no
02c0ecac x87-gcc72t3l_x87_t3l_v total: 0.00% 15483 0 ulp: 0 (0) ftz: no
04c30c1a x87-clang50t3l_x87_t3l_x total: 0.00% 15483 0 ulp: 0 (0) ftz: no
04c30c1a x87-gcc72t3l_x87_t3l_x total: 0.00% 15483 0 ulp: 0 (0) ftz: no
71e23287 x87-clang50t3d_x87_t3d_v total: 2.49% 15483 385 ulp: 190 (1) ftz: [???]
71e23287 x87-gcc72t3d_x87_t3d_v total: 2.49% 15483 385 ulp: 190 (1) ftz: [???]
8b4c00ed x87-clang50t3d_x87_t3d_x total: 1.28% 15483 198 ulp: 190 (1) ftz: [???]
8b4c00ed x87-gcc72t3d_x87_t3d_x total: 1.28% 15483 198 ulp: 190 (1) ftz: [???]
d14c1fc4 x87-clang50t3s_x87_t3s_v total: 0.00% 15483 0 ulp: 0 (0) ftz: no
d14c1fc4 x87-gcc72t3s_x87_t3s_v total: 0.00% 15483 0 ulp: 0 (0) ftz: no
e1a5832a x87-clang50t3s_x87_t3s_x total: 0.00% 15483 0 ulp: 0 (0) ftz: no
e1a5832a x87-gcc72t3s_x87_t3s_x total: 0.00% 15483 0 ulp: 0 (0) ftz: no

Listing 6.48: Summary of testing the x87 FPU on an Intel Xeon server, extended
intermediate precision.

6.3.2 Xeon Phi: KNL
Since the KNL Xeon Phi processors are only released as regular CPUs (in contrast
to KNC Xeon Phis which are only available as accelerators, cf. Section 5.2),
checking the IEEE-conformity of a user environment with such a processor can be
performed in a manner identical to regular x86 CPUs. We performed the tests
on one of the nodes of the QPACE3 supercomputer (see e. g. [Lam16; JSC17b;
GRW17]) featuring Intel Xeon Phi 7210 processors (cf. [INT16a]). The user
environment consisted of the x86 architecture port with the avx512 and avx512i
FPUs and was tested with the t3s and t3d testsets with gcc versions 4.9, 5.5, 6.4,
7.2, and 8-20171105, and clang version 4.0 and 5.0.

Similar to the AVX units tested before, the analysis for the AVX-512 FPUs
can be kept short: Listing 6.49 shows that for the avx512 FPUs in the KNL CPU,

232 Selected results

no errors were encountered. Output for the avx512i has been left out since it
shows identical errors counts.

af5dd5ff avx-clang40t3d_avx512_t3d_x total: 0.00% 19352 0 ulp: 0 (0) ftz: no
af5dd5ff avx-clang50t3d_avx512_t3d_x total: 0.00% 19352 0 ulp: 0 (0) ftz: no
af5dd5ff avx-gcc49t3d_avx512_t3d_x total: 0.00% 19352 0 ulp: 0 (0) ftz: no
af5dd5ff avx-gcc55t3d_avx512_t3d_x total: 0.00% 19352 0 ulp: 0 (0) ftz: no
af5dd5ff avx-gcc64t3d_avx512_t3d_x total: 0.00% 19352 0 ulp: 0 (0) ftz: no
af5dd5ff avx-gcc72t3d_avx512_t3d_x total: 0.00% 19352 0 ulp: 0 (0) ftz: no
af5dd5ff avx-gcc80t3d_avx512_t3d_x total: 0.00% 19352 0 ulp: 0 (0) ftz: no
cb5e73da avx-clang40t3s_avx512_t3s_x total: 0.00% 18893 0 ulp: 0 (0) ftz: no
cb5e73da avx-clang50t3s_avx512_t3s_x total: 0.00% 18893 0 ulp: 0 (0) ftz: no
cb5e73da avx-gcc49t3s_avx512_t3s_x total: 0.00% 18893 0 ulp: 0 (0) ftz: no
cb5e73da avx-gcc55t3s_avx512_t3s_x total: 0.00% 18893 0 ulp: 0 (0) ftz: no
cb5e73da avx-gcc64t3s_avx512_t3s_x total: 0.00% 18893 0 ulp: 0 (0) ftz: no
cb5e73da avx-gcc72t3s_avx512_t3s_x total: 0.00% 18893 0 ulp: 0 (0) ftz: no
cb5e73da avx-gcc80t3s_avx512_t3s_x total: 0.00% 18893 0 ulp: 0 (0) ftz: no
d8bb83b7 avx-clang40t3s_avx512_t3s_v total: 0.00% 18893 0 ulp: 0 (0) ftz: no
d8bb83b7 avx-clang50t3s_avx512_t3s_v total: 0.00% 18893 0 ulp: 0 (0) ftz: no
d8bb83b7 avx-gcc49t3s_avx512_t3s_v total: 0.00% 18893 0 ulp: 0 (0) ftz: no
d8bb83b7 avx-gcc55t3s_avx512_t3s_v total: 0.00% 18893 0 ulp: 0 (0) ftz: no
d8bb83b7 avx-gcc64t3s_avx512_t3s_v total: 0.00% 18893 0 ulp: 0 (0) ftz: no
d8bb83b7 avx-gcc72t3s_avx512_t3s_v total: 0.00% 18893 0 ulp: 0 (0) ftz: no
d8bb83b7 avx-gcc80t3s_avx512_t3s_v total: 0.00% 18893 0 ulp: 0 (0) ftz: no
ea227caf avx-clang40t3d_avx512_t3d_v total: 0.00% 19352 0 ulp: 0 (0) ftz: no
ea227caf avx-clang50t3d_avx512_t3d_v total: 0.00% 19352 0 ulp: 0 (0) ftz: no
ea227caf avx-gcc49t3d_avx512_t3d_v total: 0.00% 19352 0 ulp: 0 (0) ftz: no
ea227caf avx-gcc55t3d_avx512_t3d_v total: 0.00% 19352 0 ulp: 0 (0) ftz: no
ea227caf avx-gcc64t3d_avx512_t3d_v total: 0.00% 19352 0 ulp: 0 (0) ftz: no
ea227caf avx-gcc72t3d_avx512_t3d_v total: 0.00% 19352 0 ulp: 0 (0) ftz: no
ea227caf avx-gcc80t3d_avx512_t3d_v total: 0.00% 19352 0 ulp: 0 (0) ftz: no

Listing 6.49: Summary of testing the x86 avx512 FPU on a KNL Xeon Phi.

6.4 ARM
Due to the different licensing models provided by ARM Holdings, a significant
variety of slightly different processors based on ARM ISA exist (cf. Section 5.3).
Therefore, it is virtually impossible to show results for a comprehensive selection
of ARM based user environments. In this section, we concentrate on chosen
platforms which cover different application areas: SBCs (single board computers,
see [WIK17z]) which are typically used for development purposes or as embedded
computer controllers, and processors aimed at the server space such as the X-Gene
line of processors [APM17]. The selection of user environments covers the 32 bit
ISAs such as ARMv7-A as well as the 64 bit ARMv8-A ISA.

6.4.1 ARM: VFP, NEON
To inspect the floating-point behaviour of environments based on the 32 bit ARM
ISA, we use the following user environments which represent different generations
of SBCs:

• A Raspberry Pi SBC (see [RPI17c]), featuring a Broadcom BMC2835 CPU
which is based on an ARM1176JZF-S processor core with ARMv6 ISA (cf.
[RPI17a] and [ARM05]), running Raspbian (Debian) Wheezy 7.11 with
Linux kernel 4.9.36+.

6.4 ARM 233

• Cubieboard 2 [CB17], an Open Source SBC featuring an Allwinner A20
Cortex-A7 processor (see [All15a]). The board runs Debian Jessie 8.0 with
a custom Linux kernel version 3.4.98-sun7i+.

• A Raspberry Pi 3 SBC, featuring a Broadcom BMC2837 CPU (cf. [RPI17b])
that runs Raspbian (Debian) Jessie 8.0 with Linux kernel 4.9.35-v7+. Note
that the BCM2837 chip contains ARMv8-A A53 cores, but is operated in
32 bit mode with an ARMv7-A Linux system.

In the following, we refer to these environments as RPI, CB2, and RPI3. All
three environments are tested with the t2s, t2d, t3s, and t3d testsets (where
applicable), and all FPUs from the arm architecture port such as the VFP or
NEON units (cf. Section 5.3.1) are covered by at least one of the respective user
environments.

ARMv6: Raspberry Pi

The RPI was chosen in order to show results of user environment based on a
processor with ARMv6 ISA. Listing 6.50 shows testing results generated on the
RPI which are limited to the arm main FPU since the processor features a VFP2
FPU (which is not implemented in IeeeCC754++) and no NEON support. The
tests were performed with gcc 4.6.

0e0be180 default-gcc46t3d_main_t3d_v total: 10.09% 16661 1681 ulp: 690 (1) ftz: [???]
2e9ddc4f default-gcc46t3s_main_t3s_v total: 10.35% 16327 1690 ulp: 675 (1) ftz: no
5e320315 default-gcc46t3d_c99_t3d_v total: 9.98% 21312 2127 ulp: 142 (1) ftz: [???]
adc4b382 default-gcc46t3s_c99_t3s_v total: 4.84% 20861 1010 ulp: 6 (1) ftz: [???]
d2ee6af9 default-gcc46t3d_c99_t3d_x total: 2.21% 21312 471 ulp: 142 (1) ftz: [???]
e9c17b3c default-gcc46t3s_main_t3s_x total: 4.13% 16327 675 ulp: 675 (1) ftz: no
ef155780 default-gcc46t3d_main_t3d_x total: 5.56% 16661 927 ulp: 690 (1) ftz: [???]
fd58c608 default-gcc46t3s_c99_t3s_x total: 1.61% 20861 336 ulp: 6 (1) ftz: [???]

Listing 6.50: Summary of testing the arm main FPU on a RPI.

Most of the errors encountered during testing are related only to exceptions.
Listings 6.51 and 6.52 show most of the errors happen in conversions from and to
decimal representation and converting to 64 bit integers. Moreover, the main FPU
seems to call a different implementation of the square root operator compared to
the c99 FPU, whereas on the other hand, the remainder operator shows errors
in the c99 FPU not present in the main FPU. The few errors in the c99 fma are
related to signed zeroes.

(Success rates shown)

add 100.00% 3152/3152
sub 100.00% 1622/1622
mul 100.00% 5408/5408
div 100.00% 2153/2153
rem 100.00% 1364/1364
sqrt 62.50% 1115/1784
b2d 64.02% 315/492

234 Selected results

d2b 63.02% 2125/3372
i 100.00% 350/350
ri 100.00% 184/184
rI 100.00% 47/47
ru 100.00% 27/27
rU 100.00% 28/28
ci 100.00% 56/56
cI 94.64% 53/56
cu 100.00% 48/48
cU 93.75% 45/48
RESULT 89.60% 18092/20191

Listing 6.51: basic evaluation function results for the arm main FPU in -vix
mode with the t3s testset on RPI.

(Success rates shown)

add 100.00% 3152/3152
sub 100.00% 1622/1622
mul 100.00% 5408/5408
div 100.00% 2153/2153
rem 76.69% 1046/1364
sqrt 100.00% 1784/1784
fma 99.74% 4522/4534
b2d 64.02% 315/492
d2b 63.02% 2125/3372
i 100.00% 350/350
ri 100.00% 184/184
rI 100.00% 47/47
ru 100.00% 27/27
rU 100.00% 28/28
ci 100.00% 56/56
cI 94.64% 53/56
cu 100.00% 48/48
cU 93.75% 45/48
RESULT 92.88% 22965/24725

Listing 6.52: basic evaluation function results for the arm c99 FPU in -vix
mode with the t3s testset on RPI.

Listing 6.53 shows the operation_report evaluation function output for the
square root. By analysing this output and the corresponding test vectors, it
seems that the square root implementation returns identical values for all four
rounding modes while dropping the inexact flag. Listing 6.54 gives a hint that the
returned value is the roundTiesToEven result: Error counts are significantly lower
for roundTiesToEven compared to the other rounding modes.

ARMv7-A: CB2 and RPI3

In the following, we discuss the VFP and NEON SIMD units which represent
an optional extension to the ARMv7-A ISA. Since vector execution for VFP has
been deprecated in ARMv7-A (see Section 5.3.1), support for vector operations is
optional in processors which implement ARMv7-A. The Allwinner A20 processor

6.4 ARM 235

sqrt
jem 1 1
jm 1 668

e - exponent different
j - inexact flag not returned
m - mantissa different

Listing 6.53: operation_report evaluation function excerpt for the arm main
FPU in -vix mode with the t3s testset on RPI.

(Success rates shown)

n 98.99% 5177/5230
z 85.14% 4296/5046
u 90.09% 4464/4955
d 83.77% 4155/4960
RESULT 89.60% 18092/20191

Listing 6.54: roundings evaluation function output for the arm main FPU in
-vix mode with the t3s testset on RPI.

used in the CB2 supports vector execution, so the VFP FPUs could be tested as
intended. On the RPI3 on the other hand, using the vfp and vfpv4 as vector units
had to be disabled (by removing the command setVectorUnit() from the corres-
ponding Register() functions in the FPU implementations, see Appendix B.8.2),
since its underlying processor is based on ARMv8-A ISA which does not allow
using VFP as a SIMD unit.

VFP v3 We start the inspection of FPUs implemented in processors based on
ARMv7-A ISA with the vfp and vfps FPUs of the arm architecture port (both
of which implement VFP v3). The FPUs were tested on CB2 and RPI3 with gcc
versions 4.4, 4.6, and 4.7. Listings 6.55 and 6.56 show an overview of testing
results (in the latter, results for gcc 4.4 and 4.6 have been left out since they are
identical to those generated with gcc 4.7).

06c5bacd arm-vfp-gcc44t3d_vfp_t3d_x total: 1.58% 18770 296 ulp: 87 (1) ftz: no
06c5bacd arm-vfp-gcc46t3d_vfp_t3d_x total: 1.58% 18770 296 ulp: 87 (1) ftz: no
06c5bacd arm-vfp-gcc47t3d_vfp_t3d_x total: 1.58% 18770 296 ulp: 87 (1) ftz: no
5770b1f3 arm-vfp-gcc44t3s_vfps_t3s_v total: 1.50% 18968 284 ulp: 175 (1) ftz: no
5770b1f3 arm-vfp-gcc46t3s_vfps_t3s_v total: 1.50% 18968 284 ulp: 175 (1) ftz: no
5770b1f3 arm-vfp-gcc47t3s_vfps_t3s_v total: 1.50% 18968 284 ulp: 175 (1) ftz: no
7a9e8491 arm-vfp-gcc44t3d_vfp_t3d_v total: 1.83% 18770 344 ulp: 87 (1) ftz: no
7a9e8491 arm-vfp-gcc46t3d_vfp_t3d_v total: 1.83% 18770 344 ulp: 87 (1) ftz: no
7a9e8491 arm-vfp-gcc47t3d_vfp_t3d_v total: 1.83% 18770 344 ulp: 87 (1) ftz: no
7d679e23 arm-vfp-gcc44t3d_vfps_t3d_x total: 1.71% 19419 333 ulp: 224 (1) ftz: no
7d679e23 arm-vfp-gcc46t3d_vfps_t3d_x total: 1.71% 19419 333 ulp: 224 (1) ftz: no
7d679e23 arm-vfp-gcc47t3d_vfps_t3d_x total: 1.71% 19419 333 ulp: 224 (1) ftz: no
91dc793c arm-vfp-gcc44t3s_vfp_t3s_v total: 1.84% 18653 344 ulp: 43 (1) ftz: no
91dc793c arm-vfp-gcc46t3s_vfp_t3s_v total: 1.84% 18653 344 ulp: 43 (1) ftz: no
91dc793c arm-vfp-gcc47t3s_vfp_t3s_v total: 1.84% 18653 344 ulp: 43 (1) ftz: no
af87b5d6 arm-vfp-gcc44t3s_vfp_t3s_x total: 1.59% 18653 296 ulp: 43 (1) ftz: no
af87b5d6 arm-vfp-gcc46t3s_vfp_t3s_x total: 1.59% 18653 296 ulp: 43 (1) ftz: no

236 Selected results

af87b5d6 arm-vfp-gcc47t3s_vfp_t3s_x total: 1.59% 18653 296 ulp: 43 (1) ftz: no
c10ba2ae arm-vfp-gcc44t3s_vfps_t3s_x total: 1.50% 18968 284 ulp: 175 (1) ftz: no
c10ba2ae arm-vfp-gcc46t3s_vfps_t3s_x total: 1.50% 18968 284 ulp: 175 (1) ftz: no
c10ba2ae arm-vfp-gcc47t3s_vfps_t3s_x total: 1.50% 18968 284 ulp: 175 (1) ftz: no
d3d9eff2 arm-vfp-gcc44t3d_vfps_t3d_v total: 1.71% 19419 333 ulp: 224 (1) ftz: no
d3d9eff2 arm-vfp-gcc46t3d_vfps_t3d_v total: 1.71% 19419 333 ulp: 224 (1) ftz: no
d3d9eff2 arm-vfp-gcc47t3d_vfps_t3d_v total: 1.71% 19419 333 ulp: 224 (1) ftz: no

Listing 6.55: Summary of testing the arm vfp and vfps FPUs on CB2.

3b4548ac arm-vfp-gcc47t3d_vfp_t3d_x total: 1.61% 18770 302 ulp: 197 (1) ftz: no
455e704b arm-vfp-gcc47t3d_vfp_t3d_v total: 1.61% 18770 302 ulp: 197 (1) ftz: no
5770b1f3 arm-vfp-gcc47t3s_vfps_t3s_v total: 1.50% 18968 284 ulp: 175 (1) ftz: no
5fa60afb arm-vfp-gcc47t3s_vfp_t3s_v total: 1.38% 18653 257 ulp: 152 (1) ftz: no
7d679e23 arm-vfp-gcc47t3d_vfps_t3d_x total: 1.71% 19419 333 ulp: 224 (1) ftz: no
c10ba2ae arm-vfp-gcc47t3s_vfps_t3s_x total: 1.50% 18968 284 ulp: 175 (1) ftz: no
d3d9eff2 arm-vfp-gcc47t3d_vfps_t3d_v total: 1.71% 19419 333 ulp: 224 (1) ftz: no
d94c1531 arm-vfp-gcc47t3s_vfp_t3s_x total: 1.38% 18653 257 ulp: 152 (1) ftz: no

Listing 6.56: Summary of testing the arm vfp and vfps FPUs on RPI3.

The output reveals that the results for the vfps FPU are identical in both
environments. Only two types of errors occur: The fma operator is implemented by
calling the vmla assembler instruction which is not fused (as shown by the results
in Listing 6.57, see also Listing 6.5 and the following discussion). Furthermore,
a few test vectors used to check conversion to 32 bit integers are not rounded
correctly. The analysis for double precision is comparable (the error count in the
conversion to integer case is slightly higher) and therefore not shown here.

(Errors, ulps, error count shown)

fma
ma 1 56
sa 0 105
xma 1 96

a - fma error
m - mantissa different
s - Different sign
x - inexact not expected

ri
m 1 27

m - mantissa different

Listing 6.57: operation_report evaluation function output for the arm vfps
FPU mode with the t3s testset on RPI3 and CB2.

For the vfp FPU on RPI3, the situation is similar to the vfps FPU with only
fma errors being present due to the operator not being fused (conversions are not
supported in the vfp FPU). However, results for the CB2 are different as shown in
Listing 6.58:

(Errors, ulps, error count shown)

div
l 0 8

l - underflow not returned

6.4 ARM 237

fma
ema 0 14
iea 0 16
iema 0 53
ijea 0 16
ijema 0 20
ijkmga 0 4
isema 0 27
jea 0 1
jema 0 51
l 0 8
ma 0 37
sma 0 9
x 0 2
xma 0 8
xy 0 14
xyema 1 4
xyma 1 32
xysa 0 1
xysma 0 3

a - fma error
e - exponent different
g - result is NaN, expected infinity
i - invalid not expected
j - inexact flag not returned
k - overflow flag not returned
l - underflow not returned
m - mantissa different
s - Different sign
x - inexact not expected
y - underflow not expected

mul
l 0 16

l - underflow not returned

Listing 6.58: operation_report evaluation function output for the arm vfp
FPU with the t3s testset on CB2 in -vio mode.

The output shows that on the CB2, the results of executing floating-point
operations in the VFP unit change between scalar and SIMD operation. For
multiplication and division, a few underflow cases are not reported as such (i. e.
the underflow flag is not returned), and the fma operator produces a significant
number of errors not found in the (non-fused) scalar case.2 Again, the situation is
similar for the double precision testset.

VFP v4 At least for the two user environments tested here, the results for the
VFP v4 FPUs are better than the VFP v3 results. Listing 6.59 shows a testing
summary excerpt for the results of testing the vfpv4 and vfpv4s FPUs with gcc
4.9 and the t3s and t3d testsets (results generated with gcc 4.4, 4.6, and 4.7
on CB2 and with gcc 4.4, 4.6, 4.7, 4.8, 4.9, and clang 3.5 and 3.7 on RPI3 are
identical).

2Note that the errors for fma are not due to the operator not being fused, since it returns
correct results for our specially designed test vectors in order to distinguish between fused and
non-fused fma versions.

238 Selected results

04ba631a arm-vfpv4-gcc49t3s_vfpv4_t3s_v total: 0.00% 18653 0 ulp: 0 (0) ftz: no
4217c245 arm-vfpv4-gcc49t3s_vfpv4s_t3s_x total: 0.14% 18968 27 ulp: 23 (1) ftz: no
58deb692 arm-vfpv4-gcc49t3s_vfpv4s_t3s_v total: 0.14% 18968 27 ulp: 23 (1) ftz: no
5fe2e292 arm-vfpv4-gcc49t3s_vfpv4_t3s_x total: 0.00% 18653 0 ulp: 0 (0) ftz: no
686349cf arm-vfpv4-gcc49t3d_vfpv4_t3d_v total: 0.00% 18770 0 ulp: 0 (0) ftz: no
a2387d64 arm-vfpv4-gcc49t3d_vfpv4s_t3d_x total: 0.16% 19419 31 ulp: 27 (1) ftz: no
dafab8d2 arm-vfpv4-gcc49t3d_vfpv4s_t3d_v total: 0.16% 19419 31 ulp: 27 (1) ftz: no
e6c39330 arm-vfpv4-gcc49t3d_vfpv4_t3d_x total: 0.00% 18770 0 ulp: 0 (0) ftz: no

Listing 6.59: Summary of testing the arm vfpv4 and vfpv4s FPUs on RPI3.

For the vfpv4 FPU, all test vectors could be executed with correct results,
whereas for the vfpv4s FPU (which includes conversions not contained in the
vfpv4 FPU), the same errors occur as for the vfps FPU, see above. Listing 6.60
shows the corresponding operation_report output for double precision.

(Errors, ulps, error count shown)

ri
m 1 31

m - mantissa different

Listing 6.60: operation_report evaluation function output for the arm vfpv4s
FPU with the t3d testset on RPI3 in -vio mode.

NEON As with the VFP FPUs discussed above, the different versions of the
NEON FPUs implemented in the arm architecture port were tested on both
CB2 and RPI3. Since results for the four FPUs neon, neonq, neoni, and neonqi
generated with the different compilers were identical in all cases and in both user
environments, we only discuss the neoni FPU on the CB2 together with gcc 4.7.
NEON only supports single precision operands, so only tests with the t3s testset
were executed. Listing 6.61 shows the corresponding testing results.

ae1de173 neon-ftn-gcc47t3s_neoni_t3s_x total: 39.14% 14434 5649 ulp: 2110 (1) ftz: [yes]
d6c60016 neon-ftn-gcc47t3s_neoni_t3s_v total: 68.27% 14434 9854 ulp: 2110 (1) ftz: [yes]

Listing 6.61: Summary of testing the arm neoni FPU on CB2.

The most notable difference to the FPUs analysed so far is the significantly
larger error rate which is at almost 40% when ignoring exception related errors
and more than two thirds otherwise. The second striking difference is IeeeCC754++
claiming that the neoni FPU is using FTZ. Since the FTZ information is shortened
in the dense output format used in Listing 6.61, we show the unabridged summary
in Listing 6.62.

[eval] ae1de1739762baef400060f73f76baa6 neon-ftn-gcc47t3s_neoni_t3s_x total: 39.14% 14434
5649 ulp: 2110 (1) ftz: yes (2320 out of 2320 zero, 24 errors) >30% ZEROES!

[eval] d6c60016a4717fd522335215add4a48d neon-ftn-gcc47t3s_neoni_t3s_v total: 68.27% 14434
9854 ulp: 2110 (1) ftz: yes (2320 out of 2320 zero, 24 errors) >30% ZEROES!

Listing 6.62: Full summary of testing the arm neoni FPU on CB2.

6.4 ARM 239

This output shows that all operations supposed to return subnormal results
are flushed to zero, which accounts for about half of the errors in -vix mode.
Indeed, this is to be expected since by default, NEON flushes subnormal results
to zero due to performance reasons (cf. [ARM14]).

Before analysing the cause for the other errors, we discuss the impacts of the
NEON unit using FTZ. Listings 6.63 and 6.64 show the full summary for test
runs which were executed with the command line options --ftz and --ftzsigned,
respectively.

[eval] 57ebd5eb0c0d4b33738f2be0b7f8eb09 neon-ftz-gcc47t3s_neoni_t3s_x total: 30.58% 14434
4414 ulp: 2110 (1) ftz: FTZ >30% ZEROES!

[eval] 7e578c60e113f4ad34e270123743eb7c neon-ftz-gcc47t3s_neoni_t3s_v total: 63.42% 14434
9154 ulp: 2110 (1) ftz: FTZ >30% ZEROES!

Listing 6.63: Full summary of testing the arm neoni FPU with -ftz on CB2.

[eval] 869f0c885dd2b613d8a78cd07bd091b8 neon-fts-gcc47t3s_neoni_t3s_x total: 23.73% 14434
3425 ulp: 2110 (1) ftz: FTS >30% ZEROES!

[eval] fda84e0e7bb82e7eb733bd083ec80e63 neon-fts-gcc47t3s_neoni_t3s_v total: 60.15% 14434
8682 ulp: 2110 (1) ftz: FTS >30% ZEROES!

Listing 6.64: Full summary of testing the arm neoni FPU with -ftzsigned on
CB2.

As expected, the error numbers decrease, albeit not to the amount that could
be expected if either flushing to signed zeroes or `0 would have been implemented
correctly (which should be on the order of 5649´ 2320 “ 3329 errors in the -vix
case). Looking at the test vectors reveals that indeed NEON flushes to signed
zero, but does not always set the correct sign.

Due to the large error counts, an in-depth analysis of all errors produced
by the NEON units is beyond the scope of this thesis. However, looking at
the output of some of the evaluation functions gives further insight. As a first
observation, exceptions do not seem to be well supported in the NEON FPUs as
can be seen from the error rate decreasing by almost 30% when ignoring errors
only related to exception flags. Second, Listing 6.65 shows that support for the
roundTiesToEven rounding mode is significantly better than for the other modes.
Finally, according to the excerpt from the error_report evaluation function
output given in Listing 6.66 (which shows results for the error combination that
is responsible for the largest number of errors), a significant number of results is
computed almost correctly, but rounded to the wrong floating-point neighbour.

6.4.2 AARCH64: ASIMD, SVE
ARMv8-A: XGene, XGene2, Pine64

In order to generate results for IeeeCC754++’s aarch64 architecture (which is
targeted at ARMv8-A ISA), we used three user environments:

240 Selected results

(Success rates shown)

n 85.16% 3241/3806
z 73.39% 2606/3551
u 74.75% 2644/3537
d 71.13% 2518/3540
RESULT 76.27% 11009/14434

Listing 6.65: roundings evaluation function output for the arm neoni FPU with
-ftzsigned in -vix mode with the t3s testset on CB2.

jm - inexact flag not returned
- mantissa different

add 1 362
ci 1 3
cu 1 3
div 1 138
mul 1 350
ri 1 27
sqrt 1 817
sub 1 181

Listing 6.66: error_report evaluation function excerpt for the arm neoni FPU
with -ftzsigned in -vix mode with the t3s testset on CB2.

• The X-Gene processor designed by Applied Micro represents one of the first
available server processors based on ARMv8-A ISA. The user environment
used for the tests consists of an APM883208-X1 processor which is located
on an X-Gene X-C1 evaluation board (cf. [APMa]). It runs Ubuntu Linux
14.04.4 LTS with kernel version 3.13.0-85-generic; the compiler installed
on this board is gcc 4.8.4.

• The second user environment consists of an Applied Micro X-Gene X-C2
evaluation board (see [APMb]) containing an APM883408-X2 processor,
which is an enhanced newer version of the X-Gene processor. This X-Gene 2
server environment runs Ubuntu 16.04.2 LTS with Linux kernel version
4.4.0-38.57-generic and features gcc 5.4.1.

• Finally, we used an early AARCH64 SBC called Pine64 (cf. [Pin17]) as a user
environment. In contrast to the X-Gene boards (which feature custom CPU
cores based on ARMv8-A ISA), the Pine64 boards contains an Allwinner
A64 processor (see [All15b]) with standard Cortex-A53 cores. The test
environment runs Linux kernel 3.10.102-0-pine64-longsleep on Debian
Jessie version 8.9. We tested this system with gcc 4.8 and 4.9 and clang
3.5.

All three environments were tested with the t3s and t3d testsets.

6.4 ARM 241

ASIMD In contrast to earlier versions of the ARM ISA, the initial release of
ARMv8-A ISA featured only one execution unit targeted at floating-point cal-
culations, and this ASIMD FPU is mandatory (for the newly introduced SVE
FPU, see below). We shortly remind of the naming of the logical FPUs imple-
menting ASIMD in IeeeCC754++: The asimd FPU features an inline assembler
implementation whereas the neoni and neonqi FPUs use compiler intrinsics (for
more details, see Section 5.3.2).

We start the analysis of the ASIMD FPU with results generated on X-Gene 2
and briefly discuss differences to the tests executed on the X-Gene and Pine64
boards afterwards. Listing 6.67 shows the testing summary for X-Gene 2 with
gcc 5.4 and the t3s and t3d testsets.

14afe7cb aarch64-gcct3s_neonqi_t3s_v total: 1.27% 19318 245 ulp: 23 (1) ftz: no
49a8061f aarch64-gcct3s_main_t3s_x total: 0.00% 16327 0 ulp: 0 (0) ftz: no
6fd9b3a6 aarch64-gcct3s_asimd_t3s_v total: 1.13% 19318 218 ulp: 0 (0) ftz: no
731c2545 aarch64-gcct3d_asimd_t3d_v total: 1.11% 19649 218 ulp: 0 (0) ftz: no
731c2545 aarch64-gcct3d_neonqi_t3d_v total: 1.11% 19649 218 ulp: 0 (0) ftz: no
749da462 aarch64-gcct3d_main_t3d_v total: 0.12% 16661 20 ulp: 0 (0) ftz: no
7e04c619 aarch64-gcct3s_neonqi_t3s_x total: 0.14% 19318 27 ulp: 23 (1) ftz: no
7f745106 aarch64-gcct3d_neoni_t3d_x total: 0.00% 19299 0 ulp: 0 (0) ftz: no
800ff616 aarch64-gcct3d_asimd_t3d_x total: 0.00% 19649 0 ulp: 0 (0) ftz: no
800ff616 aarch64-gcct3d_neonqi_t3d_x total: 0.00% 19649 0 ulp: 0 (0) ftz: no
b1be2119 aarch64-gcct3d_main_t3d_x total: 0.00% 16661 0 ulp: 0 (0) ftz: no
c694cff0 aarch64-gcct3s_neoni_t3s_v total: 1.27% 19318 245 ulp: 23 (1) ftz: no
d13e2dd2 aarch64-gcct3s_neoni_t3s_x total: 0.14% 19318 27 ulp: 23 (1) ftz: no
d6214873 aarch64-gcct3s_main_t3s_v total: 0.12% 16327 20 ulp: 0 (0) ftz: no
eac0e90d aarch64-gcct3d_neoni_t3d_v total: 1.13% 19299 218 ulp: 0 (0) ftz: no
f420a398 aarch64-gcct3s_asimd_t3s_x total: 0.00% 19318 0 ulp: 0 (0) ftz: no

Listing 6.67: Summary of testing results on X-Gene 2.

A few observations are striking: In contrast to the NEON units in ARMv7-A,
the ASIMD unit supports operations in double precision and does not use FTZ.
Furthermore, the main and asimd FPUs exhibit only errors related to exceptions.
Overall, error counts are quite low, and most of these errors are due to exception
handling. Listings 6.68 and 6.69 show the errors for the main and asimd FPUs.
In the main FPU, some invalid operations are not flagged as such for conversion
to integers, and in the asimd FPU, the inexact exception was not signalled for a
number of test vectors for the round to integral operator.

(Errors, ulps, error count shown)

ri
p 0 20

p - invalid flag not returned

Listing 6.68: operation_report evaluation function output for the aarch64
main FPU in -vio mode with the t3s testset.

For the neoni and neonqi FPUs, the errors are almost similar to those of
the asimd FPU, as can be seen in Listing 6.70. This behaviour is mostly to be
expected since the same instructions should be used inside these FPUs (aside
from one using inline assembler calls and the other two FPUs using compiler

242 Selected results

(Errors, ulps, error count shown)

i
j 0 218

j - inexact flag not returned

Listing 6.69: operation_report evaluation function output for the aarch64
asimd FPU in -vio mode with the t3s testset.

intrinsics). Therefore, it seems that the vrdni intrinsics call used in the neoni
and neonqi FPUs either maps to a different instruction than the frinti operator
called inside the asimd FPU or behaves differently. Interestingly, when looking at
the roundings evaluation function for the neoni -vix results (see Listing 6.71), it
seems that an operator which only supports the roundTowardZero rounding mode
is used (which is the behaviour of the SVE unit, see below).

(Errors, ulps, error count shown)

i
j 0 218

j - inexact flag not returned
ri

m 1 27
m - mantissa different

Listing 6.70: operation_report evaluation function output for the aarch64
neoni FPU in -vio mode with the t3s testset.

(Success rates shown)

n 99.84% 5024/5032
z 100.00% 4767/4767
u 99.79% 4747/4757
d 99.81% 4753/4762
RESULT 99.86% 19291/19318

Listing 6.71: roundings evaluation function output for the aarch64 neoni FPU
in -vix mode with the t3s testset.

Once again, we omit results for the double precision testsets, since they are
mostly identical.

Listing 6.72 shows the testing results generated on X-Gene with the same
settings as used on X-Gene 2.

0ec3622e aarch64-gcct3d_neoni_t3d_x total: 0.00% 104 0 ulp: 0 (0) ftz: no
14afe7cb aarch64-gcct3s_neonqi_t3s_v total: 1.27% 19318 245 ulp: 23 (1) ftz: no
3c259c85 aarch64-gcct3s_neoni_t3s_x total: 13.54% 19318 2615 ulp: 370 (1) ftz: [???]
49a8061f aarch64-gcct3s_main_t3s_x total: 0.00% 16327 0 ulp: 0 (0) ftz: no
614bae00 aarch64-gcct3s_neoni_t3s_v total: 15.02% 19318 2901 ulp: 370 (1) ftz: [???]
6fd9b3a6 aarch64-gcct3s_asimd_t3s_v total: 1.13% 19318 218 ulp: 0 (0) ftz: no

6.4 ARM 243

731c2545 aarch64-gcct3d_asimd_t3d_v total: 1.11% 19649 218 ulp: 0 (0) ftz: no
731c2545 aarch64-gcct3d_neonqi_t3d_v total: 1.11% 19649 218 ulp: 0 (0) ftz: no
749da462 aarch64-gcct3d_main_t3d_v total: 0.12% 16661 20 ulp: 0 (0) ftz: no
7e04c619 aarch64-gcct3s_neonqi_t3s_x total: 0.14% 19318 27 ulp: 23 (1) ftz: no
800ff616 aarch64-gcct3d_asimd_t3d_x total: 0.00% 19649 0 ulp: 0 (0) ftz: no
800ff616 aarch64-gcct3d_neonqi_t3d_x total: 0.00% 19649 0 ulp: 0 (0) ftz: no
b1be2119 aarch64-gcct3d_main_t3d_x total: 0.00% 16661 0 ulp: 0 (0) ftz: no
d6214873 aarch64-gcct3s_main_t3s_v total: 0.12% 16327 20 ulp: 0 (0) ftz: no
f420a398 aarch64-gcct3s_asimd_t3s_x total: 0.00% 19318 0 ulp: 0 (0) ftz: no
fe09e1dd aarch64-gcct3d_neoni_t3d_v total: 0.00% 104 0 ulp: 0 (0) ftz: no

Listing 6.72: Summary of testing results on X-Gene.

When comparing the checksums for these results with the checksums of the
X-Gene 2 results, the only differences are found in the neoni FPU. A surprisingly
low number of 104 double precision operations were executed, and the error count
for single precision vectors is significantly higher. The reason for this behaviour
lies in the compiler being used: Full ASIMD support for D type registers (cf.
Section 5.3.1) is only available since gcc version 4.9, but gcc 4.8 was used on
X-Gene, with the described two consequences: For double precision, only intrinsics
for conversions from 64 bit integers are available, and single precision intrinsics
for D type registers do not correctly map to the underlying hardware instructions.

Finally, we show test results for clang on AARCH64 generated on the Pine64
SBC. Inspection of the summary in Listing 6.73 reveals that the results are mostly
identical to those generated with gcc 5.4 on X-Gene 2 with the exception of the
neoni FPU with the t3d testset. Again, only 104 test vectors were executed, and
again, this is due to the compiler version: As of clang 3.5, intrinsics for double
precision operations on D type registers are not available. In contrast to gcc 4.8
on X-Gene, single precision works as expected in the neoni FPU (i. e. it shows
behaviour identical to that on X-Gene 2).

14afe7cb aarch64-gcct3s_neonqi_t3s_v total: 1.27% 19318 245 ulp: 23 (1) ftz: no
49a8061f aarch64-gcct3s_main_t3s_x total: 0.00% 16327 0 ulp: 0 (0) ftz: no
6fd9b3a6 aarch64-gcct3s_asimd_t3s_v total: 1.13% 19318 218 ulp: 0 (0) ftz: no
731c2545 aarch64-gcct3d_asimd_t3d_v total: 1.11% 19649 218 ulp: 0 (0) ftz: no
731c2545 aarch64-gcct3d_neonqi_t3d_v total: 1.11% 19649 218 ulp: 0 (0) ftz: no
749da462 aarch64-gcct3d_main_t3d_v total: 0.12% 16661 20 ulp: 0 (0) ftz: no
7e04c619 aarch64-gcct3s_neonqi_t3s_x total: 0.14% 19318 27 ulp: 23 (1) ftz: no
7f745106 aarch64-gcct3d_neoni_t3d_x total: 0.00% 19299 0 ulp: 0 (0) ftz: no
800ff616 aarch64-gcct3d_asimd_t3d_x total: 0.00% 19649 0 ulp: 0 (0) ftz: no
800ff616 aarch64-gcct3d_neonqi_t3d_x total: 0.00% 19649 0 ulp: 0 (0) ftz: no
b1be2119 aarch64-gcct3d_main_t3d_x total: 0.00% 16661 0 ulp: 0 (0) ftz: no
c694cff0 aarch64-gcct3s_neoni_t3s_v total: 1.27% 19318 245 ulp: 23 (1) ftz: no
d13e2dd2 aarch64-gcct3s_neoni_t3s_x total: 0.14% 19318 27 ulp: 23 (1) ftz: no
d6214873 aarch64-gcct3s_main_t3s_v total: 0.12% 16327 20 ulp: 0 (0) ftz: no
eac0e90d aarch64-gcct3d_neoni_t3d_v total: 1.13% 19299 218 ulp: 0 (0) ftz: no
f420a398 aarch64-gcct3s_asimd_t3s_x total: 0.00% 19318 0 ulp: 0 (0) ftz: no

Listing 6.73: Summary of testing results on Pine64.

Altogether, our testing results for different user environments using ARMv8-A
ISA indicate that the floating-point behaviour of ASIMD and overall floating-point
accuracy is consistently implemented, even on quite different platforms, and that
only a minimal amount of errors have to be expected for conversions to integers.
Additionally, it seems that floating-point behaviour in ARMv8-A is much more
IEEE-conforming when compared to ARMv7-A.

244 Selected results

ARMv8-A: SVE

As of the writing of this thesis, no hardware is yet available which supports the
SVE extension to the ARMv8-A ISA. Therefore, we used the ARM instruction
emulator armie version 1.2-3 (cf. [ARMa]) as the floating-point environment to
implement the aarch64 sve FPU and generate the following test results. The
SVE capable IeeeCC754++ executable that performed the tests was compiled with
ARM clang version 1.4 (build 48) which is based on clang 5.0.0.

Our implementation supports the VLA programming model by using SIMD vec-
tors of 2048 bytes length (the largest value allowed for SVE hardware realisations)
and relying on the VLA capabilities built into the compiler (and the platform)
to map the execution of the SIMD operations to the vector length supported by
the hardware. In order to verify that our code was properly implemented, we
performed all tests with armie for all permitted values of vector length, i. e. for
the lengths i ¨ 128 with i “ 1, . . . , 16. All logfiles generated with the different
vector sizes were found to be identical.

Listings 6.74 and 6.75 show the output of the basic evaluation function of
test runs using the sve FPU with the t3s or t3d testsets.

(Success rates shown)

add 100.00% 3152/3152
sub 100.00% 1622/1622
mul 100.00% 5408/5408
div 100.00% 2153/2153
sqrt 100.00% 1784/1784
fma 100.00% 4534/4534
i 100.00% 350/350
ri 85.33% 157/184
rI 100.00% 47/47
ru 100.00% 27/27
rU 100.00% 28/28
ci 100.00% 56/56
cI 100.00% 56/56
cu 100.00% 48/48
cU 100.00% 48/48
RESULT 99.86% 19470/19497

Listing 6.74: basic evaluation function results for the arm sve FPU in -vio
mode with the t3s testset.

add 100.00% 3152/3152
sub 100.00% 1622/1622
mul 100.00% 5408/5408
div 100.00% 2153/2153
sqrt 100.00% 1784/1784
fma 100.00% 4651/4651
ct 100.00% 80/80
rt 100.00% 270/270
i 100.00% 350/350
ri 83.15% 153/184
rI 100.00% 47/47

6.5 PowerPC 245

ru 100.00% 27/27
rU 100.00% 28/28
ci 100.00% 48/48
cI 100.00% 56/56
cu 100.00% 40/40
cU 100.00% 48/48
RESULT 99.84% 19917/19948

Listing 6.75: basic evaluation function results for the arm sve FPU in -vio
mode with the t3d testset.

The output shows that the design and implementation of the instruction
emulation of armie have been meticulously executed: No errors were encountered
for most operations. In fact, errors in the ri operator were to be expected due to
the sve FPU only supporting roundTowardZero mode for conversion to integers
(cf. Section 5.3.2). The output of the error_report and roundings evaluation
functions shown in Listings 6.76 and 6.77 conform this suspicion: The errors consist
only of incorrectly rounded integers in the roundTiesToEven, roundTowardPositive,
and roundTowardNegative rounding modes. Consequently, we can conclude that
no errors were encountered for all operators supported by SVE when testing the
FPU via the instruction emulator. As soon as actual hardware implementing
the SVE extension is released, these tests need to repeated to confirm that the
hardware meets the high implementation standards of the software emulation.

(Errors, ulps, error count shown)

ri
m 1 27

m - mantissa different

Listing 6.76: operation_report evaluation function results for the arm sve
FPU in -vio mode with the t3s.

(Success rates shown)

n 99.84% 5050/5058
z 100.00% 4868/4868
u 99.79% 4773/4783
d 99.81% 4779/4788
RESULT 99.86% 19470/19497

Listing 6.77: roundings evaluation function results for the arm sve FPU in
-vio mode with the t3s.

6.5 PowerPC
After presenting some “future” results with the aarch64 sve architecture, we
discuss some current and some “historic” results in this section. We examine

246 Selected results

the floating-point behaviour of a POWER8 system and take a brief look at two
incarnations of the discontinued Cell microarchitecture: the original Cell processor
contained in the Sony PS 3 and the enhanced PowerXCell 8i processor as deployed
in the QPACE supercomputer.

6.5.1 POWER8
The user environment on which the following tests were executed is an IBM
POWER System S824L [IBM17] running Ubuntu 16.04.2 LTS with Linux kernel
version 4.4.0-45-generic. The executables were compiled with gcc 5.4.0 and
XLC 13.1.5; testsets t3s and t3d were used.

main Listing 6.78 shows the results generated with XLC for the main, altivec,
and vsx FPUs of the ppc architecture port which check the generic floating-point
operators, the VMX unit, and the newer VSX FPU (for details, see Section 5.4.1).

2f25dedb xlc-xlct2s_vsx_t2s_v total: 1.27% 19365 245 ulp: 23 (1) ftz: no
37babd22 xlc-xlct2d_vsx_t2d_v total: 0.97% 19776 191 ulp: 27 (1) ftz: no
5cac5235 xlc-xlct2s_main_t2s_v total: 22.24% 20191 4490 ulp: 667 (1) ftz: no
7badfacb xlc-xlct2d_vsx_t2d_x total: 0.16% 19776 31 ulp: 27 (1) ftz: no
7ccb6c0f xlc-xlct2s_main_t2s_x total: 3.65% 20191 737 ulp: 667 (1) ftz: no
7fe4ff3a xlc-xlct2s_vsx_t2s_x total: 0.14% 19365 27 ulp: 23 (1) ftz: no
83538bff xlc-xlct2d_main_t2d_v total: 21.15% 21221 4489 ulp: 0 (0) ftz: no
8ae3677c xlc-xlct2d_main_t2d_x total: 0.34% 21221 72 ulp: 0 (0) ftz: no
8f092be2 xlc-xlct2s_altivec_t2s_v total: 12.28% 19318 2372 ulp: 865 (1) ftz: [???]
eb97ab2b xlc-xlct2d_altivec_t2d_v total: 0.00% 0 0 ulp: 0 (0) ftz: no
eb97ab2b xlc-xlct2d_altivec_t2d_x total: 0.00% 0 0 ulp: 0 (0) ftz: no
ec214bd6 xlc-xlct2s_altivec_t2s_x total: 7.35% 19318 1420 ulp: 865 (1) ftz: [???]

Listing 6.78: Summary of testing results on POWER8 with XLC.

We start with the analysis of the main FPU in order to show XLC results for
conversion between binary and decimal representation. When comparing the error
rates of the t2s and t2d testsets for the ppc main FPU with those generated by
gcc, clang, and icc for the x86 main FPU (see Listing 6.38)3, they are roughly
of the same magnitude for double precision, but about 3% higher for both -vio
and -vix modes. Listings 6.79 and 6.80 show the corresponding basic evaluation
function output.

(Success rates shown)

add 100.00% 3152/3152
sub 100.00% 1622/1622
mul 100.00% 5408/5408
div 100.00% 2153/2153
rem 100.00% 1364/1364
sqrt 62.61% 1117/1784
b2d 1.63% 8/492

3Note that the ppc main and x86 main FPUs are identical to the default main FPU. Addi-
tionally, the conversions between binary and decimal representation are implemented in software,
with the consequence that they do not depend on the underlying architecture, but on the
compiler (or the floating-point library that the compiler uses to implement these conversions).

6.5 PowerPC 247

d2b 1.60% 54/3372
i 100.00% 350/350
ri 89.13% 164/184
rI 100.00% 47/47
ru 96.30% 26/27
rU 100.00% 28/28
ci 100.00% 56/56
cI 100.00% 56/56
cu 100.00% 48/48
cU 100.00% 48/48
RESULT 77.76% 15701/20191

Listing 6.79: basic evaluation function results on POWER8 in -vio mode with
the t3s testset.

(Success rates shown)

add 100.00% 3152/3152
sub 100.00% 1622/1622
mul 100.00% 5408/5408
div 100.00% 2153/2153
rem 100.00% 1364/1364
sqrt 62.61% 1117/1784
b2d 86.99% 428/492
d2b 99.82% 3366/3372
i 100.00% 350/350
ri 100.00% 184/184
rI 100.00% 47/47
ru 100.00% 27/27
rU 100.00% 28/28
ci 100.00% 56/56
cI 100.00% 56/56
cu 100.00% 48/48
cU 100.00% 48/48
RESULT 96.35% 19454/20191

Listing 6.80: basic evaluation function results on POWER8 in -vix mode with
the t3s testset.

These results reveal that the (additional) errors stem from the square root
operator which is used on this POWER8 platform by the XLC compiler. With
Listing 6.81, we can conclude that these errors are caused by incorrect rounding
(significand being 1 ulp off), and Listing 6.82 offers a probable explanation: It
seems that roundTowardZero is the only rounding mode supported in the square
root implementation.

sqrt
em 1 1
m 1 666

e - exponent different
m - mantissa different

Listing 6.81: operation_report evaluation function results for POWER8 in
-vix mode with the t3s testset.

248 Selected results

(Success rates shown)

n 93.40% 4885/5230
z 100.00% 5046/5046
u 92.63% 4590/4955
d 99.46% 4933/4960
RESULT 96.35% 19454/20191

Listing 6.82: roundings evaluation function results for POWER8 in -vix mode
with the t3s testset.

VMX The VMX FPU (i. e. the altivec FPU) exhibits a substantial number of
exception errors; furthermore, it reveals deficiencies in the multiplication, division,
square root, and converting to integer operators (see Listing 6.83). Actually,
the errors in division and square root are to be expected since the altivec
implementation in the ppc architecture port makes use of the reciprocal estimates
implemented in VMX and a Newton-Raphson iterative approach.

(Success rates shown)

add 100.00% 3152/3152
sub 100.00% 1622/1622
mul 98.41% 5322/5408
div 58.10% 1251/2153
sqrt 77.30% 1379/1784
fma 100.00% 4534/4534
i 100.00% 350/350
ri 85.33% 157/184
ru 100.00% 27/27
ci 100.00% 56/56
cu 100.00% 48/48
RESULT 92.65% 17898/19318

Listing 6.83: basic evaluation function results for the altivec FPU on
POWER8 in -vix mode with the t3s testset.

The cause of the errors in the other two operators can be reasoned from
the operation_report report excerpt in Listing 6.84: The sign errors in the
multiplication operator stem from the multiplication operator being implemented
via the VMX fma operator since VMX does not feature a separate multiplication
operator. Furthermore, the errors in the conversion to integer operator are once
again caused by only roundTowardZero being supported.

mul
s 0 86

s - Different sign
ri

m 1 27
m - mantissa different

Listing 6.84: operation_report evaluation function excerpt for the altivec
FPU on POWER8 in -vix mode with the t3s testset.

6.5 PowerPC 249

VSX We conclude the XLC testing result analysis with a short look at VSX results
which are mostly free of errors. Listings 6.85 and 6.86 show two familiar sources
of errors: missing inexact exception flags in the rounding to integral operator
and only roundTowardZero being supported for conversion to integers (the last
conclusion being strengthened by Listing 6.87).

(Success rates shown)

add 100.00% 3152/3152
sub 100.00% 1622/1622
mul 100.00% 5408/5408
div 100.00% 2153/2153
sqrt 100.00% 1784/1784
fma 100.00% 4534/4534
i 37.71% 132/350
ri 85.33% 157/184
rI 100.00% 47/47
ru 100.00% 27/27
ci 100.00% 56/56
cu 100.00% 48/48
RESULT 98.73% 19120/19365

Listing 6.85: basic evaluation function results for the vsx FPU on POWER8
in -vio mode with the t3s testset.

(Errors, ulps, error count shown)

i
j 0 218

j - inexact flag not returned
ri

m 1 27
m - mantissa different

Listing 6.86: operation_report evaluation function output for the vsx FPU on
POWER8 in -vio mode with the t3s testset.

(Success rates shown)

n 99.84% 5024/5032
z 100.00% 4814/4814
u 99.79% 4747/4757
d 99.81% 4753/4762
RESULT 99.86% 19338/19365

Listing 6.87:]roundings evaluation function results for the vsx FPU on
POWER8 in -vix mode with the t3s testset.

VSX (gcc) We conclude the IEEE-conformity analysis of the POWER8 platform
with some results generated by gcc 5.4 for the vsx FPU. We evaluate these results
since gcc uses a set of intrinsics which is different to those of XLC. Listing 6.88
shows the testing summary.

250 Selected results

1170a518 gcc-vsx-gcct2s_vsx_t2s_v total: 1.91% 19318 369 ulp: 29 (1) ftz: no
909eb30f gcc-vsx-gcct2d_vsx_t2d_x total: 0.00% 19120 0 ulp: 0 (0) ftz: no
933265fa gcc-vsx-gcct2d_vsx_t2d_v total: 0.84% 19120 160 ulp: 0 (0) ftz: no
d03a6863 gcc-vsx-gcct2s_vsx_t2s_x total: 0.17% 19318 33 ulp: 29 (1) ftz: no

Listing 6.88: Summary of testing results on POWER8 with gcc.
The errors in the double precision results are caused by missing inexact flags in

the rounding to integral value operator (output omitted here). In single precision,
there also were a number of inexact flags missing in all operations converting to
or from integer values (include rounding to integral value), with additionally a
few results rounded incorrectly as shown in Listing 6.89.

(Errors, ulps, error count shown)

ci
jm 1 3

j - inexact flag not returned
m - mantissa different

cu
jm 1 3

j - inexact flag not returned
m - mantissa different

ri
jm 1 27

j - inexact flag not returned
m - mantissa different

Listing 6.89: operation_report evaluation function output for the vsx FPU on
POWER8 in -vio mode with the t3s testset (gcc).
Overall, we can conclude from these results that the VSX unit should be

preferred to VMX/AltiVec, at least on POWER8.

6.5.2 Cell
PS3, QPACE

The design of the Cell microarchitecture is interesting in that it combines a
traditional CPU core (the PPU) with up to eight coprocessor elements specifically
designed to speed up floating-point computations (the SPUs). For a brief overview
of the architecture, see Section 5.4.2. The differences between the original Cell
processor (such as 7 vs. 8 usable SPUs and the execution speed ratio for single vs.
double precision floating-point calculations 1 : 8 or 1 : 2) and the PowerXCell 8i
should not be relevant from a floating-point accuracy point of view. We used the
following two user environments to generate Cell results:
• A Sony PS 3 running Fedora Core 9 (PPC64) with Linux kernel version
2.6.32.

• A QPACE node card (cf. e. g. [Bai+09; WIK17x]) running Fedora Core 9
(PPC64) with a custom Linux kernel version 2.6.29.6-qpace.

6.5 PowerPC 251

On the PS 3, the executables were compiled with the Cell SDK versions 3.1 and
3.2 (i. e. ppu-gcc and spu-gcc versions 4.1 and 4.3), whereas on QPACE, only the
latter was used.

As discussed in Section 5.4.2, the floating-point capabilities of the FPU in the
SPUs are limited, further aggravated by the fact that the IeeeCC754++ implement-
ation lacks proper rounding and exception support. We therefore show only results
generated with the t3sz and t3dn testsets in -vix mode, i. e. we only test single
precision operations with the roundTowardZero mode (the only rounding mode
supported in single precision) and double precision with roundTiesToEven (the
default mode for double precision). Additionally, we used the IeeeCC754++ com-
mand line option --skipsubnormal to avoid error messages due to the SPU using
FTZ and DAZ. Listings 6.90 and 6.91 show the output of the basic evaluation
function for corresponding test runs on a QPACE node.

(Success rates shown)

add 94.12% 528/561
sub 93.08% 269/289
mul 70.71% 565/799
div 34.80% 119/342
sqrt 76.36% 281/368
fma 81.33% 601/739
ri 100.00% 44/44
ru 100.00% 26/26
ci 100.00% 14/14
cu 100.00% 12/12
RESULT 76.99% 2459/3194

GROUPED

basic 74.38% 1481/1991
extra 79.67% 882/1107
conv 100.00% 96/96

Listing 6.90: basic evaluation function results on QPACE in -vix mode with
the t3sz testset.

As can be seen from Listing 6.91, double precision operations are indeed
IEEE-conforming in roundTiesToEven mode when ignoring test vectors which
contain subnormals. Due to the limitations in the spu FPU implementation, no
conclusions can be drawn for the other rounding modes or with regard to exception
flags.

For operands in single precision, the results are worse (as expected). Listing 6.92
shows an excerpt of the (rather long) error_report evaluation function from which
the two most relevant error sources can be concluded: handling of infinities and
NaNs. This behaviour is in line with the peculiar choice of using the maximum
exponent for normalised floating-point numbers instead of representing infinities
and NaNs as required by IEEE 754-2008.

252 Selected results

(Success rates shown)

add 100.00% 561/561
sub 100.00% 289/289
mul 100.00% 793/793
fma 100.00% 767/767
rt 100.00% 43/43
RESULT 100.00% 2453/2453

GROUPED

basic 100.00% 1643/1643
extra 100.00% 767/767
conv 100.00% 43/43

Listing 6.91: basic evaluation function results on QPACE in -vix mode with
the t3dn testset.

eh - exponent different
- result is not an infinity

add 0 4
div 0 5
mul 0 6
sub 0 2

eha - fma error
- exponent different
- result is not an infinity

fma 0 5
em - exponent different

- mantissa different
div 1 67
sqrt 1 6

emh - exponent different
- result is not an infinity
- mantissa different

div 0 8
mul 0 6

emha - fma error
- exponent different
- result is not an infinity
- mantissa different

fma 0 3
mg - result is NaN, expected infinity

- mantissa different
add 0 6
div 0 12
mul 0 34
sub 0 4

mga - fma error
- result is NaN, expected infinity
- mantissa different

fma 0 22
n - result is not a NaN

add 0 4
div 0 13
fma 0 4
mul 0 4

6.6 Accelerators 253

sub 0 2
pn - result is not a NaN

- invalid flag not returned
add 0 2
div 0 8
fma 0 5
mul 0 8
sqrt 0 15
sub 0 1

Listing 6.92: error_report evaluation function excerpt on QPACE in -vix
mode with the t3sn testset.

The results shown here were generated in both user environments, i. e. on a
QPACE node as well as on the PS 3. All output files (for the respective testsets)
were identical. Overall, with these small (and limited) tests, we could affirm that
the Cell SPU implements floating-point operations as described in [Mue+05] and
that double precision computations are (mostly) IEEE-conforming.

6.6 Accelerators
In this section, we examine the IEEE-conformity of GPGPUs representative for
the different variants of accelerators. The tests were executed on a compute
server with an Intel Xeon E5-2699 v4 CPU (Broadwell microarchitecture, cf.
[INT16d]) running openSUSE Leap 42.3 with Linux kernel 4.4.87-25-default.
This platform serves as a host system for two NVidia Quadro P6000 GPUs (see
[NVi16b]) based on Pascal microarchitecture, cf. [NVi16a]. gcc 4.8.5 and the
CUDA toolkit 8.0 were used to compile the IeeeCC754++ executables.

We chose this system as the user environment for GPGPU testing since it
contains a recent GPGPU and allows for direct comparison of results generated
with two different APIs, namely CUDA and OpenCL.

6.6.1 CUDA
We begin the analysis of the P6000 GPUs with the more “native” CUDA API. The
results displayed in Listing 6.93 were generated with the CUDA toolkit 8.0 and
compute capability version 6.1. Since the GPU only supports the roundTiesToEven
rounding mode for most operations (with the exception of the cudai FPU, cf.
Section 5.5.1), the testsets t3s, t3d, t3sn, and t3dn were used.

014ce2cb nv-nvcc80t3s_cuda_t3s_v total: 50.64% 20861 10563 ulp: 3010 (1) ftz: [???]
014ce2cb nv-nvcc80t3s_main_t3s_v total: 50.64% 20861 10563 ulp: 3010 (1) ftz: [???]
045e8731 nv-nvcc80t3d_cuda_t3d_x total: 18.24% 21312 3887 ulp: 3093 (1) ftz: [???]
045e8731 nv-nvcc80t3d_main_t3d_x total: 18.24% 21312 3887 ulp: 3093 (1) ftz: [???]
259b0920 nv-nvcc80t3dn_cudai_t3dn_x total: 0.00% 4656 0 ulp: 0 (0) ftz: no
25e0fc58 nv-nvcc80t3d_cudai_t3d_x total: 0.00% 17896 0 ulp: 0 (0) ftz: no
264b67bc nv-nvcc80t3sn_cudai_t3sn_x total: 0.00% 4563 0 ulp: 0 (0) ftz: no
3ff3a2ee nv-nvcc80t3sn_cuda_t3sn_x total: 0.00% 5399 0 ulp: 0 (0) ftz: no
3ff3a2ee nv-nvcc80t3sn_main_t3sn_x total: 0.00% 5399 0 ulp: 0 (0) ftz: no
3ff3a2ee nv-nvcc80t3sn_cuda_rn_t3sn_x total: 0.00% 5399 0 ulp: 0 (0) ftz: no

254 Selected results

46d3f366 nv-nvcc80t3s_cuda_rn_t3s_x total: 0.00% 5399 0 ulp: 0 (0) ftz: no
4c42215e nv-nvcc80t3s_cudai_t3s_v total: 53.70% 17525 9411 ulp: 0 (0) ftz: no
5c39e730 nv-nvcc80t3d_cuda_rn_t3d_v total: 52.50% 5512 2894 ulp: 0 (0) ftz: no
6d60a76d nv-nvcc80t3sn_cudai_t3sn_v total: 55.77% 4563 2545 ulp: 0 (0) ftz: no
732fd8cb nv-nvcc80t3dn_cuda_t3dn_v total: 52.50% 5512 2894 ulp: 0 (0) ftz: no
732fd8cb nv-nvcc80t3dn_main_t3dn_v total: 52.50% 5512 2894 ulp: 0 (0) ftz: no
732fd8cb nv-nvcc80t3dn_cuda_rn_t3dn_v total: 52.50% 5512 2894 ulp: 0 (0) ftz: no
7d00aa67 nv-nvcc80t3s_cuda_t3s_x total: 18.12% 20861 3780 ulp: 3010 (1) ftz: [???]
7d00aa67 nv-nvcc80t3s_main_t3s_x total: 18.12% 20861 3780 ulp: 3010 (1) ftz: [???]
94d70514 nv-nvcc80t3s_cudai_t3s_x total: 0.00% 17525 0 ulp: 0 (0) ftz: no
9c576abc nv-nvcc80t3s_cuda_rn_t3s_v total: 52.29% 5399 2823 ulp: 0 (0) ftz: no
a90da235 nv-nvcc80t3d_cuda_t3d_v total: 50.89% 21312 10846 ulp: 3093 (1) ftz: [???]
a90da235 nv-nvcc80t3d_main_t3d_v total: 50.89% 21312 10846 ulp: 3093 (1) ftz: [???]
b068f86d nv-nvcc80t3dn_cudai_t3dn_v total: 56.19% 4656 2616 ulp: 0 (0) ftz: no
b2210808 nv-nvcc80t3d_cuda_rn_t3d_x total: 0.00% 5512 0 ulp: 0 (0) ftz: no
bcc381f8 nv-nvcc80t3sn_cuda_t3sn_v total: 52.29% 5399 2823 ulp: 0 (0) ftz: no
bcc381f8 nv-nvcc80t3sn_main_t3sn_v total: 52.29% 5399 2823 ulp: 0 (0) ftz: no
bcc381f8 nv-nvcc80t3sn_cuda_rn_t3sn_v total: 52.29% 5399 2823 ulp: 0 (0) ftz: no
bf173e3d nv-nvcc80t3d_cudai_t3d_v total: 54.17% 17896 9694 ulp: 0 (0) ftz: no
ebde191e nv-nvcc80t3dn_cuda_t3dn_x total: 0.00% 5512 0 ulp: 0 (0) ftz: no
ebde191e nv-nvcc80t3dn_main_t3dn_x total: 0.00% 5512 0 ulp: 0 (0) ftz: no
ebde191e nv-nvcc80t3dn_cuda_rn_t3dn_x total: 0.00% 5512 0 ulp: 0 (0) ftz: no

Listing 6.93: CUDA testing summary.

As a first observation, results generated with the main and cuda FPUs are
identical, coming at no surprise considering that the only difference between these
FPUs is the use of scalar operands (main) and SIMD vectors (cuda). This also
means that no vector errors occurred, i. e. all execution units inside the P6000
GPU yielded identical results. Second, no errors were found in all results generated
with roundTiesToEven (in -vix mode), i. e. results generated with the cuda_rn
FPU or with the t3sn and t3dn testsets. Furthermore, all results from testing
the cudai FPU (which uses intrinsics to provide correctly rounded operators)
in -vix mode exhibit no errors. Since CUDA (and the GPU) do not support
floating-point exceptions, the corresponding -vio results can be ignored, and we
can conclude that this user environment (with CUDA) is IEEE-conforming (when
ignoring floating-point exceptions and keeping in mind that only roundTiesToEven
is supported unless the corresponding intrinsics are used).

Note that results for testing the elementary functions available in CUDA can
be found in Section 6.8.

6.6.2 OpenCL
For a fair comparison with the CUDA results, we used the OpenCL libraries
contained in the CUDA toolkit 8.0 in the OpenCL IEEE-conformity testing.
Listing 6.94 shows the corresponding summary of the results generated with
gcc 4.8.5 and the t3s, t3d, t3sn, and t3dn testsets, with the -vio mode results
omitted (since OpenCL also does not support floating-point exceptions).

1ff0ebae cl-gcct3d_opencl_rn_t3d_x total: 0.16% 5512 9 ulp: 8 (1) ftz: no
2b1954b3 cl-gcct3dn_opencl_round_t3dn_x total: 0.00% 181 0 ulp: 0 (0) ftz: no
4b54904c cl-gcct3sn_main_t3sn_x total: 0.59% 5399 32 ulp: 29 (1) ftz: [???]
4b54904c cl-gcct3sn_opencl_t3sn_x total: 0.59% 5399 32 ulp: 29 (1) ftz: [???]
4b54904c cl-gcct3sn_opencl_rn_t3sn_x total: 0.59% 5399 32 ulp: 29 (1) ftz: [???]
56f7e924 cl-gcct3d_opencl_round_t3d_x total: 0.00% 828 0 ulp: 0 (0) ftz: [no]
63ebb51a cl-gcct3sn_opencl_round_t3sn_x total: 0.00% 98 0 ulp: 0 (0) ftz: no
a5191579 cl-gcct3s_opencl_rn_t3s_x total: 0.59% 5399 32 ulp: 29 (1) ftz: [???]
b0a38a5f cl-gcct3s_main_t3s_x total: 18.21% 20861 3798 ulp: 3023 (1) ftz: [???]

6.6 Accelerators 255

b0a38a5f cl-gcct3s_opencl_t3s_x total: 18.21% 20861 3798 ulp: 3023 (1) ftz: [???]
b138ebc1 cl-gcct3s_opencl_round_t3s_x total: 0.00% 494 0 ulp: 0 (0) ftz: [no]
b36b0e5c cl-gcct3d_main_t3d_x total: 18.20% 21312 3879 ulp: 3086 (1) ftz: [???]
b36b0e5c cl-gcct3d_opencl_t3d_x total: 18.20% 21312 3879 ulp: 3086 (1) ftz: [???]
c104787e cl-gcct3dn_main_t3dn_x total: 0.16% 5512 9 ulp: 8 (1) ftz: no
c104787e cl-gcct3dn_opencl_t3dn_x total: 0.16% 5512 9 ulp: 8 (1) ftz: no
c104787e cl-gcct3dn_opencl_rn_t3dn_x total: 0.16% 5512 9 ulp: 8 (1) ftz: no

Listing 6.94: OpenCL testing summary, -vix mode.

The first striking difference to the CUDA results is that the only tests without
errors are those generated with the opencl_round FPU which implements the op-
erators for which OpenCL provides rounded versions, namely conversions between
floating-point formats and between floating-point numbers and integers. Con-
sequently, error counts for the testsets containing test vectors for all rounding
modes yield a large number of errors. Overall, error counts are quite low for
roundTiesToEven: 9 errors for double precision and 32 errors for single precision
operands (error counts for the t3s and t3d testsets are not relevant due to only
roundTiesToEven being supported and these testsets containing test vectors for
all rounding modes).

Listings 6.95 and 6.96 show the output of the operation_report evaluation
function for the t3sn and t3dn of the opencl FPU. All errors are related to the
returned result being 1 ulp off. In the case of the division operator in single
precision, two results were rounded to a normalised number instead of a subnormal
(error signature jlemft).

(Errors, ulps, error count shown)

div
jem 1 2
jlemft 0 2
jlm 1 1
jm 1 19

e - exponent different
f - flush to zero detected
j - inexact flag not returned
l - underflow not returned
m - mantissa different
t - result is normalized number, expected tiny (underflown)

ri
jm 1 8

j - inexact flag not returned
m - mantissa different

Listing 6.95: operation_report evaluation function output for the opencl FPU
in -vix mode with the t3sn testset.

These results can be deemed somewhat astonishing, since APIs developed
by the same manufacturer and identical underlying hardware were being used.
Especially the incorrectly rounded results in the division operator are difficult to
explain in this context, even after examining the output of error_list evaluation
function output, which is shown in Listing 6.97.

256 Selected results

(Errors, ulps, error count shown)

ri
jm 1 9

j - inexact flag not returned
m - mantissa different

Listing 6.96: operation_report evaluation function output for the opencl FPU
in -vix mode with the t3dn testset.

[__] l.2958 s div n 00f00003 40c00000 00280000 xu => - 00280001 | jlm 1
[__] l.2978 s div n 00bfffff 3fc00000 007fffff xu => - 00800000 | jlemft 0
[__] l.2979 s div n 80bfffff 3fc00000 807fffff xu => - 80800000 | jlemft 0
[__] l.3024 s div n 3fbfffff 3f7ffffe 3fc00001 x => - 3fc00000 | jm 1
[__] l.3025 s div n bfbfffff bf7ffffe 3fc00001 x => - 3fc00000 | jm 1
[__] l.3026 s div n bfbfffff 3f7ffffe bfc00001 x => - bfc00000 | jm 1
[__] l.3027 s div n 3fbfffff bf7ffffe bfc00001 x => - bfc00000 | jm 1
[__] l.3047 s div n 3f7fffff 3f7ffffe 3f800001 x => - 3f800000 | jm 1
[__] l.3049 s div n 3f7fffff 3f7ffffc 3f800002 x => - 3f800001 | jm 1
[__] l.3050 s div n 3f7ffffd 3f7ffffc 3f800001 x => - 3f800000 | jm 1
[__] l.3066 s div n 3fc00001 3f800001 3fc00000 x => - 3fbfffff | jm 1
[__] l.3067 s div n bfc00001 bf800001 3fc00000 x => - 3fbfffff | jm 1
[__] l.3068 s div n bfc00001 3f800001 bfc00000 x => - bfbfffff | jm 1
[__] l.3069 s div n 3fc00001 bf800001 bfc00000 x => - bfbfffff | jm 1
[__] l.3078 s div n 3f7ffffe 3f7fffff 3f7fffff x => - 3f800000 | jem 1
[__] l.3079 s div n 3f7ffffd 3f7fffff 3f7ffffe x => - 3f7fffff | jm 1
[__] l.3081 s div n 3f7ffffc 3f7fffff 3f7ffffd x => - 3f7ffffe | jm 1
[__] l.3083 s div n 3f7ffffc 3f7ffffd 3f7fffff x => - 3f800000 | jem 1
[__] l.3084 s div n 3f7ffff8 3f7ffffd 3f7ffffb x => - 3f7ffffc | jm 1
[__] l.3087 s div n 3f7ffff7 3f7ffffb 3f7ffffc x => - 3f7ffffd | jm 1
[__] l.3088 s div n 007ffffe 00ffffff 3efffffd x => - 3efffffe | jm 1
[__] l.3089 s div n 807ffffe 80ffffff 3efffffd x => - 3efffffe | jm 1
[__] l.3090 s div n 807ffffe 00ffffff befffffd x => - befffffe | jm 1
[__] l.3091 s div n 007ffffe 80ffffff befffffd x => - befffffe | jm 1
[__] l.5426 s ri n 3f7fffff 00000000 00000001 x => - 00000000 | jm 1
[__] l.5427 s ri n bf7fffff 00000000 ffffffff x => - 00000000 | jm 0
[__] l.5428 s ri n 3fffffff 00000000 00000002 x => - 00000001 | jm 1
[__] l.5429 s ri n bfffffff 00000000 fffffffe x => - ffffffff | jm 1
[__] l.5430 s ri n 3fc00000 00000000 00000002 x => - 00000001 | jm 1
[__] l.5431 s ri n bfc00000 00000000 fffffffe x => - ffffffff | jm 1
[__] l.5434 s ri n 3fc00001 00000000 00000002 x => - 00000001 | jm 1
[__] l.5435 s ri n bfc00001 00000000 fffffffe x => - ffffffff | jm 1

Found 32 errors.

Listing 6.97: error_list evaluation function output for the opencl FPU in
-vix mode with the t3sn testset.

6.7 Software
After having examined different user environments based on a range of hardware
platforms, this section covers software based floating-point environments. In par-

6.7 Software 257

ticular, we take a look at two software floating-point libraries targeted at different
use cases (SoftFloat, which provides a software floating-point implementation for
the five precisions covered in this thesis, and MPFR, which provides an arbitrary
precision floating-point library) and at a virtual machine based floating-point
environment (Java).

All results presented in this section were generated on a notebook featuring an
Intel Core i7-4800QM mobile processor (Haswell microarchitecture, cf. [INT13b])
with openSUSE Leap 42.2 and Linux kernel 4.4.92-18.36-default. The pre-
installed gcc 4.8.5 was used to compile all test executables.

6.7.1 SoftFloat
The softfloat architecture port implements the basic arithmetic operators and all
conversions between floating-point and integer formats for half, single, and double
precision. All five rounding modes of IEEE 754-2008 are supported. Listing 6.98
shows a summary of the testing results generated in the user environment described
above for SoftFloat Release 3d with the testsets t3s and t3d.

41ade70d softfloat-gcct3s_main_t3s_x total: 0.00% 25819 0 ulp: 0 (0) ftz: no
6e0ab3f9 softfloat-gcct3d_main_t3d_x total: 0.00% 26382 0 ulp: 0 (0) ftz: no
c6fd86ed softfloat-gcct3s_main_t3s_v total: 0.00% 25819 0 ulp: 0 (0) ftz: no
f9fa1886 softfloat-gcct3d_main_t3d_v total: 0.00% 26382 0 ulp: 0 (0) ftz: no

Listing 6.98: SoftFloat testing summary.

For single and double precision operands, no errors were found for all executed
test vectors. Listings 6.99 and 6.100 show the operands that were tested and
that in addition to the four classic rounding modes, no errors were found for
roundTiesToAway.

(Success rates shown)

add 100.00% 3937/3937
sub 100.00% 2026/2026
mul 100.00% 6765/6765
div 100.00% 2693/2693
rem 100.00% 1705/1705
sqrt 100.00% 2432/2432
fma 100.00% 5815/5815
ct 100.00% 100/100
rt 100.00% 337/337
ri 100.00% 230/230
rI 100.00% 47/47
ru 100.00% 27/27
rU 100.00% 28/28
ci 100.00% 60/60
cI 100.00% 70/70
cu 100.00% 50/50
cU 100.00% 60/60
RESULT 100.00% 26382/26382

Listing 6.99: basic evaluation function results for SoftFloat with the t3d testset.

258 Selected results

(Success rates shown)

n 100.00% 5421/5421
z 100.00% 5236/5236
u 100.00% 5149/5149
d 100.00% 5156/5156
a 100.00% 5420/5420

Listing 6.100: roundings evaluation function results for SoftFloat with the t3d
testset.

IeeeCC754++ supports the half precision format, but the test vectors contained
in the testsets are preliminary as discussed in Section 3.1.11. Nonetheless, we
show experimental results of executing SoftFloat test runs with the t3h testset in
Listing 6.101. Additionally, Listing 6.102 provides the operation_report output
for these results and Listing 6.103 the corresponding roundings results.

0c4a778a softfloat-gcct3h_main_t3h_x total: 2.31% 24467 565 ulp: 84 (6) ftz: no
63f8f9e7 softfloat-gcct3h_main_t3h_v total: 2.31% 24467 565 ulp: 84 (6) ftz: no

Listing 6.101: SoftFloat testing summary, half precision.

div
jkeh 0 3
jkem 0 2
s 0 30

e - exponent different
h - result is not an infinity
j - inexact flag not returned
k - overflow flag not returned
m - mantissa different
s - Different sign

sqrt
ijsem 0 20
ise 0 5
jem 0 20
m 0 480
xem 0 5

e - exponent different
i - invalid not expected
j - inexact flag not returned
m - mantissa different
s - Different sign
x - inexact not expected

Listing 6.102: operation_report evaluation function results for SoftFloat with
the t3h testset.

(Success rates shown)

n 96.79% 4861/5022
z 98.31% 4713/4794
u 98.32% 4732/4813
d 98.32% 4735/4816

6.7 Software 259

a 96.79% 4861/5022
RESULT 97.69% 23902/24467

Listing 6.103: roundings evaluation function results for SoftFloat with the t3h
testset.

Overall, most test vectors could be executed successfully (i. e. they returned
no errors) for all five rounding modes. Furthermore, errors are only found in
the division and square root operators, with most errors being reported for the
latter. However, it is not possible to draw conclusions concerning the half precision
IEEE-conformity of the SoftFloat implementation prior to a detailed analysis
which of the supplied test vectors are actually valid for precisions smaller than
single.

6.7.2 MPFR
Listing 6.104 shows results for the MPFR arbitrary-precision floating-point library
with the testsets t3s and t3d which were generated on the same platform used
for the SoftFloat results.

106fc1cd mpfr-gcct3s_mpfrdef_t3s_x total: 0.07% 20546 14 ulp: 0 (0) ftz: [???]
50d2656c mpfr-gcct3s_main_t3s_v total: 12.98% 20546 2667 ulp: 0 (0) ftz: no
540242d1 mpfr-gcct3d_mpfrdef_t3d_x total: 0.07% 20933 14 ulp: 0 (0) ftz: [???]
621f8bb5 mpfr-gcct3d_main_t3d_v total: 13.41% 20933 2807 ulp: 0 (0) ftz: no
646db5c7 mpfr-gcct3s_main_t3s_x total: 0.00% 20546 0 ulp: 0 (0) ftz: no
7ad2ee50 mpfr-gcct3d_mpfrdef_t3d_v total: 7.90% 20933 1654 ulp: 0 (0) ftz: [???]
85ac29fe mpfr-gcct3s_mpfrdef_t3s_v total: 7.39% 20546 1518 ulp: 0 (0) ftz: [???]
fb9a1c5d mpfr-gcct3d_main_t3d_x total: 0.00% 20933 0 ulp: 0 (0) ftz: no

Listing 6.104: MPFR testing summary.

MPFR supports the five exceptions defined in IEEE 754-2008, although they
are implemented in a slightly different manner (there is an additional range error
exception, and some operators signal exceptions in slightly non-conforming ways,
see also [GNU16d]). As can be seen from the -vio mode results for the main
FPU in comparison to the -vix mode results, this behaviour leads to a significant
number of errors. However, when explicitly enabling subnormal support (which
has been done in the main FPU), MPFR yields fully IEEE-conforming results in
the sense that all returned floating-point numbers are correctly rounded.

In the default MPFR configuration (i. e. with subnormal support disabled),
MPFR shows a different underflow behaviour due to the extended internal precision.
However, a small number of returned floating-point values is incorrectly rounded
as can be seen from Listings 6.105 and 6.106. The listings also reveal the reason
for the errors only occurring for multiplication and division (the fma cases check
the built-in multiplication) in roundTiesToEven mode: Due to the extended
intermediate precision, the floating-point number closest to the computed result
is not the largest subnormal, but the smallest normalised number (in magnitude).

260 Selected results

lemft - exponent different
- flush to zero detected
- underflow not returned
- mantissa different
- result is normalized number, expected tiny (underflown)

div 0 2
mul 0 8

lemfta - fma error
- exponent different
- flush to zero detected
- underflow not returned
- mantissa different
- result is normalized number, expected tiny (underflown)

fma 0 4

Listing 6.105: error_report evaluation function results for the MPFR mpfrdef
FPU with the t3d testset.

(vectors with 1, 2-8, and >8 ulps difference shown)

n 0 0 14 5424
z 0 0 0 5208
u 0 0 0 5146
d 0 0 0 5155
RESULT 0 0 14 20933

Listing 6.106: ulp evaluation function results for the MPFR mpfrdef FPU with
the t3d testset.

6.7.3 Java
We conclude this section with some results for the java architecture port, once
again generated on the platform which was used for SoftFloat testing. For the tests,
we used the Java SE Development Kit (JDK) versions 1.7.0_67 and 1.8.0_20.
Listing 6.107 shows the corresponding testing summary for the t2s and t2d
testsets (which include conversions between binary and decimal representations)
in -vix mode (since Java does not support floating-point exceptions). Only
roundTiesToEven is supported by the IeeeCC754++ java architecture.

2f28542f java-java170t2d_main_t2d_x total: 1.68% 6073 102 ulp: 61 (1) ftz: no
2f28542f java-java180t2d_main_t2d_x total: 1.68% 6073 102 ulp: 61 (1) ftz: no
2f28542f java-java170t2d_strict_t2d_x total: 1.68% 6073 102 ulp: 61 (1) ftz: no
2f28542f java-java180t2d_strict_t2d_x total: 1.68% 6073 102 ulp: 61 (1) ftz: no
321a0e8f java-java170t2s_strict_t2s_x total: 2.27% 5992 136 ulp: 104 (1) ftz: no
360daca6 java-java180t2s_strict_t2s_x total: 1.22% 5992 73 ulp: 41 (1) ftz: no
778f3a71 java-java180t2s_main_t2s_x total: 2.12% 5992 127 ulp: 45 (1) ftz: no
9a488433 java-java170t2s_main_t2s_x total: 3.12% 5992 187 ulp: 105 (1) ftz: no

Listing 6.107: Java testing summary.

For this architecture port, significant differences between single and double
precision exist. For the latter, the results generated with both Java versions are

6.7 Software 261

identical for the main and strict FPUs; Listing 6.108 shows the reasons for these
errors: some conversions to decimal format yielded incorrect decimal numbers,
fma is not fused (which comes at no surprise since it is implemented with regular
multiplications and additions in the java port, cf. Section 5.7.1), and finally, some
test vectors converting floating-point values to integers were incorrectly rounded.

b2d
jd 0 17

d - different decimal representation
j - inexact flag not returned

fma
jlsa 0 23
jma 1 29
ma 1 24

a - fma error
j - inexact flag not returned
l - underflow not returned
m - mantissa different
s - Different sign

ri
jm 1 9

j - inexact flag not returned
m - mantissa different

Listing 6.108: operation_report evaluation function results for Java with the
t3d testset.

For single precision, the situation is more complex: First, testing with JDK 1.8
yielded better results than testing with JDK 1.7, and second, the strict FPU
returned fewer errors than the respective main FPU. Indeed, the JDK 1.8 generated
strict FPU in single precision showed the minimum number of errors overall,
whereas the main FPU compiled with JDK 1.7 showed the maximum number of
errors. Listings 6.109 and 6.110 show corresponding operation_report output.

b2d
jd 0 9

d - different decimal representation
j - inexact flag not returned

fma
jlsa 0 23
jma 2 14
ma 1 24

a - fma error
j - inexact flag not returned
l - underflow not returned
m - mantissa different
s - Different sign

ri
jm 1 3

j - inexact flag not returned
m - mantissa different

Listing 6.109: operation_report evaluation function results for the strict
FPU in conjunction with JDK 1.8 and the t3s testset.

262 Selected results

b2d
jd 0 9

d - different decimal representation
j - inexact flag not returned

d2b
jm 1 60

j - inexact flag not returned
m - mantissa different

fma
jlsa 0 23
jma 2 14
ma 1 24

a - fma error
j - inexact flag not returned
l - underflow not returned
m - mantissa different
s - Different sign

i
e 0 3
eh 0 2
em 0 11
je 0 6
jem 0 10
jm 0 6
js 0 6
jse 0 2
n 0 2
s 0 1

e - exponent different
h - result is not an infinity
j - inexact flag not returned
m - mantissa different
n - result is not a NaN
s - Different sign

ri
jm 1 8

j - inexact flag not returned
m - mantissa different

Listing 6.110: operation_report evaluation function results for the main FPU
in conjunction with JDK 1.7 and the t3s testset.

Listing 6.109 reveals that for JDK 1.8, single and double precision operators
behave similarly for the strict FPU, while the main FPU exhibits errors in
the round to integral value operator similar to those shown in Listing 6.110.
The latter output finally shows that with JDK 1.7, additional errors were found
when converting decimal input to (binary) floating-point numbers. Overall, we
can conclude that JDK 1.7 should be avoided when performing single precision
floating-point calculations.

6.8 Elementary functions
IeeeCC754++ adds support for the elementary functions recommended (but not
required) by IEEE 754-2008. In Chapter 4, we described the newly added operators

6.8 Elementary functions 263

as well as the test vectors that were added to check the IEEE-conformity of the
operators. In this section, we discuss some results of conformity checking for
the (logical) FPUs inside IeeeCC754++ that support a subset of the elementary
operators: the c99 and cpp11 FPUs in the default architecture port, the mpfr
main FPU, the crlibm architecture, and the cuda FPU in the nv port. The CUDA
results were generated in the user environment described in Section 6.6. For all
other results, we used the mobile platform detailed in Section 6.7.

Since the extent to which IeeeCC754++ is supported for the different resulting
user environments varies, we split up the test vectors into the following testsets
for the IEEE-conformity testing: tTs, tQs, tPs, tTd, tQd, and tPd which check
trigonometric operators (tT), exponentials and logarithms (tQ), and power func-
tions (tP) in single and double precision (for details on the labelling of test vector
collections, see Section 4.7.3). Additionally, we discuss results generated with this
collection of operators for double precision in roundTiesToEven mode, i. e. for the
testsets tTdn, tQdn, and tPdn.

This section is organised as follows: We first take a brief look at the results
generated with the c99 and cpp11 FPUs of the default architecture and discuss
the differences found in the user environment which uses gcc 4.8.5 as compiler.
We then examine the results for single and double precision in all rounding modes
for the FPUs listed above, broken up by operation type (trigonometric operators,
exponentials and logarithms, and power functions). We conclude this section
by showing results for all elementary operators in double precision with the
roundTiesToEven rounding mode.

6.8.1 C99 vs. C++11
We start the elementary operator testing by comparing the results generated
with the C99 and C++11 FPUs. The corresponding summaries are displayed in
Listing 6.111.

094f2173 c99-gcctQs_c99_tQs_x total: 0.00% 252 0 ulp: 0 (0) ftz: no
094f2173 cpp11-gcctQs_cpp11_tQs_x total: 0.00% 252 0 ulp: 0 (0) ftz: no
0b26f944 c99-gcctTd_c99_tTd_v total: 41.85% 1240 519 ulp: 256 (1) ftz: [yes]
0b26f944 cpp11-gcctTd_cpp11_tTd_v total: 41.85% 1240 519 ulp: 256 (1) ftz: [yes]
1f2e0cd4 c99-gcctQdn_c99_tQdn_x total: 5.47% 201 11 ulp: 11 (1) ftz: no
1f2e0cd4 cpp11-gcctQdn_cpp11_tQdn_x total: 5.47% 201 11 ulp: 11 (1) ftz: no
26436bf7 c99-gcctPdn_c99_tPdn_v total: 2.70% 853 23 ulp: 2 (1) ftz: no
26436bf7 cpp11-gcctPdn_cpp11_tPdn_v total: 2.70% 853 23 ulp: 2 (1) ftz: no
3d4b9cc2 c99-gcctTs_c99_tTs_v total: 0.00% 292 0 ulp: 0 (0) ftz: no
3d4b9cc2 cpp11-gcctTs_cpp11_tTs_v total: 0.00% 292 0 ulp: 0 (0) ftz: no
464e340d c99-gcctQs_c99_tQs_v total: 0.00% 252 0 ulp: 0 (0) ftz: no
464e340d cpp11-gcctQs_cpp11_tQs_v total: 0.00% 252 0 ulp: 0 (0) ftz: no
54e2076a c99-gcctTdn_c99_tTdn_x total: 2.58% 310 8 ulp: 8 (1) ftz: no
54e2076a cpp11-gcctTdn_cpp11_tTdn_x total: 2.58% 310 8 ulp: 8 (1) ftz: no
5865b65c c99-gcctTdn_c99_tTdn_v total: 30.65% 310 95 ulp: 8 (1) ftz: no
5865b65c cpp11-gcctTdn_cpp11_tTdn_v total: 30.65% 310 95 ulp: 8 (1) ftz: no
6023c369 c99-gcctQdn_c99_tQdn_v total: 11.94% 201 24 ulp: 11 (1) ftz: no
6023c369 cpp11-gcctQdn_cpp11_tQdn_v total: 11.94% 201 24 ulp: 11 (1) ftz: no
79b744bb c99-gcctPs_c99_tPs_v total: 1.54% 2596 40 ulp: 0 (0) ftz: no
79b744bb cpp11-gcctPs_cpp11_tPs_v total: 1.54% 2596 40 ulp: 0 (0) ftz: no
84b7d3ed c99-gcctPs_c99_tPs_x total: 0.31% 2596 8 ulp: 0 (0) ftz: no
84b7d3ed cpp11-gcctPs_cpp11_tPs_x total: 0.31% 2596 8 ulp: 0 (0) ftz: no
93368e6d c99-gcctTs_c99_tTs_x total: 0.00% 292 0 ulp: 0 (0) ftz: no
93368e6d cpp11-gcctTs_cpp11_tTs_x total: 0.00% 292 0 ulp: 0 (0) ftz: no

264 Selected results

a1ce669c c99-gcctQd_c99_tQd_v total: 18.19% 797 145 ulp: 101 (1) ftz: [???]
a1ce669c cpp11-gcctQd_cpp11_tQd_v total: 18.19% 797 145 ulp: 101 (1) ftz: [???]
c175209f c99-gcctPd_c99_tPd_v total: 29.38% 2604 765 ulp: 695 (1) ftz: no
c175209f cpp11-gcctPd_cpp11_tPd_v total: 29.38% 2604 765 ulp: 695 (1) ftz: no
c67345e3 c99-gcctQd_c99_tQd_x total: 13.17% 797 105 ulp: 101 (1) ftz: [???]
c67345e3 cpp11-gcctQd_cpp11_tQd_x total: 13.17% 797 105 ulp: 101 (1) ftz: [???]
c8ae3e34 c99-gcctTd_c99_tTd_x total: 21.85% 1240 271 ulp: 256 (1) ftz: [yes]
c8ae3e34 cpp11-gcctTd_cpp11_tTd_x total: 21.85% 1240 271 ulp: 256 (1) ftz: [yes]
f1dc3671 c99-gcctPdn_c99_tPdn_x total: 0.47% 853 4 ulp: 2 (1) ftz: no
f1dc3671 cpp11-gcctPdn_cpp11_tPdn_x total: 0.47% 853 4 ulp: 2 (1) ftz: no
fb03ca2d c99-gcctPd_c99_tPd_x total: 27.00% 2604 703 ulp: 695 (1) ftz: no
fb03ca2d cpp11-gcctPd_cpp11_tPd_x total: 27.00% 2604 703 ulp: 695 (1) ftz: no

Listing 6.111: Testing summary for elementary operators with C99 and C++11.

Since the mathematical library included in most C++11 compilers makes use of
the mathematical functions standardised in C99 (in fact, the same set of functions
has been standardised in C++17, see also Section 5.1.1) and the above results
were generated with the same compiler, we can expect the testing results to be
identical. Listing 6.111 confirms this expectation: For all variations of precision,
testset, and testing mode, the logfiles generated by IeeeCC754++ with the c99
and cpp11 FPUs of the default architecture port are identical as shown by the
corresponding checksums being equal. Therefore, we only discuss the C99 results
in the next sections and omit the C++11 results.

6.8.2 Trigonometric operators
Listings 6.112 and 6.113 show summaries of testing the trigonometric operators
with single and double precision operands, respectively.

3d4b9cc2 c99-gcctTs_c99_tTs_v total: 0.00% 292 0 ulp: 0 (0) ftz: no
93368e6d c99-gcctTs_c99_tTs_x total: 0.00% 292 0 ulp: 0 (0) ftz: no
6cb80b89 mpfr-gcctTs_main_tTs_v total: 2.74% 292 8 ulp: 0 (0) ftz: no
8f793ba6 mpfr-gcctTs_main_tTs_x total: 0.00% 292 0 ulp: 0 (0) ftz: no
e39389e4 nv-nvcc80tTs_cuda_tTs_v total: 41.10% 292 120 ulp: 0 (0) ftz: no
d29ba660 nv-nvcc80tTs_cuda_tTs_x total: 0.00% 292 0 ulp: 0 (0) ftz: no

Listing 6.112: Testing summary for trigonometric operators, single precision.

0b26f944 c99-gcctTd_c99_tTd_v total: 41.85% 1240 519 ulp: 256 (1) ftz: [yes]
c8ae3e34 c99-gcctTd_c99_tTd_x total: 21.85% 1240 271 ulp: 256 (1) ftz: [yes]
862b75fa crlibm-gcctTd_main_tTd_v total: 29.12% 728 212 ulp: 0 (0) ftz: no
402ffb77 crlibm-gcctTd_main_tTd_x total: 0.00% 728 0 ulp: 0 (0) ftz: no
8329c974 mpfr-gcctTd_main_tTd_v total: 0.65% 1240 8 ulp: 0 (0) ftz: no
d45395e9 mpfr-gcctTd_main_tTd_x total: 0.00% 1240 0 ulp: 0 (0) ftz: no
2ec1a3a1 nv-nvcc80tTd_cuda_tTd_v total: 84.84% 1240 1052 ulp: 301 (1) ftz: [yes]
eed78658 nv-nvcc80tTd_cuda_tTd_x total: 28.15% 1240 349 ulp: 301 (1) ftz: [yes]

Listing 6.113: Testing summary for trigonometric operators, double precision.

In single precision, all returned floating-point numbers were correct, with a
large number of exceptions being wrong in the CUDA case (since floating-point
exceptions are not supported) and the “divide by zero” exception not being
returned for the atanh operator of the MPFR implementation (see Listing 6.114).
For the C99 implementation, no errors were encountered during testing. Note that

6.8 Elementary functions 265

there are no CRlibm results listed in Listing 6.112 since this library only supports
double precision operands.

atanh
q 0 8

q - divide flag not returned

Listing 6.114: operation_report evaluation function results for the mpfr main
FPU with the tTs testset.

For double precision, a significantly larger number of errors is reported, espe-
cially for the C99 and CUDA FPUs. This is due to the fact that for single precision,
mainly simple test cases and special cases listed in IEEE 754-2008 are contained
in the testsets since we did not find hard to round cases in the literature. However,
for double precision, we added a large number of hard and worst to round cases
as new test vectors (see also Section 4.4.1). The most striking result of double
precision testing with trigonometric operators is that CRlibm and MPFR compute
correctly rounded results for all test vectors, even for the just mentioned hard
cases. Both FPUs do not handle exceptions in a fully IEEE-conforming way, the
MPFR FPU showing the same “divide by zero” errors in the atanh operator and
CRlibm not generating proper exceptions due to design considerations concerning
operator performance (as detailed in the CRlibm documentation [Dar+06]).

The errors reported for the C99 and CUDA FPUs are mostly related to results
not being rounded correctly, i. e. being 1 ulp off. When looking at the ulp
evaluation function output for these two FPUs (Listings 6.115 and 6.116), one
can see that the error rate for results in roundTiesToEven are almost negligible.
We can therefore conclude that the algorithms used to compute the floating-point
results are exact enough in principle, but not enough effort is invested (either in
algorithm design or computing power) to return correctly rounded results for all
rounding modes.

(vectors with 1, 2-8, and >8 ulps difference shown)

n 8 0 0 310
z 57 0 7 310
u 88 0 4 310
d 101 2 4 310
RESULT 254 2 15 1240

Listing 6.115: ulp evaluation function results for the c99 FPU with the tTd
testset.

(vectors with 1, 2-8, and >8 ulps difference shown)

n 19 0 0 310
z 73 0 24 310
u 100 0 8 310
d 109 0 16 310

266 Selected results

RESULT 301 0 48 1240

Listing 6.116: ulp evaluation function results for the cuda FPU with the tTd
testset.

6.8.3 Exponentials and logarithms
For the exponential and logarithmic operators, the situation is similar to the
trigonometric operators. The result summaries for the testsets tQs and tQd can
be found in Listing 6.117 and 6.118.

464e340d c99-gcctQs_c99_tQs_v total: 0.00% 252 0 ulp: 0 (0) ftz: no
094f2173 c99-gcctQs_c99_tQs_x total: 0.00% 252 0 ulp: 0 (0) ftz: no
88349301 mpfr-gcctQs_main_tQs_v total: 15.94% 276 44 ulp: 0 (0) ftz: no
177bac8a mpfr-gcctQs_main_tQs_x total: 0.00% 276 0 ulp: 0 (0) ftz: no
c84c1dbe nv-nvcc80tQs_cuda_tQs_v total: 46.15% 208 96 ulp: 0 (0) ftz: no
9704577c nv-nvcc80tQs_cuda_tQs_x total: 2.88% 208 6 ulp: 0 (0) ftz: no

Listing 6.117: Testing summary for exponentials and logarithms, single
precision.

a1ce669c c99-gcctQd_c99_tQd_v total: 18.19% 797 145 ulp: 101 (1) ftz: [???]
c67345e3 c99-gcctQd_c99_tQd_x total: 13.17% 797 105 ulp: 101 (1) ftz: [???]
a1278b21 crlibm-gcctQd_main_tQd_v total: 10.85% 645 70 ulp: 0 (0) ftz: no
f2b6b200 crlibm-gcctQd_main_tQd_x total: 0.00% 645 0 ulp: 0 (0) ftz: no
050be749 mpfr-gcctQd_main_tQd_v total: 4.72% 933 44 ulp: 0 (0) ftz: no
94b8d312 mpfr-gcctQd_main_tQd_x total: 0.00% 933 0 ulp: 0 (0) ftz: no
bfe8b081 nv-nvcc80tQd_cuda_tQd_v total: 79.44% 681 541 ulp: 144 (1) ftz: [???]
3a670c48 nv-nvcc80tQd_cuda_tQd_x total: 26.58% 681 181 ulp: 144 (1) ftz: [???]

Listing 6.118: Testing summary for exponentials and logarithms, double
precision.

Testing single precision operands with exponentials and logarithms revealed no
errors for C99 and MPFR; however, some errors (in the sense of incorrect floating-
point numbers being returned) were returned for the CUDA FPU. Listing 6.119
shows that all these six cases of errors are due to overflow handling in the
exponential operators exp, exp2, and expm1.

exp
jkem 0 2

e - exponent different
j - inexact flag not returned
k - overflow flag not returned
m - mantissa different

exp2
jkem 0 2

e - exponent different
j - inexact flag not returned
k - overflow flag not returned
m - mantissa different

expm1
jkem 0 2

e - exponent different

6.8 Elementary functions 267

j - inexact flag not returned
k - overflow flag not returned
m - mantissa different

Listing 6.119: operation_report evaluation function results for the nv cuda
FPU with the tQs testset.

For double precision, the reasons for the errors in the C99 and MPFR FPUs
are the same as for the trigonometric operators, namely rounding being 1 ulp off
for some test vectors in all rounding modes and a significantly smaller number of
errors in roundTiesToEven (Listings 6.120 and 6.121). The two cases of incorrect
results with a deviation from the correct result of more than 8 ulps are due to
underflow handling as can be seen from Listings 6.121 and 6.122.

(vectors with 1, 2-8, and >8 ulps difference shown)

n 11 0 0 201
u 24 0 1 198
z 27 0 2 198
d 39 0 1 200
RESULT 101 0 4 797

Listing 6.120: ulp evaluation function results for the c99 FPU with the tQd
testset.

(vectors with 1, 2-8, and >8 ulps difference shown)

n 9 0 2 172
u 48 0 6 169
z 44 0 15 169
d 43 0 14 171
RESULT 144 0 37 681

Listing 6.121: ulp evaluation function results for the cuda FPU with the tQd
testset.

jlmf - flush to zero detected
- inexact flag not returned
- underflow not returned
- mantissa different

exp 0 2

Listing 6.122: error_report evaluation function excerpt for the cuda FPU with
the tQdn testset.

6.8.4 Power operators
For the power (and root) operators, the testing results exhibit different character-
istics compared to the results for the other elementary functions shown in the last

268 Selected results

sections. First, there are no CRlibm results since this library does not implement
power operators. Additionally, all of the tested FPUs returned at least a few
errors. Listings 6.123 and 6.124 show the testing summaries for single and double
precision.

79b744bb c99-gcctPs_c99_tPs_v total: 1.54% 2596 40 ulp: 0 (0) ftz: no
84b7d3ed c99-gcctPs_c99_tPs_x total: 0.31% 2596 8 ulp: 0 (0) ftz: no
dad5fd4e mpfr-gcctPs_main_tPs_v total: 2.13% 4508 96 ulp: 0 (0) ftz: no
924b1c0a mpfr-gcctPs_main_tPs_x total: 0.44% 4508 20 ulp: 0 (0) ftz: no
79e1aaf5 nv-nvcc80tPs_cuda_tPs_v total: 79.35% 2596 2060 ulp: 815 (1) ftz: [yes]
32992dee nv-nvcc80tPs_cuda_tPs_x total: 31.93% 2596 829 ulp: 815 (1) ftz: [yes]

Listing 6.123: Testing summary for power operators, single precision.

c175209f c99-gcctPd_c99_tPd_v total: 29.38% 2604 765 ulp: 695 (1) ftz: no
fb03ca2d c99-gcctPd_c99_tPd_x total: 27.00% 2604 703 ulp: 695 (1) ftz: no
c17a8013 mpfr-gcctPd_main_tPd_v total: 2.13% 4516 96 ulp: 0 (0) ftz: no
7bc0d451 mpfr-gcctPd_main_tPd_x total: 0.44% 4516 20 ulp: 0 (0) ftz: no
d7149f97 nv-nvcc80tPd_cuda_tPd_v total: 79.72% 2604 2076 ulp: 796 (1) ftz: [yes]
e919de74 nv-nvcc80tPd_cuda_tPd_x total: 31.26% 2604 814 ulp: 796 (1) ftz: [yes]

Listing 6.124: Testing summary for power operators, double precision.

From these summaries, it is striking that the number of errors reported for the
CUDA FPU is substantially larger compared to the C99 and MPFR FPUs. The
error_report evaluation function output for single precision in -vix mode shown
in Listing 6.125 sheds light on the reasons for these errors which are exclusively
found in the pow function: Most of the errors stem from the floating-point result
numbers being incorrectly rounded (denoted by the error signatures “jm” and
“jem”). Additionally, small problems with overflow, underflow, NaN, and sign
handling were found.

(Operations, ulps, error count shown)

jem - exponent different
- inexact flag not returned
- mantissa different

pow 2 36
jkem - exponent different

- inexact flag not returned
- overflow flag not returned
- mantissa different

pow 0 4
jlmf - flush to zero detected

- inexact flag not returned
- underflow not returned
- mantissa different

pow 0 2
jm - inexact flag not returned

- mantissa different
pow 1 779

pn - result is not a NaN
- invalid flag not returned

pow 0 4

6.8 Elementary functions 269

s - Different sign
pow 0 4

Listing 6.125: error_report evaluation function excerpt for the cuda FPU with
the tPs testset.

The reasons for the (small number of) single precision errors found for the
MPFR FPU mainly lie in wrong signs being returned for some test vectors in the
pow, rootn, and rsqrt operators, cf. Listing 6.126. Additionally, four errors were
found related to NaN handling. For the C99 FPU, errors were only reported for
the pow operator. Incidentally, these are identical to the pow errors of the MPFR
FPU shown in Listing 6.126.

pow
pn 0 4
s 0 4

n - result is not a NaN
p - invalid flag not returned
s - Different sign

rootn
s 0 8

s - Different sign
rsqrt

qs 0 4
q - divide flag not returned
s - Different sign

Listing 6.126: operation_report evaluation function excerpt for the mpfr main
FPU with the tPs testset.

For double precision operands, the floating-point behaviour of the tested FPUs
is similar to that observed in single precision. For MPFR, the operation_report
output is identical to that in single precision. Listing 6.127 reveals that for CUDA,
the results are of similar quality as the single precision results with slightly different
error counts (and sometimes signatures).

em - exponent different
- mantissa different

pow 1 4
jem - exponent different

- inexact flag not returned
- mantissa different

pow 1 15
jkem - exponent different

- inexact flag not returned
- overflow flag not returned
- mantissa different

pow 0 4
jlmf - flush to zero detected

- inexact flag not returned
- underflow not returned
- mantissa different

pow 0 2
jm - inexact flag not returned

270 Selected results

- mantissa different
pow 1 773

m - mantissa different
pow 1 4

pn - result is not a NaN
- invalid flag not returned

pow 0 4
qs - divide flag not returned

- Different sign
pow 0 4

s - Different sign
pow 0 4

Listing 6.127: error_report evaluation function excerpt for the cuda FPU with
the tPd testset.

The biggest difference to the single precision results is found for the C99 FPU.
The corresponding operation_report output is shown in Listing 6.128.

(Errors, ulps, error count shown)

cbrt
xem 1 12
xm 2 10

e - exponent different
m - mantissa different
x - inexact not expected

pow
em 1 1
m 1 672
pn 0 4
s 0 4

e - exponent different
m - mantissa different
n - result is not a NaN
p - invalid flag not returned
s - Different sign

Listing 6.128: operation_report evaluation function excerpt for the c99 FPU
with the tPd testset.

A significant number of test vectors are not rounded correctly for the pow
operator with the usual deviation of 1 ulp from the correct result. Furthermore,
some test vectors were unexpectedly incorrectly rounded for the simple test cases in
the cbrt testset (cf. Section 4.3.1). Listing 6.129 shows that almost all of the errors
are encountered in the roundTowardZero and roundTowardNegative rounding
modes, whereas only a small number of errors is reported for roundTowardPositive
and almost none for roundTiesToEven. This behaviour (and the fact that the
returned results were identical for each Coonen source test vector in all rounding
modes) suggests that the cbrt operator is only properly implemented for round-
TiesToEven, and that the correct values for roundTowardPositive coincide with
the roundTiesToEven values for the power and root test vectors.

6.8 Elementary functions 271

(Success rates shown)

n 99.53% 849/853
z 41.78% 244/584
u 96.74% 564/583
d 41.78% 244/584
RESULT 73.00% 1901/2604

Listing 6.129: roundings evaluation function results for the c99 FPU with the
tPd testset.

6.8.5 roundTiesToEven results
Since the error counts found for the elementary operators in -vix mode are quite
large for some of the tested FPUs, we performed further tests with testsets that only
contained roundTiesToEven test vectors. This approach enables analysing how
accurate (read: how IEEE-conforming) the elementary operators are implemented
for the default (and most commonly used) rounding mode. Listing 6.130 shows
the summary for the FPUs tested above in -vix mode for the testsets tTdn, tQdn,
and tPdn.

54e2076a c99-gcctTdn_c99_tTdn_x total: 2.58% 310 8 ulp: 8 (1) ftz: no
1f2e0cd4 c99-gcctQdn_c99_tQdn_x total: 5.47% 201 11 ulp: 11 (1) ftz: no
f1dc3671 c99-gcctPdn_c99_tPdn_x total: 0.47% 853 4 ulp: 2 (1) ftz: no
8c37136a crlibm-gcctTdn_main_tTdn_x total: 0.00% 182 0 ulp: 0 (0) ftz: no
4bb508bb crlibm-gcctQdn_main_tQdn_x total: 0.00% 163 0 ulp: 0 (0) ftz: no
a0f37c40 mpfr-gcctTdn_main_tTdn_x total: 0.00% 310 0 ulp: 0 (0) ftz: no
3ea33ecc mpfr-gcctQdn_main_tQdn_x total: 0.00% 235 0 ulp: 0 (0) ftz: no
72bd67a1 mpfr-gcctPdn_main_tPdn_x total: 0.33% 1533 5 ulp: 0 (0) ftz: no
8189c6f1 nv-nvcc80tTdn_cuda_tTdn_x total: 6.13% 310 19 ulp: 19 (1) ftz: no
226e7f4d nv-nvcc80tQdn_cuda_tQdn_x total: 6.40% 172 11 ulp: 9 (1) ftz: [???]
46a403c9 nv-nvcc80tPdn_cuda_tPdn_x total: 14.77% 853 126 ulp: 123 (1) ftz: no

Listing 6.130: Testing summary for elementary operators for double precision
operands in -vix mode with roundTiesToEven.

CRlibm yielded correctly rounded floating-point results for all test vectors
supplied by IeeeCC754++ (note that we only analyse the returned binary floating-
point numbers here and ignore errors related to floating-point exceptions). MPFR
also produced correct results with the exception of five errors related to sign
and NaN handling (see above). For the C99 FPU, we can see that the errors
found for the power operators in the last section are not found here due to
only roundTowardZero being regarded. For the trigonometric, exponential, and
logarithmic operators, all errors are caused by incorrectly rounded results with a
deviation of 1 ulp, spread over a number of operators (cf. Listing 6.131).

acosh
m 1 2

m - mantissa different
cosh

m 1 4
m - mantissa different

272 Selected results

sinh
m 1 2

m - mantissa different
exp2

m 1 2
m - mantissa different

expm1
m 1 2

m - mantissa different
log10

m 1 4
m - mantissa different

log2
m 1 1

m - mantissa different
logp1

m 1 2
m - mantissa different

Listing 6.131: operation_report evaluation function excerpt for the c99 FPU
with the tTdn and tQdn testsets.

The largest error counts are found for the CUDA GPU in all three testset
variants. For the trigonometric operators, all errors are due to incorrect round-
ing, while for exponentials and logarithms, additional problems with subnormal
handling were found (cf. Listings 6.132 and Listing 6.133).

(Operations, ulps, error count shown)

jm - inexact flag not returned
- mantissa different

acos 1 2
acosh 1 2
asin 1 1
atan 1 2
cos 1 2
cosh 1 7
sin 1 1
tan 1 2

Listing 6.132: error_report evaluation function excerpt for the cuda FPU with
the tTdn testset.

(Operations, ulps, error count shown)

jlm - inexact flag not returned
- underflow not returned
- mantissa different

exp2 1 1
jlmf - flush to zero detected

- inexact flag not returned
- underflow not returned
- mantissa different

exp 0 2
jm - inexact flag not returned

- mantissa different

6.9 Optimisation framework 273

exp 1 2
expm1 1 2
log10 1 2
log2 1 2

Listing 6.133: error_report evaluation function excerpt for the cuda FPU with
the tQdn testset.

Finally, although the error rate for the tPdn testset is lower than that for the
tPd testset by a factor of two, the distribution of errors is similar as shown by
Listing 6.134.

em - exponent different
- mantissa different

pow 1 1
jem - exponent different

- inexact flag not returned
- mantissa different

pow 1 13
jm - inexact flag not returned

- mantissa different
pow 1 108

m - mantissa different
pow 1 1

pn - result is not a NaN
- invalid flag not returned

pow 0 1
qs - divide flag not returned

- Different sign
pow 0 1

s - Different sign
pow 0 1

Listing 6.134: error_report evaluation function excerpt for the cuda FPU with
the tPdn testset.

6.9 Optimisation framework

In this section, we demonstrate how the optimisation framework can be used
to study the influence of compiler options on IEEE-conformity and application
performance. We start with a short description of the user environments in which
the evaluation framework was executed before discussing a two-step process of
quickly selecting promising compiler options and applying these to a full test
run. We conclude this section with two larger examples that make use of the two
external applications which IeeeCC754++ supplies in order to retrieve performance
results.

274 Selected results

6.9.1 User environments
The following two user environments were used in this section (both of which have
been used before in this chapter, cf. Sections 6.1.1 and 6.3.1):

• An x86 workstation featuring an Intel Core i7-4770 processor (Haswell
microarchitecture, cf. [INT13a]) with openSUSE 13.1 (x86_64 with Linux
kernel 3.12.62-55). This platform is used as a default environment, i. e. it
is paired with the main FPU of the default architecture.

• An x86 server with an Intel Xeon E5-2620 v4 CPU (Broadwell microar-
chitecture, cf. [INT16b]) that is running CentOS Linux 7.3.1611 (x86_64
with Linux kernel 3.10.0-514.26.1.el7.x86_64). On this platform, the
x86 architecture is used with the main FPU.

All test runs were performed with the t3d testset.

6.9.2 Two-step process
When a large number of compiler options needs to be evaluated with regard to
floating-point conformity and application performance, it is usually not feasible to
feed all these options into the optimisation framework and execute a test run that
performs IEEE-conformity testing with IeeeCC754++ and performance retrieval of
the target application due to the latter unnecessarily slowing down the evaluation
process. Rather, it is advisable to only execute IeeeCC754++ with the different
combinations of compiler options and omit the execution of the target application
in this first step. The generated IEEE-conformity results can then be used to select
a promising subset of compiler options and feed these into another optimisation
framework run, this time enabling the external application and retrieving the
runtimes resulting from the different compiler switch combinations.

For the following example demonstrating the two-step process, we use the
default environment listed above together with gcc 7.2 as compiler. For the first
step, the opt task file shown in Listing 6.135 was used.

ARCH = default
FPU = main
COMPILERS = gcc-7.2
MODULE = compiler/[cn]/[cv]
TESTSET = t3d
LEVEL1 = -mfpmath=387 -mfpmath=sse -mavx
LEVEL2 = -O1 -O3
LEVEL3 = -fno-rounding-math -funsafe-math-optimizations
COMBINATIONSLEVEL = 1
USE_EXTERNAL_APP = no
FITNESS = weighted

Listing 6.135: Opt task file default_step_one.opt.

6.9 Optimisation framework 275

On level 1, the three different FPUs that are contained in every current x86 CPU
are targeted: x87, SSE, and AVX. On the second level, the common optimisation
compiler switches -O1 and -O3 are used. Finally, the last (third) level shows the
two options -fno-rounding-math and -funsafe-math-optimizations enabling
the compiler to perform optimisations able to change floating-point semantics
with regard to rounding behaviour and all aspects of floating-point behaviour,
respectively. Listing 6.136 shows the rather lengthy output of the corresponding
test run, evaluated with the weighted fitness function (see Section 3.5.2).

Format: name succ_rate err_rate noexp_rate runtime overall succ err noexp | fitness [arch fpu
compiler] options

weighted

default_gcc72_main_set00001 99.86 0.14 100.00 0.00 16661 16638 23 16661 | 53.93
[default main gcc-7.2]

default_gcc72_main_set00019 99.86 0.14 100.00 0.00 16661 16638 23 16661 | 53.93
[default main gcc-7.2] -mfpmath=sse

default_gcc72_main_set00028 99.86 0.14 100.00 0.00 16661 16638 23 16661 | 53.93
[default main gcc-7.2] -mavx

default_gcc72_main_set00029 98.58 1.42 100.00 0.00 16661 16424 237 16661 | 53.29
[default main gcc-7.2] -mavx -O1

default_gcc72_main_set00030 98.58 1.42 100.00 0.00 16661 16424 237 16661 | 53.29
[default main gcc-7.2] -mavx -O1 -fno-rounding-math

default_gcc72_main_set00033 98.58 1.42 100.00 0.00 16661 16424 237 16661 | 53.29
[default main gcc-7.2] -mavx -O3

default_gcc72_main_set00034 98.58 1.42 100.00 0.00 16661 16424 237 16661 | 53.29
[default main gcc-7.2] -mavx -O3 -fno-rounding-math

default_gcc72_main_set00010 98.37 1.63 99.65 0.00 16661 16389 272 16603 | 53.18
[default main gcc-7.2] -mfpmath=387

default_gcc72_main_set00002 98.21 1.79 99.63 0.00 16661 16363 298 16600 | 53.11
[default main gcc-7.2] -O1

default_gcc72_main_set00003 98.21 1.79 99.63 0.00 16661 16363 298 16600 | 53.11
[default main gcc-7.2] -O1 -fno-rounding-math

default_gcc72_main_set00006 98.21 1.79 99.63 0.00 16661 16363 298 16600 | 53.11
[default main gcc-7.2] -O3

default_gcc72_main_set00007 98.21 1.79 99.63 0.00 16661 16363 298 16600 | 53.11
[default main gcc-7.2] -O3 -fno-rounding-math

default_gcc72_main_set00020 98.21 1.79 99.63 0.00 16661 16363 298 16600 | 53.11
[default main gcc-7.2] -mfpmath=sse -O1

default_gcc72_main_set00021 98.21 1.79 99.63 0.00 16661 16363 298 16600 | 53.11
[default main gcc-7.2] -mfpmath=sse -O1 -fno-rounding-math

default_gcc72_main_set00024 98.21 1.79 99.63 0.00 16661 16363 298 16600 | 53.11
[default main gcc-7.2] -mfpmath=sse -O3

default_gcc72_main_set00025 98.21 1.79 99.63 0.00 16661 16363 298 16600 | 53.11
[default main gcc-7.2] -mfpmath=sse -O3 -fno-rounding-math

default_gcc72_main_set00011 96.27 3.73 98.81 0.00 16661 16039 622 16463 | 52.13
[default main gcc-7.2] -mfpmath=387 -O1

default_gcc72_main_set00012 96.27 3.73 98.81 0.00 16661 16039 622 16463 | 52.13
[default main gcc-7.2] -mfpmath=387 -O1 -fno-rounding-math

default_gcc72_main_set00015 96.27 3.73 98.81 0.00 16661 16039 622 16463 | 52.13
[default main gcc-7.2] -mfpmath=387 -O3

default_gcc72_main_set00016 96.27 3.73 98.81 0.00 16661 16039 622 16463 | 52.13
[default main gcc-7.2] -mfpmath=387 -O3 -fno-rounding-math

default_gcc72_main_set00013 94.72 5.28 97.31 0.00 16661 15781 880 16213 | 51.36
[default main gcc-7.2] -mfpmath=387 -O1 -funsafe-math-optimizations

default_gcc72_main_set00017 94.72 5.28 97.31 0.00 16661 15781 880 16213 | 51.36
[default main gcc-7.2] -mfpmath=387 -O3 -funsafe-math-optimizations

default_gcc72_main_set00014 94.72 5.28 97.31 0.00 16661 15781 880 16213 | 47.36
[default main gcc-7.2] -mfpmath=387 -O1 -fno-rounding-math -funsafe-math-optimizations

default_gcc72_main_set00018 94.72 5.28 97.31 0.00 16661 15781 880 16213 | 47.36
[default main gcc-7.2] -mfpmath=387 -O3 -fno-rounding-math -funsafe-math-optimizations

default_gcc72_main_set00031 72.55 27.45 77.27 0.00 16661 12087 4574 12874 | 40.27
[default main gcc-7.2] -mavx -O1 -funsafe-math-optimizations

default_gcc72_main_set00035 72.55 27.45 77.27 0.00 16661 12087 4574 12874 | 40.27
[default main gcc-7.2] -mavx -O3 -funsafe-math-optimizations

default_gcc72_main_set00004 72.22 27.78 76.93 0.00 16661 12032 4629 12817 | 40.11
[default main gcc-7.2] -O1 -funsafe-math-optimizations

default_gcc72_main_set00005 72.22 27.78 76.93 0.00 16661 12032 4629 12817 | 40.11
[default main gcc-7.2] -O1 -fno-rounding-math -funsafe-math-optimizations

default_gcc72_main_set00008 72.22 27.78 76.93 0.00 16661 12032 4629 12817 | 40.11
[default main gcc-7.2] -O3 -funsafe-math-optimizations

default_gcc72_main_set00009 72.22 27.78 76.93 0.00 16661 12032 4629 12817 | 40.11
[default main gcc-7.2] -O3 -fno-rounding-math -funsafe-math-optimizations

276 Selected results

default_gcc72_main_set00022 72.22 27.78 76.93 0.00 16661 12032 4629 12817 | 40.11
[default main gcc-7.2] -mfpmath=sse -O1 -funsafe-math-optimizations

default_gcc72_main_set00026 72.22 27.78 76.93 0.00 16661 12032 4629 12817 | 40.11
[default main gcc-7.2] -mfpmath=sse -O3 -funsafe-math-optimizations

default_gcc72_main_set00032 72.55 27.45 77.27 0.00 16661 12087 4574 12874 | 36.27
[default main gcc-7.2] -mavx -O1 -fno-rounding-math -funsafe-math-optimizations

default_gcc72_main_set00036 72.55 27.45 77.27 0.00 16661 12087 4574 12874 | 36.27
[default main gcc-7.2] -mavx -O3 -fno-rounding-math -funsafe-math-optimizations

default_gcc72_main_set00023 72.22 27.78 76.93 0.00 16661 12032 4629 12817 | 36.11
[default main gcc-7.2] -mfpmath=sse -O1 -fno-rounding-math -funsafe-math-optimizations

default_gcc72_main_set00027 72.22 27.78 76.93 0.00 16661 12032 4629 12817 | 36.11
[default main gcc-7.2] -mfpmath=sse -O3 -fno-rounding-math -funsafe-math-optimizations

Listing 6.136: Output of opt.py default_step_one.opt.

Without optimisations, SSE and AVX yield identical results, directly followed
by the slightly worse results for the x87 FPU. When paired with additional
compiler options, the results for x87 rapidly deteriorate, whereas SSE and AVX
stay on the same IEEE-conformity level. For the step two run, we choose the AVX
FPU since it is the newer and potentially better performing FPU. This option is
needed for every executable built during the optimisation framework run, and we
therefore add it to the opt task variable CXXFLAGS.

We omit both of the additional options tested in step one on level 3 since
the first has no visible effect on floating-point results (and does not promise
performance gains) and the second drastically reduces the level of IEEE-conformity.
Instead of these options, we add the switch -funroll-loops which does not affect
the semantics of the test vector execution during an IeeeCC754++ run, but can
potentially result in a tremendous performance boost for sixloops which is used
as external application. Listing 6.137 shows the resulting opt task file for step
two.

ARCH = default
FPU = main
COMPILERS = gcc-7.2
MODULE = compiler/[cn]/[cv]
TESTSET = t3d
LEVEL1 = -O1 -O3
LEVEL2 = -funroll-loops
LEVEL3 =
COMBINATIONSLEVEL = 1
CXXFLAGS = -mavx
APP_BUILD = sixloops_mod_build.sh
APP_EXEC = sixloops_mod_execute.sh
APP_REPEATS = 3
APP_TIMING = external
USE_EXTERNAL_APP = yes
FITNESS = weighted

Listing 6.137: Opt task file default_step_two.opt.

Due to the reduced set of compiler options, only six sets of compiler options
need to be executed. The results for the weighted fitness function are shown in
Listing 6.138.

6.9 Optimisation framework 277

default_gcc72_main_set00005 98.58 1.42 100.00 8.60 16661 16424 237 16661 | 79.89
[default main gcc-7.2] -O3

default_gcc72_main_set00006 98.58 1.42 100.00 8.31 16661 16424 237 16661 | 77.93
[default main gcc-7.2] -O3 -funroll-loops

default_gcc72_main_set00003 98.58 1.42 100.00 27.54 16661 16424 237 16661 | 76.80
[default main gcc-7.2] -O1

default_gcc72_main_set00004 98.58 1.42 100.00 24.53 16661 16424 237 16661 | 75.29
[default main gcc-7.2] -O1 -funroll-loops

default_gcc72_main_set00001 99.86 0.14 100.00 184.04 16661 16638 23 16661 | 51.95
[default main gcc-7.2]

default_gcc72_main_set00002 99.86 0.14 100.00 184.15 16661 16638 23 16661 | 51.93
[default main gcc-7.2] -funroll-loops

Listing 6.138: Output of opt.py default_step_two.opt.

The runtimes for the execution of the sixloops application (which are shown
in the fifth column) demonstrate the huge difference between optimised and
non-optimised executables. Furthermore, the option -funroll-loops further
decreases the runtimes, if only slightly. The reason for the weighted fitness
function favouring the versions without this parameter lie in the selection of the
weight factors which give a rather high priority to the “lower number of options”
weight factor (cf. Section 3.5.2). However, since adding -funroll-loops does
not change the IEEE-conformity results, the user can still choose the option
combination -O3 -funroll-loops to compile the target application sixloops.

6.9.3 Example run with sixloops

Listing 6.139 shows the opt task file used for testing the influence of some opti-
misation options on the sixloops example application (cf. Section 3.5.3) used
in the server user environment described in Section 6.9.1. For this optimisation
framework run, we used gcc 4.8 as compiler. Note that the choice of FPU that is
used to execute floating-point operations is left to the compiler.

ARCH = x86
FPU = main
COMPILERS = gcc-4.8
MODULE = compiler/[cn]/[cv]
TESTSET = t3d
LEVEL1 = -O1 -O3
LEVEL2 = -funroll-loops -funsafe-math-optimizations -ffast-math -frounding-math
LEVEL3 =
COMBINATIONSLEVEL = 1
APP_BUILD = sixloops_mod_build.sh
APP_EXEC = sixloops_mod_execute.sh
APP_REPEATS = 3
APP_TIMING = external
USE_EXTERNAL_APP = yes
FITNESS = weighted

Listing 6.139: Opt task file sixloops.opt.

The output of the weighted fitness function for the optimisation framework
run with this opt task file is shown in Listing 6.140.

278 Selected results

x86_gcc48_main_set00034 93.34 6.66 98.43 18.86 16581 15476 1105 16320 | 79.20 [x86 main
gcc-4.8] -O3 -funroll-loops

x86_gcc48_main_set00042 93.34 6.66 98.43 18.86 16581 15476 1105 16320 | 79.20 [x86 main
gcc-4.8] -O3 -funroll-loops -frounding-math

x86_gcc48_main_set00041 93.34 6.66 98.43 20.20 16581 15476 1105 16320 | 79.02 [x86 main
gcc-4.8] -O3 -frounding-math

x86_gcc48_main_set00033 93.34 6.66 98.43 20.31 16581 15476 1105 16320 | 79.01 [x86 main
gcc-4.8] -O3

x86_gcc48_main_set00018 93.34 6.66 98.43 31.23 16581 15476 1105 16320 | 77.58 [x86 main
gcc-4.8] -O1 -funroll-loops

x86_gcc48_main_set00026 93.34 6.66 98.43 31.72 16581 15476 1105 16320 | 77.51 [x86 main
gcc-4.8] -O1 -funroll-loops -frounding-math

x86_gcc48_main_set00025 93.34 6.66 98.43 34.17 16581 15476 1105 16320 | 77.19 [x86 main
gcc-4.8] -O1 -frounding-math

x86_gcc48_main_set00017 93.34 6.66 98.43 34.51 16581 15476 1105 16320 | 77.15 [x86 main
gcc-4.8] -O1

x86_gcc48_main_set00040 73.58 26.42 78.31 18.75 16581 12200 4381 12985 | 69.33 [x86 main
gcc-4.8] -O3 -funroll-loops -funsafe-math-optimizations -ffast-math

x86_gcc48_main_set00046 73.58 26.42 78.31 18.76 16581 12200 4381 12985 | 69.33 [x86 main
gcc-4.8] -O3 -funroll-loops -ffast-math -frounding-math

x86_gcc48_main_set00038 73.58 26.42 78.31 18.87 16581 12200 4381 12985 | 69.32 [x86 main
gcc-4.8] -O3 -funroll-loops -ffast-math

x86_gcc48_main_set00047 73.58 26.42 78.31 20.23 16581 12200 4381 12985 | 69.14 [x86 main
gcc-4.8] -O3 -funsafe-math-optimizations -ffast-math -frounding-math

x86_gcc48_main_set00037 73.58 26.42 78.31 20.26 16581 12200 4381 12985 | 69.14 [x86 main
gcc-4.8] -O3 -ffast-math

x86_gcc48_main_set00039 73.58 26.42 78.31 20.33 16581 12200 4381 12985 | 69.13 [x86 main
gcc-4.8] -O3 -funsafe-math-optimizations -ffast-math

x86_gcc48_main_set00045 73.58 26.42 78.31 21.59 16581 12200 4381 12985 | 68.96 [x86 main
gcc-4.8] -O3 -ffast-math -frounding-math

x86_gcc48_main_set00024 73.58 26.42 78.31 31.15 16581 12200 4381 12985 | 67.71 [x86 main
gcc-4.8] -O1 -funroll-loops -funsafe-math-optimizations -ffast-math

x86_gcc48_main_set00022 73.58 26.42 78.31 31.19 16581 12200 4381 12985 | 67.71 [x86 main
gcc-4.8] -O1 -funroll-loops -ffast-math

x86_gcc48_main_set00030 73.58 26.42 78.31 31.44 16581 12200 4381 12985 | 67.67 [x86 main
gcc-4.8] -O1 -funroll-loops -ffast-math -frounding-math

x86_gcc48_main_set00023 73.58 26.42 78.31 31.53 16581 12200 4381 12985 | 67.66 [x86 main
gcc-4.8] -O1 -funsafe-math-optimizations -ffast-math

x86_gcc48_main_set00031 73.58 26.42 78.31 31.54 16581 12200 4381 12985 | 67.66 [x86 main
gcc-4.8] -O1 -funsafe-math-optimizations -ffast-math -frounding-math

x86_gcc48_main_set00021 73.58 26.42 78.31 31.81 16581 12200 4381 12985 | 67.62 [x86 main
gcc-4.8] -O1 -ffast-math

x86_gcc48_main_set00029 73.58 26.42 78.31 34.28 16581 12200 4381 12985 | 67.30 [x86 main
gcc-4.8] -O1 -ffast-math -frounding-math

x86_gcc48_main_set00036 68.03 31.97 75.62 18.80 16581 11280 5301 12539 | 66.55 [x86 main
gcc-4.8] -O3 -funroll-loops -funsafe-math-optimizations

x86_gcc48_main_set00044 68.03 31.97 75.62 18.87 16581 11280 5301 12539 | 66.54 [x86 main
gcc-4.8] -O3 -funroll-loops -funsafe-math-optimizations -frounding-math

x86_gcc48_main_set00035 68.03 31.97 75.62 20.64 16581 11280 5301 12539 | 66.31 [x86 main
gcc-4.8] -O3 -funsafe-math-optimizations

x86_gcc48_main_set00043 68.03 31.97 75.62 20.90 16581 11280 5301 12539 | 66.28 [x86 main
gcc-4.8] -O3 -funsafe-math-optimizations -frounding-math

x86_gcc48_main_set00027 68.03 31.97 75.62 31.28 16581 11280 5301 12539 | 64.92 [x86 main
gcc-4.8] -O1 -funsafe-math-optimizations -frounding-math

x86_gcc48_main_set00019 68.03 31.97 75.62 31.63 16581 11280 5301 12539 | 64.87 [x86 main
gcc-4.8] -O1 -funsafe-math-optimizations

x86_gcc48_main_set00028 68.03 31.97 75.62 32.52 16581 11280 5301 12539 | 64.76 [x86 main
gcc-4.8] -O1 -funroll-loops -funsafe-math-optimizations -frounding-math

x86_gcc48_main_set00020 68.03 31.97 75.62 33.95 16581 11280 5301 12539 | 64.57 [x86 main
gcc-4.8] -O1 -funroll-loops -funsafe-math-optimizations

x86_gcc48_main_set00048 73.58 26.42 78.31 18.71 16581 12200 4381 12985 | 64.34 [x86 main
gcc-4.8] -O3 -funroll-loops -funsafe-math-optimizations -ffast-math -frounding-math

x86_gcc48_main_set00032 73.58 26.42 78.31 32.50 16581 12200 4381 12985 | 62.53 [x86 main
gcc-4.8] -O1 -funroll-loops -funsafe-math-optimizations -ffast-math -frounding-math

x86_gcc48_main_set00002 94.63 5.37 98.43 223.78 16581 15690 891 16320 | 53.01 [x86 main
gcc-4.8] -funroll-loops

x86_gcc48_main_set00001 94.63 5.37 98.43 226.41 16581 15690 891 16320 | 52.67 [x86 main
gcc-4.8]

x86_gcc48_main_set00010 94.63 5.37 98.43 226.64 16581 15690 891 16320 | 52.64 [x86 main
gcc-4.8] -funroll-loops -frounding-math

x86_gcc48_main_set00009 94.63 5.37 98.43 227.49 16581 15690 891 16320 | 52.53 [x86 main
gcc-4.8] -frounding-math

x86_gcc48_main_set00012 69.13 30.87 75.97 223.12 16581 11463 5118 12596 | 40.35 [x86 main
gcc-4.8] -funroll-loops -funsafe-math-optimizations -frounding-math

x86_gcc48_main_set00015 68.43 31.57 75.97 223.25 16581 11347 5234 12596 | 39.99 [x86 main
gcc-4.8] -funsafe-math-optimizations -ffast-math -frounding-math

x86_gcc48_main_set00006 68.43 31.57 75.97 223.71 16581 11347 5234 12596 | 39.93 [x86 main
gcc-4.8] -funroll-loops -ffast-math

x86_gcc48_main_set00014 68.43 31.57 75.97 224.18 16581 11347 5234 12596 | 39.87 [x86 main
gcc-4.8] -funroll-loops -ffast-math -frounding-math

6.9 Optimisation framework 279

x86_gcc48_main_set00008 68.43 31.57 75.97 224.78 16581 11347 5234 12596 | 39.79 [x86 main
gcc-4.8] -funroll-loops -funsafe-math-optimizations -ffast-math

x86_gcc48_main_set00005 68.43 31.57 75.97 225.05 16581 11347 5234 12596 | 39.75 [x86 main
gcc-4.8] -ffast-math

x86_gcc48_main_set00003 69.13 30.87 75.97 227.88 16581 11463 5118 12596 | 39.73 [x86 main
gcc-4.8] -funsafe-math-optimizations

x86_gcc48_main_set00011 69.13 30.87 75.97 228.39 16581 11463 5118 12596 | 39.66 [x86 main
gcc-4.8] -funsafe-math-optimizations -frounding-math

x86_gcc48_main_set00004 69.13 30.87 75.97 229.13 16581 11463 5118 12596 | 39.57 [x86 main
gcc-4.8] -funroll-loops -funsafe-math-optimizations

x86_gcc48_main_set00007 68.43 31.57 75.97 226.63 16581 11347 5234 12596 | 39.54 [x86 main
gcc-4.8] -funsafe-math-optimizations -ffast-math

x86_gcc48_main_set00016 68.43 31.57 75.97 226.75 16581 11347 5234 12596 | 39.53 [x86 main
gcc-4.8] -funroll-loops -funsafe-math-optimizations -ffast-math -frounding-math

x86_gcc48_main_set00013 68.43 31.57 75.97 226.84 16581 11347 5234 12596 | 39.52 [x86 main
gcc-4.8] -ffast-math -frounding-math

Listing 6.140: Output of opt.py sixloops.opt.

Since using -O3 does not seem to influence the IEEE-conformity in this environ-
ment, some of the corresponding test runs are found to be the best performing and
at the same time yielding the second best success rates. Of the highest rated com-
piler option combinations, the one with -funroll-loops as second option besides
-O3 is rated best (tying with the three option combination -O3 -funroll-loops
-funsafe-math-optimizations which is placed after the former due to lexico-
graphical sorting) and therefore suggested by the optimisation framework as best
possible set of compiler options (for this application out of the supplied switches).

6.9.4 Example run with HPCG
We conclude the optimisation framework section with some results of testing
with HPCG as external application (cf. Section 3.5.3). Listing 6.141 contains the
settings used in this optimisation framework run which was again executed in
the server environment. For this example, we only used the optimisation options
-O1 and -O3 together with clang 5.0 and three versions of gcc. All floating-point
operations are executed in the AVX SIMD unit.

ARCH = x86
FPU = main
TESTSET = t3d
COMPILERS = gcc-4.7 gcc-5.5 gcc-7.2 clang-5.0
MODULE = compiler/[cn]/[cv]
LEVEL1 = -O1 -O3
LEVEL2 =
LEVEL3 =
COMBINATIONSLEVEL =
CXXFLAGS = -mavx
APP_BUILD = hpcg_mod_build_parallel.sh
APP_EXEC = hpcg_mod_execute_mpi.sh
APP_REPEATS = 3
APP_TIMING = external
USE_EXTERNAL_APP = yes
FITNESS = weighted

Listing 6.141: Opt task file hpcg.opt.

280 Selected results

Listing 6.142 once again shows the output of the weighted fitness function for
the corresponding optimisation framework run.

x86_gcc47_main_set00002 98.57 1.43 100.00 10.52 16581 16344 237 16581 | 63.74 [x86
main gcc-4.7] -O1

x86_gcc47_main_set00003 98.57 1.43 100.00 10.66 16581 16344 237 16581 | 63.52 [x86
main gcc-4.7] -O3

x86_clang50_main_set00011 94.54 5.46 98.42 10.50 16581 15676 905 16319 | 61.74 [x86
main clang-5.0] -O1

x86_clang50_main_set00012 94.54 5.46 98.42 10.54 16581 15676 905 16319 | 61.69 [x86
main clang-5.0] -O3

x86_gcc55_main_set00005 93.34 6.66 98.43 10.50 16581 15476 1105 16320 | 61.15 [x86
main gcc-5.5] -O1

x86_gcc55_main_set00006 93.34 6.66 98.43 10.57 16581 15476 1105 16320 | 61.05 [x86
main gcc-5.5] -O3

x86_gcc72_main_set00008 93.34 6.66 98.43 10.62 16581 15476 1105 16320 | 60.96 [x86
main gcc-7.2] -O1

x86_gcc72_main_set00009 93.34 6.66 98.43 10.66 16581 15476 1105 16320 | 60.91 [x86
main gcc-7.2] -O3

x86_clang50_main_set00010 94.54 5.46 98.42 19.91 16581 15676 905 16319 | 48.85 [x86
main clang-5.0]

x86_gcc55_main_set00004 94.63 5.37 98.43 20.11 16581 15690 891 16320 | 48.59 [x86
main gcc-5.5]

x86_gcc47_main_set00001 94.63 5.37 98.43 20.26 16581 15690 891 16320 | 48.37 [x86
main gcc-4.7]

x86_gcc72_main_set00007 94.63 5.37 98.43 20.29 16581 15690 891 16320 | 48.31 [x86
main gcc-7.2]

Listing 6.142: Output of opt.py hpcg.opt.

These results highlight the extent of the compiler’s influence on floating-point
behaviour and application performance when applying different optimisation levels.
The executables without optimisation show about half the performance compared
to the optimised executables, whereas the runtimes of the optimised executables
are roughly identical regardless of optimisation level. However, the reason for the
weight fitness function selecting the executables compiled with gcc 4.7 as the best
combination of compiler and options lies in the (rather astonishing) fact that the
IEEE-conformity level is higher than for all other combinations (even compared
to the non-optimised version compiled with gcc 4.7).

In order to analyse the reasons, we compared the logfiles for sets 1 and 3. In
the -O3 case, exception flags for conversions involving integers and the round
to integral operator are missing which increases the error rate compared to the
non-optimised version. However, the latter exhibits a surprising number of errors
in the remainder operator where an inexact exception is erroneously signalled
and some values are incorrectly rounded. These errors disappear in the optimised
executable, and since the amount of remainder errors far surpasses the number of
conversion errors, the success rate for the optimised executable increases.

6.10 Result summary
In the previous sections, we took a rather detailed look at a selection of architecture
ports provided by IeeeCC754++. We conclude this chapter with a summary of
these results from a more high-level point of view.

6.10 Result summary 281

6.10.1 Basic operations and conversions
Since the elementary operators which were discussed in Sections 4.3 to 4.6 and
6.8 are not required from IEEE 754-2008 conforming environments, we start the
summary by only regarding results for the operators required by IEEE 754-2008,
i. e. basic operations (including fma) and conversions.

Default environments

The testing of default environments showed that it can indeed be helpful not
to rely on the assumption that any given floating-point environment is fully
IEEE-conforming. Especially the default environment on ARMv6 exhibited a
significant amount of errors (cf. Section 6.4.1). Also, the standard square root
operator in the POWER8 default environment tested in Section 6.5.1 should
be avoided. Overall, most default environments showed mainly errors in the
conversions between decimal and binary numbers which, in addition, are usually
compiler dependent.

One interesting aspect of our new fma test vectors was shown in Section 6.1.2:
These test vectors can distinguish between an implementation which is actually
fused (i. e. it does not round the intermediate result) and one which simply
combines regular floating-point multiplications and additions.

Environments without errors

Our testing revealed that some of the FPUs tested in this chapter are fully IEEE-
conforming in the sense that the execution of the test vectors yielded no errors,
i. e. the returned floating-point were correctly rounded and the FPUs returned
exactly the exceptions that were expected. These are the x86 sse, avx, and
avx512 FPUs (see Sections 6.3.1 and 6.3.2), the ARMv8-A sve FPU (keeping in
mind that this FPU only supports the roundTowardZero mode for conversion to
integers, cf. Section 6.4.2), and the SoftFloat software floating-point library (see
Section 6.7.1). Additionally, the MPFR library also returned almost completely
correct results with only small problems related to floating-point exceptions due
to MPFR using a non-standard exception model with six exceptions. This results
in slightly different behaviour for the invalid exception (cf. Section 6.7.2).

Environments with errors exclusively related to exceptions

In addition to the fully IEEE-conforming floating-point environments, there are
some platforms that return correctly rounded floating-point numbers, but do not
support exceptions (either not at all or not fully conforming). The two most
notable environments in this category are the cudai FPU (cf. Section 6.6.1) and
the ARMv8-A asimd FPU (cf. Section 6.4.2).

282 Selected results

Environments fully supporting default rounding modes

Since most numerical algorithms do not make use of switching the rounding
mode, but rely on roundTiesToEven being the default rounding mode, some
platforms only provide support for roundTiesToEven (such as OpenCL or Java)
or support all rounding modes, but yield correctly rounded results mostly for
roundTiesToEven (i. e. roundTiesToEven is more carefully implemented on these
platforms). Note that for conversion to integers, the results are usually truncated
instead of rounded, thereby making roundTowardZero the default rounding mode
for these operators.

The following environments can be placed in this category (IEEE-conforming
results for the default rounding modes): the ARMv7-A vfpv4 FPU (Section 6.4.1),
the ARMv8-A neon and neoni FPUs (Section 6.4.2), the POWER8 vsx FPU
(Section 6.5.1), and OpenCL (at least for the user environment tested in this thesis,
cf. Section 6.6.2). Finally, the default environment of the tested ARMv6 platform
(on a Raspberry Pi, cf. Section 6.4.1) almost belongs into this category: Test
results showed that only a small number of errors occurred in roundTiesToEven
mode (opposed to substantial error counts for the other rounding modes).

Environments with minor errors

We found a few environments yielding only a small (but non-zero) number of
errors, such as the x86 x87 FPU (see Section 6.3), the ARMv7-A vfp FPU (cf.
Section 6.4.1), and the Java FPUs (Section 6.7.3). Therefore, these environments
can be called “almost conforming”.

Environments not fully conforming to IEEE 754-2008

We conclude the summary for the basic operations and conversions with the
platforms we found to be implemented in a not-so-conforming way. These include
the ARMv7-A NEON FPUs (Section 6.4.1) and the Cell SPU (Section 6.5.2). For
these environments, the deficiencies are the result of deliberate design decisions,
such as not supporting subnormals or using the number format in an IEEE 754-2008
incompatible manner.

6.10.2 Elementary operators
Since the elementary operators are not mandatory for IEEE-conforming floating-
point environments, only some of the tested environments include implementations
for these operators. As another consequence, errors found in the elementary
operators do not break conformity of the respective environment.

None of the tested FPUs were found to be returning fully conforming re-
sults. CRlibm and MPFR return correctly rounded floating-point numbers for
all test vectors (and the operators implemented in these libraries) and show only

6.10 Result summary 283

(minor) errors related to floating-point exception handling. In the other three
FPUs supporting elementary operators (CUDA, C99, and C++11), some cases of
incorrectly rounded floating-point numbers being returned were found, with the
largest error count found for the CUDA implementation. However, all of these
cases deviate from the correctly rounded result by only 1 ulp. We can therefore
conclude that although the quality of the elementary operator implementation
is not as high as for the basic arithmetic operators, it should be sufficient for
most numerical applications which need to deal with floating-point inaccuracy on
an algorithmic level anyway. Furthermore, MPFR and CRlibm prove that it is
possible to properly implement correctly rounded elementary operators.

6.10.3 Some notes on applications
We conclude our summary with a few thoughts about the effect of a user en-
vironment’s IEEE-conformity on two applications. In this section, we showed
that on most platforms, IEEE 754-2008 support is usually quite good. However,
some of the tested user environments can only be called compatible when ignoring
floating-point exceptions, and some do not provide the four rounding modes
required by IEEE 754-2008. The latter has severe consequences for using interval
arithmetic in such an environment: Existing libraries cannot be used without
modifications since switching rounding modes does not necessarily provide the
correct rounding. [CFD08] demonstrates the effort needed to port the Boost
interval library [BMP06] to NVidia GPUs using the CUDA toolkit.

In the last years, using mixed precision floating-point computations has gained
significant momentum due to performance reasons (see e. g. [Hig15; But+06]),
with a latest focus on exploiting half precision support in floating-point hard-
ware such as GPGPUs or some ARM processors especially in machine learning
applications. Since higher precision (typically double) is used in critical parts
of mixed precision algorithms, such as in computing the residuum of a linear
solver which is particularly sensitive to rounding errors, one can afford the use
of lower precision in other parts of the algorithms. Overall, this approach yields
convergence behaviour identical to using computations which were performed
solely in the highest precision, albeit with better performance. This model even
allows for alleviation of the requirements for the IEEE-conformity of the smaller
precision computations (such as for the PowerXCell 8i processor which uses FTZ
and the roundTowardZero rounding mode for single precision computations in its
SPUs, cf. Sections 5.4.2 and 6.5.2), since the exactness of the algorithm only relies
on the exactness (and thus the IEEE-conformity) of the higher precision.

The second example shows the use of such a mixed precision algorithm on the
PowerXCell 8i processor. [Nob11] discusses the implementation of an application
from QCD (cf. e. g. [WIK17y]) on the QPACE supercomputer (see e. g. [Bai+09;
WIK17x]), which was successfully deployed by the SFB/TR55 [SFBTR]. In order to
achieve good performance on the PowerXCell 8i processor and to avoid stagnation

284 Selected results

in the iterative solver (due to floating-point accuracy problems), a robust algorithm
making use of mixed precision had to be chosen, see also [FNZ12]. With this
implementation, convergence of the solver and good application performance could
be achieved despite the PowerXCell 8i processor not being fully conforming to
IEEE 754-2008.

Summary and outlook

In this thesis, we presented IeeeCC754++ and an accompanying set of tools that
enable testing the conformity to IEEE 754-2008 of arbitrary platforms, with a
special focus on the default user environment experienced by a researcher develop-
ing numerical applications. After briefly introducing the basics of floating-point
numbers, the relevant standards, and considerations related to (floating-point) user
environments, we discussed the established testing tool IeeeCC754 which we chose
as a base for our significantly extended new tool. With IeeeCC754++, we added
support for IEEE 754-2008 in a number of ways, such as adding mandatory (fma)
and recommended (elementary functions) operators, extending the collection of test
vectors in the precision independent Coonen format, lifting precision restrictions
that prevented testing of floating-point numbers in the half precision format and
thereby enabling initial half precision support, and adapting the input and output
facilities to reflect the new feature set. We introduced the evaluation and opti-
misation frameworks and the graphical application IeeeCC754++LogViewer that
ease the analysis of different aspects of a possibly large number of floating-point
environments. Furthermore, we implemented a substantial number of architecture
ports and presented results for a selection of user environments, revealing overall
that floating-point numbers are mostly supported in an IEEE-conforming way
(at least when ignoring floating-point exceptions and, to a smaller degree, the
switching of rounding modes).

In order to contribute to future IEEE-conformity testing, we finally presented
facilities to extend our existing tool IeeeCC754++ with additional arbitrary floating-
point platforms by implementing custom architecture ports with moderate effort.
We meticulously documented this process of adding such a custom architecture
port to IeeeCC754++ in Appendices A and B.

286 Selected results

The scope of this thesis did not allow for testing a more comprehensive selection
of floating-point environments, let alone complete coverage of currently available
and widespread platforms. As a natural starting point for future work, we suggest
applying our tool IeeeCC754++ and the analysis techniques that we presented to
the following (obviously incomplete list) of architectures and platforms in order
to assess their IEEE-conformity:

• The x86-compatible EPYC line of server processors released by AMD (cf.
[AMD17a]) and their desktop variant Ryzen (see [AMD17b]), especially in
contrast to Intel server and desktop CPUs.

• GPGPUs by AMD such as FirePro [AMD17d] or Radeon [AMD17c] GPUs.
Again, a direct comparison with results generated on GPGPUs by a com-
petitor (in this case, NVidia) might yield interesting insight.

• Current processors or server architectures based on ARMv8-A ISA, such
as Cavium ThunderX [Cav17; Gel16] or Qualcomm Centriq 2400 [Qua17;
Mor17b] (or any processor based on ARMv8-A, such as Cortex-A57, Cortex-
A73, Cortex-A75). In particular, our implementation of the ARM SVE unit
should be applied to actual hardware implementing this extension as soon
as it gets available.

Especially when considering that the development and deployment of new floating-
point hardware and software, be it CPUs, FPUs, accelerators, or software libraries,
is an ever ongoing process, it is clear that no tool can ever be complete in the
sense that it provides support for all existing architectures. As a consequence,
one of the most obvious ways to expand upon this work represents the addition of
new architecture ports for platforms that are either already deployed in HPC or
have the potential of becoming significant future deployments. In the following,
we list a few such platforms:

• POWER9 [Sad+17], whose rollout has already started (see [Mor17c]). A
dedicated power9 architecture port might not be necessary since testing
could be potentially performed with the ppc port.

• Processors based on MIPS ISA, cf. [MIP17].

• New HPC accelerators such as Pezy SC-2 PCI-X cards [Sch17] (which are
based on MIPS ISA, see [Ber17]) or NEC SX-Aurora which features a
multicore vector processor, cf. [NEC17; Mor17a].

• It would be very interesting to evaluate the IEEE-conformity of the current
number #1 system on the Top500, the China-built Sunway TaihuLight (cf.
[TOP500a; WIK17ag]) which is based on a 64 bit RISC architecture (see
[WIK17af]). However, not too much is known about the architecture of the

6.10 Result summary 287

underlying Sunway SW26010 processor (cf. [WIK17ah]), and it might be
impossible to gain access to a computing system featuring this processor.

We conclude this thesis by pointing out a number of additional future research
topics related to and based on our contributions:

• Improved support for half precision: As discussed in Section 3.1.11, the
current testsets include test vectors which might not be applicable to the
half precision format. For full support of this format, these test vectors need
to be identified and excluded. Additionally, the grammar of the precision
independent Coonen format and IeeeCC754++’s parser need to be extended
in a way which makes it possible to exclude test vectors from being applied
to a specific precision, since currently it is only possible to mark test vectors
to be used with either all or exactly one of the available precisions.
Furthermore, some of the platforms already supplied by architecture ports
implemented in IeeeCC754++ support operands in half precision. Therefore,
conversion between half precision and IeeeCC754++’s internal floating-point
representation, as well as the available half precision operators, could be
implemented for these platforms such as GPUs based on the NVidia Volta
microarchitecture [NVi17b] (or generally for the CUDA and OpenCL ports),
the AARCH64 port for processors featuring the ARMv8.2-FP16 extension
(cf. [ARM17]), or Intel Xeon Phi processors codenamed Knights Mill (see
e. g. [Smi16]).

• Extending the test vector sets: The initial testsets for the elementary func-
tions which we included in this thesis mainly consist of simple test cases, all
special cases listed in IEEE 754-2008, and known hard or worst to round
cases for double precision. In order to provide IEEE-conformity testing for a
more comprehensive set of precisions, especially for half and single precision,
further research is needed to identify bad or worst cases for the elementary
functions and encode these as test vectors for use with IeeeCC754++.

• Support for IEEE 754-2018 : As briefly discussed in Section 1.2.4, IEEE 754-
2008 is currently being revised in order to produce IEEE 754-2018 (the
revision being necessary to conform to the IEEE rule of standards being
valid for 10 years). Although all fundamental major changes have been
postponed to the potential standard IEEE 754-2028, there are a number of
smaller changes, most of which do not influence the conformity of existing
floating-point implementations. The following changes are worth reviewing
in the context of IeeeCC754++ in order to enable IEEE 754-2018 support
(see also [Hou17a]): Clause 9.2 of the (proposed) new standard adds the
operators asinPi and acosPi which were missing in IEEE 754-2008, and
for some operators (especially for the power operators), the specification of
special cases concerning e. g. infinity and NaN handling has been clarified and

288 Selected results

extended. Adapting IeeeCC754++ to these changes and adding appropriate
test vectors should be feasible, although finding hard or worst to round
cases for the new trigonometric operators might require substantial research
efforts.
The new clause 9.5 of IEEE 754-2018 adds augmented operators for addition,
subtraction, and multiplication which not only return the correctly rounded
result, but also the rounding error. It is unclear whether it makes sense to
integrate these operations into IeeeCC754++. Therefore, studying the ap-
plicability and potential use of integrating these operators into IeeeCC754++
represents an interesting research topic.

Appendix A

The IeeeCC754++ build system

In order to support all of the new features introduced in Chapter 3, it was necessary
to significantly restructure and extend the original IeeeCC754 application.. As
an established test program that underwent intensive development and testing
over a long time span, IeeeCC754 itself represents a stable and mature program.
Therefore, the code was only changed where necessary to support new features or
improve maintainability. Especially the internal data format to represent floating-
point numbers, the syntax describing test vectors, the parser used to read (and
write) those test vectors, and the test execution and analysis engine were mostly
left untouched, but carefully extended where necessary. For an overview of the
new features, we refer to Section 3.1.

A.1 Changes to the code base
We start this chapter by giving a short overview of changes introduced into the
IeeeCC754 code base in order to provide a flexible and easily extensible code
base for IeeeCC754++. Afterwards, the new build system is explained in detail,
together with a description how to configure and build IeeeCC754++ for a given
floating-point environment. The process of extending IeeeCC754++ with new
architectures and FPUs (i. e. adding a new port) can be found in Appendix B.

In Chapter 3, we give a detailed description of IeeeCC754++ and the newly
introduced features. In particular, Section 3.1.5 explains the need to restructure
IeeeCC754 with the concepts architecture and FPU (cf. also Definitions 3.2 and 3.3).
This approach of separating the environment dependent parts into architectures
and FPUs enables independent development of the actual testing core including
the handling of the different modes and input/output formats on the one hand
and extensions with new specific FPU ports on the other hand. In order to explain
the implementation of IeeeCC754++’s base functionality, we start by describing
the origins of IeeeCC754.

290 The IeeeCC754++ build system

A.1.1 IeeeCC754 code structure

Figure A.1: Class hierarchy of IeeeCC754

Figure A.1 shows the basic code structure of IeeeCC754, albeit after restructur-
ing the code in preparation for the extensions described in Chapter 3. It consists
of basically two sets of classes: one for the testing core including file handling,
test vector parsing, and evaluation of the testing results, and one implementing
an internal data format for floating-point numbers.

Almost all code dealing with the classic modes (cf. Section 3.3.1, especially test
vector parsing and file handling, is implemented in IeeeCC754_classic<T> which
is derived from IeeeCC754<T>. The latter class consists of some variables and
functions which are common to all testing modes, including the (new) extended
ones. Inside IeeeCC754_classic<T>, the actual execution of test vectors, i. e.
translating test vectors from UCB to environment format, executing an operation,
and evaluating the results, is performed by an instance of UCB<T>. To achieve
this, it contains variables for the (up to three) floating-point operands, the correct
result as well as the returned result, and information about expected and returned
exception flags.

The classes implementing the testing core take a template parameter T that
describes a user environment specific implementation of IeeeCC754’s internal
data format which is called DriverFloatRepr. It is derived from the class FP
which contains the implementation of IeeeCC754’s internal representation of a
floating-point number, including a set of access functions and methods to check if
the current floating-point number is a normalised, subnormal or infinite number
or if it is an NaN. DriverFloatRepr adds implementations of the actual operators
to be tested, code for the description of the current FPU (e. g. whether it is a
vectorised unit), and functions that interact with the underlying floating-point
environment.

Inside of FP, the values of exponent and significand are stored in two bit strings
which are implemented in the class Bitstring. The derived class Hex adds a

A.1 Changes to the code base 291

hexadecimal representation of a Bitstring that is needed inside the test vector
parser. In addition, FP contains variables for the sign, the hidden bit (i. e. whether
one is used for the current format), and sizes of exponent and significand.

A.1.2 IeeeCC754++ code structure

Figure A.2: Class hierarchy of IeeeCC754++

The class hierarchy shown in Figure A.1 can easily be extended with new
functionality like the testing modes described in Section 3.3 by deriving from
the corresponding classes. The extended class hierarchy is shown in Figure A.2.
As in IeeeCC754, the core class handling command line parsing, file handling,
and calling the respective modes is derived from IeeeCC754<T>. The new class
IeeeCC754_ext<T> contains functions that implement all extended modes. Each
of these sets up an appropriate instance of a class derived from UCB<T> and calls
ExecTestLoop() to execute the tests.

The actual testing process is mostly identical in the classic and extended modes
(which are implemented in IeeeCC754_classic<T> and IeeeCC754_ext<T>), the
main differences lying in the output formats. These are supported by introducing
two base classes ErrorBase and SummaryBase which describe errors and the overall

292 The IeeeCC754++ build system

summary. UCBcheck<T> (which is derived from UCB<T>) and all classes derived
from it include an instance of an error and a summary class derived from these.
This means each of the extended modes is represented as a combination of a main_
function in IeeeCC754_ext<T> together with a testing class, an error class, and a
summary class, derived from UCB<T>, ErrorBase, and SummaryBase, respectively.
Figure A.2 depicts the relation between testing and error classes with dotted lines.
Note that the relation of the summary classes with the testing classes has been
omitted for increased clarity. The realisation of the different extended testing
modes is shown in Table A.1.

Mode Method testing class Error class Summary class
-s main_checksum UCBcheck BinaryError BinaryErrorSummary
-d main_checksum_dropped UCBcheck_dropped BinaryErrorDropped BinaryErrorSummary
-h main_fingerprint UCBcheck BinaryError BinaryErrorSummary
-i main_info UCBinfo BinaryError BinaryErrorSummary
-v main_verbose UCBverbose VerboseError VerboseErrorSummary
-q main_quiet UCBcheck BinaryError BinaryErrorSummary

Table A.1: Relation between testing modes and the classes used to implement
these.

All classes derived from IeeeCC754<T> and UCB<T> need knowledge about the
underlying floating-point format. This is again achieved by implementing an FPU
of the current architecture as a class derived from DriverFloatRepr.

Since IeeeCC754++ extends the number of available operators considerably
(see Section 3.1.11) and many FPUs support only a subset of these operations,
a mechanism is needed to exclude operations from testing. Furthermore, not all
FPUs support all rounding modes required in IEEE 754-2008, thus rendering it
pointless to test these rounding modes. IeeeCC754++ enables the exclusion of
operations or rounding modes via a static member of DriverFloatRepr called
FPregistry. Before executing a test vector, it is checked whether the operation
and rounding mode under investigation are registered inside this class, and only
then the operation is actually performed. The description of known operations
and rounding modes is contained in the classes OP and RD. A detailed discussion
of the classes DriverFloatRepr and FPregistry is given in Appendix B together
with the steps needed to implement a custom architecture or FPU.

A.2 The build system
As described in Section 3.1.6, the IeeeCC754++ has been implemented using
Autotools. In order to use Autotools’ flexible configuration facilities as efficiently
as possible while at the same time supporting an arbitrary number of architectures
and FPUs (and enabling extending IeeeCC754++ with further architectures and
FPUs), the source code had to be restructured (see Section A.1) and the file layout
needed to be adapted.

A.2 The build system 293

Figure A.3 shows a rough overview of the new file structure:

./
config/
eval/
src/

common/
default/
dummy/
tests/
testsets/
...
Make-includes
Makefile.am
Makefile.in
config.h.in

testsets/
tools/
Makefile.am
Makefile.in
aclocal.m4
bootstrap
configure
configure.ac

Figure A.3: Basic code structure of IeeeCC754++

• configure.ac and Makefile.am are the main Autoconf and Automake con-
figuration files and contain the setup and definitions for the build system.

• The subdirectory config/ contains further macros needed by Autotools.

• The script bootstrap takes these files (and further files defined in subdirect-
ories such as src/Makefile.am) and generates the main configure script as
well as all Makefile.in templates. Some additional files like aclocal.m4 and
src/config.h.in (the latter containing macros needed by the IeeeCC754++
source files) are also generated in this step.
When configure is called, it uses these .in files to create the Makefiles
that are used by make to build IeeeCC754++.

• The directory src/ contains the actual IeeeCC754++ source code. The
files implementing the core functionality, such as parsing test vector files,
executing the tests, and evaluating the results, can be found in src/common/.
Architectures are implemented in individual subdirectories; Figure A.3 shows
the directories default/ and dummy/ as examples. Inside these subdirectories,

294 The IeeeCC754++ build system

the source files for the respective architecture and all corresponding FPUs
are located, together with further files needed to set up the build for this
architecture and potentially for interfacing custom libraries.
Additionally, src/testsets/ contains the test vector files in Coonen format,
and src/tests/ includes some simple test programs (see below).

• The evaluation framework is implemented inside the directory eval/, to-
gether with the optimisation framework. For details, see Sections 3.4 and
3.5.

• The directory testsets/ contains testsets in UCB format and the script
genUBB.sh to generate collections of testsets containing only specific opera-
tions, cf. Section 4.7.

• Finally, the directory tools/ contains some utility programs that are help-
ful when using IeeeCC754++: the source code of the Autotools packages
(autoconf, automake, and m4) used to create the current versions of the
Makefile.in files via bootstrap as well as the IeeeCC754++LogViewer pro-
gram that can be used to view result files generated by the evaluation
framework (cf. Section 3.4.3).

When an architecture is chosen to be built, possibly with one or more addi-
tional FPUs, the build system generates appropriate Makefiles that take care of
generating the common code and code for the current architecture. This approach
ensures efficient compilation resulting in an executable containing no unnecessary
code. Furthermore, the build system attempts to support the user in setting up
the architecture build by attempting to adapt necessary settings automatically,
especially settings for compiler options or additional libraries needed to build
IeeeCC754++ for the current architecture. As these settings are highly dependent
on the current combination of compiler, architecture, and FPUs, automatic de-
tection will not always result in a successful build. Therefore, the IeeeCC754++
provides means to specify further (or even completely custom) compiler options,
see below.

During the configuration process, the build system tries to detect relevant
parameters of the user environment, e. g. the presence of certain system libraries.
The results of this detection are then used, together with the user choices for
compiler, architecture, and FPU, to generate the file src/config.h which includes
suitable macro and variable definitions which are needed inside the IeeeCC754++
source files to compile correctly. As an example, to implement efficient internal
data structures for describing floating-point numbers, IeeeCC754++ uses integers
as base data types. Since C++ does not define the exact size of integers (e. g. int
must be at least 16 bit long, but is usually 32 bit long) nor their byte ordering
(endianess), IeeeCC754++ relies on Autotools to detect the presence of the standard
headers cinttypes and endian.h and set the needed definitions accordingly.

A.3 Configuring and building IeeeCC754++ 295

A.3 Configuring and building IeeeCC754++

All configuration to build IeeeCC754++ on/for different target user environments
is handled by the configure script in the source directory. The architecture,
additional FPUs, the compiler and its options are all set via configure command
line options. In the following, we give a detailed description of these options.

A.3.1 Building overview
Since IeeeCC754++ uses the standard GNU build tools, the usual building semantics
apply:

> configure [<OPTIONS>]
> make [<OPTIONS>]
> make install

The basic setup is done via the configure call, while make calls the compiler
and further tools needed to build the binaries IeeeCC754++ and decode. If desired,
make install installs these executables and the necessary test vectors into the
system.

The IeeeCC754++ build system supports a wide range of options towards
handling as many user environments and combinations of settings as possible.
The two most important decisions before starting an actual build are the compiler
that is to be used and the architecture which IeeeCC754++ is to be built for. In
addition, corresponding compiler options and additional FPUs need to be chosen
and specified on the command line.

After configure has finished the setup process, a summary showing details of
the configured build is displayed, see Listing A.1. In this summary, all relevant
details of the build are shown: whether tests should be built and hashing be used,
details on the compiler and compiler flags, and the selected mode, architecture,
and optional FPUs. Details are given in the next sections.

Build summary:

Build tests? no
Use hashing? yes

Compilers: CC=gcc, CXX=g++ (g++)
32/64 bit: native
Cross compile? no
Default flags: no

Modes: main
Architecture: default
FP units: ---

Compilation flags:
CFLAGS:
CPPFLAGS:

296 The IeeeCC754++ build system

CXXFLAGS:
LDFLAGS:
LIBS: -lssl -lcrypto

Listing A.1: Summary output of ./configure.

A.3.2 Choosing an architecture
IeeeCC754++ can only be built for one architecture at a time, so this architecture
must be chosen first. To generate an executable for an architecture <ARCH>, use
the following syntax:

> configure --enable-arch-<ARCH>

Exactly one --enable-arch-<ARCH> parameter can be specified. If more architec-
tures are enabled via the command line, configure emits a corresponding error
message and exits.

If no architecture is explicitly selected, the default architecture is chosen (cf.
Sections 3.3.3 and 5.1.1). A list of the architectures and FPUs implemented in
IeeeCC754++ can be found in Table 5.1.

A.3.3 Choosing FPUs
Every architecture includes at least one FPU called the main FPU. Code for
this FPU will always be built. For some architectures (like e. g. SoftFloat, see
Section 5.7.2), this is sufficient to test all details of that floating-point environment.
However, for most architectures, different options exist where and how to execute
floating-point operations, such as x87, SSE, or AVX in x86 CPUs. To allow for
testing these different FPUs with one executable, each of the n FPUs <FPU1>, . . . ,
<FPUn> available for the chosen architecture <ARCH> can be enabled as follows:

> configure --enable-arch-<ARCH> --enable-fpu-<FPU1> ...
--enable-fpu-<FPUn>

Furthermore, it is possible to activate all available FPUs with
> configure --enable-arch-<ARCH> --enable-fpu-all

It is important to note that for some architectures it is not possible or not advisable
to build all FPUs simultaneously due to compiler restrictions or unwanted side
effects. For instance, it is not advisable to build an x86 executable containing both
SSE and AVX FPUs with later versions of gcc because gcc favours AVX when both
SSE and AVX are requested at the same time, resulting in only AVX instructions
being generated. Details are given in the respective sections in Chapter 5; for
some combinations of architecture and FPUs, appropriate warnings are generated
by configure.

A.3 Configuring and building IeeeCC754++ 297

A.3.4 Choosing the compiler and compiler options
When using Autotools as a build system, the desired compiler and its respective
command line options are specified via environment variables. These can be set
either directly in the execution environment (which usually consists of a shell like
bash) or on the configure command line with one of the following alternatives1:

> configure ENV="<VALUES>"
> ENV="<VALUES>" configure

The C++ compiler is set via the environment variable CXX while the C compiler
is chosen by setting CC. Additionally, the IeeeCC754++ build system supports
MYCC and MYCXX for changing the compiler. If the latter variables are set, they
override the values of CC and CXX.

Some architectures or FPUs need special compiler switches in order to build
successfully. Some of these are set up automatically during the configuration of
IeeeCC754++; however, it might be necessary to override the automatically chosen
values or supply additional switches. Table A.2 lists the environment variables
that influence the build process. It is important to note that the process of using
the variables CXXFLAGS, LDFLAGS, LIBS etc. is different from simply specifying the
desired command line options as compiler switches on a command line. This is due
to the fact that most compilers act as a frontend for the toolchain of preprocessor,
compiler, and linker and that options influencing only parts of these toolchain are
forwarded only to the appropriate tools. As an example, switches influencing the
linking step (like supplying -lm to link the standard math library libm) must be
specified via LIBS and not via CXXFLAGS.

With these considerations, it is vitally important to be able to control all
compiler and linker relevant settings during the setup and build process. Therefore,
configure displays the chosen settings for the relevant environment variables in
its summary at the end of the configuration step (cf. Listing A.1). An example of
a build with more involved compiler settings is shown in Listing A.4, page 304.

A few more caveats and features concerning the compiler and its switches are
worth discussing:

• By default, the Autotools suite uses “-O2 -g” as compiler switches since in
most “real world” scenarios, performing moderate optimisation and including
debug information makes sense. In IeeeCC754++ however, optimisations must
be regarded as potentially harmful as it is not clear in advance that floating-
point semantics are not altered. Therefore, these options are deactivated in
the IeeeCC754++ build system.

1Note that semantically, the two alternatives differ significantly: The second version changes
the environment for configure before execution while the first variant leaves the environment
untouched, but passes the relevant variables as command line arguments. However, from a
practical point of view, configure behaves mostly identical with both variants. The first variant
is recommended; for an explanation, see the definition of “precious variables” in the Autoconf
documentation [GNU16b] (search for AC_ARG_VAR).

298 The IeeeCC754++ build system

Name Use
CC Name of the C-compiler.
CXX Name of the C++-compiler.
MYCC Name of the C-compiler; overrides CC.
MYCXX Name of the C++-compiler; overrides CXX
CFLAGS Command line options passed to the C-compiler.
CXXFLAGS Command line options passed to the C++-compiler.
CPPFLAGS Command line options passed to the preprocessor.
LDFLAGS Command line options passed to the linker.
LIBS Additional libraries; passed to the linker.

Table A.2: Environment variables influencing the build process.

• In some cases, the options used by the compiler might not yield the best
possible floating-point results (i. e. the most IEEE-conforming floating-point
results). The IeeeCC754++ build system tries to remediate this by adding
compiler switches that provide better floating-point semantics for certain
compilers (e. g. setting “-fp-model strict” for icc).
However, if the default floating-point conformity for a compiler of some
user environment is to be tested, it is necessary to remove these additional
switches. This can be achieved with the option --enable-default as fol-
lows:
> configure --enable-default

Note that this option enables default compiler behaviour and is not identical
to --enable-arch-default which selects the default architecture.

• The IeeeCC754++ build system tries to set up the build process in a way that
IeeeCC754++ can be built with a minimal amount of additional effort. How-
ever, in rare cases it can be necessary to revert some of these choices and over-
ride settings with custom values. The correct values can then be supplied via
the corresponding environment variables as outlined above. To get rid of the
pre-chosen compiler options, use the switch --without-compile-options:
> configure --without-compile-options

A.3.5 Generic build features
The IeeeCC754++ build system supports the most common standard features that
the Autotools suit offers:

• Out-of-tree builds: IeeeCC754++ supports building in an arbitrary directory.
In this case, configure must be called with appropriate path settings:

A.3 Configuring and building IeeeCC754++ 299

> mkdir <SOME_DIR>
> cd <SOME_DIR>
> <PATH_TO_IeeeCC754++>/configure
> make
> make install

• Installing into arbitrary directory: By default, IeeeCC754++ will install into
/usr/local. To change this base path, use
> configure --prefix=<TARGET_DIR>

• Listing all options: If a list of all options is desired, use
> configure --help

• Parallel builds: It is possible to build several source files at once to speed up
the building process. This behaviour can be achieved by using the command
line option -j<BUILDS> with <BUILDS> being the number of parallel builds,
e. g. use
> configure -j8

to build eight files at the same time.

• Verbose builds: The build system is set up in a way that only minimal
output is produced during the compilation phase, i. e. it shows only the
name of the file that is currently built and the program used for the build.
However, it is possible to display the full command line used while building
by adding “V=1” to the make command line as shown in the following (heavily
shortened) example:
> make
Making all in src
make[1]: Entering directory ‘/work/diss/src/svn/build/src’
make all-recursive
make[2]: Entering directory ‘/work/diss/src/svn/build/src’
Making all in common
make[3]: Entering directory ‘/work/diss/src/svn/build/src/common’

¨ ¨ ¨

CXX IeeeCC754_classic.o
AR libIeeeCC754classic.a
CXX decode.o
CXXLD decode

make[3]: Leaving directory ‘/work/diss/src/svn/build/src/common’

¨ ¨ ¨

make[1]: Leaving directory ‘/work/diss/src/svn/build’
> make clean
> make V=1
Making all in src
make[1]: Entering directory ‘/work/diss/src/svn/build/src’
make all-recursive

300 The IeeeCC754++ build system

make[2]: Entering directory ‘/work/diss/src/svn/build/src’
Making all in common
make[3]: Entering directory ‘/work/diss/src/svn/build/src/common’

¨ ¨ ¨

g++ -DHAVE_CONFIG_H -I. -I../../../src/common -I../../src -I../../../src
-I../../../src/common -I../../../src/default -Wall -MT
IeeeCC754_classic.o -MD -MP -MF .deps/IeeeCC754_classic.Tpo -c -o
IeeeCC754_classic.o ../../../src/common/IeeeCC754_classic.cc

mv -f .deps/IeeeCC754_classic.Tpo .deps/IeeeCC754_classic.Po
rm -f libIeeeCC754classic.a
ar cru libIeeeCC754classic.a Bitstring.o DriverFloatRepr.o FP.o FPregistry.o

FileOps.o Hex.o IeeeCC754++_util.o Checksum.o Error.o
IeeeCC754_classic.o

ranlib libIeeeCC754classic.a
g++ -DHAVE_CONFIG_H -I. -I../../../src/common -I../../src -I../../../src

-I../../../src/common -I../../../src/default -Wall -MT decode.o
-MD -MP -MF .deps/decode.Tpo -c -o decode.o ../../../src/common/decode.cc

mv -f .deps/decode.Tpo .deps/decode.Po
g++ -o decode decode.o libIeeeCC754++.a -lssl -lcrypto
make[3]: Leaving directory ‘/work/diss/src/svn/build/src/common’

¨ ¨ ¨

make[1]: Leaving directory ‘/work/diss/src/svn/build’

A.3.6 Additional build options
IeeeCC754++ offers a few additional options to influence the configure and build
process:

• The fingerprint mode and the message digests available in verbose mode (cf.
Sections 3.3.4 and 3.3.6) need an underlying implementation of cryptographic
message digests. In order to not unnecessarily duplicate source code and
produce potentially flawed digests, IeeeCC754++ does not supply its own
digest implementation, but relies on the highly renowned and widespread
cryptographic library OpenSSL [SSL16]. configure detects the OpenSSL
headers and libraries if they are installed in standard places. If a custom
OpenSSL should be used, its location <PATH> can be specified with
> configure --with-openssl=<PATH>

If no OpenSSL implementation can be found, the build system compiles
IeeeCC754++ without OpenSSL and thereby disables the use of the fingerprint
mode and the message digests in verbose mode. If OpenSSL is present in
the current environment, but building IeeeCC754++ without OpenSSL is
nonetheless desired, the same effect can be achieved with
> configure --without-openssl

• The IeeeCC754++ build system comes with a small set of utilities that check
different features of the current architecture and build setup. These can be
enabled with

A.3 Configuring and building IeeeCC754++ 301

> configure --with-tests

After compilation, the tests can be found in the subdirectory src/tests/.
After changing into that directory, they can be executed by using the
command
> make tests

Additionally,
> make output

can be used to dump all macros known by the compiler’s preprocessor into
the file macros.output. Table A.3 shows the available test programs and
their purpose.

Program Purpose
checkBoolFloat Check how floating-point numbers are converted into bools.
checkInt Check the size of integer variables.
checkTypes Check definitions imported from Types.h.
macro Display macros defined by the compiler’s preprocessor which

are relevant inside IeeeCC754++.
sanity Sanity check for integer variables.

Table A.3: Test programs supplied by IeeeCC754++.

• Some modern hardware platforms support more than one processor word
size, e. g. the x86 architecture which commonly allows for 32-bit and 64-bit
binaries to coexist and be executed in the same operating system. When
configuring IeeeCC754++, the build system sets up the build to use the
“native” word size (i. e. the kernel’s word size, which is usually the larger of
the supported sizes). In order to force either a 32-bit or a 64-bit build, the
switches --enable-m32 or --enable-m64 can be used.

A.3.7 Cross compilation
Cross compilation is the process of building an executable on one platform that is
intended to run on a different platform with a different ISA. In order for a cross
compile build to work, a few requisites have to be met: A working cross compiler
that runs on the build platform and generates code for the target platform must
be installed together with the system libraries of the target platform that the
current build will be linked against, such as the target system’s libc, libstdc++,
and libm.

The IeeeCC754++ build system makes use of the cross compiling facilities of
the Autotools family. There are basically two ways of setting up the cross build:

302 The IeeeCC754++ build system

• The Autotools way: The correct C and C++ cross compilers must be set
via the CC and CXX environment variables. In addition, the switch --host
together with the correct target triple must be supplied on the command
line in order to make configure enter cross compilation mode. For details,
see the Autotools documentation [GNU16a].

• The IeeeCC754++ way: The target triple needed by --host can be supplied
via the environment variable MYHOST. configure detects whether this variable
is set and enters cross compile mode accordingly. The C and C++ cross
compilers should be set via MYCC and MYCXX in this case.

Listings A.2 and A.3 show how to set up cross compilation for both variants
and some of the relevant output for an IeeeCC754++ executable built on an x86
host to run on an ARM host with AARCH64 architecture. The cross compiler
used is gcc-4.9.

> ../configure CC="aarch64-linux-gnu-gcc" CXX="aarch64-linux-gnu-g++"
--enable-arch-aarch64 --host=aarch64-linux-gnu

¨ ¨ ¨

checking build system type... x86_64-unknown-linux-gnu
checking host system type... aarch64-unknown-linux-gnu
checking target system type... aarch64-unknown-linux-gnu
checking for aarch64-linux-gnu-gcc... aarch64-linux-gnu-gcc
checking whether the C compiler works... yes
checking for C compiler default output file name... a.out
checking for suffix of executables...
checking whether we are cross compiling... yes

¨ ¨ ¨

configure:

Build summary:

Compilers: CC=aarch64-linux-gnu-gcc, CXX=aarch64-linux-gnu-g++ (g++)
32/64 bit: native
Cross compile? yes
Default flags: no

Modes: main
Architecture: aarch64
FP units: ---

Listing A.2: Setting up cross compilation via -host.

> ../configure MYCC="aarch64-linux-gnu-gcc" MYCXX="aarch64-linux-gnu-g++"
MYHOST="aarch64-linux-gnu" --enable-arch-aarch64

¨ ¨ ¨

configure: Using --host=aarch64-linux-gnu from MYHOST environment variable to
setup cross-compilation.

configure: WARNING: If a cross compiler is detected then cross compile mode will
be used

A.3 Configuring and building IeeeCC754++ 303

checking build system type... x86_64-unknown-linux-gnu
checking host system type... aarch64-unknown-linux-gnu
checking target system type... aarch64-unknown-linux-gnu
configure: Using CC=aarch64-linux-gnu-gcc from MYCC environment variable.
configure: Using CXX=aarch64-linux-gnu-g++ from MYCXX environment variable.
checking for gcc... aarch64-linux-gnu-gcc
checking whether the C compiler works... yes
checking for C compiler default output file name... a.out
checking for suffix of executables...
checking whether we are cross compiling... yes

¨ ¨ ¨

configure:

Build summary:

Compilers: CC=aarch64-linux-gnu-gcc, CXX=aarch64-linux-gnu-g++ (g++)
32/64 bit: native
Cross compile? yes
Default flags: no

Modes: main
Architecture: aarch64
FP units: ---

Listing A.3: Setting up cross compilation via MYHOST.

A.3.8 Building historic modes

The original IeeeCC754 implementation differentiated between executables for the
basic operations and for conversions (cf. Section 1.2.3). For most user environments,
this distinction purely reflected a systematic point of view. The implementations
for the x86 platform however (called IntelPentium and AMD in IeeeCC754) made
use of the two executables by supplying two implementations of the remainder
and square root operations: the “basic” executable includes inline assembler
versions of these operations while the “conversion” executable calls the standard C
families of functions sqrtf, sqrt, sqrtl, and remainderf, remainder, remainderl,
respectively.

In IeeeCC754++, this distinction is no longer necessary due to the concept of
FPUs which would separate the two versions of these functions into different FPU
implementations. For historic reasons, the x86 architecture can still be built with
basic and conversion executables (in addition to the “standard” executable). This
build behaviour is achieved by using the --enable-mode-<MODE> options shown
in table Table A.4

Note that for each mode given a separate executable is built. In the basic
and conversion mode executables the floating-point operators are implemented in
the main FPU and will be executed by default (i. e. without specifying additional
command line switches).

304 The IeeeCC754++ build system

Option Effect
--enable-mode-main Build a “main” mode executable; default setting.
--enable-mode-basic Build a “basic” mode executable.
--enable-mode-conv Build a “conversion” mode executable.
--enable-mode-all Build all three modes.

Table A.4: Environment variables influencing the build process.

If no --enable-mode-<MODE> switch is explicitly given, only the “main” mode
executable will be built.

A.3.9 A detailed example
Listing A.4 gives a detailed example of building IeeeCC754++ for the x86 archi-
tecture, together with the x87 and SSE FPUs. The executable is compiled with
gcc-4.8 with the additional option -g that includes debug information into the
resulting binary. Some additional tests are enabled via --with-tests.

> ../configure CC=gcc-4.8 CXX=g++-4.8 CXXFLAGS=’g’ --enable-arch-x86
--enable-fpu-x87 --enable-fpu-sse --with-tests

¨ ¨ ¨

configure:

Build summary:

Build tests? yes
Use hashing? yes

Compilers: CC=gcc-4.8, CXX=g++-4.8 (g++)
32/64 bit: native
Cross compile? no
Default flags: no

Modes: main
Architecture: x86
FP units: x87 sse

Compilation flags:
CFLAGS:
CPPFLAGS:
CXXFLAGS: -g -msse -msse2
LDFLAGS:
LIBS: -lssl -lcrypto

> make

¨ ¨ ¨

Making all in x86
make[3]: Entering directory ‘/work/diss/src/svn/bbb/src/x86’
CXX fpenv_x86.o

A.3 Configuring and building IeeeCC754++ 305

CXX myfenv.o
CXX fpu_x87.o
CXX fpu_sse.o
CXX fpenv_sse.o
CXX main_x86.o
CXX fpu_main.o
CXXLD IeeeCC754++_x86

make[3]: Leaving directory ‘/work/diss/src/svn/bbb/src/x86’

¨ ¨ ¨

> ./src/x86/IeeeCC754++_x86 -vio alls -f output.log --fpu=sse

Listing A.4: Example build for the x86 architecture.

The build summary shows that the OpenSSL libraries installed on the test
system were detected and the generation of message digests activated accordingly.
Furthermore, the additional compiler switches -msse and -msse2 have been added
in order to enable building the SSE FPU.

The compilation is started by issuing make; only the output of the architecture
build is shown. Afterwards, IeeeCC754++ is not installed into the system, but
the compiled IeeeCC754++ binary executed directly. Note that it is located in
the directory ./src/<ARCH> and called IeeeCC754++_<ARCH>. Also note that alls
describes a hypothetical test vector file located in the current directory, and output
for the testing process of the SSE FPU is written to output.log.

306 The IeeeCC754++ build system

Appendix B

Adding a new architecture to
IeeeCC754++

One major advantage of setting up the IeeeCC754++ build system centred around
the concepts architectures and FPUs, as well as restructuring the code basis and
file layout to support these concepts (cf. Section 3.1.5 and Appendix A), lies in
the (relatively) easy extensibility of IeeeCC754++ with code supporting a new
floating-point environment. In this chapter, we discuss all steps necessary to
extend IeeeCC754++ with an architecture xyz containing the mandatory main
FPU and an additional FPU called abc. Adding further FPUs follows the same
process.

In order to simplify the extension process, the IeeeCC754++ source tree includes
an implementation of an architecture called dummy containing all relevant parts of
an architecture implementation (i. e. inheriting from the right classes, setting up
internal data, etc.) without code to actually perform floating-point operations.
Furthermore, the dummy architecture contains an FPU called generic in order to
show the additional steps necessary to add further FPUs to a new architecture.
The corresponding dummy source files are heavily commented, as well as the file
configure.ac to which the new architecture has to be added in order to enable
building it.

In the following, we give a step by step description of the extension process to
add the new architecture xyz together with its FPU abc.

B.1 File structure
The first step is to create a new directory in src/ that will contain all files needed
for the architecture. Although in principle an arbitrary name can be chosen for
this directory, it is advisable to use the name of the new architecture:

> mkdir src/xyz

308 Adding a new architecture to IeeeCC754++

The easiest way to set up all needed source files for the new architecture
and FPU is to copy (and later modify) the corresponding files from the dummy
architecture. We start by copying the Automake file necessary for generating an
appropriate Makefile:

> cp src/dummy/Makefile.am src/xyz/

The code for the dummy architecture and its main FPU can be copied as they are:
> cp src/dummy/DriverFloat_main.h src/xyz/
> cp src/dummy/fpu_main.cc src/xyz/

The source files for the new FPU abc can be copied from the generic FPU, but
need to be renamed:

> cp src/dummy/DriverFloat_generic.h src/xyz/DriverFloat_abc.h
> cp src/dummy/fpu_generic.cc src/xyz/fpu_abc.cc

Finally, a source file containing the main() function needs to be added:
> cp src/dummy/main_dummy.cc src/xyz/main_xyz.cc

These files constitute the minimum setup for a new architecture with an
additional FPU. If further code is necessary in order to initialise the FPU that is
to be tested or any other source code, it can be added to these existing files or
may be placed in separate files, preferably inside the directory src/xyz/. Note
that if these additional files need to be compiled, the build system must be given
knowledge of these files by adding them to Makefile.am (see Section B.3).

If no additional FPU abc is needed, the corresponding source files are unneces-
sary and need not be copied.

B.2 Build system: configure.ac

After setting up the files for the new architecture, the build system must be given
knowledge how to build the code for the new implementation. To achieve this, the
file configure.ac needs to be modified. The places where code has to be added
are commented and marked with “STEP n”, so doing a text search for “STEP n”
yields the correct locations. Steps that are necessary only when a new FPU is
added are marked “(optional)”.

[STEP 1] Since building code for an architecture xyz is selected by calling con-
figure with the option --enable-arch-xyz, this switch needs to be added
to configure.ac:

AC_ARG_ENABLE([arch-xyz],
[AS_HELP_STRING([--enable-arch-xyz],
[Set ARCH to XYZ.])],
[],
[enable_arch_xyz=no])

AM_CONDITIONAL([ARCH_XYZ], [test x$enable_arch_xyz = xyes])

B.2 Build system: configure.ac 309

This code fragment enables the mentioned command line switch and sets up
an Automake variable ARCH_XYZ needed in later Makefile.am files.
Note that the string “Set ARCH to XYZ” in line three depicts a comment
that is displayed by configure -help. As such, its contents should be
chosen in a manner that it clearly explains the meaning of the corresponding
option does.

[STEP 2] (optional) The same process is needed to set up the build system for
building the FPU abc:

AC_ARG_ENABLE([fpu-abc],
[AS_HELP_STRING([--enable-fpu-abc],
[Enable abc FPU instruction set for arch xyz.])],
[],
[enable_fpu_abc=no])

Similar to step 1, the third line consists of a command for configure’s built
in help system.

[STEP 3] Here, code specific to the new architecture can be added, e. g. extra
compiler options needed to compile successfully or additional environment
settings. The first two lines inside the if statement are necessary for the
build system to work; after these lines, custom code can be added. Examples
can be found in configure.ac for the architectures already implemented in
IeeeCC754++.

if test x$enable_arch_xyz = xyes
then
MYARCH="xyz"
archs=‘expr $archs + 1‘

place custom code here

fi

[STEP 4] (optional) For each additional FPU that will be implemented (such as
abc in this example), a variable is needed to describe whether these FPUs
should be built or not. It should be initialised with the value “no”:

mh_fpu_abc=no

[STEP 5] (optional) Furthermore, for every new FPU code is necessary to ensures
that the build system enables the building of this FPU. Also in this step,
custom setup can be added in case further compiler options or environment
variables are needed to build code for the new FPU.

310 Adding a new architecture to IeeeCC754++

if test x$enable_arch_xyz = xyes
then
if test x$enable_fpu_abc = xyes -o x$enable_fpu_all = xyes
then
mh_fpu_abc=yes
FPU="${FPU}abc "
AC_DEFINE([BUILD_FPU_ABC], [1], [Build abc FPU code.])

place custom code here

fi
fi

First, this code fragment ensures that the FPU abc is only enabled when
IeeeCC754++ is compiled for the architecture xyz. Then, the FPU is enabled
if it is explicitly chosen or if all FPUs for the current architecture should
be built (i. e. when the configure option --enable-fpu-all was used).
Afterwards, the FPU to be built is added to the text list “FPU”, and the
Autoconf variable BUILD_FPU_ABC is set which enables building the FPU.

[STEP 6] (optional) In addition to the Autoconf variable BUILD_FPU_ABC, an
Automake variable FPU_ABC is necessary to ensure that the FPU abc is
built:

AM_CONDITIONAL([FPU_ABC], [test x$mh_fpu_abc = xyes])

[STEP 7] (optional) The last step of handling the new FPU abc consists of
verifying that we only build this FPU when the build is configured for the
corresponding architecture (in this case xyz):

AS_IF([test x$enable_fpu_abc = xyes], AS_IF([test x$mh_fpu_abc !=
xyes],
AC_MSG_WARN([--enable-fpu-abc is not supported on "${MYARCH}"

arch!]), []), [])

[STEP 8] Finally, the build system needs to be told that an appropriate Makefile
needs to be generated for the architecture xyz. This can be achieved by
adding its full path to the Autoconf variable AC_CONFIG_FILES as follows:

AC_CONFIG_FILES([
Makefile
src/Makefile
src/common/Makefile

¨ ¨ ¨

src/dummy/Makefile

B.3 Build system: Makefile.am 311

src/xyz/Makefile
])

B.3 Build system: Makefile.am

At this point, the source tree contains all necessary files for the new architecture
and the new FPU, and the build system contains all knowledge and command line
options necessary to configure a build of the architecture xyz and the FPU abc.
In the next step, the actual compilation of the newly added source files needs to
be set up by modifying the Automake file src/xyz/Makefile.am:

• The file Makefile.am copied from the dummy architecture contains code to
build an FPU generic. This code should be modified as follows to enable
building the FPU abc:

add files for abc FPU
can be commented when no FPU is needed
if FPU_ABC
fpuheaders += DriverFloat_abc.h
fpusources += fpu_abc.cc

endif

For additional FPUs, this code should be copied and modified accordingly.
If no additional FPU is needed, the respective lines can either be left as they
are1 or commented out.

• If additional source files were added inside src/xyz/ which need to be com-
piled, they should be added to the variables archheaders and archsources
as follows (in this example, we add a new header file called newheader.h
and a source file newheader.cc):

header and src files for xyz arch
archheaders = DriverFloat_main.h newheader.h
archsources = fpu_main.cc newheader.cc

B.4 Implementing the new architecture
Since IeeeCC754++’s purpose is to check the characteristics of a given floating-point
environment, the base “ingredient” for a new architecture is an underlying FPU

1This does no harm as the build system has no knowledge about a generic FPU for the
new architecture xyz and will therefore not set the variable FPU_GENERIC to true.

312 Adding a new architecture to IeeeCC754++

implementation. This FPU is called the main FPU and contained in every archi-
tecture implemented in IeeeCC754++. Consequently, adding a new architecture
means implementing the main FPU for this architecture.

Inside the IeeeCC754++ code base, all FPU-dependent features are imple-
mented in classes inheriting from DriverFloatRepr (see Figure A.2). The class
DriverFloatRepr itself contains an empty FPU implementation so that in all
inherited classes, only those methods that exist in the new FPU need to be
overloaded. Additionally, some constructors and conversion operators need to be
implemented. In the following, we give a detailed description of the steps necessary
to add a working main FPU for the new architecture xyz by implementing the
class DriverFloat_main.

B.4.1 src/xyz/DriverFloat_main.h

The definition of the class DriverFloat_main is contained in the source file
src/xyz/DriverFloat_main.h. Since it was copied over from the dummy architec-
ture, it contains definitions of some constructors and conversion operators, some
(necessary) helper functions, and all operators known to IeeeCC754++. Only the
definitions of those operators actually going to be implemented are necessary, so
all other operator definitions can be commented (or deleted).

• The basic class layout with default constructors looks as follows:

class DriverFloat_main: public DriverFloatRepr
{
public:
DriverFloat_main() : DriverFloatRepr() { }
DriverFloat_main(int m, int e, int h) : DriverFloatRepr(m, e, h) { }
DriverFloat_main(Bitstring & fp, int m, int e, int h) :

DriverFloatRepr(fp, m, e, h) { }
DriverFloat_main(const DriverFloat_main & r) : DriverFloatRepr(r) { }

DriverFloat_main(const DriverFloatRepr & r) : DriverFloatRepr(r) { }
};

In general, further class attributes in addition to those which are defined
in DriverFloatRepr should not be necessary, so the first four constructors
initialise the class DriverFloat_main by forwarding to the base class con-
structors. The fifth constructor is needed when operators of the base class
should be called. In general, this should not be necessary for the main FPU
as the base class consists of only empty implementations.

• After the execution of a test vector, the result of that operation needs to
be converted from a floating-point number or integer into IeeeCC754++’s
internal representation, i. e. into an instance of type DriverFloat_main. This
is achieved with the following conversion constructors:

B.4 Implementing the new architecture 313

public:
DriverFloat_main(float);
DriverFloat_main(double);
DriverFloat_main(long double);

DriverFloat_main(int32_t);
DriverFloat_main(uint32_t);
DriverFloat_main(int64_t);
DriverFloat_main(uint64_t);

• In order to execute floating-point operations on the target user environment,
the floating-point numbers in the current test vector need to be converted
into the corresponding C++ data types float, double etc. This is achieved
by implementing the following conversion operators:

public:
float tofloat();
double todouble();
long double tolongdouble();

int32_t toint();
uint32_t touint();
int64_t toint64();
uint64_t touint64();

• In order to set the rounding mode for the test vector under investigation and
to check for the correct application of exception flags, methods are necessary
that handle the floating-point environment. The signature of the necessary
methods is as follows:

protected:
virtual void SetLibRound();
virtual void ClearLibExceptions();
virtual void GetLibExceptions();

SetLibRound() sets the rounding mode while all currently set exceptions
flags are cleared via ClearLibExceptions(). These two methods must be
called before a vector is executed in order to ensure the operation is started in
a clean floating-point environment. However, instead of having to call both
of these methods explicitly every time an operation is to be tested (which is
crucial to get meaningful testing results), they are implicitly called inside
the method DriverFloatRepr::SetLibEnvironment() which also does some
additional set up of vector FPU units (see Section B.7). As a consequence,
after setting up the operands to be tested, SetLibEnvironment() must be
called before executing the test operation.
After executing a test, another method is necessary to retrieve the newly
set floating-point exception flags (if any): the method GetLibExceptions()

314 Adding a new architecture to IeeeCC754++

must be overloaded in DriverFloat_main and be explicitly called after every
test vector execution.
All environment information needed to set up the current test vector is stored
inside that test vector itself, i. e. in the current instance of DriverFloat_main.
In order to retrieve the current rounding mode and to return exceptions, the
following functions can be used:

uint32_t GetFPRound();
void SetFPDivByZero();
void SetFPInvalid();
void SetFPUnderflow();
void SetFPOverflow();
void SetFPInexact();

GetFPRound() returns the current rounding mode, i. e. one of the values
RM_NEAR, RM_AWAY, RM_ZERO, RM_UP, or RM_DOWN, whereas the other functions
set the corresponding exception flags. Note that it is only necessary to use the
latter functions inside GetLibExceptions() when floating-point exceptions
were encountered during the execution of the test vector. For further
details on using these functions, see e. g. src/default/fpenv_default.cc
or src/softfloat/fpenv_softfloat.cc.

• All operations which are supported in the architecture xyz, and that therefore
should be tested inside the main FPU, need to be defined inside the class
DriverFloat_main. The following example shows the signatures of a short
selection of some important operators; for a full list of supported operations,
see Table B.1.

DriverFloat_main operator + (DriverFloat_main &);
DriverFloat_main operator - (DriverFloat_main &);
DriverFloat_main operator * (DriverFloat_main &);
DriverFloat_main operator / (DriverFloat_main &);
DriverFloat_main operator % (DriverFloat_main &);
DriverFloat_main sqrt();
DriverFloat_main fma(DriverFloat_main &, DriverFloat_main &);

For the implementation of the basic operators, C++’s operator overloading
features are used so e. g. adding two floating-point values x and y of type
DriverFloatRepr can be performed by writing x + y. The operation sqrt()
is an example of an operation with only one operand (which is already
stored in the current variable of type DriverFloat_main), whereas fma() is
currently the only operator in IeeeCC754++ that takes three operands.

• As outlined in Section B.8, it is possible to specify which operators and
rounding modes should be tested inside the current FPU by registering them
into a (static) variable of type FPregistry. This process, as well as setting
up the FPU for operations on SIMD vectors, is done by overloading the
method Register():

B.4 Implementing the new architecture 315

public:
void Register();

B.4.2 src/xyz/fpu_main.cc

The methods defined in the class DriverFloat_main are implemented inside the
file src/xyz/fpu_main.cc. In this section, we outline this implementation for
selected methods; see also Section B.6 for further details.

• In order to implement the three functions that handle the platform’s floating-
point environment (here, environment means rounding mode, intermediate
floating-point formats etc.), it must be known how setting rounding modes
and setting or retrieving exception flags are handled on that platform. The
more common architectures (or, more precisely, their operating systems)
support the C family of floating-point environment handling functions such
as fesetround(), feclearexcept(), and fetestexcept(), so these can be
directly used. An example implementation employing these functions can
be found in src/default/fpenv_default.cc.
However, when these standard C functions are not supported, custom code
has to be written to handle rounding modes and exception flags. Examples
of custom implementations can be found in src/mpfr/fpenv_mpfr.cc or
src/softfloat/fpenv_softfloat.cc.

• In all floating-point operators that will be implemented in the new architec-
ture, the floating-point values in the current test vector need to be converted
into C++ data types, and the result must be converted back into the type
DriverFloat_main. The code of the corresponding conversion operators and
constructors is obviously user environment dependent; however in practice,
the main difference between (hardware) architectures consists of the endi-
aness layout. The default architecture includes an implementation support-
ing both big and little endian layouts (see src/default/fpenv_default.cc),
whereas examples for only big and little endian layouts can be found in the
x86 and Blue Gene/Q architectures (i. e. in the files src/x86/fpenv_x86.cc
and src/bgq/fpenv_bgq.cc, respectively).

• In order to specify which rounding modes and operations are to actually be
tested inside the new architecture, these must be registered into the internal
registry (implemented as the static variable DriverFloatRepr::FPreg). This
registration process must be done in Register(), for details cf. Section B.8.
The following short example shows how to enable all rounding modes and
operations:

void DriverFloat_main::Register()

316 Adding a new architecture to IeeeCC754++

{
FPreg.clearall();
FPreg.registerRDall();
FPreg.registerOPall();

}

• Finally, the actual operators need to be implemented. A detailed description
of the steps necessary to set up the involved floating-point variables and the
floating-point environment is given in Section B.6.

B.5 Adding an FPU
The process of adding an additional FPU to a new architecture is largely identical
to the process of adding the architecture’s main FPU. The main difference lies in
the fact that for a new FPU abc, the corresponding class DriverFloat_abc is not
inherited from DriverFloatRepr, but from DriverFloat_main and in general can
re-use at least some of the methods implemented inside DriverFloat_main. In
most cases, it is e. g. possible to use the different conversion operations between
DriverFloat_abc and C++’s data types already defined in DriverFloat_main
instead of implementing custom variants.

The methods that obviously need to be overloaded inside DriverFloat_abc
are the floating-point operators, the Register() method and the constructors (by
forwarding these to the base class operators). To arrive at a minimal implementa-
tion of the FPU abc, based on the generic FPU from the dummy architecture, all
occurrences of “DriverFloat_generic” in the file src/xyz/DriverFloat_abc.h
(which was copied from src/dummy/DriverFloat_generic.h) need to be replaced
by “DriverFloat_abc”. The resulting code is shown below (slightly shortened and
with modified comments):

#ifndef _DRIVERFLOAT_ABC_H
#define _DRIVERFLOAT_ABC_H

#include <Types.h>
#include <DriverFloat_main.h>

class DriverFloat_abc: public DriverFloat_main
{
public:
void Register();

// basic constructors
DriverFloat_abc() : DriverFloat_main() { }
DriverFloat_abc(int m, int e, int h) : DriverFloat_main(m, e, h) { }
DriverFloat_abc(Bitstring & fp, int m, int e, int h) : DriverFloat_main(fp,

m, e, h) { }
DriverFloat_abc(const DriverFloat_abc & r) : DriverFloat_main(r) { }

// conversion constructors
DriverFloat_abc(float f) : DriverFloat_main(f) { }

B.6 Implementing an operation 317

DriverFloat_abc(double d) : DriverFloat_main(d) { }
DriverFloat_abc(long double l) : DriverFloat_main(l) { }
DriverFloat_abc(int32_t i) : DriverFloat_main(i) { }
DriverFloat_abc(uint32_t u) : DriverFloat_main(u) { }
DriverFloat_abc(int64_t l) : DriverFloat_main(l) { }
DriverFloat_abc(uint64_t ul) : DriverFloat_main(ul) { }

// constructors needed to use methods from the base classes
// that have DriverFloatRepr or DriverFloat_main as operands
DriverFloat_abc(const DriverFloat_main & r) : DriverFloat_main(r) { }
DriverFloat_abc(const DriverFloatRepr & r) : DriverFloat_main(r) { }

};
#endif // _DRIVERFLOAT_ABC_H

All constructors simply forward to their base class equivalents. This example
omits all floating-point operators which must be added to DriverFloat_abc and
implemented in the file fpu_abc.cc.

B.6 Implementing an operation
When implementing a floating-point operation inside a new FPU, the following
steps are always necessary in order to set up the FPU for execution of that
operation and enabling IeeeCC754++ to evaluate the result of the operation:

• Converting the operands into the FPU’s binary format.

• Initialising the floating-point environment.

• Executing the operation.

• Retrieving floating-point exception information from the environment.

• Converting the result into IeeeCC754++’s internal floating-point format.

In the following, we describe in detail how these steps can be implemented in
the new FPU. In this guide, we implement the addition operation for single and
double operands for the main FPU of the architecture xyz. This method has the
following signature:

DriverFloat_main DriverFloat_main::operator + (DriverFloat_main & m);

[STEP 1] The first step is to differentiate between the possible source and target
floating-point formats. To help detecting the current floating-point format,
IeeeCC754++ supplies the methods isIEEEbinary16(), isIEEEbinary32(),
isIEEEbinary64(), isIEEEbinary80(), and isIEEEbinary128() that can
be used to detect IEEE-conforming half, single, double, extended-double,
and quadruple precision formats. If other formats are possible in the FPU

318 Adding a new architecture to IeeeCC754++

implementation and need to be recognised, the values of FP::sizeExp,
FP::sizeMant, and FP::hidden need explicitly be checked. The following
two variants of testing for the double format are equivalent:

if (isIEEEbinary64()) { ... }
if (sizeExp == 11 && sizeMant == 52 && hidden) { ... }

For the rest of this example, we only show code for operands in the single
format; see Section B.9 for an implementation for double (which is largely
identical).
Note that IeeeCC754++ also supplies methods that check for the format of
the target floating-point numbers for the conversion operators, i. e. for the
method isIEEEbinary32(), an equivalent method disIEEEbinary32(int
dsizeExp, int dsizeMant, int dhidden) exists that checks for single pre-
cision target format (with “d” denoting “destination”).

[STEP 2] Second, variables of the FPU’s floating-point data type that store the
operands and the result need to be declared. In this example, this data type
is simply the C++ equivalent for the single format which is called float.

float res, op1, op2;

[STEP 3] Afterwards, the floating-point values stored in *this and m (cf. the
method’s signature shown above) must be converted into the FPU’s floating-
point format with the method tofloat():

op1 = tofloat();
op2 = m.tofloat();

Note that for SIMD vector FPUs, appropriate vector operands have to
be set up. For details on available helper funtions, see Section B.7; an
example implementation for a vector operation is given for the abc FPU in
Section B.9.

[STEP 4] Before executing the operation, the floating-point environment needs
to be properly set up, i. e. the rounding mode needs to be set and the
floating-point exceptions flags cleared via SetLibEnvironment, see above:

SetLibEnvironment();

[STEP 5] At this point, everything has been prepared for the operation to be
executed, so the appropriate function in the FPU can be called. In this
simple example, we simply rely on the compiler to generate code for the
fictitious abc FPU by using the C++ addition operator for floats:

B.6 Implementing an operation 319

res = op1 + op2;

[STEP 5] After the operation has been retrieved, the floating-point environment
needs to be checked to see if (and which) exception flags have been set:

GetLibExceptions();

[STEP 6] (optional) When the FPU is a SIMD vector unit, an additional step is
necessary to ensure the FPU operates identically on all entries inside the
operand vectors. This can be conveniently done by using corresponding
helper functions from Vector.h (see Section B.7) and setting a vector error
if needed. Here, res denotes the result vector and n the number of values
contained in res:

if (checkVec(res, n))
{

setVectorError();
}

Similar facilities exist when checking scalar variants of a vector FPU (cf.
Section 3.1.12):

if (checkVecScalar(res, n))
{

setScalarError();
}

An example for the implementation of a vector operation can be found in
Section B.9.

[STEP 7] Finally, the returned result needs to be converted into IeeeCC754++’s
internal floating-point format and passed as return value of this method:

DriverFloat_main r(res);
return r;

The conversion is necessary to enable IeeeCC754++ comparing the returned
result with the correct result.

[STEP 8] After code has been added for every floating-point format that is sup-
ported by the FPU following steps 1 to 6, it is necessary to tell IeeeCC754++
what to do when a floating-point format not known by the implementation
of the current operator is encountered. This is achieved by returning a
special value that tells IeeeCC754++ to ignore the results of the execution of
the current method:

320 Adding a new architecture to IeeeCC754++

// for every other case, return a dummy DriverFloatRepr that
// denotes that evaluation of the result should be skipped.
return skipTest();

The full example implementation of the addition operator for the main FPU
supporting single and double operands is shown in Listing B.1.

// example implementation for addition
DriverFloat_main DriverFloat_main::operator + (DriverFloat_main & m)
{

// single/binary32 operands
if (isIEEEbinary32())
{

// variables needed for result and operands
float res, op1, op2;

// convert operands from DriverFloatRepr (IeeeCC754++’s internal
// FP format) to format of the FP implementation
op1 = tofloat();
op2 = m.tofloat();

// set rounding mode etc., execute operation, retrieve exceptions
SetLibEnvironment();
res = op1 + op2;
GetLibExceptions();

// generate DriverFloatRepr from result and return it
DriverFloat_main r(res);
return r;

}
// double/binary64 operands
else if (isIEEEbinary64())
{

// variables needed for result and operands
double dres, dop1, dop2;

// convert operands from DriverFloatRepr (IeeeCC754++’s internal
// FP format) to format of the FP implementation
dop1 = todouble();
dop2 = m.todouble();

// set rounding mode etc., execute operation, retrieve exceptions
SetLibEnvironment();
dres = dop1 + dop2;
GetLibExceptions();

// generate DriverFloatRepr from result and return it
DriverFloat_main rd(dres);
return rd;

}

// for every other case, return a dummy DriverFloatRepr that
// denotes that evaluation of the result should be skipped.
return skipTest();

}

Listing B.1: Implementation of addition for DriverFloat_main.

B.7 Handling vector FPUs 321

B.7 Handling vector FPUs
When an FPU operates on some variant of SIMD vectors (i. e. the operands
consist of several floating-point values operated on at the same time with the
same operation), IeeeCC754++ must be told that it is handling a vector unit in
order to enable its vector handling facilities (especially checking whether the FPU
handles all entries in a vector in an identical way and setting a vector error if
differences are detected). Furthermore, the handling of data types inside the
methods implementing the floating-point operations is different. For both cases,
IeeeCC754++ contains facilities to help setting up the relevant data. Initialising
the FPU as a vector unit is described in Section B.8.2. Here, we describe the
methods available to enable convenient handling of vector data types.

IeeeCC754++’s philosophy of checking vector FPUs is as follows: The vector
operands are filled with identical copies of the current operation’s operands.
Afterwards, the (vector) operation is executed, and in addition to checking the
floating-point environment and the returned result (i. e. whether the returned
floating-point value is correct), it is checked whether all values in the result
vector are identical. For further details and the corresponding scalar check, see
Section 3.1.12.

Note that to test a vector unit, a variety of approaches filling the vector
with floating-point values is possible: using the same value in all positions (as
done in IeeeCC754++), writing different values to the different positions to avoid
bit-bias, or using several calls to the vector unit while putting the value into each
possible position (and setting all other positions to zero). The actual testing
strategy is chosen in the implementation of the operations inside a subclass of
DriverFloatRepr, where especially the third approach could be useful for certain
FPUs. The second approach of using different floating-point values in all positions
however faces some issues: In general, it is only possible to set one rounding
mode before executing a vector operation, and it is usually not possible to retrieve
exception flags for the positions individually. Furthermore, for technical reasons,
only one set of operands is known to IeeeCC754++ when the vector operation is
executed. IeeeCC754++ employs the first strategy of filling the test vector with
identical values in order to stress the full vector unit while being able to easily
handle setting the rounding mode and retrieval of exceptions.

In order to make use of IeeeCC754++’s vector helper functions, the file Vector.h
needs to be included. It contains three types of helper functions:

• Functions that copy a floating-point value to all slots of a vector data type.

• Functions that check if all values contained inside a vector are identical (and
similar functions for checking scalar variants).

• Functions to convert vectors to a different vector format and to print a
vector for debugging purposes.

322 Adding a new architecture to IeeeCC754++

The first category consists of the following functions:

template <typename fp, int veclen> void fillVec(fp * dst, const fp & src);
template <typename fp> void fillVec(fp * dst, fp src, const int veclen);
template <typename fp> void fillVecScalar(fp * dst, fp src, const int veclen);
template <typename fp> void fillVecHorizontal(fp * dst, fp src1, fp src2, const

int veclen);

fillVec() copies the floating-point value src into the destination vector dst
that contains veclen elements. Two variants of this functions exist to work
around limitations of some compilers (namely NVidia’s nvcc): One takes veclen
as a template parameter, in the other, veclen is passed as a function argument.
fillVecScalar() copies src into the first slot of dst and fills the remaining
veclen´ 1 slots with the value 0. The function fillVecHorizontal() is a special
variant needed for some SSE variants in the x86 architecture (see Section 5.2.1):
It copies the two values src1 and src2 alternatingly into dst, each of them veclen

2
times.

template <typename fp, int veclen> bool checkVec(const fp * src);
template <typename fp> bool checkVec(const fp * src, const int veclen);
template <typename fp, int veclen> bool checkVecBits(const fp * src);
template <typename fp> bool checkVecBits(const fp * src, const int veclen);
template <typename fp> bool checkVecScalar(const fp * src, const int veclen);
template <typename fp> bool checkVecStride(const fp * src, const int veclen, int

stride = 2);

The second family of functions consists of different variants to check whether the
passed vector contains the expected values. In case of the functions checkVec()
and checkVecBits(), it is verified that all veclen slots in the vector src are filled
with the same value; the first variant by using the comparison operator for the
type typename fp, the second using bitwise comparison.

checkVecScalar() performs checks only on all entries except the first: It
performs a bitwise comparison of the entries to ensure they are identical and
additionally checks if the second entry (and therefore all other values if they are
identical) is equal to 0. checkVecStride() is another special variant needed for
the x86 SSE FPU: It verifies that the entries at the positions i ” p mod stride
with i “ 0, . . . , stride and p “ 0, . . . ,veclen are identical.

template <typename fpin, typename fpout> void convertVec(fpout * dst, fpin *
src, const int veclen);

template <typename fp> void printVec(const fp * src, const int veclen);

Finally, convertVec() takes two vectors of identical length and copies all
entries from the source to the target vector whereas printVec prints all values in
the vector src onto the terminal.

In Section B.9, an example is shown of a vector FPU and an example imple-
mentation of the sqrt() operation.

B.8 Initialising an FPU 323

B.8 Initialising an FPU
B.8.1 Registering operations and rounding modes
After implementing the functions necessary to handle the floating-point environ-
ment and all operators that should be tested inside the FPU, it is necessary to tell
IeeeCC754++ which operations and rounding modes should actually be checked.
By default, no operations and rounding modes are registered for testing, resulting
in empty result files due to no testing taking place.

The registration system is designed to be as flexible as possible. It is handled
via the static attribute FPregistry FPreg of the class DriverFloatRepr. Every
operation and rounding mode can be registered and unregistered into or from this
central registry, and several helper functions exist to register e. g. all operations
and rounding modes.

One feature of the design is crucial to understand: There are actually two
ways to prevent a test vector from being executed and tested. First, it is pos-
sible to exclude all test vectors for some operation by not registering this op-
eration in FPreg. The second variant enables exclusion even if the desired op-
eration is implemented inside the FPU: When the function returns a special
value via the method skipVector() (see above), the results of this single test
vector are discarded, and checking is skipped. This method is used inside the
file src/common/DriverFloatRepr.h for all operations available in IeeeCC754++
(which are all defined inside DriverFloatRepr): They only contain a call to
skipVector(), thus preventing results from being generated (since no floating-
point operations are executed inside the operator) and from being evaluated (via
the skip mechanism).

As a consequence, when only the desired operators supported by the FPU
are implemented, it is safe to register all operations into FPreg as test vectors,
since operations for which no implementation exists are skipped via the second
mechanism just described.

The registration process is performed by implementing the corresponding calls
to FPregistry methods inside the method Register() which is called automatic-
ally by the internal initialisation methods (like constructors) of DriverFloatRepr.
The methods implemented in the class FPregistry take operations and rounding
modes as parameters. These are implemented inside the classes OP and RD (cf.
Figure A.2, page 291); the possible values can be found in Tables B.1 and B.2

Name Operation OP name Signature
Addition x` y OP::add T T::operator + (T & y)
Subtraction x´ y OP::sub T T::operator - (T & y)
Multiplication x ˚ y OP::mul T T::operator * (T & y)
Division x{y OP::div T T::operator / (T & y)
Remainder x mod y OP::rem T T::operator % (T & y)

Continued on next page. . .

324 Adding a new architecture to IeeeCC754++

Name Operation OP name Signature
Square root

?
x OP::sqrt T T::sqrt()

fma x ˚ y ` z OP::fma T T::fma(T & y, T & z)
Round to OP::rt T T::rt(T & y)
Convert to OP::ct T T::ct(T & y)
Integral value OP::i T T::rint(T & y)
fp ñ int OP::ri T T::ri()

OP::ru T T::ru()
OP::rI T T::rI()
OP::rU T T::rU()

int ñ fp OP::ci T T::ci(int e, int m, int h)
OP::cu T T::cu(int e, int m, int h)
OP::cI T T::cI(int e, int m, int h)
OP::cU T T::cU(int e, int m, int h)

bin ô dec x2 ñ x10 OP::b2d T T::b2d(int p)
x10 ñ x2 OP::d2b T T::d2b()

Roots 3
?
x OP::cbrt T T::cbrt()

1{
?
x OP::rsqrt T T::rsqrt()

n
?
x OP::rootn T T::rootn(T & y)

Power xy OP::pow T T::pow(T & y)
xn OP::pown T T::pown(T & y)
xy, x ą 0 OP::powr T T::powr(T & y)

Trigonometric sinpxq OP::sin T T::sin()
functions cospxq OP::cos T T::cos()

tanpxq OP::tan T T::tan()
atan2py, xq OP::atan2 T T::atan2(T & y)
sinpπxq OP::sinpi T T::sinpi()
cospπxq OP::cospi T T::cospi()
arctanpxq{π OP::atanpi T T::atanpi()
atan2py, xq{π OP::atan2pi T T::atan2pi(T & y)

Inverse arcsinpxq OP::asin T T::asin()
trigonometric arccospxq OP::acos T T::acos()
functions arctanpxq OP::atan T T::atan()
Hyperbolic sinhpxq OP::sin T T::sinh()
functions coshpxq OP::cos T T::cosh()

tanhpxq OP::tan T T::tanh()
Inverse arsinhpxq OP::asin T T::asinh()
hyperbolic arcoshpxq OP::acos T T::acosh()
functions artanhpxq OP::atan T T::atanh()
Exponentials ex OP::exp T T::expx()

ex ´ 1 OP::expm1 T T::expm1()
Continued on next page. . .

B.8 Initialising an FPU 325

Name Operation OP name Signature
2x OP::exp2 T T::exp2()
2x ´ 1 OP::exp2m1 T T::exp2m1()
10x OP::exp2 T T::exp10()
10x ´ 1 OP::exp10m1 T T::exp10m1()

Logarithms lnpxq OP::log T T::log()
log2pxq OP::log2 T T::log2()
log10pxq OP::log10 T T::log10()
lnp1` xq OP::logp1 T T::logp1()
log2p1` xq OP::log2p1 T T::log2p1()
log10p1` xq OP::log10p1 T T::log10p1()

hypot
a

x2 ` y2 OP::hypot T T::hypot(T & y)
Compound p1` xqn OP::comp T T::comp(T & y)
Error erfpxq OP::erf T T::erf()
function erfcpxq OP::erfc T T::erfc()
Gamma Γpxq OP::gam T T::gam()
function ln |Γpxq| OP::lgam T T::lgam()

Table B.1: Operations known to IeeeCC754++.

Table B.1 requires some further explanations: T denotes an appropriate subclass
of DriverFloatRepr. x and y are floating-point values whereas n is an integer.
“ñ” and “ô” denote conversions between formats, usually between floating-point
(fp) and integer (int) values or between decimal and binary representation.

Note that the first parameter x is always encoded into *this, i. e. inside the
current instance of the appropriate subclass of DriverFloatRepr. Whenever the
argument of the floating-point operator is an integer value (e. g. for the pown
and rootn functions), this integer is encoded into a variable of type T by using
the bit field that normally contains IeeeCC754++’s internal floating-point format
representation. In other words, all operators always take one to three instances
of DriverFloatRepr (or appropriate subclasses) as parameters, the first being an
implicit parameter; the meaning of the number encoded in its bit field is context
dependent.

Also note that DriverFloatRepr contains a pointer to a string only used to
store the decimal representation for the conversions between a binary floating-point
format and its decimal equivalent, namely b2d and d2b.

For the conversions between integer and floating-point values, the following
naming conventions using two characters apply: The first character consists either
of a “c” (convert from integer values) or an “r” (round to integer value). The
second character denotes the integer format involved: “u” for unsigned and “i”
for signed integer values and capitalisation differentiating between 32 bit (small
character) and 64 bit (capital character) formats.

The conversion functions cX (with X one of i, u, I, or U) take the specifications

326 Adding a new architecture to IeeeCC754++

of the target floating-point format as three integer parameters: the size e of the
exponent, the size m of the significand (m for mantissa), and an integer h that
denotes whether the target format uses a hidden bit (for h ą 0q.

Handling the registration process of operations and rounding modes is imple-
mented in FPregistry. The following methods are available:

class FPregistry
{
public:
// handling rouding modes and operations simultaneously
bool isRegistered(OP::op o, RD::rd r);
bool clearall();

// operations
bool registerOP(OP::op);
bool unregisterOP(OP::op);

bool registerOPall();
bool clearOPall();

bool OPisRegistered(OP::op o) const;

// rounding modes
bool registerRD(RD::rd);
bool unregisterRD(RD::rd);

bool registerRDallIEEE();
bool registerRDall();
bool clearRDall();

bool RDisRegistered(RD::rd r) const;
};

Operations can be registered by calling registerOP() and removed from the
registry with unregisterOP(). It is also possible to add or remove all known
operations at once with registerOPall() and clearOPall(). Furthermore, it can
be checked via OPisRegistered() if the given operation is currently registered or
not.

For the handling of rounding modes, an almost identical set of methods exists,
with one notable addition: There are two methods to register “all” rounding
modes. The distinction between registerRDall() and registerRDallIEEE()
is mainly due to historic reasons: The latter registers all five rounding modes
defined in IEEE 754-2008, while the former only registers the four rounding modes
defined in IEEE 754 and IEEE 854, i. e. all rounding modes with the exception of
roundTiesToAway.

Note that all methods taking an argument of either type OP or type RD exist
in two or three variants, shown here for the respective register methods:

class FPregistry
{

bool registerOP(OP::op);
bool registerOP(char * s);

B.8 Initialising an FPU 327

bool registerRD(RD::rd);
bool registerRD(char * s);
bool registerRD(char r);

};

This makes it possible to register operations either with a parameter of type OP or
with a string and rounding modes with a parameter of type RD, a string, or even a
single character. The following code shows the equivalent ways of registering the
addition operation and the rounding mode roundTowardZero:

FPreg.registerOP(OP::add);
FPreg.registerOP("add");

FPreg.registerRD(RD::zero);
FPreg.registerRD("zero");
FPreg.registerRD(’z’);

Table B.2 shows the possible values for the corresponding RD or character
parameters to register rounding modes.

Rounding mode RD name character
roundTiesToEven RD::near n
roundTiesToAway RD::away a

roundTowardPositive RD::up u
roundTowardNegative RD::down d
roundTowardZero RD::zero z

Table B.2: Rounding modes known to IeeeCC754++.

Finally, there are two methods to work on operations and rounding modes at the
same time: clearall() removes all entries from the registry, and isRegistered()
checks whether the combination of operation and rounding mode contained in the
current test vector is registered or not.

B.8.2 Enabling vector FPUs
To correctly handle FPUs working on SIMD vectors, IeeeCC754++’s vector capa-
bilities must be explicitly enabled. This is achieved by calling useVectorUnit()
inside Register():

useVectorUnit();

Two examples of Register() implementations, one of them setting up a vector
FPU, can be found in the next section.

328 Adding a new architecture to IeeeCC754++

B.9 Example code for the new architecture and FPU
In this section, we summarise the process of implementing the main and an
additional FPU by showing code for the xyz architecture and the abc FPU. The
methods handling the floating-point environment are only implemented for the
main FPU that supports the addition operation for all rounding modes (except
roundTiesToAway, see above). The abc FPU only supports the square root
operation in roundTiesToEven rounding mode. For brevity reasons, both FPUs
only support operands in double precision. It is assumed that the abc FPU is
a SIMD vector unit working on registers of 256 bit length which means every
operand inside this FPU operates on four floating-point values at once.

The implementation of the corresponding files src/xyz/fpu_main.cc and
src/xyz/fpu_abc.cc can be found in Listings B.2 and B.3.

// handle the floating-point environment - use C99 functions
void DriverFloat_main::SetLibRound()
{

switch (GetFPRound())
{
case RM_NEAR: fesetround(FE_TONEAREST); break;
case RM_ZERO: fesetround(FE_TOWARDZERO); break;
case RM_UP: fesetround(FE_UPWARD); break;
case RM_DOWN: fesetround(FE_DOWNWARD); break;

}
}

void DriverFloat_main::ClearLibExceptions()
{

feclearexcept(FE_ALL_EXCEPT);
}

void DriverFloat_main::GetLibExceptions()
{

if (fetestexcept(FE_DIVBYZERO)) SetFPDivByZero();
if (fetestexcept(FE_INVALID)) SetFPInvalid();
if (fetestexcept(FE_UNDERFLOW)) SetFPUnderflow();
if (fetestexcept(FE_OVERFLOW)) SetFPOverflow();
if (fetestexcept(FE_INEXACT)) SetFPInexact();

ClearLibExceptions();
}

// register operations and rounding modes
void DriverFloat_main::Register()
{

FPreg.clearall();
FPreg.registerOP(OP::add);
FPreg.registerRDall();

}

// example implementation for addition
DriverFloat_main DriverFloat_main::operator + (DriverFloat_main & m)
{

if (isIEEEbinary64())
{

double dres, dop1, dop2;

B.9 Example code for the new architecture and FPU 329

dop1 = todouble();
dop2 = m.todouble();

SetLibEnvironment();
dres = dop1 + dop2;
GetLibExceptions();

DriverFloat_main rd(dres);
return rd;

}

return skipTest();
}

Listing B.2: Example implementation of DriverFloat_main for the xyz
architecture.

// register operations and rounding modes
void DriverFloat_abc::Register()
{

FPreg.clearall();
FPreg.registerOP(OP::sqrt);
FPreg.registerRD(RD::near);

useVectorUnit();
}

DriverFloat_abc DriverFloat_abc::sqrt()
{

if (isIEEEbinary64())
{

double dop1;
double dx1[4], dres[4];

dop1 = todouble();
fillVec(dx1, dop1, 4);

SetLibEnvironment();
SIMD_sqrt(dres, dx1);
GetLibExceptions();

if (checkVec(dres, 4))
{

setVectorError();
}

DriverFloat_abc rd(dres[0]);
return rd;

}

return skipTest();
}

Listing B.3: Example implementation of DriverFloat_abc for the xyz
architecture.

The vector implementation of DriverFloat_abc::sqrt() as shown in List-
ing B.3 requires some further explanation: dop1 is used to convert the operand

330 Adding a new architecture to IeeeCC754++

(which is encoded in IeeeCC754++’s internal floating-point format) into a C++
double via todouble(). dx1 and dres denote vectors of four doubles length that
are used for the operand and the result, respectively.

The call to fillVec() copies the floating-point value contained in dop1 into
the vector dx1, whereas SIMD_sqrt() denotes the fictitious vector square root
operation of the abc FPU.

After the execution of the vector operation, the resulting vector needs to be
checked for consistency, i. e. checkVec() is called to verify that all four values
contained in dres are identical. If this is not the case, a vector error is set by
calling setVectorError(). Finally, the first entry in the result vector dres is
passed to IeeeCC754++ for the regular conformity checks performed on every test
vector.

B.10 Setting up main()

At this point, almost all code necessary to test the architecture xyz and the FPU
abc has been added. As a last step, the main program which is contained in
main() in src/xyz/main_xyz.cc must be given knowledge of the new FPU. We
again modify the corresponding file copied from the dummy architecture. Code to
call the main FPU is already present, as well as code performing general command
line parameter handling.

The desired goal of adding the abc FPU can be achieved by textually replacing
all occurrences of “GENERIC” and “generic” with “ABC” and “abc”. The resulting
code is shown and explained below:

#if defined BUILD_FPU_ABC || defined BUILD_FPU_ALL
#include <DriverFloat_abc.h>

#endif

¨ ¨ ¨

// main function for IeeeCC754 on default arch.
int main(int argc, char * argv[])
{

¨ ¨ ¨

std::string fpu = scanArg("fpu", argc, argv);
if (!fpu.empty())
{

bool found = false;

#if defined BUILD_FPU_ABC || defined BUILD_FPU_ALL
// this code will only be executed if the "abc" FPU is known
// to the build system.
if (fpu == "abc")
{

found = true;
std::cout << "Calling code for \"abc\" fpu." << std::endl;

return main_filehandler<DriverFloat_abc>(argc, argv);
}

B.11 Setting up and building the new architecture 331

#endif
}

¨ ¨ ¨

}

Before the definition of main(), the header file for the abc FPU needs to be
included when it was requested to be built either explicitly or by requesting all
available FPUs (i. e. via one of the calls configure -enable-fpu-abc or configure
-enable-fpu-all). Inside main(), the command line parameters need to be
checked for an --fpu argument in order to determine the FPU being used during
the testing process. Furthermore, additional setup code can be added here, as
well as further parameter scanning possibly needed to initialise or choose an
accelerator unit. Code to retrieve the command line parameters already exists in
src/xyz/main_xyz.cc; the code which actually performs the call to the abc FPU
is shown above.

B.11 Setting up and building the new architecture
After preparing the build system and adding code for the new architecture, the
build system configuration files, such as configure.ac and src/xyz/Makefile.am
must be compiled into a configure script and a Makefile. Additionally, some
internal steps are performed such as adding appropriate preprocessor macros to
src/config.h.in. This compilation step is performed by calling the bootstrap
script in the source directory:

> ./bootstrap

At this point, IeeeCC754++ can be compiled for the architecture xyz and
the FPU abc, and the contained main and abc FPUs can be checked for IEEE-
conformity. Listing B.4 sums up the configuration, build, and execution process
for the new architecture.

> ./bootstrap
+ aclocal -I config
+ autoheader
+ automake --add-missing --copy
+ autoconf
> mkdir build
> cd build
> ../configure --enable-arch-xyz --enable-fpu-abc
configure: loading site script /usr/share/site/x86_64-unknown-linux-gnu
checking build system type... x86_64-unknown-linux-gnu
checking host system type... x86_64-unknown-linux-gnu
checking target system type... x86_64-unknown-linux-gnu

¨ ¨ ¨

configure: creating ./config.status
config.status: creating Makefile
config.status: creating src/Makefile

332 Adding a new architecture to IeeeCC754++

config.status: creating src/common/Makefile

¨ ¨ ¨

config.status: creating src/xyz/Makefile
config.status: creating src/config.h
config.status: executing depfiles commands
configure:

Build summary:

Build tests? no
Use hashing? yes

Compilers: CC=gcc, CXX=g++ (g++)
32/64 bit: native
Cross compile? no
Default flags: no

Modes: main
Architecture: xyz
FP units: abc

Compilation flags:
CFLAGS:
CPPFLAGS:
CXXFLAGS:
LDFLAGS:
LIBS: -lssl -lcrypto

> make
Making all in src

¨ ¨ ¨

Making all in xyz
make[3]: Entering directory ‘/tmp/ttt/svn/build/src/xyz’
CXX fpu_main.o
CXX fpu_abc.o
CXX main_xyz.o
CXXLD IeeeCC754++_xyz

make[3]: Leaving directory ‘/tmp/ttt/svn/build/src/xyz’
> ./src/xyz/IeeeCC754++_xyz -vio ../testsets/alld -f xyz.log
Calling main implementation (no FPU kernel requested).
Using logfile: xyz.log

¨ ¨ ¨

> ./src/xyz/IeeeCC754++_xyz -vio ../testsets/alld -f abc.log --fpu=abc
Calling code for "abc" fpu.
Using logfile: abc.log

¨ ¨ ¨

>

Listing B.4: Building IeeeCC754++ for the architecture xyz and the FPU abc.

Appendix C

Reference material

This appendix contains reference material for IeeeCC754++, the evaluation frame-
work, and the optimisation framework, such as tables, usage information, example
task files, and example implementations of analysis and fitness modules.

C.1 fma example
In this section, we give an alternative representation of the fma example discussed in
Section 4.2.1 able to be used in distinguishing between fused and non-fused versions
of a multiply-add operator. All numbers here are shown as binary representation
of the numbers encoded in IEEE 754-2008 single precision format. Listing C.1
shows the test vector used in this example, including the three operands, the
correct result in hexadecimal notation, the roundTiesToEven rounding mode and
no exceptions being expected.

fmas n eq - 3f800001 3fc00000 bf800001 3f000001

Listing C.1: fma test vector in UCB format, single precision.

Multiplying the first two operands x and y with infinite intermediate precision
produces the intermediate result i1 (the hexadecimal operands from the UCB test
vector are converted into binary representation, with lines denoting the borders
between sign bit, exponent, significand, and trailing bits where applicable):

i1 :“ x ˚ y “ 0|01111111|00000000000000000000001
˚ 0|01111111|10000000000000000000000

“ 0|01111111|10000000000000000000001|1
(C.1)

334 Reference material

Still computing with infinite intermediate precision, adding z to i1 yields the
intermediate result i2:

i2 :“ i1 ` z “ 0|01111111|10000000000000000000001|1
` 1|01111111|00000000000000000000001

“ 0|01111110|00000000000000000000001
(C.2)

The last bit in i1 is cancelled out when adding z, and therefore i2 is representable
in single precision, yielding the final result rfma “ i2.

On the other hand, when computing r “ x ˚ y ` z with regular floating-
point operations (called mla here for multiply-add), i. e. when rounding after
computing x ˚ y, the situation changes (here, RN : RÑ F˚pβ, t, L, Uq denotes the
roundTiesToEven rounding function): The last bit has to be rounded upwards,
resulting in

i3 “ RNpi1q “ 0|01111111|10000000000000000000010. (C.3)

The final addition of z then yields

i4 :“ i3 ` z “ 0|01111111|10000000000000000000010
` 1|01111111|00000000000000000000001

“ 0|01111110|00000000000000000000010
(C.4)

Again, i4 is representable as a single precision number, so rmla “ i4. Obviously,
rfma ‰ rmla.

C.2 IeeeCC754++ usage
For quick reference, we list the syntax of the IeeeCC754++ executable in Listing C.2.
The calling conventions for the classic mode slightly differ from the other modes;
it can be found in the next section.

> IeeeCC754++_default --help
Usage is: IeeeCC754++ <mode> <testset> [-f <logfile>] [ARGS ...]
where:

<mode> Test mode.
<testset> Set of vectors which should be tested.
<logfile> Alternative log file..

To see an explanation of modes, call IeeeCC754++ --modes.
For information on common ARGS, call IeeeCC754++ --args.
> IeeeCC754++_default --modes
IeeeCC754++ modes:
-c Classic IeeeCC754; expects test vectors in Coonen format.
-u Classic IeeeCC754.
-o Classic IeeeCC754; converts test vectors from Coonen to UCB format.
-s Checksum mode.
-d Checksum mode, exceptions dropped.
-h<mode> Fingerprint mode, hashed.

<mode> is hash digest; default is SHA1.
-m Fingerprint mode with hash digest MD5. Equivalent to -hmd5.
-i Grid info mode.
-v<mode> Verbose mode.

<mode> is one of:

C.3 IeeeCC754++ classic mode usage 335

io Default. Print input and output vectors.
in Print only input vectors.
out Print only output vectors.
ix Print input and output vectors; count drop exception only errors.
cc Do not actually test, but print (expected) correct solution.

-q Quiet mode. Like "-u" but discarding output.

Where not otherwise specified, IeeeCC754++ expects test vectors in UCB format.

Please note that the calling syntax is different for the classic IeeeCC754 modes.
For more information, call IeeeCC754++ --classic.
> IeeeCC754++_default --args
IeeeCC754++ common options:
--help Displays basic usage.
--modes Lists all available modes.
--args This list of common options.
--options Identical to --args.
--helpclassic Displays basic syntax for classic modes.
--classic Identical to --helpclassic.
--version Show information on the current version.
--ftz Enable FTZ mode (flush to zero).
--ftzsigned Enable FTZ mode (flush to signed zero).
--noftz Disable FTZ mode.
--skipsubnormal Skip test vectors containing subnormals.
--skiptiny Identical to --skipsubnormal.
--ulp=<ULP> Set ULP threshold to <ULP>.
--digest=<mode> Generates an additional file <logfile>.<mode> containing

a (binary) hash digest of <logfile>. If <mode> is empty,
the default digest sha1 is used.

--hexdigest=<mode> Generates an additional file <logfile>.<mode> containing
a (hexadecimal) hash digest of <logfile>. If <mode> is
empty, the default digest sha1 is used.

--nolog Suppresses generation of <logfile>.

Listing C.2: IeeeCC754++ usage and command line parameters.

C.3 IeeeCC754++ classic mode usage
Since IeeeCC754++’s classic mode is (almost) identical to IeeeCC754, we list the
calling syntax of the latter as documented in IeeeCC754’s original readme.usage
file for reference purposes:

How to call the driver program IeeeCC754
==

Summary:

IeeeCC754 -c {-s|-d|-l|-q|-m|{-e <int> -t <int> [-h]}}
-r {n|p|m|z} -i -n {i|o|x|z|u|tiny|nan|inf|snz} -x
-f logfile testfile

IeeeCC754 -u -r {n|p|m|z} -i -n {i|o|x|z|u|tiny|nan|inf|snz} -x
-f logfile testfile

IeeeCC754 -o <file> {-s|-d|-l|-q|-m|{-e <int> -t <int> [-h]}}
-r {n|p|m|z} -i -n {i|o|x|z|u|tiny|nan|inf|snz}
-f logfile testfile

The required argument ’testfile’ is a file of test vectors in extended
Coonen syntax (the default) or SUN-UCB format.

The options of the driver program can be subdivided in three categories,
listed below.

(1) Options to specify the purpose of the run. Use precisely one of the
following three options:

-c : perform testing: file of test vectors is in Coonen syntax
-u : perform testing: file of test vectors is in SUN-UCB format
-o <file> : do not perform testing but only translate testdata from

Coonen syntax to hexadecimal SUN-UCB format and output
to <file>

336 Reference material

(2) Options to specify the precision and exponent range of the source (and
for some conversions also the destination) floating-point format, when
the file of test vectors is in extended Coonen syntax.
When the file of test vectors is in SUN-UCB format, the precision and
exponent range are specified in the testfile itself, and the options
below should be skipped.

-s : single precision (same as -e 8 -t 24 -h)
-d : double precision (same as -e 11 -t 53 -h)
-l : long double precision (same as -e 15 -t 64)
-q : quadruple precision (same as -e 15 -t 113 -h)
-m : 240 bit multiprecision (same as -e 15 -t 240)
-e <int> : provide <int> bits to represent exponent
-t <int> : provide <int> bits precision
-h : leading bit is hidden
-ds : single precision destination
-dd : double precision destination
-dl : long double precision destination
-dq : quadruple precision destination
-dm : 240 bit multiprecision destination
-de <int> : size of destination exponent
-dt <int> : destination precision
-dh : leading bit is hidden in destination

(3) Options to influence the actual testing phase (optional)
-r {n|p|m|z}: test only the specified rounding modes
-n {i|o|x|z|u|tiny|nan|inf|snz}: do not test the specified

exceptions, denormalized numbers, NaNs, signed
infinities or signed zeroes

-j {o|u|i|z}: jump/skip test vectors raising the overflow, underflow,
invalid or divide by zero exception

-ieee: test conversions only within range specified by IEEE
-i: idem as -ieee
-x: use extended precision on x86 instead of a (forced) single

or double precision
-f logfile: output log of testing to ’logfile’; the default value

for ’logfile’ is ieee.log

Listing C.3: readme.usage

C.4 Error codes used in IeeeCC754++

Tables C.1 and C.2 show the error codes used in IeeeCC754++’s verbose mode
(cf. Section 3.3.2) and their explanation. For quick lookup, Table C.1 is sorted
alphabetically, whereas Table C.2 groups error codes according to their meaning.

shortname error description
a fma error
b underflow before rounding previously not detected
c underflow before rounding previously detected
d different decimal representation
e exponent different
f flush to zero detected
g result is NaN but expected infinity
h result is not an infinity
i invalid not expected
j inexact flag not returned
k overflow flag not returned

Continued on next page. . .

C.4 Error codes used in IeeeCC754++ 337

shortname error description
l underflow not returned
m mantissa (significand) different
n result is not a NaN
o overflow not expected
p invalid flag not returned
q divide flag not returned
r scalar error (not all no-scalar fields left alone)
s Different sign
t result is normalised number but expected subnormal
u underflow without denormalisation loss previously not detected
v vector error (not all returned floats equal)
w underflow without denormalisation loss previously detected
x inexact not expected
y underflow not expected
z divide by zero not expected
ą vector exception error (not all returned exceptions equal)

Table C.1: Error short codes used in IeeeCC754++’s verbose output format and
their respective description.

shortname error description
z divide by zero not expected
i invalid not expected
x inexact not expected
o overflow not expected
u underflow without denormalisation loss previously not detected
b underflow before rounding previously not detected
y underflow not expected
j inexact flag not returned
k overflow flag not returned
l underflow not returned
w underflow without denormalisation loss previously detected
c underflow before rounding previously detected
p invalid flag not returned
q divide flag not returned
d different decimal representation
n result is not a NaN
s Different sign
e exponent different

Continued on next page. . .

338 Reference material

shortname error description
m mantissa (significand) different
v vector error (not all returned floats equal)
ą vector exception error (not all returned exceptions equal)
r scalar error (not all no-scalar fields left alone)
f flush to zero detected
t result is normalised number but expected subnormal
g result is NaN but expected infinity
h result is not an infinity
a fma error

Table C.2: Error short codes used in IeeeCC754++’s verbose output format and
their respective description.

C.5 Reference task files
In this section, we show reference task files for use with the evaluation framework
(Listings C.4, C.5, C.6, and C.7 and the optimisation framework (Listing C.8).
For details on the evaluation framework and the optimisation framework, as well
as how to use the task files within the frameworks, see Sections 3.4 and 3.5.

Reference compilation file
#
Format is:
- all lines beginning with "#" are comments
- comments and empty lines (i.e. lines only containing whitespace) are ignored
- lines must have the form "KEY VAL"
- KEY is on of the following characters:
j <FILE> job
c <FILE> compile
t <FILE> test
e <FILE> eval
m v|x|c mode
d <NAME> delimiter
- VAL must be a filename (shown as <FILE> above>, with or without the
proper ending.
- The correct ending (".job for job, ".com" for compile, ".test" for test,
".eval" for eval tasks) will be appended if not already specified.
- Tests will be executed in a subdir MYNAME.DATE where MYNAME is the name
of this job file without ".job".
- For KEY = m, VAL must be one of v (verbose mode), x (verbose mode ignoring
exceptions), or c (classic mode).
- For KEY = d, a delimiter is printed into the log file, including the given
string <NAME> as heading.
#
The job script will read each line. For "j", "c", "t" and "e" lines, it
reads the file VAL.<END> and starts the corresponding tasks (job, compile,
test, or eval task).
For "m" lines, the testing mode is changed, and for "d" lines, a delimiter
is printed into the output log file (see above).

This reference file simply takes reference tasks and executes them one after
the other. The corresponding files are called ref.com, ref.test, and
ref.eval.

show delimiter including the heading "REFERENCE - EVALUATION FRAMEWORK"
d REFERENCE - EVALUATION FRAMEWORK

compile IeeeCC754++
c ref

C.5 Reference task files 339

change IeeeCC754++ testing mode to verbose
m v

execute test and eval tasks
t ref
e ref

optional - use opt job to run optimization framework
#
WARNING: Only one opt task is allowed per evaluation framework run.
If more than one optimisation job is started, problems will arise!

show delimiter including the heading "REFERENCE - OPTIMIZATION FRAMWORK"
d REFERENCE - OPTIMIZATION FRAMWORK

the opt task
o ref

Listing C.4: files/ref.job

Reference compilation file
#
Format is:
- all lines beginning with "#" are comments
- comments and empty lines (i.e. lines only containing whitespace) are ignored
- lines must have the form "KEY = VAL"
- lines will be split at first "="
- KEY and VAL will be trimmed (whitespace at beginning/end removed)
- unknown KEYs will be ignored, but a warning will be printed
- case of KEY is irrelevant
- case of VAL is taken "as is"
#
The evaluation framework will take these values and execute the following
commands:
#
$> source <ENV>
$> configure --prefix=<PATH> CC=$MYCC CXX=$MYCXX \
CFLAGS=<CFLAGS> CPPFLAGS=<CPPFLAGS> CXXFLAGS=<CXXFLAGS> LDFLAGS=<LDFLAGS> LIBS=<LIBS> \
--enable-arch=<ARCH> --enable-mode-<MODE>(s) --enable-fpu-<FPU>(s) \
--enable-m<BITS> <ARGS>
$> make -j<CORES>
$> make install

Setup the environment for the compile task. This is done by sourcing a shell
script that exports all needed env variables.
#
Important: This script should export MYCC and MYCXX variables as these will
be used as the compiler names!
#
If more than one environment script is needed, supply as ENV entries on
separate lines:
ENV = script1
ENV = script2
#
Mandatory: no
Default: none

ENV =

Alternatively setup the environment for the compile task via the modules
system. This is done by supplying a name of the module that will be loaded
via "module load <module>".
#
Important: This script should export MYCC and MYCXX variables as these will
be used as the compiler names!
#
If more than one module is needed, supply as MODULE entries on
separate lines:
MODULE = module1
MODULE = module2
#
Mandatory: no
Default: none

MODULE =

Name of the platform’s architecture (as known by IeeeCC754++).
#

340 Reference material

Mandatory: yes
Default: none

ARCH = default

List all FPUs that need to be built. "all" builds all FPUs.
#
Mandatory: no
Default: none

FPU =

In the following, extra environment flags can be given if needed.
#
Mandatory: no
Default: none

CFLAGS =
CPPFLAGS =
CXXFLAGS =
LDFLAGS =
LIBS =

List extra arguments for the configure script here.
#
Mandatory: no
Default: none

ARGS =

Number of cores that will be used during the build stage.
#
Mandatory: no
Default: 1

CORES =

List all modes to be built.
#
Mandatory: no
Default: main

MODE =

BITS specifies if a 32 or 64 version should be built. If no value is given,
a native build is performed.
#
Mandatory: no
Default: none

BITS =

Listing C.5: files/ref.com

Reference test file
#
Format is:
- all lines beginning with "#" are comments
- comments and empty lines (i.e. lines only containing whitespace) are ignored
- lines must have the form "KEY = VAL"
- lines will be split at first "="
- KEY and VAL will be trimmed (ws at beginning/end removed)
- unknown KEYs will be ignored, but a warning will be printed
- case of KEY is irrelevant
- case of VAL is taken "as is"
#
The evaluation framework will take these values and execute the
specified test task basically as follows (for every TESTSET and FPU):
#
$> source <ENV>
$> IeeeCC754_<ARCH> -v <SRC>/<TESTSET> -f MYNAME_DATE.log --fpu=<FPU> <ARGS>

Setup the environment for the test task. This is done by sourcing one or
more shell scripts that export all needed env variables.
#
If more than one environment script is needed, supply as ENV entries on
separate lines:
ENV = script1

C.5 Reference task files 341

ENV = script2
#
Important: Most likely, the same setup as for the compile task is needed
in order to use the correct shared libraries that are linked into the
executable. However, the environment scripts used in the COMPILE script
(see below) are not imported from the COMPILE file, so they must be
explicitely specified here.
#
Mandatory: no
Default: none

ENV =

Alternatively setup the environment for the test task via the modules
system. This is done by supplying a name of the module that will be loaded
via "module load <module>".
#
Important: This script should export MYCC and MYCXX variables as these will
be used as the compiler names!
#
If more than one module is needed, supply as MODULE entries on
separate lines:
MODULE = module1
MODULE = module2
#
Mandatory: no
Default: none

MODULE =

List the name of the compile task here (which is specified in the file
TASK.com). All necessary values (which are not overwritten here) will be
retrieved from that task file.
#
Mandatory: yes
Default: none

COMPILE =

The names of the testsets that contain the test vectors.
#
These testsets need to be located in <SRC>/testsets/ (which is the standard
path for testsets inside IeeeCC754++’s source tree).
#
Mandatory: yes
Default: none

TESTSET =

If we want to test an FPU, specify it here. If not specified, the main FPU
implementation will be used.
#
PLEASE NOTE: In contrast to compile task files, FPU is not a list, so only
a single FPU entry is allowed here!
#
Mandatory: no
Default: main

FPU =

List extra arguments for the test executable here.
#
Mandatory: no
Default: none

ARGS =

For execution via a batch system, specify the batch system module here.
#
The following setup (which is typical for HPC systems) is assumed:
- Compilation is done on a front end node (possibly using a cross compiler).
- The tests are executed on compute nodes and submitted via a batch system.
#
This results in the follwing execution setup:
- The evaluation framework is started on the frontend.
- All tasks except the test task are performed on the frontend.
- Tests are executed via the following process:
* submit test to batch system
* poll batch system until job is finished
* retrieve results (possibly done implicitely)
#
Known batch systems:

342 Reference material

ll (LoadLeveler)
pbs (Torque/PBS)
slurm (SLURM)
#
Mandatory: no
Default: none

BATCH =

If IeeeCC754++ cannot be executed directly (e.g. because it must be started
via mpiexec or similar), EXECPREFIX can be used to specify the necessary
command with with the IeeeCC754++ execution line will be prefixed.
#
For example, "EXECPREFIX = mpiexec -n 2" results in an execution call to
"mpiexec -n 2 IeeeCC754++ <OPTIONS...>".
#
Mandatory: no
Default: none

EXECPREFIX =

Listing C.6: files/ref.test

Reference test file
#
Format is:
- all lines beginning with "#" are comments
- comments and empty lines (i.e. lines only containing whitespace) are ignored
- lines must have the form "KEY = VAL"
- lines will be split at first "="
- KEY and VAL will be trimmed (ws at beginning/end removed)
- unknown KEYs will be ignored, but a warning will be printed
- case of KEY is irrelevant
- case of VAL is taken "as is"
#
The evaluation framework will take these values and execute the
specified evaluation task by applying each evaluation function to
the test results.

List of evaluation functions to be used to summarise results.
A list of valid evaluation functions can be retrieved with the following
commands:
> python job.py --list
> python eval.py --list
#
Mandatory: no
Default: basic

EVALFUNCTION =

List the name of the test task here (which is specified in the file
TASK.test). All necessary values (which are not overwritten here) will be
retrieved from that task file.
#
Mandatory: no
Default: none

TEST = ref

When TEST is not given, it is possible to supply a list of logfiles
via LOGFILES and LOGPATH. These values are ignored when TEST is specified.
#
Mandatory: no
Default: none

LOGPATH =
LOGFILES =

Listing C.7: files/ref.eval

C.5 Reference task files 343

Reference optimization file
#
Format is:
- all lines beginning with "#" are comments
- comments and empty lines (i.e. lines only containing whitespace) are ignored
- lines must have the form "KEY = VAL"
- lines will be split at first "="
- KEY and VAL will be trimmed (ws at beginning/end removed)
- unknown KEYs will be ignored, but a warning will be printed
- case of KEY is irrelevant
- case of VAL is taken "as is"
#
The optimisation framework will take the values specified in this file
and execute an optimisation run as follows:
- A list of compiler option combinations is generated.
- For every combination of compiler, fpu, and options, a number of tasks
is generated:
* a compile task
* a test task
* an eval task (with opteval eval function, see below)
* a timing task, using the specified external application
- The tasks are executed.
- For every fitness function that is specified, this function is
applied to all test results, and a result table is generated.
- Finally, the result tables are printed.

Name of the platform’s architecture (as known by IeeeCC754++).
#
Mandatory: yes
Default: none

ARCH = default

Name of the platform’s architecture as displayed in results.
#
Mandatory: no
Default: ARCH

ARCHNAME =

List of compilers to be used.
#
Mandatory: yes
Default: none

COMPILERS =

If the environment needs to be set up via the modules system,
supply the template for the module to be loaded.
#
This assumes that the name of the compiler is given in the form
[cn]-[cv] where [cn] is the compiler name and [cv] the compiler
version. Alternatively, [c] can be used for the full compiler name.
#
Example:
COMPILERS = gcc-7.1 my-compiler-2
MODULE = compiler/[cn]/[cv]
results in the following module invocations:
module load compiler/gcc/7.1
module load compiler/my-compiler/2
#
Mandatory: yes
Default: none

MODULE =

List all FPUs that are to be tested.
#
Mandatory: no
Default: main

FPU =

The name of the testset that contains the test vectors.
#
This testset needs to be located in <SRC>/testsets/ (which is the standard
path for testsets inside IeeeCC754++’s source tree).
#
Only one TESTSET entry is allowed for the optimisation framework.
#
Mandatory: yes

344 Reference material

Default: none

TESTSET =

Compiler flags that should be optimised. Basically, a hierarchical list
of all combinations is generated as follows:
The flags
LEVEL1 = -a
LEVEL2 = -b1 -b2
LEVEL3 = -c1 -c2
results in these 8 combinations:
[no options]
-a
-a -b1
-a -b1 -c1
-a -b1 -c2
-a -b2
-a -b2 -c1
-a -b2 -c2
#
NOTE 1: Not all levels need to be defined, but if one level stays empty,
the following levels are ignored. This means that if LEVEL1 is empty,
only one combination is tested, i.E. the one with empty options.
#
NOTE 2: It is possible to test all combinations on levels 2 and 3
=> see COMBINATIONSLEVEL below.
#
Mandatory: no
Default: none

LEVEL1 =
LEVEL2 =
LEVEL3 =

When generating the list of compiler option combinations that should be
tested, it is possible to generate all combinations of options on level
2 and 3. The following values for COMBINATIONSLEVEL are possible:
#
0 => no combinations used (default behaviour)
1 => combinations on last level (2 or 3)
2 => combinations on from level 2 on, i.e. on levels 2 and 3
3 => combinations only on level 3
#
Mandatory: no
Default: 0

COMBINATIONSLEVEL =

In the following, extra environment flags can be given if needed.
#
Mandatory: no
Default: none

CFLAGS =
CPPFLAGS =
CXXFLAGS =
LDFLAGS =
LIBS =

The following APP_ variables are needed to evaluate the effect of the
applied compiler options with respect to performance. This is done as
follows:
* To evaluate the performance/conformity tradeoff, performance levels
need to be retrieved.
* As performance is highly dependent on the actual application, use
this application to measure real-world performance.
* The script APP_BUILD (which should accept compiler and options via
environment flags) is used to build the external application.
* The script APP_EXEC is executed to retrieve runtime of the application.
* Ideally, runtime should be in the order of O(10) seconds as this limits
the overall runtime of the optimisation framework to reasonable levels
while still providing sufficiently long running time.
* If more than one run is needed to get stable performance results,
APP_REPEATS can be used to specify the number if runs (at most 10).
* The actual runtime can be measured either by the optimisation framework
internally (i.E. the runtime of APP_EXEC is measured) or by the
application itself (i.E. externally). In the latter case, the runtime
in seconds must be returned on the command line as the only (float)
value on the last line of output.
* By default, HPCG 3.0 is used as the external application.
* Additionally, "sixloops" can be used.
#

C.5 Reference task files 345

Mandatory: no
Defaults: APP_BUILD = hpcg_build_serial.sh
APP_EXEC = hpcg_execute.sh
APP_REPEATS = 1
APP_TIMING = internal
#
#
example settings for the provided applications:
#
HPCG parallel build (with MPI and OpenMP):
#
APP_BUILD = hpcg_build_parallel.sh
APP_EXEC = hpcg_execute_mpi.sh
APP_REPEATS = 3
APP_TIMING = external
#
sixloops built with environment modules:
#
APP_BUILD = sixloops_mod_build.sh
APP_EXEC = sixloops_mod_execute.sh
APP_REPEATS = 1
APP_TIMING = external

If the automatic retrieval of timing information during an
optimisation framework run is not desired (e.g. because execution of a
significand number of test runs is not feasible or because run times
will be evaluated outside the optimisation framework), the variable
USE_EXTERNAL_APP can be used to completely bypass the timing step,
thereby speeding up the execution of the optimisation framework
significantly.
#
Mandatory: no
Default: yes

USE_EXTERNAL_APP =

List of fitness functions to be used to rank results.
A list of valid fitness functions can be retrieved with the following
command:
> python opt.py --list
#
Mandatory: no
Default: success_rate

FITNESS =

The name of the evaluation function that is to be used to summarize results.
#
NOTE that for the optimisation framework to work as expected, the default
choice "opteval" must be used as this specially tailored evaluation function
retrieves summary values from the test results and feeds them into the
optimisation db for further analysis with fitness functions (see above).
#
In other words, it should not be necessary to change this value except when
a custom evaluation function has been added for special purposes.
#
Mandatory: no
Default: opteval

EVALFUNCTION =

List extra arguments for the configure script here.
#
Mandatory: no
Default: none

ARGS =

Number of cores that will be used during the build stage.
#
Mandatory: no
Default: 1

CORES =

List all modes to be built.
#
Mandatory: no
Default: main

MODE =

346 Reference material

BITS specifies if a 32 or 64 version should be built. If no value is given,
a native build is performed.
#
Mandatory: no
Default: none

BITS =

Listing C.8: files/ref.opt

C.6 Evaluation function example
Section 3.4.2 describes the concept of analysis modules used in the evaluation frame-
work to enable quick and easy analysis of the logfiles generated by IeeeCC754++
test runs, as well as the evaluation functions implemented in the evaluation frame-
work. Since this selection of evaluation functions can never be exhaustive, the
evaluation framework may be extended with custom analysis modules. For a
description of this process, see Section 3.4.2, page 118. Listing C.9 shows an
example implementation of a custom evaluation function. Note that this imple-
mentation is not functional in that it does not actually analyse or evaluate log files.
Rather, it demonstrates common techniques able to be helpful when implementing
custom analysis modules and describes in detail the contents of the test summary
database.

#!/usr/bin/env python
#
Author: Matthias Huesken
Purpose:
#
$Id: example.py 872 2017-06-27 16:59:04Z huesken $
#

importPySQLite needs to be imported to ensure SQLite works properly
import importPySQLite

evaltools contains some useful utility functions:
- printSep(<STRING>), printHugeSep(<STRING>):
return formatted seperators
- getInt(<RESULT>):
return an integer as result of "select count(*)" operation on
the SQLite DB
import evaltools

Every analysis module needs a version() method
def version():

return "Example evaluation function v0.01"

The evaluation function in an analysis module is implemented inside
the method evaluate() which takes a SQLite table as the only paramater.
def evaluate(db):

The database that contains the result of the test runs contains of
exactly one table called "results" which is created with the
following command (shown here for reference purposes):
#
db.execute("CREATE TABLE results(line not null, precision, operation, roundmode,
operand1, operand2, operand3, resultexp, resultret, exceptexp, exceptret,
success, errors, ulps, primary key(line))")
#
with the following meaning for the entries:
#
line Line number.
precision Floating-point format (h, s, d, q, l).
operation Operation that was executed.

C.6 Evaluation function example 347

roundmode Rounding mode that was used for the operation.
operand1 The first operand.
operand2 The second operand (if there was one).
operand3 The third operand (currently only for fma).
resultexp Expected result (i.e. the correct result of the
operation as stored in the test vector).
resultret Returned result (i.e. the result of the operation
as returned by the FPU).
exceptexp Expected exceptions (i.e. the correct exceptions as
stored in the test vector - may be empty if no
exceptions should be raised).
exceptret Exceptions that were actually returned.
success "1" if the returned result is identical to the
expected result and if one of the following holds:
- the returned exceptions are identical to the
expected ones
OR
- settings.OUTPUTMODE is set to "x" (i.e. exceptions
are ignored when evaluating the "success");
"0" else.
errors "1 - success", i.e. "1" if success equals "0" and
vice versa.
ulps Difference between expected and returned result in
ULPs.
#
To analyse the testing results, arbitrary SQL operations may be
performed on db.results, followed by further analysis/evaluation/
computation in Python.
#
In the following, we give a few examples of common SQL queries and
useful evaluation operations in Python. For more examples, see the
source code of the other analysis modules.
#

First, always get a pointer to the db.
c = db.cursor()

Retrieve all operations that are contained in the db and print them
to the console. Note that the returned values are tuples which
contain the desired data in the first entry.
c.execute("SELECT DISTINCT operation FROM results ORDER BY line")
operations = c.fetchall()
for operation in operations:

print "Found operation:", operation[0]

Get overall and error counts and calculate error rate.
Prints the rate the the console like this: " 23.45%"
overall = evaltools.getInt(c.execute("SELECT count(*) FROM results"))
error = evaltools.getInt(c.execute("SELECT count(*) FROM results WHERE success = 0"))
print "Error rate: %6.2f%%" % (float(error) / float(overall) * 100.0)

Same as before, with two differences: Calculate success rate
only for all operations with "round to nearest", i.e. for all
operations that were executed with roundTiesToEven mode.
By setting "u", "d", "z". or "a" for "roundmode", results for
the other rounding modes may be retrieved.
roundmode = "n"
overall = evaltools.getInt(c.execute("SELECT count(*) FROM results WHERE roundmode = ?",

(roundmode,)))
success = evaltools.getInt(c.execute("SELECT count(*) FROM results WHERE success = 1 AND

roundmode = ?", (roundmode,)))
print "Error rate: %6.2f%%" % (float(error) / float(overall) * 100.0)

Finally, we show how the values needed by the analysis module
"error_report" are retrieved:
#
This query will return tuples with the following entries:
#
(<ERROR TYPE>, <OPERATION>, <ULPS>, <COUNT>)
#
where <COUNT> is the count of occurrences for the combination of
error type and operation.
#
Note that the "error_report" module further processes the
returned tuples to generate the report. Converting the error
types into readable text is done via the method getErrors(err)
in the "error" module. For details, see the implementation in
error_report.py.
#
c.execute("SELECT errors, operation, ulps, count(errors) FROM results WHERE success = 0 AND

errors <> ’’ GROUP BY operation, errors ORDER BY errors, operation")
results = c.fetchall()

348 Reference material

After processing, the report must be returned as a string.
output = evaltools.printSep("Example evaluation function report")
output += """Generated by: %s

Example evaluation function output - since this module does not
actually compute anything, simply return this text.

In a "real" evaluation function, the generated report should be returned
here as a string, i.e. formatted for easy reading.
""" % version()

return output

Listing C.9: evalfunc/example.py

C.7 Fitness function example
Listing C.10 shows a small example that demonstrates how a custom fitness
function (which are described in Section 3.5.2) can be added to the optimisation
framework. It represents a working example of a fitness function, although it is
not particularly useful: It simply retrieves the results from the result database
and applies a fitness value to each value according to the order in which the
results were retrieved from the database. However, the heavily commented file
gives a description of the contents of the result database which can be useful
when implementing custom fitness functions. The general process of extending the
optimisation framework with a new fitness module is discussed in Section 3.5.2,
page 142.

#!/usr/bin/env python
#
Author: Matthias Huesken
Purpose:
#
$Id: example.py 873 2017-06-27 17:00:24Z huesken $
#

importPySQLite needs to be imported to ensure SQLite works properly
import importPySQLite

fitnesstools contains some useful utility functions:
- getInt(<RESULT>):
return an integer as result of a "select count(*)" operation on
the SQLite DB
- getVectors(<DB>, <SQLSTATEMENT>):
fetch all vectors that are returned by executing <SQLSTATEMENT>.
If SQLSTATEMENT is empty, all lines are retrieved (SELECT * from optimiser)
- setFitness(<DB>, <KEY>, <FITNESS>):
push fitness value <FITNESS> for vector with key <KEY> into <DB>
- setFitness(<DB>, <FITNESSVECTOR>):
push fitness values (all contained in <FITNESSVECTOR>) into <DB>
import fitnesstools

Every analysis module needs a version() method
def version():

return "Example fitness function v0.01"

The fitness function in a fitness module is implemented inside
the method fitness() which takes an SQLite table as the only paramater.
def fitness(db):

The database that contains the result of the test runs consists of
exactly one table called "optimiser" which is created with the
following command (shown here for reference purposes):
#

C.7 Fitness function example 349

db.execute("CREATE TABLE optimiser(name NOT NULL, options, numOptions INT,
overall INT, success INT, errors INT, successRate FLOAT, errorRate FLOAT,
successExcept INT, successExceptRate FLOAT, runtime FLOAT, fitness FLOAT,
PRIMARY KEY(name))")
#
with the following meaning for the entries:
#
name Name of the currently tested set.
options Compiler options used in the current set.
numOptions Number of compiler options used.
overall Number of test vectors.
success Number of successfully executed test vectors.
errors Number of test vectors that returned errors.
successRate Succes rate.
errorRate Error rate.
successExcept Number of successes, ignoring exceptions.
successExceptRate Success rate, ignoring exceptions.
runtime Runtime of external application.
fitness Fitness (to be determined!).
#
The goal of a fitness function is to apply a fitness value to every
entry (row) in the optimiser db. How this fitness is computed is up
to the fitness function. Note that at the end of the fitness function
(which should not return anything) these fitness values must be pushed
into the db via setFitness() (see above).
#
To analyse the results, arbitrary SQL operations may be
performed on db.optimiser, followed by further analysis/evaluation/
computation in Python. However, in most cases, it should be sufficient
to retrieve the contents of the optimiser table via getVectors(),
possibly sorted via a specifically crafted SQL statement, compute
some fitness value, and push this back into the db.
#
In the following, we give a few examples of common SQL queries and
useful evaluation operations in Python. For more examples, see the
source code of the other fitness modules.
#
First, always retrieve the contents of the db.
This call is equivalent to getVectors(db, "SELECT * FROM optimiser;")
rows = fitnesstools.getVectors(db)

Or retrieve the contents sorted by some criteria.
This example sorts the table according to "success" first and
"runtime" second.
Note that only the name is selected here since with this parameter,
a fitness value can be written back into the db.
rows = fitnesstools.getVectors(db, "SELECT name FROM optimiser ORDER BY successRate DESC,

runtime ASC, numOptions ASC;")

For the above example, a unique fitness value appropriate for later
sorting by the optimisation framework can be assigned as follows:
* loop over the rows and assign a decreasing fitness value to the
current row
* additionally, push this value into the db via setFitness()
fitness = 999.99
for row in rows:

fitnesstools.setFitness(fitness)
i -= 0.01

For more examples, see the other fitness modules.
For a much more elaborate example that actually computes a fitness
value (in contrast to assigning one, see above), see the "weighted"
fitness function implemented in weighted.py.

Listing C.10: fitnessfunc/example.py

350 Reference material

List of Figures

2.1 Architecture of IeeeCC754 . 42

3.1 Overview of IeeeCC754++ file formats and testing modes. 65
3.2 Code structure of the evaluation framework. 111
3.3 Code structure for analysis modules. 113
3.4 IeeeCC754++LogViewer main window. 127
3.5 Code structure for fitness modules. 135
3.6 Code structure for external applications. 146

A.1 Class hierarchy of IeeeCC754 . 290
A.2 Class hierarchy of IeeeCC754++ 291
A.3 Basic code structure of IeeeCC754++ 293

352 LIST OF FIGURES

List of Tables

1.1 (Binary) Floating-point formats 16
1.2 Rounding modes and attributes. 17

3.1 Checksum mode header. 90
3.2 Checksum mode error. 90
3.3 Tasks supported inside the evaluation framework. 98
3.4 Compile task file parameters. 104
3.5 Test task file parameters. 106
3.6 Eval task file parameters. 108
3.7 Parameters for genJobs.py input files. 121
3.8 Parameters substituted in environment and module templates. . . 122
3.9 Compile task file parameters. 131
3.10 Possible values for COMBINATIONSLEVEL. 132
3.11 Entries in output table. 136

4.1 The fma operation. 150
4.2 Power and root operations. 154
4.3 Trigonometric operations. 155
4.4 Exponential and logarithmic operations. 156
4.5 Miscellaneous operations. 157
4.6 Mapping between testsets and operations. 164

5.1 Overview of architectures and FPUs in IeeeCC754++ 169
5.2 Power Architecture: Names and ISAs. 183
5.3 Necessary values to enable IEEE 754-2008 support in MPFR. . . 199

A.1 Relation between testing modes and corresponding classes. 292
A.2 Environment variables influencing the build process. 298
A.3 Test programs supplied by IeeeCC754++. 301

354 LIST OF TABLES

A.4 Environment variables influencing the build process. 304

B.1 Operations known to IeeeCC754++. 325
B.2 Rounding modes known to IeeeCC754++. 327

C.1 Error short codes in IeeeCC754++’s verbose mode, sorted. 337
C.2 Error short codes in IeeeCC754++’s verbose mode. 338

List of Listings

3.1 Syntax for Coonen test vector files 79
3.2 Syntax for UCB test vector files 80
3.3 Example plain format output . 82
3.4 coonen.in: Example Coonen test vector file. 83
3.5 Annotated UCB test vector file in single precision 83
3.6 Syntax for the verbose output format (BNF) 84
3.7 Example verbose format output 86
3.8 Example verbose format output (-vix) 87
3.9 Example verbose format output (-vcc) 87
3.10 Example verbose format output (-vin) 88
3.11 Example verbose format output (-vout) 88
3.12 Example checksum mode plain format output 91
3.13 Example dropped checksum mode plain format output 91
3.14 Example fingerprint mode output 92
3.15 Output of IeeeCC754++ -t . 93
3.16 Output of job.py -help . 99
3.17 Output of successfully importing SQLite. 101
3.18 Example job task file. 103
3.19 Example environment script gcc47_env.sh. 105
3.20 Example compile task file. 105
3.21 Example test task file. 107
3.22 Example eval task file. 108
3.23 Output of eval.py -help . 110
3.24 Output of eval.py -list . 110
3.25 Output of eval.py -e basic ex.log 114
3.26 Output of eval.py -e error_list ex.log 115
3.27 Output of eval.py -e error_report ex.log 115
3.28 Output of eval.py -e operation_report ex.log 115

356 LIST OF LISTINGS

3.29 Output of eval.py -e roundings ex.log 116
3.30 Output of eval.py -e ulp ex2.log 117
3.31 minimal.py: Minimal implementation of an analysis module. . . . 118
3.32 Listing the new analysis module. 118
3.33 Searching for errors in the new analysis module. 119
3.34 Testing the new analysis module. 119
3.35 Output of updateJobs.sh -help 123
3.36 Example of a mytests.local file. 124
3.37 Output of startTests.sh -help 125
3.38 Output of startTests.sh -list 125
3.39 logviewer.conf . 128
3.40 Example settings for compiler options. 131
3.41 Compiler option combinations resulting from Listing 3.40. 131
3.42 Example settings for compiler options. 132
3.43 Compiler option combinations resulting from Listing 3.42. 132
3.44 Output of opt.py -help . 133
3.45 Output of opt.py -list . 134
3.46 Opt task file example_short.opt. 136
3.47 Output of opt.py example_short.opt. 137
3.48 Example task file example.opt. 137
3.49 Example output with runtime fitness function. 138
3.50 Example output with success_rate fitness function. 138
3.51 Example output with runtime_success fitness function. 139
3.52 Example output with runtime_noexp fitness function. 140
3.53 Example output with success_runtime fitness function. 140
3.54 Example output with noexp_runtime fitness function. 141
3.55 Example output with weighted fitness function. 142

4.1 fma test vector in Coonen format. 151
4.2 fma test vector in UCB format, single precision. 151
4.3 Output of convertTestsets.py -help 159
4.4 Output of convertTestsets.py -list 159
4.5 Output of genUCB.sh -help . 160
4.6 Output of genUCB.sh -list . 161

6.1 Generating testsets. 203
6.2 Configuring and building IeeeCC754++. 204
6.3 Executing tests in the default user environment. 205
6.4 Standalone evaluation for single precision. 206
6.5 operation_report evaluation function results for t2s.log. 208
6.6 ulp evaluation function results for t2s.log. 209
6.7 Generating annotated results for the fma testset. 209
6.8 ulp evaluation function results for fmas.log. 209

LIST OF LISTINGS 357

6.9 error_list excerpt for ulp deviations in fmas.log. 210
6.10 Excerpt from the UCB input file fmas. 210
6.11 error_list excerpt for sign errors in fmas.log. 211
6.12 fma implementation excerpt of the default generic FPU. 211
6.13 Generating results for the main c99 FPU with the fma testset. . . 212
6.14 basic evaluation function results for fmas.c99.log. 212
6.15 basic evaluation function results for t2d.log. 212
6.16 operation_report evaluation function results for t2d.log. 213
6.17 ulp evaluation function results for t2d.log. 214
6.18 Creating input files for use with startTests.sh. 214
6.19 Input file default.in. 215
6.20 Input file x86.in. 215
6.21 Creating a setup file for use with startTests.sh. 215
6.22 Input file mytests.local. 216
6.23 Generating evaluation framework task files. 216
6.24 Running the evaluation framework. 217
6.25 Results of the evaluation framework run. 217
6.26 Summary of testing the default architecture. 218
6.27 Short summary of testing the default architecture. 218
6.28 basic output: main FPU, -vix mode, t2s testset 219
6.29 basic output: c99 FPU, -v mode, t2s testset 219
6.30 operation_report output: c99 FPU, -v mode, t2s testset 220
6.31 ulp output: c99 FPU, -v mode, t2s testset 220
6.32 Summary of testing the x86 architecture. 221
6.33 operation_report output: x86 main FPU, -v mode, clang, t3d . 221
6.34 error_list output: x86 main FPU, -v mode, clang, t3d 222
6.35 operation_report output: x86 main FPU, -v mode, gcc, t3d . . 222
6.36 error_list output: x86 main FPU, -v mode, gcc, t3d 223
6.37 Input file compilers.in. 224
6.38 Summary of testing different compilers. 224
6.39 Summary of testing the x86 avx FPU. 227
6.40 Summary of testing the x87 FPU on an Intel Core workstation. . 228
6.41 basic output, x87 FPU, t3d, double intermediate precision. . . . 228
6.42 roundings output, x87 FPU, t3d, double intermediate precision. . 229
6.43 error_report output, x87 FPU, t3d, double interm. prec. 229
6.44 Testing summary, x87 FPU, t3d, extended interm. prec. 230
6.45 roundings output, x87 FPU, t3d, extended interm. prec. 230
6.46 error_report output, x87 FPU, t3d, extended interm. prec. . . . 230
6.47 Testing summary (Xeon), x87 FPU, t3d, native interm. prec. . . 231
6.48 Testing summary (Xeon), x87 FPU, t3d, extended interm. prec. . 231
6.49 Summary of testing the x86 avx512 FPU on a KNL Xeon Phi. . 232
6.50 Summary of testing the arm main FPU on a RPI. 233
6.51 basic output, arm main FPU, -vix, t3s on RPI. 233

358 LIST OF LISTINGS

6.52 basic output, arm c99 FPU, -vix, t3s on RPI. 234
6.53 operation_report excerpt, arm main FPU, -vix, t3s on RPI. . . 235
6.54 roundings output, arm main FPU, -vix, t3s on RPI. 235
6.55 Summary of testing the arm vfp and vfps FPUs on CB2. 235
6.56 Summary of testing the arm vfp and vfps FPUs on RPI3. 236
6.57 operation_report output, arm vfps FPU, t3s on CB2 and RPI3. 236
6.58 operation_report output, arm vfp FPU, t3s on CB2 and RPI3. . 236
6.59 Summary of testing the arm vfpv4 and vfpv4s FPUs on RPI3. . . 238
6.60 operation_report output, arm vfpv4s FPU, t3d on RPI3. 238
6.61 Summary of testing the arm neoni FPU on CB2. 238
6.62 Full testing summary, arm neoni FPU on CB2. 238
6.63 Full testing summary, arm neoni FPU, -ftz on CB2. 239
6.64 Full testing summary, arm neoni FPU, -ftzsigned on CB2. . . . 239
6.65 roundings output, arm neoni FPU, -ftzsigned, -vix, t3s. . . . 240
6.66 error_report output, arm neoni FPU, -ftzsigned, -vix, t3s. . 240
6.67 Summary of testing results on X-Gene 2. 241
6.68 operation_report output, aarch64 main FPU, -vio, t3s. 241
6.69 operation_report output, aarch64 asimd FPU, -vio, t3s. . . . 242
6.70 operation_report output, aarch64 neoni FPU, -vio, t3s. . . . 242
6.71 roundings output, aarch64 neoni FPU, -vix, t3s. 242
6.72 Summary of testing results on X-Gene. 242
6.73 Summary of testing results on Pine64. 243
6.74 basic output, arm sve FPU, -vio, t3s testset. 244
6.75 basic output, arm sve FPU, -vio, t3d testset. 244
6.76 operation_report output, arm sve FPU, -vio, t3s testset. . . . 245
6.77 roundings output, arm sve FPU, -vio, t3s testset. 245
6.78 Summary of testing results on POWER8 with XLC. 246
6.79 basic output, POWER8, -vio, t3s testset. 246
6.80 basic output, POWER8, -vix, t3s testset. 247
6.81 operation_report output, POWER8, -vix, t3s testset. 247
6.82 roundings output, POWER8, -vix, t3s testset. 248
6.83 basic output, POWER8, altivec FPU, -vix, t3s testset. 248
6.84 operation_report output, POWER8, altivec FPU, -vix, t3s. . 248
6.85 basic output, POWER8, vsx FPU, -vio, t3s testset. 249
6.86 operation_report output, POWER8, vsx FPU, -vio, t3s testset. 249
6.87 roundings output, POWER8, vsx FPU, -vix, t3s testset. 249
6.88 Summary of testing results on POWER8 with gcc. 250
6.89 operation_report output, POWER8, vsx FPU, -vio, t3s (gcc). 250
6.90 basic output on QPACE, -vix, t3sz testset. 251
6.91 basic output on QPACE, -vix, t3dn testset. 252
6.92 error_report output on QPACE, -vix, t3sn testset. 252
6.93 CUDA testing summary. 253
6.94 OpenCL testing summary, -vix mode. 254

LIST OF LISTINGS 359

6.95 operation_report output, opencl FPU, -vix, t3sn testset. . . . 255
6.96 operation_report output, opencl FPU, -vix, t3dn testset. . . . 256
6.97 error_list output, opencl FPU, -vix, t3sn testset. 256
6.98 SoftFloat testing summary. 257
6.99 basic output, SoftFloat, t3d testset. 257
6.100 roundings output, SoftFloat, t3d testset. 258
6.101 SoftFloat testing summary, half precision. 258
6.102 operation_report output, SoftFloat, t3h testset. 258
6.103 roundings output, SoftFloat, t3h testset. 258
6.104 MPFR testing summary. 259
6.105 error_report output, MPFR mpfrdef FPU, t3d testset. 260
6.106 ulp output, MPFR mpfrdef FPU, t3d testset. 260
6.107 Java testing summary. 260
6.108 operation_report output, Java, t3d testset. 261
6.109 operation_report output, Java strict FPU, JDK 1.8, t3s. . . . 261
6.110 operation_report output, Java strict FPU, JDK 1.7, t3s. . . . 262
6.111 Testing summary for elementary operators with C99 and C++11. . 263
6.112 Testing summary for trigonometric operators, single precision. . . 264
6.113 Testing summary for trigonometric operators, double precision. . 264
6.114 operation_report output, mpfr main FPU, tTs testset. 265
6.115 ulp output, c99 FPU, tTd testset. 265
6.116 ulp output, cuda FPU, tTd testset. 265
6.117 Testing summary for exponentials and logarithms, single precision. 266
6.118 Testing summary for exponentials and logarithms, double precision.266
6.119 operation_report output, nv cuda FPU, tQs testset. 266
6.120 ulp output, c99 FPU, tQd testset. 267
6.121 ulp output, cuda FPU, tQd testset. 267
6.122 error_report output, cuda FPU, tQdn testset. 267
6.123 Testing summary for power operators, single precision. 268
6.124 Testing summary for power operators, double precision. 268
6.125 error_report output, cuda FPU, tPs testset. 268
6.126 operation_report output, mpfr main FPU, tPs testset. 269
6.127 error_report output, cuda FPU, tPd testset. 269
6.128 operation_report output, c99 FPU, tPd testset. 270
6.129 roundings output, c99 FPU, tPd testset. 271
6.130 Elementary operator testing summary, -vix, tXdn testsets. . . . 271
6.131 operation_report excerpt, c99 FPU, tTdn and tQdn. 271
6.132 error_report excerpt, cuda FPU, tTdn testset. 272
6.133 error_report excerpt, cuda FPU, tQdn testset. 272
6.134 error_report excerpt, cuda FPU, tPdn testset. 273
6.135 Opt task file default_step_one.opt. 274
6.136 Output of opt.py default_step_one.opt. 275
6.137 Opt task file default_step_two.opt. 276

360 LIST OF LISTINGS

6.138 Output of opt.py default_step_two.opt. 277
6.139 Opt task file sixloops.opt. 277
6.140 Output of opt.py sixloops.opt. 278
6.141 Opt task file hpcg.opt. 279
6.142 Output of opt.py hpcg.opt. 280

A.1 Summary output of ./configure. 295
A.2 Setting up cross compilation via -host. 302
A.3 Setting up cross compilation via MYHOST. 302
A.4 Example build for the x86 architecture. 304

B.1 Implementation of addition for DriverFloat_main. 320
B.2 Example implementation of DriverFloat_main. 328
B.3 Example implementation of DriverFloat_abc. 329
B.4 Building IeeeCC754++ for the architecture xyz and the FPU abc. 331

C.1 fma test vector in UCB format, single precision. 333
C.2 IeeeCC754++ usage and command line parameters. 334
C.3 readme.usage . 335
C.4 files/ref.job . 338
C.5 files/ref.com . 339
C.6 files/ref.test . 340
C.7 files/ref.eval . 342
C.8 files/ref.opt . 343
C.9 evalfunc/example.py . 346
C.10 fitnessfunc/example.py . 348

Bibliography

[All15a] Allwinner Technology. A20 Datasheet, Revision 1.5. 06/04/2015.
url: https://github.com/allwinner-zh/documents/raw/master/A20/
A20_Datasheet_v1.5_20150510.pdf (visited on 15/11/2017).

[All15b] Allwinner Technology. A64 Datasheet, Revision 1.1. 26/06/2015. url:
http://files.pine64.org/doc/datasheet/pine64/A64_Datasheet_V1.1.
pdf (visited on 15/11/2017).

[AMD00a] AMD. 3DNow! Technology Manual. 2000. url: http://support.amd.
com/TechDocs/21928.pdf.

[AMD00b] AMD. AMD Extensions to the 3DNow! and MMX Instruction Sets –
Manual. 2000. url: http://support.amd.com/TechDocs/21928.pdf.

[AMD05] AMD. AMD64 Architecture Programmer’s Manual Volume 1: Appli-
cation Programming. 2005.

[AMD17a] AMD. AMD EPYC. 2017. url: http://www.amd.com/en/products/
epyc (visited on 28/11/2017).

[AMD17b] AMD. AMD Ryzen. 2017. url: http://www.amd.com/en/ryzen (visited
on 28/11/2017).

[AMD17c] AMD. Radeon Pro. 2017. url: https://pro.radeon.com/en/ (visited
on 28/11/2017).

[AMD17d] AMD. Server Graphics and Accelerators. 2017. url: http://www.amd.
com/en/products/servers-graphics (visited on 28/11/2017).

[APMa] Applied Micro. X-Gene X-C1 Evaluation Kit. url: https://www.apm.
com/docs/X-C1_PB.pdf (visited on 17/11/2017).

[APMb] Applied Micro. X-Gene X-C2 Evaluation Kit. url: https://myapm.
apm.com/technical_documents/download/apm883408- x2- x- gene- 2-
evaluation-kit-product-brief (visited on 17/11/2017).

https://github.com/allwinner-zh/documents/raw/master/A20/A20_Datasheet_v1.5_20150510.pdf
https://github.com/allwinner-zh/documents/raw/master/A20/A20_Datasheet_v1.5_20150510.pdf
http://files.pine64.org/doc/datasheet/pine64/A64_Datasheet_V1.1.pdf
http://files.pine64.org/doc/datasheet/pine64/A64_Datasheet_V1.1.pdf
http://support.amd.com/TechDocs/21928.pdf
http://support.amd.com/TechDocs/21928.pdf
http://support.amd.com/TechDocs/21928.pdf
http://www.amd.com/en/products/epyc
http://www.amd.com/en/products/epyc
http://www.amd.com/en/ryzen
https://pro.radeon.com/en/
http://www.amd.com/en/products/servers-graphics
http://www.amd.com/en/products/servers-graphics
https://www.apm.com/docs/X-C1_PB.pdf
https://www.apm.com/docs/X-C1_PB.pdf
https://myapm.apm.com/technical_documents/download/apm883408-x2-x-gene-2-evaluation-kit-product-brief
https://myapm.apm.com/technical_documents/download/apm883408-x2-x-gene-2-evaluation-kit-product-brief
https://myapm.apm.com/technical_documents/download/apm883408-x2-x-gene-2-evaluation-kit-product-brief

362 BIBLIOGRAPHY

[APM17] Applied Micro. X-Gene. 2017. url: https://www.apm.com/products/
data-center/x-gene-family/x-gene/ (visited on 15/11/2017).

[ARMa] ARM. Arm Instruction Emulator. url: https://developer.arm.
com/products/software- development- tools/hpc/arm- instruction-
emulator.

[ARMb] ARM. ARM Performance Libraries. url: https://developer.arm.
com/products/software- development- tools/hpc/arm- performance-
libraries.

[ARM05] ARM. ARM Architecture Reference Manual. 2005. url: http://
infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0100i/
index.html.

[ARM14] ARM. ARM Architecture Reference Manual, ARMv7-A and ARMv7-
R edition. 2014. url: http://infocenter.arm.com/help/index.jsp?
topic=/com.arm.doc.ddi0406c/index.html.

[ARM17] ARM. ARM Architecture Reference Manual. ARMv8, for ARMv8-A
architecture profile. 2017. url: https://developer.arm.com/docs/
ddi0487/latest.

[Bai+09] H. Baier et al. QPACE – a QCD parallel computer based on Cell
processors. 11/2009. arXiv: 0911.2174 [hep-lat].

[Ber17] J. Bernier. MIPS CPUs are at the heart of the world’s greenest
supercomputers. 21/11/2017. url: https://www.mips.com/blog/mips-
cpus-are-at-the-heart-of-the-worlds-greenest-supercomputers/
(visited on 28/11/2017).

[BLAS17] BLAS (Basic Linear Algebra Subprograms). 14/11/2017. url: http:
//www.netlib.org/blas/ (visited on 29/11/2017).

[BM08] S. Boldo and G. Melquiond. ‘Emulation of FMA and Correctly
Rounded Sums: Proved Algorithms Using Rounding to Odd’. In:
IEEE Transactions on Computers 57.4 (04/2008), pp. 462–471.

[BMP06] H. Brönnimann, G. Melquiond and S. Pion. ‘The design of the Boost
interval arithmetic library’. In: Theoretical Computer Science 351.1
(2006), pp. 111–118.

[BNS16] W. E. Brown, A. Naumann and E. Smith-Rowland. Mathematical
Special Functions for C++17, v5. 29/02/2016. url: https://isocpp.
org/files/papers/P0226R1.pdf.

[Bou+15] A. Bouteiller et al. ‘Algorithm-Based Fault Tolerance for Dense
Matrix Factorizations, Multiple Failures and Accuracy’. In: ACM
Transactions on Parallel Computing 1.2 (02-2015).

[BS08] G. Bronevetsky and B. R. de Supinski. ‘Soft Error Vulnerability of
Iterative Linear Algebra Methods’. In: ICS08. 2008.

https://www.apm.com/products/data-center/x-gene-family/x-gene/
https://www.apm.com/products/data-center/x-gene-family/x-gene/
https://developer.arm.com/products/software-development-tools/hpc/arm-instruction-emulator
https://developer.arm.com/products/software-development-tools/hpc/arm-instruction-emulator
https://developer.arm.com/products/software-development-tools/hpc/arm-instruction-emulator
https://developer.arm.com/products/software-development-tools/hpc/arm-performance-libraries
https://developer.arm.com/products/software-development-tools/hpc/arm-performance-libraries
https://developer.arm.com/products/software-development-tools/hpc/arm-performance-libraries
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0100i/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0100i/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0100i/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0406c/index.html
https://developer.arm.com/docs/ddi0487/latest
https://developer.arm.com/docs/ddi0487/latest
http://arxiv.org/abs/0911.2174
https://www.mips.com/blog/mips-cpus-are-at-the-heart-of-the-worlds-greenest-supercomputers/
https://www.mips.com/blog/mips-cpus-are-at-the-heart-of-the-worlds-greenest-supercomputers/
http://www.netlib.org/blas/
http://www.netlib.org/blas/
https://isocpp.org/files/papers/P0226R1.pdf
https://isocpp.org/files/papers/P0226R1.pdf

BIBLIOGRAPHY 363

[But+06] A. Buttari et al. ‘Exploiting Mixed Precision Floating Point Hard-
ware in Scientific Computations’. In: High Performance Computing
Workshop. 2006.

[C++03] C++03. ISO/IEC 14882:2003, Information technology – Programming
languages – C++. ISO/IEC, 2003.

[C++98] C++98. ISO/IEC 14882:1998, Information technology – Programming
languages – C++. ISO/IEC, 1998.

[C99] C99. ISO/IEC 9899:1999, Programming languages – C. ISO/IEC,
1999.

[Cas08] S. Casey. x87 and SSE Floating Point Assists in IA-32: Flush-
To-Zero (FTZ) and Denormals-Are-Zero (DAZ). 17/10/2008. url:
https://software.intel.com/en-us/articles/x87-and-sse-floating-
point-assists-in-ia-32-flush-to-zero-ftz-and-denormals-are-
zero-daz/ (visited on 10/11/2017).

[Cav17] Cavium. ThunderX ARM Processors. 2017. url: http://www.cavium.
com/ThunderX_ARM_Processors.html (visited on 28/11/2017).

[CB17] CubieBoard. Cubieboard 2. 2017. url: http://cubieboard.org/model/
cb2/ (visited on 15/11/2017).

[CFD08] S. Collange, J. Flórez and D. Defour. ‘A GPU interval library based
on Boost interval’. In: 8th Conference on Real Numbers and Com-
puters (RNC8) (2008).

[Coo84] J. Coonen. ‘Contributions to a proposed standard for binary floating-
point arithmetic’. PhD thesis. University of California at Berkeley,
1984.

[Cro+89] J. Du Croz et al. Validation of numerial computations in Ada. Tech.
rep. The Numerical Algorithms Group Ltd. (NAG), 1989.

[CS15] Y. Cai and S. See, eds. GPU Computing and Applications. Springer
Singapore, 2015.

[Cuy+00] A. Cuyt et al. The Arithmos project. University of Antwerp (UIA).
2000. url: http://win-www.uia.ac.be/u/cant/arithmos.

[Cuy+02] A. Cuyt et al. ‘Underflow revisited’. In: Calcolo 39 (2002), pp. 169–
179.

[Dal06] J. T. Daly. ‘A higher Order estimate of the optimum checkpoint
interval for restart dumps’. In: Future Generation Computer Systems
22 (2006), pp. 303–312.

[Dar+06] C. Daramy-Loirat et al. CR-LIBM – A library of correctly rounded
elementary functions in double-precision. Tech. rep. LIP, 12/2006.

https://software.intel.com/en-us/articles/x87-and-sse-floating-point-assists-in-ia-32-flush-to-zero-ftz-and-denormals-are-zero-daz/
https://software.intel.com/en-us/articles/x87-and-sse-floating-point-assists-in-ia-32-flush-to-zero-ftz-and-denormals-are-zero-daz/
https://software.intel.com/en-us/articles/x87-and-sse-floating-point-assists-in-ia-32-flush-to-zero-ftz-and-denormals-are-zero-daz/
http://www.cavium.com/ThunderX_ARM_Processors.html
http://www.cavium.com/ThunderX_ARM_Processors.html
http://cubieboard.org/model/cb2/
http://cubieboard.org/model/cb2/
http://win-www.uia.ac.be/u/cant/arithmos

364 BIBLIOGRAPHY

[Daw14] B. Dawson. There are Only Four Billion Floats — So Test Them
All! 01/2014. url: https://randomascii.wordpress.com/2014/01/27/
theres-only-four-billion-floatsso-test-them-all/.

[DDP15] C. Denis, P. De Oliveira Castro and E. Petit. Verificarlo: checking
floating point accuracy through Monte Carlo Arithmetic. 09/2015.
arXiv: 1509.01347 [cs.MS].

[DHP15] J. Dongarra, M. A. Heroux and L. Piotr. HPCG Benchmark: a New
Metric for Ranking High Performance Computing Systems. Tech.
rep. UT-EECS-15-736. Electrical Engineering and Computer Sciente
Department, Knoxville, Tennessee, 2015.

[DIN92] DIN 1333:1992-02, Presentation of numerical data. 02/1992.
[Ede97] A. Edelman. ‘The Mathematics Of The Pentium Bug’. In: SIAM

1.39 (1997), pp. 54–67.
[EHM14] J. Elliott, M. Hoemmen and F. Mueller. ‘Evaluating the Impact of

SDC on the GMRES Iterative Solver’. In: IPDPS14. 2014.
[Eib14] J. Eibl. KDiff3. 2014. url: http://kdiff3.sourceforge.net (visited

on 12/09/2017).
[FBS17] J. Firebaugh, O. Bruggeman and J. Snyder. Kompare – Diff/Patch

Frontend. 2017. url: https://www.kde.org/applications/development/
kompare/ (visited on 12/09/2017).

[Fia+12] D. Fiala et al. ‘Detection and Correction of Silent Data Corruption
for Large-Scale High Performance Computing’. In: SC12. 2012.

[FL16] F. Févotte and B. Lathuilière. ‘VERROU: Assessing Floating-Point
Accuracy Without Recompiling’. Preprint. 10/2016. url: https:
//hal.archives-ouvertes.fr/hal-01383417.

[FNZ12] A. Frommer, A. Nobile and P. Zingler. Deflation and Flexible SAP-
Preconditioning of GMRES in Lattice QCD Simulation. 04/2012.
arXiv: 1204.5463 [hep-lat].

[Fou+08] L. Fousse et al. ‘MPFR: A Multiple-Precision Binary Floating-Point
Library with Correct Rounding.’ In: ACM Transactions on Mathem-
atical Software 33 (06/2008), pp. 13–26.

[Fox12] T. Fox. QPX Architecture – Quad Processing eXtension to the Power
ISA. 2012. url: https://www.alcf.anl.gov/files/Qpx_3.pdf.

[G+10] G. Guennebaud, B. Jacob et al. Eigen v3. 2010. url: http://eigen.
tuxfamily.org.

[Gel16] J. D. Gelas. Investigating Cavium’s ThunderX: The First ARM
Server SoC With Ambition. AnandTech. 13/06/2016. url: https:
//www.anandtech.com/show/10353/investigating-cavium-thunderx-
48-arm-cores (visited on 28/11/2017).

https://randomascii.wordpress.com/2014/01/27/theres-only-four-billion-floatsso-test-them-all/
https://randomascii.wordpress.com/2014/01/27/theres-only-four-billion-floatsso-test-them-all/
http://arxiv.org/abs/1509.01347
http://kdiff3.sourceforge.net
https://www.kde.org/applications/development/kompare/
https://www.kde.org/applications/development/kompare/
https://hal.archives-ouvertes.fr/hal-01383417
https://hal.archives-ouvertes.fr/hal-01383417
http://arxiv.org/abs/1204.5463
https://www.alcf.anl.gov/files/Qpx_3.pdf
http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
https://www.anandtech.com/show/10353/investigating-cavium-thunderx-48-arm-cores
https://www.anandtech.com/show/10353/investigating-cavium-thunderx-48-arm-cores
https://www.anandtech.com/show/10353/investigating-cavium-thunderx-48-arm-cores

BIBLIOGRAPHY 365

[GNU16a] GNU. An Introduction to the Autotools. 02/06/2016. url: http:
//www.gnu.org/software/automake/manual/html_node/Autotools-
Introduction.html (visited on 02/06/2016).

[GNU16b] GNU. Autoconf manual. 15/08/2016. url: https://www.gnu.org/
software/autoconf/manual/autoconf.html (visited on 15/08/2016).

[GNU16c] GNU. The GNU Multiple Precision Arithmetic Library. 2016. url:
http://gmplib.org (visited on 22/08/2017).

[GNU16d] GNU. The Multiple Precision Floating-Point Reliable Library. 3.1.5.
2016. url: http://www.mpfr.org/mpfr-current/mpfr.pdf.

[Gol91] D. Goldberg. ‘What Every Computer Scientist Should Know About
Floating-Point Arithmetic’. In: Computing Surveys (03/1991).

[Graph500] GRAPH 500. url: http://graph500.org (visited on 08/08/2017).
[Green500] The GREEN 500 – The List. url: https://www.top500.org/green500/

(visited on 08/08/2017).
[GRW17] P. Georg, D. Richtmann and T. Wettig. ‘DD-αAMG on QPACE 3’.

In: 35th International Symposium on Lattice Field Theory (Lattice
2017) Granada, Spain, June 18-24, 2017. 10/2017. arXiv: 1710.07041
[hep-lat].

[GV96] G. H. Golub and C. F. Van Loan. Matrix Computations (3rd Ed.)
Baltimore, MD, USA: Johns Hopkins University Press, 1996.

[Har00a] J. Harrison. ‘Formal verification of floating-point trigonometric func-
tions’. In: Proceedings of the 3rd International Conference on Formal
Methods in Computer-Aided Design, FMCAD 2000. Ed. by W. A.
Hunt and S. D. Johnson. Vol. 1954. Lecture Notes in Computer
Science. Berlin: Springer-Verlag, 2000, pp. 217–233.

[Har00b] J. Harrison. ‘Formal verification of IA-64 divison algorithms’. In:
Proceedings of the 13th International Conference on Theorem Proving
in High Order Logics, TPHOLs 2000. Ed. by M. Aagard and J.
Harrison. Vol. 1869. Lecture Notes in Computer Science. Berlin:
Springer-Verlag, 2000, pp. 234–251.

[Hau17] J. Hauser. Berkeley SoftFloat, Release 3d. 10/08/2017. url: http://
www.jhauser.us/arithmetic/SoftFloat.html (visited on 22/08/2017).

[HE02] R. Hain and S. Eversmeier. ‘Denormalisation. Die Achillesferse des
virtuellen Studios und des Pentium 4’. In: Keyboards (8-2002), pp. 42–
45.

[HF06] M. Hüsken and A. Frommer. Ensuring numerical quality in grid
computing. Tech. rep. BUW-SC 2006/1. University of Wuppertal,
2006.

http://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html
http://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html
http://www.gnu.org/software/automake/manual/html_node/Autotools-Introduction.html
https://www.gnu.org/software/autoconf/manual/autoconf.html
https://www.gnu.org/software/autoconf/manual/autoconf.html
http://gmplib.org
http://www.mpfr.org/mpfr-current/mpfr.pdf
http://graph500.org
https://www.top500.org/green500/
http://arxiv.org/abs/1710.07041
http://arxiv.org/abs/1710.07041
http://www.jhauser.us/arithmetic/SoftFloat.html
http://www.jhauser.us/arithmetic/SoftFloat.html

366 BIBLIOGRAPHY

[Hig02] N. Higham. Accuracy and Stability of Numerical Algorithms. Second
edition. SIAM, 2002.

[Hig15] N. Higham. The Rise of Mixed Precision Arithmetic. 20/10/2015.
url: https://nickhigham.wordpress.com/2015/10/20/the-rise-of-
mixed-precision-arithmetic/ (visited on 29/11/2017).

[Hou+88] D. Hough et al. UCBTEST, a suite of programs for testing certain
difficult cases of IEEE 754 floating-point arithmetic. Restricted public
domain software from http://netlib.bell-labs.com/netlib/fp/
index.html. 1988.

[Hou08] D. Hough. Revising ANSI/IEEE Std 754-1985. 24/06/2008. url:
http://754r.ucbtest.org/web-2008 (visited on 01/12/2017).

[Hou15] D. Hough. IEEE 754-2008 Revision Minutes, 2015 September 22.
2015. url: http://754r.ucbtest.org/minutes/2015-09-22-minutes.
txt (visited on 01/12/2017).

[Hou17a] D. Hough. Changes in 754-2018 from ANSI/IEEE Std 754-2008.
21/11/2017. url: http://754r.ucbtest.org/changes.html (visited on
29/11/2017).

[Hou17b] D. Hough. Revising ANSI/IEEE Std 754-2008. 30/11/2017. url:
http://754r.ucbtest.org (visited on 01/12/2017).

[HP11] J. Hennessy and D. Patterson. Computer Architecture, Fifth Edition:
A Quantitative Approach. 5th. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2011.

[HPCG] HPCG. url: http://www.hpcg-benchmark.org.
[IBM01] IBM. Workload Management with LoadLeveler. 2001. url: https:

//www.redbooks.ibm.com/redbooks/pdfs/sg246038.pdf.
[IBM03a] IBM. Engineering and Scientific Subroutine Library for AIX, Version

4 Release 1, and Linux on pSeries, Version 4 Release 1: Guide and
Reference. 2nd edition. 2003.

[IBM03b] IBM. Parallel Engineering and Scientific Subroutine Library for
AIX, Version 3 Release 1, and Linux on pSeries, Version 3 Release
1: Guide and Reference. 2nd edition. 2003.

[IBM11a] IBM. IBM Blue Gene/Q. url: https://www-03.ibm.com/systems/
technicalcomputing/solutions/bluegene/ (visited on 29/11/2017).

[IBM11b] IBM. Icons of Progress: Blue Gene. 2011. url: http://www- 03.
ibm.com/ibm/history/ibm100/us/en/icons/bluegene/ (visited on
08/08/2017).

[IBM17] IBM Knowledge Center. 8247-42L (IBM Power System S824L).
14/09/2017. url: https://www.ibm.com/support/knowledgecenter/
en/8247-42L/p8hdx/8247_42l_landing.htm (visited on 20/11/2017).

https://nickhigham.wordpress.com/2015/10/20/the-rise-of-mixed-precision-arithmetic/
https://nickhigham.wordpress.com/2015/10/20/the-rise-of-mixed-precision-arithmetic/
http://netlib.bell-labs.com/netlib/fp/index.html
http://netlib.bell-labs.com/netlib/fp/index.html
http://754r.ucbtest.org/web-2008
http://754r.ucbtest.org/minutes/2015-09-22-minutes.txt
http://754r.ucbtest.org/minutes/2015-09-22-minutes.txt
http://754r.ucbtest.org/changes.html
http://754r.ucbtest.org
http://www.hpcg-benchmark.org
https://www.redbooks.ibm.com/redbooks/pdfs/sg246038.pdf
https://www.redbooks.ibm.com/redbooks/pdfs/sg246038.pdf
https://www-03.ibm.com/systems/technicalcomputing/solutions/bluegene/
https://www-03.ibm.com/systems/technicalcomputing/solutions/bluegene/
http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/bluegene/
http://www-03.ibm.com/ibm/history/ibm100/us/en/icons/bluegene/
https://www.ibm.com/support/knowledgecenter/en/8247-42L/p8hdx/8247_42l_landing.htm
https://www.ibm.com/support/knowledgecenter/en/8247-42L/p8hdx/8247_42l_landing.htm

BIBLIOGRAPHY 367

[IBTA17] InfiniBand Trade Association. 2017. url: http://www.infinibandta.
org (visited on 23/08/2017).

[IEEE08] IEEE Std 754-2008, Standard for Floating-Point Arithmetic. IEEE,
2008.

[IEEE15] IEEE Std 1788-2015, IEEE Standard for Interval Arithmetic. IEEE,
2015.

[IEEE17a] IEEE. IEEE 754-2008 errata. 01/12/2017. url: http://speleotrove.
com/misc/IEEE754-errata.html (visited on 12/01/2017).

[IEEE17b] IEEE. Revising Standards. 2017. url: https://standards.ieee.org/
develop/revisestds.html (visited on 29/11/2017).

[IEEE85] ANSI/IEEE Std 754-1985, Standard for Binary Floating-Point Arith-
metic. IEEE, 1985.

[IEEE87] ANSI/IEEE Std 854-1987, Standard for Radix-independent Floating-
Point Arithmetic. IEEE, 1987.

[INT03] Intel. IA-32 Intel Architecture Software Developer’s Manual. 2003.
[INT04] Intel. Statistical Analysis of Floating Point Flaw: Intel White Pa-

per. Tech. rep. 09/07/2004. url: http : / / download . intel . com /
support/processors/pentium/sb/FDIV_Floating_Point_Flaw_Pentium_
Processor.pdf.

[INT13a] Intel ARK. Intel Core i7-4770 Processor. 2013. url: https://ark.
intel.com/products/75122/Intel-Core-i7-4770-Processor-8M-Cache-
up-to-3_90-GHz (visited on 14/11/2017).

[INT13b] Intel ARK. Intel Core i7-4800MQ Processor. 2013. url: https :
//ark.intel.com/products/75128/Intel-Core-i7-4800MQ-Processor-
6M-Cache-up-to-3_70-GHz (visited on 14/11/2017).

[INT15] Intel. Intel R© Xeon PhiTM Coprocessor x100 Product Family Data-
sheet. 2015. url: https://www.intel.com/content/dam/www/public/
us/en/documents/datasheets/xeon-phi-coprocessor-datasheet.pdf.

[INT16a] Intel ARK. Intel Xeon Phi Processor 7210. 2016. url: https://ark.
intel.com/products/94033/Intel-Xeon-Phi-Processor-7210-16GB-
1_30-GHz-64-core (visited on 14/11/2017).

[INT16b] Intel ARK. Intel Xeon Processor E5-2620 v4. 2016. url: https:
//ark.intel.com/products/92986/Intel-Xeon-Processor-E5-2620-v4-
20M-Cache-2_10-GHz (visited on 14/11/2017).

[INT16c] Intel ARK. Intel Xeon Processor E5-2650 v4. 2016. url: https:
//ark.intel.com/products/91767/Intel-Xeon-Processor-E5-2650-v4-
30M-Cache-2_20-GHz (visited on 14/11/2017).

http://www.infinibandta.org
http://www.infinibandta.org
http://speleotrove.com/misc/IEEE754-errata.html
http://speleotrove.com/misc/IEEE754-errata.html
https://standards.ieee.org/develop/revisestds.html
https://standards.ieee.org/develop/revisestds.html
http://download.intel.com/support/processors/pentium/sb/FDIV_Floating_Point_Flaw_Pentium_Processor.pdf
http://download.intel.com/support/processors/pentium/sb/FDIV_Floating_Point_Flaw_Pentium_Processor.pdf
http://download.intel.com/support/processors/pentium/sb/FDIV_Floating_Point_Flaw_Pentium_Processor.pdf
https://ark.intel.com/products/75122/Intel-Core-i7-4770-Processor-8M-Cache-up-to-3_90-GHz
https://ark.intel.com/products/75122/Intel-Core-i7-4770-Processor-8M-Cache-up-to-3_90-GHz
https://ark.intel.com/products/75122/Intel-Core-i7-4770-Processor-8M-Cache-up-to-3_90-GHz
https://ark.intel.com/products/75128/Intel-Core-i7-4800MQ-Processor-6M-Cache-up-to-3_70-GHz
https://ark.intel.com/products/75128/Intel-Core-i7-4800MQ-Processor-6M-Cache-up-to-3_70-GHz
https://ark.intel.com/products/75128/Intel-Core-i7-4800MQ-Processor-6M-Cache-up-to-3_70-GHz
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-phi-coprocessor-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-phi-coprocessor-datasheet.pdf
https://ark.intel.com/products/94033/Intel-Xeon-Phi-Processor-7210-16GB-1_30-GHz-64-core
https://ark.intel.com/products/94033/Intel-Xeon-Phi-Processor-7210-16GB-1_30-GHz-64-core
https://ark.intel.com/products/94033/Intel-Xeon-Phi-Processor-7210-16GB-1_30-GHz-64-core
https://ark.intel.com/products/92986/Intel-Xeon-Processor-E5-2620-v4-20M-Cache-2_10-GHz
https://ark.intel.com/products/92986/Intel-Xeon-Processor-E5-2620-v4-20M-Cache-2_10-GHz
https://ark.intel.com/products/92986/Intel-Xeon-Processor-E5-2620-v4-20M-Cache-2_10-GHz
https://ark.intel.com/products/91767/Intel-Xeon-Processor-E5-2650-v4-30M-Cache-2_20-GHz
https://ark.intel.com/products/91767/Intel-Xeon-Processor-E5-2650-v4-30M-Cache-2_20-GHz
https://ark.intel.com/products/91767/Intel-Xeon-Processor-E5-2650-v4-30M-Cache-2_20-GHz

368 BIBLIOGRAPHY

[INT16d] Intel ARK. Intel Xeon Processor E5-2699 v4. 2016. url: https:
//ark.intel.com/products/91317/Intel-Xeon-Processor-E5-2699-v4-
55M-Cache-2_20-GHz (visited on 14/11/2017).

[INT17a] Intel. 6th Generation Intel Processor Families for S-Platforms. 2017.
url: https : / / www . intel . com / content / dam / www / public / us / en /
documents/datasheets/desktop-6th-gen-core-family-datasheet-vol-
1.pdf.

[INT17b] Intel. Intel R© 64 and IA-32 Architectures Software Developer’s Manual.
Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D and 4. 2017.
url: https://software.intel.com/sites/default/files/managed/39/
c5/325462-sdm-vol-1-2abcd-3abcd.pdf.

[INT17c] Intel. Intel Math Kernel Library. 2017. url: https://software.intel.
com/en-us/mkl (visited on 29/11/2017).

[INT17d] Intel. Intel R© Xeon PhiTM Processor x200 Product Family Datasheet.
2017. url: https://www.intel.com/content/dam/www/public/us/
en/documents/datasheets/xeon-phi-processor-x200-product-family-
datasheet.pdf.

[JSC17a] Jülich Supercomputing Center (JSC). JUQUEEN - Jülich Blue
Gene/Q. 09/06/2017. url: http://www.fz- juelich.de/ias/jsc/
EN/Expertise/Supercomputers/JUQUEEN/JUQUEEN_node.html (visited
on 14/11/2017).

[JSC17b] Jülich Supercomputing Center (JSC). QPACE3 – Quantum Chro-
modynamics Parallel Computing on the Cell. 02/08/2017. url: http:
//www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/QPACE3/
_node.html (visited on 14/11/2017).

[Kah06] W. Kahan. How Futile are Mindless Assessments of Roundoff in
Floating-Point Computation? 2006. url: http://people.eecs.berkeley.
edu/~wkahan/Mindless.pdf.

[Kah81] W. Kahan. Why do we need a floating-point standard? 1981. url:
http://www.cs.berkely.edu/~wkahan/ieee754status/why-ieee.pdf.

[Kah96a] W. Kahan. A test for correctly rounded SQRT. 1996. url: http:
//www.cs.berkely.edu/~wkahan/SQRTest.ps.

[Kah96b] W. Kahan. Lecture notes on the status of IEEE-754. 1996. url:
http://www.cs.berkely.edu/~wkahan/ieee754status/IEEE754.PDF.

[Kah98] W. Kahan. The Improbability of Probabilistic Error Analyses for
Numerical Computations. 1998. url: http://people.eecs.berkeley.
edu/~wkahan/improber.pdf.

[Kar85] R. Karpinski. ‘Paranoia: A floating-point benchmark’. In: Byte
(1985), pp. 223–235.

https://ark.intel.com/products/91317/Intel-Xeon-Processor-E5-2699-v4-55M-Cache-2_20-GHz
https://ark.intel.com/products/91317/Intel-Xeon-Processor-E5-2699-v4-55M-Cache-2_20-GHz
https://ark.intel.com/products/91317/Intel-Xeon-Processor-E5-2699-v4-55M-Cache-2_20-GHz
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/desktop-6th-gen-core-family-datasheet-vol-1.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/desktop-6th-gen-core-family-datasheet-vol-1.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/desktop-6th-gen-core-family-datasheet-vol-1.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/sites/default/files/managed/39/c5/325462-sdm-vol-1-2abcd-3abcd.pdf
https://software.intel.com/en-us/mkl
https://software.intel.com/en-us/mkl
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-phi-processor-x200-product-family-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-phi-processor-x200-product-family-datasheet.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-phi-processor-x200-product-family-datasheet.pdf
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/JUQUEEN_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/JUQUEEN/JUQUEEN_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/QPACE3/_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/QPACE3/_node.html
http://www.fz-juelich.de/ias/jsc/EN/Expertise/Supercomputers/QPACE3/_node.html
http://people.eecs.berkeley.edu/~wkahan/Mindless.pdf
http://people.eecs.berkeley.edu/~wkahan/Mindless.pdf
http://www.cs.berkely.edu/~wkahan/ieee754status/why-ieee.pdf
http://www.cs.berkely.edu/~wkahan/SQRTest.ps
http://www.cs.berkely.edu/~wkahan/SQRTest.ps
http://www.cs.berkely.edu/~wkahan/ieee754status/IEEE754.PDF
http://people.eecs.berkeley.edu/~wkahan/improber.pdf
http://people.eecs.berkeley.edu/~wkahan/improber.pdf

BIBLIOGRAPHY 369

[KD98] W. Kahan and J. Darcy. How JAVA’s Floating-Point Hurts Everyone
Everywhere. 1998. url: http : / / www . cs . berkeley . edu / ~wkahan /
JAVAhurt.pdf.

[Knu64] D. E. Knuth. ‘Backus Normal Form vs. Backus Naur Form’. In:
Commununications of the ACM 7.12 (12/1964), pp. 735–736.

[Kor+10] P. Kornerup et al. ‘Computing Correctly Rounded Integer Powers in
Floating-Point Arithmetic’. In: ACM Transactions on Mathematical
Software 37.1 (01/2010).

[Kor+12] P. Kornerup et al. ‘On the Computation of Correctly Rounded Sums’.
In: IEEE Transactions on Computers 61.3 (03/2012), pp. 289–298.

[Kul89] U. Kulisch. Wissenschaftliches Rechnen mit Ergebnisverifikation.
Eine Einführung. Akademie-Verlag, 1989.

[Lam16] T. Lampe. Super Powerful, Super Energy-Efficient, and Super Cool –
How Fujitsu is transforming High Performance Computing. 22/12/2016.
url: http : / / blog . global . fujitsu . com / super - powerful - super -
energy-efficient-and-super-cool-how-fujitsu-is-transforming-
high-performance-computing/ (visited on 14/11/2017).

[LAP17] LAPACK – Linear Algebra PACKage. 14/11/2017. url: http://www.
netlib.org/lapack/ (visited on 29/11/2017).

[Lau08] C. Q. Lauter. ‘Arrondi correct de fonctions mathématiques’. PhD
thesis. Docteur de l’Université de Lyon - École Normale Supérieure
de Lyon, 2008.

[LCJ10] J.-L. Lamotte, J.-M. Chesneaux and F. Jézéquel. ‘CADNA_C: A
version of CADNA for use with C or C++ programs’. In: Computer
Physics Communications 181.11 (2010), pp. 1925–1926.

[Lef11] V. Lefèvre. ‘Introduction to the GNU MPFR Library’. In: GNU
Hackers Meeting. Paris, 28/08/2011. url: http://perso.ens-lyon.
fr/guillaume.hanrot/Papers/toms.pdf.

[LM01a] T. Lang and J. M. Muller. ‘Bounds on Runs of Zeros and Ones
for Algebraic Functions’. In: Proceedings 15th IEEE Symposium on
Computer Arithmetic. ARITH-15 2001. 2001, pp. 13–20.

[LM01b] V. Lefevre and J. M. Muller. ‘Worst Cases for Correct Rounding of
the Elementary Functions in Double Precision’. In: Proceedings 15th
IEEE Symposium on Computer Arithmetic. ARITH-15 2001. 2001,
pp. 111–118.

[LT98] V. Lefèvre and J.-M. M. A. Tisserand. The Table Maker’s Dilemma.
Research Report 98-12. École Normale Supérieure de Lyon, 1998.

[Mel17] Mellanox. Scalable Hierarchical Aggregation Protocol (SHARP): Re-
lease Notes. 2017.

http://www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf
http://www.cs.berkeley.edu/~wkahan/JAVAhurt.pdf
http://blog.global.fujitsu.com/super-powerful-super-energy-efficient-and-super-cool-how-fujitsu-is-transforming-high-performance-computing/
http://blog.global.fujitsu.com/super-powerful-super-energy-efficient-and-super-cool-how-fujitsu-is-transforming-high-performance-computing/
http://blog.global.fujitsu.com/super-powerful-super-energy-efficient-and-super-cool-how-fujitsu-is-transforming-high-performance-computing/
http://www.netlib.org/lapack/
http://www.netlib.org/lapack/
http://perso.ens-lyon.fr/guillaume.hanrot/Papers/toms.pdf
http://perso.ens-lyon.fr/guillaume.hanrot/Papers/toms.pdf

370 BIBLIOGRAPHY

[MG14] M. Moldaschl and W. N. Gansterer. ‘Comparison of Eigensolvers for
Symmetric Band Matrices’. In: Sci. Comput. Program. 90 (09/2014),
pp. 55–66.

[MIP17] MIPS. IP Cores. 2017. url: https://www.mips.com/products/ (visited
on 28/11/2017).

[MLK98] J. S. Moore, T. Lynch and M. Kaufmann. ‘A mechanically checked
proof of the correctness of the kernel of the AMD5K86 floating
point division algorithm’. In: IEEE Transactions on Computers 47.9
(09/1998), pp. 913–926.

[MM13] D. Moser and H. Menke. Diffuse – graphical tool for merging and
comparing text files. 2013. url: http://diffuse.sourceforge.net
(visited on 12/09/2017).

[MMM13] É. Martin-Dorel, G. Melquiond and J.-M. Muller. ‘Some issues related
to double rounding’. In: BIT Numerical Mathematics 53.4 (2013),
pp. 897–924.

[MOD17] Environment modules. 2017. url: http://modules.sourceforge.net
(visited on 29/11/2017).

[Moo+10] A. Moody et al. ‘Design, Modeling, and Evaluation of a Scalable
Multi-level Checkpointing System’. In: SC10. 2010.

[Moo66] R. E. Moore. Interval Analysis. Prentice-Hall, 1966.
[Mor17a] T. P. Morgan. A Deep Dive Into NEC’s Aurora Vector Engine. The

Next Platform. 22/11/2017. url: https://www.nextplatform.com/
2017/11/22/deep- dive- necs- aurora- vector- engine/ (visited on
28/11/2017).

[Mor17b] T. P. Morgan. Qualcomm’s Amberwing Arm Server Chip Finally
Takes Flight. The Next Platform. 08/11/2017. url: https://www.
nextplatform.com/2017/11/08/qualcomms- amberwing- arm- server-
chip-finally-takes-flight/ (visited on 28/11/2017).

[Mor17c] T. P. Morgan. The Power9 Rollout Begins With Summit And Sierra
Supercomputers. The Next Platform. 19/09/2017. url: https://
www.nextplatform.com/2017/09/19/power9-rollout-begins-summit-
sierra/ (visited on 28/11/2017).

[MPFR16] GNU. The GNU MPFR Library. 2016. url: http://www.mpfr.org
(visited on 29/11/2017).

[MPI15] Message Passing Interface Forum. MPI: A Message-Passing Interface
Standard, Version 3.1. 04/06/2015. url: http://mpi-forum.org/docs/
mpi-3.1/mpi31-report.pdf.

https://www.mips.com/products/
http://diffuse.sourceforge.net
http://modules.sourceforge.net
https://www.nextplatform.com/2017/11/22/deep-dive-necs-aurora-vector-engine/
https://www.nextplatform.com/2017/11/22/deep-dive-necs-aurora-vector-engine/
https://www.nextplatform.com/2017/11/08/qualcomms-amberwing-arm-server-chip-finally-takes-flight/
https://www.nextplatform.com/2017/11/08/qualcomms-amberwing-arm-server-chip-finally-takes-flight/
https://www.nextplatform.com/2017/11/08/qualcomms-amberwing-arm-server-chip-finally-takes-flight/
https://www.nextplatform.com/2017/09/19/power9-rollout-begins-summit-sierra/
https://www.nextplatform.com/2017/09/19/power9-rollout-begins-summit-sierra/
https://www.nextplatform.com/2017/09/19/power9-rollout-begins-summit-sierra/
http://www.mpfr.org
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

BIBLIOGRAPHY 371

[Mue+05] S. M. Mueller et al. ‘The Vector Floating-Point Unit in a Synergistic
Processor Element of a CELL Processor’. In: ARITH’05. 06/2005,
pp. 59–67.

[Mül+07] R. Müller-Pfefferkorn et al. ‘User-Centric Monitoring and Steering of
the Execution of Large Job Sets’. In: Conference Proceedings German
e-Science Conference. 2007.

[Mul+10] J.-M. Muller et al. Handbook of Floating-Point Arithmetic. Birkhäuser
Boston, 2010.

[NEC17] NEC. NEC releases new high-end HPC product line, SX-Aurora
TSUBASA. 25/10/2017. url: http://www.nec.com/en/press/201710/
global_20171025_01.html (visited on 28/11/2017).

[NG13] G. Niederbrucker and W. N. Gangsterer. ‘Robust Gossip-Based
Aggregation: A Practical Point Of View’. In: ALENEX13. 2013,
pp. 133–147.

[Nic11] T. R. Nicely. Pentium FDIV flaw. 2011. url: http://www.trnicely.
net/pentbug/pentbug.html (visited on 19/08/2011).

[Nob11] A. Nobile. Solving the Dirac equation on QPACE. 09/2011. arXiv:
1109.4279 [hep-lat].

[Num17] NumPy. Numerical Python – A package for scientific computing with
Python. 2017. url: http://www.numpy.org/ (visited on 29/11/2017).

[NVi16a] NVidia. NVIDIA Tesla P100. GP100 Pascal Whitepaper. Vol. WP-
08019-001_v01.1. 2016.

[NVi16b] NVidia. QUADRO P6000 Datasheet. 12/09/2016. url: http://
images.nvidia.com/content/pdf/quadro/data-sheets/192152-NV-DS-
Quadro-P6000-US-12Sept-NV-FNL-WEB.pdf (visited on 22/11/2017).

[NVi17a] NVidia. CUDA C Programming Guide. Vol. PG-02829-001_v8.0.
2017.

[NVi17b] NVidia. NVidia Volta. 2017. url: https://www.nvidia.com/en-
us/data-center/volta-gpu-architecture/ (visited on 28/11/2017).

[Ora16a] Oracle. Java Native Interface. 2016. url: https://docs.oracle.com/
javase/6/docs/technotes/guides/jni/ (visited on 23/08/2017).

[Ora16b] Oracle. Java Platform Standard Ed. 8, Class Math. 2016. url: https:
//docs.oracle.com/javase/8/docs/api/java/lang/Math.html (visited
on 23/08/2017).

[Par97] D. S. Parker. Monte Carlo Arithmetic: exploiting randomness in
floating-point arithmetic. Tech. rep. CSD-970002. University of Cali-
fornia, Los Angeles, Computer Science Department, 1997. url: http:
//web.cs.ucla.edu/~stott/mca/CSD-970002.ps.gz.

http://www.nec.com/en/press/201710/global_20171025_01.html
http://www.nec.com/en/press/201710/global_20171025_01.html
http://www.trnicely.net/pentbug/pentbug.html
http://www.trnicely.net/pentbug/pentbug.html
http://arxiv.org/abs/1109.4279
http://www.numpy.org/
http://images.nvidia.com/content/pdf/quadro/data-sheets/192152-NV-DS-Quadro-P6000-US-12Sept-NV-FNL-WEB.pdf
http://images.nvidia.com/content/pdf/quadro/data-sheets/192152-NV-DS-Quadro-P6000-US-12Sept-NV-FNL-WEB.pdf
http://images.nvidia.com/content/pdf/quadro/data-sheets/192152-NV-DS-Quadro-P6000-US-12Sept-NV-FNL-WEB.pdf
https://www.nvidia.com/en-us/data-center/volta-gpu-architecture/
https://www.nvidia.com/en-us/data-center/volta-gpu-architecture/
https://docs.oracle.com/javase/6/docs/technotes/guides/jni/
https://docs.oracle.com/javase/6/docs/technotes/guides/jni/
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Math.html
http://web.cs.ucla.edu/~stott/mca/CSD-970002.ps.gz
http://web.cs.ucla.edu/~stott/mca/CSD-970002.ps.gz

372 BIBLIOGRAPHY

[PBS16] Altair PBS Works. PBS Professional 13.1 User’s Guide. 2016. url:
http://www.pbsworks.com/pdfs/PBSProUserGuide13.1.pdf.

[Pet+16] A. Petitet et al. HPL - A Portable Implementation of the High-
Performance Linpack Benchmark for Distributed-Memory Computers.
2016. url: http://www.netlib.org/benchmark/hpl/.

[Pin17] Pine64. 64-bit Single Board Computer: Simple, Expandable & Power-
ful. 2017. url: https://www.pine64.org/?page_id=1194 (visited on
17/11/2017).

[PK91] V. Paxson and W. Kahan. A program for testing IEEE decimal-
binary conversion. Tech. rep. University of California at Berkely,
USA, 1991.

[Qua17] Qualcomm. Qualcomm Centriq 2400 – the world’s first 10nm server
processor. 08/11/2017. url: https://www.qualcomm.com/news/onq/
2017/11/08/qualcomm- centriq- 2400- worlds- first- 10nm- server-
processor (visited on 28/11/2017).

[Res16] ResearchGate. MPFR: In general, what should the values of emax

and emin be to get correct subnormal numbers in different precisions?
31/06/2016. url: https://www.researchgate.net/post/MPFR_In_
general_what_should_the_values_of_e_max_and_e_min_be_to_get_
correct_subnormal_numbers_in_different_precisions (visited on
24/08/2017).

[RPI17a] Raspberry Pi Foundation. BCM2835. 2017. url: https : / / www .
raspberrypi . org / documentation / hardware / raspberrypi / bcm2835 /
README.md (visited on 15/11/2017).

[RPI17b] Raspberry Pi Foundation. BCM2837. 2017. url: https : / / www .
raspberrypi . org / documentation / hardware / raspberrypi / bcm2837 /
README.md (visited on 15/11/2017).

[RPI17c] Raspberry Pi Foundation. Raspberry Pi. 2017. url: https://www.
raspberrypi.org (visited on 15/11/2017).

[Rum13a] S. M. Rump. ‘Accurate solution of dense linear systems, part I:
Algorithms in rounding to nearest’. In: Journal of Computational
and Applied Mathematics 242 (2013), pp. 157–184.

[Rum13b] S. M. Rump. ‘Accurate solution of dense linear systems, Part II:
Algorithms using directed rounding’. In: Journal of Computational
and Applied Mathematics 242 (2013), pp. 185–212.

[Rus00] D. M. Russinoff. ‘A case study in formal verification of register-
transfer logic with ACL2: The floating point adder of the AMD
Athlon processor’. In: Lecture Notes in Computer Science. Lecture
Notes in Computer Science 1954 (2000). Ed. by W. A. Hunt and
S. D. Johnson, pp. 3–36.

http://www.pbsworks.com/pdfs/PBSProUserGuide13.1.pdf
http://www.netlib.org/benchmark/hpl/
https://www.pine64.org/?page_id=1194
https://www.qualcomm.com/news/onq/2017/11/08/qualcomm-centriq-2400-worlds-first-10nm-server-processor
https://www.qualcomm.com/news/onq/2017/11/08/qualcomm-centriq-2400-worlds-first-10nm-server-processor
https://www.qualcomm.com/news/onq/2017/11/08/qualcomm-centriq-2400-worlds-first-10nm-server-processor
https://www.researchgate.net/post/MPFR_In_general_what_should_the_values_of_e_max_and_e_min_be_to_get_correct_subnormal_numbers_in_different_precisions
https://www.researchgate.net/post/MPFR_In_general_what_should_the_values_of_e_max_and_e_min_be_to_get_correct_subnormal_numbers_in_different_precisions
https://www.researchgate.net/post/MPFR_In_general_what_should_the_values_of_e_max_and_e_min_be_to_get_correct_subnormal_numbers_in_different_precisions
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2835/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2837/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2837/README.md
https://www.raspberrypi.org/documentation/hardware/raspberrypi/bcm2837/README.md
https://www.raspberrypi.org
https://www.raspberrypi.org

BIBLIOGRAPHY 373

[Rus98] D. M. Russinoff. ‘A mechanically checked proof of IEEE compliance
of a register-transfer-level specification of the AMD-K7 floating-
point multiplication, division, and square root instructions’. In: LMS
Journal of Computation and Mathematics. Lecture Notes in Com-
puter Science 1 (1998). Ed. by W. A. Hunt and S. D. Johnson,
pp. 148–200.

[Rus99] D. M. Russinoff. ‘A mechanically checked proof of correctness of the
AMD K5 floating point square root microcode’. In: Formal Methods
in System Design. Lecture Notes in Computer Science 14.1 (1999).
Ed. by W. A. Hunt and S. D. Johnson, pp. 75–125.

[Sad+17] S. K. Sadasivam et al. ‘IBM Power9 Processor Architecture’. In:
IEEE Micro 37.2 (03/2017), pp. 40–51.

[Sch17] D. Schor. The 2,048-core PEZY-SC2 sets a Green500 record. Wiki-
Chip. 01/11/2017. url: https : / / fuse . wikichip . org / news / 191 /
the - 2048 - core - pezy - sc2 - sets - a - green500 - record/ (visited on
28/11/2017).

[Sco85] N. R. Scott. Computer Number Systems and Arithmetic. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1985.

[SFBTR] SFB/TR55. Hadron Physics from Lattice QCD. url: http://www.
physik.uni-regensburg.de/sfbtr55/ (visited on 28/11/2017).

[Shi13] A. L. Shimpi. The ARM Diaries, Part 1: How ARM’s Business Model
Works. AnandTech. 28/06/2013. url: http://www.anandtech.com/
show/7112/the-arm-diaries-part-1-how-arms-business-model-works
(visited on 28/11/2017).

[Shi17] A. Shilov. Intel Discontinues Xeon Phi 7200-Series ‘Knights Land-
ing’ Coprocessor Cards. AnandTech. 25/08/2017. url: http://www.
anandtech . com / show / 11769 / intel - discontinues - xeon - phi - 7200 -
series-knights-landing-coprocessor-cards (visited on 28/11/2017).

[SK11] J. Sanders and E. Kandrot. CUDA by Example: An Introduction to
General-Purpose GPU Programming. 1. print. Addison-Wesley, 2011.

[Smi16] R. Smith. Intel Announces Knights Mill: A Xeon Phi For Deep
Learning. AnandTech. 17/08/2016. url: https://www.anandtech.
com/show/10575/intel-announces-knights-mill-a-xeon-phi-for-
deep-learning (visited on 28/11/2017).

[Smi91] D. Smith. ‘Algorithm 693: a Fortran package for floating-point
multiple-precision arithmetic’. In: ACM Transactions on Mathem-
atical Software 17.2 (1991), pp. 273–283. url: http://www.lmu.edu/
acad/personal/faculty/dmsmith2/FMLIB.html.

https://fuse.wikichip.org/news/191/the-2048-core-pezy-sc2-sets-a-green500-record/
https://fuse.wikichip.org/news/191/the-2048-core-pezy-sc2-sets-a-green500-record/
http://www.physik.uni-regensburg.de/sfbtr55/
http://www.physik.uni-regensburg.de/sfbtr55/
http://www.anandtech.com/show/7112/the-arm-diaries-part-1-how-arms-business-model-works
http://www.anandtech.com/show/7112/the-arm-diaries-part-1-how-arms-business-model-works
http://www.anandtech.com/show/11769/intel-discontinues-xeon-phi-7200-series-knights-landing-coprocessor-cards
http://www.anandtech.com/show/11769/intel-discontinues-xeon-phi-7200-series-knights-landing-coprocessor-cards
http://www.anandtech.com/show/11769/intel-discontinues-xeon-phi-7200-series-knights-landing-coprocessor-cards
https://www.anandtech.com/show/10575/intel-announces-knights-mill-a-xeon-phi-for-deep-learning
https://www.anandtech.com/show/10575/intel-announces-knights-mill-a-xeon-phi-for-deep-learning
https://www.anandtech.com/show/10575/intel-announces-knights-mill-a-xeon-phi-for-deep-learning
http://www.lmu.edu/acad/personal/faculty/dmsmith2/FMLIB.html
http://www.lmu.edu/acad/personal/faculty/dmsmith2/FMLIB.html

374 BIBLIOGRAPHY

[Sni+14] M. Snir et al. ‘Addressing failures in exascale computing’. In: The
International Journal of High-Performance Computing Applications
28.2 (2014), pp. 129–173.

[SQL16a] SQLite. An embedded SQL database engine. 08/07/2016. url: https:
//www.sqlite.org (visited on 08/07/2016).

[SQL16b] SQLite. Most Widely Deployed and Used Database Engine. 2016. url:
https://www.sqlite.org/mostdeployed.html (visited on 08/11/2017).

[SSL16] OpenSSL. Cryptography and SSL/TLS Toolkit. 16/06/2016. url:
https://openssl.org (visited on 16/06/2016).

[Sta06] G. Staples. ‘TORQUE Resource Manager’. In: Proceedings of the
2006 ACM/IEEE Conference on Supercomputing. SC ’06. Tampa,
Florida: ACM, 2006. isbn: 0-7695-2700-0.

[SUN97] SUN Microsystems. The UltraSparc processor. Technology White
Paper. SUN Microsystems, Inc., 1997.

[TOP500a] Top 500. Sunway TaihuLight - Sunway MPP, Sunway SW26010
260C 1.45GHz, Sunway. url: https://www.top500.org/system/178764
(visited on 01/12/2017).

[TOP500b] Top 500 – The List. url: https : / / www . top500 . org (visited on
08/08/2017).

[VAL17] Valgrind. An instrumentation framework for building dynamic ana-
lysis tools. 2017. url: http://valgrind.org (visited on 16/11/2017).

[VCV01a] B. Verdonk, A. Cuyt and D. Verschaeren. ‘A precision- and range-
independent tool for testing floating-point arithmetic I: basic op-
erations, square root and remainder’. In: ACM Transactions on
Mathematical Software 27 (2001), pp. 92–118.

[VCV01b] B. Verdonk, A. Cuyt and D. Verschaeren. ‘A precision- and range-
independent tool for testing floating-point arithmetic II: conversions’.
In: ACM Transactions on Mathematical Software 27 (2001), pp. 119–
140.

[Vig93] J. Vignes. ‘A stochastic arithmetic for reliable scientific computation’.
In: Mathematics and Computers in Simulation 35.3 (1993), pp. 233–
261.

[WIK16] Wikipedia. IEEE 754 Revision. 28/05/2016. url: https : / / en .
wikipedia.org/wiki/IEEE_754_revision (visited on 03/11/2017).

[WIK17a] Wikipedia. 3DNow! 01/10/2017. url: https://en.wikipedia.org/
wiki/3DNow! (visited on 03/11/2017).

[WIK17b] Wikipedia. Advanced Vector Extensions. 21/10/2017. url: https:
//en.wikipedia.org/wiki/Advanced_Vector_Extensions (visited on
03/11/2017).

https://www.sqlite.org
https://www.sqlite.org
https://www.sqlite.org/mostdeployed.html
https://openssl.org
https://www.top500.org/system/178764
https://www.top500.org
http://valgrind.org
https://en.wikipedia.org/wiki/IEEE_754_revision
https://en.wikipedia.org/wiki/IEEE_754_revision
https://en.wikipedia.org/wiki/3DNow!
https://en.wikipedia.org/wiki/3DNow!
https://en.wikipedia.org/wiki/Advanced_Vector_Extensions
https://en.wikipedia.org/wiki/Advanced_Vector_Extensions

BIBLIOGRAPHY 375

[WIK17c] Wikipedia. ARM architecture. 31/10/2017. url: https://en.wikipedia.
org/wiki/ARM_architecture (visited on 03/11/2017).

[WIK17d] Wikipedia. AVX-512. 29/10/2017. url: https://en.wikipedia.org/
wiki/AVX-512 (visited on 03/11/2017).

[WIK17e] Wikipedia. Blue Gene. 13/10/2017. url: https://en.wikipedia.org/
wiki/Blue_Gene (visited on 03/11/2017).

[WIK17f] Wikipedia. Cell (microprocessor). 08/09/2017. url: https://en.
wikipedia.org/wiki/Cell_(microprocessor) (visited on 03/11/2017).

[WIK17g] Wikipedia. Criticism of Java. 02/09/2017. url: https://en.wikipedia.
org/wiki/Criticism_of_Java#Floating_point_arithmetic (visited on
03/11/2017).

[WIK17h] Wikipedia. CUDA. 24/10/2017. url: https://en.wikipedia.org/
wiki/CUDA (visited on 03/11/2017).

[WIK17i] Wikipedia. Distributed computing. 02/11/2017. url: https://en.
wikipedia.org/wiki/Distributed_computing (visited on 03/11/2017).

[WIK17j] Wikipedia. Endianess. 29/09/2017. url: https://en.wikipedia.org/
wiki/Endianess (visited on 03/11/2017).

[WIK17k] Wikipedia. Environment Modules (software). 20/09/2017. url: https:
//en.wikipedia.org/wiki/Environment_Modules_(software) (visited
on 03/11/2017).

[WIK17l] Wikipedia. Field-programmable gate array. 25/10/2017. url: https:
//en.wikipedia.org/wiki/Field-programmable_gate_array (visited
on 03/11/2017).

[WIK17m] Wikipedia. Floating-point arithmetic. 27/10/2017. url: https://
en.wikipedia.org/wiki/Floating-point_arithmetic#Rounding_modes
(visited on 03/11/2017).

[WIK17n] Wikipedia. General-purpose computing on graphics processing units.
30/10/2017. url: https://en.wikipedia.org/wiki/General-purpose_
computing_on_graphics_processing_units (visited on 03/11/2017).

[WIK17o] Wikipedia. GNU Build System. 30/10/2017. url: https : / / en .
wikipedia.org/wiki/GNU_Build_System (visited on 03/11/2017).

[WIK17p] Wikipedia. IBM Roadrunner. 14/06/2017. url: https://en.wikipedia.
org/wiki/IBM_Roadrunner (visited on 03/11/2017).

[WIK17q] Wikipedia. IEEE floating point. 28/10/2017. url: https : / / en .
wikipedia.org/wiki/IEEE_floating_point (visited on 03/11/2017).

[WIK17r] Wikipedia. Interval arithmetic. 29/08/2017. url: https://en.wikipedia.
org/wiki/Interval_arithmetic (visited on 03/11/2017).

https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/AVX-512
https://en.wikipedia.org/wiki/AVX-512
https://en.wikipedia.org/wiki/Blue_Gene
https://en.wikipedia.org/wiki/Blue_Gene
https://en.wikipedia.org/wiki/Cell_(microprocessor)
https://en.wikipedia.org/wiki/Cell_(microprocessor)
https://en.wikipedia.org/wiki/Criticism_of_Java#Floating_point_arithmetic
https://en.wikipedia.org/wiki/Criticism_of_Java#Floating_point_arithmetic
https://en.wikipedia.org/wiki/CUDA
https://en.wikipedia.org/wiki/CUDA
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Endianess
https://en.wikipedia.org/wiki/Endianess
https://en.wikipedia.org/wiki/Environment_Modules_(software)
https://en.wikipedia.org/wiki/Environment_Modules_(software)
https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Field-programmable_gate_array
https://en.wikipedia.org/wiki/Floating-point_arithmetic#Rounding_modes
https://en.wikipedia.org/wiki/Floating-point_arithmetic#Rounding_modes
https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
https://en.wikipedia.org/wiki/General-purpose_computing_on_graphics_processing_units
https://en.wikipedia.org/wiki/GNU_Build_System
https://en.wikipedia.org/wiki/GNU_Build_System
https://en.wikipedia.org/wiki/IBM_Roadrunner
https://en.wikipedia.org/wiki/IBM_Roadrunner
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/Interval_arithmetic
https://en.wikipedia.org/wiki/Interval_arithmetic

376 BIBLIOGRAPHY

[WIK17s] Wikipedia. Java (programming language). 08/10/2017. url: https:
//en.wikipedia.org/wiki/Java_(programming_language) (visited on
03/11/2017).

[WIK17t] Wikipedia. List of numerical libraries. 02/11/2017. url: https://
en.wikipedia.org/wiki/List_of_numerical_libraries (visited on
03/11/2017).

[WIK17u] Wikipedia. OpenCL. 10/10/2017. url: https://en.wikipedia.org/
wiki/OpenCL (visited on 03/11/2017).

[WIK17v] Wikipedia. Power Architecture. 06/09/2017. url: https://en.wikipedia.
org/wiki/Power_Architecture (visited on 03/11/2017).

[WIK17w] Wikipedia. Power.org. 26/08/2017. url: https://en.wikipedia.org/
wiki/Power.org (visited on 03/11/2017).

[WIK17x] Wikipedia. QPACE. 29/07/2017. url: https://en.wikipedia.org/
wiki/QPACE (visited on 03/11/2017).

[WIK17y] Wikipedia. Quantum chromodynamics. 25/10/2017. url: https://en.
wikipedia.org/wiki/Quantum_chromodynamics (visited on 03/11/2017).

[WIK17z] Wikipedia. Single-board computer. 03/08/2017. url: https://en.
wikipedia.org/wiki/Single-board_computer (visited on 03/11/2017).

[WIK17aa] Wikipedia. SSE2. 03/09/2017. url: https://en.wikipedia.org/wiki/
SSE2 (visited on 03/11/2017).

[WIK17ab] Wikipedia. SSE3. 13/07/2017. url: https://en.wikipedia.org/wiki/
SSE3 (visited on 03/11/2017).

[WIK17ac] Wikipedia. SSE4. 22/07/2017. url: https://en.wikipedia.org/wiki/
SSE4 (visited on 03/11/2017).

[WIK17ad] Wikipedia. SSSE3. 26/09/2017. url: https://en.wikipedia.org/
wiki/SSSE3 (visited on 03/11/2017).

[WIK17ae] Wikipedia. Streaming SIMD Extensions. 01/09/2017. url: https:
//en.wikipedia.org/wiki/Streaming_SIMD_Extensions (visited on
03/11/2017).

[WIK17af] Wikipedia. Sunway. 24/11/2017. url: https://en.wikipedia.org/
wiki/Sunway (visited on 29/11/2017).

[WIK17ag] Wikipedia. Sunway TaihuLight. 28/11/2017. url: https://en.wikipedia.
org/wiki/Sunway_TaihuLight (visited on 29/11/2017).

[WIK17ah] Wikipedia. SW26010. 02/10/2017. url: https://en.wikipedia.org/
wiki/SW26010 (visited on 29/11/2017).

[WIK17ai] Wikipedia. VEX prefix. 15/06/2017. url: https://en.wikipedia.
org/wiki/VEX_prefix (visited on 03/11/2017).

https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/List_of_numerical_libraries
https://en.wikipedia.org/wiki/List_of_numerical_libraries
https://en.wikipedia.org/wiki/OpenCL
https://en.wikipedia.org/wiki/OpenCL
https://en.wikipedia.org/wiki/Power_Architecture
https://en.wikipedia.org/wiki/Power_Architecture
https://en.wikipedia.org/wiki/Power.org
https://en.wikipedia.org/wiki/Power.org
https://en.wikipedia.org/wiki/QPACE
https://en.wikipedia.org/wiki/QPACE
https://en.wikipedia.org/wiki/Quantum_chromodynamics
https://en.wikipedia.org/wiki/Quantum_chromodynamics
https://en.wikipedia.org/wiki/Single-board_computer
https://en.wikipedia.org/wiki/Single-board_computer
https://en.wikipedia.org/wiki/SSE2
https://en.wikipedia.org/wiki/SSE2
https://en.wikipedia.org/wiki/SSE3
https://en.wikipedia.org/wiki/SSE3
https://en.wikipedia.org/wiki/SSE4
https://en.wikipedia.org/wiki/SSE4
https://en.wikipedia.org/wiki/SSSE3
https://en.wikipedia.org/wiki/SSSE3
https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
https://en.wikipedia.org/wiki/Streaming_SIMD_Extensions
https://en.wikipedia.org/wiki/Sunway
https://en.wikipedia.org/wiki/Sunway
https://en.wikipedia.org/wiki/Sunway_TaihuLight
https://en.wikipedia.org/wiki/Sunway_TaihuLight
https://en.wikipedia.org/wiki/SW26010
https://en.wikipedia.org/wiki/SW26010
https://en.wikipedia.org/wiki/VEX_prefix
https://en.wikipedia.org/wiki/VEX_prefix

BIBLIOGRAPHY 377

[WIK17aj] Wikipedia. x86. 18/10/2017. url: https://en.wikipedia.org/wiki/
X86 (visited on 03/11/2017).

[WIK17ak] Wikipedia. x87. 26/08/2017. url: https://en.wikipedia.org/wiki/
X87 (visited on 03/11/2017).

[Wil12] K. Willadsen. Meld. 2012. url: http://meldmerge.org (visited on
12/09/2017).

[WLCG] WLCG. Worldwide LHC Computing Grid. url: http://wlcg.web.
cern.ch (visited on 29/11/2017).

[YJG03] A. B. Yoo, M. A. Jette and M. Grondona. ‘SLURM: Simple Linux
Utility for Resource Management’. In: Job Scheduling Strategies
for Parallel Processing: 9th International Workshop, JSSPP 2003,
Seattle, WA, USA, June 24, 2003. Revised Paper. Ed. by D. Feitelson,
L. Rudolph and U. Schwiegelshohn. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003, pp. 44–60.

https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/X87
https://en.wikipedia.org/wiki/X87
http://meldmerge.org
http://wlcg.web.cern.ch
http://wlcg.web.cern.ch

	Contents
	Introduction
	1 Floating-point numbers, standards, and the user environment
	1.1 The foundation: Floating-point numbers
	1.2 The standards: IEEE 754 and 854
	1.2.1 IEEE 754
	1.2.2 IEEE 854
	1.2.3 IEEE 754-2008
	1.2.4 IEEE 754-2018

	1.3 Rounding and error analysis
	1.3.1 Some basic properties
	1.3.2 Stability
	1.3.3 Use cases for rounding

	1.4 The user environment
	1.4.1 Limitations of the user environment definition
	1.4.2 Floating-point hardware
	1.4.3 The operating system
	1.4.4 Floating-point libraries
	1.4.5 Programming languages
	1.4.6 The compiler's role
	1.4.7 Interpreters
	1.4.8 In-network floating-point computations
	1.4.9 Resilience
	1.4.10 Comparing and testing floating-point environments

	2 IeeeCC754
	2.1 History
	2.2 IeeeCC754
	2.3 Testsets
	2.3.1 Addition and subtraction
	2.3.2 Multiplication
	2.3.3 Division
	2.3.4 Square root
	2.3.5 Remainder
	2.3.6 A note on conversions
	2.3.7 Conversions between floating-point formats
	2.3.8 Rounding floating-point numbers to integral values
	2.3.9 Conversion between floating-point and integer formats
	2.3.10 Decimal to binary and binary to decimal conversion

	2.4 Results
	2.4.1 Intel and AMD
	2.4.2 SUN Sparc
	2.4.3 FMLib
	2.4.4 MpIeee

	3 IeeeCC754++
	3.1 IeeeCC754++: Introducing extensions
	3.1.1 Testing IEEE-conformity
	3.1.2 Testing the user environment: Default mode
	3.1.3 Testing parts of a floating-point environment
	3.1.4 Testing distributed floating-point environments
	3.1.5 Supporting arbitrary floating-point environments
	3.1.6 Building for arbitrary environments
	3.1.7 Large-scale testing and analysis
	3.1.8 Studying the influence of compiler options
	3.1.9 Testing modes
	3.1.10 Input and output
	3.1.11 Support for IEEE 754-2008
	3.1.12 Analysis capabilities
	3.1.13 Preserving backwards compatibility
	3.1.14 Technical changes

	3.2 Input and output
	3.2.1 Test vector formats
	3.2.2 Output formats

	3.3 Testing modes
	3.3.1 Classic mode
	3.3.2 Verbose mode
	3.3.3 Default mode
	3.3.4 Distributed computing modes
	3.3.5 Miscellaneous modes
	3.3.6 Common command line options

	3.4 The evaluation framework
	3.4.1 Using the evaluation framework
	3.4.2 Analysis modules
	3.4.3 Tools for (semi-)automated testing

	3.5 The optimisation framework
	3.5.1 Using the optimisation framework
	3.5.2 Fitness modules and adding fitness functions
	3.5.3 Timing the effect of compiler options

	4 Extended testsets
	4.1 General considerations
	4.1.1 The Table Maker's Dilemma
	4.1.2 Adding operators and test vectors

	4.2 Fused multiply-add
	4.2.1 Testset
	4.2.2 Considerations concerning portability

	4.3 Powers and roots
	4.3.1 Testsets

	4.4 Trigonometric functions
	4.4.1 Testsets

	4.5 Exponentials and logarithms
	4.5.1 Testsets

	4.6 Miscellaneous functions
	4.6.1 Testsets

	4.7 Generating testsets
	4.7.1 A note on precisions
	4.7.2 convertTestsets.py
	4.7.3 genUCB.sh

	5 Architecture ports
	5.1 The default architecture
	5.1.1 The default port
	5.1.2 The dummy port

	5.2 The x86 architecture
	5.2.1 The x86 port
	5.2.2 The mic port

	5.3 The ARM architecture
	5.3.1 The arm port
	5.3.2 The aarch64 port

	5.4 The Power Architecture
	5.4.1 The ppc port
	5.4.2 The cell port
	5.4.3 The bgq port

	5.5 GPUs and accelerators
	5.5.1 The nv port
	5.5.2 The opencl port

	5.6 In-network computations
	5.6.1 The mpi port

	5.7 Virtual machines and software libraries
	5.7.1 The java port
	5.7.2 The softfloat port
	5.7.3 The mpfr port
	5.7.4 The crlibm port

	6 Selected results
	6.1 A detailed example
	6.1.1 User environments
	6.1.2 Manual testing procedure
	6.1.3 (Semi-)Automated testing procedure
	6.1.4 Analysing the logfiles

	6.2 Different compilers
	6.3 x86
	6.3.1 Xeon
	6.3.2 Xeon Phi: KNL

	6.4 ARM
	6.4.1 ARM: VFP, NEON
	6.4.2 AARCH64: ASIMD, SVE

	6.5 PowerPC
	6.5.1 POWER8
	6.5.2 Cell

	6.6 Accelerators
	6.6.1 CUDA
	6.6.2 OpenCL

	6.7 Software
	6.7.1 SoftFloat
	6.7.2 MPFR
	6.7.3 Java

	6.8 Elementary functions
	6.8.1 C99 vs. C++11
	6.8.2 Trigonometric operators
	6.8.3 Exponentials and logarithms
	6.8.4 Power operators
	6.8.5 roundTiesToEven results

	6.9 Optimisation framework
	6.9.1 User environments
	6.9.2 Two-step process
	6.9.3 Example run with [style=mhplain]sixloops
	6.9.4 Example run with HPCG

	6.10 Result summary
	6.10.1 Basic operations and conversions
	6.10.2 Elementary operators
	6.10.3 Some notes on applications

	Summary and outlook
	A The IeeeCC754++ build system
	A.1 Changes to the code base
	A.1.1 IeeeCC754 code structure
	A.1.2 IeeeCC754++ code structure

	A.2 The build system
	A.3 Configuring and building IeeeCC754++
	A.3.1 Building overview
	A.3.2 Choosing an architecture
	A.3.3 Choosing FPUs
	A.3.4 Choosing the compiler and compiler options
	A.3.5 Generic build features
	A.3.6 Additional build options
	A.3.7 Cross compilation
	A.3.8 Building historic modes
	A.3.9 A detailed example

	B Adding a new architecture to IeeeCC754++
	B.1 File structure
	B.2 Build system: configure.ac
	B.3 Build system: Makefile.am
	B.4 Implementing the new architecture
	B.4.1 src/xyz/DriverFloat_main.h
	B.4.2 src/xyz/fpu_main.cc

	B.5 Adding an FPU
	B.6 Implementing an operation
	B.7 Handling vector FPUs
	B.8 Initialising an FPU
	B.8.1 Registering operations and rounding modes
	B.8.2 Enabling vector FPUs

	B.9 Example code for the new architecture and FPU
	B.10 Setting up main()
	B.11 Setting up and building the new architecture

	C Reference material
	C.1 fma example
	C.2 IeeeCC754++ usage
	C.3 IeeeCC754++ classic mode usage
	C.4 Error codes used in IeeeCC754++
	C.5 Reference task files
	C.6 Evaluation function example
	C.7 Fitness function example

	List of Figures
	List of Tables
	List of Listings
	Bibliography

