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1 INTRODUCTION

1 Introduction

The goal of theoretical physics is to formulate statements from microscopic contexts, which
can be tested experimentally. For example, in quantum field theory, starting from the
fundamental interactions between the elementary particles, one computes cross sections,
which can be measured in scattering experiments. An example from solid-state physics is
the calculation of the electrical resistance or similar transport variables of a given material
based on its composition. Within the framework of the linear response theory such
measurable quantities are given by the correlation functions of the model. In practice the
calculation of correlation functions even in the simplest interacting systems is problematic,
because the Hilbert space of an N -particle problem grows exponentially with the number
of particles N . An obvious strategy is to simplify the models so far that an exact solution
is possible. The simplest approximations include effective single-particle models like the
band model of solid state physics, with which many fundamental properties of a solid
can be understood. However, such approximations are limited and cannot explain many
collective phenomena in strongly correlated systems.
In today’s research, two approaches (or a combination of both) are used in the investigation
of many-particle problems. These are, on the one hand, calculations done with perturbation
theory and, on the other hand, the use of large computers and sophisticated algorithms.
However, both methods have a limited range of validity and typically fail in one-dimensional
models [47].
A further possibility is to search for multi-particle systems whose properties are exactly
calculable. At first sight this may be a strong limitation, however, one can expect that the
study of exactly solvable (“integrable”) models makes a better understanding of generic
interacting multi-particle systems possible. This assumption is supported by the result that
systems of statistical mechanics can be classified into universality classes. Models of the
same class may be very different microscopically, but they can show similar macroscopic
behaviour in the vicinity of a critical point. Although there exists a well-defined notion of
integrability in classical mechanics due to Liouville’s theorem, no such general notion is
known for quantum mechanical systems. Still, certain classes of systems have been found
that admit an exact solution.
Of particular interest are integrable models, which are related to solutions of the Yang-
Baxter equation. This class includes the one-dimensional anisotropic spin-1

2
Heisenberg

model (XXZ chain) as well as the Hubbard model. Another integrable model is the
Anderson impurity model (AIM), which can be solved with coordiante Bethe ansatz.
These models are investigated in this work. An overview of these models as well as their
applications in solid-state physics can be found in the book [36] and in the review[124].
The one-dimensional anisotropic spin-1

2
Heisenberg model is a prototype of an integrable

model and has been studied intensively for a long time. Hans Bethe first succeeded in
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1 INTRODUCTION

calculating the spectrum (not explicitly) and the eigenvectors of the isotropic spin-1
2

Heisenberg model with the coordinate Bethe ansatz for finite L [18]. Further important
steps to a better understanding of the model were the discovery of the link to vertex models
of statistical physics [12] and the abstraction of the method of the Bethe ansatz (“algebraic”
Bethe ansatz) [75]. The underlying structure can be identified as a scattering problem of
two particles. The scattering matrix of the many-particle problem is reduced to a product
of scattering matrices of two particles with arbitrary succession. The consistency equation
of the two-particle scattering matrix is the Yang-Baxter equation. The Yang-Baxter
equation for triple R-matrices forms the basis for all Bethe ansatz approachable models,
because, remarkably, the same equation also applies to the local Boltzmann weights of
the solvable two-dimensional classical models, where it gives rise to a commuting family
of transfer matrices. As a consequence of this mutual relationship between both types
of models, it follows that the logarithmic derivative of the row-to-row transfer matrix of
a given solvable two-dimensional model taken at some special spectral parameter also
defines the Hamiltonian of an integrable quantum chain.
Since Lieb and Wu found the coordinate Bethe ansatz solution for the Hubbard model [79],
it “has become a laboratory for theoretical studies of non-perturbative effects in strongly
correlated electron systems” [36, p. iii]. Lieb and Wu calculated “the ground state energy
and demonstrated that the Hubbard model undergoes a Mott metal-insulator transition
at half filling (one electron per site) with critical interaction strength U = 0” [36, p. 9].
To supply “complementary insights to what is [...] [to be discovered] from the exact
solution or as an ultimate test of their quality” [36, p. iii], many of the approximative
tools existing for the analysis of such systems were used on this model. Simultaneously,
“due to the synthesis of new quasi one-dimensional materials and the [...] [improvement]
of experimental techniques, the Hubbard model [...] [is not considered as a toy model
anymore, instead it is regarded as a paragon] of experimental relevance for strongly
correlated electron systems” [36, p. iii]. Due to the continuous endeavor to enhance our
knowledge of one-dimensional correlated electron systems, there are many review articles
and books available covering several facets of the general theory and also theoretical
methods and the Bethe ansatz.
Takahashi suggested that the solutions of the Lieb and Wu equations are classified in terms
of a “string hypothesis” [117]. The Bethe ansatz roots corresponding to excited states of the
model mold into certain string patterns in the complex plane. Takahashi takes advantage
of this observation. To replace the equations of Lieb and Wu by more elementary ones
Takahashi used this string hypothesis in the thermodynamical limit and then cotinued to
deduce an infinite “set of non-linear integral equations, which determine the Gibbs free
energy of the Hubbard model. These integral equations are known as thermodynamic
Bethe ansatz (TBA) equations” [36, p. 9]. Physical quantities “that pertain[...] to the
energy spectrum of the Hubbard model” [36, p. 9] can be determined with Takahashi’s
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1.1 Experimental results 1 INTRODUCTION

equations, in combination with the thermodynamic Bethe ansatz equations [142, 117].
“By placing it into the [...] [scheme] of the quantum inverse scattering method” [36, p.
11] Shastry developed a novel way for investigating the Hubbard model. By the use of
“a Jordan-Wigner transformation he mapped the Hubbard model to a spin model[. He
showed that the arising] [...] spin Hamiltonian commutes with the row-to-row transfer
matrix of a related covering vertex model” [36, p. 11] [112]. Shastry embedded the spin
model “into the general classification of “integrable models” [36, p. 11] by deriving the
R-matrix [111]. “This result was of crucial importance for the [...] [column-to-column]
transfer matrix approach to the thermodynamics [63] of the Hubbard model [...]. This
approach allows for a drastically simplified description of the thermodynamics in terms
of the solution of a finite set of non-linear integral equations, rather than the infinite
set originally obtained by Takahashi in 1972 [117]. Within the [...] [column-to-column]
transfer matrix approach thermodynamic quantities can be calculated numerically with
a very high precision. The approach can be extended to the calculation of correlation
lengths at finite temperature [120, 129]” [36, p. 11].
The subject of the Anderson impurity model “is a microscopic theory of dilute magnetic
alloys. [...] A small amount of magnetic impurities dissolved in a non-magnetic meta [...]
[influences its features extremely]. [...] The perturbation theory in the impurity-conduction
electron exchange interaction is not applicable at low temperatures” [124, p. 457]. This is
the issue encountered in the theory of this phenomenon. “The exchange interaction [...]
[among] the magnetic impurity and the electrons, which is responsible for those outstanding
effects in [...] [the dilute magnetic] alloys, can be [...] [characterized] by a simple model
Hamiltonian. It is the [...] s-d exchange model of the Kondo physics [74], which is [...]
one of the first and [...] simplest quantum field theories with a growth of coupling at low
energies” [124, p. 457]. Many of the models, which have been used for the “description
of dilute magnetic alloys[, especially the s-d exchange Kondo model and the Anderson
impurity model,] [...] are integrable” [124, p. 453] and the solutions were derived [124]. It
is noteworthy that both the s-d exchange Kondo model and the Anderson impurity model
are models in the continuum and not lattice models like the one-dimensional anisotropic
spin-1

2
Heisenberg model or the Hubbard model.

1.1 Experimental results

Numerous experimental realizations of three-dimensional solids can be found, which show
structures of quasi-one-dimensional subsystems. Since the interactions between the chains
in such materials are often negligibly small, the substructures determine the behaviour of
the three-dimensional body. For the first time spin-chain-like systems were investigated
in experimental solid state physics in the early 1970s. One of the classic examples is
the early neutron scattering experiments of Tetramethyl-Trichloro-Manganate (TMMC,
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1.2 Pseudogap systems 1 INTRODUCTION

(CH3)4NMnCl3) [60]. One of the qualitative Heisenberg chains was first considered by
Heilmann et. al. (CuCl2 · 2N(C5D5)) [59].
Another, recent example of a very well-established spin-1

2
chain system is Copper pyrazine

dinitrate (CuPzN). In this system, copper atoms are doubly positively ionized by the
neighboring nitrate groups. The Pyrazin rings lying between the copper atoms mediate the
interaction of the spin moments. This material belongs to one of the best implementations
of an antiferromagnetic spin-1

2
Heisenberg chain and has a phase transition as a function

of an external magnetic field [76].
Also chain models, which can be well described by higher spin models

(
e.g. s = 1, 3

2
, 2, 5

2

)
like the antiferromagnetic spin-s Heisenberg chain, were implemented experimentally [87].
There are also spin-chain models, which cannot be described only by bilinear next-neighbor
coupling terms, but also by necessary biquadratic next-neighbor coupling terms, for
example Lithium-vanadium metagermanate (LiV Ge2O6) [88].
It should be noted that one-dimensional models are relevant under two conditions: Either
the structure of a crystal indicates its one-dimensionality, or a three-dimensional system
can be mapped on one dimension.

1.2 Pseudogap systems

The physics of diluted magnetic interference in electronic hosts has been an established
discipline of electronic correlation physics since Kondo’s work [74]. Although the interaction
of the band electrons is irrelevant among each other, the studied systems show a resistance
minimum at low temperatures instead of a monotonous decrease of the resistance while
lowering the temperature. Furthermore, the susceptibility contribution of the impurity
shows not the expected paramagnetic value, instead it shows the value of a screened
impurity spin. The size of the screening, as well as a possibly remaining entropy at
temperature zero depend on the ratio of the number of energetically degenerate charge
channels and the value of the impurity spins (one-channel vs. multi-channel Kondo
physics).
The complexity of the phenomena is due to the correlation of the host electrons, which
do not interact directly with each other, but via the impurity spin. The modeling is
typically performed by the Anderson impurity model [3], which gives in the limit of
strong Coulomb interaction in the local d- or f -orbitals the s-d exchange Kondo model
[108]. Both models describe an (anti-ferromagnetic) coupling of band electrons to a
local impurity with spin degree of freedom, which in the case of the Anderson impurity
model also has a charge degree of freedom. The observed phenomena are abundant and
the theory is as intricate as the theory of the one-dimensional spin-1

2
Heisenberg or the

Hubbard model. In fact, very similar Bethe ansatz techniques were successfully used on
bulk properties and impurity contributions of the above-mentioned models. The Kondo
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1.2 Pseudogap systems 1 INTRODUCTION

effect in metals is well understood due to analytical results (perturbative: [74], exactly:
[7, 9, 138, 40, 99, 33, 124, 121], conformal field theory: [2, 1]) as well as numerical results
(renormalization group (RG): [140]).
The Kondo physics in metalloids and in pseudogap systems is current research area,
especially in graphene, a system whose low-temperature physics in the charge-neutral
case is dominated by two-dimensional Dirac electrons [93, 92, 91, 103]. Here the host
density of states disappears linearly with the energy while it approaches the Fermi level.
The screening, which is known from metallic systems, is strongly repressed, so that
it occurs only for Kondo couplings, which are stronger than a finite critical coupling
strength [141, 131]. In fact, in the case of graphene, the question for the most promising
candidates of magnetic impurities with Kondo physics is only insufficiently answered
[30, 127, 135, 148, 126, 125, 128]. Possible candidates are adatoms, for example Co
[135, 62, 136, 101], but also simple molecules such as NiH [136] on highly symmetrical
positions (centers of the C-hexagon, edges, C-sites). Also defects due to radiation [90, 85]
or due to H and F adatoms are interesting candidates.
Graphene is a two-dimensional hexagonal formation of carbon atoms. “The sp2 orbitals
hybridize to yield the σ orbitals. [...] [These] are electrically inert and responsible for the
[...] [noteworthy] mechanical robustness. [...] The pz orbitals, which form the π-bonds”
[44, p. 3], determine the electronic structure of graphene. Therefore electron hopping
between neighboring atoms is allowed and yields a kinetic energy. Graphene has two
sublattices A and B. Two dispersive bands (π∗ and π) are formed, which “touch at the two

inequivalent wavevectors ~K =
(

2π
3a1
, 2π

3
√

3a1

)t
and ~K ′ =

(
2π
3a1
, − 2π

3
√

3a1

)t
” [44, p. 3], where

a1 = 1.42 · 10−10 m is the bond length, i.e. the distance between adjacent carbon atoms.

Figure 1: (a) Illustration of the honeycomb lattice of graphene: There are two inequivalent
carbon atoms per unit cell, A and B. The hexagonal Brillouin zone is also shown.
The touching points of the bands are K and K ′.
(b) Illustration of the Anderson impurity model: “A local spin-degenerate state
with energy εd is hybridized via v with a sea of conduction electrons. Local
double occupancy costs the Coulomb energy Ū ” [44, p. 4].

7



1.2 Pseudogap systems 1 INTRODUCTION

The fundamental description of the interaction of the electronic host and the impurity
spin is again the Anderson impurity model or in the limit of vanishing charge fluctuations
the s-d exchange Kondo model.
To understand this, we consider the general form of the Anderson model [124]. The
magnetic characteristics of the impurity depend on the host and on the occurrence of
3d (4f) elements. Essentially two interactions determine the behaviour of the impurity:
“atomic Coulomb interactions and [...] [spin-orbit coupling] in a free atom and the
interaction of the wavefunctions with the conduction electron band of the host” [124, p.
481]. The form of the metal-impurity interaction is given by

H = H0 +
L∑
j=1

Vi (rj) +
1

2

L∑
j=1
j 6=k

e2

rjk
+

1

mc

L∑
j=1

1

rj

d

drj
Vi (rj)

(
~Lj · ~Sj

)
. (1)

“H0 is a Hamiltonian of electrons in the potential of a crystal lattice, rj = |~rj| and
rjk = |~rj − ~rk|; m, ~L, ~S and L are the mass, orbital moment, spin and the number of
electrons[.] [...] Vi (r) is a potential of the impurity [...] [without any] electrons [...] [in] the
outer shell.” [124, p. 481]. We assume Vi (r) to be spherically symmetric. “The third term
[...] is a Coulomb interaction, [...] [whereas] the fourth term [...] [is] the spin-orbit coupling
[generated] by the impurity” [124, p. 481]. The important observation is that the l = 2

states of Vi (r) are near the Fermi surface and build the small resonance. The discrepancy
among “the interatomic distance 1

kF
and the Bohr radius rB of the d shell, kF rB � 1”

[124, p. 481], yields the narrow width. In fact, the wavefunction of electrons with energies
close to the Fermi-surface consist of “both localized and delocalized components” [124, p.
481]. Therefore “using as a basis the orbital and band wavefunctions” [124, p. 481] the
eigenstates of H can be expanded. For the band wavefunctions we select “a spherical wave
with the centre at the impurity site” [124, p. 481]. In second quantization we have

Ψ† (~r) =
∑

k< 1
rB
,l,m,σ

Ψlm (k, ~r) c†k,l,m,σ +
∑
m,σ

Ψd (~r) d†m,σ,

Ψlm (k, ~r) = rl (kr)Ylm

(
~r

r

)
,

Ψd (~r) = Rl0

(
r

rB

)
Yl0m

(
~r

r

)
,

where r = |~r| and c†k,l,m,σ “is a creation operator for the spherical wave with the centre at
the impurity” [124, p. 481] site. The creation “operator d†m,σ corresponds to the localized
[...] [parts] of the state with l = 2. [...] For transition and rare-earth impurities” [124,
p. 481 - 482] we have l0 = 2 and l0 = 3, m is a z-component of the angular momentum,
m = −l0, . . . , l0. The set of chosen functions is not orthogonal, but the corresponding
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1.2 Pseudogap systems 1 INTRODUCTION

overlap integral

∞̂

0

drr2rl0 (kr)Rl0

(
r

rB

)
is small, since rB and 1

kF
differ greatly in scale. Therefore the non-orthogonality is negligible.

Rewritten in terms of c†k,l,m,σ, ck,l,m,σ, d
†
m,σ and dm,σ the Hamiltonian H in (1) contains a

high number of terms.

• Terms containing only c†k,l,m,σ and ck,l,m,σ: They characterize the Hamiltonian of the
host metal. For the description of the conduction band “we neglect the many particle
corrections to the band spectrum. [...] [We suppose] “that the spectrum of electrons
near the Fermi surface is spherically symmetric” [124, p. 483].

• The terms with d†m,σ and dm,σ operators characterize “the Hamiltonian of a 3d (4f)

ion in a crystal field” [124, p. 483].

• The one-electron mixing interaction in H0 is off-diagonal in the number of 3d (4f)

electrons. We neglect the crystal field and spin-orbit effects. We just keep terms
“invariant under rotation in the coordinate space” [124, p. 483].

• There are also terms containing c†k,l,m,σ, ck,l,m,σ, d
†
m,σ and dm,σ operators:

c†d†cd

c†c†dd, d†d†cc

c†c†cd, d†d†dc

We neglect all these terms.
The first term characterizes the contact exchange coupling. This term rivals the
virtual-mixing coupling. “For 3d impurities strong Kondo effect [...] [indicates] that
the virtual-mixing mechanism is [...] stronger. For 4f ions we must distinguish
between normal ions and ions near a valence instability. [...] [For a normal ion
there is no Kondo effect and for an ion near] a valence instability, the virtual-mixing
coupling becomes large.[Since we are] only interested in alloys [...] [that show] the
Kondo effect we [...] neglect the contact exchange coupling. [...]
States with nd0 ± 2 (corresponding to two additional orbital electrons or holes) [...]
[are located] sufficiently high” [124, p. 483 - 484]. The second terms result therefore
in the renormalization of the Coulomb interaction.
The third terms give only trivial renormalizations of virtual-mixing coupling.

Thus the characteristics “of a magnetic impurity in a metal [...] [can] be described by the
semiphenomenological Anderson Hamiltonian” [124, p. 484]:
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1.2 Pseudogap systems 1 INTRODUCTION

HA =
∑
k,m,σ

ε (k) c†k,m,σck,m,σ +
1

L

∑
k,m,σ

vk

(
c†k,m,σdm,σ + d†m,σck,m,σ

)
+
∑
m,m′,σ

εmm′d
†
m,σdm′,σ

+
∑

m1,m2,m3,m4,σ1,σ2,σ3,σ4
m1+m2=m3+m4
σ1+σ2=σ3+σ4

Γm3,σ3;m4,σ4
m1,σ1;m2,σ2

d†m1,σ1
d†m2,σ2

dm3,σ3dm4,σ4 − A
(
~Ld · ~Sd

)
, (2)

c†k,l0,m,σ = c†k,m,σ,

εmm′ = δmm′

∞̂

0

drr2Rl0

(
r

rB

)(
Rl0

(
r

rB

)(
Vi (r) +

l0 (l0 + 1)

2mr2

)

− 1

2mr
∂2
rrRl0

(
r

rB

))
+ (crystal field),

vk =

ˆ
d3rrl0 (kr)Y ∗l0m

(
~r

r

)
(H0 + Vi (r))Rl0

(
r

rB

)
Yl0m

(
~r

r

)
,

~Ld =
∑
m,m′,σ

d†m,σ~Im,m′dm′,σ,

~Sd =
∑
m,m′,σ

d†m,σ
~Sm,m′dm′,σ.

εmm′ is the one-electron atomic energy. “The non-relativistic [component] of interaction
between d (f) electrons” [124, p. 482] can be seen in the fourth term in HA . The matrix
Γ is determined by l + 1 Slater coefficients. The last term in HA describes the spin-orbit
coupling. ~Ld is the angular momentum and ~Sd the total spin of the d (f) shell. Ix, Iy and
Iz are the matrices of the j = l0 representation. The core of HA is that it describes a
one-dimensional system. All quantities in HA depend only on

∣∣∣~k∣∣∣ = k. The assumption
“about a spherical Fermi surface and impurity-ion potential” [124, p. 484] yields the
one-dimensionality. Note that we have to “consider impurities as independent scatterers”
[124, p. 484]. This means that a three-dimensional system with one impurity can be
mapped to a one-dimensional system with one impurity. This is not possible for a system
with more than one impurity.
To find the Anderson impurity model from (2) we can choose ε (k) = k, εmm′ = δmm′εd,
Γm3,σ3;m4,σ4
m1,σ1;m2,σ2

= Ū and vk = V .

In the case of graphene, the Anderson impurity model or in the limit of vanishing charge
fluctuations the s-d exchange Kondo model has a pseudogap low-energy density of states
[44]

ρ (ω) = ρ0 |ω|r Θ (D − |ω|) , (3)
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1.2 Pseudogap systems 1 INTRODUCTION

where ρ0 is a constant, ω is the energy and D is the bandwidth. An arbitrary value of r > 0,
but especially r = 1 is of interest. In addition, compared to the metallic Kondo system
which is particle-hole symmetric, there are relevant particle-hole symmetry breaking terms,
which can be modeled with a potential scattering with certain strength V0 [44].
J0 and V0 are a reparameterization of the parameters V , εd and Ū of the Anderson
impurity model. “It is supposed that no more than two electrons with spins σ =↑, ↓, can
simultaneously occupy the impurity level εd. The [...] [intra-atomic] Coulomb interaction
is given by the term Ū , and V is the admixture of the d level with conduction band states”
[124, p. 462]

J0 = 2V 2

(
1

|εd|
+

1∣∣εd + Ū
∣∣
)
, V0 =

V 2

2

(
1

|εd|
− 1∣∣εd + Ū

∣∣
)
. (4)

Depending on r, V0 and the Kondo coupling J0 between the electronic spins and the
impurity spin, there are rich phase diagrams, which are completely understood for one-
channel systems [44]. They follow from numerical renormalization group studies.

• Local-moment phase (LM): “The impurity moment is [...] [decoupled asymptotically]
from the host and [...] [acts] like a free local moment” [44, p. 10], i.e. the residual
entropy is given by Si = ln 2.

• Symmetric strong-coupling phase (SSC): This phase “is the generalization of the
metallic Kondo-screened phase to finite r” [44, p. 10]. It matches to Kondo screening
with particle-hole symmetry, Ū = −2εd, i.e. V0 = 0. The residual entropy is
Si = 2r ln 2. Therefore the impurity moment is screened only partially.

• Asymmetric strong-coupling phase (ASC): Without particle-hole symmetry, full
screening with Si = 0 is obtained.

• Symmetric and asymmetric critical points (SCR) and (ACR): There are “two distinct
critical fixed points” [44, p. 10]. Their difference lies in their symmetry under
particle-hole transformation.

“The topology of the phase diagram changes [...] as [...] the exponent r [in (3)] is varied.
Different phase diagram topologies are [...] [known] in [...] [four] regimes” [44, p. 10] [56]:

1. 0 < r < r∗ = 0.375± 0.002:

a) At particle-hole symmetry the local-moment phase is separated from the sym-
metric strong-coupling phase by a critical coupling Jc. It belongs to a symmetric
critical point. For starting values J < Jc the flow points to the local-moment
phase, while for J > Jc it points to the symmetric strong-coupling phase.

b) For particle-hole asymmetry the flow to the local-moment phase is separated
from the flow to the asymmetric strong-coupling phase by a separatrix.

11
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c) In the local-moment phase and at the symmetric critical point particle-hole
asymmetry is irrelevant, whereas it is important in the strong-coupling phase
where it pushes the flow to the asymmetric critical point. The symmetric critical
point is therefore a multicritical fixed point.

12
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2. r∗ < r < rmax = 1
2
:

a) There is a critical coupling which separates the local-moment phase from the
symmetric strong-coupling phase for particle-hole symmetry.

b) “The symmetric critical point is unstable with respect to particle-hole asymmetry
and a new asymmetric critical fixed point [...] [arises, regulating] the transition
between the local-moment phase and the asymmetric strong-coupling phase”
[44, p. 10].

3. r > rmax

a) The symmetric critical point melts together with the symmetric strong-coupling
phase. There is no Kondo screening at particle-hole symmetry.

b) For particle-hole asymmetry screening is possible. The asymmetric critical point
still regulates the local-moment - symmetric strong-coupling phase transition.

c) “The critical exponents are [trivial] at the asymmetric critical point for r > 1”
[44, p. 11]. r = 1 (corresponding to charge-neutral graphene) is an upper-critical
dimension.

4. −1 < r < 0:

a) The symmetric strong-coupling phase is stable.

b) The symmetric strong-coupling phase is separated “from a newly [...] arising
fixed asymmetric local moment point, located at J0 = 0 and V0 = ∞” [44, p.
11], by an asymmetric critical point [132]. In the following we will, however,
not discuss r < 0 in any detail.

Figure 2: “Schematic renormalization group flow diagrams for the pseudogap Kondo model
in the plane [...]. The flow topology [...] [varies] as a function of r, as [...]
[demonstrated] in the three panels. [...] Full dots [...] [indicate] stable fixed
points, [...] [whereas] open dots are critical fixed points. Dashed lines [...] [imply
separatrices], i.e. phase boundaries” [44, p. 10].

(Two-channel systems were investigated [56, 107], but less well understood due to the
more complicated relations.) The phase diagrams were determined with numerical (NRG)

13
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[26, 56, 25, 61] and perturbative renormalization group studies [133, 43]. The vicinities of
the critical fixed points were investigated with effective field theories [133, 43], but not
with exact Bethe ansatz methods.

1.3 Integrability

A more detailed overview of this chapter can be found in the book [36].
The basis of the integrability in the sense of this thesis is the R-matrix. The R-matrix
R (λ, µ) ∈ End

(
Cd ⊗ Cd

)
is a d2 × d2 matrix. R-matrices can be illustrated by graphs.

Relations among products of R-matrices become relations between graphs. The application
of these graphical conventions sometimes clarifies complicated algebraic proofs. We shall
utilize the graphical representation in the next chapters.

Figure 3: Graphical representation of the R-matrix.

“The R-matrix fixes the structure of the associative quadratic Yang-Baxter algebra TR”[36,
p. 427] “defined in terms of its generators Tαβ (λ) (monodromy matrix), α, β = 1, . . . , d,
λ ∈ C, by the relation” [36, p. 426]

R (λ, µ)T1 (λ)T2 (µ) = T2 (µ)T1 (λ)R (λ, µ) . (5)

With the definition of the row-to-row transfer matrix

t (λ) = Tαα (λ) = trauxT (λ) (6)

we find the important result

[t (λ) , t (µ)] = 0. (7)

Therefore the row-to-row transfer matrix t (λ) “is a generating function of a commutative
subalgebra of TR” [36, p. 427].
Note that the elements of the monodromy matrix are operators in a Hilbert space. This
space is called quantum space. The row-to-row “transfer matrix is [...] [derived] by taking
the trace with respect to the auxiliary space of the monodromy matrix” [36, p. 531].
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This yields an operator, which acts on the quantum space. Taking a trace in quantum /
auxiliary space is depicted by tr / traux.
Under the assumption that we have “a given representation of TR on the space of states
of some physical system[,] [...] t (λ) generates a set of mutually commuting operators[:
These operators are] by construction [...] embedded into the quadratic algebra TR. [...]
[Therefore we have an oppurtunity to fulfill the conditions] of Liouville’s theorem in the
classical limit (if it exists)[.] [...] [Furthermore] the quadratic relations of the algebra TR
[...] [could deliver a possibility] to simultaneously diagonalize the quantum integrals of
motion [...] generated by t (λ)” [36, p. 427].
Another way to “the defining relations of the Yang-Baxter algebra [...] [is the matrix]
Ř (λ, µ) with matrix elements Řαβ

γδ (λ, µ) = Rβα
γδ (λ, µ)” [36, p. 428]. We find

Ř (λ, µ) (T (λ)⊗ T (µ)) = (T (µ)⊗ T (λ)) Ř (λ, µ) . (8)

The Yang-Baxter equation

R12 (λ, µ)R13 (λ, ν)R23 (µ, ν) = R23 (µ, ν)R13 (λ, ν)R12 (λ, µ) (9)

or

Ř23 (λ, µ) Ř12 (λ, ν) Ř23 (µ, ν) = Ř12 (µ, ν) Ř23 (λ, ν) Ř12 (λ, µ)

“is a sufficient requirement for the consistency of the Yang-Baxter algebra TR” [36, p. 428].
It also secures the existence of nontrivial representations of TR.

Figure 4: Graphical representation of the Yang-Baxter equation.

“We denote by eγ ∈ Cd, γ = 1, . . . , d a column vector with only non-vanishing entry 1 in
row γ. The set

{
eγ ∈ Cd | γ = 1, . . . , d

}
is a basis of Cd. Let eβα ∈ End

(
Cd
)
, such that

eβαeγ = δβγ eα. Then
{
eβα ∈ End

(
Cd
)
| α, β = 1, . . . , d

}
is a basis of End

(
Cd
)
. eβα is a d× d

matrix with only non-vanishing entry 1 in row α and column β” [36, p. 429].
“Representations of the Yang-Baxter algebra [...] [are considered], where the quantum
space is a L-fold tensor product of auxiliary spaces Cd” [36, p. 429]. The L-matrix at site
j is introduced by defining its matrix elements
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Lα
jβ (λ, µ) = Rαγ

βδ (λ, µ) e δjγ. (10)

These matrix elements are operators in
(
End

(
Cd
))⊗L. This yields

Ř (λ, µ) (Lj (λ, ν)⊗ Lj (µ, ν)) = (Lj (µ, ν)⊗ Lj (λ, ν)) Ř (λ, µ) , (11)

which implies “that the L-fold product of ordered L-matrices

T (λ) = LL (λ, νL) . . . L1 (λ, ν1) (12)

is a representation of the Yang-Baxter algebra (8)” [36, p. 431]. The row-to-row transfer
matrix t (λ) and “every appropriately [...] [selected] differentiable function of t (λ) [...] [can
be viewed] as a generating function of a set of mutually commuting operators” [36, p. 432].
A beneficial selection of a generating function is τ (λ) = ln (t−1 (λ0) t (λ)). Since “the nth
coefficient [in the series expansion of τ (λ)] is a sum over local densities [...] [operating]
non-trivially at n+ 1 neighboring sites at most” if νj = ν0, j = 1, . . . , L and R (λ0, λ0) = P

[36, p. 532], the coefficients in the series expansion of τ (λ) are local [81]. The two-site
term

H = t−1 (λ0) t′ (λ0) (13)

can be interpreted as a Hamiltonian. Corresponding with the R-matrix R (λ, µ) equation
(12) defines the fundamental model. If all the νj, j = 1, . . . , L are equal, the model is
called homogeneous, otherwise inhomogeneous. The homogeneous model yields the local
Hamiltonian H (13). A result is the expansion of t (λ) for small λ and νj = 0, j = 1, . . . , L

t (λ) = eiΠ−λH+O(λ2), (14)

where Π is the momentum operator.

1.3.1 Column-to-column transfer matrix

An extraordinary state of affair follows in the framework of the derivation of the partition
function from the spectrum of an integrable Hamiltonian. In spite of “the validity of the
Bethe ansatz equations for all energy eigenvalues of the model the [...] [calculation] of the
partition function is [...] [quite] difficult. The eigenstates are not explicitly known. The
Bethe ansatz equations yield just implicit descriptions. In the thermodynamical Bethe
ansatz the grandcanonical partition function is calculated in the thermodynamic limit
by identifying the leading energy states. “The macro-state for [...] temperature T is [...]
[determined] by a set of root densities satisfying integral equations, [...] [which are derived]
from the Bethe ansatz equations” [36, p. 526]. The energy and the entropy are expressed
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in terms of the density functions. The minimization of the free energy functional yields
the thermodynamical Bethe ansatz equations [142, 117].
There are some problems in the explained procedure: The determination of the spectrum
of the Heisenberg model uses the string hypothesis, which was “criticized [quite] a number
of times and led [...] to a lattice path-integral” [36, p. 527] representation of the partition
function and the definition of a column-to-column transfer matrix (quantum transfer
matrix) [116, 69].
“Quantum systems at finite temperatures [...] [are therefore considered] in terms of classical
systems on lattices in one dimension higher” [36, p. 527]. Quantum systems are typically
viewed “as the original objects and the classical systems as derived objects” [36, p. 527].
The classical system is primary for us and the quantum system is secondary. This yields
“classical systems on lattices that are partially staggered with alternating rows, but identical
columns” [36, p. 527].
We introduce “R̄ (λ, µ) and R̃ (λ, µ) by clockwise and anticlockwise 90° rotations of R (λ, µ)”
[36, p. 528]

R̄αγ
βδ (λ, µ) = Rγβ

δα (µ, λ) , R̃αγ
βδ (λ, µ) = Rδα

γβ (µ, λ) . (15)

Figure 5: Graphical illustration of the fundamental R-matrix R (λ, µ) and the associated
R̄ (λ, µ) and R̃ (λ, µ).

We define an auxiliary transfer matrix t̄ (λ) consisting of Boltzmann weights R̄ (−λ, 0) and
find

t̄ (λ) : = traux
(
R̄ (−λ, 0)

)⊗L
= e−iΠ−λH+O(λ2),

so that we have for the partition function

ZL = tre−βH

= lim
N→∞

tr (t (τ) t̄ (τ))
N
2

∣∣∣
τ= β

N

. (16)

“We consider [the resulting system as a [...] [notional] two-dimensional model on a L×N
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square lattice. [...] N is the extension in the [...] [notional] imaginary time direction” [36,
p. 529], which we call Trotter direction. There are alternating rows on the lattice. “Each
of which is a product of only R weights or of only R̄ weights” [36, p. 529]. The columns
consist of alternating R and R̄ weights.

Figure 6: The quantum chain is mapped onto this two-dimensional classical model at finite
temperature. The lattice has width L and height N . The rows belong to the
transfer matrices t (τ) and t̄ (τ), τ = β

N
. The column-to-column transfer matrix

is crucial for the thermodynamics.

It is reasonable to introduce a new transfer matrix procedure “based on the transfer
direction along the horizontal axis [...] [and to study] the column-to-column transfer
matrix” [36, p. 529], which we will denote by tQTM.
By considering “the system in a 90◦ rotated frame[, we] define a [...] column-to-column
transfer matrix with arbitrary spectral parameter λ on the vertical line” [36, p. 529]

tQTM (λ, τ) := traux

 N
2⊗
R (λ,−τ)⊗ R̃ (λ, τ)


= traux

(
LQTM
N (λ,−τ)LQTM

N−1 (λ, τ) . . . LQTM
2 (λ,−τ)LQTM

1 (λ, τ)
)
. (17)

The LQTM-matrices are defined by

(
LQTM
j

)α
β

(λ, µ) :=

{
Rαγ
βδ (λ, µ) e δjγ, for j even,

R̃αγ
βδ (λ, µ) e δjγ, for j odd.

(18)

Using the column-to-column transfer yields
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ZL = lim
N→∞

tr
(
tQTM (0, τ)

)L∣∣∣
τ= β

N

. (19)

The free energy f per lattice site is given by

f := − 1

β
lim
L→∞

lim
N→∞

1

L
ln tr

(
tQTM (0, τ)

)L∣∣∣
τ= β

N

(20)

The two limits are interchangeable [116, 115].
We are interested in the spectrum of eigenvalues ΛQTM (λ, τ). There is a gap between the
largest and the second largest eigenvalue of the column-to-column transfer matrix for finite
β [116]. Hence the free energy per site can be written in terms of the leading eigenvalue
ΛQTM

0 (0, τ)

f = − 1

β
lim
N→∞

lnΛQTM
0 (0, τ)

∣∣∣
τ= β

N

. (21)

Note that the “second largest” eigenvalue may be non-real, but its absolute value is smaller
than ΛQTM

0 (0, τ).
The calculation of the free energy is shortened to that of the eigenvalue ΛQTM

0 (0, τ). Of
course, a demanding treatment is required for the Trotter limit N →∞.

1.3.2 External fields

We consider “the thermodynamics of the quantum chain [...] [with] an external field that
couples to a conserved quantity, e.g. a magnetic field h acting on the spin S =

∑L
j=1 Sj,

where Sj [...] [is] a component of the jth spin, for [...] [example] Szj ” [36, p. 531]. This
changes (16) only in an obvious way

ZL = tre−β(H−hS).

= lim
N→∞

tr
(

(t (τ) t̄ (τ))
N
2 eβhS

)∣∣∣
τ= β

N

.

“The equivalent two-dimensional L×N lattice is modified [...] by a horizontal seam” [36,
p. 532]. Corresponding to that, the column-to-column transfer matrix is changed “by a
field dependent boundary operator D” [36, p. 532], where D is in the case of a spin-1

2

model with Sj = 1
2
σzj

D =

(
e
βh
2

e−
βh
2

)
. (22)

This modification can be handled “exactly as the additional operators acting on the
bonds belong[ing] to symmetries of the model” [36, p. 532]. Consequently, within a
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“grandcanonical ensemble for general magnetic fields and chemical potentials” [36, p. 532]
the properties of many-particle systems can be investigated.

1.4 Structure and goal of this work

The aim of this thesis is the construction of a pseudogap Anderson impurity model, i.e.
an Anderson impurity model with the dispersion relation ε (k) = kz, z > 0 for the host
instead of the standard Anderson impurity model with dispersion relation ε (k) = k for
the host. Such a dispersion relation leads to a density of states of the host like (3). We
note that the Anderson impurity model is an integrable continuum model for which the
coordinate Bethe approach is known so far [124]. Since the column-to-column transfer
matrix does not exist in the continuum, the finitely many non-linear integral equations
for the description of thermodynamics could not be directly determined. In [22] Bortz,
Klümper and Scheeren showed that there is a different lattice model with the same regimes
as in the phase diagram of the Anderson impurity model [124]. With respect to the
regimes the models were considered as equivalent and the finitely many non-linear integral
equations for the lattice model were derived.
In this thesis, our first goal is to embed the standard Anderson impurity model into a
lattice model. As an appropriate model, the Hubbard model with integrable impurity
emerges. For this reason, we generalize known results of the Hubbard model [36].
After that our goal is that this lattice model yields the Anderson impurity model with
all parameters in a continuum limit. Then we want to use the limit for the description
of the thermodynamics by performing it for the infinite set of thermodynamic Bethe
ansatz equations as well as for the finitely many non-linear integral equations. The latter
represents a new result. In this thesis, we also develop a method to perform the limit for
the Hamiltonian.
By embedding the Anderson impurity model in a lattice model, it is now possible to
perform modifications on the lattice that serve to change the dispersion relation of the
host. These modifications are thus carried out at the level of the Hubbard model. After
performing the established continuum limit, this provides the desired pseudogap Anderson
impurity model, whose Hamiltonian we can specify. Through the generalization on the
lattice, it is possible to fully describe the thermodynamics of this newly constructed model
with a finite number of non-linear integral equations.
Therefore the aim of this thesis is the construction of a Anderson impurity model with
modified density of states and the exact description of the thermodynamics with Bethe
ansatz techniques.

In chapter 2 we introduce the one-dimensional anisotropic spin-1
2
Heisenberg model and

consider it as a toy model. We show how to modify this model so that it contains an impurity
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and the dispersion relation is changed. This novel model is subsequently investigated.
We derive the Bethe ansatz equations for the row-to-row and column-to-column transfer
matrices and the finitely many non-linear integral equations for the complete description
of the thermodynamics. We study the thermodynamics for low temperatures T depending
on the magnetic field h.
In chapter 3, an integrable impurity is added to the Hubbard model by additionally
introduced spectral lines. The Bethe ansatz equations of the row-to-row transfer matrix
change as a result. We describe the thermodynamics both with the thermodynamic
Bethe ansatz and with the finitely many non-linear integral equations. In both cases the
contribution of the impurity to the free energy is determined.
In chapter 4 we modify the density of states of the Hubbard model with integrable impurity
and describe the thermodynamics of this new model completely with the finitely many
non-linear integral equations. We show that the host still behaves like a free fermion gas
in the limit U → 0. Furthermore we analyze the low-temperature asymptotics.
In chapter 5 we demonstrate that the well-known Anderson impurity model can be derived
from the Hubbard model with integrable impurity from chapter 3 by use of a combined
continuum limit. We apply the continuum limit to the Bethe ansatz equations, the
thermodynamic Bethe ansatz, the finitely many non-linear integral equations, the creation
and annihilation operators and the Hamiltonian. We also derive the low-temperature
asymptotics.
In chapter 6 we use the combined continuum limit established in chapter 5 to derive
a novel pseudogap Anderson impurity model from the modified Hubbard model with
integrable impurity in Chapter 4. We compute the corresponding Hamiltonian, describe
the thermodynamics through the finitely many non-linear integral equations, consider the
low-temperature asymptotics and the screening of the impurity.
In chapter 7 we comment on the most important results as well as further unresolved
questions and the outlook.
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2 One-dimensional anisotropic spin-1
2 Heisenberg

model with spin-1
2 impurity and modification of the

density of states

In this section we consider the one-dimensional anisotropic spin-1
2
Heisenberg model and

outline how an integrable spin-1
2
impurity is incorporated and the density of states of the

model is modified.
Our starting point is the one-dimensional anisotropic spin-1

2
Heisenberg model

HXXZ = J

L∑
j=1

(
σxj−1σ

x
j + σyj−1σ

y
j + ∆

(
σzj−1σ

z
j − 1

))
− h

2

L∑
j=1

σzj , (23)

with periodic boundary conditions on a chain of length L, where h denotes the magnetic
field. J > 0 fixes the energy scale and ∆ is the (real) anisotropy parameter. “Apparently,
for ∆ = 1 the system specializes to the isotropic antiferromagnetic Heisenberg chain, for
∆ = −1 (and applying a simple unitary transformation) the system reduces to the isotropic
ferromagnetic case. The classical counterpart of the one-dimensional anisotropic spin-1

2

Heisenberg model is the six-vertex model” [70, p. 11]. We use the following parametrization
of the Boltzmann weights

a (λ, µ) = 1, b (λ, µ) =
sin (λ− µ)

sin (λ− µ+ γ)
, c (λ, µ) =

sin γ

sin (λ− µ+ γ)
, (24)

where ∆ = cos γ. In the following we consider 0 ≤ γ ≤ π. The integrable structure
encoded in the R-matrix is given by

R (λ, µ) =


a (λ, µ)

b (λ, µ) c (λ, µ)

c (λ, µ) b (λ, µ)

a (λ, µ)

 . (25)

It is well known how to diagonalize the row-to-row transfer matrix and the column-to-
column transfer matrix by means of the algebraic Bethe ansatz [70].
However, we would like to modify the model in two ways:
First, we introduce an integrable spin-1

2
impurity on the site L + 1 with the spectral

parameter ν.
Next we introduce shifts θ1, . . . , θN

2
and ϑ1, . . . , ϑL on the horizontal and vertical lines.

These shifts are, however, not intended to be arbitrary, but are intended to follow pre-
determined distribution densities ρh and ρv. These distribution densities depend on the
parameters αh and αv (αh, αv > 0). These shifts serve to modify the dispersion relation of
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the host.

Figure 7: The quantum chain at finite temperature is mapped onto this two-dimensional
classical model. The lattice has width L + 1, and height N . The rows of the
lattice belong to the row-to-row transfer matrices with τ = sin γ β

N
. The column-

to-column transfer matrix is crucial for the thermodynamics. The blue line is
intended to illustrate the integrable spin-1

2
impurity.

The column-to-column transfer matrix with arbitrary spectral parameter λ on the vertical
line is according to (17) and (22)

tQTM (λ, τ) = traux

D · N
2⊗
j=1

R (λ, θj − τ)⊗ R̃ (λ, θj + τ)


“The L-matrices are defined differently for even and odd indices” [36, p. 530]

(
LQTM
j

)α
β

(λ, µ) :=

{
Rαγ
βδ (λ, µ) e δjγ, for j even,
R̃αγ
βδ (λ, µ) e δjγ for j odd .

The free energy F is

F = − 1

β
lim
N→∞

ln tr

(
tQTM (ν, τ)

L∏
j=1

tQTM (ϑj, τ)

)∣∣∣∣∣
τ=sin γ β

N

. (26)
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“Of particular interest is the spectrum of eigenvalues” [36, p. 532] of tQTM (λ, τ). There is
a gap between the largest and the absolute value of the second largest eigenvalue of the
column-to-column transfer matrix for finite β [116, 115]. Therefore, with the right choice
of the parameters ϑ1, . . . , ϑL the free energy per site is given just in terms of the largest
eigenvalue ΛQTM

0 (λ, τ).
“The diagonalization of the column-to-column transfer matrix is achieved by the algebraic
Bethe ansatz very much like for the homogeneous case of the row-to-row transfer matrix”
[70, p. 5]. In our case we find

ΛQTM
0 (λ, τ) = e

βh
2

 N
2∏
j=1

b (τ + θj, λ)

( M∏
k=1

1

b (µk, λ)

)

+ e−
βh
2

 N
2∏
j=1

b (λ,−τ + θj)

( M∏
k=1

1

b (λ, µk)

)

with

eβh

N
2∏
j=1

sh (µk + i (τ + θj − γ)) sh (µk − i (τ − θj))
sh (µk − i (τ − θj − γ)) sh (µk + i (τ + θj))

= −
M∏
l=1

sh (µk − µl − iγ)

sh (µk − µl + iγ)
. (27)

“The last constraints are nothing but the famous Bethe ansatz equations” [70, p. 16] here
formulated for our model and determine {µk}Mk=1.
After the substitutions λ → iλ̃, µk → iµ̃k and “factorization of common terms of the
vacuum functions we” [36, p. 535] get

ΛQTM
0

(
λ̃, τ
)

=
λ+

(
λ̃
)

+ λ−

(
λ̃
)

∏N
2
j=1 sh

(
λ̃− i (γ − τ − θj)

)
sh
(
λ̃+ i (γ − τ + θj)

) .
λ±

(
λ̃
)
are given by

λ±

(
λ̃
)

= e±
βh
2 φ
(
λ̃∓ iγ

2

) q (λ̃± iγ)
q
(
λ̃
) . (28)

The function φ
(
λ̃
)
is

φ
(
λ̃
)

=

N
2∏
j=1

sh
(
λ̃− i

(γ
2
− τ − θj

))
sh
(
λ̃+ i

(γ
2
− τ + θj

))
(29)

and q
(
λ̃
)
is defined by
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q
(
λ̃
)

:=
M∏
k=1

sh
(
λ̃− µ̃k

)
. (30)

In the following we let the tilde fall.
“The unknown zeroes of q (λ) are the Bethe ansatz rapidities” [36, p. 536] and are
determined by the Bethe ansatz equations, which are reformulated

a (µk) = −1, (31)

where the function a (λ) is given by

a (λ) =
λ+ (λ)

λ− (λ)

= eβh
φ
(
λ− iγ

2

)
q (λ+ iγ)

φ
(
λ+ iγ

2

)
q (λ− iγ)

. (32)

2.1 Bethe ansatz equations of the one-dimensional anisotropic

spin-12 Heisenberg model with spin-12 impurity and

modification of the density of states

The Bethe ansatz equations for the column-to-column transfer matrix can be written as
(27) or (31).
In the same way, it is possible to derive the Bethe ansatz equations of the row-to-row
transfer matrix. That leads to

sh
(
νk − ν + iγ

2

)
sh
(
νk − ν − iγ2

) L∏
j=1

sh
(
νk − ϑj + iγ

2

)
sh
(
νk − ϑj − iγ2

) = −
M∏
l=1

sh (νk − νl + iγ)

sh (νk − νl − iγ)
. (33)

Due to the shift on the vertical and horizontal lines and the spin-1
2
impurity, we have

modified Bethe ansatz equations. Note that these shifts do not change the particle-particle
or particle-impurity scattering phases. There is just a phase-shift of the particle wave
function in the Bethe ansatz equations of the row-to-row transfer matrix due to the
presence of the spin-1

2
impurity. “This is consistent with the understanding that the

number of scattering channels in a Bethe ansatz-solvable Hamiltonian is conserved” [35, p.
5].
Furthermore the shifts θ1, . . . , θN

2
on the horizontal lines can only be seen in the Bethe

ansatz equations of the column-to-column transfer matrix, whereas the shifts ϑ1, . . . , ϑL

on the vertical lines and the spin-1
2
impurity manifest themselves in the other set of Bethe

ansatz equations.
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2.2 Thermodynamics of the of the one-dimensional anisotropic

spin-12 Heisenberg model with spin-12 impurity and

modification of the density of states

Note that it is relatively easy to derive the Bethe ansatz equations of this new model.
The thermodynamics can be explicitly determined. The derivation of the Hamiltonian,
however, is much more complicated and is discussed in Chapter 2.4.
“We are dealing with a set of coupled non-linear equations” [36, p. 536] for the derivation
of the thermodynamics. For the treatment of the thermodynamics of the anisotropic
Heisenberg chain with spin-1

2
impurity and the further introduced modifications we derive

a set of non-linear integral equations for the function a (λ) (32). Hence we define the
associated auxiliary function

A (λ) := 1 + a (λ) . (34)

The poles of A (λ) are identical to those of a (λ). However, the set of zeroes is different.
The derivation of the non-linear integral equations follows the usual scheme [49, 70]. “There
are, however, variants of these integral equations that are somewhat more convenient for
the analysis” [70, p. 22]. Using b (λ) = a

(
λ+ iγ

2

)
and b̄ (λ) = 1

a(λ−i γ2 )
yields

ln b (λ) = −β (ρh ∗ ε) (λ) +
πβh

2 (π − γ)
+ (κ ∗ lnB) (λ)−

(
κ ∗ ln B̄

)
(λ+ iγ) , (35)

ln b̄ (λ) = −β (ρh ∗ ε) (λ)− πβh

2 (π − γ)
+
(
κ ∗ ln B̄

)
(λ)− (κ ∗ lnB) (λ− iγ) , (36)

B (λ) = 1 + b (λ) , (37)

B̄ (λ) = 1 + b̄ (λ) . (38)

The symbol ∗ denotes the convolution (f ∗ g) (x) =
´∞
−∞ dyf (x− y) g (y) and the functions

ε (λ) and κ (x) are defined by

ε (λ) :=
2πJ sin γ

γch
(
π
γ
λ
) , (39)

κ (x) :=

∞̂

−∞

dkeikx
sh
(
k
(
π
2
− γ
))

2ch
(
γ
2
k
)
sh
(
k
2

(π − γ)
) . (40)

“Note that the integrals in (35) and (36) are well-defined with integration paths just below
and above the real axis” [70, p. 22].
The integral expression for ΛQTM

0 in the limit N →∞ reads
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lnΛQTM
0 (λ) = −βe0 (λ) +

(
K ∗ ln

(
BB̄

))
(λ) , (41)

where the functions e0 (λ) and K (λ) are defined by

e0 (λ) := J sin γ

∞̂

−∞

dkeikλ
sh
(
k
2

(π − γ)
)

sh
(
π
2
k
)
ch
(
γ
2
k
) , (42)

K (λ) :=
1

2γch
(
π
γ
λ
) . (43)

Note that in the next chapter we will see that shifts ϑ1, . . . , ϑL on the vertical lines are
not necessary for the desired change in the dispersion relation / density of states (3).
Shifts θ1, . . . , θN

2
on the horizontal lines are sufficient. For this reason, we set the shifts

ϑ1, . . . , ϑL on the vertical lines in this remaining subsection equal to zero. The free energy
per site of the host and the spin-1

2
impurity are therefore

fh = − 1

β
lnΛQTM

0 (0) , (44)

fi = − 1

β
lnΛQTM

0 (ν) , (45)

f = fh +
1

L
fi. (46)

Note that ρh (λ) only enters into the non-linear integral equations of b (λ) and b̄ (λ) in the
dressing term (35) and (36), while ρv (λ) can only occur in the integral expression for the
free energy of the host (26). The Hamiltonian of the model is derived in chapter 2.4.

2.3 Dispersion relation

In the following, we determine the new dispersion relation of the host. Since we are
interested in pseudogap systems (3), we first consider (39)

ε (λ) =
2πJ sin γ

γch
(
π
γ
λ
)

⇒ (Fε) (k) =

∞̂

−∞

dλe−ikλε (λ)

=
2πJ sin γ

ch
(
γ
2
k
) ,
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where ε (λ) denotes the energy of the low-lying excitation of the antiferromagnet. The
corresponding momentum is the integral of ε (λ) with respect to the spectral parameter
(ε (λ) = p′ (λ)).
The function (Fε) (k) has poles at πi

γ
(±1 + 2m) with m ∈ Z.

There are many different distribution densities ρh and ρv that could be used to describe
shifts on the horizontal and vertical lines. Since we are interested in pseudogap systems
(3), we use the following distribution densities

ρh (λ) =
αh

γch
(
π
γ
αhλ

) , ρ̃v (λ) =
αv

γch
(
π
γ
αvλ

) , (47)

⇒ (Fρh) (k) =
1

ch
(

γ
2αh

k
) , (F ρ̃v) (k) =

1

ch
(

γ
2αv

k
) .

The functions (Fρh) (k) and (Fρv) (k) have poles at πi
γ
αh (±1 + 2mh) and πi

γ
αv (±1 + 2mv)

with mh,mv ∈ Z. The distribution densities also satisfy

∞̂

−∞

dλρh (λ) =

∞̂

−∞

dλρv (λ) = 1. (48)

ρh (λ) only enters into the non-linear integral equations of b (λ) and b̄ (λ) (35) and (36)
in the dressing term and changes the energy. If there were no shifts θ1, . . . , θN

2
on the

horizontal lines, this dressing term would be −βε (λ). With shifts it is −β (ρh ∗ ε) (λ). We
consider therefore (ρh ∗ ε) (λ) and use the convolution theorem

(ρh ∗ ε) (λ) =

∞̂

−∞

dk

2π
eikλ (Fρh) (k) (Fε) (k) . (49)

The poles of the two functions (Fρh) (k) and (Fε) (k) determine the behaviour of the
function (ραh ∗ ε) (λ) for large λ

εnew (λ) := (ρh ∗ ε) (λ) (50)

large λ
'

{
cst.e−

π
γ
αh|λ|, for αh < 1,

cst.e−
π
γ
|λ|, for αh ≥ 1.

We consider (43)
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K (λ) =
1

2γch
(
π
γ
λ
)

⇒ (FK) (k) =
1

2ch
(
γ
2
k
) .

The function (FK) (k) has poles at πi
γ

(±1 + 2n) with n ∈ Z.
The “momentum” of the low-lying excitation of the system with shifts ϑ1, . . . , ϑL on the
vertical lines is pnew (λ) = (ρv ∗ p) (λ) or in differential form

p′new (λ) = (ρv ∗K) (λ) (51)

large λ
'

{
cst.e−

π
γ
αv |λ|, for αv < 1,

cst.e−
π
γ
|λ|, for αv ≥ 1.

Note that the system is no longer translationally invariant, but pnew (λ) is a “appropriate
quantum number” that is uniformly distributed in the interval [−π, π].
Since obviously large λ corresponds to small momenta, the following new dispersion relation
follows

εnew (pnew)
small pnew'


cst. |pnew|

αh
αv , for αh, αv < 1,

cst. |pnew|αh , for αh < 1, αv ≥ 1,

cst. |pnew|
1
αv , for αh ≥ 1, αv < 1,

cst. |pnew| , for αh, αv ≥ 1.

. (52)

The exponent of pnew is always positive. In the first case, the exponent is arbitrary, in the
second smaller than 1 and in the third larger than 1. Finally we have a linear dispersion
relation in the last case.
The parameters αh and αv can thus be selected so that they correspond to a pseudogap
system, because the density of states of the host is given by

ρ (ε) =
1

2π |∂kε (k)|
. (53)

Assuming ε (k) = Akz yields

ρ (ε) =
|ε|

1
z
−1

2π
∣∣∣zA 1

z

∣∣∣ . (54)

In the case 0 < αh, αv < 1 follows
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ρ (ε) =
|ε|

αv
αh
−1

2παh
αv
|Ah,v|

αv
αh

.

For αv > αh follows a positive exponent, which is fitting for a pseudogap system. For
αv = 2αh we find the case of charge-neutral graphene. (Note that, of course, this model
is not yet used to study graphene, it is a toy model.) It is also noteworthy that shifts
ϑ1, . . . , ϑL on the vertical lines are not necessary. Shifts θ1, . . . , θN

2
on the horizontal lines

are sufficient, since then follows a density of states with positive exponent

ρ (ε) =
|ε|

1
αh
−1

2παh |Ah|
1
αh

, 0 < αh < 1.

A, Ah,v and Ah are constants.

2.4 Hamiltonian

In the following section, we sketch a way to calculate the Hamiltonian of the one-dimensional
anisotropic spin-1

2
Heisenberg chain with spin-1

2
impurity and modified density of states.

2.4.1 Hamiltonian of the one-dimensional spin-1
2
anisotropic Heisenberg model

with spin-1
2
impurity

Setting all shifts θ1 = ... = θN
2

= ϑ1 = . . . = ϑL = 0, which means that we only consider the
one-dimensional spin-1

2
anisotropic Heisenberg model with an integrable spin-1

2
impurity,

yields the Hamiltonian

H = 2iJ sin γ
d

dλ
ln t (λ, ν)

∣∣∣∣
λ=0

, (55)

where t (λ, ν) is the row-to-row transfer matrix. Through a direct but straightforward
calculation we obtain the following compact expression. We remark that the XXZ Ha-
miltonian with the spin-1

2
impurity, given in (56) is hermitian when the spin-1

2
impurity

spectral parameter ν is real.
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H = J
L−1∑
j=1

(
σxj σ

x
j+1 + σyjσ

y
j+1 + ∆

(
σzj−1σ

z
j − 1

))
− J∆− h

2

L∑
j=1

σzj

+ Jc (iν) c (−iν)
(
chν

(
σxLσ

x
L+1 + σyLσ

y
L+1

)
+ ∆

(
σzLσ

z
L+1 − 1

))
+ Jc (iν) c (−iν)

(
chν

(
σxL+1σ

x
1 + σyL+1σ

y
L

)
+ ∆σzL+1σ

z
1

)
+ Jb (iν) b (−iν) ∆ (σxLσ

x
1 + σyLσ

y
1 + σzLσ

z
1)

+ iJb (iν) c (−iν)
(
chν (σyLσ

x
1 − σxLσ

y
1)σzL+1 −∆

(
σyLσ

x
L+1 − σxLσ

y
L+1

)
σz1

−∆
(
σyL+1σ

x
1 − σxL+1σ

y
1

)
σzL
)
. (56)

By putting ν = 0, the Hamiltonian reduces to the standard homogeneous spin-1
2
anisotropic

Heisenberg model on L+ 1 sites, which has no impurity.

2.4.2 Hamiltonian of the one-dimensional spin-1
2
anisotropic Heisenberg model

with spin-1
2
impurity and shifts on the horizontal and vertical lines

If we want to calculate the Hamiltonian of the one-dimensional spin-1
2
anisotropic Heisen-

berg model with spin-1
2
impurity and shifts θ1, . . . , θN

2
and ϑ1, . . . , ϑL on the horizontal

and vertical lines we have to pay attention to two aspects.
First, we have to perform a Jordan-Wigner transformation for the host in the Hamiltonian
in (56) and switch to the momentum space via Fourier transformation. Since we know
the effect of the shifts θ1, . . . , θN

2
and ϑ1, . . . , ϑL on the horizontal and vertical lines on

the host (these change the dispersion relation), the old dispersion relation can now be
exchanged with the new one. Nothing else changes in the host.
The Jordan-Wigner transformation for the host in (56) yields

Hh = J

L∑
j=1

(
2
(
c†j−1cj + c†jcj−1

)
+ ∆ ((1− 2nj−1) (1− 2nj)− 1)

)
− h

2

L∑
j=1

(2nj − 1) ,

and after the Fourier transformation we find

Hh = 4J

(
L−1∑
k=0

(
cos

(
2π

L
k

)
−∆

)
c†kck +

∆

L

L−1∑
k,k′,q=0

cos

(
2π

L
q

)
c†k−qc

†
k′+qck′ck

)

− h

2

L−1∑
k=0

(
2c†kck − 1

)
.

The more complicated question is how the shifts θ1, . . . , θN
2
and ϑ1, . . . , ϑL on the horizontal

and vertical lines affect the interaction with the spin-1
2
impurity. With the inhomogenities
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on the vertical lines there is a priori no local Hamiltonian. Since we saw in Chapter 2.3
that shifts ϑ1, . . . , ϑL on the vertical lines are not necessary for the desired modification of
the dispersion relation, we set these inhomogenities equal to zero, as in Chapter 2.2.
In principle, there are three cases of the interaction of one plane wave with the spin-1

2

impurity which must be observed.

1. A plane wave with spectral parameter Θ can interact with the spin-1
2
impurity so that

the impurity spin changes from ↑ to ↓ . The impurity spin can also change from ↓ to
↑ and a plane wave is emitted. The transition rate for this we call A↑↓ (Θ) = A↓↑ (Θ).

2. A plane wave with spectral parameter Θ can interact with the spin-1
2
impurity so

that a plane wave with spectral parameter Θ̃ goes out. The impurity spin remains
fixed. The transition for these two cases we call A↑↑

(
Θ, Θ̃

)
and A↓↓

(
Θ, Θ̃

)
.

Note that the spectral parameters Θ and Θ̃ can be converted in momenta kin and kout

before and after the interaction. The transition rates occur in the Hamiltonian and must
be calculated.
The exact evaluation is based on the fact that the local objects

Figure 8: Product of L-matrices with spectral parameters θ and φ, which are used for
calculations.

leave right hand-sided singlets

Figure 9: “Ket” singlets.

and “bra” states (which are orthogonal to the right hand-sided singlet) invariant,
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Figure 10: Invariance.

but other states (orthogonal to the right hand-sided singlet) have very small eigenvalues.
That reads

t (θ) t̄ (θ) = id +O
(
e−cst.L) ,

t (θ) t̄ (θ + ε) = e−εH +O
(
e−cst.L) . (57)

For L lattice sites of the host we consider the row-to-row transfer matrix with open
boundary conditions left and right. An incoming or outgoing plane wave with spectral
parameter k and σ = 1 can be written down graphically.
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Figure 11: Incoming and outgoing plane wave with σ = 1. The spectral parameters can
be converted into momenta as required. σ on the horizontal line means that
there is a spinless fermion, 0 means there is none.

Due to equation (57), we consider two horizontal lines, i.e. the product of two row-to-row
transfer matrices. Now we consider the interaction with a plane wave which is generated.
Putting everything together we get
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Figure 12: The “effective” partition function on a (L+ 1)× 4 lattice. Here we can also add
a twist angle. We can see two kinds of column-to-column transfer matrices, T
for the host and Ti for the impurity. Note that we use open boundary conditions
on vertical lines.

The matrix element has a natural interpretation as the partition function on a (L+ 1)× 4

lattice. The derivative with respect to ε at ε = 0 yields the desired matrix element of H.
As L→∞ we intend to apply a transfer matrix approach. For this, we define the transfer
matrices.

Figure 13: Transfer matrices of the bulk and the impurity.

These calculations were performed on Maple and the results for ∆ = 1 are
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A↑↓ (Θ) = A↓↑ (Θ) =
2Θ (3θ − 2Θ− 1− ν)

(1 + θ − ν) (−1 + θ − ν) (−1 + θ −Θ) (θ −Θ)
,

A↑↑ (Θ,Θ0) = 2Θ
(

1 + Θ̃
)

·
1− 3θ + 4θ2 + ν − 2θν − 3θ

(
Θ + Θ̃

)
+ Θ̃ + Θ + 2ΘΘ̃ +

(
Θ + Θ̃

)
ν

(1 + θ − ν) (−1 + θ − ν) (−1 + θ −Θ)
(
−1 + θ − Θ̃

)
(θ −Θ)

(
θ − Θ̃

) ,
A↓↓ (Θ,Θ0) = −2Θ

(
1 + Θ̃

)
·
−1− 3θ + 4θ2 + ν − 2θν − 3θ

(
Θ + Θ̃

)
+ Θ̃ + Θ + 2ΘΘ̃ +

(
Θ + Θ̃

)
ν

(1 + θ − ν) (−1 + θ − ν)
(
−1 + θ − Θ̃

)(
−1 + θ − Θ̃

)
(θ −Θ)

(
θ − Θ̃

) .
All transition rates are real and show physical behaviour. This means that the shifts on
the horizontal do not create a problem and the Hamiltonian can now simply be specified.
Notice that all transition rates depend on θ, which corresponds to the horizontal shifts. The
calculations can also be done for ∆ 6= 1, but require a higher computation time. Therefore
the results are not listed here. The spectral parameters Θ and Θ̃ can be converted into
momenta k and k̃.
The hybridization is given by

Vk = J

∞̂

−∞

dθρh (θ)A↑↓

(
γ

π
ln

2π2k

L

)
. (58)

The Hamiltonian of the one-dimensional spin-1
2
isotropic Heisenberg model with spin-1

2

impurity and shifts on the horizontal lines for the case αh < 1 is therefore given by

H =
L−1∑
k=0

((
4J

((
2πk

L

)αh
− 1

)
− h
)
c†kck + Vk

(
c†kd+ d†ck

))

+
4J

L

L−1∑
k,k′,q=0

cos

(
2π

L
q

)
c†k−qc

†
k′+qck′ck +

hL

2
+ many particle terms. (59)

We determined the Hamiltonian of this new model, where we neglected additional many-
body terms. Naturally, terms of this kind exist because of the shifts θ1, . . . , θN

2
on the

horizontal lines. The calculation of the additional many-body terms becomes more and
more complicated and reaches its limits. It should also be noted that this is a special
impurity lattice model with an impurity interacting with an interacting host.
From this model we have therefore learned that it is possible to introduce an impurity in
an integrable lattice model and to modify the dispersion relation. On the lattice, however,
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there are relevant many-particle terms that cannot be neglected.

2.5 Low temperature asymptotics

In this section we will consider the low-temperature asymptotics of our model and we will
determine critical exponents for the host and the impurity.
There are two cases for the low-temperature analysis. The case h = 0 and the case h > 0

(which is analogous to h < 0).

2.5.1 Case h = 0

In the case of h = 0 we consider

lnΛQTM
0 (λ) = −βe0 (λ) +

(
K ∗ ln

(
BB̄

))
(λ)

= −βe0 (λ) +

∞̂

µ> γ ln β
παh

dµK

(
λ− µ− γ ln β

παh

)
ln
(
BB̄

)(
µ+

γ ln β

παh

)

+

∞̂

µ> γ ln β
παh

dµK

(
λ+ µ+

γ ln β

παh

)
ln
(
BB̄

)(
−µ− γ ln β

παh

)

= −βe0 (λ) +
1

γβ
1
αh

∞̂

µ> γ ln β
παh

dµ
(
e
π
γ

(λ−µ) + e−
π
γ

(λ−µ)
)

ln
(
BB̄

)(
µ+

γ ln β

παh

)
.

Defining the functions

B (λ) := B

(
λ+

γ ln β

παh

)
, B̄ (λ) := B̄

(
λ+

γ ln β

παh

)
(60)

yields

lnΛQTM
0 (λ) = −βe0 (λ) +

2

γβ
1
αh

∞̂

γ ln β
παh

dµch
(
π

γ
(λ− µ)

)
ln
(
B+B̄+

)
(µ)

This means that for the case 0 < αh, αv < 1 (the case with the positive but otherwise
arbitrary exponent in the dispersion relation) the free energy of the host shows a T 1+αv

αh

and the spin-1
2
impurity shows a T 1+ 1

αh behaviour. In the case of no shifts ϑ1, . . . , ϑL on
the vertical lines we find T 1+ 1

αh behaviour for the contribution to the free energy for both
the host and the impurity.
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2.5.2 Case h > 0

In the case of h > 0 and T → 0, the dressing terms of the non-linear integral equations
for b (λ) and b̄ (λ) (35) and (36) are dominant and b (λ) � b̄ (λ) and also 1 � b̄ (λ).
Therefore we consider

B (λ) = 1 + e−β((ρh∗ε)(λ)− πh
2(π−γ)). (61)

and

∣∣ln B̄ (λ)
∣∣ ∝ e−cst.β

→ 0.

For λ = λ0 let

(ρh ∗ ε) (λ0)− πh

2 (π − γ)
= 0. (62)

This equation defines λ0 for temperature T = 0. Note that ρh (λ) and ε (λ) are real and
symmetric functions. Therefore, (ρh ∗ ε) (λ) is also real and symmetric. A numerical
analysis shows that points ±λ0 that satisfy (62) exist. In general for T 6= 0 ±λ0 are zeroes
of the function − ln b(λ)

β
.

The driving term of b (λ) is real and symmetric and has the property, that the function
b (λ) shows “steep crossover behaviour” [36, p. 593] at λ0 for low temperatures

b (λ)� 1 for |λ| < λ0,

b (λ)� 1 for |λ| > λ0.

“The slopes at the crossover points are steep, allowing” [36, p. 593] some approximations
to the integral equation.
Then we find
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lnΛQTM
0 (λ) = −βe0 (λ) + (K ∗ lnB) (λ)

= −βe0 (λ) +

∞̂

−∞

dµK (λ− µ) lnB (µ)

' −βe0 (λ)− β
ˆ

|µ|>λ0

dµK (λ− µ)

(
(ρh ∗ ε) (µ)− πh

2 (π − γ)

)

+

ˆ

|µ|<λ0

dµK (λ− µ) ln
(

1 + e−β((ρh∗ε)(λ)− πh
2(π−γ))

)
+

ˆ

|µ|>λ0

dµK (λ− µ) ln
(

1 + eβ((ρh∗ε)(λ)− πh
2(π−γ))

)
.

The slope −β (ρh ∗ ε)′ (λ) is of order O(β) and thus “steep at low temperatures” [36, p. 593],
therefore we approximate e±β((ρh∗ε)(λ)− πh

2(π−γ)) for |λ| > λ0 and |λ| < λ0 by eβ(ρh∗ε)′(λ0)|λ±λ0|

in the vicinity of the Fermi rapidities ±λ0. Thus the last two terms in the integral yield

lnΛQTM
0 (λ) = −βe0 (λ)

− β
∞̂

λ0

dµ (K (λ− µ) +K (λ+ µ))

(
(ρh ∗ ε) (µ)− πh

2 (π − γ)

)

+ 2 (K (λ− λ0) +K (λ+ λ0))

∞̂

0

dµ ln
(

1 + eβ(ρh∗ε)′(λ0)µ
)

+ o

(
1

β

)

= −βe0 (λ)− π2

6β (ραh ∗ ε)
′ (λ0)

(K (λ− λ0) +K (λ+ λ0))

− β
∞̂

λ0

dµ (K (λ− µ) +K (λ+ µ))

(
(ρh ∗ ε) (µ)− πh

2 (π − γ)

)
, (63)

where we have evaluated the integral

∞̂

0

dx ln (1 + ex) =
π2

12
.

This means that regardless of the choice of the parameters αh and αv, the free energy of
the host and the impurity show a T 2 behaviour in this case.
The exponents for the low temperature asymptotics therefore depend on h.
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Combining the results from the chapters 2.5.1 and 2.5.2 leads with a very similar calculation
to the scaling behaviour and we see that the free energy behaves essentially like a function
g of h

T

f = T 2

(
cst. + g

(
h

T

))
.
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3 Hubbard model with integrable impurity

In this section the history of the one-dimensional Hubbard model is summarized by
following and quoting the excellent textbook [36].
“One of the main motivations for studying the Hubbard model is that it is the simplest
generalization beyond the band theory description of solids, yet still appears to capture
the gross physical features of many systems characterized by more general interaction
parameters. The Hubbard model has been used in attempts to describe

• the electronic properties of solids with narrow bands,

• band magnetism in iron, cobalt, nickel,

• the Mott metal-insulator transition,

• electronic properties of high-Tc cuprates in the normal state.

Despite its apparent simplicity, no fully consistent treatment of the Hubbard model is
available in general. However, there are two cases in which one is more fortunate and
many properties are calculable, namely the extremes of lattice coordination numbers two
and infinity. One might naively expect that the latter case can be easily understood by
means of a mean-field approximation. Surprisingly, there is a particular way of performing
the limit of infinite lattice dimension d→∞ [86], in which the behaviour of the Hubbard
model does not become mean-field like, but the model remains tractable. A striking
result obtained in this approach is an understanding of the Mott transition between a
paramagnetic metal and a correlated insulator [46, 45].
[...] Here we are concerned with the first case, which corresponds to a one-dimensional
lattice” [36, p. 6].
“The history of the [...] Hubbard model as an exactly solvable model began in 1968 with [...]
Lieb and [...] Wu’s article [79]. Lieb and Wu discovered that Bethe’s ansatz can be applied
to the Hubbard model and reduced the spectral problem of the Hamiltonian to solving a set
of algebraic equations, nowadays known as the Lieb-Wu equations [...]. They succeeded in
calculating the ground state energy and demonstrated that the Hubbard model undergoes a
Mott metal-insulator transition at half filling (one electron per site) with critical interaction
strength U = 0. [...] In 1972 [...] Takahashi [117] proposed a classification of the solutions
of the Lieb-Wu equations in terms of a string hypothesis. He employed this hypothesis
to replace the Lieb-Wu equations by simpler ones and then proceeded to derive a set of
non-linear integral equations, which determine the Gibbs free energy of the Hubbard model
[...]. These integral equations are known as thermodynamic Bethe ansatz [...] equations.
Solving them in the limit of small temperatures Takahashi calculated the specific heat
[118]. Later on a more complete picture of the thermodynamics of the Hubbard model
was obtained from numerical solutions of the thermodynamic Bethe ansatz equations
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3 HUBBARD MODEL WITH IMPURITY

[68, 130]. In fact, Takahashi’s equations, in conjunction with the thermodynamic Bethe
ansatz equations, can be used to calculate any physical quantity that pertains to the energy
spectrum of the Hubbard model. In particular, the dispersion curves of all elementary
excitations can be obtained from the thermodynamic Bethe ansatz equations in the limit
T → 0 [32]. Constraints on the quantum numbers in Takahashi’s equations imply certain
selection rules that determine the allowed combinations of elementary excitations and
therefore the physical excitation spectrum [32]. [...] Takahashi’s equations may also serve
as starting point for the calculation of the scattering matrix of the elementary excitations.
For the half-filled Hubbard model in vanishing magnetic field the S-matrix was calculated
[38, 39]. It was shown that the excitation spectrum at half filling is given by scattering
states of four elementary excitations: holon and antiholon with spin 0 and charge ±e and
charge neutral spinons with spin up or down respectively. This is remarkable, since away
from half filling, or at finite magnetic field, the number of elementary excitations is infinite
[32]. It was further shown that the four particles can only be excited in SO (4) multiplets
[38, 39]” [36, p. 9 - 10].
“In 1986 B. S. Shastry opened up a new way for studying the Hubbard model by placing it
into the framework of the quantum inverse scattering method. Using a Jordan-Wigner
transformation he mapped the Hubbard model to a spin model and then demonstrated that
the resulting spin Hamiltonian commutes with the row-to-row transfer matrix of a related
covering vertex model [112]. Shastry first obtained the R-matrix of the spin model, thus
embedding it into the general classification of integrable models [111]. [...] It was shown
that Shastry’s R-matrix satisfies the Yang-Baxter equation [114]. An algebraic Bethe
ansatz for the Hubbard model was constructed [...] and expressions for the eigenvalues of
the [row-to-row] transfer matrix of the two-dimensional statistical covering model were
obtained [100, 144, 84]. This result was of crucial importance for the [...] [column-to-
column] transfer matrix approach to the thermodynamics [63] of the Hubbard model [...].
This approach allows for a drastically simplified description of the thermodynamics in
terms of the solution of a finite set of non-linear integral equations, rather than the infinite
set originally obtained by Takahashi in 1972 [117]. Within the [...] [column-to-column]
transfer matrix approach thermodynamic quantities can be calculated numerically with
a very high precision. The approach can be extended to the calculation of correlation
lengths at finite temperature [120, 129]” [36, p. 11].
First of all we consider the essential characteristics “of the Hamiltonian of the Hubbard
model and its exactly solvable classical” [36, p. 548] analogue in two dimensions [36]. The
Hubbard model characterizes a lattice fermion system on L sites with an electron hopping
term, on-site Coulomb repulsion U and external fields µ and B:
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HHubbard = −
L∑
j=1

(∑
a=↑,↓

(
c†j+1,acj,a + c†j,acj+1,a

)
− U

(
nj,↑ −

1

2

)(
nj,↓ −

1

2

)
+µ (nj,↑ + nj,↓) +B (nj,↑ − nj,↓)) (64)

In two dimensions we view at a double-layer square lattice, consisting of ↑- and ↓-sublattices,
for the classical analogue. “Each local Hilbert space corresponding to a [...] [specific] site
of the lattice is indexed by an integer j, the sublattice is [...] [labeled] by the additional
a =↑, ↓” [36, p. 549]. The following local vertex weights are found [113]

R (λ, µ) = cos (λ+ µ) ch (h (λ)− h (µ)) r (λ− µ)

+ cos (λ− µ) sh (h (λ)− h (µ)) r (λ+ µ)σz1,↑σ
z
1,↓, (65)

ra (λ) =
cosλ+ sinλ

2
+

cosλ− sinλ

2
σz1,aσ

z
2,a + σ+

1,aσ
−
2,a + σ−1,aσ

+
2,a,

r (λ) = r↑ (λ) r↓ (λ) ,

sh (2h (λ)) :=
U

4
sin (2λ) .

“This R-matrix satisfies the Yang-Baxter relation for triple R matrices” [36, p. 549] (9).
We may replace U by −U . We define state vectors by

|1〉 = |+,−〉 , |2〉 = |+,+〉 , |3〉 = |−,−〉 , |4〉 = |−,+〉 .

We start with the parametrization of λ in terms of

e2x = tanλ

and consider the functions

z± (x) := e2h(x)±2x, 2h (x) = −arsinh U

4ch (2x)
. (66)
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3.1 Bethe ansatz equations of the Hubbard model with integrable

impurity

We now proceed in the same way as in Chapter 2. First of all, for our purposes we
introduce an integrable impurity on the site L+ 1 with the spectral parameter ν.

Figure 14: The quantum chain is mapped onto this two-dimensional classical model at
finite temperature T . The square lattice has width L+ 1 and height N . The
rows of the lattice belong to the row-to-row transfer matrices with τ = β

N
. The

column-to-column transfer matrix is crucial for the thermodynamics. The blue
line is intended to illustrate the integrable impurity.

The Bethe ansatz eigenstates for the row-to-row transfer matrix of the Hubbard model
(64) for K electrons and M down spins are characterized by two sets of quantum numbers
{kj}Kj=1 and {Λl}Ml=1, 2M ≤ K ≤ L. The quantum numbers {kj}Kj=1 and {Λl}Ml=1, may in
general be complex. They are known as charge momenta and spin rapidities, respectively.
They have to be calculated from the Lieb-Wu equations [79]

eikjL =
M∏
l=1

Λl − sin kj − iU4
Λl − sin kj + iU

4

,

K∏
j=1

Λl − sin kj − iU4
Λl − sin kj + iU

4

= −
M∏
m=1

Λl − Λm − iU2
Λl − Λm + iU

2

.

We confine our discussion to solutions with finite values for {kj}Kj=1 and {Λl}Ml=1.
The relations between the spectral parameters λ and µ (65) and the charge momentum k

and the spin rapidity Λ is
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eik(λ) = −e2h(λ) cotλ, Λ = sin k (µ)− iU
4
. (67)

As in the case of the one-dimensional anisotropic spin-1
2
Heisenberg model with spin-1

2

impurity, the integrable impurity changes the Lieb-Wu equations. The additional vertex

Figure 15: Additional vertex, where “2” corresponds to the local vacuum state.

provides only additional vacuum eigenvalue factors [100, 144, 84]

R22
22 (λj, ν)

R12
12 (λj, ν)

=
(
cos (λj + ν) ch (h (λj)− h (ν)) cos2 (λj − ν)

+ cos (λj − ν) sh (h (λj)− h (ν)) cos2 (λj + ν)
)

· (cos (λj + ν) ch (h (λj)− h (ν)) cos (λj − ν) sin (λj − ν)

− cos (λj − ν) sh (h (λj)− h (ν)) cos (λj + ν) sin (λj + ν))−1

=
ch (h (λj)− h (ν)) cos (λj − ν) + sh (h (λj)− h (ν)) cos (λj + ν)

ch (h (λj)− h (ν)) sin (λj − ν)− sh (h (λj)− h (ν)) sin (λj + ν)

=
ch (h (λj)− h (ν)) (cotλj cot ν + 1) + sh (h (λj)− h (ν)) (cotλj cot ν − 1)

ch (h (λj)− h (ν)) (cot ν − cotλj)− sh (h (λj)− h (ν)) (cotλj + cot ν)

=
eh(λj)−h(ν) cotλj cot ν + eh(ν)−h(λj)

eh(ν)−h(λj) cot ν − eh(λj)−h(ν) cotλj

=
eh(ν)−h(λj)

e−h(ν)−h(λj)

e2(h(λj)−h(ν)) cotλj cot ν + 1

e2h(ν) cot ν − e2h(λj) cotλj

= e2h(ν)

z−(λj)

z+(ν)
+ 1

z− (ν)− z− (λj)
.

Since λj is related to kj (67), we now write z− (kj) instead of z− (λj).
The Bethe ansatz equations for the row-to-row transfer matrix of the Hubbard model with
impurity are thus
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eikjLe2h(ν)

z−(kj)

z+(ν)
+ 1

z− (ν)− z− (kj)
=

M∏
l=1

Λl − sin kj − iU4
Λl − sin kj + iU

4

,

K∏
j=1

Λl − sin kj − iU4
Λl − sin kj + iU

4

= −
M∏
m=1

Λl − Λm − iU2
Λl − Λm + iU

2

. (68)

3.2 Gibbs free energy per site of the Hubbard model with

integrable impurity via thermodynamic Bethe Ansatz

The tridiagonal form of the thermodynamic Bethe Ansatz equations of the Hubbard model
(64) are [117]

ln ζ (k) = −2 cos k

T
− 4

T

∞̂

−∞

dys (sin k − y)Re

√
1−

(
y − iU

4

)2

+

(
s ∗ ln

1 + η′1
1 + η1

)
(sin k) ,

η0 (Λ) = η′0 (Λ) = 0,

ln ηn (Λ) = (s ∗ ln ((1 + ηn−1) (1 + ηn+1))) (Λ)− δ1n

(
s ∗ ln

(
1 + ζ−1

))
(Λ) ,

ln η′n (Λ) = (s ∗ ln ((1 + ηn−1) (1 + ηn+1))) (Λ)− δ1n (s ∗ ln (1 + ζ)) (Λ) , (69)

with n = 1, 2, . . . and where

s (x) =
1

Uch2πx
U

.

These equations are completed by the boundary conditions

lim
n→∞

ln ηn
n

=
2B

T
, lim

n→∞

ln η′n
n

= −2µ

T
.

The derivation of these equations are explained in the course of this subsection.
The Gibbs free energy of the host per site is given in terms of solutions of (69) as

fh =
U

4
− T

πˆ

−π

dk

2π
ln

(
1 +

1

ζ (k)

)

− T
∞∑
n=1

∞̂

−∞

dΛ

π
ln

(
1 +

1

η′n (Λ)

)
Re

1√
1−

(
Λ− inU

4

)2
(70)
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Since we introduced an impurity, there is a corresponding contribution to the free energy,
which we now calculate here. To this end we formulate the string hypothesis:
“Three different classes of strings” [36, p. 137] are composed in all finite solutions of {kj}Kj=1

and {Λl}Ml=1 of (68).

• “A single real momentum kj.

• m Λ’s combining into a Λ string. [...]

• 2m k’s and m Λ’s combining into a k-Λ string.” [36, p. 137]

“For large lattices (L� 1) and a large number of electrons (K � 1), [...] [nearly for all
strings[ the imaginary parts of the k’s and Λ’s” [36, p. 138] are spaced evenly.
Solving the equations (68) is uncomplicated with the string hypothesis . “For some
particular, fixed values” [36, p. 138] of K electrons and M down spins we consider
solutions of the equations (68). Any solution can be displayed “in terms of a particular
configuration of strings” [36, p. 138]: Any solution includes Mn Λ-strings and M ′

n k-Λ
strings of length n (n = 1, 2, . . .) and Me single kj’s . Me, Mn and M ′

n are called
occupation numbers of the string configuration. “The occupation numbersMe, Mn and
M ′

n satisfy the sum rules” [36, p. 138]

M =
∞∑
n=1

n (Mn +M ′
n) ,

K =Me +
∞∑
n=1

2nM ′
n.

Exerting this procedure to the equations (68), using

eiδ̂(kj) := e2h(ν)

z−(kj)

z+(ν)
+ 1

z− (ν)− z− (kj)

and then taking the logarithm, we find for even L the following “equations for the real
centers of the strings” [36, p. 138]

kjL+ δ̂ (kj) = 2πIj −
∞∑
n=1

Mn∑
α=1

θ

(
sin kj − Λnα

nU
4

)

−
∞∑
n=1

Mn∑
α=1

θ

(
sin kj − Λ′nα

nU
4

)
, (71)

N−2M ′∑
j=1

θ

(
Λnα − sin kj

nU
4

)
= 2πJnα +

∞∑
m=1

Mm∑
β=1

Θnm

(
Λnα − Λmβ

U
4

)
, (72)
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2LRe
(

arcsin

(
Λ′nα + in

U

4

))
+ 2δ̂

(
Re
(

arcsin

(
Λ′nα + in

U

4

)))
= 2πJ ′nα +

K−2M ′∑
j=1

θ

(
Λ′nα − sin kj

nU
4

)
+
∞∑
m=1

M ′m∑
β=1

Θnm

(
Λ′nα − Λ′mβ

U
4

)
. (73)

The functions θ (x) and Θnm (x) are defined as

θ (x) := 2 arctanx,

Θnm (x) :=

{
θ
(

x
|n−m|

)
+ 2θ

(
x

|n−m|+2

)
+ . . .+ 2θ

(
x

n+m−2

)
+ θ

(
x

n+m

)
, if n 6= m,

2θ
(
x
2

)
+ 2θ

(
x
4

)
+ . . .+ 2θ

(
x

2n−2

)
+ θ

(
x
2n

)
, if n = m.

Ij, Jnα and J ′nα are integer or half-odd integer numbers. They exist due “to the multivalu-
edness of the logarithm” [36, p. 139]. We have

Ij is

{
integer if

∑∞
n=1 (Mn +M ′

n) is even,
half - odd integer, if

∑∞
n=1 (Mn +M ′

n) is odd,

Jnα is

{
integer if K −Mn is odd,

half - odd integer, if K −Mn is even,

J ′nα is

{
integer if L−K +M ′

n is odd,
half - odd integer, if L−K +M ′

n is even.

“M ′ is the [...] number of Λ’s involved in k-Λ strings” [36, p. 139]

M ′ =
∞∑
n=1

nM ′
n.

In the thermodynamical limit L→∞, K
L

and M
L

fixed, solutions of equations (72) kj, Λnα
and Λ′nα should be expressed in terms of distributions of particles ρp (k), σpn (Λ), σ′pn (Λ)

and the appropriate ρh (k) , σhn (Λ) , σ′hn (Λ).
“In the thermodynamic limit the equations (71), (72) and (73) [...] [can be expressed as]
coupled integral equations involving [...] the root densities” [36, p. 168] for particles and
holes
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ρp (k) + ρh (k) =
1

2π
+

∆̂ (k)

L
+ cos k

∞∑
n=1

∞̂

−∞

dΛan (Λ− sin k) (σ′pn (Λ) + σ′pn (Λ)) ,

σhn (Λ) = −
∞∑
m=1

Anm ∗ σpm|Λ +

πˆ

−π

dkan (Λ− sin k) ρp (k) ,

σ′hn (Λ) =
1

π
Re

1√
1−

(
Λ− niU

4

)2
+

2

πL
∂Λδ̂

Re
1√

1−
(
Λ− niU

4

)2


−
∞∑
m=1

Anm ∗ σ′pm|Λ −
πˆ

−π

dkan (sin k − Λ) ρp (k) , (74)

where

∆̂ (k) =
1

2π
∂kδ̂ (k) ,

an (x) is a shorthand notation

an (x) =
1

2π

nU
2(

nU
4

)2
+ x2

,

and Anm is an integral operator that acts on a function f (x)

Anm ∗ f |x = δnmf (x) +

∞̂

−∞

dy

2π

d

dx
Θnm

(
x− y
U
4

)
f (y) .

For further transformations of (74) the following relation is of great use

πˆ

−π

dk

2π
an (sin k − Λ) =

1

π
Re

1√
1−

(
Λ− niU

4

)2
.

“To find the [state of thermodynamic] equilibrium [...] one should, [...] [corresponding] to
the statistical mechanics principles, [...] [locate] the minimum of the thermodynamical
potential” [124, p. 672] per site

f = e− µnc − 2Bm− Ts.

µ is a chemical potential, B is a magnetic field, T is the temperature, nc is the particle
density, m the magnetization and s the total entropy per site. We restrict ourselve to a
magnetic field B ≥ 0 and to a chemical potential µ ≤ 0.
The distribution of Bethe ansatz roots describe a corresponding general state. “In the
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thermodynamic limit[, we can instead use] the root densities of particles and holes” [36, p.
169]. Therefore we consider the entropy as a functional in terms of root densities.
For k in the interval [k, k + ∆k] “the number of vacancies” [36, p. 169] is obviously
L
(
ρp (k) + ρh (k)

)
∆k. Lρp (k) ∆k of them are occupied. For such k the number of states

is (
L
(
ρp (k) + ρh (k)

)
∆k
)
!

(Lρp (k) ∆k)!(Lρh (k) ∆k)!
.

We use Stirling’s formula to approximate the factorials in the contribution dS to the entropy,
since it is the logarithm of this number of states and it is large in the thermodynamic
limit. This yields the following expression for the total entropy per site

s =

πˆ

−π

dk
((
ρp (k) + ρh (k)

)
ln
(
ρp (k) + ρh (k)

)
− ρp (k) ln ρp (k)− ρh (k) ln ρh (k)

)

+
∞∑
n=1

∞̂

−∞

dΛ
((
σpn (Λ) + σhn (Λ)

)
ln
(
σpn (Λ) + σhn (Λ)

)
− σpn (Λ) lnσpn (Λ)

−σhn (Λ) lnσhn (Λ)
)

+
∞∑
n=1

∞̂

−∞

dΛ
((
σ′pn (Λ) + σ′hn (Λ)

)
ln
(
σ′pn (Λ) + σ′hn (Λ)

)
− σ′pn (Λ) lnσ′pn (Λ)

−σ′hn (Λ) lnσ′hn (Λ)
)
.

The thermodynamical potential per site f is a functional in terms of the root densities.
“With respect to variations in a maximal set of independent root densities” [36, p. 170]”
the state of thermodynamic equilibrium must be a stationary” [36, p. 170] point. The
densities of holes are given in terms of densities of particles with the equations (74). There
we find the condition

0 = δf,

where (74) are constraint equations. For the ratios

ζ (k) =
ρh (k)

ρp (k)
, ηn (Λ) =

σhn (Λ)

σpn (Λ)
, η′n (Λ) =

σ′hn (Λ)

σ′pn (Λ)

we find the thermodynamical Bethe ansatz equations (69). The Gibbs free energy per site
in terms of ζ (k), ηn (Λ) and η′n (Λ) is of the form

f = fh +
1

L
fi, (75)
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where fi is the impurity part of the thermodynamical potential

fi =
U

4
− T

πˆ

−π

dk∆̂ (k) ln

(
1 +

1

ζ (k)

)

− 4T

π

∞∑
n=1

∞̂

−∞

dΛ

∂Λδ̂
Re

1√
1−

(
Λ− niU

4

)2

 ln

(
1 +

1

η′n (Λ)

)
. (76)

Equations (69), (70), (76) and (75) completely describe the thermodynamical properties
of the Hubbard model with impurity.

3.3 Diagonalization of the column-to-column transfer matrix of

the Hubbard model

In the last subsection, we used the infinite number of thermodynamic equations for the
description of thermodynamics. In this chapter, on the other hand, we use the finitely
many non-linear integral equations. The equivalence of both sets of equations was shown
in [27]. Since we introduced an impurity, there is now a corresponding contribution to the
free energy, which we want to calculate.
In this chapter we want to use the column-to-column transfer matrix approach. In principle,
we proceed as in chapter 2 and we use known results [63, 36].
We introduce the column-to-column transfer matrix (17)

tQTM (λ, τ) = traux

 N
2⊗
R (λ,−τ)⊗ R̃ (λ, τ)

 .

We will diagonalize the column-to-column transfer matrix by the Quantum Inverse Scatte-
ring Method. The diagonalization of the column-to-column transfer matrix appears to be
fairly different in comparison with the row-to-row case. However the main point is that
column-to-column transfer matrices “have the same intertwining operator” [36, p. 550]
as row-to-row transfer matrices. We use “periodic or twisted boundary conditions in the
Trotter direction” [36, p. 550], since we consider external magnetic field B and chemical
potential µ.
A convenient vacuum for the purposes of this thesis is

|Ω〉 = |1, 4, 1, 4, . . . , 1, 4〉

The vacuum expectation values are given by
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〈Ω| tQTM
j,j |Ω〉 = Aje

βµj , j = 1, . . . , 4 (77)

with

µ1 = µ+B, µ2 = 2µ, µ3 = 0, µ4 = µ−B.

We write for λ, τ

e2x = tanλ, e2w = tan τ (78)

and consider the functions

z± (x) := e2h(x)±2x, 2h (x) := −arsinh U

4ch (2x)
.

The vacuum expectation values are

A1

A2

=

(
(1− z− (w) z+ (x)) (1− z+ (w) z+ (x))

(1 + z− (w) z+ (x)) (1 + z+ (w) z+ (x))

)N
2

,

A4

A2

=


(

1 + z−(w)
z−(x)

)(
1 + z+(w)

z−(x)

)
(

1− z−(w)
z−(x)

)(
1− z+(w)

z−(x)

)


N
2

,

A2 =

(
cos2 λ cos2 τ cos2 (λ− τ) cos2 (λ+ τ) e2h(w)

(
1

z− (w)
− 1

z− (x)

)
·
(
z+ (x) +

1

z− (w)

))N
2

,

A3 = A2. (79)

The leading eigenvalue of the column-to-column transfer matrix is given by [63, 36]

ΛQTM
0 (λ)

A2

= eβ(µ+B)A1

A2

m∏
j=1

e2x 1 + zjz− (x)

1− zjz+ (x)

+ e2βµ

m∏
j=1

(
−e2x 1 + zjz− (x)

1− zjz+ (x)

) l∏
α=1

(
−
z− (x)− 1

z−(x)
− 2iwα + 3U

2

z− (x)− 1
z−(x)

− 2iwα + U
2

)

+
m∏
j=1

(
−e−2x

1 + z+(x)
zj

1− z−(x)
zj

)
l∏

α=1

(
−
z− (x)− 1

z−(x)
− 2iwα − U

2

z− (x)− 1
z−(x)

− 2iwα + U
2

)

+ eβ(µ−B)A4

A2

m∏
j=1

e−2x
1 + z+(x)

zj

1− z−(x)
zj

(80)
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with zj := z− (λj) .

The parameters {zj}mj=1 and {wα}lα=1 are determined by the Bethe ansatz equations

eβ(µ−B)


(

1 + z−(w)
zj

)(
1 + z+(w)

zj

)
(

1− z−(w)
zj

)(
1− z+(w)

zj

)


N
2

= (−1)1+m+l
l∏

α=1

(
zj − 1

zj
− 2iwα − U

2

zj − 1
zj
− 2iwα + U

2

)
,

e2βµ

m∏
j=1

zj − 1
zj
− 2iwα + U

2

zj − 1
zj
− 2iwα − U

2

= −
l∏

β=1

2i (wα − wβ)− U
2i (wα − wβ) + U

. (81)

In the limit U → 0 we find the free-fermion partition function. Using another vacuum
|Ω′〉 = |2, 3, 2, 3, . . . , 2, 3〉, we can find another formula for ΛQTM

0 (λ). This formula is
the same as in equation (80) after changing the sign of U and swapping B ←→ µ.
This alternative expression is equivalent to equation (80) due “to a partial particle-hole
transformation” [36, p. 552]. The solutions of the Bethe ansatz equations of the column-
to-column transfer matrix (81) for the leading eigenvalue ΛQTM

0 (λ) have “a characteristic
temperature dependence” [36, p. 552]. For large temperatures T all zj satisfy Rezj = 0

and |zj| > 1. Lowering the temperature T yields a decrease of the zj and they converge
to the origin. For “low temperatures T a certain number of the zj’s” [36, p. 553] satisfy
|zj| < 1. The wα parameters behave alike on the real axis.
This behaviour has strong consequences. By use of a double valued function s (z) (with a
branch cut from −1 to 1) we will express the zj’s in terms of sj parameters. Therefore z,
that satisfy Rez = 0, “with |z| > 1 and those with |z| < 1 are mapped onto the same [...]
[area] of the real axis with |s| > 1” [36, p. 553]. Accordingly there is a motion of sj from
the first branch to the second branch. At high temperatures T all parameters sj lie on the
first sheet. At low temperatures T parameters sj lie on the first and on the second sheet.
Therefore obviously there is a flow from the first to the second sheet [63, 36].

3.3.1 Associated auxiliary problem of difference type

In analogy to chapter 2 we want to reformulate the Bethe ansatz equations (81) for the
leading eigenvalue of the column-to-column transfer matrix in the limit N → ∞ as a
system of non-linear integral equations. We introduce the variables

sj =
1

2i

(
zj −

1

zj

)
,

s = s (x) =
1

2i

(
z− (x)− 1

z− (x)

)
. (82)

Equations (81) can be written “in a difference form in the rapidities {sj}mj=1 and {wα}lα=1“
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[36, p. 555]

e−β(µ−B)Φ (sj) = −
q2

(
sj − iU4

)
q2

(
sj + iU

4

) ,
e−2βµ q2

(
wα + iU

2

)
q2

(
wα − iU2

) = −
q1

(
wα + iU

4

)
q1

(
wα − iU4

) , (83)

where we have defined

q1 (s) :=
m∏
j=1

(s− sj) , q2 :=
l∏

α=1

(s− wα) , (84)

Φ (s) :=


(

1− z−(w)
z(s)

)(
1− z+(w)

z(s)

)
(

1 + z−(w)
z(s)

)(
1 + z+(w)

z(s)

)


N
2

, (85)

z (s) := is

(
1 +

√
1− 1

s2

)
. (86)

Note that the functions Φ (s) and z (s) have two branches: The requirement z (s) ' 2is

for large values of s defines the standard first branch of z (s). The branch cut of z (s)

for “values of z on the unit circle” [36, p. 555] is along [−1, 1]. Thus “the first branch of
the function z (s) maps the complex plane without [−1, 1] [...] [to the outer area] of the
complex plane of the unit circle. [Vice versa] the second branch of z (s) maps the complex
plane without [−1, 1] [...]to the inner area of the unit circle” [36, p. 555]. On the branch
cut we have

z (x± i0) = ix∓
√

1− x2, x ∈ [−1, 1] .

The two branches of the function Φ (s) defined in (85) are denoted by Φ± (s). “The function
Φ+ (s) has a zero (pole) of order N

2
at the point s0 (−s0). [...] Φ− (s) has a zero (pole) of

order N
2
at the point −s0 + iU

2
(s0 − iU2 )” [36, p. 557]. The point s0 is defined by

z (s0) := z− (w) .

The general formula for the leading eigenvalue ΛQTM
0 (λ) (80) is complicated, but simplifies,

if
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sh (2h (x)) ch (2x) = −U
4

⇔ z+ (x)− 1

z+ (x)
+ z− (x)− 1

z− (x)
= −U,(

1 +
z+ (x)

zj

)
(1− zjz+ (x)) = 2iz+ (x)

(
s− sj − i

U

2

)
,

(1 + zjz− (x))

(
1− z− (x)

zj

)
= 2iz− (x) (sj − s)

and the functions

λ1 (s) = eβ(µ+B) Φ
(
s− iU

4

)
q1

(
s− iU

4

) , λ2 (s) = e2βµ q2

(
s− iU

2

)
q1

(
s− iU

4

)
q2 (s)

,

λ3 (s) =
q2

(
s+ iU

2

)
q1

(
s+ iU

4

)
q2 (s)

, λ4 (s) =
eβ(µ−B)

Φ
(
s+ iU

4

)
q1

(
s+ iU

4

) ,
Λaux (s) = λ1 (s) + λ2 (s) + λ3 (s) + λ4 (s) (87)

are used
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ΛQTM
0 (λ)

A2

= eβ(µ+B)A1

A2

m∏
j=1

e2x 1 + zjz− (x)

1− zjz+ (x)

+ e2βµ

m∏
j=1

(
−e2x 1 + zjz− (x)

1− zjz+ (x)

) l∏
α=1

(
−
z− (x)− 1

z−(x)
− 2iwα + 3U

2

z− (x)− 1
z−(x)

− 2iwα + U
2

)

+
m∏
j=1

(
−e−2x

1 + z+(x)
zj

1− z−(x)
zj

)
l∏

α=1

(
−
z− (x)− 1

z−(x)
− 2iwα − U

2

z− (x)− 1
z−(x)

− 2iwα + U
2

)

+ eβ(µ−B)A4

A2

m∏
j=1

e−2x
1 + z+(x)

zj

1− z−(x)
zj

=
m∏
j=1

(
(1 + zjz− (x))

(
1 +

z+ (x)

zj

))

·

(
eβ(µ+B)

(
e2x

2iz+ (x)

)m
A1

A2

1

q1

(
s− iU

2

)
+ (−1)m+l e2βµ

(
e2x

2iz+ (x)

)m q2

(
s− i3U

4

)
q1

(
s− iU

2

)
q2

(
s− iU

4

)
+ (−1)l

(
e−2x

2iz− (x)

)m q2

(
s+ iU

4

)
q1 (s) q2

(
s− iU

4

)
+ (−1)m eβ(µ−B)

(
e−2x

2iz− (x)

)m
A4

A2

1

q1 (s)

)
=

(
e−2h(x)

2i

)m m∏
j=1

(
(1 + zjz− (x))

(
1 +

z+ (x)

zj

))
·
(
λ1

(
s− iU

4

)
+ (−1)m+l λ2

(
s− iU

4

)
+ (−1)l λ3

(
s− iU

4

)
+ (−1)m λ4

(
s− iU

4

))
Choosing m and l even results in

ΛQTM
0 (λ)

A2

=

(
e−2h(x)

2i

)m
Λaux

(
s− iU

4

) m∏
j=1

(
(1 + zjz− (x))

(
1 +

z+ (x)

zj

))
. (88)

Note that on the right-hand side x and s depend on λ via (78) and (82).
The requirement of analyticity of Λaux (s) yields the equations (83), which are the Bethe
ansatz equations of the leading eigenvalue ΛQTM

0 (λ). Note “that while ΛQTM
0 (λ) is analytic

everywhere [...] Λaux (s) is analytic on the first [...] branch, but may have singularities on
the other three branches” [36, p. 557]. To understand this we consider the first set of the
Bethe ansatz equations (83). They arise from the requirement “that the zeroes sj + iU

4
in
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the denominators of λ1 (s) and λ2 (s) [...] [cancel each other] in the sum (λ1 + λ2) (s) ([...]
the zeroes sj − iU4 in the denominators of λ3 (s) and λ4 (s) [...] [also have to cancel each
other] in the sum (λ3 + λ4) (s))” [36, p. 557]:

λ1

(
sj + iU

4

)
λ2

(
sj + iU

4

) = −1 (89)

In the limit N →∞ there is “an infinite number of rapidities on the first branch of the
function λ1

λ2
(s)” [36, p. 558] that fulfill this requirement. On the second branch there is “a

finite number of rapidities” [36, p. 558]. At high temperature T all rapidities sj satisfy
equation (89) on the first branch. “All poles with imaginary part U

4
[...] [are] on the second

branch and [cannot exist] on the first one” [36, p. 558]. We have two cuts of this type, so
the total number of branches is four.
We remark that the functions (λ1 + λ2) (s), (λ3 + λ4) (s) and Λaux (s) around their branch
cuts have “no non-zero winding number [, because the] [...] number of poles on the first
branch is [...] N and the asymptotic[s] of the functions [behaves like] 1

sN
” [36, p. 558].

Isolated singularities may move “from one branch to the other [...] [through] the branch
cuts” [36, 558] for lower temperatures T , but our arguments are still correct if the loop
encircles the branch cut and the arising singularities.

3.3.2 Finitely many non-linear integral equations of the Hubbard model

We consider the integral equations equivalent to the nested Bethe ansatz equations for the
leading eigenvalue of the column-to-column transfer matrix for U > 0. The case U < 0

can be found “via a particle-hole transformation” [36, p. 558]. We use a set of auxiliary
functions satisfying a set of non-linear integral equations. The following definitions are
very useful:
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lj (s) := e2βBλj

(
s− iU

4

)
Φ+ (s) Φ− (s) , j = 1, . . . , 4,

l̄j (s) := λj

(
s+ i

U

4

)
, j = 1, . . . , 4,

b (s) :=
l̄1 + l̄2 + l̄3 + l̄4
l1 + l2 + l3 + l4

(s) ,

b̄ (s) :=
1

b
(s) ,

c (s) :=
(l1 + l2)

(
l̄1 + l̄2 + l̄3 + l̄4

)
(l3 + l4)

(
l1 + l2 + l3 + l4 + l̄1 + l̄2 + l̄3 + l̄4

) (s) ,

c̄ (s) :=

(
l̄3 + l̄4

)
(l1 + l2 + l3 + l4)(

l̄1 + l̄2
) (
l1 + l2 + l3 + l4 + l̄1 + l̄2 + l̄3 + l̄4

) (s)

B (s) := 1 + b (s) ,

B̄ (s) := 1 + b̄ (s) ,

C (s) := 1 + c (s) ,

C̄ (s) := 1 + c̄ (s) . (90)

We note that “any analytic function on the complex plane is [...] [settled] by its singularities
[...] [and its] asymptotic behaviour at infinity” [36, p. 561]. All of the above defined
auxiliary functions b (s), c (s) and c̄ (s) show constant asymptotics for finite N . They are
products like

(
. . .+ l3 + l4 + l̄1 + l̄2 + . . .

)
(s). Poles exist only if “such a string does not

begin with l1 (s) or does not end with l̄4 (s)” [36, p. 562], because of the reasoning in the
previous subsection. There are cuts, since the function Φ (s) shows up in the definition
of λ1 (s) and λ4 (s). Therefore terms like (l1 + l2 + . . .) (s) and

(
. . .+ l̄3 + l̄4

)
(s) have

“branch cuts along [−1, 1] + iU
2
and [−1, 1] − iU

2
, respectively” [36, p. 563]. On top of

that, “terms like (. . .+ l3 + l4) (s) and
(
l̄1 + l̄2 + . . .

)
have branch cuts along [−1, 1]” [36,

p. 563]. In terms like
(
. . .+ l4 + l̄1 + . . .

)
(s) the branch cut vanishes, because

(
l4 + l̄1

)
(s) = eβ(µ+B) Φ+ + Φ−

q1

(s)

“and (Φ+ + Φ−) (s) is analytic everywhere” [36, p. 563], since passing the line [−1, 1] yields
an exchange Φ+ (s)←→ Φ− (s), hence the sum remains invariant.
By investigating “the function λ1 (s) + λ2 (s) + λ3 (s) + λ4 (s) [...] we find poles of order N

2

at s0− iU4 and iU
4
− s0. [...] [We also have] zeroes and branch cuts on the lines Im s = ±U

4
”

[36, p. 563]. This yields the following expression
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ln (l1 (s) + l2 (s) + l3 (s) + l4 (s)) ≡s −
N

2
ln

(
(s− s0)

(
s+ s0 − i

U

2

))
+ ln

(
Φ+ (s) Φ− (s)

)
+ L− (s) + L+

(
s− iU

2

)
,

“where ≡s indicates that the left and right hand side[...] have the same singularities on the
entire plane” [36, p. 563] and

L± (s) = (k ◦ l±) (s) ,

k (s) =
1

2πis
, (91)

(g ◦ f) (s) =

ˆ

L

dtg (s− t) f (t) , (92)

l± (s) = (λ1 + λ2 + λ3 + λ4)

(
s± iU

4

)
.

The “contour L is surrounding the real axis at infinitesimal distance above and below in
anticlockwise manner” [36, p. 564].
Furthermore using

Φ+ (s) Φ− (s) =

(
(s− s0)

(
s+ s0 − iU2

)
(s+ s0)

(
s− s0 + iU

2

))N
2

and the singularities

L− (s) ≡s − (k ◦ lnB) (s)

L− (s)− L+ (s) ≡s
(
k ◦
(
ln c̄− ln C̄

))
(s)

we get

ln (l1 (s) + l2 (s) + l3 (s) + l4 (s)) ≡s −
N

2
ln

(
(s+ s0)

(
s− s0 + i

U

2

))
− (k ◦ lnB) (s)

+
(
k ◦
(
ln C̄− ln c̄− lnB

))(
s− iU

2

)
. (93)

The asymptotic behaviour at infinity is given by
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ln (l1 (s) + l2 (s) + l3 (s) + l4 (s))
s→∞−→ ln

(
eβ(µ+3B) + e2β(µ+B) + e2βB + eβ(µ+B)

)
,

ln b (s)
s→∞−→ −2βB

lnB (s)
s→∞−→ ln

(
1 + e−2βB

)
,

ln b̄ (s)
s→∞−→ 2βB,

ln B̄ (s)
s→∞−→ ln

(
1 + e2βB

)
,

ln c̄ (s)
s→∞−→ −β (µ−B)− ln

(
1 + e2βB

)
ln C̄ (s)

s→∞−→ ln

(
1 +

e−β(µ−B)

1 + e2βB

)
.

Using the functions

K1 (s) = k

(
s− iU

4

)
− k

(
s+ i

U

4

)
=

U

4π

1

s2 +
(
U
4

)2 ,

K̂1 (s) = K1

(
s+ i

U

4

)
,

K̄1 (s) = K1

(
s− iU

4

)
,

K2 (s) = k

(
s− iU

2

)
− k

(
s+ i

U

2

)
=

U

2π

1

s2 +
(
U
2

)2 , (94)

and the notation

(g @ f) (s) = (g ◦ f) (s) + f (s) ,

which indicates the convolution with an integration contour with a “wide loop [around the
real axis] consisting of the two horizontal lines Ims = ±α with 0 < α ≤ U

4
” [36, p. 565],

we find the non-linear integral equations for the auxiliary functions b (s), c (s) and c̄ (s)
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ln b (s) = −2βB + (K2 ◦ lnB) +
(
K̄1 ◦

(
ln c̄− ln C̄

))
(s) ,

ln c (s) = β (µ+B) +
N

2
ln

s+ s0

s+ s0 − iU2
+ ln Φ (s)−

(
K̄1 @ ln B̄

)
(s)

−
(
K̄1 ◦ ln C̄

)
(s) ,

ln c̄ (s) = −β (µ+B) +
N

2
ln

s+ s0

s+ s0 − iU2
− ln Φ (s) +

(
K̂1 @ lnB

)
(s)

+
(
K̂1 ◦ lnC

)
(s) . (95)

The Trotter limit N →∞ yields

ln b (s) = −2βB + (K2 @ lnB) (s) +
(
K̄1 ◦

(
ln c̄− ln C̄

))
(s) ,

ln c (s) = −βU
2

+ β (µ+B)− 2iβs

√
1− 1

s2
−
(
K̄1 @ ln B̄

)
(s)−

(
K̄1 ◦ ln C̄

)
(s) ,

ln c̄ (s) = −βU
2
− β (µ+B) + 2iβs

√
1− 1

s2
+
(
K̂1 @ lnB

)
(s) +

(
K̂1 ◦ lnC

)
(s) . (96)

We note that the function b (s) will be calculated on Ims = ±α, especially α = U
4
. The

functions c (s) and c̄ (s) will be “calculated on the real axis infinitesimally above and below
the interval [−1, 1]” [36, p. 566]. Note furthermore that “these functions are analytic
outside” [36, p. 566] of [−1, 1]. Therefore convolutions with these functions c (s) and c̄ (s)

can be reduced to contours surrounding [−1, 1]. We have to solve the set of non-linear
integral equations (96) for the auxiliary functions b (s), c (s) and c̄ (s) before calculating
the free energy.
For the handling of equations (96) we express them as convolutions with a real variable

(K ∗ f) (x) =

∞̂

−∞

dyK (x− y) f (y) . (97)

We use the notations
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b± (s) = b

(
s± iU

4

)
,

c± (s) = c (s± i0) ,

c̄± (s) = c̄ (s± i0) ,

B± (s) = 1 + b± (s) ,

B̄± (s) = 1 +
1

b± (s)
,

C± (s) = 1 + c± (s) ,

C̄± (s) = 1 + c̄± (s) ,

fα (s) = f (s+ iα) (98)

and rewrite the equations (96) as

ln b+ (s) = −2βB −
(
K2 ∗ lnB+

)
(s) +

(
K2,U

2
∗ lnB−

)
(s)

−
(
K1 ∗ ln

c̄+C̄−

c̄−C̄+

)
(s) ,

ln b− (s) = −2βB −
(
K2,−U

2
∗ lnB+

)
(s) +

(
K2 ∗ lnB−

)
(s)

−
(
K1,−U

2
∗ ln

c̄+C̄−

c̄−C̄+

)
(s) ,

ln c± (s) = −βU
2

+ β (µ+B)± 2β
√

1− s2 +
(
K1,−U

2
∗ ln B̄+

)
(s)

−
(
K1 ∗ ln B̄−

)
(s) +

(
K1,−U

4
∗ ln

C̄+

C̄−

)
(s)± 1

2
ln

C̄+

C̄−
(s) ,

ln c̄± (s) = −βU
2
− β (µ+B)∓ 2β

√
1− s2 −

(
K1 ∗ lnB+

)
(s)

+
(
K1,U

2
∗ lnB−

)
(s)−

(
K1,U

4
∗ ln

C+

C−

)
(s)± 1

2
ln

C+

C−
(s) . (99)

“Note that the convolutions of K1,±U
4
with ln C+

C−
and ln C̄+

C̄−
are [...] [calculated] by Cauchy’s

principal value [...] [and take into account] that these functions [...] [disappear] outside
the interval [−1, 1]” [36, p. 578].

3.3.3 Integral expression for the leading eigenvalue ΛQTM
0 (λ)

Here we go back “to the derivation [...] [of the leading eigenvalue ΛQTM
0 (λ) of the column-

to-column] transfer matrix in terms of the [...] auxiliary functions (96)” [36, p. 566].
This eigenvalue is known for λ = 0 [63]. “We use a contour L0 encircling the [rapidities]
sj anticlockwise” [36, p. 566]. The rapidities sj are not placed on the branch cut of
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ln
(

(1 + z (s) z− (x))
(

1 + z+(x)
z(s)

))
. Therefore L0 has two partitions. For zero external

fields the contours are surrounding ]−∞,−1] and [1,∞[. For non-zero external fields they
are deformed. For the general case we use Cauchy’s integral and write

f (s) := ln

(
(1 + z (s) z− (x))

(
1 +

z+ (x)

z (s)

))
︸ ︷︷ ︸

=:g(s)

[
ln

(
1 +

l4
l3

(s)

)]′
, (100)

2πi
m∑
i=1

ln

(
(1 + zjz− (x))

(
1 +

z+ (x)

zj

))
=

ˆ

L0

ds f (s)|1st branch︸ ︷︷ ︸
=Σ1

+

ˆ

L0

ds f (s)|2nd branch︸ ︷︷ ︸
=Σ2

, (101)

where Σ1 and Σ2 will be calculated below.

3.3.4 Integral expression for the leading eigenvalue ΛQTM
0 (λ) in terms of auxiliary

functions

The function l4
l3

(s) for s→∞ shows the behaviour

l4
l3

(s)
s→∞−→ eβ(µ−B) +O

(
1

s

)
.

z (s) is of order O (s). Therefore we find the asymptotic behavior of f (s) as O
(

ln s
s2

)
.

Hence we add two semi-circles to the contour L0.
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Figure 16: Zeroes and poles of 1 + l4
l3

(s). “Zeroes (poles) are [...] [illustrated] by open
circles (crosses)” [36, p. 567]. We add two semi-circles.

We deform the integration contour. We do this without changing the integral. If the
contour does not run over singularities of f (s) we can do that. This yields a contour with
three parts

Σ1 =

ˆ

(a)

ds f (s)|1st branch +

ˆ

(b)

ds f (s)|1st branch +

ˆ

(c)

ds f (s)|1st branch
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Figure 17: Contour with three parts equal to the last figure. (a) is beginning and ending
at −∞. (b) is surrounding all wα − iU4 and (c) surrounds s0.

Contour (a) contains a path (a1) from −∞ to −1, a loop (a2) around the interval [−1, 1]

and a path (a3) from −1 back to −∞. The paths (a1) and (a3) obviously cancel each
other.

Figure 18: Illustration of (a).

For the integrals on (b) and (c) we find

Σ1 = 2πi

(
l∑

α=1

ln g

(
wα − i

U

4

)
+
N

2
ln g (s0)

)
+

ˆ

(a2)

ds f (s)|1st branch .

Now we consider Σ2. The deformation of the integration contour is analogous to as
above. “The integral of f (s)|1st branch [...] [on the part (a2) is equal] to the integral of
f (s)|2nd branch” [36, p. 569] on the reversed part (a2). Therefore we get

Σ2 =

ˆ

L

ds f (s)|2nd branch −
ˆ

(a2)

ds f (s)|1st branch .

Now we join this results and obtain

65



3.3 QTM 3 HUBBARD MODEL WITH IMPURITY

Σ1 +Σ2 = 2πi

(
l∑

α=1

ln g

(
wα − i

U

4

)
+
N

2
ln g (s0)

)
+

ˆ

L

ds f (s)|2nd branch . (102)

Now we are considering

Σ :=

ˆ

L

ds

[
ln g

(
s− iU

2

)]′
lnC (s) +

ˆ

L

ds [ln g (s)]′ ln
1 + c + c̄

c̄
(s) (103)

First of all we are integrating by parts and use that ln g
(
s− iU

2

)
and ln g (s) show no

jump after surrounding the real axis. Therefore the surface terms vanish

Σ = −
ˆ

L

ds ln g

(
s− iU

2

)
[lnC (s)]′ −

ˆ

L

ds ln g (s)

[
ln

1 + c + c̄

c̄
(s)

]′
.

Now we are using

C (s) =

(∑4
j=1 lj

l3 + l4

l3 + l4 +
∑4

j=1 l̄j∑4
j=1

(
lj + l̄j

) ) (s) ,

1 + c + c̄

c̄
(s) =

∑4
j=1 l̄j

l̄3 + l̄4
(s) · l3 + l4 + l̄1 + l̄2

l3 + l4
(s) ,︸ ︷︷ ︸

= 1+
l4
l3

(s)
∣∣∣
2nd branch

⇒ Σ = −
ˆ

L

ds ln g

(
s− iU

2

)[
ln

∑4
j=1 lj

l3 + l4
(s)

]′
−
ˆ

L

ds ln g (s)

[
ln

1 + c + c̄

c̄
(s)

]′
. (104)

We deform the integration contour L. This yields a contour with three parts.
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Figure 19: Zeroes and Singularities of l1+l2+l3+l4
l3+l4

(s): Zeroes are illustrated by open circles,
the pole by a cross and branch cuts by dashed lines. The integration contour L
can be seen. We “add a large semi-circle with radius R” [36, p. 572] to the lower
half-plane. The integrand behaves like O

(
lnR
R2

)
. Therefore this path does not

contribute to the integral (104). We add up a path to the upper part. Without
moving over the singularities this path can be closed to a point. Therefore this
path does also not contribute to the integral (104).

Figure 20: Illustration of the three contours remaining from the contour in figure (19). The
contours are around the zeroes wα + iU

4
, the branch cut [−1, 1] + iU

2
, and the

pole iU
2
− s0 of l1+l2+l3+l4

l3+l4
(s) in clockwise manner. The first and third contour

integrals can be calculated easily.

The second contour is equal to the contour L+ iU
2
in clockwise manner. We rewrite this

contour integral by the use of a shift of the integration variable from s to s+ iU
2
. Then we

have to exchange “lj (s) functions by l̄j (s) functions” [36, p. 571]. Furthermore we are
using
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1 + c + c̄

c̄
(s) =

∑4
j=1 l̄j

l̄3 + l̄4
(s) · l3 + l4 + l̄1 + l̄2

l3 + l4
(s)︸ ︷︷ ︸

= 1+
l4
l3

(s)
∣∣∣
2nd branch

,

so that some integral contributions cancel each other

Σ = 2πi

(
l∑

α=1

ln g

(
wα − i

U

4

)
− N

2
ln g (−s0)

)
+

ˆ

L

ds ln g (s)

[
ln

∑4
j=1 l̄j

l̄3 + l̄4
(s)

]′

−
ˆ

L

ds ln g (s)

[
ln

1 + c + c̄

c̄
(s)

]′

= 2πi

(
l∑

α=1

ln g

(
wα − i

U

4

)
− N

2
ln g (−s0)

)

−
ˆ

L

ds ln g (s)

[
ln

(
1 +

l4
l3

(s)

)∣∣∣∣
2nd branch

]′
. (105)

Comparing (102) with (105) and using

z (s)|2nd branch = − 1

z (s)|1st branch

yields

Σ1 +Σ2 = Σ + 2πi

(
N

2
(ln g (s0) + ln g (−s0))

)
+

ˆ

L

ds

(
f (s)|2nd branch + ln g (s)

[
ln

(
1 +

l4
l3

(s)

)∣∣∣∣
2nd branch

]′)

= Σ + 2πi

(
N

2
(ln g (s0) + ln g (−s0))

)
+

ˆ

L

ds ln
((

1− z2
− (x) + 2iz− (x) s

) (
1− z2

+ (x) + 2iz+ (x) s
))

·
[

ln

(
1 +

l4
l3

(s)

)∣∣∣∣
2nd branch

]′
(106)

Inserting (101) in (88) with respect to (106) and (103) we get
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2πi ln
ΛQTM

0 (λ)

A2

= −2πim (2h (x) + ln (2i)) + 2πi

(
N

2
(ln g (s0) + ln g (−s0))

)
.

+ 2πi ln Λaux
(
s− iU

4

)
+

ˆ

L

ds

[
ln g

(
s− iU

2

)]′
lnC (s)

+

ˆ

L

ds [ln g (s)]′ ln
1 + c + c̄

c̄
(s)

+

ˆ

L

ds ln
((

1− z2
− (x) + 2iz− (x) s

) (
1− z2

+ (x) + 2iz+ (x) s
))

·
[

ln

(
1 +

l4
l3

(s)

)∣∣∣∣
2nd branch

]′
.

The expression
(
1− z2

− (x) + 2iz− (x) s
) (

1− z2
+ (x) + 2iz+ (x) s

)
has zeroes at

s = − i
2

(
z± (x)− 1

z± (x)

)
= −ish (2h (x)± 2x) .

Using

l3 + l4 + l̄1 + l̄2
l3 + l4

(s) =
1 + c + c̄

c̄
(s)

l̄3 + l̄4∑4
j=1 l̄j

(s)

=
1 + c + c̄

c̄
(s)

c̄B

1 + c̄B
(s)

yields

ˆ

L

ds ln
((

1− z2
− (x) + 2iz− (x) s

) (
1− z2

+ (x) + 2iz+ (x) s
)) [

ln

(
1 +

l4
l3

(s)

)∣∣∣∣
2nd branch

]′

=

ˆ

L

ds ln
((

1− z2
− (x) + 2iz− (x) s

) (
1− z2

+ (x) + 2iz+ (x) s
)) [

ln
l3 + l4 + l̄1 + l̄2

l3 + l4
(s)

]′

=

ˆ

L

ds ln
((

1− z2
− (x) + 2iz− (x) s

) (
1− z2

+ (x) + 2iz+ (x) s
)) [

ln

(
1 + c + c̄

c̄

c̄B

1 + c̄B

)
(s)

]′
.

Inserting (93) we get
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ln
ΛQTM

0 (λ)

A2

= −m (2h (x) + ln (2i)) +
N

2
(ln g (s0) + ln g (−s0))

+
N

2
ln

(s− s0)
(
s+ s0 − iU2

)
(s+ s0)2 (s− s0 + iU

2

)2 − (k ◦ lnB) (s)

+
(
k ◦
(
ln C̄− ln c̄− lnB

))(
s− iU

2

)
+

ˆ

L

ds′

2πi

[
ln g

(
s′ − iU

2

)]′
lnC (s′)

+

ˆ

L

ds′

2πi
[ln g (s′)]

′
ln

1 + c + c̄

c̄
(s′)

+

ˆ

L

ds′

2πi
ln
((

1− z2
− (x) + 2iz− (x) s′

) (
1− z2

+ (x) + 2iz+ (x) s′
))

·
[
ln

(
1 + c + c̄

c̄

c̄B

1 + c̄B

)
(s′)

]′
.

Performing the Trotter limit N →∞ yields

lnΛQTM
0 (λ) =

3N

2
ln (−1) + 3N ln cosλ+

(
1

2z+ (x)
− z− (x)

2
− U

4

)
β

− 1

2πi
(k ◦ lnB) (s) +

1

2πi

(
k ◦
(
ln C̄− ln c̄− lnB

))(
s− iU

2

)
+

ˆ

L

ds′

2πi

[
ln g

(
s′ − iU

2

)]′
lnC (s′) +

ˆ

L

ds′

2πi
[ln g (s′)]

′
ln

1 + c + c̄

c̄
(s′)

+

ˆ

L

ds′

2πi
ln
((

1− z2
− (x) + 2iz− (x) s′

) (
1− z2

+ (x) + 2iz+ (x) s′
))

·
[
ln

(
1 + c + c̄

c̄

c̄B

1 + c̄B

)
(s′)

]′
.

We have to drop the term 3N
2

ln (−1) since it does not contribute to lnΛQTM
0 (λ). Furt-

hermore we also have to drop the term 3N ln cosλ because our R-matrix (65) is not
normalized

Ř (λ, 0) Ř (0, λ) 6= 1,

therefore we find
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lnΛQTM
0 (λ) =

(
1

2z+ (x)
− z− (x)

2
− U

4

)
β

− 1

2πi
(k ◦ lnB) (s) +

1

2πi

(
k ◦
(
ln C̄− ln c̄− lnB

))(
s− iU

2

)
+

ˆ

L

ds′

2πi

[
ln g

(
s′ − iU

2

)]′
lnC (s′)

+

ˆ

L

ds′

2πi
[ln g (s′)]

′
ln

1 + c + c̄

c̄
(s′)

+

ˆ

L

ds′

2πi
ln
((

1− z2
− (x) + 2iz− (x) s′

) (
1− z2

+ (x) + 2iz+ (x) s′
))

·
[
ln

(1 + c + c̄)B

1 + c̄B
(s′)

]′
. (107)

Note that on the right-hand side x and s depend on λ via (78) and (82) and that g (s)

also depends on x (100).
Furthermore note that for λ = 0 the expression for lnΛQTM

0 (λ) simplifies to the well-known
result [63, 36], which yields the host’s contribution to the thermodynamics of our impurity
model

fh = − 1

β
lnΛQTM

0 (0) , (108)

lnΛQTM
0 (0) = −βU

4
+

ˆ

L

ds

2πi

[
ln z

(
s− iU

2

)]′
lnC (s)

+

ˆ

L

ds

2πi
[ln z (s)]′ ln

1 + c + c̄

c̄
(s) . (109)

The impurity contribution to the free energy per site is given by

fi = − 1

β
lnΛQTM

0 (ν) , (110)

f = fh +
1

L
fi. (111)

Equations (96),(107), (108), (109), (110) and (111) completely describe the thermodyna-
mical properties of the Hubbard model with impurity.
We note that we found alternative formulas for lnΛQTM

0 (λ). The alternative expressions
are given in the appendix.
At this point, we furthermore note that we have not calculated the Hamiltonian of the
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Hubbard model with integrable impurity. In principle, it is possible to calculate this
Hamiltonian. In chapter 6.1 the procedure for the calculation is explained. However, the
calculation requires a high computing time and has therefore not been carried out. Note
that the result should contain additional manybody terms like in chapter 2.4.2. Notice
also that this is a special impurity lattice model with an impurity interacting with an
interacting host.
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4 Modified Hubbard model with integrable impurity

In this section we consider the Hubbard model with integrable impurity and modify the
density of states similar to chapter 2.
We introduce shifts θ1, . . . , θN

2
on the horizontal lines. These shifts are, however, not

intended to be arbitrary, but are intended to follow a predetermined distribution density
ρα. This distribution density depends on the parameter α. Note that, unlike Chapter 2,
we have no shifts on the vertical lines.

Figure 21: The quantum chain is mapped to this two-dimensional classical model at finite
temperature. The lattice has width L + 1 and height N . The rows of the
lattice belong to the row-to-row transfer matrices with θj ± τ, τ = β

N
. The

column-to-column transfer matrix is crucial for the thermodynamics. The blue
line is intended to illustrate the integrable spin-1

2
impurity.

The way of dealing with the shifts θ1, . . . , θN
2
is again similar to chapter 2. The Bethe

ansatz equations of the row-to-row transfer matrix (68) do not depend on shifts on the
horizontal lines and do not change.

eikjLe2h(ν)

z−(kj)

z+(ν)
+ 1

z− (ν)− z− (kj)
=

M∏
l=1

Λl − sin kj − iU4
Λl − sin kj + iU

4

,

K∏
j=1

Λl − sin kj − iU4
Λl − sin kj + iU

4

= −
M∏
m=1

Λl − Λm − iU2
Λl − Λm + iU

2

. (112)

In contrast, the Bethe ansatz equations of the column-to-column transfer matrix change.
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We introduce the column-to-column transfer matrix (17)

tQTM (λ, τ) = traux

 N
2⊗
j=1

R (λ, θj − τ)⊗ R̃ (λ, θj + τ)

 ,

where the R-matrix is given by (65).
The column-to-column transfer matrix is again diagonalized by the Quantum Inverse
Scattering Method [100, 63]. The diagonalization scheme is similar to that in chapter 3.
We use the parametrizations of λ, τ in terms of

e2x = tanλ, e2w±n = tan (θn ± τ)

and consider the functions

z± (x) := e2h(x)±2x, 2h (x) := −arsinh U

4ch (2x)
.

Furthermore we use the definition zj := z− (λj) .

The parameters {zj}mj=1 and {wα}lα=1 satisfy the Bethe ansatz equations of the column-to-
column transfer matrix

(−1)
N
2 eβ(µ−B)

N
2∏

n=1

e2(w−n−w+
n )

(
1− 1

zjz+(w−n )

)(
1 +

z+(w+
n )

zj

)
(

1− z−(w+
n )

zj

)(
1 + 1

zjz−(w−n )

)
= (−1)1+m+l

l∏
α=1

zj − 1
zj
− 2iwα − U

2

zj − 1
zj
− 2iwα + U

2

,

e2βµ

m∏
j=1

zj − 1
zj
− 2iwα + U

2

zj − 1
zj
− 2iwα − U

2

= −
l∏

β=1

2i (wα − wβ)− U
2i (wα − wβ) + U

. (113)

The derivation of the non-linear integral equations is analogous to [63, 36] (see chapter 3).
We find
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ln b+ (s) = −2βB −
(
K2 ∗ lnB+

)
(s) +

(
K2,U

2
∗ lnB−

)
(s)

−
(
K1 ∗ ln

c̄+C̄−

c̄−C̄+

)
(s) ,

ln b− (s) = −2βB −
(
K2,−U

2
∗ lnB+

)
(s) +

(
K2 ∗ lnB−

)
(s)

−
(
K1,−U

2
∗ ln

c̄+C̄−

c̄−C̄+

)
(s) ,

ln c± (s) = −βU
2

+ β (µ+B)± βenew (s) +
(
K1,−U

2
∗ ln B̄+

)
(s)

−
(
K1 ∗ ln B̄−

)
(s) +

(
K1,−U

4
∗ ln

C̄+

C̄−

)
(s)± 1

2
ln

C̄+

C̄−
(s) ,

ln c̄± (s) = −βU
2
− β (µ+B)∓ βenew (s)−

(
K1 ∗ lnB+

)
(s)

+
(
K1,U

2
∗ lnB−

)
(s)−

(
K1,U

4
∗ ln

C+

C−

)
(s)± 1

2
ln

C+

C−
(s) , (114)

where the integration kernels are given by (94). The shifts θ1, . . . , θN
2
do not change the

form of the Gibbs free energy (the value changes obviously). Therefore it is still given by
(111). Note that enew (s) depends on the choice of the distribution density function ρα.
The next subsection explains how ρα has to be selected for our goals (3). Then enew (s) is
given by (124). Note that the functions c± (s) and c̄± (s) can be restricted to the interval
[−1, 1] as these functions vanish outside.

4.1 Distribution density function ρα (s)

There are many different distribution densities that can be selected, for example

• the normal distribution with µ, σ ≥ 0

ρµ,σ (x) =
e−

(x−µ)2

2σ2

√
2πσ

⇒ (Fρµ,σ) (k) = e−
σ2

2
k2−iµk.

• the gamma distribution with α, β > 0

ρα,β (x) =
βα

Γ (α)
xα−1e−βxΘ (x)

⇒ (Fρα,β) (k) =

(
β

β + ik

)α
.
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• the beta distribution with α, β > 0 and for 0 ≤ x ≤ 1

ρα,β (x) =
Γ (α + β)

Γ (α) Γ (β)
xα−1 (1− x)β−1

⇒ (Fρµ,σ) (k) =

√
πΓ (α + β)

2α+β−1Γ
(
α+β

2

)
Γ
(

1+α+β
2

)
·
(

2F3

(
1 + α

2
,
α

2
;
1

2
,
α + β

2
,
1 + α + β

2
;−k

2

4

)
− iαk

α + β
2F3

(
1 + α

2
, 1 +

α

2
;
3

2
,
1 + α + β

2
, 1 +

α + β

2
;−k

2

4

))
,

where pFq (a1, . . . , ap; b1, . . . , bq; z) is the generalized hypergeometric function.

• the Lorentz distribution for α > 0

ρα (x) =
1

πα

1

1 +
(
x
α

)2

⇒ (Fρα) (k) = e−α|k|.

• for α > 0 the distribution

ρα (x) =
α

πch (αx)

⇒ (Fρα) (k) =
1

ch
(
πk
2α

) .
Unfortunately, all these densities do not show the desired behaviour (3)! To understand
this, we consider the known result for any eigenvalue of the row-to-row transfer matrix for
the host of the Hubbard model from [113]:

Λ (λ) = a2L (λ) eLh(λ)

M∏
n=1

σ−
(
λ, eikn

)
+ (−1)M b2L (λ) eLh(λ)

M∏
n=1

σ+

(
λ, eikn

)
+ (−1)M−K aL (λ) bL (λ) e−Lh(λ)

M∏
n=1

σ−
(
λ, eikn

)
·

K∏
m=1

z− (λ)− 1
z−(λ)

− 2iΛm + U
2

z− (λ)− 1
z−(λ)

− 2iΛm − U
2

+ (−1)K aL (λ) bL (λ) e−Lh(λ)

M∏
n=1

σ+

(
λ, eikn

)
·

K∏
m=1

1
z+(λ)

− z+ (λ)− 2iΛm − U
2

1
z+(λ)

− z+ (λ)− 2iΛm + U
2

, (115)
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where

a (λ) =
1√

1 + e4x
, b (λ) =

e2x

√
1 + e4x

, σ± (λ, z) =
e2x + ze±2h(x)

1− ze2x±2h(x)
.

Note that x depends on λ via (66). Note furthermore that {kn}Mn=1 and {Λm}Km=1 are
given by (112).

4.1.1 Procedure for the row-to-row transfer matrix

To understand the way forward, let’s first look at the XX model, which corresponds to the
case U = 0. First we consider the momentum and the energy

eip(λ) = tanλ,

e (λ) =
1

sin (2λ)
.

At the free fermion point p = π
2
we have to choose λ = i∞. Parameterizing λ = π

4
+ iy we

have

e
(π

4
+ iy

)
=

1

ch (2y)
∈ R.

If we work at the free fermion point or directly for a XX model and then take the
logarithmic derivative at some point θ instead of 0, then we find the energy as a function
of the difference in λ and θ

eip(λ) = tanλ,

e (λ) =
1

sin (2 (λ− θ))
. (116)

For b ' 0 and large L in equation (115) follows the momentum and the energy of the
one-particle excitations from σ− (λ, z). It is easy to see that

σ− (θ, z)|θ=0 = z,

∂θ lnσ− (θ, z)|θ=0 = z +
1

z
− U

2
.

Inserting z = eip(λ) = tanλ, we find

∂θ lnσ− (θ, z)|θ=0 =
2

sin (2λ)
− U

2
,
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which corresponds essentially to (116). So here, for θ = 0, everything still corresponds to
the expectation. Now we perform the same calculation for θ 6= 0. Then we have

∂θ lnσ− (θ, z) =
(
1 + e4x

) e4h(x) + z2 + z Ue
2h(x)th(2x)

2ch(2h(x))

(z + e2x+2h(x)) (e2h(x) − ze2x)
, (117)

but this can not be brought into the form (116). This is a consequence of Shastry’s
R-matrix, which is not of difference type.
To solve this problem, one can try to choose z such that ∂θ lnσ− (θ, z) is independent of θ.
For example at U = 0 we find

∂θ lnσ− (θ, z)|U=0 =
(
1 + e4x

) 1 + z2

(z + e2x) (1− ze2x)
,

σ− (θ,±i)|U=0 = ±i,

which means, that for U = 0 z = ±i is such a point. For U 6= 0 there is, however,
no z which is independent of θ, satisfying the required condition that ∂θ lnσ− (θ, z) is
independent of θ.
For this reason, we apply the following procedure:
We now consider ∂θ lnσ− (θ, z)|U=0 for U = 0, set e2x = −iy and multiply with (1− y)α.
This factor will later be our distribution density function. Integrating this over y in the
interval [0, 1] and using z = i+ ε (where ε will later be our energy) and y = 1− x′ yields

(
1 + z2

) 1ˆ

0

dy
i (1− y2) (1− y)α

(iz + y) (1 + izy)
= −i

(
2iε+ ε2

) 1ˆ

0

dx′
x′α
(
1− (1− x′)2)

ε2 + x′2 − ε2x′ − iεx′2

Assuming that ε and x′ are small, i.e. α < 0, follows

(
1 + z2

) 1ˆ

0

dy
i (1− y2) (1− y)α

(iz + y) (1 + izy)
' 4ε

1ˆ

0

dx
xα+1

ε2 + x2

= 4ε |ε|α
1
εˆ

0

dx
xα+1

1 + x2
.

Note that the remaining integral is just a number for small ε. We see here the desired
behaviour ε |ε|α for the modified energy.
To use this for the case U 6= 0, we consider the factor z + e2x+2h(x) in the denominator of

∂θ lnσ− (θ, z) =
(
1 + e4x

) e4h(x) + z2 + z Ue
2h(x)th(2x)

2ch(2h(x))

(z + e2x+2h(x)) (e2h(x) − ze2x)
.
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To set this factor to 0, the following selection for z and x

z = ±i, ch2 (2x) = ±iU
4

(118)

can be made. The “full” calculation for small U 6= 0 shows that the same behaviour follows
for the energy as for the case U = 0. Here we have to choose e2x+2h(x) = −iy. Using the
parametrization y the distribution density of the shifts θ1, . . . , θN

2
is then given by

ρα (y) = (1 + α) (1− y)α Θ (y) Θ (1− y) , −1 < α < 0. (119)

The distribution density satisfies

∞̂

−∞

dyρα (y) = 1. (120)

4.1.2 Procedure for the column-to-column transfer matrix

Up to now the row-to-row transfer matrix has been treated and the desired density function
(119) for the modified density of states has been derived. Now this must be translated
into the language of the column-to-column transfer matrix.
In section 3.3 without shifts θ1, . . . , θN

2
we considered (77) with

Ai =
(
Ri,1
i,1 (λ,−τ)R4.i

4,i (τ, λ)
)N

2 .

In order to assess the influence of the shifts θ1, . . . , θN
2
, the following combination

(
Ri,1
i,1 (λ, τ)R4.i

4,i (τ + ∆τ, λ)
)N

2 (121)

must be considered. In (81) and (83) the occurring z± (w) must be decoupled. The singular
point is z− (w) = ±i and z+ (w) = ∓i. The τ should be distributed accordingly.
Therefore we use e2w = tan τ from (78) and consider −τ → τ

z± (w) = e2h(w)±2w

→ − 1

z∓ (w)
. (122)

Analogously τ → τ + ∆τ yields
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e±2w = (tan τ)±1

→ (tan (τ + ∆τ))±1

=

{
tan τ + ∆τ

cos2 τ
+O (∆τ 2)

1
tan τ
− ∆τ

sin2 τ
+O (∆τ 2)

=

{
e2w + ∆τ (1 + e4w) +O (∆τ 2)

e−2w −∆τ (1 + e−4w) +O (∆τ 2)

= e±2w ±∆τ
(
1 + e±4w

)
+O

(
∆τ 2

)
,

2h (w) = −arsinh U

4ch (2w)

→ −arsinh U

2 (e2w + e−2w) + 2∆τ (1 + e4w − 1− e−4w) +O (∆τ 2)

= −arsinh U

4ch (2w) + 4∆τsh (4w) +O (∆τ 2)

= −arsinh U

4ch (2w)
+ ∆τ

2Ush (2w)√
U2 + 16ch2 (2w)

+O
(
∆τ 2

)
= 2h (w) + ∆τ

Uth (2w)

2ch (2h (w))
+O

(
∆τ 2

)
,

⇒ e2h(w) → e2h(w)

(
1 + ∆τ

Uth (2w)

2ch (2h (w))

)
+O

(
∆τ 2

)
,

⇒ z± (w)→ e2h(w)

(
1 + ∆τ

Uth (2w)

2ch (2h (w))

)(
e±2w ±∆τ

(
1 + e±4w

))
+O

(
∆τ 2

)
= z± (w) + ∆τ

(
±e2h(w)

(
1 + e±4w

)
+

Uth (2w)

2ch (2h (w))
z± (w)

)
+O

(
∆τ 2

)
= z± (w) + ∆τ

(
Uth (2w)

2ch (2h (w))
z± (w)± 2ch (2w) z± (w)

)
+O

(
∆τ 2

)
= z± (w) + ∆τz± (w)

(
Uth (2w)

2ch (2h (w))
± 2ch (2w)

)
+O

(
∆τ 2

)
.

If this is used in equation (83) for Φ (s), then it yields

80



4.1 ρα (s) 4 MODIFIED HUBBARD MODEL WITH IMPURITY

(
1− z−(w)

z(s)

)(
1− z+(w)

z(s)

)
(

1 + z−(w)
z(s)

)(
1 + z+(w)

z(s)

)
→− (1 + 2∆τch (2w))

·

(
1 + 1

z(s)z−(w)

)(
1− z−(w)

z(s)
− ∆τz−(w)

z(s)

(
Uth(2w)

2ch(2h(w))
− 2ch (2w)

))
(

1− 1
z(s)z+(w)

)(
1 + z+(w)

z(s)
+ ∆τz+(w)

z(s)

(
Uth(2w)

2ch(2h(w))
+ 2ch (2w)

))
=− (1 + 2∆τch (2w))

·

(
1 + 1

z(s)z−(w)

)(
1− z−(w)

z(s)

)(
1− ∆τz−(w)

z(s)−z−(w)

(
Uth(2w)

2ch(2h(w))
− 2ch (2w)

))
(

1− 1
z(s)z+(w)

)(
1 + z+(w)

z(s)

)(
1 + ∆τz+(w)

z(s)+z+(w)

(
Uth(2w)

2ch(2h(w))
+ 2ch (2w)

)) .
Due to the shifts θ1, . . . , θN

2
a modified energy enew (s) occurs in the driving term of the

non-linear integral equation (114). This term follows from Φ (s) by using the logarithm. We
therefore consider ln Φ (s). Analogously to the procedure for the row-to-row transfer matrix
ln Φ (s) shows singular behaviour in the vicinity of z− (w)→ ±i, i.e. ch2 (2w)→ ±iU

4
, and

for

z (s) = is

(
1 +

√
1− 1

s2

)
= ±i−

√
2 (1− |s|) +O (1− |s|) . (123)

Using the distribution density (119) and performing a procedure similar to that of the
row-to-row transfer matrix, we derive the new energy enew (s) occuring in the non-linear
integral equations (114)

enew (s) = (1 + α)
π

sin
(
πα
2

)√2 (1− |s|)
1+α

Θ (1 + s) Θ (1− s) . (124)

At this point, we furthermore note that we have not specified the Hamiltonian of the
Hubbard model with integrable impurity. In principle, it is possible to calculate this
Hamiltonian. In chapter 6.1 the procedure for the calculation is explained. However, the
calculation requires a high computing time and has therefore not been carried out. Note
that the result should contain additional manybody terms like in chapter 2.4.2. Notice
also that this is a special impurity lattice model with an impurity interacting with an
interacting host.
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4.2 Free-Fermion limit for the host of the modified Hubbard

model with impurity

We consider the limit U → 0. The non-linear integral equations (114) yield an algebraic
set of equations, because

K1 (s)→ δ (s) , K1,±U
2
→ 0, K1,±U

4
→ δ (s)

2
, K2,α

|α|<U
2−→ δ (s) .

Therefore we get

ln b± (s) = −2βB − lnB+ (s) + lnB− (s)− 1± 1

2
ln

c̄+C̄−

c̄−C̄+
(s) ,

ln c± (s) = β (µ+B)± βenew (s)− ln B̄− (s) +
1± 1

2
ln

C̄+

C̄−
(s) ,

ln c̄± (s) = −β (µ+B)∓ βenew (s)− lnB+ (s) +
−1± 1

2
ln

C+

C−
(s) , (125)

and for the host

lnΛQTM
0 (0) =

1ˆ

−1

ds

2π
√

1− s2
ln

(1 + c−) (1 + c+ + c̄+) (1 + c− + c̄−)

c̄+c̄− (1 + c+)
.

The non-linear integral equations simplify to algebraic equations and are solved easily.
Substituting s = sin k we get

ln ΛQTM
0 (0) =

πˆ

−π

dk

2π

(
ln
(
1 + eβ(µ+B+enew(sin k))

)
+ ln

(
1 + eβ(µ−B+enew(sin k))

))
. (126)

This is the result expected from ideal Fermi gases, which means that the host still behaves
like an ideal Fermi gas for U → 0 with the energy enew (s). This is an obvious, but
important result for chapter 5 and 6.

4.3 Low-temperature asymptotics of the modified Hubbard model

with impurity

We derive analytic expressions for the thermodynamics. For T � 1 we simplify the
non-linear integral equations (114). For external fields we set B > 0, µ < 0, such that
b− (s)→ 0 and c± (s)→ 0 for β →∞. b+ (s) and c̄± (s) do not disappear. Then we find
from equations (114)
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ln b+ (λ) = −2βB −
(
K2 ∗ lnB+

)
(λ)−

(
K1 ∗ ln

c̄+C̄−

c̄−C̄+

)
(λ) ,

ln c̄± (s) = −βU
2
− β (µ+B)∓ βenew (s)−

(
K1 ∗ lnB+

)
(s) . (127)

These formulas are justified at low temperatures T . There the corrections are exponentially
small O

(
e−cst.β

)
. The constant is real and positive.

For the eigenvalue (109) and (107) we find

lnΛQTM
0 (0) = −βU

4
+

1ˆ

−1

ds

2π
√

1− s2
ln

((
1 +

1

c̄+ (s)

)(
1 +

1

c̄− (s)

))
, (128)

lnΛQTM
0 (λ) =

(
1

2z+ (x)
− z− (x)

2
− U

4

)
β +

1

2πi

(
k ∗ lnB+

)
(s)

+
1

2πi

(
k ∗ lnB+

)(
s− iU

2

)
+

1

2πi

(
k ◦ ln

C̄

c̄

)(
s− iU

2

)
+

ˆ

L

ds′

2πi
[ln g (s′)]

′
ln

1 + c̄

c̄
(s′)

+

ˆ

L

ds′

2πi
ln
((

1− z2
− (x) + 2iz− (x) s′

) (
1− z2

+ (x) + 2iz+ (x) s′
))

·
[
ln

(1 + c̄)B

1 + c̄B
(s′)

]′
. (129)

We note that it is easily possible to find a connection between auxiliary functions (127)
and dressed energy functions. One just needs a similar linearization as in chapter 2.5.2.
By the use of

b (λ) := b+ (λ) , c (k) :=

{
1

c̄+(sin k)
, for k ∈

[
−π

2
, π

2

]
,

1
c̄−(sin k)

, for k ∈
[
π
2
, 3π

2

]
,

(130)

we find

ln b (λ) = −2βB − (K2 ∗ lnB) (λ) + (K1 ∗ lnC) (λ) ,

ln c (k) =
βU

2
+ β (µ+B)− βenew (sin k) + (K1 ∗ lnB) (sin k) .

ln b (λ) and ln c (k) “are analytic functions of order O (β) [...], ln b (λ) = −βεs (λ) and
ln c (k) = −βεc (k), with some analytic functions εs (λ) and εc (k)” [36, p. 612]. These
functions will be studied. They are real and symmetric. They have zeroes at ±λ0, ±k0
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and the characteristics

εs (λ) , εc (k) < 0 for |λ| < λ0, |k| < k0,

εs (λ) , εc (k) > 0 for |λ| > λ0, |k| > k0,

such that b (λ) and c (k) have “steep crossover behaviour at low temperatures” [36, p. 593]

|b (λ)| , |c (k)| � 1 for |λ| < λ0, |k| < k0,

|b (λ)| , |c (k)| � 1 for |λ| > λ0, |k| > k0.

Therefore at low temperature T the functions lnB (λ) and lnC (k) are not analytic anymore:
If the arguments λ and k are lesser than λ0 and k0 then these functions lnB (λ) and
lnC (k) are equal to −βεs (λ) and −βεc (k), if the arguments λ and k are bigger than λ0

and k0 the functions lnB (λ) and lnC (k) are equal to zero. Still the convolutions yield
analytic functions.
“The slopes at the crossover points are steep” [36, p. 593], therefore approximations to the
integral equations similar to the linearization in chapter 2.5.2 are possible. We find

ln b (λ) = −2βB

+
π2

6

(
K2 (λ− λ0) +K2 (λ+ λ0)

(ln b)′ (λ0)

− cos k0
K1 (λ− sin k0) +K1 (λ+ sin k0)

(ln c)′ (k0)

)
(131)

−
λ0ˆ

−λ0

dλ′K2 (λ− λ′) ln b (λ′) +

k0ˆ

−k0

dk′K1 (λ− sin k′) cos k′ ln c (k′) ,

ln c (k) =
βU

2
+ β (µ+B)− βenew (sin k)− π2

6

K1 (sin k − λ0) +K1 (sin k + λ0)

(ln b)′ (λ0)

+

λ0ˆ

−λ0

dλ′K1 (sin k − λ′) ln b (λ′) . (132)

We find the connection among auxiliary functions and the dressed energy functions by
keeping the leading terms in the integral equations

ln b (λ) = −βεs (λ) +O
(

1

β

)
, ln c (k) = −βεc (k) +O

(
1

β

)
.
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5 Limit from the Hubbard model with integrable

impurity to the Anderson impurity model

Localized magnetic moments in metals are typically described by the Anderson impurity
model [3, 5]

HAIM =
l

2π

∑
σ=↑,↓

∞̂

−∞

dk
(
knk,σ + V

(
c†k,σdσ + d†σck,σ

))
+ εd

∑
σ=↑,↓

nd,σ + Ūnd,↑nd,↓. (133)

It is the non-degenerate Anderson impurity model. Note that in comparison with the
previous chapters this is a continuum model and not a lattice model. The “orbital
degeneracy of the impurity shell is” [124, p. 462] negligible. The impurity level εd cannot
be simultaneously occupied by more than two electrons with spins σ =↑, ↓. Ū is the
intra-atomic Coulomb interaction. The “admixture of the d level with conduction band
states” [124, p. 462] is given by V .
The d level is widened since d and s states are mixed. The resonance level has the width
V 2

2
for Ū → 0 and its center is located at εd. Adding one electron to the singly occupied

impurity shell leads to the energy variation −εd. Removing one from the doubly occupied
shell leads to εd + Ū . The impurity “shell can be considered as singly occupied” [124, p. 11]
if the energy variation is larger than the resonance width. Hence the impurity would have
a magnetic moment. The exchange interaction among the host electrons and the impurity
moment is arranged by virtual processes, which accordingly change particle number by ±1

[6]. Schrieffer and Wolf [108] showed the equivalence of the s-d exchange Kondo model
and the Anderson model in the limit

V 2

2
� −εd, εd + Ū .

This follows because the dispersion relation is obviously given by ε (k) = k.
The impurity is occupied partially with electrons with σ =↑, ↓ if a broad resonance level
arises in the vicinity of the Fermi level |εd| � V 2

2
and the Coulomb energy satisfies Ū <

∼
V 2

2
.

This state is non-magnetic. The variation of the occupation numbers for different spins
σ can yield a magnetic susceptibility. Therefore at temperatures T <

∼
V 2

2
all physical

quantities can be expressed in integer powers of T [124].
“The non-magnetic regime goes over continuously [in]to the magnetic regime, but, simulta-
neously, the impurity magnetic moment is compensated by the conduction electrons due
to the Kondo effect” [124, p. 463] if the relative values of Ū , εd and V are changed. Due to
that the Anderson impurity model is offering a unified picture of the narrow many-body
and the broad single-particle resonances.
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Coordinate Bethe ansatz techniques were applied to the Anderson impurity model and
the infinitely many thermodynamic Bethe ansatz equations for characterising the thermo-
dynamics were derived in a series of papers [40, 66, 67, 42, 94, 123, 122, 95, 139, 124].
In this chapter we will show that the Anderson impurity model can be described as the
continuum limit of the Hubbard model with integrable impurity.

5.1 Bethe ansatz equations of the Anderson impurity model

All eigenstates of the Anderson impurity model Hamiltonian are described by the set of
charge {kj}Kj=1 and spin {λα}Mα=1 rapidities [124], which are restricted by the Bethe ansatz
equations

eik̄j l+iδ(kj) =
M∏
α=1

g
(
k̄j
)
− λα + i

2

g
(
k̄j
)
− λα − i

2

,

K∏
j=1

λα − g
(
k̄j
)

+ i
2

λα − g
(
k̄j
)
− i

2

= −
M∏
β=1

λα − λβ + i

λα − λβ − i
,

where

g
(
k̄
)

=

(
k̄ − εd − Ū

2

)2

ŪV 2
, eiδ(k̄) =

k̄ − εd − iV
2

2

k̄ − εd + iV
2

2

.

The eigenvalues of the Hamiltonian (133) are given by

E =
K∑
j=1

k̄j.

Consider the Bethe ansatz equations for the row-to-row transfer matrix of the Hubbard
model with impurity (68)

eikjLe2h(ν)

z−(kj)

z+(ν)
+ 1

z− (ν)− z− (kj)
=

M∏
l=1

Λl − sin kj − iU4
Λl − sin kj + iU

4

,

K∏
j=1

Λl − sin kj − iU4
Λl − sin kj + iU

4

= −
M∏
m=1

Λl − Λm − iU2
Λl − Λm + iU

2

. (134)

First of all we introduce a lattice constant
√
U with U → 0. The temperature T is also

sent to zero with order O
(√

U
)
in the combined continuum limit. Correspondingly, we

set L =
√
ŪV l√
U

. We now consider the neighborhood of the Fermi points k = ±π
2
(In the

following we perform the continuum limit for the − case. The other case then follows
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trivially by the interchange of the sign of U .)

k = k̃ − π

2
,

⇒ cos k = k̃ +O
(
k̃3
)
, sin k = −1 +

k̃2

2
+O

(
k̃4
)
. (135)

Furthermore we set Λl = U
2
λl − 1.

In the equations (134) z± (ν) occurs, where ν is the spectral parameter of the impurity of
the Hubbard model. We choose ν such that

z± (ν) = e∓i(−
π
2

+l±). (136)

Furthermore we set l± = ±a− ib and assume that k̃, a and b are of order O
(√

U
)
. Since

x is connected to a spectral parameter λ via (66) and

sh (2h (x)) ch (2x) = −U
4

must be true for all spectral parameters and thus especially for ν we get

−U = z− (ν)− 1

z− (ν)
+ z+ (ν)− 1

z+ (ν)

= 2i sin
(
−π

2
+ l−

)
+ 2i sin

(π
2
− l+

)
= i
(
l2− − l2+

)
+O

(
U2
)

= −4ab+O
(
U2
)

⇒ ab =
U

4
. (137)

This means that a is a free parameter and b is fixed by a. Furthermore we consider

z− (ν) z+ (ν) = ei(l−−l+)

= 1 + i (l− − l+) +O (U)

!
= e4h(ν)

⇒ e2h(ν) = 1 +O
(√

U
)

(138)

Inserting (135), (136) and (138) into the Bethe ansatz equations for the row-to-row transfer
matrix of the Hubbard model with impurity and with boundary factor (−1)L iL+1 we get
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e
i
k̃j√
U

√
ŪV l k̃j + l+

k̃j − l−
=

M∏
l=1

k̃2
j

U
− 2

U
(Λl + 1) + i

2

k̃2
j

U
− 2

U
(Λl + 1)− i

2

,

K∏
j=1

2
U

(Λl + 1)− k̃2
j

U
+ i

2

2
U

(Λl + 1)− k̃2
j

U
− i

2

= −
M∏
m=1

2
U

(Λl − Λm) + i
2
U

(Λl − Λm)− i
,

which simplifies to

e
i
k̃j√
U

√
ŪV l k̃j + a− ib

k̃j + a+ ib
=

M∏
l=1

k̃2
j

U
− λl + i

2

k̃2
j

U
− λl − i

2

,

K∏
j=1

λl −
k̃2
j

U
+ i

2

λl −
k̃2
j

U
− i

2

= −
M∏
m=1

λl − λm + i

λl − λm − i
.

Identifying k̃2

U
with g

(
k̄
)
and dropping e−i

εd+U
2√

ŪV
l yields

eik̄j l
k̄j − εd − Ū

2
+
√
ŪV√
U
a− i

√
ŪV√
U
b

k̄j − εd − Ū
2

+
√
ŪV√
U
a+ i

√
ŪV√
U
b

=
M∏
l=1

g
(
k̄j
)
− λl + i

2

g
(
k̄j
)
− λl − i

2

,

K∏
j=1

λl − g
(
k̄j
)

+ i
2

λl − g
(
k̄j
)
− i

2

= −
M∏
m=1

λl − λm + i

λl − λm − i
.

Setting a =
√
ŪU

2V
and b =

√
U
Ū
V
2
satisfies (137) and we get

eik̄j l
k̄j − εd − iV

2

2

k̄j − εd + iV
2

2

=
M∏
l=1

g
(
k̄j
)
− λl + i

2

g
(
k̄j
)
− λl − i

2

,

K∏
j=1

λl − g
(
k̄j
)

+ i
2

λl − g
(
k̄j
)
− i

2

= −
M∏
m=1

λl − λm + i

λl − λm − i
.

Obviously, these are the Bethe ansatz equations of the Hamiltonian of the Anderson
impurity model. Note that there are typing errors in [124], which have been corrected
here.
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5.2 Limit of the thermodynamical Bethe ansatz equations

In this chapter we want to derive thermodynamical Bethe ansatz equations of the An-
derson impurity model by use of the established continuum limit by considering the
thermodynamical Bethe ansatz equations of the Hubbard model with impurity.
They are given by (see chapter 3.2) [142, 117]

ln ζ (k) = −2β cos k − 4β

∞̂

−∞

dys (sin k − y)Re

√
1−

(
y − iU

4

)2

+

(
s ∗ ln

1 + η′1
1 + η1

)
(sin k) ,

η0 (Λ) = η′0 (Λ) = 0

ln ηn (Λ) = (s ∗ ln ((1 + ηn−1) (1 + ηn+1))) (Λ)− δ1n

(
s ∗ ln

(
1 + ζ−1

))
(Λ) ,

ln η′n (Λ) = (s ∗ ln ((1 + ηn−1) (1 + ηn+1))) (Λ)− δ1n (s ∗ ln (1 + ζ)) (Λ) ,

where n ∈ N and

s (x) =
1

Uch2πx
U

.

We have the boundary conditions

lim
n→∞

ln ηn (Λ)

n
=

2B

T
, lim

n→∞

ln η′n (Λ)

n
= −2µ

T
.

The Gibbs free energy in terms of solutions of (69) is

fh =
U

4
− T

πˆ

−π

dk

2π
ln

(
1 +

1

ζ (k)

)
− T

∞∑
n=1

∞̂

−∞

dΛ

π
ln

(
1 +

1

η′n (Λ)

)
Re

1√
1−

(
Λ− inU

4

)2
,

fi =
U

4
− T

πˆ

−π

dk∆̂ (k) ln

(
1 +

1

ζ (k)

)

− 4T

π

∞∑
n=1

∞̂

−∞

dΛ

∂Λδ̂
Re

1√
1−

(
Λ− niU

4

)2

 ln

(
1 +

1

η′n (Λ)

)
.

We define

s̄ (x) :=
1

2ch (πx)
, R (x) :=

∞̂

0

dω

π

cos (ωx)

1 + eω

and use our established continuum limit and set T = 2
√
U√
ŪV
T̄ . Then the thermodynamical
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Bethe ansatz equations of the Hubbard model simplify

ln ζ
(
k̃ − π

2

)
→ −2βk̃ − 2β

∞̂

−∞

dy
Re
√

1−
(
U
2
y − 1− iU

4

)2

ch
(
π
(
k̃2

U
− y
)) +

1

2

(
s ∗ ln

1 + η′1
1 + η1

)(
k̃2

U

)

→ − 1

T̄

(
k̄ − εd −

Ū

2

)
− 1

T̄

∞̂

−∞

dpR
(
g
(
k̄
)
− g (p)

)
pg′ (p)

+

(
s̄ ∗ ln

1 + η′1
1 + η1

)(
g
(
k̄
))
,

η0 (λ) = η′0 (λ) = 0,

ln ηn

(
U

2
λ

)
→ (s̄ ∗ ln ((1 + ηn−1) (1 + ηn+1))) (λ)− δ1n

(
s̄ ∗ ln

(
1 + ζ−1

))
(λ)

ln η′n

(
U

2
λ

)
→ (s̄ ∗ ln ((1 + ηn−1) (1 + ηn+1))) (λ)− δ1n (s̄ ∗ ln (1 + ζ)) (λ)

with n = 1, 2, . . ..
Identifying ε

(
k̄
)

= −T̄ ln ζ
(√

Uk̄ − π
2

)
, κn (λ) = T̄ ln ηn

(
U
2
λ
)
and κ′n (λ) = T̄ ln η′n

(
U
2
λ
)

yields

ε
(
k̄
)

= k̄ − εd −
Ū

2
+

∞̂

−∞

dpR
(
g
(
k̄
)
− g (p)

)
pg′ (p)

+ T̄

(
s̄ ∗ ln

1 + eβ̄κ
′
1

1 + eβ̄κ1

)(
g
(
k̄
))
,

κ0 (λ) = κ′0 (λ) = −∞,

κn (λ) = T̄
(
s̄ ∗ ln

((
1 + eβ̄κn−1

)(
1 + eβ̄κn+1

)))
(λ)

− δ1nT̄
(
s̄ ∗ ln

(
1 + e−β̄ε

))
(λ) ,

κ′n (λ) = T̄
(
s̄ ∗ ln

((
1 + eβ̄κ

′
n−1

)(
1 + eβ̄κ

′
n+1

)))
(λ)

− δ1nT̄
(
s̄ ∗ ln

(
1 + eβ̄ε

))
(λ) . (139)

For the boundary conditions we choose B√
U
→ H√

ŪV
and − µ√

U
→ 2εd+Ū√

ŪV
. Then we find

lim
n→∞

κn (λ)

n
→ H, lim

n→∞

κ′n (λ)

n
= 2εd + Ū .

These are the well-known [124] thermodynamical Bethe ansatz equations of the Anderson
impurity model.
Furthermore we consider the free energy, use the relations
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∆ (k) =
1

2π
∂kδ (k) ,

an (λ) =
1

2π

n

λ2 + n2

4

,

−
√
ŪV Re

1√
λ+ in

2

=

∞̂

−∞

dkan (λ− g (k)) ,

− 1

π
∂λReδ

(√
ŪV

√
λ+

in

2

)
=

∞̂

−∞

dk∆ (k) an (λ− g (k))

and apply our continuum limit, which yields

fh = −T̄
∞̂

−∞

dk

2π
ln
(

1 + e−β̄ε(k)
)

− T̄
∞∑
n=1

∞̂

−∞

dk

2π

∞̂

−∞

dλan (λ− g (k)) ln
(

1 + e−β̄κ
′
n(λ)
)
, (140)

fi = −T̄
∞̂

−∞

dk∆ (k) ln
(

1 + e−β̄ε(k)
)

− T̄
∞∑
n=1

∞̂

−∞

dk

∞̂

−∞

dλ∆ (k) an (λ− g (k)) ln
(

1 + e−β̄κ
′
n(λ)
)
, (141)

f = fh +
1

l
fi (142)

Equations (142), (140) and (141) together with equations (139) completely describe the
thermodynamical properties of the Anderson impurity model. Note that it is easily possible
to derive another well-known form for the thermodynamical potential (142) [124]. Note
furthermore that (140) together with (139) describe the free fermion gas. This can easily
be shown by the use of the dilogarithm trick [122, 42, 123, 95, 94, 124].
As we have seen in the last two subsections, it is possible to derive the Anderson impurity
model from the Hubbard model with integrable impurity by the use of a continuum limit.
In the Hubbard model with integrable impurity, there are originally four free parameters
U , B, µ, ν (i. e. a, because z± (ν) = e∓i(−

π
2
±a−ib) holds and b is fixed via ab = U

4
) and

two sets of Bethe numbers {kj}Kj=1 and {λα}Mα=1. Furthermore T is the temperature and
L+ 1 the chain length. These pass into the parameters of the Anderson impurity model
in non-trivial ways:
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Table 1: Parameters before and after the continuum limit
Hubbard model with impurity Continuum limit Anderson impurity model

U U 0

L
√
UL

√
ŪV l l

B B√
U

H√
ŪV

H

µ − µ√
U

2εd+Ū√
ŪV

2εd + Ū

a a√
U

√
Ū

2V
V

T T√
U

2T̄√
ŪV

T̄

k 2(1+sin k)
U

g
(
k̄
)

k̄
Λ 2

U
(Λ+ 1) λ λ

5.3 Non-linear integral equations of the Anderson impurity model

In the previous subsection we showed that the thermodynamical Bethe ansatz equations
of the Anderson impurity model follow from the Hubbard model with integrable impurity.
Thus the thermodynamics of the model can be completely described. However, this
is a system of infinitely many, coupled, non-linear integral equations, which makes the
numerical analysis difficult. For this reason we want to derive a new set of finitely many
non-linear integral equations of the Anderson impurity model in this section. In the
previous chapters, we showed that the column-to-column transfer matrix is necessary, but
does not exist in the continuum. Therefore, we are using our continuum limit to derive the
non-linear integral equations of the Anderson impurity model from those of the Hubbard
model with impurity

ln b+ (s) = −2βB −
(
K2 ∗ lnB+

)
(s) +

(
K2,U

2
∗ lnB−

)
(s)−

(
K1 ∗ ln

c̄+C̄−

c̄−C̄+

)
(s) ,

ln b− (s) = −2βB −
(
K2,−U

2
∗ lnB+

)
(s) +

(
K2 ∗ lnB−

)
(s)−

(
K1,−U

2
∗ ln

c̄+C̄−

c̄−C̄+

)
(s) ,

ln c± (s) = −βU
2

+ β (µ+B)± 2β
√

1− s2 +
(
K1,−U

2
∗ ln B̄+

)
(s)−

(
K1 ∗ ln B̄−

)
(s)

+

(
K1,−U

4
∗ ln

C̄+

C̄−

)
(s)± 1

2
ln

C̄+

C̄−
(s) ,

ln c̄± (s) = −βU
2
− β (µ+B)∓ 2β

√
1− s2 −

(
K1 ∗ lnB+

)
(s) +

(
K1,U

2
∗ lnB−

)
(s)

−
(
K1,U

4
∗ ln

C+

C−

)
(s)± 1

2
ln

C+

C−
(s) .

In the following we assume that B � 1 and µ < 0. Considering our continuum limit
U → 0 and T = O

(√
U
)
and the driving terms of c− (s) and c̄− (s) yields that c− (s)→ 0

and c̄− (s)→∞. Using this and dropping the + in the notation of c+ (s) and c̄+ (s) we
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can simplify the non-linear integral equations

ln b+ (s) = −2βB −
(
K2 ∗ lnB+

)
(s) +

(
K2,U

2
∗ lnB−

)
(s)−

(
K1 ∗ ln

c̄

C̄

)
(s) ,

ln b− (s) = −2βB −
(
K2,−U

2
∗ lnB+

)
(s) +

(
K2 ∗ lnB−

)
(s)−

(
K1,−U

2
∗ ln

c̄

C̄

)
(s) ,

ln c (s) =
3βU

4
+

5β

2
(µ+B) + β

√
1− s2 − β

2

√
4 + (U + 2is)2 +

(
K2,−U

4
∗ lnB+

)
(s)

−
(
K1,U

2
∗ lnB−

)
(s) +

(
K1,−U

2
∗ ln B̄+

)
(s)−

(
K1 ∗ ln B̄−

)
(s) + (K2 ∗ lnC) (s)

+
(
K1,−U

4
∗ ln C̄

)
(s) +

1

4
lnC (s) +

1

2
ln C̄ (s) ,

ln c̄ (s) = −βU
2
− β (µ+B)− 2β

√
1− s2 −

(
K1 ∗ lnB+

)
(s) +

(
K1,U

2
∗ lnB−

)
(s)

−
(
K1,U

4
∗ lnC

)
(s) +

1

2
lnC (s) .

Note that the following relations have been used for the simplification of ln c (s)

1

2
K1 (s) +

(
K1,−U

4
∗K1

)
(s) =

{
K2,−U

4
, for U ≥ 0,

−K1,−U
2
, otherwise,

1

2
K1,U

2
(s) +

(
K1,−U

4
∗K1,U

2

)
(s) =

{
K1,U

2
, for U ≥ 0,

0, otherwise,
,

1

2
K1,U

4
(s) +

1

2
K1,−U

4
(s) +

(
K1,−U

4
∗K1,U

4

)
(s) = −1

4
δ (s) +

{
K2, for U ≥ 0,

0, otherwise

and

∞̂

−∞

dyK1,−U
4

(s− y)

(
−βU

2
− β (µ+B) + 2β

√
1− y2Θ (1 + y) Θ (1− y)

)

=


−βU

2
− β (µ+B) + β

2

(√
4 + (U + 2is)2 − U

)
, for U > 0,

2is, for U = 0,

βU
2

+ β (µ+B) + β
2

(√
4 + (U + 2is)2 − U + 4is

)
, for U < 0.

Furthermore we used U > 0, because the non-linear integral equations are here formulated
for this case.
Now we are considering the convolutions using (94)

93



5.3 NLIE of the AIM 5 LIMIT TO THE AIM

(Kn,α ∗ lnA) (s) =

∞̂

−∞

dyKn,α (s− y) lnA (y)

=
n

4π

∞̂

−∞

dy

U

lnA (y)(
s+iα−y

U

)2
+
(
n
4

)2

=
n

4π

∞̂

−∞

dy
lnA (Uy)(

s+iα
U
− y
)2

+
(
n
4

)2

⇒ (Kn,Uα ∗ lnA) (Us) =
n

4π

∞̂

−∞

dy
lnA (Uy)

(s+ iα− y)2 +
(
n
4

)2 .

and a similar calculation for functions ln Ā that vanish outside of s ∈ [−1, 1] (i. e. c (s)

and c̄ (s)) we find

(
Kn,Uα ∗ ln Ā

)
(s)→

(
K2n,2α ∗ ln Ā

)( k̃√
U

)
.

Note that we used

Kn,α (s) = Kn,α (s)|U=1 (143)

and s = sin k = −1 + k̃2

2
on the right-hand side.

Using this interim results as well as table (1) and defining

ln b± (λ) = ln b±
(
−1 +

Uλ

2

)
,

ln c± (k) = ln c±
(
−1 +

Uk2

2

)
,

ln c̄± (k) = ln c̄±
(
−1 +

Uk2

2

)
we get for the non-linear integral equations of the Anderson impurity model
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ln b+ (λ) = −Hβ̄ −
(
K4 ∗ lnB+

)
(λ) +

(
K4,1 ∗ lnB−

)
(λ)−

(
K2 ∗ ln
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C̄

)
(λ) ,

ln b− (λ) = −Hβ̄ −
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)
(λ) +

(
K4 ∗ lnB−
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(λ)

−
(
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C̄
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(λ) ,

ln c (k) =
5β̄

4
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H − 2εd − Ū

)
+
(
K4,− 1

2
∗ lnB+

)
(g (k))−

(
K2,1 ∗ lnB−

)
(g (k))

+
(
K2,−1 ∗ ln B̄+

)
(g (k))−

(
K2 ∗ ln B̄−

)
(g (k)) + (K4 ∗ lnC) (k)

+
(
K2,− 1

2
∗ ln C̄

)
(k) +

1

4
lnC (k) +

1

2
ln C̄ (k) ,

ln c̄ (k) = − β̄
2

(H − 2k)−
(
K2 ∗ lnB+

)
(g (k)) +

(
K2,1 ∗ lnB−

)
(k)

−
(
K2, 1

2
∗ lnC

)
(k) +

1

2
lnC (k) (144)

There are just six auxiliary functions for the Hubbard model with integrable impurity (99)
and just four for the Anderson impurity model (144) in comparison to the infinitely many
equations of thermodynamical Bethe ansatz type (139). Note that the functions b± (λ)

can be reduced to just one function similar to (96), but then the integrals are not ordinary
convolutions, rather they are contour convolutions.
Considering the free energy per site (111) and using our continuum limit yields the free
energy of the Anderson impurity model

f = fh +
1

l
fi, (145)

−β̄fh = −
∞̂

−∞

dk

2πig′ (k)

(
lnC (k) + ln

1 + c+ c̄

c̄
(k)

)
, (146)

−β̄fi =
β̄Ū

4
+

1

πi

(
k ∗ lnB+

)
(0)− 1

πi

(
k ∗ lnB−

)
(0)− 1

2πi

(
k ∗ ln

C̄

c̄

)
(0)

− 2

πi

∞̂

−∞

dk

g (k)

(
lnC (k) + ln

1 + c+ c̄

c̄
(k)

)

−
∞̂

−∞

dk

2πi
ln g (k)

[
ln

(1 + c+ c̄)B+

1 + c̄B+
(k)

]′
. (147)

Equations (144), (145), (146) and (147) completely describe thermodynamical properties
of the Anderson impurity model.
We note that we could have introduced a shift in the chemical potential in table (1), which
allows us to shift the chemical potential freely in the Anderson impurity model.
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5.4 Continuum limit of the creation and annihilation operators c†k
and ck

We consider plane waves

|k〉 :=
L∑
j=1

eikrj |rj〉 , rj := āj, (148)

for a lattice with L sites with lattice constant ā. The creation and annihilation operators
are c†k and ck. There are only discrete k mod 2π

ā
∈ 2π

āL
·Z. The vacuum |0〉 is a state without

particles: ck |0〉 = 0. For k 6= q the c†k and ck must satisfy
{
c†k, cq

}
= 0. Furthermore we

find

〈
0
∣∣∣{c†k, ck}∣∣∣ 0〉 =

〈
0
∣∣∣ckc†k∣∣∣ 0〉

= 〈k | k〉

= L.

This leads to

{
c†k, cq

}
= Lδkq. (149)

We can consider these creation and annihilation operators as approximations to the
continuum. Setting l = āL and

c̃†k =

√
ā

l
c†k (150)

yields on the interval [0, l]

{
c̃†k, c̃q

}
= δkq (151)

with discrete k ∈ 2π
l
· Z.

We want to use R as interval and we want the following relation for the creation and
annihilation operators c̄†k and c̄k {

c̄†k, c̄q

}
= δ (k − q) . (152)

Therefore we use

c̄†k = lim
l→∞

√
l

2π
c̃†k (153)

for the construction, since
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1 =
∑
k

{
c̃†k, c̃q

}
=

1

∆k

∑
k

∆k
{
c̃†k, c̃q

}

→
∞̂

−∞

dk
{
c̄†k, c̄q

}
.

Note that in (153) k is continuous and that c̄†k and c̄k are of order O
(√

ā
)
.

Thus, the Hamiltonian H (in the continuum and with the thermodynamic limit) can be
written in second quantization such that integrals over k occur for creation and annihilation
operators c̄†k and c̄k. The energy scale must be introduced so that ā disappears.

5.5 Hamiltonian

We note here that we have also shown that the Hamiltonian of the Anderson impurity
model (133) follows from the Hubbard model with integrable impurity. The necessary
calculations were carried out with Maple. The procedure is analogous to the one described
in chapter 6.1. The hybridization is given by

〈{kout, σ} |H| {d, σ}〉 = 〈{d, σ} |H| {kin, σ}〉

= V U
1
4 +O

(
U

3
4

)
, σ =↑, ↓ .

There are also on-site matrix elements at the impurity

〈{d, 0} |H| {d, 0}〉 = 0,

〈{d, ↑} |H| {d, ↑}〉 = Ū
√
U +O (U) ,

〈{d, ↓} |H| {d, ↓}〉 = Ū
√
U +O (U) ,

〈{d, ↑↓} |H| {d, ↑↓}〉 = 0.

It should be noted that this is a surprising result. The limit U → 0 is the free fermion
limit. This causes the host to have no interaction. The combined limits, however, lead
to the fact that the interaction with the impurity does not disappear. This creates
the Anderson impurity model, non-interacting host, which interacts with the impurity
[138, 42, 94, 123, 122, 95, 124]. The Hubbard model with integrable impurity plus
continuum limit is thus absolutely necessary, since otherwise a different impurity model is
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generated:

• An impurity interacting with an interacting host.

• An impurity not interacting with a non-interacting host.

The models in chapter 2, 3 and 4 are such special impurity models. Note furthermore
that all many-particle terms that appear in the Hamiltonian of the Hubbard model with
integrable impurity in chapter 3 disappear in the continuum limit.

5.6 Ground state

We derive analytic expressions for the thermodynamics. For T � 1 we simplify the
non-linear integral equations (144). We set H � 1 and Ū , εd > 0, such that b− (λ)→ 0

and c (k)→ 0. b+ (λ) and c̄ (k) do not disappear. Then we find from equations (144)

ln b+ (λ) = −Hβ̄ −
(
K4 ∗ lnB+

)
(λ)−

(
K2 ∗ ln

c̄

C̄

)
(λ) ,

ln c̄ (k) = − β̄
2

(H − 2k)−
(
K2,0 ∗ lnB+

)
(g (k)) . (154)

These formulas are justified at low temperature T . There the corrections are exponentially
small O

(
e−cst.β̄

)
. The constant is real and positive.

These equations correspond to the result of Tsvelick and Wiegmann [124] from 1983. In
their work they have derived the set of infinitely many equations of thermodynamical
Bethe ansatz type, which we have also derived in this work through the continuum limit
(139). In their work, Tsvelick and Wiegmann have then performed the limit T → 0, which
turns the infinite number of equations into finitely many. In their case they had only two
equations left, which correspond to the equations (154).
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6 Limit from the modified Hubbard model with

integrable impurity to the pseudogap Anderson

impurity model

We consider in this chapter the Hubbard model with integrable impurity and shifts on the
horizontal lines, which follow the distribution density ρα (y), as explained in chapter 4.
We combine this model with the continuum limit from chapter 5 and obtain a pseudogap
Anderson impurity model. This new model is in principle Anderson-like, which means the
host is non-interacting but the impurity interacts with the host. Furthermore we have a
new dispersion relation e (k) = k |k|α (−1 < α < 0), which follows from (124) and table
(1).

6.1 Hamiltonian

For calculating the Hamiltonian of the pseudogap Anderson impurity model we have to
pay attention to two aspects.
First, we have to consider the modified Hubbard model with integrable impurity. Since we
know the effect of the shifts on the horizontal lines on the host (these change the dispersion
relation), the old dispersion relation can readily be exchanged with the new one. Nothing
else changes in the host.
The more complicated question is how the shifts on the horizontal lines affect the interaction
with the impurity. The relevant transition rates occur in the Hamiltonian and must be
calculated.
The exact evaluation is based on the fact that the local objects

Figure 22: Product of L-matrices with spectral parameters θ and φ, which are used for
calculations.

leave right hand-sided singlets
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Figure 23: “Ket” singlets.

and “bra” states (which are orthogonal to the right hand-sided singlet) invariant,

Figure 24: Invariance.

but other states (orthogonal to the right hand-sided singlet) have very small eigenvalues.
That reads

t (θ) t̄ (θ) = id +O
(
e−cst.L) ,

t (θ) t̄ (θ + ε) = e−εH +O
(
e−cst.L) . (155)

For L lattice sites of the host we consider the row-to-row transfer matrix with open
boundary conditions left and right. An incoming or outgoing plane wave with spectral
parameter k and σ =↑, ↓ can be written down graphically.
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Figure 25: Incoming and outgoing plane wave with σ =↑, ↓. The spectral parameters can
be converted into momenta as required. σ on the horizontal line means that
there is fermion with spin σ, 0 means there is none. Note furthermore that
zeroes on vertical lines belong to the vacuum state |0〉. This means that zeroes
on horizontal and vertical lines do not have the same meaning.

Due to equation (155), we consider two horizontal lines, i.e. the product of two row-to-row
transfer matrices. Now we consider the interaction with a plane wave which is generated.
Putting everything together we get
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Figure 26: The “effective” partition function on a (L+ 1)× 4 lattice. Here we can also add
a twist angle. We can see two kinds of column-to-column transfer matrices, T
the host and Ti the impurity. Note that zeroes on the vertical lines belong to the
Fock vacuum |0〉. Operators B (Θ) and C (Θ) are defined like drawn. Positions
of σ, σ̃ and zeroes on the horizontal lines show that there are 4 operators of
each kind. Note furthermore that there are periodic boundary conditions on
the horizontal lines and open boundary conditions on vertical lines. We also
point out that it is enough to just consider two horizontal lines, that yield the
Hamiltonoperator, because row-row transfer matrices commute.

The matrix element has a natural interpretation as the partition function on a (L+ 1)× 4

lattice. The derivative with respect to ε at ε = 0 yields the desired matrix element of H.
As L→∞ we intend to apply a transfer matrix approach. For this, we define the transfer
matrices.
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Figure 27: Transfer matrices of the bulk and the impurity. The dimension of the spaces
associated with horizontal lines in T with spectral parameters Θ and Θ̃ is two,
which means that there are four creation operators for plane waves, which was
explained in the previous figure. The dimension of the spaces associated to the
lines with θ and θ+ ε are four. This means that T and Ti are of size 2242×2242.

Now we have to calculate

tr
(
TLTi

)
=

4∑
n=1

ΛLn 〈n |Ti|n〉 ,

where only four states |n〉 are relevant in the limit L→∞ and depend on ε. The matrix
space has the dimension 2 · 4 · 4 · 2, but just four eigenvalues have the same absolute value
and have larger absolute values than the remaining ones. These statements were shown
numerically. Unfortunately, all expressions are quite complicated for ε 6= 0. Only for ε = 0

everything is simple.
We define graphically the following operators:

Figure 28: Useful operators.

Obviously the following relations hold
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TP42 = P42T2,

P24T = T2P24.

Note that unitarity and the Yang-Baxter equation were used here.
Eigenvalues of T2 are also eigenvalues of T . The numerics shows that other eigenvalues
of T are irrelevant to us. The eigenvalues of T2 are 1, eikin , e−ikout and ei(kin−kout). In the
following we use eigenstates for which kin and kout are multiples of 2π

L
. This provides a

basis. The projector to the four-dimensional subspace is

P0 = P42T
−1
2 P24, (156)

because P24P42 = T2 holds. From this we obtain

P 2
0 = P42T

−1
2 P24P42T

−1
2 P24

= P42T
−1
2 P24

= P0.

The problem to be solved is

d

dε

4∑
n=1

〈n |Ti|n〉 =
d

dε
tr (PTi) ,

because all other terms in d
dε
tr
(
TLTi

)
are proportional to L. Such an expression has

to vanish for kin 6= kout. We do not calculate the individual |n〉, but the whole P . By
definition we have

P =
4∑

n=1

|n〉 〈n| ,

and it fulfills the following relations:

• P has to be the projector onto the four-dimensional space of the leading eigenvalues
of T , i.e.

P 2 = P,

[P, T ] = 0,

P |ε=0 = P0.

We use the ansatz P = P0 + εP1, where P0 is known (156). P1 has to be determined.
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Furthermore we use T = T0 + εT1.
From the previous equations we find in first order of ε

P 2 = P

⇒ P1 = P0P1 + P1P0 (157)

and

[P, T ] = 0

⇒ [P1, T0] + [P0, T1] = 0. (158)

These are linear equations that uniquely determine P1.
In d

dε
tr
(
TLTi

)
occurs tr (P1Ti). This expression can be rephrased, which makes the

calculation easier. Consider all eigenstates |n〉 for ε = 0

T0 |n〉 = Λn |n〉 ,

P0 |n〉 = δn |n〉 , δn = 0, 1.

Using (157) and (158) this yields

⇒ 0 = 〈n |[P1, T0]|m〉+ 〈n |[P0, T1]|m〉

= (Λm − Λn) 〈n |P1|m〉+ (δn − δm) 〈n |T1|m〉

⇒ 0 = 〈n |P0P1 + P1P0 − P1|m〉

= (δn + δm − 1) 〈n |P1|m〉 .

For (δn, δm) = (1, 0) or (0, 1) we have Λm − Λn 6= 0. Therefore we find

〈n |P1|m〉 =
δm − δn
Λm − Λn

〈n |T1|m〉

⇒ tr (P1Ti) =
∑
n,m

〈n |P1|m〉 〈m |Ti|n〉

=
∑
n,m

δm − δn
Λm − Λn

〈n |T1|m〉 〈m |Ti|n〉 .

Using this we find the useful formulas
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P0P̃1 + P̃1P0 = P̃1, (159)[
P̃1, T0

]
+ [P0, Ti] = 0. (160)

These formulas were used in the computer algebra program based on Maple. If we compare
the last two equations with (157) and (158), we find that [P0, Ti] can be calculated more
easily than [P0, T1], but only for θ = 0. In addition, the calculation of TiP0 for θ 6= 0 is
easier since

Figure 29: Trivial calculation for TiP0. This simple equation is the reason why (160) is
used and not (158).

The procedure described has been programmed, the code is given in appendix 8.5.
The calculations were carried out in Maple with spectral parameters. The hybridization is
found to be

〈{kout, σ} |H| {d, σ}〉 = (2 + i cos kout)V e
3θU

1
4 +O

(
U

3
4

)
, σ =↑, ↓,

〈{d, σ} |H| {kin, σ}〉 = (2− i cos kin)V e3θU
1
4 +O

(
U

3
4

)
, σ =↑, ↓ .

There are also on-site matrix elements at the impurity

〈{d, 0} |H| {d, 0}〉 = 0,

〈{d, σ} |H| {d, σ}〉 = Ūe3θ
√
U +O (U) , σ =↑, ↓,

〈{d, ↑↓} |H| {d, ↑↓}〉 = 0, .

Note that
√
U is the lattice constant and that the annihilation and creation operators

are of order O
(√

U
)
. In the continuum, therefore, all matrix elements are of order
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O
(√

U
)
. The energy scale is in (135) introduced so that

√
U disappears. Remember

that we introduced a distribution density ρα (y) in Chapter 4 (119). This must also be
re-parameterized in the spectral parameter via y = ie2x+2h(x) and (78). Then we get for
the hybridization

V̄k = (2 + i cos k)V

∞̂

−∞

dθe3θρα (θ) , (161)

and for the on-site Coulomb repulsion

Ũ = Ū

∞̂

−∞

dθe3θρα (θ) , (162)

which are typically not integrable, however, we have to take into account that we must
compute for example 〈{kout, σ} |H| {d, σ}〉 completely, then perform the integral over θ
and then expand the result for small U , which can again be integrable. We call this results
V̌k and Ǔ . This is, however, a question that has remained unresolved in this work.
The Hamiltonian of the modified Anderson impurity model is then be given by

HAIM =
l

2π

∑
σ=↑,↓

∞̂

−∞

dk
(
k |k|α nk,σ + V̌kc

†
k,σdσ + V̌ ∗k d

†
σck,σ

)
+ εd

∑
σ=↑,↓

nd,σ

+ Ǔnd,↑nd,↓. (163)

6.2 Non-linear integral equations of the pseudogap Anderson

impurity model

In chapter 5.3 we showed that the non-linear integral equations of the Anderson impurity
model follow from the Hubbard model with integrable impurity by the use of our continuum
model. Thus the thermodynamics of the model can be completely described. This is a
system of finitely many, coupled, non-linear integral equations, which makes the numerical
analysis quite simple. For this reason we also want to derive the non-linear integral
equations of the modified Anderson impurity model in this section. We are using our
continuum limit (cf. chapter 5) to derive these from those of the modified Hubbard model
with integrable impurity (114). The analysis is quite similar and the result reads
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ln b+ (λ) = −Hβ̄ −
(
K4 ∗ lnB+

)
(λ) +

(
K4,1 ∗ lnB−

)
(λ)

−
(
K2 ∗ ln

c̄

C̄

)
(λ) ,

ln b− (λ) = −Hβ̄ −
(
K4,−1 ∗ lnB+

)
(λ) +

(
K4 ∗ lnB−

)
(λ)

−
(
K2,−1 ∗ ln

c̄+

C̄+

)
(λ) ,

ln c (k) =
5β̄

4

(
H − 2εd − Ū

)
+
β̄

2

π (1 + α)

sin πα
2

(
k − εd −

Ū

2

) ∣∣∣∣k − εd − Ū

2

∣∣∣∣α
+
(
K4,− 1

2
∗ lnB+

)
(g (k))−

(
K2,1 ∗ lnB−

)
(g (k))

+
(
K2,−1 ∗ ln B̄+

)
(g (k))−

(
K2 ∗ ln B̄−

)
(g (k)) + (K4 ∗ lnC) (k)

+
(
K2,− 1

2
∗ ln C̄

)
(k) +

1

4
lnC (k) +

1

2
ln C̄ (k) ,

ln c̄ (k) = − β̄
2

(
H − 2εd − Ū +

π (1 + α)

sin πα
2

(
k − εd −

Ū

2

) ∣∣∣∣k − εd − Ū

2

∣∣∣∣α)
−
(
K2 ∗ lnB+

)
(g (k)) +

(
K2,1 ∗ lnB−

)
(k)−

(
K2, 1

2
∗ lnC

)
(k)

+
1

2
lnC (k) (164)

Since we have not introduced any shifts on the vertical lines in the modified Hubbard
model with integrable impurity, the expression for the free energy remains unchanged (145).
Together with equations (164) this equation describes the thermodynamical properties of
the modified Anderson impurity model completely.
Note that the density of states of this model is given by

ρ (ε) =
(1 + r) |ε|r

21+rπ
, (165)

where r = − α
1+α

. Since α ∈ (−1, 0) holds, we have r ∈ (0,∞). Notice furthermore that
r = 0 for α = 0 and r = 1 for α = −1

2
. The comparison with (3) shows that this is a

pseudogap system. The particle-hole symmetry requires Ū = −2εd.

6.3 Low-temperature asymptotics

We derive analytic expressions for the thermodynamics. For T � 1 we simplify the
non-linear integral equations (164). We adopt H � 1 and Ū , εd > 0, such that b− (λ)→ 0

and c (k)→ 0. b+ (λ) and c̄ (k) do not vanish. Then we find from equations (164)
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ln b+ (λ) = −Hβ̄ −
(
K4 ∗ lnB+

)
(λ)−

(
K2 ∗ ln

c̄

C̄

)
(λ) ,

ln c̄ (k) = − β̄
2

(
H − 2εd − Ū +

π (1 + α)

sin πα
2

(
k − εd −

Ū

2

) ∣∣∣∣k − εd − Ū

2

∣∣∣∣α)
−
(
K2 ∗ lnB+

)
(g (k)) .

These formulas are justified at low temperatures T . There the correction terms are
exponentially small O

(
e−const.β̄

)
. The constant is real and positive. The expression for

the free energy also simplifies

f = fh +
1

l
fi, (166)

−β̄fh = −
∞̂

−∞

dk

2πig′ (k)
ln
C̄

c̄
(k) , (167)

−β̄fi =
β̄Ū

4
+

1

πi

(
k ∗ lnB+

)
(0)− 1

2πi

(
k ∗ ln

C̄

c̄

)
(0)

− 2

πi

∞̂

−∞

dk

g (k)
ln
C̄

c̄
(k) −

∞̂

−∞

dk

2πi
ln g (k)

[
ln

C̄B+

1 + c̄B+
(k)

]′
(168)

We perform a linearization of the non-linear integral equations similar to Chapter 2.5.2.
The functions − ln b+(λ)

β
and − ln c̄(k)

β
possess zeroes at ±λ0 and k0. We find

ln b+ (λ) = −Hβ̄ +
π2

6

K4 (λ− λ0) +K4 (λ+ λ0)

(ln b+)′ (λ0)
+
π2

6

K2 (λ− g (k0))(
ln c̄

C̄

)′
(k0)

g′ (k0)

−
λ0ˆ

−λ0

dλ′K4 (λ− λ′) ln b+ −
k0ˆ

−k0

dpg′ (p)K2 (λ− g (p)) ln
c̄

C̄
(p) ,

ln c̄ (k) = − β̄
2

(
H − 2εd − Ū +

π (1 + α)

sin πα
2

(
k − εd −

Ū

2

) ∣∣∣∣k − εd − Ū

2

∣∣∣∣α)

+
π2

6

K4 (g (k)− λ0) +K4 (g (k) + λ0)

(ln b+)′ (k0)
−

λ0ˆ

−λ0

dλ′K4 (g (k)− λ′) ln b+.

Note that the expressions for the free energy do not change in comparison with chapter
(145). It should be noted that a comparison with other work [133, 43, 131, 107, 44] is for
now hardly possible, because the calculation of V̌k and Ǔ (see chapter 6.1) must be done
completely for this.
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6.4 Screening of the impurity spin in the modified Anderson

impurity model

We now discuss the rich physics of the modified Anderson impurity model.
The case r = 0 is the simplest: The density of states of the host is given by ρ (ε) = 1

2π
.

The density of states for a metallic host is finite at the Fermi energy. In this case we find
the results of the Anderson impurity model. For antiferromagnetic J0 > 0 the impurity
moment is screened below the Kondo temperature TK [74, 124]

TK =
√
πJ0e

− 2π
J0 ,

where J0 is given by (4). Note that the crossovers are described by the single scale
TK at finite energies and temperatures [124]. For example, the impurity susceptibility
χi (T ) = ∂2

Hfi|T̄ shows single-parameter scaling. It is a universal function of T̄
TK

. The
complete phase-diagram is well-known [124].
The case r > 0 describes a semimetal with vanishing density of states of the host at
the Fermi energy. The bias towards Kondo screening decreases in this case. There is no
screening at small Kondo couplings. Hence there exists a quantum phase transition among
phases with and without screening. It arises upon increasing the Kondo coupling.
For particle-hole symmetry

(
Ū = −2εd

)
there exists a transition between a local-moment

phase and a symmetric strong-coupling phase.
Screening is also possible for particle-hole asymmetry. There exists a transition between
a local-moment phase and an asymmetric strong-coupling phase, where full screening is
obtained.
The density of states of the host with r = 1 (3) describes d-wave superconductors and
charge-neutral graphene at low energies.
Note that for a quantitative analysis of the discussed phases and the critical points, the
equations (164) must be numerically evaluated. This is left for future work.
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7 Summary and Outlook

In this work, the construction of a pseudogap Anderson impurity model was investigated.
This model describes the Kondo physics in metalloids and in pseudogap systems, especi-
ally in graphene, a system whose low-temperature physics in the charge-neutral case is
dominated by two-dimensional Dirac electrons.
Since the host density of states of pseudogap systems disappears at the Fermi energy,
the dispersion relation of the Anderson impurity model had to be modified. For this
modification and for deriving the finitely many non-linear integral equations on the basis
of the column-to-column transfer matrix we used a lattice approach. A suitable lattice
model had to be identified yielding the Anderson impurity model in a continuum limit.
In chapter 2, a prototype of integrable models, the one-dimensional anisotropic spin-1

2

Heisenberg model was considered first. We used this as a warm up exercise to find
out which modifications are possible on the lattice. We introduced an integrable spin-1

2

impurity on an additional site L+ 1 with the spectral parameter ν and shifts θ1, . . . , θN
2

and ϑ1, . . . , ϑL on the horizontal and vertical lines, following some distributions ρh and ρv.
These distribution densities depend on the parameters αh and αv (αh, αv > 0). We derived
the Bethe ansatz equations for the row-to-row transfer matrix and the column-to-column
transfer matrix of this novel model. The shifts on the horizontal lines can only be seen in
the Bethe ansatz equations of the column-to-column transfer matrix, whereas the shifts
on the vertical lines and the spin-1

2
impurity manifest themselves in the other set of Bethe

ansatz equations. In the finitely many non-linear integral equations, therefore, the density
ρh appears only in the equations for the auxiliary functions, while the density ρv is found in
the expression for the free energy. The fact that the density ρh only appears in the driving
terms of the finitely many non-linear integral equations is due to integrability. We have
shown that by the right choice of distribution densities ρh and ρv the dispersion relation
can be modified in such a way that the density of states disappears at the Fermi energy,
characterizing a pseudogap system. Furthermore, we have seen that the use of shifts
ϑ1, . . . , ϑL on the vertical lines is not necessary to this end. For pseudogap systems, shifts
θ1, . . . , θN

2
only on the horizontal lines are sufficient. To obtain a complete picture, we have

determined the Hamiltonian of this new model, where we neglected additional many-body
terms. Naturally, terms of this kind exist because the locality of the one-dimensional
anisotropic spin-1

2
Heisenberg model was broken by the shifts θ1, . . . , θN

2
and ϑ1, . . . , ϑL on

the horizontal and vertical lines. It should therefore be noted that this a special impurity
lattice model with an impurity interacting with an interacting host. Finally, we considered
the low-temperature asymptotics of the model for h = 0 and h 6= 0. For h = 0 it was found
that the free energy of the host behaves like T 1+αv

αh , but the free energy of the impurity
behaves like T 1+ 1

αh . The free energy of the host and the impurity show a T 2 behaviour
for the case h 6= 0. An open question is if a free fermion limit leads to a model with
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non-interacting host, which interacts with the impurity.
In chapter 3 we considered the Hubbard model and introduced an integrable impurity
in analogy to chapter 2. The impurity leads to an additional factor in the Bethe ansatz
equations of the row-to-row transfer matrix. Regardless of whether the equivalent infinite
number of non-linear integral equations derived in the thermodynamic Bethe ansatz or
the finitely many non-linear integral equations derived in the quantum transfer matrix
approach are used for the description of the thermodynamics, there are integral expressions
for the impurity contribution to the free energy. In both cases the auxiliary functions do
not change, but new expressions for the impurity part of the free energy arises. These
are obtained in chapter 3, where established results [36] for the Hubbard model were
generalized. In the thermodynamic Bethe ansatz, we used the string hypothesis and
followed the traditional procedure [117]. In the quantum transfer matrix approach [63], it
is easy to determine an expression in terms of solutions of the Bethe ansatz equations for
the impurity contribution to the free energy (88), but to express it as an integral expression
in terms of the auxiliary functions is much more complicated. The further course of this
chapter is therefore devoted to the derivation of such an expression.
In chapter 4 on the modified density of states we considered the Hubbard model with
integrable impurity and introduced shifts θ1, . . . , θN

2
on the horizontal lines, which follow

a distribution density ρα. Right from the start, we did not use any shifts on the vertical
lines, as chapter 2 showed that this is not necessary for pseudogap systems. Also the
thermodynamic Bethe ansatz was not considered anymore in this chapter. Due to the
shifts, the Bethe ansatz equations for the row-to-row transfer matrix of chapter 3 remained
unchanged. However, the Bethe ansatz equations for the column-to-column transfer matrix
are changed, which is reflected in the finitely many non-linear integral equations for the
auxiliary functions, which now also change. The changes depend considerably on the
choice of the distribution density function ρα. In this chapter, we briefly discussed different
distribution densities and then show how to choose one that leads to pseudogap systems.
We also showed that in the limit U → 0 the host consists of free fermions now with a
new dispersion relation. This is essential as the Anderson impurity model is a model with
non-interacting host, interacting with the impurity and it is embedded in the Hubbard
model with integrable impurity on the lattice. Finally, in this chapter the connection
between the auxiliary functions and the dressed energy functions was deduced. It should
again be noted that this is a special impurity lattice model with an impurity interacting
in general U 6= 0 with an interacting host. An open question is what the shifts ϑ1, . . . , ϑL

on the vertical lines would provide.
Chapter 5 is devoted to the continuum limit of the Hubbard model with integrable impurity
to the Anderson impurity model in the continuum. We showed that a combined continuum
limit exists when the lattice constant is set to

√
U and sent to zero. In addition, a

linearization of the energy takes place in which the momenta k are distributed around
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the Fermi points. The energy must also scale like
√
U , as well as the temperature. The

parameters of the Hubbard model with integrable impurity pass into the parameters of the
Anderson impurity model in non-trivial ways. The reformulation can be found in table (1).
We have shown that this choice of parameters and the combined continuum limit yields the
well-known Bethe ansatz equations and the infinitely many thermodynamic Bethe ansatz
equations [124] of the Anderson impurity model, from the Bethe ansatz equations of the
row-to-row transfer matrix and the thermodynamic Bethe ansatz equations of the Hubbard
model with integrable impurity of chapter 3. In addition, we derived the finitely many
non-linear integral equations of the Anderson impurity model through the continuum limit
of the analogues for the Hubbard model. These equations are new and an improvement
over previous work [22], as there a different lattice model with same regimes as in the phase
diagram of the Anderson impurity model [124] was studied. With respect to the regimes,
the models were considered equivalent. Note that in this lattice model the interaction of
the host does not disappear. We have shown that the Hamiltonian of the Hubbard model
with integrable impurity yields precisely the Hamiltonian of the Anderson impurity model.
For the ground state the infinitely many thermodynamic Bethe ansatz equations of the
Anderson impurity model reduce to finitely many and provide the same as the finitely
many non-linear integral equations. It is noteworthy that the combined continuum limit
from a lattice model with interacting host interacting with an impurity yields a continuum
model with a non-interacting host still interacting with an impurity.
In the last chapter, the methods developed in the previous chapters were used to derive a
pseudogap Anderson impurity model in the continuum. We applied the continuum limit
established in chapter 5, to the lattice model in Chapter 4. This leads to a novel model
(163) with the dispersion relation ε (k) = k |k|α, −1 < α < 0. What is remarkable about
this model is, first, that V̌k depends on k and is no longer a constant. In addition, V̌k
and Ǔ depend on the distribution density ρα. However, we have not completely succee-
ded in calculating these two parameters, since the matrix elements 〈{kout, σ} |H| {d, σ}〉,
〈{d, σ} |H| {kin, σ}〉 and 〈{d, σ} |H| {d, σ}〉 must be calculated completely, not just in the
limit U → 0. In principle, the Maple program used by us is capable of doing so, but
would require a much higher computation time, which is why this calculation was not
performed. Therefore, a comparison with other work [133, 43, 131, 107] at this point is
not yet possible. Nevertheless, we have described the thermodynamics of the model with
finitely many non-linear integral equations and described the screening of the impurity spin.
The screening is suppressed for small Kondo couplings. Therefore an impurity quantum
phase transition exists among an unscreened and a screened impurity moment in this case.
A detailed numerical analysis of the finitely many non-linear integral equations is still an
open task.
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This work may be followed by other interesting projects in which the open questions
described here can be worked out. An attempt can be made to rewrite the Maple program
to fully compute the V̌k and Ǔ parameters in chapter 6. In addition, the finitely many non-
linear integral equations can be numerically evaluated. The influence of shifts ϑ1, . . . , ϑL

on the vertical lines can be examined. These should allow the exponent r in equation
(165) to take negative values. A simple free fermion limit for the modified one-dimensional
anisotropic spin-1

2
Heisenberg model with spin-1

2
impurity may also be considered.
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8 APPENDIX

8 Appendix

The appendix lists some alternative expressions and the program codes in Maple.

8.1 Alternative expressions for lnΛQTM
0 (λ) in chapter 3.3.4

We derive two alternative formulas for the integrals in (107). We consider the last integral
in

I : =

ˆ

L

ds′

2πi

[
ln g

(
s′ − iU

2

)]′
lnC (s′) +

ˆ

L

ds′

2πi
[ln g (s′)]

′
ln

1 + c + c̄

c̄
(s′) (169)

=

ˆ

L

ds′

2πi

[
ln g

(
s′ − iU

2

)]′
lnC (s′) +

ˆ

L

ds′

2πi
[ln g (s′)]

′
ln (1 + c + c̄) (s′)

−
ˆ

L

ds′

2πi
[ln g (s′)]

′
ln c̄ (s′)

use integration by parts and blow up the integration contour L. This yields clockwise
loops around the poles and the contour L − iU

2
in reversed sense. Using again integration

by parts we find

I =
N

4πi
ln
g
(
s0 − iU2

)
g (s0)

+

ˆ

L

ds′

2πi
[ln g (s′)]

′
ln (1 + c + c̄) (s′)

−
ˆ

L

ds′

2πi

[
ln
g
(
s′ − iU

2

)
g (s′)

]′
lnB (s′)

yielding the first alternative expression to (107) in the limit N →∞

I =

ˆ

L

ds′

2πi
[ln g (s′)]

′
ln (1 + c + c̄) (s′)−

ˆ

L

ds′

2πi

[
ln
g
(
s′ − iU

2

)
g (s′)

]′
lnB (s′) (170)

.
Another formula can be derived by considering

ˆ

L

ds′

2πi

[
ln
g
(
s′ + iU

2

)
g (s′)

]′
ln B̄ (s′)

and defourming the contour L around poles, singularities and branch cuts. Applying this
we obtain
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ˆ

L

ds′

2πi

[
ln
g
(
s′ + iU

2

)
g (s′)

]′
ln B̄ (s′) =

ˆ

L

ds′

2πi

[
ln
g
(
s′ − iU

2

)
g (s′)

]′
lnB (s′)

and therefore we find

I =

ˆ

L

ds′

2πi
[ln g (s′)]

′
ln (1 + c + c̄) (s′)−

ˆ

L

ds′

4πi

[
ln
g
(
s′ − iU

2

)
g (s′)

]′
lnB (s′)

−
ˆ

L

ds′

4πi

[
ln
g
(
s′ + iU

2

)
g (s′)

]′
ln B̄ (s′) . (171)

8.2 Fractional calculus for another Anderson impurity model

The aim of this work is to construct an Anderson-like model (pseudogap system) and to
describe its thermodynamics completely. The simplest such model that can be written
down is

H =
l

2π

∑
σ=↑,↓

∞̂

−∞

dk
(
kznk,σ + V

(
c†k,σdσ + d†σck,σ

))
+ εd

∑
σ=↑,↓

nd,σ + Ūnd,↑nd,↓, (172)

where z ∈ R+. Usually one would now try to solve the one- and two-particle problem, but
in local space we have to confront the linear operator ∂zx, the so-called fractional derivative.
The idea of a fractional derivative was first desribed in a letter from 1695 to G. F. A. de
l’Hôpital by G. W. Leibniz. The idea for such a theory were described by J. Liouville in a
paper from 1832.
For a general function f (x), which is a monomial, and 0 < z < 1, the complete fractional
derivative is given by

∂zxf (x) =
1

Γ (1− z)

d

dx

xˆ

0

dt
f (t)

(x− t)z
. (173)

If z > 1, we write z = z′ + bzc and use ∂zx = ∂z
′
x ∂
bzc
x , since then 0 < z′ < 1. Note that

the derivative of a function f (x) at a point x is local only when z is an integer. This is
obviously not true in the case for non-integer z .
We can try to solve the one- and two-particle case by use of the Schrödinger equation and
the corresponding eigenstates. The one-particle and two-particle eigenstates are given by
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|ψk,σ〉 =

 ∞̂

−∞

dxgk (x) c†σ (x) + ekd
†
σ

 |0〉 ,
|ψ〉 =

 ∞̂

−∞

dx1dx2g (x1, x2) c†↑ (x1) c†↓ (x2)

+

∞̂

−∞

dxe (x)
(
c†↑ (x) d†↓ − c

†
↓d
†
↑

)
+ fd†↑d

†
↓

 |0〉 , (174)

where the vacuum |0〉 is a state without particles: cσ (x) |0〉 = dσ |0〉 = 0. Unfortunately,
this approach does not lead to a physical solution, since even the fractional derivative of
the Euler function is non-trivial for 0 < z < 1

∂zxx
n =

1 + n− z
(1− z) Γ (1− z)

xn−z

⇒ ∂zxe
x =

1 + x− z
xzΓ (2− z)

ex.
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8.3 Results of the Maple program for the one-dimensional

isotropic spin-12 Heisenberg model with spin-12 impurity and

modification of the density of states
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8.4 Maple code for the calculation of the Hamiltonian of the

Anderson impurity model
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Warning, `ap` is implicitly declared local to procedure `gewa`

Warning, `am` is implicitly declared local to procedure `gewa`

Warning, `bp` is implicitly declared local to procedure `gewa`

Warning, `bm` is implicitly declared local to procedure `gewa`

Warning, `HV2` is implicitly declared local to procedure `gewa`

Warning, `HZ2` is implicitly declared local to procedure `gewa`

Warning, `um` is implicitly declared local to procedure `gewa`

Warning, `up` is implicitly declared local to procedure `gewa`

Warning, `delt` is implicitly declared local to procedure 

`delt`
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(5)(5)

(4)(4)

(2)(2)

(6)(6)

(3)(3)

(1)(1)

0

0
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(7)(7)

(11)(11)

(12)(12)

(13)(13)

(14)(14)

(10)(10)

(15)(15)

(9)(9)

(8)(8)

0
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(16)(16)

(17)(17)

1
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8.5 Maple code for the calculation of the Hamiltonian of the

pseudogap Anderson impurity model

Warning, `ap` is implicitly declared local to procedure `gewa`

Warning, `am` is implicitly declared local to procedure `gewa`

Warning, `bp` is implicitly declared local to procedure `gewa`

Warning, `bm` is implicitly declared local to procedure `gewa`

Warning, `HV2` is implicitly declared local to procedure `gewa`

Warning, `HZ2` is implicitly declared local to procedure `gewa`
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Warning, `um` is implicitly declared local to procedure `gewa`

Warning, `up` is implicitly declared local to procedure `gewa`

Warning, `delt` is implicitly declared local to procedure 

`delt`
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(1)(1)
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(3)(3)

(2)(2)
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(10)(10)

(4)(4)

(5)(5)

(9)(9)

(8)(8)

(6)(6)

(7)(7)

0

0
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(15)(15)

(11)(11)

(16)(16)

(13)(13)

(12)(12)

(14)(14)

0

0
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(18)(18)

(17)(17)

(19)(19)

0
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