Synthese und Charakterisierung neuer Trifluormethyl-Platinate und -Iridate

Dissertation Zur Erlangung des Doktorgrades der Naturwissenschaften

vorgelegt beim Fachbereich Mathematik und Naturwissenschaften der Bergischen Universität in Wuppertal

> Genehmigte Dissertation von **Stefan Balters**

aus Krefeld

Wuppertal 2005

Die Dissertation kann wie folgt zitiert werden:

urn:nbn:de:hbz:468-20050702 [http://nbn-resolving.de/urn/resolver.pl?urn=urn%3Anbn%3Ade%3Ahbz%3A468-20050702]

Referent: Prof. Dr. Helge Willner Korreferent: Prof. Dr. Reint Eujen

Tag der mündlichen Prüfung: 29. September 2005

Die vorliegende Arbeit wurde vom April 2000 bis September 2003 im Fach Anorganische Chemie der Universität Duisburg und vom Oktober 2003 bis Juli 2004 im Fachbereich C, Anorganische Chemie der Bergischen Universität Wuppertal angefertigt.

Bei Herrn Prof. Dr. Helge Willner möchte ich mich an dieser Stelle für die Themenstellung und die freundliche und tatkräftige Unterstützung bedanken.

Weiterhin möchte ich mich bei Herrn Dr. Eduard Bernhardt für die zahlreichen Anregungen und Ideen und für seine tatkräftige Unterstützung bedanken.

Allen Mitarbeitern des Faches Anorganische Chemie im Arbeitskreis möchte ich für ihre freundliche Hilfestellung und die angenehme Arbeitsatmosphäre danken: Prof. Dr. Reint Eujen, Prof. Dr. David Brauer, Prof. Dr. Klaus Burczyk, Prof. Dr. Hans Bürger, Dr. Gottfried Pawelke, Dr. Maik Finze, Placido Garcia, Dr. Stephan von Ahsen, Britta von Ahsen, Holger Pernice, Dr. Michael Berkei, Dr. Rodion Kopitzky, Torsten Küppers, Andreas Hufschmidt, Beate Römer, Dr. German Bissky, Andriy Kucheryna, Dr. Helmut Beckers, Friedbert Lücker, Erwin Petrauskas, Marion Litz, Dr. Simone Hoppmann, Anton Myalitsin, Dhana Barabula. Weiteren Dank gilt Thorsten Berends (Universität Dortmund) für die Messung der Röntgenstrukturen, Dr. Michael Mehring (Universität Dortmund) und Marc Schellenträger für die Messung der Massenspektren und Manfred Zähres (Universität Duisburg) und Ilka Polanz für die Messung von NMR-Spektren.

Bei meinen Eltern und meiner Schwester bedanke ich mich für ihre Hilfe und Unterstützung während meiner Promotion.

Zusammenfassung

Im Rahmen dieser Arbeit wurden durch Fluorierung der Cyanoplatinate $[Pt(CN)_4]^{2-}$ und $[Pt(CN)_6]^{2-}$ mit ClF in wasserfreiem HF Platinate mit zwei CF₃-Gruppen erhalten, während in Dichlormethan Platinate mit bis zu sechs CF₃-Gruppen entstanden. Aus dem Cyanoiridat $[Bu_4N]_3[Ir(CN)_6]$ bildeten sich in Dichlormethan Iridate mit bis zu vier CF₃-Gruppen. Erstmals wurden folgende Verbindungen synthetisiert und hauptsächlich ¹⁹⁵Pt-, ¹⁹F-, ¹H- und ¹⁵N-NMR-spektroskopisch untersucht:

$mer-K_2[PtF_3(OH)(CF_3)_2]$	$[Bu_4N]_2[PtCl_5(CF_2Cl)]$
$K_2[PtF_2(OH)_2(CF_3)_2]$	cis-[Bu ₄ N] ₂ [PtCl ₄ (CF ₂ Cl) ₂]
K ₂ [PtClF(OH) ₂ (CF ₃) ₂]	cis-[Bu ₄ N] ₂ [PtCl ₄ (CF ₂ Cl)(CF ₃)]
$K_2[PtCl_2(OH)_2(CF_3)_2]$	fac-[Bu ₄ N] ₂ [PtCl ₃ (CF ₂ Cl) ₃]
	fac-[Bu ₄ N] ₂ [PtCl ₃ (CF ₂ Cl) ₂ (CF ₃)]
$[Bu_4N]_2[PtCl_5(CF_3)]$	fac-[Bu ₄ N] ₂ [PtCl ₃ (CF ₂ Cl)(CF ₃) ₂]
cis-[Bu ₄ N] ₂ [PtCl ₄ (CF ₃) ₂]	cis-[Bu ₄ N] ₂ [Pt(CN)(CF ₂ CN)(CF ₃) ₄]
fac-[Bu ₄ N] ₂ [PtCl ₃ (CF ₃) ₃]	
cis-[Bu ₄ N] ₂ [PtCl ₂ (CF ₃) ₄]	cis-[Bu ₄ N] ₂ [Pt(CN) ₂ (CF ₃) ₄]
$[Bu_4N]_2[PtCl(CF_3)_5]$	$[Bu_4N]_2[Pt(CN)(CF_3)_5]$
cis-[Bu ₄ N] ₂ [PtF ₂ (CF ₃) ₄]	cis-K[PtCl(¹⁵ NH ₃)(CF ₃) ₄]
$[Bu_4N]_2[PtF(CF_3)_5]$	trans-K[PtCl(¹⁵ NH ₃)(CF ₃) ₄]
<i>cis</i> -K ₂ [Pt(OH) ₂ (CF ₃) ₄]	K[Pt(¹⁵ NH ₃)(CF ₃) ₅]
$K_2[Pt(OH)(CF_3)_5]$	
	cis-Cs[PtF(BuNH ₂)(CF ₃) ₄]
$[Bu_4N]_2[Pt(CF_3)_6]$	Cs[Pt(BuNH ₂)(CF ₃) ₅]
cis-[Bu ₄ N] ₃ [IrX ₂ (CF ₃) ₄] (X = Cl oder OH)	[Bu ₄ N] ₃ [IrCl ₂ F(OH)(CF ₃) ₂]
<i>mer</i> -[Bu ₄ N] ₃ [IrCl ₃ (OH)(CF ₃) ₂]	

Die Trifluormethylplatinate in der Oxidationsstufe +IV mit mehr als drei CF₃-Gruppen und die Trifluormethyliridate in der Oxidationsstufe +III mit mehr als einer CF₃-Gruppe sind die ersten ihrer Art. In den NMR-Spektren stehen die zunehmenden ${}^{2}J({}^{195}Pt^{19}F)$ -Kopplungskonstanten der CF₃-Gruppen *trans* zu den Liganden X im Einklang, mit dem erwarteten Verlauf durch den abnehmenden Transeinfluß der Liganden X in der Reihenfolge: CF₃⁻ > CN⁻ > CI⁻ > F⁻ > OH⁻. Von den reinen Feststoffen K₂[Pt(CN)(CF₃)₅], Cs₂[Pt(CN)(CF₃)₅] und Cs₂[Pt(CF₃)₆] konnten auch Schwingungs- (Raman, IR) und Massen- (ESI) Spektren erhalten werden. Die Zersetzungspunkte ließen sich für K₂[Pt(CN)(CF₃)₅] und Cs₂[Pt(CN)(CF₃)₅] durch DSC-Analysen bestimmen.

Die Kristallstruktur des K₂[(CF₃)₂F₂Pt(μ -OD)₂PtF₂(CF₃)₂]·2D₂O wurde durch Röntgenstrahlbeugung an einem Einkristall aufgeklärt.

Summary

Fluorination of the cyanoplatinates $[Pt(CN)_4]^{2-}$ and $[Pt(CN)_6]^{2-}$ with ClF in anhydrous HF has yielded platinates with two CF₃ groups, while in dichloromethane platinates containing up to six CF₃ groups have been obtained. In dichloromethane fluorination of the cyanoiridate $[Bu_4N]_3[Ir(CN)_6]$ has formed iridates with up to four CF₃ groups. Thus the following new compounds were synthesized and they were characterized mainly by ¹⁹⁵Pt-, ¹⁹F-, ¹H- und ¹⁵N-NMR-spectroscopy:

$mer-K_2[PtF_3(OH)(CF_3)_2]$	$[Bu_4N]_2[PtCl_5(CF_2Cl)]$
$K_2[PtF_2(OH)_2(CF_3)_2]$	cis-[Bu ₄ N] ₂ [PtCl ₄ (CF ₂ Cl) ₂]
$K_2[PtClF(OH)_2(CF_3)_2]$	cis-[Bu ₄ N] ₂ [PtCl ₄ (CF ₂ Cl)(CF ₃)]
$K_2[PtCl_2(OH)_2(CF_3)_2]$	fac-[Bu ₄ N] ₂ [PtCl ₃ (CF ₂ Cl) ₃]
	fac-[Bu ₄ N] ₂ [PtCl ₃ (CF ₂ Cl) ₂ (CF ₃)]
$[Bu_4N]_2[PtCl_5(CF_3)]$	fac-[Bu ₄ N] ₂ [PtCl ₃ (CF ₂ Cl)(CF ₃) ₂]
cis-[Bu ₄ N] ₂ [PtCl ₄ (CF ₃) ₂]	cis-[Bu ₄ N] ₂ [Pt(CN)(CF ₂ CN)(CF ₃) ₄]
fac-[Bu ₄ N] ₂ [PtCl ₃ (CF ₃) ₃]	
cis-[Bu ₄ N] ₂ [PtCl ₂ (CF ₃) ₄]	cis-[Bu ₄ N] ₂ [Pt(CN) ₂ (CF ₃) ₄]
$[Bu_4N]_2[PtCl(CF_3)_5]$	$[Bu_4N]_2[Pt(CN)(CF_3)_5]$
<i>cis</i> -[Bu ₄ N] ₂ [PtF ₂ (CF ₃) ₄]	cis-K[PtCl(¹⁵ NH ₃)(CF ₃) ₄]
$[Bu_4N]_2[PtF(CF_3)_5]$	trans-K[PtCl(¹⁵ NH ₃)(CF ₃) ₄]
<i>cis</i> -K ₂ [Pt(OH) ₂ (CF ₃) ₄]	K[Pt(¹⁵ NH ₃)(CF ₃) ₅]
$K_2[Pt(OH)(CF_3)_5]$	
	cis-Cs[PtF(BuNH ₂)(CF ₃) ₄]
$[Bu_4N]_2[Pt(CF_3)_6]$	Cs[Pt(BuNH ₂)(CF ₃) ₅]
cis-[Bu ₄ N] ₃ [IrX ₂ (CF ₃) ₄] (X = Cl oder OH)	[Bu ₄ N] ₃ [IrCl ₂ F(OH)(CF ₃) ₂]
mer-[Bu ₄ N] ₃ [IrCl ₃ (OH)(CF ₃) ₂]	

The trifluoromethylplatinates in the oxidation state +IV with more than three CF₃ groups and the trifluoromethyliridates in the oxidation state +III with more than one CF₃ group are the first of their kind. In the NMR spectra the icreasing ${}^{2}J({}^{195}\text{Pt}{}^{19}\text{F})$ coupling constants of the CF₃ groups *trans* to the ligands X are consistent with the expected trend through the decreasing *trans*-influences of the ligands X in the order: CF₃⁻ > CN⁻ > CI⁻ > F⁻ > OH⁻. Pure samples of K₂[Pt(CN)(CF₃)₅], Cs₂[Pt(CN)(CF₃)₅] and Cs₂[Pt(CF₃)₆] also allowed recording of vibrational (Raman, IR) and mass (ESI) spectra. The decomposition points of K₂[Pt(CN)(CF₃)₅] and Cs₂[Pt(CN)(CF₃)₅] were obtained by DSC analysis.

The crystal structure of $K_2[(CF_3)_2F_2Pt(\mu-OD)_2PtF_2(CF_3)_2]\cdot 2D_2O$ was determined by single crystal X-ray diffraction.

Inhaltsverzeichnis

Zusammenfassung

Su	mmaı	y			
In	haltsv	erzeichı	nis	Ι	
At	okürzı	ingsverz	zeichnis	VII	
1	Einl	eitung u	and Problemstellung	1	
	1.1	Trifluc	ormethyl-Komplexe der d-Block Metalle	1	
	1.2	Metho	den zur Einführung von CF ₃ -Gruppen	9	
	1.3	Aufgal	benstellung	12	
2	Exp	eriment	elles	13	
	2.1	Instrur	nentelles	13	
	2.2	Chemikalien			
2.3 Röntgenstrukturanalyse2.4 Synthesen		enstrukturanalyse	17		
		esen	17		
		2.4.1	Reinigung von Dichlormethan	17	
		2.4.2	Darstellung von [Bu ₄ N] ₂ [Pt(CN) ₄] und [Bu ₄ N] ₂ [Pt(CN) ₆]	18	
		2.4.3	Reaktion von K ₂ [Pt(CN) ₄] und K ₂ [Pt(CN) ₆] mit ClF in aHF:	18	
			Bildung von Fluorohydroxo(trifluormethyl)platinaten		
		2.4.4	Reaktion von [Bu ₄ N] ₂ [Pt(CN) ₄] und [Bu ₄ N] ₂ [Pt(CN) ₆] mit	19	
			ClF in CH ₂ Cl ₂ /KF: Bildung von Fluoro- und Hydroxo-		
			(trifluormethyl)platinaten		
		2.4.5	Reaktion der Trifluormethylkomplexe $[Bu_4N]_2[PtX_n(CF_3)_{6-n}]$	20	
			$(X = F, OH; n = 0-2)$ mit $(CH_3)_3$ SiCl: Darstellung der Chloro-		
			(trifluormethyl)platinate, Chloro(difluorchlormethyl)platinate		
			und Chloro(difluorchlormethyl)(trifluormethyl)platinate		

3

	2.4.6 Reaktion der Trifluormethylkomplexe $[Bu_4N]_2[PtX_n(CF_3)_{6-n}]$		21
		$(X = F, OH; n = 0-2)$ mit $(CH_3)_3$ SiCN: Darstellung der Cyano-	
		(trifluormethyl)platinate und eines Cyano(difluorcyanomethyl)-	
		(trifluormethyl)platinates	
	2.4.7	Darstellung von K ₂ [Pt(CN)(CF ₃) ₅] und Umsalzung zum Cs-Salz	21
	2.4.8	Reaktion der Fluorotrifluormethylplatinate mit ¹⁵ NH ₃ in THF	24
	2.4.9	Darstellung von $Cs_2[Pt(CF_3)_6]$	26
	2.4.10	Darstellung von [Bu ₄ N] ₂ [Ni(CN) ₄]	27
	2.4.11	Reaktion von [Bu ₄ N] ₂ [Ni(CN) ₄] mit ClF in CH ₂ Cl ₂ /KF	28
	2.4.12	Darstellung von [Bu ₄ N] ₃ [Fe(CN) ₆]	28
	2.4.13	Reaktion von [Bu ₄ N] ₃ [Fe(CN) ₆] mit ClF in CH ₂ Cl ₂ /KF	29
	2.4.14	Darstellung von [Bu ₄ N] ₂ [Pd(CN) ₄] und [Bu ₄ N] ₂ [Pd(CN) ₆]	29
	2.4.15	Reaktion von [Bu ₄ N] ₂ [Pd(CN) ₄] und [Bu ₄ N] ₂ [Pd(CN) ₆]	31
		mit ClF in CH ₂ Cl ₂ /KF	
	2.4.16	Darstellung von [Bu ₄ N] ₃ [Ir(CN) ₆]	32
	2.4.17	Reaktion von [Bu ₄ N] ₃ [Ir(CN) ₆] mit ClF in CH ₂ Cl ₂ /KF	33
	2.4.18	Darstellung der DSO ₃ F/HSO ₃ F-Lösung (2:1)	34
	2.4.19	Darstellung der H ₂ [Pt(SO ₃ F) ₆]-Lösung	34
Disk	ussion d	er Synthesen	35
3.1	Überbli	ck über die durchgeführten Synthesen und die dabei	35
	erhalten	en Produkte	
3.2	Synthes	en der Trifluormethylplatinate in wasserfreiem HF	37
3.3	Synthes	en der Trifluormethylplatinate in Dichlormethan	39
3.4	Reaktio	n der Trifluormethylplatinate mit (CH ₃) ₃ SiCl	40
3.5	Reaktio	n der Trifluormethylplatinate mit (CH ₃) ₃ SiCN	41
3.6	Reaktio	n der Trifluormethylplatinate mit ¹⁵ NH ₃	43
3.7	Reaktio	n der Trifluormethylplatinate mit Butylamin	43
3.8	Synthes	e der Trifluormethyliridate in Dichlormethan	44
3.9	Versuch	nte Synthesen der Trifluormethyl-Ferrate, -Nickelate	44
	und -Pa	lladate in Dichlormethan	
3.10	Zusamn	nenfassende Diskussion der Synthesen und	44
	Bindung	gsverhältnisse in Trifluormethylplatinaten	

4

NM	R-Spekt	tren	49
4.1	NMR-	Spektren der in wasserfreiem Fluorwasserstoff dargestellten	49
	Bis(trifluormethyl)platinate		
	4.1.1	NMR-Spektren von K ₂ [PtCl ₂ (OD) ₂ (CF ₃) ₂]	51
	4.1.2	NMR-Spektren von K ₂ [PtClF(OD) ₂ (CF ₃) ₂]	53
	4.1.3	NMR-Spektren von K ₂ [PtF ₂ (OD) ₂ (CF ₃) ₂]	55
	4.1.4	NMR-Spektren von <i>mer</i> -K ₂ [PtF ₃ (OD)(CF ₃) ₂]	57
4.2	NMR-	Übersichtsspektren der in Dichlormethan	63
	darges	tellten Trifluormethylplatinate	
	4.2.1	Fluoro(trifluormethyl)platinate	63
	4.2.2	Umsetzung der Fluoro(trifluormethyl)platinate	65
		mit (CH ₃) ₃ SiCl	
	4.2.3	Umsetzung der Fluoro(trifluormethyl)platinate	67
		mit (CH ₃) ₃ SiCN	
	4.2.4	Umsetzung der Fluoro(trifluormethyl)platinate mit ¹⁵ NH ₃	69
	4.2.5	Umsetzung der Fluoro(trifluormethyl)platinate mit n-Bu-NH2	78
4.3	NMR-	Spektren von [Bu ₄ N] ₂ [Pt(CF ₃) ₆]	80
4.4	NMR-	Spektren von $[PtX(CF_3)_5]^{n-}$ (X = F, OH, Cl, CN,	81
	¹⁵ NH ₃ ,	$BuNH_2, n = 1,2)$	
	4.4.1	NMR-Spektren von K ₂ [PtF(CF ₃) ₅]	81
	4.4.2	NMR-Spektren von K ₂ [Pt(OH)(CF ₃) ₅]	84
	4.4.3	NMR-Spektren von [Bu ₄ N] ₂ [PtCl(CF ₃) ₅]	87
	4.4.4	NMR-Spektren von [Bu ₄ N] ₂ [Pt(CN)(CF ₃) ₅]	89
	4.4.5	NMR-Spektren von K[Pt(¹⁵ NH ₃)(CF ₃) ₅]	92
	4.4.6	NMR-Spektren von Cs[Pt(BuNH ₂)(CF ₃) ₅]	96
4.5	NMR-	Spektren von <i>cis</i> -[PtX ₂ (CF ₃) ₄] ²⁻ (X = F, OH, Cl, CN)	98
	4.5.1	NMR-Spektren von <i>cis</i> -[Bu ₄ N] ₂ [PtF ₂ (CF ₃) ₄]	98
	4.5.2	NMR-Spektren von <i>cis</i> -K ₂ [Pt(OH) ₂ (CF ₃) ₄]	100
	4.5.3	NMR-Spektren von <i>cis</i> -[Bu ₄ N] ₂ [PtCl ₂ (CF ₃) ₄]	103
	4.5.4	NMR-Spektren von <i>cis</i> -[Bu ₄ N] ₂ [Pt(CN) ₂ (CF ₃) ₄]	105
4.6	NMR-	Spektren von <i>cis</i> - und <i>trans</i> -[PtXY(CF ₃) ₄] ^{$n-1$} (X = F, Cl, CN;	108
	Y = C	F_2CN , ¹⁵ NH ₃ , BuNH ₂ ; n = 1, 2)	
	4.6.1	NMR-Spektren von <i>cis</i> -[Bu ₄ N] ₂ [Pt(CN)(CF ₂ CN)(CF ₃) ₄]	108
	4.6.2	NMR-Spektren von <i>cis</i> -K[PtCl(¹⁵ NH ₃)(CF ₃) ₄]	112

	4.6.3	NMR-Spektren von <i>trans</i> -K[PtCl(¹⁵ NH ₃)(CF ₃) ₄]	116
	4.6.4	NMR-Spektren von <i>cis</i> -Cs[PtF(BuNH ₂)(CF ₃) ₄]	118
4.7	NMR-S	Spektren von $[PtCl_n(CF_3)_{6-n}]^{2-}$ (n = 3-5)	122
	4.7.1	NMR-Spektrum von <i>fac</i> -[Bu ₄ N] ₂ [PtCl ₃ (CF ₃) ₃]	122
	4.7.2	NMR-Spektren von <i>cis</i> -[Bu ₄ N] ₂ [PtCl ₄ (CF ₃) ₂]	123
	4.7.3	NMR-Spektren von [Bu ₄ N] ₂ [PtCl ₅ (CF ₃)]	124
4.8	NMR-S	Spektren von $[PtCl_n(CF_2Cl)_{6-n}]^{2-}$ (n = 3-5)	125
	4.8.1	NMR-Spektren von <i>fac</i> -[Bu ₄ N] ₂ [PtCl ₃ (CF ₂ Cl) ₃]	125
	4.8.2	NMR-Spektren von <i>cis</i> -[Bu ₄ N] ₂ [PtCl ₄ (CF ₂ Cl) ₂]	126
	4.8.3	NMR-Spektren von [Bu ₄ N] ₂ [PCl ₅ (CF ₂ Cl)]	127
4.9	NMR-S	Spektren von $[PtCl_x(CF_2Cl)_y(CF_3)_z]^{2-}$ (x = 3-4;	129
	y = 1, 2		
	4.9.1	NMR-Spektren von <i>fac</i> -[Bu ₄ N] ₂ [PtCl ₃ (CF ₂ Cl) ₂ (CF ₃)]	129
	4.9.2	NMR-Spektren von <i>fac</i> -[Bu ₄ N] ₂ [PtCl ₃ (CF ₂ Cl)(CF ₃) ₂]	130
	4.9.3	NMR-Spektren von <i>cis</i> -[Bu ₄ N] ₂ [PtCl ₄ (CF ₂ Cl)(CF ₃)]	133
4.10	NMR-S	Spektren der in Dichlormethan dargestellten	135
	Trifluo	rmethyliridate	
	4.10.1	¹⁹ F-NMR-Übersichtsspektrum der in Dichlormethan	135
		dargestellten Trifluormethyliridate	
	4.10.2	NMR-Spektren von <i>cis</i> -[Bu ₄ N] ₃ [IrX ₂ (CF ₃) ₄]	137
		(X = Cl oder OH)	
	4.10.3	NMR-Spektren von <i>mer</i> -[Bu ₄ N] ₃ [IrCl ₃ (OH)(CF ₃) ₂]	138
	4.10.4	NMR-Spektren von [Bu ₄ N] ₃ [IrCl ₂ F(OH)(CF ₃) ₂]	139
4.11	Zusami	menfassende Diskussion der NMR-Daten	141
Schv	vingung	sspektren	149
5.1	Schwin	ngungsspektren von $Cs_2[Pt(CF_3)_6]$ und	149
	M ₂ [Pt($CN)(CF_3)_5] (M = K, Cs)$	
DSC	-Analys	en	153
	 4.7 4.8 4.9 4.10 4.11 Schw 5.1 DSC 	4.6.3 4.6.4 4.7 NMR-S 4.7.1 4.7.2 4.7.3 4.8 NMR-S 4.8 4.8.1 4.8.2 4.8.3 4.9 NMR-S y = 1, 2 4.9.1 4.9.2 4.9.1 4.9.2 4.9.3 4.10 NMR-S Trifluo 4.10.1 4.10.2 4.10.3 4.10.4 4.11 Zusama Schwingung 5.1 Schwin M ₂ [Pt()	4.6.3 NMR-Spektren von <i>trans</i> -K[PtCl($^{15}NH_3$)(CF ₃) ₄] 4.6.4 NMR-Spektren von <i>cis</i> -Cs[PtF(BuNH ₂)(CF ₃) ₄] 4.7 NMR-Spektren von [PtCl _a (CF ₃) _{6-n}] ²⁻ (n = 3-5) 4.7.1 NMR-Spektren von <i>cis</i> -[Bu ₄ N] ₂ [PtCl ₃ (CF ₃) ₃] 4.7.2 NMR-Spektren von [Bu ₄ N] ₂ [PtCl ₅ (CF ₃)] 4.7.3 NMR-Spektren von [Bu ₄ N] ₂ [PtCl ₃ (CF ₂ Cl) ₃] 4.7.3 NMR-Spektren von <i>fac</i> -[Bu ₄ N] ₂ [PtCl ₃ (CF ₂ Cl) ₃] 4.8 NMR-Spektren von [PtCl _a (CF ₂ Cl) _{6-n}] ²⁻ (n = 3-5) 4.8.1 NMR-Spektren von <i>fac</i> -[Bu ₄ N] ₂ [PtCl ₃ (CF ₂ Cl) ₂] 4.8.2 NMR-Spektren von <i>fac</i> -[Bu ₄ N] ₂ [PtCl ₃ (CF ₂ Cl) ₂] 4.8.3 NMR-Spektren von <i>[Bu</i> ₄ N] ₂ [PtCl ₃ (CF ₂ Cl) ₂] 4.8.3 NMR-Spektren von <i>fac</i> -[Bu ₄ N] ₂ [PtCl ₃ (CF ₂ Cl) ₂ (CF ₃)] 4.9.1 NMR-Spektren von <i>fac</i> -[Bu ₄ N] ₂ [PtCl ₃ (CF ₂ Cl) ₂ (CF ₃)] 4.9.2 NMR-Spektren von <i>fac</i> -[Bu ₄ N] ₂ [PtCl ₃ (CF ₂ Cl)(CF ₃)] 4.9.3 NMR-Spektren von <i>cis</i> -[Bu ₄ N] ₂ [PtCl ₃ (CF ₂ Cl)(CF ₃)] 4.10 NMR-Spektren der in Dichlormethan dargestellten Trifluormethyliridate 4.10.1 ¹⁹ F-NMR-Übersichtsspektrum der in Dichlormethan dargestellten Trifluormethyliridate 4.10.2 NMR-Spektren von <i>cis</i> -[Bu ₄ N] ₃ [IrCl ₃ (OH)(CF ₃) ₂] 4.10.4 NMR-Spektren von <i>mer</i> -[Bu ₄ N] ₃ [IrCl ₃ (OH)(CF ₃) ₂] 4.10.4 NMR-Spektren von <i>mer</i> -[Bu ₄ N] ₃ [IrCl ₃ (OH)(CF ₃) ₂] 4.11 Zusammenfassende Diskussion der NMR-Daten Schwingungsspektren 5.1 Schwingungsspektren von Cs ₂ [Pt(CF ₃) ₆] und M ₂ [Pt(CN)(CF ₃) ₅] (M = K, Cs)

6.1 DSC-Analysen von $K_2[Pt(CN)(CF_3)_5]$ und $Cs_2[Pt(CN)(CF_3)_5]$ 153

7	Mas	ssenspektren	155	
	7.1	7.1 Massenspektrum von K ₂ [Pt(CN)(CF ₃) ₅]		
	7.2	Massenspektrum von Cs ₂ [Pt(CN)(CF ₃) ₅]	158	
	7.3	Massenspektrum von Cs ₂ [Pt(CF ₃) ₆]	160	
	7.4	Diskussion der Massenspektren	162	
8	Rön	tgenstrukturanalysen	163	
	8.1	Röntgenstruktur von $K_2[(CF_3)_2F_2Pt(\mu-OH)_2PtF_2(CF_3)_2]$ ·2H ₂ O	163	
	8.2	Röntgenstrukturen von K ₂ [Pt(CN)(CF ₃) ₅], Cs ₂ [Pt(CN)(CF ₃) ₅]	167	
		und Cs ₂ [Pt(CF ₃) ₆]		
9	Aus	blick	169	
10	10 Literaturverzeichnis		171	
Lel	bensl	auf	177	
Pu	blika	tionen	179	

Abkürzungsverzeichnis

acac	Acetylaceton, 2,4-Pentandion, $H_3CC(O)CH_2C(O)CH_3$
AcO	Acetat, CH ₃ COO ⁻
äq	äquatorial
ax	axial
aHF	anhydrous hydrogenfluoride, wasserfreie Fluorwasserstoffsäure
bipy	2,2'-Bipyridin
Bu	Butyl-, H ₃ CCH ₂ CH ₂ CH ₂ -
COD	Cyclooctadien
Ср	Cyclopentadienyl-
d	Tag oder Tage
Diglyme	$Dimethyl-diglycol, Diethylenglycoldimethylether, H_3COCH_2CH_2OCH_2CH_2OCH_3$
DME	Dimethoxyethan (Glyme), H3COCH2CH2OCH3
DMF	Dimethylformamid, HC(O)N(CH ₃) ₂
DMSO	Dimethylsulfoxid, H ₃ CS(O)CH ₃
en	Ethylendiamin, H ₂ NCH ₂ CH ₂ NH ₂
Et	Ethyl-, H ₃ CCH ₂ -
FID	free induction decay, freier Induktionsabfall
Glyme	Dimetoxyethan (DME), Ethylenglycoldimethylether, H ₃ COCH ₂ CH ₂ OCH ₃
HMPA	Hexamethylphosphortriamid, HMPT, HPT
IR	Infrarot
L	Liter
NBD	Norbornadien
NCR	Acetonitril NCMe oder Benzonitril NCPh
NMR	nuclear magnetic resonance (KMR: kernmagnetische Resonanz)
PE	Polyethylen
PFA	Perfluoralkoxy-Polymer
PPh ₃	Triphenylphosphan
PTFE	Polytetrafluorethylen (Teflon)
Ру	Pyridin
RF	Radiofrequenz
RT	Raumtemperatur

TMEDA	N,N,N',N'-Tetramethylethylendiamin, (H ₃ C) ₂ NCH ₂ CH ₂ N(CH ₃) ₂
THF	Tetrahydrofuran
Triglyme	Triethylenglycoldimethylether
Me	Methyl-, CH ₃ -
tmen	1,2-Bis(dimethylamino)ethan (TMEDA, TEMED), (H ₃ C) ₂ NCH ₂ CH ₂ N(CH ₃) ₂
UV	ultraviolett
δ	chemische Verschiebung in ppm
V_{2}	Linienbreite auf halber Signalhöhe

1 Einleitung und Problemstellung

Verbindungen mit CF₃-Gruppen finden zahlreiche Anwendungen unter anderem in Farbstoffen, Pharmazeutika, Anästhetika, Agrochemikalien, Polymeren, Beschichtungen, Flüssigkristallen und Membranen [1]. CF₃-Gruppen verleihen vielen Molekülen eine erhöhte chemische und thermische Stabilität und Polymeren besondere Eigenschaften [2].

Übergangsmetallkomplexe mit CF₃-Liganden sind seit etwa 40 Jahren bekannt und werden intensiv untersucht [3, 4]. An ihnen besteht großes wissenschaftliches Interesse. Sie können auch als CF₃-Überträger für die anorganische und organische Synthese und somit zur Herstellung zahlreicher industrieller Produkte dienen [5].

1.1 Trifluormethyl-Komplexe der d-Block Metalle

Im Folgenden soll ein kurzer Überblick über Trifluormethyl-Komplexe der d-Block Metalle gegeben werden:

Während in der Scandiumgruppe (Gruppe 3) und Vanadiumgruppe (Gruppe 5) keine Trifluormethyl-Komplexe bekannt sind, wird in der Titangruppe (Gruppe 4) ein hellgelber Feststoff aus $Cp_2Ti(CF_3)F$ durch Umsetzung von Cp_2TiF_2 mit Me₃SiCF₃ in Gegenwart von CsF in THF erhalten [6]:

$$Cp_{2}TiF_{2} + Me_{3}SiCF_{3} \xrightarrow{RT/15 h} Cp_{2}Ti(CF_{3})F + Me_{3}SiF$$
(1)

Eine erste kurzlebige Hf-CF₃-Verbindung ließ sich ¹⁹F-NMR-spektroskopisch nachweisen [7].

In der Chromgruppe (Gruppe 6) wird $CpCr(NO)_2(CF_3)$ durch Umsetzung von $CpCr(NO)_2Cl$ mit $Cd(CF_3)_2$ ·DME in CH_2Cl_2 hergestellt. Das erhaltene Produkt ist ein thermisch stabiler, oxidationsbeständiger, grüner Feststoff [8]:

$$2 \operatorname{CpCr(NO)_2Cl} + \operatorname{Cd}(\operatorname{CF_3)_2} \cdot \operatorname{DME} \xrightarrow{65 \, {}^\circ \operatorname{C} / 10 \, \mathrm{h}}_{\operatorname{CH_2Cl_2}} \rightarrow 2 \operatorname{CpCr(NO)_2(CF_3)} + \tag{2}$$

$$\operatorname{CdCl_2} + \operatorname{DME}$$

Seine Ausbeute kann durch Zugabe von AgNO₃ auf 94 % gesteigert werden [9].

Grünes CpMo(NO)₂(CF₃) wird aus CpMo(NO)₂Cl mit Cd(CF₃)₂·DME in CH₂Cl₂ in 44 %-iger Ausbeute erhalten [8]:

$$2 \operatorname{CpMo(NO)_2Cl} + \operatorname{Cd}(\operatorname{CF_3)_2} \cdot \operatorname{DME} \xrightarrow{65 \, ^\circ \operatorname{C} / 7 \, \mathrm{h}}_{\operatorname{CH_2Cl_2}} \rightarrow 2 \operatorname{CpMo(NO)_2(CF_3)} + \tag{3}$$
$$\operatorname{CdCl_2} + \operatorname{DME}$$

 $CpMo(CO)_3(CF_3)$ und $CpW(CO)_3(CF_3)$ lassen sich durch Reaktion von $CpMo(CO)_3I$ bzw. $CpW(CO)_3I$ mit $Cd(CF_3)_2$ ·DME in Gegenwart von AgNO₃ in CH₂Cl₂ herstellen [9]:

$$2 \operatorname{CpM}(\operatorname{CO})_{3}I + \operatorname{Cd}(\operatorname{CF}_{3})_{2} \cdot \operatorname{DME} \xrightarrow{23 \operatorname{^{\circ}C}/2 \operatorname{h}}{\operatorname{AgNO}_{3}/\operatorname{CH}_{2}\operatorname{Cl}_{2}} \rightarrow 2 \operatorname{CpM}(\operatorname{CO})_{3}(\operatorname{CF}_{3}) + \operatorname{CdI}_{2} + \operatorname{DME}$$
(4)
(M = Mo, W)

Höhere Ausbeuten an den leuchtend gelben Komplexen entstehen durch thermische Decarbonylierung von $CpMo(CO)_3(COCF_3)$ und $CpW(CO)_3(COCF_3)$ in geschlossenen Gefäßen und aprotischen Lösemitteln [10].

Das homoleptische W(CF₃)₆ soll durch Umsetzung von WX₆ (X = Cl, Br, CO) mit CF₃-Radikalen aus einer RF-Glimmentladung entstehen [11, 12]:

$$WCl_6 + 3 F_3C-CF_3 \xrightarrow{\text{Plasma}} W(CF_3)_6 + 3 Cl_2$$
(5)

Eine unabhängige Bestätigung und eindeutige Charakterisierung dieser interessanten Verbindung ist nicht bekannt.

In der Mangangruppe (Gruppe 7) wird $Mn(CO)_5(CF_3)$ durch Umsetzung von $Cd(CF_3)_2$ ·DME und AgNO₃ mit $Mn(CO)_5Br$ in CH_2Cl_2 synthetisiert. AgNO₃ bildet möglicherweise AgCF₃ als Trifluormetylierungs-Reagenz oder es spaltet Bromid als AgBr ab und ermöglicht dem $Cd(CF_3)_2$ ·DME eine leichtere Reaktion, mit dem verbliebenen reaktiven und koordinativ ungesättigten Metall-Zentralatom [9]:

$$2 \operatorname{Mn}(\operatorname{CO})_{5}\operatorname{Br} + \operatorname{Cd}(\operatorname{CF}_{3})_{2} \cdot \operatorname{DME} \xrightarrow{23 \, ^{\circ} \operatorname{C} / 0.25 \, \mathrm{h}}_{\operatorname{AgNO}_{3} / \operatorname{CH}_{2}\operatorname{Cl}_{2}} \rightarrow 2 \operatorname{Mn}(\operatorname{CO})_{5}(\operatorname{CF}_{3}) + \operatorname{CdBr}_{2} + \operatorname{DME}$$
(6)

Das gleiche Produkt wird auch durch Decarbonylierung von Mn(CO)₅(COCF₃) erhalten [13].

Die bisher synthetisierten Trifluormethylverbindungen der Metalle der Gruppen 8-10 können wie folgt zusammengefasst werden:

In der Eisengruppe (Gruppe 8) entsteht CpFe(CO)₂(CF₃) durch Umsetzung von CpFe(CO)₂I mit Cd(CF₃)₂·DME und äquimolarer Menge AgNO₃ [9]:

$$2 \operatorname{CpFe}(\operatorname{CO})_{2}I + \operatorname{Cd}(\operatorname{CF}_{3})_{2} \cdot \operatorname{DME} \xrightarrow{23 \, {}^{\circ}\mathrm{C} / 0.75 \, \mathrm{h}}{}^{+\operatorname{AgNO}_{3} / \operatorname{CH}_{2}\mathrm{Cl}_{2} \, \operatorname{oder} \, \operatorname{DME}} \rightarrow 2 \operatorname{CpFe}(\operatorname{CO})_{2}(\operatorname{CF}_{3})$$

$$+ \operatorname{CdI}_{2} + \operatorname{DME}$$

$$(7)$$

 $CpFe(CO)_2(CF_3)$ läßt sich ebenfalls durch Photolyse von $CpFe(CO)_2(COCF_3)$ darstellen [14]. *cis*-Fe(CO)_4(CF_3)_2 entsteht in einem geschlossenen Reaktor durch Erhitzen von *cis*-Fe(CO)_4(COCF_3)_2 in CH_2Cl_2 [9, 15]:

$$cis-Fe(CO)_4(COCF_3)_2 \xrightarrow{100\,^{\circ}C/0.5\,\text{h}} cis-Fe(CO)_4(CF_3)_2 + 2\text{ CO}$$
(8)

Durch Umsetzung von $Fe(CO)_4Br_2$ oder $Fe(CO)_4I_2$ mit $Cd(CF_3)_2$ ·DME in CH_2Cl_2 kann ebenfalls *cis*-Fe(CO)₄(CF₃)₂ dargestellt werden [9]. Einen Hinweis auf das *trans*-Isomer gibt es nicht.

Mit $Ru(CO)_2(PPh_3)_3$ als Ausgangsstoff kann durch Reaktion mit $Hg(CF_3)_2$ $Ru(CF_3)(HgCF_3)(CO)_2(PPh_3)_2$ als weißer kristalliner Feststoff erhalten werden, der mit Br₂ in Dichlormethan $Ru(CF_3)Br(CO)_2(PPh_3)_2$ bildet [16, 17]:

$$\operatorname{Ru}(\operatorname{CO})_{2}(\operatorname{PPh}_{3})_{3} + \operatorname{Hg}(\operatorname{CF}_{3})_{2} \xrightarrow{111 \, {}^{\circ}\mathrm{C}/45 \, \min}_{\text{Toluol}} \rightarrow \operatorname{Ru}(\operatorname{CF}_{3})(\operatorname{Hg}\operatorname{CF}_{3})(\operatorname{CO})_{2}(\operatorname{PPh}_{3})_{2} + \operatorname{PPh}_{3}$$
(9)

$$Ru(CF_3)(HgCF_3)(CO)_2(PPh_3)_2 + Br_2 \xrightarrow{CH_2Cl_2} Ru(CF_3)Br(CO)_2(PPh_3)_2 + Hg(CF_3)Br$$
(10)

Der Osmium(0)-Komplex OsCl(NO)(PPh₃)₃ reagiert in einer Stickstoffatmosphäre, mit Cd(CF₃)₂·DME in Benzol zu einem Difluorcarbenkomplex [18, 19]:

$$2 \operatorname{OsCl(NO)(PPh_3)_3} + \operatorname{Cd(CF_3)_2} \cdot \operatorname{DME} \xrightarrow{80 \, {}^\circ \operatorname{C} / 2 \, \min}_{\operatorname{Benzol}} 2 \operatorname{OsCl(NO)(PPh_3)_2(CF_2)} (11) + \operatorname{CdF_2} + \operatorname{PPh_3} + \operatorname{DME}$$

der mit Cl_2 oder I_2 gelöst in CCl_4 und in Gegenwart von LiF zum blassgelben $OsCl_2(NO)(PPh_3)_2(CF_3)$ oxidiert wird [18]:

$$OsCl(NO)(PPh_3)_2(CF_2) + Cl_2 + LiF \xrightarrow{RT} OsCl_2(NO)(PPh_3)_2(CF_3) + LiCl$$
(12)

In der Cobaltgruppe (Gruppe 9) bildet sich unter Stickstoffatmosphäre aus $CpCo(CO)I_2$ durch Reaktion mit $Cd(CF_3)_2$ ·DME in CH_2Cl_2 $CpCo(CO)(CF_3)_2$ [20]:

$$CpCo(CO)I_2 + Cd(CF_3)_2 \cdot DME \xrightarrow{23 \circ C / 75 h} CpCo(CO)(CF_3)_2 + CdI_2 + DME$$
(13)

Der Rh(I)-Komplex Rh(CF₃)(CO)(PPh₃)₂ wird aus einer Suspension von RhH(CO)(PPh₃)₃ und Hg(CF₃)₂ in Benzol als gelber kristalliner Feststoff erhalten [21]:

$$RhH(CO)(PPh_{3})_{3} + Hg(CF_{3})_{2} \xrightarrow{80 \text{ °C}/30 \text{ min}}_{Benzol} \rightarrow Rh(CF_{3})(CO)(PPh_{3})_{2} + CHF_{3}$$
(14)
+ PPh_{3} + Hg

Der Vaska-Komplex, IrCl(CO)(PPh₃)₂, addiert leicht CF₃I [22]:

$$IrCl(CO)(PPh_3)_2 + CF_3I \xrightarrow{RT/6d} Ir(CF_3)CII(CO)(PPh_3)_2$$
(15)

Zur Synthese des Ir(I)-Komplexes Ir(CF₃)(CO)(PPh₃)₂ gibt es mehrere Möglichkeiten [23]:

$$IrH(CO)_{2}(PPh_{3})_{3} + Hg(CF_{3})_{2} \xrightarrow{80 \circ C/30 \text{ min}} Benzol} Ir(CF_{3})(CO)_{2}(PPh_{3})_{2} + CHF_{3} + PPh_{3} + Hg$$
(16)

oder durch Thermolyse (Decarbonylierung) von $Ir(COCF_3)(CO)_2(PPh_3)_2$ in Benzol [14]. Durch Sublimation von $Ir(CF_3)(CO)_2(PPh_3)_2$ im Vakuum entsteht der gelbe Festsoff $Ir(CF_3)(CO)(PPh_3)_2$ in guten Ausbeuten [23]:

$$Ir(CF_3)(CO)_2(PPh_3)_2 \xrightarrow{120-135 \circ C/2 d} Ir(CF_3)(CO)(PPh_3)_2 + CO$$
(17)

In der Nickelgruppe (Gruppe 10) kann Ni $(CF_3)_2(PMe_3)_2$ durch Reaktion von Ni $Cl_2(PMe_3)_2$ mit Cd $(CF_3)_2$ ·DME in Gegenwart von AgOAc, gelöst in CH₂Cl₂ dargestellt werden [9]:

$$\operatorname{NiCl}_{2}(\operatorname{PMe}_{3})_{2} + \operatorname{Cd}(\operatorname{CF}_{3})_{2} \cdot \operatorname{DME} \xrightarrow{\operatorname{RT}/0.2 \text{ h}}_{+\operatorname{AgOAc}/\operatorname{CH}_{2}\operatorname{Cl}_{2}} \rightarrow \operatorname{Ni}(\operatorname{CF}_{3})_{2}(\operatorname{PMe}_{3})_{2} + CdCl_{2} + DME$$

$$(18)$$

und in Gegenwart von PMe3 wird dieses addiert:

$$Ni(CF_3)_2(PMe_3)_2 + PMe_3 \xrightarrow{RT/10 \text{ min}} Ni(CF_3)_2(PMe_3)_3$$
(19)

Pd(CF₃)₂(PEt₃)₂ wird analog zu Ni(CF₃)₂(PMe₃)₂ durch Umsetzung von in CH₂Cl₂ gelöstem PdCl₂(PEt₃)₂ mit Cd(CF₃)₂·DME in Gegenwart von AgOAc erhalten [9]:

$$PdCl_{2}(PEt_{3})_{2} + Cd(CF_{3})_{2} \cdot DME \xrightarrow{RT / 0.5 h}{+AgOAc / CH_{2}Cl_{2}} \rightarrow Pd(CF_{3})_{2}(PEt_{3})_{2} + CdCl_{2} + DME$$

$$(20)$$

Die Synthese der bisher bekannten Platin(II)- und Platin(IV)-Komplexe mit CF₃-Gruppen erfolgt nach den folgenden fünf Verfahren:

 (i) Durch Ligandenaustausch von CH₃-Gruppen gegen CF₃-Gruppen kann das Pt(CH₃)₂COD in CH₂Cl₂ mit CF₃I zu Pt(CF₃)₂COD umgesetzt werden. Durch Zugabe von Pentan fallen weiße Kristalle von Pt(CF₃)₂COD aus [24]:

$$Pt(CH_3)_2COD + 2 CF_3I \xrightarrow{RT/4d} Pt(CF_3)_2COD + 2 CH_3I$$
(21)

Der zweizähnige COD-Ligand lässt sich durch zahlreiche Liganden L (L = CNC_2H_5 , $P(CH_3)_2(C_6H_5)$, $As(CH_3)_3$, Bipy, $Sb(C_6H_5)_3$, u. a.) mit unterschiedlichen Transeinflüssen ersetzen [24]:

$$Pt(CF_3)_2COD + 2 L \longrightarrow Pt(CF_3)_2L_2 + COD$$
(22)

Der noch schwächer am Platin(II)-Atom gebundene NBD-Ligand lässt sich mit schwächeren Liganden L (L = py, $\frac{1}{2}$ tmen, $\frac{1}{2}$ en, NH₃, DMSO, NCR, DMF, CN⁻, I⁻, acac⁻) verdrängen [25, 26]:

$$Pt(CF_3)_2NBD + 2L \longrightarrow Pt(CF_3)_2L_2 + NBD$$
(23)

 (ii) Durch Ligandenaustausch von PtI₂(PBu₃)₂ mit Cd(CF₃)₂·DME in Dichlormethan oder Diethylether wird PtI(CF₃)(PBu₃)₂ erhalten [27]:

$$2 \operatorname{PtI}_{2}(\operatorname{PBu}_{3})_{2} + \operatorname{Cd}(\operatorname{CF}_{3})_{2} \cdot \operatorname{DME} \xrightarrow{23 \, {}^{\circ} \operatorname{C} / 5 \, \operatorname{h}}{\operatorname{CH}_{2}\operatorname{Cl}_{2} \, \operatorname{oder} \operatorname{Et}_{2}\operatorname{O}} \rightarrow 2 \operatorname{PtI}(\operatorname{CF}_{3})(\operatorname{PBu}_{3})_{2} + CdI_{2} + DME$$

$$(24)$$

wobei durch die Zugabe von AgOAc die Ausbeute gesteigert wird [9]:

(iii) Eine weitere Ligandenaustausch-Reaktion wird bei der Synthese von [Me₄N]₂[Pt(CF₃)₄] aus PtCl₂(PPh₃)₂ mit einem Überschuß an Me₃SiCF₃ und [Me₄N]F in Glyme angewendet. Aus dem Rohprodukt lässt sich mit Acetonitril das bis 190 °C stabile [Me₄N]₂[Pt(CF₃)₄] mit dem homoleptischen Anion [Pt(CF₃)₄]²⁻ in 79 % Ausbeute extrahieren [28]:

$$PtCl_{2}(PPh_{3})_{2} + 4 Me_{3}SiCF_{3} + 4 [Me_{4}N]F \xrightarrow{-55 \circ C \text{ bis RT}} [Me_{4}N]_{2}[Pt(CF_{3})_{4}]$$

$$+ 4 Me_{3}SiF + 2 [Me_{4}N]Cl + 2 PPh_{3}$$

$$(25)$$

(iv) Eine andere Möglichkeit zur Trifluormethylierung von Platin(II)-Komplexen besteht in der oxidativen Addition von CF₃I. So addiert CF₃I an *cis*-Pt(py)₂(CF₃)₂, unter Bildung von *fac*-PtI(py)₂(CF₃)₃. Bei dieser Reaktion wurde die erste Übergangsmetallverbindung mit drei CF₃-Gruppen erhalten. Höher CF₃-substituierte Pt-Komplexe waren bisher nicht zugänglich [25, 29]:

$$cis-\operatorname{Pt}(\operatorname{py})_2(\operatorname{CF}_3)_2 + \operatorname{CF}_3\operatorname{I} \xrightarrow{>70\,^{\circ}\mathrm{C}}{\operatorname{CH}_2\operatorname{Cl}_2} \to fac-\operatorname{PtI}(\operatorname{py})_2(\operatorname{CF}_3)_3$$
(26)

(v) Wie bereits beschrieben, können thermisch labile CO-Einschubliganden, wie CF₃CO, durch Thermolyse in CF₃-Liganden überführt werden. So entsteht beim Erhitzen von *trans*-PtCl(COCF₃)(PMePh₂)₂ im Vakuum der gewünschte CF₃-Komplex [30]:

$$trans-PtCl(COCF_3)(PMePh_2)_2 \xrightarrow{210 \circ C} trans-PtCl(CF_3)(PMePh_2)_2 + CO$$
(27)

Schließlich wird in zwei Patenten die Darstellung von $Pt(CF_3)_4$ durch Reaktion von PtI_4 mit C_2F_6 in einer Glimmentladung beschrieben [11, 12]:

$$PtI_4 + 2 F_3C-CF_3 \xrightarrow{Plasma} Pt(CF_3)_4 + 2 I_2$$
(28)

Das Produkt wurde aber weder charakterisiert noch seine Synthese reproduziert.

In der Kupfergruppe (Gruppe 11) wird aus Kupfer(I)-Salzen durch Umsetzung mit $Cd(CF_3)_2$ ·Diglyme in DMF das $[Cu(CF_3)_2]^-$ -Anion erhalten [31]:

$$Cu^{+} + Cd(CF_{3})_{2} \cdot Diglyme \xrightarrow{-30 \text{ °C}} [Cu(CF_{3})_{2}]^{-} + Cd^{2+} + Diglyme$$
(29)

das sich z. B. mit I₂ leicht zum [Cu(CF₃)₄]⁻ oxidieren läßt [32]:

$$2 \left[\operatorname{Cu}(\operatorname{CF}_3)_2 \right]^- + \operatorname{I}_2 \xrightarrow{-40 \,^\circ \operatorname{C} \to \operatorname{RT}/2 \, \text{h}} \left[\operatorname{Cu}(\operatorname{CF}_3)_4 \right]^- + \operatorname{CuI}_2$$
(30)

Die Salze mit sterisch anspruchsvollen Kationen sind völlig luft- und hydrolysestabil und zersetzen sich erst oberhalb von 140 °C.

Auf ähnliche Weise ist $[Ag(CF_3)_4]^-$ zugänglich. $[Ag(CF_3)_2]^-$ disproportionierte bereits unter Bildung von $[Ag(CF_3)_4]^-$ [31, 33]:

$$Ag^{+} + Cd(CF_{3})_{2} \cdot 2CH_{3}CN \xrightarrow{-30 \circ C} [Ag(CF_{3})_{2}]^{-} + Cd^{2+} + 2 CH_{3}CN$$
(31)

$$2 \left[\operatorname{Ag}(\operatorname{CF}_3)_2 \right]^- + \operatorname{Ag}^+ \xrightarrow{\operatorname{RT}} \left[\operatorname{Ag}(\operatorname{CF}_3)_4 \right]^- + 2 \operatorname{Ag}$$
(32)

Weitere gemischte Argentate vom Typ $[Ag(CF_3)_n(CN)_{4-n}]^-$ (n = 1-4) sind in zwei Schritten in Dimethylformamid zugänglich. Dazu wird zunächst $[Ag(CF_3)(CN)]^-$ durch Reaktion von $[Ag(CN)_2]^-$ mit Cd(CF₃)₂ und CH₃C(O)Cl hergestellt und anschließend mit Br₂ zu $[Ag(CF_3)_n(CN)_{4-n}]^-$ (n = 1-4) oxidiert [31]:

$$2 \left[Ag(CN)_2 \right]^- + Cd(CF_3)_2 + 2 CH_3C(O)Cl \xrightarrow{-30 \,^{\circ}C}{DMF} 2 \left[Ag(CF_3)(CN) \right]^- + CdCl_2 + 2 CH_3C(O)CN$$
(33)

$$2 [Ag(CF_3)(CN)]^{-} + Br_2 \xrightarrow{-30 \,^{\circ}C} DMF \rightarrow [Ag(CF_3)_n(CN)_{4-n}]^{-} + AgBr + Br^{-} (n = 1-4)$$
(34)

Au(CF₃)(PMe₃) bzw. Au(CF₃)(PEt₃) bilden sich bei Raumtemperatur aus AuBr(PMe₃) bzw. AuCl(PEt₃) mit Cd(CF₃)₂·DME in CH₂Cl₂ in guten Ausbeuten [34]:

$$2 \operatorname{AuBr}(PR_3) + Cd(CF_3)_2 \cdot DME \xrightarrow{RT/1d} 2 \operatorname{Au}(CF_3)(PR_3) + CdBr_2 + DME$$
(35)
(R = CH₃, C₂H₅)

Durch Umsetzung von Au(CF₃)(PMe₃) mit *cis*-AuI(CF₃)₂(PMe₃) in CH₂Cl₂ entsteht Au(CF₃)₃(PMe₃) [34]:

$$Au(CF_3)(PMe_3) + cis-AuI(CF_3)_2(PMe_3) \xrightarrow{\text{RT} / 12 \text{ d} \\ CH_2Cl_2} \rightarrow Au(CF_3)_3(PMe_3) + (36)$$
$$AuI(PMe_3)$$

Das homoleptische $[Au(CF_3)_4]^-$ -Anion wird erstmals 1995 in dem Salz $[N(PPh_3)_2][Au(CF_3)_4]$ beschrieben [35, 36].

In der Zinkgruppe (Gruppe 12) läßt sich $Zn(CF_3)_2 \cdot 2C_5H_5N$ durch Zugabe von $Hg(CF_3)_2$ zu einer Lösung von $Zn(CH_3)_2$ in trockenem Pyridin synthetisieren [37]:

$$Zn(CH_3)_2 + Hg(CF_3)_2 + 2 C_5H_5N \xrightarrow{RT/8h} Zn(CF_3)_2 \cdot 2C_5H_5N + Hg(CH_3)_2$$
(37)

Das gebräuchlichste Trifluormethylierungsreagenz $Cd(CF_3)_2$ ·DME wird als luftstabiler, farbloser Feststoff durch Umsetzung von $Cd(CH_3)_2$ mit CF_3I in Lösemitteln wie Glyme, Diglyme, TEMED, Pyridin und Acetonitril erhalten [38]:

$$Cd(CH_3)_2 + 2 CF_3I + Glyme \xrightarrow{-35 \circ C / 5 d} Cd(CF_3)_2 \cdot Glyme + 2 CH_3I$$
(38)

Das auch aus Hg(CF₃)₂ mit Cd(CH₃)₂ in Glyme entsteht [39].

Das HgI(CF₃) bzw. Hg(CF₃)₂ sind erstmals durch Reaktion von Quecksilber bzw. eines Cadmiumamalgams mit CF₃I in einem geschlossenen Rohr durch Lichteinwirkung gewonnen worden [40-43]:

$$Cd-Hg + 2 CF_3I \xrightarrow{h \cdot v} Hg(CF_3)_2 + CdI_2$$
(39)

Sehr viel besser verläuft die Decarboxylierung von Hg(CF₃COO)₂ mit Na₂CO₃ gemischt im Vakuum [44]:

$$Hg(CF_{3}COO)_{2} \xrightarrow{140-200 \ ^{\circ}C} Hg(CF_{3})_{2} + 2 CO_{2}$$

$$(40)$$

1.2 Methoden zur Einführung von CF₃-Gruppen

Die Synthese von Trifluormethylübergangsmetallkomplexen erfolgt in den meisten Fällen durch die Übertragung von CF₃-Gruppen mit Trifluormethylierungsreagenzien wie $Cd(CF_3)_2$ ·DME, Hg(CF₃)₂, Me₃SiCF₃ oder CF₃I, oder durch thermische oder photochemische Umwandlung von CF₃CO- bzw. CF₃CO₂-Liganden in CF₃-Gruppen. Die Bedeutungen der wichtigsten Trifluormethylierungsreagenzien sind im Folgenden zusammengefasst:

 (i) Trifluormethyllithium ist sehr reaktiv und zersetzt sich bereits bei niedrigen Temperaturen [45, 46]:

$$CH_{3}Li + CF_{3}I \xrightarrow{-78 \,^{\circ}C} [CF_{3}Li] + CH_{3}I$$

$$(41)$$

$$[CF_3Li] \xrightarrow{-78 \,^{\circ}C}_{\text{Et}_2\text{O}} \rightarrow [CF_2] + \text{LiF}$$
(42)

$$2 [CF_2] \xrightarrow{-78 \,^{\circ}C} F_2C = CF_2 \tag{43}$$

 (ii) Im Gegensatz zu CF₃Li ist Trifluormethylmagnesium wesentlich leichter zu handhaben, zersetzt sich aber bei Raumtemperatur [45, 47]:

$$CF_{3}I + Mg \xrightarrow{-50 \text{ bis } 0 \circ C} [CF_{3}MgI]$$
(44)

 (iii) Trifluormethyltrimethylstannan (CH₃)₃SnCF₃ ist bei Raumtemperatur stabil und kann außer CF₃ auch Difluorcarben CF₂ übertragen [45, 48]:

$$Ph_{3}P + CF_{2}Br_{2} \xrightarrow{\text{Triglyme}} [Ph_{3}PCF_{2}Br]^{+}Br^{-}$$
(45)

$$(CH_3)_3SnCl + [Ph_3PCF_2Br]^+Br^- + KF \xrightarrow{Triglyme} (CH_3)_3SnCF_3 + Ph_3PBr_2 + (46)$$
$$KCl +$$

(iv) Trifluormethyltrimethylsilan, (CH₃)₃SiCF₃, benötigt im Gegnsatz zu (CH₃)₃SnCF₃ eine Aktivierung mit Fluorid-Donoren wie [Me₄N]F um CF₃-Gruppen zu übertragen [19, 20]. Zwei Methoden zur Darstellung von (CH₃)₃SiCF₃ sind die Verfahren von Ruppert [49-51]:

$$(Et_2N)_3P + CF_3Br \longrightarrow [(Et_2N)_3P - CF_3]^+Br \longrightarrow [(Et_2N)_3P(CF_3)Br]$$
(47)

$$(CH_3)_3SiCl + [(Et_2N)_3P(CF_3)Br] \longrightarrow (CH_3)_3SiCF_3 + [(Et_2N)_3PBrCl]$$
(48)

und von Pawelke [50, 52]:

$$(Me_2N)_2C = C(NMe_2)_2 + CF_3I \longrightarrow [(Me_2N)_2C = C(NMe_2)_2 \cdot CF_3I]$$

$$(49)$$

$$[(Me_2N)_2C=C(NMe_2)_2 \cdot CF_3I] + (CH_3)_3SiCI \longrightarrow (50)$$
$$[(Me_2N)_2C-C(NMe_2)_2]ICI + (CH_3)_3SiCF_3$$

(v) Bis(trifluormethyl)zink kann durch Umsetzung von Zn(CH₃)₂ oder Zn(C₂H₅)₂ mit CF₃I in CFCl₃ und Lewis-basischen Lösemitteln wie Glyme, Diglyme oder Pyridin als luftempfindliches Lewis-Base Solvat in quantitativer Ausbeute erhalten werden [53]:

$$Zn(CH_3)_2 + 2 CF_3I + Glyme \xrightarrow{-35 \circ C/1 \text{ bis } 2 \text{ d}} Zn(CF_3)_2 \cdot Glyme + 2 CH_3I$$
(51)

Solvatisiertes Bis(trifluormethyl)zink ist ein schwacher CF₃-Überträger [45]. Das sehr reaktive unsolvatisierte $Zn(CF_3)_2$ zersetzt sich bereits bei Temperaturen oberhalb –80 °C [54].

 (vi) Solvatisiertes Bis(trifluormethyl)cadmium wie Cd(CF₃)₂·Glyme ist wesentlich reaktiver als Zn(CF₃)₂·Glyme und Hg(CF₃)₂ [38, 45]:

$$Cd(CH_3)_2 + 2 CF_3I + Glyme \xrightarrow{-35 \circ C / 5 d} Cd(CF_3)_2 \cdot Glyme + 2 CH_3I$$
(52)

(vii) Bis(trifluormethyl)quecksilber, Hg(CF₃)₂, ist ein weniger guter CF₃-Überträger als Cd(CF₃)₂·Glyme, aber deutlich besser als Zn(CF₃)₂·Glyme [44, 45]:

$$Hg(CF_{3}COO)_{2} \xrightarrow{140-200 \,^{\circ}C} Hg(CF_{3})_{2} + 2 CO_{2}$$
(53)

(viii) Trifluormethylkupfer, CuCF₃, besitzt eine vielseitige chemische Reaktivität und kann für zahlreiche Kupplungsreaktionen eingesetzt werden. Durch Umsetzung von CF₃I mit Kupfer in Lösemitteln mit hoher Dielektrizitätskonstante wie DMF, DMSO, Pyridin oder HMPA, zerfallen die bei der Reaktion gebildeten Ionenpaare in CF₃-Radikale und CuI. Das CF₃-Radikal wird an der metallischen Kupferoberfläche durch einen weiteren Elektronentransfer abgefangen und es bildete sich so CuCF₃ [45, 55]:

$$CF_{3}I + 2 Cu \xrightarrow{110-120 \circ C} CuCF_{3} + CuI$$
(54)

(ix) CF₃I kann durch Substitution, oxidativer Addition oder auf radikalischem Wege CF₃
 übertragen und organometallische Trifluormethylübergangsmetallkomplexe bilden
 [24, 56-60]:

$$CF_{3}COOH + Ag_{2}O \xrightarrow{RT} CF_{3}COOAg + H_{2}O$$
(55)

$$CF_{3}COOAg + I_{2} \xrightarrow{> 100 \,^{\circ}C} CF_{3}I + AgI + CO_{2}$$
(56)

Ein völlig neuer Weg zu Trifluormethylmetallaten wurde kürzlich mit der Synthese von Salzen des Tetrakis(trifluormethyl)aurat-Anions, $[Au(CF_3)_4]^-$, gefunden [61]. Die Synthese erfolgte in Anlehnung an die Fluorierung von Tetracyanoboraten, $[B(CN)_4]^-$, [62, 63] zu Tetrakis(trifluormethyl)boraten $[B(CF_3)_4]^-$ [64] entsprechend:

$$M[B(CN)_4] + 12 ClF \xrightarrow{-78 \text{ °C} \rightarrow RT}{aHF} M[B(CF_3)_4] + 6 Cl_2 + 2 N_2$$

$$(M = Li, K, NH_4, Cs, Ag usw.)$$
(57)

$$M[B(CN)_{4}] + 4 ClF_{3} \xrightarrow{-40 \circ C \rightarrow RT} M[B(CF_{3})_{4}] + 2 Cl_{2} + 2 N_{2}$$

$$(M = Li, K, NH_{4}, Cs, Ag usw.)$$
(58)

Tetrakis(trifluormethyl)aurate [61] bilden sich in CH₂Cl₂-Lösung aus [Bu₄N][Au(CN)₄] mit CIF bei Raumtemperatur:

$$[\operatorname{Bu}_{4}N][\operatorname{Au}(\operatorname{CN})_{4}] + 12\operatorname{ClF} \xrightarrow{\operatorname{RT}/2\operatorname{h}} [\operatorname{Bu}_{4}N][\operatorname{Au}(\operatorname{CF}_{3})_{4}] + 6\operatorname{Cl}_{2} + 2\operatorname{N}_{2}$$
(59)

1.3 Aufgabenstellung

Infolge der großen kinetischen Stabilität der sechsfach koordinierten Platin(IV)- und Iridium(III)-Komplexe wie $[PtX_6]^{2-}$ und $[IrX_6]^{3-}$ (X = F, Cl, Br, I) ist es nicht möglich, die konventionellen CF₃-übertragenden Trifluormethylierungsreagenzien zu verwenden, um Trifluormethyl-Platinate und -Iridate wie $[Pt(CF_3)_6]^{2-}$ und $[Ir(CF_3)_6]^{3-}$ herzustellen. CF₃Li und CF₃MgI sind im Gegensatz zu den klassischen Alkylierungsreagenzien CH₃Li und CH₃MgCl bei Raumtemperatur thermisch instabil. Eine Decarbonylierung von Platin(IV)-Komplexen wie bei der Darstellung von *trans*-PtCl(CF₃)(PMePh₂)₂ aus *trans*-PtCl(COCF₃)(PMePh₂)₂ [30] ist ebenfalls nicht möglich, weil die kinetische Stabilität und sterische Hinderung die Addition von CF₃CO- und CF₃COO-Gruppen verhindert. Als weiteres Hindernis käme bei Platin(IV)-Komplexen die hohe thermische Stabilität dieser Gruppen hinzu, so das die Abspaltung von CO erst bei Temperaturen oberhalb des Zersetzungspunktes erfolgen würde [3]. Die CF₃-Gruppe müsste dann schließlich in der räumlich engen Umgebung vom sechsfach koordinierten Platin(IV) an das Platin-Zentralatom binden.

In gleicher Weise wie in Reaktion (57-59) sollten auch weitere Trifluormethyl-Komplexe der späten d-Blockmetalle (Gruppe 8-10) zugänglich sein, da die entsprechenden Cyanokomplexe als Ausgangsverbindungen stabil und seit langem bekannt sind [65-83]. Das Ziel der vorliegenden Arbeit bestand also darin, nach dieser Methode weitere, möglichst homoleptische CF₃-Komplexe herzustellen und umfassend zu charakterisieren. Aus diesem Grunde sollten die Cyanogruppen der Cyanometallate $[Fe(CN)_6]^{3-}$, $[Ir(CN)_6]^{3-}$, $[Ni(CN)_4]^{2-}$, $[Pd(CN)_4]^{2-}$, $[Pd(CN)_4]^{2-}$, $[Pt(CN)_4]^{2-}$ und $[Pt(CN)_6]^{2-}$ durch Umsetzung mit CIF in CF₃-Gruppen überführt werden, wie beispielsweise in folgender Reaktionsgleichung gezeigt:

$$[Bu_4N]_2[Pt(CN)_6] + 18 ClF \xrightarrow{-78 \, ^\circ C \to RT} [Bu_4N]_2[Pt(CF_3)_6] + 9 Cl_2 + 3 N_2$$
(60)

2 Experimentelles

2.1 Instrumentelles

Apparaturen

Flüchtige Verbindungen wurden an zwei mit Glasventilen und PTFE-Spindeln versehenen Vakuumapparaturen mit einem internen Volumen von 30 bzw. 100 mL gehandhabt. Die Druckmessung innerhalb der Vakuumapparatur erfolgte mit einem elektrischen Membran-Manometer (Medas Typ ME-235) und hinter der Pumpen-Kühlfalle mit einem Pirani-Manometer (Edwards Typ Pirani 501). Die Handhabung der wasserfreien HF (aHF) erfolgte in einer Vakuumapparatur aus Edelstahl mit einem Faltenbalgventil (Balzers, Typ UVH 016K) und einem Kapazitätsmanometer (Setra Typ 205-2, Acton MA) als Druckmesser.

Als Reaktionsgefäße dienten 50 mL Glaskolben mit PTFE-Spindeln (Young, London) und PFA-Kolben (VITLAB) mit Teflon-Stopfen und PFA-Ventil. Gerührt wurde mit PTFEummantelten Magnetrührstäben.

Feuchtigkeitsempfindliche Substanzen wie das hygroskopische sprühgetrocknete KF (Aldrich) wurden in einem Handschuhkasten (Braun) gefüllt mit Argon mit einer Restfeuchtigkeit von weniger als 1 ppm gehandhabt.

NMR-Spektroskopie

Die NMR-Messungen erfolgten mit den NMR-Spektrometern DRX-300 bzw. Avance-250 (Bruker) mit einem 5 mm Breitbandprobenkopf 1H/BB bzw. mit einem 10 mm Breitbandprobenkopf 1H/BB mit Deuterium Lock. Gemessen wurden die Proben in 5 mm NMR-Röhrchen (Wilmad, Typ 528PP) in deuterierten Lösemitteln (D₂O (99,9 %) MSD Isotopes, CD₂Cl₂ (99,6 %) Deutero GmbH, CD₃CN (99,0 %) Deutero GmbH). Als externer Platinstandard diente eine 0.2 mol L⁻¹ Na₂[PtCl₆]-Lösung in D₂O und als interner Fluor-Standard CFCl₃. Typische Messbedingungen waren bei 24-27 °C für ¹⁹⁵Pt-NMR-Spektren ein Pulswinkel von 90°, eine Wartezeit von einer Sekunde und eine Aufnahmezeit von 0.22 s sowie für ¹⁹F-NMR-Spektren ein Pulswinkel von 15° und 30°, eine Wartezeit von 7 s und eine Aufnahmezeit von 1.1 s bis 1.6 s.

Die Messfrequenz betrug beim DRX-300 für 195 Pt-Spektren 64.5251 MHz und für 19 F-Spektren 282.4045 MHz. Am AC-250 für 195 Pt 53.7756 MHz und für 19 F 235.3575 MHz.

Von *cis*-K[PtCl(¹⁵NH₃)(CF₃)₄] und K[Pt(¹⁵NH₃)(CF₃)₅] wurden verschiebungskorrelierte COSY 2D-NMR-Spektren aufgenommen. Das ¹⁵N,¹H-verschiebungskorrelierte COSY 2D-NMR-Spektrum wurde mit einer Auflösung von 2.481 Hz für ¹⁵N und 15.625 Hz für ¹H gemessen. Die Detektion des freien Induktionsabfalls (FID: free induction decay) erfolgte über den X-Kanal des Heterokerns ¹⁵N. Bei der inversen Messung des ¹⁵N,¹H-verschiebungskorrelierten COSY 2D-NMR-Spektrums erfolgte die Registrierung des FID über den Protonenkanal mit einer Auflösung von 200.000 Hz für ¹⁵N und 5.051 Hz für ¹H. Das ¹⁹⁵Pt,¹H-verschiebungskorrelierte COSY 2D-NMR-Spektrum wurde mit einer Auflösung von 47.619 Hz für ¹⁹⁵Pt und 2.439 Hz für ¹H gemessen.

Die Simulation von komplizierten ¹⁹⁵Pt- und ¹⁹F-NMR-Spektren erfolgte mit dem Computerprogramm gNMR 5.0.2.0 der Firma Adept Scientific plc [84]. Für die Simulation wurden die gemessenen Verschiebungen, Kopplungskonstanten und Linienbreiten verwendet und die simulierten Spektren den gemessenen gegenüber gestellt.

Schwingungsspektroskopie

Raman-Spektren wurden mit dem Raman-Spektrometer FRA 106/S der Firma Bruker bei Raumtemperatur aufgenommen. Dabei wurden die Proben mit einem Nd/YAG-Laser mit einer Wellenlänge von 1064 nm angeregt. K₂[Pt(CN)(CF₃)₅] und Cs₂[Pt(CN)(CF₃)₅] wurden als Feststoffe in einem Metallteller mit 300 mW Laserleistung und Cs₂[Pt(CF₃)₆] in einer Schmelzpunktkapillare (2 mm Außendurchmesser) mit 120 mW Laserleistung gemessen. Alle Spektren wurden durch Aufaddieren von 512 Messungen (scans), mit einer Auflösung von 2 cm⁻¹ und einem Messbereich von 4000 bis 80 cm⁻¹ erhalten.

Infrarot-Spektren wurden mit dem IR-Spektrometer Tensor 27 der Firma Bruker mit einem DTGS-Detektor und einem KBr-Strahlteiler aufgenommen. Die Feststoffe wurden zwischen zwei AgBr-Scheiben zerrieben und gemessen. Die Messungen erfolgten in dem Messbereich 4000 bis 400 cm⁻¹ mit einer Auflösung von 2 cm^{-1} und durch Aufaddieren von 512 Messungen (scans).

Differenzkalorimetrie

Die Thermoanalysen erfolgten mit einem DSC204 der Firma Netzsch. Dazu wurden etwa 20 mg Feststoff in ein Aluminiumgefäß eingeschlossen und unter Stickstoffstrom mit einer Heizrate von 10 K min⁻¹ innerhalb von 60 Minuten von Raumtemperatur bis auf 600 °C erhitzt.

Massenspektrometrie

Bei den durchgeführten Untersuchungen wurde ein Elektrosprayionisations-Massenspektrometer (ESI) der Firma Thermoquest-Finnigan verwendet. Dabei wurden die Platinate (Analyte) in einer 1:1 Mischung aus Methanol/Wasser zu etwa 0.1 mmol L⁻¹ gelöst und mit $10 \ \mu L \ min^{-1}$ in das Spektrometer einer Dosierpumpe mit eingelassen. Die Kapillarsparspannung betrug 4.5 kV und die Skimmerspannung bei K₂[Pt(CN)(CF₃)₅] und Cs₂[Pt(CN)(CF₃)₅] -30 V bzw. bei Cs₂[Pt(CF₃)₆] -44 V. Die Ionenquelle hatte eine Temperatur von 250 °C. Die m/z-Werte wurden auf das Intensivste Signal des Isotopenmusters der zugehörigen Spezies bezogen.

2.2 Chemikalien

Für die durchgeführten Versuche wurden folgende Chemikalien laut Tabelle 1 verwendet:

Tab. 1: verwendete Chemikalien

Substanzname	Formel	Reinheit	Hersteller
Acetonitril	CH ₃ CN	99.9 %	Fisher Scientific
Acetonitril-d ₃	CD ₃ CN	99.0 %	Deutero GmbH
Ammoniak- ¹⁵ N	¹⁵ NH ₃	99.9 %	Isotec
Butylamin	C_4H_9 -NH ₂ ,	≥ 99.5 %	Fluka
-	Bu-NH ₂		
Cäsiumchlorid	CsCl	≥99.5 %	Fluka
Celite [®] 500 Filtrierhilfe	Kieselgur		Fluka
Chlor	Cl ₂	≥ 99.8 %	Messer
Chlormonofluorid	ClF	99 %	ABCR
Deuteriumoxid-d ₂	D_2O	99.9 %	MSD Isotopes
Dichlormethan	CH_2Cl_2	≥ 99.8 %	J. T. Baker
Dichlormethan, wasserfrei ^{a)}	CH_2Cl_2	99.8 %	Aldrich
Dichlormethan-d ₂	CD_2Cl_2	99.6 %	Deutero GmbH
Diethylether	$(C_2H_5)_2O, Et_2O$	≥99 %	Roth
Fluoro(sulfuryl)peroxid	$S_2O_6F_2$		Laborbestand
Fluorsulfonsäure	HSO ₃ F		Bayer
wasserfreie Fluorwasserstoffsäure	HF		Solvay
Kaliumcarbonat, wasserfrei	K_2CO_3		Merck
Kaliumcyanid	KCN	≥96 %	Riedel-de Häen
Kaliumfluorid	KF	≥ 99.0 %	Fluka
Kaliumfluorid, sprühgetrocknet	KF	99.0 %	Aldrich
Kaliumhexachloroiridat(III)	$K_2[IrCl_6]$		Avocado
Kaliumhexacyanoferrat(III)	$K_3[Fe(CN)_6]$		Laborbestand
Kaliumhexacyanoplatinat ^{b)}	$K_2[Pt(CN)_6]$		Aldrich
Kaliumhydroxid	КОН	≥ 85 %	Roth
Kaliumperoxidisulfat	$K_2S_2O_8$	≥ 99.0 %	Merck
Kaliumtetracyanoplatinat	$K_2[Pt(CN)_4]$		Aldrich
Lithiumchlorid	LiCl	≥99 %	Merck
Natriumcarbonat, wasserfrei	Na ₂ CO ₃	≥ 98.0 %	Fluka
Natriumtetraphenyloborat	Na[BPh ₄]	≥98 %	Fluka
Nickelchlorid-6-hydrat	NiCl ₆ ·6H ₂ O	≥97 %	Riedel-de Häen
Palladiumpulver	Pd		Laborbestand
Platinpulver	Pt	> 99.9 %	Degussa
konz. Schwefelsäure-d ₂	D_2SO_4	99.5 %	Aldrich
Tetrabutylammoniumbromid	[Bu ₄ N]Br	≥ 98.0 %	Aldrich
Tetrabutylammoniumhydrogensulfat	[Bu ₄ N]HSO ₄	≥97 %	Fluka
Tetrahydrofuran	$cvclo-(CH_2)_4O_1$	$\geq 98.8\%$	Fluka
5	THF	_ / 000 / 0	
Trimethylsilylchlorid	(CH ₃) ₃ SiCl,	≥ 98.0 %	Fluka
	Me ₃ SiCl		
Trimethylsilylcyanid	(CH ₃) ₃ SiCN,	> 97.0 %	Fluka
	Me ₃ SiCN		

^{a)} Dichlormethan, wasserfrei wurde über 3 Å Molekularsieb getrocknet und gelagert. ^{b)} enthielt laut ¹⁹⁵Pt-NMR wechselnde Mengen an [PtI(CN)₅]^{2–}

2.3 Röntgenstrukturanalyse

Die Röntgenstrukturuntersuchungen der in Glaskapillaren (Durchmesser: 0.5 mm) mit Fett befestigten Einkristalle erfolgten bei –129 °C bzw. –163 °C mit einem Nonius Kappa CCD-Diffraktometer durch Aufnahme von 208 Bilder via ω -Rotation ($\Delta \omega$ =1°) bei unterschiedlichen κ -Winkeln (5 Sets) und einer Belichtungszeit von 60 s je Bild, bei einem Kristall-zu-Detektor Abstand von 34 mm. Der Vergleich der Intensitäten der Reflexe der wiederholten Startbilder ergab keine Anzeichen auf einen Zerfall der Kristalle. Aus technischen Gründen konnten keine experimentellen Absorptionskorrekturen durchgeführt werden. Jedes Bild wurde durch Vergleich symmetrieäquivalenter Reflexe und unter Verwendung der Datenreduktions-Software SCALEPACK (Minor und Otwinowsy) [85] mit einem Skalierungsfaktor multipliziert. Die Kristallstrukturen wurden durch direkte Methoden (SHELXS97) und nachfolgenden Differenz-Fourier-Synthesen aufgeklärt [86], wobei die Verfeinerung nach der Methode der kleinsten Fehlerquadrate mit anisotropen Auslenkungsparametern für alle Nichtwasserstoffatome (SHELXL97) [87] erfolgte.

2.4 Synthesen

Die aus den ¹⁹F-NMR-Spektren bestimmten Ausbeuten, beziehen sich nicht auf die Gesamtzahl der gemessenen Spezies, sondern nur auf die Gesamtmenge der identifizierten Anionen.

2.4.1 Reinigung von Dichlormethan

Um eine unbeabsichtigte Reaktion der Platin-Komplexe, insbesondere der Fluoro- und Hydroxo-Trifluormethylplatinate mit Spuren an HCl und Chlorid im Lösemittel Dichlormethan zu vermeiden, wird das enthaltene HCl mit Na₂CO₃ neutralisiert und das Chlorid dann durch Extraktion mit Wasser entfernt.

2 Liter Dichlormethan werden 15 Minuten mit einer wässrigen Na₂CO₃-Lösung in einem Scheidetrichter intensiv gemischt. Nach der Phasentrennung wird die wässrige Phase abgelassen und die CH₂Cl₂-Phase 15 Minuten unter Rühren mit wasserfreiem Na₂CO₃ getrocknet. Nach dem Abfiltrieren des Na₂CO₃ wird als Filtrat HCl-freies Dichlormethan erhalten.

2.4.2 Darstellung von [Bu₄N]₂[Pt(CN)₄] und [Bu₄N]₂[Pt(CN)₆]

1.120 g (3.5 mmol) [Bu₄N]Br werden in ca. 10 mL Wasser gelöst und unter Rühren in eine Lösung aus 0.439 g (1.2 mmol) $K_2[Pt(CN)_4]$ in ca. 10 mL Wasser gegeben. Die erhaltene weiße Suspension wird eine Stunde gerührt, dann durch einen Glasfiltertiegel D4 filtriert und das Produkt mit 5x 30 mL Wasser gewaschen. Der weiße Rückstand wird im Vakuum getrocknet: 0.513 g [Bu₄N]₂[Pt(CN)₄] (56 % Ausbeute).

2.647 g (8.2 mmol) [Bu₄N]Br werden in ca. 10 mL Wasser gelöst und unter Rühren in eine Lösung aus 1.191 g (2.8 mmol) $K_2[Pt(CN)_6]$ in ca. 10 mL Wasser gegeben. Die entstandene weiße Suspension wird eine Stunde gerührt, dann durch einen Glasfiltertiegel D4 filtriert und das Produkt mit 5x 30 mL Wasser gewaschen. Nach dem Trocknen im Vakuum werden 1.893 g [Bu₄N]₂[Pt(CN)₆] (97 % Ausbeute) erhalten. Von dem Produkt wurde in 0.5 mL CD₃CN ein ¹⁹⁵Pt-NMR-Spektrum aufgenommen (Tab. 2, 7).

2.4.3 Reaktion von K₂[Pt(CN)₄] und K₂[Pt(CN)₆] mit ClF in aHF: Bildung von Fluorohydroxo(trifluormethyl)platinaten

In einem 250 ml PFA-Rundkolben werden 0,400 g (1.1 mmol) K₂[Pt(CN)₄] vorgelegt und ca. 10 ml aHF kondensiert. Unter Stickstoffkühlung werden zusätzlich 25 mmol ClF (etwa 2,5 bar im Kolben bei Raumtemperatur, zweifacher Überschuß) einkondensiert. Nach dem Auftauen auf –78 °C bildet sich eine rotorange Lösung mit gelbem Feststoff, der sich nach einiger Zeit auflöst. Der Ansatz wird über Nacht bei –78 °C im Ethanol/Trockeneisbad und für einen weiteren Tag bei Raumtemperatur gerührt (2 Tage Gesamtreaktionszeit). Dannach ist die Lösung leicht gelb und der Gasraum darüber gelbgrün. Die flüchtigen Bestandteile und aHF werden langsam im Vakuum vollständig entfernt. Der erhaltene gelbe Festsoff wird in wenig D₂O/CFCl₃ gelöst und ¹⁹⁵Pt- und ¹⁹F-NMR-Spektren aufgenommen, in denen die Anionen *mer*-[PtF₃(OD)(CF₃)₂]^{2–} mit 27 % und [PtF₂(OD)₂(CF₃)₂]^{2–} mit 73 % Ausbeute nachweisbar sind (Abb. 7-14, Tab. 2, 3).

Wie oben beschrieben werden 0.298 g (0.4 mmol) $K_2[Pt(CN)_6]$ in einem 250 mL PFA-Rundkolben umgesetzt. Dannach bildet sich eine farblose klare Lösung, deren flüchtigen Bestandteile langsam im Vakuum entfernt werden und der erhaltene oben weiße und unten gelbe Feststoff wird eine weitere Stunde von HF befreit. Von dem erhaltenen Rückstand werden in D₂O/CFCl₃ ¹⁹⁵Pt- und ¹⁹F-NMR-Spektren aufgenommen, wobei die Anionen *mer*-[PtF₃(OD)(CF₃)₂]²⁻ mit einer Ausbeute von 27 % und $[PtF_2(OD)_2(CF_3)_2]^{2-}$ mit einer Ausbeute von 73 % nachweisbar sind (Abb. 7-14, Tab. 2, 3).

Nach dem Eintrocknen dieser Lösung werden farblose, plättchenförmige Kristalle von $K_2[(CF_3)_2F_2Pt(\mu-OD)_2PtF_2(CF_3)_2]$ ·2D₂O erhalten, von denen eine Röntgenstrukturanalysen durchgeführt wird (Abb. 118, 119, Tab. 13, 14).

Um den Einfluß von Fluorid auf die Reaktion zu überprüfen, werden in einem 250 mL PFA-Rundkolben 0.383 g (0.6 mmol) K₂[Pt(CN)₆] und 4.002 g KHF₂ vorgelegt und wie oben beschrieben umgesetzt. Es bildet sich eine leicht gelbgrüne Lösung mit weißem Feststoff, von der die flüchtigen Bestandteile langsam im dynamischen Vakuum entfernt werden. Der erhaltene weiße Feststoff wird in ca. 40 mL Acetonitril suspendiert und das Extrakt durch einen Papierfilter filtriert. Nach dem Entfernen des Acetonitrils im Vakuum wird der Rückstand in wenig D₂O gelöst und ¹⁹⁵Pt- und ¹⁹F-NMR-Spektren gemessen. In den NMR-Spektren sind die Anionen [PtCl₂(OD)₂(CF₃)₂]^{2–} mit 21 %, [PtClF(OD)₂(CF₃)₂]^{2–} mit 9 % und [PtF₂(OD)₂(CF₃)₂]^{2–} mit 70 % Ausbeute erkennbar (Abb. 1-9, Tab. 2, 3).

2.4.4 Reaktion von [Bu₄N]₂[Pt(CN)₄] und [Bu₄N]₂[Pt(CN)₆] mit ClF in CH₂Cl₂/KF: Bildung von Fluoro- und Hydroxo-(trifluormethyl)-platinaten

In einem 250 mL PFA-Rundkolben werden in der Trockenbox 0.512 g (0.7 mmol)[Bu₄N]₂[Pt(CN)₄] und 2 g sprühgetrocknetes KF vorgelegt und 50 mL trockenes Dichlormethan aufkondensiert. Zum vollständigen Auflösen des [Bu₄N]₂[Pt(CN)₄] wird der Ansatz bei Raumtemperatur gerührt. Dann wird 27 mmol ClF einkondensiert, über Nacht bei -78 °C im Ethanol/Trockeneisbad und einen weiteren Tag bei Raumtemperatur gerührt. Der für Raumtemperatur berechnete Druck des ClF im PFA-Rundkolben beträgt 2.7 bar. Es bildet sich eine gelbgrüne Suspension, deren flüchtige Bestandteile im Vakuum entfernt werden. Der so erhaltene weiße Feststoff wird in ca. 30 mL Dichlormethan suspendiert und durch einen Glasfiltertiegel D4 filtriert. Das leicht gelbe Filtrat wird im Vakuum bei Raumtemperatur bis zur Trockene eingeengt und vom erhaltenen weißen Feststoff (0.504 g) in wenig CD₂Cl₂ gelöst, ein ¹⁹⁵Pt- und ein ¹⁹F-NMR-Spektrum aufgenommen. In den NMR-Spektren sind *fac*-[PtCl₃(CF₃)₃]²⁻ mit 30 %, *cis*-[PtCl₂(CF₃)₄]²⁻ mit 67 % und [PtCl(CF₃)₅]²⁻ mit 3 % Ausbeute erkennbar (Abb. 39, 40, 59, 60, 82, Tab. 2). Das [PtCl₃(CF₃)₅]²⁻ stammt aus Verunreinigung des eingesetzten [Bu₄N]₂[Pt(CN)₄] mit [Bu₄N]₂[Pt(CN)₆]. Wie oben beschrieben werden in einem 250 mL PFA-Rundkolben 0.90 g (1.1 mmol) $[Bu_4N]_2[Pt(CN)_6]$ und 2 g sprühgetrocknetes KF umgesetzt. Es bildet sich eine gelbgrüne Suspension, von der die flüchtigen Bestandteile im Vakuum entfernt werden und der erhaltene weiße Feststoff in ca. 30 mL Acetonitril suspendiert wird. Das leicht braune Extrakt wird durch einen Glasfiltertiegel D4 mit Filtrierhilfe (Celite[®] 500) filtriert und im Vakuum bei Raumtemperatur bis zur Trockene eingeengt. Das erhaltene leicht braune Öl (1.146 g) wird in wenig CD₃CN/CFCl₃ gelöst und ¹⁹⁵Pt- und ¹⁹F-NMR-Spektren aufgenommen. Die Spektren zeigen ein Gemisch aus *cis*-[PtF₂(CF₃)₄]²⁻ mit 48 %, [PtF(CF₃)₅]²⁻ mit 48 %, [Pt(CF₃)₆]²⁻ mit 3 %, *cis*-[Pt(OH)₂(CF₃)₄]²⁻ mit < 1 % und [Pt(OH)(CF₃)₅]²⁻ mit < 1 % Ausbeute (Abb. 15, 16, 31-38, 53-58, Tab. 2, 3).

2.4.5 Reaktion der Trifluormethylkomplexe $[Bu_4N]_2[PtX_n(CF_3)_{6-n}]$ (X = F, OH; n = 0-2) mit (CH₃)₃SiCl: Darstellung der Chloro(trifluormethyl)platinate, Chloro(difluorchlormethyl)platinate und Chloro(difluorchlormethyl)(trifluormethyl)platinate

Zu einem Gemisch der Komplexe der Fluoro- und Hydroxo-(trifluormethyl)platinate $[Bu_4N]_2[PtX_n(CF_3)_{6-n}]$ (X = F, OH; n = 0-2) aus der Umsetzung von $[Bu_4N]_2[Pt(CN)_6]$, beschrieben wie in der Synthese 2.4.4, werden in einem 50 mL Glaskolben mit Young-Ventil 1mL trockenes CH₂Cl₂ und 1 mL (CH₃)₃SiCl einkondensiert und einen Tag lang bei Raumtemperatur gerührt. Die erhaltene Lösung wird im Vakuum bis zur Trockene eingeengt und der braune ölige Rückstand in $CD_2Cl_2/CFCl_3$ -Lösung ¹⁹⁵Pt- und ¹⁹F-NMRspektroskopisch untersucht. In den NMR-Spektren sind die Anionen fac-[PtCl₃(CF₃)₃]²⁻ mit < 1%, cis-[PtCl₂(CF₃)₄]²⁻ mit 31\%, [PtCl(CF₃)₅]²⁻ mit 56\%, [Pt(CF₃)₆]²⁻ mit 7\% und $[PtF(CF_3)_5]^{2-}$ mit 5 % Ausbeute erkennbar (Abb. 15, 16, 31-35, 39, 40, 59, 60, 82, Tab. 2-4). Die Lösung im NMR-Röhrchen wird vollständig zurück in den Glaskolben mit Young-Ventil gefüllt und bis zur Trockene eingeengt. 1 mL trockenes CH₂Cl₂ und 1 mL (CH₃)₃SiCl werden einkondensiert und fünf Tage lang bei 50 °C gerührt. Die erhaltene Lösung wird im Vakuum bis zur Trockene eingeengt und von dem braunen öligen Rückstand (0.575 g) in CD₃CN/CFCl₃-Lösung ¹⁹⁵Pt- und ¹⁹F-NMR-Spektren aufgenommen. In den NMR-Spektren sind die Anionen $[PtCl_5(CF_3)]^{2-}$ mit 4 %, *cis*- $[PtCl_4(CF_3)_2]^{2-}$ mit 7 %, *fac*- $[PtCl_3(CF_3)_3]^{2-}$ mit 39 %, $[PtCl_5(CF_2Cl)]^{2-}$ mit 4 %, $cis-[PtCl_4(CF_2Cl)_2]^{2-}$ mit 2 %, $fac-[PtCl_3(CF_2Cl)_3]^{2-}$ mit 2 %, $cis-[PtCl_4(CF_2Cl)(CF_3)]^{2-}$ mit 11 %, $fac-[PtCl_3(CF_2Cl)_2(CF_3)]^{2-}$ mit 11 % und fac-[PtCl₃(CF₂Cl)(CF₃)₂]²⁻ mit 20 % Ausbeute zu erkennen (Abb. 17, 18, 82-99, Tab. 2, 4).

2.4.6 Reaktion der Trifluormethylkomplexe $[Bu_4N]_2[PtX_n(CF_3)_{6-n}]$ (X = F, OH; n = 0-2) mit (CH₃)₃SiCN: Darstellung der Cyano(trifluormethyl)platinate und eines Cyano(difluorcyanomethyl)(trifluormethyl)platinates

Die Reaktion erfolgt analog wie unter 2.4.5 beschrieben:

Zu dem Gemisch der Komplexe der Fluoro- und Hydroxo-(trifluormethyl)platinate $[Bu_4N]_2[PtX_n(CF_3)_{6-n}]$ (X = F, OH; n = 0-2) nach Synthese 2.4.4 wird in einem 50 mL Glaskolben mit Young-Ventil 1 mL Me₃SiCN kondensiert und einen Tag bei 50 °C gerührt. Die erhaltene Lösung wird im Vakuum bis zur Trockene eingeengt und der braune ölige Rückstand in CD₃CN/CFCl₃-Lösung ¹⁹⁵Pt- und ¹⁹F-NMR-spektroskopisch untersucht. Die NMR-Spektren zeigen die Anionen *cis*-[Pt(CN)₂(CF₃)₄]²⁻ mit 12 %, [Pt(CN)(CF₃)₅]²⁻ mit 83 % und [Pt(CF₃)₆]²⁻ mit 5 % Ausbeute (Abb. 19, 20, 31, 41-43, 61, 62, Tab. 2).

Die Lösung im NMR-Röhrchen wird vollständig zurück in den Glaskolben mit Young-Ventil gefüllt und bis zur Trockene eingeengt. 1 mL Me₃SiCN werden einkondensiert und fünf Tage lang bei 50 °C gerührt. Die erhaltene Lösung wird im Vakuum bis zur Trockene eingeengt und der braune ölige Rückstand (0.665 g) in CD₃CN/CFCl₃-Lösung ¹⁹⁵Pt- und ¹⁹F-NMR-spektroskopisch untersucht. In den NMR-Spektren sind die Anionen *cis*-[Pt(CN)₂(CF₃)₄]²⁻ mit 23 %, [Pt(CN)(CF₃)₅]²⁻ mit 15 % und *cis*-[Pt(CN)(CF₂CN)(CF₃)₄]²⁻ mit 62 % Ausbeute zu erkennen (Abb. 19, 20, 41-43, 61-67, Tab. 2, 4).

2.4.7 Darstellung von K₂[Pt(CN)(CF₃)₅] und Umsalzung zum Cs-Salz

In drei Ansätzen in drei 250 mL PFA-Rundkolben mit Teflon-Stopfen und PFA-Ventil werden in der Trockenbox jeweils 0.90 g (1.1 mmol) $[Bu_4N]_2[Pt(CN)_6]$ und 2 g sprühgetrocknetes KF eingewogen. Jeweils etwa 50 mL trockenes Dichlormethan und das 1.5 fache der theoretisch für eine vollständige Fluorierung benötigten Menge an ClF (etwa 29.1 mmol, 2.4 bar im Kolben bei Raumtemperatur) werden einkondensiert. Die drei Ansätze werden über Nacht bei –78 °C und anschließend einen Tag bei Raumtemperatur gerührt. Die flüchtigen Bestandteile werden entfernt und die erhaltenen weißen Feststoffe mit Acetonitril extrahiert. Die Extrakte werden durch einen Glasfiltertiegel D4 mit Filtrierhilfe Celite[®] 500 (Fluka) filtriert.

Die Filtrate werden bis zur Trockene eingeengt und von den leicht gelben Ölen ¹⁹⁵Pt- und ¹⁹F-NMR-Spektren in CD₃CN/CFCl₃ aufgenommen. Alle drei Ansätze enthielten ein Gemisch
aus cis-[PtF₂(CF₃)₄]²⁻, [PtF(CF₃)₅]²⁻ und [Pt(CF₃)₆]²⁻ (Abb. 31-35, 53-55, Tab. 2, 3). Gesamtausbeute 1. bis 3. Ansatz: 4.462 g Substanz.

Um die Fluoro-Liganden gegen CN-Gruppen auszutauschen werden die drei Ansätze in einem 50 mL Glaskolben mit Young-Ventil vereinigt, mit ca. 8 mL Me₃SiCN gelöst und 17 Stunden unter Rühren auf 45 °C erwärmt. Das Me₃SiCN wird dann entfernt und das erhaltene braune Öl gewogen: 3.760 g Substanz.

Von dem braunen Öl wird in CD₃CN/CFCl₃ ein ¹⁹F-NMR-Spektrum aufgenommen, das ein Gemisch aus *cis*-[Pt(CN)₂(CF₃)₄]²⁻, [Pt(CN)(CF₃)₅]²⁻ und [Pt(CF₃)₆]²⁻ (Abb. 31, 41-43, 61, 62, Tab. 2, 3) zeigt.

Das braune Öl wird in Acetonitril gelöst und in einen 250 mL PFA-Rundkolben überführt. Das Acetonitril wird vollständig entfernt und der erhaltene braune Feststoff getrocknet. Um die CN-Gruppen in CF₃-Gruppen umzuwandeln werden in der Trockenbox 2 g sprühgetrocknetes KF zugegeben und erneut über Nacht in 30 mL trockenem Dichlormethan mit 23.2 mmol CIF bei –78 °C umgesetzt.

Nach Entfernung aller flüchtigen Bestandteile wird der zunächst gelbe, dann rote Feststoff mit Acetonitril extrahiert und durch einen Glasfiltertiegel D4 mit Filtrierhilfe filtriert. Das orange Filtrat wird bis zur Trockene eingeengt und vom erhaltenen Feststoff in CD₃CN/CFCl₃ ein ¹⁹F-NMR-Spektrum aufgenommen, in dem die Anionen $[PtF(CF_3)_5]^{2-}$ und $[Pt(CF_3)_6]^{2-}$ zu erkennen sind (Abb. 31-35, Tab. 2, 3): 3.370 g oranger Feststoff.

Der orange Feststoff wird erneut im 50 mL Glaskolben mit Young-Ventil in ca. 8 mL Me₃SiCN gelöst und 17 Stunden bei 45 °C gerührt, um den Fluoroliganden von $[PtF(CF_3)_5]^{2-}$ gegen die CN-Gruppe auszutauschen. Die flüchtigen Bestandteile werden entfernt und von dem erhaltenen braunen Öl wird in CD₃CN/CFCl₃ ein ¹⁹F-NMR-Spektrum aufgenommen, welches nahezu ausschließlich $[Pt(CN)(CF_3)_5]^{2-}$ und wenig *cis*- $[Pt(CN)(CF_2CN)(CF_3)_4]^{2-}$ zeigt (Abb. 41-43, 63-67, Tab. 2, 4): 4.103 g Substanz.

Das beige Produkt wird zum Umsalzen zu Kalium-Salzen in ca. 50 mL HCl-freiem Dichlormethan gelöst und unter Rühren zu einer Lösung von 3.845 g (11.2 mmol) Na[BPh₄] in 150 mL Wasser zugegeben. Dadurch soll [Bu₄N][BPh₄] in die CH₂Cl₂-Phase übergehen und die Platinate in der wässrigen Phase verbleiben. Es bildet sich eine obere, dunkelbraune, wässrige Phase und eine untere, hellbraune Dichlormethan-Phase. Nach dem Abpipettieren der Dichlormethan-Phase, wird die wässrige Phase mit weiteren ca. 5x 50 mL HCl-freiem Dichlormethan extrahiert. Zu der schwarzen wässrigen Phase wird unter Rühren 1.327 g (22.8 mmol) KF zugegeben um das überschüssige [BPh₄]⁻ als K[BPh₄] zu fällen und abzufiltrieren.

Um die schwarzen Produkte durch Fällung mit Ag^+ zu entfernen wird das schwarze wässrige Filtrat bis auf 20 mL eingeengt und mit einer Lösung aus 1.223 g (7.2 mmol) AgNO₃ in 10 mL Wasser tropfenweise versetzt. Nach einiger Zeit ist ein dunkelbrauner Feststoff zu erkennen, der mit einem Glasfiltertiegel D4 mit Filtrierhilfe Celite[®] 500 abfiltriert wird. Das hellbraune Filtrat wird mit 0.913 g (12.3 mmol) KCl, gelöst in 20 mL Wasser versetzt, um das überschüssige Ag^+ als AgCl zu fällen. Das ausgefallene AgCl wird mit einem Glasfiltertiegel D4 mit Filtrierhilfe abfiltriert. Das leicht braune, klare Filtrat wird bis zur Trockene eingeengt. Der hellbraune Rückstand wird mit Acetonitril extrahiert. Das Extrakt wird mit einem Glasfiltertiegel D4 mit Filtrierhilfe (Celite[®] 500) filtriert und das hellbraune Filtrat bis zur Trockene eingeengt. Von dem erhaltenen 1.137 g hellbraunen Feststoff wird in CD₃CN/CFCl₃ ein ¹⁹F-NMR-Spektrum mit einer Zusammensetzung von 5 % *cis*-[Pt(CN)₂(CF₃)₄]²⁻, 76 % [Pt(CN)(CF₃)₅]²⁻ und 19 % *cis*-[Pt(CN)(CF₂CN)(CF₃)₄]²⁻ aufgenommen (Abb. 41-43, 61-67, Tab. 2, 4).

Kristallzüchtung:

1,137 g (1.8 mmol) $K_2[Pt(CN)(CF_3)_5]$ werden mit wenig Acetonitril gelöst und vollständig in ein Reagenzglas gefüllt. Das Reagenzglas wird zwei Wochen lang in eine PE-Flasche mit Dichlormethan gestellt, um durch Eindiffundieren des Dichlormethans in die Acetonitril-Lösung ein langsames Auskristallisieren des $K_2[Pt(CN)(CF_3)_5]$ zu ermöglichen. Nach zwei Wochen wird die erhaltene hellbraune Lösung vorsichtig in ein anderes Reagenzglas gefüllt und die an der Reagenzglaswand verbliebenen Kristalle werden zur Vermeidung von Hydratwasserbildung unter Luftfeuchtigkeitsausschluß geschlossen gelagert.

Von den Kristallen wurde mehrfach versucht die Struktur durch Röntgenstrahlbeugung zu bestimmen, jedoch ist dies bisher nicht gelungen (Tab. 15).

30 mg der K₂[Pt(CN)(CF₃)₅]-Kristalle werden einen Tag lang bei 100 °C im Vakuum getrocknet, um anhaftende Acetonitrilreste zu entfernen. Von dem getrockneten Feststoff wird eine DSC-Analyse (ca. 10 mg K₂[Pt(CN)(CF₃)₅]) durchgeführt (Abb. 107), sowie Raman-(Tab. 10), IR- (Tab. 10) und Massen- (Abb. 109-111, Tab. 11) Spektren aufgenommen.

Umsalzung zum Cs-Salz

Zum Umsalzen in das Cäsium-Salz werden 1.107 g (1.7 mmol) $K_2[Pt(CN)(CF_3)_5]$ in ca. 10 mL Wasser gelöst und unter Rühren in eine Lösung aus 1.812 g (5.3 mmol) Na[BPh₄] in 20 mL Wasser gegeben. Der schwerlösliche K[BPh₄]-Niederschlag wird mit einem Glasfiltertiegel D4 abfiltriert. Das klare, farblose Filtrat wird unter Rühren mit einer Lösung von 1.355 g (8.1 mmol) CsCl in ca. 10 mL Wasser versetzt, um das überschüssige [BPh₄]⁻ als Cs[BPh₄] zu fällen. Nach 20 Minuten Rühren wird Cs[BPh₄] abfiltriert und mit Wasser gewaschen. Das farblose, klare Filtrat wird bis zur Trockene eingeengt. Der erhaltene weiße Feststoff, bestehend aus dem Cs-Salz des Cyano-Trifluormethylplatinates und CsCl wird mit Acetonitril extrahiert und das Extrakt durch einen kleinen Papierfilter in ein 10 mL Becherglas filtriert. Das farblose, klare Filtrat wird zum Eintrocknen stehen gelassen, wobei 0.495 g Cs₂[Pt(CN)(CF₃)₅] als weißer Feststoff erhalten wird.

Kristallzüchtung:

0.495 g (0.6 mmol) Cs₂[Pt(CN)(CF₃)₅] werden in ca. 40 mL Wasser gelöst und bei Raumtemperatur eingetrocknet.

Von dem erhaltenen kristallinen Feststoff wird eine Einkristall-Röntgenstrukturanalyse durchgeführt. Der erhaltene Datensatz ist wegen Fehlordnungen im Kristall nicht ausreichend aussagekräftig (Tab. 15). Eine DSC-Analyse (ca. 21 mg $Cs_2[Pt(CN)(CF_3)_5]$) (Abb. 108) wird durchgeführt und Raman- (Abb. 106, Tab. 10), IR- (Abb. 106, Tab. 10) und Massen- (Abb. 112-114, Tab. 11) Spektren werden aufgenommen.

2.4.8 Reaktion der Fluorotrifluormethylplatinate mit ¹⁵NH₃ in THF

In einem 250 mL PFA-Rundkolben werden in der Trockenbox 0.717 g (0.9 mmol) [Bu₄N]₂[Pt(CN)₆] und 2 g sprühgetrocknetes KF eingewogen. Anschließend werden ca. 50 mL trockenes Dichlormethan einkondensiert und auf Raumtemperatur aufgetaut und geschüttelt, um das [Bu₄N]₂[Pt(CN)₆] vollständig aufzulösen. Anschließend werden ca. 24.1 mmol (2.4 bar im Kolben bei Raumtemperatur) CIF einkondensiert. Der Ansatz wird 20 min bei –95 °C gehalten und dann über Nacht in einem Ethanol/Trockeneisbad bei –78 °C gerührt. Die flüchtigen Bestandteile werden entfernt und aus der gelbgrünen Suspension wird ein weißer Feststoff erhalten. Die Platinkomplexe werden durch Extraktion mit HCl-freiem Dichlormethan vom KF abgetrennt. Um das K-Salz zu erhalten wird die CH₂Cl₂-Lösung mit einer Lösung von 0.770 g (2.3 mmol) Na[BPh₄] in Wasser intensiv gerührt. In der oberen wässrigen Phase bildet sich K[BPh₄] vermutlich aus mitgeschlepptem KF. Die untere organische Phase wird abpipettiert und die wässrige Phase wird mit 5x ca. 40 mL HCl-freiem Dichlormethan extrahiert.

Zum Ausfällen des überschüssigen [BPh₄]⁻ als K[BPh₄] in der wässrigen Phase werden 1.194 g (20.6 mmol) in Wasser gelöstes KF unter Rühren zugegeben und 10 Minuten intensiv gerührt. Der sich bildende weiße Niederschlag aus K[BPh₄] wird mit einem Glasfiltertiegel D4 abfiltriert. Das braune Filtrat wird im dynamischen Vakuum bis zur Trockene eingeengt und der erhaltene braune Feststoff gewogen (1.144 g).

Der braune Feststoff wird mit 6x ca. 5 mL Acetonitril extrahiert und das erhaltene grüne Extrakt durch einen kleinen Papierfilter in einen 50 ml Glasrundkolben mit Young-Ventil filtriert. Das Filtrat wird im Vakuum eingeengt und der Rückstand über Nacht im Vakuum getrocknet. Der Feststoff wird gewogen (0.744 g) und nach Lösen in CD₃CN/CFCl₃ ein ¹⁹F-NMR-Spektrum aufgenommen, das ein Gemisch aus Fluoro- und Hydroxo-Trifluormethylplatinaten zeigt: *cis*-[PtF₂(CF₃)₄]²⁻, [PtF(CF₃)₅]²⁻, [Pt(CF₃)₆]²⁻ und [Pt(OH)(CF₃)₅]²⁻ (Abb. 31-38, Tab. 2, 3).

Der Inhalt des NMR-Röhrchens wird in einen 50 mL Glasrundkolben mit Young-Ventil bis zur Trockene eigeengt (0.769 g), anschließend in ca. 10 mL trockenem THF gelöst und mit ca. 1.7 mmol (0.846 bar im Kolben) ¹⁵NH₃ versetzt. Die dunkelbraune Lösung wird 3 Stunden bei Raumtemperatur und 17 Stunden bei 45 °C gerührt. Nach Entfernung der flüchtigen Bestandteile werden vom braunen Feststoff ¹⁹⁵Pt-, ¹⁹⁵Pt{¹⁹F}-, ¹⁹F-, ¹H-, ¹⁵N{¹H}- und 2D-NMR-Spektren in CD₃CN/CFCl₃ aufgenommen, die ein Gemisch aus 48 % *cis*-[PtCl(¹⁵NH₃)(CF₃)₄]⁻, 2 % *trans*-[PtCl(¹⁵NH₃)(CF₃)₄]⁻, 38 % [Pt(¹⁵NH₃)(CF₃)₅]⁻, 4 % [PtF(CF₃)₅]²⁻, 5 % [PtCl(CF₃)₅]²⁻ und 3 % [Pt(CF₃)₆]²⁻ zeigen (Abb. 21-28, 31-35, 39, 40, 44-49, 68-76, Tab. 2, 3, 5, 6).

2.4.9 Darstellung von Cs₂[Pt(CF₃)₆]

In der Trockenbox werden in einem 250 mL PFA-Rundkolben 0.500 g (0.6 mmol) $[Bu_4N]_2[Pt(CN)_6]$ und 2 g sprühgetrocknetes KF vorgelegt. Ca. 50 mL trockenes Dichlormethan werden einkondensiert und anschließend aufgetaut um das $[Bu_4N]_2[Pt(CN)_6]$ vollständig zu lösen. 29.1 mmol ClF (berechneter Druck: 2.9 bar im Kolben bei Raumtemperatur) werden einkondensiert und anschließend über Nacht bei -78 °C im Ethanol/Trockeneisbad gerührt. Die gelbgrüne Suspension wird weitere fünf Tage bei Raumtemperatur gerührt und anschließend bis zur Trockene eingeengt. Der erhaltene weiße Feststoff wird mit 4x 15 mL Acetonitril extrahiert und durch einen Glasfiltertiegel D5 filtriert. Das hellbraune Filtrat wird bis zur Trockene eingeengt und gewogen: 0.668 g hellbraunes Öl. Von dem Öl wird in CD₃CN/CFCl₃ ein ¹⁹F-NMR-Spektrum aufgenommen, in dem die Anionen *cis*-[PtF₂(CF₃)₄]²⁻, [PtF(CF₃)₅]²⁻ und [Pt(CF₃)₆]²⁻ erkennbar sind (Abb. 31-35, 53-55, Tab. 2, 3).

Um die Fluorokomplexe abzutrennen werden diese nun in die etherlöslichen BuNH₂-Komplexe überführt. Dazu wird das Produktgemisch in Acetonitril gelöst und in einem 50 mL Glasrundkolben mit Young-Ventil überführt. Nach vollständiger Entfernung des Acetonitrils wird 12 mL n-Bu-NH₂ einkondensiert und die hellbraune Lösung sechs Tage unter Rühren auf 80 °C erhitzt. Überschüssiges n-Bu-NH₂ wird im Vakuum entfernt und der erhaltene hellbraune ölige Feststoff gewogen: 0.942 g. Von dem Feststoff werden ¹⁹⁵Pt-, ¹⁹F- und ¹H-NMR-Spektren aufgenommen, die die Anionen *cis*-[PtF(BuNH₂)(CF₃)₄]⁻, [Pt(BuNH₂)(CF₃)₅]⁻, [Pt(CF₃)₆]²⁻ und andere Anionen zeigen (Abb. 31, 50-52, 77-81, Tab. 2, 3).

Zur Gewinnung der Cäsium-Salze wird der hellbraune ölige Feststoff mit HCl-freiem Dichlormethan in ein 400 ml Becherglas überführt und mit einer wässrigen Lösung von 1.023 g Na[BPh₄] (3.0 mmol) intensiv gerührt. In der oberen wässrigen Phase bildet sich wenig weißer Feststoff und in der unteren hellbraunen CH₂Cl₂-Phase eine leichte Trübung. Die CH₂Cl₂-Phase wird abpipettiert und die wässrige Phase erneut mit 2x 40 mL HCl-freiem Dichlormethan extrahiert. Die leicht trübe wässrige Phase wird durch einen Glasfiltertiegel D5 filtriert. Um das überschüssige [BPh₄]⁻ als schwerlösliches Cs[BPh₄] zu fällen, wird zum Filtrat unter Rühren eine wässrige Lösung von 0.847 g (5.0 mmol) CsCl zugegeben, woraufhin die sich bildende hellbraune Trübung mit einem Glasfiltertiegel D5 abfiltriert wird. Das farblose Filtrat wird bis zur Trockene eingeengt und der erhaltene graue Feststoff mit 3x 10 mL Acetonitril extrahiert und durch einen kleinen Papierfilter filtriert. Das hellbraune Filtrat wird zum Eintrocknen stehen gelassen und der verbliebene braune Feststoff gewogen: 0.150 g. In CD₃CN/CFCl₃ werden ¹⁹F- und ¹H-NMR-Spektren aufgenommen. Dabei können die Anionen *cis*-[PtF(BuNH₂)(CF₃)₄]²⁻, [Pt(BuNH₂)(CF₃)₅]²⁻ und [Pt(CF₃)₆]²⁻ neben anderen Anionen nachgewiesen werden (Abb. 31, 50-52, 77-81, Tab. 2, 3).

Der Feststoff wird zur Anreicherung von $[Pt(CF_3)_6]^{2-}$ mit Diethylether extrahiert, wonach 0.057 g eines weißen Feststoffs als Rückstand verbleiben von dem ein ¹⁹F-NMR-Spektrum in CD₃CN/CFCl₃ aufgenommen wird. Der Feststoff enthält 4 % *cis*-[PtF(BuNH₂)(CF₃)₄]⁻, 15 % [Pt(BuNH₂)(CF₃)₅]⁻, 5 % [Pt(OH)(CF₃)₅]²⁻, 7 % [PtCl(CF₃)₅]²⁻ und 69 % [Pt(CF₃)₆]²⁻ (Abb. 31, 36-40, 50-52, 77-81, Tab. 2, 3).

Kristallzüchtung:

Der weiße Feststoff wird vollständig in Wasser gelöst und zum Eintrocknen stehen gelassen. Unter dem Mikroskop sind sechseckige Kristalle erkennbar.

Von den sechseckigen Kristallen wird eine Einkristall-Röntgenstrukturanalyse durchgeführt. Der erhaltene Datensatz ist aber wegen Fehlordnungen im Kristall nicht aussagekräftig (Tab. 15). Der Feststoff wird zur weiteren Anreicherung des $Cs_2[Pt(CF_3)_6]$ erneut mit Diethylether extrahiert und vom Rückstand werden Raman- (Abb. 105, Tab. 10), IR- (Abb. 105, Tab. 10) und Massen- (Abb. 115-117, Tab. 12) Spektren aufgenommen.

2.4.10 Darstellung von [Bu₄N]₂[Ni(CN)₄]

In einem 100 mL Becherglas werden 2.842 g (43.7 mmol) KCN eingewogen und in etwa 20 mL Wasser gelöst. 1.997 g (5.3 mmol) NiCl₂·6H₂O werden in 20 mL Wasser gelöst und unter Rühren in die KCN-Lösung gegeben. Es bildet sich zunächst ein blaugrüner Feststoff, der unter Rühren nach 30 Minuten bei Raumtemperatur in Lösung geht (orange Lösung). Eine Lösung aus 8.500 g (25.0 mmol) [Bu₄N]HSO₄ und 2.514 g (44.8 mmol) KOH in Wasser wird unter Rühren zugegeben. Die Bildung eines weißen Feststoffs ist zu beobachten, der sich aber wieder auflöst. Zur Lösung wird 50 mL Dichlormethan zugegeben und intensiv gerührt. Die CH₂Cl₂-Phase färbt sich durch den Komplex orange und wird nach dem Abpipettieren in ein anderes Becherglas mit 100 mL Wasser intensiv gerührt (gewaschen). Die CH₂Cl₂-Phase wird in ein anderes Becherglas überführt und die CH₂Cl₂-Extraktion ein weiteres mal wiederholt. Die vereinigten CH₂Cl₂-Phasen werden zum Eintrocknen über Nacht stehen gelassen. Um das Ausfällen zu beschleunigen wird zu den 20 mL CH₂Cl₂-Phase etwa 40 mL

Diethylether zugegeben. Es fällt ein hellbrauner Feststoff aus, der abfiltriert und 2x mit 20 mL Diethylether gewaschen wird. Der Feststoff wird im dynamischen Vakuum getrocknet und durch Vergleich mit Daten von Schwingungsspektren aus der Literatur [88] Ramanspektroskopisch als [Bu₄N]₂[Ni(CN)₄] identifiziert. Ausbeute: 5.223 g (11.5 mmol, 96 %).

2.4.11 Reaktion von [Bu₄N]₂[Ni(CN)₄] mit ClF in CH₂Cl₂/KF

In einem 250 mL PFA-Rundkolben werden 0.500 g (1.1 mmol) $[Bu_4N]_2[Ni(CN)_4]$ und 2 g sprühgetrocknetes KF vorgelegt. Etwa 50 mL trockenes Dichlormethan und nach dessen Auftauen 8.9 mmol ClF werden einkondensiert. Der Ansatz wird nach Einbringen in das Ethanol/Trockeneisbad schwarz und wird über Nacht bei –78 °C gerührt. Anschließend wird die weißen Feststoff enthaltende grüne Lösung bis zur Trockene eingeengt. Der verbliebene weiße Feststoff wird mit 4x 20 mL Dichlormethan extrahiert und mit einem Glasfiltertiegel D4 filtriert. Das klare, grüne Filtrat wird bis zur Trockene eingeengt und gewogen: 0.479 g grünes Öl. Vom erhaltenen grünen Öl wird in CD₃CN/CFCl₃ ein ¹⁹F-NMR-Spektrum aufgenommen, das keine Hinweise auf Ni-CF₃-Komplexe zeigt.

Unter sonst gleichen Reaktionsbedingungen wird das $[Bu_4N]_2[Ni(CN)_4]$ mit 5.2 mmol ClF umgesetzt. Neben dem weißen Festsoff wird nach Einengen des Reaktionsansatzes ein am Rührkern anhaftender grauer Feststoff erhalten. Da im ¹⁹F-NMR-Spektrum breite Signale erhalten werden, wird das grüne, ölige Produkt mit 50 mL Dichlormethan und 50 mL Wasser intensiv gerührt. Die obere wässrige Phase wird grünblau (paramagnetisches Ni²⁺) und die untere CH₂Cl₂-Phase wird orange. Die CH₂Cl₂-Phase wird abgetrennt und zum Eintrocknen stehen gelassen. Das erhaltene orange Öl (0.134 g) zeigt im ¹⁹F-NMR-Spektrum einige nicht zuzuordnende Singuletts im typischen Bereich von metallgebundenen CF₃-Gruppen von –10 bis –60 ppm.

2.4.12 Darstellung von [Bu₄N]₃[Fe(CN)₆]

Analog zu einer bereits beschriebenen Synthese [65] werden in einem 250 mL Becherglas 1.020 g (3.1 mmol) K₃[Fe(CN)₆] in etwa 30 mL Wasser gelöst. Eine Lösung aus 3.765 g (11.1 mmol) [Bu₄N]HSO₄ und 1.627 g (29.0 mmol) KOH in etwa 50 mL Wasser wird unter Rühren zur K₃[Fe(CN)₆]-Lösung zugegeben. Die gelbgrüne, klare Lösung wird zwei Stunden

gerührt und anschließend mit 5x 40 mL Dichlormethan extrahiert (intensiv gerührt). Die untere gelbgrüne CH_2Cl_2 -Phase wird in einen 250 mL Rundkolben pipettiert, im dynamischen Vakuum zur Trockene eingeengt und über Nacht getrocknet. 2.605 g (2.8 mmol) gelbgrünes $[Bu_4N]_3[Fe(CN)_6]$ (90 % Ausbeute) wird erhalten. Von dem Feststoff wird ein Raman-Spektrum aufgenommen und durch Vergleich mit dem Literaturspektrum [70] als $[Bu_4N]_3[Fe(CN)_6]$ identifiziert.

2.4.13 Reaktion von [Bu₄N]₃[Fe(CN)₆] mit ClF in CH₂Cl₂/KF

In einem 250 mL PFA-Rundkolben werden 0.500 g (0.5 mmol) [Bu₄N]₃[Fe(CN)₆] und 2 g sprühgetrocknetes KF eingewogen In den Kolben werden ca. 30-40 mL trockenes Dichlormethan einkondensiert. Nach dem Auftauen bildet sich eine gelbe Suspension. 4.1 mmol ClF (0.4 bar im Kolben bei Raumtemperatur) wird einkondensiert und der Ansatz anschließend in ein Ethanol/Trockeneisbad eingebracht. Nach dem Auftauen des Ansatzes bildet sich eine schwarze Suspension, die über Nacht bei -78 °C gerührt wird. Die erhaltene grüne Lösung mit weißbraunem Feststoff wird bis zur Trockene eingeengt. Der gelbbraune Rückstand wird 1x mit 20 mL und 4x mit 10 mL Dichlormethan extrahiert und mit einem Glasfiltertiegel D4 filtriert. Das braune Filtrat wird bis zur Trockene eingeengt und vom erhaltenen gelbbraunen Feststoff in CD₃CN/CFCl₃ ein ¹⁹F-NMR-Spektrum aufgenommen. Um ein besseres NMR-Spektrum zu erhalten, wird nach Entfernen des CD₃CN/CFCl₃ der gelbbraune Feststoff mit 50 mL Dichlormethan und 50 mL Wasser intensiv gerührt. Die braune CH₂Cl₂-Phase wird abgetrennt und die wässrige Phase erneut mit 50 mL Dichlormethan extrahiert. Die vereinigten CH₂Cl₂-Phasen werden zum Eintrocknen stehen gelassen. Vom gelbbraunen Rückstand (0.248 g) wird in CD₃CN/CFCl₃ ein ¹⁹F-NMR-Spektrum aufgenommen, das keine Hinweise auf Fe-CF₃-Komplexe ergibt.

2.4.14 Darstellung von [Bu₄N]₂[Pd(CN)₄] und [Bu₄N]₂[Pd(CN)₆]

Darstellung von K₂[PdCl₆]

Ähnlich einer in der Literatur beschriebenen Synthese [77] erfolgte die Darstellung von K_2 [PdCl₆]. In einem 250 mL Dreihalskolben mit Rückflusskühler, Gaseinleitungsrohr und Rührkern werden 5.013 g (47.0 mmol) Palladium, 7 g (93.9 mmol) KCl und 150 mL Wasser vorgelegt. Der Ansatz wird unter Rühren zum Sieden erhitzt (100 °C) und dann langsam

Chlor eingeleitet. Nach etwa 1 ¹/₄ Stunden wird die schwarze Suspension leicht rot. Nach 3 ¹/₄ Stunden wird das Einleiten unterbrochen, um weitere 14 g KCl (94.0 mmol) gelöst in Wasser hinzuzugeben. Die rote Suspension färbt sich nach weiteren 20 Minuten Einleiten von Chlor unter Eisbadkühlung intensiver rot. Anschließend wird die rote Suspension zum Abkühlen im Eisbad gerührt. Das rote Produkt wird mit einem Glasfiltertiegel D4 abfiltriert und mit KClgesättigtem Wasser und mit 50 mL einer 1:1 Mischung aus Ethanol und Wasser gewaschen. Im Vakuum wird der rote Feststoff von K₂[PdCl₆] getrocknet und anschließend gewogen: 17.012 g (42.8 mmol) K₂[PdCl₆] (91 % Ausbeute).

Darstellung von K₂[Pd(CN)₄] und K₂[Pd(CN)₆]

Nach einer bereits beschriebenen Synthesevorschrift [78] werden 28.000 g (429.9 mmol) KCN und 11.5 g (42.5 mmol) $K_2S_2O_8$ in 2.3 L Wasser gelöst. Zu dieser Lösung wird langsam eine rote Suspension aus 17.012 g (42.8 mmol) $K_2[PdCl_6]$, 1.3 g (4.8 mmol) $K_2S_2O_8$ und 250 mL Wasser zugegeben. Nach kurzer Zeit bildet sich eine farblose Lösung, die dann einen Tag lang gerührt wird. Die Lösung wird im Vakuum bei 40 °C eingeengt. Bei der stattfindenden fraktionierenden Kristallisation wird zunächst K_2SO_4 , dann $K_2[Pd(CN)_6]$ und schließlich $K_2[Pd(CN)_4]$ verunreinigt mit wenig $K_2[Pd(CN)_6]$ erhalten.

Darstellung von [Bu₄N]₂[Pd(CN)₄]

Das $K_2[Pd(CN)_4]$ wird in 200 mL Wasser gelöst und mit 200 mL Dichlormethan und 4 g [Bu₄N]Br versetzt und einen Tag intensiv gerührt. Die wässrige Phase wird abgetrennt und mit 3x 100 mL Dichlormethan extrahiert. Die vereinigten CH₂Cl₂-Phasen werden im dynamischen Vakuum bis zur Trockenen eingeengt und so der weiße Feststoff von [Bu₄N]₂[Pd(CN)₄] erhalten. Der Nachweis erfolgte mit Raman-Spektroskopie.

Darstellung von [Bu₄N]₂[Pd(CN)₆]

In einem 100 mL Becherglas werden 0.429 g (1.3 mmol) $K_2[Pd(CN)_6]$ in etwa 10 mL Wasser gelöst und unter Rühren eine Lösung von 1.220 g (3.8 mmol) [Bu₄N]Br in 10 mL Wasser zugegeben. Es bildet sich sofort ein weißer Feststoff und der Ansatz wird eine Stunde gerührt. Der weiße Feststoff wird mit einem Glasfiltertiegel D4 abfiltriert und auf dem Tiegel mit 3x 10 mL Wasser [Bu₄N]Br-frei gewaschen. Das weiße [Bu₄N]₂[Pd(CN)₆] wird im dynamischen Vakuum getrocknet und gewogen: 0.505 g (0.7 mmol) [Bu₄N]₂[Pd(CN)₆], weißer Feststoff (54 % Ausbeute). Anhand des Raman-Spektrums kann das gewünschte Produkt nachgewiesen werden.

2.4.15 Reaktion von $[Bu_4N]_2[Pd(CN)_4]$ und $[Bu_4N]_2[Pd(CN)_6]$ mit CIF in CH_2Cl_2/KF

Reaktion von [Bu₄N]₂[Pd(CN)₄] mit ClF in CH₂Cl₂/KF

In einem 250 mL PFA-Rundkolben werden in der Trockenbox 0.501 g (0.7 mmol) $[Bu_4N]_2[Pd(CN)_4]$ und 2.003 g sprühgetrocknetes KF eingewogen. Ca. 50 mL trockenes Dichlormethan werden einkondensiert und zum Auflösen des $[Bu_4N]_2[Pd(CN)_4]$ aufgetaut. 26.3 mmol ClF (2.6 bar im Kolben bei Raumtemperatur) werden einkondensiert und der Ansatz wird in ein Ethanol/Trockeneisbad eingebracht. Es bildet sich nach dem Auftauen sofort eine dunkelrote Suspension, die über Nacht bei –78 °C gerührt wird. Die erhaltene orange Suspension wird 14 Tage lang bei Raumtemperatur gerührt und anschließend bis zur Trockene eingeengt. Der orange Rückstand wird mit 1x 20 mL und 4x 10 mL Dichlormethan extrahiert und durch einen Glasfiltertiegel D4 filtriert. Das rote Filtrat wird bis zur Trockene eingeengt und vom erhaltenen dunkelroten, öligen Feststoff (0.468 g) wird in CD₃CN/CFCl₃ ein ¹⁹F-NMR-Spektrum aufgenommen. Im Spektrum ist kein Hinweis auf Pd-CF₃-Komplexe erkennbar.

Reaktion von [Bu₄N]₂[Pd(CN)₆] mit ClF in CH₂Cl₂/KF

In einem 250 mL PFA-Rundkolben werden in der Trockenbox 0.507 g (0.7 mmol) [Bu₄N]₂[Pd(CN)₆] und 2.006 g sprühgetrocknetes KF eingewogen. Ca. 50 mL trockenes Dichlormethan wird einkondensiert und zum Auflösen des [Bu₄N]₂[Pd(CN)₄] aufgetaut. 26.3 mmol ClF werden einkondensiert und der Ansatz wird in ein Ethanol/Trockeneisbad eingebracht. Es bildet sich nach dem Auftauen sofort eine dunkelrote Suspension, die über Nacht bei –78 °C gerührt wird. Die erhaltene rotorange Suspension wird 14 Tage lang bei Raumtemperatur gerührt und anschließend bis zur Trockene eingeengt. Der orange Rückstand wird zum Schutz vor Hydrolyse unter N₂-Schutzgas mit 1x 20 mL und 5x 10 mL Dichlormethan extrahiert und durch eine Schlenkfritte D4 filtriert. Das rote Filtrat wird bis zur Trockene eingeengt und vom erhaltenen dunkelroten, öligen Feststoff (0.420 g) wird in CD₂Cl₂/CFCl₃ ein ¹⁹F-NMR-Spektrum aufgenommen. Im Spektrum ist kein Hinweis auf Pd-CF₃-Komplexe erkennbar.

In einem 250 mL PFA-Rundkolben werden in der Trockenbox 0.400 g (0.5 mmol) [Bu₄N]₂[Pd(CN)₆] und 2.000 g sprühgetrocknetes KF eingewogen. Unter sonst gleichen Reaktionsbedingungen wird mit 10.9 mmol ClF (1.1 bar im Kolben bei Raumtemperatur) umgesetzt. Die fast schwarze Lösung bei Beginn der Reaktion wird über Nacht grün-braun und es verbleibt nach dem Entfernen aller flüchtigen Bestandteile ein orangebrauner Feststoff. Dieser wird mit 4x 20 mL Dichlormethan extrahiert, durch einen Glasfiltertiegel D4 filtriert und das orangebraune Filtrat bis zur Trockene eingeengt. Von dem erhaltenen orangebraunen Öl (0.388 g) werden in CD₃CN/CFCl₃ ¹⁹F-NMR-Spektren aufgenommen, die aber keine Hinweise auf Pd-CF₃-Komplexe liefern.

In einem 250 mL PFA-Rundkolben werden in der Trockenbox 0.403 g (0.5 mmol) $[Bu_4N]_2[Pd(CN)_6]$ und 2.012 g sprühgetrocknetes KF eingewogen. Unter sonst gleichen Reaktionsbedingungen wird mit 4.4 mmol ClF (0.4 bar im Kolben bei Raumtemperatur) umgesetzt. Die rotbraune Suspension bei Beginn der Reaktion wird über Nacht orange und es verbleibt nach dem Entfernen aller flüchtigen Bestandteile ein gelbbrauner Feststoff. Dieser wird mit 1x 20 mL und 4x 10 mL Dichlormethan extrahiert, durch einen Glasfiltertiegel D4 filtriert und das orange Filtrat bis zur Trockene eingeengt. Von dem erhaltenen orangen Öl werden in CD₃CN/CFCl₃ ¹⁹F-NMR-Spektren aufgenommen. Um die Signalverbreiterung im NMR-Spektrum durch Verunreinigungen zu verhindern, wird das orange Öl mit 50 mL Dichlormethan und 50 mL Wasser intensiv gerührt. Die orange CH₂Cl₂-Phase wird abgetrennt und zum Eintrocknen stehen gelassen. Vom orangen Rückstand (0.256 g) wird in CD₃CN/CFCl₃ ein ¹⁹F-NMR-Spektrum aufgenommen, das keine Hinweise auf Pd-CF₃-Komplexe ergibt.

2.4.16 Darstellung von [Bu₄N]₃[Ir(CN)₆]

In einen Porzellantiegel wird in der Trockenbox nach vorheriger Mischung im Mörser ein Gemisch aus 0.505 g (1.1 mmol) K₂[IrCl₆], 1.502 g (23.1 mmol) KCN und 0.973 g (23.0 mmol) LiCl eingefüllt und mit einem Nickeldeckel abgedeckt. Der Ansatz wird eine Stunde lang im Ofen auf 300 °C erhitzt und dann zum Abkühlen stehen gelassen und gewogen: 2.880 g Substanz. Der entstandene teils weiße und graue Feststoffklumpen wird in einem 100 mL Becherglas in etwa 40 mL Wasser gelöst. Die erhaltene leicht braune Lösung wird mit einem Glasfiltertiegel D4 filtriert, um den metallisch glänzenden unlöslichen Rückstand abzutrennen. Der Glasfiltertiegel wird mit 3x 30 mL Wasser nachgewaschen. Für das Umsalzen zum [Bu₄N]-Salz und zur Abtrennung des [Ir(CN)₆]^{3–}-Anions vom KCN und LiCl wird das hellbraune Filtrat in einem 250 mL Rundkolben mit einer Lösung aus 2.914 g (8.6 mmol) [Bu₄N]HSO₄ und 0.948 g (16.9 mmol) KOH in 50 mL Wasser versetzt und mit 1x 80 mL und 2x 50 mL Dichlormethan gerührt (extrahiert). Die untere farblose CH₂Cl₂-Phase

wird jeweils in einen 250 mL Rundkolben pipettiert und zur Trockene eingeengt. 2.011 g weißer, öliger Feststoff wird erhalten und im Raman-Spektrum [73] als $[Bu_4N]_3[Ir(CN)_6]$ mit wenig KCN identifiziert. Der Feststoff wird zur Abtrennung von verbliebenem KCN und LiCl bis auf eine kleine Menge weißen Feststoffs in 100 mL Dichlormethan gelöst und durch ein Papierfilter filtriert. Das hellbraune Filtrat wird unter Rühren mit K₂CO₃ getrocknet, durch ein Papierfilter filtriert und zum Eintrocknen stehen gelassen. Der erhaltene braune Feststoff mit einigen farblosen Kristallen wird mit 50 mL Wasser versetzt und die dabei entstehende braune Emulsion wird mit 1x 100 mL und 2x 50 mL Dichlormethan extrahiert. Die vereinigten CH₂Cl₂-Extrakte werden bis zur Trockene eingeengt und der erhaltene braune Feststoff im Raman-Spektrum durch Vergleich mit den Literaturdaten [73] als $[Bu_4N]_3[Ir(CN)_6]$ identifiziert: 0.969 g (0.9 mmol) brauner Feststoff (93 % Ausbeute).

2.4.17 Reaktion von [Bu₄N]₃[Ir(CN)₆] mit ClF in CH₂Cl₂/KF

In einem 250 mL PFA-Rundkolben werden in der Trockenbox 0.550 g (0.5 mmol) [Bu₄N]₃[Ir(CN)₆] und 2.011 g sprühgetrocknetes KF vorgelegt. Etwa 50 mL trockenes Dichlormethan werden einkondensiert und nach dem Auftauen eine gelborange Suspension erhalten. 18.6 mmol CIF (1.8 bar im Kolben bei Raumtemperatur) werden einkondensiert und der Ansatz in ein Ethanol/Trockeneisbad gestellt. Nach dem Auftauen bildet sich sofort eine rote Suspension, die über Nacht bei -78 °C gerührt wird. Am folgenden Tag wird die gelbe Suspension bei Raumtemperatur weitergerührt, die dann am Abend dunkelbraun wird. Am nächsten Morgen wird die rote Suspension bis zur Trockene eingeengt. Der grüne Rückstand im PFA-Rundkolben wird mit 5x 30 mL Dichlormethan extrahiert und durch ein Glasfiltertiegel D4 filtriert. Das schwarze Filtrat wird bis zur Trockene eingeengt und vom erhaltenen zunächst schwarzgrünen, dann braunen Öl, in CD₃CN/CFCl₃ ein ¹⁹F-NMR-Spektrum aufgenommen. Das Spektrum zeigt zahlreiche Singuletts, die nicht charakterisiert werden können. Das braune Öl wird mit einem Gemisch aus 50 mL Dichlormethan und 50 mL Wasser extrahiert (intensiv gerührt). Die untere, braune CH₂Cl₂-Phase wird bis zur Trockene eingeengt und 0.139 g braunes Öl erhalten (in der wässrigen Phase ist 0.321 g brauner Feststoff enthalten). Das dann in CD₃CN/CFCl₃ gelöste braune Öl zeigt im ¹⁹F-NMR-Spektrum mehrere Ir-CF₃-Komplexe, von denen sich aber nur *cis*- $[IrX_2(CF_3)_4]^{3-}$ (X = Cl oder OH) mit 10 %, mer-[IrCl₃(OH)(CF₃)₂]³⁻ mit 77 % und [IrCl₂F(OH)(CF₃)₂]³⁻ mit 13 % Ausbeute eindeutig zuordnen lassen (Abb. 100-104, Tab. 8, 9).

2.4.18 Darstellung der DSO₃F/HSO₃F-Lösung (2:1)

In 18.239 g (182.3 mmol, 9.712 ml) D_2SO_4 werden ca. 5 ml HSO₃F einkondensiert. Die Mischung wird unter Rühren in 45 min auf Raumtemperatur erwärmt. Die erhaltene DSO_3F/HSO_3F -Lösung (2:1) wird unter Stickstoffkühlung im statischen Vakuum in einen anderen Glaskolben mit PTFE-Spindeln (Young, London) umkondensiert (7.317 g (4.198 ml) DSO_3F/HSO_3F -Lösung (2:1), Ausbeute: ca. 92 %)

2.4.19 Darstellung der H₂[Pt(SO₃F)₆]-Lösung

Die Synthese erfolgt nach dem Verfahren von Lee und Aubke [89]: In einem 50 mL Glasrundkolben mit PTFE-Spindel (Young, London) werden 0.392 g (2.0 mmol) Platinpulver zusammen mit 3.588 g (2.058 ml) DSO₃F/HSO₃F-Lösung (2:1) und 3.271 g (16.5 mmol, 1.988 ml) $S_2O_6F_2$ sieben Tage unter Rühren auf 100 °C erhitzt. Überschüssiges $S_2O_6F_2$ und gebildetes $S_2O_5F_2$ werden im Vakuum aus der rotorangen Lösung entfernt. Von der Lösung werden ¹⁹⁵Pt und ¹⁹F NMR-Spektren aufgenommen, in denen das [Pt(SO₃F)₆]^{2–}-Anion nachweisbar ist (Tab. 7).

3 Diskussion der Synthesen

3.1 Überblick über die durchgeführten Synthesen und die dabei erhaltenen Produkte

Nach der Reaktion von K₂[Pt(CN)₄] und K₂[Pt(CN)₆] mit ClF in aHF bilden sich nach dem Auflösen des erhaltenen Feststoffs in D₂O die Anionen *mer*-[PtF₃(OD)(CF₃)₂]²⁻ mit 27 % und $[PtF_2(OD)_2(CF_3)_2]^{2-}$ mit 73 % Ausbeute (Abb. 1, 7-14, Tab. 2, 3):

$$"cis-K_2[PtF_4(CF_3)_2]" + D_2O \longrightarrow mer-K_2[PtF_3(OD)(CF_3)_2] + DF$$
(61)

$$mer-K_2[PtF_3(OD)(CF_3)_2] + D_2O \longrightarrow K_2[PtF_2(OD)_2(CF_3)_2] + DF$$
(62)

Die Umsetzung von K₂[Pt(CN)₆] mit ClF in aHF in Gegenwart von KHF₂ zeigt nach der Aufarbeitung ein Gemisch aus den Anionen $[PtCl_2(OD)_2(CF_3)_2]^{2-}$ mit 21 %, $[PtClF(OD)_2(CF_3)_2]^{2-}$ mit 9 % und $[PtF_2(OD)_2(CF_3)_2]^{2-}$ mit 70 % Ausbeute (Abb. 1-9, Tab. 2, 3):

Durch Umsetzung von $[Bu_4N]_2[Pt(CN)_6]$ mit ClF in Dichlormethan werden Gemische mit unterschiedlichen Zusammensetzungen an $[PtF(CF_3)_5]^{2-}$ mit einem Anteil von etwa 40-80 %, *cis*- $[PtF_2(CF_3)_4]^{2-}$ mit etwa 10-40 % und $[Pt(CF_3)_6]^{2-}$ mit etwa 5-20 % gebildet (Abb. 15, 16, 31-35, 53-55, Tab. 2, 3):

$$[Bu_4N]_2[Pt(CN)_6] + 18 ClF \xrightarrow{-78 \,^{\circ}C} [Bu_4N]_2[Pt(CF_3)_6] + 9 Cl_2 + 3 N_2$$
(63)

Bei der Reaktion des Gemisches der Fluoro(trifluormethyl)platinate mit $(CH_3)_3SiCl$ bei Raumtemperatur sind die Anionen *fac*-[PtCl₃(CF₃)₃]²⁻ mit < 1 %, *cis*-[PtCl₂(CF₃)₄]²⁻ mit 31 %, [PtCl(CF₃)₅]²⁻ mit 56 %, [Pt(CF₃)₆]²⁻ mit 7 % und [PtF(CF₃)₅]²⁻ mit 5 % Ausbeute erkennbar (Abb. 17, 18, 31-35, 39, 40, 59, 60, 82, Tab. 2-4):

$$[\operatorname{Bu}_{4}N]_{2}[\operatorname{PtF}(\operatorname{CF}_{3})_{5}] + (\operatorname{CH}_{3})_{3}\operatorname{SiCl} \xrightarrow{\operatorname{RT}/\operatorname{1d}} [\operatorname{Bu}_{4}N]_{2}[\operatorname{PtCl}(\operatorname{CF}_{3})_{5}] + (\operatorname{CH}_{3})_{3}\operatorname{SiF}$$
(64)

Wird dieses Gemisch für fünf Tage auf 50 °C erwärmt, sind die Anionen $[PtCl_5(CF_3)]^{2-}$ mit 4 %, *cis*- $[PtCl_4(CF_3)_2]^{2-}$ mit 7 %, *fac*- $[PtCl_3(CF_3)_3]^{2-}$ mit 39 %, $[PtCl_5(CF_2Cl)]^{2-}$ mit 4 %, *cis*- $[PtCl_4(CF_2Cl)_2]^{2-}$ mit 2 %, *fac*- $[PtCl_3(CF_2Cl)_3]^{2-}$ mit 2 %, *cis*- $[PtCl_4(CF_2Cl)(CF_3)]^{2-}$ mit 11 %, *fac*- $[PtCl_3(CF_2Cl)_2(CF_3)]^{2-}$ mit 11 % und *fac*- $[PtCl_3(CF_2Cl)(CF_3)_2]^{2-}$ mit 20 % Ausbeute zu erkennen (Abb. 17, 18, 82-99, Tab. 2, 4):

$$fac-[Bu_4N]_2[PtCl_3(CF_3)_3] + (CH_3)_3SiCl \xrightarrow{50 \circ C/5 d} CH_2Cl_2 \rightarrow fac-[Bu_4N]_2[PtCl_3(CF_2Cl)(CF_3)_2] + (CH_3)_3SiF$$
(65)

Nach eintägigem Erwärmen des Gemisches der Fluoro(trifluormethyl)platinate mit $(CH_3)_3SiCN$ bei 50 °C werden die Anionen *cis*- $[Pt(CN)_2(CF_3)_4]^{2-}$ mit 12 %, $[Pt(CN)(CF_3)_5]^{2-}$ mit 83 % und $[Pt(CF_3)_6]^{2-}$ mit 5 % Ausbeute erhalten (Abb. 19, 20, 31, 41-43, 61, 62, Tab. 2):

$$[Bu_4N]_2[PtF(CF_3)_5] + (CH_3)_3SiCN \xrightarrow{50 \text{ °C}/1 \text{ d}} [Bu_4N]_2[Pt(CN)(CF_3)_5] + (CH_3)_3SiF$$
(66)

Wird der beschriebene Ansatz fünf weitere Tage bei 50 °C gerührt entstehen die Anionen cis-[Pt(CN)₂(CF₃)₄]²⁻ mit 23 %, [Pt(CN)(CF₃)₅]²⁻ mit 15 % und cis-[Pt(CN)(CF₂CN)(CF₃)₄]²⁻ mit 62 % Ausbeute (Abb. 19, 20, 41-43, 63-67, Tab. 2, 4):

$$[\operatorname{Bu}_{4}N]_{2}[\operatorname{Pt}(\operatorname{CN})(\operatorname{CF}_{3})_{5}] + (\operatorname{CH}_{3})_{3}\operatorname{SiCN} \xrightarrow{50 \circ \operatorname{C} / 5 \operatorname{d}} (\operatorname{CH}_{3})_{3}\operatorname{SiCN}}$$

$$\operatorname{cis-[\operatorname{Bu}_{4}N]_{2}[\operatorname{Pt}(\operatorname{CN})(\operatorname{CF}_{2}\operatorname{CN})(\operatorname{CF}_{3})_{4}]} + (\operatorname{CH}_{3})_{3}\operatorname{SiF}}$$

$$(67)$$

Zur Anreicherung von $[Pt(CN)(CF_3)_5]^{2-}$ werden die Ansätze der Fluoro(trifluormethyl)platinate mehrmals abwechselnd 17 Stunden bei 45 °C mit (CH₃)₃SiCN und anschließend einen Tag mit ClF in Dichlormethan umgesetzt. Nach dem Umsalzen zum Kalium-Salz und dem Entfernen der schwarzen Nebenprodukte durch Fällung mit AgNO₃ wird ein Gemisch mit der Zusammensetzung von 5 % *cis*-[Pt(CN)₂(CF₃)₄]²⁻, 76 % [Pt(CN)(CF₃)₅]²⁻ und 19 % *cis*-[Pt(CN)(CF₂CN)(CF₃)₄]²⁻ erhalten (Abb. 19, 20, 41-43, 63-67, Tab. 2, 4).

Durch 17 Stunden Erwärmen des Gemisches der Kalium-Salze der Fluoro-(trifluormethyl)platinate mit ¹⁵NH₃ in THF bei 45 °C bildet sich ein Gemisch aus 48 % *cis*-[PtCl(¹⁵NH₃)(CF₃)₄]⁻, 2 % *trans*-[PtCl(¹⁵NH₃)(CF₃)₄]⁻, 38 % [Pt(¹⁵NH₃)(CF₃)₅]⁻, 4 % [PtF(CF₃)₅]²⁻, 5 % [PtCl(CF₃)₅]²⁻ und 3 % [Pt(CF₃)₆]²⁻ (Abb. 21-28, 31-35, 39, 40, 44-49, 68-76, Tab. 2, 3, 5, 6):

$$K_{2}[PtF(CF_{3})_{5}] + {}^{15}NH_{3} \xrightarrow{45 \text{ }^{\circ}C/17 \text{ h}}{THF}} K[Pt({}^{15}NH_{3})(CF_{3})_{5}] + KF$$
(68)

Sechstägiges Erhitzen der Fluoro(trifluormethyl)platinate mit n-Bu-NH₂ auf 80 °C führt zu einem Gemisch aus 4 % *cis*-[PtF(BuNH₂)(CF₃)₄]⁻, 15 % [Pt(BuNH₂)(CF₃)₅]⁻, 5 % [Pt(OH)(CF₃)₅]²⁻, 7 % [PtCl(CF₃)₅]²⁻ und 69 % [Pt(CF₃)₆]²⁻ (Abb. 31-38, 50-52, 77-81, Tab. 2, 3). Durch Umsalzen zu den Cäsium-Salzen und Extraktion mit Diethylether verblieb Cs₂[Pt(CF₃)₆] als schwerlöslicher Rückstand:

$$[\operatorname{Bu}_{4}N]_{2}[\operatorname{PtF}(\operatorname{CF}_{3})_{5}] + \operatorname{Bu}NH_{2} \xrightarrow{\operatorname{80 °C}/6 \operatorname{d}} [\operatorname{Bu}_{4}N][\operatorname{Pt}(\operatorname{Bu}NH_{2})(\operatorname{CF}_{3})_{5}] + ,,[\operatorname{Bu}_{4}N]F'' \quad (69)$$

Die Reaktion von $[Bu_4N]_3[Ir(CN)_6]$ mit ClF in Dichlormethan führt nach der Aufarbeitung zu einem Gemisch mit den Anionen *cis*- $[IrX_2(CF_3)_4]^{3-}$ (X = Cl oder OH) mit 10 %, *mer*- $[IrCl_3(OH)(CF_3)_2]^{3-}$ mit 77 % und $[IrCl_2F(OH)(CF_3)_2]^{3-}$ mit 13 % Ausbeute (Abb. 100-104, Tab. 8, 9).

3.2 Synthesen der Trifluormethylplatinate in wasserfreiem HF

Bei der Reaktion von $K_2[Pt(CN)_4]$ und $K_2[Pt(CN)_6]$ mit ClF in aHF bilden sich fast ausschließlich Bis(trifluormethyl)-Komplexe des Platin(IV) mit *cis*-ständigen CF₃-Liganden. Vermutlich wird in aHF eine von zwei zueinander *trans*-ständigen CF₃-Gruppen leicht protoniert und abgebaut:

Somit sollten Komplexe mit drei zueinander facial angeordneten CF₃-Gruppen verbleiben. Gefunden werden aber nur Komplexe mit zwei *cis*-ständigen CF₃-Gruppen. Die Ursache für diese Abweichung vom erwarteten Produktbild ist unbekannt.

Bei der Aufarbeitung wird wahrscheinlich aus dem primären cis-[PtF₄(CF₃)₂]²⁻ durch Hydrolyse beim Auflösen in D₂O das *mer*-[PtF₃(OD)(CF₃)₂]²⁻ und [PtF₂(OD)₂(CF₃)₂]²⁻ gebildet. Der Austausch der F-Liganden durch die OD-Liganden wird dabei durch den Transeinfluß der CF₃-Gruppen erleichtert. Aus der wässrigen Lösung können Kristalle bestehend aus cis-K₂[(CF₃)₂F₂Pt(μ -OD)₂PtF₂(CF₃)₂]·2D₂O gewonnen werden. In der Lösung lässt sich jedoch nicht das zweikernige Anion cis-[(CF₃)₂F₂Pt(μ -OD)₂PtF₂(CF₃)₂]²⁻ eindeutig durch NMR-Spektroskopie nachweisen. Das einkernige [PtF₂(OD)₂(CF₃)₂]²⁻ und das zweikernige cis-[(CF₃)₂F₂Pt(μ -OD)₂PtF₂(CF₃)₂]²⁻ sollten gleiche Aufspaltungsmuster bei verschiedenen Verschiebungen zeigen. Die verbreiterten Signale in den Platinsatelliten von [PtF₂(OD)₂(CF₃)₂]²⁻ und *mer*-[PtF₃(OD)(CF₃)₂]²⁻ weisen aber möglicherweise auf zweikernige Komplexanionen oder ein, bezogen auf die NMR-Zeitskala, sich schnell einstellendes Gleichgewicht hin:

$$2 \left[PtF_2(OD)_2(CF_3)_2 \right]^{2-} + 2 D_3O^+ \longrightarrow \left[(CF_3)_2F_2Pt(\mu-OD)_2PtF_2(CF_3)_2 \right]^{2-} + 4 D_2O$$
(74)

Beim Eindampfen, also zunehmender Konzentration an D_3O^+ , verschiebt sich das Gleichgewicht auf die rechte Seite und entsprechende Salze kristallisieren aus.

Ist während der Reaktion von K₂[Pt(CN)₆] mit ClF in wasserfreiem HF zusätzlich KHF₂ vorhanden, so werden neben $[PtF_2(OD)_2(CF_3)_2]^{2-}$ auch die Chloro-Komplexe $[PtClF(OD)_2(CF_3)_2]^{2-}$ und $[PtCl_2(OD)_2(CF_3)_2]^{2-}$ nachgewiesen. Eine Ursache dafür könnte eine Abnahme der Säurestärke der wasserfreien HF durch das basische KHF₂ sein.

Möglicherweise wird die Löslichkeit von Cl₂ in dem Reaktionsgemisch erhöht, so dass es zur Spaltung von Pt-CN kommt:

$$Pt-CN + Cl_2 \longrightarrow Pt-Cl + ClCN$$
(75)

3.3 Synthesen der Trifluormethylplatinate in Dichlormethan

Um mehr CF₃-Gruppen am Platin zu erhalten, wird ein anderes Lösemittel benötigt. Dieses Lösemittel muss wenig koordinierend wirken, die Ausgangsstoffe $[Bu_4N]_2[Pt(CN)_4]$ und $[Bu_4N]_2[Pt(CN)_6]$ lösen und beständig gegenüber CIF sein. Bei der Umsetzung von $[Bu_4N]_2[Pt(CN)_6]$ mit CIF in Dichlormethan wird als Hauptprodukt $[PtF(CF_3)_5]^{2-}$ mit einem Anteil von ca. 40-80 % erhalten. Desweiteren wird *cis*- $[PtF_2(CF_3)_4]^{2-}$ zu ca. 10-40 % und $[Pt(CF_3)_6]^{2-}$ zu ca. 5-20 % gebildet. Das KF dient als HF-Fänger, wobei sich KHF₂ bildet. Durch Änderung der Reaktionszeiten bei -78 °C und Raumtemperatur können keine deutlichen Veränderungen des Verhältnisses der Produkte zueinander festgestellt werden. Eine Erhöhung des Überschusses an CIF führt zu einem deutlich höheren Anteil an $[Pt(CF_3)_6]^{2-}$ von bis zu 20 %. Selbst geringe Feuchtigkeitsmengen im Lösemittel führen während der Aufarbeitung, bei der Extraktion nach einigen Stunden zur Hydrolyse der Fluoro(trifluormethyl)platinate unter Bildung von Hydroxo(trifluormethyl)platinaten wie z. B. $[Pt(OH)(CF_3)_5]^{2-}$.

Bei der Synthese und Aufarbeitung der Ansätze darf auch kein Chlorid vorhanden sein, da sich sonst leicht die sehr stabilen Chloro(trifluormethyl)platinate bilden. Dies ist besonders bei der Aufarbeitung mit kommerziellem Dichlormethan zu beachten, das HCl enthalten kann.

3.4 Reaktion der Trifluormethylplatinate mit (CH₃)₃SiCl

Durch die in Dichlormethan enthaltenen geringen HCl-Mengen kann bereits bei Raumtemperatur in den Anionen $[PtX_n(CF_3)_{6-n}]^{2-}$ (n = 1-2, X = F, OH) ein Ausstausch der Liganden F⁻ und OH⁻ gegen Chlorid erfolgen. Durch die Reaktion mit (CH₃)₃SiCl lassen sich gezielt Chloro(trifluormethyl)platinate erzeugen und so die Zuordnung der NMR-Signale bestätigen. Bei der Reaktion der Trifluormethylplatinate mit (CH₃)₃SiCl werden zuerst die F-Liganden gegen Cl-Liganden ausgetauscht:

$$[Bu_4N]_2[PtF(CF_3)_5] + (CH_3)_3SiCl \longrightarrow [Bu_4N]_2[PtCl(CF_3)_5] + (CH_3)_3SiF$$
(76)

Außerdem zeigt sich, dass durch zusätzliches fünftägiges Erwärmen auf 50 °C die CF₃-Gruppen zunächst in CF₂Cl-Gruppen umgewandelt und schließlich gegen Cl-Liganden ausgetauscht werden können. Als Mechanismus ist vorstellbar, dass in einem konzertierten Prozess gleichzeitig Cl von (CH₃)₃SiCl auf die CF₃-Gruppe übertragen und F von der CF₃-Gruppe zum (CH₃)₃SiCl unter Bildung von (CH₃)₃SiF übergeht:

$$Pt-CF_{3} \xrightarrow{+Me_{3}SiC^{-}} Pt-CF_{2}Cl \xrightarrow{-F^{-}} Pt^{+}=CFCl$$

$$(77)$$

Die im Gegensatz zur CF₃-Gruppe weniger stabile CF₂Cl-Gruppe kann anschließend durch Einwirkung von $(CH_3)_3$ SiCl ein weiteres F⁻ verlieren, wobei eine CFCl-Gruppe gebildet wird, die dann leicht abgespalten werden kann:

$$Pt^{+}=CFCl \xrightarrow{+Cl^{-}} Pt-Cl + CFCl$$
(78)

Weiterhin besteht die Möglichkeit, dass (CH₃)₃SiCl Chlorid auf die CFCl-Gruppe überträgt und die gebildete CFCl₂-Gruppe rasch mit (CH₃)₃SiCl zu einer CCl₂-Gruppe umgesetzt wird. Die CCl₂-Gruppe ist noch schwächer als die CF₂- und CFCl-Gruppe an Platin gebunden und kann somit noch leichter durch Cl⁻ verdrängt werden. Ob eine CFCl- oder CCl₂-Gruppe abgespalten wird, konnte anhand der aufgenommenen NMR-Spektren nicht unterschieden und nachgewiesen werden:

$$Pt^{+}=CFCl \xrightarrow{+C\Gamma} Pt-CFCl_2$$
(79)

$$Pt-CFCl_2 \xrightarrow{-F^-} Pt^+ = CCl_2 \xrightarrow{+Cl^-} Pt-Cl + CCl_2$$
(80)

Weiterhin ist zu beobachten, dass die CF₂Cl-Gruppen nicht gegenüber Liganden mit starkem Transeinfluß wie den CF₃-Gruppen auftreten. Aus diesem Grunde werden nur maximal drei facial angeordnete CF₂Cl-Gruppen mit *trans*-ständigen Cl-Liganden mit schwachem Transeinfluß beobachtet. Dies kann als Hinweis darauf gedeutet werden, dass die CF₂Cl-Gruppen deutlich instabiler als die CF₃-Gruppen sind.

fac-[Bu₄N]₂[PtCl₃(CF₃)₃] ist gegen CF₃-Abspaltung so stabil, das es nach folgenden zwei Reaktionswegen zu den gemischten CF₃- / CF₂Cl-Komplexen reagieren kann (Gl. 81a, 81b):

$$cis$$
-[Bu₄N]₂[PtCl₄(CF₃)₂] + (CH₃)₃SiF + "CF₂" (81a)
 fac -[Bu₄N]₂[PtCl₃(CF₃)₃] + (CH₃)₃SiCl
 fac -[Bu₄N]₂[PtCl₃(CF₂Cl)(CF₃)₂] + (CH₃)₃SiF (81b)

3.5 Reaktion der Trifluormethylplatinate mit (CH₃)₃SiCN

Um schließlich aus den komplexen Produkten der Fluorierung von $[Pt(CN)_6]^{2-}$ mit ClF in CH₂Cl₂ die Ausbeute an dem homoleptischen $[Pt(CF_3)_6]^{2-}$ zu erhöhen, war die Idee alle gemischten Spezies in $[Pt(CN)_n(CF_3)_{6-n}]^{2-}$ (n = 3-5) zu überführen und diese nachzufluorieren. Dies war letzten Endes nicht erfolgreich, dafür konnten aber neue Platinate erhalten und die Reaktivität der Trifluormethylplatinat-Anionen $[PtX_n(CF_3)_{6-n}]^{2-}$ (X = F, OH; n = 0-2) gegenüber (CH₃)₃SiCN studiert werden. Wie bei der Umsetzung mit (CH₃)₃SiCl die Chloro(trifluormethyl)platinate, können bei der Reaktion mit (CH₃)₃SiCN die erhaltenen Anionen den Cyano(trifluormethyl)platinaten zugeordnet werden. Auch hier werden zuerst die Fluoroliganden gegen CN-Gruppen ausgetauscht:

$$[Bu_4N]_2[PtF(CF_3)_5] + (CH_3)_3SiCN \longrightarrow [Bu_4N]_2[Pt(CN)(CF_3)_5] + (CH_3)_3SiF$$
(82)

Wird länger als ein Tag auf 50 °C erwärmt, so werden auch die CF₃-Gruppen unter Bildung von CF₂CN-Gruppen angegriffen. Bei $[Pt(CF_3)_6]^{2-}$ wird wahrscheinlich zunächst durch die Häufung der sterisch anspruchsvollen CF₃-Gruppen, eine CF₃-Gruppe abgespalten und durch eine CN-Gruppe ersetzt. Dabei wird F⁻ abgespalten und die an Platin verbleibende CF₂-Gruppe tritt als Difluorcarben aus. Ein Hinweis auf [Pt(CF₂CN)(CF₃)₅]²⁻ kann in den NMR-Spektren nicht gefunden werden. Anschließend wird eine cis zur CN-Gruppe stehende CF₃-Gruppe in eine CF₂CN-Gruppe umgewandelt. Als Nebenprodukt wird (CH₃)₃SiF erhalten. Den Mechanismus der Reaktion zur CF₂CN-Gruppe im *cis*-[Bu₄N]₂[Pt(CN)(CF₂CN)(CF₃)₄] kann ähnlich der Bildung von CF2Cl erklärt werden. Auch hier wird zunächst F- unter Bildung einer CF₂-Gruppe abgespalten und anschließend hauptsächlich durch CN⁻ ersetzt oder zu einem geringen Teil die gesamte CF₂-Gruppe abgespalten und durch CN⁻ mit seinem starken Transeinfluß ersetzt. Im Unterschied zur CF₂Cl-Gruppe ist die CF₂CN-Grupper stabiler als die CF₃-Gruppe, weil das CN in der CF₂CN-Gruppe die negative Ladung stärker delokalisiert als F. Deshalb wird es wahrscheinlich nur bei noch längerer Reaktionsdauer und Temperaturen oberhalb von 50 °C möglich sein, die CF₂CN-Gruppe abzuspalten und gegen CN⁻ zu ersetzen:

$$Pt-CF_3 \xrightarrow{-F} Pt^+=CF_2 \xrightarrow{+CN} Pt-CF_2CN$$
(83)

$$Pt-CF_3 \xrightarrow{-F^-} Pt^+=CF_2 \xrightarrow{+CN^-} Pt-CN + CF_2$$
(84)

[Bu₄N]₂[Pt(CN)(CF₃)₅] kann nach den folgenden beiden Reaktionswegen reagieren (Gl. 85a, 85b):

$$cis-[Bu_{4}N]_{2}[Pt(CN)(CF_{2}CN)(CF_{3})_{4}] + (CH_{3})_{3}SiF \quad (85a)$$

$$[Bu_{4}N]_{2}[Pt(CN)(CF_{3})_{5}] + (CH_{3})_{3}SiCN$$

$$cis-[Bu_{4}N]_{2}[Pt(CN)_{2}(CF_{3})_{4}] + (CH_{3})_{3}SiF + "CF_{2}" \quad (85b)$$

3.6 Reaktion der Trifluormethylplatinate mit ¹⁵NH₃

Für die Untersuchung der Reaktivität der Trifluormethylplatinate gegenüber neutralen N-Donor-Liganden, wird ¹⁵NH₃ wegen seiner geringen Größe und seiner Spin ¹/₂ Kerne ausgesucht. Allgemein zeigen Platinkomplexe eine hohe Affinität zu stickstoffkoordinierenden Liganden. Wie erwartet können durch Reaktion der Trifluormethylplatinat-Anionen [PtX_n(CF₃)_{6-n}]²⁻ (X = F, OH; n = 1-2) mit ¹⁵NH₃ in THF bei 45 °C entsprechend *cis*-K[PtCl(¹⁵NH₃)(CF₃)₄], *trans*-K[PtCl(¹⁵NH₃)(CF₃)₄] und K[Pt(¹⁵NH₃)(CF₃)₅] mit einfach negativ geladenen Anionen nachgewiesen werden:

$$K_{2}[PtF(CF_{3})_{5}] + {}^{15}NH_{3} \xrightarrow{45 \text{ °C}/17 \text{ h}} K[Pt({}^{15}NH_{3})(CF_{3})_{5}] + KF$$
(86)

Der Cl-Ligand wurde wahrscheinlich bei der Extraktion aus dem Dichlormethan in Form von HCl eingetragen. Durch diese Synthese kann gezeigt werden, dass es prinzipiell möglich sein sollte, mit Hilfe von monoalkylierten Aminen lange hydrophobe und unpolare Alkylketten in die Trifluormethylplatin-Komplexen einzuführen.

3.7 Reaktion der Trifluormethylplatinate mit Butylamin

Zur Anreicherung des $[Pt(CF_3)_6]^{2-}$ -Anions wird das Gemisch der Fluoro-und Hydroxo-(trifluormethyl)platinate $[PtX_n(CF_3)_{6-n}]^{2-}$ (n = 0-2, X = F, OH) sechs Tage lang bei 80 °C mit Butylamin zu einem Gemisch aus *cis*- $[PtF(BuNH_2)(CF_3)_4]^-$, $[Pt(BuNH_2)(CF_3)_5]^-$ und $[Pt(CF_3)_6]^{2-}$ umgesetzt:

$$[Bu_4N]_2[PtF(CF_3)_5] + BuNH_2 \xrightarrow{80 \text{ °C/6 d}} [Bu_4N][Pt(BuNH_2)(CF_3)_5] + "[Bu_4N]F" (87)$$

Da Butylamin ein neutraler Ligand ist, verringert sich die negative Ladung der Butylamin-Komplexe von zwei- auf einfach. Dadurch und durch die lange hydrophobe Butylkette des Butylamins werden somit die Cäsium-Salze leichter durch weniger koordinierende, unpolare Lösemittel wie Dichlormethan und Diethylether extrahierbar. Diethylether extrahiert die Butylamin-Trifluormethylplatinate besser, löst aber auch im Gegensatz zu Dichlormethan einen geringen Teil an $Cs_2[Pt(CF_3)_6]$.

3.8 Synthese der Trifluormethyliridate in Dichlormethan

Das Produktbild der Reaktion $[Bu_4N]_3[Ir(CN)_6]$ mit ClF in Dichlormethan zeigt ein Gemisch aus hauptsächlich Bis(trifluormethyl)iridaten und wenig Tetrakis(trifluormethyl)iridat und ähnelt dem Ergebnis der Reaktion von K₂[Pt(CN)₄] bzw. K₂[Pt(CN)₆] mit ClF in wasserfreier HF unter Bildung von Bis(trifluormethyl)platinaten. Dies kann als Hinweis darauf gedeutet werden, dass die dreifach negativ geladenen Trifluormethyliridate wesentlich weniger stabil sind als die Trifluormethylplatinate. Spuren an Säuren in den Reaktionsgemischen bauen also eine von zwei zueinander *trans*-ständigen CF₃-Gruppen leicht ab.

3.9 Versuchte Synthesen der Trifluormethyl-Ferrate, -Nickelate und -Palladate in Dichlormethan

Die Umsetzung von $[Bu_4N]_3[Fe(CN)_6]$, $[Bu_4N]_2[Ni(CN)_4]$, $[Bu_4N]_2[Pd(CN)_4]$ und $[Bu_4N]_2[Pd(CN)_6]$ mit ClF in trockenem Dichlormethan ergab in einigen Fällen in den ¹⁹F-NMR-Spektren nicht zuordnenbare Singuletts im typischen Bereich von metallgebundenen CF₃-Gruppen von –10 bis –60 ppm. Weitere Arbeiten sind notwendig um die Produkte zu identifizieren.

3.10 Zusammenfassende Diskussion der Synthesen und Bindungsverhältnisse in Trifluormethylplatinaten

Nach der Reaktion von $[Bu_4N]_3[Fe(CN)_6]$, $[Bu_4N]_2[Ni(CN)_4]$, $[Bu_4N]_2[Pd(CN)_4]$ und $[Bu_4N]_2[Pd(CN)_6]$ mit ClF in CH₂Cl₂/KF wurden keine Trifluormethylmetallate gefunden. Bei $[Bu_4N]_3[Ir(CN)_6]$ konnten drei Trifluormethyliridate, anhand der ¹⁹F-Signale identifiziert werden. Nach der Umsetzung von $[Bu_4N]_2[Pt(CN)_4]$ und $[Bu_4N]_2[Pt(CN)_6]$ mit ClF konnten schließlich zahlreiche Trifluormethylplatinate identifiziert werden, jedoch entstand die gewünschte homoleptische Spezies nur in geringen Ausbeuten:

$$[Bu_{4}N]_{2}[Pt(CN)_{6}] + 18 ClF \xrightarrow{-78 \circ C \text{ bis } RT} [Bu_{4}N]_{2}[Pt(CF_{3})_{6}] + 9 Cl_{2} + 3 N_{2}$$
(88)

Die Addition von ClF an $R_{Hal}CN$ (R = Alkyl; Hal = F, Cl, Br, I) in Gegenwart einer stöchiometrischen Menge an HgF₂ in CFCl₃ erfolgt nach [90]:

$$R_{\text{Hal}}CN + 2 Cl_2 \xrightarrow{\text{RT} / 1-4 \text{ d}}_{\text{HgF}_2 / CFCl_3} \rightarrow R_{\text{Hal}} - CF_2 - NCl_2$$
(89)

Diese Zwischenstufe auf dem Weg zu R_{Hal}CF₃ wurde umfassend charakterisiert.

Der Reaktionsmechanismus der ClF-Addition an die CN-Dreifachbindung, kann wie folgt angenommen werden:

$$Pt-CN + ClF \longrightarrow Pt-CF = NCl$$
(90)

$$Pt-CF=NCl+ClF \longrightarrow Pt-CF_2-NCl_2$$
(91)

$$Pt-CF_2-NCl_2 + ClF \longrightarrow Pt-CF_3 + \frac{1}{2}N_2 + \frac{3}{2}Cl_2$$
(92)

Wobei keine der Zwischenstufen bisher nachgewiesen werden konnte.

Das Hexamethylplatinat $[Pt(CH_3)_6]^{2-}$ ist im Gegensatz zum $[Pt(CF_3)_6]^{2-}$ schon seit langem bekannt [91]:

$$[\operatorname{Bu}_{4}N]_{2}[\operatorname{PtCl}_{6}] + 6 \operatorname{MeLi}_{4} + 6 \operatorname{LiI}_{4} \longrightarrow [\operatorname{Bu}_{4}N]_{2}[\operatorname{Pt}(\operatorname{CH}_{3})_{6}] + 6 \operatorname{LiCl}_{6} + 6 \operatorname{LiI}_{6}$$
(93)

Es bildet sich ohne Nebenprodukte. Möglicherweise ist die sterische Hinderung durch die größeren CF₃-Gruppen im $[Pt(CF_3)_6]^{2-}$ größer, als die der kleineren CH₃-Gruppen im $[Pt(CH_3)_6]^{2-}$ [92-96]. Dadurch könnte im $[Pt(CF_3)_6]^{2-}$ eine CF₃-Gruppe leicht abgespalten werden. Bei einer stöchiometrisch passenden Menge CIF zur vollständigen Umsetzung von $[Pt(CN)_6]^{2-}$ zu $[Pt(CF_3)_6]^{2-}$, wurde kein $[Pt(CF_3)_6]^{2-}$ gebildet. Wurde in den Ansätzen CIF im großen Überschuß eingesetzt, so konnte $[Pt(CF_3)_6]^{2-}$ in Ausbeuten von bis zu 20 % erhalten werden. Die Ursache dafür ist unbekannt. Möglicherweise bewirkt eine höhere Konzentration an CIF eine schnellere Reaktion zur Bildung von $[Pt(CF_3)_6]^{2-}$, bevor das CIF für andere Nebenreaktionen verbraucht wird.

Im Gegensatz zum $[B(CF_3)_4]^-$ mit dem Hauptgruppenelement Bor als Zentralatom, sind die Synthesen der CF₃-reichen d-Block-Trifluormetylmetallate wie $[Au(CF_3)_4]^-$ und $[Pt(CF_3)_6]^{2-}$

im supersauren wasserfreien HF nicht möglich. In aHF bilden sich nur Trifluormethylplatinate mit zwei zueinander *cis*-ständigen CF_3 -Gruppen. Wahrscheinlich werden die intermediär gebildeten CF_3 -Gruppen durch die Einwirkung von HF abgespalten und gegen F⁻-Liganden ersetzt:

$$Pt-CF_3 + HF \longrightarrow Pt-F + CF_3H$$
(94)

Einzelschritte:

Aus diesem Grunde wurde trockenes Dichlormethan als Reaktionsmedium verwendet. Es löst den Ausgangsstoff $[Bu_4N]_2[Pt(CN)_6]$, zersetzt und verdrängt aber nicht die CN- und CF₃-Gruppen und ist beständig gegenüber ClF.

Die CF₃-Gruppe übt durch die Fluoratome einen stark negativen induktiven Effekt ($-I_{\sigma}$ -Effekt) auf das Platin-Zentralatom aus, der durch die negative Hyperkonjugation der CF₃-Gruppen aber überkompensiert werden sollte [97-101]. Die CF₃-Gruppe wirkt als ein 2 Elektronen- σ -Donor-Ligand, der eine starke σ -Bindung zum Metallatom eingeht, aber auch eine π -Rückbindung zum Metallzentrum durch negative Hyperkonjugation ausbildet:

Pt–CF₃ negativer induktiver Effekt ($-I_{\sigma}$ -Effekt)

Umgekehrt verhält es sich mit der CH₃-Gruppe. Sie schiebt Elektronendichte durch ihren starken $+I_{\sigma}$ -Effekt auf das Platin-Zentralatom. Zusätzlich liefert sie durch positive Hyperkonjugation Elektronendichte an das Platinatom. Beide Effekte addieren sich und machen die CH₃-Gruppe zu einem wesentlich stärkeren σ -Donor-Liganden als die CF₃-Gruppe:

Pt–CH₃ positiver induktiven Effekt (+ I_{σ} -Effekt)

⁻Pt=CH₂H⁺ positive Hyperkonjugation

Die CH₃-Gruppe schiebt mehr Elektronendichte auf das Platin(IV)-Zentralatom als die CF₃-Gruppe. Dies erklärt die geringe Stabilität gegen Luftfeuchtigkeit von $[Bu_4N]_2[Pt(CH_3)_6]$ im Gegensatz zu $[Bu_4N]_2[Pt(CF_3)_6]$. Für die Trifluormethylplatinate(IV) wie $[Pt(CF_3)_6]^{2-}$ sollte eine höhere Stabilität der Pt-CF₃-Bindung zu erwarten sein. Dies sollte sich in einer geringeren Neigung zum Ligandenaustausch (kinetische Stabilität) der CF₃-Gruppen gegen andere schwache und insbesondere starke σ -Donor-Liganden zeigen.

Die Bindungsverhältnisse im quadratisch-planaren $[Ag(CF_3)_4]^-$ wurden mit der Wechselwirkung von ds-Hybridorbitalen vom Silber-Zentralatom mit den zwei Elektronen liefernden sp³-Hybridorbital des CF₃⁻-Liganden erklärt. Bei den Hauptgruppenmetall-Trifluormethyl-verbindungen erfolgt die Bindung zu den CF₃-Gruppen über sp-Hybridorbitale der Hauptgruppenmetalle [31].

Anhand der Produktbilder der untersuchten Ansätze können die Ligandenstabilitäten hinsichtlich ihrer Abspaltung von Platin(IV) in folgender Reihenfolge angenommen werden:

 $CF_2CN > CF_3 > CF_2Cl > CFCl_2 > CCl_3$

 $CF_2 > CFCl > CCl_2$

4 NMR-Spektren

Die untersuchten Platinkomplexe enthalten bis zu acht verschiedene NMR-aktive Kerne: ¹H, ¹⁹F, ¹³C, ¹⁴N, ¹⁵N, ³⁵Cl, ³⁷Cl, ¹⁷O und ¹⁹⁵Pt. Von diesen sind ¹⁴N, ³⁵Cl und ³⁷Cl wegen ihrer Quadrupolmomente und ¹³C, ¹⁵N und ¹⁷O wegen ihrer geringen natürlichen Häufigkeit messtechnisch für die untersuchten Proben nur schwer zugänglich. Die Identität der Komplexe läßt sich aber mit Hilfe der ¹⁹⁵Pt-, ¹⁹F-, ¹H- und bei Isotopenanreicherung mit ¹⁵N-NMR-Spektroskopie meist eindeutig aufklären. Bei einigen Komplexen ist es möglich, anhand der ^{35/37}Cl-Isotopenaufspaltungsmuster die Cl-Liganden nachzuweisen [102, 103]. In den abgebildeten Spektren sind meist die dazugehörigen Komplexe eingezeichnet. Der jeweils untersuchte Kern ist durch vergrößerte Schrift fett hervorgehoben. Bei komplizierter aufgebauten ¹⁹⁵Pt- und ¹⁹F-NMR-Spektren sind zur Bestätigung der Interpretation der Spektren, invertiert (nach unten hin) die mit gNMR 5.0.2.0 [84] simulierten Spektren

4.1 NMR-Spektren der in wasserfreiem Fluorwasserstoff dargestellten Bis(trifluormethyl)platinate

Im Übersichtsspektrum des Ansatzes von K₂[Pt(CN)₆], gelöst in wasserfreier HF und umgesetzt mit ClF in Gegenwart von KHF₂, sind in D₂O-Lösung die drei Anionen [OC-6-13]-Dichlorodihydroxo(-d₂)bis(trifluormethyl)platinat(IV) [PtCl₂(OD)₂(CF₃)₂]²⁻, [OC-6-24]-Chlorofluorodihydroxo(-d₂)bis(trifluormethyl)platinat(IV) [PtClF(OD)₂(CF₃)₂]²⁻ und [OC-6-13]-Difluorodihydroxo(-d₂)bis(trifluormethyl)platinat(IV) [PtF₂(OD)₂(CF₃)₂]²⁻ erkennbar (Abb. 1, Tab. 2, 3). Mit Zunahme der Anzahl der Fluoro-Liganden erfolgt eine Verschiebung der ¹⁹F-NMR-Signale der CF₃-Gruppen zu tieferen Frequenzen (hohem Feld), durch die stärker werdende magnetische Abschirmung der Fluoratome der CF₃-Gruppen. Es ist anzunehmen, dass bei der Fluorierung von [Pt(CN)₆]²⁻ in aHF mit ClF zunächst die Anionen [PtCl_mF_n(CF₃)₂]²⁻ (m = 0-2, n= 2-4) entstehen. In D₂O-Lösung werden bevorzugt F⁻ gegen OD⁻ ausgetauscht, insbesondere wenn F⁻ *trans* zu CF₃ angeordnet ist. Sowohl das Isomer mit *cis*- als auch das Isomer mit zueinander *trans*-ständigen CF₃-Gruppen von

 $[PtCl_mF_n(OD)_2(CF_3)_2]^{2-}$ (m = 0-2, n = 0-2) könnten prinzipiell vorliegen. Dass in der Lösung die Komplexe mit zueinander *cis*-ständigen CF₃-Gruppen vorliegen, lässt sich anhand des starken *trans*-Einflusses der beiden CF₃-Gruppen erklären. Wären sie zueinander *trans*-ständig, so würden sie ihre Bindungen zu Platin gegenseitig schwächen. Durch den linearen Verschiebungstrend in den ¹⁹⁵Pt- und ¹⁹F-NMR-Spektren und dem Vergleich mit ähnlichen Verbindungen, die in der Literatur beschrieben werden [102, 103], ist auf das gleich Strukturelement der beiden zueinander *cis*-ständigen CF₃-Gruppen in den Anionen $[PtCl_2(OD)_2(CF_3)_2]^{2-}$, $[PtClF(OD)_2(CF_3)_2]^{2-}$ und $[PtF_2(OD)_2(CF_3)_2]^{2-}$ zu schließen. Anhand der ^{35/37}Cl-Isotopenverschiebungen in den NMR-Spektren kann auf das vorhanden sein von Cl-Liganden geschlossen werden.

- Abb. 1 ¹⁹F-NMR-Übersichtsspektrum im Bereich der CF₃-Signale von den bei der Umsetzung von [Bu₄N]₂[Pt(CN)₆] mit ClF in aHF/KHF₂ gebildeten Chlorofluorohydroxo(trifluormethyl)platinaten (gelöst in D₂O):
 a: [PtCl₂(OD)₂(CF₃)₂]²⁻
 - b: $[PtClF(OD)_2(CF_3)_2]^{2-1}$
 - c: $[PtF_2(OD)_2(CF_3)_2]^{2-1}$

In den Ansätzen in denen K₂[Pt(CN)₄] und K₂[Pt(CN)₆] mit ClF in wasserfreier HF umgesetzt wird, sind nur die Anionen [OC-6-13]-Difluorodihydroxo(-d₂)bis(trifluormethyl)platinat(IV) $[PtF_2(OD)_2(CF_3)_2]^{2-}$ und [OC-6-31-C]-Trifluorohydroxo(-d₂)bis(trifluomethyl)platinat(IV) *mer*- $[PtF_3(OD)(CF_3)_2]^{2-}$ zu beobachten. Dabei bildet sich durch den starken Transeinfluß der CF₃-Gruppen, wahrscheinlich aus *cis*-[PtF₄(CF₃)₂]²⁻ zunächst *mer*-[PtF₃(OD)(CF₃)₂]²⁻ und daraus anschließend $[PtF_2(OD)_2(CF_3)_2]^{2-}$.

 $[PtF_2(OD)_2(CF_3)_2]^{2-}$ mer- $[PtF_3(OD)(CF_3)_2]^{2-}$

4.1.1 NMR-Spektren von K₂[PtCl₂(OD)₂(CF₃)₂]

Im ¹⁹⁵Pt-NMR-Spektrum des in D₂O gelösten K₂[PtCl₂(OD)₂(CF₃)₂] erscheint bei –929 ppm durch Kopplung von Platin mit den beiden CF₃-Gruppen ein Septett (Abb. 2a, Tab. 2). Die Cl-Liganden sind anhand der Isotopenverschiebung von ${}^{1}\Delta^{195}$ Pt(${}^{35/37}$ Cl) = +0.103 ppm mit dem Intensitätsmuster von 9:6:1 zu erahnen (Abb. 3, Tab. 2).

Im ¹⁹F-NMR-Spektrum sind bei –21.1 ppm für die beiden CF₃-Gruppen ein Singulett und die beiden zugehörigen ¹⁹⁵Pt-Satelliten zu erkennen (Abb. 1a, 2b, Tab. 2).

Abb. 3 ¹⁹⁵Pt-NMR-Spektrum von K₂[PtCl₂(OD)₂(CF₃)₂] gelöst in D₂O: Isotpenverschiebung im zentralen Signal des Septetts von ${}^{1}\Delta^{195}Pt({}^{35/37}Cl) =$ +0.103 ppm, Isotopenverhältnis von 9:6:1 (${}^{35}Cl_{2}$: ${}^{35}Cl^{37}Cl$: ${}^{37}Cl_{2}$). Die Auflösung ist gerade ausreichend um das Muster zu erkennen.

4.1.2 NMR-Spektren von K₂[PtClF(OD)₂(CF₃)₂]

Für in D₂O gelöstes $K_2[PtClF(OD)_2(CF_3)_2]$ ist im ¹⁹⁵Pt-NMR-Spektrum bei –109 ppm durch die Kopplung des Platins mit dem Fluoro-Liganden und den beiden CF₃-Gruppen ein Dublett von Septetts erkennbar (Abb. 4, Tab. 2, 3).

Im ¹⁹F-NMR-Spektrum sind bei –28.4 ppm die Kopplung der beiden CF₃-Gruppen mit den Fluoro-Liganden als Dublett und die beiden ¹⁹⁵Pt-Satelliten ebenfalls als Dublett erkennbar (Abb. 1b, 5, Tab. 2, 3). Bei –287.7 ppm sind der Fluoro-Ligand, der mit den beiden CF₃-Gruppen zu einem Septett koppelt, und die beiden Platinsatelliten abgebildet (Abb. 6, Tab. 2, 3).

Abb. 4 ¹⁹⁵Pt-NMR-Spektrum von K₂[PtClF(OD)₂(CF₃)₂] gelöst in D₂O (Dublett von Septetts): ¹ $J(^{195}Pt^{19}F) = 964.4$ Hz, ² $J(^{195}Pt^{19}F) = 377.3$ Hz. Die Feinaufspaltung wird durch die ³⁵Cl/³⁷Cl Isotopomeren und durch schlechten "shim" verursacht.

Abb. 5 ¹⁹F-NMR-Spektrum von K₂[PtClF(OD)₂(CF₃)₂] gelöst in D₂O: ¹⁹F-NMR-Spektrum der CF₃-Gruppen (Dublett mit ¹⁹⁵Pt-Satelliten), ³ $J(^{19}F^{19}F) = 8.5$ Hz

Abb. 6 ¹⁹F-NMR-Spektrum von K₂[PtClF(OD)₂(CF₃)₂] gelöst in D₂O: ¹⁹F-NMR-Spektrum des F-Liganden (Septett mit ¹⁹⁵Pt-Satelliten), ³ $J(^{19}F^{19}F) = 8.5$ Hz

4.1.3 NMR-Spektren von K₂[PtF₂(OD)₂(CF₃)₂]

Für das in D₂O gelöste $K_2[PtF_2(OD)_2(CF_3)_2]$ ist im ¹⁹⁵Pt-NMR-Spektrum bei +1003 ppm durch die Kopplung des Platins mit den beiden Fluoro-Liganden und den beiden CF₃-Gruppen ein Triplett von Septetts erkennbar (Abb. 7, Tab. 2, 3).

Im ¹⁹F-NMR-Spektrum ist bei –34.7 ppm die Kopplung der beiden CF₃-Gruppen mit den beiden Fluoro-Liganden als ein Triplett erkennbar, das durch die Kopplung mit ¹⁹⁵Pt zusätzlich zwei Platinsatelliten mit verbreiterten Signalen zeigt (Abb. 1c, 8, Tab. 2, 3). Umgekehrt erkennt man bei –376.8 ppm die beiden Fluoro-Liganden als ein Septett durch die Kopplung mit den beiden CF₃-Gruppen und die beiden ¹⁹⁵Pt-Satelliten mit verbreiterten Signalen (Abb. 9, Tab. 2, 3). Die verbreiterten Satelliten lassen sich durch ein dynamisches Gleichgewicht zwischen den monomeren [PtF₂(OD)₂(CF₃)₂]^{2–}-Anionen und den dimeren [(CF₃)₂F₂Pt(μ -OH)₂PtF₂(CF₃)₂]^{2–}-Anionen erklären.

Abb. 7 ¹⁹⁵Pt-NMR-Spektrum von K₂[PtF₂(OD)₂(CF₃)₂] gelöst in D₂O (Triplett von Septetts): ${}^{1}J({}^{195}Pt{}^{19}F) = 1560.5 \text{ Hz}, {}^{2}J({}^{195}Pt{}^{19}F) = 336.6 \text{ Hz}$

Abb. 8 ¹⁹F-NMR-Spektrum von K₂[PtF₂(OD)₂(CF₃)₂] gelöst in D₂O: ¹⁹F-NMR-Spektrum der CF₃-Gruppen (Triplett mit ¹⁹⁵Pt-Satelliten), ³ $J(^{19}F^{19}F) = 9.8$ Hz

Abb. 9 ¹⁹F-NMR-Spektrum von K₂[PtF₂(OD)₂(CF₃)₂] gelöst in D₂O: ¹⁹F-NMR-Spektrum der F-Liganden (Septett mit ¹⁹⁵Pt-Satelliten), ³ $J(^{19}F^{19}F) = 9.8$ Hz

4.1.4 NMR-Spektren von *mer*-K₂[PtF₃(OD)(CF₃)₂]

Das in D₂O gelöste *mer*-K₂[PtF₃(OD)(CF₃)₂] zeigt im ¹⁹⁵Pt-Spektrum bei +1184 ppm ein Dublett von Tripletts von Septetts durch die Kopplung des Platinatoms mit den beiden verschiedenen Fluoro-Liganden und den CF₃-Gruppen (Abb. 10, Tab.2, 3).

Im ¹⁹F-NMR-Spektrum sind für die CF₃-Gruppe *trans* zum F-Liganden bei –34.5 ppm ein Dublett von Tripletts von Quartetts für die Kopplung mit dem *trans* zur CF₃-Gruppe stehenden F-Liganden, den beiden zueinander *trans*-ständigen F-Liganden, mit der CF₃-Gruppe *trans* zum OH-Liganden und die beiden ¹⁹⁵Pt-Satelliten erkennbar (Abb. 11, Tab. 2, 3). Dabei überlagern sich das Triplett und das Quartett so, das sich ein Pseudooktett ergibt.

Bei –36.1 ppm zeigt die *trans* zum OH-Liganden stehenden CF₃-Gruppe ein Dublett von Tripletts von Quartetts mit den beiden Platinsatelliten mit verbreiterten Signalen, für die Kopplung mit dem *trans* zu der anderen CF₃-Gruppe stehenden F-Liganden, mit den beiden zueinander *trans* stehenden F-Ligandenden, der *trans* zum F-Liganden stehenden CF₃-Gruppe und dem Platinzentralatom (Abb. 12, Tab. 2, 3). In diesem Fall überlagern sich das Dublett, das Triplett und das Quartett der Kopplungen zu den Fluoratomen der Nachbarliganden so, dass sich ein Pseudodecett ergibt.

Das Signal bei –236.2 ppm zeigt für den Fluoro-Liganden *trans* zur CF₃-Gruppe ein Triplett von Quartetts von Quartetts, durch die Kopplung mit den zueinander *trans*-ständigen F-Liganden und den beiden verschiedenen CF₃-Gruppen. Dabei ergibt sich durch die Überlagerung und große Linienbreite der Signale (ca. 20 Hz) ein Pseudooktett (Abb. 13, Tab. 2, 3). Die beiden zueinander *trans*-ständigen Fluoro-Liganden zeigen bei –373.6 ppm ein Dublett von Pseudoseptetts durch die Kopplung mit dem Fluoro-Liganden *trans* zur CF₃-Gruppe und mit den beiden unterschiedlichen CF₃-Gruppen, mit allerdings fast identischen Kopplungskonstanten (Abb. 14, Tab. 2, 3).

Zusätzlich sind bei allen ¹⁹F-NMR-Signalen, außer bei dem bei –236.2 ppm, die beiden ¹⁹⁵Pt-Satelitten mit verbreiterten Signalen zu erkennen, die wie beim K₂[PtF₂(OD)₂(CF₃)₂] durch ein dynamisches Gleichgewicht zwischen den monomeren *mer*-[PtF₃(OD)(CF₃)₂]^{2–} Anionen und den dimeren [(CF₃)₂F₂Pt(μ -F)(μ -OH)PtF₂(CF₃)₂]^{2–}-Anionen bedingt sein können (Abb. 11-14, Tab. 2, 3).

Abb. 10 gemessenes (oben) und simuliertes (unten) ¹⁹⁵Pt-NMR-Spektrum von *mer*-K₂[PtF₃(OD)(CF₃)₂] gelöst in D₂O (Dublett von Tripletts von Septetts): ¹J(¹⁹⁵Pt¹⁹F) = 89.5 Hz (F *trans* zu CF₃), ¹J(¹⁹⁵Pt¹⁹F) = 1566.1 Hz (F trans zu F), ²J(¹⁹⁵Pt¹⁹F) = 322.1 Hz (CF₃ *trans* zu F), ²J(¹⁹⁵Pt¹⁹F) = 333.3 Hz (CF₃ *trans* zu OD) Linienbreite: $v_{\frac{1}{2}} = 30$ Hz

Abb. 11 ¹⁹F-NMR-Spektrum von *mer*-K₂[PtF₃(OD)(CF₃)₂] gelöst in D₂O: ¹⁹F-NMR-Spektrum der CF₃-Gruppe *trans* zu F (Dublett von Tripletts von Quartetts mit ¹⁹⁵Pt-Satelliten), ³J(¹⁹F¹⁹F) = 53.3 Hz (F *trans* zu CF₃), ³J(¹⁹F¹⁹F) = 9.4 Hz (F *trans* zu F), ⁴J(¹⁹F¹⁹F) = 4.7 Hz (CF₃ *trans* zu OD) Linienbreite: $v_{\frac{1}{2}} = 3$ Hz

Abb. 12 gemessenes (oben) und simuliertes (unten) ¹⁹F-NMR-Spektrum von *mer*-K₂[PtF₃(OD)(CF₃)₂] gelöst in D₂O: ¹⁹F-NMR-Spektrum der CF₃-Gruppe *trans* zu OD (Dublett von Tripletts von Quartetts mit ¹⁹⁵Pt-Satelliten), ³J(¹⁹F¹⁹F) = 9.4 Hz (F *trans* zu CF₃), ³J(¹⁹F¹⁹F) = 9.4 Hz (F *trans* zu F), ⁴J(¹⁹F¹⁹F) = 4.7 Hz (CF₃ *trans* zu F) Linienbreite: $v_{1/2} = 3$ Hz

Abb. 13 gemessenes (oben) und simuliertes (unten) ¹⁹F-NMR-Spektrum von *mer*-K₂[PtF₃(OD)(CF₃)₂] gelöst in D₂O: ¹⁹F-NMR-Spektrum des F-Liganden *trans* zur CF₃-Gruppe (Triplett von Quartetts von Quartetts mit ¹⁹⁵Pt-Satelliten), ³J(¹⁹F¹⁹F) = 53.3 Hz (CF₃ *trans* zu F), ²J(¹⁹F¹⁹F) = 49.6 Hz (F *trans* zu F), ³J(¹⁹F¹⁹F) = 9.4 Hz (CF₃ *trans* zu OD) Linienbreite: $v_{1/2} = 20$ Hz

Abb. 14 gemessenes (oben) und simuliertes (unten) ¹⁹F-NMR-Spektrum von *mer*-K₂[PtF₃(OD)(CF₃)₂] gelöst in D₂O: ¹⁹F-NMR-Spektrum der zueinander *trans* ständigen F-Liganden (Dublett von Septetts mit ¹⁹⁵Pt-Satelliten), ²J(¹⁹F¹⁹F) = 49.6 Hz (F *trans* zu CF₃), ³J(¹⁹F¹⁹F) = 53.3 Hz (CF₃ *trans* zu F), ³J(¹⁹F¹⁹F) = 9.4 Hz (CF₃ *trans* zu OD) Linienbreite: $v_{1/2} = 4$ Hz

4.2 NMR-Übersichtsspektren der in Dichlormethan dargestellten Trifluormethylplatinate

4.2.1 Fluoro(trifluormethyl)platinate

Bei der Umsetzung von $[Bu_4N]_2[Pt(CN)_6]$ mit ClF in CH_2Cl_2/KF wird ein Gemisch mit wechselnder Zusammensetzung an $[Pt(CF_3)_6]^{2-}$, $[PtF(CF_3)_5]^{2-}$ und *cis*- $[PtF_2(CF_3)_4]^{2-}$ erhalten (Abb. 15, 16). Die Zusammensetzung ist von der Reaktionsführung und der Aufarbeitung abhängig. Werden bei der Aufarbeitung chloridhaltige Lösemittel verwendet, können die Fluoro-Liganden durch die Chloro-Liganden ersetzt werden. Durch kleine Mengen Feuchtigkeit in den Lösemitteln können die Fluoro-Komplexe zu Hydroxo-Komplexe hydrolysieren.

Abb. 15 ¹⁹⁵Pt-NMR-Übersichtsspektrum der bei der Umsetzung von [Bu₄N]₂[Pt(CN)₆] mit ClF in CH₂Cl₂/KF gebildeten Fluoro(trifluormethyl)platinate (gelöst in CD₃CN): a: cis-[PtF₂(CF₃)₄]²⁻ b: [PtF(CF₃)₅]²⁻ c: cis-[PtCl₂(CF₃)₄]²⁻ d: [PtCl(CF₃)₅]²⁻ e: [Pt(CF₃)₆]²⁻

- Abb. 16 ¹⁹F-NMR-Teilübersichtsspektrum der bei der Umsetzung von $[Bu_4N]_2[Pt(CN)_6]$ mit ClF in CH₂Cl₂/KF gebildeten Fluoro(trifluormethyl)platinate (gelöst in CD₃CN): a: $[PtF(CF_3)_5]^{2-}$ b: $[PtCl(CF_3)_5]^{2-}$ c: *cis*- $[PtCl_2(CF_3)_4]^{2-}$ d: $[Pt(CF_3)_6]^{2-}$
 - e: $cis-[PtF_2(CF_3)_4]^{2-}$

4.2.2 Umsetzung der Fluoro(trifluormethyl)platinate mit (CH₃)₃SiCl

Nachfolgend sind die ¹⁹⁵Pt- und ¹⁹F-Übersichtsspektren der mit (CH₃)₃SiCl umgesetzten Fluoro(trifluormethyl)platinate abgebildet (Abb. 17, 18).

- Abb. 17 Typisches ¹⁹⁵Pt-NMR-Übersichtsspektrum der mit (CH₃)₃SiCl umgesetzten Fluoro(trifluormethyl)platinate (gelöst in CD₃CN):
 - a: $[PtCl_5(CF_2Cl)]^{2-}$
 - b: $[PtCl_5(CF_3)]^{2-1}$
 - c: cis-[PtCl₄(CF₂Cl)₂]²⁻
 - d: cis-[PtCl₄(CF₂Cl₂(CF₃)]²⁻
 - e: cis-[PtCl₄(CF₃)₂]²⁻
 - f: $fac [PtCl_3(CF_2Cl)_3]^{2-}$
 - g: fac-[PtCl₃(CF₂Cl)₂(CF₃)]²⁻
 - h: fac-[PtCl₃(CF₂Cl)(CF3)₂]²⁻
 - i: $fac [PtCl_3(CF_3)_3]^{2-1}$

Abb. 18 Typisches ¹⁹F-NMR-Übersichtsspektrum der mit $(CH_3)_3$ SiCl umgesetzten Fluoro(trifluormethyl)platinate (gelöst in CD₃CN): a: $[PtCl_5(CF_2Cl)]^{2-}$ b: *cis*- $[PtCl_4(CF_2Cl)(CF_3)]^{2-}$ c: *cis*- $[PtCl_4(CF_2Cl)_2]^{2-}$ d: *fac*- $[PtCl_3(CF_2Cl)(CF_3)_2]^{2-}$ e: *fac*- $[PtCl_3(CF_2Cl)_2(CF_3)]^{2-}$ f: *fac*- $[PtCl_3(CF_2Cl)_3]^{2-}$ g: $[PtCl_5(CF_3)]^{2-}$ h: *cis*- $[PtCl_4(CF_3)_2]^{2-}$ i: *fac*- $[PtCl_3(CF_3)_3]^{2-}$

4.2.3 Umsetzung der Fluoro(trifluormethyl)platinate mit (CH₃)₃SiCN

Nachfolgend sind die ¹⁹⁵Pt- und ¹⁹F-Übersichtsspektren der mit (CH₃)₃SiCN umgesetzten Fluoro(trifluormethyl)platinate abgebildet (Abb. 19, 20).

- Abb. 19 Typisches ¹⁹⁵Pt-NMR-Übersichtsspektrum der mit (CH₃)₃SiCN umgesetzten Fluoro(trifluormethyl)platinate (gelöst in CD₃CN):
 - a: $cis-[Pt(CN)(CF_2CN)(CF_3)_4]^2$
 - b: $[Pt(CN)(CF_3)_5]^{2}$
 - c: $cis-[Pt(CN)_2(CF_3)_4]^{2-}$

Abb. 20 Typisches ¹⁹F-NMR-Übersichtsspektrum der mit (CH₃)₃SiCN umgesetzten Fluoro(trifluormethyl)platinate (gelöst in CD₃CN):
a: *cis*-[Pt(CN)₂(CF₃)₄]²⁻
b: *cis*-[Pt(CN)(CF₂CN)(CF₃)₄]²⁻
c: [Pt(CN)(CF₃)₅]²⁻

4.2.4 Umsetzung der Fluoro(trifluormethyl)platinate mit ¹⁵NH₃

¹⁹⁵Pt-, ¹⁹F-, ¹⁵N{¹H}- und ¹H-NMRdie eindimensionalen Nachfolgend sind Übersichtsspektren der mit ¹⁵NH₃ umgesetzten Fluoro(trifluormethyl)platinate abgebildet (Abb. 21-24).

- ¹⁹⁵Pt-NMR-Übersichtsspektrum der mit ¹⁵NH₃ umgesetzten Fluoro-Abb. 21 (trifluormethyl)platinate (gelöst in CD₃CN):

 - a: [PtF(CF₃)₅]²⁻ b: *trans*-[PtC](¹⁵NH₃)(CF₃)₄]⁻
 - c: $cis-[PtCl(^{15}NH_3)(CF_3)_4]^-$
 - d: $[PtCl(CF_3)_5]^{2-}$
 - e: $[Pt(CF_3)_5]^-$ f: $[Pt(CF_3)_6]^{2-}$

- ¹⁹F-NMR-Übersichtsspektrum der mit ¹⁵NH₃ umgesetzten Abb. 22 Fluoro(trifluormethyl)platinate (gelöst in CD₃CN):

 - a: $[PtF(CF_3)_5]^{2-}$ b: $[PtCl(CF_3)_5]^{2-}$ c: $[Pt(^{15}NH_3)(CF_3)_5]^{-}$

 - d: $[Pt(CF_3)_6]^{2^-}$ e: *cis*- $[PtCl(^{15}NH_3)(CF_3)_4]^-$ f: *trans*- $[PtCl(^{15}NH_3)(CF_3)_4]^-$

- ¹⁵N{¹H}-NMR-Übersichtsspektrum der mit ¹⁵NH₃ umgesetzten Fluoro(trifluormethyl)platinate (gelöst in CD₃CN):
 a: *trans*-[PtCl(¹⁵NH)(CF₃)₄]⁻
 b: [Pt(¹⁵NH₃)(CF₃)₅]⁻
 c: *cis*-[PtCl(¹⁵NH₃)(CF₃)₄]⁻ Abb. 23

Abb. 24 ¹H-NMR-Übersichtsspektrum der mit ¹⁵NH₃ umgesetzten Fluoro(trifluormethyl)platinate (gelöst in CD₃CN): a: cis-[PtCl(¹⁵NH₃)(CF₃)₄]⁻ b: [Pt(¹⁵NH₃)(CF₃)₅]⁻ c: trans-[PtCl(¹⁵NH)(CF₃)₄]⁻

Das ¹⁹F, ¹⁹F-verschiebungskorrelierte 2D-NMR-Spektrum von *cis*-K[PtCl(¹⁵NH₃)(CF₃)₄], *trans*-K[PtCl(¹⁵NH₃)(CF₃)₄] und K[Pt(¹⁵NH₃)(CF₃)₅] in CD₃CN ermöglicht anhand der Kreuzpeaks (cross-peaks) eine Zuordnung der zu einem Anion gehörenden Signale (Abb. 25).

Durch 2D-NMR-Spektren ist es möglich, durch Kopplung korrelierte Signalgruppen zuzuordnen, z.B. ¹⁹F, ¹⁹F, ¹⁵N, ¹H oder auch ¹⁹⁵Pt, ¹H. Im Fall der ¹⁵N, ¹H-korrelierten 2D-NMR-Spektren von *cis*-K[PtCl(¹⁵NH₃)(CF₃)₄], *trans*-K[PtCl(¹⁵NH₃)(CF₃)₄] und K[Pt(¹⁵NH₃)(CF₃)₅] erfolgt die Detektion über den ¹⁵N-Kanal (innere Spule) (Abb. 26) bzw. bei einem weiteren inversen Experiment über den ¹H-Kanal (äußere Spule) (Abb. 27). Beim inversen Experiment wird bei der Detektion, die höhere Empfindlichkeit von ¹H genutzt. Neben den Hauptsignalen sind in den Korrelationssignalen deutlich die ¹⁹⁵Pt-Satelliten zu erkennen. Aus den Steigungen der Verbindungslinien der Platinsatelliten kann auf die relativen Vorzeichen der reduzierten Kopplungskonstanten $K(^{195}Pt^{15}N)$ und $K(^{195}Pt^{1}H)$ geschlossen werden.

Die sich aus Abb. 26 sowohl für *cis*-K[PtCl(¹⁵NH₃)(CF₃)₄] als auch K[Pt(¹⁵NH₃)(CF₃)₅] ergebenden negativen Steigungen implizieren unterschiedliche Vorzeichen für die reduzierten Kopplungskonstanten. Da χ (¹⁹⁵Pt) > 0 und χ (¹⁵N) < 0, resultieren gleich Vorzeichen für ²*J*(¹⁹⁵Pt¹⁵N) und ¹*J*(¹⁹⁵Pt¹H).

Das ¹⁹⁵Pt,¹H-verschiebungskorrelierte und ¹⁹F-entkoppelte 2D-NMR-Spektrum von *cis*-K[PtCl(¹⁵NH₃)(CF₃)₄], *trans*-K[PtCl(¹⁵NH₃)(CF₃)₄] und K[Pt(¹⁵NH₃)(CF₃)₅] in CD₃CN zeigt anhand der Kreuzpeaks (cross-peaks) die zusammengehörenden Signale aus dem ¹⁹⁵Pt{¹⁹F}-1D-NMR-Spektrum und ¹H-1D-NMR-Spektrum (Abb. 28).

75

77

4.2.5 Umsetzung der Fluoro(trifluormethyl)platinate mit n-Bu-NH₂

Nachfolgend sind die ¹⁹⁵Pt-, ¹⁹F-Übersichtsspektren der mit n-Bu-NH₂ umgesetzten Fluoro(trifluormethyl)platinate abgebildet (Abb. 29, 30).

- Abb. 29 Typisches ¹⁹⁵Pt-NMR-Übersichtsspektrum der mit n-Bu-NH₂ umgesetzten Fluoro(trifluormethyl)platinate (gelöst in CD₃CN):
 - a: cis-[PtF(BuNH₂)(CF₃)₄]⁻
 - b: [Pt(BuNH₂)(CF₃)₅]⁻
 - c: $[Pt(CF_3)_6]^{\tilde{2}'}$

- Abb. 30 Typisches ¹⁹F-NMR-Übersichtsspektrum der mit n-Bu-NH₂ umgesetzten Fluoro(trifluormethyl)platinate (gelöst in CD₃CN): a: $[PtCl(CF_3)_5]^{2-}$
 - b: $[Pt(BuNH_2)(CF_3)_5]^-$
 - c: $[Pt(OH)(CF_3)_5]^{2-}$
 - d: cis-[PtF(BuNH₂)(CF₃)₄]⁻ e: [Pt(CF₃)₆]²⁻

4.3 NMR-Spektren von [Bu₄N]₂[Pt(CF₃)₆]

Im ¹⁹⁵Pt-NMR-Spektrum von $[Bu_4N]_2[Pt(CF_3)_6]$ (gelöst in CD₃CN) ist bei –2437 ppm die Kopplung des Platinatoms mit den sechs CF₃-Gruppen in Form der elf stärksten Signale eines Nonadecetts (berechnetes Halbmuster: 1:18:153:816:3060:8568:18564:31824:43758:48620) erkennbar (Abb. 31a, Tab. 2, 7).

Das ¹⁹F-NMR-Spektrum zeigt bei –28.1 ppm für die sechs äquivalenten CF₃-Gruppen ein Singulett mit ¹⁹⁵Pt-Satelliten (Abb. 31b, Tab. 2).


```
Abb. 31 NMR-Spektren von [Bu_4N]_2[Pt(CF_3)_6] gelöst in CD<sub>2</sub>Cl<sub>2</sub>:
a: <sup>195</sup>Pt-NMR-Spektrum (Nonadecett),
b: <sup>19</sup>F-NMR-Spektrum (Singulett mit <sup>195</sup>Pt-Satelitten)
<sup>2</sup>J(<sup>195</sup>Pt<sup>19</sup>F) = 274.6 Hz in beiden Spektren
```

4.4 NMR-Spektren von $[PtX(CF_3)_5]^{n-}$ (X = F, OH, Cl, CN, ¹⁵NH₃, BuNH₂, n = 1,2)

4.4.1 NMR-Spektren von K₂[PtF(CF₃)₅]

Im ¹⁹⁵Pt-NMR-Spektrum von $K_2[PtF(CF_3)_5]$ (gelöst in CD₃CN) ist bei –1658 ppm durch Kopplung des Platinatoms mit den axialen CF₃- und F-Liganden und den vier äquatorialen CF₃-Liganden, ein Dublett von Quartetts von Tridecetts abgebildet (Abb. 32, Tab. 2, 3).

Das ¹⁹F-NMR-Spektrum der CF₃-Gruppen *trans* zu F zeigt bei –22.7 ppm die Kopplung zum F-Liganden und den vier äquatorialen CF₃-Gruppen als Dublett von Tridecetts. Die Kopplung zum Platin ist in Form der beiden Platinsatelliten erkennbar (Abb. 33, Tab. 2, 3).

Das Dublett von Quartetts bei -35.0 ppm der vier äquivalenten äquatorialen CF₃-Gruppen entsteht durch die Kopplung mit dem F-Liganden und der *trans* zum F-Liganden befindlichen axialen CF₃-Gruppe. Die beiden ¹⁹⁵Pt-Satelliten sind ebenfalls erkennbar (Abb. 34, Tab. 2, 3). Bei -302.7 ppm ist der F-Ligand als ein Quartett von Tridecetts durch die Kopplung mit der zu ihm *trans*-ständigen CF₃-Gruppe und den vier äquatorialen CF₃-Gruppen erkennbar. Das Aufspaltungsmuster ist durch die ¹⁹⁵Pt-Satelliten gestört (Abb. 35, Tab. 2, 3).

Abb. 32 gemessenes (oben) und simuliertes (unten) ¹⁹⁵Pt-NMR-Spektrum von K₂[PtF(CF₃)₅] in CD₃CN (Dublett von Quartetts von Tridecetts): ¹ $J(^{195}Pt^{19}F) = 147.0 \text{ Hz}, ^{2}J(^{195}Pt^{19}F_{ax}) = 507.2 \text{ Hz}, ^{2}J(^{195}Pt^{19}F_{aq}) = 268.8 \text{ Hz}$ Linienbreite: $v_{\frac{1}{2}} = 6 \text{ Hz}$

Abb. 33 ¹⁹F-NMR-Spektrum von K₂[PtF(CF₃)₅] in CD₃CN: ¹⁹F-NMR-Spektrum der CF₃-Gruppe *trans* zum F-Liganden (Dublett von Tridecetts mit ¹⁹⁵Pt-Satelitten), ³ $J(^{19}F^{19}F) = 49.6$ Hz, ⁴ $J(^{19}F^{19}F) = 5.1$ Hz x: Signale einer anderen Spezies

Abb. 34 ¹⁹F-NMR-Spektrum von K₂[PtF(CF₃)₅] in CD₃CN: ¹⁹F-NMR-Spektrum der vier zueinander *trans*-ständigen äquatorialen CF₃-Gruppen (Dublett von Quartetts mit ¹⁹⁵Pt-Satelliten), ³ $J(^{19}F^{19}F) = 6.6$ Hz, ⁴ $J(^{19}F^{19}F) = 5.1$ Hz

Abb. 35 ¹⁹F-NMR-Spektrum von K₂[PtF(CF₃)₅] in CD₃CN: F-Ligand *trans* zur CF₃-Gruppe (Quartett von Tridecetts mit ¹⁹⁵Pt-Satelliten), ${}^{3}J({}^{19}F^{19}F) = 49.6$ Hz (CF₃ *trans* zu F), ${}^{3}J({}^{19}F^{19}F) = 6.6$ Hz (CF₃ *cis* zu F)

4.4.2 NMR-Spektren von K₂[Pt(OH)(CF₃)₅]

Für das ¹⁹⁵Pt-NMR-Spektrum von in CD₃CN gelöstem K₂[Pt(OH)(CF₃)₅] wird bei –2080 ppm durch die Kopplung des Platinatoms mit der axialen CF₃-Gruppe und den vier äquatorialen CF₃-Gruppen ein Quartett von Tridecetts erwartet (Abb. 36, Tab. 2). Da aber die ²J(¹⁹⁵Pt¹⁹F)-Kopplungskonstante für die axiale CF₃-Gruppe nahezu doppelt so groß wie die ²J(¹⁹⁵Pt¹⁹F)-Kopplungskonstante der vier äquatorialen CF₃-Gruppen ist, wird das Quartett der axialen CF₃-Gruppe durch das Tridecett der äquatorialen CF₃-Gruppen verdeckt.

Im ¹⁹F-NMR-Spektrum sind bei -24.7 ppm die Kopplung der axialen CF₃-Gruppe mit den vier äquatorialen CF₃-Gruppen als Tridecett und die ¹⁹⁵Pt-Satelliten zu erkennen (Abb. 37, Tab. 2). Bei -31.3 ppm zeigen sich die Kopplungen der vier äquatorialen CF₃-Gruppen mit der axialen CF₃-Gruppe als Quartett und die beiden Platinsatelliten (Abb. 38, Tab. 2).

Abb. 36 gemessenes (oben) und simuliertes (unten) ¹⁹⁵Pt-NMR-Spektrum von $K_2[Pt(OH)(CF_3)_5]$ gelöst in CD₃CN (Quartett von Tridecetts): ² $J(^{195}Pt^{19}F_{ax}) = 536.2$ Hz, ² $J(^{195}Pt^{19}F_{aq}) = 269.3$ Hz Linienbreite: $v_{\frac{1}{2}} = 60$ Hz

Abb. 37 ¹⁹F-NMR-Spektrum von K₂[Pt(OH)(CF₃)₅] gelöst in CD₃CN: ¹⁹F-NMR-Spektrum der axialen CF₃-Gruppe *trans* zum OH-Liganden (Tridecett mit ¹⁹⁵Pt-Satelliten), ⁴ $J(^{19}F^{195}Pt) = 5.6$ Hz

Abb. 38 ¹⁹F-NMR-Spektrum von K₂[Pt(OH)(CF₃)₅] gelöst in CD₃CN: ¹⁹F-NMR-Spektrum der vier zueinander *trans*-ständigen äquatorialen CF₃-Gruppen (Quartett mit ¹⁹⁵Pt-Satelliten), ⁴ $J(^{19}F^{19}F) = 5.6$ Hz

4.4.3 NMR-Spektren von [Bu₄N]₂[PtCl(CF₃)₅]

Das ¹⁹⁵Pt-NMR-Spektrum von in CD_2Cl_2 gelöstem $[Bu_4N]_2[PtCl(CF_3)_5]$ zeigt bei –2128 ppm durch die Kopplung des Platinatoms mit der axialen CF₃-Gruppe und den vier äquatorialen CF₃-Gruppen ein Quartett von Tridecetts (Abb. 39, Tab. 2).

Im ¹⁹F-NMR-Spektrum sind für die axiale CF₃-Gruppe bei -23.8 ppm 9 Peaks eines Tridecetts erkennbar, das durch die Kopplung der axialen CF₃-Gruppe mit den vier äquatorialen CF₃-Gruppen entsteht. Zusätzlich sind die beiden Platinsatelliten vorhanden (Abb. 40a, Tab. 2). Bei -30.3 ppm sind die Kopplung der vier äquatorialen CF₃-Gruppen mit der axialen CF₃-Gruppe (CF₃-Gruppe trans zu Cl) als Quartett und die beiden Platin-Satelliten erkennbar (Abb. 40b, Tab. 2).

Abb. 39 gemessenes (oben) und simuliertes (unten) ¹⁹⁵Pt-NMR-Spektrum von [Bu₄N]₂[PtCl(CF₃)₅] gelöst in CD₂Cl₂ (Quartett von Tridecetts): ${}^{2}J({}^{195}Pt^{19}F_{ax}) = 471.8 \text{ Hz}, {}^{2}J({}^{195}Pt^{19}F_{aq}) = 279.7 \text{ Hz}$ Linienbreite: $v_{\frac{1}{2}} = 8 \text{ Hz}$

Abb. 40
 ¹⁹F-NMR-Spektren von [Bu₄N]₂[PtCl(CF₃)₅] gelöst in CD₂Cl₂:
 a: ¹⁹F-NMR-Spektrum der axialen CF₃-Gruppe *trans* zum Cl-Liganden (Tridecett mit ¹⁹⁵Pt-Satelitten, fünffach vergrößert), ⁴J(¹⁹F¹⁹F) = 6.5 Hz
 b: ¹⁹F-NMR-Spektrum der vier zueinander *trans*-ständigen äquatorialen CF₃-

Gruppen (Quartett mit ¹⁹⁵Pt-Satelliten), ${}^{4}J({}^{19}F^{19}F) = 6.5 \text{ Hz}$

4.4.4 NMR-Spektren von [Bu₄N]₂[Pt(CN)(CF₃)₅]

Im ¹⁹⁵Pt-NMR-Spektrum von $[Bu_4N]_2[Pt(CN)(CF_3)_5]$ (gelöst in CD₃CN) wird bei –2619 ppm für die Kopplung des Platinatoms mit der axialen CF₃-Gruppe und den vier äquatorialen CF₃-Gruppen ein Quartett von Tridecetts erhalten (Abb. 41, Tab. 2).

Das Signal bei -25.4 ppm zeigt im ¹⁹F-NMR-Spektrum (Abb. 42, Tab. 2) für die Kopplung der vier äquatorialen CF₃-Gruppen mit der axialen CF₃-Gruppe (*trans* zur CN-Gruppe stehende CF₃-Gruppe) ein Quartett. Umgekehrt ist bei -28.5 ppm für die Kopplung der axialen CF₃-Gruppe mit den vier äquatorialen CF₃-Gruppen ein Tridecett zu erkennen (Abb. 43, Tab. 2). Für beide Signale sind die Platinsatelliten vorhanden.

Abb. 41 gemessenes (oben) und simuliertes (unten) ¹⁹⁵Pt-NMR-Spektrum von [Bu₄N]₂[Pt(CN)(CF₃)₅] gelöst in CD₃CN (Quartetts von Tridecetts): ² $J(^{195}Pt^{19}F_{ax}) = 348.6 \text{ Hz}, ^{2}J(^{195}Pt^{19}F_{äq}) = 286.8 \text{ Hz}$ Halbwertsbreite: $v_{\frac{1}{2}} = 3 \text{ Hz}$

Abb. 42 ¹⁹F-NMR-Spektrum von $[Bu_4N]_2[Pt(CN)(CF_3)_5]$ gelöst in CD₃CN: ¹⁹F-NMR-Spektrum der vier zueinander *trans*-ständigen äquatorialen CF₃-Gruppen (Quartett mit ¹⁹⁵Pt-Satelliten), ⁴ $J(^{19}F^{19}F) = 6.1$ Hz

Abb. 43 ¹⁹F-NMR-Spektrum von $[Bu_4N]_2[Pt(CN)(CF_3)_5]$ gelöst in CD₃CN: ¹⁹F-NMR-Spektrum der axialen CF₃-Gruppe *trans* zur CN-Gruppe (Tridecett mit ¹⁹⁵Pt-Satelliten), ⁴J(¹⁹F¹⁹F) = 6.1 Hz x: Signale einer anderen Spezies

4.4.5 NMR-Spektren von K[Pt(¹⁵NH₃)(CF₃)₅]

Das ¹⁹⁵Pt-NMR-Spektrum von K[Pt(¹⁵NH₃)(CF₃)₅] (gelöst in CD₃CN) zeigt bei –2235 ppm durch die Kopplung des Platinatoms mit der ¹⁵NH₃-Gruppe, der axialen *trans* zur ¹⁵NH₃-Gruppe stehenden CF₃-Gruppe und den vier äquatorialen CF₃-Gruppen ein Dublett von Quartetts von Quartetts von Tridecetts (Abb. 44, Tab. 2, 5, 6).

Bei -2229 ppm ist im ¹⁹⁵Pt{¹⁹F}-NMR-Spektrum durch Kopplung des Platinatoms mit dem ¹⁵N-Atom und den drei äquivalenten Wasserstoffatomen der ¹⁵NH₃-Gruppe ein Dublett von Quartetts zu erkennen (Abb. 45, Tab. 2, 5, 6).

Im ¹⁹F-NMR-Spektrum ist bei –24.9 ppm durch die Kopplung der *trans* zur ¹⁵NH₃-Gruppe stehenden CF₃-Gruppe mit dem ¹⁵N und ¹H der ¹⁵NH₃-Gruppe, den vier äquatorialen CF₃-Gruppen und dem Platinzentralatom, ein Dublett von Quartetts von Tridecetts und die beiden Platinsatelliten erkennbar (Abb. 46, Tab. 2, 6).

Bei -33.0 ppm erscheint durch Kopplung der vier äquatorialen CF₃-Gruppen mit dem ¹⁵N der ¹⁵NH₃-Gruppe, der *trans* zur ¹⁵NH₃-Gruppe stehenden CF₃-Gruppe und dem Platinatom ein Dublett von Quartetts mit ¹⁹⁵Pt-Satelliten (Abb. 47, Tab. 2, 6).

Das ¹⁵N{¹H}-NMR-Spektrum von K[Pt(¹⁵NH₃)(CF₃)₅] zeigt bei –408.4 ppm durch Kopplung des ¹⁵N-Atoms der ¹⁵NH₃-Gruppe mit der ihr gegenüber liegenden axialen CF₃-Gruppe, den vier äquatorialen CF₃-Gruppen und dem ¹⁹⁵Pt-Atom ein Quartett von Tridecetts mit den beiden ¹⁹⁵Pt-Satelliten (Abb. 48, Tab. 5, 6).

Im ¹H-NMR-Spektrum bei +3.3 ppm ist durch die Kopplung der drei äquivalenten ¹H-Atome mit dem ¹⁵N-Atom und dem Platinatom ein Dublett mit Platinsatelliten erkennbar (Abb. 49, Tab. 5).

Abb. 44 gemessenes (oben) und simuliertes (unten) ¹⁹⁵Pt-NMR-Spektrum von K[Pt(¹⁵NH₃)(CF₃)₅] gelöst in CD₃CN (Dublett von Quartetts von Quartetts von Tridecetts): ¹J(¹⁹⁵Pt¹⁵N) = 126.4 Hz, ²J(¹⁹⁵Pt¹H) = 24.4 Hz, ²J(¹⁹⁵Pt¹⁹F_{ax}) = 459.5 Hz, ²J(¹⁹⁵Pt¹⁹F_{aq}) = 270.0 Hz Linienbreite: $v_{\frac{1}{2}} = 10$ Hz

Abb. 45 195 Pt{ 19 F}-NMR-Spektrum von K[Pt(15 NH₃)(CF₃)₅] gelöst in CD₃CN (Dublett von Quartetts): ${}^{1}J({}^{195}$ Pt 15 N) = 126.5 Hz, ${}^{2}J({}^{195}$ Pt 1 H) = 24.4 Hz

Abb. 46 ¹⁹F-NMR-Spektrum von K[Pt(¹⁵NH₃)(CF₃)₅] gelöst in CD₃CN: ¹⁹F-NMR-Spektrum der axialen CF₃-Gruppe *trans* zu ¹⁵NH₃ (Dublett von Quartetts von Tridecetts mit ¹⁹⁵Pt-Satelliten), ³ $J(^{19}F_{ax}^{15}N) = 8.2$ Hz, ⁴ $J(^{19}F^{19}F) =$ 5.3 Hz, ⁴ $J(^{19}F^{1}H) = 0.6$ Hz,

Abb. 47 ¹⁹F-NMR-Spektrum von K[Pt(¹⁵NH₃)(CF₃)₅] gelöst in CD₃CN: ¹⁹F-NMR-Spektrum der vier zueinander *trans*-ständigen äquatorialen CF₃-Gruppen *cis* zu ¹⁵NH₃ (Dublett von Quartetts mit ¹⁹⁵Pt-Satelliten), ³J(¹⁹F_{äq}¹⁵N) = 1.7 Hz, ⁴J(¹⁹F¹⁹F) = 5.3 Hz

Abb. 48 ¹⁵N{¹H}-NMR-Spektrum von K[Pt(¹⁵NH₃)(CF₃)₅] gelöst in CD₃CN (Quartetts von Tridecetts mit ¹⁹⁵Pt-Satelliten): ¹J(¹⁵N¹⁹⁵Pt) = 126.4 Hz, ³J(¹⁵N¹⁹F_{ax}) = 8.2 Hz, ³J(¹⁵N¹⁹F_{äq}) = 1.7 Hz

Abb. 49 ¹H-NMR-Spektrum von K[Pt(¹⁵NH₃)(CF₃)₅] gelöst in CD₃CN (Dublett mit ¹⁹⁵Pt-Satelliten): ¹J(¹H¹⁵N) = 72.4 Hz, ²J(¹H¹⁹⁵Pt) = 24.4 Hz

4.4.6 NMR-Spektren von Cs[Pt(BuNH₂)(CF₃)₅]

Das ¹⁹⁵Pt-NMR-Spektrum von $Cs[Pt(BuNH_2)(CF_3)_5]$ in CD_3CN ist bei –2115 ppm als verrauschtes Quartett von Tridecetts zu erkennen (Abb. 50, Tab. 2).

Das ¹⁹F-NMR-Spektrum zeigt bei –24.3 ppm durch die Kopplung der axialen CF₃-Gruppe mit dem Platin-Zentralatom und den vier äqatorialen CF₃-Gruppen ein Tridecett mit ¹⁹⁵Pt-Satelliten (Abb. 51, Tab. 2). Umgekehrt sind bei –32.5 ppm die Kopplung der vier äquatorialen CF₃-Gruppen mit der axialen CF₃-Gruppe als Quartett und die beiden Platinsatelliten zu sehen (Abb. 52, Tab. 2).

Abb. 50 195 Pt-NMR-Spektrum von Cs[Pt(BuNH₂)(CF₃)₅] gelöst in CD₃CN: ${}^{2}J({}^{195}$ Pt 19 F_{ax}) = 461.2 Hz, ${}^{2}J({}^{195}$ Pt 19 F_{aq}) = 263.9 Hz

Abb. 51 ¹⁹F-NMR-Spektrum von Cs[Pt(BuNH₂)(CF₃)₅] gelöst in CD₃CN: ¹⁹F-NMR-Spektrum der axialen CF₃-Gruppe *trans* zur BuNH₂-Gruppe (Tridecett mit ¹⁹⁵Pt-Satelliten), ⁴ $J(^{19}F^{19}F) = 5.7$ Hz

Abb. 52 ¹⁹F-NMR-Spektrum von Cs[Pt(BuNH₂)(CF₃)₅] gelöst in CD₃CN: ¹⁹F-NMR-Spektrum der vier zueinander *trans*-ständigen äquatorialen CF₃-Gruppen (Quartett mit ¹⁹⁵Pt-Satelliten), ⁴ $J(^{19}F^{19}F) = 5.7$ Hz

4.5 NMR-Spektren von cis- $[PtX_2(CF_3)_4]^{2-}$ (X = F, OH, Cl, CN)

4.5.1 NMR-Spektren von *cis*-[Bu₄N]₂[PtF₂(CF₃)₄]

Das ¹⁹⁵Pt-NMR-Spektrum von *cis*- $[Bu_4N]_2[PtF_2(CF_3)_4]$ (in CD₃CN) ist als breites unstrukturiertes Signal bei –1035 ppm erkennbar (Tab. 2).

Im ¹⁹F-NMR-Spektrum zeigt sich bei –28.1 ppm durch die Kopplung der beiden *trans* zu den F-Liganden stehenden CF₃-Gruppen mit dem jeweils *trans*-ständigen F-Liganden und den beiden zueinander *trans*-ständigen CF₃-Gruppen ein Dublett von Septetts (Abb. 53, Tab. 2, 3). Das Dublett entsteht dadurch, da die Kopplung zum *cis*-ständigen F-Liganden nicht erkennbar ist. Das Septett bei bei –41.0 ppm entsteht durch die Kopplung der beiden *trans* zueinander stehenden CF₃-Gruppen mit den beiden *trans* zum F-Liganden stehenden CF₃-Gruppen (Abb. 54, Tab. 2, 3). Bei –278.2 ppm ist das Signal der F-Liganden erkennbar (Abb. 55, Tab. 2, 3). Alle beschriebenen ¹⁹F-NMR-Signale bis auf das Signal bei –278.2 ppm zeigen die beiden zugehörigen ¹⁹⁵Pt-Satelliten.

Abb. 53 ¹⁹F-NMR-Spektrum von *cis*-[Bu₄N]₂[PtF₂(CF₃)₄] gelöst in CD₃CN: ¹⁹F-NMR-Spektrum der CF₃-Gruppen *trans* zu den F-Liganden (Dublett von Septetts mit ¹⁹⁵Pt-Satelliten), ² $J(^{19}F^{195}Pt) = 455.6$ Hz, ³ $J(^{19}F^{19}F) = 41.5$ Hz (F *trans* zu CF₃), ⁴ $J(^{19}F^{19}F) = 4.5$ Hz, x: Signal von [Pt(CF₃)₆]²⁻

Abb. 54 ¹⁹F-NMR-Spektrum von *cis*-[Bu₄N]₂[PtF₂(CF₃)₄] gelöst in CD₃CN: ¹⁹F-NMR-Spektrum der zueinander *trans*-ständigen CF₃-Gruppen (Dublett von Septetts mit ¹⁹⁵Pt-Satelliten), ² $J(^{19}F^{195}Pt) = 261.9$ Hz, ³ $J(^{19}F^{19}F) = 6.2$ Hz, ⁴ $J(^{19}F^{19}F) = 4.5$ Hz

Abb. 55 ¹⁹F-NMR-Spektrum von *cis*-[Bu₄N]₂[PtF₂(CF₃)₄] gelöst in CD₃CN: ¹⁹F-NMR-Spektrum der F-Liganden (zu erwarten ist ein Quartett von Septetts mit ¹⁹⁵Pt-Satelliten), ¹J(¹⁹F¹⁹⁵Pt) = ca. 60 Hz, ³J(¹⁹F¹⁹F) = 41.5 Hz (CF₃ *trans* zu F), ³J(¹⁹F¹⁹F) = 6.2 Hz (CF₃ *cis* zu F)

4.5.2 NMR-Spektren von *cis*-K₂[Pt(OH)₂(CF₃)₄]

Das ¹⁹⁵Pt-NMR-Spektrum von in CD₃CN gelöstem cis-K₂[Pt(OH)₂(CF₃)₄] zeigt bei –1542 ppm durch die Kopplung des Platinatoms mit den *trans* zu den OH-Gruppen stehenden CF₃-Gruppen und den zueinander *trans* stehenden CF₃-Gruppen ein Septett von Septetts (Abb. 56, Tab. 2).

Im ¹⁹F-NMR-Spektrum sind bei –26.5 ppm durch die Kopplung der CF₃-Gruppen *trans* zu den OH-Gruppen mit den beiden zueinander *trans*-ständigen CF₃-Gruppen ein Septett und die beiden ¹⁹⁵Pt-Satelliten erkennbar (Abb. 57, Tab. 2). Bei –40.3 ppm zeigt sich durch die Kopplung der beiden zueinander *trans*-ständigen CF₃-Gruppen mit den *trans* zu den OH-Gruppen stehenden CF₃-Gruppen ein Septett (Abb. 58, Tab. 2). Auch hier sind die zugehörigen Platinsatelliten vorhanden.

Abb. 56 gemessenes (oben) und simuliertes (unten) ¹⁹⁵Pt-NMR-Spektrum von cis-K₂[Pt(OH)₂(CF₃)₄] gelöst in CD₃CN (Septett von Septetts): ²J(¹⁹⁵Pt¹⁹F) = 446.6 Hz (CF₃ trans zu OH), ²J(¹⁹⁵Pt¹⁹F) = 273.6 Hz (CF₃ trans zu CF₃) Linienbreite: $v_{1/2} = 7$ Hz

Abb. 57 ¹⁹F-NMR-Spektrum von *cis*-K₂[Pt(OH)₂(CF₃)₄] gelöst in CD₃CN: ¹⁹F-NMR-Spektrum der CF₃-Gruppen *trans* zu den OH-Gruppen (Septett mit ¹⁹⁵Pt-Satelliten), ² $J(^{19}F^{195}Pt) = 446.6$ Hz, ⁴ $J(^{19}F^{19}F) = 4.6$ Hz

Abb. 58 ¹⁹F-NMR-Spektrum von *cis*-K₂[Pt(OH)₂(CF₃)₄] gelöst in CD₃CN: ¹⁹F-NMR-Spektrum der zueinander *trans*-ständigen CF₃-Gruppen (Septett mit ¹⁹⁵Pt-Satelliten), ⁴ $J(^{19}F^{19}F) = 4.6$ Hz

4.5.3 NMR-Spektren von *cis*-[Bu₄N]₂[PtCl₂(CF₃)₄]

Im ¹⁹⁵Pt-NMR-Spektrum von *cis*-[Bu₄N]₂[PtCl₂(CF₃)₄] (gelöst in CD₂Cl₂) ist bei –1808 ppm durch die Kopplung des Platinatoms mit den *trans* zu den Cl-Liganden stehenden CF₃-Gruppen und den zueinander *trans* stehenden CF₃-Gruppen ein Septett von Septetts zu erkennen (Abb. 59, Tab. 2).

Im ¹⁹F-NMR-Spektrum sind bei –24.1 ppm die CF₃-Gruppen zu erkennen, die *trans* zu den Cl-Liganden stehen (Abb.60a, Tab. 2). Bei –31.7 ppm sind die CF₃-Gruppen, die *trans* zu den CF₃-Gruppen stehen abgebildet (Abb. 60b, Tab. 2). Beide Signale sind Septetts mit ¹⁹⁵Pt-Satelliten.

Abb. 59 gemessenes (oben) und simuliertes (unten) ¹⁹⁵Pt-NMR-Spektrum von *cis*-[Bu₄N]₂[PtCl₂(CF₃)₄] gelöst in CD₂Cl₂ (Septett von Septetts): ²J(¹⁹⁵Pt¹⁹F) = 468.5 Hz (CF₃ *trans* zu Cl), ²J(¹⁹⁵Pt¹⁹F) = 282.3 Hz (CF₃ *trans* zu CF₃) Linienbreite: $v_{\frac{1}{2}} = 8$ Hz

- Abb. 60 NMR-Spektren von *cis*-[Bu₄N]₂[PtCl₂(CF₃)₄] gelöst in CD₂Cl₂:
 a: ¹⁹F-NMR-Spektrum der CF₃-Gruppen *trans* zu den Cl-Liganden (Septett mit ¹⁹⁵Pt-Satelliten), ⁴J(¹⁹F¹⁹F) = 5.6 Hz
 - b: ¹⁹F-NMR-Spektrum der beiden zueinander *trans*-ständigen CF₃-Gruppen (Septett mit ¹⁹⁵Pt-Satelliten), ${}^{4}J({}^{19}F{}^{19}F) = 5.6$ Hz

4.5.4 NMR-Spektren von *cis*-[Bu₄N]₂[Pt(CN)₂(CF₃)₄]

Im ¹⁹⁵Pt-NMR-Spektrum von *cis*-[Bu₄N]₂[Pt(CN)₂(CF₃)₄] gemessen in CD₃CN ist bei –2816 ppm durch die Kopplung des Platinatoms mit den *trans* zu den CN-Gruppen stehenden CF₃-Gruppen und den zueinander *trans* stehenden CF₃-Gruppen ein Septett von Septetts erkennbar (Abb. 61, Tab. 2).

Im ¹⁹F-NMR-Spektrum sind bei –22.4 ppm für die Kopplung der beiden *trans* zueinander stehenden CF₃-Gruppen mit den beiden *trans* zu den CN-Gruppen stehenden CF₃-Gruppen ein Septett und die zugehörigen ¹⁹⁵Pt-Satelliten zu sehen (Abb. 62, Tab. 2). Für die Kopplung der *trans* zu den Cyanogruppen stehenden CF₃-Gruppen mit den beiden *trans* zueinander stehenden CF₃-Gruppen ist bei –25.5 ppm ebenfalls ein Septett mit Platinsatelliten zu erwarten (Tab. 2).

Abb. 61 gemessenes (oben) und simuliertes (unten) ¹⁹⁵Pt-NMR-Spektrum von *cis*-[Bu₄N]₂[Pt(CN)₂(CF₃)₄] gelöst in CD₃CN (Septett von Septetts): ²J(¹⁹⁵Pt¹⁹F) = 368.9 Hz (CF₃ *trans* zu CN), ²J(¹⁹⁵Pt¹⁹F) = 295.0 Hz (CF₃ *trans* zu CF₃) Linienbreite: $v_{1/2} = 7$ Hz

Abb. 62 ¹⁹F-NMR-Spektrum von *cis*-[Bu₄N]₂[Pt(CN)₂(CF₃)₄] gelöst in CD₃CN: ¹⁹F-NMR-Spektrum der zueinander *trans*-ständigen CF₃-Gruppen (Septett mit ¹⁹⁵Pt-Satelliten), ⁴ $J(^{19}F^{19}F) = 5.1$ Hz x: Signal einer anderen Spezies

4.6 NMR-Spektren von *cis*- und *trans*- $[PtXY(CF_3)_4]^{n-}$ (X = F, Cl, CN; Y = CF₂CN, ¹⁵NH₃, BuNH₂; n = 1, 2)

4.6.1 NMR-Spektren von *cis*-[Bu₄N]₂[Pt(CN)(CF₂CN)(CF₃)₄]

Im ¹⁹⁵Pt-NMR-Spektrum von in CD₃CN gelöstem *cis*-[Bu₄N]₂[Pt(CN)(CF₂CN)(CF₃)₄] ist bei –2567 ppm durch die Kopplung des Platinzentralatoms mit der CF₂CN-Gruppe, der *trans* zur CF₂CN-Gruppe stehenden CF₃-Gruppe, der *trans* zur CN-Gruppe stehenden CF₃-Gruppe und den beiden zueinander *trans*-ständigen CF₃-Gruppen ein Triplett von Quartetts von Quartetts von Septetts zu erwarten (Abb. 63, Tab. 2, 4).

Im ¹⁹F-NMR-Spektrum ist bei –24.5 ppm für die *trans* zur CF₂CN-Gruppe stehende CF₃-Gruppe die Kopplung mit der CF₂CN-Gruppe, der CF₃-Gruppe *trans* zur CN-Gruppe, den beiden zueinander *trans*-ständigen CF₃-Gruppen und dem Platinatom als Pseudododecett mit ¹⁹⁵Pt-Satelliten erkennbar. Das Pseudododecett entsteht durch die identischen Kopplungskonstanten von ${}^{4}J({}^{19}F^{19}F) = 5.6-6.1$ Hz der *trans* zur CF₂CN-Gruppe stehenden CF₃-Gruppe zu der *trans*-ständigen CF₂CN-Gruppe und den drei weiteren *cis*-ständigen CF₃-Gruppen. (Abb. 64, Tab. 2, 4).

Bei –25.9 ppm ist durch die Kopplung der beiden zueinander *trans*-ständigen CF₃-Gruppen mit der CF₂CN-Gruppe, der *trans* zur CF₂CN-Gruppe stehenden CF₃-Gruppe und der *trans* zur CN-Gruppe stehen CF₃-Gruppe ein Pseudononett mit den zugehörigen Platinsatelliten erkennbar. Das Pseudononett entsteht durch die identischen Kopplungskonstanten von ${}^{4}J({}^{19}F^{19}F) = 5.6-6.1$ Hz der beiden zueinander *trans* ständigen CF₃-Gruppen zu der CF₂CN-Gruppe und den beiden weiteren *cis*-ständigen CF₃-Gruppen (Abb. 65, Tab. 2, 4).

Das Signal bei –28.8 ppm zeigt durch die Kopplung der *trans* zur CN-Gruppe stehenden CF₃-Gruppe mit der CF₂CN-Gruppe, mit der *trans* zur CF₂CN-Gruppe stehenden CF₃-Gruppe und den beiden zueinander *trans* stehenden CF₃-Gruppen ein Pseudododecett mit den beiden ¹⁹⁵Pt-Satelliten. Auch hier ensteht das Pseudododecett durch die identischen Kopplungskonstanten von ${}^{4}J({}^{19}F^{19}F) = 5.6-6.1$ Hz der *trans* zur CN-Gruppe stehenden CF₃-Gruppe zu der CF₂CN-Gruppe und den drei weiteren *cis*-ständigen CF₃-Gruppen (Abb. 66, Tab. 2, 4).

Bei –75.1 ppm zeigt sich durch die Kopplung der CF₂CN-Gruppe mit der *trans* zur CF₂CN-Gruppe stehenden CF₃-Gruppe, der *trans* zur CN-Gruppe stehenden CF₃-Gruppe und den beiden zueinander *trans* ständigen CF₃-Gruppen ein Pseudotridecett mit den zugehörigen Platinsatelliten. Analog den bereits gezeigten ¹⁹F-NMR-Signalen ensteht das Pseudotridecett durch die identischen Kopplungskonstanten von ⁴ $J(^{19}F^{19}F) = 5.6-6.1$ Hz der CF₂CN-Gruppe mit der *trans*-ständigen CF₃-Gruppe und den drei *cis*-ständigen CF₃-Gruppen (Abb. 67, Tab. 2, 4).

Abb. 63 gemessenes (oben) und simuliertes (unten) ¹⁹⁵Pt-NMR-Spektrum von *cis*-[Bu₄N]₂[Pt(CN)(CF₂CN)(CF₃)₄] gelöst in CD₃CN (Triplett von Quartetts von Quartetts von Septetts): ²J(¹⁹⁵Pt¹⁹F) = 189.4 Hz (CF₂CN), ²J(¹⁹⁵Pt¹⁹F) = 302.0 Hz (CF₃ *trans* zu CF₂CN), ²J(¹⁹⁵Pt¹⁹F) = 338.8 Hz (CF₃ *trans* zu CN), ²J(¹⁹⁵Pt¹⁹F) = 279.9 Hz (CF₃ *trans* zu CF₃), Linienbreite: $v_{\frac{1}{2}} = 7$ Hz

¹⁹F-NMR-Spektrum von *cis*-[Bu₄N]₂[Pt(CN)(CF₂CN)(CF₃)₄] gelöst in CD₃CN: Abb. 64 ¹⁹F-NMR-Spektrum der CF₃-Gruppe *trans* zur CF₂CN-Gruppe (Pseudododecett mit ¹⁹⁵Pt-Satelliten), ⁴ $J(^{19}F^{19}F) = 5.6-6.1$ Hz (*cis*- und *trans*-Kopplungen sind praktisch gleich)

x: Signale, die das Spektrum von cis-[Pt(CN)(CF₂CN)(CF₃)₄]²⁻ überlagern

¹⁹F-NMR-Spektrum von *cis*-[Bu₄N]₂[Pt(CN)(CF₂CN)(CF₃)₄] gelöst in CD₃CN: Abb. 65 ¹⁹F-NMR-Spektrum der zueinander *trans*-ständigen CF₃-Gruppen (Pseudononett mit ¹⁹⁵Pt-Satelliten), ${}^{4}J({}^{19}F{}^{19}F) = 5.6-6.1$ Hz (*cis*-Kopplungen sind praktisch gleich)

x: Signale, die das Spektrum von cis-[Pt(CN)(CF₂CN)(CF₃)₄]²⁻ überlagern

Abb. 66 ¹⁹F-NMR-Spektrum von *cis*-[Bu₄N]₂[Pt(CN)(CF₂CN)(CF₃)₄] gelöst in CD₃CN: ¹⁹F-NMR-Spektrum der CF₃-Gruppe *trans* zur CN-Gruppe (Pseudododecett mit ¹⁹⁵Pt-Satelliten), ⁴J(¹⁹F¹⁹F) = 5.6-6.1 Hz (*cis*-Kopplungen sind praktisch gleich) x: Signale, die das Spektrum von *cis*-[Pt(CN)(CF₂CN)(CF₃)₄]²⁻ überlagern

Abb. 67 ¹⁹F-NMR-Spektrum von *cis*-[Bu₄N]₂[Pt(CN)(CF₂CN)(CF₃)₄] gelöst in CD₃CN: ¹⁹F-NMR-Spektrum der CF₂CN-Gruppe (Pseudotridecett mit ¹⁹⁵Pt-Satelliten), ⁴ $J(^{19}F^{19}F) = 6.1$ Hz (*cis*- und *trans*-Kopplungen sind praktisch gleich)

4.6.2 NMR-Spektren von *cis*-K[PtCl(¹⁵NH₃)(CF₃)₄]

Das ¹⁹⁵Pt-NMR-Spektrum von *cis*-K[PtCl(15 NH₃)(CF₃)₄] gelöst in CD₃CN zeigt bei –1975 ppm ein Signal mit unaufgelöster Feinstruktur (Abb. 68, Tab. 2, 5, 6).

Im ¹⁹F-NMR-Spektrum der CF₃-Gruppe *trans* zum Cl-Liganden ist bei –30.1 ppm durch die Kopplung mit dem ¹⁵N der ¹⁵NH₃-Gruppe, der *trans* zur ¹⁵NH₃-Gruppe stehenden CF₃-Gruppe, der zueinander *trans*-ständigen CF₃-Gruppen und dem Platinatom ein Überlagerungsspektrum zu erkennen. Es besteht aus einem Dublett von Pseudodecetts mit ¹⁹⁵Pt-Satelliten. Das Pseudodecett entsteht durch die identischen Kopplungskonstanten von ⁴*J*(¹⁹F¹⁹F) = 4.9 Hz der CF₃-Gruppe *trans* zum Cl-Liganden zu den drei weiteren *cis*-ständigen CF₃-Gruppen. Das Zentralsignal und der Platinsatellit bei höherer Verschiebung werden von dem Signal der CF₃-Gruppe *trans* zum ¹⁵NH₃-Liganden überlagert (Abb. 69, Tab. 2, 5, 6).

Ebenfalls bei –30.1 ppm ist die CF₃-Gruppe *trans* zur ¹⁵NH₃-Gruppe durch die Kopplung mit dem ¹⁵N der ¹⁵NH₃-Gruppe, der *trans* zum Cl-Liganden stehenden CF₃-Gruppe, den zueinander *trans*-ständigen CF₃-Gruppen und dem Platinatom als Überlagerungsspektrum abgebildet. Es besteht aus einem Dublett von Pseudodecetts mit Platinsatelliten. Das Pseudodecett entsteht durch die identischen Kopplungskonstanten von ⁴ $J(^{19}F^{19}F) = 4.9$ Hz der CF₃-Gruppe *trans* zur ¹⁵NH₃-Gruppe zu den drei weiteren *cis*-ständigen CF₃-Gruppen. Das Zentralsignal und der Platinsatellit bei höherer Verschiebung werden von dem Signal der CF₃-Gruppe *trans* zur Cl-Gruppe überlagert (Abb. 70, Tab. 2, 5, 6).

Das Signal bei –36.1 ppm der zueinander *trans*-ständigen CF₃-Gruppen zeigt ein Aufspaltungsmuster bestehend aus einem Dublett von Pseudoseptetts und den Platinsatelliten, durch die Kopplung mit dem ¹⁵N der ¹⁵NH₃-Gruppe, den beiden *trans* zur ¹⁵NH₃-Gruppe und dem Cl-Liganden stehenden CF₃-Gruppen und zum Platinatom. Das Pseudoseptett entsteht durch die identischen Kopplungskonstanten von ${}^{4}J({}^{19}F^{19}F) = 4.9$ Hz der zueinander *trans*-ständigen CF₃-Gruppen zu den zwei weiteren *cis*-ständigen CF₃-Gruppen (Abb. 71, Tab. 2, 5, 6).

Das ¹⁵N{¹H}-NMR-Spektrum zeigt bei –408.4 ppm durch die Kopplung des ¹⁵N in der ¹⁵NH₃-Gruppe mit der *trans* zur ¹⁵NH₃-Gruppe stehenden CF₃-Gruppe, der *trans* zum Cl-Liganden stehenden CF₃-Gruppe, den zueinander *trans* stehenden CF₃-Gruppen und dem Platinzentralatom ein Quartett von Pseudodecetts mit den ¹⁹⁵Pt-Satelliten. Das Pseudodecett entsteht durch die identischen Kopplungskonstanten von ³ $J(^{19}F^{19}F) = 1.9$ Hz des ¹⁵N der ¹⁵NH₃-Gruppe zu den drei weiteren *cis*-ständigen CF₃-Gruppen. (Abb. 72, Tab. 5, 6).

Im ¹H-NMR-Spektrum ist ein Signal bei +4.6 ppm zu erkennen, welches durch die Kopplung der drei äquivalenten Wasserstoffatome mit dem ¹⁵N der ¹⁵NH₃-Gruppe und dem Platinatom ein Dublett mit Platinsatelliten zeigt (Abb. 73, Tab. 5, 6).

Abb. 68 ¹⁹⁵Pt-NMR-Spektrum von *cis*-K[PtCl(¹⁵NH₃)(CF₃)₄] gelöst in CD₃CN (Dublett von Quartetts von Quartetts von Septetts): ¹J(¹⁹⁵Pt¹⁵N) = 134.1 Hz, ²J(¹⁹⁵Pt¹⁹F) = 381.8 Hz (CF₃ *trans* zu Cl), ²J(¹⁹⁵Pt¹⁹F) = 415.4 Hz (CF₃ *trans* zu ¹⁵NH₃), ²J(¹⁹⁵Pt¹⁹F) = 268.9 Hz (CF₃ *trans* zu CF₃)

Abb. 69 ¹⁹F-NMR-Spektrum von *cis*-K[PtCl(¹⁵NH₃)(CF₃)₄] gelöst in CD₃CN: a: ¹⁹F-NMR-Spektrum der CF₃-Gruppen *trans* zum Cl-Liganden (Dublett von

- Pseudodecetts mit ¹⁹⁵Pt-Satelliten), ${}^{3}J({}^{19}F^{15}N) = 1.9$ Hz (${}^{15}N$ cis zu CF₃), ${}^{4}J({}^{19}F^{19}F) = 4.9$ Hz (CF₃ cis zu CF₃)
- x: Der Platinsatellit bei niedrigerer Verschiebung von *cis*-[PtCl(¹⁵NH₃)(CF₃)₄]⁻ ist von einem Platinsatellit von [PtCl(CF₃)₅]²⁻ (Quartett) überlagert.

- Abb. 70 ¹⁹F-NMR-Spektrum von *cis*-K[PtCl(¹⁵NH₃)(CF₃)₄] gelöst in CD₃CN: b: ¹⁹F-NMR-Spektrum der CF₃-Gruppen *trans* zur ¹⁵NH₃-Gruppe (Dublett von Pseudodecetts mit ¹⁹⁵Pt-Satelliten), ³J(¹⁹F¹⁵N) = 5.6 Hz (¹⁵N *trans* zu CF₃), ${}^{4}J({}^{19}F^{19}F) = 4.9$ Hz (CF₃ *cis* zu CF₃)
 - x: Der Platinsatellit bei niedrigerer Verschiebung von *cis*-[PtCl(¹⁵NH₃)(CF₃)₄]⁻ ist von einem Platinsatellit von [PtCl(CF₃)₅]²⁻ (Quartett) überlagert.

Abb. 71 ¹⁹F-NMR-Spektrum von *cis*-K[PtCl(¹⁵NH₃)(CF₃)₄] gelöst in CD₃CN: ¹⁹F-NMR-Spektrum der zueinander *trans*-ständigen CF₃-Gruppen (Dublett von Pseudoseptetts mit ¹⁹⁵Pt-Satelliten), ³J(¹⁹F¹⁵N) = 1.9 Hz (¹⁵N *cis* zu CF₃), ⁴J(¹⁹F¹⁹F) = 4.9 Hz (CF₃ *cis* zu CF₃)

Abb. 72 ¹⁵N{¹H}-NMR-Spektrum von *cis*-K[PtCl(¹⁵NH₃)(CF₃)₄] gelöst in CD₃CN (Quartett von Pseudodecetts mit ¹⁹⁵Pt-Satelliten): ¹J(¹⁵N¹⁹⁵Pt) = 134.1 Hz, ³J(¹⁵N¹⁹F) = 5.6 Hz (CF₃ *trans* zu ¹⁵N), ³J(¹⁵N¹⁹F) = 1.9 Hz (CF₃ *cis* zu ¹⁵N)

Abb. 73 ¹H-NMR-Spektrum von *cis*-K[PtCl(¹⁵NH₃)(CF₃)₄] gelöst in CD₃CN (Dublett mit ¹⁹⁵Pt-Satelliten): ¹J(¹H¹⁵N) = 72.6 Hz, ²J(¹H¹⁹⁵Pt) = 28.3 Hz

4.6.3 NMR-Spektren von *trans*-K[PtCl(¹⁵NH₃)(CF₃)₄]

Im ¹⁹⁵Pt-NMR-Spektrum von *trans*-K[PtCl(¹⁵NH₃)(CF₃)₄] gelöst in CD₃CN ist bei –1975 ppm ein breites Signal vorhanden (Tab. 2, 5, 6).

Das ¹⁹F-NMR-Spektrum zeigt bei –34.7 ppm durch die Kopplung der vier äquatorialen CF₃-Gruppen mit dem ¹⁵N der ¹⁵NH₃-Gruppe und dem Platinatom ein Dublett mit ¹⁹⁵Pt-Satelliten (Abb. 74, Tab. 2, 6).

Im ¹⁵N{¹H}-NMR-Spektrum erscheinen bei -397.8 ppm durch die Kopplung des ¹⁵N der ¹⁵NH₃-Gruppe mit den vier äquatorialen CF₃-Gruppe ein Tridecett und die zugehörigen Platinsatelliten (Abb. 75, Tab. 5, 6).

Durch die Kopplung der drei äquivalenten Protonen mit dem ¹⁵N der ¹⁵NH₃-Gruppe und dem Platinatom entsteht im ¹H-NMR-Spektrum ein Dublett bei +2.8 ppm mit ¹⁹⁵Pt-Satelliten (Abb. 76, Tab. 5, 6).

Abb. 74 ¹⁹F-NMR-Spektrum von *trans*-K[PtCl(¹⁵NH₃)(CF₃)₄] gelöst in CD₃CN: ¹⁹F-NMR-Spektrum der vier zueinander *trans*-ständigen äquatorialen CF₃-Gruppen (Dublett mit ¹⁹⁵Pt-Satelliten), ² $J(^{19}F^{195}Pt) = 298.4$ Hz, ³ $J(^{19}F^{15}N) =$ 1.5 Hz (¹⁵N *cis* zu CF₃)

- Abb. 75 ¹⁵N{¹H}-NMR-Spektrum von *trans*-K[PtCl(¹⁵NH₃)(CF₃)₄] gelöst in CD₃CN (Tridecett mit ¹⁹⁵Pt-Satelliten): ¹J(¹⁵N¹⁹⁵Pt) = 68.5 Hz, ³J(¹⁵N¹⁹F) = 1.5 Hz (CF₃ *cis* zu ¹⁵N)
 - x: Hauptsignale des Quartetts vom Platinsatelliten bei höherer Verschiebung von K[Pt(¹⁵NH₃)(CF₃)₅]

Abb. 76 ¹H-NMR-Spektrum von *trans*-K[PtCl(¹⁵NH₃)(CF₃)₄] gelöst in CD₃CN (Dublett mit ¹⁹⁵Pt-Satelliten): ¹J(¹H¹⁵N) = 71.2 Hz, ²J(¹H¹⁹⁵Pt) = 18.6 Hz

4.6.4 NMR-Spektren von *cis*-Cs[PtF(BuNH₂)(CF₃)₄]

Bei –1499 ppm ist das ¹⁹⁵Pt-NMR-Spektrum von *cis*-Cs[PtF(BuNH₂)(CF₃)₄] in CD₃CN zu erkennen (Abb. 77, Tab. 2, 3).

Das ¹⁹F-NMR-Spektrum zeigt bei –26.5 ppm durch die Kopplung der CF₃-Gruppe *trans* zum F-Liganden mit dem F-Liganden, der CF₃-Gruppe *trans* zur BuNH₂-Gruppe, den beiden zueinander *trans*-ständigen CF₃-Gruppen und dem Platin-Zentralatom ein Dublett von Pseudodecetts mit ¹⁹⁵Pt-Satelliten. Das Pseudodecett entsteht durch die identischen Kopplungskonstanten von ⁴ $J(^{19}F^{19}F) = 4.6$ Hz der CF₃-Gruppe *trans* zum F-Liganden zu den drei weiteren *cis*-ständigen CF₃-Gruppen (Abb. 78, Tab. 2, 3).

Das Signal der CF₃-Gruppe *trans* zur BuNH₂-Gruppe bei –29.6 ppm zeigt durch die Kopplung mit dem F-Liganden, mit der CF₃-Gruppe *trans* zu F, den beiden zueinander *trans*ständigen CF₃-Gruppen und dem Platinatom ebenfalls ein Dublett von Pseudodecetts mit ¹⁹⁵Pt-Satelliten. Auch hier wird das Pseudodecett durch die identischen Kopplungskonstanten von ⁴ $J(^{19}F^{19}F) = 4.6$ Hz der CF₃-Gruppe *trans* zur BuNH₂-Gruppe zu den drei weiteren *cis*ständigen CF₃-Gruppen gebildet (Abb. 79, Tab. 2, 3).

Die beiden zueinander *trans*-ständige CF₃-Gruppen führen bei –39.4 ppm, durch die Kopplung zu dem F-Liganden, den beiden weiteren CF₃-Gruppen und dem Platin-Zentralatom zu einem Dublett von Pseudoseptetts mit Platinsatelliten. Das Pseudoseptett lässt sich durch die identischen Kopplungskonstanten von ${}^{4}J({}^{19}F^{19}F) = 4.6$ Hz der beiden zueinander *trans*-ständige CF₃-Gruppen mit den beiden weiteren *cis*-ständigen CF₃-Gruppen erklären (Abb. 80, Tab. 2, 3).

Schließlich zeigt sich bei –278.2 ppm durch die Kopplung des F-Liganden mit der zum F-Liganden *trans* stehenden CF₃-Gruppe, der zur BuNH₂-Gruppe *trans* stehenden CF₃-Gruppe, den zueinander *trans*-ständigen CF₃-Gruppen (zum F-Liganden *cis* stehenden CF₃-Gruppen) und dem Platinatom ein oktettartiges Signal. Es besteht aus einem Quartett von Pseudodecetts, das durch seine geringe Auflösung und der Überlgerung des Hauptsignals mit den ¹⁹⁵Pt-Satelliten entsteht. Das Pseudodecett lässt sich durch die identischen Kopplungskonstanten von ³ $J(^{19}F^{19}F) = 6.0$ Hz des F-Liganden mit mit den drei weiteren *cis*ständigen CF₃-Gruppen erklären (Abb. 81, Tab. 2, 3).

Abb. 77 ¹⁹⁵Pt-NMR-Spektrum von *cis*-Cs[PtF(BuNH₂)(CF₃)₄] gelöst in CD₃CN: ² $J(^{195}Pt^{19}F) = 457.5$ Hz (CF₃ *trans* zu F), ² $J(^{195}Pt^{19}F) = 429.7$ Hz (CF₃ *trans* zu BuNH₂), ² $J(^{195}Pt^{19}F) = 258.7$ Hz (CF₃ *trans* CF₃)

Abb. 78 ¹⁹F-NMR-Spektrum von *cis*-Cs[PtF(BuNH₂)(CF₃)₄] gelöst in CD₃CN: ¹⁹F-NMR-Spektrum der CF₃-Gruppe *trans* zum F-Liganden (Dublett von Pseudodecetts mit ¹⁹⁵Pt-Satelliten), ³J(¹⁹F¹⁹F) = 47.6 Hz (F *trans* zu CF₃), ⁴J(¹⁹F¹⁹F) = 4.6 Hz (CF₃ *cis* zu CF₃)

Abb. 79 ¹⁹F-NMR-Spektrum von *cis*-Cs[PtF(BuNH₂)(CF₃)₄] gelöst in CD₃CN: ¹⁹F-NMR-Spektrum der CF₃-Gruppe *trans* zur BuNH₂-Gruppe (Dublett von Pseudodecetts mit ¹⁹⁵Pt-Satelliten), ³J(¹⁹F¹⁹F) = 6.0 Hz (F *cis* zu CF₃), ⁴J(¹⁹F¹⁹F) = 4.6 Hz (CF₃ *cis* zu CF₃)

Abb. 80 ¹⁹F-NMR-Spektrum von *cis*-Cs[PtF(BuNH₂)(CF₃)₄] gelöst in CD₃CN: ¹⁹F-NMR-Spektrum der beiden zueinander *trans*-ständigen CF₃-Gruppen (Dublett von Pseudoseptetts mit ¹⁹⁵Pt-Satelliten), ³J(¹⁹F¹⁹F) = 6.0 Hz (F *cis* zu CF₃), ⁴J(¹⁹F¹⁹F) = 4.6 Hz (CF₃ *cis* zu CF₃)

Abb. 81 ¹⁹F-NMR-Spektrum von *cis*-Cs[PtF(BuNH₂)(CF₃)₄] gelöst in CD₃CN: ¹⁹F-NMR-Spektrum des F-Liganden (Quartett von Pseudodecetts mit ¹⁹⁵Pt-Satelliten), ³ $J(^{19}F^{19}F) = 6.0$ Hz (CF₃ *cis* zu F), ³ $J(^{19}F^{19}F) = 47.9$ Hz (CF₃ *trans* zu F),

4.7 NMR-Spektren von $[PtCl_n(CF_3)_{6-n}]^{2-}$ (n = 3-5)

4.7.1 NMR-Spektrum von *fac*-[Bu₄N]₂[PtCl₃(CF₃)₃]

Das ¹⁹⁵Pt-NMR-Spektrum des in CD_2Cl_2 gelösten *fac*-[Bu₄N]₂[PtCl₃(CF₃)₃] zeigt bei –1493 ppm die Kopplung des Platinatoms mit den drei facial angeordneten CF₃-Gruppen zu einem Kopplungsmuster, bei dem die acht intensivsten Peaks eines Decetts erkennbar sind (Abb. 82a, Tab. 2).

Im ¹⁹F-NMR-Spektrum wird für die drei äquivalenten CF_3 -Gruppen ein Singulett bei –24.5 ppm mit zwei Platinsatelliten beobachtet (Abb. 82b, Tab. 2).

Abb. 82 NMR-Spektren von *fac*-[Bu₄N]₂[PtCl₃(CF₃)₃] gelöst in CD₂Cl₂: a: ¹⁹⁵Pt-NMR-Spektrum (Decett), b: ¹⁹F-NMR-Spektrum (Singulett mit ¹⁹⁵Pt-Satelliten) ${}^{2}J({}^{195}Pt^{19}F) = 459.9$ Hz in beiden Spektren

4.7.2 NMR-Spektren von *cis*-[Bu₄N]₂[PtCl₄(CF₃)₂]

Das ¹⁹⁵Pt-NMR-Spektrum von *cis*-[Bu₄N]₂[PtCl₄(CF₃)₂] (gelöst in CD₃CN) zeigt bei -1076 ppm die Kopplung des Platinatoms mit den beiden äquivalenten zueinander *cis*-ständigen CF₃-Gruppen ein Septett (Abb. 83a, Tab. 2).

Bei –22.7 ppm ist im ¹⁹F-NMR-Spektrum für die beiden äquivalenten CF₃-Gruppen ein Singulett mit den beiden Platinsatelliten erkennbar (Abb. 83b, Tab. 2).

Abb. 83 NMR-Spektren von *cis*-[Bu₄N]₂[PtCl₄(CF₃)₂] gelöst in CD₃CN: a: ¹⁹⁵Pt-NMR-Spektrum (Septett), b: ¹⁹F-NMR-Spektrum der beiden CF₃-Gruppen (Singulett mit ¹⁹⁵Pt-Satelliten) ${}^{2}J({}^{195}Pt^{19}F) = 415.6$ Hz in beiden Spektren

4.7.3 NMR-Spektren von [Bu₄N]₂[PtCl₅(CF₃)]

Im ¹⁹⁵Pt-NMR-Spektrum von $[Bu_4N]_2[PtCl_5(CF_3)]$ gelöst in CD₃CN ist bei –494 ppm für die Kopplung des Platinatoms mit der CF₃-Gruppe ein Quartett erkennbar (Abb. 84a, Tab. 2). Das ¹⁹F-NMR-Spektrum zeigt bei –21.2 ppm für die CF₃-Gruppe ein Singulett und die beiden ¹⁹⁵Pt-Satelliten (Abb. 84b, Tab. 2).

Abb. 84 NMR-Spektren von $[Bu_4N]_2[PtCl_5(CF_3)]$ gelöst in CD₃CN: a: ¹⁹⁵Pt-NMR-Spektrum (Quartett), b: ¹⁹F-NMR-Spektrum der CF₃-Gruppe (Singulett mit ¹⁹⁵Pt-Satelliten) ²J(¹⁹⁵Pt¹⁹F) = 379.1 Hz in beiden Spektren

4.8 NMR-Spektren von $[PtCl_n(CF_2Cl)_{6-n}]^{2-}$ (n = 3-5)

4.8.1 NMR-Spektren von *fac*-[Bu₄N]₂[PtCl₃(CF₂Cl)₃]

Im ¹⁹⁵Pt-NMR-Spektrum von *fac*-[Bu₄N]₂[PtCl₃(CF₂Cl)₃] in CD₃CN erscheint bei –1123 ppm durch die Kopplung des Platinatoms mit den drei äquivalenten CF₂Cl-Gruppen ein Septett (Abb. 85a, Tab. 4).

Das ¹⁹F-NMR-Spektrum zeigt bei –8.5 ppm für die drei äquivalenten CF₂Cl-Gruppen ein Singulett und die beiden dazugehörigen ¹⁹⁵Pt-Satelliten (Abb. 85b, Tab. 4).

Abb. 85 NMR-Spektren von *fac*-[Bu₄N]₂[PtCl₃(CF₂Cl)₃] gelöst in CD₃CN: a: ¹⁹⁵Pt-NMR-Spektrum (Septett), b: ¹⁹F-NMR-Spektrum der CF₂Cl-Gruppen (Singulett mit ¹⁹⁵Pt-Satelliten) ${}^{2}J({}^{195}Pt{}^{19}F) = 332.9$ Hz in beiden Spektren

4.8.2 NMR-Spektren von *cis*-[Bu₄N]₂[PtCl₄(CF₂Cl)₂]

Das ¹⁹⁵Pt-NMR-Spektrum von *cis*-[Bu₄N]₂[PtCl₄(CF₂Cl)₂] (gelöst in CD₃CN) zeigt bei -870 ppm für die Kopplung des Platinatoms mit den beiden CF₂Cl-Gruppen ein Quintett (Abb. 86a, Tab. 4).

Im ¹⁹F-NMR-Spektrum sind bei –4.7 ppm für die beiden *cis*-ständigen CF₂Cl-Gruppen das Singulett und die beiden Platinsatelliten erkennbar (Abb. 86b, Tab. 4). Das Singulett zeigt zusätzlich eine Isotopenverschiebung von ${}^{2}\Delta^{19}F({}^{35/37}Cl) = +0.006$ ppm und ein Isotopenverhältnis von 3:1 für ${}^{35}Cl/{}^{37}Cl$ (Abb. 87, Tab. 4).

Abb. 86 NMR-Spektren von *cis*-[Bu₄N]₂[PtCl₄(CF₂Cl)₂] gelöst in CD₃CN: a: ¹⁹⁵Pt-NMR-Spektrum (Quintett), b: ¹⁹F-NMR-Spektrum der CF₂Cl-Gruppen (Singulett mit ¹⁹⁵Pt-Satelliten) ${}^{2}J({}^{195}Pt^{19}F) = 302.0$ Hz in beiden Spektren

Abb. 87 ¹⁹F-NMR-Spektrum von *cis*-[Bu₄N]₂[PtCl₄(CF₂Cl)₂] gelöst in CD₃CN: ¹⁹F-NMR-Spektrum der CF₂Cl-Gruppen, Isotpenverschiebung im zentralen Signal von ² Δ ¹⁹F(^{35/37}Cl) = +0.006 ppm, Isotopenverhältnis von 3:1 für ³⁵Cl/³⁷Cl.

4.8.3 NMR-Spektren von [Bu₄N]₂[PCl₅(CF₂Cl)]

Im ¹⁹⁵Pt-NMR-Spektrum von [Bu₄N]₂[PtCl₅(CF₂Cl)] in CD₃CN ist bei –400 ppm die Kopplung des Platinatoms mit der CF₂Cl-Gruppe als Triplett zu erkennen (Abb. 88a, Tab. 4). Das ¹⁹F-NMR-Spektrum zeigt bei –2.1 ppm für die CF₂Cl-Gruppe ein Singulett und die beiden zugehörigen Platinsatelliten (Abb. 88b, Tab. 4). Das Singulett zeigt zusätzlich eine Isotopenverschiebung von $^{2}\Delta^{19}F(^{35/37}Cl) = +0.010$ ppm und ein Isotopenverhältnis von 3:1 für ³⁵Cl/³⁷Cl (Abb. 89, Tab. 4).

Abb. 89 ¹⁹F-NMR-Spektrum von [Bu₄N]₂[PtCl₅(CF₂Cl)] gelöst in CD₃CN: ¹⁹F-NMR-Spektrum der CF₂Cl-Gruppe, Isotpenverschiebung im zentralen Signal von $^{2}\Delta^{19}F(^{35/37}Cl) = +0.010$ ppm, Isotopenverhältnis von 3:1 für ³⁵Cl/³⁷Cl.

4.9 NMR-Spektren von $[PtCl_x(CF_2Cl)_y(CF_3)_z]^{2-}$ (x = 3, 4; y = 1, 2; z = 1, 2)

4.9.1 NMR-Spektren von *fac*-[Bu₄N]₂[PtCl₃(CF₂Cl)₂(CF₃)]

Bei -1244 ppm zeigt das ¹⁹⁵Pt-NMR-Spektrum von *fac*-[Bu₄N]₂[PtCl₃(CF₂Cl)₂(CF₃)] in CD₃CN durch die Kopplung des Platinatoms mit der CF₃-Gruppe und den beiden äquivalenten CF₂Cl-Gruppen ein Quartett von Quintetts (Abb. 90, Tab. 2, 4).

Im ¹⁹F-NMR-Spektrum sind bei –6.8 ppm durch die Kopplung der beiden äquivalenten CF₂Cl-Gruppen mit der CF₃-Gruppe ein Quartett und die beiden ¹⁹⁵Pt-Satelliten nachweisbar (Tab. 4). Bei –25.0 ppm erscheint durch die Kopplung der CF₃-Gruppe mit den beiden CF₂Cl-Gruppen ein Qiuntett mit den zugehörigen Platinsatelliten (Abb. 91, Tab. 2).

Abb. 90 ¹⁹⁵Pt-NMR-Spektrum von *fac*-[Bu₄N]₂[PtCl₃(CF₂Cl)₂(CF₃)] gelöst in CD₃CN (Quartett von Quintetts): ${}^{2}J({}^{195}Pt{}^{19}F) = 432.3 \text{ Hz} (Pt-CF_3), {}^{2}J({}^{195}Pt{}^{19}F) = 348.3 \text{ Hz} (Pt-CF_2Cl)$

Abb. 91 ¹⁹F-NMR-Spektrum von *fac*-[Bu₄N]₂[PtCl₃(CF₂Cl)₂(CF₃)] gelöst in CD₃CN: ¹⁹F-NMR-Spektrum der CF₃-Gruppe (Quintett mit ¹⁹⁵Pt-Satelliten) ⁴ $J(^{19}F^{19}F) = 10.3$ Hz

4.9.2 NMR-Spektren von *fac*-[Bu₄N]₂[PtCl₃(CF₂Cl)(CF₃)₂]

Das ¹⁹⁵Pt-NMR-Spektrum von *fac*-[Bu₄N]₂[PtCl₃(CF₂Cl)(CF₃)₂] (gelöst in CD₃CN) zeigt bei -1365 ppm durch die Kopplung des Platinatoms mit der CF₂Cl-Gruppe und den beiden äquivalenten CF₃-Gruppen ein Triplett von Septetts (Abb. 92, Tab. 2, 4).

Im ¹⁹F-NMR-Spektrum sind bei –6.8 ppm die Kopplungen der CF₂Cl-Gruppe mit den beiden äquivalenten CF₃-Gruppen als Septett und die zugehörigen ¹⁹⁵Pt-Satelliten erkennbar (Abb. 93, Tab. 4). Das Septett zeigt zusätzlich eine Isotopenverschiebung von ${}^{2}\Delta^{19}F({}^{35/37}Cl) = +0.010$ ppm und ein Isotopenverhältnis von 3:1 für ${}^{35}Cl/{}^{37}Cl$ (Abb. 94, Tab. 4).

Bei –24.4 ppm sind durch die Kopplung der beiden äquivalenten CF₃-Gruppen mit der CF₂Cl-Gruppe ein Triplett und die Platinsatelliten abgebildet (Abb. 95, Tab. 2).

Abb. 92 ¹⁹⁵Pt-NMR-Spektrum von *fac*-[Bu₄N]₂[PtCl₃(CF₂Cl)(CF₃)₂] gelöst in CD₃CN (Triplett von Septetts): ${}^{2}J({}^{195}Pt{}^{19}F) = 444.1 \text{ Hz} (Pt-CF_3), {}^{2}J({}^{195}Pt{}^{19}F) = 359.0 \text{ Hz}$ (Pt-CF₂Cl)

Abb. 93 ¹⁹F-NMR-Spektrum von *fac*-[Bu₄N]₂[PtCl₃(CF₂Cl)(CF₃)₂] gelöst in CD₃CN: ¹⁹F-NMR-Spektrum der CF₂Cl-Gruppe (Septett mit ¹⁹⁵Pt-Satelliten) ⁴ $J(^{19}F^{19}F) = 8.0$ Hz

Abb. 94 ¹⁹F-NMR-Spektrum von *fac*-[Bu₄N]₂[PtCl₃(CF₂Cl)(CF₃)₂] gelöst in CD₃CN: ¹⁹F-NMR-Spektrum der CF₂Cl-Gruppe, Isotpenverschiebung im zentralen Signal von $^{2}\Delta^{19}F(^{35/37}Cl) = +0.010$ ppm, Isotopenverhältnis von 3:1 für $^{35}Cl/^{37}Cl$.

Abb. 95 ¹⁹F-NMR-Spektrum von *fac*-[Bu₄N]₂[PtCl₃(CF₂Cl)(CF₃)₂] gelöst in CD₃CN ¹⁹F-NMR-Spektrum der CF₃-Gruppe (Triplett mit ¹⁹⁵Pt-Satelliten) ⁴ $J(^{19}F^{19}F) = 8.0$ Hz

4.9.3 NMR-Spektren von *cis*-[Bu₄N]₂[PtCl₄(CF₂Cl)(CF₃)]

Im ¹⁹⁵Pt-NMR-Spektrum von *cis*-[Bu₄N]₂[PtCl₄(CF₂Cl)(CF₃)] (gelöst in CD₃CN) ist bei -972 ppm durch die Kopplung des Platinatoms mit der CF₂Cl- und der CF₃-Gruppe ein Triplett von Quartetts zu erkennen (Abb. 96, Tab. 2, 4).

cis-[Bu₄N]₂[PtCl₄(CF₂Cl)(CF₃)] (gelöst in CD₃CN) zeigt im ¹⁹F-NMR-Spektrum bei –4.0 ppm durch die Kopplung der CF₂Cl-Gruppe mit der CF₃-Gruppe ein Quartett und die beiden ¹⁹⁵Pt-Satelliten (Abb. 97, Tab. 4). Das Quartett zeigt zusätzlich eine Isotopenverschiebung von ${}^{2}\Delta^{19}F({}^{35/37}Cl) = +0.010$ ppm und ein Isotopenverhältnis von 3:1 für ${}^{35}Cl/{}^{37}Cl$ (Abb. 98, Tab. 4).

Bei –23.4 ppm zeigen sich durch die Kopplung der CF₃-Gruppe mit der CF₂Cl-Gruppe ein Triplett und ein Dublett durch die Kopplung mit dem Platin-Zentralatom in Form der beiden Platinsatelliten (Abb. 99, Tab. 2).

Abb. 96 ¹⁹⁵Pt-NMR-Spektrum von *cis*-[Bu₄N]₂[PtCl₄(CF₂Cl)(CF₃)] gelöst in CD₃CN (Triplett von Quartetts): ${}^{2}J({}^{195}Pt{}^{19}F) = 403.4 \text{ Hz} (Pt-CF_3), {}^{2}J({}^{195}Pt{}^{19}F) = 314.2 \text{ Hz}$ (Pt-CF₂Cl)

Abb. 97 ¹⁹F-NMR-Spektrum von *cis*-[Bu₄N]₂[PtCl₄(CF₂Cl)(CF₃)] gelöst in CD₃CN: ¹⁹F-NMR-Spektrum der CF₂Cl-Gruppe (Quartett mit ¹⁹⁵Pt-Satelliten), ⁴ $J(^{19}F^{19}F) = 7.0$ Hz

Abb. 98 ¹⁹F-NMR-Spektrum von *cis*-[Bu₄N]₂[PtCl₄(CF₂Cl)(CF₃)] gelöst in CD₃CN: ¹⁹F-NMR-Spektrum der CF₂Cl-Gruppe, Isotpenverschiebung im zentralen Signal von $^{2}\Delta^{19}F(^{35/37}Cl) = +0.010$ ppm, Isotopenverhältnis von 3:1 für $^{35}Cl/^{37}Cl$.

Abb. 99 ¹⁹F-NMR-Spektrum von *cis*-[Bu₄N]₂[PtCl₄(CF₂Cl)(CF₃)] gelöst in CD₃CN: ¹⁹F-NMR-Spektrum der CF₃-Gruppe (Triplett mit ¹⁹⁵Pt-Satelliten) ⁴ $J(^{19}F^{19}F) = 7.0$ Hz x: Signale, die das Spektrum von [PtCl₄(CF₂Cl)(CF₃)]²⁻ überlagern

4.10 NMR-Spektren der in Dichlormethan dargestellten Trifluormethyliridate

4.10.1 ¹⁹F-NMR-Übersichtsspektrum der in Dichlormethan dargestellten Trifluormethyliridate

Bei der Umsetzung von $[Ir(CN)_6]^{3-}$ mit ClF in Dichlormethan bilden sich hauptsächlich Bis(trifluormethyl)iridate mit zwei zueinander *cis*-ständigen CF₃-Gruppen. Folgende Anionen werden detektiert: [OC-6-22]-Dichloro- bzw. Dihydroxo-tetrakis(trifluormethyl)iridat(III) *cis*- $[IrX_2(CF_3)_4]^{3-}$ (X = Cl oder OH), [OC-6-31]-Trichlorohydroxobis(trifluormethyl)iridat(III) *mer*- $[IrCl_3(OH)(CF_3)_2]^{3-}$ und [OC-6-42-C]-Dichlorofluorohydroxobis(trifluormethyl)iridat(III) $[IrCl_2F(OH)(CF_3)_2]^{3-}$ (Abb. 100, Tab. 8, 9). Das auch hier in der Lösung die Komplexe mit zueinander *cis*-ständigen CF₃-Gruppen vorliegen, lässt sich ebenfalls anhand des starken Transeinflusses der CF₃-Gruppen erklären. Zueinander *trans*-ständige CF₃-Gruppen würden ihre Bindungen zum Iridium-Zentralatom gegenseitig schwächen. Vermutlich entstehen die OH-Liganden *trans* zu den CF₃-Gruppen durch die Hydrolyse von F-Liganden.

Abb. 100 ¹⁹F-NMR-Übersichtsspektrum der bei der Umsetzung von [Bu₄N]₃[Ir(CN)₆] mit ClF in CH₂Cl₂/KF gebildeten Trifluormethyliridate (gelöst in CD₃CN):
a: *cis*-[IrX₂(CF₃)₄]³⁻ (X = Cl oder OH)
b: *mer*-[IrCl₃(OH)(CF₃)₂]³⁻
c: [IrCl₂F(OH)(CF₃)₂]³⁻

4.10.2 NMR-Spektren von *cis*-[Bu₄N]₃[IrX₂(CF₃)₄] (X = Cl oder OH)

Im ¹⁹F-NMR-Spektrum von *cis*-[Bu₄N]₃[IrX₂(CF₃)₄] (X = Cl oder OH) in CD₃CN ist bei -13.5 ppm durch die Kopplung der CF₃-Gruppen *trans* zu den X-Liganden, mit den beiden zeinander *trans*-ständigen CF₃-Gruppen ein Septett zu erkennen (Abb. 101a, Tab. 8). Umgekehrt erscheint bei –32.4 ppm durch die Kopplung der beiden zueinender *trans*ständigen CF₃-Gruppen mit den CF₃-Gruppen *trans* zu den X-Liganden ein Septett (Abb. 101b, Tab. 8).

- Abb. 101 ¹⁹F-NMR-Spektren von *cis*-[Bu₄N]₃[IrX₂(CF₃)₄] (X = Cl oder OH) gelöst in $CD_{32}CN$:
 - a: ¹⁹F-NMR-Spektrum der CF₃-Gruppen *trans* zu den X-Liganden, X = Cl oder OH (Septett), ${}^{4}J({}^{19}F{}^{19}F) = 3.7 \text{ Hz}$
 - b: ¹⁹F-NMR-Spektrum der beiden zueinander *trans*-ständigen CF₃-Gruppen (Septett), ⁴ $J(^{19}F^{19}F) = 3.7$ Hz

4.10.3 NMR-Spektren von mer-[Bu₄N]₃[IrCl₃(OH)(CF₃)₂]

Das ¹⁹F-NMR-Spektrum des in CD₃CN gelösten *mer*-[Bu₄N]₃[IrCl₃(OH)(CF₃)₂] zeigt bei -15.0 ppm durch die Kopplung der CF₃-Gruppe *trans* zum Cl-Liganden mit der CF₃-Gruppe *trans* zum OH-Liganden ein Quartett (Abb. 102a, Tab. 8). Bei –15.7 ppm entsteht durch die Kopplung der CF₃-Gruppe *trans* zum OH-Liganden mit der CF₃-Gruppe *trans* zum Cl-Liganden ein Quartett (Abb. 102b, Tab. 8).

- ${}^{4}J({}^{19}F^{19}F) = 3.7 \text{ Hz}$ b: ${}^{19}F$ -NMR-Spektrum der CF₃-Gruppe *trans* zum OH-Liganden (Quartett), ${}^{4}J({}^{19}F^{19}F) = 3.7 \text{ Hz}$
- x: Signal einer anderen Spezies

4.10.4 NMR-Spektren von [Bu₄N]₃[IrCl₂F(OH)(CF₃)₂]

Im ¹⁹F-NMR-Spektrum von [Bu₄N]₃[IrCl₂F(OH)(CF₃)₂] gelöst in CD₃CN zeigt sich bei -21.6 ppm durch die Kopplung der CF₃-Gruppe *trans* zum Cl-Liganden mit dem F-Liganden und der CF₃-Gruppe *trans* zur OH-Gruppe ein Dublett von Quartetts (Abb. 103a, Tab. 8). Dabei überlagern sich die beiden Quartetts so, das sie als Pseudooktett erscheinen. Bei -21.8 ppm entsteht durch die Kopplung der CF₃-Gruppe *trans* zur OH-Gruppe mit dem F-Liganden und der CF₃-Gruppe *trans* zum Cl-Liganden ein Dublett von Quartetts (Abb. 103b, Tab. 8). Bei –280.2 ppm ist durch die Kopplung des F-Liganden mit den beiden CF₃-Gruppen ein Quartett von Quartetts zu erkennen (Abb. 104, Tab. 9).

Abb. 103 ¹⁹F-NMR-Spektren von $[Bu_4N]_3[IrCl_2F(OH)(CF_3)_2]$ gelöst in CD₃CN: a: ¹⁹F-NMR-Spektrum der CF₃-Gruppe *trans* zum Cl-Liganden (Dublett von Quartetts), ³J(¹⁹F¹⁹F) = 7.0 Hz, ⁴J(¹⁹F¹⁹F) = 3.7 Hz

b: ¹⁹F-NMR-Spektrum der CF₃-Gruppe *trans* zum OH-Liganden (Dublett von Quartetts), ${}^{3}J({}^{19}F{}^{19}F) = 5.1$ Hz, ${}^{4}J({}^{19}F{}^{19}F) = 3.7$ Hz

Abb. 104 ¹⁹F-NMR-Spektrum von $[Bu_4N]_3[IrCl_2F(OH)(CF_3)_2]$ in CD₃CN: F-Ligand *cis* zu den beiden CF₃-Gruppen (Quartett von Quartetts), ³ $J({}^{19}F^{19}F) = 7.0$ Hz (CF₃ *trans* zu Cl), ³ $J({}^{19}F^{19}F) = 5.1$ Hz (CF₃ *trans* zu OH)

4.11 Zusammenfassende Diskussion der NMR-Daten

In Tabelle 7 sind die ¹⁹⁵Pt-NMR chemischen Verschiebungen von 12 verschiedenen homoleptischen Platinaten(IV) zusammengestellt. In der Reihenfolge ihrer Liganden F⁻, SO₃F⁻, Cl⁻, Br⁻, CF₃⁻, OH⁻, SCN⁻, CN⁻, CH₃⁻, Γ wird eine abnehmende chemische Verschiebung in den ¹⁹⁵Pt-NMR-Spektren beobachtet. Ordnet man die Liganden nach sinkender Elektronegativität (Pauling'sche und Gruppen-Elektronegativität [104]), so ergibt sich folgende Reihung: F(3.98), SO₃F(3.30), Cl(3.16), CF₃(3.16), OH(3.03), Br(2.96), CN(2.76), I(2.66), SCN(2.64), CH₃(2.40) [105, 106]. Der Vergleich der beiden Reihen zeigt nur eine wenig ausgeprägte Korrelation zwischen ¹⁹⁵Pt-chemischer Verschiebung und der Elektronegativität der Liganden. Erkennbar ist, dass die Reihenfolge F⁻, SO₃F⁻, Cl⁻, Br⁻, OH⁻, Γ in beiden Reihen miteinander korrelieren. Die Elektronendichte verlagert sich hier zunehmend vom Liganden zum Platin-Zentralatom. Dadurch wird das Platinatom stärker abgeschirmt und seine Resonanzfrequenz erfolgt bei niedrigerer Frequenz. Bei den anderen Liganden muss der paramagnetische Beitrag durch die Elektronenpaare der am Pt gebundenen Atome und der π -Elektronen der CN⁻- und SCN⁻-Liganden in nicht einfach voraussagbarer Weise die chemische Verschiebung zusätzlich beeinflussen.

Die CN- und die SCN-Gruppe sind magnetisch anisotrope Liganden, die bei der Bindung am Platin-Zentralatom, in Richtung des Platinatoms abschirmend wirken. Dies führt bei den untersuchten Cyanotrifluormethylplatinaten zu einer Umkehrung des Verschiebungstrends in den ¹⁹⁵Pt-NMR-Spektren. Mit steigender Anzahl der CN-Gruppen wird die Verschiebung negativer und das Platinatom stärker abgeschirmt. Es erfolgt eine Verschiebung zu niedrigerer Resonanzfrequenz (hohes Feld).

Innerhalb der Reihe $[PtCl_n(CF_3)_{6-n}]^{2-}$ (n = 0-5) sind für die zueinender *trans*-ständigen CF₃-Gruppen in $[Pt(CF_3)_6]^{2-}$, $[PtCl(CF_3)_5]^{2-}$ und *cis*- $[PtCl_2(CF_3)_4]^{2-}$ abnehmende ¹⁹F-NMR-Verschiebungen zu erkennen. Das zeigt, dass durch die Abnahme der Anzahl der CF₃-Gruppen, möglicherweise die HOMO/LUMO-Abstände in den Anionen abnehmen und der paramagnetische Anteil der Anionen zunimmt. Somit wären die verbleibenden zueinander *trans*-ständigen CF₃-Gruppen stärker an Platin gebunden und die Fluoratome in den CF₃-Gruppen stärker abgeschirmt. Für die *trans* zu den Cl-Liganden stehenden CF₃-Gruppen ist eine Abnahme der Resonanzfrequenz von $[Pt(CF_3)_6]^{2-}$ zu *fac*- $[PtCl_3(CF_3)_3]^{2-}$ hin, ebenfalls möglicherweise als Folge der Abnahme der Anzahl der CF₃-Gruppen zu erkennen. Wohingegen von *fac*- $[PtCl_3(CF_3)_3]^{2-}$ bis $[PtCl_5(CF_3)]^{2-}$ eine Zunahme der Resonanzfrequenz, durch Zunahme des HOMO/LUMO-Abstandes zu beobachten wäre. Der paramagnetische Anteil im Anion verkleinert sich dabei. Die Übertragung von Elektronendichte von den CF₃-Gruppen auf das Platinatom bewirkt eine schwächere Abschirmung der Fluoratome in den CF₃-Gruppen.

Der direkt an Platin gebundene F-Ligand erscheint im ¹⁹F-NMR-Spektrum bei extrem niedriger Verschiebung unterhalb von –200 ppm, weil er durch seine stark ionische Bindung zum Platin, möglicherweise die HOMO/LUMO-Aufspaltung im Anion stark vergrößert. Die NMR-Parameter des am Platin gebundenen Fluoratoms und der dazu *trans*-ständigen CF₃-Gruppe von $[PtF(CF_3)_5]^{2-}$ sind stark vom Gegenion und Lösemittel abhängig.

Bei den Anionen mit zunehmender Anzahl an CF_2Cl -Gruppen $[PtCl_n(CF_2Cl)_{6-n}]^{2-}$ (n = 3-5) wären aus den gleichen Gründen wie bei den Trifluormethylplatinaten abnehmende Resonanzfrequenzen zu erkennen. Die HOMO/LUMO-Abstände der Anionen würden zunehmen und der paramagnetische Anteil abnehmen.

Das ¹⁹F-NMR-Signal der CF₂CN-Gruppe von *cis*-[Pt(CN)(CF₂CN)(CF₃)₄]²⁻, das durch den Austausch von F gegen CN an der CF₃-Gruppe gebildet wird, ist im Vergleich zur CF₃-Gruppe mit -75.1 ppm extrem stark zu niedriger Resonanzfrequenz verschoben (hohes Feld). Dies lässt sich durch die stak abschirmende Wirkung von CN im CF₂CN erklären.

Die ${}^{1}J({}^{195}Pt^{19}F)$ -Kopplungskonstanten unterscheiden sich sehr stark voneinander. Bei kovalenten F-Pt-F-Bindungen mit zueinander *trans*-ständigen F-Liganden liegt die ${}^{1}J({}^{195}Pt^{19}F)$ -Kopplungskonstante bei etwa 1500 Hz, wohingegen sie bei F-Liganden mit gegenüberliegenden Liganden mit größerem Transeinfluß wie CF₃ deutlich kleiner sind (Tab. 2). Dabei liegt im letzteren Fall eine Pt-F-Bindung mit großem ionischen Anteil vor.

Die Kopplungskonstanten ${}^{2}J({}^{195}Pt{}^{19}F)$ der CF₃-Gruppen *trans* zu den Liganden X von CF₃-Pt-X vergrößern sich in der Reihenfolge X = CF₃⁻, CN⁻, Cl⁻, F⁻, OH⁻, mit abnehmenden Transeinfluß des Substituenten X (Tab. 2). So wird auch F⁻ leichter als Cl⁻ durch OH⁻ verdrängt.

Die Anionen mit zueinander *trans*-ständigen CF₃-Gruppen zeigen ${}^{2}J({}^{195}\text{Pt}{}^{19}\text{F})$ -Kopplungskonstanten die sich nur wenig voneinander unterscheiden. Sie sind deutlich geringer als für die CF₃-Gruppen *trans* zu X, da die zueinander *trans* stehenden CF₃-Gruppen durch ihren großen Transeinfluß ihre Bindung zu Platin gegenseitig schwächen.

Während die ${}^{3}J({}^{19}F^{19}F)$ -Kopplungskonstanten der *trans*-CF₃-Pt-F-Einheiten bei etwa 50 Hz liegen, sind für die *cis*-CF₃-Pt-F-Einheiten ${}^{3}J({}^{19}F^{19}F)$ -Kopplungskonstanten von unter 10 Hz zu beobachten (Tab. 3).

Die ${}^{2}J({}^{195}Pt^{19}F)$ -Kopplungskonstanten der Anionen $[PtCl_n(CF_2Cl)_{6-n}]^{2-}$ (n = 3-5) liegen deutlich unter den ${}^{2}J({}^{195}Pt^{19}F)$ -Kopplungskonstanten der Anionen $[PtCl_n(CF_3)_{6-n}]^{2-}$ (n = 0-5), welches durch den kleineren Transeinfluß der CF₂Cl-Gruppe im Vergleich zur CF₃-Gruppe erklärt werden kann. Die ${}^{2}J({}^{195}Pt^{19}F)$ -Kopplungskonstante der *trans* zu CF₃ stehenden CF₂CN-Gruppe ist mit 189.3 Hz extrem klein.

Bei einigen Anionen kann in den ¹⁹⁵Pt- oder ¹⁹F-NMR-Spektren das Cl des Cl- oder CF₂Cl-Liganden durch seine ^{35/37}Cl-Isotopenverschiebung nachgewiesen werden.

¹⁹⁵Pt- und ¹⁹F-NMR-Daten (der CF₃-Gruppen) der Trifluormethylplatinate [PtX_n(CF₃)_{6-n}]^{m-}; X = F, OH, OD, Cl, CN, ¹⁵NH₃, BuNH₂, CF₂Cl, CF₂CN; n = 0-6; m = 1, 2Tab. 2

Komplex	δ^{195} Pt	$\delta^{19}F$	$^{2}J(^{19}\mathrm{F}^{195}\mathrm{Pt})$	$\delta^{19}F$	$^{2}J(^{19}\mathrm{F}^{195}\mathrm{Pt})$	${}^{4}J({}^{19}\mathrm{F}{}^{19}\mathrm{F})$	$^{1}\Delta^{195}$ Pt
		<i>trans</i> zu	<i>trans</i> zu	<i>trans</i> zu	<i>trans</i> zu	cis	$(^{35/37}Cl)$
		CF ₃	CF ₃	Х	Х		
	ppm	ppm	Hz	ppm	Hz	Hz	ppm
$mer-[PtF_3(OD)(CF_3)_2]^{2-a}$	+1184			-34.4 ^{g)}	322.1 ^{g)}	4.7	
				-36.1 ^{h)}	333.3 ^{h)}	4.7	
$[PtF_2(OD)_2(CF_3)_2]^{2-a}$	+1002			-34.7	336.6		
$[PtCl_6]^{2-b}$	+308						0.177
$\left[\text{PtClF(OD)}_2(\text{CF}_3)_2\right]^{2-a}$	-109			-28.4	377.3		
$\left[\operatorname{PtCl}_{5}(\operatorname{CF}_{3})\right]^{2-b}$	-494			-21.2	379.1		
$[PtCl_2(OD)_2(CF_3)_2]^{2-a}$	-929			-21.1	421.7		0.103
cis-[PtCl ₄ (CF ₂ Cl)(CF ₃)] ^{2-b)}	-972			-23.4	403.4	7.0	
$cis-[PtF_2(CF_3)_4]^{2-b)d}$	-1035	-41.0	261.9	-28.1	455.6	4.5	
cis - $[PtCl_4(CF_3)_2]^{2-b}$	-1076			-22.7	415.6		
$fac-[PtCl_3(CF_2Cl)_2(CF_3)]^{2-b}$	-1244			-25.0	432.3	10.3	
fac-[PtCl ₃ (CF ₂ Cl)(CF ₃) ₂] ^{2-b)}	-1365			-24.4	444.1	8.0	
fac-[PtCl ₃ (CF ₃) ₃] ^{2-b)}	-1487			-23.9	457.2		
fac-[PtCl ₃ (CF ₃) ₃] ^{2- c)}	-1493			-24.5	459.9		
cis-[PtF(BuNH ₂)(CF ₃) ₄] ^{- b) f)}	-1499	-39.4	258.7	-26.5 ^{g)}	457.5 ^{g)}	4.6	
				-29.6^{i}	429.7 ⁱ⁾	4.6	
$cis-[Pt(OH)_2(CF_3)_4]^{2-b)e}$	-1542	-40.3	273.6	-26.5	446.6	4.6	
$[PtF(CF_3)_5]^{2-b})^{e}$	-1658	-35.0	268.8	-22.7	507.2	5.1	
$[PtF(CF_3)_5]^{2-b)d}$	-1667	-34.2	271.3	-22.9	469.4	5.2	
$trans-[PtCl(^{15}NH_3)(CF_3)_4]^{-b})^{e}$	-1767	-34.7	298.4				
cis-[PtCl ₂ (CF ₃) ₄] ^{2-b)}	-1800	-31.0	283.0	-23.5	467.8	5.7	
cis-[PtCl ₂ (CF ₃) ₄] ^{2- c)}	-1808	-31.7	282.3	-24.1	468.5	5.6	
$cis-[PtCl(^{15}NH_3)(CF_3)_4]^{-b})^{e}$	-1975	-36.1	268.9	-30.1	381.8 ¹⁾	4.9	
					415.4 ^{k)}	4.9	
$[Pt(OH)(CF_3)_5]^{2-b)e}$	-2080	-31.3	269.3	-24.7	536.2	5.6	
$[Pt(BuNH_2)(CF_3)_5]^{-b}$	-2115	-32.5	263.9	-24.3	461.2	5.7	
$\left[\operatorname{PtCl}(\operatorname{CF}_3)_5\right]^{2-b}$	-2121	-29.6	280.3	-23.2	470.6	6.4	
$\left[\operatorname{PtCl}(\operatorname{CF}_3)_5\right]^{2-\operatorname{c}}$	-2128	-30.3	279.7	-23.8	471.8	6.5	
$[Pt(^{15}NH_3)(CF_3)_5]^{-b}(e)$	-2235	-33.0	270.0	-24.9	459.5	5.3	
$[Pt(CF_3)_6]^{2-b}$	-2429	-28.1	275.0				
$[Pt(CF_3)_6]^{2-c}$	-2437	-28.7	274.6	1)	1)	、	
cis-[Pt(CN)(CF ₂ CN)(CF ₃) ₄] ²⁻	-2567	-25.9	279.9	-24.5 ¹⁾	302.0	$5.6-6.2^{n}$	
b)				-28.8^{m}	338.8 ^{m)}	5.6-6.2 ⁿ⁾	
$[Pt(CN)(CF_3)_5]^{2-b}$	-2619	-25.4	286.8	-28.5	348.7	6.1	
$cis-[Pt(CN)_2(CF_3)_4]^{2-b}$	-2816	-22.4	295.0	-25.5	368.9	5.1	
$[Pt(CN)_6]^{2-0}$	-3794°)						
$[PtI(CN)_5]^{2-0}$	-4025						

¹⁹⁵Pt-NMR-Standard: externe 0.2 mol L^{-1} Na₂[PtCl₆]-Lösung in D₂O

¹⁹F-NMR-Standard: internes CFCl₃ ^{a)} D₂O als Lösemittel; ^{b)} CD₃CN als Lösemittel; ^{c)} CD₂Cl₂ als Lösemittel; ^{d)} [Bu₄N]-Salz; ^{e)} K-Salz; ^{f)} Cs-Salz; ^{g)} trans zu F; ^{h)} trans zu OH; ⁱ⁾ trans zu BuNH₂; ^{j)} trans zu Cl; ^{k)} trans zu ¹⁵NH₃; ^{l)} trans zu CF₂CN; ^{m)} trans zu CN; ⁿ⁾ cis und trans Kopplungen sind praktisch gleich; ^{o)} ¹J(¹³C¹⁹⁵Pt) = 793.0 Hz, $^{1}\Delta^{195}$ Pt($^{12/13}$ C) = 0.483 ppm

Tab. 3:	¹⁹ F-NMR-Daten (der F-Liganden) der Trifluormethylplatinate $[PtX_n(CF_3)_{6-n}]^{m-1}$;
	X = F, OD, Cl, BuNH ₂ ; $n = 1-4$; $m = 1, 2$	

Komplex	δ ¹⁹⁵ Pt	$\delta^{19}F$	$^{1}J(^{19}\mathrm{F}^{195}\mathrm{Pt})$	$^{3}J(^{19}\mathrm{F}^{19}\mathrm{F})$	${}^{3}J({}^{19}\mathrm{F}{}^{19}\mathrm{F})$
				<i>cis</i> zu CF ₃	trans zu CF ₃
	ppm	ppm	Hz	Hz	Hz
$mer-[PtF_3Pt(OD)(CF_3)_2]^{2-a}$	+1184	-236.2 ^{f)}	89.5 ^{f)}	9.4 ^{f)}	49.6 ^{f)}
		-373.6 ^{g)}	1566.1 ^{g)}	9.4 ^{g)}	49.6 ^{g)}
$[PtF_2(OD)_2(CF_3)_2]^{2-a}$	+1002	-377.1	1560.5	9.8	
$\left[\operatorname{PtClF}(\operatorname{OD})_2(\operatorname{CF}_3)_2\right]^{2-a}$	-109	-287.7	964.4	8.5	
cis - $[PtF_2(CF_3)_4]^{2-b}$	-1035	-278.2	ca. 60	6.2	41.5
cis-[PtF(BuNH ₂)(CF ₃) ₄] ^{- b) e)}	-1499	-278.2	ca. 197	6.0	47.9
$[PtF(CF_3)_5]^{2-b)d}$	-1658	-302.7	147.0	6.6	49.6
$[PtF(CF_3)_5]^{2-b}c)$	-1667	-311.0	301.7	7.9	45.1
195 D D D C 1 1 1 C O O	1 7 - 1 3 7	ID CI I DO			

⁵Pt-NMR-Standard: externes 0.2 mol L⁻¹ Na₂[PtCl₆] in D₂O

¹⁹F-NMR-Standard: internes CFCl₃
^{a)} D₂O als Lösemittel; ^{b)} CD₃CN als Lösemittel; ^{c)} [Bu₄N]-Salz; ^{d)} K-Salz; ^{e)} Cs-Salz; ^{f)} F trans zu CF₃;

^{g)} zueinander *trans*-ständige F-Liganden

Tab. 4: ¹⁹⁵Pt- und ¹⁹F-NMR-Daten der CF₂X Liganden von $[PtX_m(CF_2Y)_n(CF_3)_o]^{2-}$; X = Cl, CN; Y = Cl, CN; m = 1-5; n = 1-3; o = 0-4

Komplex	δ ¹⁹⁵ Pt	$\delta^{19}F$	$^{2}J(^{19}\mathrm{F}^{195}\mathrm{Pt})$	${}^{4}J({}^{19}\mathrm{F}{}^{19}\mathrm{F})$	$^{2}\Delta^{19}F(^{35/37}Cl)$
	ppm	ppm	Hz	cis Hz	ppm
$[PtCl_5(CF_2Cl)]^{2-}$	-400	-2.1	282.8		0.010
cis-[PtCl ₄ (CF ₂ Cl) ₂] ²⁻	-870	-4.7	302.0		0.006
cis-[PtCl ₄ (CF ₂ Cl)(CF ₃)] ²⁻	-972	-4.0	314.2	7.0	0.010
fac-[PtCl ₃ (CF ₂ Cl) ₃] ²⁻	-1123	-8.5	332.9		
fac-[PtCl ₃ (CF ₂ Cl) ₂ (CF ₃)] ²⁻	-1244	-7.2	348.3	10.3	
fac-[PtCl ₃ (CF ₂ Cl)(CF ₃) ₂] ²⁻	-1365	-6.8	359.0	8.0	0.010
cis-[Pt(CN)(CF ₂ CN)(CF ₃) ₄] ²⁻	-2568	-75.2	189.4	6.2 ^{a)}	
195 D D D C L 1 L L C O O	1 7 - 1 3 7		0		

¹⁹⁵Pt-NMR-Standard: externes 0,2 mol L^{-1} Na₂[PtCl₆] in D₂O

¹⁹F-NMR-Standard: internes CFCl₃

^{a)} *cis* und *trans* Kopplungen sind praktisch gleich

Tab. 5: ¹⁹⁵Pt-, ¹⁵N- und ¹H-NMR-Daten von [PtX_n(CF₃)_{6-n}]⁻; X = Cl, ¹⁵NH₃; n = 1, 2

Komplex	δ ¹⁹⁵ Pt	$^{1}J(^{15}N^{195}Pt)$	$^{2}J(^{1}\text{H}^{195}\text{Pt})$	$\delta^1 H$	${}^{1}J({}^{1}\mathrm{H}{}^{15}\mathrm{N})$
	ppm	Hz	Hz	ppm	Hz
$trans-[PtCl(^{15}NH_3)(CF_3)_4]^{-a)b}$	-1767	68.5	18.6	+2.8	71.2
cis-[PtCl(¹⁵ NH ₃)(CF ₃) ₄] ^{- a) b)}	-1975	134.1	28.3	+4.6	72.6
$[Pt(^{15}NH_3)(CF_3)_5]^{-a)b}$	-2235	126.5	24.4	+3.3	72.4

¹⁹⁵Pt-NMR-Standard: externes 0.2 mol L^{-1} Na₂[PtCl₆] in D₂O

¹⁹F-NMR-Standard: internes CFCl₃

^{a)} CD₃CN als Lösemittel; ^{b)} K-Salz

Komplex	δ^{195} Pt	$\delta^{15}N$	$^{3}J(^{15}N^{19}F)$	$^{3}J(^{15}N^{19}F)$	$\delta^{19}F$	${}^{4}J({}^{1}\mathrm{H}{}^{19}\mathrm{F})$
	ppm	ppm	cis	trans	<i>trans</i> zu X	<i>trans</i> zu X
			Hz	Hz	ppm	Hz
$trans-[PtCl(^{15}NH_3)(CF_3)_4]^{-a)b}$	-1767	-397.8	1.5			
$cis-[PtCl(^{15}NH_3)(CF_3)_4]^{-a)b}$	-1975	-408.4	1.9	5.6	-30.1	
$[Pt(^{15}NH_3)(CF_3)_5]^{-a)b}$	-2235	-400.6	1.7	8.2	-24.9	0.6

Tab. 6: ¹⁹⁵Pt-, ¹⁵N- und ¹H-NMR-Daten von $[PtX_n(CF_3)_{6-n}]^-$; X = Cl, ¹⁵NH₃; n = 1, 2

¹⁹⁵Pt-NMR-Standard: externes 0.2 mol L^{-1} Na₂[PtCl₆] in D₂O ¹⁹F-NMR-Standard: internes CFCl₃ ^{a)} CD₃CN als Lösemittel; ^{b)} K-Salz

Tab. 7: ¹⁹⁵Pt-NMR-Daten von homoleptischen Platinaten(IV)

Komplex	δ^{195} Pt	Lösemittel	Referenz
-	ppm		
$[PtF_6]^{2-a}$	+7283	CD_2Cl_2	[102]
$[Pt(SO_3F)_6]^{2-b}$	+5251	DSO ₃ F	diese Arbeit
$[PtCl_6]^{2-c}$	+308	CD ₃ CN	diese Arbeit
	0	H_2O	[107]
$[PtBr_6]^{2-}$	-1844	H_2O	[107]
$[Pt(CF_3)_6]^{2-d}$	-2429	CD ₃ CN	diese Arbeit
$[Pt(OH)_{6}]^{2-}$	-3290	H_2O	[108]
$[Pt(SCN)_6]^{2-}$	-3465	H_2O	[107]
$\left[\operatorname{Pt}(\operatorname{CN})_{6}\right]^{2-e}$	-3793	CD ₃ CN	diese Arbeit
	-3821	H_2O	[107]
$[Pt(CH_3)_6]^{2-}$	-4175	Et_2O	[91]
$[PtH_6]^{2-}$	-5519		[109]
$[PtD_6]^{2-}$	-5576		[109]
$[PtI_6]^{2-}$	-6033	H ₂ O	[107]

 $\frac{[1^{10}]_{1}}{(1^{195}]_{1}} = \frac{10000}{1} + \frac{10000}{$

Tab. 8:	¹⁹ F-NMR-Daten (der CF ₃ -Gruppen) der Trifluormethyliridate
	$[IrX_n(CF_3)_{6-n}]^{3-}$; X = Cl, OH; n = 2-4; gelöst in CD ₃ CN

Komplex	$\delta^{19}F$	${}^{4}J({}^{19}\mathrm{F}{}^{19}\mathrm{F})$	Integral
_	trans zu X		-
	ppm		
$cis-[IrX_2(CF_3)_4]^{3-}$	-13.5^{a}	3.7	0.12
	-32.4 ^{b)}		0.12
<i>mer</i> -[IrCl ₃ (OH)(CF ₃) ₂] ³⁻	-15.0°	3.7	1.12
	$-15.7^{\text{ d}}$		1.00
$\left[\operatorname{IrCl}_{2}\mathrm{F}(\mathrm{OH})(\mathrm{CF}_{3})_{2}\right]^{3-}$	-21.6°	3.7	0.17
	-21.8^{d}		0.16

¹⁹F-NMR-Standard: internes CFCl₃
^{a)} CF₃ trans zu X (X = Cl oder OH); ^{b)} CF₃ trans zu CF₃; ^{c)} CF₃ trans zu Cl;
^{d)} CF₃ trans zu OH

Tab. 9: ¹⁹F-NMR-Daten (des F-Liganden) von [IrCl₂F(OH)(CF₃)₂]³⁻ gelöst in CD₃CN

Komplex	$\delta^{19}F$	${}^{3}J({}^{19}\mathrm{F}{}^{19}\mathrm{F})$	${}^{3}J({}^{19}\mathrm{F}{}^{19}\mathrm{F})$	Integral
	ppm	CF ₃ trans zu OH	CF ₃ trans zu Cl	
$\left[\operatorname{IrCl}_{2}\mathrm{F}(\mathrm{OH})(\mathrm{CF}_{3})_{2}\right]^{3-}$	-280.2	5.1	7.0	0.05
19E NIME Stendend inter	CECI			

F-NMR-Standard: internes CFCl₃

5 Schwingungsspektren

5.1 Schwingungsspektren von Cs₂[Pt(CF₃)₆] und M₂[Pt(CN)(CF₃)₅] (M = K, Cs)

In den nachfolgenden Abbildungen sind die IR- und Raman-Spektren von $Cs_2[Pt(CF_3)_6]$ (Abb. 105) und von $Cs_2[Pt(CN)(CF_3)_5]$ (Abb. 106) wiedergegeben. Obwohl die Anionen aus einer großen Anzahl an Atomen bestehen, weisen die Spektren nur wenige Banden auf – im Einklang mit ihrer hohen Symmetrie. Im Vergleich zum $[Pt(CF_3)_6]^{2-}$ -Anion sind in den Spektren von $[Pt(CN)(CF_3)_5]^{2-}$ einige zusätzlichen Banden zu erkennen, die den Schwingungsbewegungen der Pt-CN Gruppe entsprechen: (i) v(CN) bei 2171 cm⁻¹ im K⁺- und bei 2166 cm⁻¹ im Cs⁺-Salz, (ii) v(Pt-CN) bei ca. 440 cm⁻¹ (wegen der geringen Masse von CN im Vergleich zu CF₃ liegt diese v(Pt-C) entsprechend hoch), (iii) δ (Pt-CN) bei ca. 420 cm⁻¹, (iv) zusätzlich fällt die scharfe intensive IR-Bande bei 1200 cm⁻¹ auf, die v_s(CF₃) *trans* zu CN zugeordnet wird.

Die CF₃-Gruppe *trans* zu CN ist anders gebunden als die restlichen CF₃-Gruppen, so dass ihre Schwingungen wenig mit denen der restlichen CF₃-Gruppen koppeln. Zusätzlich kommt es durch die erniedrigte Symmetrie des Anions zu einer höheren Bandenintensität. Alle weiteren Banden sind durch Vergleich mit den entsprechenden Banden im $[B(CF_3)_4]^-$ -Anion [64] zugeordnet und in Tabelle 10 aufgelistet.

Das Raman-Spektrum von $Cs_2[Pt(CF_3)_6]$ (Abb. 105) zeigt bei 1071 cm⁻¹ die symmetrischen C-F-Valenzschwingungen und bei 725 und 718 cm⁻¹ die symmetrischen und bei 542 und 532 cm⁻¹ die asymmetrischen Deformationsschwingungen der CF₃-Gruppen. Bei 271 cm⁻¹ sind die Rockingschwingungen der CF₃-Gruppen und bei 237 cm⁻¹ die symmetrischen Valenzschwingungen der Pt-C-Bindungen zu erkennen. Das Signal bei 166 cm⁻¹ kann den C-Pt-C-Deformationsschwingungen zugeordnet werden.

Im IR-Spektrum von $Cs_2[Pt(CF_3)_6]$ (Abb. 105) können bei 1193 cm⁻¹ die symmetrischen und bei 1058 und 1044 cm⁻¹ die asymmetrischen Valenzschwingungen der CF₃-Gruppen nachgewiesen werden. Bei 714 und 695 cm⁻¹ zeigen sich die symmetrischen und bei 525 cm⁻¹ die asymmetrischen Deformationsschwingungen der CF₃-Gruppen.

Abb. 105 Raman- und IR-Spektrum von Cs₂[Pt(CF₃)₆]

Abb. 106 Raman- und IR-Spektrum von Cs₂[Pt(CN)(CF₃)₅]

Allgemein sind die Unterschiede der Schwingungszahlen bei allen drei Salzen gering (Tab. 10). Der Vergleich der Schwingungsspektren von Cs₂[Pt(CN)(CF₃)₅] und Cs₂[Pt(CF₃)₆] ermöglicht eine leichte Zuordnung der Banden der CN- und CF₃-Gruppe. Wie zu erwarten war, sind die CN-Valenzschwingungen im Raman-Spektrum stärker als im IR-Spektrum. Dies lässt sich durch die starke Polarisierbarkeit und die geringe Dipolmomentänderung bei der Valenzschwingung der CN-Dreifachbindung erklären. Umgekehrt zeigen sich für CF₃-Valenzschwingungen im IR-Spektrum starke breite Banden, während die Banden im Raman-Spektrum schwach sind. Hier werden die Dipolmomente der stark polarisierten (mit hohem ionischen Anteil) und starken C-F-Bindungen bei der Valenzschwingung stark geändert. Die Polarisierbarkeit der C-F-Bindung ist somit gering. Die symmetrische Deformationschwing-ung der CF₃-Gruppe ist im Raman-Spektrum stärker ausgeprägt als im IR-Spektrum, weil bei der Änderung vom Bindungswinkel sich das Volumen (Polarisierbarkeit) der CF₃-Gruppe stark ändert.

K ₂ [Pt(CN)	$(CF_{3})_{5}]$	Cs ₂ [Pt(CN	$(CF_{3})_{5}]$	Cs ₂ [Pt(CF	3)6]	
Raman	IR	Raman	IR	Raman	IR	Zuordnung
2171	2171	2166	2164			v(CN)
	1190	1183	1184		1193)
	1176		1172			$ v(CF_3) $
1076	1096	1077	1096	1071	1058	$\nu(CF_3)$
954	1067	958	1046	1071	1044	$\nu(CF_3)$
725	724	724	724	725	714)
718				718	695	$\delta_{\rm s}({\rm CF}_3)$
541	526	541	525	542	525	
				532		$\delta_{as}(CF_3)$
442	440	438	437			$(\mathbf{D} \in \mathbf{C} \mathbf{N})$
422	419	416	414			V(PI-CN)
335		332				δ(Pt-CN)
289		287				ρ(CN)
269		265		271		$\rho(CF_3)$
240		238		237		$v(Pt-CF_3)$
162		148		166		δ(C-Pt-C)

Tab. 10: Schwingungsspektren von $K_2[Pt(CN)(CF_3)_5]$, $Cs_2[Pt(CN)(CF_3)_5]$ und $Cs_2[Pt(CF_3)_6]$

6 DSC-Analysen

6.1 DSC-Analysen von K₂[Pt(CN)(CF₃)₅] und Cs₂[Pt(CN)(CF₃)₅]

In den DSC-Kurven ist der exotherme Zerfall von $K_2[Pt(CN)(CF_3)_5]$ (Abb. 107) bei ca. 370 °C und von $Cs_2[Pt(CN)(CF_3)_5]$ (Abb. 108) bei ca. 450 °C zu erkennen. Vermutlich bilden sich dabei sehr stabiles $Cs_2[PtF_6]$ und Perfluorkohlenstoffe. Ein endothermer Schmelzvorgang tritt nicht auf. Die thermischen Zerfallsprodukte müssen noch weiter untersucht werden.

Abb. 107 DSC-Analyse von K₂[Pt(CN)(CF₃)₅]

Abb. 108 DSC-Analyse Cs₂[Pt(CN)(CF₃)₅]

7 Massenspektren

Die Massenspektren der Platinkomplexe zeigen das typische Isotopenmuster von Platin. Von den sechs in der Natur vorkommenden Isotopen ¹⁹⁰Pt (0.011 %), ¹⁹²Pt (0.796 %), ¹⁹⁴Pt (32.96 %), ¹⁹⁵Pt (33.86 %), ¹⁹⁶Pt (25.36 %), ¹⁹⁸Pt (7.22 %) sind nur die fünf häufigsten erkennbar [110]. Für die einzelnen Anionen wird im Übersichtsspektrum immer nur das höchste Signal angegeben. Seine prozentuale Höhe (in Klammern) wird immer auf das intensivste Signal im ganzen Spektrum bezogen, das auf 100 % gesetzt wird.

7.1 Massenspektrum von K₂[Pt(CN)(CF₃)₅]

Im Übersichtsspektrum ist das Hauptsignal bei m/z 282.5 (100 %) dem $[Pt(CN)(CF_3)_5]^{2-}$ Anion zuzuordnen (Abb. 109). Der Vergleich eines vergrößerten Ausschnittes des $[Pt(CN)(CF_3)_5]^{2-}$ -Anions (Abb. 110) mit dessen simuliertem Spektrum (Abb. 111) zeigt die stark überlagerten Signale der fünf häufigsten natürlichen Isotope des Platins.

Abb. 109 Übersichtsmassenspektrum von K₂[Pt(CN)(CF₃)₅] im Bereich von *m/z* 200-650

Abb. 110 gemessenes Massenspektrum vom $[Pt(CN)(CF_3)_5]^{2-}$ -Anion bei m/z 283.0 des K₂[Pt(CN)(CF₃)₅]

Abb. 111 simuliertes Massenspektrum vom $[Pt(CN)(CF_3)_5]^{2-}$ -Anion bei m/z 283.0 des $K_2[Pt(CN)(CF_3)_5]$

7.2 Massenspektrum von Cs₂[Pt(CN)(CF₃)₅]

Im Übersichtsspektrum vom angereicherten $Cs_2[Pt(CN)(CF_3)_5]$ ist das Hauptsignal m/z 282.5 (100 %) dem $[Pt(CN)(CF_3)_5]^{2-}$ -Anion zuzuordnen (Abb. 112). Der Vergleich eines vergrößerten Ausschnittes des $[Pt(CN)(CF_3)_5]^{2-}$ -Anions (Abb. 113) mit dessen simulierten Spektrum (Abb. 114) zeigt die stark überlagerten Peaks der fünf häufigsten natürlichen Isotope des Platins.

Abb. 112 Übersichtsmassenspektrum von $Cs_2[Pt(CN)(CF_3)_5]$ im Bereich von m/z 220-650

Abb. 113 gemessenes Massenspektrum vom $[Pt(CN)(CF_3)_5]^{2-}$ -Anion bei m/z 283.0 des $Cs_2[Pt(CN)(CF_3)_5]$

Abb. 114 simuliertes Massenspektrum vom $[Pt(CN)(CF_3)_5]^{2-}$ -Anion bei m/z 283.0 des $Cs_2[Pt(CN)(CF_3)_5]$

7.3 Massenspektrum von Cs₂[Pt(CF₃)₆]

Das Übersichtsmassenspektrum vom angereicherten $Cs_2[Pt(CF_3)_6]$ zeigt als Hauptsignal bei m/z 304.1 (100 %) das $[Pt(CF_3)_6]^2$ -Anion (Abb. 115). Der stark vergrößerte Ausschnitt des Signals (Abb. 116) zeigt ein durch geringe Auflösung stark überlagertes Isotopenmuster der fünf häufigsten natürlichen Isotope des Platins. Anhand der Simulation des Signals (Abb. 117), konnte das erwartete Isotopenmuster bestätigt werden.

Abb. 115 Übersichtsmassenspektrum von Cs₂[Pt(CF₃)₆] im Bereich von m/z 50-700

Abb. 116 gemessenes Massenspektrum vom $[Pt(CF_3)_6]^{2-}$ -Anion bei m/z 304.5 des $Cs_2[Pt(CF_3)_6]$

Abb. 117 simuliertes Massenspektrum vom $[Pt(CF_3)_6]^{2-}$ -Anion bei m/z 304.5 des $Cs_2[Pt(CF_3)_6]$

7.4 Diskussion der Massenspektren

Wie erwartet gleicht das Übersichtsspektrum von $Cs_2[Pt(CN)(CF_3)_5]$ dem des $K_2[Pt(CN)(CF_3)_5]$ (Abb. 109, 112, Tab. 11, 12). Durch die geringe Auflösung der Massenspektren der drei untersuchten Substanzen, kann nur anhand der simulierten Massenspektren ein eindeutiger Nachweis der beiden Anionen $[Pt(CN)(CF_3)_5]^{2-}$ und $[Pt(CF_3)_6]^{2-}$ erfolgen. Durch die geringe Intensität der Signale und das starke Rauschen in den Spektren sind die zu erwartenden Intensitätsverhältnisse der Platinisotope nicht erkennbar. In den Tabellen 9 und 10 werden die gemessenen und theoretischen Massen der beiden Anionen aufgeführt. Dabei werden nur die fünf häufigsten natürlichen Platinisotope und das häufigste Kohlenstoff- (¹²C) und Stickstoff- (¹⁴N) Isotop berücksichtigt.

Tab. 11	Massen m/z des Anions [Pt(CN)(CF ₃) ₅] ²⁻ aus den beiden angereicherten Substanzen
	$K_2[Pt(CN)(CF_3)_5]$ und $Cs_2[Pt(CN)(CF_3)_5]$

Anionen	$K_2[Pt(CN)(CF_3)_5]$	$Cs_2[Pt(CN)(CF_3)_5]$	theoretische
	Masse ^{a)} m/z	Masse ^{a)} m/z	Masse ^{b)} m/z
$[^{192}$ Pt(CN)(CF ₃) ₅ $]^{2-}$	281.5	281.3	281.470079
$[^{194}$ Pt(CN)(CF ₃) ₅ $]^{2-}$	282.5	282.5	282.470893
$[^{195}$ Pt(CN)(CF ₃) ₅ $]^{2-}$	283.0	282.9	282.971948
$[^{196}Pt(CN)(CF_3)_5]^{2-}$	283.4	283.4	283.472028
$[^{198}$ Pt(CN)(CF ₃) ₅ $]^{2-}$	284.3	284.3	284.473499

^{a)} gemessene Masse m/z der Anionen

^{b)} theoretische Masse *m/z* der Anionen durch Addition der Atommassen von ¹²C, ¹⁴N, ¹⁹F und dem jeweiligen Platinisotop (Atommassen aus Handbook of Chemistry and Physics [110])

Tab. 12 Masse m/z des Anions $[Pt(CF_3)_6]^{2-}$ aus der angereicherten Substanz von $Cs_2[Pt(CF_3)_6]$

Anionen	$\frac{\text{Cs}_2[\text{Pt}(\text{CF}_3)_6]}{\text{Masse}^{a)} m/z}$	theoretische Masse ^{b)} m/z
$[^{192}\text{Pt}(\text{CF}_3)_6]^{2-}$	302.7	302.966146
$[^{194}\text{Pt}(\text{CF}_3)_6]^{2-}$	304.1	303.966960
$[^{195}\text{Pt}(\text{CF}_3)_6]^{2-}$	304.6	304.468016
$[^{196}\text{Pt}(\text{CF}_3)_6]^{2-}$	305.0	304.968096
$[^{198}\text{Pt}(\text{CF}_3)_6]^{2-}$	305.9	305.969566

^{a)} gemessene Masse m/z der Anionen

^{b)} theoretische Masse *m/z* der Anionen durch Addition der Atommassen von ¹²C, ¹⁹F und dem jeweiligen Platinisotop (Atommassen aus Handbook of Chemistry and Physics [110])

8 Röntgenstrukturanalysen

8.1 Röntgenstruktur von $K_2[(CF_3)_2F_2Pt(\mu-OH)_2PtF_2(CF_3)_2]\cdot 2H_2O$

Die Fluorierung von K₂[Pt(CN)₄] und K₂[Pt(CN)₆] in aHF mit ClF führt nach wässeriger Aufarbeitung der Produkte zu farblosen Kristallen. Durch die Röntgenstrukturanalyse zeigt sich, das es sich um $K_2[(CF_3)_2F_2Pt(\mu-OH)_2PtF_2(CF_3)_2]\cdot 2H_2O$ handelt. Das zweikernige Anion $[(CF_3)_2F_2Pt(\mu-OH)_2PtF_2(CF_3)_2]^{2-}$ ist über Sauerstoffatome verbrückt und weist annähernd D_{2h}-Symmetrie auf (Abb. 118). Bei Berücksichtigung der berechneten Positionen der Wasserstoffatome der OH-Brückenliganden und der Koordination der Kalium-Kationen an den OH-Liganden, ergibt sich für das Anion im Gitter C_{2h}-Symmetrie (Abb. 119). Die C_{2h}-Symmetrie wird aber durch Wasserstoffbrücken zwischen H2 und O3 erniedrigt, wobei H1 keine weiteren signifikanten Wechselwirkungen aufweist. Die Wasserstoffatome von O3 bilden weitere Wasserstoffbrückenbindungen zu den am Platin gebundenen Fluoratomen (H3a zu F22 und H3b zu F21). Ein Wasserstoffatom (H4a) von O4 bildet eine Wasserstoffbrücke zu O3, wohingegen das andere Wasserstoffatom keine weiteren signifikanten Wechselwirkungen aufweist (Tab. 13). K2 und O4 bilden einen nahezu quadratischen Vierring. Die Kalium-Kationen koordinieren hauptsächlich an Sauerstoff- und Fluor-Atome, die an Platin gebunden sind. Der relativ kurze Abstand K2-F112 (Tab. 13) ist wahrscheinlich durch die Kristallpackung bedingt. Die Fluoratome der CF₃-Gruppen sind schwächer koordinierend als die Fluoratome, die am Platin gebunden sind. Die Bindungsabstände sind vergleichbar mit anderen Trifluormethyl- und Fluoro-Komplexen des Platins (Tab. 13). Die Anionen sind durch Kalium-Kationen in Ketten verknüpft, die entlang der c-Achse verlaufen.

Durch Verfeinerung des Strukturmodells konnten in der Restelektrondichte noch Peaks gefunden werden die der Einordnung von Pt1, Pt2 und K1 entsprechen, aber um (0.74348, 0.50452, 0.29458) verschoben sind. Die Besetzung beträgt etwa 3 %, wobei es Möglicherweise im Kristall Bereiche gibt, wo Wassermoleküle fehlen. Dabei bleiben die Ketten aus dimeren Anionen [(CF₃)₂F₂Pt(μ -OH)₂PtF₂(CF₃)₂]^{2–} und Kaliumkationen K1 sowie die Zellparameter erhalten, die relativen Lagen von K2 und der Wassermoleküle sind aber unterschiedlich.

Zusammengefasst sind die Einzelheiten der Kristallstrukturanalysen von $K_2[(CF_3)_2F_2Pt(\mu-OH)_2PtF_2(CF_3)_2]$ ·2H₂O in der Tabellen 14.

Abb. 118 zweikerniges Komplexanion $[(CF_3)_2F_2Pt(\mu-OH)_2PtF_2(CF_3)_2]^{2-1}$

Abb. 119 Intermolekulare Verknüpfungen des zweikerniges Komplexanions $[(CF_3)_2F_2Pt(\mu-OH)_2PtF_2(CF_3)_2]^{2-} \ \mbox{über} \ K^+ \ \mbox{und} \ H_2O$

Bindung	Å	Winkel	grad.	Winkel	grad.
C-F	1.329(9)*4 ^{a)}	C-Pt-O	95.0(3)*4 ^{a)}	C-Pt-O	173.5(3)*4 ^{a)}
Pt-F	1.953(4)*4 ^{a)}	C-Pt-C	91.5(4)*2 ^{a)}	F-Pt-F	170.2(2)*2 ^{a)}
Pt-C	2.000(8)*4 ^{a)}	F-Pt-C	90.9(3)*4 ^{a)}	Pt-C-F	113.2(6)*12 ^{a)}
Pt-O	2.097(5)*4 ^{a)}	F-Pt-O	89.0(2)*4 ^{a)}	F-C-F	105.5(8)*12 a)
Pt Pt	3.243(1)	O-Pt-O	78.5(2)*2 ^{a)}	Pt-O-Pt	101.5(2)*2 ^{a)}
K1-O1	2.744(5)	Pt-O-K1	101.9(2)*4 ^{a)}	Pt-O2O3	113.7(3)*2 ^{a)}
K1-O2	2.756(5)	O1-K1-O2	160.9(2)	K1-O2O3	122.0(4)
0203	2.733(6)	O2O3F22	125.4(2)	O2O3F21	102.4(2)
O3F22	2.758(5)	O4O3F21	128.5(2)	O4O3F22	109.4(2)
O3F21	2.693(5)	F22O3F21	71.1(2)	020304	114.8(2)
0403	2.808(6)	K2-O4O3	94.9(2)	K2-O4O3	134.1(2)
K2-O4	2.747(6)*2 ^{a)}	O4-K2-O4	88.0(2)*2	K2-O4-K2	92.0(2)*2
K1-F11	2.674(4)				
K1-F22	2.657(5)				
K1-F21	2.701(4)				
K1-F12	2.749(5)				
K2-F11	2.548(4)				
K2-F22	2.571(5)				
K2-F112	2.701(6)				
^{a)} gemittelt	1				

Tab. 13 Ausgewählte Bindungsabstände Å und Winkel ° von $K_2[(CF_3)_2F_2Pt(\mu-OH)_2PtF_2(CF_3)_2]$ ·2H₂O
Daten	$K_2[(CF_3)_2F_2Pt(\mu\text{-}OH)_2PtF_2(CF_3)_2]\cdot 2H_2O$
Summenformel	$C_4H_6F_{16}K_2O_4Pt_2$
Molmasse/g mol ⁻¹	890.47
Meßtemperatur/°C	-129
Kristallsystem	monoklin
Raumgruppe	$P2_1/c$ (Nr. 14)
a/Å	11.391(2)
b/Å	11.565(2)
c/Å	13.391(3)
β/deg	90.32(3)
$V/Å^3$	1764(1)
Ζ	4
$D_x/g \text{ cm}^{-3}$	3.353
$\mu(MoK\alpha)/mm^{-1}$	16.49
Messbereich (h, k, l)	$\pm 14,\pm 15,\pm 16$ $6^{\circ} < 20 < 55^{\circ}$
Reflexe, gemessen	8045
Reflexe, unabhängig	4054
Reflexe, $I > 2\sigma(I)$	2748
Reflexe / Variablen	4054 / 254
R_{σ}	0.0736
R _{int}	0.0381
$R_1, I > 2\sigma(I)$	0.0326
R _w	0.0712
Goodness of fit	0.904
Restelektronendichte, e $Å^{-3}$	+1.9/-2.2

Tab. 14 Einzelheiten zu den Kristallstrukturanalysen ^{a)} von $K_2[(CF_3)_2F_2Pt(\mu-OH)_2PtF_2(CF_3)_2]\cdot 2H_2O$

^{a)} Messgerät Nonius κ-CCD Diffraktometer, $\lambda = 0.71073$ Å (MoK α); Messmethode ω -Scan; Messgeschwindigkeit intensitätsabhängig (6 bis 29° min⁻¹); Strukturlösung SHELXTL PLUS (direkte Methoden), $R_1 = \Sigma ||F_o| - |F_c|| / \Sigma |F_o|$; $R_w = [\Sigma w (F_o^2 - F_c^2)^2 / \Sigma w (F_o^2)^2]^{1/2}$, Gewichtungsschema $w = [\sigma^2 (F_o^2) + (aP)^2 + bP]^{-1}$, $P = (max(0,F_o^2) + 2F_c^2)/3$; Goodness of fit $S = [\Sigma w (F_o^2 - F_c^2)^2 / (m-n)]^{1/2}$, m: Zahl der Reflexe, n: Zahl der Parameter

8.2 Röntgenstrukturen von K₂[Pt(CN)(CF₃)₅], Cs₂[Pt(CN)(CF₃)₅] und Cs₂[Pt(CF₃)₆]

Von den bei der Umsetzung von $[Bu_4N]_2[Pt(CN)_6]$ mit ClF in wasserfreiem Dichlormethan nach der Aufarbeitung erhaltenen farblosen Kristallen von K₂[Pt(CN)(CF₃)₅], Cs₂[Pt(CN)(CF₃)₅] und Cs₂[Pt(CF₃)₆] können wegen Fehlordnungen im Kristall keine Röntgenstruktur-Datensätze mit ausreichender Aussagekraft erhalten werden. Einige allgemeine Angaben zu ihrem kristallinen Aufbau sind in Tabelle 15 aufgeführt.

Daten	$K_2[Pt(CN)(CF_3)_5]$	$Cs_2[Pt(CN)(CF_3)_5]$	$Cs_2[Pt(CF_3)_6]$
Summenformel	$C_6F_{15}K_2NPt$	$C_6Cs_2F_{15}NPt$	$C_6Cs_2F_{18}Pt$
Molmasse/g mol ⁻¹	644.32	831.94	874.93
Meßtemperatur/°C	-163	-163	-163
Kristallsystem	kubisch	hexagonal	hexagonal
Raumgruppe	F m 3 m	R 3	P 6 ₃ m c
a/Å	11.483	14.158(5)	8.254(1)
b/Å	11.483	14.158(5)	8.254(1)
c/Å	11.483	40.29(2)	13.323(1)
$V/Å^3$	1514	6994	786
Z	4	2	2
$D_x/g \text{ cm}^{-3}$	3.032	3.739	3.696
$\mu(MoK\alpha)/mm^{-1}$	10.01	13.83	13.68
Messbereich (h, k, l)	$\begin{array}{l} -13^{\circ} \leq h \leq 14^{\circ}, \\ -14^{\circ} \leq k \leq 14^{\circ}, \\ -15^{\circ} \leq l \leq 13^{\circ}, \\ 6^{\circ} < 2\theta < 59^{\circ} \end{array}$	$\begin{array}{l} -19^{\circ} \leq h \leq 17^{\circ}, \\ -19^{\circ} \leq k \leq 18^{\circ}, \\ -56^{\circ} \leq l \leq 46^{\circ}, \\ 6^{\circ} < 2\theta < 61^{\circ} \end{array}$	$\begin{array}{l} -11^{\circ} \leq h \leq 9^{\circ}, \\ -11^{\circ} \leq k \leq 10^{\circ}, \\ -13^{\circ} \leq l \leq 18^{\circ}, \\ 6^{\circ} < 2\theta < 61^{\circ} \end{array}$
Reflexe, gemessen	2829	19460	5560
Reflexe, unabhängig	140	8070	824
Reflexe, $I > 2\sigma(I)$	113	2025	706
Reflexe / Variablen	2829 /	19640 /	5560 /
R_{σ}	0.0406	0.1526	0.0374
R _{int}	0.1052	0.0948	0.0635

Tab. 15Einzelheiten zu den Kristallstrukturanalysen ^{a)} von $K_2[Pt(CN)(CF_3)_5]$,
 $Cs_2[Pt(CN)(CF_3)_5]$ und $Cs_2[Pt(CF_3)_6]$

^{a)} Messgerät Nonius κ -CCD Diffraktometer, $\lambda = 0.71073$ Å (MoK α); Messmethode ω -Scan; Messgeschwindigkeit intensitätsabhängig (6 bis 29° min⁻¹)

9 Ausblick

Zur genaueren Charakterisierung der Komplexanionen müssten die Gemische der Anionen aufgetrennt und aufgereinigt werden. Dazu bietet sich die Ionenchromatographie ähnlich wie von Preetz et al. [103, 111-113] beschrieben an. Der Nachweis der weitestgehend farblosen Anionen in den gewonnen Fraktionen, ist wahrscheinlich durch einen UV-Detektor nicht möglich, da die bei der Darstellung der Anionen entstehenden Nebenprodukte ebenfalls im UV-Bereich absorbieren. Alternativ könnte ein Leitfähigkeitsdetektor verwendet werden. Möglicherweise kann durch Umsetzung einer kleinen Menge an Hexacyanoplatinat, gelöst in einer großen Menge an Dichlormethan, mit einem großen Überschuß an CIF die Ausbeute an $[Pt(CF_3)_6]^{2-}$ deutlich gesteigert werden. Dies könnte ebenfalls durch Zugabe einer effektiver als KF HF-bindenden Substanz erreicht werden.

Um zu untersuchen, wie die Trifluormethylplatinate mit wasserfreier HF reagieren, könnte das Gemisch der Fluoro(trifluormethyl)platinate, das bei der Reaktion von $[Bu_4N]_2[Pt(CN)_6]$ mit ClF in Dichlormethan entsteht, mit wasserfreier HF umgesetzt werden.

In der Literatur [26] wurde die Umsetzung von einer CF₃-Gruppe von *cis*-Pt(CF₃)₂L₂ (L₂ = bipy, tmen; L = py) zu einer CO-Gruppe durch verdünnte Säuren beschrieben. Dabei bildeten sich bei den Reaktionen mit wässriger HCl-Lösung *cis*-[Pt(CF₃)(CO)Cl₂]⁻ und mit wässriger HClO₄-Lösung *cis*-[Pt(CF₃)(CO)(OH)₂]⁻. Analog dazu könnten durch Umsetzung mit verdünnten Säuren, aus den Trifluormethylmetallaten eventuell (Carbonyl)(trifluormethyl)-metallate (Metall: Ir(III), Pt(IV)) dargestellt werden, die als Vorläufer für weitere Chemie oder für die CVD-Abscheidung von Iridium oder Platin geeignet sein könnten.

Die genauere Untersuchung der bei der Umsetzung des $[Bu_4N]_3[Ir(CN)_6]$ mit ClF in Dichlormethan bei unterschiedlichen Reaktionsbedingungen entstehenden Trifluormthyliridate, könnte zum Nachweis weiterer interessanter Anionen wie $[Ir(CF_3)_6]^3$ - führen.

Bei der Umsetzung von [Bu₄N][Ir(NO)(CN)₅] mit nur einfach negativ geladenem Anion mit ClF, könnten stabile Trifluormethyliridate mit bis zu fünf CF₃-Gruppen entstehen.

10 Literaturverzeichnis

- [1] R. E. Banks, B. E. Smart, J. C. Tatlow, *Organofluorine Chemistry, Principles and Commercial Applications, Plenum Press, New York and London* **1994**.
- [2] D. W. Reynolds, P. E. Cassidy, C. G. Johnson, M. L. Cameron, J. Org. Chem. 1990, 55, 4448.
- [3] J. A. Morrison, Adv. Organomet. Chem. 1993, 35, 211.
- [4] J. A. Morrison, Adv. Inorg. Chem. Radiochem. 1983, 27, 293.
- [5] M. A. McClinton, D. A. McClinton, *Tetrahedron* **1992**, *48*, 6555.
- [6] F. L. Taw, B. L. Scott, J. L. Kiplinger, J. Am. Chem. Soc. 2003, 125, 14712.
- [7] C. D. Ontiveros, *Ph. D. Thesis, University of Illinois at Chicago, Chicago, Illinois* 1986.
- [8] D. C. Loizou, C. Castillo, A. R. Oki, N. S. Hosmane, J. A. Morrison, Organometallics 1992, 11, 4189.
- [9] D. C. Loizou, Ph. D. Thesis, University of Illinois at Chicago, Chicago, Illinois 1991.
- [10] E. A. Ganja, Ph. D. Thesis, University of Illinois at Chicago, Chicago, Illinois 1988.
- [11] R. J. Lagow, L. L. Gerchman, R. A. Jacob, in *United States Patent*, US3,954,585,
 Massachusetts Institute of Technology, Cambridge, Mass., United States, **1976**, pp. 1.
- [12] R. J. Lagow, L. L. Gerchman, R. A. Jacob, in *United States Patent*, US3,992,424,
 Massachusetts Institute of Technology, Cambridge, Mass., United States, 1976, pp. 1.
- [13] S. K. Shin, J. L. Beauchamp, J. Am. Chem. Soc. 1990, 112, 2057.
- [14] T. G. Richmond, D. F. Shriver, *Organometallics* **1984**, *3*, 305.
- [15] D. W. Hensley, W. L. Wurster, R. P. Stewart, Inorg. Chem. 1981, 20, 645.
- [16] L. M. Boyd, G. R. Clark, W. R. Roper, J. Organomet. Chem. 1990, 397, 209.
- [17] G. R. Clark, S. V. Hoskins, W. R. Roper, J. Organomet. Chem. 1982, 234, C9.
- [18] G. R. Clark, T. R. Greene, W. R. Roper, Aust. J. Chem. 1986, 39, 1315.
- [19] W. R. Roper, J. Organomet. Chem. 1986, 300, 167.
- [20] C. D. Ontiveros, J. A. Morrison, Organometallics 1986, 5, 1446.
- [21] A. K. Burrell, G. R. Clark, J. G. Jeffrey, C. E. F. Rickard, W. R. Roper, J. Organomet. Chem. 1990, 388, 391.
- [22] T. R. Greene, W. R. Roper, J. Organomet. Chem. 1986, 299, 245.
- [23] P. J. Brothers, A. K. Burrell, G. R. Clark, Organomet. Chem. 1990, 394, 615.
- [24] H. C. Clark, L. E. Manzer, J. Organomet. Chem. 1973, 59, 411.

- [25] T. G. Appleton, J. R. Hall, D. W. Neale, M. A. Williams, J. Organomet. Chem. 1984, 276, C73.
- [26] T. G. Appleton, R. D. Berry, J. R. Hall, D. W. Neale, *J. Organomet. Chem.* 1989, 364, 249.
- [27] L. J. Krause, J. A. Morrison, J. Chem. Soc. Chem. Commun. 1981, 1282.
- [28] D. Naumann, N. V. Kirij, N. Maggiarosa, W. Tyrra, Y. L. Yagupolskii, M. S. Wickleder, Z. Anorg. Allg. Chem. 2004, 630, 746.
- [29] T. G. Appleton, R. D. Berry, J. R. Hall, D. W. Neale, *J. Organomet. Chem.* 1988, 342, 399.
- [30] M. A. Bennett, H. Chee, G. B. Robertson, *Inorg. Chem.* 1979, 18, 1061.
- [31] R. Eujen, E. Hoge, D. J. Brauer, Inorg. Chem. 1997, 36, 1464.
- [32] D. Naumann, T. Roy, K. Tebbe, Angew. Chem. Int. Ed. Engl. 1993, 32, 1482.
- [33] W. Dukat, D. Naumann, Rev. Chem. Miner. 1986, 23, 589.
- [34] H. K. Nair, J. A. Morrison, J. Organomet. Chem. 1989, 376, 149.
- [35] J. A. Schlueter, J. M. Williams, U. Geiser, J. D. Dudek, S. A. Sirchio, M. E. Kelly, J.
 S. Gregar, W. H. Kwok, J. A. Fendrich, J. E. Schirber, W. R. Bayless, D. Naumann, T.
 Roy, J. Chem. Soc., Chem. Commun. 1995, 1311.
- [36] T. Roy, D. Naumann, *unpublished results* **1995**.
- [37] E. K. S. Liu, Inorg. Chem. 1980, 19, 266.
- [38] H. Lange, D. Naumann, J. Fluorine Chem. 1984, 26, 1.
- [39] L. J. Krause, J. A. Morrison, J. Am. Chem. Soc. 1981, 103, 2995.
- [40] H. J. Emeleus, R. N. Hazeldine, J. Chem. Soc. 1949, 2948.
- [41] A. A. Banks, H. J. Emeleus, R. N. Hazeldine, V. Kerrigan, J. Chem. Soc. 1948, 2188.
- [42] H. J. Emeleus, J. J. Lagowski, J. Chem. Soc. 1959, 1497.
- [43] R. Eugen, *Inorg. Synth.* **1986**, *24*, 52.
- [44] R. J. Lagow, R. Eujen, L. L. Gerchman, J. A. Morrison, J. Am. Chem. Soc. 1978, 100, 1722.
- [45] D. J. Burton, Z.-Y. Yang, *Tetrahedron* **1992**, *48*, 189.
- [46] O. R. Pierce, E. T. McBee, G. F. Judd, J. Am. Chem. Soc. 1954, 76, 474.
- [47] R. N. Haszeldine, J. Chem. Soc. 1952, 3423.
- [48] W. P. Dailey, P. Ralli, D. Wasserman, D. M. Lemal, J. Org. Chem. 1989, 54, 5516.
- [49] I. Ruppert, K. Schlich, W. Volbach, *Tetrahedron Lett.* 1984, 25, 2195.
- [50] R. P. Singh, M. Shreeve, *Tetrahedron* **2000**, *56*, 7613.
- [51] G. K. S. Prakash, A. K. Yudin, *Chem. Rev.* **1997**, *97*, 757.

- [52] G. J. Pawelke, J. Fluorine Chem. **1989**, 42, 429.
- [53] H. Lange, D. Naumann, J. Fluorine Chem. 1984, 26, 435.
- [54] K. J. Klabunde, M. S. Key, J. Y. F. Low, J. Am. Chem. Soc. 1972, 94, 999.
- [55] V. C. R. McLoughlin, J. Thrower, *Tetrahedron* **1969**, *25*, 5921.
- [56] G. Brauer, Handbuch der Präparativen Anorganischen Chemie, Band I, Ferdinand Enke Verlag, Stuttgart **1975**, 222.
- [57] D. Paskowich, P. Gaspar, G. S. Hammond, J. Org. Chem. 1967, 32, 833.
- [58] R. N. Haszeldine, J. Chem. Soc. 1951, 584.
- [59] P. R. McGee, F. F. Cleveland, J. Chem. Phys. 1952, 20, 1044.
- [60] A. L. Henne, W. G. Finnegan, J. Am. Chem. Soc. 1950, 72, 3806.
- [61] E. Bernhardt, M. Finze, H. Willner, J. Fluorine Chem. 2004, 125, 967.
- [62] E. Bernhardt, M. Finze, H. Willner, Z. Anorg. Allg. Chem. 2003, 629, 1229.
- [63] E. Bernhardt, G. Henkel, H. Willner, Z. Anorg. Allg. Chem. 2000, 626, 560.
- [64] E. Bernhardt, G. Henkel, H. Willner, G. Pawelke, H. Bürger, *Chem. Eur. J.* 2001, 7, 4696.
- [65] B. Das, R. Carlin, R. A. Osteryoung, *Inorg. Chem.* **1989**, *28*, 421.
- [66] V. Gutmann, G. Gritzner, K. Danksagmüller, Inorg. Chim. Acta 1976, 17, 81.
- [67] R. A. Krause, C. Violette, *Inorg. Chim. Acta* **1986**, *113*, 161.
- [68] S. Eller, R. D. Fischer, *Inorg. Chem.* **1990**, *29*, 1289.
- [69] E. J. Baran, A. Müller, Z. Anorg. Allg. Chem. 1969, 370, 283.
- [70] W. P. Griffith, G. T. Turner, J. Chem. Soc. (A) **1970**, 858.
- [71] J. J. Alexander, H. B. Gray, J. Am. Chem. Soc. 1968, 90, 4260.
- [72] G. L. Geoffroy, M. S. Wrighton, G. S. Hammond, H. B. Gray, *Inorg. Chem.* 1974, 13, 430.
- [73] L. H. Jones, J. Chem. Phys. 1964, 41, 856.
- [74] H. Inoue, M. Wada, S. Yanagisawa, *Inorg. Chim. Acta* 1973, 7, 129.
- [75] G. W. Watt, E. P. Helvenston, L. E. Sharif, J. Inorg. Nucl. Chem. 1962, 24, 1067.
- [76] G. Brauer, Handbuch der Präparativen Anorganischen Chemie, Band III, Ferdinand Enke Verlag, Stuttgart 1975, 1698.
- [77] G. Brauer, Handbuch der Präparativen Anorganischen Chemie, Band III, Ferdinand Enke Verlag, Stuttgart **1975**, 1728.
- [78] H. Siebert, A. Siebert, Angew. Chem. 1969, 81, 575.
- [79] C. Brown, B. T. Heaton, J. Sabounchei, J. Organomet. Chem. 1977, 142, 413.

- [80] I. I. Chernyaev, A. V. Babkov, H. Siebert, M. Weise, Proc. acad. sci. USSR 1963, 152, 787.
- [81] H. Siebert, M. Weise, Z. Naturforsch. 1974, 30b, 33.
- [82] A. V. Babkow, M. N. Kuznetsova, V. S. Smurova, Sov. J. Coord. Chem. 1980, 6, 792.
- [83] M. N. Memering, L. H. Jones, J. C. Bailar, *Inorg. Chem.* 1973, 12, 2793.
- [84] P. H. M. Budzelaar, gNMR 5.0.2.0, Firma: Adept Scientific plc, Herausgeber: Ivory Soft 2003.
- [85] Z. Otwinowsy, W. Minor, *Methodes in Enzimology* 1997, 276, 307.
- [86] G. M. Sheldrick, *Acta Crystallogr.* **1990**, *A46*, 467.
- [87] G. M. Sheldrick, SHELXL97, Program for the Refinement of Crystal Structures, Universität Göttingen **1997**.
- [88] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds, J. Wiley, New York 1978, 141.
- [89] K. C. Lee, F. Aubke, Inorg. Chem. 1984, 23, 2124.
- [90] M. Geisel, A. Waterfeld, R. Mews, *Chem. Ber.* **1985**, *118*, 4459.
- [91] C. S. Creaser, J. A. Creighton, J. Organomet. Chem. 1978, 157, 243.
- [92] T. Hiyama, Organofluorine Compounds, Chemistry and Applications, Springer-Verlag 2000, 3.
- [93] A. Bondi, J. Phys. Chem. 1964, 68, 441.
- [94] T. Nagai, G. Nishioka, M. Koyama, A. Ando, T. Miki, I. Kumadaki, *Chem. Pham. Bull.* 1991, *39*, 233.
- [95] I. Kumadaki, Fusso Yakugaku, Hirokawa, Tokyo 1993, 5.
- [96] K. W. Trafts Jr., Steric Effects in Organic Chemistry, John Wiley & Sons, New York 1956, 556.
- [97] T. Hiyama, Organofluorine Compounds, Chemistry and Applications, Springer-Verlag **2000**, 3.
- [98] T. Kitazume, T. Ishihara, T. Tagushi, *Fusso no Kagaku, Chap 5, Kodansya, Tokyo* 1993.
- [99] T. Kitazume, T. Yamazaki, *Experimental Methods in Organic Fluorine Chemistry*, *Kodansha-Gordon & Breach Science*, *Tokyo* **1998**.
- [100] N. Ishikawa, Fusso kagobutu no gosei to kinou, (N. Ishikawa, ed.), Chap 4, CMC, Tokyo 1987.
- [101] T. G. Appleton, H. G. Chisholm, H. C. Clark, L. E. Manzer, *Inorg. Chem.* 1972, 11, 1786.

- [102] E. Parzich, G. Peters, W. Preetz, Z. Naturforsch. 1993, 48b, 1169.
- [103] W. Preetz, G. Peters, D. Bublitz, *Chem. Rev.* **1996**, *96*, 977.
- [104] H. Wu, in First International Electronic Conference on Synthetic Organic Chemistry (ECSOC-1) **1997**.
- [105] A. Haas, Adv. Inorg. Chem. Radiochem. 1984, 28, 167.
- [106] A. Haas, Pure & Appl. Chem. 1991, 63, 1577.
- [107] J. J. Pesek, W. R. Mason, J. Magn. Res. 1977, 25, 519.
- [108] C. Carr, P. L. Goggin, R. J. Goodfellow, Inorg. Chim. Acta 1984, 81, L25.
- [109] D. Bublitz, G. Peters, W. Preetz, G. Auffermann, W. Bronger, Z. Anorg. Allg. Chem.
 1997, 623, 184.
- [110] Handbook of Chemistry and Physics, CRC Press, version 0.9, Hampden Data Services Ltd. 2002.
- [111] W. Preetz, W. Erlhöfer, Z. Naturforsch. 1989, 44b, 412.
- [112] W. Preetz, J. Fritze, Z. Naturforsch. 1987, 42b, 282.
- [113] J.-G. Uttecht, C. Näther, W. Preetz, Z. Anorg. Allg. Chem. 2002, 628, 2847.

Lebenslauf

Persönliche Daten:

Name: Adresse: Geburtsdatum: Geburtsort: Staatsbürgerschaft Familienstand:	Stefan Balters Westwall 151, 47798 Krefeld, 20. August 1972 Krefeld deutsch ledig
Schulausbildung:	
1979-1983	Bischöfliche Maria-Montessori-Grundschule in Krefeld
1983-1989	Bischöfliche Maria-Montessori-Gesamtschule in Krefeld
Abschluß:	Fachoberschulreife mit Qualifikation für die gymnasiale Oberstufe
Berufsschulausbildung:	
1.9.1989-9.7.1992	Höhere Berufsfachschule für Technische Assistenten – Sekundarstufe II in Krefeld
Abschluß:	Chemisch-technischer Assistent mit Fachhochschulreife
10.7.1992-30.9.1992	Vorbereitung auf das Chemiestudium
1.10.1992-30.9.1993	Wehrdienst
Hochschulausbildung:	
1.9.1993-11.10.1996	Diplom II Chemie-Grundstudium an der Gerhard-Mercator-Universität - Gesamthochschule Duisburg
12.10.1996-31.3.2000	Diplom II Chemie-Hauptstudium an der Gerhard-Mercator- Universität – Gesamthochschule Duisburg
Abschluß:	Diplom-Chemiker
Seit 01.04.2000	Promotion im Fach anorganische Chemie im Arbeitskreis von Prof. Willner, an der Universität Duisburg und an der Bergischen Universität Wuppertal Thema: Synthese und Charakterisierung neuer Trifluormethyl- Platinate und -Iridate

Krefeld, den 13. Juli 2005

Publikationen

Journal-Artikel

Synthesen und NMR-Untersuchungen von Salzen mit den neuen Anionen $[PtX_n(CF_3)_{6-n}]^{2-}$ (n = 0-5, X = F, OH, Cl, CN) und die Kristallstrukturanalyse von $K_2[(CF_3)_2F_2Pt(\mu-OH)_2PtF_2(CF_3)_2]\cdot 2H_2O$ S. Balters, E. Bernhardt, H. Willner, T. Berends Z. Anorg. Allg. Chem. **2004**, 630, 257-267

Vortrag

Eine neue Synthese von Trifluormethyl-Platinaten

S. Balters, E. Bernhardt, H. Willner

10. Deutscher Fluortag, Schmitten, 23.-25.9.2002

Hiermit erkläre ich, dass ich die eingereichte Arbeit selbstständig verfasst habe und nur die angegebenen Hilfsmittel benutzt wurden. Desweiteren erkläre ich, dass die Dissertation noch keinem anderen Fachbereich einer wissenschaftlichen Hochschule vorgelegen hat.

Krefeld, den 13. Juli 2005

Stefan Balters