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It is not possible to be a scientist unless you believe that it is good to learn. It is
not good to be a scientist, and it is not possible, unless you think that it is of the
highest value to share your knowledge, to share it with anyone who is interested.
It is not possible to be a scientist unless you believe that the knowledge of the
world, and the power which this gives, is a thing which is of intrinsic value to
humanity, and that you are using it to help in the spread of knowledge, and are
willing to take the consequences.

—Robert Oppenheimer, November 2, 1945
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Preface

This thesis gives a general framework for local Fourier analysis of multigrid methods that is
versatile and well suited for computer implementation. Multigrid methods are often a crucial
component for the efficient numerical solution of partial differential equations. Local Fourier
analysis is an idealized, quantitative analysis for these methods, i.e., it gives an estimation of
the behavior of a multigrid method.
Multigrid methods [12, 15, 32, 63, 68] consist of two components. A smoother and a

coarse grid correction. There exist many different smoothing methods and many different
ways to construct a coarse grid correction. These two components have to complement each
other to be efficient. Furthermore, they have to be chosen in such a way that matches the
problem that is to be solved. As the implementation of a multigrid method can be tedious,
one wants to know how well different smoothers and coarse grid corrections work for a
specific problem in advance. Local Fourier analysis is an efficient tool that provides the
desired information.
Local Fourier analysis is performed by analyzing a substitute problem that is similar to

the one we are interested in, but simpler to analyze. Therefore, local Fourier analysis is an
idealized analysis. As we expect that similar problems behave similarly, by knowing the
behavior of the substitute problem, we can predict the behavior of the original problem. To
apply local Fourier analysis to a problem, however, we need to find a suitable substitute
problem.

Local Fourier analysis has been successfully applied to many problems [9, 13, 26, 27, 36–
38, 45, 48, 49, 63, 68, 74–77] and there already exists a software [74] that performs local
Fourier analysis. Consequently, why do we need a new framework and a new analysis tool?

We need a new framework, as there are still applications that cannot be analyzed with local
Fourier analysis. The new framework, which we introduce in this thesis, allows the analysis
of new applications, for example the analysis of jumping coefficient problems and block
smoothers (Chapter 4). On the other hand, we can analyze many of the problems that have
been successfully treated by local Fourier analysis within the new framework as well. As a
consequence it allows the analysis of combinations of multigrid components that have been
analyzed with different local Fourier approaches, as these approaches can now be formulated
within the same framework.

We need a new software tool, because the program described in [74] has some limitations.
This software tool is essentially a collection of templates, i.e., the software allows to fill in
some blank spots, but it is not possible to reuse or recombine components. This limits the
situations where the software can applied and extending the software is complicated. In
contrast, the new analysis software that we propose (Chapter 5) builds on a limited set of

ix



Preface

primitive components1. These components can then be combined in various ways to analyze
arbitrary complex methods. The local Fourier analysis framework that we shall introduce
will provide us with these primitive components and ways to combine them.

The primitive components that we shall use will be matrix symbols. They can be used
to represent periodic stencil operators, restriction operators, and interpolation operators
(Chapter 3). Matrix symbols, can be combined in various ways, and the combined symbols
then represent corresponding combined operators. Combining a few primitive operators is
often sufficient to describe a multigrid method. Hence, this approach gives a great flexibility.
Furthermore, as we shall see, these symbols allow us to determine many properties of the
method they describe, like the convergence rate of the method.
We start with a basic introduction to multigrid methods, formal eigenfunction analysis

(Chapter 1), and a rigorous treatment of local Fourier analysis for constant stencil operators
(Chapter 2).
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1. Multigrid Essentials

Multigrid methods form a class of methods rather than a single method. They have to adapted
be to the problem they are supposed to solve, and until now nobody has found a general
recipe for the construction of multigrid methods that works for arbitrary problems. Therefore,
for every new problem that is supposed to be solved by a multigrid method, some clever
thinking is required, to choose the right multigrid components. Hence, multigrid methods
are best explained by constructing a multigrid method for a specific and simple example.

1.1. Wire under Tension

Imagine a wire that is strained between two walls. The tension of the wire is so large that
the wire is a straight line between the endpoints. Then a load is attached to the wire which
deforms it. We want to determine the shape of the wire.

(a) Wire without load. (b) Wire with load.

Figure 1.1.: Shape of a wire.

The wire always assumes the shape that has the smallest energy of all possible shapes. The
energy is the sum of the tension energy and the potential energy of the load. When the load is
attached the wire expands. The load moves down and therefore its potential energy decreases.
On the other hand, the strain energy increases due to the expansion. Thus, by minimizing the
total energy, the system balances between the expansion of the wire and height of the load.
To describe the shape of the wire, we first pick a coordinate system. Let the endpoints of

the wire be (0, 0), and (1, 0), and let the vector (0, 1) be pointing in the upward direction, as
depicted in Figure 1.2. Nowwe can describe the shape of the wire by a function y : [0, 1] → �.
Before the load is attached, the wire has the shape y0(x) = 0. Let L(y) be the length of the
wire that has the shape y. The length is given by

L(y) =
∫ 1

0

√
1 + y′(x)2 dx .

We start by computing the tension energy of the wire. Let τ be the tension of the wire.
Assume that the wire is only stretched by a small amount. That means that τ is nearly

1



1. Multigrid Essentials

y(x)
x

y

0
0

1

Figure 1.2.: The function y(x) describes the shape of the wire.

constant, i.e., the force required while expanding the wire from its initial length L(y0) to
its final length L(y) equals τ. As a result, the work [29, 67, 78]—and therefore the tension
energy—is proportional to the extension of the wire, i.e.,

T(y) =
∫ L(y)

L(y0)
τ ds = τ · (L(y) − L(y0)) = τ ·

∫ 1

0

√
1 + y′(x)2 − 1 dx .

We can simplify this expression if we assume that y′ is small. In this case, the Taylor
expansion yields

√
1 + t = 1 + t/2 + O(t2); leading to

T(y) ≈ τ ·
∫ 1

0

1
2 y
′(x)2 dx , (1.1)

which is our desired formula for the tension energy.
We continue by computing the potential energy. Assume that the mass of the wire is so

small in comparison to the load that we can neglect it. Therefore, the only force in vertical
direction is caused by the weight of the load. Let − f (x) be the force that acts on the wire at x
in the downward direction.
The potential energy is only determined up to a constant. Hence, we can define the

potential energy to be zero when the wire has the shape y0; if the wire has the shape y then
the potential energy is

V(y) = −
∫ 1

0
f (x)y(x) dx . (1.2)

The tension energy (1.1) and the potential energy (1.2) give the total energy of the wire-load
system:

T(y) + V(y) =
∫ 1

0

τ
2 · y

′(x)2 − f (x)y(x) dx =
∫ 1

0
L (x, y(x), y′(x)) dx ,

where L(x, y, y′) := τ
2 · y′2 − f (x)y. Recall that the wire assumes the shape from all possible

shapes that has the smallest total energy. Which is why we can find the shape of the wire
under load by finding the function y that minimizes∫ 1

0
L (x, y(x), y′(x)) dx .

If the minimum y is in C2[0, 1] then it fulfills the Euler-Lagrange equation [28, 29, 67, 71],
i.e.,

∂L
∂y (x, y(x), y

′(x)) − d
dx

(
∂L
∂y′ (x, y(x), y

′(x))
)
= 0 .

2



1.2. Numerical Approximation

Thus,

0 = − f (x) − d
dx
(τy′(x)) = − f (x) − τy′′(x) .

If y is the shape of the wire, then it is necessary that y is the solution of the boundary value
problem

− ∂
2y
∂x2 (x) = f (x) for x ∈ (0, 1) (1.3a)

y(0) = y(1) = 0 . (1.3b)

1.1.1. Solving the Boundary Value Problem

Let us solve a slightly more general version of the boundary value problem (1.3). In the
original boundary value problem, we required that the function y is zero at the boundary. We
shall now require that the function y takes the values g(0) and g(1) at the boundary points 0
and 1, where g is some given function. In the light of the previous section, this situation
would correspond to the wire to be attached to the wall at different heights, on the left hand
side at height g(0) and on the right hand side at height g(1).

Furthermore, let us introduce some notation. The operator ∂2

∂x2 is known as the one-dimen-
sional Laplace operator, which is usually denoted by ∆. Hence, we can write the generalized
boundary value problem as

−∆u(x) = f (x) for x ∈ (0, 1) (1.4a)
u(x) = g(x) for x ∈ {0, 1} . (1.4b)

To solve the boundary value problem, we integrate both sides of (1.4a) twice; giving

−u(x) + c1x + c2 =

∬
f (x) dx dx =: F(x) ,

where c1 ∈ � and c2 ∈ � are constants of integration. Thus, by rearranging the terms

u(x) = c1x + c2 − F(x) . (1.5)

We substitute zero for x into (1.5) to get c2 = F(0) + g(0). This fixes c2. Substituting one
for x into (1.5) yields c1 = F(1) + g(0) − c2 which also fixes c1. Consequently, (1.5) is the
solution of the boundary value problem (1.4).
Note that the solution is unique; the antiderivative is unique up to a constant. Both

constants of integration, however, are completely determined by the boundary values (1.4b).

1.2. Numerical Approximation

The boundary value problem (1.4) can be solved analytically if we can find a second
antiderivative of f . Finding the antiderivative is, however, not always possible [54, 55]. In
this case a numerical approximation of the solution is desired.

3



1. Multigrid Essentials

x0 x1 · · · xn−1 xn

0 1

h

Figure 1.3.: The points of the grid Ωh.

1.2.1. Discretization

To approximate the solution numerically we need to simplify the problem, i.e., we just
compute approximations to the function values of u just at a finite set of n ∈ � points
x0, . . . , xn (n ∈ �). We choose these points xi ∈ [0, 1] to be equidistant, i.e.,

xi := i · h where h = 1
n .

We denote this set of points by Ωh. It is called a (one-dimensional) grid and illustrated in
Figure 1.3. Furthermore, we define the interior and boundary of the grid by

Ωh := {xi : i ∈ �, 1 ≤ i ≤ n − 1} and ∂Ωh := {x0, xn} ,

respectively. Consequently, the whole gridΩh = Ωh ∪ ∂Ωh. Let us denote the approximation
to u by uh.
We want to compute uh(x0), . . . uh(xn) such that the boundary value problem (1.4) is

approximately solved, i.e.,

−∆uh(x) = f (x) for x ∈ Ωh, (1.6a)
uh(x) = g(x) for x ∈ ∂Ωh . (1.6b)

We can write this equation more explicitly as

−∆uh(xi) = f (xi) for i = 1, . . . , n − 1, uh(x0) = g(0), uh(xn) = g(1).

These are (n + 1) equations for (n + 1) unknowns. However, we cannot directly use these
equations to compute the approximation uh, as they involve the derivative of the function uh.
We do not have access to the derivative of uh, because we compute uh only at a finite set of
points. Therefore, we need to approximate ∆u using only the values uh(x0), . . . , uh(xn).

We construct this approximation using polynomial interpolation. For x ∈ �we can find a
polynomial p with deg p ≤ 2 such that

p(−h) = u(x − h), p(0) = u(x), and p(h) = u(x + h) .

From the Lagrange interpolation formula [34, 60] it follows that this formula is given by

p(z) = u(x − h) z
2 − zh
2h2 − u(x) z

2 − h2

h2 + u(x + h) z
2 + zh
2h2 .

Applying the Laplace operator, i.e., differentiating twice, yields

∆p(z) = u(x − h) 1
h2 − u(x) 2

h2 + u(x + h) 1
h2 .

4



1.2. Numerical Approximation

The value p(z) is an approximation to u(x + z) on the interval for z ∈ [−h, h]. Thus, ∆p(0)
should be an approximation to ∆u(x). Let ∆hu(x) := ∆p(0), i.e.,

∆hu(x) :=
u(x − h) − 2u(x) + u(x + h)

h2 , (1.7)

then ∆u(x) ≈ ∆hu(x), which is the so called finite difference discretization of the one-dimen-
sional Laplace operator ∆.

We can plug the approximation (1.7) into the reduced boundary value problem (1.6) to find

∆huh(x) = f (x) for x ∈ Ωh

uh(x) = g(x) for x ∈ ∂Ωh.

More explicitly
uh(xi−1) − 2uh(xi) + uh(xi+1)

h2 = f (xi) for i = 1, . . . , n − 1,

uh(x0) = g(0), uh(xn) = g(1).

This is a linear system in the variables uh(xi), which we can write as

1
h2

©­­­­­­«

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

ª®®®®®®¬
·

©­­­­­­«

uh(x1)
uh(x2)
...

uh(xn−2)
uh(xn−1)

ª®®®®®®¬
=

©­­­­­­«

f (x1) + g(0)/h2

f (x2)
...

f (xn−2)
f (xn−1) + g(1)/h2

ª®®®®®®¬
. (1.8)

Thus, we have a linear system with n − 1 equations and n − 1 variables that we can (try
to) solve. If we can find its solution, then its solution uh(xi) for i = 0, . . . , n is then an
approximation to the solution u of the boundary value problem (1.4).

1.2.2. Consistency

We constructed the discretization

∆hu(x) :=
u(x − h) − 2u(x) + u(x + h)

h2 (1.7 revisited)

of the Laplace operator ∆u. It is, however, not clear that it yields useful results, i.e., that the
approximation uh is close to the true solution. We want that the approximation uh converges
to the true solution u, if the step-size h converges to zero, which can be shown by proving
that the discretization is consistent and stable. In this section we show that ∆h is consistent;
in section 1.2.3 we show that it is stable and that consistency and stability imply the desired
convergence.

Definition 1.1. The discretization ∆h is consistent if there exists a function c : [0,∞) → �

with c(h) → 0 for h→ 0 and
‖∆hu − ∆u‖h ≤ c(h) , (1.9)

where
‖u‖h := max

x∈Ωh

|u(x)| .
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1. Multigrid Essentials

In other words a consistent discretization converges to the continuum operator. Let us now
prove that the discretization ∆h is consistent. For this purpose we need the following result.

Lemma 1.2. Let u(x) be two times continuously differentiable on [x0 − h, x0 + h]. Then there
exists ξ ∈ (x0 − h, x0 + h) such that

∆hu(x0) = ∆u(ξ) .

Proof. Special case of [60, Satz 3.4]. �

Let ω(v; ·) : [0,∞) → [0,∞) be the modulus of continuity of v on [a, b] (see e.g. [56]), i.e.,

ω(v; δ) := sup{|v(x1) − v(x2)| : x1, x2 ∈ [a, b], |x1 − x2 | ≤ δ} .

Then by using Lemma 1.2 and the definition of the modulus of continuity we have that

|∆hu(x0) − ∆u(x0)| = |∆hu(x0) − ∆u(ξ) + ∆u(ξ) − ∆u(x0)|
≤ |∆hu(x0) − ∆u(ξ)| + |∆u(ξ) − ∆u(x0)|
≤ 0 + ω(∆u; h) .

It is known that limδ→0 ω(v; δ) = 0 if and only if u(x) is uniformly continuous on [a, b] [56].
Thus, if we restrict ourselves to functions u where ∆u is uniformly continuous, then ∆h is
consistent. To make a qualitative statement about how fast ∆hu approaches ∆u, we have to
make an additional assumption.

Lemma 1.3. If u ∈ C4[0, 1] then for x ∈ [h, 1 − h]

|∆hu(x) − ∆u(x)| ≤ h2

12
‖u(4)‖∞ .

Proof. Using the Taylor expansion yields that there exists ξ− ∈ [x − h, x] and ξ+ ∈ [x, x + h]
such that

u(x + h) = f (x) + u′(x)
1!

h +
u′′(x)

2!
h2 +

u(3)(x)
3!

h3 +
u(4)(ξ+)

4!
h4 and (1.10a)

u(x − h) = u(x) − u′(x)
1!

h +
u′′(x)

2!
h2 − u(3)(x)

3!
h3 +

u(4)(ξ−)
4!

h4 . (1.10b)

Substituting the Taylor expansions (1.10) into the discretized Laplace operator (1.7) gives

∆hu(x) = u′′(x) + 1
24

(
u(4)(ξ−) + u(4)(ξ+)

)
h2 .

Rearranging the terms and taking the absolute modulus then gives that

|∆hu(x) − u′′(x)| = 1
24

���u(4)(ξ−) + u(4)(ξ+)
��� h2 ≤ h2

12 ‖u
(4)‖∞ . �

If we restrict ourselves to functions u ∈ C4[0, 1], then Lemma 1.3 shows that the difference
between ∆h and ∆ can be bounded by a function proportional to h2. We say that the
discretization ∆h is consistent of order 2.
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1.2. Numerical Approximation

1.2.3. Stability and Convergence

Consistency alone is not sufficient to show that h→ 0 implies that uh → u. We only have
that if uh(xi) = u(xi) then ∆huh ≈ ∆u. What we need, however, is the reverse statement,
because the solution u of the PDE and the solution uh of the discretized PDE fulfill

∆u(xi) = f (xi) and ∆huh(xi) = f (xi) .

Thus, we have ∆u(xi) = ∆huh(xi) and want to show that u(xi) ≈ uh(xi).
Let us assume that we have a consistent discretization, i.e.,

‖∆hu − ∆u‖h ≤ c(h) . (1.9 revisited)

Then, since ∆u(xi) = f (xi) = ∆huh(xi),

‖∆hu − ∆huh ‖h ≤ c(h) .

Since ∆h is a linear operator,
‖∆h(u − uh)‖h ≤ c(h) .

By defining the error eh(xi) := u(xi) − uh(xi) we get

‖∆heh ‖h ≤ c(h) . (1.11)

We have that ∆heh → 0 if h→ 0. Thus, if we can show that eh → 0 if ∆heh → 0 then we
have our desired result. A stable discretization fulfills this property.

Definition 1.4. If there exists a constant ε > 0 independent of h such that

ε ‖eh ‖h ≤ ‖∆heh ‖h for all eh,

then the discretization ∆h is called stable.

The bound (1.11) implies for a stable discretization

‖eh ‖h ≤ 1
ε c(h) . (1.12)

Thus, if c(h) → 0 then the norm of the error goes to zero as well and therefore uh(xi) → u(xi).
In other words, consistency and stability imply that the approximation converges to the
solution. Note that it is important that the constant ε is independent of h. If it decreases with
h then 1

ε c(h) might go to infinity for h→ 0 even if c(h) → 0.
We show that the discretization (1.7) is stable, i.e. the bound (1.12) holds.

Lemma 1.5. Let ∆h be defined in (1.7) and eh : Ωh → �. If eh(x0) = eh(xn) = 0 then

‖eh ‖h ≤ C‖∆heh ‖h ,

where C > 0 is independent of h.

Proof. We prove the assertion in three steps.
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1. Multigrid Essentials

1. We show the discrete maximum/minimum principle, i.e., for a function uh : Ωh → �

with uh(x0) = uh(xn) = 0 the following statements hold.
a) If [∆huh](xi) ≤ 0 for i = 1, . . . , n − 1, then

max
i

uh(xi) ≤ 0.

b) If [∆huh](xi) ≥ 0 for i = 1, . . . , n − 1, then

min
i

uh(xi) ≥ 0.

2. We show using the discrete maximum principle that if we can find a function
wh : Ωh → �with wh(x0) = wh(xn) = 0 such that

[∆heh − ∆hwh](xi) ≤ 0 for i = 1, . . . , n − 1 and (1.13a)
[∆heh + ∆hwh](xi) ≥ 0 for i = 1, . . . , n − 1 , (1.13b)

then
− wh(xi) ≤ eh(xi) ≤ wh(xi) for i = 1, . . . , n − 1. (1.14)

This inequality implies that
‖eh ‖h ≤ ‖wh ‖h . (1.15)

3. We show that there exists a function wh : Ωh → � with wh(x0) = wh(xn) = 0 that
fulfills (1.13) and

‖wh ‖h ≤ C‖∆eh ‖h ,
where the constant C > 0 is independent of the step-size h. Combining the last
equation with (1.15) proves the assertion.

(1) We prove Statement 1a). Let j be the index such that uh(xj) is the maximum value of
uh. If j = 0 or j = n, i.e., the maximum value is located at the boundary, we have that the
maximum value of uh is zero, because the uh is zero at the boundary by definition. Hence, in
this case the statement is true.
Let us consider the other case; assume that j, the index of the maximum value of u(xj),

is an index of an interior point. From the definition of ∆h (1.7) and the assumption that
[∆huh](xj) ≤ 0, we have that

[∆huh](xj) =
−uh(xj−1) + 2uh(xj) − uh(xj+1)

h2 ≤ 0 .

Rewriting the last equation yields that

uh(xj) ≤
uh(xj−1) + uh(xj+1)

2
.

In other words, uh(xj) is smaller than the average of the function value at xj−1 and xj+1.
In combination with the fact that uh(xj) is the maximum value of uh we conclude that
uh(xj−1) = uh(xj) = uh(xj+1).

Now j−1 and j+1 are also indices which correspond to maximum values of uh. Repeating
the above argument, it follows that uh must be constant, and as the boundary values are zero,
the whole function must be equal to zero. Thus, we have proven Statement 1a).
Statement 1b) follows from applying Statement 1a) to the function −uh.
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1.2. Numerical Approximation

(2) Assume we have a function wh that fulfills (1.13a). Using the linearity of ∆h we obtain
that

[∆h(eh − wh)](xi) ≤ 0 for i = 1, . . . , n − 1 .

Hence, from the discrete maximum principle, it follows that

eh(xi) − wh(xi) ≤ 0

and
eh(xi) ≤ wh(xi) .

In a similar way, it follows from (1.13b) and the discrete minimum principle that

−wh(xi) ≤ eh(xi)

and combining the previous two equations then gives (1.14).
(3) To find a function wh that fulfills (1.13), we just have to find a function wh whose

second derivative is large enough and which is zero at the boundary. We choose

wh(x) := ‖∆heh ‖h
2 · (x − x2) = ‖∆heh ‖h

2 · ( 14 − (x −
1
2 )

2) ,

The function wh is a polynomial of degree two, and the operator ∆h computes the exact
derivative for all polynomials of degree less or equal than two, because it was constructed
using an interpolation polynomial of degree two. Hence1,

[∆hwh](x) = [∆wh](x) = ‖∆heh ‖h .

This equation implies that wh fulfills (1.13).
It remains to bound the values wh(xi) for i = 1, . . . , n − 1. From the definition of wh it is

easy to see that wh has its largest value at x = 1
2 . Hence,

wh(xi) ≤ wh(12 ) =
‖∆heh ‖h

8 ,

and setting C = 1
8 proves the assertion. �

The stability estimate from Lemma 1.5 applies only to the Poisson equation, however, only
small changes to the proof are needed, to prove stability estimates for other equations [46].
Combining the results from this section gives the following theorem.

Theorem 1.6. Let u ∈ C4 be the solution of the Poisson equation and uh the approximation
given by (1.8). Then there exists a constant C̃ that is independent of h such that the error
eh = u − uh fulfills

‖eh ‖h ≤ C̃h2 .

Proof. The assertion follows from Lemma 1.3, Lemma 1.5, and the bound (1.12). �

Finally, note that Lemma 1.5 gives a lower bound for the modulus of the smallest eigenvalue
of the matrix representing ∆h. Thus, we know that ∆h is represented by a regular matrix and
therefore the linear system (1.8) has a unique solution.
The finite difference has been known for a long time and it has many applications. For a

more in-depth introduction and further applications see, e.g., [46, 51, 60].
1This formula can also be shown by a straightforward, but lengthy calculation.
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1. Multigrid Essentials

1.3. Multigrid Methods

The numerical approximation of the boundary value problem (1.4) requires the solution of
the linear system (1.8). There are two classes of methods for solving linear systems—direct
and iterative.
Direct methods compute the exact solution (up to machine precision); iterative methods

compute an approximation [30, 59]. A direct method computes the solution in one monolithic
step; an iterative method starts with an initial guess u0 of the solution x and successively
computes the iterates u1, u2, u3, . . . . In every step the current iterate is improved such that uk
converges to the solution u for k →∞. Therefore, the runtime of an iterative method depends
on the approximation accuracy, as the iteration can be stopped when the approximation is
sufficient. If machine precision accuracy is not needed then in many applications iterative
methods are faster than direct methods.
This is, for example, the case when solving the discrete Poisson equation (1.8). The

solution of the linear system is an approximation to the exact solution; the difference between
the exact solution and the approximation is called the discretization error. The difference of
the exact solution of the linear system and an approximation is called algebraic error. If the
algebraic error is small in comparison to the discretization error, the overall error is nearly
unaffected. Thus, an iterative method can speed up the solution process.
It can even be reasonable to make the algebraic error of the same order of magnitude as

the discretization error, and reduce the discretization error a little bit, to get the overall best
performance.
As mentioned at the beginning of this chapter, multigrid methods are best explained by

constructing a multigrid method for a simple problem. For this reason we shall derive a
multigrid method for the discrete Poisson equation (1.8).

1.3.1. A Relaxation Scheme

A vital component of multigrid methods are simple iterative methods like the weighted Jacobi
method. To introduce this method, we consider the linear system Au = f or equivalently
f − Au = 0, where A ∈ �n×n and u ∈ �n are given and u ∈ �n is the desired solution. For
an arbitrary vector w ∈ �n the residual rw fulfills

rw := f − Aw . (1.16)

Thus, w equals the solution u if and only if its residual is zero, and w is close to u if the
residual is small. The main idea of the Jacobi method is to successively reduce the residual.
The method starts with an arbitrary vector u0 ∈ �n. In every step the method takes the

current vector uk and produces a new vector uk+1.
The n entries of the solution u are determined by the n equations

n∑
j=1

ai j · u j = fi (i = 1, . . . , n).

When n � 1 finding n variables that satisfy n equations is difficult; finding one variable
that satisfies one equation is easier. In every step the Jacobi method constructs corrections

10
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vi ∈ �n (i = 1, . . . , n). The new iterate is

uk+1 = uk + ω · (v1 + · · · + vn) , (1.17)

where ω ∈ (0, 2) is the weight. The corrections have the form vi = ξiei where ei is the ith
unit vector and ξi ∈ �. The value ξi is chosen such that the ith component of the residual of
uk + vi is zero, i.e.,

r(uk+vi ),i = fi −
(

n∑
i=1

ai j · u j

)
− aiiξi = 0 .

Thus, the size of the ith correction ξi depends only on one equation; its solution is ξi = 1
aii

ruk,i .
A step of the Jacobi method then reads

uk+1,i = uk,i + ω
aii

ruk,i .

We give the whole method in the Jacobi-Iteration procedure, where we use the pseudocode
notation from [16].

Jacobi-Iteration()
1 while u is a bad approximation
2 for i ← 1 to n
3 uk+1,i ← uk,i + ω

aii
ruk,i

Let D := diag(a11, . . . , ann) then we can formulate the method more compactly by using the
following:

uk+1 = uk + ωD−1 · ruk . (1.18)

The weight ω is used to fine-tune the corrections vi . For example for the discrete Poisson
equation (1.8), the corrections are somewhat too large. Thus, choosing ω = 0.8 improves the
convergence rate.

It remains to specify when the iterate uk is a bad approximation. The iteration uk is a bad
approximation if the difference of the iterate uk and the solution u is large, where we measure
the site of the difference in some norm, e.g., the Euclidean 2-norm. However, as we do not
have access to the solution u, we generylly cannot measure the difference of uk and u.
There are different ways to estimate the difference between the iterate and the solution.

One way is to measure the size of the residual ruk . When the residual is small, we expect uk
to be close to u; remember, uk = u only if ‖ruk ‖ = 0.

Finally note that the convergence of the sequence u0, u1, u2, . . . to the solution u depends
on the properties of the matrix A and the initial value u0 [59].

1.3.2. The Error Iteration

The first step in introducing multigrid methods is to describe iterative methods more abstractly.
Assume uk , the kth iterate, is an approximation to the solution u of the linear system Au = f .
The (algebraic) error of the kth iterate is defined as

ek := u − uk . (1.19)

11
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Thus, a small value for ‖ek ‖ (for an arbitrary norm ‖ · ‖ on �n) implies that uk is close to
the solution u. Therefore, iterative methods aim to reduce the norm of the error. We can
rearrange (1.19) to get that

u = uk + ek ,

which means that we can compute the solution if we know the error. Although in general the
error is not easily available, an approximation to the error ẽk ≈ ek might be available. If the
approximation ẽk is sufficiently close to ek then

uk+1 := uk + ẽk+1 (1.20)

is a better approximation than uk , and the error ek+1 is smaller than ek . We can repeat this idea
to successively obtain better approximations of the solution. The procedure Error-Iteration
describes this process.

Error-Iteration()
1 choose u
2 while u is a bad approximation
3 ẽ← approximation of the error
4 u← u + ẽ
5 return u

To use the Error-Iteration procedure we need a way to compute approximations of the
error. Consider

Aek = A(u − uk) = f − Auk .

We see that the right hand side of this equation is the residual (1.16) w.r.t. uk . Thus

Aek = ruk . (1.21)

We can multiply this equation by A−1 from the left to obtain

ek = A−1ruk . (1.22)

The residual ruk is easily computed. Nevertheless solving (1.22) for ek is not practical, as
it is as expensive as the original problem. Though if we have a matrix B−1 which is an
approximation to A−1 and B−1ru0 is easy to compute, then we can replace A−1 by B−1 in
(1.22) to get the error approximation

ẽk = B−1ruk . (1.23)

By using this equation in the error correction step (1.20),

uk+1 = uk + ẽk = uk + B−1ruk = uk + B−1( f − Auk). (1.24)

Note that if the error correction step has this shape, i.e., the approximation of the error is
obtained by multiplying the residual with a matrix, we call the iterative method stationary.
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For example, the Jacobi method is a stationary method, as we can see from comparing
(1.18) and (1.24). These two equations give that

B−1 = ωD−1 (1.25)

in the case of the Jacobi method.
It is important to know, how the error changes from one step of the iteration to the next.

The new error after one step of the iteration is

ek+1 = u − uk+1 = u − (uk + ẽk) = ek − ẽk . (1.26)

In other words, the error approximation ẽk is removed from the error.

1.3.3. The Jacobi Method and the Poisson Equation

The second step in introducing multigrid methods is the following crucial observation.
Consider the boundary value problem (1.4) with the functions

f (x) = (12π)2 · sin(12π · x), u(0) = 0, u(1) = 10 .

In this case the solution of the continuous equation is

u(x) = sin(12π · x) + 10 · x.

We approximate the solution u by applying the Jacobi method to the linear system (1.8) with
initial iterate u0 = 0. In Figure 1.4a we see the initial iterate u0 and in Figure 1.4b the initial
(algebraic) error e0. As u0 = 0 the initial error equals the solution of the linear system and is
therefore a good approximation of the solution u.
After 20 iterations of the Jacobi method we inspect the iterate u20 (Figure 1.4c) and the

error e20 (Figure 1.4d). The ripples of the solution are already visible in the iterate u20. The
smooth increase from left to right, however, is not captured well, which is also visible in the
error e20; it is slowly varying. Thus, the Jacobi method is reducing oscillatory part of the
error well and the slowly varying part of the error remains. We call an iterative method with
such a behavior a smoother and one iteration of the method a smoothing step.

Now take a look at the 2-norm of the residuals and errors during the iteration (Figure 1.5).
In the beginning the residual norm and error norm are strongly reduced; in the end only
slightly. Thus, the Jacobi method is loosing efficiency when the error is slowly varying.

1.3.4. Coarse Approximations

The third step in introducing multigrid methods is to describe coarse approximations. For
now assume we have a continuous operator A, e.g., the Laplace operator ∆ that maps
functions from e : Ω→ � to functions r : Ω→ �, and we want to find an approximation for
the solution e of the equation

Ae = r . (1.27)
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(a) The initial iterate u0. It is equal to zero.
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(c) After 20 steps the iterate u20 captures the
oscillatory components of the solution well.
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(d) The algebraic error after 20 iterations e20 is
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Figure 1.4.: Jacobi method applied to the Poisson equation.
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Figure 1.5.: Convergence of the Jacobi method for the Poisson equation.
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0 1
Ωh:
ΩH :

,

Figure 1.6.: Coarse and fine grid: The squares are in Ωh and ΩH , while the circles are only
in Ωh.

This approximation should be the solution eh : Ωh → � of

Aheh = rh (1.28)

where Ah is a discretization of A on Ωh and rh(x) = r(x).
If eh is slowly varying, we can compute a good approximation ẽh to eh, by solving a linear

system, having less degrees of freedom than (1.28). To show this let H := 2h and consider
the coarse grid ΩH . The step-size of ΩH is twice as large as that of Ωh, thus ΩH contains
every second point from Ωh; see Figure 1.6. Furthermore, consider the approximation eH on
ΩH of e, given by

AHeH = rH, (1.29)

where AH is a discretization of A and rH (x) = r(x).
For x ∈ ΩH we have that eH (x) ≈ eh(x), but for x ∈ Ωh \ ΩH the value eH (x) is not

defined. As eh is slowly varying, i.e., if x is close to x ′ then eh(x) is close to eh(x ′), we can,
however, approximate eh(x) by linear interpolation between eH (x − h) and eH (x + h).
To sum it up, let P be the interpolation operator given by

[PeH ](x) =
{

eH (x) if x ∈ ΩH ,
1
2 eH (x − h) + 1

2 eH (x + h) if x < ΩH

for x ∈ Ωh .

Then ẽh := PeH is an approximation of eh.
Note that rH (x) = r(x) = rh(x) for x ∈ ΩH . Thus, if we define

[Rrh](x) = rh(x) for ΩH (1.30)

then
ẽh = PA−1

H Rrh (1.31)

is a coarse approximation to eh. As the size of AH is only half the size of Ah it is cheaper to
compute than eh.
The restriction operator R defined in (1.30) is called injection. There are other types of

restriction that are sometimes useful. For example, the full weighting restriction operator,
which will be introduced in Section 1.3.7.

Note that in the computation of the coarse approximation (1.31) neither the continuous
functions e and r nor the continuous operator A are directly involved. They were only
necessary to establish the connection between the fine (1.28) and the coarse linear system
(1.29). Therefore, they are not needed for practical computation.
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1. Multigrid Essentials

1.3.5. Two Grids

The fourth step is to combine the ideas and observations from the previous three sections
to construct the two-grid method. The Jacobi method solves the discrete Poisson equation
inefficiently; it reduces only the oscillatory parts of the error well while the slowly varying
part remains. Therefore, after applying a smoothing method like Jacobi, we can compute a
coarse approximation (1.31) of the error, which we use to remove the slowly varying part
from the error by performing an error correction step (1.20). The procedure of performing
an error correction with a coarse approximation is called coarse grid correction.
The two-grid method combines two components—the smoother and the coarse grid

correction. Those two are applied alternately. The method performs ν1 smoothing steps, e.g.,
ν1 steps of the Jacobi method. Then it performs η coarse grid corrections and further ν2
smoothing steps. The whole procedure is repeated until the approximation is sufficient. The
method is given by the Two-Grid-Iteration procedure. Typical values are ν1 = 2, ν2 = 2
and η = 1.

Two-Grid-Iteration()
1 choose u
2 while u is a bad approximation
3 perform ν1 smoothing steps on u
4 for k ← 1 to η
5 ẽ← coarse approximation of the error
6 u← u + ẽ
7 perform ν2 smoothing steps on u

1.3.6. Multiple Grids

We can now introduce the multigrid method by modifying the two-grid method. The two-grid
method iteratively computes a solution on the fine grid. This computation involves the
solution of a linear system on the coarse grid in every iteration. The coarse grid system is
smaller than the fine grid system, but still expensive to solve. However, as the coarse grid
system has the same structure as the fine grid system, we can use the two-grid method to solve
the coarse grid system, as well. By that we obtain a three-grid method. We can repeat this
idea until the coarsest grid is so small that the coarse grid approximation can be computed
easily.
As the two-grid method solves the coarse grid system exactly, it would be reasonable to

assume that we need many iterations of the coarse-grid solver to get a good coarse grid error
approximation. We need, however, only an approximation to the coarse grid error. Thus, it is
sufficient to make only a few iterations of the coarse grid solver.

Let h1 be the step-size of the finest grid. Assume we have L ∈ � grids, with the step-size
h`+1 := h` , for ` = 1, . . . , L − 1. For every grid we have the discretization Ah` : Ωh` → Ωh`

and for all except the coarsest grids we have interpolations P` : Ωh`+1 → Ωh` and restrictions
R` : Ωh` → Ωh`+1 . The multigrid method is given by two parts. The Multigrid-Iteration
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1.3. Multigrid Methods

procedure repeatedly calls the Multigrid-Cycle procedure. The Multigrid-Cycle then
recursively calls itself to correct the error on the different grid levels.

Multigrid-Iteration()
1 choose u
2 while u is a bad approximation
3 u← Multigrid-Cycle( f , u, 1)

Multigrid-Cycle( f , u, `)
1 if ` = L
2 return A−1

` f
3 else perform ν1 smoothing steps on u
4 e`+1 ← R( f − A`u)
5 r`+1 ← 0
6 for i ← 1 to η
7 e`+1 ← Multigrid-Cycle(r`+1, e`+1, ` + 1)
8 u← u + Pe`+1
9 perform ν2 smoothing steps on u

10 return u

Depending on the number of coarse grid corrections that are performed in every iteration
this method has further names. In case of η = 1 it is called a V-cycle. In case of η = 2 it is
called a W-cycle.

1.3.7. Weighted Restriction

Using the injection operator for the restriction sometimes leads to a method that converges
badly. This is for example the case when the function that is restricted is very oscillatory, as
we shall see.

Restriction operators were introduced in the section about the coarse approximations,
Section 1.3.4. In that section we used the fact that we want to solve a linear system that stems
from a continuous equation

Ae = r . (1.27 revisited)

The continuous residual r is approximated on two different grids: on the fine grid by rh and
on the coarse grid by rH . The restriction operator R describes the relation between the two
residuals, i.e., Rrh = rH . We now want to determine the quality of a restriction operator.

A suitable restriction operator maps a good approximation rh of r to a good approximation
rH . Consequently, to determine the quality of a restriction operator, we need to be able to
determine the quality of the approximation rH . The vector rH contains values that correspond
to function values at certain points. If we interpolate those points we obtain a function which
can be compared to the continuous residual r . Let us consider an example.
Assume that the residual r is the function shown in Figure 1.7a. We approximate the

function r by a finite set of points, which is shown in Figure 1.7b. Using linear interpolation
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1. Multigrid Essentials

(a) An oscillatory function. (b) Representing the function using a finite set
of values.

(c) Restrict the function to a coarse set of values
using injection.

(d) Restrict the function to a coarse set of values
using full weighting.

Figure 1.7.: Restriction of an oscillatory function.

we see that the fine grid approximation is a good representation of the continuous residual
function. Figure 1.7c shows the coarse grid approximation obtained by the injection operator;
demonstrating that this approximation does not represent the continuous function well. In
this case, the full weighting restriction will be a better choice.
The idea of the full weighting restriction is to compute the restricted value at some point

by a weighted sum of function values at neighboring grid points. The weights can be derived
from the linear interpolation in the following way. As the interpolation is a linear operator, it
can be written in matrix form, i.e., we have

uh,i = [PuH ]i =
n∑
j=1

pi j · uH, j ,

where pi j are the entries of the matrix representing the interpolation P. An interpretation of
this formula is that the entry pi j describes the influence of the jth entry of uH on the i-th
entry of uh. It is reasonable to assume that we can reverse this relation when constructing a
restriction operator. Thus, for the restriction we assume that the entries p1, j, . . . , pn, j describe
the relative importance of rh,1, . . . , rh,n when computing rH, j . More precisely we set

rH, j = wj

n∑
i=1

pi j · rh,i ,

where wj is a suitable scaling factor. This equation can be written as

rH = WPT rh ,

where W = diag(w1, . . . ,wn) and PT is the transpose of P. It remains to determine the
scaling factors.
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1.3. Multigrid Methods

We want to choose wj such that the constant vector (1, . . . , 1)T is restricted to the constant
vector (1, . . . , 1)T . This constraint implies

1 = wj

n∑
i=1

pi j · 1 ,

and consequently

wj =

(
n∑
i=1

pi j

)−1

.

Summing it up, we make the following definition.

Definition 1.7. Let P ∈ �n×m be an interpolation operator. The restriction operator
R ∈ �m×n induced by P is given by

R = WPT ,

where W is the diagonal matrix with diagonal entries

wj =

(
n∑
i=1

pi j

)−1

.

We can now apply this construction to the linear interpolation. The 1D linear interpolation
in matrix form is

P =

©­­­­­­­­­­­­«

. . .

1
1
2

1
2
1
1
2

1
2
1

. . .

ª®®®®®®®®®®®®¬
.

From the matrix form of P we obtain

R =

©­­­­­«
. . .

1
4

1
2

1
4

1
4

1
2

1
4

. . .

ª®®®®®¬
,

which is the full weighting restriction in 1D. Figure 1.7d shows the result of applying the full
weighting restriction to our example problem. We can see that the function is much better
approximated than when the function is restricted using injection. Note, however, that there
are applications where injection is a better restriction than the full weighting restriction.
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1.3.8. The General Multigrid Method

Until now we have only discussed a multigrid method for the 1D Poisson equation. Multigrid
methods, however, are a class of methods, and to apply a multigrid method to a specific
problem, the method needs to be tailored towards this problem. So how can we apply
multigrid methods to other problems?
This can be done by starting with the Multigrid-Iteration procedure. This procedure

uses a smoother and the operators A` , R` , and P` . Choosing these components in a way that
matches the problem then gives a multigrid methods.
This type of multigrid method is called multigrid iteration. There are other types of

multigrid methods. For example the full multigrid method [32, 68] or K-cycles [53]. However,
we will not address them here.

1.3.9. The Error Propagator

Multigrid methods are best analyzed by considering the behavior of the error during the
iteration. In many iterative methods, the error ek before the (k + 1)th iteration and the error
ek+1 after the iteration can be related by

ek+1 = Eek ,

where E is a matrix that does not depend on the iteration number or the iterates. In this
case, the whole method can be analyzed in terms of the operator E , which is called the error
propagator of the method. Furthermore, we can use the error propagator to compute the
error of any iterate given the initial error e0, by computing

ek = Eek−1 = E2ek−2 = · · · = Eke0 .

We shall now show the existence of error propagators for different methods.

Stationary Methods

First, we show that stationary iterative methods have an error propagator. From (1.26) we
know that after one iteration, the error ek becomes

ek+1 = ek − ẽk .

Recall that the error approximation ẽ0 in a stationary method is given by

ẽk = B−1ruk , (1.23 revisited)

where B−1 is a matrix that approximates A−1. Furthermore

Aek = ruk . (1.21 revisited)

Combining the last three equations yields

ek+1 = ek − B−1 Aek = (I − B−1 A)ek .
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1.3. Multigrid Methods

It follows that the matrix
E = I − B−1 A (1.32)

is the error propagator of the stationary iterative method given by the matrix B−1.
Recall that for the Jacobi method

B−1 = ωD−1. (1.25 revisited)

Thus, the error propagator of the weighted Jacobi method is

E = I − ωD−1 A. (1.33)

The Two-Grid Method

Second, we show that the entire two-grid method has an error propagator.

Proposition 1.8. Let S be the error propagator of the smoother, ν1 the number of pre-
smoothing steps, and ν2 the number of post-smoothing steps. Furthermore, let P be an
interpolation operator and R a restriction operator. Then the error propagator of the coarse
grid correction is

ECGC = I − PA−1
H RAh, (1.34)

and the error propagator of the two-grid method is

ETG = Sν2(I − PA−1
H RAh)Sν1 . (1.35)

Proof. The coarse grid error approximation in the two-grid method is

ẽh = PA−1
H Rrh . (1.31 revisited)

The residual and the error are related by Ahe0 = rh (cf. (1.21)). Thus

ẽh = PA−1
H RAhe0 .

As the error approximation ẽh is used in an error correction step, the error after the coarse
grid correction is, by (1.26), given by

e1 = e0 − ẽh = e0 − PA−1
H RAhe0 = (I − PA−1

H RAh)e0 .

Thus, (I − PA−1
H RAh) is the error propagator of the coarse grid correction. The two-grid

method applies ν1 smoothing steps before the coarse grid correction and ν2 smoothing steps
afterwards, which yields (1.35). �
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The Multigrid Method

Third, we show that even the whole multigrid method has an error propagator. To prove this
assertion, we need to generalize the result of Proposition 1.8. As the multigrid method solves
the coarse grid recursively, we need to allow for the coarse grid to be approximated by a
stationary method, instead of solving it exactly.

Lemma 1.9. Assume that the two-grid method solves the coarse grid system inexactly with a
stationary method, whose error propagator is ES. Furthermore, assume that the iteration is
started with zero as initial guess. Then the two-grid method is stationary and has the error
propagator

ETG = Sν2(I − P(I − ES)A−1
H RAh)Sν1 . (1.36)

Proof. In the original two-grid method, we compute the coarse approximation, by computing
A−1
H f , for a certain right hand side f . Here, we replace this computation, by the application

of one iteration of an iterative method.
Recall from (1.24) that the error correction step of a stationary method is given by

u1 = u0 + B−1( f − Au0) .

This method has the error propagator

E = I − B−1 A . (1.32 revisited)

When we are given the error propagator, then we can obtain B−1 by

B−1 = (I − E)A−1 ,

and thus the error correction reads

u1 = u0 + (I − E)A−1( f − Au0) .

Replacing E by the stationary coarse grid error propagator ES and A by the coarse system
matrix AH , and using that u0 = 0 by assumption, we get

u1 = (I − ES)A−1
H f .

Hence, in this case, the coarse grid inverse A−1
H is approximated by (I − ES)A−1

H , and we
obtain the result by replacing A−1

H by (I − ES)A−1
H in (1.35). �

This lemma allows us to derive the error propagator for a multigrid iteration with L levels.

Theorem 1.10. The error propagator E1 of the multigrid method is given by the recursive
formula

Ei = Sν2
i (I − P(I − Eη

i+1)A
−1
i+1RAi)Sν1

i for i < L,
Ei = 0 for i = L.

(1.37)
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1.3. Multigrid Methods

Proof. The assertion is shown by proving by induction that Ei is the error propagator of the
multigrid method for the levels i, . . . , L. We start with i = L. Then Ei is the error propagator
on the coarsest level. On this level the system is solved exactly; implying that no error is
made and therefore Ei = 0, when i = L.
Now assume that i < L, thus by the induction hypothesis Ei+1 is the error propagator of

the multigrid method for the levels i + 1, . . . , L, and Eη
i+1 represents η iterations of the coarse

grid iteration. The multigrid method for the levels i, . . . , L is a two-grid method, where the
coarse grid is solved by the multigrid method for the levels i + 1, . . . , L. Thus, Ei is given by
(1.36), where the error propagator of the coarse grid solver ES = Ei+1. �

1.3.10. Galerkin Coarse Approximation

There are applications where it is not feasible to obtain the coarse approximation using a
discretization of the continuous problem on a coarse grid. For instance, this is the case if the
discretization requires a certain minimal resolution, the construction of the discretization on a
coarse grid is very complicated, or the discretization is very expensive. The Galerkin coarse
approximation avoids these problems as it requires only a restriction and an interpolation
operator for its construction. Furthermore, the Galerkin coarse approximation appears
naturally in multigrid methods for variational problems, e.g., the finite element method
[10, 41], and it is optimal in the sense that it minimizes the error in the energy norm [66,
Corollary A.2.1].

To approximate the action of the fine grid operator on a coarse grid function it is reasonable
to just interpolate the coarse grid function, then apply the fine grid operator, and then restrict
the result back to the coarse grid. The operator that performs this procedure is called the
Galerkin coarse approximation.

Definition 1.11. Let Ah ∈ �n1×n1 be a fine grid operator, R ∈ �n2×n1 a restriction, and
P ∈ �n1×n2 an interpolation operator. The Galerkin coarse approximation AH is given by

AH = RAhP .

Another useful property of the Galerkin coarse approximation is that it simplifies the
computation of the induced restriction operator. To see this, assume we have two multigrid
methods. The only difference between the two is the first uses the restriction that is induced
by the interpolation operator (Definition 1.7), while the second uses the transpose of the
interpolation as restriction. If both methods use the Galerkin coarse approximation then the
two methods are identical, as we shall show.

Theorem 1.12. Let A1 ∈ �n1×n1 be given. The matrix A1 is the matrix of a linear system
we want to solve. Furthermore assume we have a hierarchy of interpolation operators
P1, . . . , PL−1 with Pi ∈ �ni×ni+1 and invertible matrices W1, . . . ,WL−1 with Wi ∈ �ni+1×ni+1 .
Let E1 and Ẽ1 be the error propagators of two multigrid methods.

1. The method described by E1 has the restriction operators Ri := WiPT
i and the Galerkin

coarse grid approximations Ai+1 := RiAiPi.
2. The method described by Ẽ1 has the restriction operators R̃i := PT

i and the Galerkin
coarse grid approximations Ãi+1 := R̃iAiPi.
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Then
E1 = Ẽ1 .

Proof. According to Theorem 1.10 the error propagators E1 and Ẽ1 can be computed
recursively. We prove the assertion by induction over this recursion.
(a) Let i = L. Then Ei = EL = 0 and Ẽi = ẼL = 0. Thus Ei = Ẽi.
(b) Let i < L. We have

Ei = Sν2
i (I − Pi(I − Eη

i+1)A
−1
i+1RiAi)Sν1

i .

By the induction hypothesis we have that Ei+1 = Ẽi+1. Thus, the previous equation
reads

Ei = Sν2
i (I − Pi(I − Ẽη

i+1)A
−1
i+1RiAi)Sν1

i . (1.38)

Let us have a closer look at the term A−1
i+1Ri; we have

A−1
i+1Ri = (RiAiPi)−1Ri = (WiPT

i AiPi)−1WiPT = (PT
i AiPi)−1W−1

i WiPT

= (PT
i AiPi)−1PT = Ã−1

i+1R̃i .

Plugging this relation into (1.38) we get

Ei = Sν2
i (I − Pi(I − Ẽη

i+1)Ã
−1
i+1R̃iAi)Sν1

i = Ẽi . �

In other words, when using the Galerkin coarse approximation, it is not necassary to
normalize the transpose of the interpolation operator to obtain a suitable restriction.

1.4. Formal Eigenfunction Analysis

In the experiment conducted in Section 1.3.3, we saw that after some iterations of the Jacobi
method the error was slowly varying. Without further justifications we concluded that the
Jacobi method is a smoother, i.e., that for any initial error the error is slowly varying after a
few iterations of the method. We shall provide some justification for this conclusion by using
formal eigenfunctions. This analysis will then be turned into a rigorous statement about
operators on infinite grids in Chapter 2.
Formal eigenfunction analysis is a way to gain insight into the behavior of operators, by

probing them with wave functions of different frequencies. Under the right conditions these
wave functions are the eigenfunctions of the operator. Hence, as we shall see, we gain insight,
by inspecting the relation between the wave function frequency and the eigenvalue. To begin
with the introduction of formal eigenfunction analysis, we first need some notation.

1.4.1. Stencil Notation

Many grid operators are local in the sense that the value of the result at a specific point x
can be computed using only the values of the argument that are close to x. Stencil notation
makes use of this locality to represent these operators in a compact way. Conversely, if we
write an operator in stencil form, the structure of the locality of the operator is revealed.
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We call a family {sx}x∈Ωh
with sx : h�→ � a variable stencil. The corresponding stencil

operator A is
[Au](x) :=

∑
y∈h�

x+y∈Ωh

sx(y) · u(x + y) .

The stencil at x, sx , can be written in matrix form by[
· · · sx(−h) sx(0) sx(h) sx(2h) · · ·

]
h
,

where we underlined the central element.
As an example consider the error propagator of the weighted Jacobi method applied to the

discrete Poisson equation (1.8):

E = I − ωD−1 A

=

©­­­­­­«

1 − ω ω/2
ω/2 1 − ω ω/2

. . .
. . .

. . .

ω/2 1 − ω ω/2
ω/2 1 − ω

ª®®®®®®¬
.

Recall that the variables of this matrix correspond to function values of grid functions. If we
define e := (eh(x1), eh(x2), . . . , eh(xn−1))T and [Eheh](xi) := [Ee]i for i = 1, . . . , n − 1, then

[Eheh](x1) = (1 − ω) · eh(x1) + ω
2 · eh(x2)

[Eheh](xi) = ω
2 · eh(xi−1) + (1 − ω) · eh(xi) + ω

2 · eh(xi+1) for 1 < i < n − 1
[Eheh](xn−1) = ω

2 · eh(xn−2) + (1 − ω) · eh(xn−1) .

From these three equations we see that the operator Eh can be written in stencil form by

sx1 =
[
1 − ω ω/2

]
h
, (1.39a)

sxi =
[
ω/2 1 − ω ω/2

]
h

for 1 < i < n − 1, (1.39b)

sxn−1 =
[
ω/2 1 − ω

]
h
. (1.39c)

We observe that almost all equations of the linear system are given by the same stencil (1.39b).
Only the boundary points require different stencils.

1.4.2. Formal Eigenfunctions

Formal eigenfunction analysis is an idealized analysis. Instead of analyzing the operator we
are interested in, we analyze an operator that is similar but defined on an infinite grid and
given by a constant stencil. The infinite grid with step-size h is Gh and defined by

Gh = {hz : z ∈ �} .
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An operator A is a constant stencil operator, if it can be written in the form

[Au](x) :=
∑
y∈Gh

s(y) · u(x + y) , (1.40)

where s : Gh → � is called the constant stencil of the operator.
Constant stencil operators can be analyzed by the help of the wave functions φθ : Gh → �

with θ ∈ [− πh ,
π
h ) and

φθ(x) = ei·θx . (1.41)

When a constant stencil operator is applied to a wave function the result is a scaled version of
this wave function, as the next proposition shows.

Definition & Lemma 1.13. Let A be the constant stencil operator given by (1.40) and φθ a
wave function (1.41). Then

Aφθ = â(θ) · φθ ,

where â(θ) is the scalar function given by

â(θ) :=
∑
y

syei·θy . (1.42)

We call â(θ) the Fourier symbol, φθ(x) a formal eigenfunction, and A(θ) the corresponding
formal eigenvalue of A.

Proof. We have

(Aφθ)(x) =
∑
y

syei·θ(x+y) =
∑
y

syei·θx · ei·θy =

(∑
y

syei·θy
)
· φθ(x) . �

To study the Jacobi method using formal eigenfunctions, we have to find an error propagator
which is defined on an infinite grid, given by a constant stencil, and behaves similarly to the
error propagator of the Jacobi method on the finite grid. Considering the stencil of the latter
operator (1.39b), we see that for large n almost all stencil entries are equal to[

ω/2 1 − ω ω/2
]
.

Hence, we define the constant stencil operator on the infinite grid to have all entries equal to
this stencil. Computing the symbol ê of this operator gives

ê(θ) = ω
2 ei·θ(−h) + (1 − ω)ei·θ0 + ω

2 ei·θh

= ω
2 ei·θh + (1 − ω) + ω

2 ei·θh

= (1 − ω) + Re
(
ωei·θh

)
= (1 − ω) + ω cos(θh) .

This symbol is shown in Figure 1.8 for different values of ω.
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Figure 1.8.: Fourier symbol of the error propagator of the weighted Jacobi method applied to
the Poisson equation for different weights ω.

1.4.3. Wave Functions

Before we can interpret the Fourier symbol of an operator, we need to discuss a few properties
of the wave functions (1.41). If the domain of the wave function is equal to the whole line
of real numbers, then every choice of θ leads to a different wave function φθ . If, however,
the domain is restricted to the grid Gh then there are θ, θ ′ ∈ � such that φθ = φθ′, i.e.,
φθ(x) = φθ′(x) for all x ∈ Gh. To prove this assertion we will need the following lemma.

Lemma 1.14. Let 0 < h ∈ �. Then(
eiθx = 1 for all x ∈ Gh

)
if and only if θ ∈ 2π

h � . (1.43)

Proof. Recall that for a real number a ∈ �we have

eia = 1 if and only if a ∈ 2π� .

Assume that θ ∈ 2π
h � and x ∈ h�. Then θx ∈ 2π� and therefore eiθx = 1.

Conversely, assume that eiθx = 1 for all x ∈ h�. Thus, for x = h we have 1 = eiθx = eiθh,
implying that θh ∈ 2π�, and therefore θ ∈ 2π

h �. �

Theorem 1.15. Let 0 < h ∈ � and θ, θ ′ ∈ �. Then(
eiθx = eiθ′x for all x ∈ Gh

)
if and only if (θ − θ ′) ∈ 2π�

h .

Proof. Consider

eiθx = eiθ′x ⇐⇒ ei(θ−θ′+θ′)x = eiθ′x

⇐⇒ ei(θ−θ′)x · eiθ′x = eiθ′x .

As eiθ′x , 0, we can divide both sides by eiθ′x and obtain that

eiθx = eiθ′x ⇐⇒ ei(θ−θ′)x = 1 ,

and the assertion follows from Lemma 1.14. �
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Let Θh :=
[
0, 2π

h

)
, which we call the set of visible frequencies on Gh. Theorem 1.15

implies that every wave function on Gh is uniquely written as φθ with θ ∈ Θh.
There are other sets with this property. We choose, however, Θh to represent the wave

functions on Gh as this choice simplifies the discussions in the later chapters.

Low and High Frequencies

Let us now address the questions: When are wave functions slowly varying; when are they
oscillatory?
If we consider the continuous variable x, the absolute modulus of the derivative with

respect to x of the wave function answers these questions. The absolute modulus of the
derivative is ��dφθ

dx
(x)

�� = ��θi · eiθx �� = ��θ�� · ��i�� · ��eiθx �� = ��θ�� .
Thus, for continuous x the wave function φθ becomes more oscillatory the larger |θ | becomes.

The behavior of the wave function is different when we restrict x to the grid Gh. In this
case we can measure the amount of oscillation by the difference of the wave function at
neighboring grid points, i.e.,

��φθ(x) − φθ(x + h)
��. This difference can be expressed by a

simple formula.

Proposition 1.16. Let x, θ, h ∈ �. Then��φθ(x) − φθ(x + h)
�� = √

2 − 2 cos(θh). (1.44)

Proof. We have��φθ(x) − φθ(x + h)
�� = ��eiθx − eiθ(x+h)�� = ��eiθx(1 − eiθh)

��
=

��eiθx �� · ��(1 − eiθh)
�� = ��1 − eiθh �� .

This equation can be further simplified by using the definition of the absolute value of
complex numbers;��1 − eiθh ��2 = (1 − eiθh) · (1 − eiθh) = (1 − eiθh) · (1 − e−iθh)

= 1 − e−iθh − eiθh + eiθhe−iθh = 1 − (e−iθh + eiθh) + e0

= 2 − 2 cos(θh). (1.45)

Taking the square root on both sides proves the assertion. �

The amount of oscillation in dependence on the frequency (1.44) is shown in Figure 1.9.
The amount is periodic in θ with period 2π

h , which is in agreement with Theorem 1.15. The
amount of oscillation at θ = 0 and θ = 2π

h is zero and has its maximum value of two at πh .
The amount increases on the interval

[
0, πh

]
and decreases on the interval

[
π
h ,

2π
h

]
. Thus, the

amount of oscillation is small if θ is close to a multiple of 2π
h ; otherwise it is large.

Definition 1.17. Let h > 0 be given. We say

28



1.4. Formal Eigenfunction Analysis

0 πh 0.5 πh 1 πh 1.5 πh 2 πh

θ

0.0

0.5

1.0

1.5

2.0

am
ou

nt
of

os
ci

lla
tio

n

Figure 1.9.: The amount of oscillation of a wave function on a grid with step-size h. Small
values yield a slowly varying function.

1. θ ∈ Θh is a low frequency if θ is close to a multiple of 2π
h , and

2. θ ∈ Θh is a high frequency if θ is away from every multiple of 2π
h .

This definition is of course vague, as we have not stated what “close” and “away” mean.
We will be more precise when discussing harmonic frequencies. There we will see that the
context determines when to consider a value as close enough to 2π

h to call it “close”. All that
matters now is that if θ is closer to a multiple of 2π

h than θ ′ implies that φθ is varying more
slowly than φθ′ . Or, in other words, if a frequency θ is lower than θ ′ then φθ is varying more
slowly than φθ′.

Corollary 1.18. Let h > 0 be given. A wave function φθ
1. is slowly varying if and only if θ is a low frequency, and
2. is oscillatory if and only if θ is a high frequency.

Interpretation of Fourier Symbols

We want to give an interpretation of Fourier symbols. For this purpose, recall that a wave
function φθ is a formal eigenfunction of any constant stencil operator A. The corresponding
eigenvalue is â(θ), i.e.,

â(θ) :=
∑
y

syei·θy , (1.42 revisited)

where â is the Fourier symbol of A. From this equation we see that if the operator A is
applied to the function φθ , the function

φθ is


damped if |â(θ)| < 1,
amplified if |â(θ)| > 1,
unchanged if |â(θ)| = 1.

Let us go a step further and consider a linear combination of wave functions;

φ :=
m∑
k=1

αkφθk for θk ∈ Θh and αk ∈ � .
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Since the operator A is linear

Aφ =
m∑
k=1

αk(Aφθk ) =
m∑
k=1

αk â(θk) · φθk .

Therefore, if we know the eigenvalues corresponding to the formal eigenfunctions of A, we
already know how A acts on a linear combination of eigenfunctions.
This observation allows us to study the smoothing behavior of a method. Assume, e.g.,

that the operator A damps oscillatory wave functions strongly. If we apply the operator to a
linear combination of oscillatory and slowly varying functions, the slowly varying functions
will dominate the result, as the other functions have been damped. In this case, the operator
A smooths wave functions.
Let us now consider the error propagator of the Jacobi method applied to the discrete

Poisson equation. The Fourier symbol of this error propagator is shown in Figure 1.8 on
page 27.
For ω = 0.8 the error propagator damps the wave functions significantly if θ is a high

frequency, i.e., θ is not too close to 0 or 2π
h . Consequently, the Jacobi method for ω = 0.8

damps oscillatory error functions strongly, while slowly varying error functions are only
weakly damped or remain unchanged. This is the ideal behavior of a smoother.

The behavior of the Jacobi method for other values of ω is less optimal. For example for
ω = 1.2, highly oscillatory error functions are amplified.

Harmonic Frequencies

We introduce an idealized analysis of the two-grid method in this section. We start by
considering the restriction of wave functions to a coarse grid.
Assume that the fine grid has the step-size h and the step-size of the coarse grid is an

integer multiple of h, i.e., the coarse grid step-size is n · h for n ∈ �. We call n the coarsening
range. Let R be the injection restriction operator from the grid Gh to a grid Gn ·h. The
operator is given by

[Ru](x) = u(x) for x ∈ Gn ·h.

According to Theorem 1.15 there are frequencies θ, θ ′ ∈ Θh such that the wave functions φθ
and φθ′ differ on Gh, but are the same when restricted to Gn ·h, i.e.,

φθ , φθ′ but Rφθ = Rφθ′ .

More precisely, the theorem states that on the grid Gn ·h the parameters θ and θ ′ describe the
same grid functions if

(θ − θ ′) ∈ 2π
nh�.

In this case we say that θ ′ ∈ Θh is an n,h-harmonic of θ ∈ Θh. It is easy to see that n is
the number of n,h-harmonics that every frequency has. Furthermore, the predicate “is an
n,h-harmonic of” is an equivalence relation. Thus, the frequencies of the wave functions that
map to the same wave function on the coarse grid is the equivalence class

[θ] = {θ ′ ∈ Θh : θ ′ is an n,h-harmonic of θ} .
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Figure 1.10.: The relation of the frequencies (upper points) and their base frequency (lower
point) for n = 5.

Recall that every wave function on Gn ·h is uniquely described by a frequency in Θn ·h. We
call this the base frequency. Using the base frequency, we can write the set of harmonics as

[θ] =
{
θb + j · 2π

n ·h : 0 ≤ j < n, j ∈ �
}
.

In other words, we can say that the restriction maps all harmonic frequencies to the same
frequency—the base frequency. Figure 1.10 illustrates the relation of the frequencies and
their base frequency.

Now we construct an idealized interpolation for wave functions. This interpolation should
be close to the interpolation we use—the linear interpolation—and it should map a grid
function on the coarse grid to a grid function on the fine grid. We cannot use the linear
interpolation, as it does not return a wave function in general.
As a natural requirement, we want that interpolating and then restricting a wave function

should return the same wave function, i.e.,

RPφθ = φθ .

This relation implies that Pφθ = φθ′ for some n,h-harmonic θ ′ of θ, as the wave functions of
all n,h-harmonics are restricted to the same wave function. Hence, to uniquely determine P
we need to determine which harmonic θ ′ to choose.

We want that P is close to the linear interpolation. As the linear interpolation returns
slowly varying functions, we choose θ ′ to be the lowest frequency from the n,h-harmonics
[θ]. In other words, we pick θ ′ to be the frequency from [θ] that is closest2 to a multiple of
2π
h . This frequency is called the low n,h-harmonic of θ and denoted by θ` . Furthermore we
say that θ is a low n,h-harmonic if there exists a θ̃ such that θ = θ̃` . Using this definition we
can define the idealized interpolation operator P as

Pφθ = φθ` .

Note that this makes Definition 1.17 precise under the assumption that we have a coarsening
range n that we consider.
2In case of ambiguity we choose the larger one.
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Figure 1.11.: Computation of the low harmonic of a frequency.

The set of low n,h-harmonics can be characterized as follows. The n,h-harmonics of a
frequency θ are evenly spaces with a distance 2π

nh . Hence, a frequency θ in this set is closest
to a multiple of 2π

h if and only if

0 ≤ θ < π
nh or (2n−1)π

nh ≤ θ < 2π
h .

Thus, a frequency θ is a low n,h-harmonic if and only if the above inequalities hold. Using
this relation, we can give a formula for the frequency of the wave function φθ` = Pφθ . In
this case θ ∈ Θn ·h, and the corresponding low harmonic is

θ` =

{
θ if θ < π

nh ,
2π(n−1)

nh + θ if θ ≥ π
nh .

(1.46)

This relation, which is shown in Figure 1.11, completes the description of the idealized
interpolation operator P.

We idealize the two-grid method by assuming that the coarse-grid error is exactly computed
on Gnh. In other words, we assume that the error propagator of the coarse-grid correction is

Qn := I − PR ,

where R and P are the idealized restriction and interpolation operators introduced in this
section. Therefore, the error propagator of the idealized two-grid method is

E = Sν2QnSν1 , (1.47)

where S is the error propagator of the smoothing method. The error propagator of the
idealized coarse grid correction Qn is given by

Qnφθ =

{
0 if θ is a low n,h-harmonic,
φθ otherwise.

Thus, φθ is a formal eigenfunction of the idealized coarse grid correction, and its Fourier
symbol is given by

q̂n(θ) =
{

0 if θ is a low n,h-harmonic,
1 otherwise.
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Using this symbol, we can write down the Fourier symbol of the idealized two-grid method
(1.47);

ê(θ) = ŝ(θ)ν2 · q̂n(θ) · ŝ(θ)ν1 .

The number |ê(θ)| is the ratio of the size of the wave function φθ before one iteration of the
two-grid method and after. We define the smoothing factor (w.r.t. the coarsening range n) as

smf(S, n) := max
θ∈Θh

|ê(θ)| = max
θ∈Θh

| ŝ(θ)ν2 · q̂n(θ) · ŝ(θ)ν1 | .

As the coarse grid correction is idealized, the smoothing factor only gives information about
the quality of the smoother when using the coarsening range n—hence the name smoothing
factor.

1.5. Higher Dimensions

To this point we considered only multigrid methods for one-dimensional problems. In the
one-dimensional case, notation is easier and concepts of multigrid methods can be well
explained. Many real world problem, however, have higher dimensionality. Furthermore, in
1D there are often better methods; multigrid methods are often the best choice in 2D and 3D.

1.5.1. Multi-Index Notation

To deal with higher dimensional problems, we need additional notation. We shall use this
notation frequently in the following sections and chapters.
We denote the dimensionality by the letter d. We represent the vectors in �d and the

elements from�d and�d by bold letters. Most of the time they will be used as (multi-)indices.
Let a, b ∈ �d. Whenever we multiply or divide two vectors the operation is meant to be
carried out component wise, i.e.,

a · b := (a`b`)d`=1 and a/b := (a`/b`)d`=1 .

In unambiguous situations we shall also write ab for a · b and a
b for a/b. The scalar product

of two vectors is denoted by angle brackets;

〈a, b〉 :=
d∑
i=1

bi · ai .

Whenever we compare vectors it is to be understood component wise as well, i.e.,

a ≤ b ⇐⇒ (a` ≤ b` for all ` = 1, . . . , d) .

Furthermore, whenever we write “for i = a, . . . , b” we mean “for i1 = a1, . . . , b1, i2 =
a2, . . . , b2, . . . , id = ad, . . . , bd”. We define

b∑
j=a

uj :=
b1∑

j1=a1

b2∑
j2=a2

· · ·
bd∑

jd=ad

u(j1, j2,..., jd )T
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1. Multigrid Essentials

and (
u j

)b
j=a :=

(
· · ·

( (
u(j1, j2,..., jd )T

)b1
j1=a1

)b2
j2=a2
· · ·

)bd

jd=ad
.

Furthermore, let 0 := (0)d
`=1 and 1 := (1)d

`=1 the vector whose entries are all zero and all one,
and let vola :=

∏d
j=1 aj be the volume of the hypercube with side lengths a1, . . . , ad.

When we write |a| we mean the vector that contains the element-wise absolute value of
the elements of a, i.e.,

|a| =
(
|a` |

)d
`=1

.

The euclidean norm of a vector a is denoted as ‖a‖;

‖a‖ :=

(
d∑
i=1
|ai |2

)1/2

.

1.5.2. The Poisson Equation in 2D

The multigrid method can be applied to higher dimensional problems, e.g., 2D and 3D
problems. It requires, however, some adjustments.

Let us consider a 2D example: the shape of a square membrane deformed by a load. Assume
that the membrane, when seen from above, forms a square located at Ω := (0, 1) × (0, 1).
The height of the membrane is described by a function u : Ω → �. At the boundary, the
membrane is fixed at height g(x). The load on the membrane is given by the function
f : Ω→ �. The vertical position u of the membrane is then described by the 2D Poisson
equation [6]

−∆u(x) = f (x) for x ∈ Ω (1.48a)
u(x) = g(x) for x ∈ ∂Ω , (1.48b)

where ∆u := ∂2u
∂x2

1
+ ∂2u
∂x2

2
.

Discretization

We want to compute a numerical approximation to the solution of the Poisson equation in 2D
(1.48). For this purpose let n ∈ �2, h := 1/n and

Gh = {z · h : z ∈ �2}

We define the grid, grid boundary and closure of the grid by

Ωh := Ω ∩ Gh , ∂Ωh := (∂Ω) ∩ Gh , and Ωh := Ωh ∪ (∂Ωh) ,

respectively. We seek for an approximation of the solution u at the points Ωh.
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Like in the 1D case, which is described in Section 1.2, we need an approximation ∆h to the
operator ∆ that needs only the values of u at the discrete points Ωh for its computation. Using
the idea of polynomial interpolation in a similar way as in Section 1.2, it can be shown that

∂2u
∂x1
(x1, x2) ≈

u(x1 − h1, x2) − 2u(x1, x2) + u(x1 + h1, x2)
h2

1

and

∂2u
∂x2
(x1, x2) ≈

u(x1, x2 − h2) − 2u(x1, x2) + u(x1, x2 + h2)
h2

2
.

If we plug these approximations into the definition of the operator ∆, we obtain a reasonable
approximation:

∆hu :=
u(x1 − h, x2) − 2u(x1, x2) + u(x1 + h, x2)

h2
1

+
u(x1, x2 − h) − 2u(x1, x2) + u(x1, x2 + h)

h2
2

.

Using this approximation results in the linear system of equations

∆huh(x) = f (x) for x ∈ Ωh (1.49a)
uh(x) = g(x) for x ∈ ∂Ωh . (1.49b)

Multigrid

To construct a multigrid method for the 2D Poisson equation, we need to specify a smoother,
a restriction, an interpolation, and a coarse grid operator. We can choose the Jacobi method
as a smoother, as it can directly be applied to the linear system and it is known that it is a
suitable smoother for this problem. For the coarse grid operator we can just use the operator
∆2h. The restriction and the interpolation operator, however, have to be adapted to the new
dimension.
The formula for the injection restriction in 2D is very similar to the 1D case (1.30). The

2D formula is:
[Ru](x) = u(x) for x ∈ G2h .

The description of the bilinear interpolation—the interpolation we will chose for the 2D
case—is a little more complicated. Let us denote the neighbors of x in the grid Gh in the
following way:

xnw xn xne
xw x xe
xsw xs xse
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1

(a) Interpolating the value at a point that is
also contained in G2h.

1
2

1
2

(b) Interpolating a value at a point, whose left
and right neighbor are in G2h.

1
2

1
2

(c) Interpolating the value at a point, whose
top and right neighbor are in G2h.

1
4

1
4

1
4
1
4

(d) Interpolating the value at a point, whose
top-left, top-right, bottom-left, and
bottom-right neighbor are in G2h.

Figure 1.12.: Rules for the bilinear interpolation.

Using this notation, the bilinear interpolation in 2D is defined as

[Pu](x) :=


u(x) if x ∈ Ω2h,
u(xw)+u(xe)

2 if xw, xe ∈ Ω2h,
u(xs)+u(xn)

2 if xs, xn ∈ Ω2h,
u(xsw)+u(xse)+u(xnw)+u(sne)

4 if xsw, xse, xnw, sne ∈ Ω2h,

Figure 1.12 gives a visual description of this formula.
The equation can be written more compactly using the definition of the neighborhood of a

point x in the grid Gh. The neighborhood of x is defined by

N(x) := {y ∈ ΩH : |y − x| ≤ h} .

The interpolation P can be written as

[Pu](x) = 1
#N(x)

∑
y∈N(x)

u(y) for x ∈ Ωh. (1.50)

1.5.3. Formal Eigenfunctions

In the 1D case we used formal eigenfunctions to show that every constant stencil operator
has a Fourier symbol3, and the Fourier symbol provided insight into the behavior of the
corresponding operator. We shall see that the same is true for higher dimensions.
3See Section 1.4.2.
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In dD the infinite grid Gh with step-size h is

Gh := {h · z : z ∈ �d} = {(h1z1, . . . , hdzd)T : z ∈ �d} . (1.51)

On this grid a constant stencil operator A is given by

[Au](x) :=
∑

y∈Gh

s(y) · u(x + y) . (1.52)

Furthermore, let θ ∈ �d and x ∈ Gh; the wave functions in dD are then

φθ(x) = ei〈θ,x〉 , (1.53)

where 〈a, b〉 :=
∑d

i=1 biai is the Euclidean scalar product. Note that θ and x are vectors.
Thus, in comparison to the 1D case (1.41), we replace the multiplication of the two scalars
by the scalar product of two vectors. The function φθ is a plane wave. The wave propagates
into the direction of the vector θ and the length of θ is the frequency.

In 1D, the wave functions are the formal eigenfunctions of the constant stencil operator (cf.
Lemma 1.13). The same is true in dD:

Lemma 1.19. Let A be the constant stencil operator given by (1.52) and φθ a wave function
(1.53). Then

Aφθ = â(θ) · φθ, (1.54)

where â(θ) is the scalar function given by

â(θ) :=
∑

y∈Gh

s(y) · ei〈θ,y〉 . (1.55)

Proof. We have

[Aφθ](x) =
∑

y∈Gh

s(y) · ei〈θ,x+y〉 =
∑

y∈Gh

s(y) · ei〈θ,x〉+i〈θ,y〉

=
∑

y∈Gh

s(y) · ei〈θ,x〉 · ei〈θ,y〉 =
©­«
∑

y∈Gh

s(y) · ei〈θ,y〉ª®¬ · ei〈θ,x〉 = â(θ) · φθ(x) . �

1.5.4. Wave Functions

We discussed in Section 1.4.3 that in 1D the restriction of different wave functions to a coarse
grid can give the same wave function. This statement can be generalized to the dD case. In
the following we generalize Lemma 1.14 and Theorem 1.15.

Lemma 1.20. Let 0 < h ∈ �d.(
ei〈θ,x〉 = 1 for all x ∈ Gh

)
if and only if θ ∈ 2π�d/h .
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Proof. Lemma 1.14 shows the assertion for d = 1, i.e.,(
eiθx = 1 for all x ∈ Gh

)
if and only if θ ∈ 2π

h � . (1.43 revisited)

Assume that θ ∈ �d/h and x ∈ Gh. Then

ei〈θ,x〉 = eiθ1x1 · eiθ2x2 · · · eiθd xd = 1 · 1 · · · 1 = 1 .

Conversely, assume that ei〈θ,x〉 = 1 for all x ∈ Gh. Let x̃ ∈ hj�, j = 1, . . . , d, and
xk = x̃δk j , where δk j is the Kronecker delta, i.e.,

δk j =

{
1 if k = j,
0 otherwise.

Then
1 = ei〈θ,x〉 = eiθ j x̃ .

Thus, the one-dimensional (1.43) case implies θ j ∈ 2π�/hj . �

Theorem 1.21. Let 0 < h ∈ � and θ, θ ′ ∈ �d. Then(
ei〈θ,x〉 = ei〈θ′,x〉 for all x ∈ Gh

)
if and only if (θ − θ ′) ∈ 2π�d/h .

Proof. Let x ∈ �d. Consider

ei〈θ,x〉 = ei〈θ′,x〉 ⇐⇒ ei〈θ−θ′+θ′,x〉 = ei〈θ′,x〉

⇐⇒ ei〈θ−θ′,x〉 · ei〈θ′,x〉 = ei〈θ′,x〉 .

Since ei〈θ′,x〉 , 0, we can divide by ei〈θ′,x〉 to obtain that

ei〈θ,x〉 = ei〈θ′,x〉 ⇐⇒ ei〈θ−θ′,x〉 = 1

Thus, the assertion follows from Lemma 1.20. �

We define the set of visible frequencies on Gh as

Θh :=
[
0, 2π

h1

)
× · · · ×

[
0, 2π

hd

)
. (1.56)

A consequence of Theorem 1.21 is that for every wave function φθ , there exists a unique
θ ′ ∈ Θh such that

φθ(x) = φθ′(x) for all x ∈ Gh .
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1.5.5. Low and High Frequencies

Depending on the frequency θ, a wave function can be oscillatory or slowly varying. This
statement is also true in dD.

The dD wave function with frequency θ can be written as

φθ(x) = ei〈θ,x〉 = ei(θ1x1+· · ·+θdxd ) = eiθ1x1 · · · eiθdxd = φθ1(x1) · · · φθd (xd) . (1.57)

Thus, the dD wave function is the product of d 1D wave functions. If one of the wave
functions is oscillatory, the whole function will be oscillatory, which motivates the following
definition.

Definition 1.22. Let h > 0 be given. The frequency θ
1. is a low frequency if all θk (k = 1, . . . , d) are low frequencies.
2. is a high frequency if one θk (k = 1, . . . , d) is a high frequency.

The amount of oscillations of a wave function on the grid Gh is the difference of the
function value at neighboring grid points. In contrast to the 1D case, which is characterized
by Proposition 1.16, there is more than one direction in which a wave function can vary.
Therefore, we can measure the amount of oscillation in different directions.

Let x ∈ Gh and x + ∆x ∈ Gh be two neighboring points. Then the difference���φθ(x) − φθ(x + ∆x)
���

is the amount of oscillation of φθ at x in direction ∆x. It is computed in:

Proposition 1.23. Let θ,∆x ∈ �d. Then for all x ∈ �d���φθ(x) − φθ(x + ∆x)
��� = √

2 − 2 cos〈θ,∆x〉 .

Proof. The wave function���ei〈θ,x〉 − ei〈θ,x+∆x〉
��� = ���ei〈θ,x〉 − ei〈θ,x〉+i〈θ,∆x〉

��� = ���ei〈θ,x〉 − ei〈θ,x〉 · ei〈θ,∆x〉
���

=

���ei〈θ,x〉
��� · ���1 − ei〈θ,∆x〉

��� = ���1 − ei〈θ,∆x〉
��� .

Combining this equation with the simplification (1.45) yields���1 − ei〈θ,∆x〉
��� = √

2 − 2 cos〈θ,∆x〉 . �

Using this result we can determine the amount of oscillation in the direction of a coordinate
axis. Let ek be the kth unit vector; if ∆x = h · ek then 〈θ,∆x〉 = θkhk .

Corollary 1.24. Let θ, h ∈ �d. Then for all x ∈ �d���φθ(x) − φθ(x + hkek)
��� = √

2 − 2 cos(θkhk) .
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Comparing the last equation to the amount of oscillation of a 1D function, given in (1.44),
we see that the amount of oscillation in the xk-direction is the amount of oscillation of the
factor eiθk xk in the product (1.57). In other words, the wave function φθ is oscillatory in the
xk-direction, if the wave function eiθk xk is oscillatory.
We can also show the converse statement. If the wave functions eiθk xk for k = 1, . . . , d

have a small amount of oscillation, i.e., they are slowly varying, then the product of the wave
functions also has a small amount of oscillation. This fact is proven in the next theorem, by
bounding the amount of oscillation in any direction in terms of the amount of oscillation
of the function in the direction of the coordinate axes, which is the sum of the amount of
oscillation of the factors eiθk xk .

Theorem 1.25. Let θ, h ∈ �d and z ∈ {−1, 0, 1}d. Then

���φθ(x) − φθ(x + h · z)
��� ≤ d∑

k=1

√
2 − 2 cos(θkhk).

Proof. We define the sequence

p0 = 0,
pk = pk−1 + hk zkek for k > 0.

As h · z = h1z1e1 + · · · + hdzded, we have that pd = h · z. Combining this with the fact that
p0 = 0 yields

φθ(x) − φθ(x + h · z) =
d∑

k=1
φθ(x + pk−1) − φθ(x + pk) ,

It follows that ���φθ(x) − φθ(x + h · z)
��� ≤ d∑

k=1

���φθ(x + pk−1) − φθ(x + pk)
��� . (1.58)

Now note that���φθ(x + pk−1) − φθ(x + pk)
��� = ���φθ(x + pk−1) − φθ((x + pk−1) + hk zkek)

��� .
Thus, by using Corollary 1.24 we see that���φθ(x + pk−1) − φθ(x + pk)

��� = {
0 if zk = 0,√

2 − 2 cos(θkhk) if zk = ±1.
(1.59)

Combining the sum (1.58) with the upper bound (1.59) completes the proof. �
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1.5. Higher Dimensions

1.5.6. Harmonic Frequencies

In higher dimensions the coarsening range n ∈ �d is a vector instead of a scalar. If Gh is
the fine grid and n is the coarsening range then Gn·h is the corresponding coarse grid. The
meaning of the kth entry of n is as follows. We obtain the coarse grid from the fine grid by
selecting every nk-th point in the xk-direction. With this definition of the coarsening range,
we can introduce the harmonic frequencies in d dimensions.

A frequency θ ∈ Θh is a n,h-harmonic of θ ′ ∈ Θh if the wave functions φθ and φθ′ coincide
on Gn·h, i.e.,

φθ(x) = φθ′(x) for all x ∈ Gn·h.

Theorem 1.21 then states that θ is a n,h-harmonic of θ ′ ∈ Θh if

(θ − θ ′) ∈ 2π�d/(n · h) .

Besides, in dD we have that “is n,h-harmonic of” is an equivalence relation; the equivalence
class

[θ] := {θ ′ : θ is a n,h-harmonic of θ ′}

is the set of all harmonics of θ. To get a unique representation of the harmonics we define the
base frequency θb to be the unique frequency in Gn·h that is in [θ]. With this definition, we
can write the set of n,h-harmonics as

[θ] = {θb + j · (2π)/(n · h) : 0 ≤ j < n, j ∈ �d}. (1.60)

In Section 1.5.5 we realized that a dD wave function is slowly varying if and only if it is
slowly varying in the direction of all coordinate axes. Hence, the low n,h-harmonic of θ is
defined coordinate-wise; θ` is the low n,h-harmonic of θ if θ`,k is the nk ,hk-harmonic of θk
for all k. In other words,

θ`,k := θk,` .

We define a frequency θ to be a low n,h-harmonic if there exists a frequency θ ′ such that
θ is the n,h-harmonic of θ ′. From (1.46) we obtain that a frequency θ ∈ Θh is a n, h-low
harmonic if and only if

0 ≤ θk < π
nkhk

or (2nk−1)π
nkhk

≤ θk < 2π
hk

for all k = 1, . . . , d . (1.61)

To define the smoothing factor we define the Fourier symbol of the ideal coarse grid
correction (cf. Section 1.4.3) as

q̂n(θ) :=

{
0 if θ is a low n,h-harmonic,
1 otherwise.

(1.62)

Then the smoothing factor is

smf(S, s) := max
θ∈Θh
| ŝ(θ)ν2 · q̂n(θ) · ŝ(θ)ν1 |, (1.63)

which generalizes the smoothing analysis to d dimensions.
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1. Multigrid Essentials

1.5.7. A 2D Fourier Symbol

As an example, let us consider the Fourier symbol of the Jacobi method when applied to
the discrete 2D Poisson equation (1.49). To analyze the error propagator of this method, we
need to specify its stencil. Accordingly, it is useful to denote a constant stencil s in 2D by

s =



. . .
...

...
... . .

.

· · · s(−h,+h) s(0,+h) s(+h,+h) · · ·
· · · s(−h, 0) s(0, 0) s(+h, 0) · · ·
· · · s(−h,−h) s(0,−h) s(+h,−h) · · ·
. .
. ...

...
...

. . .

h

,

where we have underlined to central element s(0, 0).
Let us assume that h1 = h2, i.e., the grid spacing in each direction is the same. For the

interior points the finite difference discretization of the 2D Poisson equation (1.49) is

1
h2


−1

−1 4 −1
−1

h

.

Let us apply the weighted Jacobi method to the discrete Poisson equation. Then the stencil of
the error propagator for the interior points is

ω/4
ω/4 (1 − ω) ω/4

ω/4

h

.

The Fourier symbol of the error propagator of the Jacobi method applied to the 2D Poisson
equation is

ê(θ) = ω
4 eiθ1(−h1) + ω

4 eiθ2(−h2) + (1 − ω)ei·0 + ω
4 eiθ2h2 + ω

4 eiθ1h1

= (1 − ω) + 2 Re
(
ω
4 eiθ1h1

)
+ 2 Re

(
ω
4 eiθ2h2

)
= (1 − ω) + ω

2
(
cos(θ1h1) + cos(θ2h2)

)
.

This symbol is shown in Figure 1.13 for ω = 0.8. We see that the values of ê(θ) are only
large if θk is close to 0 or 2π

h for any k = 1, 2. Thus, the weighted Jacobi method reduces the
oscillatory wave functions and is therefore a smoother.

1.6. Operator Norm and Spectral Radius

Despite the formal eigenfunction analysis, there are further ways to gain insight into an
operator and, consequently, insight into stationary iterative methods. For example, let V
be a Banach space—a normed, closed vector space. Furthermore, let E : V → V be the
error propagator of an iterative method, and let e ∈ V be the error. We are interested in the
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1.6. Operator Norm and Spectral Radius
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Figure 1.13.: Fourier symbol of the error propagator of the weighted Jacobi method applied
to the Poisson equation in 2D with ω = 0.8.

difference of the size of the error e before the application of E and afterwards. Consequently,
we want to know the ratio

c1 := ‖Ee ‖
‖e ‖

of the new and the old error. If the ratio c1 < 1 then E reduces the error e; if the ratio c1 > 1
then E amplifies the error. The operator norm gives an upper bound for the ratio c1. It is
defined by

‖E ‖ := sup
{
‖E f ‖
‖ f ‖ : f ∈ V, f , 0

}
.

This definition implies
‖E f ‖ ≤ ‖E ‖ · ‖ f ‖ , (1.64)

which gives an upper bound for c1.
In an iterative method the error propagator is applied multiple times. We are, thus, also

interested in the ratio
cn := ‖E

ne ‖
‖e ‖ .

If cn → 0 for n→∞ then the error converges to zero during the iteration, and therefore the
iterative method finds the solution.
Equation (1.64) implies

‖En‖ ≤ ‖E ‖ · ‖En−1‖ ≤ · · · ≤ ‖E ‖n .

That means ‖E ‖n is an upper bound for cn. For many operators, however, ‖En‖ < ‖E ‖n.
To improve the estimate, we use the geometric mean to define an average of norms for n
applications of E by ‖En‖1/n. Similarly, the spectral radius is defined as

r(E) := lim
n→∞
‖En‖1/n . (1.65)

Thus, in the above sense it is the average of norms of infinitely many applications of E . The
definition implies that for large n there is a small ε > 0 such that

‖En‖ ≤ (r(E) + ε)n ,
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1. Multigrid Essentials

which yields that
‖En f ‖ ≤ (r(E) + ε)n · ‖ f ‖ .

The spectral radius also provides a criterion for En → 0 for n→∞:

Proposition 1.26. If r(E) < 1 then ‖En‖ → 0 for n→∞, and as ‖ · ‖ is continuous En → 0
for n→∞.

Proof. As r(E) < 1, we can pick a number q ∈ � such that r(E) < q < 1. By definition of
the spectral radius (1.65), there exists a number n0 ∈ � such that

‖En‖1/n ≤ q for all n ≥ n0 .

Thus,
‖En‖ ≤ qn .

The number q < 1. Hence, qn → 0 for n→∞ and so does ‖En‖. �

We shall see in the next chapter that the Fourier symbol of an operator can be used to
compute the operators norm and spectral radius.

1.7. Further Applications

Themultigridmethod can be used to efficiently solve discretizations of other partial differential
equations (PDEs) than the Poisson equation. For instance, consider the Poisson-like diffusion
problem

− ∂
∂x (a

∂u
∂x ) −

∂
∂y (a

∂u
∂y ) = f on Ω , (1.66a)

u = g on ∂Ω , (1.66b)

where a : Ω→ � is a smooth, non-negative function. A finite difference discretization can
be constructed [33, Section 5.1.4] leading to a linear system similar to the discrete Poisson
equation (1.49). This linear system can be efficiently solved with the multigrid method
described in Section 1.5.2.

The multigrid method, however, sometimes needs to be modified before it can be applied to
a certain PDE. The method consists of different components—the smoother, the interpolation,
the restriction, and the coarse grid approximation. These need to be chosen so that the
interplay between them yields an efficient method. Occasionally, the Jacobi method is a bad
choice or the linear interpolation does not work well. For example, consider the anisotropic
problem

−ε ∂
2u
∂x2 −

∂2u
∂y2 = f on Ω

u = g on ∂Ω ,
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with 0 < ε � 1. This equation can be discretized using finite differences as well [68]. The
Jacobi method is not a good smoother for this problem. It smooths only in the direction of
strong connection, i.e., in y-direction. In the other direction, the error remains oscillatory.

There are two ways to construct an efficient multigrid method for this problem. Either one
chooses a different smoother or one constructs a coarse grid approximation that is capable of
approximating an error that is only slowly varying in one direction.

Furthermore, consider the PDE (1.66), but allow for a to be discontinuous. More precisely,
assume that the domain Ω is split into two parts, i.e., Ω = Ω1 ∪ Ω2 and a jumps several
orders of magnitude at the boundary between Ω1 and Ω2. In this situation the usual finite
difference discretization is not feasible anymore. A finite volume discretization can instead
be applied [68], for which the coarse grid correction needs adjustments.
The construction of multigrid methods for many different problems can be found in

monographs [12, 15, 32, 63]. Especially [63] treats many problems from a practical point
of view. Furthermore, people have been wondering, whether there is an automatic way of
constructing multigrid methods. This resulted in the development of algebraic multigrid
methods [15, 58, 59, 62, 66], which use heuristics to construct the components of a multigrid
method.

1.8. Literature and Contributions

This chapter starts with the famous example of the deflection of a wire under load. This
example is, e.g., discussed in [40]. We derived the equations describing the shape of the wire,
using calculus of variations. The derivation is based on techniques found in, e.g., [6, 71].
For a more elementary derivation of similar problems see, e.g., [22, 67].
Finite Differences are a well established technique to approximate the solution of partial

differential equations, and the convergence of the method is usually analyzed by proving
consistency and stability separately. In this thesis, we followed the lines of [46]. Similar
results can be found, e.g., in [33].
An introduction to multigrid methods followed the derivation of the finite difference

discretization. Introductions to multigrid methods are given in [12, 15, 32, 59, 63, 68]. The
presentation of the Jacobi method in this thesis was especially inspired by [59]. Analyzing
multigrid methods in terms of spectral radii and norms of their error propagation matrix is a
well known technique, which can be found, e.g., in [32, 63, 74]. In the literature the error
propagation matrix is also known as iteration matrix.
After introducing multigrid methods, we discussed the formal eigenfunction analysis of

them. This analysis can be found in the monographs [68, 74]. Formal eigenfunction analysis
is an idealized analysis, however, for some cases it can be turned into a rigorous one, see [64].
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2. Local Fourier Analysis

The Fourier symbol â of a constant stencil operator A tells us that the operator acts on a wave
function φθ , by

Aφθ = â(θ) · φθ . (1.54 revisited)

Especially, it tells us whether a wave function with a certain frequency is damped or amplified,
and if we have a linear combination of wave functions, we use â can determine how A acts on
this combination; each part of the combination is treated separately and damped or amplified
according to â(θ).
This relation allowed us to determine if an operator is a smoother, i.e., if repeated

application of the operator returns a slowly varying function. This is the case when â is
small on the high frequencies and large on the low frequencies. The theory from the previous
chapter allows us to make these predictions for linear combinations of wave functions. There
are, however functions that cannot be written as a finite sum of wave functions. The question
is: is it still true for such a function that repeated application of an operator returns a slowly
varying function if â is small on the high frequencies and large on the low ones?

An example of a function that cannot be written as a finite sum of wave functions is the
function δ : Gh → � with

δ(x) =
{

1 if x = 0,
0 otherwise.

This function is important, e.g., as it can be used to obtain discrete analogs of Green’s
functions [18–20]. Hence, we would like to know how an operator acts on this function.
Furthermore, any function with a bounded support cannot be written as a finite sum of wave
functions. It is important to know whether an operator is a smoother for these functions as
well. We shall show in this chapter that the Fourier symbol gives the desired information
also in this case.
Another limitation of the theory from the previous chapter is that it does not allow us

to determine the properties of an operator like the norm and the spectral radius. Assume
we would like to determine the norm of a constant stencil operator A : V → V by using its
Fourier symbol, where V is a suitable space. To compute the norm of A we would have to
determine

sup
{
‖Au ‖
‖u ‖ : u ∈ V, u , 0

}
.

If u ∈ V , however, cannot be written as a finite sum of wave functions, the theory of the
previous chapter gives no way to compute Au by using the Fourier symbol. Thus, to be able
to use Fourier symbols we need to improve the theory we have so far. In this chapter we show
that for a suitable space V there are simple formulas that allow to compute the operator norm
and the spectral radius by using the Fourier symbol. Let us start with the required definitions.

47



2. Local Fourier Analysis

Recall that the infinite grid with step-size h is

Gh := {h · z : z ∈ �d} = {(h1z1, . . . , hdzd)T : z ∈ �d}. (1.51 revisited)

A grid function assigns a complex number to every point of an infinite grid Gh. Let
f , g : Gh → � be two grid functions. We define their scalar product by

〈 f , g〉 :=
∑

x∈Gh

g(x) · f (x) ,

which induces the norm
‖ f ‖ := 〈 f , f 〉1/2 .

A grid function f is bounded if ‖ f ‖ < ∞ and we denote the set of bounded grid functions as

`2(Gh) := { f : Gh → � : ‖ f ‖ < ∞} .

It is well known that the set `2(Gh) is a Hilbert space [42]. This is the set of grid functions
that we shall consider in the following.
It might seem arbitrary that we restrict ourselves to bounded grid functions. We are

interested, however, in the norm of the operator, and therefore need to be able to compare the
norm of a function before and after applying the operator, meaning that these norms need to
be finite. There are of course other norms, however, the `2-norm is the most useful one for
our purposes.

The main idea of this chapter will be to use the discrete time Fourier transform to transform
functions from position space to Fourier space and perform the analysis in Fourier space.
This idea first appeared in the local Fourier analysis literature in [11]. In this chapter we
expand the idea from [11] in various ways. For some treatment of the discrete time Fourier
transform of grid functions see also [35].

2.1. Operators on Infinite Grids

Before dealing with constant stencil operators consider the more general case of linear
bounded operators that map from `2(Gh) to `2(Gh). A linear operator A : `2(Gh) → `2(Gh)
is bounded if its operator norm is finite. The operator norm is given by

‖A‖ := sup
{
‖Af ‖
‖ f ‖ : f ∈ `2(Gh), f , 0

}
.

We denote the set of all linear bounded operators by

L(`2(Gh)) := {A : `2(Gh) → `2(Gh) : A is linear, ‖A‖ < ∞}.

In general, we will denote L(X) to be

L(X;Y ) := {A : X → Y : A is linear, ‖A‖ < ∞}

for any Banach space X . Furthermore, we write L(X) := L(X; X).
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2.1. Operators on Infinite Grids

2.1.1. Matrix Representation and Matrix Norms

Matrices are a simple representation for linear operators. They allow us to describe an
operator just by an array of numbers, instead of a formula. This property makes matrices very
useful. Like in the finite dimensional case we can define a matrix representation of operators
in L(`2(Gh)) (cf. [42]). We shall use them later to show that any operator in L(`2(Gh)) has a
stencil representation.

Theorem 2.1. Let A ∈ L(`2(Gh)) and for x ∈ Gh define the grid function ex by ex(z) = δxz.
Then with axy := 〈Aey, ex〉

[Au](x) =
∑

y∈Gh

axyu(y) . (2.1)

Proof. Let f = Au. The orthonormal basis {ex : x ∈ Gh} of `2(Gh) permits us to write

f =
∑

x∈Gh

f (x)ex and u =
∑

y∈Gh

f (y)ey .

It follows that

f (x) = 〈 f , ex〉 = 〈Au, ex〉 = 〈A
∑

y∈Gh

u(y)ey, ex〉 =
∑

y∈Gh

u(y) · 〈Aey, ex〉 =
∑

y∈Gh

u(y) · axy . �

Theorem 2.1 shows that every operator A ∈ `2(Gh) has a matrix representation. The
converse, however, is not true. There are infinite matrices that do not define operators from
L(`2(Gh)). For example if

axy = 1 for all x, y ∈ Gh .

the sum (2.1) gives an unbounded grid function if u , 0. Furthermore, it is easy to see that
there are matrices axy and functions u such that the sum (2.1) diverges.

Let a ∈ �Gh×Gh be an infinite matrix. For a to define a bounded operator A two conditions
have to be fulfilled. First, the sum (2.1) has to converge for every u ∈ `2(Gh). If this condition
is fulfilled, Au is defined for any u ∈ `2(Gh). Second, the operator A has to be bounded, i.e.,
‖A‖ < ∞. Let us give a sufficient condition for the sum (2.1) to converge.

Proposition 2.2. Let u ∈ `2(Gh) and∑
y∈Gh

|axy |2 < ∞ for all x ∈ Gh. (2.2)

Then (2.1) converges for all x ∈ Gh.

Proof. By the Cauchy-Schwarz inequality( ∑
y∈Gh

|axy | · |u(y)|
)2
≤

( ∑
y∈Gh

|axy |2
)
·
( ∑
y∈Gh

|u(y)|2
)
< ∞.

Therefore, the sum (2.1) converges absolutely. �
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The following norms provide us with a sufficient condition for an operator that is given by
a matrix to be well defined and bounded.

Definition 2.3. Let A ∈ L(`2(Gh)). The Hilbert-Schmidt norm of A is

‖A‖HS := ©­«
∑

x∈Gh

∑
y∈Gh

|axy |2
ª®¬

1/2

,

the column sum norm is
‖A‖CS := sup

y∈Gh

∑
x∈Gh

|axy | ,

and the row sum norm is
‖A‖RS := sup

x∈Gh

∑
y∈Gh

|axy | .

The functions ‖ · ‖HS, ‖ · ‖CS, and ‖ · ‖RS are actually norms for the spaces

{A : `2(Gh) → `2(Gh) : A is given by an infinite matrix, ‖A‖HS < ∞},
{A : `2(Gh) → `2(Gh) : A is given by an infinite matrix, ‖A‖CS < ∞}, and
{A : `2(Gh) → `2(Gh) : A is given by an infinite matrix, ‖A‖CS < ∞},

respectively. Furthermore, these functions can be used to show that a matrix defines an
operator. To prove this statement, we need to first prove an auxiliary result.

Lemma 2.4. Let 1 ≤ p < q < ∞ and {ak}∞k=1 be a sequence such that

∞∑
k=1
|ak |p < ∞ . (2.3)

Then
∞∑
k=1
|ak |q < ∞ .

Proof. The sum (2.3) of the elements of the series is a finite value thus ak → 0 for k →∞.
Therefore, only finitely many |ak |p are larger than one, meaning that we can find m ∈ � such
that

|ak |p ≤ 1 for all k ≥ m .

Thus, for k ≥ m

|ak |q =
(
|ak |p

)q/p
≤ |ak |p .

Consider
∞∑
k=1
|ak |q =

m−1∑
k=1
|ak |q +

∞∑
k=m

|ak |q .
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The first sum on the right hand side of this equation is finite. Furthermore, the second sum
on the right hand side of the equation can be bounded by

∞∑
k=m

|ak |q ≤
∞∑

k=m

|ak |p

and is therefore also finite. �

Proposition 2.5. Let a ∈ �Gh×Gh be an infinite matrix. If ‖A‖HS < ∞ or ‖A‖RS < ∞ then
(2.1) converges for all x ∈ Gh.

Proof. It is easy to see that from ‖A‖HS < ∞ condition (2.2) follows. Using Lemma 2.4 we
find that from ‖A‖RS < ∞ the condition (2.2) follows. �

The operator norm can be bounded in terms of the Hilbert-Schmidt or the column-sum
and the row-sum norm [42].

Proposition 2.6. Let A be given by the infinite matrix a ∈ �Gh×Gh; then

‖A‖ ≤ ‖A‖HS and (2.4)

‖A‖ ≤
√
‖A‖CS · ‖A‖RS . (2.5)

Proof. Let u ∈ `2(Gh). We start with the definition of the norm

‖Au‖2 :=
∑

x∈Gh

������ ∑y∈Gh

axyu(y)

������
2

≤
∑

x∈Gh

©­«
∑

y∈Gh

|axy | · |u(y)|
ª®¬

2

The term in brackets is a scalar product; the Cauchy-Schwarz inequality gives

‖Au‖2 ≤
∑

x∈Gh

©­­«
©­«
∑

y∈Gh

|axy |2
ª®¬

1/2 ©­«
∑

y∈Gh

|u(y)|2ª®¬
1/2ª®®¬

2

=
©­«
∑

x∈Gh

∑
y∈Gh

|axy |2
ª®¬ ‖u‖2

= ‖A‖2HS · ‖u‖
2 ,

which proves the Hilbert-Schmidt norm inequality (2.4).
To prove the other inequality consider that

‖Au‖2 ≤
∑

x∈Gh

©­«
∑

y∈Gh

|axy | · |u(y)|
ª®¬

2

=
∑

x∈Gh

©­«
∑

y∈Gh

|axy |1/2 ·
(
|axy |1/2 · |u(y)|

)ª®¬
2

.
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By the Cauchy-Schwarz inequality

‖Au‖2 ≤
∑

x∈Gh

©­«
∑

y∈Gh

|axy |
ª®¬ · ©­«

∑
y∈Gh

|axy | · |u(y)|2
ª®¬ ≤

∑
x∈Gh

‖A‖RS ·
©­«
∑

y∈Gh

|axy | · |u(y)|2
ª®¬

= ‖A‖RS
∑

y∈Gh

∑
x∈Gh

|axy | · |u(y)|2 ≤ ‖A‖RS
∑

y∈Gh

( ∑
x∈Gh

|axy |
)
|u(y)|2

≤ ‖A‖RS
∑

y∈Gh

‖A‖CS · |u(y)|2 = ‖A‖RS · ‖A‖CS · ‖u(y)‖2 .

Hence, the row/column-sum estimate (2.5) is established. �

From Proposition 2.5 and Proposition 2.6 we know that if either ‖A‖HS or
√
‖A‖CS · ‖A‖RS

are bounded then A ∈ L(`2(Gh)).

2.1.2. Stencil Representation

In many grid based applications stencils are a convenient description for operators (cf.
Section 1.4.1 and 1.5.2). We shall see that every operator in L(`2(Gh)) can be represented
by a variable stencil. A variable stencil on an infinite, dD grid is a family {sx}x∈Gh with
sx : Gh → �; the corresponding stencil operator A is defined by

[Au](x) :=
∑

y∈Gh

sx(y) · u(x + y) .

Theorem 2.7. Let A ∈ L(`2(Gh)). Then A has a variable stencil representation.

Proof. According to Theorem 2.1, the operator A has a matrix representation a ∈ �Gh×Gh .
Let

sx(y) := ax,(x+y) .

This definition implies that the corresponding stencil operator Ã fulfills that

[Ãu](x) =
∑

y∈Gh

sx(y) · u(x + y) =
∑

y∈Gh

ax,x+y · u(x + y) .

Substituting y − x for y gives that

[Ãu](x) =
∑

(y−x)∈Gh

ax,y · u(y) =
∑

y∈Gh

ax,y · u(y) .

Comparing the last term to the matrix representation of A,

[Au](x) =
∑

y∈Gh

axyu(y) , (2.1 revisited)

we conclude that Ã = A, i.e., the stencil s represents the operator A. �
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Let us turn to constant stencil operators. A stencil s̃x is called constant if there exists
s : Gh → � such that

s̃x = s for all x ∈ Gh .

Thus, a constant stencil operator is given by

[Au](x) :=
∑

y∈Gh

s(y) · u(x + y). (1.52 revisited)

Like in the case of infinite matrices, there are stencils that do not give a well-defined and
bounded operator. For this reason, it is useful to have a sufficient condition that guarantees
that a stencil describes a well-defined and bounded operator.

Theorem 2.8. Let A be an operator given by the constant stencil s : Gh → �; then

‖A‖ ≤
∑
x∈Gh

|s(x)| .

Proof. By the definition of the column sum norm

‖A‖CS := sup
y∈Gh

∑
x∈Gh

|axy | = sup
y∈Gh

∑
x∈Gh

|s(y − x)| = sup
y∈Gh

∑
x∈Gh

|s(x)| =
∑

x∈Gh

|s(x)| .

Similarly,

‖A‖RS := sup
x∈Gh

∑
y∈Gh

|axy | = sup
x∈Gh

∑
y∈Gh

|s(y − x)| = sup
x∈Gh

∑
y∈Gh

|s(y)| =
∑

y∈Gh

|s(y)| .

By Proposition 2.6,
‖A‖ ≤

√
‖A‖CS · ‖A‖RS =

∑
x∈Gh

|s(x)| . �

In particular, Theorem 2.8 implies that a stencil operator with a finite number of non-zero
entries represents a bounded operator from L(`2(Gh)).

2.1.3. Shift Invariance Characterization

Sometimes it is helpful to know whether the stencil of an operator in L(`2(Gh)) is constant or
not without actually computing the stencil. In what follows, we introduces shift invariance
and its relationship to constant stencils.
Let z ∈ Gh and let the shift operator Sz : `2(Gh) → `2(Gh) be defined by

[Szu](x) = u(x − z) . (2.6)

An operator A ∈ L(`2(Gh)) is shift invariant if

ASz = Sz A for all z ∈ Gh .

Theorem 2.9. An operator A ∈ L(`2(Gh)) is shift invariant if and only if it is represented by
a constant stencil.
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2. Local Fourier Analysis

Proof. Assume that A is represented by the constant stencil t; then

(ASzu)(x) =
∑

y∈Gh

t(y) · (Szu)(x + y) =
∑

y∈Gh

t(y) · u(x + y − z)

and
(Sz Au)(x) = (Au)(x − z) =

∑
y∈Gh

t(y) · u(x − z + y) .

Thus, A is shift invariant.
Conversely, assume that A is shift invariant and that s is the stencil representing A. If ez is

the canonical basis vector given by ez(x) = δxz then

[Aez](x) =
∑

y∈Gh

sx(y) · ez(x + y) = sx(z − x) . (2.7)

It follows that for v,w ∈ Gh

(AS−vev+w)(0) = (Aew)(0) = s0(w) .

If we use (2.7) again then

(S−v Aev+w)(0) = (Aev+w)(v) = sv(v + w − v) = sv(w) .

Combining the last two equations and using the shift invariance of A yields

s0(w) = sv(w) for all v,w ∈ Gh . �

2.2. Fourier Representation

We shall introduce the Fourier representation of operators in L(`2(Gh); `2(Gh′)), where
h ∈ �d and h′ ∈ �d are (potentially) different step-sizes of two grids. Every operator has
a Fourier representation and vice versa. The Fourier representation of a constant stencil
operator is especially simple and directly related to its Fourier symbol.

2.2.1. Discrete Time Fourier Transform

To introduce the Fourier representation of an operator we first have to define the discrete time
Fourier transform and derive some of its properties. For this purpose, we define the wave
functions

ψ(θ, x) := vol1/2h
(2π)d/2 ei〈θ,x〉 for θ ∈ �d, x ∈ Gh, (2.8)

where volh := h1h2 · · · hd. Despite the factor
vol1/2h
(2π)d/2 , these are just the wave functions (1.53).

Furthermore, we need to introduce the space L2(Θh). This space consists of all functions1
f̂ : Θh → � that are bounded by the norm induced by the scalar product

〈 f̂ , ĝ〉 :=
∫
Θh

ĝ(θ) · f̂ (θ) dθ .

1With “function” we actually mean the equivalence class of functions that are equal almost everywhere.
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2.2. Fourier Representation

In other words, ‖ f ‖ := 〈 f̂ , f̂ 〉1/2, and

L2(Θh) = { f̂ : Θh → � : ‖ f̂ ‖ < ∞} .

We can now use the wave functions (2.8) to define the discrete time Fourier transform
(DTFT). The transform maps a function f ∈ `2(Gh) to a function f̂ ∈ L2(Θh), which
describes how f can be represented by a combination of the wave functions ψ(θ, x).

Definition 2.10. Let f ∈ `2(Gh). The discrete time Fourier transform Fh : `2(Gh) → L2(Θh)
is

(Fh f )(θ) =
∑

x∈Gh

f (x) · ψ(θ, x) . (2.9)

In the following theorem we state the most important facts about the DTFT.

Theorem 2.11. The discrete time Fourier transform has the following properties.
1. It is well defined.
2. It is an isomorphism—linear and bijective.
3. Its inverse is

(F −1
h f̂ )(x) =

∫
Θh

f̂ (θ) · ψ(θ, x) dθ . (2.10)

4. It preserves the scalar product, i.e.,

〈Fh f , Fhg〉 = 〈 f , g〉 . (2.11)

5. It is an isometry, i.e.,
‖Fh f ‖ = ‖ f ‖ . (2.12)

Proof. We proceed by proving the individual statements.
1. The set of wave functions

{
ψ(·, x) : x ∈ Gh

}
is—as shown in Appendix A—an or-

thonormal basis of the space L2(Θh). Thus, for every f ∈ `2(Gh)∑
x∈Gh

f (x) · ψ(·, x) ∈ L2(Θh) ,

meaning that Fh is well defined.
2. First, it is easily seen from the definition of the DTFT (2.9) that the DTFT is a linear

map.
Second, the fact that the wave functions form an orthonormal basis implies that every
f̂ ∈ L2(Θh) can be written in the form of

f̂ =
∑

x∈Gh

f (x) · ψ(·, x) .

for some f ∈ `2(Gh). Therefore, Fh is surjective.
Third, to show that Fh is also injective let f ∈ `2(Gh) and

f̂ := Fh f =
∑

x∈Gh

f (x) · ψ(·, x) .

55



2. Local Fourier Analysis

We want to show that the operator F −1
h defined by (2.10) fulfills F −1

h Fh f = f . Using
the orthogonality of the wave functions we have that

(F −1
h f̂ )(x′) =

∫
Θh

f̂ (θ) · ψ(θ, x) dθ = 〈ψ(·, x′), f̂ 〉

= 〈ψ(·, x′),
∑

x∈Gh

f (x) · ψ(·, x)〉

=
∑

x∈Gh

f (x) · 〈ψ(·, x), ψ(·, x′)〉 = f (x′) .

Thus, F −1
h Fh f = f , and therefore Fh is injective.

3. As we already know that Fh is surjective, the fact that F −1
h Fh f = f also implies that

F −1
h is the unique inverse of Fh.

4. Let f̂ , ĝ ∈ L2(Θh). Then

〈 f̂ , ĝ〉 =
∑

x∈Gh

〈 f̂ , ψ(·, x)〉〈ψ(·, x), ĝ〉 = 〈F −1
h f̂ , F −1

h ĝ〉 .

Thus, by substituting f̂ and ĝ by Fh f and Fhg we obtain

〈Fh f , Fhg〉 = 〈 f , g〉 .

5. The last equation also implies that

‖Fh f ‖ = ‖ f ‖. �

As Fh is an isomorphism, we can say that every grid function has two representations:
a representation f in position space and a representation f̂ in Fourier space. These
representations are related by f̂ = Fh f . Theorem 2.11 shows that the DTFT preserves
many important properties of grid functions, especially the scalar product. Consequently,
when we are interested in any of these properties of a certain function, we can choose to
look at the position space or Fourier space representation of this function, and use the more
convenient representation. This representation will often be the Fourier space representation.
Furthermore, Theorem 2.11 gives the formula for the inverse of the DTFT (2.10), which
shows that the grid function is represented by a combination of wave functions.
If we shift a function, then the DTFT of the shifted function can be computed from the

DTFT of the original one, which is another property of the DTFT that we will use a few
times.

Lemma 2.12. Let f ∈ `2(Gh) and Sz be the shift operator (2.6). We have

[FhSz f ](θ) = e−i〈θ,z〉 · [Fh f ](θ). (2.13)

Proof. The DTFT of Sz f fulfills

[Fh[Sz f ]](θ) =
∑

x∈Gh

[
Sz f

]
(x) · ψ(θ, x) =

∑
x∈Gh

f (x − z) · vol1/2h
(2π)d/2 e−i〈θ,x〉 .
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Substituting (x + z) for x yields that

[Fh[Sz f ]](θ) =
∑

x∈Gh

f (x) · vol1/2h
(2π)d/2 e−i〈θ,x+z〉 =

∑
x∈Gh

f (x) · vol1/2h
(2π)d/2 e−i〈θ,x〉 · e−i〈θ,z〉

= e−i〈θ,z〉 ·
( ∑

x∈Gh

f (x) · vol1/2h
(2π)d/2 e−i〈θ,x〉

)
= e−i〈θ,z〉 ·

( ∑
x∈Gh

f (x) · ψ(θ, x)
)

= e−i〈θ,z〉 ·
[
Fh f

]
(θ) . �

We shall now consider, how to determine the amount of oscillation of a general grid
function f ∈ `2(Gh). We measure the amount of oscillation by comparing the size of the
function value at neighboring grid points. Thus, if ∆x = hkek , the amount of oscillation in
direction of xk is

‖ f − S−∆x f ‖
‖ f ‖ .

We show that the numerator can be computed using the DTFT.

Theorem 2.13. Let ∆x ∈ Gh, f ∈ `2(Gh) and Sz be the shift operator (2.6). Then

‖ f − S−∆x f ‖2 =
∫
Θh

�� f̂ (θ)��2 · (2 − 2 cos〈θ,∆x〉
)

dθ (2.14)

Proof. From Lemma 2.12 we have

[FhS−∆x f ](θ) = f̂ (θ) · ei〈θ,∆x〉 .

Thus, by the linearity of the DTFT

[Fh( f − S−∆x f )](θ) = f̂ (θ) − f̂ (θ) · ei〈θ,∆x〉 = f̂ (θ)
(
1 − ei〈θ,h〉

)
.

The DTFT preserves the norm; thus

‖ f − S−∆x f ‖2 = ‖Fh( f − S−∆x f )‖2 =
∫
Θh

��� f̂ (θ) (1 − ei〈θ,∆x〉
)���2 dθ

=

∫
Θh

�� f̂ (θ)��2 · ��1 − ei〈θ,∆x〉 ��2 dθ

Recall the simplification (1.45), i.e.,��1 − ei〈θ,∆x〉 ��2 = 2 − 2 cos〈θ,∆x〉.

Thus, by combining the last two equations the assertion is proved. �

Let us interpret the formula (2.14). First, assume the large function values of f are
concentrated around function arguments θ where (2−2 cos〈θ,∆x〉) is large. Then the integral
(2.14) is large in comparison to ‖ f ‖. Thus, the function values differ strongly in the direction
of ∆x, and therefore the function is oscillatory in the direction ∆x.
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`2(Gh)

`2(Gh′)

L2(Θh)

L2(Θh)

A Â

Fh

Fh′

Figure 2.1.: Relation between a bounded operator A and its Fourier representation Â.

Second, assume that the large function values of f are concentrated around function
arguments θ where (2 − 2 cos〈θ,∆x〉) is small. Then the integral is small in comparison to
‖ f ‖, and thus the function is slowly varying in the direction of ∆x.
Note that we already encountered the function (2−cos〈θ,∆x〉)when discussing the amount

of oscillation of wave functions in Section 1.5.5. The function value is large when θ is a
high frequency and small when θ is a low frequency. In other words, a function is slowly
varying if the large function values of its Fourier transform are concentrated at low frequency
function arguments and oscillatory otherwise.
In Chapter 1 we used low and high frequencies to determine the amount of oscillation

of wave functions. Theorem 2.13 now allows us to determine the amount of oscillation of
general functions from `2(Gh).

2.2.2. Fourier Representation

The DTFT f̂ of a grid function f gives us information about the amount of oscillation of a
function. When analyzing multigrid methods we are interested in this information, e.g., to
determine whether an operator is a suitable smoother for a specific problem or not. Hence, if
an operator maps the function u 7→ f in position space, we want to know the corresponding
operator in Fourier space that maps û 7→ f̂ . This action on f̂ is the Fourier representation of
A, which is defined as follows.

Definition 2.14. Let A ∈ L(`2(Gh); `2(Gh′)). The Fourier representation of the operator A
is

Â := Fh′AF −1
h .

The relation between A and its Fourier representation Â is depicted by the diagram in
Figure 2.1. As the diagram commutes, the Fourier representation Â contains of course all the
information of A, since we can reconstruct A from Â by

A = F −1
h′ ÂFh .

Furthermore, we can show that many operations on the operator A directly carry over to Â,

Theorem 2.15. Let A, B ∈ L(`2(Gh); `2(Gh′)), C ∈ L(`2(Gh′); `2(Gh′′)), and the opera-
tors Â, B̂ ∈ L(L2(Θh); L2(Θh′)), Ĉ ∈ L(L2(Θh′); L2(Θh′′)) their Fourier representations.
Furthermore, let λ ∈ �. Then the Fourier representation of
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1. λA + B is λ Â + B̂,
2. CB is ĈB̂,
3. A−1 is Â−1, and
4. A∗ is Â∗.

Proof. Let us prove the statements individually.
1. Using the linearity of the DTFT, proven in Theorem 2.11, we have for all û ∈ L2(Θh)

Fh′(λA + B)F −1
h û = λFh′AF −1

h û + Fh′BF −1
h û = (λ Â + B̂)û .

2. Using that F −1
h Fh is the identity, we obtain

Fh′′CBF −1
h′ = Fh′′CF −1

h′ Fh′BF −1
h = ĈB̂ .

3. By properties of the inverse of the composition of operators,

Fh A−1F −1
h = (Fh AF −1

h )
−1 = Â−1 .

Note that as A is invertible, we have that h = h′.
4. We start with

〈A f , g〉 = 〈 f , A∗g〉 .
The scalar product is invariant under the DTFT (2.11), and thus,

〈Fh′A f , Fh′g〉 = 〈Fh f , Fh A∗g〉

On the other hand

〈Fh′A f , Fh′g〉 = 〈ÂFh f , Fh′g〉 = 〈Fh f , Â∗Fh′g〉 .

Combining the last two equations yields that

〈Fh f , Fh A∗g〉 = 〈Fh f , Â∗Fh′g〉 .

As this equation has to hold for arbitrary f and g, we obtain that

Fh A∗ = Â∗Fh . �

The DTFT preserves norms as shown in Theorem 2.11; it is no surprise that the Fourier
representation of an operator has the same norm as the operator itself.

Proposition 2.16. Let Â be the Fourier representation of A. Then ‖ Â‖ = ‖A‖.
Proof. By definition of the Fourier representation

‖ Â‖ = max
‖ f̂ ‖=1

‖ Â f̂ ‖ = max
‖ f̂ ‖=1

‖Fh′AF −1
h f̂ ‖ .

We substitute f̂ by Fh f and obtain that

‖ Â‖ = max
‖Fh f ‖=1

‖Fh′A f ‖ .

Since the DTFT does not change the norm (2.12),

‖ Â‖ = max
‖ f ‖=1

‖A f ‖ = ‖A‖ . �
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Another important property of an operator is its spectrum. Recall that the resolvent set ρ
and spectrum σ of an operator are

ρ(A) := {λ ∈ � : (A − λI) is bijective} and σ(A) := � \ ρ(A) . (2.15)

Let us show that the spectrum of the Fourier representation and the original operator are
identical.

Proposition 2.17. Let Â be the Fourier representation of A. Then σ(Â) = σ(A).

Proof. Since Fh is bijective,

(A − λI is bijective) if and only if (Fh(A − λI)F −1
h is bijective) .

Furthermore, by Theorem 2.15,

Fh(A − λI)F −1
h = Â − λI .

Thus, by definition (2.15), ρ(Â) = ρ(A) and therefore σ(Â) = σ(A). �

2.2.3. Constant Stencils

If A is a constant stencil operator, then the wave functions introduced in Section 1.5.3 are the
formal eigenfunctions of the operator. The function values of the Fourier symbol â of A are
the corresponding eigenvalues. Hence, if we know the Fourier symbol â, we know how the
operator A maps any linear combination of eigenfunctions. We shall now show that we know
how A maps any grid function from `2(Gh), if we know â. For this purpose we have to define
the space L∞(Θh).

The space L∞(Θh) is the set of functions2 â : Θh → � that are bounded in the infinity-norm
‖ · ‖∞, where

‖â‖∞ := inf{C ≥ 0 : µ(|â| > C) = 0} and

µ the Lebesgue measure, i.e.,

L∞(Θh) = {â : Θh → � : ‖â‖∞ < ∞} .

Theorem 2.18. Let A ∈ L(`2(Gh)) be given by the constant stencil s and let â ∈ L∞(Θh) be
given by

â(θ) :=
∑

y∈Gh

s(y) · ei〈θ,y〉 . (1.55 revisited)

Then the Fourier representation is the multiplication with the function â, i.e.,

Â f̂ = â · f̂ . (2.16)
2With “function” we actually mean the equivalence class of functions that are equal almost everywhere.
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The function â in (1.55) is called the Fourier symbol of A as already defined in Section 1.5.3.
The action of the Fourier representation Â is given by the pointwise multiplication of the
function â with the operator argument. An operator of the form of (2.16) is called
multiplication operator. Theorem 2.18 is a remarkable result for the following reasons.
First, it means that Â is completely described by the Fourier symbol â, and as A can be

constructed from Â so is A. Second, in general we would expect that the function value
[Â f̂ ](θ) depends on all function values f̂ (θ ′) where θ ∈ Θh. In the case of a constant stencil
operator, however, the resulting function value [Â f̂ ](θ) depends only on the function value
f̂ (θ), which has an important consequence.
Assume that a(θ) is substantially smaller than 1 at high frequencies θ. That means that

repeated application of A makes f̂ (θ) small for high frequencies θ, meaning that, due to
Theorem 2.13, the function f becomes slowly varying. Hence, in this case A is a smoothing
operator. We can therefore use the symbol â to analyze the smoothing properties of constant
stencil operator not only for wave functions but for general functions f ∈ `2(Gh).

To prove Theorem 2.18 we first consider the Fourier representation of the shift operator Sz
(2.6).

Lemma 2.19. Let Sz be the shift operator (2.6). It has a Fourier representation;

Ŝz f̂ =
{
θ 7→ e−i〈θ,z〉 · f̂ (θ)

}
. (2.17)

Thus, the Fourier symbol ŝ of the shift operator is

ŝ(θ) = e−i〈θ,z〉 .

Proof. Recall from Lemma 2.12 that

[FhSz f ](θ) = e−i〈θ,z〉 · [Fh f ](θ). (2.13 revisited)

Substitute f by F −1
h f̂ to get

[FhSzF −1
h f̂ ](θ) = e−i〈θ,z〉 · [FhF −1

h f̂ ](θ) = e−i〈θ,z〉 · f̂ (θ) . �

Proof of Theorem 2.18. Recall the definition of a constant stencil operator,

[Au](x) :=
∑

y∈Gh

s(y) · u(x + y) . (1.52 revisited)

Using the shift operator we can write this equation as

A =
∑

y∈Gh

s(y) · S−y .

The mapping that maps an operator to its Fourier representation is linear. Thus, it follows

Â =
∑

y∈Gh

s(y) · Ŝ−y .
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We know the Fourier representation of S−y from Lemma 2.19, implying that[
Â f̂

]
(θ) =

∑
y∈Gh

s(y) ·
[
Ŝ−y f̂

]
(θ) =

∑
y∈Gh

s(y) · ei〈θ,y〉 · f̂ (θ) = â(θ) · f̂ (θ) .

It remains to show that ‖a‖∞ < ∞, which we prove by contradiction. Assume that A is
a bounded operator and ‖a‖∞ is unbounded, implying that for every C > 0 there exists a
measurable set M ⊆ �d such that a(x) ≥ C for all x ∈ M . Let f̂ := χM/‖ χM ‖2, where χM
is the characteristic function for the set M , i.e.,

χM (x) =
{

1 if x ∈ M ,
0 if x < M .

With this definition

‖ Â f̂ ‖2 = ‖a · f̂ ‖2 =
(∫
Θh

|a · f̂ |2 dθ
)1/2
≥ C

(∫
Θh

| f̂ |2 dθ
)1/2
= C .

Thus, for an arbitrarily large C > 0 we find a function f̂ with norm one such that ‖ Â f̂ ‖ ≥ C,
implying that ‖ Â‖ = ∞ and therefore ‖A‖ = ∞, which contradicts the assumption. �

2.3. Multiplication Operators

The Fourier representation of a constant stencil operator is a multiplication operator—as we
saw in Section 2.2.2. Let us consider multiplication operators in general. In the following we
shall write L2 for L2(Θh) and L∞ for L∞(Θh) in unambiguous situations.

Definition 2.20. Let a ∈ L∞ and f ∈ L2. The operator A ∈ L(L2) given by

A f = a · f

is called a multiplication operator. The function a is called the symbol of A.

Proposition 2.21. The multiplication operator is well defined.

Proof. We need to show that A ∈ L(L2). For the pointwise product a · f we have

‖a · f ‖2 ≤ ‖a‖∞ · ‖ f ‖2 . �

2.3.1. Properties of Multiplication Operators

We note a few properties of multiplication operators. First of all, there is a one-to-one
correspondence between multiplication operators and their symbols.

Proposition 2.22. If A is a multiplication operator, then its symbol is unique.

Proof. Assume that A f = a · f and A f = a′ · f ; implying a · f = a′ · f . With f ≡ 1 we
have a = a′ (a.e.). �
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Furthermore, many operations on symbols directly translate into operations of the multi-
plication operators and vice versa.

Theorem 2.23. Let A, B be two multiplication operators with symbols a, b ∈ L∞, and let
λ ∈ �. Then

1. 1 is the symbol of the identity I,
2. λ · a + b is the symbol of λA + B,
3. a · b is the symbol of AB, and
4. a is the symbol of A∗.

Proof. Let us prove the statements individually.
1. The assertion is trivial.
2. Consider the following:

(λA + B)u = λAu + Bu = λ · a · u + b · u = (λ · a + b) · u .
3. We have

(AB)u = A(Bu) = A(bu) = a(bu) = (ab)u .
4. The adjoint is the unique operator A∗ that fulfills the equation

〈A f , g〉 = 〈 f , A∗g〉 for all f , g ∈ L2 .

Thus
〈a · f , g〉 =

∫
g · (a · f ) dx =

∫
(a · g) · f dx = 〈 f , a · g〉 ,

proving the assertion.
�

An interesting consequence of Theorem 2.23 is that all multiplication operators commute.

Proposition 2.24. Let A, B be two multiplication operators then

AB = BA .

Proof. The symbol of AB is (a · b); the symbol of BA is (b · a). Furthermore a · b = b · a. �

Corollary 2.25. Every multiplication operator A is normal, i.e., A∗A = AA∗.

That two multiplication operators commute has another consequence.

Proposition 2.26. Let A ∈ L(`2(Gh)) have a Fourier symbol Â. Then A is shift invariant.

Proof. To show that A is shift invariant, we need to show that

Sz A = ASz

for arbitrary zGh. Since the DTFT is bijective, we can equivalently show that the Fourier
representation of the left equals the Fourier representation of the right hand side, i.e.,

FhSz AF −1
h = Fh ASzF −1

h .

By using Theorem 2.15 this equation is equivalent to

Ŝz Â = ÂŜz .

The assertion then follows from Proposition 2.24. �
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2.3.2. The Spectrum of Multiplication Operators

We now turn to the computation of the spectra and spectral radii of multiplication operators,
which will allows us to obtain the spectral radius of Fourier symbols. The spectrum of an
operator is equal to the spectrum of its Fourier symbol. Hence, we can use this result to
obtain the spectrum of constant Stencil operators.
The spectrum of an operator is closely linked to the question whether an operator is

invertible or not. Recall,

ρ(A) := {λ ∈ � : (A − λI) is bijective} and σ(A) := � \ ρ(A) . (2.15 revisited)

We shall define the inverse of a symbol and show that a symbol is invertible if and only if the
corresponding multiplication operator is invertible. As the symbol of (A − λI) is (a − λ), if
(a − λ) is not invertible then λ is in the spectrum of A.
We start with the definition of the inverse of a symbol a.

Definition 2.27. Let a ∈ L∞. The symbol a is invertible if and only if
1. the pointwise inverse a−1 of a exists almost everywhere, and
2. the pointwise inverse a−1 is bounded, i.e., a−1 ∈ L∞.

The following lemma provides a simple way to check if a symbol is invertible.

Lemma 2.28. The symbol a ∈ L∞ is invertible if and only if

there exists ε > 0 such that µ(|a| < ε) = 0.

Proof. The proof consists of two parts.
1. Assume that there exists ε > 0 such that µ(|a| < ε) = 0, which implies that a , 0

almost everywhere. Thus, a−1 exists. Furthermore µ(|a−1 | > ε−1) = 0. Hence, by the
definition of the infinity norm ‖a−1‖∞ ≤ ε−1.

2. Conversely, assume that for all ε > 0 we have µ(|a| < ε) , 0. We have to consider two
cases.
a) If µ(a = 0) , 0 then a−1 does not exist, and therefore a is not invertible.
b) If a , 0 almost everywhere, the pointwise inverse a−1 exists. For ε > 0 we have

0 , µ(|a| < ε) = µ(|a−1 | > ε−1). Thus, by definition ‖a−1‖∞ ≥ ε−1. As the
inequality holds for a arbitrary ε > 0 we have ‖a−1‖∞ = ∞ and thus a is not
invertible. �

The following Lemma is a first step in proving the relation between the inverse of a
multiplication operator and its symbol.

Lemma 2.29. Let A be an invertible multiplication operator with symbol a. Then a , 0
almost everywhere, i.e., a−1 exists.

Proof. We prove the assertion by contradiction. Assume that µ(a = 0) , 0. Define set
M := {x : a(x) = 0} and the function u = χM . Then χM , 0. However,

AχM = a · χM = 0,

which implies that the kernel of A contains more functions than just the zero function.
Therefore, A is not injective, which is a contradiction to the assumption that A is invertible. �
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We prove the relation between the inverse of the multiplication operator and its symbol.

Theorem 2.30. Let A be a multiplication operator with symbol a. Then A is invertible if
and only if its symbol a is invertible. If the inverse of A exists, it is a multiplication operator
with symbol a−1.

Proof. We prove the two implications individually.
1. Assume that A is invertible. Let u ∈ L2 be arbitrary. Then

a · u = [Au]

By Lemma 2.29, the inverse of a exists, and we have that

u = a−1 · [Au] .

Consequently, the inverse of A can be written as

A−1u = a−1 · u

meaning that A−1 is a multiplication operator and a−1 is its symbol.
It remains to show that a−1 ∈ L∞. We assume that this is not the case, i.e., for all c > 0
we have that µ(|a−1 | > c) , 0. Let M(c) := {x : |a−1(x)| > c}. Then

‖A−1χM(c)‖2 =
∫
M(c)
|a−1(x)|2 dx ≥

∫
M(c)
|c |2 dx = c · ‖ χM(c)‖.

By the definition of χM(c) we have ‖ χM(c)‖2 > 0 and thus the above inequality implies

‖A−1χM(c)‖2

‖ χM(c)‖
≥ c .

Therefore, by the definition of the operator norm, we have for all c > 0 that ‖A−1‖ > c,
i.e., ‖A−1‖ = ∞, which is a contradiction to the assumption that A is invertible, because
in this case it is well known that the inverse of A is also bounded. Thus, a−1 ∈ L∞.

2. Assume that a is invertible, i.e., a−1a = 1 and ‖a−1‖∞ < ∞. We define

A−1u := a−1u for u ∈ L2 .

Thus,
A−1 Au = a−1 · a · u = u for u ∈ L2 .

It remains to show that A−1u ∈ L2, which follows from the fact that ‖A−1u‖2 =
‖a−1u‖2 ≤ ‖a−1‖∞ · ‖u‖2 and that a−1 is bounded. �

Combining Lemma 2.28 and Theorem 2.30 yields a characterization of invertible multipli-
cation operators.

Corollary 2.31. The multiplication operator A with symbol a is bijective if and only if there
exists ε > 0 such that

µ(|a| < ε) = 0 .
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With this knowledge we can compute the spectrum of multiplication operators. If A is a
multiplication operator then A − λI is a multiplication operator with symbol (a − λ). Thus,
Corollary 2.31 yields that

ρ(A) = {λ ∈ � : µ(|a − λ | < ε) = 0 for any ε > 0} and
σ(A) = {λ ∈ � : µ(|a − λ | < ε) , 0 for all ε > 0} .

The spectrum σ(A) is a special set; it is the essential range of a. We denote it by

ess-im(a) := {λ ∈ � : µ(|a − λ | < ε) , 0 for all ε > 0}.

Thus, for a multiplication operator A the spectrum coincides with the essential range of its
symbol a, i.e.,

σ(A) = ess-im(a) . (2.18)

The following lemma motivates the name.

Lemma 2.32. Let a ∈ L∞. Then

ess-im(a) =
⋂
ã∈[a]

im(ã) ,

where [a] is the equivalence class of all functions that are equal almost everywhere.

Proof. We show the assertion in two steps. First, we show that the left hand side is a subset
of the right hand side. Then we show the converse statement.

1. Let λ < ess-im(a). Then there exists ε > 0 such that µ(|a − λ | < ε) = 0. We can
alter a at a set of zero measure to obtain ã ∈ [a] with {x : |ã(x) − λ | < ε} = ∅. Thus,
λ < im(a) and therefore

λ <
⋂
ã∈[a]

im(ã) . �

2. Let Uε (λ) := {λ̃ ∈ � : |λ̃ − λ | < ε}, and let λ <
⋂

ã∈[a] im(ã). Then there exists ã
such that λ < im(ã), and thus as im(ã) is closed, there exists ε > 0 such that for all
λ̃ ∈ Uε (λ), we have that λ̃ < im(ã). Hence, {x : |ã − λ | < ε} = ∅, and

0 = µ(|ã − λ | < ε) = µ(|a − λ | < ε) ,

which implies that λ < ess-im(a).

We can relate the essential range of a symbol a to its L∞-norm.

Proposition 2.33. We have that

‖a‖∞ = sup(ess-im(a)) .

We shall prove this proposition below. Let us first note, however, a few consequences
of this proposition. First, it gives us an easy way to compute the spectral radius of the
multiplication operator A.
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Corollary 2.34. The spectral radius r(A) of A fulfills r(A) = ‖a‖∞.

As stated in Corollary 2.25, every multiplication operator is normal. For a normal operator
A, we have r(A) = ‖A‖. Thus, we also get the operator norm of A by using the infinity norm.

Corollary 2.35. Let A be a multiplication operator with symbol a. Then the norm of A
fulfills ‖A‖ = ‖a‖∞ .

We now turn to the proof of Proposition 2.33. First, we need the following two auxiliary
results.

Lemma 2.36. If M ⊆ � is a compact, measurable set, f : �d → � a measurable function
and µ( f −1(M)) , 0. Then there exists for every ε > 0 a complex number z ∈ M such that
µ( f −1(Uε (z))) , 0.

Proof. Let ε > 0 be given. As the set M is compact, there exist z1, . . . , zn ∈ M such that
M ⊆ ⋃n

i=1 Uε (zi). Thus, f −1(M) ⊆ ⋃n
i=1 f −1(Uε (zi)), and we have

0 < µ( f −1(M)) ≤
n∑
i=1

µ( f −1(Uε (zi)) .

Therefore, for at least one index i, we have 0 < µ( f −1(Uε (zi)), implying that z := zi ∈ M is
the sought-for number. �

Lemma 2.37. If M ⊆ � is a compact, measurable set, f : �d → � a measurable function
and µ( f −1(M)) , 0. Then there exists a number z ∈ M such that for every ε > 0 we have
µ( f −1(Uε (z))) , 0.

Proof. According to Lemma 2.36, there exists z1 ∈ M such that µ( f −1(U1(z1))) > 0. We
construct a sequence recursively as follows. Let n > 1. According to Lemma 2.36 there
exists zn+1 ∈ U2−n (zn) such that µ( f −1(U2−(n+1)(zn+1))) > 0.

For n ≥ m we have zn − zm =
∑m−1

i=n zi − zi+1. Thus

|zn − zm | ≤
m−1∑
i=n

|zi − zi+1 | ≤
m−1∑
i=n

2−i ≤
∞∑
i=n

2−i = 21−n .

Therefore, zn is a Cauchy sequence, and thus converges to a limit z, which has the desired
properties. �

Proof of Proposition 2.33. Let c := ‖a‖∞ := inf{b ∈ � : µ(|a| > b) = 0}. If λ > c then for
ε := |λ − c |/2 the equation

{x : |a(x) − λ | < ε} ⊆ {x : |a(x)| > c}

holds. By the definition of c, we have that µ(|a| > c) = 0 and µ(|a − λ | < ε) = 0. Thus,
λ < ess-im(a) and therefore sup(ess-im(a)) ≤ c.
On the other hand, if 0 ≤ c̄ < c then µ(|a| > c̄) , 0. Hence, the fact that µ(|a| > c) = 0

implies that µ(c̄ ≤ |a| ≤ c) , 0. Thus, due to Lemma 2.37, there exists λ ∈ �with c̄ ≤ |λ | ≤ c
such that for all ε > 0 we have µ(|a − λ | < ε) , 0 implying λ ∈ ess-im(a). Hence, for every
0 < c̄ with c̄ < c, we find λ with c̄ ≤ |λ | ≤ c, which implies sup(ess-im(a)) ≥ c. �
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2.4. Operators with Fourier Symbols

An operator A has a Fourier symbol, if its Fourier representation Â can be written in the form

Â f̂ = â · f̂ , (2.16 revisited)

where â is the Fourier symbol of A. Such an operator can be characterized as follows.

Theorem 2.38. Let A ∈ L(`2(Gh)). The following statements are equivalent.
1. The operator A is represented by a constant stencil.
2. The operator A is shift invariant.
3. The operator A has a Fourier symbol.

Proof. Proposition 2.26 shows that assertion 3 implies 2. Theorem 2.9 shows that assertion
2 implies 1. Theorem 2.18 shows that assertion 1 implies 3. �

The operator norm and spectral radius of the operator A can be easily obtained from the
Fourier symbol of A.

Theorem 2.39. Let A be a constant stencil operator with Fourier symbol â. Then

r(A) = ‖A‖ = ‖â‖∞. (2.19)

Proof. Proposition 2.17 states that σ(A) = σ(Â), where Â is the Fourier representation of
A. Thus, to complete the proof it is sufficient to show that r(Â) = ‖ Â‖ = ‖â‖∞. As A is a
constant stencil operator, Â is a multiplication operator with symbol â. Hence, we have by
Corollary 2.34 that r(Â) = ‖â‖∞ and by Corollary 2.35 that ‖ Â‖ = ‖â‖∞. �

2.5. Smoothing Factor

In Section 1.5.6 we defined the smoothing factor by

smf(S, s) := max
θ∈Θh
| ŝ(θ)ν2 · q̂n(θ) · ŝ(θ)ν1 | , (1.63 revisited)

where ŝ is the Fourier symbol of the error propagator of the smoother S, and q̂n is the Fourier
symbol of the idealized coarse grid correction Qn. Using Theorem 2.39 we can justify this
definition.
Assume we are interested in either the norm or spectral radius of the error propagator

E = Sν2QnSν1 .

of the idealized two-grid method, as they give the worst case and the asymptotic convergence
rate of the idealized method. Then

r(E) = ‖E ‖ = ‖ê‖∞ = ‖ ŝν2 q̂n ŝν1 ‖∞ .

If the symbol ê is continuous, then the infinity norm equals the maximum function value of ê
and hence it is equal to the smoothing factor, as defined above.
As we cannot guarantee that the symbol ê is continuous, from now on, we define the

smoothing factor, as

smf(S, n) := r(Sν2QnSν1) = r(Ŝν2Q̂nŜν1) = ‖ ŝν2 · q̂n · ŝν1 ‖∞ . (2.20)
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2.6. Literature and Contributions

2.6. Literature and Contributions

This chapter is principally a summary of known results from different mathematical subjects.
The foundation of this chapter can be found in [11], which connects the analysis of operators
in terms of wave functions to the DTFT, to compute norms of stencil operators.

The Fourier representation of constant stencil operators leads to multiplication operators,
which are well understood. The fact that the essential range of a multiplication operator
coincides with its spectrum can be found, e.g., in [57].

The connection between multiplication operators and shift invariant operators via Fourier
transforms is a result from linear systems theory [5]. Furthermore, the representation of
linear operators on sequence spaces is, e.g., discussed in [42].
Theorem 2.13, which measures the amount of oscillation of a function in terms of its

DTFT, is closely related to the definition of norms in discrete Sobolev spaces in [31, 64].
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Fourier symbols represent constant stencil operators, but they have their limitations. For
example, we cannot describe the two-grid method by using Fourier symbols, which is why
we introduced the smoothing analysis in Section 2.5. Smoothing analysis is idealized, as it
uses an idealized coarse grid correction. Using matrix symbols, however, it is possible to
represent the coarse grid correction exactly.

While symbols are functions that map a frequency to a scalar, matrix symbols are matrices
of symbols. Hence, they give a greater freedom for representing operators. We shall use
this freedom to represent restriction and interpolation operators. Furthermore, we show that
periodic stencil operators can be represented by matrix symbols.
Periodic stencil operators have many applications. In this chapter we shall use them to

analyze multicoloring smoothers. In Chapter 4 we give more applications of local Fourier
analysis using matrix symbols and periodic stencils.
We start by deriving the Fourier representation of restriction and interpolation operators,

which will allows us to show how they can be represented using matrix symbols.

3.1. The Two-Grid Method

The smoothing factor is an analysis of an idealized two-grid method. It is idealized even if
we assume that the problem was posed on an infinite grid. We shall introduce a two-grid
analysis that is exact for problems posed on infinite grids.

3.1.1. Restriction

We consider the restriction of a grid function defined on the grid Gh to a grid Gn·h, for some
1 ≤ n ∈ �d. In Section 1.5.6 we considered a similar situation—the restriction of wave
functions. When wave functions are restricted, there are different wave functions that are
different on the fine grid, but identical on the coarse grid. We shall see that a grid function
from `2(Gh) behaves in a similar way.

To do so, we consider the injection restriction operator Rinj : `2(Gh) → `2(Gn·h) given by

[Rinj u](x) = u(x) . (3.1)

Furthermore, recall that the set of harmonic frequencies can be written as

[θ] = {θb + j · (2π)/(n · h) : 0 ≤ j < n, j ∈ �d}, (1.60 revisited)

where θb ∈ Θn·h is the base frequency of θ. Thus, if we define the n,h-frequency shifts,

sh,n
j := 2π

j
h · n for j = 0, . . . , n − 1 , (3.2)
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Rn

Figure 3.1.: The action of the frequency splitting operator Rn for a 1D function and n = (4).
The gray vertical bars mark one set of n,h-harmonics.

we can write
[θ] = {θb + sh,n

j : j = 0, . . . , n − 1}.

Writing [θ] in this way has the advantage that we can write every frequency uniquely as
the sum of its base frequency and a frequency shift. In the following we will often write in
unambiguous situations sj for sh,n

j .
To denote the Fourier representation of the injection restriction operator, we need the

frequency splitting operator. This operator groups the function values of frequencies with
respect to their frequency shift.

Definition 3.1. Let Rn : L2(Θh) → L2(Θn·h)n the operator given by

[Rnû]j(θ) := û(θ + sh,n
j ), (3.3)

where L2(Θn·h)n is the n-dimensional space of vectors with entries in L2(Θn·h). The operator
Rn is called the frequency splitting operator.

The frequency splitting operator returns a vector of functions, whose jth entry corresponds
to the function values of the frequencies of the frequency shift sh,n

j . Note that if we evaluate
all entries of the vector Rnû at the same frequency θ ∈ Θn·h, we obtain the function values of
û at all n,h-harmonics of θ. The action of Rn is illustrated in Figure 3.1. Its definition is
motivated by the following theorem.

Theorem 3.2. The Fourier representation of the injection restriction Rinj is given by

R̂injû = 1
vol1/2n

n−1∑
j=0
[Rnû]j . (3.4)

Proof. Let û := Fhu. For x ∈ Gh we have by the inverse of the DTFT (2.10) that

u(x) = vol1/2h
(2π)d/2

∫
Θh

û(ϑ) ei〈ϑ,x〉 dϑ .
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Thus, by definition of Rinj for x ∈ Gn·h,

[Rinju](x) =
vol1/2h
(2π)d/2

∫
Θh

û(ϑ) ei〈ϑ,x〉 dϑ .

Let Φj := sj + Θh·n for j = 0, . . . , n − 1. This family of sets is a measurable partition of Θh,
i.e., Θh = Û

⋃n
j=1Φj and Φj is measurable. It follows that

[Rinju](x) =
vol1/2h
(2π)d/2

n−1∑
j=0

∫
Φ j

û(ϑ) ei〈ϑ,x〉 dϑ

and a variable substitution leads to

[Rinju](x) =
vol1/2h
(2π)d/2

n−1∑
j=0

∫
Θh·n

û(ϑ + sj) ei〈ϑ+sj,x〉 dϑ .

Note that the frequencies θ + sj are harmonic frequencies of each other. Thus, for x ∈ Gn·h
we have by Theorem 1.21 that ei〈ϑ+sj,x〉 = ei〈ϑ+s0,x〉 = ei〈ϑ+0,x〉 for j = 1, . . . , n. Therefore,

[Rinju](x) =
vol1/2h
(2π)d/2

n−1∑
j=0

∫
Θh·n

û(ϑ + sj) ei〈ϑ,x 〉 dϑ

=
vol1/2h·n
(2π)d/2

∫
Θh·n

©­« 1
vol1/2n

n−1∑
j=0
[Rnû]j(ϑ)

ª®¬ · ei〈ϑ,x 〉 dϑ

The term in parenthesis is the operator R̂inj as defined by (3.4). Using the formula of the
inverse DTFT (2.10), we see that

[Rinju](x) =
(
F −1

h·n R̂injû
)
(x)

=
(
F −1

h·n R̂injFhu
)
(x) .

Hence, the operator R̂inj defined by (3.4) is indeed the Fourier representation of Rinj. �

Theorem 3.2 is a generalization of the statement that wave functions corresponding to
harmonic frequencies are mapped to the same wave function on the coarse grid. We can
realize this fact by considering a linear combination of wave functions. The frequencies of
these wave functions are chosen to be the n,h-harmonics of a base frequency θb. We write
this linear combination as

f (x) :=
n−1∑
j=0

aj · φθb+sj(x) where aj ∈ � .
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Then if f (x) is restricted to the coarse grid Gn·h,

f (x) =
( n−1∑

j=0
aj

)
· φθb (x) for all x ∈ Gn·h .

Thus, the coefficients of the wave functions corresponding to harmonic frequencies merge
into one, by being summed. When a grid function u ∈ `2(Gh) is restricted to a coarse grid
then the function values at the harmonic frequencies similarly merge to yield the coarse grid
Fourier representation of the function, i.e., the DTFT ûc of Rinju is given by

ûc(θb) = 1
vol1/2n

n−1∑
j=0

û(θb + sj) .

Let us summarize a few other properties of the frequency splitting operator. First of all, it
is invertible:

[R−1
n ŵ](θ) = ŵj(θb) where j is determined by θ = θb + sj.

Then if we define the scalar product on L2(Θn·h)n by

〈 f , g〉 =
k−1∑
j=0
〈 fj, gj〉 ,

the frequency splitting operator is an isometry, as the next proposition shows.

Proposition 3.3. Let f , g ∈ L2(Θn·h)n and R the frequency splitting operator. Then

〈R f ,Rg〉 = 〈 f , g〉 .

Proof. We use that
{
Θn·h + sj

}n−1
j=0 is a partition of Θh to show that

∫
Θh

g(θ) · f (θ) dθ =
n−1∑
j=0

∫
Θn·h+sj

g(θ) · f (θ) dθ =
n−1∑
j=0

∫
Θn·h

g(θ + sj) · f (θ + sj) dθ

=

n−1∑
j=0

∫
Θn·h

[Rg]j · [R f ]j dθ =
n−1∑
j=0
〈R f ,Rg〉 . �

To this point we only considered the injection restriction operator. Many other restriction
operators, however, can be written in the form RinjRst where Rst is a constant stencil operator.
For example, it is easy to see that the weighted restriction operator can be written in this way.
In this case the Fourier representation of the restriction operator is R̂injR̂st.
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3.1.2. Interpolation

To define the smoothing factor in Section 2.5 we used an idealized interpolation operator.
We shall derive the Fourier representation of interpolation operators, which are actually used
in multigrid methods, e.g., the linear interpolation. Using these interpolation operators in
our analysis we expect better predictions.

We start by defining the injection interpolation operator Pinj. Given the injection restriction
operator Rinj we want to define Pinj in such a way that RinjPinj = I, which is equivalent to the
condition that

R̂injP̂inj = I . (3.5)

For the injection restriction we have that

R̂injû = 1
vol1/2n

n−1∑
j=0
[Rnû]j, (3.4 revisited)

meaning that all harmonic frequencies of the fine grid merge into one frequency on the coarse
grid. Thus, if we have a function value at a frequency on the coarse grid, we cannot say to
which harmonic frequency on the fine grid it belongs. The idea of the injection interpolation
is, to distribute this function value evenly to all harmonic frequencies on the fine grid; we
define Pinju via

[RnP̂injû]j := 1
vol1/2n

û . (3.6)

Then

R̂injP̂injû = 1
vol1/2n

n−1∑
j=0
[RnP̂injû]j = 1

vol1/2n

n−1∑
j=0

1
vol1/2n

û = 1
voln û

n−1∑
j=0

1 = û

meaning that, indeed, the requirement (3.5) is fulfilled.
The position space representation of the injection interpolation operator will be useful for

the definition of general interpolation operators.

Theorem 3.4. Let Pinj be the injection interpolation operator. Then

[Pinju](x) =
{

u(x) if x ∈ Gn·h,
0 otherwise.

To prove Theorem 3.4 we first need a few auxiliary results.

Lemma 3.5. If ξ is a n-th root of unity, i.e., ξn = 1, then

n−1∑
i=0

ξi =

{
n if ξ = 1,
0 otherwise.

Proof. The formula for the geometric series yields for ξ , 1 that

n−1∑
i=0

ξi =
1 − ξn
1 − ξ =

1 − 1
1 − ξ = 0.
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For ξ = 1 we have
n−1∑
i=0

ξi =

n−1∑
i=0

1 = n. �

Lemma 3.6. Let k, n ∈ �. We have

n−1∑
j=0

e2πi
k j
n =

{
n if k is a multiple of n,
0 otherwise.

Proof. We can write
n−1∑
j=0

e2πi
k j
n =

n−1∑
j=0

(
e2πi kn

) j
.

As (
e2πi kn

)n
= e2πik = 1

the term e2πi(k/n) is an nth root of unity. Thus, the assertion follows from Lemma 3.5. �

Lemma 3.7. Let k, n ∈ �d. Then

n−1∑
j=0

e2πi〈k/n,j〉 =

{
voln if k is a (pointwise) multiple of n,
0 otherwise.

Proof. Assume we have d sequences a1, . . . , ad where a` ∈ �n` . Then it holds in general
that

n1−1∑
j1=0

n2−1∑
j2=0
· · ·

nd−1∑
jd=0

a1j1 · a2j2 · · · adjd =
©­«
n1−1∑
j1=0

a1j1
ª®¬ · ©­«

n2−1∑
j2=0

a2j2
ª®¬ · · · ©­«

nd−1∑
jd=0

adjd
ª®¬ .

Consequently,

n−1∑
j=0

e2πi〈k/n,j〉 =
n−1∑
j=0

e2πi k1 j1
n1 · e2πi k2 j2

n2 · · · e2πi kd jd
nd

=
©­«
n1−1∑
j1=0

e2πi k1 j1
n1

ª®¬ · ©­«
n2−1∑
j2=0

e2πi k2 j2
n2

ª®¬ · · · ©­«
nd−1∑
jd=0

e2πi kd jd
nd

ª®¬ ,
and the assertion is, therefore, a consequence of Lemma 3.6. �

Proof of Theorem 3.4. The formula for the inverse DTFT (2.10) yields that

[Pinju](x) =
vol1/2h
(2π)d/2

∫
Θh

[P̂injû](θ) · ei〈θ,x〉 dx .
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3.1. The Two-Grid Method

Using the partition
{
Θn·h + sj

}n−1
j=0 of Θh and the definition of the injection interpolation

operator (3.6) yields that

[Pinju](x) =
vol1/2h
(2π)d/2

n−1∑
j=0

∫
Θn·h

1
vol1/2n

û(θ) · ei〈θ+sj,x〉 dθ

= 1
vol1/2n

· vol1/2h
(2π)d/2

n−1∑
j=0

∫
Θn·h

û(θ) · ei〈θ+sj,x〉 dθ

= 1
vol1/2n

· vol1/2h
(2π)d/2

∫
Θn·h

û(θ) · ei〈θ,x〉 ·
( n∑

j=1
ei〈sj,x〉

)
dθ .

Let us inspect the term in parenthesis. As x ∈ Gh we can write x = h · z for some z ∈ �d.
Thus,

n−1∑
j=0

ei〈sj,x〉 =
n−1∑
j=0

ei〈2πj/(n·h),h·z〉 =
n−1∑
j=0

e2πi〈j/n,z〉 .

Therefore, from Lemma 3.7, we have that if x ∈ Gn·h, then

[Pinju](x) = 1
vol1/2n

· vol1/2h
(2π)d/2

∫
Θn·h

û(θ) · ei〈θ,x〉 · voln dθ = u(x)

and if x < Gn·h, then

[Pinju](x) = 1
vol1/2n

· vol1/2h
(2π)d/2

∫
Θn·h

û(θ) · ei〈θ,x〉 · 0 dθ = 0 . �

Let us now apply Theorem 3.4 to derive the Fourier representation of the linear interpolation
operator for the 1D case. We saw in Section 1.3.4 that the linear interpolation is given by

[Plinu](x) =
{

u(x) if x ∈ G2h
1
2u(x − h) + 1

2u(x + h) if x < G2h
. (3.7)

Let the stencil s be defined by
s :=

[ 1
2 1 1

2
]
h

and associate the stencil operator Pst with s. Then it is easy to see that we can write the linear
interpolation as

Plin = PstPinj.

In other words, applying the linear interpolation operator is equivalent to first applying the
injection interpolation and then applying a constant stencil operator.
Many interpolation operators can be written as the product of a constant stencil operator

and the injection interpolation. We shall now give a general result, which describes how
a certain kind of interpolation operator can be written in this form. For this purpose, we
introduce the space shifts

tk := k · h for k = 0, . . . , n − 1. (3.8)
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Every point in x ∈ Gh can be written as the sum of a base point xb ∈ Gn·h and a corresponding
space shift, i.e.,

x = xb + tk for some k ∈ {0, . . . , n − 1} .
Many interpolation operators compute the interpolated value at some point by computing a
weighted sum of the neighboring coarse grid points. The weights depend on the index k of
the corresponding space shift. The following lemma states that every such interpolation can
be written as the product of a constant stencil operator and the injection interpolation.

Theorem 3.8. Let the interpolation Pw (w for weighted) be given by

[Pwu](xb + tk) =
∑

y∈Gn·h

sk(y) · u(xb + y) , (3.9)

where sk : Gn·h → � for k = 0, . . . , n − 1. Furthermore, let Pst be the stencil operator
corresponding to the stencil s′(xb − tk) = sk(xb). Then

Pw = PstPinj .

Proof. We consider the operator PstPinj. We have that

[PstPinj](x) =
∑

z∈Gh

s′(z) · [Pinju](x + z)

=
∑

z∈Gh

s′(z) · [Pinju](xb + tk + z) .

Substituting z by y − tk yields the equation

[PstPinj](x) =
∑

y∈Gh

s′(y − tk) · [Pinju](xb + y) .

Using the formula for Pinj given in Theorem 3.4, we can write the last equation as

[PstPinj](x) =
∑

y∈Gn·h

s′(y − tk) · u(xb + y)

=
∑

y∈Gn·h

sk(y) · u(xb + y) . �

Let us apply Theorem 3.8 to the linear interpolation in 1D. To apply the theorem we need
to define the stencils s0 and s1, where s0 is the stencil describing the interpolation for the
points x ∈ G2h and s1 is the stencil describing the interpolation for the points x ∈ G2h + t1.
If we define

s0 =
[
1
]

2h and s1 =
[

1
2

1
2

]
2h
,

some simple calculation shows that (3.9) is the linear interpolation (3.7). In this case the
stencil s′ defined in Theorem 3.8 is given by

s′ =
[ 1

2 1 1
2
]

h .

We already know that this stencil gives an operator Pst such that Plin = PstPinj.
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3.2. Matrix Symbols

3.2. Matrix Symbols

We saw that Fourier representations of constant stencil operators are multiplication operators.
In this section we introduce matrix multiplication operators. They will be used in later
sections to represent the Fourier representation of operators like the injection restriction or
injection interpolation operators. We start with the definition of matrix symbols.

Definition 3.9. Let 0 < h ∈ �d. An m × n-matrix symbol with domain Θh is a is a family
of functions in L∞(Θh). More precisely,

aij ∈ L∞(Θh) for i = 0, . . . , n − 1, j = 0, . . . ,m − 1 .

We denote the set of all m × n-matrix symbols with domain Θh by Lm×n
∞ (Θh).

Note that the indices i and j are multiindices. Furthermore, we start counting by zero, as it
will simplify some of the proofs later. Let us define the most common operations on matrix
symbols.

Definition 3.10. Let a ∈ Lm×n
∞ (Θh).

1. Let b ∈ Lm×n
∞ (Θh). Then the matrix addition is given by

(a + b)ij = aij + bij . (3.10)

2. Let λ ∈ �. Then the scalar multiplication is given by

(λa)ij = λ · aij .

3. Let u ∈ L2(Θh)n. Then the matrix-vector-product a · u gives a vector f ∈ L2(Θh)m
such that

fi = (a · u)i :=
n−1∑
j=0

aij · uj . (3.11)

4. Let b ∈ Ln×p
∞ . Then the matrix-matrix-product a · b gives a matrix c ∈ Lm×p

∞ such that

cij =

n−1∑
k=0

aik · bkj . (3.12)

5. For n = m the symbol a is called invertible if there exists a matrix symbol a−1 ∈ Ln×n
∞

such that
a−1 · a = a · a−1 = I ,

where I is the identity matrix. The matrix symbol a−1 is called the inverse of a.
6. The adjoint a∗ ∈ Ln×m

∞ of the matrix symbol a is given by

a∗ij = aji .

Assume that we multiply a matrix symbol to a vector from L2(Θh)n and multiply another
matrix symbol to the result of this operation. The result of these two multiplications can be
obtained by multiplying by just one matrix symbol, as the following proposition shows.
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Proposition 3.11. Let a ∈ Ln×m
∞ (Θh), b ∈ Lm×p

∞ , and u ∈ L2(Θh)p. Then

a · (b · u) = (a · b) · u .

Proof. It holds that

(
a · (b · f )

)
i =

n−1∑
j=0

aij · (b · f )j =
n−1∑
j=0

aij

p−1∑
k=0

bjk fk =
p−1∑
k=0

( n−1∑
j=0

aijbjk

)
fk

=

p−1∑
k=0
(a · b)ik fk =

(
(a · b) · f

)
i . �

In a similar way as we defined ordinary multiplication operators, we can define matrix
multiplication operators.

Definition 3.12. Let a ∈ Lm×n
∞ (Θh). Then a is thematrix symbol of the (matrix) multiplication

operator A : L2(Θh)n → L2(Θh)m given by

A f := a · f .

In the remainder of this section let us sum up a few properties of matrix multiplication
operators.

Proposition 3.13. If A is a matrix multiplication operator, then its matrix symbol is unique.

Proof. The statement can be proven in a similar way as Proposition 2.22. �

Many actions on multiplication operators directly translate into actions on their symbols
(Section 2.3.1). The same is true for matrix multiplication operators.

Theorem 3.14. Let A, B, C be three multiplication operators with symbols a, b ∈ Lm×n
∞ ,

c ∈ Ln×p
∞ , and let λ ∈ �. Then

1. 1 is the symbol of the identity I,
2. λ · a + b is the symbol of λA + B,
3. a · c is the symbol of AC, and
4. a∗ is the symbol of A∗.

Proof. The first two assertions can be proven in a similar way as the corresponding statements
in Theorem 2.23. For the third assertion consider the following:

A(C f ) = a · (c · f ) = (a · c) · f = (AC) f .

The last assertion follows from the fact that

〈A f , g〉 =
n−1∑
i=0
〈
(
A f

)
i, gi〉 =

n−1∑
i=0
〈
n−1∑
j=0

aij fj, gi〉 =
n−1∑
i=0

n−1∑
j=0

aij · 〈 fj, gi〉

=

n−1∑
j=0
〈 fj,

n−1∑
i=0

aijgi〉 = 〈 f , A∗g〉 . �
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Proposition 3.15. If a is invertible then

a−1(θ) = (a(θ))−1 a.e. (3.13)

Proof. As a is invertible
a−1 · a = I

which implies
a−1(θ) · a(θ) = I a.e.

The function value a(θ) is a matrix, and the last formula implies that it is invertible for almost
all θ. Thus, we can multiply by (a(θ))−1 from the left to get

a−1(θ) = (a(θ))−1 a.e. �

It is sometimes useful to have a way of determining whether an operator has a matrix
symbol or not. The next theorem gives a necessary and sufficient condition for this property.

Theorem 3.16. The operator A ∈ L(Ln
2 (Θh); Lm

2 (Θh)) is a matrix multiplication operator if
and only if

A(α · u) = α · [Au] for all α ∈ L∞, u ∈ Ln
∞ . (3.14)

Proof. Assume that A is a matrix multiplication operator. Then

[A(α · u)]i =
n−1∑
j=0

aij · (α · u) = α ·
n−1∑
j=0

aij · u = α · [Au] ,

which shows the first implication.
Conversely, assume that condition (3.14) holds. Any u ∈ Ln

2 can be written as

u = e0u0 + · · · + en−1un−1 ,

where ej ∈ L2
∞(Θh) with ej,k = δjk. By linearity of A we have

Au = [Ae0u0] + · · · + [Aen−1un−1] ,

and using the condition (3.14),

Au = u0[Ae0] + · · · + un−1[Aen−1] .

Restricting this equation to the i-th component we have

[Au]i =
∑

j
[Aej]i · uj ,

which is a matrix-vector multiplication where the matrix entries are given by aij = [Aej]i.
It remains to show that the entries aij are bounded, which can be proven by contradiction.

For this purpose, assume that there exist i, j such that aij is unbounded in the infinity norm.
In this case, there exists for any C > 0 a set M of nonzero measure such that aij(θ) > C for
all θ ∈ M . Using the characteristic function χM of the set M , we obtain that

‖[A(ejχM )]i‖ = ‖aijχM ‖ ≥ C‖ χM ‖ .

Hence, A would be unbounded, which is a contradiction. Therefore, aij must be bounded. �
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A consequence of the previous theorem is the next proposition.

Proposition 3.17. Let A be a matrix multiplication operator. If A is invertible then the
inverse A−1 is also a matrix multiplication operator.

Proof. As A is a matrix multiplication operator, we have for all α ∈ L∞ and u ∈ Ln
∞ that

A(α · u) = α · [Au] .

If we multiply the last equation by A−1 from the left and substitute A−1w for u, we get

α · [A−1w] = A−1(α · [A[A−1w]]) = A−1(α · w) . �

Corollary 3.18. A matrix multiplication operator is invertible if and only if its symbol is
invertible.

3.3. Fourier Matrix Symbols

Fourier symbols, as introduced in Section 2.2, can only represent constant stencil operators,
which limits their applicability. We shall introduce Fourier matrix symbols, which are a
generalization of ordinary Fourier symbols and are not limited to representing constant stencil
operators. For example, they can represent the injection restriction and injection interpolation
operators.

Definition 3.19 (Fourier Matrix Symbol). Let 0 < hin, hout ∈ �d, 0 < m, n ∈ �d such that

n · hin = m · hout . (3.15)

Furthermore let A ∈ L(`2(Ghin); `2(Ghout)). If the Fourier representation Â of A can be written
in the form

Âû = R−1
m âRnû , (3.16)

where â ∈ Lm×n
∞ (Θn·hin), then â is called the Fourier matrix symbol of A.

The relation between A, its Fourier representation Â, and its Fourier matrix symbol â is
shown in Figure 3.2. When an operator has an ordinary Fourier symbol, the action of the
Fourier representation is just the pointwise multiplication with the corresponding symbol. In
contrast to that, if an operator A has a Fourier matrix symbol â, then to give the action of the
Fourier matrix, we first have to use Rn to split the argument into a vector of functions. Then
we can apply the matrix product with â, and after that we need to combine the elements of
the resulting vector using R−1

m into a single function.
Remark 3.20. Equation (3.16) is the important part of Definition 3.19. The relation between
the step-sizes hin and hout is just needed to make (3.16) consistent, which can be seen as
follows. If û ∈ L2(Θhin) then Rnû ∈ L2(Θn·hin)n, implying that the entries of â have to be
in L2(Θn·hin) in order to multiply â and Rnû. It follows that âRnû ∈ L2(Θn·hin)m and from
this relation that R−1

m âRnû ∈ L2(Θ(n/m)·hin), which implies h′ = (n/m) · hin. Now, the last
equation is equivalent to (3.15). In short, we can sum up the argument by

L2(Θhin)
Rn−−→ L2(Θn·hin)n

â−→ L2(Θn·hin)m
R−1

m−−−→ L2(Θ(n/m)·hin) .
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`2(Ghin)

`2(Ghout)

L2(Θhin)

L2(Θhout)

L2(Θn·hin)n

L2(Θm·hout)m

A û 7→ â · û

Fh Rn

Fh Rm

Â

Figure 3.2.: Relation between an operator Â, its Fourier representation Â, and its Fourier
matrix symbol â.

We shall now prove that the injection restriction and interpolation can be written in the
form of (3.16). In later sections of this chapter we shall see how we can use the Fourier
matrix symbol of an operator to obtain its operator norm and spectral radius.

Proposition 3.21. The injection restriction operator Rinj : `2(Gh) → `2(Gn·h) from (3.1)
has a Fourier matrix symbol r̂ ∈ L1×n

∞ (Θh·n). Its entries are all equal to the same constant
function. More precisely,

r̂0j(θ) = 1
vol1/2n

for θ ∈ Θh·n . (3.17)

Proof. To derive the Fourier matrix symbol of the injection restriction let us rewrite (3.16)

RmR̂inju = â · [Rnu].

This equation is equivalent to

[RmR̂inju]k =
n−1∑
j=0

âkj · [Rnu]j for k = 0, . . . ,m − 1 . (3.18)

Comparing this equation to the Fourier representation of the injection restriction,

R̂injû = 1
vol1/2n

n−1∑
j=0
[Rnû]j, (3.4 revisited)

shows that if we choose m = 1 and
r̂0j =

1
vol1/2n

, (3.19)

then r̂ is the Fourier matrix symbol of the injection restriction. �

In a similar way, comparing (3.18) to the Fourier representation of the injection interpolation
(3.6) gives that p̂ ∈ Ln×1

∞ (Θn·h) with

p̂k0 =
1

vol1/2n
(3.20)
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is the Fourier matrix symbol of the injection interpolation.
Fourier matrix symbols are a generalization of Fourier symbols; if we interpret the Fourier

symbol â as a 1×1-matrix symbol, it is easy to see that we can write the Fourier representation
Â of the corresponding operator as

Â = R−1
1 âR1 .

Hence, in principle every Fourier symbol is also a 1 × 1-Fourier matrix symbols.
The next theorem shows that every operator which can be represented by an ordinary

Fourier symbol can also be represented by an n×n-Fourier matrix symbol for any 1 ≤ n ∈ �d.
To formulate this theorem, we need to define the frequency splitting of a symbol â ∈ L∞(Θh).
In this case the frequency splitting operator is defined like in (3.3), i.e.,

[Rnâ]j(θ) := â(θ + sh,n
j ). (3.21)

Theorem 3.22. If A has a Fourier (scalar) symbol â, then for any factor 0 < n ∈ �d the
operator has a n × n-Fourier matrix symbol á given by

ákj(θ) = [Rnâ]k · δkj =

{
[Rnâ]k if k = j,
0 otherwise.

We call á the expansion of â and denote it by expandn(â) := á.
Proof. We have

Âû = â · û = R−1
n Rnâ · û = R−1

n áRnû . �

Many interpolation operators can be written as the composition of a constant stencil and
injection restriction operator. We derive the Fourier matrix symbol of the composed operator.
Proposition 3.23. Let Pst be a (constant) stencil operator and p̂inj its Fourier symbol.
Furthermore, let Pinj be the injection interpolation and p̂inj its Fourier matrix symbol. Then
the Fourier matrix symbol p̂ ∈ Lm×1

∞ (Θh) of P := PstPinj is

p̂k0 =
1

vol1/2m
[Rm p̂st]k . (3.22)

Proof. Let p̂′st be the expansion of p̂st. The Fourier matrix symbol of P is then given by the
matrix-matrix-product of p̂′st and p̂inj. We have

p̂k0 =
∑

s
p̂′st,ks · p̂inj,s0

=
∑

s
[Rm p̂]kδks · 1

vol1/2m

= 1
vol1/2m

· [Rm p̂]k . �

The next proposition is a similar result for restriction operators. We omit the prove as it is
very similar to the proof of the last proposition.
Proposition 3.24. Let Rst be a (constant) stencil operator and r̂inj its Fourier symbol.
Furthermore, let Rinj be the injection restriction and r̂inj is Fourier matrix symbol. Then the
Fourier matrix symbol r̂ ∈ L1×n

∞ (Θh) of R := RinjRst is

r̂0j =
1

vol1/2n
[Rmr̂st]j . (3.23)
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3.3.1. The Two-Grid Method

The error propagator of the two-grid method is

ETG = Sν2(I − PA−1
H RAh)Sν1 , (1.35 revisited)

where S is the error propagator of the smoother, P the interpolation, AH the coarse grid
matrix, R the restriction, and Ah the fine grid matrix. If we consider the Fourier matrix
symbol of each of these operators, we can derive the Fourier matrix symbol êTG of the
two-grid method.
Assume that S, Ah, and AH have ordinary Fourier symbols: ŝ, âh, and âH . We have

discussed that we can interpret these symbols as 1 × 1-matrix symbols, implying that
ŝ, âh ∈ L1×1

∞ (Θh) and âH ∈ L1×1
∞ (Θn·h). Furthermore, we assume that p̂ ∈ Ln×1

∞ (Θn·h) and
r̂ ∈ L1×n

∞ (Θn·h) are the Fourier matrix symbols of the interpolation P and the restriction R.
The problem is that we want to multiply r̂ and âh, but their dimensions do not match. We

can, however, use Theorem 3.22 to expand âh to a n × n-matrix symbol áh ∈ Ln×n
∞ (Θn·h).

Then we can compute the product r̂ áh. For the same reason we expand the symbol ŝ to a
n × n-matrix symbol ś ∈ Ln×n

∞ (Θn×h). Using these expanded matrix symbols, we obtain the
Fourier matrix symbols of the error propagator of the two-grid method by

êTG = śν2(1 − p̂â−1
H r̂ áh)śν1 .

3.4. Interpretation and Visualization of Matrix Symbols

We are able to represent the error propagator of many two-grid methods (cf. Section 3.3.1)
by a Fourier matrix symbol. As we shall see, the Fourier matrix symbol gives us some
information about the behavior of the error propagator.
Let us first assume that A has a (scalar) Fourier symbol â; then â(θ) is a scalar for some

θ ∈ Θh. This scalar provides a direct relation between one input frequency and one output
frequency. The input frequency is multiplied by the scalar to obtain the corresponding output
frequency, i.e.,

[Â f̂ ](θ) = â(θ) · f̂ (θ) .

This relation becomes handy if we analyze, e.g., a smoothing error propagator E . If ê(θ), the
Fourier matrix symbol of E , is small for high frequencies θ, then the norm of highly varying
inputs will be substantially reduced, and the output will consist mainly of low frequencies.
Thus, we have answered two questions at once: First, how does a dominating frequency of
the input influence the norm of the output? Second, which frequencies dominate the output?
In the case where â is a matrix symbol, the relation is not as obvious. We only have that â(θ)
for θ ∈ Θh is a matrix that relates the m-harmonics of θ of the input to the n-harmonics of
the output by the matrix-vector product (3.11).
For d ≤ 3 the scalar symbols â ∈ L∞(Θh) can be visualized, e.g., by a contour or an

isosurface plot. If we have a matrix symbol in Ln×m
∞ (Θh), we have voln · volm functions from

L∞(Θh). As this number grows quickly, plotting every single function is not feasible. In
this section we discuss how to reduce a matrix symbol to a scalar function, to obtain the
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same pieces of information as in the scalar case. Unlike in the scalar case, two different
transformations are needed. The choice of the transformation depends on whether we are
interested in the influence of certain input frequencies or in the dominating frequencies in the
output.

3.4.1. Frequency Damping

Let us start by considering how strong the influence of the function value û(θ) for a function
û and a frequency θ is on the size of the function resulting from the computation of Âû. For
this purpose, consider the function

uθ0(θ) :=

{
1 if θ = θ0,
0 otherwise,

and compute
Âuθ0 = R−1

m âRnuθ0 .

We start by computingRnuθ0 . Decomposing the frequency θ0 into a base frequency θb ∈ Θn·h
and a frequency shift sk, i.e., θ0 = θb + sk, gives that

[Rnuθ0]j(θ) = uθ0(θ + sj)

=

{
1 if θb + sk = θ + sj,
0 otherwise

=

{
1 if θb = θ and sk = sj,
0 otherwise

= δθbθ0 · δjk .

If we apply the matrix symbol â we obtain that

[âRnuθ0]i(θ) =
n−1∑
j=0

âij(θ) · δθbθ0 · δjk

= âik(θ) · δθθ0

=

{
âik(θ) if θ = θ0,
0 otherwise.

Thus, âRnuθ0 is a vector of functions, where each entry is a function that is zero everywhere,
except at θb. If we join the frequencies back together, i.e., by applying R−1

m , the result is
a function that is non-zero only at the n,h-harmonics of θ and takes the function values
aik(θb) for i = 0, . . . ,m − 1. Hence, to measure the impact of the frequency θ0 on the size of

the output, we compute the Euclidean norm of the vector
(
âik(θb)

)m−1

i=0
. Let us define the
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function win : Θh → �, which assigns every input frequency this measure for the impact that
the frequency has on the size of the output, i.e.,

win(θb + sk) =
(n−1∑

i=0
|âik(θb)|2

)1/2

.

Applying the frequency splitting operator yields that

[Rnwin]k(θb) =
(n−1∑

i=0
|âik(θb)|2

)1/2

.

If we define cn(â) to be the vector

[cn(â)]k =
(n−1∑

i=0
|âik |2

)1/2

,

i.e., cn(â) is the vector of column norms of â, then Rnwin = cn(â). Hence, if we are interested
in the damping of the input of Â then

R−1
n cn(â)

describes how the input of the Fourier representation influence the result. We refer to this
function as the frequency damping of the operator.

3.4.2. Frequency Emission

We shall now derive a way to measure, how strong a frequency θ will be in the output of Â,
in general. For this purpose, we compute a bound for��[Âu](θ)

�� = ��[R−1
m âRnu](θ)

��
for some normalized functions u. How to properly normalize u, will become clear during
the following computation. To bound

��[Âu](θ)
�� let us split the frequency θ into the base

frequency θb ∈ Θn·h and a frequency shift sk, i.e., θ = θb + sk. With this splitting, we obtain
that ��[R−1

m âRnu](θb + sk)
�� = ��[âRnu]k(θb)

��
=

�� n−1∑
j=0

âkj(θb) · [Rnu]k(θb)
�� .

Using the Cauchy-Schwarz inequality yields that

��[R−1
m âRnu](θb + sk)

�� ≤ ©­«
n−1∑
j=0
|âkj(θb)|2

ª®¬
1/2

· ©­«
n−1∑
j=0
|[Rnu]k(θb)|2

ª®¬
1/2

.
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We now assume that u is normalized in such a way that

©­«
n−1∑
j=0
|[Rnu]k(θb)|2

ª®¬
1/2

= 1 .

In other words, the Euclidean norm of the vector [Rnu](θb) should be equal to one. We then
have that ��[R−1

m âRnu](θb + sk)
�� ≤ ©­«

n−1∑
j=0
|âkj(θb)|2

ª®¬
1/2

.

Let us define the function wout : Θh → �, where wout(θ) equals the upper bound for the
output Au at the frequency θ in the case that u is normalized from the last equation, i.e.,

wout(θb + sk) := ©­«
n−1∑
j=0
|âkj(θb)|2

ª®¬
1/2

.

Using the frequency splitting operator Rm, we obtain that

[Rmwout]k(θb) =
©­«

n−1∑
j=0
|âkj(θb)|2

ª®¬
1/2

.

If we define rn(â) to be the vector

[rn(â)]k := ©­«
n−1∑
j=0
|âkj |2

ª®¬
1/2

,

i.e., rn(â) is the vector of row norms of â, then Rmwout = rn(â). Hence, by construction,

R−1
m rn(â)

describes an upper bound for the output of Â for a normalized input. We call this function
the frequency emission of the operator.

3.4.3. The Red-Black Jacobi Method

To illustrate the difference of the frequency damping and the frequency emission, let us
consider the red-black Jacobi method. We will discuss the derivation of the method and the
derivation of its Fourier matrix symbol later in section 3.6.1. For now, we just look at the
frequency damping and emission of the error propagator of the method when applied to the
discrete Poisson equation in 2D (1.49). The two quantities are shown in Figure 3.3.

When looking at the frequency damping of the method, we see that the damping has some
large values in the high part of the spectrum, i.e., in the center of the plot. Thus, we might
conclude that the red-black Jacobi method is not a good smoother for the Poisson equation.
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Figure 3.3.: Frequency damping (left) and emission (right) of the red-black Jacobi method.

This conclusion, however, is wrong, as we can see from looking at the frequency emission.
There, the large values are only located in the corners, where the low modes are located.

The difference between the frequency damping and emission can be explained in the
following way. The frequency damping describes the influence of a certain input frequency
on the size of the output. Thus, the frequency damping plot of the red-black Jacobi method
shows that there are some oscillatory functions that result in a large output. On the other
hand, the frequency emissions shows that the output will consists of mainly slowly varying
functions.
This behavior is due to the fact that the red-black Jacobi method actually maps some

oscillatory functions to slowly varying functions without reducing their norm. Hence, the
red-black Jacobi method is indeed a smoother for the Poisson equation, because the output
will usually be slowly varying, even though some oscillatory functions lead to large outputs.

This example illustrates the difference between the frequency damping and emission, and
it shows that when we are interested in the smoothing effect of a certain method, we should
look at the frequency emission.
In Chapter 4, we will look at further contour plots of the frequency damping and the

frequency emission functions of various operators.

3.5. Spectral Properties of Matrix Multiplication Operators

The norm and the spectral radius are interesting properties of operators, especially of error
propagators (see Section 1.6). If we consider an operator that has a Fourier symbol, we can
obtain its norm and spectral radius from its symbol in a simple way (Corollary 2.34 and
2.35). We shall see that the Fourier matrix symbol gives the norm and spectral radius of the
corresponding operator in a similar way. Let us start by giving the norm and spectral radius
of a matrix multiplication operator in terms of its symbol.

Theorem 3.25. Let A ∈ L(L2(Θh); L2(Θh)) be a matrix multiplication operator with symbol
a. Then

r(A) = ess-supθ∈Θh·n r(a(θ)) and ‖A‖ = ess-supθ∈Θh·n ‖a(θ)‖ , (3.24)
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where
ess-supθ∈Θh·n f (θ) := inf{α > 0 : µ( f > α) = 0}

is the essential supremum of the function f ∈ L∞(Θh·n).

We shall give the proof of Theorem 3.25 later; let us first consider some of its consequences.
The theorem states that analogously to the scalar case the norm and spectral radius are given
by the essential supremum of some function. In the case of the last theorem, the function is
not the pointwise absolute value of the symbol but the pointwise norm and the pointwise
spectral radius of the matrix symbol. This result carries over to operators with Fourier matrix
symbols.

Theorem 3.26. Let A ∈ L(`2(Gh); `2(Gh)) with Fourier matrix symbol â. Then

r(A) = ess-supθ∈Θn·h r(â(θ)) and ‖A‖ = ess-supθ∈Θn·h ‖â(θ)‖ . (3.25)

Proof. Let Â be the Fourier representation of A and â the Fourier matrix symbol of A. Then
Proposition 2.17 states that σ(A) = σ(Â). We can write Â as

Â = R−1
m âRn .

Thus, Â − λI is invertible if and only if R−1
m (â − λI)Rn is invertible, which is the case if and

only if â − λI is invertible, implying that σ(A) = σ(Â) = σ(â).
Let us turn to the norm of A. We know from Proposition 2.16 that ‖A‖ = ‖ Â‖. Furthermore

‖ Â‖ = max
‖û ‖=1

‖ Â‖ = max
‖û ‖=1

‖R−1
m âRnû‖ .

As R is an isometry, we can substitute Rnû by û′, and

‖ Â‖ = max
‖û′ ‖=1

‖R−1
m â · û′‖ .

By using again that R is an isometry, it follows that

‖ Â‖ = max
‖û′ ‖=1

‖â · û′‖ . �

The remainder of this section is dedicated to the proof of Theorem 3.25. For this purpose
let µ be the Lebesgue measure and X := Θh. (However, (X, Σ, µ) can be any σ-finite measure
space.) Recall that the spectrum of a scalar multiplication operator is given by the essential
range of its symbol (2.18). The essential union of the pointwise spectra of the matrix symbol
plays a similar role for matrix multiplication operators. The essential union of the pointwise
spectra σ(a(x)) is given by

ess-
⋃
x∈X

σ(a(x)) :=
⋂
b∈[a]

⋃
x∈X

σ(b(x)) ,
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where [a] is the equivalence class of functions that are almost everywhere equal to a. It can
be shown that the essential union of the pointwise spectra is given by

ess-
⋃
x∈X

σ(a(x)) = {z ∈ � : ∀ε > 0 . µ({x ∈ X : σ(a(x)) ∩Uε(z) , ∅} > 0} . (3.26)

The essential union can be used to compute the spectrum of matrix multiplication operators.

Proposition 3.27. Let A : L2(X)n → L2(X)n be a matrix multiplication operator with
non-empty resolvent set ρ(A) and matrix symbol a. Then

σ(A) = ess-
⋃
x∈X

σ(a(x)) .

Proof. See [39]. �

The proposition states that the spectrum of the matrix multiplication operator is the
essential union of the pointwise spectra. We derive a formula for the spectral radius of a
multiplication operator using this result.

Lemma 3.28. Let A be defined like in Proposition 3.27. The spectral radius r(A) of A is the
essential supremum of the pointwise computed spectral radii of a(ϑ), i.e.,

r(A) = ess-supϑ∈X r(a(ϑ)) .

Proof. We set

C := ess-supϑ∈X r(a(ϑ)) = inf{α > 0 : µ({x ∈ X : r(a(x)) > α}) = 0} . (3.27)

It is known that
r(A) = max

λ∈σ(A)
|λ | .

Thus, we can prove the assertion by showing that
1. for every ε′ > 0 and all |λ | ≥ C + ε′ we have λ ∈ ρ(A), and
2. for every ε′ > 0 there exists λ ∈ σ(A) with |λ | ≥ C − ε′.
(1) We choose λ ∈ � such that |λ | ≥ C + ε′. Then if we can find ε > 0 such that

µ({x ∈ X : σ(a(x)) ∩Uε(λ) , ∅}) = 0 (3.28)

the first assertion follows from Proposition 3.27 and the formula for the essential union of the
pointwise spectra (3.26). Let us show that this equation holds.

Let us chose ε = ε′. If the set {x ∈ X : σ(a(x)) ∩Uε(λ) , ∅} is empty then its measure is
clearly zero (equation (3.28) holds). Thus, we consider the case where this set is not empty.
For any x0 ∈ X such that σ(a(x0)) ∩ Uε(λ) , ∅, we find a λ0 ∈ σ(a(x0)) ∩ Uε(λ). Since
λ0 ∈ Uε(λ),

|λ̃ | = |λ − (λ − λ̃)| ≥ |λ | − |λ − λ̃ | > C + ε′ − ε = C .

Furthermore, as λ0 ∈ σ(a(x0)), i.e., λ0 is an eigenvalue of x0,

r(a(x0)) ≥ |λ0 | > C .
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Since x0 was an arbitrary element from σ(a(x0)) ∩Uε(λ), we have shown that

{x ∈ X : σ(a(x)) ∩Uε(λ) , ∅} ⊆ {x ∈ X : r(a(x)) > C} .

By the definition of the essential supremum and the constant C in (3.27) the measure of
the right hand side is zero. Thus

µ({x ∈ X : σ(a(x)) ∩Uε(λ) , ∅}) ≤ µ({x ∈ X : r(a(x)) > C}) = 0

for all |λ | > C + ε′, and we arrive at (3.28), which establishes the first assertion.
(2) We want to prove the second assertion by contradiction. Assume that there exists

ε′ > 0 such that |λ | < C − ε′ implies λ ∈ ρ(A). Consider the set {x ∈ X : r(a(x)) > C − ε}.
We want to show that our assumption implies that the set has measure zero, which would be
a contradiction to the definition of C in (3.27). For this purpose, define the set

M := {λ ∈ � : C − ε′ ≤ |λ | ≤ C} .

Then

{x ∈ X : r(a(x)) > C − ε} ⊆ {x ∈ X : r(a(x)) > C} ∪ {x ∈ X : σ(a(x)) ∩ M , ∅} .

The first set on the right hand size has zero measure, due to the definition of C in (3.27).
Thus, it remains to show that the second set has also zero measure. By the definition of the
essential union of the pointwise spectra (3.26) we have that for every λ ∈ ρ(A) there exists
ε(λ) > 0 such that

µ({x ∈ X : σ(a(x)) ∩Uε(λ)(λ) , ∅}) = 0 . (3.29)

We have that M ⊆ (⋃λ∈M Uε(λ)(λ)), which is a family of open sets that cover set M . Since
M is compact, we can find finitely many λ1, . . . , λm ∈ M such that

M ⊆
m⋃
i=1

Uε(λi )(λi) ,

giving that

{x ∈ X : σ(a(x)) ∩ M , 0} ⊆
m⋃
i=1
{x ∈ X : σ(a(x)) ∩Uε(λi )(λi) , ∅} ,

and as the sets on the right hand side have all zero measure due to (3.29) the assertion (ii.) is
proven. �

With this lemma at hand, we can conduct the final proof of this section.

Proof of Theorem 3.25. We have

r(L) = ess-supϑ∈Θh·n r(L̂(ϑ))

by Lemma 3.28. Thus

‖L‖2 = ‖L∗L‖ = r(L∗L) = ess-supϑ∈Θh·n r(L̂(ϑ)∗ L̂(ϑ)) . �
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3.6. Periodic Stencils

In this section we introduce periodic stencils and show that an operator that is given by a
periodic stencil has a Fourier matrix symbol. Periodic stencils can be used to analyze various
applications and, therefore, form the basis for the analysis the problems in Chapter 4.

Definition 3.29 (Periodic Stencil Operator). Let 0 < n ∈ �d be given. If A is given by a
stencil {s}x∈Gh and

sx = sx+k·(h·n) for all x ∈ Gh, k ∈ �d , (3.30)

then A is called a periodic stencil operator, {s}x∈Gh a periodic stencil, and n its period.

3.6.1. Red-Black Jacobi Method

As an example of a method that can be expressed in terms of periodic stencils, we introduce
the red-black Jacobi method. It is a variant of the Jacobi method introduced in Section 1.3.1.
In every iteration the Jacobi method computes a set of corrections v1, . . . , vn. Then the

new iterate uk+1 is obtained from the old iterate uk by

uk+1 = uk + ω · (v1 + · · · + vn) . (1.17 revisited)

The correction vi is constructed such that the ith component of the correction residual is
zero, i.e., ruk+vi,i = 0. If ω = 1 and all corrections vi change only the corresponding ith
component of the residual, then after one iteration the residual is zero, and we have found
the solution of the linear system. This is, however, only the case when the matrix A is a
diagonal matrix. In all other cases the correction vi changes various, if not all, components
of the residual. In that sense the corrections interfere with each other. They are, however,
constructed completely independently from each other, as they only use the residual before
the iteration as source of information. In other words, the ith correction is construction
without using any information about how the other corrections change the residual.

The idea of the red-black Jacobi method is to increase the exchange of information between
the corrections, which is done by partitioning the indices i = 1, . . . , n into two set R, and B.
Then an intermediate iterate is computed by

uk+1/2 = uk + ω ·
∑
i∈R

vi ,

and an intermediate residual is computed based on the intermediate iterate. This residual is
then used to construct the remaining corrections vi for i ∈ B; the new iterate is

uk+1 = uk+1/2 + ω ·
∑
i∈B

vi .

The black corrections vi for i ∈ B are computed from the intermediate residual. By that they
use some information about the red corrections vi for i ∈ R. Thus, we expect them to be
better corrections than the corrections based on the initial residual.
We give the red-black Jacobi method in the Red-Black-Iteration procedure.
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Red-Black-Iteration()
1 while u is a bad approximation
2 for i ← 1 to n

3 uk+1/2,i ← uk,i +

{
ω
aii

ruk,i if i ∈ R

0 otherwise
4 for i ← 1 to n

5 uk+1,i ← uk+1/2,i +

{
ω
aii

ruk+1/2,i if i ∈ B

0 otherwise

It remains to choose the partition of the indices into the red and the black ones. Assume
that we have a grid based problem, i.e., every index is assigned to a point in Gh. For many
applications the corrections corresponding to a point in the grid have a strong effect on the
residuals corresponding to neighboring points. Thus, it makes sense to assign different colors
to indices that correspond to neighboring grid points. We, therefore, define the set of red and
the set of black grid points by

RGh := {h · z : z ∈ �d, z1 + · · · + zd even} and (3.31a)

BGh := {h · z : z ∈ �d, z1 + · · · + zd odd} . (3.31b)

Then we can define the set of red/black indices as all indices that correspond to red/black
grid points.
Let us analyze the red-black Jacobi method, starting with the derivation of its error

propagator. To do so, let us define the two matrices

ZR,i j =

{
1 if i = j and i, j ∈ R,
0 otherwise

and ZB,i j =

{
1 if i = j and i, j ∈ B,
0 otherwise.

These matrices allow us to rewrite line 2-3 of Red-Black-Iteration as

uk+1/2 = uk + ωZRD−1uk (3.32a)

and line 4-5 as

uk+1 = uk+1/2 + ωZBD−1uk+1/2 , (3.32b)

where D is the diagonal matrix containing the diagonal entries of A. Thus, the red-black
Jacobi method consists of two successive error correction steps. Recall that one iteration of a
stationary method is given by

uk+1 = uk + B−1ruk ,

which was stated in (1.24). Comparing this equation to the first step (3.32a) of the red-black
Jacobi method, yields that the first step corresponds to B−1 = ωZRD−1. The error propagator
of a stationary method is given by (1.32), implying that the error propagator of the first step
fulfills that

ER = I − ωZRD−1 A . (3.33)
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Similarly the second step has the error propagator

EB = I − ωZBD−1 A .

The two correction steps are applied successively. Consequently, the error propagator of the
red-black Jacobi method is

ERB = EBER = (I − ωZBD−1 A)(I − ωZRD−1 A) . (3.34)

Let us now make a local Fourier analysis of the red-black Jacobi method. For this purpose,
we need to extend all operators involved in the computation of ERB to the infinite grid Gh. If
we compare the error propagator (3.34) to the error propagator of the Jacobi method (1.33)
we see that the only new component are the operators ZR and ZB. Thus, all we have to do is
to extend ZR and ZB to the infinite grid Gh and give their Fourier matrix symbol.

On the infinite grid Gh the operator ZR is given by the stencil sR with

sR,x(y) =
{

1 if y = 0 and x ∈ RGh ,
0 otherwise.

(3.35a)

The operator ZB is given by the stencil sB with

sB,x(y) =
{

1 if y = 0 and x ∈ BGh ,
0 otherwise.

(3.35b)

By comparing with the definition of RGh and BGh (3.31), we see that the stencils sR and sB
are periodic with period (2 · 1).

3.6.2. Fourier Matrix Symbol

Now that we have an example of a method that can be written in terms of periodic stencils,
we want to show that every periodic stencil operator has a Fourier matrix symbol and how to
compute it.

Theorem 3.30. Let A ∈ L(`2(Gh)) be a periodic stencil operator with stencil sx and period
n. Let A(k) be the (constant) stencil operator corresponding to the stencil (s(k))x := sk·h (for
all x ∈ Gh). Then A has a Fourier matrix symbol â ∈ Ln×n

∞ (Θh·n) with

â = F∗ · g , where gkj(θ) = Fkj · â(k)(ϑ + sj) ,

and F ∈ �n×n is the Fourier matrix, i.e.,

Fkj := 1
vol1/2n

ei2π 〈k/n,j〉 for k, j = 0, . . . , n − 1 . (3.36)

To prove Theorem 3.30, we need to make a few preparations, but let us first outline the
idea of the proof. The idea is based on the following observation. We define the operator
Tk : `2(Gh) → `2(Gh·n) by

(Tku)(x) = u(x + tk) for x ∈ Gh·n ,
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where tk for k = 0, . . . , n − 1 are the space shifts, defined by

tk := k · h for k = 0, . . . , n − 1. (3.8 revisited)

If A is a periodic stencil operator, we have that

Tk A = Tk A(k) , (3.37)

where A(k) is the constant stencil operator given by stk . This equation implies that at the
points (tk + Gh·n) the result f = Au will behave like it has been computed by a constant
stencil operator. Now Tk Au is a grid function on Gh·n. Thus, we can apply the DTFT to Tk Au
to get ĝk := Fh·nTk Au. We will show that due to observation (3.37) the frequency function
ĝk can be computed from û (instead of u) by the knowledge of the symbol â(k), which is
easily obtained by (1.55) as A(k) is a constant stencil operator. The next step is to show that
the functions ĝk can be combined to obtain f̂ = RnFh Au. Thus, in the end we can compute
f̂ from û.
In the following it will be helpful to combine the operators Tk into a single operator

T : `2(Gh) → (`2(Gh·n))n by (Tu)k = Tku. The combined operator T will be called space
splitting operator. On the space (`2(Gh·n))n a scalar product can be defined by

〈 f , g〉 :=
n−1∑
k=0
〈 fk, gk〉 .

If we chose this scalar product, then T is an isometry between `2(Gh) and (`2(Gh·n))n.

Lemma 3.31. Let d ∈ Ln×n
∞ (Θn·h) be the diagonal matrix symbol with dkj(θ) = δkj · ei〈θ,tk 〉 .

Furthermore, let F ∈ �n×n be the Fourier matrix (3.36). We define the matrix symbol

t̂ := d · F .

Then the kth row t̂k,: of t̂ is the Fourier matrix symbol of Tk. Furthermore

T̂ := ÛFn·hTF −1
h fulfills T̂ = t̂Rn , (3.38)

where we define for u ∈ `2(Gh·n)n the element-wise DTFT ÛFh·n : `2(Gh·n)n → L2(Θh·n)n by
the equation ( ÛFh·nu)j := Fh·nuj .

Proof. The operator T0 is the injection restriction operator Rinj from (3.1). Furthermore, if
we define the shift operators (Zku)(x) := u(x + tk) for k = 0, . . . , n − 1, it is easy to see that
Tk = RZk. The Fourier matrix symbol of the restriction is

r̂0j =
1

vol1/2n
, (3.19 revisited)

which is a 1× n-matrix symbol. The Fourier symbol of the shift operator (cf. Lemma 2.19) is

ẑk(θ) = ei〈θ,tk 〉 .
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`2(Gh)

`2(Gh·n)n L2(Θh)

L2(Θh·n)n L2(Θh·n)n

T

Rn

Fh

ÛFh·n

t̂

Figure 3.4.: Commuting diagram that relates ÛFhT and RnFh.

Theorem 3.22 shows that we can expand the symbol ẑk to a n×n-matrix symbol expandn(ẑk).
Thus, we can multiply the last equation from the left by r̂ to get the Fourier matrix symbol of
RinjZk:

r̂ · expandn(ẑk) .

To prove the assertion of this lemma, we have to show that this term equals t̂k,:.
We compute the matrix product

(r̂ · expandn(ẑk))0j =

n−1∑
l=0

r̂0l · expandn(ẑk)lj .

We have that expandn(ẑk)lj(θ) = δlj ẑk(θ + sl) = δlj · ei〈θ+sl,tk 〉 , which we plug into th previous
equation. It follows that

(r̂ · expandn(ẑk))0j(θ) =
n−1∑
l=0

1
vol1/2n

· δlj · ei〈θ+sl,tk 〉 = 1
vol1/2n

· ei〈θ+sj,tk 〉

= ei〈θ,tk 〉 · 1
vol1/2n

· ei〈sj,tk 〉 = ei〈θ,tk 〉 · Fkj

=

n−1∑
l=0

δkl · ei〈θ,tk 〉 · Flj =

n−1∑
l=0

dkl · Flj = t̂kj .

Thus, we have proven that the Fourier matrix symbol of T̂k = RinjZk is t̂k,:.
Let us turn to the operator T . It is defined by (Tu)k = Tku, implying that

( ÛFn·hTFhû)k = Fn·hTkF −1
h û = T̂kû = R−1

1 t̂k,:Rnû = t̂k,:Rnû = (t̂Rn)kû . �

Equation (3.38) basically states that the diagram in Figure 3.4 commutes. From the
diagram we see that T , Fh, Fh·n and Rn are isometries, which implies that t̂ is also an isometry.
We can now prove the main result of this section.

Proof of Theorem 3.30. Let u ∈ `2(Gh). We begin by computing the vector ĝ := Fh·nT Au.
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We use the definition of the element-wise DTFT and observation (3.37), i.e., the fact that a
periodic stencil operator looks like a constant stencil operator when multiplied from the left
by Tk, to obtain

ĝk := Fh·nTk Au = Fh·nTk A(k)u .

Using Lemma 3.31 and then Theorem 3.22, we can express ĝ in terms of û := Fhu by

ĝk = Fh·nTk A(k)F −1
h û = T̂k Â(k)û .

The operator T̂k has the 1 × n matrix symbol t̂k,: and Â(k) has the n × n matrix symbol
expandn(â(k)). Thus, we can write

ĝk = t̂k,: · expandn(â(k)) · (Rnû) .

Recall that t̂k,: is a row vector and expandn(â(k))lj(θ) = δljâ(k)(θ + sl) is a diagonal matrix.
Hence, t̂k · expandn(â(k)) is a row vector with

(t̂k,: · expandn(â(k)))0j(θ) =
n−1∑
l=0

t̂kl · δlj · â(k)(θ + sl) = t̂kj · â(k)(θ + sj)

= dkk · Fkj · â(k)(θ + sj) = dkk · gkh .

By using that d is diagonal, we have that

(t̂k,: · expandn(â(k)))0j(θ) =
n−1∑
l=0

dkl · glj .

Thus,
ĝk = (dg)k,: · (Rnû) ,

and the whole vector ĝ can be computed by ĝ = dg · (Rnû). By using that ĝ was defined as
ĝ := ÛFn·hT AF −1

h û, we get
ÛFn·hT AFh = dgRn .

Now we use Lemma 3.31 again (cf. Figure 3.4) to obtain that

RnFh AF −1
h R

−1
n = (dF)−1 ÛFn·hT AF −1

h R
−1
n = (dF)−1dg = F−1d−1dg = F∗g .

The last equality holds, as F is the DFT matrix and therefore unitary. Finally, the last equation
yields that F∗g is the Fourier matrix symbol of A. �

3.6.3. Symbol of the Red-Black Jacobi Method

We have seen that the red-black Jacobi method can be analyzed in terms of periodic stencils
and that every periodic stencil operator has a Fourier matrix symbol. The formula for these
symbols is given in Theorem 3.30. We shall combine these results to derive the Fourier matrix
symbol of the error propagator of the red-black Jacobi method, providing us with a simple
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example of local Fourier analysis of periodic stencil operators. For notational simplicity we
shall restrict ourselves to the 2D case in this section. The calculation we present, however, is
also applicable in arbitrary dimensions. Thus, Theorem 3.30 is a generalization of known
results [47, 68, 74].

The first step is to compute the Fourier matrix symbol of the filtering operators ZR and ZB.
The error propagator of the red-black Jacobi method consists of different operators. All of
them except ZR and ZB are also present in the error propagator of the plain Jacobi method
(see Section 3.6.1), which we already analyzed. Hence, to derive the Fourier matrix symbol
of the error propagator of the red-black Jacobi method, it just remains to compute the Fourier
matrix symbols of ZR and ZB.
For the derivation let us introduce a convenient notation for matrix symbols. The entry

of a matrix symbol is referenced by two multi-indices if we provide an ordering of the
multi-indices we can write the matrix symbols as an ordinary matrix. For this purpose, let
n = (2, 2)T , â ∈ Ln×n

∞ (Θh), and the order of the indices be (0, 0)T , (1, 0)T , (0, 1)T , followed
by (1, 1)T . Then we can write â as

â =
©­­­«
â00,00 â00,10 â00,01 â00,11
â10,00 â10,10 â10,01 â10,11
â01,00 â01,10 â01,01 â01,11
â11,00 â11,10 â11,01 â11,11

ª®®®¬ .
Using this notation, we can start computing the Fourier matrix symbol of the red-black Jacobi
method.
We split the computation of the Fourier matrix symbol of the ZR into several parts. We

need to compute the matrix F and the matrix g (see Theorem 3.30) to obtain the matrix
symbol by

â = F∗ · g .

Let us start with the matrix F, which is defined as

Fkj := 1
vol1/2n

ei2π 〈k/n,j〉 for k, j = 0, . . . , n − 1. (3.36 revisited)

To compute F we first compute the matrix B defined by Bkj := 〈k/n, j〉. Recall that in the
case of a 2D red-black Jacobi method n = (2, 2). Thus

B =
©­­­«
0 0 0 0
0 1/2 0 1/2
0 0 1/2 1/2
0 1/2 1/2 1

ª®®®¬ .
Since we can write Fkj =

1
vol1/2n

ei2π 〈k/n,j〉 = 1
2 ei2πBkn , the previous equation yields that

F = 1
2

©­­­«
1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

ª®®®¬ .
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We turn to the computation of the matrix symbol g. It is given by

gkj(θ) = Fkj · â(k)(θ + sj) .

Thus, if we define the matrix C by Ckj := â(k)(θ + sj) then g is the elementwise product of F
and C. The symbols â(k) for k = 0, . . . , n − 1 are determined by the periodic stencil which
defines the filtering operator ZR. The periodic stencil is the identity stencil on the red points
and zero on the black points (3.35a). The symbol â(k) is the Fourier symbol of the stencil
operator that is applied at the grid point tk. Thus, for the red points we have â(k) = 1 and for
the black points â(k) = 0. The red points are k = (0, 0)T and k = (1, 1)T and the black points
are k = (1, 0)T and k = (0, 1)T . Combining these facts gives that

C =
©­­­«
1 1 1 1
0 0 0 0
0 0 0 0
1 1 1 1

ª®®®¬ .
By multiplying F and C elementwise, we obtain

g = 1
2

©­­­«
1 1 1 1
0 0 0 0
0 0 0 0
1 −1 −1 1

ª®®®¬ .
Thus, we obtain the Fourier matrix symbol of ZR by

ẑR = F∗ · g = 1
2

©­­­«
1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

ª®®®¬ .
In the same way we can compute the Fourier matrix symbol of ZB:

ẑB = 1
2

©­­­«
1 0 0 −1
0 1 −1 0
0 −1 1 0
−1 0 0 1

ª®®®¬ .
Using the Fourier matrix symbols we can compute the Fourier matrix symbol of the error

propagator of the red-black Jacobi method as a whole. The error propagator is a combination
of a red and a black error propagator. The red error propagator is given by

ER = I − ωZRD−1 A . (3.33 revisited)

Let us assume that the operator A and D are both given by Fourier symbols â and d̂. As ẑR is
a n × n-matrix symbol, we need to expand â and d̂ to be able to multiply them. Thus, the
Fourier matrix symbol of ER is

êR = 1 − ωẑR · expandn(d̂)−1 · expandn(â) .
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Let us denote âk := â(θ + sk) and d̂k := d̂(θ + sk). Then we can write

expandn(â) =
©­­­«
â00

â10
â01

â11

ª®®®¬ and expandn(d̂) =
©­­­«
d̂00

d̂10
d̂01

d̂11

ª®®®¬ .
Computing the matrix products we obtain

êR = 2
1

©­­­­«
−ω a00

d00
+ 2 0 0 −ω a11

d11
0 −ω a10

d10
+ 2 −ω a01

d01
0

0 −ω a10
d10

−ω a01
d01
+ 2 0

−ω a00
d00

0 0 −ω a11
d11
+ 2

ª®®®®¬
= 2

1

©­­­­«
(1 − ω a00

d00
) + 1 0 0 (1 − ω a11

d11
) − 1

0 (1 − ω a10
d10
) + 1 (1 − ω a01

d01
) − 1 0

0 (1 − ω a10
d10
) − 1 (1 − ω a01

d01
) + 1 0

(1 − ω a00
d00
) − 1 0 0 (1 − ω a11

d11
) + 1

ª®®®®¬
.

Note that ê = 1 − ωâ/d̂ is the symbol of the Jacobi method. Thus,

êR = 2
1

©­­­«
ê00 + 1 0 0 ê11 − 1

0 ê10 + 1 ê01 − 1 0
0 ê10 − 1 ê01 + 1 0

ê00 − 1 0 0 ê11 + 1

ª®®®¬ .
Similarly, we obtain the Fourier matrix symbol of EB; we have that

êB = 2
1

©­­­«
ê00 + 1 0 0 −ê11 + 1

0 ê10 + 1 −ê01 + 1 0
0 −ê10 + 1 ê01 + 1 0

−ê00 + 1 0 0 ê11 + 1

ª®®®¬ .
The Fourier matrix symbol of ERB = EBER is then easily computed by êRB = êB êR.

The Fourier matrix symbol of the Red-Black Jacobi method is well known for 1D, 2D,
and 3D [63, 68, 74]. The reason we presented it here is to show that the concept of periodic
stencils and their Fourier symbols can be used to derive these known result in a unified
fashion. The 1D, 3D, and dD case can be obtained in a similar way. It is even possible to
compute the Fourier matrix symbol of multi-coloring relaxation schemes. All one needs to
do is to define a filtering matrix Zc for every color c and compute its Fourier matrix symbol,
which just requires the computation of the formulas in Theorem 3.30. Then all that is left to
do is to multiply the individual matrix symbols.

3.7. Block Shift Invariance

It is sometimes useful to know whether an operator has a periodic stencil without actually
computing its stencil. For constant stencil operators we can check if an operator is shift
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invariant to see whether it has a constant stencil representation (Theorem 2.38). We shall see
that we can use block shift invariance for the case of periodic stencils. Block shift invariant
operators are defined as follows.

Definition 3.32. An operator A ∈ L(`2(Gh)) is block shift invariant with block size n ∈ �d

if
Sz A = Sz A for all z ∈ Gn·h,

where Sz is the shift operator (2.6).

Note that the difference between shift and block shift invariant operators is subtle.
Comparing this definition to the definition to the definition of shift invariance (2.6), we see
that in the definition of shift invariance we require that Sz A = ASz for all z ∈ Gh while in the
definition of block shift invariance we restrict z to the coarser grid Gn·h. Thus, only shifts by
a multiple of n are considered.
Using this definition we can generalize a result from the non-block case. We know that

operators that have Fourier symbols are shift invariant (Theorem 2.38). A similar statement
is true for operators that have Fourier matrix symbols.

Theorem 3.33. Let A ∈ L(`2(Gh)) with Fourier matrix symbol â ∈ Ln×n
∞ (Θn·h). Then A is

block shift invariant with block size n.

Proof. Similarly to Proposition 2.26, it is sufficient to show that the Fourier representations
fulfill

Ŝz Â = ÂŜz for all z ∈ Gn·z .

Recall
Ŝz f̂ =

{
θ 7→ e−i〈θ,z〉 · f̂ (θ)

}
. (2.17 revisited)

We use this definition and the definition of the matrix multiplication operator to obtain that

[ÂŜzû](θ) = [ÂŜzû](θb + sk)

=

n∑
j=1

âkj · [Ŝzû](θb + sj) =
n∑

j=1
âkj · e−i〈θb+sj,z〉 · û(θb + sj) .

The frequency θb is an n,h-harmonic of (θb + sj) and z ∈ Gn·h thus e−i〈θb+sj,z〉 = e−i〈θb,z〉,
and therefore

[ÂŜzû](θ) = e−i〈θb,z〉 ·
n∑

j=1
âkj · û(θb + sj)

= e−i〈θb,z〉 · [Âû](θb + sj) .

On the other hand, let us compute that

[Ŝz Âû](θ) = [Ŝz Âû](θb + sk)
= e−i〈θb+sk,z〉 · [Âû](θb + sk) .
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Again, the frequency θb is an n,h-harmonic of (θb + sj) and z ∈ Gn·h, which implies that
e−i〈θb+sj,z〉 = e−i〈θb,z〉. Therefore

[Ŝz Âû](θ) = e−i〈θb,z〉 · [Âû](θb) .

Thus, we have shown that

[Ŝz Âû](θ) = e−i〈θb,z〉 · [Âû](θb) = [ÂŜzû](θ) . �

Another generalization of the non-block case is the following relation between block shift
invariant and periodic stencil operators.

Theorem 3.34. Let A be a block shift invariant operator with block size n. Then A is a
periodic stencil operator with block size n.

Proof. Let ez be the canonical basis vector ez(x) = δxy. Recall that then

[Aez](x) =
∑

y∈Gh

sx(y) · ez(x + y) = sx(z − x). (2.7 revisited)

Let v ∈ Gn·h and w, u ∈ Gh. Then

[AS−vev+w+u](u) = [Aew+u](u) = su(w) .

As A is block shift invariant, this equation implies that

[S−v Aev+w+u](u) = [Aev+w+u](u + v) = su+v(w) .

Thus,
su(w) = su+v(w) for all v ∈ Gn·h and w, u ∈ Gh. �

We can now combine the fact that every periodic stencil operator has a Fourier matrix
symbol (Theorem 3.30) with further results from this chapter.

Theorem 3.35. Let A ∈ L(`2(Gh)). Then the following statements are equivalent:
1. The operator A is a periodic stencil operator with period n.
2. The operator A has a Fourier n × n-matrix symbol.
3. The operator A is block shift invariant with block size n.

Proof. Theorem 3.30 yields that statement 1 implies 2. Theorem 3.33 states that statement 2
implies 3. Furthermore, Theorem 3.34 yields that statement 3 implies 1. �

3.8. Expansion

We shall show that the product of two operators that have Fourier matrix symbols always has
a Fourier matrix symbol. Let us consider the operators A, B ∈ L(`2(Gh)) with Fourier matrix
symbols

â ∈ Ln×n
∞ (Θh) and b̂ ∈ Lm×m

∞ (Θh) ,
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where n , m. We cannot obtain the Fourier symbol of AB by multiplying â and b̂, because
their dimensions do not match.
There must be, however, a Fourier matrix symbol of AB for the following reason. We

know from Theorem 3.35 that A has a periodic stencil s with period n, meaning that

sx = ax+y for all y ∈ Gn·h.

We have for every 0 < p ∈ �d that Gp·n·h ⊆ Gh·n. Thus,

sx = ax+y for all y ∈ Gp·n·h.

In other words, A is also represented by a periodic stencil with period p · n, and thus by
Theorem 3.35 we have that A has a Fourier matrix symbol

á ∈ Lp·n×p·n
∞ (Θh).

Analogously, for every 0 < q ∈ �d the operator B has a Fourier matrix symbol

b́ ∈ Lq·m×q·m
∞ (Θh).

By computing the (pointwise) least common multiple of m and n, we find p and q such that
p · n = q ·m. In this case the Fourier matrix symbol of AB can be computed by the product
áb́.

We want to know how to compute á and b́ from â and b̂. We start by showing a connection
between the frequency splittings Rn and Rp·n that we shall need later.

Lemma 3.36. Let 0 < n, p ∈ �d be given and j ∈ �d be related with k ∈ �d and r ∈ �d by

j = k · p + r with 0 ≤ r < p .

Then the frequency splitting operator defined in (3.3) fulfills

[Rp·nû]j =
[
Rp[Rnû]k

]
r .

Proof. From the definition of the frequency splitting operator (3.3), we have that

[Rp·nû]j(θ) = û(θ + sh,p·n
j )

= û
(
θ + 2πj/(p · n · h)

)
= û

(
θ + 2π(k · p + r)/(p · n · h)

)
= û

(
θ + 2πk/(n · h) + 2πr/(p · n · h)

)
= û

(
θ + sh,n

k + sh·n,p
r

)
= [Rnû]k

(
θ + sh·n,p

r
)

=
[
Rp[Rnû]k

]
r(θ). �

We can now use Lemma 3.36, to extend the Fourier matrix symbol of an operator to larger
matrix dimensions.
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Theorem 3.37. Let A be an operator with Fourier matrix symbol â ∈ Ln×n′
∞ (Θh) and

0 < p ∈ �d. Then á ∈ Lp·n×p·n′
∞ (Θp·h), given by

ájj′ =

{
[Rpâkk′]r if r = r′,
0 otherwise,

is also a Fourier matrix symbol of A, where j, j′, k, k′, r, and r′ ∈ �d are related via

j = k · p + r with 0 ≤ r < p
j′ = k′ · p + r′ with 0 ≤ r′ < p .

Proof. From the definition of Fourier matrix symbols (3.16) it follows that it is sufficient to
show

Rq·n Â = áRq·n′ .

Thus, we start by computing [Rp·n Âû]j. Lemma 3.36 yields

[Rp·n Âû]j =
[
Rp[Rn Âû]k

]
r .

Using the fact that Â has the Fourier matrix symbol â, we get that

[Rp·n Âû]j =
[
Rp[RnR−1

n âRn′û]k
]

r =
[
Rp[âRn′û]k

]
r . (3.39)

We inspect the term on the right; by definition of the matrix-vector-product (3.11), we have

[âRn′û]k =
n′−1∑
k′=0

âkk′ · [Rn′û]k′ .

Note that R is linear and in general Rp( f̂ · ĝ) = [Rp f̂ ] · [Rpĝ], which is easy to see from the
definition of Rp. Thus,

[
Rp[âRn′û]k

]
r =

n′−1∑
k′=0
[Rpâkk′]r ·

[
Rp[Rn′û]k′

]
r .

If we plug this relation into (3.39), we get

[Rp·n Âû]j =
n′−1∑
k′=0
[Rpâkk′]r ·

[
Rp[Rn′û]k′

]
r

To rewrite the right hand side into a p · n × p · n′-matrix-vector-product, we need to sum over
j′ = 0, . . . , p · n′ instead of k′. As we defined ájj′ to be zero for r , r′, we can write

[Rp·n Âû]j =
p·n′−1∑
j′=0

ájj′ ·
[
Rp[Rn′û]k′

]
r .
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Again, as ájj′ is zero for r , r′, we can replace r by r′ to get

[Rp·n Âû]j =
p·n′−1∑
j′=0

ájj′ ·
[
Rp[Rnû]k′

]
r′ =

p·n′−1∑
j′=0

ájj′ · [Rp·n′û]j′ . �

In our previous discussion we assumed that the Fourier matrix symbols of A and B were
square. This is, however, not required. Assume that the operator A ∈ L(`2(Gh′′); `2(Gh′)) and
B ∈ L(`2(Gh′); `2(Gh))with Fourier matrix symbols â ∈ Ln×n′

∞ (Θn′ ·h′) and b̂ ∈ Lm×m′
∞ (Θm·h′).

Then we can find 0 < p, q ∈ �d such that p · n′ = q ·m. According to Theorem 3.37 there
exists Fourier matrix symbols á ∈ Lpn×pn′

∞ (Θp·n′ ·h′) and b́ ∈ Lqm×qm′
∞ (Θq·m·h′) of A and B.

Thus, the Fourier matrix symbol of AB is given by á · b́.
This is an important result. It means that the set of operators that have Fourier matrix

symbols is closed under multiplication. Thus, whenever we multiply two operators that have
Fourier matrix symbols we are sure that the result will also have a Fourier matrix symbol.
In a similar way, we can show that the set of Fourier matrix symbols is closed under

addition. Let A ∈ L(`2(Gh′); `2(Gh) and B ∈ L(`2(Gh′); `2(Gh)) be operators with Fourier
matrix symbols. Then the operator A + B also has a Fourier matrix symbol.

3.9. Smoothing Factor

If the error propagator S of a smoother has an ordinary Fourier symbol ŝ then the smoothing
factor, as discussed in Section 2.5, is given by

smf(S, n) := r(Sν2QnSν1) = r(Ŝν2Q̂nŜν1) = ‖ ŝν2 · q̂n · ŝν1 ‖∞ . (2.20 revisited)

When ŝ is not a Fourier symbol but a Fourier matrix symbol of S we have two problems.
First, the we cannot multiply ŝ and q̂n, as their dimensions do not match. Second, the right
most equality does not hold anymore.
The first problem can be addressed by expanding the operators ŝ and q̂n to ś and q́n such

that their dimensions match. Then the product

ê := śν2 · q́n · śν1

is defined and is the Fourier matrix symbol of Sν2QnSν1 .
The second problem can be addressed by using Theorem 3.26. It gives a way to compute

the spectral radius from the Fourier matrix symbol of an operator. Thus, if the smoother is
represented by a Fourier matrix symbol, we can define the smoothing factor as

smf(S, n) := r(Sν2QnSν1) = ess-supθ∈Θn·h r(śν2(θ) · q́n(θ) · śν1(θ)) . (3.40)

3.10. Three- and n-Grid Analysis

To this point we only considered the analysis of the two-grid method. Using the expansion
of Fourier matrix symbols, we can compute the Fourier matrix symbol of any sum or
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composition of operators if the operators themselves have Fourier matrix symbols. With this
ability, we can easily analyze a multigrid method consisting of any desired number of levels.

Theorem 1.10 states that the error propagator of a multigrid method with L levels is given
recursively by

Ei = Sν2
i (I − P(I − Eη

i+1)A
−1
i+1RAi)Sν1

i for i < L,
Ei = 0 for i = L.

(1.37 revisited)

Thus, we can compute the Fourier matrix symbol of E1 by writing down the Fourier matrix
symbol of all involved operators and then, after a proper expansion of the symbols, they can
be added and multiplied as required by the formula. Therefore, we can perform an analysis
of multigrid methods using an arbitrary number of grids.

3.11. Literature and Contributions

We started this chapter with a discussion about the Fourier representation of the injection
restriction and interpolation, followed by an introduction to (Fourier) matrix symbols. These
results are well known [11, 63, 68, 74].

After this discussion, we considered the interpretation and visualization of matrix symbols
(Section 3.4), which has not been examined in the literature so far.

This discussion was followed by the description of the spectral properties of matrix
multiplication operators. The formulas for the norm and the spectrum of these operators
have been known for some time (cf. [8] and [39], respectively). The formula for the spectral
radius, however, (Lemma 3.28) has been missing from the literature so far.
These results were followed by the discussion of the Fourier matrix symbols of periodic

stencil operators, a theorem about block shift invariance, and the description of the general
expansion of operators with Fourier matrix symbols. These results are original to this thesis.

With the introduction of periodic stencils and their Fourier analysis we were able to widen
the applicability of LFA. There are, of course, still problems where LFA has not been applied
successfully, which can be found, e.g., in [23–25, 52].
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Fourier matrix symbols allow us to represent periodic stencil operators and therefore analyze
problems that can be represented on an infinite grid by periodic stencil operators. In this
chapter we analyze two advanced problems—a PDE with jumping coefficient, and block
smoothers.

4.1. PDEs with Jumping Coefficients

Consider the PDE

−∇ · (a∇u) = f on Ω (4.1a)
u = g on ∂Ω . (4.1b)

In this equation a : Ω→ � and a > 0. Furthermore, ∇u for u : Ω→ � is the gradient of u,
defined by

∇u := ( ∂u∂x1
, . . . , ∂u∂xd )

T ,

and ∇ · w for w : Ω→ �d is the divergence of w, defined by

∇ · w := ∂w1
∂x1
+ · · · + ∂wd

∂xd
.

We assume that the domain Ω is partitioned into several sub-domains, and a is constant on
every of these sub-domains. The function a, however, is allowed to vary by several orders of
magnitude between different sub-domains, e.g., as depicted in Figure 4.1.
This PDE models, e.g., the stationary temperature distribution u in some material that is

heated or cooled. The heating or cooling is described by the function f while the temperature
at the boundary is held fixed at the value described by g. The coefficient a then is the thermal

Ω

a = 1 a = 106

x1

x 2

Figure 4.1.: The domain Ω is split into two sub-domains where the value of a is different.
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x1

x2

Figure 4.2.: The domain Ω split into control volumes Ωi. The crosses mark the degree of
freedom of the control volume.

conductivity [78]. When a is large at position x, then the material conducts heat very well at
this point, i.e., heat is transferred fast through the material. If a is small, then the material
insulates heat well, i.e., the heat is transferred slowly. The value of a jumps by several orders
of magnitude, e.g., when the domain Ω is filled with different materials that have different
thermal conductivities.

The jump in the coefficient a causes problems when discretizing the PDE (4.1); it is well
known that the solution ∇u will not be continuous in general. Thus, approximating the
derivatives by ordinary finite differences leads to large errors. In this case the finite volume
method [44, 68, 73] is a better approximation.

4.1.1. Finite Volume Method

The finite volume method can be applied to a wide variety of domains. However, since the
principles of the method can be well explained by deriving the method for a specific domain,
let us for simplicity assume that Ω ⊆ �d and that Ω is a rectangle. The main idea of the
finite volume method is to partition the domain Ω into small (non-overlapping) sub-domains
Ωi—the control volumes. Again, for simplicity assume that the control volumes Ωi are
rectangles as depicted in Figure 4.2 and that the coefficient a is constant within a control
volume. We assign a degree of freedom to every control volume Ωi. In our case, if the
control volume lies in the interior of the domain we choose the function value u(xi) at the
center xi of the control volume; if the control volume lies at the boundary of the domain
we locate xi at the boundary. The degrees of freedom are marked by crosses in Figure 4.2.
These are the positions where we want to compute the function values of u.

To determine u(xi) for i = 1, . . . , n we need a set of n equations—one equation for every
degree of freedom, i.e., for every control volume Ωi. We obtain n equations by integrating
both sides of the PDE (4.1a) over Ωi for i = 1, . . . , n. Thus, we demand that

−
∫
Ωi

∇ · (a∇u) dV =
∫
Ωi

f dV for i = 1, . . . , n . (4.2)
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This set of equations still involves all function values of u. Since, we want to compute u only
at the points xi, we need to approximate the integrals in a way that involves the function
values of u only at the points xi. Furthermore, we need to approximate the integral on the
right hand side, as its exact value will be usually not available.
The integral on the right hand side of (4.2) is readily approximated by the midpoint rule.

Thus, if we denote h1 as the width and h2 as the height of the control volume then∫
Ωi

f dV ≈ h1h2 · f (xi,1, xi,2) . (4.3)

The first step is to relate neighboring control volumes by using Gauss’ divergence theorem
[4, 20, 43], which states that for a vector field F : Ω→ �we have that∫

Ω

∇ · F dV =
∫
∂Ω
〈F, n〉 dS ,

where n is the outward-pointing unit normal of Ω. Applying this equation to the left hand
side of (4.2) yields that

−
∫
Ωi

∇ · (a∇u) dV = −
∫
∂Ωi

〈a∇u, n〉 dS .

In our case the control volumes Ωi are rectangles with sides Ei = {ei,n, ei,w, ei,s, ei,e}, which
are shown in Figure 4.3. Thus, the integral over the boundary of Ωi becomes a sum over the
integral over the edges, i.e.,

−
∫
Ωi

∇ · (a∇u) dV = −
∑
e∈Ei

∫
e

〈a∇u, n〉 dS . (4.4)

Consequently, we are left with the approximation of the integrals over the edges.
Let us approximate the integrals over the edges. We start with the east edge ei,e of the ith

control volume Ωi. In the following we focus only on the edge of one control volume. We,
therefore, suppress the index i, i.e., x is the center of the control volume we consider and ee
is its east edge. First of all, since the normal of the edge is pointing in the x1-direction,∫

ee

(a∇u) · n dS =
∫
ee

a · ∂u∂x1
dS .

If we denote h1 as the width of the control volume and h2 as the height we have∫
ee

(a∇u) · n dS =
∫ x2+h2/2

x2−h2/2
a ∂u
∂x1

(
x1 +

h1
2 , x2

)
dx2 .

Recall that we assumed a to be constant on Ωi . Thus, application of the midpoint rule yields
that ∫

ee

(a∇u) · n dS ≈ h2 · a(x1, x2) · ∂u∂x1
(x1 +

h1
2 , x2) , (4.5)
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ei,n

ei,s

e
i,e

e i
,w

x1 (x1 + h1)(x1 +
h1
2 )

x2

Figure 4.3.: The edges and edge mid-points of a control volume.

where we used that a(x1 +
h1
2 , x2) = a(x1, x2). It remains to approximate the partial derivative

of u in x1-direction at the point (x1 +
h1
2 , x2).

The approximation of the partial derivative requires some special care. The coefficient
a can be discontinuous at the point (x1 +

h1
2 , x2). Hence, the partial derivative ∂u

∂x1
can be

discontinuous at that point, too, implying that a Taylor series expansion of u is only an
approximation of u to the point of discontinuity, but not beyond. Thus, we approximate the
partial derivative by

∂u
∂x1

(
x1 +

h1
2 , x2

)
≈

u
(
x1 +

h1
2 , x2

)
−u

(
x1, x2

)
h1/2

. (4.6)

Therefore, we need to find a way to approximate u(x1 +
h1
2 , x2).

To approximate the function value at the control volume midpoint we use the following
relation. We know that the flux a∇u is continuous, in particular that

lim
x̄1↗

(
x1+

h1
2

) a(x̄1, x2) ·
∂u
∂x1
(x̄1, x2) = lim

x̄1↘
(
x1+

h1
2

) a(x̄1, x2) ·
∂u
∂x1
(x̄1, x2) .

If we plug in the approximation (4.6) for the left hand side and a similar finite difference for
the right hand side we get the equation

a(x1, x2) ·
u
(
x1 +

h1
2 , x2

)
−u

(
x1, x2

)
h1/2

= a(x1 + h1, x2) ·
u
(
x1 + h1, x2

)
−u

(
x1 +

h1
2 , x2

)
h1/2

.

112



4.1. PDEs with Jumping Coefficients

Solving for u
(
x1 +

h1
2 , x2

)
gives that

u
(
x1 +

h1
2 , x2

)
=

a(x1, x2)u(x1, x2) + a(x1 + h1, x2)u(x1 + h1, x2)
a(x1, x2) + a(x1 + h1, x2)

,

which can be plugged into (4.6) to yield after a few algebraic simplifications that

∂u
∂x1

(
x1 +

h1
2 , x2

)
≈ 2

h1
· a(x1 + h1, x2)

a(x1, x2) + a(x1 + h1, x2)

[
u(x1 + h1, x2) − u(x1, x2)

]
. (4.7)

We have arrived at an expression that involves the values of u only at xi for i = 1, . . . , n.
Hence, it remains to put the individual pieces together.
To obtain the final set of equations we start by substituting (4.7) back into (4.5), which

gives that ∫
ee

(a∇u) · n dS ≈ ωe ·
[
u(xe) − u(x)

]
where

xe = (x1 + h1, x2) and ωe =
2h2

h1
· a(x) · a(xe)

a(x) + a(xe)
. (4.8a)

Similarly if we define

xw = (x1 − h1, x2) , ωw =
2h2

h1
· a(x) · a(xw)

a(x) + a(xw)
, (4.8b)

xn = (x1, x2 + h2) , ωn =
2h1

h2
· a(x) · a(xn)

a(x) + a(xn)
, (4.8c)

xs = (x1, x2 − h2) , ωs =
2h1

h2
· a(x) · a(xs)

a(x) + a(xs)
(4.8d)

then ∫
ed

(a∇u) · n dS ≈ ωd ·
[
u(xd) − u(x)

]
for d ∈ {n, e, s,w} .

Using that the integral over the control volume can be computed by the sum over the integrals
over the edges, i.e,

−
∫
Ωi

∇ · (a∇u) dV = −
∑
e∈Ei

∫
e

〈a∇u, n〉 dS , (4.4 revisited)

we obtain
−

∫
Ωi

∇ · (a∇u) dV ≈ −
∑

d∈{n,e,s,w}
ωd

[
u(xd) − u(x)

]
. (4.9)

We can now plug this approximation and the approximation of the right hand side (4.3) into

−
∫
Ωi

∇ · (a∇u) dV =
∫
Ωi

f dV for i = 1, . . . , n , (4.2 revisited)
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and obtain the set of equations

−
∑

d∈{n,e,s,w}
ωd

[
u(xi,d) − u(xi))

]
= h1h2 · f (xi,1, xi,2) for i = 1, . . . , n .

This is a linear set of equations which can be solved to obtain the approximations of u at the
points xi. Note that the left hand side can be represented by the stencil

−ωn
−ωw (ωn + ωe + ωs + ωw) −ωe

−ωs

h

. (4.10)

4.1.2. Fourier Analysis I

We want to construct a multigrid method that solves the linear system from the finite volume
discretization of the PDE (4.1a), whose coefficient a has a jump. To construct a multigrid
method, we need to pick a smoother and a coarse grid correction that work well together. Let
us start with the smoother.

We consider the weighted Jacobi method and want to knowwhether it is a suitable smoother
for this problem. To answer this question we perform an LFA for the error propagator of the
Jacobi method given by

E = I − ωD−1 A . (1.33 revisited)

In this equation A is the matrix constructed by the finite volume method and D its diagonal
entries.

To perform an LFA we need to extend all operators to the infinite grid Gh. The operator A
can be easily extended to the whole grid by using the stencil of the finite volume method
(4.10) for the whole grid. Then D is also defined on Gh. The stencil, however, depends on
the coefficient a. Thus, a has to be defined on the whole space �2.
Let us consider the situation where a is constant along vertical stripes in the domain �2,

and the coefficient a alternates between a = 1 and a = 106 as shown in Figure 4.4. To use the
finite volume discretization, the jumps in the coefficient have to be aligned with the boundary
of a control volume. Furthermore, if we pick a to be periodic, then A is given by a periodic
stencil, which can be shown by an easy calculation. Thus, we choose p = n · h (with n1 even)
and a p-periodic with

a(x) = 1 for all 0 ≤ x1 +
h1
2 <

p1
2

a(x) = 106 for all p1
2 ≤ x1 +

h1
2 < p1 .

In this case we know how to perform an LFA.
We compute the Fourier matrix symbols â and d̂ of A and D using Theorem 3.30. Then

ê = 1 − ωd̂−1â

is the Fourier matrix symbol of the error propagator of the Jacobi method. Figure 4.5 shows
the frequency emission for ω = 0.8. The large values of the frequency emission are located in

114



4.1. PDEs with Jumping Coefficients

Figure 4.4.: The pattern for the jumping coefficient. In the gray region a = 1 and in the white
region a = 106.
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Figure 4.5.: The values of the frequency emission of the error propagator of the weighted
Jacobi method. The method is applied to the jumping coefficient problem and
ω = 0.8.
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the corners of the plot, where the low frequencies are located. In other words, the frequencies
that dominate the output of E are the low frequencies. Thus, the output should be slowly
varying, and the weighted Jacobi method is therefore a suitable smoother for the jumping
coefficient problem.
Let us now turn to the choice of an effective coarse grid correction. We need to choose:

a coarse step-size H, an interpolation P : `2(GH ) → `2(Gh), a restriction R : `2(Gh) →
`2(GH ), and a coarse grid approximation AH : `2(GH ) → `2(GH ). For the coarse step-size
we pick H = 2h. We have seen that the Jacobi method produces a slowly varying error
when applied to the jumping coefficient problem. Hence, as a slowly varying error is well
approximated by linear interpolation, we choose P as linear interpolation. For the restriction
we then choose R = P∗.

Rediscretizing the PDE on the coarse grid with step-size H does not give a good coarse grid
approximation. Recall that the finite volume method requires that the jump in the coefficient
be located as the boundary of the control volume. Even if this condition is fulfilled for the
step-size h, it might be violated for the step-size H. Hence, we cannot choose AH as the
finite volume discretization of the problem on the coarse grid GH but rather choose AH to be
the Galerkin coarse grid approximation, i.e.,

AH := RAhP .

This completes the two-grid method.
We can now analyze the two-grid method by using LFA. The error propagator of the

method is
ETG = Sν2(I − PA−1

H RAh)Sν1 . (1.35 revisited)

Since all operators on the right hand side of the equation have Fourier matrix symbols, the
Fourier matrix symbol of ETG is

êTG = ŝν2(1 − p̂â−1
H r̂ âh)ŝν1 .

From the symbol we compute the norm and spectral radius of the error propagator ETG. We
have

r(E) = 0.46 and ‖E ‖ = 0.91,

i.e., on the one hand the spectral radius is small, indicating an efficient method, on the other
hand the norm is large, indicating an inefficient method.

The difference between the spectral radius and the norm can be interpreted as follows. The
spectral radius describes the asymptotic behavior of the method, and a small spectral radius
means that the method works well when many iterations are performed. The norm describes
the worst case behavior of the method when just a single iteration is performed, and a large
norm means that for just a few iterations the method can indeed be inefficient.
This behavior can be explained by LFA. We have already seen that the Jacobi method

works well as a smoother for this problem; let us take a look at the coarse grid correction.
The error propagator of the coarse grid correction is

ECGC = I − PA−1
H RAh . (1.34 revisited)
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Figure 4.6.: Frequency damping of the coarse grid correction applied to the jumping coeffi-
cient problem.

Thus, its Fourier matrix symbol is

êCGC = 1 − p̂â−1
H r̂ âh .

Figure 4.6 displays the frequency damping of the coarse grid correction êCGC. We see that
some high frequencies are amplified and that the largest amplification factor is 1.8. This
observation explains the behavior of the method.
During the first few iterations the error is oscillatory, and the coarse grid correction is

applied to an oscillatory function, which amplifies certain parts of its frequencies. Hence, we
expect a bad convergence rate in the beginning. During later iterations the error becomes
slowly varying and the coarse grid correction works efficiently. So why does the coarse grid
correction behaves that way?
Linear interpolation is not a good choice when we have a jump in the coefficient. As the

coefficient is discontinuous, we expect the solution u to have a kink at the line of discontinuity.
Thus, in the beginning, when the error is just the solution, linear interpolation should be able
to interpolate functions with a kink. Linear interpolation, however, approximates a point
badly if the kink appears between two neighboring coarse grid points. Therefore, we need a
better interpolation, which we derive in the next section.

4.1.3. Adaptive Interpolation

We shall describe the operator dependent interpolation introduced in [3, 17]. As the name
suggests, this interpolation operator is derived from the stencil of the jumping coefficient
differential operator in (4.1). We first describe how linear interpolation can be derived from
the Laplace operator, then we show how this idea carries over to the differential operator
from (4.1).

Linear Interpolation

Linear interpolation is not well suited for the jumping coefficient problem. If the coefficient
a is constant then we know that ∇u is continuous. If a is discontinuous, however, ∇u is not
constant—only a∇u is. We shall see, why this fact is a problem for linear interpolation.
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Figure 4.7.: The splitting of the grid into coarse and fine grid points.

Let us show how the assumption that∇u is continuous, naturally leads to linear interpolation.
Consider the following 1D interpolation problem. Let x0 < x1 be given. We want to
approximate a function u on the interval [x0, x1] by a function ũ, and we know the values
u(x0), u(x1), and that u′ is continuous. That u′ is continuous means that it can be approximated
locally by a constant. Thus, we want that our approximation ũ fulfills that ũ′ is constant,
ũ(x0) = u(x0), and ũ(x1) = u(x1). This constraint, however, completely determines ũ and ũ is
linear interpolation of the points (x0, u(x0)) and (x1, u(x1)).
The assumption that u′ is continuous is crucial for ũ being a good approximation to u. If

u′ is discontinuous then the graph of u is in general not well approximated by a straight line.
Let us now construct an approximation ũ of a function u defined on Gh using only the

function values at G2h. In other words, we know the function value of u at the squares,
shown in Figure 4.7, and want to approximate u at the triangles and circles. The values at the
triangles can easily be interpolated by the one dimensional interpolation discussed above.
The values at the upward pointing triangles can be interpolated from the values at the squares
above and below the triangle. The values at the downward pointing triangles can interpolated
from the values at the squares to their left and right. Approximating the values at the circles
requires a bit more work.

The function values at the circles could be approximated by the 1D interpolation from the
already interpolated values at upward pointing triangles or from the values at the downward
pointing triangles. We show, however, another approach that generalizes to the jumping
coefficient case. Let us assume that there is an approximation function ũ. We know that ∇u
is continuous. Hence, it is reasonable to require that ∂ũ

∂x1
and ∂ũ

∂x2
are constant, which implies

that ∂
2ũ
∂x2

1
= 0 and ∂2ũ

∂x2
2
= 0. Therefore,

∂2ũ
∂x2

1
+
∂2ũ
∂x2

2
= 0 .

This is the Poisson equation and we have the approximation

∆hũ(x) = 0

given in (1.49). Thus,

1
h2

(
ũ(xn) + ũ(xe) − 4ũ(x) + ũ(xs) + ũ(xw)

)
= 0 ,

118



4.1. PDEs with Jumping Coefficients

where we used the notation from Section 1.5.2. The last equation implies

ũ(x) = 1
4

(
ũ(xn) + ũ(xe) + ũ(xs) + ũ(xw)

)
.

A simple calculation shows that this formula is the (bi-)linear interpolation introduced in
(1.50).

Operator Dependent Interpolation

In the case of a jumping coefficient we cannot assume that ∇u is continuous. However, a∇u
can be assumed to be continuous. We shall derive an approximation to ũ along the lines of
the previous section.
Let us start with the 1D case. We assume that
1. we are given the points x1 < x̄ < x2 and function values u(x1) and u(x2),
2. the coefficient a is piecewise constant and has one jump at x̄, i.e.,

a(x) =
{

a1 for x < x̄,
a2 for x̄ ≤ x,

with a1, a2 ∈ �, and
3. the functions u and au′ are continuous.

Let us construct an interpolation function ũ. We know that au′ is continuous, consequently
we assume that if aũ′ is equal to a constant c, then ũ is a good approximation for u. This
condition is fulfilled if

ũ′(x) =
{

c/a1 for x < x̄,
c/a2 for x ≥ x̄.

Integrating ũ′ yields

ũ(x) =
{

d1 + c/a1 · x for x < x̄,
d2 + c/a2 · x for x ≥ x̄.

We want ũ(x1) = u(x1), ũ(x2) = u(x2), and ũ to be continuous, i.e., lim↗x̄ ũ(x) = lim↙x̄ ũ(x).
These equations can be written as

d1 +
c
a1
· x1 = u(x1) ,

d2 +
c
a2
· x2 = u(x2) ,

d1 +
c
a1
· x̄ = d2 +

c
a2
· x̄ .

These three equations form a linear system w.r.t. the variables d1, d2, and c. Solving the
system for c gives

c =
a1 · a2

(x̄ − x1)a2 + (x2 − x̄)a1

[
u(x2) − u(x1)

]
. (4.11)
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Knowing c, we can easily compute d1 and d2.
With this knowledge we can turn to the case of the finite volume method. In this case, the

coefficient can be discontinuous at the left and at the right boundary of the control volume.
Thus, if we want to interpolate the function value at the center of the control volume, we
need to construct an interpolation function where a is allowed to have two discontinuities
instead of one.
Let x0, h1 ∈ �, and let us assume that we know u(x0 − h1) and u(x0 + h1). Furthermore

the coefficient a is given by

a(x) =


a1 for x < x1 − h1 ,

a2 for x1 − h1 ≤ x < x0 + h1 ,

a3 for x0 + h1 ≤ x .

We want to find an approximation ũ for u with

ũ(x0 − h1) = u(x0 − h1) , ũ(x0 + h1) = u(x0 + h1) , and aũ′ constant.

These are nearly the same conditions as for the approximation of the beginning of this section.
The only difference is the number of jumps of a. We can, however, reduce this problem in
the following way to the case considered before. Let

ũ(x) :=

{
ũw(x) for x < x0 ,

ũe(x) for x ≥ x0 ,

where

ũw(x0 − h1) = u(x0 − h1) , ũw(x0) = y0 , aũ′ constant for x < x0,
ũe(x0) = y0 , ũw(x0 + h1) = u(x0 + h1) , aũ′ constant for x < x0 .

In other words, the function uw approximates the left half of u while the function ue
approximates the right half of u. In order to guarantee that aũ′ is constant, we need that

aũ′w(x0) = aũ′e(x0) . (4.12)

Note that aũ′w = c, which we can use in (4.11) to obtain that

aũ′w(x0) =
2
h1
· a1 · a2

a1 + a2
·
[
y0 − u(x0 − h1)

]
.

We realize that the factor on the right hand side is ωw
h2

from the finite volume method (4.8).
Thus,

aũ′w(x0) =
ωw

h2
·
[
y0 − u(x0 − h1)

]
.

In a similar way,

aũ′e(x0) =
2
h1
· a2 · a3

a2 + a3
·
[
u(x0 + h1) − y0

]
=
ωe

h2
·
[
u(x0 + h1) − y0

]
.
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Plugging these formulas for aũ′w(x0) and aũ′e(x0) into the equation (4.12), we have that

ωw

h2
·
[
y0 − u(x0 − h1)

]
=
ωe

h2
·
[
u(x0 + h1) − y0

]
.

This equation can be solved for y0, which gives that

y0 =
ωw

ωw + ωe
· u(x0 − h1) +

ωe

ωw + ωe
· u(x0 + h1) . (4.13)

From this equation we see that the interpolation weights for the interpolation operator, needed
for the finite volume method, can be derived from the stencil of the finite volume method.
Therefore, this interpolation is also called operator dependent interpolation.

Let us now consider the case of a 2D grid. We want to construct an interpolation that
takes the function values u(x) for x ∈ G2h and gives an approximation ũ(x) for x ∈ Gh. From
Figure 4.7 we see that we need to consider four cases.
(1) We consider a point x ∈ G2h, denoted by a square in Figure 4.7. Since we know the

function value u(x) for x ∈ G2h, we set

ũ(x) = u(x) .

(2) We consider a point x, denoted by a downward pointing triangle in Figure 4.7 that is
located on the horizontal line between two points from G2h. As these two points and x lie on
a line, we can use the 1D interpolation formula (4.13), i.e.,

ũ(x) = ωw

ωw + ωe
· u(x1 − h1, x2) +

ωe

ωw + ωe
· u(x1 + h1, x2) .

(3) We consider a point x, denoted by a upward pointing triangle in Figure 4.7 that is
located on the vertical line between two points from G2h. Like in the second case we set

ũ(x) = ωs

ωs + ωn
· u(x1, x2 − h2) +

ωn

ωs + ωn
· u(x1, x2 + h2) .

(4) We consider a point x, denoted by a circle in Figure 4.7 that is at the center of four
coarse grid points. In this case we compute ũ(x) by using the points computed in the second
and third case. As we stated earlier, under the assumption that a∇u is continuous, it is
reasonable to assume that ũ is a good approximation if a ∂ũ

∂x1
and a ∂ũ

∂x2
are constant, implying

that
∂

∂x1

(
a
∂ũ
∂x1

)
= 0 and

∂

∂x2

(
a
∂ũ
∂x2

)
= 0 .

Adding the two equations yields
∇ · (a∇ũ) = 0 . (4.14)

Recall that

−
∫
Ωi

∇ · (a∇u) dV ≈ −
∑

d∈{n,e,s,w}
ωd

[
u(xd) − u(x)

]
(4.9 revisited)
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and the volume of the control volume Ωi is h1 · h2. If we assume that the control volume is
small, then

∇ · (a∇ũ) ≈ 1
h1h2

∑
d∈{n,e,s,w}

ωd

[
ũ(x) − ũ(xd)

]
.

Plugging this approximation into (4.14) and solving for ũ(x) then gives

ũ(x) = 1
ωn + ωe + ωs + ωw

·
[
ωnũ(xn) + ωeũ(xe) + ωsũ(xs) + ωwũ(xw)

]
.

Remark 4.1. This interpolation is only a good choice for a two-grid method. Using this
interpolation in the Galerkin coarse grid approximation leads to a 9-point stencil. Thus, for
the third level the interpolation should be adapted. For the adapted version of the interpolation
see [3, 17].

4.1.4. Fourier Analysis II

The adaptive interpolation, introduced in the previous section, allows us to construct a new
two-grid method. Let P be the adaptive interpolation, let the restriction by given by R = P∗,
and let the coarse grid approximation fulfill AH = RAhP = P∗AhP. Furthermore, we choose
the Jacobi method for smoothing the error. These choices determine the two-grid method.
We can analyze the effectiveness of the new method by inspecting the Fourier matrix

symbols of the involved error propagators. We start with the symbol of the error propagator
of the coarse grid correction, which is given by

êCGC = 1 − p̂(p̂∗âh p̂)−1 p̂∗âh ,

where p̂ and âh are the Fourier matrix symbols of P and A. Figure 4.8 shows the frequency
damping of êCGC. When comparing this Figure to Figure 4.6, we see that the large
amplifications of some of the oscillatorymodes are gonewhen using the adaptive interpolation.
Thus, the new coarse grid correction can be used with oscillatory functions. In this case the
slowly varying part of the error is reduced, while the oscillatory part remains unchanged.
The Fourier matrix symbol of the error propagator of the whole two-grid method gives

further information about the effectiveness of the method. The symbol of the two-grid
method is

êTG = ŝν2 · êCGC · ŝν1 ,

where ŝ is the symbol of the error propagator of the Jacobi method. From the symbol êTG
we compute the norm and spectral radius of the error propagator. The results for the new
two-grid method and the two-grid method that uses linear interpolation are listed in Table 4.1.
In there we see that the adaptive interpolation reduces the norm of ETG substantially, meaning
that the new method works better during the first iterations than the old one. Furthermore,
we see that the spectral radius is also reduced, i.e., the asymptotic convergence rate improves.
All in all, the method is improved by using the adaptive interpolation.
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Figure 4.8.: Frequency damping of the coarse grid correction with adaptive interpolation
applied to the jumping coefficient problem.

Linear Interpolation Adaptive

r(ETG) 0.46 0.36
‖ETG‖ 0.91 0.53

Table 4.1.: Comparison of linear interpolation and adaptive two-grid method.

4.1.5. Numerical Evaluation

Local Fourier analysis is an idealized analysis. It assumes that the problem is posed on an
infinite grid, while in real computations we can, of course, only work with finite grids. Thus,
we want to compare our prediction, that the spectral radius of the adaptive two-grid method
ρ(ETG) = 0.36 (see Table 4.1), to an actual run of the method.
For the finite grid we choose the domain byΩ = (0, 1) × (0, 1), as the unit square, and apply

Dirichlet boundary conditions on ∂Ω. We discretize the domain by a regular 33 × 33 grid.
Furthermore, we choose the coefficient a(x) in the following way. In the center of the domain
we let a(x) alternate in the x1 direction between 1 and 106 eleven times. More precisely, we
change the value of a(x) in this area changes every two control volumes. Thus, in this area,
the coefficient a consists of eleven strips of width 2h. For this case we compute the spectral
radius of the adaptive two-grid method with Jacobi (ω = 0.8) and obtain ρ(E real

TG ) = 0.36,
which is in perfect agreement with our prediction.

When running the method on a finite grid, we observe that the number of jumps does
not influence the convergence rate. Hence, we wonder whether the Fourier analysis is also
able to predict the behavior of a domain that contains just one jump. Thus, we run the same
experiment again with

a(x) =
{

106 if x1 < 1/2
1 if x1 ≥ 1/2

.

When we compute the spectral radius, we obtain ρ(E real
TG ) = 0.36, which is still in perfect

agreement with the prediction, even though we have just one jump in the domain and our
analysis assumes that we have infinitely many jumps.
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4.2. Block Smoothers

In every iteration pointwise smoothers solve a large number of linear systems in one variable;
block smoothers solve fewer linear systems, but each system has more than one variable.
We shall show, using Fourier matrix symbols, how this difference affects the smoothing
properties of the methods.

4.2.1. Block Jacobi

The block Jacobi method is a generalization of the Jacobi method. It has often a better
convergence rate than the plain Jacobi method but requires a larger amount of arithmetic
operations per iteration.

Derivation of the Block Jacobi Method

Recall the basic idea of the weighted Jacobi method. The method produces a sequence
of iterates u0, u1, . . . . To compute the (k + 1)th iterate the method computes corrections
v1, . . . , vn. Then the new iterate is computed by adding the corrections to the old iterate, i.e.,

uk+1 = uk + ω · (v1 + · · · + vn) . (1.17 revisited)

Let us for simplicity of the discussion assume that ω = 1. Thus,

uk+1 = uk + v1 + · · · + vn .

From this equation we obtain that the (k + 1)th residual is given by

ruk+1 = f − A(uk + v1 + · · · + vn) = ruk − Av1 − · · · − Avn .

The correction vi is chosen such that the ith component of the correction residual, which is
given by

ruk+vi = b − A(uk + vi) = ruk − Avi ,

is zero. Thus, the ith component of Avi annihilates the ith component of the residual ruk . If
the ith component of the residual is nonzero then the ith component of Avi is nonzero. The
vector Avi, however, has in general further nonzero entries. If we would just apply the ith
correction this fact would not be a problem. After the correction the ith component of the
residual would be zero. We apply, however, further corrections vj and for some of them
the ith component of Avj is nonzero, which changes the ith entry of the residual back to a
nonzero value; the corrections interfere.
In other words, the purpose of the ith correction vi is a to annihilate the ith component

of the residual. As a side-effect, however, it alters other components of the residual as
well. Thus, if the side-effect is small, the method converges fast. If the side effect is large,
the method converges slowly or even diverges. The idea of the block Jacobi method is to
reduce the side-effects by constructing corrections that annihilate multiple components of
the residual at once. Using this construction, less corrections per iteration are needed which
leads to less interference between the corrections and is done as follows.
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4.2. Block Smoothers

Let S1, . . . , Sm be non-empty subsets of {1, . . . , n}. The ith correction should annihilate
the components of the correction residual whose indices are contained in Si, i.e.,

0 = ruk+vi, j = ( f − A(uk + vi))j for j ∈ Si . (4.15)

In the Jacobi method we required that the correction had the form αei where α ∈ � and
ei was the ith unit vector. Consequently α was the only degree of freedom. One degree
of freedom, however, is in general not enough to annihilate multiple components of the
correction residual. Hence, we require the components of the correction vi to be zero for all
indices not in Si and allow arbitrary values for all indices in Si, i.e.,

vi ∈ span{e` : ` ∈ Si} . (4.16)

When the corrections have been computed we can update the iterate. The new iterate is
computed from the old iterate by

uk+1 = uk + ω · (v1 + · · · + vm) . (4.17)

The difference to the update (1.17) is that we now apply only m corrections instead of n.
The method that we described so far is called block Jacobi method, if the sets S1, . . . , Sm

form a partition of the index set {1, . . . , n}, i.e.,
1. S1 ∪ S2 ∪ · · · ∪ Sm = {1, . . . , n} and
2. Si ∩ Sj , ∅ implies i = j.

Other choices of S1, . . . , Sm are possible and lead to different methods. For example, Vanka
[70] formulated an efficient smoother for the Navier-Stokes equation. This smoother uses a
partition with Si ∩ Sj , ∅ for i , j. If we, however, restrict ourselves to the case of the block
Jacobi method, the method can be written in a compact form.

Theorem 4.2. The block Jacobi method given by equations (4.15), (4.16), (4.17) and the
partition S1, . . . , Sm can be written in the form

uk+1 = uk + ωD−1ruk , (4.18)

where D is defined as follows. Let b : {1, 2, . . . , n} → {1, 2, . . . ,m} the function that assigns
every index i ∈ {1, . . . , n} the index of the partition the index i is in, i.e.,

i ∈ Sb(i) .

Then the entries of D are give by

di j =

{
ai j if j ∈ Sb(i),
0 otherwise.

(4.19)

Thus, the error propagator of the block Jacobi method is

E = I − ωD−1 A . (4.20)

Furthermore, there exists a permutation of the indices such that D is block diagonal.
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Proof. Let us define v̄ := v1 + · · · + vm. Then the iteration update (4.17) can be written as

uk+1 = uk + ωv̄. (4.21)

We shall see that the vector v̄ can be computed without computing the individual v1, . . . , vm.
Since the sets S1, . . . , Sm form a partition of the index set and v` is non-zero only for the

components whose index is in S` , for every i there is precisely one vector, the vector vb(i),
that has a (potential) non-zero in position i. It follows that

v̄i = vb(i),i . (4.22)

With this knowledge we can compute v̄.
From (4.15) we have

0 =
[

f − A(uk + v`)
]
i
=

[
ruk − Av`

]
i

for all i ∈ S` and ` = 1, . . . ,m.

This equation is equivalent to

ruk,i =
[
Av`

]
i
=

n∑
j=1

ai jv`, j for all i ∈ S` and ` = 1, . . . ,m.

The entry v`, j is zero if j < S` , which implies

ruk,i =
∑
j∈S`

ai jv`, j for all i ∈ S` and ` = 1, . . . ,m.

Substituting b(i) for ` and then using (4.22), we obtain that

ruk,i =
∑

j∈Sb(i)

ai jvb(j), j =
∑

j∈Sb(i)

ai j v̄j =
n∑
j=1

di j v̄j for i = 1, . . . , n.

The right hand side of this equation is a matrix vector product, meaning we can write the
equation as ruk = Dv̄, which implies v̄ = D−1ruk . Plugging this form of v̄ into (4.21) gives
the desired iteration update (4.18).

The equation for the error propagator (4.20) follows from equation (1.32). Thus, it remains
to show the statement about the block diagonal permutation of D.
It can be shown that a matrix A can be written in block diagonal form, if there exists a

partition S1, . . . , Sm of the index set {1, . . . , n} such that

i ∈ S` and j < S` implies ai j = 0 .

The matrix entry di j = 0 if j < Sb(i). Now i ∈ Sb(i) by definition of b(i). Thus, D can be
written in block diagonal form. �

In case that we consider a grid-based problem we can give the stencil representation of the
matrix D. Recall that in a grid based-problem every index i corresponds to a position x on
the grid Ωh. In this case the stencil form sD of D is given by

sD,x(y) =
{

sA,x(y) if (x + y) ∈ Sb(x),
0 otherwise,

(4.23)

where sA is the stencil of A.
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Analysis of the Block Jacobi Method

Let us use LFA to analyze the block Jacobi method and compare it to other smoothers.
Especially, we want to know whether the block Jacobi method is a better smoother than the
plain Jacobi method. Furthermore, we investigate how the block size affects the smoothing
effect of the method.
To analyze a problem by LFA we need to formulate the problem on an infinite grid. We

see from the error propagator of the block Jacobi method (4.20) that we need to define the
operators A and D on the infinite grid Gh.

Let us assume for simplicity that the operator A can be given by a constant stencil on Gh.
We can then derive the operator D from the stencil of A. To define D we need to partition the
grid Gh. Now that we have infinitely many grid points we can partition the grid into infinitely
many subsets. Thus, we assume that we have a partition Si for i ∈ I for some index set I.
Also in this case there exists a map b with x ∈ Sb(x) for all x ∈ Gh, and the stencil of D is
given by (4.23) and the block Jacobi method by (4.20).
We can analyze the block Jacobi method only for special choice of the partition. The

partition we are interested in splits the grid into regular, rectangular blocks, i.e., it is given by

Si = i · n + Tn where Tn = {h · k : 0 ≤ k < n} , (4.24)

which is a reasonable choice for the following reason.
The convergence rate is often bad, when the corrections vi interfere strongly with each

other. Furthermore, in many applications the corrections corresponding to neighboring grid
points interfere strongly, i.e., often the components of Avi that correspond to neighboring grid
points of x, are non-zero. Thus, computing corrections vi , where each correction collectively
annihilates the components of the residual which correspond to neighboring grid points, is
reasonable.
The choice of the partition (4.24) ensures that the stencil sD is periodic. Thus, by using

Theorem 3.30, we have that A and D have Fourier matrix symbols â and d̂, and from formula
for the error propagator (4.20), we have the Fourier matrix symbol of the error propagator of
the block Jacobi method,

ê = 1 − d̂−1â .

We can now use this formula to examine a concrete example.
Consider the application of the block Jacobi method to the discrete Poisson equation in 2D

(1.49). We wonder whether the block Jacobi method is a better smoother for this problem
than the plain Jacobi method. Hence, we plot the frequency emissions (see Section 3.4.2) of
the error propagator. The result is shown in Figure 4.9 for different block sizes n. We see
that the large values of the frequency emission are located in the corners of the plot. As the
low frequencies are located in the corners we conclude that the block Jacobi method reduces
the high frequencies well. Thus, the method is a suitable smoother. Furthermore, when the
block size increases, the large values of the frequency emission move closer to the corners of
the plot. To make use of this observation, consider the following.
The smoothing factor indicates the quality of a smoother w.r.t. a coarsening range c. To

compute the smoothing factor, the smoother is combined with an idealized coarse grid
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(a) Block size 1 × 1.
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Figure 4.9.: Frequency emission of the block Jacobi method applied to the discrete Poisson
equation in 2D.
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(a) c = (2, 2) (b) c = (3, 3) (c) c = (4, 4) (d) c = (6, 6)

Figure 4.10.: Low c,h-harmonics for different coarsening ranges c.

coarsening block size

1 2 4 6 8

2 0.60 (0.80) 0.40 (0.80) 0.39 (0.85) 0.39 (0.85) 0.38 (0.86)
4 0.86 (0.93) 0.77 (0.88) 0.63 (0.86) 0.60 (0.86) 0.58 (0.87)
6 0.93 (0.96) 0.88 (0.94) 0.81 (0.90) 0.73 (0.90) 0.70 (0.89)
8 0.96 (0.98) 0.93 (0.96) 0.87 (0.93) 0.84 (0.92) 0.77 (0.91)

Table 4.2.: Smoothing factor of the block Jacobi method for the optimal weight (parenthesis).

correction. This coarse grid correction eliminates the low c,h-harmonics. Thus, a smoothing
method whose output mainly consists of low c,h-harmonics has a small smoothing factor,
which means that it is a good smoother. Now, as the low c,h-harmonics depend on c, so does
the smoothing factor. When we increase c the low c,h-harmonics move closer to the corners
of Θh, as Figure 4.10 illustrates. Therefore, to be effective for large c, a smoother has to
return functions whose frequencies are closer to the corners, than for small c. Now, this is
the behavior of the block Jacobi method for large block sizes b.
Let us consider the question, whether the block Jacobi method is a good smoother for

large coarsening ranges c and how large the block size b has to be. We start by taking a
look at the smoothing factors for different values of c and b. Recall that the block Jacobi
method has a parameter, the weight, that needs to be chosen. We pick the weight that
minimizes the smoothing factor1 and list the corresponding values in Table 4.2. In the table
we see that picking the block b equal to the coarsening range c yields small smoothing
factors. Furthermore, with this choice, the smoothing factor grows only moderately. Thus,
we conclude that the growth of the smoothing factor caused by increasing c, can be partly
compensated by increasing the block size of the block Jacobi method.

4.2.2. Aggressive Coarsening

The smoothing analysis from the previous section suggest that block smoothers allow us to
use larger coarsening ranges. In case that the coarsening range c is large, we say that the

1The smoothing factor is determined using LFA.
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method uses aggressive coarsening [7, 13, 14, 50]. We shall introduce and analyze a two-grid
method for the Poisson equation that uses aggressive coarsening and block smoothers.
Aggressive coarsening is useful, as it reduces the size of the coarse grid system. Conse-

quently, the cost of solving the coarse grid system is reduced. The downside is that in general
the convergence rate becomes worse. There can be, however, an overall benefit.
In parallel multigrid computations aggressive coarsening can be used to increase the

overall performance of the multigrid method. In a parallel computation the grid is distributed
along the available processors. Thus, on a very coarse grid each processor is only responsible
for the computation of a few grid points. As communication is usually more expensive than
computation, the time for computation is dominated by communication efforts. This situation
then leads to a bad utilization of the available processing power. Aggressive coarsening can
reduce this effect, because fewer coarse grids are needed, and most of the computational
work is done on the finer grids where the hardware is utilized well.

We consider a two-grid method for the Poisson equation that uses aggressive coarsening.
Under these conditions we want to analyze the effect of the block Jacobi method and its
block size. To determine the method we need to give the smoother, interpolation, restriction
and coarse approximation that we want to use. As already mentioned, we use the block
Jacobi method as a smoother, then we use bi-linear interpolation, the restriction operator
that is induced by linear interpolation (Definition 1.7), and rediscretization for the coarse
approximation.

Until now, we have only given the formula for linear interpolation when c = 2, see (1.50).
In the next section we derive the formula for larger coarsening ranges.

Linear Interpolation

We derive the formula of the (bi-)linear interpolation in 2D for arbitrary coarsening ranges.

Lemma 4.3. Bi-linear interpolation of the values y00, y10, y01, y11 at the points (0, 0), (c1, 0),
(0, c2), (c1, c2) gives the function f that is described by

f (x) = (c1−x1)(c2−x2)
c1c2

· y00 +
x1(c2−x2)

c1c2
· y10 +

(c1−x1)x2
c1c2

· y01 +
x1x2
c1c2
· y11 .

Proof. Bi-linear interpolation is a combination of three linear interpolations. First the values
ỹ0 and ỹ1 at the points (x1, 0), (x1, c2) are computed by linear interpolation in x1-direction.
Then the value f (x) is computed by linear interpolation in x2-direction from ỹ0 and ỹ1, as
Figure 4.11 shows. A well known formula for linear interpolation gives ỹ0 and ỹ0;

ỹ0 = y00 · c1−x1
c1
+ y10 · x1

c1
and ỹ1 = y01 · c1−x1

c1
+ y11 · x1

c1
.

The function value of the interpolant f can be computed using the same formula; we obtain
that

f (x) = ỹ0 · c2−x2
c2
+ ỹ1 · x2

c2
.

Plugging the formulas for ỹ0 and ỹ1 into the last equation, we get that

f (x) =
(
y00 · c1−x1

c1
+ y10 · x1

c1

)
· c2−x2

c2
+

(
y01 · c1−x1

c1
+ y11 · x1

c1

)
· x2
c2
.

Expanding yields the desired equation. �
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y00 y10

y01 y11

ỹ0

ỹ1

f (x)

Figure 4.11.: Construction used in bi-linear interpolation. The points ỹ0 and ỹ1 are obtained
by linear interpolation. From these points linear interpolation gives f (x).

Let us now derive the stencil representation of the (bi-)linear interpolation. This represen-
tation allows us to analyze this interpolation by LFA.

Theorem 4.4. Linear interpolation is given by PstPinj, where Pst is give by the stencil

s′(i · h) = 1
c1c2
·
{
(c1 − |i1 |)(c2 − |i2 |) if |i1 | < c1 and if |i2 | < c2,
0 otherwise.

Proof. We want to write the interpolation in the form

[Pu](xb + k · h) =
∑

y∈Gc·h

sk(y) · u(xb + y) , (4.25)

where xb ∈ Gc·h and k = 0, . . . , c − 1, such that we can apply Theorem 3.8. Bi-linear
interpolation commutes with shifting the origin and stretching the coordinate axes. Thus,
without loss of generality we can compute the interpolant in the coordinate system given by
k and assume that we are looking for the interpolant at position k determined by the function
values at the points k = (0, 0), (c1, 0), (0, c2), (c1, c2). These points are the coarse grid points.
If we define the stencil

sk(i · h) =



(c1−k1)(c2−k2)
c1c2

if i = (0, 0),
k1(c2−k2)

c1c2
if i = (c1, 0),

(c1−k1)k2
c1c2

if i = (0, c2),
k1k2
c1c2

if i = (c1, c2)

0 otherwise.

then (4.25) equals the formula for bi-linear interpolation from Lemma 4.3. We see that for
every value of k we have a different stencil. Thus, we want to use Theorem 3.8 to write the
interpolation using only one combined stencil.
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As we have written the interpolation in the form of equation (4.25), we can apply
Theorem 3.8, which states that the combined stencil s′ is given by

s′(j · c · h − k · h) = sk(j · c · h) ,

where j ∈ �d and k = 0, . . . , c − 1. Plugging the formula for sk into the current equation
gives that

s′(j · c · h − k · h) =



(c1−k1)(c2−k2)
c1c2

if j · c = (0, 0),
k1(c2−k2)

c1c2
if j · c = (c1, 0),

(c1−k1)k2
c1c2

if j · c = (0, c2),
k1k2
c1c2

if j · c = (c1, c2),

0 otherwise.

(4.26)

We would, however, like to have a formula for s′(i · h), where i = j · c − k.
Using the relation i = j · c − k we can express k and the conditions in (4.26) in terms of i.

We have:
1. All values of id for which jd · cd = 0 holds are given by

id = −kd for kd = 0, . . . , cd − 1 .

Thus
kd = −id and jd · cd = 0 if − cd < id ≤ 0 . (4.27a)

2. All values of id for which jd · cd = cd holds are given by

id = cd − kd for kd = 0, . . . , cd − 1 .

Thus
kd = cd − id and jd · cd = cd if 0 < id ≤ cd . (4.27b)

Therefore, using (4.27) we can rewrite (4.26) to obtain

s′(i · h) =



(c1+i1)(c2+i2)
c1c2

if −c1 < i1 ≤ 0 and −c2 < i2 ≤ 0,
(c1−i1)(c2+i2)

c1c2
if 0 < i1 ≤ c1 and −c2 < i2 ≤ 0,

(c1+i1)(c2−i2)
c1c2

if −c1 < i1 ≤ 0 and 0 < i2 ≤ c2,
(c1−i1)(c2−i2)

c1c2
if 0 < i1 ≤ c1 and 0 < i2 ≤ c2,

0 otherwise

=

{ (c1−|i1 |)(c2−|i2 |)
c1c2

if −c < i ≤ c,
0 otherwise.

�
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The restriction which is induced by the (bi-)linear interpolation is easily obtained by using
Theorem 4.4. Recall the definition of the induced restriction from Section 1.3.7, and let s′P be
the stencil given in Theorem 4.4. Then a little calculation show that the stencil of the induced
restriction s′R is given by

s′R(y) = 1∑
z∈Gh s′P(z)

s′P(y) .

Remark 4.5. The results from Lemma 4.3 and Theorem 4.4 can be generalized to arbitrary
dimensions. The proofs for the dD case are very similar to the 2D case, however, they are
notationally intense. Therefore, we shall only state the results.
Assume there exists a point c > 0 and values yi for i = 0, . . . , 1. Let

pi, j :=

{
0 if ij = 0,
ci if ij = 1.

The multilinear interpolation that interpolates the values yi at pi gives the function f with

f (x) = 1∑d
j=1 cj

·
1∑

i=0

©­«
d∏
j=1

{
cj − xj if ij = 0
xj if ij = 1

}ª®¬ · yi .

The stencil of the multilinear interpolation is

s′(i · h) =
{ (c1−|i1 |)·(c2−|i2 |)· · ·(cd−|id |)

c1 ·c2 · · ·cd if |i| < c,
0 otherwise,

which is obtained from the formula above.

Analysis

We use two-grid LFA to analyze the multigrid method for the Poisson equation described
above.
Figure 4.12 shows the frequency damping plot of a two-grid method and aggressive

coarsening applied to the 2nd order finite difference discretization of Poisson’s equation. It
demonstrates that the combination of (pointwise) Jacobi and aggressive coarsening fails to
reduce some of the high frequency errors. However, this problem disappears if we use the
block Jacobi method with a sufficiently large block size.
In Table 4.3 the spectral radii of the two-grid error propagator for different coarsenings c

and different block sizes of the block Jacobi method with ω = 0.8 are presented. It turns out
that choosing the block size equal to the coarsening range can compensate for the growth
in the spectral radius caused by aggressive coarsening to some extend. Furthermore, we
observe that not choosing the block size as a multiple of the coarsening range has negative
effect on the convergence rate.
A similar effect can be seen in Table 4.4. This table shows the spectral radii of the error

propagator of the two-grid method for different block sizes and coarsening ranges. However,
we computed for every parameter combination the weight of the block Jacobi method that
minimizes the spectral radius of the error propagator. We can see that the results are improved
compared to the previous table. The improvement, however, is only minor. We therefore
conclude that for this setting a choice of ω = 0.8 leads to good results.
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Figure 4.12.: Frequency damping plot of a two-grid method with aggressive 4× 4 coarsening
and a Jacobi smoother (left) and a 4 × 4 block Jacobi smoother (right).

coarsening block size

1 2 4 6 8

2 0.36 0.32 0.27 0.26 0.25
4 0.76 0.62 0.38 0.45 0.35
6 0.88 0.79 0.68 0.47 0.58
8 0.92 0.85 0.76 0.74 0.55

Table 4.3.: Spectral radius of the two-grid method with aggressive coarsening and block
Jacobi smoothing.

coarsening block size

1 2 4 6 8

2 0.36 (0.80) 0.25 (0.74) 0.22 (0.75) 0.22 (0.75) 0.22 (0.75)
4 0.75 (0.93) 0.61 (0.88) 0.38 (0.79) 0.43 (0.84) 0.35 (0.80)
6 0.88 (0.96) 0.78 (0.94) 0.67 (0.90) 0.47 (0.83) 0.56 (0.87)
8 0.93 (0.98) 0.86 (0.96) 0.77 (0.93) 0.72 (0.92) 0.55 (0.86)

Table 4.4.: Two-grid convergence factor of the block Jacobi method for the optimal weight
(parenthesis).
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4.2.3. Red-Black Block Jacobi

The red-black block Jacobi method is a variant of the block Jacobi method. It is derived
from the block Jacobi method in a similar way as the red-black Jacobi method, introduced in
Section 3.6.1, is derived from the Jacobi method.

Derivation of the Red-Black Block Jacobi Method

The block Jacobi method computes a new iterate uk+1 from the old iterate uk by

uk+1 = uk + ω · (v1 + · · · + vm) , (4.17 revisited)

where v1, . . . , vm is a set of corrections, which are computed from the residual ruk . Further-
more, each correction vi corresponds to an index set Si . These index sets form a partition of
the indices {1, . . . , n}, and the jth component of vi is only non-zero if j ∈ Si. Using these
relations, we construct the red-black block Jacobi method.
Like in the derivation of the red-black Jacobi method, the update step is split into two

individual steps, where each step applies half of the corrections. For this purpose we partition
the blocks into red and black ones, by listing the indices of the red blocks in the set RI and
the indices of the black blocks in BI . More precisely, the sets RI and BI are a partition of the
set {1, . . . ,m}. The first step is to compute the intermediate iterate uk+1/2, by

uk+1/2 = uk + ω
∑
i∈RI

vi .

In the second step the new iterate is computed by the formula

uk+1/2 = uk+1/2 + ω
∑
i∈BI

vi .

For the second step, however, the corrections vi are computed based on the intermediate
residual ruk+1/2 . To analyze this method we need a formula for its error propagator.

Theorem 4.6. Let R =
⋃

i∈RI
Si and B =

⋃
i∈BI

Si . The red-black block Jacobi method can
be written as

uk+1/2 = uk + ωZRD−1ruk , (4.28a)

uk+1 = uk+1/2 + ωZBD−1ruk+1/2 , (4.28b)

where D is given in (4.19),

ZR,i j =

{
1 if i = j and i, j ∈ R,
0 otherwise,

and ZB,i j =

{
1 if i = j and i, j ∈ B,
0 otherwise.

Thus, the error propagator of the red-black Jacobi method is ERBBJ = EBER, where

ER = I − ωZRD−1 A and EB = I − ωZBD−1 A . (4.29)
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Proof. We define the vector
v̄R :=

∑
i∈RI

vi . (4.30)

With this definition we can write the first step of the red-black block Jacobi method as

uk+1/2 = uk + ω · v̄R .

Thus, to show (4.28a) we need to show that v̄R = ZRD−1ruk .
To simplify the sum (4.30) we take a closer look at the vectors v1, . . . , vm. The jth

component of the vector vi is non-zero only if j ∈ Si . As the sets S1, . . . , Sm form a partition
of {1, . . . , n}, there is for every j exactly one index b( j) such that j ∈ Sb(j). Therefore,
for every j there is exactly one vector vb(i) whose jth component is (potentially) non-zero.
Hence, when computing the jth entry of v̄R, j , by

v̄R, j =
∑
i∈RI

vi, j ,

the term vb(j), j is the only non-zero one, if the vector vb(j) is part of the sum, i.e., if b( j) ∈ RI .
Otherwise, all summands are zero. Thus,

v̄R, j =

{
vb(j), j if b( j) ∈ RI ,
0 otherwise.

Note that b( j) ∈ RI if and only if j ∈ R, giving

v̄R, j =

{
vb(j), j if j ∈ R,
0 otherwise.

(4.31)

This formula can be simplified by using Theorem 4.2, which describes a representation of
the block Jacobi method.
In the proof of Theorem 4.2 we defined a vector v̄ by

v̄ =

m∑
i=1

vi .

This vector has the property that v̄j = vb(j), j . Combining this fact with equation (4.31) we
find that

v̄R, j =

{
v̄j if j ∈ R,
0 otherwise.

Using the definition of the matrix ZR we obtain that

v̄R = ZR v̄ .

We know from Theorem 4.2 that v̄ = D−1uk ; simplifying the previous equation to

v̄R = ZRD−1uk ,

which proves (4.28a).
Equation (4.28b) can be shown in a similar way and the other statements of this theorem

follow from (4.28). �
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We now want to analyze the red-black block Jacobi method. For this reason, we give the
stencil representations for all operators that occur in the error propagators of the two steps of
the method (4.29) assuming that we are dealing with a grid-based problem. The involved
operators are the identity I, the diagonal operator D, the filtering operators ZR and ZB, and
the operator A. All operators have already been considered and their stencils are known,
except the operators ZR and ZB. Their stencils are

sZR,x(y) =
{

1 if y = 0 and x ∈ R,
0 otherwise,

and sZB,x(y) =
{

1 if y = 0 and x ∈ B,
0 otherwise,

(4.32)

which is easily obtained from the definition of ZR and ZB. Using these formulas we can
perform an LFA of the red-black block Jacobi method.

Analysis of the Red-Black Block Jacobi Method

We want to analyze the red-black block Jacobi method by LFA. As already discussed in
Section 4.2.1, which was about the analysis of the plain block Jacobi method, we can only
analyze the method for certain choices of the partition Si. We choose the blocks to correspond
to regular rectangles of grid points, i.e.,

Si = i · n + Tn where Tn = {h · k : 0 ≤ k < n} , (4.24 revisited)

where n is the block size. The same choice was used for analyzing the block Jacobi method.
In addition, we define the sets RI and BI by

RI = {k ∈ �d : k1 + · · · + kd even} and

BI = {k ∈ �d : k1 + · · · + kd odd} .

These set are very similar to the definition of the red and black points for the point-wise
red-black Jacobi method (3.31). The difference is that the present definition assigns a color
to a whole block of grid point, instead of to individual grid points.

The set of all individual red grid points is R =
⋃

i∈RI
Si, while the set of all black points is

B =
⋃

i∈RB
. Figure 4.13 shows the red and black grid points for n = (2, 3). We see that the

red and black points form red and black rectangles of grid points. Furthermore, the pattern is
periodic with period 2n. Having these definitions in place, we can now build an LFA for this
method.
We start with the error propagator of the method

ERBBJ = (I − ωZBD−1 A)(I − ωZRD−1 A) , (4.33)

which we derived in Theorem 4.6. For our analysis we need to formulate all involved operators
on the infinite grid Gh. Like in the case where we analyzed the block Jacobi method, we
assume that the operator A is given by a constant stencil on the whole grid. In this case D is
represented by the stencil (4.23), and the choice of the partition ensured that the stencil of D
is periodic, as discussed in the section about the block Jacobi method. It remains to find a
representation for ZR and ZB.
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2n1

2n2

Figure 4.13.: Red and black blocks used in the red-black block Jacobi method.

We let ZR and ZB be given on the whole grid Gh by the stencils from (4.32). From this
equation we see that the stencils sZR and sZB consist of two constant stencils: the identity
stencil, which is applied at all red/black points, and the zero stencils, which is applied at all
black/red points. We noted earlier that the red-black pattern, introduced above, is periodic
with period 2n. Therefore, the stencils of ZR and ZB are periodic with the same period.

In summary all operators in the error propagator 4.33 given by a constant stencil or a
periodic stencil. Consequently, all operators have a Fourier matrix symbol. The operator A
has a 1 × 1, the operator D has a n × n, and the operators ZR and ZB have a 2n × 2n Fourier
matrix symbol. Therefore, using a proper expansion of the matrix symbols (Theorem 3.37)
gives that ERBBJ has a 2n × 2n Fourier matrix symbol. We can now compute this symbol to
analyze a concrete application.

Results

We consider the discrete Poisson equation in 2D (1.48) and ask the question whether the
red-black block Jacobi method is a suitable smoother for this problem. Furthermore, we want
to know how increasing the block size n, affects the method. We start with the first question.
A plot of the frequency emission for ω = 1 is show in Figure 4.14. We see a similar

behavior as with the block Jacobi method. The badly damped frequencies move closer to the
corners when we increase the block size. As the frequencies in the corners correspond to
wave functions that are slowly varying, we conclude that the red-black block Jacobi method
is a suitable smoother. Furthermore, as increasing the block size improves the smoothing
effect, we suppose that the method is also well suited for aggressive coarsening.
We check this hypothesis by conducting a two-grid analysis. The spectral radii of the

two-grid error propagator for ω = 1 can be found in Table 4.5. We see that the red-black
block Jacobi method has a behavior similar to the block Jacobi method. The increase of the
spectral radius that occurs when the coarsening range grows can be partially compensated
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Figure 4.14.: Frequency emission of the red-black Jacobi method (left) and the 4×4 red-black
block Jacobi method (right).

coarsening block size

1 2 4 6 8

2 0.072 0.033 0.028 0.024 0.015
4 0.51 0.3 0.11 0.18 0.1
6 0.73 0.55 0.39 0.18 0.3
8 0.81 0.67 0.51 0.47 0.25

Table 4.5.: Spectral radius of the two-grid method with aggressive coarsening and red-black
block Jacobi smoothing.

by increasing the block size of the smoother. In addition, we see that the red-black block
Jacobi method with fixed ω has better convergence rates than the block Jacobi method with
optimally chosen ω.

4.2.4. Numerical Evaluation

Similar to Section 4.1.5 wewant to evaluate the quality of the local Fourier analysis predictions.
Our analysis assumes an infinite grid and in real applications we only compute with a finite
grid.
We pick a 96 × 96 grid with periodic boundary conditions and run the two-grid method

with different smoothing configurations. Table 4.6 shows the results for the Jacobi smoother
with weight ω = 0.8, Table 4.7 shows the results for the block Jacobi smoother with optimal
weight, and Table 4.8 shows the results for the red-black block Jacobi smoother. Comparing
these Tables to the LFA predictions in Table 4.3, 4.4 and 4.5, we see that the predictions are
quite accurate.
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Coarsening Block Size

1 2 4 6 8

2 0.34 0.29 0.24 0.24 0.23
4 0.72 0.60 0.34 0.41 0.32
6 0.82 0.75 0.65 0.44 0.54
8 0.84 0.80 0.73 0.71 0.53

Table 4.6.: Spectral radius of the two-grid method with aggressive coarsening and block
Jacobi smoothing for a finite grid.

Coarsening block size

1 2 4 6 8

2 0.34 (0.80) 0.23 (0.74) 0.21 (0.75) 0.20 (0.75) 0.22 (0.75)
4 0.70 (0.93) 0.61 (0.88) 0.34 (0.79) 0.38 (0.84) 0.32 (0.80)
6 0.81 (0.96) 0.74 (0.94) 0.60 (0.90) 0.42 (0.83) 0.49 (0.87)
8 0.87 (0.98) 0.80 (0.96) 0.71 (0.93) 0.67 (0.92) 0.50 (0.86)

Table 4.7.: Spectral radius of the two-grid method with aggressive coarsening and block
Jacobi smoother with optimal weight (parenthesis) for a finite grid.

Coarsening Block Size

1 2 4 6 8

2 0.06 0.02 0.01 0.01 0.01
4 0.50 0.30 0.06 0.14 0.05
6 0.71 0.53 0.38 0.14 0.26
8 0.78 0.68 0.54 0.46 0.22

Table 4.8.: Spectral radius of the two-grid method with aggressive coarsening and red-black
block Jacobi smoothing for a finite grid.
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4.3. Literature and Contributions

We considered two applications in this chapter: a PDE with a jumping coefficient and block
smoothers.

The PDE with a jumping coefficient was discretized using the finite volume method. The
monographs [44, 68, 73] contain introductions to this method. Furthermore, the multigrid
method to solve the finite volume system was introduced in [3, 17].
The LFA of the jumping coefficient PDE multigrid method is an original result of this

thesis. Nevertheless, the method has already been analyzed using SAMA [23], which is
related to LFA. SAMA considers a tensor product of a finite and an infinite position space.
Then, the infinite space is Fourier transformed, while the finite space remains unchanged.
Hence, the problem is partly analyzed in Fourier space and partly analyzed in position space.
In contrast, the analysis of this thesis is a pure Fourier space analysis.

Block smoothers are, e.g., treated in [59]. The Fourier analysis of these smoothers, also in
combination with aggressive coarsening, is an original contribution of this thesis.
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There are applications in which Fourier matrix symbols have many rows and columns,
which has been the case, for example, for some of the applications described in Chapter 4.
Computations involving such large symbols require a lot of work. Consequently, we want to
automate these computations via software, in the following way.
We describe the error propagator E by entering a formula that describes it. This formula

contains a set of further operators, and each of these then needs to be specified, e.g., by giving
a stencil. Then the software computes the Fourier matrix symbol1 ê of the error propagator.
After this computation we can ask the software to use the symbol to give us r(E), ‖E ‖, and
to plot R−1

m rn(ê), or R−1
n cn(ê).

As an example, consider the two-grid method below, given by

ETG = Eν2
J (I − PA−1

H RAh)Eν1
J ,

where EJ is the error propagator of the Jacobi method, i.e.,

EJ = I − ωD−1 Ah .

These are the two formulas that we need to enter. They involve the scalars ω, ν1, ν2, and
the operators Ah, AH , D−1, P, and R. The scalars are easily specified by just giving their
values. The operators Ah and AH are given by their stencils, and the operator D−1 is obtained
from the stencil of Ah. We assume for the operators R and P that they can be written as a
composition of a stencil operator and a injection interpolation or restriction, i.e., R = RinjRst,
and P = PstPinj. Thus, additionally we need to specify these two formulas and the stencils of
Rst, and Pst, which completes the specification of the problem and the software should be
able to compute the Fourier matrix symbol êTG of ETG. We shall now discuss how to realize
such a software.

5.1. Constant Stencils

Many operators can be described by a stencil. Therefore, we need a way to store and
manipulate stencils on a computer.

A stencil s is a mapping from Gh to �, which assigns to every offset from Gh a coefficient.
As there are infinitely many offsets we would need to store infinitely many coefficients if
we were to store arbitrary stencils. All applications that we have considered so far, however,
do not need arbitrary stencils. In all applications all stencil entries, except a few, were zero.
Consequently, we only need to consider stencils with finitely many non-zero entries; implying
1Actually, the software computes only an approximation to the symbol for reasons we give in Section 5.3.
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that we only need to store the non-zero ones. To work with such stencils, we specify a basic
set of operations.

We need to read and write the non-zero entries, we need to iterate over the non-zero entries,
and we need to obtain the step-size of the stencil. More precisely, when s is the storage of a
stencil, we denote the access of the stencil entries by s(y), where y is the offset. We denote
the iteration of the non-zero entries by:

1 for all (y, v) in NonZeros(s)
2 // use the offset y and coefficient v

We denote the step-size of a by a.step-size. Furthermore, we assume the existence of a
function ZeroStencil that returns a stencil whose entries are all zero. Using these definitions
we can write down some basic stencil algorithms.

The first basic algorithm is the addition of two stencils. If sA and sB are the stencils of
operators A and B, then the stencil sC is the stencil of the operator C := A + B. From the
definition of stencil operators (1.52) we get that

sC(y) = sA(y) + sB(y) for y ∈ Gh .

Making use of this formula and the fact that both stencils have only finitely many entries, we
obtain the algorithm for the stencil addition.

Stencil-Add(sA, sB)
1 sC ← ZeroStencil(sA.step-size)
2 for all (y, v) in sA
3 sC(y) ← sA(y)
4 for all (y, v) in sB
5 sC(y) ← sA(y) + sC(y)

The second basic algorithm that we want to discuss, is the stencil multiplication. If sA and
sB are the constant stencils of two operators A and B, then there is a stencil sC that represents
the operator C := BA, as the next theorem shows.

Theorem 5.1. Let A and B be stencil operators with stencils sA and sB. Then C := BA is a
stencil operator with stencil

sC(z) =
∑

y∈Gh

sB(y) · sA(z − y) . (5.1)

We call sC the product of the stencils sA and sB.

Proof. We shall prove the assertion by writing BAu in the form of (1.52), i.e.,

[BAu](x) =
∑

z∈Gh

sC(z) · u(x + z) . (5.2)

We start by using the definition of the operator B:

[B(Au)](x) =
∑

y∈Gh

sB(y) · [Au](x + y)
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In this equation we insert the definition of A, and obtain that

[B(Au)](x) =
∑

y∈Gh

sB(y) ·
©­«

∑
y′∈Gh

sA(y′) · u(x + y + y′)ª®¬
=

∑
y∈Gh

∑
y′∈Gh

sB(y) · sA(y′) · u(x + y + y′) .

Substituting y′ by z − y gives

[B(Au)](x) =
∑

y∈Gh

∑
z∈Gh

sB(y) · sA(z − y) · u(x + z)

=
∑

z∈Gh

©­«
∑

y∈Gh

sB(y) · sA(z − y)ª®¬ · u(x + z) .

By comparing the last equation with the stencil formula for C (5.2), we see that the term in
parenthesis is the stencil sC of C. �

We cannot directly implement the formula for the stencil multiplication (5.1), as it involves
the sum over infinitely many grid points. To overcome this problem let us rewrite the equation;
giving

sC(z) =
∑

y∈Gh

∑
y′∈Gh

sB(y) · sA(y′ − y) · δzy′ .

Substituting y′ + y for y′ yields

sC(z) =
∑

y∈Gh

∑
y′∈Gh

sB(y′) · sA(y) · δz(y+y′) .

We see that the summands are only non-zero if sA(y), sB(y′), and δz(y+y′) are simultaneously
non-zero. Thus, to compute sC(z), we just need to loop over the non-zero entries of aA and
sB in a nested loop. However, to compute all non-zero entries of sC , we have to make some
further manipulations.
Let sz be the stencil that is one at z and zero everywhere else, i.e., sz(y) = δyz. With this

definition we can write sC as

sC =
∑

z∈Gh

sz · sC(z)

=
∑

z∈Gh

sz ·
©­«
∑

y∈Gh

∑
y′∈Gh

sB(y′) · sA(y) · δz(y+y′)
ª®¬

=
∑

z∈Gh

∑
y∈Gh

∑
y′∈Gh

sz · sB(y′) · sA(y) · δz(y+y′) .

The summands of this sum are only non-zero if z = y + y′. Consequently,

sC =
∑

y∈Gh

∑
y′∈Gh

sy+y′ · sB(y′) · sA(y) .
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list dense balanced trees

random read access O(n) O(1) O(log(n))
random write access O(n) O(n) O(log n))
iterate elements O(n) O(n) O(n)

Table 5.1.: Running time of the stencil operations for different implementations in dependence
of the number of entries of the stencil n.

The last equation implies that in order to compute the stencil sC , we just have to loop over
the non-zero entries of sA and sB in a nested loop and add the product sB(y′) · sA(y) to the
stencil sC at offset y + y′. This procedure is written down in Stencil-Multiply.

Stencil-Multiply(sB, sA)
1 sC ← Zero-Stencil(sA.step-size)
2 for all (y′, d ′) in NonZeros(sB)
3 for all (y, d) in NonZeros(sA)
4 sC(y + y′) ← sC(y + y′) + d · d ′
5 return sC

Until now, we have not discussed how to actually implement the stencil interface that
we discussed earlier. There are different ways for the implementation, and we shall briefly
comment on their advantages and disadvantages.
The first possible implementation uses just a list to store the offsets together with their

coefficients. The advantage of this implementation is that it is easy to implement and iterating
over all entries is fast. The disadvantage is that accessing an element with a random offset is
rather slow, as it requires the iteration though all elements. However, for a small number of
entries this behavior is not a problem; the running time per operation is still very low, due to
the simple implementation.
The second possible implementation needs a bounding box that surrounds all non-zero

entries of the stencil. The entries inside the bounding box are then stored in a dense dD array.
The advantage is that accessing an element with a random offset is fast, as long as the offset
is inside the bounding box. The disadvantage is that a write access outside the bounding
box requires reallocating the memory, which is slow. Furthermore, when the bounding box
contains only a few elements, then a lot of storage space is wasted and iterating over the
non-zero entries is relatively slow, as most of the stored elements are zero but need to be
considered.

The third possible implementation uses balanced binary trees such as red-black trees [16].
We use the offsets as keys and the coefficients as data elements. The advantage of this data
structure is that it is reasonably fast for all operations. The disadvantage is that it is more
complicated to implement and the running time for a single operation is larger than for the
list implementation.

In summary, the list implementation is suitable for situations with a low number of entries,
while the balanced tree implementation is a good choice for large numbers of elements. The
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dense array implementation is only useful in special situations. Table 5.1 gives an overview
of the running times for the different operations and implementations. As we now have a set
of operations for constant stencil operators, we can use them to work with periodic stencils.

5.2. Periodic Stencils

Periodic stencils are useful for the analysis of various applications, as we saw in Chapter 4.
A periodic stencil is a family {s}x∈Gh of constant stencils sx that is periodic with a period
n ∈ �d, i.e.,

sx = sx+k·(h·n) for all x ∈ Gh, k ∈ �d . (3.30 revisited)

To work with periodic stencils on a computer we need a way to store and manipulate them on
a machine.
To store periodic stencils, we make use of the fact that a periodic stencil {s}x∈Gh with

period n is completely determined by the values sx for 0 ≤ x < n. Thus, to store a periodic
stencil, it is sufficient to store a dD array that contains the constant stencils of sx for those
values of x. More precisely, if a is such a dD stencil, we would access the entry sx by
accessing the entry a(x mod (n·h)) of the array a.
To use periodic stencils in algorithms, we need to introduce some notation. If s is the

handle to the storage of some periodic stencil, we denote the period of s by s.period, the
step-size of s by s.step-size, and the constant stencil at x by sx. Furthermore, we assume that
there exists a procedure Allocate-Periodic-Stencil(h, n) that returns a handle to a free
memory location, which stores a periodic stencil with step-size h and period n.

A simple example for using this notation is the Periodic-Stencil-Add procedure that adds
two periodic stencils. For simplicity we assume that the two stencils have the same period.

Periodic-Stencil-Add(sA, sB)
1 sC ← Allocate-Periodic-Stencil(sA.step-size, sA.period)
2 for k← 0 to sA.period − 1
3 sC,k ← sA,k + sB,k

Note that the addition in Line 3 is actually the addition of two constant stencils. Thus, we
would have to use the addition algorithm that was discussed in Section 5.1.

5.3. Approximating Fourier Symbols

Weshall discuss the representation of symbols on a computer and how to perform computations
involving them. A symbol is a function a ∈ L∞(Θh). These symbols can be applied to
functions f ∈ L2(Θh) by pointwise multiplication. The problem is, however, that the spaces
L∞(Θh) and L2(Θh) both have infinite dimensions. Thus, even if we know a basis for these
spaces we need to store infinitely many complex numbers to represent a general function from
these spaces. Such an amount of storage, of course, is not available on typical computers.
Therefore, we content ourselves by approximating functions from these spaces.
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ξ0 ξ1 ξ2 ξ3 ξ4 ξ5 ξ6

Figure 5.1.: Approximating a function by a function from Tr with r = 6.

5.3.1. Representing Symbols

For simplicity, let us first introduce an approximation to symbols in 1D, and show later how
this idea can be generalized to approximate symbols of arbitrary dimensions. We start by
choosing an integer r ∈ �, which we call the resolution of the approximation. Then we split
the interval Θh into r equally sized subintervals, i.e., we define

ξk := 2π
hr · k (5.3)

and consider the intervals Qk := [ξk, ξk+1) for k = 0, . . . , r − 1. Finally, we approximate a
function f from L∞(Θh) or L2(Θh) by a function f̄ that is constant on every interval Qk , as
shown in Figure 5.1.

Definition 5.2. A function f̄ : Θh → � has the resolution r ∈ � if f̄ restricted to Qk is
constant for all i = 0, . . . , r − 1. We denote the set of all functions with resolution r by Tr , i.e.,

Tr := { f̄ : Θh → � : f̄ restricted to Qk is constant} .

Furthermore, we say that a function f̄ : Θh → � has a finite resolution if there exists an
r ∈ � such that f̄ has the resolution r . Otherwise we say that the resolution of f̄ is infinite.

Functions with resolution r can be represented by a finite set of numbers, which we can
store on a computer. To show this fact, consider the functions

qk(θ) :=

{
1 if θ ∈ Qk ,
0 otherwise

for k = 0, . . . , r − 1.

It is easy to see that every function f̄ ∈ Tr can be uniquely written as

f̄ =
r−1∑
k=0

fk · qk (5.4)

for some f0, . . . , fr−1 ∈ �. This representation implies that the functions qk for k = 0, . . . , r−1
form a basis of Tr , and therefore every function in Tr is completely determined by the
coefficients f0, . . . , fr−1. Now, these coefficients just have to be stored on a computer to
represent functions from Tr .
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Definition 5.3. Let f̄ ∈ Tr . The coefficients f0, . . . , fr−1 from (5.4) are the resolution r
representation of the function f̄ .

To compute the formulas derived in previous chapters, we need the ability to add two
functions from Tr , to multiply a function from Tr with a scalar, and to multiply two functions
from Tr . These operations can be realized purely in terms of their resolution r representations.
Assume that we have λ ∈ �, f̄ , ḡ ∈ Tr with corresponding coefficients f and g. Then

λ f̄ corresponds to
(
λ fk

)r−1

k=0
, (5.5a)

f̄ + ḡ corresponds to
(

fk + gk
)r−1

k=0
, (5.5b)

f̄ · ḡ corresponds to
(

fk · gk
)r−1

k=0
. (5.5c)

The first two relations (5.5a) and (5.5b) are, of course, the usual vector operations, while the
third relation (5.5c) is the coefficient-wise product of two vectors. These three relations allow
us to perform computations with functions from Tr on the computer.

Let us address the question if the functions from the space Tr are suitable to approximate
functions from L∞(Θh) and L2(Θh). It is easy to see that Tr ⊆ L∞(Θh) and Tr ⊆ L2(Θh).
For this reason we are certain to work only with functions that are permitted within our
framework. We continue by considering the quality of the approximation. It is characterized
by the theorem below.

Theorem 5.4. The set
⋃∞

r=0 Tr is dense in L2(Θh) and in L∞(Θh).

Theorem 5.4 implies that for a given function from L∞(Θh) or L2(Θh) we can find a
function from Tr that is arbitrarily close to the first one, under the assumption that we choose
a suitable, i.e., large, value for r .

Proof of Theorem 5.4. It is known that the set of continuous functions is dense in L2(Θh).
This fact implies that it is sufficient to show that

⋃∞
r=0 Tr is dense in the set of continuous

functions.
To show this assertion, we let ε > 0 be given and assume that f : Θh → � is continuous.

The set Θh is compact and therefore f is uniformly continuous. Thus, there exists δ such that
for all θ, θ ′ with |θ ′ − θ | < δ the bound | f (θ ′) − f (θ)| < ε . We use the value of δ to construct
an approximation for f .
We choose r ∈ � such that the length of the interval Qi is smaller than δ. Furthermore,

we define ḡ ∈ Tr by
ḡ(θ) = f (ξi) for θ ∈ Qi ,

where ξi was defined in (5.3). Then

|ḡ(θ) − f (θ)| = | f (ξi) − f (θ)| for θ ∈ Qi .

As θ, ξi ∈ Qi and the length of the interval Qi is smaller than δ, we have

|ξi − θ | < δ for θ ∈ Qi .
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Figure 5.2.: A function from the set Tr with r = (3, 3)T .

Using the fact that f is uniformly continuous, this inequality implies that

|ḡ(θ) − f (θ)| = | f (ξi) − f (θ)| < ε for θ ∈ Qi .

Hence, ‖ḡ − f ‖2 ≤ ‖ḡ − f ‖∞ < ε . �

Let us now extend this approximation to higher dimensions. Here, we cannot split the set
Θh into intervals. Instead, we partition Θh into equally sized rectangles in 2D, rectangular
cuboids in 3D, and their generalizations in higher dimensions. In this case, the resolution is
given by a vector r, whose entry rj is the resolution in θ j-direction. Thus, the subsets are
defined by

Qk := {θ ∈ �d : θ j ∈ 2π
h jrj
[k j, k j + 1) for j = 1, . . . , d} for k = 0, . . . , r − 1 .

Introducing the notation

ξk :=
2π

h · r · k , (5.6)

we can write the previous equation more compactly as

Qk = {θ ∈ �d : ξk ≤ θ < ξk+1} . (5.7)

With this definition, we can generalize the set of finite resolution functions to arbitrary
dimensions.

Definition 5.5. Let r ∈ �d and Qk be given by (5.7). A function f̄ : Θh → � has the
resolution r if f̄ restricted to Qk is constant for all k = 0, . . . , r − 1. We denote the set of all
functions with resolution r by Tr, i.e.,

Tr := { f̄ : Θh → � : f̄ restricted to Qk is constant} .

Furthermore, we say that a function f̄ : Θh → � has a finite resolution if there exists an
r ∈ � such that f̄ has the resolution r. Otherwise we say that the resolution of f̄ is infinite.

An example for a function from Tr is shown in Figure 5.2. In the 1D case it was useful to
have a basis representation for such a function.
The generalization of the basis functions for higher dimensions is straightforward. They

are defined as

qk(θ) :=

{
1 if θ ∈ Qk,

0 otherwise.
(5.8)
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Thus, every function f̄ ∈ Tr can be written uniquely as

f̄ =
r−1∑
k=0

fk · qk . (5.9)

Note that we now use multi-indices for the coefficients.

Definition 5.6. Let f̄ ∈ Tr. The coefficients f0, . . . , fr−1 from (5.8) are the resolution r
representation of the function f̄ .

The relations between the resolution r representation and operations on the resolution r
functions are also very similar to the 1D case (5.5). Let λ ∈ �, f̄ , ḡ ∈ Tr with corresponding
coefficients f and g. Then

λ f̄ corresponds to
(
λ fk

)r−1

k=0
, (5.10a)

f̄ + ḡ corresponds to
(

fk + gk

)r−1

k=0
, (5.10b)

f̄ · ḡ corresponds to
(

fk · gk

)r−1

k=0
. (5.10c)

The only difference to (5.5) is the use of multi-indices.
Note that in higher dimensions it is also true that Tr ⊆ L∞(Θh), Tr ⊆ L2(Θh), and that Tr

is dense in L∞(Θh) and in L2(Θh). The last statement can be shown by modifying the proof
of Theorem 5.4.

In the remainder of this chapter, we want to discuss algorithms that implement the Fourier
analysis that we introduced in the previous chapters. This analysis involves the computation
with functions from L∞(Θh), and L2(Θh) that we shall replace by computations with functions
of finite resolution. We, therefore, need an algorithmic notation for working with resolution r
functions.
Our algorithms need to store, access, and manipulate finite resolution functions. More

precisely, they need to store the step-size h, resolution r, and coefficients of the resolution
r representation (5.9). We assume the existence of a function Allocation-Function(h, r)
that takes the step-size and the resolution and returns allocated storage for a resolution r
representation. If f is the return value of Allocate-Function(h, r) then

• f .step-size should be the step-size h,
• f .resolution should be the resolution r, and
• fk for k = 0, . . . , r − 1 should be the coefficients of the basis representation (5.9).

Using this definition, we can write our first algorithm.
The function Constant-Function returns a resolution r representation that is equal to a

constant c ∈ � on the whole domain.

Constant-Function(h, r, c)
1 f ← Allocate-Function(h, r)
2 for k← 0 to r − 1
3 fk ← c
4 return f
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Using the relations (5.10), we can implement the basic operations on resolution r functions:
the multiplication by a scalar, the addition of two functions, and the pointwise multiplication
of two functions.
The Scalar-Multiply-Function procedure expects a scalar λ ∈ � and a resolution r

representation of a function f , and it returns the resolution r representation of λ f .

Scalar-Multiply-Function(λ, f )
1 g ← Allocate-Function( f .step-size, f .resolution)
2 for k← 0 to f .resolution
3 gk ← λ · fk
4 return g

The Add-Functions procedure expects two resolution r representations of two functions f
and g, and it returns the resolution r representation of f + g.

Add-Functions( f , g)
1 u← Allocate-Function( f .step-size, f .resolution)
2 for k← 0 to f .resolution
3 uk ← fk + gk
4 return u

The Pointwise-Multiply-Functions procedure expects two resolution r representations of
two functions f and g, and it returns the resolution r representation of the pointwise product
f · g.

Pointwise-Multiply-Functions( f , g)
1 u← Allocate-Function( f .step-size, f .resolution)
2 for k← 0 to f .resolution
3 uk ← fk · gk
4 return u

Note that all these algorithms work on resolution r representations and not on resolution r
functions. Any function with resolution r also has the resolution r · n for any 0 < n ∈ �d.
However, a resolution r representation is not automatically a resolution r · n representation.
There is, of course, a resolution r ·n representation that represents the same function, however,
its computation is usually not desirable for the following reason.
In general, a function with low resolution approximates a desired function with less

accuracy than a function with a high resolution. Thus, when we add a low resolution and a
high resolution function, their sum will generally approximate the desired function equally
well as if we computed with two low resolution functions. Thus, the computation of a
high resolution function was a waste of resources, and therefore we shall only perform
computations where the resolutions of the involved representations match appropriately.
For the following algorithms we shall simplify our notation. Calling the functions above

by their name will make most algorithms verbose. Hence, we shall write
• λ · f instead of Scalar-Multiply-Functions(λ, f ),
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• f + g instead of Add-Functions( f , g), and
• f · g instead of Pointwise-Multiply-Functions( f , g).

Using this notation, we can write the application of a symbol a to a function u, which is just
the pointwise multiplication of the two functions, simply as:

Apply-Symbol(a, u)
1 return a · u

Another useful algorithm is the evaluation of the resolution r function f̄ at a specific value
of θ. It is, e.g., useful when we want to plot the function. To determine the function value at
θ, we need to find the index k of the set Qk such that θ ∈ Qk. In this case, the function value
is the coefficient fk. The index k is determined in the following lemma.

Lemma 5.7. Let θ ∈ Θr·h. If
k =

⌊
1

2π θ · r · h
⌋

(5.11)

then
ξk ≤ θ < ξk+1 ,

where ξk is given in (5.6).

Proof. The choice of k in (5.11) implies

k j ≤
θ jrjh j

2π < k j + 1.

From this inequality we get

2π
rjh j

k j ≤ θ j < 2π
rjh j
(k j + 1).

Note that the term on left-hand side and on the right-hand side are ξk, j and ξ(k+1), j . �

Using the formula for the index (5.11) we can define the Evaluate-Function procedure.

Evaluate-Function( f , θ)
1 h← f .step-size
2 r← f .resolution
3 k←

⌊
1

2π θ · r · h
⌋

4 return fk

5.3.2. Constant Stencils

Computing the Fourier symbol of a constant stencil can already give insight into the behavior
of an iterative method. For example, in Section 1.5.3 we used it to show the smoothing
properties of the Jacobi iteration when applied to the Poisson equation. Furthermore, the
computation of Fourier symbols is an important building block in computing the Fourier
matrix symbols of periodic stencils. Thus, we consider the approximation of Fourier symbols.
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To begin with, recall Theorem 2.18, which states that the Fourier symbol of a constant
stencil operator â is given by

â(θ) :=
∑

y∈Gh

s(y) · ei〈θ,y〉 . (1.55 revisited)

Note that we assumed that the stencil s is finite, i.e., the stencil has finitely many non-zero
entries. It is easy to see that in this case â is continuous. With this fact in mind, we can
discuss the approximation of the symbol â by finite resolution functions.

Consider the sets Qk for k = 0, . . . , r − 1 corresponding to the resolution r. If we increase
the components of the resolution r, then the sets Qk become smaller. Since â is continuous, â
is nearly constant when restricted to a set Qk that is small enough. Hence, we can approximate
â by a function ā that is equal to a constant ak on Qk, i.e., ā ∈ Tr, which has the representation

ā =
r−1∑
k=0

ak · qk . (5.12)

As â is nearly constant on Qk, any function value â(θ) for θ ∈ Qk is a reasonable choice for
ak, which is the function value of ā on Qk.
We choose ak in the following way. Let θ0 ∈ Θr·h, we set

ak := â(ξk + θ0) (5.13)

for k = 0, . . . , r − 1. Figure 5.3 shows the function arguments ξk + θ0 for a specific choice of
θ0. A small computation shows that the definition of ξk (5.6) and the definition of Qk (5.7)
imply

ξk + θ0 ∈ Qk .

The vector θ0 is called the sampling offset. Using (1.55), we can rewrite (5.13);

ak =
∑

k∈Gh

s(y) · ei〈ξk+θ0,y〉 . (5.14)

The procedure Stencil-Symbol computes an approximation to a Fourier symbol given by a
constant stencil based on this equation.

Stencil-Symbol(s, r, θ0)
1 a← Allocate-Function(s.step-size, r)
2 for k← 0 to r − 1
3 ak ← 0
4 for all (y, v) in NonZeros(s)
5 ak ← ak + v · ei〈ξk+θ0,y〉

6 return a

In this procedure we make especially use of the assumption that s is finite.
We evaluate the quality of the approximation ā, given by the coefficients (5.14). We shall

answer this question by deriving a bound on the difference between ā and â. We start by
showing an auxiliary bound.
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Q00 Q10 Q20

Q01 Q11 Q21

Figure 5.3.: The points at which the symbol â is evaluated. As θ0 is the same for all set Qk,
the distance to the corners of Qk are the same giving a regular pattern at which â
is evaluated.

Lemma 5.8. For t ∈ � we have
|1 − eit | ≤ |t | . (5.15)

Proof. Interpreting � as a subset of �2, we can write

|1 − eit | = ‖
(
1
0

)
−

(
cos(t)
sin(t)

)
‖ .

In other words, |1 − eit | is the distance of the points (1, 0)T and (cos(t), sin(t))T , as illustrated
in Figure 5.4. This distance, however, is the length of the shortest path between these two
points (see, e.g., [71]). Consequently, the length of any path connecting the two points must
be greater or equal to the distance of the two points, i.e.,

|1 − eit | ≤
��� ∫ t

0
‖α′(t0)‖ dt0

���
for any curve α with α(0) = (1, 0)T and α(t) = (cos(t), sin(t))T . It is easy to see that the curve

α(t) :=
(
cos(t)
sin(t)

)
fulfills this requirement. Hence, we have that

|1 − eit | ≤
��� ∫ t

0
‖α′(t0)‖ dt0

��� = ��� ∫ t

0

√
sin(t0)2 + cos(t0)2 dt0

��� = ��� ∫ t

0
1 dt0

��� = |t | ,
where |t | is the length of the curve α. �

Using this lemma, we can show a result that characterizes how fast the function â changes,
which is done by deriving a bound for the difference of â evaluated for two different arguments.

Lemma 5.9. Let â be the Fourier symbol of the operator given by the stencil s. Then

|â(θ) − â(θ ′)| ≤
∑

y∈Gh

|s(y)| · |〈θ ′ − θ, y〉| (5.16)
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α

(cos(t), sin(t))T

(1, 0)T

Figure 5.4.: The distance of the points (1, 0)T and (cos(t), sin(t))T ) is bounded by the length
of the curve α.

Proof. We have from the definition of â (1.55) that

|â(θ) − â(θ ′)| = |
∑

y∈Gh

s(y) · ei〈θ,y〉 −
∑

y∈Gh

s(y) · ei〈θ′,y〉 |

= |
∑

y∈Gh

s(y) · (ei〈θ,y〉 − ei〈θ′,y〉)| . (5.17)

We can rewrite the term in parenthesis giving that

ei〈θ,y〉 − ei〈θ′,y〉 = ei〈θ,y〉 − ei〈θ−θ+θ′,y〉 = ei〈θ,y〉 − ei〈θ,y〉 · ei〈θ′−θ,y〉

= ei〈θ,y〉 · (1 − ei〈θ′−θ,y〉) .

If we substitute this relation back into (5.17), we obtain:

|â(θ) − â(θ ′)| = |
∑

y∈Gh

s(y) · ei〈θ,y〉 · (1 − ei〈θ′−θ,y〉)|

≤
∑

y∈Gh

|s(y)| · |ei〈θ,y〉 | · |1 − ei〈θ′−θ,y〉 | .

Using that |ei〈θ,y〉 | = 1 and that we can bound |1 − ei〈θ′−θ,y〉 | by using (5.15), we obtain that

|â(θ) − â(θ ′)| ≤
∑

y∈Gh

|s(y)| · |〈θ ′ − θ, y〉| . �

It is noteworthy that the bound (5.16) depends on the difference between θ and θ ′ but
not on the absolute value of θ. Using this bound, we can bound the difference between our
approximation ā and the Fourier symbol â.

Theorem 5.10. Let â be the Fourier symbol of the stencil operator that is given by the stencil
s. Furthermore, let ā ∈ Tr be given by the coefficients (5.13). Then

‖â − ā‖∞ ≤ ‖C(θ0)‖ ·
∑

y∈Gh

|s(y)| · ‖y‖ , where C(θ0)k := π
hkrk
+ | π

hkrk
− θ0,k | . (5.18)
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Proof. As ā is constant on Qj, we bound the difference of â and ā for every Qj. For θ ∈ Qj
we have

ā(θ) =
r−1∑
j=0

aj · qj(θ) = aj = â(ξj + θ0) ,

by the definition of ā (5.12), the basis functions qj (5.8), and the coefficients aj (5.13). Thus,

|â(θ) − ā(θ)| = |â(θ) − â(ξj + θ0)| for θ ∈ Qj .

Using this equation and Lemma 5.9, we obtain that

|â(θ) − ā(θ)| ≤
∑

y∈Gh

|s(y)| · |〈ξj + θ0 − θ, y〉| for θ ∈ Qj .

Applying the Cauchy-Schwarz inequality yields:

|â(θ) − ā(θ)| ≤
∑

y∈Gh

|s(y)| · ‖ξj + θ0 − θ‖ · ‖y‖ for θ ∈ Qj .

Thus, we need to find a bound for ‖ξj + θ0 − θ‖.
This bound is obtained by considering

‖ξj + θ0 − θ‖2 =
d∑

k=1
|ξj,k + θ0,k − θk |2 , (5.19)

because an upper bound for this sum is obtained by deriving an upper bound for the individual
summands |ξj,k + θ0,k − θk |.
As θ ∈ Qj, we have

θk ∈
[
ξj,k, ξj,k +

2π
hkrk

)
,

and since the absolute value is a convex function, the largest function value is located at the
boundary of the interval, i.e., for θk = ξj,k or θk = ξj,k +

2π
hkrk

. Thus,

|ξj,k + θ0,k − θk | ≤ max{|ξj,k + θ0,k − ξj,k |, |ξj,k + θ0,k − (ξj,k +
2π

hkrk
)|}

= max{|θ0,k |, |θ0,k − 2π
hkrk
|} .

Recall that θ0,k ∈ [0, 2π
hkrk
). From this fact, we obtain that

|ξj,k + θ0,k − θk | ≤ max{θ0,k,
2π

hkrk
− θ0,k} .

Furthermore, for general a, b ∈ �we have max{a, b} = 1
2 (b − a) + 1

2 |b − a|, and therefore

|ξj,k + θ0,k − θk | ≤ π
hkrk
+ | π

hkrk
− θ0,k | .

We can combine this equation with (5.19) to obtain that

‖ξj + θ0 − θ‖2 ≤
d∑

k=1
( π
hkrk
+ | π

hkrk
− θ0,k |)2 = ‖C(θ0)‖2 . �

157



5. Automating Fourier Analysis

The bound (5.18) involves the stencil coefficients s(y), the norm of the stencil offsets y,
and the vector C(θ0). Let us discuss the meaning of these constituents.
The size of the coefficients s(y) provides the order of magnitude of the symbol â. When

â has, in general, large values, we expect the absolute approximation error to be large, too.
Conversely, when we are interested in the relative error in the approximation, we can ignore
the size of the coefficients.

The norm of the stencil offsets y gives the amount of oscillation a symbol â has, as we can
see from

â(θ) :=
∑

y∈Gh

s(y) · ei〈θ,y〉 . (1.55 revisited)

When y is large, and s(y) , 0, then â involves a highly oscillatory component, because the
corresponding exponential is rapidly oscillating. In this case, we need a high resolution
function to capture the rapidly changing function by our approximation.
The formula for the vector C(θ0) has two consequences. First, we note that ‖C(θ0)‖ has

a minimal value when θ0 is the mid-point of Θr·h, i.e., when θ0,k =
π

hkrk
. Thus, the bound

(5.18) indicated that the best approximation is obtained when choosing θ0 as the mid-point
of Θr·h. Second, for this choice of θ0 the value of ‖C(θ0)‖ is(

d∑
k=0

(
π

rkhk

)2
)1/2

.

Thus, we can make ‖C(θ0)‖ small by making the entries of the resolution r large. Hence,
increasing the resolution should improve the quality of the approximation.
Note that the bound (5.18) is easily evaluated on the computer. Therefore, it can be used

to get a bound on the approximation quality during computation.
Furthermore, note that choosing θ0 as the mid-point of Θr·h is only a good choice when

we are interested in the approximation error. In case we are interested in, e.g., the supremum
of the symbol, a different choice of θ0 can lead to better results.

5.3.3. Norm and Spectral Radius using Symbols

The norm and spectral radius of error propagators give us insight into stationary iterative
methods; we know from Theorem 2.39 that if an operator A has a Fourier symbol â, then

r(A) = ‖A‖ = ‖â‖∞. (2.19 revisited)

Therefore, we can compute the desired quantities by computing the infinity norm of the
symbol â.
The infinity norm of a function f is given by

‖ f ‖∞ = inf{c ≥ 0 : µ(| f | > c) > 0} .

It is easy to see that if f is an finite resolution function, i.e.,

f̄ =
r−1∑
k=0

fk · qk , (5.9 revisited)
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we have
‖ f̄ ‖∞ = max

k
|ak | .

The procedure Infinity-Norm implements this formula to compute the infinity norm of an
finite resolution function.

Infinity-Norm( f )
1 return max{| fk | : k = 0, . . . , f .resolution − 1}

5.4. Approximating Fourier Matrix Symbols

Fourier matrix symbols allow us to analyze the two- and multigrid method and periodic
stencil operators. Like ordinary Fourier symbols, Fourier matrix symbols cannot be stored
exactly on a computer; they need to be approximated. We shall discuss how to define, store,
and manipulate these approximations.

5.4.1. Frequency Splitting

The frequency splitting operator R was needed to define Fourier matrix symbols2 and in
the computation of symbols of periodic stencil operators3. We want to approximate Fourier
matrix symbols by using finite resolution functions. As a first step, we consider the application
of the frequency splitting operator to finite resolution functions.
The next lemma gives a formula for the function values of the individual parts that a

finite resolution function is split into. The lemma requires that the resolution r should be a
pointwise multiple of the splitting factor n, i.e., there should be a c ∈ �d such that r = c · n.
This makes the computations easier, as it ensures that the frequency splitting operator does
not cut the individual steps of a finite resolution function into parts, as shown in Figure 5.5.
This requirement is not really a restriction, as we can always slightly increase the resolution
in a computation to meet the requirement.

Lemma 5.11. Let f̄ ∈ Tr. Let r be a (pointwise) multiple of n. For j ≤ r
n − 1 we have(

Rn f̄
)

k
(ξj + θ0) = f̄ (ξj+k·(r/n) + θ0) for θ0 ∈ Θr·h , (5.20)

where
ξk :=

2π
h · r · k . (5.6 revisited)

Proof. The first thing we should check is that (5.20) is actually well-defined, i.e., that ξj + θ0
is in the domain Θn·h of (Rn f̄ )k. The requirement j ≤ r/n − 1 implies

0 ≤ ξj ≤
2π

r · h ·
( r
n
− 1

)
=

2π
n · h −

2π
h · r ,

2Definition 3.19 on page 82.
3Theorem 3.30 on page 95.
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Rn

Figure 5.5.: When splitting a resolution r function, r should be a multiple of n to avoid
cutting the individual steps of the function into parts.

while the definition of Θr·h in equation (1.56) implies

0 ≤ θ0 <
2π

r · h .

Adding the two previous equations gives

0 ≤ ξj + θ0 <
2π

n · h .

Thus, ξj + θ0 ∈ Θn·h, and (5.20) is well-defined. With this knowledge, we can now prove the
formula itself.
Using the definition of Rn (3.3), we get(

R f̄
)

k
(ξj + θ0) = f̄ (ξj + θ0 + sk) .

Replacing ξj and sk by their definitions, equation (5.6) and (3.2), the last equation can be
written as (

R f̄
)

k
(ξj + θ0) = f̄

(
2πj
h·r + θ0 +

2πk
h·n

)
= f̄

(
2πj
h·r + θ0 +

2πk
h·r ·

r
n

)
= f̄

(
2π
h·r

(
j + k · r

n
)
+ θ0

)
= f̄ (ξj+k·(r/n) + θ0) . �

On a computer, we represent finite resolution functions by the coefficients of their basis
representation. For that reason, we want to represent the frequency splitting operator in terms
of the coefficients.

Theorem 5.12. Let f̄ ∈ Tr be given by

f̄ =
r−1∑
k=0

fk · qk, (5.9 revisited)

Then [Rn f̄ ]k ∈ Tr/n, and we have[
Rn f̄

]
k
=

r/n−1∑
j=0

fk·(r/n)+j · qj . (5.21)
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Note that the frequency splitting operator maps from L2(Θh) to L2(Θn·h)n. Hence, we
have that f̄ ∈ L2(Θh) and

[
Rn f̄

]
k ∈ L2(Θn·h) for j = 0, . . . , n − 1.

Proof. Let j < r/n. As f̄ is a resolution r function,

f̄ (θj+k·(r/n) + θ0) = fk·(r/n)+j for θ0 ∈ Θr·h .

Plugging this relation into (5.20) gives that[
Rn f̄

]
k
(ξj + θ0) = fk·(r/n)+j for θ0 ∈ Θr·h .

Combining the definition of ξj and Θr·h gives after a short computation that[
Rn f̄

]
k
(θ) = fk·(r/n)+j for all θ ∈ Qj .

Thus,
[
Rn f̄

]
k
∈ Tr/n, and it can be written in the form of (5.21). �

The frequency splitting operator splits a function into multiple parts. The sum (5.21) gives
the coefficients of these parts. Hence, we can write down an algorithm for the frequency
splitting operator applied to finite resolution functions.
The frequency splitting operator returns a vector whose entries are functions. To give

an algorithm that computes the splitting, we need a way to denote such vectors. For this
reason, we assume the existence of a function Allocate-Vector(n) that returns a handle to
the storage of a vector of size n, i.e., a vector whose entries can be indexed by the indices
0, . . . , n− 1. If v is such a handle, we assume that we can access the entries by vj and the size
by v.size. With this notation, we can now give the function Frequency-Splitting.

Frequency-Splitting( f , n)
1 r← f .resolution
2 h← f .step-size
3 g ← Allocate-Vector(n)
4 for k← 0 to n − 1
5 gk ← Allocate-Function(n · h, r/n)
6 for j← 0 to (r/n) − 1
7 gkj ← fk·(r/n)+j
8 return g

Note that the Frequency-Splitting procedure expects a resolution r representation, where r
is a multiple of n. It returns a vector of shape n of resolution r/n representations.
The definition of Fourier matrix symbols also involves the inverse R−1

n of the frequency
splitting operator. Consequently, we also need an algorithm to compute the inverse, which
we call Frequency-Join. It is a direct consequence of (5.21).
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Frequency-Join( f )
1 n← f .size
2 r← f0.resolution · n
3 h← f0.step-size/n
4 g ← Allocate-Function(h, r)
5 for k← 0 to n − 1
6 for j← 0 to (r/n) − 1
7 fk·(r/n)+j ← gkj
8 return g

With these two algorithms in place, we can now turn to algorithms for matrix symbols.

5.4.2. Matrix Symbols

We want to work with Fourier matrix symbols on a computer, so that we can automatically
analyze, e.g., periodic stencil operators4. Therefore, we need a way to store and manipulate
matrix symbols on a computer, which we shall discuss now.
We can think of matrix symbols as matrices where each entry is a function from L∞(Θh)

instead of a number, as is the case for ordinary matrices. We discussed in Section 5.3.1
that these functions cannot be represented exactly on a computer; we need to approximate
them. For this approximation we chose the spaces of resolution r functions Tr. The idea
for approximating matrix symbols is to approximate a matrix symbol on a computer by a
matrix, where each entry is a resolution r function from the space Tr. We denote the set of
m × n-resolution r function matrices by

Tm×n
r := {ā : āij ∈ Tr for i = 0, . . . ,m − 1, j = 0, . . . , n − 1} .

These matrices can be stored on a computer.
To store them, we need to find a suitable representation. By exploiting the fact that each

entry āij of an m × n-resolution r function matrix ā has a r-resolution representation aij, we
can write

āij =

r−1∑
k=0

aij,k · qk , (5.22)

where qk is the basis functions defined in (5.8). We call the coefficients aij,k for i = 0, . . . ,m−1,
j = 0, . . . , n − 1, k = 0, . . . , r − 1 the m × n-resolution r representation matrix of the matrix
symbol ā.
All operations on resolution r representation matrices Tm×n

r can be defined in terms of
their representation. In many cases, however, we can reuse the procedures for resolution
r functions that we introduced in Section 5.3.1, and work with the representation (5.22)
only indirectly. For example, to allocate storage for a resolution r function representation,
we just call the Allocate-Function procedure for every entry of the matrix and organize
the function handles properly. For this purpose, we assume the existence of a function

4Theorem 3.30 shows that every periodic stencil gives rise to a Fourier matrix symbol.
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Allocate-Matrix(m, n) that returns a handle to a storage for a matrix. If a is such a handle,
then a.rows should be the number of rows m, and a.cols should be the number of columns
n. Furthermore, aij should give access to the storage of the element with index (i, j), where
i = 0, . . . ,m − 1 and j = 0, . . . , n − 1.

As an example, let us consider the function MS-Allocate(h, r, n,m) that returns a handle
to a storage for a finite resolution function matrix.

MS-Allocate(h, r,m, n)
1 a← Allocate-Matrix(m, n)
2 a.step-size← h
3 a.resolution← r
4 for i = 0 to n − 1
5 for j = 0 to n − 1
6 aij ← Allocate-Function(h, r)

In the following, we often shall abbreviate matrix symbol by the letters MS.
Let us now consider operations on matrix symbols. Our final goal is to evaluate a formula

that describes an error propagator. As these formulas often involve matrix symbols, we want
to be able to perform different operations with them, e.g., addition, scalar multiplication, etc.
We start by considering the addition of two matrix symbols.

The addition of two matrix symbols a ∈ Lm×n
∞ (Θh) and b ∈ Lm×n

∞ (Θh) is given in
Definition 3.10 by

(a + b)ij = aij + bij . (3.10 revisited)

Recall that the entries aij and bij are functions from L∞(Θh). Thus, the sum is actually the
pointwise sum of two functions. In our case, a and b are resolution r representation matrices
Tm×n

r . Consequently, aij and bij are resolution r representations, and their addition was
already discussed in Section 5.3.1. Using this knowledge, the implementation of MS-Add,
which adds two resolution r representation matrices, is straightforward.

MS-Add(a, b)
1 c← MS-Allocate(a.step-size, a.resolution, a.rows, a.cols)
2 for i← 0 to a.rows − 1
3 for j← 0 to a.cols − 1
4 cij ← aij + bij
5 return c

Note that the sum in line 4 is computed by the Add-Functions procedure from Section 5.3.1.
In a similar way, we can implement the matrix-matrix product.
The matrix-matrix product of two matrix symbols a ∈ Lm×n

∞ (Θh) and b ∈ Ln×p
∞ (Θh) is

given by

cij =

n−1∑
k=0

aik · bkj . (3.12 revisited)

For computations on a computer we want that the resolutions of the involved functions match
appropriately. Thus, we require that aij and bij are both resolution r representations. The
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equation for the matrix-matrix product (3.12) implies that the entries of the product c are
obtained just by adding and multiplying resolution r representations. Therefore, the entries
of the result c are also resolution r representations. This discussion proves the following
lemma.

Lemma 5.13. If a ∈ Tm×n
r and b ∈ Tn×p

r , then the result of the matrix-matrix product a · b
fulfills

a · b ∈ Tm×p
r .

With the same reasoning that we used to prove this lemma, we conclude that we can
implement the matrix-matrix product just by using the procedures that operate on resolution
r representations introduced in Section 5.3.1.

MS-Matrix-Multiply(a, b)
1 h← a.step-size
2 r← a.resolution
3 c← MS-Allocate(h, r, a.rows, b.cols)
4 for i← 0 to c.rows − 1
5 for j← 0 to c.cols − 1
6 cij ← Constant-Function(h, r, 0)
7 for k← 0 to a.cols − 1
8 cij ← cij + aik · bkj
9 return c

Note that in Line 8, we are actually using the function Add-Functions and the func-
tion Pointwise-Multiply-Functions. In a similar way, we can define a function called
MS-Vector-Multiply that multiplies a matrix of finite resolution representations with a
vector of finite resolution representations.

The scalar multiplication, the matrix-vector symbol multiplication, and the computation of
the adjoint can be implemented in the same way. First, we use the corresponding formula from
Definition 3.10, then we use the operations on resolution r representations from Section 5.3.1
to compute the formula. There are, however, further operations on matrix symbols that
cannot be implemented in this way. These operations are the inversion of matrix symbols
and the computation of the norm and spectral radius.
The inversion of matrix symbols is a pointwise operation, i.e., to compute the inverse of

a matrix symbol a, we have to compute the inverse of the matrix a(θ) for all θ ∈ Θh. As a
consequence, the inverse of a is given by

a−1(θ) = (a(θ))−1 a.e. , (3.13 revisited)

which we use to compute the inverse of resolution r function matrices.
Assume that a is a resolution r representation matrix, i.e., it represents the resolution r

function matrix

āij =

r−1∑
k=0

aij,k · qk . (5.22 revisited)
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From the definition of qk, we have that

āij(θ) = aij,k for θ ∈ Qk .

If we define the auxiliary matrices bk ∈ �m×n by

bk,ij = aij,k ,

we have that
ā(θ) = bk for θ ∈ Qk . (5.23)

Using the pointwise inverse formula (3.13), we get

(ā−1)(θ) = b−1
k for θ ∈ Qk .

Note that in the last equation b−1
k is the ordinary inverse of the matrix bk, which can be

computed by standard methods like the LU-decomposition [16, 30, 60]. We can use this
equation to give a basis representation of the inverse;

(ā−1)ij =
r−1∑
k=0
(b−1

k )ij · qk .

From this formula we can deduce an algorithm for computing the inverse of a resolution r
function matrix.

For this purpose, we need a way to compute the auxiliary matrices bk which the procedure
MS-At(a, k) computes.

MS-At(a, k)
1 b← Allocate-Matrix(a.rows, a.cols)
2 for i = 0 to a.rows − 1
3 for j = 0 to a.cols − 1
4 bij ← aij,k
5 return b

Then we can use this procedure in the MS-Invert(a) procedure, which computes the
representation of the inverse of a matrix symbol a.

MS-Invert(a)
1 h← a00.step-size
2 r← a00.resolution
3 n← a.rows
4 b← MS-Allocate(h, r, n, n)
5 for k← 0 to r − 1
6 t ← MS-At(a, k)
7 MS-At(b, k) ← t−1

8 return b
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Let us now turn to the computation of the norm and spectral radius of resolution r function
matrices. Consider the statement of Theorem 3.25; if a is the matrix symbol of a matrix
multiplication operator A, then

r(A) = ess-supθ∈Θh·n r(a(θ)) and ‖A‖ = ess-supθ∈Θh·n ‖a(θ)‖ . (3.24 revisited)

Using the auxiliary matrices bk, especially (5.23), the computation of the spectral radius for
a resolution r function matrix ā simplifies to

r(Ā) = max
k

r(bk) ,

which gives rise to the algorithm for the MS-Norm procedure.

MS-Norm(a)
1 norm← −∞
2 for k← 0 to a.resolution − 1
3 m← MS-At(k)
4 if ‖m‖ > norm
5 norm← ‖m‖

Also by applying (5.23), the formula for the norm of the operator simplifies to

‖ Ā‖ = max
k
‖bk‖ .

This computation is implemented in the MS-Spectral-Radius procedure.

MS-Spectral-Radius(a)
1 radius← −∞
2 for k← 0 to a.resolution − 1
3 m← MS-At(k)
4 if r(m) > radius
5 radius← r(m)

With these operations for resolution r representation matrices, we can now turn to the
computation of Fourier matrix symbols and the symbols of periodic stencils.

5.4.3. Fourier Matrix Symbols

Fourier matrix symbols allow us to write certain Fourier representations in terms of matrix
symbols, e.g., the multigrid method of the jumping coefficient problem from Section 4.1 or
block smoothers, as discussed in Section 4.2. Recall that if A has a Fourier matrix symbol
â ∈ Lm×n

∞ , then its Fourier representation Â can be written as

Âû = R−1
m âRnû . (3.16 revisited)

Using the results from Section 5.4.1 and Section 5.4.2, we shall discuss how to compute
finite resolution representation matrices of Fourier matrix symbols for periodic stencil,
interpolation, and restriction operators.
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Resolution of Fourier Matrix Symbols

We want that our computations involve only finite resolution functions with matching
resolutions, which has some consequences for the computation with Fourier matrix symbols.

Consider the following algorithm that applies a finite resolution function û to the Fourier
representation Â of an operator A that has a Fourier matrix symbol â.

Matrix-Symbol-Apply(â, û)
1 û′← Frequency-Splitting(û, a.cols)
2 f̂ ′← MS-Vector-Multiply(â, û′)
3 return Frequency-Join( f̂ ′)

It follows from the definition of Fourier matrix symbols (3.16) that the algorithm computes
the desired result. However, the function û must have a proper resolution.
Let us now consider the question, which requirements the resolutions of û and f̂ need to

fulfill. Let â be an m × n resolution r representation matrix. The MS-Vector-Multiply
procedure then requires that û′ is a vector of length n of resolution r representations. The
vector û′ is the return value of the Frequency-Splitting procedure, and this procedure
returns a vector of length n of resolution r representations only if û is a resolution n · r
representation. Similarly, f̂ ′ has to be a vector of length m of resolution r representations
and therefore f̂ is a resolution r ·m representation. This discussion motivates the following
definition.

Definition 5.14. Let â be an m × n resolution r function matrix that represents a Fourier
matrix symbol. We then say that rin := n · r is the input resolution and rout := m · r is the
output resolution of â.

The definition directly implies the relation

rin/n = rout/m .

We can compare this relation to the relation between the input step-size and the output
step-size of a Fourier matrix symbol, which is

n · hin = m · hout . (3.15 revisited)

From these two equations a little algebra gives

hout/hin = rin/rout . (5.24)

Thus, when an operator maps from a space with a small step-size to a space with a step-size
that is larger by a factor, the resolution is reduced by the same factor and vice versa.

5.4.4. Periodic Stencil Operators

For the computation of the Fourier matrix symbol of periodic stencils we use Theorem 3.30,
which states the following. Let {sx}x∈Gh be a periodic stencil with period n. If â(k) is the
Fourier symbol of the constant stencil operator with stencil sk·h, we can compute the matrix
symbol in three steps.
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1. We compute the matrix F by

Fkj := 1
vol1/2n

ei2π 〈k/n,j〉 for k, j = 0, . . . , n − 1 . (3.36 revisited)

2. We compute the matrix symbol g by

gkj = Fkj · [Rnâ(k)]j . (5.25)

3. We compute the Fourier matrix symbols of A by

â = F∗ · g . (5.26)

On a computer, however, we have to approximate these computations.
The computation of F requires no approximation5, because F is just a regular matrix. The

symbols â(k), however, need to be approximated, which we do by using the Stencil-Symbol
procedure. Let us denote this approximation by ā(r). Then we have to compute Rnā(k), which
implies that the resolution r̄ of ā(k) has to be a multiple of n, i.e., r̄ = n · r for some r ∈ �d.
Approximating g using the approximations ā(k) in (5.25), i.e., computing

gkj = Fkj · [Rnā(k)]j ,

yields that g ∈ Tn×n
r . Finally, we apply (5.26) and obtain that â ∈ Tn×n

r . Hence, as soon as
we have computed the approximations ā(k), all computations involve only finite resolution
functions. With rin := n · r we can write down the Periodic-Stencil-Symbol procedure.

Periodic-Stencil-Symbol(s, rin, θ0)
1 n← s.period
2 for k← 0 to n − 1
3 a(k) ← Stencil-Symbol(sk·h, rin, θ0)
4 ã(k) ← Frequency-Splitting(a(k), n)
5 for j← 0 to n − 1
6 Fkj ← 1

vol1/2n
ei2π 〈k/n,j〉

7 gkj ← Fkj · ã(k)j
8 return F∗ · g

5.4.5. Restriction and Interpolation

To analyze two- and three-grid methods by LFA, we need to compute the Fourier matrix
symbols of interpolation and restriction operators. As the Fourier matrix symbol of the
injection restriction and the injection interpolation operators are constant with respect to the
frequency θ, they are already finite resolution function matrices. Therefore, they fit well into
the framework that we have been discussing so far. Furthermore, as many interpolation and
restriction operators can be expressed by composition of injection and stencil operators, we
5Except for the approximation that occurs by the use of finite precision numbers, which we shall ignore in this
discussion.
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can analyze many methods in this way. There are, however, a few things to take into account
when implementing operators that map between grids with different step-sizes.

We start with the injection restriction. It maps from a grid with step-size hin to a grid
with step-size hout = n · hin, where n is the coarsening range. Its Fourier matrix symbol
r̂ ∈ L1×n

∞ (Θn·hin) and it has the entries

r̂0j(θ) = 1
vol1/2n

for θ ∈ Θh·n . (3.17 revisited)

We now want to construct an algorithm that computes a finite resolution representation matrix
for r̂ .
Assume the input resolution rin is given. Then the resolution r of the finite resolution

function matrix that represents r̂ is given by r = rin/n. The symbol of the restriction can be
written as

r̂0j =

r−1∑
k=0

1
vol1/2n

· qk .

From this equation we obtain that the resolution r representation matrix is{
1

vol1/2n

}r−1

k=0
,

which is computed by the Injection-Restriction procedure.

Injection-Restriction(hin, rin, n)
1 r̂ ← MS-Allocate(n · hin, rin/n, 1, n)
2 for k← 0 to n − 1

3 r̂0k ← Constant-Function
(
n · hin, rin/n, 1

vol1/2n

)
4 return r̂

In a similar way, we can derive from the formula for the Fourier matrix symbol of the
injection interpolation

p̂k0 =
1

vol1/2n
(3.20 revisited)

the procedure Injection-Interpolation that computes the resolution r representation matrix.

Injection-Interpolation(hout, rout, n)
1 p̂← MS-Allocate(n · h, rout/n, n, 1)
2 for k← 0 to n − 1

3 p̂k0 ← Constant-Function
(
hout · n, rout/n, 1

vol1/2n

)
4 return p̂

Consider now the stencil restriction operator, which is the composition of a stencil operator
and the injection restriction operator. Its Fourier matrix symbol r̂ ∈ L1×n

∞ (Θn·hin) is given by

r̂0j =
1

vol1/2n
[Rmr̂st]j . (3.23 revisited)
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In this equation, r̂st is the Fourier symbol of a stencil operator. To approximate r̂ on a
computer, we replace the symbol r̂st by a resolution rin function that approximates the actual
symbol. Then equation (3.23) can be carried out on a computer using known algorithms.
This leads to the definition of the Stencil-Restriction procedure.

Stencil-Restriction(rin, n, s, θ0)
1 hin ← s.step-size
2 r̂ ← MS-Allocate(n · hin, rin/n, 1, n)
3 â← Stencil-Symbol(s, rin, θ0)
4 â′← Frequency-Splitting(â, n)
5 for k← 0 to n − 1
6 r̂0k ← 1

vol1/2n
· â′k

7 return r̂

Note that to compute Rnr̂st, the input resolution rin has to be a multiple of n. Hence, the
procedure Stencil-Restriction has the same requirement.

In a similar way, we obtain the procedure Stencil-Interpolation from

p̂k0 =
1

vol1/2m
[Rm p̂st]k . (3.22 revisited)

This procedure computes an approximation to the stencil interpolation.

Stencil-Interpolation(rout, n, s, θ0)
1 hout ← s.step-size
2 p̂← MS-Allocate(n · hout, rout, n, 1)
3 â← Stencil-Symbol(s, rout, θ0)
4 â′← Frequency-Splitting(â, n)
5 for k← 0 to n − 1
6 p̂k0 ← 1

vol1/2n
· â′k

7 return p̂

5.4.6. Expansion

The expansion of Fourier matrix symbols, that we discussed in Section 3.8, was essential for
proving that the set of Fourier matrix symbols is closed under multiplication and addition.
More precisely, to add or multiply Fourier matrix symbols, it is often necessary to expand
them before the desired operation can be carried out. Consequently, for the implementation
of general multiplication and addition of Fourier matrix symbols on a computer we need to
implement the expansion of these symbols.

The information needed to create the expansion algorithm can be found in Theorem 3.37.
It states that the expansion by a factor p maps a symbol â ∈ Ln×n′

∞ (Θh) to a symbol
á ∈ Lp·n×p·n′

∞ (Θp·h). Both symbols represent the same operator. Furthermore, the entries of
á are given by

ák·p+t,k′ ·p+t′ = [Rpâkk′]t · δtt′ .
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From this equation we can also deduce the resolution of the representation that we can
compute.

Assume that âkk′ is a resolution r representation. We have to use the Frequency-Splitting
procedure on this representation, which returns a resolution r/p representation. Hence, the
entries of á also have to be resolution r/p representations. As a consequence, we require r to
be a multiple of p.

As we now know how to compute the rows, columns, step-size, resolution, and the entries
of the result of the expansion, we can define the Expand procedure that computes the
expansion of an n × n′ resolution r representation matrix.

Expand(â, p)
1 á← MS-Allocate(p · â.step-size, â.resolution/p, p · â.rows, p · â.cols)
2 for k← 0 to â.rows − 1
3 for k′← 0 to â.cols − 1
4 ã← Frequency-Splitting(âkk′, p)
5 for t← 0 to p − 1
6 for t′← 0 to p − 1
7 ák·p+t,k′ ·p+t′ ← ãt · δtt′

8 return á

Let us sum up the properties of this procedure.

Proposition 5.15. Let â be an n × n′ resolution r representation matrix. The Expand
procedure requires that the resolution r is a multiple of the expansion factor p. It returns a
p · n × p · n′ resolution r/p representation matrix that represents the same operator as â.

Combining this proposition with the definition of input and output resolution6 gives the
following corollary.

Corollary 5.16. The Expand procedure does not change the input and output resolution of
the operator, i.e., it returns a representation matrix with the same input and output resolution
as â.

This corollary gives another justification for the definition of input and output resolution
of finite resolution representation matrices. With the definition of the expansion procedure
we can now construct the multiplication of finite resolution representation matrices with
non-matching dimensions.

Assume that A and B have Fourier matrix symbols that have finite resolution representation
matrices â and b̂. Then to compute the Fourier matrix symbol of B · A, we require that the
output of A maps to a grid with the same step-size as the input of B, and that the output
resolution of â is equal to the input resolution of b̂. Furthermore, if we require a certain
condition on the resolution of the representations, there exists an algorithm that computes a
finite resolution representation matrix that represents B · A, as the following theorem shows.

6Definition 5.14
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Theorem 5.17. Let A : `2(Ghin) → `2(Ghout) and B : `2(Gh′in) → `2(Gh′out
) that have Fourier

matrix symbols with finite resolution representations â and b̂. Furthermore, let â be an m× n
resolution r representation matrix and b̂ be an m′ × n′ resolution r′ representation matrix. If

1. hout = h′in,
2. rout = r′in, and
3. rout is a multiple of m and n′,

then the Fourier matrix symbol of C := B · A has a finite resolution representation matrix ĉ
and ĉ is an m′ ·q′×n ·q resolution rout/lcm(m, n′) representation, where q = lcm(m, n′)/m
and q′ = lcm(m, n′)/n′. In these equations lcm denotes the pointwise least common multiple.

Proof. Let á and b́ the factor q and factor q′ expansions of â and b̂. This definition, however,
is only well defined if r is a multiple of q and r′ is a multiple of q′, which can be proven as
follows.

The output resolution rout is a multiple of m and n′ and therefore a multiple of lcm(m, n′).
As rout is a multiple of lcm(m, n′), r = rout/m is a multiple of lcm(m, n′)/m = q, and
therefore r is a multiple of q. We can show that r′ is a multiple of q′ in a similar way.

Now, á and b́ have matching resolutions and therefore ĉ is obtained by the product of the
representations of b́ with á. �

The proof of Theorem 5.17 describes the way how the finite representation matrix of B · A
can be computed; leading to the definition of the General-Multiply procedure.

General-Multiply(b̂, â)
1 q← lcm(â.rows, b̂.cols)/â.rows
2 q′← lcm(â.rows, b̂.cols)/b̂.cols
3 á← Expand(â, q)
4 b́← Expand(b̂, q′)
5 return MS-Multiply(b́, á)

To use this procedure, the requirements of Theorem 5.17 have to be met.
The first requirement, the step-sizes match, is a natural one. The composition of A and

B is just not defined if the codomain of A does not match the domain of B. Thus, the user
of the computer program, which computes the analysis, is required to make sure that the
step-sizes match. The second and third requirement, that put restrictions on the resolution,
can be fulfilled by a proper choice of resolutions. This proper choice of resolutions can be
done automatically, as we shall discuss in a later section of this chapter.

Similar to Theorem 5.17 and the General-Multiply procedure, one can derive a general
addition of finite resolution representation matrices.

Theorem 5.18. Let A : `2(Ghin) → `2(Ghout) and B : `2(Gh′in) → `2(Gh′out
) that have Fourier

matrix representations â and b̂. Furthermore, let â be an m × n resolution r representation
matrix and b̂ be an m′ × n′ resolution r′ representation matrix. If

1. hin = h′in,
2. hout = h′out,
3. rin = r′in, and
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4. rin is a multiple of n and n′,
then the Fourier matrix symbol of C := B + A has a finite resolution representation matrix ĉ
and ĉ is an m · q × n · q resolution rin/lcm(n, n′) representation, where q = lcm(n, n′)/n.

5.4.7. Smoothing Factor

Having the expansion procedure at hand, we can automate the computation of the smoothing
factor. Let the smoother be given by its error propagator S with Fourier matrix symbols ŝ,
and let q̂n be the Fourier symbol of the idealized coarse grid correction Qn. The smoothing
factor is defined by

smf(S, n) := r(Sν2QnSν1) = ess-supθ∈Θn·h r(śν2(θ) · q́n(θ) · śν1(θ)) , (3.40 revisited)

where ś and q́n are properly expanded versions of ŝ and q̂n.
Let us assume that we have a finite resolution representation matrix for ŝ. The only thing

missing to compute the smoothing factor is a finite resolution representation of q̂n.
Combining (1.61) and (1.62) yields that the Fourier symbol of Qn is given by

q̂n(θ) =
{

0 if 0 ≤ θk < π
nkhk

or (2nk−1)π
nkhk

≤ θk < 2π
hk

for all k = 1, . . . , d,
1 otherwise.

This is a resolution 2n function. Hence, for any resolution r that is a multiple of 2n there is a
resolution r representation of q̂n.

It turns out that we can give a Fourier matrix symbol which represents Qn in a more elegant
way. Combining the definition of the frequency splitting operator (3.3) with the previous
equation, we obtain

[R2nq̂n]i(θ) =
{

0 if ik = 0 or ik = 2sk − 1 for all k = 1, . . . , d,
1 otherwise.

We see that the entries of the vector R2nq̂n are constant functions. Applying the operator q̂n
to a test function û gives

[R2n[Q̂nû]]i = [R2n(q̂n · û)]i

= [R2nû]i ·
{

0 if ik = 0 or ik = 2sk − 1 for all k = 1, . . . , d,
1 otherwise.

This equation can be written as

[R2n[Q̂nû]]i =
∑

j
q́n,ij · [R2nû]j ,

where

q́n,ij = δij ·
{

1 if ik = 0 or ik = 2sk − 1 for all k = 1, . . . , d,
0 otherwise,
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leading to
Q̂nû = R−1

2n q́nR2nû .

Hence, q́n is the 2n × 2n Fourier matrix symbol of the operator Q̂n, and each entry of q́
is a constant function, which can be represented by any resolution r > 0. Therefore, to
multiply q́n with another matrix symbol, we only need to expand the two operators to proper
dimensions; the resolution of q́n adds no further constraints, as it can be chosen arbitrarily.

5.4.8. Matrix Representation

Consider an m × n resolution r function matrix ā that is the Fourier matrix symbol of an
operator A, i.e., the Fourier representation Â of A is given by Â = R−1

m āRn. Restricting the
Fourier representation to Tn·r gives an operator Â : Tn·r → Tm·r, which is a linear operator
that maps between finite dimensional spaces. Hence, there exists a matrix that represents the
action of A given a basis of Tn·r and of Tm·r. The following theorem shows how to obtain this
matrix from the representation of the function matrix ā for the basis (5.8) of Tn·r and Tm·r.

Theorem 5.19. Let ā be an m × n resolution r function matrix, with representation a and
Â : Tn·r → Tm·r given by Â = R−1

m āRn. Furthermore, let f̄ ∈ Tm
r and ū ∈ Tn

r such that
f̄ = Âū. If we define f and u by the basis representations

f̄ =
∑
j,k

fjk · qk·(r/m)+j and ū =
∑
j′,k′

uj′k′ · qk′ ·(r/n)+j′ ,

then Â can be represented by a matrix a′, i.e.,

fjk =
∑
j′,k′

a′jk,j′k′ · uj′k′ , where a′jk,j′k′ = aij,k · δkk′ . (5.27)

Proof. We start with f̄ = Âū and obtain that

f̄ = R−1
m āRnū .

Multiplying by Rm from the left gives that

Rm f̄ = āRnū ,

and the definition of matrix symbols yields that

[Rm f̄ ]j =
n−1∑
j′=0

ājj′ · [Rnū]j′ . (5.28)

We shall now rewrite this equation by using the resolution r representations of the involved
finite resolution functions.

UsingTheorem5.12, we see that
{

fjk
}r−1

k=0 and
{
uj′k′

}r−1
k′=0 are the resolution r representations

of [Rm f̄ ]j and [Rnū]j′. Thus, writing (5.28) in terms of these representations gives

fjk =
n−1∑
j′=0

ajj′,k · uj′k =

n−1∑
j′=0

r−1∑
k′=0

ajj′,k · δkk′ · uj′k′ =

n−1∑
j′=0

r−1∑
k′=0

a′jk,j′k′ · uj′k′ . �
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In this theorem we used two multiindices jk and j′k′ to index the coefficients fjk and uj′k′ .
Thus, the matrix relating f and u has four multiindices. This choice of indices made the
formulation and proof of Theorem 5.19 easier. Furthermore, it reveals that the matrix a′ is a
block diagonal matrix.

From (5.27) we see that the entry a′jk,j′k is zero if k , k′. Thus, if we order the row indices
by k and column indices by k′ the matrix a′ is block diagonal. Hence, we can also interpret
finite representation matrices that represent Fourier symbols as block matrices. It can be
shown that operations on these representations directly map to operations on block matrices.

5.5. A Language for LFA

LFA analyzes the properties of iterative methods by examining the error propagator of the
method. The error propagator is, in general, given by a formula and a set of (periodic) stencils
that describe the involved operators. The idea of LFA is to compute the error propagator
by evaluating the formula for the Fourier matrix symbols corresponding to the involved
operators. We know how to carry out these computations; however, we need a way to turn a
formula that a user enters into a sequence of operations on Fourier matrix symbols.

5.5.1. Evaluating Formulas

We shall briefly discuss the algorithmic evaluation of formulas [1, 2, 65]. Let us start with a
simple example, the computation of

6 · (3 + 4) .

The evaluation is, of course, done by first evaluating the sum of three and four to seven, and
then evaluating the product of six and seven, i.e.,

6 · (3 + 4) { 6 · 7 { 42 .

This is a straightforward procedure. There is, however, an issue with the notation that we
used.
Mathematically, 6 · 7 is equal to 42; the two are indistinguishable. As we want to talk

about the term “6 · 7” and not its value, which is 42, we need a way to describe terms in a
mathematical way without the risk of confusing the term with its value. One way to do this,
is to use prefix notation [1]. A term in prefix notation is a tuple, where the first element of
the tuple is the operator and the remaining elements are the arguments. For example the term
“3 + 4” written in prefix notation is

(+, 3, 4)

and the term “6 · (3 + 4)” is
(·, 6, (+, 3, 4)) .

In this notation we can write the evaluation of “6 · (3 + 4)” as

( · , 6, (+, 3, 4)) { ( · , 6, 7) { 42 .
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·

6 +

3 4

Figure 5.6.: Expression tree of the term “6 · (3 + 4)”.

From this representation of the formula, we can easily derive the corresponding expression
tree7.

We can construct an expression tree from a term in prefix notation by creating a node for
every tuple and label it with the operator, the first element of the tuple. Then we create a
node for every number and label it with the number itself. As a last step, for each tuple we
create an edge that connects the operator node with the node of its arguments. It can easily
be seen that the resulting graph is a tree. Figure 5.6 shows an example.

We shall now discuss the evaluation procedure in an abstract way, i.e., we want to describe
the algorithm for the evaluation of an expression to a value. To define this algorithm, we
need three sets: the set of values, the set of operators, and the set of expressions. The
evaluation algorithm takes an element of the set of expressions and returns an element of the
set of values, according to some rules. This procedure differs from the way a (mathematical)
function is evaluated; when the algorithm is applied to the same input expression, it might
return a different value for every application. This can be the case, for example, when the
computation of the result depends on some user input.

The set of values can, in principle, be any arbitrary set. The members of this set, however,
are the objects that we accept as a final result of the computation. In the example above we
could have chosen the set of real numbers �. Thus, we would accept “42” as a result, but not
(·, 6, 7), as this is a whole term and not just a number.
The set of operators contains the actions or computations that we can perform. More

precisely, we assume there exists an Apply procedure that, given an operator and a list of
values, returns a new value.

The set of expressions is a set that contains objects which describe the actions that should
be carried out by the evaluation algorithm. This set is defined recursively, starting with the
set of values.

e is an expression if


e is a value, or
e = (op, e1, e2, . . . ) , where op is an operation and

e1, e2, . . . expressions.

Consider the evaluation of an expression of the form (op, e1, e2, . . . ). The meaning of the
operator op is given by the Apply procedure. This procedure, however, can only be applied
to the operator and a list of values and not a list of expressions. Thus, to apply the operator
to its arguments, we first have to compute the value of the argument expressions e1, e2, . . . ,
which is what the evaluation procedure is supposed to do. To evaluate an expression, the
7For a definition of trees see [16].
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·

+

3 4+

3 4

·

2

Figure 5.7.: Expression tree of the term (2 · (3 + 4)) · (3 + 4).

evaluation procedure is, therefore, recursively applied to all argument expressions. Then the
operator is applied to all argument values. The Eval procedure is defined below.

Eval(expr)
1 if expr in values
2 return expr
3 else
4 (op, e1, e2, . . . ) ← expr
5 v1 ← Eval(e1)
6 v2 ← Eval(e2)
7 · · ·
8 return Apply(op, v1, v2, . . . )

When an expression contains the same sub-expression multiple times, the Eval procedure
performs the same actions for each of these sub-expressions. These sub-expressions often8
evaluate to the same value. Thus, computing the sub-expression multiple times is unnecessary.
Consider the expression

(·, (·, 2, (+, 3, 4)), (+, 3, 4)) ,

which computes (2 · (3 + 4)) · (3 + 4) and contains the sub-expression (+, 3, 4) two times.
Figure 5.7 shows the corresponding expression tree. This tree contains the sub-tree corre-
sponding to the sub-expression (+, 3, 4) twice, which can be avoided if we connect the nodes
that connect to the (+, 3, 4) to the same sub-tree instead of two independent sub-trees, as
shown in Figure 5.8. This graph, however, is not a tree anymore. Though, it is acyclic, which
allows us to apply the Eval procedure to the graph without changes.
When the Eval procedure is applied to the directed acyclic graph from Figure 5.8, it

performs the same operations as when it is applied to the tree from Figure 5.7. To actually
avoid the repeated evaluation of the sub-expression, we need to modify the Eval procedure
to store the intermediate results, i.e., the values of the sub-expressions. One way to do this, is
to replace the node that represents a sub-expression by a node representing its value, as soon
as it is computed. This is, what the Eval-Dag procedure does.

8This is the case when the sub-expression does not depend on a state that changes during the computation.
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·

+

3 4

·

2

Figure 5.8.: Directed acyclic graph of the term (2 · (3 + 4)) · (3 + 4).
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3 4
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14 { 98

Figure 5.9.: Application of the Eval-Dag procedure to the directed acyclic graph representing
the expression (2 · (3 + 4)) · (3 + 4).

Eval-Dag(node)
1 if node in values
2 return node
3 else
4 (op, e1, e2, . . . ) ← node
5 v1 ← Eval(e1)
6 v2 ← Eval(e2)
7 · · ·
8 result← Apply(op, v1, v2, . . . )
9 replace node by result
10 return result

Its application to the directed acyclic graph from Figure 5.8 is visualized in Figure 5.9.

5.5.2. Building Expression Trees

If a user wants to evaluate a formula on a computer, he/she needs a way to enter the formula
into the computer. Since the computer can so far only evaluate expression trees, we need a
procedure that converts the user input into an expression tree.

A formula, for example, can be specified in a textual way; the user enters a text that defines
the formula. For example the text “6 * (3 + 4)” is a textual description of the expression
tree from Figure 5.6. A program that turns such a text into a formula is called a parser [2].
For a parser to be able to perform its task, the text has to follow a certain set of rules. Writing
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a parser is laborious, however, many programming languages allow us to reuse their parser
for our purpose.

If a programming language allows operator overloading, we can often use the parser of the
programming language to build an expression tree. Operator overloading enables us to (re-)
define the meaning of operators for user-defined types, allowing us to define a type which
represents an expression. Operations on this type then create new expressions instead of
performing computations. In that way we obtain an expression tree instead of a value. We
shall demonstrate this approach by a small example.

The example is a program written in the Python [69] programming language. The program
turns a formula into an expression tree, which is then used to print the prefix notation of the
corresponding formula.
We start by creating a class called Expression and define its addition and multiplication

operators by overwriting the __add__ and __mul__ methods. The operators, instead of
computing a value, just construct an instance of the classes Sum and Product, which store the
left hand side (self) and the right hand side (other) of the addition and multiplication.

1 #!/usr/bin/env python3
2

3 class Expression:
4 def __add__(self , other):
5 return Sum(self , other)
6

7 def __mul__(self , other):
8 return Product(self , other)

Furthermore, we define a class Operator which is an Expression and classes Sum and
Product which are Operators. The Operator class implements the __str__ method which
describes how an operator will be displayed. It will be represented by an opening parenthesis,
followed by its name, followed by the representation of its arguments, followed by a closing
parenthesis.
The Sum and Product class just store their arguments and set their name, such that they

can be printed by the method defined in the Operator class.

10 class Operator(Expression ):
11 def __str__(self):
12 s = ’(’ + self.name
13 for d in self.arguments:
14 s += ’, ’ + str(d)
15 return s + ’)’
16

17 class Sum(Operator ):
18 def __init__(self , lhs , rhs):
19 self.name = ’+’
20 self.arguments = [lhs , rhs]
21

22 class Product(Operator ):
23 def __init__(self , lhs , rhs):
24 self.name = ’*’
25 self.arguments = [lhs , rhs]
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:Product

:Value
value=6

:Value
value=7

:Value
value=8

:Value
value=9

argument[0]
argument[1]

:Sum
argument[0]
argument[1]

:Sum
argument[0]
argument[1]

Figure 5.10.: Object diagram of the expression from the example program.

Note that the Sum and the Product class are themselves Expressions, as the Operator class
is an Expression. The sum of two Expressions returns an instance of the Sum class. As
this instance is itself an Expression, something else can be added to this class, which will
create a new instance of the Sum class. This will produce a tree, in which the inner nodes
are instances of the Operator class and the children of the nodes are the arguments of the
operator.

There needs to be a way to represent values. Therefore, we define a class called Value. This
class just stores the value it is given. However, it is an Expression and therefore the addition
and multiplication operators of the Expression class are used. Thus, whenever adding two
instances of the Value class, an instance of the Sum class is returned which references the
two values in its arguments.

The Value class also implements the __str__ method which just returns the corresponding
value as a string.

27 class Value(Expression ):
28 def __init__(self , v):
29 self.value = v
30

31 def __str__(self):
32 return str(self.value)

We can test our implementation with the following code.
34 expr = Value (6) + Value (7) * Value (8) + Value (9)
35 print(expr)

The objects that are referenced in the expr variable are pictured in Figure 5.10. From this
structure, we can easily see that the output of this code will be:
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(+, (+, 6, (*, 7, 8)), 9)

5.5.3. Matching Resolutions

To compute the product or sum of two Fourier matrix symbols with finite resolution
representations and matching step-sizes, the resolutions need to fulfill the conditions of
Theorem 5.17 or Theorem 5.18, respectively. Assume that we have a set of Fourier matrix
symbols with finite resolution representations and a formula that combines them. We shall
show how to assign a resolution to every Fourier matrix symbol such that all operations which
are required to evaluate the formula combine only representations with matching resolution.
To choose the resolutions appropriately, we shall make use of the next theorem. It states

that for every formula that involves Fourier matrix symbols there is a common step-size, in
the sense that all other step-sizes are integer multiples of the common step-size.

Theorem 5.20. Let A ∈ L(`2(Ghin); `2(Ghout)) be given by an expression. The set of values
should be the set of Fourier matrix symbols, and the set of operators should consist of the
addition, multiplication, scalar multiplication, inverse, and adjoint. Then the step-sizes of the
domain and the steps-sizes of the codomain of all Fourier matrix symbols in the expression
are the integer multiples of a common step-size h0.

Proof. We prove the assertion by induction. First, we show that the set of values fulfills the
assertion. Then we show that an operator applied to expressions that fulfill the assertion
returns a Fourier matrix symbol, which also fulfills the assertion.
Let us start with the set of values. Let B ∈ L(`2(Gh1); `2(Gh2)) be an operator that has a

Fourier matrix symbol b̂ ∈ Lm×n
∞ (Θn·h1). Then the step-sizes have to fulfill the requirement

(3.15), i.e.,
n · h1 = m · h2 .

Thus, if we define the common step-size h0 = h1/m = h2/n, c1 = m, and c2 = n, then
c1, c2 ∈ �d,

h1 = c1 · h0 , and h2 = c2 · h0 .

We continue with the addition of an operator B ∈ L(`2(Gh1); `2(Gh2)) and an operator
B′ ∈ L(`2(Gh′1); `2(Gh′2)). The induction hypothesis tells us that B and B′ can be computed
using common step-sizes h0 and h′0. In particular, this statement implies that there exist
c1, c′1 ∈ �

d such that

h1 = c1 · h0 ,

h′1 = c′1 · h
′
0 .

The fact that we are able to add B and B′ implies that h1 = h′1, otherwise the formula would
not make sense. Combining this equation with the previous one yields that

c1 · h0 = c′1 · h
′
0 .

Thus, if we define h′′0 = h0/c′1 = h′0/c1, then h0 and h′0 are integer multiples of h′′0 , and all
integer multiples of h0 and h′0 can be written as integer multiples of h′′0 . Therefore, h′′0 is the
new common step-size.
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We consider the product B′ · B of an operator B ∈ L(`2(Gh1); `2(Gh2)) and an operator
B′ ∈ L(`2(Gh′1); `2(Gh′2)). The induction hypothesis tells us that B and B′ can be computed
using common step-sizes h0 and h′0. In particular, this statement implies that there exist
c1, c′1 ∈ �

d such that

h2 = c2 · h0 ,

h′1 = c′1 · h
′
0 .

As we are able to multiply B and B′, we have that h2 = h′1. Combining this equation with the
previous one, we obtain that

c2 · h0 = c′1 · h
′
0 .

Thus, if we define h′′0 = h0/c′1 = h′0/c2, then h0 and h′0 are integer multiples of h′′0 , implying
that all integer multiples of h0 and h′0 can be written as integer multiples of h′′0 . Therefore,
h′′0 is the new common step-size.

It remains to prove the assertion for operators that involve just one Fourier matrix symbol,
i.e., the scalar multiplication, the inverse and the adjoint. However, as these operators pose no
constraints on the step-sizes, the common step-size is the same before and after application
of the operator. �

For computational reasons it can be desired to choose h0 as large as possible, i.e., to
make h0 as small as necessary but not smaller. Assume that in the computation we need the
step-sizes h1, . . . , hk , and we have a common step-size h0 such that

hj = cj · h0 for j = 1, . . . , k .

The smallest step-size h′0 is obtained by letting

c′j = cj/gcd(c1, c2, . . . , ck) and h′0 = h0 · gcd(c1, c2, . . . , ck) .

With this definition,
hj = c′j · h′0

and cj ∈ �d, showing that all step-sizes hj are indeed integer multiples of h′0.
Using the fact that when evaluating an expression of Fourier matrix symbols, there exists

only one step-size that defines all the others, we can show that for an expression of finite
resolution representation matrices there is just one resolution, fixing all other resolutions.
Recall that the input and output resolution and the input and output step-size of a finite
resolution representation are related by

hout/hin = rin/rout . (5.24 revisited)

First of all note that if hout = hin, the previous equation implies

rin = rout .

Thus, in order to have matching resolutions of operators that map grid functions with a
given step-size to a grid function with the same step-size, both grid functions must have the
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same resolution, implying that there is only one resolution per grid. Let r0 be the resolution
assigned to the grid with step-size h0.
We know that there exists a common step-size h0 such that

hin = cin · h0 and hout = cout · h0 .

Combining the last two equations with (5.24), we get that

rin/rout = hout/hin = (cout · h0)/(cin · h0) = cout/cin .

If we let hin = h0, i.e., cin = 1 and rin = r0, then

rin/rout = r0/rout = cout .

Thus,

rout = r0/cout .

In a similar way, by assuming that cout = 1, we get

rin = r0/cin .

In other words, the input and output resolution are completely determined by the resolution
r0 that we assigned to the grid with step-size h0. The choice of r0, however, is not arbitrary.
Assume that we are evaluating an expression containing the operators

Aj : `2(Gcin, j ·h0) → `2(Gcout, j ·h0)

with corresponding mj × nj finite resolution representations matrices âj , for j = 1, . . . , k. It
is easy to see that if we define

r0,min = lcm(cin,1 · n1, . . . , cin,k · nk, cout,1 ·m1, . . . , cout,k ·mk) , (5.29)

any integer multiple of r0,min is an appropriate choice for r0. By appropriate we mean that
the requirements of Theorem 5.17 and Theorem 5.18 are fulfilled for all pairs of operators
(Aj, Aj′) whose step-sizes allow their multiplication or addition.

5.5.4. Evaluating Fourier Matrix Symbols

We shall now discuss how to compute a finite resolution approximation to a Fourier matrix
symbol given by a formula. In contrast to Section 5.5.1, we need to enrich the expression
tree of the formula before we can actually evaluate it.

The formula is evaluated by first approximating all Fourier matrix symbols, which appear in
the formula, by finite resolution representation matrices, and then combining them according
to the formula. In the previous section we have seen that we need a suitable resolution, and
to compute this resolution, we need the input and output step-size and the rows and columns
of all matrix symbols of the formula. Let us call these quantities the properties of the matrix
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symbols. From these properties we can compute a suitable resolution and then evaluate the
formula.

If we have the properties of the arguments of an operator, like the addition of multiplication
operators, we can compute the properties that the resulting matrix symbol would have.
For example, consider the general multiplication of finite resolution representations of
Fourier matrix symbols, as defined in the General-Multiply procedure. In this case,
Theorem 5.17 gives the properties of the product in terms of the properties of the two
factors. The computation of the properties for the general multiplication is given in the
Compute-Properties-Multiply procedure.

Compute-Properties-Multiply(p1, p2)
1 p.out-step-size← p1.out-step-size
2 p.in-step-size← p2.in-step-size
3 q1 ← lcm(p1.cols, p2.rows)/p1.cols
4 q2 ← lcm(p1.cols, p2.rows)/p2.rows
5 p.rows← p1.rows · q1
6 p.cols← p2.cols · q2
7 return p

For every operator we can define such a function that computes the properties of the
resulting matrix symbol when given the properties of the arguments. Let us assume we have
a function Compute-Properties(op, p1, p2, . . . ). Given the operator and the properties of
its arguments, this function computes the properties of the matrix symbol that the operator
would produce when applied to arguments with the properties p1, p2, . . . . Then we can
recursively traverse the expression tree and enrich it with the information about the properties
of the resulting symbol representations, which is what the Set-Properties procedure does.

Set-Properties(expr)
1 if expr not in values
2 (op, e1, e2, . . . ) ← expr
3 Set-Properties(e1)
4 Set-Properties(e2)
5 . . .

6 expr .properties← Compute-Properties(op, e1.properties, e2.properties, . . . )

Let us discuss an example. We consider the block Jacobi method in 1D and with block
size 2. Furthermore, the operator of the linear system should be given by a constant stencil.
The method was discussed in Section 4.2.1, and its error propagator is given by

E = I − ωD−1 A . (4.20 revisited)

In this case, the operator D has a corresponding 2 × 2 and the operator A a corresponding
1 × 1 Fourier matrix symbol. The enriched expression tree for this formula, as produced by
the Set-Properties method, is shown in Figure 5.11. The procedure computes the properties
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2 × 2
h→ h

2 × 2
h→ h

2 × 2
h→ h

-

I

inv A

D

·

ω ·

1 × 1
h→ h

2 × 2
h→ h

2 × 2
h→ h

1 × 1
h→ h

Figure 5.11.: Enriched expression tree of the expression I − ωD−1 A.

from the bottom to the top of the tree. Whenever two operators are combined in a node and
their rows or columns do not match, the rows and columns of this node have to be computed
by the rules of Theorem 5.17 and Theorem 5.18, i.e., the matrix symbols have to be expanded
properly. The expansion is necessary, for example, when D−1 and A are multiplied. The rows
of A do not match the columns of D−1. Consequently, the result has more rows and columns
than A. From this enriched expression tree we can compute the suitable resolutions for the
evaluate of the expression.

The resolution of all representations is determined by the resolution on the finest grid, as
discussed in Section 5.5.3. Let h0 be the step-size of the finest grid. A feasible resolution is
an integer multiple of r0,min, which is determined as follows. Assume that we have k nodes
in the expression tree, and the jth node has the following properties: the input step-size
hj,in = cj,in · h0, the output step-size hj,out = cj,out · h0, the rows mj , and the columns nj .
Then as discussed in Section 5.5.3,

r0,min = lcm(cin,1 · n1, . . . , cin,k · nk, cout,1 ·m1, . . . , cout,k ·mk) . (5.29 revisited)

This value can be computed by traversing all nodes of the expression tree. We can use this
value to determine the resolution on the finest grid.

The resolution determines the quality of the computed result. Therefore, a user wants to
specify a minimal resolution to ensure a minimum quality of the result. Thus, we choose the
smallest multiple of r0,min that is larger than the resolution which the user requested.

This choice for the resolution ensures that when evaluating the expression tree, all operations
involve matching resolutions. Hence, after choosing the resolution, we can evaluate the
expression tree using the Eval procedure from Section 5.5.1 where the Apply procedure
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uses the algorithms from Section 5.3. The result is a finite resolution representation matrix,
which approximates the Fourier matrix symbol of the operator described by the expression.

5.6. Literature and Contributions

This chapter dealt with the automation of LFA. Another approach of automating LFA is
described in [74], where an LFA software with a graphical user interface is presented. The
main difference between this reference and this thesis is, that in this thesis we allow for the
computation of arbitrary combinations of operators, while the software described in the
reference only allows the evaluation of a fixed set of formulas.

For the purpose of allowing for arbitrary operator combinations, we combined the idea of
approximating functions by finite resolution functions—a concept well known in applied
mathematics—with the idea of evaluating expression trees—a concept will known in computer
science.

To evaluate arbitrary formulas involving operators with Fourier matrix symbols, we need
to compute general sums and products of these symbols. These operations require the proper
expansion, which was introduced in this thesis. Furthermore, it is reasonable to fulfill certain
requirements about the resolution of the functions that are used in the computation. These
considerations and the proof that a proper choice of resolution is always possible is an original
result of this thesis.
The algorithm for the computation of Fourier matrix symbols, introduced in Section 3.6,

is also a new result. Furthermore, Theorem 5.10, which gives an estimate for the accuracy of
the finite resolution approximation, is also new.
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In this thesis, we have developed a general framework for local Fourier analysis of multigrid
methods that is versatile and well suited for computer implementation. The two main results
that made this framework possible are the equivalence of periodic stencil operators and
operators with Fourier matrix symbols (Theorem 3.35), and that operators with Fourier
matrix symbols are closed under many operations (Theorem 3.37). These results were
shown by exploiting the fact that the operators given in position space have a corresponding
representation in Fourier space.
More precisely, a discrete function on an infinite grid Gh is represented in Fourier space

by a continuous function on the compact set Θh. These two representations are related by
the discrete time Fourier transform giving a relation between the spaces `2(Gh) and L2(Θh).
Consequently, linear, bounded operators on these spaces are similarly related; every operator
in L(`2(Gh); `2(Gh′)) has a Fourier representation in L(L2(Θh); L2(Θh′)). It turned out that
there are two subsets of operators on grid functions whose Fourier representations can be
written in a useful way—constant stencil and periodic stencil operators.

We have proven that the Fourier representation of constant stencil and periodic stencil
operators can be written as symbols and matrix symbols. This form is important, as it allows
us to compute the norm and spectral radius of the corresponding operators via

r(A) = ess-supθ∈Θn·h r(â(θ)) and ‖A‖ = ess-supθ∈Θn·h ‖â(θ)‖ , (3.25 revisited)

where â is the Fourier matrix symbol of the operator A. These relations have been used in
local Fourier analysis literature (see, e.g., [11, 74]). Still, we could not find the constraints
or proofs for these statements in the literature. To close this gap, we decided to proof these
important statements in this thesis.
Using the Fourier matrix symbols of periodic stencil operators, we were able to analyze

multigrid methods which have not been considered to this point. We analyzed a multigrid
method for a diffusion problem with jumping coefficients, and we analyzed various block
smoothers. Furthermore, we showed that known results, like the analysis of the point-wise
red-black Jacobi method, can be performed using periodic stencil operators.

As mentioned above, for the practical implementation of LFA in a computer software, it is
important that Fourier matrix symbols are closed under many operations for the following
reason. We know how to approximate Fourier matrix symbols on a computer. Hence, if we
perform a computation, we want to be sure that the result is a Fourier matrix symbol. If the
result would be something else, we would not be able to store and represent it on the machine.
We showed how to create a flexible software for the automation of local Fourier analysis.

This flexibility was achieved by choosing approximations to Fourier matrix symbols as
primitive components that could be combined into complicated expressions. In this way,
many problems can be described, which are then analyzed by the software.
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In summary, we have described a theoretical framework that allows for the analysis of
complicated problems and a flexible computer implementation. This implementation permits
the reuse of code and therefore simplifies the applicability of local Fourier analysis.
In the future, the software should allow us to analyze further complicated problems that

have not yet been considered by local Fourier analysis. Furthermore, it is straightforward to
widen the analysis to include systems of operators. In addition, the software uses an expression
tree to represent the computations that should be performed. By applying algorithms that
rewrite this tree, it should be possible to optimize the computation of the Fourier analysis,
e.g., by removing redundant information or simplifying expressions.
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Orthonormal bases are useful for different analytical tasks. In this chapter, we discuss an
orthonormal basis of L2([0, 2π/h1) × · · · × [0, 2π/h2);�), where 0 < h ∈ �d, that uses the
complex wave functions eit (t ∈ �). These are classical results that can be found, e.g., in the
textbooks [4, 21, 42, 61, 72].

A.1. The one-dimensional Case

Let us begin with the one dimensional case and the space L2([0, 2π);�). We claim that the
functions

ψk(s) := 1√
2π

eiks (for k ∈ �)

form an orthonormal basis of L2([0, 2π);�). The orthonormality is easily verified by
computing the integral

〈ψk, ψj〉 =
∫ 2π

0

1√
2π

e−ijs · 1√
2π

eiks ds = δk j .

From this fact we already know that for a function that is given by

f :=
∞∑

k=−∞
akψk , where ak ∈ � , (A.1)

the coefficients ak fulfill ak = 〈 f , ψk〉.
It is also true that every function f ∈ L2([0, 2π);�) can be written as the sum (A.1). This

statement, however, is more difficult to prove.

Lemma A.1. Every function f ∈ L2([0, 2π);�) can be written as the sum (A.1).

Sketch of the proof. This proof can be found in standard textbooks [4, 21, 42, 72]. Therefore,
we will just outline one possible way to prove the assertion.

It can be proven that every step function on [0, 2π) can be written as the sum (A.1) [21].
Thus, the set {ψk}∞k=−∞ is dense in the set of the step functions. As this set is dense in
L2([0, 2π);�) also is {ψk}∞k=−∞. �

A.2. The d-dimensional Case

In the next step, let us generalize this basis to the space L2([0, 2π)2;�). By using the results
from section A.1, we shall show that

ψk(s) := 1
(2π)d/2 ei〈k,s〉 (for k ∈ �d)
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is an orthonormal basis for L2([0, 2π)d;�).
We can use the exponentiation law to obtain

ψk(s) = 1
(2π)d/2 ei〈k,s〉

= 1
(2π)d/2 eik1s1 eik2s2 · · · eikdsd

= ψk1(s1) · ψk2(s2) · · ·ψkd (sd) .

Thus, the functions ψk are just the product of the basis functions from section A.1. By
computing

〈ψk, ψj〉 =
∫
[0,2π)d

ψj1(s1) · · ·ψjd (sd) · ψk1(s1) · · ·ψjd (sd) ds

= 〈ψk1, ψj1〉 · · · 〈ψkd, ψj2〉
= δkj ,

we verify the orthonormality of {ψk}∞k=−∞.
Furthermore, {ψk}∞k=−∞ is also a basis of L2([0, 2π)d;�), as we will see in a minute. For

this purpose, pick a function f ∈ L2([0, 2π)d;�). For almost all x2, . . . , xd ∈ � it is true that
the mapping s1 7→ f (s1, x2 . . . , xd) is a univariate function in L2([0, 2π);�). Thus, if we use
Lemma A.1, we have that there exists ak1(x2, . . . , xd) ∈ � such that

f (s1, x2, . . . , xd) =
∞∑

k1=−∞
ak1(x2, . . . , xd) · ψk1(s1) . (A.2)

The same argument applies to the functions ak1 . We can write them as

ak1(s2, x3, . . . , xd) =
∞∑

k2=−∞
ak1k2(x3, . . . , xd) · ψk2(s2) for k1 ∈ � .

We can substitute this relation into the first sum (A.2) and obtain that

f (s1, s2, x3 . . . , xd) =
∞∑

k1=−∞

∞∑
k2=−∞

ak1k2(x3, . . . , xd) · ψk2(s2)ψk1(s1) .

We can now repeat this with ak1k2 , ak1k2k3 , . . . and finally arrive at

f =
∞∑

k=−∞
ak · ψk1 · · ·ψkd =

∞∑
k=−∞

ak · ψk .

Therefore, {ψk}∞k=−∞ is an orthonormal basis of L2([0, 2π)d;�).
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A.3. Changing the Domain

We have an orthonormal basis for Ψ := [0, 2π)d, and we would like to have an orthonormal
basis for Θh := [0, 2π/h1) × · · · × [0, 2π/hd), because this is the space we use in local Fourier
analysis. To obtain this basis, we construct an isometry between L2(Ψ;�) and L2(Θh;�).

Lemma A.2. The mapping T : Ψ→ Θh given by

(T f )(x) := vol1/2h · f (γ(x))

is an isometry.

Proof. Let f , g ∈ L2(Ψ;�). As T is linear, we just need to show that∫
Ψ

f g ds =: 〈 f , g〉 = 〈T f ,Tg〉 :=
∫
Θh

Tg · T f dt .

We prove this by constructing the mapping T from a variable substitution. Let γ : Θh → Ψ

and
γ(x) := h1x2 dx1 + · · · + hdxd dxd .

Then the variable substitution given by γ yields∫
Ψ

g(s) · f (s) ds =
∫
γ−1(Ψ)

g(γ(t)) · f (γ(t)) · | det γ′(t)| dt .

A simple computation yields that det(γ′(t)) = volh. By distributing this factor onto the two
functions f and g, we obtain that∫

Ψ

g(s) · f (s) ds =
∫
Θh

vol1/2h g(γ(t)) · vol1/2h f (γ(t)) dt .

Therefore, the mapping T is an isometry. �

By using the mapping, T can transform the orthonormal basis ψk of Ψ into an orthonormal
basis T(ψk) of Θh, proving the following theorem.

Theorem A.3. The set of functions

(Tψk)(t) =
vol1/2h
(2π)d/2 ei〈k,h·t〉

is an orthonormal basis of the space L2(Θh;�).
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Nomenclature

� The natural numbers.
� The integer numbers.
� The real numbers.
� The complex numbers.
i The imaginary unit.
a The complex conjugate of the complex number a.
#S Cardinality of the set S.
χM The characteristic function on the set M .
δij The Kronecker delta.
Uε (x) The open unit sphere of radius ε with center x.
[a] The equivalence class of a w.r.t. some equivalence relation.
voln The volume of the hyper-cube with sides n1, . . . , nd.
lcm(a, b) The least common multiple of a and b.
gcd(a, b) The greatest common divisor of a and b.
I The identity matrix/operator.
span{v1, . . . , vn} The span of the vectors v1, . . . , vn.
〈a, b〉 The scalar product of a and b.
‖a‖ The norm of a.
diag(w1, . . . ,wn) The diagonal matrix with diagonal entries w1, . . . ,wn.
X The closure of the set X .
Cp[a, b] The space of p-times continuously differentiable functions on the

interval [a, b].
µ The Lebesgue measure.
L2(X) The square Lebesgue integrable functions on X .
L∞(X) The essentially bounded functions on X .
L(H) The set of linear, bounded operators A : H → H.
L(H1; H2) The set of linear, bounded operators A : H1 → H2.
A∗ The adjoint operator of A.
σ(A) The spectrum of A.
ρ(A) The resolvent set of A.
ess-im The essential range.
ess-sup The essential supremum.
Lm×n
∞ (X) The set of m × n matrices with entries in L∞(X).

Ln
2 (X) The set of vectors of length n with entries in L2(X).
∆ The Laplace operator.
∆h The discrete Laplace operator.
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Nomenclature

∇u The gradient of the function u.
∇ · w The divergence of the field w.
Ω The domain of a PDE.
∂Ω The boundary of the domain of a PDE.
Ωh Inner points of the discrete domain.
Ωh The whole discrete domain.
∂Ωh The boundary of the discrete domain.
Gh The infinite grid with step-size h.
`2(Gh) Bounded functions on the infinite grid Gh.
Θh The visible frequencies on a grid with step-size h.
L2(Θh) Bounded functions on the frequencies.
φθ The wave function with frequency θ.
[θ] The set of all n,h-harmonics of θ.
θ` The low n,h-harmonic corresponding to θ.
θb The base frequency of the frequency θ.
Fh The discrete time Fourier transform.
ÛFh The element-wise discrete time Fourier transform.

Â The Fourier representation of the operator A.
â The Fourier (matrix) symbol of the operator A.
sh,n
j The frequency shifts.

sj The frequency shifts.
tk The space shifts.
Rn The frequency splitting operator.
Tr The set of all resolution r functions.
Tm×n

r The set of all m × n matrices with entries in Tr.
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base frequency, 31, 41
block Jacobi method, 124
block shift invariant, 102
boundary value problem, 3

characteristic function, 62
coarse grid correction, 16
coarsening range, 30, 33
column sum norm, 50
common step-size, 181
consistency, 5
constant stencil, 25, 53
constant stencil operator, 53

discrete domain, 4
boundary, 4
interior, 4

discrete maximum principle, 8
discrete time Fourier transform, 55
discretization, 5
divergence, 109

element-wise discrete time Fourier trans-
form, 96

error
algebraic, 10
discretization, 10
propagator, 20

essential range, 66
essential supremum, 90
evaluation, 176
expansion, 84
expression, 176
expression tree, 176

finite differences, 5

finite volume method, 110
formal eigenvalue, 26
formal eigenfunction, 26
Fourier matrix symbol, 82
Fourier representation, 58
Fourier space, 48, 56
Fourier symbol, 26, 61, 68
frequency shifts, 71
frequency splitting, 84
frequency splitting operator, 72
full weighting restriction, 18

Galerkin coarse approximation, 23
Galerkin coarse grid approximation, 116
gradient, 109
grid, 4
grid function, 48

bounded, 48

harmonic frequencies, 30, 41
Hilbert-Schmidt norm, 50

induced restriction, 19
infinite grid, 25
injection, 15
injection interpolation operator, 75
iterate, 10

Kronecker delta, 38

Laplace operator, 3
linear bounded operator, 48
low harmonic, 31, 41

matrix symbol
inverse, 79
invertible, 79
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Index

matrix symbol, 79
adjoint, 79

matrix symbol properties, 184
matrix symbols, 71
multigrid iteration, 20
multigrid method, 1
multiplication operator, 61, 62

operator norm, 43, 48
operator overloading, 179

parser, 178
periodic stencil, 93
plane wave, 37
position space, 48, 56
prefix notation, 175

red-black block Jacobi method, 135
resolution, 148

finite, 148, 150
infinite, 148, 150
input, 167
output, 167

resolution r
representation, 151

resolution r
function, 150
function matrix, 162
representation matrix, 162

resolution r
function, 148

resolvent, 60
row sum norm, 50

sampling offset, 154
scalar product, 33
shift invariant, 53
shift operator, 53
smoother, 13
smoothing factor, 33, 41, 68
space shift, 77
spectral radius, 43
spectrum, 60
stability, 5, 7
stationary method, 12

stencil, 24, 37
coefficient, 143
finite, 154
offset, 143

symbol, 62

thermal conductivity, 110
two-grid method, 16

value, 176
variable stencil, 52
visible frequencies, 28, 38
volume of a hypercube, 34

wave function, 26, 37
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