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Abstract

Carbonyl sul�de plays a crucial role in the global atmospheric sulfur cycle and therefore for

the global climate. It is the most abundant sulfur containing gas in the atmosphere during

volcanic quiescence and is converted to aerosol in the stratosphere, which has a cooling e�ect

on the climate. This work contributes to a better understanding of the role of OCS in the

upper troposphere and lower stratosphere. Satellite based data were analyzed and a new in-

strument AMICA (Airborne Mid-Infrared Cavity enhanced Absorption spectrometer) for in-situ

OCS measurements on stratospheric research aircraft was developed.

Using the OCS data set from the satellite based instrument ACE-FTS, the stratospheric OCS

burden was calculated to be 524 Gg, which is 10 % of the total atmospheric OCS budget and

is in agreement with a sulfur cycle model. No trend in the global burden is observed between

2004 and 2016. Due to the sparse spacial coverage of the data set of ACE-FTS, a sampling bias

arises when computing climatological averages over seasons and latitude bands. This sampling

bias is corrected for with a newly developed procedure, using a mathematical interpolation. To

estimate the signi�cance and magnitude of the bias for each data point, the performance of the

interpolation method was tested and some limitations identi�ed.

Additionally, with the ACE-FTS data set, a signi�cant increase in OCS (CO and HCN) mixing

ratios is observed in the Asian monsoon anticyclone, a pathway from the highest polluted region

on earth into the stratosphere. An analysis of the HCN :OCS ratios supports the suggestion of a

transport from the Bay of Bengal region outside to the southern border of the anticyclone with

air masses in the Asian monsoon anticyclone mostly originating from continental convection. The

Asian monsoon and the features seen with the ACE-FTS data set will be investigated in detail

with the new in-situ, high resolution instrument AMICA during the EU-project StratoClim.

AMICA has been developed and tested as part of this thesis. Important tests were made that

contributed to the mechanical design and measurement set up in the �nal AMICA instrument.

Key components include a box-shaped pressure tight enclosure, a �ow system that regulates the

cavity pressure over a wide ambient pressure range, spanning the full altitude range of available

research aircraft, and the establishment of an OCS calibration system.

AMICA successfully measured OCS as well as CO, CO2 and H2O during its �rst campaign that

comprised three �ights from Kalamata, Greece in summer 2016. OCS measurements show de-
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creasing mixing ratios in the stratosphere as expected and a larger variability in the UTLS region

than expected. The complete data set of the important tropospheric tracer CO was provided to

the StratoClim community. A comparison with a nearby ACE-FTS pro�le shows a reasonably

good agreement between AMICA and ACE-FTS in the stratosphere.

Further measurement �ights in the UTLS region will help understand the detected higher

variability of OCS in the UTLS. This can improve the representation of OCS in global cli-

mate models.
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Zusammenfassung

Carbonylsul�d (OCS) hat einen groÿen Ein�uss auf den globalen Schwefelkreislauf und damit

auch auf das globale Klima. In Zeiten geringer vulkanischer Aktivität ist OCS das dominierende

Schwefelgas in der Atmosphäre. In der Stratosphäre wird OCS über Schwefeldioxid zu Aerosol

umgewandelt. Stratosphärisches Aerosol hat einen kühlenden E�ekt auf das Klima. Im Rahmen

dieser Dissertation wird ein Beitrag zum Verständnis vonOCS und dessen Rolle in atmosphärischen

Prozessen, in der oberen Troposphäre und unteren Stratosphäre geleistet. Hierzu wurden Satel-

litendaten analysiert und ein neues Messgerät AMICA (Airborne Mid-Infrared Cavity enhanced

Absorption spectrometer), für Einsätze auf stratosphärischen Forschungs�ugzeugen entwickelt.

Mit dem Satelliten Datenprodukt von ACE-FTS wurde die Gesamtmenge an stratosphärischem

OCS bestimmt, der sog. stratosphärische �Burden�. Dieser beträgt 524 Gg, was gut mit der

OCS Repräsentierung eines Schwefelkreislauf Modells übereinstimmt und entspricht etwa 10 %

der gesamten atmosphärischen OCS Masse. Im gesamten bisherigen ACE-FTS Messzeitraum

von 2004 bis 2016 ist kein signi�kanter Trend zu beobachten. Wegen der lückenhaften, globalen

Abtastung von ACE-FTS entsteht ein systematischer Fehler bei der Berechnung von klimatolo-

gischen Mittlungen über Breitengrad- und Zeitbereiche. Um diesen Fehler zu korrigieren wurde

in dieser Arbeit eine Methode entwickelt, die auf einer mathematischen Interpolation basiert.

Für eine Einschätzung der Gröÿe und Signi�kanz dieser Abweichung wurde diese Methode er-

probt und Grenzen aufgezeigt.

Signi�kant erhöhte OCS- (CO- und HCN -) Konzentrationen werden in der Antizyklone des asi-

atischen Monsuns, der als wichtiger Transportweg von dem Treibhausgas- verschmutzen

asiatischen Raum in die Stratosphäre gilt, mit dem ACE-FTS Datensatz nachgewiesen. Ein

HCN :OCS Vergleich unterstützt die Annahme, dass Luftmassen aus der Bay of Bengal Region

eher südlich der Antizyklone des asiatischen Monsuns transportiert werden und die Antizyklone

eher von kontinentaler Konvektion gespeist wird. Der asiatische Monsun soll mit hochaufgelösten

in-situ Messungen genauer untersucht werden.

Ein hochau�ösendes, in-situ Messgerät AMICA für den Einsatz auf Flugzeug-Messkampagnen,

wurde im Rahmen dieser Arbeit entwickelt und charakterisiert. AMICA ist ein hochau�ösendes

in-situ Spektrometer, entwickelt für den Einsatz auf Forschungs�ugzeugen. Unter die Entwicklung

und Erprobung einzelner Komponenten des Messinstruments fallen zum Beispiel ein druckdichtes
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Gehäuse für die Messapparatur, ein Flusssystem zur Regulierung eines konstanten Drucks in den

Messzellen (bei Schwankungen des Auÿendrucks während eines Mess�ugs) und ein geeignetes

OCS Kalibrierungssystem.

Während der ersten Messkampagne in Kalamata, Griechenland im Sommer 2016, hat AMICA

erfolgreich gemessen. Messungen zeigen, dass OCS, wie angenommen in der Stratosphäre ab-

nimmt. In der oberen Troposphäre und unteren Stratosphäre (UTLS) zeigen die OCS Mes-

sungen eine höhere Variabilität als erwartet. Das AMICA CO Datenprodukt wurde der Stra-

toClim Gemeinschaft zur Verfügung gestellt. Ein Vergleich mit einem nahe gelegenem ACE-

FTS Messpro�l zeigt eine gute Übereinstimmung mit AMICA OCS- und CO-Werten in der

Stratosphäre. Ein Vergleich mit ACE-FTS OCS und CO Messungen zeigt eine gute Überein-

stimmung der beiden Messinstrumente in der Stratosphäre.

Weitere geplante Mess�üge mit AMICA werden zu einem besseren Verständnis der gemessenen

OCS Variabilität in der UTLS beitragen, was zu einer besseren Parameterisierung von OCS in

globalen Klimamodellen führen kann.
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Chapter 1

Introduction

Carbonyl Sul�de (OCS) in the upper troposphere and stratosphere, its contribution to the aerosol

layer and its role in climate are the main focus of this work. In this chapter dynamical features

of this atmospheric region, stratospheric aerosol and the current knowledge about OCS and its

contribution to the aerosol layer are discussed together with a motivation for the development of

the new instrument AMICA (Airborne Mid-Infrared Cavity enhanced Absorption spectrometer).

1.1 The upper troposphere and stratosphere

In this work studies and measurements are done in the region of the upper troposphere and

stratosphere (UTS). The lowest two layers of the atmosphere are the troposphere and strato-

sphere.

The troposphere:

• Temperature decreases with altitude down to around -60 ◦C.

• The average temperature decrease per 1 km altitude is 6.5 ◦C (net adiabatic lapse rate).

• Well mixed layer, containing all the weather we experience.

• The troposphere extends to the tropopause.

The tropopause:

• Higher in summer, lower in winter; higher in the tropics (∼ 16 - 18 km, 100 hPa), lower at

the poles (∼ 6 - 9 km, 300 hPa).

• The tropopause altitude is de�ned as follows:

� Thermal tropopause: as soon as the temperature decrease per 1 km rising altitude

falls below 2 ◦C, that is the de�ned height of the thermal tropopause according to the

World Meteorological Organization (WMO). It is the most commonly used de�nition.
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� Dynamical tropopause: a potential vorticity (PV) threshold (usually between 2 and

4 PVU, Potential Vorticity Unit) is chosen (positive in the Northern Hemisphere and

negative in the Southern Hemisphere) de�ning the dynamical tropopause in the extra

tropics. Steep PV gradients on isentropes are associated with a transport barrier,

re�ected as the dynamical tropopause. In the tropics the dynamical tropopause is

de�ned by the potential temperature (380 K).

� Chemical tropopause: the lower stratosphere exhibits much higher concentrations of

ozone than the upper troposphere. Additionally, the upper troposphere contains much

higher water concentrations, while the lower stratosphere is much dryer. The location

of those steep gradients of concentration di�erences is used to de�ne the chemical

tropopause.

The stratosphere:

• The temperature increases with altitude.

• The ozone layer is situated in the stratosphere. By absorbing UV radiation it releases heat,

causing the distinct temperature increase with altitude in the stratosphere. It protects the

Earth's surface from the damaging UV-radiation.

• The stratosphere is situated between the tropopause and stratopause (at about 50 km, 1

hPa).

1.2 Stratospheric aerosol and OCS

Of the entire middle atmosphere, the one factor with the most immediate impact on climate

is the stratospheric aerosol layer. Stratospheric aerosol absorbs near-infrared solar radiation

and emits long wave radiation from the surface and backscatters solar shortwave radiation to

space. The net e�ect on the Earth's surface is cooling. Hence, the more aerosol accumulates

in the stratosphere, the higher is the negative radiative forcing, which leads to a cooling of the

Earth's surface. In contrast, however, in the troposphere, aerosol signi�cantly absorbs longwave

radiation, leading to an increased warming e�ect (compared to stratospheric aerosol), which

balances or even leads to a warming of the net e�ect.

With a maximum at 15 to 23 km altitude, the aerosol layer was �rst discovered in Junge et al.

(1961) and Junge and Manson (1961) and is therefore also referred to as 'Junge layer'. Aerosols

in the stratosphere, una�ected by volcanoes have a particle radius below 2µm (Kremser et al.,

2016).

After strong volcanic eruptions, which inject sulfate material directly into the stratosphere, the

surface temperature decreases signi�cantly on a global scale for typically a few years. The

phenomenon of one volcano eruption in�uencing the global climate was �rst described in Simkin

2



Introduction

and Fiske (1983). 'The year without summer' in 1816, causing enormous damage in northern

America and Europe was assigned to the Tambora eruption in 1815. The Pinatubo eruption

1991 is a more recent example of a volcanic eruption with a global climate in�uence, with a

global mean surface temperature drop of nearly 0.4 ◦C (Thompson et al., 2009).

An updated overview of stratospheric aerosol and the sulfur cycle is given in Kremser et al.

(2016).

1.2.1 Transport of sulfur compounds into the stratosphere

The current knowledge on transport- and conversion processes of stratospheric aerosol is pre-

sented in Figure 1.1. Stratospheric aerosol mainly consists of sulfate droplets, with contributions

from meteoritic and other non-sulfate material. The main transport pathways of sulfur com-

pounds into the stratosphere are:

• Volcanic eruptions: depending on the location and strength of a volcanic eruption, sul-

fate particles are directly introduced into the stratosphere. Additionally, minor eruptions

have an important impact on the climate so that background (no volcanic in�uence) con-

ditions are hard to �nd during the last decade (Solomon et al. (2011) and Vernier et al.

(2011b)). Injection of sulfur compounds by volcanic eruptions is the main contributor for

the stratospheric sulfur and aerosol budget.

• Tropical convection: in the absence of volcanic eruptions, the largest part of sulfur com-

pounds from the surface is transported via tropical convection in the tropics across the

tropical tropopause layer (TTL) into the stratosphere, where it is converted to aerosols as

seen in Figure 1.1.

• Asian monsoon: another signi�cant pathway of tropospheric air masses (containing sulfur

compounds) into the stratosphere is the Asian monsoon anticyclone (Randel et al., 2010),

which appears every year between June and September above Asia. A potential vorticity

based approach for a de�nition of the location of the Asian monsoon anticyclone was

made by Ploeger et al. (2015). During the Asian monsoon, highly polluted surface air

is convectively transported into a strongly isolated anticyclone, showing enhanced mixing

ratios of tropospheric tracers and lower mixing ratios of stratospheric tracers, as satellite

studies show (Park et al., 2008). Vogel et al. (2015) identify northern India and Southeast

Asia as the main boundary layer source regions for the composition of the Asian monsoon

anticyclone. The distinct isolation of trace gases in the anticyclone provides an ideal

case for investigating common sources and sinks of di�erent substances. For example,

the correlation between HCN (and CO) as a biomass burning tracer and OCS could

help quantifying how much biomass burning contributes as a source for OCS. Enhanced

aerosol concentrations in the Asian monsoon (ATAL: Asian Tropopause Aerosol Layer)

have been found and are matter of investigation (Vernier et al., 2011a). It is considered
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as a pathway for anthropogenic sulfur compounds from the whole Asian region into the

stratosphere (Vernier et al., 2011a). However, observations allowing a quanti�cation of

how much of this material is transported into the stratosphere after the Asian monsoon

anticyclone breaks down are missing (Kremser et al., 2016).

Once a sulfur containing air parcel reaches the free troposphere or stratosphere and is not taken

up by surface sinks, most sulfur compounds are readily converted to H2SO4, mainly through

reaction with hydroxyl radical (OH). The conversion of SO2 to H2SO4 is described in the

simpli�ed reaction Sequence 1.1.

SO2 +OH → SO3 +H

SO2 +O → SO3

SO3 +H2O → H2SO4

(1.1)

Figure 1.1: Schematic view of the processes involved in the stratospheric aerosol life cycle. Blue
thick arrows indicate the large scale circulation, Brewer-Dobson Circulation (BDC). Red arrows show
transport processes, and blue thin arrows stand for sedimentation processes from the stratosphere
down to the troposphere. Red numbers stand for the net �ux and are taken from Sheng et al. (2015).
Figure adopted from Kremser et al. (2016).
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Introduction

Once H2SO4 is formed, it accumulates H2O to form aerosol through nucleation. Aerosols

grow further through coagulation and condensation, where coagulation refers to the process of

multiple already formed particles colliding to form one bigger particle.

1.2.2 Role, mixing ratio and budget of Carbonyl Sul�de

While short lived sulfur compounds just reach the stratosphere through deep convection in the

tropics, OCS (Carbonyl Sul�de) also reaches the upper troposphere lower stratosphere (UTLS)

region without deep convection due to its long tropospheric lifetime of 2 - 7 years (Xu et al.,

2002). OCS is the most stable and abundant sulfur containing gas in the atmosphere. A model

study by Sheng et al. (2015) describes that OCS accounts for 74 % of the total sulfur mass in

the troposphere and 70 % in the stratosphere.

The �rst one to suggest that OCS plays a dominant role in transporting sulfur through the

tropopause into the stratosphere was Crutzen (1976). More recent studies by Brühl et al. (2012)

and Sheng et al. (2015) con�rm and strengthen this suggestion with aerosol models: Brühl et al.

(2012) suggest that OCS contributes about 70 % of sulfur to the aerosol layer for background

conditions. The model described in Sheng et al. (2015) shows: if all other sulfur compounds

(such as SO2, H2S and DMS) are switched o�, OCS alone establishes 56 % of the current

stratospheric aerosol layer. The di�erences are possibly due to insu�cient surface emission

representations of short-lived sulfur containing species and uncertainties in transport processes

through the tropopause into the stratosphere (Sheng et al., 2015).

The annual mean OCS mixing ratios in the Northern Hemisphere (from seven surface sites during

2000 - 2005) are 476 ± 4 ppt and 491 ± 2 ppt in the Southern Hemisphere (Montzka et al., 2007).

OCS mixing ratios remain relatively constant throughout the well-mixed troposphere. In the

UTLS OCS mixing ratios are above 400 ppt and decrease with increasing latitude and altitude

(Barkley et al., 2008). This OCS distribution is mainly determined by the global atmospheric

transport (i.e. Brewer-Dobson-Circulation, age of air). In the middle and upper stratosphere

OCS is photochemically depleted. The rate of photochemical depletion increases with increasing

altitude.

An overview of the current knowledge on the OCS budget and the individual sources and sinks

is shown in Figure 1.2. It is evident that OCS sources and sinks carry large uncertainties.

As seen in Figure 1.2, oceans are the largest source of OCS (Chin and Davis, 1993), not only as

a direct source but also as an indirect source via Carbon Disul�de (CS2) and Dimethyl Sul�de

(DMS) (Kettle et al., 2002). CS2 and DMS, emitted from the ocean into the atmosphere are

oxidized to sulfur species, with OCS as one product.

The main sink for OCS is uptake by vegetation (Montzka et al., 2007), cf. Figure 1.2. The

strength of vegetation as a sink is also largely uncertain: while Kettle et al. (2002) suggest an

OCS surface uptake by vegetation of around 200 - 300 Gg S/a, Montzka et al. (2007), Sandoval-
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Soto et al. (2005) and Stimler et al. (2010a) suggest a signi�cant upward correction of the

vegetation sink represented by the larger gray bar in Figure 1.2.

Soils are mainly a sink for OCS, but can also act as a source, as seen in Figure 1.2. The

sink strength of soil depends on moisture and temperature (Van Diest and Kesselmeier, 2008).

Because OCS does not show a signi�cant atmospheric trend or inter annual variability, this

upward revision of the vegetation sink suggests a missing source in the atmospheric OCS budget

of around 700 - 800 Gg S per year (Kuai et al. (2015) and Glatthor et al. (2015)). This missing

source was assigned via satellite observations to most likely originate from the tropical ocean by

Kuai et al. (2015) and Glatthor et al. (2015), FTIR (Wang et al., 2016) and an inverse modeling

study (Berry et al., 2013). However, with data collected from ship cruises in the tropical Atlantic,

Paci�c and Indian oceans, Lennartz et al. (2017) shows that direct and indirect OCS emissions

from the ocean are very unlikely to account for the missing atmospheric OCS source. Therefore,

the large uncertainties and missing atmospheric OCS sources remain. Lennartz et al. (2017)

used the MICA (Mid-Infrared Cavity enhanced Absorption spectrometer) instrument for their

analysis, as described in Chapter 3.3.1.

Biomass burning is another source for OCS. Barkley et al. (2008) and Notholt et al. (2003) see a

correlation between biomass burning tracers (HCN and CO) and OCS, by analyzing backward

trajectories of enhanced OCS in biomass burning plumes. HCN is an almost unambiguous

tracer of biomass burning. However, analysis of a larger, global data set, in more recent studies,

found no evidence for this correlation (Glatthor et al., 2017).

Alternatively, Du et al. (2016) and Barletta et al. (2009) suggest that an underestimated addi-

tional anthropogenic source is coal and biofuel combustion in Asia, emitting OCS. This source

accounts for around 30.5 Gg S/a, which is one magnitude larger than the current OCS estima-

tion from coal combustion in China (Du et al., 2016), but it would not quantitatively account

for the missing source in the OCS budget.

In the stratosphere oxidation takes place and sulfate particles are formed (Equation 1.2, 1.3 and

1.4). The total estimated stratospheric net OCS �ux is 30 Gg S/a by Chin and Davis (1995) and

40.7 by Sheng et al. (2015). Barkley et al. (2008) estimates the stratospheric sink to be at 63 -

124 Gg OCS/a (equivalent to 34 - 66 Gg S/a). 90 % of OCS, which reaches the stratosphere,

returns back into the troposphere.

Sheng et al. (2015) describe the total tropospheric and stratospheric budgets with the SOOCL-AER

model results. The tropospheric budget of 2650 Gg S and the stratospheric budget of 283.1 Gg

S, agree well with the calculated atmospheric OCS mass of 5.34 ·103 Gg OCS (equivalent to

2852 Gg S) by Barkley et al. (2008). Large uncertainties in the OCS budget balance remain.

The tropospheric lifetime of OCS is strongly related to the strength of its sources and sinks. The

high uncertainty described above, leads to large uncertainties in tropospheric lifetime estimations.

6



Introduction

Figure 1.2: The tropospheric OCS budget. Color bars represent values for sinks and sources from
di�erent literature. Gray bars represent possible ranges, based on all available literature, adopted
from Kremser et al. (2016).

Johnson (1981) estimate anOCS tropospheric lifetime of 4 - 7 years and Ulshöfer and Andreae

(1997) calculate a lifetime of 5.7 years. Until recently this tropospheric lifetime for OCS was

still valid, however, considering enhanced surface sinks (larger by a factor of around 2), the

OCS tropospheric lifetime decreases to 2.5 years (Montzka et al., 2007). Compared to other

species (e.g. SO2 exhibits a tropospheric lifetime on the order of days) OCS has a relatively

long tropospheric lifetime and therefore does not necessarily need deep convection in the tropics

to reach the stratosphere. The OCS lifetime in the stratosphere is highly variable and depends

on the altitude. Barkley et al. (2008) calculate a total mean stratospheric lifetime of 64 ± 21

years. This value is determined over a correlation with other long lived tracers. The higher an

OCS molecule is transported, the faster it is depleted via photolysis. Chin and Davis (1995)

estimate a photochemical lifetime in the stratosphere of 10 years (in the troposphere 36 years),

considering only the destruction processes as described in Equation 1.2.

According to Sheng et al. (2015), the conversion to SO2 in the stratosphere takes place to 80 %

via photolysis (Equation 1.2), 17 % is converted via the reaction with O(1D) and 3 % via reaction

with OH (Equations 1.3 and 1.4). Di�erent values are given in Chin and Davis (1995): 71 %

via photolysis, 22 % via the reaction with O(1D) and 7 % via reaction with OH. The photolysis

rate increases with altitude, due to elevated UV levels (Chin and Davis, 1993).

OCS + hν → CO + S

S +O2 → SO2

(1.2)
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OCS +O(1D)→ CO + SO

SO +OH → SO2 +H
(1.3)

OCS +OH → CO +H + SO

SO +OH → SO2 +H
(1.4)

Once OCS is converted to SO2 (Equation 1.2), it rapidly reacts further to H2SO4 (Equa-

tion 1.1). As shown in Höpfner et al. (2013), a maximum of SO2 in the tropics at an altitude of

around 25 km indicates that most OCS is converted through photolysis to SO2.

1.2.3 OCS trends and seasonality

Montzka et al. (2004) present OCS mixing ratios of 330 ppt in the time period 1700 - 1850, based

on studies of Antarctic ice core and �rn air analysis. Since then, mixing ratios have increased to

500 ppt.

Multiple studies present controversial �ndings about the atmospheric longterm trend of OCS

for the last ∼ 50 years: early studies with ground based remote sensing (e.g. Rinsland et al.

(2002) for the period 1978 - 2002 and Mahieu et al. (2003) for the period 1988 - 2002) suggest

a negative trend for tropospheric OCS of 0.5 - 1 % per year. Co�ey and Hannigan (2011) do

not �nd signi�cant trends in total column OCS between 1975 and 2010, using observations from

an airborne infrared spectrometer from the base to the stratosphere. In addition, there is no

signi�cant trend observed by Montzka et al. (2007) and Rinsland et al. (2008) at ground based

sites throughout the globe from 2000 to 2005. However, a recent study by Kremser et al. (2015)

identi�es a signi�cant positive increase of OCS in the Southern Hemisphere using three ground

based Fourier Transform spectrometer.

OCS concentrations show a signi�cant seasonality in the troposphere in both hemispheres (Kettle

et al. (2002), Montzka et al. (2007)). While the lowest concentration in the Northern Hemisphere

is seen in late summer (September) due to uptake by vegetation during summer, in the Southern

Hemisphere lowest concentrations are detected during winter (July), due to high oceanic �uxes

of OCS (and CS2, DMS) in the summer.

1.3 OCS observations

Nearly all trace gases, including OCS have absorption features in the infrared region (IR). A

spectroscopic setting with a long path length is needed to achieve sensitive measurements of gases

with weak absorption features. Such long path lengths are e.g. achieved by satellite instruments,
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looking at the sun with solar occultation, where the line of sight crosses hundreds of kilometers

through the atmosphere. However, small scale processes e.g. chemical conversion rates are

only accessible with high resolution in-situ measurements. The variety of remote sensing OCS

measurements, but also the development of infrared spectroscopy for highly sensitive in-situ OCS

observations, are explained below.

1.3.1 Remote sensing

The �rst space-borne instrument, allowing global measurements of OCS was ATMOS (Atmo-

spheric Trace Molecule Spectroscopy Experiment) on the space shuttle ATLAS (Atmospheric

Laboratory for Applications and Science) that is described in Kaye and Miller (1996) and went

on 4 shuttle missions in 1985, 1992, 1993 and 1994. Since 2004, the ACE-FTS instrument (Atmo-

spheric Chemistry Experiment - Fourier Transform Spectrometer), an infrared solar occultation

spectrometer, delivers space-borne OCS data. First global UTLS OCS concentrations from

ACE have been shown in Barkley et al. (2008). The ACE-FTS OCS data are used in this

work and are discussed in Chapter 2. From 2002 to 2012 the infrared limb sounding instrument

MIPAS (Michelson Interferometer for Passive Atmospheric Soundings) on board of the satellite

ENVISAT (Environmental Satellite) also delivered OCS data (Glatthor et al., 2015). While

MIPAS has a much better global coverage, ACE has the main advantage that it is still mea-

suring and delivering data. Another space-borne instrument providing OCS data is the TES

(Tropospheric Emission Spectrometer), from which a seasonal and latitudinal tropospheric vari-

ability can be derived (Kuai et al., 2014). The dataset was validated by NOAA ground based

observations and the HIPPO (HIAPER Pole-to-Pole Observations) aircraft measurements. New

OCS measurements from the nadir-viewing instrument IASI (Infrared Atmospheric Sounding

Interferometer) since 2014 are introduced in Vincent and Dudhia (2017).

At several locations ground based FTIR (Fourier transform infrared spectrometer) measure high

resolution spectra, looking at the tropospheric and stratospheric column amount

(http:www.ndacc.org).

The longest OCS measurement record is given by Rinsland et al. (2008), who reanalyze infrared

solar spectra back to 1951 at the Jungfraujoch.

1.3.2 In-situ observations

The �rst to measure atmospheric OCS, were Hanst et al. (1975) with a long path infrared ab-

sorption spectrometer. A few years later Inn et al. (1979) presented the �rst OCS measurements

in the stratosphere, also using long path infrared spectroscopy. For an improved sensitivity,

Bandy et al. (1992) introduce a gas chromatographic approach, collecting airborne gas samples

and analyzing them for OCS. Fried et al. (1991) were the �rst to present OCS measurements

with a multi-pass cell. Since then, some vertical pro�les are measured during balloon �ights in
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the tropics and northern high latitudes (Kryszto�ak et al., 2015b) and during aircraft �ights

throughout a year in the United States (Montzka et al., 2007). HIPPO is a sequence of global

aircraft measurement programs, measuring multiple Greenhouse Gases with a QCL (Quantum

Cascade Laser) from the surface up to 14 km, spanning all seasons (Wofsy, 2011). Stimler et al.

(2010b) also describe highly sensitive OCS measurements using a mid infrared QCL.

Common multi-pass cells achieve path lengths of several hundred meters. This can be increased

signi�cantly by cavity enhanced methods. Those methods all go back to the cavity ringdown

spectroscopy �rst described by (O'Keefe and Deacon, 1988). The better the re�ectivity of the

mirrors, the longer the absorption path (this is also further discussed together with the measure-

ment technique used in this work in Chapter 3.2). Cavity enhanced spectrometers in the near

infrared and mid infrared region are commercially available for numerous trace gases. A cavity

enhanced technique that is sensitive, robust and easy to implement is the O�-Axis Integrated

Cavity Output Spectroscopy (OA-ICOS), suitable for in-situ measurements on moving platforms

as research aircraft. OA-ICOS is now a well-established technique for ground based measure-

ments producing successful measurements of e.g. CO, CH4, CO2 and water isotopes. ICOS

measurements on high altitude research aircraft have been made (i.a. Provencal et al. (2005),

O'Shea et al. (2013), Sayres et al. (2009)). In Chapter 3 the development of AMICA, measuring

a variety of gases, including OCS is presented.

1.3.3 Motivation for the Airborne Mid-Infrared Cavity enhanced Absorption

spectrometer (AMICA)

Because OCS is the main contributor to the stratospheric aerosol layer, which has a direct impact

on the climate during volcanic quiescence, it is necessary to quantify and investigate transport

processes of OCS and the conversion processes of OCS to H2SO4 and aerosol.

In-situ measurements can be used to study transport and conversion processes (i.e. conversion

from OCS to H2SO4) on much smaller spacial and temporal scales that are usually not accessi-

ble for remote sensing. For fast atmospheric processes, it is important to measure exactly at the

point where conversion takes place, using an instrument with a higher spacial resolution than

any remote sensing instrument provides. High altitude research aircraft are ideal platforms for

that. A high sensitivity is required to detect small and steep gradients for di�erent altitudes.

The instrument needs to function under low pressure (down to 50 hPa) and low temperature

(down to around -80 ◦C) conditions to perform measurements in the UTLS. Furthermore, the

measurement technique has to be robust against vibrations of aircraft. All those features are

considered during the development of the electronic and mechanical design of AMICA.

Another scienti�c question that is not well understood yet, is the quanti�cation of biomass and

biofuel burning in the Asian monsoon area as a source for OCS. For this purpose, speci�c air

masses that can be traced back (using back trajectories) to biomass burning sources and are
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directly transported to the tropical tropopause region are observed and investigated for a cor-

relation between OCS and other biomass burning tracers (i.e. HCN and CO). AMICA also

measures CO and is in development to also measure HCN , as a biomass burning tracer. This

will yield some insight about biomass burning as a possible source for OCS.

As discussed in Chapter 1.2.1 the Asian monsoon anticyclone holds enhanced aerosol concentra-

tions (ATAL), which need to be investigated in more depth, ideally with in-situ measurements,

during a tropical �eld campaign. Additionally, an investigation of the pathway of the sulfur

compound OCS into the stratosphere during the break down of the Asian monsoon anticyclone

is necessary. Therefore, measuring OCS with high resolution with AMICA in the Asian monsoon

anticyclone is valuable. For the EU-project StratoClim such an in-situ aircraft campaign was

conducted this summer July/ August 2017 in Kathmandu, Nepal.

1.3.4 M55 Geophysica observations during StratoClim

Stratospheric and upper tropospheric processes for better climate predictions (StratoClim), is a

collaborative European project, with a planed time duration of 52 months, under the coordina-

tion of Marcus Rex (AWI: Alfred-Wegener-Institut). The project started in December 2013 and

involves 28 partners from 11 countries. Goal of this project is the improvement of our understand-

ing of changes of the chemical composition in the UTS, which has been shown to play a major role

in changes of our surface climate. Results are intended to be implemented in Chemical Climate

Models (CCMs) and Earth System Models (ESMs). A large scale tropical aircraft campaign

around the Asian monsoon took place this year. During this phase of the StratoClim project,

AMICA was one of the in-situ instruments, measuring on the research aircraft M55-Geophysica,

a high altitude research aircraft. It reaches altitudes of 21 km at pressures down to 55 hPa and

temperatures down to -90 ◦C. It was built originally 1987 as a military aircraft. Since 1995,

it is used as a scienti�c research aircraft, currently holding 27 di�erent atmospheric measure-

ment instruments simultaneously. Until now, it performed 135 scienti�c measurement �ights.

Due to political and logistical constrains the �rst phase campaign and the main tropical aircraft

campaign of StratoClim have been shifted multiple times. The �rst phase campaign took place

in Kalamata, Greece in August/September 2016. In the summer of 2017 the main campaign

took place. AMICA data from the Kathmandu campaign are currently processed. Therefore,

this work presents the �rst measurement �ights, the performance of AMICA and �rst scienti�c

results from the campaign in Kalamata 2016, but does not include a scienti�c dataset from the

main StratoClim campaign in the Asian monsoon region.
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Chapter 2

Stratospheric OCS with ACE-FTS

ACE-FTS is the Atmospheric Chemistry Experiment � Fourier Transform Spectrometer (Bernath

et al., 2005). With the ACE-FTS data set it is possible to obtain a global, vertical and horizontal

OCS distribution, as it was already shown in Barkley et al. (2008). In this Chapter the ACE-

FTS data set is used to calculate the stratospheric OCS burden and trend, together with an

investigation of OCS mixing ratios in the Asian monsoon region. Due to the sparse sampling

pattern of the solar occultation instrument ACE-FTS, a sampling bias appears that might alter

the burden trend analysis. To determine representative annual and seasonal burden values, a

correction procedure is developed by �tting a smooth 2-D array onto the ACE-FTS dataset,

considering an annual cycle of OCS for the �t coe�cients. This procedure is analyzed and

applied.

2.1 ACE-FTS OCS data product

ACE-FTS is an infrared solar occultation spectrometer, providing remote sensing trace gas pro-

�les of the Earth since February 2004. It is the main instrument on the Canadian satellite

SCISAT-1, which was launched in August 2003. ACE-FTS still delivers data. The design life-

time for ACE was 2 years. ACE-FTS measures sequences of atmospheric spectra in the limb

viewing geometry at di�erent tangent heights, during sunset and sunrise, pointing towards the

sun, with a vertical �eld of view of 3 - 4 km. Absorption features of over 30 chemical species (i.a

OCS) are measured together with temperature and pressure. It is in an orbit at 650 km altitude

and operates in the wavelength range from 2.2 to 13.3 µm (750 - 4400 cm−1). The spectral

resolution is 0.02 cm−1.

Vertical distributions are provided (on a 1 km grid), reconstructed from the retrieval. Altitude

pro�le information from around 5 km (or cloud top) to 150 km are provided. ACE-FTS samples

the atmosphere vertically at around 2 - 6 km intervals. The horizontal weighting function of a

measurement has typically a width of ∼ 300 km. The vertical resolution is < 4 km.
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Figure 2.1: The annual repeating latitudinal coverage of the ACE-FTS data set, here for the year
of 2015. The red box is later on used as an example.

30 measurements (15 sunrises, 15 sunsets) are made per day. The polar regions to the tropics

(85◦N to 85◦S) are covered. The annual coverage is shown in Figure 2.1. It is evident that the

densest coverage of ACE-FTS is close to the poles, while the tropics exhibit a lower coverage.

However, directly at the poles, no measurements are available.

During each three months season the full latitude range is covered. A detailed description of the

ACE-FTS and its measurement technique is given in Bernath et al. (2005). Data from March

2004 until October 2016 were available and used in this work.

The sparse coverage of the ACE-FTS data set results in a sampling bias that needs to be consid-

ered. The occurring sampling bias and an approach of correcting it, is introduced in Chapter 2.2.

2.2 ACE-FTS satellite sampling bias correction

2.2.1 Motivation

Analyzing satellite data, is often done by collecting available observations into latitudinal and

monthly bins and calculating the respective mean (or budgets). The sampling of occultation

based satellite instruments along an orbit show patterns that are not randomly distributed and

follow the same latitudinal coverage every year, leading to a sampling bias. For the example of the

red box in Figure 2.1, taking a mean concentration of the few values in the box (all situated in the
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upper right corner of the box) will not be representative for the whole area. OCS mixing ratios

decrease towards the poles, therefore lower mixing ratio values are missing for the example of the

red box in Figure 2.1 and the real respective mean concentration value is consequently lower, than

the mean value of only the few measurement points in the box. Therefore, the sampling density

and distribution of a chosen box for average calculations, is strongly connected to the sampling

bias that consequently occurs. The additional error of the sampling bias to the natural sensitivity

of the measurement itself needs to be considered when dealing with space-borne data sets (Toohey

and von Clarmann (2013), Toohey et al. (2013)). While the largest fraction of the error still

results from the measurement uncertainty itself (Toohey and von Clarmann, 2013), sampling

bias from measurements of satellite borne instruments account for an additional signi�cant error

(e.g. Toohey and von Clarmann (2013) and Toohey et al. (2013)). For instruments like ACE-

FTS with sparse sampling density (with only 30 measurements per day), the sampling bias is

higher than for instruments with a denser sampling.

The overall 12 monthly sampling bias estimate in % for ACE-FTS is shown in Figure 2.2 for the

example of O3. O3 exhibits similar strong latitudinal gradients in the stratosphere to OCS so

that a comparable extent of a sampling bias for OCS is possible. The sampling bias for O3 is

generally weaker below 70 hPa altitude pressure in the tropics (roughly equivalent to > 18 km

altitude), this is due to weaker intra-monthly variability in that region. A strong variability,

as it appears in the Southern Hemispheric spring months at 80 - 85◦ latitude during the polar

vortex, associated with steep gradients (Toohey et al., 2013), can lead to a sampling bias of O3

in ACE-FTS of up to 40 % (Toohey et al., 2013).

Current literature have raised awareness and have quanti�ed the error resulting from the sampling

bias, however, they have not presented solutions on how to correct space-borne data with respect

to this problem. Here, one possible approach is developed together with Bodeker Scienti�c in New

Zealand to �nd a solution that deals with the sampling bias of ACE-FTS, using only ACE-FTS

data and no additional information. With a full global climatological �eld of OCS it is possible

to estimate the real mean value of a speci�c time period and latitude range. A smooth 2-D

regression is �tted to the ACE-FTS OCS data, �lling the large data gaps. This is a reasonable

approach, considering that OCS has a long lifetime (2 - 7 years in the troposphere (Xu et al.,

2002)), 64 years in the stratosphere (Barkley et al., 2008)) and no diurnal (only annual) cycle,

thus no sudden changes in OCS mixing ratios are expected. Chapter 2.2.2 introduces the model.

The 2-D regression �eld is used to adjust the mean value that is calculated from the biased data

so that it is more representative for a chosen period and region.
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Figure 2.2: Latitude height plot of the 12 monthly root-mean-square (RMS) of the sampling bias
for the example of O3 in percent for the sampling pattern of ACE-FTS, from Toohey et al. (2013)

2.2.2 Bodeker Scienti�c Regression Model (BSRM)

The BSRM was speci�cally designed to model global atmospheric conditions. The BSRM can

be used in di�erent dimensions of space, time and height. Here, it is used to �t a smooth 2-D

surface onto the annual measured OCS ACE-FTS data per latitude at one speci�c altitude.

The method described here is a statistical approach that can only describe large-scale features,

but not small-scale variabilities and is suitable for substances with long lifetimes, as OCS. The

BSRM uses a combination of Legendre polynomials and Fourier expansions. A detailed descrip-

tion of the regression is given in Hassler (2009) and Bodeker et al. (2013). The Fourier expansion

describes the temporal development and variations such as seasonal dependencies (1 Fourier ex-

pansion: annual cycle, 2 Fourier expansions: half-year cycle), with a sum of sine and co-sine

functions. Associated Legendre expansions describe the latitudinal change also with sine and

cosine functions. Therefore, seasonal variability, but also latitudinal variations seen in the global

OCS ACE-FTS data set can be represented in this regression, using both Legendre polynomials

and Fourier series. The number of Fourier and Legendre expansions can be selected individually

for di�erent substances and constrain the possible modeled climatological �eld of OCS. For sub-

stances, which exhibit no diurnal but annual changes (e.g. OCS), 1 Fourier expansion is chosen.

The number of Legendre expansions is chosen according to expected (and observed) changes in

latitude. The selection of suitable number of Fourier and Legendre terms for the OCS ACE-FTS

application is introduced in Chapter 2.2.3.

Equation 2.1 describes the regression model distribution depending on day and latitude

(OCS(lat,day)) and the �t coe�cients. The number of �t coe�cients is determined by: (2 ·
number of Fourier + 1) · (number of Legendre + 1). For example, using 1 Fourier and 4 Legen-
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dre terms, results in a total of 15 coe�cients (a00 to a24). The Legendre expansions (a0 to a2)

are inserted in the Fourier series. P1 to P4 are the Legendre polynomials.

OCS(day, lat) = a0(lat) + a1(lat)× sin(2πday/365.25) + a2(lat)× cos(2πday/365.25) (2.1)

a0 = a00 + a01 · P1 + a02 · P2 + a03 · P3 + a04 · P4

a1 = a10 + a11 · P1 + a12 · P2 + a13 · P3 + a14 · P4

a2 = a20 + a21 · P1 + a22 · P2 + a23 · P3 + a24 · P4

The BSRM takes the information of all measured ACE-FTS OCS mixing ratio data, determines

coe�cients a00 - a24 (for the Fourier and Legendre polynomials) that describe the measurements

best and thus provides a mixing ratio distribution with no temporal and spatial gaps.

A possible limitation of the BSRM is the existence of too many data gaps: if there are too many

data gaps in the data set that is used as input to the BSRM, the regression model is not able to

�t the Fourier and Legendre expansions properly, and this can lead to unrealistic �t coe�cients

(Hassler, 2009). Especially ACE-FTS, as a solar occultation spectrometer with only 30 measure-

ments per day, exhibits large data gaps compared to other satellite products (e.g. MIPAS). This

leads to large data gaps in speci�c regions (as seen in Figure 2.1) so that it is assumed that those

gaps limit the performance of the BSRM.

2.2.3 The BSRM performance with the OCS ACE-FTS data set

The numbers of Fourier and Legendre terms can be chosen individually for the speci�c tasks and

substance and constrain the possible output distribution. Figures 2.3a, c, e and Figure 2.4 show

examples of the BSRM output for four di�erent choices of Fourier and Legendre expansions. The

higher the chosen number of Fourier terms, the higher the temporal and latitudinal variability

of the BSRM output distribution. Using 1 Fourier and 1 Legendre expansion is presented in

Figure 2.3a and exhibits an annual cycle but not enough latitudinal variability. Therefore, the

choice of 1 Fourier and 1 Legendre expansions does not represent the observed ACE-FTS OCS

values in the altitude range 15.5 - 16.5 km well enough. In Figure 2.3c, the choice of 4 Fourier and

1 Legendre shows multiple minima and maxima throughout the year and the same insu�cient

latitudinal variability as see in Figure 2.3a. The use of 4 Fourier and 4 Legendre expansions looks

much more like the annual OCS mixing ratio distribution observed at 15.5 - 16.5 km altitude,

higher mixing ratios in the tropics, lower mixing ratios closer to the poles. The di�erence between

the BSRM output distribution in Figures 2.3a, c and e, and the original ACE-FTS OCS data

set (for all measured years in the altitude range 15.5 - 16.5 km), is shown in Figures 2.3b, d and

f (respectively to Figures 2.3a, c and e). It was investigated that using two Legendre terms or

higher (∼ 10), does not signi�cantly change the result. The mean of the absolute values of the
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(a) 1 Fourier and 1 Legendre terms. (b) Di�erence: (a) - measured ACE-FTS data.

(c) 4 Fourier and 1 Legendre terms. (d) Di�erence: (c) - measured ACE-FTS data.

(e) 4 Fourier and 4 Legendre terms. (f) Di�erence: (e) - measured ACE-FTS data.

Figure 2.3: A comparison of the BSRM output distribution of OCS mixing ratios in ppt in (a), (c)
and (e), using di�erent numbers of Legendre and Fourier terms and the respective di�erence plots
between the BSRM output �t and the ACE-FTS OCS dataset in (b), (d) and (f) (15.5 - 16.5 km
altitude).
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di�erence between the BSRM output and the ACE-FTS measurements is 37.3 ppt when using

10 Legendre expansions and 41.2 ppt, when using 2, respectively. A comparison between the

BSRM output and the ACE-FTS OCS measured data distribution determines which numbers

of Fourier and Legendre terms are chosen for the correction procedure. The di�erence between

the BSRM output distribution and the ACE-FTS measurements at the 15.5 to 16.5 km altitude

range, using 1 Fourier and 4 Legendre terms is presented in Figure 2.5 (respective plots for 4

Fourier and 1 Legendre terms, 4 Fourier and 4 Legendre terms and 1 Fourier and 1 Legendre

terms are presented in Figure 2.3d, Figure 2.3f and Figure 2.3b). The mean of the absolute

values of the displayed di�erences is an indicator for the performance of the BSRM output

distribution. The mean of the absolute di�erences for the four presented cases are 57.5 ppt (with

4 Fourier and 1 Legendre terms), 66.6 ppt (with 1 Fourier and 1 Legendre terms), 37.5 ppt (with

4 Fourier and 4 Legendre terms) and 38.2 ppt (with 1 Fourier and 4 Legendre terms), which is

equivalent to 10 % of the mean global OCS ACE-FTS mixing ratio. Although using the BSRM

output with 4 Fourier and 4 Legendre terms seems to represent the ACE-FTS OCS data set

best (with a lowest value of the mean of the absolute di�erences), a high variability is noted

in the tropics in the output distribution in Figure 2.3f. Especially in seasons with no ACE-

FTS measurements, minima and maxima appear in the BSRM output distribution. Taking into

account our knowledge of atmospheric dynamics and OCS distribution, the best regression �t

was found to be using one Fourier (representing an annual cycle) and four Legendre expansions.

The regression results describe the measured ACE-FTS data set best in the tropics, where the

ACE-FTS latitudinal coverage is the densest. In the polar regions in November/December the

model over- and underestimates the ACE-FTS data (-100 ppt to +100 ppt di�erence). In this

region ACE-FTS OCS point to point measurements vary on a day to day basis. The day to day

variability at 60◦ to 90◦S in the month of November is more than 50 % higher than the variability

observed in the reference month April. For the example year 2015, the standard deviation of

the OCS mixing ratios at 15.5 - 16.5 km altitude, 60◦ to 90◦S in November is 88 ppt, the

respective standard deviation in April is 40.8 ppt. This high day to day variability observed

during the southern polar vortex could be caused by retrieval artifacts at very low temperatures

and therefore, cannot be well represented by the BSRM �t. Lower mixing ratio values in the

southern latitudes in the BSRM output distribution in Figure 2.4 from July to December point

to a reasonable representation of the southern polar vortex.

With the BSRM, a smooth periodic surface is �tted to the ACE-FTS OCS data. Atmospheric

dynamics and transport processes are not considered in the BSRM. The BSRM is not based on

an atmospheric model, but rather a 2-D �t, best describing the data. The large scale coverage

of the model, including the ACE-FTS annual information from 12 years of measurements, is

used to correct mean mixing ratio and budget values of a chosen latitude and time frame for the

sampling bias. The BSRM output, using 1 Fourier and 4 Legendre terms is used for the sampling

bias correction procedure, described in Chapter 2.2.4.
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Not only the mixing ratio values of the OCS ACE-FTS dataset, but especially the stratospheric

seasonal burden values are of interest. Therefore, the BSRM modi�cation procedure (described

in Chapter 2.2.4) is also applied to the calculated stratospheric OCS burden values. Figure 2.6

presents the model performance for the burden application. The ACE-FTS stratospheric OCS

burden values of all years are displayed in Figure 2.6b. Lower burden values appear in the tropics

and higher values closer to the poles. As for the OCS mixing ratio distribution at 15.5 - 16.5

km altitude, using 1 Fourier and 4 Legendre expansions was also found to yield the best BSRM

output performance for the stratospheric burden distribution. The BSRM stratospheric burden

distribution is displayed in Figure 2.6a. Even though it is not so clearly seen in the real ACE-FTS

dataset in Figure 2.6b, the southern polar vortex is represented in the model output, with lower

burden values during June to October close to the poles. The di�erence between the BSRM

output and the burden calculated from the ACE-FTS data set, is shown in Figure 2.6c. As seen

in Figure 2.6c the model performance is best close to the equator, with di�erences between the

BSRM output and the ACE-FTS OCS data of around 0. In the tropics the tropopause and

therefore the stratospheric OCS burden show the lowest variability throughout the year and the

best ACE-FTS data coverage.

With the high variability in the stratospheric budget data, particularly close to the poles, the

BSRM �t cannot produce a �t that represents and accounts for variability and gradients well

enough. The high variability is not an annual repeating atmospheric feature, but rather caused

by a moment to moment variability of the ECMWF dynamical tropopause height.

In Chapter 2.3.1 the application of the BSRM to stratospheric burden calculations is presented.

Figure 2.4: BSRM output, using 1 Fourier and 4 Legendre terms, chosen for the correction proce-
dure. OCS mixing ratios in ppt, at an altitude range of 15.5 - 16.5 km.
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Figure 2.5: The di�erence between the BSRM output �t and the ACE-FTS OCS dataset in ppt
(15.5 - 16.5 km altitude).

2.2.4 Sampling bias correction procedure

The correction procedure for shifting the ACE-FTS data to account for the sampling bias

to calculate a certain budget or mean concentration at chosen times, latitudes and heights,

is presented below and visualized in Figure 2.7. The procedure can be applied to any lati-

tude/longitude/altitude/time frame. Here, two examples are chosen and further presented: one

at 30 - 60◦N for JJA (red box) and one for 60 to 90◦S for DJF (black box), each at an altitude

range from 15.5 to 16.5 km.

1. A well represented global picture from the BSRM needs a measurement data set that is

as dense as possible. Therefore, all available ACE-FTS OCS data from 12 years from a

chosen altitude range are assembled in one year, to give the best possible representation of

the annual OCS distribution (Figure 2.7a).

Comparing Figure 2.7a and Figure 2.1 shows that the annual latitudinal coverage of ACE-

FTS is not exactly the same each year, but is slightly shifted. Hence, it makes sense to

use all ACE-FTS years combined in one data set over the seasons of one year, to form a

picture, as dense as possible, as the input for the BSRM. The red and black boxes in Fig-

ure 2.7 present the chosen time and latitude frames, used for the application of this process.
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(a) BSRM output distribution (b) Calculated burden values from the ACE-FTS data set.

(c) The di�erence between the stratospheric OCS burden from the BSRM output �t and the ACE-FTS
dataset (a - b).

Figure 2.6: BSRM output distribution performance of OCS in kg/m2, using the calculations of
the stratospheric (using the ECMWF dynamical tropopause height) OCS burden.
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Figure 2.7: Schematic explanation of how the sampling bias is accounted for mean mixing ratio (or
budget) calculations of any chosen time/latitude/altitude range. Two examples are further analyzed,
indicated by the red and black boxes. (a) is a combination of all ACE-FTS measurements (2004
- 2016) in one year. (b) shows the BSRM �t to the ACE-FTS data. (c) represents the ACE-
FTS measurements throughout the year 2010. (d) shows the modi�ed dataset, after the correction
procedure for the red example box.

2. All OCS ACE-FTS data from step 1 are used in the BSRM to create a global OCS

distribution, presented in Figure 2.7b, �lling the measurement gaps, which are a result of

the ACE-FTS sampling pattern. From this regression model �t, the desired, respective

time frames and latitudinal ranges during one year (red and black boxes) are extracted

and a mean value of all values inside the box for the altitude range 15.5 - 16.5 km is taken.

3. ACE-FTS data are extracted for the chosen time frame and latitude band for the planned

analysis (red box: 30 - 60◦N, JJA, 2010), as seen in Figure 2.7c.

4. The exact spatial and temporal information of the ACE-FTS measurements is extracted

from Figure 2.7c (here for the year 2010) and the mixing ratio values at the exact same

latitudes and time during the year are taken from the regression model results, which

represents the OCS mixing ratio distribution for all years (Figure 2.7b).

5. In e�ect, each single ACE-FTS measurement point (per measured pro�le) is modi�ed, using

this procedure. Equation 2.2 is used to modify each point.

ACEmod = ACEMEASpoints ·
ModelMEAN

MODELACEpoints
(2.2)
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ACEMEASpoints: the ACE-FTS measurements of the chosen period, latitude band and

height

ModelMEAN : the mean value of the BSRM �t of the chosen latitude band and season.

MODELACEpoints: the regression results at the locations of the ACE-FTS measurements.

Each ACE-FTS measurement point is multiplied by a factor, considering the one mean

value of the chosen spatial and temporal region and the respective regression result at the

ACE-FTS measurement location. Consequently, each point is shifted towards the mean

value of the box. Figure 2.7d presents the 'modi�ed' ACE-FTS data set for the chosen

example. However, it should be noted that only the calculation of the mean mixing ratio

(or budget) of all data points in the red box is corrected towards the sampling bias, not the

single data points (i.e. the mean value of all ACEmod from the red box, is now corrected

for the sampling bias).

2.2.5 Evaluation of the correction procedure

Figure 2.8 visualizes the distribution of the ACE-FTS OCS mixing ratio data, for the 2004

- 2016 period for the respective chosen seasons (DJF at 60 to 90◦S and JJA at 30 to 60◦N)

with histograms. The green histogram in the background represents the value distribution of all

ACE-FTS measurements for the chosen criteria, the blue histogram the data distribution of the

ACE-FTS data that were adjusted with the BSRM output data set, referred to as 'modi�ed'.

The shifts in standard deviation and mean values between the green and blue histograms are an

indicator on how the described method a�ects the ACE-FTS data.

Figure 2.8a represents the data distribution for DJF of all 12 years of ACE-FTS data, for the

latitudes 60 - 90◦S, which is presented in Figure 2.7 as a black box. This example was chosen,

because it shows the clearest shift in mean OCS mixing ratios between the 'modi�ed' dataset

and the original ACE-FTS data. The mean OCS mixing ratio value for the 'modi�ed' data

set (265 ppt) is 28 ppt lower than for the actual ACE-FTS data set (293 ppt). The standard

deviation for the 'modi�ed' data set decreased by 7.2 ppt (= 11 %). The decrease of the mean

value is understood: The latitude band from 60 to 90 ◦S shows that ACE-FTS exhibits large

measurement gaps towards the south (especially in DJF). Following the global distribution of

OCS (Barkley et al., 2008), mixing ratios decrease with altitude and latitude. It is therefore

expected that the ACE-FTS measurement gaps exhibit lower OCS mixing ratios at a speci�c

altitude (here 15.5 - 16.5 km), which lower the total mean. Therefore, the clear shift of the mean

value, seen in Figure 2.8a is real, as expected.

The histograms in Figure 2.8b show the data distribution for the red box in Figure 2.7, JJA,

30 - 60◦N. This example was chosen, because of the clear decrease in standard deviation of the

'modi�ed' data set. The mean value of the original ACE-FTS OCS data is 412 ppt and is shifted

by 6 ppt (1.5 %) for the 'modi�ed' version (418 ppt). All latitudes of the chosen range (30 -
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60◦N) are covered so that the measured ACE-FTS data in this example (red box in Figure 2.7)

represent the whole area much better, than for the previous example (black box in Figure 2.7).

The standard deviation is decreased by 32 % for the 'modi�ed' version. Following Equation 2.2,

it becomes evident that each measurement point is shifted towards the BSRM mean value for

the chosen box. Hence, it is expected that the standard deviation decreases with the correction

procedure.

2.2.6 Comparison with MIPAS

To investigate, whether or not the calculated magnitude of the sampling bias is realistic, a

comparison is made with a satellite data product with a much denser latitude sampling coverage,

the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS).

MIPAS is a mid-infrared spectrometer, on board of the ESA (European Space Agency) satellite

ENVISAT and operated from 2002 - 2012, measuring multiple trace gases, including OCS. It

is a limb sounding instrument, scanning across the horizon, measuring atmospheric spectral

radiances, emitted by the atmosphere. MIPAS covers the spectral region between 685 - 2410

cm−1 (4.1 - 14.6 µm), at a spectral resolution of 0.025 cm−1 (from 2002 - 2004) and 0.065 cm−1

(2005 - 2012) (Fischer et al., 2008). The vertical resolution is around 3 km, with an altitude

coverage above the clouds (∼ 5 - 150 km) and a horizontal resolution of 300 km. With a horizontal

sampling of ∼ 150 km, MIPAS has a much denser global coverage than ACE-FTS. The occurring

sampling bias with MIPAS is shown in Figure 2.9 and is much lower and negligible compared to

ACE-FTS (seen in Figure 2.2).

The magnitude of the sampling bias for all ACE-FTS years DJF, 60◦S to 90◦S is analyzed in

Chapter 2.2.5. The mean value of the modi�ed data set was found to be 10 % lower than the

mean value from the original ACE-FTS data. With the MIPAS data set from December 2009 to

February 2010, a similar study is made. Figure 2.10 shows MIPAS data for DJF 2009 - 2010 from

60◦S to 90◦S for the altitude range 15.5 - 16.5 km, with two standardized histograms: the blue

histogram represents all MIPAS data for the chosen time and latitude frame, the green histogram

represents the measured MIPAS data for an equivalent time and latitude frame, as detected with

ACE-FTS. The di�erence between the mean values of both histograms is 46 ppt, equivalent to

a relative deviation of ∼ 11 %. This is in good agreement with the relative deviation found

between the ACE-FTS data set and the modi�ed data set (10 %) in the same chosen time and

latitude range. This gives con�dence for the applied correction procedure.

The ACE-FTS mean value is 115 ppt (28 %) lower than the mean value of MIPAS. A similar

di�erence between MIPAS and ACE-FTS OCS measurements has already been observed in

Glatthor et al. (2017) and was found to be highest at 14 km altitude, with 75 - 100 ppt di�erence.
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(a) DJF, 60 - 90◦S; black box from Figure 2.7

(b) JJA, 30 - 60◦N; red box from Figure 2.7

Figure 2.8: A comparison between the standard deviation and mean values of the measured OCS
data and the 'modi�ed' data, for the same chosen criteria as indicated with the black and red boxes
in Figure 2.7 for DJF and JJA and all 12 years of ACE-FTS data. The green bars represent the
OCS mixing ratio distribution (at 15.5 - 16.5 km altitude) from the ACE-FTS measurements, the
blue bars represent the data distribution after applying the correction procedure.
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Figure 2.9: Latitude height plot of the 12 monthly root-mean-square (RMS) of the sampling bias
for the example of O3 in percent for the sampling pattern of MIPAS, from Toohey et al. (2013). The
equivalent illustration for ACE-FTS is seen in Figure 2.2.

Figure 2.10: Standardized histograms, demonstrating the MIPAS data distribution for DJF 2009 -
2010, 60◦S to 90◦S, for all available MIPAS measurement pro�les (blue) and for MIPAS measurement
pro�les in a comparable latitude and time frame as ACE-FTS measurements. The respective ACE-
FTS plot, considering all years during DJF of ACE-FTS (to establish a reasonable statistic) is shown
in Figure 2.8a.
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2.3 OCS burden

2.3.1 Seasonal and zonal variations

For the available time period of the ACE-FTS OCS data set a possible trend and seasonal

variability of the stratospheric OCS burden was investigated. Figure 2.11 shows the calculated

OCS stratospheric burden, using the dynamical tropopause (for further explanation of the selec-

tion criteria see Chapter 2.3.2). The 'correction' procedure (described in Chapter 2.2.4) towards

the sampling bias was applied, represented by the red crosses. The blue crosses represent the

stratospheric OCS burden calculations from the ACE-FTS data set without bias correction. In

Figure 2.11, each point represents the zonally averaged stratospheric OCS burden (kg/km2) over

all longitudes, per season (MAM, JJA, SON, DJF) in the respective 30◦ latitude band. Almost

all seasons and 30◦ latitude bands exhibit data points allowing OCS burden calculations (in

theory only one data point per season is su�cient for a burden calculation).

Generally, the stratospheric burden values are lower in the tropics and higher at the poles. At

the poles the tropopause is much lower and altitude ranges with higher pressures are considered

for the budget calculations, resulting in increasing stratospheric columns towards the poles.

Close to the equator no seasonal cycle in stratospheric, seasonal OCS burden is observed. The

highest seasonal variation in stratospheric OCS burden is seen between 60 - 90◦S. Seasonal de-

pendencies are expected to be dominated by tropopause height variations, c.f. Chapter 2.3.2.

However, there is another explanation for a higher seasonal cycle at the poles: At the winter

pole (e.g. JJA in the SH), the upper branch of the Brewer-Dobson Circulation (BDC) transports

more air masses descending towards the poles than the lower branch. This means that air masses

with a higher mean age of air are detected at the poles. OCS mixing ratios decrease with time;

thus a lower OCS mixing ratio is expected with a higher mean age of air of OCS at the winter

pole in the stratosphere. During winter, the stronger polar vortex in the Southern Hemisphere

enhances the descent of more OCS depleted air masses at the pole and therefore the seasonal

e�ect is stronger in the SH than in the NH.

For the majority of points, from 60◦N to 60◦S the modi�cation with the BSRM towards the

sampling bias has only a minimal e�ect and is within the measurement uncertainty, calculated

using the ACE-FTS species error data set. The given species error from the ACE-FTS data set

is a pure statistical error for the species retrieval from the �tting process and is between 1 and

3 %. The small di�erence between the modi�ed burden values and the values calculated from

the ACE-FTS data set in the tropics is due to the better latitudinal coverage and also lower

stratospheric column variability throughout the year. However, the region close to the poles

(polewards 85◦S and 85◦N) is never covered by the ACE-FTS dataset. Since the tropopause is

lowest over the poles, higher resulting burden columns are observed.
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Figure 2.11: Seasonal stratospheric OCS burden (in kg/km2) for the available ACE-FTS time
frame 2004 - 2016, calculated using the ECMWF dynamical tropopause (blue points). The burden
correction values are indicated in red.
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Because in the original ACE-FTS data set, exactly the higher burden columns (closer to

the poles) are missing in the 30◦ latitude band burden calculations, the real stratospheric OCS

budget values are expected to be higher. This would therefore result in a positive shift in strato-

spheric OCS burden in the 60 - 90◦ latitude band. Most of the red points in Figure 2.11 in the

60 - 90◦S bin are higher compared to the (original) blue points. However, the di�erences are

within the ACE-FTS measurement sensitivity.

No statistical signi�cant long-term trend of stratospheric OCS burden is seen with the ACE-

FTS burden values and also the burden values corrected for the sampling bias (with a calculated

probability test). However, this is in disagreement with Kremser et al. (2015), who detect a

signi�cant positive trend in OCS column at three di�erent sites in the Southern Hemisphere.

There is only a small shift between the sampling bias corrected burden calculations and the

burden values without the correction. Hence, although the sampling bias has been corrected for,

scienti�c conclusions and analysis do not change. Possible weaknesses in the representation of

the BSRM output distribution, have no signi�cant impact on the scienti�c outcome.

For a quanti�cation of the contribution of OCS to the stratospheric sulfur budget, the sulfur

content of OCS is of interest. The stratospheric sulfur burden from OCS is a simple multiplica-

tion of the OCS burden values by the factor 0.534, according to the atomic weight of Oxygen,

Carbon and Sulfur and is presented in Figure 2.12. In Figure 2.12 the seasonal stratospheric

sulfur burden from OCS, calculated with the MIPAS and ACE-FTS data set, is shown. To be

consistent, only seasonal burden points are shown from MIPAS, with measurements throughout

the whole respective season. MIPAS sulfur burden values are consistently larger by ∼ 28 % in

the 60◦S to 90◦S bin (lowest panel) and higher by ∼ 15 % around the equator. The low bias

of ACE-FTS (or high bias of MIPAS) have already been observed in Chapter 2.2.6 with the

same magnitude of 28 % in the south. Seasonal variations closer to the poles, are observed with

both instruments, but stronger variations are observed with the ACE-FTS data set. MIPAS and

ACE-FTS sulfur seasonal burden calculations are in good agreement with the systematic positive

shift of the MIPAS data.
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Figure 2.12: Seasonal stratospheric Sulfur burden from OCS (in kg/km2) for the available ACE-
FTS time frame 2004 - 2016 (blue), and the respective available MIPAS seasonal burden data (cyan),
presented in 30◦ latitude bins from 60 - 90◦N on the top to 60 - 90◦S on the bottom.
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2.3.2 Tropopause e�ects

For stratospheric OCS burden calculations only data above the tropopause are considered, there-

fore a de�nition for the tropopause is necessary, which can result in di�erent burden calculations.

The thermal tropopause is the easiest de�nition to bring into use, because it is a clear temper-

ature de�ned altitude that is easily calculated with the provided ACE-FTS data set. However,

the dynamical tropopause considers the dynamics of an air parcel and represents the transport

barrier best. For the de�nitions of the di�erent tropopauses see Chapter 1.1. In the following

both tropopause de�nitions (dynamical and thermal) are compared.

With temperature and pressure values, given from ACE-FTS, the thermal tropopause was cal-

culated and compared with the ERA-interim ECMWF thermal tropopause. In the ACE-FTS

retrieval CO2 is analyzed to determine temperature and pressure values (Boone et al., 2005).

Figure 2.13 shows the thermal tropopause calculated with ACE-FTS, the ECMWF thermal

tropopause and the ECMWF dynamical tropopause averaged over the year 2012.

The thermal tropopause and the dynamical tropopause have been compared and investigated, to

quantify the suitability and di�erences of both tropopause de�nitions for stratospheric burden

calculations. Especially in the Southern Hemisphere the thermal tropopause is located ∼ 2 km

above the dynamical tropopause (Figure 2.13).

Figure 2.13: Comparison between the calculated thermal tropopause using the ACE-FTS dataset,
the ECMWF thermal tropopause and the ECMWF dynamical tropopause.
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(a) False determination: 76◦S, 173◦E. (b) Correct determination: 60◦S, 0◦E.

Figure 2.14: ECMWF thermal tropopause determination (red) and temperature pro�le (black) for
two chosen cases from August 15th 2012.

Such high tropopause altitudes lead to an underestimated stratospheric burden and are

thought to represent the transport barrier not as well as the dynamical tropopause height. It

becomes evident that the use of the thermal tropopause for stratospheric burden calculations is

not suitable. Figure 2.14 shows two examples of ECMWF temperature pro�les in high latitudes

in the Southern Hemisphere, together with the given ECMWF thermal tropopause height. The

strong overestimation of the tropopause using the WMO criteria is associated with the polar

vortex. While in Figure 2.14b the tropopause de�nition seems plausible, Figure 2.14a shows an

example where the WMO criteria clearly yields a much higher tropopause altitude than expected,

due to the polar vortex.

Seasonal oscillations of the stratospheric OCS burden as shown in Figure 2.15 (especially at 90◦S

- 60◦S), using the thermal tropopause, are dominated by variations of the tropopause height. The

higher the tropopause, the lower the OCS stratospheric burden estimation. The lower values

(JJA and SON, southern hemispheric winter and spring) of the burden calculation, using the

thermal tropopause de�nition (in red), are repeatedly lower each year by ∼ 0.5 mg/m2 as com-

pared to data obtained with the dynamical tropopause de�nition (in green), seen in Figure 2.15,

due to the high thermal tropopause during the southern polar vortex. Because it is assumed

that the de�nition of the dynamical tropopause represents the transport barrier better than the

thermal tropopause, it is expected that an under- and overestimation of the tropopause and the

stratospheric column burden does not occur using the ECMWF dynamical tropopause. Hence, in

this work the ECMWF dynamical de�nition of the tropopause was used for burden calculations

(section 2.3.3).
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Figure 2.15: A comparison for the stratospheric OCS burden calculations, using the thermal
tropopause (in red) and the dynamical tropopause de�nition (in green).

2.3.3 Stratospheric global OCS burden

Figure 2.16 shows the OCS mixing ratio distribution of the whole year of 2015 per latitude and

altitude. All latitudes from 82◦S to 83◦N are covered. The ECMWF, ERA-interim dynamical

tropopause is indicated with the black line, surrounded by the mean standard deviation of the

whole year 2015 per latitude in green. The dynamical tropopause is lowest over the poles (at

around 9 km) and highest in the tropics (at around 16 km). The mean of the visible standard

deviation for all latitudes in Figure 2.16 for the whole year 2015 is 2.9 km. Decreasing OCS

mixing ratios with stratospheric age (increasing altitude and latitude) are detected, as already

reported in Barkley et al. (2008). In the well mixed troposphere, OCS mixing ratios are relatively

constant at around 500 ppt. Concentrations decrease in the stratosphere, where higher UV

radiation foster photochemical conversion to H2SO4. Sources and sinks of OCS are discussed in

Chapter 1.2.2. However, a stratospheric burden for OCS has not been derived from observations

so far.

The total stratospheric OCS burden is calculated with Equation 2.3.

OCSB =

50∑
h>TpD

∑
−90<lat<90

(OCSstrat · TND) ·
60.07 g

mol

6.02 · 1023mol−1︸ ︷︷ ︸
mass of one OCS molecule in g

·105

︸ ︷︷ ︸
OCS burden in g

cm3 for 1 km height interval

·

2π · 6360.3km · 105
2 · cos(lat · π

180
) · 111km

360
· 360︸ ︷︷ ︸

surface area of each 1◦ latitudinal ring dependent on latitude,
the sum over all latitudes gives the complete earths surface.

(2.3)

lat: latitude values

OCSstrat: all OCS mixing ratio values from ACE-FTS above the ECMWF dynamical tropopause

height per 1◦ latitudes x 1◦ longitudes and 1km altitude boxes at lat

TND: total number density in 1
cm3 at lat.

34



Stratospheric OCS with ACE-FTS

To estimate the stratospheric OCS burden, all available OCS pro�les from ACE-FTS for the

respective year are considered. A speci�c time frame and a speci�c area (latitudes, longitudes)

are chosen in a 1◦ latitude x 1◦ longitude grid. For each OCS pro�le, the ECMWF dynamical

tropopause height is rounded and the data below the tropopause excluded. Depending on lati-

tudes, for each vertical pro�le the burden is calculated considering the size of each pro�le volume.

In case of multiple burden values in one bin, the respective mean value is taken. Missing bins

are interpolated and the missing bins close to the poles (∼ 85◦ - 90◦) are extrapolated with the

mean value of the closest two bins to the poles, to achieve a global coverage. The sum of all

bins represent the total stratospheric burden of each year, presented in Figure 2.17. The annual

burden varies by 6 %. As for the seasonal burden, no obvious trend is observed for the annual

stratospheric OCS burden. The burden values calculated for the years 2004 and 2016 do not

consider the whole year, because the ACE-FTS data set is available from February 23rd 2004 to

September 28th 2016. The presented error in Figure 2.17 is a result of using the so called 'species

error' available for each measured substance from the ACE-FTS data set. However, it should

be noted that this error is a purely statistical �tting error (assuming a normal distribution of

random errors) and does not include any estimate of systematic errors (Toohey et al., 2010).
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Figure 2.16: The OCS mixing ratio latitude, altitude pro�le for the year 2015. The mean of
all pro�les along all latitudes from 2015 is taken. In green the ECMWF dynamical tropopause is
indicated with standard deviation.
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Figure 2.17: Annual stratospheric OCS burden values, calculated with the ACE-FTS data set,
for the years 2004 - 2016 together with the errors calculated using the 'species error', given by the
ACE-FTS data set.

The average stratospheric OCS burden for the year 2015 is 524 Gg, which is equivalent to

a sulfur burden from OCS of 280 Gg S. 2015 was chosen as an example year, because it is the

last whole available year from the ACE-FTS data set for this work. This value is in excellent

agreement with the value 283.1 Gg S from OCS in the stratosphere, given by the recent global

sulfur budget model by Sheng et al. (2015). The global OCS distribution seems to be well

represented in the model.

The estimate of the total atmospheric OCS burden by Barkley et al. (2008) is 5.34 Tg. Hence,

10 % from the total atmospheric OCS resides in the stratosphere.

Early studies gave a comparable estimate for an atmospheric OCS burden of 5.2 Tg, 4.63 Tg in

the troposphere and 0.57 Tg in the stratosphere (9 % higher than what is calculated with the

ACE-FTS data set for 2015) (Chin and Davis, 1995).

2.4 Asian monsoon

As introduced in Chapter 1.2.1 the Asian monsoon is a signi�cant pathway for tropospheric

air into the stratosphere. Due to the isolation in the Asian monsoon anticyclone, tropospheric

tracers like CO and HCN show elevated mixing ratios, mixing ratios of stratospheric tracers

like O3, HNO3 and HCl are lower, as shown in Park et al. (2008). Figure 2.18 visualizes this

enhancement in the Asian monsoon anticyclone with HCN and CO as seen in Park et al. (2008),

except with a larger dataset (12 years instead of 3).
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As seen in Figure 2.19, OCS mixing ratios are also signi�cantly increased in the Asian monsoon

anticyclone (June to August) at 15.5 - 16.6 km altitude. At this altitude range (15.5 - 16.5

km) the mixing ratio increase is best visible and a good comparability to Park et al. (2008) is

given. Other than for CO and HCN , the gradients in the anticyclone region are not as distinct

for OCS. This is due to the longer photochemical lifetime of OCS, which is much higher than

for HCN and CO: The tropospheric, photochemical lifetime for OCS is around 36 years (4.63

Tg OCS burden in the troposphere divided by 0.13 Tg/a tropospheric sink (Chin and Davis,

1995)). For HCN the dominant sink is ocean uptake with a tropospheric lifetime of 5 months

and stratospheric lifetime of a few years (Li et al., 2009). CO is mainly removed with oxidation

of hydroxyl radicals (OH) and the lifetime is latitude dependent, with around one month in the

tropics and more than 1 year at the poles during winter (Staudt et al., 2001).

Figure 2.18 and Figure 2.19 show that there are noticeable measurement gaps in southeast Asia

at 15.5 to 16.5 km altitude during the Asian monsoon season with the ACE-FTS instrument.

This is likely due to cloud formation during the Asian monsoon in those heights. A selection of

higher altitudes decreases those gaps.

The Asian monsoon anticyclone is supplied with tropospheric and boundary layer air masses.

Southeast Asia and northern India were identi�ed to be main source regions for the Asian mon-

soon anticyclone (Vogel et al., 2015). Two main convection areas at the Tibetan plateau and at

the Bay of Bengal are discussed to transport those air masses directly into the Asian monsoon

anticyclone (Pan et al. (2016), Park et al. (2009), Fu et al. (2006)). In Bergman et al. (2013) it

is discussed that the strong convection at the Bay of Bengal is transported south of the center of

the anticyclone and air masses are carried around the Asian monsoon anticyclone at the south-

ern boundary. In this work, an approach was made to explore if this can also be demonstrated

with the ACE-FTS dataset: Figure 2.20a shows OCS against HCN in ppt and CO in ppb,

respectively. As discussed in Notholt et al. (2003), all three gases are biomass burning tracers.

One important di�erence for further discussion is that HCN has a strong ocean sink, in contrast

to CO and OCS. Figure 2.20b shows a Potential Vorticity (PV) based border de�nition of the

anticyclone for the year 2011 from Ploeger et al. (2015). This plot is taken as guidance to de�ne

areas that are more and less likely to be situated in the Asian monsoon anticyclone during JJA.

The colored boxes (green, magenta and black) in Figure 2.20b represent the color coding in

Figure 2.20a.

37



(a) CO (b) HCN

Figure 2.18: A global mixing ratio distribution plot at 15.5 - 16.5 km altitude, showing the
enhancement of CO and HCN in the Asian monsoon anticyclone. The plots consider all available
ACE-FTS data, during each year in the Asian monsoon time period. Figures like this have already
been shown in Park et al. (2008), except here data from the year after 2008 to 2016 are additionally
included.

Figure 2.19: Averaged OCS mixing ratios during the Asian monsoon season (June to August) from
2004 - 2016 at 15.5 to 16.5 km altitude.
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The magenta area represents a region, mostly outside of the anticyclone, on the southern

border. The green area is mostly inside and a remaining �eld is shown in black in the area of

the Asian monsoon. The probability of a marine history of the air masses is higher for the Bay

of Bengal convection and therefore lower HCN mixing ratios are expected. Hence, if the Bay

of Bengal convection is mostly transported outside the isolated anticyclone along the southern

border, lower HCN mixing ratios are expected, compared to OCS and CO mixing ratios. From

Figure 2.20a it is seen that the magenta triangles for HCN (symbolizing the area on the southern

border of the anticyclone) are signi�cantly lower than the other points (and especially the green

points from a region closer to the center of the anticyclone). Hence, compared to OCS, HCN

mixing ratios observed outside on the southern border of the Asian monsoon are lower than

inside. This is not observed for the OCS CO dependence. This supports the suggestion that

convection originated from the Bay of Bengal is mainly transported outside along the southern

border of the Asian monsoon anticyclone.

With the newly developed in-situ instrument AMICA (further discussed in Chapter 3) this

correlation between HCN , CO and OCS can be further investigated with the measured data

from the StratoClim Asian monsoon Campaign phase 2 in Nepal, summer 2017. The high

resolution in-situ instrument AMICA, with the possibility of tracing back speci�c measured air

masses, will be able to contribute to the following subjects concerning the Asian monsoon:

• A more precise quanti�cation of the enhanced OCS mixing ratios in the Asian monsoon

anticyclone.

• A quanti�cation of biomass burning as a source for OCS.

• A better insight into the role of OCS for stratospheric aerosol contribution via an increased

understanding of OCS transport (and conversion) processes.

• A better understanding if theory and measurements agree on where the air masses in the

Asian monsoon anticyclone originate from.
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(a)

(b)

Figure 2.20: Comparison of CO and HCN mixing ratios to OCS inside and at the southern
border of the Asian monsoon anticyclone. Figure 2.20a shows all available ACE-FTS OCS data
(2004 - 2016) for the Asian monsoon period JJA, at 15.5 - 16.5 km altitude. Each point represents
a separate 1◦ latitude x 1◦ longitude grid box. The rough positions of the points are indicated with
colors, explained in Figure 2.20b. The underlying plot in 2.20b, from (Ploeger et al., 2015) presents
a PV based Asian monsoon anticyclone structure de�nition in average for the year 2011. The color
boxes illustrate the color choices in 2.20a.
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Chapter 3

AMICA development

AMICA is the Airborne Mid-Infrared Cavity enhanced Absorption spectrometer. AMICA mea-

sures multiple trace gases in the Mid-Infrared region (MIR) with the Integrated Cavity Output

Spectroscopy (ICOS) method, yielding high resolution in-situ measurement data. The prototype

of AMICA is MICA (Mid-Infrared Cavity enhanced Absorption spectrometer), a ground based

instrument using the same measurement technique as AMICA, which performs successful mea-

surements since 2012. Some of the MICA data were used for evaluations in this work. OCS is

the main focus of the work presented here. With high resolution in-situ measurements of OCS,

AMICA has the potential to improve the general understanding of transport processes and OCS

conversion processes in the atmosphere. In this Chapter, basics about the IR-absorption spec-

troscopy and the ICOS method are outlined together with relevant steps for the development

and manufacturing of AMICA to its current state, including calibrations and component tests.

Additionally, the performance of AMICA during �rst measurement �ights is evaluated.

3.1 Infrared spectroscopy

To measure OCS and other gases with absorption spectroscopy, the property of a gas to absorb

light at discrete wavelengths, corresponding to distinct energy levels, is used. For absorption

spectroscopy, distinct absorption lines of molecules and atoms are used to detect trace gases

quantitatively.

A photon, which matches the energy level and therefore wavenumber that is required to move

a speci�c molecule into a 'higher' state, is absorbed by the molecule. The distinct energy that

is absorbed, is measured. The energy gained at the molecule, can be released via spontaneous

emission of a photon or by collision with other molecules. Molecules can have various degrees

of freedom, depending on the number and arrangement of the atoms, which determine their

rotational and vibrational features (linear molecules of vibrational modes: 3 · N − 5 and non-

linear molecules: 3 ·N − 6; N: the number of atoms in the molecules; Number 3: each atom has
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three degrees of freedom for the x, y and z component; Number 5 and 6: the sum of the rotational

and translational modes, 3 reserved for translation and 2 or 3 reserved for the rotational modes).

The number of vibrational modes determines the number of transitions possible in the molecule.

In this work, spectroscopy in the IR region (vibrational spectroscopy) is performed. The main

measurement substance of interest is OCS.

OCS is a linear molecule with one oxygen, one carbon and one sulfur atom. Each atom has 3

degrees of freedom (for x, y and z component). OCS exhibits 3 ·N − 5 = 4 principal vibrational

modes, all illustrated in Figure 3.1 (symmetric stretch, asymmetric stretch and two degenerate

bends). Each vibrational mode is responsible for a number of vibrational states accessible in the

IR-region. In this work, a spectrum resulting from the asymmetric stretch (see Figure 3.1) is

chosen. The band for the asymmetric stretch of OCS, including all OCS lines (and also other

relevant gases for atmospheric sciences in this spectral region) is shown in Figure 3.2a.

Figure 3.1: A schematic view of all principal vibrational states for all 3-atom, linear molecules,
including OCS.

The density of absorption lines originates from the di�erent rotational and vibrational tran-

sitions, forming multiple absorption bands. In this work (for both OCS instruments, included in

this work: AMICA and MICA), the strong OCS absorption line at 2050.396634 cm−1 is chosen.

Therefore, a laser is selected, emitting at this wavenumber (with a wavenumber range from 2050.3

to 2050.9 cm−1). The OCS asymmetric stretch band contains the strongest absorption lines.

The respective wavenumber range together with the absorbing gases in this range are shown in

Figure 3.2b. The stronger the absorption line of a substance, the better the detectability and

the higher the sensitivity for the measured gas. The absorption strength/ attenuation depends

on the absorption coe�cient and concentration of the absorbing substances in the measurement

gas as well as the length of the measurement cell. This relation is described by the Beer-Lambert

Law as presented in Equation 3.1.

A = log10(
I0
I

) = ελ · conc · L

I = I0e
−A

(3.1)
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(a) (b)

Figure 3.2: Wavenumbers against absorption, for OCS, CO2, H2O, O3 and CO. (a) All vibrational
bands of the absorbing gases of interest, of the asymmetric stretch, vibrational band of OCS. (b)
The enlargement for the exact wavenumber range, used in MICA and AMICA.

A: absorbance of the material at wavelength λ

I0: incoming light intensity
I
I0
: transmission

conc: concentration of the absorbing species

I: transmitted intensity, light intensity after passing through the absorbing substance

ελ: extinction coe�cient at wavelength λ

L: absorption path length

The Beer-Lambert law describes the attenuation of light in a substance, passing through a speci�c

length of measurement cell. When the measurement cell length and extinction coe�cient are

constant, the absorbance is proportional to the concentration of the gas. The transmitted light

intensity decreases exponentially.

The main limiting factor for the spectral resolution in IR spectroscopy is the line width. It is

described as the HWHM (half-width-half-maximum) of an absorption line. A higher spectral

resolution results in a smaller line width. Therefore, it is favorable to minimize the extent of

the line broadening as much as possible. Besides the natural line broadening of a molecule, two

broadening mechanisms contribute to the peak broadening.

Pressure/Collisional broadening: because of collisions between molecules in the gas phase, there is

an energy exchange and shift of the respective molecules, leading to a broadening of energy levels.

The degree of the broadening e�ect depends on density and temperature of the measurement

gas. For the two instruments, introduced in this work (MICA and AMICA), this is by far the

highest contributer to the peak broadening. A reduction of the pressure broadening e�ect can

be achieved by reducing pressure and temperature in the measurement cell at the expense of

reduced sensitivity.
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Doppler broadening: this is a process leading to peak broadening explained by the Doppler-e�ect.

For non moving molecules and detector the absorbed frequency is distinct. However, due to the

Brownian motion of molecules the Doppler-broadening arises.

3.2 The ICOS method

The general set up of ICOS consists of a laser, cavity and a detector as seen in Figure 3.3.

The laser is pointed o�-axis into a cavity, enclosed with two high re�ectivity mirrors. O�-axis

means that the laser beam has no speci�c exit point from the cavity and the light is bundled

with a collimator lens behind the cavity and focused onto the detector. Therefore, the system is

robust against vibrations and ideal for moving measurement platforms like research aircraft. A

cavity entry point in the middle of the mirror could lead to unwanted cavity resonance e�ects,

therefore the entry point is not chosen to be centric. The mirror at the side of the laser, has an

Anti-Re�ection coating.

The laser is stabilized to a certain temperature that determines the wavenumber range over

which it can potentially emit. Figure 3.4 shows the respective emitted wavenumber range for

temperature and current settings for the laser used in the MICA instrument, which is the proto-

type of AMICA with the same measurement technique. MICA was investigated in more detail

in Schrade (2011). An increasing laser input current leads to a decreasing output wavenumber.

Lower temperatures of the laser result in an increasing laser output wavenumber. For example,

for the temperature stabilized MICA laser (LC0107) at 50 ◦C, operated at 0.72 A, the wavenum-

ber output is 2044 cm−1 (= 4.89 µm). Because the laser output wavenumber is sensitive towards

minor temperature changes in the laser (as seen in Figure 3.4), a good temperature regulation

at the laser is necessary. The laser itself has a temperature stabilization unit (optimized by the

internal software), which, however, cannot account for large temperature �uctuations around the

measurement set up. Therefore, a pressure and temperature stabilized measurement set up is

crucial to ensure a su�ciently working temperature regulation at the laser. For the instrument

AMICA, longterm drifts in the obtained spectrum due to e.g. temperature changes of the laser or

in the cavity are possible, because the internal software unit, regulating the temperature at the

laser is not optimized yet. The higher the re�ectivity of the mirrors, the longer is the maximum

possible absorption path length and thus the lower the detection limit towards absorbing gases.

Substances with high absorption coe�cient and mixing ratios, however, can reach the state of

saturation for long path lengths.

Figure 3.3: ICOS setting, the way of light for a single cavity.
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Figure 3.4: Emitted laser output wavenumber in cm−1 at a certain temperature (in ◦C) and current
(in A) for the laser LC0107, used in the MICA instrument, data from HAMAMATSU PHOTONICS
K.K. (2009).

The laser light is re�ected back and forth, �lling the cavity with light until the light retraces

the path through the cavity. The average time that light at a certain wavelength is trapped in

the cavity, equivalent to the ringdown time, depends on the mirror re�ectivity, cell length and

concentration of the absorbing gases at this wavelength, this is calculated in Equation 3.2 (taken

from Sayres et al. (2009)).

τ =
L

c [1−R+ α(ν)]︸ ︷︷ ︸
A

(3.2)

τ : cavity-ringdown time

c: speed of light

R: mirror re�ectivity

L: cell length

α(ν): single pass absorption, optical depth of the measurement gas at frequency ν

The term A in Equation 3.2 describes the total loss rate of light at a single pass through the

cell due to absorption and loss at the mirror. The length of the cell L divided by the speed of

light represents the time per one pass through the cell. The ratio of both terms, describes the

decay time, the average time that the light is trapped in the cavity, the cavity-ringdown time

(Equation 3.2). With the known values of mirror re�ectivity and absorption, the e�ective path
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length can be extracted.

The Gain factor G is described in Equation 3.3 (O'Keefe et al., 1999). It is the average number of

passes through the measurement cell, depending on the re�ectivity R of the mirrors and describes

the increase in the measured absorption, compared to a standard cell (without mirrors and only

one path through the cell) and therefore describes an increase in sensitivity.

G =
R

1−R
(3.3)

Equation 3.4, taken from Sayres et al. (2009), describes the light intensity measured at the

detector (i.e. the laser intensity from one side of the cavity):

Iout(t) =

t∑
t′=−∞

1

2︸︷︷︸
B

P (t′)Tτ(t′)︸ ︷︷ ︸
C

[1− e
−∆t
τ(t′) ]︸ ︷︷ ︸

D

e
−(t−t′)
τ(t′)︸ ︷︷ ︸
E

· T︸︷︷︸
F

(3.4)

Iout(t): light intensity that is emitted from the cavity at time t

P (t′): power emitted by the laser at time t′

T : transmission through the mirror on entry side

τ(t′): decay time constant

t′: time when light enters cavity

∆t: small time step so that P (t′) and τ(t′) can be considered as constant

The role of the terms B, C, D, E and F from Equation 3.4 are further explained. B: the factor
1
2 comes from the fact that from both sides of the cavity light is emitted, Iout(t) describes the

intensity at the detector, so only emitted light from one side of the cavity. C describes the

amount of transmitted laser power into the cavity. D represents the build up of light inside the

cavity at τ(t′). E accounts for the intensity evolution, considering the loss of intensity through

both mirrors and absorption at the measurement substance. F: the factor of T is inserted due

to the transmission loss of light at the mirror before entering the cavity.

Figure 3.5 shows the data acquisition and atmospheric spectra analysis in three steps. The laser

is switched on, the laser input current increases throughout the ramp scanning spectrum and

the laser is switched o� (Figure 3.5a). The laser cycles are continuously repeated ∼ 600 times

per second. Each laser cycle has a time duration of 1.64 ms. In Figure 3.5a and Figure 3.5b the

wavenumber decreases in x-direction and can be derived for the conversion to Figure 3.5c using

an etalon �t.

During the spectrum scan, at each moment a di�erent laser wavelength is emitted and coupled

into the cavity with the absorbing gas. 600 cycles are conducted and detected per second and

averaged (Figure 3.5b). This signal is equivalent to the measured laser intensity as described in

Equation 3.4. The voltage is proportional to the laser intensity.

With ICOS, not the decay time of a laser pulse at a speci�c wavelength through a certain
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(a)

(b)

(c)

Figure 3.5: Data acquisition and atmospheric spectra analysis. (a) Laser input current. (b) Signal
at the detector. (c) The obtained spectrum, �tted to the HITRAN (High Resolution Transmission,
Cambridge, Massachusetts) data base. 47



medium is measured to obtain mixing ratios (e.g. Cavity-Ringdown Spectroscopy), but the light

intensity along a wavelength range is measured at the detector and analyzed.

The baseline is de�ned by sending a pure gas through the system. In Figure 3.5b N2 is used, CO

impurities can be seen (in purple). Points with no absorption are extracted so that an accurate

baseline can be determined for the region of interest and used for spectral �tting. At the end of

each laser cycle, the laser is switched o� and the cavity-ringdown time τ is measured, by �tting an

exponential decay to the decrease of the intensity indicated in blue in Figure 3.5b. The spectral

scan points are translated into wavenumbers and the signal is converted from transmission into

absorption, using Equation 3.1. The largest peak in Figure 3.5b at the data point ∼ 1350,

represents CO2 and is translated to the wavenumber 2050.56 cm−1 in Figure 3.5c. The peak

seen in Figure 3.5b at data point number ∼ 870 is translated to a wavenumber of 2050.8 cm−1

and represents CO. OCS is at a data point number of ∼ 1610, seen in Figure 3.5c at the

wavenumber of 2050.39 cm−1. In Figure 3.5c, the obtained signal (spectrum) per wavenumber

from a dried standard of ambient air in black and the �tted spectrum based on the HITRAN

data base in red. A theoretical spectrum is calculated, based on �xed HITRAN parameters and

mixing ratios for the trace gases, absorbing in the wavenumber region. This theoretical spectrum

is compared to the observed spectrum and an iterative optimization routine solves for the best

�t mixing ratio. Here, the spectral range used for MICA and AMICA is displayed, measuring

OCS at 2050.39 cm−1, CO2 at 2050.56 cm−1, H2O at 2050.6 cm−1 and CO at 2050.8 cm−1.

3.3 Requirements for OCS measurements

3.3.1 MICA

MICA is the prototype of AMICA, a ground based ICOS instrument, measuring OCS, CO2, CO

and H2O since October 2012 on the meteorological tower at Forschungszentrum Jülich GmbH.

Prior to the construction and arrival of AMICA, tests e.g. the established OCS calibration

system, were carried out with the MICA instrument.

The ground based instrument MICA already contributed to multiple scienti�c projects: Lennartz

et al. (2017) work with shipboard OCS measurements of MICA. During StratoClim it was part

of a ground based measurement station on Bhola Island and at the Palau station in the western

Paci�c.

3.3.2 Material criteria

Especially when calibrating the instrument, but also for qualitative measurements, all materials

in the measurement system (that potentially have contact with the sampling air) need to be

checked for suitability for OCS measurements. Some valves have viton seals, which outgas OCS

48



AMICA development

and therefore interfere with OCS measurements. A good replacement for viton, however, has

not been found yet and for the magnitude of accuracy that AMICA shows at the moment, the

viton sealing likely makes no signi�cant di�erence. For the tested �ow of 1 SLM (standard liter

per minute), the out-gassing of the viton seal does not show any e�ect and is therefore considered

negligible. For highly accurate measurements, it should be replaced in the future. Due to its po-

larity, the OCS molecule interacts with surfaces of some materials, e.g. glass, metal and plastics.

Materials used for AMICA, measuring OCS need to be as inert as possible to avoid reaction

with the wall material and absorption. Electropolished stainless steel, sul�nert treated steel

(i.e. silcosteel), silanized glass and te�on (PTFE: Polytetra�uorethylene) are known to be most

suitable for volatile sulfur compounds measurements (Wardencki, 1998). However, observations

using MICA indicated that Te�on tubes might not be as suitable for OCS measurements due

to the porosity, 'sponge e�ect'. When a Te�on tubing (FEP: Per�uoroethylene propylene) was

exposed to a constant �ow of high OCS mixing ratios (∼ 50 ppb), then �ushed and connected

to AMICA, measurements showed that around 10 times higher mixing ratios are reached then

expected in ambient air. The tube was exchanged to avoid that problem.

3.3.3 Calibration system for OCS

It is almost impossible to dilute an OCS standard with a mixing ratio of around 500 ppt from

a pure gas with su�cient accuracy, i.e. no primary standards at atmospheric concentration are

readily available. Additionally, as described in Chapter 3.3.2, OCS is emitted and/or absorbed

by many surface materials so that caution has to be taken with all components used in the

calibration system. A system, which is able to produce a wide range of OCS concentration to

test the AMICA output for a variety of mixing ratios, is bene�cial and therefore developed:

Two complementary calibration systems were established and are used for the OCS calibration

of MICA and AMICA, a permeation device set up and a NOAA (National Oceanic and Atmo-

spheric Administration) OCS standard.

For the permeation system (optimized and described in von Hobe et al. (2008)), two perme-

ation tubes (OCS 15920 and OCS 90F3) with di�erent permeation rates were purchased from

MACHEREY-NAGEL GmbH, Düren, Germany. The tubes contain pure OCS (> 99 %) and

release OCS at a speci�c rate at speci�c temperatures (here 25 ◦C). The weight of the tubes are

regularly gravimetrically determined and the permeation rates calculated (26.0 ± 0.1 ng min−1

and 142.0 ± 0.8 ng min−1). While the tube with the lower permeation rate (OCS 15920) shows

a linear decrease of weight with time, the rate of loss of the other tube (OCS 90F3) decreases

with time. Therefore, only the OCS 15920 is used for calibration purposes. For the gravi-

metric determination of the permeation rates an analytical balance (CPA225D, Sartorius Lab

Instruments GmbH, Göttingen, Germany) is used, which was calibrated by the DKD (Deutscher

Kalibrierdienst, Braunschweig, Germany). The display uncertainty, operated on a weighting ta-
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ble, is 0.8 · 10−5g + 10−6 · R, where R is the scale display value. A special oven was developed

to keep the sample air around the permeation tubes at a stable temperature of 25 ◦C, also at

higher �ows (> 20 SLM). The air �rst passes through a long curled tube, temperature regulated

in an oven, before it passes the permeation tube(s). With one or two (parallel) MFCs (Mass

Flow Controller MC-10SLPM-D, NATEC Sensors GmbH, Garching, Germany), the dilution �ow

can be regulated to up to 40 SLM and together with the known permeation rates, the resulting

concentration of the produced gas is calculated. A typical calibration set up with the permeation

system, is shown in Figure 3.6. The advantage of the permeation device system is that a wide

range of OCS mixing ratios from ∼ 45 ppb down to ∼ 300 ppt can be scanned. This potentially

reveals systematic deviations of the instruments output concentrations to the gravimetric calcu-

lated mixing ratios, but also non-linear behaviors of the instrument.

In addition to the permeation tube system, a NOAA OCS standard was used. A 34 L electro

polished stainless steel Essex container was �lled with dried, atmospheric air to ∼ 62 bar, trans-

fered from an Aculife-treated aluminum cylinder. The gas was analyzed by gas chromatography

with mass spectrometric detection (GC-MS) at NOAA. The 'report of analysis' (from January

6th 2015) gives a mole fraction for OCS of 449.8 ppt with a standard deviation of 1.4 ppt. Based

on the uncertainties and comparisons between NOAA and other labs, the scale accuracy for OCS

is approximately 4 %. Internally the standards are consistent to ∼ 2 %. A drift of OCS mixing

ratios of less than 5 ppt per four years in the cylinder is assumed. The air is humidi�ed with

∼ 0.6 ml HPLC-grade water. The water content in the NOAA standard is ∼ 500 ppm, AMICA

shows 283 ± 4 ppm H2O. For OCS, however, the water content in the electro-polished stain-

less steel container is considered to improve stability (personal communication, Bradley Hall,

NOAA). The standard is recommended to be recalibrated after three years. For calibrations

with the NOAA OCS standard, a stainless steel pressure reducer (Parker TDR 959, Richmond,

California) was ordered and is used.

The developed permeation system in combination with the NOAA OCS standard makes a com-

parison possible of our own wide calibration scale and the global NOAA network.
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Figure 3.6: A typical set up for simultaneous comparison and calibration of potentially more than
our two OCS instruments (AMICA and MICA).

3.3.4 OCS calibration and comparison with Mainz LGR

Two OCS instruments using the ICOS method are compared to each other and calibrated: one

instrument, operated by the University of Mainz (referred to as 'Mainz LGR') and MICA. Both

instruments are purchased and manufactured by LGR (Los Gatos Research, Mountain View,

California). MICA was the �rst LGR OCS analyzer (2012), while the Mainz LGR instrument

(2015) is a newer and further developed ICOS instrument. The Mainz LGR belongs to the

'Enhanced Performance' series, with a stronger laser, mirrors with a higher re�ectivity and a 20

cm longer cavity (50 cm). Additionally, an improved analysis software and temperature stabilized

Laser-Cavity-Detector system leads to an improved signal to noise ratio by more than one order

of magnitude.

The set up chosen for the calibration and comparison of both instruments is the same as already

shown in Chapter 3.3.3, Figure 3.6 (in this case 'further instrument' refers to the Mainz LGR

ICOS instrument, AMICA was not included in this set up). Figure 3.7 shows the lowest 14

values of the MICA Mainz LGR ICOS comparison calibration. The MICA data are shown in

green, the Mainz LGR measurements in cyan. A systematic error for the gravimetric values of

0.6 % and the observed OCS standard deviation of MICA are indicated with error bars. For

the Mainz LGR OCS measurements, no standard deviations are calculates, but are around one

order of magnitude lower than the ones observed with MICA. Each displayed measurement point

corresponds to the mean value of a ∼5 minute mixing ratio step, regulated via the amount of �ow
of the standard air (with no OCS), which is then mixed with the sample air from the permeation

oven. With this system, mixing ratios up to 35 ppb are achieved, however a typical OCS mixing

ratio in the troposphere is 500 ppt. Therefore, the lowest data points achieved with this method

are best representative for atmospheric OCS mixing ratios and are shown in Figure 3.7.

MICA consistently overestimates the true (gravimetrically determined) values, while Mainz LGR

underestimates them. For MICA a linear correction equation was determined (0.92x + 9.63 ppt)
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to shift the measured values as close as possible to the true gravimetric line (black). A qualitative

evaluation of the correction performance is shown in Figure 3.8. Before the correction, MICA

showed a relative deviation to the gravimetric values of up to 9 % (red crosses), while after the

correction the highest deviation is 5 % (black crosses). The red crosses in Figure 3.8 indicate the

relative deviation of the green crosses in Figure 3.7 from the black 1- to 1 line and black crosses

in Figure 3.8 indicate the respective deviation from the corrected values (using the correction

equation) to the black line. Especially for high mixing ratios > 2 ppb, the deviation is below

1 %.

Even though the Mainz LGR instrument is much newer with a better precision compared to

MICA, the accuracy of both instruments is comparable.

Compared with MICA, for AMICA many amendments have to be made in order to adapt for

research aircraft requirements. The mechanical requirements are discussed in Chapter 3.4.
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Figure 3.7: MICA (green) and Mainz LGR (cyan) OCS measurement values together with their
linear �t. The black one- to- one line represents the desired measurement outcome of the instruments
with no deviation from the gravimetric values. Error bars for the MICA OCS measurements and
the gravimetric calculated values are indicated. The resulting correction function for MICA is:
0.92x + 9.63 ppt.
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Figure 3.8: The relative deviation from the MICA OCS values to the gravimetric OCS values,
before (red) and after (black) applying the correction function.

3.4 Mechanical requirements for AMICA on the research aircraft

Geophysica

For AMICA to be integrated on the research aircraft Geophysica, two o�cial tests had to be

passed, an EMC test and a shaker test:

• EMC test: an o�cial electromagnetic compatibility (EMC) certi�cate is needed, proving

that the running instrument AMICA does not exceed the Geophysica threshold criteria,

according to the environmental conditions and test procedures for airborne equipment

(RTC-DO160 E, category M), to exclude the possibility of interferences with the aircraft

electronics and other instruments. Before the actual certi�cation test, AMICA was already

tested at the EMC chamber at ZEA-2, Forschungszentrum Jülich GmbH. Here, major

sources of interference (e.g. cockpit-control cable, an opening at the left thermoelectric

cooler (TEC)) were identi�ed and removed before the o�cial test. The test carried out

at steep GmbH, EMC Center Bonn, Germany on two days, two months prior to the �rst

planned campaign, was directly passed.

• Shaker test: an o�cial shaker test for aircraft requirements was carried out at MOOG, CSA

Engineering, Mountain View, California. For this purpose a second, identical AMICA

housing was manufactured. The vibe testing report states that the AMICA housing

responds to a 0.5 g sine sweep, before and after the application of random vibe with

no signi�cant di�erence in isolation system behavior. AMICA was additionally laid out for

elastic deformation at > 7 g with fully preserved functionality and plastic deformation at

> 10 g. The test was successfully passed under the test procedure RTCA/DO-160G (elastic
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deformation permitted for 7 g acceleration in X-, Y and Z direction). Three springs (Endine

WR12-300-08) prevent damage to the instrument caused by excessive vibrations, selected

based on �nite element method (FEM) calculations. The maximum force per spring is 9

kN, resulting in a spring de�ection of 32.5 mm and 7.5 kN with 39 mm de�ection under

shearing. The springs are designed for shearing forces up to 10 g in all directions.

Other criteria for aircraft suitability is a reduction of weight of the instrument. Therefore, a

small, light weight pump, which �ts into the instrument AMICA is crucial. At the same time,

the pump has to maintain a su�cient �ow through the measurement cells at changing outside

pressure (55 hPa to 1000 hPa). Besides �ow rate at di�erent ambient conditions, other criteria

for pump selection have to be considered: heat production during long term use, power draw,

size and weight. Respective tests are described in Chapter 3.6.

As discussed in Chapter 3.2 the cavity pressure of the ICOS system is stabilized. A higher pres-

sure results in a higher sensitivity of the instrument, but also in a higher pressure broadening. As

a good compromise a typical LGR OCS Analyzer has a stabilized cavity pressure at 80 hPa (60

torr), for ambient pressures of 1000 hPa. However, on research aircraft ambient pressures change

between 1000 and 55 hPa and because the cavity pressure cannot be stabilized at pressures ex-

ceeding ambient pressure, another compromise is found at 47 hPa in AMICA. Experiments for

pump selection and �ow set up are described in Chapter 3.6.1

Other requirements for trace gas measurements, the measurement set up of AMICA and the

mechanical design are investigated during lab experiments. The results are presented in Chap-

ter 3.6.

3.5 Mechanical design of AMICA

AMICA is a 104 cm × 40 cm × 30 cm (without feet and mounting hardware) instrument

visualized in Figure 3.9 and was delivered in February 2016. The total weight of AMICA is

153.7 kg (141.1 kg without feet and mounting hardware). The power box weighs 19.4 kg (5.4

kg housing, 14 kg interior) and the pressurized box 134.3 kg (58.6 kg housing, 12.6 kg aircraft

attachment, 63.1 kg interior including measurement set up). The pressurized box is made out of

aircraft certi�ed aluminum (EN AW6061 T651) and contains the measurement set up including

laser, cell and detector. AMICA is powered with 115 V, 400 Hz with a maximum of 1.2 kVA.

The power box contains the pump, the AC-DC converters, electro-magnetic interference (EMI)

�lters and temperature controllers. Wireless access to the AMICA measurements and data

(12 V electricity supply) is integrated and enables the communication and data download from

the instrument, with a range of ∼ 200 m with AMICA situated under the MIPAS cover on the

research aircraft Geophysica. Hence, during operation it is possible to monitor data and spectra

on-line. The power supply for the wi� (on or o�, via relais) is turned o�, from the cockpit of

Geophysica, during �ight to avoid interferences with the aircraft electronics.
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Figure 3.9: Rendered view of AMICA (by ZEA-1, Forschungszentrum Jülich GmbH) with part
description.

The power box, attached underneath the enclosure, is not pressure tight and is made of alu-

minum sheet metal (EN AW 5052 H111). The enclosure with the measurement hardware is built

pressure tight, see Chapter 3.6.2.

Figure 3.10 shows how AMICA is implemented on the top of the research aircraft Geophysica.

Because of its weight and position on the aircraft, AMICA is equipped with handles, for short

distance transportation and crane attachments, for lifting the instrument to the respective posi-

tion on Geophysica.

In AMICA, two separate measurement cells are integrated in one single ICOS instrument. The

individual set ups are exchangeable in order to tailor the trace gases measured to the rele-

vant science question. A variety of gases can be measured simultaneously. The measurement

con�guration is shown in Figure 3.11 with the two measurement set ups implemented in AMICA.

(a) (b)

Figure 3.10: Scematic view (by ZEA-1, Forschungszentrum Jülich GmbH) (a) and photograph (b)
of the integration of AMICA on top of the research aircraft Geophysica.
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(a) (b)

Figure 3.11: One schematic (by Los Gatos Research, Mountain View, California) (a) and one
photograph (b) of the top view of the interior of AMICA, showing both cavities.

The �rst set up includes a Quantum Cascade Laser (QCL), emitting in a wavenumber range

of 20150.3 - 2050.9 cm−1, measuring OCS at 2050.39 cm−1, CO2 at 2050.56 cm−1, CO at

2050.80 cm−1 and H2O at 2050.60 cm−1. These compounds are measured in cavity 1 (c.f.

Figure 3.12). The cavities are exchangeable and replaceable. Each measurement assembly is

controlled by a dedicated computer. For cavity 2, two measurement con�gurations are currently

possible: a QCL emitting in a wavenumber range from 1035.30 - 1035.90 cm−1, measuring O3,

NH3 and CO2 and an Interband Cascade Laser (ICL) emitting in a wavenumber range from

3331.20 - 3331.80 cm−1, measuring N2O, HCN and C2H2. The process of exchanging cavity

two is too elaborate to be done between �ights during a measurement campaign.

As described in Chapter 3.2 the cavity pressure is stabilized (for AMICA at 47 hPa; for selection

criteria c.f. Chapter 3.4). The LGR data acquisition quality is strongly dependent on a constant

temperature and pressure in the cavity. The �ow set up in AMICA for regulating the cell pressure

has been chosen according to the lab results, described in Chapter 3.6.1. Figure 3.12 shows a

schematic set up of the �ow system used in AMICA. The inlet is a 3/8� tubing connection.

Before the sample air enters the enclosed system, it is �ltered by a 7 µm sul�nert treated �lter,

(�lter 1: SilcoNert2000 coated Swagelok SS-4FW7-7, SilcoTek GmbH, Bad Homburg, Germany).

Inside the enclosure it passes through a two valve assembly designed to regulate the pressure

inside the cavities. The development of this two valve system is described in Chapter 3.6.1.

All surfaces are passivated to minimize wall interactions. A 2 µm �lter (�lter 2: SilcoNert2000

coated Swagelok SS-4FW4-2, SilcoTek GmbH, Bad Homburg, Germany) is placed in front of

the cavity to prevent particles from the valve seals to enter the cell and contaminate the highly

re�ective mirrors in the cell. The cells are coupled in series and regulated to a constant pressure

of 47 hPa in the �rst cell and due to the serial set up a 1.3 hPa decreased pressure in the second

cell. The cells have a volume of 0.911 L and are 51 cm long.

• Time delay (from inlet to measurement cell): the volume between the inlet on Geophysica

and cell is around 1 L (including the �rst cell of 0.911 L). This is equivalent to a mea-

surement delay of 4 seconds with an ambient pressure at 1000 hPa and 0.4 seconds at an

ambient pressure of 100 hPa (at an aircraft speed of 200 m/s this is a distance of around
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800 and 80 m respectively). At a measurement rate of 1 Hz every 200 m one data point is

acquired.

• Time lag (between both cavities): the time lag between both cells is 2.8 seconds (which

is equivalent to 560 m at an aircraft speed of 200 m/s). The proportional Solenoids

of the delivered instrument had ori�ces of 1 mm each (Parker), which were prove to

failure (Chapter 3.6.1). For the �rst campaign the valves with ori�ces of 1 mm (valve

1: Parker Porter EPCA30SSVCAA, Hat�eld, Pennsylvania) and 3.2 mm (valve 2: Posi�ow

SCB202A013T12VDC, ASCO Numatics GmbH, Ölbronn-Dürrn, Germany, Te�on sealed)

were chosen.

• Flush time: Behind the cells a check valve is integrated to avoid any back �ow into the

system. The system works with a �ow rate of 1 SLM at ground conditions, 1000 hPa

ambient pressure at a gas temperature of around 30 ◦C. The �ow rate is thought to be

higher during �ight when the outside pressure decreases. The �ush time of one cell is

2.1 seconds. The pump (vacuubrand MD1 VARIO-SP, Wertheim, Germany) is installed

outside of the pressure tight enclosure, integrated in the power box.

Temperature stabilization of the measurement set up is necessary to improve temperature regu-

lation for the lasers and detectors. The interior of the AMICA enclosure is temperature regulated

at 30 ◦C, using two banks of thermoelectric coolers (TEC). Each bank consists of 16 individ-

ual TEC elements ('supercoolers'), measuring approximately 30 mm square and is capable of

producing 200 W of heating or cooling power. These supercoolers are attached underneath

the enclosure seen in Figure 3.9. The walls are insulated on the inside with polyethylene foam

(ETHAFOAMTM 4101 FR Polyethylene Foam, Midland, Michigan). Additional fans enhance air

circulation inside the enclosure to improve temperature uniformity. The temperature regulation

is implemented in the standard 'Enhanced Performance Analyzers' by LGR.

In addition to the measurement data of the di�erent compounds, many housekeeping data are

logged by the LGR software, and some additional loggers are attached. A logger (MSR165,

Seuzach, Schweiz) is integrated, monitoring the enclosure pressure and temperature indepen-

dently to the housekeeping data from the AMICA software. Another logger (MSR165), moni-

toring the output voltage from the VIPACs (DC-DC converter, VICOR HUB 3300-S, Andover,

Massachusetts) is also integrated. Two SlamSticks (Mide Technology LOG000200-0006, Medford,

Massachusetts), mainly monitoring vibration, but also pressure and temperature are attached

to the outside of the AMICA housing. One above a spring and one below, to observe the e�ect

of the springs. Both loggers and both SlamSticks are triggered over an individual software from

the computer via USB port connection.

An inlet integrated on the top of Geophysica was designed and developed by enviscope GmbH,

Frankfurt, Germany (Figure 3.13, picture in Figure 3.14). It has a weight of 2.5 kg and is shared

between three instruments, a Cryogenically Operated Laser Diode spectrometer (COLD), The

Chicago Water Isotope Spectrometer (Chi-WIS) and AMICA.
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Figure 3.12: Overview of the �ow system integrated in AMICA.

Figure 3.13: Geophysica inlet for AMICA,
Chi-WIS and COLD, designed by enviscope.

Figure 3.14: The position of the inlet on the
Geophysica.

The tube connection to AMICA is sul�nert treated stainless steel (RESTEK, Bad Homburg,

Germany, diameter 3/8 �).

The position on the plane is seen in Figure 3.14. To avoid aerosol penetration during �ight, the

inlet points backwards to the �ight direction. The front of the inlet is heated by the Geophysica

with 27 VDC. The AMICA tubing inside of the inlet is also heated (115 VAC supply from

AMICA), when temperatures drop below 10 ◦C. The inlet and AMICA are connected by a

160 cm sul�nert treated tube, on both sides connected to bellows for �exibility.
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3.6 Laboratory performance assessment

Several lab experiments have been carried out during this project. The following questions are

addressed in this section.

• How is the cavity pressure kept constant at highly variable ambient pressures (50 - 1000 hPa)

on reseach aircrafts?

• How is the acquisition hardware of AMICA kept at a constant temperature (c.f. Chap-

ter 3.2) (at 35 ◦C ± 0.5 ◦C) to ensure accurate measurements?

• How does the whole instrument, including the developed components, perform during a

�ight simulation test?

Experiments as described in Chapter 3.6.1 and 3.6.2, have been carried out under simulated

�ight conditions in the climate chamber at IEK-7. The climate chamber (WK 500/70-100D) can

be regulated from ambient pressure down to 10 hPa and has a temperature range from +100 ◦C

to -70 ◦C. With a usable volume of 770mm × 750mm × 750mm, it is ideal for component tests

of instruments, like AMICA, that are operated on high altitude research aircraft as for example

the Geophysica, reaching pressures down to 55 hPa and temperatures down to around - 90 ◦C.

3.6.1 Flow system assessment

The pumps tested are listed in Table 3.1. Figure 3.15a shows the set up of the pump/valve

experiments. Components were added to the test step by step. The assembly for the pump

tests is shown in blue. The electricity supply for the MFC, pump and pressure sensor are placed

outside the chamber and connected through vacuum tight feedthroughs. For AMICA, the KNF

940.5 pump is too big and too heavy, however the main issue is the high �ow rate that shows too

high resistance at the valve and cavity inlet, decreasing the �ow rate from a valve regulated value

of 2 SLM (at 1000 hPa) down to 0.2 SLM at 500 hPa. Further tests described here are carried

out with the KNF 950.5 and the MD1 VARIO-SP. Because of the smaller size, lower weight,

but also similar �ow rate as the KNF 950.5 pump, the MD1 VARIO-SP is used in AMICA.

Experiments show that the pump does not draw more than 7.54 A at 24 V (during power on).

With a varying ambient pressure (1000 hPa to 55 hPa), keeping a constant pressure inside the

cavities at 47 hPa is challenging. Experiments at di�erent ambient pressures in the climate

chamber show that a stable pressure inside the cavities cannot be sustained with one valve.

Proportional solenoid valves are used. Either the ori�ce of the valve is too large to regulate the

cavity pressure at high ambient pressure or it is too small to sustain a su�cient cell pressure at

low ambient pressure. Hence, a parallel 2 valve set up was constructed as shown in Figure 3.15a

(in blue, green and purple) with one larger and one smaller valve. Di�erent ori�ce sizes were

employed. The most successful assembly employed valves with ori�ces of 0.762 mm and 2.4

mm. Each valve is triggered by a Redwave pressure controller (RedWave Labs PC-200, Didcot,

United Kingdom), the pressure is measured by a pressure sensor (1406405 honeywell, Columbus,
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Table 3.1: Relevant pump speci�cations in the lab test phase of AMICA development.

Pump type volume �ow at

40 hPa

mass �ow weight size

KNF N 940.5 TTE 41.6 l/min 1.7 SLM 18.6 kg 270 x 246 x 185 mm
KNF N 950.5 KNDCB 12.5 l/min 0.5 SLM 6.5 kg 286 x 186 x 116 mm
MD1 VARIO SP 25 l/min 1 SLM 4.1 kg 223 x 143 x 163 mm

Ohio). For high ambient pressures, the small valve regulates the cavity pressure. As soon as

the smaller valve reaches its limit and the cavity pressure drops below 47 hPa, the bigger valve

starts regulating, ensuring accurate regulation within both working ranges. Figure 3.16a shows a

17 h �ight simulation of temperature and pressure steps in the climate chamber (red and blue),

the cavity pressure and the recorded pump temperature. Figure 3.16b shows in more detail the

variability of the cavity pressure. For ambient pressure above 100 hPa, the standard deviation

of the cavity pressure is around 0.005 hPa, while below 100 hPa it increases up to 0.5 hPa. Here,

the amplitude of the oscillation depends on the setting of the pressure control point units. From

the results four important conclusions were drawn:

• The two valve system was successful. For high (above 250 hPa ambient pressure) and low

(below 250 hPa) a controlled mode is achieved. During the tests stability was better than

1 hPa in the cavity (c.f. Figure 3.16b). For AMICA, this is acceptable. The settings for

the control units need to be optimized to minimize oscillations.

• The pump temperature does not exceed 35 ◦C even after 17 h of operation. Therefore,

overheating is not an issue (c.f. Figure 3.16a).

• Long term drifts (in the time scale of hours) in cavity pressure (c.f. Figure 3.16b) are most

likely a result of temperature e�ects on one pressure sensor. As seen in Figure 3.15a, two

pressure sensors are integrated, one for the pressure control units and one for monitoring.

Figure 3.16a shows the values observed from the monitoring pressure sensor.

• In the test set up, the diameter of the valves is the main limiting factor for �ow resistance

and therefore the cavity pressure. For AMICA all tubes and components have to be checked

for diameters (c.f. 3.6.3).

The valve set up in the delivered instrument AMICA: a two valve set up was assemblied

in the instrument (see Figure 3.12). However, the ori�ces of the valves were not chosen according

to the �ow system experiments described above. Two valves with an ori�ce of 1 mm each (Parker

Porter) were included. In later tests (Chapter 3.6.3) those ori�ces were proven to not be su�cient

during ambient pressures below 200 hPa.

3.6.2 Test enclosure

To achieve a stable temperature in the inside of AMICA it is important to build the 80 L enclosure

of AMICA pressure tight, so that the cavity and the laser can work under normal conditions
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(a) (b)

Figure 3.15: The �ow system test set up in the climate chamber. The schematic set up evolution
in (a) in the order: 1st blue 2nd blue and green 3rd blue, green and purple. A picture of the �nal
set up in (b). Components of the �nal set up: The �ow controller MKS Instruments INC Type
1259CC-02000RV, Andover, Massachusetts; Parker Porter valve with a ori�ce diameter of 0.762 mm
EPCA30SSVCAA, Hat�eld, Pennsylvania; ASCO valve Type SCB202A012T12VDC with a ori�ce
diameter of 2.4 mm, Ölbronn-Dürrn, Germany; MD1 VARIO-SP pump, Wertheim, Germany; mon-
itoring pressure sensor MKS Baraton 626 A, Andover, Massachusetts; pressure controller: RedWave
honeywell 1406405, Columbus, Ohio.

during a whole campaign �ight (ambient conditions: minimum pressure of 55 hPa and minimum

temperature of -70 ◦C).

To save space, a box-shaped enclosure was chosen for the design of the pressure tight box in

AMICA. A design using adhesives, screws and bolts was planned for AMICA. Before the actual

manufacturing of AMICA, however, a test housing (Figure 3.17), with the same material, screws,

adhesives and sealings as planned for AMICA was tested for pressure tightness. Creating a

pressure tight box with screws, bolts and adhesive is an innovative, new and challenging approach,

here developed to decrease weight and space. (Usually, for a pressure tight approach, a cylinder

with two lids is chosen). The starting set up for the tests included:

• Material: chromated aluminum.

• Top cover: screws mounted with 4 Nm torque, oring-seal (Si with Ag).

• Hatch/panel: screws mounted with 2 Nm, oring-seal (Viton), 3 X (1X 6mm, 2X 1
4 �) NPT

sealed with Te�on tape.

• Cover on the bottom: screws mounted with 2 Nm torque, �at gasket.

• Connection of the walls: adhesive (Polytec Polymere Technologien, EC 101, Waldbronn,

Germany) and bolts.

Helium leak and pressure experiments in the climate chamber were carried out. Bolts are chosen

to stabilize the set up and decrease shearing forces that would otherwise e�ect and weaken the

adhesive bonding. However, one major weak point for pressure tightness in the test frame was the

bonding adhesive at the bolts between the walls. With the process of several climate chamber
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(a)

(b)

Figure 3.16: The 17 h �ight simulation steps (pressure and temperature) in the climate chamber
and the observed cavity pressure. (a) The �rst four label descriptions refer to the determined
and observed climate chamber conditions. The dotted line shows the pump temperature. The
cavity pressure in green is zoomed in Figure 3.16b. (b) Monitored cavity pressure during the �ight
simulation pro�le.

62



AMICA development

Figure 3.17: A photograph of the
test frame built to investigate pres-
sure tightness and gain experience
for the �nal mechanical design of
AMICA.

Figure 3.18: A schematic view of the test
frame set up in the climate chamber. Two
heated pressure sensors and one temperature
sensor are connected to the isolated and heated
test frame.

�ight pro�le tests, with repeating high temperature changes (from +20 ◦C down to -55 ◦C),

increasing leak rates were detected. This points to plastic deformation at the bolts and adhesive.

As a consequence, a silicon sealing was applied to all inside seams (Dow Corning 3145) and from

the outside the bolts were sealed with an additional adhesive (UHU Endfest 300).

Another main weakness in the construction of the test frame was identi�ed to be the material of

the orings, which were either not pressure tight from the beginning (Si with Ag �lling) or leaking

at low temperatures (viton orings are speci�ed for temperatures down to -15 ◦C). Silicon orings

perform better at lower temperatures and were used as a replacement. Even silicon orings leaked

at very low temperatures <-55 ◦C. However, for AMICA the inside of the pressurized box is

heated and the temperature e�ect on the seams and pins is expected to be di�erent. Therefore,

for the �nal set up in the climate chamber, a heater was integrated into the test frame and the box

was thermally isolated from the outside (Figure 3.18). Two di�erent (same measurement principle

but di�erent operating ranges), heated pressure sensors were used to monitor the pressure for

comparison (black and green line). Figure 3.19 shows the measured parameters during a climate

chamber �ight pro�le of a pressure tight test frame. The behavior of both monitoring pressure

sensors is the same with a constant o�set of 35 hPa. The temperature inside the test frame stayed

above a certain threshold so that the orings did not leak and the pressure inside the test frame

remained constant (Figure 3.19). The experiment was successful as the test frame was pressure

tight through a whole �ight pro�le simulation. Visible pressure changes, seen in Figure 3.19, are

a result of decreasing temperature in the test frame (p ∼ T : decreasing pressure with decreasing

temperatures).

Besides the tests described above, the frame was used for a preliminary EMC test and was shown

to e�ectively block electromagnetic radiation.
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Figure 3.19: Observed parameters during the pressure tightness testing of the test frame. During
the 17 h �ight simulation program in the climate chamber, pressure and temperature values are
regulated in 1 - 2 h steps. The �rst four label descriptions refer to target and actual measured
climate chamber values, as 'ambient conditions'. The two lines (black and green, close together)
show the test frame pressure, measured with two di�erent pressure sensors (MKS). The dotted line
shows the temperature in the test frame.

Pressure tightness of the delivered instrument AMICA: the components investigated

with the test frame were proven to function appropriately. However, two big connectors at the

bottom of the pressure tight enclosure were leaking. After applying 1 bar over pressure into the

box, the pressure immediately decreased to ambient pressure. Because there was not enough

time before the �rst StratoClim measurement campaign in Kalamata, AMICA could impossibly

�y with such large leaks. Consequently, the connectors were made pressure tight with adhesives.

3.6.3 Flight simulation experiment with AMICA

Between the �rst test campaign in Kiruna without any previous measurement �ights and the

�rst real StratoClim measurement campaign, AMICA together with the designed inlet for the

Geophysica were tested in a climate chamber under low temperature (down to -40 ◦C) and low

pressure (down to 50 hPa) conditions. Flight simulation tests with the �nal instrument are crucial

before a real measurement �ight to exclude as many interferences as possible. The mechanical
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design of AMICA is described in Chapter 3.5. Because of AMICAs dimensions, it does not �t in

the climate chamber of IEK-7. An alternative chamber was found at IABG (Industrieanlagen-

Betriebsgesellschaft mbH, Ottobrunn, Germany). They own a vacuum chamber with e�ective

interior dimensions of 6m × 3m × 3m, with a temperature range from 80 ◦C to -70 ◦C, reaching

pressures down to 50 hPa. Pictures of AMICA and the sample inlet in the vacuum chamber

are shown in Figure 3.20. Although the previous valve tests described in Chapter 3.6.1 speci�c

valve ori�ces were found to be necessary, in the delivered mechanical design of AMICA both

implemented valves had ori�ces of 1 mm diameter (Parker, Porter valve) and the �ight sim-

ulation was carried out with them. The monitored ambient pressure of the vacuum chamber

together with the cell pressure in AMICA are shown in Figure 3.21. The experiment shows that

the two valve system regulates the cell pressure to 47 hPa (35 torr) successfully down to an

ambient pressure of 150 hPa, the point where the cell pressure continuously starts to drop. At

this point the experiment was interrupted to replace one, with a bigger 2.4 mm ori�ce diameter

ASCO valve. This valve changing phase is shown in Figure 3.21 and can be identi�ed by the

sudden cell pressure increase up to 110 hPa (83 torr), which is the limitation of the pressure

sensor (honeywell 1406405, speci�cation to 69 hPa). With the new set up, the cavity pressure

regulation worked down to an ambient pressure of 132 hPa and continuously decreased again

after this point. The reason for the pressure drop was mainly an implemented �lter (Swagelok

2 µm), which represented the highest �ow resistance and was exchanged for the measurement

�ights.

Besides the valve set up in AMICA, the anti-ice heater of the inlet was also investigated. The

con�guration of the inlet heating is set to start when outside temperatures decrease below 10 ◦C.

In the vacuum chamber the position of the inlet was chosen according to the air�ow, the air�ow

direction is visulized in Figure 3.20b.

Comparisons show that the temperature at the inlet is higher than the ambient temperature,

measured in the chamber (up to 40 ◦C higher), demonstrating that the inlet system heating

works.

The pressure in the enclosure (pressurized box of AMICA, c.f. Chapter 3.6.2) was also monitored.

The lowest pressure measured during the seven hour operation was 870 hPa, which indicated a

small, but tolerable leak. The temperature in the power box increased up to 70 ◦C, at the lowest

pressure with the least heat conductance. Component failures occur at temperatures higher than

80 ◦C, thus 70◦C is acceptable for this experiment. The performance under warmer conditions is

questionable. As seen in Figure 3.21 the temperature regulation by the supercoolers inside the

pressure tight enclosure of AMICA continuously heated the enclosure. The sudden decrease can

be explained by opening the cover, when ambient air streamed into the enclosure. It took ∼3
hours for the temperature to rise up to 40 ◦C.
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(a) (b)

Figure 3.20: Two photographs showing the set up of AMICA and the inlet, used for the �ight
simulation experiment, in the vacuum chamber of IABG in Ottobrunn, Germany. (a) AMICA in
the vacuum chamber of IABG and (b) the inlet designed for the research aircraft Geophysica in the
vacuum test chamber.

Figure 3.21: The observed ambient pressure in the vacuum chamber (at IABG May 18th 2016)
together with the cell pressure of AMICA, which should be regulated to 47 hPa (35 torr).
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Some crucial conclusions can be drawn from this �ight pro�le test at IABG with AMICA:

• Unforeseen errors and failure of electrical or mechanical components did not occur and

AMICA measured for any pressure and temperature condition (down to -40 ◦C and 50

hPa).

• The larger ori�ce valve had to be exchanged for the �rst measurement campaign to ensure

accurate cell pressure regulation for ambient pressures down to 55 hPa.

• The anti ice inlet heating functioned well.

• The pressure tight enclosure stayed su�ciently pressure tight during the experiment.

• The enclosure temperature regulation by TECs, with a set point of 40 ◦C functioned, but

did not perform well.

• All components in the power box worked throughout the experiment at temperatures up

to 70 ◦C.

• The valve set up during this experiment did not maintain the pressure in the measurement

cells at a constant level. Therefore, the �ow resistance needs to be minimized for the

measurement �ights, by exchanging valves, but also exchanging implemented �lters.

3.7 AMICA performance

3.7.1 Performance of AMICA during �rst measurement �ights

AMICAs �rst �ight operation took place in Kalamata Greece, within the �rst campaign phase

of StratoClim. Three measurement �ights were carried out on August 30th, September 1st and

September 6th 2016 and AMICA measured throughout all of them.

At the campaign site, the larger valve was disabled prior to the �rst �ight, because of electronic

problems and only the smaller valve regulated the pressure inside the cavities, which dropped

below the target 47 hPa at ambient pressures below 200 hPa. During the second �ight, both

valves operated, but the pressure inside the cavities dropped down to 12 hPa (9 torr) as shown in

Figure 3.22a. One possible reason was a �lter, limiting the �ow, which was exchanged. During

the next measurement �ight the pressure dropped down to 21 hPa (16 torr) (Figure 3.22b),

however this is still not satisfactory. The main cause was a reduced e�ective ambient pressure at

the inlet (see Picture 3.14) on top of the aircraft. The attack angle of the aircraft and the spikes

in cavity pressure (e.g. in Figure 3.22a at around 10 a.m.) correlate and the pressure at the inlet

depends on the aircraft position during �ight. While the lowest pressure level recorded with the

research aircraft Geophysica is 55 hPa, the e�ective pressure at the inlet position can therefore

be much lower (down to around 35 hPa). The �ow system would have maintained the pressure

inside the cavities to 47 hPa at 55 hPa ambient pressure at the inlet, however, it cannot regulate

the pressure with lower inlet pressures. The COLD instrument, drawing air from the same inlet,

su�ered from the same issue. The internal software of the AMICA instrument is not able to
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(a) (b)

Figure 3.22: Cavity pressure in AMICA throughout (a) the second measurement �ight, September
1st and (b) the third measurement �ight, September 6th in Kalamata, Greece 2016.

account for such pressure drops in the cell for accurate mixing ratio determinations. Therefore,

mixing ratios were retrieved from raw spectra using a spectral model, developed at IEK-7 based

on HITRAN line parameters that fully account for the actual pressure and temperature in the

cavity.

The pressure in the AMICA enclosure drops throughout the �ight from 1000 to ∼ 810 mbar,

which is tolerable, considering the implemented connectors, which were not pressure tight and

have only been made as pressure tight as possible using adhesive (c.f. Chapter 3.6.2). The

temperature in the enclosure drops from ∼ 28 ◦C to ∼ 22 ◦C. The temperature drop in the

enclosure has been identi�ed to be caused by i) a very high internal heat and power dissipation

on the board, controlling the thermoelectric cooler (TEC) units and ii) an inadequate position

of the temperature sensor, used for the control circuit. Both issues have been solved after the

campaign.

During necessary EMC tests of the Geophysica aircraft during the campaign, AMICA shut

down a few times due to what was thought to be overheating. Temperatures in the power box

increased up to 80 ◦C after a few minutes of operation on top of the aircraft in the sun (ambient

temperatures of around 30 ◦C). To avoid an early shut down during a measurement �ight (and

especially before take o�), AMICA was switched on as close as possible to take o�. The respective

pre�ight procedure is listed in Table 3.2.

Although a number of complications appeared during the �rst measurement campaign with

AMICA, a working new instrument on its �rst mission, delivering data, is a success.

First measurement results from AMICA on its �rst measurement campaign in Kalamata, are

presented in Chapter 4. The second measurement �ight is chosen for data analysis because of a

compromise of strengths and weaknesses of the measurements throughout the three �ights:

• 1st measurement �ight: due to the lowest cavity pressure observed throughout the �rst

measurement �ight, the precision of AMICA was worst.

• 2nd measurement �ight: the precision performance of AMICA was better than during the
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Table 3.2: The pre-�ight procedure for AMICA in Kalamata, Greece.

Time prior to take o� Action Comment

T0 - 40 min Switch on AMICA and Wi�
T0 -35 min Switch o� AMICA Instructed by PI
T0 -20 min Pilot takes his seat
T0 -10 min Switch on AMICA Done by the pilot

�rst �ight and no temperature instabilities occurred. Hence, this �ight was chosen for a

data analysis of the AMICA measurements.

• 3rd measurement �ight: because of the best cavity pressure regulation, the precision during

this �ight was best, however temperature instabilities at the laser occurred (c.f. Chap-

ter 3.2).

In July/August 2017, the main StratoClim campaign for the investigation of the Asian monsoon

took place in Kathmandu, Nepal. Throughout all eight measurement �ights on the Geophysica,

AMICA performed measurements without any complications. AMICA now reliably performs

OCS, CO, CO2 and H2O measurements during measurement campaigns on the research aircraft

Geophysica. Collected data from the Kathmandu campaign are currently being processed and

analyzed and are therefore not presented in this work.

3.7.2 OCS calibration

Before and after the �rst measurement campaign with AMICA, several calibrations were car-

ried out, using the combination of NOAA OCS standard and permeation system, described in

Chapter 3.3.3 (equivalent to the calibration presented in Chapter 3.3.4). Figure 3.23 presents

a combination of calibrations after the �rst measurement campaign. During operation AMICA

saves measurement values that are internally analyzed by a software, provided by LGR and also

the raw spectra. This feature allows to analyze the spectra after operation separately. The blue

data points with standard deviation result from the AMICA OCS data output from the internal

analysis software (provided by LGR). For those values a correction equation of 0.73x - 90.6 ppt

is calculated. As a comparison the equivalent MICA measurement points are added in green

with standard deviation. At the moment, the MICA measurements (from the internal spectra

analysis by LGR) are closer to the gravimetric calculated values (with a relative di�erence of up

to 12 %) than the AMICA data point (with a relative di�erence of up to 40 %). However, the ex-

ternal spectra analysis delivers AMICA OCS measurements that agree well with the gravimetric

values within the standard deviation. Due to the pressure problems in the cavities during �ight

(c.f. Chapter 3.7.1), the calibration with the measurements from the external spectral analysis

(presented in cyan) are carried out during di�erent pressure conditions in the cell: at 47 hPa
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and at ∼ 18 hPa (which was roughly observed during the �ight). Even with lower pressures

in the cavity, measurements from the external spectral analysis agree well with the expected

values. Hence, this gives con�dence in the AMICA measured OCS data during �ight, which are

presented in Chapter 4.
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Figure 3.23: AMICA (blue) and MICA (green) OCS measurement values together with their linear
�t. The black one- to- one line represents the desired measurement outcome of the instruments with
no deviation from the gravimetric values. Error bars for all measurements are indicated. The
resulting correction function for MICA is: 0.73x - 90.6 ppt. Cyan crosses represent the AMICA
measurements, separately analyzed from the measured spectra.
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Chapter 4

AMICA results

During the �rst phase Campaign of the EU-project StratoClim in Kalamata, Greece, three

measurement �ights were carried out. The main campaign in the Asian monsoon region was

originally planned for 2016 in India, however, due to �ight permission issues it was shifted to

July/August 2017 in Nepal. A �rst campaign phase, planned in April 2016 in Kiruna, mainly

aiming to test the instrument during �ight, did not take place as well due to political constrains.

While the purpose of the main campaign is the investigation of the Asian monsoon as a transport

pathway into the stratosphere, the goal of the Kalamata campaign was

1. Testing of the instruments, especially of the new instruments as for example AMICA,

operated in �ight for the �rst time.

2. To gather data in possibly Asian monsoon in�uenced air masses (out�ow of the Asian

monsoon) for data analysis.

In this Chapter, AMICA's �rst measurements together with scienti�c results during this cam-

paign are presented.

4.1 Measurements

As discussed in Chapter 3.7.1, AMICA measured successfully at the StratoClim campaign in

Kalamata throughout all three �ights from take o� to landing.

Figure 4.1 shows the time series for the three complete �ights performed on August 30th, Septem-

ber 1st and September 6th 2016. The aircraft altitude (gray) is shown together with the measured

trace gases OCS (black), CO (red) and H2O (blue). CO2 has been detected, however due to base

line issues the retrieval for CO2 is still in process. H2O mixing ratios below 100 ppm cannot be

accurately measured by AMICA, therefore Figure 4.1 only shows H2O mixing ratios above 100

ppm. A decreasing water mixing ratio with increasing altitude is observed. H2O mixing ratios

agree within 20 % with the established water vapor instrument FISH (Fast In situ Stratospheric
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(a) 1st measurement �ight

(b) 2nd measurement �ight

(c) 3rd measurement �ight

Figure 4.1: Measurements of CO, OCS and H2O during all three campaign �ights in Kalamata,
Greece, 2016 performed with AMICA. The geometric altitude (from the Geophysica avionic data)
are shown in gray.
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Hygrometer Zöger et al. (1999)) on the Geophysica. Similar features are seen with CO, with

highest values at ambient ground conditions, with mixing ratios at around 150 ppb, decreasing

with increasing altitude and vice versa. CO mixing ratios agree within 10 % compared to the

CO measurement instrument COLD (Viciani et al., 2008), which is also implemented on the

Geophysica. OCS mixing ratios remain fairly constant at 500 - 600 ppt and decrease to around

400 ppt at altitudes of 19 - 20 km.

4.2 OCS and CO in the UTLS and stratosphere

Vertical pro�les of the measurements for CO and OCS from the second measurement �ight, on

September 1st 2016 from AMICA are shown in Figure 4.2. Mixing ratios are plotted against

altitude in km (Figure 4.2a), potential temperature in K (Figure 4.2b) and potential vortic-

ity (Figure 4.2c), as di�erent vertical coordinates. The geometric altitudes are taken from the

avionic data. The potential temperature (theta) is calculated from pressure and temperature

values from the avionic data, potential vorticity is extracted from the ERA-Interim, ECMWF

data set. Potential vorticity and potential temperature are suitable coordinates especially in the

stratosphere, giving additional subdivisions. Furthermore, the dynamical tropopause is de�ned

by those parameters: At 380 K in the tropics and at 3.5 PV in the extra-tropics, indicated with

the blue dashed line in Figure 4.2b and 4.2c. The �ight path during the second measurement

�ight in Kalamata together with the occurring ECMWF dynamical tropopause height on a 1◦ by

1◦ grid is visualized in Figure 4.3. The tropopause height in km is highly variable along one �ight

track (from 11 - 16 km), as seen in Figure 4.3. Clearly the measurement �ight took place in a

region of a steep tropopause height gradient, from tropical tropopause heights of (16 - 18 km)

down to subtropical values (lower than 13 km). Because of this variability in tropopause height,

one single value is not accurate for the geometrical tropopause height determination, therefore

it is not indicated in Figure 4.2a.

Each CO and OCS point in Figure 4.2 represents a one minute average value from the AMICA

measurements. The general trend of CO and OCS with height is visible in all three plots, de-

creasing mixing ratios with increasing altitude.

For OCS, mixing ratios remain fairly constant in the troposphere between 500 and 600 ppt,

due to the long photochemical lifetime of 36 years in the troposphere (Chin and Davis, 1995)

and decrease in the stratosphere. This general OCS distribution, constant in the troposphere

and decreasing in the stratosphere has already been shown in Chapter 2.3.3 with the ACE-FTS

data set (Figure 2.16). In the stratosphere, OCS mixing ratios decrease very slowly up until

∼ 18 km, 440 K and 18 PV, because the photochemical lifetime above the tropopause, in the

lower stratosphere is still high.
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(a) Altitude (b) Potential temperature

(c) Potential vorticity

Figure 4.2: Vertical pro�les from AMICA's �rst operation, from the measurement �ight (01/09/17),
plotted for di�erent altitude coordinates. CO values are indicated with red crosses and OCS values
with black crosses. Orange crosses indicate CO and gray crosses OCS measurement values of possibly
Asian monsoon in�uenced air.
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Figure 4.3: Flight track during the second �ight (01/09/17) in Kalamata together with the ECMWF
dynamical tropopause distribution. The �ight path is shown in blue and red. Blue indicates that
the aircraft was in the stratosphere and red that it was in the troposphere. Gray lines throughout
the �ight path, indicate possible Asian monsoon in�uenced air masses during �ight.

As seen in Figure 4.2a, the OCS mixing ratios decrease at about 20 km, in the PV based display

of OCS in Figure 4.2c at 17 to 20 PV. The steeper vertical gradient of OCS at this altitude

range points to a mixture of air masses, with OCS mixing ratios spanning from 500 ppt down

to 350 ppt. The higher mixing ratios measured indicate that air masses are not photochemically

depleted yet. This is a result of the natural circulation between the lower stratosphere and

the UTLS region, which leads to a total mean stratospheric lifetime of 64 ± 21 years (Barkley

et al., 2008) (higher in the lower stratosphere, lower in higher altitudes). Lower OCS mix-

ing ratios down to 350 ppt at this altitude range, indicate a strong contribution of aged, more

photochemically depleted air masses, which is a result of the transport processes occurring (c.f.

Chapter 1.2.1). Measured air masses have likely been through the tropical pipe and have been

transported along the tropopause in the lower stratosphere to higher latitude levels.

CO has a shorter photochemical lifetime in the troposphere, which is latitude dependent from 1

month to 1 year (Staudt et al., 2001). It decreases with height in the troposphere from around

150 ppb in the boundary layer to around 50 ppb at the tropopause, decreasing further with alti-

tude, potential temperature and potential vorticity in the stratosphere. Especially the potential

temperature representation in Figure 4.2b of CO shows increased mixing ratios at around 380 K

in the UTLS region. This feature indicates a fast vertical transport in this area.
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Another interesting feature, seen in Figure 4.2b and 4.2c, is a sudden increase of CO mix-

ing ratios at around 450 K and 20 PV, pointing to a stratospheric source of CO at this

range. Photochemical loss by oxidation to form CO2 is the stratospheric sink for CO. In

the stratosphere and mesosphere, above 30 km altitude (10 hPa pressure level), oxidation with

CH4 is a stratospheric source for CO (Pommrich et al. (2014) and Minschwaner et al. (2010)).

CH4 has only tropospheric sources and a long stratospheric lifetimes (195 ± 135 years (Brown

et al., 2013)). In the upper mesosphere and lower thermosphere (75 - 100 km) production of CO

via CO2 occurs. The increase of CO mixing ratios at around 450 K and 20 PV (around 20 km

altitude) must be a result of a mixture of air masses partly from higher altitudes (> 30 km),

with elevated CO levels from CH4 oxidation.

4.3 Asian monsoon in�uence

Besides the general trend of CO and OCS with altitude, potential temperature and potential

vorticity, some points with a high probability of Asian monsoon in�uence (i.e. out�ow of the

Asian monsoon anticyclone) are indicated with slightly di�erent colors (orange for CO and gray

for OCS measurements). The criteria for selecting AMICA OCS and CO data with a high

probability of Asian monsoon in�uence are chosen according to Figure 8 from Ploeger et al.

(2015). Orange and gray points are extracted with those criteria: (PV < 6 and theta > 390) or

(PV < 4 and theta > 380) or (PV < 3 and theta > 370) or (PV < 1.5 and theta > 360). Those are

purely dynamical criteria, no back-trajectories have been considered. From Figure 4.2b and 4.2c

it is seen that all potentially Asian monsoon anticyclone in�uenced air masses are situated in the

UTLS region. Especially in Figure 4.2b the orange CO values are increased compared to most of

the remaining red points, supporting the suggestion of a fast transport in this area, responsible

for the increased CO mixing ratios in the UTLS. Increased CO values in the Asian monsoon

anticyclone have already been shown with the ACE-FTS data set in Chapter 2.4. AMICA

observations do not show a clear increase of OCS mixing ratios in Asian monsoon in�uenced

air masses. In the ACE-FTS data set, OCS is signi�cantly increased in the Asian monsoon

anticyclone (Chapter 2.4), however, the variability of OCS mixing ratios in the anticyclone from

ACE-FTS is higher than for CO and HCN .

4.4 A �rst AMICA and ACE-FTS comparison

During the StratoClim campaign phase 1 in Kalamata, AMICA made measurements on the

research aircraft Geophysica as presented in Chapter 4.1, as well as ACE-FTS delivered some

measurement pro�les in the wider region. Kalamata is at 37◦ latitude and 22◦ longitude. The

measurement �ight presented here took place September 1st 2017 (from about 6:30 a.m. to about

10:45 a.m. UTC).
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The ACE-FTS pro�le chosen for comparison is from September 4th 2017 at 34.6 ◦ latitude and

27.1 ◦ longitude (time: 03:51 a.m. UTC). This pro�le was chosen as compromise between closest

location to the performed measurement �ight and time di�erence between measurement �ight

and the ACE-FTS pro�le measurement. Figure 4.4 visualizes position and time of both, the cho-

sen ACE-FTS pro�le and the AMICA measurement �ight path, together with time and location

of two other possible ACE-FTS pro�les. Other ACE-FTS pro�les, measured closer in time to

the measurement �ights in Kalamata lay outside of the chosen area, seen in Figure 4.4 and are

therefore not selected.

Figure 4.5 shows the comparison between the chosen ACE-FTS pro�le and the AMICA mea-

surements as presented before. The AMICA measurements are averaged in 1 km altitude bins

over the entire �ight. The same vertical coordinates as in Figure 4.5a are used: altitude, poten-

tial temperature (Figure 4.5b) and potential vorticity (Figure 4.5c). The potential temperature

data are available from the ACE-FTS data set and have been extracted for the CO and OCS

ACE-FTS data. The potential vorticity data are extracted from the Era Interim data set from

ECMWF and added to the ACE-FTS data. As before, the tropopause de�nition is indicated

with a blue dashed line in Figure 4.5b and 4.5c.

Taking into account the spacial and temporal di�erences of the measurement pro�les and the

very di�erent origin of air masses especially in the region between 8 and 15 km, the observed large

deviations in the troposphere between ACE-FTS and AMICA measurements are not surprising.

The OCS variability observed with AMICA is indicated with the standard deviation, error bar

in Figure 4.5. In the stratosphere, OCS mixing ratios agree well, as seen in Figure 4.5a, 4.5b and

4.5c. However, the mean OCS mixing ratios from AMICA are consistently higher than the ones

from ACE-FTS. Comparing ACE-FTS and AMICA OCS measurements at equivalent potential

temperatures and potential vorticities, ACE-FTS OCS mixing ratios are around 11 % (5 - 19 %)

lower than the mean value of all AMICA OCS (per 1 km bin) measurements in the UTLS. In the

stratosphere (up to 500 K) ACE-FTS OCS values are between 5 and 14 % lower than the mean

of the AMICA OCS measurements. A comparison between MIPAS OCS and ACE-FTS OCS

data also showed lower OCS mixing ratios from ACE-FTS, the highest di�erence of 75 - 100 ppt

is observed at 14 km (Glatthor et al., 2017). This low bias is also con�rmed by Velazco et al.

(2011) with balloon pro�les (MkIV) with a 15 % lower ACE-FTS OCS value at 12 - 23 km alti-

tude (comparison measurements took place in 2004 and 2005) and by Kryszto�ak et al. (2015a)

with another balloon borne instrument (SPIRALE), with a lower ACE-FTS OCS value of up to

20 % below 22.5 km altitude. The observed low bias of ACE-FTS for OCS measurements in the

UTLS and stratosphere from Glatthor et al. (2017), Velazco et al. (2011) and Kryszto�ak et al.

(2015a) agrees with the bias observed with AMICA.

In the altitude and potential temperature (and mostly in the potential vorticity) display of the

ACE-FTS and AMICA CO data, CO mixing ratios from AMICA are consistently lower than

from ACE-FTS in the stratosphere. However, considering the high standard deviation of up to
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± 30 % of the 1 minute averaged AMICA CO measurements throughout the �ight, AMICA CO

values and ACE-FTS CO values agree very well in the UTLS and stratosphere up to 500 K.

The following di�erences between ACE-FTS and AMICA CO values are based on the mean CO

values (averaged in 1 km altitude bins). In the UTLS region ACE-FTS CO measurements are

∼ 15 % higher than AMICA CO values and in the stratosphere (up to 500 K) ACE-FTS CO

values are around 11 % higher (7 - 57 %). A CO comparison by Velazco et al. (2011) shows

a similar di�erence with higher ACE-FTS CO values in the upper troposphere of 6.3 - 12.4 %.

However, in the lower and mid stratosphere, they see lower ACE-FTS CO values by 6.0 - 17.8 %

for the years 2004 and 2005.

Increased CO mixing ratios in the UTLS region due to fast transport including Asian monsoon

in�uence observed with the AMICA data set, is also seen with the ACE-FTS CO data, especially

in Figure 4.5c at 3.5 PVU.

Figure 4.4: Comparison of the locations of the ACE-FTS pro�le and �ight path during the second
�ight (01/09/17) in Kalamata. The �ight path and date of the measurement �ight is indicated in
blue. Possible locations of ACE-FTS measurement pro�les close to the �ight path are indicated in
yellow and red, where red is the pro�le, chosen for comparisons here.
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(a) Altitude.

(b) Potential temperature.

(c) Potential vorticity.

Figure 4.5: AMICA mean values per 1 km height (dots) compared with an ACE-FTS pro�le
(crosses). The standard deviation of all AMICA measurements in 1 km altitude range, is indicated
with the error bars.
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Chapter 5

Conclusions and outlook

In this thesis stratospheric OCS mixing ratios were investigated using in-situ high resolution

data from the Airborne Mid-Infrared Cavity enhanced Absorption spectrometer AMICA and

the satellite based data set Atmospheric Chemistry Experiment ACE-FTS. The key aspects and

�ndings of this work are listed below:

• The stratospheric OCS burden: For the �rst time, the global coverage of the ACE-FTS

data set was used to calculate a stratospheric burden of OCS. 524 Gg of OCS is the

stratospheric burden for the year 2015, which is equivalent to 280 Gg of sulfur from OCS.

Throughout the ACE-FTS measurement time frame, the stratospheric annual budget varies

by about 6 %. Compared to the total atmospheric OCS budget of 5.34 ·1012 g (Barkley

et al., 2008), 10 % is situated in the stratosphere. 524 Gg of OCS burden in the stratosphere

is equivalent to 280 Gg of sulfur from OCS. A global sulfur transport model by Sheng

et al. (2015) gives a stratospheric sulfur burden value from OCS of 283.1 Gg. This excellent

agreement gives a lot of con�dence towards the representation of OCS in the transport

model by Sheng et al. (2015).

• The stratospheric burden trend : during the ACE-FTS measurement phase until now (2004

- 2016) no signi�cant trend in stratospheric OCS is detected. This is in agreement with

MIPAS OCS observations.

� Contribution to a collaborative sulfur burden study : the ACE-FTS OCS stratospheric

burden analysis done in this work is contributing to a collaborate study on strato-

spheric sulfur burden, an assessment based on gas and particle phase measurements,

lead by Terry Deshler (expected to be published in 2018).

• An approach for a sampling bias correction: compared to other satellite data products (e.g.

MIPAS), ACE-FTS measurements exhibit a larger sampling bias in seasonal and regional

means, due to insu�cient and often inhomogeneous spatial and temporal coverage. In

this work a robust approach was developed and validated in collaboration with Bodeker

Scienti�c to correct for this sampling bias. This approach has the big advantage of only
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using the information that can be extracted from the ACE-FTS data set. The new budget

values, which account for the sampling bias, are in some cases (close to the poles, in

seasons with only a few measurements) signi�cantly increased. However, using the burden

values from the ACE-FTS measurements alone does not lead to di�erent conclusions. The

magnitude of the calculated sampling bias was veri�ed with the MIPAS data set. Until

now the sampling bias (which occurs especially with solar occultation instruments) is not

corrected for in global climate studies. Thus the here presented procedure and a further

development of this approach is of bene�t to multiple applications.

• OCS mixing ratios in the Asian monsoon anticyclone: using the ACE-FTS OCS data

from all available years during the Asian monsoon time, a clear increase of OCS and also

HCN and CO mixing ratios in the Asian monsoon anticyclone is observed. An increase of

CO mixing ratios in Asian monsoon in�uenced air masses is also seen with AMICA during

the �rst phase StratoClim campaign in Kalamata, Greece. A clear increase of OCS mixing

ratios, however, is not detected with AMICA.

• Transport processes in the Asian monsoon region: The proposal that the convection from

the Bay of Bengal region is mostly transported outside, along the southern border of the

anticyclone is supported by a HCN , CO and OCS comparison. HCN has a strong ocean

sink, other than OCS and CO. Less enhanced HCN mixing ratios are found in the area

that is de�ned to be mostly outside on the southern border of the anticyclone.

• Development of AMICA: a novel Airborne Mid-Infrared Cavity enhanced Absorption spec-

trometer AMICA was developed, measuring OCS, CO and H2O mixing ratios in-situ

on board of the research aircraft Geophysica. Until now, AMICA operated successfully

throughout all three measurement �ights of the �rst phase StratoClim Campaign in Kala-

mata, Greece. During the development of AMICA some valuable and unique features were

implemented:

� Flow system: a pumped two-valve-sampling system was developed, allowing for a

stable pressure inside the measurement cells over a wide ambient pressure range from

∼ 50 to > 1000 hPa.

� Pressure tight enclosure: to protect the interior, electronic components and to allow

for temperature regulation in the AMICA enclosure, the enclosure had to be built

pressure tight. The development of an 80 L box-shaped pressure tight enclosure

with a construction including screws and adhesive, is a space and weight saving new

approach.

� Second measurement cell : two measurement cells allow for the scanning of two wave-

length regions and thus potentially for the simultaneous measurements of additional

trace gases. The most relevant additional compound of interest to be measured with

AMICA is HCN . However, �nding a suitable set up for ICOS HCN measurements

is challenging and still under development.
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Conclusions and outlook

� The mechanical design of AMICA, and also the electrical con�guration of the instru-

ment are also suitable for future campaigns on the German research aircraft HALO.

Hence, measurement �ights with AMICA on future HALO campaigns are possible.

• First research results from AMICA: in the UTLS region, CO exhibits an increase in mixing

ratio (from 40 ppb up to 80 ppb), which is suggested to originate from fast transport

processes. Especially air masses that are suggested to be in�uenced by the Asian monsoon,

show increased CO mixing ratios. A clear increase of OCS mixing ratios of the same Asian

monsoon in�uenced measurement points are not observed with AMICA. A steep vertical

gradient in OCS mixing ratios at around 20 km altitude is a result of the measurement of

air masses, with more depleted components, resulting from a transport through the tropical

pipe, mixed with air masses that have just been transported into the stratosphere.

• AMICA and ACE-FTS measurements together in a comparison: although there was no

ACE-FTS measurement pro�le matching exactly in time and space data of the performed

Geophysica �ights, a few pro�les were found that were close. OCS and CO values do

not match in the well mixed troposphere; here the high variability in the troposphere and

UTLS is probably too high. Consistently higher OCS mixing ratios measured with AMICA

are detected. This low bias of ACE-FTS has already been observed with other data sets,

giving con�dence in the AMICA measurements. CO measurements in the stratosphere

agree mostly within the standard deviation of the AMICA data points within 1 km altitude

range.

• StratoClim Asian monsoon campaign 2017 : considering the work that has been done on the

ACE-FTS OCS, CO and HCN measurements in the Asian monsoon region, in-situ high

resolution measurements with AMICA on Geophyisca in this area are of high relevance and

were made in July/ August 2017 in Kathmandu, Nepal as the main campaign under the EU-

project StratoClim. In general, transport processes from the Asian monsoon anticyclone

were subject of interest during this campaign. However, the Nepal campaign rescheduled,

AMICA data are currently processed and could not be considered in this work.

� In general it will be investigated, to what extent theory and measurement data agree

from where the air masses in the Asian monsoon anticyclone originate from.

� Speci�cally for the AMICA OCS measurements, a quanti�cation of the increase and

variability of OCS in the Asian monsoon anticyclone that was also detected in this

work with the ACE-FTS data set, will be performed.

� A correlation of OCS and HCN measurements is of interest to better quantify the

biomass burning source for OCS.

• OCS representation in global climate models: with the increased knowledge from AMICA

regarding OCS transport and abundance in the atmosphere, an improvement of the un-

derstanding and representation in climate models can be realized. AMICA measurements

show a high variability of OCS in the UTLS region. Climate models, however, assume
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constant OCS mixing ratios of 500 ppt in the UTLS. A better understanding of the rea-

sons for this OCS variability will be achieved with further in-situ AMICA measurements

and by using back trajectories of measured air masses. The improved understanding of the

OCS variability in the UTLS can therefore signi�cantly improve the OCS representation

in climate models. For example, the following questions can be addressed: is 500 ppt in

the UTLS a realistic value to be assumed for inter troposphere and stratosphere transport

processes? And: how large is the source strength for OCS from biomass burning?
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