
Fakultät 4 - Mathematik und Naturwissenschaften

Bergische Universität Wuppertal

Dissertation

zur Erlangung des Doktorgrades
(Dr. rer. nat.)

Search for Ultra-High Energy Photons

with the Surface Detector

of the Pierre Auger Observatory

Der Fachgruppe Physik vorgelegt von

Nicole Krohm

März 2017



Von der Fachgruppe Physik der Bergischen Universität Wuppertal als Dissertation angenommen.
Tag der mündlichen Prüfung: 02. Mai 2017

Referent:
Prof. Dr. K. - H. Kampert

Korreferent:
Dr. J. A. Bellido-Caceres

Die Dissertation kann wie folgt zitiert werden:

urn:nbn:de:hbz:468-20171106-114225-8
[http://nbn-resolving.de/urn/resolver.pl?urn=urn%3Anbn%3Ade%3Ahbz%3A468-20171106-114225-8]



Contents

Table of Contents iii

List of Figures vii

List of Tables ix

Nomenclature xii

1 Introduction 1

2 Cosmic Rays 5

2.1 Energy Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Mass Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Arrival Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Acceleration, Astrophysical Sources and Exotics . . . . . . . . . . . . . . . . . . . 11

2.4.1 Acceleration mechanisms (bottom-up) . . . . . . . . . . . . . . . . . . . . 11
2.4.2 Non-acceleration mechanisms (top-down) . . . . . . . . . . . . . . . . . . 15

2.5 Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.1 Galactic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5.2 Extragalactic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Cosmic-Ray Photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.6.1 Production and propagation of UHE photons . . . . . . . . . . . . . . . . 18

2.7 Multimessenger Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7.1 Electrons, positrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7.2 Neutrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7.3 Gamma rays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7.4 Neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.7.5 UHE photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3 Ground-Based Detection of UHECR 25

3.1 Extensive Air Showers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.1 Electromagnetic cascade . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 Hadronic showers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.3 Lateral distribution of charged particles . . . . . . . . . . . . . . . . . . . 28

3.2 Photon-Induced Air Showers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.1 Preshower effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

i



3.2.2 Landau-Pomeranchuk-Migdal effect . . . . . . . . . . . . . . . . . . . . . . 31
3.2.3 Shower properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Air Shower Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.1 Electromagnetic interactions . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.2 Hadronic interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.3 Photonuclear interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.4 Corsika . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4 The Pierre Auger Observatory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4.1 The surface detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.2 Data reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.4.3 Surface detector simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 UHE Photon Detection 45

4.1 SdCalibrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Photon Energy Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Separation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4 Upper Limits on UHE Photons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.4.1 Frequentist approach (Neyman construction) . . . . . . . . . . . . . . . . 57
4.4.2 Frequentist approach (Feldman-Cousins) . . . . . . . . . . . . . . . . . . . 60
4.4.3 Upper limits on the photon flux and fraction . . . . . . . . . . . . . . . . 60
4.4.4 Current upper limits on the diffusive photon flux and fraction . . . . . . . 61

5 Dataset and MC Simulations 65

5.1 Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.1.1 Burn sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 Photon Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.1 Air shower . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2.2 Detector simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.3 Proton Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6 Study of Separation Parameters 69

6.1 Technical Study: Noisy PMTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Technical Study: Direct Light Correction . . . . . . . . . . . . . . . . . . . . . . 71

6.2.1 Average correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2.2 Individual correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2.3 Exclusion of PMTs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.3 Station Risetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.1 Shape of the signal risetime distribution . . . . . . . . . . . . . . . . . . . 83
6.3.2 Asymmetry correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.3 Benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3.4 Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.3.5 Uncertainty-weighted residual δi . . . . . . . . . . . . . . . . . . . . . . . 95
6.3.6 Event parameter: t1/2(1000) . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.7 Event parameter: ∆Leeds (Leeds delta method) . . . . . . . . . . . . . . . 99

6.4 LDF Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.4.1 Quality selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

ii



6.5 Radius of Curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.6 Number of Candidate Stations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7 Upper limits on the diffusive UHE photon flux and fraction 105
7.1 Photon Candidate Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2 Treatment of Preshowered Photons . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.3 Setting up the Parameter Set: Comparison of Parameters . . . . . . . . . . . . . 127
7.4 Setting up the Parameter Set: Combination of Parameters . . . . . . . . . . . . . 130

8 Conclusion 131

9 Acknowledgements 133

Bibliography 153

Appendix 155
A Upper Limits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
B Conex Showers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
C SD Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
D SD Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
E Figures and Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Eidesstattliche Erklärung 183

iii



iv



List of Figures

2.1 The energy spectrum of cosmic rays . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 The energy spectrum of cosmic rays: Ankle and high energy suppression . . . . . 6
2.3 Measurements of the average depth of the shower maximum 〈Xmax〉 . . . . . . . 9
2.4 The arrival directions of the events with E ≥ 58 EeV around Cen A . . . . . . . 10
2.5 Hillas plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.6 Energy loss length for different primaries . . . . . . . . . . . . . . . . . . . . . . . 18
2.7 Integrated photon fluxes expected from proton sources in the high-photon scenario 19

3.1 Extensive air showers: Longitudinal shower development and underlying cascade
processes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Elongation rate for proton, iron and photon showers . . . . . . . . . . . . . . . . 31
3.3 The Pierre Auger Observatory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 SD trigger probability for different primary energies . . . . . . . . . . . . . . . . 34
3.5 SD calibration: Charge histogram . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 Aperture of the surface detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.7 Reconstruction of the shower geometry with the surface detector . . . . . . . . . 38
3.8 SD calibrator, all modifications, observed data . . . . . . . . . . . . . . . . . . . 39
3.9 SD calibrator, all modifications, observed data . . . . . . . . . . . . . . . . . . . 40
3.10 Event 4403320, station 1312: Correction of stoptime and baseline . . . . . . . . . 41

4.1 SD calibrator, all modifications, MC photons . . . . . . . . . . . . . . . . . . . . 46
4.2 SD calibrator, all modifications, MC photons . . . . . . . . . . . . . . . . . . . . 47
4.3 Effect on start- and stoptime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 Reconstruction bias of S1000 in the LDF fit applied on simulated photons . . . . 49
4.5 The elongation rate of simulated photons . . . . . . . . . . . . . . . . . . . . . . 51
4.6 The universal profile for simulated, non-preshowered photons . . . . . . . . . . . 51
4.7 Partial recovery of the universal profile for simulated, non-preshowered photons . 53
4.8 The corrected universal profile for simulated, non-preshowered photons . . . . . . 54
4.9 The corrected universal profile for simulated, non-preshowered photons (1019 −

1019.5 eV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.10 Relative error of the reconstructed photon energy . . . . . . . . . . . . . . . . . . 56
4.11 Photon energy calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.12 Photon footprints in the surface detector . . . . . . . . . . . . . . . . . . . . . . . 58
4.13 Example of a central confidence belt . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.14 Summary of current upper limits on the integral, diffusive photon flux and fraction 62

v



5.1 MC simulations: Xmax distributions . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 MC simulations: Additional event weighting factor . . . . . . . . . . . . . . . . . 66

6.1 Examples traces of PMT malfunctions and their risetime . . . . . . . . . . . . . . 70
6.2 Correction of a large signal in a single PMT . . . . . . . . . . . . . . . . . . . . . 72
6.3 Parametrization of the zenith angle dependence of the signal balance asymmetry 73
6.4 Applying the average asymmetry correction (non-saturated stations with 3 good

PMTs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.5 Definition of an uncertainty-weighted residual, based on a toy Monte-Carlo . . . 75
6.6 Fixing the threshold value of r to identify signal outliers in one PMT . . . . . . . 76
6.7 Comparison of both algorithms, DLECorrectionGG and the update in this work 77
6.8 Effect of the correction of single DLE instances on station signal and risetime . . 77
6.9 Mock study of the station risetime . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.10 The signal risetime t1/2, together with two example signal traces of a station from

MC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.11 The distribution of the quantiles T10, T50 and the risetime t1/2 = T50 − T10 . . . . 83
6.12 Risetime asymmetry correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.13 Parametrization of the risetime asymmetry . . . . . . . . . . . . . . . . . . . . . 85
6.14 Shape of t1/2,corr for non- and high-gain-saturated stations in data with S > 10 VEM 88
6.15 Maximizing the selection efficiency for the station risetime . . . . . . . . . . . . . 89
6.16 Parametrization of the risetime benchmark (Ehadr,rec = 10 − 20 EeV) . . . . . . . 90
6.17 Distance range for risetime stations of events with sec(θ) = 1.2 − 1.4 . . . . . . . 91
6.18 Sketch of two pair stations separated by ∆r . . . . . . . . . . . . . . . . . . . . . 92
6.19 Parametrizations of the risetime uncertainty based on pair stations (observed data) 93
6.20 Station risetime: Definition of an uncertainty-weighted residual δi . . . . . . . . . 95
6.21 Dependences of δi for Ehadr,rec = 10 − 20 EeV . . . . . . . . . . . . . . . . . . . . 96
6.22 Study of the minimum signal for the station risetime . . . . . . . . . . . . . . . . 96
6.23 Integral parameter selection efficiency of t1/2 for MC photon . . . . . . . . . . . . 97
6.24 LDF parameter: Scan of the shape b of a fixed reference LD . . . . . . . . . . . . 99
6.25 Normalization of S4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.26 LDF parameter: Contribution of single stations i . . . . . . . . . . . . . . . . . . 102
6.27 Number of triggered stations for a photon- and hadron shower . . . . . . . . . . 103

7.1 Fraction of photon showers (U) passing the selection Xgr −Xmax,MC > −50 g/cm2 106
7.2 Mean value and standard deviation of x as expected from MC photon (U) . . . . 107
7.3 Removal of the energy and zenith angle dependence of x . . . . . . . . . . . . . . 108
7.4 Training and application of the principal component analysis . . . . . . . . . . . 109
7.5 Distributions of the principal component . . . . . . . . . . . . . . . . . . . . . . . 110
7.6 Upper limits (95% C.L.) on the integral, diffusive photon flux (α = −2.0) . . . . 112
7.7 Upper limits (95% C.L.) on the integral, diffusive photon fraction (α = −2.0) . . 112
7.8 SD risetimes of the photon candidate events . . . . . . . . . . . . . . . . . . . . . 118
7.9 SD signals of the photon candidate events . . . . . . . . . . . . . . . . . . . . . . 119
7.10 Photon candidate event 9701198 . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.11 Photon candidate event 15797618 . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.12 Photon candidate event 7543164 . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.13 Photon candidate event 10759292 . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

vi



7.14 Photon candidates FD: elongation rate . . . . . . . . . . . . . . . . . . . . . . . . 125
7.15 Photon candidates FD: longitudinal profile . . . . . . . . . . . . . . . . . . . . . 126
7.16 Preshower probability and its directional and energy dependence . . . . . . . . . 127
7.17 Correlation of the separation parameters . . . . . . . . . . . . . . . . . . . . . . . 128
7.18 Comparison of the parameter selection efficiency . . . . . . . . . . . . . . . . . . 129

E.1 Relative errors of the different energy scale . . . . . . . . . . . . . . . . . . . . . 160
E.2 SD calibrator, Mod. 1, observed data . . . . . . . . . . . . . . . . . . . . . . . . . 161
E.3 SD calibrator, Mod. 3, observed data . . . . . . . . . . . . . . . . . . . . . . . . . 162
E.4 SD calibrator, Mod. 2, observed data . . . . . . . . . . . . . . . . . . . . . . . . . 163
E.5 SD calibrator, Mod. 1, MC photon . . . . . . . . . . . . . . . . . . . . . . . . . . 164
E.6 SD calibrator, Mod. 3, MC photon . . . . . . . . . . . . . . . . . . . . . . . . . . 165
E.7 SD calibrator, Mod. 2, MC photon . . . . . . . . . . . . . . . . . . . . . . . . . . 166
E.8 Fixing the threshold value of r to identify signal outliers in one PMT . . . . . . . 167
E.9 Parametrization of the zenith angle dependence of the signal balance asymmetry 167
E.10 Reconstruction bias of the zenith angle θ for photons . . . . . . . . . . . . . . . . 168
E.11 Azimuthal asymmetry of the signal Si of PMT i . . . . . . . . . . . . . . . . . . 168
E.12 Examples of signal spikes in only 1 PMT and their correction (part1) . . . . . . . 169
E.13 Examples of signal spikes in only 1 PMT and their correction (part 2) . . . . . . 170
E.14 Parametrization of the risetime asymmetry (azimuth dependence) . . . . . . . . 171
E.15 Parametrization of the risetime asymmetry (distance dependence) . . . . . . . . 172
E.16 Parametrization of the risetime benchmark (distance dependence) . . . . . . . . 173
E.17 Dependences of δi for Ehadr,rec = 10 − 20 EeV . . . . . . . . . . . . . . . . . . . . 174
E.18 Distance corresponding to an expected signal Sexp . . . . . . . . . . . . . . . . . 174
E.19 Normalization of RNKG: Correlation with Nsel and S1000 . . . . . . . . . . . . . . 175
E.20 LDF parameter: Scan of the shape b of a fixed reference LDF . . . . . . . . . . . 176
E.21 Mean value and standard deviation of x as expected from MC photon (U) . . . . 177
E.22 Mean value and standard deviation of x as expected from MC photon (U) . . . . 178
E.23 Removal of the energy and zenith angle dependence of x . . . . . . . . . . . . . . 179

vii



viii



List of Tables

4.1 Photon energy calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Experimental results for UHE photon searches . . . . . . . . . . . . . . . . . . . 61

6.1 List of PMTs to be excluded . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Station risetime quality selection . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7.1 UHE Photon search results, spectrum α = −2.0 . . . . . . . . . . . . . . . . . . . 114
7.2 UHE Photon search results, spectrum α = −1.7 . . . . . . . . . . . . . . . . . . . 115
7.3 UHE Photon search results, spectrum α = −3.0 . . . . . . . . . . . . . . . . . . . 116
7.4 Photon candidate events - event information . . . . . . . . . . . . . . . . . . . . . 120
7.5 Photon candidate events - SD information . . . . . . . . . . . . . . . . . . . . . . 125
7.6 Comparison of different SD separation parameters . . . . . . . . . . . . . . . . . 128
7.7 Comparison of different parameter combinations . . . . . . . . . . . . . . . . . . 130

E.1 SdCalibrator modifications (observed data) . . . . . . . . . . . . . . . . . . . . . 180
E.2 SdCalibrator modifications (MC photons) . . . . . . . . . . . . . . . . . . . . . . 181
E.3 Photons from astrophysical scenarios and Lorentz invariance violation . . . . . . 182

ix



x



Nomenclature

5T5 T5 trigger with 5 active surrounding stations, page 35

6T5 T5 trigger with 6 active surrounding stations, page 35

AGN Active Galactic Nucleus or Active Galactic Nuclei, page 11

Auger Short for the Pierre Auger Observatory or the Pierre Auger Collaboration, page 6

c.d.f. Cumulative Distribution Function, page 84

C.L. Confidence Level, page 22

CC Charged Current, page 22

CDAS Central Data Acquisition System, page 35

Cen A Centaurus A, page 11

CIC Constant Intensity Cut, page 43

CMB Cosmic Microwave Background, page 7

CR Cosmic Rays, page 1

DLE Direct Light Effect(s), page 72

DSA Diffusive Shock Acceleration, page 13

EM ElectroMagnetic, page 25

FADC Flash Analog-to-Digital Converter, page 35

FY Fluorescence Yield, page 8

GMF Galactic Magnetic Field, page 17

GRB Gamma-Ray Burst(s), page 14

GZK Greisen-Zatsepin-Kuz’min, page 2

HG High-Gain, page 38

IGMF InterGalactic Magnetic Fields, page 17

xi



IRB InfraRed Background, page 19

ISM InterStellar Medium, page 13

LDF Lateral Distribution Function, page 29

LG Low-Gain, page 38

LHC Large-Hadron-Collider, page 32

MF Magnetic Field, page 17

NC Neutral Current, page 22

NKG Nishimura-Kamata-Greisen, page 29

p.d.f. Probability Density Function, page 57

PCA Principal Component Analysis, page 105

SD Surface Detector, page 2

SHDM Super-Heavy Dark Matter, page 16

SNR SuperNova Remnant(s), page 14

T1 Trigger level 1, page 35

T2 Trigger level 2, page 35

T3 Trigger level 3, page 35

T4 Trigger level 4, page 35

T5 Trigger level 5, page 35

TD Topological Defects, page 16

TOT Time-Over-Threshold trigger, page 35

UHECR Ultra-High Energy Cosmic Rays, page 1

VCV Véron-Cetty Véron, page 11

VEM Vertical Equivalent Muons, page 35

xii



CHAPTER 1

Introduction

Nuclei of extremely high energies are persistently bombarding the Earth. The so-called ultra-
high energy cosmic rays (UHECR) were discovered about 100 years ago and they are found to
cover a wide range of more than ten orders of magnitude in energy. While for cosmic rays (CR)
with lower energies many fundamental questions have been answered, for energies above 1017 eV
it is not clear:

What is the origin of UHECR? Where is the transition from Galactic to Extragalactic sources?

How are they accelerated? Is there a maximum energy?

How do UHECR propagate to Earth?

What is their mass composition?

In this energy regime, the low CR flux is observed indirectly at ground by the air showers
that are produced when a CR primary passes the Earth’s atmosphere. This challenges the anal-
ysis of the mass composition, energy and direction. The world’s largest UHECR experiment
for energies above 1017 eV is the Pierre Auger Observatory in Argentina, sampling air showers
during their passage through the atmosphere and at when they reach the ground. After more
than ten years of operation it has accumulated a large amount of air shower measurements to
tackle the open questions. The more information that is combined, such as studies of the energy
spectrum, arrival direction and mass composition of CR, the more concrete our picture becomes.
Studies of charged primaries are complemented by searches for neutral primaries. Although not
observed yet, there might be a small fraction of primary photons of less than a few percent
from the CR acceleration, propagation or from exotic CR sources. Thus, a discovery of UHE
photons would open a completely new window. Together with gamma rays, neutrinos, neutrons
and the charged primaries, UHE photons would contribute to a multimessenger observation of
cosmic rays. Neutral particles propagate on straight lines, pointing back to the location of their
production, which eventually might be an astrophysical source of cosmic rays, if close enough.
UHE photons and neutrinos are expected to be created in resonant pion photoproductions of
UHECR with photon backgrounds during their propagation. Alternatively, several exotic top-
down1 models predict a significant photon fraction from decays of extremely heavy particles.

1Non-acceleration models
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These models were introduced to explain the energy spectrum published by the AGASA collab-
oration in 1998 which does not show a suppression at highest energies. Some top-down models
predict a dominance of UHE photons above ∼ 1020 eV and were already disfavoured by up-
per limits on the UHE photon flux and fraction. Today, on the contrary, a flux suppression
of the spectrum above 5 × 1019 eV has been observed by several air shower experiments. The
origin of this suppression is still under discussion. An observation of UHE photons would help
to solve the question about the origin of UHECR. UHE photons have not yet been observed
above a few hundreds TeV. Upper limits on the photon flux and fraction have been placed by
different experiments, such as for the surface detector (2008) and the hybrid detector (2016) of
the Pierre Auger Observatory. Some of the top-down models have been disfavoured by these
limits. Searches for neutral primaries also help to understand the processes at CR sources and
during the propagation. Simulations of the UHECR propagation rely on assumptions about
e.g. the spectrum at the source, the observed spectrum, on the source distribution, backgrounds
(intergalactic magnetic fields and photons) and the mass composition. Upper limits on UHE
photon flux and fraction constrain the parameter range of possible astrophysical scenarios used
in the simulation.
The main goal of this work is an update and improvement of the upper limits on UHE photons
with the surface detector (SD) of the Pierre Auger Observatory. The SD becomes fully effi-
cient for triggering photon-induced showers above 10 EeV. Air showers from primary hadrons
and photons differ in their longitudinal development in the atmosphere as well as in their lat-
eral distribution of the electromagnetic and muonic shower component at ground. As the SD
does not measure these parameters directly in the standard data reconstruction, correlated SD
observables are being investigated in order to establish a photon-hadron separation in the en-
ergy range above 10 EeV. Two parameters are combined in a multivariate analysis to optimize
the separation power and to make use of the large SD aperture: ∆Leeds (signal risetime) and
log10(RNKG,1000) (shape of the lateral density function). Those parameters allow for a power-
ful compromise of high selection efficiency, which is found when optimizing the data selection
towards large statistics preserving a sufficient reconstruction quality, and good photon-hadron
seperation. An update of existing photon energy calibrations is presented and the separation
parameters are studied carefully. Throughout the search of rare particles, a proper under-
standing of the electronics and possible faults or rare physical events is needed as they can
create photon-like events. Electronics issues are discussed, such as direct light effects or PMT
afterpulses. The main result of this work is a significant improvement of the last published
limits, entering the region of photon-optimistic GZK-predictions. The upper limit (95% C.L.)
on the diffusive, integral photon flux above 10 EeV for zenith angles between 30◦ and 60◦ is
1.9 · 10−3 km−2 sr−1 yr−1, corresponding to a maximum photon fraction of 0.72%. For 20 EeV
(40 EeV) it is 0.99 · 10−3 km−2 sr−1 yr−1 (0.49 · 10−3 km−2 sr−1 yr−1), corresponding to a max-
imum photon fraction of 1.6% (6.17%). A differential upper limit has also been placed for the
first time in the range of 10 − 30 EeV, with a maximum photon flux of 2.59 km−2 sr−1 yr−1 and
a maximum photon fraction of ∼ 2.73%. In this region it is most likely to observe a photon.
Photon candidate events are being discussed.
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Introduction

Thesis structure

Chapter 2 introduces the physics of cosmic rays and in particular photons created by cosmic rays.
The detection of extensive air showers at the Pierre Auger Observatory is described in Chap. 3.
This chapter contains as well technical checks performed for this analysis. A brief introduction of
the detection of photons with the surface detector of the Pierre Auger Observatory can be found
in Chap. 4. This chapter provides a collection of different technical studies needed to establish
a search for UHE photons: a photon energy scale, separation parameters, an understanding of
possible detector effects and the formalism to derive an upper limit. Dataset and simulations
are described in Chap. 5. The study of SD observables as photon-hadron separation parameters
are discussed and compared in Chap. 6. The combination of the most powerful parameters in a
multivariate analysis and an update of the upper limits on the flux and fraction of UHE photons
are presented in Chap. 7. Conclusions and a brief outlook can be found in Chap. 8.
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CHAPTER 2

Cosmic Rays

During the last decades the field of (astro-)particle physics has developed a lot. We start with
a brief overview over the current status of cosmic ray physics, with focus on the energy range
above a few EeV. In the first sections, the CR energy spectrum, mass composition and directional
distribution are introduced, connecting observations and possible interpretations. Section 2.4
outlines the field of possible astrophysical CR sources and acceleration scenarios as well as exotic
non-acceleration scenarios. Section 2.5 focusses on the propagation of cosmic rays in magnetic
fields, while the remaining interactions are discussed thereafter in connection with the creation
of UHE photons. Section 2.6 introduces UHE photons as one possible UHECR component. A
last paragraph is dedicated to multimessenger observations of cosmic rays.

2.1 Energy Spectrum

Today we know that the energy spectrum of cosmic rays covers a range from a few hundreds
MeV up to to beyond 1020 eV. In first order approximation, the differential CR flux follows a
power law over a wide energy range,

J =
dN

dE
∝ E−γ ,

with γ ≈ 2.7 the spectral index at the observer. During their propagation, primary UHECR
interact with surrounding fields. The apparent structures in the observed energy spectrum are
closely related to CR composition, the maximum source energy, a galactic or extragalactic source
origin and CR propagation. An all-particle spectrum is shown in Fig. 2.1. Above 100 EeV there
are only a few particles per km2 and century.

Knee

The steepening of the spectrum around 4×1015 eV is called knee [9]. The spectral index changes
from 2.7 to 3.1 [10]. Actually, there is more sub-structure in this energy region. An increase of
the mean mass above the knee region was first found by Khristiansen et al. in 1994 [11] and was
more recently reported by KASCADE [10] and other experiments. The study of the spectrum of
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Figure 2.1: The CR energy spectrum as compiled from different air shower experiments above
100 TeV, with flux multiplied by E2.6. Adapted from [1], references therein.
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Figure 2.2: Ankle and high energy suppression: Compilation of UHECR energy spectra, published
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HiRes I and HiRes II [7]. The flux is multiplied by E3. An energy-rescaling has been
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Auger and TA. From [8].
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heavy mass groups brought a remarkable result in 2011. KASCADE-Grande observed a knee-
like structure at 1016.9 eV, referred to as Fe-knee, with a statistical significance of 3.5σ [12].
In the all-particle spectrum the range between 1016.3 eV and 1018 eV can be described by a
single power law [12], which is expected if the sources emit similar spectra. These observations
could be interpreted towards a rigidity-dependent maximum energy of galactic CR sources. The
knee-position for different masses is expected to scale with the charge Z of the primary particle
[13], starting with the knee of light mass groups (indexed p-knee) at (3−5)×1015 eV. Another
possible mechanism is a rigidity-dependent leakage of CR from the Galaxy, which could also
occur on top of other effects. In both cases the Fe-knee would mark the end of the galactic CR
spectrum.

Ankle

The ankle is located at about 4 × 1018 eV [14] where the all particle spectrum becomes more
flat (see Fig. 2.2). An early observation by the Fly’s Eye experiment was discussed in 1993
[14]. KASCADE-Grande reported an ankle in the spectrum of light mass groups at 1017.1 eV in
2013 [15], with a statistical significance of 5.8σ. An important question is at which energy the
galactic-extragalactic transition takes place. One possible interpretation of the spectrum is that
the transition region is located around the ankle of the all particle spectrum. This would be the
case for a rigidity-dependent maximum source energy or leakage from the Galaxy or both. The
increase of the mean mass above the knee supports this interpretation [16]. The ankle is then
due to an overlap of the galactic and extragalactic CR spectrum. Another model by Berezinsky
et al. [17, 18] predicts a dip at 2.3 × 1018 eV due to pair production of UHE protons with
the cosmic microwave background (CMB). To make this mechanism work efficiently, a proton-
dominated composition is needed above the ankle. In this scenario the transition is expected
already at the Fe-knee. The ankle could also be interpreted as the onset of a different galactic
source population. Current studies of the mass composition from the Pierre Auger Collaboration
challenge a pure composition and disfavour the dip-model [19, 20].

Highest energies and flux suppression

Another interesting region is the high energy end of the spectrum. Almost 50 years after the
prediction of a flux suppression due to resonant pion-photoproduction of UHE nuclei with photon
backgrounds (described later), a flux suppression above an energy Eth = (4−6)×1019 eV has been
observed by HiRes [21, 22], the Pierre Auger Observatory [23] (with > 6σ) and Telescope Array
[24]. The origin for this structure is still unclear. One possible explanation is the GZK-process
where UHE nucleons interact with the CMB in a resonant pion-photoproduction, predicted
by Greisen, Zatsepin and Kuz’min in 1966 [25, 26]. This process is described in Sec. 2.6.1.
Another reason could be the limited energy of CR sources. An additional channel to answer
the question about the existence of the GZK effect are UHE photons and neutrinos. The first
beyond-GZK event with an energy of 1020 eV has been observed already in 1962 with the Volcano
Ranch experiment [27]. Their origin and mass composition of beyond-GZK events is still under
discussion (for a detailed review see e.g. [28]). In the presence of the GZK effect, the maximum
distance of observable sources, called ’GZK horizon’, is less than 100 Mpc for proton or iron with
energies above the GZK threshold of about 70 EeV [29]. For light nuclei the GZK horizon is an
order of magnitude closer. At the end of the 90’s, AGASA published a spectrum that continues
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at highest energies [30, 31], fueling discussions about non-acceleration scenarios of CR. Today
most of these scenarios are ruled out by stringent upper limits on the UHE photon flux and
fraction, cf. Sec. 4.4.4.
The ankle and the high energy suppression of the spectrum have been measured by various
air shower experiments (see Fig. 2.2). After re-normalizing the spectra within the systematic
uncertainties12 of the energy scale to the average spectrum of Auger and TA, there is a fair
agreement. The effect of the fluorescence yield (FY) model and optical efficiency on the energy
scale is discussed in [32], indicating that in a simple analytical model the energy scale of Auger
would be increased by 9% (3%) if the FY model of the TA (HiRes) was used instead. Further
discussion about the spectrum can be found e.g. in [16, 33, 34].

2.2 Mass Composition

One, or probably the most important key information for solving the fundamental questions
about CR, is the mass composition. This becomes clear in the interpretation of structures in
the CR spectrum and in anisotropy studies. While below 100 TeV the mass of CR particles can
be measured directly, air shower experiments are so far used for an analysis of the average mass
composition at highest energies, with progress towards event-by-event analyses. This involves
air shower physics (for details see Chap. 3) and in particular simulations of different primaries.
In air shower simulations there is a large variance between the hadronic interaction models at
highest energies above 1017 eV. This region is not accessible with collider experiments and de-
pends strongly on extrapolations. This poses a restriction to the experimental mass composition
studies. Studies of the average mass composition are based on air shower observables that allow
to derive energy and mass, such as the longitudinal shower profile in case of fluorescence detec-
tors or the lateral distribution of the electromagnetic and muonic shower component at ground
for an array of ground detectors. Here we focus on the longitudinal shower profile.
Showers of different primaries differ in their average depth3 of the first interaction and in their
shower development. The depth of the first interaction, X1, cannot be observed directly, as the
observation level is below the depth of the shower maximum for a reliable energy measurement.
The depth of the shower maximum, Xmax, can be used to study the mass composition: At fixed
energy, showers of heavy primaries with mass A reach their maximum earlier in the atmosphere,

〈Xmax〉A ≈ 〈Xmax〉p −Dp 〈lnA〉 , (2.1)

with Dp = d 〈Xmax〉p /d lnE the elongation rate of proton primaries (cf. Eq. 3.2). This relation
is based on the Heitler model [44], extended for nuclear primaries [45, 46]. It assumes that a
nucleus with energy E is composed of A nuclei, each carrying an energy E′ = E/A.
Measurements of Xmax from different air shower experiments are shown in Fig. 2.3(a). The
average mass composition at a certain energy is reflected in 〈Xmax〉. A change towards a heavier
CR composition can be observed in a decrease of the elongation rate compared to the proton
case as D = Dp ·(1−d 〈lnA〉 /d lnE). Above the p-knee a decrease of D is observed, indicating a

1Source of systematic uncertainties in energy measurements are the photometric calibration, fluorescence yield,
atmosphere, reconstruction and invisible energy. For comparison and discussion see [8].

2Systematic uncertainties of the energy scale are on average 20% for the experiments shown in the plot. The shift
of the re-normalized spectrum of Auger and TA is about ±10%.

3The slant depth describes the length in equidistant amounts of traversed matter density in g/cm2.
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Figure 2.3: Measurements of the average depth of the shower maximum 〈Xmax〉, its spread σ =
σ(Xmax) and the average logarithmic mass 〈lnA〉. From [43]
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Figure 2.4: The arrival directions of the events with E ≥ 58 EeV (black dots) within a region of
15◦ around the direction of Cen A (red star), indicated by a red circle. The map is
shown in galactic coordinates. From [48]

change to a heavier composition as expected from rigidity. The elongation rate between Fe-knee
and ankle indicates a transition to a lighter composition. In and above the ankle region the
QGSJetII model predicts the lowest values of 〈Xmax〉 and elongation rate for proton primaries,
which is not far from most of the measured data. Above 1018 eV the average depth 〈Xmax〉 differs
by more than the systematics between the experiments. The difference between the Auger and
TA results was addressed in [47]. The variance between the hadronic interaction models is very
large (∼ 40 g/cm2 difference between QGSJetII and Epos1.99 at 10 EeV).
Not only the mean value but also the spread of the Xmax distribution depends on the mass
composition. In the simplified picture of the superposition model, the spread of the shower
maximum for a nucleus with mass A, σA(Xmax), is expected to be smaller than for primary
proton. Measurements of σ(Xmax) above 1018 eV are shown in Fig. 2.3(c), confirming the findings
of the 〈Xmax〉 measurements. Another observable that can be derived from Xmax measurements
is the mean logarithmic mass, 〈lnA〉 (cf. Eq. 3.3). Different experimental results are shown in
Fig. 2.3(b). Structures are visible at the same energy positions as in Figs. 2.3(a) and 2.3(c).
Recent results of the Pierre Auger Collaboration challenge a light composition above the ankle
and thus the dip-model [20].

2.3 Arrival Directions

An obvious study is the search for a clustering in the arrival directions of cosmic rays. Anisotropies
are reduced during their propagation in galactic and extragalactic magnetic fields, depending
on the mass composition and energy (cf. Eqs. 2.3 and 2.5). This has to be taken into account
in anisotropy studies.
A large scale anisotropy at energies from ∼ 100 GeV up to a few PeV was reported by several ex-
periments [49–53]. The structure up to 100 TeV is found to be rather constant and is dominated
by a dipole moment and a smaller quadrupole moment. Above 100 TeV there is a significant
small scale contribution from higher harmonics. The anisotropies found are an important tool
to understand the galactic CR propagation [54]. No significant large scale anisotropy was ob-
served for energies from 4 EeV to 8 EeV with the Pierre Auger Observatory [54, 55]. Above
8 EeV, a significant dipole moment was reported in [54] with no excess in higher multipoles.
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Upper limits on the dipole and quadrupole moment challenge “an origin from stationary galactic
sources densely distributed in the galactic disk and emitting predominantly light particles in all
directions” [56].
If the GZK effect is apparent for UHECR, a small scale anisotropy for energies beyond 55 EeV
would be expected. The CR flux at these energies is significantly reduced and the source dis-
tance is restricted to about 100 Mpc, depending on the mass of the primary (see Sec. 2.6.1). A
correlation of the arrival directions of UHECR with nearby AGN (closer than 75 Mpc) from the
Véron-Cetty Véron (VCV) catalogue, within an angular window ψ = 3.1◦, was reported by the
Pierre Auger Collaboration in 2008 [57]. The correlating fraction has decreased to 28.1+3.8

−3.6%
since then (with 21% for the isotropic expectation) [48]. As the magnetic deflection scales with
the inverse of the energy (cf. Eq. 2.3), an alignment in groups of arrival directions (multiplets)
would be expected for proton primaries. A search for multiplets in Auger data does not show a
strong evidence [58]. For a discussion of the source density based on Auger data see [59].
A very interesting source candidate within the GZK horizon is Cen A. With a distance of 3.8 Mpc
it is the closest AGN. A scan of events within 15◦ centered at the direction of Cen A and for
energies E > 58 EeV (cf. Fig. 2.4) has lead to a probability of 1.4% for isotropy [48]. An excess
in the direction of Cen A is seen also in cross-correlation searches against different catalogues.
On the other hand, it has been shown that there are “no significant excesses around the Galactic
Center, the Galactic Plane, or the Super-Galactic Plane” [48], challenging a galactic origin of
UHECR with energies of 40 − 80 EeV.

2.4 Acceleration, Astrophysical Sources and Exotics

A fundamental question, which is still not solved for highest energies, is how and where cosmic
rays gain their energies. CR with energies up to at least the knee region are most probably of
galactic origin. This is supported by measurements of large scale anisotropies. The maximum
energy for a proton that can be confined in the Galaxy (with B ≈ 0.3 µG, L < 1 kpc and β = 1)
is Emax,Gal < 0.3 EeV, according to Eq. 2.2. Thus, even if galactic accelerators could exceed
EeV energies, most of these particles would escape the Galaxy. Given the Larmor radius of the
Galaxy, the maximum energy of galactic accelerators, the structures in the CR energy spectrum
and the lack of correlation with galactic sources, it is likely that the highest energy CR are of
extragalactic origin.
There exist two different approaches that explain the CR energy by either acceleration in astro-
physical sources (bottom-up) or by decays of extremely massive relic particles (top-down).
They are outlined in the following.

2.4.1 Acceleration mechanisms (bottom-up)

Cosmic rays are accelerated in regions of high energy carried in macroscopic motion or magnetic
fields that is transferred to single particles. There are two different types of acceleration pro-
cesses. One is the (single) acceleration in an electrostatic field, which can be found for example
in pulsars or in the magnetosphere around the supermassive black hole of an AGN. In this case
a power law spectrum does not follow naturally. A different process is the stochastic acceler-
ation in moving, magnetized regions. The most prominent mechanism for the latter process is
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Figure 2.5: Hillas plot (adapted from [60]): The maximum energy of a charged particle that can
be confined in a region of size L, with a magnetic field B, is Emax = 1 EeV × Z × β ×
B[ µG] × L[ kpc] (cf. Eq. 2.2). For a certain particle type it depends on the velocity
of the particle, β = v/c. Setting β = 1, the source properties for confining proton and
iron nuclei of 1020 eV with are indicated by the diagonal lines. Possible sources must
be in the upper right region above the line.

Fermi acceleration. The basic idea is that a test particle4 gains energy in n successive head-on
encounters with moving regions of magnetic fields (e.g in a shock wave), with E0 the initial
energy, ∆E = ξE the energy gain per collision and Pesc the probability that the particle leaves
the acceleration cycle. The number of particles follows a power law in E,

N(E) = N0 ·
(

E

E0

)

ln(1−Pesc)
ln(1+ξ)

≈ N0 ·
(

E

E0

)−α

with spectral index α ≈ Pesc
ξ (for Pesc and ξ both small).

Fermi acceleration (second order)

Fermi suggested the following stochastic mechanism in 1949 [61]. Cosmic rays collide with a
magnetized cloud that randomly moves with speed u = βc under an angle θin with energy Ein

and momentum pin. The cloud acts as a magnetic mirror and scatters the particle elastically.
The particle leaves the cloud with an angle θout, energy Eout and momentum pout. Here we
assume a heavy cloud that moves slowly. The final energy in the laboratory system is

Eout ≈ γ2E
′

in(1 − β cos θin) (1 + β cos θ
′

out)

4In the test particle approximation it is assumed that during the acceleration the CR particle does not interact
with the plasma of the shock.
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with γ the Lorentz factor and assuming E
′

in = E
′

out for elastic scattering, 〈cos θ
′

out〉 = 0 for
isotropic directions in the cloud system and 〈cos θin〉 ∝ β. Therefore the average energy gain is

〈

∆E
Ein

〉

∝ β2.

The mechanism is called second order Fermi acceleration.

Fermi acceleration (first order)

A more efficient and faster mechanism was developed later in the 1970’s (e.g. see [62]) where
CR are accelerated in shocks, for example in supernovae. The shock propagates with velocity
u in the laboratory system. In the system of the shock front, the gas in the upstream region is
receding with speed 1/4 u and in the downstream region inceding with u. In multiple crossings
of the shock region during the successive scattering of CR in magnetized regions in the plasma
the particle “sees” the region approaching with speed 3/4 u. Therefore the process is faster and
more efficient than the second order Fermi acceleration and the average particle direction before
and after the scattering does not depend on β. It can be shown [63] that

〈

∆E
Ein

〉

∝ β.

The spectral index depends on the compression ratio of the shock. For strong shocks it is
α ≈ 2 [64]. This mechanism and the maximum energy can be extended when accounting for
the interactions between the flux of accelerated particles and the magnetic field in the context
of magneto-hydrodynamics. Resonant and non-resonant instabilities are shown to be able to
amplify the CR acceleration under certain conditions [64]. The first order Fermi acceleration
mechanism is also referred to as diffusive shock acceleration (DSA).

Astrophysical sources

Shock acceleration can be found in different astrophysical objects. It occurs for example in
the region of stellar explosions, in the region of gravitational accretion of matter or in their
relativistic jets of black holes where accelerated particles traverse interstellar medium (ISM).
High energies can be achieved for a large turbulent magnetic field component. Possible CR
sources are visualized in the so-called Hillas plot in Fig. 2.5. The maximum energy of a particle
to be confined in a region, such as its source region, can be estimated by the Hillas criterion
[65]. It requires the Larmor radius to be smaller than the size of the acceleration region,

E < 1 EeV × Z × β ×B[ µG] × L[ kpc], (2.2)

where B and L are the magnetic field and size of the acceleration region and Z and β = v/c the
charge and velocity of the particle.
The total luminosity of CR in the Galaxy is

LCR =
4π
c

∫ ∫

dEdV tcr(E)−1 × E × j(E) ≈ 1041 erg sec−1,

(cf. [66]) with j(E) the CR spectrum and tcr(E) the mean residence time of CR in the Galaxy
that can be inferred from the ratio of secondary to primary nuclei. This corresponds to an
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energy density of

uCR =
4π
c

∫

dE E × j(E) ≈ 1 eV cm−3.

(cf. [66]). A possible CR source must allow for the acceleration of a certain particle type to
maximum energies as observed. The CR flux must be large enough to replenish diffusive galactic
propagation losses and to explain a substantial fraction of the observed cosmic rays. A possible
class of sources must be able to explain the observed power-law spectrum and the features in
different energy ranges.

• Supernova remnants (SNR): Already in 1934, supernovae were discussed as CR acceler-
ators by Baade & Zwicky [67]. From measurements of the arrival directions of GeV γ-rays,
SNR have been identified as possible galactic CR sources (see Sec. 2.7). SNR cover a large
range of spatial extensions, age and differ in their interactions with a dense medium [68].
They are a widely discussed possible source for CR up to PeV energies (or even higher).
While the energy density for about 3 SN per century is sufficient to produce the CR flux
(without accounting for plasma instabilities) the acceleration time needed to reach these
energies might be longer than the age of the SNR at which the shock has slowed down too
much. The most variable parameter towards the maximum energy is the magnetic field B
and its turbulent component, which depends on magneto-hydrodynamical processes in the
plasma. It has been shown that resonant and non-resonant instabilities can amplify the
CR acceleration under certain conditions [64]. The highest chance to achieve PeV energies
is for young SNR before the Sedov phase5, for very dense media and high masses. SNR
are the most intuitive source candidate for galactic CR in and probably above the knee
region due to their maximum energy, energy density and source spectral index.

• Gamma-Ray Bursts (GRB): The major fraction of GRBs, in particular long-duration6

GRBs, is found to coincide with supernovae [69]. In the so-called collapsar model [70] it
is suggested that rotating, heavy stars form a black hole during the collapse of the iron-
core with highly variable jets and relativistic flows. It is said that “while only a small
fraction of supernovae make GRBs, [...] collapsars will always make supernovae similar to
SN 1998bw” [70]. CR acceleration can occur in multiple shocks of the GRB explosion [34]
or in its jets [71]. The GRB rate of about 0.3 Gpc−3 yr−1 could be enough to produce the
CR density needed for the Galatic CR flux [34]. Also the lack of a significant correlation
of UHECR arrival directions with stationary point sources could be explained by GRBs.

• Pulsars: The rotation of the strong surface magnetic fields of highly rotating neutron
star, called pulsar, induces an electric field that creates highly relativistic outflows. The
maximum energy increases with the rotation frequency, radius and the magnetic field of the
pulsar [34, 72]. Therefore young pulsars are of particular interest. Even with a fraction of
some percents of all pulsars matching the conditions for highest energies might be enough
to account for UHECR energies [34].

• Clusters of Galaxies: Cosmic rays can be accelerated in gravitational accretion shocks
of dark matter. The spatial extension of the Local Group is a few Mpc and magnetic fields
outside the cluster center can reach a few µG [34] on both sides of the shock. Within the

5Sedov phase: Phase in which the SN shell is swept off.
6Long-duration: longer than a few seconds.
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background magnetic field radiation losses can be significant and restrict the maximum
energy. Based on cosmological hydrodynamic simulations it is suggested that protons can
be accelerated up to 6 × 1019 eV with a flux at 10 EeV, consistent with the observed CR
flux [73].

• Active Galactic Nucleus (AGN): Cosmic rays can be accelerated in different regions
of an active galaxy. The region closest to the center is the magnetosphere around the
supermassive black hole where CR can undergo electrostatic acceleration. In principle the
magnetic fields could be sufficient to accelerate particles to highes energies, but radiative
losses are large in the dense medium of the accretion disk [34]. Some AGN have two
relativistic jets where CR can be accelerated as well, mostly by diffusive acceleration or
shear acceleration (due to a velocity gradient) [71]. The maximum energy is restricted by
adiabatic losses and interactions with the jet. If an active galaxy has long jets (> 100 kpc),
their termination can be observed as radio lobes. At so-called hot spots, occuring in
the region where the jet collides with ISM and creates large magnetic fields, CR can
be accelerated to highest energies by first order Fermi acceleration [74]. In this case
energy losses are lower compared to the acceleration in jets while the maximum energy
is compatible [34]. Thus radio galaxies, in particular blazars or FR II galaxies, are
particularly interesting UHECR source candidates. Two radio galaxies that lie in the
detectable volume for the UHE photon search with the Pierre Auger Observatory (within
4.5 Mpc, corresponding to the mean free path of an EeV photon) are Cen A and M87.
Within the results of [20], which challenge a light composition, Cen A is of particular
interest as it is the closest radio galaxy and might suffer least deflections for some directions.
An excess of events in this direction has been reported by the Pierre Auger Collaboration
in [48].

2.4.2 Non-acceleration mechanisms (top-down)

As an alternative to astrophysical sources that accelerate cosmic rays up to highest energies,
several exotic non-acceleration models were introduced. Their original motivation is to explain
the CR energy spectrum reported by the AGASA Collaboration [30, 31] that does not show
a suppression at highest energies. In top-down models UHECR are created by decays or an-
nihilation of primordial relic particles (X-particles) relatively close to the Earth with masses
mX ≥ 1021 eV. In the following paragraphs the models are briefly described. It should be
pointed out that all models require an additional low-energy component of cosmic rays in addi-
tion to the decay products of the resonances or relic particles to fit the measured CR spectrum
[75]. In this work the predictions by G. Gelmini et al. [75] (SHDM model also from [76]) are
compared with the derived upper limits, for the case of the AGASA spectrum as the models
were introduced to explain this spectrum. The predictions of the integral photon flux in [75]
for the case of the HiRes spectrum are about 1.5 orders of magnitude lower than for AGASA
but still already challenged or ruled out by the upper limits. The current experimental status,
including the upper limits derived in this work, is shown in Figs. 4.14(a) and 4.14(b).
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Z-Burst

In the Z-Burst model [77] UHE neutrinos annihilate with relic background neutrinos in a Z-
resonance,

ν + νrelic → Z → ff̄ .

This process requires a neutrino energy7 of Eν = m2
Z/2mν = 4 · 1021 eV × ( eV/mν), which in

turn poses a limit to the maximum energy of the spectrum of decay secondaries. The resonance
decays into fermion-antifermion pairs, such as hadrons, neutrinos, quarks or charged leptons,
at different branching ratios. In consequent decays photons and neutrinos are produced. The
Z-Burst model is restricted by measurements of the GeV gamma-ray [75, 78] and neutrino flux
[75].

Topological Defects (TD)

In the TD model (review in [66]), topological defects produce GUT-scale mass particles. The
mass of these particles directly restricts the maximum possible energy for the UHECR produced
in decays of these particles. Decay channels are quarks and leptons. After hadronization of
the quarks, hadrons and leptons decay into photons, leptons and nucleons. The ratio can be of
the order of several photons per nucleon, depending on the decay model. In [75], the mass is
assumed to be mX = 2 × 1022 eV.

Super-Heavy Dark Matter (SHDM)

In this model, metastable superheavy particles, produced in the early Universe during inflation,
are assumed to compose part of the cold dark matter and in particular of the dark halo of our
Galaxy. These long-lived8 particles have a mass of & 1021 eV. Possible candidates are e.g. ther-
mal production by gravitinos or magnetic monopoles connected by strings [79], cryptons [76, 80]
or Wimpzillas [81]. They can decay [79, 80, 82] or annihilate [81] into UHECR. The resulting
spectrum is mainly determined by the QCD fragmentation function.
Signatures of this model are a dominant photon fraction above the ankle region and a small
anisotropy in the direction of the galactic halo or clumps of dark matter. Depending on the
threshold energy for a dominant SHDM contribution to the cosmic ray flux and the contribution
of UHECR above this threshold, this model is restricted or supported by measurements of the
arrival directions of gamma-rays by SUGAR [83, 84]. For energies E > 4 × 1019 eV annihilation
and decay of SHDM are rejected, for E > 6×1019 eV the decay model is supported. The feasibil-
ity of a search for SHDM decay signal from the galactic halo with the Pierre Auger Observatory
is discussed in [85].

Today top-down models are restricted by upper limits on the UHE photon fraction as well
as gamma-ray measurements in the GeV range, within certain model assumptions. In particular
the Z-Burst model does not allow for much variation in the parameters due to restrictions by the
measured flux of GeV gamma-rays and neutrinos. Still, there is a significant dependence of the
level of limitation on the CR spectrum used for normalization. As a complementary information,
the increasing mean mass at highest energies observed with the Pierre Auger Observatory (see
Sec. 2.2) challenges top-down models.

7Assuming that Eνrelic
≃ mν and Eν ≃ pν .

8Long-lived means here τ ≥ t0, with t0 the age of the Universe.
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2.5 Propagation

In surrounding backgrounds, such as magnetic fields (MF), radiation or matter, cosmic ray
nucleons and nuclei undergo different interactions that attenuate the primary flux with respect
to the injected energy spectrum. In this section we focus on the diffusive CR propagation and
magnetic fields. A summary of other propagation processes with focus on UHE photons can be
found in Section 2.6.1.

2.5.1 Galactic

Cosmic rays propagate in the galactic disk and in the galactic halo. In a simple model, the
so-called leaky box model [86], the Galaxy is approximated as a propagation volume in which
injected CR nuclei from a source spectrum Φ(E) can propagate diffusively. They interact with
surrounding cosmic backgrounds (MF, radiation fields and ISM) within an interaction length,
λint, and leave the volume within a loss length, λesc,Gal. Regarding the propagation of CR with
energies above 1018.5 eV, the most relevant backround is the galactic magnetic field (GMF).
The angular deflection ψ of a cosmic ray primary with charge Z and energy E after travelling
a distance L in a regular magnetic field of strength B is

ψreg ≤ 2.7◦ × Z × 60 EeV
E

×
∫ L

0

dX
1 kpc

× B

3 µG
(2.3)

= 0.9◦ × Z × 60 EeV
E

×
∫ L

0

dX
1 Mpc

× B

10−9 G
. (2.4)

In a turbulent magnetic field with coherence length Lc it is

ψ ≤ 0.1◦ × Z × 60 EeV
E

× Brms

1 µG
×
√

Lc

100 pc
×
√

L

1 kpc
(2.5)

= 4◦ × Z × 60 EeV
E

× Brms

10−9 G
×
√

Lc

1 Mpc
×
√

L

100 Mpc
(2.6)

(cf. [57]). Assuming a large-scale GMF with a regular component of B ≈ 1 µG, the angular
deflection after travelling a distance of 1 kpc is a few degrees for a 60 EeV proton (cf. Eq. 2.3).
With a turbulent GMF component of 1 µG and a coherence length of the order of 100 pc [87],
the deflection for the same travelling distance is less than a degree (cf. Eq. 2.5) and plays a
subdominant role compared to the regular component. For heavier primaries, the deflection
scales with the charge Z in both cases. A detailed knowledge of the different magnetic field
components is needed to study possible patterns in the CR arrival directions. For a recent study
of the GMF see [88].

2.5.2 Extragalactic

Our knowledge about the intergalactic9 magnetic fields (IGMF) is very restricted. The IGMF
is expected to be a few µG in the center of Galaxy clusters [89] and 10−16 − 10−9 G in the
filamentary structures [34]. The coherence length is also very uncertain to several orders of

9Extragalactic or intergalactic is used synonymously here.
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Figure 2.6: Energy loss length for different primaries. Shown are lines for photon, proton and iron.
A continous energy loss is given by the expansion of the universe (redshift). With in-
creasing energy, photons interact with different background fields, e.g. the infrared (IR)
background, cosmic microwave background (CMB) and the universal radio background
(URB). The most probable source of energy loss for proton or iron with energies below
some EeV is the redshift. Above, pair production and pion-photoproduction processes
of proton with the CMB become dominant. Iron interacts in similar processes and can
be treated as a collection of A free nucleons, each with an energy E/A. From [92].

magnitude, in particular in the filaments [90]. Thus the parameter space for a parametrical
desciption of IGMF in numerical simulations is large as well and there exist different models
[90, 91].
If one assumes a field strength of 10−12 G and a coherence length of 1 Mpc [34], the angular
deflection for a 60 EeV proton after traveling a distance of 100 Mpc is less than a degree (cf.
Eq. 2.5). But this result is clearly subject to large uncertainties.

2.6 Cosmic-Ray Photons

Cosmic Rays interact with background photon fields during their propagation. Here we focus
on the creation of UHE photons during the propagation of UHECR in astrophysical scenarios
(acceleration), but the same mechanisms hold also for hadrons from top-down scenarios.

2.6.1 Production and propagation of UHE photons

One possible explanation for the observed high-energy cutoff in the CR energy spectrum is the
GZK-process where UHE nucleons interact with the cosmic microwave background (CMB) in
a resonant pion-photoproduction [25, 26], in the simplest case the production of a single pion
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Figure 2.7: Integrated photon fluxes for E ≥ 1019 eV expected from proton sources in the high-
photon scenario (see text), in dependence of the source spectrum parameters (slope α
and maximum energy Emax). The upper limits shown are from [93]. From [94].

(here for the case of a primary proton):

p+ γCMB → ∆+(1232) → p+ π0 (2.7)

p+ γCMB → ∆+(1232) → n+ π+.

The minimum proton energy needed for the first process is

Eth
p = mπ · (mp +mπ/2)

Eγ · (1 + cos(α))
(2.8)

≈ 6.9 · 1019 eV ×
(

Eγ

10−3 eV

)−1

(for a head-on collision, α = 0),

with Ep ≃ pp the proton energy and with mp, mπ the proton and pion mass, Eγ the energy of a
CMB photon and α the collision angle. Protons of lower energies mostly interact with the CMB
in a production of e+e−-pairs. Depending on the proton energy, also higher resonances can be
created. The pions carry ∼ 20% of the primary energy [95].
During their propagation, UHE nuclei can interact in the same resonant processes as described
above, where the nucleus can be treated as a collection of A free nucleons of energy E/A in a
simplified superposition model. Nuclei can disintegrate into nucleons [96–98] by the giant dipole
resonance (photon energies below 30 − 50 MeV in the nucleus rest frame), by quasideuteron
emission (50 − 150 MeV) or baryonic resonances (above 150 MeV) [98]. This way the flux of
photons produced by nuclei is lower than for nucleons of the same primary energy. Photo-
disintegration happens mainly in the CMB and the infrared background (IRB) and can already
happen near the source, depending on the intensity of the IRB. A third interaction channel is
nuclear decay. The average energy loss for iron drops rapidly with energy, in particular above
1019 EeV (see Fig. 2.6). Note that above 1020 eV the energy loss length for iron is smaller than
for proton, reaching a minimum of only a few Mpc at 1021 eV.
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In consequent interactions the pions produced decay into photons and leptons:

π0 → γ + γ (2.9)

π0 → γ + e+ + e−

π+ → µ+ + νµ.

The muons decay after 2.2µs in their rest system:

µ+ → e+ + ν̄µ + νe. (2.10)

The electromagnetic component initiates a cascade of pair production processes, inverse Comp-
ton scattering in cosmological backgrounds and synchroton radiation in IGMF (for reviews see
[66, 99]). UHE photons carry about 10% of the proton energy. Depending on their energy, they
interact with the different components of the cosmological background (CMB, infrared, optical
and radio10) by pair production processes. At PeV energies the energy loss length is less than
1 Mpc, which makes it difficult to probe CR sources by searching for PeV photons. For UHE
photons, the radio background is the most important background with respect to pair produc-
tion processes [66]. Within an energy loss length of a few Mpc (see Fig. 2.6), depending on the
primary CR, an EeV photon cascades down to energies of hundreds GeV where the Universe
becomes transparent. This restricts observations of UHE photons to the local Universe. If they
exist, EeV photons are expected to be produced either during interactions of UHECR with back-
ground photon fields or in decays of heavy relic particles. As discussed in Sec. 2.4.1, two radio
galaxies lie within the detectable volume for EeV photons with the Pierre Auger Observatory:
Cen A and M87.

GZK photon predictions

The photon flux and fraction depend mainly on the UHECR spectrum at the source, which is
characterized by a slope parameter α and maximum energy11 Emax, the mass composition, the
source distribution and the cosmological background (in particular magnetic fields and the radio
background). As a demonstrative example, a comparatively large photon flux could be found
for low photon backgrounds, a source spectrum with high maximum energy and small slope and
small magnetic fields. The possible parameter range is restricted by limits on the photon flux,
as shown in Fig. 2.7, and by measurements the UHECR spectrum.
In [100] the prediction of Gelmini et al. [75] is used for the case of fitting the spectrum on Earth
to HiRes data [22] and with the assumptions for a photon-optimistic12 scenario (injecting pure
proton, pI). In 2011 the predictions were updated to the Auger energy spectrum [101] by B.
Sarkar et al. [94]. The propagation of nuclei in this paper has been done with the CRPropa
code [102, 103]. A high-photon (pure proton) and a low-photon scenario (pure iron) are used to
define the band for GZK photon predictions for the different primaries (pII/FeII). A third set
of predictions is suggested by D. Hooper et al. [104], indexed as pIII/FeIII, which has been
fitted to the Auger energy spectrum [23]. The predictions are in the range of the predictions by

10The estimation of the radio background is very uncertain and imposes an uncertainty of the energy loss length
[66].

11Where Ep
max = Emax/Z scaled to the proton case.

12The largest photon flux is expected for an injection of pure proton. In the propagated spectrum on Earth protons
and photons are taken into account.
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B. Sarkar.
A compilation of different predictions on the integral GZK photon flux and fraction can be
found in Fig. 4.14(a) and . Details about the scenarios are summarized in Tab. E.3 in the
appendix. There is an apparent range in the predicted photon flux from the GZK effect during
CR propagation. For primary iron the flux is at least an order of magnitude lower than for
primary proton. With increasing spectral index, α, the flux decreases. In general the predictions
from different analyses and thus different reference CR spectra etc. are compatible if the source
spectrum is the same. The same holds for the photon fraction. Throughout this work we will
show the predictions pII and FeII as they have been obtained with the Auger energy spectrum.

2.7 Multimessenger Observations

UHE photons are one of several messengers of primary cosmic rays. During the acceleration
and propagation of charged cosmic rays and the subsequent propagation of decay products of
secondary pions a large bandwidth of photons, neutrons, neutrinos and e± is created. The
combination of searches for the full bandwidth of footprints of cosmic rays on their way from
the source to the observer is a powerful tool to understand the processes at their sources.

2.7.1 Electrons, positrons

In addition to the acceleration of electrons at astrophysical sources, electrons and positrons
are created during CR propagation in interactions of mostly galactic CR with the interstellar
matter. High statistics measurements of the e+/e− fraction were first published by PAMELA
[105] and confirmed by Fermi-LAT [106] and AMS-02 [107]. Measurements of AMS-02 in the
range of 0.5 − 350 GeV are consistent with a secondary origin of the positrons [108]. It does
not require an additional primary component from astrophysical sources (e.g. pulsars or dark
matter). Within the assumption of a secondary source the CR propagation time is constrained
by tesc(10 GeV) ≥ 30Myr and tesc(20 GeV) ≤ Myr. PAMELA data are well described by only
plain diffusion or low reacceleration models, without any need for a charge-asymmetric extra
component [108]. An increase of the positron fraction up to 250 GeV is confirmed by all three
experiments.

2.7.2 Neutrons

Neutrons are produced by UHE protons in resonances along with the main process of pion
productions. The decay length of neutrons is 9.2 kpc × E[ EeV], with E the neutron energy.
Within the decay length, the energy flux of EeV neutrons from primary protons should exceed
1 eV/( cm2 s) [109], as derived from the TeV photon flux of galactic sources. The Pierre Auger
Observatory reported an absence of a neutron signal and published upper limits on the neutron
flux, which challenges stationary galactic EeV proton sources with low densities and large CR
fluxes [109, 110].

2.7.3 Gamma rays

Gamma rays are produced in hadronic processes (production and decay of π0) and leptonic pro-
cesses (bremsstrahlung, synchroton radiation, inverse Compton). For energies of up to 100 GeV,
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gamma rays are observed with space-based experiments (e.g. EGRET, Fermi LAT). A fraction
of the directions of GeV gamma rays coincide with the positions of astrophysical objects, such
as SNR [68], pulsars, galaxies and different types of AGN [111, 112]. They help to understand
the acceleration processes in the region they are produced. In 2013, the Fermi LAT collabo-
ration reported the detection of a pion decay signature in the spectral energy distributions of
two SNR [113], which is very likely from interactions of relativistic protons with dense gas. In
the same year they established the first Fermi LAT SNR catalogue [68] based on gamma ray
measurements in the range of 1 − 100 GeV. Within a set of 19 identified and 25 possible SNR,
different classes have been probed. A possible correlation between the radio and GeV signal is
suggested. At higher energies, gamma rays are detected indirectly at ground with Cherenkov
telescopes (MAGIC, VERITAS, H.E.S.S.). The highest energy photons ever detected have en-
ergies of some hundreds TeV [99, 111]. The fluxes of gamma rays and TeV-PeV neutrinos are
correlated to the ratio of charged to neutral pions [114]. Both can reach the Earth from cosmo-
logical distances, enlarging the detectable volume compared to UHE photons.

2.7.4 Neutrinos

UHE neutrinos are direct indicators of hadronic processes. Neutrinos with TeV-PeV energies
could be produced in AGN [114]. Cosmogenic13 neutrinos are expected to carry ∼ 5% of the
proton energy, which corresponds to the range above a few EeV [115]. If detected, neutrinos
allow for an insight into the region where they were created. For energies above some PeV,
neutrinos are observed in large detector volumes, such as the atmosphere, the Earth or a volume
of ice or water. The IceCube neutrino detector at the South Pole observes neutrinos indirectly
by Cherenkov light from charged leptons created in a charged current (CC) weak interaction.
In 2013, IceCube reported an observation of 28 neutrino events between 30 and 1200 TeV at a
4σ significance [116], updated in [117] and confirmed in [118]. They are found to be inconsistent
with background expectations from atmospheric neutrinos or muons. So far no point source or
clustering in time has been identified [119]. Upper limits on the diffusive (νµ + ν̄µ)-flux at at
90% confidence level (C.L.) are approaching the region of astrophysical flux predictions [120].
Neutrinos of all flavours can as well be observed indirectly by air showers they induce in the
atmosphere by CC or NC (neutral current) interactions in different mechanisms [121–124].

2.7.5 UHE photons

The current status of the search for a diffusive flux of UHE photons has already been discussed.
Integral upper limits on the photon flux and fraction are approaching the GZK region for pri-
mary proton with flat injection spectra. They also restrict the allowed parameter range for
astrophysical source scenarios. A search for point sources of EeV photons with Auger hybrid
data has been published in [125, 126], with no significant excess. This result challenges sta-
tionary galactic EeV proton sources, complementing similar results the neutron search and the
lack of large scale anisotropy in the ankle region. An observation of UHE photons might probe
the GZK effect of protons or similar processes for heavy nuclei and help to understand the CR
production and acceleration of sources in the local universe. UHE photon searches pose further
restrictions on Lorentz invariance violation. Photon-induced cascades could probe QCD and

13The term cosmogenic refers to the neutrino production by the decay of π± from the GZK-process.
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QED at highest energies by preshowers in the geomagnetic field (see Sec. 3.2.1) and by photonu-
clear interactions. Finally, an observation of a few photons could reduce the uncertainty of the
photonuclear cross-section.
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Ground-Based Detection of UHECR

In the 1930s, the existence of extensive air showers of secondary CR particles was unveiled by
Bothe, Rossi, Schmeiser, Clay, Kohlhörster and Auger [127–132]. When hitting the Earth’s
atmosphere, UHE cosmic rays start a cascade of nuclear and electromagnetic interactions that
develops to an extensive air shower of millions of secondary particles. Above 100 TeV the low
CR flux requires indirect measurements of air showers at ground. These experiments sample the
shower front at different locations spread over extensive areas at ground. The Earth’s atmosphere
is used as part of the detector, compatible to a large calorimeter. Air showers are characterized
by their longitudinal development, measured on the base of fluorescence and Cherenkov light
produced in the atmosphere, and by lateral particle densities at ground. The interpretation of
observational results requires precise knowledge about the atmosphere, nuclear (in particular
proton-air) and photo-nuclear cross-sections and the geomagnetic field. Section 3.1 gives an
introduction into the physics and characteristics of air showers. Photon-induced air showers
are discussed separately in Sec. 3.2. In a further section, basic information about air shower
simulations can be found. Section 3.4 introduces the air shower detection at the Pierre Auger
Observatory, with focus on the surface detector.

3.1 Extensive Air Showers

A simplified sketch of cascade processes in a proton air shower is shown in Fig. 3.1(a). The
first interaction of a primary CR nucleon or nucleus in the Earth’s atmosphere happens on
average after traversing a depth λA−air, according to the interaction length for inelastic nucleus-
air collisions. The leading nucleon propagates close to the shower axis. Productions of neutral
and charged pions and kaons drive two main cascade processes: a pionic and an electromagnetic
(EM) cascade. The shower consists of four components:

• Electromagnetic

Pure EM from the electromagnetic cascade (bremsstrahlung, pair production)

EM from µ - contributions from pion cascade

EM from hadr. jets
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(a) A simplified sketch of cascade processes in extensive air showers and
shower compenents at ground level. Characteristic properties of the logi-
tudinal shower development, as shown on the right, are the depth of first
interaction (X1) and of the shower maximum (Xmax).
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(b) Vertical showers of photon, proton and iron primaries with
an energy of 1 PeV. The height of the first interaction is
fixed to 30 km. Shown are the longitudinal development (top
panels) and lateral distribution at ground (bottom panels).
Red lines correspond to electromagnetic particles, green to
the muon component and blue indicates hadrons. Modified
from [133].

Figure 3.1: Extensive air showers: Longitudinal shower development and underlying cascade pro-
cesses.
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• Muons

• Hadrons (nucleons, π±,0, K±,0)

• Neutrinos

In case of EM primaries, the first interaction initiates an electromagnetic cascade and, except
for a small fraction of photonuclear interactions and consequently a small muon fraction, the
main component are EM particles.

3.1.1 Electromagnetic cascade

Neutral pions undergo an electroweak decay almost immediately (π0 → γ + γ), feeding the
electromagnetic cascade. It is based on two processes, pair production and bremsstrahlung.
The number of shower particles is maximal at a depth Xmax where ionization processes become
dominant. The longitudinal development of the EM cascade can approximately be described by
a simple toy model, the Heitler model [44]. It is based on the assumption that two particles are
created per interaction. The shower maximum of the electromagnetic cascade is at

〈Xmax〉EM = X0 ln
(

E

εEM
c

)

, (3.1)

where X0 ≈ 36.62 g/cm2 is the radiation length in air, E the primary energy and εEM
c ≈ 84 MeV

the critical energy. Below the critical energy, ionization processes are dominant.

3.1.2 Hadronic showers

The Heitler model has been generalized for hadronic showers by Matthews in [46]. Here we
follow the introduction presended in [43]. About 2/3 of the primary energy go in productions of
charged pions. In a pionic cascade, which is driven by charged pions, each step transfers 1/3 of
the energy to the electromagnetic cascade. In each hadronic interaction Nch charged pions are
created. After nd interactions we have

N = (Nch)nd =

(

E

επ
d

)β

charged pions1. Therefore the number of secondaries is proportional to the primary energy. At
this stage, the energy per π± is επ

d ≈ 10 GeV [46] and the pions decouple from the shower by
decays into muons and neutrinos. The energy of the electromagnetic component is

Ecal = E ·
(

1 −
(

2
3

)nd
)

with nd ≈ 6 (e.g. [43, 136]). Thus the electromagnetic energy is a good measure of the primary
energy.
If N hadrons are produced in the first interaction with elasticity κela, the depth of the shower
maximum for a primary proton is [43]

〈Xmax〉p ≈ λp +X0 ln
(

κela E

2 εEM
c

)

,

1Here we assume that β = ln Nch/ln (3/2Nch) ≈ 0.85 for Nch = 11, for an energy-independent multiplicity [134, 135]
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where the factor 1/2 accounts for decay in two photons and λp is the interaction length of
the proton. The elongation rate D quantifies the change of the average shower maximum per
logartithm in energy, D = d 〈Xmax〉 /dlnE. In a semi-superposition model, with energy E/A
per nucleon, we find for nuclei with mass A that

〈Xmax〉A ≈ c+Dp ln (E/A) = 〈Xmax〉p −Dp · lnA, (3.2)

where the elongation rate of primary proton, Dp = d 〈Xmax〉p /d lnE, is approximately constant
in the logarithmic energy. This holds for a modest energy dependence of the inelastic cross-
section [137] and the multiplicity following a power law in E. Dp and c depend on the properties
of the first interaction and on the multiplicity. For mixed compositions of nuclei of mass Ai at
fixed energy E, with fractions fi, the mean logarithmic mass is

〈lnA〉 =
〈Xmax〉p − 〈Xmax〉

Dp
, (3.3)

where 〈Xmax〉 =
∑

i fi 〈Xmax〉i and 〈lnA〉 =
∑

i fi lnAi. There is an apparent linear relation
between 〈Xmax〉 and 〈lnA〉. The study of the shower maximum can be carried out to the
fluctuations σ(Xmax) (see e.g. [43]), but here we refrain from further introduction. Experimental
results of analyses of the shower maximum are shown in Figs. 2.3(a) to 2.3(c).
Actually, for composition studies, X1 would be the intuitive shower property to look at, but
with ground detectors it is not directly observable. If we had a monochromatic proton beam
initiating an air shower, the depth of the first interaction X1 would be distributed exponentially.
Xmax follows the X1 distribution folded with the energy spectrum, mass composition as physical
contributions and with the detector resolution. One popular function to parametrize the number
of particles as function of slant depth X, the longitudinal profile, is the Gaisser-Hillas function
[138]:

N(X) = Nmax

(

X −X0

Xmax −X0

)(Xmax−X0)/Λ

exp
(

Xmax −X

Λ

)

(3.4)

= Nmax (1 + ε)ξ exp(−ε ξ),

with ε = (X −Xmax)/(Xmax −X0) and ξ = (Xmax −X0)/Λ. Nmax is the maximum shower size
and Λ and X0 are shape parameters (X0 lies in the region of the depth of the first interaction
but has mostly negative values).

3.1.3 Lateral distribution of charged particles

Electromagnetic component

The shower components propagate to the ground in a curved shower front, mainly EM particles
and fewer muons. Their spatial distribution and the arrival times at ground are different because
of different interaction processes in the longitudinal shower development. The shower develop-
ment reaches its full development at the shower maximum (labeled as ’max’). The number of
muons in a proton shower, Np

µ,max, follows the number of charged pions (cf. Eq. 3.2). Around
and after the shower maximum the total energy is distributed between electrons and muons,

E = Ne,max ε
EM
c +Nµ,max ε

π
c ≈ Ne,max ε

EM
c . (3.5)
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For UHE showers and for εEM
c = 84 MeV and επ

c = 10 GeV, the number of electrons can be
approximated by the electromagnetic cascade only, independent of the primary nucleus. Ne,max

depends mainly on the primary energy and thus allows for an energy measurement.
Surface detector arrays have to be located deeper than the shower maximum, at the observation
level Xgr = xgr/ cos(θ) (where xgr is the vertical depth of the ground level). As Xmax depends on
the primary mass, the detector site is chosen according to the lightest primaries and the energies
of interest to assure that the showers have reached their maximum before the observation level.
For combined detector systems this choice is a compromise of all systems. The development
stage of a shower at depth X is quantified by the shower age2,

s(X;Xmax) =
3

1 + 2Xmax/X
∈ [0, 3] , (3.6)

where s = 1 corresponds to the position of the shower maximum. A related quantity is

∆X = X −Xmax = t ·X0. (3.7)

The shower age s, the stage t and the depth ∆X after the shower maximum are closely related.
The latter we need for the concept of the reconstruction of the photon energy based on shower
universality.
It has been found that the (pure) EM component develops universally in the atmosphere [142–
148]. For an observation level below the shower maximum, the best universality is obtained in
t = ∆X/X0 (in [147, 149]). The lateral distribution of e± for different electron energies ε is
universal in t. At large distances from the shower axis, the lateral e± distribution differs for
hadronic primaries and primary photons. This comes mainly from the decay of charged pions
[147].
The lateral distribution function (LDF) of electromagnetic particles as function of the shower
age (for 0.5 < s < 1.5) has been derived by Nishimura & Kamata in 1958 [150] and was adapted
by Greisen [151] to what we call an NKG-type function:

ρNKG(r, s,Ne) =
Ne

r2
M

× Γ(4.5 − s)
2π Γ(s) Γ(4.5 − 2s)

×
(

r

rM

)s−2 (

1 +
r

rM

)−(4.5−s)

, (3.8)

with rM the Moliére radius and r the perpendicular distance to the shower axis. The electron
number arriving at the detector with depth Xgr can be obtained from the maximum component,
Ne,max, at the shower maximum that is attenuated when propagating a depth ∆Xgr = Xgr−Xmax

thereafter (cf. Eq. 3.4).

Combined

The single shower components (muon and EM) develop universally in the shower age [146, 152].
The LDF of all EM particles and muons at ground is primary-dependent. For showers of heavier
primaries, Xmax and Nµ increase. As muons can propagate further away from the shower axis,
the LDF is flatter for heavy than for light primaries of the same energy. The main contribution
at distances close to the shower core comes from the pure EM cascade processes and the energy
is almost contained in the EM component. For a fixed primary type, the shower size and the
distance-dependence of the LDF vary with Xmax and thus with energy. The shape of the LDF

2The concept of the shower age was already developed in 1937 [139–141] studying the cascade equations.
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apparently contains information about the mass composition and energy. There exists a huge
variety of functions to describe the combined LDF of all components. One possible choice, which
is used here, is again an NKG-type function (cf. Eq. 3.18).

Muon component

According to the superposition model, the muon number for nuclei of mass A is:

NA
µ,max = Np

µ,max A
1−β (3.9)

(cf. [43]). The muon number can be used as a mass-sensitive parameter.

3.2 Photon-Induced Air Showers

Photon-induced air showers are formed by an almost purely electromagnetic cascade, as de-
scribed in Sec. 3.1.1. They can be detected with the same detectors as hadronic showers, but
they have some specific features which will be discussed in the following paragraphs.

3.2.1 Preshower effect

Photons with energies above 1019.5 eV can convert into an e± pair in the geomagnetic field [153].
The energy is usually split symmetrically. The pair looses energy by synchroton radiation, which
can create another e± pair in case of sufficient energies. Instead of a single photon, several lower
energetic electromagnetic particles, called preshower, arrive at Earth, each of which carrying a
fraction of the initial photon energy. Most of the primary photon energy is carried by preshower
photons. In the Earth’s atmosphere they will initiate an electromagnetic air shower. The rate
of pair production is expressed by a dimensionless parameter [154]

χ =
Eγ

mec2

B⊥
Bcr

, (3.10)

where Eγ is the photon energy, B⊥ the component of the magnetic field perpendicular to the
direction of the propagation and Bcr = m2

ec
2/(e~) ≈ 4 × 109 T the natural quantum mechanical

measure of the magnetic field. This way the probability for a photon to create a preshower
depends on the actual trajectory and thus on the arrival direction on Earth. The attenuation
length is given by [155]

L =
2λC

α

B⊥
BcrT (χ)

, (3.11)

with λC the Compton wavelength of the electron and α the fine structure constant. Assuming
the weakest geomagnetic field intensity in 2010, which is 0.23 G (cf. [156]), we expect a clear
attenuation above 1019 eV [155]. This effect has been implemented in the Preshower code [157]
that can be used along with Corsika [158] and Conex [159] or as standalone. The preshower
effect reduces the difference in the shower maximum of photon- and hadron-induced showers for
energies above 1019.5 eV and thus changes the elongation rate.
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Figure 3.2: The elongation rate for proton, iron and photon showers (with xgr/ cos(θ) − Xmax >
−50 g/cm2 for xgr = 880 g/cm2 the observation level of Auger), simulated with Conex
(dataset is described in App. B) with θ < 60◦. Preshowered photons are shown with
blue, non-preshowered photons with red and the full sample with black stars. A sim-
ulation without LPM effect and without preshowering, for energies above 1019.4 eV, is
indicated as hollow stars. A data point at 1019.4 eV (〈Xmax〉 = 899 ± 45 g/cm2) with
only two events.

3.2.2 Landau-Pomeranchuk-Migdal effect

In the bremsstrahlung process of high-energy electrons only a small longitudinal momentum
is transferred to the nucleus. According to the uncertainty principle, this corresponds to a
certain distance over which this transfer takes place. If the trajectory of an electron is changed
within this interaction distance through multiple scattering, bremsstrahlung is suppressed. In a
similar way also pair production is suppressed for photons. The so-called LPM effect [160, 161]
reduces the Bethe-Heitler cross-sections for pair production and bremsstrahlung [162]. The
energy threshold for the case of bremsstrahlung depends on the medium [163]:

ELPM =
m2c3α

4π~
×X0 ∝ 7.7 TeV/ cm ×X0, (3.12)

with X0 ≈ 37 g/cm2 the radiation length in air. At a height of 300 m and 5 EeV at 20 km the
energy threshold is approximately 1017 eV (cf. [164]). The LPM effect delays the longitudinal
development of the electromagnetic cascade. This effect increases on average the difference in
the shower maximum of photon- and hadron-induced showers, but also the spread of the shower
maximum for photon showers.

3.2.3 Shower properties

The basic difference between photon-induced and hadronic showers lies in Xmax and Nµ. A
photon shower develops on average deeper in the atmosphere and reaches its shower maximum
later than a hadronic shower of the same energy. The elongation rate has been compiled in a
study based on Conex simulations of different primary particles (for the dataset see App. B)
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is shown in Fig. 3.2. The competing effects of the LPM and preshower effect are clearly visible.
While the shower maximum of a 20 EeV proton shower is well above ground, even for a vertical
geometry, the maximum of a photon shower of the same energy can be below ground (in par-
ticular for higher energies). The average observation level of the Pierre Auger Observatory is at
Xgr = 880 g/cm2/ cos(θ). This poses a geometrical restriction on the search of UHE photons
when requiring a shower maximum above ground (discussed in Sec. 5.2). The electromagnetic
cascade develops almost universally in the shower age. Due to the very small muon component
from photonuclear interactions, the lateral distribution is more compact than for hadronic show-
ers. Geometry and muon content are also reflected in the arrival time distribution of the shower
particles, resulting in a smaller mean value for hadronic showers.

3.3 Air Shower Simulations

For the interpretation of experimental results of air shower experiments, such as composition
studies, air shower simulations of different primaries are inevitable. Simulations are based on
our current knowledge of electromagnetic, hadronic and photonuclear cross-sections, and in
particular their extrapolations to highest energies. Shower particles and their interactions are
tracked throughout their development in the atmosphere. In this section we review the different
interactions and the Monte-Carlo simulation of air showers in Corsika.

3.3.1 Electromagnetic interactions

Electromagnetic interactions are comparatively well-understood. A popular model is the EGS4
model [165].

3.3.2 Hadronic interactions

The nominal center-of-mass energy at the Large-Hadron-Collider (LHC) is
√
s = 14 TeV, while

for 10 EeV air showers
√
s ≈ 57 TeV. Thus hadronic interactions cannot be studied in the full

energy range needed for the simulation of air showers. An extrapolation of the inelastic proton-
proton cross-section σp−p measurements to highest energies and to the proton-air cross-section
σp−air is made, which is the largest source of uncertainties for mass composition studies. Different
hadronic interaction models for air shower physics are: Sibyll [166, 167], QGSJetII.03 [168–
170], QGSJetII.04 [171], Epos1.99 [172, 173], Epos-LHC. The muon signal in the QGSJet
model is underestimated by about 40% for 10 EeV proton showers [174, 175]. The Epos1.99
model has been tuned to LHC data at 7 TeV. For detailed comparisons to hadronic interaction
models from collider physics, discussion of the uncertainties within air shower models and to
a measurement of σp−p from the Pierre Auger Observatory, the reader is referred to [137, 176,
177]. The measurement of σp−p provides a powerful lever arm to check the extrapolations of
the models. The current large variation between the models for air shower simulations due
to uncertainties in the extrapolations pose a severe restriction on composition studies and on
background studies for the UHE photon search.

3.3.3 Photonuclear interactions

The cross-section for photonuclear interactions is expected to be 10 mb at 10 EeV [92], compared
to a Bethe-Heitler cross-section for pair-production of 0.5 b [178]. The photonuclear cross-section
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is reduced by a factor of 50, which for photon air shower simulations reduces the dependence
of the longitudinal shower development on the hadronic interaction model. Still, the muon
component and Xmax of the shower cascade depend on the extrapolation of the photonuclear
cross-section to highest energies (e.g. the PDG 2004 extrapolation [179, 180] as a reference value
and Donnachie & Landshoff 2001 [181] as the extreme case). For further discussion see [178]).
For the photon search this means that an uncertainty in the extrapolations translates to an
uncertainty in the photon-hadron separation. Thus it is important to know the extreme cases,
in particular the maximum possible cross-section, as this would reduce the discrimination. An
increase of the PDG extrapolation by more than 80% is disfavoured [92, 178]. As a last step,
the photonuclear cross-section has to be converted into a photon-air cross-section which involves
nuclear interactions (Glauber theory [182]). Assuming a slightly modified cross-section with
respect to the PDG extrapolation, the uncertainties have been estimated to be as moderate as
10 g/cm2 in Xmax and 15% in Nµ [178]. The uncertainties in Xmax for converted photons are
expected to be smaller than for unconverted photons, whereas the effect of preshowering on Nµ

is comparatively small.

3.3.4 Corsika

A popular software package for Monte-Carlo simulation of air showers is Corsika [158]. It allows
for an easy selection of the primary particle type and properties, interaction models, atmospheric
model, the location and height of the observation level etc. Corsika returns the particle types,
numbers and energies at certain atmospheric depths and calculates basic observables, such as
the shower maximum. It should be mentioned that this extrapolation only works if the shower
maximum is above observation level because the simulation stops there. In order to reduce
computation time, showers can be thinned [183, 184]. The thinning level εth defines the energy
of all secondary particles,

∑

j Ej = εthE0, below which particles are represented by one particle
carrying an according weight w. Thus shower fluctuations are increased with εth > 0. It has
been found that εth = 10−6 is sufficient for hadronic showers to avoid a bias of basic Auger
surface detector observables [185].

3.4 The Pierre Auger Observatory

The Pierre Auger Observatory [189] is located in the Argentinean Pampa Amarilla with an
average altitude of 1400 m above sea level. It covers an area of about 3000 km2 to sample the
footprint of highly energetic air showers at ground. A map of the detector is shown in Fig. 3.3(a).
The Surface Detector (SD) array consists of 1660 water Cherenkov detectors that are arranged
on a triangular grid with a spacing of 1.5 km [190]. The atmosphere above the detector field
is overlooked by fluorescence telescopes from five sites at the borders of the observatory. The
fluorescence detector (FD) measures the longitudinal shower development by fluorescence and
Cherenkov light produced in the atmosphere. Here we will not introduce this detector further
but refer the reader to [191]. FD measurements are restricted to clear moonless nights, resulting
in duty cycle of 13% for the FD [191] compared to approx. 100% for the SD [187]. A subclass
of events which is detected by the SD and FD is called Hybrid, or Golden-Hybrid in case of an
additional independent SD reconstruction. Golden-Hybrid events can be used for a simulation-
independent energy calibration of the SD based on the calorimetric energy measured by the
FD. The current uncertainty on the SD energy scale is 18% at 3 EeV [192]. Several additional
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(a) Map of the Pierre Auger Observatory. Each dot cor-
responds to one surface detector station. The field-of-
view of the fluorescence telescopes is indicated as lines.
Modified from [186].

(b) Sketch of a surface detector station. Three PMTs
are mounted at the top of the water tank. The high-
voltage is supplied by a solar panel and battery. Each
detector station has a communication and GPS an-
tenna.

Figure 3.3: The Pierre Auger Observatory
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Figure 3.4: SD trigger probability for different primary energies.
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Figure 3.5: Charge histogram (Event 200800501005, station 111, sum of all PMTs)

detectors systems or sub-arrays, such as radio antennae, muon detectors or additional SD tanks
with smaller spacing, have been added to the Observatory, making it a super-Hybrid detector.
The first surface detector was deployed in 2002, stable data have been taken since January 2004
and the construction of the whole detector array was finished in June 2008 [193]. Thus there
are currently more than 10 years of SD data for analysis.

3.4.1 The surface detector

A description of the surface detector can be found in [190]. The SD array is built of 1660 water
Cherenkov detectors. Each self-contained detector station (see Fig. 3.3(b)) is a round, opaque
tank of 1.2 m height and 3.6 m diameter, filled with purified water. The relativistic electrons and
photons arrive with a mean energy of around 10 MeV and muons of around 1 GeV. High energy
charged particles produce a short3 Cherenkov light pulse in the water. The surface detectors
are sensitive to both, signals from muons and EM particles. The walls of the tanks are covered
with a Tyvek R© liner to diffuse the Cherenkov light for a stable signal measurement. Three
9” PMTs are directed downwards into the water and their signals are digitized by 10-bit flash
analog-to-digital converters (FADCs) each 25 ns. Each PMT is read out from a low-gain (anode)
and high-gain (dynode, amplified by a factor 32) to increase the dynamic range, which translates
to a radial range of the measurement from some hundred meters up to ∼ 3 km [194]. Data are
transferred wireless to a central data acquisition system (CDAS) using a proprietary protocol.
Each tank is equipped with a solar panel and battery to allow for an autonomous operation.
Timing and positions are available from a GPS antenna. A shower front hits several tanks,
depending on the shower geometry and energy, and produces a lateral distribution of measured
signals between several tanks. The time structure of the signals contains physical information
about the shower. The SD can be understood as a calorimeter with only one layer.

Signal calibration

The ADC counts are converted to units of the signal that would be deposited in a tank by
vertical equivalent muons (VEM). The distribution of incident angles of background muons is
dominated by vertical muons, leaving a peak (Qpeak

VEM) in the distribution of the integrated ADC

3The light pulses, including multiple reflections, have a duration of about 100 ns.
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charge and a peak (Ipeak
VEM) in the histogram of the photocurrent [195]. Actually, the shape of

the charge histogram is folded with a distribution of muons from different paths in the tank,
affecting the peak value.
A local VEM calibration has been set up [195]: The end-to-end gains and high voltage of
each single PMT are adjusted to match the charge peak of a reference tank. An automatic
online calibration of the VEM value is performed continuously using background muons. The
convergence algoritm starts with a first estimate of Ipeak

VEM = 50ch (ADC channels). Within a
target rate of 100 Hz for 3-fold coincidences above 1.75 Ipeak

VEM (first level trigger, T1), the rate
above a trigger level of 2.5Ipeak

VEM is recorded. In a convergence algorithm the value of Ipeak
VEM is

then tuned to obtain a rate 70 Hz above 2.5Ipeak
VEM. In addition to Ipeak

VEM, the charge value Qpeak
VEM

is also estimated based on the charge distribution of pulses within 10% of the peak photocurrent
Ipeak

VEM. The charge histogram for single PMTs, their sum and the pulse shape are saved for an
offline calibration of the signal based on the peak4 of the charge histograms (see Fig. 3.5).
The VEM calibration has an accuracy of ∼ 6% [194]. The physical conditions of each station
and the PMT quality are monitored continuously in intervals of several minutes: Temperature,
pressure, voltages, currents, battery status, water level, dynode-to-anode ratio (D/A), the VEM
peak, etc. [196]. This assures a stable signal measurement and allows to control the detector
operation. The VEM signal is defined as

S = (NADC −B)/c (3.13)

with NADC the number of ADC counts, B the baseline of the channel and c the conversion factor
from ADC counts to VEM charge.

Trigger and aperture

Out of the datastream of first level triggers, which is recorded for calibration, physical showers
are selected in a sequence of trigger levels. Possibly interesting stations that could be part of an
air shower must have either a peak value of at least 3.2 VEM (T2) or multiple5 bins above a
threshold of 0.2 VEM (ToT). An air shower requires also clusters of coincident signals in different
stations (T3). The T4 trigger selects an event as a shower candidate based on certain patterns
of T3 stations. Finally, the T5 trigger checks for 6 active stations surrounding the station with
the highest signal to assure a good detection and reconstruction accuracy [197]. The trigger
efficiency of an air shower event is almost 100% for air showers with zenith angle below 60◦ and
energies above 3 EeV for the most conservative case of primary proton (cf. Fig. 3.4(a)). Due
to the more compact electromagnetic showers, photons reach full efficiency at about 10 EeV.
The probability to trigger a single station reaches 100% above 10 VEM. For details on the
trigger probability see [187]. The lateral dependence for a fixed primary changes with energy
and inclination angle.
The exposure A of the surface detector for a period ∆t can be calculated geometrically from the
number of elementary cells (see Fig. 3.6(a)) with a 6T5 trigger and for events with full trigger
efficiency (E > 3 EeV and θ < 60◦). Each elementary cell contributes acell ≈ 4.59 km2 sr to the
exposure [187]:

A = Ncells · acell · ∆t. (3.14)

4Actually the second peak, as the first peak is created by trigger effects (see [195]).
5At least 13 bins within 3 µs.
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(a) A single elementary cell within a
hexagon of 7 tanks in the surface detector
array. The distance between two detec-
tor stations is a = 1.5 km. The detec-
tor aperture is calculated based on the
number of operating elementary cells in
a time interval.
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(b) Development of the 6T5 aperture as a function of the
time (for θ = 0◦ − 60◦).

Figure 3.6: Aperture of the surface detector.

The exposure for a smaller zenith angle range can be obtained by a geometrical correction factor:

Acorr = A
cos(2 θmin) − cos(2 θmax)

1 − cos(2 θmax)
, (3.15)

which corresponds to a factor 2/3 for a zenith angle range of 30◦-60◦. As the calculation of the
aperture is based on the number of active hexagons in the array, which is calculated from the T2
files [198], it has to be assured that the observed data and the T2 files are synchronized. It was
found that ∼ 3% of the 6T5 triggers in data are not contained in the T2 files [199, 200]. These
fake events are rejected in this analysis. The accuracy of the aperture is found to be better than
1%.

3.4.2 Data reconstruction

The reconstruction of physical quantities, such as the shower geometry or energy from data
(or simulations) of different detectors, is done with Offline [201], a software framework that
is developed by the collaboration. The functionalities are organized in modules and can be
customized easily on the base of XML cards. For a detailed description of the SD reconstruction
the reader is referred to [202]. An example SD reconstruction chain can be found in App. D. In
the following, a few modules relevant for this analysis are described briefly. The version used
for this thesis is revision 23943, which is the reference version for physics results prepared at the
ICRC conference 2013 [192].

Module: SdPMTQualityChecker

A flawless performance of the PMTs is necessary in particular for searches of very rare particles.
Hardware failures are not simulated and can produce artificial photon-like signals in parameters
based on the VEM trace. The PMT quality is monitored continuously. A documentation of the
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Figure 3.7: Reconstruction of the shower geometry with the surface detector: The geometry is
described by the shower core c (first estimated by the barycenter b), the shower axis a
and the curvature of the shower front. (Shower image in the background from [133].)

information available in the CDAS can be found in [196]. The monitoring information is used
to reject single defective PMTs that show anomalies or instabilities in the VEM peak value, the
dynode or anode baseline or in the mean or the RMS of the dynode-to-anode ratio. In addition,
this module assures a correct treatment for events of a period with communication problems
[196, 203], referred to as Comm’s crisis. It assures that only PMTs of stations are used which
have been alive at the time of the event (and the following 120 seconds). Occasionally it happens
that a station is not alive according to the T2Life information while still recording data. As the
exposure is calculated on the base of the T2Life information, the additional data taken must be
rejected for T5 events.

Module: SdCalibrator

The calibration of the SD signal has been described earlier in this section. The main task of
this module is the conversion of the FADC trace of the PMTs to a signal trace. This is done
in three steps. The baseline is computed together with the start- and stopt-time of the signal
for one shower. Signals are identified as time bins with at least 3 FADC counts above baseline.
These bins are then merged and finally related PMT and station quantities are calculated and
set. This module rejects stations without trigger, with random trigger, without local station
calibration data or without GPS data. Actually, a modified version of the SdCalibrator has
been used [204, 205] for this work which is needed for a proper calculation of the signal stoptime
and thus the station risetime (see Sec. 6.3) and signal. The modifications are (with the affected
channel6 given in brackets)

1. Use the trace of the respective gain channel for the search of signal pieces in the trace.
6HG: High-gain, LG: Low-gain
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Figure 3.8: Relative difference of reconstructed quantities with and without applying all modifi-
cations to the SdCalibrator, applied on observed data. Mean and standard devia-
tion can be found in Tab. E.2. Cyan: Selected non-saturated stations of events with
no saturated station, magenta: selected HG-saturated stations of events with at least
one HG-saturated station, orange: LG-saturated stations of events with at least one
HG-saturated station.
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Figure 3.9: Relative difference of reconstructed quantities with and without applying all modifi-
cations to the SdCalibrator, applied on observed data. Mean and standard devia-
tion can be found in Tab. E.2. Cyan: Selected non-saturated stations of events with
no saturated station, magenta: selected HG-saturated stations of events with at least
one HG-saturated station, orange: LG-saturated stations of events with at least one
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Figure 3.10: Event 4403320, station 1312: Correction of the stoptime and the baseline.

The standard would be using the high-gain channel always. [LG]

2. Backward search for flat pieces that are used to determine the baseline. The standard is
the forward direction which can be problematic in case of long tails in the signal which
are mistaken as a flat piece. The baseline is overestimated then. [LG+HG]

3. In the search for flat pieces in the low gain trace, reduce the maximum allowed absolute
difference in the FADC counts of each bin compared to the first bin within a flat piece by
one count with respect to the high gain trace. [LG]

The effect of these modifications has been checked on data from year 2008 (bad periods and
lightning rejected), with 6T5 trigger, E > 3 EeV, θ < 60◦, a reconstructed curvature and a
station signal of at least 10 VEM. The total effect is a smaller, improved stoptime (see Fig. 3.8(b)
and the example in Figs. 3.10(a) and 3.10(b)) and an improved baseline, which are reflected in
the station signal and risetime (see Figs. 3.8(c) and 3.8(d)). The changes to the time trace
affect the LDF fit, and in particular the shape parameter γ (see Fig. 3.9(a)). For high-gain-
saturated stations with an increased start-time the radius of curvature increases systematically
by about 5% (see Figs. 3.9(d) and 3.9(e)). A consecutive study of each single modification has
been performed. For a summary of the results see Tab. E.2 in the appendix. The reconstruction
and all included parametrizations have been optimized for the standard SdCalibrator. Thus the
effect on S1000 has been checked as this affects the energy scale. It has a systematic offset of ∼ 1%
with a standard deviation of 1%. The application of the modifications in the reconstruction of
MC photon showers is discussed in Chap. 4.
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Module: SdEventSelector

This module selects candidate stations7 and twin stations8. In case of a so-called bottom-up se-
lection, as used in this thesis, the shower geometry is estimated from the triangle that maximizes
the sum of signals (seed). The geometry is used to check for the time compatibility of each addi-
tional station and to reject outliers from the candidate stations as accidental. Isolated stations,
stations without reconstructed data and stations which show a typical trace as occurring in case
of a lightning are also rejected from the candidates. Events can be selected according to their
trigger level (T4, T5) or rejected in case of lightning or if they fall in a bad data-taking period,
based on an xml card.

Module: SdPlaneFit

The reconstruction of the shower geometry is done in several steps. The geometry consists of the
showe core (x, y) and the direction of the shower axis (θ, ϕ). The shape of the lateral distribution
is parametrized by two parameters (β, γ). Depending on the number of stations, the radius of
the shower front curvature Rc is either fitted or evaluated from a parametrization. These fits are
not independent. A sketch of the shower geometry is shown in Fig. 3.7. The first guess for the
location and arrival time of the shower core are taken from the barycenter b of the candidate
stations,

b = x0 +
∑N

i=1 xi ·
√
Si

∑N
i=1

√
Si

. (3.16)

with xi and Si the position and signal of the station. The barytime, tb, is calculated analogously.
The showerfront moves with the speed of light along the shower axis with direction â,

x(t) − b = −c (t− tb) â.

A first estimate for the shower direction, assuming a planar shower front, is obtained by mini-
mizing

χ2 =
1
σ2

t

N
∑

i=1

(ti − t(xi))2

with the time variance given by

σ2
t = a2 ·

(

2T50

n

)2

· n− 1
n+ 1

+ b2 (3.17)

a2 = 0.67612 + cos(θ) · (0.16106 − 0.47641 · cos(θ))

b2 = 128ns2 + cos(θ) · (−184 + 413 · cos(θ)) ns2.

Here T50 is the time in [ns] corresponding to a cumulative signal of 50% and n = s/(cos(θ) +
(2 · 1.2 · sin(θ)/(1.8 · π)) is the effective number of particles producing the signal. In Offline this
model is tagged as eCDASv4r8.

7Candidate stations are stations that have measured a coincident signal with time delay according to the shower
geometry.

8Twin stations refer to those stations which have a partner a few meters next to it for a measurement of the signal
uncertainty.
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Module: LDFFinder

The LDF is parameterized by a modified NKG-type function [206]:

S(r) = S1000 ·
(

r

ropt

)β

·
(

r + 700 m
ropt + 700 m

)β+γ

, (3.18)

with β and γ shape parameters. Note that β and γ are by default not free in the fit but fixed
to a parametrization in S1000 and θ obtained from data. The parametrization can be found
in Eq. D.5 in the appendix. The use of an average LDF allows to reduce the number of free
parameters to the energy estimator S1000 and the shower core and thus allows for a fit at low
station multiplicities. At a reference distance of ropt = 1000 m, the fluctuations of the expected
signal due to a lack of knowledge of the LDF shape is minimal (<5%) [207] and depends mainly
on the detector geometry. The uncertainty of signal Si of a station i is [208, 209]

σSi = (0.34 + 0.64 · sec θ) ·
√

Sexp,i. (3.19)

The fit method is a maximum likelihood fit that accounts for stations with small and large
signals, saturated and silent9 stations. The probabilities are multiplied to a single likelihood.
The minimum number of stations needed for an LDF fit with fixed shape is 3 stations. As a next
step the curvature is taken into account. A full fit of the radius of curvature (Rc), the shower
front start time (t0) and the shower core requires at least 5 stations and is done by minimizing

χ2 =
N
∑

i=1

[c (ti − t0) − |Rc â − xi|]2
c2 σ2

t

, (3.20)

with σt the time uncertainty (cf. Eq. 3.17). Finally, S1000 and the shower core are fitted again
with the new estimate of the axis.
The energy is obtained based on S1000 [210]. The calibration relies on the constant intensity
cut method (CIC) which assumes that all CR arrive at Earth isotropically without a preferred
direction. S1000 shows a dependence on the shower geometry wich can be corrected to a signal
at a zenith angle of 38◦, which is the median of the zenith angle distribution up to 60◦ [192]:

S38 = S1000 ·
(

1 + 0.987 · c(θ) − 1.682 · c(θ)2 − 1.299 · c(θ)3
)−1

(3.21)

with c(θ) = cos2(θ) − cos2(38◦). The energy is obtained with a simple conversion,

ESD = A ·
(

S38
)B

, (3.22)

with Acal = 0.190 and Bcal = 1.025 from a study of hybrid events [192, 211].

3.4.3 Surface detector simulation

The simulation of the time-dependent SD response in Offline starts from the single secondary
particles of a Corsika shower at observation level. The simulation part is simply added to the

9Silent means non-triggering here.
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module sequence before the reconstruction. In Corsika the shower is thinned [158]: A particle
is only followed until the total energy of its secondary particles falls below

Eth = ǫthE0. (3.23)

Below this energy only one random particle is followed, carrying a weight

w =
ǫthE0

Ej
, (3.24)

with Ej the energy of the representative particle and εth the thinning level. An unthinning
(or resampling) procedure is being applied to get from the thinned shower an estimate of the
distribution of secondary particles [212]. In order to assure a suffcient sample size of particles
arriving at the detector and to reduce the introduced Poissonian fluctuations, the sampling area
for a station is not the true detector size Adet but an area Asamp around the location at core
distance r within ±10% · r. The effective number of particles is then w ·Adet/Asamp. The arrival
time of each particle is smeared to avoid muon-like peaks and the positions are distributed
uniformly over the sampling area. Then the detector response is simulated using Geant4 [213].
The module sequence used here can be found in App. C. The SD detector simulation has been
verified by a comparison to measurements of atmospheric muons entering an SD tank under
certain zenith angles, realized by additional muon hodoscopes [214].
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CHAPTER 4

UHE Photon Detection

This chapter contains the most important parts that are needed to set upper limits on the flux of
UHE photons with the surface detector of the Pierre Auger Observatory. We present technical
studies needed for the photon detection with the SD of Auger the Offline: a modification of
the event reconstruction procedure for an improvement of the signal risetime, which is used
as one separation parameter for the photon search, and an update of the energy calibration
procedure to obtain an energy scale for (non-preshowered) photons. A short motivation is
presented next about the differences of photon- and hadron-induced showers in the SD. The
fourth section outlines the current experimental status of the upper limits on the UHE photon
flux and fraction and briefly sketches the Frequentist construction of upper limits.

4.1 SdCalibrator

The SdCalibrator has been modified to improve the stop-time calculation of the time trace, in
particular for stations with at least one high-gain-saturated PMT, as described in Sec. 3.4.2.
This was suggested in [215] for risetime studies. Here we summarize the effect on simulated
photon showers (see Figs. 4.1(a) to 4.2(b) and Figs. 3.8(b) to 3.9(b)).

• The usage of the respective gain for the signal search affects photons and data differently.
The shape of the distributions is similar (except for the stop-time distribution, which
might be related to actual differences in the observed LDF shape and length and the
muon fraction) but photon showers are affected stronger. In principle this modification
should be safe to be used and differences are expected to be of physical nature.

• The change of the tolerance in the search for flat pieces affects the start-time of high-gain-
saturated stations for photon primaries but not for data. For the remaining observables
the effect is almost compatible.

• The effect of the backwards scan of the trace for flat pieces on the start- and stop-time of
high-gain-saturated stations is stronger for photon primaries than for data. This difference
is reflected in the station risetime and signal. This might be related to a difference in the
signal fluctuations for the different primaries.
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Figure 4.1: Relative difference of reconstructed quantities with and without applying all modifi-
cations to the SdCalibrator, applied on MC photons. Mean and standard deviation
can be found in Tab. E.2. Cyan: Selected non-saturated stations of events with no
saturated station, magenta: selected HG-saturated stations of events with at least
one HG-saturated station, orange: LG-saturated stations of events with at least one
HG-saturated station.
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Figure 4.2: Relative difference of reconstructed quantities with and without applying all modifi-
cations to the SdCalibrator, applied on MC photons. Mean and standard deviation
can be found in Tab. E.2. Cyan: Selected non-saturated stations of events with no
saturated station, magenta: selected HG-saturated stations of events with at least
one HG-saturated station, orange: LG-saturated stations of events with at least one
HG-saturated station.
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(b) Example 1, all modifications
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(c) Example 2, no modification
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(d) Example 2, all modifications

Figure 4.3: Effect of the SD calibrator modifications on start- and stoptime, indicated as dashed
lines, for a HG-saturated station (MC photons).
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Figure 4.4: Reconstruction bias of S1000 in the LDF fit applied on simulated photons, studied on
the base of dense stations inserted at 1000 m from the core. Top: Sketch of an SD
event on the detector array. The ring of grey dots indicates the dense stations inserted
at 1000 m. The black line shows the shower direction, yellow to red colors indicate the
time delay and the size of the dots shows the SD signal. Bottom: Inserting 12 dense
stations to each event (grey dots), here a simulated photon shower with E = 18 EeV
and θ = 50◦. Top left: Energy dependence of log10(S1000/S1000,dense), fitted with
a function f(E) = breco + areco · (log10(EMC/ eV) − 18). The color scale indicates
equidistant bins in sec(θ). The bias is positive and decreases with energy. Top right:
Zenith angle dependence of α. The fit is compatible with a constant.

In the example shown in Figs. 4.3(a) to 4.3(b) it is clearly visible that the stoptime is improved
by the modifications. Another example shown in Figs. 4.3(c) to 4.3(d) shows an improvement of
the start-time and baseline. The reduction of the flat piece tolerance (modification 3) affects the
start-time of MC photons stronger than for data. The increase of the start-time is reasonable,
but a detailed check (in particular of the flat piece tolerance) is an important topic for future
studies. For now we conclude that the modifications can be applied for the SD photon search,
being aware that the radius of curvature has to be used carefully. The risetime is improved
significantly.
The reconstruction and all contained parametrizations are optimized to describe the data. Since

the data is dominated by hadronic showers, this fixed LDF shape is not expected to describe
photon-induced showers. Consequently S1000, the shower axis and the core position are biased.
The shift of the reconstructed zenith angle from the MC truth for simulated photons is shown
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in Fig. E.10 in the appendix. It is centered at zero and with a standard deviation of about
1.2◦. There is no apparent systematic shift. For the reconstruction of S1000 an overestimation
is expected qualitatively because of two reasons: the LDF of an EM shower is compact, with a
large fraction of the triggered stations within 1000 m from the core in the detector simulation,
and the slope used for the LDF fit is underestimated. A quantitative check of the bias in the
reconstructed S1000 has been performed using additional (dense) stations at 1000 m from the
core, as shown in the top left plot in Fig. 4.4. The average observed signal at the dense stations
is compared to the reconstructed LDF at the same distance. For this comparison we require
that all 12 tanks have been triggered. The energy dependence of log10(S1000/S1000,dense) has
been fitted with a function

f(E) = breco + areco · log10(EMC/ EeV) (4.1)

as a first order approximation, with EMC the true energy. It is shown the top left plot in Fig. 4.4.
The bias is positive, showing an expected overestimation of S1000, and decreases with energy
and for vertical showers. With respect to the photon energy scale, we are particularly interested
in the energy-dependent term areco. The top right plot in Fig. 4.4 shows that areco is constant
in the zenith angle with a0 = −0.5.

4.2 Photon Energy Scale

Other than for hadronic primaries, photon showers develop later in the atmosphere and under
certain conditions (high energies and vertical showers) the shower maximum can be below ground
level. In this case the shower is not fully developed and S1000 is underestimated. The CIC
method cannot easily be applied here as the shower age has to be accounted for in the energy
calibration. The calibration is based on the universality1 of the longitudinal shower development
of the pure EM cascade, which is the main component of a photon-induced air shower. The
shower size (S1000) for a given energy follows a universal profile in the shower age and thus
in ∆Xgr = Xgr − Xmax (Xgr is the observation level), with a shape similar to a Gaisser-Hillas
function and a shift due to lateral diffusion. The universal profile can be used to estimate
the primary energy of a photon-induced airshower based on S1000, the zenith angle θ and the
elongation rate (parametrized for non-preshowered photons). This method has been discussed
in [216] by Billoir et al. but it is there based on the true S1000(MC) that is taken from the SD
simulation. Due to the lack of muons in hadronic interaction models (see Sec. 3.3), S1000(MC) is
underestimated and the reconstructed energy overestimated when applied on the reconstructed
S1000. It has been updated by Ros et al. [217] using the reconstructed S1000 for a zenith range
30◦ − 60◦. Here the parametrizations are updated for the reconstruction used in this work and
further improved.
Details about the set of photon simulations used here can be found in Chap. 5. For the following
parametrizations non-preshowered photons have been used with a reconstructed LDF, a 6T5
trigger, with log10(EMC/ eV) in the range 18.5 − 20.5 for the elongation rate or 19.0 − 20.5 for
the universal profile, with Xmax > 500 g/cm2 (due to problems in the simulations, cf. Fig. 5.1),
with ∆Xgr > −50 g/cm2 and θ in a range of 0◦ to 60◦. If nothing else is mentioned, each
simulated event is based on a unique Corsika simulation instead of reusing a single event in
multiple detector simulations. The simulated spectrum is E−1.

1We assume here that the universality holds approximately also for the sum of the shower components (EM,µ).
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Figure 4.5: The elongation rate of simulated photons. Data of non-preshowered (preshowered)
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line, is χ2/NDF = 15.1/7 (6.5/6). A linear fit for preshowered photons (C) is shown
as well, with a fit quality of χ2/NDF = 6.1/2. A data point of photons (C) has been
removed at 1019.5 eV (〈Xmax〉 = 903 ± 44 g/cm2) with a statistics of 2 events. The
number of events has been added explicitely for less than 15 events.

­100 0 100 200 300 400 500 600 700 800

 [
V

E
M

]
α

 /
 (

E
/[

E
eV

])
1

0
0

0
S

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

No preshower (U)
=100

3
Fit mGH, p

Fit mGH

Residual Fit mGH

Billoir et al. 2007

Ros et al. 2010

]2 [g/cmgrX∆

­100 0 100 200 300 400 500 600 700 800R
es

id
u

al

­4
­2
0
2
4

Figure 4.6: The universal profile for simulated, non-preshowered photons (α = 1). Fits with a
linear an quadratic function are compared to the results from [216, 217]. Black lines
show the result of fitting the same functional to data of this work. The dashed line is
for p3 = 100 g/cm2 fixed, the full line for 4 free parameters.

51



Chapter 4

The elongation rate for this simulated dataset is shown in Fig. 4.5. A linear fit, as suggested
in [216] and as expected from Eq. 3.1, gives the following parametrization for non-preshowered
photons:

Xmax = q0 + q1 · log10(E/ EeV) (4.2)

with E the primary energy and q0 = 822 ± 6 g/cm2, q1 = 155 ± 5 g/cm2 (χ2/NDF = 15.1/7).
The parametrization can be improved by adding a quadratic term to account for the energy-
dependent slope:

Xmax = q0 + q1 · log10(E/ EeV) + q2 · log2
10(E/ EeV) (4.3)

with q0 = 871 ± 18 g/cm2, q1 = 64 ± 31 g/cm2 and q2 = 37 ± 12 g/cm2. The fit quality is
improved to χ2/NDF ≈ 1. The quadratic form might be explained by the LPM effect. The last
data point contains 10 events and three of them have an Xmax of more than 1500 g/cm2, which
is most probably due to the LPM effect. The comparatively high value of the first data point
for photons (C) might be explained by the following: The average zenith angle for preshowered
photons increases for low energies close to the threshold (more than five degrees difference
between 1019.5 eV and 1020 eV). This corresponds to a larger value of Xmax as the path of the
photon in the upper, less dense amosphere is longer.
Note that we require ∆Xgr > −50 g/cm2 which introduces a bias in the elongation rate (see
also Fig. 5.1). This cannot be avoided as the Corsika shower is simulated to the obervation
level and the calculation of Xmax for deeper showers becomes unreliable. The efficiency of this
selection is shown in Fig. 7.1. With decent statistics this might be a topic for future studies to fit
the Xmax distribution in bins of energy (which is still not trivial due to the LPM effect). Thus,
the average Xmax is overestimated in particular at high energies. As expected, the elongation
rate for preshowered photons is lower, as shown in Fig. 4.5.
For the universal profile we start with the same functional form as suggested in [216],

S1000

E/ EeV
= p0 ×

1 + ∆Xgr−p3

p1

1 +
(

∆Xgr−p3

p2

)2 , (4.4)

with a shape close to a Gaisser-Hillas function (abbreviated mGH in the following), as shown
in Fig. 4.6. The parametrization from Billoir et al. is below the data shown here as expected
from the difference in the S1000 used. The parametrization from Ros et al. does not describe
our data sufficiently either. In a first fit we set p3 = 100 g/cm2 (dashed black line), with
p0 = 1.92 ± 2 · 0.02 VEM/ EeV, p1 = 540 ± 39 g/cm2 and p2 = 299 ± 8 g/cm2 (fit quality
χ2/NDF = 55.6/14). Leaving p3 free improves the fit (χ2/NDF = 27.1/13, full red line) and
gives a shift p3 ≈ 200 g/cm2, but p1 becomes unstable.
Before further studying the functional form, an energy dependence of the distribution, clearly
visible in Fig. 4.7(c), breaks the universality and must be accounted for. Note that deviations
from the universal profile are expected because the reconstruction of the LDF is not optimal
for photons. The universality can partly be recovered by introducing a correction factor α so
that

log10(S1000/ VEM) = α · log10(E/ EeV) + β. (4.5)

β contains the actual profile and α quantifies the energy dependence of S1000. First we fit the
energy dependence in 6 equidistant bins of ∆Xgr (see Fig. 4.7(a)). Figure 4.7(b) shows the
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Figure 4.7: Partial recovery of the universal profile (for simulated, non-preshowered photons) by
adding a correction factor α in S1000/E

α. The correction factor has been optimized on
the energy range of 1019 eV to 1020 eV.

consequent parametrization of α in ∆Xgr,

α = α0 + α1 · ∆Xgr, (4.6)

with α0 = 0.83 and α1 = 2.3 · 10−4( g/cm2)−1. Here each shower has been simulated in the
detector five times to increase the statistics. If we compare this result to the energy dependence
expected from the reconstruction bias of S1000, a part of the energy-dependence of the profile can
be explained by the reconstruction bias of the LDF fit. Assuming a universality of S1000,dense/E,
with S1000,dense an estimator of the true S1000 from dense stations, we find for the reconstructed
(biased) S1000 that S1000/(E/ EeV)1−areco = breco · f(∆Xgr). Here f(∆Xgr) is the universal
profile and areco and breco from Eq. 4.1. The corrected universal profile is shown in bins of the
true energy in Fig. 4.7(d). The energy dependence is almost removed. The last step is now the
study of the functional form of the universal profile. Motivated by [218, 219], we suggest to fit
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the EM component with a Gaisser-Hillas-shaped profile (abbreviated GH in the following):

S1000

(E/ EeV)α
= Smax ×

(

∆Xgr − ∆X0,gr

Xmax −X0

)

∆Xmax−∆X0
Λ

· e(∆Xmax,gr−∆Xgr)/Λ (4.7)

= p0 ×
(

1 +
∆Xgr − p2

p1

)p1/Λ

· e−(∆Xgr−p2)/Λ, (4.8)

with an attenuation length2 Λ ≈ 100 g/cm2 after the shower maximum [218], ∆Xgr = X −Xgr,
∆Xmax,gr = Xmax − Xgr and ∆X0,gr = X0 − Xgr. A simplified rewriting gives p0 = Smax,
p2 = ∆Xmax,gr and p1 = Xmax − X0. The fit with the GH function improves the fit quality
(χ2/NDF ≈ 1, reduced by a factor 2) and the parameters in GH are more stable. Thus we decide
to use the GH form. In order to reduce the spread due to the LPM effect and the need for a
proper reweighting of the spectrum, we restrict the dataset to an energy bin of 1019 - 1019.5 eV.
The final parametrization is obtained using single measured values with uncertainty estimates
(see Fig. 4.9 and Tab. 4.1). The uncertainties are

∆(∆Xgr) = xgr · tan(θ) · ∆θ, (4.9)

∆(S1000/(E/ EeV)α) =

√

∆S1000

(E/ EeV)α

2

+
(

S1000

(E/ EeV)α
· ln(E/ EeV) · ∆α

)2

, (4.10)

∆α =
√

1.13 · 10−4 + 1.02 · 10−9 + 2 · −2.77 · 10−7 (4.11)

with ∆θ, ∆S1000 the reconstruction uncertainties of the zenith angle and S1000 and ∆α the
uncertainty of the parametrization of α. All parametrizations for the photon energy scale are
summarized in Tab. 4.1.
The energy calibration is based on an interative procedure [216]:

• Start with a first assumption of E = 2 × Ehadr,rec, where Ehadr,rec is the reconstructed
hadronic energy scale

• Get Xmax from the parametrized elongation rate of non-preshowered photons

• Get a new estimate of the energy from the parametrized universal profile based on S1000,
θ and Xmax

It converges on average after ∼ 8 iterations (cf. Fig. 4.11, left plot). The selection required
for this energy calibration is a reconstructed S1000, ∆Xgr > −50 g/cm2 above ground and a
conversion of the calibration procedure (ǫ = Ei − Ei−1 < 10−5). A final comparison of the
stability of the obtained calibration and of former work can be found in Fig. 4.10(a). It clearly
shows the effect of consequently using the reconstructed S1000. The effect of the correction is
significant in particular at low energies. The new photon energy calibration is stable up to
about 1019.8 eV with a resolution of ∼ 35%. The remaining energy dependence at high energies
(with a systematic shift < 20% below 1020 eV) comes from the cut on the Xmax distribution
by selecting showers above the ground level. This was checked by selecting showers with both
the reconstructed and the true Xmax above ground (see Fig. 9.1(a) in the appendix) for which
the energy dependence is removed. Another source of outliers with a significant overestimation

2The assumption Λ ≈ 100 g/cm2 holds approximately also in [219] (it is slightly larger than the average for all
energies and between 100 m and 2500 m).
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Table 4.1: Photon energy calibration

Function Ref. Parameter Value

Elongation rate Eq. 4.3 q0 (871 ± 18) g/cm2

q1 (64 ± 31) g/cm2

q2 (37 ± 12) g/cm2

Universal profile Eq. 4.6 α0 0.83 ± 0.01
α1 (2.3 ± 0.3) · 10−4( g/cm2)−1

Eq. 4.7 p0 3.04 ± 0.01 VEM
p1 592 ± 13 g/cm2

p2 152 ± 2 g/cm2
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Figure 4.10: Relative error of the reconstructed photon energy with respect to the MC truth, as
function of the true energy. Different energy scales are compared. Showers have been
simulated in the detector five times.

of the reconstructed energy due to an exceptionally deep shower maxima is the LPM effect.
Energies can be overestimated by up to a factor 2 or even more. This bias cannot be resolved
with the described calibration method which bases on an average Xmax. The energy spectrum
for non-preshowered photons is shown in Fig. 4.11 on the right, visualizing the migration of
events due to the energy reconstruction. For the integral number of events above 1019 eV
(1019.5 eV), the fraction of events migrating below/above threshold in the reconstructed photon
energy is 11%/2% (12%/11%), without accounting for reweighting of the photon spectrum. This
migration is accounted for in the efficiency calculation. The photon energy calibration has been
improved significantly by the introduced correction.
The calibration is tuned on non-preshowered photons. This is obvious from the elongation rate.
The relative error of this energy scale to the true MC value, when applied on preshowered
photons, can be found in Fig. 9.1(b) in the appendix. It amounts to approximately -20%. The
relative error of the hadronic scale to the MC value, when applied on non-preshowered photons,
is approximately -60% or a half decade (same figure).
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4.3 Separation Parameters

For the photon search it is neccessary to establish a photon-hadron separation based on different
SD observables. Compared to an average hadron-induced shower, a photon-induced shower of
the same energy reaches its shower maximum Xmax deeper in the atmosphere, which is reflected
in a smaller curvature radius of the shower front. The shower cascade produces less muons,
which is reflected in a smaller shower size at ground, in a steeper LDF and in their arrival time
distribution (cf. Fig. 4.12). These parameters contain information about the time and space
domain of the air shower. Chapter 6 introduces the separation parameters used in this work.

4.4 Upper Limits on UHE Photons

The goal of this analysis is to set upper limits on the integral photon flux and fraction.
First it is necessary to estimate the number of photon candidates at confidence level. The
statistical framework is a Frequentist construction of a confidence interval. Let θ̂(x1, x2 . . . , xn)
be the estimator of an unknown parameter θ. The estimator θ̂ (and the observed value θ̂obs)
is based on a sample of n observations of a random variable x and is distributed according to
the probability density function (p.d.f.) f(θ̂; θ). We assume that, while θ is not known, we
know how its estimator is distributed and that the p.d.f. contains the true value. Let us focus
on the upper limit of a central and of a one-sided confidence interval. The construction and
interpretation is different in different approaches. Frequentist constructions are the classical
Neyman construction [220] and the Feldman-Cousins approach that extends the former by an
ordering principle. Steps that are left out here can be found in App. A.

4.4.1 Frequentist approach (Neyman construction)

The central confidence interval [a, b] is the region that would include the true value θ in a fraction
1 − α of the repeated experiments measuring θ̂. Assuming that for the estimator this region is
limited by uα/2(θ) and vα/2(θ) (an example has been compiled in Fig. 4.13(a)), the probability
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Figure 4.12: Some footprints in the surface detector that differ for photon- and hadron-induced
air showers. (Shower image in the background from [133].)
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Figure 4.13: Example of a central confidence belt (shaded region) which is limited by uα/2(θ),
vα/2(θ), with focus on the upper limit. The rotated plots indicate the p.d.f f(θ̂; θt),
here for the case of a Poissonian distribution. The horizontal line indicates a fixed
value θ̂Obs. (a) The belt of the central interval is constructed for each θ according to
the p.d.f. and confidence level. (b) The relation of the quantities becomes clear when
choosing θt = b(θ̂Obs).
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for θ̂ to be outside the confidence interval at the corresponding side is

1 − α/2 = P (θ̂ ≥ vα/2(θ)) =
∫ +∞

vα/2(θ)
f(θ̂; θ)dθ̂ = 1 − F (vα/2(θ); θ), (4.12)

where F is the cumulative distribution of f . With vα/2(θ) monotonically increasing, the upper
limit as function of the estimator θ̂ is given by the inverse function

b(θ̂) ≡ v−1
α/2(θ). (4.13)

This means that the inequalities θ̂ ≤ vα/2(θ) and b(θ̂) ≥ θ are equivalent and that

P (a(θ̂) ≤ θ ≤ b(θ̂)) = P (uα/2(θ) ≥ θ̂) + P (vα/2(θ) ≤ θ̂) = 1 − α, (4.14)

which is the confidence level (C.L.) or coverage probability. The Frequentist confidence interval
or upper limit does not make a statement about the true value θ but about the probability
that the true value is covered in a series of experiments. The upper limit can be understood
as a hypothetical value of θ that is constructed, according to a given p.d.f., so that a fraction
1 − α/2 of observed events is larger (smaller) than θ̂Obs. Under the hypothesis θ = b, as shown
in Fig. 4.13(b), we find vα/2(b) = θ̂Obs and

α/2 =
∫ +∞

θ̂Obs

f(θ̂; b)dθ̂ = F (θ̂Obs; b). (4.15)

In the case of the photon search we have an unknown Poisson-distributed (integer and positive)
parameter with mean ν, estimated by n = ν̂. We want to find the upper limit b so that

α/2 = P (n ≤ b) (4.16)

=
n−1
∑

n=0

bn

n!
e−b

= 1 − Fχ2 (2b, 2(n+ 1)),

where Fχ2 is the cumulative χ2-distribution for 2(n+ 1) degrees of freedom. The upper limit is

b =
1
2
F−1

χ2 (1 − α/2, 2(n+ 1)), (4.17)

with Fχ2 the quantile of the χ2-distribution. Let ν be composed of a signal with mean νsig

and a (known) background with mean νbkg, both independent Poissonian distributions. With
ν = νsig + νbkg and νup

sig the upper limit on the signal, Eq. 4.16 becomes

α/2 = P (n ≤ νup
sig + νbkg) (4.18)

=
n
∑

n=0

(νup
sig + νbkg)n

n!
e−(νup

sig+νbkg).

Comparing Eqs. 4.16 and 4.18 finally gives
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b = νup
sig + νbkg. (4.19)

Dealing with integer values, the confidence belt is actually not defined for all values of θ. This
is taken into account by the inequations a(θ̂) ≤ θ ≤ b(θ̂) instead of requiring equality. Thus the
confidence slightly overcovers3. This degree of conservativeness is given by the mathematical
problem and cannot be removed. It is obvious that a one-sided upper or lower limit can be
obtained the way as described above, but then the confidence level is 1 − α/2.

4.4.2 Frequentist approach (Feldman-Cousins)

The classical Neyman construction has two problems that are related to the coverage:

• If data are used to decide whether to state a one- or a two-sided confidence region, the
jump at the point of switching between the different types causes a coverage that is smaller
than the confidence level (undercoverage).

• In the case of boundaries (such as θ > 0) there exist unphysical and maybe empty regions
of n that one might want to treat differently. An over-conservative treatment (and thus
an overcoverage) makes the method less powerful.

If the decision is taken beforehand and the results are shown consistently whatever the observed
result is (in particular for zero background), the classical Neyman construction is sufficient. But
as soon as any posterior decisions are made, the result gets biased. The Neyman construction
has been extended in the work of Feldman & Cousins [221] to solve these problems. It is based
on a ranking according to the likelihood ratio

R = f(n; νsig)/f(n; νbest
sig ) (4.20)

with νbest
sig = max(0, n − νbkg) the most likely, physically allowed fit result of the signal for an

observed n and

f(n; νsig) =
(νsig + νbkg)n

n!
e−(νsig+νbkg). (4.21)

The construction of the confidence interval is done in four steps. For fixed background and
given n the best fit signal is obtained. For fixed signal the likelihood ratios are added in a
scan over n until the confidence level is reached. The second step is then repeated for different
signals. Finally the procedure can be repeated for different assumptions on the background.
The obtained confidence interval smoothly combines one- and two-sided regions. For large n it
is approximately central (as in the Neyman construction). For this work the Feldman-Cousins
approach will be used.

4.4.3 Upper limits on the photon flux and fraction

The upper limit on the integral photon flux at 95% C.L. is calculated as

Φ95
γ (Eγ > E0) =

1
ε

·
N95

γ (Eγ > E0)
A′

corr

(4.22)

3If P (θ > b(θ̂)) > α/2, then the confidence interval overcovers.
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Table 4.2: Experimental results for UHE photon searches

Experiment Det. technique C-Variable(s) Operation Refs.

Haverah Park SD (water Cherenkov) E-spectrum 1974-1987 [223] (flux limits
after private comm.
related to [232])

AGASA SD (scint. + µ-det.) µ-density 1990-2003 [222, 224, 233]
Yakutsk SD (scint. + µ-det.) µ-density since 1973 [224–226]
Pierre Auger Obs. SD (water Cherenkov) risetime, since 2004 [93]

curvature
Hybrid (SD + fluor.) Xmax, LDF [100, 229]

Telescope Array SD (scint.) curvature since 2007 [227, 228]

with N95
γ the number of photon candidates at 95% C.L., Eγ the reconstructed photon energy,

A
′

corr = 0.98Acorr the exposure A corrected for the zenith angle range (cf. Eq. 3.15) and for
a burn sample of 2% of all data and ε is the photon selection and reconstruction efficiency,
above an energy threshold E0. The upper limit on the integral photon fraction at 95% C.L.
is calculated as

F 95
γ (Eγ > E0) =

N95
γ (Eγ > E0)

Nγ(Eγ > E0) +Nnon−γ(Ehadr > E0) · A
′

corr·ε
A

≈
N95

γ (Eγ > E0)

Nall(Ehadr > E0) · A
′

corr·ε
A

(4.23)

with Nγ the number of photon candidates found in the analysis, Nnon−γ number of non-photon
events, Nall the total number of events and Ehadr the reconstructed hadronic energy.

4.4.4 Current upper limits on the diffusive photon flux and fraction

Upper limits on the diffusive photon flux and fraction have been placed by different EAS exper-
iments (see Tab. 4.2). AGASA, Yakutsk and Telescope Array have operated or are operating
scintillation counters. Telescope Array uses the curvature of the shower front as the composition-
sensitive variable (C-variable). AGASA and Yakutsk combine scintillators and muon detectors,
using the muon density as the C-variable. They have also published a combined limit in [224],
given very similar detectors and a compatible energy calibration. Haverah Park and the Pierre
Auger Observatory use water Cherenkov detectors. Haverah Park tries to match the spectrum
varying the γ/p-fraction. The Pierre Auger Observatory has published photon limits for the
SD alone and for the Hybrid measurement (SD+FD). The C-variables for the SD alone are
the risetime and the radius of curvature of the shower front. For the Hybrid analysis the most
stringent parameter is the depth of the shower maximum, Xmax, and in addition a parameter
related to the shape of the lateral distribution is used. The SD energy estimator of the primary
particle for scintillators and water Cherenkov detector is a particle density obtained at a distance
that minimizes fluctuations due to a lack of knowledge of the LDF shape. Depending on the
experiment, the energy is calibrated either with simulations or with a complementary detector.
The limits are compiled in Figs. 4.14(a) and 4.14(b) and compared to the predictions discussed
in Secs. 2.6.1 and 2.4.2. It should be mentioned that the limits from Haverah Park [223] and
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Figure 4.14: Upper limits (95% C.L.) on the integral, diffusive photon flux and fraction derived
from UHECR experiments: AGASA (A) [222], Haverah Park [223], AGASA-Yakutsk
(AY) [224], Yakutsk (Y) [225, 226], Telescope Array (TA) [227, 228] and the Pierre
Auger Observatory (SD, Hyb) [93, 229]. Shown is also the sensitivity for JEM-Euso
[230] for 10 years operation in the Nadir mode. Assumed is an E−2-spectrum for
photons. A list of the experiments and data shown can be found in Tab. 4.2. In
addition to top-down models (TD, Z-Burst and SHDM from [75], SHDM’ from [76])
and GZK photons in astrophysical scenarios (cf. Sec. 2.6.1) [75, 94], predictions for
Lorentz invariance violation (LIV) [231] are shown.
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AGASA [222, 233] are only mentioned for completeness but are not shown as the energy scale
is not fully compatible in this case.
As discussed earlier in Sec. 2.4.2, most top-down models are significantly restricted by Auger
SD and Hybrid upper limits. The predicted integral fraction of GZK photons from proton ac-
celerated in astrophysical scenarios is below 0.1% in most of the energy range (for the case of
Sarkar et al. [94]). For heavier compositions it is lower. Limits are approaching the GZK region
for primary proton with flat injection spectra.
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CHAPTER 5

Dataset and MC Simulations

This chapter introduces the datasets of experimental data and photon Monte-Carlo simulations.

5.1 Experimental Data

The set of experimental data from the surface detector contains the period from January 1st,
2004 until May 14th, 2013. The CDAS version is v1r0, which already contains the PMT moni-
toring information needed to reject faulty PMTs. It has been reconstructed with Offline v2r9p3
(revision 23943, corresponding to the version used for the ICRC 2013 [192]). The module se-
quence of the SdReconstruction can be found in App. D. If nothing else is specified, we use the
modified version of the SdCalibrator as described in Sec. 3.4.1.

5.1.1 Burn sample

For purposes of optimizing and comparing parameters for the photon search and for defining
the principal component axis in the multivariate analysis we use a burn sample of 2% of all
data. Events have been chosen randomly out of all good events above 3 EeV with a T4 and 6T5
trigger, with θ < 60◦ and a reconstructed LDF, with a probability of 2%.

5.2 Photon Simulations

5.2.1 Air shower

Details about air shower simulations and the software Corsika can be found in Sec. 3.3. The
photon signal for this analysis has been simulated with Corsika 6.970, amounting to 4000 sim-
ulated showers. An E−1 spectrum has been simulated for energies from 1018.5 eV to 1020.5 eV
(other spectral indices are realized by a proper reweighting of each event). The solid angle
distribution follows the assumption of a flat detector, with zenith angles from 0◦ to 65◦. For low
energy interactions the UrQMD 1.3.1 model has been used [234, 235]. High energy interactions
have been treated with the QGSJetII.03 model [169, 170]. Electromagnetic interactions are
treated with the EGS4 model [165]. Photonuclear interactions are simulated according to the
PDG extrapolation Cudell et al. [236]. In order to reduce computing time, showers have been
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thinned (see Sec. 3.3.4) with a thinning level of 10−6 optimal for photons. The preshowering
in the geomagnetic field is accounted for with the option Preshower. For this purpose, a
modified version of Corsika has been used with the IGRF-11 model [237] updated to the year
2010 [238]. The simulated Corsika showers used in this thesis have been provided by C. Bleve,
as well as technical support.
It has already been reported in [239] that there are two problems in Corsika 6.970 which are
also apparent in this work. First, in some photon showers all energy is deposited in the first
interaction due to a bug in the software (backwards-flying particles that are wrongly interpreted
as energy deposit). This creates very small values of Xmax, which can be mostly fixed by dis-
carding events with Xmax < 500 g/cm2 (see Fig. 5.1). As the simulation stops at the observation
level, which is on average 880 g/cm2 for the Pierre Auger Observatory, a cut on Xmax above
ground has to be introduced. This cut affects only photon-induced showers as they develop very
deep in the atmosphere, in particular if they do not convert in the geomagnetic field and for
the LPM effect. This cut on the Xmax distribution introduces a bias in 〈Xmax〉, in particular
above 1019.5 eV and for vertical shower geometries (see Fig. 5.1), that cannot be avoided. The
preshower information was read from the lst-files of the Corsika output as this information is
not processed to Offline.
Another issue is that a very small fraction of Corsika showers does not finish the simulation.
This does not impose a bias. The few files missing in the energy bin 1018.5 − 1019 eV (true MC
energy) were corrected by a weighting factor wadd to recover the simulated spectrum with slope
αsim = −1. It is shown in Figs. 5.2(a) and 5.2(b). The simulated spectrum is then weighted to
a spectrum of slope α with a factor w = (E/1019.)α−αsim . A common assumption is α = −2.

5.2.2 Detector simulation

Each Corsika shower is simulated in the surface detector and reconstructed with the Offline
application SdSimulationReconstruction. The corresponding module sequence can be found in
App. C. Each physical shower has been resampled five times to enlarge statistics for efficiency
calculations (otherwise each shower is only simulated once in the detector as long as nothing
else is mentioned). The atmosphere used is the Malargue seasonal atmosphere.

5.3 Proton Simulations

The protons for parameters studies of this analysis have been simulated with Corsika 6.970,
amounting to 4000 simulated showers. Interaction models, thinning level, energy range, spec-
tral index and solid angle distribution are the same as for photon simulations. Each event is
weighted to the Auger energy spectrum [240]. Note that these proton showers were simulated
and reconstructed in the detector with an older software version, Offline v2r7p8, and without
modifications of the SdCalibrator. Whenever necessary, differences in the reconstruction are
pointed out.
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CHAPTER 6

Study of Separation Parameters

In this chapter different observables are studied to establish event parameters for a photon-
hadron separation. In order to avoid any reference to hadronic simulations in quantitative
studies of the photon-hadron separation, we use a burn sample of data instead (see Sec. 5.1.1)
together with the simulated MC photons. From current upper limits we can conclude that the
integral photon fraction is below 2% above 10 EeV. Whenever proton simulations are shown
they are only used for demonstration.

6.1 Technical Study: Noisy PMTs

In general, the SD monitoring is at a very sophisticated level and is done carefully to assure the
quality of the signal measurement and reconstruction (in particular the energy). Other than
analyses based on large statistics (e.g. the energy spectrum), the search of very rare classes of
events based on the form of the signal trace and not only the integral is very sensitive to the
proper functionality of the PMTs. Hardware malfunctions are not being simulated and may
pose a background to the searched signal that should not be rejected looking only for some
events. The best way is to identify malfunctioning PMTs in the monitoring and reject them
from physical analyses. Some PMTs show noisy traces for different reasons. This issue was
addressed in collaboration with the SD acceptance task and in particular with I. L’Henry-Yvon,
P. L. Ghia, P. Billoir and Y. Guardincerri. In the following we will give an overview over the
pathologies. Note that most of them can create an exeptionally large signal risetime and falltime.
A list of PMTs that have been removed in this analysis can be found in Tab. 6.1.

Afterpulse

Some PMTs produce significant afterpulses, as shown in Fig. 6.1(a). The station risetime might
be overestimated by a factor of more than two. The time periods of this behaviour correlate
with an exponential drop in the VEM peak value. The noise has an almost constant offset of
∼ 2500 ns after the signal start time. This malfunction can be identified in the monitoring.

69



Chapter 6

t [25ns]

0 100 200 300 400 500 600 700

S
(t

) 
[V

E
M

 p
ea

k
]

0

1

2

3

4

5

6

7

(a) Afterpulse (Event 1091764, station 573): Risetime
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(b) Late event (Event 6394688, station 722): Risetime
220 ns / 35ns / 23 ns (PMT 1/2/3).
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(c) Noisy baseline (Event 4587327, station 576): The
physical signal is too low for a senseful risetime.
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(d) Oscillating baseline (Event 13873446, station 880):
Risetime 30 ns / 38 ns / 38 ns (PMT 1/2/3).
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Figure 6.1: Examples traces of PMT malfunctions and their risetime, with PMTs 1/2/3 shown in
red/green/blue.
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Table 6.1: List of PMTs to be excluded [241]

Station_PMT YYMMDD start YYMMDD end Problem

573_2 41130 60610 Afterpulse
764_3 40101 90203 Afterpulse
1156_3 40101 81106 Afterpulse
1187_2 40101 90240 Afterpulse
1286_1 40101 81008 Afterpulse
1288_3 40101 90206 Afterpulse
1387_3 100331 x Afterpulse
1440_2 40101 100602 Afterpulse
376_2 40101 x Decay time
405_1 71006 90316 Decay time
602_2 90314 100721 Decay time
762_1 100304 x Decay time
922_3 40101 111003 Decay time
151_3 100504 x Other

Late event

The pathology shown in Fig. 6.1(b) occurs randomly and might be physical. After the main pulse
of the event, a second pulse followed by noise is measured by only one PMT. It was suggested
by the SD acceptance task that these might be delta rays produced by an electron close at a
PMT. For the photon search, the rejection will be done only in case that a photon candidate
shows this specific behaviour. The pathology is unlikely to be a single muon as the other PMTs
do not detect any light.

Noisy / oscillating baseline

Some PMTs have a high level of noise that is independent of the signal start time. Two types
of noise have been identified: Noise with no specific pattern and oscillating baselines (see
Figs. 6.1(c) and 6.1(d)). Most of these PMTs are already masked by the PMT quality cuts
(see Sec. 3.4.2), but some remain outside the cut region.

Other

The SD acceptance task identified further malfunctions related to only small afterpulses or to
problems with the decay time (very long time scales in the signal trace).

6.2 Technical Study: Direct Light Correction

The surface detectors are designed to diffuse the Cherenkov light of incoming particles on the
Tyvek R© surface, that it arrives at the 3 PMTs in equal amounts. This is usually the case for
almost vertical showers. Under certain geometrical conditions, the light can hit a PMT after
a few reflections or even without being reflected. Direct light causes a geometry-dependent
asymmetry of the PMT signal balance, where a signal excess in one PMT is measured earlier
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Figure 6.2: Correction of a large signal in a single PMT. The signal trace before the DLE correction
is indicated as thin lines, the DLE-corrected signal is indicated as bold lines. Left:
Example event from Data, right: Example event from MC photon

than the well-diffused light. A significant signal bias can be found in particular above 47◦ (which
is 90◦ minus the Cherenkov angle in water). In addition, direct light as well as direct hits of
the PMTs by single particles can cause signal excesses in single (or very few) time bins of only
one PMT. Depending on the strength and the delay of the excess to the start time, these effects
can lead to a significant underestimation of the risetime and thus contribute to an artificial
background for the photon search.
Direct light effects (DLE) and a correction algorithm have already been studied in the past.
Direct light is said to be the dominant reason for the signal asymmetry between the PMTs of
a station [242]. The signal balance, which is the signal of one PMT compared to the average
signal all PMTs of a station, shows a zenith-dependent azimuthal asymmetry. Shifting the
PMTs according to their relative positions φ0,i, the asymmetry has been parametrized in [243]
and [244]. A correction algorithm has already been developed in 2007 by Wileman et al. [245]
and implemented in Offline (module DLECorrectionGG). The idea is to search and correct for
the effects of average direct light as well as single spikes by comparing the PMT traces of a
station. The old method is being revisited and improved. The particular aim in this thesis is to
correct huge excesses in a way that it can be applied to photons and hadronic primaries without
introducing strong biases.
In the following we use SD data of the year 2008, reconstructed with Offline v2r9p3 (modified
SdCalibrator, as discussed in Sec. 3.4.2). This reconstruction includes PMT quality cuts based
on monitoring information. Events are selected with T4 trigger, a minimum energy above
3 EeV, a reconstructed axis, at least tree stations, and within a zenith range as specified in this
section (θ < 60◦ for the individual correction). Bad periods and lightning events are excluded.
Stations are required to have a minimum signal of 3 VEM (10 VEM for setting up the individual
correction). The required number of good PMTs and cuts on the PMT or station saturation
are given whenever needed. To assure that PMTs work normally, we reject noisy PMTs. For
the parametrization of the signal asymmetry and for the average DLE correction we also reject
stations with known PMT miscablings or rotations [246]. An example of the correction of a
large signal in only one PMT is shown in Fig. 6.2.
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6.2.1 Average correction

The signal balance, Si/S̄, is the fraction of the signal measured in one PMT compared to the
average signal in all PMTs. A value of 1 is expected if all light is well diffused. DLE cause an
asymmetry of the signal balance in the azimuth angle φi. The asymmetry increases for inclined
showers. The azimuthal dependence can be parametrized by the sum of two cosine terms,

fi = Si/S̄ − 1 = b(θ) · cos(φ+ φ0,i) + c(θ) · (2 cos2(φ+ φ0,i) − 1), (6.1)

which is equivalent to the function used in [244]. The azimuthal positions φ0,i of PMT i are:

φ0,1 = 30◦

φ0,2 = 270◦

φ0,3 = 150◦

Accounting for the φ0,i, a combined sample can be obtained. The fit of the signal balance as
function of the azimuth angle, for events with θ = 0 − 80◦ and stations with 3 non-saturated
PMTs, is shown in Fig. E.11. The fit of the zenith angle dependence of B(θ) and C(θ) is shown
in Figs. 6.3(a) and 6.3(b)) with

B(θ) = b · θ +
b0 + b1 · θ

1 + eb2·(θ−b3)
, (6.2)

C(θ) = c0 · exp

(

−(θ − c1)2

2c2
2

)

. (6.3)

A first fit treats only the linear dependence which is kept fixed in a second fit of the quadratic
term. The result is

b = 0.00163 ± 0.00004

b0 = 0.159 ± 0.002

b1 = −0.00161 ± 0.00003

b2 = −0.15 ± 0.01

b3 = 58.4 ± 0.8

c0 = 0.027 ± 0.001

c1 = 77 ± 2

c2 = 24 ± 1. (6.4)

This parametrization is done with the total PMT signals Si integrated over the trace. From
Eq. 6.1 it follows that the corrected signal, Scorr

i , is:

Scorr
i =

Si

1 + fi
. (6.5)

Although this parametrization is done with the total PMT signals Si integrated over the trace,
this parametrization can be used for an average correction of the signal asymmetry in each time
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bin as

Scorr
i =

∫

Scorr
i (t)dt

=
1

1 + fi

∫

Si(t)dt

=
1

1 + fi
Si. (6.6)

The successful correction of the asymmetry for a sample of non-saturated stations from data is
shown in Fig. 6.4(c). The effect on the signal is illustrated in Fig. 6.4(a) and shown to be below
±10%, with a mean around zero and a spread of less than 1%. In addition, the asymmetry for
high-gain-saturated stations has been checked (see Figs. 9.9(a) and 9.9(b) in the appendix). The
correction obtained from non-saturated stations is applicable here as well. Note that it needs
at least an estimate of the geometry. In the photon1 search, the average correction of direct
light is not being applied. As shown in Fig. 6.4(b), the amount of direct light is expected to be
lower for photon-induced showers because of the lower muon component and thus the correction
obtained from data would over-correct the signal of photons. In addition, the correction does
not affect the risetime. Thus we decide to not apply it for the photon search.

6.2.2 Individual correction

The bin-by-bin identification of single instances of direct light effects (DLE) is the actual aim
of this section. In the DLECorrectionGG module in Offline the identification is based on the

1We found that the position of the minimum signal balance in the SD simulation is rotated by 60◦ with respect to
the situation found in data - and fixed it in Offline revision 25307. For older revisions this has to be accounted
for when applying the average DLE correction on simulations.
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standard deviation of the signal in a time bin,

σS(t) =

√

√

√

√

1
N

N
∑

i=1

(Si(t) − S̄(t)), (6.7)

with N ≤ 3 the number of PMTs per station and Si(t) the signal. The identification is based on
time bins where σS(t) ≥ 1 VEM. If a time bin is identified, the maximum signal is replaced by the
mean of the remaining PMTs. The correction is done for stations with ≥ 2 non-saturated PMTs.
In this case the threshold value is an absolute signal that does not account for uncertainties of
the PMT signal. The PMT signal in a time bin is defined as

Si(t) =
NFADC −B

p
, (6.8)

with NFADC the FADC counts, B the baseline counts, p the peak value. The signal uncer-
tainty cannot be estimated easily but depends on a number of quantities. We approximate the
uncertainty by statistical fluctuations,

∆i(t) =

√

√

√

√

(√
NFADC

p

)2

+
(

∆B
p

)2

+
(

Si(t)
p

· ∆p
)2

, (6.9)

where ∆B, ∆p the corresponding uncertainties. The new algoritm checks for the compatibility
of the measured signals within statistical fluctuations by defining an (uncertainty-weighted)
residual

ri(t) =
Si(t) − S̄red(t)

∆(t)
, (6.10)

with

S̄red(t) =

√

∑N−1
i=1 Si(t)
N − 1

,

∆(t) =

√

√

√

√∆2
i +

N−1
∑

i=1

(

∆i

N − 1

)2

(6.11)

the average of the remaining PMTs and the uncertainty of the signal difference.
The relation between r and the standard deviation of the measured signals, σS , can be under-
stood as follows: Let us assume a station with measured signals S1, S2 and S3 for the individual
PMTs, where S2 is the highest signal. We find that

S2 − S1+S2+S3
3

σS
=

2
3
S2 − S1+S3

2

σS

=
√

2 · 2
3

S2 − S1+S3
2

√

(

S2 − S1+S3
2

)2
+ 3

4 · (S2 − S3)2

⇒
∣

∣

∣

∣

∣

S2 − S1+S2+S3
3

σS

∣

∣

∣

∣

∣

≤
√

4/3. (6.12)
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is constrained within an interval [−
√

4/3,
√

4/3]. Thus it follows that r and σS are correlated
by

r =
S2 − S1+S3

2

σS

σS

∆
≤

√
3
σS

∆
. (6.13)

The constraints derived in Eqs. 6.12 and 6.13 have been verified in Fig. 6.5, based on a toy
Monte-Carlo. Two Gaussian distributions have been generated with a sample size of 500000:
One with S̄ = 20 and σS = 1 and another one centered around σS with variance of σ4

S/2. Out
of these distributions we randomly draw three values to calculate the following definitions of an
uncertainty-weighted residual 50000 times: (i) With mean value and standard deviation: (S2 −
(S1+S2+S3)/3)/σS , (ii) with reduced mean value and standard deviation: (S2−(S1+S3)/2)/σS ,
(iii) with reduced mean value and an estimate of the single uncertainties: (S2 − (S1 +S3)/2)/∆.
For the definition of a statistical outlier within a sample of three measured values it is obviously
neccesary to use an estimate of the single uncertainties instead of the standard deviation.
Note that the following analysis is based on zenith angles below 60◦. The maximum signal
Smax is replaced if at least one of the PMTs has a signal higher than 0.2 VEM and if it is
not compatible with the other PMT(s) within the statistical fluctuations. In order to define a
threshold value for r, two dependences should be accounted for: First, it has been checked that
there is no strong signal dependence. The probability of observing single DLE spikes is expected
to increase with zenith angle. Figure 6.6(a) shows the positive side of the distribution of r for
different zenith bins. While the shape in the range r ∈ [0, 3] does not depend significantly on θ,
the tail extends to large θ. Thus, we decide to set the threshold to a value of r = 6, which is
centered between the 95% (value r = 4) and 99.7% level (value r = 8) for almost vertical showers,
as shown in Fig. 6.6(b). Note that in addition the PMTs can be hit directly by particles, which
can happen in particular for vertical showers. A comparison of σS and r is shown in Fig. 6.7(a),
for stations with 3 non-saturated PMTs. As pointed out before, a cut on either of these variables
is correlated, but not equivalent.
A comparison of the number of identified bins per station for both algorithms is illustrated in
Fig. 6.7(b), showing the reduction of the number of corrected bins. Our correction algorithm
acts mostly as a veto to the old definition. It is interesting to check if the algorithm also works
for stations with 2 PMTs or for PMTs with saturated high-gain. There, the threshold value at
lowest zenith angles is slightly higher for 2 non-saturated PMTs (see Fig. 9.8(a) in the appendix)
but seems applicable. For high-gain-saturated PMTs we have to modify the definition of the
fluctuations to account for the missing amplification of the signal:

Si(t) =
(NFADC −B) ·D/A

p
,

similar to Eq. 6.8, but with D/A the dynode-anode-ratio. The statistical fluctuations are then

∆i(t) =

√

√

√

√

(

√

NFADC ·D/A
p

)2

+

(

∆B ·
√

D/A

p

)2

+
(

Si(t)
p

· ∆p
)2

. (6.14)

The 99.7% level of r is higher than for non-saturated stations, the other levels are compatible
(see Fig. 9.8(b) in the appendix). The algorithm is applied in this analysis as well. Examples
of occurrences of large signals in only one PMT, for data and MC photon, can be found in the
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appendix in Figs. 9.12(a)-9.12(b) and Figs. 9.13(a) to 9.13(f).
An important study is the influence of the correction on the station signal and risetime. Both
algorithms reduce the signal by definition. The effect on the risetime depends on the position
and size of the signal spike. The effect on signal and risetime is shown in Figs. 6.8(a) and 6.8(b).
To get a further understanding of the effect on the risetime, we have performed a Mock sample
study in which we inserts an artificial signal into a trace (here PMT 2) and modify its position
and size. The example station we use is station 457 of event 8944584 (with a signal 8.5 VEM
before adding the artificial spike). It shows that for stations with low signals the risetime, defined
as t1/2 = T50 − T10, can be significantly overestimated for large signal spikes late in the time
trace (see Fig. 6.9). For spikes that appear in the first time bins a modest underestimation can
be found instead. This effect is composed of the seperate effects on T10 and T50. Note that here
we only look at events in single time bins. In case of light appearing in a few time bins, as it
has been found in data as well, the effect is even larger. The fraction of corrected bins in the
stations analyzed is approximately 3%, amounting to a fraction of 30% of all stations with at
least one corrected bin.
We have also performed this analysis on simulated photons2 (see Fig. 9.8(c) in the appendix).
As expected from the low muon fraction in photon-induced airshowers, the zenith dependence
of the 99.7% level is less strong than found in observed data, while the value at almost vertical
showers is compatible. Thus the correction of single time bins based on a fixed value r ≥ 6 is
not expected to introduce a bias when applied on simulated photons, other than the average
direct light correction. The quality of the risetime has been improved by this work.

6.2.3 Exclusion of PMTs

The DLE identification is based on the comparison of the PMTs of a station. This requires that
they are setup and working normally. In order to avoid problems of the algorithm with misca-
bled/rotated PMTs or very exceptional traces (for example oscillations), a very phenomenological
filter has been set up. The rejection of these stations or PMTs is set as default in the xml. Note
that afterpulse PMTs should also be rejected before this module.

• Negative signal peaks: The pathology is shown in Fig. 6.1(e). For signals with Si(t) <
−3 VEM in at least one time bin, the whole station is excluded from the DLE correction.
This phenomenon is found in a fraction of < 0.01% of all stations in the selected dataset
of 2008 for the filter described here.

• Oscillations: Out of the PMTs that pass the quality cuts (based on the PMT monitoring
bits available since CDAS v1r0), some PMTs show oscillations around the baseline in the
VEM trace, as discussed in the last section. The frequency can differ between the gains,
up to 3 time bins per half period have been found in data. This algorithm searches for an
oscillating pattern in the full signal trace, within a moving window of 15 time bins. The
pattern starts with Si(t) < Sthr,1 and the window has to contain:

– Nneg ≥ 3 bins with Si(t) < −Sthr,1

2Photon showers have been reused here and preshowered photons have been included as well as this does not
strongly affect the study.
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– Npos ≥ 3 bins with Si(t) > Sthr,1

– the sum of the signal above the upper threshold is larger than twice the total sum of
the signal

As the baseline fluctuations differ between the gains, the thresholds for high- and low-gain
are

– High-gain (HG): Sthr,1 = 0.06 VEM

– Low-gain (LG): Sthr,1 = 1.4 VEM

This phenomenon is found in a fraction of ∼ 0.03% of all stations in the selected dataset
of 2008 for the filter described above.

• PMT miscablings and rotations: The signal balance can also be used to detect mis-
cabled PMTs and rotated stations by studying the asymmetry in single stations [246].
Miscabled PMTs have been found in stations 263, 831, 1134, 1318, 1667, 1721, 1724, 1782.
Station 1818 seems to be rotated. These stations are excluded from the average DLE
correction that is based on the asymmetry parametrization.

Setup correction

The DLE correction in this work is applied to non- and high-gain-saturated stations with signal
of at least 3 VEM, with 2 or 3 good PMTs after the exclusion of oscillating, miscabled and
rotated PMTs and PMTs with large negative signals. It is applied to all time bins. Low-
gain-saturated stations, which are as well excluded for risetime studies, are not corrected. The
average correction is not applied for the photon search for the reasons explained in the previous
section. The threshold value of the individual DLE correction is a value of r = 6. Note that
the trace is currently corrected after the reconstruction and only used for a re-calculation of the
station signal and risetime. Before using it in the reconstruction the effect on the start time
should be checked an possibly the first bin might have to be skipped for the correction. For the
current application the effect is only small. The algorithm has been implemented in Offline in
the DLECorrectionWG module. Here we use an implementation based on the ADST files.

6.3 Station Risetime

The arrival time distribution (time trace) for a MC proton and photon shower, with a recon-
structed hadronic energy of ∼ 12 EeV and θ < 10◦, is shown in Fig. 6.10(a) (r < 1000 m) and
Fig. 6.10(b) (r > 1000 m). It is clearly visible that the trace becomes broader with increasing
core distance, for vertical showers (not shown) and for only a small muon component. Muons
arrive early in the trace and thus the risetime for muon-rich showers is smaller than for mainly
electromagnetic particles. In addition, a less deep shower maximum makes the time trace nar-
rower for hadronic than for photon showers. The amount of signal in the early part of the trace
translates to the signal risetime, t1/2 = T50 − T10, which has already been discussed in 1973
by Lapikens et al. [247] for the Haverah Park experiment. It is defined as the time that the
cumulative signal of the arrival time distribution (time trace) takes to increase from 10% to 50%
(T50 and T10). A sketch is shown in Fig. 6.10(c). The time Tx, corresponding to a certain signal
quantile x, is interpolated to the center between the last bin below and the first bin above the
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risetime distribution has been fitted with a two-parameter lognormal function.

signal quantile. The station risetime is the average of the risetime of each single PMT. We do
not work with an average time trace per station to avoid problems when mixing the high-gain
(HG) and the low-gain (LG) for high-gain saturated stations with only a fraction of the PMTs
saturated.
As pointed out before, photon-induced showers produce a smaller risetime of the SD signal than
hadron-induced showers. This difference increases with distance to the shower core where most
muons arrive (cr. Fig. 6.10(d)). The separation is expected to improve for larger inclinations
where the muon content increases. Note that this plot is only for viszalization - there are dif-
ferences3 in the reconstructed MC proton showers and the risetime has not been corrected for
assymetries (see Sec. 6.3).
The main focus in this study is to establish the risetime on a zenith angle range of 0◦ to 60◦,
minimizing a possible bias due to the detector sampling. The current sampling of 25 ns intro-
duces a resolution of ∼ 40 ns for the risetime [248]. Other studies reduced the maximum zenith
angle to 45◦ to account for the sampling. Here we use the full zenith angle range and check
the according possible distance and signal range that can be used for parametrizations of the
average risetime and its uncertainty.

6.3.1 Shape of the signal risetime distribution

An analytical model to describe the time dependence of the signal observed in an SD station has
been studied in [249]. The arrival time distribution is composed of four lognormal-distributed
components. The main contribution comes from muons and the pure electromagnetic channel.
In a series of approximations we will motivate that the risetime is not distributed Gaussian
but asymmetrically. First we assume that the arrival-time distribution of the sum of the four
components can be approximated by a three-parameter lognormal:

dP

dt
(t) =

1√
2π · s · (t− t1)

· exp− (ln (t−t1)−m)2

2s2 (6.15)

3The version of offline differs and the modifications to the SdCalibrator have not been applied here (see Sec. 5.3).
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Figure 6.12: Risetime asymmetry correction

According to [249], the quantiles are distributed as

f(tq) = A · (1 − F (tq))N−q·(N+1) · F (tq)q·(N+1) · dF (tq)
dt

(tq)

= A · (1 − F (tq))N−q·(N+1) · F (tq)q·(N+1) · dP
dt

(tq),

where F (tq) denotes the c.d.f. (cumulative distribution function) of the arrival time distribution,
which is a three-parameter lognormal distribution here. In a simple toy Monte-Carlo we set
some fixed example values within the ranges suggested in [249]: m = 6, s = 0.7, t1 = 120 ·
(800 m/1000 m)2 and N = 9. The distributions for T10 and T50 are then:

f(T10) = A · (1 − F (T10))8 · F (tq) · dP
dt

(T10)

f(T50) = A · (1 − F (T50))4 · F (tq)5 · dP
dt

(T50)

The distributions of T10, T50 and t1/2 = T50 − T10 is shown in Fig. 6.11. They are clearly
asymmetric and the risetime (obtained from the arrival time distribution, not the signal trace
of the detector,) can be described by a two-parameter lognormal fit. In order to obtain the
time dependence of the SD signal trace, the arrival-time distribution has to be folded with the
detector response and it was suggested in [250] that the first part of the observed signal trace
can be fitted with a Moyal function. But here we only wanted to give a qualitative statement
about the shape of the risetime distribution.

6.3.2 Asymmetry correction

The risetime shows a geometrical asymmetry. Stations with different azimuth angles ζ around
the shower core, defined with respect to the azimuth direction of the shower, correspond to
different shower ages. The difference increases with the shower inclination. The region around
ζ = 0◦ is referred to as the early and ζ = 180◦ as the late region (see Fig. 6.12(a)). The
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difference in the shower age depends on cos(ζ) and so does the asymmetry. The magnitude
of the asymmetry contains also composition information which can be used to set up a mass
composition study for a sample of events [251]. For an event by event study of the risetime
the asymmetry must be corrected for. In [248] such a correction has already been introduced,
applying a deconvolution of the time traces with the single particle response. According to [252]
(p.66) we do not apply a deconvolution as the effect above 600 m is moderate and the risk of
instabilities in the deconvolution algorithms is high. Thus the resolution of the risetime increases
from 10 ns to 40 ns [248]. Stations closer than 600 m will not be used here. We start from the
risetime study in [252], introducing a few modifications and updating the parametrizations for
our dataset (measured data from 2004 to 2012, reconstructed with Offline v2r9p3 as described
in Chap. 5, and with signal and risetime corrected for direct light). The event selection applied
here is a rejection of bad periods, of the Comm’s crisis4 and of lightning events, requiring at
least a reconstructed LDF, a reconstructed hadronic energy of 10-30 EeV, a T4 and 6T5 trigger
and θ < 60◦. On the station level we start with non- and high-gain-saturated stations, rejecting
stations with bad PMTs. Stations are required to have an observed signal Sobs > 15 VEM a
risetime above 40 ns and lie within a range of 600 m and 1600 m from the shower core. The
observed risetime, t1/2, can be split in an azimuth-dependent term and an asymmetry-corrected
risetime, t1/2,corr:

t1/2 = t1/2,corr + g(θ, r) · cos(ζ), (6.16)

where t1/2,corr is the risetime corrected to the value that would be measured at ζ = 90◦. A fit
of the risetime with this functional form is shown in Fig. 6.13(a), for 7 bins in the core distance
between 600 m and 1600 m, and for 1.50 < sec(θ) < 1.67. The asymmetry is reasonably well-
described by the parametrization (for large θ the quality gets a bit worse but still sufficient for
this analysis). The early region shows larger risetimes due to a larger number of EM particles
compared to the late region, besides purely geometrical reasons. This fit has been done in 6
bins of θ covering the range 1.0 < sec(θ) < 2.0. In [248, 252] it was suggested to describe the
distance dependence of g(θ, r) as g(θ, r) = m(θ) · r2. The fit in the bin sec(θ) = 1.50 − 1.67 is
shown in Fig. 6.13(b) (dashed line), giving a fit quality of χ2/NDF = 3.2. We suggest to add a
linear term:

g(r) = l · r +m · r2, (6.17)

with g(0) = 0. A fit with the new functional form is shown in the same plot as full line. The fit
quality improves to χ2/NDF = 1.3. The increase of the asymmetry with core distance is mainly
due to geometrical reasons. The settings can be optimized to maximize the selection efficiency
while assuring a sufficient quality. We suggest further modifications:

• Cut on the expected instead of the observed signal to avoid trigger biases, Sexp > 15 VEM
and Sobs > 3 VEM.

• Set the required minimum (expected) signal from 15 VEM down to 10 VEM, which still
corresponds to a trigger probability of almost 100% [187].

• Cut on a distance range of 600 − 1600 m. Note that a distance of 1600 m in the energy
range 10 − 30 EeV corresponds to an average epected signal of 10 VEM, as shown in
Fig. 9.18(b) in the appendix.

4Exclude the whole Comm’s crisis period from 16.04.2009 to 15.11.2009 as a very restrictive solution. For the
photon search a recoverable part of this period is being included.
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The fits for the modified selection is shown in Figs. 6.13(c) to 6.13(e), with the zenith dependence
of l and m parametrized as:

l(θ) = l0 + l1 · (sec(θ) − 1)2 + l2 · (sec(θ) − 1)3, (6.18)

m(θ) = m0 · 1
2πi

∫ c+i∞

c−i∞
exp

(

sec(θ) −m1

m2
· s+ s · log(s)

)

ds. (6.19)

The latter is a Landau distribution with constant m0, the most probable value m1, the scale
parameter m2 and an arbitrary constant c. The final set of parameters is:

l0 = −0.027 ± 0.002

l1 = 0.24 ± 0.02

l2 = −0.23 ± 0.03

m0 = (44 ± 1) · 10−5

m1 = 1.248 ± 0.009

m2 = 0.129 ± 0.008.

The fits of the azimuth and distance dependence can be found in the appendix: Figs. 9.14(a) to
9.14(f) for the azimuth dependence and Figs. 9.15(a) to 9.15(f) for the distance dependence.
For a check of the robustness of mean value and standard deviation of the sample, each bin has
been fitted with a Gaussian and a lognormal distribution to avoid trigger biases (in particular at
large zenith angles). The lognormal distribution describes the data well, but as the difference in
the results is only small we use the sample mean and standard deviation throughout the whole
risetime analysis.
The energy dependence of the asymmetry has been studied, as shown in Fig. 6.13(f). An increase
of the energy reflects mostly in gaining far away stations rather than a difference in the magnitude
of the asymmetry. This justifies using the energy bin of 10 − 30 EeV to represent the full range
and to establish the parametrization over a wide distance range (600 − 1600 m). Note that
for the parametrization the signal cut must be applied on the expected signal. Otherwise large
distances are dominated by trigger biases, in particular for large zenith angles. The application
of the asymmetry correction on data and MC photon is shown in Fig. 6.12(b). For photon
showers an asymmetry remains after an application of the correction optimized on data. The
procedure is to establish a description of data first, derive an event parameter and account for
its expected energy and zenith dependence in case of primary photon later.
In order to optimize the selection efficiency and quality of the risetime we have checked which
distance range can be used to minimize trigger biases in the risetime distribution. First, we
have applied the asymmetry correction to reduce the neccessary dimensions to be accounted
for. Then we have found a p.d.f. that describes the t1/2 distributions of data in bins of energy,
zenith angle and distance. The distributions can be described with a two-parameter lognormal
shape:

f(x) =
1√

2π · x · s
· exp− (ln (x)−m)2

2s2 . (6.20)

In Fig. 6.14 the distribution of t1/2,corr has been fitted with a Gaussian and a lognormal shape
in bins of energy, distance and zenith angle. Shown is the normalized χ2 as a measure of the
fit quality. The lognormal shape describes data reasonably well. Under the assumption of a
lognormal shape, the possible distance range within θ = 0◦ − 60◦ has been checked as shown
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A fit with a lognormal and a Gaussian shape has been applied in each distance- and
zenith angle bin. Shown is the fit quality χ2/NDF.

in Figs. 6.15(b) and 6.15(a). The largest probability to find risetimes close to 40 ns is for
large θ = 60◦ and at large distances. Within the given zenith range, distances between 600 m
and 1600 m do not show strong biases. Previous studies were restricted to the range 0◦ − 45◦

[215, 252].

6.3.3 Benchmark

A key property to establish a photon-hadron separation is the dependence of the risetime on the
core distance r. This can for example be done with an event-wise fit of the dependence or based
on a benchmark that describes data. Note that from now on we work with the asymmetry-
corrected risetime. Our benchmark is the average station risetime at a certain distance r,
tbench
1/2 (r), for an event of energy E and zenith angle θ. This kind of benchmark was introduced

in [248] and continued in [252]. We apply some modifications to optimize the benchmark for the
SD photon search and derive an updated benchmark for our dataset. We focus on the energy
bin of 10−20 EeV, similar to [252] on 10−15 EeV, selecting non- or high-gain-saturated stations
with Sexp > 10 VEM, Sobs > 3 VEM and r = 600 − 1600 m. The dependence of the risetime on
r is described as [248, 252]

t1/2,corr(r) = 40 ns +
√

A2 +B · r2 −A, (6.21)

with t1/2,corr(0) = 40 ns fixed to the resolution of the risetime. The functional form allows
for a smooth transition from a constant behaviour at close distances to a linear dependence at
large distances. The fit procedure differs from [252]: Instead of single measured values with
parametrized uncertainties the fit is done with the mean value and the error of the mean (as we
do not expect a large effect in the application for the photon search here), in distance bins with
at least 30 entries. The fit in the bin sec(θ) = 1.2−1.3 is shown in Fig. 6.16(b), for non- and high-
gain-saturated stations, along with an alternative fit of the form t1/2,corr(r) = 40 ns +Ar+Br2

(dashed lines). We stick with the original functional form in Eq. 6.21 as it gives a better fit
quality over the full zenith range and in particular at close distances. Also, it is more robust
against fluctuations at large distances. The fit has been restricted to 600 m to 1400 m, but
according to the residual shown the fit describes data in the full range shown (up to 1600 m).
A collection of the fits for all zenith bins can be found in Figs. 9.16(a)-9.16(e) in the appendix.
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Figure 6.15: Maximizing the selection efficiency for the station risetime of non- and high-gain-
saturated stations in data with S > 10 VEM.

For the parametrization of the benchmark, stations of different events are mixed and it is im-
portant to control the contribution of a change in the average Xmax, energy or zenith angle
to the shape of the benchmark. After selecting a small bin in energy and zenith angle it is
sufficient to check the average Xmax as function of r (see Fig. 6.17(c)). Above r = 600 m, the
distribution is approximately flat, with a slight increase above 1700 m. It is difficult to separate
the remaining zenith and energy dependence within the bins, as well as an Xmax dependence
and fluctuations in particular in the number of muons in order to explain the gap in the average
risetime observed in the overlap region. Thus we can only make a qualitative statement. One
might expect slightly lower risetimes for high-gain-saturated stations in the overlap region of no
saturation and high-gain saturation as a few more early muons can saturate the high-gain and
cause a risetime below the average that would be obtained for non-saturated stations. The bin
in energy and zenith angle is fixed and thus we expect a slightly larger saturation probability for
deeper Xmax (corresponding to smaller risetimes in a naive geometrical assumption). A part of
the gap might be of physical nature. Another part might be related to stations with problems in
the baseline estimation. Figure 6.17(a) shows the range in core distance for different bins in the
reconstructed energy (for sec(θ) = 1.2 − 1.3) including high-gain-saturated stations. The diago-
nal structure at large distances follows from the signal cut. The distance range 600 m − 1600 m
has a minimal bias in the energy range of 10 − 20 EeV.
The zenith dependence of A and B for θ < 45◦ is described by A(θ) = A0 +A1 · exp(A2 · sec(θ))
(B same functional form) in [252]. A fit of A and B is shown in Figs. 6.16(c) and 6.16(d)
(blue line: exponential form, black line: alternative form). When including zenith angles up
to θ = 60◦, this form is not sufficient anymore for parameter A (red line: exponential form, fit
restricted to 45◦). We suggest the following alternative, phenomenological parametrizations:

A(θ) = A0 +A1 · cos(θ) +A2 · cos2(θ), (6.22)

B(θ) = B0 +B1 · cos2(θ) +B2 · cos4(θ). (6.23)
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(b) Fit of the dependence on the core distance r, for
sec(θ) = 1.2 − 1.3 (Sexp > 10 VEM).
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Figure 6.16: Parametrization of the risetime benchmark (observed data, Ehadr,rec = 10 − 20 EeV)
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Figure 6.17: Distance range for risetime stations of events with sec(θ) = 1.2 − 1.4, including
high-gain-saturated stations. (Note that here the proton showers have been recon-
structed with Offline version v2r7p8, and that we cut on the non-cleaned signal
Sobs,non−cleaned > 6 VEM as the DLE removal in the proton files are of an old ver-
sion. This does not affect the average of all stations significantly.)
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Figure 6.18: Sketch of two pair stations separated by ∆r. Both stations have a compatible distance
to the shower core but correspond to a different shower age.

This fit is shown as black lines along with the old functional form. For parameter B both forms
are almost equivalent. The fit of A is clearly improved over the whole zenith range below 60◦.
The final parametrization of the benchmark is:

A0 = 1398 ± 139 (6.24)

A1 = −4342 ± 398

A2 = 3489 ± 281

B0 = 0.07 ± 0.01

B1 = −0.44 ± 0.04

B2 = 0.86 ± 0.05

We have checked the energy dependence of the benchmark. There is a weak energy dependence
(due to the dependence of the risetime on Xmax) which does not break the functional dependence.
The main difference is the gain of far away stations (see Fig. 6.16(e)). The energy dependence is
accounted for in a later step when comparing each event parameter to the photon expectation.

6.3.4 Uncertainty

Due to a still restricted amount of data from so-called twin tanks (two stations separated by
about 11 m), we follow the idea of estimating the risetime uncertainty due to shower-to-shower
fluctuations on the base of physically similar stations called pair. Physically similar means that
a cut on the separation ∆r = |r2 − r1| and on the difference in the signal, ∆S = |S1 − S2| /(S1 +
S2). The risetime is corrected for asymmetries. In [248] the risetime uncertainty is estimated
as:

σt1/2
=

√

(

σt1/2,pair

)2
−
(

∂

∂r
tbench
1/2 (r) · ∆r

)2

, (6.25)

with σt1/2,pair
=

√
π

2 ·
∣

∣

∣t
(1)
1/2 − t

(2)
1/2

∣

∣

∣ for the benchmark parametrization in Eq. 6.21. The second
term in Eq. 6.25 corrects for the observed difference in the risetimes due the contribution from
∆r. Instead, we introduce a different definition:

σt1/2
=

√
π

2
·
∣

∣

∣

(

t
(1)
1/2 − tbench

1/2 (r1)
)

−
(

t
(2)
1/2 − tbench

1/2 (r2)
)∣

∣

∣ . (6.26)
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Figure 6.19: Parametrizations of the risetime uncertainty based on pair stations.
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This can be understood when assuming that the pair stations are drawn from a distribution with
the same standard deviation, separated by the difference of their expectation values. The factor
√

π/2 corrects the standard deviation for the small sample size (N = 2) and a further factor
1/

√
2 scales the result to the uncertainty of a single station. Both definitions are equivalent for

r1 ≈ r2 and assuming that both stations are uncorrelated. When multiplying
√
π/2 to the right

term in Eq. 6.25 we find that:
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=

√
π

2
·
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∣

∣
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t
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. (6.27)

According to [252] the signals of the pair have to fulfill ∆S < 0.25. Within this cut and with
both stations passing the quality selection, approximately 68% of the pairs have a ∆r of less
than 100 m. In [248, 252] it was suggested to cut on ∆r < 100 m which was applied here as
well. Due to the triangular arrangement of the tanks, the smallest possible average distance
(projected on the ground) is 750 m which has been confirmed in data. 57751 station pairs have
been found with the station selection as for the risetime benchmark. The risetime uncertainty
increases for small signals and large distances. As in [252], the signal dependence of σt1/2

has
been fitted with f1(S) = J√

S
+K first, with S the observed signal. Based on the distribution of

the reduced χ2 of the fit, as shown in Fig. 6.19(c), this function matches the data better than
f2(S) = J

S +K [248]. We suggest a further modification,

f3(S) =
J√
S
, (6.28)

with only one free parameter (see Fig. 6.19(a)). For infinitely large signals we expect that the
risetime uncertainty can have values much smaller than 25 ns due to the interpolation. Thus
we assume in a simple approch that the uncertainty moves towards zero. The fit becomes more
stable and the fit quality is only marginally reduced. Next the distance dependence of J is
parametrized:

J(r) = r ·
(

ja + jb · r2
)

. (6.29)

The zenith angle dependence of ja,b is described by:

ja(θ) = ja,0 + ja,1 · sec2(θ),

jb(θ) = jb,0 + jb,1 · cos2(θ). (6.30)

These functional forms are all phenomenological. The fits are shown in Figs. 6.19(b) to 6.19(e).
The final parametrization of the risetime uncertainty is:

ja,0 = (366 ± 5) · 10−3

ja,1 = (−72 ± 1) · 10−3

jb,0 = (−70 ± 8) · 10−9

jb,1 = (15 ± 1) · 10−8. (6.31)
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Table 6.2: Station risetime quality selection

Dataset: 01/2004 - 12/2012
Cut Events passed Fraction

Data quality
T4+6T5 trigger
At least rec. LDF
0◦ < θ < 60◦

Ehadr,rec > 3 EeV 82446 1
(+ Benchmark: 10 < Ehadr,rec/ EeV < 20 6410 0.08)
Cut Stations passed Fraction

No sat. or high-gain sat. 502140 1
+ Sobs > 6 VEM 356302 0.71
+ r > 600 m 306192 0.61
+ r < 2000 m 301604 0.60
+ t1/2,corr > 40 ns 301142 0.60

By accounting for the signal-, distance- and zenith-dependence, the energy-dependence is under
control as well.

6.3.5 Uncertainty-weighted residual δi
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Figure 6.20: Left: Definition of an uncertainty-weighted residual δi of the station risetime. Right:
Two different methods of defining an event parameter based on the asymmetry-
corrected station risetime t1/2,corr,i. (1) Event-wise fit of the distribution of t1/2(r)
(shown as full lines). (2) Event-wise comparison of the measured risetime with the
benchmark obtained from data (blue dashed line), within the uncertainty σt1/2

ob-
tained from data. Shown are example events from data (black) an MC photon (red).
Hollow markers above 1000 m indicate signals below 6 VEM.

The parametrizations obtained in the previous sections have been verified on the base of the
residual δi,

δi =
t1/2,corr,i − tbench

1/2 (ri)

σt1/2
(ri)

. (6.32)
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Figure 6.21: Dependences of δi for Ehadr,rec = 10−20 EeV. An overlayed profile shows mean value
and standard deviation.
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Figure 6.22: Study of the minimum signal for the station risetime.
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range θ = 30◦ − 60◦. The selection is based on non- and high-gain-saturated stations.
Preshowered photons are not excluded, each shower has been simulated five times and
the spectrum has been reweighted.

The dependence of δi on the signal, distance and zenith angle is shown in Figs. 6.21(a) to 6.21(d).
The case of Sexp > 10 VEM corresponds to the selection of the underlying parametrizations.
The distributions in Fig. 6.21(a) is approximately flat and the signal- and zenith dependence
as well (cf. Figs. 9.17(a) and 9.17(b) in the appendix). Thus the parametrizations have been
verified. For the application of the parametrizations to photons and hadrons the expected signal
is wrong in case of photons and thus the observed signal is used to reduce biases. A second,
less strict selection of Sobs > 6 VEM is shown in Figs. 6.21(b) to 6.21(d) on the right. We have
checked that down to an observed signal of 6 VEM the residual is stable enough to establish
an event parameter, as shown in Fig. 6.22(b). For stations with signals below 10 VEM, the left
tail is asymmetric but the difference is not visible in the distribution of all selected stations.
Note that a distance of 2000 m corresponds on average to the an expected signal of 6 VEM
for hadrons (see Fig. 9.18(a) in the appendix). The distribution of δi as function of the station
distance to the shower core is approximately flat in the distance range of 600 m to 2000 m. It is
not possible to go below 600 m as the parametrization does not describe data in this range. In
[93] the risetime fit was applied on non- or HG-saturated stations with signals above 10 VEM,
for events in the range of 30◦ and 60◦. In previous and ongoing studies of the risetime, it was
suggested to restrict the zenith angle range to below 45◦ and to select signals above 15 VEM
[215, 252]. In the previous sections we have obtained a complete set of parametrizations for our
dataset with a modified SDCalibrator. We have shown that the selection can be optimized to
maximize the selection effiency for the SD photon search:

• The maximum zenith angle can be set back to 60◦. This brings a geometrical increase of
the efficiency by a factor 1/3 compared to the case of 45◦.

• It turned out in [215] that the risetime calculation is biased for high-gain-saturated stations.
The solution for this problem is a modification of the SdCalibrator [215, 252]. We have
checked that the modification can be applied on data and MC photon for the SD photon
search.

97



Chapter 6

• It has been studied that, including high-gain-saturated stations and within the zenith
range up to 60◦, the distance range can be set to 600 − 2000 m.

• The minimum signal has been set down to 6 VEM.

• The maximum distance has been set to 2000 m, which corresponds on average to an
expected signal of 6 VEM for hadrons. This is applied for all of the methods which use
the parametrizations obtained in this chapter.

The effect of these modifications on the efficiency is shown in Fig. 6.23.
The final quality selection for the application of the risetime to the SD photon search is then
a rejection of bad periods and bad PMTs, a T4+6T5 trigger, at least a reconstructed LDF,
zenith angles θ < 60◦ and energies Ehadr,rec > 3 EeV. Stations must be non-saturated or only
high-gain-saturated, with a signal Sobs > 6 VEM and located at distances within 600 m and
2000 m and with t1/2,corr > 40 ns.
There are two different methods to use the distance dependence of the asymmetry-corrected
station risetime, t1/2,corr, to separate photons and hadrons (see also [93, 248, 252–256]). In
both cases the station risetimes of an event are combined to one single parameter. One possible
parameter is the risetime at a fixed reference distance, based on a fit of the single station risetimes
as a function of the distance. A different approach avoids an event-wise fit by establishing an
benchmark based on a large dataset, e.g. observed data (mainly hadrons). Here the separation
parameter is based on the compatibility of the station risetimes with the benchmark (Leeds
delta method).

6.3.6 Event parameter: t1/2(1000)

This method is based on an event-wise χ2-fit of the distribution of the station risetime t1/2,corr(r)
with a second degree polynomial:

f(r) = 40 ns + a · r + b · r2 (6.33)

with r the distance to the shower core. The constant is set to the risetime resolution of 40 ns for
a better stability of the fit. The fit paramters are bounded to positive values. In order to obtain
an event parameter, the fit is evaluated at a reference distance of 1000 m. This parameter is
called t1/2(1000) [257]. In [258] the untertainty of t1/2(1000) was revisited and corrected for a
correlation term:

σt1/2(1000) =
√

σ2
a · r2 + σ2

b · r4 + Cov(a, b) · r3 (6.34)

Figure 6.20(b) shows an example event from data and MC photon of a compatible reconstructed
energy and zenith angle. Shown event-wise fits in the distance range of 600 m to 2000 m. The
quality selection in [93] is at least 4 non- or HG-saturated stations with signals above 10 VEM.
Here we restrict the selection to distances of 600 − 2000 m for stations with no saturation or
saturated high-gain, as the risetime paramtrizations have been verified within this range. The
signal cuts compared later are Sobs > 10 VEM and Sobs > 6 VEM. As an alternative selection,
we compare here at least 3 stations passing the station selection and at least one station closer
than 1000 m to assure a sufficient lever arm for the fit.
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6.3.7 Event parameter: ∆Leeds (Leeds delta method)

The delta method was introduced by the Leeds Auger Group about 8 years ago and has been
studied more deeply since then [248, 252, 255]. It compares the observed station risetime t1/2,corr,i

to the benchmark obtained from data, tbench
1/2 (ri), within the uncertainty σt1/2

(ri) obtained from
data. The parameter is defined as

∆Leeds =
1
N

∑

i

δi (6.35)

=
1
N

∑

i

t1/2,corr,i − tbench
1/2 (ri)

σt1/2
(ri)

with t1/2,corr,i the asymmetry-corrected station risetime of station i at distance ri, tb1/2(ri) the
parametrized benchmark from data, σt1/2

(ri) the parametrized uncertainty from data and N the
number of selected stations. The parametrizations have been discussed earlier in this chapter.
Figure 6.20(b) shows an example event from data and MC photon of a compatible reconstructed
energy and zenith angle. The benchmark obtained from data is shown together with event-
wise fits. Selected are non saturated and high-gain-saturated stations in the distance range of
600 m-2000 m. The signal cuts compared later are Sobs > 10 VEM and Sobs > 6 VEM. A first
event selection is at least four selected stations, as for t1/2(1000). The event quality selection
from previous studies [252] is at least two selected stations and at least five triggered stations.
Another alternative selection is at least tree selected stations.

6.4 LDF Parameters
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separation, based on the merit factor η. Shown is the choice of b that maximizes η.
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LDF with b = 4 (blue line) and the average LDF obtained from data (black line).
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The shape of the lateral density function (LDF) is different for photon and hadron primaries.
This difference is correlated with Xmax and the number of muons in the shower. For photon
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Figure 6.25: Normalization of S4: Correlation with Nsel and S1000. Shown are the data burn
sample (black markers), excluding bad data taking periods, and non-preshowered
MC photons (red markers). Events have been selected in a zenith angle range of 30◦

to 60◦ and energies Eγ,rec > 10 EeV and with the quality selection described in this
section.
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primaries the LDF is steeper. As parameterizations in the reconstruction are optimized to
describe the average data and the LDF fit does not fit the LDF shape parameters, β and
γ cannot be used as a separation parameters. But the combatibility of the observed lateral
distribution of station signals with a primary photon can be inferred from the fit quality by
comparing each signal with a reference LDF. The most obvious choice would be the χ2 of the
fit. This parameter has been checked but the separation power is weak [259]. Another similar
parameter, Sb, has been suggested by Ros et al. [260, 261],

Sb =
Ncand
∑

i=1

Si ·
(

ri

1000 m

)b

, (6.36)

where Ncand is the number of candidate stations, Si is the signal observed at station i with
core distance ri and b is a fixed (positive) shape parameter. As a technical detail it should be
mentioned that for the LDF parameters the signal has not been cleaned from direct light effects
and PMTs discussed in this thesis have not been excluded. These effects and malfunctions affect
mainly the signal rise- and falltime but not s much the total signal.
The meaning of this parameter is not obvious, but it becomes more clear when rewriting it as

Sb = Nsel · S1000 × 1
Nsel

Nsel
∑

i=1

Si · 1

S1000 ·
( ri

1000 m

)−b
(6.37)

= Nsel · S1000 × Sn
b . (6.38)

(with Ncand = Nsel for events without low-gain saturation stations). It is related to the average
fractional difference of the observed signal from the expected signal of a reference LDF with
shape b, called Sn

b from now on. Two LDF shapes appear to be obvious choices: the LDF that
results from the LDF fit and an optimized choice of fixed b, as shown in Fig. 6.24(b). The
parameter related to the LDF fit we call RNKG, with

RNKG =
1
Nsel

N,sel
∑

i=1

Si · 1

S1000 ·
( ri

1000 m

)β ·
( ri

1700 m

)β+γ
. (6.39)

As an alternative, a fixed shape of b = 4 has been suggested in [262] for photon-hadron separation
for the SD photon search. Using the data burn sample described in 5 up to May 15th, 2013
(excluding bad periods, the Comm’s crisis period April 16th, 2009 to November 15th, 2009 and
lightning events) and the simulated photon library (rejecting preshowered photons), we have
performed a scan to find the optimal choice of b for the logarithm of the normalized parameter,
log10(Sb), which maximizes the photon-hadron separation. Simulated MC Photon showers have
only been used once here. The quality event selection is described in Sec. 6.4.1. The scan is
based on the merit factor η,

η =
q50,data − q50,γ
√

σ2
data + σ2

γ

, (6.40)

with q50 the 50% quantile and σ the one-sided5 standard deviation of the distribution of a
parameter q. The results are shown in Fig. 6.24(a). More details can be found in Figs. 9.20(a)-
9.20(f) in the appendix. The optimal shape for the SD photon search is around b = 4 and

5For an asymmetric distribution, the standard deviation is estimated by q84−q50 (or q50−q26) for the corresponding
side of the distribution.
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Figure 6.26: Contribution of single stations i to the event parameter as function of the core distance
r. Shown are the data burn sample (black markers), excluding bad data taking
periods, and non-preshowered MC photons (red markers). Events have been selected
in a zenith angle range of 35◦ to 40◦ and energies Eγ,rec between 10-20 EeV and with
the event and station quality selection described in this section.

reproduces the result for Sb [262].
The normalization of S4 to Nsel and S1000 does not only give the parameter a more clear meaning
but it also helps to separate to reduce the strong energy dependence. A study of the correlation
of Sn

4 with Nsel and S1000 is shown in Figs. 6.25(b)-6.25(d) (same plots for RNKG in Figs. 9.19(b)-
9.19(d) in the appendix). The normalization reduces the correlation of the separation parameter
with Nsel and S1000. A further advantage is a reduction of the influence of non-functioning
tanks in the array. Studying the distributions of S4,i and RNKG,i shown in Figs. 6.26(a) and
6.26(b), both distributions have certain features that can be used to further optimize the photon-
hadron separation. The distributions for data and MC photon intersect at about r = 1000 m,
which is expected as we compare at the same reconstructed energy. For r < 1000 m the
station contributions are negative and for r > 1000 m they are around zero for MC photon and
significantly larger for data. The event parameter sums over the station contributions and the
thus stations with r < 1000 m reduce the separation power. The feature for r > 1000 m comes
from the fact that we also use stations with observed signal S < 10 VEM which have less than
100% trigger probability. The separation power is maximized in the following parameters:

Sn
4,1000 = Sn

4 (r > 1000 m) (6.41)

RNKG,1000 = RNKG(r > 1000 m). (6.42)

Note that for the application in the photon search we use the logarithm of these parameters to
obtain a symmetric shape.

6.4.1 Quality selection

The advantage of these LDF parameters is a very basic quality selection which allows for almost
100% selection efficiency. They can be combined with a powerful separation parameter to
improve the photon-hadron separation without loosing efficiency.
Stations with no saturation and high-gain saturation are used, rejecting stations with saturated
low gain. For Sn

4,1000 and RNKG,1000 stations with r < 1000 m are not used. There is no further
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Figure 6.27: Number of triggered stations for a photon- and hadron shower (θ ≈ 50◦) at the same
reconstructed S1000 or energy.

station quality selection. The trigger probability is here used to improve the separation power.
Events must have a reconstructed LDF (at least for RNKG, but here we apply it for both
parameters), T4 trigger and 6T5 trigger to avoid holes around the tank with the highest signal,
zenith angles θ < 60◦ (higher inclinations have not been checked here) and at least one station
that passes the quality selection.

6.5 Radius of Curvature

The radius of curvature has been introduced in the description of the SD reconstruction in
Sec. 3.4.2. A comparison of photon and hadron showers of a similar reconstructed photon
energy is shown in Fig. 7.3(e). As expected, the radius of curvature is smaller for primary
photons.

6.6 Number of Candidate Stations

A very basic observable that depends on the shower maximum is the number of triggered can-
didate stations, Ncand, of a shower. Comparing showers with similar energy and zenith angle,
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the number of triggered stations is expected to be larger for a primary hadron compared to a
primary photon as muons increase the footprint of the shower. An example is shown in Fig. 6.27.
In the SD photon search we cannot compare showers at the same energy but only at the same
reconstructed S1000, which corresponds to a difference of about a half decade in the energy (cf.
Sec. 4.2). In this case the difference in Ncand is reduced. The separation as function of the zenith
angle is shown in Fig. 9.23(e).

104



CHAPTER 7

Upper limits on the diffusive UHE photon flux and

fraction

In this chapter the final parameter set is determined from all the parameters defined and studied
in the previous chapter and then applied to a principal component analysis (PCA). Anyway, we
start with the final analysis for a better reading.
The general approach in this work is to use a small dataset instead of hadronic simulations
to find the principal component in the two-parameter-space. For a conservative limit we take
the photon median (of non-preshowered photons) as the photon candidate cut. From previous
limits the integral photon fraction at 95% C.L. is maximum 2%. Thus the contamination from
photons in the data burn sample is expected to be small. The most powerful combination of
parameters from the previous chapters, ∆Leeds and log10(RNKG,1000), is studied in a PCA. The
minimum energy for this analysis is set to 10 EeV to have almost 100% trigger efficiency for
photon showers. The zenith range is restricted to a range from 30◦ to 60◦ to have most photon
showers with a shower maximum above ground in the selected energy range. Here we reject only
the non-recoverable part of the Comm’s crisis. The exposure A is calculated from the number
of active elementary 6T5 cells of the array. The total exposure is A = 33805.7 km2 sr yr and the
exposure corrected for the zenith angle range and the burned dataset of this analysis is

A
′

corr =
2
3

· 0.98 ·A = 22086.4 km2 sr yr. (7.1)

The factor 2/3 comes from Eq. 3.15, evaluated for θmin = 30◦ and θmax = 60◦. For vertical
showers the photon detection efficiency drops rapidly, as shown in Fig. 7.1. The basic idea
for this analysis is to apply the photon energy calibration derived in Sec. 4.2 to data and
simulated MC photons. In order to define a zenith- and energy-independent photon median
in the principal component of MC photons, each observation of a separation parameter x is
rescaled to the expectation how non-preshowered MC photons (U) would look like for the same
reconstructed S1000 and zenith angle θ

x∗ =
x− x̄γ(θ, Eγ,rec)
σx(θ, Eγ,rec)

, (7.2)

with x̄ the mean value and σx the standard deviation of x as expected for MC photons. The
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Figure 7.1: Fraction of photon showers (U) passing the selection Xgr −Xmax,MC > −50 g/cm2.

photon expectation is obtained from MC photons (U) from a binned1 histogram, applying the
quality selection of each parameter. Photon showers have been simulated in the detector up
to five times to increase statistics (showers reused only for the photon expectation and for the
reconstruction efficiency). The true energy is chosen here to avoid a dependence on the energy
calibration. Thus we do not expect a Gaussian centered at zero for the integral spectrum of x∗.
The histograms for mean, standard deviation and the statistics per bin are shown in Fig. 7.2 in
the appendix. A summary of the photon expectation for the remaining parameters compared
in this analysis can be found in Figs. E.21 to E.22 in the appendix.
The energy and zenith angle dependence of ∆Leeds and log10(RNKG,1000) (light colors) and the
successful removal of dependences expected for MC photon U (red markers) are shown in Fig. 7.3.
The photon distributions of x∗ are centered at zero. The data burn sample is indicated as black
and grey markers to visualize the separation. The same plots for the remaining parameters can
be found in Fig. E.23 in the appendix.
The PCA is based on the parameters ∆∗

Leeds and log10(RNKG,1000)∗. In order to avoid depen-
dences on hadronic interaction models, the principal component axis is found using the data
burn sample and the non-preshowered photons (U) from the MC photon sample. This gives 458
events for data and 757 events for MC photons (U) with a reconstructed photon energy of at
least 10 EeV and with zenith angles of 30◦ to 60◦. The same axis is also used for the derivation
of the upper limits with E > 20 EeV and E > 40 EeV. As we use a data burn sample here,
statistics do not allow to set a principal component axis in bins of energy and zenith angle. This
is shown in Fig. 7.4(a). The angle of the principal component axis is −30.4◦. The remaining
98% of the data and the MC photon sample are then used for the photon search with the axis
fixed before. Figure 7.4(b) (zoom in Fig. 7.4(c)) shows the application sample together with
the principal component axis and the photon candidate cut for energies above 10 EeV. The
photon candidate cut is set to the median of the principal component for MC photons (U).
Figures 7.5(a), 7.5(b) and 7.5(c) show the distributions of the principal component for energies
above 10, 20 and 40 EeV. We find 4 photon candidate events above 10 EeV, 2 events above 20

1Equistatistical binning: 5 bins in log10(Eγ,MC), 6 bins in sec(θ).
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photon (U).
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Figure 7.3: Removal of the energy and zenith angle dependence expected for MC photons. Red
and black markers show the rescaled separation parameter x∗, for data and MC photon
(U). Grey and orange markers show the respective distribution of x (scaling factors are
given on the y-axis).
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Figure 7.5: Distributions of the principal component. Histograms have been normalized to the
number of events in data. The photon cut is set to the median for MC photons (U)
and is indicated by the dashed lines.
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EeV and no event above 40 EeV. In order to avoid dependences of the derived limits on the
background, the observed number of photon candidates is entirely treated as signal as a conser-
vative assumption. The upper limits on the integral photon flux, Φ95

γ , and photon fraction, F 95
γ ,

have been defined in Eqs. 4.22 and 4.23. The photon selection and reconstruction efficiency, ε,
is defined as

ε = ε01 · ε2 · ε3 (7.3)

=
wU+C,trigg.rec.(Eγ,rec > E0)
wU+C,sim.(Eγ,MC > E0)

× wU+C,par.sel.(Eγ,rec > E0)
wU+C,trigg.rec.(Eγ,rec > E0)

× wU+C,γcand.

wU+C,sel.(Eγ,rec > E0)
,

with ε01 the trigger and reconstruction efficiency, ε2 the parameter quality selection efficiency,
ε3 the photon candidate cut efficiency above the photon median obtained from non-preshowered
photons (U) and with wU+C,∗ the total / triggered and reconstructed / quality selected / iden-
tified sum of weights of MC photon events (U+C), reweighted to a spectrum with slope α. Here
we calculate ε01, simulating each MC shower in the detector up to five times to increase statis-
tics.
Applying the frequentist Feldman-Cousins approach without background subtraction, we ob-
tain an integral flux limit of 1.9 · 10−3 km−2 sr−1 yr−1 (0.99 · 10−3 km−2 sr−1 yr−1, 0.49 ·
10−3 km−2 sr−1 yr−1) above 10 EeV (20 EeV, 40 EeV) at 95% C.L., for zenith angles between
30◦ and 60◦. The corresponding fraction limits are 0.72% (1.6%, 6.17%) above 10 EeV (20 EeV,
40 EeV). The photon fraction limits (cf. Eq. 4.23) have been calculated using the integrated
combined Auger energy spectrum [263] above 10 EeV (20 EeV, 40 EeV), scaled to the effective
exposure of this analysis (accounting for the zenith angle range, sample size and efficiency). A
differential upper limit has also been placed for the first time in the range of 10 − 30 EeV, with
Φ95

γ = 2.59 km−2 sr−1 yr−1 and F 95
γ ≈ 2.7%. In this region it is most likely to observe a photon.

A summary of the complete results can be found in Tab. 7.1 in the centered columns. A search
for UHE photons with the surface detector using a different parameter related to the arrival
time distribution has been presented in [250].
The results are shown in Fig. 7.6 (photon flux) and in Fig. 7.7 (photon fraction). A continuous

line and the sensitivity of this analysis for the case of no photon candidates is also shown. In
the region of E0 = 10 EeV there are statistical fluctuations due to an event close to the candi-
date cut. The increase at highest energies comes from the photon selection and reconstruction
efficiency. For the range up to ∼ 40 EeV the upper limits are in the range of the GZK photon
predictions from Gelmini et al. [75]. The upper limits on the integral photon flux were shown
at the ICRC 2015 [232].
Assuming an exposure of 5042.27 km2 sr as the average per year and 30135.90 km2 sr yr for
the integral over the years 2004-2012 (excluding the non-recoverable part of the Comm’s crisis),
the extrapolation of the sensitivity to the year 2025 is indicated as well by the lower line. The
expected upper limits in the range of E0 = 10 − 30 EeV are somewhere between the current
upper limits and the sensitivity, depending on the number of photon candidates. The analysis
could be improved by a background rejection, but this would also introduce a dependence on
hadronic simulations. The sensivity for the year 2025 is in the range of the GZK photon pre-
dictions of Sarkar et al. [94] and could already challenge predictions from Lorentz invariance
violation (LIV)[231].
Statistical uncertainties of the photon candidate cut are shown as well (left column for the cut
shifted by −σ, right column for the cut shifted by +σ). The uncertainty σ of the photon median
has been derived with the bootstrap method and influences the number of photon candidate
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events, Nγ , and the photon selection and reconstruction efficiency, ε. The uncertainty of the
weighted efficiencies, σε is estimated as [264]:

σε =
√
f1 + f2

w2
total

with

f1 = w2
selected · (wtotal,squared − wselected,squared)

f2 = (wtotal − wselected)2 · wselected,squared

with w∗ the sum of weights and w∗,squared the sum of squared weights of the selected events (or
all events). The uncertainty of the photon flux or fraction x is then

σx = x · σε

ε
.

For E > 10 EeV the number of candidates varies between 8 and 3 candidates. Above 20 EeV
and 40 EeV the uncertainty affects only the photon selection and reconstruction efficiency, ε.
The corresponding results for different spectral indices α of the MC photons are summarized in
Tab. 7.2 (α = 1.7) and in Tab. 7.3 (α = 3.0). For the lowest energy threshold, the statistical
uncertainties dominate over the systematic effect of the spectral index and over the effect of
smearing the photon energy within an uncertainty of approximately 35%. According to the
real spectrum obtained with the SD, it has been checked [265] that the probability to have a
triggered station removed from the second hexagon is less than 5% for an E−2-spectrum and
even smaller for the third hexagon. Thus the bias of using an ideal detector in simulations for
this analysis is expected to be negligible in the combined quality selection of the risetime and
LDF parameter with at least four selected risetime stations.
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Upper limits on the diffusive UHE photon flux and fraction

7.1 Photon Candidate Events

The PCA has identified 4 photon candidate events for the integral flux above 10 EeV. The recon-
structed energy and geometry and the separation parameter are summarized in Tab. 7.4. The
SD traces of the non- or high-gain-saturated stations with a signal above 6 VEM and distances
between 600 m and 2000 m are shown in Figs. 7.10 to 7.13 and the station risetime as a function
of the distance to the shower core is shown in Fig. 7.8. We cannot give a clear interpretation
without a dedicated study of hadronic simululations, but we want to briefly discuss our findings.
Events 9701198 and 15797618 have been detected with the SD and FD. Thus we have a direct
measurement of the energy and Xmax. The longitudinal profiles are shown in Fig. 7.15.
The reconstructed energy and Xmax of event 9701198 and their reconstruction uncertainties
should be looked at critically as the shower maximum is not in the field-of-view of the tele-
scope. Anyway, within this restriction, the FD energy appears to be closer to the reconstructed
hadronic energy than to the reconstructed photon energy of the SD. A point has been added to
the elongation rate in Fig. 7.14. Within the reconstruction uncertainties, the event is not com-
patible with the average found for hadrons. In the SD measurement of this event, all selected
stations are above the risetime benchmark from data, as shown in Fig. 7.8(a). The LDF has
a structure around 1000 m and above and is below the signal expected from the LDF fit (cf.
Fig. 7.9(a)). This candidate remains very interesting.
Event 15797618 has been observed by two telescopes. One telescope appears to have a hole
in the longitudinal profile (cf. Fig. 7.15(a)) which might be due to a significant cloud cover-
age. Thus the reconstructed energy and Xmax and their uncertainties should also be looked
at critically. Still, the profile has a surprisingly good quality. The measurement of the second
telescope (cf. Fig. 7.15(b)) confirms the observations of a very deep shower maximum. Within
the restriction due to a possible cloud coverage, the FD energies appear to be closer to the
reconstructed hadronic energy than to the reconstructed photon energy of the SD. For photon
showers with LPM effect we expect outliers with a deeper shower maximum than the average
found for photons and with an overestimated reconstructed photon energy. It has been checked
on the simulated showers that the overestimation can be of a factor 2. Two points have been
added to the elongation rate in Fig. 7.14. Within the reconstruction uncertainties, both ob-
servations of this event the event is not compatible with the average found for hadrons, but
also not with the average for photons. Assuming that the reconstruction bias of the longitudi-
nal profile is not dominant, the exceptionally deep shower maximum might be explained by a
photon encountering the LPM effect. In the SD measurement of this event, station 1362 (cf.
Fig. 7.11(a)) shows a particularly slow rise of the SD signal which is typical for photon-induced
showers. Stations 1372 and 848 are closer to the benchmark from data but still above. Station
852 shows a structure with multiple peaks which leads to a very slow increase of the risetime.
The distance dependence of the risetime is not compatible with the average expected from data
(cf. Fig. 7.8(b)). The LDF does not appear to be particularly photon-like (cf. Fig. 7.9(b)). Still,
this candidate remains interesting.
Event 10759292 is the only candidate event with only a moderate inclination of 30.9◦. Sta-
tion 1089 is only slightly above the benchmark and station 982 is below the benchmark. The
remaining two stations are above the benchmark and create a slope that is larger than for the
average found in data (cf. Fig. 7.8(d)). The observed signal above 1000 m is below the signal
expected from the LDF fit (cf. Fig. 7.9(d)).
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(a) Event 9701198
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(b) Event 15797618
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(c) Event 7543164
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Figure 7.8: SD risetimes of the photon candidate events: Shown are stations passing the risetime
quality selection applied for ∆Leeds. The blue line indicates the benchmark obtained
from data and the black dashed line indicates a fit as used for t1/2(1000). MC photon
showers are expected to have larger risetimes than hadronic showers and a larger slope.
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Figure 7.9: SD signals of the photon candidate events: Full markers indicate stations passing the
LDF quality selection. Stations with a core distance r > 1000 m have been selected for
log10(RNKG,1000). The LDF fit result is indicated with a blue line. MC photon showers
are expected to have a steeper LDF than hadronic showers. The LDF shape has been
fixed to a parametrization in S1000 and θ obtained from data and the free parameters
are S1000 and the shower core. Thus the stations of MC photon showers at r & 1000 m
are expected to have signals smaller than expected from the LDF fit.

119



Chapter 7

Table 7.4: Photon candidate events - Energy, geometry, separation parameters and FD
information

SD ID θSD φSD Eγ,SD Ehadr,SD EFD Xmax,FD

9701198 56.4◦ 301.5◦ 12.9 EeV 3.59 EeV (2.8 ± 0.5) EeV 1068 ± 74 g/cm2

15797618 59.3◦ 130.5◦ 19.8 EeV 5.87 EeV (3.3 ± 0.5) EeV 1309 ± 52 g/cm2

(4.5 ± 0.4) EeV 1284 ± 22 g/cm2

7543164 53.9◦ 349.2◦ 22.9 EeV 9.41 EeV no FD no FD
10759292 30.9◦ 35.4◦ 17.1 EeV 5.11 EeV no FD no FD
SD ID ∆Leeds log10(RNKG,1000) Rc t1/2(1000) Ncand

9701198 5.73 -0.087 10.96 km 367.55 ns 7
15797618 9.93 0.098 11.50 km 342.89 ns 5
7543164 5.32 -0.037 11.19 km 337.06 ns 8
10759292 1.70 -0.093 6.75 km 408.58 ns 5

Event 7543164 has been a candidate to the analysis in [250]. It has the highest reconstructed
photon energy of all candidates with Eγ,SD = 22.9 EeV. Station 571 (cf. Fig. 7.12(c)) shows a
particularly slow rise of the signal. All of the five selected stations are above the benchmark from
data, as shown in Fig. 7.8(c). The observed signal above 1000 m is below the signal expected
from the LDF fit (cf. Fig. 7.9(c)). In [250] it is one of two candidates with such behaviour. The
other candidate has an energy below 10 EeV after improving the energy scale and is thus not
selected for our integral limits. Event 7543164 is a very interesting candidate.
Our analysis has identified four photon candidates that cannot be ruled out due to hardware
or event reconstruction issues on the SD side and also the events with FD information are -
within certain restrictions - not compatible with the average for data. They remain interesting
for further studies involving hadronic simulations.

7.2 Treatment of Preshowered Photons

From the SD measurement, preshowered (C) and non-preshowered (U) photons cannot be dis-
tinguished. Still they differ in observables that depend on Xmax or on the muon content. Also,
preshowered photons have a reconstructed photon energy which is on average underestimated
by 20% with the calibration derived from non-preshowered photons (see Fig. 9.1(b) in the ap-
pendix). For the parameters studied here, preshowered photons lie between non-preshowered
photons and hadrons. We account for the preshower effect in the following way:

• Apply the energy scale obtained from photons (U).

• Get the photon expectation from photons (U) only.

• Calculate the photon candidate cut (the median of a single rescaled parmeter (x∗) or the
principal component in case of a multivariate analysis) from photons (U) only.

• Take U+C photons for both the total number of events and the selection in the calculation
of the selection-, reconstruction- and photon-candidate-cut-efficiency.

Note that the preshower probability might be overestimated in this analysis as current studies
of the photon flux from the GZK effect suggest a steeper spectrum than assumed here. As a
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(b) Station 893 (753 m), first part of the trace
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(c) Station 894 (904 m)
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Figure 7.10: Photon candidate event 9701198: Shown are PMT 1 (red), PMT 2 (green) and PMT
3 (blue) of the station given in the caption. Direct light has not been removed in
these plots.
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(a) Station 1362 (727 m), first part of the trace
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(b) Station 1372 (876 m)
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(c) Station 848 (1204 m)
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Figure 7.11: Photon candidate event 15797618: Shown are PMT 1 (red), PMT 2 (green) and PMT
3 (blue) of the station given in the caption. Direct light has not been removed in these
plots.
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(a) Station 686 (684 m), first part of the trace
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(c) Station 571 (1167 m), first part of the trace
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(d) Station 674 (1439 m)
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Figure 7.12: Photon candidate event 7543164: Shown are PMT 1 (red), PMT 2 (green) and PMT
3 (blue) of the station given in the caption. Direct light has not been removed in
these plots.
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(b) Station 982 (857 m), first part of the trace
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(c) Station 975 (926 m)
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Figure 7.13: Photon candidate event 10759292: Shown are PMT 1 (red), PMT 2 (green) and PMT
3 (blue) of the station given in the caption. Direct light has not been removed in these
plots.

124



Upper limits on the diffusive UHE photon flux and fraction

Table 7.5: Photon candidate events - SD information

SD ID Station ID Snon−cleaned Scleaned r t1/2

9701198 897 42.47 VEM 41.14 VEM 605.20 m 137.82 ns
893 24.15 VEM 23.23 VEM 752.76 m 276.38 ns
894 13.65 VEM 12.29 VEM 903.53 m 297.58 ns
1176 7.89 VEM 7.64 VEM 938.51 m 315.62 ns

15797618 1362 37.28 VEM 36.54 VEM 726.88 m 215.28 ns
1372 19.25 VEM 18.85 VEM 876.42 m 131.85 ns
848 9.38 VEM 8.71 VEM 1203.84 m 216.77 ns
852 7.14 VEM 7.14 VEM 1445.72 m 1393.28 ns

7543164 686 92.95 VEM 90.83 VEM 684.28 m 250.54 ns
645 10.81 VEM 10.52 VEM 1131.18 m 250.97 ns
571 23.84 VEM 22.62 VEM 1166.65 m 400.41 ns
674 11.54 VEM 10.14 VEM 1439.30 m 298.89 ns
578 9.52 VEM 9.22 VEM 1456.11 m 896.26 ns

10759292 1089 105.81 VEM 105.81 VEM 679.90 m 194.79 ns
982 47.90 VEM 47.90 VEM 857.05 m 184.72 ns
975 37.45 VEM 37.14 VEM 925.71 m 510.37 ns
1486 6.39 VEM 6.39 VEM 1392.82 m 1360.14 ns
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Figure 7.14: Photon candidates (which have additional FD information) are shown along with
the elongation rate for non-preshowered photons (black and red), photon without
preshower and LPM effect (grey) and proton (magenta) presented earlier in this thesis
(Fig. 3.2). The different primaries have been simulated with Conex, cf. App. B.
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(b) Event 15797618, longitudinal profile (telescope 2)
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Figure 7.15: Two of the photon candidates have additional FD information. Shown are the longi-
tudinal profiles of the shower.
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Figure 7.16: The preshower probability and its directional and energy dependence, based on 100000
showers simulated with Conex (dataset is described in App. B). Directional depen-
dence in different energy bins, with a scale from 0 (blue) to 1 (red).

simple approach we weight all photons showers (U+C) to a spectrum α = −2 (or the spectrum
assumption mentioned).
Based on a set of 100000 showers simulated with Conex (cf. App. B), we have checked if it is
possible to exclude certain regions in the space angle to obtain a significant reduction of the
fraction of preshowered photons. As shown in Fig. 7.16(b), there is no small, limited region
with a high preshower probability, but rather a space angle of π. Thus a geometric cut to reject
preshower photons would reduce the exposure by a factor of 2. Based on this, we do not set up
any directional cut.

7.3 Setting up the Parameter Set: Comparison of Parameters

The following different event-based separation parameters have been compared to find the most
powerful parameter of each of the following groups:

• Station risetime: ∆Leeds and t1/2(1000) (for different selections)

• LDF shape: log10(RNKG), log10(RNKG,1000), log10(Sn
4 ) and log10(Sn

4,1000)

• Radius of curvature: Rc

• Number of triggered stations belonging to an air shower: Ncand

The station and event quality selection(s) have been established in the previous sections. Fig-
ure 7.18 shows a comparison of the integral photon selection efficiency ε2 for the different pa-
rameter groups. A selection efficiency of 100% is obtained for Ncand and (almost) for the LDF
parameters. For the background we use the data burn sample and as our signal the full photon
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Table 7.6: Comparison of different SD separation parameters (E > 10 EeV) based on the data
burn sample and all MC photon showers. Nγ is the number of photon candidates and
N95

γ the corresponding number at 95% C.L. for the Feldman-Cousins approach). N is
the number of selected stations, n = Ncand the number of triggered stations of a
shower and ncl the number of stations closer than 1000 m. S is the observed signal.
Brackets indicate cases that have not been taken into account when setting up the
analysis. Different selections have been specified.

Case Parameter Selection Nγ (N95
γ ) ε2 Npar η

1 ∆∗
Leeds S > 6 VEM, N > 3 1 (5.145) 0.56 9.15 1.99

(2) ∆∗
Leeds S > 6 VEM, N ≥ 3 2 (6.725) 0.82 8.17 1.67

(3) ∆∗
Leeds S > 6 VEM, N ≥ 2, n ≥ 5 3 (8.255) 0.82 10.06 1.54

4 ∆∗
Leeds S > 10 VEM, N > 3 0 (3.095) 0.33 9.37 2.17

5 ∆∗
Leeds S > 10 VEM, N ≥ 3 2 (6.725) 0.62 10.89 1.96

(6) ∆∗
Leeds S > 10 VEM, N ≥ 2, n ≥ 5 2 (6.725) 0.77 8.78 1.40

7 t1/2(1000)∗ S > 6 VEM, N > 3 1 (5.145) 0.56 9.15 2.04
(8) t1/2(1000)∗ S > 6 VEM, N ≥ 3, ncl > 0 2 (6.725) 0.70 9.66 1.92
(9) t1/2(1000)∗ S > 6 VEM, N ≥ 3 2 (6.725) 0.82 8.17 1.81
10 t1/2(1000)∗ S > 10 VEM, N > 3 1 (5.145) 0.33 15.57 2.31
11 t1/2(1000)∗ S > 10 VEM, N ≥ 3, ncl > 0 2 (6.725) 0.54 12.48 2.17
12 t1/2(1000)∗ S > 10 VEM, N ≥ 3 2 (6.725) 0.62 10.89 1.99
13 log10(RNKG)∗ 18 (27.84) 1.00 27.84 1.17
14 log10(RNKG,1000)∗ 18 (27.84) 0.99 28.00 1.26
15 log10(Sn

4 )∗ 57 (73.345) 1.00 73.35 1.11
16 log10(Sn

4,1000)∗ 22 (32.825) 0.99 33.02 1.27
17 R∗

c 18 (27.84) 0.82 34.11 0.96
18 N∗

cand 159 (185.345) 1.00 185.35 0.66

1 0.0360448 0.126941 -0.0937013 -0.0519164

0.0360448 1 0.0672337 -0.137138 -0.0995307

0.126941 0.0672337 1 -0.153224 -0.211401

-0.0937013 -0.137138 -0.153224 1 0.611895

-0.0519164 -0.0995307 -0.211401 0.611895 1

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

RC

Ncand

RNKG,1000

RNKG,1000 RC t1/2(1000) Leeds
Ncand

Leeds

t1/2(1000)

(a) Data

1 0.0235185 0.0919471 -0.0583195 -0.151906

0.0235185 1 0.085289 0.0437064 -0.0718205

0.0919471 0.085289 1 -0.290674 -0.24

-0.0583195 0.0437064 -0.290674 1 0.739434

-0.151906 -0.0718205 -0.24 0.739434 1

1−

0.8−

0.6−

0.4−

0.2−

0

0.2

0.4

0.6

0.8

1

RC

Ncand

RNKG,1000

Leeds

t1/2(1000)

RNKG,1000 RC t1/2(1000) Leeds
Ncand

(b) MC Photon

Figure 7.17: Correlation of the separation parameters. Note that the correlation factor has been
calculated using the rescaled definition, x∗, of the respective separation parameter x.
The risetime parameters have been calculated from selected stations with an observed
signal Sobs > 6 VEM and for events with at least four selected stations. The color
scale indicates the correlation coefficient.
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Figure 7.18: Comparison of the parameter selection efficiency for the separation parameters com-
pared in this analysis. Shown are MC photon (lower lines) and the data burn sample
(upper lines).

MC sample, assuming that the bias from the photon sample is small. The zenith and energy
dependence for MC photons has been removed by using the rescaled parameter x∗, as introduced
in Eq. 7.2. We have defined the following criteria to compare the single parameters:

1. Compare Npar = N95
γ /ε2 (with N95

γ the number of photon candidates that are selected
with the photon median from non-preshowered photons)

2. For parameters with the sameNpar, compare their merit factor η = |x̄γ−x̄BKG|/
√

σ2
γ + σ2

BKG

(with x̄ and σx the mean value and standard deviation of the signal and background sam-
ples)

The results for the single parameters are summarized in Tab. 7.6. The strongest parameter group
is the risetime. Applying the same selection, both parameters show a compatible performance.
The advantage of ∆Leeds is that it does not base on an event-wise fit and is thus more stable. In
previous studies [252] the following selection was applied for ∆Leeds: NSt ≥ 2 and Ncand ≥ 5. We
have shown that NSt ≥ 3 or NSt ≥ 4 both give a better separation in the case of Sobs > 6 VEM.
In any case this selection is not preferred as the cut Ncand ≥ 5 introduces an unneccessary energy
dependence. Note that when setting up the analysis, the following cases have not been taken
into account: 2, 3, 6. They have been added afterwards to complete the overview. For the LDF
parameters, log10(RNKG,1000) is preferrable. We find that log10(RNKG,1000) (case 14) is more
powerful than Rc. The radius of curvature was used e.g. for SD photon limits from 2008 [93],
together with t1/2(1000) (Sobs > 10 VEM, Nsel > 3). The number of triggered stations does
not add much separation. The correlation between the single parameters has been analyzed in
Figs. 7.17(a) (data) and 7.17(a) (MC photon). The combination of ∆Leeds (for Sobs > 6 VEM,
Nsel > 3) and log10(RNKG,1000) has only a little correlation (absolute value of less than 0.1) and
is expected to give a significant improvement compared to t1/2(1000) together with Rc.
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7.4 Setting up the Parameter Set: Combination of Parameters

The most powerful parameters discussed in the previous section are: ∆Leeds for the risetime
parameters, log10(RNKG,1000) for the LDF parameters and in addition Rc and Ncand. As a
last step of the analysis setup, we compare different combinations of these parameters on the
data burn sample and all MC photon showers in a PCA. The method is the same as discussed
at the beginning of this chapter. As expected, the combination 1+14, which is ∆Leeds (for
Sobs > 6 VEM, Nsel > 3) and log10(RNKG,1000), gives the best expected performance and will
be used for the final analysis. The combination 2+14, where case 2 has the best separation for
the risetime as a single parameter, is less powerful combined with the LDF parameter. Case
(10+17) corresponds to the parameters t1/2(1000) (Sobs > 10 VEM, Nsel > 3) and Rc, as
used in [93], without a restriction of the core distance for calculation of t1/2(1000). The photon
hadron separation has been significantly improved.

Table 7.7: Comparison of different parameter combinations (E > 10 EeV) based on the data burn
sample and all MC photon showers. Nγ is the number of photon candidates and N95

γ

the corresponding number at 95% C.L. for the Feldman-Cousins approach). The cases
are the same as in Tab. 7.6.

Cases Nγ (N95
γ ) ε2 Npar η

1+14 0 (3.095) 0.56 5.52 2.33
1+14+17 0 (3.095) 0.51 6.08 1.94
2+14 1 (5.145) 0.82 6.30 2.20
1+17 1 (5.145) 0.51 10.11 1.68
(10+17) 1 (5.145) 0.46 11.16 1.96

130



CHAPTER 8

Conclusion

In this work we have presented an update on the upper limits on the UHE photon flux and frac-
tion with the surface detector (SD) of the Pierre Auger Observatory above 10 EeV. The dataset
of 2004/01/01 to 2013/05/14 has been used to search for UHE photons. The main result of this
work is a significant improvement of the last published limits, entering the region of photonopti-
mistic GZK-predictions. The upper limit (95% C.L.) on the diffusive, integral photon flux above
10 EeV for zenith angles between 30◦ and 60◦, is 1.9 · 10−3 km−2 sr−1 yr−1, corresponding to
a maximum photon fraction of 0.72%. For 20 EeV (40 EeV) it is 0.99 · 10−3 km−2 sr−1 yr−1

(0.49 · 10−3 km−2 sr−1 yr−1), corresponding to a maximum photon fraction of 1.6% (6.17%).
Top-down scenarios are challenged by the results of this work. A differential upper limit has
also been placed for the first time (in the range of 10−30 EeV), with a maximum photon fraction
of ∼ 2.7%. In this energy range it is most likely to observe a photon. Photon candidate events
are being discussed briefly. Within the selection of showers that reach their shower maximum
almost above the ground level of the Pierre Auger Observatory, photon-induced air-showers
around 10 EeV with a delayed shower development due to the LPM effect are particularly in-
teresting. The observation of an UHE photon would be a completely new window to look at
the processes at the source or the CR propagation. But this cannot be done without dedicated
simulation studies. These studies might be a topic for future analyses.
Different separation variables have been studied and compared, such as the SD signal risetime,
the lateral distribution function (LDF) of the SD signal, the radius of curvature and the number
of triggered stations. We have optimized the selection towards a maximum selection efficiency
with a good parameter reconstruction quality. In order to define an event parameter on the
base of the risetime of single SD stations, we have updated and improved the correction for an
azimuthal asymmetry, the parametrization of the average risetime as a function of the distance
to the shower axis (benchmark) and the risetime uncertainty. Based on these parametrizations,
two different existing approaches have been compared in this analysis: ∆Leeds and t1/2(1000).
As an addition to the time domain, we have revisited work on an LDF parameter called S4. The
meaning of this parameter has been studied: Applying a normalization, the new parameter can
be understood as the average fractional deviation from a reference LDF. In this context we have
compared two reference LDF shapes: Sn

4 and RNKG.
The best combination out of the parameters compared in a pre-study for the final analysis
is ∆Leeds (signal risetime) and log10(RNKG,1000) (LDF shape). These parameters allow for a
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powerful compromise of high selection efficiency and good photon-hadron seperation. These
parameters are combined in a multivariate analysis (principal component analysis). We have
followed an approach to reduce any dependence on hadronic simulations by using a data burn
sample. This limits the accuracy of the method but gives a conservative result. As a technical
base for this analysis, we have improved the SD energy calibration. Different hardware issues
have been studied which can create an artificial background to the UHE photon search with the
SD (direct light effects, PMT afterpulses).

As a consequence of the fact that the standard SD reconstruction cannot describe photons
and hadrons equally well at the same time, parameters which compare the SD information of
one event with an average obtained either for data or MC photons should be favoured over
event-wise fits (such as t1/2(1000), Rc). The stability of an event-wise fit within the standard
SD reconstruction optimized for data cannot be assured without a loss of selection efficiency.
This should be considered in future studies.
Regarding the analysis, the photon-hadron-separation can be improved by finding a principal
component axis in bins of energy and zenith angle. The analysis can be improved by the usage
of a larger MC photon set to reduce statistical uncertainties of the photon median. This would
then require to use hadronic simulations instead of the data burn sample to have equal statistics
of signal and background. We have chosen a different approach in this work: What is the best
we can do to avoid a large dependence on hadronic simulations? As a further improvement,
hadronic background could either be removed using hadronic simulations or the photon can-
didate cut could be optimized to a value more restrictive than the median for photons. The
systematic effect of the photonuclear cross-section and of the thinning of photon MC showers
have not been studied in this work. A challenge in the SD photon search is the treatment of the
preshower effect and LPM effect without having a direct measurement of Xmax or the energy.
The current treatment has been described in detail and we have improved previous studies.
Nonetheless this might be topic to future analyses. The energy calibration does not describe
preshowered photons and photons with a very late Xmax correctly. In case of the LPM effect,
the energy is overestimated and thus photons with lower energies can enter the reconstructed
energies studied in this analysis.

The work presented here has significantly improved previous UHE photon limits and opens
several interesting topics for future analyses.
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Appendix

A Upper Limits

The cumulative χ2-distribution Fχ2(ν, c) is related [266] to Gamma-functions by

Fχ2 (c, ν) =

∫ c

0
tν/2−1e−t/2dt

2ν/2Γ(ν/2)

=

∫ c/2

0
2 · aν/2−1e−ada

2Γ(ν/2)

=
γ(ν/2, c/2)

Γ(ν/2)
(A.1)

Assume the following equation for an upper limit b (as it is found in several places for the derivation of
confidence intervals)

α/2 = e−b ·
n−1
∑

k=0

bk

k!

= 1 − γ(n− 1, b)
Γ(n− 1)

. (A.2)

Comparing Eq. A.1 and A.2 we find that

Fχ2 (2νup
s , 2(n+ 1)) = 1 − α/2. (A.3)
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B Conex Showers

For some studies, different primaries (γ, p, Fe) have been simulated with Conex [159]. This program
allows for a relatively fast simulation of extensive air showers, even compared to thinned simulations
with Corsika. Is is based on a “one-dimensional hybrid approach combining an explicit Monte-Carlo
simulation of the high energy part of hadronic and EM cascades in the atmosphere [...] with a numeric
soution of cascade equations for smaller energy sub-showers” [159]. We use the following models: High-
energy interactions are treated with the QGSJetII.04 model. Photonuclear interactions are accounted
for with the EGS4 model. The magnetic field is set to the IGRF-11 model, as for year 2013, for the
location of the Auger site. Showers have been thinned at a level 10−6. The following showers have been
simulated with zenith angles below 60◦, assuming a flat detector (cos(θ) · sin(θ)):

• Photon: 100000 photon showers from an E−1 spectrum have been simulated with energies
1018.5 eV to 1020.5 eV. The LPM and geomagnetic preshower effect have been accounted for.
Additionally, a set of 10000 photons has been simulated in the energy range 1019.4 eV to 1020.5 eV
without preshower effect or LPM effect.

• Proton: 50000 proton showers from an E−1 spectrum have been simulated with energies 1018.5 eV
to 1020.5 eV.

• Iron: 50000 iron showers from an E−1 spectrum have been simulated with energies 1018.5 eV to
1020.5 eV.
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C SD Simulation

Module sequence used for SD simulation and reconstruction of Corsika simulations:

<sequenceFile

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation=’/opt/Offline/v2r9p3-icrc13-final/share/auger-offline/config/ModuleSequence.xsd’>

<enableTiming/>

<moduleControl>

<loop numTimes="1" pushEventToStack="yes">

<module> EventFileReaderOG </module>

<loop numTimes="5" pushEventToStack="yes">

<module> EventGeneratorOG </module>

<loop numTimes="unbounded" pushEventToStack="no">

<module> CachedShowerRegeneratorOG </module>

<module> G4TankSimulatorOG </module>

</loop>

<module> SdSimulationCalibrationFillerOG </module>

<module> SdPMTSimulatorOG </module>

<module> SdFilterFADCSimulatorMTU </module>

<module> SdBaselineSimulatorOG </module>

<module> TankTriggerSimulatorOG </module>

<module> TankGPSSimulatorOG </module>

<module> EventFileExporterOG </module>

<module> CentralTriggerSimulatorXb </module>

<module> CentralTriggerEventBuilderOG </module>

<module> EventBuilderOG </module>

<module> EventCheckerOG </module>

<module> SdCalibratorOG </module>

<module> SdSignalRecoveryKLT1 </module>

<module> SdMonteCarloEventSelectorOG </module>

<module> SdEventSelectorOG </module>

<module> SdPlaneFitOG </module>

<module> LDFFinderKG </module>

<module> SdEventPosteriorSelectorOG </module>

<module> Risetime1000LLL </module>

<module> RecDataWriterNG </module>

</loop>

</loop>

</moduleControl>

</sequenceFile>

D SD Reconstruction

Module sequence used for SD data reconstruction:

<sequenceFile>

1The PMTs are operated in a way to assure a large dynamic range (10 bit). The range has to cover most of the
signals, starting at about 1000-2000 VEM close to the core, within a few hundred ns, dropping rapidly to a few
VEM from single particles arriving at 1000m or more. Therefore the signal is measured with two different gains.
If a gain is saturated, it creates an undershoot in the FADC trace, which is problematic for any trace-based
calculations. In case of high-gain saturation the signal can be easily recovered using non-saturated low-gain. If
the low-gain is also saturated, the signal can be recovered [267].
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<moduleControl>

<loop numTimes="unbounded">

<module> EventFileReaderOG </module>

<module> SdQualityCutTaggerOG </module>

<module> SdPMTQualityCheckerKG </module>

<module> TriggerTimeCorrection </module>

<module> SdCalibratorOG </module>

<module> SdStationPositionCorrection </module>

<module> SdBadStationRejectorKG </module>

<module> SdSignalRecoveryKLT </module>

<module> SdEventSelectorOG </module>

<module> SdPlaneFitOG </module>

<module> LDFFinderKG </module>

<module> Risetime1000LLL </module>

<module> SdEventPosteriorSelectorOG </module>

<module> RecDataWriterNG </module>

</loop>

</moduleControl>

</sequenceFile>
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The LDF is parametrized by a modified NKG-type function with shape parameters β and γ (cf.
Eq. 3.18)

S(r) = S1000 ·
( r

1000 m

)β

·
(

r + 700 m
1000 m + 700 m

)β+γ

, (D.4)

β = a0 + a1 · log10(S1000)

+(b0 + b1 · log10(S1000)) · sec(θ)

+(c0 + c1 · log10(S1000)) · sec2(θ), (D.5)

with a0 = −3.72

a1 = 0.0967

b0 = 1.74

b1 = −0.242

c0 = −0.274

c1 = 0.0349,

γ = fo0 + fo1 · log10(S1000)

+
fa0 + fa1 · log10(S1000)

e(fs0+fs1·log
10

(S1000))·(cos2(θ)−fp0−fp1·log
10

(S1000)) + 1

+fb · cos(θ)2·fet

e(log
10

(S1000)−fps)·fss + 1
− β, (D.6)

with fo0 = −1.87

fo1 = −0.183

fa0 = 0.490

fa1 = −0.065

fp0 = 0.483

fp1 = 0.005

fs0 = 19.6

fs1 = −2.10

fb = −0.272

fet = 2.32

fps = 1.95

fss = 18.01
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Figure E.2: Relative difference of reconstructed quantities with and without applying Mod. 1
to the SdCalibrator, applied on observed data. Mean and standard deviation can
be found in Tab. E.2. Cyan: Selected non-saturated stations of events with no sat-
urated station, magenta: selected HG.saturated stations of events with at least one
HG-saturated station, orange: LG-saturated stations of events with at least one HG-
saturated station. 161
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Figure E.3: Relative difference of reconstructed quantities with and without applying Mod. 3
to the SdCalibrator, applied on observed data. Mean and standard deviation can
be found in Tab. E.2. Cyan: Selected non-saturated stations of events with no sat-
urated station, magenta: selected HG-saturated stations of events with at least one
HG-saturated station, orange: LG-saturated stations of events with at least one HG-
saturated station. 162



Difference in start time bin

­50 ­40 ­30 ­20 ­10 0 10 20 30 40 50

en
tr

ie
s 

p
er

 b
in

 /
 t

o
ta

l 
en

tr
ie

s

­3
10

­210

­110

1
No sat.

HG sat.

LG sat.

(a) Starttime bin (difference in multiples of 25 ns),
for selected stations

Difference in stop time bin

­800 ­600 ­400 ­200 0 200 400 600 800

en
tr

ie
s 

p
er

 b
in

 /
 t

o
ta

l 
en

tr
ie

s

­410

­3
10

­210

­110

1 No sat.

HG sat.

LG sat.

(b) Stoptime bin (difference in multiples of 25 ns),
for selected stations

Rel. deviation S [%]

­100 ­80 ­60 ­40 ­20 0 20 40 60 80 100

en
tr

ie
s 

p
er

 b
in

 /
 t

o
ta

l 
en

tr
ie

s

­410

­3
10

­210

­110

1 No sat.

HG sat.

LG sat.
LG sat. (recovery)

(c) Signal S, for selected stations

 [%]
1/2

Rel. deviation t

­100 ­80 ­60 ­40 ­20 0 20 40 60 80 100

en
tr

ie
s 

p
er

 b
in

 /
 t

o
ta

l 
en

tr
ie

s

­410

­3
10

­210

­110

1 No sat.

HG sat.

LG sat.

(d) Risetime t1/2, for selected stations

 [%]βRel. deviation 

­100 ­80 ­60 ­40 ­20 0 20 40 60 80 100

en
tr

ie
s 

/ 
b

in

1

10

210

3
10

410

Event without HG sat. stations

Event with at least 1 HG sat. station

(e) LDF shape parameter β, for selected events

 [%]γRel. deviation 

­100 ­80 ­60 ­40 ­20 0 20 40 60 80 100

en
tr

ie
s 

/ 
b

in

1

10

210

3
10

Event without HG sat. stations

Event with at least 1 HG sat. station

(f) LDF shape parameter γ, for selected events

 [%]
1000

Rel. deviation S

­100 ­80 ­60 ­40 ­20 0 20 40 60 80 100

en
tr

ie
s 

/ 
b

in

1

10

210

3
10

410

Event without HG sat. stations

Event with at least 1 HG sat. station

(g) S1000, for selected events

 [%]cRel. deviation R

­100 ­80 ­60 ­40 ­20 0 20 40 60 80 100

en
tr

ie
s 

/ 
b

in

1

10

210

3
10

Event without HG sat. stations

Event with at least 1 HG sat. station

(h) Radius of curvature Rc, for selected events

Figure E.4: Relative difference of reconstructed quantities with and without applying Mod. 2
to the SdCalibrator, applied on observed data. Mean and standard deviation can
be found in Tab. E.2. Cyan: Selected non-saturated stations of events with no sat-
urated station, magenta: selected HG-saturated stations of events with at least one
HG-saturated station, orange: LG-saturated stations of events with at least one HG-
saturated station. 163
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Figure E.5: Relative difference of reconstructed quantities with and without applying Mod. 1 to
the SdCalibrator, applied on MC photons. Mean and standard deviation can be
found in Tab. E.2. Cyan: Selected non-saturated stations of events with no satu-
rated station, magenta: selected HG-saturated stations of events with at least one
HG-saturated station, orange: LG-saturated stations of events with at least one HG-
saturated station. 164
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Figure E.6: Relative difference of reconstructed quantities with and without applying Mod. 3 to
the SdCalibrator, applied on MC photons. Mean and standard deviation can be
found in Tab. E.2. Cyan: Selected non-saturated stations of events with no satu-
rated station, magenta: selected HG-saturated stations of events with at least one
HG-saturated station, orange: LG-saturated stations of events with at least one HG-
saturated station. 165
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Figure E.7: Relative difference of reconstructed quantities with and without applying Mod. 2 to
the SdCalibrator, applied on MC photons. Mean and standard deviation can be
found in Tab. E.2. Cyan: Selected non-saturated stations of events with no satu-
rated station, magenta: selected HG-saturated stations of events with at least one
HG-saturated station, orange: LG-saturated stations of events with at least one HG-
saturated station. 166
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(b) High-gain-saturated stations with 3 good PMTs
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(c) Simulated photon, non-saturated stations with 3
good PMTS

Figure E.8: Fixing the threshold value of r to identify signal outliers in one PMT: Zenith angle
dependence of the confidence levels according to 68% (red), 95% (yellow) and 99.7%
(cyan) probability.
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Figure E.10: Reconstruction bias of the zenith angle θ for simulated photons, compared to the true
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(a) MC photon, showing the full trace.
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(b) MC photon, focussing the relevant bin 361. These
bins are identified with the DLECorrectionGG module
but not with the new correction algorithm.
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(c) Data, event 4557361, station 987, showing the full
trace.
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(d) Data, event 4557361, station 987, focussing the rel-
evant bins 365 and 366. This bin is also identified with
the new correction algorithm.
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(e) Data, event 4614066, station 1482, showing the full
trace.
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(f) Data, event 4614066, station 1482, focussing the rel-
evant bin 247. This bin is identified with the DLECor-
rectionGG module but not with the new correction al-
gorithm.

Figure E.12: Examples of signal spikes in only 1 PMT and their correction. Thin lines indicate
the trace before, bold lines the trace after correction.
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(a) Data, event 6418230, station 824, showing the full
trace.
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(b) Data, event 6418230, station 824, focussing the
relevant bin 261. This bin is not identified with the
DLECorrectionGG module but with the new correction
algorithm.
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(c) Data, event 6277689, station 126, showing the full
trace.
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(d) Data, event 6277689, station 126, focussing the rel-
evant bins 246, 251 and 254. These bins are identified
with the DLECorrectionGG module but not with the
new correction algorithm. This station has only two
good PMTs.

t [25ns]

245 250 255 260 265 270 275 280

S
(t

) 
[V

E
M

 p
ea

k
]

0

50

100

150

200

250

300

350

400

450

500
PMT 1

PMT 1 (cleaned)

PMT 2

PMT 2 (cleaned)

PMT 3

PMT 3 (cleaned)

PMT 1

PMT 1 (cleaned)

PMT 2

PMT 2 (cleaned)

PMT 3

PMT 3 (cleaned)

PMT 1

PMT 1 (cleaned)

PMT 2

PMT 2 (cleaned)

PMT 3

PMT 3 (cleaned)

(e) Data, event 5211349, station 839, showing the full
trace.
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(f) Data, event 5211349, station 839, focussing the
relevant bins 242 and 243. These bins are identified
with the DLECorrectionGG module but not with the
new correction algorithm. This station is high-gain-
saturated.

Figure E.13: Examples of signal spikes in only 1 PMT and their correction. Thin lines indicate
the trace before, bold lines the trace after correction.
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Figure E.14: Parametrization of the risetime asymmetry (azimuth dependence)
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Figure E.15: Parametrization of the risetime asymmetry (distance dependence)
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Figure E.16: Parametrization of the risetime benchmark (distance dependence)
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Figure E.21: Mean value and standard deviation of a separation parameter x as expected from
MC photon (U).
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Figure E.22: Mean value and standard deviation of a separation parameter x as expected from
MC photon (U).
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Figure E.23: Removal of the energy and zenith angle dependence expected for MC photons. Red
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