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1 Introduction
Many applications in computational science and engineering require the solu-
tion of a sequence of slowly changing linear systems

𝐴(𝑖)𝑥(𝑖) = 𝑏(𝑖), 𝐴(𝑖) ∈ ℂ𝑛×𝑛, 𝑏(𝑖) ∈ ℂ𝑛, 𝑖 = 1, … , 𝑚. (1.1)

In this context, slowly changing means that the matrices and right-hand sides
change slightly from one system to the next, as it will be demonstrated for
some particular applications in Chapter 5. In our work, we have focused on
solving (1.1) by exploiting the idea of recycling, which basically means keeping
a carefully chosen subspace between systems, with the goal of reducing costs
of subsequent systems. We should mention that this is not a new concept, it
has been introduced and utilized by many authors in the last two decades.

Advances in technology led to a substantial growth in the size of the linear
systems, e.g., lattice QCD calculations tend to have hundreds of millions of
unknowns. In this case direct methods fail due to the excessive storage or com-
putational time requirements and iterative methods become the only feasible
option. The most popular choice are Krylov subspace methods. Not taking
into account the “closeness” of the matrices, there is a huge variety of methods
to choose from for solving each system separately in (1.1). Some well-known
Krylov solvers are CG for the Hermitian matrices and GMRES, GCR etc. in
the non-Hermitian case. However, even these methods encounter problems due
to their excessive storage requirements. A straightforward remedy is to use the
restarted or truncated version of these methods. Nonetheless, this is not al-
ways the best option, since restarted and truncated methods often experience
slow convergence and even stagnation.

Enhancing the robustness of restarted and truncated methods was, and still
is, an everlasting task. Improving on restarted GMRES resulted in many ad-
vanced methods that are based on two concepts: deflation and augmentation,
which play an important role throughout this thesis. The idea behind defla-
tion is to remove the smallest eigenvalues from the spectrum, which should lead
to a better convergence of the method, whereas augmentation simply means
enlarging the current subspace with a carefully chosen subspace from the pre-
vious cycle. As it will be shown in Section 3.5 these two concepts come along
together naturally. The way in which they are employed gives rise to different

1



2 1. Introduction

methods. The GMRES-E and GMRES-DR methods are algebraically equiva-
lent, since they use the same subspace, i.e. the eigenspace corresponding to the
smallest eigenvalues for the augmentation, but are rather based on different
strategies. Another example is the “loose” GMRES method where one aims to
keep a few error approximations which in some sense represent the previously
built subspace. On the other hand, truncation might lead to poor convergence,
since we keep only a certain number of vectors that we orthogonalize against in
the Arnoldi process. Improving on truncated methods leads to more efficient
methods like GCRO, which is by construction a truncated method. However,
an inner orthogonalization scheme which is of outmost importance throughout
this thesis seems to be quite effective. Furthermore, de Sturler proposed the
concept of optimal truncation, in which we choose the best possible subspace
to keep, thus developing the GCROT method.

Even though some of these methods can be easily modified for solving (1.1),
they all exhibit certain flaws. Nonetheless, combining some of these methods,
i.e. combining ideas, concepts and frameworks, leads to elegant and efficient
methods, that recycle a judiciously selected subspace between systems (cycles)
and use it to reduce costs of subsequent systems in the ensemble. The GCRO-
DR method uses the framework of the GCRO method, i.e. it has an inner/outer
scheme. However, it performs deflation in the same way as in GMRES-DR.
To clarify further, in the outer method, i.e. GCR, one computes the approx-
imate eigenspace, which is later on used by the inner method, i.e. GMRES
for building the augmented space, and deflating the smallest eigenvalues. An
important detail is that augmentation and deflation correspond to performing
the Arnoldi process with the operator (𝐼 −𝐶𝐶𝐻)𝐴 within GMRES, where 𝐶 is
the approximate eigenspace and 𝐼−𝐶𝐶𝐻 is the orthogonal projector. In recent
years, one more method named “loose” GCRO-DR (LGCRO-DR) for solving
(1.1) was proposed, which was developed by straightforwardly incorporating
the idea of recycling a few error approximations into GCRO-DR.

Our research is mainly based on the work by M. Gutknecht. In [Gut12] he
compares two techniques, namely deflated GMRES and truly deflated GM-
RES, without giving any details about the subspaces that we aim to recycle.
Choosing the right harmonic Ritz vectors as the recycle subspace, deflated
GMRES basically corresponds to the GCRO-DR method. On the other hand,
“true” deflation means deflating both, left and right, eigenspaces, and hence
represents a theoretically better approach. In order to do that, one has to use
the operator (𝐼 − 𝐶 ̃𝐶𝐻)𝐴 within Arnoldi instead of (𝐼 − 𝐶𝐶𝐻)𝐴, where the
range of ̃𝐶 is spanned by left harmonic Ritz vectors, which have to be com-
puted additionally. Therefore, on top of the Gutknecht’s theory, we propose
a cheap way of computing ̃𝐶, thus leading to a new method which represents



1.1 Outline 3

the truly deflated technique. We named the method Left-Right Deflated GM-
RES (LRDGMRES). The idea behind “loose” methods fits naturally into our
method, and gives rise to the “loose” LRDGMRES method.

Deflated and augmented methods usually work better when used together
with preconditioning. Often, the reliability of iterative methods for various
applications depends more on the choice of the preconditioner, rather than on
the acceleration technique employed. For this reason, preconditioning found
its way into this thesis. Since the choice of the preconditioner depends on the
application considered, we will discuss further this topic for the lattice QCD
application, which was, due to our involvement in the projects Marie Curie
Initial Training Network STRONGnet and SFB/Transregio 55 Hadronenphysik
mit Gitter-QCD, of the most interest for us.

1.1 Outline
This thesis is organised as follows.

In Chapter 2 we gathered definitions and results that are scattered through-
out the literature. The first three sections contain basic properties of projec-
tors, projection methods and Krylov subspaces, so even if the reader is familiar
with these terms, we suggest skimming through these sections for the sake of
notation. However, we would like to point to Section 2.4, where we introduce
the concept of left Ritz and harmonic Ritz vectors, which, to our knowledge,
is not known from the literature, and prove some canonical properties they
satisfy.

In Chapter 3 we introduce two mathematically equivalent Krylov subspace
methods, GMRES and GCR, for the solution of the nonsymmetric linear sys-
tems and discuss further modifications of these methods. In practice, both
methods are used in restarted or truncated form. In Section 3.5 we explain the
concepts of augmentation and deflation and draw a connection between them.
Furthermore, we present different techniques for using them, and we describe
the resulting methods GMRES-E (Section 3.5.2), GMRES-DR (Section 3.5.3)
and LGMRES (Section 3.5.4). Moreover, we describe the inner/outer scheme
utilized by GMRESR (Section 3.3) and GCRO (Section 3.4), and later on by
more advanced methods in Chapter 4. Since augmented and deflated methods
often unfold their full potential when used with preconditioning, we briefly
describe the right preconditioning in Section 3.6, which we further revisit in
Chapter 5 for a particular application in lattice QCD.

Chapter 4 contains the main contribution of this thesis. In Section 4.1 we
build on the GCRO framework by introducing the concept of optimal trunca-
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tion. In Section 4.2 we give a detailed description of the GCRO-DR method,
which was a starting point in our research, as well as two convergence results.
Further, in Section 4.3 we show two ways of including the error approxima-
tions in the recycling process, which is the only difference between LGCRO-DR
and GCRO-DR. Finally, in Section 4.4.1 we work out details for our method
LRDGMRES. Moreover, we propose two results for cheaply obtaining the left
harmonic Ritz vetors and discuss some disadvantages of our method when com-
pared to GCRO-DR. In last Section 4.4.2 of this chapter, we briefly explain
the LLRDGMRES method.

We compare the four methods described in Chapter 4 for various applica-
tions in Chapter 5. We consider in Section 5.1 an application which results in
a sequence of symmetric matrices, only to demonstrate that GCRO-DR and
LRDGMRES are equivalent in the Hermitian case. In Section 5.2 we con-
struct a 3 × 3 example whose purpose is to show the power of the approach
which utilizes the oblique projections. Further, we compare the methods for
one nonsymmetric system from a fluid dynamics application (Section 5.3) and
a sequence of nonsymmetric systems arising in the Korringa-Kohn-Rostoker
method in solid-state physics. The application of most interest for us was def-
initely lattice QCD. We present results for 5 consecutive systems arising from
the hybrid Monte Carlo integration in Section 5.5. Moreover, we apply the
red-black multiplicative Schwarz method as a preconditioner, and show results
in Section 5.5.1. Finally, Section 5.5.3 describes how diagonal similarity trans-
formations of the matrices in a sequence can be exploited in lattice QCD to
improve all four methods.

In Chapter 6 we give some final remarks and conclusions about the work
done within this thesis and discuss some further plans.



2 Basic Concepts
In this chapter we gather some basic definitions and results that are scattered
throughout the literature and that are useful for the remainder of the thesis.
Projectors play an important role in numerical linear algebra, as well as in
this thesis, and therefore, we give a brief overview of basic properties. Most of
the iterative techniques covered in later chapters utilize a projection process.
Thus, we describe a basic projection step in its general form and present some
theory we found useful. Next, we also briefly recall the theory behind Krylov
subspaces, as well as the Arnoldi method. While all of the results regarding
projections and Krylov subspaces are known and widely used, the last section of
this chapter is different, as its definitions and results are not widely used in the
literature. The concept of Ritz and harmonic Ritz pairs can be found in many
books and papers, but they usually refer to the right pairs. In Section 2.4 we
define, in addition, the left pairs and prove some useful properties they satisfy.

2.1 Projectors
Definition 2.1. A linear operator 𝑃 ∶ ℂ𝑛 → ℂ𝑛 is called a projector if 𝑃 2 = 𝑃.

It follows immediately from the definition that if 𝑃 is a projector, then so is
(𝐼 − 𝑃), and the following relations hold,

Ker(𝑃 ) = Ran(𝐼 − 𝑃)
Ran(𝑃 ) = Ker(𝐼 − 𝑃).

The next two lemmas show that each projector is uniquely characterized by
two subspaces, its range and null space. For proofs we refer to [Saa03], e.g.

Lemma 2.2. The space ℂ𝑛 can be decomposed as the direct sum

ℂ𝑛 = Ker(𝑃 ) ⊕ Ran(𝑃 ).
Lemma 2.3. Every pair of subspaces 𝑀 and 𝑆 which forms a direct sum of
ℂ𝑛 defines a unique projector 𝑃 such that Ran(𝑃 ) = 𝑀 and Ker(𝑃 ) = 𝑆. The
associated projector 𝑃 maps an element 𝑥 of ℂ𝑛 into the 𝑀-component 𝑥1 in
the unique decomposition 𝑥 = 𝑥1 + 𝑥2, 𝑥1 ∈ 𝑀, 𝑥2 ∈ 𝑆.

5



6 2. Basic Concepts

It is said that the projector 𝑃 projects onto the subspace 𝑀 and along
the subspace 𝑆. In the literature, projectors are usually defined through the
orthogonal complement 𝐿 = 𝑆⟂ of the subspace 𝑆. The following equations
define the projector 𝑃 onto 𝑀 and orthogonal to 𝐿

𝑃𝑥 ∈ 𝑀 (2.1)
𝑥 − 𝑃𝑥 ⟂ 𝐿. (2.2)

The following lemma gives us conditions under which it is possible to define
such a projector. The proof follows immediately from Lemma 2.3 with 𝑆 = 𝐿⟂.

Lemma 2.4. Given two subspaces 𝑀 and 𝐿 of the same dimension 𝑚, the
following two conditions are mathematically equivalent.

1. No nonzero vector of 𝑀 is orthogonal to 𝐿
2. For any 𝑥 ∈ ℂ𝑛 there is a unique vector 𝑃𝑥 which satisfies (2.1) and

(2.2).

Next, we consider matrix representations of projectors. Let us assume that
the columns 𝑣𝑖 and 𝑤𝑖 of 𝑉 and 𝑊 form orthonormal bases for subspaces 𝑀
and 𝐿, respectively. Since 𝑃𝑥 ∈ 𝑀 , it can be written as

𝑃𝑥 = 𝑉 𝑦. (2.3)

The constraint (2.2) is equivalent to the condition

⟨(𝑥 − 𝑉 𝑦), 𝑤𝑗⟩ = 0, 𝑗 = 1, … , 𝑚.

This can be rewritten in the matrix form

𝑊 𝐻(𝑥 − 𝑉 𝑦) = 0.

The previous equation yields the expression for computing 𝑦,

𝑊 𝐻𝑥 = 𝑊 𝐻𝑉 𝑦 ⇔ 𝑦 = (𝑊 𝐻𝑉 )−1𝑊 𝐻𝑥. (2.4)

From (2.3) and (2.4) we get the matrix representation of the projector 𝑃 ,

𝑃 = 𝑉 (𝑊 𝐻𝑉 )−1𝑊 𝐻.

Under the assumptions of Lemma 2.4, the nonsingularity of the matrix 𝑊 𝐻𝑉
is guaranteed. In case that the two bases are biorthogonal, i.e. 𝑊 𝐻𝑉 = 𝐼 , we
have, as a special case, the following representation of 𝑃 ,

𝑃 = 𝑉 𝑊 𝐻.
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We distinguish two different classes of projectors. In the case when the
subspace 𝐿 is equal to the subspace 𝑀 it is said that 𝑃 is the orthogonal
projector onto 𝑀 . A projector that is not orthogonal is called oblique. In
order to provide the condition under which a projector is orthogonal, we have
to define the adjoint 𝑃 𝐻 of the projector 𝑃 and consider some of the properties
of the adjoint.

Definition 2.5. The mapping 𝑃 𝐻 is the adjoint of 𝑃 if

(𝑃 𝐻𝑥, 𝑦) = (𝑥, 𝑃𝑦), ∀𝑥, ∀𝑦.

It is easily shown that 𝑃 𝐻 is also a projector,

((𝑃 𝐻)2𝑥, 𝑦) = (𝑃 𝐻𝑥, 𝑃𝑦) = (𝑥, 𝑃 2𝑦) = (𝑥, 𝑃𝑦) = (𝑃 𝐻𝑥, 𝑦).

The following relations

Ker(𝑃 𝐻) = Ran(𝑃 )⟂

Ker(𝑃 ) = Ran(𝑃 𝐻)⟂

hold as a consequence of Definition 2.5 and lead to this important result, see
[Saa03].

Proposition 2.6. A projector is orthogonal if and only if it is Hermitian.

We conclude this section with a few basic properties of orthogonal projectors.

Lemma 2.7. Let 𝑃 be an orthogonal projector. Then the two vectors 𝑃𝑥 and
(𝐼 − 𝑃)𝑥 are orthogonal and the following holds

‖𝑥‖2
2 = ‖𝑃𝑥‖2

2 + ‖(𝐼 − 𝑃)𝑥‖2
2 . (2.5)

This is just a consequence of Pythagoras’ theorem. It follows directly from
(2.5) that ‖𝑃𝑥‖2

2 ≤ ‖𝑥‖2
2, i.e. ‖𝑃𝑥‖2

2 / ‖𝑥‖2
2 ≤ 1. In addition, the value 1 is

reached for any element in Ran(𝑃 ). Thus, ‖𝑃 ‖2 = 1, unless 𝑃 = 0.
Remark 2.8. An orthogonal projector has only two eigenvalues, 0 or 1. Vectors
in the range of 𝑃 are eigenvectors associated with the eigenvalue 1, and vectors
in the null space of 𝑃 are the eigenvectors corresponding to the eigenvalue 0.

Geometrically, the orthogonal projection of a vector 𝑥 ∈ ℂ𝑛 onto the sub-
space 𝑀 is the shortest distance from that subspace, as formulated in the next
theorem, see [Saa03], e.g.



8 2. Basic Concepts

Theorem 2.9. Let 𝑃 be the orthogonal projector onto a subspace 𝑀 . Then
for any given vector 𝑥 ∈ ℂ𝑛, the following is true:

min
𝑦∈𝑀

‖𝑥 − 𝑦‖2 = ‖𝑥 − 𝑃𝑥‖2 .

It is possible to reformulate this result in a form of necessary and sufficient
conditions such that we can determine the best approximation to a given vec-
tor.

Corollary 2.10. Let a subspace 𝑀 and a vector 𝑥 ∈ ℂ𝑛 be given and let
𝑦∗ = 𝑃𝑥. Then

min
𝑦∈𝑀

‖𝑥 − 𝑦‖2 = ‖𝑥 − 𝑦∗‖2 ,

if and only if the following two conditions are satisfied,

𝑦∗ ∈ 𝑀
𝑥 − 𝑦∗ ⟂ 𝑀.

2.2 Projection Methods
The main subject of the thesis is solving sequences of linear systems. Let us
first consider solving a single linear system

𝐴𝑥 = 𝑏, 𝐴 ∈ ℂ𝑛×𝑛, 𝑥, 𝑏 ∈ ℂ𝑛. (2.6)

Most of the existing iterative methods for solving (2.6) utilize a projection
process. The main idea of a projection method is to extract an approximate
solution to the problem (2.6) from a subspace 𝒦 ⊆ ℂ𝑛, which is called the
search subspace. Considering that we usually want to exploit the knowledge of
an initial guess 𝑥0, the solution is, therefore, sought in an affine space 𝑥0 + 𝒦 .
If the dimension of the subspace 𝒦 is 𝑚, then, in general, 𝑚 constraints must
be imposed in order to uniquely extract such an approximation. Typically, the
residual vector 𝑟 = 𝑏−𝐴𝑥 is constrained to be orthogonal to another subspace
ℒ, which is called the subspace of constraints. This framework is well-known
as the Petrov-Galerkin approach. In the special case when ℒ = 𝒦 , the Petrov-
Galerkin approach is often called the Galerkin approach.

A basic projection technique onto the subspace 𝒦 and orthogonal to ℒ, as
described above, can be defined as follows:

Find ̃𝑥 ∈ 𝑥0 + 𝒦 such that 𝑏 − 𝐴 ̃𝑥 ⟂ ℒ. (2.7)
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Writing ̃𝑥 = 𝑥0 +𝛿, where 𝛿 ∈ 𝒦 , the orthogonality condition can be rewritten
as

𝑏 − 𝐴 ̃𝑥 ⟂ ℒ
⇔ 𝑏 − 𝐴(𝑥0 + 𝛿) ⟂ ℒ

⇔ 𝑟0 − 𝐴𝛿 ⟂ ℒ,
where 𝑟0 = 𝑏 −𝐴𝑥0 is the initial residual. This leads us to the basic projection
step:

̃𝑥 = 𝑥0 + 𝛿, 𝛿 ∈ 𝒦, (2.8)
⟨𝑟0 − 𝐴𝛿, 𝑤⟩ = 0, ∀𝑤 ∈ ℒ. (2.9)

Most of the iterative methods use a succession of such projections, where,
typically, in each step a new pair of subspaces 𝒦 and ℒ is used and the new
initial guess 𝑥0 is equal to the most recent approximation obtained from the
previous projection step.

We distinguish two classes of projection techniques: orthogonal and oblique.
In an orthogonal projection method, the subspace ℒ is equal to the subspace
𝒦 , while in an oblique projection method they are different and may be com-
pletely unrelated.

𝒦ℒ

𝑥

𝑃𝒦𝑥𝑄ℒ
𝒦𝑥

Figure 2.1: Orthogonal and oblique projectors

Figure 2.1 (reproduced from [Saa03]) illustrates 𝑃𝒦 , the orthogonal projec-
tor onto the subspace 𝒦 , while 𝑄ℒ

𝒦 illustrates the oblique projector onto 𝒦 ,
orthogonally to ℒ, i.e.

𝑃𝒦𝑥 ∈ 𝒦, 𝑥 − 𝑃𝒦𝑥 ⟂ 𝒦
𝑄ℒ

𝒦𝑥 ∈ 𝒦, 𝑥 − 𝑄ℒ
𝒦𝑥 ⟂ ℒ.

Choosing different subspaces ℒ gives rise to many different algorithms.
Throughout this thesis, we will focus on the case ℒ = 𝐴𝒦 , where 𝒦 is a
Krylov subspace, which we define in the next section.
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Geometrically, the orthogonality condition (2.9) for the case ℒ = 𝐴𝒦 means
that the vector 𝐴𝛿 is the orthogonal projection of the vector 𝑟0 onto the sub-
space 𝐴𝒦 . Hence, the following holds.

Proposition 2.11. Let 𝐴 be an arbitrary square matrix and assume that
ℒ = 𝐴𝒦. Then, the following holds:

1. A vector ̃𝑥 is the result of an oblique projection method onto 𝒦 orthog-
onally to ℒ with the starting vector 𝑥0 if and only if it minimizes the
2-norm of the residual vector 𝑏 − 𝐴𝑥 over 𝑥 ∈ 𝑥0 + 𝒦, i.e. iff

𝑅( ̃𝑥) = min
𝑥∈𝑥0+𝒦

𝑅(𝑥), (2.10)

where 𝑅(𝑥) ≡ ‖𝑏 − 𝐴𝑥‖2.
2. Let ̃𝑟 = 𝑏 − 𝐴 ̃𝑥 be the residual associated with the approximate solution

̃𝑥. Then
̃𝑟 = (𝐼 − 𝑃)𝑟0, (2.11)

where 𝑃 denotes the orthogonal projector onto the subspace 𝐴𝒦. Con-
sequently

‖ ̃𝑟‖ ≤ ‖𝑟0‖. (2.12)

Proof. 1. It follows from Corollary 2.10 that for a vector ̃𝑥 to be the mini-
mizer of 𝑅(𝑥) it is necessary and sufficient that 𝑏 − 𝐴 ̃𝑥 be orthogonal to
all vectors of the form 𝐴𝑦, where 𝑦 belongs to 𝒦 , i.e.

⟨𝑏 − 𝐴 ̃𝑥, 𝐴𝑦⟩ = 0, ∀𝑦 ∈ 𝒦,

which is exactly the Petrov-Galerkin condition that defines the approxi-
mate solution ̃𝑥.

2. The inequality (2.12) is an immediate consequence of the equation (2.10),
while the equation (2.11) follows from the fact that the vector 𝐴𝛿 in (2.9)
is the orthogonal projection of the vector 𝑟0 onto the subspace 𝐴𝒦 .

Methods relying on Proposition 2.11 are known as residual projection meth-
ods.

We complete this section with the matrix representation of the expression
for the approximate solution of (2.6). Let the columns of matrices 𝑉 and 𝑊
form bases of 𝒦 and ℒ, respectively. The approximate solution can be written
as

𝑥 = 𝑥0 + 𝑉 𝑦.
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Then, the orthogonality condition (2.9) can be rewritten as

𝑊 𝑇 𝐴𝑉 𝑦 = 𝑊 𝑇 𝑟0.

Under the assumption that the matrix 𝑊 𝑇 𝐴𝑉 is nonsingular, we obtain the
expression for the approximate solution ̃𝑥 of (2.6)

̃𝑥 = 𝑥0 + 𝑉 (𝑊 𝑇 𝐴𝑉 )−1𝑊 𝑇 𝑟0.

The matrix 𝑊 𝑇 𝐴𝑉 does not have to be nonsingular, i.e. the assertions of
Lemma 2.4 are not necessarily fulfilled, even when the matrix 𝐴 is nonsingular.
Conditions under which the nonsingularity of the matrix 𝑊 𝑇 𝐴𝑉 is guaranteed
are discussed next, see [Saa03].

Proposition 2.12. Let 𝐴, 𝒦 and ℒ satisfy either one of the following condi-
tions:

1. 𝐴 is positive definite and ℒ = 𝒦, or
2. 𝐴 is nonsingular and ℒ = 𝐴𝒦.

Then the matrix 𝑊 𝑇 𝐴𝑉 is nonsingular for any bases 𝑉 and 𝑊 of 𝒦 and ℒ,
respectively.

2.3 Krylov Subspaces

Since the 1950s, splitting methods were widely used to solve (2.6). The basic
idea of splitting methods is to decompose the matrix 𝐴 = 𝑀 − 𝑁 , where 𝑀
is nonsingular. The solution is then obtained iteratively via the recurrence

𝑥𝑚+1 = 𝑀−1𝑁𝑥𝑚 + 𝑀−1𝑏, 𝑚 = 0, 1, ..., (2.13)

where 𝑥0 is an arbitrary vector. Convergence is not guaranteed for arbitrary
splittings. The following theorem provides the necessary and sufficient condi-
tion for convergence.

Theorem 2.13. The iteration (2.13) converges to the solution of the system
𝑥∗ = 𝐴−1𝑏 for any starting vector 𝑥0 and any right-hand side 𝑏 if and only if
𝜌(𝑀−1𝑁) < 1.

In practice, one does not want to compute the spectral radius of a matrix,
since this can be very expensive. Instead, one uses the following result, which
utilizes the inequality 𝜌(𝑀−1𝑁) ≤ ‖𝑀−1𝑁‖.
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Corollary 2.14. Let ‖𝑀−1𝑁‖ < 1 for some operator norm. Then the iteration
(2.13) converges to the solution of the system 𝑥∗ = 𝐴−1𝑏 for any starting vector
𝑥0 and any right-hand side 𝑏.

Today, splitting methods are used mostly as preconditioners or as smoothers
in multigrid methods and more advanced iterative techniques are used to tackle
(2.6). The most common of these advanced techniques are Krylov subspace
methods, in which the subspace 𝒦 in (2.7) is a Krylov subspace.

Definition 2.15. Let 𝐴 ∈ ℂ𝑛×𝑛 and 𝑟 ∈ ℂ𝑛. A Krylov subspace of dimension
𝑚 is defined as

𝒦𝑚(𝐴, 𝑟) = span {𝑟, 𝐴𝑟, … , 𝐴𝑚−1𝑟}
= {𝑥 ∈ ℂ𝑛 ∶ 𝑥 = 𝑝𝑚−1(𝐴)𝑟, 𝑝𝑚−1 ∈ Π𝑚−1} . (2.14)

It follows from the definition that the sequence 𝒦1(𝐴, 𝑟), … , 𝒦𝑚(𝐴, 𝑟) of
Krylov subspaces is nested. Another important property is that the dimen-
sion 𝑚 cannot grow arbitrarily. To investigate this further we must recall the
definition of the minimal polynomial and the grade.

Definition 2.16. The minimal polynomial of a vector 𝑟 with respect to the
matrix 𝐴 ∈ ℂ𝑛×𝑛 is the nonzero monic polynomial 𝜒 of lowest degree such that
𝜒(𝐴)𝑟 = 0. The degree, 𝛾, of the minimal polynomial is called the grade of 𝑟
(with respect to 𝐴).

The following proposition determines the dimension of 𝒦𝑚 in general. For
the proof consult [Saa03].

Proposition 2.17. Let 𝐴 ∈ ℂ𝑛×𝑛, 𝑟 ∈ ℂ𝑛 and let 𝛾 be the grade of 𝑟. Then:
a) 𝒦𝛾 is invariant under 𝐴 and 𝒦𝑚 = 𝒦𝛾 for all 𝑚 ≥ 𝛾.
b) The Krylov subspace 𝒦𝑚 is of dimension 𝑚 if and only if 𝛾 ≥ 𝑚. Therefore,

dim(𝒦𝑚) = min{𝑚, 𝛾}.

The reason for Krylov subspaces being such an important concept in nu-
merical linear algebra lies in the fact that 𝐴−1𝑟, the action of the inverse of a
non-singular matrix 𝐴 ∈ ℂ𝑛×𝑛 on a vector 𝑟, can be expressed as a polynomial
𝑝 in 𝐴 of degree 𝛾 − 1, with 𝛾 the grade of 𝑟. It follows from Definition 2.16
that

𝜒𝛾(𝐴)𝑟0 = 0,
which further implies

𝐴−1𝑟0 = 𝑞𝛾−1(𝐴)𝑟0,
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where
𝑞𝛾−1(𝐴) = 𝜒𝛾(𝐴) − 𝜒𝛾(0)

𝜒𝛾(0) ,

and 𝜒𝛾(0) ≠ 0, since 𝐴 is a non-singular matrix. Thus, the solution of the
system (2.6) can be computed as

𝑥∗ = 𝑥0 + 𝐴−1𝑟0 = 𝑥0 + 𝑞𝛾−1(𝐴)𝑟0.

On the other hand, from (2.14), we see that the iterates extracted from the
Krylov subspace are exactly of this form, i.e.

𝐴−1𝑏 ≈ 𝑥𝑚 = 𝑥0 + 𝑝𝑚−1(𝐴)𝑟0,

for some polynomial 𝑝𝑚−1 of dimension 𝑚 − 1.
Due to the properties of the power iteration, the vectors 𝑟, 𝐴𝑟, … , 𝐴𝑚−1𝑟

become almost linearly dependent and are not a good choice for the basis
of the Krylov subspace 𝒦𝑚. Therefore, methods based on Krylov subspaces
usually involve some orthogonalization scheme. Considering that we will be
dealing with nonsymmetric systems, we will describe the Arnoldi process.

2.3.1 The Arnoldi Process

The Arnoldi process [Arn51] is an orthogonalization procedure which builds
up matrices of Hessenberg form. It turns out that the eigenvalues of the
Hessenberg matrix are good approximations to some eigenvalues of the original
matrix, which leads to an efficient algorithm for approximating the eigenvalues
of large sparse matrices. The Arnoldi method is based on the Gram-Schmidt
algorithm. We will describe the version that uses modified Gram-Schmidt, a
more stable algorithm than classical Gram-Schmidt. There are some other
versions like Householder Arnoldi [Wal88] etc., but we will not discuss them
here.

Most of the Krylov subspace methods described in the following chapters will
be based on the Arnoldi method. Therefore, we give here some important basic
properties of the process. The Arnoldi process is described as Algorithm 2.1.
It computes a sequence of orthonormal vectors 𝑣1, 𝑣2, … such that 𝑣1, … , 𝑣𝑚 is
an orthonormal basis of 𝒦𝑚(𝐴, 𝑣1).

Proposition 2.18. Assume that Algorithm 2.1 does not stop before the 𝑚th
step, i.e. ℎ𝑘+1,𝑘 ≠ 0. Then the vectors 𝑣1, 𝑣2, … , 𝑣𝑚 form an orthonormal basis
of the Krylov subspace 𝒦𝑚(𝐴, 𝑣1).
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Algorithm 2.1: Arnoldi Process
Input : 𝐴 ∈ ℂ𝑛×𝑛 system matrix

𝑣1 ∈ ℂ𝑛 starting vector
𝑚 number of basis vectors to build

Output: {𝑣1, 𝑣2, … , 𝑣𝑚} orthonormal basis of 𝒦𝑚(𝐴, 𝑣1)

1 𝛽 = ‖𝑣1‖2
2 𝑣1 = 𝑣1/𝛽
3 for 𝑘 = 1, 2, … , 𝑚 do
4 𝑤 = 𝐴𝑣𝑘
5 for 𝑖 = 1, 2, … , 𝑘 do // modified Gram-Schmidt
6 ℎ𝑖,𝑘 = ⟨𝑤, 𝑣𝑖⟩
7 𝑤 = 𝑤 − ℎ𝑖,𝑘𝑣𝑖
8 ℎ𝑘+1,𝑘 = ‖𝑤‖2
9 if ℎ𝑘+1,𝑘 = 0 then

10 set 𝑚 = 𝑘 and Stop
11 𝑣𝑘+1 = 𝑤/ℎ𝑘+1,𝑘

Proposition 2.19. Let 𝑉𝑚 be the 𝑛×𝑚 matrix with column vectors 𝑣1, … , 𝑣𝑚,
�̄�𝑚 the (𝑚 + 1) × 𝑚 Hessenberg matrix whose nonzero entries ℎ𝑖𝑗 are defined
by Algorithm 2.1 and 𝐻𝑚 the matrix obtained from �̄�𝑚 by deleting its last row.
Then the following relations hold:

𝐴𝑉𝑚 = 𝑉𝑚𝐻𝑚 + ℎ𝑚+1,𝑚𝑣𝑚+1𝑒𝑇
𝑚

= 𝑉𝑚+1�̄�𝑚 (2.15)
𝑉 𝑇

𝑚 𝐴𝑉𝑚 = 𝐻𝑚.

The relation (2.15) is known as the Arnoldi relation.

Algorithm 2.1 may break down if ℎ𝑘+1,𝑘 = 0 in line 8. In this case 𝑣𝑘+1
cannot be computed and the algorithm stops. The following proposition gives
the conditions under which this occurs.

Proposition 2.20. The Arnoldi process breaks down at step 𝑘, i.e. ℎ𝑘+1,𝑘 = 0
in line 8 of Algorithm 2.1 if and only if the grade of 𝑣1 is 𝑘. Moreover, in this
case the subspace 𝒦𝑘 is invariant under 𝐴.

The eigenvalues 𝜆𝑖, 𝑖 = 1, … , 𝑚 of the resulting Hessenberg matrix 𝐻𝑚 are
good approximations to some of the eigenvalues of the matrix 𝐴. They are
known as the Ritz values of the matrix 𝐴 w.r.t. 𝒦𝑚. The corresponding Ritz
vectors are 𝑉𝑚𝑦𝑖, 𝑖 = 1, … , 𝑚, where 𝑦𝑖, 𝑖 = 1, … , 𝑚 are the eigenvectors of
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the matrix 𝐻𝑚 belonging to eigenvalues 𝜆𝑖, 𝑖 = 1, … , 𝑚. In practice, it is
usually expensive to compute the eigenvalues of 𝐴. Thus, we rather compute
approximations to the wanted eigenvalues, i.e. the Ritz values or some variants.
Hence, we dedicate the next section to some general definitions and properties
of Ritz and harmonic Ritz pairs.

2.4 Ritz and Harmonic Ritz Pairs

Definition 2.21. Let 𝐴 ∈ ℂ𝑛×𝑛 and 𝒦 ⊆ ℂ𝑛 be any subspace. Then 𝑦 ∈ 𝒦
is a 𝐫𝐢𝐠𝐡𝐭 Ritz vector of 𝐴 with respect to 𝒦 with a Ritz value 𝜆 if

𝐴𝑦 − 𝜆𝑦 ⟂ 𝒦. (2.16)

The concept of a 𝐥𝐞𝐟𝐭 Ritz pair is not widely used in the literature. Note
that a left eigenpair (𝜇, 𝑧) satisfies 𝑧𝐻𝐴 − 𝜇𝑧𝐻 = 0 ⇔ 𝐴𝐻𝑧 − ̄𝜇𝑧 = 0. Thus,
the following definition for a left Ritz pair comes naturally.

Definition 2.22. Let 𝐴 ∈ ℂ𝑛×𝑛 and 𝒦 ⊆ ℂ𝑛 be any subspace. Then 𝑧 ∈ 𝒦
is a 𝐥𝐞𝐟𝐭 Ritz vector of 𝐴 with respect to 𝒦 with a Ritz value 𝜇 if

𝐴𝐻𝑧 − ̄𝜇𝑧 ⟂ 𝒦. (2.17)

The following Lemma shows that with Definition 2.22 certain useful prop-
erties are satisfied. Let us first denote with Λ = {𝜆1, … , 𝜆𝑗} the set of all
right Ritz values and with 𝑀 = {𝜇1, … , 𝜇𝑗} the set of all left Ritz values of
the matrix 𝐴 w.r.t. to the same subspace 𝒦 , where 𝑗 is the dimension of the
subspace 𝒦 .

Lemma 2.23. Let (𝜆, 𝑦) be a right and (𝜇, 𝑧) be a left Ritz pair of 𝐴 w.r.t. the
same subspace 𝒦. Then, if 𝜆 ≠ 𝜇, we have ⟨𝑦, 𝑧⟩ = 0. In addition, Λ = 𝑀 .

Proof. We first prove that Λ = 𝑀 . Let us assume that the columns of 𝑉 ∈
ℂ𝑛×𝑚 form an orthonormal basis of 𝒦 , and let 𝑦 = 𝑉 𝑢. Then (2.16) is
equivalent to

𝑉 𝐻𝐴𝑉 𝑢 = 𝜆𝑉 𝐻𝑉 𝑢 = 𝜆𝑢.
This shows that the right Ritz vectors 𝑦 are of the form 𝑦 = 𝑉 𝑢 with 𝑢 an
eigenvector of 𝑉 𝐻𝐴𝑉 , and 𝜆 the corresponding eigenvalue. Similarly, with
𝑧 = 𝑉 𝑤, (2.17) is equivalent to

𝑉 𝐻𝐴𝐻𝑉 𝑤 = ̄𝜇𝑉 𝐻𝑉 𝑤 = ̄𝜇𝑤,
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which shows that the left Ritz vectors 𝑧 are of the form 𝑧 = 𝑉 𝑤 with 𝑤 an
eigenvector of 𝑉 𝐻𝐴𝐻𝑉 and ̄𝜇 the corresponding eigenvalue. We have

𝑀 = 𝑠𝑝𝑒𝑐(𝑉 𝐻𝐴𝐻𝑉 ) = 𝑠𝑝𝑒𝑐((𝑉 𝐻𝐴𝐻𝑉 )𝐻) = 𝑠𝑝𝑒𝑐(𝑉 𝐻𝐴𝑉 ) = Λ,

which proves 𝑀 = Λ.
Now let 𝜆 ≠ 𝜇 with (𝜆, 𝑦) a right and (𝜇, 𝑧) a left Ritz pair. Then, by (2.16)
we have

⟨𝐴𝑦, 𝑧⟩ = ⟨𝜆𝑦 + 𝑠, 𝑧⟩ 𝑤𝑖𝑡ℎ 𝑠 ∈ 𝒦⊥,
and thus

⟨𝐴𝑦, 𝑧⟩ = ⟨𝜆𝑦, 𝑧⟩ = 𝜆⟨𝑦, 𝑧⟩. (2.18)

Similarly, using (2.17) we get

⟨𝑦, 𝐴𝐻𝑧⟩ = ⟨𝑦, ̄𝜇𝑧 + 𝑡⟩ 𝑤𝑖𝑡ℎ 𝑡 ∈ 𝒦⊥,

and thus
⟨𝑦, 𝐴𝐻𝑧⟩ = ⟨𝑦, ̄𝜇𝑧⟩ = 𝜇⟨𝑦, 𝑧⟩. (2.19)

From (2.18) and (2.19) we get

𝜆⟨𝑦, 𝑧⟩ = ⟨𝐴𝑦, 𝑧⟩ = ⟨𝑦, 𝐴𝐻𝑧⟩ = 𝜇⟨𝑦, 𝑧⟩,

and thus ⟨𝑦, 𝑧⟩ = 0 if 𝜆 ≠ 𝜇.

Ritz vectors tend to approximate the extremal eigenvalues of 𝐴 well, but
can give poor approximations to the interior eigenvalues, see [Par98]. And,
in our computations, we are interested in interior eigenvalues. Switching from
𝐴 to 𝐴−1, extremal and interior eigenvalues change their roles, so that the
inverses of Ritz values of 𝐴−1 should give good approximations to the interior
eigenvalues of 𝐴, see [Mor91]. We will now define harmonic Ritz values as the
Ritz values of 𝐴−1 w.r.t. the subspace 𝐴𝒦 , see [PPV95].

Definition 2.24. Let 𝐴 ∈ ℂ𝑛×𝑛 and 𝒦 ⊆ ℂ𝑛 be any subspace. Then ̃𝑦 ∈ 𝐴𝒦
is a 𝐫𝐢𝐠𝐡𝐭 harmonic Ritz vector of 𝐴 with respect to the subspace 𝐴𝒦 with a
harmonic Ritz value 1/𝜃 if

𝐴−1 ̃𝑦 − 𝜃 ̃𝑦 ⟂ 𝐴𝒦. (2.20)

Approximating the eigenvalues of 𝐴−1 using the subspace 𝐴𝒦 has the ad-
vantage that we do not need 𝐴−1 explicitly, as we will see later. As before, we
propose an appropriate definition of the left harmonic Ritz pair, which seems
to be new.



2.4 Ritz and Harmonic Ritz Pairs 17

Definition 2.25. Let 𝐴 ∈ ℂ𝑛×𝑛 and 𝒦 ⊆ ℂ𝑛 be any subspace. Then ̃𝑧 ∈ 𝐴𝒦
is a 𝐥𝐞𝐟𝐭 harmonic Ritz vector of 𝐴 with respect to the subspace 𝐴𝒦 with
harmonic Ritz value 1/𝜂 if

𝐴−𝐻 ̃𝑧 − ̄𝜂 ̃𝑧 ⟂ 𝐴𝒦. (2.21)

Remark 2.26. In the Hermitian case, regardless of the choice of the subspace,
right and left harmonic Ritz vectors are equal, since (2.20) and (2.21) become
equivalent conditions.

Definition 2.25 will be very useful throughout this thesis. It will yield a
cheap way of obtaining left harmonic Ritz vectors from the Krylov subspace
generated by 𝐴. This way, we will avoid additional multiplications by 𝐴𝐻, as
will be seen in Chapter 4.

In a similar fashion as Lemma 2.23, Lemma 2.27 states that left harmonic
Ritz pairs have canonical properties. Let us denote with Θ = {𝜃1, … , 𝜃𝑗} the
set of all right harmonic Ritz values and with 𝑁 = {𝜂1, … , 𝜂𝑗} the set of all
left harmonic Ritz values of the matrix 𝐴 w.r.t. the same subspace 𝐴𝒦 , where,
as before, 𝑗 is the dimension of the subspace 𝒦 .
Lemma 2.27. Let (1/𝜃, ̃𝑦) be a right and (1/𝜂, ̃𝑧) a left harmonic Ritz pair
of 𝐴 w.r.t. the same subspace 𝐴𝒦. Then, if 𝜃 ≠ 𝜂, we have ⟨ ̃𝑦, ̃𝑧⟩ = 0. In
addition, Θ = 𝑁 .

Proof. The proof is similar to the proof of Lemma 2.23. First, we prove that
Θ = 𝑁 . Let us assume that the columns of 𝑉 ∈ ℂ𝑛×𝑚 form an orthonormal
basis of 𝒦 , and let ̃𝑦 = 𝐴𝑉 𝑢. Then (2.20) is equivalent to

𝑉 𝐻𝐴𝐻𝐴−1𝐴𝑉 𝑢 = 𝜃𝑉 𝐻𝐴𝐻𝐴𝑉 𝑢.
It follows that (𝑉 𝐻𝐴𝐻𝐴𝑉 )−1𝑉 𝐻𝐴𝐻𝑉 𝑢 = 𝜃𝑢, which shows that the right
harmonic Ritz vectors ̃𝑦 are of the form ̃𝑦 = 𝐴𝑉 𝑢 with 𝑢 an eigenvector of
(𝑉 𝐻𝐴𝐻𝐴𝑉 )−1𝑉 𝐻𝐴𝐻𝑉 , and 𝜃 the corresponding eigenvalue. Similarly, with

̃𝑧 = 𝐴𝑉 𝑤, (2.21) is equivalent to

𝑉 𝐻𝐴𝐻𝐴−𝐻𝐴𝑉 𝑤 = ̄𝜂𝑉 𝐻𝐴𝐻𝐴𝑉 𝑤.
It follows that (𝑉 𝐻𝐴𝐻𝐴𝑉 )−1𝑉 𝐻𝐴𝑉 𝑤 = ̄𝜂𝑤, which shows that the left har-
monic Ritz vectors ̃𝑧 are of the form ̃𝑧 = 𝐴𝑉 𝑤 with 𝑤 an eigenvector of
(𝑉 𝐻𝐴𝐻𝐴𝑉 )−1𝑉 𝐻𝐴𝑉 , and ̄𝜂 the corresponding eigenvalue. From the fact that
((𝑉 𝐻𝐴𝐻𝐴𝑉 )−1𝑉 𝐻𝐴𝑉 )𝐻 = 𝑉 𝐻𝐴𝐻𝑉 (𝑉 𝐻𝐴𝐻𝐴𝑉 )−1, we conclude

𝑁 = 𝑠𝑝𝑒𝑐((𝑉 𝐻𝐴𝐻𝐴𝑉 )−1𝑉 𝐻𝐴𝑉 )
= 𝑠𝑝𝑒𝑐(((𝑉 𝐻𝐴𝐻𝐴𝑉 )−1𝑉 𝐻𝐴𝑉 )𝐻)
= 𝑠𝑝𝑒𝑐(𝑉 𝐻𝐴𝐻𝑉 (𝑉 𝐻𝐴𝐻𝐴𝑉 )−1).
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Using the well-known identity 𝑠𝑝𝑒𝑐(𝐵𝐶) = 𝑠𝑝𝑒𝑐(𝐶𝐵), with 𝐵 = 𝑉 𝐻𝐴𝐻𝑉 and
𝐶 = (𝑉 𝐻𝐴𝐻𝐴𝑉 )−1, it follows

𝑠𝑝𝑒𝑐(𝑉 𝐻𝐴𝐻𝑉 (𝑉 𝐻𝐴𝐻𝐴𝑉 )−1)
= 𝑠𝑝𝑒𝑐((𝑉 𝐻𝐴𝐻𝐴𝑉 )−1𝑉 𝐻𝐴𝐻𝑉 )
= Θ,

which proves 𝑁 = Θ.
Now let 𝜃 ≠ 𝜂 with (1/𝜃, ̃𝑦) a right and (1/𝜂, ̃𝑧) a left harmonic Ritz pair.
Then, by (2.20) we have

⟨𝐴−1 ̃𝑦, ̃𝑧⟩ = ⟨𝜃 ̃𝑦 + ̃𝑠, ̃𝑧⟩ 𝑤𝑖𝑡ℎ ̃𝑠 ∈ (𝐴𝒦)⊥,

and thus
⟨𝐴−1 ̃𝑦, ̃𝑧⟩ = ⟨𝜃 ̃𝑦, ̃𝑧⟩ = 𝜃⟨ ̃𝑦, ̃𝑧⟩. (2.22)

Similarly, using (2.21) we get

⟨ ̃𝑦, 𝐴−𝐻𝑧⟩ = ⟨ ̃𝑦, ̄𝜂 ̃𝑧 + ̃𝑡⟩ 𝑤𝑖𝑡ℎ ̃𝑡 ∈ (𝐴𝒦)⊥,

and thus
⟨ ̃𝑦, 𝐴−𝐻 ̃𝑧⟩ = ⟨ ̃𝑦, ̄𝜂 ̃𝑧⟩ = 𝜂⟨ ̃𝑦, ̃𝑧⟩. (2.23)

From (2.22) and (2.23) we get

𝜃⟨ ̃𝑦, ̃𝑧⟩ = ⟨𝐴−1 ̃𝑦, ̃𝑧⟩ = ⟨ ̃𝑦, 𝐴−𝐻 ̃𝑧⟩ = 𝜂⟨ ̃𝑦, ̃𝑧⟩,

and thus ⟨ ̃𝑦, ̃𝑧⟩ = 0 if 𝜃 ≠ 𝜂.

In this section we developed theory for an arbitrary subspace 𝒦 . Starting
with the next chapter, 𝒦 will be the 𝑚-th Krylov subspace 𝒦𝑚(𝐴, 𝑟), if not
stated otherwise.



3 GMRES, GCR and Deflation

In this chapter we recall some of the well-known methods for solving a single,
non-symmetric linear system (2.6). A common choice is the GMRES method
[SS86], a projection based method which minimizes the 2-norm of the resid-
ual vector in each step. Recent demands in simulations led to a significant
increase in sizes of systems to solve, which made GMRES impractical due to
the excessive storage or computational time requirements. Possible remedies
are to restart, an approach that we discuss in Section 3.1.1, to truncate, etc.
(see, e.g., [Saa03]).

The GCR method [EES83] is a mathematically equivalent method to GM-
RES. Although we do not consider GCR as a means to solve the system,
the method framework plays an important role throughout this thesis. We
also introduce the GMRESR method [VV94], which uses an inner method,
which is GMRES (𝑚 steps of GMRES), and an outer method, which is GCR.
The GMRESR method provides only suboptimal corrections to the solution
and, in addition, it exhibits some of the problems of the restarted GMRES
method. Preserving the GCR orthogonality relations within the inner method,
i.e. within GMRES, leads to a more efficient method GCRO (GCR with inner
orthogonalization) [Stu96a]. Although GCRO provides the optimal correc-
tions to the solution, the storage requirements might be excessive. Hence, in
the next chapter we will introduce the concept of optimal truncation which
together with the GCRO framework results in the GCROT method [Stu99].

Much work has been invested in enhancing the robustness of the restarted
GMRES method. Most of the methods derived since, are based on two con-
cepts: deflation, i.e. removing the “problematic” (usually the smallest) eigen-
values from the spectrum and augmentation, i.e. enlarging the search space
with carefully chosen vectors from previous cycles. The choice of the vectors
and the way in which they are used gives rise to many different methods. We
present GMRES-E (GMRES with eigenvectors) [Mor95] and GMRES-DR (De-
flated and restarted GMRES) [Mor02], two methods developed by R. Morgan.
Despite the fact that these two methods are algebraically equivalent, they are
based on different approaches. As it will be shown, GMRES-E uses an augmen-
tation approach and can be modified for solving sequences of linear systems,
whereas GMRES-DR uses an orthogonalization approach and can be efficient
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when solving one system, but cannot be adapted for solving sequences of sys-
tems. A somewhat similar idea was exploited to derive the “loose” GMRES
method [BJM05], which we also introduce.

Deflation and augmentation techniques can often show their full potential,
only if they are used together with preconditioning. Preconditioning plays
only a minor role in this thesis. Accordingly, in Section 3.6 we only give a brief
introduction to right preconditioning. In Chapter 5, we will expand this topic
by introducing a certain preconditioner for the lattice QCD application.

Proper combination of the methods from this chapter will result in elegant
and efficient methods for solving sequences of linear systems, which will be the
topic of the next chapter.

3.1 GMRES
The Generalized Minimal Residual method (GMRES) [SS86] is a projection
based Krylov subspace method which minimizes the 2-norm of the residual
vector in each step. One way to derive the method is to consider the conditions
(2.8) and (2.9) with 𝒦 = 𝒦𝑘 and ℒ = 𝐴𝒦𝑘, where 𝒦𝑘 is the 𝑘-th Krylov
subspace. We know from Proposition 2.11 that this means that the 2-norm
of the residual is minimized. We now focus on more algorithmic aspects, in
particular on how to obtain the iterates from the Arnoldi process (Alg. 2.1).

Any approximate solution, extracted from an affine space 𝑥0 + 𝒦𝑘, can be
written as 𝑥𝑘 = 𝑥0 + 𝑉𝑘𝑦, where the columns of 𝑉𝑘 form an orthonormal basis
of 𝒦𝑘 and 𝑦 ∈ ℂ𝑘. Thus, the 2-norm of the residual can be rewritten as

‖𝑏 − 𝐴𝑥‖2 = ‖𝑏 − 𝐴(𝑥0 + 𝑉𝑘𝑦)‖2
= ‖𝑟0 − 𝐴𝑉𝑘𝑦‖2 .

Using the Arnoldi relation (2.15) and the fact that the matrix 𝑉𝑘+1 is orthonor-
mal, it follows

‖𝑏 − 𝐴𝑥‖2 = ‖𝑟0 − 𝐴𝑉𝑘𝑦‖2
= ∥𝛽𝑣1 − 𝑉𝑘+1�̄�𝑘𝑦∥

2
= ∥𝑉𝑘+1(𝛽𝑒1 − �̄�𝑘𝑦)∥

2
= ∥𝛽𝑒1 − �̄�𝑘𝑦∥

2
,

where 𝛽 = ‖𝑟0‖2, as defined in the Arnoldi process (Alg. 2.1), and 𝑒1 is the
first unit vector. Therefore, the initial problem is reduced to solving the least-
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squares problem
min

𝑦
∥𝛽𝑒1 − �̄�𝑘𝑦∥

2
(3.1)

of smaller size (𝑘 + 1) × 𝑘. Having this in mind, the GMRES approxi-
mate solution is defined as the unique vector 𝑥𝑘 = 𝑥0 + 𝑉𝑘𝑦𝑘, where 𝑦𝑘 =
argmin𝑦 ∥𝛽𝑒1 − �̄�𝑘𝑦∥

2
.

The typical way of solving the least-squares problem (3.1) is by computing
the 𝑄𝑅 decomposition of the Hessenberg matrix �̄�𝑘, �̄�𝑘 = 𝑄𝑘𝑅𝑘, which allows
to compute the solution of the least-squares system as a solution of a triangular
linear system, see (3.2). Considering the special structure of the matrix �̄�𝑘, i.e.
the Hessenberg form, this can be done efficiently by multiplying the Hessenberg
matrix �̄�𝑘 and the right-hand side 𝛽𝑒1 by a sequence of Givens rotations

𝐺𝑖 ∶= [
𝐼

𝑐𝑖 𝑠𝑖
− ̄𝑠𝑖 𝑐𝑖

𝐼
] ←

← 𝑖-th row
(𝑖+1)-st row

where |𝑐𝑖|2 + |𝑠𝑖|2 = 1. The coefficients 𝑐𝑖 and 𝑠𝑖 are chosen such that in each
step the element ℎ̃𝑖+1,𝑖 of the matrix �̃�𝑖−1 = 𝐺𝑖−1 ⋯ 𝐺1�̄�𝑘 is eliminated. The
following choice achieves that:

𝑐𝑖 =
⎧{
⎨{⎩

0 , if ℎ̃𝑖,𝑖 = 0,
|ℎ̃𝑖,𝑖|

√|ℎ̃𝑖,𝑖|2+|ℎ̃𝑖+1,𝑖|2
, else , 𝑠𝑖 =

⎧{
⎨{⎩

1 , if ℎ̃𝑖,𝑖 = 0,
ℎ̃𝑖,𝑖

̄ℎ̃𝑖+1,𝑖

|ℎ̃𝑖,𝑖|√|ℎ̃𝑖,𝑖|2+|ℎ̃𝑖+1,𝑖|2
, else.

Defining 𝑄𝑘 = 𝐺𝐻
1 𝐺𝐻

2 ⋯ 𝐺𝐻
𝑘 we obtain

�̄�𝑘 = 𝑄𝑘𝑅𝑘
𝛾𝑘 = 𝑄𝐻

𝑘 (𝛽𝑒1),

where 𝛾𝑘 is the new right-hand side. Noticing that 𝑄𝑘 is a unitary matrix, the
least-squares problem (3.1) can be rewritten as

min
𝑦

∥𝛽𝑒1 − �̄�𝑘𝑦∥
2

⇔ min
𝑦

‖𝑄𝑘𝛾𝑘 − 𝑄𝑘𝑅𝑘𝑦‖2

⇔ min
𝑦

‖𝛾𝑘 − 𝑅𝑘𝑦‖2 . (3.2)

The new least-squares problem (3.2) is solved by deleting the last row of the
matrix 𝑅𝑘 and the last element of the right-hand side 𝛾𝑘, and then solving the
resulting (upper triangular) linear system to obtain 𝑦𝑘 and further, the next
iterate 𝑥𝑘 = 𝑉𝑘𝑦𝑘.
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Using Givens rotations is not only an elegant way for solving the least-squares
problem (3.1); it also provides the 2-norm of the residual ‖𝑟𝑘‖2 in each step

‖𝑟𝑘‖2 = ‖𝑏 − 𝐴𝑥𝑘‖2
= ∥𝛽𝑒1 − �̄�𝑘𝑦𝑘∥

2
= ‖𝛾𝑘 − 𝑅𝑘𝑦𝑘‖2
= |(𝛾𝑘)𝑘+1|.

In other words, a stopping criterion is available in every step without having
to compute the residual and its norm explicitly. We end up obtaining the
GMRES method, as described in Algorithm 3.1.

Algorithm 3.1: GMRES
Input : 𝐴 ∈ ℂ𝑛×𝑛 system matrix

𝑏 ∈ ℂ𝑛, 𝑥0 ∈ ℂ𝑛 right-hand side and initial guess

Output: approximate solution 𝑥𝑘 to 𝐴𝑥 = 𝑏

1 𝑟0 = 𝑏 − 𝐴𝑥0
2 𝛽0 = ‖𝑟0‖2
3 𝑣1 = 𝑟0/𝛽0
4 𝛾0 = 𝛽0𝑒1
5 for 𝑘 = 1, 2, … until convergence do
6 compute 𝑣𝑘+1 and �̄�𝑘 // Arnoldi process (Alg. 2.1)
7 apply 𝐺𝑘−1 ⋯ 𝐺1 to the last column of �̄�𝑘 yielding �̃�𝑘
8 compute the Givens rotation 𝐺𝑘 using �̃�𝑘
9 apply 𝐺𝑘 to the result �̃�𝑘 of line 7 yielding 𝑅𝑘

10 apply 𝐺𝑘 to the 𝑘-th and (𝑘 + 1)-st entry of (𝛾𝑘−1
0 ) yielding 𝛾𝑘

11 𝛽𝑘 = |𝛾𝑘(𝑘 + 1)|
12 solve 𝛾𝑘(1 ∶ 𝑘) = 𝑅𝑘(1 ∶ 𝑘, 1 ∶ 𝑘)𝑦𝑘 for 𝑦𝑘
13 set 𝑥𝑘 = 𝑥0 + 𝑉𝑘𝑦𝑘

A major concern, when discussing iterative methods, is whether they may
break down. In GMRES, the breakdown occurs when dividing by 0 in line 11
of the Arnoldi process (Alg. 2.1). The following proposition states that the
GMRES method cannot break down, unless it has already converged to the
exact solution, see [SS86].

Proposition 3.1. The approximate solution 𝑥𝑘 produced by GMRES at step
𝑘 is exact if and only if the following three equivalent conditions hold:
a) 𝑤 = 0.



3.1 GMRES 23

b) ℎ𝑘+1,𝑘 = 0.
c) The grade of 𝑣1 is equal to 𝑘.

This type of breakdown is referred to as a “lucky” breakdown in the litera-
ture. Since the grade of 𝑣1 cannot exceed 𝑛, an immediate consequence is that
GMRES terminates in at most 𝑛 steps.

The convergence of GMRES can be described by a bound on the 2-norm of
the residuals. We give here two well-known results. For proofs and further
discussions see [Gre97].
Theorem 3.2. Assume that 𝐴 is diagonalizable and let 𝐴 = 𝑉 Λ𝑉 −1 be an
eigendecomposition, where Λ = diag (𝜆1, … , 𝜆𝑛). Then it follows

‖𝑟𝑘‖ = min
𝑝𝑘∈Π𝑘

‖𝑉 𝑝𝑘(Λ)𝑉 −1𝑟0‖

≤ ‖𝑉 ‖ ⋅ ‖𝑉 −1‖ ⋅ ‖𝑟0‖ min
𝑝𝑘∈Π𝑘

‖𝑝𝑘(Λ)‖

and the residuals of GMRES satisfy the equation
‖𝑟𝑘‖
‖𝑟0‖ ≤ 𝜅(𝑉 ) min

𝑝𝑘∈Π𝑘
max

𝑖=1,…,𝑛
|𝑝𝑘(𝜆𝑖)|, (3.3)

where 𝜅(𝑉 ) = ‖𝑉 ‖ ⋅ ‖𝑉 −1‖ is the condition number of the eigenvector matrix
𝑉 . Moreover, if 𝐴 is normal, then

‖𝑟𝑘‖
‖𝑟0‖ ≤ min

𝑝𝑘∈Π𝑘
max

𝑖=1,…,𝑛
|𝑝𝑘(𝜆𝑖)|

The bound (3.3) is not sharp in general, in particular when the matrix 𝑉 is
ill-conditioned.
Theorem 3.3. Let ℱ(𝐴) = {𝑥𝐻𝐴𝑥

𝑥𝐻𝑥 |𝑥 ∈ ℂ𝑛, 𝑥 ≠ 0} be the field of values of
𝐴 ∈ ℂ𝑛×𝑛. Assume that ℱ(𝐴) is contained in a disk 𝐷 = {𝑧 ∈ ℂ ∶ |𝑧 −𝑎| ≤ 𝑏}
which does not contain the origin. Then the GMRES residuals satisfy

‖𝑟𝑘‖
‖𝑟0‖ ≤ 2 ( 𝑏

|𝑎|)
𝑘

.

The GMRES method becomes impractical as the number of iteration steps
grows due to the excessive storage and computational time requirements: the
𝑘-th step of the underlying Arnoldi process requires the storage of 𝑘 vectors and
𝑘 inner products of vectors of length 𝑛. One remedy is to restart the method
after a certain number of steps 𝑚, an approach that we will shortly discuss.
There are other variants based on the truncation of the orthogonalization in the
Arnoldi process. Both, restarted GMRES (GMRES(𝑚)) and Quasi-GMRES
(QGMRES) are covered in detail in [Saa03].
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3.1.1 Restarted GMRES

The idea of restarting is rather easy to understand and can be implemented
straightforwardly. Basically, after 𝑚 steps of GMRES, where 𝑚 is usually much
smaller than the dimension of the system, the method is restarted choosing
the approximate solution 𝑥𝑚 as the initial guess for the next cycle. This leads
to the restarted GMRES method [SS86], termed GMRES(𝑚), as described in
Algorithm 3.2.

Algorithm 3.2: GMRES(𝑚)
Input : 𝐴 ∈ ℂ𝑛×𝑛 system matrix

𝑏 ∈ ℂ𝑛, 𝑥0 ∈ ℂ𝑛 right-hand side and initial guess
𝑚 ∈ ℕ restart length

Output: approximate solution 𝑥𝑚 to 𝐴𝑥 = 𝑏

1 𝑟0 = 𝑏 − 𝐴𝑥0, 𝛽0 = ‖𝑟0‖2, 𝑣1 = 𝑟0/𝛽0
2 Perform 𝑚 steps of the Arnoldi process (Alg. 2.1) yielding 𝑉𝑚 and �̄�𝑚
3 Compute 𝑦𝑚 which minimizes ∥𝛽𝑒1 − �̄�𝑚𝑦∥2 and 𝑥𝑚 = 𝑥0 + 𝑉𝑚𝑦𝑚
4 if satisfied then
5 Stop
6 else
7 set 𝑥0 = 𝑥𝑚 and go to 1

It is well-known that restarted GMRES might converge significantly more
slowly than full GMRES. In some cases, even stagnation can occur which
means that there is no convergence towards the solution. A simple example
that illustrates such a behaviour is to consider the matrix 𝐴 and the right-hand
side 𝑏

𝐴 = [0 1
1 0] , 𝑏 = [1

0] ,

with 𝑥0 = 0. Then GMRES(1) will always produce the same approximate
solution, i.e. 𝑥1 = 𝑥0, and thus 𝑥𝑘 = 𝑥0 for all 𝑘, meaning that the method
will stagnate. Much work has been done with the same goal of improving the
convergence behaviour of the restarted GMRES method. Most of the methods
try to overcome the fact that in restarted GMRES at the time of restart all
information built up in the previous cycle is discarded. In later sections we
present some of the methods that improve the convergence of subsequent cycles
and also systems by keeping some relevant information from previous cycles
(systems). The choice of which information should be kept and the way in
which it is used give rise to many different methods.
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3.2 GCR
The generalized conjugate residual method (GCR) [Stu96a] is a method al-
gebraically equivalent to the GMRES method. It is a modification of the
conjugate residual method for solving nonsymmetric systems, where the sym-
metric part of the matrix, i.e. (𝐴 + 𝐴𝐻)/2 is positive definite. If this is not
the case, GCR may break down.

The basic idea of the method is to keep two bases 𝑈𝑘 and 𝐶𝑘 for 𝒦𝑘(𝐴, 𝑟0)
and 𝐴𝒦𝑘(𝐴, 𝑟0), respectively, such that

range(𝑈𝑘) = 𝒦𝑘(𝐴, 𝑟0) (3.4)
𝐴𝑈𝑘 = 𝐶𝑘 (3.5)

𝐶𝐻
𝑘 𝐶𝑘 = 𝐼. (3.6)

The method solves the same minimization problem as GMRES

𝑥𝑘 = argmin
𝑥∈𝑥0+range(𝑈𝑘)

‖𝑏 − 𝐴𝑥‖2 ⇔ 𝑦𝑘 = argmin
𝑦∈ℂ𝑘

‖𝑏 − 𝐴(𝑥0 + 𝑈𝑘𝑦)‖2

⇔ 𝑦𝑘 = argmin
𝑦∈ℂ𝑘

‖𝑟0 − 𝐶𝑘𝑦‖2 . (3.7)

Because of (3.6) the solution of the problem (3.7) is given by 𝑦𝑘 = 𝐶𝐻
𝑘 𝑟0 and

therefore
𝑥𝑘 = 𝑥0 + 𝑈𝑘𝐶𝐻

𝑘 𝑟0. (3.8)
Updating the residual is straightforward

𝑟𝑘 = 𝑏 − 𝐴𝑥0 − 𝐴𝑈𝑘𝐶𝐻
𝑘 𝑟0 = 𝑟0 − 𝐶𝑘𝐶𝐻

𝑘 𝑟0, (3.9)

and because of the minimization property and Proposition 2.11 we have

𝑟𝑘 ⟂ range(𝐶𝑘).

It is worth mentioning that within the GCR method we have constructed the
inverse of 𝐴 over the space range(𝐶𝑘), in the sense that

𝐴−1𝐶𝑘 = 𝑈𝑘,

which one can regard as the underlying principle of the method, see Algo-
rithm 3.3.

Throughout this thesis, we will not consider GCR as a means to solve a
system because of possible breakdowns and its reduced numerical stability
as compared to GMRES. We are rather interested in the framework of the
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Algorithm 3.3: GCR
Input : 𝐴 ∈ ℂ𝑛×𝑛 system matrix

𝑏 ∈ ℂ𝑛, 𝑥0 ∈ ℂ𝑛 right-hand side and initial guess

Output: approximate solution 𝑥𝑘 to 𝐴𝑥 = 𝑏

1 𝑟0 = 𝑏 − 𝐴𝑥0, 𝑘 = 0
2 while ‖𝑟𝑘‖2 > tol do
3 𝑘 = 𝑘 + 1
4 𝑢𝑘 = 𝑟𝑘−1, 𝑐𝑘 = 𝐴𝑢𝑘
5 for 𝑖 = 1, … , 𝑘 − 1 do
6 𝛼𝑖 = 𝑐𝐻

𝑖 𝑐𝑘
7 𝑐𝑘 = 𝑐𝑘 − 𝛼𝑖𝑐𝑖
8 𝑢𝑘 = 𝑢𝑘 − 𝛼𝑖𝑢𝑖
9 𝑐𝑘 = 𝑐𝑘/ ‖𝑐𝑘‖2 , 𝑢𝑘 = 𝑢𝑘/ ‖𝑐𝑘‖2

10 𝑥𝑘 = 𝑥𝑘−1 + 𝑢𝑘𝑐𝐻
𝑘 𝑟𝑘−1

11 𝑟𝑘 = 𝑟𝑘−1 − 𝑐𝑘𝑐𝐻
𝑘 𝑟𝑘−1

method, just described above, which will be the starting point for more ad-
vanced methods in later sections. Having that in mind, and the mathematical
equivalence to GMRES, we conclude this section by commenting that, as long
as GCR is feasible (which is guaranteed when (𝐴+𝐴𝐻)/2 is positive definite),
the results of Theorem 3.2 and of Theorem 3.3 hold for the GCR method.

3.3 GMRESR

Examining the GCR method, we conclude that in step 4 (Alg. 3.3) the choice of
𝑢𝑘 can be modified without affecting the rest of the algorithm, and replacing
𝑟𝑘−1 with any other vector leads to a method that solves the minimization
problem (3.7) with a modified range(𝑈𝑘), where range(𝑈𝑘) ≠ 𝒦𝑘(𝐴, 𝑟0). The
better the choice of 𝑢𝑘 is, the faster the method will converge. The optimal
choice would be 𝑢𝑘 = 𝑒𝑘−1 (in this case we would retrieve the exact solution),
where 𝑒𝑘−1 is the error vector 𝑒𝑘−1 = 𝑥𝑘−1 − 𝑥∗. Therefore, a reasonable
approach is to find the best possible approximation to the error 𝑒𝑘−1, when
working on the residual equation

𝐴𝑒𝑘−1 = 𝑟𝑘−1. (3.10)

One such approach is the recursive GMRES method (GMRESR) [VV94], see
Algorithm 3.4. It consists of an inner and an outer method. The outer method
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is GCR which computes the optimal approximation over a given set of direction
vectors such that the residual is minimized. The inner method is GMRES,
which computes an approximation to the solution of the residual equation
(3.10), with initial guess 0. This gives the new direction vector needed in the
outer loop.

Algorithm 3.4: GMRESR
Input : 𝐴 ∈ ℂ𝑛×𝑛 system matrix

𝑏 ∈ ℂ𝑛, 𝑥0 ∈ ℂ𝑛 right-hand side and initial guess
𝑚 ∈ ℕ restart length

Output: approximate solution 𝑥𝑘 to 𝐴𝑥 = 𝑏

1 𝑟0 = 𝑏 − 𝐴𝑥0, 𝑘 = 1
2 while ‖𝑟𝑘−1‖2 > tol do
3 𝑢𝑘 = 𝑝𝑚(𝐴)𝑟𝑘−1, 𝑐𝑘 = 𝐴𝑢𝑘 // 𝑝𝑚 - GMRES polynomial
4 for 𝑖 = 1, … , 𝑘 + 1 do
5 𝛼𝑖 = 𝑐𝐻

𝑖 𝑐𝑘
6 𝑐𝑘 = 𝑐𝑘 − 𝛼𝑖𝑐𝑖
7 𝑢𝑘 = 𝑢𝑘 − 𝛼𝑖𝑢𝑖
8 𝑐𝑘 = 𝑐𝑘/ ‖𝑐𝑘‖2 , 𝑢𝑘 = 𝑢𝑘/ ‖𝑐𝑘‖2
9 𝑥𝑘 = 𝑥𝑘−1 + 𝑢𝑘𝑐𝐻

𝑘 𝑟𝑘−1
10 𝑟𝑘 = 𝑟𝑘−1 − 𝑐𝑘𝑐𝐻

𝑘 𝑟𝑘−1
11 𝑘 = 𝑘 + 1

The convergence criteria and costs of the method will not be discussed here
(see, e.g., [VV94]), as in this thesis we consider the GMRESR method only
as a step between GCR and the GCRO method, which is the topic of the
next section. Instead, we review some disadvantages of GMRESR (see, e.g.,
[Stu96a]). The main flaw of the method is that it solves the “wrong” mini-
mization problem, which leads to suboptimal corrections to the solution. In
the 𝑘-th step of GMRESR, in the inner loop GMRES solves (line 3)

min
𝑦∈ℂ𝑚

‖𝑟𝑘−1 − 𝐴𝑉𝑚𝑦‖2 , (3.11)

with the columns of 𝑉𝑚 spanning a basis of 𝒦𝑚(𝐴, 𝑟𝑘−1) and in the outer loop
(lines 8 − 10) we set

𝑢𝑘 = (𝑉𝑚𝑦 − 𝑈𝑘−1𝐶𝐻
𝑘−1𝐴𝑉𝑚𝑦)/ ∥(𝐼 − 𝐶𝑘−1𝐶𝐻

𝑘−1)𝐴𝑉𝑚𝑦∥
2

𝑐𝑘 = (𝐼 − 𝐶𝑘−1𝐶𝐻
𝑘−1)𝐴𝑉𝑚𝑦/ ∥(𝐼 − 𝐶𝑘−1𝐶𝐻

𝑘−1)𝐴𝑉𝑚𝑦∥
2

𝑥𝑘 = 𝑥𝑘−1 + 𝑢𝑘𝑐𝐻
𝑘 𝑟𝑘−1

𝑟𝑘 = 𝑟𝑘−1 − 𝑐𝑘𝑐𝐻
𝑘 𝑟𝑘−1.
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In the outer loop, we compute the new vector 𝑐𝑘 such that it is orthogonal to
range(𝐶𝑘−1). These orthogonalization relations are not taken into account by
the inner method. It turns out that, in order to have optimal corrections (see
Theorem 3.4 of Section 3.4), instead of (3.11) the following problem should be
solved

min
𝑦∈ℂ𝑚

∥𝑟𝑘−1 − (𝐼 − 𝐶𝑘−1𝐶𝐻
𝑘−1)𝐴𝑉𝑚𝑦∥

2
= min

𝑦∈ℂ𝑚
∥(𝐼 − 𝐶𝑘−1𝐶𝐻

𝑘−1)(𝑟𝑘−1 − 𝐴𝑉𝑚𝑦)∥
2

.

Another disadvantage is that we search the whole Krylov subspace
𝒦(𝐴, 𝑟𝑘−1) = span {𝑟𝑘−1, 𝐴𝑟𝑘−1, 𝐴2𝑟𝑘−1, …} for an approximation to the error
𝑒𝑘−1, whereas

𝑒𝑘−1 ∈ 𝒦(𝐴, 𝑟𝑘−1) ∩ 𝐴−1 range(𝐶𝑘−1)⟂, (3.12)

and therefore
𝑟𝑘−1 ∈ 𝒦(𝐴, 𝐴𝑟𝑘−1) ∩ range(𝐶𝑘−1)⟂.

In addition, since only 𝑚 steps of GMRES are performed in the inner method
(not full GMRES), GMRESR can inherit the convergence problems of restarted
GMRES. These disadvantages lead to the conclusion that it can be useful to
keep the GCR orthogonality relations within the inner method.

3.4 GCRO

The GCRO (GCR with inner orthogonalization) method [Stu96a] is a modifi-
cation of the GMRESR method, which overcomes some of the disadvantages
of GMRESR. It consists of the inner method (GMRES) which computes an
approximation to the error in the outer method and the outer method (GCR)
which computes the information used to speed up the convergence of the inner
method.

Following the discussion on disadvantages of the GMRESR method in the
previous section, one concludes that it can be useful to keep the GCR orthog-
onality relations in the inner method. This is done by using

𝐴𝐶𝑘
= (𝐼 − 𝐶𝑘𝐶𝐻

𝑘 )𝐴 (3.13)

instead of 𝐴 as the operator in GMRES. This way, we compute corrections to
the residual 𝑐𝑘+1 ∈ 𝒦(𝐴, 𝐴𝑟𝑘) ∩ range(𝐶𝑘)⟂, that correspond to corrections
to the approximation

𝑢𝑘+1 = 𝐴−1𝑐𝑘+1 ∈ 𝒦(𝐴, 𝑟𝑘) ∩ 𝐴−1 range(𝐶𝑘)⟂,
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which coincides with (3.12). Introducing the inverse of 𝐴 will not bring up
issues, since over the space span {𝐴𝐶𝑘

𝑟𝑘, 𝐴2
𝐶𝑘

𝑟𝑘, …} the inverse is available

𝐴−1𝐴𝐶𝑘
= 𝐴−1(𝐼 − 𝐶𝑘𝐶𝐻

𝑘 )𝐴
= 𝐼 − 𝐴−1𝐶𝑘𝐶𝐻

𝑘 𝐴
= 𝐼 − 𝑈𝑘𝐶𝐻

𝑘 𝐴.

A straightforward implementation of the method involves many vector up-
dates, innerproducts and vector scalings. Therefore, a set of formulae is devel-
oped to reduce the work. Before we proceed with the implementation details,
we give an important result, which is necessary for later work.

Theorem 3.4. Let 𝑈𝑘 and 𝐶𝑘 be defined as in (3.4), (3.5) and (3.6) and 𝑥𝑘,
𝑟𝑘 and 𝐴𝐶𝑘

be defined as in (3.8), (3.9) and (3.13), respectively. Furthermore,
let {𝑟𝑘, 𝐴𝐶𝑘

𝑟𝑘, … , 𝐴𝑚
𝐶𝑘

𝑟𝑘} be linearly independent and {𝑣1, … , 𝑣𝑚+1} be an or-
thonormal basis for 𝒦𝑚+1(𝐴𝐶𝑘

, 𝑟𝑘), with 𝑣1 = 𝑟𝑘/ ‖𝑟𝑘‖2, generated by 𝑚 steps
of the Arnoldi process. This defines the Arnoldi relation 𝐴𝐶𝑘

𝑉𝑚 = 𝑉𝑚+1�̄�𝑚.
Let 𝑦 be defined by

𝑦 = argmin
𝑦𝑚∈ℂ𝑚

∥𝑟𝑘 − 𝐴𝐶𝑘
𝑉𝑚𝑦𝑚∥

2
= argmin

𝑦𝑚∈ℂ𝑚
∥𝑟𝑘 − 𝑉𝑚+1�̄�𝑚𝑦𝑚∥

2
. (3.14)

Then, 𝑟𝑘 −𝑉𝑚+1�̄�𝑚𝑦𝑚 is the residual of the approximate solution 𝐴−1𝐴𝐶𝑘
𝑉𝑚𝑦

for the equation 𝐴𝑧 = 𝑟𝑘, and we put

𝑥𝑘+1 = 𝑥𝑘 + 𝐴−1𝐴𝐶𝑘
𝑉𝑚𝑦. (3.15)

This 𝑥𝑘+1 is also the solution to the global minimization problem

𝑥opt = argmin
�̃�∈range(𝑈𝑘)⊕range(𝑉𝑚)

‖𝑟0 − 𝐴 ̃𝑥‖2 .

Proof. Writing 𝑥opt = 𝑈𝑘𝑧 + 𝑉𝑚𝑦 we look at the solution of the minimization
problem

(𝑧, 𝑦) = argmin
𝑧∈ℂ𝑘,𝑦∈ℂ𝑚

‖𝑟0 − 𝐴𝑈𝑘𝑧 − 𝐴𝑉𝑚𝑦‖2 . (3.16)

Using the Arnoldi relation 𝐴𝐶𝑘
𝑉𝑚 = 𝑉𝑚+1�̄�𝑚, which can be rewriten as

𝐴𝑉𝑚 = 𝐶𝑘𝐶𝐻
𝑘 𝐴𝑉𝑚 +𝑉𝑚+1�̄�𝑚, it follows that the minimization problem (3.16)

is equivalent to

(𝑧, 𝑦) = argmin
𝑧∈ℂ𝑘,𝑦∈ℂ𝑚

∥𝑟0 − 𝐶𝑘(𝑧 + 𝐶𝐻
𝑘 𝐴𝑉𝑚𝑦) − 𝑉𝑚+1�̄�𝑚𝑦∥

2
. (3.17)
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Writing 𝑟0 = (𝐼 − 𝐶𝑘𝐶𝐻
𝑘 )𝑟0 + 𝐶𝑘𝐶𝐻

𝑘 𝑟0, and due to the fact that range(𝐶𝑘) ⟂
range(𝑉𝑚+1), (3.17) can be solved by two separate minimizations:

𝑧 + 𝐶𝐻
𝑘 𝐴𝑉𝑚𝑦 = 𝐶𝐻

𝑘 𝑟0 ⇔ 𝑧 = 𝐶𝐻
𝑘 (𝑟0 − 𝐴𝑉𝑚𝑦) (3.18)

and

𝑦 = argmin
𝑦𝑚∈ℂ𝑚

∥(𝐼 − 𝐶𝑘𝐶𝐻
𝑘 )𝑟0 − 𝑉𝑚+1�̄�𝑚𝑦𝑚∥

2
= argmin

𝑦𝑚∈ℂ𝑚
∥𝑟𝑘 − 𝑉𝑚+1�̄�𝑚𝑦𝑚∥

2
.

(3.19)
This results in

𝑥opt = 𝑈𝑘𝑧 + 𝑉𝑚𝑦,
where 𝑦 is defined by (3.19), which is equivalent to (3.14) and 𝑧 is defined by
(3.18). As we can see from (3.18), the minimization problem for 𝑧 is solved
directly, meaning that these components of the residual are annihilated. For
𝑥𝑘+1 we have from (3.15)

𝑥𝑘+1 = 𝑥𝑘 + 𝐴−1𝐴𝐶𝑘
𝑉𝑚𝑦

= 𝑥𝑘 + 𝐴−1(𝐼 − 𝐶𝑘𝐶𝐻
𝑘 )𝐴𝑉𝑚𝑦

= 𝑈𝑘𝐶𝐻
𝑘 𝑟0 + 𝑉𝑚𝑦 − 𝑈𝑘𝐶𝐻

𝑘 𝐴𝑉𝑚𝑦
= 𝑈𝑘𝐶𝐻

𝑘 (𝑟0 − 𝐴𝑉𝑚𝑦) + 𝑉𝑚𝑦
= 𝑈𝑘𝑧 + 𝑉𝑚𝑦,

which completes the proof.

The consequence of this theorem is that the residual of the outer GCR
method is equal to the residual of the inner GMRES method

𝑟𝑘+1 = 𝑏−𝐴𝑥𝑘+1 = 𝑏−𝐴𝑥𝑘−𝐴𝐶𝑘
𝑉𝑚𝑦 = 𝑟𝑘−𝐴𝐶𝑘

𝑉𝑚𝑦 = 𝑟𝑘−𝑉𝑚+1�̄�𝑚𝑦 = 𝑟inner
𝑚 ,

and therefore, needs not be computed in the outer method.
Next, we proceed with the implementation details, where one has to use a

diagonal scaling for the sake of numerical stability, see [Stu96a]. Instead of the
notation used so far, we introduce the new notation ̂𝑈𝑘, ̄𝐶𝑘, 𝑁𝑘, 𝑍𝑘 and 𝑑𝑘:

𝐶𝑘 = ̄𝐶𝑘𝑁𝑘,
𝑁𝑘 = diag (‖ ̄𝑐1‖−1

2 , ‖ ̄𝑐2‖−1
2 , … , ‖ ̄𝑐𝑘‖−1

2 ) ,
̂𝑈𝑘 = 𝑈𝑘𝑁−1

𝑘 𝑍𝑘, such that 𝐴 ̂𝑈𝑘 = ̄𝐶𝑘𝑍𝑘, (3.20)
𝑟𝑘 = 𝑟0 − ̄𝐶𝑘𝑑𝑘,
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where 𝑍𝑘 is assumed to be upper-triangular. Following the new notation, the
approximate solution can be represented as

𝑥𝑘 = 𝑥0 + ̂𝑈𝑘𝑍−1
𝑘 𝑑𝑘, (3.21)

which allows us to update it at the end of the complete iteration. In the inner
GMRES method, the vectors 𝐴𝑣𝑖 are first orthogonalized against ̄𝐶𝑘, thus
constructing 𝑉𝑚+1 such that ̄𝐶𝐻

𝑘 𝑉𝑚+1 = 0 and

𝐴𝑉𝑚 = ̄𝐶𝑘𝐵𝑚 + 𝑉𝑚+1�̄�𝑚,

where 𝐵𝑚 = 𝑁2
𝑘 ̄𝐶𝐻

𝑘 𝐴𝑉𝑚. Next, 𝑦 is computed using (3.14). Setting

̄𝑐𝑘+1 = 𝑉𝑚+1�̄�𝑚𝑦 (3.22)
�̂�𝑘+1 = 𝑉𝑚𝑦,

we obtain

𝐴�̂�𝑘+1 = 𝐴𝑉𝑚𝑦 = ̄𝐶𝑘𝐵𝑚𝑦 + 𝑉𝑚+1�̄�𝑚𝑦 = ̄𝐶𝑘𝐵𝑚𝑦 + ̄𝑐𝑘+1.

Choosing 𝑧𝑘+1 = [𝐵𝑚𝑦
1 ], the relation (3.20) is satisfied. The new residual of

the outer iteration is given by

𝑟𝑘+1 = 𝑟𝑘 − ̄𝑐𝑘+1,

thus concluding that 𝑑𝑘+1 = [𝑑𝑘
1 ]. Replacing the residual of the outer itera-

tion with the residual of the inner method (Theorem 3.4), i.e.

𝑟𝑘+1 = 𝑟inner
𝑚 = 𝑟𝑘 − 𝑉𝑚+1�̄�𝑚𝑦,

we acquire an important relation

̄𝑐𝑘+1 = 𝑟𝑘 − 𝑟inner
𝑚

for updating ̄𝑐𝑘+1 (instead of using (3.22)) in the outer method. The only
part, left in the outer method, is to compute the new coefficient ‖ ̄𝑐𝑘+1‖−1

2 and
to update the solution at the end using (3.21). We end up obtaining the GCRO
method, as described in Algorithm 3.5.
In line 3 of Algorithm 3.5 we refer to the inner method, i.e. 𝑚 steps of GMRES
with the operator 𝐴𝐶𝑘

, which we also present as Algorithm 3.6. It is worth
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Algorithm 3.5: GCRO
Input : 𝐴 ∈ ℂ𝑛×𝑛 system matrix

𝑏 ∈ ℂ𝑛, 𝑥0 ∈ ℂ𝑛 right-hand side and initial guess
𝑚 ∈ ℕ restart length

Output: approximate solution 𝑥𝑘 to 𝐴𝑥 = 𝑏

1 𝑟0 = 𝑏 − 𝐴𝑥0, 𝑘 = 0
2 while ‖𝑟𝑘‖2 > tol do
3 call gmres(→ �̂�𝑘+1, 𝑟inner, ∥𝑟inner∥2 , 𝑍1…𝑘,𝑘+1)
4 ̄𝑐𝑘+1 = 𝑟𝑘 − 𝑟inner

5 (𝑁𝑘+1)𝑘+1 = (‖𝑟𝑘‖2
2 − ∥𝑟inner∥2

2)1/2

6 𝑍𝑘+1,𝑘+1 = 1
7 𝑑𝑘+1 = 1
8 𝑟𝑘+1 = 𝑟inner

9 𝑘 = 𝑘 + 1
10 𝑥𝑘 = 𝑥0 + ̂𝑈𝑘𝑍−1

𝑘 𝑑𝑘

mentioning that different methods (e.g., BICGSTAB) could be used as the
inner method, see, e.g., [Stu96a].

As described, the GCRO method finds an optimal approximate solution over
the space spanned by both the inner and the outer iteration vectors. But, it
also introduces a possible problem, when iterating with the singular opera-
tor 𝐴𝐶𝑘

= (𝐼 − 𝐶𝑘𝐶𝐻
𝑘 )𝐴 in the inner GMRES method. GMRES computes

the minimal residual solution over the generated Krylov subspace, but the
generation of the subspace may break down in case of a singular operator.
The following example illustrates that. Let us assume that the matrix 𝐴𝐶𝑘

is
defined as

𝐴𝐶𝑘
= (𝑒2, 𝑒3, 𝑒4, 0) = (𝐼 − 𝑒1𝑒𝐻

1 )(𝑒2, 𝑒3, 𝑒4, 𝑒1),
where 𝐶𝑘 = 𝑒1, and 𝑒𝑖 is the 𝑖-th unit vector. Let us further assume that
we want to solve 𝐴𝐶𝑘

𝑥 = 𝑒3. The solution of this system of equations exists,
𝑥 = 𝑒2. But, GMRES with 0 initial guess will not find it, because a breakdown
of the Krylov space occurs, i.e.

span {𝑒3, 𝐴𝐶𝑘
𝑒3, 𝐴2

𝐶𝑘
𝑒3, …} = span {𝑒3, 𝑒4, 0, 0, …} ,

and the solution is not contained in it. Next, we give assumptions under which
a breakdown occurs and show that such a breakdown is rare, since it only
happens after a certain (usually large) number of iterations. First of all, we
define a breakdown of the Krylov subspace in the inner GMRES method with
the singular matrix 𝐴𝐶𝑘

.
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Algorithm 3.6: GMRES with 𝐴𝐶𝑘
(𝑚 steps after 𝑘 outer itera-

tions)
Input : 𝐴 ∈ ℂ𝑛×𝑛 system matrix

𝐶𝑘 = [𝑐1, … , 𝑐𝑘] ∈ ℂ𝑛×𝑘 matrix of direction vectors
𝑟𝑘 residual

Output: �̂�𝑘+1, 𝑟inner, 𝑍1…𝑘,𝑘+1

1 𝑣1 = 𝑟𝑘/ ‖𝑟𝑘‖2
2 for 𝑗 = 1, … , 𝑚 do
3 𝑣𝑗+1 = 𝐴𝑣𝑗
4 for 𝑖 = 1, … , 𝑘 do
5 𝑏𝑖,𝑗 = 𝑐𝐻

𝑖 𝑣𝑗+1
6 𝑣𝑗+1 = 𝑣𝑗+1 − 𝑏𝑖,𝑗𝑐𝑖
7 for 𝑖 = 1, … , 𝑗 do
8 ℎ𝑖,𝑗 = 𝑣𝐻

𝑖 𝑣𝑗+1
9 𝑣𝑗+1 = 𝑣𝑗+1 − ℎ𝑖,𝑗𝑣𝑖

10 ℎ𝑗+1,𝑗 = ∥𝑣𝑗+1∥
2

11 𝑣𝑗+1 = ℎ−1
𝑗+1,𝑗𝑣𝑗+1

12 Solve min𝑦𝑚
∥‖𝑟𝑘‖2 𝑒1 − �̄�𝑚𝑦𝑚∥

2
13 �̂�𝑘+1 = 𝑉𝑚𝑦𝑚
14 𝑟inner = 𝑟𝑘 − 𝑉𝑚+1�̄�𝑚𝑦𝑚
15 𝑍1…𝑘,𝑘+1 = 𝐵𝑚𝑦𝑚

Definition 3.5. Let 𝑈𝑘, 𝐶𝑘, 𝐴𝐶𝑘
and 𝑟𝑘 be defined as in (3.4), (3.5), (3.6),

(3.13) and (3.9). Let {𝑟𝑘, 𝐴𝐶𝑘
𝑟𝑘, … , 𝐴𝑚−1

𝐶𝑘
𝑟𝑘} be linearly independent and

{𝑣1, … , 𝑣𝑚} be an orthonormal basis for 𝒦𝑚(𝐴𝐶𝑘
, 𝑟𝑘), with 𝑣1 = 𝑟𝑘/ ‖𝑟𝑘‖2,

generated by 𝑚−1 steps of GMRES. We say to have a breakdown of the Krylov
subspace if 𝐴𝐶𝑘

𝑣𝑚 ∈ range(𝑉𝑚), since this implies we can no longer expand
the Krylov subspace. We call it a lucky breakdown if 𝑣1 ∈ range(𝐴𝐶𝑘

𝑉𝑚),
because we have then found the solution to 𝐴𝐶𝑘

𝑦 = 𝑣1, where 𝑦 ∈ 𝒦𝑚(𝐴𝐶𝑘
, 𝑟𝑘).

We call it a true breakdown if 𝑣1 ∉ range(𝐴𝐶𝑘
𝑉𝑚), because then the solution

is not contained in the Krylov subspace.

The following theorems we give without proofs. For proofs and further com-
ments, as well as discussions on how to proceed with the GCRO method if a
breakdown occurs, consult [Stu96a].

Theorem 3.6. Let 𝑈𝑘, 𝐶𝑘, 𝐴𝐶𝑘
and 𝑟𝑘 be defined as in (3.4), (3.5), (3.6), (3.13)

and (3.9). Let {𝑟𝑘, 𝐴𝐶𝑘
𝑟𝑘, … , 𝐴𝑚−1

𝐶𝑘
𝑟𝑘} be linearly independent and {𝑣1, … , 𝑣𝑖}

be an orthonormal basis for 𝒦𝑖(𝐴𝐶𝑘
, 𝑟𝑘), 𝑖 = 1, … , 𝑚, with 𝑣1 = 𝑟𝑘/ ‖𝑟𝑘‖2,

generated by 𝑚 − 1 steps of GMRES. Then at step 𝑚:
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1. A true breakdown occurs if and only if range(𝐴𝐶𝑘
𝑉𝑚−1) is an invariant

subspace of 𝐴𝐶𝑘
.

2. A true breakdown occurs if and only if 𝐴𝐶𝑘
𝑣𝑚 ∈ range(𝐴𝐶𝑘

𝑉𝑚−1).
3. A breakdown occurs if and only if there exists an upper Hessenberg ma-

trix 𝐻𝑚 ∈ ℂ𝑚×𝑚 such that 𝐴𝐶𝑘
𝑉𝑚 = 𝑉𝑚𝐻𝑚; furthermore it is a true

breakdown if and only if 𝐻𝑚 is singular.

Theorem 3.7. Let 𝑈𝑘, 𝐶𝑘, 𝐴𝐶𝑘
and 𝑟𝑘 be defined as in (3.4), (3.5), (3.6),

(3.13) and (3.9). Let {𝑟𝑘, 𝐴𝐶𝑘
𝑟𝑘, … , 𝐴𝑚−1

𝐶𝑘
𝑟𝑘} be independent and {𝑣1, … , 𝑣𝑖}

be an orthonormal basis for 𝒦𝑖(𝐴𝐶𝑘
, 𝑟𝑘), 𝑖 = 1, … , 𝑚, with 𝑣1 = 𝑟𝑘/ ‖𝑟𝑘‖2,

generated by 𝑚 − 1 steps of GMRES. A true breakdown occurs at step 𝑚 if
and only if

∃𝑢 ≠ 0 ∈ range(𝑉𝑚) ∶ 𝑢 ∈ range(𝑈𝑘).

The next theorem indicates that a breakdown cannot occur before the total
number of iterations exceeds the dimension of the Krylov subspace 𝒦(𝐴, 𝑟0),
hence meaning that in practice, a breakdown will be rare.

Theorem 3.8. Let 𝑈𝑘, 𝐶𝑘, 𝐴𝐶𝑘
and 𝑟𝑘 be defined as in (3.4), (3.5), (3.6), (3.13)

and (3.9). Let 𝑚 be the grade of 𝑟0 w.r.t. 𝐴. Define 𝑃𝑠(𝐴)𝑟0 =
𝑠

∑
𝑖=0

𝛾𝑖𝐴𝑖𝑟0,

with 𝛾𝑠 ≠ 0, and let

𝑢𝑖 = 𝑃𝑙𝑖−1(𝐴)𝑟0, 𝑖 = 1, … , 𝑘
𝑙 = max

𝑖=1,…,𝑘
𝑙𝑖 < 𝑚.

Then 𝑟𝑘 = (𝐼 − 𝐶𝑘𝐶𝐻
𝑘 )𝑟0 = 𝑃𝑙(𝐴)𝑟0. We call 𝑙 the total number of iterations.

Then, if 𝑗 < 𝑚−𝑙, the set {𝑟𝑘, 𝐴𝐶𝑘
𝑟𝑘, … , 𝐴𝑗

𝐶𝑘
𝑟𝑘} is independent, and therefore

no breakdown occurs in the first 𝑗 steps of GMRES.

The GCRO method (as well as GMRESR) is preferably used in the truncated
version, see [Stu96a]. In the next chapter, we will introduce the concept of
optimal truncation, which will, together with the framework of the GCRO
method, result in the GCROT method [Stu99], which can be modified for
solving our original problem, i.e. a sequence of linear systems.
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3.5 Augmented and Deflated Krylov Subspace
Methods

We have discussed some of the flaws of the restarted GMRES method [SS86]
in Section 3.1.1. Most importantly, the method might converge significantly
slower than full GMRES or even stagnate in some cases. The obvious reason
is that at the time of restart all information built up in the previous cycle is
discarded. Many methods have been proposed since, with the same goal of
improving the performance of GMRES(𝑚). Two main categories of methods
rise above all: hybrid iterative methods and acceleration techniques. Hybrid
methods combine already existing methods with the goal of maintaining the
advantages of these methods while equilibrating their disadvantages. Hybrid
methods still extract their iterates from the standard Krylov subspace. An
overview of this class of methods is given in [NRT92]. Methods in the re-
mainder of this thesis take GMRES(𝑚) as their basis and aim at improving
its convergence. They belong to the class of acceleration techniques and work
with “enriched” Krylov subspaces.

One technique is based on the fact that the approximation space should
ideally contain the approximation to the error 𝑒𝑘 = 𝑥𝑘 − 𝑥∗. We have already
introduced methods based on this technique: both, GMRESR [VV94] and
GCRO [Stu96a], approximately solve the residual equation (3.10) in the inner
method, and this approximate solution then becomes the next direction for
the outer approximation space.

Another acceleration technique is augmentation. Throughout this thesis,
augmentation will always come along together with deflation, and understand-
ing these two concepts is crucial for apprehending the methods to be discussed.
Therefore, we dedicate Section 3.5.1 to motivating concepts of augmentation
and deflation, as well as providing some basic analysis and convergence results.

There is a huge variety of methods that are based on these acceleration tech-
niques. Within this chapter, we will address three of these methods, namely
GMRES-E [Mor95], GMRES-DR [Mor02] and LGMRES [BJM05].

3.5.1 Augmentation and Deflation

Augmented methods tend to improve the convergence behaviour of GMRES(𝑚)
by enlarging the search space in the current cycle with a nearly 𝐴-invariant
subspace 𝕌 kept from the previous cycle. Hence, the approximate solution is
extracted from the subspace

𝑥𝑚 ∈ 𝑥0 + 𝒦𝑚 + 𝕌.
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Naturaly, two questions arise: which subspace should be kept? And in which
way should it be used? Although a few different possibilities have been pro-
posed, the common choice is to take 𝕌 as a space spanned by approximate
eigenvectors corresponding to the eigenvalues of the smallest magnitude.

Deflating, in our work, simply means removing the “problematic” eigenval-
ues. In general, deflated methods can exploit the approximate eigenvectors in
two ways. The first way is to solve the projected system

𝑃𝐴𝑋 = 𝑃𝑏,

where the projector 𝑃 usually carries some spectral information (e.g., 𝑃 =
𝐼 − 𝑣𝑣𝐻, where 𝑣 is a normalized eigenvector). The second way is to add the
desired eigenvectors to the Krylov subspace. We use the second way, which by
construction shows that augmentation and deflation are correlated naturally.

Next, we motivate the choice of approximate eigenvectors for augmentation.
In Section 3.1, we gave general convergence results for GMRES, bounding
the norm of the residuals. Assuming that the matrix of the system is diag-
onalizable, 𝐴 = 𝑉 Λ𝑉 −1, and has real and positive eigenvalues, from (3.3),
using scaled Chebyshev polynomials, one obtains the following bound for the
GMRES residuals (see, e.g., [Mor95])

‖𝑟𝑚‖
‖𝑟0‖ ≤ 2𝜅(𝑉 ) (1 − 2√

̂𝜅 + 1
)

𝑚
, (3.23)

where ̂𝜅 = 𝜆𝑛
𝜆1

is an additional condition number, the ratio of largest to smallest
eigenvalues, and it is not necessarily equal to the standard condition number
𝜅(𝑉 ) = ‖𝑉 ‖2 ⋅ ‖𝑉 −1‖2. (3.23) resembles the standard bound for CG residuals
when 𝐴 is hpd. Hence, the convergence is slow if there is a small eigenvalue.
In addition, the distribution of the other eigenvalues also influences conver-
gence. Having that in mind, the main goal of deflated methods is to remove
the eigenvalues of smallest magnitude, that hinder convergence the most. This
is done by augmenting the search subspace in the current cycle with (approxi-
mate) eigenvectors computed in the previous cycle. The motivation for this is
that when a converged eigenvector is added to the subspace the corresponding
eigenvalue is effectively deflated and convergence proceeds according to the
modified spectrum. The following result demonstrates this for the case of real
and positive eigenvalues, see [Mor95].

Theorem 3.9. Suppose 𝐴 has spectral decomposition 𝐴 = 𝑉 Λ𝑉 −1, with all the
eigenvalues being real and positive and thus 𝐴𝑣𝑖 = 𝜆𝑖𝑣𝑖 with 0 < 𝜆1 ≤ … ≤ 𝜆𝑛.
Assume that the minimum residual solution is extracted from the subspace
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span {𝑟0, 𝐴𝑟0, … , 𝐴𝑚−1𝑟0, 𝑣1, … , 𝑣𝑘}. Then

‖𝑟𝑚‖
‖𝑟0‖ ≤ 2𝜅(𝑉 ) (1 − 2

√ ̂𝜅𝑒 + 1
)

𝑚

,

where ̂𝜅𝑒 = 𝜆𝑛
𝜆𝑘+1

is the “effective condition number”.

In order to substantiate our claims, let us consider the example of a matrix
whose eigenvalues are given as 1, 2, … , 𝑛, which is similar to the spectrum of
some matrices from real life applications (e.g., see the model problem from
finite difference discretization of Poisson’s equation [HY12]). Let us further
assume that we deflate 𝑘 eigenvalues. Then the convergence bound improves
from

‖𝑟𝑚‖
‖𝑟0‖ ≤ 2𝜅(𝑉 ) (1 − 2√𝑛 + 1)

𝑚
= 2𝜅(𝑉 )𝐶𝑚

1

to
‖𝑟𝑚‖
‖𝑟0‖ ≤ 2𝜅(𝑉 ) (1 − 2

√ 𝑛
𝑘+1 + 1)

𝑚

= 2𝜅(𝑉 )𝐶𝑚
2 .

We can roughly compare convergence by comparing the number of steps 𝑚
needed for convergence. We usually want that 𝐶𝑚 ≤ 𝜀, for some small 𝜀. This
means that without adding the eigenvectors to the subspace we have

𝑚1 ≈ log 𝜀
log 𝐶1

,

whereras when we add 𝑘 eigenvectors to the search space we obtain

𝑚2 ≈ log 𝜀
log 𝐶2

.

Furthermore,

𝑚1
𝑚2

≈ log 𝐶2
log 𝐶1

=
log(1 − 2

√ 𝑛
𝑘+1 +1)

log(1 − 2√𝑛+1)
≈

2
√ 𝑛

𝑘+1 +1
2√𝑛+1

=
√𝑛 + 1

√ 𝑛
𝑘+1 + 1 ≈

√𝑛
√ 𝑛

𝑘+1
=

√
𝑘 + 1.

This means that convergence is roughly
√

𝑘 + 1 times faster when we add
𝑘 eigenvectors to the subspace. To be fair, we should mention that adding
eigenvectors to the search space is not always beneficial, e.g., if there are no
small eigenvalues or if the distribution of the eigenvalues is not favorable.

The approximate eigenvectors can be beneficial even before they become very
accurate, which is summarized in the following theorem for one eigenvector,
see [Mor95].
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Theorem 3.10. Suppose 𝐴 has spectral decomposition 𝐴 = 𝑉 Λ𝑉 −1. Suppose
we augment the search space with one approximate eigenvector 𝑦1. Let 𝜓 =
∠(𝑦1, 𝑣1), and let 𝛽1 be the coefficient of 𝑣1 in the expansion 𝑟0 =

𝑛
∑
𝑖=1

𝛽𝑖𝑣𝑖.
Then

‖𝑟𝑚‖ ≤ 𝜅(𝑉 ) max
𝑖≠1

|𝑞(𝜆𝑖)| ‖𝑟0‖ +
‖𝐴‖
𝜆1

tan(𝜓)|𝑞(𝜆1)||𝛽1|,

for any 𝑞 ∈ Π𝑚.

The second term occurs because of the inaccuracy of the approximate eigen-
vector. This term will not be significant, as long as the accuracy of the ap-
proximate eigenvector is greater than the amount of improvement brought by
𝑞.

Results in this subsection lead to the conclusion that it is reasonable to keep
the approximate eigenvectors, built up in the previous cycle, corresponding to
the eigenvalues of the smallest magnitude. Next, we proceed with a detailed
description of the methods based on augmentation and deflation, which differ
in the choice of the vectors that are kept and in the way they are used. Some
general theoretical results are summarized in [CS97] and [Saa97].

3.5.2 GMRES with Eigenvectors

GMRES with eigenvectors (GMRES-E) [Mor95] is a method that is based on
the augmentation approach. As it was shown, deflating some of the smallest
eigenvalues can greatly improve the convergence of the method. In GMRES-E,
the harmonic Ritz vectors from the previous cycle are chosen for the augmen-
tation as they are good approximations to the wanted eigenvectors.

Let us assume that we want to deflate 𝑘 eigenvalues and that we fix the overall
dimension of the augmented subspace 𝑚. GMRES-E appends the harmonic
Ritz vectors ̃𝑌𝑘 = [ ̃𝑦1, … , ̃𝑦𝑘] after the 𝑚 − 𝑘 steps of the Arnoldi process
leading to an Arnoldi-like recurrence

𝐴𝑊𝑚 = 𝑉𝑚+1�̄�𝑚,

where 𝑊𝑚 = [𝑉𝑚−𝑘 ̃𝑌𝑘]. The first 𝑚 − 𝑘 + 1 columns of the matrix 𝑉𝑚+1
(as well as the first 𝑚 − 𝑘 columns of 𝑊𝑚) are the orthonormalized Arnoldi
vectors, whereas the last 𝑘 columns are formed by orthogonalizing the vectors
𝐴 ̃𝑦𝑖, 𝑖 = 1, … , 𝑘 against the first 𝑚−𝑘+𝑖 columns of 𝑉𝑚+1. We should mention
that, in the first cycle, 𝑚 steps of standard GMRES are performed, since
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the harmonic Ritz vectors are not available (this will also hold for GMRES-
DR [Mor02] in Section 3.5.3 and LGMRES [BJM05] in Section 3.5.4). The
algorithm is presented as Algorithm 3.7.

Algorithm 3.7: GMRES-E
Input : 𝐴 ∈ ℂ𝑛×𝑛 system matrix

𝑏 ∈ ℂ𝑛, 𝑥0 ∈ ℂ𝑛 right-hand side and initial guess
𝑚 ∈ ℕ restart length
𝑘 ∈ ℕ number of deflated ev’s

Output: approximate solution 𝑥𝑚 to 𝐴𝑥 = 𝑏

1 𝑟0 = 𝑏 − 𝐴𝑥0, 𝛽 = ‖𝑟0‖, 𝑣1 = 𝑟0/𝛽
2 for 𝑗 = 1, … , 𝑚 do
3 if 𝑗 ≤ 𝑚 − 𝑘 then
4 𝑤𝑗 = 𝑣𝑗
5 else
6 𝑤𝑗 = ̃𝑦𝑗−𝑚+𝑘
7 𝑧 = 𝐴𝑤𝑗
8 for 𝑖 = 1, … , 𝑗 do
9 ℎ𝑖,𝑗 = ⟨𝑧, 𝑣𝑖⟩

10 𝑧 = 𝑧 − ℎ𝑖,𝑗𝑣𝑖
11 ℎ𝑗+1,𝑗 = ‖𝑧‖, 𝑣𝑗+1 = 𝑧/ℎ𝑗+1,𝑗

12 Define 𝑊𝑚 = [𝑤1, … , 𝑤𝑚]
13 𝑥𝑚 = 𝑥0 + 𝑊𝑚𝑦𝑚, where 𝑦𝑚 = argmin𝑦 ∥𝛽𝑒1 − �̄�𝑚𝑦∥
14 if Satisfied then
15 Stop
16 else
17 Compute 𝑘 harmonic Ritz vectors ̃𝑦1, … , ̃𝑦𝑘 of 𝐴 w.r.t. the subspace 𝐴𝑊𝑚
18 Set 𝑥0 = 𝑥𝑚 and go to 1

The augmented subspace built with GMRES-E is of the form
span {𝑟0, 𝐴𝑟0, … , 𝐴𝑚−𝑘−1𝑟0, ̃𝑦1, … , ̃𝑦𝑘} . (3.24)

Chapman and Saad observed in [CS97] that GMRES-E works better with
harmonic Ritz vectors than with Ritz vectors. This is due to the fact that the
subspace (3.24) is itself a Krylov subspace, but with a different starting vector
(see Section 3.5.3). It seems that the method (as well as GMRES-DR described
in the next section) benefits from keeping the Krylov subspace structure.

In line 17 of Algorithm 3.7, one has to compute the harmonic Ritz vectors.
From the proof of Lemma 2.27, we know that the harmonic Ritz pairs (1

𝜃 , ̃𝑦)
can be computed by solving an 𝑚-by-𝑚 generalized eigenvalue problem

𝑊 𝐻
𝑚 𝐴𝐻𝑊𝑚 ̂𝑦 = 𝜃𝑊 𝐻

𝑚 𝐴𝐻𝐴𝑊𝑚 ̂𝑦.



40 3. GMRES, GCR and Deflation

The vectors ̂𝑦 associated with the largest 𝜃’s are computed and the harmonic
Ritz vectors belonging to the smallest harmonic Ritz values 1/𝜃’s are retrieved
as ̃𝑦 = 𝑊𝑚 ̂𝑦. This is known as the modified Rayleigh-Ritz procedure.

Methods from this chapter like GCR or GMRESR were interesting for our
work, mainly for their framework. Similarly, we will not consider the GMRES-
E method as a solver. We will rather use the framework of the method and
combine it with some other ideas. Anyhow, it is worth mentioning that the
method can be effective for certain problems with favorable distribution of
the eigenvalues. In addition, using the fact that the method is based on the
augmentation approach, since it appends the approximate eigenvectors after
the Krylov subspace is built, GMRES-E can be modified for solving our main
problem [Par+06], i.e. solving sequences of linear systems. More on this topic
will be presented in the next chapter.

3.5.3 GMRES-DR

GMRES with deflated restarting (GMRES-DR) [Mor02] is a method mathe-
maticaly equivalent to GMRES-E. Both methods build the same Krylov sub-
space at the end of the cycle, provided that they use the same harmonic Ritz
vectors. The difference is that GMRES-E is based on the augmentation ap-
proach, meaning that the approximate eigenvectors are appended to the al-
ready built Krylov subspace, whereas GMRES-DR is based on the orthogo-
nalization approach. To avoid confusion, we should say that GMRES-DR falls
under the class of augmented and deflated methods. What differs is the way
in which the approximate eigenvectors are used, and that is what is meant by
the orthogonalization approach, which we now explain.

GMRES-DR uses a thick-restarting approach by Wu and Simon [WS98] for
deflating the eigenvalues. The approach from [WS98] is modified for the non-
symmetric case. The idea is to put the 𝑘 orthonormalized harmonic Ritz
vectors first in the subspace, and then to proceed with 𝑚 − 𝑘 steps of the
standard Arnoldi process (Alg. 2.1), thus leading to the Arnoldi-like relation

𝐴[Υ̃𝑘 𝑉𝑚−𝑘] = [Υ̃𝑘 𝑉𝑚−𝑘+1]�̄�𝑚, (3.25)

where Υ̃𝑘 represents the 𝑘 orthonormalized harmonic Ritz vectors, and �̄�𝑚 is
upper-Hessenberg except for a leading (𝑘 + 1) × (𝑘 + 1) dense submatrix. The
Arnoldi vectors, i.e. the columns of 𝑉𝑚−𝑘+1 formed this way are orthogonal
to the harmonic Ritz vectors. Under the assumption that we have 𝑘 distinct
harmonic Ritz values, we present GMRES-DR as Algorithm 3.8 (see [Mor00]
for a short discussion of the nondistinct case).
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Algorithm 3.8: GMRES-DR
Input : 𝐴 ∈ ℂ𝑛×𝑛 system matrix

𝑏 ∈ ℂ𝑛, 𝑥0 ∈ ℂ𝑛 right-hand side and initial guess
𝑚 ∈ ℕ restart length
𝑘 ∈ ℕ number of deflated ev’s

Output: approximate solution 𝑥𝑚 to 𝐴𝑥 = 𝑏

1 𝑟0 = 𝑏 − 𝐴𝑥0, 𝛽 = ‖𝑟0‖, 𝑣1 = 𝑟0/𝛽
2 Perform 𝑚 steps of GMRES (thus computing 𝑥𝑚 and 𝑟𝑚)
3 Compute the 𝑘 smallest eigenpairs (1/𝜃𝑖, ̂𝑦𝑖) of 𝐻𝑚 + 𝐻−𝐻

𝑚 ℎ𝑚ℎ𝐻
𝑚

4 Orthonormalize ̂𝑦𝑖’s, in order to form an 𝑚 by 𝑘 matrix 𝑃𝑘 (real and imaginary parts
are treated separately)

5 Form 𝑝𝑘+1 by orthonormalizing the coefficients w.r.t. 𝑉𝑚 of the GMRES residual,
𝛽𝑒1 − �̄�𝑚𝑦, against previous columns of 𝑃𝑘 (first we must append a row of zeros to 𝑃𝑘)

6 Form new 𝑉 and 𝐻: �̄�𝑛𝑒𝑤
𝑘 = 𝑃 𝐻

𝑘+1�̄�𝑚𝑃𝑘, 𝑉 𝑛𝑒𝑤
𝑘+1 = 𝑉𝑚+1𝑃𝑘+1 and set �̄�𝑘 = �̄�𝑛𝑒𝑤

𝑘
and 𝑉𝑘+1 = 𝑉 𝑛𝑒𝑤

𝑘+1
7 Othogonalize 𝑣𝑘+1 against previous columns of 𝑉𝑘+1
8 Perform 𝑚 − 𝑘 steps of Arnoldi process to form the rest of 𝑉𝑚+1 and �̄�𝑚, starting

with 𝑟0 = 𝑟𝑚 and 𝛽 = ℎ𝑚+1,𝑚
9 Compute 𝑥𝑚 = 𝑥0 + 𝑉𝑚𝑑𝑚, where 𝑑𝑚 = argmin𝑑 ∥𝑉 𝐻

𝑚+1𝑟0 − �̄�𝑚𝑑∥2 and the
corresponding residual

10 if Satisfied then
11 Stop
12 else
13 Compute the 𝑘 smallest eigenpairs (1/𝜃𝑖, ̂𝑦𝑖) of 𝐻𝑚 + 𝐻−𝐻

𝑚 ℎ𝑚ℎ𝐻
𝑚

14 Set 𝑟0 = 𝑟𝑚 and go to 4

In line 7, reorthogonalization of the (𝑘 + 1)-st vector is done for numerical
reasons, see [Mor02]. Next, we allude to two essential parts of the method:
computing the harmonic Ritz vectors, which is done in lines 3 and 13, and
properties of the subspace built with GMRES-DR.

The following lemma shows how the harmonic Ritz pairs can be computed,
provided that we have the Arnoldi-like relation (3.25).
Lemma 3.11. The harmonic Ritz pairs of 𝐴 with respect to the subspace
𝐴𝒦, where 𝒦 is spanned by the columns of ̂𝑉𝑚 from (3.25), are given as
(1/𝜃𝑖, 𝐴 ̂𝑉𝑚 ̂𝑦𝑖), where (1/𝜃𝑖, ̂𝑦𝑖) are the eigenpairs of the matrix

𝐻𝑚 + 𝑓𝑚ℎ𝐻
𝑚, (3.26)

where 𝐻𝐻
𝑚𝑓𝑚 = ℎ𝑚 and �̄�𝑚 = [𝐻𝑚

ℎ𝐻
𝑚

] is the Hessenberg matrix of the Arnoldi-

like relation (3.25).
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Proof. Starting from Definition 2.24 and using the Arnoldi-like relation (3.25)
with ̂𝑉𝑚 = [Υ̃𝑘 𝑉𝑚−𝑘] and ̂𝑉𝑚+1 = [Υ̃𝑘 𝑉𝑚−𝑘+1], we have that a harmonic
Ritz pair (1

𝜃 , ̃𝑦) satisfies

(𝐴 ̂𝑉𝑚)𝐻(𝐴−1 ̃𝑦 − 𝜃 ̃𝑦) = 0 and ̃𝑦 ∈ 𝐴𝒦.

Noticing that range(𝑉𝑚−𝑘) ⟂ range(Υ̃𝑘) (by construction) it follows

�̄�𝐻
𝑚 ̂𝑉 𝐻

𝑚+1𝐴−1𝐴 ̂𝑉𝑚 ̂𝑦 = 𝜃�̄�𝐻
𝑚 ̂𝑉 𝐻

𝑚+1𝐴 ̂𝑉𝑚 ̂𝑦
⇔ �̄�𝐻

𝑚 ̂𝐼𝑚 ̂𝑦 = 𝜃�̄�𝐻
𝑚 ̂𝑉 𝐻

𝑚+1 ̂𝑉𝑚+1�̄�𝑚 ̂𝑦
⇔ �̄�𝐻

𝑚 ̂𝐼𝑚 ̂𝑦 = 𝜃�̄�𝐻
𝑚�̄�𝑚 ̂𝑦,

where ̂𝐼𝑚 = [ 𝐼𝑚
0 … 0]. Writing �̄�𝑚 = [𝐻𝑚

ℎ𝐻
𝑚

], we obtain

𝐻𝐻
𝑚 ̂𝑦 = 𝜃(𝐻𝐻

𝑚𝐻𝑚 + ℎ𝑚ℎ𝐻
𝑚) ̂𝑦

1
𝜃 ̂𝑦 = (𝐻𝑚 + 𝑓𝑚ℎ𝐻

𝑚) ̂𝑦,

where 𝑓𝑚 = 𝐻−𝐻
𝑚 ℎ𝑚. Thus, (1

𝜃 , ̂𝑦) is an eigenpair of the matrix 𝐻𝑚 + 𝑓𝑚ℎ𝐻
𝑚.

We see from Lemma 3.11, that we can compute the harmonic Ritz vectors in
a cheap way, since we only have to solve the eigenvalue problem of small size 𝑚.
The same result cannot be applied for GMRES-E, because the orthogonality
of the Arnoldi vectors to the harmonic Ritz vectors, which is exploited within
the proof of Lemma 3.11, does not hold for the GMRES-E method.

As mentioned in the previous section, choosing the harmonic Ritz vectors for
the augmentation keeps the entire subspace used by GMRES-DR (GMRES-E)
a Krylov subspace. To see this, we first give the following result, see [Mor02].

Theorem 3.12. Suppose we have a subspace 𝒮 = span {𝑦1, … , 𝑦𝑘, 𝑣}, with the
property that

𝐴𝑦𝑖 − 𝛼𝑖𝑦𝑖 = 𝛾𝑖𝑣, (3.27)
for 𝛼𝑖, … , 𝛼𝑘 distinct and for some nonzero 𝛾𝑖’s. Then 𝒮 is a Krylov subspace.

Using the result of Theorem 3.12, we can prove the following statement.

Theorem 3.13. The subspace used by GMRES-DR is the subspace

span {𝑟0, 𝐴𝑟0, … , 𝐴𝑚−𝑘−1𝑟0, ̃𝑦1, … , ̃𝑦𝑘} , (3.28)

and it is a Krylov subspace.
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Proof. The harmonic Ritz residual vectors are defined as 𝐴 ̃𝑦𝑖 − 1
𝜃𝑖

̃𝑦𝑖, and are
multiples of the GMRES residual vector [Mor00]. Therefore, we obtain (3.27)
with 𝑣 = 𝑟0 and with 1/𝜃𝑖 and ̃𝑦𝑖 instead of 𝛼𝑖 and 𝑦𝑖. Using Theorem 3.12, it
follows that span { ̃𝑦1, … , ̃𝑦𝑘, 𝑟0} is a Krylov subspace. Let 𝑣1, … , 𝑣𝑘+1 be the
orthonormal basis for this subspace. GMRES-DR adds vectors to this basis
with an Arnoldi process, so it clearly generates a Krylov subspace. Now, we
will show that this subspace is (3.28). The vector 𝑣𝑘+2 comes from orthonor-
malizing 𝐴𝑣𝑘+1.

𝐴𝑣𝑘+1 = 𝐴(a combination of 𝑟0 and ̃𝑦′
𝑖𝑠)

= a combination of 𝐴𝑟0 and 𝐴 ̃𝑦′
𝑖𝑠

= a combination of 𝐴𝑟0, 𝑟0 and 𝐴 ̃𝑦′
𝑖𝑠

using (3.27) on the last step. So

span {𝑣1, … , 𝑣𝑘+2} = span { ̃𝑦1, … , ̃𝑦𝑘, 𝑟0, 𝐴𝑟0} .

Continuing in this way, we obtain the subspace (3.28).

We mention that, moreover, the subspace (3.28) is equivalent to

span { ̃𝑦1, ̃𝑦2, … , ̃𝑦𝑘, 𝐴 ̃𝑦𝑖, 𝐴2 ̃𝑦𝑖, … , 𝐴𝑚−𝑘 ̃𝑦𝑖} ,

for 1 ≤ 𝑖 ≤ 𝑘, meaning that it contains Krylov subspaces with each of the
harmonic Ritz vectors as starting vectors.

GMRES-DR cannot be adapted for solving sequences of linear systems, not
even if the matrix does not change. This is due to the fact that the harmonic
Ritz vectors ̃𝑦1, … , ̃𝑦𝑘 of 𝐴 do not form a Krylov subspace for another matrix or
even just another starting vector. In such situations, combining the GMRES-
DR method with the GCRO method results in an effective solver GCRO-DR
[Par+06], which reduces costs of subsequent systems by retaining some useful
information from the previous system. This method will be covered in details
in the next chapter.

3.5.4 Loose GMRES

We have discussed so far two methods which improve the convergence of
GMRES(𝑚) by augmenting the search space in the current cycle with the
harmonic Ritz vectors computed in the previous cycle, thus deflating the eigen-
values of the smallest magnitude, which hamper the convergence. A somewhat
similar idea was exploited in developing the loose GMRES (LGMRES) method
[BJM05].
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Another possibility is to augment the search space with 𝑘 error approxima-
tions of the form

𝑧𝑖 = 𝑥𝑖 − 𝑥𝑖−1. (3.29)

The motivation for such a choice comes from the discussion regarding GM-
RESR (or GCRO). In Section 3.3, we have pointed out that an optimal choice
for the next direction vector would be 𝑢𝑖+1 = 𝑒𝑖, because in that case we would
retrieve the exact solution. In addition, we notice that 𝑧𝑖 ∈ 𝒦𝑚(𝐴, 𝑟𝑖−1), hence
one could say that the 𝑖-th error approximation 𝑧𝑖 represents the discarded
space form the previous cycle. Following this discussion, it can be concluded
that the last 𝑘 error approximations of the form (3.29) make a good choice for
augmentation.

LGMRES uses the framework of the GMRES-E method. It performs 𝑚 −
𝑘 steps of the Arnoldi process (Alg. 2.1), and then it appends the 𝑘 error
approximations 𝑍𝑘 = [𝑧1, … , 𝑧𝑘], leading to the Arnoldi-like relation

𝐴𝑊𝑚 = 𝑉𝑚+1�̄�𝑚,

where 𝑊𝑚 = [𝑉𝑚−𝑘 𝑍𝑘]. The first 𝑚 − 𝑘 + 1 columns of the matrix 𝑉𝑚+1
(as well as the first 𝑚 − 𝑘 columns of 𝑊𝑚) are the orthonormalized Arnoldi
vectors, whereas the last 𝑘 columns are formed by orthogonalizing the vectors
𝐴𝑧𝑖, 𝑖 = 1, … , 𝑘 against the previous 𝑚 − 𝑘 + 𝑖 columns of 𝑉𝑚+1. We end up
obtaining LGMRES(𝑚 − 𝑘, 𝑘), as described in Algorithm 3.9.

In Algorithm 3.9 we assume that all 𝑘 error approximations are available,
which is not always the case, i.e. in the first 𝑖 < 𝑘 cycles, we have only 𝑖 error
approximations. The suggestion in [BJM05] for these cycles is to use 𝑘 − 𝑖
additional Arnoldi vectors, hence the actual implementation is modified. In
addition, in line 17, we state that upon a restart we only need to set 𝑥0 = 𝑥𝑚,
whereas we also have to take care of including the previously computed error
approximation 𝑧𝑘+1, as well as removing 𝑧1 used in this cycle, so that we still
have the last 𝑘 error approximations. The last, but not the least comment, is
that in addition to the 𝑚+1 Arnoldi vectors, the vectors 𝑧1, … , 𝑧𝑘, 𝐴𝑧1, … , 𝐴𝑧𝑘
have to be stored, which increases storage requirements, but tests in [BJM05]
(Section 4) show that the optimal values for 𝑘 are typically small, i.e. 𝑘 ≤ 3.

We proceed with some useful properties of the LGMRES method [BJM05].

Theorem 3.14. The error approximation vectors 𝑧𝑗 = 𝑥𝑗 − 𝑥𝑗−1 with which
we augment the Krylov space in Algorithm 3.9 are 𝐴𝐻𝐴-orthogonal.

The result of Theorem 3.14 is not exploited in Algorithm 3.9 (within the
for loop in line 7 we can reduce some computations), while for small 𝑘, the
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Algorithm 3.9: LGMRES
Input : 𝐴 ∈ ℂ𝑛×𝑛 system matrix

𝑏 ∈ ℂ𝑛, 𝑥0 ∈ ℂ𝑛 right-hand side and initial guess
𝑚 ∈ ℕ restart length
𝑘 ∈ ℕ number of error approximations

Output: approximate solution 𝑥𝑚 to 𝐴𝑥 = 𝑏

1 𝑟0 = 𝑏 − 𝐴𝑥0, 𝛽 = ‖𝑟0‖, 𝑣1 = 𝑟0/𝛽
2 for 𝑗 = 1, … , 𝑚 do
3 if 𝑗 ≤ 𝑚 − 𝑘 then
4 𝑤 = 𝐴𝑣𝑗
5 else
6 𝑤 = 𝐴𝑧𝑗−𝑚+𝑘
7 for 𝑖 = 1, … , 𝑗 do
8 ℎ𝑖,𝑗 = ⟨𝑤, 𝑣𝑖⟩
9 𝑤 = 𝑤 − ℎ𝑖,𝑗𝑣𝑖

10 ℎ𝑗+1,𝑗 = ‖𝑤‖, 𝑣𝑗+1 = 𝑤/ℎ𝑗+1,𝑗

11 Define 𝑊𝑚 = [𝑣1, … , 𝑣𝑚−𝑘, 𝑧1, … , 𝑧𝑘], 𝑉𝑚+1 = [𝑣1, … , 𝑣𝑚+1]
12 𝑧𝑘+1 = 𝑊𝑚𝑦𝑚, 𝐴𝑧𝑘+1 = 𝑉𝑚+1�̄�𝑚𝑦𝑚, where 𝑦𝑚 = argmin𝑦 ∥𝛽𝑒1 − �̄�𝑚𝑦∥
13 𝑥𝑚 = 𝑥𝑚−1 + 𝑧𝑘+1
14 if Satisfied then
15 Stop
16 else
17 Set 𝑥0 = 𝑥𝑚 and go to step 1

improvement is negligible. In [BJM05] it serves as a part of a discussion regard-
ing the resemblence of LGMRES with the full CG method with polynomial
preconditioning.

It was observed in [BJM05] that the residual vectors at the end of each
restarted GMRES cycle alternate direction in a cyclic fashion. In other words,
every other residual points in nearly the same direction, i.e. 𝑟𝑖+1 ≈ 𝛼𝑟𝑖−1, thus
slowing down the covergence. This behavior is observed also when the method
converges rapidly, meaning that even in that case a faster convergence is pos-
sible if this fact is exploited for augmentation. Although it cannot be proved
that such a behavior occurs in general (it was shown for 𝑚 = 𝑛−1 in [BJM05]),
it is reasonable to conclude that changing such a pattern would improve the
convergence of the method. And that is exactly what the LGMRES method
does.

If the two vectors point in nearly the same direction, this basically means
that the angle between them is small. Next, we relate the angles between
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residuals with the convergence behavior of GMRES(𝑚) and LGMRES (see,
e.g., [EE01] for more general results on how the angles between approximation
and residual spaces determine the convergence of Krylov methods). Hence,
the definition of sequential and skip angles.

Definition 3.15. The angles between every two consecutive residual vectors,
e.g., ∠(𝑟𝑖+1, 𝑟𝑖) are referred to as sequential angles, and the angles between
every other residual vectors, e.g., ∠(𝑟𝑖+1, 𝑟𝑖−1) as skip angles.

The following result from [BJM05] is mathematically equivalent to a result
given in [Sim00].

Theorem 3.16. Let 𝑟𝑖+1 and 𝑟𝑖 be the residuals from GMRES restart cycles
𝑖 + 1 and 𝑖, respectively. Then the sequential angle between them is given by

cos(∠(𝑟𝑖+1, 𝑟𝑖)) =
‖𝑟𝑖+1‖2
‖𝑟𝑖‖2

.

The same result holds for the LGMRES method, see [BJM05].

Theorem 3.17. Let 𝑟𝑖+1 and 𝑟𝑖 be the residuals from LGMRES restart cycles
𝑖 + 1 and 𝑖, respectively. Then the sequential angle between them is given by

cos(∠(𝑟𝑖+1, 𝑟𝑖)) =
‖𝑟𝑖+1‖2
‖𝑟𝑖‖2

. (3.30)

The result of Theorem 3.16 explains the claim that small sequential angles
lead to slow convergence. Of course, it would be optimal to find the next
residual vector 𝑟𝑖+1, such that it is orthogonal to the current residual vector
𝑟𝑖, since by (3.30) this would infer 𝑟𝑖+1 = 0, and we would have found the
exact solution. Now we turn to skip angles, see [BJM05].

Theorem 3.18. Let 𝑟𝑖+1 and 𝑟𝑖−1 be the residuals from GMRES restart cycles
𝑖 + 1 and 𝑖 − 1, respectively. Then the skip angle between them is given by

cos(∠(𝑟𝑖+1, 𝑟𝑖−1)) =
‖𝑟𝑖+1‖2
‖𝑟𝑖−1‖2

− ⟨𝐴𝛿𝑖+1, 𝐴𝛿𝑖⟩
‖𝑟𝑖+1‖2 ‖𝑟𝑖−1‖2

, (3.31)

where 𝑟𝑖+1 = 𝑟𝑖 − 𝐴𝛿𝑖+1 and 𝑟𝑖 = 𝑟𝑖−1 − 𝐴𝛿𝑖.

Theorem 3.19. Let 𝑟𝑖+1 and 𝑟𝑖−1 be the residuals from LGMRES restart
cycles 𝑖 + 1 and 𝑖 − 1, respectively. Then the skip angle between them is given
by

cos(∠(𝑟𝑖+1, 𝑟𝑖−1)) =
‖𝑟𝑖+1‖2
‖𝑟𝑖−1‖2

. (3.32)
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The second term in (3.31) vanishes in (3.32), because the error approxima-
tions in LGMRES are 𝐴𝐻𝐴-orthogonal by construction (Theorem 3.14). The
result of Theorem 3.19 indicates that the pace of the iteration for LGMRES
also correlates with the skip angles. In general, it can be proven that for any
0 ≤ 𝑗 ≤ 𝑘 and 𝑖 ≥ 𝑘

cos(∠(𝑟𝑖+1, 𝑟𝑖−𝑗)) =
‖𝑟𝑖+1‖2
∥𝑟𝑖−𝑗∥2

for LGMRES.
We conclude this section by giving an example, that verifies the claims that

when GMRES(𝑚) experiences slow convergence, skip angles are small, whereas
LGMRES prevents the alternating behavior, thus improving the convergence.
The example (reproduced from [BJM05]) is given in Table 3.1. Four matri-
ces, from the Matrix Market Collection, are considered: 𝑎𝑑𝑑20 (𝑛 = 2395),
𝑜𝑟𝑠𝑖𝑟𝑟_1 (𝑛 = 1030), 𝑜𝑟𝑠𝑟𝑒𝑔_1 (𝑛 = 2205) and 𝑠ℎ𝑒𝑟𝑚𝑎𝑛_1 (𝑛 = 1000).

Table 3.1: Comparison of GMRES(30) and LGMRES(29, 1) for four test
problems. We compare iterations required for ‖𝑟𝑖‖2 / ‖𝑟0‖2 ≤ 10−9, median
sequential angle (in degrees) and median skip angle (in degrees) for both

methods.

Matrix Iterations Median seq. angle Median skip angle
LGMRES LGMRES LGMRES
(GMRES(𝑚)) (GMRES(𝑚)) (GMRES(𝑚))

𝑎𝑑𝑑20 606 (1002) 63.0 (51.3) 79.0 (5.4)
𝑜𝑟𝑠𝑖𝑟𝑟_1 2190 (6659) 41.0 (23.0) 55.4 (6.9)
𝑎𝑟𝑠𝑟𝑒𝑔_1 515 (888) 72.2 (59.3) 84.6 (8.4)
𝑠ℎ𝑒𝑟𝑚𝑎𝑛_1 757 (3688) 61.7 (27.5) 76.4 (0.2)

3.6 Preconditioning

Preconditioning basically means transforming the original system into one with
the same solution as the original system, but easier to solve with an iterative
method. Deflation and augmentation techniques often work better when used
with preconditioning. Therefore, we only give a brief introduction, since it
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is not a significant part of this thesis, and show some numerical results in
Section 5.5.1, so the reader gets a feeling of the power of preconditioning.

The main challenge in preconditioning is to find a nonsingular matrix 𝑀
close to 𝐴 in some sense, such that solving 𝑀𝑥 = 𝑏 is not expensive. The last
requirement is of outmost importance, since the iterative methods require the
solution of the linear system with 𝑀 at each step. Having the preconditioner
𝑀 available, there are three different ways to apply it: from the left, to the
right and in a split form. We introduce here the right preconditioning.

When the preconditioner is applied to the right, the change of variables
𝑢 = 𝑀𝑥 is necessary, and we obtain the following system

𝐴𝑀−1𝑢 = 𝑏. (3.33)
For easier understanding, we proceed by using GMRES as an iterative solver.
We will now show that 𝑢 does not have to be computed explicitly. The initial
residual 𝑟0 = 𝑏 − 𝐴𝑀−1𝑢0 does not actually require 𝑢0 since 𝑏 − 𝐴𝑀−1𝑢0 =
𝑏 − 𝐴𝑥0, and 𝑥0 is the chosen starting vector. The GMRES approximate
solution of (3.33) is given as

𝑢𝑚 = 𝑢0 +
𝑚

∑
𝑖=1

𝑣𝑖𝑦𝑖.

Multiplying the previous equation with 𝑀−1 we obtain

𝑥𝑚 = 𝑥0 + 𝑀−1
𝑚

∑
𝑖=1

𝑣𝑖𝑦𝑖. (3.34)

To summarize, from (3.33) and (3.34) it follows that the right preconditioned
GMRES method differs from GMRES in two details: we build a Krylov sub-
space with the Arnoldi process with 𝐴𝑀−1 and 𝑟0 and we update the approx-
imate solution in the following way 𝑥𝑚 = 𝑥0 + 𝑀−1(𝑉𝑚𝑦𝑚).

Right preconditioning allows the change of the preconditioner in each step.
The idea is to split the computation of 𝑤 in line 4 of the Arnoldi process
(Algorithm 2.1) in two parts

𝑠𝑘 = 𝑀−1
𝑘 𝑣𝑘

𝑤 = 𝐴𝑠𝑘,
where we have a possibility to choose different 𝑀𝑘 in each step. Then, storing
the 𝑠𝑘 we update the approximate solution as 𝑥𝑚 = 𝑥0 + 𝑆𝑚𝑦𝑚.

The choice of the preconditioner, in general, depends on the problem. For
this reason, we carry on with this topic in Chapter 5 only for the lattice QCD
application for which we use a red-black multiplicative Schwarz method as a
preconditioner.



4 Krylov Subspace Recycling
Many problems in computational science and engineering require the solution
of a sequence of linear systems

𝐴(𝑖)𝑥(𝑖) = 𝑏(𝑖), 𝐴(𝑖) ∈ ℂ𝑛𝑥𝑛, 𝑏(𝑖) ∈ ℂ𝑛, 𝑖 = 1, … , 𝑚, (4.1)

where the matrices 𝐴(𝑖) and right-hand sides 𝑏(𝑖) change slightly from one sys-
tem to the next. Usually, at each step, the matrix and right-hand side depend
on the previous solution and are not available simultaneously. In addition,
the cumulative change might be significant, since one has to solve thousands
of systems. Therefore, instead of solving each system separately, it would be
beneficial to keep a judiciously selected subspace from the previous system,
and use it to reduce the number of iterations for solving the next system. This
process is known as recycling.

In the previous chapter we have introduced some methods that could be
modified to solve (4.1). The GCRO method computes the optimal solution
over the space spanned by the new and old search vectors. It is usually used
in a truncated form. A straightforward truncation would mean keeping or-
thogonality only to the last 𝑝 vectors. Although, this has been shown to be a
reasonable approach, it would be better to have some sort of mechanism for
choosing the vectors to keep. Therefore, de Sturler [Stu99] introduced the con-
cept of optimal truncation which together with GCRO results in the GCROT
method. GCROT can be easily modified to solve (4.1), which will be described
in Section 4.1.

The GMRES-E method is based on an augmentation approach and can be
used for solving (4.1). After solving the 𝑖-th system, we run 𝑚 − 𝑘 steps
of GMRES for the (𝑖 + 1)-st system, append the 𝑘 approximate eigenvectors
from the 𝑖-th system and proceed as described in Section 3.5.2. However, the
subspace formed this way is not a Krylov subspace, so an efficient version
as for GMRES-DR is not possible. Another disadvantage of this approach is
that it extends the search space as in restarted GMRES, thus the method may
suffer from stagnation. On the other hand, GMRES-DR cannot be modified or
adapted for solving (4.1), because the harmonic Ritz vectors of 𝐴 do not form a
Krylov subspace for another matrix or even another right-hand side. However,
using deflated restarting within the GCRO framework results in an effective
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method, called GCRO-DR, which recycles a carefully chosen subspace from
previous systems, thus reducing costs of subsequent systems. In Section 4.2, we
give a detailed description of the method, as well as the convergence analysis.
Recently, Niu, Lu and Liu successfully combined the idea exploited for the
LGMRES method within the GCRO-DR framework, thus developing the new
method Loose GCRO-DR (LGCRO-DR), which we present in Section 4.3.

One of the main characteristics of the GCRO-DR method is that it de-
flates the smallest eigenvalues by using an orthogonal projector (see, e.g.,
Section 4.2). Since we are dealing mostly with nonsymmetric systems, i.e.
matrices for which left and right eigenspaces are not mutually orthogonal, and
GMRES-like methods, we propose, in the spirit of [Gut12], a method that uses
an oblique projector (see, e.g., Section 4.4 or [Gut12]). This way, we do not
only annihilate eigenvalues, but also deflate the corresponding left and right
eigenspaces. Therefore, in [Gut12] Gutknecht refers to this approach as the
truly deflated GMRES method. In addition to Gutknecht’s theory, we provide
a cheap way of computing approximations to left eigenvectors, without having
to build a Krylov subspace for 𝐴𝐻. We introduce our method, named Left-
Right Deflated GMRES (LRDGMRES), in Section 4.4. We will show that our
method is numerically comparable to the GCRO-DR method, where from the
theoretical point of view this should be a better approach (see Section 4.4 for a
more detailed discussion), since we deflate both eigenspaces. In Section 4.4.2,
we show how an idea from [NLL13] can be also incorporated into our method,
thus leading to an even more efficient method for solving (4.1), termed Loose
Left-Right Deflated GMRES (LLRDGMRES).

We would like to state here that throughout this chapter we will use the
following notation:

• 𝑚 – restart length (or the number of iterations done by GMRES)
• 𝑘 – dimension of the recycle space
• 𝑙 – number of error approximations

Furthermore, within this chapter we distinguish right and left harmonic Ritz
vectors. In the previous chapter we have already discussed harmonic Ritz
vectors computed according to Lemma 3.11, and they will correspond to the
right harmonic Ritz vectors. In Section 4.3 we will derive a formula using
Definition 2.25 for computing the left harmonic Ritz vectors.
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4.1 Optimal Truncation

In order to reduce costs of optimal methods like GMRES or GCR, we usu-
ally consider restarted or truncated forms of these methods (see, e.g., Chap-
ter 3). Restarting basically means that we perform 𝑚 < 𝑛 steps of the method
and then start over discarding all the information built in the current cycle,
whereas truncation means orthogonalizing only against a certain number of
recently computed vectors. It is well known that both strategies slow down
the convergence of methods. In addition, the optimality of these methods is
lost, since the orthogonality constraints 𝑟𝑖 ⟂ 𝐴𝒦𝑖(𝐴, 𝑟0) do not hold anymore.
We have already introduced in the previous chapter some of the methods that
improve convergence by keeping a subspace between cycles. One class of meth-
ods containing GMRES-E; and GMRES-DR augments the Krylov subspace in
the current cycle with approximate eigenvectors corresponding to the smallest
eigenvalues from the previous cycle. This technique has proved to be efficient
when the slow convergence is influenced by the smallest eigenvalues, which is
not always the case (see, e.g., [Mor95]). On the other hand, methods like GM-
RESR or GCRO, are in essence truncated methods, since they keep a limited
number of vectors from previous search spaces. This form of truncation, i.e.
keeping orthogonality to part of the old Krylov subspace yields good conver-
gence in many cases (see, e.g., [Stu96a]). However, none of these methods have
a mechanism for choosing the best vectors to keep, since they merely keep the
correction to the residual in the outer method. In order to have an efficient
method in its restarted or truncated form, we should not restrict the choice
of the vectors to keep (discard) only to the vectors computed in the iteration,
but we should rather consider subspaces of the space spanned by all available
vectors.

Optimal truncation is a mechanism of retaining a subspace between cycles
such that the loss of orthogonality with respect to the truncated space is min-
imized. Incorporating optimal truncation within the GCRO method leads to
the GCROT method [Stu99]. GCROT, as well as GCRO, maintains matrices
𝑈𝑘 and 𝐶𝑘, such that 𝐴𝑈𝑘 = 𝐶𝑘 and 𝐶𝐻

𝑘 𝐶𝑘 = 𝐼 . Further on, it performs GM-
RES while keeping orthogonality to 𝐶𝑘, which corresponds to GMRES with
the operator 𝐴𝐶𝑘

= (𝐼 − 𝐶𝑘𝐶𝐻
𝑘 )𝐴. The method then computes the approxi-

mate solution and selects vectors via optimal truncation, appends them to 𝑈𝑘,
and again updates 𝑈𝑘 and 𝐶𝑘 such that 𝐴𝑈𝑘 = 𝐶𝑘 and 𝐶𝐻

𝑘 𝐶𝑘 = 𝐼 . At the end
of the cycle, 𝑈𝑘 and 𝐶𝑘 are carried over to the next cycle (see, e.g., Section 3.4
for more detailed description).

Since all the implementation details have been described in Section 3.4, we
dedicate the remainder of this section to explaining the concept of optimal
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truncation. We will derive a set of formulas, which describe how we choose
the best possible subspace. First, we need the following definition.

Definition 4.1. Let the matrices 𝐶 ∈ ℂ𝑛×𝑘, 𝐹 ∈ ℂ𝑛×𝑚 and the vector 𝑟 ∈ ℂ𝑛

be given, such that

𝐶𝐻𝐶 = 𝐼𝑘,
𝐶𝐻𝑟 = 0,

rank(𝐹) = 𝑚, (4.2)
rank(𝐹 − 𝐶𝐶𝐻𝐹) = 𝑚. (4.3)

Furthermore, let

𝐹 = 𝐶𝐵 + 𝑄𝑅, (4.4)
𝑄𝐻𝑄 = 𝐼𝑚,

where 𝐵 = 𝐶𝐻𝐹 and 𝑅 is upper-triangular. Using 𝐵 and 𝑅 we define

𝑍 = 𝐵𝑅−1 = (𝐶𝐻𝐹)(𝑄𝐻𝐹)−1,

and we denote the singular value decomposition of 𝑍 by

𝑍 = 𝑌𝑍Σ𝑍𝑉 𝐻
𝑍 .

𝑌𝑍 = [𝑦1 𝑦2 … 𝑦𝑘] and 𝑉𝑍 = [𝑣1 𝑣2 … 𝑣𝑚] are ordered so as to follow
the convention

𝜎1 ≥ 𝜎2 ≥ ⋯ ≥ 𝜎𝑝,

for the diagonal entries 𝜎𝑖 of Σ𝑍, where 𝑝 = min (𝑘, 𝑚). Also let

𝐹 = 𝑊𝑆 (4.5)
𝑊 𝐻𝑊 = 𝐼𝑚,

and 𝑆 be upper-triangular. Finally, let

𝑟1 = (𝐼 − 𝑄𝑄𝐻)𝑟, (4.6)
𝑟2 = (𝐼 − 𝑊𝑊 𝐻)𝑟. (4.7)

Note that from (4.2) and (4.3) it follows that dim(range(𝐶) ⊕ range(𝐹)) =
dim(range(𝐶)) + dim(range(𝐹)). Rewriting the equation (4.4), we see that
𝑄𝑅 = 𝐹 − 𝐶𝐶𝐻𝐹 is the 𝑄𝑅-decomposition of the matrix 𝐹 − 𝐶𝐶𝐻𝐹 .
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This decomposition yields 𝑄𝑄𝐻𝑟, the best approximation to 𝑟 in the space
range(𝐶) ⊕ range(𝐹). Furthermore, 𝑟1 defined in (4.6) is the residual which
corresponds to the best approximation to 𝑟 in the space range(𝐶)⊕range(𝐹).
On the other hand, equation (4.5) represents the 𝑄𝑅-decomposition of the
matrix 𝐹 , and yields 𝑊𝑊 𝐻𝑟, the best approximation to 𝑟 in the subspace
range(𝐹). Therefore, 𝑟2 defined in (4.7) represents the residual corresponding
to the best approximation to 𝑟 in the space range(𝐹) ignoring orthogonality
to range(𝐶). The difference 𝑒 = 𝑟2 − 𝑟1 between these two approximations is
called the residual error. The geometric aspect is depicted in Figure 4.1, which
is reproduced from [Stu96b].

𝐶𝐶𝐻𝑏

̃𝑟 = 𝑄𝑄𝐻𝑏

�̃� = 𝐶𝐶𝐻𝑏 + 𝑄𝑄𝐻𝑏

range(𝑄)

𝑒 = 𝑒𝑄 + 𝑒𝐶

𝛼

range(𝐹)
𝑒𝑄

𝑒𝐶

range(𝐶)

Figure 4.1: Loss of optimality from neglecting previous search directions.
The vectors ̃𝑏 and ̃𝑟 are the projections of 𝑏 and 𝑟 respectively onto the space
range(𝐶)⊕range(𝐹). The vector 𝐶𝐶𝐻𝑏 is the current best approximation to
the right-hand side 𝑏, and the vector 𝑄𝑄𝐻𝑏 is the best possible correction
to the current residual. If we neglect the orthogonality to 𝐶, then the

orthogonal projection on range(𝐹) leads to the residual error 𝑒.

By studying the residual error, we can analyze the consequences of neglecting
orthogonality to range(𝐶). The residual error depends on the principal angles
𝛼 between the subspaces range(𝐶) and range(𝐹), so one way to analyze the
error is to look at the principal angles. However, we follow the work in [Stu99],
and instead of the principal angles, we look at the length of the residual error
𝑒.

Theorem 4.2. The residual error is given by

𝑟2 − 𝑟1 =
𝑝

∑
𝑖=1

( 𝜈𝑖𝜎2
𝑖

1 + 𝜎2
𝑖
𝑄𝑣𝑖 − 𝜈𝑖𝜎𝑖

1 + 𝜎2
𝑖
𝐶𝑦𝑖) ,
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where 𝜈𝑖 = 𝑣𝐻
𝑖 𝑄𝐻𝑟, and the norm of the residual error is given by

‖𝑟2 − 𝑟1‖2 = (
𝑝

∑
𝑖=1

|𝜈𝑖|2𝜎2
𝑖

1 + 𝜎2
𝑖

)
1/2

.

For the proof see, e.g., [Stu99].
Remark 4.3. Theorem 4.2 indicates that for 𝜎𝑖 = 0, which corresponds to a di-
rection in range(𝐹) orthogonal to range(𝐶), no error is made in that direction,
whereas for 𝜎𝑖 → ∞, corresponding to a direction in range(𝐶)⊕range(𝐹), the
error in this direction equals the optimal correction, and therefore no correction
is made.

The result of Theorem 4.2 explains the consequences of neglecting the orthog-
onality to range(𝐶), i.e. the consequences of discarding range(𝐶) by truncation
or restart. We will use this result to show which subspace of range(𝐶) is the
best possible subspace to keep or discard, such that we maintain good conver-
gence at low cost. Let us consider computing the residual 𝑟3 while maintaining
orthogonality to an arbitrary subspace range(𝐶𝑇 ) and neglecting orthogonal-
ity to range(𝐶𝑇𝐶), where 𝑇𝐶 is the complement of 𝑇 . Different choices of 𝑇
lead to different subspaces of range(𝐶).

Definition 4.4. Let 𝐶, 𝐹 , 𝑄 and 𝑟 be as in Definition 4.1, and let the matrix
[𝑇 |𝑇𝐶] be a square, unitary matrix such that rank([𝑇 |𝑇𝐶]) = rank(𝐶) = 𝑘, i.e.
𝑇 ∈ ℂ𝑘×𝑙. Now let ̄𝐹 = [𝐶𝑇 |𝐹 ], ̄𝐶 = 𝐶𝑇𝐶, and �̄� = [𝐶𝑇 |𝑄], and let

�̄� = ̄𝐶𝐻 ̄𝐹 = [0|𝑇 𝐻
𝐶 𝐵],

�̄� = �̄�𝐻 ̄𝐹 = [𝐼 𝑇 𝐻𝐵
0 𝑅 ] .

Using �̄� and �̄�, we define

̄𝑍 = �̄��̄�−1 = [0|𝑇 𝐻
𝐶 𝑍].

We denote the singular value decomposition of ̄𝑍 by

̄𝑍 = 𝑌 ̄𝑍Σ ̄𝑍𝑉 𝐻
̄𝑍 ,

where 𝑌 ̄𝑍 = [ ̄𝑦1 ̄𝑦2 … ̄𝑦𝑘−𝑙] and 𝑉 ̄𝑍 = [ ̄𝑣1 ̄𝑣2 … ̄𝑣𝑚+𝑙] are ordered so as
to follow the convention
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�̄�1 ≥ �̄�2 ≥ ⋯ ≥ �̄�min (𝑘−𝑙,𝑚+𝑙).

Furthermore, let

̄𝐹 = �̄� ̄𝑆,
�̄� 𝐻�̄� = 𝐼𝑚+𝑙,

where ̄𝑆 is upper-triangular, and let

𝑟3 = (𝐼 − �̄��̄� 𝐻)𝑟.

Finally, let the residual error from discarding range(𝐶𝑇𝐶) be given by ̄𝑒 =
𝑟3 − 𝑟1.

The residual 𝑟3 corresponds to the best approximation to 𝑟 in the space
range(𝐶𝑇 ) ⊕ range(𝐹), while ignoring orthogonality to range(𝐶𝑇𝐶). Next we
derive the equation for the residual error ̄𝑒 depending on 𝑇 , which follows from
Theorem 4.2.

Theorem 4.5. The residual error ̄𝑒 is given by

𝑟3 − 𝑟1 =
min (𝑘−𝑙,𝑚+𝑙)

∑
𝑖=1

( ̄𝜈𝑖�̄�2
𝑖

1 + �̄�2
𝑖
�̄� ̄𝑣𝑖 − ̄𝜈𝑖�̄�𝑖

1 + �̄�2
𝑖

̄𝐶 ̄𝑦𝑖) ,

where ̄𝜈𝑖 = ̄𝑣𝐻
𝑖 �̄�𝐻𝑟, and its norm is given by

‖𝑟3 − 𝑟1‖2 = ⎛⎜
⎝

min (𝑘−𝑙,𝑚+𝑙)
∑
𝑖=1

| ̄𝜈𝑖|2�̄�2
𝑖

1 + �̄�2
𝑖

⎞⎟
⎠

1/2

.

We see that the norm of the residual error ̄𝑒 (as well as 𝑒) is determined
by the singular values �̄�𝑖 (𝜎𝑖) and the coefficients ̄𝜈𝑖 (𝜈𝑖). Assuming that the
coefficients ̄𝜈𝑖 are not very small, we conclude that the smaller the singular
values are, the smaller the residual error will be. Therefore, we would like to
choose 𝑇𝐶, and hence 𝑇 , such that the 𝑙 largest singular values from 𝑍 are
removed in ̄𝑍. This is achieved according to the following min-max theorem
[Stu99], which is a variant of Theorems 3.1.2 and 3.3.15 in [HJ94].
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Theorem 4.6. Let 𝑍 and its singular value decomposition be as in Defini-
tion 4.1, and let 𝑇𝐶 be as in Definition 4.4. Then

min
𝑆⊂ℂ𝑘,

dim(𝑆)=𝑘−𝑙

max
𝑥∈𝑆,

‖𝑥‖2=1

∥𝑥𝐻𝑍∥
2

= {𝜎𝑙+1, if 𝑙 + 1 ≤ 𝑝
0, if 𝑙 + 1 > 𝑝 ,

and the minimum is found for

𝑆 = span {𝑦𝑙+1, … , 𝑦𝑘} .

This is equivalent to

min
𝑇𝐶∈ℂ𝑘×(𝑘−𝑙),
𝑇 𝐻

𝐶 𝑇𝐶=𝐼𝑘−𝑙

max
𝜉∈ℂ𝑘−𝑙,
‖𝜉‖2=1

∥(𝑇𝐶𝜉)𝐻𝑍∥
2

= {𝜎𝑙+1, if 𝑙 + 1 ≤ 𝑝
0, if 𝑙 + 1 > 𝑝 ,

and the minimum is found for 𝑇𝐶, such that

range(𝑇𝐶) = 𝑆 = span {𝑦𝑙+1, … , 𝑦𝑘} , (4.8)
𝑥 = 𝑇𝐶𝜉.

Since ̄𝑍 = [0|𝑇 𝐻
𝐶 𝑍], and ∥(𝑇𝐶𝜉)𝐻𝑍∥

2
= ∥𝜉𝐻(𝑇 𝐻

𝐶 𝑍)∥
2

= ∥𝜉𝐻 ̄𝑍∥
2
, it follows

that 𝑇𝐶 from (4.8) minimizes the maximum singular value of ̄𝑍. Therefore,
the obvious choice for the optimal truncation 𝑇 and its complement 𝑇𝐶 are

𝑇 = [𝑦1, … , 𝑦𝑙] (4.9)
𝑇𝐶 = [𝑦𝑙+1, … , 𝑦𝑘].

With this choice, the following theorem about the residual error ̄𝑒 and its norm
holds, see, e.g., [Stu99].

Theorem 4.7. The residual error ̄𝑒 that results from the truncation defined
by the matrix 𝑇 from (4.9) is given by

𝑟3 − 𝑟1 =
𝑝

∑
𝑖=𝑙+1

( 𝜈𝑖𝜎2
𝑖

1 + 𝜎2
𝑖
𝑄𝑣𝑖 − 𝜈𝑖𝜎𝑖

1 + 𝜎2
𝑖
𝐶𝑦𝑖) ,

and its norm is given by
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‖𝑟3 − 𝑟1‖2 = (
𝑝

∑
𝑖=𝑙+1

|𝜈𝑖|2𝜎2
𝑖

1 + 𝜎2
𝑖

)
1/2

.

The purpose of this section was mainly to introduce the concept of optimal
truncation, which serves as the mechanism for choosing the best possible sub-
space to keep, such that the effects of ignoring orthogonality to a discarded
subspace are minimized. The author in [Stu99] has chosen to implement the
optimal truncation within the GCRO method, because GCRO consists of the
inner method GMRES, which is more efficient and more stable than GCR, and
the outer method GCR, which offers the flexibility to optimize over arbitrary
subspaces. For further implementation details we refer to [Stu99].

The GCROT method can be easily modified for solving (4.1), by carrying 𝑈𝑘
from the 𝑖-th to the (𝑖+1)-st system. Since for GCROT we have 𝐴(𝑖)𝑈𝑘 = 𝐶𝑘,
the idea is to modify 𝑈𝑘 and 𝐶𝑘 with respect to 𝐴(𝑖+1), such that the relation
𝐴(𝑖+1)𝑈new

𝑘 = 𝐶new
𝑘 holds. This is done in the following way:

𝐴(𝑖+1)𝑈old
𝑘 = 𝑄𝑅 (4.10)

𝐶new
𝑘 = 𝑄 (4.11)

𝑈new
𝑘 = 𝑈old

𝑘 𝑅−1. (4.12)

Now, we can simply proceed with GCROT on the (𝑖 + 1)-st linear system. In
practice, computing 𝐴(𝑖+1)𝑈old

𝑘 = 𝐶old
𝑘 + Δ𝐴(𝑖)𝑈old

𝑘 is much cheaper than 𝑘
matrix-vector products, since Δ𝐴(𝑖) is substantially sparser than 𝐴(𝑖) or has a
special structure. Even if that is not the case, computing 𝐴(𝑖+1)𝑈old

𝑘 directly
can be faster than 𝑘 matrix-vector multiplications.

4.2 GCRO-DR
The GCRO-DR method is a combination of the GMRES-DR method and the
GCRO method. It uses deflated restarting within the GCRO framework, which
in contrast to GMRES-DR, allows the method to easily be modified for solving
(4.1). When solving a single linear system, GMRES-DR and GCRO-DR are
mathematically equivalent.

GCRO-DR has been proved to be a significant advancement. It works under
general assumptions, without assuming that matrices are pairwise close or
that the sequence of matrices converges to a particular matrix and without
any further assumptions on how right-hand sides change. The underlying idea
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is to reduce the cost of solving subsequent systems in the sequence by keeping
a carefully chosen subspace from previous systems. This is known as Krylov
subspace recycling. An efficient method that uses recycling must satisfy certain
properties:

• It has to determine and converge to an effective recycle space in a rea-
sonable number of iterations.

• It must be able to converge to an effective recycle space over the solution
of multiple linear systems.

• A convergence improvement should be obtained with a recycle space of
a relatively small dimension.

• It must provide an effective and cheap mechanism for regularly updating
the recycle space when solving the next system in the ensemble.

As it will be shown, GCRO-DR satisfies all these properties.
We now present the method. As we suggested, GCRO-DR uses the GCRO

framework. This means that we need to keep two matrices 𝑈𝑘 and 𝐶𝑘 such
that (recall (3.4) - (3.6)):

range(𝑈𝑘) = 𝒦𝑘(𝐴, 𝑟0)
𝐴𝑈𝑘 = 𝐶𝑘

𝐶𝐻
𝑘 𝐶𝑘 = 𝐼.

We distinguish two cases:
1. We are solving the first cycle of the first system, i.e. we do not have any

previous information available.
2. We have solved the 𝑖-th system and we carried 𝑘 right harmonic Ritz

vectors ̃𝑌𝑘 = [ ̃𝑦1, … , ̃𝑦𝑘] to the (𝑖 + 1)-st system.
In the first case, we have to build a Krylov subspace using 𝑚 steps of GM-

RES, and to update the solution and the corresponding residual as with GM-
RES. Next, we compute 𝑘 right harmonic Ritz vectors according to Lemma 3.11,
i.e. ̃𝑌𝑘 = 𝐴𝑉𝑚 ̂𝑌𝑘, where the columns of ̂𝑌𝑘 are the eigenvectors of the matrix
(3.26) corresponding to the 𝑘 smallest eigenvalues. Using the Arnoldi relation
(2.15), i.e. 𝐴𝑉𝑚 = 𝑉𝑚+1�̄�𝑚 and the fact that 𝑉𝑚+1 is orthonormal, we obtain
𝑈𝑘 and 𝐶𝑘 in the following way:

�̄�𝑚 ̂𝑌𝑘 = 𝑄𝑅 (4.13)
𝐶𝑘 = 𝑉𝑚+1𝑄 (4.14)
𝑈𝑘 = 𝑉𝑚 ̂𝑌𝑘𝑅−1. (4.15)

Now, let us assume that we have solved the 𝑖-th system and that we kept
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𝑘 right harmonic Ritz vectors ̃𝑌𝑘, by keeping their preimages 𝑈old
𝑘 , for the

(𝑖+1)-st system. Then, the GCRO-DR method computes matrices 𝑈𝑘 and 𝐶𝑘
from 𝐴(𝑖+1) and 𝑈old

𝑘 using (4.10) - (4.12). The optimal solution over the space
range(𝑈𝑘) and the corresponding residual vector are computed using (3.8) and
(3.9), respectively. In the remainder of the section we drop the superscript in
𝐴(𝑖+1) for notational convenience.

After updating 𝑈𝑘 and 𝐶𝑘 (in both cases), we proceed in the same way as
for the GCRO method. We perform 𝑚 − 𝑘 steps of the Arnoldi process with a
different operator 𝐴𝐶𝑘

= (𝐼 − 𝐶𝑘𝐶𝐻
𝑘 )𝐴, which produces the Arnoldi relation

(𝐼 − 𝐶𝑘𝐶𝐻
𝑘 )𝐴𝑉𝑚−𝑘 = 𝑉𝑚−𝑘+1�̄�𝑚−𝑘. (4.16)

We can rewrite (4.16) as

𝐴 [𝑈𝑘 𝑉𝑚−𝑘] = [𝐶𝑘 𝑉𝑚−𝑘+1] [𝐼𝑘 𝐵𝑘
0 �̄�𝑚−𝑘

] , (4.17)

where 𝐵𝑘 = 𝐶𝐻
𝑘 𝐴𝑉𝑚−𝑘. Numerical tests suggest that the rightmost matrix in

(4.17) is ill-conditioned. To reduce unnecessary ill-conditioning we can com-
pute the diagonal matrix 𝐷𝑘, such that ̃𝑈𝑘 = 𝑈𝑘𝐷𝑘 has unit columns. Defining

̂𝑉𝑚 = [ ̃𝑈𝑘 𝑉𝑚−𝑘] , �̂�𝑚+1 = [𝐶𝑘 𝑉𝑚−𝑘+1] , 𝐺𝑚 = [𝐷𝑘 𝐵𝑘
0 �̄�𝑚−𝑘

] ,

the Arnoldi relation (4.17) becomes

𝐴 ̂𝑉𝑚 = �̂�𝑚+1𝐺𝑚. (4.18)

It is worth mentioning that the columns of ̂𝑉𝑚 and �̂�𝑚+1 have unit norm.
In addition, the columns of �̂�𝑚+1 are orthogonal (since range(𝑉𝑚−𝑘+1) ⟂
range(𝐶𝑘)), which is not true for ̂𝑉𝑚.

We proceed as with GMRES, by solving the minimization problem

𝜉𝑚 = argmin
𝜉∈range( ̂𝑉𝑚)

‖𝑟𝑖−1 − 𝐴𝜉‖2,

which reduces to the (𝑚 + 1) × 𝑚 least squares problem

𝜉𝑚 = argmin
𝜉∈range( ̂𝑉𝑚)

∥�̂� 𝐻
𝑚+1𝑟𝑖−1 − 𝐺𝑚𝜉∥

2
.

The residual and solution are updated via

𝑟𝑖 = 𝑟𝑖−1 − 𝐴 ̂𝑉𝑚𝜉𝑚 = 𝑟𝑖−1 − �̂�𝑚+1𝐺𝑚𝜉𝑚,
𝑥𝑖 = 𝑥𝑖−1 + ̂𝑉𝑚𝜉𝑚. (4.19)
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At the end of each cycle, the method computes the 𝑘 right harmonic Ritz
vectors corresponding to the 𝑘 smallest harmonic Ritz values by solving the
generalized eigenvalue problem derived from Definition 2.25 and the Arnoldi
relation (4.18), which is given in the following Lemma.

Lemma 4.8. Solving the generalized eigenvalue problem

𝐺𝐻
𝑚�̂� 𝐻

𝑚+1 ̂𝑉𝑚 ̂𝑦𝑖 = 𝜃𝑖𝐺𝐻
𝑚𝐺𝑚 ̂𝑦𝑖,

one obtains the 𝑘 right harmonic Ritz vectors (corresponding to the 𝑘 harmonic
Ritz values of smallest magnitude 1/𝜃𝑖, 𝑖 = 1, … , 𝑘) in the main loop of the
GCRO-DR method (𝐰𝐡𝐢𝐥𝐞 loop in Algorithm 4.1) as ̃𝑦𝑖 = 𝐴 ̂𝑉𝑚 ̂𝑦𝑖, 𝑖 = 1, … , 𝑘.

Proof. Using Definition 2.24 and the Arnoldi relation (4.18) we have with
̃𝑦𝑖 = 𝐴 ̂𝑉𝑚 ̂𝑦𝑖, 𝑖 = 1, … , 𝑘

(𝐴 ̂𝑉𝑚)𝐻(𝐴−1𝐴 ̂𝑉𝑚 ̂𝑦𝑖 − 𝜃𝑖𝐴 ̂𝑉𝑚 ̂𝑦𝑖) = 0
⇔ 𝜃𝑖 ̂𝑉 𝐻

𝑚 𝐴𝐻𝐴 ̂𝑉𝑚 ̂𝑦𝑖 = ̂𝑉 𝐻
𝑚 𝐴𝐻 ̂𝑉𝑚 ̂𝑦𝑖

⇔ 𝜃𝑖𝐺𝐻
𝑚�̂� 𝐻

𝑚+1�̂�𝑚+1𝐺𝑚 ̂𝑦𝑖 = 𝐺𝐻
𝑚�̂� 𝐻

𝑚+1 ̂𝑉𝑚 ̂𝑦𝑖

⇔ 𝜃𝑖𝐺𝐻
𝑚𝐺𝑚 ̂𝑦𝑖 = 𝐺𝐻

𝑚�̂� 𝐻
𝑚+1 ̂𝑉𝑚 ̂𝑦𝑖,

which completes the proof. Note that we have used the fact that �̂�𝑚+1 has
orthonormal columns.

Before restarting, we need to compute the new matrices 𝑈𝑘 and 𝐶𝑘, which
is done similarly to (4.13)-(4.15)

𝐺𝑚 ̂𝑌𝑘 = 𝑄𝑅 (4.20)
𝐶𝑘 = �̂�𝑚+1𝑄 (4.21)
𝑈𝑘 = ̂𝑉𝑚 ̂𝑌𝑘𝑅−1. (4.22)

After we have solved the (𝑖 + 1)-st system, the matrix 𝑈𝑘 is carried over to the
next system. We give GCRO-DR as Algorithm 4.1.
Remark 4.9. So far, we have discussed deflating the eigenvalues of smallest
magnitude. An interesting possibility is to combine a few right harmonic Ritz
vectors corresponding to the harmonic Ritz values of smallest magnitude and
a few right harmonic Ritz vectors corresponding to the harmonic Ritz values of
largest magnitude, thus simultaneously deflating eigenvalues of both, smallest
and largest, magnitude.
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Algorithm 4.1: GCRO-DR
Input : 𝐴(𝑖) ∈ ℂ𝑛×𝑛 𝑖-th system matrix

𝑏(𝑖) ∈ ℂ𝑛, 𝑥(𝑖)
0 ∈ ℂ𝑛 right-hand side and initial guess for the 𝑖-th sys-

tem
𝑚 ∈ ℕ restart length
𝑘 ∈ ℕ number of deflated approximate ev’s
𝑈old

𝑘 recycle space from the previous system (if it is
defined)

Output: approximate solution 𝑥(𝑖)
𝑚 to 𝐴(𝑖)𝑥(𝑖) = 𝑏(𝑖) of the 𝑖-th system

𝑘 approximate right eigenvectors ̃𝑌𝑘

1 𝑟0 = 𝑏 − 𝐴𝑥0, 𝛽 = ‖𝑟0‖, 𝑣1 = 𝑟0/𝛽, 𝑖 = 1
2 if We are solving the first system then
3 Perform 𝑚 steps of the Arnoldi process, thus providing the Arnoldi relation

𝐴𝑉𝑚 = 𝑉𝑚+1�̄�𝑚
4 Compute 𝑥1 = 𝑥0 + 𝑉𝑚𝜉𝑚 and 𝑟1 = 𝑟0 − 𝑉𝑚+1�̄�𝑚𝜉𝑚, where

𝜉𝑚 = argmin𝜉 ∥𝛽𝑒𝑖 − �̄�𝑚𝜉∥2
5 Compute 𝑘 right harmonic Ritz vectors according to Lemma 3.11
6 Compute 𝑈𝑘 and 𝐶𝑘 using (4.13)-(4.15)
7 else
8 𝐴𝑈old

𝑘 = 𝑄𝑅, 𝐶𝑘 = 𝑄, 𝑈𝑘 = 𝑈old
𝑘 𝑅−1

9 𝑥1 = 𝑥0 + 𝑈𝑘𝐶𝐻
𝑘 𝑟0, 𝑟1 = 𝑟0 − 𝐶𝑘𝐶𝐻

𝑘 𝑟0
10 while Convergence criteria not satisfied do
11 𝑖 = 𝑖 + 1
12 Perform 𝑚 − 𝑘 steps of the Arnoldi process with an operator (𝐼 − 𝐶𝑘𝐶𝐻

𝑘 )𝐴 and
starting with 𝑣1 = 𝑟𝑖−1/ ‖𝑟𝑖−1‖2

13 Define ̂𝑉𝑚, �̂�𝑚+1 and 𝐺𝑚 such that the Arnoldi relation (4.18) holds
14 Compute 𝑥𝑖 = 𝑥𝑖−1 + ̂𝑉𝑚𝜉𝑚 and 𝑟𝑖 = 𝑟𝑖−1 − �̂�𝑚+1𝐺𝑚𝜉𝑚, where

𝜉𝑚 = argmin𝜉 ∥�̂� 𝐻
𝑚+1𝑟𝑖−1 − 𝐺𝑚𝜉∥

2
15 Compute 𝑘 right harmonic Ritz vectors according to Lemma 4.8
16 Update 𝑈𝑘 and 𝐶𝑘 using (4.20)-(4.22)
17 Carry 𝑈𝑘 to the next system

4.2.1 Convergence Analysis

We discuss here two theoretical results taken from [Par+06] and [KS07] and
their implications. The first result concerns the convergence of GCRO-DR,
whereas the second result concerns the perturbation of invariant subspaces
associated with the smallest eigenvalues when the change in the matrix is con-
centrated in an invariant subspace corresponding to “large” eigenvalues. What
is meant here by large eigenvalues are the remaining ones, i.e. all eigenvalues
except for the smallest.
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Let 𝒬 be an 𝑙-dimensional invariant subspace of 𝐴, and let 𝒞 = range(𝐶𝑘)
be a 𝑘-dimensional space (𝑘 ≥ 𝑙) selected to approximate 𝒬. We define Π𝒞 and
Π𝒬 to be the orthogonal projectors onto 𝒞 and 𝒬, respectively. We also define
𝑃𝒬 to be the spectral projector onto 𝒬, according to the following definition.

Definition 4.10. Let range(𝑉1) and range(𝑉2) be two complementary invari-
ant subspaces of 𝐴 such that

𝐴𝑉1 = 𝑉1Λ1
𝐴𝑉2 = 𝑉2Λ2,

and
range(𝑉1) ⊕ range(𝑉2) = ℂ𝑛.

Then
𝑃 = 𝑉1(𝑉 𝐻

2 𝑉1)−1𝑉 𝐻
2

is called a spectral projector. In particular, if 𝐴 is diagonalizable, then

𝐴 = 𝑋Λ𝑋−1 = 𝑋Λ𝑌 𝐻

= [𝑋1 𝑋2] Λ [𝑌 𝐻
1

𝑌 𝐻
2

]

= 𝑋1Λ1𝑌 𝐻
1 + 𝑋2Λ2𝑌 𝐻

2 ,

where 𝑌 𝐻
1 𝑋1 = 𝐼, 𝑌 𝐻

2 𝑋2 = 𝐼, is the spectral representation of 𝐴. Here,
range(𝑋1) and range(𝑋2) are complementary right eigenspaces, and range(𝑌1)
and range(𝑌2) are complementary left eigenspaces corresponding to range(𝑋1)
and range(𝑋2), respectively. Then, the spectral projector is given as (see
[SG90])

𝑃𝑖 = 𝑋𝑖𝑌 𝐻
𝑖 , 𝑖 = 1, 2.

Furthermore, we define the one-sided distance from the subspace 𝒬 to the
subspace 𝒞 as

𝛿(𝒬, 𝒞) ≡ ∥(𝐼 − Π𝒞)Π𝒬∥
2

,

which is equal to the sine of the largest principal angle between 𝒬 and 𝒞. Next,
we give the theorem which shows that the recycle space need not approximate
an invariant subspace accurately to improve the convergence of GCRO-DR
significantly, see, e.g., [Par+06].
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Theorem 4.11. Given a space 𝒞, let 𝒦 = range(𝑉𝑚−𝑘+1�̄�𝑚−𝑘) be the (𝑚−𝑘)-
dimensional Krylov subspace generated by GCRO-DR as in (4.16). Let 𝑟0 ∈ ℂ𝑛,
and let 𝑟1 = (𝐼 − Π𝒞)𝑟0. Then, for each 𝒬 such that 𝛿(𝒬, 𝒞) < 1,

min
𝑑1∈𝒦⊕𝒞

‖𝑟0 − 𝑑1‖2 ≤ min
𝑑2∈(𝐼−𝑃𝒬 )𝒦

∥(𝐼 − 𝑃𝒬)𝑟1 − 𝑑2∥
2

+ 𝛾
1 − 𝛿 ∥𝑃𝒬∥

2
‖(𝐼 − Π𝒦)𝑟1‖2 ,

where 𝛾 = ∥(𝐼 − Π𝒞)𝑃𝒬∥
2
. If, in addition, 𝐴 is Hermitian, then we have

min
𝑑1∈𝒦⊕𝒞

‖𝑟0 − 𝑑1‖2 ≤ min
𝑑2∈(𝐼−Π𝒬 )𝒦

∥(𝐼 − Π𝒬)𝑟1 − 𝑑2∥
2

+ 𝛿
1 − 𝛿 ‖(𝐼 − Π𝒦)𝑟1‖2 .

The left-hand side in the above inequalities represents the residual norm
after 𝑚 − 𝑘 steps of GCRO-DR with the recycled space 𝒞. On the right-hand
side, the first term represents the best possible approximation of the deflated
problem, where all components in the subspace 𝒬 have been removed, which
typically leads to an improved rate of convergence, whereas the second term is
a constant times the residual of 𝑚 − 𝑘 iterations of GCRO-DR, solving for 𝑟1.
If the recycle space 𝒞 contains 𝒬, then 𝛿 = 𝛾 = 0, and GCRO-DR converges
at least as fast as the deflated problem. In numerical experiments in [Par+06]
it is shown that the method fairly quickly reaches values 𝛿 = 𝑂(10−2), for
which GCRO-DR converges as fast as the deflated problem, as long as ∥𝑃𝒬∥

2
is not large in the non-Hermitian case. Note that 𝛿 = 𝑂(10−2) means that the
invariant subspace 𝒬 is not approximated very accurately.

Now we turn to the second result. One of the main properties of a se-
quence of systems (4.1)—which is also the reason why we can use the recycling
strategy—is that the matrices change slightly from one system to the next. If
the magnitude of the change is smaller than the size of the gap between the
smallest and the remaining eigenvalues, then the invariant subspace associated
with the smallest eigenvalues is not significantly altered. For our work, this is
a desirable property, since we want to recycle exactly that subspace. Before
stating the next theorem, we need to define certain quantities.

For simplicity we deal with a Hermitian positive definite matrix 𝐴 and a
corresponding Hermitian perturbation 𝐸. Let 𝐴 have the eigendecomposition

𝐴 = [𝑄1 𝑄2 𝑄3] diag (Λ1, Λ2, Λ3) [𝑄1 𝑄2 𝑄3]𝐻 , (4.23)

where [𝑄1 𝑄2 𝑄3] is a unitary matrix, Λ1 = diag (𝜆(1)
1 , … , 𝜆(1)

𝑗1
), and Λ2 and

Λ3 are defined analogously. Furthermore, let
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𝜆(1)
1 ≤ ⋯ ≤ 𝜆(1)

𝑗1
< 𝜆(2)

1 ≤ ⋯ ≤ 𝜆(2)
𝑗2

< 𝜆(3)
1 ≤ ⋯ ≤ 𝜆(3)

𝑗3
.

Now consider the change in the invariant subspace range(𝑄1) under a sym-
metric perturbation 𝐸 of 𝐴. Let 𝜃1(., .) denote the largest canonical angle
between two spaces. It is not required that ‖𝐸‖𝐹 is small, but rather that the
projection of 𝐸 onto the subspace range([𝑄1 𝑄2]) is small. We thus assume
that ∥[𝑄1 𝑄2]𝐻 𝐸∥

𝐹
≤ 𝜀 and that 𝜀 is small relative to 𝜆(2)

1 − 𝜆(1)
𝑗1

. In addition,

assume that 𝜂 ≡ ∥𝑄𝐻
3 𝐸∥

𝐹
is small relative to 𝜆(3)

1 − 𝜆(1)
𝑗1

. Also, let

𝜇 ≡ min (𝜆(2)
1 − 𝜀, 𝜆(3)

1 − 𝜂) − 2𝜀 − (𝜆(1)
𝑗1

+ 𝜀) > 2𝜀,

̂𝜇 ≡ 𝜇 (1 − 2𝜀2

𝜂2 ) + 𝜆(1)
𝑗1

+ 𝜀.

Theorem 4.12. Let 𝐴 be Hermitian positive definite and have the eigende-
compositin given in (4.23), and let 𝐸, 𝜀, 𝜂, 𝜇 and ̂𝜇 be defined as above. Then
there exists a matrix �̂�1 conforming to 𝑄1, such that range(�̂�1) is an invariant
subspace of 𝐴 + 𝐸, and

tan 𝜃1 (range(𝑄1), range(�̂�1)) ≤ 𝜀
�̂� .

For the proof, see [KS07].
The result of Theorem 4.12 indicates that if the recycle space reasonably

approximates an invariant subspace, then it will also provide a reasonable
approximation to the slightly perturbed invariant subspace of the updated
matrix.

4.3 Loose GCRO-DR

The GCRO-DR method has been a huge advancement with respect to the re-
lated work for solving (4.1). It works under general assumptions and has flex-
ibility of choosing any subspace for recycling, as we have seen in the previous
section. Recently, Niu, Lu and Liu in [NLL13] have showed that GCRO-DR
experiences a similar alternating behaviour of the residual vectors at the end
of every cycle as restarted GMRES (which is not surprising since GCRO-DR
is a GMRES-like method). This implies that it is possible to further improve
GCRO-DR by recycling a few error approximations 𝑧𝑖 = 𝑥𝑖 − 𝑥𝑖−1 in the same
manner as in Section 3.5.4. This was the main motivation for developing the
Loose GCRO-DR method (LGCRO-DR) [NLL13]. The new method combines
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recycling an invariant subspace related to the approximate eigenvectors corre-
sponding to the smallest eigenvalues and recycling a few error approximations
in an easy and straightforward way, which we explain next.

Since LGCRO-DR differs from GCRO-DR only in the way how a recycle
space is being formed, we focus here only on that part. For reasons that will
become clear later, we distinguish two cases: recycling one error approximation
and recycling 𝑙 ≥ 2 error approximations. Let us first assume that we are re-
cycling one error approximation 𝑧𝑚. Noticing that ̃𝑌𝑘 = 𝐴 ̂𝑉𝑚 ̂𝑌𝑘 (Lemma 4.8)
and that 𝑧𝑚 = ̂𝑉𝑚𝜉𝑚 (see (4.19)) it follows that recycling one error approx-
imation is equivalent to appending 𝜉𝑚 to ̂𝑌𝑘−1, i.e. ̂𝑌𝑘 = [ ̂𝑌𝑘−1 𝜉𝑚], and
proceeding according to (4.20)-(4.22)

𝐺𝑚 ̂𝑌𝑘 = 𝑄𝑅 (4.24)
𝐶𝑘 = �̂�𝑚+1𝑄 (4.25)
𝑈𝑘 = ̂𝑉𝑚 ̂𝑌𝑘𝑅−1. (4.26)

This can be termed an economic approach, because all the computations are
done on matrices of small size.

Now, let us consider recycling 𝑙 ≥ 2 error approximations. The above trick
does not work in this case, because in each cycle we build a new Krylov
subspace, which means that in each cycle we have a new matrix ̂𝑉𝑚 and
𝑧𝑚 = ̂𝑉𝑚𝜉𝑚 does not hold anymore for error approximations from previous
cycles. There are two ways how to proceed in this case. One is to keep the 𝑙
previous error approximations 𝑧𝑖, 𝑖 = 𝑚, … , 𝑚 − 𝑙 + 1 and to append them to

̄𝑌𝑘−𝑙 = ̂𝑉𝑚 ̂𝑌𝑘−𝑙, ̄𝑌𝑘 = [ ̄𝑌𝑘−𝑙 𝑧𝑚 … 𝑧𝑚−𝑙+1]. Then, we compute the reduced
QR factorization of 𝐴 ̄𝑌𝑘 explicitly, i.e. 𝑄𝑅 = 𝐴 ̄𝑌 and continue according to
(4.25)-(4.26). This approach is computationally inefficient. We will use a dif-
ferent approach, which simply retains 𝜉𝑖, 𝑖 = 𝑚, … , 𝑚 − 𝑙 + 1, appends them
at the end of ̂𝑌𝑘−𝑙, thus forming ̂𝑌𝑘 = [ ̂𝑌𝑘−𝑙 𝜉𝑚 … 𝜉𝑚−𝑙+1] and proceeds
according to (4.24)-(4.26). Although, this is an inexact approach, it is straight-
forward and economic and numerical tests show that it significantly improves
the convergence of GCRO-DR (see, e.g., Chapter 5). The LGCRO-DR method
is given as Algorithm 4.2.
Remark 4.13. We have assumed that 𝑙 error approximations are always avail-
able, which is not the case in the first 𝑙 − 1 cycles of each system. In this case
we simply use additional harmonic Ritz vectors.

Recall, the main motivation for developing the LGCRO-DR method was the
fact that GCRO-DR experiences alternating behaviour of the residual vectors
at the end of every cycle, which basically means that the residual vectors at the
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end of every other cycle point in nearly the same direction, i.e. 𝑟𝑖+1 ≈ 𝛼𝑟𝑖−1,
thus slowing down the covergence. Next, we give two results from [NLL13]
that reveal the skip and sequential angles for GCRO-DR, which correspond to
Theorem 3.16 and Theorem 3.18 from Section 3.5.4. The proofs are similar to
the ones in [BJM05], so we ommit them here.
Theorem 4.14. Let 𝑟𝑖+1 and 𝑟𝑖 be the residuals from GCRO-DR restart cycles
𝑖 + 1 and 𝑖, respectively. Then the sequential angle between them is given by

cos(∠(𝑟𝑖+1, 𝑟𝑖)) =
‖𝑟𝑖+1‖2
‖𝑟𝑖‖2

.

Theorem 4.15. Let 𝑟𝑖+1 and 𝑟𝑖−1 be the residuals from GCRO-DR restart
cycles 𝑖 + 1 and 𝑖 − 1, respectively. Then the skip angle between them is given
by

cos(∠(𝑟𝑖+1, 𝑟𝑖−1)) =
‖𝑟𝑖+1‖2
‖𝑟𝑖−1‖2

− ⟨𝐴𝑧𝑖+1, 𝐴𝑧𝑖⟩
‖𝑟𝑖+1‖2 ‖𝑟𝑖−1‖2

, (4.27)

where 𝑟𝑖+1 = 𝑟𝑖 − 𝐴𝑧𝑖+1 and 𝑟𝑖 = 𝑟𝑖−1 − 𝐴𝑧𝑖.

A similar reasoning as for the LGMRES method can be applied here: the
convergence of the GCRO-DR method is related to the sequential and skip
angles in the sense that larger angles lead to faster convergence, and interfering
the alternating behaviour will probably improve the convergence. This is done
by recycling a few error approximations. The following two theorems give the
improved results for the skip and sequential angles for LGCRO-DR.
Theorem 4.16. Let 𝑟𝑖+1 and 𝑟𝑖 be the residuals from LGCRO-DR restart
cycles 𝑖 + 1 and 𝑖, respectively. Then the sequential angle between them is
given by

cos(∠(𝑟𝑖+1, 𝑟𝑖)) =
‖𝑟𝑖+1‖2
‖𝑟𝑖‖2

.

Theorem 4.17. Let 𝑟𝑖+1 and 𝑟𝑖−1 be the residuals from LGCRO-DR restart
cycles 𝑖 + 1 and 𝑖 − 1, respectively. Then the skip angle between them is given
by

cos(∠(𝑟𝑖+1, 𝑟𝑖−1)) =
‖𝑟𝑖+1‖2
‖𝑟𝑖−1‖2

. (4.28)

The second term in (4.27) vanishes in (4.28), because the error approx-
imations used by LGCRO-DR are 𝐴𝐻𝐴-orthogonal by construction (Theo-
rem 3.14).
Remark 4.18. We will tend always to use the economic approach. In this case,
the computational costs, as well as the storage requirements, for LGCRO-DR
are the same as for GCRO-DR [Par+06].
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Algorithm 4.2: LGCRO-DR
Input : 𝐴(𝑖) ∈ ℂ𝑛×𝑛 𝑖-th system matrix

𝑏(𝑖) ∈ ℂ𝑛, 𝑥(𝑖)
0 ∈ ℂ𝑛 right-hand side and initial guess for the 𝑖-th sys-

tem
𝑚 ∈ ℕ restart length
𝑘 ∈ ℕ number of deflated approximate ev’s
𝑈old

𝑘 recycle space from the previous system (if it is
defined)

Output: approximate solution 𝑥(𝑖)
𝑚 to 𝐴(𝑖)𝑥(𝑖) = 𝑏(𝑖) of the 𝑖-th system

𝑘 approximate right eigenvectors ̃𝑌𝑘

1 𝑟0 = 𝑏 − 𝐴𝑥0, 𝛽 = ‖𝑟0‖, 𝑣1 = 𝑟0/𝛽, 𝑖 = 1, Ξ = [ ]
2 if We are solving the first system then
3 Perform 𝑚 steps of the Arnoldi process, thus providing the Arnoldi relation

𝐴𝑉𝑚 = 𝑉𝑚+1�̄�𝑚
4 Compute 𝑥1 = 𝑥0 + 𝑉𝑚𝜉𝑚 and 𝑟1 = 𝑟0 − 𝑉𝑚+1�̄�𝑚𝜉𝑚, where

𝜉𝑚 = argmin𝜉 ∥𝛽𝑒𝑖 − �̄�𝑚𝜉∥2
5 Ξ = [𝜉𝑚 Ξ]
6 Compute 𝑘 right eigenpairs (1/𝜃𝑖, ̂𝑦𝑖) according to Lemma 3.11
7 Set ̂𝑌𝑘 = [ ̂𝑌𝑘−1 Ξ]
8 Compute 𝑈𝑘 and 𝐶𝑘 using (4.13)-(4.15)
9 else

10 𝐴𝑈old
𝑘 = 𝑄𝑅, 𝐶𝑘 = 𝑄, 𝑈𝑘 = 𝑈old

𝑘 𝑅−1

11 𝑥1 = 𝑥0 + 𝑈𝑘𝐶𝐻
𝑘 𝑟0, 𝑟1 = 𝑟0 − 𝐶𝑘𝐶𝐻

𝑘 𝑟0
12 while Convergence criteria not satisfied do
13 𝑖 = 𝑖 + 1
14 Perform 𝑚 − 𝑘 steps of the Arnoldi process with an operator (𝐼 − 𝐶𝑘𝐶𝐻

𝑘 )𝐴 and
starting with 𝑣1 = 𝑟𝑖−1/ ‖𝑟𝑖−1‖2

15 Define ̂𝑉𝑚, �̂�𝑚+1 and 𝐺𝑚 such that the Arnoldi relation (4.18) holds
16 Compute 𝑥𝑖 = 𝑥𝑖−1 + ̂𝑉𝑚𝜉𝑚 and 𝑟𝑖 = 𝑟𝑖−1 − �̂�𝑚+1𝐺𝑚𝜉𝑚, where

𝜉𝑚 = argmin𝜉 ∥�̂� 𝐻
𝑚+1𝑟𝑖−1 − 𝐺𝑚𝜉∥

2
17 Compute 𝑘 right eigenpairs (1/𝜃𝑖, ̂𝑦𝑖) according to Lemma 4.8
18 if dim(Ξ, 2) < 𝑙 then
19 Ξ = [𝜉𝑚 Ξ]
20 Set ̂𝑌𝑘 = [ ̂𝑌𝑘−dim(Ξ,2) Ξ]
21 else
22 Ξ = [𝜉𝑚 Ξ(∶, 1 ∶ 𝑙 − 1)]
23 Set ̂𝑌𝑘 = [ ̂𝑌𝑘−𝑙 Ξ]
24 Update 𝑈𝑘 and 𝐶𝑘 using (4.24)-(4.26)
25 Carry 𝑈𝑘 to the next system
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4.4 Truly Deflated GMRES

Motivated by work from Gutknecht in [Gut12], we now develop the method
Left-Right Deflated GMRES (LRDGMRES), which is comparable to GCRO-
DR in terms of the number of the matrix-vector products, but represents a
theoretically better approach, as it will be discussed later in this section. In
addition, we have improved it further by exploiting the technique of recycling
a few error approximations, which will be covered in Section 4.4.2. We call the
second method Loose LRDGMRES (LLRDGMRES).

For a better understanding of our methods, we start by giving some addi-
tional details regarding GCRO-DR, that were left out in Section 4.2. Starting
with ̂𝑟0 = (𝐼 − 𝐶𝑘𝐶𝐻

𝑘 )𝑟0, and denoting 𝒰 = range(𝑈𝑘) and 𝒞 = range(𝐶𝑘),
the GCRO-DR method constructs a sequence of approximate solutions

𝑥𝑚 ∈ 𝑥0 + 𝒦𝑚(𝐴𝐶𝑘
, ̂𝑟0) + 𝒰, (4.29)

such that the residuals

𝑟𝑚 ∈ 𝑟0 + 𝐴𝒦𝑚(𝐴𝐶𝑘
, ̂𝑟0) + 𝒞 (4.30)

are minimized. Using the operator 𝐴𝐶𝑘
= (𝐼 − 𝐶𝑘𝐶𝐻

𝑘 )𝐴 rather than 𝐴, where
the columns of 𝐶𝑘 are the approximate right eigenvectors, a deflation of the
smallest eigenvalues occurs, which usually leads to a better convergence be-
haviour of the method. To sum up, GCRO-DR is a minimum residual method
for which the deflation of the matrix is based on an orthogonal projection
𝑃 = 𝐼 − 𝐶𝑘𝐶𝐻

𝑘 .
However, since we are mostly working with non-Hermitian systems and since

we are using GMRES-like methods, it would be preferable to have a method
that uses the oblique projection ̂𝑃 = 𝐼 − 𝐶𝑘( ̃𝐶𝐻

𝑘 𝐶𝑘)−1 ̃𝐶𝐻
𝑘 , with the property

that if the nullspace 𝒞 of ̂𝑃 is 𝐴-invariant, then so is its range ̃𝒞⟂, where
̃𝒞 = range( ̃𝐶𝑘). Under the assumption that the columns of 𝐶𝑘 and ̃𝐶𝑘 are,

respectively, (approximate) right and left eigenvectors, this way we do not only
annihilate the smallest eigenvalues, but also deflate both, the corresponding left
and right eigenspaces, so that convergence depends only on the non-deflated
eigenspaces. For this reason, Gutknecht states in [Gut12] that this approach,
which is called truly deflated GMRES, is theoretically better. To elaborate
further, we give the following proposition, which explains the effects of “true”
deflation.

Proposition 4.19. Let us assume that the columns of 𝑋𝑘 and 𝑌𝑘 are, respec-
tively, the 𝑘 right and left eigenvectors of the matrix 𝐴 corresponding to the 𝑘
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smallest eigenvalues. Then
̂𝑃𝐴 = 𝐴 ̂𝑃 = ̂𝑃𝐴 ̂𝑃 ,

where ̂𝑃 = 𝐼 − 𝑋𝑘(𝑌 𝐻
𝑘 𝑋𝑘)−1𝑌 𝐻

𝑘 is an oblique projection. Furthermore, this
implies

𝒦(𝐴, ̂𝑃 𝑏) = 𝒦( ̂𝑃𝐴, ̂𝑃 𝑏). (4.31)

Proof. First we prove that ̂𝑃𝐴 = 𝐴 ̂𝑃 . Let 𝑋𝑘 and 𝑌𝑘 be, respectively, the
𝑘 right and left eigenvectors of the matrix 𝐴 corresponding to the 𝑘 smallest
eigenvalues, which are the diagonal elements of Λ𝑘. We have

̂𝑃𝐴 = (𝐼 − 𝑋𝑘(𝑌 𝐻
𝑘 𝑋𝑘)−1𝑌 𝐻

𝑘 )𝐴 = 𝐴 − 𝑋𝑘(𝑌 𝐻
𝑘 𝑋𝑘)−1𝑌 𝐻

𝑘 𝐴
= 𝐴 − 𝑋𝑘(𝑌 𝐻

𝑘 𝑋𝑘)−1Λ𝑘𝑌 𝐻
𝑘

= 𝐴 − 𝑋𝑘(Λ−1
𝑘 𝑌 𝐻

𝑘 𝑋𝑘)−1𝑌 𝐻
𝑘

= 𝐴 − 𝑋𝑘(𝑌 𝐻
𝑘 𝐴−1𝑋𝑘)−1𝑌 𝐻

𝑘
= 𝐴 − 𝑋𝑘(𝑌 𝐻

𝑘 𝑋𝑘Λ−1
𝑘 )−1𝑌 𝐻

𝑘
= 𝐴 − 𝑋𝑘Λ𝑘(𝑌 𝐻

𝑘 𝑋𝑘)−1𝑌 𝐻
𝑘

= 𝐴 − 𝐴𝑋𝑘(𝑌 𝐻
𝑘 𝑋𝑘)−1𝑌 𝐻

𝑘

= 𝐴(𝐼 − 𝑋𝑘(𝑌 𝐻
𝑘 𝑋𝑘)−1𝑌 𝐻

𝑘 ) = 𝐴 ̂𝑃 ,
which completes the proof. The second part of the proof is straightforward
since

̂𝑃𝐴 ̂𝑃 = ̂𝑃 ̂𝑃𝐴 = ̂𝑃𝐴.

From (4.31) we conclude that once the deflation of the 𝑘 smallest eigenvalues
has occured, they are completely removed from the spectrum and we do not
have to use the deflated operator ̂𝑃𝐴.

On top of Gutknecht’s theory, we provide a cheap way of computing left
approximate eigenvectors, without having to build a Krylov subspace for 𝐴𝐻.
We now turn to our method.

4.4.1 Left-Right Deflated GMRES

Our method resembles GCRO-DR in most of its parts. It is important to
mention that we augment the search space only with approximate right eigen-
vectors, meaning that both 𝑈𝑘 and 𝐶𝑘 are needed throughout the algorithm,
whereas we need only ̃𝐶𝑘 to build an oblique projection. This information will
be helpful in understanding the process of updating the mentioned matrices.
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We distinguish two cases, like with GCRO-DR: solving the first system and
solving the system 𝑖 > 1. When solving the first system, we do not have any
previous information available. Therefore, we perform 𝑚 steps of the Arnoldi
process with 𝐴 and 𝑟0, thus building a Krylov subspace and obtaining the
Arnoldi relation

𝐴𝑉𝑚 = 𝑉𝑚+1�̄�𝑚. (4.32)
And, of course, we compute the new approximate solution and the correspond-
ing residual. Next, we compute left and right approximate eigenvectors, i.e.
left and right harmonic Ritz vectors. The right ones, that we denote with ̃𝑦𝑖,
can be computed according to Lemma 3.11. As we have pointed out, we pro-
vide a cheap way of computing the left harmonic Ritz vectors. The following
new lemma shows that we can obtain the left harmonic Ritz vectors (2.21),
which we denote with ̃𝑧𝑖, by solving an eigenvalue problem of small size.
Lemma 4.20. The left harmonic Ritz pairs of 𝐴 with respect to the subspace
𝐴𝒦 are given as (1/𝜂𝑖, 𝐴𝑉𝑚𝐻−1

𝑚 𝑧𝑖), where (1/ ̄𝜂𝑖, 𝑧𝑖) are the eigenpairs of the
matrix

𝐻𝐻
𝑚 + ℎ𝑚𝑓𝐻

𝑚 ,

where �̄�𝑚 = [𝐻𝑚
ℎ𝐻

𝑚
] is the Hessenberg matrix of the Arnoldi relation and

𝐻𝐻
𝑚𝑓𝑚 = ℎ𝑚.

Proof. Starting from Definition 2.25 and using the Arnoldi relation (4.32), we
have that a left harmonic Ritz pair (1𝜂 , ̃𝑧) satisfies

(𝐴𝑉𝑚)𝐻(𝐴−𝐻 ̃𝑧 − ̄𝜂 ̃𝑧) = 0.
Since ̃𝑧 ∈ 𝐴𝒦 , we have

𝑉 𝐻
𝑚 𝐴𝐻𝐴−𝐻𝐴𝑉𝑚 ̂𝑧 = ̄𝜂𝑉 𝐻

𝑚 𝐴𝐻𝐴𝑉𝑚 ̂𝑧
⇔ 𝑉 𝐻

𝑚 𝑉𝑚+1�̄�𝑚 ̂𝑧 = ̄𝜂�̄�𝐻
𝑚𝑉 𝐻

𝑚+1𝑉𝑚+1�̄�𝑚 ̂𝑧
⇔ ̃𝐼�̄�𝑚 ̂𝑧 = ̄𝜂�̄�𝐻

𝑚�̄�𝑚 ̂𝑧,

where ̃𝐼𝑚 = [𝐼𝑚 𝐨], and 𝐨 is a column vector of zeros. Writing �̄�𝑚 = [𝐻𝑚
ℎ𝐻

𝑚
],

we obtain

𝐻𝑚 ̂𝑧 = ̄𝜂(𝐻𝐻
𝑚𝐻𝑚 + ℎ𝑚ℎ𝐻

𝑚) ̂𝑧

⇔ 1
̄𝜂𝐻𝑚 ̂𝑧 = (𝐻𝐻

𝑚 + ℎ𝑚 (𝐻−𝐻
𝑚 ℎ𝑚)𝐻)𝐻𝑚 ̂𝑧

⇔ 1
̄𝜂𝑧 = (𝐻𝐻

𝑚 + ℎ𝑚𝑓𝐻
𝑚)𝑧.
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Thus, (1
�̄� , 𝑧) is an eigenpair of the matrix 𝐻𝐻

𝑚 + ℎ𝑚𝑓𝐻
𝑚 .

Remark 4.21. From Lemma 3.11 and Lemma 4.20 we can conclude that in
order to obtain left and right harmonic Ritz vectors, we first have to compute
left and right eigenvectors of the same matrix 𝐻𝑚 + 𝑓𝑚ℎ𝐻

𝑚. However, we
recover the harmonic Ritz vectors in a different way, i.e. we recover the right
harmonic Ritz vectors as

̃𝑦 = 𝐴𝑉𝑚 ̂𝑦 = 𝑉𝑚+1�̄�𝑚 ̂𝑦,

whereas we get the left ones in the following way

̃𝑧 = 𝐴𝑉𝑚𝐻−1
𝑚 𝑧

= 𝑉𝑚+1�̄�𝑚𝐻−1
𝑚 𝑧

= 𝑉𝑚+1 [ 𝐼𝑚
ℎ𝐻

𝑚𝐻−1
𝑚

] 𝑧. (4.33)

The next step is to obtain matrices 𝑈𝑘, 𝐶𝑘 and ̃𝐶𝑘, so we can proceed with
the GCRO framework. Updating 𝑈𝑘 and 𝐶𝑘 is done in the same way as for
GCRO-DR, i.e. according to (4.13)-(4.15). However, updating ̃𝐶𝑘 seems to be
the tricky part. Due to Stewart [Ste11], for stability reasons, we would like to
have orthonormal matrices 𝐶𝑘 and ̃𝐶𝑘 when applying the oblique projection.

From (4.33) it follows that the left harmonic Ritz vectors are retrieved in a
similar way as the right ones, i.e. 𝐴𝑉𝑚 times a vector. Therefore, we decided
to treat them in the same way, meaning that we update ̃𝐶𝑘 inexpensively as
follows

�̄�𝑚 ̂𝑍𝑘 = 𝑄𝐿𝑅𝐿 (4.34)
̃𝐶𝑘 = 𝑉𝑚+1𝑄𝐿. (4.35)

Now, let us consider solving the system 𝑖 > 1. The first question that arises
is which matrices do we carry from the previous system? Since we need both
matrices, 𝑈𝑘 and 𝐶𝑘, and since we want to “copy” the framework of GCRO-
DR, we keep the 𝑈old

𝑘 from the previous system, computed the last, whose
columns are preimages of approximate right eigenvectors. Furthermore, we
obtain the new 𝑈𝑘 and 𝐶𝑘 like for GCRO-DR, i.e.

𝐴(𝑖+1)𝑈old
𝑘 = 𝑄𝑅 (4.36)

𝐶new
𝑘 = 𝑄 (4.37)

𝑈new
𝑘 = 𝑈old

𝑘 𝑅−1.
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On the other hand, we have discussed that only ̃𝐶𝑘 is required throughout the
method. Therefore, we can avoid any additional work (updating ̃𝐶𝑘 similarly
to (4.36)-(4.37) is not necessary) by keeping ̃𝐶old

𝑘 from the previous system,
computed the last.

Now we have the whole setup for discussing the main loop of the method.
For notational convenience, we drop the superscripts (𝑖 + 1), old and new in
the remainder.

Starting with ̂𝑟0 = (𝐼 − 𝐶𝑘( ̃𝐶𝐻
𝑘 𝐶𝑘)−1 ̃𝐶𝐻

𝑘 )𝑟0, we perform 𝑚 − 𝑘 steps of the
Arnoldi process with an operator 𝐴 ̃𝐶𝑘

𝐶𝑘
= (𝐼 − 𝐶𝑘( ̃𝐶𝐻

𝑘 𝐶𝑘)−1 ̃𝐶𝐻
𝑘 )𝐴, leading to

the Arnoldi relation
(𝐼 − 𝐶𝑘( ̃𝐶𝐻

𝑘 𝐶𝑘)−1 ̃𝐶𝐻
𝑘 )𝐴𝑉𝑚−𝑘 = 𝑉𝑚−𝑘+1�̄�𝑚−𝑘,

which can be rewriten as

𝐴 [𝑈𝑘 𝑉𝑚−𝑘] = [𝐶𝑘 𝑉𝑚−𝑘+1] [𝐼𝑘 𝐵𝑘
0 �̄�𝑚−𝑘

] , (4.38)

where 𝐵𝑘 = ( ̃𝐶𝐻
𝑘 𝐶𝑘)−1 ̃𝐶𝐻

𝑘 𝐴𝑉𝑚−𝑘. As in GCRO-DR, to avoid unnecessary ill-
conditioning of the rightmost matrix in (4.38), we can compute the diagonal
matrix 𝐷𝑘, such that ̂𝑈𝑘 = 𝑈𝑘𝐷𝑘 has unit columns. Defining

̃𝑉𝑚 = [ ̂𝑈𝑘 𝑉𝑚−𝑘] , �̃�𝑚+1 = [𝐶𝑘 𝑉𝑚−𝑘+1] , ̃𝐺𝑚 = [𝐷𝑘 𝐵𝑘
0 �̄�𝑚−𝑘

] ,

the Arnoldi relation (4.38) becomes

𝐴 ̃𝑉𝑚 = �̃�𝑚+1 ̃𝐺𝑚. (4.39)

A relevant difference in comparison to GCRO-DR is that the matrix �̃�𝑚+1 is
not unitary anymore.

Now we want to update the solution as (recall (4.29))
𝑥𝑚 = 𝑥0 + 𝑉𝑚−𝑘𝑠𝑚−𝑘 + 𝑈𝑘𝑡𝑘, (4.40)

such that the residual (recall (4.30))
𝑟𝑚 = 𝑟0 − 𝐴𝑉𝑚−𝑘𝑠𝑚−𝑘 − 𝐶𝑘𝑡𝑘 (4.41)

is minimized. Denoting 𝐶𝑘 = ̃𝐶𝑘( ̃𝐶𝐻
𝑘 𝐶𝑘)−𝐻, ̂𝑃 = 𝐼 − 𝐶𝑘𝐶𝐻

𝑘 and �̂� = 𝐶𝑘𝐶𝐻
𝑘

and due to the decomposition
𝑟0 = ̂𝑃𝑟0 + �̂�𝑟0

= ̂𝑟0 + �̂�𝑟0

= 𝑣1𝛽 + �̂�𝑟0,
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with 𝛽 = ‖ ̂𝑟0‖2, the residual (4.41) can be rewriten as

𝑟𝑚 = 𝑣1𝛽 + �̂�𝑟0 − ( ̂𝑃 + �̂�)𝐴𝑉𝑚−𝑘𝑠𝑚−𝑘 − 𝐶𝑘𝑡𝑘

= 𝑣1𝛽 + 𝐶𝑘𝐶𝐻
𝑘 𝑟0 − 𝑉𝑚−𝑘+1�̄�𝑚−𝑘𝑠𝑚−𝑘 − 𝐶𝑘𝐶𝐻

𝑘 𝐴𝑉𝑚−𝑘𝑠𝑚−𝑘 − 𝐶𝑘𝑡𝑘

= [𝐶𝑘 𝑉𝑚−𝑘+1] 𝑞𝑚,

where

𝑞𝑚 = [𝑞0
𝑚

𝑞⟂
𝑚

] = [𝐶𝐻
𝑘 𝑟0

𝑒1𝛽 ] − [𝐼 𝐵𝑘
0 �̄�𝑚−𝑘

] [ 𝑡𝑘
𝑠𝑚−𝑘

]

is the truly deflated GMRES quasi-residual. As we tend to point out differences
to GCRO-DR throughout this section, we state here that for LRDGMRES
‖𝑟𝑚‖2 ≠ ‖𝑞𝑚‖2, since the columns of 𝐶𝑘 are not orthogonal to 𝑉𝑚−𝑘+1 anymore.
However, taking into account that

𝑟𝑚 = 𝐶𝑘𝑞0
𝑚+𝑉𝑚−𝑘+1𝑞⟂

𝑚, with 𝐶𝑘𝑞0
𝑚 = �̂�𝑟𝑚 ∈ 𝒞, 𝑉𝑚−𝑘+1𝑞⟂

𝑚 = ̂𝑃𝑟𝑚 ∈ 𝒞⟂,

with 𝒞 = range(𝐶𝑘), we have at least

‖𝑞𝑚‖2
2 = ‖𝑞0

𝑚‖2
2 + ∥𝑞⟂

𝑚∥2
2

= ∥�̂�𝑟𝑚∥2

2
+ ∥ ̂𝑃 𝑟𝑚∥2

2
.

Therefore, we will minimize ‖𝑞𝑚‖2 instead of ‖𝑟𝑚‖2, which amounts to solving
the least-squares problem of small size (𝑚 − 𝑘 + 1) × (𝑚 − 𝑘) for 𝑠𝑚−𝑘

𝑠𝑚−𝑘 = argmin
𝑠∈ℂ𝑚−𝑘

∥𝑒1𝛽 − �̄�𝑚−𝑘𝑠∥
2
, (4.42)

and solving directly for 𝑡𝑘

𝑡𝑘 = 𝐶𝐻
𝑘 𝑟0 − 𝐵𝑘𝑠𝑚−𝑘, (4.43)

such that 𝑞0
𝑚 = 0. Having 𝑠𝑚−𝑘 and 𝑡𝑘 computed, we can update the solution

and the residual according to (4.40) and (4.41), respectively.
What is left is to compute left and right harmonic Ritz vectors, and update

𝑈𝑘, 𝐶𝑘 and ̃𝐶𝑘 so we can proceed with the next cycle (system). The following
lemma provides a result similar to Lemma 4.8. The proof is left out, since
it differs from the proof of Lemma 4.8 only by the fact that �̃�𝑚+1 is not
orthonormal anymore, and therefore the term �̃� 𝐻

𝑚+1�̃�𝑚+1 appears on the left-
hand side.

Lemma 4.22. Solving the generalized eigenvalue problem

𝜃𝑖 ̃𝐺𝐻
𝑚�̃� 𝐻

𝑚+1�̃�𝑚+1 ̃𝐺𝑚 ̂𝑦𝑖 = ̃𝐺𝐻
𝑚�̃� 𝐻

𝑚+1 ̃𝑉𝑚 ̂𝑦𝑖,
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one obtains the 𝑘 right harmonic Ritz vectors (corresponding to the 𝑘 harmonic
Ritz values of smallest magnitude 1/𝜃𝑖, 𝑖 = 1, … , 𝑘) in the main loop of the
LRDGMRES method (𝐰𝐡𝐢𝐥𝐞 loop in Algorithm 4.3 below) as ̃𝑦𝑖 = 𝐴 ̃𝑉𝑚 ̂𝑦𝑖, 𝑖 =
1, … , 𝑘.

As discussed above, we continue to treat the left harmonic Ritz vectors as
the right ones. We give the following result for their computation.
Lemma 4.23. Solving the generalized eigenvalue problem

̄𝜂𝑖 ̃𝐺𝐻
𝑚�̃� 𝐻

𝑚+1�̃�𝑚+1 ̃𝐺𝑚 ̂𝑧𝑖 = ̃𝑉 𝐻
𝑚 �̃�𝑚+1 ̃𝐺𝑚 ̂𝑧𝑖,

one obtains the 𝑘 left harmonic Ritz vectors (corresponding to the 𝑘 harmonic
Ritz values of smallest magnitude 1/𝜂𝑖, 𝑖 = 1, … , 𝑘) in the main loop of the
LRDGMRES method (𝐰𝐡𝐢𝐥𝐞 loop in Algorithm 4.3 below) as ̃𝑧𝑖 = 𝐴 ̃𝑉𝑚 ̂𝑧𝑖, 𝑖 =
1, … , 𝑘.

Proof. Using Definition 2.25 and the Arnoldi relation (4.39) we have with
̃𝑧𝑖 = 𝐴 ̃𝑉𝑚 ̂𝑧𝑖, 𝑖 = 1, … , 𝑘

(𝐴 ̃𝑉𝑚)𝐻(𝐴−𝐻𝐴 ̃𝑉𝑚 ̂𝑧𝑖 − ̄𝜂𝑖𝐴 ̃𝑉𝑚 ̂𝑧𝑖) = 0
⇔ ̄𝜂𝑖 ̃𝑉 𝐻

𝑚 𝐴𝐻𝐴 ̃𝑉𝑚 ̂𝑧𝑖 = ̃𝑉 𝐻
𝑚 𝐴 ̃𝑉𝑚 ̂𝑧𝑖

⇔ ̄𝜂𝑖 ̃𝐺𝐻
𝑚�̃� 𝐻

𝑚+1�̃�𝑚+1 ̃𝐺𝑚 ̂𝑧𝑖 = ̃𝑉 𝐻
𝑚 �̃�𝑚+1 ̃𝐺𝑚 ̂𝑧𝑖

which completes the proof.

Recall, updating 𝑈𝑘, 𝐶𝑘 and ̃𝐶𝑘 requires the QR-decomposition of the ma-
trices

𝐴 ̃𝑉𝑚 ̂𝑌 = �̃�𝑚+1 ̃𝐺𝑚 ̂𝑌 and
𝐴 ̃𝑉𝑚 ̂𝑍 = �̃�𝑚+1 ̃𝐺𝑚 ̂𝑍.

Provided that �̃�𝑚+1 is unitary, one could obtain the wanted updates in a sim-
ilar fashion like for GCRO-DR, i.e. according to (4.20)-(4.22). This is a cheap
way, since we need to compute the QR-decomposition of matrices of small size,
i.e. of ̃𝐺𝑚 ̂𝑌 , ̃𝐺𝑚 ̂𝑍 ∈ ℂ(𝑚+1)×𝑘. Nonetheless, the unitarity requirement does
not hold for LRDGMRES, which is one of the disadvantages of our method.
Instead, we have to compute updates as follows

�̃�𝑚+1 ̃𝐺𝑚 ̂𝑌𝑘 = 𝑄𝑅 (4.44)
𝐶𝑘 = 𝑄 (4.45)
𝑈𝑘 = ̃𝑉𝑚 ̂𝑌𝑘𝑅−1 (4.46)
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for the right harmonic Ritz vectors and

�̃�𝑚+1 ̃𝐺𝑚 ̂𝑍𝑘 = 𝑄𝐿𝑅𝐿 (4.47)
̃𝐶𝑘 = 𝑄𝐿 (4.48)

for the left ones, where as before, we handle them in the same way as the
right ones. Formulas (4.44) and (4.47) represent the QR-decomposition of two
matrices of size 𝑛 × 𝑘, where 𝑛 is the size of the system. Considering that the
restart length 𝑚 is usually much smaller than 𝑛, it is obvious why these steps
are computationally costly. At the end of each cycle (system) we keep 𝑈𝑘 and

̃𝐶𝑘. We give LRDGMRES as Algorithm 4.3.
Remark 4.24. From Remark 2.26 it follows that in the Hermitian case, right
and left harmonic Ritz vectors are equal. Hence, in this case the LRDGMRES
method is equivalent to the GCRO-DR method.

Remark 4.25. For stability reasons, the application of the oblique projection
to a vector 𝑥 is not done straightforwardly. Instead, we use the set of formulas
(for more details see, e.g., [Ste11])

1. ̃𝐶𝐻
𝑘 𝐶𝑘 = 𝑄𝑅 (reduced QR-decomposition)

2. 𝑓1 = ̃𝐶𝐻
𝑘 𝑥

3. 𝑓2 = 𝑄𝐻𝑓1
4. Solve the system 𝑅𝑓3 = 𝑓2 for 𝑓3
5. Compute 𝐶𝑘𝑓3.

Remark 4.26. LRDGMRES requires somewhat more computational effort and
slightly higher storage requirements in comparison to GCRO-DR. We have to
compute additionally the left harmonic Ritz vectors, meaning that we have to
solve two generalized eigenvalue problems of size 𝑚×𝑚 per cycle. Furthermore,
it is necessary to compute the QR-decomposition of two matrices of size 𝑛×𝑘,
i.e. (4.44) and (4.47), where 𝑛 is the size of the system. In contrast to the
GCRO-DR method, where the QR-decomposition of a smaller matrix of size
𝑚 × 𝑘, 𝑚 << 𝑛 is needed, these computations for LRDGMRES are quite
costly. Additional storage is necessary for keeping ̃𝐶𝑘.
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Algorithm 4.3: LRDGMRES
Input : 𝐴(𝑖) ∈ ℂ𝑛×𝑛 𝑖-th system matrix

𝑏(𝑖) ∈ ℂ𝑛, 𝑥(𝑖)
0 ∈ ℂ𝑛 right-hand side and initial guess for the 𝑖-th sys-

tem
𝑚 ∈ ℕ restart length
𝑘 ∈ ℕ number of deflated approximate ev’s
𝑈old

𝑘 , ̃𝐶old
𝑘 recycle spaces from the previous system (if they

are defined)

Output: approximate solution 𝑥(𝑖)
𝑚 to 𝐴(𝑖)𝑥(𝑖) = 𝑏(𝑖) of the 𝑖-th system

𝑘 approximate left and right eigenvectors ̃𝑍𝑘 and ̃𝑌𝑘

1 𝑟0 = 𝑏 − 𝐴𝑥0, 𝛽 = ‖𝑟0‖, 𝑣1 = 𝑟0/𝛽, 𝑖 = 1
2 if We are solving the first system then
3 Perform 𝑚 steps of the Arnoldi process, thus providing the Arnoldi relation

𝐴𝑉𝑚 = 𝑉𝑚+1�̄�𝑚
4 Compute 𝑥1 = 𝑥0 + 𝑉𝑚𝜉𝑚 and 𝑟1 = 𝑟0 − 𝑉𝑚+1�̄�𝑚𝜉𝑚, where

𝜉𝑚 = argmin𝜉 ∥𝛽𝑒𝑖 − �̄�𝑚𝜉∥2
5 Compute 𝑘 right harmonic Ritz vectors according to Lemma 3.11
6 Compute 𝑘 left harmonic Ritz vectors according to Lemma 4.20
7 Compute 𝑈𝑘 and 𝐶𝑘 using (4.13)-(4.15)
8 Compute ̃𝐶𝑘 using (4.34)-(4.35)
9 else

10 𝐴𝑈old
𝑘 = 𝑄𝑅, 𝐶𝑘 = 𝑄, 𝑈𝑘 = 𝑈old

𝑘 𝑅−1

11 ̃𝐶𝑘 = ̃𝐶old
𝑘

12 𝑥1 = 𝑥0 + 𝑈𝑘( ̃𝐶𝐻
𝑘 𝐶𝑘)−1 ̃𝐶𝐻

𝑘 𝑟0, 𝑟1 = 𝑟0 − 𝐶𝑘( ̃𝐶𝐻
𝑘 𝐶𝑘)−1 ̃𝐶𝐻

𝑘 𝑟0
13 while Convergence criteria not satisfied do
14 𝑖 = 𝑖 + 1
15 Perform 𝑚 − 𝑘 steps of the Arnoldi process with an operator ̂𝑃𝐴 and starting with

𝑣1 = 𝑟𝑖−1/ ‖𝑟𝑖−1‖2
16 Define ̃𝑉𝑚, �̃�𝑚+1 and ̃𝐺𝑚 such that the Arnoldi relation (4.39) holds
17 Compute 𝑥𝑖 and 𝑟𝑖 according to (4.40), (4.41), (4.42) and (4.43)
18 Compute 𝑘 right harmonic Ritz vectors according to Lemma 4.22
19 Compute 𝑘 left harmonic Ritz vectors according to Lemma 4.23
20 Update 𝑈𝑘 and 𝐶𝑘 using (4.44)-(4.46)
21 Update ̃𝐶𝑘 using (4.47)-(4.48)
22 Carry 𝑈𝑘 and ̃𝐶𝑘 to the next system

Theorem 4.12 also holds for our method, because it is equivalent to GCRO-
DR in case that 𝐴 is Hermitian.

Theorem 4.27. Let 𝐴 be Hermitian positive definite and have the eigendecom-
position given in (4.23), and let 𝐸, 𝜀, 𝜂, 𝜇 and ̂𝜇 be defined as in Section 4.2.1.
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Then there exists a matrix �̂�1 conforming to 𝑄1, such that range(�̂�1) is a
simple invariant subspace of 𝐴 + 𝐸, and

tan 𝜃1 (range(𝑄1), range(�̂�1)) ≤ 𝜀
�̂� .

Recall, Theorem 4.27 states that if the recycle space reasonably approximates
an invariant subspace, then it will also provide a reasonable approximation to
the slightly perturbed invariant subspace of the updated matrix. Since we are
augmenting the Krylov subspace only with the approximate right eigenvectors,
like in GCRO-DR, the previously stated result holds.

Further convergence analysis of LRDGMRES is beyond the scope of this
thesis. A similar result to the one of Theorem 4.11 is not easily obtained, since
we are dealing with oblique projections.

4.4.2 Loose Left-Right Deflated GMRES

In addition to LRDGMRES, we have developed the method Loose LRDGM-
RES (LLRDGMRES), which combines recycling approximate eigenvectors and
error approximations, similarly to GCRO-DR. It is not surprising that LRDGM-
RES experiences alternating behaviour of residuals at the end of every cycle,
since it is a GMRES-like method. Therefore, it is reasonable to conclude that
changing such a behaviour would lead to a more efficient method. So far we
have introduced two “loose” methods, meaning that most of the details have
been provided in Section 4.3 and Section 3.5.4. Hence, we put our attention
in this section only on the differences between our method and LGCRO-DR.
We will, of course, use the economic approach discussed in Section 4.3.

Basically, there are two major differences that have to be considered. First,
the matrix �̃�𝑚+1 is no longer unitary. This means that instead of Lemma 4.8
we need to use Lemma 4.22 for updating the right harmonic Ritz vectors. The
second point is that left harmonic Ritz vectors play an important role and that
we should also augment the subspace spanned by them. We need ̃𝐶𝑘 only for
building the oblique projection, and not for augmenting the search space. The
immediate idea was to treat left harmonic Ritz vectors the same way like the
right ones. After all, this is what we have been doing throughout the method
(LRDGMRES). In other words, we proceed as follows

1. Append 𝜉𝑖, 𝑖 = 1, … , 𝑚 − 𝑙 + 1, where 𝜉𝑖 = [ 𝑡(𝑖)
𝑘

𝑠(𝑖)
𝑚−𝑘

], to both ̂𝑌𝑘−𝑙 and

̂𝑍𝑘−𝑙
2. Update 𝑈𝑘 and 𝐶𝑘 according to (4.44)-(4.46)
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3. Update ̃𝐶𝑘 according to (4.47)-(4.48).
Numerical tests in the next chapter will validate that this seems to be a rea-
sonable approach. We give LLRDGMRES as Algorithm 4.4.
Remark 4.28. In the economic approach, LLRDGMRES has the same storage
and computational cost requirements as LRDGMRES.

We would like to conclude this section by stating that the results of Theo-
rem 4.14, Theorem 4.15, Theorem 4.16 and Theorem 4.17 also hold for LL-
RDGMRES.
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Algorithm 4.4: LLRDGMRES
Input : 𝐴(𝑖) ∈ ℂ𝑛×𝑛 𝑖-th system matrix

𝑏(𝑖) ∈ ℂ𝑛, 𝑥(𝑖)
0 ∈ ℂ𝑛 right-hand side and initial guess for the 𝑖-th sys-

tem
𝑚 ∈ ℕ restart length
𝑘 ∈ ℕ number of deflated approximate ev’s
𝑈old

𝑘 , ̃𝐶old
𝑘 recycle spaces from the previous system (if they

are defined)

Output: approximate solution 𝑥(𝑖)
𝑚 to 𝐴(𝑖)𝑥(𝑖) = 𝑏(𝑖) of the 𝑖-th system

𝑘 approximate left and right eigenvectors ̃𝑍𝑘 and ̃𝑌𝑘

1 𝑟0 = 𝑏 − 𝐴𝑥0, 𝛽 = ‖𝑟0‖, 𝑣1 = 𝑟0/𝛽, 𝑖 = 1, Ξ = [ ]
2 if We are solving the first system then
3 Perform 𝑚 steps of the Arnoldi process, thus providing the Arnoldi relation

𝐴𝑉𝑚 = 𝑉𝑚+1�̄�𝑚
4 Compute 𝑥1 = 𝑥0 + 𝑉𝑚𝜉𝑚 and 𝑟1 = 𝑟0 − 𝑉𝑚+1�̄�𝑚𝜉𝑚, where

𝜉𝑚 = argmin𝜉 ∥𝛽𝑒𝑖 − �̄�𝑚𝜉∥2
5 Ξ = [𝜉𝑚 Ξ]
6 Compute 𝑘 right harmonic Ritz vectors according to Lemma 3.11
7 Compute 𝑘 left harmonic Ritz vectors according to Lemma 4.20
8 Set ̂𝑌𝑘 = [ ̂𝑌𝑘−1 Ξ] and ̂𝑍𝑘 = [ ̂𝑍𝑘−1 Ξ]
9 Compute 𝑈𝑘 and 𝐶𝑘 using (4.13)-(4.15)

10 Compute ̃𝐶𝑘 using (4.34)-(4.35)
11 else
12 𝐴𝑈old

𝑘 = 𝑄𝑅, 𝐶𝑘 = 𝑄, 𝑈𝑘 = 𝑈old
𝑘 𝑅−1, ̃𝐶𝑘 = ̃𝐶old

𝑘
13 𝑥1 = 𝑥0 + 𝑈𝑘( ̃𝐶𝐻

𝑘 𝐶𝑘)−1 ̃𝐶𝐻
𝑘 𝑟0, 𝑟1 = 𝑟0 − 𝐶𝑘( ̃𝐶𝐻

𝑘 𝐶𝑘)−1 ̃𝐶𝐻
𝑘 𝑟0

14 while Convergence criteria not satisfied do
15 𝑖 = 𝑖 + 1
16 Perform 𝑚 − 𝑘 steps of the Arnoldi process with an operator ̂𝑃𝐴 and starting with

𝑣1 = 𝑟𝑖−1/ ‖𝑟𝑖−1‖2
17 Define ̃𝑉𝑚, �̃�𝑚+1 and ̃𝐺𝑚 such that the Arnoldi relation (4.39) holds
18 Compute 𝑥𝑖 and 𝑟𝑖 according to (4.40), (4.41), (4.42) and (4.43)
19 Compute 𝑘 right harmonic Ritz vectors according to Lemma 4.22
20 Compute 𝑘 left harmonic Ritz vectors according to Lemma 4.23
21 if dim(Ξ, 2) < 𝑙 then
22 Ξ = [𝜉𝑚 Ξ]
23 Set ̂𝑌𝑘 = [ ̂𝑌𝑘−dim(Ξ,2) Ξ] and ̂𝑍𝑘 = [ ̂𝑍𝑘−dim(Ξ,2) Ξ]
24 else
25 Ξ = [𝜉𝑚 Ξ(∶, 1 ∶ 𝑙 − 1)]
26 Set ̂𝑌𝑘 = [ ̂𝑌𝑘−𝑙 Ξ] and ̂𝑍𝑘 = [ ̂𝑍𝑘−𝑙 Ξ]
27 Update 𝑈𝑘 and 𝐶𝑘 using (4.44)-(4.46)
28 Update ̃𝐶𝑘 using (4.47)-(4.48)
29 Carry 𝑈𝑘 and ̃𝐶𝑘 to the next system





5 Applications and Numerical
Results

For the purpose of comparing the methods introduced in the previous chapter,
we have considered four different applications and one artificially contrived
example. We compare the methods by the number of matrix-vector products
needed until the method converges. All tests were done in MATLAB.

In order to support the claims of Remark 4.24, which states that LRDGM-
RES and GCRO-DR exhibit the same performance in the Hermitian case, we
consider first an application in fracture mechanics. The simulation of crack
propagation in a metal plate results in a sequence of symmetric positive def-
inite matrices where both, the matrix and the right-hand side change slowly
from one system to the next [Par+06]. We show results for 10 consecutive
systems that were provided by M. Parks [Par06]. Typically, over 2000 systems
have to be solved.

The rest of the applications involve non-Hermitian matrices. We start by
a small 3 × 3 example that we constructed with an intent to show that the
deflated approach used by GCRO-DR can encounter problems, such that the
method converges slowly or even stagnates, whereas the true deflation, which
we exploit in LRDGMRES, overcomes those problems and the respective meth-
ods converge significantly faster. Intuitively, vice versa cannot happen, i.e. if
we encounter problems with the true deflation, then the methods based on the
deflation should experience similar problems. However, this intuition is not
backed by a theoretical proof.

Next, we consider a problem in fluid dynamics [Boi+96]. Modeling 2D fluid
flow in a driven cavity results in a system with a nonsymmetric, indefinite and
sparse matrix. Even though the true effects of recycling can be observed when
solving a sequence of linear systems, this application found its way into this
thesis, since it was used also in [NLL13] as an example where loose GCRO-DR
outperforms GCRO-DR. We will show that our methods, i.e. LRDGMRES
and loose LRDGMRES outperform the corresponding methods GCRO-DR
and loose GCRO-DR. In addition, we will demonstrate that the skip angles for
LGCRO-DR and LLRDGMRES are notably larger, thus (partly) explaining

81
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why these methods perform better.
In Section 5.4 we consider systems arising in the Korringa-Kohn-Rostoker

method [Bol+12] when performing electronic structure calculations based on
the Schrödinger equation. The electronic structure is used to predict key phys-
ical properties, such as charge densities, total energy, force etc., in theoretical
chemistry and solid-state physics.

Due to our involvement in the projects Marie Curie Initial Training Network
STRONGnet and SFB/Transregio 55 Hadronenphysik mit Gitter-QCD, the
application that was of the most interest for us was lattice QCD [DeT06; GL09;
MM94]. QCD is a quantum field theory that describes interactions between
quarks and gluons. Numerical simulations, requiring the discretization of the
theory on the lattice, result in a sequence of slowly changing Dirac operators.
Inverting the Dirac operator gives us information on the propagation of the
quark. We describe the theory in Section 5.5 from the mathematical point of
view [Bra+16; Fro+14]. In addition, we introduce the red-black multiplicative
Schwarz method, which is used as a preconditioner in lattice QCD [FNZ12;
Lüs04; Lüs07], and show results for the preconditioned case. Furthermore, we
will briefly discuss the concept of gauge fixing for a Schwinger model [Sch62].
The Schwinger model is a quantum field theory in two dimensions, which can
be solved exactly, in the sense that an analytical expression for observables
(such as masses of particles) can be derived [Gat95; Smi97]. In the Schwinger
model, the computations are cheaper and realistic systems are much smaller,
and hence this model is used for tests. An important property of quantum field
theories is gauge invariance, which on the level of the discretizations manifests
itself by the fact that we can modify the so-called gauge links via conjugation
without altering the theory. We can use such transformations to increase the
similarity between the elements of a sequence of matrices as they typically
arise in a numerical simulation. This “gauge fixing” will be discussed in detail
in Section 5.5.3.

Proposition 4.19 suggests that in case of exact left and right eigenvectors,
𝒦(𝐴, ̂𝑃 𝑏) = 𝒦( ̂𝑃𝐴, ̂𝑃 𝑏), meaning that we do not need to work with an oper-
ator ̂𝑃𝐴, which might save us substantial costs. In Section 5.6 we show that
proceeding in this manner with the approximate eigenvectors, i.e. not apply-
ing the oblique projection on 𝐴 within the framework of LRDGMRES, can
indeed result in a similar behavior to LRDGMRES, of course depending on
the application.
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5.1 Fatigue and Fracture Problems in Mechanics

This first example will serve to back up the claim of Remark 4.24, i.e. to
verify that LRDMGRES and GCRO-DR are equivalent in the Hermitian case.
We will consider a sequence of 10 linear systems provided by Michael Parks.
They are taken from a finite element code that simulates crack propagation
in a metal plate using cohesive finite elements. The plate mesh is shown in
Figure 5.1 (the figure is provided by M. Parks, E. de Sturler et al. [Par+04]).
The problem is symmetric about the 𝑥-axis and the crack propagates along the
symmetry axis. The cohesive elements represent nonlinear springs connecting
the surfaces that will define the crack location. As the crack propagates, the
cohesive elements deform and eventually break. The element stiffness is set
to zero for a broken element. This simulation results in a sequence of sparse,
symmetric and positive definite stiffness matrices 𝐴(𝑖+1) = 𝐴(𝑖) + Δ𝐴(𝑖) that
change slowly from one system to the next. The matrices produced are of size
3988 × 3988, and have a condition number on the order of 104. Usually, over
2000 linear systems have to be solved to capture the fracture progression.

Figure 5.1: Two-dimensional plate mesh for the crack propagation prob-
lem.

We compare four methods for this problem: GCRO-DR(40,20),
LRDGMRES(40,20), LGCRO-DR(40,18,2) and LLRDGMRES(40,18,2). The
numbers in Table 5.1 represent the cumulative number of matrix-vector prod-
ucts necessary to solve the first 𝑖 systems. In other words, the first number in
the column for GCRO-DR means that the method requires 498 matrix-vector
products to solve the first system, whereas the second number points out that
the method needs 725 matrix-vector products for solving the first 2 systems,
meaning that the second system requires 725 − 498 = 227 matrix-vector prod-
ucts. We see that GCRO-DR and LRDGMRES perform exactly the same
for this example, which substantiates the claims of Remark 4.24. In [NLL13],
the authors use this example to show that LGCRO-DR converges faster than
GCRO-DR, which can be also seen in Table 5.1. The overal gain is around
6%. We would expect that both loose methods behave the same, which seems
not to be the case. One explanation could be that even though the matrix
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is Hermitian, meaning that the left and right eigenvectors are the same, we
still recompute the left harmonic Ritz vectors according to Lemma 4.20 and
Lemma 4.23, and we still perform the QR-decompositions (4.44) and (4.47),
which might result in a slightly different numerical behavior. We see this when
comparing the numbers in the last row in Table 5.1.

Table 5.1: The total number of iterations required to solve 10 consecutive
linear systems.

System GCRO-DR LRDGMRES Loose GCRO-DR Loose LRDGMRES

1 498 498 476 477
2 725 725 688 687
3 924 924 866 866
⋮ ⋮ ⋮ ⋮ ⋮

10 2241 2241 2110 2103

All four methods are advanced methods based on concepts of augmentation
and deflation, and comparing them only between each other does not give an
insight in the improvement with respect to the already existing methods like
full GMRES, CG or even GMRES-DR. Therefore, we would like to point out
that in [Par+06], the authors compared GCRO-DR with the aforementioned
methods for 151 consecutive linear systems. For example, GCRO-DR needs
250 matrix-vector products less per system than full GMRES (about 55%
matrix-vector products less per system), which is an amazing improvement
considering that one has to solve over 2000 systems.

5.2 Comparison of Deflated and Truly Deflated
GMRES

The purpose of this section is to show that a situation can occur for which
GCRO-DR experiences stagnation or slow convergence, whereas LRDGMRES
converges significantly faster, as a consequence of peforming “true” defla-
tion. To illustrate this we simply compare GMRES with the operator 𝐴𝑋 =
(𝐼 − 𝑋𝑋𝐻)𝐴 (GMRES_ORTH) and GMRES with the operator 𝐴𝑌

𝑋 = (𝐼 −
𝑋(𝑌 𝐻𝑋)−1𝑌 𝐻)𝐴 (GMRES_OBL), where 𝑋 and 𝑌 are built from exact right
and left eigenvectors, which are in the basis of GCRO-DR and LRDGM-
RES, respectively. We will demonstrate on a small 3 × 3 example that GM-
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RES_ORTH stagnates, whereas GMRES_OBL exhibits fast convergence. All
computations are done in MATLAB. Consider the matrix

𝐴 = ⎡
⎢
⎣

0 1 1
0 1 0
1 0 1

⎤
⎥
⎦

.

Using eig in MATLAB, we compute the eigenvalues, which are the diagonal
elements in the matrix 𝐷, and the right and left eigenvectors (columns of 𝑋
and 𝑌 , respectively)

𝐷 = ⎡
⎢
⎣

−0.618 0 0
0 1.618 0
0 0 1

⎤
⎥
⎦

,

𝑋 = ⎡
⎢
⎣

−0.8507 −0.5257 0
0 0 0.7071

0.5257 −0.8507 −0.7071

⎤
⎥
⎦

,

𝑌 = ⎡
⎢
⎣

−0.7529 −0.4004 0
0.4653 −0.6479 1
0.4653 −0.6479 0

⎤
⎥
⎦

,

such that 𝐴𝑋 = 𝑋𝐷 and 𝑌 𝐻𝐴 = 𝐷𝑌 𝐻 holds. Assuming that we want to
deflate the eigenvalue of the smallest magnitude, i.e. 𝜆1 = 𝐷(1, 1), we obtain
the orthogonal projection

𝑃 = 𝐼 − 𝑥1𝑥𝐻
1 = ⎡

⎢
⎣

0.2764 0 0.4472
0 1 0

0.4472 0 0.7236

⎤
⎥
⎦

,

and the oblique projection

̂𝑃 = 𝐼 − 𝑥1(𝑦𝐻
1 𝑥1)−1𝑦𝐻

1 = ⎡
⎢
⎣

0.2764 0.4472 0.4472
0 1 0

0.4472 −0.2764 0.7236

⎤
⎥
⎦

,

where 𝑥1 and 𝑦1 are the right and the left eigenvector, corresponding to 𝜆1.
Running GMRES(1) on two matrices 𝑃𝐴 and ̂𝑃𝐴, with a starting vector
𝑥0 = 0, a tolerance of 10−8 and a carefully chosen right-hand side

𝑏 = ⎡
⎢
⎣

0.4472
0

−0.2764

⎤
⎥
⎦

,
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we get that GMRES_ORTH requires around 240000 matrix-vector products
until it converged, whereas GMRES_OBL needs only 1400 matrix-vector
products. In exact arithmetic this means that GMRES_ORTH stagnates.
The reason for that lies in the choice of the right-hand side, which is chosen
such that 𝑏 ∈ null(𝑃 ) = null( ̂𝑃 ). Looking at line 6 of the Arnoldi process
(Algorithm 2.1) with 𝑣1 = 𝑏/𝛽, 𝛽 = ‖𝑏‖2, we conclude that ℎ11 = 𝑣𝐻

1 𝑃𝐴𝑣1 =
(𝑃 𝐻𝑣1)𝐻𝐴𝑣1 = 0, since 𝑃 𝐻 = 𝑃 . Furthermore, solving the least squares
problem

𝑦1 = argmin
𝑦

∥𝛽𝑒1 − �̄�1𝑦∥
2

= argmin
𝑦

∥[𝛽𝑒1
0 ] − [ 0

ℎ21
] 𝑦∥

2

we obtain 𝑦1 = 0, meaning that the new solution 𝑥1 is equal to 𝑥0, and hence
the method stagnates. On the other hand, ̂𝑃 𝐻 ≠ ̂𝑃 , and as a consequence
ℎ11 ≠ 0, meaning that GMRES_OBL does not suffer from stagnation.

5.3 Matrix Market Collection

The true effects of recycling can be seen when solving a sequence of systems.
However, for the purpose of comparing the methods introduced in the previous
chapters, we consider first an application in fluid dynamics that results in
solving just one system with a nonsymmetric matrix. For modeling 2D fluid
flow in a driven cavity one can use the incompressible Navier Stokes equations.
These are discretized using the Galerkin Finite Element method, and linearized
using Newton’s method. The resulting matrix is nonsymmetric, indefinite and
sparse. We have chosen the matrix cavity10 from the Matrix Market website
at NIST [Boi+96], which was also used in [NLL13] as an example. The matrix
is of size 2597 × 2597, has 76171 nonzeros, and is ill-conditioned (condition
number ≈ 106). The right-hand side is also provided.

In Figure 5.2a we see the convergence plot for four methods: GCRO-DR
and LRDGMRES with a restart length 𝑚 = 30 and recycling 𝑘 = 10 ap-
proximate eigenvectors, as well as the loose variants which recycle 𝑘 − 𝑙 = 8
approximate eigenvectors and 𝑙 = 2 error approximations. It can be concluded
that LRDGMRES outperforms GCRO-DR, whereas LLRDGMRES turns out
to be the best method in this example. Overall the gain by our loose method
in comparison to GCRO-DR is around 40%.

We have pointed out in Section 4.2 that an efficient method based on the
recycling strategy has to determine and converge to an effective recycle space
in a reasonable number of iterations. If the (augmented) Krylov subspace
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Figure 5.2: Comparison of GCRO-DR(𝑚, 𝑘), LRDGMRES(𝑚, 𝑘),
LGCRO-DR(𝑚, 𝑘 − 𝑙, 𝑙) and LLRDGMRES(𝑚, 𝑘 − 𝑙, 𝑙) for cavity10

that we build is not large enough, as a consequence, the computed harmonic
Ritz vectors might not be good enough approximations to the eigenvectors,
and therefore they are not useful. In Figure 5.2b such a situation is depicted,
where the restart length is 𝑚 = 8. We see that GCRO-DR and LRDGMRES
experience slow convergence, and present no advantage over GMRES. However,
recycling two error approximations additionaly seems to have a great impact
on the convergence behavior. Both loose methods show fast convergence, and
in addition, LLRDGMRES needs around 10% less matrix-vector products than
LGCRO-DR.

Recall, the main motivation for developing the loose methods was that the
skip angles (see, e.g., Definition 3.15) from GMRES (as well as GCRO-DR
and LRDGMRES) are too small. In other words, every other residual vector
(i.e. 𝑟𝑖−1 and 𝑟𝑖+1) points in nearly the same direction, which usually slows
down the convergence, and it would be preferable to change such a behavior. In
Table 5.2 we give the average sequential and skip angles (in degrees) for the four
methods. We can see that the skip angles for LGCRO-DR and LLRDGMRES
have improved considerably, which explains why these methods perform better.
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Table 5.2: Comparison of average sequential and skip angles (in degrees)
for GCRO-DR(30,10), LGCRO-DR(30,13,2), LRDGMRES(30,10) and LL-

RDGMRES(30,13,2).

Average seq. angle Average skip angle

GCRO-DR 25.2 18.7
LGCRO-DR 30.2 41.8
LRDGMRES 27 22.6
LLRDGMRES 32.7 45.6

5.4 Korringa-Kohn-Rostoker Method
Applications in theoretical chemistry and solid state physics often focus on
solving the Schrödinger equation. The solution is later on used for predicting
key physical properties of systems with a large number of atoms. While solving
the Schrödinger equation, one has to compute the ground state density. In the
Korringa-Kohn-Rostoker Green function method, the calculation of the density
𝑛(𝑟) is achieved by numerical integration over Kohn-Sham Green functions
𝐺(𝑟, 𝑟, ; 𝐸) for different energies 𝐸

𝑛(𝑟) = − 2
𝜋Im (∫

𝐸𝐹

−∞
𝐺(𝑟, 𝑟; 𝐸)𝑑𝐸) . (5.1)

To compute 𝐺 one has to solve the following matrix equation

(𝐼 − 𝑇 𝐺𝑟)𝑋 = 𝑇 , (5.2)

where 𝐺𝑟, 𝑇 and 𝑋 are block diagonal matrices. In a system of 𝑛𝑥 × 𝑛𝑦 × 𝑛𝑧
cells with 𝑁𝑐 atoms per cell, the matrices 𝐺𝑟, 𝑇 and 𝑋 are of dimension 𝑁 ×𝑁 ,
where 𝑁 = 𝑛𝑥𝑛𝑦𝑛𝑧𝑏, with 𝑏 = 𝑁𝑐(𝑙max + 1)2, and 𝑙max is the highest angular
momentum. Hence, (5.2) results in solving 𝑛 = 𝑛𝑥𝑛𝑦𝑛𝑧 systems. If the number
of the integration points in (5.1) is 𝑚, then in general we seek to solve 𝑚𝑛
systems.

We considered a crystal system of a nickel-palladium alloy, where some of
the palladium atoms are replaced by nickel atoms and the atoms are slightly
moved from their optimal positions, which is depicted in Figure 5.3. This
system has a face-centered cubic (FCC) geometry and is broken into 4 × 4 × 4
cells, with each cell containing 4 atoms. Choosing 𝑙max = 3, we have that
the matrices are of size 40962 × 40962, with blocks 642 × 642. However, for
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Figure 5.3: Structure of a nickel-palladium alloy.

the purposes of this thesis, we consider solving only 𝑚 = 27 systems, (for 27
integration points), meaning that for the each integration point we solve one
linear system corresponding to one 642 × 642 block with a random right-hand
side.

For more technical details about the solution of the Schrödinger equation and
the derivation of (5.2), we refer to [Bol+12]. I would like to thank Matthias
Bolten who provided the matrices and Figure 5.3.

We show the results for the last 5 systems in the sequence (starting with
system 23 as the first one), since the rest of the systems are easy to solve. In
Figure 5.4 the convergence of GCRO-DR(30, 5), LRDGMRES(30, 5),
LGCRO-DR(30, 4, 1) and LLRDGMRES(30, 4, 1) for these 5 systems is illus-
trated. As in Section 5.1, we present the cumulative number of matrix-vector
products necessary for convergence. We see that for the first three systems
(as well as for the previous 22 systems), there is no noticeable difference.
The last two systems are ill-conditioned and difficult to solve, and that is
where we notice a better performance of the new methods. Both our methods,
LRDGMRES and LLRDGMRES, require about the same number of matrix-
vector products for solving these 5 systems, which is in total around 6% less
than for GCRO-DR and LGCRO-DR.
Remark 5.1. We would like to conclude this section by stating two observations
we made while running tests for this application:

1. Recycling more than one error approximation does not improve the re-
sults for the loose methods.

2. If we increase parameters, e.g., for 𝑚 = 40, 𝑘 = 20, GCRO-DR becomes
more efficient than the other 3 methods.
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Figure 5.4: Convergence plot for 5 consecutive systems from the KKR
method.

5.5 Lattice Quantum Chromo Dynamics
This, as well as the next, section is largely based on work in [Fro+14]. Quantum
Chromodynamics (QCD) is a quantum field theory in four-dimensional space-
time that describes how quarks and gluons bind together to form hadrons,
e.g., neutrons and protons which make up all known matter [DeT06; GL09;
MM94]. It is described by a path integral and thus involves infinitely many
degrees of freedom. The interaction between quarks and gluons is given by the
Dirac operator

𝐷 =
3

∑
𝜇=0

𝛾𝜇 ⊗ (𝜕𝜇 + 𝐴𝜇),

where ⊗ denotes the tensor product, 𝛾𝜇 ∈ ℂ4×4 are Hermitian and unitary
matrices which generate the Clifford algebra, i.e. they satisfy

𝛾𝜇𝛾𝜈 + 𝛾𝜈𝛾𝜇 = 0
𝛾2

𝜇 = 𝐼,

𝜕𝜇 = 𝜕
𝜕𝑥𝜇

is the partial derivative in direction 𝜇, and 𝐴𝜇 are anti-Hermitian
traceless matrices, i.e. 𝐴𝜇 ∈ 𝑠𝑢(3). The set {𝐴𝜇 ∶ 𝜇 = 0, 1, 2, 3} defines a
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gauge field, i.e. a gluonic counterpart of a quark field. A quark field is defined
by the twelve component vector (called spinor)

𝜓(𝑥) = (𝜓10(𝑥), 𝜓20(𝑥), 𝜓30(𝑥), 𝜓11(𝑥), … , 𝜓33(𝑥))𝑇 .

The twelve components come from properties of quarks that have a color charge
1, 2 or 3 (or red, green and blue which are the colors of QCD) and a spin 0, 1, 2
or 3. For future reference, we introduce the color space

𝒞 = {1, 2, 3},

and the spin space
𝒮 = {0, 1, 2, 3}.

One of the main purposes of QCD theory is to compute observables, e.g.,
masses of particles, so we can use the theory for predictions. All these compu-
tations require a discretization onto a four-dimensional euclidean space-time
lattice ℒ with, typically, periodic boundary conditions. Hence the definition
of a lattice ℒ.

Definition 5.2. A lattice ℒ with lattice spacing 𝑎 is a subset of a four-
dimensional torus such that for any 𝑥, 𝑦 ∈ ℒ there exists 𝑝 ∈ ℤ satisfying

𝑦 = 𝑥 + 𝑎 ⋅ 𝑝.

A quark field 𝜓 ∶ ℒ → ℂ12 is defined at each lattice point, the value 𝜓(𝑥) still
being spinors.

In continuum, the gauge fields 𝐴𝜇(𝑥) are connecting infinitesimally close
space-time points. On the lattice they have to be replaced by discretized
gauge links 𝑈𝑥

𝜇 which connect points at finite distances. The discretized gauge
links are members of the 𝑆𝑈(3) group, meaning that 𝑈𝑥

𝜇 are 3 × 3 unitary
complex matrices with determinant 1. They are defined by the path ordered
integral along the link (𝑥, 𝑥 + 𝜇)

𝑈𝑥
𝜇 = 𝑒− ∫𝑥+𝜇

𝑥 𝐴𝜇(𝑠)𝑑𝑠 ≈ 𝑒−𝑎𝐴𝜇(𝑥+ 1
2 𝜇),

where 𝑎 is the lattice spacing (typically, 𝑎 ≈ 0.1𝑓𝑚). The set of all links
𝒰 = {𝑈𝑥

𝜇 ∶ 𝑥 ∈ ℒ, 𝜇 = 0, 1, 2, 3} is called a gauge configuration. For the
illustration and easier understanding we refer to Figure 5.5 which depicts a 2D
slice of the lattice with the naming conventions.

The discretization of quantum field theory onto the lattice is done numer-
ically using the Hybrid Monte Carlo (HMC) method. A fictitious time is
introduced and at each time step HMC yields a new configuration 𝒰, i.e. a
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Figure 5.5: 2D representation of the lattice with naming conventions.

collection of links. In order to proceed to the next time step, one has to solve
the Dirac equation with a discretized version of the continuum Dirac opera-
tor. The discretization of the Dirac operator involves the discretization of the
covariant derivatives, which can be discretized by finite differences. Therefore,
we define the forward covariant finite differences as

(Δ𝜇𝜓)(𝑥) = 𝑈𝑥
𝜇𝜓(𝑥 + 𝜇) − 𝜓(𝑥)

𝑎
and the backward covariant finite differences as

(Δ𝜇𝜓)(𝑥) = 𝜓(𝑥) − (𝑈𝑥−𝜇
𝜇 )𝐻𝜓(𝑥 − 𝜇)

𝑎 .

Next, we define the Wilson discretization of the Dirac operator [Wil77], i.e.
the Wilson-Dirac operator, as

𝐷𝑊 = 𝑚0
𝑎 𝐼12𝑛ℒ

+ 1
2

3
∑
𝜇=0

(𝛾𝜇 ⊗ (Δ𝜇 + Δ𝜇) − 𝑎𝐼4 ⊗ Δ𝜇Δ𝜇),

where 𝑛ℒ is the number of lattice sites and 𝑚0 is a mass parameter which tunes
the physical mass of the simulated quark. The naive discretization of the Dirac
operator does not involve the term 𝑎𝐼4 ⊗ Δ𝜇Δ𝜇. Wilson introduced it as a
stabilization term, thus overcoming the problem that the naive discretization
experiences by generating unphysical eigenvectors. This phenomenon is known
as the “species doubling effect” or as the “red-black instability” [Sus77; Wil77].

Now we can proceed with the HMC method. From time step to time step,
we change only a small amount of links, thus obtaining the next configuration
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which does not differ too much from the previous one. Looking at the definition
of the Wilson-Dirac operator and its dependence on configurations, we can
conclude that at each time step 𝑖 = 1, 2, … we have to solve the Dirac equation

𝐷(𝑖)
𝑊 𝜓(𝑖) = 𝜂(𝑖), (5.3)

where the Wilson-Dirac operators change slightly from one step to the next.
Hence, we obtain a sequence of linear systems with slowly changing matrices,
which we will solve with methods introduced in the previous chapter. Solving
systems (5.3) is a common problem in the lattice QCD community. The column
of the inverse of the Wilson-Dirac operator is called a quark propagator and
gives the information on the dynamics of the quark.

Total number of matrix-vector products
0 200 400 600 800 1000 1200 1400

R
el

at
iv

e 
re

si
du

al

10 -12

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

GCRO-DR(75,20)
LRDGMRES(75,20)
LGCRO-DR(75,19,1)
LLRDGMRES(75,19,1)

Figure 5.6: Convergence plot for 5 consecutive systems arising in lattice
QCD.

In our simulations, we used an 84 lattice and we ran 10 steps of the HMC
method, where only 10% of links are changed in each next time step. This
simulation results in a sequence of 10 slowly changing Wilson-Dirac opera-
tors 𝐷𝑊 of size 49152 × 49152 (84 × 12). We compared GCRO-DR(75, 20),
LRDGMRES(75, 20), LGCRO-DR(75, 19, 1) and LLRDGMRES(75, 19, 1). We
notice that independent of the parameters, results are always similar, not in
the total number of matrix-vector products, but in how the methods compare
to each other. From Figure 5.6 one can draw several conclusions. First, the
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loose methods are not suitable for this application. Second, LRDGMRES and
GCRO-DR basically require about the same total number of matrix-vector
products, again for any choice of 𝑚 and 𝑘. Third, recycling reduces the costs
for the systems 𝑖 > 1 by about 30% when compared to the first system, where
we start without any deflating subspace.

In these computations, our new methods do not show any improvement over
GCRO-DR. However, due to our extensive work with systems arising in this
particular application, we will show in Section 5.5.1 a related work for the
preconditioned case. Recall, the choice of the preconditioner depends on the
application. In the lattice QCD community, the commonly used preconditioner
is the red-black multiplicative Schwarz method, which we briefly introduce and
show results for the same simulation, thus demonstrating advantages of using
a preconditioner. The choice of parameters in this section does not change the
overal impression. In order to allow for a comparison with preconditioning,
they are chosen such that the preconditioned methods exhibit the best possible
gain when compared to the non-preconditioned case.

Furthermore, in Section 5.5.3 we describe gauge fixing for the 2D model of
quantum field theory, which results in a sequence of diagonally similar matrices.
Exploiting this fact, we present quite promising results.

5.5.1 Red-Black Multiplicative Schwarz Method

The example that we used in the previous section with an 84 lattice is consid-
ered a problem of small size. Nowadays, numerical simulations on the lattice
tend to have hundreds of millions of unknowns. Therefore, the systems arising
in lattice QCD calculations have to be solved on a parallel machine. The lat-
tice has to be decomposed into blocks (see Definition 5.3) and each processor
obtains a block of lattice sites, together with the corresponding variables, and
performs calculations associated with these sites. Hence the definition of a
block decomposition of the lattice ℒ.
Definition 5.3. Assume that {𝒯0

1, … , 𝒯0
𝑙0

} is a partitioning of {1, … , 𝑁𝑡} into
𝑙0 blocks of consecutive time points,

𝒯0
𝑗 = {𝑡𝑗−1 + 1, … , 𝑡𝑗}, 𝑗 = 1, … , 𝑙0, 0 = 𝑡0 < 𝑡1 … < 𝑡𝑙0

= 𝑁𝑡,
and similarly for the spatial dimensions with partitionings {𝒯𝜇

1 , … , 𝒯𝜇
𝑙𝜇

}, 𝜇 =
1, 2, 3.

A block decomposition of ℒ is a partitioning of ℒ into 𝑙 = 𝑙0𝑙1𝑙2𝑙3 lattice
blocks ℒ𝑖, where each lattice block is of the form

ℒ𝑖 = 𝒯0
𝑗0(𝑖)𝒯1

𝑗1(𝑖)𝒯2
𝑗2(𝑖)𝒯3

𝑗3(𝑖).
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Accordingly, we define a block decomposition of all 12𝑛ℒ variables in 𝒱 = ℒ ×
𝒞×𝒮 into 𝑙 blocks 𝒱𝑖 by grouping all spin and color components corresponding
to the lattice block ℒ𝑖, i.e.

𝒱𝑖 = ℒ𝑖 × 𝒞 × 𝒮.

Finding a good preconditioner is not always an easy and straightforward task.
However, decomposition of the lattice into blocks fits quite naturally with the
idea of a domain decomposition. Domain decomposition methods, as the name
suggests, split a physical domain into blocks and solve repeatedly smaller block
restricted linear systems. A well-known method from this class of methods
is the Schwarz method. A variant of the Schwarz method, i.e. the red-black
multiplicative Schwarz method [FNZ12; Lüs04; Lüs07] (also known as Schwarz
Alternating Procedure) was introduced to lattice QCD as a preconditioner, and
is used since. Therefore, we will explain SAP in a few details and run some
tests using it as a preconditioner. First, we need the following definition.

Definition 5.4. Let 𝒱𝑖 ⊂ 𝒱 be a lattice block. We define the corresponding
trivial embedding

𝐼𝒱𝑖
∶ 𝒱𝑖 → 𝒱

as the restriction of the identity on 𝒱 to 𝒱𝑖, i.e.

𝐼𝒱𝑖
= (𝑖𝑑𝒱)|𝒱𝑖

.

The corresponding block inverse is defined as

𝐵𝑖 = 𝐼𝒱𝑖
𝐷−1

𝑖 𝐼𝐻
𝒱𝑖

𝑤ℎ𝑒𝑟𝑒 𝐷𝑖 = 𝐼𝐻
𝒱𝑖

𝐷𝐼𝒱𝑖
.

One step of the Schwarz method, for a given decomposition {𝒱𝑖 ∶ 𝑖 = 1, … , 𝑘}
of 𝒱, for solving (5.3) consists of solving each of the block systems

𝐷𝑖𝑒𝑖 = 𝐼𝐻
𝒱𝑖

𝑟 (5.4)

and applying the corrections

𝜓 = 𝜓 + 𝐵𝑖𝑟 where 𝐵𝑖𝑟 = 𝐼𝒱𝑖
𝑒𝑖 𝑖 = 1, … , 𝑘. (5.5)

We distinguish two versions of the Schwarz method: additive and multiplica-
tive. In additive Schwarz, the residual is not updated during the computation
(5.5) for all 𝑖. This means that all the block systems can be solved simulta-
neously, leading to a straightforward parallelization. We give the method as
Algorithm 5.1. On the other hand, in multiplicative Schwarz, a residual up-
date is done every time one of the block systems has been solved, i.e. after each
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Algorithm 5.1: Additive Schwarz (one iteration)
Input : 𝜓, 𝜂

Output: 𝜓

1 𝑟 = 𝜂 − 𝐷𝜓
2 for 𝑖 = 1, … , 𝑘 do
3 𝜓 = 𝜓 + 𝐵𝑖𝑟

Algorithm 5.2: Multiplicative Schwarz (one iteration)
Input : 𝜓, 𝜂

Output: 𝜓

1 for 𝑖 = 1, … , 𝑘 do
2 𝑟 = 𝜂 − 𝐷𝜓
3 𝜓 = 𝜓 + 𝐵𝑖𝑟

𝑖 in (5.5). Consequently, the multiplicative Schwarz method (Algorithm 5.2)
is sequential.

The multiplicative Schwarz method can be modified such that it is suitable
for parallelization. This modification is known as the SAP method. It is a
colored version of multiplicative Schwarz. To this purpose, we have to color the
blocks in a way that the blocks of the same color are decoupled, as illustrated in
Figure 5.7. Now, after a residual update, all block systems of a given color can
be solved simultaneously before the next residual update. Since the Wilson-
Dirac operator is based only on the nearest-neighbor couplings, decoupling
requires only two colors. The resulting method is given as Algorithm 5.3.

We use the same example as in the previous section. The 84 lattice is de-
composed into 24 blocks of size 44. For the solution of the local systems (5.4)
we use a direct method, i.e. backslash \ in MATLAB (although one could also

Figure 5.7: 2D block decomposition of the lattice with 2 colors.
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Algorithm 5.3: Red-black multiplicative Schwarz
Input : 𝜓, 𝜂, 𝜈

Output: 𝜓

1 for 𝑖 = 1, … , 𝜈 do
2 𝑟 = 𝜂 − 𝐷𝜓
3 for all red i do
4 𝜓 = 𝜓 + 𝐵𝑖𝑟
5 𝑟 = 𝜂 − 𝐷𝜓
6 for all black i do
7 𝜓 = 𝜓 + 𝐵𝑖𝑟

use a few steps of an iterative method like flexible GMRES). In Figure 5.8 we
display the convergence of PGCRO-DR(75, 20), PLRDGMRES(75, 20),
PLGCRO-DR(75, 19, 1) and PLLRDGMRES(75, 19, 1) for 5 consecutive sys-
tems. In comparison to the non-preconditioned case, we observe a tremendous
improvement. By using the preconditioner the costs are reduced by 70%−75%,
which demonstrates the potential of preconditioning.
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Figure 5.8: Convergence plot of preconditioned methods for 5 consecutive
systems arising in lattice QCD.
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5.5.2 Diagonal Similarity Transformations

In our research, we tested and employed many ideas. Some of them were
definitely worth investigating further. Therefore, we present one of these ideas
in this section, and discuss it further in the next section for an application in
lattice QCD.

Assume that we have to solve two consecutive systems using the idea of
recycling. After solving the first system, we keep the approximate eigenspace
computed the last, and use it to reduce costs of the second system. This turns
out to be a reasonable approach, if the matrices change slowly, and hence share
some spectral properties. The logical question is: can we do better if we have
more information about the matrices? And the answer is yes, at least in the
case when the next matrix in the sequence can be obtained from the previous
one by a diagonal similarity transformation, i.e.

𝐴(𝑖+1) = 𝐷𝐴(𝑖)𝐷−1, (5.6)

where 𝐷 is a diagonal matrix. As we will show in Section 5.5.3, this is a
realistic scenario in real life applications.

For easier understanding, we explain further details for the GCRO-DR method.
Recall, the GCRO framework used by GCRO-DR requires the following rela-
tion

𝐴𝑈 = 𝐶. (5.7)
Plugging in (5.6) in (5.7) for the matrix 𝐴(𝑖+1), we get

𝐷𝐴(𝑖)𝐷−1𝑈 (𝑖+1) = 𝐶(𝑖+1)

⇔ 𝐴(𝑖)𝐷−1𝑈 (𝑖+1) = 𝐷−1𝐶(𝑖+1),

which leads to the conclusion that 𝑈 (𝑖+1) = 𝐷𝑈 (𝑖). Thus, instead of using 𝑈 (𝑖)

in the next system, an obviously better choice is 𝐷𝑈 (𝑖).
In the next section we demonstrate how this concept actually works out for

a particular application. This is the idea of gauge fixing in lattice QCD, where
one can obtain a sequence of slowly changing Dirac operators that satisfy
(5.6).

5.5.3 Gauge Fixing

For simplicity, we will not consider the 4D lattice QCD theory, but rather give
details for the Schwinger model. The Schwinger model is the 2D (1 spatial +
1 time dimension) lattice gauge theory, which is suitable for testing, since the
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computations are much cheaper than in four dimensions and realistic systems
are of smaller size. In this model, the links 𝑈𝑥

𝜇 are members of the 𝑆𝑈(1)
group, which means that they can be written as

𝑈𝑥
𝜇 = 𝑒𝑖𝜃𝑥

𝜇 ,

where 𝜃𝑥
𝜇 is the only free parameter, and represents the angle in which the

link from 𝑥 points out in the direction 𝜇. The angles come from dynamical
simulations, i.e. they evolve according to the HMC method. Geometrically,
going from one step of HMC to the next, we only rotate each link of the gauge
field, i.e. compute the new angles that satisfy certain criteria.

The idea behind gauge fixing is to rotate back the gauge field by diagonal
similarity transformations, such that the rotated field is in some sense “close”
to the one from the previous step. The diagonal matrix has the form

𝑇 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

(𝑒𝑖𝜙1 0
0 𝑒𝑖𝜙1

)

⋱

(𝑒𝑖𝜙𝑁 0
0 𝑒𝑖𝜙𝑁

)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,

where 𝑁 is the number of lattice sites. For a random link 𝑒𝑖(𝜃𝑥
𝜇)′ , the similarity

transformation with the matrix 𝑇 leads to a Schwinger model matrix with
links

𝑒𝑖(𝜃𝑥
𝜇)″ = 𝑒𝑖𝜙(𝑥)𝑒𝑖(𝜃𝑥

𝜇)′𝑒−𝑖𝜙(𝑥+𝜇),
where 𝑒𝑖(𝜃𝑥

𝜇)″ is the rotated link. Hence, we obtain the relation

(𝜃𝑥
𝜇)″ = 𝜙(𝑥) + (𝜃𝑥

𝜇)′ − 𝜙(𝑥 + 𝜇). (5.8)

It becomes obvious that having 𝜃𝑥
𝜇 and (𝜃𝑥

𝜇)′ from HMC, one wants to compute
the 𝜙’s, such that (𝜃𝑥

𝜇)″ is “close” to 𝜃𝑥
𝜇. This cannot be achieved exactly, but

minimized in a least squares sense, since there are 2𝑁2 equations and only 𝑁2

variables. This falls under the optimization problems. The typical approach
in quantum field theory is to maximize the function

𝜒 = ∑
𝑥,𝜇

cos2((𝜃𝑥
𝜇)″ − 𝜃𝑥

𝜇),

using the steepest descent method, where (𝜃𝑥
𝜇)″ is defined in (5.8).

We performed tests on a small 32 × 32 lattice, which results in matrices of
size 2×32×32 = 2048. Instead of using 𝑇 𝑈 (𝑖) as the recycled subspace for the
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Figure 5.9: Effects of gauge fixing for GCRO-DR.

next matrix, we rather explicitly formed the matrix 𝑇 𝐴(𝑖+1)𝑇 −1 and used 𝑈 (𝑖)

for that matrix. We compared GCRO-DR(100, 50), LRDGMRES(100, 50),
LGCRO-DR(100, 49, 1) and LLRDGMRES(100, 49, 1) with their modifications
that exploit the concept of gauge fixing.

The results are illustrated in Figure 5.9, Figure 5.10, Figure 5.11 and Fig-
ure 5.12. As we can see, all four methods perform similarly, i.e. they need
around 1600 matrix-vector products to solve four consecutive systems. On the
other hand, if we compare the methods only to their gauge fixing variants, we
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Figure 5.10: Effects of gauge fixing for LRDGMRES.
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Figure 5.11: Effects of gauge fixing for LGCRO-DR.

can observe a noteworthy improvement when the methods are used together
with gauge fixing. This is a very optimistic result since we ran tests only for
the Schwinger model. If this idea works out for the 4D case, we could expect
a tremendous gain.

At this point I would like to thank Karsten Kahl who provided the code
for the HMC method for the Schwinger model from which the sequence of
Schwinger matrices used in our computations was obtained.
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Figure 5.12: Effects of gauge fixing for LLRDGMRES.
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5.6 A Variation of LRDGMRES

The main property of LRDGMRES is that the method deflates both, left and
right, eigenspaces by using a different operator (𝐼 − 𝐶𝑘( ̃𝐶𝐻

𝑘 𝐶𝑘)−1 ̃𝐶𝐻
𝑘 )𝐴 rather

than 𝐴, where the columns of 𝐶𝑘 and ̃𝐶𝑘 are the right and left approximate
eigenvectors, respectively. Hence, we argued in Section 4.4 that this should
be a theoretically better approach than the one used in GCRO-DR. Further-
more, in case of 𝑘 exact left and right eigenvectors corresponding to the 𝑘
smallest eigenvalues, we stated Proposition 4.19 which shows that once the
deflation has occured, the 𝑘 smallest eigenvalues are completely removed from
the spectrum and there is no need to apply additionally the oblique projection
𝐼 −𝐶𝑘( ̃𝐶𝐻

𝑘 𝐶𝑘)−1 ̃𝐶𝐻
𝑘 on 𝐴. In case of large 𝑘, this would save substantial costs.

Since we never compute the exact eigenvectors, we ran tests for a method
that uses the framework of LRDGMRES, in a sense that we still augment the
Krylov subspace with the approximate eigenvectors (harmonic Ritz vectors),
but we do not work with the deflated operator. We compared the modified
method (LRDGMRES_test) to GCRO-DR and LRDGMRES for three differ-
ent applications. Surprisingly, for two applications, i.e. fluid dynamics (Sec-
tion 5.3) and the KKR method (Section 5.4), LRDGMRES_test is comparable
to GCRO-DR and LRDGMRES, as we can see in Figure 5.13a for the cavity10
matrix and in Figure 5.13b for the sequence of 5 matrices arising in the KKR
method.
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(a) cavity10: 𝑚 = 30, 𝑘 = 10
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(b) KKR method: 𝑚 = 30, 𝑘 = 5

Figure 5.13: Comparison of GCRO-DR(𝑚, 𝑘), LRDGMRES(𝑚, 𝑘),
LRDGMRES_test(𝑚, 𝑘) for cavity10 and the sequence of 5 matrices arising

in the KKR method

The explanation for such a behavior is that the computed left and right ap-
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proximate eigenvectors are quite close to the exact left and right eigenvectors,
which makes LRDGMRES_test almost equivalent to LRDGMRES. On the
other hand, for the systems arising in lattice QCD (Section 5.5), the results
are much worse, as we can see in Figure 5.14.
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Figure 5.14: Convergence plot for 5 consecutive systems arising in lattice
QCD.

To conclude this section, judging by the results we presented, one might
benefit from using LRDGMRES_test, of course depending on the application
and parameters used.





6 Conclusion and Outlook

The main goal of this thesis was the development of new Krylov solvers for the
solution of (1.1). We proposed and derived two new methods that are based
on the concepts of augmentation and deflation. Furthermore, we chose several
real-life applications to compare our methods with the already existing ones.

The GCRO-DR method [Par+06] was a starting point of our research. Com-
bining the best features of two advanced Krylov solvers, GCRO and GMRES-
DR, GCRO-DR proved to be an efficient method for solving (1.1). It is based
on the idea of recycling, which means keeping a subspace between systems
(cycles) and using it to reduce costs of subsequent systems (cycles). The
subspace is chosen as an (approximate) eigenspace corresponding to the (ap-
proximate) eigenvalues of the smallest magnitude. Therefore, it is favorable to
consider systems for which the convergence depends on the eigenvalue distri-
bution, since in this case augmenting the Krylov subspace for the next system
(cycle) with the approximate eigenvectors leads naturally to deflation of the
corresponding eigenvalues, which further results in faster convergence of the
method. The motivation for our work came from the fact that in GCRO-
DR one deflates only the right eigenspace. Realizing an approach sketched
in [Gut12], we derived a method which uses the framework of GCRO-DR,
but performs true deflation, i.e. deflates both, left and right, approximate
eigenspaces. Obtaining the right approximate eigenvectors, i.e. computing the
right harmonic Ritz vectors, is done cheaply according to a well-known result
(see Lemma 3.11), since it requires only the solution of an eigenproblem for a
matrix of small size 𝑚 << 𝑛. In our work, we managed to derive a formula for
the cheap computation of left approximate eigenvectors, i.e. the left harmonic
Ritz vectors, without having to build a Krylov subspace for 𝐴𝐻. Our method,
called Left-Right Deflated GMRES (LRDGMRES), has somewhat higher costs
and storage requirements than GCRO-DR, due to loss of some orthogonaliza-
tion properties and having to keep additionally left harmonic Ritz vectors (see
Section 4.4.1).

For quite some time, GCRO-DR was the best choice for solving (1.1). In
2013 the new method, Loose GCRO-DR (LGCRO-DR), was proposed by Niu,
Lu and Liu. They suggested recycling a few error approximations, in addi-
tion to recycling the right eigenspace. This technique already demonstrated
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to be effective when used in [BJM05] for the development of loose GMRES.
For a number of applications, LGCRO-DR turned out to be a better choice
than GCRO-DR. Moreover, using the economic approach (see Section 4.3),
the implementation of the method is rather straightforward, following the im-
plementation of GCRO-DR. This approach fits directly into our method. We
named the new method Loose LRDGMRES (LLRDGMRES).

Numerical tests show that our methods are comparable to the already ex-
isting ones, i.e. GCRO-DR and LGCRO-DR, for any choice of parameters.
However, there is no clear overall advantage over the existing methods – the
results of a comparison depend on the application considered. This leads to the
conclusion that there is still room for further work. An artificially constructed
example in Section 5.2 is an indicator of the true power of our methods, which
we have not seen yet in the real-life applications that we considered in this the-
sis. Nonetheless, exploring more real-life applications, we will find the ones for
which our methods are better suitable. Moreover, the choice of parameters for
each application plays an important role. Therefore, it would be desirable to
derive a result for the best choice of parameters, depending on the application.

Furthermore, we tested the theory given by Proposition 4.19, which suggests
that in case of exact left and right eigenvectors the corresponding eigenspace is
completely removed, meaning that we do not have to use the modified operator

̂𝑃𝐴, which in case of the large enough 𝑘 might save us substantial costs. It
turns out that in case of approximate left and right eigenvectors, working with
𝐴 instead of ̂𝑃𝐴, we can benefit (depending on the application), since the
resulting method (see, e.g., Section 5.6) performs similarly to LRDGMRES.

Another obvious goal for future research is to work out a result similar to the
one of Theorem 4.11 regarding the convergence for LRDGMRES. This might
not be an easy task, since we are using oblique projections within our method.
On the other hand, such a result would surely give us some further insights
and explanations for the behavior of the method.

In Section 5.5.3 we presented some promising results when the four methods
introduced in Chapter 4 are combined with the technique of gauge fixing. The
next step in this direction would be to consider gauge fixing for the 4D lattice
QCD theory, since we considered only a toy problem.
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