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List of Main Notation and Abbreviations

Basic Notation

(1kMG) 1-k-max problem on a graph

A(G) continuum set of points on the edges of G

BN set of all bottleneck points of G

BNi set of all bottleneck points of node vi ∈ V
BNab set of bottleneck points on edge eab ∈ E
BNabi set of bottleneck points of vi ∈ V on eab ∈ E
Cand equal to EQ for k ≤ n − 1 and equal to V for k = n

Cand2
⋃
a,b∈{1,...,n}

{
arg minx=(eab,t) F

n−k
ab (x)

}
Cand3

⋃
eab∈E

a,b∈{1,...,n}

{
xα : xα =

(
eab,

α
2lab

)
, α = 0, 1, 2, . . . , 2lab

}
Cand4 EQ× (EQ ∪ V )p−1

C` cluster of x` ∈ X
C(x`) {v ∈ V : dw (v , x`) ≤ z`}; cover of x` ∈ X
d(x ′, x ′′) distance of a shortest path between the points x ′, x ′′ ∈ A(G)

dw (vi , x) weighted distance of a shortest path between vi ∈ V and x ∈ A(G)

dw (vi , X) weighted distance between vi ∈ V and its closest new x ∈ X
dw (V,X) vector of weighted distances between the sets V and X

E = {e1, . . . , em} set of edges of G

(eab, t) point on edge eab ∈ E at relative position t ∈ [0, 1]

EQ set of equilibrium points of G

EQi j equilibrium points of vi , vj ∈ V ; relative boundary of EQ′i j
EQ′i j {x ∈ A(G) : wid(vi , x) = wjd(vj , x)}

EQab set of equilibrium points on edge eab of G

EQabij set of equilibrium points of vi , vj ∈ V on eab ∈ E

fk k-max function

fpc(X) = f1(X) p-center objective function w.r.t. X

G finite, connected, simple, undirected graph
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k parameter defining the kth largest distance to be minimised

k-max(dw (V,X)) k-max function of V and X

lj length of edge ej ∈ E
m number of edges of G

n number of existing facilities

p number of new facilities to locate

(pkMG) p-k-max problem on a graph G

(pkMP) continuous p-k-max problem

Πn set of all permutations of {1, . . . , n}
σ permutation in Σ(X)

Σ(X) {σ ∈ Πn : dw (vσ(1), X) ≥ . . . ≥ dw (vσ(n), X)}
V = {v1, . . . , vn} set of nodes (existing facilities, customers) of G

V \ Vk−1 set of center defining nodes

Vk−1 set of outliers w.r.t. a given set of new facilities X

wi weight of facility vi ∈ V
X = {x1, . . . , xp} set of new facilities

XCand4 set of optimal solutions of (pkMG) determined by Algorithm 9

Xl-all set of optimal solutions of (pkMG) determined by Algorithm 13

Xl-full set of optimal solutions of (pkMG) determined by the evaluation of
the finite dominating set V (L′)

Xl-red set of optimal solutions of (pkMG) determined by the evaluation of
the finite dominating set V eq(L(Y ))

Xr set of optimal solutions of (pkMG) determined by the recursive ap-
proach (Algorithm 10)

[x ′, x ′′] ⊆ ej subedge of ej ∈ E between point x ′ ∈ A(G) and x ′′ ∈ A(G)

yi j ∈ EQ equilibrium point defined by vi ∈ V and vj ∈ V

Chapter 2

A = {a1, . . . , an} set of existing facilities in a continuous location problem

(BP) bi-criteria optimisation model for general k-max problems

(BPε) ε-constraint problem of (BP)

(BPε=) modified ε-constraint problem of (BP)
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Contents

(BPL) bi-criteria optimisation model for p-k-max location problems

(BPLε) ε-constraint problem of (BPL)

(BPLε=) modified ε-constraint problem of (BPL)

fλ ordered median function

γB(x) min{r > 0 : x ∈ rB}; gauge
Lk set of all linearity regions for fixed k

Lkb linearity region {y ∈ Rn : yb = k-max(y)}
Oσ ordered region w.r.t. σ

Chapter 4

e1(Si) left endpoint of line segment Si

e2(Si) right endpoint of line segment Si

iSi ,Sj intersection point of line segments Si and Sj in Lab

` sweepline in Lab

Lab arrangement of line segments defined by the graphs of the weighted
distances functions over the edge eab

l(Si) line segment of Lab; lower neighbour of Si for current position of `

Rr set of all subsets of {1, . . . , n} with cardinality r

Si line segment in Lab corresponding to the distance function dw (vi , x)

Si � Sj ordering relation; Si is above Sj w.r.t. a fixed position of sweepline `

u(Si) line segment of Lab; upper neighbour of Si for current position of `

Chapter 5

C(Sg) set of cells of subdivision Sg

dia(P ) diameter of path graph P

Fab upper envelope of the arrangement Lab

F hab(x) h-level of the arrangement Lab

S = (V ′, V ′′) {ei j ∈ E : vi ∈ V ′, vj ∈ V ′′}; a cut in G

Sg subdivision of eg ∈ E defined by equilibrium points and nodes on eg

Xgab set of local minima of F n−kab of Lab
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Contents

Chapter 6

Section 6.1 and Section 6.2

C(q)
⋃q−1
`=1 C(x`); set of nodes covered by the new facilities in Xq−1

C(x`, z1) {v ∈ V : dw (v , x`) ≤ z1}; cover of x` w.r.t. radius z1

C(x`, z`) {v ∈ V : dw (v , x`) ≤ z`}; cover of x` w.r.t. radius z`
EQ(q) {y ∈ EQ : ∃ vs , vt ∈ V (q) such that y ∈ EQst}
n̄ |V (q)|
p̄ p − q + 1

q current iteration number

V (q) V \ C(q); customers not covered by Xq−1

Xq−1 set of facilities located in the first q − 1 iterations

Z {dw (va, y) : y ∈ EQab with a, b ∈ {1, . . . , n}}; set of possible opti-
mal objective function values of the p-k-max problem

z` coverage radius of equilibrium point x`

Section 6.3

[0, 1]2 unit square

[0, 1]p unit hypercube

A(H) arrangement of hyperplanes in H

Bαβijqq equilibrium plane over [0, 1]p (resp. equilibrium line for p = 2)

Bαβijqr balance plane over [0, 1]p (resp. balance line for p = 2)

B+−
i iqq bottleneck plane over [0, 1]p (resp. bottleneck line for p = 2)

BP set of all balance points of G

BPi j set of balance points of nodes vi , vj ∈ V
C(L) set of cells of a subdivision L

dw+ (vi , x) length of a shortest path between vi ∈ V and x = (eab, t) via va ∈ V
dw− (vi , x) length of a shortest path between vi ∈ V and x = (eab, t) via vb ∈ V
eg∗ edge on which x∗1 ∈ Y lies

eqg∗h(x∗1 ) equilibrium line in [0, 1]2 defined by x∗1
eqg(x∗1 ) equilibrium plane in [0, 1]p defined by x∗1
F C̄0 set of optimal vertices of a fixed cell C̄ ∈ C(Lg(x∗1 ))

f si ith optimal s-face of the subdivision Lg(x∗1 )
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Contents

H set of hyperplanes in Rp

I(H) = (V (I), E(I)) incidence graph of A(H)

Li jg subdivision of [0, 1]p defined by the equilibrium planes, bottleneck
planes and balance planes for fixed vi , vj ∈ V and fixed indices g

Li jgh subdivision of [0, 1]2 defined by the equilibrium lines, bottleneck lines
and balance lines for fixed vi , vj ∈ V and fixed eg, eh ∈ E

Lg
⋃
i ,j∈{1,...,n} Li jg ∪ bd ([0, 1]p)

Lgh
⋃
i ,j∈{1,...,n} Li jgh ∪ bd([0, 1]2)

Lg(x∗1 ) subdivision of [0, 1]p arising from Lg by deleting bottleneck planes
of type Bαβii11 and equilibrium planes of type Bαβij11 except for eqg(x∗1 )

Leqg (x∗1 ) Lg(x∗1 ) ∩ eqg(x∗1 ); subdivision Lg(x∗1 ) restricted to eqg(x∗1 )

Lg∗h(x∗1 ) subdivision of [0, 1]2 defined by the balance lines, all equilibrium and
all bottleneck lines corresponding to eh and the single equilibrium
line eqg∗h(x∗1 ) corresponding to eg∗ on which x∗1 lies

L̄g subdivision of [0, 1]p defined by equilibrium planes, balance planes
for i 6= j and boundary faces of [0, 1]p

L̄gh subdivision of [0, 1]2 defined by equilibrium lines, balance lines for
i 6= j and boundary segments of [0, 1]2

L̃g subdivision of [0, 1]p defined by bottleneck planes, balance planes for
i = j and boundary faces of [0, 1]p

L̃gh subdivision of [0, 1]2 defined by bottleneck lines, balance lines for
i = j and boundary segments of [0, 1]2

L′g subdivision of [0, 1]p defined by equilibrium planes, bottleneck planes
and boundary faces of [0, 1]p

L′gh subdivision of [0, 1]2 defined by equilibrium lines, bottleneck lines and
boundary segments of [0, 1]2

V (L) set of vertices (0-faces) of a subdivision L

V (L′)
⋃
g,h=1,...,m V (L′gh) for p = 2 resp.

⋃
g⊂{1,...,m}p V (L′g) for p ≥ 3

V eq(L(x∗1 ))
⋃
h=1,...,m V

eq(Lg∗h(x∗1 )) for p = 2 resp. ...................................⋃
g⊂{1,...,m}p V

eq(Lg(x∗1 )) for p ≥ 3

V eq(L(Y ))
⋃
x̄1∈Y V

eq(L(x̄1)) for p = 2 resp.
⋃
x̄1∈Y V

eq(L(x̄1)) for p ≥ 3

V eq(Lg(x∗1 )) set of all 0-faces of Lg(x∗1 ) that lie in the hyperplane eqg(x∗1 )

V eq(Lg∗h(x∗1 )) set of intersection points of eqg∗h(x∗1 ) with one of the other line
segments in Lg∗h(x∗1 )

Vs
{
v si ∈ V (I) : f si is ith optimal s-face, i ∈ {1, . . . , |Vs |}

}
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v si node in V (I) that represents f si
x∗1 ∈ Y optimal objective function value defining facility

X (x∗1 ) set of alternative optimal solutions not in Xr that have the objective
value defining facility x∗1 ∈ Y

Y set of optimal objective function value defining equilibrium points

Section 6.4

Bi {v ∈ Ci : dw (v , x1) > z∗}
Ci cluster of xi ∈ X
Q(v̄) {x̄ ∈ A(G) : dw (v̄ , x̄) ≤ z∗}
Q(xi)

⋂
v̄∈Bi Q(v̄)

Qab(vj) {x̄ ∈ eab : dw (vj , x̄) ≤ z∗}
Qab(xi) points of Q(xi) on edge eab

Chapter 8

G0 graph resulting from G by setting the outlier weights to 0

G̃ = (Ṽ , Ẽ) graph resulting from G by replacing each vertex vi by wi copies, all
having weight wi

Gw−1 = (Vw−1 , E) graph resulting from G by replacing the node weights by their recip-
rocal values
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Chapter 1
Introduction

Success or failure of projects in both private or public sectors often depends on the decision
where to locate a new facility. The overall aim of location problems is to place one or
more new facilities with respect to a set of already existing facilities, also called clients or
costumers, such that some kind of objective function (e.g. minimisation of cost or distance)
gets optimal. Location models typically use the distances to all existing facilities as a quality
criterion for the service provided by the new facilities. Common ways to aggregate these
distances in one objective function are the center function, which relies on the largest distance
between any customer and its closest new facility and the median function, which relies on
the sum of all these distances (see, for example, Hakimi, 1964).
These classical objective functions are not necessarily useful from an economic point of

view, especially when the existing facilities are distributed such that there is a (small) number
of “far-away” facilities, i.e., customers that are located very distant from the majority of the
other existing facilities. When such a scattered distribution of facilities is present in a location
problem, the optimal solution may be influenced in an unwanted way. When locating, for
example, a single facility in a median problem, the effect is that the cost of the optimal
new location is disproportionally higher because the new facility is attracted by every existing
facility and so also by the far-away customers.

In this thesis the focus is set on center location problems because here the effect of the
distant customers on the optimal solution generally is even stronger. The new location
highly depends on the location of the pair of customers with the largest distance among all
pairs of existing facilities and may thus be in a suboptimal position w.r.t. the majority of
customers: Many distances to the new facilities may be much larger by taking the interests
of very distant facilities into account. As a consequence, the costs increase for a certain
number of clients while the service quality worsens because of an unnecessarily large covering
radius. On the other hand, in a covering problem, more new facilities are needed to keep the
same radius. Therefore, in situations where mostly economic aspects are considered, the
exclusion of so called outliers seems to be useful such that only a part of the clients have
to be served and it makes the location problem more robust with respect to the influence of
far-away facilities.
This approach is not intended to be used in situations where emergency facilities such

as fire stations, hospitals or police departments have to be located. Here it is important
that all existing facilities (e.g., houses with people needing help) without exclusions are
reachable within a certain time limit. Buildings of companies which do not provide services
fundamental for life such as delivery services supplying food or maintenance services as well

9



CHAPTER 1. INTRODUCTION

as stores of supermarket chains are in contrast good examples for a reasonable application
of the mentioned approach of handling outliers. The possibility to exclude very distant
costumers from the placement decision of a new delivery store can lead to a much more
economic solution for the decision maker. One way to limit the influence of far-away facilities
on the optimal center location is to use the kth largest distance between any customer and
its corresponding closest new facility as a decision criterion where k can be varied from 1 up
to the number of customers. This can be realized by a k-max function as objective instead
of the center function to model the situation.

Outline of this Thesis

In this thesis the handling of outliers in center location problems is considered by using a
so called k-max function. The k-max function is analysed for its mathematical properties,
its relation to other well known functions used in location theory is derived, and different
new modelling approaches of this problem are developed. The focus is set on the derivation
of different finite dominating sets for p-k-max problems, for both p = 1 and p ≥ 2, and
approaches to efficiently evaluate these sets. In particular,

• the handling of outliers in center location problem is modelled by a bi-criteria opti-
misation problem to obtain the optimal locations of the new facilities as well as an
appropriate value for the parameter k which reflects the number of outliers. Differ-
ent integer programming formulations are presented for the resulting single-criteria
problems. Two reformulations of the original problem are proposed to avoid possible
unwanted effects on the optimal solution of a weighted problem. The relation to the
ordered median problem is discussed.

• two algorithms based on finite dominating sets to solve the single-facility k-max prob-
lem in polynomial time are derived. Furthermore, two special cases of unweighted
k-max problems are considered: A finite dominating set applicable to general un-
weighted graphs and an easy and fast solution approach for the unweighted problem
on path graphs.

• a finite dominating set for the p-k-max problem is derived and used as a basis to
develop a recursive algorithm that computes an optimal solution of this problem in
polynomial time if the number of new facilities p is fixed. Numerical experiments for
up to 50 customers confirm the practical applicability. A local analysis on the edges
of the graph can be applied to find all optimal solutions of the underlying problem.

A variety of methodological tools and approaches from other fields are used, including differ-
ent topics of computational geometry and polyhedral theory, a scalarisation method for multi-
objective optimisation problems, graph-theoretic aspects, integer-programming approaches
and structural properties of the ordered median function. The thesis is organised in nine
chapters whose contents are described more detailed in the following.

10



Chapter 2 In this chapter the general k-max problem is introduced formally and some
important properties of its objective function are proven. Afterwards, this general concept
is applied to location problems to handle outliers in center problems. For this purpose, a
bi-criteria optimisation model for the solution of the p-k-max location problem is proposed
where the first objective function aims to minimise the kth largest distance between any cus-
tomer and its closest new facility. The second objective function tries to keep the number
of outliers as small as possible. Properties of the Pareto front of this problem are deduced
and proven for the case of general k-max functions such that the results can also be applied
to other (combinatorial) optimisation problems. Based on this, it is shown that all weakly
non-dominated points of the bi-criteria problem can be obtained in polynomial time by solv-
ing a sequence of single-criteria k-max problems, each with a fixed value of k . Moreover,
the efficient points of the Pareto front can be filtered out when a certain order of the sub-
problems is adhered.

Chapter 3 The literature review provided in this chapter gives a detailed overview on
the topics closely related to the subject of the thesis. It includes sections with a short intro-
duction to general location analysis, a closer look on center location problems and previous
approaches for outlier handling in location problems. Also ordered median problems, of which
the k-max problem is a special case, are reviewed and some results for combinatorial k-max

problems are presented. Finally, an overview of the most common strategies for anomaly
detection on big data sets in the field of statistics is given.

Chapter 4 Location problems with k-max functions on networks are introduced. p-k-max

problems are shown to be NP-hard for any fixed value of k . An important factor for the
development of solution approaches for the p-k-max problem is its close relation to p-center
problems. It is proven that a feasible solution of the p-k-max problem is optimal if and
only if it is optimal for the p-center problem on a subset of the existing facilities. In the
following section, three formulations of the p-k-max problem based on (mixed-) integer
programming models are presented. The first formulation is a linear integer program to
evaluate a candidate set of possible optimal solutions. It is composed of a sorting problem
and a location-allocation problem. The second model gets rid of the sorting process which
decreases the number of variables and constraints significantly. The third model is a mixed-
integer formulation which does not depend on a predefined candidate set.

Chapter 5 This chapter is dedicated to the 1-k-max problem, i.e., only one new facil-
ity has to be located. This problem has a simpler structure as the multi-facility problem.
Properties of outlier nodes are analysed in the first section. These results can be used to
reduce the set of customers significantly in a preprocessing phase of any solution approach
as some of the nodes satisfying these properties are known to be outliers in an optimal solu-
tion. The following two sections derive two solution approaches for the k-max problem, both
based on the evaluation of a finite set of candidates. The first approach proves that the set
of equilibrium points of the graph is a finite dominating set. It is shown that these points
define a subdivision on the edges of the graph such that the objective function is piecewise
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CHAPTER 1. INTRODUCTION

linear and concave over each cell of this subdivision. The second approach uses h-levels
of the arrangement of line segments given by the distance functions over each edge of the
graph. The local minima of these h-levels are shown to be a candidate set for the k-max

problem. Moreover, two special cases of k-max problems on unweighted (path) graphs are
considered and adjusted solution approaches are presented.

Chapter 6 The p-k-max problem for a general p ≥ 2 is considered in this chapter. It
is shown that there exists at least one optimal solution of the problem where each new
facility is located in an equilibrium point or in a node of the graph. Based on this finite
dominating set, the second section provides a recursive solution approach that evaluates the
candidate solutions in a much more efficient way such that in general only a small subset
of all candidates has to be evaluated. The individual new facilities of a solution are located
step by step and with respect to the already located facilities. The aim of the following
sections is to find further optimal solutions where not all new facilities have to be located in
equilibrium points or nodes. For this purpose, properties of optimal solutions are derived to
identify the linearity regions of the k-max function using a local analysis on the edges of the
graph. This approach yields all optimal solutions of the underlying problem. The last section
shows that, starting from the optimal solutions found by the finite dominating set from the
first section, the individual facilities of every solution can be shifted within a certain interval
without destroying the optimality of the former solution.

Chapter 7 Most of the presented algorithms solving the p-k-max problem have been im-
plemented in Matlab and the results of the extensive computational tests are presented in
this chapter. The tests emphasise the observations made in previous chapters. Moreover,
the results prove that the provided theoretical upper bounds on the number of elements in
the analysed finite dominating sets are widely overestimating in practice.

Chapter 8 The impact of different levels of importance of the customers is analysed in
this section. These levels are modelled by assigning a non-negative weight to every node
of the graph. One result is that an optimal solution of the weighted p-k-max problem may
have the unwanted effect that high weighted nodes are more likely to become outliers. Two
approaches to avoid these problems in modelling outliers in weighted center problems are
discussed. The first procedure is a two-stage approach where in a first phase a p-k-max

problem is solved for which the original node weights are replaced by their reciprocal values.
The second phase determines the optimal new locations with respect to the outliers found
in the first phase. In the second approach, the value of the parameter k is not specified
with respect to the number of outliers but with respect to a bound on the allowed amount
of total outlier weight. Assuming integer weights, the original graph is extended by adding
copies of every node such that a node in the original graph is defined to be a weighted outlier
only if all of its copies are outliers w.r.t an optimal solution in the transformed graph.

Chapter 9 This last chapter contains a summary of the main results of the thesis. More-
over, some ideas for further research are presented.
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Chapter 2
Modelling Outliers in Center Location
Problems

This chapter deals with the problem of modelling the detection of outliers in center location
problems and finding an optimal new location with respect to these outliers. The effect of
using a k-max function instead of a classical center function is illustrated at the beginning
of this chapter. In the first section of this chapter, the general k-max problem is introduced
formally and analysed for its mathematical properties. Afterwards, the k-max function is
applied to continuous center location problems and the k-max location problem is presented
to handle outliers among the existing facilities. Moreover, its connection to the well known
ordered median problems is discussed. In the third section, a bi-criteria model for the solution
of a general k-max problem is formulated. Some important properties are deduced and
motivated by a k-max location problem but proven for general problems with k-max functions.
The final section gives an overview of different possibilities to choose an appropriate value
for the parameter k of the k-max function.

As explained in the introduction, the k-max function can be used to limit the influence
of “far-away”-customers on the optimal solution in center location problems. The k-max

function returns the kth largest value of the vector containing in each component the distance
between one of the customers and its closest new facility. As a result, the k−1 larger distance
values and the corresponding existing facilities are not considered for the location of the new
facility and will therefore be neglected in the optimisation process. These neglected facilities
are called outliers throughout this thesis whereas the not neglected facilities are called center
defining facilities. Only the number of outliers is fixed in advance but it is not known which
facilities will be the outliers, this is subject to the optimisation process. As a consequence,
outliers will not influence the location of the new facilities and may have a distance to the
new facilities that is larger than the optimal objective function value z∗. The outliers with
a distance to the new facilities that is larger than z∗ are said to be excluded from service
because they can not be provided with service within the optimal radius z∗. Note that there
may also be outliers that are covered within the service radius because the exclusion in the
optimisation process does not automatically lead to an exclusion from service. Thus, there
is an important difference between outliers and facilities without service: For a fixed number
of outliers, the facilities without service are a subset of the outliers.

Example 2.1. An example for a single facility center problem in the plane with n = 75

equally weighted existing facilities A = {a1, . . . , an} ⊆ R2 and new facility x ∈ R2 that is

13



CHAPTER 2. MODELLING OUTLIERS IN CENTER LOCATION PROBLEMS

(a) Center solution - no outlier (k = 1) (b) One outlier (k = 2)

(c) Ten outliers (k = 11) (d) Eleven outliers (k = 12)

(e) Fifty four outliers (k = 55) (f) Fifty five outliers (k = 56)

Fig. 2.1: The effect of excluding outliers from the derivation on the coverage radius, where
the customers are shown in light blue and the new facility in dark blue.
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defined by
min
x∈R2

max
i=1,...,n

√
d(ai1, x1)2 + d(ai2, x2)2 (2.1)

is shown in Figure 2.1(a). The effect of excluding far-away facilities from service on the
covering radius can be seen easily in Figures 2.1(b)-(f): The radius of the circle equals the
covering radius and therefore represents the optimal objective function value corresponding
to the optimal new facility. Figure 2.1(a) shows the optimal solution of a classical center
location problem, i.e. none of the existing facilities is excluded from service. It is easy to
see that the radius has to be very large to cover all customers, even though the majority
of the clients lies very close together in a much smaller area. The remaining subfigures
show optimal solutions for a center problem where different numbers of existing facilities are
treated as outliers.
In Figure 2.1(b) the optimal solution of the same center problem is shown where it is

allowed to neglect one of the existing facilities in the optimisation process as an outlier. In
this case, the outlier is not provided with service because the distance to the new location
is larger than z∗. The covering radius is clearly reduced compared to Figure 2.1(a). Using
the k-max function as objective function means to set k = 2, i.e., not the largest distance is
minimised but the second largest. The distance between the outlier and the new facility can
therefore get arbitrarily large. This effect gets stronger by increasing the number of outliers
as can be seen in the following figures. By increasing the number of neglected outliers,
the service radius for the covered facilities of course gets smaller or stays at least equal.
In this example, the best rate of improvement induced by the neglect of one additional
outlier is obtained with the transitions from zero to one and from ten to eleven outliers
(see Figures 2.1(a)-(d)). Note that the radius of the circle does not shrink at a constant
rate with respect to the number of neglected facilities, but it depends on the distribution
of the existing facilities. When allowing more outliers, the covering circle adjusts evermore
to the customers that lie close together. Needless to say that it has to be examined how
many outliers are reasonable since, for an economic success, the amount of not considered
customers should not be overly increased.
Another important aspect is that facilities which are excluded from service in an optimal

solution with a fixed number of outliers may be covered in an optimal solution for a larger
amount of outliers. Figures 2.1(e)-(f) show a case where a subset of the outliers in the
optimal solution for 54 outliers are facilities covered with service in the optimal solution
with 55 outliers, the covering circles of the two solutions do not intersect as they do in
Figures 2.1(a),(b) and (c),(d). Hence, the status of a customer of being provided with
service or not can change with the number of outliers.

In Example 2.1, the set of outliers equals the set of facilities excluded from service for
all values of k . As mentioned before, this is not always the case in practice. The status of
being an outlier does not automatically decide on being provided with service or not but only
on the influence of this facility on the position of the new location. Figure 2.2 illustrates
the difference between outliers and facilities excluded from service in a center problem like
(2.1) with five existing facilities. In Figure 2.2(a) one outlier is neglected and this outlier is
not provided with service in the optimal solution. In Figure 2.2(b) two outliers are neglected
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Outlier
without
service

(a) Optimal solution with one outlier, the
outlier is excluded from service

without
service

with service

Outliers

(b) Optimal solution with two outliers, one outlier is
covered with service, one is without service

Fig. 2.2: Difference between outliers and facilities excluded from service

which leads to the same optimal solution as before but now only one of the outliers is not
provided with service, the other one lies on the covering circle and is therefore served. Note
that the set of outliers is not unique in this case, the outlier on the boundary of the circle
could be interchanged by any other facility lying also on the boundary.

In the following, a generalisation of the above described problem will be considered in
the sense that not only one but p new facilities are to be located. The following sections
formulate the center problem with automatic outlier detection formally as a mathematical
optimisation problem.

2.1 General k-max Problems

In this section optimisation problems with k-max functions are introduced. After some
notations and definitions are given to define the k-max problem, some important properties
of this problem are analysed.
The k-max function (see Gorski and Ruzika (2009) and Gorski et al. (2012)) is a gener-

alisation of the well known bottleneck function f1 defined as

f1(y) = max
1≤i≤n

yi ,

where y = (y1, . . . , yn) ∈ Rn with n ∈ N is a n-dimensional vector. The bottleneck func-
tion is, besides the sum-objective, one of the most common objectives in combinatorial
optimisation and returns the maximum element of y (see, for example, Gross (1959) and
other sources in the literature review in Chapter 3). Obviously, with y defining a vector of
(weighted or unweighted) distances between every customer and its nearest new facility, the
bottleneck function equals a center function (see Definition 2.12).
The impact of the number of outliers on the objective function value described in Ex-

ample 2.1 can also be observed for other applications, not only in location theory. More
precisely, the objective function value of a min-max objective function generally decreases
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with the number of outliers. For many combinatorial optimisation problems, this can be
modelled by substituting the bottleneck function by a minimisation of a k-max function of
the same argument. In the bottleneck path problem (see, for example, Punnen, 1991), a
path connecting two vertices has to be found in an edge weighted graph such that the max-
imum edge weight of a single edge in this path is minimised. The bottleneck function is also
used for bottleneck spanning tree problems (for example Camerini, 1978). The bottleneck
edge is the highest weighted edge of a graph and hence the aim is to find a spanning tree of
the underlying graph in which the bottleneck edge has the smallest possible weight. Gener-
alising these two problems to the k-max concept leads to the minimisation of the kth largest
edge weight of a path or of a spanning tree, respectively. A further example are assignment
problems where with the k-max function the kth largest costs of the assignment have to be
minimised in contrast to the bottleneck assignment problem (see Garfinkel, 1971). In this
way, combinatorial optimisation problems using a bottleneck function can be generalised to
the minimisation of the kth largest element using a k-max function.

In the following, let Πn be the set of all permutations of the first n natural numbers, i.e.,

Πn := {π : π is a permutation of {1, . . . , n}}.

The k-max function can be defined as follows.

Definition 2.2 I k-max function
Let y ∈ Rn and k ∈ {1, . . . , n} be arbitrary but fixed. Then the k-max function is given by

fk(y) = k-max
1≤i≤n

(yi). (kMF)

Note that, if the components of y are sorted by a permutation σ ∈ Πn with y 7→ yσ such
that the components of yσ = (yσ(1), . . . , yσ(n)) are ordered in non-increasing order, i.e.,

yσ(1) ≥ yσ(2) ≥ . . . ≥ yσ(n), (2.2)

then it holds that
k-max
1≤i≤n

(yi) = yσ(k),

i.e., the objective function value is given by the σ(k)th component of y . The set of all
permutations of the components of y satisfying property (2.2) is denoted by Σ(y), i.e.

Σ(y) := {σ ∈ Πn : yσ(1) ≥ yσ(2) ≥ . . . ≥ yσ(n)}

for any y ∈ Rn. Note that the permutations σ ∈ Σ(y) always depend on the vector y ∈ Rn
that is to be sorted and may change whenever y changes. Furthermore, σ does not have to
be unique for a fixed y . Since several components of y may be equal, i.e., yi = yj for some
i 6= j, i , j ∈ {1, . . . , n}, it holds for the cardinality of Σ(y) that 1 ≤ |Σ(y)| ≤ n!. If not
specified otherwise, it will be assumed in the following that yσ with σ ∈ Σ(y) is an arbitrary
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but fixed ordering of the components of y . The aim of the k-max problem is to find a vector
y∗ that minimises the k-max function over a predefined feasible set.

Definition 2.3 I k-max problem
Let k ∈ {1, . . . , n}, k ∈ N, be arbitrary but fixed and let Y ⊆ Rn be the feasible set of the
problem. Then the k-max problem is defined as

min
y∈Y

k-max
1≤i≤n

(yi) = min
y∈Y

yσ(k), (kMP)

where σ ∈ Σ(y) sorts the elements of y in non-increasing order as given in (2.2).

Whenever the dimension of the argument vector y is clear in the following, for the sake
of readability it will be written k-max(y) instead of k-max1≤i≤n (yi).
A major difficulty when solving a k-max problem is that the permutation σ is not known in

general and that it changes depending on y . It is clear that the k-max function is non-linear
in general due to the permutation of the elements of y . However, it is possible to show that
the k-max function is linear over linearity domains similar to the ordered regions of ordered
median problems (see Nickel and Puerto, 2005).

Definition 2.4 I Ordered region
Given a permutation σ ∈ Πn, the set

Oσ =
{
y ∈ Rn : yσ(1) ≥ yσ(2) ≥ yσ(n)

}
⊂ Rn

is called ordered region (with respect to σ).

Oσ is a region of points in which the sorting of the elements of y (in non-increasing order)
does not change. Considering all possible permutations of the n elements of y , it is clear that
there are n! ordered regions. Note that the ordered regions are defined by

(
n
2

)
hyperplanes

in Rn of the form xi − yi = 0 for all 1 ≤ i j ≤ n. This special form of an arrangement of
hyperplanes is called a braid arrangement (see, for example, Stanley, 1996).
If y ∈ R2, two ordered regions are obtained that are the half spaces above and below the

bisecting line g = {y ∈ R2 : y1 = y2}. Figure 2.3(c) shows the conic ordered regions in R3

determined by the three bisecting planes H1 = {y ∈ R3 : y1 = y2}, H2 = {y ∈ R3 : y2 = y3}
and H3 = {y ∈ R3 : y1 = y3}. An important consequence is that the k-max function is
linear in each of these regions. However, the ordered regions are in general not the largest
possible linearity regions of fk(y).

Definition 2.5 I Linearity region
Let k, b ∈ {1, . . . , n} be fixed. Then the linearity region Lkb ⊆ Rn is given by

Lkb = {y ∈ Rn : yb = k-max(y)}

= {y ∈ Rn : ∃σ ∈ Σ(y) such that σ(k) = b}
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=
⋃
π∈Πn
π(k)=b

Oπ,

The set of all linearity regions for fixed k ∈ {1, . . . , n} is denoted by Lk :=
{
Lkb : b = 1, . . . , n

}
.

In other words, the linearity region Lkb consists of all y ∈ Rn in which the kth largest
component of y is at position b of the sorted vector yσ. The three different expressions
for the linearity region given above follow directly from the definition of fk to be the σ(k)th
component of y for an appropriate permutation σ and the fact that just the kth largest
element of y has to keep its position in the sorted vector yσ. Hence, all ordered regions with
the same kth component can be united to a linearity region. The regions Lkb ∈ Lk define a
subdivision of Rn where in each of its cells the function fk is linear because the kth element
of the sorted vector y does not change and the k-max objective value is given by exactly
this element.

Example 2.6. Some examples of linearity regions are shown in Figure 2.3. For y ∈ R2 and
k = 1, 2, the k-max function is given in Figure 2.3(a) and (b). As it is easy to see with
the contour lines, f1(y) has two linearity domains separated by the angle bisector of the
x1x2-plane. In the figure, L1

1 is the region shown to the right of the angle bisector, L1
2 lies

to its left. f2(y) defines the same subdivision with L2
1 = L1

2 and L2
2 = L1

1. For y ∈ R3,
fk(y) has three linearity regions because the k-max function is linear in each ordered region
Oπ, π ∈ Πn, as stated above. Merging all ordered regions with π(k) = b for fixed k leads
to three linearity regions in total, one for each value of b. For example, for k = 2 (see
Figure 2.3(e)) it holds that

L2
1 = O(3,1,2) ∪O(2,1,3)

since the second largest element in both ordered regions is y1. Analogously,

L2
2 = O(1,2,3) ∪O(3,2,1)

with y2 as the second largest element and

L2
3 = O(1,3,2) ∪O(2,3,1)

where y3 is on the second position. The linearity regions for k = 1 and k = 3 are determined
likewise and are shown in Figures 2.3(d) and (f).

When merging several ordered regions to one linearity region it is clear that there are less
linearity regions than ordered regions.

Corollary 2.7 I Number of linearity regions
For k ∈ {1, . . . , n} fixed, the number of linearity regions in Rn of the k-max function fk(y)

is |Lk | = n.

Proof. Follows directly from Definition 2.5. �
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(a) 1-max function in R2 (b) 2-max function in R2

(c) Ordered regions for y ∈ R3 (d) Linearity regions for k = 1

(e) Linearity regions for k = 2 (f) Linearity regions for k = 3

Fig. 2.3: k-max function and linearity regions depending on the value of k
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The number n of linearity domains can also be determined by the n! different permutations
π ∈ Πn where n − 1 elements of π can take an arbitrary value of the set {1, . . . , n} \ {b}
(without repetitions) and just the kth position is fixed to b. Thus, there are n!/(n−1)! = n

permutations where b ∈ {1, . . . , n} is on the kth position.

The linearity regions Lkb for k, b fixed are always connected because all ordered regions
intersect in the subspace where y1 = y2 = . . . = yn and so all linearity regions do also contain
this subspace that connects the ordered regions Oπ with π(k) = b to one linearity region.
In Figures 2.3(d)-(f) it can be seen that for k = 1 the ordered regions that are united to
a linearity region have a common facet, i.e., they intersect not only in the subspace where
y1 = y2 = y3. Moreover, they are obviously convex. For k = 3, the same statement holds.
For k = 2 this is not the case and the ordered regions are not convex. Thus, Lkb is in general
a non-convex set.

Lemma 2.8 I Convexity of the linearity regions
Let k, b ∈ {1, . . . , n} be fixed. Then it holds: The linearity region Lkb is convex if and only
if k = 1 or k = n.

Proof. The first direction is shown via contraposition, i.e., it is proven that for k 6= 1 and
k 6= n the linearity region Lkb is not convex. Let k ∈ {2, . . . , n − 1} and let w.l.o.g. b = n.
Moreover, let

ȳ =

k−1∑
i=1

ei and ¯̄y =

k−2∑
i=1

ei + ek ,

where ei is the ith unit vector. Then ȳ , ¯̄y ∈ Lkb since

σ̄ = (1, . . . , k − 1, n, k, k + 1, . . . , n − 1) ∈ Σ(ȳ)

and
¯̄σ = (1, . . . , k − 2, k, n, k − 1, k + 1, . . . , n − 1) ∈ Σ(¯̄y).

However,
1

2
ȳ +

1

2
¯̄y =

k−2∑
i=1

ei +
1

2
ek−1 +

1

2
ek /∈ Lkb

and hence Lkb is not convex.

Let now k = 1, b ∈ {1, . . . , n} fixed and ȳ , ¯̄y ∈ L1
b, i.e. ȳσ̄(1) = yb with σ̄ ∈ Σ(ȳ) and

¯̄y¯̄σ(1) = yb with ¯̄σ ∈ Σ(¯̄y). For λ ∈ [0, 1] it holds

λȳ + (1− λ)¯̄y = λ


ȳ1
...

ȳσ̄(1)
...
ȳn

+ (1− λ)



¯̄y1
...

¯̄y¯̄σ(1)
...

¯̄yn

 =


y ′1
...
y ′b
...
y ′n

 ,

21



CHAPTER 2. MODELLING OUTLIERS IN CENTER LOCATION PROBLEMS

where σ̄(1) = ¯̄σ(1) = b implies that

y ′b = λȳσ̄(1) + (1− λ)¯̄y¯̄σ(1)

= λ · max
1≤i≤n

ȳi + (1− λ) · max
1≤i≤n

¯̄yi

= max
1≤i≤n

{λȳi + (1− λ)¯̄yi}

= max
1≤i≤n

y ′i =: y ′σ′(1),

with σ′ ∈ Σ(y ′). Therefore, y ′ = λȳ + (1 − λ)¯̄y ∈ L1
b for all λ ∈ [0, 1] and for all

b ∈ {1, . . . , n} and thus L1
b is convex.

Let k = n, b ∈ {1, . . . , n} fixed and ȳ , ¯̄y ∈ Lnb, i.e. ȳσ̄(n) = yb for σ̄ ∈ Σ(ȳ) and ¯̄y¯̄σ(n) = yb
for ¯̄σ ∈ Σ(¯̄y). For λ ∈ [0, 1] it holds analogous to the case k = 1

y ′b = λȳσ̄(n) + (1− λ)¯̄y¯̄σ(n)

= λ · min
1≤i≤n

ȳi + (1− λ) · min
1≤i≤n

¯̄yi

= min
1≤i≤n

{λȳi + (1− λ)¯̄yi}

= min
1≤i≤n

y ′i =: y ′σ′(n),

with σ′ ∈ Σ(y ′). Therefore, y ′ = λȳ + (1 − λ)¯̄y ∈ Lnb for all λ ∈ [0, 1] and for all
b ∈ {1, . . . , n} and thus Lnb is convex. �

The following results provide further important properties of the k-max function fk(y).

Lemma 2.9 I Continuity of (kMF)
The k-max function fk(y) is continuous on Rn.

Proof. Let σ ∈ Σ(y) be an arbitrary but fixed permutation and

Oσ = {y ∈ Rn : yσ(1) ≥ . . . ≥ yσ(n)}

be an ordered region, i.e., the permutation σ of the elements in y is constant on Oσ.
Therefore, the k-max function simplifies here to

fk(y) = k-max
1≤i≤n

(y) = yσ(k) for all y ∈ Oσ.

On the ordered region for a fixed permutation σ, the objective function value is given by the
σ(k)th element of y because the permutation is the same in every point y ∈ Oσ. Thus, the
k-max function is continuous on the interior of every ordered region. Now the continuity on
the boundary of Oσ has to be analysed.

22



2.1. GENERAL K-MAX PROBLEMS

Let ∂(Oσ) be the boundary of Oσ and suppose that ȳ ∈ ∂(Oσ) is a point on the boundary
of Oσ, i.e.,

Σ(ȳ) = {σ1 = σ, σ2, . . . , σl} with |Σ(ȳ)| = l and l ≥ 2.

By the definition of ordered regions, this implies that ȳσu(i) = ȳσv (i) for all u, v ∈ {1, . . . , l}
and for all i ∈ {1, . . . , n}. In particular,

ȳσu(k) = ȳσv (k) = k-max(ȳ) for all u, v ∈ {1, . . . , l}.

Consider a sequence
(yb) ∈ Rn with lim

b→∞
yb = ȳ .

Let (ybu), u ∈ {1, . . . , l}, be an infinite subsequence of (yb) consisting of all iterates of yb
that are in Oσu . Note that theses subsequences are not necessarily disjoint, and not for all
u ∈ {1, . . . , l} an infinite subsequence of (yb) must exist. It holds

lim
bu→∞

ybu = ȳ ,

and in particular

lim
bu→∞

k-max(ybu) = lim
bu→∞

(ybu)σu(k) = ȳσu(k) = k-max(ȳ).

Using the same argument, every infinite subsequence of (yb) has at least one infinite subse-
quence (ybū) (that is a subsequence of (ybu) for some u ∈ {1, . . . , l}) for which

lim
bū→∞

k-max(ybū) = k-max(ȳ).

This implies that
lim
b→∞

k-max(yb) = k-max(ȳ),

since every subsequence k-max(ybu) has a further subsequence k-max(ybū) which converges
to k-max(ȳ) (see, for example, Proposition A.6 in Osborne (2014)).

As a consequence, there are no discontinuities of the objective function neither on the
boundary nor in the interior of the ordered regions and therefore the k-max function is
continuous for all y ∈ Rn. �

Lemma 2.10
Let σ ∈ Σ(y) be a fixed permutation. Then the k-max function satisfies fk(y) = fk(yσ) for
every y ∈ Rn.

Proof. Let y ∈ Rn. Moreover, let the permutation σ map y to yσ such that

yσ(1) ≥ yσ(2) ≥ . . . ≥ yσ(n).
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From Definition 2.3 it follows immediately that

fk(y) = k-max(y) = yσ(k) = (yσ)k = k-max(yσ) = fk(yσ),

which proves the statement. �

Lemma 2.11 I Convexity of (kMF)
The k-max function fk(y) is convex in Rn if and only if k = 1.

Proof. The first direction is shown via contraposition, i.e., it is proven that the k-max

function is non-convex for all k ∈ {2, . . . , n}. Let k ∈ {2, . . . , n} be fixed, and consider the
two points

y1 =

k−1∑
i=1

ei and y2 =

k−2∑
i=1

ei + ek ,

where ei ∈ Rn is the ith unit vector. Clearly, fk(y1) = fk(y2) = 0. Now consider the point

y :=
1

2
y1 +

1

2
y2 =

k−2∑
i=1

ei +
1

2
ek−1 +

1

2
ek .

Then fk(y) = 1
2 and hence

0 =
1

2
fk(y1) +

1

2
fk(y2) < fk

(
1

2
y1 +

1

2
y2

)
=

1

2
.

That means that fk(y) is not convex if k 6= 1 and therefore the statement holds.

For k = 1, the classical max function is obtained and it holds 1-max(y) = max(y). As it
is already known (see, e.g., Rockafellar, 1970), it clearly satisfies

max{λy1 + (1− λ)y2} ≤ λmax y1 + (1− λ) max y2

for all y1, y2 ∈ Rn, λ ∈ [0, 1]. �

Note that all the properties derived in this section can also be shown as an implication
of the corresponding properties of the ordered median function (e.g., Nickel and Puerto,
2005).

2.2 Continuous p-k-max Location Problems

In this section, the general k-max function as introduced in the last section will be adapted
to continuous location problems. A short overview with some notations and definitions is
given to introduce the k-max location problem formally. Afterwards, the relation between a
p-k-max problem and an ordered median problem is analysed. At first, the closely related
p-center problem is presented shortly.
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Let A = {a1, . . . , an} ⊆ R2 be a finite set of n existing facilities (customers) and let
X = {x1, . . . , xp} ⊆ R2 be a finite set of p new facilities to locate, i.e., the new facilities
shall be placed with respect to the customers in the Euclidean plane. With w : A 7→ R+ a
positive weight wi > 0 is assigned to every existing facility ai , i = 1, . . . , n, i.e., the demand
or the importance of a customer is expressed by different weights. Moreover, X ⊆ R2 is the
feasible area for the new facilities.
The location of the new facilities is based on the weighted distances between the individual

customers and their corresponding closest new facility. A distance measure is in general given
by a so called gauge γB. A gauge is a Minkowski functional (see, for example, Thompson,
1996) defined on a compact, convex set B that contains the origin in its interior and is
defined (following, for example, Nickel and Puerto, 2005) as

γB(x) = min{r > 0 : x ∈ rB}. (2.3)

Then, the weighted distance between the set of existing facilities and the set of new facilities
is given by the vector

dw (A,X) := (dw (a1, X), . . . , dw (an, X)) = (w1d(a1, X), . . . , wnd(an, X))

with
d(ai , X) := min

xj∈X
γB(ai − xj),

i.e., d(ai , X) is the shortest distance between an existing facility ai ∈ A and its closest new
facility xj ∈ X. A gauge thus defines a not necessarily symmetric distance function. If γB is
symmetric, then γB is a norm (see Rockafellar, 1970). The set B defines the unit ball of the
gauge γB and it holds that γB(x) = 1 if and only if x lies on the boundary of B. If x /∈ B,
then the value of γB(x) is given by the factor by which the unit ball B has to be inflated or
shrunk until the point x is on its boundary.

Applying the k-max function to location problems leads to a generalisation of the well
known center location problem. The center function aims to locate one or more new facil-
ities with respect to some existing customers such that the largest distance between every
customer and its nearest new facility is minimised.

Definition 2.12 I p-Center Problem
Let A = {a1, . . . , an} ⊆ R2 be the set of existing facilities, let X ⊆ R2 be the feasible area
for new facilities and let X = {x1, . . . , xp} ⊆ X with p ∈ N denote the unknown set of new
facilities to locate. Then, the p-center problem is given by

min
X⊆X

f1(X) = min
X⊆X

max
i=1,...,n

dw (ai , X).

The problem was introduced by Sylvester (1857) and has been investigated extensively
since then. For a more detailed overview of the topic see Chapter 3. To reduce the influence
of far-away customers on the optimal solution of the problem as described in Section 2.1,
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the center function can be replaced by a k-max function fk . Thus, instead of the largest
distance, the kth largest distance between any customer and its closest new facility is used
as the decision criterion. Roughly spoken, the k-max function applied to location problems
equals a center function with automatic outlier detection.
The parameter k ∈ {1, . . . , n} specifies the kth largest distance to be minimised and the

parameter p ∈ N gives the number of new facilities to locate. With these components the
p-k-max location problem can be defined as follows.

Definition 2.13 I p-k-max location problem
Let A = {a1, . . . , an} ⊆ R2 be the set of existing facilities, let X ⊆ R2 be the feasible area
for new facilities and let X = {x1, . . . , xp} ⊆ X with p ∈ N denote the unknown set of new
facilities to locate. For k ∈ {1, . . . , n}, the p-k-max problem is given by

min
X⊆X

k-max(dw (A,X)) = min
X⊆X

wσ(k)d(aσ(k), X), (pkMP)

where σ ∈ Σ(X) is a permutation of the existing facilities depending on X, i.e., it satisfies

wσ(1)d(aσ(1), X) ≥ wσ(2)d(aσ(2), X) ≥ . . . ≥ wσ(n)d(aσ(n), X).

Note that the permutation σ always depends on the current solution X and may change
whenever X changes. Hence, in a feasible solution X with optimal objective value z , a set
of outliers

Ak−1 :=
{
aσ(1), . . . , aσ(k−1)

}
is a subset of the existing facilities A of cardinality k − 1 such that all facilities of this set
have a weighted distance larger then or equal to z to X. Note that the set Ak−1 of a feasible
solution X does not have to be unique as the permutation σ ∈ Σ(X) does not have to be
unique. Facilities in Ak−1 have no influence on the position of the new facility since they are
neglected in the optimisation process. The center defining facilities of a feasible solution are
given by the set A \ Ak−1.

Remark 2.14. It is also possible to include zero weighted existing facilities into the problem,
i.e., customers ai ∈ A with wi = 0. From a practical point of view, this is often not useful
since a zero weighted facility corresponds to an existing facility that has no demand and
should therefore not have any influence on the location of the new facility. However, it
is sometimes useful for theoretical reasons to include this case. Note that existing points
ai ∈ A with weights wi equal to zero do not contribute to the objective function as it holds
that wid(ai , x) = 0. Thus, the zero-weighted facilities will usually not be outliers, as long as
the parameter k is smaller than the number of positively weighted customers minus p. Note
that it is reasonable to assume that not all customers are weighted by 0.

If p ≥ n the optimal objective value of the p-k-max problem is always equal to zero since
at least one new facility can be opened in every existing facility ai , i = 1, . . . , n, and the
remaining new facilities can be placed in arbitrary points in the plane. The single facility
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problem is a special case of the above problem for p = 1. In this case the problem will be
referred to as the k-max problem instead of 1-k-max problem.

As shown for the general k-max function in the previous section, the objective function is
in general non-linear. This holds of course also for the k-max location objective function. For
at least piecewise linear gauges (for example block norms), it can be shown that the k-max

function is piecewise linear. However, the linearity regions of a k-max location function
are more complicated than those of the general k-max function because the linearity of
k-max(dw (A,X)) does not only depend on the permutation σ but also on the domains
on which the underlying norm or gauge is linear. Thus, also the ordered regions are not
necessarily convex, as it can be seen considering the example of two points in the plane
equipped with rectilinear distances (see Nickel and Puerto, 2005). The linearity regions are
derived in Section 6.3 for p-k-max problems on networks, but the approach can similarly be
applied to the continuous case.

The continuity-result given in Lemma 2.9 also holds for k-max functions in the context
of location problems and when general gauges are used for the measurement of distances.
More precisely, the gauge distance between an existing facility ai ∈ A and a new facility
x ∈ X ⊆ R2 is continuous in x (see Durier and Michelot, 1985). If several new facilities are
to be located, then d(vi , X) is defined as the minimal distance to a location in X. Therefore,
as a composition of continuous functions, the k-max function for 0 < p < ∞ new facilities
is continuous.

Also Lemma 2.11 can be transferred to the k-max location function, i.e., the objective
function of the p-k-max location problem is convex if and only if k = 1. This holds as the
gauge γB is convex since it is positively homogeneous and satisfies the triangle inequality.
Thus, the convexity of the overall function depends on the convexity of the general k-max

function which is only given for k = 1. The above listed properties are illustrated in Figure 2.4
and the following example.

Example 2.15. Figure 2.4 shows the k-max function of an unweighted k-max location prob-
lem, i.e., wi = 1 for all i = 1, . . . , n and p = 1, with n = 10 existing facilities for different
values of k and with Euclidean distances on the left resp. the same example with distances
measured by the infinity norm on the right. Subfigures (a) and (b) illustrate the convexity of
the objective function for k = 1, whereas the functions for k > 1 are obviously non-convex
(see Subfigures (c) and (d)). In case of the infinity norm, the linearity regions can be seen,
whereas there are of course no linearity regions for the Euclidean norm.
A further property of the k-max function can be seen in subfigures (e) and (f): For

k = n = 10, the minima of the objective function are attained in the existing facilities since
the nth largest distance can be brought to 0 by locating the new facility in one of the existing
facilities.

The p-k-max problem has to be distinguished from a maximum covering problem, which
does in general also not enforce the coverage of all existing facilities but seeks a new location
such that the maximum number of customers is covered with service within a fixed radius
(see, for example, Church and Revelle, 1974). In the here stated outlier problem, a minimal
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(a) k = 1, Euclidean norm (b) k = 1, infinity norm

(c) k = 5, Euclidean norm (d) k = 5, infinity norm

(e) k = 10, Euclidean norm (f) k = 10, infinity norm

Fig. 2.4: k-max function with n = 10, p = 1 and w1 = . . . = w10 = 1
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number of customers to cover is fixed and the value of the covering radius is obtained by the
optimal objective function value as a result of the optimisation. Roughly spoken, constraints
and objective functions are kind of reversed in these two problems. Moreover, the k-max

function is closely related to the well known ordered median function (see, e.g., Nickel and
Puerto, 2005).

Definition 2.16 I Ordered median function
An ordered median function fλ : Rn → R is defined by the scalar product

fλ(dw (A,X)) = 〈λ, dwτ (A,X)〉

for λ = (λ1, . . . , λn) ∈ Rn, where τ ∈ Πn such that dw (A,X) 7→ dwτ (A,X) with

dwτ (A,X) =
(
dw (aτ(1), X), . . . , dw (aτ(n), X)

)
and

dw (aτ(1), X) ≤ dw (aτ(2), X) ≤ . . . ≤ dw (aτ(n), X).

The set of all ordered median functions is denoted by OMF(n).

The ordered median function is a weighted average of ordered elements. The allocation
of weights λ to the sorted argument vector allows to compensate very small resp. large
elements compared to the other elements. It provides a common theory for many location
problems because they can be interpreted as special cases of the ordered median problem
for a suitable fixed vector λ. Different well known instances of the ordered median problem
are

• λ = (0, . . . , 0, 1) : center problem (see Chapter 3)

• λ =
(

1
n , . . . ,

1
n

)
: median problem (see Hakimi, 1964)

• λ = (α, . . . , α, 1) : α-centdian problem (see Halpern, 1978)

• λ = (0, . . . , 0, 1, k. . ., 1) : k-centrum problem (see Slater, 1982)

• λ = (0, . . . , 0, 1, . . . , 1, 0, . . . , 0) : trimmed mean problem (see Rosenberger and
Gasko, 1983)

The field of ordered median problems is well investigated. For more information see, for
example, Nickel and Puerto (2005) or Laporte et al. (2015) as well as the references in
Chapter 3. As it can be easily seen, the k-max function is an ordered median function with
a special structure of the vector of weights λ:
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k-max (dw (A,X)) = dw (aσ(k), X)

=

n∑
i=1

λi · dw (aσ(i), X) with λk = 1, λi = 0 for i ∈ {1 . . . , n} \ {k}

= 〈λ, dwσ (A,X)〉 with λk = 1, λi = 0 for i ∈ {1 . . . , n} \ {k}

=
〈
λ̄, dwτ (A,X)

〉
, λ̄n−k+1 = 1, λ̄i = 0 i ∈ {1 . . . , n} \ {n − k + 1}

= fλ̄(dw (A,X)),

where σ ∈ Σ(X) and τ ∈ Πn with dw (aτ(1), X) ≤ . . . ≤ dw (aτ(n), X). Note that τ in
Definition 2.16 sorts the elements of y in the reverse order as σ for the k-max problems.
Otherwise the indices for the kth largest element would be σ(n − k + 1) which would be
inconvenient in the following.
The ordered median function is non-linear in general and non-convex except for λ with

0 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn. Therefore, it is difficult to solve the k-max problem with known
approaches for ordered median problems since most of them deal with the convex case.
Similar to the approach in Section 6.3, linearity regions of the ordered median function
with underlying polyhedral gauge can be identified, see Rodríguez-Chía et al. (2000). These
regions are called ordered elementary convex sets and provide a subdivision of the R2 such
that on each non-empty subset of this subdivision the permutation is constant and the gauge
is linear. It can be shown that the entire set of optimal solutions of the ordered median
problem coincides with some ordered elementary convex sets, see Puerto and Fernández
(2000). The topology of the subdivision depends on the underlying gauge and the vector λ.
It should be mentioned that most procedures to solve ordered median problems are not

intended to compete against approaches developed for more special problems that are special
cases of the ordered median model. Such methods of course take advantage of the structure
of these particular problems. The aim of the ordered median analysis is rather to obtain a
good performance for more general types of problems. Specific solution approaches designed
to solve the p-k-max problem are analysed in the following chapters of this thesis.

2.3 A Bi-criteria Model

As it could be seen in the introductory Example 2.1 of a k-max location problem, the radius of
the covering circle and therefore the k-max objective function value of the location problem
is non-increasing when the parameter k of the k-max function increases. This effect can
be used to analyse the quality of the solution of the underlying location problem. The
profitability of excluding outliers from the optimisation process highly depends on the value
of the parameter k . The decision maker has to choose an appropriate value for k and with
this he decides on the number k − 1 of outliers and therefore on the maximum number of
clients that is excluded from service (or conversely on the minimum number of n − k + 1
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customers that have to be covered within the optimal service radius). Of course, the choice
of an appropriate value of the parameter k is an important issue concerning the success of
the project which is influenced by the location of the new facility.

As already mentioned, the general concept of k-max problems can also be applied to
many other (combinatorial) optimisation problems since it is often useful to minimise the
kth largest element instead of the largest element when outliers are present. The described
relation between the parameter k and the k-max objective function does not depend on the
underlying type of optimisation problem (location, shortest path, assignment, spanning tree,
etc.) but is valid for all fields of application. Therefore, the k-max problem will be analysed
further in its general form (kMP) as given in Definition 2.3 and the k-max location problem
(pkMP) is used to explain the general results descriptively.

Fig. 2.5: Left: Example of a distribution of equally weighted existing facilities in the plane
R2 (c.f. Example 2.1); right: Trade-off between the number of outliers (k − 1) and the
optimal k-max objective function value for the distribution on the left

For the existing facilities shown on the left, Figure 2.5 illustrates the relation between the
number of outliers given by the value of k from the k-max function and the corresponding
k-max objective value for a continuous 1-center problem with euclidean distances. In this
example, the curve is rather steep for k ∈ {1, . . . , 11}, so that these first values for k lead
to about 75% of the possible savings in total. For k ∈ {12, . . . , 75}, the curve is rather
flat and the advantage of excluding clients from service weakens. Obviously, this behaviour
depends on the distribution of the underlying points and can not be generalised to other sets
of existing facilities. However, the curve showing the relation between the parameter k and
the objective function value of a general k-max problem is always non-increasing, no matter
of what type the underlying problem is. The monotonicity-property already illustrated in
Example 2.1 is shown formally with the following lemma.

Lemma 2.17 I Monotonicity of the k-max value
Let yk be the optimal solution for a general k-max problem (kMP) with fixed k . Then, for
k = 1, . . . , n, the k-max value fk(yk) is non-increasing with k .
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Proof. Let yk̄ ∈ Y be an optimal solution of the k̄-max problem (kMP) with optimal objective
function value z̄ = k̄-max(yk̄).
Assume that there exists a solution yk̃ ∈ Y of the k̃-max problem with k̃ < k̄ and optimal

objective function value z̃ = k̃-max(yk̃) such that k̃-max(yk̃) < k̄-max(yk̄). Since yk̃ is also
feasible for the k̄-max problem, it holds

k̄-max(yk̃) < k̄-max(yk̄) = z̄ .

This leads directly to a contradiction to the optimality of yk̄ for the k̄-max problem. �

In general, the equality fk̃(yk̃) = fk̄(yk̄) of the optimal objective values for directly con-
secutive parameters k̄ := k̃ + 1 can only occur if

yk̄σ̄(k̄)
= yk̃σ̃(k̃)

for σ̄ ∈ Σ(yk̄) and σ̃ ∈ Σ(yk̃).

For k-max location problems this leads to the equality fk̃(Xk̃) = fk̄(Xk̄) where Xk̄ and Xk̃
are optimal solutions of the k̄-max resp. k̃-max problem on a fixed set of existing facilities.
Hence, the k̄th and k̃th element of the sorted distance vectors are equal. This is only
possible if Xk̄ also covers some of the outliers with service and therefore more than the
needed n− k̄ + 1 customers such that the covering circles are equal for at least one optimal
solution for k̄ and k̃ .
Figure 2.6 shows an example for p = 1 with 10 equally weighted existing facilities where

the optimal solution for k̃ = 3 and k̄ = 4 is given. The aim for k̄ = 4 is to cover seven
facilities but the minimal covering circle for seven points covers even eight points. Thus,
the coverage circle and therefore also the optimal solution for these two values of k are
equal. This equality can also be seen in Figure 2.7 showing the curve that illustrates the
relation between k and the corresponding objective value of (kMP) for the existing facilities
in Figure 2.6. The curve is not strictly decreasing for k = 3, 4.
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Fig. 2.6: Example with 10 customers (grey
dots) and optimal solution (black dot) for
k = 3 and k = 4
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Fig. 2.7: Relation between k and the optimal
k-max value for the existing facilities shown
on the left.

It can be concluded that the parameter of the k-max location function influences the
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solution in the following way: A small value of k ensures on the one hand that many clients
are served by the new facility within the computed coverage radius, but on the other hand
it may lead to large distances between the majority of customers and the new location.
Conversely, a large value of k can be expected to lead to a small service radius and therefore
a solution with a smaller maximum distance, but it usually also results in a smaller subset
of clients served by this new facility. Thus, it is important to find a satisfying compromise
between the two conflicting goals to maximise the number of customers served within a
reasonable coverage radius and to minimise the maximum distance to the new facility for
these customers. These conflicting goals can be combined in a bi-criteria optimisation model
of the form

(BPL)


min k-max(dw (A,X))

min k

s.t. X ⊆ X
k ∈ {1, . . . , n}

.

Problem (BPL) combines the minimisation of the kth largest distance between the existing
facilities A = {a1, . . . , an} and the new locations X and the minimisation of the value of the
parameter k with the aim to keep the number of outliers as small as possible. Of course,
the general k-max problem can be modelled in the same way as a bi-criteria problem. This
problem is denoted by (BP) in the following:

(BP)


min k-max(y)

min k

s.t. y ∈ Y
k ∈ {1, . . . , n}

.

In contrast to single-criteria problems, the objective function of (BP) resp. (BPL) is a vector
and not a scalar. In the field of multi-criteria optimisation there exist different concepts of
optimality which can be found in a more general formulation for example in Ehrgott (2005).
In the following, let f 1(y , k) = k-max(y) and f 2(y , k) = k .

Definition 2.18 I Efficiency
A solution (ȳ , k̄) of (BP) is called efficient if there is no other feasible solution (y , k) such
that

f i(y , k) ≤ f i(ȳ , k̄) for i = 1, 2 and f j(y , k) < f j(ȳ , k̄)

for at least one j ∈ {1, 2} \ {i}. If (ȳ , k̄) is efficient, f (ȳ , k̄) = (f 1(ȳ , k̄), f 2(ȳ , k̄)) is called
non-dominated.

Roughly spoken, this means that in an efficient solution it is not possible to improve in
one criterion without deteriorating in the other. Figure 2.8 shows the images f (X, k) of the
optimal solutions of the k-max problem for all k = 1, . . . , n for the set of existing facilities
given in Figure 2.6. This set of points in the image space is called the trade-off front of
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(BP). The trade-off front is always non-increasing w.r.t. k due to Lemma 2.17 and coincides
with the curve describing the relation between k and the corresponding optimal objective
function value. Definition 2.18 is illustrated in Figure 2.8: The image f (X̄, k̄) is considered
and analysed for feasible outcome vectors to the left and below. In other words, (X̄, k̄) is
efficient if the set

f (x̄ , k̄)− R2
≥ = {z ∈ R2 : z = f (x̄ , k̄)− ε with ε1, ε2 ≥ 0 and (ε1, ε2) 6= (0, 0)}

(shaded in grey) does not contain any other image of a feasible solution.

Definition 2.19 I Weak efficiency
A solution (ȳ , k̄) of (BP) is called weakly efficient if there is no other feasible solution (y , k)

such that
f i(y , k) < f i(ȳ , k̄) for i = 1, 2.

If (ȳ , k̄) is weakly efficient, f (ȳ , k̄) = (f 1(ȳ , k̄), f 2(ȳ , k̄)) is called weakly non-dominated.

Different from the concept of efficiency, for weak efficiency it is allowed that two solutions
have the same objective value in one criterion, i.e. for a weakly non-dominated point f ( ¯̄X, ¯̄k),
the set f (¯̄x, ¯̄k) − R2

≥ (the interior of which is illustrated in Figure 2.8) can contain images
of other feasible solutions on its boundary.
Note that the trade-off front as defined above is a superset of the non-dominated points

and a subset of the weakly non-dominated points (see Figure 2.8 and Figure 2.11)
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Fig. 2.8: Trade-off front of (BPL) with non-dominated point f (X̄, k̄) and weakly non-
dominated point f ( ¯̄X, ¯̄k)

To solve the problem (BP) resp. (BPL), i.e., to find all efficient points, a well known
scalarisation technique, the ε-constraint method, can be used. The idea is to generate a
series of scalarised problems which minimise only one of the original objective functions while
the other objective function is transformed into a constraint by setting an upper bound ε on
the objective function value (see, for example, Ehrgott, 2005). The ε-constraint formulation
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of (BP) resp. (BPL) is

(BPε)


min k-max(y)

s.t. k ≤ ε
y ∈ Y
k ∈ {1, . . . , n}

resp. (BPLε)


min k-max(dw (A,X))

s.t. k ≤ ε
X ⊆ X
k ∈ {1, . . . , n}

,

where the value of k is now bounded by ε ∈ R. Figure 2.9 illustrates problem (BPL4) for
X = R2. Setting an upper bound on k means to restrict the feasible set to the values of
k ∈ {1, . . . , ρ} with ρ := max{ρ̄ ∈ N : ρ̄ < ε} (illustrated by the gray lines for ρ = 4).
Minimising the k-max location function on this feasible set leads to two alternative optimal
outcome vectors shown in grey since the k-max values for k = 4 and k = 3 are equal, as
seen before. Note that the constraint of (BPε) is always active in an optimal solution with
the largest feasible value of k because of the monotonicity property of Lemma 2.17.
The following theorem provides a sufficient condition for weak efficiency.

Theorem 2.20 I Weak Efficiency, see Ehrgott, 2005
Let y∗ be an optimal solution of (BPε). Then y∗ is weakly efficient for (BP).

Due to Theorem 2.20, applying the ε-constraint method to (BP) yields weakly efficient
solutions. Note that this approach provides a superset of the efficient set but the weakly
efficient points can be filtered out easily as will be described later.
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Fig. 2.9: Constraints (indicated by the gray
lines) and optimal outcome vectors (gray
dots) of the scalarisation (BPL4)
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Fig. 2.10: Constraints (gray lines) and
optimal outcome vectors (gray dots) for
(BPLε=) for ε = 3 (light gray) and ε = 4

(dark gray)

Conversely, every weakly efficient solution of (BP) can be generated by a scalar problem
(BPε) with a suitable upper bound ε (see, e.g., Ehrgott, 2005). For general multi-criteria
problems, the choice of an appropriate ε is difficult. Due to the discrete, finite number for
the values of k , this choice is obvious for (BPε): It is sufficient to solve the problem (BPε)
for all ε = 1, . . . , n in order to generate all weakly efficient points. As a result of the known
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values for ε and the monotonicity of the k-max value, (BPε) and (BPLε) can be transformed
to a modified ε-constraint problem

(BPε=)


min k-max(y)

s.t. k = ε

y ∈ Y
resp. (BPLε=)


min k-max(dw (A,X))

s.t. k = ε

X ⊆ X
,

for ε ∈ {1, . . . , n} where the inequality-constraint is replaced by an equality-constraint such
that the feasible set is now restricted to the single value k = ε. When setting the parameter
ε and therefore k to a fixed value, (BPε=) is a k-max problem as stated in Definition 2.3
and (BPLε=) becomes a k-max location problem of type (pkMP).

Lemma 2.21 I Weakly efficient solutions of (BPε=)
Every optimal solution of (BPε=) is weakly efficient for (BP).

Proof. Let y∗ ∈ Y be optimal for (BPk∗) with k∗-max(y∗) = z∗.

Assume that y∗ is not weakly efficient for (BP), i.e. there exists a ȳ ∈ Y such that
k̄-max(ȳ) < z∗ with k̄ < k∗. Thus, ȳ is also feasible for (BPk∗) and it holds

k∗-max(ȳ) ≤ k̄-max(ȳ) < z∗,

where the first inequality is valid due to Lemma 2.17. This leads to a contradiction to the
assumption of y∗ being optimal for (BPk∗). �

Because of the discrete, finite set of values for k , the solution of the modified ε-constraint
problem for all ε = 1, . . . , n returns the set of all weakly efficient points of (BP). Hence,
instead of a series of problems of type (BPε), a sequence of problems of type (BPε=) can be
used to solve the initial bi-criteria problem. For the generation of all weakly efficient points,
the overall number of subproblems to solve is not enlarged by the substitution of (BPε) by
(BPε=). This situation is illustrated in Figures 2.9 and 2.10 where k ′ = 4 and k̄ = 3.

An important property of the underlying bi-criteria problem is that an upper bound on the
number of non-dominated points is known in advance.

Theorem 2.22 I Number of non-dominated points
The problem (BP) has at most n non-dominated points.

Proof. Let k̄ ∈ {1, . . . , n}. Obviously, only the lowermost image point f (ȳ , k̄) of an optimal
solution (ȳ , k̄) can be non-dominated. All other points f (ỹ , k̄), for which (ỹ , k̄) 6= (ȳ , k̄)

is feasible but not optimal, can at most be weakly non-dominated as f (ȳ , k̄) lies on the
boundary of the set f (¯̄x, ¯̄k) − R2

≥ for all points f (ỹ , k̄) with ỹ 6= ȳ . Since f (ȳ , k̄) can also
be dominated by another point in the objective space (see Figure 2.11), there can in total
be at most n non-dominated points for the problem (BP). �
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Fig. 2.11: Example of an image space of (BP) with outcome vectors of feasible solutions
(black and grey points). The weakly non-dominated points are marked in grey.

Summarising the discussion above, the weakly efficient points of the bi-criteria problem
(BP) can be generated by solving n single-objective k-max problems for k = 1, . . . , n. Not
all of these points are of interest for a decision maker, therefore, the points that are not
efficient shall be filtered out. The monotone shape of the trade-off front can be used to
implement this filtering process very efficiently. Instead of solving the single-objective k-max

problems in an increasing order w.r.t. k , the computation is done in a reverse order starting
with k = n and going down to k = 1. In every step, the optimal objective function value z∗

k̃
of the current problem (BPk̃=) has to be compared with the objective function value z∗

k̃+1

of the previous problem (BP(k̃+1)=). If the k̃-max value z∗
k̃
and the (k̃ + 1)-max value z∗

k̃+1
are equal, the solution of (BP(k̃+1)=) is only weakly efficient and can be eliminated. The set
of the non-dominated points is called the Pareto front of (BP).
Algorithm 1 summarises the procedure to solve the bi-criteria problem (BP).

Algorithm 1 General bi-criteria Problem (BP)

Input: Parameter k ∈ {1, . . . , n}, feasible set Y ⊆ Rn.
1: Set Ye := ∅
2: for k = n, . . . , 1 do

3: Determine the set of optimal solutions Yk of the k-max problem

4: Set zk := k-max(y) with y ∈ Yk
5: if k 6= n ∧ zk 6= zk+1 then . Filtering out weakly efficient solutions

6: Ye := Ye ∪ Yk+1

Output: Set Ye of efficient solutions of (BP).

37



CHAPTER 2. MODELLING OUTLIERS IN CENTER LOCATION PROBLEMS

Algorithms to solve the single-objective k-max subproblems are needed for the solution
of the bi-criteria problem. They should be developed depending on the underlying type
of optimisation problem to use its special structures because the overall complexity of the
bi-criteria approach is highly influenced by the complexity of the ε-constraint problems.
Applied to location problems, the single-objective p-k-max problem has to be solved re-

peatedly to determine all weakly efficient solutions. These single-objective k-max location
problems with p new facilities will be analysed extensively in the following chapters to find
efficient solution methods for them. It will be shown in Chapter 5 and Chapter 6 that the
single-objective p-k-max location problems can be solved by using different types of finite
dominating sets. The single facility problems can be solved in polynomial time (see Sec-
tion 5.2). As a consequence, the complete set of weakly non-dominated points of (BP) can
be computed in polynomial time for p = 1.

Contrary to this, the problem of locating p ≥ 2 facilities is NP-hard in general (see
Theorem 4.14) and has therefore a much higher complexity. The complexity of Algorithm 1 is
O(nT ), where O(T ) is the computational effort to compute the optimal solution of a single-
criteria p-k-max problem. For a single facility problem this results in O(nm(n + s) log(n))

with s ≤
(
n
2

)
. Note that the solutions of the k-max problem can be computed in parallel for

all possible values of the parameter k . This advantage can be used to speed up Algorithm 1.

2.4 Selecting an Appropriate Solution

The solution process of the bi-criteria model (BP) resp. (BPL) does not yield a single
solution, but a set of efficient solutions. These solutions correspond to different numbers
of outliers and the corresponding objective function values. Even though the existence of
several alternative solutions can be very helpful in understanding the underlying problem
and guarantees a greater flexibility, the decision maker is often interested in finding one
or several solutions that are in a sense most sensible for a particular problem. There are
different options to choose an appropriate value for the parameter k and therefore a most
preferred solution for the respective situation.
One approach to select a particular solution of a Pareto front of a general multi-criteria

optimisation problem is to pick a point where the front has its biggest convex bulge, also
called the “knee" of the Pareto front (see, for example, Das, 1999). These points represent
a good compromise between the conflicting objectives. Often, these solutions lie somewhat
“in the middle” of the Pareto front and are “furthest away” from the extreme points of the
curve.

There is no exact mathematical definition of the knee-solution even though this topic was
often discussed in the last decades. Das (1999), among others, gives a possible charac-
terisation based on a normal-boundary intersection procedure. Solving the normal-boundary
intersection problem for certain weights provides the bulges lying in the middle of the Pareto
front without determining all efficient points. Maximising the distance from these bulges
to the convex hull of individual minima of the objectives leads to the wanted knee-solution.
This approach is not very advantageous for the problem (BP) because the complete Pareto
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front can be determined with the same effort as just one efficient point. Branke et al. (2004)
also work on finding knee solutions without the need to compute the whole Pareto front.
An evolutionary algorithm with different measures (one based on the angle to neighbours,
another based on marginal utility) is used to focus on the knee regions.

Handl and Knowles (2007) work with a Pareto front similar to the one obtained for (BP)
and give an approach to select a good solution based on the whole known front. They
introduce a multi-objective clustering approach with automatic k-determination where k is
the number of clusters. The algorithm consists of two phases, an initial clustering phase and
a second model-selection phase to determine the number of clusters. The first phase uses
an evolutionary approach to optimise two complementary clustering objectives, minimising
the overall deviation of a cluster, but also minimising the connectedness (i.e., the degree to
which items are placed in the same cluster as their nearest neighbours in the data space).
The output is a set of approximated non-dominated clustering solutions that corresponds
to different trade-offs between the two objective functions and also to different numbers of
clusters. Of course, the deviation decreases and connectivity increases with an increasing
number of clusters. This property results in the same structure of the Pareto front as it is
observed for the (BP) problem: The solutions are ordered from left to right by the number
of clusters they contain, i.e., k gradually increases as it does for the k-max problem. The
Pareto front is monotone, consists of discrete points and the number of weakly efficient
points is n, which is the maximum number of clusters. To find a knee-solution, an auxiliary
clustering-run on random control data (i.e., data not containing clusters but covering the
same data space) is performed to compare the control Pareto front with the original data.
For each solution of the original problem, the Euclidean distance between this solution and
the closest point on the reference curve is determined. Promising solutions are the ones
with the largest distances to the control data because they are likely to form the knee.

This approach can also be applied to the problem (BP) because of the similar structure
of the Pareto front. A disadvantage is that the control front is based on random data and
can therefore have a negative impact on the selected solutions. Moreover, this algorithm
has a high complexity. There are also some easier and more intuitive ways to pick a good
solution. One is to use the trade-off among the two criteria as a basis for decision making.

Definition 2.23 I Trade-off
Let yk̃ , yk̄ ∈ Y be two efficient solutions of (BP) with k̃ < k̄, k̃ , k̄ ∈ {1, . . . , n}. The
trade-off ∆k̃ ,k̄ between yk̃ and yk̄ is defined as

∆k̃ ,k̄ =
k̃-max(yk̃)− k̄-max(yk̄)

k̄ − k̃
.

The trade-off is given by the decrease in the k-max function value in relation to the
increase of the parameter k . Because of the discrete values for k ∈ N, the trade-off ∆k,k+1

between two efficient points for consecutive values of k is then given by the difference in the
objective function values on the ordinate of these two solutions. A strategy to choose one
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of the efficient solutions is then to pick

xk∗ where k∗ = arg max
k∈{1,...,n}

{∆k−1,k},

i.e., the rightmost point of two consecutive efficient points generating the largest trade-off
among all these pairs. In this solution of a location problem, the reduction of the covering
radius in relation to the number of outliers is the best possible.
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Chapter 3
Literature Review

In the following, a detailed review of the existing literature on problems related to this thesis
is given. Important fields are location theory in general with a focus on center problems
and the handling of outliers in location problems. A further section is dedicated to ordered
median problems in its different fields. Moreover, the field of k-max optimisation and the
closely related bottleneck problems are considered. Finally, related topics regarding outlier
detection techniques are reviewed. The lists are not intended to be exhaustive since the
focus is set on results that are closely related to this work. Whenever possible, the notation
used in the articles is adapted to the notation of this thesis.

3.1 Basic Concepts in Location Analysis

In location analysis, one or more new facilities shall be located in a predefined space in
relation to a set of already existing facilities (the customers) such that some kind of objective
function gets optimal. The meaning of “optimal” depends on the underlying constraints and
the considered optimality criterion. Facility location decisions are important subproblems in
many strategic planning processes for a wide range of private and public companies.
The long history of location science can be traced back to the early 17th century when

Pierre de Fermat formulated the geometric problem of finding a point in the Euclidean plane
that minimises the sum of its distances to three given points. The first proposed solution
based on a geometrical construction for this problem was given by Evangelista Torricelli
around 1645. In 1909, Weber (1909) generalised this problem by assigning different weights
to the given points to represent customers having a demand (the weights) and to locate
a new production site that minimises the total transportation cost between the customers
and the production site. Thereby he transformed the purely geometric problem into an
industrial location problem for the first time and the problem is known as the continuous
Weber problem since then. In the 1930s, Weiszfeld (1937) proposed a solution approach
for the Weber problem. The iterative procedure allows the solution of the problem for an
arbitrary number of known points and is one of the most used approaches until today. In the
mid-1960s, Hakimi (1964) published his outstanding work on the absolute median problem
on networks (i.e., the new facility is allowed to lie somewhere on the edges or in the nodes of
the graph) where he showed that an optimal solution of the problem can always be found in
the nodes of the graph. He also extended the problem to find p new facilities on the graph.
Another interesting question was proposed in the 1850s by Sylvester (1857): “It is re-

quired to find the least circle which shall contain a given system of points in a plane.” Just
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a few years later, Sylvester himself answered the question. This problem is today known
as the one-center problem in the plane and is one of the most studied problems in location
science.
In the following years, location science became a new scientific area and a very active

research field. Significant advances have been made in different fields of location science and
a large number of papers were published motivated by a broad variety of practical applications.
An overview of important results in all fields of location theory is given, for example, in Love
et al. (1988), Francis et al. (1992), Drezner (1995), Drezner and Hamacher (2002),
Eiselt and Marianov (2011), Daskin (2013) and Laporte et al. (2015).

Location problems are often categorised according to the solution space (continuous, net-
work or discrete), the number of facilities to locate (single- or multi-facility), the distance
measure (gauge, norms, graph-distances), the weights (weighted or unweighted existing fa-
cilities), the feasible region (barriers or forbidden regions), and the type of objective function
(for example median, center or covering). In discrete problems, the locations of the new
facilities have to be chosen from a predefined set of candidate locations, thus often binary
variables are used to model the problem. In contrast to that, continuous location problems
have continuous variables associated with them which define the coordinates of the facilities
that are to be located. In network location problems, the existing facilities are the nodes of
a graph and the new facilities are allowed to be located on the edges or in the nodes of this
graph.

3.2 Center Location Problems

As this thesis will focus on generalised center problems, this field of location science is
reviewed in more detail in the following section. Thereby, the three fields of continuous,
discrete and network location problems are considered. Center location problems often arise
in emergency service location, for example, to locate a hospital, a fire or a police station.
Normally, the aim to save human life and therefore to minimise the maximum time of
travelling is much more important here than the overall transportation cost. As defined in
Section 2.2, the p-center solution is a set of p points that minimises the largest weighted
distance between each customer and its closest new facility.

Center Location Problems on Networks

Hakimi (1964) formulated the today known 1-center problem on a graph for the first time.
The proposed idea is to compute a locally optimal center point on each edge of the graph
assuming that the optimal solution is restricted to be on this edge. By comparing the
objective function values of all these local center points, the overall optimal center point of
the graph can be found. For a detailed description of the approach see Section 5.3.
Minieka (1970) introduces the first algorithm using a set covering approach to solve

an unweighted p-center problem on a graph based on the idea of Hakimi (1964). It is
observed that the finite dominating set proposed for the 1-center problem is also a finite
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dominating set for the multi-facility version of the problem, i.e., each of the new facilities
has to lie in a local center point of an edge. The problem can be transformed into a
sequence of set covering problems. Each set covering problem aims to minimise the number
of facilities needed to cover all customers with service within a given coverage radius z .
Let zi with i = 1, . . . , L, L ≤ nb, where b is the number of possible new locations, be the
non-decreasingly sorted distinct distances between all pairs of nodes. These values define
the sequence of set covering problems with radii zi . If the optimal number of new facilities
resulting from the set covering problem is smaller than p, the optimal objective value of the
p-center problem is at most zi . Hence, the algorithm terminates when the optimal objective
value of the current set covering problem is larger than p. This approach converges to the
optimal solution in a finite number of iterations.
Goldman (1972) focuses on the structure of the underlying network to solve the single-

facility center problem. For this purpose, an edge of the graph that is not contained in any
simple cycle (i.e., its removal results in two disconnected components) is defined to be an
isthmus. An isthmus is important as every path connecting the two components of the graph
must contain the isthmus. An isthmus can be evaluated in the following way: Considering
the longest shortest path between a pair of points not belonging to the same component
of a graph, this path also has to pass through the isthmus. If the midpoint of the path lies
on the isthmus, this edge has to be optimal. Otherwise, if the midpoint is in one of the
respective components of the graph, the search for the optimal location can be restricted
to that component. This approach can be extended to weighted problems. In tree graphs,
every edge is an isthmus and thus the algorithm can be applied efficiently in this case.
Garfinkel et al. (1977) improve the set covering based approach by Minieka (1970). The

solution space is reduced here by first finding a heuristic solution of the problem and deleting
all points from the finite dominating set that generate a larger covering radius than that of
the heuristic solution. In this way, the number of variables for the set covering problem can
be reduced. Moreover, a bisection search strategy for the selection of the next radius value
to determine an order of the set covering problems is proposed. Further improvements of
the set covering approach are proposed for, example, in Christofides and Viola (1971).
Kariv and Hakimi (1979) study the weighted and the unweighted single as well as the

multi-facility problem. The solution approaches for the 1-center problems are based on the
finite dominating set introduced by Hakimi (1964) but use more efficient ways to compute
this set. In this way, the weighted case is solved in O(mn log(n)) time and the unweighted
case in O(mn) time. This is the best known bound for the absolute 1-center problem until
now. Moreover, it is proven that the absolute p-center problem is NP-hard even for the
most simple structures of general unweighted planar networks. For the weighted multi-
facility problem an enumeration algorithm is presented that enumerates in O(mpn2p log(n))

time all subsets of size p of the finite dominating set for the 1-center problem. It relies
on the fact that in an optimal solution each new facility is the 1-center of an appropriate
subgraph. A similar idea is used in this thesis to derive a basic solution approach for the
p-k-max problem based on a slightly modified finite dominating set of the 1-k-max problem
(see Algorithm 9).
Mladenović et al. (2003) propose a meta-heuristic algorithm to solve the p-center prob-
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lem. The first approach uses a vertex substitution search, i.e., one facility of the current
solution is replaced by another facility not belonging to this solution. The second approach
is a tabu search heuristic that extends the interchange of one facility of the first approach
with the interchange of more than one facility. The third algorithm is based on a variable
neighbourhood search that perturbs the current solution by a k-interchange neighbourhood,
and vertex substitution is used afterwards to improve the solution. Exhaustive tests show
that the last approach performs best on average.
In Bhattacharya and Shi (2014) it is shown that the p-center problem on a graph can be

transformed to the well-known Klee’s measure problem (see, for example, Overmars and Yap,
1991), which is the problem to compute the measure of the union of a set of d-boxes, where
a d-box is the Cartesian product of d intervals in d-dimensional space. The overall approach
is based on the set covering strategy proposed by Minieka (1970) and various improvements
of this algorithm. The idea is to transform the local feasibility test for the coverage radius
needed for the current set covering problem to a p-dimensional Klee’s measure problem.
The transformation is based on the fact that there is at most one continuous region on
each edge that contains all points with weighted distance larger than the current coverage
radius to that node. For d fixed edges, these regions are used to construct a d-box, i.e.,
a rectangular area in the d-dimensional space. As solutions in this d-box do not cover all
demand points within the coverage radius, the d-box is called a forbidden region. Thus, the
feasibility test is transformed into the question if the union of all these forbidden regions for
all nodes form the whole d-box formed by all points on the d edges. If yes, the coverage
radius is infeasible, if no, it is feasible. With this procedure, the complexity of the feasibility
test can be reduced significantly.

Discrete Center Location Problems

At first it should be noted that all variants of the p-center problem on networks that are
based on a finite dominating set can also be transformed to discrete p-center problems since
in the discrete case a candidate set is known in advance.
The discrete p-center problem is shown to be NP-hard by Kariv and Hakimi (1979).
Hooker (1986) introduces a general approach for solving the non-linear single-facility

center problem, i.e., the cost function is a convex function of the distances. The analysis
of the problem is based on a decomposition of the network into “tree-like” segments. The
objective function is defined by the maximum of convex functions of distances and is therefore
convex on any “tree-like” segment. The optimal solutions of the center problem can then be
found by solving a convex programming problem on each of these segments. Moreover, it
is shown that not all segments need to be examined. The algorithm is particularly effective
if the cost function is non-decreasing and semi-separable.
Daskin (2013) gives a mixed integer programming formulation for the discrete p-center

problem. Two binary decision variables are defined: yi ∈ {0, 1} with yi = 1 if a facility is
placed at candidate site vi , i ∈ I and zero otherwise, and xi j ∈ {0, 1} with xi j = 1 if customer
j ∈ J is assigned to the new facility placed at i ∈ I. Moreover, a set covering based algorithm
is proposed where lower and upper bounds are defined to choose the coverage radius of the
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set covering problem such that the interval to choose the radius from is bisected in every
iteration.
Elloumi et al. (2004) present an integer programming formulation of the discrete p-center

problem with a polynomial number of variables and constraints that is based on its relationship
to the set covering problem. The idea is based on the fact that the optimal objective function
value is restricted to a finite set of values r1, . . . , rL given by the L candidate locations.
Binary variables are introduced as z ` ∈ {0, 1}, ` = 2, . . . , L, with z ` = 0 if all customers are
covered by p facilities within the radius r`−1 and z ` = 1 otherwise. The best known lower
bound for the p-center problem is obtained in this work by applying a semi-relaxation of this
formulation, i.e., the integrality constraints on a subset of the variables are kept. Moreover,
a two-phase algorithm to solve the p-center problem exactly is given which is based on the
work of Minieka (1970).
Mihelič and Robič (2005) use a polynomial time heuristic algorithm based on the solution

of a finite series of minimum dominating set problems. The minimum dominating set problem
wants to find a subset D of the nodes with minimum cardinality such that any other node
is adjacent to at least one of the nodes in D. The heuristic uses the so called scoring-
technique to rank the nodes as potential centers. A requirement for the algorithm is that
the considered network is complete and that the distances satisfy the triangle inequality.
Pullan (2008) combines a population based meta-heuristic with a local search algorithm

to solve the vertex-restricted p-center problem. The starting points for the procedure are
generated by phenotype crossover and directed mutation tools of the genetic algorithm.
Afterwards, the starting points are improved by local search. The algorithm is also applicable
to large instances of the problem as it can easily be executed in parallel and yields moreover
excellent robustness results.
Calik and Tansel (2013) propose a further integer programming formulation of the p-

center problem with additional binary variables u` that are equal to 1 if the corresponding
radius r` of candidate location ` ∈ {1, . . . , L} is selected as the optimal objective function
value. This formulation is tightened by using the relation to the formulation of Elloumi et al.
(2004). Moreover, a polynomial time algorithm is introduced to compute a lower bound by
solving a finite series of linear programming problems of polynomial size. Thus, this approach
differs from the often used set covering approach. Different selection strategies to choose a
restricted set of radius values, including a method called double-bound method, are analysed.

Continuous Center Location Problems

Using Euclidean distances in the plane, the single-facility center problem is equivalent to
finding the center of the smallest enclosing circle of all existing facilities. If another metric is
used to measure the distances, the task is to find a minimum shape isomorphic to the scaled
unit ball of the metric that covers all existing points in the plane. The p-center problem is
proven to be NP-hard by Megiddo and Supowit (1984).
Chrystal (1885) solved the unweighted single-facility center problem with Euclidean dis-

tances. The aim is to find the smallest enclosing circle of the existing points in the plane
since the midpoint of this circle is the optimal location for the center point. It is observed
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that all points of the demand set not lying on the convex hull can be eliminated from further
consideration as they will not influence the optimal solution. Further observations on the
relation of the circle and a special triangle are made: If three demand points form the vertices
of an acute triangle, the smallest enclosing circle of these three points passes through all
these three points. If the triangle is obtuse, the center of the smallest enclosing circle of
the three points is located at the midpoint of the side opposite to the obtuse angle. Thus,
the center of the smallest enclosing circle is either the midpoint of the most distant pair of
points or of the circle passing through three points forming an acute triangle. The algorithm
starts with a circle of a very large radius that contains all demand points and then the radius
is reduced iteratively using the above observations.
Elzinga and Hearn (1972) consider the unweighted 1-center problem with both Euclidean

and rectilinear distances. Contrary to Chrystal (1885), the procedure for Euclidean distances
starts with a small circle defined by two points. In each iteration, a point not covered by the
current covering circle is used to find a larger circle that covers a new subset of the points,
including the point found which was not covered before. Based on the results of Chrystal
(1885), the current covering circle is either given by two points defining the diameter of the
circle or by three points defining an acute triangle such that the circle is the perimeter of this
triangle. The optimal solution is found when the current circle covers all existing points. The
convergence of the algorithm is guaranteed as the radius of the covering circle increases in
each iteration. For rectilinear distances, the p-center problem is to find the smallest enclosing
diamond of the n existing facilities (ai , bi) ∈ R2 with i = 1, . . . , n. This diamond can be
found in O(n) time by computing the four values mini{ai +bi}, maxi{ai +bi}, mini{ai −bi}
and maxi{ai − bi} from which four lines inclined by 45◦ to the system of coordinates can be
derived. The midpoint of this diamond is the optimal solution of the center problem.
Shamos and Hoey (1975) give an O(n log(n)) time algorithm for the 1-center problem

by also constructing the smallest enclosing circle of the existing facilities. The basis of the
solution approach are Voronoi diagrams (see, for example, Okabe et al., 2009). For the
center problem, the farthest-point Voronoi diagram has to be analysed. In the farthest point
Voronoi diagram, the point defining a Voronoi region is the farthest neighbour of all points
in this region. The points on a Voronoi edge have the same distance to two customers and
the Voronoi vertices are points on the Voronoi diagram that are equidistant to at least three
customers. If the farthest point Voronoi diagram is given, the two farthest points of the
given point set can be found easily by considering each Voronoi edge and computing the
distances of the two points defining this edge. Thus, if the smallest enclosing circle of the
customers is defined by two points, the optimal solution is found. If otherwise the smallest
enclosing circle is defined by three points, it is shown with the observations made by Chrystal
(1885) that the vertices of the Voronoi diagram are candidates for the center location. This
is due to the fact that the midpoint of a circle passing through three customers forming an
acute triangle is a vertex of the farthest-point Voronoi diagram.
Drezner and Wesolowsky (1980) present an iterative solution procedure similar to

Elzinga and Hearn (1972) to solve weighted 1-center problems with Euclidean, rectilinear
and general `p-norms. It is shown that it is enough to evaluate all triples of existing points
also for `p-norms with general p. Thus, the algorithm evaluates all these triples in an order
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such that the objective function value is decreasing until all points are covered. As every
triple is evaluated exactly once, this procedure finds an optimal solution in finitely many
iterations.
Drezner (1984) introduces a heuristic and an exact method to solve the weighted p-

center problem with Euclidean distances. The heuristic is based on a location-allocation
idea: p starting points are chosen as the initial set of locations for the center points and all
demand points are allocated to these starting points with respect to the respectively defined
Voronoi regions. The starting points are improved by solving 1-center problems within the
Voronoi regions. In a second step, one demand point at a time is rearranged to one of the
other found centers of the first phase to improve the objective function value. The exact
algorithm works iteratively and every iteration starts with a feasible solution of the p-center
problem with objective function value z provided by some heuristic. Then, a set covering
problem is solved to find a better solution or to prove that the current solution is already
optimal. For fixed p, the exact algorithm is polynomial in the number of demand points.
Chen and Chen (2009) present some new variants of relaxation methods to solve the

p-center problem. In this context, relaxation is a method to solve a p-center problem by a
sequence of smaller p-center-like problems on a subset of the demand points since the optimal
solution of the p-center problem on a subset of the customers provides a lower bound on
the optimal solution of the full p-center problem. The resulting iterative approach updates
at each step the bounds on the optimal solution until the optimum is reached. The new
described variants of this approach reduce either the number of iterations, the sizes of the
sub-problems or the values of the coverage-distances (or a combination of all). Therefore,
larger problems can be solved. One new relaxation technique is the reverse relaxation, which
starts with a lower bound of 0 on the optimal objective value and updates this bound in
every iteration until the optimal value is reached. This is in contrast to other approaches
that start with an infinite bound which is reduced in every step. A second variant is the
binary relaxation which performs a binary search on the optimal objective function value,
i.e., it updates either an upper or a lower bound on the optimal solution until the optimal
value is reached.

3.3 Outlier Location Problems

Location problems usually assume that all the clients have to be provided with service. The
disadvantage of this problem formulation is that a few very distant clients, called outliers,
have a disproportionately strong influence on the final solution because an outlier may attract
a center to be placed in its vicinity. Thus, for outlier location problems, the new aim is to
serve only a specified fraction of customers. Many of the approaches described in this section
are closely related or even equivalent to the p-k-max location problems considered in this
thesis.

Charikar et al. (2001) considers discrete facility location, p-center- and p-median prob-
lems with outliers. Two variations of these models are formulated such that the presence of
outliers can be handled: The robust facility location model and the facility location model
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with penalties. In the robust model, a parameter b ∈ N with b < n is inserted such that
the objective is to minimise the costs to serve any subset of at least b clients. With b = n

no outliers are excluded. In the facility location model with penalties, every not-assigned
facility is associated with a penalty cost. By setting the penalties to ∞, the standard prob-
lem without outliers is obtained. Different known approximation algorithms are generalised
to these new models, among others a 3-approximation algorithm for the robust p-center
problem and various primal-dual approximation algorithms based on LP-relaxations of the
respective facility location and p-median models. Note that the robust model applied to a
center problem is equivalent to a k-max problem for b = n−k+1. In contrast to the problem
on networks in this thesis, the problems considered in this paper are discrete. Moreover, the
presented solution techniques yield an approximated solution, while the algorithms presented
in this thesis are exact solution methods.
Agarwal and Phillips (2008) consider unweighted 2-center problems with Euclidean dis-

tances. The aim for the outlier 2-center problem is to find a pair of congruent disks of
minimal radius that cover n − k + 1 points, where n is the number of existing facilities and
k − 1 is the maximum number of outliers. Thus, the stated problem corresponds exactly
to a 2-k-max problem with Euclidean distances in the plane. Based on a partition of the
point set using unit disks and separator lines, the geometric properties of the problem are
used to develop a randomised algorithm. For this purpose, two cases have to be considered:
The case that the centers of the optimal disks are further apart than the optimal radius,
and the converse case where the centers of the optimal disks are closer to each other than
their radius. The Euclidean 2-center problems can be solved in O(nk7 log3(n)) time. More-
over, it is stated that the 4- resp. 5-center problems with l∞-distances can be solved in
kO(1)n log(n) resp. kO(1)n log5(n) time. The aim for the l∞-norm is analogously to cover
all but k − 1 points by p = 4 resp. p = 5 congruent axis-aligned squares of minimal side
length. The solution approaches stated in this article can equivalently be used to solve the
2-k-max problem with Euclidean distances and the 4-k-max resp. the 5-k-max problem with
l∞-distances in the plane.
Atanassov et al. (2009) do not deal with location problems in particular, but their ap-

proaches can be applied to location problems as well. The analysed problem is to remove
k − 1 points from a set V of n points in R2 such that the remaining point set leads to
a minimal objective function value f (V \ V ′) with objective function f : 2R

2 7→ R. This
class of problems is called the f-based k − 1 outlier removal problem. Depending on the
considered objective function, different types of problems are obtained. The diameter-based
and the (bounding box) area/perimeter-based problems are solved by a technique that finds
a problem kernel of a certain size whose solution gives a solution to the original problem. A
third type is the (convex hull) area/perimeter problem and is solved with an algorithm similar
to the bounded search tree method. Invariants to different types of affine transformations of
the input are analysed, for example, rotation and scaling. For fixed values of k , all algorithms
run in O(n log(n)) time which is shown to be optimal. By interpreting the points of the set
V as customers, especially the approach to minimise the diameter of the set V \ V ′ can be
applied to solve a 1-k-max location problem in the plane. The diameter of a set of points
equals twice the radius of the smallest covering circle. Thus, the problem is equivalent to a
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1-k-max problem with unweighted customer locations.
In the work of Zarrabi-Zadeh and Mukhopadhyay (2009) high dimensional unweighted

1-center problems with outliers in Rd , d ≥ 2, are considered, i.e., all but a fixed number of
k − 1 points have to be enclosed by a ball of minimum diameter. This is a generalisation of
the problem considered in Agarwal and Phillips (2008) and thus also a generalisation of the
continuous 1-k-max problem to higher dimensions. The decision to cover a point is made
online, i.e., this information gets available during the optimisation process and no reliable
information about the points arriving in the future is assumed to be available. This practical
setting is in particular suitable for real world applications that involve very large data sets.
It is difficult to decide which point is an outlier and which is not only based on the current
information. Therefore, a buffer is introduced in which new points are added to postpone
the decision. The size and a strategy of extracting points from the buffer are explained. A
streaming-algorithm for the unweighted problem gives a 2-approximation. Thus, the optimal
solution of the algorithm provides a radius that is at most twice as large as the radius in the
exact optimal solution.
Xu and Xu (2009) analyse special median problems on bipartite graphs, called uncapaci-

tated facility location problems with penalties, where each customer is either assigned to an
opened facility or rejected by paying a penalty. This problem relates to the corresponding
location model with penalties in Charikar et al. (2001). A two-phase 1.8526-approximation
algorithm based on an extended primal-dual algorithm is developed in which outliers can be
recognised more efficiently compared with Charikar et al. (2001). The primal-dual algorithm
is run on a modified instance of the problem with scaled opening costs to get a solution
with an improved quality. Afterwards, the obtained solutions are improved by a greedy local
search heuristic. The main idea is to trade connection cost with opening cost by iteratively
opening more facilities. If there are several facilities in one iteration which would improve
the quality of the solution, the order for adding the new facilities is computed with a greedy
strategy.
Ahn et al. (2011) concentrate on unweighted p-center problems with l∞-distances and up

to k−1 outliers that do not have to be served, i.e., p pairwise disjoint squares resp. rectangles
are sought that together contain at least n − k + 1 points such that the area of the largest
box is minimised. Motivated by the classical cluster analysis, the so called box-covering
method is used to identify groups of points that lie close together. Outliers that enlarge
the radius of a cluster are filtered out and excluded. Both cases are shown to be NP-hard
for general p even if k is fixed. However, an exact algorithm of divide & conquer type
is developed to solve the problems based on the property for two and three new facilities
that there always exists an axis-parallel line that separates the box defining the first cluster
from the box defining the second cluster (resp. from the two boxes defining the second and
third clusters for three new facilities), provided that the boxes are disjoint. For more than
three new facilities, this approach is generalised by recursively finding the separating line
and solving the induced subproblems. When using squares for the covering, this leads to
an O(n + k log(k)) algorithm. A similar approach with rectangles instead of squares has
a complexity of O(n + k3). Both variants of the problem are extension of the rectilinear
p-center problem in the plane that can exclude a predefined number of outliers. Thus, these
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problems are equivalent to p-k-max problems with rectilinear distances in the plane.
In Ott et al. (2014) the problem of identifying outliers is considered for the field of

statistics and data analysis. The joint clustering and outlier detection problem is formulated
as an extension of a general facility location problem with binary variables to decide whether
a point is assigned to a created cluster or declared to be an outlier. With this formulation
outliers are implicitly defined as those points whose presence in the dataset has the strongest
negative effect on the overall solution. By identifying each cluster with a new facility, the
approach can also be applied to outlier location problems. The problem is described by
an integer programming model. To solve this problem, a Lagrangian relaxation is applied
by relaxing the constraint that assigns each point to a cluster or declares it as an outlier.
The single relaxations are solved by a heuristic that generates valid assignments, starting
by choosing the points with the largest value of the Lagrange multiplier λ as outliers. The
solution of the current relaxed problem is then used to compute a new subgradient to update
the Lagrange multipliers.
Wang et al. (2014) combine a robust facility location problem and the location problem

with penalties from Charikar et al. (2001). The resulting model is called a robust facility
location problem with penalties and is formulated as a binary linear program. Its LP-relaxation
and its dual are considered, and based on these a primal-dual 3-approximation algorithm is
proposed. It is a two-step method where in the first step a dual feasible solution is obtained
and in the second step a primal feasible integer solution is constructed aiming to reduce the
opening costs. With a greedy augmentation procedure and the insertion of dummy-facilities,
this result is improved to an approximation ratio of 2.
Chakrabarty et al. (2016) introduce the non-uniform p-center problem. For a finite

metric space (X, d) and a collection of balls with radii r1 ≥ . . . ≥ rp, the aim of this problem
is to find a location of the centers of the balls in the metric space and the minimum dilation
α, such that the union of balls of radius αri around the ith center covers all the points in X.
In practice, this problem is used to model a vehicle routing problem with fleets of different
speeds, which are represented by the different radii of the balls. The non-uniform p-center
problem is a generalisation of the p-center problem with outliers as presented in Charikar
et al. (2001) if there are p balls with radius 1 and k−1 balls with radius 0, where k−1 is the
number of outliers. A 2-approximation algorithm to solve the k-center problem with outliers
is introduced. The main technique is based on the connection between the LP-relaxation of
the non-uniform p-center problem and the so-called fire-fighter problem on trees (see, e.g.,
Finbow and MacGillivray, 2009).
Hatami and Zarrabi-Zadeh (2017) consider 2-center problems with outliers in high-

dimensional data streams. For a given set of n d-dimensional points and a bound k − 1 on
the number of outliers, the aim of this problem is to find two congruent balls of minimum
radius to cover at least n − k + 1 points of the set. This problem is equivalent to the
continuous unweighted 2-k-max problem in Rd . The solution approach is based on different
methods as the far/close ball separation and the center point theorem (see Danzer et al.,
1963). Two cases are distinguished for the solution of the problem: If the midpoints of the
two optimal balls have a distance smaller than αr∗, where α > 0 is predefined and r∗ is the
optimal radius, the optimal solution of the 2-center problem can be approximated using the
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optimal solution of the 1-center solution. If conversely the midpoints of the two balls have
a larger distance than αr∗, the points can be separated into two areas and a so-called buffer
zone to find an approximated solution. The result is a streaming algorithm that yields an
approximation factor of 1.8 + ε for any ε > 0. This approximation factor matches that of
the best streaming algorithm for the 2-center problem with no outliers.
An approach closely related to statistics is given in Schöbel (1999) who analyses location

problems where (instead of points) lines or hyperplanes have to be located. As it has a close
and interesting connection to k-max problems, this work is analysed in more detail in the
following. Given a set A ⊆ R2, the line location problem is to find a line L minimising the
distances to the n points in A. This is equivalent to a linear regression analysis in the field of
statistics where it is used to predict future values of the data set. The located lines are called
“estimators” in statistics. Many estimators are sensitive to data outliers, i.e., points that do
not follow the pattern of the majority of the point. A robust estimator is, for example, the
“least median of squares” (LMS) estimator (see Rousseeuw, 1984), where the median of
the distances between the line and the data points has to be minimised. Interpreting the
linear regression as a location problem, different estimators can also be obtained as optimal
solutions of a line location problem with a corresponding choice of an objective function.
The LMS estimator, for example, is the optimal solution of a line location problem with

an ordered median objective function where λ = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn is the vector
of weights and the distances are given by the squared vertical distances between the line
and the data points. Hence, for the LMS estimator with λ(k) = 1 and λ(l) = 0 for all
l ∈ {1, . . . , n}, l 6= k , the kth largest distance to the optimal line has to be minimised.
Therefore, this problem is equivalent to a k-max problem where lines instead of points have
to be located. As a consequence, many properties of the k-max problems analysed in this
work can be transferred to line location problems and vice versa. For example, the reduction
to center problems (see Theorem 4.8 below) leads to the property that, if the optimal set
of outliers would be known, the optimal line could also be found by an ordered line location
problem with λ = (1, 0 . . . , 0) ∈ Rn on A without the optimal set of outliers.
For many line location problems, discretisation results are known (see, for example, La-

porte et al. (2015), Chapter 7). To the best of our knowledge, until now there are no finite
dominating sets for the special case of ordered line location problems with vector of weights
λ = (0, . . . , 0, 1, 0, . . . , 0). It is an open problem for further research in k-max optimisation
for line location. However, the discretisation results for the general line location problem with
λ ∈ Rn and distance d in Laporte et al. (2015) can also be applied to the k-max function
since this is a special case of the ordered median function.

3.4 Ordered Median Problems

Ordered median problems are very general location problems that unify location problems
with respect to the chosen objective functions. Most solution approaches in location theory
are designed only for convex objective functions. For continuous ordered median problems,
solution methods are often based on discretisation results and finite dominating sets. Of
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course, most of these procedures are not intended to compete against approaches that are
especially designed to solve specific instances of the ordered median problem as the latter
can use the special structure of the particular problem. The aim of ordered median analysis
is rather to obtain a good performance for more general types of problems. Note that the
approaches for non-convex ordered median problems with general vector of weights λ can
equivalently be applied to solve k-max problems as the k-max function is a special case of a
(non-convex) ordered median function.

The idea of associating a weight coefficient λi with the ith-largest cost element of a
feasible solution is introduced by Yager (1988) for the first time in a very general way.
The aim is to introduce a new operator in multi-criteria decision making called the ordered
weighted averaging operator in order to aggregate different criteria functions to form an
overall objective function.

Ordered Median Problems on Networks

In location theory, Nickel and Puerto (1999) introduce the ordered median problem on
networks by adapting the ordered weighted averaging operator to network location problems.
They show that this function is a generalisation of the most popular objective functions in
location theory. They give a finite dominating set for the weighted single facility case that
consists of the equilibrium points and nodes of the graph. Moreover, they give an example
showing that this result does not hold for the multi facility case. In this case it is shown
that the set of nodes is a finite dominating set for the problem if the objective function is
convex.
Kalcsics et al. (2002) identify finite dominating sets to solve the single-facility weighted

ordered median problem with n existing facilities both on a network and in the plane. It is
shown that, in a strongly connected, directed network with non-negative node weights, one
optimal solution can always be found in the set of the nodes of the graph. The problem
can then be solved in O(mn log(n)) time. For undirected graphs with general node weights,
the finite dominating set consists of nodes, bottleneck points and so called equilibrium
points. The evaluation of this set takes O(mn2 log(n)) time. It is shown that the discrete
single-facility ordered median problem has the same finite dominating set. The continuous
rectilinear ordered median problem in Rd , d fixed, can be solved in O(n2d+1 log(n)) time
by constructing a partition of Rd consisting of the pairwise bisectors of the points and the
hyperplanes parallel to the axes. At least one vertex of the partition is an ordered median.
If the rectilinear problem is convex (i.e., 0 ≤ λ1 ≤ . . . ≤ λn), it can be solved with the
algorithm of Cohen and Megiddo (1993) in O(n log2d(n)) time.
In Kalcsics and Nickel (2003) the convex multi-facility ordered median problem on undi-

rected networks with non-negative weights of the form λ = (a, . . . , a, b, . . . , b) with a < b is
considered. It is shown that the set of so called pseudo-equilibrium points is a finite dominat-
ing set for this special structure of λ. The size of this finite dominating set is O(nm(f +m2))

where f is the number of equilibrium points. This finite dominating set is used to develop
the first polynomial time algorithm for p-facility ordered median problems on tree networks.
The result can be combined with an approximation algorithm for the p-median problem to
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obtain an approximated optimal solution for ordered p-median problems on general graphs
in polynomial time.
A finite set of candidates to be optimal for the 2-facility ordered median problem on

networks with no additional assumptions for λ is proposed in Rodríguez-Chía et al. (2005).
The derived finite dominating set of size O(m3n6) has a structure that is different from
previous finite dominating sets because it consists of pairs of points. Thus, there is no need
to choose elements of this set by pairs to get the candidate solutions. The presented result
can not be generalised to problems with more than two new facilities.
Tang et al. (2009) develop (based on the finite dominating set result of Kalcsics and

Nickel (2003)) a finite dominating set for the convex unweighted multi-facility ordered me-
dian problem on networks where λ can have at least two different values. It is pointed out
that the set of all pseudo-equilibrium points is a polynomial size finite dominating set for the
ordered p-median problem with this special choice of λ. It is also shown that there always
exists an optimal solution in which one of the new facilities is a node or an equilibrium point.
Besides, a three-phase polynomial time algorithm similar to Kalcsics and Nickel (2003) for
the problem with at most three different values in λ on tree networks is given.
Tang et al. (2011) consider the multi-facility ordered median problem with non-negative

λ-weights on a strongly connected and directed graph. It is proven that the problem has a
finite dominating set in the node set of the underlying graph, i.e. the result of Kalcsics et al.
(2002) is extended from the single to the multi-facility case. An exact O(pnp+1 log(n))-
time algorithm is developed by evaluating the objective function in all p-tuples of nodes. Of
course, this comes along with a high complexity and thus, the ordered median problem can
be solved efficiently by the finite dominating set only if the number of facilities is finite and
small. Therefore, also a 6 2

3 -approximation algorithm for a special instance of the unweighted
ordered p-median problem with λ = (1, . . . , 1), the weighted p-median problem, is presented.
Moreover, Puerto and Rodriguez-Chia (2005) prove that there is no finite dominating

set of polynomial size for the general p-facility ordered median problem on networks with
general weights even on path graphs.

Discrete Ordered Median Problems

The discrete ordered p-median problem, that is shown to be NP-hard in Nickel and Puerto
(2005), is considered especially in Nickel (2001). Due to the fact that every permutation
of an arbitrary set or vector can be represented by an assignment problem, a non-linear
integer programming formulation is developed based on a combination of a special matching
subproblem with some additional constraints to ensure the correct sorting of the solution
elements, with a classical discrete p-median location model in which the vector of weights
is λ = (1, . . . , 1). The result is a model that has neither a linear objective function nor
only linear constraints. A linearisation for which the number of variables and constraints is
proportional to the number of existing sites, equivalent to the linearisation of the quadratic
assignment problem, is also proposed.
Domínguez-Marín (2003) introduces a mixed-integer programming formulation of the

discrete ordered p-median problem that combines an assignment and a location-allocation
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problem. As this model contains a quadratic objective function and some non-linear con-
straints, several linearisations of the model are presented (see also Section 4.3 below). A
branch-and-bound algorithm is given that allows to solve larger instances of the discrete
ordered median problem than the methods before.
Heuristic approaches (also based on Domínguez-Marín, 2003) to solve the discrete ordered

p-median problem are given by Domínguez-Marín et al. (2005). One approach is based on a
genetic algorithm with evolution strategies to avoid that the new population is worse than the
old one. The second is a variable neighbourhood search metaheuristic. The neighbourhoods
to be investigated are ranked increasingly by their distances to the current solution. To avoid
local minima, a shaking process is included where the movement to a neighbourhood further
from the current solution goes along with a harder shake. A major difficulty in the application
of the encoding is the computation of the adjustment in the objective function value when
two facilities are interchanged. Therefore, the complexity is relatively high. However, with
both procedures, heuristic solutions for up to 900 existing locations can be obtained.
Boland et al. (2006) propose two alternative linear integer program formulations for

the ordered p-median problem with O(n2) constraints in both cases and O(n3) respectively
O(n2) variables. Different properties of optimal solutions are shown and used to strengthen
the formulation using either additional constraints or a preprocessing that fixes the values
of some variables or by relaxing integrality requirements on some variables. Moreover, a
special tailored branch and bound procedure based on decisions of whether or not a site is
selected for facility location is given. The approach uses combinatorial lower bounds and
takes advantage of the special structure of the model. The lower bounds are archived by
the minima of the rows of the cost matrix calculated over the columns that correspond to
opened or undecided facilities.
Stanimirović et al. (2007) present two heuristic approaches to solve the discrete ordered

p-median problem based on a hybridization of genetic algorithms and a generalization of the
Fast Interchange heuristic. New crossover and mutation operators that keep the feasibility
of individuals are introduced. Efficient encodings of the solution for a better evaluation of
the objective function are given.
Marín et al. (2009) introduce the first formulation for the discrete ordered p-median

problem with non-negative weights that allows a solution of problem instances with up to 100
possible existing locations in reasonable time. The model is based on a covering formulation,
where two different sets of binary variables are used for the measuring of distances and the
sorting of these distances. In a preprocessing phase, the initial model is strengthened by a
number of variable fixing strategies such that the number of binary variables is reduced to n.
Moreover, a group of valid inequalities is added which reduces the number of binary variables
extremely. This gives rise to a specialised branch & cut algorithm for solving the problem.
A more compact reformulation of the model in Marín et al. (2009) is provided in Marín

et al. (2010) for λ vectors containing many zeros. For the reformulation the second set
of binary variables, responsible for the sorting of the distances, is reduced. The solution
times can be further reduced by an adjustment of the solution procedure to the new model.
Afterwards, the reduced version of the model is extended by some constraints so that negative
weights can be handled as well. The idea for the solution approach is the same as in Marín
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et al. (2009). The number of binary variables is reduced to n and the variable fixing strategies
and the branch & cut algorithm can be applied with some adjustments.
Puerto et al. (2014) introduce another heuristic for the discrete ordered p-median prob-

lem based on the approach of Domínguez-Marín et al. (2005). New neighbourhood structures
that favour faster local improvements of the objective function in the local search phase are
used. Improvements are obtained because there is an upper bound set on the allocation costs
that are allowed in the considered neighbourhood. A special data structure is computed in a
preprocessing phase and handles just the really needed information to update and evaluate
solutions such that an efficient encoding of the solution approach is possible. In particular,
no sorting is needed for the evaluation of the objective function in each solution. Therefore,
each evaluation can be performed in linear time.
Labbé et al. (2017) introduce several new formulations of the discrete ordered median

problem based on its relation to a scheduling problem. As previous formulations of the
discrete ordered median problem yield rather large integrality gaps, the aim of the new
formulations is to reduce this gap by analysing the formal relationships between the lower
bounds of the linear relaxations of the new formulations. It is shown that the bounds obtained
by the new formulations are rather tight compared to previous known bounds. Moreover,
some of the formulations consist of a significant smaller number of constraints than previous
formulations. The models are solved with different variants of brand and bound as well as
branch and cut algorithms.

Continuous Ordered Median Problems

Puerto and Fernández (2000) introduced the ordered median problem for the first time
to location theory. They consider single-facility ordered median problems in the plane with
a norm to measure the distances. No solution approaches are given in this work but the set
of optimal solutions of this problem is studied and a characterisation of this set is given.
So called ordered regions are defined as the set of points for which the permutation of the
distance vector does not change. The intersection of these regions with the elementary
convex sets introduced by Durier and Michelot (1994) form the so called ordered elementary
convex sets on which the ordered median function is linear as the permutation does not
change and the underlying norm is linear. The important result is that there always exists an
optimal solution of the ordered median problem in an extreme point of the ordered elementary
convex sets. In the convex case, the whole set of optimal solutions coincides with exactly
one of the ordered elementary convex sets.
Rodríguez-Chía et al. (2000) deal with convex ordered median problems in the plane

with underlying polyhedral gauges. Some important geometrical properties of the problem
are described, for example the ordered regions on which the permutation in the objective
function is constant. Based on this, a polynomial time descent algorithm is presented where
for each ordered region a linear program is solved, i.e., either the locally best solution is found
in this ordered region or it is detected that this region does not contain the global optimum.
As the objective function is convex, an optimal solution found in the interior of a region is
globally optimal. For an optimal solution on the boundary of a region a local search on the
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neighboured regions has to be performed. Moreover, two possibilities for efficient algorithms
for the general (non-convex) problem are stated. The approach is also adapted to the multi
facility case. This procedure can only be applied efficiently for convex objective functions
since in the non-convex case all ordered regions have to be enumerated to not stick in a
local minimum. Moreover, a finite dominating set is constructed for the case that forbidden
regions are added to the problem. The candidate set consists of all intersection points of
the boundaries of the forbidden region with all fundamental directions and all bisectors.
Nickel et al. (2005) present a model for the convex multi-criteria ordered median problem

with polyhedral gauges in the plane. At first the bi-criteria problem is analysed. It is shown
that the set of Pareto solutions consists of complete cells, complete faces, and vertices of
the so called ordered elementary convex sets in which the ordered median function is linear.
The solution procedure starts in a lexicographic optimum of one objective and proceeds,
using the connectedness of the set of Pareto optimal solutions, to another Pareto optimal
intersection point of the structure induced by the ordered elementary convex sets until the
other lexicographic optimum is reached. This result is generalised to three-criteria and later
to Q-criteria problems, where the Q-criteria problems are solved by a reduction to a series
of bi-criteria problems. Some ideas for the extension to the non-convex case are also given.
Another approach to multi-criteria ordered median problems can be found in Ohsawa

et al. (2007). For the measurement of distances the squared Euclidean distances are used
because an advantage can be taken out of the fact that in this case the level curves of the
objective function are circles. An algorithm to determine the Pareto optimal solutions of a
problem with more than two convex ordered median objectives with the help of structures
from computational geometry such as Voronoi diagrams and arrangements of curves and
lines is introduced. In two objectives this approach is applicable to any type of ordered
median objectives and any polygonally bounded feasible region. For more than two criteria,
the objective functions and the feasible region have to be convex.
One of the important global optimisation approaches for the non-convex single facility

ordered median problem in the plane is considered by Drezner and Nickel (2009b). They
give a geometric branch & bound method based on triangulations, employing the Big Triangle
Small Triangle approach (see Drezner and Suzuki (2004)). The idea is to triangulate the
feasible area by the Delaunay triangulation (see Lee and Schachter (1980)) with the demand
points as vertices. In each iteration, each triangle is split into four smaller triangles. The
values of the objective function in the center points of the triangles are used to derive a
lower bound, and all triangles with a larger bound are discarded. Different (rigorous and
heuristic) lower bounds are given that are based on the shortest distance between a node
and any point in the triangle or the longest possible distance to one of the three vertices of
the triangle.
Espejo et al. (2009) present an approach to solve the convex ordered median problem for

the special case of distances measured with `p -norms with 1 < p <∞. Since the objective
function is not differentiable at the demand points and the bisector lines, the objective
function is approximated by an hyperbolic approximation. The proposed solution approach
is based on a modified version of the gradient descent method that produces a descending
sequence of objective values. For this purpose, it is distinguished between the two cases that
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an iterate point lies in the interior or on the boundary of an approximated ordered region.
The convergence of this sequence to the optimal objective function value is shown.
A second global optimisation approach is considered in the paper of Drezner and Nickel

(2009a). It shows that the continuous ordered median problem belongs to the class of
d.c. optimisation problems, i.e. the ordered median function can be expressed as a difference
of two convex functions, even though it is in general not a C2-function. One way to transform
a standard ordered median problem into a d.c. problem is stated. The resulting problem is
then solved with procedures borrowed from d.c. optimisation. Here, this is used to construct
efficient lower bounds. The geometrical branch & bound techniques as the Big Triangle
Small Triangle method proposed in Drezner and Nickel (2009b) are modified using these
new bounds to solve the planar single facility ordered median problem.
Krebs and Nickel (2010) analyse different properties of the continuous ordered median

problem in the plane. Among others, a sufficient criterion for the separability of unweighted
ordered median problem with an underlying norm is given, i.e., it is stated under which
conditions a decomposition of the ordered median problem into several partial problems is
possible. This decomposition of the problem can help to accelerate many existing solution
approaches for the problem. Moreover, a descent algorithm acting on the finite dominating
set consisting of the vertices of the ordered elementary convex sets proposed by Rodríguez-
Chía et al. (2000) is introduced. The advantage of the presented approach is that, even
for the non-convex case, not all elements of the finite dominating set have to be evaluated.
The iterative algorithm is based on a graph structure which is implemented on the finite
dominating set such that in each iteration only the evaluation of the nodes adjacent to the
actual iteration point is required. Besides this, properties of the ordered median problems
with attractive and repulsive locations are stated.
Blanco et al. (2013) analyse the problem of minimizing the ordered median (or ordered

weighted average) function of finitely many rational functions over compact semi-algebraic
sets. The problem is transformed into a higher dimensional space where it can be modelled
as a polynomial optimisation problem. This problem can be solved by a series of semidefinite
programming relaxations that converges to the optimal solution of the initial problem. Each
of the auxiliary problems can be solved in polynomial time. This approach is also applied to
a general family of location problems. By using a reformulation of these location problems,
a series of relaxed problems similar to that of the general ordered weighted average problems
can be obtained. Convex as well as non-convex location problems with `p-norms in finite
dimensional spaces can be solved with this approach. Moreover, the sizes of the semidefinite
programming relaxations are reduced further such that even larger instances of the problems
can be solved in reasonable time. Blanco et al. (2016) use a similar approach to solve the
continuous multi-facility ordered median location problem with `p-norms in any dimension.
Grzybowski et al. (2015a) use the fact that every continuous piecewise linear function

has a max-min representation in terms of its linear functions. Since the ordered median
function is piecewise linear, this leads to a min-max representation of the ordered median
function using a combinatorial approach. Fans of ordered cones in Rd , different orderings
and some other theoretical properties of the ordered median function are introduced. Us-
ing this representation, Grzybowski et al. (2015b) give more theoretical properties of the
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ordered median function and describe the ascent resp. descent cones to derive a topological
classification of this function.

Of course, the ordered median objective function can also be applied to other optimisation
problems, not only in location theory. An interesting field of application are, for example,
combinatorial optimisation problems (see, e.g., Fernández et al. (2014) and Fernández
et al. (2016)).
For an extensive review and discussion of the field of ordered median location problems see

Nickel and Puerto (2005). For an overview on global optimisation approaches for general
planar location problems see, for example, Drezner (2013).

3.5 k-max Optimisation

In a k-max problem, an optimal solution shall be determined such that the kth largest
element of the argument vector is minimal among all feasible solutions. The field of k-max

optimisation is a relatively new area of research and not much investigated until very recently.
k-max problems have mostly been investigated in the context of discrete optimisation.

The notion of the kth largest element of a general set S can first be found in Punnen
and Aneja (2004). The minimisation of the maximal difference of the cost coefficients of
a feasible solution to its kth largest cost coefficient is analysed for general combinatorial
optimisation problems. This type of problem is called a lexicographic balanced optimisation
problem.
k-max optimisation problems are discussed in Gorski and Ruzika (2009) as combinatorial

problems with k-max objective function. The main aspect is the development of an easy and
efficient solution approach based on the formulation of a series of substitute problems with a
0-1-objective function and using a bisection on the objective function value. This approach is
a generalisation of the threshold algorithm introduced by Edmonds and Fulkerson (1970) and
adopted by many other authors. The new version has a complexity of O(T log(n)), where
n is the number of elements in the ground set and O(T ) is the complexity of the substitute
problems. This implies analogous solution approaches for discrete location problems with
outliers, which can be deduced from the observations made.
A generalisation of the approach in Gorski and Ruzika (2009) to multi-cirteria combina-

torial optimisation problems is given by Gorski et al. (2012). The first objective function is
of arbitrary type and the other objectives are either bottleneck or k-max objective functions.
An efficient solution approach based on the iterative solution of ε-constraint scalarisations
is proposed. Thereby, the scalarisation is independent of the specific combinatorial problem
considered. Polynomial time algorithms for several important problem classes like spanning
tree problems with bottleneck objectives, which are NP-hard in the general multiple objective
case, are derived.
Turner (2011) applies this approach to k-max shortest path problems, where the costs

of the kth largest edge shall be minimised. In each iteration it is tested by using bisection if
there exists a path from s to t whose kth largest cost edge has costs smaller than the costs

58



3.5. K-MAX OPTIMISATION

c for a given edge. This is done iteratively by solving a binary sum shortest path problem
where the costs are defined as zero or one.
Rong et al. (2013) consider the multi-criteria 0-1-knapsack problem where the first

objective is a classical sum objective function and the other objectives are of a k-min type,
i.e., the aim is to maximise the kth smallest objective coefficient in any feasible knapsack
solution with at least k items in the knapsack. The whole non-dominated set is determined by
using a series of single-criteria multidimensional 0-1-knapsack problems which are established
by a variant of the ε-constraint method. These subproblems are solved by a hybrid two stage
solution method composed of several techniques such as linear programming relaxation,
dynamic programming, bounding techniques, state dominance relations, core concept and
the greedy principle.

Obviously, the k-max problem is a generalisation of the bottleneck problem which takes
the largest element of a feasible solution into account. Thus, for k = 1 the k-max problem
equals a bottleneck problem. Many interesting generalisations of the bottleneck problem
exist and they can not all be mentioned here. Only some of them shall be mentioned in the
following, where the papers are chosen to give a good overview on the different types of
bottleneck problems and different solution approaches.

Gabow and Tarjan (1988) propose solution methods for two bottleneck optimisation
problems: The bottleneck spanning tree problem on a directed graph with n vertices and m
edges and the bottleneck maximum cardinality matching problem in an undirected graph. For
the spanning tree problem, the single-source shortest path problem of Dijkstra is modified
slightly to obtain an O(min{n log(n) + m,m log(n)})-time algorithm. For the bottleneck
maximum cardinality matching problem an O((n log(n))

1
2m)-time algorithm is developed

using a binary search to find a bottleneck matching that does in general not have maximum
cardinality but comes close to it.
Berman et al. (1990) considers two-criteria problems on networks, where one objective

is any general cost function and the other objective is a bottleneck function. Three problems
are analysed: The first problem minimises the bottleneck function subject to a bound on
the cost function, the second problem deals conversely with the minimisation of the cost
function subject to a constraint on the bottleneck function. In the last problem both criteria
are considered simultaneously to find the Pareto optimal solutions of the problem.
Lexicographic bottleneck problems are discussed, for example, in Burkhard and Rendl

(1991). In addition to minimising the largest element of a feasible solution in the first place,
also the second largest element of the optimal solutions of the bottleneck problem shall be
optimised in the second place. Afterwards, under the solution alternatives, the solutions with
the third and fourth minimal largest elements are sought and so on. This work considers
only problems where every feasible solution has the same number of elements, e.g., travelling
salesman problems and assignment problems. The basic idea is to model the problem as
a sum optimisation problem and to redefine the costs in an adequate way. One approach
consists then in a scaling algorithm on the cost coefficients where one sum optimisation
problem is solved with redefined integer costs. A second procedure is an iterative approach
where at first one bottleneck optimisation problem is solved to find the largest weight,
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afterwards a series of sum problems with new weights is solved.
Punnen et al. (1995) consider a problem that generalises the combinatorial bottleneck

problem and the combinatorial minsum problem in one. A ground set E is partitioned into
α subsets Eβ for β = 1, . . . , α with the aim to minimise the sum of costs of those feasible
solutions S that have maximum costs in the intersection S ∩ Eβ for all β. Note that for
α = 1 this problem is equal to a combinatorial bottleneck problem and for α = |E| it equals a
combinatorial minsum problem. Applications of this model to known problems are shown to
be solvable in polynomial time provided that the value of α is fixed and that the associated
feasibility problem can be solved in polynomial time.
Sokkalingam and Aneja (1998) analyse combinatorial lexicographic bottleneck problems,

e.g., path, assignment and general matching problems, where the corresponding sum op-
timisation problem can be solved as a linear program. The algorithm works with a similar
iterative approach as Burkhard and Rendl (1991), i.e., a series of bottleneck and 0-1-sum
optimisation problems is solved such that the size of the problems is reduced in every iter-
ation. Thereby, an upper bound on the number of iterations needed is known. Instead of
applying a cost scaling procedure, only feasible solutions of the sum optimisation problem
solved in a previous stage are used.
In Bornstein et al. (2012) multi-criteria combinatorial optimisation problems with one

cost and several bottleneck objective functions are addressed, where the cost function can
be of MinSum, MaxSum, MinProd or MaxProd type. A solution approach based on Pinto
and Pascoal (2010) is presented that generates the minimal complete set of Pareto-optimal
solutions as long as at least one optimal solution of the problem considering only the cost
objective function is known. Then, the algorithm runs in polynomial time. The algorithm
consists of two phases: The first phase computes the Pareto optimal candidates by fixing
bounds on the bottleneck functions. The second phase compares the obtained candidates
and deletes the dominated ones. Moreover, a reoptimisation procedure can be used to accel-
erate the solution of the single criteria problems in the first phase because the subproblems
do not have to be started from scratch.

3.6 Other Anomaly Detection Techniques

This section deals with general techniques for detecting anomalies (or often also called
outliers) in diverse research areas and application domains. Anomaly detection is the problem
to find patterns in data sets that do (however) not show the expected behaviour that most
of the data points show. This topic is used in various applications as, for example, fraud
detection for credit cards, electronic commerce, health care, intrusion detection for cyber-
security and military surveillance for enemy activities. Outlier detection is an important
action since anomalies often correspond to significant, often even critical information on
which there is a need to react in some way. As applied in many fields of science, there is no
single formal definition of an outlier. Hawkins (1980) defined them as follows: “An outlier is
an observation that deviates so much from other observations as to arouse suspicions that it
was generated by a different mechanism.” Detecting outliers origins in the field of statistics
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in the 19th century but is today applied in many research areas. A multitude of outlier tests
has been developed. Some key models and tools for outlier analysis are extreme values,
statistical models, clustering models, distance-based models and density based models. In
the following, these models are described shortly to get an general overview of existing
methods. More information on different anomaly detection methods can, for example, be
found in Hawkins (1980), Chandola et al. (2009) and Aggarwal (2013).
Note that all the here described techniques can in general also be applied to identify

outliers among the existing facilities in (continuous) location problems by identifying the
customers with points in Rd . These outliers can be defined differently depending on the
chosen detection method and do not have to equal the definition of outliers used in this
thesis for the p-k-max problems.

The most basic form of outlier detection is the extreme value analysis of 1-dimensional
data which deals with the extreme deviations from the median of probability distributions.
Extreme values are a very specific kind of outliers since only the data points at the margin of
the data set are assumed to be outliers. These anomalies correspond to the statistical tails
of underlying probability distributions. The behaviour of the maxima (resp. minima) can be
described by the three extreme value distributions Gumbel, Féechet and negative Weibull
which are introduced by Fisher and Tippett (1928). They prove that the distribution of
the maximum values of data samples tends to one of these three limiting distributions when
the sample size increases.

The general idea of a statistical model is to assume that the data points are generated by
a mixture of b different distributions with the probability distributions G1, . . . , Gb. Support
vector machines and machine learning play an important role in this context. Eskin (2000)
use a so called mixture model : With a small probability λ, an element of the model is an
anomaly and with probability (1− λ), the element is a normal element. The corresponding
probability distributions are called A for the distribution of the normal data and B for the
anomaly distribution. Detecting the anomalies means then to identify which data points are
generated by distribution A and which by B. At the beginning all elements are assumed to
be in A. Each element of A is then tested for being an outlier by computing the difference
in the log likelihood value of the distribution A if this element is removed and included
in distribution B. If this value exceeds a predefined threshold, the element stays in B,
otherwise it is returned back to A. Therefore, in every step the method needs to recompute
the probability distributions.

A clustering technique can be used to group similar data instances into clusters. Every data
point does either belong to a cluster or is an outlier in this context. Several cluster-based
approaches exist for anomaly detection. Smith et al. (2002), for example, use different
approaches as self-organising maps, k-means clustering and expectation maximisation to
cluster training data and to classify test data afterwards. The approach is based on two
steps: At first the data points are clustered and then the distances to the centers of their
closest clusters are computed. This value is the anomaly score and decides if a point is
an outlier or not. The disadvantage of clustering based detection techniques is that most
algorithms are originally not intended to find anomalies but to find clusters which is kind of
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a complementary aim.
The last two model classes discussed here are distance- and density based models. They

belong to the class of nearest-neighbour-based models. The assumption here is that normal
data instances arise in dense neighbourhoods whereas outliers lie far from their closest neigh-
bours. Thus, this approach is quite similar to the location approach with k-max functions.
A simple distance-based technique is based on defining the anomaly score of a data point

as the distance to its hth nearest neighbour in the given data set. Usually, this value is
taken as a threshold to decide whether a test instance is an outlier or not. Angiulli and
Pizzuti (2002) extend this basic approach by varying the definition of the anomaly score of
a data point to the sum of its distances to its h nearest neighbours. The proposed algorithm
uses a linearisation of the search space by a Hilbert filling curve to efficiently determine the
h nearest neighbours and consists of two phases. The first phase uses an approximation
approach to reduce the number of candidate points that might belong to the solution set.
The second phase determines an exact solution by evaluating the remaining candidates in
an efficient way.
The idea of a density-based detection technique is to compute the density of the neigh-

bourhood of each data point. A point that belongs to a neighbourhood with low density
is assumed to be an anomaly while points in neighbourhoods with high density are normal.
Many density based methods perform rather poorly if the densities of the different regions
are varying greatly. To handle this, several techniques to consider the density of a data point
relative to the density of its neighbours are developed. Breunig et al. (2000), for example,
define local outliers with the help of the local outlier factor (LOF) which measures how
isolated the data point is w.r.t. the direct neighbourhood. For a fixed data point, the factor
is given as the ratio of the average local density of its h nearest neighbours and its own
local density. For an outlier, its local density is then smaller than the density of its nearest
neighbours and thus the LOF is higher than the score of normal instances.
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Chapter 4
Network Location Problems with Outliers

In this chapter location problems with k-max functions on networks are introduced. For the
sake of readability, the name “p-k-max location problem” is often abbreviated as “p-k-max

problem” throughout the rest of this thesis as only location problems are considered. More-
over, the terms “network” and “graph” are used equivalently in the following.
In the first section the p-k-max problem on networks is defined formally and some basic

properties of this problem are proven. An important part for the further analysis of outliers
in center location problems is the relation between p-k-max problems and p-center problems
which is presented in the second section of this chapter. With this relation it is possible to get
more insight into important properties of the optimal solution set of the p-k-max problem.
These properties play an important role throughout this thesis. Moreover, a first algorithm
for solving the p-k-max problem is derived. The next section introduces three possible (mixed-
) integer programming formulations of the p-k-max problem. The first formulation combines
a sorting model and a location-allocation model. Two further formulations avoid the sorting
process. The last section introduces the sets of the equilibrium- and the bottleneck points,
which are essential for nearly all solution approaches presented in this thesis. The algorithm
of Bentley and Ottmann (1979) to compute these points is reviewed in detail.

4.1 Definitions and Basic Properties

To define the p-k-max problem formally, some notations are introduced. Let G = (V, E) be
a finite, connected, simple and undirected graph, specified by a set of nodes V and a set
of edges E. The set V = {v1, . . . , vn} represents the finite set of existing facilities (also
called customers). With w : V → R+ a positive weight wi > 0 is assigned to every node
vi , i = 1, . . . , n. The weights express different levels of importance of the customers, e.g.,
the customers demand.
The set E = {e1, . . . , em} ⊆ V × V contains the m undirected edges of the graph G. By

l : E → R+ every edge ej is associated with a strictly positive length lj > 0, j = 1, . . . , m.
If the endpoints of the edge ej need to be emphasised, ej is also denoted by eab or (va, vb),
where va, vb ∈ V are the endpoints of ej . Similarly, the notations lj and lab are used
interchangeable to denote the length of ej . Note that the length lj of an edge ej does
not necessarily represent the travel distances between its two endnodes. It can also express
a time or the costs needed for travelling this way, or a measurement of importance.
Distances along an edge are linear parametrised, i.e., a point x on an edge eab ∈ E can be

represented by the pair x = (eab, t) with t ∈ [0, 1]. A subset of an edge ej from the point
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x ′ ∈ ej to the point x ′′ ∈ ej is denoted by the interval [x ′, x ′′] ⊆ ej and often referred to as
a subedge of ej . The continuum set of points on the edges of G is denoted by A(G). Note
that V ⊆ A(G).
Let the integer p ∈ {1, . . . , n} describe the number of new facilities to locate and let

X = {x1, . . . , xp} ⊆ A(G) denote a feasible set of new facilities. The distance between a
single point x = (eab, t) and an arbitrary node vi ∈ V is given by

d(vi , x) = min{d(vi , va) + tlab, d(vi , vb) + (1− t)lab}.

The component-wise weighted distance from the finite set of existing facilities V to the
closest new facility in the set X ⊆ A(G) is then defined as the vector

dw (V,X) = (dw (v1, X), . . . , dw (vn, X))> = (w1d(v1, X), . . . , wnd(vn, X))>

with
d(vi , X) = min

x∈X
d(vi , x),

where d(vi , x) is the length of a shortest path connecting vi and x in G as defined above. The
so defined distance function d(vi , x) defines a metric: For all vi ∈ V and x ∈ A(G) it holds
that d(vi , x) ≥ 0 with d(vi , x) = 0 if and only if vi = x (non-negativity), d(vi , x) = d(x, vi)

(symmetry) and d(vi , x) ≤ d(vi , u) + d(u, x) for all u ∈ A(G) (triangle inequality).

Remark 4.1. Note that for a fixed edge eab, a, b ∈ {1, . . . , n}, there is a one to one
correspondence between a point x = (eab, t) and the parameter t ∈ [0, 1]. As soon as
an edge eab is fixed, a point x = (eab, t) can simply be identified by the parameter t.
Throughout this thesis, plots of the weighted distance functions dw (vi , x) for i ∈ {1, . . . , n}
over a fixed edge eab will be with respect to t ∈ [0, 1] even though the distance functions
and most of the argumentation will in general be with respect to x .

For p-k-max problems on graphs, k ∈ {1, . . . , n} denotes the parameter of the k-max

function that specifies the kth largest distance to be minimised.

Definition 4.2 I p-k-max location problem on a network
Let G = (V, E) be a graph as defined above with demands wi > 0, i = 1, . . . , n. For
k ∈ {1, . . . , n} and X = {x1, . . . , xp} with p ∈ {1, . . . , n}, the p-k-max problem is given by

min
X⊆A(G)

fk(X) = min
X⊆A(G)

k-max(dw (V,X)) = min
X⊆A(G)

wσ(k)d(vσ(k), X), (pkMG)

where σ ∈ Σ(X) is a permutation of the existing facilities depending on X, i.e., it satisfies

dw (vσ(1), X) ≥ dw (vσ(2), X) ≥ . . . ≥ dw (vσ(n), X). (4.1)

The general p-k-max problem on a network as defined above can be seen as a p-center
problem with automatic outlier detection for a given parameter k ∈ {1, . . . , n}. Note that the
permutation σ depends on the current solution X and may change whenever X is changed.
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The single facility problem is a special case of the above problem for p = 1.

A set of outliers for a feasible solution X w.r.t. the corresponding permutation σ is defined
as the set

Vk−1 = {vσ(1), . . . , vσ(k−1)}.

Due to |Σ(X)| ≥ 1, the set of outliers w.r.t. a feasible solution X does not have to be
unique. When in the following the notation Vk−1 for the set of outliers w.r.t. X is used, an
arbitrary but fixed selection is assumed in the case that Vk−1 is not unique. A set of outliers
corresponding to an optimal solution is in the following often denoted by V ∗k−1.

Remark 4.3. The relation |Vk−1| = k −1 holds, i.e. the number of outliers is always smaller
by one than the parameter k and at least n − k + 1 existing facilities have to be covered
with service within the coverage radius z = k-max(dw (V,X)). Thus, the number of outliers
is determined by k .

Note that with this definition of Vk−1 based on the k − 1 largest distances, it does not
mean that all outliers are excluded from service or even have a weighted distance larger than
the objective function value. More precisely, the number of the facilities that are not covered
may be smaller, for example, if the distances dw (vσ(c), X), . . . , dw (vσ(k), X) are equal for
some 1 ≤ c < k . Hence, the number of k − 1 outliers is an upper bound for facilities not
receiving service within the coverage radius z (see also Figure 2.2 for an illustration of the
continuous case).

Definition 4.4 I Center defining nodes
Let Vk−1 ⊂ V be a set of outliers for the current solution X. The nodes in the set V \ Vk−1

are called center defining nodes.

Remark 4.5. As for continuous p-k-max problems it is also possible to include zero weighted
nodes into the problem, i.e., nodes vi ∈ V with wi = 0. From a practical point of view this
is often not useful since a zero weighted node corresponds to an existing facility that has
no demand and should therefore not have any influence on the location of the new facility.
Nevertheless, zero weighted facilities will later be needed for technical reasons to retain
the structure of the network for distance evaluations. This occurs, for example, when the
demand of one or several nodes is to be ignored while the corresponding nodes are still
needed as the corresponding adjacent edges can not be deleted. In such cases, the notation
will be partially adapted.
Let G = (VG,EG) be a graph where VG = {v1, . . . , vnG} is the finite set of existing facilities

that are represented by the nG vertices of the graph G and the set of edges EG. The weight
function w : VG → R+ assigns a non-negative weight wi ≥ 0 to all vi ∈ VG, i = 1, . . . , nG.
Moreover, let V := {vi ∈ VG : wi > 0, i ∈ {1, . . . , nG}} be the set of facilities with strictly
positive weights and |V | = n. The p-k-max problem is then defined only with respect to the
facilities in V :

min
X⊆A(G)

fk(X) = min
X⊆A(G)

k-max(dw (V,X)) = min
X⊆A(G)

wσ(k)d
w (vσ(k), X),
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with k ∈ {1, . . . , n} and a permutation σ such that

dw (vσ(1), X) ≥ dw (vσ(2), X) ≥ . . . ≥ dw (vσ(n), X), vσ(i) ∈ V, i = 1, . . . , n.

As a consequence, existing points with weights equal to zero do not contribute to the
objective function as it holds that wid(vi , x) = 0. Thus, the zero-weighted facilities will
usually not be outliers, as long as the parameter k is smaller than the number of positively
weighted customers minus p. It holds V ∗k−1 = {vσ(1), . . . , vσ(k−1)} ⊆ V . Otherwise, i.e., if
n− p < k ≤ nG, the p-k-max problem can be trivially solved with optimal objective function
value of 0.
In the following it is assumed that all weights are strictly positive unless it is stated

otherwise. Note that all results of this thesis remain valid for V $ VG since the condition
V = VG is not used as a necessary requirement.

After having defined the p-k-max problem properly, an important result concerning the
solvability of the problem is stated.

Theorem 4.6 I Existence of an optimal solution
Problem (pkMG) has an optimal solution.

Proof. The feasible region for new locations is closed and bounded. Every weighted distance
function dw (vi , x), vi ∈ V with i ∈ {1, . . . , n}, is continuous over a fixed edge eab ∈ E.
As the k-max function is a sum of these continuous weighted distance functions, the k-max

function is continuous on the feasible area. Moreover, the objective value is bounded from
below by 0 because of the positivity of the edge lengths ∞ > lj > 0 for all j = 1, . . . , m and
the positivity of the demands wi > 0 for all i = 1, . . . , n. Thus, the result is shown. �

The following section provides further properties of p-k-max problems and the correspond-
ing outliers.

4.2 Relation between p-k-max Problems and p-Center Problems

After describing the basic p-k-max problem and some of its properties, the focus is now on
the relation between the p-k-max problem and the well known p-center problem on graphs.
Using the same notation as for the p-k-max problems, the p-center problem on G is defined
by minimizing the center function

min
X⊆A(G)

fpc(X) = min
X⊆A(G)

max
vi∈V

dw (vi , X).

This problem is a special case of (pkMG) for the choice of k = 1, i.e., p new facilities are
to be located such that the largest distance between a vertex and it’s closest new facility is
minimal.
The p-center problem on networks is very well studied and discussed in many papers, see
e.g., the seminal works by Hakimi (1964) and Kariv and Hakimi (1979) and Chapter 3 for
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a brief review. Thus, it would be nice to utilize the relation between these two problems. A
very useful relation can be given as follows.

Lemma 4.7 I Reduction to p-center problems
If the set V ∗k−1 of optimal outliers for an optimal solution X∗ of the p-k-max problem is
known, every p-center optimum X̄ w.r.t. the existing facilities in V \ V ∗k−1 is optimal for the
p-k-max problem with fk(X∗) = fk(X̄) = fpc(X̄), where fpc is evaluated w.r.t. V \ V ∗k−1.

Proof. Let V ∗k−1 denote an optimal set of outliers for an optimal solution X∗ of the p-k-max

problem on G = (V, E), |V ∗k−1| = k − 1. Assume that there exists a p-center optimum X̄

w.r.t. the existing facilities in V \ V ∗k−1 that is not optimal for the p-k-max problem. Thus it
holds fk(X∗) < fk(X̄). Since fk(X∗) is the kth largest distance among the facilities of V to
the nearest point in X∗, it follows that

fk(X∗) = max
vi∈V \V ∗k−1

wid(vi , X
∗) < fpc(X̄).

This contradicts the assumption that X̄ is an optimal p-center solution on V \ V ∗k−1 and the
statement follows. �

Lemma 4.7 implies that the solution of (pkMG) can be reduced to the solution of a p-
center problem on a subset of the existing facilities. However, to get this set of nodes (i.e.,
V \ V ∗k−1) for the associated p-center problem, an optimal set of outliers has to be already
known and excluded from V . Of course, finding these outliers is an optimisation problem
in itself and not easy in general. Lemma 4.7 can be strengthened in the sense that there is
not only an implication from the optimal solution of the p-center problem w.r.t. V \ V ∗k−1 to
the p-k-max problem w.r.t. V , but also vice versa. Moreover, both problems have the same
optimal objective function value.

Theorem 4.8 I Relation between p-k-max and p-center problems
Let V ∗k−1 denote an optimal set of k − 1 outliers for the p-k-max problem on G. Then it
holds: X∗ = {x∗1 , . . . , x∗p} is optimal for the p-k-max problem with set of outliers V ∗k−1 if and
only if X∗ is optimal for the p-center problem w.r.t. V \ V ∗k−1. It holds fk(X∗) = fpc(X∗),
where fk is evaluated w.r.t V and fpc is evaluated w.r.t. V \ V ∗k−1.

Proof. Only one direction of the statement has to be shown as the other direction follows
directly with Lemma 4.7.
Let X∗ = (x1, . . . , xp) be an optimal solution of the p-k-max problem on G = (V, E) with

optimal objective function value fk(X∗), and let V ∗k−1 be a (not necessarily unique) optimal
set of k − 1 outliers for X∗. Moreover, the optimal objective function value fk(X∗) equals
the optimal objective function value fpc(X∗) of the p-center problem for V \ V ∗k−1 because

fk(X∗) = max
vi∈V \V ∗k−1

min
`=1,...,p

dw (vi , x`) = fpc(X∗),
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where fk is evaluated w.r.t V and fpc is evaluated w.r.t. V \ V ∗k−1. Assume that X∗ is not
optimal for the p-center problem on V \ V ∗k−1. Then it holds for an optimal solution X̄ of
the p-center problem for V \ V ∗k−1 that

fk(X̄) ≤ fpc(X̄) < fpc(X∗) = fk(X∗),

where the first inequality holds because

fk(X̄) = min
V̄k−1⊆V,
|V̄k−1|=k−1

max
vi∈V \V̄k−1

wid(vi , X̄) ≤ max
vi∈V \V ∗k−1

wid(vi , X̄) = fpc(X̄).

It follows that fk(X̄) < fk(X∗) which is a contradiction to the assumption that X∗ is optimal
for the p-k-max problem. �

To get an intuitive idea of the set V \ V ∗k−1, two important terms related to the relation
between p-center and p-k-max problems are introduced in the following. Moreover, the
concept of “most contiguous facilities” as defined below is applied to formulate an algorithm
that determines a (not necessarily unique) set V \ V ∗k−1.

Definition 4.9 I Most contiguous facilities
Let p ∈ N be the number of new facilities to locate and let r ∈ {1, . . . , n} be fixed. Moreover,
let

Rr := {R : R ⊆ {1, . . . , n}, |R| = r}.

The existing facilities of a graph G in the set VR∗ = {vi∗1 , . . . , vi∗r } ⊆ V with |VR∗ | = r and
set of indices R∗ = {i∗1 , . . . , i∗r } ∈ Rr are called more contiguous w.r.t. p than facilities
V
R̃

= {ṽi1 , . . . , ṽir } ⊆ V with R̃ = {̃i1, . . . , ĩr} ∈ Rr if the p-center problem with existing fa-
cilities VR∗ realises a smaller objective function value than the p-center problem with existing
facilities V

R̃
.

If VR∗ attains the smallest p-center function value under all possible subsets R ∈ Rr , i.e.,
if

arg min
R∈Rr

 min
X⊆A(G)

 max
is∈R

s=1,...,r

wisd(vis , X)


 =: R∗,

the nodes in VR∗ are called most contiguous w.r.t. p.

The sets VR, R ∈ Rr defining the above defined property are called “more contiguous"
resp. “most contiguous facilities" in the following. Note that these properties depend on the
value of p even though it is not always explicitly mentioned in the following. The expression
“further facilities" is used equivalently to denote a set V

R̃
, R̃ ∈ R, of facilities that realises a

larger p-center value than another set VR∗ , R∗ ∈ R. Note that this definition can analogously
be applied in a continuous problem setting. Example 4.10 gives an illustration of the situation.

Example 4.10. A graph G with |V | = 5, |E| = 6 and all weights equal to one is given and
a set of most continuous facilities w.r.t. p = 1 with r = 4 elements is sought. In the left
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Fig. 4.1: For r = 4, the set VR2
= {v1, v2, v4, v5} is more contiguous w.r.t. p = 1 than the

set VR1
= {v2, v3, v4, v5}, because it provides a smaller center objective value. Moreover,

VR2
is the set of the most contiguous facilities w.r.t. p = 1 of G.

subfigure of Figure 4.1, the set VR1
= {v2, v3, v4, v5} is selected. This subset of V has its

optimal center location in XR1
=
(
e42,

3
4

)
with objective value zR1

= 7. The alternative
set VR2

= {v1, v2, v4, v5} in the right subfigure yields a center objective value of zR2
= 5

with location at the center XR2
=
(
e14,

5
6

)
. Thus, VR2

is more contiguous than VR1
because

of the smaller center objective value. VR2
is also the set of the most contiguous facilities

because all other possible subsets VR ⊂ V with R ∈ R4 have a larger center value as can be
easily verified. Therefore, it follows with Theorem 4.8 that XR2

is the optimal solution of
(pkMG) with k = 2 and p = 1.

Summarizing the discussion above, a p-center problem for the (not necessarily unique) set
of most contiguous facilities VR∗ ⊆ V with cardinality n − k + 1 can be solved to obtain an
optimal solution of the p-k-max problem on G. Also the converse is valid, i.e., an optimal
solution for the p-center problem for VR∗ can be derived from an optimal location of pkMG.

Corollary 4.11 I Relation p-k-max and p-center
X∗ =

(
x∗1 , . . . , x

∗
p

)
is optimal for the p-k-max problem if and only if X∗ is optimal for the

p-center problem on a set of most contiguous facilities VR∗ ⊆ V with R∗ ∈ Rn−k+1.

Based on the statement of Corollary 4.11, a first algorithm for solving the p-k-max problem
can be developed. The idea is to determine a set of most contiguous facilities in V and then
to solve a p-center problem on this subset of existing facilities with an appropriate algorithm
(see, for example, Tansel et al., 1983). The advantage of this procedure is that the p-center
problem is convex. Therefore, the problem of analysing the non-convex p-k-max problem
can be reduced to subproblems that are comparably easy to solve.

The easiest way to get the most contiguous facilities is by a complete enumeration as
described in Algorithm 2. For that purpose, all possible subsets of V with cardinality n−k+1

are analysed for their p-center objective value. Every subset with the smallest value is a most
contiguous subset. This approach has a complexity of O(nn−k+1 ·g(n, k, p)) where g(n, k, p)

is the complexity of solving a p-center problem with n−k+1 customers in G and the number
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of subsets to be investigated is

|R| =

(
n

n − k + 1

)
= O(nn−k+1).

The p-center problem can, for example, be solved with the algorithm of Drezner (1984)
in O(n2p+1 log(n)) time (see also the other references regarding the p-center problem
on networks in Chapter 3). Therefore, it follows an exponential overall complexity of
O(nn−k+2p+2 log(n)) for Algorithm 2. Note that the algorithm can be parallelised easily
as every set VR can be evaluated independently from the others.

Algorithm 2 Solving p-k-max problems based on most contiguous sets

Input: Graph G = (V, E) with wi > 0 ∀ i = 1, . . . , n, k ∈ {1, . . . , n − p}, p ∈ {1, . . . , n}
1: Set X := ∅, zbest :=∞
2: for all R ∈ Rn−k+1 do

3: Determine the set of optimal solutions XR of the p-center problem on VR ⊂ V
4: Set zR := fpc(XR) with XR ∈ XR . Optimal center-value of VR
5: if zR < zbest then . New most contiguous set

6: X := XR
7: zbest := zR

8: else if zR = zbest then . Currently most contiguous sets

9: X := X ∪ XR
Output: Set of optimal solutions X with z∗ := zbest .

A possibility to reduce the number of candidate sets is described in Lemma 5.5 in Sec-
tion 5.1 below and in the following explanations for unweighted 1-k-max problems. A the-
oretical improvement in terms of the worst case complexity bound can not be shown but
the practical savings depending on the structure of the graph may speed up the solution
process. Moreover, more efficient concepts for solving the p-k-max problem are analysed
and presented in Chapter 5 for the special case of p = 1 and in Chapter 6 for p ≥ 2.

Remark 4.12. The approach of testing all subsets of existing facilities of size n− k + 1 can
also be applied to continuous p-k-max problems as given in Definition 2.13 since the relation
between a p-k-max problem and a p-center problem holds equivalently in the continuous
case.

Corollary 4.13 I Uniqueness
Let X∗ be an optimal solution of the p-k-max problem on G = (V, E). Then it holds: X∗

is unique if and only if all sets of most contiguous facilities VR ⊆ V with R ∈ Rn−k+1 have
the same unique p-center solution X∗.
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The situation that the set of most contiguous facilities is not unique is not necessarily an
exceptional case. It may occur quite often depending on the lengths of the edges and the
weights of the nodes. All sets of most contiguous facilities have the same unique p-center
solution if, for example for p = 1 and wi = 1 for all i = 1, . . . , n, the center point is in a
node and all existing nodes are connected by an edge of length one just to this center point.
Then it does not matter which nodes, except for the center, are the outliers. Because of
that all subsets of V of size n − k + 1 are most contiguous facilities with the same center
point.
As a further important fact concerning (pkMG), the NP-hardness of the multi-facility

p-k-max problem on a general graph, can be proven using the above results.

Theorem 4.14 I NP-hardness
The p-k-max problem on a graph G is NP-hard for all k ≥ 1 arbitrary, but fixed.

Proof. Suppose w.l.o.g. that wi ≥ 1 for all vi ∈ V . The NP-hardness of the p-k-max problem
is shown by a reduction from the p-center problem. Consider an instance of the p-center
problem on a finite, connected, simple and undirected graph G = (V, E) with |V | = n and
|E| = m. This problem is known to be NP-hard which was shown by Kariv and Hakimi
(1979). Let z1 be the optimal objective value of the 1-center problem on G.
It is assumed that n is large enough such that k < n − p + 1 (otherwise the problem is

trivially solvable). The p-center problem should now be solved using an instance of (pkMG)
with n + k − 1 vertices defined as follows: The set of nodes V of G is extended by k − 1

artificial nodes vn+a, a = 1, . . . , k − 1. Connect the new vertices to the nodes of G by
edges to node v1 ∈ V with length l1,n+a = 2z1 + 1 for a = 1, . . . , k − 1. Then, the
resulting graph G′ = (V ′, E′) with |V ′| = n + k − 1 and |E′| = m + k − 1 is connected (see
Figure 4.2 for an illustration). The weights of the additional nodes are set to wn+a = 1 for
all a = 1, . . . , k − 1. By this construction it is guaranteed that d(vi , vs) > 2z1 for all vi ∈ V
and vs ∈ V ′ \ V , i.e. the distance from an arbitrary new vertex vs ∈ V ′ \ V to each vertex
vi ∈ V and also the distances between pairs of the artificial vertices are larger than z1.
Suppose now that X∗ = {x∗1 , . . . , x∗p} ⊆ A(G′) is an optimal solution of the p-k-max

problem w.r.t. V ′ with optimal objective value z∗. Then z∗ ≤ z1, since locating one new
facility (w.l.o.g. x1) in an optimal 1-center location w.r.t. V and setting Vk−1 = V ′\V always
yields a feasible solution of the p-k-max problem w.r.t. V ′ with objective value z ≤ z1 (and
X∗ is assumed to be optimal for the p-k-max problem w.r.t. V ′.)

Case 1: V ∗k−1 = V ′ \ V
With Corollary 4.11 it follows that the optimal solution X∗ of the p-k-max problem
w.r.t. V ′ is also an optimal solution of the p-center problem w.r.t. V .

Case 2: vs /∈ V ∗k−1 for at least one vs ∈ V ′ \ V
Assume w.l.o.g. that x∗1 ∈ X∗ is the new facility that covers the artificial node vs . Since
z∗ ≤ z1, x∗1 covers only vs and no other node of G′ in this solution. An alternative
optimal solution X̄ = {x̄1, x

∗
2 , . . . , x

∗
p} of the p-k-max problem can be constructed out

of X∗ by locating x̄1 in an arbitrary outlier vt ∈ V ∗k−1∩V and setting the artificial node
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Fig. 4.2: Instance of (pkMG) on G′ = (V ′, E′) with V ′ = {v1, . . . , vn+k−1} constructed for
a given instance of the p-center problem on G = (V, E) with V = {v1, . . . , vn}

vs to be an outlier instead. As x∗1 only covered one node, x̄1 does not have to cover
more nodes than vt to guarantee that z̄ = z∗.

This procedure is iterated until a new solution ¯̄X = {¯̄x1, . . . , ¯̄xp} is obtained with
¯̄x1, . . . , ¯̄xp ∈ A(G) such that the corresponding set of outers is ¯̄Vk−1 = V ′ \ V . Thus,
the condition of Case 1 is satisfied and ¯̄X is also an optimal solution of the p-center
problem w.r.t. V .

Summarizing, an optimal solution of an instance of the p-center problem can be found by
solving a p-k-max problem on the extended graph G′. This transformation is done in poly-
nomial time since the 1-center problem on G can be solved in polynomial time to obtain
z1 and at most p iterations of the shifting are needed in Case 2 to obtain a suitable solu-
tion. Therefore, the NP-hard p-center problem is polynomial time reducible to the p-k-max

problem and thus (pkMG) is NP-hard itself. �

As a consequence, the p-k-max problem can not be solved by an algorithm in polynomial
time, provided that P 6= NP . Note that, in the case of p > n− k + 1, the p-k-max problem
can trivially be solved (see also Lemma 6.1 and Lemma 6.2).

4.3 Mixed Integer Formulations of the p-k-max Problem

In this section, three formulations of the p-k-max problem based on (mixed-) integer pro-
gramming models are introduced. The first integer linear programming formulation is com-
posed of two subproblems, where the first one corresponds to the sorting of the weighted
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distance vector and the second one is a location-allocation problem to locate the new facil-
ities. The second formulation leads also to an integer piecewise linear programming model,
but without explicitly formulating the sorting of the distance vector. The third formulation
is, moreover, not based on a finite dominating set.

4.3.1 An Integer Linear Formulation Based on Sorting

The first integer formulation of the p-k-max problem is based on the formulations of the
discrete ordered median problem in Domínguez-Marín (2003). The problem there is discrete,
i.e., the location of the new facilities is restricted to the nodes of the underlying graph. Thus,
a candidate set of possible optimal locations is known in advance. As for the p-k-max problem
the location of the new facilities is not only allowed in the nodes of G but also in every point
on the edges of the graph, a finite candidate set has to be known to apply this approach.
Different finite dominating sets that can be used as such a candidate set are presented in
Chapter 5 and Chapter 6 of this thesis. Hence, the aim of the following model is to evaluate
a candidate set (that is assumed to be given) to find the optimal solutions therein.
The discrete ordered median problem on graphs can be formulated as a combination of

two subproblems: The first subproblem is an integer linear problem that corresponds to the
sorting of the vector of weighted distances. The second subproblem is an integer linear
program to find the locations of the new facilities and the corresponding allocation of the
customers to the new facilities. Domínguez-Marín (2003) (based on Nickel, 2001) starts
with a quadratic formulation and gives also several linearisations of the problem. Due to
the close connection of a p-k-max problem to an ordered median problem, most of these
formulations can be transferred with just some small adjustments. The first linearisation is
applied to the p-k-max in the following as it gives a good insight into the structure of the
problem. Let C be a finite set of possible locations for the individual new facilities and let
|C| = q be the number of candidate locations in the set C. The weighted distance between
a node vi , i = 1, . . . , n, and a candidate location xj ∈ C, j = 1, . . . , q, is assumed to be
known in advance and is denoted by di j . Moreover, define two binary variables as

yj =

{
1, if a new facility is located at site xj ∈ C
0, otherwise

for all j = 1, . . . , q and

xaij =


1, if customer vi is allocated to site xj ∈ C and this allocation

corresponds to the ath largest weighted distance

0, otherwise.

for all i = 1, . . . , n, j = 1, . . . , q and a = 1, . . . , n.

The integer linear programming formulation (IP1) of the (discrete) p-k-max problem can
then be given as:
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min

n∑
i=1

q∑
j=1

di jx
k
ij (4.2)

s.t.
n∑
a=1

q∑
j=1

xaij = 1 ∀ i = 1, . . . , n (4.3)

n∑
i=1

q∑
j=1

xaij = 1 ∀ a = 1, . . . , n (4.4)

n∑
i=1

q∑
j=1

di jx
a
ij ≥

n∑
i=1

q∑
j=1

di jx
a+1
i j ∀ a = 1, . . . , n − 1 (4.5)

q∑
j=1

yj = p (4.6)

n∑
a=1

xaij ≤ yj ∀ i = 1, . . . , n, ∀ j = 1, . . . , q (4.7)

xaij ∈ {0, 1}, yj ∈ {0, 1} ∀ a, i = 1, . . . , n, ∀ j = 1, . . . , q (4.8)

For a fixed allocation of the customers to a fixed set of new facilities, the variable xkij is
equal to one for only one combination of i , j, k and zero otherwise. Therefore, the sum in the
objective function (4.2) has only one non-zero term and hence equals the minimisation of
the kth largest weighted distance between the customers vi , i = 1, . . . , n, and the candidate
locations xj , j = 1, . . . , q. The constraints (4.3) to (4.5) determine the permutation of
the vector of weighted distances. The sorting process is modelled by an assignment problem
with an additional constraint to ensure the correct sorting. The constraint (4.3) ensures that
each weighted distance is placed at only one position of the sorted distance vector. Similarly,
the constraint (4.4) ensures that each position of the sorted distance vector contains only
one weighted distance. Moreover, these two constraints guarantee that each customer is
assigned to exactly one new facility. Constraint (4.5) guarantees the non-increasing order
of the sorted weighted distances. The location of the new facilities is modelled based on
a linearisation of a classical location-allocation problem as proposed, for example, by Labbé
et al. (1995). Constraint (4.6) sets the number of new facilities to p. A customer can only
be covered with service from a candidate site, if a new facility is built there. Thus, constraint
(4.7) ensures the allocation of a customer to a open new facility.
The model (IP1) hasO(qn2) variables andO(qn) constraints. For alternative formulations

of the discrete ordered median problem see Domínguez-Marín (2003).

4.3.2 A Mixed Integer Formulation Based on Identifying Outliers

In this section two further formulations of the p-k-max problem are presented. The first
model is an integer programming formulation which requires a finite dominating set of the
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problem to be known. While the model (IP1) is based on the sorting process to determine
the correct permutation of the vector of weighted distances, the following formulation does
not need to sort the elements of the distance vector explicitly. The idea is to model the
identification of the outliers and to skip the corresponding distances to these nodes in the
objective function such that the k − 1 largest distances are not taken into account without
the need to find them by sorting. This reduces the number of variables of the model.
Again, the formulation is based on a finite candidate set which has to be derived in a

preprocessing step. The finite dominating sets presented in Chapter 5 and Chapter 6 can
be used here. The notation is equivalent to that of formulation (IP1), i.e., C is a finite set
of possible locations for the individual new facilities with |C| = q. The weighted distance
dw (vi , xj) for i = 1, . . . , n and xj ∈ C, j = 1, . . . , q, is assumed to be known in advance and
is denoted by di j . Moreover, three binary variables are defined as

yj =

{
1, if a new facility is located at site xj ∈ C
0, otherwise

for all j = 1, . . . , q,

xi j =

{
1, if customer vi is allocated to site xj ∈ C
0, otherwise

for all i = 1, . . . , n and j = 1, . . . , q, and

αi =

{
1, if node vi is an outlier

0, otherwise

for all i = 1, . . . , n. The integer programming formulation (IP2) of the p-k-max problem
can then be given as:

min max
i=1,...,n

q∑
j=1

xi jdi j (4.9)

s.t.
n∑
i=1

αi = k − 1 (4.10)

q∑
j=1

xi j = 1− αi ∀ i = 1, . . . , n (4.11)

q∑
j=1

yj = p (4.12)

xi j ≤ yj ∀ i = 1, . . . , n, ∀ j = 1, . . . , q (4.13)

xi j ∈ {0, 1} ∀ i = 1, . . . , n, ∀ j = 1 . . . , q (4.14)

yj ∈ {0, 1}, αi ∈ {0, 1} ∀ i = 1, . . . , n (4.15)
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The first constraint (4.10) guarantees that an optimal solution has exactly k−1 outliers. The
following constraint (4.11) ensures a link between a node being an outlier and its allocation:
A customer is only allocated to a new facility, if this customer is not an outlier, i.e., outliers
are not served by any of the new facilities. Non-outliers are guaranteed to be allocated
to exactly one new facility. With (4.12), the number of new facilities is fixed to p. The
constraint (4.13) ensures that non-outliers are only allocated to opened new facilities.
The binary variable xi j is zero for all j = 1, . . . , q if node vi is an outlier. Thus, for a fixed

non-outlier vi , i ∈ {1, . . . , n}, the sum
∑q
j=1 xi jdi j equals the weighted distance between this

customer and its corresponding new facility xj whereas this sum is zero for outlier nodes.
Hence, the objective function (4.9) minimises the maximum of the distances between the
center defining nodes and their corresponding new facilities. As it is assured that the k − 1

distances to the outliers are not taken into account, no sorting of the distance vector is
needed. Note that the objective function is piecewise linear.
This model consists ofO(nq) variables andO(nq) constraints which makes it much smaller

w.r.t. the number of variables than the model (IP1). A quite similar model is introduced in
Daskin and Owen (1999).

A drawback of the above presented models (IP1) and (IP2) is that they are based on a
finite dominating set for the underlying p-k-max problem. Of course, its calculation causes
additional effort and thus it would be desirable to overcome this preprocessing step. It is
possible to adjust the model (IP2) such that it does not only evaluate predefined candidates
but that it yields optimal new facilities located somewhere on the edges or in the nodes of
the graph. For this purpose, the binary variables αi with i = 1, . . . , n are defined as above.
The variable xi j is redefined to

xi j =

{
1, if customer vi is allocated to site xj ∈ A(G)

0, otherwise

for all i = 1, . . . , n and j = 1, . . . , p. The mixed-integer programming formulation (IP3) of
the p-k-max problem can then be given as:

min max
i=1,...,n

p∑
j=1

xi jd
w (vi , xj) (4.16)

s.t.
n∑
i=1

αi = k − 1

p∑
j=1

xi j = 1− αi ∀ i = 1, . . . , n (4.17)

xj ∈ A(G) ∀ j = 1, . . . , p (4.18)

xi j ∈ {0, 1} ∀ i = 1, . . . , n, ∀ j = 1, . . . , p (4.19)

αi ∈ {0, 1} ∀ i = 1, . . . , n
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The main difference between the formulation (IP3) and the model (IP2) is that the binary
variables yj , j = 1, . . . , q, are substituted by continuous variables xj ∈ A(G), j = 1, . . . , p,
see constraint (4.18). Thus, xj specifies the location of a new facility on A(G) and not a
decision to open a facility in a candidate or not. The number p of new facilities is fixed
as the index j goes from 1 to p in the constraints (4.17), (4.18) and (4.19) and thus an
extra constraint to fix this number is not needed. The constraint that ensures the correct
number of outliers is unchanged whereas the constraint that allocates customers only to
opened facilities is not needed here.
Note that the objective function is non linear now since the distances dw (vi , xj) can in

general not be computed in a preprocessing step because xj is not known. The model (IP3)
consists of O(np) variables and O(np) constraints, which is, due to p � q, significantly
smaller than the previous two formulations. However, it is not possible to solve the prob-
lem with this formulations directly, some adjustments have to be included to evaluate the
distances in the objective function (4.16).

Remark 4.15. The formulation (IP3) can equivalently be applied to model a continuous
p-k-max problem. By replacing constraint (4.18), for example, by the constraint xj ∈ R2 for
j = 1, . . . , p, a p-k-max problem in the plane can be modelled.

4.4 Equilibrium- and Bottleneck Points

An often used approach to solve ordered median problems on graphs is to derive a finite
dominating set and to develop an algorithm based on this set. As p-k-max problems are a
special case of ordered p-median problems for a specific vector of weights λ, some of these
concepts can (at least partly) be transferred to p-k-max problems. The so called equilibrium
points of a graph play an important role in the theory of ordered median functions and will
be essential for the p-k-max analysis as well. In this section, the calculation of these points
is described. They are needed later for nearly all approaches to solve the p-k-max problems.
Therefore, an algorithm to compute the equilibrium points efficiently is presented in detail.
A formal definition following Nickel and Puerto (2005) is given below.

Definition 4.16 I Equilibrium points
For all pairs of nodes vi ,vj ∈ V , i 6= j , define the set

EQ′i j =
{
x ∈ A(G) : wid(vi , x) = wjd(vj , x)

}
.

Moreover, let EQi j be the relative boundary of EQ′i j , i.e. the set of endpoints of the closed
subedges contained in EQ′i j . Then,

EQ :=
⋃
i ,j
i 6=j

EQi j

is the set of equilibrium points of the graph G.

77



CHAPTER 4. NETWORK LOCATION PROBLEMS WITH OUTLIERS

According to this definition, equilibrium points have the same weighted distance to at least
two existing facilities. EQ′i j can have infinitely many elements. In this case EQ′i j is not equal
to the finite set EQi j . If EQ′i j is finite, then both sets are equal.
Whenever the notation of the indices i , j is not sufficient to characterise the corresponding

nodes precisely, the set of equilibrium points will instead be written as EQvi ,vj . Sometimes it
is important to note on which edge an equilibrium point is located. In this case the notation
EQabij for the set of equilibrium points of the nodes vi , vj on the edge eab is used. Note
that EQabij = EQabcd is possible for i , j not equal to c, d , i.e., one equilibrium point may be
generated by more than one pair of nodes. Thus, the elements in EQ do not have to be
unique. Moreover, also individual equilibrium points y ∈ EQi j are sometimes denoted by yi j
to emphasise the nodes vi and vj defining this particular equilibrium point.

Definition 4.17 I Consecutive equilibrium points
Two points x ′, x ′′ ∈ EQ are called consecutive, if there is no other x̃ ∈ EQ \ {x ′, x ′′} on any
shortest path between x ′ and x ′′.

Examples for the sets EQ and EQ′ are shown in Figure 4.3. All weights of nodes of
the considered graph are equal to one. The set of equilibrium points of the graph G is
EQ = {va, vb, x1, x2, x3, x4}, where, for example, x1 is an equilibrium point of the nodes vi
and va. The set EQ′i j has infinitely many elements as it equals the complete edge eab ∈ E.
Thus, only its endpoints va and vb are elements of the set EQi j . The two equilibrium points
x3 ∈ eab and x4 ∈ eab are consecutive.

vi vj

va

vb

x1 ∈ EQia x2 ∈ EQja

x3 ∈ EQib = EQjb

x4 ∈ EQab2

1 1

Fig. 4.3: Example problem where EQ′i j is not
equal to EQi j since EQi j = eab has infinitely
many elements

0 1

dw (vj , x)

dw (vi , x)

dw (vl , x)

t1 t2 t3 t4t ′

Fig. 4.4: Examples of distance functions
over an edge eab with xi = (eab, ti) ∈ EQ
for i = 1, . . . , 4

The equilibrium points of G can be determined by computing the intersection points of
the graphs of the distance functions dw (vi , x) over an edge eab ∈ E, i.e., for x = (eab, t)

with t ∈ [0, 1] and for all nodes vi ∈ V and for all a, b = 1, . . . , n. These intersections
yield all equilibrium points on eab because in these points the distance of x to vi equals the
distance of x to vj for some vi , vj ∈ V , i 6= j .
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The distance function dw (vi , x), i ∈ {1, . . . , n}, on eab is a piecewise linear function with
at most two linear segments. The case of two linear segments arises if the maximum of
dw (vi , x) on eab is attained in the interior of eab. The breakpoint is then attained in a so
called bottleneck point. The definition below is taken from Nickel and Puerto (2005).

Definition 4.18 I Bottleneck point
A point x = (eab, t) on an edge eab ∈ E is called a bottleneck point of a node vi ∈ V , if

dw (vi , x) = wi(d(x, va) + d(va, vi)) = wi(d(x, vb) + d(vb, vi)).

BNi denotes the set of all bottleneck points of a node vi ∈ V and

BN :=

n⋃
i=1

BNi

is the set of all bottleneck points of G.

Analogous to the notation used for equilibrium points, BNabi denotes the set of all bot-
tleneck points of node vi on an edge eab ∈ E. In a bottleneck point x = (eab, t) it does
not matter whether a path from a node vi ∈ V , i ∈ {1, . . . , n} \ {a, b}, to x contains the
node va or vb because both alternatives lead to the same overall distance. An example for a
bottleneck point at x = (eab, t

′) can be seen in Figure 4.4. Note that due to the assumption
of wi > 0, the weighted distance functions are concave over every edge (see Figure 4.4).

Remark 4.19. For every edge eab and every pair of nodes vi , vj ∈ V the inequality

|EQi j ∩ eab| ≤ 2

holds. In particular, if
EQi j ∩ eab = EQ′i j ∩ eab

for all vi , vj with vi 6= vj on eab, then the graphs of every pair of weighted distance functions
dw (vi , x) and dw (vj , x) can have at most two intersection points over the edge eab. This
holds due to the fact that if, for example, the graph of the function dw (vi , x) consists of two
linear segments, these segments have slopes wi and −wi . Thus, the graphs of the functions
dw (vi , x) and dw (vj , x) can intersect in at most two points. If

EQi j ∩ eab 6= EQ′i j ∩ eab

then only the relative boundary of the unique intersection segment is considered in the
set EQi j . The relative boundary consists of the two endpoints of this segment. As a
consequence, the number of equilibrium points on G is bounded by O(mn2).

In the following a sweepline technique following Bentley and Ottmann (1979) based on
Shamos and Hoey (1976) is presented which computes the intersection points of an ar-
rangement of α line segments in R2. This approach can later be applied to the arrangement
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defined by the graphs of the weighted distance functions over a fixed edge to compute
the equilibrium points of G. Let every line segment of the arrangement be denoted by Si ,
i = 1, . . . , α. Moreover, every line segment Si has a left and a right endpoint, denoted by
e1(Si) resp. e2(Si) for all i = 1, . . . , α. As the arrangement is contained in R2, every point
has two coordinates, an x-component and a y -component.

The basic idea of the algorithm is to sweep a vertical line ` through the x-components of
the endpoints of the α given line segments of the arrangement. For every fixed position x
of the sweepline `, a total order of the line segments is defined by the y -components of the
positions in which the segments intersect `. For two line segments Si and Sj , this ordering
relation is denoted by Si � Sj if the line segment Si lies over the segment Sj at position x .
With this ordering relation, intersection points can be detected easily: If Si � Sj at position
x1 but Sj � Si at position x2 for x1 ≤ x2, then the segments must intersect between x1 and
x2.

The main loop of the algorithm performs a sweep of the vertical line ` from left to right
through the set of segments. Whenever the position of ` equals the x-component of an
endpoint ej(S), j ∈ {1, 2}, of a segment S, an event point is defined and the sweeping
stops. In every event point the current ordering of segments is stored in a balanced tree R.
If ej(S) is the left endpoint of S, the segment is inserted at the correct position into R. If
ej(S) is the right endpoint, then it is deleted from R. After inserting S into R, S and its
upper neighbour u(S) with respect to the current ordering are checked for an intersection.
The same is done for S and its current lower neighbour l(S) because if two lines intersect,
they have to become neighbours in R for some x to the left of the intersection point. With
the same argument, u(S) and l(S) are explored for intersections when S is deleted from
R. Whenever an intersection of segments Si and Sj is detected, the intersection point itself
also becomes an event point, denoted by iSi ,Sj . If ` stops in iSi ,Sj , Si and Sj have to be
swapped in R because in an intersection point the order with respect to ` changes from
Si � Sj to Sj � Si (or vice versa). Therefore, it has to be assumed that not more than two
lines meet in one point. After the swap, Sj and u(Sj) as well as Si and l(Si) are checked
for intersections if iSi ,l(Si ) resp. iSj ,u(Sj ) /∈ R.
The number of event points is 2α+s, assuming that s ≤

(
α
2

)
is the number of intersection

points. Thus, the main loop of the algorithm has to be executed exactly 2α+s times. Every
operation on R can be performed in O(log(α)) since it is implemented with a balanced tree.
The set of event points should be implemented in form of a heap, so that every operation can
be realised in O(log(α)). Consequently, the total running time of the algorithm is bounded
by O((α + s) log(α)). A slightly modified formulation of this algorithm in pseudocode can
be found in Section 5.

In order to compute the set of equilibrium points EQ, some adjustments of the algorithm of
Bentley and Ottmann (1979) have to be considered. For example, it is necessary to consider
segments with endpoints that share the same x-coordinate as well as segments that have
more than one intersection point (cases that were excluded in Bentley and Ottmann, 1979).
This can be realised without increasing the overall complexity of the algorithm. For some
a, b ∈ {1, . . . , n} with a 6= b let Lab be the line arrangement over an edge eab ∈ E defined
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by the graphs of the weighted distance functions dw (vi , x) for x = (eab, t) and vi ∈ V ,
i = 1, . . . , n. Recall that there is a one to one correspondence between a point x = (eab, t)

and the parameter t ∈ [0, 1]. Since the arrangement of lines is considered only over a fixed
edge eab ∈ E, a point x = (eab, t) can simply be identified by the parameter t.

One difference between Lab and a classical line arrangement as used for the algorithm of
Bentley and Ottmann (1979) is that a distance function dw (vi , x) may consist of two linear
parts such that the corresponding Si is not a line segment. In this case, every linear part of
the graph of dw (vi , x) has to be treated as a single line segment. In particular, it is defined
that

dw (vi , x) = dw (vi , (eab, t)) =

wi(d(vi , va) + tlab) := Sαi (t) for t ∈ [0, tb]

wi(d(vi , vb) + (1− t)lab) := Sβi (t) for t ∈ [tb, 1],

where xb = (eab, tb) is the bottleneck point of dw (vi , x) over eab. The two linear segments
of the graph of dw (vi , x) are then denoted by

Si =

{(t, S
α
i (t)) : t ∈ [0, tb]} := Sαi on [0, tb]

{(t, Sβi (t)) : t ∈ [tb, 1]} := Sβi on [tb, 1].
(4.20)

To simplify notation, all segments are referred to as Si in the following, even in the case
that they consist of two new sub-segments. As bottleneck point never are relevant event
points by themselves, no equilibrium points are lost in this way. All line segments of Lab start
in va (t = 0), or end in vb (t = 1). Hence, to get an order of insertion and deletion, the
endpoints of the segments are sorted lexicographically by their dw (vi , x)-value w.r.t. t = 0

in va and w.r.t. t = 1 in vb. Thus, the endpoints of the segments are processed from the
uppermost to the lowermost in the endpoints of the edge.

If two line segments intersect in infinitely many points, then just the boundary of the
intersection segment (which equals EQ′) is needed. In this case, it is possible to obtain
two intersection points for two segments and it follows for the number s of intersection
points over eab that s ≤ 2

(
n
2

)
. Since all equilibrium points on a particular edge of G can be

generated in O((n + s) log(n)) time with s ≤ 2
(
n
2

)
, the computational effort for the whole

network is bounded by O(m(n + s) log(n)). Note that for s &
(
n
2

)
the sweepline algorithm

has a higher complexity than checking all
(
n
2

)
pairs of distance functions on one edge for

intersections, what takes O(n2). Thus, the practical efficiency is problem dependent and
related to the structure of the underlying network.
The overall procedure to compute the equilibrium points of one edge of a graph is sum-

marised in Algorithm 3. Note that the algorithm can be implemented easily in parallel as
the equilibrium points of one edge are independent from the equilibrium points of the other
edges. To simplify the notation of the algorithm it is assumed that a point in the arrange-
ment (e.g., the endpoints of the line segments or the intersection points of two segments)
over edge eab has the two components t ∈ [0, 1] and y = dw (v , (eab, t)) for some node
v ∈ V .
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Algorithm 3 Equilibrium points of graph G (based on Bentley and Ottmann, 1979)

Input: Edge eab ∈ E of G; heap Q with root r(Q): set of endpoints e(S) = (t, y), sorted

lexicographically by t and y -value

1: while Q 6= ∅ do
2: Set binary tree R := ∅ and EQ := ∅
3: Set x := r(Q)

4: if x is left endpoint of segment Si then . Include Si into the ordering

5: Insertion(x, R,Q)

6: if x is right endpoint of segment Si then . Delete Si from the ordering

7: Deletion(x, R,Q)

8: if x is intersection point of Si � Sj then . Swap ordering to Sj � Si
9: NewEquilibrium(x, R,Q,EQ)

Output: Set EQ of equilibrium points of G.

1: procedure Insertion(x,R,Q)

2: if Si intersects u(Si) then . Check upper neighbour

3: if iSi ,u(Si ) = Si then . Infinitely many intersection points

4: Insert e1(Si), e2(Si) into Q

5: Insert i into R

6: else if iSi ,u(Si ) = u(Si) then . Infinitely many intersection points

7: Insert e1(u(Si)), e2(u(Si)) into Q

8: Insert i into R

9: else . Unique intersection point

10: Insert iSi ,u(Si ) into Q

11: Insert i into R

12: if Si intersects l(Si) then . Check lower neighbour

13: if iSi ,l(Si ) = Si then . Infinitely many intersection points

14: Insert e1(Si), e2(Si) into Q

15: Insert i into R

16: else if iSi ,l(Si ) = l(Si) then . Infinitely many intersection points

17: Insert e1(l(Si)), e2(l(Si)) into Q

18: Insert i into R

19: else . Unique intersection point

20: Insert iSi ,l(Si ) into Q

21: Insert i into R

22: return R,Q
23: end procedure
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1: procedure Deletion(x, R,Q)

2: if iu(Si ),l(Si ) /∈ Q ∧ u(Si) intersects l(Si) then . Check upper and lower neighbour

3: Insert iu(Si ),l(Si ) into Q

4: Delete i from R

5: return R,Q
6: end procedure

1: procedure NewEquilibrium(x, R,Q,EQ)

2: EQ = EQ ∪ {x}
3: Swap positions of i and j in R such that Sj � Si . Change ordering

4: if Sj intersects u(Sj) ∧ iSj ,u(Sj ) /∈ Q then . Check upper neighbour

5: Insert iSj ,u(Sj ) into Q

6: if Si intersects l(Si) ∧ iSi ,l(Si ) /∈ Q then . Check lower neighbour

7: Insert iSi ,l(Si ) into Q

8: return R,Q,EQ
9: end procedure

Example 4.20. The sets of equilibrium points EQ12
i ,j for i , j = 1, . . . , 5 with i 6= j of the

edge e12 of a Graph G (see Figure 4.5) have to be computed. Figure 4.6 shows the line
arrangement of the graphs of the distance functions dw (V, x) for x ∈ e12. Algorithm 3
determines the equilibrium points i43 = EQ12

34, i52 = EQ12
25, i21 = EQ12

12, i15 = EQ12
15,

i14 = EQ12
14, i13 = EQ12

13 and i45 = EQ12
45 as intersection points of the lines. Applying the

algorithm to all edges of G, the whole set

EQ =

{
EQ12

34 =

(
e12, 0

)
, EQ12

25 =

(
e12,

1

4

)
, EQ12

12 =

(
e12,

1

3

)
, EQ12

15 =

(
e12,

1

2

)
,

EQ12
14 =

(
e12,

3

4

)
, EQ12

13 =

(
e12,

9

10

)
, EQ12

45 = (e12, 1) , EQ13
34 = (e13, 0) ,

EQ13
12 =

(
e13,

1

2

)
, EQ13

15 =

(
e13,

1

2

)
, EQ13

25 =

(
e13,

1

2

)
, EQ13

13 =

(
e13,

3

5

)
,

EQ13
14 =

(
e13,

3

4

)
, EQ13

35 =

(
e13,

3

4

)
, EQ13

23 =

(
e13,

3

4

)
, EQ13

25 = (e13, 1) ,

EQ23
45 = (e23, 0) , EQ23

34 =

(
e23,

1

5

)
, EQ23

35 =

(
e23,

1

2

)
, EQ23

23 =

(
e23,

3

4

)
,

EQ24
45 = (e24, 0) , EQ23

25 = (e23, 1) , EQ24
24 =

(
e24,

2

3

)
, EQ34

25 = (e34, 0) ,

EQ34
24 =

(
e34,

1

3

)
, EQ34

45 =

(
e34,

1

3

)
, EQ34

34 =

(
e34,

2

5

)
, EQ34

23 =

(
e34,

1

2

)
,
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EQ34
25 =

(
e34,

1

2

)
, EQ34

35 =

(
e34,

1

2

)
, EQ15

34 = (e15, 0) , EQ15
15 =

(
e15,

1

3

)
,

EQ15
12 = (e15, 1) , EQ35

25 = (e35, 0) , EQ35
13 =

(
e35,

1

5

)
, EQ35

14 =

(
e35,

1

2

)
,

EQ35
23 =

(
e35,

1

2

)
, EQ35

35 =

(
e35,

3

4

)
, EQ35

12 = (e35, 1)

}

is determined and it holds that |Cand | = 39. All equilibrium points of G are shown in
Figure 4.5. Note that one equilibrium point may correspond to several different sets of
defining nodes, for example, EQ13

14 = EQ13
35 = EQ13

23 = (e13,
3
4 ). Especially equilibrium

points lying in a node are found for every edge incident to that node. Filtering out these
redundant points leads to a number of 23 equilibrium points. However, it will be seen later
that in some solution approaches the redundant points are needed for the correct evaluation
of the objective function.

1

2

3

2

2

1

2

1

1
1

1
1

v1

v2

v5 v3

v4

Fig. 4.5: Graph G with all of its equilibrium
points (gray)
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dw (vi , x)
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4

5

6

d1

d2

d3
d4

i45i43

i13

7

d5

i14

i15
i21

i52

Fig. 4.6: Line arrangement with dw (vi , x) for
vi ∈ V , i = 1, . . . , 5, x = (e12, t).

Remark 4.21. Tree graphs with node weights wi = 1 for all i = 1, . . . , n have exactly
n(n − 1)/2 equilibrium points since there is a unique path connecting each pair of nodes
vs , vt ∈ V with vs 6= vt whose midpoint is the unique equilibrium point of vs and vt . In
the weighted case with wi > 0, wi ∈ R for all i = 1, . . . , n, a tree graph has in general
much more than n(n − 1)/2 equilibrium points as each pair of nodes can have equilibrium
points on more than one edge. This follows with the previous observation that the graph of
a weighted distance function dw (vi , x) with x = (eab) and t ∈ [0, 1] over the edge eab has
either slope wi or slope −wi . Consequently, if all nodes are equally weighted, two distance
functions dw (vi , x) and dw (vj , x) can intersect only if they have different slopes, i.e., if the
corresponding nodes vi and vj belong to different connected components if the edge eab
is deleted from the tree. If the nodes have different weights, also nodes from the same
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connected component may yield an equilibrium point on the edge eab. These cases are
illustrated in Figure 4.7.

v1

v2

v3

1 1
1

1

1

(a)

v1

v2

v3

1 1
1

3

1

(b)

0 1

dw (vi , x)

1

2

3

4

d2

d1

d3

(c)
0 1

dw (vi , x)

1

2

3

4

d2

d1

d3

(d)

Fig. 4.7: Subfigure (c) resp. (d) illustrate the graphs of the weighted distance functions
over edge e12 of the unweighted (Subfigure (a)) resp. the weighted (Subfigure (b)) graph.
In the weighted case, the functions dw (v2, x) and dw (v3, x) intersect which is not possible
in the unweighted case since these functions are parallel there.

Throughout this thesis there will be the need to efficiently evaluate the k-max function in
candidate points. An algorithm for this purpose and its complexity are presented below.

Algorithm 4 Evaluating the p-k-max function in a candidate point

Input: Graph G = (V, E), parameters k ∈ {1, . . . , n − p} and p ∈ {1, . . . , n}, candidate
solution X = {x1, . . . , xp} with xj = (eajbj , tj), j = 1, . . . , p.

1: for all vi ∈ V do

2: for all j = 1, . . . , p do

3: z j := min{wi(d(vaj , xj) + d(vaj , vi)), wi(d(vbj , xj) + d(vbj , vi))}.

4: zi := min{zj}

5: Sort the vector z = (z1, . . . , zn)> with permutation σ ∈ Σ(x) in non-increasing order.

6: Set z∗ := zσ(k).

Output: Objective function value z∗ = k-max(d(V,X)).
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It is assumed that the all-pair shortest distances in G are computed in advance, for example
using the algorithm of Floyd (1962) which has a complexity of O(n3). Then, each distance
to a fixed node can be found in constant time using the predefined shortest paths between
all pairs of nodes. In order to evaluate the objective function in one candidate solution X,
the vector of distances dw (vi , X) to all existing facilities vi is needed. As the ith element of
the distance vector dw (V,X) is given by the distance between a node vi and its nearest new
facility, the distances of vi to all p new facilities have to be computed in O(p) time, resulting
in O(np) for all nodes. Afterwards, the shortest distances are sorted in non-increasing order
in O(n log(n)). Taking the kth component needs O(1). This results in O(n(p + log(n)))

for the evaluation of one candidate point. As p is assumed to be arbitrary but fixed, it holds
that O(n(p + log(n))) = O(n log(n)).
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Chapter 5
Algorithms for 1-k-max Location Prob-
lems on Networks

The aim of this chapter is to analyse the 1-k-max problem, which is the special case of
(pkMG) where just one new facility has to be located and therefore it holds that p = 1.
This problem is analysed separately because it has a simpler structure than the multi-facility
problems and solution approaches can be designed much more efficiently. The first section
of this chapter investigates special properties of outliers such that the set of existing facilities
may be reduced before starting a solution approach as some of the nodes are known not to
be covered with service in an optimal solution. In the following two sections, two algorithms
for solving 1kMG are derived, and their respective complexities are analysed. They are both
based on different finite dominating sets describing candidate points for optimal solutions of
the problem. The first approach is based on equilibrium points that define a subdivision of
G which is helpful for solving the problem. The second idea uses h-levels to construct an
even smaller finite dominating set. The third section discusses two special cases of 1-k-max

problems that are easier to solve than the general case.

For simplification, the 1-k-max is denoted by k-max without explicitly mentioning the value
of p = 1. For k ∈ {1, . . . , n} the problem is given by

min
x∈A(G)

k-max(dw (V, x)) = min
x∈A(G)

wσ(k)d(vσ(k), x), (1kMG)

where x ∈ A(G) is the new location, dw (V, x) = (dw (v1, x), . . . , dw (vn, x))> is the vector
containing the weighted length of a shortest path between vi and x in its ith component and
σ ∈ Σ(x) is a permutation of the existing facilities such that

dw (vσ(1), x) ≥ dw (vσ(2), x) ≥ . . . ≥ dw (vσ(n), x).

The set of optimal solutions of (1kMG) is denoted by X . Other notations are used as
introduced at the beginning of Chapter 4.

5.1 Properties of Outliers

To get more insight into the structure of k-max problems or outliers in center problems,
respectively, some properties concerning outliers are stated in the following. The aim of
this section is to derive criteria to decide whether a certain node of the graph has to be
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an outlier or not to use these results, for example, in preprocessing procedures for general
purpose algorithms. In particular, this may reduce the computational effort of the main
solution algorithm significantly since there are less decisions to make. Some of these results
are used later in combination with finite dominating sets to be able to further reduce the
derived candidate sets.

For general weighted graphs it is hard to establish properties for nodes that have to be
fulfilled to be an outlier because the weights have a large impact and can lead to very
different distributions of the outliers (see Chapter 8). Therefore, this chapter is restricted
to unweighted problems.

The following theorem shows an important result for general unweighted graphs, the
connectedness of the center defining nodes.

Theorem 5.1 I Connectedness of center defining nodes
Let G = (V, E) be an unweighted graph and let x ∈ A(G) be a feasible solution of the
k-max problem with objective function value z , and an arbitrary but fixed set of outliers
Vk−1 corresponding to x .
Then, the induced subgraph Ḡ(V̄ ) with V̄ = V \ Vk−1 of G is connected.

Proof. The feasible solution x can w.l.o.g. be assumed to be a node of G. Otherwise, an
artificial node can be inserted in x without changing the problem.
Assume that Ḡ is not connected, i.e., Ḡ consists of at least two connected components

Ḡ1, Ḡ2 ∈ G. Let w.l.o.g. x ∈ Ḡ1 and choose an arbitrary but fixed node v ∈ Ḡ2. Therefore,
there exists no path P̄ (v , x) in Ḡ.
However, there exists a shortest path P (v , x) in G because G is connected. P (v , x) must

contain at least one outlier v ′ ∈ Vk−1 such that

P (v , x) = P (v , . . . , v ′, . . . , x)

with d(v ′, x) ≥ z because otherwise there would be a path between v and x in Ḡ. With
v /∈ Vk−1 it holds that d(v , x) ≤ z . With lj > 0 for all j = 1, . . . , m this leads to a
contradiction and therefore Ḡ has to be connected. �

For the special case of path graphs (see Section 5.4), the connectedness of the center
defining nodes has a useful implication: If k > 2, an outlier node, which is not a leaf node,
has to have at least one neighbour that is also an outlier. It can not only be adjacent to
center defining nodes. Note that the center defining nodes in a weighted network do not
have to be connected, see Chapter 8 for an example.

If one outlier of a feasible solution x is already known, the next lemma uses, whenever
possible, cuts in the graph to identify a whole subset of outliers based on the known one.
A cut is a partition of the node set V into two subsets V ′ and V ′′ = V \ V ′. The cut
S = (V ′, V ′′) = {ei j ∈ E : vi ∈ V ′, vj ∈ V ′′} consists of all edges that have one endpoint in
V ′ and the other endpoint in V ′′ (see, for example, Ahuja et al., 1993). The cardinality of
a cut S in an unweighted graph is the number of edges in S.
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Lemma 5.2 I Outlier subset by cuts of size one
Let G = (V, E) be an unweighted graph and let x be a feasible solution of the k-max problem
on G with 2 ≤ k ≤ n − 1 fixed and a set of outliers Vk−1corresponding to x .
If there exists a cut S = (V ′, V ′′) = {ei j} for i , j ∈ {1, . . . , n} of size |S| = 1 in G with

vi ∈ V ′ and vi ∈ Vk−1, then it holds that

V ′ ⊆ Vk−1 ∨ V ′′ ∪ {vi} ⊆ Vk−1.

Proof. Assume that V ′ * Vk−1 and V ′′ * Vk−1. Let S = (V ′, V ′′) = {ei j} be a cut in G
and let node vi ∈ Vk−1 be incident to ei j . Let Ḡ(V̄ ) with V̄ = V \ Vk−1 be the induced
subgraph of G. Following Theorem 5.1, Ḡ has to be connected. Due to the assumption
there exists at least one va ∈ V ′ with va /∈ Vk−1 and at least one vb ∈ V ′′ with vb /∈ Vk−1

in Ḡ. However, vi ∈ Vk−1 and its incident cut edge ei j are not part of Ḡ. Therefore, Ḡ
consists of at least two connected components Ḡ(V ′), Ḡ(V ′′). This leads to a contradiction
to Theorem 5.1. �

Note that the given sets in Lemma 5.2 may not describe the whole set Vk−1 but only a
subset of nodes that are known to be outliers. There can also be more outliers but the center
defining nodes always have to fulfil the property of connectedness. Assume that Ṽ ⊂ Vk−1

and V̂ = V \ Ṽ . If the connectedness of the induced graph G(V̂ ) is not given, there have to
be more outliers in V̂ .

Corollary 5.3 I Increase of the outlier subset
Let G = (V, E) be an unweighted graph and let x be a feasible solution of the k-max problem
on G with 2 ≤ k ≤ n fixed and a set of outliers Vk−1 corresponding to x . Moreover, suppose
that Ṽ ⊂ Vk−1 and V̂ = V \ Ṽ . If the induced subgraph G(V̂ ) decomposes into a ≥ 2

connected components G(V̂1), . . . , G(V̂a) with V̂1 ∪ . . . ∪ V̂a = V̂ , it holds that( ⋃
s=1,...,a

V̂s

)
\ V̂t ⊆ Vk−1 for one t ∈ {1, . . . , a}.

Proof. Follows directly with Theorem 5.1 and Lemma 5.2. �

Thus, the node set of only one connected component defines a candidate set for the
center defining nodes, the nodes of all other components are outliers. As a consequence, if
an outlier vi ∈ V ∗k−1 of an (unknown) optimal solution is known, a k̂s -max problem with a
reduced value k̂s = k − (n− |V̂s |), s = 1, . . . , a, can be solved on all connected components
of G(V̂ ) to find the optimal set of center defining nodes. Clearly, size and complexity of the
subproblems depend on the cut set and on the initially known outlier.
Figure 5.1 gives an illustrative example of the previous results for a tree graph. Note that

every edge of a tree is a cut of size one as required for Lemma 5.2. Moreover, a tree has
always at least one leaf among the outliers.
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Fig. 5.1: Tree with cut edge e13 and known outlier v3. Then (a) V ′ = {v3, v5, v6, v9, v10},
or (b) V ′′ ∪ {v3} = {v1, v2, v4, v7, v8, v3} are outliers. (c) If V ′′ ∪ {v3} ⊆ Vk−1, the nodes of
a whole connected component of G(V ′ \ {v3}) have to be outliers, see Theorem 5.1.

The result of Lemma 5.2 can be generalised for a cut consisting of more than one edge,
provided that one of the endpoints of every edge in the cut is known to be an outlier.

Lemma 5.4 I Outlier subsets by cuts of arbitrary size
Let G = (V, E) be an unweighted graph and let x be a feasible solution of the k-max problem
on G with 2 ≤ k ≤ n − 1 fixed and a set of outliers Vk−1 corresponding to x . Moreover, let
S = (V ′, V ′′) = {eab ∈ E : va ∈ V ′, vb ∈ V ′′} be a cut in G.
If it holds for every edge eab ∈ S that va ∈ Vk−1 ∨ vb ∈ Vk−1 then

V ′ ∪ {vb ∈ V ′′ : vb ∈ Vk−1} ⊆ Vk−1 ∨ V ′′ ∪ {va ∈ V ′ : va ∈ Vk−1} ⊆ Vk−1.

Proof. Assume that V ′ * Vk−1 and V ′′ * Vk−1. Let S = {eab ∈ E : va ∈ V ′, vb ∈ V ′′} be
the cut set. Moreover, let Ḡ(V̄ ) with V̄ = V \Vk−1 be the induced subgraph of G. Following
Theorem 5.1, Ḡ has to be connected. Due to the assumption there exists at least one
vi ∈ V ′ with vi /∈ Vk−1 and at least one vj ∈ V ′′ with vj /∈ Vk−1 in Ḡ while for each edge in
S either va ∈ Vk−1 or vb ∈ Vk−1 and its incident cut edge are not part of Ḡ. Therefore, Ḡ
consists of at least two connected components Ḡ(V ′), Ḡ(V ′′). This leads to a contradiction
to Theorem 5.1. �

Note that for a given cut it is in general not known whether an endnode of a cut edge is an
outlier or not. Similarly, it can not be said which side of the cut edge only consists of outliers
and which not. This can not be decided without computing an optimal new location of the
corresponding k-max problem. The presented properties of outliers are rather intended to
derive upper and lower bounds for a Branch-and-Bound approach to solve k-max problems
on graphs. Furthermore, Lemma 5.2 above and Lemma 5.5 below can be used to decide in
a preprocessing phase which nodes of the graph can not be outliers.
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Lemma 5.5
Let G = (V, E) be an unweighted graph and let x be feasible solution of the k-max problem
on G with 2 ≤ k ≤ n − 1 and a set of outliers Vk−1 corresponding to x . Moreover,
S = (V ′, V ′′) = {ei j} for i , j ∈ {1, . . . , n} be a cut of size |S| = 1 in G. If |V ′| ≥ k and
|V ′′| ≥ k then vi , vj /∈ Vk−1.

Proof. Assume w.l.o.g. that vi ∈ V ′ is an outlier. Following Lemma 5.2 it holds that either
V ′ ⊆ Vk−1 or V ′′ ∪ {vi} ⊆ Vk−1. Since |V ′| ≥ k it follows that the cardinality of the outlier
set is |Vk−1| ≥ k . This contradicts the definition of outliers being the nodes realising the
k − 1 largest distances to x . The case vj ∈ Vk−1 can be formulated analogously. �

v16

v6

v10

v13
v7

v12

v11
v17

v14

v9

v8

v4

v3

v1

v2

v5

Fig. 5.2: For k = 5 nodes v4, v6, v10 are known to be center defining due to Lemma 5.5.

Example 5.6. The graph shown in Figure 5.2 is given. The length lj , j = 1, . . . , m, of the
edges do not matter in this example. Let k = 5, i.e., a solution of the k-max problem with
four outliers is sought. With S = {e46} it follows that |V ′| = 5 and |V ′′| = 11. Therefore,
neither v4 nor v6 can be an outlier since otherwise the problem would have at least five
outliers due to Lemma 5.2. With S = {e6,10} and corresponding |V ′| = 9, |V ′′| = 6 also
node v10 is center defining, i.e., it can not be an outlier. S = {e6,13} in contrast does not
yield a new result since |V ′| = 12 and |V ′′| = 4. Hence, v13 could be an outlier as the
subset V ′′ is not too large with respect to k . Thus, a most contiguous set of size 12 has
to contain the nodes v4, v6, v10. This reduces the number of sets to analyse in Algorithm 2
from

(
16
12

)
= 1820 to

(
13
9

)
= 715.

Lemma 5.5 can, for example, be used to improve Algorithm 2 which determines a set of
most contiguous facilities in V and solves a center problem on this subset of the existing
facilities. The most contiguous sets are testes using a complete enumeration, i.e., all possible
subsets of V with cardinality n−k+1 are considered. Applying Lemma 5.5 in a preprocessing
phase can reduce the number of subsets that need to be analysed since some nodes are
known that can not be outliers due to the maximum number of outliers. This may lead to
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a significant speed up of the solution process in practice. However, it does not lead to an
improved bound on the theoretical complexity of Algorithm 2. The exact number of cuts
in the graph as well as the number of cuts fulfilling the property of Lemma 5.5 depend on
the structure of the graph. Hence, the number of identifiable center defining nodes can not
be quantified. All minimum cuts of a general graph can be computed in O(n2 log3(n)) time
with the randomised algorithm of Karger and Stein (1996). The overall complexity bound for
Algorithm 2 is therefore not enlarged by the preprocessing phase. In practice, this approach
is especially useful for tree graphs as every edge is a cut of size one and the computation of
the cut sets can be skipped.

5.2 Finite Dominating Set Based on Equilibrium Points

In a general p-k-max problem (pkMG), the new locations can be placed without restrictions
on the underlying graph G. Thus, infinitely many points are possible new locations for the
optimal solution. Since Hakimi (1964) demonstrated for the first time that it is useful to
restrict the analysis of a problem to a smaller set of candidate points, this approach is the
basis for many algorithms in location theory that solve the problems by enumerating (all)
candidates of the determined set. Therefore, the aim of this (as well as the next) section
is to reduce the infinite set of possible points on the edges A(G) to a finite dominating
set (FDS). i.e., a finite set of candidates guaranteeing to contain at least one optimal
solution. For more information on solution approaches based on finite dominating sets,
see, for example, Hooker et al. (1991). This paper unifies and generalises results on finite
dominating set on different kinds of location problems. More recent literature dealing with
finite dominating sets for special instances of the ordered median problem are, for example,
Pérez-Brito et al. (1997), Nickel and Puerto (1999), Kalcsics et al. (2002), Kalcsics and
Nickel (2003), Rodríguez-Chía et al. (2005) and Tang et al. (2009). A short description of
the papers can be found in the literature review of this thesis, see Chapter 3.

In the case of p = 1, the k-max problem on graphs can be solved using a finite dominating
set based on the equilibrium points of the graph. To prove this result, the properties of
the objective function have to be analysed further in a first step. For this purpose, let
eg = (vag , vbg) ∈ E be an arbitrary but fixed edge of the graph with g ∈ {1, . . . , m} and
ag, bg ∈ {1, . . . , n} such that vag , vbg ∈ V . Moreover, let

EQagbg =
⋃

i ,j∈{1,...,n}

EQ
agbg
i j

be the set of all equilibrium points on the edge eg. The elements of the set EQagbg together
with the nodes vag , vbg ∈ eg define a subdivision Sg on eg. A subset C ⊆ eg of the
subdivision Sg is called a cell. Every cell is a closed and convex edge segment [α, β] with
α, β ∈ EQagbg ∪ {vag , vbg}. Thus, the subdivision has the properties that the union of all its
edge segments constitutes the whole graph and that the intersection of two edge segments
consists of exactly one x ∈ EQagbg ∪ V . The set of all cells on eg is denoted by C(Sg). For
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this subdivision the following result holds.

Lemma 5.7 I Concavity and piecewise linearity of the k-max function
The objective function (kMF) of the k-max problem on graphs with positive node weights
wi , i = 1, . . . , n, is piecewise linear and concave on every cell C ∈ C(Sg), g = 1, . . . , m.

Proof. Let C = [α, β] be a cell of Sg on an edge eg ∈ E of G, i.e., α, β ∈ EQagbg∪{vvg , vbg}.
Note that the sorting of distances in dw (V, x) only changes in points of EQ and that there
is no x̃ ∈ EQ in the interior of C. Consequently, there exists a permutation σ ∈ Σ(x) such
that

dw (vσ(1), x) > . . . > dw (vσ(n), x) for all x ∈ C \ {α, β},

where α, β are the extreme points of the edge segment C. In α and β it holds

dw (vσ(1), α) ≥ . . . ≥ dw (vσ(n), α) and dw (vσ(1), β) ≥ . . . ≥ dw (vσ(n), β).

The k-max objective function can be written as

k-max(dw (V, x)) = λ1wσ(1)d(vσ(1), x) + . . .+λkwσ(k)d(vσ(k), x) + . . .+λnwσ(n)d(vσ(n), x)

with λk = 1 and λi = 0 for i 6= k on every cell C ∈ C(Sg). As the permutation σ is
constant for all x ∈ C, non-linearities of the k-max function can only be caused by the
non-linearities of the distance functions dw (vi , x). As the functions dw (vi , x) are piecewise
linear and concave over every edge eg ∈ E and C ⊆ eg for some g ∈ {1, . . . , m}, also the
k-max function has to be piecewise linear and concave on every cell C ∈ C(Sg). �

Even though the piecewise linearity and the concavity of the k-max function is enough to
identify possible minima on the boundary of the cells, for the sake of completeness also the
regions in which the objective function is linear shall be identified in the following. Let, for
this purpose,

BNagbg =
⋃

i∈{1,...,n}

BN
agbg
i

be the set of all bottleneck points of G on eg ∈ E, g ∈ {1, . . . , m}. Then, the equilibrium
points EQagbg , the nodes vag , vbg ∈ eg and the bottleneck points BNagbg induce a subdivision
S′g on eg. The set of cells of S′g is denoted by C(S′g). For all C = [α, β] ∈ C(S′g) it holds
that

α, β ∈ EQagbg ∪ BNagbg ∪ {vvg , vbg}.

As it is shown in the proof of Lemma 5.7, the permutation σ ∈ Σ(x) of the elements of the
vector of distances dw (V, x) is constant for all x ∈ C \ {α, β} for C = [α, β] ∈ C(Sg). To
define the linearity regions of the k-max function, also the linearity domains of the functions
dw (vi , x) for all i = 1, . . . , n have to be considered. Since dw (vi , x), i ∈ {1, . . . , n}, is
piecewise linear and concave over the edge eg, the linearity regions are obviously either the
whole edge eg for functions dw (vi , x) without a breakpoint on eg or the edge segments
[vag , x̄ ] and [x̄ , vbg ] for functions having a bottleneck point x̄ ∈ BP agbg . Thus, for a cell
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C′ ∈ C(S′g), it holds that the ordering of the elements of the distance vector is constant
and that the functions dw (vi , x), i = 1, . . . , n, are linear. Hence, for the subdivision S′g the
following statement holds.

Corollary 5.8 I Linearity of the k-max function
The objective function (kMF) of the k-max problem on graphs with positive node weights
wi , i = 1, . . . , n, is linear on every cell C′ ∈ C(S′g).

Although the objective function is linear on a compact cell, the set of optimal new locations
does only consist of single points x ∈ A(G). This is due to the assumption of strictly positive
lengths lg > 0, g = 1, . . . , m, of the edges and strictly positive weights wi > 0, i = 1, . . . , n.
If also lg = 0 is allowed, the optimal set may include the union of corner points of cells and
complete cells C ∈ C(S′g).

Remark 5.9. For the special case of G being a tree graph, the subdivision Sg is sufficient
to define the linearity regions of the k-max function. More precisely, the k-max function is
linear on every cell C ∈ C(Sg). A tree graph is connected and has no cycles. Thus, every
pair of two vertices vi , vj ∈ V are connected by a unique path in G. As a consequence, G
does not have bottleneck points, i.e., BP = ∅ and therefore Sg = S′g.

As the objective function is piecewise linear and concave on a cell C ∈ C(Sg), the extreme
points of the cells of the subdivision Sg are candidates for optimal solutions of the k-max

problem. Thus, based on Lemma 5.7, the following theorem gives a finite dominating set
for the k-max problem on general graphs.

Theorem 5.10 I FDS based on equilibrium points
All optimal solutions of the k-max problem with wi > 0 for all i ∈ {1, . . . , n} can be found
in the set

Cand =

{
EQ, k ≤ n − 1

V, k = n.

Proof. Let x ∈ A(G) and σ ∈ Σ(x), i.e.,

dw (vσ(1), x) ≥ . . . ≥ dw (vσ(k), x) ≥ dw (vσ(k+1), x) ≥ . . . ≥ dw (vσ(n), x). (4.1)

Case 1: k ≤ n − 1

Let x ∈ eab be an optimal location with optimal objective value z∗ for the k-max

problem (an optimal solution exists according to Theorem 4.6). Assume that x /∈ EQ.
Note that if x is also not in EQ′, then x ∈ eab ∈ E and can be shifted by a sufficiently
small step length towards va and similarly towards vb without changing the permutation
σ. Thus, for the case x /∈ EQ′, the objective function value improves by shifting x
into an equilibrium point.

Now let l ≥ k be the smallest index such that

dw (vσ(k), x) = dw (vσ(k+1), x) = . . . = dw (vσ(l), x) > dw (vσ(l+1), x).
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Since x /∈ EQ∪ V (and thus, in particular, x ∈ eab ∈ E is not in the relative boundary
of EQ′ab for all va, vb ∈ V, a 6= b) it follows that all shortest paths pσ(i) from x to
vσ(i), i = k, . . . , l , either all pass through the node va or all pass through the node
vb (see Figure 5.3). Therefore, x can be moved a small distance ε towards the node
vσ(k) with

0 < ε <
1

2

(
dw (vσ(k), x)− dw (vσ(l+1), x)

)
such that no point in EQ ∪ V is crossed, leading to a new location x̄ . This does
not change the ordering (4.1), because all distances dw (vσ(k), x), . . . , dw (vσ(l), x) are
reduced by ε.

Thus, x̄ has an objective value of dw (vσ(k), x̄) < dw (vσ(k), x) = z∗, contradicting the
assumption.

x̄ ∈ EQ

x ∈ EQ′

···

c c

c

vσ(k)vσ(k)

vσ(l)

vσ(k)

vb va

Fig. 5.3: All paths from vσ(i), i = k, . . . , l , to x ∈ EQ′ contain node va. If otherwise (grey)
there exist a path from x̄ ∈ eab to vσ(j) for at least one j ∈ {k, . . . , l} that contains node vb
while all other paths from x̄ to vσ(i) with i ∈ {k, . . . , l} \ {j} go through va, it follows that
x̄ ∈ EQ.

Case 2: k = n

For k = n the aim is to solve the n-max problem. With σ ∈ Σ(x), minimizing the nth
largest distance is equivalent to minimizing the smallest distance

min
x∈A(G)

n-max
vi∈V

(dw (vi , x)) = min
x∈A(G)

min
1≤i≤n

dw (vi , x).

Since the distances are bounded from below by 0, it follows

min
x∈A(G)

min
1≤i≤n

dw (vi , x) ≥ 0.

Thus, the smallest possible value that can be attained is 0. As dw (vi , x) = 0 if and
only if x = vi for all i ∈ {1, . . . , n}, the new facility has to be located in an arbitrary
existing facility to realise this value. �

Note that, for the special case k = n, the whole candidate set Cand = V is optimal and
that the optimal objective function value is always z∗ = 0. Thus, the optimal solutions
are known without any computations in this case. However, more important is that in all
other cases for k < n, the finite dominating set does not depend on k . Hence, all optimal
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solutions of the k-max problem for k = 1, . . . , n − 1 can be computed simultaneously with
one evaluation for each equilibrium point.
Note that the extreme points of the cells C′ ∈ C(S′g) of course also form a finite dom-

inating set of the k-max problem. However, as S′ has more candidate points than S, the
second set is not considered further. Theorem 5.10 provides a necessary condition for an
optimal location of the k-max problem.

Corollary 5.11 I Necessary optimality condition
Let k < n. For all optimal solutions x∗ ∈ X of the k-max problem it holds that x∗ ∈ EQ .

Proof. Follows directly with the proof of Theorem 5.10. �

Building on the result of Theorem 5.10, it is enough to evaluate the k-max function in all
equilibrium points and to choose the points leading to the smallest objective function value
as optimal locations. The following algorithm gives a first short overview of the procedure.

Algorithm 5 k-max problems on graphs using Cand (Outline)

Input: Graph G = (V, E) with node weights wi > 0 for all i = 1, . . . , n, and k ∈ {1, . . . , n}.
1: if k < n then

2: Determine the candidate set EQ of all equilibrium points of G

3: for all eab ∈ E do

4: Sort equilibrium points on eab such that t1 ≤ t2 ≤ . . . ≤ t|EQab| with xi = (eab, ti)

.......... for all i = 1, . . . , |EQab|
5: Evaluate the k-max function in candidate x1

6: for all i = 1, . . . , |EQab| do
7: Determine σxi ∈ Σ(xi) from σxi−1

8: Set fk(xi) = dw (vσ(k), xi)

9: else

10: Set Cand := V with fk(x) = 0 for all x ∈ Cand.

Output: Set of optimal solutions X = {x∗ : fk(x∗) = min
x∈Cand

fk(x)} with z∗ = dw (vσ(k), x
∗).

For k < n, the derivation of the equilibrium points can be done, for example, by calculating
in O(n2) time the solutions of the equations dw (vj , x) = dw (vi , x), where vi , vj ∈ V , vi 6= vj ,
over each edge of G (see Figure 4.4). Thus, the calculation of all equilibrium points takes
O(mn2).
The evaluation of the candidates is done on each edge eab separately: At first the candidate

points on eab have to be sorted such that they are sorted increasingly along the edge which
can be done in O(n2 log(n)) time. The leftmost equilibrium point x1 on eab can be evaluated
in O(n log(n)) time by computing and sorting the weighted distances of x1 to all existing
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facilities. The permutation σxi ∈ Σ(xi) of an equilibrium point xi can be easily deduced
from the permutation σxi−1

∈ Σ(xi−1) for consecutive points xi−1 and xi . Let therefore
vαi , vβi with αi , βi ∈ {1, . . . , n} be the nodes defining xi and let analogously vαi+1

, vβi+1
with

αi+1, βi+1 ∈ {1, . . . , n} be the nodes defining xi+1. To get σxi−1
from σxi , only the elements

αi+1 and βi+1 in σxi have to be swapped. The objective values of the remaining O(n2)

candidates xi , i = 2, . . . , |EQab|, can therefore be obtained in constant time. Hence, this
leads to a complexity of O(n log(n) + n2) for the evaluation of the candidate points on one
fixed edge. Note that the defining nodes of all equilibrium points have to be stored for this
purpose. A worst case bound of O(mn2 log(n)) for Algorithm 5 follows.

It is possible to reduce the complexity of Algorithm 5 slightly to O(m(n + s) log(n)) by
using the algorithm of Bentley and Ottmann (1979) to calculate the equilibrium points.
This algorithm has a complexity of O(m(n + s) log(n)), where s ≤

(
n
2

)
(see Algorithm 3).

Even though this effort is higher than O(mn2) for s >
(
n
2

)
, the advantage is that the

needed permutation in every equilibrium point as well as the corresponding objective function
value are obtained with the algorithm of Bentley and Ottmann (1979) without causing any
additional effort: In each event point x = iS1,S2

during the sweep, the data structure R
contains the order relation among the line segments with respect to the sweepline in x . Since
the segment Si is related to the distance function dw (vi , x), the ordering Si � Sj implies
dw (vi , x) ≥ dw (vj , x). Thus, the current R contains the needed permutation σ ∈ Σ(x). In
step 3 it is therefore not necessary to get the whole vector of distances to all existing nodes
but only the component dw (vσ(k), x) for all x ∈ EQ. As this value is given by the distance
of an optimal equilibrium point x to its defining nodes vi , vj , it it not necessary to compute
shortest paths to vσ(k). It is given during the derivation of the equilibrium points on the
ordinate axis of the arrangement of line segments above the current edge.

Example 5.12 (Continuation of Example 4.20). The distances dw (vi , EQi j) of the equilib-
rium points on the edge e12 can be taken from the ordinate axis of the arrangement of line
segments shown in Figure 4.6. The Permutation σ ∈ Σ(EQ12

i j ) valid at an equilibrium point
EQ12

i j , i , j ∈ {1, . . . , 5}, i 6= j , is given by the sorting of the line segments in each equilibrium
point:

EQ12
34 with dw (v3, EQ

12
34) = 6 and σ = {3, 4, 2, 5, 1}

EQ12
25 with dw (v2, EQ

12
25) =

3

2
and σ = {3, 4, 5, 2, 1}

EQ12
12 with dw (v1, EQ

12
12) =

4

3
and σ = {3, 4, 5, 1, 2}

EQ12
15 with dw (v1, EQ

12
15) = 2 and σ = {3, 4, 1, 5, 2}

EQ12
14 with dw (v1, EQ

12
14) = 3 and σ = {3, 1, 4, 5, 2}

EQ12
13 with dw (v1, EQ

12
13) =

18

5
and σ = {1, 3, 4, 5, 2}

EQ12
45 with dw (v4, EQ

12
45) = 2 and σ = {1, 3, 5, 4, 2}.

Note that there are at least two valid permutations in every equilibrium point as at least two
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Algorithm 6 Solving k-max problems on graphs using Cand

Input: Graph G = (V, E) with wi > 0 for all i = 1, . . . , n, k ∈ {1, . . . , n}; heap Q with root

r(Q): set of endpoints e(S) = (t, y), sorted lexicographically by t and y -value

1: Set zb :=∞ and Xb := ∅
2: if k < n then

3: for all es ∈ E do

4: while Q 6= ∅ do . Determine equilibrium points

5: Set x := r(Q)

6: if x is right endpoint of segment Si then . Delete Si from the ordering

7: Deletion(x, R,Q)

8: if x is left endpoint of segment Si then . Include Si into the ordering

9: Insertion(x, R,Q)

10: if x is intersection point of Si � Sj then . Swap ordering to Sj � Si
11: NewEquilibriumPointAndPermutation(x, zb, R,Q,EQ)

12: Set Xb :=
⋃

s=1,...,m
Xsb . Local optimal solutions of edges

13: else (k = n) . Ex. facilities are optimal

14: Xb := V

Output: Set of optimal solutions X = {x∗ : x∗ ∈ Xb} with z∗ = dw (vσ(k), x
∗).

15: function newEquilibriumAndPermutation(x, zb, R,Q,EQ)

16: EQ = EQ ∪ {x}
17: Swap positions of i and j in R such that Sj � Si . Change ordering

18: Determine σx from current R . Permutation in x ∈ EQ
19: z := wσ(k)d(vσ(k), x) . Objective function value in x

20: if z = zb then

21: Xsb := Xsb ∪ {x} . As good as current best solutions

22: else if z < zb then

23: Xsb := {x} . New best solution

24: zb := z

25: if Sj intersects u(Sj) then . Check upper neighbour

26: Insert iSj ,u(Sj ) into Q

27: if Si intersects l(Si) then . Check lower neighbour

28: Insert iSi ,l(Si ) into Q

29: return R,Q,EQ

30: end function
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elements of the distance vector are equal. For the evaluation of the candidate points it does
not matter which of the equivalent permutations of one equilibrium point is chosen.

Finding the optimal solution among the best solutions of every edge can be implemented
in O(m) time. Thus, the overall complexity is bounded by O(m(n+ s) log(n)) with s ≤

(
n
2

)
for k < n, which is an improvement of a factor of n that is achieved by using the algorithm
of Bentley and Ottmann. This approach is summarised in Algorithm 6, where the heap
Q, the procedures Insertion, Deletion and other notations are the same as those used
for Algorithm 3. Note that the algorithm can be parallelised easily since the computation
of the equilibrium points on a fixed edge can be done independently from the other edges.
Moreover, also the evaluation of the single candidates can be implemented in parallel as
these processes do not depend on each other. This leads to a significant improvement of
the computation time.

The calculation process of the equilibrium points of a graph G provides additional important
information that should be stored together with the corresponding equilibrium point y ∈ EQ.
To extract this information, for each equilibrium point yi j ∈ EQi j a vector of the form

yi j =
(
eab, t, {vi , vj}, dw (vi , yi j), σi j

)
,

is stored, where eab, a, b ∈ {1, . . . , n}, is the edge on which yi j is located and t ∈ [0, 1] is
the corresponding parameter to define the position on ei j . vi , vj ∈ V are the nodes defining
yi j and dw (vi , yi j) = dw (vj , yi j) is the weighted distance from yi j to its defining nodes.
σi j ∈ Σ(yi j) gives a permutation of the distance vector in yi j . Thus, in the following it can
be assumed that with yi j ∈ EQi j this information is also known.

Remark 5.13. As a consequence of the proof of Theorem 5.10, it is in practice useful
to rearrange the set of equilibrium points such that its elements yi j with i , j ∈ {1, . . . , n}
are sorted in non-decreasing order by their distances dw (vi , yi j) to their defining nodes. If
the candidates are evaluated in this order, the evaluation of the candidate points can be
terminated when the first feasible solution ȳgh with z̄ = dw (vg, ȳgh) for g, h ∈ {1, . . . , n} is
found. This solution is then obviously optimal as all solutions considered later have equal or
larger objective function values. If all optimal solutions are needed, the equilibrium points
ỹpq with dw (vp, ỹpq) = z̄ also have to be evaluated. The optimal solutions of the k-max

problem are (especially for larger values of k) found much faster in general when this sorting
of the equilibrium points is applied. Note that the edge-wise evaluation of the equilibrium
points is not possible with this approach and that the theoretical complexity of Algorithm 5
is thus increased to O(mn2(log(mn) + n log(n)). However, the practical speed up is worth
the additional effort (see Chapter 7.1). A bisection approach on the candidate set is not
possible, see Remark 6.9.

Example 5.14 (Continuation of Example 5.12). Evaluating the equilibrium points of the
example graph in Figure 4.5 leads to the following optimal solutions of the k-max problem:
For k = 1, an optimal solution is given by

x1 =

(
e13,

3

4

)
resp. x̄1 =

(
e35,

1

2

)
with z1 = 3.
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The 2-max problem is solved optimally with

x2 =

(
e34,

1

3

)
and z2 =

4

3
.

For k = 3 it holds that
x3 = (e13, 1) with z3 = 1.

For k = 4,

x4 =

(
e15,

1

3

)
resp. x̄4 =

(
e24,

2

3

)
with z4 =

2

3
.

is optimal. The solutions are illustrated in Figure 5.4

x4

v5

1

2

3

2

2

1

2

1

1
1

1

v1

v2

v3

v4

x1

x̄1

x2

x3

x̄4

1

Fig. 5.4: Optimal new facility for k = 1 (two alternatives), k = 2, k = 3 and k = 4 (two
alternatives)

An advantage of Algorithm 6 is that it can be adjusted easily to compute simultaneously
the sets of optimal solutions X (k) for all possible values of the parameter k without increasing
the overall complexity. An equilibrium point yi j ∈ EQi j is optimal for a value k only if

dw (vσ(k), yi j) = dw (vi , yi j) and dw (vσ(k+1), yi j) = dw (vj , yi j)

resp.
dw (vσ(k), yi j) = dw (vj , yi j) and dw (vσ(k+1), yi j) = dw (vi , yi j)

for a permutation σ ∈ Σ(yi j), which follows from the proof of Theorem 5.10 (see also
Lemma 5.21). As all equilibrium points have to be computed and their objective function
values have to be evaluated (even if the value of k is fixed beforehand), it does not cause
additional effort to associate every equilibrium point to the sets X (i) and X (j) for which
it may be an element. In order to compare a new solution with the currently best solution
in X (i) resp. X (j), only two comparisons are needed. In this way, the optimal solutions of
the k-max problem for all k = 1, . . . , n can be computed simultaneously in polynomial time
O(m(n + s) log(n)) with s ≤

(
n
2

)
being the number of equilibrium points on one edge.
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5.3 Finite Dominating Set Based on h-levels

Another approach for a finite dominating set of the k-max problem with k < n is based on
the method of Hakimi (1964) to compute a finite dominating set for the absolute center
problem on a graph which is defined as

min
x∈A(G)

f1(x) = min
x∈A(G)

max
1≤i≤n

dw (vi , x).

The idea here is to make a local analysis, i.e., to find a local center on each edge of
G, similar to the derivation of the equilibrium points. Let eab ∈ E with va, vb ∈ V be
an arbitrary but fixed edge of the graph G. The piecewise linear, concave graphs of the
weighted distance functions dw (vi , x) can be computed over the edge eab as functions of x =

(eab, t), t ∈ [0, 1]. This results in an arrangement Lab of piecewise linear functions over this
edge eab. These piecewise linear functions can also be interpreted as an arrangement of linear
segments, where each linear segment of a piecewise linear function is treated independently
(see equations (4.20)). An example for a graph with six nodes can be seen in Figure 5.5.
Recall that, in the case of a fixed edge eab ∈ E with a, b ∈ 1, . . . , n, there is a one to one
correspondence between a point x = (eab, t) and the parameter t ∈ [0, 1]. As the following
line arrangements are always considered for a fixed edge, x and t can be used equivalently.
The center problem aims at finding a point x ∈ A(G) such that the maximum weighted

distance between the existing nodes and the new location is minimised. Therefore, for each
value of x ∈ eab, the maximum of all the lines in Lab is of interest. This largest weighted
distance depends on the position of x and is given by

Fab(x) = max
1≤i≤n

dw (vi , x) with x = (eab, t), t ∈ [0, 1].

The function Fab(x) is shown in Figure 5.5(b) in dark blue and is called the upper envelope
of the arrangement Lab. It is a curve consisting of line segments and break points which are
called vertices of the envelope. The local minima of Fab correspond to the local centers on
the current edge. The computation of the upper envelope of an arrangement of line segments
in the plane is a known and well investigated problem in the field of Computational Geometry.
Hershberger (1989), for example, solves the problem by using a divide and conquer approach
in O(n log(n)).

Now, to get the optimal position for the new location restricted to eab, the minimum of
Fab has to be found. This can be done quite easily since Fab is a piecewise linear function
that has a finite number of local minima. The elements of the set of local minima Xcab of
Fab are candidates for the optimal location of the new facility since they locally minimise the
center objective value for all possible locations on eab.
By repeating this procedure and determining the local minima of Fab for all eab ∈ E with

va, vb ∈ V , a finite dominating set

Cent :=
⋃

a,b∈{1,...,n}

{Xcab : eab ∈ E}
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for the center problem is obtained. A local minimum of Fab can be characterised either
by being an endpoint of eab with t = 0 or t = 1 or by being an intersection point of two
weighted distance functions dw (vi , x) and dw (vj , x) with i , j ∈ {1, . . . , n}, i 6= j , such that
their slopes at x ′ = (eab, t

′), t ′ ∈ [0, 1], have opposite signs. The number of points which
are candidates for being a local minimum on one edge is therefore at most (n(n−1)/2) + 2.
Hence, the cardinality of the corresponding candidate set C is bounded by |C| = O(mn2).

Remark 5.15. In practice, this bound on the number of candidate points overestimates
the cardinality of points to evaluate. Not only the local minima of Fab fulfil the mentioned
properties, but also most of the intersection points below the upper envelope do so. Bounding
the number of vertices of the upper envelope is a special case of the problem to bound the
complexity of a so called k-level (see Definition 5.16). This is a well known problem in
Computational Geometry for which no satisfactorily tight upper bound is known until now.

The concept of k-levels will be introduced and used in the following to generalise the
idea of Hakimi (1964) to k-max problems for k ∈ {2, . . . , n − 1}. The parameter k in the
concept of a k-level has another meaning than for the k-max problems.To avoid confusion
when generally describing the concept of k-levels, the parameter k (which in this thesis is
always related to the k-max objective) will be replaced by a parameter h and thus it is talked
of h-levels in the following, unless it is specially referred to the value of k .
Whereas the largest distance and therefore the upper envelope of the line arrangement

was of interest for a center problem, the k-max problem needs, depending on the parameter
k , the kth highest chain of line segments and vertices such that at most k − 1 other chains
lie above it resp. at least n − k + 1 lie below (follows with Corollary 4.11). An h-level has
similar properties and can be easily transferred. Agarwal et al. (1998b) define it as follows.

Definition 5.16 I h-level
For an arrangement L of q line segments in general position in R2 and a given parameter
h ∈ {1, . . . , q − 1}, the h-level F h(x) of L, x ∈ R, is defined as the closure of all points on
line segments which have exactly h line segments strictly below them.

Note that in general the number of line segments in Lab is greater than n because a
distance function over eab is a piecewise linear function of up to two linear segments. Thus,
the number of line segments in Lab is bounded by q ≤ 2n = O(n). Roughly spoken, for
h = n − k , the chain contributing to the objective function of the k-max problem described
above corresponds to the (n-k)-level F n−kab (x) of the current arrangement Lab on the edge
eab. Definition 5.16 is based on linear segments in general position, i.e., it is assumed that
there are no parallel lines and not more than two segments intersect in one point. In the
arrangement Lab, in contrast, it is in general likely that two or more line segments (or parts
of them) are identical, i.e. that they share infinitely many points. In this case, the properties
of the (n-k)-level are modified in the sense that it is defined as the closure of the set of all
points on line segments that have at least n − k line segments on or below them. Thereby
it fulfils the requirements of the k-max problem to cover at least n − k + 1 facilities. An
example can be seen in Figure 5.5(b).
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dw (vi , x)
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6
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d6
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(b)
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dw (vi , x)
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6

d1

d5
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d3

F 5
34 = F34

d2

F 2
34

(c)

Fig. 5.5: (a) Example of a graph with V = {v1, . . . , v6} and wi = 1 for all nodes. (b) The
5-level F 5

34(x) = F34(x) over e34 is equal to the upper envelope of the arrangement L34. It’s
local minima are elements of the FDS for the 1-1-max problem resp. the center problem.
The local minima of the 2-level F 2

34(x) correspond to the FDS of the 1-4-max problem. (c)
Arrangement L34 from subfigure (b) transformed to general position resulting in Lg34.

The (n-k)-level represents the distance function from a location x = (eab, t) on the edge
eab, t ∈ [0, 1], to the existing node that has the kth largest distance to x . Obviously, the
kth furthest node depends on the location of x on eab and can only change in the vertices of
the corresponding level. Hence, the local minima of F n−kab (x) are candidates for the optimal
location of the new facility.

Corollary 5.17 I FDS based on h-levels
Let F n−kab (x) be the (n-k)-level in the arrangement Lab of line segments on eab ∈ E with
a, b ∈ {1, . . . , n}. Then, all optimal solutions of the 1-k-max problem with 1 ≤ k ≤ n − 1

can be found in the set

Cand2 :=
⋃

a,b∈{1,...,n}

{
arg min
x=(eab,t)

F n−kab (x)

}
.
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Cand2 consists of the local minima of the corresponding (n-k)-level. The local minima
that are intersection points of two distance functions are equilibrium points by definition but,
in contrast to Cand, also nodes of G can belong to Cand2 even if k < n. On the other
hand, the number of candidate points in Cand2 is much smaller in practice because just the
intersection points that belong to the current level (and therefore to the correct value of k)
are considered.

Remark 5.18. Note that it is not sufficient to include just the global minima of F n−kab (x) in
the finite dominating set Cand2 because for k < n, candidates for an optimal location have
to lie in an intersection point of at least two distance functions, see Corollary 5.11. More
precisely, the candidate location has to be an equilibrium point while the global minimum of
F n−kab (x) could be attained in a point with t = 0 or t = 1 that is not an equilibrium point.
An example is shown in Figure 5.5(c).

For computing an h-level in the given arrangement of distance functions over eab, the
linear segments are first moved into general position (see Figure 5.5(c)). This setting can
always be constructed by adding a (sufficiently) small constant ε to the corresponding slopes
such that the results of the transformation can still be identified with the original intersection
points. Note that this can always be done in such a way that two formerly parallel lines do
not intersect in the interior of eab after this transformation. In the following, it is assumed
that Lab is in general position.
Now, procedures for computing arrangements of q line segments can be applied, for

example, the algorithm of Hershberger (1992). This algorithm iteratively computes the
upper envelope of the arrangement. After each iteration, the current envelope is removed
by discarding the segments or pieces of segments that appear on the envelope. In the next
iteration, the next level is computed as the upper envelope of the remaining segments. This
procedure is called onion peeling and can be implemented in O(qα(q) log2(q)) time, where
α(q) is the very slow-growing inverse of the Ackermann’s function introduced by Ackermann
(1928). Further information and algorithms to compute an h-level of an arrangement of
line segments can be found, for example, in Agarwal et al. (1998a) and Agarwal et al.
(1998b). Hence, the complexity for deriving all vertices of all m (n-k)-levels is bounded by
O(mnα(n) log2(n)).

For a general arrangement of line segments, an h-level is not necessarily connected but
may have discontinuities where the level jumps from one segment to a segment directly
above or below it. This happens if another segment starts or ends at a point below the
current level. The complexity of an h-level is therefore defined as the number of vertices of
the level plus the number of discontinuities (see Agarwal et al., 1998b).

Lemma 5.19 I Continuity
The (n-k)-levels are piecewise linear continuous functions.

Proof. The discontinuities of general h-levels can not occur for (n-k)-levels based on L
because the distance functions are piecewise linear and thus in every endpoint of one segment
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another segment starts. By the definition of an (n-k)-level, one of this adjacent segments
must belong to the (n-k)-level. �

As for the upper envelope, the question concerning a tight upper bound on the number
of vertices (and with this on the number of the local minima of the (n-k)-level) is an open
problem in combinatorial geometry. Some estimates on the complexity are known but it
is conjectured that the best possible upper bound must be smaller (see, for example, Pach
and Sharir, 2009). A proofed upper bound can, for example, be found in Agarwal et al.
(1998b). However, the best known upper bound is O(q

4
3 ), given by Dey (1997). This is

the number of all vertices of the h-level. However, only the local minima are needed for the
finite dominating set. The size of this set will be thus much smaller in general. The local
minima can be filtered out easily by comparing their function values given by the second
components of the vertices. With q ≤ 2n an upper bound of O(mn

4
3 ) on the size of the set

Cand2 can be obtained.

Algorithm 7 Solving k-max problems on graphs using Cand2

Input: Graph G = (V, E) with wi > 0 ∀ i = 1, . . . , n„ k ∈ {1, . . . , n − 1}.
1: for all eab ∈ E do

2: Transform the arrangement Lab into general position.

3: Determine the (n-k)-level F n−kab (x) of Lab.

4: Compute the set of local minima

Xgab := arg min
x=(eab,t)

F n−kab (x).

5: Transform the elements of Xgab back to the set Xab.

6: Determine the finite dominating set

Cand2 :=
⋃
eab∈E

a,b∈{1,...,n}

Xab.

7: Compute the set of points X := {x∗ : x∗2 = minx∈Cand2 x2}.
Output: Set of optimal solutions X with z∗ = x∗2 .

Algorithm 7 summarizes the above ideas for solving the k-max problem on a graph based
on the finite dominating set Cand2. The overall complexity using the set Cand2 to derive
all optimal solutions consists of the following parts: For one edge eab, the transformation
of Lab to Lgab (in general position) can be implemented in at most O(n) time because only
a small constant has to be added to the slope of each line segment. The computation of
the (n-k)-level in Lgab takes O(nα(n) log2(n)) time as described above. Filtering out the
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local minima from all vertices of the (n-k)-level needs O(n
4
3 ), which corresponds to the

number of vertices of the level. Only one comparison of the x2-values has to be made for
every candidate. Every candidate can be identified with the corresponding candidate point
in the original arrangement by one additional list traversal on eab, which can be implemented
together with the comparison of the respective objective values. Repeating this for all m
edges of G leads to a complexity of O(mn

4
3 ) since α(n) � log(n) for n tending to infinity.

Finally, the candidates with the smallest x2-values have to be found; this can be implemented
in O(mn

4
3 ). Overall, a complexity of O(mn

4
3 ) time for Algorithm 7 is obtained. Note that

the approach can be implemented easily in parallel since the computation on a fixed edge
does not depend on the results of the computation on the other edges. This leads to a clear
acceleration of the algorithm in practice.

The finite dominating set based on h-levels has some properties depending on the param-
eter k . To clarify this, the notation Cand2(k) is used in the following.

Theorem 5.20 I Partition of the FDS Cand2 with respect to levels
Let Lgab be an arrangement of weighted distance functions dw (vi , x), i = 1, . . . , n, over
eab in general position. Then the finite dominating sets Cand2(k) for (1kMG) for different
values of k , 1 ≤ k ≤ n − 1, are disjoint, i.e.

Cand2(r) ∩ Cand2(s) = ∅ for all r, s ∈ {1, . . . , n − 1}, r 6= s.

Proof. Let 1 ≤ k ≤ n − 1 and let Cand2(k) be the finite dominating set based on the
(n-k)-level F n−kab (x) of the arrangement Lgab. The (n-k)-level and the (n-k-1)-level are
consecutive in a top-down view. Since Lgab is in general position, F n−kab (x) and F n−k−1

ab (x)

are edge disjoint but may overlap in some of their vertices.
The following discussion is based on Dey (1997). Denote the set of vertices of Lgab with

exactly n − k lines below them as Sn−k . Consequently, the set of vertices in the (n-k)-level
is

Sn−k ∪ Sn−k−1.

The corresponding level F n−kab (x) makes a “left turn” in each vertex v ∈ Sn−k−1 and a “right
turn” in v ∈ Sn−k , see Figure 5.6. This means that the local minima of the level are elements
of Sn−k−1 whereas Sn−k contains the local maxima. Since

Sn−k ∩ Sn−k−1 = ∅,

the local minima of consecutive levels are disjoint. Obviously, non consecutive levels can
not have common vertices. As a consequence, the related finite dominating sets are also
disjoint. �

With the knowledge that a local minimum belongs to the finite dominating set Cand2(k)

for a fixed k , this point can be excluded for other values of k . Conversely, for a given
candidate point it is not immediately clear how the corresponding level can be identified.
Lemma 5.21 partially answers this question.
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Fig. 5.6: Edge disjoint levels of Lg34 for different values of k . Vertices of F 3
34(x) in S3 are

indicated by filled circles, vertices in S2 by empty circles.

Lemma 5.21 I Identification of the FDS Cand2 depending on k
Let σ be a permutation such that condition (4.1) is satisfied and let x ∈ EQ be an equilibrium
point with dw (vσ(s), x) = dw (vσ(s+1), x) for some s ∈ {1, . . . , n}. Then it holds that

x ∈ Cand2(s) ∨̇ x ∈ Cand2(s + 1).

Proof. Let x ∈ eab be an equilibrium point of G and let σ ∈ Σ(x). i.e., it holds that

dw (vσ(1), x) ≥ . . . ≥ dw (vσ(k), x) ≥ dw (vσ(k+1), x) ≥ . . . ≥ dw (vσ(n), x).

With x ∈ EQ it follows by assumption that

dw (vσ(s), x) = dw (vσ(s+1), x) for some s ∈ {1, . . . , n}.

This means that x has equal weighted distance from vσ(s) and vσ(s+1), and therefore it is a
vertex of the levels F n−sab (x) and F n−s−1

ab (x). Consequently, either

x ∈ Sn−s or x ∈ Sn−s−1.

However, it can not be decided whether x is a local minimum of F n−sab (x) or of F n−s−1
ab (x)

because the roles of s and s + 1 could also be swapped and still satisfy the equation
dw (vσ(s), x) = dw (vσ(s+1), x). Applying Corollary 5.17 implies that x belongs to the finite
dominating set for k = s or for k = s + 1, but not to both because of Theorem 5.20. �

The simultaneous computation of all optimal solutions for all values of the parameter
k = 1, . . . , n − 1 is not possible with the finite dominating set Cand2. It consists of the
vertices of the (n-k)-level over each edge of G and depends thus on the exact value of k .
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5.4 Special Cases

This section discusses two special cases of the general k-max problem on graphs. These
problems have an easier structure and thus it is not necessary to compute the whole candidate
sets described before. In both cases the underlying graph of the k-max problem is unweighted,
i.e., the weights wi of all nodes vi ∈ V , i = 1, . . . , n, are equal and thus normally set to
wi = 1. The first considered problem type is based on a general unweighted graph as defined
at the beginning of Chapter 4. The second approach is based on path graphs.

5.4.1 Unweighted k-max Problems on General Graphs

The special case of node weights wi = 1 for all nodes vi ∈ V , i = 1, . . . , n, can of course be
solved using the algorithms based on the finite dominating sets Cand and Cand2. However,
there is another more simple candidate set that can be established for the unweighted k-max

problem. This set indirectly uses equilibrium points without the need to compute them.

W.l.o.g. the length of the edges in G are assumed to be integer in this section, i.e. it
holds that lj ∈ N with lj 6= 0 for all j = 1, . . . , m. The idea is to find a set that is an easy
derivable superset of EQ such that it is guaranteed that all candidate points of Cand are
also elements of the new set for k < n. The following lemma describes such a superset.

Lemma 5.22 I FDS based on step length 0.5

Let G = (V, E) be a graph with wi = 1 for all i = 1, . . . , n and lj ∈ N with lj 6= 0 for all
j = 1, . . . , m. All optimal locations of the 1-k-max problem can then be found in the set

Cand3 =
⋃
eab∈E

a,b∈{1,...,n}

{
xα : xα =

(
eab,

α

2lab

)
, α = 0, 1, 2, . . . , 2lab

}
.

Proof. Let pgh be any path from a node vg ∈ V to another node vh ∈ V and let l(pgh) be
the length of the path given as the sum of its edge lengths. Moreover, let xβ ∈ EQgh on
this path be given by the pair xβ = (pgh, β) with β ∈ [0, 1] (analogously to the definition of
a point on an edge) such that

d(vg, xβ) = βl(pgh) and d(vh, xβ) = l(pgh)− βl(pgh).

As xβ is an equilibrium point of vg and vh, the distances d(vg, xβ) and d(vh, xβ) have to be
equal. Thus, it follows immediately that β = 1

2 and xβ is exactly the midpoint of pgh.
W.l.o.g. it is assumed now that xβ lies on an edge eab ∈ pgh with a, b ∈ {1, . . . , n}. l(pgh)

is the sum of integer values lj , j = 1, . . . , m. Hence,

xβ =

(
pgh,

1

2

)
=

(
eab,

α

2lab

)
for one α ∈ {0, 1, 2, . . . , 2lab}.

Therefore, xβ ∈ Cand3. Since xβ is an arbitrary equilibrium point, it follows that all equilib-

108



5.4. SPECIAL CASES

rium points of G are elements of Cand3 and thus Cand3 ⊇ Cand. Since all optimal solutions
of the k-max problem lie in Cand (see Theorem 5.10), Cand3 is, as a superset of Cand, also
a finite dominating set for the k-max problem. �

To derive the candidate points for this finite dominating set, every edge eab has to be
divided into steps of length 1

2 lab, where va and vb do also belong to the set with α = 0

resp. α = 2lab. The number of candidates is then given by

|Cand3 | =
∑
eab∈E

a,b∈{1,...,n}

(2lab − 1) + n,

because the number of candidate points on an edge eab is 2lab + 1. In order to not count
the endnodes va and vb of eab several times in case that they are incident to more than one
edge, only the inner candidate points on eab are counted. This results in the given sum for
the inner candidate points of all m edges of G. Afterwards, the number of vertices is added
because they all do belong to the finite dominating set. To derive an upper bound on the
size of the candidate set Cand3, define

L := max
eab∈E

a,b∈{1,...,n}

lab.

Then it holds for the maximum number of candidate points that |Cand3 | ≤ 2Lm −m + n

and therefore |Cand3 | = O(Lm + n).
This bound generally overestimates the number of candidates significantly, especially if

the edge lengths are very different. Of course it is much easier to compute the candidate
set Cand3 than the first two sets Cand and Cand2, but the disadvantage is the dependence
on the length of the edges of the graph. Thus, in general, the size of Cand3 is much
larger than the sizes of the other finite dominating sets and with the need to evaluate the
objective function value in every candidate, it becomes more costly than the two approaches
before: For one candidate point the distances to all existing facilities have to be computed
and sorted. This leads to a complexity of O(n log(n)). Finally, the derivation of an optimal
solution for the k-max problem takes O(Lmn log(n) + n2 log(n)) time, with L being the
maximum of all edge length. This approach for the special case of all nodes being weighted
equally should just be applied to problems with a small number of short edges, otherwise the
finite dominating sets Cand and Cand2 should be preferred.

Note that a generalisation to other weight sets would in general involve largely increased
candidate sets. As an example consider only one edge of length lab = 1 and two adjacent
nodes with different weights, i.e., wa = 1, wb = 2 or wb = 1, wb = 3 and so on.

5.4.2 Unweighted k-max Problems on Path Graphs

Path graphs are graphs with a particularly simple structure. Hence, in this case, an easy
procedure with low complexity to solve the problem can be given. A path graph P = (V, E)

is a tree that has two nodes with vertex degree one (the leaves) and n−2 nodes with vertex
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degree two (inner nodes). Such a graph can therefore be drawn as a single straight line
on which all of its vertices and edges lie such that its vertices can be listed in the order
v1, v2, . . . , vn and edges are of type

E = {ei ,i+1 = (vi , vi+1) : i = 1, . . . , n − 1}.

In the following, it is assumed that the nodes and edges of the graph are indexed as specified
above, and that the graph is unweighted, i.e., it holds wi = 1 for all i = 1, . . . , n.

The idea is to apply the result of Theorem 5.1 to path graphs such that only a small
number of possibilities to choose the (not necessarily unique) optimal set of outliers V ∗k−1

remains. This leads to a strong property for the center defining nodes and an easy procedure
to solve the k-max problem can be derived.

Corollary 5.23 I Position of outliers on path graphs
Let P = (V, E) be an unweighted path graph and let x ∈ A(P ) be a feasible solution of
the k-max problem on P with its corresponding set of outliers Vk−1. It holds: All outliers
vi ∈ Vk−1 are connected to one of the leaf nodes v1 or vn by a path

P (vi , v1) = (v1, v2, . . . , vi−1, vi) with {v1, . . . , vi} ⊆ Vk−1

or a path

P (vi , vn) = (vi , vi+1, . . . , vn−1, vn) with {vi+1, . . . , vn} ⊆ Vk−1.

Equivalently, the center defining nodes V \ Vk−1 form a subpath Pj = P (vj , vj+n−k) of P
with starting node vj ∈ {v1, . . . , vk}.

Proof. Follows directly with Theorem 5.1 and the structure of a path graph. �

Following Theorem 5.1, the center defining nodes have to be connected and therefore have
to form a subpath of the path graph P . As a consequence, the center point of the center
defining path is the optimal location for the new facility. Hence, by evaluating all starting
nodes vj ∈ {v1, . . . , vk} of a possible center defining path P (vj , vj+n−k), all candidates for
the optimal k-max solution are obtained, given by the center locations x(Pj), j = 1, . . . , k ,
of the respective paths. Since the center location of an unweighted path is unique, this
leads to exactly k candidate locations. Compared to general graphs where all

(
n

n−k+1

)
most

contiguous sets have to be checked (see Algorithm 2), the number of these sets to be
evaluated is much smaller here because only subsets Rn−k+1 that form a connected subpath
of P have to be considered.

Obviously, the subpath leading to the smallest center objective value defines the optimal
new location. Since the center point of an unweighted path graph Pj is the midpoint of Pj ,
the center objective value is given by

z(Pj) =
1

2
· dia(Pj),
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with dia(Pj), j = 1, . . . , k , being the diameter of Pj (which, in the case of a path graph,
equals the length of P ). Therefore, the subpaths can easily be evaluated, i.e., it can be
easily checked whether they are the optimal center defining paths by just comparing their
diameters. The subpath with the smallest diameter defines the optimal set of center defining
nodes.

Figure 5.7 gives an example of a k-max problem on a path graph for k = 4. The first
subfigure shows the original path graph P . Below are the four possible center defining paths
(black) and their corresponding outliers (grey). The optimal solution of the problem is
x∗ = x(P3) with objective function value z∗ = 1.5 since P3 has dia(P3) = 3 and is thus the
shortest possible center defining path.

P2 v3v1 v2 v4
1

v5 v6
83 2 5

x(P2)
l(P2) = 9

v1 v2 v3 v4 v5 v6
83 1 2 5

P

v1 v2 v3 v4 v5 v6
83 1 2 5

P1
x(P1)

l(P1) = 11

P3 v3v1 v2 v4
1

v5 v6
83 2 5

x(P3)
l(P3) = 3

P4 v3v1 v2 v4
1

v5 v6
83 2 5

x(P4)
l(P4) = 7

Fig. 5.7: A path graph P with n = 6 and k = 4. The subpaths Pj with vj ∈ {vj , vj+n−k}
are shown in black with their corresponding center points x(Pj), j = 1, . . . , k .

For the evaluation of the subpaths, their diameters have to be computed. By updating
the diameter dia(Pj−1) of the subpath Pj−1 = (vj−1, vj−1+n−k), j = 2, . . . , k , the diameter
of Pj = (vj , vj−n−k) can be determined easily with

dia(Pj) = dia(Pj−1)− lj−1 + lj+n−k−1,

since Pj is obtained from Pj−1 by deleting edge ej−1 and node vj−1 and adding edge ej+n−k−1

and node vj+n−k . Algorithm 8 summarises this approach to solve the k-max problem on an
unweighted path graph.

The complexity of this algorithm isO(n) because there are exactly k graphs to be evaluated
for being the center defining subpaths. Since k ≤ n, the number of these subpaths is bounded
by n. The individual steps of Algorithm 8 can be implemented in constant time. Thus, the
problem on an unweighted path graph can be solved much more efficiently than the problem
on general graphs. This holds also if the solutions for all values of k have to be determined.
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Since for every value of k there are k subpaths to be analysed, there are in total

n∑
k=1

n(n + 1)

2
= O(n2)

subpaths for all values of k .

Algorithm 8 Solving the 1-k-max problem on an unweighted path graph

Input: Graph G = (V, E), k ∈ {1, . . . , n − 1}
1: Set path P1 := (v1, . . . , v1+n−k)

2: Set dia(P1) :=
∑n−k
i=1 li and dia_min := dia(P1)

3: Set x(P1) as the midpoint of P1 and X := {x(P1)}
4: for j = 2, . . . , k do

5: Set path Pj := (vj , . . . , vj+n−k)

6: Set dia(Pj) := dia(Pj−1)− lj−1 + lj+n−k−1

7: Set x(Pj) as the midpoint of Pj
8: if dia(Pj) < dia(Pj−1) then . New currently best solution

9: dia_min := dia(Pj)

10: X := {x(Pj)}
11: else if dia(Pj) = dia(Pj−1) then . Additional currently best solution

12: X := X ∪ {x(Pj)}

Output: Set X of optimal solutions and z∗ := 1
2 · dia_min.

Note that an approach that recursively determines outliers in k − 1 steps does in general
not lead to an optimal solution of the 1-k-max problem on path graphs. Consider, for
example, the following recursive strategy: In each step the leaf node and its incident edge
is deleted that shortens the diameter of the graph the most. This greedy strategy may lead
to a very unsatisfying solution, i.e., after some iterations the optimal solution can not be
reached any more. This is illustrated in Example 5.24.

Example 5.24. Figure 5.8 gives an example for the situation described above. The first sub-
figure shows the initial graph P with five nodes. A k-max problem with k = 3 is considered.
In the recursive approach described above, the first step would be to choose node v5 as an
outlier and to delete it because l4 = 2 > 1 = l1. In the second step, v4 is deleted for the
same reason. The result is a subgraph with diameter 11 and set of outliers Vk−1 = {v4, v5}.
However, the optimal solution would be to choose nodes v1 and v3 as outliers because then
the remaining graph has a diameter of 4. Hence, after the first step in the recursive approach,
the optimal solution can not be reached any more.
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v1 v2 v3 v4 v5
1

P
10 2 2

v1 v2 v3 v4
1
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10 2

v1 v2 v3
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2. Step
10

v3 v4 v5optimal
2 2

Fig. 5.8: Recursive approach that does not yield the correct optimal solution.

5.5 Conclusion

Two solution approaches for the k-max problem on graphs based on two different finite
dominating sets were presented in this chapter. To conclude, a short comparison of the two
finite dominating sets Cand and Cand2 for the k-max problem is made.
The first candidate set Cand is based on the set of equilibrium points of the graph which

are given by all intersection points of the line arrangements over every edge of the graph.
The cardinality of this finite dominating set is O(mn2). The second candidate set Cand2

consists only of the intersection points of the line arrangement given by the considered level
for the given value of the parameter k and hence |Cand2 | = O(mn

4
3 ). This difference in

the theoretical size may be even larger than the worst case estimation suggests because the
upper bound on the size of the number of vertices of an h-level is not tight and Cand2 has in
general much fewer elements than Cand. However, the computational tests (see Chapter 7)
have shown that the actual number of equilibrium points of a graph is in practice much
smaller than it could be assumed from the theoretical upper bound. Hence, the difference
in the size of the two finite dominating sets may in practice not be that important. Note
that Cand2 is in general not a subset of Cand as Cand2 may also contain nodes that are not
equilibrium points. A local minimum of an (n-k)-level may be attained in a node no matter
if two distance functions intersect there.
The complexity of the solution approach based on Cand is bounded by O(m(n+s) log(n))

with s ≤
(
n
2

)
, whereas the algorithm to solve the problem with Cand2 needs at most O(mn

4
3 )

time. Thus, it depends on the particular instance (the number of intersection points over
the edges) which finite dominating set yields a better worst case bound for solving the k-max

problem. However, an advantage of the set Cand is that the k-max problem can be solved
for all values of k = 1, . . . , n − 1 simultaneously as the optimal solutions for all values of k
belong to Cand. In contrast to that, the elements of Cand2 depend on a fixed value of k as
the minima of the corresponding (n-k)-level have to be computed.

Furthermore, two special cases of the k-max problem were considered in this chapter. In
both cases, the nodes are unweighted, i.e., wi = 1 for all i = 1, . . . , n. The first approach
is for general graphs and computes a finite dominating set which contains the set Cand as
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a subset. The computation of this candidate set is easy and fast. However, its cardinality
depends on the number and the lengths of the edges and may therefore get very large.
The second case deals with path graphs which have an easy structure such that only a

small number of “most contiguous sets” remain important to evaluate. Thus, an optimal
solution of this special case can be found very easily.

114



Chapter 6
Algorithms for p-k-max Location Prob-
lems on Networks

In this chapter, the p-k-max location problem as defined in Definition 4.2 will be analysed, i.e.,
a set of p ∈ {1, . . . , n} new facilities X = {x1, . . . , xp} has to be located on the underlying
network G = (V, E) such that the kth largest distance for a k ∈ {1, . . . , n} between any
customer and its closest new facility is minimised:

min
X⊆A(G)

fk(X) = min
X⊆A(G)

k-max(dw (V,X)) = min
X⊆A(G)

wσ(k)d
w (vσ(k), X),

where σ ∈ Σ(X) is a permutation that sorts the elements of the vector dw (V,X) ∈ Rn of
weighted distances in non-increasing order. The number p ∈ {1, . . . , n} of new facilities to
locate is arbitrary but fixed, i.e., it does not grow with the problem size.
In the first section, a finite dominating set is derived and used as a basis for an algorithm to

solve the p-k-max problem. The second section presents a recursive approach that generates
the individual candidates for optimal solutions step by step. Each new facility of a candidate
solution is located with respect to the already located facilities such that many possible
locations can be excluded from the further analyses. These two approaches guarantee to
find at least one optimal solutions of the p-k-max problem. The aim of the following section
is to find alternative optimal solutions with other properties than the optimal solutions found
in the two sections before. A local analysis on the edges of the graph is used to identify the
linearity regions of the k-max function. Moreover, it is shown that this approach even yields
all optimal solutions of the underlying problem. Another technique to generate alternative
optimal solutions of the p-k-max problem that are not an element of the finite dominating
set presented in the first section is given in the fourth section. The chapter is closed with a
short comparison of the described approaches.

To get an intuition of the solutions of a p-k-max problem, Figure 6.1 shows an optimal
solution X∗ = {x∗1 , . . . , x∗p} of the 3-2-max problem on an unweighted graph G. The length
of every edge corresponds to the Euclidean distance between its two endnodes of this edge
in the planar embedding of the graph. The set of outliers w.r.t. X∗ is given by V ∗k−1. As now
p new facilities can be located, there are also p clusters, one defined by each new facility
x∗1 , . . . , x

∗
p . A cluster Ci consists of the customers that are covered with service by the

corresponding new facility xi with i ∈ {1, . . . , p} and are therefore described by the set

Ci = {v ∈ V \ Vk−1 : dw (v , xi) ≤ dw (v , x`) ∀ ` > i ∧ dw (v , xi) < dw (v , x`) ∀ ` < i}
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for i ∈ {1, . . . , p} and for all ` = 1, . . . , p with ` 6= i . Note that, if an existing facility is of
equal distance from two or more new facilities, it can be assigned w.l.o.g. to the new facility
with the smallest index.

X3

X1

X2

C2

C1

C3

Fig. 6.1: An optimal solution of the 3-2-max problem on G with the corresponding clusters

The optimal k-max value z∗ is the largest weighted distance between a customer provided
with service and its closest new facility. In the following, a new facility xi∗ , i∗ ∈ {1, . . . , p},
that yields the weighted distance defining the k-max value in the corresponding solution X∗,
i.e., for which

dw (X∗, V \ V ∗k−1) = dw (xi∗ , Ci∗) = z∗

holds, is called an objective function value defining facility resp. a facility that determines
the objective function value. Note that there can in general be more than just one objective
function value defining facility in a solution. In the example of Figure 6.1, the objective func-
tion value defining facility is obviously x1. The maximum distance between a new facility and
its most distant customer is also called the radius of the cluster. An important observation
is that the k-max value gives the radius of the largest cluster defined by the solution X∗.
The other clusters can at most be as large as the cluster of the objective function value
defining facility, otherwise this would imply a larger objective function value. Note that not
all new facilities are the center point of the nodes allocated to it.

Some combinations of values for the parameters k and p can be excluded from a further
analysis because a set of optimal solutions of the p-k-max problem is known without any
calculations. The following lemma gives the exact number of optimal solutions and their
characterisation for k = n − p + 1.

Lemma 6.1 I Case k = n − p + 1

For k = n − p + 1 the p-k-max problem has
(
n
p

)
optimal solutions of the form

X ∗ =
{
{x1, . . . , xp} : x1, . . . , xp ∈ V with xi 6= xj ∀ i , j = 1, . . . , p

}
.
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Proof. Let p ∈ {1, . . . , n} be arbitrary but fixed and let k = n − p + 1. With the definition
of k it holds that p = n− k + 1, i.e., the number of facilities to locate equals the number of
customers that have to be covered with service. Locating all new facilities X = {x1, . . . , xp}
in p arbitrary but pairwise different nodes vi1 , . . . , vip ∈ V leads to

dw (vij , X) = 0 for all j = 1, . . . , p.

Obviously, all other components dw (va, X) with va ∈ V and a /∈ {i1, . . . .ip} are strictly
positive as all node weights and all edge lengths are strictly positive. Thus, the vector of
distances dwσ (V,X), which is the vector dw (V,X) sorted by the permutation σ ∈ Σ(X), is
of the form

dwσ (V,X) = (dw (vσ(1), X), . . . , dw (vσ(n−p),X), dw (vσ(n−p+1), X), . . . , dw (vσ(n), X))>

= (dw (vσ(1), X), . . . , dw (vσ(n−p),X), 0, . . . , 0)>.

As the objective function value of this solution is z∗ = dw (vσ(k), X) = dw (vσ(n−p+1), X) = 0

and the objective function value of a p-k-max problem is bounded from below by 0, X has
to be an optimal solution.
As the p new facilities can be placed in p out of n nodes, there are

(
n
p

)
alternative optimal

solutions. Moreover, a distance of 0 can only be realised by locating each new facility in a
node. Hence, there are no other optimal solutions that do not locate all new facilities in
nodes. �

The following lemma shows that the p-k-max problem for a parameter k that is strictly
larger than n−p+ 1 has infinitely many optimal solutions and that they are easy to identify.

Lemma 6.2 I Case k ∈ {n − p + 2, . . . , n}
Let p ∈ {2, . . . , n}. For k ∈ {n − p + 2, . . . , n} the p-k-max problem has infinitely many
optimal solutions. The set of optimal solutions is of the form

X ∗ =
{
{x∗1 , . . . , x∗p} : x∗1 , . . . , x

∗
n−k+1 ∈ V with xi 6= xj ∀ i , j = 1, . . . , n − k + 1

and x∗n−k+2, . . . , x
∗
p ∈ A(G)

}
.

Proof. Let p ∈ {2, . . . , n} be arbitrary but fixed and let k ∈ {n − p + 2, . . . , n}. For a
parameter s ∈ {1, . . . , p − 1} it holds that k = n − p + 1 + s ⇔ p − s = n − k + 1. That
means that s more new facilities can be located than customers have to be covered with
service. Thus, locating a subset X̄ = {x1, . . . , xp−s} of the new facilities X = {x1, . . . , xp}
in p − s arbitrary but pairwise different nodes vi1 , . . . , vip−s ∈ V leads to

dw (vij , X̄) = 0 for all j = 1, . . . , p − s.

By locating the remaining s new facilities xp−s+1, . . . , xp arbitrarily on A(G), all other com-
ponents dw (va, X) with va ∈ V and a /∈ {i1, . . . .ip−s} are non-negative as all node weights
and all edge lengths are strictly positive. Thus, the vector of distances dwσ (V,X), which is
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the vector dw (V,X) sorted by the permutation σ ∈ Σ(X), is of the form

dwσ (V,X) = (dw (vσ(1), X), . . . , dw (vσ(n−p+s),X), dw (vσ(n−p+s+1), X), . . . , dw (vσ(n), X))>

= (dw (vσ(1), X), . . . , dw (vσ(n−p+s),X), 0, . . . , 0)>.

As the objective function value of this solution is

z∗ = dw (vσ(k), X) = dw (vσ(n−p+s+1), X) = 0

and the objective function value of a p-k-max problem is bounded from below by 0, X has to
be an optimal solution. Since A(G) contains infinitely many points to locate xn−p+s , . . . , xp,
there are infinitely many optimal solutions of the p-k-max problem on G. �

As a consequence of Lemma 6.1 and Lemma 6.2, it is assumed in the following (unless it
is stated otherwise) that n ≥ 2 and the values of the parameters k and p satisfy the relation
k ≤ n − p. Otherwise, the optimal solutions can be obtained using the above results.

6.1 Finite Dominating Set Based on Equilibrium Points

As already stated at the beginning of Section 5.2, it is very helpful to know a finite dominating
set of the underlying problem because the set of possible optimal solutions is reduced to a
finite number of candidates. Often, this is a good starting point so create more efficient
solution approaches than to simply enumerate all these candidates. Thus, a finite dominating
set for the p-k-max problem is derived in this section. The result for the finite dominating
set based on equilibrium points of the 1-k-max problem can not directly be transferred to
the p-k-max case. However, a similar statement holds. Again, the set of candidates for
an optimal solution is based on equilibrium points. Theorem 6.3 shows that at least one
optimal solution of the given problem lies in the below defined finite dominating set Cand4.

Theorem 6.3 I FDS for the p-k-max problem
Let p ∈ {1, . . . , n} and k ∈ {1, . . . , n−p}. At least one optimal solution X∗ = {x∗1 , . . . , x∗p}
of the p-k-max problem, where w.l.o.g x∗1 determines the optimal objective function value
z∗, can be found in the set

Cand4 = EQ× (EQ ∪ V )p−1

=
{
{x1, . . . , xp} : x1 ∈ EQ, x2, . . . , xp ∈ EQ ∪ V

}
.

Proof. Let X̃ = {x̃1, . . . , x̃p} with x̃1, . . . , x̃p ∈ A(G) be optimal locations with optimal
objective value z̃ (an optimal solution exists according to Theorem 4.6). Let

V` := {vi ∈ V : dw (vi , x̃`) ≤ dw (vi , x̃g) ∀ g > ` ∧ dw (vi , x̃`) < dw (vi , x̃g) ∀ g < `}

for all ` ∈ {1, . . . , p} define an optimal allocation of the existing facilities to the new facilities
x̃1, . . . , x̃p. Note that if an existing facility is of equal distance from two or more new facilities,
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it is assigned w.l.o.g. to the new facility with the smallest index. Moreover, let σ ∈ Σ(X̃),
i.e.,

min
`∈{1,...,p}

dw (vσ(1), x̃`) ≥ min
`∈{1,...,p}

dw (vσ(2), x̃`) ≥ . . . ≥ min
`∈{1,...,p}

dw (vσ(n), x̃`).

Then

min
`∈{1,...,p}

dw (vσ(k), x̃`) = z̃ and min
`∈{1,...,p}

dw (vσ(i), x̃`) ≥ z̃ ∀ i < k. (6.1)

Suppose w.l.o.g. that the minimum in (6.1) is attained in x̃1, i.e., z̃ = dw (vσ(k), x̃1), and let

k` := |{vσ(i) ∈ V` : i < k}| for all ` ∈ {1, . . . , p}

be the number of outliers in V`. Clearly,
∑p
`=1 k` + 1 = k . An illustration of the situation is

given in Figure 6.2.

x̃1 x̃2

V2

V1

v5

v1

v2

v3

v4

v6

v7

v8

v9

v10

v11

v12

x∗2

Fig. 6.2: Graph G with sets V1 = {v1, . . . , v6} and V2 = {v7, . . . , v12} for the optimal
solution X̃ = {x̃1, x̃2} of the 2-2-max problem. Here, k1 = 0 and k2 = 1 as node v11 is the
outlier of this solution. Solving the 1-1-max problem on V1 leads to x̃1 again, the optimal
solution of the 1-2-max problem is x∗2 ∈ EQ7,10.

Now an alternative optimal solution x∗1 , . . . , x
∗
p ∈ A(G) is constructed such that x∗1 ∈ EQ

and x∗2 , . . . , x
∗
p ∈ EQ ∪ V as follows: Let x∗1 ∈ A(G) be selected such that x∗1 is an optimal

location for the 1-(k1 + 1)-max problem with existing facilities V1 in G (all nodes in V \ V1

have weight 0 in this problem, see Remark 4.5). Note that the problem is solvable because
of k1 ≤ |V1| due to the definition of k1.

The 1-(k1 + 1)-max problem has an optimal solution in EQ for all 1 ≤ k1 ≤ |V1| − 2 and
in V only if k1 = |V1| − 1 (see Theorem 5.10). In the latter case all nodes in V1 except of
one have to be outliers. Thus, x∗1 is located in a node v∗ ∈ V1 and yields z∗1 = 0 in this
case. With the same argument, x̃1 also had to be located in a node of V1 and hence z̃ = 0.
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It follows that

min
{
dw (vσ(i), x

∗
1 ), dw (vσ(i), x̃2), . . . , dw (vσ(i), x̃p)

}
= 0 for all i ≥ k.

As x∗1 is already located in a node, x̃2, . . . , x̃p have to bring all other n − k ≥ p distances to
0 which is not possible due to the positive edge and node weights. As a consequence, the
case k1 = |V1| − 1 can not occur and x∗1 ∈ EQ. Since x̃1 is also feasible for this problem
and has objective value z̃ , it is known that the optimal objective value z∗1 of this problem
satisfies z∗1 ≤ z̃ .

Similarly, let x∗` ∈ EQ∪ V , ` ∈ {2, . . . , p}, be selected such that x∗` is an optimal location
for the 1-(k`+1)-max problem with existing facilities V` in G (all nodes in V \V` have weight 0

in this problem). Note that the problem is solvable because of k` ≤ |V`| due to the definition
of k`. As x̃` is also feasible for this problem and has objective value of at most z̃ , it is known
that the optimal objective value z∗` of this problem satisfies z∗` ≤ z̃ .

Consequently, all existing facilities in V can be allocated to x∗1 , . . . , x
∗
p such that the kth

largest distance occurring in this allocation is at most max`∈{1,...,p} z
∗
` ≤ z̃ . Since distances

can not be larger in an optimal allocation, it can be concluded that X∗ = {x∗1 , . . . , x∗p}
is an alternative feasible solution satisfying k-max(dw (vi , X

∗)) ≤ z̃ . Since z̃ is optimal,
this inequality must hold with equality, and {x∗1 , . . . , x∗p} is indeed an alternative optimal
solution. �

As stated in Remark 4.19, the total number of equilibrium points of G is bounded by
O(mn2). This leads to a size of O(mpn2p) of the finite dominating set Cand4 since all sets
{x1, . . . , xp} with x1 ∈ EQ and x2, . . . , xp ∈ EQ ∪ V have to be considered as candidate
solutions of the p-k-max problem. As a consequence of Theorem 6.3, an optimal solution
of the p-k-max problem on graphs can be found by evaluating the objective function in all
these candidate points of Cand4.

Note that the set of optimal solutions XCand4 found in this way does in general not
contain all optimal solutions of the underlying p-k-max problem. Algorithm 9 has a worst
case complexity of O(mpn2p+1 log(n)).
This can be seen by analysing the individual steps. The derivation of the equilibrium points

with the algorithm of Bentley and Ottmann (1979) requires O(m(n + s) log(n)) time with
s ≤ 2

(
n
2

)
(see Section 4.4). Finding and filtering all redundant candidates out of a set of size

O(mpn2p) takes O(mpn2pp log(mn)). Afterwards, all candidates X = {x1, . . . , xp} ∈ Cand4

have to be evaluated in O(mpn2p+1(p + log(n))) (see Algorithm 4). Thus, the overall
complexity is bounded by O(mpn2p(p log(mn) + np + n log(n))). As m ≤ n2 and therefore
log(mn) ≤ n, this expression can be simplified to O(mpn2p+1(p + log(n))) and as p is
assumed to be arbitrary but fixed, the above mentioned result holds.
Note that the filtering of the set EQ for multiply defined equilibrium points does not

improve the theoretical worst case bound of the algorithm. However, this filtering step
yields in general significant improvements w.r.t. the computation time as the number of
candidates to be tested may be much smaller.
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Note moreover that the complexity of Algorithm 9 can not be improved by extracting the
information about the permutations and the distances between the nodes and the candidates
from the derivation of the equilibrium points as it can be done for the 1-k-max problem. Since
the distances to every node have to be computed from all new facilities, the permutation
σ is in general different from the one given by the ordering of the line segments in one
point x ∈ EQ computed by the algorithm of Bentley and Ottmann (1979). However, the
computations can be done in parallel easily: The equilibrium points on a fixed edge do not
depend on the equilibrium points of the other edge and the single candidate solutions can be
evaluated independently from the other candidates. This leads to a significant acceleration
of the algorithm in practice.

Algorithm 9 p-k-max problems on graphs using Cand4

Input: Graph G = (V, E) with wi > 0 ∀ i = 1, . . . , n, p ∈ {2, . . . , n}, k ∈ {1, . . . , n − p}.
1: Determine the set EQ of all equilibrium points of G.

2: Determine the set Cand4 := EQ× (EQ ∪ V )p−1.

3: Filter out redundant candidates of Cand4.

4: Evaluate the k-max function in all candidates X ∈ Cand4.

Output: Set of optimal solutions XCand4 := {X∗ = {x∗1 , . . . , x∗p} : fk(X∗) = min
X∈Cand4

fk(X)}
with optimal objective function value z∗ := dw (vσ(k), X

∗).

Example 6.4. Let G = (V, E) be the example graph with node weights and edge length
given in Figure 4.5. Evaluating all candidates of the finite dominating set Cand4 leads to
the following four optimal solutions of the 2-1-max problem:

x1
1 =

(
e34,

1

3

)
x1

2 = (e12, 0) ,

x2
1 =

(
e34,

1

3

)
x2

2 =

(
e12,

1

4

)
,

x3
1 =

(
e34,

1

3

)
x3

2 =

(
e12,

1

3

)
,

x4
1 =

(
e34,

1

3

)
x4

2 =

(
e15,

1

3

)
,

with optimal objective function value z∗ = 4
3 . Note that the first facility is the same in all

four solutions. The solutions are illustrated in Figure 6.3.

Remark 6.5. The above presented approach yields all optimal solutions of the p-k-max

problem in which all new facilities lie in the set EQ × (EQ ∪ V )p−1. It is also possible to
consider only candidate solutions in which the individual new facilities are located in pairwise
different positions in A(G) such that no two new facilities coincide. In this case, it is only
guaranteed to find at least one, but not to find all optimal solutions of the set Cand4 since,
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Fig. 6.3: Optimal solutions of the 2-1-max problem. The second new facility x i2 is the same
in all four solutions for i = 1, . . . , 4.

particularly in the case that not all new facilities are needed to realise the optimal objective
function value, some of the new facilities may be placed in arbitrary locations and thus also
at the same location as some other new facilities.

Algorithm 9 can be extended easily to simultaneously compute an optimal solution for
all possible values of the parameter k with 1 ≤ k ≤ n − p. Once the candidate set and
the corresponding sorted vectors of distances are computed for each candidate point, the
evaluation of the candidates can be realised in an extra step. The elements of the distance
vector of each candidate are associated to the corresponding values of k and compared to
the currently best objective function value with respect to k . Since k ≤ n, the extension
does not lead to a higher worst case complexity bound but generates a lot more information
about the trade-off (see Section 2.3) between the objective function value, i.e., the required
coverage radius, and the value of k .

6.2 A Recursive Approach

The evaluation of the candidates in the finite dominating set Cand4 (see Algorithm 9) can be
made more efficient for practical usage if not all candidates X = {x1, . . . , xp} with x1 ∈ EQ
and x2, . . . , xp ∈ EQ∪ V are checked for their objective function value. So in the following,
an algorithm will be developed which generates every candidate recursively. Thus, for each
individual new facility it can be decided which positions with respect to the already located
facilities can potentially lead to an optimal solution and which can not. In this way, the
majority of elements of Cand4 do not have to be considered and the set of candidates that
has to be evaluated is in general significantly smaller.

It is known from Theorem 6.3 that the new facility that determines the optimal objective
function value z∗ lies in an equilibrium point. As a consequence, the optimal objective
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function value z∗ of the p-k-max problem is known to be in the set

Z = {dw (va, y) : y ∈ EQab with a, b ∈ {1, . . . , n}}.

In the following, the elements of the set Z are called zi and are assumed to be indexed such
that z1 > z2 > . . . > z|Z| for i = 1, . . . , |Z|. Note that the cardinality of the set Z is usually
smaller than the cardinality of the set EQ. With every combination a, b ∈ {1, . . . , n},
a 6= b, a set EQab and with it possible values of the objective function of facility x1 are
obtained. By considering all these combinations of a, b ∈ {1, . . . , n}, a 6= b, the optimal
location for x1 and the corresponding objective function value can be found. Each candidate
X = {x1, . . . , xp} can then be constructed in the following way:

The first facility x1 is located in an arbitrary equilibrium point EQab with a, b ∈ {1, . . . , n},
a 6= b, and the corresponding objective function value z1 = dw (va, x1) ∈ Z is assumed to
be optimal for the p-k-max problem. As z1 is then known, the set

C(x1) = {v ∈ V : dw (v , x1) ≤ z1}

of nodes covered by x1 can be determined. C(x1) is called the cover of x1 and z1 its coverage
radius. Since the number of outliers is k−1 and x1 covers |C(x1)| nodes, only the remaining
n − k − |C(x1)|+ 1 nodes have to be covered by x2, . . . , xp ∈ EQ ∪ V . The location of the
remaining new facilities can then be derived by solving a (p -1)-k-max problem on the nodes
V \C(x1). Hence, the initial problem is reduced to a smaller set of customers and p−1 new
facilities. This reduced problem can be solved recursively with the same approach by locating
the next facility x2 and assuming that it gives the optimal objective function value of the
(p -1)-k-max problem and so on. If the solution of a subproblem leads to a contradiction to
the optimality of z1 for the initial problem or to the optimality of the objective function value
of a previous iteration, respectively, the candidate does not have to be considered further.

Remark 6.6. Note that not all duplicate equilibrium points can be filtered out at the begin-
ning since they may differ with respect to the distance to their defining points.

In the following, it will be assumed that the new facilities are located recursively and with a
non-increasing coverage radius with respect to their respective defining (equilibrium) points.
Note that at least one optimal solution of XCand4 will be found in this way.

Let Xq−1 := {x1, . . . , xq−1} ⊆ X, 2 < q ≤ p, be the set of already located new facilities
and assume that each new facility x` is located in an equilibrium point, i.e., x` ∈ EQa`,b`
with ` ∈ {1, . . . , q − 1}, a`, b` ∈ {1, . . . , n}, a` 6= b`. Each candidate facility x` induces a
value z` = dw (va` , x`) ≤ z1 and a cover

C(x`) =
{
v ∈ V : dw (va` , x`) ≤ z`

}
for ` = 1, . . . , q − 1

of customers assigned to x`. Define

C(q) =

q−1⋃
`=1

C(x`)
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as the set of all nodes already covered by at least one of the new facilities in Xq−1 within
its respective coverage radius. Thus, only the customers in the set

V (q) := V \ C(q),

i.e., customers which are not already covered by x1, . . . , xq−1, have to be provided with
service by the remaining new facilities xq, . . . , xp. Formally, this can be realised by solving
a (p-q+1)-k-max problem on the customer set V (q) by setting the weights of the nodes in
V \ V (q) to 0 (see Remark 4.5).
With p̄ := p − q + 1 and n̄ := n − |C(q)| = |V (q)|, four cases have to be distinguished

for the solution of the p̄-k-max problem on the n̄ remaining facilities in V (q).

Case 1: k ≤ n̄ − p̄,
i.e., the kth largest distance can not be brought to 0 by just locating xq, . . . , xp in
arbitrary, pairwise different nodes of V (q). Applying Theorem 6.3 and the fact that
the equilibrium points of zero-weighted facilities do not have to be considered leads to
a finite dominating set

EQ(q)× (EQ(q) ∪ V (q))p−q,

for the p̄-k-max problem, where

EQ(q) := {y ∈ EQ : ∃ vs , vt ∈ V (q) such that y ∈ EQst}

is the set of equilibrium points defined by two nodes vs , vt that both are not covered
by one of the facilities in Xq−1. Thus, with the above described recursive approach,
the next new facility xq ∈ X is located in an equilibrium point of EQaq ,bq ⊆ EQ(q)

leading to a coverage radius zq = dw (vaq , xq) which is assumed to be optimal for the
p̄-k-max problem and satisfies zq ≤ zq−1 (The case where zq > zq−1 can only occur
when the coverage radius z` in one of the previous iterations was selected too small.
This will be discussed later, see page 125). Afterwards, the recursion continues by
solving the resulting smaller location problems until k > n̄ − p̄. Note that if q = p,
then all p iterations were Case 1-iterations since n̄ − p̄ is monotonically decreasing
with the iteration number q. In this case it holds obviously that all facilities of X are
located in equilibrium points.

Case 2: k = n̄ − p̄ + 1,
i.e., the number p̄ of facilities to locate equals the number n̄−k+ 1 of customers that
still have to be covered with service. Following Lemma 6.1, an optimal solution of the
problem is obtained by locating the remaining new facilities xq, . . . , xp in p̄ arbitrary
but pairwise different nodes of V (q).

Case 3: n̄ − p̄ + 2 ≤ k ≤ n̄,
i.e., the number p̄ of facilities to locate is larger than the number n̄−k+1 of customers
that still have to be covered with service but k is defined properly. Following Lemma 6.2
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it holds that xq, . . . , xq+n̄−k have to be located in arbitrary pairwise different nodes of
V (q) and xq+n̄−k+1, . . . , xp can be placed arbitrarily in EQ(q) ∪ V (q). Note that the
same objective function value could be obtained without xq+n̄−k+1, . . . , xp, i.e., using
only q + n̄ − k new facilities.

Case 4: k ≥ n̄,
i.e., the p̄-k-max problem is not properly defined as the parameter k is larger than the
number of the underlying facilities. This situation occurs if more than n−k+1 facilities
of the initial p-k-max problem are covered by x1, . . . , xq−1. Hence, all remaining new
facilities xq, . . . , xp can be located arbitrarily in EQ(q) ∪ V (q) since they can neither
improve nor worsen the overall objective value z1, which was assumed to be optimal for
the initial p-k-max problem. Note that in this case the same overall objective function
value can be realised with only q − 1 new facilities.

The recursion continues with the next iteration only in Case 1 since in Case 2 to Case 4 all
p new facilities of the current candidate are located in just one iteration. Thus, k ≥ n̄− p̄+1

is a stopping criterion for the recursion.

In Case 1 two further stopping criteria can be applied. If the objective function value zq
is larger than the coverage radius zq−1 of C(xq−1), i.e.,

zq > zq−1, (6.2)

Xq−1 can not be extended to a solution of the initial p-k-max problem satisfying the condition
z1 ≥ z2 ≥ . . . ≥ zp. As the current (p -q+1)-k-max problem arises as a subproblem of
the (p -(q -1)+1)-k-max problem with assumed optimal objective function value zq−1, the
distances from xq to a node in C(xq) have to be smaller or equal then zq−1 to satisfy the
assumption on the optimality of zq−1. This corresponds to the fact that the optimal k-max

value is the radius of the largest cluster of an optimal solution (see Figure 6.1).
In the last iteration, a candidate X can also be excluded from further investigations if

|V \
p⋃
`=1

C(x`)| > k − 1. (6.3)

In this case there are more outliers than allowed since more than k − 1 customers are not
covered with service by the current assumption on the optimal objective function value.

In general, it is not necessary to consider all possible objective function value defining values
z ∈ Z to find an optimal solution of the p-k-max problem if they are considered in non-
decreasing order. Hence, let the elements yst ∈ EQ(q) be sorted non-decreasingly by their
distances dw (vs , yst) to their defining node vs for all q ∈ {1, . . . , p} and s, t ∈ {1, . . . , n}.
If the equilibrium points are tested in this order whether they are the objective function
value defining facility, the first found feasible solution X̄ is optimal. Thus, the algorithm can
be terminated at this point if just one optimal solution is sought. To find further optimal
solutions of the candidate set Cand4, the remaining equilibrium points having the same
optimal distance to their defining nodes have to be considered. Note that the worst case
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complexity for determining just one or all possible optimal solutions that can be found by
the recursive approach is the same.

Overall, all relevant candidates can be obtained by iteratively locating x1 in every equilib-
rium point and then starting the recursion from this point. In this way, all potential overall
objective function values in the set Z and all possible positions for x1 are considered such
that the optimal value and an optimal position are determined. Only the solution with the
currently best overall objective function value z1 has to be stored and compared to the
current candidate X.

The recursive approach is summarised in Algorithm 10. This version of the algorithm finds
all optimal solutions that can be found with the recursive approach and does not terminate
after the first optimal solution is found. The derivation of the equilibrium points with the
algorithm of Bentley and Ottmann (1979), needs O(m(n + s)log(n)) time with s ≤ 2

(
n
2

)
.

The sorting of the equilibrium points can be realised in O((mn2) log(mn)). The function
SmallerPkmaxProblem is called at this point for the first time.

In the function, at first the set EQ has to be determined by deleting the corresponding
elements from EQ such that EQ remains sorted. This takes at most O(mn2) time, which
corresponds to the maximum number of equilibrium points. Since in the worst case all
equilibrium points have to be tested for defining the optimal objective function value, the
loop in line 7 takes O(mn2) iterations. Finding the cover C(x) has a complexity of O(n).
The Cases 2 to 4 locate at most p−1 facilities in pairwise disjoint, arbitrary points of known
sets, thus the complexity is O(p). As p ≤ n, this can be neglected such that one call of
the function needs O(mn3) in the worst case. Case 1 calls the next recursion step. This
can happen at most p − 1 times such that the overall function is called recursively p times
in the worst case. Summarising the discussion above, this leads to an overall complexity of
O(mpn3p) for Algorithm 10.

Even though this complexity is worse than the complexity of Algorithm 9, the recursion
leads to much better results in practice as usually a much smaller number of candidates has
to be tested for their objective function value (for more details see Section 7). Moreover, the
algorithm can be implemented to compute the individual candidates in parallel as the con-
struction of a certain candidate X = {x1, . . . , xp} does not depend on the other candidates.
This leads to a significant improvement of the computation time of Algorithm 10.

Remark 6.7. The optimal k-max value is the coverage radius of the largest cluster in an
optimal solution. Thus, all objective defining equilibrium points x1 ∈ EQi j that lead to at
least one optimal solution X = {x1, . . . , xp} ∈ Cand4 of the 2-k-max problem, are known
after the application of Algorithm 10.

Example 6.8. The 2-k-max problem with k = 1 has to be solved on G (given in Figure 6.4).
The set of equilibrium points is computed in Example 4.20 and has a cardinality of |EQ| = 23.
Thus, the set Cand4 = EQ× (EQ∪V ) consists of 23 · (23 + 5) = 644 candidates that have
to be checked for their objective function value.
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Algorithm 10 A recursive approach for p-k-max problems on graphs

Input: G = (V, E), p ∈ {2, . . . , n}, k ∈ {1, . . . , n − p}
1: Global variables V, E, k, n, p0 := p, n0 := n

2: Determine the set EQ of all equilibrium points of G. . Globally known
3: Sort EQ 3 ygh non-decreasingly w.r.t. dw (vg, ygh) to their defining nodes vg
4: [X , zb] =SmallerPkmaxProblem(p,∞, 0,∞, ∅, ∅, ∅) . Start of recursion

Output: Set of optimal solutions Xr with optimal objective function value z∗.

5: function SmallerPkmaxProblem(p, z∗, z1, z, C,X,X )
6: EQ := EQ \ {yab ∈ EQ : va ∈ C ∨ vb ∈ C} (without changing the sorting).
7: for all ygh ∈ EQ do . All equilibrium points of not-covered nodes
8: Set new facility x := ygh with coverage radius z̄ := dw (vg, x)

9: if p = p0 and z̄ ≤ z∗ then . Define z1 after locating the first facility
10: z1 := z̄

11: else if p = p0 and z̄ > z∗ then . Stop; as y ∈ EQ are sorted non-decreasingly
12: return X , z∗

13: if z̄ ≤ z then . z stays optimal
14: Extend current candidate to X̄ := X ∪ {x}
15: Determine cover C(x) = {v ∈ V : dw (v , x) ≤ z̄}
16: Set C̄ := C ∪ C(x), n̄ := n0 − |C̄|, p̄ := p − 1

17: if p̄ > 0 then . Not all new facilities are already located
18: if k ≤ n̄ − p̄ then . Case 1
19: [X , z∗] =SmallerPkmaxProblem(p̄, z∗, z1, z̄ , C̄, X̄,X )

20: else if k = n̄ − p̄ + 1 then . Case 2
21: Locate xp0−p̄+1, . . . , xp0 ∈ V \C̄ with xi 6= xj ∀ i , j = p0−p̄+1, . . . , p0

22: Complete candidate is X̄ = X̄ ∪ {xp0−p̄+1, . . . , xp0}
23: Set p̄ := 0, n̄ := 0

24: else if n̄ − p̄ + 2 ≤ k ≤ n̄ then . Case 3
25: Locate xp0−p̄+1, . . . , xp0−p̄+n̄−k+1 ∈ V \ C̄ with xi 6= xj .............

.......................... ∀ i , j = p0−p̄+1, . . . , p0−p̄+n̄−k+1, xp0−p̄+n̄−k+2, . . . , xp0 ∈ EQ∪V
26: Complete candidate is X̄ = X̄ ∪ {xp0−p̄+1, . . . , xp0}
27: Set p̄ := 0, n̄ := 0

28: else . Case 4
29: Locate pairwise different xp0−p̄+1, . . . , xp0 ∈ EQ ∪ V
30: Complete candidate is X̄ = X̄ ∪ {xp0−p̄+1, . . . , xp0}
31: Set p̄ := 0, n̄ := 0

32: if p̄ = 0 and n̄ ≤ k − 1 then . New candidate X̄ completed
33: if z1 = z∗ then
34: Update set of optimal solutions to X := X ∪ {X̄}
35: else
36: Update set of optimal solutions to X := {X̄}, z∗ := z1

37: else . Stop; as y ∈ EQ are sorted non-decreasingly
38: return X , z∗

39: return X , z∗
40: end function
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Fig. 6.4: Graph G with optimal solutions {xk1 , xk2 } of the 2-k-max problem with k ∈ {1, 2, 3}.

In contrast to that, applying Algorithm 10 to solve the 2-1-max problem results in less can-
didates that have to be evaluated. The set of sorted objective function values corresponding
to the set EQ given in Example 4.20 is

Z =

{
2

3
,

3

4
, 1,

6

5
,

4

3
,

3

2
, 2,

12

5
, 3,

18

5
, 6

}
.

Starting with z = 2
3 , the algorithm considers the 10 candidates{

EQ15
15, EQ

24
24

}
,
{
EQ24

24, EQ
15
15

}
,
{
EQ23

23, EQ
15
15

}
,
{
EQ35

35, EQ
24
24

}
,
{
EQ34

34, EQ
15
15

}
,{

EQ34
34, EQ

13
25

}
,
{
EQ34

34, EQ
23
25

}
,
{
EQ34

34, EQ
34
25

}
,
{
EQ34

34, EQ
35
25

}
,
{
EQ12

12, EQ
35
35

}
without finding a feasible solution. A candidate is here defined as a completed solution X,
i.e., all p new facilities of X are located, but X does not have to be feasible, i.e., it does not
have to satisfy the condition (6.3). Then, for z = 4

3 , the first feasible and therefore optimal
solution is found as

X1 =

{
x1

1 =

(
e34,

1

3

)
, x1

2 =

(
e12,

1

3

)}
with z1 =

4

3
.

In this case, X is the only optimal solution in Cand4 but it is also found with changed roles
of x1

1 and x1
2 . Thus, both new facilities define the optimal objective function value (see

Remark 6.7). For k = 2, the optimal solution found by the recursive approach is

X2 =

{
x2

1 =

(
e15,

1

3

)
, x2

2 =

(
e24,

2

3

)}
with z2 =

2

3

and for k = 3 the two alternative solutions

X3 =

{
x3

1 =

(
e15,

1

3

)
, x3

2 = (e12, 1)

}
with X̄3 =

{
x̄3

1 =

(
e24,

2

3

)
, x̄3

2 = (e12, 0)

}
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are optimal with z3 = 2
3 . Note that for k = 2 and k = 3 no other candidates than the optimal

solutions have to be considered with the recursive approach as the optimal objective function
value corresponds to the smallest value of Z. All these optimal solutions Xk = {xk1 , xk2 } are
shown in Figure 6.4.

Remark 6.9. If the optimal objective function value is rather large compared to the other
elements of Z, nearly all equilibrium points have to be tested for being objective function value
defining due to the non-decreasing sorting of Z. Therefore, it might seem to be reasonable
to apply a bisection strategy on the set Z of possible optimal objective function values to
reduce the number of candidates that have to be considered. However, this approach may
lead to wrong solutions in general.

v4

1

1

100 10

v1

y12
y45

v2

v3 v5

Fig. 6.5: y45 with objective function value z = 5 is no feasible solution of the 1-3-max

problem, y12 = v3 with objective function value z = 2 is feasible.

The problem is that it is not sufficient to test if there is an equilibrium point with exact
objective function value z̄ . If there is no solution in the set Cand4 with objective value
z̄ , this does not mean that there is also no feasible solution in Cand4 for another z̃ ∈ Z
with z̃ < z̄ . An example can be seen in Figure 6.5, where the 1-3-max problem has to
be solved on the graph G. For z̄ = 5, the equilibrium point y45 = EQ45

45 is considered
as dw (v4, y45) = 5. Obviously, y45 does not lead to a feasible solution as it covers only
two existing facilities whereas at least three customers have to be covered with service in a
feasible solution. Moreover, there is no other equilibrium point with distance 5 to its defining
facilities. However, for z̃ = 2 the point y12 ∈ EQ13

12 is a feasible solution of the underlying
problem with objective function value 2 as y12 covers three existing facilities.
Consequently, it rather has to be tested for each possible objective value z̄ if there is

an equilibrium point with z ∈ Z for z ≤ z̄ . Therefore, all these values z ≤ z̄ have to be
considered anyway.

Two ways of defining a cover

For every new facility x` ∈ EQa`b` with ` ∈ {2, . . . , p}, the recursive approach defines
all existing facilities that have a weighted distance of at most z` = dw (va` , x`) to x` as its
cover. Thus, the radii z` of the covers are getting smaller or stay at most equal such that
z1 ≥ z2 ≥ . . . ≥ zp.
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However, it is also possible to define the cover C(x`), ` = 2, . . . , p, as the set of facilities
that have a weighted distance to x` of at most z1. As z1 is assumed to be optimal for the
initial p-k-max problem for the current candidate, all other new facilities are also allowed
to generate weighted distances of up to z1 to its allocated customers. By choosing z1 as
the coverage radius for every new facility, the cover C(x`) gets possibly larger since z1 ≥ z`
for all ` = 1, . . . , q − 1. As a consequence, V (q) gets possibly smaller and the following
(p -q+1)-k-max problem corresponds to a smaller set of existing facilities. In this way the
number of recursion steps in Algorithm 10 can be decreased by choosing z1 as coverage
radius of C(x`) instead of z`. However, the definition of the cover based on z` leads to a
reasonable property of the found optimal solutions.

For a clearer notation, let

C(x`, z`) = {v ∈ V : dw (v , x`) ≤ z`} , ` = 1, . . . , p,

be the cover based on the distance z` of the current facility x` to its defining nodes and let

C(x`, z1) = {v ∈ V : dw (v , x`) ≤ z1} , ` = 1, . . . , p,

be the corresponding cover based on the distance z1 that is given by the weighted distance of
the first facility x1 to its defining nodes. If the covers are defined as C(x`, z`), ` = 1, . . . , p,
Algorithm 10 yields only a smaller subset Xz` of the set of optimal solutions Xz1 obtained with
C(x`, z1). Since in general z` < z1 for all ` > 1, a coverage radius of z` is more restrictive
and thus fewer combinations of equilibrium points are qualified to cover the remaining nodes.
However, the optimal solutions in Xz` are particularly relevant solutions in practice because
they have a special structure: As C(x`, z`) uses the distance of the current new facility
x` = yst ∈ EQ(`) to its defining nodes vs , vt as coverage radius, x` is always the center
point of its cover. Contrary to this, the cover C(x`, z1) uses z1 > z` and not the distance
dw (vs , x`) as coverage radius. Thus, the covers are larger and x` may lie in a non-central
position w.r.t. its cover since vs and vt do in general not define the diameter of the cover. As
a consequence, it is only guaranteed that the distance of every covered node to its nearest
new facility is smaller or equal to z1.

Example 6.10. Figure 6.6 and Figure 6.7 show an example of a 2-1-max problem on the given
graph with n = 12 nodes. All nodes are equally weighted and the edge weights correspond to
the Euclidean lengths of the lines representing the edges. Obviously, both solutions X̄ ∈ Xz`
and X̃ ∈ Xz1 are optimal for the given problem and the first facility defines the optimal
objective function value of z1. However, X̄ is in practice usually preferred in relation to X̃
as x2 ∈ X̄ yields a smaller maximum distance to the nodes of its cover.

In contrast to the evaluation of all candidate pairs (see Algorithm 9), the recursive ap-
proach is in general not suitable to compute the solutions of the p-k-max problem for all
values of the parameter k simultaneously. This holds as the sizes of the supbroblems depend
on the value of k such that different candidates may be relevant for the optimal solution. In
the following section, a technique to find further optimal solutions, that are not an element
of Cand4, is introduced.
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X1

X2

C(x2)

C(x1)

Fig. 6.6: Optimal X̄ ∈ Xz` with z∗ = z1

based on C(x`, z`), ` = 1, 2

X2X1

C(x1, z1)

C(x2, z1)

Fig. 6.7: One optimal solution X̃ ∈ Xz1 with
z∗ = z1 based on C(x`, z1), ` = 1, 2

6.3 A Local Analysis to Find All Optimal Solutions

In this section, the finite dominating set Cand4 from Theorem 6.3 is extended such that this
new candidate set contains alternative optimal solutions, i.e., alternative optimal solutions
that have other properties than the candidates in Cand4. The overall aim of this section
is to determine, if possible, all optimal solutions of the p-k-max problem. Therefore, the
idea is to apply a local analysis to generate a subdivision such that the objective function is
piecewise linear and concave on every cell of this subdivision, similar to the idea used for the
single facility case. The resulting finite dominating set can afterwards be reduced by using
the solutions generated by the recursive approach described in Section 6.2.

Theorem 6.3 only ensures that at least one optimal solution of the p-k-max problem has
all new locations in the finite dominating set Cand4 = EQ × (EQ ∪ V )p−1. The following
example shows that the problem may have alternative optimal solutions that do not lie in
this candidate set.

Example 6.11 (Continuation of Example 6.8). Consider the graph G with n = 5 nodes from
Example 6.8. As stated in Example 6.8, an optimal solution of the 2-1-max problem is

X1 =

{(
e34,

1

3

)
,

(
e12,

1

3

)}
with optimal objective function value z1 = 4

3 . Figure 6.8 shows another feasible solution
X̄1 = {x̄1

1 , x̄
1
2} of the 2-k-max problem with k = 1 on G with

x̄1
1 =

(
e34,

1

3

)
∈ EQ34

45 and x̄1
2 =

(
e15,

2

3

)
/∈ EQ ∪ V.

This solution is also optimal since the objective function value of X̄1 is z̄1 = z1 = 4
3 .

Obviously, X̄1 can not be found using the set Cand4 as x̄1
2 is neither an equilibrium point

nor a node of G.
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x̄1
2

x1
1 = x̄1

1

x1
2

v5

1

2

3

2

2

1

2

1

1
1

1

v1

v2

v3

v4

1

Fig. 6.8: Alternative optimal solution X̄1 = {x̄1
1 , x̄

1
2} of the 2-1-max problem with X̄1 not

being an element of Cand4

Obviously, there are other relevant points on the graph besides the equilibrium points
that have to be considered for the analysis of p-k-max problems. To get an idea of the
properties of optimal solutions not lying in the candidate set Cand4, the distance functions
over the corresponding edges of the optimal new locations are analysed further. As shown
in Section 4.4, the weighted distance functions dw (vi , x) over an edge eab ∈ E depend on
individual new facilities x = (eg, t) with t ∈ [0, lab], and are piecewise linear and concave
with breakpoints only at bottleneck points.

Example 6.12 (Continuation of Example 6.11). Figure 6.9 shows the graphs of the weighted
distance functions over the edges e34 = (v3, v4) and e15 = (v1, v5). As shown in Exam-
ple 6.11, for the optimal solution X̄1 = {x̄1, x̄2}, it holds that x̄1

1 ∈ e34 and x̄1
2 ∈ e15. An

important observation in this example is that for the new locations in X̄1 it follows

dw (v4, x̄
1
1 ) = dw (v1, x̄

1
2 ) =

4

3
,

i.e., node v4 has the same weighted distance to the new facility x̄1
1 as node v1 has to the

new facility x̄1
2 . This results in

dw (V, X̄1) =

(
4

3
,

4

3
, 1,

4

3
,

1

3

)>
,

i.e., there are at least two equal elements in the vector of distances. Therefore, at least two
different permutations σ1, σ2 ∈ Σ(X̄1) with σ1 = (1, 2, 4, 3, 5) and σ2 = (1, 4, 2, 3, 5) exist
such that

dw (vσa(1), X̄
1) ≥ . . . ≥ dw (vσa(5), X̄

1)

for a ∈ {1, 2}. Obviously, with just a small shift of one of the new facilities, this equality
of the distances is broken and at least one of the permutations does no longer lead to

132



6.3. A LOCAL ANALYSIS TO FIND ALL OPTIMAL SOLUTIONS

the wanted ordering. Consequently, this results in a non-linearity of the p-k-max objective
function in X̄1. As x̄1

1 ∈ EQ45, it also holds that dw (v5, x̄
1
1 ) = dw (v1, x̄

1
2 ) = 4

3 .

v1 v5

dw (vi , x)

1

2

3

4

5

6

d1

d2

d3

d4

d5

v3 v4

dw (vi , x)

1

2

3

4

5

6

d1

d2

d3

d4

d5

x̄1
1 x̄1

2

4
3

4
3

Fig. 6.9: Distance functions dw (vi , x) over the edges e34 (right) and e15 (left)

In the following the case of only two new facilities X = {x1, x2} is considered first to
get an intuition of the problem and its properties. Afterwards, the described ideas will be
presented in a more formal way for p new facilities .

6.3.1 The 2-facility Case

To analyse the 2-k-max problem further, some notation with respect to the distances is
needed. The weighted distance from a node vi ∈ V to a point x = (eg, t) with eg = (vag , vbg)

is
dw (vi , x) = min

{
dw+ (vi , x), dw− (vi , x)

}
,

where
dw+ (vi , x) = wi(d(vi , vag) + tlg)

is the length of the shortest path between vi and x via node vag and

dw− (vi , x) = wi(d(vi , vbg) + (1− t)lg)

is the length of a respective shortest path through node vbg .
In the following, let X = {x1, x2} ⊆ A(G) be a solution of the 2-k-max problem with

x1 = (eg, t1) and x2 = (eh, t2) with eg = (vag , vbg), g ∈ {1, . . . , m} and eh = (vah , vbh),
h ∈ {1, . . . , m} and vag , vbg , vah , vbh ∈ V . Note that g = h is possible for now. As observed
in Example 6.12, the permutation of the sorted distance vector of a solution X changes only
if at least two elements of the distance vector dw (V,X) are equal, i.e., if

dwα (vi , xq) = dwβ (vj , xr ) for i , j ∈ {1, . . . , n}, q, r ∈ {1, 2}, α, β ∈ {+,−}. (6.4)
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As the non-linearity of the k-max function is induced by the different sortings of the vector
of distances, the objective function of the 2-k-max problem may have a breakpoint in X.
Note that it is allowed that α = β as well as i = j and q = r .

In the following, a subdivision of the unit square [0, 1]2 will be determined to obtain a
representation of linearity domains of the 2-k-max function. Therefore, two edges eg, eh ∈ E
with g, h ∈ {1, . . . , m} are assumed to be fixed and the two new facilities x1 = (eg, t1) and
x2 = (eh, t2) are considered to be located on these edges. Although it is not completely
correct, the candidate X = {x1, x2} will (as always) be written as a set of points by using set
notations to emphasise that the individual new facilities are interchangeable. Nevertheless,
the notation {x1, x2} ∈ eg × eh will be used. To avoid duplication of candidates, it can be
assumed without loss of generality that g ≤ h.

As soon as an edge e ∈ E is fixed, there is a one to one correspondence between a
point x = (e, t) on this edge and the parameter t ∈ [0, 1]. Thus, a distinction will be
made between the candidate {x1, x2} being an element of the Cartesian product eg × eh of
two edges and the parameters t1, t2 varying on the unit square [0, 1]2. The subdivision and
the resulting linearity domains live on the unit square [0, 1]2 such that every point of the
subdivision corresponds to a pair {x1, x2} ∈ eg × eh on the edges of G. Hence, each edge of
the network is represented by the unit interval [0, 1] such that the Cartesian product eg × eh
of the edges eg, eh ∈ E is represented by the unit square [0, 1]2. With the result of the
following lemma, pairs of equal edges eg = eh do not have to be considered.

Lemma 6.13 I Optimal facilities on different edges
Let X∗ = {x∗1 , x∗2} be an optimal solution of a 2-k-max problem with n ≥ 2 and k ≤ n − 2.
Then x∗1 and x∗2 can be described by x∗1 = (eg, t1) and x∗2 = (eh, t2) with g, h ∈ {1, . . . , m}
such that eg 6= eh, i.e. the two optimal new facilities can not lie in the interior of the same
edge.

Proof. Let X∗ = {x∗1 , x∗2} be an optimal solution of the 2-k-max problem with optimal
objective value z∗ and set of outliers V ∗k−1. Assume that x∗1 = (eg, t1) and x∗2 = (eg, t2) for
g ∈ {1, . . . , m}, i.e., x∗1 and x∗2 lie on the same edge eg = (vga , vgb) ∈ E with vga , vgb ∈ V
for ga, gb ∈ {1, . . . , n}. Moreover, let w.l.o.g. t1 ≤ t2 and t1, t2 ∈ (0, 1) such that x∗1 and
x∗2 lie in the relative interior of eg and not in vga or vgb , i.e. both points x∗1 and x∗2 can not
be described using another edge of G. An optimal allocation of the customers to x∗1 and x∗2
is defined by the sets

V1 = {v ∈ V : dw (v , x∗1 ) ≤ dw (v , x∗2 )}

and
V2 = {v ∈ V : dw (v , x∗2 ) < dw (v , x∗1 )} .

Note that the shortest path between a node v ∈ V1 and x∗1 always contains the node vga
due to t1 ≤ t2. Analogously, the shortest path between x∗2 and v ∈ V2 goes through node
vgb . Additionally, assume w.l.o.g. that x∗1 is the facility that defines the optimal objective
function value z∗, i.e., it exists a node v ∈ V1 such that dw (v , x∗1 ) = z∗.
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As all shortest paths between nodes vi ∈ V1 and x∗1 pass through vga , it holds that

dw (vi , x
∗
1 ) = wi(d(vi , vga) + t1lg).

Hence, the weighted distances to all nodes vi ∈ V1 can be reduced by shifting x∗1 towards the
endnode vga of the edge eg such that t1lg = 0. The resulting new solution is X̄ = {x̄1, x

∗
2}

with x̄1 = vga . The shifting of x∗1 into vga does not change the allocation to the new facilities
as the distances of x∗1 to the nodes in V2 can only increase. Note that the set of outliers
V̄k−1 may be different from V ∗k−1 but the distances of the nodes covered by x̄1 are strictly
smaller than the distances of these nodes to x∗1 .

Case 1: dw (vj , x
∗
2 ) < z∗ for all vj ∈ V2 \ V ∗k−1

The new solution X̄ yields a strictly better objective function value z̄ < z∗ than X∗

since the distance of x∗2 to all nodes covered by it is strictly smaller than z∗. This
contradicts the assumption of X∗ being optimal.

Case 2: dw (vj , x
∗
2 ) = z∗ for at least one vj ∈ V2 \ V ∗k−1

The new solution X̄ is as good as X∗ as it has the same objective function value.
Thus, shift x∗2 towards the endnode vgb =: x̃2 of edge eg analogously to the shifting of
x∗1 . As a consequence, dw (v , x̃2) < dw (v , x∗2 ) for all v ∈ V2. Then, the new solution
X̃ = {x̄1, x̃2} is strictly better than x∗ and this contradicts the optimality of X∗.

�

Note that the result of Lemma 6.13 does in general not hold for the location of p ≥ 3

new facilities. If the optimal objective function value can also be realised with 2 ≤ p̄ < p

new facilities, the remaining p − p̄ new facilities can be located arbitrarily on the edges of
the graph and therefore there may be an optimal solution with two or more new facilities on
the same edge.

The approach and the notation described below are similar to that of Kalcsics (2011),
who derived a finite dominating set for the multi-facility median problem with positive and
negative weights on general graphs, i.e., for the problem

min
X={x1,...,xp}⊆A(G)

f (X) =
∑
vi∈V

wid(vi , X), (6.5)

where wi ∈ R may be positive or negative for i = 1, . . . , n. For the 2-facility problem it is
observed that the equality

dw (vi , x
∗
1 ) = dw (vi , x

∗
2 ) for some i ∈ {1, . . . , n},

holds in at least one optimal solution X∗ = {x∗1 , x∗2} with x∗1 = (eg, t
∗
1 ) and x∗2 = (eh, t

∗
2 ),

i.e., at least one node vi ∈ V has the same distance to both new locations. This results in a
non-linearity of the distance function dw (vi , X) at X∗. For a fixed pair of edges eg, eh, the
distance functions dw (vi , X) are piecewise linear and concave for weight wi > 0, resp. convex
for wi < 0 in t1, t2 ∈ [0, 1] over the corresponding unit square [0, 1]2 as the functions
dw (vi , xq), q = 1, 2, are piecewise linear and concave, resp. convex there.
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Considering two fixed edges eg and eh to locate x1 = (eg, t1) and x2 = (eh, t2) on,
the behaviour of the distance function dw (vi , X) is analysed over the unit interval [0, 1]2

representing the Cartesian product eg× eh. It can be seen that the breakpoints of dw (vi , X)

occur in intersection points of at least two distinct functions dwα (vi , xq) and dwβ (vi , xr ) with
q, r ∈ {1, 2} and α, β ∈ {+,−}. Two cases are distinguished: For q = r , the set of
intersection points is defined by all points {x1, x2} ∈ eg × eh that satisfy the equation

dwα (vi , xq) = dwβ (vi , xq) with α 6= β. (6.6)

As α 6= β, xq ∈ BNi is a bottleneck point in this case. Hence, the set of all intersection
points {x1, x2} satisfying equation (6.6) define a vertical (q = 1) resp. horizontal (q = 2)
line depending on t1, t2 ∈ R that may or may not intersect the unit square [0, 1]2.
For q 6= r , the equation

dwα (vi , xq) = dwβ (vi , xr ) (6.7)

is satisfied by all intersection points of the functions dwα (vi , xq) and dwβ (vi , xr ) for some
i ∈ {1, . . . , n}. Equation (6.7) describes a linear function depending on t1, t2 ∈ R with
known slope. The line can, but does not have to, intersect the unit square [0, 1]2.
The set of all lines for all pairs of nodes that are induced by the conditions (6.6) and

(6.7) and that do intersect [0, 1]2 introduces a subdivision of the unit square representing
the edges eg × eh. The subsets induced by the subdivision that have non-empty interior are
called cells. As the subdivision is build up based on the set of breakpoints of the distance
functions, dw (vi , X) is linear over each cell of this subdivision. The cells of the subdivision
are convex as they are formed by the intersection of linear functions. Thus, a local minimum
of the 2-facility median problem with positive and negative weights has to lie in the set of
intersection points of the lines defining the subdivision, including the intersection points of
these lines with the bounding segments of the unit square. A global optimal solution can
then be found by constructing such a subdivision for every pair of edges of the graph and
comparing the local optimal solutions on them. Similar approaches are also used in Kalcsics
et al. (2014) and Kalcsics et al. (2015).

Similarly, a subdivision for the 2-k-max problem can be obtained such that the k-max

function is linear on every induced subset of the subdivision. Therefore, the breakpoints of
the function dw (V,X), described by Equation (6.4), are characterised in the following by
distinguishing four cases.

Case 1: i 6= j and q = r ,
i.e., dwα (vi , xq) = dwβ (vj , xq) for i , j ∈ {1, . . . , n} with i 6= j , q ∈ {1, 2} and α, β ∈ {+,−}.
For all combinations of α and β, this equation describes the equilibrium points EQagbgi j

resp. EQahbhi j of the nodes vi and vj on the edge eg resp. eh. The set of breakpoints for
q = 1 is therefore given by

Bαβij11 =
{
{x1, x2} ∈ eg × eh : x1 = EQ

agbg
i j (α, β)

}
,

where EQagbgi j (α, β) is the equilibrium point given by the equation dwα (vi , x1) = dwβ (vj , x1)

136



6.3. A LOCAL ANALYSIS TO FIND ALL OPTIMAL SOLUTIONS

for a fixed combination of α, β ∈ {+,−}. Analogously, it holds for q = 2 that

Bαβij22 =
{
{x1, x2} ∈ eg × eh : x2 ∈ EQahbhi j (α, β)

}
.

Because of Bαβijqq = Bβαjiqq for q = 1, 2, it can w.l.o.g. be assumed that i < j . Analysing all
four possible combinations of α and β leads to four equations for tq ∈ [0, 1] describing the
location of xq = (eu, tq), for q ∈ {1, 2} and corresponding u ∈ {g, h}:

α = +, β = + ⇒ tq =
wjd(vj , vau)− wid(vi , vau)

wi lu − wj lu
, if wi 6= wj (6.8)

α = +, β = − ⇒ tq =
wjd(vj , vbu) + wj lu − wid(vi , vau)

wi lu + wj lu
(6.9)

α = −, β = + ⇒ tq =
wjd(vj , vau)− wi lu − wid(vi , vbu)

−wi lu − wj lu
(6.10)

α = −, β = − ⇒ tq =
wjd(vj , vbu) + wj lu − wid(vi , vbu)− wi lu

−wi lu + wj lu
, if wi 6= wj .

(6.11)

The right hand side of these equations is given by a constant in all four cases. Hence, the
set Bαβij11 defines a constant function in tq ∈ [0, 1] (as xq depends on tq) that describes a

vertical line and Bαβij22 analogously defines a constant function depending on tr ∈ [0, 1] that
gives a horizontal line. Note that not the whole line in tq ∈ R resp. tr ∈ R but only the
intersection of the line with the unit square [0, 1]2 is of interest since tq, tr have to be in
[0, 1] to describe a point on an edge of the graph (see also Remark 6.18).

Definition 6.14 I Equilibrium lines
The lines corresponding to Bαβijqq for i , j ∈ {1, . . . , n}, i 6= j , q ∈ {1, 2} and α, β ∈ {+,−}
over the unit square [0, 1]2 are called equilibrium lines.

Figure 6.10 gives an example of an equilibrium line for i = 2, j = 4 and x1 ∈ e34, x2 ∈ e15

for the known example-graph given in Figure 4.5. The maximum number of equilibrium lines
for every combination vi , vj over the unit square for a fixed pair of edges is eight. However,
not all equations (6.8)-(6.11) have to have a solution for tq, tr ∈ [0, 1] such that there can
also be less than eight equilibrium lines.

Note that the set of equilibrium points of vi and vj on eu ∈ E, u ∈ {g, h}, described by
the equations (6.8) and (6.11), has infinitely many elements, i.e., |EQ′i j | =∞. In the case
of wi = wj , there are no equilibrium lines of type (6.8) and (6.11) as the denominator of
the fraction is zero. However, if both boundary points of EQi j are attained in the nodes vau
and vbu , the corresponding equilibrium lines are given by the boundaries of the unit square.
Otherwise, one of the boundary points of EQi j is attained in an inner point of eu and then
the equilibrium line can also be described by (6.9) or (6.10).

137



CHAPTER 6. P-K-MAX LOCATION PROBLEMS ON NETWORKS

Fig. 6.10: Equilibrium line given by B+−
2411 for

i = 2, j = 4, x1 = (e34, t1), x2 = (e15, t2)

Fig. 6.11: Balance lines given by B++
2412 and

B−+
2412 for x1 = (e34, t1), x2 = (e15, t2)

Case 2: i 6= j and q 6= r

In this case, the set of breakpoints is given by

Bαβijqr =
{
{x1, x2} ∈ eg × eh : dwα (vi , xq) = dwβ (vj , xr )

}
,

for i , j ∈ {1, . . . , n} with i 6= j , q, r ∈ {1, 2} with q 6= r and α, β ∈ {+,−}. This set
contains pairs {x1, x2} that share the same distance to respective existing facilities vi and vj .
Because of Bαβijqr = Bβαjirq, it can w.l.o.g. be assumed that i < j and q < r , i.e., q = 1 and
r = 2. Analysing again all four cases of α-β-combinations leads to the following equations
in t1, t2 ∈ [0, 1] to describe the locations of x1 = (eg, t1) and x2 = (eh, t2):

wi lgt1 − wj lht2 = wjd(vj , vah)− wid(vi , vag) (6.12)

wi lgt1 + wj lht2 = wjd(vj , vbh)− wid(vi , vag) + wj lh (6.13)

−wi lgt1 − wj lht2 = wjd(vj , vah)− wid(vi , vbg)− wi lg (6.14)

−wi lgt1 + wj lht2 = wjd(vj , vbh)− wid(vi , vbg)− wi lg + wj lh. (6.15)

Obviously, the set of breakpoints Bαβijqr defines a linear function depending on t1, t2 ∈ [0, 1]

for every fixed combination of i < j , q < r and α, β over the unit square [0, 1]2. Therefore,
there are at most four line segments for every pair of nodes vi , vj and for every pair of edges
eg, eh as it is possible that not all equations have a solution for t1, t2 in the interval [0, 1].
The lines corresponding to the sets Bαβijqr for i ∈ {1, . . . , n} with i 6= j , q, r ∈ {1, 2} with
q 6= r , and α, β ∈ {+,−} over the unit square [0, 1]2 are called balance lines in the following.
A formal definition is given later with Definition 6.17.
Note that the balance lines of type (6.12) and (6.15) are parallel as they both have slope

wi lg
wj lh

, whereas (6.13) and (6.14) are parallel with slope −wi lgwj lh
. Figure 6.11 shows the balance
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lines defined by the sets B++
2412 of type (6.12) and B−+

2412 of type (6.14) for the edges e34 and
e15 of the example graph in Figure 4.5.

Case 3: i = j and q = r ,
i.e., dwα (vi , xq) = dwβ (vi , xq) such that α 6= β with α, β ∈ {+,−}, i ∈ {1, . . . , n}, q ∈ {1, 2}.
As α and β are not allowed to be equal it can w.l.o.g. be assumed that α = + and β = −.
The equation describes the bottleneck point BNaubui of node vi on edge eu, u ∈ {g, h}. The
set of breakpoints for q = 1 is therefore given by

B+−
i i11 =

{
{x1, x2} ∈ eg × eh : x1 = BN

agbg
i

}
,

and for q = 2 analogously by

B+−
i i22 =

{
{x1, x2} ∈ eg × eh : x2 = BNahbhi

}
.

Solving the above equation for tq to obtain the location of xq = (eu, tq) leads to

tq =
wid(vi , vbu) + wi lu − wid(vi , vau)

2wi lu
for q ∈ 1, 2, u ∈ {g, h}

which is, similar to the equilibrium lines, a function constant in tq. For tq ∈ [0, 1], the
function describes a vertical (for q = 1) resp. a horizontal (for q = 2) line over the unit
square [0, 1]2.

Definition 6.15 I Bottleneck lines
The lines corresponding to B+−

i iqq for i ∈ {1, . . . , n}, q ∈ {1, 2} and α, β ∈ {+,−} over the
unit square [0, 1]2 are called bottleneck lines.

Fig. 6.12: Bottleneck line given by B+−
2211 for

i = 2 and x1 = (e34, t1), x2 = (e15, t2)

Fig. 6.13: Balance lines of B−+
2212 and B−−2212

for i = 2 and x1 = (e12, t1), x2 = (e34, t2)
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Thus, there are at most two bottleneck lines for every combination vi , vj over [0, 1]2 in
this case because not all equations have to have a solution for tq ∈ [0, 1]. An example of a
bottleneck line is given in Figure 6.12 by B+−

2211 for the edges e34 and e15 of the graph given
in Figure 4.5.

Case 4: i = j and q 6= r

Here, the set of breakpoints is described by the set

Bαβiiqr =
{
{x1, x2} ∈ eg × eh : dwα (vi , xq) = dwβ (vi , xr )

}
,

for i ∈ {1, . . . , n}, q, r ∈ {1, 2} with q 6= r and α, β ∈ {+,−}. This set contains pairs
{x1, x2} that have the same distance to the node vi . Because of Bαβiiqr = Bβαiirq, it can
be assumed w.l.o.g. that i < j and q < r , i.e., q = 1 and r = 2. The corresponding
equations in t1, t2 ∈ [0, 1]2, derived from all possible α-β-combinations to locate the facilities
x1 = (eg, t1) and x2 = (eh, t2), are:

lgt1 − lht2 = d(vi , vah)− d(vi , vag) (6.16)

lgt1 + lht2 = d(vi , vbh)− d(vi , vag) + lh (6.17)

−lgt1 − lht2 = d(vi , vah)− d(vi , vbg)− lg (6.18)

−lgt1 + lht2 = d(vi , vbh)− d(vi , vbg)− lg + lh. (6.19)

Thus, the set of breakpoints Bαβiiqr describes, for a fixed combination of i ∈ {1, . . . , n} and
α, β ∈ {+,−}, a linear function in t1, t2 ∈ [0, 1] over the unit square [0, 1]2. As the set of
breakpoints in Case 2 equals the set of breakpoints of this case if i = j is also considered
for Case 2, the two sets of breakpoints are treated simultaneously for q 6= r in the following
where i 6= j is allowed as well as i = j .

Definition 6.16 I Balance points
For all vi , vj ∈ V , define

BPi j =
{
x1, x2 ∈ A(G) : wid(vi , x1) = wjd(vj , x2)

}
.

Set BP :=
⋃
i ,j∈{1,...,n}BPi j . The points in BP are called balance points of G.

Thus, balance points are pairs of new locations {x1, x2} where the weighted distance of x1

to a node vi equals the weighted distance of x2 to a node vj . Note that there is in general an
infinite number of balance points for every combination of vi and vj with i , j ∈ {1, . . . , n}.

Definition 6.17 I Balance Lines
The lines corresponding to the sets Bαβijqr for i , j ∈ {1, . . . , n}, q, r ∈ {1, 2} with q 6= r and
α, β ∈ {+,−} over the unit square [0, 1]2 are called balance lines.

An example is given in Figure 6.13 that shows the balance lines described by the sets B−+
2212
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and B−−2212 for x1 ∈ e12 and x2 ∈ e34 of the example graph given in Figure 4.5. Obviously,
for vi = vj , the lines given by (6.12) to (6.15) equal the lines described by (6.16) to (6.19).
Thus, the lines of type (6.16) and (6.19) and the lines of type (6.17) and (6.18) are parallel
with a slope of ±wi lgwj lh

.

Remark 6.18. Note that the lines described by the equations (6.8)-(6.19) are actually line
segments as t1 and t2 are restricted to the interval [0, 1] to describe a point on an edge
of the graph. However, the start and endpoint of every line segment lies on a boundary
segment of the unit square [0, 1]2 such that no line segment starts or ends in an arbitrary
inner point of the unit square. This will be important later to derive convexity properties.

The equilibrium, bottleneck and balance lines for fixed nodes i , j ∈ {1, . . . , n} define
a subdivision Li jgh of the unit square [0, 1]2 representing a pair of edges eg × eh. With⋃
i ,j∈{1,...,n} Li jgh, the subdivision induced by the lines of all pairs of nodes over [0, 1]2 is

given. Moreover,
Lgh =

⋃
i ,j∈{1,...,n}

Li jgh ∪ bd([0, 1]2)

describes the subdivision induced by all pairs of nodes as well as the boundary segments of
the unit square [0, 1]2. A maximal closed subset C ⊂ [0, 1]2 of the subdivision Lgh that
does not intersect with an element of Lgh in its interior is called a cell. Every cell is closed
such that bd(C) ⊂ Lgh and convex since it is the intersection of half spaces. The set of
all cells of the subdivision is called C(Lgh). The set of all intersection points u ∈ [0, 1]2

of the line segments in Lgh are denoted by V (Lgh). Note that these intersection points
are the extreme points of the cells. For an illustration see Figure 6.14. The properties of
the weighted distance function dw (V,X) and the permutation σ ∈ Σ(X) on subsets of the
subdivision are analysed further in the following.

0 1
0

1

t1

t2
C ∈ C(Lgh)

u ∈ V (Lgh)

Fig. 6.14: Possible subdivision Lgh over [0, 1]2 representing eg × eh induced by equilibrium,
bottleneck and balance lines

Theorem 6.19 I Linearity of the k-max function
The objective function of the 2-k-max problem with n ≥ 2 and k ≤ n−2 on graphs is linear
on every cell C ∈ C(Lgh) of the subdivision Lgh.
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Proof. The correctness of Theorem 6.19 will follow as a special case of Theorem 6.28 below
and its proof for the special case that p = 2. Thus, the proof is omitted at this point and a
reference is made to Theorem 6.28 on page 153. �

As already recognised for the 1-k-max problem, the linearity of the k-max function depends
on two factors: The ordering of the elements of the distance vector and the linearity of the
weighted distance functions dw (vi , X), i = 1, . . . , n. The proof of Theorem 6.28 below will
show that the arrangement of lines Lgh results as the union of two other linear arrangements:
The subdivision L̄gh that is induced by the equilibrium lines (Case 1) and the balance lines
described by the set Bαβijqr for i 6= j (Case 2) and the subdivision L̃gh consisting of the

bottleneck lines (Case 3) and the balance lines given by Bαβiiqr for i = j (Case 4). The
permutation σ ∈ Σ(X) is constant on each cell C̄ ∈ C(L̄gh), i.e., the cells C̄ correspond to
those regions of points X, where the sorting of the elements of the weighted distance vector
dw (V,X) does not change. Moreover, the cells C̃ ∈ C(L̃gh) are the linearity regions of the
weighted distance functions dw (vi , X) for all i = 1, . . . , n.

Remark 6.20. Let L′gh be the subdivision of the unit square [0, 1]2 resulting only from the
boundary segments of the unit square, the equilibrium and the balance lines. In contrast
to Lgh, the bottleneck lines are not considered (see Figure 6.15 where the deleted lines in
comparison to Figure 6.14 are assumed to be the balance lines). Then it can be shown
that the k-max function is piecewise linear and concave on each cell C′ ∈ C(L′gh) of the
subdivision L′gh. This result holds since each function dw (vi , X), i = 1, . . . , n, is piecewise
linear and concave over the unit square [0, 1]2 representing eg × eh. Thus, if a distance
function dw (vi , X) has a bottleneck point on eg resp. eh, the corresponding bottleneck
line describes the maximum of the function and is therefore not of interest for finding the
minimum of the k-max function.

Lemma 6.21 I FDS based on L′gh
At least one optimal solution of the 2-k-max problem with n ≥ 2 and k ≤ n − 2 can be
found in the set

V (L′) =
⋃

g,h=1,...,m

V (L′gh).

Proof. Following Remark 6.20, the k-max function is piecewise linear and concave on each
cell C of the subdivision L′gh of [0, 1]2 for all g, h ∈ {1, . . . , m}. Moreover, every cell is convex
and compact such that at least one optimal solution has to be attained in an extreme point
of L′gh. Thus, the set V (L′gh) contains a local optimal solution of the 2-k-max-problem
restricted to the current pair of edges eg and eh. A global minimum of the k-max function
can therefore be found in the set V (L′) as the local minimum with the smallest objective
function value. �

Remark 6.22. Note that the set

V (L) =
⋃

g,h=1,...,m

V (Lgh) ⊇ V (L′)
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is a superset of the finite dominating set V (L′) and therefore a finite dominating set for
the 2-k-max problem itself. In contrast to the set V (L′) it also contains intersection points
determined by bottleneck lines. These intersection points can be omitted when searching for
an optimum for the 2-k-max problem, but they are necessary to identify intervals of optimal
solutions of the underlying problem. Therefore, the subdivision Lgh is analysed further in the
following even though L′gh leads to a smaller finite dominating set so far.

0 1
0

1

t1

t2

Fig. 6.15: Possible subdivision L′gh over [0, 1]2 deduced from Lgh in Figure 6.14 by eliminating
the bottleneck lines. The intersection points V (L′gh) are a subset of the finite dominating
set V (L).

For a fixed pair i , j ∈ {1, . . . , n}, i 6= j , there are at most eight equilibrium lines and four
balance lines for a pair of edges eg and eh. As the number of i j-combinations with i 6= j is
1
2n(n−1), there are in total at most 6n2−6n line segments describing L̄gh. The subdivision
L̃gh consists of at most two bottleneck and four balance lines per pair i , j ∈ {1, . . . , n},
i = j . This results in at most 6n line segments on L̃gh. Consequently, Lgh consists of at
most 6n2 = O(n2) line segments as it is the union of L̄gh and L̃gh. This subdivision (including
all intersection points) can be build up, for example, with the algorithm of Edelsbrunner et al.
(1986) which has a complexity of O(sd), where s is the number of hyperplanes and d the
dimension of the space, i.e., here O(n4). A set of 6n2 line segments can have at most
18n4−3n2 intersections points, thus the cardinality of V (Lgh) is O(n4). Therefore, the size
of the finite dominating set V (L) is O(n4m2). Note that V (L′gh) also has a cardinality of
O(n4m2), even though it consists of slightly less intersection points.

However, solving the 2-k-max problem using one of the finite dominating sets given in
Lemma 6.21 is too expensive in general since the complexity of the evaluation of the can-
didate points exceeds the complexity of building up all needed subdivisions. Following Algo-
rithm 4, the evaluation of one candidate point needs O(n log(n)) time, Thus, analysing the
whole set of candidate points has a worst case complexity bound of O(n5m2 log(n)), which
defines the complexity of the whole procedure to find an optimal solution. The problem is
that the permutation σ ∈ Σ(X) in the candidate points X ∈ V (Lgh) is in general not known.
It would be helpful to reduce the size of the finite dominating set significantly to have to
evaluate less candidate points and thus to reduce the computational effort.

143



CHAPTER 6. P-K-MAX LOCATION PROBLEMS ON NETWORKS

Theorem 6.23 I Objective value defining equilibrium point
Let X∗ = {x∗1 , x∗2} be an optimal solution of the 2-k-max problem with n ≥ 2 and k ≤ n−2.
W.l.o.g., x∗1 is a new facility that determines the optimal objective value z∗. Then it holds
that x∗1 ∈ EQ.

Proof. The correctness of Theorem 6.23 follows as a special case of Theorem 6.30 below
and its proof for the special case that p = 2. Thus, the proof is omitted at this point and a
reference is made to Theorem 6.30 on page 155. �

Theorem 6.30 shows that the optimal objective value defining facility of the 2-k-max

problem has to be an equilibrium point in all optimal solution of the problem. In contrast
to that, Theorem 6.3 only proofed that it exists at least one optimal solution for which the
optimal objective value defining facility is an equilibrium point.

As a consequence of Theorem 6.23, the finite dominating set V (L) can be restricted
to all points {x1, x2} ∈ V (L), for which either x1 or x2 is an equilibrium point. However,
the number of points with this property is still large as the number of intersection points
of two non equilibrium lines is very small with respect to the size of V (L). But also this
finite dominating set can be reduced further by using the information given by the optimal
solutions computed with the recursive approach (see Section 6.2).

Corollary 6.24 I Objective value defining facilities
Let Xr be the set of optimal solutions of the 2-k-max problem with p ≥ 2 and k ≤ n − 2

found by Algorithm 10. Moreover, let

Y =
{
x∗1 ∈ EQi j , i , j ∈ {1, . . . , n} : ∃ X∗ = {x∗1 , x∗2} ∈ Xr with dw (vi , x

∗
1 ) = z∗

}
be the set of all optimal objective function value defining equilibrium points that are an
element of an optimal solution found by the recursive approach.
Then, there is no optimal solution X̃ = {x̃1, x̃2} /∈ Cand4 of the 2-k-max problem with

objective value defining facility x̃1 for which x̃1 /∈ Y .

Proof. Follows directly as a special case for p = 2 of the proof of Theorem 6.32: The facility
x̃2 /∈ EQ∪ V of an optimal solution X̃ = {x̃1, x̃2} /∈ Cand4 can be moved into an equilibrium
point or a node by solving a center problem on V2 = {vi ∈ V : wid(vi , x̃2) < wi(vi , x̃1)}
without changing the objective value of z∗. Thus, afterwards it holds that x̃2 ∈ EQ∪ V and
the solution is still optimal and thus x̃1 ∈ Y , following Remark 6.7. �

As a consequence of Theorem 6.23 and Corollary 6.24, the set Y of objective function
value defining equilibrium points of all optimal solutions of the 2-k-max problem are known
after the application of the recursive approach. Alternative optimal solutions X not in Xr
can therefore only be in a set

X (x∗1 ) = {X = {x∗1 , x2} : x2 ∈ A(G) ∧ dw (vσ(k), X) = z∗} for x∗1 ∈ Y
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of optimal solutions that have the same objective function value defining facility x∗1 .

Now, let X∗ = {x∗1 , x∗2} ∈ Xr be an optimal solution of the 2-k-max problem where

x∗1 = (eg∗ , t
∗
1 ) with eg∗ = (vag∗ , vbg∗ ) ∈ E, g∗ ∈ {1, . . . , m}.

Moreover, let
x∗1 ∈ EQ

ag∗bg∗
cd for fixed c, d ∈ {1, . . . , n}

be the new facility defining the optimal objective function value z∗. As this solution is found
by the recursive approach, it holds that x∗1 ∈ Y . Since the edge eg∗ on which the optimal
new location x∗1 lies is known, not all m(m−1)/2 pairs of edges eg, eh with g, h ∈ {1, . . . , m}
have to be considered to build up a subdivision Lgh. Only the combinations eg∗ × eh with
fixed edge eg∗ corresponding to an x∗1 ∈ Y have to be considered. Let h ∈ {1, . . . , m} be
arbitrary but fixed in the following.

As the location of x∗1 ∈ EQ
ag∗bg∗
cd is already fixed, all alternative optimal solutions of the set

X (x∗1 ) have to lie on the equilibrium line described by x∗1 on the unit square [0, 1]2 representing
eg∗ × eh. This equilibrium line is denoted by eqg∗h(x∗1 ). Obviously, all intersection points
{x1, x2} of the finite dominating set V (L) for which x1 6= x∗1 can be neglected to find further
optimal solutions in X (x∗1 ). Thus, let Lg∗h(x∗1 ) be the subdivision of the unit square [0, 1]2

representing eg∗ × eh that consists of all balance lines, all equilibrium and all bottleneck lines
corresponding to edge eh and the single equilibrium line eqg∗h(x∗1 ) corresponding to edge eg∗ .
Then, C(Lg∗h(x∗1 )) is the set of all cells of the subdivision Lg∗h(x∗1 ). The set V (Lg∗h(x∗1 ))

describes the set of all intersection points of Lg∗h(x∗1 ) and

V eq(Lg∗h(x∗1 )) ⊂ V (Lg∗h(x∗1 ))

is the set of intersection points of eqg∗h(x∗1 ) with one of the other line segments of the
subdivision Lg∗h(x∗1 ). An example can be seen in Figure 6.16.

eqg∗h(x∗1 )

0 1
0

1

t∗1

t2

k-max(dw (V, {x∗1 , x2}))

0 1
t11

2t2
2t1

2 . . . . . .

Fig. 6.16: Subdivision Lg∗h(x∗1 ) of [0, 1]2 for eg∗×eh with intersection points V eq(Lg∗h(x∗1 ))

(grey) on eqg∗h(x∗1 ) (left). k-max(dw (V,X)) over eqg∗h with breakpoints in x f2 = (eh, t
f
2 ),

f = 1, . . . , |V eq(Lg∗h(x∗1 ))| (right).
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Corollary 6.25 I Improved FDS based on Lg∗h(x∗1 )
Let X∗ = {x∗1 , x∗2} ∈ Xr with x∗1 = (eg∗ , t

∗
1 ) ∈ Y , g∗ ∈ {1, . . . , m}, fixed. If the 2-k-max

problem with n ≥ 2 and k ≤ n − 2 has more than one optimal solution {x1, x2} ∈ X (x∗1 )

with x1 = x∗1 , at least one of these alternative optimal solutions can be found in the set

V eq(L(x∗1 )) =
⋃

h=1,...,m

V eq(Lg∗h(x∗1 )).

As a direct consequence of Corollary 6.25, at least one alternative optimal solution
{x̄1, x2} ∈ X (x̄1) (if existent) for every x̄1 ∈ Y with {x̄1, x̄2} ∈ Xr is an element of the
set

V eq(L(Y )) =
⋃
x̄1∈Y

V eq(L(x̄1)).

Note that the finite dominating set V eq(L(Y )) yields more optimal solutions (if existent)
than the set Xr of optimal solutions generated by the recursive approach. For example, the
alternative optimal solution ¯̄X1 of the 2-1-max problem given in Example 6.11 is an element
of V eq(L(Y )) but not of Xr . As the solutions X ∈ Xr lie in EQ ∪ (EQ × V ), they are
intersection points of at least two equilibrium lines or an equilibrium line and a boundary line
of a unit square and thus in V eq(L(Y )). However, there may still be optimal solutions that
can not be found in the given finite dominating set but they can easily be computed when
all optimal solutions in V eq(L(x∗1 )) are known.

Theorem 6.26 I All optimal solutions
Let X∗ = {x∗1 , x∗2} ∈ Xr with x∗1 = (eg∗ , t

∗
1 ) ∈ Y , g∗ ∈ {1, . . . , m}, fixed. Moreover, let

X ′, X ′′ ∈ V eq(Lg∗h(x∗1 )), h ∈ {1, . . . , m}, be two optimal solutions of the 2-k-max problem
for n ≥ 2, k ≤ n − 2, and X ′, X ′′ ∈ C for a cell C ∈ C(Lg∗h(x∗1 )). Then, all pairs

{x∗1 , x2} with x2 ∈ bd(C) ∩ eqg∗h(x∗1 )

are optimal solutions of the 2-k-max problem.

Proof. As the k-max function with fixed x∗1 ∈ Y is piecewise linear over the edge eh (see
Figure 6.16), and the points X ′ and X ′′ are consecutive breakpoints of this function that both
yield the optimal objective function value, the statement follows. See also Theorem 6.32
below on page 158. �

As a consequence of Theorem 6.26, not only extreme points of cells of a subdivision
Lg∗h(x∗1 ) can be optimal but also whole line segments corresponding to a boundary of a
cell. However, a complete cell of the subdivision Lgh can never be optimal as at least one
new facility has to be located in an equilibrium point (see Theorem 6.30). This property is
satisfied only on the corresponding equilibrium lines which do not lie in the interior of a cell
of the subdivision Lg∗h(x∗1 ) by definition.
Now, all (maybe infinitely many) optimal solutions of the 2-k-max problem can be obtained
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by building up the subdivisions Lg∗h(x∗1 ) in [0, 1]2 for all h = {1, . . . , m} and all x∗1 ∈ Y ,
finding the intersection points of the equilibrium line eqg∗h(x∗1 ) with the other line segments
and evaluating the k-max function in all these candidate points. The intersection points
leading to the smallest objective function value are then optimal for the problem. Optimal
boundary lines of cells can be found as the line segments between two consecutive optimal
extreme points of the same cell. Note that it is sufficient to use a version of the recursive
approach that finds only one optimal solutions for every optimal objective value defining
equilibrium point. Thus, the recursion can be terminated on the recursion levels 2 to p when
the first feasible solution is found. The approach applying the local analysis based on the
results of the recursive approach is summarised in Algorithm 11.

Algorithm 11 Local Analysis to find all optimal solutions of the 2-k-max problem

Input: Graph G = (V, E) with wi > 0 ∀ i = 1, . . . , n, k ∈ {1, . . . , n − 2}, optimal objective

value z∗, set Y of z∗-defining equilibrium points found by the recursive approach.

1: Set zb :=∞, z0 :=∞
2: for all x∗1 = (eg∗ , t

∗
1 ) ∈ Y do . All relevant optimal objective value defining facilities

3: for all h = 1, . . . , m with h 6= g∗ do . All pairs of edges eh and fixed eg∗

4: Derive the subdivision Lg∗h(x∗1 ) of [0, 1]2 and the set V eq(Lg∗h(x∗1 )) of intersec-

.......... tion points on eqg∗h(x∗1 )

5: Sort the pairs X = {x∗1 , x2} ∈ V eq(Lg∗h(x∗1 )) increasingly in x2

6: for all Xi ∈ V eq(Lg∗h(x∗1 )) do

7: Compute the objective value zi = k-max(dw (V,Xi)) of Xi
8: if zi = z∗ then . Xi is optimal

9: if zi = zi−1 then . Edge segment [Xi , Xi−1] is optimal

10: X = X ∪ {[Xi−1, Xi ]} \ Xi−1

11: else . Edge segment is not optimal

12: X = X ∪ {Xi}

Output: Set X of all optimal solutions of the 2-k-max problem on G.

Algorithm 11 has a worst case complexity of O(m2n5 log(n)). The first loop on the ele-
ments of Y needs O(mn2) iterations as this is the number of equilibrium points and therefore
the maximum number of elements in Y . Note that the cardinality of Y will generally be much
smaller in practice. The second loop considers all edges eh, h = 1, . . . , m and h 6= g∗, to
build up the subdivision Lg∗h in O(m) iterations. The sets Bαβijqr for fixed i , j ∈ {1, . . . , n},
q, r ∈ {1, 2} and α, β ∈ {+,−} and their linear representations as equilibrium, balance
or bottleneck lines can be determined in constant time. Since there are at most 12 line
segments for every combination of vi , vj ∈ V on each unit square, the subdivision Lg∗h(x∗1 )

consists of at most O(n2) line segments. Thus, Lg∗h(x∗1 ) can be constructed in O(n2)
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time. As only the intersection points of the equilibrium line eqg∗h(x∗1 ) with all other lines are
needed, V eq(Lg∗h(x∗1 )) can be computed in O(n2). Moreover, |V eq(Lg∗h(x∗1 ))| = O(n2).
Sorting the intersection points increasingly w.r.t. their x2-components needs O(n2 log(n))

time. Finally, the evaluation of the candidates takes O(n log(n)) time per candidate and thus
O(n3 log(n)) time for all candidates of a fixed subdivision. For this purpose, it is necessary
to store in each intersection point the information on the defining nodes. Thus, the stated
overall complexity follows.

Of course, this complexity result only holds if the set Y is already known. Otherwise, the
complexity of Algorithm 11 isO(m2n6) which is dominated by the complexity of Algorithm 10
to determine Y . Note that the whole procedure can be parallelised easily as the construction
of the subdivision for a fixed pair of edges does not depend on the other pairs of edges. This
leads to a significant improvement of the computation time in practice.

Furthermore, in practice it is often not necessary to compute really all optimal solutions
of a problem as the interest to locate a new facility could be particularly high in a certain
region whereas other areas are less wanted. Then, it is of course also possible to analyse only
selected optimal solutions of {x∗1 , x2} ∈ Xr for further alternative optimal locations that are
of particular interest for the decision maker. In this case, i.e., for the evaluation of only one
x1 ∈ Y , the worst case bound of the local analysis is O(mn3 log(n)). If moreover only the
neighbourhood of x2 on a certain edge h is of interest to find alternative optimal solutions,
the computation on this edge takes only O(n3 log(n)).

Example 6.27 (Continuation of Example 6.11). The approach of Algorithm 11 is applied
to the 2-1-max problem on the graph given in Example 4.5. An optimal solution resulting
from the recursive approach is

X1 = {x1
1 , x

1
2} with x1

1 =

(
e34,

1

3

)
and x1

2 =

(
e12,

1

3

)
,

with optimal objective function value z1 = 4
3 . As this solution is also found with changed

roles of x1
1 and x1

2 , both equilibrium points are objective function value defining and therefore

Y =

{(
e34,

1

3

)
,

(
e12,

1

3

)}
.

The solution approach is shown for the first objective function value defining facility
(
e34,

1
3

)
in the following.

As x1
1 =

(
e34,

1
3

)
, it holds that g∗ = 6 with e6 = (v3, v4) is fixed now. The subdivisions

L6h(x1
1 ) for h = 1, . . . , 7 except for h = 6 (see Lemma 6.13) are shown in Figure 6.17.

The analysed candidate intersection points are marked with an empty circle, the intersection
points and the line segments that contain the local minima of the subdivision are marked in
mid-blue (see Figure 6.17(d)-(f)). The local minima that are also globally optimal are drawn
in dark blue (see Figure 6.17(a)-(c)). Therefore, the alternative optimal solutions with x1

1
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(a) Subdivision L61(x
∗
1 ) (b) Subdivision L62(x

∗
1 )

(c) Subdivision L63(x
∗
1 ) (d) Subdivision L64(x

∗
1 )

(e) Subdivision L65(x
∗
1 ) (f) Subdivision L67(x

∗
1 )

Fig. 6.17: Subdivisions Lg∗h(x∗1 ) (light gray) with local minima (light blue) and global minima
(dark blue). The latter are the optimal solutions in X = X (x∗1 ) of the 2-1-max problem.
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as objective function value defining facility are given by X (x1
1 ) = {x1

1 , x
1
2} with

x1
2 ∈

[
(e12, 0) ,

(
e12,

1

3

)]
∪
[

(e13, 0) ,

(
e13,

1

3

)]
∪
[

(e15, 0) ,

(
e15,

2

3

)]
.

For an illustration in the graph see Figure 6.18.

v5

1

2

3

2

2

1

2

1

1
1

1
1

v1

v2

v3

v4

x1
1

x1
2

Fig. 6.18: Set X for k = 1 with z∗ = 4
3 for Example 6.27

Note that the solution X̄1 = {x̄1
1 , x̄

1
2} /∈ Cand4 with x̄1

2 =
(
e15,

2
3

)
given in Example 6.11

is also contained in the set X (x1
1 ). Moreover, in this example it holds that X = X (x1

1 ) as
the other objective value defining facility

(
e12,

1
3

)
∈ Y just yields the optimal solution X1

that is also an element of X (x1
1 ).

6.3.2 The p-facility Case

In the following, the results of the last section for p = 2 new facilities will be transferred
to the general case of p ≥ 2 new facilities to locate. Basically, the same ideas as for the
2-facility case are used and most statements can be applied analogously for the more general
case.
Let X = {x1, . . . , xp} be the set of p new facilities with x1, . . . , xp ∈ A(G). Moreover,

let xq = (egq , tq) and egq = (vagq , vbgq ) for all q = 1, . . . , p and gq ∈ {1, . . . , m}. For the
weighted distance between vi and X it holds

dw (vi , X) = min
{
dw+ (vi , x1), dw− (vi , x1), . . . , dw+ (vi , xp), dw− (vi , xp)

}
.

As for the 2-facility case, the ordering of the elements of the vector of weighted distances
dw (V,X) may change whenever at least two of its elements are equal, i.e., if

dwα (vi , xq) = dwβ (vj , xr ) for i , j ∈ {1, . . . , n}, q, r ∈ {1, . . . , p}, α, β ∈ {+,−}. (6.20)

Hence, all points satisfying this equation may correspond to a breakpoint of the objective
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function of the p-k-max problem. The aim is to derive a finite dominating set for the
p-k-max problem based on a subdivision of the unit hypercube [0, 1]p analogously to the
2-facility case.
Instead of pairs of edges, now p-tuples of edges eg1 , . . . , egp ∈ E, each edge identified

with the unit interval [0, 1], are considered such that the Cartesian product eg1 × . . . × egp
is represented by the unit hypercube [0, 1]p. Let

g = {g1, . . . , gp} ⊂ {1, . . . , m}p

be such a fixed p-tuple of edges. Note that (contrary to the 2-facility case) it is not excluded
that several edges are equal as now more than one new facility may lie on one certain edge in
an optimal solution. The p new facilities x1 = (eg1 , t1), . . . , xp = (egp , tp) are considered to
be located on the edges eg1 , . . . , egp in the following. For the candidate X the set notation
will be used to emphasise the interchangeability of the individual facilities. Nevertheless, as
in the case p = 2, the notation X ∈ eg1 × . . . × egp will be used. To avoid duplication of
candidates, it can be assumed without loss of generality that gj ≤ gj+1 for j = 1, . . . , p− 1.
Due to the one to one correspondence between a point x = (e, t) on a fixed edge e and the

parameter t ∈ [0, 1], feasible solutions can be represented equivalently by the candidate X
being an element of the Cartesian product eg1×. . .×egp and by the corresponding parameters
t1, . . . , tp varying on the unit hypercube [0, 1]p. Hence, every point of the subdivision [0, 1]p

corresponds to the location of p new facilities on the edges of G.

To derive the subdivision of the unit hypercube [0, 1]p on which cells the k-max function is
linear, the possible breakpoints of the function dw (V,X) have to be analysed by considering
the four cases w.r.t. the values of i , j ∈ {1, . . . , n} and q, r ∈ {1, . . . , p} of equation (6.20).

Case 1: i 6= j and q = r ,
i.e., dwα (vi , xq) = dwβ (vj , xq) for i , j ∈ {1, . . . , n}, i 6= j , q ∈ {1, . . . , p} and α, β ∈ {+,−}.
Thus, the set of breakpoints is given by

Bα,βijqq =
{
{x1, . . . , xp} ∈ eg1 × . . . ,×egp : xq = EQ

agqbgq
i j (α, β)

}
,

where EQ
agqbgq
i j (α, β) denotes the equilibrium point on edge egq given by the equation

dwα (vi , xq) = dwβ (vj , xq) for a fixed combination of α, β ∈ {+,−}. For all combinations

of α and β, the set Bα,βijqq describes the equilibrium points EQ
agqbgq
i j of the nodes vi , vj ∈ V

on the edge egq . In the following, the hyperplanes described by these equations are called
equilibrium planes.

Case 2: i 6= j and q 6= r ,
The set of breakpoints in this case is given by

Bαβijqr =
{
{x1, . . . , xp} ∈ eg1 × . . .× egp : dwα (vi , xq) = dwβ (vj , xr )

}
,

for i , j ∈ {1, . . . , n} with i 6= j , q, r ∈ {1, . . . , p} with q 6= r and α, β ∈ {+,−}. The set
contains all p-tuples that have two elements on the edges egq and egh , respectively, that
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have the same weighted distance to two different nodes vi and vj . The hyperplanes defined
by these equations are called balance planes.

Case 3: i = j and q = r ,
i.e., dwα (vi , xq) = dwβ (vi , xq) such that α 6= β, α, β ∈ {+,−}, i ∈ {1, . . . , n}, q ∈ {1, . . . , p}.
W.l.o.g. it can be assumed that α = + and β = − because here it clearly does not make
sense to choose the same value for the parameters α and β. The set of breakpoints for a
fixed q ∈ {1, . . . , p} is then given by

B+−
i iqq =

{
{x1, . . . , xp} ∈ eg1 × . . .× egp : xq = BN

agqbgq
i

}
.

For fixed values of i ∈ {1, . . . , n} and q ∈ {1, . . . , p}, the set B+−
i iqq describes the bottleneck

point BN
agqbgq
i of node vi on the edge egq . The hyperplanes defined by these equations are

called bottleneck planes.

Case 4: i = j and q 6= r

The set of breakpoints in this case is described by the set

Bαβiiqr =
{
{x1, . . . , xp} ∈ eg1 × . . .× egp : dwα (vi , xq) = dwβ (vi , xr )

}
,

for i ∈ {1, . . . , n}, q, r ∈ {1, . . . , p} with q 6= r and α, β ∈ {+,−}. Due to the similarity to
Case 2, these hyperplanes are also named balance planes.

For an illustration of the four cases see Figure 6.10 to Figure 6.13, where the special
case p = 2 are shown. Due to the symmetry in i , j , in q, r , and in α, β, it can be assumed
w.l.o.g. that i ≤ j and q ≤ r in all four cases. By considering all combinations of α and β
in every case, the resulting equations describing the locations of the new facilities x1, . . . , xp
are completely analogous to equations (6.8)-(6.19) for the 2-facility case. If p > 2, then
these equations describe hyperplanes in Rp, restricted to the unit hypercube [0, 1]p. In Case
1 and Case 3, the equations only depend on tq for a fixed value of q ∈ {1, . . . , p} and
thus the described hyperplanes are parallel to the face of [0, 1]p for which tq = 0. In Case
2 and Case 4, the resulting linear functions with known slope depend on two parameters
tq, tr ∈ [0, 1], q, r ∈ {1, . . . , p}. As ti ∈ [0, 1] for i ∈ {1, . . . , p}, not every equation leads
to a non-empty intersection with the unit hypercube such that only an upper bound on the
number of hyperplanes intersecting [0, 1]p is known.

Let g = (g1, . . . , gp) be the vector of indices of the considered edges eg1 × . . .× egq with
g1 ≤ g2 ≤ . . . ≤ gp. The equilibrium, bottleneck and balance hyperplanes for fixed nodes
i , j ∈ {1, . . . , n} yield a subdivision Li jg of the unit hypercube. By⋃

i ,j∈{1,...,n}

Li jg,

the subdivision induced by the hyperplanes for all pairs of nodes over eg1 × . . . × egq is
described. Then,

Lg =
⋃

i ,j∈{1,...,n}

Li jg ∪ bd ([0, 1]p)
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is the subdivision of [0, 1]p induced by all pairs of nodes as well as the boundary segments of
[0, 1]p. For an illustration of Lg see Figure 6.14, where the special case for p = 2 is shown.
For j ∈ {1, . . . , p}, a j-flat of the arrangement of these hyperplanes is the affine convex

hull of j + 1 affinely independent points. Moreover, each flat may be divided into smaller
sections by the other hyperplanes that do not contain the flat. These sections are called
faces of the arrangement. A face is a j-face if its dimension is j . In particular, a p-face is
called a cell C ⊂ [0, 1]p of the arrangement and the set C(Lg) denotes the set of all cells
of Lg. The extreme points of a cell C ∈ C(Lg) are 0-faces, which are also called vertices.
The set of all vertices of Lg is denoted by V (Lg). The (p -1)-faces are also called facets of
the arrangement. For more information on arrangements of hyperplanes see Edelsbrunner
(1987). Now, the Theorem 6.19 can be generalised to the case p ≥ 2.

Theorem 6.28 I Linearity of the k-max function
The objective function of the p-k-max problem on graphs is linear on every cell C ∈ C(Lg)

of the subdivision Lg of [0, 1]p.

Proof. The hyperplanes that define the subdivision Lg of the unit hypercube are constructed
from all X = {x1, . . . , xp} that satisfy the equation

dwα (vi , xq) = dwβ (vj , xr ) for some i , j ∈ {1, . . . , n}, q, r ∈ {1, . . . , p}, α, β ∈ {+,−}.

Let L̄g be the subdivision of the unit hypercube [0, 1]p representing eg1 × . . .× egp which is
induced by the boundary segments of [0, 1]p, the equilibrium planes (Case 1) and the balance
planes for i 6= j (Case 2). Moreover, let C(L̄g) be the set of all cells of this subdivision.
Then, all X = {x1, . . . , xp} that satisfy either that

dwα (vi , xq) = dwβ (vj , xq) or that dwα (vi , xq) = dwβ (vj , xr )

for i , j ∈ {1, . . . , n} with i 6= j , q, r ∈ {1, . . . , p} with q 6= r and α, β ∈ {+,−}, lie on
the boundary of a cell C̄ ∈ C(L̄g). Thus, the permutation σ ∈ Σ(X), that sorts dw (V,X)

in non-increasing order, only changes by crossing a boundary face of a cell of L̄g because
dw (V,X) is continuous and has at least two equal elements only for a X ∈ bd(C̄). Thus,
the permutation σ ∈ Σ(X) is constant on every cell C̄ ∈ C(L̄g).
Now, let L̃g be the subdivision of the unit hypercube representing eg1 × . . . × egp which

is induced by the boundary segments of [0, 1]p, the bottleneck planes (Case 3) and the
balance planes for i = j (Case 4). The set of all cells of the subdivision is called C(L̃g). The
corresponding equations that describe the boundaries of the cells C̃ of L̃g are

dwα (vi , xq) = dwβ (vi , xq) with α 6= β and dwα (vi , xq) = dwβ (vi , xr )

for i ∈ {1, . . . , n}, q, r ∈ {1, . . . , p} with q 6= r and α, β ∈ {+,−}. Moreover, they
describe the breakpoints of the distance functions dw (vi , X), i = 1, . . . , n (see Kalcsics,
2011). Hence, the functions dw (vi , X), i = 1, . . . , n, are linear over every cell C̃ ∈ C(L̃g).
Every cell C ∈ C(Lg) of the subdivision given by all equilibrium, bottleneck and balance
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planes is formed as the intersection of a cell C̄ ∈ C(L̄g) and a cell C̃ ∈ C(L̃g), i.e.,

C = C̄ ∩ C̃ for C̄ ∈ C(L̄g), C̃ ∈ C(L̃g).

Consequently, the k-max function over C ∈ C(Lg) can be written as

k-max(dw (V,X)) = λ1d
w (vσ(1), X) + . . .+ λkd

w (vσ(k), X) + . . .+ λnd
w (vσ(n), X)

with λk = 1 and λi = 0 for i 6= k on every cell C ∈ C(Lg), where the permutation σ is
constant and the functions dw (vi , X), i = 1, . . . , n, are linear. Therefore, the k-max function
is linear over every cell C ∈ C(Lg). �

Note that, similar to the 2-facility case, it can be shown that the k-max function is
piecewise linear and concave on each cell C′ ∈ C(L′g), where L′g is the subdivision of [0, 1]p

that is defined only by the boundary faces of [0, 1]p and the equilibrium and the balance
planes. This is due to the fact that bottleneck planes describe maxima of the weighted
distance functions and are therefore not of interest for finding a minimum.
The finite dominating set resulting from the above considerations is given in Lemma 6.29.

Lemma 6.29 I FDS based on Lg
At least one optimal solution of the p-k-max problem with n ≥ 2 and k ≤ n − p can be
found in the set

V (L′) =
⋃

g⊂{1,...,m}p
V (L′g),

where g = {g1, . . . , gp} with gj ≤ gj+1 for j = 1, . . . , p − 1.

Proof. Following Theorem 6.28, the k-max function is linear on each cell C of the subdivision
Lg of the unit hypercube for all g = {g1, . . . , gp}. As the bottleneck planes describe maxima
of the weighted distance functions, it follows that the k-max function is piecewise linear and
concave on each cell C′ ∈ C(L′g). Moreover, every cell is convex and compact. Thus, a local
minimum of the k-max function has to be attained on the boundary of a cell C′ ∈ C(L′g) for
every g = {g1, . . . , gp} ⊂ {1, . . . , m}p.
In particular, the set V (L′g) contains a local optimal solution of the p-k-max-problem

restricted to the current p-tuple eg1 × . . . × egp . A global minimum of the k-max function
can therefore be found in the set V (L′) as a local minimum with the smallest objective
function value. �

Note that the set V (L) =
⋃
g⊂{1,...,m}p V (Lg) is of course also a finite dominating set for

the p-k-max problem as it is a superset of V (L′).
For a fixed vector g ⊂ {1, . . . , m}p of edge indices, there exist at most O(n2p) equilibrium

planes, O(np) bottleneck planes and O(n2p2) balance plane. This adds up to at most
O(n2p2) hyperplanes that constitute Lg. To determine the number of candidates resulting
from the subdivision Lg, the number of 0-faces of the arrangement is needed. Following
Edelsbrunner (1987), the number f pj (b) of j-faces resulting from a non-simple arrangement
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of b hyperplanes in Rp is bounded by

f pj (b) =

j∑
i=0

(
p − i
j − i

)(
b

p − i

)
. (6.21)

Thus, the number of 0-faces in this case of O(n2p2) hyperplanes is

f p0 (n2p2) =

(
p

0

)(
n2p2

p

)
∈ O(n2pp2p).

Hence, the size of V (Lg) is O(n2pp2p). Since there are O(mp) possible vectors

g = {g1, . . . , gp} ⊂ {1, . . . , m}p with gj ≤ gj+1

for j = 1, . . . , p − 1, the cardinality of the finite dominating set V (L) is O(mpn2pp2p).

Every subdivision Lg of [0, 1]p for a fixed g and all its j-faces for j = 1, . . . , p can be con-
structed in O(n2pp2p) time using the algorithm of Edelsbrunner et al. (1986). The evaluation
of one candidate point can be done inO(n(p+log(n))) time (see Algorithm 4). Therefore, all
candidates of V (Lg) need O(n2p+1p2p(p+log(n))) time to be evaluated. As O(mp) subdivi-
sions have to be considered, the complexity can be bounded by O(mpn2p+1p2p(p+ log(n))),
which is mainly determined by the evaluation of the candidate points. Since p is assumed to
be fixed, this simplifies to O(mpn2p+1 log(n)) time for solving the p-k-max problem utilizing
the finite dominating set V (L).

An important observation that reduces the number of candidates to evaluate significantly,
is that the facility that defines the optimal objective value always lies in an equilibrium point.

Theorem 6.30 I Objective value defining equilibrium point
Let X∗ = {x∗1 , . . . , x∗p} be an optimal solution of the p-k-max problem with n ≥ 2 and
k ≤ n−p. W.l.o.g., x∗1 is a new facility that determines the optimal objective function value
z∗. Then it holds that x∗1 ∈ EQ.

Proof. Let X∗ = {x∗1 , . . . , x∗p} ∈ A(G) × . . . × A(G) be optimal locations with optimal
objective value z∗ (an optimal solution exists according to Theorem 4.6). Let

V` :=
{
vi ∈ V : dw (vi , x

∗
` ) ≤ dw (vi , x

∗
g ) ∀ g > ` ∧ dw (vi , x

∗
` ) < dw (vi , x

∗
g ) ∀ g < `

}
for all ` ∈ {1, . . . , p} define an optimal assignment of the existing facilities to the new
facilities x∗1 , . . . , x

∗
p . Note that if an existing facility is of equal distance from two or more

new facilities, it is assigned w.l.o.g. to the new facility with the smallest index. Moreover,
let σ ∈ Σ(X∗), i.e.,

min
`∈{1,...,p}

dw (vσ(1), x
∗
` ) ≥ min

`∈{1,...,p}
dw (vσ(2), x

∗
` ) ≥ · · · ≥ min

`∈{1,...,p}
dw (vσ(n), x

∗
` ).
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Then

min
`∈{1,...,p}

dw (vσ(k), x
∗
` ) = z∗ and min

`∈{1,...,p}
dw (vσ(i), x

∗
` ) ≥ z∗ ∀ i < k.

Further, define

k` := |{vσ(i) ∈ V` : i < k}| for all ` ∈ {1, . . . , p}.

Clearly,
∑p
`=1 k` + 1 = k . Suppose w.l.o.g. that the optimal objective function value is

attained in x∗1 , i.e., z
∗ = dw (vσ(k), x

∗
1 ) and assume that x∗1 , . . . , x

∗
p /∈ EQ.

Case 1: z∗ is attained only in V1, i.e., wσ(i)d(vσ(i), x
∗
` ) < z∗ for all i > k and ` = 2, . . . , p.

Now, an alternative optimal solution X̄ = {x̄1, x
∗
2 , . . . , x

∗
p} ∈ A(G) × . . . × A(G) is

constructed such that x̄1 ∈ EQ as follows:

Let x̄1 ∈ A(G) be selected such that x̄1 is an optimal location for the 1-(k1+1)-max

problem with optimal objective function value z̄1 and existing facilities V1 in G (all
nodes in V \V1 have weight 0 in this problem, see Remark 4.5). Note that the problem
is solvable because of k1 ≤ |V1|, otherwise the allocation V`, ` = {1, . . . , p}, would
not be optimal. The 1-(k1+1)-max problem has its optimal solution in EQ for all
1 ≤ k1 ≤ |V1| − 2 and in V only if k1 = |V1| − 1 (see Theorem 5.10).

In the latter case, all nodes in V1 except of one have to be outliers. Thus, x̄1 is located
in this non-outlier node v̄ ∈ V1 and yields z̄1 = 0. With the same argument x∗1 also
had to be located in a node of V1 and hence z∗ = 0. It follows that

min
{
dw (vσ(i), x̄1), dw (vσ(i), x

∗
2 ), . . . , dw (vσ(i), x

∗
p )
}

= 0 for all i ≥ k.

As x̄1 is already located in a node, x∗2 , . . . , x
∗
p have to bring all other n−k ≥ p distances

to 0 which is not possible due to the positive edge and node weights. As a consequence,
the case k1 = |V1| − 1 can not occur and x̄1 ∈ EQ. Since x∗1 is also feasible for this
problem and has objective value z∗, it is known that the optimal objective value z̄1 of
this problem satisfies z̄1 ≤ z∗. As x∗1 /∈ EQ, a non-zero improvement can be realised
by shifting from x∗1 to x̄1 because, following Theorem 6.23, the optimal solution of the
subproblem on V1 has to be located in EQ.

With the assumption wσ(i)d(vσ(i), x
∗
` ) < z∗ for all i > k and ` = 2, . . . , p, all existing

facilities in V = V1 ∪ . . . ∪ Vp can be allocated to X̄ such that

wθ(k)d(vθ(k), X̄) < z∗,

where θ is a permutation in Σ(X̄), because, if σ 6= θ, the new allocation realises even
smaller distances than before. Consequently, it can be concluded that X̄ is also a
feasible solution satisfying

k-max(wid(vi , X̄)) < z∗.
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This contradicts the assumption that X∗ is an optimal solution because by shifting x∗1
into EQ, a strictly better objective value can be obtained.

Case 2: z∗ is attained in V1 and in at least one other cluster V`, ` ∈ {2, . . . , n}, i.e., there
exists a node vσ(i) ∈ V`, i > k , with

wσ(i)d(vσ(i), x
∗
` ) = z∗.

Again, an alternative solution X̄ = {x̄1, . . . , x̄p}, where x̄q = x∗q for all q ∈ {1, . . . , p}
for which the optimal objective function value is not attained in Vq, is constructed as
follows: Select x̄1 ∈ EQ like in Case 1. It follows that z̄1 < z∗.

Similarly, for all clusters V` in which the optimal objective function value is attained,
let x̄` ∈ EQ ∪ V be selected such that x̄` is an optimal location for the single facility
1-(kl+1)-max problem with existing facilities V` in G (all nodes in V \ V` have weight
0 in this problem). Since x∗` is feasible for this problem and has an objective value of
at most z∗, it is known that the optimal objective value z̄` of this problem satisfies
z̄` < z∗, because x∗` /∈ EQ ∪ V but x̄` ∈ EQ or x̄` ∈ V (see Theorem 5.10).

Now, all vi ∈ V can be allocated to X̄ such that wθ(k)d(vθ(k), X̄) < z∗, where θ is
defined as in Case 1, because a reallocation just occurs if smaller distances than z∗

can be realised. Finally, it can be concluded that X̄ is also a feasible solution satisfying

k-max(wid(vi , X̄)) < z∗.

Thus, X∗ can not be an optimal solution and the result is shown. �

The finite dominating set V (L) can be reduced further by using the information obtained
from the optimal solutions computed by the recursive approach described in Algorithm 10.
For this purpose, let Xr be the set of optimal solutions found by Algorithm 10. Then, with
the set

Y =
{
x∗1 ∈ EQi j , i , j ∈ {1, . . . , n} : ∃ X∗ = {x∗1 , . . . , x∗p} ∈ Xr with dw (vi , x

∗
1 ) = z∗

}
the statement of Corollary 6.24 holds analogously for the p-facility case, i.e., all equilibrium
points defining the optimal objective function value z∗ in an optimal solution of the p-k-max

problem are known from the output of the recursive approach. Thus, all alternative optimal
solutions are described by the sets

X (x∗1 ) =
{
X = {x∗1 , x2, . . . , xp} : x2, . . . , xp ∈ A(G) ∧ dw (vσ(k), X) = z∗

}
for x∗1 ∈ Y

of optimal solutions that have the same objective function value defining facility x∗1 , x
∗
1 ∈ Y .

For a fixed x∗1 = (eg∗ , t
∗
1 ) ∈ Y , all these alternative optimal solutions have to lie on the

equilibrium plane described by Bα,βcd11 for x∗1 ∈ EQ
ag∗bg∗
cd with fixed c, d ∈ {1, . . . , n}.

Analogous to the 2-facility case, let eqg(x∗1 ) be the equilibrium plane which is described by
x∗1 and let Lg(x∗1 ) for g = {g∗, g2, . . . , gp} with g2 ≤ . . . ,≤ gp be the subdivision of [0, 1]p
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arising from Lg by deleting all bottleneck planes of type Bαβii11 and all equilibrium planes of
type Bαβij11 except for eqg(x∗1 ) for all i , j = 1, . . . , n and α, β ∈ {+,−}. C(Lg(x∗1 )) denotes
the set of cells of the subdivision. Moreover, V eq(Lg(x∗1 )) is the set of all 0-faces of the
subdivision Lg(x∗1 ) that lie on the hyperplane eqg(x∗1 ), i.e., the set of all points on eqg(x∗1 )

that are intersected by at least p− 1 of the other hyperplanes in Lg(x∗1 ). For an illustration
of Lg(x∗1 ) see Figure 6.16 (left), where the special case of p = 2 is shown.

Corollary 6.31 I Improved FDS based on Lg(x∗1 )
Let X∗ = {x∗1 , . . . , x∗p} ∈ Xr with x∗1 = (eg∗ , t

∗
1 ) ∈ Y , g∗ ∈ {1, . . . , m}, fixed. If the p-k-max

problem with n ≥ 2 and k ≤ n−p has more than one optimal solution {x1, . . . , xp} ∈ X (x∗1 )

with x1 = x∗1 , at least one of these alternative optimal solutions can be found in the set

V eq(L(x∗1 )) =
⋃

g⊂{1,...,m}p
V eq(Lg(x∗1 )),

where g = {g∗, g2 . . . , gp} with gj ≤ gj+1 for j = 2, . . . , p − 1.

Moreover, at least one alternative optimal solution {x̄1, x2, . . . , xp} ∈ X (x̄1) (if existent)
for every x̄1 ∈ Y with {x̄1, . . . , x̄p} ∈ Xr is an element of the set

V eq(L(Y )) =
⋃
x̄1∈Y

V eq(L(x̄1)).

For further information see the special case p = 2 on page 146. However, there may
still be optimal solutions that can not be found in this finite dominating set, but they can
be computed when the optimal solutions in V eq(L(x∗1 )) are known. For this purpose, let
conv (A) be the convex hull of the elements in A.

Theorem 6.32 I All optimal solutions
Let X∗ = {x∗1 , . . . , x∗p} ∈ Xr with optimal objective function value z∗ and x∗1 = (eg∗ , t

∗
1 ) ∈ Y

with g∗ ∈ {1, . . . , m} be fixed. Moreover, for a fixed g = {g∗, g2, . . . , gp} ⊆ {1, . . . , m}p
and a cell C̄ ∈ C(Lg(x∗1 )), let

F C̄0 =
{
X̄ ∈ V eq(Lg(x∗1 )) : X̄ ∈ C̄ ∧ dw (V, X̄) = z∗

}
be the set of all vertices of the cell C̄ that are optimal for the p-k-max problem. Then, all
p-tuples

X = {x∗1 , x2, . . . , xp} with X ∈ conv
(
F C̄0

)
,

are optimal solutions of the p-k-max problem with n ≥ 2 and k ≤ n − p.

Proof. Consider the subdivision Lg(x∗1 ), g = {g∗, g2, . . . , gp} ⊂ {1, . . . , m}p, of [0, 1]p with
respect to x∗1 and a cell C̄ ∈ C(Lg(x∗1 )). Let fb be a b-face with dimension b ≤ p− 1 of the
subdivision and

F eq = {fb : fb ⊂ eqg(x∗1 ) ∧ 0 ≤ b ≤ p − 1}
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be the set of all faces of dimension smaller or equal to p − 1 that are a subset of the
hyperplane eqg(x∗1 ). As x∗1 ∈ Y is fixed, all alternative optimal solutions in X (x∗1 ) have to
lie on the equilibrium plane eqg(x∗1 ) determined by x∗1 . Thus, consider the k-max function
restricted to the variables x2, . . . , xp ∈ eg2 × . . .× egp , i.e., the function

k-max(dw (V, {x∗1 , x2, . . . , xp}))

over eqg(x∗1 ) in the unit hypercube [0, 1]p. The hyperplane eqg(x∗1 ) in [0, 1]p of Lg(x∗1 )

defined by x∗1 can be described as the union of boundary faces of cells adjacent to eqg(x∗1 ),
i.e.,

eqg(x∗1 ) =
⋃
f ∈F eq

f .

Note that eqg(x∗1 ) is in Lg and also in Lg(x∗1 ). As all equilibrium and bottleneck planes
contributing to Lg but not to Lg(x∗1 ) are parallel to eqg(x∗1 ), they do not lead to additional
intersection points with eqg(x∗1 ) in Lg. Thus, the b-faces for all b ≤ p−1 of Lg and Lg(x∗1 )

on eqg(x∗1 ) coincide and there exists a face f̄b ∈ F eq with b ≤ p − 1 such that

X̄j ∈ f̄b for all X̄j ∈ F C̄0 .

Since the k-max function is linear in every cell C ∈ C(Lg) of the subdivision Lg (see The-
orem 6.16), the k-max function is also linear in every face fb ∈ F eq with 1 ≤ b ≤ p − 1

because every face fb is a boundary face of a cell C of Lg.
As all X̄j ∈ f̄b have the same optimal objective function value, the k-max function is

constant over conv
(
F C̄0

)
= f̄b. Consequently, all X = {x∗1 , x2, . . . , xp} with X ∈ conv

(
F C̄0

)
are optimal solutions of the p-k-max problem. Additionally, note that the k-max function is
piecewise linear over eqg(x∗1 ). An illustration is given in Figure 6.16 (right), where for p = 2

the k-max function restricted to the edge eg∗ = eh over the subdivision of [0, 1]2 given in
Figure 6.16 (left) is shown. �

As a consequence of Theorem 6.32, b-faces up to a dimension of b = p−1 can be optimal
for the p-k-max problem. A whole cell of the subdivision can not be optimal because other-
wise the objective function value defining facility would not lie on the hyperplane eqg(x∗1 ),
i.e., it would not be an equilibrium point.

The procedure to determine all optimal solutions of the p-k-max problem is mostly analo-
gous to the 2-facility case: At first, the subdivisions Lg(x∗1 ) of [0, 1]p for all g ⊆ {1, . . . , m}
and a fixed x∗1 have to be constructed. Afterwards, the 0-faces, i.e., the intersection points
of eqg(x∗1 ) with the other hyperplanes, have to be determined. Then, the k-max function
is evaluated in these candidate points and the intersection points leading to the smallest
objective function value z∗ are optimal. The last step of finding the optimal convex hulls of
optimal intersections belonging to the same cell is more complicated in the general case as
it is not possible to identify adjacent 0-faces by just sorting coordinates as in the 2-facility
case. To overcome this problem, the Algorithm of Edelsbrunner (1987) (for more details see
also Edelsbrunner et al., 1986) and the data structure used therein are needed and presented
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shortly in the following with the notation adjusted to this thesis.
Edelsbrunner (1987) describes an algorithm for constructing an arrangement of hyper-

planes, i.e., an algorithm that builds up a data structure which stores all faces of the ar-
rangement and also all incidences between pairs of faces. Let H be a set of a hyperplanes
in Rp and let A(H) be the arrangement resulting from H. A data structure called incidence
graph I(H) = (V (I), E(I)) is used to represent the arrangement A(H) in the following way:
Each face f of A(H) is represented by a vertex v(f ) ∈ V (I) and if two faces f and f ′ are

incident, the vertices v(f ) and v(f ′) are connected by an edge. Besides the regular s-faces
of dimension 0 ≤ s ≤ p, two more faces are defined: The (−1)-face (that corresponds to the
empty set) and the (p+1)-face (representing the whole arrangement A(H)). The (−1)-face
is defined to be incident with all vertices of I(H) representing a 0-face and the (p+1)-face is
defined to be incident with all vertices representing a p-face. Figure 6.19 shows an example
of an incidence graph (right) of the arrangement given on the left, where the second level
of the graph represents the vertices of the subdivision, the third level represents the edges
and the fourth level the cells. Note that an incidence graph of a set of a hyperplanes in Rp

contains O(ap) vertices and edges. The implementation of an incidence graph contains two
lists stored in each vertex v(f ) of an s-face f : One list containing pointers to the vertices
representing an (s+1)-face incident to f and the other list containing the pointers to all
vertices of (s-1)-faces incident to f .

A

c1 c2 c3 c4 c5 c6 c7

e2 e3 e4 e5 e6 e7 e8

v1 v2 v3

∅

e9e1
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Fig. 6.19: Arrangement A(H) in R2 and its incidence graph I(H)

To generate the incidence graph I(H), Edelsbrunner introduces an incremental algorithm.
It starts with an arrangement A(Hp) of p < a hyperplanes whose normal vectors are linearly
independent. The other a − p hyperplanes are added iteratively to the arrangement. The
incidence graph is updated after each insertion of a new hyperplane. The initial set of
hyperplanes Hp can be found easily by analysing the determinants of the normal vectors of
subsets of hyperplanes to check if the normal vectors are linearly independent.
Now, let A(Hi) be the arrangement of the p < i < a hyperplanes added in the first i

iterations of the algorithm and let hi+1 be the hyperplane that is added in the next iteration.
All s-faces with 0 ≤ s ≤ p of A(Hi) that are not intersected by hi+1 remain an s-face in
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A(Hi+1) and do not lead to a change in I(H). All other s-faces A(Hi) that are intersected
by hi+1 are marked in different colors depending on the position of the face relative to hi+1.
If an s-face is marked, it has to be split into two s-faces bounded by the two halfspaces
defined by hi+1 and an (s-1)-face representing the intersection of the s-face and hi+1. Thus,
the incidence graph has to be manipulated by adding the corresponding nodes and updating
the related edges. The operations needed to update I(H) depend on the color of the current
s-face. The complete algorithm to build up I(H) has a complexity of O(ap), which is best
possible for an arrangement of a hyperplanes in Rp.

The incidence graph is very useful to analyse which optimal 0-faces of Lg(x∗1 ) belong to the
same cell such that their convex hull is optimal for the p-k-max problem. The subdivision
Lg(x∗1 ) of [0, 1]p for a fixed set of edges g ⊆ E is an arrangement of at most O(n2p2)

hyperplanes. As x∗1 is fixed, and with it also the equilibrium plane eqg(x∗1 ), it is sufficient to
analyse the subdivision

Leqg (x∗1 ) = Lg(x∗1 ) ∩ eqg(x∗1 )

in Rp−1 which corresponds to the subdivision Lg(x∗1 ) restricted to eqg(x∗1 ). The notation for
the parts (vertices, cells etc.) of Leqg (x∗1 ) are used equivalently to the subdivisions before.
Let I(Leq) = (V (I), E(I))) be the incidence graph of Leqg (x∗1 ). The idea is to go bottom-up
through the incidence graph and to identify for each dimension s ∈ {0, . . . , p − 1} which
s-faces are optimal. It can be used that the optimal 0-faces can be determined easily and
that an s-face for s ≥ 2 is only optimal if all of its incident (s-1)-faces are optimal. Thus,
denote by

Vs = {v si ∈ V (I) : f si is ith optimal s-face, i ∈ {1, . . . , |Vs |}} ,

s ∈ {0, . . . , p− 1}, the set of vertices v si of the incidence graph that represent an s-face f si
for which it holds that all X ∈ f si are optimal for the p-k-max problem. Note that V0 equals
the set of optimal extreme points in V eq(Lg(x∗1 )) which is assumed to be known from a
previous step of the solution approach. In the following, no distinction will be made between
the faces f si of Leqg (x∗1 ) and the nodes v si ∈ V (I) that represent them.
It is now assumed that the set Vs−1 of optimal (s-1)-faces is known. Thus, in the next

step the set Vs of optimal s-faces has to be computed based on the information of Vs−1.
Therefore, let v s−1

i ∈ Vs−1 be the ith optimal (s-1)-face, i ∈ {1, . . . , |Vs−1|}, and v sj be an
s-face incident to v s−1

i such that (v s−1
i , v sj ) ∈ E(I). Then, v sj is optimal for the p-k-max

problem if and only if it holds that

v s−1
h ∈ Vs−1 for all (v s−1

h , v sj ) ∈ E with h ∈ {1, . . . , |Vs−1|}, (6.22)

i.e., if all of its incident subfaces v s−1
h are optimal. Note that it is enough to analyse just one

incident optimal v si ′ 6= v s−1
i because then the other incident subfaces also have to be optimal

as the k-max function is constant over f sj if it is constant over two of its (s-1)-dimensional
boundary faces f s−1

i and f s−1
i ′ . Thus, if the condition (6.22) is satisfied, v sj is an element

of Vs . If (6.22) is not satisfied for all superfaces f sj of f s−1
i , then f s−1

i does not contribute
to an optimal face of a larger dimension and is stored in the set Fopt of optimal faces of
Leqg (x∗1 ). As a consequence, only optimal faces of maximum dimension are stored and not
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also all their smaller-dimensional subfaces.
As at least s + 1 optimal (s-1)-faces are needed to construct an optimal s-face, the

condition |Vs−1| < s + 1 is used as a stopping criterion. Since it is easier to construct the
convex hull of optimal solutions for the p-k-max problem when the extreme points of the
convex hull are known, a set EPopt is build up analogously to Fopt and it contains all sets
of 0-faces whose convex hulls are optimal. The procedure is summarised in Algorithm 12.

Algorithm 12 Determine optimal extreme points belonging to the same cell

Input: Incidence Graph I(L) = (E(I), V (I)) of Leqg (x∗1 ) for a fixed g ⊆ E(G), set Vopt of

optimal 0-faces of Leqg (x∗1 )

1: Set V0 := Vopt , Vs := ∅ for all s = 1, . . . .p − 1, EP (v0
a ) := v0

a for all a ∈ {1, 2, . . .},
EP0 := {{v0

i ∈ V0} : i = 1, . . . , |V0|}, A := ∅
2: while |Vs−1| ≥ s + 1 do . As long as there are enough optimal vertices on level s

3: for all v s−1
i ∈ Vs−1 do . Choose an optimal (s-1)-face

4: α = 0

5: for all v sj with (v s−1
i , v sj ) ∈ E(I) do . Choose an s-faces incident with v s−1

i

6: if ∃ v s−1
h′ ∈ Vs−1 with v s−1

h′ 6= v s−1
i and (v s−1

h′ , v sj ) ∈ E(I) then

7: α = 1 . All predecessors of v sj are optimal

8: for all v s−1
h ∈ Vs−1 with (v s−1

h , v sj ) ∈ E(I) do . (s-1)-faces incident v sj
9: A = A ∪ {v s−1

h } . Optimal predecessors of v sj

10: Vs = Vs ∪ {v sj } . Optimal s-faces

11: EP (v sj ) =
⋃
v s−1
a ∈A EP (v s−1

a ) . 0-faces bounding v sj
12: EPs = EPs ∪ {EP (v sj )} . Sets of 0-faces of every optimal s-face

13: A = ∅
14: if α = 0 then . v s−1

i is not predecessor of an optimal s-face

15: Fopt = Fopt ∪ {v s−1
i } . Optimal faces

16: EPopt = EPopt ∪ EP (v s−1
i ) . Sets of 0-faces bounding an optimal face

17: A = ∅
18: s = s + 1

19: if |Vs−1| < s + 1 then . While-criterion not fulfilled

20: Fopt = Fopt ∪ Vs−1

21: EPopt = EPopt ∪ EPs−1

Output: EPopt = {M = {v0
i ∈ Vopt : v0

i ⊂ C̄ ∀ i} : C̄ ∈ C(Leqg (x∗1 )) ∧ M 6= ∅}, where
each element M is a set that contains the optimal 0-faces of a cell C̄ ∈ C(Leqg (x∗1 ))

having at least one optimal 0-face.
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The worst case complexity of Algorithm 12 is O(n4p). The while-loop is processed at
most O(p) times as it may go through all dimensions s ∈ {0, . . . , p− 1}. The number of all
(s-1)-faces is bounded by O((n2p2)p−1) (see Edelsbrunner (1987)), which is the number of
hyperplanes taken to the power of the dimension of the space. Thus, |Vs−1| = O((n2p2)p−1),
which is also the complexity of the first for-loop. The second for-loop needs O((n2p2)p−1)

time as all s-faces v sj have to be considered, not only the optimal ones. To find all subfaces
v s−1
i incident to v sj , all predecessors of v

s
j have to be analysed. Since a face can be bounded

by at most all n2p2 hyperplanes, the complexity needed to check the if-condition is O(n2p2).
The same argument holds for the last for-loop which therefore also needsO(n2p2) time in the
worst case. Summarising the discussion above, this leads to a complexity of O(n4pp4p+1).
As p is considered to be fixed, the above mentioned overall complexity for the computation
of the sets of 0-faces follows. In practice this procedure will be more efficient as the number
of optimal s-faces will be in general much smaller than the total number of s-faces.

Now that all parts of the solution approach to determine all optimal solutions of the
p-k-max problem have been derived, the procedure is summarised in Algorithm 13.
The output of Algorithm 13 is the set EPopt where each element is a set that contains the

optimal 0-faces that belong to a cell C̄ ∈ C(Leqg (x∗1 )). Thus, each set EP ∈ EPopt describes
the extreme points of a polytope in Rs for s ∈ {1, . . . , p − 1}. All X ∈ Rn that lie inside or
on the boundary of this polytope are optimal for the p-k-max problem (see Theorem 6.32).
If needed, the set

X = X ∪ {X ∈ Rp : X ∈ conv(EP ) for EP ∈ EPopt}

of all optimal solutions of the p-k-max problem can be obtained easily by computing the
convex hull of each set EP ∈ EPopt , for example with the Algorithm of Seidel (1986) or
Chazelle (1993).

The worst case complexity of the below algorithm is O(mpn4p+2). The computational
effort of considering all elements of the set Y is O(mn2), which is the maximum number of
equilibrium points of G. The number of subdivisions that have to be considered is O(mp−1)

since g1 = g∗ is fixed. The maximum number of equilibrium-, bottleneck- and balance planes
is O(n2p2) which was already shown in the complexity analysis of the 2-facility case. For
the computation of H′, all these hyperplanes have to be considered and each intersection
of h ∈ H and eqg(x∗1 ) can be determined in O(p) time. The subdivision Leqg (x∗1 ) can be
constructed with the algorithm of Edelsbrunner (1987) in O((n2p2)p−1) time as Leqg (x∗1 ) is
a subdivision of the unit hypercube [0, 1]p−1. Following equation (6.21), the number of opti-
mal extreme points in V (Leqg (x∗1 )) is bounded by O((n2p2)p−1). As every candidate solution
needs O(n(p + log(n))) time to be evaluated, the evaluation of all 0-faces in Leqg (x∗1 ) has
a complexity of O(n2p−1p2p−2(p + log(n))). The set EPopt can be computed using Algo-
rithm 12 which has a worst case complexity of O(n4pp4p+1). Hence, an overall complexity
of O(mpn4p+2p4p+1) for Algorithm 13 follows, which can be simplified to O(mpn4p+2) since
p is assumed to be fixed. Thus, the effort of this algorithm is mainly determined by the
computation of the set EPopt to get all optimal solutions of the problem.
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Note that the algorithm can be implemented in parallel easily: The whole computation
for a fixed objective function value defining facility is independent from the other z∗-defining
facilities. Moreover, the construction of the subdivision for a fixed p-tuple of edges does
not depend on the results of the subdivisions of another combination of edges. Also the
evaluation of the found intersection points can be parallelised. This leads to a significant
improvement of the computation time in practice.

Algorithm 13 Local Analysis to find all optimal solutions of the p-k-max problem

Input: Graph G = (V, E) with wi > 0 ∀ i = 1, . . . , n, p ∈ {2, . . . , n}, k ∈ {1, . . . , n − p},
optimal objective value z∗, set Y of z∗-defining equilibrium points.

1: Set Vopt := ∅, H′ := ∅
2: for all x1 = (eg∗ , t

∗
1 ) ∈ Y do . All relevant optimal objective value defining facilities

3: for all (g2, . . . , gp) ⊆ {1, . . . , m}p−1 with g2 ≤ . . . ≤ gp do . All p-tuples g...

4: Set g := (g∗, g2, . . . , gp) . ...with fixed edge g∗

5: Derive the set H of equilibrium-, bottleneck- and balance planes for eg∗×. . .×egp
6: for all a = 1, . . . , |H| do
7: Compute the intersection h′ of ha ∈ H with eqg(x∗1 )

8: H′ = H′ ∪ h′ . Hyperplanes that define the subdivision restricted to eqg(x∗1 )

9: Derive the subdivision Leqg (x∗1 ) = Lg(x∗1 ) ∩ eqg(x∗1 ) of the set of hyperplanes H′

10: for all Xi ∈ V (Leqg (x∗1 )) do . Test all 0-faces for optimality

11: Compute the objective value zi = k-max(dw (V,Xi)) of Xi
12: if zi = z∗ then . Xi is optimal

13: Vopt = Vopt ∪ {Xi}

14: Compute the set EPopt , where each element is a set that contains the 0-faces

.......... of a cell C̄ ∈ C(Leqg (x∗1 )) . See Algorithm 12

Output: EPopt = {M = {v0
i ∈ Vopt : v0

i ⊂ C̄ ∀ i} : C̄ ∈ C(Leqg (x∗1 )) ∧ M 6= ∅}, where
each element M is a set that contains the optimal 0-faces of a cell C̄ ∈ C(Leqg (x∗1 ))

having at least one optimal 0-face.

If not all optimal solutions of the p-k-max problem are needed, the overall complexity of
the local analysis approach reduces to O(mpn2p+1 log(n)) for fixed p, which is determined
by the complexity of the evaluation of the 0-faces of Leqg (x∗1 ). Note that the set Vopt
contains alternative optimal solutions (if existent) that can not be found by the recursive
approach. Thus, the application of Algorithm 13 provides useful additional information
without increasing the overall worst case complexity determined by the recursive approach.

Remark 6.33. Note that the worst case complexity of O(mpn4p+2) is generally a very
pessimistic estimation as the number of optimal 0-faces as well as the number of all other

164



6.4. SHIFTING OPTIMAL FACILITIES

relevant s-faces for s ∈ {1, . . . , p − 1} is estimated using the maximum possible number of
faces. However, in practice, the number of this faces is in general much smaller than it could
be suggested by the theoretical upper bound (see Chapter 7).

Remark 6.34. The local analysis approach can equivalently be applied to solve p-k-max

problems in the plane with polyhedral gauges, e.g. the `1-norm or the `∞-norm. For this
purpose, the network distances have to be substituted by the corresponding gauge distances
to determine the set of breakpoints in Cases 1 to 4. The resulting equilibrium planes,
bottleneck planes and balance planes are hyperplanes in R2p and thus constitute a subdivision
of the R2p. As the cells of this subdivision are convex and the k-max function is linear on
each of these cells, the 0-faces define a finite dominating set of the p-k-max problem. Note
that there may, in general, be more hyperplanes defining such a subdivision than it is the
case for problems on networks since, for example, the absolute value in the `∞-norm has to
be resolved.
However, the local analysis approach is not promising for general gauges. If, for example,

Euclidean distances are used for the measurement of distances, the equations describing the
sets of breakpoints are not linear and do therefore not form hyperplanes. In general, the
obtained cells of the subdivision are not convex and the intersection points of the subdivision
do not have to define a finite dominating set.

6.4 Shifting Optimal Facilities

In this section, another approach to generate (infinitely many) alternative optimal solutions,
if existent, to the optimal solutions in Cand4 is presented. In this method, the recursive
approach given in Algorithm 10 resp. the evaluation of the whole candidate set described in
Algorithm 9 is used as a starting point. The idea is to generate alternative optimal solutions
by shifting the individual new facilities of an optimal solution in Cand4 within a certain
interval without destroying the optimality of the solution started from.

Let X = {x1, . . . , xp} ∈ Xr ⊆ Cand4 be an optimal solution of the p-k-max problem found
by the recursive approach (see Algorithm 10 in Section 6.2) with optimal objective function
value z∗. Moreover, it is assumed that x1 ∈ X is a facility that defines the optimal objective
function value of X. A set of outliers corresponding to this optimal solution is given by Vk−1.
Then it holds that every new facility xi = (ej , ti) with i ∈ {2, . . . , p} and j ∈ {1, . . . , m}
can be moved within a certain interval to the left and to the right along the edges of the
graph without loosing the optimality of X. Note that this does not exclude the case that
the interval just contains one point such that the corresponding facility can not be moved.
Define therefore the cluster of xi ∈ X as

Ci = {v ∈ V \ Vk−1 : dw (v , xi) ≤ dw (v , x`) ∀ ` > i ∧ dw (v , xi) < dw (v , x`) ∀ ` < i}

for i ∈ {1, . . . , p} as the set of all nodes covered with service by the new facility xi in the
optimal solution X. If an existing facility is of equal distance from two or more new facilities,
it is assigned w.l.o.g. to the new facility with the smallest index.
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The optimal objective function value z∗ defines the largest weighted distance of a covered
existing facility to its closest new facility (which is assumed to be x1 here). As x1 has to
be an equilibrium point, z∗ is the radius of a largest cluster defined by the optimal solution
X (for an example see Figure 6.1 or Figure 6.6). Hence, the other new facilities x2, . . . , xp
are also allowed to generate a weighted distance of up to z∗ to their allocated nodes that
are not outliers. This implies that the new facilities not defining the objective function value
do not have to be at the center point of the nodes allocated to it. A new facility xi with
i ∈ {2, . . . , p} can therefore be moved to the left or to the right along the edges of the graph
until it holds dw (v̄ , xi) = z∗ for a node v̄ ∈ Ci allocated to xi without changing the objective
function value of the respective solution. By shifting xi further than this into this direction,
the weighted distance dw (v̄ , xi) gets larger than z∗ and may destroy the optimality of X
(unless the reached point xi is a bottleneck point of v̄ ∈ Ci such that a further movement of
xi into the same direction decreases the weighted distance to its corresponding node again,
or a reallocation yields an objective value of at most z∗).

However, in the case that v̄ is also covered by x1 (even though it is closer to xi in the
solution X), the distance dw (v̄ , xi) is allowed to be larger than z∗ as the location of x1

is fixed. Thus, define the set of nodes that are allocated to xi and that have a weighted
distance larger than z∗ to x1 by

Bi = {v ∈ Ci : dw (v , x1) > z∗} for i = 2, . . . , p

and let v̄ be an element of Bi . Moreover, let Q(v̄) be the set of points with a weighted
distance of at most z∗ to v̄ , i.e.,

Q(v̄) = {x̄ ∈ A(G) : dw (v̄ , x̄) ≤ z∗}

and define
Q(xi) =

⋂
v̄∈Bi

Q(v̄).

Then, xi ∈ X can be replaced by any point x̄i ∈ Q(xi) and the new solution

X̄ = {x1, . . . , xi−1, x̄i , xi+1, . . . , xp} with x1, . . . , xi−1, xi+1, . . . , xp ∈ X

is also optimal, since x̄i covers all nodes within the optimal radius that were covered by xi
before and that were not also covered by x1. Thus, the coverage radius is still z∗ and hence
optimal. Note that Q(xi) = {xi} is possible. In this case, xi can not be moved without
destroying the optimality.

Example 6.35. A 2-2-max problem with node weights wi = 1 for all i = 1, . . . , 5 is solved
on the graph shown in Figure 6.20 using the recursive approach of Algorithm 10 to evaluate
the finite dominating set Cand4 = EQ× (EQ ∪ V ). The resulting optimal solution is

X = {x1, x2} =

{(
e24,

1

8

)
, (e23, 1)

}
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v1 v2

v4 v5
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4

5

20

x1

x2v3

Fig. 6.20: Infinitely many alternative optimal solutions of the 2-2-max problem on G can be
found by shifting x2 ∈ X ⊆ Xr along the edges of G, starting from x2 = (e23, 1).

with optimal objective function value z∗ = 7
2 determined by the first new facility. The

corresponding set of outliers is Vk−1 = {v5}. Consequently, the first new facility is fixed and
only the second new facility can be moved. It holds that

C1 = {v1, v2, v4} and C2 = B2 = {v3}.

Hence,

Q(v3) =

[(
e23,

3

10

)
, (e23, 1)

]
= Q(x2).

The facility x2 ∈ X can therefore be shifted within the edge segment Q(x2) without loosing
the optimality by replacing this facility in the solution X. The corresponding edge segment
is marked in blue in Figure 6.20.

The above described procedure can be applied to all new facilities xi for i = 2, . . . , p

from an optimal solution. There are in general infinitely many optimal solutions that can be
constructed from a solution X ∈ Xr .

Instead of using the set Xr for the above approach, also the set XCand4 of optimal solutions
resulting from Algorithm 9 can be utilised as a starting point of the shifting procedure.
However, this is rather of theoretical interest. In practice, the approach in this form is
not efficient as the computation of the needed optimal solutions in the finite dominating
set Cand4 may take too much time unless the problem is rather small in the number of
customers and new facilities (see Section 7). As the recursive approach is much faster, it
can be used for practical problems and returns Xr in reasonable time.

Since Xr ⊆ XCand4, starting the shifting of the new facilities based on an optimal solution of
the set XCand4 yields in general further alternative optimal solutions of the p-k-max problem
that can not be found when starting from an X ∈ Xr . This can be illustrated by considering
Example 6.36.

Example 6.36 (Continuation of Example 6.35). The 2-2-max problem of Example 6.35 is
considered. The resulting optimal solutions found by the evaluation of all candidates in
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v1 v2

v4 v5
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4

5

20

x1 = x ′1 = x ′′1

x ′2

x2

x ′′2

v3

Fig. 6.21: All optimal solutions of the 2-2-max problem on G determined by shifting the
second facility of all optimal solutions out of the set Cand4

Cand4 are

X = {x1, x2} =

{(
e24,

1

8

)
, (e23, 1)

}
, X ′ = {x ′1, x ′2} =

{(
e24,

1

8

)
,

(
e23,

1

2

)}
,

X ′′ = {x ′′1 , x ′′2 } =

{(
e24,

1

8

)
, (e45, 1)

}
with optimal objective function value z∗ = 7

2 , again determined by the same first new facility
in all three solutions. The corresponding sets of outliers are Vk−1 = {v5} = V ′k−1 and
V ′′k−1 = {v3}. As Q(x ′2) = Q(x2) but

Q(x2) 6= Q(x ′′2 ) =

[(
e45,

33

40

)
, (e45, 1)

]
,

there are further optimal solutions on the edge e45 that were not found using the unique
solution of the recursive approach. The corresponding edge segments are marked in blue in
Figure 6.21. The solutions found are all optimal solutions of the underlying problem.

A possibility to compute the set Q(xi), i ∈ {2, . . . , p}, efficiently is given in the following.
For this purpose, consider an arbitrary but fixed edge eab ∈ E. The subset Qab(xi) ⊆ Q(xi)

of points on eab belonging to Q(xi) can be computed as follows: Let vj ∈ Bi be fixed.
Moreover, let (eab, α) ∈ eab be a point on eab with α ∈ [0, 1] such that

wj(d(vj , va) + d(va, (eab, α))) = z∗,

and analogously (eab, β) ∈ eab with β ∈ [0, 1] such that

wj(d(vj , vb) + d(vb, (eab, β))) = z∗.

Note that such a value of α, β may not exist (this case will be discussed later). Then, for
Qab(vj) = {x̄ ∈ eab : dw (vj , x̄) ≤ z∗} it holds that

Qab(vj) = [(eab, 0), (eab, α)] ∪ [(eab, β), (eab, 1)],
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which is the subset of Q(vj) that lies on edge eab. If d(vj , va) > z∗, there is no such point
(eab, α) with α ∈ [0, 1] and hence the corresponding interval [(eab, 0), (eab, α)] is empty. If,
on the other hand, wj(d(vj , va) + lab) < z∗, it holds that Qab(vj) = eab. These observations
hold analogously for d(vj , vb) > z∗ and wj(d(vj , vb) + lab) < z∗. Applying this analysis
for all nodes vj ∈ Bi and updating the bounds α resp. β in each iteration to the leftmost
resp. rightmost known bound such that still all nodes vj ∈ Bi are covered by xi yields the set
Qab(xi). If d(vj , va) > z∗ and d(vj , vb) > z∗ for at least one vj ∈ Bi , then Qab(xi) is empty.

Algorithm 14 Shifting optimal facilities to find alternative optimal solutions

Input: Graph G = (V, E) with wi > 0 ∀ i = 1, . . . , n, p ∈ {2, . . . , n}, k ∈ {1, . . . , n − p},
set of optimal solutions X̄ ⊆ {XCand4,Xr}, optimal objective function value z∗

1: Set Xs := ∅
2: for all X ∈ X̄ do

3: Determine the cluster C1 of the z∗-defining facility x1

4: for all xi ∈ X, i = 2, . . . , p do

5: Determine the cluster Ci and the set Bi
6: for all eab ∈ E do

7: Set ᾱ := 1 and β̄ := 0 . Construct Qab(xi) with bounds ᾱ and β̄

8: for all vj ∈ Bi , j = 1, . . . , |Bi | do
9: while ᾱ 6= −1 and β̄ 6= −1 do

10: if wj(d(vj , va) + d(va, (eab, α))) = z∗ for a value of α ∈ [0, 1] then

11: if α < ᾱ then . New bound ᾱ of Q(vj) on eab
12: Set ᾱ := α

13: else if d(vj , va) > z∗ then

14: Set ᾱ := −1 . No bound ᾱ of Q(vj) on eab

15: if wj(d(vj , vb) + d(vb, (eab, β))) = z∗ for a value of β ∈ [0, 1] then

16: if β > β̄ then . New bound β̄ of Q(vj) on eab
17: Set β̄ := β

18: else if d(vj , vb) > z∗ then

19: Set β̄ := −1 . No bound β̄ of Q(vj) on eab

20: Set Qab(xi) := [(eab, 0), (eab, ᾱ)] ∪
[
(eab, β̄), (eab, 1)

]
where

21: [(eab, 0), (eab,−1)] := ∅ and [(eab,−1), (eab, 1)] := ∅

22: Set Q(xi) :=
⋃
eab∈E Q

ab(xi)

23: Set Xs = Xs ∪
{
{x1, x̄2, . . . , x̄p} : x̄j ∈ Q(xj), j = 1, . . . , p

}
Output: Set Xs of alternative optimal solutions of the p-k-max problem.
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The process is summarised in Algorithm 14. Note that it is assumed that the optimal
objective function value defining facility is indexed as the first new facility in all optimal
solutions. The algorithm is kept general such that both sets XCand4 and Xr of optimal
solutions can be used as a starting point.
Algorithm 14 has a worst case complexity of O(mp+1n2p+1). The first for-loop needs

at most O(mpn2p) iterations as this this is the maximum number of elements of the set
XCand4. The second for-loop needs O(p) iterations since all but one of the new facilities of
the solution X have to be considered. Determining Ci and Bi , i = 2, . . . , p, can be done in
O(n) time. The loop over all edges needs O(m) iterations. The innermost for-loop considers
all nodes covered by xi and needs therefore at most O(n) time. The rest of the statements
has a constant complexity. Overall, this leads to the mentioned complexity as p is assumed
to be fixed. Note that the algorithm can be parallelised easily since the shifting which starts
from a fixed optimal solution does not depend on the shifting of the other optimal solutions
in X̄ .This leads to a clear acceleration of the computation in practice.

Note that it is not guaranteed to find all optimal solutions of the p-k-max problem using
the described shifting-approach, even if X̄ = XCand4 is chosen in Algorithm 14. If, for
example, the optimal objective function value z∗ of the problem can also be realised with
p̄ < p new facilities, the remaining p − p̄ facilities can be located arbitrarily on the edges or
in the nodes of G. As there may be long edges with two consecutive points x, x ′ ∈ EQ ∪ V
with d(x, x ′) ≥ 2z∗, not all points in A(G) can be reached by the shifting.

v5

1 1

11

1, 000, 000

x1

x2

EQ24

v1 v2

v3 v4

Fig. 6.22: Optimal solution X = {x1, x2} which can not be found by the shifting approach.

Example 6.37. In Figure 6.22 a graph G = (V, E) with wi = 1 for all i = 1, . . . , 5 is given.
The edge lengths are all equal to 1, except for the edge e24 with l24 = 1, 000, 000. An
optimal solution of the 2-1-max problem is X = {x1, x2} with z∗ = 1 as shown in gray.
As x1 covers all nodes within the optimal coverage radius, x2 can be located arbitrarily in
A(G) since it can neither improve nor worsen the overall objective function value. Thus, the
optimal value z∗ could also be reached with just one new facility.
Note that all equilibrium points EQ24 on the edge e24 lie very close together in the

highlighted interval. As dw (v4, x2) >> z∗ and also d(x ′, x2) � z∗ for any x ′ ∈ EQ24, the
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optimal solution X can not be generated from a solution X̄ ∈ XCand4 using the shifting
approach.

The advantage of this shifting-approach is that each new facility of an optimal solution
X from the set XCand 4 resp. Xr can be analysed separately from the others. Thus, if one
optimal new location is of particular interest for the decision maker, it is possible to analyse
its neighbourhood and search for further optimal solutions without changing the locations of
the other new facilities. It is also possible to examine the neighbourhood of a particular node
for alternative locations of the corresponding new facility serving this customer in different
optimal solutions. If only some of the new facilities are analysed for further optimal solutions,
the complexity of the approach is reduced significantly.

6.5 Conclusion

In this section the results of this chapter are briefly summarised and the different presented
approaches to solve a p-k-max problem are compared. The main properties (candidate set,
maximum number of candidates and the complexity to compute the corresponding set of
optimal solutions) of the presented approaches are summarised in Table 6.1.

The first approach (see Algorithm 9) evaluates all candidate solutions of the finite domi-
nating set Cand4 = EQ×(EQ∪V )p−1. It is guaranteed to find at least one optimal solution
of the p-k-max problem, and moreover all optimal solutions in the candidate set Cand4 are
found. A drawback of this approach is that its computation time w.r.t. the number of nodes
and the number of new facilities to locate is very high, even for rather small problems. Thus,
it is not suitable for practical usage except for small instances. However, it is a straight
forward approach and it can be extended easily to compute in parallel optimal solutions for
all possible values of the parameter k with k ∈ {1, . . . , n − 1}.

The recursive approach (see Algorithm 10) is also based on the finite dominating set Cand4

and returns a set Xr of optimal solutions. Every candidate solution is generated recursively
such that it can be decided for each individual new facility whether this candidate can lead
to an optimal solution. Thus, in general the majority of candidates in Cand4 do not have to
be considered. This leads to a significant acceleration such that the recursive approach is
in practice much faster. However, this is not reflected in the worst case complexity which is
even worse than the complexity of evaluating all candidates in Cand4. The computation time
strongly depends on the value of the parameter k as it directly influences the k-max value
and the possible objective function values are tested in non-decreasing order. The recursive
approach guarantees to find at least one optimal solution of the p-k-max problem but in
general not all optimal solutions in Cand4 are found, and thus Xr ⊆ XCand4. However, the
found solutions are particularly relevant in practice because all new facilities are the center
points of their corresponding covers, and are thus located “optimally” within their respective
covers.

The local analysis is split in three parts: The approach based on
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• the evaluation of the finite dominating set V (L′) (see Lemma 6.29) yielding a set of
optimal solutions Xl-full,

• the evaluation of the finite dominating set V eq(Y ) (see Corollary 6.31) determining
the set of optimal solutions Xl-red,

• and the extension of this approach that determines all optimal solutions of the p-k-max

problem given in the set Xl-all (see Theorem 6.32).

All these approaches have in common that they yield further optimal solutions that can not
be found using the previous two algorithms since in addition to the equilibrium points and
the nodes in V also balance points are considered as candidate locations.
The candidate set V (L′) is based on the intersection points of the regions in which the

objective function is piecewise linear and concave. In contrast to that, the candidate set
V eq(L(x∗1 )) only consists of a small subset of these intersection points. The information
to reduce the candidate set is based on the optimal solutions in Xr . Hence, Xr has to
be computed in a preprocessing step, but then the candidate set V eq(L(x∗1 )) is in practice
significantly smaller than V (L′). The advantage of the approach using V (L′) is that it can
be used as a stand-alone approach, i.e., the sets of optimal solutions XCand4 and Xr are not
needed. Moreover, using the finite dominating set V (L′), the optimal solutions of the k-max

problem for all values of k can be obtained simultaneously with just one evaluation of all its
elements. Nevertheless, both approaches lead to the same optimal solutions. Thus, it holds
that

Xl-full = Xl-red ⊇ XCand4 ⊇ Xr .

The computational results show that the set of optimal solutions based on V eq(L(x∗1 ))

can be computed much faster (especially for rather large problems) than the one based on
V (L′) even though both methods have the same worst case complexity. As Xl-full resp. Xl-red

contain in general more optimal solutions than Xr , the higher computation time may pay off
here. Note that XCand4, Xr , Xl-full and Xl-red are sets with a finite number of optimal solutions
and that they do in general not contain all optimal solutions of the p-k-max problem.

Set of optimal solutions Candidate set No. candidates Complexity

XCand4 EQ× (EQ ∪ V )p−1 O(mpn2p) O(mpn2p+1 log(n))

Xr EQ× (EQ ∪ V )p−1 O(mpn2p) O(mpn3p)

Xl-full V (L′) O(mpn2p) O(mpn2p+1 log(n))

Xl-red V eq(L(x∗1 )) O(mpn2p−2) O(mpn2p+1 log(n))†

†without complexity of computing Xr

Table 6.1: Comparison of the main approaches to solve the p-k-max problem

In contrast to that, the set Xl-all as well as the set Xs obtained by the shifting-approach
(see Algorithm 14) may contain an infinite number of optimal solutions. The local analysis as
described in Algorithm 13 is the only approach that guarantees to find all optimal solutions
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of the underlying p-k-max problem. However, this comes with a rather high worst case
complexity of O(mpn4p+2). In practice, it also becomes expensive to determine the optimal
facets of the subdivisions, especially for large numbers of new facilities. For smaller problems
(especially for p = 2), the solutions can be computed in reasonable time. The alternative
optimal solutions are determined for all new facilities simultaneously. With the shifting-
approach, in contrast, it is possible to focus on individual new facilities that are of special
interest. This approach determines (infinitely many) alternative optimal solutions by shifting
the individual new facilities of an optimal solution in XCand4 resp. Xr along the edges of
the graph within a certain interval. The worst case complexity of O(mp+1n2p+1) time to
determine the whole set Xs can be reduced by concentrating on a small number of particularly
interesting new facilities.
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Chapter 7
Computational Results

In this chapter the results of the computational tests of the implemented algorithms for
the p-k-max problem developed in the previous chapters are presented. The algorithms
are compared with respect to their performance on randomly generated test instances. All
numerical tests were performed on a compute server with 4 × Intel Xeon E7540 Hexacore
(2,00 GHz) and 128 GB RAM. All algorithms were implemented and run in MATLAB, version
R2013a.

Note that the implemented solution approaches would highly benefit from parallelisation
with respect to the CPU-times as mentioned in the respective sections. However, the par-
allelisation would lead to more or less significant improvements depending on the algorithm.
Thus, in order to obtain a reasonable comparison of the solution ideas, only one core of a
single processor was used for the computation of the presented results for all algorithms.
As an exemplary case, the effect of parallelisation is analysed for the evaluation of the finite
dominating set Cand for p = 1 in the first section of this chapter.

The test instances used for the numerical tests are randomly generated Euclidean graphs
which are very suitable to model the most common problems in practice. For a given number
n of nodes and a density ρ of the graph, the input data is generated in the following way:

• Customers of the form vi = (x i1, x
i
2) ∈ Z2 for i = 1, . . . , n are randomly placed in

integer coordinates with mean 50 and standard deviation of 30 to favour a non-uniform
distribution in the plane.

• The number m of edges of the graph is obtained from the density parameter ρ by
m = d(ρn(n−1))/2e such that m = 0 (empty graph) for ρ = 0 and m = (n(n−1))/2

(complete graph) for ρ = 1.

• The nodes of the graph are placed in the customers’ locations. To guarantee the
connectedness of the graph, at first a random spanning tree is constructed on these
nodes. Afterwards, the missing m − n + 1 edges are added randomly to the spanning
tree.

• Every edge eab of the graph is weighted (i.e., has a length lab) by the Euclidean distance
between the corresponding customers va and vb.

• A randomly generated vector w ∈ Nn with wi ∈ {1, . . . , 15} for all i = 1, . . . , n gives
the node weights. This range of weights is sufficiently large to generate an effect on
the problem instances.
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For every pair (n, ρ), 20 instances of the problem are tested where 15 of these instances are
randomly weighted and 5 instances are unweighted. The presented results are the average
of the results of these 20 instances of the same type. As an exemplary case, the test results
are considered separately for weighted and unweighted graphs for p = 1 to analyse the
dependence of the number of equilibrium points on the node weights. Moreover, for every
instance further parameters as the value of k or the number of new facilities p are varied.
These parameters are stated in the corresponding sections. All tests are conducted up to a
maximum computation time of 18000 seconds. The following sections distinguish between
p-k-max problems for p = 1, p = 2 and p ≥ 3 new facilities.

7.1 1-k-max Problems

In this section two variants of the evaluation of the finite dominating set Cand = EQ for the
k-max problem (p = 1) with k ∈ {1, . . . , n− 1} (see Algorithm 5) are tested and compared.
The first variant simply evaluates all candidate points of the set EQ and chooses the solution
yielding the smallest objective function value. The second variant sorts the set of equilibrium
points non-decreasingly with respect to the weighted distances to their corresponding defining
facilities. If the candidates are evaluated in this order, the algorithm can be stopped when
the first feasible solution is found. To find the same set of optimal solutions with both
approaches, all following equilibrium points yielding the same optimal objective value are
also considered. Each test-graph of type (n, ρ) for fixed n ∈ {10, 20, 30, 50, 100} and fixed
ρ ∈ {0.1, 0.3, 0.5} is tested for all values of k ∈ {1, 2, 0.25n, 0.5n, 0.75n}. Also problems
with 200 new facilities and a density of 0.1 are considered. Note that graphs of type (10, 0.1)

are not connected since the density of 0.1 leads to only 5 edges which is not sufficient to
connect all 10 vertices. Problems of this type are therefore not considered. In order to
keep the implementations simple, the equilibrium points of the underlying graphs are not
computed with the algorithm of Bentley and Ottmann (1979) here and in the following, but
by computing the intersection points of each pair of weighted distance functions over an
edge.

The finite dominating set Cand has at most O(n2m) elements as this is the maximum
possible number of equilibrium points of a graph. Thus, the size of the candidate set depends
obviously on the number of nodes and the density of the graph. The tests on the above
described instances show that the theoretical upper bound of O(n2m) on the number of
equilibrium points is widely overestimating in practice. The test instances have on average
only 6.29% of the maximum possible number of equilibrium points which makes the finite
dominating set much smaller than it could be assumed from the theoretical analysis. An
interesting observation is that the tested unweighted graphs have on average 43.24% more
equilibrium points than the weighted graphs. The larger the range of the single node weights
is, the smaller is the number of equilibrium points in general. This may be explained by the
fact that the corresponding graphs of weighted distance functions are less likely to intersect
over an edge since also the range of different weighted distances is much larger in this case.
This effect gets stronger when the number of nodes and edges of the graph increase. This
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behaviour is reflected in Table 7.1 which gives the average number of equilibrium points for
weighted and unweighted problems, respectively. It also shows the effect on the average
time needed to solve the k-max problem with the unsorted variant of Algorithm 5. Note
that the graphs of type (20, 0.1) are tree graphs as the density of 0.1 for n = 20 leads to
exactly 19 edges. Therefore, in the unweighted case, every graph of this type has exactly
190 equilibrium points. Moreover, (20, 0.1)-graphs have in general more equilibrium points
in the weighted than in the unweighted case, contrary to all other types of graphs (for an
explanation see Remark 4.21).
In the following analysis, the average values over all 20 test instances are taken and not

distinguished for weighted and unweighted problems.

n ρ #wEQ #uEQ ∆(#) in % wtime [s] utime [s] ∆(s) in %

0.1 - - - - - -

10 0.3 149 161 7.957 0.011 0.011 1.927

0.5 313 329 5.374 0.020 0.020 1.502

0.1 362 190 -47.446 0.031 0.027 -12.523

20 0.3 2 574 3 280 27.437 0.147 0.163 10.846

0.5 4 868 6 836 40.420 0.261 0.303 16.182

0.1 2 572 2 796 8.701 0.180 0.186 2.986

30 0.3 12 881 19 098 48.270 0.732 0.879 20.212

0.5 23 838 36 249 52.067 1.294 1.589 22.816

0.1 25 051 35 429 41.429 1.621 1.936 19.456

50 0.3 98 597 159 532 61.802 5.804 7.482 28.912

0.5 200 367 283 725 41.603 10.804 13.156 21.777

0.1 402 011 677 279 68.473 30.166 39.523 31.018

100 0.3 1 665 680 2 737 055 64.321 108.579 150.620 38.719

0.5 3 109 222 4 705 625 51.344 196.411 253.178 28.902

200 0.1 6 791 481 12 642 004 86.145 640.122 976.462 52.543

Table 7.1: Comparison of the average number of equilibrium points for weighted (#wEQ)
and unweighted (#uEQ) problems and the CPU-times of Algorithm 5 for unweighted (utime)
and weighted (wtime) problems. The fifth column contains the relative deviation of #wEQ
from #uEQ and the last column specifies analogously the relative deviation of wtime from
utime. Number n of existing facilities and density ρ of the graph are given, k = 1 and p = 1

are fixed.

Unsorted evaluation of Cand === EQ (Algorithm 5) Table 7.2 shows the results of the
numerical tests for the unsorted variant of Algorithm 5. As expected, the number of equi-
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librium points increases with n and ρ and the corresponding CPU-times clearly increase with
the number of candidates to evaluate. The computation times do not depend on the value
of the parameter k as in any case all equilibrium points have to be tested.

n ρ |EQ| k = 1 k = 2 k = 0.25n k = 0.5n k = 0.75n

0.1 - - - - - -

10 0.3 152 0.011 0.011 0.011 0.012 0.037

0.5 317 0.020 0.020 0.020 0.020 0.020

0.1 319 0.030 0.030 0.030 0.030 0.030

20 0.3 2 750 0.151 0.151 0.151 0.151 0.152

0.5 5 360 0.272 0.272 0.272 0.272 0.273

0.1 2 628 0.182 0.182 0.182 0.182 0.183

30 0.3 14 435 0.769 0.768 0.768 0.767 0.768

0.5 26 941 1.367 1.372 1.375 1.377 1.380

0.1 27 645 1.700 1.701 1.701 1.705 1.708

50 0.3 113 831 6.223 6.234 6.262 6.277 6.277

0.5 221 207 11.392 11.424 11.422 11.367 11.413

0.1 470 828 32.506 32.262 32.452 32.620 32.817

100 0.3 1 933 524 119.090 119.243 119.578 119.743 119.596

0.5 3 508 322 210.603 210.857 210.919 210.594 210.909

200 0.1 8 254 112 724.207 724.292 724.253 726.431 732.103

Table 7.2: Evaluation of the finite dominating set Cand (see Algorithm 5): Numbers of
equilibrium points and CPU-times in seconds for given number of n existing facilities and
given density ρ of the graph, distinguished w.r.t. the value of k

Sorted evaluation of Cand === EQ (Second variant of Algorithm 5) The results of the
tests for the solution of the k-max problem with the sorted evaluation of the set Cand are
given in Table 7.3. Again, the CPU-times increase with the number of equilibrium points
but much slower than it is the case for the unsorted approach. The amount of considered
candidates in the sorted approach strongly depends on the parameter k : The larger the
value of k , the smaller is the optimal objective function value of the underlying problem and
thus usually also the number of candidates that have to be evaluated until the first optimal
solution is found.

Comparison of both variants of Algorithm 5 A comparison of the number of considered
candidates and the computation times of the two approaches are shown in Figure 7.1. It can
be seen that the sorted variant of Algorithm 5 considers on average over all test problems
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Fig. 7.1: CPU times in seconds and number of tested candidates for the evaluation of Cand

in the sorted (S) and unsorted (U) variant. The unsorted evaluation of Cand is independent
of k , whereas each blue line corresponds to a fixed k for the sorted evaluation.

40% of the equilibrium points for k = 0.25n, 20% for k = 0.5n and only 5% for k = 0.75n.
Moreover, the sorted approach needs around 78% of the CPU-time of the unsorted approach
for k = 0.25n, 70% for k = 0.5n and 63% for k = 0.75n. Note that the relative savings
in the number of candidates and the computation time increase with the problem size. The
savings in terms of the computation time are smaller than the savings with respect to the
number of considered candidates as the sorting of the equilibrium points takes some extra
time. Moreover, for the sorted approach, all equilibrium points have to be computed and
stored before they can be evaluated. Depending on the problem size, this leads to large data
sets that have to be stored. However, the sorted evaluation of the set Cand is in general
more efficient than the unsorted version. Only for very small values of k (here for example
k = 1 or k = 2), the sorted version is slower since nearly all candidates have to be considered
anyway and the extra effort needed for the sorting does not pay off in general.

Implementation of Algorithm 5 using parallelisation As an examplary case, the effect of
a parallelised implementation1 of Algorithm 5 on the CPU-times is shown in Table 7.4. For
the parallelisation, the evaluation of the different candidates is carried out simultaneously
on 24 processors using 48 threads. It can be seen that the CPU-times of the parallelised
version are slightly higher than the computation times of the not-parallelised implementation
for the smallest problems up to type (20, 0.1). These problems are too small such that the
distribution to the different processors and the final merging of the results takes more time
than just evaluating all candidates on one processor. As expected for all problems of larger
type, the computation times highly benefit from the parallelisation and the savings in time

1Implemented by Pascal Colling in the context of a programming course at the University of Wuppertal in
the winter term 2016/17, supervised by Dr. Michael Stiglmayr from the Working Group Optimization and
Approximation and by myself.
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7.2. 2-K-MAX PROBLEMS

even increase with increasing problem size. This is due to the fact that the influence of
the computational overhead of the parallelisation, i.e., task starting and termination times,
idle, synchronisations, data communications and the presence of serial components, becomes
smaller the larger the underlying problem is. For further information on parallel programming
see, for example, Grama (2003). For practical problems, the algorithms presented in this
thesis should be implemented in parallel.

n ρ |EQ| time [s] ∆(s) in %

0.1 - - -

10 0.3 152 0.076 691.560

0.5 317 0.076 380.522

0.1 319 0.076 254.300

20 0.3 2 750 0.104 68.890

0.5 5 360 0.125 45.969

0.1 2 628 0.076 41.612

30 0.3 14 435 0.175 22.708

0.5 26 941 0.281 20.532

0.1 27 645 0.323 19.000

50 0.3 113 831 1.088 17.478

0.5 221 207 2.030 17.822

0.1 470 828 3.563 10.961

100 0.3 1 933 524 13.316 11.181

0.5 3 508 322 23.504 11.160

0.1 8 254 112 76.345 10.542

200 0.3 32 783 232 282.595 11.168

Table 7.4: Effect of a parallelisation on the unsorted evaluation of Cand (Algorithm 5):
Numbers of equilibrium points, CPU-times in seconds of the parallelised implementation
and percentage of the CPU-time in comparison to the not-parallelised implementation of
Algorithm 5 for given number of n existing facilities and given density ρ of the graph

7.2 2-k-max Problems

In this section most of the Algorithms presented in Chapter 6 to solve the p-k-max problem
are tested and compared for p = 2 new facilities. This includes the evaluation of the finite
dominating set Cand4 (Algorithm 9), the recursive approach (Algorithm 10), the evaluation
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of the finite dominating set V (L′) given in Lemma 6.21 (here also referred to as the full
local analysis) and the local analysis approach (Algorithm 11; here also referred to as the
reduced local analysis). Each test-graph of type (n, ρ) for fixed n ∈ {10, 20, 30, 50} and
fixed ρ ∈ {0.1, 0.3, 0.5} is tested for all values of k ∈ {1, 2, 0.25n, 0.5n, 0.75n}, provided
that the time bound of 18 000 seconds is not violated. Note that graphs of type (10, 0.1)

are not connected and are therefore again omitted. The observations made in Section 7.1
regarding the size of the set of equilibrium points and its dependence on the node weights
of course also hold for p = 2 as the set of equilibrium points does not depend on the value
of p.

Evaluation of Cand4 === EQ ××× (((EQ ∪∪∪ V ))) (Algorithm 9) Table 7.5 shows the results of
the numerical tests for the evaluation of the candidate set Cand4 = EQ× (EQ ∪ V ). The
cardinality of Cand4 is directly deducible from the number of equilibrium points and thus
increases with the number of nodes n, the density ρ of the graph and depends also on the
node weights. In the worst case, the number of candidates grows more than quadratically
with the number of equilibrium points. As a consequence, the corresponding CPU-times
clearly increase with the size of the underlying graph. Note that symmetric candidates are
not considered, i.e., if a candidate {x1, x2} with x1, x2 ∈ EQ is evaluated, the candidate
{x2, x1} is not tested. The computation times do not depend on the value of the parameter
k as in all cases the same number of candidates has to be tested.

Recursive approach (Algorithm 10) The results of the tests w.r.t. the CPU-times and
the considered candidates for the recursive approach are given in Table 7.6. The CPU-times
increase with the problem size but much slower than it is the case for the evaluation of Cand4,
i.e., the recursive approach performs much better than the evaluation of the complete finite
dominating set on nearly all test instances. A candidate solution in the recursive approach
is defined as a completed solution X = {x1, x2} where both new locations of X are located
but X does not have to be feasible, i.e., it does not have to satisfy condition (6.3). Only
these completed candidate solutions are counted in #cSol. in Table 7.6. The number of the
completed solutions strongly depends on the parameter k : The larger the value of k , the
smaller is the optimal objective function value of the underlying problem and therefore also
the number of candidates that have to be evaluated since the possible objective values are
considered in non-decreasing order. Thus, the 2-k-max problem for k ≥ 2 is in general faster
solvable with the recursive approach than the 2-center problem. However, there are solution
procedures especially designed for p-center problems which yield a better performance as it
can be seen, for example, in Chen and Chen (2009) or Calik and Tansel (2013). Moreover,
the results of the tests show that the sizes of the two covers corresponding to the two
optimal facilities do depend on the underlying instance, i.e., the cluster belonging to an
optimal facility x1 may be much larger than the cover of the corresponding optimal facility
x2 for one instance while the two covers may be nearly equally large for another instance.

Comparison of the recursive approach and the evaluation of Cand4 A comparison of
the number of considered candidates and the computation times of the two approaches is
shown in Figure 7.2. It can be seen that the recursive approach considers, on average over
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Fig. 7.2: CPU times in seconds and number of tested candidates for the evaluation of Cand4

(C4) and the recursive approach (R). The evaluation of Cand4 is independent of the value
of k . Each blue line corresponds to a specific value of k in the recursive approach.

all test problems, 2.81% of the candidates in Cand4 for k = 1, 1.18% for k = 0.25n,
0.31% for k = 0.5n and only 0.02% for k = 0.75n. However, note that also a lot of
not-completed solutions are considered in the recursive approach which are not counted for
#cSol. The dependence of the results on k is reflected even better in the computation time:
The recursive approach needs around 16.55% of the CPU-time of the evaluation of Cand4

for k = 1, 8.67% for k = 0.25n, 3.75% for k = 0.5n and 1.19% for k = 0.75n.

Full local analysis (Lemma 6.21) Table 7.7 summarises the size of the finite dominating
set V (L′) for the tested instances and the corresponding computation times for its evaluation.
Again, the size of the candidate set (and therefore also the CPU-times) increases with the
size of the underlying problem, i.e., it depends on the number of customers and the density of
the graph. As expected, the number of candidates and the computation times do not depend
on the value of k as the constructed subdivisions are independent of k . However, a similar
dependence of the size of V (L′) on the node weights as for the set EQ can be observed:
The tested unweighted graphs have on average 44.81% more candidate points than the
weighted problems. Again, the larger the differences of the node weights are, the smaller
is the number of candidate points since the corresponding graphs of the weighted distance
functions are less likely to intersect over a given edge if the ranges of objective values are
larger. Moreover, the results for the tested instances show that the theoretical maximum
number of (18n4−3n2)m2 intersection points of the subdivisions is widely overestimating in
practice. For the considered test instances, the set V (L′) contains on average only 6.38% of
the maximum possible number of candidate points. Nevertheless, the finite dominating set
V (L′) is of rather theoretical interest as the number of candidates gets usually very large.
The cardinality of V (L′) is significantly larger than the cardinality of Cand4: Cand4 contains
on average 1.86% of the candidates in comparison to V (L′). If only one optimal solution
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is needed, the recursive approach performs much better. In the extreme case (k = 1) it
needs only around 0.86% of the CPU-time needed by the full local analysis. However, the
evaluation of the finite dominating set V (L′) contains in general more alternative optimal
solutions of the problem. Note that the given results for problems of type (30, 0.1) are
the average over the 15 unweighted instances. The weighted instances could not be solved
within the time bound of 18000 seconds, but needed around 22 000 seconds on average.

n ρ #Cand k = 1 k = 2 k = 0.25n k = 0.5n k = 0.75n

0.1 - - - - - -

10 0.3 1 043 016 11.473 11.466 11.487 11.484 11.486

0.5 4 667 700 50.939 50.981 51.016 50.986 50.992

0.1 11 783 328 200.338 200.192 200.590 200.254 200.281

20 0.3 453 873 031 8 029.164 8 026.415 8 032.070 8 012.247 8 069.942

0.5 > 900 000 000 > 18 000 > 18 000 > 18 000 > 18 000 > 18 000

30 0.1 291 740 500 7 883.214 7 896.173 7 904.613 7 899.809 7 903.576

0.3 > 700 000 000 > 18 000 > 18 000 > 18 000 > 18 000 > 18 000

Table 7.7: Evaluation of the finite dominating set V (L′) (see Lemma 6.29): Numbers of
candidates and CPU-times in seconds for given number of n existing facilities and given
density ρ of the graph, distinguished w.r.t. the value of k

Reduced local analysis (Algorithm 11) The results of the tests for Algorithm 11 are
given in Table 7.8. Note that the discrete version of the algorithm is tested, i.e., not all
(infinitely many) optimal solutions are computed but only the solutions belonging to the finite
dominating set V eq(L(x∗1 )). From these, the complete optimal set can be easily deduced.
The number of candidates gives the number of intersection points for all subdivisions, it does
not include the completed candidates used in the recursive approach which has to be called as
a preprocessing. The CPU-time, in contrast, is measured for the overall procedure, including
the recursive approach. As for the finite dominating set V (L′), the number of intersection
points of the subdivisions increase with the problem size. The number of intersection points
for a fixed subdivision does not depend on k . However, as the cardinality of the set Y of
objective function value defining facilities may vary w.r.t. the value of k , also the total amount
of candidates might differ with varying values of k . The computation times, in contrast,
decrease with an increasing value of the parameter k since the recursive approach depends
on k . As V eq(v∗1 ) ⊆ V (L′) (see Remark 6.22), a similar dependence of the size of the set
V eq(x∗1 ) on the weights can be observed as for the set V (L′). It should be mentioned that
the given CPU-times are mainly determined by the recursive approach. The local analysis
itself takes only 14.38% on average of the overall computation times. Hence, the local
analysis computes in general many further optimal solutions which are not contained in the
set EQ ∪ V with only small additional effort.
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CHAPTER 7. COMPUTATIONAL RESULTS

Comparison of the full and the reduced local analysis Obviously, the reduced local
analysis yields much better results in terms of the CPU-time for all test instances than
the full local analysis. The reduced analysis needs on average over all test problems just
0.054% of the intersection points which does not vary significantly for different values of
k . Moreover, the reduced local analysis needs only 1% of the CPU-times as compared to
the full local analysis for k = 1, 0.60% for k = 0.25n, 0.30% for k = 0.5n and 0.18%
for k = 0.75n. This decreasing behaviour of the CPU-times with respect to k holds as
the computation times for the recursive approach (and therefore also of the reduced local
analysis) depend on k in this way.

7.3 p-k-max Problems

In this section the evaluation of the finite dominating set Cand4 (see Algorithm 9) and the
recursive approach (see Algorithm 10) for the solution of the p-k-max problem with p ≥ 3

are compared. In order to analyse the dependence of the two solution approaches on the
number p of new facilities to locate, the value of the parameter k is fixed to k = 2 and
the density of the underlying graphs is fixed to ρ = 0.1 in this section. Every instance of
n ∈ {7, 10, 15, 20, 25, 30, 35} is tested for all values of p ∈ {3, 5, 7, 10}, provided the time
bound of 18 000 seconds per instance is not exceeded. The average computation times and
the average numbers of considered candidates are stated in Table 7.9 for the evaluation of
Cand4 and in Table 7.10 for the recursive approach.

p = 3 p = 5 p = 7

n #Cand. time [s] #Cand. time [s] #Cand. time [s]

7 3.4 · 104 0.660 4.2 · 107 39.609 - -

10 3.5 · 105 6.010 1.9 · 109 1792.140 1.0 · 1013 > 18 000

15 5.1 · 106 88.655 1.6 · 1011 > 18 000 5.1 · 1015 > 18 000

20 3.2 · 107 534.886 3.4 · 1012 > 18 000 3.5 · 1017 > 18 000

25 1.2 · 109 > 18 000 1.5 · 1015 > 18 000 1.8 · 1021 > 18 000

Table 7.9: Evaluation of the finite dominating set Cand4 (Algorithm 9): Numbers of can-
didates and CPU-times in seconds, both distinguished w.r.t. the number p of new facilities
and w.r.t. a given number of n existing facilities. Density ρ = 0.1 and k = 2 are fixed.

Evaluation of Cand4 === EQ××× (((EQ ∪∪∪ V )))
p−1 (Algorithm 9) The size of the finite domi-

nating set Cand4 is
|Cand4 | = |EQ| · (|EQ|+ n)p−1

which grows exponentially in p and leads thus to a huge number of possible candidate
solutions even for relatively small values of p. Hence, the time bound of 18 000 seconds is
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7.3. P-K-MAX PROBLEMS

reached quickly for the evaluation of Cand4. Clearly, the same dependence of the size of
Cand4 on the node weights as for p = 2 can be observed. However, it is possible to solve
problems with a small number of customers and up to five new facilities. Note that (similar to
the case of p = 2) symmetric solutions are not considered for the evaluation of the possible
candidate solutions, i.e., a fixed set of p new facilities is considered only once. Therefore,
the number of evaluated candidates is much smaller than |Cand4 |. As the number of not
considered candidates increases with the value of p, it is possible to solve, for example, the
problems for n = 10 and p = 5 faster than the problems for n = 25 and p = 3 even though
the candidate set Cand4 is larger in this case (see Table 7.9). Again, the computation time
and the number of candidates do not depend on the value of the parameter k .

Recursive Approach (Algorithm 10) Even though the computation time also increases
with the problem size, the recursive approach performs much better for the tested instances
than the evaluation of the candidate set Cand4. It is defined analogously to the definition
stated in Section 7.2 for p = 2: A completed solution X = {x1, . . . , xp} is a solution where
all p new facilities of X are located, but X does not have to be feasible, i.e., the new facilities
do not have to satisfy condition (6.3). The number of completed solutions does not only
depend on p but rather on the underlying graph and the concrete problem instance. The
dependence on k is the same as observed for p = 2: The number of considered solutions and
the computation time increase with decreasing value of k as the possible objective function
values are considered in non-decreasing order. Moreover, the results of the tests show that
the sizes of the covers corresponding to the p optimal facilities do strongly depend on the
distribution of the existing facilities, i.e., the covers associated to an optimal solution of one
problem might be nearly equally large while the covers for another problem might be very
different in size.
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Fig. 7.3: Comparison of the CPU times in seconds for the evaluation of Cand4 (C4) and
the recursive approach (R) for p = 3 (left) and p = 5 (right) and fixed k = 2, ρ = 0.1.
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7.4. CONCLUSION

Comparison of the evaluation of Cand4 and the recursive approach The relation of the
computation times of the two approaches is shown in Figure 7.3. The recursive approach
considers in the worst case of the tested instances 0.044% of the possible solutions in the
set Cand4 and needs 3.04% of the CPU-time. Thus, the recursive approach performs much
better on all tested instances. However, note that there are in general many possible solutions
tested by the recursive approach which are not completed (and therefore not counted in
#cSol.) because one of the later located facilities may have a larger weighted distance to
its defining facilities. Clearly, there is room for improvement for higher values of p also for
the recursive approach.

7.4 Conclusion

Nearly all algorithms introduced in this thesis were implemented in Matlab and the results
of the exhaustive computational tests were summarised in this chapter. More precisely, two
variants of the evaluation of the finite dominating set Cand (Algorithm 5), the evaluation
of the finite dominating set Cand4 (Algorithm 9), the recursive approach (Algorithm 10),
the evaluation of the finite dominating set V (L′) given in Lemma 6.21 and the local analysis
approach (Algorithm 11) were run on different randomly generated instances to compare
the solution approaches.
For p = 1, instances with up to 200 existing facilities were tested. The tests show that

the sorted evaluation of the candidate set Cand yields in general much better CPU-times
than the unsorted evaluation.
For p = 2, instances with up to 50 existing facilities could be solved in reasonable time.

As expected, the recursive approach (Algorithm 10) yields the best CPU-time to solve the
2-k-max problem. However, with the reduced local analysis (Algorithm 11), many further
optimal solutions can be found with only small additional effort.
For multi-facility problems, instances with up to 20 existing facilities and 3 new facilities

could be solved. For p = 5 instances of up to 10 existing facilities were considered. Clearly,
the recursive approach yields also for the general case of p new facilities much better results
than the simple evaluation of all candidates of the finite dominating set Cand4.
An important observation is that all finite dominating sets have in practice much less

elements than it could be suggested from their theoretical upper bounds.
Moreover, a clear difference in the number of equilibrium points and thus also in the CPU-

times for weighted and unweighted instances could be shown: Unweighted problems have in
general much less equilibrium points than weighted problems. The effect on the computation
times were stated exemplary for the case of p = 1.
The effect of a parallelised implementation on the CPU-times was illustrated for k-max

problems. The parallelised implementation of Algorithm 5 needed for the largest instances
on average only 11% of the computation time as compared to the non-parallelised imple-
mentation. Clearly, also the computation times of the remaining solution approaches would
highly benefit from parallelisation.
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Chapter 8
The Impact of Different Demands

This chapter deals with a problem that occurs in modelling a p-k-max problem on a weighted
graph. High weights in p-k-max problems with k ≥ 2 can have an unwanted effect because
they are likely to become outliers even though this is not intended by labelling a node
with a high weight. As a high node weight usually indicates a high level of importance
of the customer, it would be desirable to locate a new facility as close as possible to the
corresponding high weighted node.
To every node vi ∈ V of a graph G a positive weight wi > 0, i = 1, . . . , n, is assigned.

These weights can be used for expressing the demand or different levels of importance of
the existing facilities. When a node does not represent a single customer but a cluster of
clients (like a district of a town), the weight can also represent the number of customers
in the district. Regardless of the interpretation of the weights, it holds: The higher the
value wi is, the more important is the customer at vi . The effect of a highly weighted node
in a center problem is that the optimal new location is attracted more by this facility than
by a facility with a lower weight because the weighted distance wid(vi , x) increases with
higher weights. Thus, to compensate this and to not worsen the objective function value
too much, the optimisation process will try to place the new facility nearer to the highly
weighted customers.
In contrast to center location problems, the usage of node weights in location problems

with k-max functions may lead to unwanted results as the following example shows.

Example 8.1. Figure 8.1 shows the solutions x1, x2 and x3 of a k-max problem on a weighted
path graph G for the parameters k = 1, k = 2 resp. k = 3. The optimal new locations lead
to the distance vectors d(V, xk) which are

d(V, x1) =

(
28

9
,

38

9
,

80

9
,

1

9
,

80

9

)>

d(V, x2) =
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16

9
,

14

9
,

16

9
,

11

9
,

200

9

)>

d(V, x3) =

(
3

2
, 1, 4,

3

2
, 25

)>
.

The optimal new facility x1 of the center problem behaves as intended with the high weights
of nodes v3 and v5: The optimal solution is attracted the most by these two nodes and lies
therefore exactly in their weighted midpoint, i.e., slightly closer to v5 than to v3 because
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w5 > w3.
Contrary to this, for k = 2 the weights do not have the desired effect. For the optimal

new location x2 the corresponding outlier is node v5 (marked by the dotted circle in the same
color) because its weighted distance to x2 is the largest among the existing facilities. As
a consequence, the node with the highest importance is an outlier in this optimal solution.
This usually contradicts the intention of the high weight to bring the new facility as close
as possible to this customer. Here, node v3 with the second highest weight attracts the
solution the most.

v3v1

1

v2

2 8

1 1 1 1

x2x3

v5

10

v4

1

x1

Fig. 8.1: Optimal location x1, x2 resp. x3 of a k-max problem on the graph for k = 1, k = 2

resp. k = 3 and its corresponding outliers

This unwanted effect is even stronger for k = 3. The optimal solution x3 leads to the
outliers v3 and v5, i.e., the two nodes with the highest weights were not taken into account
to find the optimal new location. The location of x3 is determined by the nodes v1 and v4,
that means the closeness to the high weighted node v3 is incidental here.

An effect as described in the example appears often, mainly if the edge weights lj for
j = 1, . . . , m are much smaller than some node weights wi , i ∈ {1, . . . , n}. Then, a high
weight wi has a large impact on the weighted distance wid(vi , x) from the node vi to a new
location x such that it is likely to become one of the k−1 largest distances, even though the
unweighted distance may be rather small. As a consequence, high weighted customers are
often outliers and do not influence the location of the new facility, contrary to the intention
of the weights.

The above example also illustrates two further difficulties when using weights. The outliers
can lie “in the middle” of the graph, i.e., on a shortest path between center defining points.
Intuitively, this contradicts the natural understanding of outliers to be very distant customers.
Despite this, it does not make sense in practice to label facilities as outliers that lie very
close, or even on the shortest path to a covered facility because the serving of the outlier
would not increase the maximum weighted travelling time or costs. Moreover, the center
defining nodes do not have to be connected as it is the case in unweighted problems (see
Theorem 5.1). The mentioned problems in modelling with weighted nodes also occur for
p ≥ 1 new facilities.
Of course it is harder to solve weighted problems since theoretical properties of the outliers

(as for example in Section 5.1) can not be applied to weighted graphs and every existing
facility could be an outlier. However, the real difficulties of using node weights do not lie in
the mathematical solvability of the weighted problem but in the applicability to real world
problems.
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8.1. A TWO-STAGE APPROACH BASED ON RECIPROCAL NODE WEIGHTS

In the following two sections, two possibilities to avoid the above mentioned problems in
modelling outliers in weighted center problems are discussed. The first procedure is a two-
stage approach based on reciprocal node weights that does not have a higher complexity than
a solution approach for a k-max problem of type pkMG. The second algorithm determines
so called weighted outliers by inserting multiple copies of every node in G. The complexity is
higher than in the first approach but a suitable new location does not have to be computed
in a separate phase. Both approaches can be applied for p ≥ 1 new facilities.

8.1 A Two-stage Approach based on Reciprocal Node Weights

One possibility to favour high weighted nodes in a graph Gw = (Vw , E) in the sense that they
are less likely to become outliers and can attract the new facility is a two-stage approach
based on reciprocal weight values. In a first step, the original weights wi are replaced by
their reciprocal values 1

wi
, i = 1, . . . , n, to determine suitable outliers. Taking the reciprocal

is always possible because of wi > 0 for all i = 1, . . . , n. In a second step, these outliers are
taken out of the optimisation process and a center problem is solved such that the outliers do
not influence the location of the center point. A more detailed description of the approach
is given below.

In the first phase, the graph Gw is transformed to a graph Gw−1 = (Vw−1 , E), in which
all node weights wi , i = 1, . . . , n, are replaced by their reciprocal values (see Figure 8.2).
Since the levels of importance are reversed in Gw−1 , low weighted nodes in the original graph
have the highest weights now. Therefore, an optimal solution xw−1 ∈ A(Gw−1 ) of the k-max

problem on Gw−1 favours originally low weighted nodes to become outliers because they are
likely to lead to high weighted distances in Gw−1 . Since the transformed weights do not
give the right level of importance to the nodes, an optimal location xw−1 is in general not
expected to be a good location for the original problem on Gw . Note that xw−1 with V w

−1

k−1 is
in general not even a reasonable combination for the k-max problem on G since the distances
dw (v , xw−1 ) with v ∈ V w−1

k−1 , do not have to be the k − 1 largest distances. Hence, only the
outliers V w

−1

k−1 corresponding to xw−1 are stored, not the new location itself.
A second phase is applied to find a new location x ∈ A(Gw ) which is optimal for the

already determined set of outliers V w
−1

k−1 . Therefore, let w̄ : V 7→ R+ be a new weight
function on the nodes of V that assigns a non-negative weight to all existing facilities such
that

w̄i = 0 for all vi ∈ V w
−1

k−1 and w̄i = wi for all vi /∈ V w
−1

k−1

and let G0 be the graph resulting from G by substituting w by w̄ . Setting the node weights
of the outliers to zero is equivalent to omitting the customers in the set V wk−1 from the
location objective without destroying the structure of the network (see Remark 4.5). As
the k-max problem on the whole node set is equivalent to a center problem on the node set
without the outliers (see Theorem 4.8), the new optimal location x for the set of outliers
V w

−1

k−1 is a center point of G0. Note that only those candidates of a finite dominating set
need to be considered that are defined by nodes with strictly positive weights, since other
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candidates can not be an optimal solution of the problem.
x is a suitable solution for the location problem with outliers on G, since it favours low

weighted nodes to be outliers and minimises the maximum distance to the covered nodes
under this condition. Note that x is a feasible solution of the k-max problem on G, but in
general not optimal.

xw
v1 v2 v3 v4

1 5 10 1
1 1 1

Gw

v1 v2 v3 v4

1 1
5

1
10

1
1 1 1

xw−1

Gw−1

v1 v2 v3 v4

1 5 10 0
1 1 1

x
G0

Fig. 8.2: The node with highest weight is outlier in the original graph Gw for k = 2. The
solution of the k-max problem with k = 2 on the graph G 1

w
with reciprocal weights leads to

outlier v4. The solution x of the center problem on G0 leads to a more satisfying result.

Example 8.2. The optimal solution xw ∈ A(Gw ) of the 1-2-max problem on the line graph
Gw in Figure 8.2 illustrates the unwanted situation of having a high weighted node as an
outlier: v3 with a weight much higher than the other nodes does not influence the location
of the new facility. To the contrary, the optimal solution of the 1-2-max problem on Gw−1

returns v4 as outlier. This is a much more satisfactory result since v4 is one of the lowest
weighted nodes in the original graph. In many applications, xw−1 is not an appropriate
location for the original problem because it lies even more distant from the high weighted
nodes than xw .
The optimal solution x = (e23,

9
11 ) of the center problem on G0 is depicted in the third

graph where w̄4 = 0 because v4 is the outlier determined in Phase 1. Since the high
weighted nodes v2 and v3 are now both center defining, the new facility x is located in their
weighted midpoint and is therefore much closer to v3 than xw . Thus, x is a practically more
satisfactory solution for the location problem with one outlier on Gw .

Note that the derived outliers may also be covered by the new facility x , i.e., they may
lie within the coverage radius of the center point x . This is the case in Example 8.1 since
the distance vector with respect to x is dw (V, x) =

(
20
11 ,

100
11 ,

20
11 ,

13
11

)
and the coverage radius

equals the optimal objective function value z∗ = 20
11 .

It can not be proven that the described two-stage approach yields better solutions (in the
sense that low weighted nodes are more likely to become outliers) than the direct solution
of a k-max problem. If high weighted nodes become outliers or not depends on many factors
as the relation between the edge and the node weights, the differences between the node
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weights and the design of the graph itself. But the two-stage approach gives an alternative
procedure that can be applied if the direct k-max concept does not yield solutions suitable
for the real world problem. The approach is summarised in Algorithm 15.

Algorithm 15 Two-stage approach with reciprocal node weights

Input: Graph Gw = (Vw , E) with wi > 0 ∀ i = 1, . . . , n, k ∈ {1, . . . , n}
1: Transform Gw to Gw−1 by setting wi := 1

wi
for all i = 1, . . . , n . Phase 1

2: Solve the k-max problem on Gw−1 to determine V w
−1

k−1

3: Get a center x of G0 with w̄i = 0 ∀vi ∈ V w
−1

k−1 , i = 1, . . . , n, and else w̄i = wi . Phase 2

Output: New location x ∈ A(Gw ) and set of outliers V w
−1

k−1

The complexity of the Algorithm equals the complexity O(T ) to solve the k-max problem
on Gw−1 . The other two steps do not have impact on the overall complexity. The trans-
formation of the graph needs at most O(n) and the solution of a center problem with n
nodes in the last step can be done in O(mn log(n)) by applying the algorithm of Kariv and
Hakimi (1979). Thus, using the finite dominating set consisting of the equilibrium points of
G, the overall complexity of Algorithm 15 is O(m(n + s) log(n)) with s ≤ 2

(
n
2

)
. Therefore,

the advantage of this approach is that the complexity does not increase with respect to a
k-max problem of type (1kMG).

Note that the described unwanted effects in modelling with weighted nodes also exist for
problems where p ≥ 2 new facilities have to be located because the effect of high node
weights on the weighted distances is independent of the number of new facilities. Thus,
the solution of a p-k-max problem on the transformed graph yields a set of outliers that is
likely to consist of originally high weighted nodes. The solution of a p-center problem gives
a suitable solution for the location problem on G as Theorem 4.8 also holds for the relation
between p-center and p-k-max problems. Therefore, the introduced two-stage approach
can also be applied for p new locations by replacing the 1-k-max problem in Phase 1 by a
p-k-max problem on Gw−1 and the center problem in Phase 2 by a p-center problem. The
complexity in this case equals the complexity to solve a p-k-max problem on a weighted
graph. Moreover, the two-stage approach can analogously be applied to p-k-max location
problems in the plane as defined in Section 2.2.

8.2 Weighted Outliers by Multiple Copies of Nodes

Another possibility to favour high weighted nodes to be covered is to specify the value of
k not with respect to the number of acceptable outlier locations, but rather as a bound on
the allowed amount of total outlier weight. Then either a small number of nodes with high
node weights or many nodes with low weights can be outliers in the resulting solution. High
weighted nodes can thus not be easily excluded as outliers as a node vi ∈ V with a high
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weight wi can only be an outlier if k ≥ wi + 1. To account for this, k is not longer chosen
between 1 and n, but rather between 1 and the total sum of all demands β =

∑n
i=1 wi .

This approach can be interpreted intuitively by viewing wi as the number of customers
living in the corresponding local area represented by the node vi . Hence, a high node weight
corresponds to many potential customers, and the decision to neglect this node as an outlier
should be related to the number of customers of this node. As shown in Example 8.1, solving
a k-max problem on G, where k determines the exact number of outliers, does in general
not yield the wanted result.

To find a solution that is suitable for the location problem with outliers on G = (V, E),
the k-max problem is solved on a transformed graph instead of the original graph. It is
assumed that all demands are integer in the following, i.e., wi ∈ N \ {0}, i = 1, . . . , n. The
transformation of the graph G is based on replacing all vertices vi , i = 1, . . . , n, by wi copies
v1
i , . . . , v

wi
i , all having weight wi . The transformed graph G̃ = (Ṽ , Ẽ) is defined as follows:

Ṽ =
{
v1

1 , . . . , v
w1
1 , v1

2 , . . . , v
w2
2 , . . . , v1

n , . . . , v
wn
n

}
with |Ṽ | = β

Ẽ =
{

(v1
i , v

1
j ) : (vi , vj) ∈ E} ∪ {(v1

i , v
s
i ) : s ∈ {2, . . . , wi}

}
with |Ẽ| = m + β − n

w̃ si = wi ∀ i = 1, . . . , n, s = 1, . . . , wi

lv1
i ,v

1
j

= lvi ,vj ∀ vi 6= vj with (v1
i , v

1
j ) ∈ Ẽ

lv1
i ,v

s
i

= 0 ∀ i = 1, . . . , n, s = 2, . . . , wi .

The set of nodes is Ṽ where {v1
i , . . . , v

wi
i } ⊆ Ṽ denote the wi copies of vi ∈ V . Two

nodes v1
i and v1

j are connected by an edge if vi and vj in G share an edge. Every vertex v si ,

s = 2, . . . , wi , is linked to v1
i by an edge with length lv1

i ,v
s
i

= 0, such that G̃ has m + β − n
edges and is connected. The weights of all nodes are set to w si = wi for all s = 1, . . . , wi
and i = 1, . . . , n.

Remark 8.3. Note that for an edge ei j with li j = 0, every point x = (ei j , t) satisfies t = 0.
Thus, since lv1

i ,v
s
i

= 0 for all i = 1, . . . , n and s = 2, . . . , wi , every point x̃ ∈ (v1
i , v

s
i ) ∈ Ẽ

can be equally shifted into v1
i ∈ Ṽ , i.e., v1

i = ((v1
i , v

s
i ), 0) for all s = 2, . . . , wi .

By the definition of the transformation between G and G̃, there exists a point

x ′ = ((v1
a , v

1
b ), λ) ∈ A(G̃) with (v1

a , v
1
b ) ∈ Ẽ

corresponding to
x = ((va, vb), λ) ∈ A(G) with (va, vb) ∈ E

and λ ∈ [0, 1] such that

dw (vr , x) = d w̃ (v1
r , x

′) for all r = 1, . . . , n. (8.1)

As each node v sr ∈ Ṽ with s ∈ {2, . . . , wr} is connected to v1
r ∈ Ṽ by an edge of length
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zero, it holds that

dw (vr , x) = d w̃ (v1
r , x

′) + lv1
r ,v

s
r

= d w̃ (v sr , x
′) for all s = 1, . . . , wr and r = 1, . . . , n,

(8.2)
i.e., the weighted distance between a point x in G and a node vi ∈ V equals the weighted
distance between the corresponding point x̃ in G̃ and an arbitrary copy of vi .

The two graphs have a strong connection, described by the following lemma, which also
gives a reason to assign the original weight to every copy of vi .

Lemma 8.4 I Center Point of G and G̃
For vi , vj ∈ V and v1

i , v
1
j ∈ Ṽ let x̄ = ((vi , vj), t) ∈ A(G) and x̃ = ((v1

i , v
1
j ), t) ∈ A(G̃) for

t ∈ [0, 1]. Then it holds: x̄ is a center point of G if and only if x̃ is a center point of G̃.

Proof. Let x̃ = ((v1
a , v

1
b ), λ) ∈ A(G̃) with (v1

a , v
1
b ) ∈ Ẽ and x̄ = ((va, vb), λ) ∈ A(G) with

(va, vb) ∈ E be the corresponding point in G with λ ∈ [0, 1]. Moreover, let z̄ be the optimal
center objective function value in G and let z̃ be the optimal center objective function value
in G̃. With (8.1) and (8.2) it follows directly that z̄ = z̃ .

Assume that x̄ is the center point of G, i.e., it realises an optimal objective function value
of z̄ . As dw (vr , x̄) ≤ z̄ for all vr ∈ V , it holds due to (8.2) that d w̃ (v sr , x̃) ≤ z̄ . Since z̃ = z̄ ,
x̃ must be the center point in G̃.

Assume now that x̃ is the center point of G̃, i.e., it realises an optimal objective function
value of z̃ . As dw (vr , x̃) ≤ z̃ for all v sr ∈ Ṽ , it holds due to (8.2) that dw (vr , x̄) ≤ z̃ . Since
z̃ = z̄ , x̄ must be the center point in G. �

Remark 8.5. Note that the multiplicity wi of copies of a node vi ∈ V does not change the
center location x̄ . Hence, Lemma 8.4 can also be applied if there are α ∈ {1, . . . , wi} copies
of vi in G̃.

As a next step, a k-max problem with k ∈ {1, . . . , β} is solved on G̃. Note that lv1
i ,v

s
i

= 0

does not effect the solvability of the underlying problem since all finite dominating sets
described in this work can handle edge lengths of zero. Note that edges with length zero
are not considered to build up a subdivision for the local analysis (see Algorithm 13) as new
facilities will never be located on such an edge.

Example 8.6. Figure 8.3 illustrates the transformation of G to G̃ for a path graph with
n = 5 nodes. Vertex v2 has weight w2 = 2 and therefore has to be doubled such that Ṽ
contains two nodes v1

2 and v2
2 . Both get the original weight w1

2 = w2
2 = 2. Vertex v5 with

w5 = 3 is tripled analogously. All other nodes have weight 1.
The optimal solutions x̄k of the k-max problem with k = 1, 2, 3 in G are shown in the

first subfigure. In all these solutions high weighted nodes are outliers. The second subfigure
shows the optimal solutions x̃k of the k-max problem in G̃. k = 2, for example, yields the
solution

x̃2 =

(
e34,

4

5

)
with dw (V, x̃2) =

(
14

5
,

18

5
,

18

5
,

4

5
,

1

5
,

18

5
,

18

5
,

18

5

)
.
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Thus, the optimal objective function value is z̃2 = 18
5 and the corresponding outlier is either

one of the copies of v5 or a copy of v2 (marked by the black circles).

v1

1

v2

2

1

x̄2
G v3

1

v4

1

v5

3

1 1 1

x̄3 x̄4

v2
2

G̃ v1
11 v1

2 v1
3 v1

4 v1
5

v2
5

v3
5

0 0

0

1 1 1 1

2

2

1 1

3

3

3

x̃2

x̃3
x̃4

1 x̃4
2

Fig. 8.3: The highest weighted node v3 is an outlier in all optimal solutions x̄k of the
k-max problem with k = 1, 2, 3 in G (see first subfigure). The optimal solutions x̃k of the
corresponding k-max problems in the transformed graph G̃ are shown in the second subfigure.

The aim now is to transform the optimal solution of the k-max problem on G̃ and its
outliers back to G. In a first step, the outliers are transformed back to G, i.e., based on
Ṽk−1, nodes in G will be identified that should not influence the location of the new facility.

Definition 8.7 I Weighted Outlier
A node vi ∈ V of G is called weighted outlier if all of its copies v1

i , . . . , v
wi
i in G̃ are outliers

in the solution of the k-max problem on G̃. The corresponding set of weighted outliers in G
is denoted by V wk−1.

Note that these weighted outliers do in general not correspond to outliers in the sense of
an associated k̃-max problem on G. i.e., the weighted outliers do not necessarily lead to the
k̃ −1 largest elements of the vector of weighted distances between the existing facilities and
their corresponding new facilities in G. Let x̃ be an optimal solution of the k-max problem
on G̃ with corresponding set of outliers Ṽk−1 which is w.l.o.g. of the form

Ṽk−1 =
{
v1
i1
, . . . , v s1

i1
, . . . , v1

iq , . . . , v
sq
iq

}
where v sij ∈ Ṽ for all ij ∈ {i1, . . . , iq}, s ∈ {1, . . . , sj}

with |Ṽ | = k − 1 =

q∑
j=1

sj .
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Due to (8.1) and (8.2), the weighted distances d w̃ (v si , x̃) from the new facility x̃ to the
artificial nodes equal the weighted distance dw (vi , x̃) to the original node vi ∈ V . Let vbia be
an arbitrary but fixed outlier in Ṽk−1 with a ∈ {1, . . . , q} and b ∈ {1, . . . , wia}. Two cases
have to be considered for the transformation of Ṽ to the original graph G:

Case 1 : v cia ∈ Ṽk−1 for all c ∈ {1, . . . , wia} \ {b} ⇒ via ∈ V wk−1, (8.3)

Case 2 : ∃ v cia /∈ Ṽk−1 with c ∈ {1, . . . , wia} \ {b} ⇒ via /∈ V wk−1. (8.4)

Definition 8.8 I Fully neglected node
The nodes in V that satisfy the property (8.3) are called fully neglected nodes.

Fully neglected nodes correspond to a weighted outlier in G. It holds that |V wk−1| ≤ k − 1

since there could be k − 1 weighted outliers with weight 1 each. i.e.,

Ṽk−1 =
{
v1
i1
, . . . , v1

ik−1

}
with w̃i1 = . . . = w̃ik−1

= 1

or one outlier with weight k − 1, i.e.,

Ṽk−1 =
{
v1
ij
, . . . , v k−1

ij

}
with w̃i = k − 1 and ij ∈ {i1, . . . , iq},

as well as every combination in between. As a consequence, k − 1 equals the maximum
number of weighted outliers here while this is the exact number of outliers in a k-max

problem. In a real world example that could mean that all customers in a district represented
by vi ∈ V wk−1 are labelled as outliers.

Definition 8.9 I Partially neglected node
The nodes in V that satisfy the property (8.4) are called partially neglected nodes.

Partially neglected nodes do not correspond to a weighted outlier in G. Note in particular
that, if at least one of the copies of via ∈ V is not an outlier in Ṽ for the solution x̃ in G̃,
then the node via is not a weighted outlier in G. In a real world problem this corresponds
to the situation of neglecting just a subset of the customers in a district. This is of course
not useful because once the supplier paid the costs or time to get into this district, the
costs of also supplying the other facilities will not increase the overall costs w.r.t. the k-max

objective. Thus, an entire district should either be provided with service or be neglected
completely. As a consequence, it is not useful to choose via as an outlier for the current
value of k if not all nodes in the set {v1

is
, . . . , v

wis
is
} are selected as outliers in G̃.

Now, a new location in G has to be found which is optimal for the already determined
set of weighted outliers V wk−1, i.e., a location that is not influenced by the weighted outliers.
Different from the two-stage approach discussed in the previous section, there is no need for
a second phase here because the new locations are determined by the solution of the k-max

problem in G̃.
Let w̄ : V → R+ be a new weight function on the nodes of V that assigns a non-negative
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weight to all existing facilities such that

w̄i = 0 for all vi ∈ V wk−1 and w̄i = wi for all vi /∈ V wk−1

and let G0 be the graph resulting from G by substituting w by w̄ . Setting the node weights
of the outliers to zero is equivalent to omitting the customers in the set V wk−1 from the
location objective without destroying the structure of the network (see Remark 4.5).

Lemma 8.10 I Optimal solution in G
Let V wk−1 be the set of weighted outliers w.r.t. an optimal solution x̃ = ((v1

i , v
1
j ), t) ∈ A(G̃)

of the k-max problem on G̃. Then, the corresponding point x̄ = ((vi , vj), t) ∈ A(G) is
optimal for the center problem on G0.

Proof. Let x̃ be the optimal solution of the k-max problem on G̃ with set of outliers Ṽk−1.
Moreover, let V wk−1 = {vi1 , . . . , viq} be the set of weighted outliers in G. Define G̃0 with ¯̄w

analogously to G0, i.e., the node weights of all outliers in Ṽk−1 are set to zero. As every
weighted outlier in G is fully neglected, it holds that the nodes

v1
i1
, . . . , v

wi1
i1
, . . . , v1

iq , . . . , v
wiq
iq
∈ Ṽ

are weighted by zero and therefore omitted from a location objective on G̃0. A partially
neglected node vj ∈ V has at least one copy v sj ∈ Ṽ , s ∈ {1, . . . , wj} that is not an outlier

and is therefore not weighted by zero such that the customers v sj are not omitted in G̃0.

Following Theorem 4.8, the solution of a k-max problem on G̃ is then equivalent to the
solution of a center problem G̃0, and x̃ is an optimal center point of G̃0. With Remark 8.5,
Lemma 8.4 can be applied to G0 and G̃0 such that x̄ = ((vi , vj), t) ∈ A(G) is an optimal
center location for G0. �

Thus, the important point is that G and G̃ still have the same center point if a node in G
and all of its copies in G̃ are neglected for the center problem.

v1

1

v2

2

1

x̄2
G v3

1

v4

1

v5

3

1 1 1

x̄3
x̄4

2x̄4
1

Fig. 8.4: Solutions x̄k = x̃k , k = 1, 2, 3, of the location problem in G with sets of weighted
outliers V wk−1

Example 8.11 (Continuation of Example 8.6). Figure 8.4 illustrates the transformation of
the set of outliers Ṽk−1 to the set of weighted outliers V wk−1.

Since copy v3
5 of v5 ∈ G is an outlier in G̃ for k = 2, v3

5 is partially neglected and thus
G has no weighted outliers for k = 2. In this case, the decision maker should reconsider his
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choice of the parameter k since x̄2 is the center point of G that is also optimal for k = 1 (see
Remark 8.14). For k = 3, both copies of v2 are outliers in G̃. Thus, v2 is fully neglected
and hence a weighted outlier in G. For k = 4 there exist two different optimal solutions
with different numbers of weighted outliers. x̃4

1 corresponds to Ṽk−1 =
{
v1

5 , v
2
5 , v

3
5

}
. In this

case, v5 is fully neglected and hence the only weighted outlier. x̃4
2 corresponds to the two

weighted outliers v1 and v2 since all of their copies are outliers in G̃. In all cases the optimal
new location x̄k on G equals the optimal location x̃k on G̃.

Remark 8.12. It is also possible to choose a new parameter k̃ := k + β − n + 1 to solve
the k̃-max problem on G̃. The resulting outliers may be more convenient in some cases for
the definition of the weighted outliers of G as it leads to fully neglected outliers more often.
In Example 8.6, node v1

1 would be the outlier for k = 2 (as k̃ = 6) and thus v1 would be a
fully neglected outlier in G. As it does not change the optimal objective function value in
relation to Example 8.11, this is an equally good solution.

Example 8.11 shows that different optimal solutions of the k-max problem in G̃ can lead
to different numbers of partially neglected nodes. In particular, it always exists an optimal
solution that has at most one partially neglected node, as the next lemma states. Therefore,
the number of weighted outliers is not too much affected by the partially neglected nodes.

Lemma 8.13 I Partially neglected outliers in G̃
There always is an optimal solution x ∈ A(G) of the location problem on G that has at most
one partially neglected node.

Proof. Let x ∈ A(G) with V wk−1 be an optimal solution of the location problem on G that
has more than one partially neglected node. W.l.o.g., let vi ∈ V , i ∈ {1, . . . , n}, and vj ∈ V ,
j ∈ {1, . . . , n} \ {i}, be two arbitrary but fixed partially neglected nodes with respect to

x . Therefore, w.l.o.g. it holds for their copies
{
v1
i , . . . , v

wi
i

}
and

{
v1
j , . . . , v

wj
j

}
in Ṽ with

respect to the optimal solution x̃ of the k-max problem on G̃ that{
v1
i , . . . , v

si
i

}
=: Ṽ ik−1 ⊆ Ṽk−1 and

{
v si+1
i , . . . , vwii

}
/∈ Ṽk−1

and respectively{
v1
j , . . . , v

sj
j

}
=: Ṽ jk−1 ⊆ Ṽk−1 and

{
v
sj+1
j , . . . , v

wj
j

}
/∈ Ṽk−1.

Then, all copies of all partially neglected nodes have the same distance to the new facility:
Assume to the contrary that w.l.o.g. d w̃ (v ai , x̃) < d w̃ (vbj , x̃) for some a ∈ {1, . . . , wi} and
b ∈ {1, . . . , wj}. As it holds that

d w̃ (v si , x̃) = d w̃ (v ai , x̃) for all s = 1, . . . , wi

and
d w̃ (v rj , x̃) = d w̃ (vbj , x̃) for all r = 1, . . . , wj ,
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it follows that d w̃ (v si , x̃) < d w̃ (v rj , x̃) for all r, s. This contradicts the property of vj being
partially neglected and thus, it holds that

d w̃ (v si , x̃) = d w̃ (v rj , x̃) for all s ∈ {1, . . . , wi}, r ∈ {1, . . . , wj}.

Thus, min{si , wj − sj} elements of Ṽ ik−1 can be deleted from Ṽk−1 and be replaced by

min{si , wj − sj} nodes of the set
{
v
sj+1
j , . . . , v

wj
j

}
without changing the optimal objective

function value of the k-max problem.
If min{si , wj − sj} = si , all si outlier nodes

{
v1
i , . . . , v

si
i

}
can be deleted such that

Ṽ ik−1 = ∅ and Ṽ jk−1 =
{
v1
j , . . . , v

sj
j , v

sj+1
j , v

sj+si
j

}
with sj + si ≤ wj ,

afterwards. In this case, vi ∈ V is not partially neglected any more since none of its copies
is an outlier in G̃. Note that vj ∈ V may still be partially neglected.
If min{si , wj − sj} = wj − sj , not all nodes in Ṽ ik−1 can be deleted, such that vi ∈ V stays

partially neglected. But, in this case, wj − sj from Ṽ ik−1 can be replaced by all nodes in{
v
sj+1
j , . . . , v

wj
j

}
/∈ Ṽk−1 such that

Ṽ ik−1 =
{
v1
i , . . . , v

si−(wj−sj )
i

}
and Ṽ jk−1 =

{
v1
j , . . . , v

wj
j

}
.

Hence, all copies of vj are now outliers in G̃ such that vj is now fully neglected and therefore
an outlier in G. Again, this operation does not change the objective function value.

In the two cases, one of the partially neglected outliers becomes either fully neglected or
not neglected at all. By iterating this procedure, the number of partially neglected nodes
can be reduced to 1. Thus, a new set of outliers with just one partially neglected node is
obtained without changing the optimal solution x and the optimal objective function value
of the location problem on G. �

Summarising the discussion above, nodes with small weights are favoured to become
outliers in this approach. Moreover, the solutions are more flexible since the size of the set
of outliers is not fixed to k − 1 as it is the case for classical k-max problems. Note that
choosing the parameter k from the interval {1, ..., β} allows for weighted outlier sets with
cardinalities from 0 to n− 1. In particular, a high weighted node with wi > k − 1 can never
be a weighted outlier since not all copies of vi can be outliers in the transformed graph.

Remark 8.14. High weighted nodes can become outliers only for an equally high value of k .
From a bi-criteria perspective, the two conflicting objective functions (minimising the optimal
k-max objective function value and minimising the number of outliers, see Section 2.3), imply
that there is a trade-off between neglecting a district with many customers and a high value
of k . Moreover, optimal solutions of the k-max problem on G̃ that lead to partially neglected
nodes in G are weakly efficient solutions of the bi-criteria problem (BP ) on G̃. In this case,
the value of k can either be decreased until the partially neglected node in G is not neglected
at all without changing the optimal objective function value. Alternatively, the value of k can
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be increased until the partially neglected node in G is fully neglected such that the objective
function value can be reduced.

Algorithm 16 Determining weighted outliers and the corresponding center point

Input: Graph G = (V, E) with wi ∈ N \ {0} ∀ i = 1, . . . , n, and k ∈ {1, . . . , β − 1}.
1: Compute a finite dominating set FDS of G.

2: Construct G̃ = (Ṽ , Ẽ) by introducing copies
{
v1
i . . . . , v

wi
i

}
of every node vi ∈ V .

3: Determine x̃ = arg minx∈FDS k-max(d w̃ (Ṽ , x)) with set of outliers Ṽk−1.

4: for all vi ∈ V do

5: if v si ∈ Ṽk−1 for all s = 1, . . . , wi then . All copies are outliers

6: vi ∈ V wk−1 . vi is weighted outlier

Output: Location x̃ ∈ A(G) and set of weighted outliers V wk−1 with z∗ = k-max(d w̃ (Ṽ , x̃)).

The described approach is summarised in Algorithm 16. For the solution of the k-max

problem on G̃ one of the finite dominating sets from Chapter 4 can be applied. By choosing
the set of equilibrium points as finite dominating set, it is sufficient to compute the equilibrium
points of G to solve the k-max problem on G̃, even though G̃ has more nodes and edges than
G. Since the distances d w̃ (v si , x), s = 1, . . . , wi , of a point x ∈ A(G̃) to a copy of vi ∈ V
all equal the original distance dw (vi , x̃), the added nodes do not lead to new equilibrium
points. Moreover, due to the edge lengths lv1

i ,v
s
i

= 0 for i ∈ {1, . . . , n}, s ∈ {1, . . . , wi} of
an edge (v1

i , v
s
i ) ∈ Ẽ \ E between a node in the original graph and one of its copies in the

transformed graph, equilibrium points can not be located on this edge (v1
i , v

s
i ). Therefore,

the set of equilibrium points of G̃ equals the set of equilibrium points of G. Note that the
finite dominating set based on h-levels can also be applied to G instead of G̃ with the same
arguments.

Computing the finite dominating set consisting of the equilibrium points of G takes
O(m(n+ s log(n))) with s ≤ 2

(
n
2

)
, see Algorithm 3. In an implementation it is not necessary

to really transform the graph since all later operations can be implemented using suitably ma-
nipulated vectors of distances in which all components are copied wi times. Thus, this step
takes at most O(β) time. Evaluating the k-max function on G̃ can be done in O(mn2 log(n))

(as shown for Algorithm 5) since the copies of nodes in G do not have to be considered for the
evaluation, the corresponding distances can just be copied to obtain the vector of distances.
Finding the candidate point with the minimal objective function value needs O(mn2). The
loops over the nodes of G and all their copies take O(nβ). Thus, the overall complexity of
Algorithm 16 is O(mn2 log(n) + nβ).
The complexity of this approach using weighted outliers depends, contrary to the com-

plexity of the two-stage approach described above, on the node weights of the graph. This
is a disadvantage of this approach as the node weights can be arbitrarily large (even though
it does in practice not make sense to choose the weights too large as otherwise the distances
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have no influence on the solution of the problem). On the other hand, the approach gives
more flexibility because the number of outliers is not fixed to k − 1.

Note that the described approach and all related results can be generalised to p ≥ 2 new
facilities by just computing the p-k-max solution on G̃ instead of the k-max point for p = 1.
Once the set of outliers Ṽk−1 depending on p is computed, the set of weighted outliers in
G can be derived in the same way as for one new facility, since the status of being fully or
partially neglected is not influenced by the number of new facilities.
Moreover, the approach using weighted outliers can also be applied analogously to con-

tinuous k-max location problems as introduced in Section 2.2 since the network-structure is
not needed for the stated proofs. Instead of inserting artificial nodes and edges of length
0, the transformation of the problem is realised by inserting copies of the existing facilities
which have the same coordinates as the respective points of the initial problem.
The two presented approaches are not implemented and tested in the section of computa-

tional results as the two-stage approach as well as the weighted outliers are a reformulation
of the initial k-max problem that can be performed as a preprocessing step. The obtained
problems can then be solved using the algorithms presented in the previous sections of this
thesis, which are tested exhaustively in Chapter 7.
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Chapter 9
Conclusion and Outlook

In this thesis a new approach for handling outliers in center location problems was introduced.
If far-away customers are present in a location problem, the optimal center solution may be
influenced in an unwanted way. Therefore, the exclusion of outlier customers may often be
economically useful. To implement this exclusion of outliers, the k-max objective function
was introduced in the context of center location problems. This objective uses the kth
largest distance between any customer and its corresponding closest new facility as the
decision criterion for the location of the new facilities. In this way, the influence of outliers
on the optimal center location can be significantly reduced.
The focus in this thesis was set on three topics: The discussion of advantages and dis-

advantages of different modelling approaches, and the analysis of single facility k-max
problems on networks as well as the more complex multi-facility p-k-max problems on
networks. For the solution of these problems, several finite dominating sets with different
properties were derived and approaches for their efficient evaluation were introduced.

Modelling Approaches A bi-criteria optimisation model for handling outliers in center
location problems was introduced. The ε-constraint scalarisation method was applied to
generate the weakly efficient solutions of the underlying problem. This procedure is very
efficient since all reasonable values for the upper bounds ε on the number of outliers are
known in advance. Each ε-constraint problem can be transformed into a single criteria
k-max problem and thus all weakly non-dominated points of the bi-criteria problem can be
obtained by solving a finite series of single-criteria k-max problems. Moreover, it was shown
that the efficient solutions can be filtered out easily. Using the finite dominating sets derived
in this thesis, all efficient points of the bi-criteria model can be computed in polynomial time
for the single-facility case.
Furthermore, it was illustrated that the assignment of different positive weights to the

customers may lead to unwanted effects on the optimal solutions of the problem: High
weighted clients are more likely to become outliers than lower weighted clients. Two ap-
proaches to reduce this effect were introduced. A two-stage approach replaces the original
node weights by their reciprocal values. Solving the p-k-max problem on this graph favours
low weighted nodes to be outliers. A second phase is applied to find the center location with
respect to the set of outliers found in the first phase. This approach yields a reasonable
solution for the initial problem in polynomial time. Another approach extends the original
graph by inserting wi copies of each node vi to the graph. It was shown that the optimal
solution on the transformed graph also yields a suitable solution for the original graph, with
an adapted definition of nodes being weighted outliers. The complexity of this approach
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depends on the node weights of the graph but it also leads to much more flexible solutions
since the number of outliers is not fixed to k − 1.
Three (mixed-) integer programming formulations for the single-criteria p-k-max problem

were presented. The first integer linear formulation is composed of a sorting problem and
a location-allocation problem. In the second formulation, the number of variables and con-
straints was reduced further by identifying the outliers of the current candidate solution and
minimising the largest weighted distance to the remaining facilities. The third model is a
mixed integer formulation which does not assume that the candidate locations are known in
advance.

1-k-max Problems The focus in designing solution methods for the k-max problem was
set on identifying finite dominating sets for the problem. The first finite dominating set is
twofold. For k ≤ n − 1 it consists of the equilibrium points of the underlying graph. It was
shown that the equilibrium points define a subdivision of G such that the objective function
is piecewise linear and concave in every cell of this subdivision. In the case of k = n the
complete set V of nodes is optimal and the problem can be trivially solved with objective
value 0. The (already polynomial) complexity of the evaluation of this finite dominating
set is further reduced by applying the algorithm of Bentley and Ottmann (1979) for the
computation of the equilibrium points. Exhaustive computational results confirmed that the
finite dominating set is in practice much smaller than the theoretical upper bound suggests.
The tests showed that large problem instances of up to 200 customers can be solved in
satisfactory time and that a parallelised implementation of the algorithm allows even larger
instances.
The second candidate set consists of the local minima of (n-k)-levels. Each (n-k)-level

is constructed as the kth highest chain of line segments and vertices in the arrangement
of line segments given by the graphs of the weighted distances functions over an edge of
the underlying graph. The local minima of the (n-k)-levels thus correspond to selected
equilibrium points or nodes of G. The number of candidate points in this set is much smaller
than the number of candidates in the first finite dominating set since only a small subset of
all equilibrium points has to be considered.
Moreover, finite dominating sets and corresponding solution approaches for two special

cases of unweighted (path) graphs were deduced.

p-k-max Problems Different finite dominating sets and efficient algorithms to evaluate
these sets were deduced for p-k-max problems with p ≥ 2. A first finite dominating set is
given by all p-tuples consisting of all combinations of the equilibrium points and the nodes
of the underlying graph. Even though the size of this set is in practice much smaller than
the theoretical upper bound suggests, it grows exponentially in the number of new facilities.
In order to reduce the number of candidates that have to be evaluated, a recursive approach
was introduced. It was proven that an objective value defining facility always lies in an equi-
librium point. The individual new facilities of each solution are located iteratively. Hence,
for each new facility it can be checked which locations may potentially lead to an optimal
solution based on whether this location contradicts the optimality of the objective value
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defined by the previously located facilities. The computational tests showed that in general
only a small subset of the candidates in the finite dominating set have to be considered.
Larger problem instances of up to 50 customers can be solved within a time bound of five
hours with the recursive approach.
In order to find alternative optimal solutions not being an element of the initial finite

dominating set, a local analysis on each edge of the graph was performed. By deriving
an optimality condition, an arrangement of hyperplanes based on equilibrium planes and
balance planes was obtained which defines a subdivision of the unit hypercube. The k-max

function was shown to be piecewise linear and concave over each cell of this subdivision.
Thus, the 0-faces of the arrangement of hyperplanes are a finite dominating set for the
p-k-max problem. This candidate set was further reduced using the information given by
the set of optimal objective value defining facilities provided by the recursive approach. As a
consequence, only the 0-faces lying in a specific hyperplane of the subdivisions were needed
to constitute a finite dominating set and the number of candidates for an optimal solution
was reduced enormously. For a fixed value of p, the finite dominating set is of polynomial
size. Computational tests underlined this improvement in terms of much smaller CPU-times.
Moreover, all (infinitely many) optimal solutions of the p-k-max problem were obtained by
constructing the convex hull of every set of optimal 0-faces that belong to the same cell of
a subdivision.
As an alternative approach, the individual facilities of an optimal solution of the first can-

didate set can be shifted within a certain interval along the edges of the graph without
destroying the optimality of the solution. Thus each new facility of an optimal solution can
be analysed separately and the neighbourhood of particularly interesting locations can be
analysed for further optimal locations.

Topics for future research The results of this thesis are mainly dedicated to location
problems on networks. An interesting field for future research is therefore the question if
and how the here presented approaches can be adapted to other location problems, and in
particular to continuous p-k-max problems. Some procedures as Algorithm 15 and Algorithm
16 as well as the relation to p-center problems (see Theorem 4.8) can equivalently be applied
to p-k-max problems in the plane.
A p-k-median problem as a generalisation of a p-median problem could be defined as the

problem to minimise the sum of the n − k + 1 smallest distances between the customers
and the new facilities. This problem is already known as the anti-h-centrum problem with
h = n − k + 1, see Nickel and Puerto (2005). If the outliers of the problem are known,
it should also hold that the p-k-median problem reduces to a p-median problem on the
remaining facilities which are covered with service.
The identification of properties of outliers in p-k-max problems in the plane (similar to these

derived in Section 5.1 on networks) would be helpful. The property of the connectedness of
the center defining nodes in unweighted k-max problems on graphs should be replaceable by
the statement that outliers of an unweighted k-max problem in the plane have to lie outside
the convex hull of the center defining nodes.
Especially the relation to the p-center problem can be used to derive further solution
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approaches (for both problems in the plane and on networks) based on the known approaches
for p-center problems. With this approach it should also be possible to include a number of
environmental factors of practical problems into the model, for example, forbidden regions
or barriers to travel. In the case of barriers or forbidden regions it could be analysed how the
presented finite dominating sets have to be adjusted, i.e., which candidates can no longer
be optimal and which new points (for example on the border of a forbidden region) have to
be added.
p-k-max problems have in general (infinitely) many optimal solutions such that some

of these obtained locations are more sensible in a practical setting than others. Thus, it
could be useful to analyse further properties of optimal solutions which lead to (in practice)
particularly relevant locations. These properties can of course also be chosen with regard to
naturally arising restrictions or requirements as mentioned above.
It could be promising to analyse heuristic techniques for the solution of the p-k-max

problem. This would omit the need to evaluate finite dominating sets which may get very
large, especially for large sets of existing customers and a large number of new facilities to
locate.
A further approach could be based on the fact that the k-max function is a d.c. function

composed of two convex ordered median functions fλk+1 and fλk with

λk+1
1 , . . . , λk+1

n−k−1 = 0 and λk+1
n−k , . . . , λ

k+1
n = 1

resp.
λk+1

1 , . . . , λk+1
n−k = 0 and λk+1

n−k+1, . . . , λ
k+1
n = 1,

i.e., it holds that fk(y) = fλk+1 (y) − fλk (y). Many solution techniques for this class of
functions exist which could be adjusted for the p-k-max problem.
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