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1 Chapter 1

MOTIVATION AND OVERVIEW

The need of developing structure-preserving algorithms for special classes of problems
arose independently from very different areas of research as mechanics, astronomy, molec-
ular dynamics, theoretical physics as well as from other areas of both applied and pure
mathematics. Numerical methods that preserve geometric properties of the flow of a differ-
ential equation: symplectic integrators for Hamiltonian systems, symmetric integrators for
reversible systems, methods preserving first integrals and numerical methods on manifolds
etc. show that the conservation of geometric properties of the flow not only produces an
improved qualitative behavior, but also allows for a more accurate long-time integration
than with general-purpose methods [28].

For the Hybrid Monte Carlo algorithm (HMC) [16], often used to study the fundamental
quantum field theory of quarks and gluons, quantum chromodynamics (QCD), on the
lattice, one is interested in efficient numerical time integration schemes which preserve
geometric properties of the flow and are optimal in terms of computational costs per
trajectory for a given acceptance rate. High order numerical methods allow the use of
larger step sizes, but demand a larger computational effort per step; low order schemes do
not require such large computational costs per step, but need more steps per trajectory.
So there is a need to balance these opposing effects.

Omelyan integration schemes [42] of a force-gradient type have proved to be an efficient
choice, since it is easy to obtain higher order schemes that demand a small additional
computational effort. These schemes use higher-order information from force-gradient
terms to both increase the convergence of the method and decrease the size of the leading
error coefficient. Other ideas to achieve better efficiency for numerical time integrators
are given by multirate or nested approaches. These schemes do not increase the order
but reduce the computational costs per path by recognizing the different dynamical time-
scales generated by different parts of the action. Slow forces, which are usually expensive
to evaluate, need only to be sampled at low frequency while fast forces which are usually
cheap to evaluate need to be sampled at a high frequency. The important feature of both
these class of numerical methods is that their construction guarantees the preservation of
some geometrical properties of the flow. A natural way to inherit the advantages from
both force-gradient type schemes and multirate approaches is to combine these two ideas.

A different approach to improve the efficiency of the HMC can be a possibility of ne-
glecting the accept/reject step of the algorithm by using the idea of symmetric projection
methods [25]. This class of numerical methods conserves the energy of a system exactly,
which leads to a hundred percent acceptance rate of the HMC and hence there is no need
for the accept/reject step in HMC. Due to the requirements for the numerical integrator
in HMC to preserve a certain geometric properties the idea of projection methods has to
be modified and analyzed accordingly.

This thesis is organized in the following way. First we introduce the basis concepts of
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2 1 MOTIVATION AND OVERVIEW

geometric numerical time integrators for ordinary differential equations in Chapter 2. We
present some geometric properties in the context of Hamiltonian mechanics and then
transfer these concepts to a structure-preserving approach for numerical methods together
with an idea how to estimate a qualitative behavior of the numerical schemes. Examples
of different geometric integrators, most commonly used in the integration on manifolds for
both Abelian and non-Abelian cases, are presented.

Chapter 3 introduces the main application for the methods developed in this thesis. We
present the main ideas how to treat quantum field theories on the lattice. We introduce
basic concepts for the path integral formulation of quantum field theories together with
classical examples of such theories. The HMC algorithm is shown as the main way to treat
problems given in the path integral formulation. The role of structure-preserving numerical
methods and the need to conserve geometric properties of the considered physical system
is also explained.

The idea of the structure-preserving projection methods is presented in Chapter 4. We
analyze the possibility to construct a projection method which would satisfy all the require-
ments needed for HMC simulations. We present another view on symmetric projection
method and show our attempts to develop symplectic projection schemes. At the end the
conclusion about structure-preserving projection methods is given based on both analytical
and numerical results.

In Chapter 5 we give a short introduction to the two well-known ideas based on operator
splitting, namely decomposition splitting and multirate splitting. The force-gradient ex-
tension of the decomposition approach is introduced. We analyze the structure-preserving
properties of these numerical schemes as well as order conditions. Then we introduce and
study a novel class of numerical integrators, the adapted nested force-gradient schemes,
obtained via combination of both the force-gradient and the nested algorithm approaches
in order to obtain more efficient numerical integrators.

In the end, we study the behavior of the adapted nested force-gradient schemes for an
example of the n-body problem in order to learn more about their usefulness for lattice
field theory calculations and confirm our analytical findings. We also show the derivation
of a force-gradient term. Then we test these methods for the Schwinger model on the
lattice, a well known benchmark problem to cope with the problems given by the non-
Abelian setting in the HMC for lattice QCD. We derive the analytical basis of nested
force-gradient type methods and demonstrate the advantage of the proposed approach,
namely reduced computational costs compared with other numerical integration schemes
in HMC.

Our main goal is to develop novel geometric numerical time integrators in order to improve
the efficiency of the HMC algorithm in application to the problems of quantum field
theories. This thesis is based on author’s publications [51, 52].



2 Chapter 2

GEOMETRIC NUMERICAL
INTEGRATORS

The motion of various objects, whether we are talking about particles or planets, is de-
scribed by differential equations, which are derived from the laws of physics. These equa-
tions define the current state of the system including all the physical laws relevant to
the particular situation. Due to the usual complexity of the underlying physical prob-
lem, in order to obtain necessary information about the considered system one has to use
numerical methods to find the solution of the differential equations, describing the given
problem [24].

Standard numerical integration methods for simulating motion take an initial condition
and move the objects in the direction specified by the differential equations. Unfortunately
they completely ignore some of the hidden physical laws contained within the equations.
Geometric integrators on the other hand obey these extra laws. Naturally, those physical
laws have to be known if the integrator is going to obey it. The advantages of this structure-
preserving approach may yield faster, simpler, more stable and/or more accurate methods
as well as more robust schemes with quantitatively better results than standard methods.
Also it must be mentioned that the requirement of structure preservation necessity restricts
the choice of the method and may increase the cost. Therefore in each case the benefits
and costs must be balanced [38].

In this chapter we briefly introduce the basic concept of geometric numerical time integra-
tors for ordinary differential equations (ODEs), where we mainly focus on the Hamiltonian
equations. We also recall some definitions of geometric properties of physical systems,
which can be conserved by structure-preserving numerical methods. We show how to
estimate the qualitative behavior of such integrators. Examples of the most commonly
used geometric integrators are presented as well. Finally we give a short insight in the
numerical treatment of differential equations on manifolds, more precisely Lie groups.

2.1 Geometric time integration of ODEs

Let us first introduce the standard formulation of numerical time integration of an initial
value problem (IVP) for a system of ODEs to be solved. It is usually written in the
following form

dy
dt

= ẏ = f(t, y), 0 ≤ t ≤ T, y(0) = y0 ∈ Rd, (2.1)

which can describe a couple of real life physical problems.

It can easily happen that the solution y(t) of the system (2.1) might be deduced from the
given problem. Our main focus is related to its conservation laws, i.e. if y(t) is a solution

3



4 2 GEOMETRIC NUMERICAL INTEGRATORS

of the IVP (2.1) which satisfies
g(t, y(t)) = 0 (2.2)

for some t, then it satisfies the equation (2.2) for all t of interest. There are some other
hidden apriori information, which can be unfortunately lost by the numerical solution
obtained via numerical integration. Here we must emphasize that the solution y(t) is de-
termined completely by the IVP (2.1). Laws, such as equation (2.2), represent conclusions
drawn about y(t) but not conditions imposed on it [10].

For example, linear conservation laws arise, if for the right side f of the ODE (2.1) there
exist a column vector x such that

x>f(t, y(t)) ≡ 0

identically in t and y(t). This immediately implies from (2.1)

x>ẏ = x>f(t, y(t)) = 0

and thus it can be further represented by integration as

g(t, y(t)) = x>y(t)− x>y(0) = 0.

Such laws are associated with terms like charge balance or conservation of mass.

Nonlinear conservation laws can arise, for example, if there is a function F (t, y) such as

∂F

∂t
(t, y(t)) +

∂F

∂y
(t, y(t))f(t, y(t)) = 0

identically, then for the total derivative we have

d
dt
F (t, y(t)) = 0

for any solution y(t) of the system (2.1). This yields by integration to the following
condition

g(t, y(t)) = F (t, y(t))− F (0, y(0)) = 0.

These type of laws are associated with the conservation of energy or the conservation of
angular momentum.

Generally numerical time integrators do not preserve geometric properties of the underly-
ing physical problem, even so, in principle, most numerical methods satisfy linear conserva-
tion laws [9]. But since it is very important to obtain a numerical solution, which possesses
meaningful physical properties and exhibits a correct qualitative behavior, obviously there
is a need in developing efficient structure-preserving numerical algorithms.

The research in geometric integration focuses on three main areas [4]:

1. development of new types of integrators, and integrators preserving new structures;

2. improvement of the efficiency of the integrators, by constructing methods tuned for
special cases of systems;

3. and study of the behavior of the integrators, especially their long-time dynamics;



2.2 Hamiltonian mechanics 5

and the extent to which the phase portrait of the system is preserved.

2.2 Hamiltonian mechanics

In order to obtain a better insight in the world of geometric integration, we consider
structure preserving properties of geometric integrators in the application to Hamiltonian
mechanics. Namely, because of the fact that Hamiltonian dynamics has a physical inter-
pretation that can provide useful intuitions and gives an example of a differential problem
with an underlying structure, which encapsulates invariance and symmetries [10].

It is a very general and appealing underlying geometric framework with a good perspec-
tive for generalization to various disciplines, a strong connection between symmetries and
conservation laws and a perspective for the application of statistical mechanics. While, for
example, Lagrange’s equation describes the motion of a particle as a single second-order
ODE, Hamilton’s equations describe the motion as a coupled system of two first-order
ODEs [38].

One of the main advantages of Hamiltonian mechanics is that it exhibits a similar structure
as quantum mechanics, the theory that describes the motion of particles at very tiny
(subatomic) distance scales. An understanding of Hamiltonian mechanics thus provides
a good introduction to the mathematics of quantum mechanics, which is proved to be a
great test site for exposing advantages of geometric numerical integrators [9].

Hamiltonian dynamics operates on a d-dimensional position vector q, and a d-dimensional
momentum vector p, such that the full state space has 2 × d dimensions. The system
is described by a function of q and p, known as the Hamiltonian H(q, p). The partial
derivatives of the Hamiltonian determine how q and p change with respect to time t,
according to Hamilton’s equations of motion:

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
. (2.3)

For any time interval of duration ε, these equations define a mapping, Tε, from the state
at any time t to the state at time t+ ε. Here, the Hamiltonian function H, and hence the
time mapping Tε, are assumed not to depend explicitly on t.

Alternatively, we can combine the vectors q and p into the vector y = (q, p) with 2 × d
dimensions, and write Hamilton’s equations (2.3) as

dy
dt

= J−1∇H(y),

where ∇H(y) is the gradient of the Hamiltonian H, and

J =

(
0d×d Id×d
−Id×d 0d×d

)
(2.4)

is a 2d× 2d matrix whose blocks are defined above in terms of identity and zero matrices.
In the literature the matrix J in (2.4) is called standard symplectic matrix [28].
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We usually use separated Hamiltonian functions that can be written as

H(q, p) = T (p) + V (q), (2.5)

where V (q) represents the potential energy of the system and T (p) its kinetic energy often
defined as

T (p) =
p>M−1p

2
. (2.6)

Here, M ∈ Rd×d denotes a symmetric, positive-definite mass matrix, which is typically
diagonal, and is often a scalar multiple of the identity matrix. With these forms for
decoupled H and T , Hamilton’s equations of motion (2.3) can be written

dqj
dt

=
[
M−1p

]
j
,

dpj
dt

= −∂V
∂qj

, j = 1, . . . , d. (2.7)

Let us now take a look at some geometric properties of the solution to the given system
(2.7).

Time-reversibility. First, Hamiltonian dynamics is reversible. The mapping Tε from
the state (q(t), p(t)) at time t to the state (q(t+ ε), p(t+ ε)) at time t+ ε, is one-to-one,
and hence has an inverse, T−ε. This inverse mapping is obtained by simply negating the
time derivatives in equations (2.7). If the Hamiltonian has the form (2.5)

H(q, p) = T (p) + V (q),

and T (p) = T (−p), assign the quadratic form for the kinetic energy (2.6), the inverse
mapping can also be obtained by negating p, applying Tε, and then negating p again, like
it is shown in Figure 2.1.

b b

bb

Tε

Tε

(q(t), p(t))

(q(t),−p(t)) (q(t+ ε),−p(t+ ε))

(q(t+ ε), p(t+ ε))

−p(t)p(t)−p(t) p(t)

Figure 2.1: Time-reversibility.

Conservation of the Hamiltonian. A second property of the dynamics is that it keeps
the Hamiltonian invariant (i.e. conserved). This is easily seen from equations (2.7) as
follows:

dH
dt

=
d∑
j=1

[
dqj
dt

∂H

∂qj
+

dpj
dt

∂H

∂pj

]
=

d∑
j=1

[
∂H

∂pj

∂H

∂qj
− ∂H

∂qj

∂H

∂pj

]
= 0.

We will see later, however, that a numerical time integration can only make H approxi-
mately invariant, and hence we will not be able to achieve this conservation exactly. But
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using numerical time integrators of higher order we can obtain a better conservation of
the Hamiltonian H (2.5).

Volume-Preservation. A third fundamental property of Hamiltonian dynamics is that
it preserves the volume (q, p) in space (a result known as Liouville’s theorem). If we apply
the mapping Tε to the points in some region R of the (q, p) space, with volume D, the
image of R under Tε will also have the same volume D as it is shown in Figure 2.2.

Tε

q q

pp

D D

R R

Figure 2.2: Symplecticity(volume preservation).

The preservation of volume by Hamiltonian dynamics can be proved in several ways. One
is to note that the divergence of the vector field defined by equations (2.7) is zero, which
can be seen as follows:

d∑
j=1

[
∂

∂qj

dqj
dt

+
∂

∂pj

dpj
dt

]
=

d∑
j=1

[
∂

∂qj

∂H

∂pj
− ∂

∂pj

∂H

∂qj

]
=

d∑
j=1

[
∂2H

∂qjpj
− ∂2H

∂pjqj

]
= 0

A vector field with zero divergence is known to preserve volume [1].

Symplecticity. The volume preservation is also a consequence of Hamiltonian dynam-
ics being symplectic. Letting y = (q, p), and defining matrix J (2.4), the symplecticity
condition is that the Jacobian matrix, Bε, of the mapping Tε satisfies

B>ε JBε = J.

This implies a volume conservation, since det(B>ε ) det(J) det(Bε) = det(J) implies that
det(Bε)

2 is one. When d > 1, the symplecticity condition is stronger than the volume
preservation. Hamiltonian dynamics and the symplecticity condition can be generalized
to the case when J is any matrix for which J> = −J and det(J) 6= 0.

It is important to mention that reversibility, preservation of volume, and symplecticity
can be maintained exactly even when Hamiltonian dynamics is approximated, which is
usually the case in practice. We will demonstrate this property in the next section.

2.3 Conservation of physical properties

In this section we introduce the structure preserving properties in terms of numerical
time integrators. We again consider the IVP for the system of ODEs (2.1) ẏ = f(t, y)
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with y(0) = y0 and we study the question to what extent geometric properties of the
exact flow ϕt(y0) can be preserved by a numerical approximation yn+1 obtained via time
integration by some numerical scheme Φh(yn) with the time step-size h. Here we present
some definitions and theorems, which are very important for understanding the idea of
transferring preservation laws to the world of numerical analysis.

2.3.1 Symmetry, time-reversibility

The first property we consider is a conservation of the symmetries, since it plays a crucial
role in physical problems, which current state changes during the time. Therefore it will
be beneficial to have such a numerical scheme.

Definition 1. [28] A numerical method Φh is called symmetric, if it satisfies the following
condition

Φh ◦ Φ−h = id or equivalently Φh = Φ−1
−h.

Hence a method yn+1 = Φh(yn) is symmetric if exchanging yn ↔ yn+1 and h↔ −h leaves
the method unaltered.

In order to define the time-reversibility we must first introduce few definitions.

Definition 2. [28] Let ρ be an invertible linear transformation in the phase space of
ẏ = f(y). This differential equation and the vector field f(y) are called ρ-reversible if

ρf(y) = −f(ρy) for all y.

Definition 3. [28] A map Φ(y) is called ρ-reversible if

ρ ◦ Φ = Φ−1 ◦ ρ.

Theorem 1. [28] If a numerical method Φh, applied to a ρ-reversible differential equation,
satisfies

Φ−h ◦ ρ = ρ ◦ Φ−1
h ,

then the numerical flow φh is a ρ-reversible map if and only if Φh is symmetric.

From this theorem we know that symmetry does not imply the ρ-reversibility of the nu-

merical flow [28]. If Theorem 1 holds for ρ =

(
I 0
0 −I

)
then a numerical method Φh is

time reversible.

Symmetric numerical schemes, applied to reversible systems, show an improved long-time
behavior in comparison to the standard numerical integrators [28].

2.3.2 Volume-preservation, symplecticity

The second fundamental property is symplecticity of the numerical flow. For example, if
y(0) on some domain D possess certain properties, then y(t) retain those properties after
the transformation through ϕt. Hence, it is natural to look for numerical methods that
share this property.
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Definition 4. [28] A numerical method Φh is called symplectic if the following condition
holds (

∂yn+1

∂yn

)>
J

(
∂yn+1

∂yn

)
= J,

where ∂yn+1

∂yn
is the sensitivity matrix of the given scheme Φh with respect to the initial value

and J is the skew-symmetric matrix (2.4).

Sometimes a weaker property can be enough to be satisfied by a numerical integrator.

Definition 5. [28] A numerical method Φh is called area-preserving if the following con-
dition holds ∣∣∣∣det

(
∂yn+1

∂yn

)∣∣∣∣ = 1.

It is straightforward to observe the following conclusion.

Corollary 1. Symplecticity implies area-preservation.

Symplectic integrators are known to have a very good energy behavior, meaning that the
considered system does not loose or gain energy. For example Hamiltonian systems possess
both time-reversibility and symplecticity properties and therefore require integrators to
conserve both properties.

2.3.3 Energy conservation, convergence order

The convergence of a numerical integrator is related to the global accuracy, and bounds
the global error after n time steps.

Definition 6. [5] An integrator Φh is said to be convergent of order r if there exist an
open set U and constant h̃ > 0 such that

‖ΦNh (y0)− ϕt(y0)‖ = O(hr) for h ≤ h̃, y0 ∈ U.

Since it is almost never possible to obtain the exact flow ϕt(y0) of the system (2.1) we use
in the next section the technique of backward error analysis, which helps us to estimate the
qualitative performance of the numerical scheme via the amount of the conserved energy.

The third important feature of the Hamiltonian systems (2.7) is the invariance of the total
energy, which is represented by the Hamiltonian H (2.5).

Theorem 2. [28] Consider a Hamiltonian system with an analytic Hamiltonian function
H : D 7→ R (where D ⊂ R2d), and apply a symplectic numerical method Φh with step
size h. If the numerical solution stays in the compact set K ⊂ D, then there exist h0 and
N = N(h)(namely N equal to the largest integer satisfying hN ≥ h0) such that

H̃(yn) = H̃(y0) +O(e
−h0
2h )

H(yn) = H(y0) +O(hr)
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over exponentially long time intervals nh ≤ e
h0
2h . The modified analytic Hamiltonian H̃ is

exactly preserved by the numerical scheme Φh

H̃(q, p) = H(q, p) + hH2(q, p) + h2H3(q, p) + . . . , (2.8)

where the smooth functions Hj : R2d 7→ R for j = 2, 3, . . . , such that fj(y) = J−1∇Hj(y),
where defined by (2.9).

For non-symplectic methods we can obtain an estimate of the energy preservation by a
computation similar to that of the proof of Theorem 2 which is given in [24]. And from
a Lipschitz condition of the Hamiltonian H and from the standard local error estimate,
we obtain H(yn+1) −H(ϕh(yn)) = O(hr+1). Since H(ϕh(yn)) = H(yn), a summation of
these terms leads to H(yn) − H(y0) = O(thr) for t = nh. This means that the energy
does not stay invariant for non-symplectic methods.

From Theorem 2 we can conclude that numerical methods cannot be symplectic and
conserve the total energy exactly. They can preserve the Hamiltonian H up to some
degree r, which depends of the convergence order of the numerical scheme. Meaning, the
higher the convergence order of the integrator the better it conserves the total energy.

2.4 Backward error analysis

The idea of backward error analysis is the following: for a given numerical integrator search
for a modified differential equations, such that the exact solution of this modified equation
approximates very well the numerical solution. An analysis of the modified differential
equation then gives much insight into the numerical flow [27].

Unlike, a forward error analysis, which consists of the study of the errors y1−ϕh(y0) (local
error) and en = yn − ϕnh(y0) (global error) in the solution space, the idea of backward
error analysis is to search for a modified differential equation ˙̃y = fh(ỹ) of the form

˙̃y = f(ỹ) + hf2(ỹ) + h2f3(ỹ) + . . . , (2.9)

such that yn = ỹ(nh), and in studying the difference of the vector fields f(y) and fh(y).
This approach then gives much insight into the qualitative behavior of the numerical
solution and into the global error yn − y(nh) = ỹ(nh)− y(nh). We remark that the series
(2.9) usually diverges and that one has to truncate it suitably. For the moment we content
ourselves with a formal analysis without taking care of convergence issues. The idea of
interpreting the numerical solution as the exact solution of a modified equation is common
to many numerical analysts [28].

Theorem 3. [28] Suppose that the method yn+1 = Φh(yn) is of order r, i.e.,

Φh(y) = ϕh(y) + hr+1δr+1(y) +O(hr+2),

where ϕt(y) denotes the exact flow of ẏ = f(y), and hr+1δr+1(y) the leading term of the
local truncation error. The modified equation then satisfies

˙̃y = f(ỹ) + hrfr+1(ỹ) + hr+1fr+2(ỹ) + · · · , ỹ(0) = y0
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with fr+1(y) = δr+1(y).

A first application of the modified equation is the existence of an asymptotic expansion
of the global error. Indeed, by the nonlinear variation of constants formula, the difference
between its solution y(t) and the solution ỹ(t) of ˙̃y = fh(ỹ) satisfies

ỹ(t)− y(t) = hrer(t) + hr+1er+1(t) + . . . ,

where ei(t) are terms of the global truncation error. Since yn = ỹ(nh) + O(hn) for the
solution of a truncated modified equation, this proves the existence of an asymptotic
expansion in powers of h for the global error yn − y(nh).

Theorem 4. [28](Modified Hamiltonians) If a symplectic method Φh is applied to a Hamil-
tonian system with a smooth Hamiltonian H : R2d 7→ R, then the modified equation (2.9)
is also Hamiltonian. More precisely, there exist smooth functions Hj : R2d 7→ R for
j = 2, 3, . . . such that fj(y) = J−1∇Hj(y).

The result of the above theorem allows us to estimate the energy conservation of the sym-
plectic numerical schemes via the difference between the Hamiltonian of the system and
the Hamiltonian preserved by numerical method as we show in the next section.

Modified Hamiltonian functions.
The motivation for studying numerically the conservation properties of these modified
Hamiltonians are multifaceted [54], e.g. numerical evidence for the existence of a Hamilto-
nian for a particular calculation, exposure of energy drifts caused by numerical instability,
etc.. Skeel and Hardy [54] proposed a simple strategy for deriving highly accurate esti-
mates for modified Hamiltonians. Since these modified Hamiltonians approximate well
the true Hamiltonian, they are referred as "shadow" Hamiltonians H̃ (2.8), cf. [18]. The
existence of these shadow Hamiltonians guarantees the boundedness of the error in the
symplectic map, in fact we have H̃(q, p, h)→ H(q, p) for h→ 0.

Conversely, if one starts from a given numerical solver then it is well known that any
symplectic integrator different from the Hamiltonian flow itself does not preserve the
Hamiltonian however a nearby system, the so-called shadow Hamiltonian H̃ is conserved.
The energy computed from the shadow Hamiltonian of a symplectic integrators differs by
H(q, p)− H̃(q, p, h) = O(hr) from the true Hamiltonian [30], with r being the order of the
integration scheme. Hence, computing the shadow Hamiltonian of a symplectic integrator
is equivalent to determining the order of the integrator.

To compute a shadow Hamiltonian it is necessary to expand an exponential map to a
Hausdorff series. Let T̂ and V̂ be a random (usually non-commuting) operators then the
Baker-Campbell-Hausdorff (BCH) formula [32] reads

ln(eT̂ eV̂ ) =

∞∑
n=1

cn(T, V ), (2.10)

where the coefficients cn are recursively determined from the relations c1 = T + V and

(n+ 1)cn+1 =

bn/2c∑
m=1

B2m

(2m)!

∑
k1,...,k2m≥1

adck1 . . . adck2m(T + V )− 1

2
(adcn)(T − V ),
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for n ≥ 0, where ada : b 7→ [a, b] and Bn denote the Bernoulli numbers.

For a differential equation
ẏ = f [1](y) + f [2](y),

it is convenient to study the composition of the flows ϕ[1]
t and ϕ[2]

t of the systems

ẏ = f [1](y) ẏ = f [2](y), (2.11)

respectively.

Let us introduce a Lie derivative, the differential operators of the following form

Di =
∑
j

f
[i]
j (y)

∂

∂yj
,

which means that for some differentiable functions F : Rn 7→ Rm we have

DiF (y) = F ′(y)f [i](y).

It follows from the chain rule that, for the solutions ϕ[i]
t (y0) of the system (2.11),

d
dt
F
(
ϕ

[i]
t (y0)

)
= (DiF )

(
ϕ

[i]
t (y0)

)
(2.12)

and iteratively applying this operator we obtain

dk

dtk
F
(
ϕ

[i]
t (y0)

)
= (Dk

i F )
(
ϕ

[i]
t (y0)

)
,

and Taylor series of F
(
ϕ

[i]
t (y0)

)
at t = 0 yield

F
(
ϕ

[i]
t (y0)

)
=
∑
k≥0

tk

k!
(Dk

i F )(y0) = exp(tDi)F (y0).

Setting F (y) = Id(y) = y to be the identity map, we can see that this is the Taylor series
of the solution itself

ϕ
[i]
t (y0) =

∑
k≥0

tk

k!
(Dk

i Id)(y0) = exp(tDi) Id(y0).

Lemma 1. [22] Let ϕ[2]
s and ϕ[1]

t be the flows of the differential equations ẏ = f [1](y) and
ẏ = f [2](y), respectively. For their composition we then have(

ϕ[2]
s ◦ ϕ

[1]
t

)
(y0) = esD1 etD2 Id(y0).

For example, in case of the Hamiltonian function (2.5) for the system (2.3) the standard
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formulation of the Störmer-Verlet scheme (leap-frog method) yields

pn+ 1
2

= pn −
h

2

∂V

∂q

qn+1 = qn + h
∂T

∂pn+ 1
2

pn+1 = pn+ 1
2
− h

2

∂V

∂qn+1
.

From Lemma 1 it follows that the above method can be rewritten in the following formu-
lation

e
h
2
V̂ ehT̂ e

h
2
V̂ ,

where exponential operators represent shifts in momenta and coordinates of the standard
formulation of the method. Then by using the BCH formula (2.10) we can obtain its
shadow Hamiltonian, which is given by

H̃ = H − h2

24

(
2
[
V, [T, V ]

]
+
[
T, [T, V ]

])
+O(h4)

and it is of the second order accuracy.

We later use the exponential operator formulation for the newly developed integrators since
it turns the derivation of the modified Hamiltonians more clear and notation universal for
the case of Abelian and non-Abelian structures as we demonstrate further though this
thesis.

2.5 Numerical time integrators for ODEs

In this section we briefly define the main classes of numerical integrators that have been
found to exhibit useful geometric properties.

2.5.1 Splitting and composition methods

With phase spaceM for the system

ẏ = f(y), y(0) = 0, y ∈M,

splitting methods involve three steps [37]:

1. choosing a set of vector fields f [i](y) such that f =
∑n

i=1 f
[i](y)

2. integrating either exactly or approximately each f [i](y) with ϕ[i]
h

3. combining these solutions to yield an integrator for f .

The order can be increased by including more operators in a time step. For a splitting
into two parts, f(y) = f [1](y) + f [2](y), we have the general non symmetric composition

ϕ
[1]
aKh
◦ ϕ[2]

bKh
◦ · · · ◦ ϕ[1]

a1h
◦ ϕ[2]

b1h
◦ ϕ[1]

a0h
. (2.13)
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By convention, we only count the evaluations of the flow of ϕ[2]
h , and refer to equation (2.13)

as an k-stage method. The number of stages and the coefficients ak and bk are to be chosen
to ensure that the method has some order r. The method Φh is time symmetric if one
of the following conditions holds a1 = 0, ak+1 = aK−k+1, bk = bK−k+1 or ak = aK−k+1,
bk = bK−k and bK = 0 [42].

It is easy to find time-symmetric methods, e. g. if Φh is any method of order r, then
Φ 1

2
hΦ− 1

2
h is time-symmetric and of order at least r + 2 (if r is even ) or at least r + 1 (if

r is odd). In general, if Φh is an explicit method, then Φ−h is implicit. However, if Φ is a
composition of (explicitly given) flows, then Φ−h is also explicit [37].

The advantages of splitting methods are that they are usually simple to implement, ex-
plicit, and can preserve a wide variety of structures. Their disadvantages are that, except
in particular cases, higher-order methods are relatively expensive, and that the splitting
may violate some special property, such as a symmetry, that one may want to preserve.

2.5.2 Runge-Kutta methods

Runge–Kutta (RK) methods are defined for systems with linear phase space Rn. For the
system

ẏ = f(y), y(0) = 0, y ∈ Rn,

the s-stage RK method with parameters aij , bi for i, j = 1, . . . , s is given by

ki = f

yk + h
s∑
j=1

aijkj

 , yk+1 = yk + h
s∑
j=1

bjkj . (2.14)

RK methods are “linear”, that is, the map from vector field f to the map yk 7→ yk+1

commutes with linear changes of variable yk 7→ Ay. (Alternatively, the method is inde-
pendent of the basis of Rn). This implies, for example, that all RK methods preserve all
linear symmetries of the system. They are explicit if aij = 0 for j ≥ i , although they
cannot then be symplectic. The most useful RK methods in geometric integration are
the Gaussian methods. They are implicit, A-stable, possess the maximum possible order
for an s-stage RK method (namely 2s), preserve all quadratic first integrals of f , and are
symplectic for canonical Hamiltonian systems [10].

If we fix a basis in Rn, writing y = (y1, y2, . . . , yn), we can define the partitioned Runge–Kutta
(PRK) methods, in which a different set of coefficients are used for each component of y

kli = f l

ylk + h

s∑
j=1

alij(kj)

 , ylk+1 = ylk + h
s∑
j=1

bljkj . (2.15)

Some PRK methods are splitting methods, but apart from these, the most useful PRK
methods in geometric integration are the Lobatto IIIA-IIIB methods, of order 2s − 2.
These are symplectic for separated Hamiltonian systems and have two sets of coefficients,
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one for the q and one for the p variables.

2.5.3 Projection methods

Some properties can be preserved by simply taking a step of an arbitrary method and then
enforcing the property. Integrals and weak integrals (invariant manifolds) can be preserved
by projecting onto the desired manifold at the end of a step or steps, typically using or-
thogonal projection with respect to a suitable metric. For example, energy-preserving in-
tegrators have been constructed using discrete gradient methods, a form of projection [25].
Although it is still used, projection is something of a last resort, as it typically destroys
other properties of the method (such as symplecticity) and may not yield good long-time
behavior. Reversibility is an exception, for R-reversibility can be imposed on the map Φ by
using ΦRΦ−1R−1, where R : M → M is an arbitrary diffeomorphism of the phase space.
Since this is a composition, it can preserve the group properties of Φ such as symplecticity.
Symmetries are a partial exception; the composition ΦSΦS is not S-equivalent, but it is
closer to S-equivalent than Φ is, when S2 = 1.

2.5.4 Variational methods

Many ODEs and PDEs of mathematical physics are derived from variational principles
with natural discrete analogs. For an ODE with Lagrangian L(q, q̇) one can construct an
approximate discrete Lagrangian Ld(q0, q1) such as Ld(q0, q1) = Ld(q0, (q1 − q0)/τ) from

an integrator by requiring that the discrete action
N∑
i=0

Ld(qi, qi+1) be stationary with re-

spect to all variations of the qi, for i = 1, . . . , N − 1, with fixed end-points q0 and qN .
For regular Lagrangian, the integrator can be seen to be symplectic in a very natural
way, and in fact the standard symplectic integrators such as leapfrog and the symplectic
Runge–Kutta methods can be derived in this way [38]. The advantage of the discrete La-
grangian approach is that it acts as a guide in new situations. The Newmark method, well
known in computational engineering, is variational, a fact that allowed the determination
of the (nonstandard) symplectic form it preserves; singular Lagrangian can be treated;
it suggests a natural treatment of holonomic (position) and nonholonomic (velocity) con-
straints and of non smooth problems involving collisions; and powerful “asynchronous”
variational integrators can be constructed, which use different, even incommensurate time
steps on different parts of the system. In these situations variational integrators appear
to be natural, and to work extremely well in practice, even if the reason for their good
performance (e.g., by preserving some geometric feature) is not yet fully understood [35].

2.5.5 Linear multistep methods

Defined on a linear space M ∈ Rn s-step method is

s∑
j=0

αjyk+j = τ
s∑
j=0

βjf(yk+j). (2.16)
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Such methods define a map on the product space M s, and can sometimes preserve a
structure (e.g. a symplectic form) in this space. However, this will not usually give good
long-time behavior of the sequence of points yk ∈M . Instead, one considers the so-called
underlying one-step method Φh : M → M , which is defined such that the sequence of
points yk := Φh(y0) satisfies the multistep formula. (It always exists, at least as a formal
power series in τ). Often the dynamics of Φ dominates the long-term behavior of the
multistep method. Recently it has been proved that the underlying one-step methods
for a class of time-symmetric multistep methods for second-order problems ÿ = f(y) are
conjugate to symplectic, which explains their near-conservation of energy over long times
and their practical application in solar system dynamics [11].

2.6 Numerical integration on Lie groups

For certain applications numerical time integration of ODEs on manifold is required. There
are a number of techniques to preserve geometric properties of the numerical flow and
numerical integrators on Lie groups play a very important role. In this section we give a
short insight for numerical treatment of ODEs defined on Lie groups.

First letM∈ Rd be a given manifold then the system of ODEs (2.1)

ẏ = f(y), y(0) = 0, y ∈ Rn,

is a differential equation on the manifoldM, if y0 ∈ M implies y(t) ∈ M for all t. This
is equivalent to the requirement on the vector field that f(y) ∈ TyM for y ∈ M, where
TyM is the tangent space ofM at the point y ∈M and for a manifold given by [26]

M = {y ∈ Rd|g(y) = 0},

the tangent space takes the form

TyM = {v ∈ Rd|g′(y)v = 0}.

Then a Lie group is a differentiable manifold G, for which the product is a differentiable
mapping G×G→ G. The tangent space g = TIG at the identity I of a matrix Lie group
G is closed under commutators of its elements. This makes g an algebra, the Lie algebra
of the Lie group G [28]. As an example of a Lie group, which can be widely used in
quantum field theory, is the special unitary group SU(n) of n× n unitary matrices with a
determinant equals to 1.

Next two lemmas introduce some important properties of Lie groups.

Lemma 2. Let G be a matrix Lie group and let g = TIG be the tangent space at the
identity. The Lie bracket (or commutator)

[A,B] = AB −BA (2.17)

defines an operation g× g→ g which is bilinear, skew-symmetric and satisfies the Jacobi
identity

[A, [B,C]] + [C, [A,B]] + [B, [C,A]] = 0 (2.18)
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Lemma 3. Consider a matrix Lie group G and its Lie algebra g. The matrix exponential
is a map

exp : g→ G, (2.19)

i. e., for A ∈ g we have exp(A) ∈ G.

Further in this section we present some general ideas for numerical treatment of the prob-
lems defined on the Lie groups.

2.6.1 Methods based on Magnus expansion

Let us consider the linear matrix differential equations

Ẏ = A(t)Y, (2.20)

where the matrix A depends constantly on t. For the scalar case the solution of (2.20)
with Y (0) = Y0 is given by

Y (t) = exp

 t∫
0

A(τ)dτ

Y0. (2.21)

Defining the inverse of the derivative of the matrix exponential by

d exp−1
Ω (Λ) =

∑
k≥0

Bk
k

adkΩ(Λ), (2.22)

where Bk are the Bernoulli numbers, and adΩ(A) is the adjoint operator, we can formulate
Theorem 5

Theorem 5. The solution of the differential equation (2.20) can be written as Y (t) =
exp(Ω(t))Y0 with Ω(t) defined by

Ω̇ = d exp−1
Ω (A(t)) , Ω(0) = 0 (2.23)

As long as ‖Ω(t)‖ < π, the convergence of the d exp−1
Ω expansion (2.22) is assured.

The so-called Magnus expansion is obtained via integrating (2.23) and yields

Ω(t) =

t∫
0

A(τ)dτ − 1

2

t∫
0

 τ∫
0

A(σ)dσ,A(τ)

 dτ

+
1

4

t∫
0

 τ∫
0

 σ∫
0

A(µ)dµ,A(σ)

 dσ,A(τ)

 dτ

+
1

2

t∫
0

 τ∫
0

A(σ)dσ,

 τ∫
0

A(µ)dµ,A(τ)

 dτ + . . . .

(2.24)

The truncated series (2.24) give an excellent approximation to the solution of (2.20),
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cf. [28].

In order to approximate (2.20) it is proposed in [29] to use Yn+1 = exp(hΩn)Yn, where
Ωn is an approximation of Ω(h) given by (2.24) with A(tn + τ) instead of A(τ) and the
collocation approach yields to replace A(t) with

Â(t) =

s∑
i=1

li(t)A(tn + cih)

and to solve Ẏ = Â(t)Y on [tn, tn + h] by use of (2.24).

It is possible to construct methods of arbitrary high order with reduced number of com-
mutators [26].

2.6.2 Crouch-Grossman methods

The idea of RK methods (2.14) applied to differential equations (2.20) on Lie groups has
the disadvantage since for any Y ∈ G and Z ∈ G the update of the form Y + haA(Z)Z
is not general in the Lie group G. The replacement of the above update operation with
exp (haA(Z))Y was proposed to resolve this disadvantage in [15].

Definition 7. Let bi, aij (i, j = 1, . . . , s) be real numbers. An explicit s-stage Crouch-
Grossman method is given by

Y (i) = exp(hai,i−1Ki−1) . . . exp(hai1K1)Yn, Ki = A(Y i),

Yn+1 = exp(hbsKs) . . . exp(hb1K1)Yn.

The Crouch-Grossman methods yield the approximation Yn which lie exactly on the man-
ifold defined by a Lie group and the accuracy order is defined in Theorem 6

Theorem 6. [29] Let ci =
∑

j aij. A Crouch-Grossman method has order p (p ≤ 3) if the
following order conditions are satisfied:

order 1 :
∑
i

bi = 1

order 2 :
∑
i

b1ci =
1

2

order 3 :
∑
i

bic
2
i =

1

3∑
ij

biaijcj =
1

6∑
i

b2i ci + 2
∑
i<j

bicibj =
1

3
.

We note that the construction of the high order Crouch-Grossman methods is very com-
plicated [28].
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2.6.3 Munthe-Kaas methods

The main purpose to develop this class of numerical methods was to develop a theory of
RK methods in a coordinate free framework [28].

Let us consider the problem (2.20) with A(Y ) ∈ g for Y ∈ G. From Theorem 5 we know
that the solution of (2.20) can be written as Y (t) = exp(Ω(t))Y0, where Ω(t) is the solution
of Ω̇ = d exp−1

Ω (A(Y (t))), Ω(0) = 0.

Suitably truncating the series (2.24) and considering the differential equation

Ω̇ = A (exp(Ω)Y0) +

q∑
k≥0

Bk
k

adkΩ (A (exp(Ω)Y0)) , Ω(0) = 0. (2.25)

yields the following algorithm.

Assume that Yn lies in the Lie group G, then, the step Yn 7→ Yn+1 can be defined as follows

• consider the differential equation (2.25) with Yn instead of Y0 and apply a RK method
(2.14) to get an approximation Ω1 ≈ Ω(h)

• define the numerical solution by Yn+1 = exp(Ω1)Yn.

Important properties of the Munthe-Kass methods are given in the two following theorems.

Theorem 7. [29] Let G be a matrix Lie group and g its Lie algebra. If A(Y ) ∈ g for
Y ∈ G and if Y0 ∈ G, then the numerical solution of the Lie group Munthe-Kass method
lies in G, i. e., Yn ∈ G for all n = 0, 1, 2, . . . .

Theorem 8. [29] If the RK method is of (classical) order p and if the truncation index
in (2.25) satisfies q ≥ r − 2, then the method of this type is of the order r.

Every classical RK method defines a Munthe-Kaas method of the same order, unlike
Crouch-Grossman methods, which need more stages for the same order [28].

Munthe-Kaas methods are in general not symmetric, even if the underlying Runge–Kutta
method is symmetric [28], but symmetric versions of these methods have been devel-
oped [62]. As well as the symplectic versions based on the variational principles were
recently presented in [7]. But so far there is no time-reversible and symplectic Lie group
method.

It is important to mention that the projection methods are suited for the numerical treat-
ment of equation of the type (2.20) since it is a special case of differential equation on the
manifolds. As well as the splitting methods with a small modification (we introduce later)
are capable to take care of problems on the Lie groups. In this thesis we use these two
ideas as a benchmark of our research and to study our main application, which we present
in the next chapter.





3 Chapter 3

QUANTUM FIELD THEORIES ON
THE LATTICE

Quantum field theory is a set of ideas and tools that combines three of the major themes of
modern physics: the quantum theory, the field concept and the principle of relativity. The
theory underlies modern elementary particle physics and supplies essential tools to nuclear
physics, atomic physics, condensed matter physics and astrophysics [45]. It summarizes
the knowledge about the fundamental forces of electromagnetism, as well as the weak
and strong interactions and it has been tested over an extremely wide range of length
or energy scales. Quantum field theory includes a vast number of physical theories, such
as quantum electrodynamics, which describes all phenomena of both electromagnetic and
weak interactions, and quantum chromodynamics, which focus on the strong interactions
between quarks and gluons [23].

Due to the author’s involvement in the Marie Curie Initial Training Network STRONGnet
on Strong Interaction Supercomputing Training Network and later in the project B5 within
the SFB/Transregio 55 Hadronenphysik mit Gitter-QCD, the main goal of this thesis lies
within the application to the theory of lattice quantum chromodynamics.

In this chapter we briefly introduce basic concepts of quantum field theory, show the
quantization approach from classical field theory up to quantum fields. Also very shortly
the idea of regularization path integral formulation of quantum field theory on the lattice
is presented as well as couple examples of quantum field theories. Later we show one of
the way to solve a path integral on the lattice, namely the hybrid Monte Carlo algorithm.
Finally, we discuss the challenges for numerical integration and the reasons for studying
structure preserving geometric numerical time integrators.

3.1 Basic concepts of quantum field theories

Quantum field theory in its function integral formulation follows from two classical con-
cepts of physics: classical field theory and quantum mechanics. We do not consider here
the complete path from point mechanics to quantum field theory, but rather just shortly
introduce the basic ideas of the underlying theories for better understanding of the quan-
tum field theory itself.

Classical field theory represent the generalization of point mechanics to n degrees of free-
dom in each space-time point x = (t,x) and a system with infinite number of degrees
of freedom is described by a field φ(x). The examples of fields are Abelian gauge fields
Aµ ∈ R, describing the electromagnetic potential, where µ = 0, . . . , 3 and has n = 4 de-
grees of freedom with two of them corresponding to U(1) gauge group; and non-Abelian
gauge fields Aaµ, where µ = 0, . . . , 3, a = 1, . . . , 8 and n = 16, represents a gluon field and
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corresponds to gauge group SU(3).

Adding formalism of quantum mechanics we obtain the representation of probability am-
plitude for a particle to move from point x to point x′ within the time interval T and
~ = 1

〈x′| e−iĤT |x〉, (3.1)

where a state |x〉 of the position operator is a vector in Hilbert space and Ĥ represents
the Hamilton operator. Here standard bra-ket notation 〈|〉 defines the scalar product.

The propagator given in (3.1) can be approximated as following Feynman path integral [39]

〈x′| e−iĤT |x〉 =

∫
Dx eiS[x] . (3.2)

Here the functional measure Dx represents

Dx = lim
N→∞

( m

2πiε

)N/2
dx1 · · · dxN−1 (3.3)

and represents the integration over all possible paths from (t, x) to (t′, x′). The functional
formalism has been proved to be very useful in field theory since many results can be de-
rived in a compact and easy way through formal manipulations of functional integrals [39].

Introducing the concept of Euclidean time T → −iτ gives us a different representation for
the path integral (3.2)

〈x′| e−Ĥτ |x〉 =

∫
Dx e−SE [x], (3.4)

where the functional measure Dx differs from one in (3.3) and given by

Dx = lim
N→∞

( m

2πε

)N/2
dx1 · · · dxN (3.5)

and the Euclidean action SE is related to the action S through

S = iSE .

The path integral (3.4) is real now and has an integrand, which is damped for widely
oscillating paths with a large Euclidean action SE [39].

It is possible, according to quantum statistical mechanics, to extract thermal expectation
values for some chosen operator Ô using the path integral formulation (3.4) in the following
way

〈Ô〉 =
1

Z

∫
DxO(x) e−SE [x] . (3.6)

Here Z defines a partition function known from statistical mechanics

Z = Tr e−βĤ =

∫
Dx e−SE , (3.7)

where β = T and the integral measure Dx is given by (3.5). Particularly it is interesting
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to consider 2-point functions (correlators) of operator at different instances in Euclidean
time

〈O(x(0)O(x(t)))〉 =
1

Z

∫
DxO(x(0))O(x(t)) e−S(x)

especially connected 2-point functions presented by

lim
β→0

[
〈O(x(0)O(x(t)))〉 − |〈O(x)〉|2

]
= |〈0|Ô|1〉|2 e−(E1−E0)t . (3.8)

The connected 2-point function (3.8) decays exponentially at large Euclidean time sepa-
rations. By measuring this decay, we obtain in practice the energy gap E1 − E0, which
represents the mass of the lightest particle involved [59].

Since field theories are represented as systems with infinitely many degrees of freedom
with a certain number given per space point. Their quantization is a subtle issue because
too naive approaches lead to divergent results. In order to avoid meaningless divergent
results, quantum field theories must be regularized by introducing an ultraviolet cut-off.
In order to properly define a quantum field theory one must also specify the integration
measure Dφ of the fields in a path integral (3.4) [59].

One approach is to expand the path integral (3.4) in powers of the coupling constant β.
The resulting Feynman diagrams are then regularized order by order in the coupling. This
perturbation approach to field theory has led to impressive results in weakly interacting
theories. Still, even at weak coupling the perturbation approach to field theory is not
entirely satisfactory. It is known that perturbation theory is only an asymptotic expansion.
The sum of all orders is divergent and thus does not define the theory beyond perturbation
theory. Even more important, for strongly coupled theories, like QCD at low energies, the
perturbation regularization is completely useless [45].

The lattice regularization provides a clean way of doing this by replacing the space-time
continuum with a discrete mesh of lattice points

Zreg =
∏
x∈lat

∫
Dφrege

−SE [φ].

One should not regard the lattice as an approximation to the continuum theory. It rather
provides a definition of a theory that is undefined directly in the continuum. Of course,
in order to recover the continuum limit, the theory must be renormalized by letting the
lattice spacing tend to zero while adjusting the bare coupling constants appropriately to
obtain finite expectation values

〈O〉reg =
1

Zreg

∫
DφregO(φ(x)) e−SE [φ] .

The observable operators O can be operators that create or annihilate states, or opera-
tors that measure observables or combinations of all of these.

New quantization prescription, which is based on the above mentioned metric, states that
it is no longer implemented by enforcing canonical commutation rules for the commutators,
but instead by a path integral over classical field variables.

The steps involved in the quantization of some system can be formulated as in [19]:
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1: Replace the continuum space time by an Euclidean lattice with a lattice constant a.
The degrees of freedom are the classical field variables φ living on the lattice.

2: Discretize the Euclidean action SE [φ] on the lattice such that in the limit a→ 0 the
Euclidean continuum action is obtained.

3: The operators that appear in the Euclidean correlator to be studied are translated to
functionals by replacing the field operators with the classical lattice field variables.

4: Compute the Euclidean correlation functions (3.8) by evaluating these functionals
on some lattice field configuration, weighting them with the Boltzmann factor and
integrating over all possible field configurations.

Once physical observables are calculated on the lattice one is interested in their values in
the limit a → 0, the so-called continuum limit. We will discuss this topic since it not a
part of our research.

In the next section we consider the lattice regularization for different kinds of field variables
and introduce examples of the quantum field theory as the main application of this work.

3.2 Regularization on the lattice

Lattice field theory is the only regularization scheme, which captures finite couplings for
field interaction on a non-perturbative level. By the analogy with quantum mechanical
path integral (3.2), defined as a limit of a finite-dimensional integral, which resulted from a
discretization in time, the same procedure is applied to quantum field theory by considering
the integral (3.4) as a limit of well defined integral over discretized Euclidean space-
time [39].

Here we consider a hypercubic lattice Λ with a lattice spacing constant a given by

Λ = aZ4 =
{
x|xµ
a
∈ Z

}
. (3.9)

One can consider φ4 theory, which is one of the simplest field theories with interaction
terms, which in certain cases does not actually requires regularization in order to show
the most important features and techniques of lattice field theory.

For example, for the scalar fields φ(x), defined on the points x ∈ Λ with the action S[φ(x)]
the partition function Z is given by

ZΛ =

∫ ∏
x∈Λ

Dφ(x)e−SE [φ(x)]

and observables 〈O〉Λ can be evaluated numerically by means of Monte Carlo simulations.

We will discuss the Monte Carlo algorithm at the end of this chapter in more details but
first we briefly introduce a regularization procedure from the continuum to the lattice for
different field variables, which are necessary to introduce our main application.
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3.2.1 Gauge fields

For simplicity let us consider a complex vector field φ(x) and some action S, which is
invariant under transformations of the form

φ(x)→ φ′ = Ω−1φ(x), Ω ∈ SU(N), (3.10)

where Ω is a N ×N matrix satisfying

Ω†Ω = 1, det Ω = 1. (3.11)

The first condition (3.10) defines a unitary group U(N) and the second one (3.11) restricts
to a special unitary group SU(N). The transformation (3.10) is called a global gauge
transformation.

The bigger class of transformations called local gauge transformations consist of the global
gauge transformations (3.10)

φ(x)→ φ′ = Ω−1(x)φ(x), (3.12)

where Ω(x) changes with x.

In order to construct gauge invariant action one has to define so the called covariant
derivative [19]

Dµ(x) = ∂µ + iAµ(x), (3.13)

where Aµ(x) ∈ su(N) is an element of the Lie algebra of SU(N) and called gauge field.

Then the field strength tensor Fµν(x) corresponds to the curvature tensor and defined as
a commutator

Fµν(x) = −i[Dµ(x), Dν(x)] = ∂µAν(x)− ∂νAµ(x) + i[Aµ(x), Aν(x)].

The fact that the field strength tensor Fµν(x) is the commutator of two covariant deriva-
tives implies that it inherits the transformation properties of (3.13), i.e., it transforms
as

Fµν(x) 7→ F ′µν(x) = Ω(x)Fµν(x)Ω(x)†

with Ω satisfying (3.11). The dynamics of the gauge field Aµ(x) is then introduced by
means of the Yang-Mills action

SYM = − 1

2g2

∫
d4xTrFµνFµν . (3.14)

For the regularization of the gauge field Aµ on the lattice, let n be a point on the lattice
Λ and n + aµ̂ the neighboring point in the direction of the lattice axis µ = 1, 2, 3, 4 with
a lattice spacing a. The link Ux,µ on the straight path from x to x+ µ is an element of a
gauge group G(U(N) or SU(N)) and satisfies

U(y, n) = U−1(n, y).

The collection of all links {Uµ(n)} represents the lattice gauge field [39].
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In order to construct a gauge invariant action for the lattice gauge field the smallest closed
loops on the lattice called plaquettes are used.

A plaquette Pµ(n) consisting of four links and containing points

n, n+ aµ̂, n+ aµ̂+ aν̂, n+ aν̂

presented as a product of links in the following form

Pµ(n) = Uµ(n)Uν(n+ µ̂)U †µ(n+ ν̂)U †ν (n), (3.15)

where the link on opposite direction is defined by

U−µ(n) = U †µ(n− µ̂)

and can be visualized as it is shown on Figure 3.1.

n+ ν̂ n+ ν̂ + µ̂

n+ µ̂n

U †µ(n+ ν̂)

U †ν (n) Uν(n+ µ̂)

Uµ(n)

n+ ν̂ n+ ν̂ + µ̂

n+ µ̂n

Uµ(n+ ν̂)

Uν(n) U †ν (n+ µ̂)

U †µ(n)

Figure 3.1: Plaquette.

The action proposed for the pure gauge theory is called Wilson action and defined in terms
of the plaquettes (3.15)

S[U ] =
∑
n;µ,ν

Sn;µ,ν(Pµ,ν(n)),

with the plaquette term

Sn;µ,ν = β

{
1− 1

N
Re TrUµ,ν(n)

}
for SU(N).

There are other possibilities for defining gauge invariant actions, but the choice of Wilson
action appears to be the simplest one [39].

3.2.2 Fermion fields

Theories with fermions have no immediate classical limit, and the definition of the path
integral needs special care [59].

It requires an introduction of the anti-commutating variables ηi with i ∈ 1, 2, . . . ,N defined
on a so-called Grassmann algebra, which is characterized by the following relations

{ηi, ηj} = ηiηj + ηjηi = 0,
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such that any function f(η) has a representation in terms of finite degree polynomials of
the form

f(η) = f +
∑
i

fiηi +
∑
ij

fijηiηj +
∑
ijk

fijkηiηjηk + · · · ,

where the numbers fij···l are complex or real numbers and antisymmetric in i, j, · · · , l.
Then formal differentiation and integration procedures are also defined correspondingly
for differentiation

∂

∂ηi
ηi = 1,

∂

∂ηi
ηiηj = ηj ,

∂

∂ηj
ηi = −ηj ,

and for integration ∫
dηi = 0,

∫
dηiηi = 1,

∫
dηidηiηiηj = −1.

The fermion action SF is presented by

SF [φ̄φ] =

∫
ddxφ̄(γµ∂µ +m)φ, (3.16)

with γµ are Euclidean Dirac matrices.

The Grassmann algebra is used to define fermion fields generated by independent Grass-
mann numbers φn and φ̄n. The index n varies over all space-time points as well as over
all spin, flavor and color indices. On the lattice the continuum field φ̄, φ is replaced by
Grassmann variables φn, φ̄n.

There are different ways to discretize the fermion action (3.16). First we introduce the
naive discretization of the fermion action (3.16).

Naive lattice fermions. The idea is to discretize the continuum derivative in (3.16) by
a finite difference, such that

SN [φ̄, φ] = ad
∑
n,µ

1

2a

(
φ̄nγµφn+µ̂ − φ̄n+µ̂γµφn

)
+ ad

∑
n

mφ̄nφn. (3.17)

Unfortunately this approach does not lead to the correct continuum theory, due to the
fermion doubling effect, which pose a severe problem in lattice field theory.

There are two basic types of lattice formulation, applied in most cases are the Wilson
formulation and the Kogut Susskind staggered formulation [39]. In this thesis we stick to
the Wilson fermion formulation as it is sufficient for achieving the main goal of our work.

Wilson fermions. This discretization is based on the naive idea with an introduction of
an additional term the so called Wilson term, which gives the fermion doublers a mass of
the order of the cut off while the physical fermion remain massless. The discretized action
then looks like

SW [φ̄, φ] = SN [φ̄, φ] + ad
∑
n,µ

1

2a

(
2φ̄nφn − φ̄nγµφn+µ̂ − φ̄n+µ̂γµφn

)
,

where SN is a naive discretization given by (3.17).
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Here we introduce two important examples of quantum field theories, namely quantum
electrodynamics and quantum chromodynamics.

Quantum electrodynamics

Quantum electrodynamics (QED) is a quantum field theory of the electromagnetic force.
It successfully describes electromagnetic interactions of electrons, muons etc. to a high
precision [23]. As a part of the standard electroweak model QED describes all phenomena
of both electromagnetic and weak interactions in the energy range up to 100 GeV. Lattice
study of QED mainly motivated by desire to improve the theoretical understanding of the
general mathematical properties of this type of quantum field theories.

For example, let us define the Wilson formulation of lattice action for QED.

The gauge field variables Uµ(n) ∈ U(1) are located on the links of the lattice connecting
two neighboring sites (n, n+ µ̂) and can be written as

Uµ(n) = eieAµ(n) .

Here Aµ(n) ∈ R corresponds to the continuum vector potential and e is the bare gauge
coupling.

The fermion part of the QED lattice action with Wilson fermions is presented by

SF =
∑
n

M(φ̄nφn)−K
±4∑

µ=±1

(φ̄n+µ̂[r + γµ]Uµ(n)ϕn)

 .

The fermion mass in lattice units (am) is given in [39]

am+ 4r =
M

2K
.

Usually one chooses K = 1
2 in lattice perturbation theory and M = 1 in numerical

simulations. By adding Nf such actions one can describe QED with Nf fermion flavors.
Abelian gauge fields are given by

SG =
1

2e2

∑
n

4∑
ν,µ=1

{
1− Uµ(n)Uν(n+ µ̂)U †µ(n+ ν̂)U †ν (n)

}
,

where the summation goes over all positively oriented plaquettes of the lattice. The whole
lattice QED action is given by the combination of fermion and gauge part.

Despite the fact that QED does not require the lattice regularization since it gives very
successful results in the framework of perturbation theory, it is still used to improve the
theoretical understanding of the general mathematical properties of this type of quantum
field theories [39].

Since QED does not require a large computational effort in comparison to more advance
theories and shares the main properties of these systems it is often used as a test example
for developing numerical techniques. Later we use a QED model for the numerical testing.
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Quantum chromodynamics

Quantum chromodynamics (QCD) is the fundamental quantum field theory of quarks and
gluons. QCD is believed by most physicists to be the correct theory of strong nuclear
force [39]. Lattice QCD has become a standard tool in elementary particle physics [19].

QCD is a type of quantum field theory, a non-Abelian gauge theory with symmetry group
SU(3). The QCD analogue of electric charge is a property called color. Gluons are the
force carrier of the theory, like photons are for the electromagnetic force in quantum
electrodynamics. The theory is an important part of the Standard Model of particle
physics. A large body of experimental evidence for QCD has been gathered over the
years [55].

The lattice action of QCD depends on the gauge group field Uµ(n) ∈ SU(3) on lattice
links and Grassmann fields ϕqn, ϕ̄qn on lattice sites. Here n represents a lattice point
and µ = ±1, ±2, ±3, ±4 are the directions of neighboring points n + µ̂ on the four-
dimensional hypercubic lattice.

For example, let us define the Wilson formulation of lattice action for QCD.

The pure gauge lattice action is an sum over all plaquettes

Sg[U ] = β
∑
n,µ

(
1− 1

3
Re TrPµ(n)

)
,

where β = 6g−2 is the coupling term and the plaquette is given by

Pµ(n) = Uµ(n)Uν(n+ µ̂)U †µ(n+ ν̂)U †ν (n).

The quark fields φqn = φqnαc and φ̄qn = φ̄qnαc have flavor index q = u, d, c, s, t, b, Dirac
spinor index α = 1, 2, 3, 4 and SU(3) color index c = 1, 2, 3.

The Wilson action for QCD is

S[U, φ, φ̄] = Sg[U ] + Sq[U, φ, φ̄],

where the quark field action is

Sq[U, φ, φ̄] =
∑
n,µ

(φ̄qnφqn)−Kq

±4∑
µ=±1

(φ̄qn+µ̄[rq + γµ]Uµ(n)φqn)

 .

Here the hopping parameter Kq and Wilson parameter rq can depend on the flavor index
q. In most cases the Wilson parameter is chosen to be rq = 1. There are another repre-
sentations of quark action for QCD such as an idea of staggered fermions [19], which we
do not consider here.

The lattice QCD is a very perspective quantum field theory with a lot of room for im-
provement. Therefore we consider it as the main application of this thesis. In the next
section we introduce algorithm to treat the path integral formulation of the quantum field
theories regularized on the lattice.
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3.3 Hybrid Monte Carlo algorithm

The main purpose of numerical simulations in lattice quantum field theory is to find an
estimation of some observable O[φ] of the field variables φ which is given by the path
integral as

〈O〉 =
1

Z

∫
[dφ] e−S[φ] O[φ], Z =

∫
[dφ] e−S[φ], (3.18)

which leads to systems with a high number of integration variables (around 104) [40].

So the only possibility would be to use Monte Carlo integration. It would mean to ran-
domly generate field configurations φ in the space of field variables, but since the number
of lattice point is very large only a small amount of the free energy density will contribute
in the path integral.

Hence the importance sampling is required in the Monte Carlo integration in such way
that the distribution of configurations follows the Boltzmann factor exp(−S[φ]) [16].

The task in numerical simulations is to generate samples consisting of large number N
of configurations {[φn], n = 1, 2, · · · , N}, in such a way that the distribution within a
sample approximates the desired distribution is the canonical ensemble[16].

The sequence of field configuration {[φn], n = 1, 2, · · · , N} is obtained by repeatedly
applying an algorithm, which updates a configuration [φn] to the next state [φn+1] with a
given transition probability P ([φ′] ← [φ]), which refers to a large number of independent
updating.

The most useful technique for generating a sequence of configurations with the desired
probability is to construct a Markov process. A Markov process is a stochastic proce-
dure which generates a new configuration [φ′] from its predecessor [φ] with probability
PM ([φ′] ← [φ]). Any Markov process converges to a unique fixed point distribution PS
provided that it is ergodic and that it satisfies the detailed balance

PS(φ)PM ([φ′]← [φ]) = PS(φ′)PM ([φ]← [φ′]). (3.19)

The convenient way to construct a Markov process is to choose a new configuration φ′ with
probability PC([φ′] ← [φ]) and then to either accept φ′ with the probability PA([φ′]← [φ])
or to reject it and keep the old configuration φ.

The Metropolis algorithm [21] provides one choice of PA to reach a detailed balance (3.19)
for any probability PC in the following generalized procedure

PA([φ′]← [φ]) = min

(
1,
PS(φ′)PC([φ]← [φ′])

PS(φ)PC([φ′]← [φ])

)
.

This approach is not very efficient because in most cases the new value of the action will
be larger than the previous one and hence the proposed change would be not accepted [39].
However, if the updating process is defined by a Hamiltonian, then the classical dynamics
equations will give new configurations with different field variables, but the value of a
Hamiltonian is close to the original one [16].
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The HMC algorithm can be briefly summarized in three steps [34]:

• The construction of samples, pairs of links U ∈ Ω = SU(N) and momenta P ∈ Ω̂ =
su(N) according to the probability distribution FV with probability density V(U,P )
given by

V(U,P ) =
(2π)N/2

ZH
exp(−S[U ])

1

(2π)N/2
exp(−〈P, P 〉/2) =

1

ZH
exp(−H(U,P )),

with ZH =
∫

Ω×Ω̂ V(U,P )d(U,P ) and H(U,P ) = 〈P, P 〉/2 + S[U ], where
〈P, P 〉 =

∑
x,µ〈Px,µ, Px,µ〉 is a natural scalar product.

• The transition from one configuration (U0, P0) to the next consists of a proposal step

(U0, P0)→ g(U0, P0) (3.20)

with mapping g : Ω× Ω̂→ Ω× Ω̂.

• The acceptance step, where the new configuration g(U0, P0) is accepted with prob-
ability

PA((U0, P0), g(U0, P0)) = min

(
1,
V(g(U0, P0))

V(U0, P0)

)
= min

(
1, e−(H(g(U0,P0))−H(U0,P0))

)
,

(3.21)

otherwise the old configuration (U0, P0) is kept as the next entry in the chain.

In order for process (3.21) to satisfy the detailed balance condition (3.19) exactly the
dynamics (3.20) must be time-reversible and generate an area-preserving map on the phase
space for any value of ∆t as it is shown in details in [39]. It can be achieved by defining g
to be the Hamiltonian flow and therefore Hamilton’s equation of motion has to be solved.
In practice equations of motion are integrated by numerical schemes approximately.

Due to the fact that the detailed balance condition (3.19) must be satisfied, it is required
from numerical time integrators to preserve some geometric properties of the numerical
flow such as time-reversibility and area-preservation.

Also since the acceptance rate of the Hybrid Monte Carlo (HMC) algorithm depends
on ∆H = H(g(U0, P0)) − H(U0, P0) the higher convergence order of a numerical time
integrator or the full conservation of energy ∆H = 0 will be an advantage because in the
first case we obtain higher acceptance for the new configurations and in the second case
the acceptance rate is a hundred percent (PA = 1).

In the next two chapters we propose newly developed numerical time integrators, which
would satisfy all the requirements to be suitable for the molecular dynamics step of the
HMC. In the sequel we will show a detailed analysis.
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PROJECTION METHODS

As we emphasized in the previous chapter, we are highly interested in the energy conser-
vation property of the numerical time integrators, since it yields hundred percent accep-
tance rate in the accept/reject step of the HMC algorithm. There is a class of numerical
methods we must pay attention to, so-called projection methods. The main advantage
of this kind of integrators is to preserve the energy of the system completely. Unfortu-
nately, as it was mentioned before, the numerical scheme for the molecular dynamics step
of HMC algorithm has to be also time-reversible and symplectic. And while symmetric
(time-reversible) projection methods have been presented in [25], projection integrators
preserving both time-reversibility and symplecticity are unknown. In spite of the above
mentioned properties symmetric projection methods seem to be a suitable candidate for
an improvement of the HMC algorithm, namely to neglect the accept/reject step.

In this chapter, first we introduce the standard approach of projection methods. Then we
investigate projection schemes, which allow to interpret both the perturbation and pro-
jection step as a one-step scheme with step size µ, applied to the underlying Hamiltonian
H(y). We introduce our attempts to construct a new class of projection schemes, which
preserve the Hamiltonian and at the same time preserve the physical properties of time-
reversibility and symplecticity of the Hamiltonian flow (4.3) via choosing the symmetric,
time-reversible and symplectic one-step method Φh for the intermediate step of the classic
projection algorithm (4.2), preserve these properties and obey the energy conservation
properties by choosing suitable perturbation and projection steps of the method (4.2).
After that we show our attempts to obtain high-order integrators via investigating mod-
ified Hamiltonians of the numerical integrators presented in previous sections, where we
try to increase the order of conserved energy by eliminating the low order error terms of
its shadow Hamiltonians. At last we show our last try to construct a structure-preserving
modification of the classical projection approach and give a short conclusion, based on
theoretical and numerical results.

4.1 Introduction in the projection methods

For t ∈ [0, T ], we consider the solution y(t; y0) of an initial value problem of ODEs in Rd
defined by

ẏ = f(t, y), y(0) = y0, (4.1)

lying on a (d−m) submanifoldM = {y : g(t, y) = 0} defined by a function g : Rd → Rm.
Geometric numerical integration aims at determining a numerical approximate to the
solution y(t; y0) fulfilling the constraint defined byM at the same time. One such approach
is given by the projection methods [24], where one step reads as follows:

• compute ỹn+1 = Φh(yn) , where Φh is an arbitrary one-step method,

33
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• project the perturbed initial values ỹn+1 onto the manifoldM to obtain the numer-
ical solution yn+1 ∈M.

This procedure leads to solving the following system

ỹn+1 = Φh(yn), compute with arbitrary Φh
yn+1 = ỹn+1 +G(ỹn+1)>λ, project onM
0 = g(yn+1), conservation condition

where G>(y) = g′(y) and λ is implicitly defined by g(yn+1) = 0.

The projection does not deteriorate the convergence order of the method Φ, because the
distance of ỹn+1 to the manifoldM is of the size of the local error.
Unfortunately this general approach lacks of two other geometric properties our numerical
integrator must conserve. There exist the suitable symmetric modifications of the standard
approach, which allow us to preserve the time-reversibility of the numerical flow.

This approach has been first generalized by Ascher and Reich [2] for Hamiltonian systems
and later by Hairer [25] for general systems with constraints to obtain an overall symmetric
scheme provided that the underlying one-step scheme is also symmetric:

ỹn = yn +G(yn)>µ, perturbation step
ỹn+1 = Φh(ỹn), symmetric one-step method

yn+1 = ỹn+1 +G(yn+1)>µ, projection step
g(yn+1) = 0, energy preservation condition

(4.2)

where G(yn) denotes the Jacobian of g(yn) and µ can be implicitly defined via the con-
straint g(yn+1) = 0. The overall scheme Ψh(yn) is then composed of three different map-
pings:

Ψh(yn) := (BP )µ(Φh(Pµ(yn))),

with the projection step (BP )µ and perturbation step Pµ as defined above in (4.2).

yn

ỹn+1

yn+1

M

yn

ỹn

ỹn+1

yn+1

M

Figure 4.1: Standard Projection Method (left); Symmetric Projection Method (right)

An important special case is given by applying symmetric projection schemes to the clas-
sical Hamiltonian equation of motion (4.1) with

f(y) = J−1∇H(y), y = (q, p), J =

(
0 −1
1 0

)
, (4.3)
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where ∇H(y) = H ′(y)>, H(y) is a Hamiltonian function, q and p are the generalized
coordinates and impulses of the system, and the matrix J denotes the standard symplectic
matrix. In this case, the constraint to be preserved is the Hamiltonian itself: g(y) :=
H(y(T ))−H(yn).

So far, projection schemes are regarded as one-step schemes Ψh, starting from an initial
value yn, and computing a new approximation yn+1 with step size h. The parameter µ is
only an internal variable fixed by the demand of fulfilling the constraint. Thus the solution
Ψh depends on the initial value yn only, with µ implicitly defined by yn. If one wants to
generalize such projection schemes to symplectic or volume-preserving schemes, one has
to carefully check the sensitivity of Ψh with respect to yn, and the dependence of µ on yn
has to be included. For such schemes, if existing, also the perturbed solutions satisfy the
constraints.

However, when generalizing projection schemes to symplectic and/or volume-preserving
schemes, the µ-dependence on yn is not easy to handle. Taking another point of view,
one can get rid of this problem: we regard projection schemes as a class of schemes Ψµh
with step size h, parametrized by µ. Hereby, the optimal parameter µ0 is defined by
H(y) = const. . For one step under consideration, this µ = µ0 is then constant, and
we use the scheme Ψµ0h . To check for symplecticity or volume preservation, we have to
investigate the sensitivity of Ψµ0 with respect to the initial value with a fixed and constant
µ0. Obviously, the perturbed solutions will not fulfill the energy constraint, but we do not
have to care about it.

Taking this point of view, we can easily generalize the symmetric projection scheme (4.2)
to time-reversible and volume-preserving schemes: the perturbation and projection step in
(4.2), if G evaluated at J−1yn and J−1yn+1 instead of yn and yn+1, represent an explicit
and implicit Euler step with step size µ, resp., applied to a Hamiltonian equation of
motion (4.3) with Hamiltonian H̃(y) := H(J−1y) instead of H(y). If we replace these
steps by time-reversible and symplectic one-step schemes such as implicit midpoint rule
or leap-frog, the overall scheme Ψµh , consisting of three one-step schemes with step sizes
µ, h and µ applied to the Hamiltonians H̃, H and H̃, resp., inherits these properties for
all feasible parameters µ, if the intermediate scheme Φh is symmetric, time-reversible and
symplectic, too.

4.2 Another view on symmetric projection schemes

In our first approach, we replace the perturbation and projection step in the symmetric
projection scheme (4.2) by a symmetric, time-reversible and symplectic one-step method
Φ̃µ of order q, which performs one step of step size µ applied to the Hamiltonian equation
of motion (4.3) with the Hamiltonian H̃(y) := H(J−1y) instead of H(y).

The overall scheme Ψµh (yn) is then composed of three different mappings:

Ψµh (yn) := Φ̃µ(Φh(Φ̃µ(yn))). (4.4)

Ψµh is a composition of three symmetric, symplectic and time-reversible schemes with step
sizes µ, h and µ, resp. In composition methods, one step size is the multiple of the others,
and these properties are preserved. Though this is not the case for Ψµh , it inherits these
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properties:

• Symmetry: Ψµh ◦ Ψ
−µ
−h = id.

We have

Ψµh ◦ Ψ
−µ
−h = (Φ̃µ ◦ Φh ◦ Φ̃µ) ◦ (Φ̃−µ ◦ Φ−h ◦ Φ̃−µ)

= (Φ̃µ ◦ Φh ◦ Φ̃µ) ◦ ((Φ̃µ)−1 ◦ (Φh)−1 ◦ (Φ̃µ)−1)

= id

due to the symmetry of the underlying methods.

• Time reversibility: Ψµh ◦ ρ ◦ Ψ
µ
h ◦ ρ = id with ρ =

(
I 0
0 −I

)
.

This condition is equivalent to

Ψµh ◦ ρ ◦ Ψ
µ
h ◦ ρ = Φ̃µ ◦ Φh ◦ Φ̃µ ◦ ρ ◦ Φ̃µ ◦ Φh ◦ Φ̃µ ◦ ρ

= Φ̃µ ◦ Φh ◦ Φ̃µ ◦ ρ ◦ Φ̃µ ◦ ρ︸ ︷︷ ︸
=id

◦ρ ◦ Φh ◦ Φ̃µ ◦ ρ

= Φ̃µ ◦ Φh ◦ ρ ◦ Φh ◦ ρ︸ ︷︷ ︸
=id

◦ρ ◦ Φ̃µ ◦ ρ

= id

due to the time-reversibility of the underlying methods.

• Symplecticity:
(
∂Ψµh (yn)

∂yn

)>
J
(
∂Ψµh (yn)

∂yn

)
= J .

The symplecticity of Ψµh is a direct consequence of the symplecticity of the underlying
methods:(

∂Ψµh
∂yn

)>
J

(
∂Ψµh
∂yn

)
=

(
∂Φ̃µ
∂yn

∂Φh
∂yn

∂Φ̃µ
∂yn

)>
J

(
∂Φ̃µ
∂yn

∂Φh
∂yn

∂Φ̃µ
∂yn

)

=

(
∂Φ̃µ
∂yn

)>(
∂Φh
∂yn

)>(∂Φ̃µ
∂yn

)>
J
∂Φ̃µ
∂yn︸ ︷︷ ︸

=J

∂Φh
∂yn

∂Φ̃µ
∂yn

=

(
∂Φ̃µ
∂yn

)>(
∂Φh
∂yn

)>
J
∂Φh
∂yn︸ ︷︷ ︸

=J

∂Φ̃µ
∂yn

=

(
∂Φ̃µ
∂yn

)>
J
∂Φ̃µ
∂yn

= J.

For a given fixed step size h, the optimal µ opt to preserve the Hamiltonian is then fixed
by the non-linear system

F (h, yn+1, µ) =

(
yn+1 − Ψµh (yn)

H(yn+1)−H(yn)

)
, (4.5)
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which can be rewritten as scalar equation

g̃h(µ) := g(Ψµh (yn)) = H(Ψµh (yn))−H(yn) = 0, (4.6)

if Ψµh is explicit.

With F (0, yn, 0) = 0 and

∂F

(yn+1, µ)
(0, yn, 0) =

(
I −2∇H(yn)

∇H(yn)> 0

)
regular ⇔ ∇H(yn) 6= 0,

the argument in [28] regarding the existence of the numerical solution also applies to
our case: for sufficiently small step size h, the existence of the numerical approximation
Ψ
µopt
h (yn) with local order O(hr+1) is guaranteed, and µ = O(hr+1), independent of the

order k of Ψµ.

For non-separable Hamiltonians, all symplectic schemes with order larger than one are im-
plicit, and one has to solve the nonlinear system (4.5) to obtain the approximate Ψµopt

h (yn).
However, for separable Hamiltonians, the leap-frog scheme is explicit, and one has to solve
the scalar equation (4.6) only. The solvability of this scalar equations directly follows from
the argument above, or directly via

g̃′h(µ) = ∇H((Ψµh (yn))> ·
∂Ψµh (yn)

∂µ

= ∇H((Ψµh (yn))>
(
∂Φh(Φµ(yn)))

∂Φµ(yn)
∇H(yn) +∇H(Φh(Φµ(yn)))

)
+

+O(h) +O(µ)

= 2||∇H(yn)||22 +O(h) +O(µ).

4.3 The Structure-preserving approach

In our second approach, we replace the perturbation and projection step in the symmetric
projection scheme (4.2) by a symmetric, time-reversible and symplectic one-step method
Φ̂µ of order k, which performs one step of step size µ applied to the original Hamilto-
nian equation of motion (4.3) with Hamiltonian H(y). In contrast to the first approach,
the right-hand sides of the perturbation and projection step contain linearly transformed
Jacobian of the constraint, and not the Jacobian itself.

The overall scheme, depending on the parameter µ is then defined by the composition of
three numerical integration schemes

yn+1 = Ψ̄µh (yn) := Φ̂µ(Φh(Φ̂µ(yn))), (4.7)

with step size µ, h and µ, resp. Similar to the first approach, the overall numerical scheme
Ψµ(yn) inherits the properties of symmetry, time-reversibility and symplecticity from the
three basis schemes.

To obtain preservation of the Hamiltonian in addition, µ is fixed by the constraint

0 = g(yn+1) := H(yn+1)−H(yn). (4.8)
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For a given fixed step size h, the optimal µ opt to preserve the Hamiltonian is then fixed
by the nonlinear system

0 = F (h, yn+1, µ) :=

(
yn+1 − Ψ̄µh (yn)

H(yn+1)−H(yn)

)
. (4.9)

Since F (0, yn, 0) = 0, existence of the numerical approximation is given for sufficiently
small step sizes h by the implicit function theorem, if the Jacobian

∂F

∂(yn+1, µ)

∣∣∣
(h,yn,0)

=

(
I −∂Φh(yn)

∂yn
J−1∇H(yn) + J−1∇H(yn+1)

∇H(yn+1)> 0

)

is regular for h→ 0, which is equivalent to a non-vanishing Schur complement

g̃′h(0) =
∂H(Φh(yn))

∂yn
J−1∇H(yn) (4.10)

with g̃h(µ) := g(Ψµh (yn)). The Schur complement depends only on the intermediate scheme
Φh. For a scheme of order 2, the numerical approximate Φh(yn) can be written by Taylor
series expansion as

Φh(yn) = yn + hJ−1∇H(yn) +
1

2
h2J−1∇2H(yn)J−1∇H(yn) + h3δ(yn) +O(h4).

Inserting this expansion into (4.10), and expanding H around yn, one gets

g̃′h(0) = h3∂S(yn)

∂yn
J−1∇H(yn) +O(h4)

with
S(yn) := ∇H>(yn)δ(yn) +

1

6
∇3H(yn)(J−1∇H,J−1∇H,J−1∇H).

If we now replace the constraint g(y) = H(y)−H(yn) by

ḡ(y) =
H(y)−H(yn)

h3
, (4.11)

the corresponding Schur complement reads

ḡ′0(0) =
∂S(yn)

∂yn
J−1∇H(yn).

If this Schur complement is not zero, we can repeat the argument of the first approach:
for sufficiently small step size h, the existence of the numerical approximation Ψµ opt

h (yn)
with local order O(hr+1) is guaranteed, and µ = O(hr+1), independent of the order k of
Ψµ.

For the leap-frog (Störmer-Verlet) method, for example, one gets for a separable Hamil-
tonian

δ(yn) =

(
1
8Hppp(yn)(Hq(yn), Hq(yn))

−1
4(Hqqq(yn)(Hp(yn), Hp(yn))−Hqq(yn)Hpp(yn)Hq(yn))

)
,
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resulting in the Schur complement

S(yn) =
7

24
Hppp(Hq(yn), Hq(yn), Hq(yn))− 1

12
Hqqq(Hp(yn), Hp(yn), Hp(yn))

+
1

4
Hqq(yn)Hpp(yn)(Hq(yn), Hp(yn)).

Unfortunately despite all positive results, obtained, it is clear that the parameter µ depends
on not only step-size h, but also on the initial values y0, thus we cannot rely on the results
obtained in previous sections, since we cannot guarantee conservation of the geometric
properties in general with µ(h).
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Figure 4.2: Symmetry(time-reversibility) (left); Symplecticity (right).
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Figure 4.3: Energy drift.

Figures 4.2–4.3 show numerically the conservation of geometrical properties by the method
(4.7) with µ = µ(y0, h) applied to the simple Harmonic oscillator (SHO) given by the
Hamiltonian function H = 1

2p
2 + 1

2q
2. We can clearly observe very promising results.

Unfortunately we must realize that it would require a computation of µ(yn, h) satisfying
(4.8) on every time-step of the algorithm (4.7) and even in the case of SHO it results in
extensive computational time.
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4.4 Structure-preserving approach (µ = µ(h))

Although the results obtained in the previous sections do not satisfy our needs, we still
tend to believe that there are some possibilities to increase the convergence order using
ideas, inspired by the projection method approach, namely by fixing µ = µ(h) such that
it would reduce the leading error term.

Our first attempt consists of the following composition of numerical methods

yn+1 = Ψµh (yn) := Φ̂µ(Φh(Φ̂µ)), (4.12)

where Φ̂µ and Φh are Störmer-Verlet methods with the step-sizes h and µ respectively and
find such µ = µ(h), in order to apply the theory, developed in the previous sections, and
possibly to increase the order of overall scheme.

To do so we rewrite our composition scheme (4.12) in the form of a symplectic mapping

e
µ
2
V̂ eµT̂ e

µ
2
V̂︸ ︷︷ ︸

Ĥ1

e
h
2
V̂ ehT̂ e

h
2
V̂︸ ︷︷ ︸

Ĥ2

e
µ
2
V̂ eµT̂ e

µ
2
V̂︸ ︷︷ ︸

Ĥ3

apply the BCH formula (see Appendix A) and obtain the shadow Hamiltonian H̃ =
H1 +H2 +H3 or

H̃ = H +
(2µ3 + h3)

24(2µ+ h)
(2[T [T, V ]] + [V [T, V ]]) .

In order to increase the order of the following scheme the factor (2µ3+h3)
24(2µ+h) must be equal

to 0, which is satisfied by the choice µ = − h
3√2

The second attempt is to consider "alike" projection method of the following form

yn+1 = Ψµh (yn) := Φ̂µ1(Φ̂µ2(Φh(Φ̂µ2(Φ̂µ1)))), (4.13)

where Φ̂µ and Φh are Störmer-Verlet methods with the step-sizes h, µ1 and µ2 respectively.
We chose two different step-sizes µ1 = µ1(h) and µ2 = µ2(h) in order to have an additional
degree of freedom. For this purpose we apply the BCH formula on the symplectic map
from the numerical composition scheme (4.13)

e
µ1
2
V̂ eµ1T̂ e

µ1
2
V̂︸ ︷︷ ︸

Ĥ1

e
µ2
2
V̂ eµ2T̂ e

µ2
2
V̂︸ ︷︷ ︸

Ĥ2

e
h
2
V̂ ehT̂ e

h
2
V̂︸ ︷︷ ︸

Ĥ3

e
µ2
2
V̂ eµ2T̂ e

µ2
2
V̂︸ ︷︷ ︸

Ĥ4

e
µ1
2
V̂ eµ1T̂ e

µ1
2
V̂︸ ︷︷ ︸

Ĥ5

and obtain (see Appendix B) H̃ = H1 +H2 +H3 +H4 +H5 or

H̃ = H +
(2µ3

1 + 2µ3
2 + h3)

24(2µ1 + 2µ2 + h)
(2[T [T, V ]] + [V [T, V ]]) .

Thus we can find µ1 and µ2 such that (2µ31+2µ32+h3)
24(2µ1+2µ2+h) = 0.

Here we have to emphasize that unfortunately regardless of our investigations the result
is unsatisfactory. Since the presented schemes are different derivations of the well-known
idea of composition approach [28] and hence yields no original ideas, but give a different
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representation of already existing numerical time integration schemes.

4.5 Linear projection methods

After obtaining rather disappointing results we have decided to reconsider our understand-
ing of the idea of symmetric projection methods. Also taking into account that using the
composition approach can dramatically increase the computation time, thus making the
effort of getting the higher convergence order virtually worthless. We have come up with
the idea of substituting the perturbation and the projection steps of the scheme (4.2) by
some linear transformation.

It leads us to consider the following scheme

yn+1 = L−1ΦhL(yn), (4.14)

where L is a linear operator.

As we can see the symmetry of the method is satisfied by the construction of the method.
The time-reversibility can be shown by using the definition of time-reversibility

ρ · L−1 · Φh · L · ρ · L−1 · Φh · L
!

= id .

Using the time-reversibility of the underlying method Φh and the fact that ρ is idempotent,
we can replace Φh with ρ · Φ−1

−h · ρ and get

id
!

= ρ · L−1 · Φh · (L · ρ · L−1ρ) · Φ−1
−h · ρ · L.

If we assume L · ρ · L−1ρ = id the time-reversibility condition is satisfied, it holds only
when L has a block-diagonal structure.

The volume-preservation is satisfied; it can be proved simply by applying the definition of
the volume-preservation

1 = det

(
∂L−1ΦhL(y0)

∂y0

)
= |L−1| Φ′h︸︷︷︸

=1

|L| = 1.

The open question is whether it possible to achieve the higher order of convergence for the
method (4.14). To check it we write down the scheme (4.14) in the form of a symplectic
mapping

eL
−1 h

2
V ehT e

h
2
V L

and by applying the BCH formula (see Appendix C) we obtain

H̃ = H + L−1h

2
V + hT +

h

2
V L− h2

4
[T, L−1V ] +

h2

4
[T, V L]

− h3

48
[L−1V, [T, L−1V ]] +

h3

24
[T, [T, L−1V ]] +

h3

16
[V L, [T, L−1V ]]

+
h3

48
[L−1V, [T, V L]]− h3

48
[V L, [T, V L]] +

h3

24
[T, [T, V L]].
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It is easy to see that L has to be equal to L−1 to sustain the second order of the underlying
method, but that would mean, together with above conditions, L is the identity matrix.
This indicates, our scheme (4.14) will not yield any advantages, in the case of µ = µ(h).
Only if we consider µ = µ(y0, h) for the numerical method (4.14) and L = (I+Aµ), where
A is block diagonal matrix, we can obtain rather interesting results. We illustrate the
advantages of this approach using an example.

Let us consider a simple harmonic oscillator (SHO) given by

H =
p2

2
+
q2

2

with the equation of motions

ṗ = −∂H
∂q

= −q, q̇ =
∂H

∂p
= p. (4.15)

The full scheme will look like

p̃n = (1 + µ)pn

q̃n = qn

p̃n+ 1
2

= p̃n −
h

2
q̃n

q̃n+1 = q̃n + hp̃n+ 1
2

p̃n+1 = p̃n+ 1
2
− h

2
q̃n+1

pn+1 =
p̃n+1

1 + µ
=

(1 + µ)pn − hqn
2 −

1
2h
(
qn + h

(
(1 + µ)pn − hqn

2

))
1 + µ

qn+1 = q̃n+1 = qn + h

(
(1 + µ)pn −

hqn
2

)
.

The energy conservation condition reads

p2
n+1

2
+
q2
n+1

2
− p2

n

2
− q2

n

2
= 0

and solving this equation with respect to µ we obtain

µ1 =
−2pn + hqn

2pn
µ2 =

−2hpn − 4qn + h2qn
2hpn

µ3 =
1

2

(
−2−

√
4− h2

)
, µ4 =

1

2

(
−2 +

√
4− h2

)
.

Since the time-reversibility and the symmetry of (4.14) are satisfied by the construction of
the method and the symplecticity can be checked simply by computing the determinant
of the Jacobian of the scheme (4.14)

det

(
∂pnpn+1 ∂qnpn+1

∂pnqn+1 ∂qnqn+1

)
= −1,
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where the result is obtained by using the symbolic computation of Mathematica, and it
satisfies the area-preservation condition.
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Figure 4.4: Symmetry(time-reversibility) (left); Symplecticity (right).
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Figure 4.5: Energy drift.

Figures 4.4–4.5 show conservation of the geometric structure numerically. As we can
observe all desired properties are preserved exactly (up to machine precision).

4.6 Conclusion

Despite very promising results of the previous section regarding the linear projection (4.14)
we must admit that the outcome of this whole chapter is only semi-positive. The presented
ideas work only for rather simple problems, where with an increase of degrees of freedom
and use of more general (non-linear, non-separable) Hamiltonian function, the calculation
of µ(y0, h) on each time step of the algorithm would result in very high computational
costs, minimizing the practicability of this schemes. For our main application, presented
in Chapter 3, it plays a crucial role, since the constrains (4.8) are extremely complicated
systems and they would require additional numerical treatment and hence lead to vast
computational costs, which are not affordable. Summarizing everything written above we
conclude that we have to choose the other direction of our research, namely developing
higher order geometric numerical integrator and at the same time reducing the computa-
tional effort. In the next chapter we present our research in this direction.
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NESTED FORCE-GRADIENT
METHODS

Previously we mentioned in Chapter 3 that for the HMC algorithm, used in QCD, one is
interested in efficient numerical time integration schemes, which are optimal in terms of
computational costs per trajectory for a given acceptance rate level. High order numerical
methods allow the usage of larger step sizes, but ask for larger computational effort per
step; low order schemes do not require vast computational costs per step, but need more
steps per trajectory. So there is a need to balance these opposing effects.

Omelyan’s numerical time integration schemes [42] of a force-gradient type have been
shown to be an efficient choice, since it is easy to obtain a higher order for a scheme and
it demands just a small additional computational effort. These methods use high order
information of the force-gradient terms in order to increase the convergence order of the
given numerical scheme and/or decrease the size of the leading error coefficient. Another
idea to achieve the better efficiency of numerical time integrators is given by the multirate
or nested approach. These schemes do not increase the order of the scheme, but reduce
the computational costs per path by exploiting the multirate behavior given the different
parts of the right-hand side: slow forces, which are usually expensive to evaluate, but need
only to be sampled at low frequency; and fast forces, which are usually cheap to evaluate,
but need to be sampled at a high frequency. The natural way to inherit the advantages
from force-gradient type schemes and multirate approach would be to combine these two
ideas [52].

In this chapter we first briefly present the idea of splitting decomposition schemes, which
are actually a basis to both of the above mentioned approaches. Then we use this class
of methods to introduce the force-gradient decomposition integrators and consider their
structure preserving properties as well as order conditions for this type of numerical time
integrators. We continue by presenting the idea of multirate time integration and use the
advantages of these two classes of methods to combine both approaches in order to obtain
a more efficient numerical scheme.

5.1 Splitting decomposition schemes

The main idea of this type of numerical time integrators is to decompose the vector field
into integrable pieces and treat them separately [28]. Here we consider an arbitrary system
ẏ = f(t, y) ∈ Rn, and suppose that the vector field is split as

ẏ = f [1](t, y) + f [2](t, y),

and it can be visualized as in Figure 5.1.

45
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= +
f [2]f [1]f

Figure 5.1: Splitting of a vector field.

If ϕ[1]
t and ϕ[2]

t the exact flows, respectively, of the systems ẏ = f [1](y) and ẏ = f [2](t, y)
can be calculated explicitly, then from a given initial value y0 one can solve the first system
in order to obtain a value y1/2, and from this value integrate the second system to obtain
y1. In this way we have introduced the numerical methods

Φ∗h = ϕ
[2]
h ◦ ϕ

[1]
h , Φh = ϕ

[1]
h ◦ ϕ

[2]
h ,

where the scheme Φ∗h is adjoint of the scheme Φh, both of them yield first order approx-
imation and usually called Lie-Trotter splitting [28]. The composition of the Lie-Trotter
methods and its adjoint with halved step sized ΦS

h = Φh
2
◦ Φ∗h

2

results in a symmetric
numerical scheme of the second order, which can be written as

ΦS
h = ϕ

[1]
h
2

◦ ϕ[2]
h ◦ ϕ

[1]
h
2

and it is known as the Strang splitting [28].

The general splitting procedure can be formed by using arbitrary coefficients a1, b1, a2,
. . . , an, bn (where, eventually, a1 or bn, or both, are zero)

Φh = ϕ
[2]
bnh
◦ ϕ[1]

anh
◦ ϕ[2]

bn−1h
◦ · · · ◦ ϕ[1]

a2h
◦ ϕ[2]

b1h
◦ ϕ[1]

a1h
(5.1)

and try to increase the order of the scheme by suitably determining the free coefficients.
There have been several developments of the special cases of this class of methods (5.1)
until the systematic study was proposed in [56]-[61].

Here we follow the approach presented in [61] to obtain the order conditions for split-
ting methods (5.1) and also to determine structure preserving properties such as time-
reversibility and symplecticity, of these class of methods.

Since our main interest lies within a numerical time integration of canonical transformation
(q(0), p(0))→ (q(τ), p(τ)) on the molecular dynamic step in the HMC algorithm it restricts
us to a certain type of problems for Hamiltonian systems of the form

H = T (p) + V (q). (5.2)

Let us write down the Hamilton’s equation of motion in the following form

ρ̇ = {ρ,H(ρ)} , (5.3)

where ρ = (q, p) and { , } stands for Poisson bracket. The above equation can be also
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written as
ρ̇ = Ĥρ, (5.4)

where Ĥ is a differential operator Ĥρ := {ρ,H(ρ)} and { , } represents

{f, g} =
∂f

∂p

∂g

∂q
− ∂f

∂q

∂g

∂p
.

Then the formal solution, or exact time evolution ρ(t) from t = 0 to t = τ is given by

ρ(T ) = eτĤ ρ(0). (5.5)

For the Hamiltonian of the form (5.2), the differential operator Ĥ = T̂ + V̂ , the solution
(5.5) becomes

ρ(T ) = eτ(T̂+V̂ ) ρ(0). (5.6)

Here we use Lemma 1 to write the method (5.1) as a product of exponentials and for-
mally apply the Baker-Campbell-Hausdorff (BCH) formula (2.10) in order to obtain one
exponential of a series in powers of step-size h. Finally, we compare this series with (5.6),
which corresponds to the exact solution, which results, cf. [28]

e(T̂+V̂ )h+O(hr+1) =
K∏
k=1

eT̂ akh eV̂ bkh, (5.7)

where the evolution operators eT̂ akh and eV̂ bkh displace q and p forward in time with

q → q + akhT̂ρ and p→ p+ bkhV̂ ρ. (5.8)

The coefficients ak and bk in evolution operators (5.7) have to be chosen in such way to
obtain the highest possible order r ≥ 1 for a given integer K ≥ 1.

Before we comment on the choice of coefficients for the order conditions for our splitting
methods (5.7) let us first have a look at the structure-preserving properties of this par-
ticular class of numerical schemes. Since it results a simplification, better understanding
and an improvement of the original decomposition scheme (5.7).

The most important feature of this decomposition approach (5.7) is its exact conservation
of the symplectic map of the numerical flow, because the separate shifts (5.15) of coordinate
variables q and momenta variables p do not change the phase volume and decomposition
(5.7) is just a product of the symplectic mappings [61].

Time-reversibility can be ensured by imposing two conditions, namely a1 = 0, ak+1 =
aK−k+1 and bk = bK−k+1 as well as ak = aK−k+1 and bk = bK−k with bK = 0. Then the
single-exponential propagator enters into the decomposition (5.7), providing automatically
the required reversibility [43]. This symmetry also leads to elimination of all the even-
order terms in the error function of the splitting integrators (5.7) setting r = 2, 4, 6, 8, . . . ,
i.e.

O
(
hr+1

)
= O1h+O3h

3 +O5h
5 + · · ·+Or+1h

r+1 + . . . . (5.9)

For example we can represent the famous the Störmer-Verlet scheme (leap-frog method)
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by the decomposition (5.7) by putting K = 2 with a1 = 0, b1 = b2 = 1/2, and a2 = 1

eh
V̂
2 ehT̂ eh

V̂
2 . (5.10)

The fourth-order (r = 4) numerical scheme from [17] is obtained via setting K = 4 with
a1 = 0, a2 = a4 = θ, a3 = (1 − 2θ), b1 = b4 = θ/2, and b = 2 = b3 = (1 − θ)/2, where
θ = 1/(2− 3

√
2) and given by

e
θ
2
hV̂ eθhT̂ e

1−θ
2
hV̂ e(1−2θ)hT̂ e

1−θ
2
hV̂ eθhT̂ e

θ
2
hV̂ . (5.11)

Schemes of the sixth order (r = 6) are derivable starting from K = 8 with numerical
representation of time coefficients [42].

In Chapter 2 we introduced the concept of the modified Hamiltonian for symplectic inte-
grators as the way to determine the convergence order of numerical schemes. Here we can
apply BCH formula (2.10) the same way as in (5.9) and show that for the method (5.11)
the shadow Hamiltonian has the following form

H̃FR = H+

(
(32− 20

3
√

4)

[
V,
[
V,
[
V, [V, T ]

]]]
+ . . .

+(8 + 20
3
√

4)

[
T,
[
T,
[
T, [V, T ]

]]]) h4

34560
+O(h6).

The decomposition (5.7) has certain disadvantages. First and foremost with an increasing
order of the integration from 6 to 8 and higher, the number 2K of unknowns ak and bk
increases too fast. This makes it impossible to explicitly represent algorithms (5.7) for the
case r > 6, since one cannot solve the same number of the resulting nonlinear equations
with respect to ap and bp even using the capabilities of modern supercomputers [43]. Also
it is impossible to derive a decomposition scheme (5.7) for r > 2 at any K with only
positive time coefficients [56]. For example, the numerical scheme (5.11) has negative
coefficients, namely, a3, b2 and b3, and since schemes with negative time coefficients have
a restricted region of application and are not acceptable for simulating non-equilibrium
statistical mechanics, quantum statistics, stochastic dynamics, and other important pro-
cesses. Moreover, for schemes expressed in terms of force evaluation only, the main term
O(hr+1) of truncation uncertainties appears to be, as a rule, too big, resulting in a decrease
in the efficiency of the computations [42].

5.2 Force-gradient decomposition method

The drawbacks, mentioned above, make it quite desirable to introduce a more general
approach that is free of all disadvantages. At the same time, the proposed approach must
be explicit, in order to lead to analytical propagations. And, in addition, the already
known decomposition algorithms should be able to be derived from it as particular cases.

A so called force-gradient decomposition approach [42] follows from the standard decom-
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position (5.7) via adding the force-gradient term C , which results to the splitting

e(T̂+V̂ )h+O(hr+1) =
K∏
k=1

eT̂ akh eV̂ bkh+Cckh3 , (5.12)

where C = [V, [T, V ]] and [ , ] denotes the commutator of two operators. Here the force-
gradient term C arises from the third order leading error term O(h3) from (5.9), which
can be obtained via Taylor expansion and yields

O(h3) =

(
1

12
[T, [T, V ]] +

1

24
[V, [T, V ]]

)
h3 +O(h5). (5.13)

Taking into account the explicit expressions for operators T and V it can be shown that one
of the two third-order operators in (5.13), namely [V, [T, V ]], is relatively simple and, more
importantly, it allows to be handled explicitly, contrary to the operator [T, [T, V ]] [43].
Therefore by choosing in the certain ck one can reduce the leading error term.

For example, the force-gradient version of the leap-frog method (5.10)

e
h
2
V̂−h

3

48
Ĉ ehT̂ eh

V̂
2

+h3

48
Ĉ , (5.14)

has the shadow Hamiltonian

H̃LPfg = H − h2

12

[
T, [T, V ]

]
+O(h4),

which is smaller and therefore better preserves energy for the system in the comparison
to the standard leap frog formulation, which shadow Hamiltonian yields

H̃LP = H − h2

24

(
2
[
V, [T, V ]

]
+
[
T, [T, V ]

])
+O(h4).

Since the force-gradient term C not only affects the third order leading error term O(h3)
but also higher order error terms it is possible to obtain an improvement for higher order
numerical schemes.

Let us first mention the conservation properties of the force-gradient approach (5.12). In
the similar way as for methods presented in (5.7) the coefficients ak, bk and ck in (5.12)
have to be chosen in such way to obtain the highest possible order r ≥ 1 for a given integer
K ≥ 1. The expression (5.12) represents the general form of the decomposition, while for
ck ≡ 0 the decomposition reduces to the standard non-gradient factorization (5.7).

The evolution operators eT̂ akh and eV̂ bkh+Cckh3 in (5.12) displace p and q forward in time
with

p→ p+ bkhV̂ (ρ) + ckCh3 and q → q + akhT̂ (ρ). (5.15)

Symplecticity of the decomposition integration (5.12) is conserved (similar to the decom-
position (5.7)), since the separate shifts (5.15) of positions and velocities do not change
the phase volume. Here, it is important to mention that in the non-Abelian case, when,
for example, the gauge fields U are elements of some Lie group, and the momenta P ,
elements of the corresponding Lie algebra, substituting the separable shifts (5.15) with
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the following

eT̂ h : U → U ′ = exp(iPh)U

eV̂ h : P → P ′ = P − ihFV (U),

results the symplectic mapping and therefore the conservation of the phase volume. It
makes the formulation (5.12) universal for the Abelian case as well as for the case of the
integration on the manifolds.

Time-reversibility with the addition of the coefficient ck can be ensured by imposing two
conditions, namely a1 = 0, ak+1 = aK−k+1, bk = bK−k+1, ck = cK−k+1, as well as
ak = aK−k+1, bk = bK−k, ck = cK−k with bK = 0 and cK = 0 [42].

As well as for the standard decomposition (5.7) the above symmetry will result to an
automatic disappearing of all even-order terms in the error function (5.9) for the force-
gradient version (5.12). The cancellation of the remaining error terms in (5.9) is provided
by fulfilling a set of basic conditions for ak, bk, and ck.

For example the assumption
K∑
k=1

ak =
K∑
k=1

bk = 1

results in the elimination of the first order leading error term O1(h) in (5.9) and the error
function (5.9) can be then rewritten

O
(
hr+1

)
= O3h

3 +O5h
5 + · · ·+Or+1h

r+1 + . . . . (5.16)

In order to annihilate high order error terms in (5.16) first we need to explicitly derive
these terms by expanding both sides of the decomposition (5.12) in Taylor series, which
yields

O1 = (ν − 1)T + (σ − 1)V, O3 = α[T, [T, V ]] + β[V, [T, V ]]

O5 = γ1 [T, [T, [T, [T, V ]]]] + γ2 [T, [T, [V, [T, V ]]]] + γ3 [V, [T, [T, [T, V ]]]]

+ γ4 [V, [B, [T, [T, V ]]]] ,

(5.17)

where coefficients ν, σ, α, β and γ1−4 are chosen in such a way to eliminate error terms
(5.17) further we show the optimal algorithm proposed by Omelyan et al. [42] to define
these coefficients. Here we also keep the error term O1 in mind for the generalization of
the order conditions.

Omelyan et al. [42] proposed the following algorithm to derive the multipliers ν, σ, α,
β and γ1−4, arising in (5.17), which depend on the coefficients ak, bk, and ck, where
k = 1, 2, . . . ,K . Since we are dealing with self-adjoint schemes here, the total number of
single-exponential operators (stages) in (5.12) actually equals to S = 2K − 1, and taking
into account the time-reversibility condition a1 = 0 or bK = cK = 0, it only accepts odd
values. Then the simplest way to obtain explicit expressions according to [43] consists
of repeatedly choosing a central single-exponential operator and apply K − 1 times the
following two types of symmetric transformations
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eW
(n+1)

= eTa
(n)h eW

(n)
eTa

(n)h

eW
(n+1)

= eV b
(n)h+Cc(n)h3 eW

(n)
eV b

(n)h+Cc(n)h3 ,
(5.18)

where
W = (νT + σV )h+O3h

3 +O5h
5 + · · ·+ . . . . (5.19)

The result leads us to the factorization (5.12), where the time coefficients ak, bk, and ck
will be related to the quantities a(n), b(n), and c(n), respectively.

For the first kind of self-adjoint constraints (when a1 = 0) with even P or the second one
(when bP = cP = 0) with odd K , the central operator of the symmetric decompositions
will be correspondingly eT̂ a(K−2)/2+1h or eT̂ a(K−1)/2+1h. So that here we must put σ(0) = 0,
α(0) = β(0) = γ0

1−4 = 0 as well as either ν(0) = a(K−2)/2+1 or ν(0) = a(K−1)/2+1 on the
very beginning (n = 0) of the recursive procedure (5.18). Moreover, we should start from
the second line of (5.18) at b(0) = b(K−2)/2 and c(0) = c(K−2)/2 or b(0) = b(K−1)/2 and
c(0) = c(K−1)/2 with further consecutive decreasing the index k by unity with increasing
the number n = 1, 2, . . . ,K − 1 at a(n) ≡ ak, b(n) ≡ bk, and c(n) ≡ ck on both lines of
transformation (5.18) [42].

For the first kind of constraints with odd K or the second kind with even K, the central
operator is eV̂ b(K−1)/2+1h+Cc(K−1)/2+1h

3
or eV̂ b(K−2)/2+1h+Cc(K−2)/2+1h

3
that corresponds to

σ(0) = b(K−1)/2+1 and β(0) = c(K−1)/2+1 or σ(0) = b(K−2)/2+1 and β(0) = c(K−2)/2+1,
respectively, with ν(0) = 0 and α(0) = γ

(0)
1−4 = 0. In this case, the procedure should

be started from the first line of (5.18) at a(0) = a(K−1)/2+1 or a(0) = a(K−2)/2+1 with
decreasing k at increasing n for b(n) ≡ bk, c(n) ≡ ck, and a(n) ≡ ak [42].

The recursive relations between the multipliers ν, σ, α, β, and γ1−4 corresponding to the
first line of (5.18) are:

ν(n+1) = ν(n) + 2a(n), σ(n+1) = σ(n),

α(n+1) = α(n) −
a(n)σ(n)

(
a(n) + ν(n)

)
6

,

β(n+1) = β(n) − a(n)σ(n)2

6
,

γ
(n+1)
1 = γ

(n)
1 +

a(n)
(
a(n) + ν(n)

) ((
7a(n)2 + 7a(n)ν(n) + ν(n)2

)
σ(n) − 60α(n)

)
360

,

γ
(n+1)
2 = γ

(n)
2 +

a(n)
(
30α(n)σ(n) − 30a(n)β(n) − 30β(n)ν(n)

)
180

,

+
a(n)

(
3a(n)2σ(n)2 + 2a(n)ν(n)σ(n)2 + ν(n)2σ(n)2

)
180

,

γ
(n+1)
3 = γ

(n)
3 +

a(n)σ(n)
((

8a(n)2 + 12a(n)ν(n) + ν(n)2
)
σ(n) − 120α(n)

)
360

,

γ
(n+1)
4 = γ

(n)
4 +

a(n)σ(n)
((

6a(n) + ν(n)
)
σ(n)2 − 60β(n)

)
180

.

(5.20)
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The relations between the multipliers ν, σ, α, β, and γ1−4 corresponding to the second
line of (5.18) are:

ν(n+1) = ν(n), σ(n+1) = σ(n) + 2b(n),

α(n+1) = α(n) +
b(n)ν(n)2

6
,

β(n+1) = β(n) −
12c(n) + b(n)ν(n)

(
b(n) + σ(n)

)
6

,

γ
(n+1)
1 = γ

(n)
1 − b(n)ν(n)4

360
,

γ
(n+1)
2 = γ

(n)
2 −

ν(n)
(
60α(n)b(n) − ν(n)

(
30c(n) − b(n)ν(n)

(
6b(n) + σ(n)

)))
180

,

γ
(n+1)
3 = γ

(n)
3 +

b(n)ν(n)
(

60α(n) + ν(n)2
(
4b(n) − σ(n)

))
360

,

γ
(n+1)
4 = γ

(n)
4 −

30α(n)b(n)
(
b(n) + σ(n)

)
− ν(n)

(
30β(n)b(n) + 60b(n)c(n)

)
180

−
ν(n)

(
3b(n)3ν(n) + 30c(n)σ(n) − 2b(n)2ν(n)σ(n) − b(n)ν(n)σ(n)2

)
180

.

(5.21)

Thus, the multipliers can readily be obtained at the end (i.e. after K − 1 steps) of the
recursive process [42].

As we mentioned above the first two multipliers are particularly simple and look as ν =∑K
k=1 ak and σ =

∑K
k=1 bk then setting ν = 1 and σ = 1 cancels the first-order error

leading term O1 = 0. The next multipliers α, β, γ1−4 in order to eliminate higher-order
error terms, namely, O3 and O5 (5.16) have to be set to zero.

The required order conditions form a system of non-linear equations, which must be solved
with respect to unknown time coefficients ak, bk, and ck. The number m of the conditions
as well as the minimal numbers S(f)

min = 2m − 1 and S(g)
min of stages, which are necessary

to obtain at least the same number m of unknowns within non-gradient (f) and gradient
(g) self-adjoint decomposition schemes [42].

According to the idea proposed in [42] the minimal number of stages corresponding to a
gradient scheme of an order r can be considerably smaller (especially for high r) than that
of a non-gradient (ck ≡ 0) integrator of the same order, which plays the crucial role for
the main application of this work, since we would like to find an efficient algorithm this
property of the force-gradient decomposition methods is essential.

Here we consider the most efficient versions of the force-gradient approach (5.12) due to
Omelyan [42] and present the most commonly used numerical time integrations schemes
in molecular dynamics and particularly in molecular dynamics step of the HMC algorithm
for QCD.

The second order numerical time integrators include the leap-frog method, a 3-stage com-
position scheme

∆(h) = eh
V̂
2 ehT̂ eh

V̂
2 , (5.22)
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with the shadow Hamiltonian

H̃LF = H − h2

24

(
2
[
V, [T, V ]

]
+
[
T, [T, V ]

])
+O(h4)

and a 5-stage extension widely used in QCD computations:

∆(h)5 = e
1
6
hV̂ e

1
2
hT̂ e

2
3
hV̂ e

1
2
hT̂ e

1
6
hV̂ , (5.23)

which conserves the shadow Hamiltonian [14]

H̃5S = H−
[
V, [T, V ]

]h2

72
+O(h4).

The forth order numerical integrators are presented by a basic scheme is given by the
5-stage force-gradient scheme proposed by Omelyan et al [42]

∆(h)5C = e
1
6
hV̂ e

1
2
hT̂ e

2
3
hV̂+ 1

72
h3C e

1
2
hT̂ e

1
6
hV̂ . (5.24)

This scheme conserves the shadow Hamiltonian [31]

H̃5C = H+

(
41

[
V,
[
V,
[
V, [V, T ]

]]]
+ . . .

+54

[
T,
[
T,
[
T, [V, T ]

]]]) h4

155520
+O(h6),

which gains two orders of accuracy in the comparison to its non-gradient (5.23) case, and
an extension is given by the 11-stage decomposition approach [42], recently mentioned as
the integrator in the open source code openQCD as one of the standard options [36]

∆(h)11 = eσhV̂ eηhT̂ eλhV̂ eθhT̂ e(1−(λ+σ))hV̂ e(1−(θ+η))hT̂ e(1−(λ+σ))hV̂ eθhT̂ eλhV̂ eηhT̂ eσhV̂ , (5.25)

where σ, θ, λ, γ1 . . . γ4 and η are parameters from [42, eqn.(71)] with a shadow Hamiltonian
of the following form

H̃11 = H+

(
γ1

[
V,
[
V,
[
V, [V, T ]

]]]
+ . . .

+γ4

[
T,
[
T,
[
T, [V, T ]

]]]) h4

32440
+O(h6).

We use above mentioned methods as a benchmark for the comparison of the numerical
results and introduce nested versions of these numerical schemes in the next section.

5.3 Multirate approach

In this section we consider the case, that many solution components of an ordinary differ-
ential equation vary slowly and only a few components exhibit fast dynamics. Here it is
tempting to use large step sizes for the slow components and small step sizes for the fast
ones. Such integrators, called multirate methods (commonly termed nested schemes in the
physics community), were first formulated by Rice (1960) and Gear and Wells [20]. These



54 5 NESTED FORCE-GRADIENT METHODS

schemes do not increase the order of the scheme, but reduce the computational costs per
path by exploiting the multirate behavior given in the different parts of the right-hand
side: slow forces, which are usually expensive to evaluate, but need only to be sampled
at a low frequency; and fast forces, which are usually cheap to evaluate, but need to be
sampled at a high frequency. In the case of our primal application to the quantum field
theories we have a chance to exploit this property to our advantage, since the general
problem of quantum field theory has a slow and costly fermion part and fast and cheap
gauge part as we showed in Chapter 3.

First we consider a system of ODEs and suppose that the vector field f is split into
summands contributing to slow and fast dynamics as following

ẏ = f(t, y), ẏ = f [slow](t, y) + f [fast](t, y), y ∈ Rn, (5.26)

where f [ slow](t, y) is more expensive to evaluate than f [ fast](t, y). Multirate methods can
often be cast into this framework by collecting in f [slow](t, y) those components of f(t, y)
which produce slow dynamics and in f [fast](t, y) the remaining components [20].

For a given N ≥ 1 and for the ODE (5.26) a multiple time stepping method is obtained
from

Φ
[slow]
h
2

◦
(

Φ
[fast]
h
M

)M
◦ Φ

[slow]
h
2

(5.27)

where Φ
[slow]
h and Φ

[fast]
h are numerical integrators consistent with ẏ = f [ slow](t, y), respec-

tively and ẏ = f [fast](t, y). The method (5.27) is already stated in symmetric form . It
is often called the impulse method, because the slow part f [ slow](t, y) of the vector field
is used - impulse-like - only at the beginning and at the end of the step, whereas the
many small sub-steps in between are concerned solely through integrating the fast system
ẏ = f [fast](t, y) [47]. Multirate time stepping approach can be visualized as it is shown on
Figure 5.2.

t0 t0 + h

h

h

M

. . .

f [slow]

f [fast]

Figure 5.2: Multirate time stepping structure.

Structure preserving properties of fast-slow splitting multirate algorithms (5.26) can be
easily checked via using the representation of the multirate numerical schemes by the
composition approach, which results the following Lemma 4

Lemma 4. Let Φ
[slow]
h be an arbitrary method of order 1, and Φ

[fast]
h a symmetric method
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of order 2. Then, the multiple time stepping algorithm (5.27) is symmetric and of order
2.

If f [slow](t, y) and f [fast](t, y) are Hamiltonian and if Φ
[slow]
h and Φ

[fast]
h are both symplectic,

then the multiple time stepping method is also symplectic.

The most important application of multiple time stepping is in Hamiltonian systems with
a separable Hamiltonian

H(p, q) = T (p) + V (q), V (q) = V1(q) + V2(q), (5.28)

where T represents the kinetic part, V1 is the potential energy of the small (fast) scale part
of the system and V2 corresponds to the potential energy of the large (slow) scale part.

For example, using the notation of the standard decomposition approach (5.7) we choose
the following integrator to compute the inner part H = T + V1

∆(h)M =
[
e
h

2M
V̂1 e

h
M
T̂ e

h
2M

V̂1
]M

,

and therefore define ∆ (h) a nested integrator to solve the split problem (5.28), it yields

∆̂(h) = e
h
2
V̂2 ∆ (h)M e

h
2
V̂2 . (5.29)

The obtained method, called nested leap-frog, conserves the shadow Hamiltonian [53]

H̃M = H +

(
− 1

24

[
V2, [V2, T ]

]
+

1

12

[
V1, [V2, T ]

]
+

1

12

[
T, [V2, T ]

]
+

1

M2

(
− 1

24

[
V1, [V1, T ]

]
+

1

12

[
T, [V1, T ]

]))
h2 +O(h4).

Notice that for M = 1 the method (5.29) reduces to the Störmer-Verlet scheme applied to
the Hamiltonian system withH(q, p). This is a consequence of the fact that ϕ[fast]

t ◦ϕ[slow]
t =

ϕVt is the exact flow of the Hamiltonian system corresponding to V (q) of (5.28) [6].

5.4 Nested force-gradient schemes

Our main idea in this thesis is to combine the idea of force-gradient decomposition methods
(5.12) to improve the energy preservation of symplectic schemes applied to Hamiltonian
systems with multiple time splitting techniques for multi-time scales problems, using the
fact that the potential of the general quantum field problems has different parts with
strongly varying dynamics, thereby reducing the computational costs.

In order to get a better insight into the multi-rate formulation of the force-gradient ap-
proach, we start this section with a short introduction into the nested integration idea
proposed by Sexton and Weingarten [49].

The basis for multirate schemes is to split the action into different parts according to the
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activity level:

H(U,P ) =
〈P, P 〉

2
+

M∑
m=0

Sk[U, φ] (5.30)

If the actions of the Hamiltonian (5.30) are ordered such that computational costs are
increasing, while at the same time the strength of the forces is decreasing, a multi-rate
integration based on the leap-frog scheme with macro step size h0 and micro step size
h1 := h0/m1 due to Sexton and Weingarten [49] proceeds as follows:

VH(h0) = VH2(
h0

2
) (VH1(h1))m1 VH2(

h0

2
)

with H1(U,P ) := 〈P, P 〉/2 +
∑M−1

m=0 Sk[U, φ] and H2(U,P ) = SM [U, φ]. This scheme can
be nested, by introducing a next finer step size h2 := h1/m2 and further splitting H1 into

H1(U,P ) = H11(U,P ) +H12(U,P )

H11(U,P ) := 〈P, P 〉/2 +
∑M−2

m=0 Sk[U, φ] and H12(U,P ) = SM−1[U, φ] in order to replace
VH1(h1) above by

VH1(h1) = VH12(
h1

2
) (VH11(h2))m2 VH12(

h1

2
)

This procedure can be applied recursively [58] to obtain M different step size ratios at the
end, corresponding to the activity levels of the M actions Sk[U, φ].

This approach can be easily generalized to base schemes of higher order such as force-
gradient schemes. It can be easily shown that by construction the overall multirate scheme
inherits the properties of the underlying base scheme: symmetry, time-reversibility, volume
preservation and order (according to the slowest time step h). Nested force-gradient
schemes in QCD have been tested by [14]; applications to Domain Wall fermions are
discussed in [3].

A nested version of a standard force-gradient integrator (5.24), which probably has been
used in [3] reads

∆̂5C(h) = e
1
6
hV̂2 ∆2

(
h

2

)
M

e
2
3
hV̂2+ 1

72
h3Cf ∆2

(
h

2

)
M

e
1
6
hV̂2 , (5.31)

where
∆2(h)M =

(
e

1
6M

hV̂1 e
1

2M
hT̂ e

2
3M

hV̂1+ 1
72( h

M )
3Cg e

1
2M

hT̂ e
1

6M
hV̂1
)M

,

with Cg = [V1, [T, V1]] and Cf = [V2, [T, V2]]. It is important to notice that, apart of imple-
mentation of the integrator (5.31), there was no detailed analysis made for the integrator
properties.

Despite the fact that the idea of nested force-gradient methods is of a great interest, in
general it remained relatively unknown and there is not that many research been published
on this matter.

One serious drawback of this approach is that the same base scheme is used at all levels,
i.e., high computational costs of high order schemes appear at all levels. In order to
overcome this limitation it is natural to suggest using different schemes of different order
at the different levels without loosing the effective high order of the overall multirate
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scheme. For the latter, we could make use of the idea of including appropriate force-
gradient information. For this, we restrict the system (5.30) to two time levels, as the
ultimate goal will be to develop nested force-gradient schemes for lattice QCD, where the
gauge field plays the role of the fast action and cheap part, and the fermion field plays the
role of the slow action and expensive part, i.e., only two time scales are involved.

If one uses a second-order scheme for the fast action with time step h/M and a fourth-
order scheme for the slow action with time step h, the error of the overall multirate scheme
will be of order O(h2) +O

((
h
M

)2)
+O(h4) the use of force-gradient information only at

the slowest level it is possible to cancel the leading error term of order O(h2). As M ≥ 1
h

usually holds in the multirate setting, the overall order is then given by the leading error
term of order O(h4), i.e., the scheme has an effective order of four. In the next section we
perform the proof of this statement.

5.5 Adapted nested force-gradient schemes

In order to overcome the previously mentioned drawbacks of a standard nested force-
gradient integrator (5.31) we propose the following scheme introduced in [51]

∆̃5C(h) = e
1
6
hV̂2 ∆1

(
h

2

)
M

e
2
3
hV̂2+ 1

72
h3Cf ∆1

(
h

2

)
M

e
1
6
hV̂2 . (5.32)

To summarize, the adapted scheme (5.32) differs from the original one (5.31) in two
perspectives:

• The force gradient scheme for the fast action is replaced by a leap-frog scheme.

• Only the part [V2, [T, V2]] of the full force gradient [V1 + V2, [T, V1 + V2]] is needed
to gain the effective order of four.

Geometric properties of the numerical flow such as time-reversibility and symplecticity
preserved by the construction, since the scheme (5.32) can be presented as the composition
of the time-reversible and symplectic integrators and hence also possesses these properties.

Now it is crucial to show that the proposed integrator has the effective order of four. Let
us start by introducing following alike 5-stage nested integrator

∆(h) = eλhV̂2 ∆

(
h

2

)
M

e(1−2λ)hV̂2 ∆

(
h

2

)
M

eλhV̂2 , (5.33)

where
∆

(
h

2

)
M

=
[
e
h

4M
V̂1 e

h
2M

T̂ e
h

4M
V̂1
]M

and analyzing the energy conservation of this scheme. The method (5.33) was chosen to
be a base of our proposed integrator (5.32), because it has an optimal number of stages,
necessary for increasing its order.

We have to find the shadow Hamiltonian for the integrator (5.33). In order to do so, we
use the BCH formula (2.10). To simplify this task we consider the limit of the integrator
given in (5.33), as M tends to infinity.
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We obtain the following representation of (5.33)

∆(h) = eλhV̂2 e
h
2

(V̂1+T ) e(1−2λ)hV̂2 e
h
2

(V̂1+T̂ ) eλhV̂2 . (5.34)

Theorem 9 (Shadow Hamiltonian of (5.34)). The shadow Hamiltonian of the nested
multirate integrator (5.34) is given by

H̃ = H +
(−1 + 6λ− 6λ2

12

[
V2, [T, V2]

]
+
−1 + 6λ

24

[
V1, [T, V2]

]
+
−1 + 6λ

24

[
T, [T, V2]

])
h2 +O(h4). (5.35)

Proof: We apply the BCH formula to the first two evolution operators

X = ln

(
eλhV̂2 eh

V̂1+T̂
2

)
= c1h+ c2h

2 + c3h
3 +O(h5),

where

c1 = λV2 +
V1 + T

2
,

2c2 =
B2

2!
adc1

(
λV2 +

V1 + T

2

)
− 1

2
adc1

(
λV2 −

V1 + T

2

)
,

c2 = −1

4

[
λV2 +

V1 + T

2
, λV2 −

V1 + T

2

]
= −λ

4
[V1, V2]− λ

4
[T, V2],

3c3 =
B3

3!
adc1adc1

(
λV2 +

V1 + T

2

)
− 1

2
adc2

(
λV2 −

V1 + T

2

)
,

c3 = −1

6

[
−λ

4
[V1, V2]− λ

4
[T, V2], λV2 −

V1 + T

2

]
= −λ

2

24

[
V2, [V1, V2]

]
− λ2

24

[
V2, [T, V2]

]
+

λ

48

[
V1, [V1, V2]

]
+

λ

48

[
V1, [T, V2]

]
+

λ

48

[
T, [V1, V2]

]
+

λ

48

[
T, [T, V2]

]
.

Then we have the result for our first two operators

X =

(
λV2 +

V1 + T

2

)
h+

(
−λ

4
[V1, V2]− λ

4
[T, V2]

)
h2

+

(
−λ

2

24

[
V2, [V1, V2]

]
− λ2

24

[
T, [T, V2]

]
+

λ

48

[
V1, [V1, V2]

]
+
λ

48

[
V1, [T, V2]

]
+

λ

48

[
T, [V1, V2]

]
+

λ

48

[
T, [T, V2]

])
h3 +O(h5).

The next step is to apply the BCH formula on the following operators

Y = ln
(

eX e(1−2λ)hV̂2
)

= c1 + c2 + c3 +O(h5)
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and coefficients

c1 = X + (1− 2λ)hV2 =

(
(1− λ)V2 +

V1 + T

2

)
h+ (. . .)h2 + (. . .)h3,

2c2 =
B2

2!
adc1

(
X + (1− 2λ)hV2

)
− 1

2
adc1

(
X − (1− 2λ)hV2

)
,

c2 = −1

4

[
X + (1− 2λ)hV2, X − (1− 2λ)hV2

]
=

(
1− 2λ

4
[V1, V2] +

1− 2λ

4
[T, V2]

)
h2

+

(
λ− 2λ2

8

[
V2, [V1, V2]

]
+
λ− 2λ2

8

[
V2, [T, V2]

])
h3

3c3 =
B3

3!
adc1adc1

(
X + (1− 2λ)hV2

)
− 1

2
adc2

(
X − (1− 2λ)hV2

)
,

c3 = −1

6

[
c2, X − (1− 2λ)hV2

]
=

(
−(1− 2λ)(1− 3λ)

24

[
V2, [V1, V2]

]
− (1− 2λ)(1− 3λ)

24

[
V2, [T, V2]

]
+

(1− 2λ)

48

[
V1, [V1, V2]

]
+

(1− 2λ)

48

[
V1, [T, V2]

]
+

(1− 2λ)

48

[
T, [V1, V2]

]
+

(1− 2λ)

48

[
T, [T, V2]

])
h3,

and we obtain the following expansion

Y =

(
(1− λ)V2 +

V1 + T

2

)
h+

(
1− 3λ

4
[V1, V2] +

1− 3λ

4
[T, V2]

)
h2

+

(
−1 + 8λ− 13λ2

24

[
V2, [V1, V2]

]
+
−1 + 8λ− 13λ2

24

[
T, [T, V2]

]
+

1− λ
48

[
V1, [V1, V2]

]
+

1− λ
48

[
V1, [T, V2]

]
+

1− λ
48

[
T, [V1, V2]

]
+

1− λ
48

[
T, [T, V2]

])
h3 +O(h5),

The next step would be to repeat the previous procedures to find

Z = ln

(
eY eh

V̂1+T̂
2

)
= c1 + c2 + c3 +O(h5).
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Using the BCH formula we obtain

c1 = Y + h
V1 + T

2
= ((1− λ)V2 + V1 + T )h+ (. . .)h2 + (. . .)h3,

2c2 =
B2

2!
adc1

(
Y + h

V1 + T

2

)
− 1

2
adc1

(
Y − hV1 + T

2

)
,

c2 = −1

4

[
Y + h

V1 + T

2
, Y − hV1 + T

2

]
=

(
−1− λ

4
[V1, V2]− 1− λ

4
[T, V2]

)
h2

+

(
−1− 3λ

16

[
V1, [V1, V2]

]
− 1− 3λ

16

[
V1, [T, V2]

]
−1− 3λ

16

[
T, [V1, V2]

]
− 1− 3λ

16

[
T, [T, V2]

])
h3,

3c3 =
B3

3!
adc1adc1

(
Y + h

V1 + T

2

)
− 1

2
adc2

(
Y − hV1 + T

2

)
c3 = −1

6

[
c2, Y − h

V1 + T

2

]
,

=

(
−(1− λ)2

24

[
V2, [V1, V2]

]
− (1− λ)2

24

[
V2, [T, V2]

])
h3.

Therefore we obtain

Z =
(
(1− λ)V2 + V1 + T

)
h+

(−λ
2

[V1, V2] +
−2λ

2
[T, V2]

)
h2

+

(
−1 + 5λ− 7λ2

12

[
V2, [V1, V2]

]
+
−1 + 5λ− 7λ2

12

[
T, [T, V2]

]
+
−1 + 4λ

48

[
V1, [V1, V2]

]
+
−1 + 4λ

48

[
V1, [T, V2]

]
+
−1 + 4λ

48

[
T, [V1, V2]

]
+
−1 + 4λ

48

[
T, [T, V2]

])
h3 +O(h4).

Applying the BCH formula for a last time we obtain the shadow Hamiltonian

H̃ = ln
(

eZ eλV̂2h
)

= c1 + c2 + c3 +O(h5),
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with the coefficients

c1 = Z + λV2h = (V2 + V1 + T )h+ (. . .)h2 + (. . .)h3,

2c2 =
B2

2!
adc1 (Z + λV2h)− 1

2
adc1 (Z − λV2h) ,

c2 = −1

4
[Z + λV2h, Z − λV2h]

=

(
λ

2
[V1, V2] +

λ

2
[T, V2]

)
h2 +

(
λ2

4

[
V2, [V1, V2]

]
+
λ2

4

[
V2, [T, V2]

])
h3,

3c3 =
B3

3!
adc1adc1 (Z + λV2h)− 1

2
adc2 (Z − λV2h) ,

c3 = −1

6
[c2, Z − λV2h]

=

(
λ(1− 2λ)2

12

[
V2, [V1, V2]

]
+
λ(1− 2λ)2

12

[
V2, [T, V2]

]
+

λ

12

[
V1, [V1, V2]

]
+
λ

12

[
V1, [T, V2]

]
+

λ

12

[
T, [V1, V2]

]
+

λ

12

[
T, [T, V2]

])
h3,

and finally

H̃ = H +

(
−1 + 6λ− 6λ2

12

[
V2, [V1, V2]

]
+
−1 + 6λ

24

[
V1, [T, V2]

]
+
−1 + 6λ− 6λ2

12

[
V2, [T, V2]

]
+
−1 + 6λ

24

[
V1, [V1, V2]

]
+
−1 + 6λ

24

[
T, [V1, V2]

]
+
−1 + 6λ

24

[
T, [T, V2]

])
h2 +O(h4).

Finally, taking into account that [V1, V2] = 0, hence
[
V2, [V1, V2]

]
,
[
V1, [V1, V2]

]
and[

T, [V1, V2]
]
are equal to zero, we obtain (5.35).

We can eliminate a couple of terms by choosing λ = 1/6, thus

H̃ = H − 1

72

[
V2, [T, V2]

]
h2 +O(h4).

We would like to increase the order of the method (5.33) by adding the force-gradient
term, but first we consider the force-gradient itself. Due to the splitting (5.28) it can be
represented as

C =
[
V, [T, V ]

]
=
[
V2 + V1, [T, V2 + V1]

]
=
[
V2, [T, V2]

]
+
[
V1, [T, V1]

]
+
[
V1, [T, V2]

]
+
[
V2, [T, V1]

]
.

Then we can tune the original algorithm (5.33) by adding the first term of the force
gradient

[
V2, [T, V2]

]
and neglect the last three terms:

∆(h) = e
1
6
hV̂2 ∆

(
h

2

)
M

e
2
3
hV̂2+ 1

72
h3
[
V2,[T,V2]

]
∆

(
h

2

)
M

e
1
6
hV̂2 , (5.36)

which preserves the fourth-order accurate shadow Hamiltonian

H̃ = H +O(h4).
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So now we can analyze the shadow Hamiltonian for the nested method (5.33) for the
general case when the parameter M does not tend to infinity.

First, let us show that the evolution operator ∆(h)M can also be presented as

∆

(
h

2

)
M

= e
h
2

(V1+T )+ h3

M2 ( 1
192

[V1, [T, V1]]+ 1
96

[T, [T, V1]])+O(h5) .

It is derived by applying the BCH formula on the original propagator ∆(h)M . Therefore
the proposed scheme (5.33) can be rewritten as

∆(h) = eλhV2 e
h
2

(V1+T )+ h3

M2 ...O(h5) e(1−2λ)hV2 e
h
2

(V1+T )+ h3

M2 ...+O(h5) eλhV2 .

To find the shadow Hamiltonian we apply the BCH formula to the first two evolution
operators

X = ln

(
eλhV2 eh

V1+T
2

+ h3

M2 (...)

)
= c1h+ c2h

2 + c3h
3 +O(h5),

where

c1 = λV2 +
V1 + T

2
+

h3

M2
(. . .) +O(h5)

2c2 =
B2

2!
adc1

(
λV2 +

V1 + T

2

)
− 1

2
adc1

(
λV2 −

V1 + T

2

)
c2 = −1

4

[
λV2 +

V1 + T

2
, λV2 −

V1 + T

2

]
= −λ

4
[T, V2],

3c3 =
B3

3!
adc1adc1

(
λV2 +

V1 + T

2

)
− 1

2
adc2

(
λV2 −

V1 + T

2

)
c3 = −1

6

[
−λ

4
[T, V2], λV2 −

V1 + T

2

]
= −λ

2

24
[V2, [T, V2]] +

λ

48
[V1, [T, V2]] +

λ

48
[T, [T, V2]] .

Then for the first two operators we have

X = h

(
λV2 +

V1 + T

2

)
− λh2

4
[T, V2]− λ2h3

24
[V2, [T, V2]]

+
λh3

48
[V1, [T, V2]] +

λh3

48
[T, [T, V2]] +

h3

M2
(. . .) +O(h5).

Next we apply the BHC formula to

Y = ln
(

eX e(1−2λ)hV2
)

= c1h+ c2h
2 + c3h

3 +O(h5)

with coefficients
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c1 = X + (1− 2λ)V2 = (1− λ)V2 +
V1 + T

2
+ . . .+O(h5)

2c2 =
B2

2!
adc1 (X + (1− 2λ)V2)− 1

2
adc1 (X − (1− 2λ)V2)

c2 = −1

4
[X + (1− 2λ)V2, X − (1− 2λ)V2] =

1− 2λ

4
[T, V2] +

λ− 2λ2

8
[V2, [T, V2]]

3c3 =
B3

3!
adc1adc1 (X + (1− 2λ)V2)− 1

2
adc2 (X − (1− 2λ)V2)

c3 = −1

6
[c2, X − (1− 2λ)V2] =

(1− 2λ)(−1 + 3λ)

24
[V2, [T, V2]]

+
(1− 2λ)

48
[V1, [T, V2]] +

(1− 2λ)

48
[T, [T, V2]]

and we obtain the following expansion

Y =

(
(1− λ)V2 +

V1 + T

2

)
h+

(1− 3λ)h2

4
[T, V2] +

(−1 + 8λ− 13λ2)h3

24
[V2, [T, V2]]

+
(1− λ)h3

48
[V1, [T, V2]] +

(1− λ)h3

48
[T, [T, V2]] +

h3

M2
(. . .) +O(h5).

Then by repeating the previous procedures we obtain

Z = ln

(
eY e+ h3

M2 ...+O(h5)

)
= c1h+ c2h

2 + c3h
3 +O(h5).

Using the BCH formula yields

c1 = Y +
V1 + T

2
= (1− λ)V2 + V1 + T + . . .+O(h5)

2c2 =
B2

2!
adc1

(
Y +

V1 + T

2

)
− 1

2
adc1

(
Y − V1 + T

2

)
c2 = −1

4

[
Y +

V1 + T

2
, Y − V1 + T

2

]
= −1− λ

4
[T, V2]

− 1− 3λ

16
[V1, [T, V2]]− 1− 3λ

16
[T, [T, V2]]

3c3 =
B3

3!
adc1adc1

(
Y +

V1 + T

2

)
− 1

2
adc2

(
Y − V1 + T

2

)
c3 = −1

6

[
c2, Y −

V1 + T

2

]
= −(1− λ)2

24
[V2, [T, V2]]

and hence we obtain
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Z = ((1− λ)V2 + V1 + T )h+
−λh2

2
[T, V2] +

(−1 + 5λ− 7λ2)h3

12
[V2, [T, V2]]

+
(−1 + 4λ)h3

48
[V1, [T, V2]] +

(−1 + 4λ)h3

48
[T, [T, V2]] +

2h3

M2
(. . .) +O(h5).

Then using the BCH formula for the last time we obtain the shadow Hamiltonian

H̃ = ln
(

eZ eλV2
)

= c1h+ c2h
2 + c3h

3 +O(h5)

with coefficients

c1 = Z + λV2 = (V2 + V1 + T )h+ . . .+O(h5)

2c2 =
B2

2!
adc1(Z + λV2)− 1

2
adc1(Z − λV2)

c2 = −1

4
[Z + λV2, Z − λV2] =

λ

2
[T, V2] +

λ2

4
[V2, [T, V2]]

3c3 =
B3

3!
adc1adc1(Z + λV2)− 1

2
adc2(Z − λV2)

c3 = −1

6
[c2, Z − λV2]

=
λ(1− 2λ)

12
[V2, [T, V2]] +

λ

12
[V1, [T, V2]] +

λ

12
[T, [T, V2]],

which finally yields

H̃ = V2 + V1 + T +
(−1 + 6λ− 6λ2)h2

12
[V2, [T, V2]] +

(−1 + 6λ)h2

24
[V1, [T, V2]]

+
(−1 + 6λ)h2

24
[T, [T, V2]] +

h2

M2

(
1

96
[V1, [T, V1]] +

1

48
[T, [T, V1]]

)
+O(h4).

Similar to the case when M →∞ a choice λ = 1/6 eliminates the error terms [V1, [T, V2]]
and [T, [T, V2]]; by adding the force-gradient term as for the numerical scheme (5.36) we
obtain

H̃ = H +
h2

M2

(
1

96
[V1, [T, V1]] +

1

48
[T, [T, V1]]

)
+O(h4),

which results to an order of the method (5.32) to be O
((

h
M

)2)
+O(h4) but since in the

multirate setting the parameter M usually satisfies the relation M ≥ 1
h , the overall order

is then given by the leading error term of order O(h4), i.e., the numerical scheme (5.32)
has an effective order of four. We show the numerical proof in the next chapter.
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In this chapter we have introduced a new decomposition scheme for Hamiltonian systems,
which combines the idea of the force-gradient time-reversible and symplectic integrators
and the splitting approach of nested algorithms. The new method (5.32) is fourth-order
accurate. We also introduced some of the most commonly used numerical time integrators
for the molecular dynamics such as for example leap-frog (5.22), its nested version (5.29),
standard 5 stage decomposition integrator (5.23) and its nested version (5.33), which are
second order; (5.24) and (5.25), which have the fourth order of convergence. Hence these
are competitors to the proposed method (5.32).

We do not consider integrators of the order higher than 4, since the computational costs
are too high. The schemes of the same convergence order differ from each other by the
number of stages (updates of momenta and links per time step). Usually methods with
more stages have smaller leading error coefficients and therefore have better accuracy, but
higher computational costs. We would like to determine which integrator would represent
the best compromise between high accuracy and computational efficiency.

In the next chapter we test our proposed numerical integrator in the comparison to the
above mentioned standard numerical methods for the molecular dynamics step of the
HMC algorithm. In order to analyze the behavior of the integrators we apply them to two
different test problems, which are introduced next.





6 Chapter 6

NUMERICAL RESULTS

We compare the behavior of numerical time integration schemes currently used for HMC
[42] with the nested force-gradient integrator [14] and the adapted version introduced in
[51]. We investigate the computational costs needed to perform numerical calculations,
as well as the effort required to achieve a satisfactory acceptance rate during the HMC
evolution. Our goal is to find a numerical scheme for the HMC algorithm which would
provide a sufficiently high acceptance rate while not drastically increasing the simulation
time.

In this chapter we present results of numerical experiments, which were designed to test the
new idea of the adapted nested force-gradient method. Since it was previously mentioned
that all the considered numerical schemes preserve geometric properties of the numerical
flow of the system of ODEs here we concentrate on the convergence order of the integrators
and their computational efficiency.

First we test most commonly used geometric integrators on the classical n-body problem,
then we apply these integrators to QED’s two-dimensional Schwinger model and discuss
our obtained results.

6.1 N-body problem

In order to obtain a better insight in dealing with the force-gradient (5.12) and multirate
(5.27) numerical integration schemes we first apply certain numerical methods for solving
the well known problem n-body problem of astrophysics.

This problem has been chosen because it can model the multirate time scaling for the
multirate methods to be used. Also the case of the n-body problem we chose to consider
is fairly simple (3-body problem) and may not yield significant advantages for the nested
type integrators (the difference between fast and slow part of the action is too small), but
it can still demonstrate important features of the proposed nested force-gradient schemes.

We recall that for classical mechanical systems, the equation of motion can be written as

dρ
dt

= {ρ,H} ≡ L(t)ρ(t), (6.1)

where ρ is the set of phase variables, { , } denotes the Poisson bracket, H represents the
Hamiltonian function, and L denotes the Liouville operator.

For the case of N particles, located in a spatially inhomogeneous time-dependent external
field u(qi, t) and interacting through the pair-wise potential ϕ(qij) ≡ ϕ(|qi − qj |), the

67
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Hamiltonian reads

H =

N∑
i=1

miv
2
i

2
+

1

2

N∑
i 6=j

ϕ(qij) +

N∑
i=1

u(qi, t) ≡ T (v) + V (q, t). (6.2)

Here qi represents the position of particle i (i = 1, 2, . . . , N) moving with velocity vi =
dqi/dt and carrying the mass mi, so that T and V are the total kinetic and potential
energies, respectively. Then ρ = {qi, vi} ≡ {q, v}, and the Liouville operator of the
system takes the form

L(t) =
N∑
i=1

(
vi ·

∂

∂qi
+
fi(t)

mi
· ∂
∂vi

)
, (6.3)

where

fi(t) = −
N∑

j(j 6=i)

ϕ′(qij)(qi − qj)
qij

− ∂u(qi, t)

∂qi

are forces acting on the particles due to their interactions.

If the initial configuration ρ(0) is specified, the unique solution to the problem of equa-
tion (6.1) can be presented by the time propagator operator as

ρ(t) =
[
e(D+L)h

]l
ρ(0), (6.4)

where h is a temporal step size and l = t/h the total number of steps. D =
←−
∂ /∂t denotes

the time derivative operator acting on the left of time-dependent functions. We consider
in our paper L, which does not depend explicitly on time, thus we set D = 0.

In case of many-particle systems (N > 2) the time propagator cannot be computed ex-
actly even in the absence of time dependent potentials. Hence one has to apply numerical
integration methods such as decomposition schemes, which both preserve the physical
properties of the Hamiltonian system (6.4) (symplecticity, time reversibility) and are com-
putationally efficient [42].

As we presented in the previous chapter the force-gradient schemes are based on the fact
that the total propagator in (6.4) can be split in the following way:

e(T̂+V̂ )h+O(hK+1) =
P∏
p=1

eT̂ aph eV̂ bph+Ccph3 ,

where C = [V, [T, V ]] and [ , ] denotes the commutator of two operators and for the case
of the Hamiltonian function (6.2) it yields

C ≡
[
V, [T, V ]

]
=

N∑
i=1

gi
mi
· ∂
∂v
,

where
giα = 2

∑
jβ

fjβ
mj

∂fiα
∂qjβ

,

α and β denote the Cartesian components of the vectors. The force-gradient evaluations
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∂fiα/∂qjβ can be explicitly represented taking into account that

fiα = miwiα −
∂u(qi, t)

∂qiα
,

where
wiα = − 1

mi

∑
j(j 6=i)

ϕ′(qij)
(qiα − qjα)

qij

is the inter-particle part of the acceleration. The result is

gi = −2
N∑

j(j 6=i)

[
(wi − wj)

ϕ′ij
qij

+
(qi − qj)
q3
ij

(
qijϕ

′′
ij − ϕ′ij

) (
qi · (wi − wj)

)]
+ hi, (6.5)

where

hiα =
2

mi

∑
β

∂u

∂qiβ

∂2u

∂qiα∂qiβ
.

For this type of problem (6.1) we test well-known, commonly used second order integration
schemes in molecular dynamics such as

• the leap-frog method, a 3-stage composition scheme:

∆(h) = eh
V̂
2 ehT̂ eh

V̂
2 , (6.6)

• and a 5-stage extension widely used in QCD computations:

∆5(h) = e
1
6
hV̂ e

1
2
hT̂ e

2
3
hV̂ e

1
2
hT̂ e

1
6
hV̂ . (6.7)

We also consider the nested versions of the leap-frog method (6.6)

∆̂(h) = e
h
2
V̂2 ∆1 (h)M e

h
2
V̂2 , (6.8)

where the inner cheaper system H = T [P ] + V1[U ] is solved by

∆1(h)M =
(

e
h

2M
V̂1 e

h
M
T̂ e

h
2M

V̂1
)M

,

with M being a number of iterations for the fast part of the action; and similar 5-stage
decomposition scheme (6.7), nested version of which has been recently introduced:

∆̂5(h) = e
1
6
hV̂2 ∆1

(
h

2

)
M

e
2
3
hV̂2 ∆1

(
h

2

)
M

e
1
6
hV̂2 . (6.9)

We test force gradient schemes (5.12) such as 5-stage force-gradient scheme proposed by
Omelyan et al [42]

∆5C(h) = e
1
6
hV̂ e

1
2
hT̂ e

2
3
hV̂− 1

72
h3C e

1
2
hT̂ e

1
6
hV̂ (6.10)
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and the adapted nested force-gradient scheme introduced in [51]

∆̃5C(h) = e
1
6
hV̂2 ∆1

(
h

2

)
M

e
2
3
hV̂2+ 1

72
h3Cf ∆1

(
h

2

)
M

e
1
6
hV̂2 . (6.11)

We also compare the extension given by the 11-stage decomposition [42], recently imple-
mented as the integrator in the open source code openQCD as one of the standard options
[36]

∆11(h) = eσhV̂ eηhT̂ eλhV̂ eθhT̂ e(1−2(λ+σ))h
2
V̂ e(1−2(θ+η))hT̂ e(1−2(λ+σ))h

2
V̂ eθhT̂ eλhV̂ eηhT̂ eσhV̂ , (6.12)

where σ, θ, λ and η are parameters from equation (71) in Ref. [42].

The evolution operators eT̂ akh and eV̂ bkh+Cckh3 displace v and q forward in time with

v → v + bkhV̂ (ρ) + ckCh3 and q → q + akhT̂ (ρ). (6.13)

We consider the three body problem, the Sun-Earth-Moon problem [28], which is a par-
ticular case of a n-body problem (6.2). The given system has the energy

E =
2∑
i=0

miv
2
i

2
−G

2∑
i=1

i−1∑
j=0

mimj

qij
,

where qij = ‖qi− qj‖, m0, m1 and m2 represent the masses of the Sun, the Earth and the
Moon, respectively and G is the gravitational constant. The physical parameters for this
system are presented in Table 6.1.

The equations of motion (6.1) yield

dq0

dt
= v0,

dv0

dt
= −m1G

q0 − q1

q3
01

−m2G
q0 − q2

q3
02

,

dq1

dt
= v1,

dv1

dt
= −m0G

q1 − q0

q3
10

−m2G
q1 − q2

q3
12

,

dq2

dt
= v2,

dv2

dt
= −m0G

q2 − q0

q3
20

−m1G
q2 − q1

q3
21

.

(6.14)

Gravitational constant, G 6.67384× 10−11,m3/kg s 0.2662 AU3/SU mo
Mass of the Sun, m0 1.9891× 1030, kg 1 SU
Mass of the Earth, m1 5.9736× 1024, kg 3× 10−6 SU
Mass of the Moon, m2 7.3477× 1022, kg 0.0369× 10−6 SU
Position of the Sun, q0 (0, 0), m (0, 0), AU
Position of the Earth, q1 (0, 1.52098× 1011), m (0, 1.0167138), AU
Position of the Moon, q2 (0, 1.52504× 1011), m (0, 1.0191138), AU
Velocity of the Sun, v0 (0, 0), m/s (0, 0), AU/mo
Velocity of the Earth, v1 (0, 29.78× 103), m/s (0, 0.5160), AU/mo
Velocity of the Moon, v2 (0, 30.802× 103), m/s (0, 0.5337), AU/mo

Table 6.1: Physical parameters of the Sun-Earth-Moon problem.
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The force-gradient terms can be obtained from (6.5) for this case, using the external field
potential u(qij) = 0 and the pair-wise potentials

ϕ(qij) = −Gmimj

qij
,

respectively for each interaction, with the fast V1 and the slow V2 potentials are given

V1 = −Gm1m2

q12
, V2 = −Gm0m1

q01
−Gm0m2

q02
.
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Figure 6.1: Computational costs for different numerical methods(Sun-Moon-Earth
problem).

Figure 6.1 presents the CPU time, required for the three different integrators against the
achieved accuracy. Here we scale the time needed for the computation of the fast part by
a factor of 0.001, since we assume that the computation of the fast scale functions is very
cheap compared to the slow scale function evaluations. We can see that in general our
nested force-gradient method (6.11) requires less CPU time and performs more accurate
than the standard schemes, presented in Figure 6.1.
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Figure 6.2: Absolute error for different numerical integrators (Sun-Moon-Earth problem).

Figure 6.2 presents a comparison between the standard numerical algorithms (6.6)-(6.7),
nested approaches (6.8)–(6.9), the force-gradient (6.10) and our combined method (6.11), it
shows the absolute error versus the step-size. The proposed integrator (6.11) withM = 30,
which combines nested and force-gradient ideas, yields a better energy conservation even
compared to 11-stage numerical scheme (6.12). These numerical results correspond to our
analytical observations.

Thus we can argue that, if the evaluation of the fast function is significantly cheaper
than the slow function, computational costs decrease. This is exactly the case found in
our long-term goal applications in lattice quantum chromodynamics (LQCD), where the
action can be split into two parts: the gauge action (whose force evaluations are cheap)
and the fermion action (expensive). We have introduced a new decomposition scheme for
Hamiltonian systems, which combines the idea of the force-gradient time-reversible and
symplectic integrators and the splitting approach of nested algorithms. The new method
of (5.36) is fourth-order accurate. Compared to other fourth-order schemes, the leading
error coefficient is smaller and computational costs are lower.

6.2 Schwinger model

Previously, we studied the behavior of the adapted nested force-gradient scheme in the
Abelian case on the example of the n-body problem [51]. Numerical tests have verified the
potential of these schemes with increasing multirate potential, nested versions of force-
gradient schemes outperform the unnested versions. This promising result suggested to
perform the step from the Abelian to the non-Abelian setting of lattice QCD.

Due to the complexity of the lattice QCD problem requiring the huge computational effort
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it was natural to concentrate on the intermediate step from Abelian to the non-Abelian
case. We chose a well known problem of quantum electrodynamics (QED), the two-
dimensional Schwinger model, since it suits the best as a test case for new concepts and
ideas for more computational demanding problems [13]. As a lattice quantum field theory,
it has many of the properties of more sophisticated models such as QCD, for example the
numerical cost is still dominated by the fermion part of the action. The fact that this
model, with far fewer degrees of freedom, does not require such large computational effort
makes it the perfect choice for our testing purposes.

We apply the numerical integration schemes (6.6)–(6.11) to the two-dimensional Schwinger
model, where the discrete updates (6.13) are given in the following form

eT̂ h : U → U ′ = exp(iPh)U

eV̂ h : P → P ′ = P − ihFV (U),

where the gauge fields U are elements of some Lie group, and the momenta P , elements
of the corresponding Lie algebra.

As well as the modification of the force-gradient method (6.10) proposed in [60], where
the force-gradient term C is approximated via a Taylor expansion and a nested version of
(6.10), which has been used in [3], which reads

∆̂5C(h) = e
1
6
hV̂2 ∆2

(
h

2

)
M

e
2
3
hV̂2+ 1

72
h3Cf ∆2

(
h

2

)
M

e
1
6
hV̂2 , (6.15)

where
∆2(h)M =

(
e

1
6M

hV̂1 e
1

2M
hT̂ e

2
3M

hV̂1+ 1
72( h

M )
3Cg e

1
2M

hT̂ e
1

6M
hV̂1
)M

,

with Cg = {V1, {T, V1}} and Cf = {V2, {T, V2}}.

The most challenging task from the theoretical point of view is to derive the force-gradient
term C. First we introduce the Schwinger model and explain how to obtain the force-
gradient term. The two-dimensional Schwinger model is defined by the following Hamil-
tonian function

H =
1

2

V,2∑
n=1,µ=1

p2
n,µ + Sfull[U ] =

1

2

V,2∑
n=1,µ=1

p2
n,µ + SG[U ] + SF [U ]. (6.16)

with V = L×T the volume of the lattice. Unlike QCD, where U ∈ SU(3) and pn,µ ∈ su(3),
for this QED problem (6.16), the links U are the elements of the Lie group U(1) and the
momenta pn,µ belong to R, which represents the Lie algebra of the group U(1). This makes
this test example (6.16) very cheap in terms of the computational time. This together with
the fact that the Schwinger model also shares many of the features of QCD simulations,
makes the Schwinger model an excellent test example when considering numerical integra-
tors: a fast dynamics given by the computationally cheap gauge part SG[U ] of the action
demanding small step sizes, and a slow dynamics given by the computationally expensive
fermion part SF [U ] allowing large step sizes.

The pure gauge part of the action SG sums up over all plaquettes P(n) in the two-
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dimensional lattice with

P(n) = U1(n)U2(n+ 1̂)U †1(n+ 2̂)U †2(n),

and is given by

SG = β

V∑
n=1

(1− ReP(n)) . (6.17)

The links U can be written in the form Uµ(n) = eiqµ(n) ∈ U(1) and connect the sites n
and n + µ̂ on the lattice; qµ(n) ∈ [−π, π], µ, ν ∈ {x, t} are respectively space and time
directions and β is a coupling constant. Note that from now on we will set the lattice
spacing a = 1.

The fermion part of the action SF is given by

SF = η†
(
D†D

)−1
η, (6.18)

where η is a complex pseudofermion field. Here, D denotes the Wilson–Dirac operator
given by

Dn,m = (2 +m0)δn,m −
1

2

2∑
µ=1

(
(1− σµ)Uµ(n)δn,m−µ̂ + (1 + σµ)U †µ(n− µ̂)δn,m+µ̂

)
,

where σµ are the Pauli matrices

σ1 =

(
0 1
1 0

)
and σ2 =

(
0 −i
i 0

)
.

m0 is the mass parameter and the Kronecker delta δn,m acts on the pseudofermion field
by

V∑
m=1

δn,mη(m) = η(n)

with η(n) the pseudofermion field, a vector in the two-dimensional spinor space taking
values at each lattice point n.

In order to proceed with the numerical integration we need to obtain the force F and the
force gradient term C. The force term F (n, µ) with respect to the link Uµ(n) is given by
the first derivative of the action Sfull and can be written as

F (n, µ) = FSG(n, µ) + FSF (n, µ) =
∂SG
∂qµ(n)

+
∂SF
∂qµ(n)

. (6.19)

Since the numerical schemes (6.9)–(6.11) use the multi-rate approach, the shifts in the
momenta updates are split on FSG and FSF and we can consider them separately. The
force terms FSG and FSF are obtained by differentiation over U(1) group elements, which
for the Schwinger model is the standard differentiation.

The force associated with link Uµ(n) from the gauge action is given by

βg(n, µ) := FSG(n, µ) = β Im (P(n)− P(n− ν̂))|µ 6=ν . (6.20)
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The force term of the fermion part is given by

f(n, µ) := FSF
= − Im

[
χ†(n)(1− σµ)Uµ(n)ξ(n+ µ̂)− χ†(n+ µ̂)(1 + σµ)U†µ(n)ξ(n)

]
(6.21)

where vectors χ and ξ are given

χ = D†
−1
η, ξ = D−1D†

−1
η. (6.22)

For the numerical methods (6.10) and (6.15) we need to find the force gradient term C(n, µ)
with respect to the link Uµ(n). In case of the Schwinger model (6.16) this term reads

C(n, µ) = 2

V,2∑
m=1,ν=1

∂Sfull
∂qν(m)

∂2Sfull
∂qν(m)∂qµ(n)

. (6.23)

For simplicity we decompose the force gradient term (6.23) in four parts

CGG = 2

V,2∑
m=1,ν=1

∂SG
∂qν(m)

∂2SG
∂qν(m)∂qµ(n)

, CFG = 2

V,2∑
m=1,ν=1

∂SF
∂qν(m)

∂2SG
∂qν(m)∂qµ(n)

,

CGF = 2

V,2∑
m=1,ν=1

∂SG
∂qν(m)

∂2SF
∂qν(m)∂qµ(n)

, CFF = 2

V,2∑
m=1,ν=1

∂SF
∂qν(m)

∂2SF
∂qν(m)∂qµ(n)

.

(6.24)

This decomposition is also useful since the numerical integrator (6.15) only uses the term
CFF by construction. As shown in [51], to obtain the fourth order convergent scheme
(6.15) from the second order convergent method (6.9) we must eliminate the leading error
term, which is exactly represented by CFF . For completeness we discuss all 4 parts below.

The CGG part of the force-gradient term is

CGG = 2β2 [Im(4P1(n, µ)− P2(n, µ)− P3(n, µ)− P4(n, µ)− P5(n, µ)) Re(P1(n, µ))

− Im(4P2(n, µ)− P1(n, µ)− P6(n, µ)− P7(n, µ)− P8(n, µ)) Re(P2(n, µ))]

with the set of plaquettes

P1(n, µ) = Uµ(n)Uν(n+ µ̂)U †µ(n+ ν̂)U †ν (n),

P2(n, µ) = Uµ(n− ν̂)Uν(n− ν̂ + µ̂)U †µ(n)U †ν (n− ν̂),

P3(n, µ) = Uµ(n+ µ̂)Uν(n+ 2µ̂)U †µ(n+ ν̂ + µ̂)U †ν (n+ µ̂),

P4(n, µ) = Uµ(n+ ν̂)Uν(n+ µ̂+ ν̂)U †µ(n+ 2ν̂)U †ν (n+ ν̂),

P5(n, µ) = Uµ(n− µ̂)Uν(n)U †µ(n+ ν̂ − µ̂)U †ν (n− µ̂),

P6(n, µ) = Uµ(n− µ̂− ν̂)Uν(n− ν̂)U †µ(n− µ̂)U †ν (n− µ̂− ν̂),

P7(n, µ) = Uµ(n− 2ν̂)Uν(n− 2ν̂ + µ̂)U †µ(n− ν̂)U †ν (n− 2ν̂),

P8(n, µ) = Uµ(n− ν̂ + µ̂)Uν(n− ν̂ + 2µ̂)U †µ(n+ µ̂)U †ν (n− ν̂ + µ̂).

Then by using the vectors f(n, µ) defined in (6.21) we obtain the CFG piece of the force-
gradient term given by

CFG(n, µ)= 2β [(f(n, µ) + f(n+ µ̂, ν)− f(n+ ν̂, µ)− f(n, ν)) Re(P1)

+ (f(n, µ)− f(n+ µ̂− ν̂, ν)− f(n− ν̂, µ) + f(n− ν̂, ν)) Re(P2)] .
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The second derivative of the fermion action is

∂2SF
∂qν(m)∂qµ(n)

=

2 Reχ†
[

∂D

∂qν(m)
D−1

∂D

∂qµ(n)
+

∂D

∂qµ(n)
D−1

∂D

∂qν(m)
− ∂2D

∂qν(m)∂qµ(n)

]
ξ+

2 Reχ†
∂D

∂qµ(n)
(D†D)−1

∂D†

∂qν(m)
χ ,

= 2 Re

[
z†1,m,ν

∂D

∂qµ(n)
ξ + χ†

∂D

∂qµ(n)
D−1w2,m,ν − χ†

∂2D

∂qν(m)∂qµ(n)
ξ + χ†

∂D

∂qµ(n)
D−1z1,m,ν

]
= 2Re

[
z†1,m,νw2,n,µ + w†1,n,µz2,m,ν − χ†

∂2D

∂qν(m)∂qµ(n)
ξ

]
in terms of the vectors χ and ξ defined in (6.22). Now the fields z1,m,ν and z2,m,ν are given
by

z1,m,ν := D†
−1 ∂D†

∂qν(m)
χ = D†

−1
w1,m,ν

z2,m,ν := D−1(
∂D

∂qν(m)
ξ + z1,m,ν) = D−1(w2,m,ν + z1,m,ν)

with

w1,m,ν(n) :=
∑
n′

∂D†n,n′

∂qν(m)
χ(n′) = δn,m+ν̂

i

2
(1− σν)U†ν (m)χ(m)− δn,m

i

2
(1 + σν)Uν(m)χ(m+ ν̂) ,

w2,m,ν(n) :=
∑
n′

∂Dn,n′

∂qν(m)
ξ(n′) = −δn,m

i

2
(1− σν)Uν(m)ξ(m+ ν̂) + δn,m+ν̂

i

2
(1 + σν)U†ν (m)ξ(m) .

In order to calculate CGF and CFF it is possible to perform the summation of
∑

m,ν before
the inversions of D and D† to get z1 and z2 which save O(V ) additional inversions for the
force gradient terms. It follows for the force gradient term CFF

CFF (n, µ) = 4Re
[
Z†1w2,n,µ + w†1,n,µZ2 − χ†

∂2D

∂qµ(n)∂qµ(n)
ξ · f(n, µ)

]
(6.25)

with

Z1 := D†
−1

V,2∑
m=1,ν=1

(w1,m,ν · f(m, ν)) ,

Z2 := D−1

 V,2∑
m=1,ν=1

[w2,m,ν · f(m, ν)] + Z1

 .

(6.26)

The expression for CGF can be obtained from the one for CFF by replacing in (6.25) and
(6.26) the vector f with βg defined in (6.20).

It is important to mention that the computationally most demanding part of the numerical
integration of the Schwinger model and quantum field theory in general is the inverse of the
Dirac operatorD−1. Every momenta update, which includes fermion action (6.21) requires
2 inversions of the Dirac operator, the addition of the force-gradient term C requires 4 more
inversions. Therefore leap-frog based methods (6.6) and (6.8) need 4 computations of D−1

per time step; schemes (6.7) and (6.9) 6 times; force-gradient based methods 8 for (6.15)
and (6.11), 10 for (6.10) and the 11 stage method (6.12) has 12 inversions of the Dirac
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operator. Since we use the multi-rate approach for schemes (6.9), (6.15) and (6.11), which
leads generally to fewer macro time steps needed than for the standard schemes, we expect
the integrator (6.11) will be the most efficient choice among the methods considered. In
the next section we present numerical tests of this prediction.

We consider a 32 by 32 lattice with a coupling constant β = 1.0, scaling variable z = 0.2
and mass m0 = −0.231367, simulate it on the trajectory τ = 2.0 with 200 configurations.
The parameters were taken from [13] for the better physical representation and also in
order to increase the impact of the fermion part of the action.

step-size, h
0.01 0.02 0.0325 0.05 0.1

|"
H

|

10 -4

10 -3

10 -2

10 -1

h 2

h 4

leap
nested leap
5-stage
nested 5-stage
force-gradient
approx. force-gradient
ad. nested force-gradient
nested force-gradient
11-stage

Figure 6.3: Absolute error for different numerical integrators (Schwinger model).

Figure 6.3 presents the comparison between the numerical integrators (6.6) – (6.15). It
shows the absolute error versus the step-size. Here the multi-rate schemes (6.8), (6.9) and
(6.15) are using four times smaller step-size for the gauge action (6.17). The numerical
tests correspond to our analytical observations with the nested integrators perform better
than their standard versions.

Figure 6.4 presents the CPU time, required for the proposed integrators (6.7)-(6.11), versus
the achieved accuracy. We can observe that the nested force-gradient method (6.15)
and adapted nested force-gradient method (6.11) show much better results in terms of a
computational efficiency than the integrators (6.9) and (6.10); and even compared to the
11 stage scheme (6.12). Here we can see that the modification of (6.10) proposed in [60]
also performs better than its original version. It shows almost similar computational costs
as nested versions of the force-gradient approach (6.15)-(6.11).
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Figure 6.4: Computational costs for different numerical methods (Schwinger model).

Table 6.2 shows the number of inversions of the Dirac operator D, which is needed to reach
90% acceptance rate of the HMC. Since D−1 is the most computationally demanding part
it is important to see how many of these inversions are required per each trajectory. From
Table 6.2 it easy to see that the adapted nested force-gradient method (6.11) and nested
force-gradient method (6.15) need the least number of D−1 evaluations per trajectory to
reach the chosen acceptance rate ≈ 90%.

Integrator: step size h M D−1 per step D−1 per trajectory
5 stage method 0.0294 - 6 420

nested 5 stage method 0.0286 700 6 408
5 stage force-gradient 0.0550 - 10 370

approx.force-gradient [60] 0.0540 - 8 290
nested force-gradient 0.0560 450 8 285

adapted nested force-gradient 0.0560 450 8 285
11 stage method 0.0625 - 12 384

Table 6.2: Step-sizes and number of inversions of D per step and per trajectory for accep-
tance rate of 90%.
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In this chapter we have presented the nested force-gradient approach (6.15) and its adapted
version (6.11) applied to a model problem in quantum field theory, the two-dimensional
Schwinger model. The derivation of the force-gradient terms was given and the Schwinger
model was introduced. Nested force-gradient schemes seem to be an optimal choice with
relatively high convergence order and low computational effort.

It also would be possible to improve the algorithm (6.11) by measuring the Poisson brackets
of the shadow Hamiltonian of the proposed integrator and then tuning the set of optimal
parameters, e. g. micro and macro step sizes.

We can also claim that methods (6.15) and (6.11) have a potential to perform even better
with respect to the computational effort in the case of lattice QCD problems, since the
impact of the fermion action (6.18) and the computational time to obtain the inversion of
the Dirac operator D is much more significant.

In the last part of this thesis we summarize the numerical results obtained in this Chapter,
draw the conclusion based on these results and give a short outlook on future research
directions.





7 Chapter 7

SUMMARY AND OUTLOOK

In this thesis the general idea of geometric numerical time integration for ordinary dif-
ferential equations was introduced. We presented this idea for the case of Hamiltonian
mechanics as a basis of our main area of application for this work. We showed in detail
the preservation of physical properties of a system such as time-reversibility, symplecticity
and energy conservation for the numerical methods. We provided a brief introduction to
the backward error analysis, which included the concept of shadow Hamiltonians. The
main classes of geometric numerical time integrators were given as examples to treat the
numerical problems on Abelian and non-Abelian manifolds.

Next we presented the main application of thesis quantum field theories where we gave
a short summary of a quantization process. The basic concepts of the path integral
formulation for quantum field theories were introduced as well as its regularization on
the lattice. Two different kinds of field variables were presented in order to show a few
important examples of quantum field theories such as QED and QCD. The role of geometric
numerical time integrators were explained as the main way to treat the physical problems
in path integral formulation is the HMC algorithms and numerical methods to be used in
the molecular dynamics step of HMC have to conserve certain properties of quantum field
theories.

The first attempt to improve the efficiency of HMC simulations were made by proposing
the idea to use projection methods in order to eliminate the accept/reject step of the HMC
algorithm, since this class of numerical methods conserves energy of a physical system ex-
actly. We introduced both standard and symmetric variants of projection methods and
presented an alternative view on symmetric projection schemes as well as a structure pre-
serving approach for projection methods. We analyzed both analytically and numerically
the conservation of geometric properties of the flow. Unfortunately we had to conclude
that even so we were able to reach certain success in developing symplectic projection
schemes for our main application it would require a huge computational effort and hence
to use proposed methods is not advantageous.

We introduced another option to increase the efficiency of numerical time integrators
for the HMC algorithm. We combined two operator splitting approaches, namely, force-
gradient decomposition methods and multirate stepping strategy in order to gain a higher
order of accuracy by adding the force-gradient term and reduce the computational cost by
treating the slow and the fast part of the action of a system with not only different step size
(smaller for the fast part and bigger for the slow one) but also applying different numer-
ical schemes to each of these parts accordingly. The introduction into the force-gradient
decomposition approach and the multirate time stepping methods was presented together
with the analysis for the structure-preserving properties of these numerical scheme. The
resulting adapted nested force-gradient approach satisfies the main goal of this thesis. We
tested these methods first analytically to show that they satisfy the necessary structure-
preserving properties necessary to be used in the HMC simulations and then numerically
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to prove that they are more efficient than the other numerical integrators which are used
for solving path integrals of quantum field theories.

The numerical tests were designed, first, to investigate the convergence order of the pro-
posed adapted nested force-gradient decomposition schemes; then to derive the force-
gradient term by applying them to the rather simple case of the n-body problem (Sun-
Moon-Earth problem); and at last to estimate the efficiency of the proposed scheme via
scaling the computational costs for the fast part of the action by small factor. The pos-
itive outcome of the first numerical test allowed us to carry on and we considered the
2-dimensional Schwinger model of quantum electrodynamics to showcase the advantages
of the new integrator. The derivation of the force-gradient term was presented since it is
the most challenging part of the implementation process and also to show the difference
with the standard force-gradient and nested force-gradient schemes. Numerical results
shows that we can claim that the proposed adapted nested force-gradient methods seem
to be an optimal choice with relatively high convergence order and low computational
effort.

The numerical results obtained by testing adapted force-gradient numerical integrators
on the Schwinger model were very promising and showed that the adapted force-gradient
integrators have a large potential for the ultimate goal of Lattice QCD applications, where
two efficiency factors will act in favor of nested schemes: the multirate factor of lattice
QCD is much higher than in the Schwinger model case; the number of inversions of the
Dirac-Wilson operator is much lower for five stage than for eleven stage schemes.

The future work can be summarized as following

• Apply the adapted nested force-gradient schemes to the Lattice QCD applications
and generalize this approach to more than two multirate time levels recursively,
allowing to exploit additional sources of multirate potential. Since for the adapted
nested force-gradient scheme we use cheaper integrators for the fast part of the action
comparing to the standard nested force-gradient approach.

• Based on a first test implementation of the adapted nested force gradient integrators,
the range of feasibility of this new scheme has to be tested against a series of com-
petitors for a range of possible applications. For lattice QCD, the choice of the best
integrator should be based on a cost metric introduced by Clark et al. [14], which
scales the CPU time needed for a trajectory with the acceptance rate. If the time
integration error (measured as the deviation from the Hamiltonian) is log-normal
distributed, the latter will be given by the complementary error function, evaluated
at one eighth of the variance σ2 of the time integration error [33]. The variance will
depend not only on the step size h, but also on the volume V , the mass m and the
gauge coupling β, expecting a dependence of the type

σ2(h, V,m, β) = A(β)
V bhc

(m−mcrit)α
,

where the unknown parameters can be detected by numerical experiments. For every
setting, an optimal step size can be derived according to the cost metric above.

• To make the best use of the adapted nested force gradient integrators in Lattice
QCD, one must implement the scheme, together with a proposal for an optimal
choice of the step size according to the cost metric above, in the openQCD package
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(see http://luscher.web.cern.ch/luscher/openQCD/) of Martin Lüscher and Stefan
Schaefer. This choice is based on our previous experience in adding a software
package for mass reweighing to the openQCD package.

We must also mention that there are possibilities to improve the proposed methods, by
measuring the Poisson brackets of the shadow Hamiltonian of the adapted nested force-
gradient scheme and then tuning the set of optimal parameters, e.g. micro and macro step
sizes or/and to approximate the force-gradient term as it is proposed in [60].

Therefore we conclude that nested force-gradient methods have a huge potential to be
used in Lattice QCD application, although it requires some additional work. Nevertheless
we reached our main goal to develop a new geometric numerical time integrator for the
molecular dynamics step of the HMC algorithm, which performs better with respect to
accuracy and computational effort than most of numerical schemes generally used and still
offers some space for improvements.





A Appendix A

Shadow Hamiltonian for the
projection methods with µ = µ(h)

Let us consider the following scheme

e
µ
2
V̂ eµT̂ e

µ
2
V̂︸ ︷︷ ︸

Ĥ1

e
h
2
V̂ ehT̂ e

h
2
V̂︸ ︷︷ ︸

Ĥ2

e
µ
2
V̂ eµT̂ e

µ
2
V̂︸ ︷︷ ︸

Ĥ3

.

We know that it is the composition of three methods each of them preserves the corre-
sponding shadow Hamiltonians

H1,3 = (T + V )µ+
µ3

24
(2[T [T, V ]] + [V [T, V ]])

H2 = (T + V )h+
h3

24
(2[T [T, V ]] + [V [T, V ]]) .

Therefore, in order to find the shadow Hamiltonian for our method, we need to apply the
BCH formula on

eĤ1eĤ2eĤ3

First we consider the first part
eĤ1eĤ2

which yields

c1 = H1 +H2,

c2 = −1

4
[H1 +H2, H1 −H2] = −1

4
[(T + V )h+ (T + V )µ, (T + V )h− (T + V )µ]

= −1

4

(
(T + V )(T + V )µh+ (T + V )(T + V )µ2 − (T + V )(T + V )h2 − (T + V )(T + V )µh

−(T + V )(T + V )µh− (T + V )(T + V )µ2 + (T + V )(T + V )µh+ (T + V )(T + V )h2
)

c3 = −1

6
[0, H1 −H2] = 0.

Here we skip the interaction of h3 terms since we do not consider the error terms higher
than h3 and obtain

eĤ1eĤ2 = eĤ1+Ĥ2 .

Then apply it for the second part
eĤ1+Ĥ2eĤ3 ,
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c1 = H1 +H2 +H3,

c2 = −1

4
[H1 +H2 +H3, H1 +H2 −H3] = −1

4
[(T + V )2µ+ (T + V )h, (T + V )h]

= −1

4

(
(T + V )(T + V )2µh+ (T + V )(T + V )h2 − (T + V )(T + V )2µh− (T + V )(T + V )h2

)
= 0

c3 = −1

6
[0, H1 +H2 −H3] = 0.

and obtain
H̃ = H1 +H2 +H3

or

H̃ = (2µ+ h)(T + V ) +
(2µ3 + h3)

24
(2[T [T, V ]] + [V [T, V ]]) .
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Shadow Hamiltonian for the
projection methods with µ1 = µ1(h)
and µ2 = µ2(h)

We consider the following integrator

e
µ1
2
V̂ eµ1T̂ e

µ1
2
V̂︸ ︷︷ ︸

Ĥ1

e
µ2
2
V̂ eµ2T̂ e

µ2
2
V̂︸ ︷︷ ︸

Ĥ2

e
h
2
V̂ ehT̂ e

h
2
V̂︸ ︷︷ ︸

Ĥ3

e
µ2
2
V̂ eµ2T̂ e

µ2
2
V̂︸ ︷︷ ︸

Ĥ4

e
µ1
2
V̂ eµ1T̂ e

µ1
2
V̂︸ ︷︷ ︸

Ĥ5

.

We know that it is the composition of three methods; each of them preserves the corre-
sponding shadow Hamiltonians

H1,5 = (T + V )µ1 +
µ3

1

24
(2[T [T, V ]] + [V [T, V ]])

H2,4 = (T + V )µ2 +
µ3

2

24
(2[T [T, V ]] + [V [T, V ]])

H3 = (T + V )h+
h3

24
(2[T [T, V ]] + [V [T, V ]]) .

Therefore, in order to find the general SH for our method, we need to apply the BCH
formula on

eĤ1eĤ2eĤ3eĤ4eĤ5 .

Applying on the first part
eĤ1eĤ2 ,

c1 = H1 +H2,

c2 = −1

4
[H1 +H2, H1 −H2] = −1

4
[(T + V )µ1 + (T + V )µ2, (T + V )µ1 − (T + V )µ2]

= −1

4

(
(T + V )(T + V )µ2µ1 + (T + V )(T + V )µ2

1 − (T + V )(T + V )µ2
2 − (T + V )(T + V )µ1µ2

−(T + V )(T + V )µ1µ2 − (T + V )(T + V )µ2
1 + (T + V )(T + V )µ1µ2 + (T + V )(T + V )µ2

2

)
c3 = −1

6
[0, H1 −H2] = 0

Here we skip the interaction of O(µ3) terms since we do not consider the error terms higher
than O(µ3) and obtain

eĤ1eĤ2 = eĤ1+Ĥ2

Then we apply it for the second part

eĤ1+Ĥ2eĤ3
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c1 = H1 +H2 +H3,

c2 = −1

4
[H1 +H2 +H3, H1 +H2 −H3]

= −1

4
[(T + V )µ1 + (T + V )µ2 + (T + V )h, (T + V )µ1 + (T + V )µ2 − (T + V )h]

= −1

4

(
(T + V )(T + V )µ2

1 + (T + V )(T + V )µ1µ2 + (T + V )(T + V )µ1h

+(T + V )(T + V )µ1µ2 + (T + V )(T + V )µ2
2 + (T + V )(T + V )µ2h

−(T + V )(T + V )µ1h− (T + V )(T + V )µ2h− (T + V )(T + V )h2

−(T + V )(T + V )µ2
1 − (T + V )(T + V )µ1µ2 + (T + V )(T + V )µ1h

−(T + V )(T + V )µ1µ2 − (T + V )(T + V )µ2
2 + (T + V )(T + V )µ2h

(T + V )(T + V )µ1h+ (T + V )(T + V )µ2h+ (T + V )(T + V )h2
)

= 0

c3 = −1

6
[0, H1 +H2 −H3] = 0

and obtain
eĤ1eĤ2eĤ3 = eĤ1+Ĥ2+Ĥ3

and then we apply BCH to
eĤ1+Ĥ2+Ĥ3eĤ4

which yields

c1 = H1 +H2 +H3 +H4,

c2 = −1

4
[H1 +H2 +H3 +H4, H1 +H3]

= −1

4
[(T + V )µ1 + 2(T + V )µ2 + (T + V )h, (T + V )µ1 + (T + V )h]

= −1

4

(
(T + V )(T + V )µ2

1 + 2(T + V )(T + V )µ1µ2 + (T + V )(T + V )µ1h

+(T + V )(T + V )µ1h+ 2(T + V )(T + V )µ2h+ (T + V )(T + V )h2

−(T + V )(T + V )µ2
1 − 2(T + V )(T + V )µ1µ2 − (T + V )(T + V )µ1h

−(T + V )(T + V )µ1h− 2(T + V )(T + V )µ2h− (T + V )(T + V )h2
)

= 0

c3 = −1

6
[0, H1 +H3] = 0

and therefore
eĤ1eĤ2eĤ3eĤ4 = eĤ1+Ĥ2+Ĥ3+Ĥ4 .

At the end applying BCH formula on

eĤ1+Ĥ2+Ĥ3+Ĥ4eĤ5
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c1 = H1 +H2 +H3 +H4 +H5,

c2 = −1

4
[H1 +H2 +H3 +H4 +H5, H2 +H3 +H4]

= −1

4
[2(T + V )µ1 + 2(T + V )µ2 + (T + V )h, 2(T + V )µ2 + (T + V )h]

= −1

4

(
4(T + V )(T + V )µ2

2 + 4(T + V )(T + V )µ1µ2 + 2(T + V )(T + V )µ2h

+2(T + V )(T + V )µ1h+ 2(T + V )(T + V )µ2h+ (T + V )(T + V )h2

−4(T + V )(T + V )µ2
2 − 4(T + V )(T + V )µ1µ2 − 2(T + V )(T + V )µ2h

−2(T + V )(T + V )µ1h− 2(T + V )(T + V )µ2h− (T + V )(T + V )h2
)

= 0

c3 = −1

6
[0, H2 +H3 +H4] = 0

and obtain
H̃ = H1 +H2 +H3 +H4 +H5

or

H̃ = (2µ1 + 2µ2 + h)(T + V ) +
(2µ3

2 + 2µ3
2 + h3)

24
(2[T [T, V ]] + [V [T, V ]]) .
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Shadow Hamiltonian for linear
projection methods with µ = µ(h)

Let us write the method in the form of symplectic mapping

eM
−1 h

2
V̂ ehT̂ e

h
2
V̂M.

Applying BCH formula on the first part

eM
−1 h

2
V̂ ehT̂

c1 =M−1h
2
V + hT

c2 = −1

4
[M−1h
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6
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3

48
[M−1V, [T,M−1V ]] +

h3

24
[T, [T,M−1V ]],

which yields

eM
−1 h

2
V̂ ehT̂ = eM

−1 h
2
V̂+hT̂−h

2

4
[T,M−1V ]−h

3

48
[M−1V,[T,M−1V ]]+h3

24
[T,[T,M−1V ]]

and then apply it for the second part
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4
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h3
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h

2
VM− h2

4
[T,M−1V ]− · · · ,M−1h

2
V + hT − h

2
VM

− h2

4
[T,M−1V ]− · · · ] =

h2

4
[T, VM] +

h3

16
[VM, [T,M−1V ]]

c3 = −1

6
[−h

2

4
[T, VM] +

h3

16
[VM, [T,M−1V ]],M−1h

2
V + hT − h

2
VM− h2

4
[T,M−1V ]− · · · ]

=
h3

48
[M−1V, [T, VM]]− h3

48
[VM, [T, VM]] +

h3

24
[T, [T, VM]].
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The result is following

H̃ =M−1h

2
V + hT +

h

2
VM− h2

4
[T,M−1V ] +

h2

4
[T, VM]

− h3

48
[M−1V, [T,M−1V ]] +

h3

24
[T, [T,M−1V ]] +

h3

16
[VM, [T,M−1V ]]

+
h3

48
[M−1V, [T, VM]]− h3

48
[VM, [T, VM]] +

h3

24
[T, [T, VM]].
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