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1. Aim of this work 

In modern analytical instrumentation, mass spectrometry (MS) plays a predominant role. 

Mass spectrometers reveal insight into the structure and composition of matter in numerous 

fields of application, ranging from food inspection [1, 2] via anti-doping controls [2, 3] and 

analysis of pharmaceutical products [4] to air quality measurements [5], to name a few. A 

further important domain is process gas analysis [6, 7]. Monitoring of industrial processes 

with mass spectrometers improves the performance by increasing the quality and 

reproducibility of the optimum process conditions. Eventually, it is a matter of product 

quality, time and cost efficiency. Depending on the field of application, the requirements on 

the mass spectrometric setup significantly differ. In practice, the type of mass spectrometer, 

the sample and ionization method as well as the data processing need to be carefully aligned.  

The present work is embedded in a project, which focuses on the development of a mass 

spectrometer for applications in process and residual gas analysis. The project goals pursue a 

number of demanding requirements: Instrument compactness, instrument robustness, fast 

and highly sensitive analysis of trace gas components, mass resolution well above nominal 

masses and affordability. The entire project can shortly be described by: “From FT-QIT concept 

to the iTrap®”. It is an interdisciplinary collaboration developing a mass spectrometer that is 

based on a three dimensional Quadrupole Ion Trap (QIT) using Fourier Transform (FT) 

technique. Members of this collaboration are the department for electrical engineering and the 

department for physical and theoretical chemistry of the University of Wuppertal, Plasma 

Applications Consulting GmbH and, as head of this collaboration, Zeiss SMT GmbH. 

Measurements carried out within the framework of this work are used to support the progress 

from a custom laboratory setup based on the FT-QIT concept to a salable device: the iTrap® [8]. 

Hence, this work focuses on the characterization of the laboratory setup to obtain input 

information for the development and operation of next generation instruments. Crucial 

operational parameters, the analytical performance, and comparisons with other mass 

spectrometric devices were carefully assessed. The potential of the FT-QIT as either a residual 

or a process gas analyzer within demanding gas matrices was proved with respect to a 

chemical understanding of the obtained mass spectra. 

In short: The FT-QIT concept and the entire setup have to be put through their paces. 
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2. Introduction 

The first part of this chapter gives an introduction into mass spectrometry, in particular 

quadrupole ion traps and discusses the Fourier transform technique as a non-destructive ion 

detection method.  

The second part presents typical processes in the semiconductor industry, an application 

field for which the developed instrument is designed in first instance. It will outline the 

essential requirements for a MS system to generate reliable and conclusive data under such 

demanding conditions.  

The third part introduces the Zeiss-project GAMMA (short for “Gas multimode mass 

analyzer”) with respect to the envisioned device requirements, challenges, advantages, former 

approaches and the status quo. 

 

2.1. Mass Spectrometry 

2.1.1. General 

A mass spectrometric analysis allows the identification of masses or, to be more precise, 

the mass-to-charge (m/z) ratios of compounds present in a sample [9–11]. That implies 

ionization, at least in part, of the neutral sample prior to analysis. In short, a mass 

spectrometric setup encompasses three basic elements [11]: i) an ion source to generate 

positive and/or negative gas phase charges of the sample, ii) an analyzer that separates the 

ions according to their m/z ratio and iii) a detector that generates an electronic signal 

proportional to the ion abundance of the particular m/z ratio [9, 10].  

As mentioned before, the application fields for mass spectrometers are numerous, and so 

are the instrumental requirements. For example, air quality measurements and anti-doping 

control measurements obviously differ in the aggregate state of the sample - gaseous air and 

human blood, respectively. The latter with an elevated number of matrix components [12] 

obviously demands for a more proper sample preparation to generate the requisite gas phase 

ions: a preceding chromatography, the transfer of the analyte into the gas phase and a selective 

ionization - if possible [13, 14]. To meet the instrumental requirements for each analytical 
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problem, a large number of different methods with regard to ionization, analyzer and 

detection were developed since the introduction of mass spectrometry by J.J. Thomson in 1913 

[15]. For the right choice of the system depending on the present analytical problem, it is 

indispensable to know the different types of mass spectrometers, their advantages and 

disadvantages as well as their characteristic performance. 

In the following a brief introduction into ionization methods, analyzer systems and 

possibilities for ion detection is given. 

 

2.1.2. Ionization methods 

Electron ionization (EI) is the most common ionization method at high vacuum 

conditions [9, 10, 16, 17]. The collision of an energized electron with tens of electron volt kinetic 

energy leads to the generation of analyte radical cations if the transferred energy is greater 

than the ionization energy (IE). In that case an electron is removed from the analyte molecule 

(M) to form the radical cation (M·+), as shown in (R.2.1) [9, 10, 16, 17]. 

 M+ e− → M∙+ + 2e− (R.2.1) 

Depending on the primary energy of the electrons even multiply charged ions are observed 

[18, 19]. 

 M+ e− → M2+ + 3e− (R.2.2) 

 M+ e− → M∙3+ + 4e− (R.2.3) 

Additional ionization pathways can lead to further ionic species of the analyte beside the 

molecular cation. Dissociative ionization and dissociative rearrangement lead to the formation 

of positively charged fragment ions, while electron capture and dissociative electron capture 

processes generate negatively charged analyte ions. Even the generation of ion pairs is 

possible. The ion yield essentially depends on the interaction between the analyte and the 

electrons [17, 18]. It is a function of the electron energy, as exemplarily shown for methane in 

Figure 1, with the ionization cross section plotted with respect to the electron energy [18]. Most 

compounds show qualitatively similar curves – they start with a steep increase at an electron 

energy corresponding to the IE, level off between 40 to 100 eV and slowly decrease again [18]. 
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Due to the broad invariance in the ionization cross section at 70 eV this energy established to 

a standard and allowed to setup an instrument independent database for EI mass spectra. 

 

Figure 1:  Ionization cross sections determined for the ionization of CH4 with electron impact [18]. 

An additional high vacuum ionization pathway is penning ionization [9, 20]. First, the 

interaction of an electron with a neutral rare gas atom (A) partially leads to electronically 

excited and radiative stable species, so called metastables (A* or AM). Subsequent collisions 

with molecules of lower IE than the excess energy of A* lead to ionization of these analytes 

according to reactions R.2.4 and R.2.5. In case of helium metastables the energy of the excited 

state is around 19 eV [21–23]. This is essentially higher than the ionization energies of most 

compounds and can lead to severe fragmentation such as in classical EI [24]. 

 A + e− → A∗ + e− (R.2.4) 

 A∗ +M → A +M∙+ (R.2.5) 

On search for a more gentle ionization method under high vacuum conditions chemical 

ionization (CI) was brought up, initially introduced by Munson and Field in 1966 [13, 25]. At 

first, reagent ions are generated by, e.g., electron impact ionization within an ion source 

operated at approximately 1 mbar. Subsequently sample ions are produced by ion-molecule 

reactions with the reagent ions. The reactions between positively charged reagent ions and 

sample molecules are generally grouped into four categories [13]: 
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Proton Transfer M+ BH+ → MH+ + B (R.2.6) 

Charge Exchange M+ X+∙ → M+∙ + X (R.2.7) 

Electrophilic Addition M+ X+ → MX+ (R.2.8) 

Anion Abstraction AB + X+ → B+ + AX (R.2.9) 

Methane is commonly used as reagent gas forming CH5+ and C2H5+ by electron impact at 

1 mbar [13]. Compared to EI ion generation CI leads to less excess energy transferred to the 

analyte molecules and thus less fragmentation. 

The development of atmospheric pressure ionization (API) methods allowed combining 

the analytically important liquid chromatography with mass spectrometry [26]. In all API 

methods the ions need to be transferred from ambient pressure conditions to the high vacuum 

conditions in the mass analyzer. The application of so-called ion transfer stages, with ion 

optical elements such as, e.g. einzel lenses, multipoles and funnels allows ion guidance along 

a (stepwise) reduced pressure profile [26–28]. Furthermore, those ion optics are regularly used 

for selective removal or shielding of unwanted matrix and background ions [29]. Among the 

vast variety of API methods are, e.g., atmospheric pressure chemical ionization (APCI), 

atmospheric pressure laser ionization (APLI), atmospheric pressure photo ionization (APPI) 

and electrospray ionization (ESI).  APCI, usually used for analytes with intermediate polarity, 

is typically initiated by a corona discharge [10, 17, 30]. Primary ions are generated in the 

plasma zone and subsequently produce reactant ions by charge transfer to matrix molecules. 

The following reactions for the generation of reactant ions are typically prevalent in API 

sources with abundant H2O present [31, 32]: 

 N2 + e
− → N2

+ + 2e− (R.2.10) 

 N2
+ + 2N2 ⇌ N4

+ + N2 (R.2.11) 

 N2
+ + H2O → N2H

+ + OH 0.2 [33]   (R.2.12) 

 N2
+ + H2O → H2O

+ + N2 0.8 [33]   (R.2.13) 

 N2H
+ + H2O → H3O

+ + N2 (R.2.14) 

 N4
+ + H2O → H2O

+ + 2N2 (R.2.15) 
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 H2O
+ + H2O → H3O

+ + OH (R.2.16) 

 H3O
+ + H2O + N2 ⇌ [H + (H2O)2]

+ + N2 (R.2.17) 

 [H + (H2O)n−1]
+ + H2O + N2 ⇌ [H + (H2O)n]

+ + N2 (R.2.18) 

In principle the analytes are subsequently ionized by charge transfer or by protonation in case 

of higher proton affinities (PA) than of the reactant ions (cf. R.2.19 – R.2.23) [34]. However, in 

most cases these processes comprise a more complex cluster chemistry in which the molecules 

of interest readily take part. That means it is more probable for analytes (here M) to enter the 

mass spectrometer in a clustered state than as the bare ion. The ion transfer stages in the MS 

ensure the declustering and eventually pass on the naked ion [M+H]+ to the analyzer (cf. R.2.24 

– R.2.25) [34–36]. 

 N2
+ +M → M+ + N2 (R.2.19) 

 N4
+ +M → M+ + 2N2 (R.2.20) 

 H2O
+ +M → M+ + H2O (R.2.21) 

 N2H
+ +M → [M + H]+ + N2 (R.2.22) 

 H3O
+ +M → [M+ H]+ + H2O (R.2.23) 

 [H + (H2O)n]
+ +M ⇌ [H + (H2O)n−1 +M]

+ + H2O (R.2.24) 

 [H + (H2O)n +M]
+
Declustering
→         [M + H]+ + n H2O (R.2.25) 

APLI [17, 37] as well as APPI [38, 39] are both photoionization methods and typically 

used for ionization of non-polar organic compounds such as polyaromatic hydrocarbons [17, 

40]. Ionization energies of those compounds range between 5 and 10 eV. Krypton discharge 

lamps, as commonly used in APPI, emit light at 10 and 10.6 eV [38], enabling direct photo 

ionization (R.2.26). 

 M+ hν → M∙+ + e− (R.2.26) 

A variation of APPI is called dopant-assisted APPI (DA-APPI) and essentially promotes the 

ionization process [41]. Owing to mixing ratios in the percent regime, the dopant (e.g., toluene, 
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anisole or acetone) is primarily photo ionized. Similar to the processes shown earlier for APCI, 

these primary charge carriers subsequently ionize the molecules of interest in diverse ion-

molecule-reactions [35, 41]. APLI is based on multiphoton ionization and was developed as a 

highly sensitive ionization method in particular for polyaromatic hydrocarbons. The photon 

energies delivered by the laser system are typically lower than 6 eV, which necessitates at least 

two photons to ionize organic molecules [17]. The first photon elevates the analyte molecule 

into an excited state and the second photon, if applied within the lifetime of the excited state, 

promotes the electron into a continuum state and leaves the positively charged molecule. In 

case of a resonant excitation of the first state, this process is called resonance enhanced 

multiphoton ionization (REMPI) [9, 17, 42]. Particularly suitable for large, non-volatile organic 

molecules is electrospray ionization (ESI) [43, 44]. In most cases, this additional API method 

allows the formation of fragment-free and multiply charged ions of, e.g., proteins and nucleic 

acids [43–45].   

This list can certainly be extended, however, it briefly emphasizes the most relevant 

ionization methods for this work. 

 

 

2.1.3. Miscellaneous mass analyzer systems 

All mass analyzers spatially separate ions with respect to their m/z ratios [9, 10, 46]. 

However, the physical background of each functional principle is clearly distinct. The most 

established systems are time of flight (TOF) instruments, magnet sector field devices (B), linear 

quadrupole instruments (Q), linear quadrupole ion traps (LIT) as well as three-dimensional 

quadrupole ion traps (QIT), FT ion cyclotron resonance mass spectrometers (FT-ICR) and the 

Orbitrap [9, 47]. 

Time of flight instruments 

In time of flight mass spectrometers a temporal dispersion of a pulsed ion beam is 

observed. Ions experience an acceleration voltage for a collision- and field-free flight inside a 

drift tube [9, 48, 49]. Their kinetic energy (Ekin) directly corresponds to the electrical 

acceleration (Eel) according to:  
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𝐸𝑒𝑙 = 𝑒 𝑧 𝑈 =  

1

2
𝑚 �⃑�2 = 𝐸𝑘𝑖𝑛 

(2.1) 

Herein e is the elementary charge, z the number of charges, U the applied voltage, m the ion 

mass and �⃑� the ion velocity. Conversion of equation (2.1) shows that the ion velocity is 

inversely proportional to the square root of the ion mass: 

 
�⃑� = √

2𝑒𝑧𝑈

𝑚
 

(2.2) 

With a defined flight distance s and the velocity as a distance in a certain time t, equation (2.2) 

is reformulated as: 

 
𝑡 =  

𝑠

√2𝑒𝑈
√
𝑚

𝑧
 

(2.3) 

Thus, the flight time is directly proportional to the square root of the ion mass divided by the 

number of charges. Mass resolution in TOF instruments is enhanced by an increasing time 

interval ∆t between ions of different m/z ratios. As ∆t is proportional to s·((m1/z1) ½-(m2/z2)½) 

an increase in flight distance results in higher mass resolution [48]. The application of 

reflectrons, as initially described by Mamyrin et. al. [48, 50], allows a prolongation of the flight 

distance by electrical reflection of ions within the drift tube, without suffering a dramatic 

increase of the entire system. Thus, the maximum reachable mass resolution is significantly 

enhanced. Since TOF instruments are typically operated with spectral save rates of some kHz, 

a single mass spectrum is obtained in less than a ms [49].  

Table 1 summarizes typical figures of merit for TOF mass analyzers [9, 47]. 

Table 1: Typical figures of merit for TOF mass analyzer [9, 47]. 

Mass resolution 1,000 – 40,000 

Mass range > 100,000 Da 

Mass accuracy 5 – 50 ppm 

Spectral save rate 10,000 spectra/s 
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Magnet sector field instruments 

In magnet sector field instruments charged particles in an accelerated ion beam are m/z-

separated by a perpendicular magnetic field [9, 10]. With the magnetic field vector �⃑⃑� 

orthogonal to the velocity vector �⃑� of the moving particle, Lorentz force FL is given as: 

 𝐹𝐿 = 𝑞�⃑��⃑⃑� = 𝑒𝑧�⃑��⃑⃑� (2.4) 

In a homogenous magnetic field the charged particle moves in a circular orbit with radius r. 

Thereby Lorentz force FL and centripetal force FC are in equilibrium: 

 
𝐹𝐿 = 𝑒𝑧�⃑��⃑⃑� =

𝑚�⃑�2

𝑟
= 𝐹𝐶 

(2.5) 

Solving equation (2.5) to r results in: 

 
𝑟 =

𝑚�⃑�

𝑒𝑧�⃑⃑�
 

(2.6) 

The radius of the spherical orbit is directly proportional to the momentum of the charged 

particle. Substituting the velocity �⃑� according to equation (2.5) shows that the radius r is 

proportional to the square root of the m/z ratio: 

 
𝑟 =

𝑚

𝑒𝑧�⃑⃑�
√
2𝑒𝑧𝑈

𝑚
=
1

�⃑⃑�
√
2𝑚𝑈

𝑒𝑧
 

(2.7) 

Table 2 summarizes typical figures of merit for double focusing sector mass analyzers [47, 51]. 

Table 2: Typical figures of merit for double focusing sector mass analyzer [47, 51]. 

Mass resolution 100,000 

Mass range 10,000 Da 

Mass accuracy < 1 ppm 

Temporal resolution 0.1 s per decade 
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2.1.4. Quadrupole based mass analyzer 

Quadrupole instruments, including linear quadrupole mass analyzers, linear quadrupole 

ion traps as well as three-dimensional quadrupole ion traps form a large group of mass 

analyzer systems [52]. 

 

2.1.4.1 Linear quadrupole instruments 

Linear quadrupole devices are made of four either hyperboloid (ideally) or cylindrical bar 

electrodes. Opposing electrodes form pairs of equal potential, which is composed of a direct 

and an alternating current (cf. Figure 2) [9, 10].  

 

Figure 2:  Schematic of a linear quadrupole analyzer [9]. 

Ions enter the linear quadrupole in z-direction and are immediately exposed to a periodically 

attracting and repulsive voltage, which forces them to move back and forth in the x,y-plane 

[9, 53, 54].  With the applied DC voltage U and the radio frequency (RF) voltage V of frequency 

ω, the time dependent total potential Φ0 is given by: 

 𝜙0 = 𝑈 + 𝑉𝑐𝑜𝑠(𝜔𝑡) (2.8) 

Equations (2.9) and (2.10) hold for the motion in x- and y-direction: 

 𝑑²𝑥

𝑑𝑟²
+

𝑒

𝑚𝑖𝑟0
2 (𝑈 + 𝑉𝑐𝑜𝑠(𝜔𝑡))𝑥 = 0 

(2.9) 

 𝑑²𝑦

𝑑𝑟²
+

𝑒

𝑚𝑖𝑟0
2 (𝑈 + 𝑉𝑐𝑜𝑠(𝜔𝑡))𝑦 = 0 

(2.10) 
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An ion passes the quadrupole analyzer in z-direction without contacting the electrode rods if 

its motion around the z-axis is stable in the x,y-plane. The stability conditions are derived from 

Mathieu’s equations [9, 52, 55]. In dimensionless form equations (2.9) and (2.10) yield: 

 𝑑²𝑥

𝑑𝜏²
+ (𝑎𝑥 + 2𝑞𝑥𝑐𝑜𝑠2𝜏)𝑥 = 0 

(2.11) 

 𝑑²𝑦

𝑑𝜏²
+ (𝑎𝑦 + 2𝑞𝑦𝑐𝑜𝑠2𝜏)𝑦 = 0 

(2.12) 

A comparison of equations (2.9)-(2.10) and equations (2.11)-(2.12) gives the parameters  

a and q: 

 
𝑎𝑥 = −𝑎𝑦 =

4𝑒𝑈

𝑚𝑖𝑟0
2𝜔²

 
(2.13) 

 
𝑞𝑥 = −𝑞𝑦 =

2𝑒𝑉

𝑚𝑖𝑟0
2𝜔²

 
(2.14) 

 𝜏 =
𝜔𝑡

2
 (2.15) 

Ions that oscillate within a distance of 2r0 between the electrodes move on stable trajectories. 

Stability or instability of ion movement within the quadrupole analyzer depends on U, V and 

ω. Plotting a versus q leads to a stability diagram as shown in Figure 3 (left) presenting 

different areas with i) stable x- and y-trajectories, ii) either stable x- or stable y-trajectories or 

iii) no stable ion trajectories [53]. For the operation of linear quadrupole devices only a small 

section of the stability diagram is relevant as shown in Figure 3 (right) [56].  

 

Figure 3:  Left: Stability diagram [53]; right: Enlargement of stability diagram (reproduced from [56]). 
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The additional straight line (operation line) in the diagram, with a slope defined by the a/q 

ratio, readily depicts the m/z range that is hold by the quadrupole field. Therefore, it is looked 

at the intersecting part with the stability diagram [56, 57]. As can easily be seen, a slope of a/q 

= 0.237/0.706 = 0.336, corresponding to twice the DC voltage relative to the RF amplitude 

(2U/V), reduces the intersecting part to a point of an infinitesimally small stable m/z range. 

Slowly decreasing this ratio leads to an increasing field-captured m/z range, starting with the 

smallest value. This principle applies to all scanning linear quadrupole mass filters, where the 

continuous a/q ratio decrease allows to consecutively transmit ions with increasing m/z value 

[10, 47, 54]. In theory, the ramped incremental step size of a/q determines the mass resolution 

of these devices – the smaller the increment the higher the resolution. In praxis, however, the 

mechanical accuracy of the rod electrodes, retainer, etc. are the factors that in most available 

devices limit the resolution to nominal mass [54]. Nowadays linear quadrupoles are standard 

mass filters for mostly residual gas analyzer (RGA) or routine GC-MS applications, since they 

are reasonably priced, rugged and compact [14]. In more sophisticated MS systems they are 

integrated as simple ion transfer and m/z range preselection devices [53, 58, 59]. 

Typical figures of merit for the application of linear quadrupole mass analyzers are 

summarized in Table 3 [47, 60]. 

Table 3: Typical figures of merit for linear quadrupole mass analyzers [47, 60]. 

Mass resolution 100 – 1,000 

Mass range 4,000 Da 

Mass accuracy 100 ppm 

Temporal resolution 100 – 1,000 ms 

 

 

  



Introduction 

 
13 

 

2.1.4.2 Linear quadrupole ion traps 

Linear quadrupoles are also operated as ion storage devices. In contrast to the above 

described transmitting mode, the a/q ratio is set to zero, which captures a broad m/z range in 

the x,y-plane between the rods (cf. Figure 3 left) [9, 10, 61]. In z-direction two electrodes at each 

end of the rods form an additional potential barrier to create a trapping volume. In praxis, a 

continuous ion current first enters the quadrupole through the lowered entrance electrode and 

is reflected by the raised exit electrode, while the RF field of the rods traps in the x,y-plane. 

After accumulation of a defined amount of charge, the entrance electrode is pulled to high and 

closes the trapping volume [61, 62].  Additional collisional cooling with a buffer gas (e.g., 

argon or nitrogen) at pressures of around 10-3 to 10-2 mbar  focuses the ions on the LIT axis. 

Hence, the probability of storing faster ions correlates with the background pressure. As m/z 

separating devices, LITs enable either radial or axial ion ejection. The latter mode uses the 

coupled axial and radial ion movement, owing to stray fields at the LIT exit. If the radial 

secular frequency of a particular ion species coincides with an auxiliary AC voltage, these ions 

are excited well above the axial trapping potential. Consequently, this particular m/z range is 

axially ejected from the LIT. The radial ejection of ions is accomplished with a slit in one of the 

electrode rods and an applied bi-phase alternating voltage along the x-rods [61]. 

Owing to their versatile operation, LITs are often integrated in more complex mass 

analyzer systems i) as trapping devices to control the amount of charge, ii) for ion cooling or 

iii) for ion manipulation, such as fragmentation or specific ion-molecule reactions (e.g., H/D 

exchange with D2O) to reveal important structural information [61–63].  

Table 4 summarizes typical figures of merit for linear quadrupole ion traps [47, 62]. 

Table 4: Typical figures of merit for linear quadrupole ion traps [47, 62]. 

Mass resolution 1,000 – 10,000 

Mass range 4,000 Da 

Mass accuracy 50 – 100 ppm 

Temporal resolution 1 – 2 s 
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2.1.4.3 Three-dimensional quadrupole ion traps 

Paul and Steinwedel introduced the three-dimensional RF driven quadrupole ion trap as 

a mass spectrometric analyzer in 1953 [64]. In their patent from 1960, detailed operational 

features are described [65]. QITs consist of a ring electrode and two end cap electrodes with 

hyperboloid surfaces. A RF voltage with a frequency of approx. 1 MHz is applied to the ring 

electrode. Depending on their m/z ratio ions move on different stable trajectories in the 

trapping volume [52, 66, 67]. Hence separation or selected detection of charged particles 

allows the application of QITs for mass spectrometric studies, isolation of isotopes, for partial 

pressure measurements or as leak detectors, to name a few [56, 65]. 

A comprehensive understanding of the ion motion within the electrodynamic field of a 

three-dimensional quadrupole trap is essential for the technical realization of QITs as mass 

spectrometers [52, 68, 69]. Similar to linear quadrupole instruments, Mathieu’s equations form 

the basis for the mathematical description of these ion trajectories [55]. Definitions of the  

r- and z-coordinates, electrode arrangement and the resulting electric field are depicted in  

Figure 4. 

 

Figure 4:  Potential curve inside the quadrupole ion trap (reproduced from [70]). 

In the case of grounded endcap electrodes, the potential inside the trap depends on the DC 

voltage U and the RF voltage V with Ω = 2𝜋𝑓 and f as the fundamental RF frequency, resulting 

in [52, 66]: 

 Φ0 = 𝑈 + 𝑉𝑐𝑜𝑠Ω𝑡 (2.16) 

The transformation of Cartesian coordinates into cylindrical coordinates gives: 
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Φ𝑥,𝑦,𝑧 =

Φ0
𝑟0
2 (𝑟

2𝑐𝑜𝑠2θ + 𝑟2𝑠𝑖𝑛2𝜃 − 2𝑧2) (2.17) 

With 𝑐𝑜𝑠2 + 𝑠𝑖𝑛2 = 1, equation (2.17) is simplified to: 

 
Φ𝑟,𝑧 =

Φ0
𝑟0
2 (𝑟

2 − 2𝑧2) (2.18) 

The equations of ion motion are written as: 

 𝑑²𝑧

𝑑𝑡²
−

4𝑒

𝑚𝑖𝑟0
2 + 2𝑧0

2
(𝑈 − 𝑉𝑐𝑜𝑠Ω𝑡)𝑧 = 0 

(2.19) 

 𝑑²𝑟

𝑑𝑡²
+

2𝑒

𝑚𝑖𝑟0
2 + 2𝑧0

2
(𝑈 − 𝑉𝑐𝑜𝑠Ω𝑡)𝑧 = 0 

(2.20) 

The similarity to Mathieu’s equations enables the solution of this differential equations, giving 

a- and q-parameters in z- and r-direction: 

 
𝑎𝑧 = −2𝑎𝑟 = −

16𝑒𝑈

𝑚𝑖𝑟0
2 + 2𝑧0

2Ω²
 

(2.21) 

 
𝑞𝑧 = −2𝑞𝑟 = −

8𝑒𝑉

𝑚𝑖𝑟0
2 + 2𝑧0

2Ω²
 

(2.22) 

Operation in ion storage mode requires stable trajectories in z- as well as in r-direction, 

otherwise ions are lost due to collision with the inner surfaces or due to ejection from the QIT 

volume. Similar to linear quadrupole mass filters, the stability of ions in the applied trapping 

field is illustrated in az vs. qz diagrams. Here the stability of ion trajectories is represented by 

the parameters βr and βz, which themselves are complex functions of the a- and q-values. Figure 

5 shows the first stability region, which is the most important section for operating a QIT [52, 

68]. 

The trapped m/z range is characterized by the intersection between the diagram and a 

straight line defined by the slope U/V. This approach is similar to the theory of linear 

quadrupoles as discussed previously. In praxis, however, most QITs operate in RF-only mode 

that means az equals zero and the intersecting part is simply represented by the qz-axis from 

qz = 0 up to qz = 0.908. The latter defines the smallest amenable m/z ratio and is called the lower 

mass cutoff (LMCO) [52]. Theoretically, there is no upper m/z limit for this mode. In praxis, 

however, ions with m/z values of 20-30 times the LMCO are not efficiently trapped.  
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Figure 5:  Zoom into the stability diagram [68]. 

In the early days of the QIT development ions were initially generated inside the trap, so called 

in-trap electron ionization. Nowadays, ions are in most applications generated externally, 

which necessitates electrically driven ion guiding into the trapping volume. Consequently, the 

charged species obtain kinetic energies well above thermal distribution, which means that 

without any decelerating force they simply fly through the QIT and are not trapped. To 

increase the trapping efficiency the background pressure is usually maintained at roughly 

10-5 mbar of helium. These conditions enhance the collisional cooling effect and thus 

significantly increase the trapping efficiency [52, 66, 67].   

The ion motion inside a 3D-trap is roughly comparable with a ball in the middle of a 

rotating saddle [71]. Depending on the inertial mass and the rotation frequency the ball moves 

on a stable trajectory inside the saddle. In a more precise visualization, these trajectories are 

described as Lissajous-trajectories [72] (cf. Figure 6).  This particular motion results from a 

superposition of the ion secular vibrations in r- and in z-direction. 
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Figure 6:  Photograph of the ion trajectories of charged particles in a quadrupole ion trap [72]. 

Once a certain ion population is stored, QITs offer three different scanning options for 

selective m/z ejection and subsequent external detection: i) the mass-selective stability mode, 

ii) the mass-selective instability mode, and iii) resonant ion ejection [9, 52, 68]. In the mass-

selective stability mode, the QIT first accumulates a very narrow m/z range, in the ideal case a 

single m/z value. Subsequently, a negative voltage pulse on one of the endcap electrodes ejects 

this specific ion species for external detection. To record an entire mass spectrum this cycle 

has to be repeated for every single m/z value, which makes the mass-selective stability mode 

a very slow procedure. Consequently, its application nowadays is rather limited. In the mass-

selective instability mode a broader m/z range is first accumulated. For subsequent ejection, 

the endcap electrodes are kept at ground and the applied RF voltage is incrementally raised. 

This causes the consecutively ejection in the order of increasing m/z ratios, as shown by the 

stability diagram in Figure 5. The resonant ion ejection mode also accumulates a broad m/z 

range in the first instance. Ideally, ion motion in radial and axial direction are independent. 

Thus vibrations are described by radial and axial secular frequencies, each a function of the 

trapping parameters a and q. An additionally applied RF voltage that is equal to the axial 

resonance frequency allows the resonant ejection of ions with a specific m/z ratio [9, 52, 66]. 

QITs with nominal mass resolution are well priced and typically equipped with EI or CI 

[9, 52]. More expensive systems reach up to five-fold of nominal mass resolution, are designed 

for a broader mass range and are typically combined with API sources [9]. An outstanding 

feature of ion traps is the capability of performing MSn (sequential mass analysis) experiments 
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due to sequential ion isolation and CID (collision induced dissociation) processes. Thus, MSn 

analysis provides structural information on parent ions as well as on fragment ions [47, 66].  

Table 5 summarizes typical figures of merit for three-dimensional quadrupole ion traps 

[47, 61]. 

Table 5: Typical figures of merit for three-dimensional quadrupole ion traps [47, 61]. 

Mass resolution 1,000 – 10,000 

Mass range 4,000 Da 

Mass accuracy 50 – 100 ppm 

Temporal resolution 100 ms 

 

 

2.1.4.4. Detectors 

 Once the analyzer separated a certain ion population according to more or less distinct 

m/z values, the charge is converted with a detector into an electronic signal in relation to time 

or space.  The easiest kind of detector is the Faraday cup. Here, the ions simply collide with a 

metal cup, lose their charge and consequently cause a measurable electric current that is 

proportional to the number of collected ions. This type requires the balance between 

sensitivity and time resolution – an increasing resistance for the cup to discharge, increases 

the sensitivity, however, at the cost of time resolution to detect separated ion clouds. More 

frequently used are secondary electron multipliers (SEM), which are fast and sensitive. Here, 

energetic particles collide with the surface of a SEM and liberate secondary electrons, 

depending on the initial particle velocity and the work function of the surface. A successive 

series of electrodes with a significant potential gradient further accelerates the electrons and 

causes an avalanche process.  Eventually an electric current is detectable with a sensitive 

preamplifier. Depending on the applied voltages, the amplification of the current is in the 

range of 106 to 109 [57, 73]. 

The avalanche process of an electron current is also used in Channeltrons and micro 

channel plates (MCP), as illustrated in Figure 7 and 8. Channeltrons or channel electron 

multipliers (CEM) are more compact than SEMs. The resistance of the semiconductive 
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material of the CEM has to be high enough to resist a voltage of approx. 2 kV that decreases 

continuously along the tube. The emission material is a silicon dioxide layer over a lead oxide 

layer on the lead doped glass tube. As shown in Figure 7, CEMs are produced either in a 

straight or in a bended version. The latter amplify up-to 108. 

 

Figure 7:  CEM in either a) straight or b) bended form [57]. 

The inner diameter of a linear channeltron can be reduced to some micrometers. An array 

of millions of micro channels compensates for the quite small cross section. Those micro 

channels are slanted for some degrees relative to the plate surface to prevent ions from 

entering the channel coaxially. The amplification of a single MCP is in the range of 103-104. 

Often two MCPs are combined allowing an amplification factor of 106-107 (Chevron-plate, see 

Figure 8 center) or with three MCPs in a z-stack an amplification of 108 (see Figure 8 right) [57, 

73, 74]. 

 

Figure 8:  Different varieties of MCPs. Left: Single MCP. Center: Chevron plate. Right: z-stack 

configuration [57]. 
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2.1.5. Fourier Transform based Mass Spectrometers 

The following section addresses analyzers that encompass the mass separation volume 

and the ion detection unit in the same device. These systems use the induced image current of 

mass separated and periodically cycling ion clouds and convert them with Fourier 

transformation into a mass spectrum. This principle of operation is classified as a “non-

destructive” ion detection method, in contrast to the systems described above [73]. 

 

2.1.5.1. Fourier Transformation 

 Fourier transformation (FT) is a mathematical operation traced back to the 

work of Jean-Baptiste Joseph Fourier. It allows to calculate a continuous spectrum from an 

aperiodic signal, e.g., the frequency spectrum from the superimposed transient time signal. 

Thus, the domain of the initial function is time whereas the domain of the Fourier transformed 

function is frequency. The function in the frequency domain reflects all frequencies with their 

amplitudes contained in the initial function. It is noted that the resolution of the frequency 

spectrum significantly scales with the observation time of the initial signal. In other words: 

the longer the transient signal, the better the resolution in the frequency spectrum [9]. 

 

2.1.5.2. Fourier transform Ion Cyclotron Resonance 

The operation principle of FT-ICR instruments is based on ion cyclotron resonance, 

known since the early 1930’s. Charged particles circulate in a transversal electrical trapping 

field (z-direction) and orthogonally to an applied magnetic field (x,y-plane). The latter 

trajectory with radius r is mathematically derived from equating the Lorentz and the 

centrifugal force, both acting on a charged particle with mass m, charge q=z∙e and velocity �⃑� 

[9, 75]: 

 
𝑟 =

𝑚�⃑�

𝑧𝑒�⃑⃑�
 

(2.23) 

With �⃑� = 𝑟𝜔 the cyclotron angular frequency ωc is written as: 

 
𝜔𝑐 =

𝑧𝑒�⃑⃑�

𝑚
 

(2.24) 
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Introducing the cyclotron frequency fc = ωc/2π gives: 

 
𝑓𝑐 =

𝑧

𝑚
∙
𝑒�⃑⃑�

2𝜋
 

(2.25) 

This so-called cyclotron equation shows that the ion cyclotron frequency is independent of the 

initial ion velocity but proportional to the charge and the magnetic field and inversely 

proportional to the ion mass. Initially, ions with identical m/z values thus cycle in the x,y-plane 

with the same fc, however, they are randomly distributed with respect to their kinetic energy 

and spatial position according to the relationship between v and r in equation (2.23). In order 

to obtain a mass dependent signal, a coherent, macroscopic cyclotron motion of identical 

species is induced with an electrical pulse orthogonal to the magnetic field direction. In the 

early days ICR devices were operated in energy scanning mode. Here the ions move with their 

cyclotron frequency in increasing helical trajectories upon resonant RF acceleration 

perpendicular to the magnetic field. Owing to the constant kinetic energy uptake ions will at 

some point meet the condition rion = rcell, and discharge at the wall, which can be measured with 

a connected electrometer. Disadvantages of this method are: i) limitation of the mass accuracy 

and mass resolution to 1/NC with NC as number of half-cycles, ii) unamplified charge detection 

and iii) removal of ions from the cell, which renders MS/MS experiments impossible. The ICR 

performance was enormously improved by changing from destructive to non-destructive ion 

detection with measuring  image currents. In case of positively charged ion clouds passing by 

the detector electrodes, the electrons inside the electrode are attracted. This results in a small 

image current for each ion cloud each time the ion cloud passes by. These image currents are 

amplified and converted into voltage signals. Hence, a transient signal with superimposed ion 

frequencies is obtained. As explained above, this signal is transformed into a frequency 

spectrum by Fourier transformation and subsequently converted into a m/z spectrum 

according to equation (2.25) [9, 75].   

FT-ICR instruments are often used in combination with LITs or other trapping devices. 

Those trapping devices prepare the ion population to deliver a suitable number of ions to the 

FT-ICR analyzer. Strong superconducting magnets are required for FT-ICR mass 

spectrometers, since the mass resolution, scan rate and mass range scale with the applied 

magnetic field strength. Typical field strength are 7 T or 9.4 T, but even 12 T, 15 T and 21 T 

[76] instruments are used more frequently nowadays. These magnets need helium cooling and 



Introduction 

 
22 

 

for descent mean free pathways elaborate vacuum conditions of at least 10-9 mbar are required 

[76] – constraints that make FT-ICR instruments quite large and expensive. However, they 

obtain unprecedented mass resolution of R = 1·105 - 2·106 [47, 76]. 

Table 6 sums up the figures of merit typically reachable with FT-ICR instruments [47, 77]. 

Table 6: Typical figures of merit for FT-ICR instruments [47, 77]. 

Mass resolution 10,000 – 1,000,000 

Mass range > 10,000 Da 

Mass accuracy 1 – 5 ppm 

Scan rate 1 Hz 

 

 

2.1.5.3. Orbitrap 

The Orbitrap is another mass analyzer with FT signal processing. The principle of ion 

trapping is based on the Kingdon trap as introduced in the early 1920’s [78, 79]. This first 

design was made of a cylindrical and a coaxially centered thin wire electrode. Two plane 

electrodes on each side of the cylinder closed the trapping volume, similar to the trapping in 

z-direction of LIT and ICR-cells. The balance between the electrostatic field and centrifugal 

force determines the concentric rotation in the x,y-plane around the wire. This configuration, 

however, was not practical for m/z separation.  In 1981 Knight slightly changed the field 

geometry with a bisected and spindle-like shaped outer electrode [80]. Although this 

modification added an additional, m/z dependent harmonic motion in z-direction, Knight was 

still not able to practically detect distinct mass-to-charge ratios. It was not until 1999 when 

Makarov leveraged this analyzer type owing to three substantial modifications [81]:  

i) smoother field geometry with precisely defined quadrupole and logarithmic field portions, 

ii) image current detection on the bisected outer electrode and iii) injection of spatially and 

kinetically well confined ion packages with an upstream, second trapping device, the so called 

c-trap [81]. The c-trap is a curved quadrupole that allows trapping and collisional cooling of a 

well-defined number of ions [82, 83]. A short high voltage pulse injects the ions into the 

orbitrap; at the same time the potential of the central electrode is lowered and the ions are 

trapped and directed onto their spherical orbits. 
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Figure 9 shows a cutaway of the commercial Orbitrap from Thermo Fisher Scientific [83].  

 

Figure 9:  Cutaway of the commercial Orbitrap from Thermo Fisher Scientific [83]. 

The quadrologarithmic field is given by: 

 
𝑈(𝑟, 𝑧) =

𝑘

2
(𝑧2 −

𝑟²

2
) +

𝑘

2
(𝑅𝑚)

2𝑙𝑛 [
𝑟

𝑅𝑚
] + 𝐶 

(2.26) 

Wherein r and z are cylindrical coordinates, k is field curvature, Rm is the characteristic radius 

and C is a constant. The field described by equation (2.26) forces the ions in the Orbitrap on 

helical trajectories. Stable trajectories result from a combination of rotation around the central 

axis and axial vibrations [79, 81]. The axial vibrational frequency ωz is given by: 

 
𝜔𝑧 = √𝑘 (

𝑧𝑒

𝑚𝑖
) 

(2.27) 

It is only a function of the ion charge, the ion mass and the field curvature, thus independent 

of the tangential velocity and the spatial ion distribution. Axial frequencies are measured as 

image currents on both halves of the outer electrode and subsequently analyzed with fast 

Fourier transformation. The Orbitrap demonstrated outstanding performance in terms of 

mass resolution and accuracy, comparable to 12 T and 15 T FT-ICR instruments [84]. The axial 

frequency ωz in the Orbitrap is proportional to (z/m)1/2 compared to the cyclotron frequency ωc  

in FT-ICR devices, which is proportional to z/m. Hence, FT-ICR enables greater mass 

resolution for ions with low m/z whereas the Orbitrap shows better performance at higher m/z 
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ratios [84]. Equation (2.27) also shows that lighter ions pass more oscillations for a given 

transient signal than heavier species. This means that the resolving power is mass dependent, 

since the resolution in the FT transformed frequency spectrum is proportional to the number 

of recorded oscillations. As noted above, longer transient signals significantly enhance the 

resolving power, however, at the cost of the analyzer speed and the requirements for the 

vacuum system. For standard operation, at least 10-9 mbar are necessary to prevent collisional 

dephasing [84]. With that, resolving powers of 240,000 (at m/z 400) for about 1s long transients 

were obtained [85]. 

Table 7 sums up the figures of merit that are typically reachable with Orbitrap mass 

analyzers [10, 86]. 

Table 7: Typical figures of merit for Orbitrap mass analyzers [10, 86]. 

Mass resolution 100,000 – 250,000 

Mass range > 10,000 Da 

Mass accuracy < 5 ppm 

Scan rate 1 – 10 Hz 

 

 

2.2. Semiconductors 

The omnipresence of semiconducting materials is shaping our daily lives, be it in 

smartphones, televisions or computers, just to name a few [87].  All these devices are equipped 

with sophisticated electronics, usually comprised of several semiconducting elements in so-

called integrated circuits (IC). In 1965 Gordon Moore, co-founder of Intel, predicted that the 

number of components on chips would double every 12 month, later revised to two years [88, 

89]. Moore’s Law is an inspiration for engineers to push the technology of semiconducting 

materials to astonishingly ongoing performance. Figure 10 relates the number of transistors 

on new developed processor chips to the launched year – in accordance to Moore´s Law [90]. 

This rapidly increasing progress in electronic devices demands for elaborate manufacturing 

processes, which will be issued in a later chapter.  
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Figure 10:  Number of transistors on newly developed processor chips in dependence of the launched year 

- in accordance with Moore's Law [90]. 

 

2.2.1. General: Basics and Applications 

The energy gap between the valence and the conduction band is the characteristic 

quantity of semiconductors. It essentially determines the specific properties of different 

materials, in particular their conductivity. In stark contrast to the overlying bands in metals, 

semiconductors require partially unoccupied bands to pass an electrical current [91, 92]. As a 

result, the temperature dependency of the conductivity between metals and semiconductors 

runs in the exact opposite. At 0 K the valence band of a semiconductor is fully occupied and 

the conduction band is empty. An increase in temperature shifts the energy distribution of the 

electrons in the valance band to higher energies, which causes some electrons to overcome the 

gap to the conduction band [91]. It follows that the number of available electrons in the 

conduction band as well as the number of electron holes in the valence band increase – the 

resistance of the material decreases. In principal, the conduction of electrical current in 

semiconductors is thus based on electrons and/or electron holes as charge carriers [91].  

Semiconductors are roughly divided into the following three groups: i) elementary, ii) 

compound, and more recently iii) organic semiconductors. The most noted one is silicon, 

which belongs to the group of elementary semiconductors with four valence electrons [91, 92]. 
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Materials of the compound group are mixtures of elements with four valence electrons on 

average. Those are combinations of elements of the III. and V., II. and VI., I. and VII. main 

group of the periodic table. Though not necessarily equipped with four valence electrons on 

average, materials with specific resistances between 102 Ω cm and 108 Ω cm are allocated to 

this second group as well [93]. Organic semiconductors include small molecules as well as 

semiconductive polymers that are mainly containing carbon and hydrogen [93].  

Carefully modifying the crystal structure with dopants in very low concentrations allows 

to deliberately alter the electrical and optical properties.  In particular, the addition of III. and 

V. group elements effectively changes the conduction behavior. The latter, such as 

phosphorus, add an additional electron to the intrinsic semiconductor, which results in a 

slight excess of negative charge – thus known as an n-doped semiconductor. Likewise, adding 

third group elements, e.g. boron, results in positive excess charge and is thus known as p-

doping, respectively. To remain in the picture of the band structure, in n-doped 

semiconductors the donor energy level is close to the conduction band, which effectively 

lowers the band gap for donor electrons to overcome. For p-doped materials the electron-hole 

energy level is close to the valence band electrons and allows them to occupy the acceptor 

level at lower energies than in the intrinsic semiconductor.  Especially the combination of n- 

and p-doped semiconductive materials is of interest for microelectronics. Those materials 

exhibit new properties as for example one-directional current conduction [91, 94, 95]. 

The applications of semiconductors within the field of electronics are manifold. The 

combination of differently doped materials allows designing discrete semiconductor devices, 

such as diodes and transistors. Even the preparation of more complex integrated circuits with 

various devices are possible. Integrated circuits include microprocessors, microcontroller, as 

well as devices of power electronics (i.e., insulated-gate bipolar transistors, thyristors and 

diodes) [96]. Organic semiconductors, however, are usually applied for light-emitting diodes 

or photovoltaic cells [93].  

The possibility and the desire for the generation of powerful electronic devices equipped 

with integrated circuits on the one hand, causes complex and expensive manufacturing 

processes on the other hand. 
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2.2.2. Semiconductor manufacturing processes 

The fabrication of integrated circuits starting from raw materials embraces several steps. 

Beginning with wafer preparation and wafer fabrication, followed by wafer testing, assembly 

and packaging, and a final testing. 

 

2.2.2.1. Bulk crystal growth and wafer fabrication 

The standard method to grow single crystals, including silicon, was introduced by 

Czochralski in 1918 [97]. A schematic diagram of this technique is given in Figure 11. Herein, 

the raw material is first melted in a crucible. A seed crystal, mounted in a suspension on top 

of the melt surface, is slowly rotated upward, which causes a continuous crystallization 

process. A surrounding inert gas flow (Ar) is usually used to restrain impurities. With this 

method, cylindrical, single crystals of up to 30 cm in diameter are reported [94]. A variation is 

the Liquid-Encapsulated Czochralski (LEC) method, particularly suited for GaAs and InP 

crystals. Here, a layer of molten boron oxide separates the melt from air to prevent volatile 

anion vapor from escaping [98, 99]. The Bridgman technique is another variation based on the 

Czochralski method. It applies an additional temperature gradient along the crucible and 

holds the temperature around the seed crystal slightly below the melting point [92, 99]. 

 

Figure 11:  Schematic of Czochralski technique for growing of Si single crystals [92]. 



Introduction 

 
28 

 

In further processes, the cylindrical ingot is mechanically trimmed and sliced into wafers. 

Those are rounded and subsequently lapped. Additional wafer etching allows to chemically 

remove damages and contaminations. Afterwards, the wafer surface is polished and 

eventually subjected to quality checks [100]. 

 

2.2.2.2. Process flow in semiconductor fabrication 

The path from the wafer to the final semiconducting device requires further, technically 

rather sophisticated processing. Figure 12 exemplarily shows the process flow for the 

fabrication of CMOS (Complementary metal-oxide semiconductors) devices [100]. 

 

Figure 12:  Process flow for the fabrication of an integrated circuit. Reproduced from [100]. 

1. Thin films 

Thin films means the deposition of either dielectric or metal layers on the wafer surface. 

Amorphous silicon dioxide (SiO2) films are typical dielectric layers involved in one or more 

processing steps, since they show quite strong adhesion to the wafer and excellent dielectric 

properties. Thus, SiO2 layers are used i) for device scratch protection, ii) for surface 

passivation, iii) as gate dielectrics, iv) as doping barriers and v) as dielectrical barriers between 

conducting metal layers [94, 95]. Pure SiO2 is produced from elemental silicon either through 

dry or wet oxidation [94]:  

Dry oxidation: 

 Si (s) + O2 (g)
1000 °C
→    SiO2 (s) 

(R.2.27) 
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Wet oxidation: 

 H2  + O2  → H2O (R.2.28) 

 Si + 2H2O → SiO2 + 2H2 (R.2.29) 

Wet conditions result in higher SiO2 growth rates, however, lead to lower densities due to 

trapped hydrogen molecules in the oxide lattice [94].  

High quality metal films require outstanding conductivity, excellent adhesion to the 

wafer surface, high-resolution patterning, high corrosion resistance and reasonable 

mechanical strength. The most common materials are aluminum, aluminum-copper alloys, 

copper and silicides. The simplest method for metal deposition is evaporation of the material 

in a vacuum chamber, however, physical vapor deposition (PVD) through sputtering of the 

target material, metal chemical vapor deposition (CVD) and copper electroplating are the 

methods of choice nowadays [100, 101]. 

2. Polishing 

A smooth surface is essential for the reproducibility of the device properties. The most 

common polishing technique is chemical mechanical planarization (CMP). It uses a slurry 

with certain chemicals and abrasive particles in which the wafer is precisely rotated between 

polishing platen [102]. 

3. Diffusion: Epitaxial techniques 

As mentioned before, in many cases only doped semiconductors and their specific 

combination lead to the unique and characteristic properties of electronic devices. From an 

economical point of view, it is more favorable to apply these high-quality compositions in thin 

layers on bulk substrates of lower quality. The epitaxial technique helps to grow such layers 

on substrates and facilitates nearly identical lattice-parameters between both to reduce strain-

related issues. Depending on the similarity or dissimilarity of the chemical composition of 

layer and substrate, this method is known as homo-epitaxy or hetero-epitaxy, respectively [87, 

92]. Epitaxial layers are applied with less than 1 µm thickness, starting from either solid, liquid 

or gas phase precursors. The latter, however, are the most precise to control the process. E.g., 

the chemical vapor deposition according to the following reaction yields silicon films of 

outstanding purity [92]: 
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 SiH4
heat
→  Si ↓ +2H2 ↑ 

(R.2.30) 

The reaction is quantitative, H2 is easily removed and side reactions are virtually absent. 

Furthermore, the gas phase composition is easily varied with dopants, such as the pentavalent 

element phosphor and arsenic in their hydrogenated forms phosphine (PH3) and arsine 

(AsH3), respectively. In case of GaAs, the gaseous metal-organic trimethyl gallium [Ga(CH3)3] 

is commonly added for elemental gallium insertion into the lattice structure. Hence GaAs 

films are grown according to the reaction R.2.31 [103, 104]. 

 Ga(CH3)3 + AsH3 → 3CH4 ↑ + GaAs (R.2.31) 

CVD processes are typically operated at pressures above 1 mbar [92, 103, 105]. A modification 

under vacuum conditions is the Molecular Beam Epitaxy (MBE) [106], which introduces the 

reagents in form of molecular beams. Those are generated by vaporization of the precursor 

within a cell and subsequent escape through a small nozzle into the UHV (ultra-high vacuum) 

region as well-collimated beams. However, the reactant concentration at the substrate and 

thus the crystal stoichiometry is difficult to control in MBE [92]. 

4. Photolithography 

Photolithography allows to precisely structure wafer surfaces with three-dimensional 

patterns [87, 107]. In short, the desired geometry is transferred with an intense light source 

from a photomask to a photoresist layer on the wafer. The illuminated areas become more or 

less soluble, known as positive or negative resists, respectively. Subsequent washing out 

leaves the desired structure.  Photolithography is a multi-step process as shown in Figure 13 

[100, 107, 108]. 

 

Figure 13:  Flow chart of the photolithography multi-step process. 

In more detail, the wafer surface is first cleaned, released from moisture and primed (vapor 

prime). A spin coating technique evenly applies the photoresist layer on the wafer surface 

vapor prime
spin 

coating
soft bake

light 
exposure

post-
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with a precisely defined thickness. Commonly, the photoresist is a polymer resin with a light 

sensitive additive, e.g., novolak  in combination with DNQ (Diazonaphtoquinone) [107, 109]. 

Once coated, a soft bake out removes residual solvent and enhances the adhesion to the 

substrate. The following alignment and exposure step renders the actual imprint. Here, the 

photomask is precisely aligned to the wafer within the optical pathway of an intense UV-light 

source. This can be either an excimer laser (ArF: 193 nm or KrF: 248 nm) or a mercury arc lamp 

at 365 nm, 405 nm, 436 nm [109]. Lower wavelength for higher spatial resolution are still 

subject to current research. Depending on the type of photoresist, the UV light increases or 

decreases the solubility of the illuminated areas, which is known as positive and negative 

lithography, respectively. A Thermal post exposure bake is used to stabilize and harden the 

developed photoresist. Additionally, remaining traces of the coating solvent or developer are 

removed [87, 107, 109]. Within the develop process the photoresist and its residues are 

removed. Non-postbaked positive photoresists are treated with acetone, trichloroethylene and 

phenol-based strippers, whereas negative photoresists are developed with methyl ethyl 

ketone or methyl isobutyl ketone [110]. Another effective method for the removal of organic 

polymers is plasma etching with O2 [87]. Finally, any residual solvent is evaporated and the 

resist is hardened with a post-development thermal hard bake [100, 107, 109]. 

5. Dry and wet etching 

As mentioned earlier, etching removes unneeded material from the wafer surface, either 

chemically or physically. The two crucial figures of merit for this process are selectivity and 

isotropy of the removed material. In some cases, etches undercut the masking layer, which 

results in so called bias. Isotropic etchants show large bias as they erode the substrate in 

horizontal as well as in vertical direction [87, 111]. Those two figures of merit significantly 

depend on the chosen process (dry or wet etching) and on the combination of used chemicals, 

masking layer and substrate material. In a dry etching process, a plasma at around 10-3 to 5 

mbar [112] generates sufficient chlorine or fluorine radicals from precursors, such as CHF3, to 

react with surface molecules and gradually remove them [111]. In wet etching processes, the 

wafer is immersed in a bath of a liquid-phase etchant, for which a wide range of different 

specialized types is available. The right etchant depends on the surface and substrate material 

[87]. For silicon dioxide on a silicon substrate, e.g., buffered hydrofluoric acid is the most 

common one [113]. 
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6. Ion Implantation 

This technique allows to implant dopant material very precisely into the crystal structure 

of semiconductors.  The concentration and penetration depth are well controllable, however, 

the latter is rather restricted to a few nanometers, in contrast to CVD [114]. The process is 

operated at high vacuum conditions, with an accurately collimated and accelerated ion beam, 

which is scanned across the wafer surface. The ions penetrate the surface, are slowed down 

by collisions with substrate molecules and eventually stop in the lattice. The dissipated kinetic 

energy locally destroys the crystal structure. This requires a subsequent annealing procedure 

to finally enclose and electrically activate the implanted atoms [101, 114, 115].  

 

2.2.2.3. Wafer inspection 

A number of different analytical methods is available for the inspection of the fabricated 

wafers. Secondary-ion mass spectrometry (SIMS) is a method of eroding a wafer surface with 

accelerated ions to analyze the surface material composition with mass spectrometry. Atomic 

force microscopy (AFM) allows to map the topography of the wafer surface. Auger electron 

spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) are used to identify surface 

chemical species with penetration depth of up-to 2 nm [101]. Beneath AES further scanning 

electron microscopy (SEM) methods are known using different detectors. Silicon crystal point 

defects and other small features are analyzed and quantified by the application of 

transmission electron microscopy (TEM). Element identification is possible with energy-

dispersive spectrometers (EDS) [116]. This method uses an electron beam to excite atoms in 

the probe and detect the emitted, element specific X-ray [117]. Similar to SEM a focused ion 

beam (FIB) carves thin cross sections from the wafer surface and allows to analyze the 

removed material [87, 101]. 

 

2.2.3. Zeiss SMT and semiconductor industry 

Some of the main aspects in wafer treatment with photolithography have only been 

briefly touched, such as the spatial resolution dependency on the wavelength. With an 

excimer laser at 193 nm, structures of minimum 38 nm are obtained [118]. For lower critical 

dimensions more sophisticated systems are needed.  A recent development, impelled by 
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ASML1, is Extreme Ultraviolet (EUV) photolithography [119, 120]. The light source in EUV is 

a laser-induced plasma emitting light at 13.5 nm, which offer the potential of structures on the 

wafer below 10 nm [118]. The particular challenge in EUV photolithography is that all matter 

absorbs EUV light. Hence, all optical elements for imaging must be made of reflective lenses 

(mirrors) instead of refractive lenses. This requires alternating molybdenum and silicon 

coatings with up-to 100 layers, which reflect the light through interlayer interferences [121]. 

Theoretically, such mirrors reflect 72 % of the incident EUV light. However, this requires 

certain precautionary measures, such as precisely flattened mirrors with less than 2 nm 

deviation from planarity over 30 cm mirror diameter, low vacuum conditions and prior 

outgassing of any material that is introduced to the chamber. Contamination that may affect 

the system’s optical transmission has to be avoided by all means. “A single fingerprint on the 

wall of the vacuum chamber could put the whole system out of specifications.” [118]. This 

clearly emphasizes the importance of highest purity throughout the entire process.   

Incidentally, the role of Carl Zeiss SMT within the semiconductor industry gains in 

importance. Carl Zeiss SMT provides optical elements with lenses for photolithographic 

systems operating with light sources at 248 nm and 193 nm. As Carl Zeiss SMT and ASML 

connects a long-standing strategic partnership since 1992, the mirror system needed for EUV 

applications are manufactured in collaboration as well.  

                                                           
1 ASML with its headquarters in Veldhoven (the Netherlands) was founded in 1984 and is one 

of the world’s leading manufacturers of chip-making equipment. 
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2.3. Zeiss-Project GAMMA: Gas multimode mass analyzer 

As pointed out in the previous chapters, manufacturing processes in the semiconductor 

industry are rather sophisticated and expensive. In this context, profitability demands for 

careful and elaborate process control in particular with respect to the purity of chemicals, 

contamination of chambers and the exact timing of process steps, e.g., the switch between 

CVD gases. Advanced control means advanced process monitoring as well. In this regard, the 

application of appropriate analytical instrumentation is indispensable. In particular, the 

development in the field of mass spectrometry has seen tremendous improvement in recent 

years and is still growing.  Its application in process monitoring, however, is still in the launch. 

Thus far, analysis, especially residual gas analysis of processes, are commonly carried out with 

simple quadrupole devices. Those benefit from compact designs and cost-effectiveness. 

However, they are insensitive and mostly restricted to nominal mass resolution.  

The GAMMA project by Carl Zeiss SMT GmbH develops a novel mass spectrometric 

system for process gas analysis – the iTrap®. The primary field of application is focused on 

the semiconductor industry, which is largely related to the general closeness of the Carl Zeiss 

group to the modern realm of semiconducting research and manufacturing (cf. chapter 2.2.3).   

 

2.3.1. Required specifications and operational parameters 

The discussed process environments stipulate the required specifications and operating 

conditions for such a mass spectrometer. i) A slim and compact design is necessary to directly 

attach the instrument to a process chamber. This avoids long sample lines. ii) The control of 

processes requires analytical results within real-time, in order to facilitate an appropriate 

responding cybernetic system. iii) The vacuum system, the sampling procedure and the built-

in materials need to be suitable for chemically rather demanding matrices, such as AsH3, SiH4, 

B2H6, or Ga(CH3)3 in H2. iv) The sample pressure is typically at medium and high vacuum 

conditions. v)  Information about trace contamination, e.g., from outgassing materials or 

solvent residuals, as well as main gas components are of interest. This necessitates a dynamic 

range over several orders of magnitude. vi) The instrument should feature appropriate mass 

resolution and mass accuracy.  
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2.3.2. Fourier Transform Quadrupole Ion Trap 

A number of different MS systems were discussed in chapter 2.1. Undoubtable, the 

diversity of available instruments covers a wide range of application fields. At least one of the 

known devices on the market can certainly as well fulfill the required specifications for the 

targeted application in the semiconductor industry with regard to mass range, mass resolution 

and sensitivity. For appropriate process gas analysis, however, instrument compactness, 

robustness as well as the costs for the entire system are equally important factors. For example, 

enhancing the mass resolution of simple quadrupole devices inevitably increases the 

manufacturing costs for more sophisticated rods. This consequently weakens the price 

argument. In addition, most commercially available instruments are not designed for the 

chemically rather reactive conditions.  

The GAMMA project tries to address all the required specifications with a quadrupole 

ion trap that deploys Fourier transform based non-destructive ion detection. In-trap electron 

ionization and the absence of an external detector keep the setup slim and compact. 

Furthermore, the image current detection with subsequent FT analysis, as already discussed 

for FT-ICR instruments and the Orbitrap, enable favorable mass resolution. To address the 

chemically demanding environments, a layer of inert metal coats the entire QIT surface.  

 

2.3.2.1. Challenges: Electronics and first approaches 

The FT-QIT development faces several challenges concerning the technical details as well 

as the analytical application to real-world samples. These are discussed in the following.   

Since the mid-eighties, several approaches for ion traps with non-destructive detection 

techniques and subsequent Fourier transformation were reported. However, all currently 

available commercial ion traps operate in the scanning mode with external ion detection. This 

fact clearly indicates that the establishment of FT based ion traps is a challenging task. In 1987, 

Syka and Fies were one of the first to meet this challenge [122]. They deployed a sinusoidal 

voltage pulse between the two endcap electrodes for ion excitation and detected the resulting 

image current with subsequent FT analysis of this transient signal. With an amplifier 

bandwidth of only 2.3 kHz only a small mass range is detectable (approx. 1-2 Da) [122]. 

Goeringer et al. conducted experiments with repeated measurement efficiencies of the same 
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ion population of 99% [123]. They used a resonant ion excitation scheme (79 kHz), which only 

enabled the detection of a specific m/z ratio within a single mass spectrum. Ramping of the RF 

amplitude and hence sweeping the secular frequencies of the trapped ions through the 

resonance excitation frequency allowed the record of a full mass spectrum (52 – 169 Da) [123]. 

In 1996 Cook’s group presented a broad-bandwidth ion detection with up-to 400 kHz detector 

bandwidth [124]. Their system comprised a small detector electrode embedded in one of the 

endcap electrodes. This design allowed narrow-band AC, as well as broadband SWIFT (stored 

waveform inverse Fourier transform) excitation. In subsequent work, Cook’s group filed a 

patent on a FT-QIT, in which the ion trap electrodes are used for image current detection in 

combination with a wide-bandwidth low-impedance preamplifier and a RF trapping voltage 

filter [125]. Aliman et al. have also realized a broadband excitation of ions and broad-

bandwidth image current detection on the endcap electrodes. Their approach, however, 

focused on the high crosstalk between the high-frequency storage field and the detector 

electrodes. In this regard, it is noteworthy that currents induced by the RF field are in the 

range of mA, whereas ion signal currents are in the fA range [70, 126]. This results in complete 

saturation of the charge amplifier owing to the interfering capacities. Aliman et al. worked 

around this crosstalk and applied a compensation current equally to the noise current with 

inversed sign. A low-noise amplifier subsequently amplified the compensated current signal 

[70, 126]. 

 

2.3.2.2. Challenges: For analytical applications 

The overall instrument compactness with direct inlet of the neutral sample into the ion 

trap and subsequent in-trap ionization, ion excitation, as well as FT-based ion detection is the 

most challenging task for analytical applications. Especially the pressure conditions brought 

along by the direct gas inlet and necessitated for the different steps within a measurement 

cycle are strongly contrasting. A pulsed direct gas inlet with upstream pressures in the lower 

mbar range leads to an elevated gas and thus an elevated analyte density, which allows an 

efficient ionization by filament driven electron ionization. FT-based mass analyzers, however, 

require pressures of at least 10-6 mbar (for ultra-high mass resolution in FT-ICR and Orbitrap 

instruments even 10-10 mbar) during the period of ion storage and current detection. These 

conditions enable sufficient coherent ion movement to record transient signals for appreciable 
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mass resolution [9, 75, 76]. Hence, pressure conditions for efficient ionization and optimum 

FT analysis are in stark contrast. Furthermore, the elevated particle density present within the 

ion trap favors the occurrence of ion-molecule reactions modifying the initial ion population. 

An additional critical parameter is given by the total amount of ions present within the ion 

trap. Since EI is known as a non-selective ionization method [9, 10], any matrix ions will be 

ionized in large abundance. The influence of the electrical fields on the ion population is then 

affected, potentially causing space charge induced effects [127–130]. At low analyte mixing 

ratios these effects will gain in importance as elevated ionization times are required and thus 

matrix ions are generated in large excess. A FT phenomenon known from FT-ICR is coalescent 

coupling of different ion species, especially at elevated charge densities [131–133]. At least, a 

spatially distributed ion generation inside the ion trap volume is expected since the electron 

beam will be strongly affected by the applied RF field. 

The above mentioned operational conditions and resulting effects will strongly affect 

several analytical figures of merit, such as mass resolution, sensitivity, detectable mass range, 

as well as the dynamic range of the signal response. 

 

2.3.2.3. Advanced ion excitation schemes 

Once trapped, the ions orbit with defined frequencies inside the trapping volume. This 

condition enables advanced excitation schemes that stimulate the entire ion population or just 

certain m/z ranges. A short rectangular DC pulse of some µs causes a broadband excitation of 

the entire ion population [52, 134], whereas a sinusoidal signal excites ions of a specific m/z 

ratio [122, 135]. The applied signal length and signal amplitude, which correspond to the 

transferred energy, strongly determine if the ions are simply promoted on higher, stable orbits 

or even forced against the wall where they discharge [66, 136].      

A further, powerful tool in ion excitation is SWIFT [136–138]. Those signals are so called 

chirps and are superposed by a large number of different ion resonant frequencies or 

frequency ranges. It is possible to adjust the applied energy for selected sections of the 

frequency spectrum to either excite or eliminate certain ion species [136]. To some extent, 

SWIFT allows suppressing unwanted matrix ions and promoting signal intensities of minor 

components. 
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2.3.3. PTC and ipaMS within the project “GAMMA” 

As part of the “GAMMA” project, the Physical and Theoretical Chemistry (PTC) and the 

Institute for pure and applied mass spectrometry (ipaMS) at the University of Wuppertal 

assume the task of detailed examination of the developed FT-QIT. These investigations 

encompass the technical boundaries (compactness, etc.) of the entire system, the in-trap 

electron ionization method and its comparability to common spectra databases, the occurrence 

and extent of ion-molecule chemistry, the impact of space charge effects, and the impact of 

transient pressures along sampling, ionization, storing and detection. The findings will lead 

to a better understanding of the adjustable parameters and their weighing within the 

measurement cycle. Eventually, benchmark experiments with process gases will demonstrate 

the analytical performance in particular with respect to i) sensitivity, ii) dynamic range, iii) 

mass resolution, and iv) mass accuracy. This performance is compared to two commercially 

available mass spectrometers, a TOF instrument and a quadrupole based RGA, all connected 

to the same sample chamber.  

The validation of the FT-QIT performance and the feasible coupling to an ion transfer 

stage with external ionization are ongoing tasks handled by PTC/ipaMS. 
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3. Experimental 

The entire setup consists of a dynamic dilution stage and a mixing chamber for gaseous 

sample preparation. The benchmark instruments - a residual gas analyzer and a time of flight 

mass spectrometer – as well as the Fourier transform based quadrupole ion trap are coupled 

to this mixing chamber.  

 

3.1. Benchmarking instruments 

3.1.1. MKS Residual gas analyzer 

Instrument specifications 

A commercially available residual gas analyzer that is currently applied for routine 

analysis in the semiconductor manufacturing industry is the Microvision 2 residual gas 

analyzer manufactured by MKS (cf. Figure 14) [60]. It is a quadrupole analyzer equipped with 

a pre-filter to protect the main filter from contaminations and is used as one of the benchmark 

devices in this work. The mass analyzer is connected via a CF flange to a process chamber. 

The overall compact and robust design allows the application even in processes under harsh 

conditions. The RGA is equipped with two independent filaments to minimize monitoring 

downtime. The electron energy is adjustable in the range of 20 – 100 eV, allowing to record EI 

spectra matching database entries (e.g. NIST Chemistry WebBook [139]). Data acquisition 

speed is less than 3 ms per point for analogue scanning. The mass range is up-to 300 Dalton. 

A Faraday cup and a microchannel plate detector allow the measurement of partial pressures2 

of 2·10-11 mbar and 5·10-14 mbar, respectively. With the maximum operating pressure given by 

1·10-4 mbar the partial pressures can be converted into mixing ratios, resulting in 2 ppmV for 

the Faraday cup and 5 ppbV with the MCP. Mass resolution is limited to nominal masses with 

a resolution better than 10 % valley for peaks of similar height. Operating temperatures up-to 

200 °C are tolerable while keeping the temperature of the electronics in the range of 10 – 40 °C.  

                                                           
2 The declaration of partial pressures is an established quantity used within the residual gas 

analyzing community. 
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Figure 14:  MKS Microvision 2 residual gas analyzer [140]. 

 

The residual gas analyzer is mounted in a separately pumped vacuum chamber that is 

connected to the analyte mixing chamber via a small orifice (5 µm). This allows suitable 

operating pressures for the RGA with the analyte present at elevated pressures of several mbar 

up-to 1 atm within the mixing chamber. 

 

Analytical Performance 

Since the residual gas analyzer is applied as it is commercially available, analytical 

performance can hardly be enhanced. Measurements carried out with toluene diluted in 

nitrogen show an analytical performance that is almost reaching the instrument specifications 

given by MKS. The analysis of 100 ppbV arsine in hydrogen, however, was not successful. The 

exact position of the RGA in the second vacuum chamber has not been determined. The RGA 

ion source can be positioned closer to the inlet orifice allowing an incident flow that may 

provide an improved analytical performance, but this was not within the scope of the present 

work. 

Despite the limited analytical performance with regard to mass resolution and limit of 

detection (LOD) there is a number of advantages of the RGA especially for the envisioned 

applications. Since the analysis time is 3 ms per data point, measurements for a narrow, 

defined mass ranges are quite fast. Furthermore the RGA is a compact, and cost-effective 

device delivering mass spectra that are searchable in standard databases. 
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3.1.2. Time of Flight mass spectrometer (TOFWERK CTOF) 

Instrument specifications 

TOFWERK is delivering OEM (Original Equipment Manufacturer) solutions to the mass 

spectrometry market. The TOFWERK CTOF [141] impresses by its small size with regard to 

the analyzer system. The TOF chamber dimensions are 26.5 x 17.5 x 11.5 cm3 (length x width 

x height). Referring to the system specifications a mass range up-to 4,000 Dalton is reachable 

with a mass resolution of approx. 1,000, depending on the application. The specification list is 

extended by a mass accuracy of 4 ppm, an acquisition rate of 2,000 spectra/s in continuous 

mode and a high dynamic range over 7 orders of magnitude. For ion detection microchannel 

plates are used.  

Plasma-based ion source 

The modular design of TOFWERK instruments enables the coupling of the CTOF with a 

custom ion transfer stage and thereby with a large number of different ion sources. For the 

benchmark measurements discussed in this work a direct current (DC) helium plasma ion 

source was used. Helium metastables with electronic energies exceeding 19 eV [21, 22] are 

generated within the plasma region. As ionization energies of most compounds are generally 

far below 20 eV, helium metastable induced penning ionization enables ionization of a wide 

range of compounds. In addition to the direct analyte ion generation via penning ionization 

(cf. R.2.4/R.2.5), charge transfer processes from matrix and background ions, that are typically 

also generated in large amounts, have to be taken into account. In case of nitrogen as matrix 

gas and in the presence of water at typical mixing ratios of several ppmV, reaction cascades 

as discussed for APCI in chapter 2.1.2 occur. The primary plasma region and the ion source 

are separated by an orifice of 100 µm. The flow conditions within the plasma source lead to 

an ion source pressure of approx. 1 mbar. 

Custom ion transfer stage 

Ions which are generated in the source chamber need to be transferred from the 1 mbar 

region into the analyzer region, held at 10-6 mbar. Figure 15 shows a schematic of the interface 

used in this work. 
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Figure 15:  Schematic of the custom CTOF interface. 

 

Differential pressure reduction to 10-3 mbar is maintained by gas flow restriction [skimmer (1) 

with an orifice of 1 mm]. Downstream, ions are collimated by an Einzel lens (2) and delivered 

to the next pressure stage (10-5 mbar) via an orifice of 2 mm diameter. Ion optical elements are 

not only used for ion guidance along the differentially reduced pressure, but also enable a 

targeted manipulation of the ion population. As mentioned He plasma based chemical 

ionization leads to a large amount of background and matrix ions. If those large ion ensembles 

impinge on the MCP detector, a recovery time is necessary until the MCPs are discharged. 

Within that time the detector is called to be blind. Therefore a quadrupole notch filter (3) is 

applied, allowing the removal of up-to four different m/z ratios. Attention should be paid on 

the influence on other m/z ratios, especially when higher removal energies are applied. Before 

entering the analyzer region ions are focused within a lens – deflector – lens arrangement. 

Coupling to the mixing chamber 

Analyte sampling was achieved in two ways: i) Either by coupling the CTOF sampling 

stage with an orifice of 300 µm to the mixing chamber or ii) via a 18 cm metal capillary (ID 

0.5 mm). In both cases upstream pressures up-to 1 atm are tolerated. The capillary in the latter 

is mounted in a 6 mm tube allowing the addition of a sheath gas flow coaxially to the analyte 

gas stream (cf. Figure 16). Depending on the sheath gas used either the operation of the ion 

source in charge transfer (CT) or proton transfer (PT) mode is possible. In case of CT the 

analyte is either directly ionized by penning ionization (cf. R.2.4/R.2.5) or by charge transfer 

from reactant ions as discussed in R.2.19 – R.2.21. Upon addition of hydrogen to the sheath 

gas the operation in PT mode is enabled since penning ionization leads to the formation of H3+ 
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ions according to the reactions R.3.32 – R.3.36. As H3+ is a very strong gas phase acid the 

protonation of any analyte with a higher proton affinity than H2 is energetically favorable. 

 

 HeM + H2 → HeH
+ + H + e− (R.3.32) 

 HeM + H2 → H2
+ + He + e− (R.3.33) 

 H2
+ + He → HeH+ + H (R.3.34) 

 H2
+ + H2 → H3

+ + H (R.3.35) 

 HeH+ + H2 → H3
+ + He (R.3.36) 

 

 

Figure 16:   Schematic of the capillary based analyte inlet to the ion source enabling measurements in CT 

and PT mode [142]. 
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Analytical Performance 

Total ion currents measured within the ion transfer (between Einzel lens and Notch filter) 

reached several nano Amperes, necessitating the removal of background ions within the 

Notch filter on the one hand but allowing an efficient ionization of the analyte on the other 

hand. With the above depicted setup 5 pptV toluene diluted in nitrogen at 500 mbar total 

pressure are measured in charge transfer mode as well as 50 pptV toluene in nitrogen in 

proton transfer mode. The spectra integration time is set to 60 s. Since the S/N ratios are still 

high (> 20), LODs are assumed to be below 5 pptV (CT-mode) and 50 pptV (PT-mode), 

respectively. 

As the number of reactant ions is exceedingly high a linear dynamic range over 5 orders 

of magnitude is reached. Figure 17 shows a measurement carried out in a combined CT and 

PT mode. The xenon mixing ratio is kept constant at 10 ppmV whereas the mixing ratio of 

toluene is increased from 10 ppbV to 400 ppmV, both diluted in nitrogen. The protonation 

rates of xenon and toluene remain constant (Figure 17, secondary axis) over the full range of 

the toluene mixing ratios. This strongly suggests that the protonation capacity is even much 

higher; otherwise reactions leading to an increasing Xe·+/[Xe+H]+ ratio occur. The mass 

resolution of the investigated ion peaks is on average 1,000 fulfilling the above mentioned 

device specifications. 

 

Figure 17:  Signal response of toluene [M+H]+ in dependence of the analyte mixing ratio. The ratio of CT 

vs PT products observed for xenon and toluene are plotted on the secondary axis [143]. 
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The analytical performance parameters obtained for the benchmark analyte toluene in 

nitrogen are outstanding. A transfer of this performance to process specific gas mixtures is 

also possible. However, two issues need to be considered: 

1. An analysis of potentially occurring degradation processes on the multichannel 

plates while continuous operation in hydrogen with process gases such as HCl has 

not been carried out, as the majority of measurements was examined in nitrogen. 

2. The above presented measurements are carried out with a sample pressure of 

500 mbar. Thus, optimum operation conditions within the ion source are reached. In 

addition significant viscous drag into the ion transfer region is present. Some of the 

targeted applications, however, only offer pressures up-to 10 mbar. Sampling from 

lower pressure results in lower analyte signal responses and thus higher limits of 

detection, since the absolute number of generated ions and the viscous drag is 

reduced.  

A detailed description of the micro-plasma based chemical ionization source including the 

coupling stage to the CTOF is given in the dissertation of David Müller [144]. 
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3.2. FT-QIT: Zeiss Demotool 

3.2.1. Setup 

A three-dimensional quadrupole ion trap (similar to a Paul trap, cf. Figure 18) represents 

the heart of the entire FT-QIT setup. An almost ideal electrical quadrupole field is established 

due to the application of hyperbolical electrodes. Two endcap electrodes and a ring electrode 

embrace a trapping volume of approx. 3 – 5 cm³. The RF trapping field is applied onto the ring 

electrode with a frequency of 1 MHz and voltages ranging from 0 – 500 VRF, which is 0 – 

1,000 Vpp. Endcap electrodes are tied to ground potential, leading to an a-value of zero. 

Comparison to Figure 5 (p.16) shows that in this case the widest mass range is achievable with 

the operating line along the q-axis. The ion trap is equipped with a filament mounted on the 

ring electrode for in-trap electron ionization. Ion detection is realized by recording image 

currents induced by ions approaching the endcap electrodes. As already mentioned, such 

image currents are very small with values in the range of femto Amperes. Thus, equally 

important than the QIT itself are QIT-near electronics. 

QIT-near electronics are custom made and include an RF amplifier (RFA), a charge state 

amplifier (CSA), a filter amplifier (FIA) and a stimulus unit (STM). As overall control unit an 

Atmega16 microcontroller board is used.  

 

Figure 18:  Photograph of the ion trap with gold coated surfaces [145]. 

The transient ion signals are recorded with an Agilent Technologies oscilloscope (Model: 

DSO7054A, Agilent Technologies, Munich, Germany) operated in high resolution mode. RF 
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signal as well as applied SWIFT signals are delivered by an arbitrary waveform generator 

(Model: 81150A, Agilent Technologies, Boeblingen, Germany). 

The FT-QIT is mounted on a CF-flange in a vacuum recipient. Optimum vacuum 

conditions are provided by a Pfeiffer turbo molecular pump (Model: HiPace 300, Pfeiffer 

Vacuum GmbH, Wertheim, Germany). All electrical leads are provided via connections on the 

basis flange.  

 

3.2.2. Gas inlet system 

Principally the FT-QIT is used in two different operational modes, either residual gas 

monitoring mode or gas sampling mode. In case of the residual gas monitoring mode the trap 

is directly mounted into the process chamber that is operated at ultra-high vacuum conditions. 

No external ionization and ion transfer stage are used. A continuous gas sampling is not 

possible as ultra-high vacuum conditions in the QIT recipient must be maintained for 

optimum ion storage and ion detection, especially due to the application of the Fourier 

transform technique. Thus a pulsed gas sample mode is favored, allowing the injection of a 

certain gas amount. This gas load is pumped away reaching optimum pressure conditions for 

FT-QIT measurements within short time. Appropriate short gas pulses are only reachable by 

the application of fast switching valves. In this work a pneumatically driven Atomic Layer 

Deposition (ALD) valve (Swagelok, Neuss, Germany) is used with opening times adjustable 

down to 10 ms. Although other fast switching valves allow shorter opening times, the ALD 

valve is favored due to a small leak rate (1·10-9 std cm³/s for helium), an upstream pressure 

tolerance up-to 10 bar and especially due to the clean and non-outgassing stainless steel 

sealing diaphragm and valve body [146]. 

The QIT basis flange features a drilled duct which can be used as additional gas inlet into 

the QIT recipient with an upstream pulsed valve. Figure 19 shows the two gas delivery stages: 

Gas inlet via a bended metal tube towards a hole in one of the QIT endcap electrodes (left), 

and gas inlet via a straight ceramic tube towards a hole in the ring electrode (right). 



Experimental 

 
48 

 

 

Figure 19:  Photographs of the two applied gas inlet designs. Left: Bended metal tube pointing towards the 

hole in the endcap electrode. Right: Straight ceramic tube pointing towards the hole in the ring 

electrode. 

 

 

3.2.3. Acquisition parameters 

3.2.3.1. Cycle Parameters 

FT-QIT measurements depend on a large number of acquisition parameters. One 

important sub-set constitutes measurement cycle parameters. These parameters are typically 

defined by a start and a stop time within the entire measurement cycle. In the following the 

cycle configuration parameters are listed: 

Filament current: The filament can be turned on and off within the measurement cycle. 

Most commonly, however, it is turned on for the whole time. 

Gas inlet: Depending on the inlet valve type, gas inlet times are adjustable down to 10 ms. 

The upper value is only determined by the gas inlet pressure. 

Anode electron beam: Defines the gating time for the ionization process. The anode “opens” 

for a defined time, enabling electrons to enter the trap volume. 
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Eject function: The eject function is needed when further signals, e.g. SWIFT signals, are 

applied on the endcap electrodes. Within the timeframe given by the eject function such 

signals can be passed to the endcap electrodes. 

RF gating: The RF gating is used to empty the trap from ions of a previous measurement 

by turning the RF trapping field off for several milliseconds at the beginning of a measurement 

cycle. 

Stimulus time: The software allows to set up-to two stimulus/excitation pulses. The first 

excitation pulse is always used as trigger signal for data acquisition with the digital 

oscilloscope. 

Pulse width: The pulse width defines the length of the applied rectangular excitation 

pulse. Typically the applied pulse widths are in the range of a few microseconds.  

 

3.2.3.2. Typical measurement sequence 

Usually the trap is operated in a single cycle acquisition rather than multi-cycle ion 

accumulation mode. Thus, each measurement cycle begins with turning off the trapping RF 

for a few ms to empty the trap from remaining ions. 

For measurements in the sample mode, the gas inlet valve is opened. Subsequently 

ionization occurs inside the trap by turning off the anode blocking potential for a selected 

time. Generated ions are stored inside the trap before being excited by the stimulus (excitation) 

pulse. Eventually the transient ion signal is recorded and data are transmitted to the 

measurement software. 

With the trap operated in residual gas mode gas inlet is not required and the time for 

ionization is typically longer, in correspondence to the lower analyte ion density due to the 

lower pressure conditions. 

Two measurement cycles are schematically shown in Figure 20 (top: sample mode, 

bottom: residual gas mode). 
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Figure 20:  Schematic of the measurement sequence in sample gas mode (top) and residual gas mode 

(bottom). 

 

 

3.2.3.3. Further acquisition parameters 

In addition to the above discussed cycle parameters adjusted within the measurement 

software, there is a number of further operational parameters.  

Trapping field: As already mentioned above the trapping field is driven with a frequency 

of 1 MHz. The voltage amplitude of the trapping field is adjustable between 0 – 500 VRF 

depending on the mass range of interest. 

Length of transient: The length for data acquisition of the transient signal is adjusted at the 

oscilloscope. Typical values are tens of milliseconds in the sample mode and several hundreds 

of milliseconds in the residual gas mode. 

Filament current: The applied filament current is dependent on the present filament type. 

It is noted that the electron emission current is not in linear correspondence to the applied 

filament current, and thus the latter is not proportional to the amount of generated ions. 

Sample pressure: The sample pressure is strongly affecting the total gas load of the trap 

and thus affecting the overall time for data acquisition. This is caused by the required low 

pressure for the ion detection phase. Sample pressures up-to several mbar are tolerable. 

Higher sample pressures are handled by an optional upstream pressure reduction unit.  
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Background pressure: The importance of optimum pressure conditions for the ion storage 

and detection phase has been mentioned several times. The background pressure reached 

between two measurement cycles is strongly impacting on the trap performance, especially in 

dependence of the gas composition. If necessary, the dwell time between two measurements 

needs to be much longer than the typical value of 1 s to avoid a continuous rise of the 

background pressure with time. 

 

3.2.4. Additional excitation schemes 

Additional excitation schemes, such as resonant excitation or SWIFT excitation can be 

applied to the trap at any time within the measurement cycle. The associated waveforms are 

generated by the arbitrary waveform generator and coupled to the endcap electrodes. 

Whereas e.g. sine or rectangular signals are already implemented in the waveform generator, 

SWIFT signals need to be processed before data acquisition. A MATLAB script based on the 

Goodman algorithm [147] generates SWIFT signal data files of selected mass or frequency 

ranges with defined relative excitation amplitudes. The data files are loaded via a waveform 

generating program (Keysight BenchLink Waveform Builder, Keysight Technologies, 

Böblingen, Germany) into the arbitrary waveform generator. Signal amplitudes up-to 6 V can 

be applied to the trap electrodes. The lengths of typical SWIFT signals are in the range of 

several milliseconds depending on the number of transformed ion frequencies. Figure 21 

exemplarily demonstrates the resulting chirp signal designed to excite frequencies in the range 

of 10 to 100 and 200 to 400 kHz. 

 

Figure 21: Exemplary SWIFT signal for the excitation of a desired frequency range. Duration of the 

entire signal is 13 ms. 
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3.2.5. Measurement software: GammaProto 

A screenshot of the graphical user interface (GUI) of the GammaProto software is shown 

in Figure 22. The GUI is divided into two parts: The ProtoBox Setup and the GammaProto main 

window. Cycle configuration parameters are set in ProtoBox Setup as well as the definition of 

COM-ports for the communication between software and microcontroller, and the set of mass 

calibration coefficients. Cycle parameters can either be defined by start and stop values or 

declared as time intervals with differences between specific events within the measurement 

cycle.  

 

GammaProto main window 

Within the GammaProto main window a selection of the used devices (oscilloscope, 

waveform generator, etc.) is possible. In addition to performing new measurements access to 

previous measurements is enabled. Currently available measurements are contained in the 

session list (a). On the upper right side the recorded transient ion signal is shown (b). The user 

may choose the length or area of the transient signal of interest. This part of the transient is 

analyzed via fast Fourier transformation to generate a frequency or mass spectrum 

(depending on the user choice) displayed on the bottom right (c). Implemented FFT window 

functions such as rectangular, Hann or Blackman-Harris can be applied to the transient (d). 

The software allows the selection of a background spectrum as well as displaying a second 

mass spectrum (e). Further data analysis is not possible within the acquisition software. 

For this purpose the transient signal and a text file, that includes all measurement and 

data acquisition information, are saved to disk. This allows subsequent external analysis with 

Fourier transformation methods. Nevertheless even the frequency and mass spectra, 

calculated within GammaProto, can be exported directly. FFT analysis in GammaProto, 

however, is less precise. 
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Figure 22: Screenshot of the GUI of the measurement software GammaProto. ProtoBox Setup is not 

displayed. 
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3.2.6. Ion excitation  

Basically there are three different possibilities for ion excitation: i) broadband, ii) narrow 

bandwidth and iii) resonant ion excitation. Resonant ion excitation is commonly used in 

scanning ion trap devices ejecting single m/z ratios for external detection. 

In case of the FT-QIT broadband ion excitation is more suitable since typically not only a 

specific m/z ratio but a wider m/z range is of interest. Broadband ion excitation can be reached 

by the application of a short (some µs) rectangular DC pulse or a SWIFT waveform.  

Ideally, the ion population is trapped close to the center of the ion trap. Then the 

excitation pulse should lead to a maximum displacement, so that ions come as close to the 

endcap electrodes as possible inducing maximum image currents without hitting the 

electrodes. 

From theory and from first experiments it is known that SWIFT excitation brings along a 

number of advantages as compared to DC pulse excitation. For example, m/z ratios of interest 

can be excited while other m/z ratios are either only weakly excited or even over-excited and 

therefore removed from the trap. First results on SWIFT application and the usage of SWIFT 

for the stimulus pulse are presented further below. 

Reliable ion excitation is reached by the application of rectangular DC pulses of several 

Volts. It is noted though that the excitation rate 𝜙 is a function of ion frequency fion. The 

transformation of a rectangular pulse into the frequency domain via Fourier transformation 

gives a sinc-function [9, 148]. Herein Up is the amplitude of the DC pulse (Up = 12 V) and Tp is 

the pulse duration. 

 𝜙(𝑓𝑖𝑜𝑛) = 𝑈𝑝 ∙ 𝑇𝑝 ∙ 𝑠𝑖𝑛𝑐(𝑓𝑖𝑜𝑛 ∙ 𝑇𝑝) (3.28) 

 

Figure 23 shows the normalized absolute excitation rate (𝜙(𝑓𝑖𝑜𝑛)/𝑈𝑝 ∙ 𝑇𝑝) for a 2 µs and a 4 µs 

excitation pulse depending on the ion frequency. It is clearly evident that ions of different m/z 

ratios will not be excited with the same rate.  



Experimental 

 
55 

 

 

Figure 23: Dependency of the excitation rate on the ion frequency for a 2 µs (blue) and a 4 µs (red) 

rectangular excitation pulse. 

 

For the application of rectangular excitation pulses further boundary conditions need to be 

taken into account. For the suitable length of the excitation pulse Aliman suggested [70]:  

 
𝑇𝑝 ≤

0.44

𝑓𝑖𝑜𝑛,𝑚𝑎𝑥
 

(3.29) 

Under consideration of the electrical field and trap dimensions the total excitation energy as 

product of DC voltage and pulse length for ions that are trapped in the center of the trap 

follows: 

 
𝑈𝑝 ∙ 𝑇𝑝 ≤

1.905 ∙ 𝑉𝑅𝐹
2𝜋 ∙ 𝑓𝑅𝐹

 
(3.30) 

If 𝑈𝑝 ∙ 𝑇𝑝 is greater than the expression on the right hand side, overexcitation and subsequent 

ion loss is expected (a derivation of this equation is given in [70]). 

 

3.2.7. Filament driven electron ionization 

Ionization within the ion trap is reached by a filament driven electron ionization. The 

design of the EI source is in analogy to the design of electron guns, with the filament mounted 

within a Wehnelt cylinder [149]. The anode electrode acts as electron gate and a further 

electrode is used for focusing the electrons into the entrance hole of the ring electrode of the 
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QIT. For all measurements two different filament types were used. Most measurement were 

carried out with a tungsten filament; more recent experiments were performed with an 

yttrium coated filament with tantalum disc. A comparison of the performance of both filament 

types remains to be done in future experiments.  

 

3.2.8. Plasma coupling 

In contrast to the generally used EI source a few experiments were carried out using 

helium plasma induced penning ionization. A direct coupling of ion trap and plasma source 

became possible by the application of a T-piece arrangement and the use of a fused silica GC 

column (ID 0.5 mm) as inlet. A schematic drawing and a photograph are given in Figure 24. 

 

Figure 24: Schematic of the plasma source - QIT coupling [150]. 

Compared to the plasma source applied for measurements with the CTOF, the plasma source 

used for QIT experiments is equipped with an additional lid.  This lid embraces a small 

volume (ionization/reaction zone) and is equipped with a lateral gas lead. The primary plasma 

region is separated from reaction zone with a 10 µm orifice. Via the lateral gas lead the gas 

sample is introduced into the reaction zone, where analyte molecules interact with helium 

metastables. The generated analyte ions are transported into the trap via viscous drag through 

the GC column that connects plasma source and ion trap. Again, gas load is a crucial factor 

for the QIT performance. Pumping the entire gas load (plasma source gas and sample gas) 

through the strongly flow restricting GC column requires an extended amount of time until a 

reasonable pressure for ion storage and ion detection is reached. Thus, for the sample gas inlet 
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a three-way-valve was utilized, allowing both the inlet of the gas sample and reversed 

pumping of the gas load. 

Note that this kind of coupling is less important for any commercialization of the 

instrument but relevant for the in-depth characterization of the system. As discussed further 

below, these experiments yield valuable information on the QIT behavior with regard to ion 

cooling effects and ion accumulation/repeated excitation experiments. 

 

3.2.9. Measurements 

Measurements to characterize and to investigate the basic behavior of the ion trap are 

typically carried out with well-defined gas samples such as mixtures of nitrogen and oxygen 

as well as aromatic hydrocarbons (i.e., toluene, benzene) diluted in either hydrogen or 

nitrogen. The advantage of such mixtures is that the chemical behavior is well known. 

Therefore they are readily usable to examine a number of different effects occurring within 

the ion trap during the  measurement. These effects include space charge induced mass shifts, 

phenomena as for example coalescent coupling, and ion signal suppression, to name a few. 

Likewise suited for such examinations are mixtures of xenon and krypton diluted in N2, as 

both rare gases are chemically inert and exhibit a distinct isotopic pattern. In addition 

experiments are carried out with industrial process specific gases such as diborane (B2H6) or 

arsine (AsH3). With regard to residual gas analysis the ion species of interest are typically H2O+ 

and H3O+, N2+, O2+, CO2+ and those derived of CxHy compounds. Investigations on the 

analytical performance of the system are subsequently carried with toluene diluted in either 

nitrogen or hydrogen. 

 

3.3. Analytes and sample preparation 

Analyte containing gas mixtures are either purchased from Linde [Düsseldorf, Germany: 

AsH3 (100 ppbV in H2; purity: 4.0) and B2H6 (50 ppmV in H2; purity: 5.7)] or are custom made, 

as listed below. 
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Table 8: Custom gas mixtures. 

Analyte Matrix gas Mixing ratio 

Xe + Kr N2 each 6 ppmV 

Xe + Kr He each 10 ppmV 

Benzene, Toluene, Xylene (BTX) N2 each 10 ppmV / each 10 

ppbV 

Benzene, Toluene, Xylene (BTX) H2 each 10 ppmV / each 10 

ppbV 

Toluene N2 10 ppmV / 10 ppbV 

Toluene  H2 10 ppmV / 10 ppbV 

 

Pure gases are purchased from Messer Industriegase GmbH (Siegen, Germany) and used 

without further purification (N2 5.0, H2 5.0, He 5.0, O2 5.0, synth. Air 5.0). Liquid analytes 

(benzene, toluene and xylene) used for the preparation of gas mixtures are purchased from 

Sigma Aldrich (Seelze, Germany) and gaseous analytes (Xe, Kr) are purchased from Messer 

Industriegase GmbH (Siegen, Germany).  

A dynamical dilution stage equipped with mass flow controllers (MKS Instruments 

Deutschland GmbH, Munich, Germany) allows the dilution of gas mixtures up to 1:10,000 in 

different gas matrices (H2, N2, He). 

 

3.4. Simulations and data analysis 

All simulations presented in this work are performed by Walter Wissdorf using SIMION 

and a custom C++ code that is based on fast approximation methods (Barnes-Hut Trees and 

Fast Mutlipole Method) and allows the calculation of particle-particle interactions [151]. 

Data analysis of the obtained mass spectra is carried out with mMass [152], an open 

source mass spectrum analysis software, as well as custom python scripts, which allow data 

analysis with respect to the determination of signal intensities, peak areas and mass resolution, 

to name a few. 

SWIFT waveforms are calculated in MATLAB scripts based on Goodman algorithm that 

are provided by Albrecht Brockhaus and Michel Aliman [153, 154].
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4. Results and Discussion 

Analytical performance parameters of the two benchmark instruments have been 

outlined in chapter 3.1. Since the characterization of the FT-QIT is the central object of this 

work the current chapter is focused on results obtained with the trap along with their 

discussion. With the FT-QIT as novel mass spectrometer that combines ionization, mass 

analysis as well as detection subsequently within the analyzer, an understanding of optimum 

operating conditions becomes distinctively complex. Therefore results from experiments with 

well-defined boundary conditions are presented. They give an insight into the basic QIT 

behavior towards different parameters and highlight certain challenges in the QIT operation. 

This chapter is closing with a presentation of the current attainable analytical performance 

with the laboratory setup under optimum measurement conditions.  

 

4.1. Basic FT QIT settings 

Storable and detectable mass range 

The FT-QIT is driven with an RF frequency of 1 MHz. Amplitudes are adjusted at the RF 

generator and then amplified by the RFA module leading to trapping field amplitudes of 

0 – 500 VRF. According to equation (4.31) (valid for an a-parameter of zero) the lower mass 

cutoff (LMCO) is solely depending on the applied RF voltage. The upper mass limit, however, 

is only depending on the mechanical dimensions of the ion trap, since the stability diagram is 

based on an infinite, ideal quadrupolar field [9, 52, 148]. 

 
(
𝑚

𝑧
)
𝑚𝑖𝑛

=
4 ∙ 0.908 ∙ 𝑒

𝜔𝑟𝑓
2 ∙ 𝑟0

2 ∙ 𝑚𝐻
∙ 𝑉𝑅𝐹 

(4.31) 

with 𝑚𝐻=1.66∙10-27 kg which is the mass of an H-atom 

 

The effectively detectable mass range, however, is limited by the linear range of the response 

of the charge amplifier (cf. schematically shown in Figure 25) which is determined by a lower 

and an upper frequency limit, fmin and fmax, respectively. The ratio of the highest (m/z)max to the 

lowest (m/z)min is about 8 to 10 with respect to the frequency bandwidth of the first stage charge 

amplifier. 
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Figure 25: Sketch of the response curve of the charge state amplifier. 

 

Frequency and mass spectra 

The ion resonance frequencies contained in the time-dependent transient signal are 

analyzed by fast Fourier transformation algorithms resulting in intensity-to-frequency 

dependencies. With the m/z ratio inversely proportional to the ion frequency (cf. equation 

(4.32)), the frequency spectrum is converted into a mass spectrum. 

 𝑚

𝑧
≈

√2 ∙ 𝑒 ∙ 𝑉𝑅𝐹
4 ∙ 𝜋2 ∙ 𝑓𝑟𝑓𝑟0

2𝑚𝐻
∙
1

𝑓𝑖𝑜𝑛
 

(4.32) 

 

Mass calibration 

Ideally mass calibration is performed using several m/z ratios over a wide mass range to 

obtain a reliable result. Correlation of m/z ratio and ion frequency has already been shown in 

eq. (4.32). Rearrangement  to VRF gives: 

 
𝑉𝑅𝐹 = 

𝑚

𝑧
∙
4 ∙ 𝜋2 ∙ 𝑓𝑟𝑓𝑟0

2𝑚𝐻

√2 ∙ 𝑒
∙ 𝑓𝑖𝑜𝑛 

(4.33) 

Since the physical dimensions of the QIT and the RF frequency are held constant, equation 

(4.33) simplifies to: 

 𝑉 =  
𝑚

𝑧
∙ 𝑐 ∙ 𝑓𝑖𝑜𝑛 (4.34) 

With 𝑐 as the QIT specific constant, the dominating factor is the amplitude of the trapping 

field. 

I

f

fmin fmax



Results and Discussion 

 
61 

 

Parallel to the RF calculation the value for the applied trapping field returned by the 

analog digital converter (ADC) is recorded. Plotting the ADC value in dependence of the 

calculated trapping field (based on m/z-fion-signal pairs in the mass spectrum) a straight line is 

observed, which is characterized by a negative slope and a positive y-intercept. The value of 

the negative slope is assigned to the ADC ratio giving the counts per volt and the y-intercept 

is assigned to the ADC offset giving the entire number of counts. Both parameters are input 

parameters in the ProtoBox Setup and are considered as the frequency to mass conversion 

factor. In the following an exemplary mass calibration is demonstrated: 

Considered are ion signals corresponding to water and nitrogen in residual gas 

measurements and ion signals corresponding to toluene while the QIT is operated in the gas 

sampling mode. Ion signals observed are H2O+ (m/z 18) and H3O+ (m/z 19), N2+ (m/z 28), as well 

as C7H7+ (m/z 91) and C7H8+ (m/z 92). Table 9 shows the m/z ratios, the measured value of the 

ADC and finally the calculated RF voltage. As further input parameter the ion frequencies 

corresponding to the m/z ratios are required. Plotting the ADC value in dependence of the RF 

voltage leads to a linear relation with a correlation factor of R²=0.99 (cf. Figure 26). By linear 

regression, ADC ratio and ADC offset are determined to -1.21 counts/Volt and 983.8 counts, 

respectively. 

Table 9: Input data for mass calibration. 

 

m/z  

[Da] 

ADC value VRF  

[V] 

   

91 561 349.3 

92 561 349.2 

91 572 340.3 

92 572 340.2 

91 550 358.2 

92 550 358.2 

29 801 163.0 

28 801 163.9 

28 798 151.5 
 

 

m/z  

[Da] 

ADC value VRF  

[V] 

   

28 798 151.2 

19 819 134.9 

19 819 134.2 

18 819 134.2 

19 836 122.1 

19 846 113.0 

18 846 114.2 

19 858 103.9 

18 858 103.6 
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Figure 26: Linear regression line for calibration of ADC ratio and ADC offset yielding the mass calibration 

input data. 

This mass calibration was deliberately performed for a combination of residual gas and 

sample gas mode measurements. Previous mass calibrations were carried out in only one of 

the two operational modes and showed distinct deviations. On the one hand these deviations 

are caused by the much smaller input mass range for each individual calibration. On the other 

hand the gas load itself does definitely change the calibration factor. The difficulties arising 

from the use of the gas inlet will be discussed later in detail. At this point just the enhanced 

neutral particle density, the elevated number of charged particles combined with an increased 

collision frequency are noted; factors surely affecting the ion oscillation within the ion trap.  

Note: Currently, an exact mass calibration is not of primary concern. Thus, mass 

calibration input parameters as well as the m/z data given in the following are always referring 

to nominal masses. For now, those calculations are based on nominal masses as well, since the 

influence of a slightly varied m/z ratio on the determination of e.g. mass accuracy and mass 

resolution has not much impact. 

 

4.2. Variation of basic measurement parameters 

4.2.1. EI ion source 

Setup Mini-E-Gun 

The electron ionization source is based on a classical 70 eV filament device. In analogy to 

electron guns [149], this EI source consists of a Wehnelt electrode, a focus electrode and an 

anode electrode, and is mounted facing a small hole in the ring electrode. With the acceleration 
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voltage at potential of -70 V, the Wehnelt is adjusted to -75 V to maintain small bias. The focus 

voltage needs to be adjusted to obtain a maximum electron yield for ionization within the trap. 

The anode is used as electron gate “closed” at -105 V and “opened” at 0 V (Ground-potential). 

Influence of focus voltage 

Since no emission current measurement is available in the current setup the focus voltage 

is adjusted with regard to the intensity of the obtained analyte signal. Figure 27 demonstrates 

the measurement of 500 ppbV toluene in nitrogen in pulsed sampling mode with an RF field 

of 340 VRF while varying the focus voltage from -70 V to +30 V. All further measurement 

parameters were kept constant. To ensure electron delivery into the ion trap the focus voltage 

must be more positive compared to the filament voltage. Otherwise no corresponding analyte 

ion signal is observable. In the range of approx. -68 V to -35 V no dependency of the ion signal 

intensity on the applied focus voltage is observed. In the following the resulting analyte signal 

decreases significantly remaining on a four-fold smaller value up-to focus voltages around 

+30 V. 

For a better understanding of the focus voltage dependency a simulation is performed. 

This simulation is done for an RF amplitude of 150 VRF taking into account the impact of the 

oscillating RF field. In a color map the ion signal intensity in dependence of the focus voltage 

as well as the ring voltage is shown (cf. Figure 28). It is readily understandable that within the 

negative half-wave of the trapping field no electrons  enter the ion trap. At ring electrode 

voltages above -70 V the simulation shows resulting ion signal intensities that are almost 

independent on the applied focus voltage (roughly a factor of two when electrons are 

electrically allowed to enter the trap). 

For the experimental investigations on the focus voltage dependency an ionization length 

of 7 ms is applied. With the RF operated at a frequency of 1 MHz the RF amplitude oscillates 

7,000 times during ionization, i.e., the experimental results correspond to a mean trapping 

field voltage. A direct comparison of simulation data and experimental data is thus not 

possible. Electrons enter the trap only when the ring voltage is at -70 V or above. In addition 

modulated electron energies are assumed leading to different ionization cross sections. 

Furthermore, the applied trapping field is distinctively higher. To a first approximation 

however a trapping field voltage of +50 V is assumed as mean value for RF voltages allowing 
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the passage of electrons. A comparison of the experimental data with simulation data at 50 VRF 

shows a similar behavior of the focus voltage dependency on the signal intensities.  

Neither in the experiments nor in the simulations a significant influence of the focus 

voltage is observed. In contrast the focus voltage is adjustable over a wide range hardly 

leading to any signal loss or enhancement in the current setup. 

 

Figure 27: Dependence of the analyte signal intensities for toluene on the focus voltage. 

 

 

Figure 28: Color map of the simulated ion signal response depending on the focus voltage (y-axis) and the 

RF voltage (x-axis) for a single oscillation of the trapping field [151]. 
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70 eV EI: Comparability to spectra databases 

The application of 70 eV EI has one major advantage: The recorded mass spectra are 

comparable to those present in databases such as the NIST Chemistry WebBook. Nevertheless 

one should note that depending on the selected m/z range, trapping field voltages up-to 

500 VRF are applied. Electrons which are entering the trapping field with an kinetic energy of 

70 eV will be modulated in their energy by the trapping field. In the experiments the filament 

voltage is varied from -20 V to -100 V, with the Wehnelt voltage set to -5 V and the focus 

voltage to +3 V with respect to the filament voltage, while monitoring the nitrogen signal 

intensity. Operating within a trapping field of 116 VRF a constant ionization time (0.5 ms) is 

chosen for the generation of N2+-ions. As shown in Figure 29 a direct correlation between the 

applied filament bias voltage and the ion signal intensity is observed. This correlation may 

also be explained by a worse electron guidance into the trap at reduced bias voltages and must 

not strictly be a consequence of a reduced electron energy. Corresponding simulations were 

carried out; the results are depicted in the picture sequence in Figure 30. Displayed is a single 

oscillation of the RF field with an amplitude ranging from -150 V to +150 V. The filament is 

biased at -70 eV and focus voltage is adjusted to 0 V. Only when the trap ring voltage is at -

70 V ions begin to enter the ion trap. Subsequently the introduced electron beam splits up and 

a modulation of electron energies due to the oscillating field is observed. Orange trajectory 

sections indicate electrons exceeding 70 eV, light blue trajectory sections indicate electrons 

with 30 to 70 eV and dark blue trajectory sections electrons with less than 30 eV kinetic energy. 

 

Figure 29: Dependence of the analyte signal intensities for toluene on the electron energy. 
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Figure 30:  Selected electron trajectory simulations showing the modulation of the electron beam within a 

single RF oscillation. Orange color: Ekin > 70 eV. Light blue color: Ekin 30 - 70 eV. Dark blue 

color:  Ekin < 30 eV. 

 

 

4.2.2. Trapping field 

Depending on the selected mass range the trapping field amplitude needs to be adjusted 

while the RF frequency is held constant at 1 MHz, as a minimum potential is required for ion 

storage. Showing the influence of the trapping field, measurements are carried out in residual 

gas mode tracing H2O+ at m/z 18 while varying the amplitude of the trapping field in the range 

of 80 to 150 VRF. Ionization length and time of ion excitation are held constant. With an RF 

voltage of 80 VRF no corresponding ion signal is observed in the mass spectrum. An increase 

of the trapping field amplitude leads to detectable H2O+ signals with an intensity plateau over 

a wide range of the RF voltage (100 – 120 VRF). A further increase of the trapping field 

amplitude, however, leads to the entire loss of the signal. This phenomenon is speculated to 

result from dips in the stability diagram caused by the non-ideal quadrupole field due to, e.g., 

holes in the electrodes [155–158]. Since the dip in the trapping efficiency is quite small, a small 

variation of the trapping field amplitude (approx. 1 %) allows the measurement of H2O+ with 

reasonable signal intensities.  
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Figure 31:  Influence of the trapping field voltage on the signal abundance of m/z 18 in a residual gas 

measurement. The loss in the ion signal is addressed to dips in the stability diagram. 

 

A further measurement that demonstrates the importance of the careful consideration of the 

trapping efficiency is carried out with a nitrogen/oxygen mixture (50:50) sampled out of 

2.5 mbar upstream pressure with a 20 ms gas inlet time. The ionization time was adjusted to 

1 ms with a 2.5 µs excitation pulse after a short delay time of 10 ms. In this measurement the 

trapping field amplitude is varied from 125 to 210 VRF. Dips in the trapping efficiency are not 

observed, neither for nitrogen nor for oxygen in this measurement. Both ion species show a 

non-linear trend when plotting the ion signal intensity in dependence of the trapping field 

amplitude (cf. Figure 32 left). The intensity maximum of m/z 32 is shifted to higher RF voltages 

compared to the signal intensity maximum of m/z 28. In addition the calculated ratio of 

O2+/(N2++O2+) is plotted on the secondary axis. Instead of the expected 50 %, a ratio varying 

from 8 % to 68 % is determined. For a direct signal intensity comparison the mass dependent 

trapping efficiency, the ion frequency dependent excitation rate, and the characteristic curve 

of the charge state amplifier need to be considered. Correspondingly treated data show a 

constant signal response over a wider range of the trapping field amplitude for both ion 

species (cf. Figure 32 right). Between 145 and 175 Vpp constant signal response is given for 

both ion species, allowing the analysis of the constant O2+/(N2++O2+) ratio of 30 % with a 

significant but systematically suppression of the oxygen signal. Reasons for this suppression 

are currently not known. 
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Figure 32: Signal intensity of N2+ (m/z 28) and O2+ (m/z 32) in dependence of the RF amplitude. Left: 

Uncorrected data. Right: Corrected data with respect to excitation rate and linearity of the 

charge state amplifier. Ratio of O2+/(N2++O2+) is plotted on the secondary axis. 

 

As discussed, the Dehmelt potential describes the pseudopotential inside the ion trap that 

affects the stored ions. For the trapping of heavier ions higher RF voltages are required. 

Correlation of Dehmelt potential, trapping field voltage and ion mass is given by equation 

(4.35). The data presented in Figure 33 are obtained when plotting the signal intensities in 

dependence of the Dehmelt potential. For both ion species the initial slope is at same Dehmelt 

values representing the minimum trapping potential that is required for sufficient ion storage 

inside the ion trap. Once the potential barrier is high enough to keep ions inside the trap (here: 

D ≈ 4.2 V) a constant ion signal response is expected when enhancing the trapping field voltage 

and thus the Dehmelt voltage. Thus, a comparison of the Dehmelt potentials for signal 

intensities for each m/z ratio must provide optimum ion storage conditions. 

 
𝐷 = −

𝑒𝑧𝑉²

4𝜔²𝑟0
2𝑚𝐻𝑀

 
(4.35) 

 

Herein D is the Dehmelt potential, e is the elementary charge, z is the number of charges, V is 

the trapping field amplitude (zero – peak), ω is the trapping field frequency, r represents the 

ion trap radius, mH is given as the mass of a H-atom and M is the molecular mass. 

0

10

20

30

40

50

60

70

0

0.5

1

1.5

2

2.5

3

120 170 220

ra
ti

o
 [

%
]

si
gn

al
 in

te
n

si
ty

 [
a.

u
.]

RF voltage [VRF]

m/z 28 m/z 32 ratio m/z32:(m/z32+m/z28)

0

10

20

30

40

50

60

70

0

1

2

3

4

5

6

7

120 170 220

ra
ti

o
 [

%
]

co
rr

. s
ig

n
al

 in
te

n
si

ty
 [

a.
u

.]

RF voltage [VRF]

m/z 28 m/z 32 ratio m/z32:(m/z32+m/z28)



Results and Discussion 

 
69 

 

 

 

Figure 33: Corrected signal intensities of m/z 28 and m/z 32 in dependence of the Dehmelt voltage. 

 

 

4.2.3. Rectangular ion excitation 

For the excitation of stored ions a rectangular DC pulse is applied to the endcap 

electrodes. The height of the DC pulse is held constant at 12 V whereas the pulse width is 

adjusted depending on the applied trapping field amplitude. Ideally it is assumed that ions 

are confined in the center of the ion trap so that the total energy of the excitation causes a 

maximum displacement of the ions without losing them due to collisions with the electrodes. 

The influence of the pulse width of the excitation pulse on the ion signal intensities is 

investigated for a 60:40 (V:V) mixture of nitrogen and oxygen. The corresponding ions are 

trapped within a field of 153 VRF. The length of the ionization pulse is 1 ms. Figure 34 shows 

the corresponding trends for m/z 28 (N2+) and m/z 32 (O2+) while varying the excitation pulse 

width from 0.5 to 4.6 µs. The maximum signal intensity for both ion species is obtained with 

an excitation pulse width around 2 µs reaching a plateau up-to pulse widths of approx. 3.8 µs. 

The calculated ratio of O2+/(N2++O2+), which is plotted on the secondary axis in Figure 34 (left) 

exhibits the correct neutral ratio over a wide range only deviating at shorter and elevated 

pulse widths. Figure 34 (right) shows the normalized calculated excitation rates for both 

species in dependence of the pulse width demonstrating a qualitatively similar trend. 
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Figure 34:  Left: Recorded ion signal abundances for m/z 28 and m/z 32 in dependence on the length of the 

excitation pulse, showing a constant relative abundance of m/z 32 over a wide range. 

Right: Calculated excitation rate for m/z 28 and m/z 32 in dependence of the length of the 

excitation pulse. 

The significant ion signal intensity decrease starting at excitation pulse width of 3.8 µs is 

explained by overexcitation according to equation (3.30). Since the measurement was carried 

out in a trapping field of 153 VRF, one obtaines: 

 
12𝑉 ∙ 𝑇𝑝 ≤

1.905 ∙ 153𝑉

2𝜋 ∙ 1𝑀𝐻𝑧
 

(4.36) 

 12𝑉 ∙ 𝑇𝑝 ≤ 46.4 𝑉 ∙ µ𝑠 (4.37) 

Equation (4.37) is only fulfilled up-to pulse widths of 3.8 µs; further increase leads to signal 

loss as a consequence of ion overexcitation. 

 

4.3. Physical-chemical effects on FT-QIT performance 

4.3.1. Space charge and ion suppression 

Increase of total ion number 

The total number of ions depends on several parameters. The collision cross section of 

electrons with most gaseous compounds is peaking around 70 eV. In addition the number of 

generated ions is increasing with increasing length of the ionization pulse, which means an 

increased anode opening time, or by an increased filament current. 
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Figure 35 shows the measurement using a mixture of 500 ppbV toluene in nitrogen upon 

varying the length of the ionization pulse from 1 to 32 ms. In addition to the [M-H]+-ion of 

toluene at m/z 91, matrix ions such as N2+ (m/z 28) and N+ (m/z 14) are expected. With the 

applied RF field of 350 VRF the LMCO is calculated to 31 Da according to equation (4.31). Thus, 

m/z 14 and m/z 28 are not trapped within the applied field. In addition resonance frequencies 

of matrix ions are beyond the linear range of the charge state amplifier and thus these ions 

cannot be detected at all. As expected the signal intensity of m/z 91 initially rises with 

increasing length of the ionization pulse, reaching maximum signal intensity at 15 ms. 

Subsequently signal intensity decreases despite the further increasing ionization pulse length. 

This phenomenon is attributed to an overload of the trap. It is noted that even though matrix 

ions are not detectable and their mass is below the LMCO these ions will be initially present 

in the trap at least for a few oscillations of the RF field, greatly increasing the total number of 

ions. 

 

Figure 35: Measured ion signal intensity for toluene in dependence on the length of the EI ionization pulse. 

An increased filament current results in a non-linear response of the electron emission current. 

Figure 36 shows the ion signal intensity for a mixture of 500 ppbV toluene in nitrogen in 

dependence of the filament current. Again, in addition to toluene ion species a number of 

further ions will be present within the ion trap. The signal intensity of the toluene [M-H]+ 

increases exponentially as expected, until the QIT is severely overloaded. 
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Figure 36: Ion signal intensity for toluene in dependence on the filament current. 

A further experiment that demonstrates the effect of ion signal loss/suppression is carried out 

with a gas mixture containing nitrogen and oxygen with an oxygen mole fraction of X(O2)=0.8. 

The gas mixture is sampled from a reservoir held at 5 mbar with a gas inlet pulse length of 

20 ms. The amplitude of the trapping field is adjusted to 170 VRF, for ion excitation a pulse 

length of 2 µs is applied and the length of the ionization pulse was adjusted to 5 ms. Under 

these conditions the signal distribution in the mass spectrum is correctly representing the 

neutral analyte distribution (cf. Figure 37 a). The total number of generated ions inside the 

trap is strongly increasing by an extension of the ionization time to 35 ms. The recorded mass 

spectrum does not correspond to the correct neutral nitrogen/oxygen mixing ratio anymore, 

but is showing an almost entirely suppressed nitrogen ion signal and a very large oxygen 

signal (cf. Figure 37 b). This experiment has also been carried out with a mixture of nitrogen 

and oxygen with X(O2)=0.2. Again the signal intensities at m/z 28 and 32 correctly represent 

the neutral analyte distribution in the gas sample when using an appropriate length of the 

ionization pulse of 5 ms (cf. Figure 37 c). An extension of the ionization time to 40 ms leads to 

a very strong nitrogen signal while the oxygen signal is almost entirely suppressed (cf.  

Figure 37 d). 
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Figure 37:  Signal intensity of nitrogen and oxygen with X(O2)=0.8 and an ionization of a) 5 ms and 

b) 35 ms. Signal intensity of nitrogen and oxygen with X(O2)=0.2 and an ionization of c) 5 ms 

and d) 40 ms. 

The nitrogen/oxygen gas mixture with X(O2)=0.2 is also used while scanning the ionization 

time in the range of 5 ms to 35 ms. Both extreme cases have already been discussed in reference 

to Figure 37 c) showing the correct analyte distribution and d) depicting the oxygen signal 

suppression. Figure 38 shows the ion signal intensities for m/z 28 and 32 in dependence of the 

ionization pulse length. For better comparison the oxygen signal is scaled with a factor of 5. 

Initially, both ion signal intensities increase with increasing ionization time, although the slope 

of nitrogen signal is significantly larger. Whereas the ion signal for nitrogen further increases, 

the oxygen signal collapses at an ionization time of 20 ms and is almost entirely suppressed at 

35 ms ionization time. The determination of the measured signal ratio (Figure 38, secondary 

axis) shows that the oxygen signal decreases with the first increase of the ionization time. At 

an ionization time of 5 ms the oxygen signal reflects the correct 20 % in the gas mixture, the 

oxygen signal at 35 ms ionization time is only 1 %. 

a) 

c) 

b) 

d) 
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Figure 38: Signal intensities for m/z 28 and m/z 32 in dependence of the length of the ionization pulse. 

It becomes apparent that in each of the experiments the ion signal that is present in smaller 

amounts suffers ion suppression at elevated total ion densities. In the first case toluene was 

studied as single ionic species within the mass spectrum. Nevertheless matrix ions (N2+, N+, 

…) are generated in greater amounts leading to an increased total ion density and thereby 

causing ion suppression of toluene ions. In both other cases nitrogen and oxygen were chosen 

to allow an observation of both ion species within the mass spectrum. It plays a predominant 

role, which of the ion species is present at higher amounts. Thus, ion signal suppression is 

most probably an effect caused by space charge effects inside the ion trap rather than e.g. 

charge transfer processes. 

 

Mass signal shifts due to a prolonged ionization time 

With increasing number of the total ion density within the ion trap, also mass signal shifts 

gain in importance. The measurement of a mixture of 500 ppbV toluene in nitrogen in 

dependence of the ionization time as already discussed further above allows an examination 

of space charge induced mass signal shifts. At an ionization time of 0.8 ms the toluene signal 

is at m/z 91.05 (Note: the system is not calibrated). The maximum mass signal shift is observed 

at an ionization time of 30 ms with a m/z ratio of 91.32 (cf. Figure 39). Hence, the total mass 

signal shift in this measurement scenario is determined to 0.27 Da, which corresponds to a 
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mass accuracy of 3 ‰ (= 3,000 ppm3) according to equation (4.38). Mass accuracy when 

determined in this work is always referring to an m/z error (Err) in relation to the m/z value. 

 
𝐸𝑟𝑟 =

∆𝑚/𝑧

𝑚/𝑧
 

(4.38) 

 

 

Figure 39: Signal intensity of toluene (primary axis) and m/z ratio of the ion peak (secondary axis) in 

dependence of the length of the ionization pulse. 

 

Mass signal shifts due to increased filament currents 

A similar result is obtained when increasing the total number of ions by increasing the 

filament current. The dependence of the ion signal intensities on the applied filament current 

has already been presented further above. With toluene present at 500 ppbV in nitrogen the 

mass signal shift of the [M-H]+ is recorded while varying the filament current in the range of 

1.62 A - 1.72 A. Whereas the m/z ratio is determined to 91.16 Da at 1.62 A filament current, a 

strongly shifted m/z ratio of 92.84 Da is determined at 1.7 A. Due to the significantly increased 

number of ions within the ion trap an absolute mass shift of 1.68 Da is observed, 

corresponding to a deviation of approximately 1.8 %. Although the measurement of the 

toluene signal intensities showed reasonable abundances at comparably small filament 

                                                           
3 Since mass accuracy values are ideally far below the ‰-range, they are typically given in 

ppm. 
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currents, the analysis of mass signal shifts shows already 0.4 % deviation when varying the 

filament current between 1.63 and 1.65 A. This strongly suggest a trap overload caused by 

apparently subtle changes of the filament current. 

 

Figure 40: Mass signal shift for the toluene [M-H]+ at m/z 91 while varying the filament current. 

 

4.3.2. Ion molecule reactions affecting signal ratios 

Space charge induced ion signal suppression is manageable by carefully adjusting the 

total charge present inside the ion trap (filament current, ionization time). Nonetheless, ion-

molecule reactions can significantly affect the ion signal distribution in the recorded mass 

spectrum, which is then incorrectly representing the neutral analyte distribution of the 

gaseous sample. On the other hand, this is one of the most powerful advantages of ion 

trapping devices for e.g. kinetic studies of ion-molecule reactions or performing MSn 

experiments [9, 67, 159]. For the application as monitor for neutral gas compositions, however, 

the extent of such reactions needs to be reduced to a minimum. 

For examinations on the extent of ion-molecule reactions within a typical measurement 

cycle again a mixture of nitrogen and oxygen with X(O2)=0.2 is used. The time and length of 

the gas inlet as well as the time and length of the ionization pulse are kept constant. The delay 

time of the excitation pulse, however, is varied from 100 – 1,500 ms relative to the ionization 

pulse. Figure 41 shows the signal intensity of N2+ and O2+ in dependence of the delay time 

between the end of ionization and ion excitation on the primary axis. The calculated ratio of 
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O2+/(O2++N2+) is represented on the secondary axis, while assuming that N2 and O2 are ionized 

with the same efficiency (ionization cross sections for 70 eV EI are given as 2.508 Å² (N2) and 

2.441 Å² (O2) [160]). Several effects are observable within this figure. At first an increase of the 

O2+ signal with the delay time is clearly visible. An increasing delay time between ionization 

and ion excitation pulse naturally leads to a longer reaction time for the chemical system. 

Thus, a decline of the N2+ signal and an increasing O2+ signal are expected due to charge 

transfer from N2+ to O2 according to reaction R.4.37. 

 N2
+ + O2 → O2

+ + N2 

(k(T)≥1∙10-10 cm³s-1 [161]) 

(R.4.37) 

In addition to the increase of the O2+ signal and the corresponding declining N2+ signal an 

overall decreasing total signal intensity with increasing delay time is observed, resulting in an 

O2+/(O2++N2+) ratio that levels off to constant values around 42 %. This behavior is rationalized 

with respect to the applied pulsed gas inlet: With an increasing delay time the pressure within 

the ion trap is continuously decreasing (cf. chapter 4.5). Subsequently the collision rate and 

therefore the reaction probability for charge transfer reactions to occur decreases. It is obvious 

that the transient pressure profile in combination with time for chemistry to occur is strongly 

affecting the extent of ion-molecule reactions. 

 

Figure 41: Signal intensity for m/z 28 and m/z 32 in dependence of the delay time until ion excitation. 
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Besides the chemical influence on the signal distribution Figure 41 shows again the importance 

of a non-overloaded analyzer as discussed in the previous section. At short delay times the 

total number of ions inside the trap is exceedingly high. Thus, the oxygen signal is suppressed 

by the stronger nitrogen signal. With carefully adjusted operating conditions, which control 

the number of generated ions inside the trap, accurate signal distributions in the mass spectra 

can be obtained. The total ion load of the trap should not exceed a critical value, which is 2·103 

on the arbitrary units scale of the system. Simultaneously the delay time between ionization 

and ion excitation and therefore the reaction time should be reduced to a minimum in order 

to minimize ion-molecule reactions. This operating point is highlighted in blue in Figure 41 

leading to the correct representation of O2+/(O2++N2+) ratio (green arrow). 

 

4.3.3. Operation in pulsed gas mode, filament behavior 

The experiments presented further above focus on the extent of charge overload as a 

function of ionization time and filament current (space charge effects) and the extent of ion-

molecule reactions as a function of transient pressure and detection pulse delay. Results 

obtained from these measurements are used to establish a parameter set for neutral gas 

composition monitoring. Measurements are again carried out with a mixture of nitrogen and 

oxygen while dynamically varying the mole fraction of X(O2) ranging from 0 to 1. Avoiding 

any overload of the analyzer, the length of the ionization pulse is adjusted to 1 ms. This leads 

to a m/z 28 signal for pure nitrogen with an intensity of 1,600 in arbitrary units as shown in 

Figure 42. The first addition of small amounts of oxygen (5 %) causes a significant drop in the 

total signal intensity by a factor of approximately 4. This effect is well known in the literature 

[162, 163] and is addressed to the formation of oxides on the surface of the wolfram filament 

leading to a loss in electron emission efficiency. Once the oxide layer has formed any further 

increase of the oxygen mixing ratio has no further effect on the electron emission current at 

constant filament current. Thus, the signal intensities for widely ranging nitrogen to oxygen 

ratios correctly reflect the neutral analyte distribution in the gas sample (cf. Figure 42). 
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Figure 42:  Signal intensity for m/z 28 and m/z 32 in dependence of the nitrogen/oxygen mixing ratio. 
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measurement shown above, in this case a SWIFT pulse is applied, that excites a wide range of 

m/z values below and above the resonance frequency of the [M-H]+ at m/z 91. With sufficiently 

high energies the excited ions are removed from the trap by discharging on the QIT electrodes 

surfaces. Keeping measurement conditions as close as possible the SWIFT pulse with a 

duration in the milliseconds range is started 5 ms prior to the end of the ionization. 

Due to the application of the SWIFT waveform matrix ions are removed during and after 

ionization. Even at short ionization pulse lengths enhanced toluene signal intensities are 

measured. With respect to Figure 35 the signal intensity measured without the application of 

SWIFT decreases at ionization pulse lengths exceeding 15 ms. The maximum achievable signal 

intensity is about 4,500 in arbitrary units. With the applied SWIFT pulse comparable signal 

intensities are achieved with a much shorter ionization length of only 6 ms. Up-to a signal 

intensity of 2·104 in arbitrary units the signal rises proportional to the length of the ionization 

pulse, which is then not longer than 18 ms. A further increase of the ionization pulse neither 

leads to a further linear increase of the signal intensity, nor to any signal loss. Even at an 

ionization pulse length of 170 ms, which is more than a factor of ten longer than compared to 

the experiment without the use of SWIFT, a sustained high signal intensity (3·104 a.u.) is 

measured. From the results presented above, it is concluded that the total signal intensity 

should not exceed a value of 2·103 a.u., to avoid trap overload. This readily explains why the 

signal intensity does not rise linearly beyond values of 104 a.u.. The removal of any matrix ions 

present at high amounts prevents the toluene signal from being suppressed. It is noted that a 

strongly increased number of ions will hamper an effective application of SWIFT. 

 

Figure 43: Left: Ion signal intensity for toluene in dependence on the length of the EI ionization pulse with 

application of SWIFT. Right: Zoom into the dependency at short ionization times. 
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Avoiding ion suppression caused by increased filament currents 

The strongly increased number of ions and the related mass shifts caused by elevated 

filament currents have also been presented above (cf. section 4.3.1). Again, the application of 

suitable SWIFT waveforms leads to the reduction of space charge within the trap. As the 

measurements are carried out within an identical trapping field, the same SWIFT pulse as 

previously described is used. Nevertheless, as the signal intensity rises exponentially with 

filament current, the toluene ion signal still collapses at filament currents around 1.7 A. 

However,  the positive effect of SWIFT application becomes clearly visible when comparing 

the results without and with SWIFT in a single plot (cf. Figure 44). The ion signal breakdown 

is observed at comparable filament currents (approx. 1.7 A), but the toluene dependent ion 

signals are almost 3 times greater with the application of SWIFT under otherwise identical 

measurement conditions. 

 

Figure 44: Signal intensity of the toluene [M-H]+ in dependence of the filament current with (orange trace) 

and without (blue trace) the application of SWIFT signals. 
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krypton diluted in nitrogen is shown. Since four stable isotopes are known for krypton, 

corresponding ion signals are expected at m/z 82 (12 %), m/z 83 (12 %), m/z 84 (57 %) and m/z 86 

(17 %) [164].  

 

Figure 45:  Signal intensities of krypton diluted in nitrogen at a) 10 ppmV, b) 1 ppmV and c) 100 ppbV 

without the application of SWIFT and d), e) and f) with the application of SWIFT. 

With krypton present at relatively high mixing ratios of 10 ppmV the measurement of all 

four ion species is successful showing roughly the correct isotopic pattern [cf. Figure 45 a), 

ionization time 0.5 ms]. A reduction of the krypton mixing ratio to 1 ppmV necessitates an 

increase of the ionization time to 2 ms and is thus leading to the generation of a relative large 

amount of nitrogen radical cations. As described further above the presence of any ion species 

at elevated charge densities potentially causes suppression of ions present at lower mixing 
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ratios. An extension of the ionization time allows the measurement of krypton as only one 

collapsed single signal at m/z 84 (cf. Figure 45 b). At krypton mixing ratios below 1 ppmV no 

corresponding ion signal is observed in the mass spectrum neither by a further extension of 

the ionization time to 10 ms (cf. Figure 45 c). However, the application of synthesized SWIFT 

waveforms for the “kick-out” of any matrix ion species (e.g., H2O+, O2+, N2+) allows the 

measurement of krypton ions even at low mixing ratios with the correct isotopic pattern. In 

all three cases the application of SWIFT signals improves the quality of the measurement. For 

10 ppmV krypton in nitrogen an enhancement of the signal intensity by a factor of almost 2 

and an enhancement of mass resolution from 2,000 to 6,000 at m/z 84 is observed, as shown in 

Figure 45 d). The collapsed single ion signal measured for 1 ppmV krypton is split up into all 

expected isotopes (cf. Figure 45 e). Figure 45 f) shows the measurement of 100 ppbV krypton 

reflecting the correct isotopic pattern due to the application of SWIFT whereas the 

measurement without SWIFT did not show any signal at all. 

 

Avoiding space charge induced mass shifts 

All measurements carried out with increased total ion numbers within the ion trap show 

a distinct mass shift at elevated ion densities for the regarded ion species. The application of 

SWIFT pulses allows a reduction of the total ion number within the ion trap. Thus, space 

charge is strongly reduced leading to a reduction of space charge induced effects as the 

discussed mass shifts. The above presented experiments with extended ionization time and 

filament current are also examined with respect to the mass accuracy of the toluene ion signal 

when applying SWIFT waveforms. In addition to the greater toluene ion signal intensities as 

compared to measurements without the application of SWIFT signals, also the observed mass 

shifts are significantly smaller. Considering only ion signal intensities at appropriate levels 

(maximum 5·103 a.u., cf. Figure 43, p.80) the mass shift is reduced to < 0.03 Da when increasing 

the ionization time and < 0.07 Da when increasing the filament current. Ion signal mass shifts 

with and without the application of SWIFT are compared in Figure 46 and Figure 47. 
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Figure 46: Observed mass shift in dependence of the length of the ionization pulse with and without the 

application of SWIFT. 

 

 

 

 

Figure 47: Observed mass shift in dependence of the filament current with and without the application of 

SWIFT. 
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4.5. Gas inlet: A crucial parameter 

The design of the gas inlet is undoubtable one of the most crucial parameters in the 

operation of the FT-QIT system. It is stressed, that the entire system is designed to be as 

compact as possible including the valve-driven pulsed gas inlet. Gathering information on the 

transient pressure profile during and after gas inlet allow an estimation of the maximum 

pressure reached within the ion trap. Two different approaches are used: 

 Recording of the pressure gauge analog output: With an oscilloscope the pressure gauge 

reading (Type: Pfeiffer PKR 261, Pfeiffer Vacuum, Asslar, Germany) of the vacuum 

recipient is recorded. As trigger signal the electrical activation pulse of the ALD valve 

is used. The recorded signal is a voltage signal that is proportional to the logarithm of 

the pressure. The according transformation equations are given in the pressure gauge 

manual.  

Note: The response time of the pressure gauge is pressure dependent and given by the 

manufacturer with < 10 ms at 10-6 mbar and up-to 1 s at 10-8 mbar [146]. Thus the 

recorded pressure profile will be influenced by this response time. It will be shown 

later that the response time only causes a small temporal shift.  

 Mass spectrometric examination: With an analyte present at elevated mixing ratios (e.g. 

1 ppmV toluene in nitrogen) the QIT itself can be used to examine the pressure profile 

within the ion trap. For the analysis of analytes at such high mixing ratios short 

ionization times of 1 ms are sufficient. Hence, the gas inlet time as well as the time for 

the excitation pulse are kept constant whereas the 1 ms ionization time is moved with 

increasing delay times within the pressure pulse. For each point of ionization time a 

mass spectrum is recorded allowing an evaluation of the ion signal intensity. Plotting 

the signal intensities in dependence of the ionization time allows a representation of 

the pressure profile, since under the selected QIT conditions the obtained ion signal 

intensity is directly proportional to the particle density. 
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4.5.1. Design I: Bended metal tube 

Most of the experiments to examine the pressure profile within the ion trap are carried 

out with the gas inlet design I as shown in the Experimental section (p. 48). Typical 

measurement parameters used as starting points are a sample pressure of 2.5 mbar and a gas 

inlet time of 20 ms whereas the QIT background pressure is kept < 10-8 mbar. 

 

“Standard” measurement settings 

The transient pressure gauge signal when introducing toluene diluted in nitrogen shows 

a sharply rising and then slowly depleting section (cf. Figure 48). The onset of the rising slope 

is determined as 24 ms after opening of the valve. The maximum pressure of 5.5·10-4 mbar is 

reached at 53 ms. As the pressure is only slowly dropping, pressures < 10-6 mbar that are 

necessary for the ion detection phase are only reached after 600 ms. 

 

Figure 48: Pressure profile measured with the pressure gauge for a 20 ms gas inlet with 2.5 mbar upstream 

pressure. 

With toluene diluted in nitrogen m/z 91 ([M-H]+) and m/z 92 (M·+) signals are observed. Plotting 

the abundance of both ion species in dependence of the time when the ionization pulse is 

applied, similar curves to the pressure profile are acquired (cf. Figure 49) with a significantly 

greater abundance of m/z 91. Allowing a better comparison the ion signal intensities and the 

pressure are normalized to the respective maxima, as depicted in Figure 50 (left). The 
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transients of both toluene dependent ion signals are in very good agreement. By a temporal 

shift of only 10 ms the pressure transient becomes congruent with the signal intensity 

transients (cf. Figure 50 right). 

 

Figure 49: Ion signal intensity profile at m/z 91 and m/z 92 upon application of a 20 ms gas pulse from 

2.5 mbar. 

 

 

 

Figure 50: Left: Normalized signal abundance and pressure profile plotted on the same time scale.  

Right: Normalized signal abundance and a 10 ms shifted normalized pressure profile. 

The reproducibility is examined with a number of different analytes. Ionization time 

dependent signal intensities are recorded for toluene species (m/z 91,92) and benzene species 

(m/z 77, 78) all resulting in qualitatively identical signal intensity curves. 
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Variation of gas pulse length 

The length of the applied gas pulse is varied to introduce corresponding amounts of 

analyte molecules. In addition to 20 ms typical gas inlet times are 15 and 25 ms. Recording of 

the pressure gauge data as well as analysis of the ionization time dependent signal intensities 

of toluene in nitrogen show an increase in the overall signal intensities with an increasing 

opening time of the valve (cf. Figure 51). However, the beginning of the initial slope as well 

as the position of the signal maximum are almost independent of the gas inlet time. This 

becomes more obvious when regarding the normalized pressure and signal intensity curves 

(cf. Figure 52). The only notable difference is a small deviation in the value of the initial slopes. 

As these different slopes are not observed in the non-normalized plots, it is concluded that the 

first pressure increase is not depending on the length of the gas inlet but only representing the 

first gas molecules entering after opening the valve. The pump-down time until optimum 

pressure conditions for QIT analysis are reached is for all three gas inlet times approx. 600 ms. 

Comparison of the pressure data and the signal intensity curves shows very good agreement 

when shifting the pressure curves  -10 ms (cf. Figure 53, experimental data on primary axis 

and pressure gauge data on secondary axis). 

 

 

 

Figure 51: Analyte ion signal response (left) and pressure data response (right) in dependence of the length 

of the gas inlet pulse. 
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Figure 52: Normalized analyte ion signal response (left) and normalized pressure data response (right) in 

dependence of the length of the gas inlet pulse. 

 

 

 

Figure 53:  Comparison of the ion signal intensity and shifted pressure data for the three gas inlet pulse 

lengths. 
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Variation of sample pressure 

Upon increasing the sample pressure the gas load is increasing as well. The influence of 

the sample pressure on the pressure profile within the ion trap is examined using the pressure 

gauge data in comparison to analyte ion signals4. An increasing sample pressure does not only 

lead to a greater number of particles but also shows a shift of the beginning of the initial slope 

as well as a shift of the pressure maximum to shorter times (cf. Figure 54). Although the gas 

load at higher upstream pressures is higher, optimum pressure conditions are reached on the 

same time scale as in the other experiments. This indicates that the pump-down rate of the 

used turbo pump is not the limiting factor but rather the gas dynamics which is driven by 

effusion due to the prevailing molecular flow conditions. Normalization of the pressure 

curves and analyte intensity signals demonstrate the very good agreement of the two 

independent analysis methods when applying a 10 ms shift between both data sets (cf. Figure 

55). 

 

 

Figure 54: Transient pressure gauge data for different sample pressures. Right: Expanded region covering 

0 to 0.15 s. 

                                                           
4 Avoiding a QIT overload the ionization time at elevated sample pressures is reduced to 

0.5 ms. Thus, absolute intensity values are not comparable within this set of results and 

therefore only the normalized data are shown. 
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Figure 55: Transient normalized signal abundance and normalized shifted pressure data for different 

sample pressures. 
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Variation of gas composition 

Measurements carried out in H2 as matrix gas demonstrate a pronounced influence of the 

gas composition on the flow behavior and thus the pressure profile inside the trap. Figure 56 

compares pressure gauge data for gas samples with nitrogen and hydrogen as matrix gas, 

respectively. For all three applied gas inlet times the hydrogen matrix leads to an earlier initial 

slope of the pressure transient. The initial slopes for each matrix gas, however, are 

independent on the valve opening time, as presented further above. The earlier increasing 

pressure in H2-matrix is explained by the lower mass of hydrogen and the resulting higher 

velocity at identical thermal energies. Since the adjusted sample pressures are not completely 

identical, absolute pressures given in Figure 56 are not comparable. As the analyte molecules 

are carried in by the matrix gas even the measurement of toluene signal intensities shows the 

temporal shift between experiments in different matrix gases. 

 

Figure 56: Transient pressure gauge data recorded for different gas inlet lengths in nitrogen and hydrogen 

matrix, respectively. 
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Removal of the bended metal tube 

The initial slope of the gas inlet used in design I is rather steep. Nevertheless the pump-

down time until optimum pressure conditions for ion detection are reached (approx. 600 ms), 

needs to be reduced to improve the maximum repetition rate. Removal of the metal tube (gas 

inlet through QIT basis flange, cf. Figure 19, p. 48) leads to a significantly steeper pressure 

profile (cf. Figure 57). In this configuration the neutral molecules enter the QIT solely by 

effusion, thus only a small number of neutral molecules is present inside the trap and only 

reduced amounts of analyte ions are generated. Hence this gas inlet is more suitable with 

respect to faster pump-down rates but will not facilitate sensitive measurements. It is 

concluded though that the slow pump-down rate using design I is a consequence of the 

bended shape of the tubing in combination with the molecular gas flow dynamics. 

 

Figure 57: Transient pressure profile with (red trace) and without (blue trace) the bended tube. 
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Analysis of the pressure profile 

For the newly designed gas inlet the pressure profile is examined using the two 

established analysis methods. Measurements are carried out with a mixture of 1 ppmV 

toluene diluted in nitrogen. The pressure gauge data show a comparable steeply rising 

pressure profile as obtained after removal of the bended metal tube. Figure 58 (left) depicts 

the pressure measured at the pressure gauge in dependence of three different gas inlet lengths 

(15, 20 and 25 ms). With increasing gas inlet length the amount of introduced gas is greater 

resulting in higher pressure maxima. Pressure maxima as well as the tailing of the pressure 

profile are shifted to longer times with increasing gas inlet length. Nevertheless in all three 

cases pressures < 10-6 mbar are reached within 300 ms (cf. Figure 58 right). 

 

Figure 58: Left: Transient pressure gauge data recorded for different gas inlet lengths with the improved 

gas inlet design. Right: Logarithmic plot of the pressure gauge data shown in the left panel. 

Pressures < 10-6 mbar are reached within 300 ms. 

Analysis of the pressure profile inside the trap results in significantly earlier detected ion 

signals compared to the pressure profiles measured at the pressure gauge. An increasing 

signal intensity maximum and a broadened signal response profile are observed with an 

increasing gas inlet length. The position of the signal intensity maximum is determined to 

28 ms, whereas the pressure maximum at the pressure gauge is determined to 52 ms for the 

20 ms gas inlet length (sample pressure: 2.5 mbar). The delay times between the maxima of 

both profiles as well as between the beginning of the initial slopes (analyte: 10 ms; pressure: 

20 ms) are distinctively greater than in the results presented for gas inlet I. Figure 59 compares 

the analyte profile and the pressure profile, showing that the two datasets are transferable by 
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a simple temporal shift, as was the case for gas inlet I. Differences in the shape of both data 

sets as well the broadening of the pressure profile are expected due to the direct gas inlet into 

the ion trap and the subsequent gas removal by effusion. 

 

Figure 59: Transient toluene ion signal intensities and pressure data for the improved gas inlet with 20 

ms gas inlet length and 2.5 mbar upstream pressure. 

  

4.5.3. General results of pressure profile analysis 

The above presented results obtained by recording of the pressure gauge data and 

analysis of ionization time dependent ion signal intensities in the QIT show a good agreement 

when using gas inlet design I. Since all examined analytes showed similar temporal responses, 

an influence of potential ion-molecule-reactions affecting the signal intensities can be 

excluded. As the bended metal tube only allows an incident gas flow onto a hole in the endcap 

electrode the QIT as well as the entire recipient are filled with gas almost simultaneously to 

the same background pressure. The temporal shift between the analyte signal profile and the 

pressure profile is explained by the pressure gauge response time. 

For gas inlet design II the pressure gauge and the signal intensity transient are not directly 

comparable anymore. Since the ceramic tube is connecting the gas inlet valve and the QIT, the 

ion trap volume is initially filled with the sample gas and then particles effuse from the trap 

into the volume of the recipient. Thus, a temporal shift between analyte signal and pressure 

signal as well as a broadening of the pressure profile is expected.  
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In all experiments using the ceramic tube as gas delivery stage, an overall steeper 

pressure transient is observed (cf. Figure 60 and Figure 61). Taking the pressure gauge data as 

a basis, a pressure < 10-6 mbar is reached after 300 ms compared to 600 ms with the bended 

tube. 

 

Figure 60: Transient pressure gauge data for both gas inlet designs. With the bended tube the time until 

p=106 mbar is reached is two times longer. 

 

 

Figure 61: Transient analyte ion signal response compared for both gas inlet designs: Red trace bended 

tube, blue trace ceramic tube. 
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4.5.4. Determination of the pressure inside the ion trap 

As suggested by the good agreement of both pressure measurement methods for gas inlet 

design I, an equal distribution of particles in the trap and in the entire recipient is assumed. 

Hence, the measured pressure at the gauge is closely reflecting the pressure inside the ion 

trap. In addition, the fact that both data sets can be transferred into each other by a small 

temporal shift of 10 ms offers a huge advantage for the routine QIT operation: To estimate the 

pressure profile within the trap, the reading of the pressure gauge is a sufficient tool. The 

analysis of the analyte signals is not necessary. Recording of the pressure gauge data is done 

within a couple of seconds whereas the QIT method takes up-to two hours including time for 

data post processing. 

For the analysis of the transient pressure profile within the ion trap using gas inlet design 

II, one cannot avoid the QIT data acquisition since a simple conversion of pressure gauge 

reading and the gas density within the trap is not possible. 

With the analyte mixing ratio being proportional to the total number of particles, the 

analyte mixing ratio is also proportional to the pressure. Thus, the analytical response of the 

ion trap is depicting the partial pressure of the analyte, here toluene. Assuming that the 

measured pressure for gas inlet I is truly reflecting the pressure inside the ion trap, a 

calculation of the trap pressure using gas inlet II is possible. Therefore ion signal 

measurements for both gas inlet designs under identical measurement conditions are 

required. The measurements shown in Figure 61 are carried out using a 20 ms gas inlet pulse 

sampled out of 2.5 mbar. Identical settings for the filament current, ionization time, timing of 

the excitation pulse, and length of the FFT window are chosen. The analyte signal intensity is 

in both cases depicting the toluene partial pressure. Comparison of the analyte signal profile 

and the measured pressure profile for gas inlet design I leads to a toluene partial pressure that 

is corresponding to a maximum pressure of 7·10-4 mbar. Since identical measurement 

parameters are chosen, the same signal response for toluene in both cases is expected. Thus 

the ratio of the maxima of the analyte signal profiles is reflecting the ratio of the maximum 

trap pressure in both setups and is given by a value of almost 0.5. Hence, a maximum trap 

pressure for gas inlet II of 1.4·10-3 mbar is determined. 
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4.5.5. Signal loss with increasing sample pressure 

As already discussed an increasing sample pressure translates to an increased number of 

gas molecules entering the ion trap and eventually an elevated number of generated ions. 

Sample pressure and gas inlet length must be chosen carefully to avoid a burn out of the 

filament. Figure 62 shows the measurement of 500 ppbV toluene in nitrogen while varying the 

sample pressure in the range of 0.8 to 9.2 mbar. All further parameters are kept constant. The 

first event within a measurement cycle is the 20 ms gas inlet pulse (section 0 – 20 ms), followed 

by a 5 ms ionization time (section 25 – 30 ms). The 3.5 µs excitation pulse is applied at 900 ms 

delay time. The trapping field is adjusted to 350 VRF. With a filament current of 1.7 A even at 

low sample pressures of 0.8 mbar a significant ion signal for toluene at m/z 91 is observed in 

the mass spectrum. An increase of the sample pressure up-to 2.5 mbar shows a rise in signal 

intensities by a factor of roughly 2. Further increasing the sample pressure, however, causes a 

loss in the signal abundance of m/z 91. Eventually, at 9.2 mbar no toluene dependent ion signal 

is detected at all. 

 

Figure 62:  Toluene signal intensity for m/z 91 in dependence on the upstream sample pressure. 

This measurement is well in accord with the data presented in chapter 4.3.1. An increase of 

the sample pressure at constant ionization time and filament current causes an elevated 

number of generated ions. Since nitrogen is the main matrix gas, a large number of matrix ions 

is present leading to a space charge induced loss of the toluene signals. It is assumed that in 

the present case as well the application of appropriate SWIFT signals reduce the amount of 

interfering ions and thus will help to detect toluene signals even at elevated sample pressures. 
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4.6. Optimization of operational conditions 

The experiments discussed so far were carried out to point out the extent the analytical 

performance is affected by the selected operational conditions. As the influence of a number 

of parameters is rationalized, an optimization of the operational conditions becomes feasible. 

The very uncommon pulsed gas inlet into the analyzer and thus the transient pressure 

profile in the trap strongly determine the entire measurement sequence. The pressure profile 

within the trap is mainly defined by the chosen gas inlet type, the valve opening time and the 

sample pressure. Figure 63 shows the pressure profile recorded for gas inlet design I while 

sampling from 2.5 mbar with a valve opening time of 20 ms. According to the results reported 

in chapter 4.5.4 the profile is shifted by 10 ms to represent the effective pressure within the ion 

trap. Based on this effective pressure profile the further measurement sequence parameters 

are adjusted. Maximum ion yield is reached while ionizing in the gas pulse maximum, i.e., 

when the total number of neutral molecules is at maximum. Depending on the expected 

analyte mixing ratio the length of the ionization pulse needs to be adapted. It is noted that an 

ionization particularly at elevated ionization lengths results in a large amount of matrix ions. 

In addition, quantification is hardly possible at strongly elevated ionization lengths as the gas 

pulse maximum is quite steep and ionization times > 15 ms cover partly the falling slope of 

the pressure curve. As discussed, the total ion load and related space charge induced effects 

are minimized by the application of SWIFT. In the performed measurements the application 

of SWIFT waveforms (for around 10 ms) during ionization is most efficient. At longer 

ionization times SWIFT waveforms are applied 5 ms prior to the end of the ionization time. 

This leads to a rapid elimination of unwanted matrix ions. Additionally ion-molecule 

reactions that may potentially adversely affect the analyte signal response are suppressed. The 

time until suitable FT analysis pressure conditions are reached is governed by the ion storage 

phase. In the present case a pressure < 10-6 mbar is reached within 600 ms, thus representing 

the minimum dwell time until ion excitation is applicable. The length of the recorded transient 

ion signal is depending on the pressure and on the number of stored ions. For the acquisition 

of longer transient ion signals and thus better mass resolutions, an extension of the ion storage 

phase to reach lower background pressures will be helpful. The adaption of the measurement 

sequence parameters to the experimentally determined pressure profile for gas inlet I are 



Results and Discussion 

 
100 

 

schematically depicted in Figure 63. The measurement sequence parameters for gas inlet II are 

adapted in the same fashion. 

 

Figure 63: Sketch of the measurement sequence adapted to the transient pressure profile inside the ion trap. 

For residual gas analysis the influence of the operational conditions is much smaller. As 

residual gas analysis is typically carried out at background pressures < 10-8 mbar optimum 

pressure for the ion detection phase is already given. Solely the length of the ionization pulse 

needs to be adjusted. As at 10-8 mbar the total number of present analyte molecules is orders 

of magnitude smaller than in the pulsed gas sample mode, ionization lengths of up-to several 

hundreds of ms are required and well feasible. 

 

Transient ion signal: Gaining first information 

Although the mass spectrum is the most relevant information acquired in both, residual 

gas analysis as well as for gas sampling, useful information on the measurement quality can 

already be obtained by inspection of the transient ion signal. The shape and the amplitude of 

the transient signal as well as the duration meaningful ion signals are contained in the 

transient are the most important factors. 

Since the displacement of ions in z-direction is reduced by collisions with other neutrals 

and ions, an exponentially decreasing signal amplitude is expected. At elevated pressure 
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conditions inside the ion trap the ion signal in the transient is decreasing significantly faster 

as the collision rate is strongly enhanced. A comparison of measurements carried out at 

background pressures of 10-8 mbar and 10-6 mbar is given in Figure 64, demonstrating the 

dramatic ion loss at elevated pressures. 

 

 

Figure 64: Transient ion signals recorded at 10-8 mbar (left) and 10-6 mbar (right). 

 

Larger loss rates are also observed upon over-excitation of ions. In this case ions moving on 

trajectories in regions farther way from the trap center will soon collide with the electrodes 

and discharge. Typically, the transient signal is then initially showing a linear decrease rather 

than an exponential decay (cf. Figure 65). 

 

 

Figure 65:  Transient ion signal showing a larger loss rate upon ion over-excitation. 
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An ion overload of the trap causes similar effects as an overall increased background pressure 

since the collision rate is enhanced. In addition the induced image currents on the endcap 

electrodes are strongly elevated causing an overload of the charge state amplifier. This results 

in strongly enhanced transient amplitudes as depicted in Figure 66. 

 

 

Figure 66: Typical shape of the transient ion signal upon trap overload. 

With a transient signal that is significantly deviating from the ideal shape, i.e., a true 

exponential decay, the information gathered from the recorded mass spectrum must be 

handled with great care. 

 

 

4.7. Analytical performance 

With respect to optimized operational conditions, the analytical performance as 

reachable with the current setup is examined in both operational modes – residual and pulsed 

gas sampling mode. Figures of merit are mass resolution, mass accuracy, and reproducibility. 

In pulsed sample mode also linear range, limit of detection, and temporal measurement 

resolution are investigated. 
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4.7.1. Analytical performance in residual gas mode 

Mass Resolution 

Typical analytes in residual gas measurements at pressures < 10-8 mbar are hydrocarbons, 

carbon dioxide, nitrogen, oxygen, and water. With a trapping field of 140 VRF, an ionization 

length of 220 ms and an ion excitation after 800 ms, water (H2O+, m/z 18) and nitrogen (N2+, 

m/z 28) are measured as main background components (cf. Figure 67). Ion oscillations are 

observed within an FT-window of 100 ms. According to equation (4.39) a mass resolution of 

about R=5,500 is determined for both ion species, since FWHM (full width at half maximum, 

∆m) for m/z 18 is given with 0.0034 Da and FWHM for m/z 28 is 0.0048 Da. 

 𝑅 =
𝑚

∆𝑚
 (4.39) 

 

 

Figure 67:  Mass spectrum in residual gas mode showing ion signals of water (m/z 18) and nitrogen 

(m/z 28). 

Mass accuracy 

Even highest mass resolutions are not beneficial at all, when a corresponding mass 

accuracy is missing. An ion trap overload, which has been shown in this work to be the main 

cause of mass shifts, thus needs to be avoided to the largest possible extent. Examinations on 

the stability of the resonance frequencies or m/z ratios, respectively, are carried out recording 

nitrogen mass signals at a background pressure around 10-8 mbar within a trapping field of 

150 VRF. This measurement has been repeated almost 10,000 times while keeping all 
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operational parameters constant. The trend of the detected normalized resonance frequencies 

in dependence of the measurement time is shown in Figure 68. 

 

Figure 68: Long-term trend of the resonance frequency of m/z 28 in a residual gas measurement (blue 

trace) and of the corresponding room temperature (orange trace). 

Essentially, two different effects regarding the resonance frequency drift have to be 

considered: i) drift with time and ii) jitter between two individual measurements. The former 

is investigated in a more than 16 hour long term measurement as shown in Figure 68. The data 

exhibit a drift to a maximum of the resonance frequency until approx. 4 pm in the afternoon 

and then decline again to lower frequencies. Simultaneously the room temperature was 

recorded showing a similar trend with a maximum at approx. 4 pm (cf. Figure 68, sec. axis). 

This suggests a direct relation between the ambient temperature and a resonance frequency 

drift. This phenomenon is currently further investigated. An evaluation of the mass accuracy 

(or resonance frequency accuracy) at this point is thus not meaningful. 

A second long-term measurement at almost constant temperature was conducted 

allowing the examination of water within a trapping field of 118 VRF. Figure 69 shows the 

dependence of the calculated m/z ratio on the measurement time for two measurement 

sections.  
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Figure 69: m/z ratios for water recorded in a residual gas measurement at constant room temperature. 

Noticeable are the step-wise deviations of  0.1 Da, especially in the first section but also 

occurring in the second section. Comparison of the recorded RF trapping field amplitude with 

the calculated m/z ratios demonstrates that these steps are directly corresponding (exemplarily 

shown in Figure 70) and are thus defined as outliers. It is assumed that these outliers in the 

calculated m/z-ratios are a consequence of a wrongly determined trapping field voltage. Thus, 

for examinations on mass accuracy these outliers are removed. 

 

Figure 70: Observed outliers in the m/z calculation compared to the measured RF voltage. 

The number of outliers in the first measurement section is with 450 out of 3,900 measurements 

extremely high. Removal of those faulty values leads to a mean m/z value of 18.032 Da with a 

standard deviation of 0.0037 Da. The mass accuracy is defined as the ratio of the m/z error and 

the m/z value, and is calculated to 200 ppm. In the second measurement section the mean m/z 
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value of 18.034 Da and a standard deviation of 0.0048 Da result in a mass accuracy of 270 ppm. 

The distribution of the calculated m/z ratios is represented in a histogram for both 

measurements showing an almost Gaussian shape. 

 

Figure 71: Histograms of the distribution of the determined m/z ratios after elimination of the outliers for 

the first (left) and the second (right) measurement section. 

Reproducibility 

The accuracy measurements are also evaluated with regard to the analyte signal 

intensities to inspect reproducibility. In case of residual gas measurements one must be aware 

of changing mixing ratios with time as the pump-down process is proceeding. Plotting the 

signal intensities in dependence of measurement time, an exponentially decreasing trend is 

observed, as expected (cf. Figure 72). Thus the determination of mean values for the whole 

measurement is less meaningful. Nevertheless signal intensities compared for consecutive 

measurements show only small intensity variations of 12 %. 

 

Figure 72: Trend of the signal intensities for m/z 18 in residual gas mode. 
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4.7.2. Analytical performance in gas sampling mode 

Mass Resolution 

Examinations on mass resolution in pulsed gas sampling mode are carried out using 

three different gas mixtures covering a mass range from ~m/z 25 to ~m/z 130: i) 1 ppmV 

diborane diluted in hydrogen, ii) 100 ppbV krypton diluted in nitrogen, and iii) 50 ppbV 

xenon diluted in nitrogen. Since the analyte mixing ratios are comparably small, SWIFT is 

applied to remove matrix and background ions. 

Figure 73 shows a mass spectrum recorded with 1 ppmV diborane present in hydrogen. 

This spectrum was obtained with a 20 ms gas inlet from a 3 mbar sample pressure, an 

ionization time of 10 ms, the application of SWIFT 5 ms prior to the end of ionization, and ion 

detection after 1 s. The length of the observed FT-window is 50 ms. Five diborane fragment 

and isotopic ion signals at m/z 23, 24, 25, 26 and 27 are detected. Only the fragment ions at 

m/z 21 and 22 with literature abundances of 1.9 % and 11.2 % [165], respectively, are missing. 

An evaluation of the mass resolution for the five major peaks is summarized in Table 10. 

 

 

Figure 73:  Mass spectrum recorded with 1 ppmV diborane diluted in hydrogen present. 
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Table 10: Mass resolution of diborane dependent ion signals for two FFT windows. 

 50 ms FFT window 100 ms FFT window 

m/z ratio ∆m mass resolution ∆m mass resolution 

23 0.0022 10,500 0.0015 15,300 

24 0.0019 12,600 0.0012 20,000 

25 0.0024 10,400 0.0016 15,600 

26 0.0025 10,400 0.0015 17,300 

27 0.0055 4,900 0.0032 8,400 

 

A mass spectrum recorded  with 100 ppbV krypton in nitrogen present is depicted Figure 74, 

showing all expected isotopes (m/z 82, 83, 84 and 86). This mass spectrum is obtained with a 

gas inlet time of 20 ms from 2.5 mbar sample pressure, 10 ms ionization, SWIFT application 

5 ms prior to the end of ionization and an ion detection after 1 s. The trapping field amplitude 

is adjusted to 270 VRF and the length of the FFT-window is chosen to 200 ms. The peak width 

for the base peak at m/z 84 is ∆m = 0.0083 FWHM, leading to a calculated mass resolution of 

10,000. 

 

Figure 74:   Mass spectrum recorded with 100 ppbV krypton diluted in nitrogen present. 

The measurement of 50 ppbV xenon is recorded with a similar set of measurement parameters, 

only increasing the trapping field voltage to 340 VRF. Five of the known seven stable isotopes 

are detected with almost correct relative abundances (Lit: 128Xe (1.9 %), 129Xe (26.4 %), 130Xe 

(4.1 %), 131Xe (21.3 %), 132Xe (26.9 %), 134Xe (10.4 %), 136Xe (8.9 %) [164]) (cf. Figure 75). The two 
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isotopes with lower abundance, however, are hardly distinguishable from noise. The peak 

width and calculated mass resolution are summarized in Table 11 for the five major peaks. 

 

Figure 75:   Mass spectrum recorded with 50 ppbV xenon diluted in nitrogen present. 

Table 11: Mass resolution of xenon isotope signals for two FFT windows. 

 50 ms FFT window 100 ms FFT window 

m/z ratio ∆m mass resolution ∆m mass resolution 

129 0.069 1,900 0.017 7,800 

131 0.034 3,900 0.020 6,600 

132 0.044 3,000 0.021 6,300 

134 0.034 4,000 0.018 7,600 

136 0.070 1,900 0.018 7,500 

 

In all three cases the mass resolution is greater than 5,000. From FT-QIT theory it is known 

that mass resolution decreases with increasing m/z ratio since ions with higher m/z ratio 

oscillate slower. Thus on average theses ions are passing the detector electrodes fewer times 

leading to less information in the transient ion signal [9, 52]. A decrease in mass resolution is 

observed within the regarded mass range, but still showing good resolution at higher m/z. The 

measurement of xenon demonstrates the gain in information due to the evaluation of a larger 

FFT window. 
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Mass accuracy 

For investigations on mass accuracy in the pulsed sample mode toluene (500 ppbV in N2) 

is used as analyte. While sampling from 2.5 mbar with a gas inlet time of 20 ms, an ionization 

time of 5 ms generates a sufficient number of analyte ions detected on m/z 91. As the ionization 

time is carefully adjusted, space charge induced effects are minimized without application of 

SWIFT. Avoiding a slow permanent increase in the background pressure, a waiting time of 

30 s is applied between each measurement. Figure 76 shows the m/z ratio in dependence of the 

measurement time. 

In analogy to the experiments carried out in the residual gas mode a constant shift of the 

m/z ratio is noticed. The RF voltage is verified to be constant (340 VRF) in the entire 

measurements series, excluding mass shifts caused by errors in the recorded RF voltage as 

observed in residual gas mode. The room temperature shows a continuous increase from 26°C 

to 32°C within the timeframe of this experiment. In residual gas mode a dependency of 

resonance frequency shift with temperature shift has already been noticed: an increase of the 

ambient temperature causes an increase of the resonance frequency. In this experiment m/z 

ratios are plotted. Since the calculated mass is inversely proportional to the frequency, a 

corresponding m/z ratio shift is expected. This correspondence is observed in the current 

measurement. While the temperature is rising, the m/z ratio is continually decreasing. A 

calculation of the mass accuracy over the entire experimental time frame is thus not helpful. 

More interesting though, are the deviations between single measurements as shown in  

Figure 77.  

 

Figure 76: Trend of the calculated m/z ratio for toluene (91 Da) over time in pulsed sampling mode. 
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Figure 77: Jitter in the m/z ratio for consecutive measurements. 

The maximum mass shift between two measurements is 0.06 Da, whereas most deviations are 

within a range of 0.02 Da. It is noted that the minimum noticeable shift is about 0.007 as step 

function, which strongly suggests that the best case accuracy is about 80 ppm at 91 Da. The 

analysis of the mean value allows the determination of the mass accuracy when temperature 

shifts are avoided. With ∆m=0.043 Da at a m/z ratio of 91 Da, the mass accuracy is calculated 

to 470 ppm. 

The mass accuracy in residual as well as in pulsed gas mode are comparable. Only the 

observation of continuously shifting masses and the relation with room temperature require 

further inspection. It is mentioned that the new generation FT-QIT system allows the setting 

of an actively controlled QIT temperature. Initial measurements have shown a strongly 

improved performance with respect to mass accuracy, when space charge is minimized. 

 

Linear range and limit of detection 

Experiments examining the linear range and the limit of detection are carried out with 

toluene diluted in either nitrogen or hydrogen. Following the discussion above it is apparent 

that with the same set of parameters only a rather limited linear range covering 2 orders of 

magnitude is achievable, without suffering from e.g. space charge induced effects. Space 

charge will inevitably be generated by extended ionization times required at low analyte 
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loads. Thus the total number of ions inside the trap is the only parameter that needs to be 

adjusted by the length of the applied ionization pulse in order to avoid space charge effects. It 

is demonstrated, that linearity over more than two orders of magnitude is reachable via 

normalization of the analyte ion signal intensities. This normalization is a simple division of 

the analyte signal intensities with the length of the applied ionization pulse as exemplarily 

shown for the measurement of toluene in Table 12. All further parameters, as gas inlet (20 ms 

from 2.5 mbar), application of SWIFT (5 ms prior to the end of ionization), RF trapping field 

(340 VRF) and time for the excitation pulse (2.3 µs after 900 ms) are kept constant. 

 

Table 12: Normalization of signal intensities. 

mixing ratio  

[ppmV] 

ionization time  

[ms] 

signal intensity 

[a.u.] 

norm. signal 

intensity [a.u.] 

0 10 736 73.6 

0.01 10 1,094 109.4 

0.02 10 1,519 151.9 

0.03 10 1,552 155.2 

0.04 10 2,035 203.5 

0.05 10 2,023 202.3 

0.1 10 3,466 346.6 

0.25 7 4,674 667.7 

0.5 4 4,566 1,141.5 

0.9 1 1,824 1,824.0 

1.7 1 3,307 3,307.0 

3.3 0.5 2,984 5,968.0 

 

At elevated mixing ratios of 3.3 ppmV an ionization length of 0.5 ms generates a toluene signal 

with rather large abundance. For the detection of 10 ppbV, however, an extension of the 

ionization length to 10 ms is necessary for a reasonable signal response. The linear response is 

given when plotting the normalized signal intensities in dependence of the analyte mixing 

ratios (cf. Figure 78). It is thus clearly demonstrated that an extension of the linear range due 

to a signal normalization is feasible. This range may be extended even further by application 

of shorter ionization times, which  is currently not possible. 
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Figure 78: Dilution series of toluene in nitrogen using normalized signal intensities. 

Figure 79 shows a mass spectrum recorded in the presence of a mixture of 10 ppbV toluene in 

nitrogen in the range 87 < m/z < 95. For sufficient analyte ion generation the ionization pulse 

is adjusted to 10 ms. As main toluene ion species the [M-H]+ at m/z 91 is detected with a signal 

to noise ratio of 28. This is considerably larger than the definition for the LOD by Kaiser and 

Specker [166], which is S/N = 3. The linear response for toluene mixing ratios in the lower 

ppbV range is shown in Figure 80. The slope is obtained by linear regression allowing an 

extrapolation to a signal to noise of 3. The limit of detection is determined to 1 ppbV. 

 

Figure 79:  Mass spectrum recorded with 10 ppbV toluene diluted in nitrogen present leading to [M-H]+ 

at m/z 91. 
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Figure 80:   Signal to noise ratio of m/z 91 in dependence of the toluene mixing ratio. 

Similar measurements with toluene present at lower mixing ratios in hydrogen also lead to a 

LOD of 1 ppbV upon extrapolation of the signal response. The observed analyte ion signal is 

the [M+H]+ at m/z 93 since analyte protonation predominates in the presence of hydrogen as 

matrix gas. The extension of the linear dynamic range to 4 orders of magnitude with the 

analyte signal intensity to ionization pulse length normalization is also successfully 

demonstrated. 

 

Extent of ion-ion and ion-molecule chemistry 

The above presented measurements were performed using gas inlet design II. Due to the 

direct gas introduction into the ion trap a significant reduction of the ionization time by a 

factor of almost 4 compared to measurements with gas inlet design I is possible at lower 

analyte mixing ratios. The importance of shorter ionization times becomes apparent when 

examining the dilution series of toluene in nitrogen performed with gas inlet design I. 

Covering the analyte mixing ratios in the range of 1 ppbV and 10 ppmV ionization times from 

35 ms down to 0.5 ms are applied. In a double logarithmic plot (cf. Figure 81) the normalized 

signal intensities for m/z 91 are plotted in dependence of the toluene mixing ratios. 

Surprisingly, non-linear behavior is observed for lower mixing ratios and thus extended 

ionization times. 
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Figure 81: Double logarithmic plot of the toluene dilution series using gas inlet design I with elevated 

ionization times using normalized signal intensities in dependence of the toluene mixing ratio. 

In Figure 82 a mass spectrum recorded in the presence of 10 ppmV toluene (0.5 ms ionization 

time, red trace) and a spectrum of 100 ppbV toluene (35 ms ionization time, blue trace) are 

compared, showing a significantly larger abundance of m/z 93 at lower toluene mixing ratios. 

With electron ionization mainly m/z 91 ([M-H]+) and m/z 92 (M·+) are expected, as well as a 

small amount of m/z 93 reflecting the C-13 isotopic peak. 

 

Figure 82:  Mass spectrum recorded with 10 ppmV (red trace) and 100 ppbV (blue trace) of toluene diluted 

in nitrogen present (see text for details). 
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Lower mixing ratios call for longer ionization times and thus longer times for ion-molecule 

interactions inside the ion trap. Matrix ions, such as nitrogen species (N2+, N4+, …) as well as 

proton bound water clusters, are generated in large excess and lead to the formation of T·+ 

(m/z 92) and [T+H]+ (m/z 93) according to the following reactions (with T = Toluene;  

M = collision molecule) [161, 167]. 

 N2
+ + T → T∙+ + N2 (R.4.38) 

 N4
+ + T → T∙+ + 2N2 (R.4.39) 

 [H + (H2O)n]
+ + T → [T + H]+ + nH2O (R.4.40) 

Furthermore chemical conversion of toluene ion species is occurring by subsequent reactions 

with neutral molecules [168–170].  

 T∙+ + T → [T + H]+ + [T − H]∙ (R.4.41) 

 [T + H]+ +M → [T − H]+ + H2 +M (R.4.42) 

The impact of ion-molecule chemistry on the signal distribution at elevated ionization times 

is depicted in Figure 83. The abundance of m/z 92 and m/z 93 on the sum signal of m/z 91 – 93 

is plotted in dependence of the ionization length. Whereas the relative abundance of m/z 93 is 

continuously rising the abundance of m/z 92 decreases with ionization time.  

 

Figure 83:  Relative abundances of m/z 92 (blue trace) and m/z 93 (red trace) in dependence of the 

ionization length (see text for details). 

 

0

5

10

15

20

25

0 5 10 15 20 25 30 35 40

am
o

u
n

t 
o

f 
su

m
 s

ig
n

al
 [

%
]

length of ionization [ms]

m/z 92 m/z 93



Results and Discussion 

 
117 

 

The SWIFT pulses applied within the recording sequence for matrix ion removal have a length 

of approx. 10 ms and are thus too short to cover the entire ionization time at small analyte 

mixing ratios. Further adjustment of SWIFT signals, that remove matrix ions with similar 

efficiency over the whole length of the ionization time is necessary to efficiently suppress ion-

molecule reactions between the neutral analyte and matrix ions. Ion-molecule chemistry 

between analyte ion species, however, remains unaffected. 

Furthermore, at elevated ionization times the ionization pulse is much longer than the 

width of the peak maximum of the transient pressure profile in the ion trap. Thus, ionization 

will not only occur in the peak maximum but also in the pressure tailing. This fact would 

rather lead to lower signal abundances, but must be considered, too. It is concluded that 

prolonged ionization lengths largely exceeding the transient pressure maximum region 

should be avoided. 

 

Relation between signal intensities and peak areas 

All measurements shown so far were evaluated with respect to the recorded ion signal 

intensities instead of peak areas. The relation between signal intensities and peak areas is thus 

investigated. Figure 84 exemplarily shows a dilution series of 10 ppbV to 3 ppmV toluene in 

nitrogen. Evaluated peak areas for each measurement point are plotted in dependence on the 

signal intensities resulting a linear response with an R2 value of 0.994 (cf. Figure 84). Thus, 

data analysis with respect to signal intensities as well as with respect to peak areas is justified. 

 

Figure 84: Correlation plot between signal peak areas and signal intensities. Both data sets are treated with 

previously described ionization length normalization. 
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Temporal resolution 

The temporal resolution of measurements in the pulsed gas sampling mode is essentially 

dominated by the pressure drop after closing the inlet valve. It has been discussed that with 

gas inlet design II a delay time of 300 ms is sufficient to reach suitable trap pressures 

< 10-6 mbar for the ion detection phase. Thus, the total analysis time for a single measurement 

is determined to be about 0.5 s. In repeated measurement cycles, however, it is noted that after 

each measurement sequence several seconds of an extended pumping phase are required to 

avoid a continuous increase of the background pressure. In consequence, the temporal 

resolution with the QIT operated in repeated pulsed gas sampling mode is estimated to 

approx. 20 s. 

 

Reproducibility 

A number of sources within the entire setup and the measurement sequence is affecting 

the analyte signal response: i) the gas pulse characteristics, ii) the electron emission current of 

the filament, iii) the height of the excitation pulse, iv) the detection of image currents, to name 

a few. Reproducibility is examined sampling 500 ppbV toluene in nitrogen (20 ms gas inlet 

from 2.5 mbar). The ionization time is set to 5 ms and ion excitation is applied with a 3.5 µs 

pulse after 900 ms. Avoiding any rise in the background pressure the dwell time between two 

measurements is set to 30 s. Figure 85 demonstrates the analyte signal intensity for m/z 91 in 

dependence of the time of measurements showing a variance of 13 %. 

 

Figure 85: Trend in the signal intensities for toluene at m/z 91 for consecutive measurements. 
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4.8. SWIFT – a powerful tool needing further investigation 

The pivotal importance and power of advanced excitation schemes, in particular of 

SWIFT  for FT analysis based mass analyzers including the present ion trap have already been 

discussed in some detail in chapter 4.4. Due to the elimination of unwanted ion species by 

application of SWIFT waveforms, ion signal suppression is largely avoided and the 

measurement of components at low mixing ratios becomes possible. In addition, a reduction 

of the total ion load within the ion trap prevents, e.g., space charge induced mass shifts. 

 

Capability of analyzing complex mixtures 

A targeted and intelligent application of SWIFT can aid to analyze even more complex 

gas mixtures. With the current setup the simultaneously storable range of m/z values is about 

100 Da. As long as the mixing ratios of the analytes are in the same order of magnitude, the 

mass spectrum represents the correct neutral analyte distribution, assumed that ion-molecule 

chemistry is suppressed and ionization efficiencies of the different compounds are 

comparable. With components present in large excess, however, the analysis of compounds at 

lower mixing ratios will be adversely affected by space charge and ion suppression. The 

application of SWIFT though in an iterative process will potentially allow the analysis of 

complex gas mixtures with analytes present within a broad range of mixing ratios: The first 

spectrum recorded will (only) show the main components (maybe the matrix gas) of the entire 

ion population. In a second run these main components are specifically removed from the 

trap, so that ion species at smaller mixing ratios can be recorded. A repetition of this process 

is possible as long as new ion signals appear. Summing up the iteratively measured spectra, a 

mass spectrum for the entire neutral gas composition is generated. 

 

SWIFT for the stimulus excitation pulse 

The application of SWIFT is not only possible during ionization or ion storage phase but 

can also be used as stimulus excitation pulse followed by transient signal acquisition. Thereby 

a targeted ion excitation of selected m/z ratios or m/z ranges is enabled while other m/z ratios 

are either not excited at all or removed from the trap. Stimulus SWIFT excitation is currently 
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under deep investigation. Such stimulus SWIFT pulses need to be much shorter to allow an 

immediate recording of the transient ion signal. It is pointed out that the rectangular ion 

excitation pulse has a length of several µs and the SWIFT waveforms discussed so far have 

lengths around 10 ms. Such a long excitation pulse applied on the endcap electrodes will 

inevitably lead to loss of ion information. 

The application of stimulus SWIFT is integrated into the measurement software of the 

PreSeries Tool, which is the latest FT-QIT system generation. The user may chose the mass 

range, the length as well as the height of the amplitude of the SWIFT pulse. The corresponding 

waveform is then transparently calculated and applied to the endcap electrodes. Figure 86 

shows data for m/z 28 and m/z 44 from a measurement carried out in residual gas mode at a 

background pressure of 5·10-9 mbar. For ion excitation stimulus SWIFT covering a mass range 

from 10 – 150 Da is applied while varying the length of the stimulus pulse in the range of 1 to 

10 ms and the height of the signal amplitude from 0.1 to 1. 

At low excitation energies characterized by short pulse lengths and small signal 

amplitudes only m/z 28 is detected in the mass spectrum since they are insufficient for 

excitation of m/z 44. Elevated ion energies, especially at a higher SWIFT signal amplitudes 

allow only the detection of m/z 44 since m/z 28 is over excited and thus removed from the ion 

trap. Figure 86 (right) shows clearly the under- and over-excitation regions framing the 

optimum excitation region for m/z 44. 

 

Figure 86: Variation of the amplitude and length of the stimulus SWIFT pulse showing areas of under- 

and over-excitation for m/z 28 (left) and m/z 44 (right). 
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This example demonstrates that stimulus SWIFT can be used for a more targeted ion 

excitation. With the application of the rectangular excitation pulse only m/z 28 was detectable 

in appreciable abundance. When individual narrow mass ranges are selected for the synthesis 

of the stimulus SWIFT waveform rather than the entire 10 – 150 Da mass range as shown 

above, each targeted species can be excited at optimum conditions. 

 

4.9. Plasma-coupling 

Sensitive measurements without the need of SWIFT  

Coupling of the QIT with the plasma source as described in the Experimental section is 

performed in the framework of this work to gain some additional information on the QIT 

behavior. Toluene (T) diluted in nitrogen is the analyte of interest, sampled from a reservoir 

held at 100 mbar. Analyte ions are generated within the confined ionization region. With 

water present at elevated mixing ratios the formation of T·+, [T-H]+ and [T+H]+ is expected. 

Figure 87 shows a mass spectrum recorded in the presence of 100 pptV toluene. Total 

measurement time for this single-shot mass spectrum is 30 s taking into account the gas 

delivery, ion trapping, pumping, analysis and FFT. 

 

Figure 87:  Mass spectrum recorded with 100 pptV toluene in nitrogen present as obtained with micro-

plasma ion trap coupling. 
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A dilution series recorded in the range of 100 pptV to 1 ppbV shows linear response when 

considering the signal intensities and peak areas for m/z 91 (cf. Figure 88 left). Plotting of the 

signal to noise ratio in dependence of the toluene mixing ratios (cf. Figure 88 right), allows the 

determination of the LOD (S/N = 3), which is 130 pptV following linear regression. 

 

Figure 88: Signal intensities and peak areas (left) and signal to noise ratio (right) in dependence of the 

toluene mixing ratio. 

From further experiments carried out with this plasma source e.g. with the CTOF it is known, 

that the total ion yield generated with the plasma source is extremely high, even generating 

matrix ions in large amount. Nevertheless, in the above measurements space charge and ion 

suppression appears to be no problem, although SWIFT is not applied. There are currently 

two possible explanations:  

i. Matrix ions such as N2+, that are not stable in the applied trapping field are 

rapidly lost when entering the ion trap. In case of EI in-trap ionization, however, 

ions with instable trajectories are generated and at least for some RF oscillations 

present inside the ion trap and potentially causing space charge related effects. 

ii. Since the plasma source is operated with helium a distinct helium leakage out of 

the small orifice into the ionization region occurs. It is assumed that despite the 

reversed pumping process a small neutral helium flow through the GC column 

is bleeding into the ion trap. In other commercially available QIT systems helium 

is commonly used as cooling gas. It is thus speculated that the small amount of 

helium introduced in this setup may have a favorable ion cooling effect. 
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Repeated measurement experiments 

A great advantage of the non-destructive ion detection is the fact that the measured ion 

population remains in the ion trap. This allows a repeated measurement of the same ion 

population and the targeted observation of ion-molecule reactions. 

Exemplarily investigated is the chemical conversion of toluene species in hydrogen 

matrix upon the addition of another neutral analyte. The primary generated toluene species 

are the T·+, the [T-H]+ and in significantly larger extent the [T+H]+ ions due to protonation from 

initially generated H3+-ions. Toluene ion-molecule chemistry as already presented further 

above is further driven by a reaction also well known in the literature [168–170]: 

 [T − H]+ + T → C8H9
+ + C6H6 (R.4.43) 

Eventually chemical conversion leads to the formation of C8H9+ at m/z 105 while the abundance 

of the primary toluene ion species decreases. This evolution is depicted in Figure 89. In a first 

measurement mainly the [M+H]+ as base signal in H2 matrix is observed. With the plasma 

source being shut off the stimulus pulse of the FT-QIT is applied in cycles of 9 s showing a 

relative abundance of m/z 105 that is rising whereas the relative abundance of m/z 93 is 

decreasing due to ongoing ion-molecule chemistry. 

 

Figure 89:  Temporal evolution of toluene ion species in repeated measurement experiments, showing an 

increase of m/z 105 simultaneously to a decrease of m/z 93. One cycle represents 9 seconds. 
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4.10. Space charge induced ion coupling 

From FT-ICR and Orbitrap mass spectrometers the coupling of ion populations with 

similar resonance frequencies is well known. This results in a single m/z ratio in the mass 

spectrum reflecting different m/z ratios and is addressed to coalescence coupling. This 

coalescence, however, is only observed at very high-resolution and affects the third or fourth 

decimal place of the calculated m/z. 

In chapter 4.3.1 ion signal suppression caused by increased total ion loads present in the 

ion trap has already been discussed. Furthermore the absence of the xenon isotopes with 

lowest abundance has been mentioned in chapter 4.7.2. In both cases the m/z ratios are at least 

differing by 1 Da. Nevertheless, a similar effect as described with coalescent coupling is 

expected. 

In the recent past initial simulations are carried out investigating the motion of ions with 

different m/z ratios taking into account space charge. For that purpose an ideal trap geometry 

with an ideal quadrupole field is assumed. As benchmark system for the simulation the 

chlorine radical cation isotopes at m/z 35 and m/z 37 are investigated. Currently the simulations 

are performed with 1,000 particles, 500 for each species, respectively. Without adding any 

additional space charge factor for consideration of ion/ion interaction a slowly decreasing 

transient signal is obtained leading to two separated peaks in the frequency spectrum, 

reflecting both ion species present (cf. Figure 90). For all three simulations the bath gas 

pressure is set to 10-5 mbar with N2 as collision gas. 

 

Figure 90: Simulation of m/z 35 and m/z 37 for a total of 1000 particles present without the consideration 

of space charge interactions. Left: Calculated transient signal. Right: Calculated frequency 

spectrum. 
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Space charge caused by a larger number of ions present inside the ion trap is invoked with the 

application of a space charge factor for each particle simulated. Ion transients and frequency 

spectra for two different space charge factors are shown in Figure 91 and Figure 92. With 

increasing number of charges inside the ion trap the transient ion signal is decreasing faster. 

This observation is in well accordance with the transients presented in chapter 4.6. Calculation 

of the simulated frequency spectra shows a significant collapsing of both signals with 

increasing charge state of the trap. 

 

Figure 91:  Simulation of m/z 35 and m/z 37 for a total of 1000 particles present with the consideration of 

space charge factor of 10. Left: Calculated transient signal. Right: Calculated frequency 

spectrum. 

 

Figure 92:  Simulation of m/z 35 and m/z 37 for a total of 1000 particles present with a space charge factor 

of 100. Left: Calculated transient signal. Right: Calculated frequency spectrum. 

An animation of the time-dependent simulated motion of the two ion clouds within the 

trapping field shows that initially both clouds oscillate with their own specific frequency. Only 

at elevated charge states the ion clouds start to synchronize their frequencies, eventually 

oscillating with one frequency. 
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5. Summary and Conclusions 

An open-heart surgery 

Boundary conditions for the design of the novel mass spectrometric setup used in this 

work are strictly defined, especially by robustness, cost-effectiveness, and compactness while 

showing an overall analytical performance exceeding that of RGAs. According to the required 

specifications the FT-QIT system is equipped with a direct gas inlet via a pneumatically driven 

valve and in-trap electron ionization. 

Due to the instrument compactness requirement, analyte ionization, m/z analysis as well 

as ion detection are all carried out within the analyzer itself. Most commonly, however, mass 

spectrometers are constructed with separated regions for ionization, mass analysis and 

detection. This allows, e.g. an optimization of the ion source without influencing the 

performance of the mass analyzer. Operation of the FT-QIT though is comparable to an open-

heart surgery. For instance, just a change in the amount of  introduced gas will influence 

ionization efficiency, affect ion storage phase and at least determine the performance of the 

image current detection. For example, an increased amount of gas will allow a more efficient 

ionization whereas prerequisites for FT based ion detection are low pressures (< 10-6 mbar). 

The presence of the sample gas during the storage phase is assumed to have a favorable ion 

cooling effect, on the one hand, aiding to focus the ions to the center of the ion trap. On the 

other hand the elevated particle density translates to an increased collision frequency 

potentially leading to ion-molecule reactions. 

Nevertheless, the present FT-QIT was successfully applied for initial analytical 

measurements. This required a detailed assessment of the impact of numerous operational 

parameters on the quality of the acquired transient signals and extracted mass spectra. The 

most critical parameters were identified and investigated in much more depth. 

Influences on the signal response 

The influence of a number of parameters on the signal response in FT analyzers is known 

from theory or at least readily understandable. These include the trapping efficiency as 

function of the trapping field amplitude, the extent of the excitation due to the length and 
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height of the applied rectangular excitation pulse as well as the linear range of the charge state 

amplifier. Since the influence of the excitation pulse and the characteristics of the charge state 

amplifier on the signal response are well-determined their influences can be corrected in real-

time, i.e., within the measurement cycles. 

When analyzing complex gas mixtures one must be aware of ion-molecule-reactions 

when the measurement cycle provides enough time for chemistry to occur to some extent. 

Even within the given simple gas mixture of nitrogen and oxygen ion-molecule-reactions 

changed the ion distribution significantly. At first sight, the reaction probability of bimolecular 

reactions is reduced since the QIT is operated at reduced pressure. However, due to the 

oscillation of the RF trapping field ions are moving faster, resulting in elevated and more 

energetic collision frequencies and thus an enhanced reaction probabilities.  

For successful quantitative measurements a constant electron emission current is a 

prerequisite. As known from literature and also demonstrated in this work the emission 

current can be significantly influenced by the composition of the sampled gas mixture due to 

the formation of, e.g. oxide layers when sampling O2.  

Avoiding space charge 

A major issue when examining influences on the entire QIT performance and thus ion 

signal responses is represented by space charge and ion trap overload. Multiple parameters 

can be varied to enhance or reduce the number of generated ions within the trap: length of the 

gas inlet, sample pressure, ionization time, and electron emission current, among others. 

There appears to be only a small margin between optimum yield in ion signal intensities and 

significant ion signal loss. Since the application of SWIFT reduces the total ion density within 

the trap, the maximum dynamic range reachable with the above listed parameters is strongly 

enhanced. 

A limitation of the dynamic linear range to merely two orders of magnitude has been 

demonstrated for measurements carried out with a fixed set of parameters. This is in well 

accordance with recently evaluated ion trajectory simulations which suggest that the presence 

of approx. 100,000 ions (i.e., 1,000 simulated particles and a space charge factor of 100) decides 

whether reasonable ion signals are extractable from the transient signal or space charge 

induced effects (mass shift, ion signal collapse, ion signal loss) occur. Even the absence of the 
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xenon isotopes with lowest abundance (~2 %) is explainable due to the currently assumed 

maximum number of acceptable charges and the limited linearity range within a single 

measurement. 

Most critical parameter in FT-QIT operation: gas inlet 

The pulsed gas inlet is judged to be one of the most crucial parameters in FT-QIT 

operation and performance. Two major issues have been identified:  

i) The pulsed gas inlet with upstream pressures of > 1 mbar leads to strongly elevated 

particle densities within the ion trap volume. In combination with in-trap electron 

ionization this causes an increased number of generated ions inevitably leading to 

space charge related problems.  

ii) The transient pressure profile inside the ion trap is predominantly determining the 

measurement sequence. Time for ionization, length of storage phase as well as time 

for ion excitation have to be adapted to the pressure profile allowing optimum 

measurement conditions. 

Two different approaches for the analysis of the pressure profile were used: i) recording of the 

pressure gauge data and ii) examination of the analyte ion signal response. Eventually, the 

combination of both approaches provides a reasonable estimation of the pressure profile 

inside the ion trap and allows the determination of the absolute pressure in the gas pulse 

maximum. The characterization of the transient gas pulse allows an adaption of the 

measurement sequence, i.e., ionization within the pressure maximum and delayed data 

acquisition at suitable trap pressures for image current detection. With the current gas inlet 

design trap pressures < 10-6 mbar are reached within 300 ms. A further enhancement of the 

multiple measurement duty cycle in addition to a reduction of the ion collision frequency can 

be reached by reducing the gas load, as e.g. provided by fast switching gas jet valves. For 

efficient analyte ionization, especially at low analyte mixing ratios, however, elevated 

ionization times are necessary, which are in contradiction with shorter gas inlet pulses. An 

enhanced pump-down rate is only reachable by an increase of the QIT gas conductance, which 

translates to major re-designs of the system. Application of a faster switching valve can be of 

interest when sampling from elevated upstream pressures. 
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Analytical performance 

Under optimized measurement conditions the analytical performance is examined. 

According to the figures of merit a limit of detection for toluene of 1 ppbV in either nitrogen 

or hydrogen is evaluated. Mass resolution is investigated for three different analytes 

(diborane, krypton and xenon) showing R > 5,000 in all three cases when evaluating a 100 ms 

FFT-window. Increased mass resolution upon applying a longer FFT-window is also 

observed. If significant drifts in room temperature are avoided, mass accuracy is kept 

< 500 ppm. The liner dynamic range is limited to two orders of magnitude with a constant set 

of measurement parameters in response to the maximum tolerable total number charges 

inside the ion trap. An increase of the linear range, however, is successfully reached by a 

normalization of the obtained signal intensities or peak areas, respectively, with the length of 

the applied ionization pulse. Hence, an enhancement of the linear dynamic range to 4 orders 

of magnitude was successful. Further examinations on the capability of measuring complex 

gas mixtures due to the application of e.g. SWIFT excitation schemes are under current 

investigation. 

Comparison to benchmark instruments 

A direct comparison of the analytical performance of the FT-QIT to the two benchmark 

systems requires careful consideration of a variety of diverse figures of merit. Outstanding 

analytical performance is reached with the TOFWERK CTOF coupled with micro-plasma 

based ionization, especially with regard to sensitivity (LOD < 10 pptV toluene). The upstream 

pressure for these investigations, however, is with ~ 500 mbar significantly higher than in the 

operation modes of the QIT. How far analytical performance can be maintained with the TOF 

system when lowering the upstream pressure needs further investigation. The quadrupole 

based RGA system of MKS performs as expected by the given specifications, reaching nominal 

mass resolution and LODs in the range of 1 ppbV for toluene in nitrogen. The RGA system 

allows the acquisition of selected mass range windows, which strongly reduces measurement 

time. In addition the obtained mass spectra are searchable in databases such as the NIST mass 

spectral database, since 70 eV electron ionization is strictly applied. The current analytical 

performance of the FT-QIT system has been summarized further above. It is expected that this 

performance will be strongly enhanced in the near future due to the targeted application of 
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e.g. SWIFT pulses and a precise determination of the actual ion trap load. For both benchmark 

instruments a degradation of the device surfaces is expected due to continuous exposition in 

e.g. hydrogen atmosphere. It is noted though that this issue is generally less important for 

these devices, since the analyzer region is constantly kept at high vacuum conditions. Table 

13 summarizes the currently achievable performance of the three systems. 

Table 13: Summary of analytical specifications of the benchmark instruments and the FT-QIT. 

 Tofwerk CTOF MKS RGA Zeiss FT-QIT 

Considered setup Upstream pressure: 

500 mbar; 

µ-plasma based 

ionization source in 

PT and CT mode 

Upstream pressure: 

500 mbar; 

70 eV electron 

ionization 

Upstream pressure: 

10 mbar; 

In-trap electron 

ionization; 

Pulsed gas inlet 

Mass range 10 – 300 1 – 300 10 – 200 

Mass resolution 1000 Nominal mass > 5000 

LOD < 10 pptV toluene ~ 1 ppbV toluene < 1 ppbV toluene 

Measurement time 30 s accumulation 3 ms per data point max. 30 s 

Linear dynamic 

range 

5 orders of 

magnitude 

> 4 orders of 

magnitude 

> 4 orders of 

magnitude 

Robustness against 

corrosive gases  

Not known Not known Inert surfaces, robust 

against corrosives 

Special feature Ion transfer with 

Notch filter for 

removal of 

background/matrix 

ions 

Spectra comparable 

to databases; short 

measurement time 

for small mass 

ranges 

SWIFT for removal of 

background/matrix 

ions, possible 

repeated excitation of 

same ion population 
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6. Outlook 

The results presented in this work allowed a critical evaluation of the performance and 

the characteristics of the FT-QIT in the current setup. Nonetheless further investigations are 

necessary. 

SWIFT is a very promising tool for the application during ion storage phase and 

especially for ion excitation. However, SWIFT theory and the related calculations and 

simulations rely on ideal trap operating conditions. How far SWIFT theory can be transferred 

to the real system including the pulsed gas inlet calls for further in-depth studies. For this 

purpose the in-situ determination of the total ion load within the trap is required. Such a tool 

would allow experiments showing whether or not SWIFT actually leads to ion removal. The 

accurate determination of the total ion load is equally important with regard to the realization 

of a pre-scan feature. In future experiments a pre-scan may be used to actively control the ion 

load largely avoiding space charge induced effects. According to the trap load, ionization time, 

electron emission current or sample pressure can be adjusted. In addition, a comparison of 

results obtained from simulations and measured total ion loads allows the determination of 

acceptable maximum charge loads of the ion trap. 

For quantitative measurements constant measurement conditions are necessary. This 

includes a constant electron emission current. A decrease of the electron emission current due 

to the addition of e.g. O2 as presented in this work is not acceptable. Hence an active control 

of the electron emission current needs to be integrated in future devices. 

It is assumed that the analytical performance can be strongly enhanced by the coupling 

of external ionization sources via an ion transfer stage to the QIT, since more controllable 

operational conditions can be applied. The coupling of an ion transfer stage will fairly 

compromise the compactness of the entire setup and it will depend on the application whether 

or not the resulting larger footprint is tolerable. If however an increased footprint can be 

tolerated different setups are conceivable based on a modular structure with the QIT chamber 

as main module. 

Considering EI as favored ionization method, external electron ionization may be a 

solution for a number of applications. This requires the coupling of an upstream chamber held 

at constant pressure (approx. 10-4 mbar) and necessitates ion transfer into the QIT. This 
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constitutes a significant advantage, as the gas load is strongly reduced and especially the 

charge load is controlled, allowing a trap operation at optimum conditions. In addition, since 

the electron energy is then adjustable the acquisition of mass spectra comparable to 70 eV 

databases is possible. 

Enabling the utilization of a wider compendium of ionization methods as for example 

API based ion sources will certainly ask for more sophisticated ion transfer stages. The 

appropriate delivery of ions into the ion trap as well as the removal of e.g. matrix ions within 

the ion transfer stage will then be the most demanding tasks. However, an efficient ionization 

method and the removal of large ion ensembles within the transfer will enable FT-QIT 

operation under reasonable pressure conditions and without suffering from noticeable space 

charge effects. Hence, sensitive measurements with favorable mass resolution become 

feasible. 

Since ion detection within the FT-QIT is non-destructive, the ion population remains in 

the trap, which may allow post ionization treatments of the primarily generated ion 

population with e.g. subsequent in-trap electron excitation. Thus, targeted fragmentation of 

primary generated ions may be feasible, potentially providing structural information.  
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