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Foreword

The core of this thesis is based on the following publications which have been written
during the time of my PhD studies from May 2013 till December 2016.

• C. Hendricks, M. Ehrhardt, and M. Günther. High-Order ADI Schemes for Diffusion
Equations with Mixed Derivatives in the Combination Technique. Appl. Numer.
Math., 101:36–52, 2016.

In this article high-order-compact finite differences in combination with ADI time
stepping methods are applied to multi-dimensional diffusion equations. Further-
more, the stability of these schemes is analyzed in the von Neumann framework. It
can be shown that the stability regions of the proposed schemes coincide with their
central second-order finite difference counterparts. Thus, one can obtain fourth-
order accuracy in space without any restrictions regarding the stability. For higher
dimensional problems grid based methods suffer from an exponential growth of the
number of unknowns – the curse of dimensionality. In order to compute solutions
with significantly less grid nodes while maintaining a high accuracy in space we use
the sparse grid combination technique.

Parts of Sections 3.3.1–3.3.2 and the numerical experiments in Section 3.3.4 have
been taken from this publication.

• C. Hendricks, C. Heuer, M. Ehrhardt, and M. Günther. High-Order ADI Finite
Difference Schemes for Parabolic Equations in the Combination Technique with
Application in Finance. J. Comput. Appl. Math., to appear, 2016.

The idea of high-order ADI schemes is carried over to general convection-diffusion
equations with space-dependent coefficient functions. The stability is investigated
for the frozen coefficient case in a two-dimensional setting within the von Neumann
framework. The stability analysis in three and four spatial dimensions is performed
experimentally. In addition to this, numerical experiments with multi-dimensional
basket option pricing problems in a sparse grid setting illustrate the theoretical
findings.

Sections 2.2, 3.3.3 and the numerical experiments in Section 4.3.2 contain excerpts
of this publication.

• C. Hendricks, M. Ehrhardt, and M. Günther. Error Splitting Preservation for High
Order Finite Difference Schemes in the Combination Technique. Numer. Math:
Theory, Models and Appl., to appear, 2016.

In this work the error splitting structure of fourth-order finite difference schemes
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is analyzed. The analysis follows the approach presented in the seminal article by
Reisinger [79]. Furthermore, we show how to preserve the splitting structure with
multivariate interpolation schemes. The multivariate interpolant is constructed as a
tensor product of univariate interpolation schemes. Since in the sparse grid combi-
nation technique the discrete finite difference sub-solutions have to be extended via
interpolation the preservation of the error splitting structure is especially important
in order to maintain a high accuracy on the entire domain.

The derivation of the error splitting structure for finite difference schemes in Section
2.4.1 is based on this publication.

• C. Hendricks, M. Ehrhardt, and M. Günther. High Order Combination Technique
for the Efficient Pricing of Basket Options. Acta Math. Univ. Comen., 84(2):243–
253, 2015.

Here, fourth-order finite difference schemes are used to price European basket op-
tions under the multi-dimensional Black-Scholes model. In order to attack the curse
of dimensionality the sparse grid combination technique is applied. Furthermore,
grid transformations are employed to simplify the partial differential equation. The
adverse effects due to the non-smooth nature of the payoff function are tackled with
the smoothing operator given by Kreiss et al. [62].

The numerical schemes in Section 4.3 are inspired by this work.

• C. Hendricks, M. Ehrhardt, and M. Günther. Hybrid Finite Difference / Pseu-
dospectral Methods for the Heston and Heston-Hull-White PDE. J. Comp. Fin.,
to appear, 2016.

In this article we propose a hybrid spatial finite difference / pseudo-spectral dis-
cretization for European option pricing problems under the Heston and Heston-
Hull-White model. The scheme exploits the regularity of the solution in direction
of certain coordinates by combining different discretization techniques. In the time
direction we use ADI splitting methods. Due to the decomposition of the spatial
discretization matrix the scheme can be shown to be very efficient. The computa-
tional complexity is analyzed and proven by numerical experiments. It turns out
that the proposed method is able to beat its second-order benchmark method and
provides robust and accurate results.

Sections 3.4, 3.5 and 4.4 are based on this article.
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1 Chapter 1

Introduction

In todays financial markets derivatives are important products for traders and investors.
They can be understood as some kind of insurance against the market risk of an uncertain
development of future prices. Hence, they give market participants the possibility to
manage their risk of a position in a portfolio of asset. Furthermore, derivatives can be
actively traded to achieve speculative gains. A financial derivative is a right, whose price
depends on the market price of other financial instruments. The dependent instrument is
called underlying. Typical underlyings are

• securities, e.g. stocks, bonds,

• indices, e.g. DAX 30 (Deutscher Aktien Index), FTSE 100 (Financial Times Stock
Exchange),

• interest rates, e.g. 3-months Euribor, 3-months Libor,

• currencies, e.g. Euro, US-Dollar,

• derivatives, e.g. options, futures, swaps.

We cite the definition of derivatives according to the German stock trading law §2 Abs.
2 WpHG, see [34]:

Definition 1. Derivatives
Derivatives according to the law are

1. forward transactions or option contracts, whose price conditionally or uncondition-
ally depends on

a) the exchange or market price of securities,

b) the exchange or market price of money market instruments,

c) interest rates or other earnings,

d) the exchange or market price of commodities or precious metals,

2. forward exchange transaction which are traded at an organized market, foreign ex-
change options, currency swaps, currency swap option transactions, currency future
option transactions.

Financial derivatives can roughly be divided into two categories: conditional and uncon-
ditional forward transactions. Unconditional derivatives force both contract partners to
fulfill the contractual obligation, while conditional derivatives give the buyer the oppor-
tunity to either exercise his right or to let it expire. An obligation only applies to the

1



2 1 Introduction

seller of the contract. Derivatives allow to separate market risks of underlyings, so that
they can be traded individually. This enables market participants to use them for

• speculation:
traders exploit price differences in the time lapse to earn money. Compared to a di-
rect investment in the underlying, only a small fraction of capital has to be invested.
The resulting leverage effect offers the opportunity to participate disproportionately
in price moves. On the one hand this enables to earn large speculative gains, but
on the other hand it leads to a high risk of loosing the invested money or even of
running into debts.

• arbitrage:
traders utilize price differences to earn money without or with hardly any risk. For
example, they could buy a stock at one exchange and sell it at another, if the
prices are different. Following the efficient market hypothesis with the no-arbitrage
principle there should not be any opportunity for arbitrage.

• hedging:
market participants hedge their portfolio to prevent financial risks. For example,
an investor with long positions in stocks can buy financial derivatives to hedge his
portfolio against sudden price crashes.

In this thesis we focus on conditional forward transactions in the form of options. We cite
the definition of a financial option from [34]:

Definition 2. Options
Options are standardized, exchange traded contracts, which give the buyer the right, but
not the obligation

• to buy (Call) or sell (Put)

• a predefined amount of an underlying

• within a specified time period or at a fixed date,

• at a price K, specified at conclusion of the contract.

In the following we give examples of the most common option styles:

• European option: the option can only be exercised at maturity.

• American option: the option can be exercised at any time during the term of the
option.

These option types are often referred to as plain vanilla options. Beside them there is
a huge variety of different option contracts, the so called exotic options, such as Asian,
Russian, or lookback options, etc. Here the option price often depends on the value of
the underlying during a certain time interval. Options with this feature are called path-
dependent.
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Figure 1.1: Payoff profile for plain vanilla call and put options with strike K = 100.

1.1 Mathematical Models

In the previous section we have discussed the importance of derivatives and options in
modern financial markets. For traders and investors the question arises of what is the
fair price of an financial option. The value of a plain vanilla option is determined by its
payoff profile at maturity, but the value at contract conclusion is unknown. For example,
the payoff of a plain vanilla call and of a put option is given by

φ(s) = max{s−K, 0} =: (s−K)+ (Call),

φ(s) = max{K − s, 0} = (K − s)+ (Put),

where the asset price is denoted by s and the strike price is K ∈ R+. Figure 4.2 shows
the payoff functions φ for call and put options. In order to compute the fair price,
mathematical models have to be applied. The price dynamics of the underlyings can
be described via stochastic differential equations (SDEs). One very important classical
model to describe the price movements of stocks is the Black-Scholes model.

Definition 3. Black-Scholes model
The d-dimensional Black-Scholes model consists of d assets with dynamics:

dsi(t) = µisi(t)dt+ σisi(t)dWi(t),

where µi is the drift and σi the volatility of asset si for i = 1, 2, . . . , d. The Wiener
processes Wi and Wj are correlated with dWidWj = ρijdt.

In the Black-Scholes framework the volatilities σi are assumed to be constant, which is one
of the main restrictions of this model. Market data reveals that in practice volatilities are
not constant. In equity markets one often observes a volatility smile for short maturities
and a volatility skew for long maturities, see Figure 1.2. More sophisticated models assume
a local volatility function or model the volatility by an additional stochastic process.

Definition 4. [19, 20] Dupire - Local volatility model
The local volatility model assumes the asset price to follow the SDE

ds(t) = µs(t)dt+ σ(s(t), t)dW (t),

where µ is the drift and the volatility σ depends on the spot price s and the time t.
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Figure 1.2: Volatility smile and skew pattern of Black-Scholes implied volatilities fitted to
market prices and to prices of the Heston model. Historical option quotes of
the Adidas R© stock were taken from Eurex R© 07.22.2016.

The local volatility function can be computed from the quoted call option prices c via

σ(K, t) =
1

K

√√√√2
∂c
∂t (K, t)
∂2c
∂K2 (K, t)

.

For details we refer to [19, 20]. Further local volatility models were introduced by Derman
and Kani [15] and Rubinstein [81].

Definition 5. Stochastic volatility models
In stochastic volatility models the dynamics of the stock price s as well as of the volatility
v are determined by stochastic processes

ds(t) = µs(t)dt+
√
v(t)s(t)dW1(t),

dv(t) = α(v(t), t)dt+ β(v(t), t)dW2(t),

with correlated Wiener processes dW1dW2 = ρ12dt.

Stochastic volatility models are frequently used in practice, as they can describe the
volatility patterns which we observe in the markets. Figure 1.2 shows the Black-Scholes
implied volatilities of Adidas R© option quotes in comparison to the implied volatilities of
a fitted stochastic volatility model (Heston). We observe that the stochastic model is
capable of modeling the volatility structure much better than with a constant volatility
as assumed by the Black-Scholes model.

We cite two well-known models: the Heston model and the SABR model.

Definition 6. [46] Heston model
In the Heston model the spot price and volatility follow the processes

ds(t) = µs(t)dt+
√
v(t)s(t)dW1(t),

dv(t) = κ(θ − v(t))dt+ σ
√
v(t)dW2(t),

with correlated Wiener processes dW1dW2 = ρ12dt.

Definition 7. Stochastic Alpha, Beta, Rho (SABR) model [39]
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The SABR model assumes the forward price f(t) of the stock to follow the process

df(t) = α(t)f(t)βdW1(t),

dα(t) = σα(t)dW2(t),

with volatility α and correlated Wiener processes dW1dW2 = ρ12dt.

The stochastic processes for the spot price s(t) = e−r(T−t)f(t) can be derived with the
help of the Itô Lemma (Lemma 9)

ds(t) = rs(t)dt+ e−r(T−t)(1−β)α(t)s(t)βdW1(t),

dα(t) = σα(t)dW2(t).

The gap between SDEs, which describe the movement of the underlyings to the fair option
value can be closed with the main principles of derivative pricing. We cite from [30]:

1. If a derivative security can be perfectly replicated (equivalently hedged) through
trading in other assets, then the price of the derivative security is the cost of the
replicating trading strategy.

2. Discounted (or deflated) asset prices are martingales under a probability measure
associated with the choice of discount factor (or numeraire). Prices are expectations
of discounted payoffs under such a martingale measure.

3. In a complete market, any payoff (satisfying modest regularity conditions) can be
synthesized through a trading strategy and the martingale measure associated with
a numeraire is unique. In an incomplete market there are derivative securities that
cannot be perfectly hedged; the price of such a derivative is not completely deter-
mined by the prices of other assets.

Incorporating these principles, one can show that the option’s price u is the discounted
expected payoff under the risk neutral probability measure Q

u(s(t), t) = e−r(T−t)EQ(φ(s(T ))|s(t))

= e−r(T−t)

∫
R

φ(y)f(y|s(t))dy, (1.1)

where r is the risk free interest rate, T the maturity and f the density of the underlying’s
process. For a detailed derivation we refer to [30]. For most models the density f is not
available in closed form. Therefore, numerical techniques have to be applied to compute
the expectation. Three different classes of solvers are frequently used in computational
finance:

• Monte Carlo methods
The system of SDEs is solved to draw samples from the density function. Let Si be
a realization of the stochastic process at point in time T with initial value s(t), then
it follows by the central limit theorem for independent and identically distributed
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random numbers

lim
N→∞

1

N

N∑
i=1

φ(Si) =

∫
R

φ(y)f(y|s(t))dy,

where N is the number of realizations. The standard deviation of the difference
between the sum truncated at fixed N and the integral can be shown to decrease
with order O(N−1/2). The slow convergence is one of the main drawbacks of Monte
Carlo methods. However, the accuracy can be improved by variance reduction
techniques, such as antithetic sampling, control variates, etc, and by incorporating
proper random number generators, e.g. Fibonacci generators, Sobol sequences, etc.
On the other side Monte Carlo methods have two important advantages, see [83]: the
order of accuracy holds independently of the dimension and the integrand does not
have to be smooth as square integrability suffices. Furthermore, the computational
complexity depends only weakly on the dimensionality. A detailed introduction to
Monte Carlo methods can be found in many textbooks, e.g. [30, 83].

• Numerical integration
The integral in (1.1) is solved numerically. Typically, the density f is not known,
but its characteristic function, given via

ϕ(x) =

∞∫
−∞

f(y)eixydy,

is available. From the definition it becomes clear that the characteristic function can
be seen as the continuous Fourier transform of the density. By application of the
inverse transform the density can be recovered. As the inverse can often not be de-
rived analytically, numerical methods have to be used. The discrete transforms can
be computed via the Fast Fourier Transform (FFT) algorithm with O(N log2(N))
operations, where N is the number of grid points within the numerical quadrature.
In the literature several approaches have been discussed to efficiently compute the
option values via Fourier transform techniques, e.g. in [12, 26, 35]. The advantage
of this approach is its high accuracy with a very low computational effort. For ex-
ample, the price of an European option under the Heston model can be computed
with geometric accuracy in linear run-time with the COS method [26]. However, the
technique relies on the characteristic function given in closed form. The covariance
matrix of the system of SDEs has to fulfill certain affinity relations [18], such that
the characteristic function can be derived. This restricts the applicability of the
approach to certain problem classes.

• Partial differential equations (PDEs)
With the help of the Feynman-Kac formula or the Itô Lemma a link between the
expected payoff of the price process and the solution of a PDE can be established.
As in general an analytical solution to the arising PDE is unknown, numerical
techniques have to be applied. Standard techniques rely on a discretization of the
time-space domain, e.g. by finite differences [38, 51, 60], which results in a linear
equation system with unknowns representing option values at certain grid nodes.
Generally PDE techniques are more expensive compared to the integration methods
described above and suffer, as a grid-based method, from the curse of dimensionality,
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but are advantageous in terms of general applicability.

1.2 Partial Differential Equation Methods in Computational
Finance

In this thesis we focus on PDE methods to compute the fair option value. The following
Feynman-Kac formula provides a link between the model in form of SDEs and the PDE
of the option price. For option pricing problems the payoff φ is generally non-smooth and
not twice differentiable, thus further techniques have to be employed to make it applicable.
According to [73] the Feynman-Kac formula then applies to most payoffs of financial assets
for log-normal models. Alternatively, one can use the Itô Lemma in combination with
standard no-arbitrage arguments to derive the PDE formulation of the pricing problem,
see e.g. [73, Section 3.3].

Theorem 8. [73, Proposition 2.5.1.] Feynman-Kac formula
Let the function g(x) be bounded, let φ(x) be twice differentiable with compact support in
K ⊂ R, and let the function q(x) be bounded from below, and let Xt be given by the SDE

dXt = a(Xt)dt+ b(Xt)dWt.

• For t ∈ [0, T ], the Feynman-Kac formula is

u(t, x) = E

 T∫
t

g(Xs)e
−

∫ s
t q(Xu)du + e−

∫ T
t q(Xs)dsφ(XT )

∣∣Xt = x


and is a solution of the following partial differential equation

∂

∂t
u(t, x) +

1

2
b2(x)

∂2u

∂x2
(t, x) + a(x)

∂u

∂x
(t, x)− q(x)u(t, x) + g(x) = 0 (1.2)

u(T, x) = φ(x). (1.3)

• If ω(t, x) is a bounded solution to equations (1.2) and (1.3) for x ∈ K, then ω(t, x) =
u(t, x).

Lemma 9. [73, Lemma 2.3.1.] Itô Lemma
Consider the process Xt with the SDE

dXt = a(Xt)dt+ b(Xt)dWt.

For a function u(t, x) with at least one derivative in t and at least two derivatives in x,
we have

du(t,Xt) =

(
∂

∂t
+ a(Xt)

∂

∂x
+
b2(Xt)

2

∂2

∂x2

)
u(t,Xt)dt+ b(Xt)

∂

∂x
u(t,Xt)dWt.

Let a stock be governed by the Black-Scholes SDE (3) with d = 1, then either with the
help of Theorem 8 or Lemma 9, one can show that the option value u has to fulfill the
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following PDE in a risk-neutral setting

∂u

∂t
+

1

2
σ21s

2∂
2u

∂s2
+ rs

∂u

∂s
− ru = 0, (1.4)

Similar to this one dimensional example, a multivariate version of the Feynman-Kac
formula or the Itô Lemma can be applied to derive PDEs of the multidimensional models:

Multivariate Black-Scholes PDE The multi-dimensional Black-Scholes PDE with d ∈ N
assets is given by

∂u

∂t
+

1

2

d∑
i,j=1

σiσjρi,jsisj
∂2u

∂si∂sj
+

d∑
i=1

rsi
∂u

∂si
− ru = 0, (1.5)

u(s1, s2, . . . , sd, T ) = φ(s1, s2, . . . , sd),

in the space-time cylinder Ωd×Ωt with Ωd = [0,∞)d, Ωt = [0, T ]. For a European basket
option the payoff is typically given by

φ(s1, s2, . . . , sd) =

(
d∑

i=1

wisi −K

)+

(Call),

φ(s1, s2, . . . , sd) =

(
K −

d∑
i=1

wisi

)+

(Put),

with positive weights wi for i = 1, 2, . . . , d summing up to one.

Heston PDE The Heston PDE [46] is given by

∂u

∂t
+

1

2
s2v

∂2u

∂s2
+ ρ12σ1sv

∂2u

∂s∂v
+

1

2
σ21v

∂2u

∂v2
+ rs

∂u

∂s
+ κ(η − v)

∂u

∂v
− ru = 0, (1.6)

u(s, T ) = φ(s),

for time t ∈ [0, T ], asset s ∈ [0,∞) and volatility v ∈ [0,∞). The risk-less interest rate is
denoted by r and the volatility of the volatility by σ1. The long-term mean of v is given
by η, while κ denotes the mean reversion rate of v. The correlation between the asset and
the volatility is given by ρ12.

Heston-Hull-Whilte PDE The Heston-Hull-White (HHW) model is an extension of the
Heston model, where the interest rate is assumed to follow a mean-reverting process. The
option value is assumed to satisfy the PDE

∂u

∂t
+

1

2
s2v

∂2u

∂s2
+

1

2
σ21v

∂2u

∂v2
+

1

2
σ22
∂2u

∂r2
+ ρ12σ1sv

∂2u

∂s∂v
+ ρ13σ2s

√
v
∂2u

∂s∂r

+ ρ23σ1σ2
√
v
∂2u

∂v∂r
+ rs

∂u

∂s
+ κ(η − v)

∂u

∂v
+ ar(br − r)

∂u

∂r
− ru = 0, (1.7)

u(s, T ) = φ(s),
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for time t ∈ [0, T ], asset s ∈ [0,∞), volatility v ∈ [0,∞) and risk-free interest rate r ∈
(−∞,∞). Compared to the Heston model, the HHW model has the following additional
parameters: the volatility of the interest rate is σ2; the long-term mean of r is given by br
and its mean reversion rate by ar; the correlation between s and r is denoted by ρ13 and
between v and r by ρ23. Although the Heston and HHW model were initially derived for
one underlying asset, they can be extended to a basket of assets, where the volatility of
each asset is driven by one stochastic process.

1.3 Literature Overview and Outline of this Thesis

The PDEs arising in financial option pricing problems, such as (1.5), (1.6), (1.7), are in
general of convection-diffusion-reaction type

∂u

∂t
= Lu, (x, t) ∈ Ωd × Ωt,

with Lu =

d∑
i,j=1

aij
∂2u

∂xi∂xj
+

d∑
i=1

ci
∂u

∂xi
+ bu, (1.8)

on a rectangular domain Ωd × Ωt with suitable initial and boundary data. This thesis is
focused on the derivation of numerical methods to solve PDEs of this form in a financial
option pricing setting.

In the literature several methods have been discussed to solve the PDEs arising in financial
option pricing problems. The most common approach is to apply central finite differences
to discretize the spatial domain with second-order accuracy, e.g. in [37, 38, 51, 60]. In
a low dimensional setting Crank-Nicolson time marching is frequently used [4, 60, 90].
Even for a moderate number of spatial dimensions the resulting system of linear equa-
tions becomes expensive to solve. In’t Hout et al. [37, 38, 51] applied dimensional splitting
techniques, such as Alternating Direction Implicit (ADI) schemes, to derive efficient meth-
ods for the Heston and Heston-Hull-White PDEs. In addition to second-order accurate
schemes higher-order discretizations were introduced and discussed by various researchers
as well: Leentvaar and Oosterlee [66, 67] used standard fourth-order finite difference ap-
proximations, while Linde [69] employed broad sixth-order finite difference stencils. These
schemes are generally more expensive from a computational point of view, since the dis-
cretization matrix is broadly banded. With the help of so called high-order-compact
(HOC) schemes one can derive a fourth-order accurate approximation on the compact
stencil [3, 21, 22, 47, 89]. Düring et al. [21, 22] constructed HOC schemes for stochas-
tic volatility models with one underlying asset and one risk-factor as well as for basket
options. In the time domain they applied Crank-Nicolson time stepping. Recently ADI
splitting in combination with HOC discretizations has been introduced for convection-
diffusion equations with mixed derivatives and constant coefficients by Düring et al. [23].
Their work was extended to PDEs arising in stochastic volatility models [25] and to the
multivariate Black-Scholes model in [45].

Although the computational workload can be reduced significantly with ADI methods
and the possibility to use HOC discretizations enables to achieve highly accurate solutions
with fewer grid nodes, the methods still suffer from the exponential growth of the number
of unknowns in a tensor based grid. For example, if 64 grid nodes are applied in each
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coordinate direction, we have 4,096 degrees of freedom in a two-dimensional domain, but
we already have 16,777,216 in a four-dimensional setting. Due to this immense growth
the problems become very expensive to solve and the limit of finite available memory is
reached quickly. In order to circumvent this curse of dimensionality, one can apply the
sparse grid combination technique [33]. The method exploits the error structure of the
underlying numerical scheme to reduce the number of grid nodes, while maintaining a high
accuracy. In a financial setting the combination technique has been applied successfully
to basket option pricing problems with second-order accuracy by Reisinger [78] and with
standard fourth-order finite differences by Leentvaar and Oosterlee [66].

Beside finite differences other discretization techniques to solve PDEs in financial en-
gineering applications have been applied as well, e.g. finite element-finite volume [100],
multigrid [13] and spectral methods [44, 74, 99].

In this thesis we aim to derive efficient numerical schemes for option pricing in multiple
space dimensions. Therefore, we combine several numerical approaches: in the spatial
domain we consider high-order finite differences and spectral discretizations under variable
transformations. The transformations allow to simplify the equation and to cluster grid
points in a critical region where a high accuracy is desired. In the time domain we apply
ADI time stepping. Based on the stability results for ADI schemes in [54, 55, 63, 71] we
derive stability bounds for high-order finite difference ADI schemes applied to diffusion
and convection-diffusion equations in the von Neumann framework.

Spectral methods with ADI splitting have rarely been used in the literature. To our best
knowledge there only exists one article by Zeng et al. [97]. In order to motivate the use
of ADI time stepping with a spectral discretization in space we discuss and numerically
validate the computational effort. The stability of these methods is analyzed numerically.

Furthermore, we apply the sparse grid combination technique to compensate the effects of
the curse of dimensionality. The technique is used for high-order finite differences as well
as for pseudo-spectral methods. We investigate for which problem classes and regularity
requirements sparse grids are suitable and superior to the full-grid approach.

After the methods have been introduced and their properties have been analyzed, we
apply them to price basket options and options under stochastic volatility. As a test case
for two- and three-factor models we consider the Heston and Heston-Hull-White PDE. We
derive hybrid schemes, which use, depending on the regularity of the solution, different
discretizations in the single coordinate directions.

1.3.1 Outline

In Section 2 we discuss approximations of the spatial operator L. First standard finite
differences are introduced, which are frequently used in practice. Based on these finite
difference stencils HOC discretizations are derived. They enable us to achieve fourth-order
accuracy on the compact stencil. Hence, one can compute highly accurate solutions with
the same computational effort as with second-order finite differences. In Section 2.3 we
consider, in contrast to the local approximation approach of finite differences, the global
ansatz of pseudo-spectral methods. These methods are highly accurate if the solution
fulfills certain regularity requirements. In order to reduce the number of grid nodes
within the spatial grid, we apply sparse grids for finite differences and pseudo-spectral



1.3 Literature Overview and Outline of this Thesis 11

schemes.

Section 3 is devoted to the time discretization. Here we investigate the properties of
Alternating Direction Implicit (ADI) splitting schemes for high-order (HO) spatial dis-
cretizations. In the case of HO finite difference methods we derive stability bounds for
diffusion and convection-diffusion equations in the von Neumann framework. In the case
of pseudo-spectral methods we are especially interested in the stability properties of hybrid
methods, which use pseudo-spectral differentiation as well as finite differences depending
on the spatial direction. The combination of different discretization methods allows to
exploit special features of the solution of option pricing problems.

The methods introduced and discussed in Sections 2 and 3, are applied to basket options
under the Black-Scholes model and to stochastic volatility models in Section 4.





2 Chapter 2

Spatial Discretization

In this chapter we introduce the spatial discretization of the spatial operator L

∂u

∂t
= Lu, (x, t) ∈ Ωd × Ωt,

Lu =

d∑
i,j=1

aij
∂2u

∂xi∂xj
+

d∑
i=1

ci
∂u

∂xi
+ bu,

on a rectangular domain Ωd × Ωt with suitable initial and boundary data. The spatial
approximation of the PDE on the discrete grid Ωl , given in Definition 10, leads to a
semi-discrete system of ordinary differential equations (ODEs) of the form

U ′(t) = F (t)U(t), t ≥ 0, (2.1)

with initial value U(0) = U0 ∈ R(N1+1)·(N2+1)·...·(Nd+1) and discretization matrix F (t) ∈
R(N1+1)·(N2+1)·...·(Nd+1)×(N1+1)·(N2+1)·...·(Nd+1) if L is discretized on the grid Ωl .

In the following we introduce several discretization techniques and state the resulting
matrix F . First, we discuss the local approximation of derivatives with standard finite
differences. The derivation is usually based on a truncation of the Taylor series. If a highly
accurate approximation is desired, this generally leads to large finite difference stencils,
resulting in a broadly banded matrix equation, which is expensive to solve. Furthermore,
the discretization near the boundary might cause problems as it leads to ghost-points
outside of the computational domain. In order to circumvent this problem to some extent,
we employ HOC finite differences in Section 2.2. HOC schemes exploit the structure
of the governing PDE to define a fourth-order discretization on the compact stencil.
In Section 2.3 we consider a global approximation approach in form of pseudo-spectral
methods. These methods have a geometric error decay if the solution fulfills certain
regularity requirements. In the last part of this chapter we introduce sparse grids and the
combination technique to reduce the number of grid nodes compared to a tensor based
grid.

Definition 10. Discrete grid
We consider a d-dimensional domain Ωd in a continuous setting, where x ∈ Ωd is given by
x = (x1, x2, . . . , xd) and xi is the position in the i-th coordinate direction for i = 1, 2, . . . , d.
With the help of the multi-indices

l = (l1, l2, ..., ld) ∈ Nd
0,

j = (j1, j2, ..., jd) ∈ Nd
0,

N = (N1, N2, . . . , Nd) = (2l1 , 2l2 , . . . , 2ld),

13
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Figure 2.1: Sample grid Ω(3,2).

we can define a tensor based grid Ωl with grid nodes

xl,j = (xl1,j1 , xl2,j2 , ..., xld,jd) for ji = 0, 1, ..., Ni.

The value xli,ji denotes the position in the i-th coordinate of the ji-th node.

Figure 4.1 exemplary shows the grid Ω(3,2) on [0, 1]2 with uniform grid spacing h1 = 2−3

in the first coordinate direction x1 and h2 = 2−2 in the second coordinate direction x2.
Thus, we have N1 = 8 and N2 = 4 or equivalently 9 grid points in the first coordinate
direction, which are numbered from 0 to 8 and 5 grid points in the second coordinate
direction, which are numbered from 0 to 5. For example the grid node x(3,2),(2,3) is the
third node in x1- and the fourth node in x2-direction and has the coordinates (0.25, 0.75) =
(2 · 2−3, 3 · 2−2) = (j1 · 2−l1 , j2 · 2−l2) due to the uniform grid spacing.

In order to measure the accuracy of our numerical schemes, we introduce the following
error norms in Definition 11. In a tensor based grid, such as Ωl , the higher-dimensional
approximation of the derivatives can be computed by sequential numerical differentiation
along each coordinate direction. This procedure can be written in a compact form with
help of the Kronecker product notation in Definition 12 and will be used throughout this
thesis.

Definition 11. Error norms
We consider the vector space Rm with ĥ = 1/m and discrete norms ‖v‖2 = (ĥ

∑m
i=1 |vi|2)1/2,

‖v‖∞ = max
1≤i≤m

|vi| for v ∈ Rm. We define the errors

err2 = ‖Uref − Uapprox‖2, (2.2)

errrelative
2 =

‖Uref − Uapprox‖2
‖Uapprox‖2

, (2.3)

err∞ = ‖Uref − Uapprox‖∞, (2.4)
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where Uref denotes a reference solution and Uapprox its numerical approximation.

Definition 12. Kronecker product
The Kronecker product of the two matrices A of size k1 × l1 and B of size k2 × l2 is given
by

A⊗B =

 a1 1B · · · a1 l1B
· · ·

ak1 1B · · · ak1 l1B

 .

2.1 Standard Finite Difference Methods

In order to approximate the spatial derivatives one can use finite differences. Without loss
of generality (w.l.o.g.) we restrict ourselves to the unit hypercube Ωd = [0, 1]d. We con-
sider a uniform grid spacing with mesh widths h = (h1, h2, ..., hd) = (2−l1 , 2−l2 , ..., 2−ld).
Then we have xli,ji = ji ·hi for ji = 0, 1, ..., 2li . With Taylor expansions under the assump-
tion that u is sufficiently smooth, a second order approximation to the first and second
derivative with respect to direction i at grid node x l,j is given by

δ0i u(x l,j) =
1

2hi

(
u(x l,j + hiei)− u(x l,j − hiei)

)
=

∂u

∂xi
(x l,j) +O(h2i ),

δ2i u(x l,j) =
1
h2
i

(
u(x l,j + hiei)− 2u(x l,j) + u(x l,j − hiei)

)
=
∂2u

∂x2i
(x l,j) +O(h2i ),

where ei denotes the i-th unit vector. The mixed derivative can be approximated via a
sequential application of the one-dimensional operators

δ0i δ
0
ju(x l,j) =

1

4hihj

(
u(x l,j + hiei + hjej)− u(x l,j − hiei + hjej)

− u(x l,j + hiei − hjej) + u(x l,j − hiei − hjej)

)
= ∂2u

∂xi∂xj
(x l,j) +O(h2i ) +O(h2j ) +O(h2ih

2
j ),

for i 6= j and i, j = 1, 2, . . . , d. In addition to these central finite differences upwind
discretizations also are commonly used in practice. They rely on an approximation in
direction of the propagation of information: especially in the case of convection equations
or convection-dominated parabolic equations this is an important feature as it avoids
spurious oscillations in the solution or its derivatives. For a more detailed discussion
covering dispersion and the dissipative behavior of finite difference schemes, we refer to
[83, 92]. If a higher accuracy is desired, more nodes can be added to the stencil to derive
fourth-order accuracy. For example, to obtain a fourth-order accurate approximation of
the first derivative in the i-th coordinate direction, we employ the ansatz

hi
∂u

∂xi
(x l,j) = α−2u(x l,j − 2hiei) + α−1u(x l,j − hiei) + α0u(x l,j)

+ α1u(x l,j + hiei) + α2u(x l,j + 2hiei) +O(h4i ).
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Inserting the Taylor series for each term, one observes that the coefficients must satisfy
the following linear system of equations

1 1 1 1 1
−2 −1 0 1 2
4 1 0 1 4
−8 −1 0 1 8
16 1 0 1 16



α−2

α−1

α0

α1

α2

 =


0
1
0
0
0

 .

Hence, the approximation reads

∂u

∂xi
(x l,j) =

1

12hi

(
u(x l,j − 2hiei)− 8u(x l,j − hiei) + 8u(x l,j + hiei)− u(x l,j + 2hiei)

)
+O(h4i ).

In an analogue way a fourth-order approximation of the second derivative can be derived

∂u2

∂x2i
(x l,j) =

1

12h2i

(
− u(x l,j − 2hiei) + 16u(x l,j − hiei)− 30u(x l,j)

+ 16u(x l,j + hiei)− u(x l,j + 2hiei)
)
+O(h4i ).

In order to streamline our notation, we introduce the following finite difference operators

δ̃0xi
u(x l,j) =

1

12hi

(
u(x l,j − 2hiei)− 8u(x l,j − hiei) + 8u(x l,j + hiei)− u(x l,j + 2hiei)

)
,

δ̃2xi
u(x l,j) =

1

12h2i

(
− u(x l,j − 2hiei) + 16u(x l,j − hiei)− 30u(x l,j)

+ 16u(x l,j + hiei)− u(x l,j + 2hiei)

)
.

The mixed derivative can be approximated similar to the second-order case via

δ̃0xi
δ̃0xj
u(x l,j) =

∂2u

∂xi∂xj
u(x l,j) +O(h4i ) +O(h4j ) +O(h4ih

4
j ),

for i 6= j and i, j = 1, 2, . . . , d. Finite difference schemes with an accuracy higher than
four are rarely used in practice: in financial engineering applications the non-smooth
initial data deteriorates the theoretical accuracy since the truncation error is in general
not bounded for non-smooth data. Furthermore, larger difference stencils lead to a higher
computational effort as the resulting linear equation system does not have a tridiagonal
structure anymore.

The finite difference operators act on a single grid node. Applying the difference oper-
ators to each grid node the approximation of the derivatives can be written in matrix
notation. In the following we denote the matrix formulation of the first derivative and
second derivative second-order finite difference matrix in direction i with DFDi , D2

FDi
,
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respectively, where

DFDi =
1

2hi


0 1 0

−1
. . . . . .
. . . . . . 1

0 −1 0

 ,

D2
FDi

=
1

h2i


−2 1 0

1
. . . . . .
. . . . . . 1

0 1 −2

 .

The fourth-order matrices are denoted by D̃FDi , D̃2
FDi

and are given by

D̃FDi =
1

12hi



0 8 −1 0

−8
. . . . . . . . .

1
. . . . . . . . . . . .
. . . . . . . . . . . . . . .

. . . . . . . . . . . . −1
. . . . . . . . . 8

0 1 −8 0


,

D̃2
FDi

=
1

12h2i



−30 16 −1 0

16
. . . . . . . . .

−1
. . . . . . . . . . . .
. . . . . . . . . . . . . . .

. . . . . . . . . . . . −1
. . . . . . . . . 16

0 −1 16 −30


.

2.2 High-Order-Compact Finite Difference Methods

In the following we derive a fourth-order discretization on the compact stencil, such that
the resulting linear system of equations has a tridiagonal structure. In the last decades
lots of effort has been spend on the derivation of HOC schemes: starting with the early
work by Gupta et al. [36]. Further effort has been spent on the derivation of HOC
schemes, e.g. in [21, 22, 24, 43, 58, 72, 88, 89] to mention a few examples. In the field of
computational finance HOC methods have been proposed by [21, 22, 24].

We sketch the derivation of a HOC finite difference scheme for the two-dimensional dif-
fusion equation with constant coefficients

∂u

∂t
= a11

∂2u

∂x21
+ a22

∂2u

∂x22
(2.5)
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on Ω2. Inserting the finite difference approximations we obtain

∂u

∂t
= a11δ

2
1u− a11

h21
12

∂4u

∂x41
+ a22δ

2
2 − a22

h22
12

∂4u

∂x42
+O(h41) +O(h42). (2.6)

Due to the squared mesh width in front of the leading error terms, we can obtain fourth-
order consistency if the truncation error is approximated with second-order accuracy.
Applying standard second-order finite differences to approximate the fourth derivatives
∂4u
∂x4

1
, ∂4u

∂x4
2
, respectively, yields a fourth-order discretization. However, the discretization

is not defined on the compact stencil anymore. In order obtain a second-order accurate
approximation on the compact stencil we derive auxiliary relations for the fourth derivative
by differentiating equation (2.5) with respect to x1 twice and solve for the fourth derivative

∂4u

∂x41
=

1

a11

∂3u

∂x21∂t
− a22
a11

∂4u

∂x21∂x
2
2

.

A relation for the fourth derivative with respect to x2 can be obtained analogously

∂4u

∂x42
=

1

a22

∂3u

∂x22∂t
− a11
a22

∂4u

∂x21∂x
2
2

.

Inserting these relations into (2.6) and replacing the derivatives by their central finite
difference counterpart, we obtain(

1 +
h21
12
δ21 +

h22
12
δ22

)
∂u

∂t
= a11δ

2
1u+ a22δ

2
2u+

h21
12
a22δ

2
1δ

2
2u+

h22
12
a11δ

2
1δ

2
2u+O(h21h

2
2).

(2.7)

This spatial discretization is defined on the compact stencil and has a leading error term
of order O(h21h

2
2). Thus, we can expect fourth-order accuracy if h1 = ch2 holds for

some constant c. Düring and Heuer [24] derived a HOC discretization for d dimensional
convection-diffusion equations with mixed derivatives and space and time dependent co-
efficients. Beside the analogue condition that all mesh widths have to be of the same
order, they have the additional constraints, that either no mixed derivative is present or
h2
i

h2
j
= aii

ajj
has to be fulfilled to obtain fourth-order consistency for i, j = 1, 2, . . . , d.

In the sequel we introduce a discretization which does not require these constraints. The
derivation is based on the work of Düring et al. [23] for constant coefficient problems and
has been extended for non-constant coefficients in [25, 45]. We consider unidirectional
contributions

aii(x l,j)
∂2u

∂x2i
(x l,j) + ci(x l,j)

∂u

∂xi
(x l,j) = g(x l,j) (2.8)

for i = 1, ..., d and some arbitrary smooth right hand side g. In the following we stream-
line our notation and write aii := aii(x l,j), ci := ci(x l,j). Inserting the finite difference
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operators we obtain

aiiδ
2
i u(x l,j)− aii

h2i
12

∂4u

∂x4i
(x l,j)− aii

h4i
360

∂6u

∂x6i
(x l,j) + ciδ

0
i u(x l,j)− ci

h2i
6

∂3u

∂x3i
(x l,j)

− ci
h4i
120

∂5u

∂x5i
(x l,j) +O(h6i ) = g(x l,j). (2.9)

Since the leading error term in (2.9) is of order two, we can derive a fourth-order compact
approximation if the third and fourth derivative is approximated with second order ac-
curacy on the compact stencil. In order to derive these approximations, we differentiate
equation (2.8) once with respect to xi and thus get

∂aii
∂xi

∂2u

∂x2i
+ aii

∂3u

∂x3i
+
∂ci
∂xi

∂u

∂xi
+ ci

∂2u

∂x2i
=

∂g

∂xi
.

Hence, the third derivative is given by the auxiliary equation

∂3u

∂x3i
=

1

aii

∂g

∂xi
−
(

1

aii

∂aii
∂xi

+
ci
aii

)
∂2u

∂x2i
− 1

aii

∂ci
∂xi

∂u

∂xi
. (2.10)

In a similar fashion we obtain an expression for the fourth derivative by differentiating
(2.8) twice with respect to xi

∂4u

∂x4i
=

1

aii

∂2g

∂x2i
−
(
ci
a2ii

+
2

a2ii

∂aii
∂xi

)
∂g

∂xi
+

(
c2i
a2ii

+
3ci
a2ii

∂aii
∂xi

+
2

a2ii

[
∂aii
∂xi

]2
− 2

aii

∂ci
∂xi

− 1

aii

∂2aii
∂x2i

)
∂2u

∂x2i
+

(
ci
a2ii

∂ci
∂xi

+
2

a2ii

∂aii
∂xi

∂ci
∂xi

− 1

aii

∂2ci
∂x2i

)
∂u

∂xi
. (2.11)

The third and fourth derivative can then be approximated with second-order stencils via
central difference operators. Replacing the truncation error in (2.9) leads to a fourth-order
accurate approximation(

aii +
h2i
12

∂2aii
∂x2i

− h2i ci
12aii

∂aii
∂xi

− h2i
6aii

[
∂aii
∂xi

]2
+
h2i c

2
i

12aii
+
h2i
6

∂ci
∂xi

)
δ2i u(x l,j)

+

(
ci −

h2i
6aii

∂aii
∂xi

∂ci
∂xi

+
h2i ci
12aii

∂ci
∂xi

+
h2i
12

∂2ci
∂x2i

)
δ0i u(x l,j) + h4i τi

= g(x l,j) +
h2i
12
δ2i g(x l,j) +

(
h2i ci
12aii

− h2i
6aii

∂aii
∂xi

)
δ0i g(x l,j) (2.12)
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on the compact stencil with

τi =

(
− 1

36aii

∂3ci
∂x3i

∂aii
∂xi

+
ci

72aii

∂3ci
∂x3i

+
1

144

∂4ci
∂x4i

)
∂u

∂xi
(x l,j)

+

(
1

144

∂4aii
∂x4i

+
ci

72aii

∂3aii
∂x3i

− 1

12aii

∂aii
∂xi

∂2ci
∂x2i

− 1

36aii

∂aii
∂xi

∂3aii
∂x3i

+
ci

24aii

∂2ci
∂x2i

+
1

36

∂3ci
∂x3i

)
∂2u

∂x2i
(x l,j)

+

(
1

36

∂3aii
∂x3i

+
ci

24aii

∂2aii
∂x2i

− 1

18aii

∂aii
∂xi

∂ci
∂xi

− 1

12aii

∂aii
∂x

∂2aii
∂x2i

+
ci

36aii

∂ci
∂xi

+
1

36

∂2ci
∂x2i

)
∂3u

∂x3i
(x l,j)

+

(
5

144

∂2aii
∂x2i

+
ci

48aii

∂aii
∂xi

− 1

72aii

[∂aii
∂xi

]2
+

c2i
144aii

+
1

72

∂ci
∂xi

)
∂4u

∂x4i
(x l,j)

+
1

80
ci
∂5u

∂x5i
(x l,j) +

1

240
aii
∂6u

∂x6i
(x l,j) +O(h2i ). (2.13)

From the truncation error τi we see that besides the solution u, the coefficient functions
aii and ci have to be sufficiently smooth as well, so that their fourth derivative is bounded.
Rewriting this scheme in terms of matrices or symbolic operators gives

AxiU = BxiG, (2.14)

where Axi corresponds to the left hand side of (2.12) and Bxi to its right hand side. The
matrices can be expressed with the help of the Kronecker product, see Definition 12,

Axi =diag
(
aii(X) +

h2i
12

∂2aii
∂x2i

(X)− h2i ci(X)

12aii(X)

∂aii
∂xi

(X)− h2i
6aii(X)

[∂aii
∂xi

(X)
]2

+
h2i c

2
i (X)

12aii(X)

+
h2i
6

∂ci
∂xi

(X)

)
· IN1 ⊗ ...⊗ INi−1 ⊗D2

FDi
⊗ INi+1 ⊗ . . .⊗ INd

+ diag
(
ci(X)− h2i

6aii(X)

∂aii
∂xi

(X)
∂ci
∂xi

(X) +
h2i ci(X)

12aii(X)

∂ci
∂xi

(X) +
h2i
12

∂2ci
∂x2i

(X)

)
· IN1 ⊗ ...⊗ INi−1 ⊗DFDi ⊗ INi+1 ⊗ . . .⊗ INd

,

Bxi =IN1·N2·...·Nd
+
h2i
12

· IN1 ⊗ ...⊗ INi−1 ⊗D2
FDi

⊗ INi+1 ⊗ . . .⊗ INd

+ diag
(
h2i ci(X)

12aii(X)
− h2i

6aii(X)

∂aii
∂xi

(X)

)
· IN1 ⊗ ...⊗ INi−1 ⊗DFDi ⊗ INi+1 ⊗ . . .⊗ INd

,

where diag is a diagonal matrix and each operation in the diag operator is understood
component-wise. The matrix X ∈ R(N1+1)·(N2+1)·...·(Nd+1)×d contains all discrete grid
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nodes of Ωl and is given by

X =

(
[xl1,0, xl1,1, . . . , xl1,N1 ]

> ⊗ eN2 ⊗ . . .⊗ eNd
,

eN1 ⊗ [xl2,0, xl2,1, . . . , xl2,N2 ]
> ⊗ eN3 ⊗ . . .⊗ eNd

, . . . ,

eN1 ⊗ . . .⊗ eNd−1
⊗ [xld,0, xld,1, . . . , xld,Nd

]>
)
,

with all-ones vectors eNi = (1, 1, . . . , 1)> of size Ni + 1 for i = 1, 2, . . . , d. The solution
vector U and the right-hand side G are of size (N1+1) · (N2+1) · . . . · (Nd+1), while the
identity matrices of size Ni + 1×Ni + 1 are denoted by INi for i = 1, 2, . . . , d.

The semi-discrete scheme can then be written as

U ′(t) = F0U +B−1
x1
Ax1U + ...+B−1

xd
Axd

U +O(h41) + ...+O(h4d) +
∑
i,j

O(h4ih
4
j ). (2.15)

The mixed derivatives are approximated via

aij
∂2u

∂xi∂xj
= aij δ̃

0
i δ̃

0
ju+ h4i τ̃i + h4j τ̃j + h4ih

4
jτi,j

with

τ̃i = aij
1

30

∂6u

∂x5i ∂xj
, τ̃j = aij

1

30

∂6u

∂xi∂x5j
, τi,j = −aij

1

900

∂10u

∂x5i ∂x
5
j

(2.16)

for i 6= j, i, j = 1, ..., d and collected in the matrix F0. Since the treatment of the mixed
derivative requires to use a broad stencil, the spatial approximation is not defined on a
compact stencil anymore. However, we will see in Section 3 that this is no drawback if
ADI time stepping methods are used.

2.3 Pseudo-Spectral Methods

Contrary to the local approach of the approximation via finite differences, we discuss a
global ansatz to compute the derivatives. For simplicity we restrict ourselves to the one-
dimensional case in direction i for i ∈ {1, 2, . . . , d} on the discrete grid Ωl . The general
higher-dimensional differentiation can be performed by sequential differentiation along
each coordinate direction in a tensor based grid. The global approach can be summarized
in two steps: first an interpolant of the data uli,ji at grid nodes xli,ji for ji = 0, 1, . . . , Ni

is computed. In a second step, the interpolant is differentiated to obtain an estimate of
the second derivative. Let the interpolant PNi be given in Lagrange form

PNiu(xi) =

Ni∑
ji=0

uli,jiLli,ji(xi), (2.17)
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Figure 2.2: Runge phenomenon: Newton basis polynomial
∏16

i=0(x − xi) with equdistant
nodes and Chebyshev nodes.

with Lagrange polynomials

Lli,jo(xi) =

Ni∏
ji=0
ji 6=jo

xi − xli,ji
xli,jo − xli,ji

. (2.18)

The Lagrange polynomials fulfill Lli,jo(xli,ji) = δjijo , such that PNiu(xli,ji) = uli,ji . Then
we can differentiate PNiu with respect to xi to approximate the first derivative

(PNiu(xi))
′ =

Ni∑
ji=0

uli,jiL
′
li,ji

(xi). (2.19)

Approximations of the higher derivatives can be derived in a similar fashion by sequential
differentiation. Thus, for the p-th derivative we have

(PNiu(xi))
(p) =

Ni∑
ji=0

uli,jiL
(p)
li,ji

(xi). (2.20)

The derivative can be written in matrix form with (Dp
SPi

)jijo = L
(p)
li,jo

(xli,ji) for ji, jo =
0, 1, . . . , Ni. Until now, we have left open the question of which grid points to use. The
intuitive choice to employ an equidistant grid spacing leads to a strong oscillation at the
boundaries. It can be shown that there exist functions, so that the interpolant diverges
for Ni → ∞. This is known as the Runge phenomenon. If the grid nodes are distributed
according to the Chebyshev density ρ(xi) = 1/(π

√
1− xi), the oscillations at the bound-

aries are removed and the interpolant is of comparable size on the complete domain. In
Figure 2.2 we demonstrate the effects of uniform and Chebyshev grid spacing. In the
equidistant case we observe strong oscillations at the boundaries, while we have a similar
magnitude in the Chebyshev case. Please also note the different scaling of the y-axis. For
a detailed discussion of the Runge phenomenon we refer to [93].

In the following we restrict ourselves to Chebyshev-Gauss-Lobatto nodes xli,ji = cos πji
Ni

for ji = 0, 1, . . . , Ni and i ∈ {1, 2, . . . , d}. Please note that the first and last node lie
directly on the boundary of the domain, xli,0 = 1, xli,Ni

= −1, which is especially useful
for the construction of numerical solvers for (initial) boundary value problems (IBVPs).
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The function u can be expanded in a Chebyshev series

u(xi) =
∞∑
k=0

ûkTk(xi), (2.21)

with

ûk =
2

πck

1∫
−1

u(xi)Tk(xi)w(xi)dxi,

where

ck =

{
2, k = 0,
1, k ≥ 1.

and w(xi) = 1/
√
1− x2i , Tk(xi) = cos(k · arccos(xi)). For computational purposes the

series is truncated, such that we have

PNiu(xi) =

Ni∑
k=0

ũkTk(xi), (2.22)

with

ũk =
2

Nic̄k

Ni∑
ji=0

1

c̄ji
uli,ji cos

πjik

Ni
for k = 0, 1, . . . , Ni,

and

c̄k =

{
2, k = 0, N,
1, k = 1, 2, . . . N − 1.

The accuracy of the Chebyshev interpolation depends on the regularity of the solution
and is stated in Theorems 13 and 14. The convergence in Theorem 13 is what we call
algebraic convergence with order m, whereas the convergence in Theorem 14 is known as
geometric convergence. In order to make this more vivid, we consider the two test cases

u1(x) = |x|3, u2(x) = 1/(1 + 4x2)

on Ω1 = [−1, 1] and compute the rate of convergence. The first function has a third
derivative of bounded variation. Thus, we expect an algebraic convergence of third order.
The second function is analytic, but has a convergence-limiting singularity at z0 = x0+iy0
with x0 = 0 and y0 = ±1

2 . The ellipse with foci ±1 intersecting z0 has semimajor and
semiminor axis lengths a =

√
1 + 1

4 , b = 1
2 and thus we have r = a + b =

√
1 + 1

4 + 1
2 ≈

1.6180.

Figure 2.3 validates the theoretical considerations in a numerical experiment, where we
compare the interpolant using N + 1 nodes to u1 and u2, respectively. In Figure 2.3 (a)
we observe an algebraic convergence of order 3.0045, which is close to the theoretical rate.
In (b) we have a geometric convergence with factor 1.6173 in comparison to a theoretical
one of 1.6180.

Theorem 13. [2] Let u, u′, . . . , u(m−1) be absolutely continuous for some m ≥ 1, and
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14.

let u(m) be a function of bounded variation. Then

|u(x)− (PNu)(x)| = O(N−m)

as Ni → ∞ for all x ∈ [−1, 1].

Theorem 14. [2] If u is analytic and bounded in the Bernstein ellipse of foci ±1 with
semimajor axis length a and semiminor axis lengths b =

√
a2 − 1 summing to r = a+ b =

a+
√
a2 − 1, then the Chebyshev interpolant with N+1 Chebyshev-Gauss-Lobatto nodes

fulfills
|u(x)− (PNu)(x)| = O(r−N )

as N → ∞ for all x ∈ [−1, 1].

The derivative of the truncated Chebyshev series can either be computed in the physical
space, e.g. by matrix vector multiplication, or in the transformed space. The matrix
vector approach takes O(N2

i ) operations as the Chebyshev derivative matrix is full, see
Lemma 15. The differentiation in transformed space can be performed in linear run-time.
Therefore, we consider the derivative of the Chebyshev series

u′(xi) =

∞∑
k=0

û
(1)
k Tk(xi).

Exploiting the following recurrence relation of the Chebyshev polynomials to its deriva-
tives 

T0(xi) = T ′
1(xi),

T1(xi) =
1
4T

′
2(xi),

Tk(xi) =
1
2

(
1

k+1T
′
k+1(xi)−

1
k−1T

′
k−1(xi)

)
, k ≥ 2,

with T0 = 1, T1 = xi, and the alternative form of the derivative

u′(xi) =

∞∑
k=0

ûkT
′
k(xi),
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one observes

2kûk = ck−1û
(1)
k−1 − û

(1)
k+1 for k ≥ 1, (2.23)

holds. Thus, the derivative of the truncated series (2.22)

(PNiu(xi))
′ =

Ni∑
k=0

ũ
(1)
k Tk(xi)

can be computed in O(Ni) operations via

ũ
(1)
k =

1

ck

(
2(k + 1)ũk+1 + ũ

(1)
k+2

)
for k = Ni − 1, Ni − 2, . . . , 0

with ũ
(1)
k = 0 for k ≥ Ni. A similar relation also holds for the higher derivatives and the

generalization for the p-th derivative reads

ũ
(p)
k =

1

ck

(
2(k + 1)ũ

(p−1)
k+1 + ũ

(p)
k+2

)
for k = Ni − 1, Ni − 2, . . . , 0.

The mapping between physical U = (uli,0, uli,1, . . . , uli,Ni
)> and transformed space Ũ =

(ũ1, ũ2, . . . , ũN )> is given by Ũ = CU with

(C)jijo =
2

Nic̄ji c̄jo
cos

πjijo
Ni

for ji, jo = 0, 1, . . . , Ni.

The backward transformation is given by C−1Ũ = U with

(C−1)jijo = cos
πjijo
Ni

for ji, jo = 0, 1, . . . , Ni.

Using these mappings in form of a matrix vector multiplication results in a quadratic
computational effort and is therefore expensive. However, it can be computed efficiently
with the Fast Fourier Transformation (FFT) algorithm in O(Ni log2Ni) operations. Ex-
ploiting that U is a vector of real values, the effort to compute Chebyshev transform
can be halved within the complex FFT algorithm. For a detailed discussion we refer to
[11, 61].

Lemma 15. [11] The Chebyshev differentiation matrices with the Chebyshev grid nodes
xli,ji = cos πji

Ni
for ji = 0, 1, . . . , Ni can be given in closed form.

(DSPi)jijo =


− c̄ji

2c̄jo

(−1)ji+jo

sin((ji+jo)π/2Ni) sin((ji−jo)π/2Ni)
, ji 6= jo,

− xji

2 sin2(jiπ/Ni)
, 1 ≤ ji = jo ≤ Ni − 1,

2N2
i +1
6 , ji = jo = 0,

−2N2
i +1
6 , ji = jo = Ni

(2.24)
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Figure 2.4: Computation time of the first derivative in 1d.

and

(D2
SPi

)jijo =



(−1)ji+jo

c̄jo

x2
ji
+xji

xjo−2

(1−x2
ji
)(xji

−xjo )
2 , 1 ≤ ji ≤ N − 1, 0 ≤ jo ≤ Ni, ji 6= l,

−
(N2

i −1)(1−x2
ji
)+3

3(1−x2
ji
)2

, 1 ≤ ji = jo ≤ Ni − 1,

2
3
(−1)jo
c̄l

(2N2
i +1)(1−xjo )−6

(1−xjo )
2 , ji = 0, 1 ≤ jo ≤ Ni,

2
3
(−1)(jo+Ni)

c̄jo

(2N2
i +1)(1−xjo )−6

(1+xjo )
2 , ji = Ni, 0 ≤ jo ≤ Ni − 1,

N4
i −1
15 , ji = jo = 0, ji = jo = Ni,

(2.25)

with

c̄ji =

{
2, ji = 0, Ni,
1, ji = 1, 2, . . . , Ni − 1.

In Figure 2.4 we compare the computation time of both approaches: the differentiation
in physical space corresponds to a matrix vector multiplication with quadratic effort,
while the computation of the derivative in transformed space consists of the forward
transform, the differentiation in Chebyshev space and a backward transformation. The
transforms can be performed with complexity O(Ni log2Ni) and the differentiation with
O(Ni) operations. Thus, the total effort consists of O(Ni log2Ni) operations. In the
numerical experiment the approach to compute the derivative in Chebyshev transformed
space outperforms the matrix approach for Ni > 10. For small Ni it might be reasonable
to apply the matrix approach, as here the overhead costs of the FFT algorithm dominate
the overall run-time.

2.4 The Curse of Dimensionality and the Sparse Grid
Combination Technique

Solving high dimensional equations numerically on a full tensor based grid with O(Nd)
grid points is an extensive work. Although, splitting schemes, such as ADI schemes,
can reduce the computational workload significantly, there is a limit on the number of
nodes due to the finite available memory. In the following we use so-called sparse grids to
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reduce the impact of the curse of dimensionality. The approach was originally developed
by Smolyak [86] for numerical integration. Zenger [98], Bungartz and Griebel [8] and
Schiekofer [82] extended this idea and applied sparse grids to solve PDEs with finite
element, finite volume and finite difference methods.

Schiekofer [82] introduced the framework to apply finite difference techniques to sparse
grids. Since ordinary finite difference discretizations only act on a tensor based full grid
in nodal basis, a special treatment is needed to design finite difference stencils for sparse
grids. He proposes the use of a basis transform from nodal to hierarchical basis. The
forward and backward basis transform leads to densely populated discretization matrices
which are costly to solve. Further this approach in general requires hierarchical, tree-like
data structures, which makes the data structure management more complicated than in
the full grid case. These drawbacks can be circumvented with the help of the sparse grid
combination technique [33]. Here, solutions on a tensor based grid are linearly combined
to construct the sparse grid solution. Hence, standard full grid solvers can be used,
which enables to compute sparse grid solutions with minimal additional effort in terms of
implementation time. Since all sub-problems are independent the method can easily be
parallelized and run on a cluster of computers.

In the following, we give a brief introduction to sparse grids and the combination tech-
nique. The introduction is based on the works [78, 79]. The method is based on the
error splitting structure of the underlying numerical scheme. To make the basic idea
clear, we consider a two-dimensional problem on the unit square Ω2 = [0, 1]2 and as-
sume an numerical approximation ul on Ωl with l = (l1, l2) ∈ N2

0, with mesh widths
h = (h1, h2) = (2−l1 , 2−l2), which satisfies an error splitting of the form

u− ul = h21w1(h1) + h22w2(h2) + h21h
2
2w1,2(h1, h2). (2.26)

The crucial point is that the mesh sizes h1, h2 are independent of one another and w1 only
depends on the mesh width in the first coordinate direction, while w2 only depends on
h2. Furthermore, the functions w1, w2, w1,2 are assumed to be bounded. This structure
can now be exploited by combining them in such a way that low order terms cancel out.
Therefore, we introduce the hierarchical surplus of the numerical solution as

δ(ul) = ul − ul−e1 − ul−e2 + ul−e1−e2 ,

where e1 = (1, 0) and e2 = (0, 1). Inserting the error splitting (2.26), we obtain

δ(u− ul) = h21w1(h1) + h22w2(h2) + h21h
2
2w1,2(h1, h2)

− 4h21w1(2h1)− h22w2(h2)− 4h21h
2
2w1,2(2h1, h2)

− h21w1(h1)− 4h22w2(2h2)− 4h21h
2
2w1,2(h1, 2h2)

+ 4h21w1(2h1) + 4h22w2(2h2) + 16h21h
2
2w1,2(2h1, 2h2)

= h21h
2
2w1,2(h1, h2)− 4h21h

2
2w1,2(2h1, h2)− 4h21h

2
2w1,2(h1, 2h2)

+ 16h21h
2
2w1,2(2h1, 2h2)

= O(h21h
2
2) = O(2−2l12−2l2) = O(2−2|l|1)

The surplus can be interpreted as the information gain of the solution ul . Let the level of
a numerical solution on the discrete grid Ωl be given by |l|1, then we see that the solutions
with the same level (with the same number of grid nodes) have the same surplus. This
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motivates to combine all solutions with a high surplus or in other words, with a high
information gain. In the following we define the combined sparse grid solution as the sum
of all surpluses with |l|1 ≤ n for n ∈ N0

usn =
∑
|l|1≤n

δul .

An upper error bound can be found by incorporating the surpluses of all sub-solutions,
which are not used to compute usn. We have

‖usn − u‖ ≤
∑
|l|1>n

‖δul‖ =
∑
|l|1>n

O(2−2|l|1) =
∑
i>n

O((i+ 1)2−2i) = O(n2−2n).

The second equality holds since at each level l1 + l2 = i there are i+ 1 surpluses with an
accuracy of O(2−2i) involved. The latter equality follows by taking into account that the
summands are a geometric series. Let h = 2−n, we can rewrite the error bound to

‖usn − u‖ ≤ O(h2 log2(h
−1)).

For computational purposes one does not want to compute each single surplus, as this
results in a large amount of unnecessary computations. To avoid this, we take a closer
look at the used sub-solutions within the combined sparse grid solution

usn =
∑
|l|1≤n

δul =
n∑

q=0

∑
|l|1=q

ul − 2
∑

|l|1=q−1
q−1≥0

ul +
∑

|l|1=q−2
q−2≥0

ul


=
∑
|l|1=n

ul −
∑

|l|1=n−1

ul .

It becomes clear that only the solutions at level n and n− 1 are actually needed and all
other sub-solutions cancel out. Please note that this is the standard formulation of the
combination technique for d = 2, e.g. see [9].

Figure 2.5: Sub-grids and sparse grid for n = 0, ..., 4.
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Figure 2.5 shows the two-dimensional grid hierarchy for level n = 0, ..., 4. The sparse
grid at level n consists of sub-grids, whose sum of refinement levels is equal to n. Hence
the number of grid points on each sub-grid grows with O(2n). As the number of grids
increases with O(n), this leads to O(n2n) nodes in the sparse grid. Let h = 2−n, then
this results into O(h−1 log2(h

−1)) grid points compared to O(h−2) nodes in the full grid.

The derivation of the combination technique in the general d-dimensional case for schemes
with algebraic accuracy m follows the same steps. We consider the unit cube Ωd = [0, 1]d

and a family of Cartesian grids Ωl with multi-index l = (l1, l2, . . . , ld) ∈ Nd
0 and grid

spacing h = (h1, h2, . . . , hd) = (2−l1 , 2−l2 , . . . , 2−ld). The hierarchical surplus of ul is then
given by

δul = δ1δ2 · · · δdul , (2.27)

with

δiul =

{
ul − ul−ei , li > 0
ul , li = 0,

where ei is the i-th unit vector. Under the assumption of an error splitting

u− ul =
d∑

k=1

∑
{j1,...,jk}
⊆{1,...,d}

wj1,...jk(.;hj1 , ..., hjk)h
m
j1 · · · h

m
jk
, (2.28)

it holds

δul = O(hm1 h
m
2 · · ·hmd ) = O(2−m|l|1).

As there are N =
(
n+d−1
d−1

)
possibilities to decompose a number n ∈ N0 in d single non-

negative summands, there are N = O(nd−1) grids involved in the construction of the
sparse grid solution. Each grid consists of O(2n) nodes, which leads to a total number of
nodes O(nd−12n) = O(h−1 log2(h

−1)d−1) in contrast to O(h−d) in the full grid case for
h = 2−n.

In order to compute the accuracy, we proceed like in the two-dimensional case, such that
we have

‖u− usn‖ ≤
∑

l6∈Mn

‖δul‖ =
∑
i>n

O(id−12−m·i) = O(nd−12−m·n).

The latter equality can be shown by taking into account that the summands form a
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geometric series of the form

∑
i>n

id−12−m·i =
∞∑
i=0

id−12−m·i −
n∑

i=0

id−12−m·i

=

∞∑
i=0

ikqi −
n∑

i=0

ikqi q := 2−m, k := d− 1

= q
d

dq
...q

d

dq︸ ︷︷ ︸
k times

(
1

1− q
− 1− qn+1

1− q

)

= O((n+ 1)kqn+1) = O(nkqn) = O(nd−12−m·n).

Let h = 2−n, then the error reads

‖u− usn‖ ≤ O(nd−12−m·n) = O(h−m log2(h
−1)d).

Analogue to the two-dimensional case we exploit the cancellation of the sub-solutions to
derive the sparse grid combination technique formula

usn =
∑
|l|1≤n

δul =
N∑
q=0

( ∑
|l|1=q

ul −
(
d

1

) ∑
|l|1=q−1
q−1≥0

ul +

(
d

2

) ∑
|l|1=q−2
q−2≥0

ul

+ . . .+ (−1)d−1

(
d

d− 1

) ∑
|l|1=q−d+1
q−d+1≥0

ul + (−1)d
∑

|l|1=q−d
q−d≥0

ul

)

=
∑
|l|1=n

ul + (−d+ 1)
∑

|l|1=n−1

ul +

((
d

2

)
− d+ 1

) ∑
|l|1=n−2

ul

+ . . .+

(
(−1)d−1

(
d

d− 1

)
+ (−1)d−1

(
d

d− 2

)
+ . . .− d+ 1

) ∑
|l|1=n−d+1

ul

+

(
(−1)d + (−1)d−1

(
d

d− 1

)
+ (−1)d−1

(
d

d− 2

)
+ . . .− d+ 1

) ∑
|l|1=n−d

ul

=
∑
|l|1=n

ul +
1∑

q=0

(−1)q
(
d

q

) ∑
|l|1=n−1

ul +
2∑

q=0

(−1)q
(
d

q

) ∑
|l|1=n−1

ul

+ . . .+
d−1∑
q=0

(−1)q
(
d

q

) ∑
|l|1=n−d+1

ul +
d∑

q=0

(−1)q
(
d

q

) ∑
|l|1=n−d

ul

=
d−1∑
q=0

(
d− 1

q

) ∑
|l|1=n−q

ul .

The fourth equality follows from

d∑
q=0

(−1)q
(
d

q

)
= 0,
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and
k∑

q=0

(−1)q
(
d

q

)
= (−1)k

(
d− 1

k

)
for k ≤ d− 1.

Definition 16. Sparse grid combination technique
The sparse grid combination formula at level n ∈ N is given by

usn =
d−1∑
q=0

(
d− 1

q

) ∑
|l|1=n−q

ul.

Within the combination technique sub-solution with a strong imbalance of grid nodes
in certain coordinate directions are computed. In practice this might cause problems as
the numerical solution can be sensitive to it or physical features of the solution are not
properly reflected by its numerical approximation. Griebel and Huber [32] suggest to
only use a subset of all possible sub-grids. We follow their idea and neglect extremely
distorted grids by only considering grids, where each li ≥ lmin for i = 1, 2, . . . , d. This
is especially useful for higher-order finite difference schemes with a large discretization
stencil. If not mentioned otherwise we use lmin = 3 throughout this thesis. Thus, each
sub-grid has at least 9 grid points in each coordinate direction. The mesh width reported
in the numerical experiments with the sparse grid combination technique is then given by
h = 2−(n−(d−1)·lmin).

2.4.1 Error Splitting

The key assumption within the combination technique is that the underlying numerical
method has an error splitting in of the form (2.28), so that the surpluses of the solu-
tions with the same level are of comparable sizes. Thus, the question arises under which
conditions and for which schemes an error splitting of the form (2.28) holds?

Finite Difference Methods In the case of linear finite difference schemes the splitting
structure has been analyzed in [9, 79, 42]. Bungartz et al. [9] proved with help of Fourier
series of discrete and semi-discrete solutions for the two-dimensional Laplace equation
that a second-order central difference scheme exhibits this error structure. Reisinger [79]
recently extended the framework to a wider class of equations and linear finite difference
schemes.

He showed that a central second-order finite difference approximation of the Poisson
equation with homogeneous Dirichlet data fulfills the desired splitting structure if the
solution is sufficiently smooth, so that its mixed derivatives up to order four are bounded,
see Lemma 17.

In the following let α = (α1, α2, . . . , αd) and let further C(α1,α2,...,αd)
K (Ω) denote the func-

tion space, where all derivatives ∂|α|1u
∂x

α1
1 ∂x

α2
2 ...∂x

αd
d

for u ∈ C
(α1,α2,...,αd)
K (Ω) are continuous

and bounded by K in the supremum-norm and vanish at the boundary ∂Ω.

Lemma 17. [79, Theorem 3.3] Let u ∈ C
(4,...,4)
K (Ωd) be the solution to the Poisson equa-
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tion and ul be the finite difference approximation on a grid Ωl. Then

u(xl,j)− ul =
d∑

m=1

∑
{j1,j2,...,jm}
⊂{1,2,...,d}

h2j1 · h
2
j2 · ... · h

2
jmwj1,j2,...,jm(xl,j;hj1 , hj2 , ..., hjm),

for xl,j ∈ Ωl with
|wj1,j2,...,jm(xl,j;hj1 , hj2 , ..., hjm)| ≤ m! 96−mK.

In order to motivate the idea of the proof, we briefly review the derivation of the splitting
of the approximation in the two dimensional case. The derivation for higher dimensional
problems follows the same principles. For more details we refer to [79]. Therefore, we
consider the Poisson equation on the unit hypercube

Lu = f, x ∈ Ωd = [0, 1]d

with L = −∆,

u = 0 on ∂Ωd. (2.29)

Let the full discretization be given by

Llu =− δ21u− δ22u,

demanding that the discrete solution ul fulfills the system

Llul = fl ,

where fl is the restriction of f to the grid Ωl . Furthermore, one defines semi-discretizazions

L
(1)
l u =− δ21u− ∂2u

∂x22
,

L
(2)
l u =− ∂2u

∂x21
− δ22u.

The first semi-discretization is restricted to the first coordinate direction, such that one
obtains a system of ODEs in the second coordinate. In the second semi-discretization the
roles are reversed and one gets a system of ODEs in the first coordinate direction. The
semi-discrete solutions fulfill the systems

L
(1)
l u

(i)
l =f

(1)
l ,

L
(2)
l u

(i)
l =f

(2)
l ,

where f (i)l for i = 1, 2 are the restrictions of f to the semi-discrete grid.

According to [79, Lemma 3.1] an upper bound holds for the solution

‖u‖∞ ≤ 1

8
‖f‖∞,
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as well as for the (semi-)discrete counterparts

‖ul‖∞ ≤ 1

8
‖f‖∞,

‖u(1)l ‖∞ ≤ 1

8
‖f‖∞,

‖u(2)l ‖∞ ≤ 1

8
‖f‖∞. (2.30)

The bounds of the discrete solutions can be proven with help of the discrete maximum
principle and the comparison principle.

The derivation of the splitting structure starts with the Taylor expansion of the finite
difference scheme

Llu(x l,j)− f(x l,j) = h21τ1(x l,j ;h1) + h22τ2(x l,j ;h2),

where τi = 1
12

∂4u
∂x4

i
for i = 1, 2. The truncation errors of the finite difference scheme can be

written in terms of semi-discrete auxiliary problems

L
(1)
l w1 = τ1,

L
(2)
l w2 = τ2.

Due to the boundedness of the discretization operator we have

‖wi‖∞ ≤ 1

8
‖τi‖∞ ≤ 1

8

1

12
K

for i = 1, 2. The last inequality follows since we consider u ∈ C
(4,4)
K (Ω). With the help of

the auxiliary problems one concludes

Ll
[
u(x l,j)− h21w1(x l,j ;h1)− h22w2(x l,j ;h2)

]
− f(x l,j)

= h21(τ1(x l,j ;h1)− Llw1(x l,j ;h1)) + h22(τ2(x l,j ;h2)− Llw2(x l,j ;h2))

= h21(L
(1)
l − Ll)w1(x l,j ;h1) + h22(L

(2)
l − Ll)w2(x l,j ;h2). (2.31)

The difference between the semi- and full discretization yields

(L
(1)
l − Ll)w1(x l,j ;h1) = −∂

2w1

∂x22
(x l,j ;h1) +

1

h22

(
w1(x l,j − e2h2;h1)

− 2w1(x l,j ;h1) + w1(x l,j + e2h2;h1)

)
= h22

1

12

∂4w1

∂x42
(ξ;h1) =: h22σ1;2, (2.32)

for some ξ in a neighborhood around x l,j . In an analogue way we obtain

(L
(2)
l − Ll)w2(x l,j ;h2) =: h21σ2;1, (2.33)
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with σ2;1 :=
1
12

∂4w2

∂x4
1

. Inserting (2.32) and (2.33) into equation (2.31) we get

Ll
[
u(x l,j)− h21w1(x l,j ;h1)− h22w2(x l,j ;h2)

]
− f(x l,j)

= h21h
2
2σ1;2(x l,j ;h1, h2) + h21h

2
2σ2;1(x l,j ;h1, h2)

= h21h
2
2τ1,2(x l,j ;h1, h2),

where

‖τ1,2‖∞ = ‖σ1;2 + σ2;1‖∞ ≤ 1

12
‖∂

4w1

∂x42
‖∞ +

1

12
‖∂

4w2

∂x41
‖∞

≤ 1

12

1

8
‖ ∂

4

∂x42
τ1‖∞ +

1

12

1

8
‖ ∂

4

∂x41
τ2‖∞

=
1

122
1

8
‖ ∂8u

∂x41∂x
4
2

‖∞ +
1

122
1

8
‖ ∂8u

∂x41∂x
4
2

‖∞ ≤ 2
1

122
1

8
K.

Multiplication with L−1
l yields the desired splitting structure

u(x l,j)− ul(x l,j) = h21w1(x l,j ;h1) + h22w2(x l,j ;h2) + h21h
2
2w1,2(x l,j ;h1, h2),

where L−1
l τ1,2(x l,j ;h1, h2) = w1,2(x l,j ;h1, h2) and bounded errors

‖w1‖∞ ≤ 1

12

1

8
K,

‖w2‖∞ ≤ 1

12

1

8
K,

‖w1,2‖∞ ≤ 2
1

122
1

82
K.

We see that the derivation relies on the form of the truncation error, the smoothness
of the solution, so that the higher derivatives are bounded and on the bounds for the
(semi-)discrete solutions. For general finite difference methods with an order of accuracy
m Reisinger [79] notes the following key properties, which have to be fulfilled:

1. The scheme has a pointwise truncation error of the form

(L− Ll)u(x l,j) =
d∑

k=1

∑
{j1,...,jk}
⊆{1,...,d}

τj1,...jk(x l,j ;hj1 , ..., hjk)h
m
j1 · · · h

m
jk
,

for x l,j ∈ Ωl ,

2. Stability of the discretization scheme.

3. Sufficiently smooth initial data and compatible boundary data, such that the mixed
derivatives of required order are bounded.

In the case of higher-order schemes the same framework can be applied to investigate
the regularity requirements. However, it is difficult to prove estimates of the form (2.30)
as the higher-order discretization matrix is generally not a M matrix. For the standard
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nine-points-cross finite difference Laplace operator of order four the maximum principle,
usually referred to as monotonicity, has been proven by Price [77].

In the case of HOC schemes no theoretical results are available. However, one can derive
a bound for the discrete solution. With the help of the Lemma of Lax-Milgram bounds
in the 2-norm can be given

‖ul‖2 ≤
1

c
‖f‖2,

where c is the smallest eigenvalue of the discretization matrix under the assumption that
the matrix is symmetric positive semi-definite, such that c > 0 holds. The constant c can
be derived from the coercivity requirement of the bilinear form

< x, x >Ll= x>Llx ≥ c‖x‖22 for x ∈ Rn\{0}.

According to (2.12) we have

Ll = F1 + F2 + . . .+ Fd,

with

Fi = B−1
xi
Axi

=

(
IN1·N2·...·Nd

+
h2i
12

· IN1 ⊗ ...⊗ INi−1 ⊗D2
FDi

⊗ INi+1 ⊗ . . .⊗ INd

)−1

·
(
−IN1 ⊗ ...⊗ INi−1 ⊗D2

FDi
⊗ INi+1 ⊗ . . .⊗ INd

)
for i = 1, 2, . . . , d.

The matrices Axi and Bxi are commuting and symmetric for each i = 1, 2, . . . , d. Since the
product of two symmetric matrices is symmetric iff both matrices commute, we conclude
that Ll is symmetric. It remains to investigate the positive definiteness. According to
Lemma 18 the eigenvalues of Axi and Bxi of the HOC scheme to approximate (2.29) are
given by

z̃i,j = 4N2
i sin

2

(
πj

2Ni

)
, for j = 1, 2, . . . , Ni − 1,

z̄i,j = 1− 1

3
sin2

(
πj

2Ni

)
, for j = 1, 2, . . . , Ni − 1,

for i = 1, 2, . . . , d. Let vj denote the j-th eigenvector of Axi , then

Axivj = z̃i,jvj

⇔
(
IN1·N2·...·Nd

− h2i
12
Axi

)
vj = (1− h2i

12
z̃i,j)vj

⇔ Bxivj = z̄i,jvj .

We observe that both matrices share the same set of eigenvectors and thus the discretiza-
tion B−1

xi
Axi has the eigenvalues

zi,j :=
z̃i,j
z̄i,j
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Figure 2.6: Theoretical bound and inverse discretization operator in the 2-norm.

with smallest eigenvalue

zi :=
4N2

i sin
2
(

π
2Ni

)
1− 1

3 sin
2
(

π
2Ni

)
for i = 1, 2, . . . , d. Since zi > 0 the matrix is positive definite.

Lemma 18. [83, Lemma 4.3]

Let G =


α β 0

γ
. . . . . .
. . . . . . β

0 γ α

 .

be an N ×N matrix. Then the eigenvalues zj and eigenvectors vj are

zj = α+ 2β

√
γ

β
cos

(
jπ

N + 1

)
for j = 1, 2, . . . , N,

vj =

(√
γ

β
sin

(
jπ

N + 1

)
,

(√
γ

β

)2

sin

(
2jπ

N + 1

)
, . . . ,

(√
γ

β

)N

sin

(
Njπ

N + 1

))>

.

Since the discrete matrix can be written as a Kronecker sum of the single B−1
xi
Axi , the

smallest eigenvalue of Ll is, according to [64, Theorem 13.16], given by

c = z1 + z2 + . . . zd.

In Figure 2.6 we compare the theoretical bound 1/c with ‖L−1
l ‖2. One observes that the

bound is sharp.

Lemma 19 yields the splitting for fourth-order schemes, which have a truncation error of
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the form

(L− Ll)u(x l,j) =
d∑

k=1

∑
{j1,...,jk}
⊆{1,...,d}

τj1,...jk(x l,j ;hj1 , ..., hjk)h
4
j1 · · · h

4
jk
,

for x l,j ∈ Ωl and (semi-)discrete solutions, which are bounded by

‖u(i1,i2,...,in)l ‖∞ ≤ 1

8
‖f‖∞.

Please note that one can derive a similar error structure for HOC schemes in the 2-norm
and the bound c given above.

Lemma 19. Let u ∈ C
(6,...,6)
K (Ωd) be the solution to the Poisson equation and let ul denote

its fourth-order nine-points-cross finite difference solution of order four on the grid Ωl.
Then the pointwise error is

u(xl,j)− ul =
d∑

m=1

∑
{j1,j2,...,jm}
⊂{1,2,...,d}

h4j1 · h
4
j2 · ... · h

4
jmwj1,j2,...,jm(xl,j;hj1 , hj2 , ..., hjm),

for xl,j ∈ Ωl with

|wj1,j2,...,jm(x;hj1 , hj2 , ..., hjm)| ≤ m! 8−m 90−mK.

Proof. Consistency of finite difference approximation via Taylor expansion and application
of the framework developed by Reisinger in [79]. �

According to Lemmas 17, 19, respectively, the finite difference approximations have a
pointwise error of the desired form. However, the error is only given for the discrete
grid values. As the discrete solution of the finite difference scheme has to be extended
via interpolation, it is necessary to preserve the error structure on the entire domain.
Otherwise the accuracy of O(hm log2(h

−1)d−1) of the sparse grid combination technique
would only hold for grid points which belong to all sub-grids. In the interior of the domain
this is just the node (0.5, 0.5, . . . , 0.5). In order to demonstrate this deterioration of the
rate of convergence, we solve the two-dimensional Poisson boundary problem

∂2u

∂x21
+
∂2u

∂x22
= (x21 + x22)exp(x1x2) on Ω2 = (0, 1)2, (2.34)

u(x1, x2) = exp(x1x2) on ∂Ω2,

with the combination technique and a standard fourth-order finite difference scheme.
The sub-solutions are combined via multilinear interpolation. Figure 2.7 shows that the
error decreases with O(h4 log2(h

−1)) at the midpoint (0.5, 0.5), while the error of the
interpolation routine dominates in the maximum norm and leads to a reduced convergence
order of O(h2 log2(h

−1)).

In order to establish a high rate of convergence, we require that the error structure is
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Figure 2.7: Convergence at the mid point and in the maximum norm.

preserved by the interpolation scheme, such that

u(x)− (PNul)(x) =
d∑

m=1

∑
{j1,j2,...,jm}
⊂{1,2,...,d}

h4j1 · h
4
j2 · ... · h

4
jmw̃j1,j2,...,jm(x;hj1 , hj2 , ..., hjm)

(2.35)

holds for all x ∈ Ω2. In order to analyze the error, we follow the approach of Reisinger
[79] and split the error

u(x)− (PNul)(x) = u(x)−
(
PNu

)
(x)︸ ︷︷ ︸

I

+
(
PN (u− ul)

)
(x)︸ ︷︷ ︸

II

, (2.36)

where PN is the multi-dimensional tensor based interpolation operator. The error I is the
interpolation error, while II is the interpolation of the error of the numerical solution.
Lemma 20 states the interpolation error I, while Lemma 21 gives an expression of error
term II. From I and II the desired error splitting (2.35) can be deduced, see Theorem
22.

Lemma 20. Let u ∈ C
(4,...,4)
K (Ωd) and a univariate cubic spline interpolation PNi along the

i− th coordinate direction for i = 1, ..., d with PNiu = u+h4iRNiu and remainder operator
RNi be given. Then the error of the tensor product interpolation PN = PN1⊗PN2⊗...⊗PNd

is

(PNu)(x)− u(x) =
d∑

m=1

∑
{j1,j2,...,jm}
⊂{1,2,...,d}

h4j1 · h
4
j2 · ... · h

4
jmcj1,j2,...,jm(x;hj1 , hj2 , ..., hjm),

for all x ∈ Ωd with ‖cj1,j2,...,jm‖∞ ≤ 5m

384mK for m = 1, 2, ..., d.
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Proof. The error of each univariate cubic spline interpolant is given by

PNiu = (I + h4iRNi)u, for i = 1, 2, . . . , d,

where I is the identity. According to [40] the remainder term RNiu is bounded by

‖RNiu‖∞ ≤ 5
384‖

∂4u

∂x4i
‖∞.

In the tensor based multivariate case we have

(PNu)(x) = (PN1 ⊗ PN2 ⊗ ...⊗ PNd
u)(x)

= (I + h41RN1)⊗ (I + h42RN2)⊗ ...⊗ (I + h4dRNd
)u(x)

= u(x) +
d∑

m=1

∑
{j1,j2,...,jm}
⊂{1,2,...,d}

h4j1 · h
4
j2 · ... · h

4
jmRj1 ⊗RNj2

⊗ ...⊗RNjm
u(x).

Defining cj1,j2,...,jm(x;hj1 , hj2 , ..., hjm) := RNj1
⊗ RNj2

⊗ ... ⊗ RNjm
u(x) we obtain the

desired form. Thus, it holds

‖RNj1
⊗RNj2

⊗ ...⊗RNjm
u‖∞ ≤ 5m

384m

∥∥∥∥ ∂4m

∂x4j1∂x
4
j2
...∂x4jm

u

∥∥∥∥
∞

≤ 5m

384mK. �

Before we investigate the interpolation of the pointwise error, we derive bounds for the
remainder terms RNj1

⊗RNj2
⊗ ...⊗RNjm

wi1,i2,...,in . Similar to the two-dimensional case
one can compute bounds for the analytical and (semi-)discrete solution of the Poisson
equation with homogenous Dirichlet boundary data

‖u‖∞ ≤ 1
8‖f‖∞,

‖u(i1,...,im)
l ‖∞ ≤ 1

8‖f‖∞.
(2.37)

Restricting ourselves to function spaces with vanishing derivatives of sufficiently high
order at the boundary, we can also derive bounds for the derivatives of f , u respectively.
We cite from Reisinger [79] the auxiliary problem with solution wi1,...,in

L
(i1,i2,...,in)
l wi1,i2,...,in = τi1,i2,...,in (2.38)

and the definition of the terms τi1,i2,...,in

τi1,i2,...,in :=
∑

z1,z2,...,zn−1,z
s.t. {z1,z2,...,zn−1}∪{z}

={i1,i2,...,in}

σz1,...,zn−1;z. (2.39)

Let us note that τi1 for i1 = 1, 2, ..., d is the truncation error of the finite difference stencil
in coordinate direction i1. The functions σz1,z2,...,zn are obtained via the expansion(
L
(i1,i2,...,in)
l − Ll

)
wi1,i2,...,in =

∑
k∈{1,2,...,d}

k 6∈{i1,i2,...,in}

1
90h

4
k

∂6

∂x6k
wi1,i2,...,in =

∑
k∈{1,2,...,d}

k 6∈{i1,i2,...,in}

h4kσi1,i2,...,in;k.

(2.40)
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The terms σi1,i2,...,in;k can be expressed as the truncation error of the semi-discrete and
fully discrete problem from the above formula and thus

‖σi1,i2,...,in;k‖∞ =
1

90
‖ ∂6

∂x6
k
wi1,i2,...,in‖∞

holds. Analogue to the procedure in the proof of Lemma 20, we have∥∥∥∥RNj1
⊗RNj2

⊗...⊗RNjm
wi1,i2,...,in

∥∥∥∥
∞

≤ 5m

384m

∥∥∥∥ ∂4m

∂x4
j1
∂x4

j2
...∂x4

jm

wi1,i2,...,in

∥∥∥∥
∞

(2.37),(2.38)

≤ 5m

384m
1
8

∥∥∥∥ ∂4m

∂x4
j1
∂x4

j2
...∂x4

jm

τi1,i2,...,in

∥∥∥∥
∞

(2.39)
= 5m

384m
1
8

∥∥∥∥ ∂4m

∂x4
j1
∂x4

j2
...∂x4

jm

∑
z1,z2,...,zn−1,z

s.t. {z1,z2,...,zn−1}∪{z}
={i1,i2,...,in}

σz1,z2,...,zn−1;z

∥∥∥∥
∞

(2.40)
= 5m

384m
1
8

1
90

∥∥∥∥ ∂4m

∂x4
j1
∂x4

j2
...∂x4

jm

∑
z1,z2,...,zn−1,z

s.t. {z1,z2,...,zn−1}∪{z}
={i1,i2,...,in}

∂6

∂x6
z
wz1,z2,...,zn−1

∥∥∥∥
∞
.

The sum has n terms and we repeat this procedure n− 1 times until we can conclude the
final result in the last step

≤ 5m

384m
1

8n−1
1

90n−1

∥∥∥∥ ∂4m

∂x4
j1
∂x4

j2
...∂x4

jm

(n− 1)!
n∑

k=1

∂6(n−1)

∂x6
i1
...∂x6

il 6=k...∂x
6
in

wk

∥∥∥∥
∞

≤ 5m

384m
1
8n

1
90n−1

∥∥∥∥ ∂4m

∂x4
j1
∂x4

j2
...∂x4

jm

(n− 1)!

n∑
k=1

∂6n

∂x6
i1
∂x6

i2
...∂x6

in

τk

∥∥∥∥
∞

≤ 5m

384m
1
8n

1
90nn!

∥∥∥∥ ∂4m+6n

∂x4
j1
∂x4

j2
...∂x4

jm
∂x6

i1
∂x6

i2
...∂x6

in

u

∥∥∥∥
∞

≤ 5m

384m
1
8n

1
90nn!K. (2.41)

Here we see that u ∈ C
(10,...,10)
K (Ωd) has to be satisfied to ensure a bounded error.

Lemma 21. Let u ∈ C
(10,...,10)
K (Ωd) be the solution to the Poisson equation and let ul

denote its fourth-order nine-points-cross finite difference solution on the grid Ωl. Us-
ing a tensor product interpolation PN with univariate cubic spline interpolation in each
coordinate direction, then the interpolation of the pointwise error reads

(PN(u− ul))(x) =
d∑

m=1

∑
{j1,j2,...,jm}
⊂{1,2,...,d}

h4j1 · h
4
j2 · ... · h

4
jmβj1,j2,...,jm(x;hj1 , hj2 , ..., hjm),

for all x ∈ Ω with

|βj1,j2,...,jm(x;hj1 , hj2 , ..., hjm)| ≤ K Cm,
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for m = 1, 2, ..., d and constant Cm ∈ R∑
m,n∈N

s.t.m,n≤k
k≤m+n

(
k
m

)(
m

n−(k−m)

)
5m

384m n! 8−n90−n + k! 8−k90−k =: Ck

Proof. Interpolation of the pointwise error gives

(
PN (u− ul)

)
(x) =

d∑
m=1

∑
{j1,j2,...,jm}
⊂{1,2,...,d}

h4j1 · h
4
j2 · ... · h

4
jm(Pwj1,j2,...,jm(x;hj1 , hj2 , ..., hjm))(x),

(2.42)

where(
PNwj1,j2,...,jm(Ωh;hj1 , hj2 , ..., hjm)

)
(x) = wj1,j2,...,jm(x;hj1 , hj2 , ..., hjm)

+
d∑

n=1

∑
{l1,l2,...,ln}
⊂{1,2,...,d}

h4l1 · h
4
l2 · ... · h

4
lnRl1 ⊗Rl2 ⊗ ...⊗Rlnwj1,j2,...,jm(x;hj1 , hj2 , ..., hjm).

Condensing all terms in (2.42), which have the same leading step sizes, we define

h4l1 · h
4
l2 · ... · h

4
lk
βl1,l2,...,lk(x;hl1 , hl2 , ..., hlk) :=∑

m,n∈N
s.t.m,n≤k
k≤m+n

∑
{i1,i2,...,im}∪{j1,j2,...,jn}

={l1,l2,...,lk}

h4i1 · h
4
i2 · ... · h

4
im

·RNi1
⊗RNi2

⊗ ...⊗RNim
h4j1 · h

4
j2 · ... · h

4
jnwj1,j2,...,jn(x;hj1 , hj2 , ..., hjn)

+ h4l1 · ... · h
4
lk
wl1,...,lk(x;hl1 , ..., hlk).

We already know that it holds (cf. (2.41))

‖RNi1
⊗RNi2

⊗ ...⊗RNim
wj1,j2,...,jn‖∞ ≤ 5m

384m n! 8−n90−nK.

The inner sum has
(
k
m

)(
m

n−(k−m)

)
elements and we obtain the estimate

‖βl1,...,lk‖∞ ≤ K
∑

m,n∈N
s.t.m,n≤k
k≤m+n

(
k
m

)(
m

n−(k−m)

)
5m

384m n! 8−n90−n +Kk! 8−k90−k =: K Ck. �

Theorem 22. Let u ∈ C
(10,...,10)
K (Ωd) be the solution to the Poisson equation and let ul

denote its fourth-order nine-points-cross finite difference solution on the grid Ωl. Using a
tensor product interpolation PN with univariate cubic spline interpolation in each coordi-
nate direction, the error between the analytical solution and the interpolation of the finite
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difference solution is

u(x)− (PNul)(x) =
d∑

m=1

∑
{j1,j2,...,jm}
⊂{1,2,...,d}

h4j1 · h
4
j2 · ... · h

4
jmγj1,j2,...,jm(x;hj1 , hj2 , ..., hjm),

for x ∈ Ωd with ‖γj1,j2,...,jm‖∞ ≤ ( 5m

384m + Cm)K for m = 1, 2, ..., d.

The proof immediately follows from Lemma 20 I and Lemma 21 II and by definition of
γj1,...,jm := βj1,...,jm − cj1,...,jm . �

m 1 2 3 4
Cm 0.0014 4.0599e-5 8.8699e-7 1.7416e-8

Table 2.1: Cm for different choices of m.

Table 2.1 states the constants Cm for the β functions in Lemma 3 for m = 1, ..., 4.

Pseudo-spectral Methods Pseudo-spectral methods on sparse grids have been rarely
used in the literature. To our knowledge there are only the works of Shen and Yu [84, 85],
who construct a spectral sparse grid for elliptic problems. They use Smolyak’s algorithms
to build a sparse grid based on nested, spectrally accurate quadratures. We follow a
different approach and use the combination technique to construct the sparse grid. Please
recall that the combination technique is based on an appropriate error splitting structure
of the underlying numerical full grid solver. At the current state, an analytical proof is
missing and is part of future research. Here, the difficulty arises to prove a (semi-)discrete
maximum principle to derive bounds for the coefficient functions in equation (2.28). In the
following we investigate the splitting structure numerically and compute the hierarchical
surpluses. We consider the four test problems given in [84] and solve the Poisson equation

−∆u = f for x ∈ Ωd = [−1, 1]d

with solutions

u1(x) =
d∏

i=1

sin(kπ xi+1
2 ), u2(x) =

d∑
i=1

φk(xi)
∏
i 6=j

sin(π xi+1
2 ),

u3(x) =
d∏

i=1

gk(xi), u4(x) =
d∏

i=1

(
hk(xi)− xi+1

2

)
,

where

φk(xi) = esin(kπ
xi+1
2 ) − 1

gk(xi) = (1− x2i )(1 + xi) log(1 + xi + 10−k)

hk(xi) =

{
0, xi ≤ 0
xki , xi > 0
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Figure 2.8: Test cases for d = 2.

and k ∈ N. The right hand sides are given by

f1(x) = d
k2π2

4
u1,

f2(x) =
d∑

i=1

(
(d− 1)π2

4
φk(xi)− φ′′k(xi)

)∏
j 6=i

sin

(
π
xj + 1

2

)
,

f3(x) = −
d∑

i=1

g′′k(xi)∏
j 6=i

gj(xj)

 ,

f4(x) = −
d∑

i=1

h′′k(xi)∏
j 6=i

(
hk(xj)−

xj+1
2

) .

The first two functions are analytic without any singularity in the complex plane. In this
case we expect supergeometric convergence (r = ∞). The third function is also analytic,
but has a singularity on the real axis at z0 = −1 − 10−k. According to Theorem 14 the
factor r is given by r = 1 + 10−k +

√
(1 + 10−k)2 − 1. For smaller k values the distance

of z0 to the domain [−1, 1] becomes larger and leads to a faster convergence. We assume
a numerical error of the form

u(x)− (PNul)(x) =
d∑

k=1

∑
{j1,j2,...,jk}
⊂{1,2,...,d}

r−Nj1 · r−Nj2 · ... · r−Njkγj1,j2,...,jk(x;Nj1 , Nj2 , ..., Njk),
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Figure 2.9: Sparse grid and full grid solution.

with bounded functions γ. Under this assumption we can expect a hierarchical surplus of
order

δul(x) = O(r−N1 · r−N2 · · · r−Nd) = O(r−
∑d

i=1 Ni) = O(r−
∑d

i=1 2
li )

for all x ∈ Ωd. We see that this splitting structure is not appropriate for the combination
technique, as the sub-grids at the same level have a different order of accuracy, e.g. let
d = 2 and n = 6, then the surplus of δu(3,3) = O(r−16), while δu(2,4) = O(r−20). The
fourth example has a k-th derivative of bounded variation and according to Theorem 13
we expect an algebraic convergence. Let the error splitting be given by

u(x)− (PNul)(x) =
d∑

k=1

∑
{j1,j2,...,jk}
⊂{1,2,...,d}

Nm
j1 ·Nm

j2 · ... ·Nm
jk
γj1,j2,...,jk(x;Nj1 , Nj2 , ..., Njk),

with bounded functions γ and m denotes the order of algebraic convergence. Then,
analogue to the finite difference case, the hierarchical surplus is of order

δul(x) = O(Nm
j1N

m
j2 · · ·Nm

jd
) = O(2−m|l|1).

If not otherwise mentioned, we have chosen lmin = 1 in the following numerical exper-
iments. Figures 2.10 and 2.11 state the accuracy versus the number of grid nodes or
computation time, respectively. In the analytic case with supergeometric convergence of
cases 1 and 2, the sparse grid combination technique performs similar or even worse than
the full grid method. Due to the high rate of convergence there is no benefit in using the
combination technique. In the third case we observe geometric convergence and the com-
bined solution outperforms the full grid solution in the high accuracy region. This result
is quite surprising, as the surpluses at one level are of different order, see the discussion
above. However, for r close to 1 the difference in the surpluses is small and the bene-
fit of the cancellation of low order error terms outweighs the unnecessary computational
workload. Tables 2.2 and 2.3 show the hierarchical surpluses in the two-dimensional case.
We observe that in the analytic case (Table 2.2) the surpluses at the same level are of
different size, while they are of comparable size in the algebraic case (Table 2.3). This
leaves room to improve the numerical method in the analytic case: since the boundary
grids (grids with low level in one direction) are of higher order than the center grids,
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Figure 2.10: Convergence of the full grid approach versus the sparse grid combination
technique.
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Figure 2.11: Computation time versus accuracy of the full grid approach and the sparse
grid combination technique.
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l1, l2 1 2 3 4 5
1 0.05320007109 3.01091817426 0.67948036244 0.00090058675 0.00000425864
2 3.01091817426 5.81390129215 1.20139326430 0.02748897172 0.00101213360
3 0.67948036244 1.20139326430 0.06600992745 0.00176267546 0.00006409891
4 0.00090058675 0.02748897172 0.00176267546 0.00007605425 0.00000253873
5 0.00000425864 0.00101213360 0.00006409891 0.00000253873 0.00000017619

Table 2.2: Hierarchical surplus of the spectral method for case 3 with k = 3 and d = 2.

l1, l2 1 2 3 4 5
1 0 15.20688403880 3.15596490099 0.71863369303 0.17283592883
2 15.20688403880 4.89281826359 0.53018892670 0.10161973130 0.02346582984
3 3.15596490099 0.53018892670 0.16327550147 0.02257005970 0.00528871129
4 0.71863369303 0.10161973130 0.02257005970 0.00068325977 0.00010098876
5 0.17283592883 0.02346582984 0.00528871128 0.0001009887 0.00000821986

Table 2.3: Hierarchical surplus of the spectral method for case 4 with k = 3 and d = 2.

they do not contribute any reasonable additional information and can therefore be ne-
glected. In Figure 2.12 we show the improvement by exclusion of the boundary grids.
By neglecting solutions with little information gain, we reduce the number of grid nodes
and therefore the computation time without any loss of accuracy. Persuading this idea
further and removing more boundary grids, the combined solution converges to the full
grid solution. This explains the optimality of the full grid solution in the analytic case as
in the asymptotic

O(r−2n/d−...−2n/d
) � O(r−2n/d−...−2n/d−1−...−2n/d+1−...−2n/d

)

holds, where n is the level of the sparse grid combination technique w.l.o.g. n being a
multiple of d. In other words, the surplus of the solution with Ni = 2n/d nodes in each
direction is significantly more important than all other surpluses at the same level, so that
it gives no additional accuracy if we add them to our solution. In the first two experiments
this effect can clearly been seen as we have supergeometric convergence with r = ∞, while
in the third experiment the asymptotically optimal region of the full grid method is not
reached and the sparse grid combination technique performs better.

Figure 2.13 shows the benefit of the combination technique for different rates of geometric
convergence. The closer the value r is to 1 the better the combination technique performs,
which reflects the previous discussion.
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Figure 2.12: Modified combination technique (d = 2).
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Figure 2.13: Combination technique versus full grid in experiment 3 with two spatial
dimensions and k = 2, 4, such that r ≈ 1.1518, r ≈ 1.0142, respectively.
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Figure 2.14: Combination technique with pseudo-spectral and finite difference discretiza-
tion (d = 2).

In the fourth case the convergence reduces to the algebraic case and the combination
technique clearly outperforms the full grid method. Shen and Yu in [84] claim that this is
the ideal case for their sparse grid method. However, the low accuracy due to the regularity
constraints of u4 (for moderate k values) is the right setting for finite difference methods
as they are much cheaper due to their sparse matrix structure and should therefore be
preferred to spectral methods, see Figure 2.14.





3 Chapter 3

Time Discretization - Alternating
Direction Implicit Schemes

In the previous chapter we have discussed the approximation of the spatial derivatives via
finite differences or pseudo-spectral differentiation. The application of both approaches
to time-dependent problems leads to the semi-discrete system of ordinary differential
equations (2.1)

U ′(t) = F (t)U(t), t ≥ 0,

supplied with suitable initial and boundary data. In the next step, a suitable time dis-
cretization method can be chosen. Standard techniques are the explicit or implicit Euler
method, which exhibit first order accuracy in time. Second-order accuracy can be achieved
with the Crank-Nicolson (CN) method. The three schemes are given by

Un+1 = Un + (1− θ)∆tF (n∆t)Un + θF ((n+ 1)∆t)Un+1,

where ∆t is the step size in time, Un ∼ U(n∆t) and θ > 0 is a real parameter, called
implicitness parameter. If θ = 1 the resulting scheme is the implicit Euler method. In
the case of θ = 0 the implicit terms vanish and one obtains the explicit Euler method,
while we get the Crank-Nicolson scheme for θ = 1

2 . The Euler schemes suffer from a low
accuracy and are therefore rarely used in financial applications. The second-order accu-
racy makes the CN scheme an interesting method to consider and explains its widespread
popularity. However, if high dimensional PDEs shall be solved, the method becomes
computationally too expensive. For example, if a standard central second-order finite dif-
ference discretization is applied to a problem without mixed derivatives, the matrix F has
up to 2d+1 entries in each row. Since in each time step the linear system I− θ∆tF (n∆t)
is involved and leads to an undesirable large computational effort if the arising linear
system of equations is solved exactly, e.g. via LU-decomposition.

In Figure 3.1 we demonstrate the increase in the run-time with Crank-Nicolson time
stepping. We solve the two-dimensional heat equation

∂u

∂t
=
∂u2

∂x21
+
∂u2

∂x22
on Ω2 = (0, 1)2,

u(x1, x2) = 0 for (x1, x2) ∈ ∂Ω2.

on a grid with N = (N,N) nodes. We observe a slope of order 1.7012 for the last four
data points, which corresponds to a computational effort of O(N2·1.7012). This strong
increase of the computation time seems to be surprising as there are only a maximum of
five entries per row in the system of equations. It can be explained with the large fill-in
within the L and U matrices, see Figure 3.2. Although the matrix I − θ∆tF (n∆t) with
1377 non zero entries is sparse, the L and U matrices suffer from a large degree of fill-in

49
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Figure 3.1: Number of grid points (N2) versus time consumption.
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Figure 3.2: Fill-in of discretization matrices in the Crank-Nicolson scheme with N = 17
nodes in each coordinate direction.

and have 4929 non zero entries.

This problem can be circumvented by applying Alternating Direction Implicit (ADI)
schemes. Here, the spatial discretization matrix is decomposed into

F (t) = F0(t) + F1(t) + . . .+ Fd(t),

where F0 stems from all mixed derivatives and Fi from each unidirectional contribution of
coordinate direction i = 1, ..., d. With the help of ADI time stepping the equation system
can be solved as a sequence of one-dimensional problems, which significantly reduces the
run-time compared to implicit Euler or Crank-Nicolson time marching. In the following
we consider four well known ADI schemes.

Douglas scheme (DO):
Y0 = Un +∆tF (t)Un,

Yi = Yi−1 + θ∆t (Fi(t)Yi − Fi(t)Un) for i = 1, ..., d

Un+1 = Yd.

(3.1)
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Craig-Sneyd scheme (CS):

Y0 = Un +∆tF (t)Un,

Yi = Yi−1 + θ∆t (Fi(t)Yi − Fi(t)Un) for i = 1, ..., d

Ỹ0 = Y0 +
1
2∆t (F0Yd − F0Un)

Ỹi = Ỹi−1 + θ∆t

(
Fi(t)Ỹi − Fi(t)Un

)
for i = 1, ..., d

Un+1 = Ỹd.

(3.2)

Modified Craig-Sneyd scheme (MCS):

Y0 = Un +∆tF (t)Un,

Yi = Yi−1 + θ∆t (Fi(t)Yi − Fi(t)Un) for i = 1, ..., d

Ŷ0 = Y0 + θ∆t (F0Yd − F0Un)

Ỹ0 = Ŷ0 + (12 − θ)∆t (F (t)Yd − F (t)Un)

Ỹi = Ỹi−1 + θ∆t

(
Fi(t)Ỹi − Fi(t)Un

)
for i = 1, ..., d

Un+1 = Ỹd.

(3.3)

Hundsdorfer-Verwer scheme (HV):

Y0 = Un +∆tF (t)Un,

Yi = Yi−1 + θ∆t (Fi(t)Yi − Fi(t)Un) for i = 1, ..., d

Ỹ0 = Y0 +
1
2∆t (F (t)Yd − F (t)Un)

Ỹi = Ỹi−1 + θ∆t

(
Fi(t)Ỹi − Fi(t)Yd

)
for i = 1, ..., d

Un+1 = Ỹd,

(3.4)

where ∆t is the step size in time, Un ∼ U(n∆t) and θ > 0 is a real parameter. In the
first scheme (3.1) an explicit Euler step is followed by a stabilizing correction step in each
of the spatial directions. In the case of θ = 1

2 the methods is known as the Douglas [17]
and Brian [5] scheme. The value θ = 1 has been considered by Douglas in [16]. If no
mixed derivative are present in the PDE and θ = 1

2 the scheme is of order two in time
and of order one otherwise. As mixed derivatives are quite common in finance PDEs
this is a severe restriction. The Craig-Sneyd scheme [14] was originally introduced as an
extension of the Douglas scheme, where a second explicit step is followed by d implicit
stabilizing steps. It exhibits order two if θ = 1

2 . The modified Craig-Sneyd scheme (3.3)
can be seen as an extension of the iterated scheme in the article by Craig and Sneyd
[14] and was defined by in’t Hout et al. in [54]. This scheme has order two for arbitrary
θ > 0. The Hundsdorfer-Verwer scheme was derived in [48] and possesses like the modified
Craig-Sneyd scheme order two for any θ > 0.

Figure 3.1 shows the run-time of the second-order finite difference ADI CS scheme with
θ = 1

2 and N = (N,N) grid nodes applied to the two-dimensional heat equation. Due to
the decomposition of the discretization matrix N one-dimensional problems have to be
solved in each implicit leg. Since the discretization matrices I − θ∆tF1 and I − θ∆tF2,
respectively, have only a maximum of three entries per row, each one-dimensional problem
can be solved in linear run-time. Thus, we obtain a total computational effort proportional
to NO(N) = O(N2) or, in other words, the computational complexity rises linearly
with the number of unknowns. The fillings of the matrices L1U1 = I − θ∆tF1 and
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0 100 200

0

100

200

non zero entries 561

(a) L1

0 100 200

0

100

200

non zero entries 561

(b) U1

0 100 200

0

100

200

non zero entries 561

(c) L2

0 100 200

0

100

200

non zero entries 561

(d) U2

Figure 3.3: Discretization matrices in an ADI scheme with N = 17 nodes in each coordi-
nate direction.
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L2U2 = I − θ∆tF2 are exemplary given in Figure 3.3. In contrast to the CN scheme the
number of non zero entries is low and each matrix has only up to two entries per row.

3.1 Stability Considerations

In the ADI schemes low θ values in general lead to more accurate results, but might
cause instabilities if chosen too small. Hence, the value has to be determined carefully
to maintain a stable scheme and to get accurate results. Therefore, much effort has been
spent on the derivation of bounds on θ ensuring unconditional stability. The recent lit-
erature provides theoretical results for standard second-order finite differences applied to
multi-dimensional diffusion and convection-diffusion equations with and without mixed
derivatives [52, 53, 54, 55, 63, 71]. The results are derived in the von Neumann frame-
work under the simplifying assumption of constant coefficients and periodic boundary
conditions (BCs). We consider the general convection-diffusion equation with constant
coefficients

∂u

∂t
= div(A∇u) + c · ∇u (3.5)

with A = (aij), c = (c1, c2, ..., cd)
> and supplemented with periodic BCs. The diffusion

coefficient matrix A is assumed to be symmetric and positive semi-definite, which is in
line with the parabolicity of the problem. Let the numerical scheme to solve this equation
be given in the one-step form

Un+1 = RUn,

where R denotes the iteration matrix. The iteration matrices are of the following form

RDO = I + P−1Z, (3.6)
RCS = I + P−1Z + 1

2P
−1Z0P

−1Z, (3.7)
RMCS = I + P−1Z + P−1(θZ0 + (12 − θ)Z)P−1Z, (3.8)
RHV = (I + P−1Z)2 − P−1(I + 1

2Z)P
−1Z, (3.9)

with P =
∏d

i=1(I − θ∆tFi), Z0 = ∆tF0, Z = ∆t
∑d

i=0 Fi. In the case of standard central
finite difference schemes the discretization matrices DFDi , D2

FDi
for i = 1, 2, . . . , d are

normal and commuting. Due to the construction of the operators Fi for i = 0, 1, . . . , d via
the Kronecker product of normal and commuting matrices the normality is sustained and
the operators commute, see e.g. [64, Chapter 13]. Thus, they can be written in a more
condensed form

RDO = I + P−1Z, (3.10)
RCS = I + P−1Z + 1

2P
−2Z0Z, (3.11)

RMCS = I + P−1Z + θP−2Z0Z + (12 − θ)P−2Z2, (3.12)
RHV = I + 2P−1Z − P−2Z + 1

2P
−2Z2. (3.13)

Furthermore, due to the normality the discretization matrix F is simultaneously di-
agonalizable F = V ΛV −1 with unitary matrix of eigenvectors V and diagonal matrix
Λ = (λ0, λ1, . . . , λd), where λi is the eigenvalue of operator Fi. The stability can then be
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analyzed by considering the linear scalar test equation

U ′(t) = (λ0 + λ1 + ...+ λd)U(t), (3.14)

with complex values λi for i = 0, 1, ..., d. This is equivalent to the von Neumann stability
analysis. For a detailed introduction and discussion we refer to [49, Chapter 1], [70,
Chapter 1]. Then the iteration matrix R reduces to the scalar factor r(z0, z1, ..., zd) with
zi = ∆tλi for i = 0, 1, ..., d and the numerical scheme is stable iff

|r| ≤ 1

is fulfilled. Defining

z = z0 + z1 + ...+ zd, p = (1− θz1) · (1− θz2) · ... · (1− θzd)

the scalar functions r for the ADI schemes (3.1)–(3.4) are given by

rDO(z0, z1, ..., zd) = 1 + z
p , (3.15)

rCS(z0, z1, ..., zd) = 1 + z
p + 1

2
z0 z
p2
, (3.16)

rMCS(z0, z1, ..., zd) = 1 + z
p + θ z0 z

p2
+ (12 − θ) z

2

p2
, (3.17)

rHV (z0, z1, ..., zd) = 1 + 2 z
p − z

p2
+ 1

2
z2

p2
. (3.18)

Each zi can be derived by inserting Fourier modes into the discretization of the derivatives,
see [53].

Conditions on θ ensuring unconditional stability have been derived in the case of pure
diffusion with two and three spatial dimensions [53, 54]:

DO: θ ≥ 1
2 (d = 2),θ ≥ max

{
1
2 ,

2(2γ+1)
9

}
(d = 3),

CS: θ ≥ 1
2 (d = 2, 3)

MCS: θ ≥ max

{
1
4 ,

γ+1
6

}
(d = 2),θ ≥ max

{
1
4 ,

2
13(2γ + 1)

}
(d = 3),

HV: θ ≥ max

{
1
4 ,

γ+1

4+2
√
2

}
(d = 2),θ ≥ max

{
1
4 ,

2γ+1

4+2
√
3

}
(d = 3),

for a parameter γ ∈ [0, 1], which describes the relative size of the mixed derivative coeffi-
cient

|aij | ≤ γ
√
aiiajj for all i 6= j. (3.19)

In [53] necessary lower bounds for higher dimensional problems were given. In case of the
HV scheme it has been proven in [54] that these conditions are sufficient. For the other
three schemes it is not clear if the lower bounds are sufficient.

DO: θ ≥ max

{
1
2 ,

1
2(1−

1
d)

d−1((d− 1)γ + 1)

}
, CS: θ ≥ max

{
1
2 ,

1
2(1−

1
d)

ddγ

}
,

MCS: θ ≥ max

{
1
4 ,

1
2

(d− 1)γ + 1

1 + (1 + 1
d−1)

d−1

}
, HV: θ ≥ max

{
1
4 ,

1
2ad((d− 1)γ + 1)

}
,
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where ad ∈ (0, 12) is the unique solution of the equation 2ad (1 +
1−ad
d−1 )

d−1 − 1 = 0.

In [52, 55, 63] the stability of these four schemes is analyzed for convection-diffusion
equations. In these works the following conditions for two-dimensional problems have
been derived:

Assume the conditions

Re(z1) ≤ 0, Re(z2) ≤ 0 and |z0| ≤ 2
√
Re(z1) ·Re(z2) (3.20)

hold for z0, z1, z2 ∈ C and θ ≥ 1
2 , then |rDO| ≤ 1 and |rCS | ≤ 1 holds. In ’t Hout

and Mishra [52] showed for F0 = 0 that for the modified Craig-Sneyd scheme it holds
|rMCS(0, z1, z2)| ≤ 1 for all z1, z2 ∈ C with negative real part Re(z1) ≤ 0, Re(z2) ≤ 0
if and only if θ ≥ 1

4 . For z0 ∈ R and z1, z2 ∈ C fulfilling (3.20), they derived the
necessary stability condition θ ≥ 2

5 . However, the scheme has been applied successfully
to convection-diffusion equations with mixed derivatives in [51] even for θ ≥ 1

3 . An
experimental analysis of this observation can be found in [52]. Recently it has been
shown by Mishra [71] that the MCS scheme is unconditionally stable for θ > 1

3 if the
modulus of the mixed derivative coefficient is at most 2+

√
10

6 .

In [38] the stability for convection-diffusion problems with three spatial dimensions was
analyzed experimentally. The bounds derived for pure diffusion equations turned out to
lead to a stable behavior in case of the DO, CS and MCS scheme. For the HV scheme
with θ = 1

2 +
1
6

√
3 the error decayed monotonically with ∆t. This θ-value was derived for

two dimensional convection-diffusion equations without mixed derivatives in [63].

3.2 High-Order Finite Difference ADI Schemes

In this section we combine high-order compact finite differences with ADI time stepping.
This approach goes back to Mitchell and Fairweather [72], who considered problems with-
out mixed derivatives. Karaa and Zhang [58] revisited this idea and solved convection-
diffusion equations with a D’Yakonov splitting scheme. Düring et al. [23] then derived
high-order (HO-)ADI methods for convection-diffusion equations with mixed derivatives.
Recently their work was extended in [43], where multi-dimensional diffusion equations in
a sparse grid setting are solved, and by Düring and Miles [25], who considered an HO-ADI
discretization for stochastic volatility models.

According to Section 2.2 we can discretize the one-dimensional problem (2.8) with fourth-
order accuracy on the compact stencil. In matrix notation this leads to a system of the
form (2.14)

AxiU = BxiG for i = 1, 2, . . . , d.

Inserting this into the semi-discrete formulation one obtains

U ′(t) = F0(t)U +B−1
x1
Ax1U +B−1

x2
Ax2U + . . .+B−1

xd
Axd

U.

The mixed derivative can be approximated via standard fourth-order stencils. Application
of the ADI time stepping yields
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HO Douglas scheme (HDO):
Y0 = Un +∆t

(
F0(Un) +B−1

x1
Ax1Un + ...+B−1

xd
Axd

Un

)
,

(Bxi − θ∆tAxi)Yi = BxiYi−1 − θ∆tAxiUn for i = 1, ..., d

Un+1 = Yd.

(3.21)

HO Craig-Sneyd scheme (HCS):

Y0 = Un +∆t

(
F0(Un) +B−1

x1
Ax1Un + ...+B−1

xd
Axd

Un

)
,

(Bxi − θ∆tAxi)Yi = BxiYi−1 − θ∆tAxiUn for i = 1, ..., d

Ỹ0 = Y0 +
1
2∆t (F0(Yd)− F0(Un))

(Bxi − θ∆tAxi) Ỹi = Bxi Ỹi−1 − θ∆tAxiUn for i = 1, ..., d

Un+1 = Ỹd.

(3.22)

HO modified Craig-Sneyd scheme (HMCS):

Y0 = Un +∆t

(
F0(Un) +B−1

x1
Ax1Un + ...+B−1

xd
Axd

Un

)
,

(Bxi − θ∆tAxi)Yi = BxiYi−1 − θ∆tAxiUn for i = 1, ..., d

Ŷ0 = Y0 + θ∆t (F0(Yd)− F0(Un))

Ỹ0 = Ŷ0 + (12 − θ)∆t (F (Yd)− F (Un))

(Bxi − θ∆tqAxi) Ỹi = Bxi Ỹi−1 − θ∆tAxiUn for i = 1, ..., d

Un+1 = Ỹd.

(3.23)

HO Hundsdorfer-Verwer scheme (HHV):

Y0 = Un +∆t

(
F0(Un) +B−1

x1
Ax1Un + ...+B−1

xd
Axd

Un

)
,

(Bxi − θ∆tAxi)Yi = BxiYi−1 − θ∆tAxiUn for i = 1, ..., d

Ỹ0 = Y0 +
1
2∆t (F (Yd)− F (Un))

(Bxi − θ∆tAxi) Ỹi = Bxi Ỹi−1 − θ∆tAxiYd for i = 1, ..., d

Un+1 = Ỹd.

(3.24)

In order to avoid the inverse of the operators Bxi for i = 1, ..., d one can rewrite the
schemes. To do this, we introduce new artificial variables. The variables are defined as

Zi :=

d∏
j=i+1

BxjYi,

Z̃i :=

d∏
j=i+1

Bxj Ỹi,

Ẑ0 :=

d∏
j=1

Bxj Ŷ0,

for i = 0, 1, . . . , d.
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HO Douglas scheme (HDO):
Z0 =

∏d
j=1BxjUn +∆t

(∏d
j=1BxjF0(Un) +

∑d
i=1

∏d
j=1
j 6=i

BxjAxiUn

)
(Bxi − θ∆tAxi)Zi = Zi−1 − θ∆t

∏d
j=i+1BxjAxiUn for i = 1, ..., d

Un+1 = Zd,

(3.25)

HO Craig-Sneyd scheme (HCS):

Z0 =
∏d

j=1BxjUn +∆t

(∏d
j=1BxjF0(Un) +

∑d
i=1

∏d
j=1
j 6=i

BxjAxiUn

)
(Bxi − θ∆tAxi)Zi = Zi−1 − θ∆t

∏d
j=i+1BxjAxiUn for i = 1, ..., d

Z̃0 = Z0 +
1
2∆t

(∏d
j=1BxjF0(Zd)−

∏d
j=1BxjF0(Un)

)
(Bxi − θ∆tAxi) Z̃i = Z̃i−1 − θ∆t

∏
j=i+1BxjAxiUn for i = 1, ..., d

Un+1 = Z̃d.

(3.26)

HO modified Craig-Sneyd scheme (HMCS):

Z0 =
∏d

j=1BxjUn +∆t

(∏d
j=1BxjF0(Un) +

∑d
i=1

∏d
j=1
j 6=i

BxjAxiUn

)
(Bxi − θ∆tAxi)Zi = Zi−1 − θ∆t

∏d
j=i+1BxjAxiUn for i = 1, ..., d

Ẑ0 = Z0 + θ∆t

(∏d
j=1BxjF0(Zd)−

∏d
j=1BxjF0(Un)

)
Z̃0 = Ẑ0 + (12 − θ)∆t

(∏d
j=1BxjF (Zd)−

∏d
j=1BxjF (Un)

)
(Bxi − θ∆tAxi) Z̃i = Z̃i−1 − θ∆t

∏
j=i+1BxjAxiUn for i = 1, ..., d

Un+1 = Z̃d.

(3.27)

HO Hundsdorfer-Verwer scheme (HHV):

Z0 =
∏d

j=1BxjUn +∆t

(∏d
j=1BxjF0(Un) +

∑d
i=1

∏d
j=1
j 6=i

BxjAxiUn

)
(Bxi − θ∆tAxi)Zi = Zi−1 − θ∆t

∏d
j=i+1AxiUn for i = 1, ..., d

Z̃0 = Z0 +
1
2∆t

(∏d
j=1BxjF (Zd)−

∏d
j=1BxjF (Un)

)
(Bxi − θ∆tAxi) Z̃i = Z̃i−1 − θ∆t

∏d
j=i+1BxjAxiZd for i = 1, ..., d

Un+1 = Z̃d.

(3.28)

Please note that this formulation is slightly different to the ones given in the literature,
e.g. in [23, 25], where the HOC discretization is applied to the implicit legs and standard
fourth-order discretizations are used in the explicit legs.
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3.3 Stability of HO-ADI Schemes

We investigate the stability of the HO-ADI schemes (3.21)–(3.24) within the von Neumann
framework. Therefore, we consider the general convection-diffusion PDE (3.5)

∂u

∂t
= div(A∇u) + c · ∇u

with constant coefficients and supplemented with periodic BCs. Please note that this
causes all derivatives of the coefficients in our scheme to vanish. In order to be able to
investigate the stability with the help of the linear test equation (3.14) to prove stability
the operators Fi need to be normal and commuting for i = 0, 1, . . . , d. Due to the periodic
BCs the discretization matrices DFDi , D2

FDi
, D̃FDi for i = 1, 2, . . . , d are circulant and

commuting. Thus, the HOC matrices Bxi , Axi are as a Kronecker product normal and
commute with each other. Therefore, they can be diagonalized simultaneously by an
unitary matrix.

3.3.1 Stability in 2 or 3 Dimensions for Diffusion Equations

First, we consider diffusion equations and let c = (0, 0, . . .)>. The matrices in (2.14) are
then given by

Axi = aiiIN1 ⊗ . . .⊗ INi−1 ⊗D2
FDi

⊗ INi+1 ⊗ . . .⊗ INd
,

Bxi = IN1·N2·...·Nd
+
h2i
12
IN1 ⊗ . . .⊗ INi−1 ⊗D2

FDi
⊗ INi+1 ⊗ . . .⊗ INd

for i = 1, 2, . . . , d. Inserting Fourier modes into each discretization operator, we obtain
the eigenvalues

z̃i = −2aii
1
h2
i
(1− cosφi) for i = 1, ...d,

z̄i = 1− 1
6 (1− cosφi) for i = 1, ...d,

z0 = −
∑
i 6=j

aij
4

144
∆t
hihj

(8 sinφi − sin 2φi) (8 sinφj − sin 2φj) . (3.29)

The eigenvalues z̃i stem from aiiδ
2
i , Axi respectively, z̄i from 1 +

h2
i

12 δ
2
i , Bxi respectively,

and z0 from all mixed derivatives. The angles φi are integer multiples of 2π/mi, where
mi denotes the dimension of the grid in xi-direction for i = 1, ..., d. Hence we have the
scalar factor

p =
∏
i

(1− θ∆tz̃i/z̄i)

z = z0 +∆t

∑
i

z̃i
z̄i
.

Defining

zi := ∆tz̃i/z̄i, (3.30)
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we obtain

p =
∏
i

(1− θzi) ,

z = z0 + z1 + ...+ zd.

By introduction of the quantities

yi :=
1
6

√
∆t

hi
(8 sinφi − sin 2φi) ,

qi := (1− ci)(1− 3ci)(1 + 2ci)
2,

with ci =
1
6(1− cosφi) for i = 1, ..., d, we can rewrite the eigenvalues to

z0 = −
∑
i 6=j

aijyiyj (3.31)

zi = −aii
qi
y2i = −aiiy2i − δi (3.32)

for i = 1, 2, ..., d with δi = −zi (1− qi). One directly observes 0 ≤ qi ≤ 1, zi ≤ 0 and
δi ≥ 0 for i = 1, 2, ..., d.

The stability matrices reduce to the stability functions

rHDO(z0, z1, ..., zd) = 1 + z
p ,

rHCS(z0, z1, ..., zd) = 1 + z
p + 1

2
z0 z
p2
,

rHMCS(z0, z1, ..., zd) = 1 + z
p + θ z0 z

p2
+ (12 − θ) z

2

p2
,

rHHV (z0, z1, ..., zd) = 1 + 2 z
p − z

p2
+ 1

2
z2

p2
.

Note that the stability functions of the HO-ADI schemes have the same structure as
for the ’standard’ ADI schemes (3.15)–(3.18). This gives rise to the assumption that
both approaches share similar stability properties. Nevertheless, the eigenvalues zi for
i = 0, 1, ..., d stem from high-order discretizations compared to the standard central
second-order discretizations in the literature. In the following we want to use the re-
sults from the literature as far as applicable, cf. [53, 54]. Therefore, we formulate a
Lemma which states properties regarding the eigenvalues. We will use these results later
in the proofs.

Lemma 23. Let z0, z1, ..., zd be given by (3.31), (3.32), respectively. Further let A be
symmetric positive semi-definite, then

all zi are real, (3.33)
zi ≤ 0 for i=1,. . . ,d (3.34)
z ≤ 0, (3.35)

|z0| ≤
∑
i 6=j

√
zizj . (3.36)

Proof. The properties (3.33), (3.34) are clear. It remains to prove (3.35),(3.36). We first
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show z ≤ 0. It holds

z = z0 + z1 + ...zd = −
∑
i 6=j

aijyiyj +

d∑
i=1

(
−aiiy2i − δi

)
,

= −y>Ay −
d∑

i=1

δi,

with y = (y1, ..., yd)
>. Due to the positive semi-definiteness of the symmetric coefficient

matrix A it follows −y>Ay ≤ 0. Due to zi ≤ 0 and qi ≤ 1 it follows δi ≥ 0, which directly
proves the desired inequality z ≤ 0.

In the following we prove condition (3.36).
By the positive semi-definiteness of A it follows |aij | ≤

√
aii ajj . Hence, we can conclude

|z0| ≤
∑
i 6=j

|aij | |yi| |yj | ≤
∑
i 6=j

√
aiiajj |yi| |yj | ≤

∑
i 6=j

√
zizj .

The last inequality follows due to δi ≥ 0 for i = 1, 2, ..., d.

Theorem 2.3 in [53] states the parameter values of θ, so that the ADI schemes (3.1)–(3.4)
using second-order central finite difference stencils are unconditionally stable, when ap-
plied to the PDE (3.5) without convection term. Since only the conditions in Lemma 23
are used in the proof, the same stability conditions also hold for the HO-ADI schemes.

Theorem 24. Consider the equation (3.5) with c = (0, 0, . . . , 0)>, periodic BCs and
symmetric positive semi-definite coefficient matrix A in two or three spatial dimensions.
Then the HO-ADI schemes (3.21)–(3.24) are unconditionally stable with the following
lower bound on θ:

HO Douglas scheme (3.21)

θ ≥ 1

2
if d = 2 θ ≥ 2

3
if d = 3

HO Craig-Sneyd scheme (3.22)

θ ≥ 1

2
if d = 2, 3

HO modified Craig-Sneyd scheme (3.23)

θ ≥ 1

3
if d = 2 θ ≥ 6

13
if d = 3

HO Hundsdorfer-Verwer scheme (3.24)

θ ≥ 1

2 +
√
2

if d = 2 θ ≥ 3

4 + 2
√
3

if d = 3

Proof. As A is symmetric positive semi-definite, Lemma 23 concludes that the inequalities
(3.33)–(3.36) hold. The proof directly follows the analogue steps as in [53, Theorem 2.3],
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since only conditions (3.33)–(3.36) are used there.

3.3.2 Stability in Arbitrary Dimensions for Diffusion Equations

In this section we want to derive necessary conditions on θ for the HO-ADI schemes. The
stability condition |r| ≤ 1 can be rewritten to:

HO Douglas scheme (3.21)

2p+ z ≥ 0, z ≤ 0, (3.37)

HO Craig-Sneyd scheme (3.22)

p+ 1
2z0 ≥ 0, 2p2 + p z + 1

2z0 z ≥ 0, (3.38)

HO modified Craig-Sneyd scheme (3.23)

p− θ(z − z0) +
1
2z ≥ 0, 2p+ p z + θz0 z + (12 − θ)z2 ≥ 0, (3.39)

HO Hundsdorfer-Verwer scheme (3.24)

2p− 1 + 1
2z ≥ 0, 2p2 + (2p− 1)z + 1

2z
2 ≥ 0. (3.40)

Theorem 25. Let d ≥ 2. Then the HO-ADI schemes (3.21)–(3.24) applied to equations
(3.5) with c = (0, 0, . . . , 0)>, symmetric positive semi-definite coefficient matrix A and
periodic BCs, need to fulfill the following lower bound on θ for unconditional stability:

HO Douglas scheme (3.21)

θ ≥ 1

2
d(1− 1

d)
d−1,

HO Craig-Sneyd scheme (3.22)

θ ≥ max

{
1

2
,
1

2
d(1− 1

d)
d

}
,

HO modified Craig-Sneyd scheme (3.23)

θ ≥ 1

2

d

1 + ( d
d−1)

d−1
,

HO Hundsdorfer-Verwer scheme (3.24)

θ ≥ 1

2
dak,

where ak is the unique solution a ∈
(
0, 12
)

of 2a
(
1 + 1−a

d−1

)d−1
− 1 = 0.

Proof. We consider a coefficient matrix A with aij = 1 for 1 ≤ i, j ≤ d. Note, that for
this choice A is positive semi-definite. In the following we assume equal step sizes in all
coordinate directions h = h1 = ... = hd and choose equal angles φ = φ1 = ... = φd for all



62 3 Time Discretization - Alternating Direction Implicit Schemes

zi. Hence, the eigenvalues are given by

z − z0 = −d1
q
y2,

z0 = −d (d− 1)y2,

with q = q1 = ... = qd and y = y1 = ... = yd. The stability conditions (3.37)–(3.40) yield

(3.37) : θ ≥ −θ z

2p
=
θ

2

d(d− 1)y2 + d1
qy

2

(1 + θ 1qy
2)d

(3.38) : θ ≥ −θ z0
2p

=
θ

2

d(d− 1)y2

(1 + θ 1qy
2)d

(3.39) : θ ≥ −1
2θ

z

p− θ(z − z0)
=
θ

2

d(d− 1)y2 + d1
qy

2

(1 + θ 1qy
2)d + θd1

qy
2

(3.40) : θ ≥ −1
2θ

z

2p− 1
=
θ

2

d(d− 1)y2 + d1
qy

2

2(1 + θ 1qy
2)d − 1

.

Defining α := θ 1qy
2, we obtain

(3.37) : θ ≥ αd

2

(d− 1)q + 1

(1 + α)d

(3.38) : θ ≥ αd

2

(d− 1)q

(1 + α)d

(3.39) : θ ≥ αd

2

(d− 1)q + 1

(1 + α)d + αd

(3.40) : θ ≥ αd

2

(d− 1)q + 1

2(1 + α)d − 1
.

Taking the supremum of q(φ) on the interval φ ∈ (0, 2π), one obtains

(3.37) : θ ≥ αd2

2 (1 + α)d

(3.38) : θ ≥ αd(d− 1)

(1 + α)d

(3.39) : θ ≥ d

2

αd

(1 + α)d + αd

(3.40) : θ ≥ d

2

αd

2(1 + α)d − 1
.

Please note that we have taken the supremum on the open interval since q and α both
depend on φ and are therefore not independent on the closed interval (α = 0 for φ = 0).
Maximization regarding the parameter α > 0 completes the proof.

In case of the HO Craig-Sneyd scheme we also consider the case φi = 0 for all i > 1, such
that z2 = ... = zd = 0 and z0 = 0. The stability criterion (3.38) reduces to

2(1− θz1)
2 + (1− θz1) z1 ≥ 0 ⇔ 2 + (1− 2θ) z1 ≥ 0,
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which leads to the lower bound θ ≥ 1
2 .

The necessary condition on θ coincides with the sufficient condition in two or three spatial
dimensions. From the inequalities (3.39), (3.40) and zi, z ≤ 0 for i = 1, ..., d follows
rHHV ≤ rHMCS since 2p − 1 + 1

2z = p +
∏
(1 − θzi) − 1 + 1

2z ≥ p − θ
∑
zi +

1
2z =

p−θ(z−z0)+ 1
2z. Thus, the necessary condition on θ for unconditional stability is weaker

for the HHV than for the HMCS scheme.

3.3.3 Stability for Convection-Diffusion Equations

In the case of convection-diffusion equations the condition (3.20) yields stability results for
the four introduced ADI schemes in a two-dimensional setting. In the following we prove
that the conditions (3.20) hold. In the higher dimensional case stability for problems
with strong convection-dominance cannot be guaranteed. Therefore, we investigate the
stability behavior experimentally for problems with different magnitudes of convection in
three and four spatial dimensions.

The discretization matrices are given by

Axi =

(
aii +

h2i c
2
i

12aii

)
IN1 ⊗ . . .⊗ INi−1 ⊗D2

FDi
⊗ INi+1 ⊗ . . .⊗ INd

+ ciIN1 ⊗ . . .⊗ INi−1 ⊗DFDi ⊗ INi+1 ⊗ . . .⊗ INd
,

Bxi =IN1·N2·...·Nd
+
h2i
12
IN1 ⊗ . . .⊗ INi−1 ⊗D2

FDi
⊗ INi+1 ⊗ . . .⊗ INd

+
h2i
12

ci
aii
IN1 ⊗ . . .⊗ INi−1 ⊗DFDi ⊗ INi+1 ⊗ . . .⊗ INd

for i = 1, 2, . . . , d. Inserting Fourier modes into the discretization operators we obtain the
eigenvalues

z̃i = 2
(
aii +

h2
i c

2
i

12aii

)
1
h2
i
(cosφi − 1) + ci

1
hi

√
−1 sinφi for i = 1, ..., d,

z̄i = 1− 1
6 (1− cosφi) +

ci
12aii

hi
√
−1 sinφi for i = 1, ..., d,

z0 = −
∑
i 6=j

aij
1
36

∆t
hihj

(8 sinφi − sin 2φi) (8 sinφj − sin 2φj) . (3.41)

The eigenvalues z̃i stem from Axi whereas z̄i from Bxi and z0 from all cross derivatives.
The angles φi are integer multiples of 2π/mi with mi being the dimension of the grid
in xi-direction for i = 1, ..., d. Similar to the pure diffusion case, we obtain the scalar
stability functions (3.15)–(3.18) with

zi = ∆tz̃i/z̄i. (3.42)

Thus, the proof of stability reduces to the analysis of the eigenvalues. Lemma 26 ensures
the unconditional stability of the HDO (3.21), HCS (3.22) schemes and the necessary
condition on the lower bound for θ in the HMCS scheme (3.23). For the HHV scheme
(3.24) this leads to unconditional stability if z0 = 0.

Lemma 26. Let d = 2 and HO-ADI schemes (3.21)–(3.24) be applied to the convection-
diffusion problem (3.5) with symmetric positive semi-definite coefficient matrix A. Then
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it holds for the eigenvalues, defined according to (3.41), (3.42), respectively,

Re(z1) ≤ 0, Re(z2) ≤ 0 and |z0| ≤ 2
√
Re(z1) ·Re(z2).

Proof. The positive semi-definiteness of A is equivalent to

a11 ≥ 0, a22 ≥ 0, (a12 + a21)
2 ≤ 4a11a22.

We first compute the real part of the eigenvalues zi for i = 1, 2 and obtain

Re(zi) = ∆t

2
(
aii
h2
i
+

c2i
12aii

)
(cosφi − 1)

(
1− 1

6(1− cosφi)
)
+

c2i
12aii

sin2 φ(
1− 1

6(1− cosφi)
)2

+
(

cihi
12aii

)2
sin2 φi

.

With

αi :=
cosφi−1

1−1
6 (1−cosφi)

,

βi := h2i
c2i
a2ii
,

γi := sin2 φi/
(
1− 1

6(1− cosφi)
)2
,

it holds

Re(zi) = ∆t
aii
h2i

2αi
1 + 1

24βi (2 + γi/αi)

1 + 1
144βiγi

.

Please note that

1 + 1
24βi (2 + γi/αi)

1 + 1
144βiγi

≥ 1, (3.43)

which can be verified by straightforward calculus

1 + 1
24βi (2 + γi/αi)

1 + 1
144βiγi

≥ 1 ⇔ 1
6 ≤ 2αi + γi

αiγi
=

5 + cosφi
18 cos2 φi/2

∈ [13 ,∞).

Furthermore, the inequality

1
36 (8 sinφi − sin 2φi)

2 ≤ −2αi (3.44)

is fulfilled. Due to αi ≤ 0 and inequality (3.43) we directly observe that the real parts of
the eigenvalues zi lie on the left hand side of the complex plane. It remains to show that
|z0| ≤ 2

√
Re(z1) ·Re(z2). Due to the positive semi-definiteness of A we obtain

|z0|2 ≤ 4a11a22

(
1

36

)2 ∆2
t

h21h
2
2

(8 sinφ1 − sin 2φ1)
2 (8 sinφ2 − sin 2φ2)

2 .
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Exploiting conditions (3.44) and (3.43), we obtain

|z0|2 ≤ 16a11a22
∆2

t

h21h
2
2

α1α2

≤ 16a11a22
∆2

t

h21h
2
2

α1α2
1 + 1

24β1 (2 + γ1/α1)

1 + 1
144β1γ1

1 + 1
24β2 (2 + γ2/α2)

1 + 1
144β2γ2

= 4Re(z1) ·Re(z2).

In Figures 3.4 and 3.5 we plot the stability regions of the HO-ADI schemes for three and
four spatial dimensions. The part in dark gray shows the stability region for the special
choice z0 = 0, z1 = z2 = ... = zd. As in [43, 53] we consider the choice z1 = z2 = ... = zd
to derive a necessary stability condition. The part in light gray shows the position of the
eigenvalues zi given by the equation (3.42). The sample points have been computed for the
parameter set hi = 10−1, ∆t = 1, ci = 1/2 and aii = ci · p̂. This case is rather conservative
as it considers a large parabolic mesh ratio. The parameter p̂ determines the ratio between
convection and diffusion and can be seen as the non-scaled reciprocal of the Péclet number
[83]; the smaller p̂, the stronger is the convection-dominance. Note, in the case of z0 = 0
the stability functions of the Douglas and the Craig-Sneyd scheme coincide. Therefore, we
omit to plot the regions for the HCS scheme. The θ values have been chosen according to
the results for ADI schemes with second-order spatial discretization applied to diffusion
equations without mixed derivative terms from the literature, e.g. [53]. In Sections 3.3.1
and 3.3.2 it was shown that these bounds are also valid for HO-ADI schemes applied to
pure diffusion problems. Hence, we expect the HO-ADI schemes for convection-diffusion
equations to have similar stability properties as their second-order counterpart. Both in
the three (Figure 3.4) and four-dimensional (Figure 3.5) case the eigenvalues (light gray)
lie within the stability region (dark gray) in all plots except in Figure 3.5 (i). For strong
convection-dominance in plot (i) the HHV scheme becomes unstable.

3.3.4 Numerical Experiments with Diffusion Equations

In this section we validate our theoretical results with numerical experiments. We consider
diffusion equations in up to four spatial dimensions on the unit hypercube Ωd = [0, 1]d.
Experiments with convection-diffusion equations can be found in Section 4. In addition
to the temporal error decay, we also investigate the order of convergence in the spatial
domain. We compare the accuracy of the numerical solution Uapprox with a reference
solution Uref. If Uapprox is the combined sparse grid solution, we extend the sparse grid
approximation usn to the the full grid via multi-variate cubic spline interpolation in order
to make its accuracy comparable to the full grid reference solution. In those figures which
show the spatial error decay, we only state the numerical results of the HDO scheme. In
all the other discussed HO-ADI schemes we apply the same spatial discretization and thus
the same spatial error occurs.

In a first experiment we use the following symmetric positive definite coefficient matrix

A = 0.025

(
2 2
2 4

)
.
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(b) HDO θ = 0.5, p̂ = 1/4

- 4 - 3 - 2 - 1 0
- 10

- 5

0

5

10

Re

Im

(c) HDO θ = 0.5, p̂ = 1/8

- 4 - 3 - 2 - 1 0
- 10

- 5

0

5

10

Re

Im

(d) HMCS θ = 1/3, p̂ = 1

- 4 - 3 - 2 - 1 0
- 10

- 5

0

5

10

Re

Im

(e) HMCS θ = 1/3, p̂ = 1/4

- 4 - 3 - 2 - 1 0
- 10

- 5

0

5

10

Re

Im

(f) HMCS θ = 1/3, p̂ = 1/8

- 4 - 3 - 2 - 1 0
- 10

- 5

0

5

10

Re

Im

(g) HHV θ = 0.789, p̂ = 1
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(i) HHV θ = 0.789, p̂ = 1/8

Figure 3.4: 3d: stability region (dark gray) for z1 = z2 = z3 and eigenvalues zi (light gray)
for special parameter choices.
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(f) HMCS θ = 1/3, p̂ = 1/8
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(h) HHV θ = 0.789, p̂ = 1/4

- 4 - 3 - 2 - 1 0
- 10

- 5

0

5

10

Re

Im

(i) HHV θ = 0.789, p̂ = 1/8

Figure 3.5: 4d: stability region (dark gray) for z1 = z2 = z3 = z4 and eigenvalues zi (light
gray) for special parameter choices.
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The initial value is chosen by

u(x1, x2, 0) = e−4
(
sin2(πx1)+cos2(πx2)

)
.

We apply periodic BCs, such that

u(x1 ± 1, x2 ± 1, t) = u(x1, x2, t).

Figure 3.6 shows the initial value, the solution as well as the sparse grid solution at the
time t = 1.
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(c) Sparse grid solution at t = 1

Figure 3.6: Initial condition, solution and sparse grid solution at t = 1.

To measure the order of convergence in time, we fix the spatial mesh width at h1 =
h2 = 2−8 and compute the error (2.2) at t = 1. In Figure 3.6 (a) we compare schemes
(3.25)–(3.28) to a reference solution with ∆t = 2−14. In the left plot θ is set to the lowest
possible value ensuring unconditionally stability according to Theorem 24. All schemes
show a stable behavior. The Douglas scheme exhibits order one in time, while the others
show second-order convergence.

10−3 10−2 10−1 100
10−8

10−5

10−2

101

O(∆t)

O(∆2
t )

∆t

er
r 2

HDO θ = 0.5

HCS θ = 0.5

HMCS θ = 0.3334

HHV θ = 0.2929

(a) temporal error err2

10−3 10−2 10−1
10−10

10−7

10−4

10−1

O(h4)

h

er
rr

el
a
ti
v
e

2

full grid solution
sparse grid solution

(b) spatial error errrelative2

Figure 3.7: Numerical convergence plots d = 2.

Next we compute the spatial error of the sparse and full grid solution in Figure 3.7
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(b). The time step is fixed at ∆t = 1/100 and the reference solution is computed with
mesh width h1 = h2 = 2−11. The rate of convergence is slightly lower than the full
grid convergence. Nevertheless, one has to keep in mind, that the sparse grid consists of
significantly less grid points than the full grid (O(h−1 log2(h

−1)d−1) vs. O(h−d)). Thus,
a better efficiency is achieved when taking both order of convergence and computational
effort into considerations. This can be seen in Figure 3.8, where we compare the number
of nodes of the sparse and full grid to the achieved accuracy: the sparse grid approach
outperforms the full grid solution.
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Figure 3.8: Number of grid points versus accuracy d = 2.

In the three-dimensional case we choose the coefficient matrix

A = 0.025

2 2 1
2 4 2
1 2 3


as well as the initial value

u(x1, x2, x3, 0) = e−
(
cos2(πx1)+cos2(πx2)+cos2(πx3)

)
.

For the four-dimensional problem we use

A = 0.025


2 2 1 1
2 4 2 1
1 2 3 2
1 1 2 3


and

u(x1, x2, x3, x4, 0) = e−
(
cos2(πx1)+cos2(πx2)+cos2(πx3)+cos2(πx4)

)
.

In both cases we apply periodic BCs. Figure 3.9 shows the temporal and spatial error for
d = 3. In Figure 3.9 (a) the mesh width is set to h1 = h2 = h3 = 2−6 and the reference
solution is computed with step size ∆t = 2−14. The θ values are again chosen according to
Theorem 24. All schemes show the desired stable behavior and rate of convergence. In the
spatial domain (Figure 3.9 (b)) the reference solution is computed at h1 = h2 = h3 = 2−7.
The other parameters remain unchanged to the two dimensional examples. The numerical
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Figure 3.9: Numerical convergence plots d = 3.

results reflect the theoretical considerations and we observe a rate of convergence of order
O(h4 log2(h

−1)2) for the sparse grid and O(h4) in case of the full grid. Figure 3.10 shows
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Figure 3.10: Numerical convergence plots d = 4.

the performance of the HO-ADI schemes in a four-dimensional spatial domain. In the time
domain we compute the reference solution with ∆t = 2−14 and h1 = h2 = h3 = h4 = 2−5.
With four spatial dimensions the curse of dimensionality shows its effect very quickly and
the memory consumption becomes very large even for moderate mesh width in each spatial
dimension. Therefore, we use the combined sparse grid solution at level 16 as a reference
solution evaluated at a discrete grid with size h1 = h2 = h3 = h4 = 2−6. The numerical
results in Figure 3.10 are in line with the theoretical findings. The necessary condition in
Theorem 25 seems to be sufficient to yield a stable behavior. In contrast to the previous
examples the HCS scheme exhibits order one in time since θ 6= 1

2 . However, it performs
better than the HDO scheme due to the lower θ value. The HMCS and HHV scheme both
show second-order convergence. In Figure 3.10 (b) one observes an error decay of order
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four in case of the full grid and a slightly lower decay in case of the sparse grid. In Figure
3.11 the number of grid points of the full and sparse grid is shown versus the accuracy.
Similar to the two-dimensional case the sparse grid achieves a higher accuracy per grid
node compared to the full grid solution.

102 103 104 105 106

10−8

10−6

10−4

10−2

# nodes

er
rr

el
a
ti
v
e

2

full grid
sparse grid

(a) d = 3

103 104 105 106 107
10−7

10−6

10−5

10−4

10−3

10−2

# nodes
er
rr

el
a
ti
v
e

2

full grid
sparse grid

(b) d = 4

Figure 3.11: Number of grid points versus accuracy d = 3, 4.

3.4 (Hybrid) Pseudo-Spectral ADI Schemes

The idea of dimensional splitting can be carried over to the case of spectral or pseudo-
spectral discretizations in space. As far as we know, this approach has only been discussed
in the literature by Zeng et al. [97], where an ADI scheme based on the factorization of
a Crank-Nicolson discretization is derived for the two-dimensional Riesz space fractional
non-linear reaction-diffusion equation.

Analogue to finite difference approximations the computational workload is significantly
reduced due to the splitting. For the following discussion we consider a spatial dis-
cretization on a grid with an equal number of nodes in each coordinate direction N =
(N,N, . . . , N). In the explicit steps without mixed derivatives the computational com-
plexity is proportional to Nd−1 · O(N log2(N)) = O(Nd log2(N)) operations if FFT
differentiation is used. If mixed derivatives are present the complexity increases to
Nd−2·O(N2 log22(N)) = O(Nd log22(N)). In each of the implicit legs Nd−1 one-dimensional
problems have to be solved, with each having a complexity of O(N3) if Gaussian elimi-
nation is used to solve the system. If the coefficients in the PDE are time-independent
the system can be solved via a LU decomposition in a startup phase, such that only one
forward and backward substitution with quadratic effort has to be done to solve each
one-dimensional problem. This leads to a complexity Nd−1 · O(N2) = O(Nd+1). In com-
parison a fully implicit scheme has an effort of O(N2d) if the system of equations is solved
with the help of a precomputed LU decomposition via forward and backward substitution.

In the case of time-dependent parameters the discretization matrices change in each time
iteration and therefore the updated system has to be solved in each time step. In order
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to reduce the complexity, an iterative solver can be applied, e.g. the Biconjugate gradient
stabilized method [94]. This method can handle the non-symmetry of the pseudo-spectral
differentiation matrices. Each iteration of the solver can be performed in O(N2), such
that the total effort is O(NiterN

2). If initial values with a small residual in a suitable
norm are available, the number of iterations needed to achieve the desired accuracy can
be bounded by a small constant, which leads to a quadratic effort. A good candidate as
an initial value is the artificial solution of the previous leg within the ADI procedure. In
our numerical experiments this choice led to Niter < 3, cf. Section 4.

As the one-dimensional system can be solved in O(N2) operations, either via forward and
backward substitution (time-independent case) or via an iterative solver (time-dependent
case), the total effort for bounded Niter is O(Nd+1).

3.5 Stability of Hybrid Finite Difference/Pseudo-Spectral ADI
Schemes

In many financial applications it is reasonable to combine pseudo-spectral differentiation
and finite difference approximation to exploit the regularity of the solution in direction
of certain coordinates, cf. Section 4. In the following we refer to methods, which use
pseudo-spectral schemes in a subset of the coordinate directions and finite differences in
the other directions as hybrid schemes. We investigate the stability of a method with
finite differences in the first direction and pseudo-spectral differentiation in the second
direction for the general convection-diffusion equation with fixed coefficients

∂u

∂t
= div(A∇u) + c · ∇u on Ω2 = [0, 1]× [−1, 1], t > 0,

where A = (aij) is a symmetric positive semi definite matrix and c = (c1, c2, ..., cd)
> the

vector of convection coefficients. Let the mesh be given by a tensor based discretization
of directions x1, x2 via xl1,i = i · 1/N1, i = 0, 1, ..., N1, N1 = 2l1 and xl2,i = cos(π·iN2

) for
i = 0, 1, ..., N2, N2 = 2l2 . The spatial discretization of the hybrid scheme can be written
in matrix notation

F =a11D
2
FD1

⊗ IN2 + (a12 + a21)DFD1 ⊗DSP2 + a22IN1 ⊗D2
SP2

+ c1DFD1 ⊗ IN2 + c2IN1 ⊗DSP2 ,

where IN1 , IN2 denote the identity matrix of size N1 + 1, N2 + 1, respectively. Then we
decompose the system via

F0 = (a12 + a21)DFD1 ⊗DSP2 ,

F1 = a11D
2
FD1

⊗ IN2 + c1DFD1 ⊗ IN2 ,

F2 = a22IN1 ⊗D2
SP2

+ c2IN1 ⊗DSP2 .

In a next step the ADI time discretization can be applied. For purposes of the stability
investigations we rewrite methods (3.1)–(3.4) into the one-step form

Un+1 = RUn,
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with an iteration matrix R given by (3.6)–(3.9). The method is stable if ‖R‖ ≤ 1 holds.
One crucial property for stability of the ADI schemes is that the eigenvalues of the oper-
ators F1 and F2 have negative real parts. For central second-order finite differences this
is clearly fulfilled, see [55]. In the case of Chebyshev spectral methods it was shown by
[31] that the second derivative matrix has negative and distinct real valued eigenvalues,
which are bounded by O(N4

2 ). They prove this result for Dirichlet, Neumann and Robin
BCs. In [11, Section 7.3.2] the eigenvalues of convection-diffusion operators are analyzed
for Dirichlet BCs. Following their proof, one directly observes that Re(λ) ≤ −a22 π

2

4 and
that the spectral radius is bounded by O(N4

2 ) due to the second derivative matrix. Nu-
merical tests in [11] reveal that these bounds are sharp. In the case of convection-diffusion
problems with Neumann BCs we numerically compute the eigenvalues of the generalized
problem

QU = λBU, (3.45)

where Q is a (N2 + 1) × (N2 + 1) matrix, which consists of the matrix D
(2)
SP2

+ DSP2

at the inner nodes and the first and last row are identical to the first and last row of
the differentiation matrix DSP2 due to the homogeneous Neumann BCs. The B matrix is
identical to the identity matrix of size (N2+1)×(N2+1) except for the first and last entry,
which is set to zero. Figure 3.12 shows the eigenvalues of problem (3.45), which has been
solved using the QZ algorithm provided by the Matlab R© routine eig(., .). One observes
that the results for Dirichlet also hold for Neumann BCs: except for one zero eigenvalue,
all eigenvalues lie on the left-hand side of the complex plane and the spectral radius grows
with O(N4

2 ). The zero eigenvalue is associated with the eigenvector u = c · (1, ..., 1)> for
an arbitrary constant c. These results ensure the stability if no mixed derivatives are
present. Since in financial engineering mixed derivative terms naturally arise due to the
correlation structure between assets and/or risk factors it is important to include them in
our stability considerations. Thus, we numerically compute the eigenvalues of the problem

RU = λBU. (3.46)

If Dirichlet BCs are applied, then R is of size (N1− 1)(N2− 1)× (N1− 1)(N2− 1). In the
second coordinate direction, where the Chebyshev collocation method is used, the first
and last row as well as the first and last column are removed due to the BC. The matrix
B is the identity matrix of appropriate size. If a homogeneous Neumann BC is used in
the second coordinate direction, we proceed according to the problem (3.45) to construct
the differentiation matrices, which are employed to compute P (contained in R). This
matrix stems from all implicitly treated terms in the ADI method. For the explicit parts,
namely Z0 and Z, we proceed as follows: we compute the solution at the interior nodes
and determine the boundary values in such a way that they satisfy the BC by solving the
system

d00uk,0 + d0N2uk,N2 = −
N2−1∑
j=1

d0juk,j ,

dN20uk,0 + dN2N2uk,N2 = −
N2−1∑
j=1

dN2juk,j ,

for k = 1, ..., N1 and DSP2 = (dij). Let D̃ denote the matrix which forces the boundary
nodes in the x2-direction to fulfill the BC according to the system above, then we can
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Figure 3.12: Neumann boundary conditions.

compute the matrix stemming from the explicit time-stepping via Z := D̃Z and Z0 :=
D̃Z0. Similar to the problem (3.45) the matrix B is the identity matrix with zeros on the
diagonal for each grid node lying on the boundary of y.

In the following we numerically investigate the stability of the ADI schemes. Therefore,
we compute the spectrum of the iteration matrices R given by equations (3.6)–(3.9). If
ρ(R) < 1 is fulfilled the numerical scheme is stable. For our numerical experiment we
consider the diffusion coefficient matrix and the convection vector

A =

(
1 1
1 1

)
, c =

(
1
1

)
.

The matrix A is symmetric positive semi-definite with the largest possible relative size of
the mixed derivative coefficient γ = 1 defined in (3.19). This choice can be seen as a worst
case scenario in terms of the stability since the evolution of the solution in one variable
is completely determined by the variable in the other coordinate direction. The ratio
between convection and diffusion is equal to one for this parameter choice. In case of the
MCS scheme we choose θ = 0.42 since the eigenvalues of the approximation of the mixed
derivative term are complex and since γ = 1. Further we let ∆t = 0.1 for our numerical
evaluations. The θ value is chosen according to the values given in Section 3.1 which is
derived for finite difference schemes. Figures 3.13 and 3.14 show the largest modulus of
eigenvalue and the location of all eigenvalues in the complex plane of problem (3.46) with
Dirichlet and Neumann BCs. For an increasing number of grid nodes, the spectral radius
for both problems approaches one from below. Thus, we expect a stable behavior of the
hybrid scheme, even for problems with large correlations. Please note that one obtains
similar results for problems with strong convection-dominance.
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Figure 3.13: Dirichlet BCs at ∂Ω.
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Figure 3.14: Neumann BCs at the boundary in y-direction, Dirichlet BCs in x.



4 Chapter 4

Application to Financial Engineering

This chapter is devoted to the application of the methods presented in the previous
chapters to PDEs arising in the field of financial engineering. These PDEs are often
defined on an open interval, e.g. in the interest rate direction in the HHW model (1.7) or
on one sided open intervals, like in the asset direction of the Black-Scholes model (1.5). For
computational purposes the domain has to be truncated and boundary conditions have
to be imposed. Often the exact boundary value is unknown and boundary conditions,
which mimic the true solution or its behavior, are used to close the numerical scheme.
This introduces a numerical error. In order to keep this error and its influence on the
accuracy in the interior of the domain small, the computational domain has to be chosen
quite large. For example in [38, 44, 51] the asset direction in stochastic volatility models is
truncated at 14 to 20 times the strike price. On the one hand this minimizes the error due
to the boundary treatment, but on the other hand it leads to a very large computational
domain, however, practitioners are usually only interested in an accurate solution close to
the strike price. Therefore, it is quite natural to ask for non-uniform meshes, which allow
to cluster grid points in a region of interest, where a high accuracy is desired. In Section
4.1 we give examples of grid transformations for clustering.

As the option value is known at maturity, the option pricing PDE is solved backwards in
time from maturity T to the actual point in time t = 0. Equivalently one can transform
the problem via τ = T − t. The terminal value becomes an initial value and the PDE can
be solved forward in time as an IBVP. For many financial options the initial condition
exhibits discontinuities, e.g. for European options the first derivative in asset direction is
discontinuous, while for Digital options the payoff profile is discontinuous. In ADI time
stepping methods this leads to a large numerical error if the time steps are chosen too large,
see [38, 51]. This problem can be circumvented with a Rannacher time stepping. Here, the
first time steps are computed with an implicit scheme to damp out high frequency modes.
This approach has been analyzed in [29, 56] for CN and CS time marching. Furthermore,
the effects are illustrated by numerical examples in Section 4.4. For high-order spatial
discretizations the non-smooth payoff leads to a reduction of the order of accuracy. The
derivation of the spatial approximation generally relies on a certain regularity of the
solution. If the regularity assumption is not fulfilled, the numerical scheme will not
exhibit its theoretical order of convergence. In Section 4.2 we discuss how to cope with
this issue and how to recover the high rate of convergence in practice.

4.1 Grid Transformation

The accuracy of grid-based methods can be improved by concentrating grid nodes near
critical points, such as the strike price. For simplicity we consider a one-dimensional
time-independent transformation first. Let the old coordinate be given by x, then we can

77
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express the new variable y via its smooth transform function

y = ψ(x).

By the chain rule and applying the ansatz u(x) = ũ(y) we can express the derivatives of
u with derivatives of ũ depending on the new variable y

∂u(x)

∂x
=
∂ũ(y)

∂x
=
∂ũ(y)

∂y

∂ψ(x)

∂x

=
∂ũ(y)

∂y

∂ψ(ψ−1(y))

∂x
,

∂2u(x)

∂x2
=

∂

∂x

(
∂ũ(y)

∂y

∂ψ(x)

∂x

)
=
∂2ũ(x)

∂y2

(
∂ψ(ψ−1(y))

∂x

)2

+
∂ũ(y)

∂y

∂2ψ(ψ−1(y))

∂x2
.

In the following we give examples of transformations, which are frequently used in com-
putational finance, e.g. see [21, 22, 24, 38, 51, 90]. The log-transform is given by

ψ(x) = log(x). (4.1)

Thus, it holds for the derivatives

∂u(x)

∂x
=
∂ũ(y)

∂y
e−y,

∂2u(x)

∂x2
=
∂2ũ(y)

∂y2
e−2y − ∂ũ(y)

∂y
e−2y.

If applied to the Black-Scholes equation the PDE in the new variable has constant coeffi-
cients, which leads to a flatter distribution of the eigenvalues of the discretization matrix.
This makes this transformation especially interesting for explicit schemes, see [90]. Please
note that in the domain of the x variable the lower bound has to be truncated at ε > 0.
A second transformation is given in [51, 90]

ψ(x) =
c1 + sinh−1(K−x

α )

c1 − c2
(4.2)

where

c1 = sinh−1(a−K
α ),

c2 = sinh−1( b−K
α ).

The transformation maps the arbitrary interval [a, b] with a, b ∈ R, a < b to [0, 1] and
clusters grid points around the strike price K, which is the region of highest interest from
a perspective of practitioners. Small α-values lead to a highly non-uniform grid, while
large values lead to a uniform distribution of grid nodes.

In the case of Chebyshev spectral differentiation one first needs to map the domain to the
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(b) Transform (4.2), clustering at strike with α = 25, K = 100.
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(c) Transform (4.3), clustering at lower boundary with e = 0.1.

Figure 4.1: Sample mesh.

unit intervall [−1, 1]. This can be done by the linear transformation

ψ1(x) =
2

b− a
x+

a+ b

a− b
.

In a second step the clustering can be done. Tee et al. [91] and Pindza et al. [74] propose
to use

ψ2(x) = e sinh

(
1

2
(x− 1)

(
sinh−1

(
1− d

e

)
+ sinh−1

(
d+ 1

e

))
+ sinh−1

(
1− d

e

))
+ d,

where the parameter d ∈ [−1, 1] determines the region of clustering and e > 0 the degree
of non-uniformity of the grid spacing. Smaller e values lead to a stronger clustering. The
complete transformation is then given by the composition

ψ = ψ2 ◦ ψ1. (4.3)

Figure 4.1 shows the transformed grids. In the first two cases we have used a uniform
mesh in the new variable and transformed it back to the original variable via the inverse
of ψ. In Figure 4.1(c) we applied a Chebyshev grid and plotted the backward-transformed
grid.

In the higher-dimensional case one can apply a factorization of one-dimensional trans-
formations to achieve a clustering in various dimensions. The construction of such a
factorization is a straightforward sequentially application of the one-dimensional trans-
formation given above. However, for some problems it might be advantageous to a apply
a general multi-dimensional transformation. Let the new variable be described via

yi = ψi(x1, x2, . . . , xd) for i = 1, 2, . . . , d.
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Figure 4.2: European 2-d basket put payoff without and with transformation.

Analogously to the one-dimensional case we use the ansatz

u(x1, x2, . . . , xd) = ũ(y1, y2, . . . , yd).

Application of the multidimensional chain rule yields

∂u(x1, x2, . . . , xd)

∂xi
=
∂ũ(y1, y2, . . . , yd)

∂xi
=

∂ũ

∂y1

∂ψ1

∂xi
+
∂ũ

∂y2

∂ψ2

∂xi
+ . . .+

∂ũ

∂yd

∂ψd

∂xi

=

d∑
k=1

∂ψk

∂xi

∂ũ

∂yk
,

∂2u(x1, x2, . . . , xd)

∂xj∂xi
=

∂

∂xj

(
d∑

k=1

∂ψk

∂xi

∂ũ

∂yk

)

=
d∑

k=1

d∑
l=1

∂ψk

∂xi

∂ψl

∂xj

∂2ũ

∂yk∂yl
+

d∑
k=1

∂2ψk

∂xi∂xj

∂ũ

∂yk
,

for i, j = 1, 2, . . . , d. With the help of this multi-dimensional transformation one can
not only concentrate grid points in a region of interest, but it also allows to eliminate
terms, e.g. mixed derivatives, or to align the new coordinate system to the direction of
greatest variation of the initial condition. In the case of basket options one can transform
the grid, such that the discontinuity only occurs in one coordinate direction. Examples
of multi-dimensional transformations can be found in [41, 66, 78, 90]. In this thesis we
restrict ourselves to a non-linear transformation [66, 78] for European plain vanilla basket
options.

The transformation is given by

x1 :=
d∑

i=1

wisi, xj :=
wj−1sj−1∑d
i=j−1 wisi

for j = 2, 3, . . . , d. (4.4)

The payoff transforms to φ(x1) = (x1 −K)+, φ(x1) = (K − x1)
+ respectively. Figure 4.2

shows the alignment of the discontinuity to the first coordinate direction. The PDE (1.5)
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transforms to

∂u

∂t
+

d∑
i,j=1

αij
∂2u

∂xi∂xj
+

d∑
i=1

βi
∂u

∂xi
− ru = 0 (4.5)

in Ω̃d ×Ωt with Ω̃d = [0, xmax
1 ]× [0, 1]d−1, Ωt = [0, T ]. The coefficient functions are given

by

α11 = x21

d∑
k,l=1

ρ̂klf1,kf1,l,

α1j = x1xj(1− xj)
d∑

k,l=1

(ρ̂k,l−1 − ρ̂kl)f1kf1l,

αij = xi(1− xi)xj(1− xj)

d∑
k,l=1

(ρ̂kl − ρ̂i−1,l − ρ̂k,j−1 + ρ̂i−1,j−1)fikfjl,

and

β1 := x1

d∑
k=1

(r − qk)f1k,

βi := xi(1− xi)
d∑

k,l=1

(
− 2ρ̂i−1,i−1xi + (2xi − 1)(ρ̂k,i−1 + ρ̂l,i−1)

+ 2(1− xi)ρ̂k,l
)
fikfil

+ xi(1− xi)

(
r − q1 −

d∑
k=1

(
(r − qk)fik

))
,

with

fil :=



xl+1
∏l

j=i+1(1− xj) i < l < d∏l
j=i+1(1− xj) i < l = d

xl+1 i = l < d

1 i = l = d

0 i > l

and ρ̂ij = 1
2ρijσiσj for i, j = 1, ..., d. We see that (4.5) possesses the same structure as

the original PDE (1.5) but with different coefficient functions. Since it holds αij = 0,
βj = 0 for xj = {0, 1} with i ≥ 1 and j > 1 and αi,1 = 0, βi = 0 for x1 = 0, we do not
need to prescribe any boundary conditions in these cases. Only at the upper limit of the
truncated domain in the first coordinate direction, x1 = xmax

1 , a boundary condition has
to be specified. In the case of a put option the option’s value can be set to zero and for
call options the second derivative can be considered as zero.
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4.2 Non-Smooth Initial Data

The analysis of consistency for numerical methods typically relies on smoothness assump-
tions of the initial data. In practice, and especially in financial option pricing, the payoff
function usually exhibits discontinuities at the strike price. This leads to a maximal error
in the at-the-money region in the numerical solution. Since the option values close to the
strike price are in general of the highest interest this is a severe problem. In [76] several
methods have been discussed to overcome this issue and to recover a high rate of accuracy.

An intuitive approach is to place more grid points in the region of interest. For example
Linde [69] solves a sub-problem with O(h−2) grid nodes around the strike price to gain
sixth order accuracy in space. Kreiss et al. [62] propose to smooth the initial condition.
With this averaging a high rate of convergence can be recovered, while the initial condition
converges to the original initial condition as the grid spacing goes to zero. This approach
was successfully applied to option pricing problems in one dimension [76], two dimensions
[24] and three dimensions [45]. An additional method to cope with the non-smooth initial
data was given by Wahlbin [96], where the initial payoff profile undergoes an L2 projection
onto a set of basis functions. Besides these techniques, in [90] grid shifting is suggested.
Here the grid is sequentially shifted, such that the discontinuity falls midway between two
successive grid nodes. The discrete payoff for the shifted grid reveals that this method
can be interpreted as a kind of smoothing.

The last three approaches have been investigated in [76] for one-dimensional option pricing
problems in the case of second-order accuracy: in the numerical tests all techniques showed
the desired order of convergence. Furthermore, they give a brief outlook how to apply
these methods to higher-dimensional problems: at the current state it is not clear if grid
shifting is possible for higher dimensions since the grid is not allowed to coincide with the
discontinuity. In the case of the projection Wahlbin reports technical difficulties if the
discontinuities do not match with the grid nodes.

We restrict ourselves to smooth the initial condition according to [62] via a convolution
operator. This approach can be easily extended for arbitrary dimension via a tensor
product of one-dimensional convolutions. Compared to the first method it can be com-
puted during an offline phase and the smoothed data can be reused to price options with
different parameter sets. We briefly review the approach given in [62]:

Let ηp(sinω) be the polynomial of lowest degree p, such that

ηp(sinω) = ωp +O(ω2 p), for ω → 0, (4.6)

holds and define

Φ̂p(ω) =
ηp(sin

1
2ω)

(12ω)
p

.

Then one can construct a smoothing operator S(p)
hi

along coordinate direction i for i =
1, 2, . . . , d and grid point xli,ji via

S
(p)
hi
g = h−1

i Φp(h
−1
i xli,ji) ∗ φ,

where φ is the initial condition and Φp denotes the Fourier inverse of Φ̂p. The higher-
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dimensional smoothing operator can be formed as a tensor product of one-dimensional
operators

S
(p)
h =

d∏
i=1

S
(p)
hi
.

If the solution shall be smooth enough to achieve fourth-order accuracy we choose p = 4.
Thus, we have

Φ̂4(ω) =
sin4 1

2ω + 2
3 sin

6 1
2ω

(12ω)
4

.

The inverse Fourier transform Φ4 is a polynomial of degree three with support [−3, 3].
Hence the smoothed initial condition at grid point x l,j is given by

S
(4)
h φ(xl1,j1 , ..., xld,jd) = h−1

1 ...h−1
d

3h1∫
−3h1

...

3hd∫
−3hd

Φ4(h
−1
1 x̃1)...Φ4(h

−1
d x̃d)

· φ(xl1,j1 − x̃1, ..., xld,jd − x̃d)dx̃1...dx̃d. (4.7)

Since Φp are polynomials the smoothed initial value can be computed analytically for
many problems, such as for plain-vanilla options.

In the following we apply the smoothing procedure to the initial condition of an European
put option under the Black-Scholes model (1.4). This problem serves as a good test
problem as the payoff function exhibits a discontinuity in the first derivative and an
analytic reference solution is available. The smoothing functions for p = 6, 8, 10 are given
by

Φ̂6(ω) =
sin6 1

2ω + sin8 1
2ω + 13

15 sin
10 1

2ω

(12ω)
6

,

Φ̂8(ω) =
sin8 1

2ω + 4
3 sin

10 1
2ω + 62

45 sin
12 1

2ω + 1244
945 sin14 1

2ω

(12ω)
8

,

Φ̂10(ω) =
sin10 1

2ω + 5
3 sin

12 1
2ω + 2 sin14 1

2ω + 134
63 sin16 1

2ω + 2021
945 sin18 1

2ω

(12ω)
10

.

The parameters of the put option are chosen to be: σ = 0.25, r = 0, T = 1, K = 100.
The computational domain is truncated at smax = 4K. In the case of finite differences
we use a uniform mesh and in the spectral case a Chebyshev grid under a linear coor-
dinate transformation, which maps the interval [0, smax] to [−1, 1]. In the non-uniform
Chebyshev grid we use the mesh distance to the next grid point as the step size hi in the
corresponding direction i for i = 1, 2, . . . , d within the smoothing procedure (4.7). For
the time discretization we employ a Crank-Nicolson scheme and time steps ∆t = 10−4.
Figure 4.3 shows the difference between the smoothed and non-smoothed initial condi-
tion. Not surprisingly the effect of the smoothing is strongest at the discontinuity K.
In Table 4.1 we compare the accuracy and convergence for different rates of smoothing.
The error is computed according to (2.4), where the numerical and the analytical solution
are evaluated at the discrete points s = 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150. The
error ratio is the quotient of two consecutive errors. With the original initial condition
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Figure 4.3: Smoothed initial condition with 129 grid nodes.

the rate of convergence is limited to an order of two. By application of the smoothing, a
higher rate of convergence can be recovered. In the case of p = 4 and p = 6 the theoretical
rate of order 4 and 6, respectively, is reached in the experiment. For the higher order
cases the saturation due to the temporal error is reached before the scheme exhibits its
theoretical error. However, we observe an error decrease with quotients of 199.23 and
607.01 in the peak. If an accuracy of up to two decimals is desired the finite difference
method needs 257 nodes, whereas the pseudo-spectral scheme with p = 10 only needs 33
nodes. Please note that the accuracy can be further improved if one additionally applies
coordinate stretching to cluster grid nodes in the region of interest.

4.3 Basket Options

This section is devoted to the computation of basket options in the Black-Scholes frame-
work. We restrict ourselves to European basket put options, which pay

φ(s1, s2, . . . , sd) =

(
K −

d∑
i=1

si

)+

at the maturity T .

In the literature basket options or options on the spread between two assets have been
solved by Villeneuve and Zanette [95] with second-order finite differences and ADI split-
ting. Furthermore, also HOC discretizations were employed in a two and three-dimensional
setting [24, 47]. Higher-dimensional problems with up to five spatial dimensions were
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Finite Differences Pseudo-spectral Pseudo-spectral p = 4

N error error ratio error error ratio error error ratio
5 17.3658 10.4843 13.2215
9 4.3857 3.9597 3.6256 2.8917 3.8886 3.400
17 1.5200 2.8853 0.5885 6.1607 0.5609 6.9322
33 0.3209 4.7371 0.1420 4.1436 0.0578 9.7073
65 0.0770 4.1690 0.0319 4.4502 0.0040 14.4204
129 0.0191 4.0353 0.0081 3.9396 0.0003 15.7405
257 0.0048 4.0085 0.0020 4.0991 1.6e-5 16.0330
513 0.0012 4.0021 0.0005 3.9871 1.0e-6 16.0132
1025 0.0003 4.0005 0.0001 3.9449 6.5e-8 15.3057

Pseudo-spectral p = 6 Pseudo-spectral p = 8 Pseudo-spectral p = 10

N error error ratio error error ratio error error ratio
5 12.3261 11.9710 11.7843
9 3.4025 3.6227 3.1946 3.7473 3.0796 3.8266
17 0.4095 8.3082 0.3529 9.0522 0.3239 9.5099
33 0.0226 18.124 0.0132 26.701 0.0093 35.001
65 0.0005 41.333 0.0001 100.06 4.4e-5 211.77
129 9.4e-6 57.742 6.7e-7 199.23 7.2e-8 607.01
257 1.5e-7 62.154 5.4e-9 125.58 2.1e-8 3.3566
513 5.3e-9 28.937 3.1e-9 1.6855 2.5e-8 0.8553
1025 3.2e-9 1.6522 3.3e-9 0.9644 2.7e-8 0.9300

Table 4.1: Numerical error for second-order finite differences and pseudo-spectral differ-
entiation with smoothed initial data.

solved by Reisinger [78], Reisinger and Wittum [80] as well as by Leentvaar and Oosterlee
[66] with the help of the sparse grid combination technique. In their works the underly-
ing schemes were based on standard central second- or fourth-order finite differences and
Crank-Nicolson time marching. For problems with even more underlying assets usually
Monte Carlo methods are applied as they do not suffer from the curse of dimensionality
like grid-based methods, e.g. in [68]. Furthermore, dimension reduction techniques can
be used to reduce the size of the problem. For more details we refer to [10, 75, 78].

We propose two approaches: firstly, we use a hybrid scheme with Chebyshev differentiation
and finite differences. The problem is transformed into a more beneficial PDE, such that
the structure allows to use a spectral approximation in the direction of greatest variation.
Secondly, we derive a high-order compact scheme and employ the combination technique
to derive a fourth-order accurate solution on the sparse grid.

4.3.1 Hybrid ADI Scheme

In Section 4.2 it could already be seen that the smoothing of the initial data allows to
recover a high rate of convergence. Further variable transformation (4.4) enables to align
the discontinuity to one coordinate direction. This is beneficial in two ways: firstly, since
the discontinuity only occurs in one coordinate direction the smoothing procedure reduces
to a one-dimensional problem. This can be solved easily online or during an offline-phase
of the algorithm. Secondly, the other coordinate directions have only a small influence
on the overall solution, such that significantly fewer grid nodes can be employed in these
directions, see [90]. These observations motivate to use a high-order method in the first
coordinate direction and standard finite difference discretizations in the other directions.

In order to be able to concentrate grid nodes in a region of interest we additionally apply
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Figure 4.4: 2d basket put option on transformed and original grid.

the transformation (4.3) for the Chebyshev discretization. We cluster grid nodes in the
first coordinate direction and are satisfied with a uniform mesh in the other directions.
A pure finite difference discretization serves as a benchmark method. Here we apply
transformation (4.2). Applying these transformations to equation (4.5), we obtain

∂u

∂t
+ α11

[
ψ′(x1)

2∂
2u

∂y21
+ ψ′′(x1)

∂u

∂y1

]
+

d∑
i=2

(α1i + αi1)ψ
′(x1)

∂2u

∂y1∂yi

+
d∑

i=2,j=2
i 6=j

αij
∂2u

∂yi∂yj
+

d∑
i=2

βi
∂u

∂yi
+ β1ψ

′(x1)
∂u

∂y1
− ru = 0, (4.8)

where ψ is either given by (4.2) or (4.3) and x1 = ψ−1(y1), xi = yi for i = 2, 3, . . . , d.
In the Chebyshev case with transformation (4.3) the domain Ω̃d transforms to ˜̃Ωd =

[−1, 1] × [0, 1]d−1 and under (4.2) to ˜̃Ωd = [0, 1] × [0, 1]d−1. By replacing the derivatives
with their discrete counterpart we obtain the spatial discretization. In the time domain we
use ADI schemes (3.1) - (3.4), where Fi is the spatial discretization of all terms stemming
from the coordinate direction i for i = 1, 2, . . . , d. The reaction term is distributed equally
over the operators Fi. All approximations of the mixed derivatives are collected in F0.
In the explicit legs of the method it is possible to differentiate in Chebyshev transformed
space to gain some speedup compared to a differentiation in physical space, cf. Figure 2.4.
Figure 4.4 shows the solution of the equation (4.8) in the coordinate system y1, y2 and in
the original coordinates s1, s2.

Numerical Experiments In order to test the proposed numerical method we compute a
European put option on the domain

Ω̃d = [0, 8K]× [0, 1]d−1.

This choice ensures that the errors arising due to the domain truncation in the first
coordinate direction are negligibly small. The numerical solution is evaluated in the
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Figure 4.5: Reference grid.

region of interest, defined in the original coordinate system s1, s2, . . . sd

[1/d ·K,K]d.

Figure 4.5 shows the region of interest in the original coordinate system and under the
coordinate transformation in a two-dimensional setting. The option parameters are chosen
to be

K = 100, T = 1, r = 0, σi = 0.3 for i = 1, 2, . . . , d,

with correlation matrix

ρ =


1 0.5 0.4 0.6
0.5 1 0.5 0.5
0.4 0.5 1 0.5
0.6 0.5 0.5 1

 .

In the hybrid method we cluster grid nodes at y1 = −1 and use the non-uniformity
parameter e = 0.01. In the finite difference benchmark method we concentrate grid nodes
at K and choose α = 150. We compute the error (2.4), where the reference solution
Uref is computed with the hybrid scheme using ∆t = 10−3, N = (257, 17, . . . , 17) and
a smoothed initial condition (p = 10). In Figures 4.6 - 4.8 we compare the accuracy of
the hybrid method (Chebyshev pseudo-spectral (CPS)) to its benchmark method (finite
differences (FD)). In comparison to the one-dimensional example in Section 4.2 we observe
a higher accuracy due to the concentration of grid points in the critical region for both
schemes. The hybrid method clearly outperforms the finite difference scheme in terms
of number of grid nodes versus accuracy. However, the high accuracy of the spectral
method does not come for free. The discretization matrices of the second-order finite
difference ADI scheme are of tridiagonal structure, which results in a linear computational
effort. In contrast to this, the Chebyshev differentiation matrices are full and due to the
ADI splitting the total effort is O(N2

1 ) if the number of nodes in the other directions
is kept constant. Thus, we observe an increase of the computation time by a factor
of four, while we see a doubled computation time for the benchmark method, when



88 4 Application to Financial Engineering

10−4 10−3 10−2 10−1 100
10−10

10−4

102

1/N1

e
r
r
∞

CPS
CPS (FFT)
FD

(a) Nodes versus error

10−2 10−1 100 101
10−10

10−4

102

comp. time [s]
e
r
r
∞

(b) Computation time versus error

Figure 4.6: Basket with two underlying assets.
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Figure 4.7: Basket with three underlying assets.
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Figure 4.8: Basket with four underlying assets.
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the number of nodes doubles. The high accuracy of the hybrid method outweighs this
drawback and outperforms the pure finite difference scheme in the high accuracy region.
For large problems in a higher-dimensional setting the run-time can be further reduced
by differentiating in Chebyshev transformed space. For our numerical test we used the
FFT algorithm to compute the mixed derivatives containing the first coordinate direction.
Especially in the higher accuracy region of the three- and four-dimensional basket options
we see a significant speedup.

4.3.2 HO-ADI Schemes

In this section we derive a high-order finite difference approximation of the Black-Scholes
PDE (1.5). We apply the logarithmic transformation (4.1) xi = log(si) for i = 1, ..., d,
τ = T − t, u = erτu and obtain

∂u

∂τ
− 1

2

d∑
i,j=1

ρijσiσj
∂2u

∂xi∂xj
−

d∑
i=1

(
r − 1

2σ
2
i

) ∂u
∂xi

= 0.

The payoff transforms to φ(x1, ..., xd) =
(
K −

∑d
i=1 e

xi

)+
. The HOC formulation of

Fi for i = 1, ..., d according to Section 2.2 can be derived by inserting aii := 1
2σ

2
i and

ci := r − 1
2σ

2
i into equation (2.12). Thus, we obtain the following discretization matrices

Axi =

(
1/2σ2i +

h2i (r − 1/2σ2i )
2

6σ2i

)
· IN1 ⊗ ...⊗ INi−1 ⊗D2

FDi
⊗ INi+1 ⊗ . . .⊗ INd

+

(
r − 1/2σ2i

)
· IN1 ⊗ ...⊗ INi−1 ⊗DFDi ⊗ INi+1 ⊗ . . .⊗ INd

,

Bxi =IN1·N2·...·Nd
+
h2i
12

· IN1 ⊗ ...⊗ INi−1 ⊗D2
FDi

⊗ INi+1 ⊗ . . .⊗ INd

+

(
h2i (r − 1/2σ2i )

6σ2i

)
· IN1 ⊗ ...⊗ INi−1 ⊗DFDi ⊗ INi+1 ⊗ . . .⊗ INd

.

As the spatial domain in each direction is truncated at [ε, log(smax
i )], boundary values have

to be prescribed. At si = 0 the PDE reduces to a lower dimensional PDE and one can solve
this lower dimensional PDE at each lower boundary. This is called the natural boundary
condition [66, 78]. In the numerical scheme under the logarithmic transformation we also
use the natural boundary condition. If ε > 0 is chosen sufficiently small, the error, which
is introduced due to the domain truncation at the lower boundary, is negligibly small. At
the upper boundary we impose Dirichlet boundary conditions and set the option value
to zero. This means that the computational domain has to be chosen large enough, such
that the option is far out of the money at the upper boundary.

Numerical Experiments In numerical experiments we test the proposed HO-ADI meth-
ods. Besides the accuracy of the full grid solver we are also interested in whether the
usage of sparse grids is beneficial. Here we are especially interested in whether the higher
regularity requirements of the combination technique are a restriction in practice. In the
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full grid case the derivatives in the truncation error need to be bounded, namely

∂6u

∂x6i
,

∂10u

∂x5i ∂x
5
j

,
∂6u

∂x5i ∂xj
for i, j = 1, . . . , d and i 6= j

arising in (2.13) and (2.16), respectively. According to the results in Section 2 the com-
bination technique requires the mixed derivatives

∂|α|1

∂xα1
1 . . . ∂xαd

d

with αi ∈ {0, 1, ..., 10}

to be bounded to achieve a fourth-order approximation to the Poisson equation on the
entire domain. These derivatives arise due to the anisotropic splitting and the extension of
the discrete solution via cubic spline interpolation within the combination technique and
do not stem from mixed derivatives in the PDE. In order to relate the option parameters
to the expected smoothness of the solution, we compute the mixed fourth derivative
‖D2

FD1
⊗D2

FD2
Uapprox‖∞ for a decreasing mesh width as a measure of smoothness. Figure

4.9 suggests that the solution at the final time level becomes smoother for large diffusion
and positive correlation. If strong diffusion is present already a resolution of 65 grid points
in each dimension seems to be sufficient to capture the maximum of the derivative. For
smaller diffusion a higher resolution is required to capture the maximum. If one assumes
that analogue results hold for the higher derivatives, arising in the truncation errors of the
full grid solver as well as in the combination technique, the theoretical asymptotic rate of
convergence will be reached much faster for high diffusion with positive correlation than
for small diffusion and negative correlation. Please note that a longer time to maturity
also leads to a smoother solution at t = 0.

In order to measure the accuracy of the numerical approximation we compute the errors
(2.2) and (2.4), where Uref is given by a highly accurate reference solution with step size
∆t in time and spatial mesh width h. The numerical approximation Uapprox is either the
full grid solution with time step size ∆̃t and mesh width h̃ or the sparse grid solution
usn with time step size ∆̃t and finest mesh width h̃ = 2−(n−(d−1)·3) · gridlength. The
solutions are compared at the final time level on the spatial grid of the reference solution.
Therefore, we extend the approximation via multivariate cubic spline interpolation to the
grid of the reference solution. Note that the interpolant is fourth-order accurate and hence
does not have any negative effect on the rate of convergence. For the experiments in the
spatial domain we employ the full grid solver to compute the reference solution in the
two-dimensional case. In the higher-dimensional case the combination technique is used
to compute the reference solution and then extended to the full grid. The experiments in
the temporal domain are always performed on the full grid.

In the following we consider three different test cases given in Table 4.2. In case A
we choose a parameter set with large diffusion and a positive correlation. In case B
the diffusion coefficients are reduced. Compared to A the correlation in C is decreased,
which leads, according to Figure 4.9, to a larger mixed fourth derivative. Thus, case A
seems to be the most favorable for the combination technique, while the other two test
cases are expected to be more difficult due to the reduced smoothness in these cases. If
not mentioned otherwise, we choose T = 1, K = 20 and r = 0.025 in the numerical
experiments.

In a first experiment we investigate the spatial accuracy of the uniform full grid and of the
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σ1 σ2 σ3 ρ12 ρ13 ρ23

A 0.6 0.6 0.6 0.2 0.2 0.2
B 0.4 0.4 0.4 0.2 0.2 0.2
C 0.6 0.6 0.6 -0.5 0.5 -0.25

Table 4.2: Parameter sets for numerical experiments
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Figure 4.9: Maximum of the mixed fourth derivative for a decreasing mesh width h in the
two-dimensional case.

sparse grid, for a basket put with two underlying assets. In Figure 4.10 (a) - (c) the full
grid solution exhibits an accuracy close to order four. However, compared to case A one
observes a slightly lowered rate of convergence in the more difficult cases B and C. Due to
the stronger regularity requirements of the sparse grid combination technique, the rate of
convergence shows a greater sensitivity to the smoothness of the solution. Nevertheless,
the sparse grid has a higher accuracy per grid node than the full grid in two of the three
test cases: only in case C the sparse grid is outperformed.

In Figure 4.11 all numerical schemes show the desired rate of convergence in the time
domain. The HDO scheme exhibits order one in time, while the HCS, HMCS and HHV
scheme show order two. According to the stability results in Section 3.3.3 we see a stable
behavior.

In the following we numerically analyze the performance for basket options with three
assets. The full grid solution in Figure 4.12 states a convergence rate close to order
four. Similar to the two-dimensional problems, the rate of convergence of the sparse grid

Scenario A B C

err2
sparse grid 3.70 3.34 2.34

full grid 3.85 3.71 3.77

err∞
sparse grid 3.39 2.98 2.05

full grid 3.79 3.62 3.52
(a) 2d

Scenario A B C

err2
sparse grid 3.55 3.15 2.52

full grid 3.69 3.48 3.64

err∞
sparse grid 3.32 2.68 2.01

full grid 3.57 3.28 3.44
(b) 3d

Table 4.3: Estimated order of convergence in space (cf. Figures 4.10 and 4.12).
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Scenario A B C

err2

HDO 1.18 1.14 1.06
HCS 2.15 2.09 2.15

HMCS 2.02 2.02 2.03
HHV 2.16 2.14 1.97

err∞

HDO 1.15 1.09 1.07
HCS 2.28 2.15 2.19

HMCS 2.06 2.05 2.10
HHV 2.14 2.07 2.05

(a) 2d

Scenario A B C

err2

HDO 1.09 1.02 1.04
HCS 2.07 2.01 2.07

HMCS 2.07 2.01 2.07
HHV 2.10 2.08 1.95

err∞

HDO 1.02 1.02 1.11
HCS 2.14 2.02 2.05

HMCS 2.13 2.02 2.08
HHV 2.15 2.03 1.97

(b) 3d

Table 4.4: Estimated order of convergence in time (cf. Figures 4.11 and 4.14).
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Figure 4.10: 2d spatial error for h̃→ h.
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Figure 4.11: 2d temporal error for ∆̃t → ∆t = 2−14. The following values of θ were
used: HDO θ = 0.5, HCS θ = 0.5, HMCS θ = 0.334, HHV θ = 0.79. The
spatial discretization is computed on a grid with 129 nodes in both coordinate
directions.
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Figure 4.12: 3d spatial error for h̃ → h. The sparse grid solution at level 14 is used as a
reference solution and evaluated on a full grid with 1293 grid points.
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Figure 4.13: Number of grid nodes versus computation time in the case of 100 time steps
in the HCS scheme.

solution is more sensitive to the parameter changes in cases B and C than the full grid
solver. If we consider the accuracy per grid node, the sparse grid error is lower than the
full grid error. Figure 4.13 indicates that the run-time per node is only slightly higher
for the combination technique than for the full grid solver and thus the sparse grid is
more efficient in the asymptotic. Both plots show that the time increases with an order
of approximately one as would be expected due to the ADI time stepping.

For the parameter choices A-C there is no convection dominance ( |p̂| ≥ 36/31). Hence,
we expect from the stability region plots in Figure 3.4 a stable behavior. The numerical
experiments in Figure 4.14 confirm this and the error decreases monotonically with a rate
of accuracy according to the theory.

Remark:
During our numerical tests the initial condition is smoothed according to the convolutions
described above with p = 4. Düring and Heuer [24] suggest to only smooth the grid
points around the discontinuity to reduce the computational workload. Doing so the full
grid performed according to the theoretical results, but the sparse grid solution showed
oscillations near the discontinuity in our numerical experiments. This issue could be
cured by smoothing all grid points. In the case of the above given payoff under the
logarithmic transformed variables an analytical solution to the integral (4.7) is available
if the domain of integration does not intersect the discontinuity. Thus, smoothing the
initial condition on the entire grid does not introduce a large additional computational
effort. In order to smooth the initial condition for our numerical experiments, we either
solve the integral analytically if possible or use the Matlab R© built-in routine integral2
and integral3, respectively.

4.4 Stochastic Volatility Models

In this section we derive numerical schemes for stochastic volatility models. As test cases
for two- and three-factor models we consider the Heston PDE (1.6)

∂u

∂t
=

1

2
s2v

∂2u

∂s2
+ ρ12σ1sv

∂2u

∂s∂v
+

1

2
σ21v

∂2u

∂v2
+ rs

∂u

∂s
+ κ(η − v)

∂u

∂v
− ru,



4.4 Stochastic Volatility Models 95

10−3 10−2 10−1 100
10−10

10−7

10−4

∆t

er
r 2

HDO
HCS
HMCS
HHV

(a) Experiment A

10−3 10−2 10−1 100
10−11

10−8

10−5

∆t

(b) Experiment B

10−3 10−2 10−1 100
10−10

10−7

10−4

∆t

(c) Experiment C

10−3 10−2 10−1 100
10−7

10−4

10−1

∆t

er
r ∞

(d) Experiment A

10−3 10−2 10−1 100
10−7

10−4

10−1

∆t

(e) Experiment B

10−3 10−2 10−1 100
10−7

10−4

10−1

∆t

(f) Experiment C

Figure 4.14: 3d temporal error for ∆̃t → ∆t = 2−11. The following values of θ were
used: HDO θ = 0.67, HCS θ = 0.5, HMCS θ = 0.462, HHV θ = 0.79. The
spatial discretization is computed on a grid with 65 nodes in all coordinate
directions.

as well as the HHW PDE (1.7)

∂u

∂t
=
1

2
s2v

∂2u

∂s2
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1

2
σ21v

∂2u
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1
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∂2u
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+ ρ13σ2s
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∂s∂r
+ ρ23σ1σ2
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∂2u
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∂s
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∂u

∂v
+ ar(br − r)

∂u

∂r
− ru,

for inverse time t ∈ [0, T ], asset s ∈ [0,∞), volatility v ∈ [0,∞) and risk-free interest rate
r ∈ (−∞,∞). We solve the pricing problem for European plain-vanilla put options with
the terminal value

u(s, v, r, 0) = (K − s)+ .

In the literature several methods have been discussed to solve problems (1.6) and (1.7)
for vanilla option pricing problems. They range from semi-closed approximations [46, 50],
Fourier-cosine [26, 35] and tree approaches [6, 7, 27, 28] to finite difference methods
[38, 51, 60]. Kluge [60] has solved the Heston PDE via second-order finite differences. In
[38, 51, 60] Alternating Direction Implicit (ADI) time stepping has been used to efficiently
deal with the mixed derivative term. High-order compact finite differences were proposed
by [21, 22]. Spectral methods were used in [74].
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The discontinuity of the payoff profile for option pricing problems in general occurs in
the direction of the underlying asset, while in the directions of the other risk factors the
solution is smooth. We want to exploit this structure and propose a hybrid scheme which
uses a second-order central finite difference approximation in the direction where the
discontinuity occurs. In the other spatial dimensions we employ a high-order Chebyshev
spectral approximation.

4.4.1 Hybrid Finite Difference/Pseudo-Spectral Method

Similar to the previous methods we apply a coordinate transformation to cluster grid
points in the region of interest. We apply the transformation (4.2)

ψs(s) =
c1 + sinh−1(K−s

α )

c1 − c2

where

c1 = sinh−1( smin−K
α ),

c2 = sinh−1( smax−K
α ).

The transformation maps [smin, smax] to [0, 1] and clusters grid points around the strike
price K. In our numerical tests we use α = K/4 and a uniform grid spacing in [0, 1].

In the coordinate direction of the volatility and interest rate we apply transformation
(4.3). We denote with ψj the transform in direction j for j ∈ {v, r}. The inverse of the
transformations are denoted by fs = ψ−1

s , fj = ψ−1
j , respectively. Numerical tests revealed

that a clustering at the upper boundary of the domain and the choice e1 = 10σ21/(κη) and
e2 = 10σ22/(arbr) yields good results. In the numerical scheme we use a Chebyshev-Gauss-
Lobatto grid in the transformed intervals [−1, 1] stemming from the v and r directions,
respectively.

The PDEs (1.6) and (1.7) transform to
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and
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where s = fs(x1), v = fv(x2) and r = fr(x3) with (x1, x2) ∈ Ω̃ = [0, 1] × [−1, 1] and
(x1, x2, x3) ∈ Ω̃ = [0, 1] × [−1, 1]2. At the boundary we impose the following conditions
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Figure 4.15: Reference solution of the HHW model (computed with semi closed-form pric-
ing formula).

for the European put option under the Heston model

u(0, v, t) = Ke−rT ,

u(smax, v, t) = 0,

∂u

∂v
(vmax, s, t) = 0,

and under the HHW model

u(0, v, r, t) = Kep(r,t),

u(smax, v, r, t) = 0,

∂u

∂v
(s, vmax, r, t) = 0,

∂u

∂r
(s, v, rmax, tu) = 0,

with the discounting factor

p(r, t) = − r

ar

(
1− e−art

)
− 1

ar

T∫
t

br(1− e−ar(T−s))ds

+
σ22
2a2r

(
t+

2

ar
e−art − 1

2ar
e−2art − 3

2ar

)
.

If the asset price is zero the option price is given by the discounted strike price. For suffi-
ciently large s the probability that the put option ends up in-the-money tends to zero and
therefore also the option value. In the direction of the volatility we only imply a homoge-
neous Neumann boundary condition at vmax as suggested in [51]. At the boundary in the
direction of the interest rate, we propose a homogeneous Neumann boundary condition
at rmax. One might argue that such a condition should be applied at both boundaries of
r since ρ in the Black-Scholes pricing formula vanishes for extreme values of r, but the
reference solution in Figure 4.15 indicates that this does not hold for the HHW model.
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The application of the spatial discretization of Section 2 to (4.9), (4.10) yields
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where diag is a diagonal matrix and each operation in the diag operator is understood
component-wise. eNi = (1, 1, . . . , 1)> for i = 1, 2, 3 denotes the all-ones vector of size
N1 +1 in x1-direction, of size N2 +1 in x2 and of size N3 +1 in x3 direction. The spatial
grid vector in s-direction is given by S ∈ RN1+1, while V ∈ RN2+1 and R ∈ RN3+1 are
the grid vectors in the v-r directions, respectively.

The spatial discretization is now decomposed into one-dimensional problems according
to the ADI splitting: F1 takes all terms, which only stem from the x1-direction, F2 all
terms from the x2-direction and F3 all terms from the x3-direction. The reaction term is
distributed equally over the operators Fi for i = 1, 2, 3. The mixed derivative terms are
collected in F0. The arising linear system of equations can be solved with the help of a
LU decomposition in the startup phase if the coefficients of the PDEs (1.6) and (1.7) do
not depend on time. In each time step the major computational effort then consists of
performing one forward and one backward substitution for each leg of the ADI scheme.

In order to evaluate the performance of the scheme, we compare it to a scheme using
second-order finite differences in all coordinate directions given in the articles [38, 51],
but with a transformed coordinate system instead of a non-uniform grid. The following
transformation is employed in v and r direction in the benchmark method

ψj(w) = sinh−1(d−1
j (w − cj)),

with the critical point cj and the strength of smoothing determined by dj for j ∈ {v, r}.
According to [38, 51] we use cv = 0, cr = br, dv = vmax/500 and dr = rmax/500.
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Case 1 Case 2 Case 3 Case 4
K 100 100 100 100
T 1 1 3 0.5
σ1 0.3 0.04 0.2928 0.5
ρ12 -0.9 -0.6 -0.7571 -0.5
κ 1.5 3 0.6067 2
η 0.04 0.12 0.0707 0.02
r 0.025 0.04 0.03 0.01
ar 0.00883 0.2 0.05 0.15
br 0.025 0.05 0.055 0.101
σ2 0.00631 0.06 0.03 0.1
ρ13 0.6 0.2 0.6 -0.3
ρ23 -0.7 0.4 -0.2 0.2

Table 4.5: Scenarios for numerical tests.

Numerical Experiments In this section we test the hybrid method and compare it to
the second-order benchmark method. In order to gain realistic performance results and
to test the robustness of the method we consider four different scenarios given in Table
4.5. The parameters for the Heston model used in the first three scenarios stem from
[51]. Compared to the original parameters we use a negative correlation ρ12 in scenario 2
since a positive correlation is not realistic and can lead to an explosion of the moments,
cf. [1, 59]. The additional parameters for the HHW model have been taken from [87] in
the case of scenario 1 and the parameters in the scenarios 2 and 3 are taken from [38]. In
scenario 4 we have chosen the parameters in such a way that the Feller condition 2κη > σ21
is violated.

We investigate the accuracy in the time domain as well as the spatial error. Therefore,
we compute the error (2.4), where Uapprox is the numerical approximation on the discrete
grid with time step ∆t and N = (N1, N2) = (2l1 , 2l2), N = (N1, N2, N3) = (2l1 , 2l2 , 2l3),
respectively, grid nodes in the spatial domain. The error is always computed at the final
time slice. For the sake of simplicity and to streamline our notation we choose N2 = N3

in all numerical experiments and write N = (N1, N2) instead of N = (N1, N2, N3). The
numerical solution is computed on a grid of size [0, 20K] × [0, 1.5] × [−0.5, 0.5] while
the error is computed in the region of interest, which is defined as [0, 2K] × [0, 1] ×
[0, 0.125]. This choice ensures that the error due to the domain truncation in the asset
direction and the error stemming from the homogeneous Neumann boundary conditions
are negligibly small and one does not observe any saturation effects in the numerical
convergence plots. The hybrid HHW (Heston in brackets) CS method takes about 0.10
(0.015), 0.71 (0.05), 4.65 (0.24), 85 (1.9) seconds for the following number of grid points
and time steps N = (65, 9), T/∆t = 25,N = (129, 13), T/∆t = 50,N = (257, 17), T/∆t =
100,N = (512, 33), T/∆t = 100, respectively, to compute the solution. The MCS and HV
scheme have approximately the same run-time, while the Douglas method has just one
implicit sweep and therefore the computation takes about half of the run-time.

In our first numerical experiment we investigate the error decay for ∆t → 0. Here the
reference solution is given by a highly accurate numerical approximation with ∆t = 2−13

and N = (129, 33) grid nodes. The θ value within the ADI procedure is always chosen
according to the lowest possible value ensuring unconditional stability, given in Section
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DO CS MCS HV
Heston 0.5 0.5 0.34 0.79
HHW 0.67 0.5 max{1

3 ,
2
13(2γ + 1)} 0.79

Table 4.6: θ-values used in the ADI methods within the numerical experiments, where
γ = max{|ρ12|, |ρ13|, |ρ23|}.
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Figure 4.16: Heston: convergence in time. 129 grid points in S and 33 in v-direction.

3.3, see Table 4.6. Please note that we choose θ = 0.34 in case of the MCS scheme for
the Heston model as it holds for the correlation |ρ12| ≤ 0.96 for all test scenarios. Al-
though these bounds have been derived for finite difference schemes in the von Neumann
framework, the positive results of Section 3.5 encourage that these are also valid for the
Chebyshev spectral method. Figures 4.16 and 4.18 show that the error decays monotoni-
cally both for the Heston and the HHW model. The DO scheme exhibits order one, while
the errors of the CS, MCS and HV scheme decrease with second-order. If the time step
∆t is very large the schemes show an undesirable high error. Especially the DO and CS
scheme suffer from a large error in all four test scenarios. In order to improve the results
we employ a kind of Rannacher startup [29] and perform four steps with ∆t/4 and θ = 1
to damp high frequency errors, which arise due to the non-smooth initial condition. The
Figures 4.17 and 4.19 show that the startup procedure is capable to smooth the error and
thus leads to a much smaller error for large time steps.

For the experiments in the spatial domain we use the semi closed-form solution to the
Heston and Heston-Hull-White PDE from [46], [50] as a reference solution. In the case of
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Figure 4.17: Heston: convergence in time with four initial steps using θ = 1. 129 grid
points in S and 33 in v-direction.
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Figure 4.18: Heston-Hull-White: convergence in time. 129 grid points in S and 33 in v
and r directions.
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Figure 4.19: Heston-Hull-White: convergence in time with four initial steps using θ = 1.
129 grid points in S and 33 in v and r directions.

the Heston-Hull-White model the pricing formula is available under the assumption that
ρ13 = ρ23 = 0. Hence, we set these correlation values to zero in the following numerical
experiments. It is well known that the complex logarithm in the pricing formula faces
discontinuities, which is why we follow the approach by Kahl and Jäckel [57] and apply
a rotation count correction algorithm to both pricing formulas. The experiments are
performed with the CS ADI scheme with θ = 0.5. The other schemes have the same
spatial discretization and thus lead to the same results except for roundoff errors.

Figures 4.20 and 4.21 show the convergence in the direction of the underlying asset. In
order to ensure that the error stemming from the first coordinate direction is dominant, we
place 45 grid points in the directions of volatility, interest rate, respectively. This choice
leads to negligible small errors in v and r. In the time discretization we use ∆t = 10−3.
We observe an error decay with the desired order close to two.

In Figures 4.22 and 4.23 we compare the convergence of the spectral approximation to
the second-order finite difference approximation. The plots reveal that the spectral accu-
racy allows to use significantly fewer grid points than in the finite difference discretization
to achieve the same accuracy, but at the cost of densely filled discretization matrices.
Thus, it is of highest interest whether the spectral accuracy can offset this drawback.
Let NSP := NSP2 = NSP3 denote the number of grid points in each direction of the
Chebyshev discretization and NFD := NFD2 = NFD3 the number of nodes for the finite
difference scheme in the directions v and/or r. Please note that we neglect the influence
of discretization of the asset direction in the following discussion. As it can be seen in
Figure 4.26 (a) the computational effort of the ADI scheme for the Chebyshev and FD dis-
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Figure 4.20: Heston: convergence in the direction of the underlying asset (hybrid CS ADI
scheme), N2 = 45.
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Figure 4.21: Heston-Hull-White: convergence in the direction of the underlying asset (hy-
brid CS ADI scheme), N2 = N3 = 45.
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Figure 4.22: Heston: convergence in the direction of volatility with 1025 grid nodes in the
direction of the asset and ∆t = 10−3.
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Figure 4.23: Heston-Hull-White: convergence in the direction of volatility/interest rate
with 513 grid nodes in the direction of the asset and ∆t = 10−3.
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Figure 4.24: Heston: accuracy versus computation time in the direction of volatility with
1025 grid nodes in the direction of the asset and ∆t = 10−3.

cretizations for the Heston model grow with O(N2
SP ) and O(NFD). As mentioned before,

the major workload consists of performing a forward and backward substitution to solve
the linear system of equations in each leg of the ADI scheme after the LU decomposition
has been computed during a startup phase, see Section 3.4. For a full quadratic matrix
of size N this consists of N2 operations compared to 2N operations for the forward and
3N operations for the backward substitution in case of a tridiagonal matrix. Thus, the
run-time for both methods is equivalent if N2

SP ≈ 5NFD. In the three-dimensional case of
the HHW model NFD1 ·NSP one-dimensional problems have to be solved with an effort
of O(N2

SP ) and thus the run-time grows with O(N3
SP ). The analogous arguments lead

to a growth of O(N2
FD) for the FD discretization. Figure 4.26 (b) underlines this result

and we see a slope of 3.06 (excluding the first two data points), 2.03 respectively. Both
methods have the same run-time if N3

SP ≈ 5N2
FD. In the general d-dimensional case,

under the assumption that the solution is sufficiently smooth in d − 1 coordinate direc-
tions, such that d − 1 Chebyshev approximations can be applied, we expect a growth of
O(Nd

SP ), while we expect O(Nd−1
FD ) for the FD method. Hence, the computational effort is

approximately the same if Nd/(d−1)
SP 5−1/(d−1) ≈ NFD holds. As the left-hand side is mono-

tonically decreasing for growing d the hybrid approach with ADI time splitting becomes
more efficient compared to the FD discretization for higher-dimensional problems. The
dashed line in Figure 4.26 underlines that the theoretical result Nd/(d−1)

SP 5−1/(d−1) ≈ NFD

holds in practice. Please note that the explicit treatment of the mixed derivative term
∂2u

∂x2∂x3
in (4.10) via matrix-vector multiplication has a computational effort proportional

to O(N4
SP ) since both Chebyshev differentiation matrices are full. Hence, we perform

the computation of the mixed derivative by sequential differentiation in x2-, x3-direction
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Figure 4.25: Heston-Hull-White: accuracy versus computation time in the direction of
volatility/interest rate with 513 grid nodes in the direction of the asset and
∆t = 10−3.

in transformed space to reduce the computational effort to O(N2
SP log22(NSP )). In con-

trast, with central second-order finite differences the derivative can be computed in linear
run-time due to the sparse structure (≤ 4 entries per row) of the discretization matrix.

Figures 4.24 and 4.25 show the accuracy versus the computation time. The hybrid method
is able to outperform the FD method in the majority of the test scenarios - only in case 2
of the Heston model, the FD method yields more accurate result. In the three-dimensional
case of the HHW model the spectral discretization achieves a higher accuracy than the FD
scheme even for small run-times in test cases 1, 3, 4 and even in case 2 the method is able
to beat its benchmark in the high accuracy region. These results can be explained by the
argumentation given above. The geometric error decay of the Chebyshev approximation
in combination with ADI time stepping shows its strength if highly accurate results for
higher-dimensional problems are desired. Here, the fast convergence compensates the
disadvantage of full discretization matrices and the second-order FD discretization is
clearly outperformed. The dashed lines in Figure 4.25 show the run-time if ρ13 6= 0,
ρ23 6= 0. Since in this case no reference solution is available, we are content with the error
of the uncorrelated case (ρ13 = ρ23 = 0). For the sake of readability we omit to plot the
run-time for non-zero correlation in case of the pure finite difference method and assume
the favorable case that the run-time does not increase.

In an additional experiment we investigate the run-time properties for time-dependent
parameters. Therefore, we consider a time-dependent long term mean in the direction of
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Figure 4.26: Heston and HHW run-time scaling for growing number of grid nodes in v and
r directions with fixed number of grid nodes in the asset direction (Heston:
N1 = 1025, correlation 6= 0, HHW: N1 = 513, all correlations 6= 0, ∂2u

∂y∂z via
FFT differentiation) and 1000 time steps. The dotted line shows the shifted
Chebyshev run-time curve: Nd/(d−1)

SP 5−1/(d−1) for d = 2, d = 3 respectively.

the interest rate within the HHW model. Similar to [38] we use

br(t) = c0 − c1e
−c2·t,

with constants c0, c1 and c2. The third implicit leg in the ADI schemes changes to

Y3 = Y2 + θ∆t

(
F3((n+ 1)∆t)Y3 − F3(n∆t)

)
Un

and the computation of Ỹ3 has to be modified in an analogue way. In the explicit steps
F , F0 depend on point in time n∆t. Due to the time-dependency the implicit system to
compute Y3, Ỹ3 has to be solved in each time iteration and cannot be solved via an LU
decomposition in a startup phase. In order to reduce the computational effort we employ
an iterative solver, cf. Section 3.4 . For our numerical example we choose the Matlab R©

builtin solver bicgstab with an effort of O(N2) per iteration for a quadratic matrix of size
N . Thus, if the number of iterations is small, one can apply similar arguments like in
the previous analysis to show that both methods have approximately the same run-time
if O(N

d/(d−1)
SP ) = O(NFD) is fulfilled. In Figure 4.27 we compare the run-time of the

hybrid to the finite difference method with the parameters of scenario 4 and c0 = 0.101,
c1 = 0.003, c3 = 1. As the starting value for the iterative solver we use the solution of the
previous leg Y2, Ỹ2, respectively. For this choice the solver converges in less than three
iterations in our experiment. Similar to the time-independent case the Chebyshev method
is able to outperform the benchmark method. The sparse linear system of equations within
the finite difference method can be solved very efficiently and hence it is not necessary to
use an iterative solver. In our numerical experiment this even led to a longer computation
time.
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Figure 4.27: HHW: accuracy in the direction of volatility/interest rate with 513 grid nodes
in the direction of the asset, ρ13 = ρ23 = 0, ∆t = 10−3 and time dependent
parameter br.

4.4.2 High-Order Finite Difference Discretization in the Asset Direction

The second-order accuracy in the asset direction of the hybrid scheme is a major bottle-
neck since a large number of grid nodes needs to be used to achieve an accurate solution.
Thus, it seems reasonable to apply higher-order discretizations. In the following we pro-
pose a high-order-compact finite difference approximation. According to Section 2.2 we
can achieve fourth-order accuracy for the unidirectional problem (asset direction) on the
compact stencil with discretization (2.12). Based on equation (4.9) and (4.10), respec-
tively, we have

aHeston
11 (x1, x2) =

1

2
fs(x1)

2fv(x2)ψ
′
s(fs(x1))

2,

cHeston
1 (x1, x2) =

1

2
fs(x1)

2fv(x2)ψ
′′
s (fs(x1)) + rfs(x)ψ

′
s(fs(x1)),

aHHW
11 (x1, x2, x3) =

1

2
fs(x1)

2fv(x2)ψ
′
s(fs(x1))

2,

cHHW
1 (x1, x2, x3) =

1

2
fs(x1)

2fv(x2)ψ
′′
s (fs(x1)) + fr(x3)fs(x1)ψ

′
s(fs(x1)),

with (x1, x2) ∈ Ω̃ = [0, 1] × [−1, 1], (x1, x2, x3) ∈ Ω̃ = [0, 1] × [−1, 1]2. Inserting these
into equation (2.12) one obtains the fourth-order discretization, which is defined on the
compact stencil. Analogous to Section 3.2 we treat the mixed derivatives with a broad
standard fourth-order stencil. Since the reciprocal of aHeston/HHW

11 needs to be computed,
one has to truncate the domain at v > 0 to avoid a division by zero. We therefore use
the computational domain [0, 20K] × [0.001, 1.5] × [−0.5, 0.5] and the region of interest
[12K, 2K]×[0.01, 1]×[0, 0.125] in the following numerical experiments. The initial condition
is smoothed with p = 4. Figures 4.28 and 4.30 show the accuracy in the asset direction.
In Table 4.7 we report the estimated order of convergence. The high-order method clearly
outperforms the second-order scheme. Since the computational effort remains within the
same complexity class, due to the tridiagonal structure of the discretization matrices in the
implicit legs, like the second-order method, the run-time is approximately the same. Thus,
in Figures 4.29 and 4.31 the accuracy of the proposed fourth-order scheme is significantly
higher for a fixed computation time.
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Figure 4.28: Heston: convergence in the direction of the underlying asset, N2 = 45.
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Figure 4.29: Heston: accuracy versus computation time in the direction of the asset with
45 grid nodes in the direction of the volatility and ∆t = 10−3.
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Figure 4.30: HHW: convergence in the direction of the underlying asset, N2 = N3 = 45.
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Figure 4.31: HHW: accuracy versus computation time in the direction of the asset with
45 grid nodes in the direction of the volatility/interest rate and ∆t = 10−3.
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Scenario 1 2 3 4

err∞
second-order FD 1.83 2.13 2.06 2.05

HOC FD 2.94 4.48 3.21 3.48
(a) Heston

Scenario 1 2 3 4

err∞
second-order FD 1.95 2.20 1.98 2.14

HOC FD 2.74 4.32 2.86 3.31
(b) Heston-Hull-White

Table 4.7: Estimated order of convergence in the direction of the underlying asset (cf.
Figures 4.28 and 4.30).





5 Chapter 5

Conclusions and Outlook

5.1 Conclusions

In this thesis we examined high-order methods in a financial engineering setting. The
PDEs arising in finance are in general of convection-diffusion-reaction type with mixed
derivatives present. In the time domain we decomposed the spatial discretization matrix
with ADI splitting methods, which are able to treat the mixed derivative efficiently via
explicit time stepping. We considered four prominent schemes: the Douglas, the Craig-
Sneyd, the modified Craig-Sneyd and the Hundsdorfer-Verwer scheme. In the case of
high-order-compact finite difference discretizations in space we proved bounds on θ for
unconditional stability based on the existing results from literature in the von Neumann
framework. It turned out that the stability bounds of central second-order finite dif-
ference ADI and HO-ADI schemes coincide. Since in general a lower θ value leads to
a smaller numerical error, HO-ADI schemes do not suffer any loss in accuracy in the
time domain due to stability restrictions. In addition to finite differences we considered
pseudo-spectral approximations. In numerical experiments we investigated the stability
properties. Therefore, we computed the eigenvalues of the iteration matrices for Dirichlet
and Neumann boundary conditions. The positive outcome of the experiments encouraged
us to apply ADI time stepping with pseudo-spectral differentiation in space to basket
options and to stochastic volatility models.

In order to reduce the number of grid nodes of the spatial discretization we employed
sparse grids. We used the combination technique to construct the sparse grid solu-
tion and analyzed its regularity requirements. For fourth-order finite difference schemes
u ∈ C(10,10,...,10) was actually needed to obtain an error decay of order O(h4 log2(h

−1)d)
on the entire spatial domain. For pseudo-spectral methods two cases have to be distin-
guished: the bounded variation and the analytic case. If the solution has a derivative of
bounded variation the numerical scheme exhibits an algebraic error decay and thus the
error splitting structure is well suited for the combination technique. If the true solution
is even analytic the numerical solution will converge with geometric accuracy. Here the
hierarchical surpluses at the same level are of different size and therefore the splitting
structure is not appropriate for the combination technique. However, for problems with a
convergence-limiting singularity close to [−1, 1] the surpluses are almost of the same size
and the sparse grid outperforms the full grid approach.

In the last part of this thesis we applied the proposed numerical techniques to financial
engineering PDEs. Within the Black-Scholes model we used HOC finite differences and
derived a hybrid scheme using pseudo-spectral as well as finite differences. Since the initial
condition in option pricing problems is generally non-smooth, we investigated the impact
of smoothed initial data on the rate of convergence obtained in financial applications
for both approaches. For fourth-order finite differences a smoothing according to Kreiss
et al. of order four recovered the fourth-order accuracy, while higher-order smoothing
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significantly increased the performance of the hybrid pseudo-spectral / finite difference
method. Furthermore, we related the option parameters in the multivariate Black-Scholes
model to the performance of HOC schemes in the sparse grid combination technique. The
experiments revealed that one can expect a smoother solution for large volatility and
positive correlation between the assets and thus also a faster error decay. In comparison
the full grid solver did not show such a sensitivity on the parameters, which can be
explained by the less restrictive regularity requirements.

For the Heston and Heston-Hull-White PDE we proposed a hybrid method using finite
differences in the direction of the underlying and pseudo-spectral methods in the direc-
tion of the other risk-factors. The method was able to outperform the second-order finite
difference benchmark method. Both the numerical results and the theoretical complex-
ity discussion showed that especially in the higher-dimensional case the method is very
efficient due to the dimensional splitting. In the asset direction we additionally applied a
fourth-order finite difference discretization. As the arising matrix is of tridiagonal struc-
ture in the implicit legs of the asset direction the method is capable of computing highly
accurate solutions with only a very low additional computational effort. Thus, the bench-
mark method is clearly outperformed.

5.2 Outlook

In future research it would be interesting to extend the presented numerical methods to
American option pricing problems. The early-exercise feature adds an additional level
of complexity since the treatment of the early-exercise boundary is highly non-trivial if
one wants to maintain fourth-order or even higher accuracy. Leentvaar [65] has already
discussed this topic for standard fourth-order finite differences. An adaption of his ap-
proach, to enforce a smooth pasting condition, to HOC discretizations will be of great
interest. But other approaches could be considered as well, such as penalty methods [100]
or solving the partial differential complementarity problem [37].

At the current state the temporal discretization is of second-order. To make the schemes
more efficient higher-order methods could be used. If one wants to stay within the ADI
framework fourth-order can be obtained via Richardson extrapolation. Alternatively,
other time discretization techniques can be applied, e.g. backward difference formula
(BDF) methods.



References

[1] L. B. G. Andersen and V. Piterbarg. Moment Explosions in Stochastic Volatility
Models. Fin. Stoch., 11(1):29–50, 2007.

[2] Z. Battles and L. N. Trefethen. An Extension of Matlab to Continuous Functions
and Operators. SIAM J. Sci. Comp., 25:1743–1770, 2004.

[3] G. Berikelashvili, M. Gupta, and M. Mirianashvili. Convergence of Fourth Or-
der Compact Finite Difference Schemes for Three–dimensional Convection-Diffusion
equations. SIAM J. Numer. Anal., 45:443–455, 2007.

[4] V. Bhansali. Pricing and Managing Exotic and Hybrid Options for Free. McGraw-
Hill Companies, 1998.

[5] P. Brian. A Finite-difference Method of High-Order Accuracy for the Solution of
Threedimensional Transient Heat Conduction Problems. AIChE Journal, 7:367–
370, 1961.

[6] M. Briani, L. Caramellino, and A. Zanette. A Hybrid Approach for the Implemen-
tation of the Heston Model. IMA J. of Manag. Math., published online, 2015.

[7] M. Briani, L. Caramellino, and A. Zanette. A Hybrid Tree/Finite-Difference Ap-
proach for Heston-Hull-White Type Models. J. Comp. Fin., to appear, 2016.

[8] H. Bungartz and M. Griebel. Sparse grids. Cambridge University Press, pages
1–123, 2004.

[9] H.-J. Bungartz, M. Griebel, D. Röschke, and C. Zenger. Pointwise Convergence of
the Combination Technique for Laplace’s Equation. East-West J. Numer. Math.,
2:21–45, 1994.

[10] O. Burkovska, B. Haasdonk, J. Salomon, and B. Wohlmuth. Reduced Basis Methods
for Pricing Options with the Black–Scholes and Heston Models. SIAM J. Fin. Math.,
6(1):685–712, 2015.

[11] C. Canuto, M. Hussaini, A. Quarteroni, and T. Zang. Spectral Methods: Funda-
mentals in Single Domains. Scientific Computation. Springer, Berlin, 2006.

[12] P. Carr and D. B. Madan. Option Valuation using the Fast Fourier Transform. J.
Comp. Fin., 2:61–73, 1999.

[13] N. Clarke and K. Parrott. Multigrid for American Option Pricing with Stochastic
Volatility. Appl. Math. Fin., 6(3):177 – 195, 1999.

[14] I. Craig and A. Sneyd. An Alternating-Direction Implicit Scheme for Parabolic
Equations with Mixed Derivatives. J. Comp. Math. Appl., 16(4):341–350, 1988.

115



116 References

[15] E. Derman and I. Kani. Riding on a Smile. Risk, 2:32–39, 1994.

[16] J. Douglas and H. Rachford. On the Numerical Solution of Heat Conduction Prob-
lems in Two and Three Space Variables. Trans. Amer. Math. Soc., 82:421–439,
1956.

[17] J. J. Douglas. Alternating Direction Methods for Three Space Variables. Numer.
Math., 4(1):41–63, 1962.

[18] D. Duffie, J. Pan, and K. Singleton. Transform Analysis and Asset Pricing for Affine
Jump-Diffusions. Econometrica, 68, 2000.

[19] B. Dupire. Pricing and Hedging with Smiles. In Proceedings of AFFI Conference,
1993.

[20] B. Dupire. Pricing with a Smile. Risk Magazine, pages 18–20, 1994.

[21] B. Düring and M. Fournié. High-Order Compact Finite Difference Scheme for Op-
tion Pricing in Stochastic Volatility Models. J. Comput. Appl. Math., 236(17):4462–
4473, 2012.

[22] B. Düring, M. Fournié, and C. Heuer. High-Order Compact Finite Difference
Schemes for Option Pricing in Stochastic Volatility Models on Non-uniform Grids.
J. Comput. Appl. Math., 271:247–266, 2014.

[23] B. Düring, M. Fournié, and A. Rigal. High-Order ADI Schemes for Convection-
Diffusion Equations with Mixed Derivative Terms. In Spectral and High Order
Methods for Partial Differential Equations - ICOSAHOM 2012, volume 95, pages
217–226. Springer International Publishing, 2014.

[24] B. Düring and C. Heuer. High-Order Compact Schemes for Parabolic Problems
with Mixed Derivatives in Multiple Space Dimensions. SIAM J. Numer. Anal.,
53(5):2113–2134, 2015.

[25] B. Düring and J. Miles. High-Order ADI Scheme for Option Pricing in Stochastic
Volatility Models. Preprint, 2015.

[26] F. Fang and C. W. Oosterlee. A Novel Pricing Method for European Options based
on Fourier-Cosine Series Expansions. SIAM J. Sci. Comput., 31(2):826–848, 2008.

[27] I. Florescu and V. Frederi. A Binomial Tree Approach to Stochastic Volatility
Driven Model of the Stock Price. An. of Univ. Craiova, Math. Comp. Sci., 32:126–
142, 2005.

[28] I. Florescu and V. Frederi. Stochastic Volatility: Option Pricing Using a Multino-
mial Recombining Tree. Appl. Math. Fin., 15(2):151–181, 2005.

[29] M. B. Giles and R. Carter. Convergence Analysis of Crank-Nicolson and Rannacher
Time-marching. J. Comp. Fin., 9(4):89–112, 2006.

[30] P. Glasserman. Monte Carlo Methods in Financial Engineering. Applications of
Mathematics. Springer, New York, 2004.

[31] D. Gottlieb and L. Lustman. The Spectrum of the Chebyshev Collocation Operator



References 117

for the Heat Equation. SIAM J. Numer. Anal., 20(5):909–921, 1983.

[32] M. Griebel and W. Huber. Turbulence Simulation on Sparse Grids using the Com-
bination Method. In S. N., J. Periaux, and A. Ecer, editors, New Algorithms and
Applications, pages 75–84, 1995.

[33] M. Griebel, M. Schneider, and C. Zenger. A Combination Technique for the Solution
of Sparse Grid Problems. IMACS Elsevier, Iter. Meth. Lin. Alge., 16:263–281, 1992.

[34] W. Grill and H. Perczynski. Wirtschaftslehre des Kreditwesens. Deutscher
Sparkassen Verlag, 2003.

[35] L. A. Grzelak and C. W. Oosterlee. On the Heston Model with Stochastic Interest
Rates. SIAM J. Fin. Math., 2(1):255–286, 2011.

[36] M. Gupta, R. Manohar, and J. Stephenson. A Single Cell High Order Scheme for the
Convection-Diffusion Equation with Variable Coefficients. Int. J. Numer. Methods
Fluids, 4:641–651, 1984.

[37] T. Haentjens and K. J. in t Hout. ADI Schemes for Pricing American Options under
the Heston Model. Appl. Math. Fin., 22(3):207–237, 2015.

[38] T. Haentjens and K. J. in’t Hout. ADI Finite Difference Schemes for the Heston-
Hull-White PDE. J. Comp. Fin., 16:83–110, 2012.

[39] P. S. Hagan, D. Kumar, A. S. Lesniewski, and D. E. Woodward. Managing Smile
Risk. Wilmott Magazine, 1(1):84–108, September 2002.

[40] C. A. Hall. On Error Bounds for Spline Interpolation. J. Approx. Theo., 1:209–218,
1968.

[41] C. Hendricks, M. Ehrhardt, and M. Günther. High Order Combination Technique
for the Efficient Pricing of Basket Options. Acta Math. Univ. Comen., 84(2):243–
253, 2015.

[42] C. Hendricks, M. Ehrhardt, and M. Günther. Error Splitting Preservation for High
Order Finite Difference Schemes in the Combination Technique. Numer. Math:
Theory, Models and Appl., to appear, 2016.

[43] C. Hendricks, M. Ehrhardt, and M. Günther. High-Order ADI Schemes for Diffusion
Equations with Mixed Derivatives in the Combination Technique. Appl. Numer.
Math., 101:36–52, 2016.

[44] C. Hendricks, M. Ehrhardt, and M. Günther. Hybrid Finite Difference / Pseu-
dospectral Methods for the Heston and Heston-Hull-White PDE. J. Comp. Fin., to
appear, 2016.

[45] C. Hendricks, C. Heuer, M. Ehrhardt, and M. Günther. High-Order ADI Finite
Difference Schemes for Parabolic Equations in the Combination Technique with
Application in Finance. J. Comput. Appl. Math., to appear, 2016.

[46] S. L. Heston. A Closed-form Solution for Options with Stochastic Volatility with
Applications to Bond and Currency Options. Rev. Finan. Stud., 6(2):327–343, 1993.



118 References

[47] C. Heuer. High-Order Compact Finite Difference Schemes for Parabolic Partial Dif-
ferential Equations with Mixed Derivative Terms and Applications in Computational
Finance. PhD thesis, University of Sussex, 2014.

[48] W. Hundsdorfer. Accuracy and Stability of Splitting with Stabilizing Corrections.
Appl. Numer. Math., 42(1-3):213–233, 2002.

[49] W. Hundsdorfer and J. Verwer. Numerical Solution of Time-dependent Advection-
Diffusion-Reaction Equations, volume 33. Springer, 2003.

[50] K. in’t Hout, J. Bierkens, A. P. C. van der Ploeg, and J. in’t Panhuis. A Semi Closed-
form Analytic Pricing Formula for Call Options in a Hybrid Heston–Hull–White
Model. Proceedings of the 58th European Study Group Mathematics with Industry,
eds. R.H. Bisseling et. al., Utrecht, pages 101–105, 2007.

[51] K. J. in’t Hout and S. Foulon. ADI Finite Difference Schemes for Option Pricing in
the Heston Model with Correlation. Int. J. Numer. Anal. Mod., 7:303–320, 2010.

[52] K. J. in’t Hout and C. Mishra. Stability of the Modified Craig-Sneyd Scheme
for Two-dimensional Convection-Diffusion Equations with Mixed Derivative Terms.
Math. Comp. Simul., 81:2540–2548, 2011.

[53] K. J. in’t Hout and C. Mishra. Stability of ADI Schemes for Multidimensional
Diffusion Equations with Mixed Derivative Terms. Appl. Numer. Math, 74:83–94,
2013.

[54] K. J. in’t Hout and B. Welfert. Unconditional Stability of Second-order ADI Schemes
applied to Multi-Dimensional Diffusion Equations with Mixed Derivative Terms.
Appl. Numer. Math., 59(3-4):677–692, 2009.

[55] K. J. in’t Hout and B. D. Welfert. Stability of ADI Schemes applied to Convection-
Diffusion Equations with Mixed Derivative Terms. Appl. Numer. Math., 57(1):19–
35, Jan. 2007.

[56] K. J. in’t Hout and M. Wyns. Convergence of the Modified Craig-Sneyd Scheme
for Two-dimensional Convection-Diffusion Equations with Mixed Derivative Term.
J. Comput. Appl. Math., 296(C):170–180, 2016.

[57] C. Kahl and P. Jäckel. Not-so-complex Logarithms in the Heston Model. Wilmott
Magazine, pages 94–103, September 2005.

[58] S. Karaa and J. Zhang. High-Order ADI Method for Solving Unsteady Convection-
Diffusion Problems. J. Comput. Phys., 198(1):1–9, 2004.

[59] M. Keller-Ressel. Moment Explosion and Long-term Behavior of Affine Stochastic
Volatility Models. Math. Fin., 21:73–98, 2011.

[60] T. Kluge. Pricing Derivatives in Stochastic Volatility Models Using the Finite Dif-
ference Method. Master’s thesis, Technische Universität Chemnitz, 2002.

[61] D. A. Kopriva. Implementing Spectral Methods for Partial Differential Equations:
Algorithms for Scientists and Engineers. Springer Publishing, 1st edition, 2009.



References 119

[62] H. O. Kreiss, V. Thomée, and O. Widlund. Smoothing of Initial Data and Rates
of Convergence for Parabolic Difference Equations. Commun. Pure Appl. Math.,
23(2):241–259, 1970.

[63] D. Lanser, J. Blom, and J. Verwer. Time Integration of the Shallow Water Equations
in Spherical Geometry. J. Comp. Phys., 171:373–393, 2001.

[64] A. Laub. Matrix Analysis for Scientists and Engineers. SIAM, 2004.

[65] C. Leentvaar and C. Oosterlee. American Options With Discrete Dividends Solved
by Highly Accurate Discretizations. In Progress in Industrial Mathematics at ECMI
2014, pages 427–431. Springer, 2004.

[66] C. Leentvaar and C. Oosterlee. On Coordinate Transformation and Grid Stretching
for Sparse Grid Pricing of Basket Options. J. Comput. Appl. Math., 222(1):193–209,
2008.

[67] C. C. W. Leentvaar and C. W. Oosterlee. Pricing Multi-Asset Options with Sparse
Grids and Fourth Order Finite Differences. In Numer. Math. Advan. Appl., pages
975–983. Springer, 2006.

[68] A. Leitao and C. Oosterlee. GPU Acceleration of Stochastic Grid Bundling Method
for Early-Exercise Options. Int. J. Comput. Math., 92:2433–2454, 2015.

[69] G. Linde. High-Order Adaptive Space Discretizations for the Black-Scholes Equa-
tion. Master’s thesis, University of Uppsala, 2005.

[70] C. Mishra. Stability of Alternating Direction Implicit Schemes with Application to
Financial Option Pricing Equations. PhD thesis, Univ. Antwerp, 2014.

[71] C. Mishra. A New Stability Result for the Modified Craig-Sneyd Scheme Applied
to Two-dimensional Convection-Diffusion Equations with Mixed Derivatives. Appl.
Math. Comput., 285(C):41–50, 2016.

[72] A. R. Mitchell and G. Fairweather. Improved Forms of the Alternating Direction;
Methods of Douglas, Peaceman, and Rachford for Solving Parabolic and Elliptic
Equations. Numer. Math., 6(1):285–292, 1964.

[73] A. Papanicolaou. Introduction to Stochastic Differential Equations (SDEs) for Fi-
nance. Lecture Notes, 2013.

[74] E. Pindza, K. Patidar, and E. Ngounda. Implicit-Explicit Predictor-Corrector Meth-
ods Combined with Improved Spectral Methods for Pricing European Style Vanilla
and Exotic Options. Electr. Trans. Numer. Anal., 40:269–293, 2013.

[75] O. Pironneau. Calibration of Options on a Reduced Basis. J. Comput. Appl. Math.,
232(1):139–147, 2009.

[76] D. M. Pooley, K. R. Vetzal, and P. A. Forsyth. Convergence Remedies for Non-
smooth Payoffs in Option Pricing. J. Comp. Fin., 6(4):25–40, 2003.

[77] H. Price. Monotone and Oscillation Matrices Applied to Finite Difference Approx-
imations. Math. Comput., 22(103):489–516, 1968.



120 References

[78] C. Reisinger. Numerische Methoden für hochdimensionale parabolische Gleichun-
gen am Beispiel von Optionspreisaufgaben. PhD thesis, Ruprecht-Karls-Universität
Heidelberg, 2004.

[79] C. Reisinger. Analysis of Linear Difference Schemes in Sparse Grid Combination
Technique. IMA J. Numer. Anal., 33(2):544–581, 2013.

[80] C. Reisinger and G. Wittum. Efficient Hierarchical Approximation of High-
dimensional Option Pricing Problems. SIAM J. Sci. Comput., 2007.

[81] M. Rubinstein. Implied Binomial Trees. J. Fin., 49(3):771–818, 1994.

[82] T. Schiekofer. Die Methode der Finiten Differenzen auf dünnen Gittern zur Lö-
sung elliptischer und parabolischer partieller Differentialgleichungen. PhD thesis,
Universität Bonn, 1999.

[83] R. Seydel. Tools for Computational Finance. Springer, 2006.

[84] J. Shen and H. Yu. Efficient Spectral Sparse Grid Methods and Applications to
High-Dimensional Elliptic Problems. SIAM J. Sci. Comput., 32(6):3228–3250, 2010.

[85] J. Shen and H. Yu. Efficient Spectral Sparse Grid Methods and Applications to High-
Dimensional Elliptic Equations II. Unbounded Domains. SIAM J. Sci. Comput.,
34(2):A1141–A1164, 2012.

[86] S. Smolyak. Quadrature and Interpolation Formulas for Tensor Products of Certain
Classes of Functions. Dokl. Akad. Nauk SSSR, 148:1042–1045, 1963.

[87] K. Spanderen. Finite Difference Schemes for the Heston-Hull-White
Model. https://hpcquantlib.wordpress.com/2011/09/11/finite-difference-schemes-
for-the-heston-hull-white-model/, 2011.

[88] W. F. Spotz. High-Order Compact Finite Difference Schemes for Computational
Mechanics. PhD thesis, University of Texas, Austin, 1995.

[89] W. F. Spotz and G. F. Carey. High-Order Compact Scheme for the Steady Stream-
function Vorticity Equations. Int. J. Numer. Meth. Engin., 38:3497–3512, 1995.

[90] D. Tavella and C. Randall. Pricing Financial Instruments: The Finite Difference
Method. Wiley, New York, 2000.

[91] T. W. Tee and L. N. Trefethen. A Rational Spectral Collocation Method with Adap-
tively Transformed Chebyshev Grid Points. SIAM J. Sci. Comput., 28(5):1798–
1811, 2006.

[92] J. Thomas. Numerical Partial Differential Equations: Finite Difference Methods.
Springer, 1995.

[93] L. N. Trefethen. Spectral Methods in MatLab. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2000.

[94] H. van der Vorst. Bi-CGSTAB: a Fast and Smoothly Converging Variant of Bi-CG
for the Solution of Nonsymmetric Linear Systems. SIAM J. Sci. Statist. Comput.,
13:631–644, 1992.



References 121

[95] S. Villeneuve and A. Zanette. Parabolic ADI Methods for Pricing American Options
on Two Stocks. Math. Oper. Res., 27(1):121–149, 2002.

[96] L. B. Wahlbin. A Remark on Parabolic Smoothing and the Finite Element Method.
SIAM J. Numer. Anal, 17(1):33–38, 1980.

[97] F. Zeng, F. Liu, C. Li, K. Burrage, I. W. Turner, and V. Anh. A Crank-Nicolson ADI
Spectral Method for a Two-dimensional Riesz Space Fractional Nonlinear Reaction-
Diffusion Equation. SIAM J. Numer. Anal., 52(6):2599–2622, 2014.

[98] C. Zenger. Sparse Grids. Technical Report, Institut für Informatik, Technische
Universität München, October 1990.

[99] W. Zhu and D. Kopriva. A Spectral Element Approximation to Price European
Options with One Asset and Stochastic Volatility. J. Sci. Comput., 42(3):426–446,
2010.

[100] R. Zvan, P. Forsyth, and K. R. Vetzal. Penalty Methods for American Options with
Stochastic Volatility. J. Comput. Appl. Math., 91(2):199–218, 1998.


	Foreword
	1 Introduction
	1.1 Mathematical Models
	1.2 Partial Differential Equation Methods in Computational Finance
	1.3 Literature Overview and Outline of this Thesis

	2 Spatial Discretization
	2.1 Standard Finite Difference Methods
	2.2 High-Order-Compact Finite Difference Methods
	2.3 Pseudo-Spectral Methods
	2.4 The Curse of Dimensionality and the Sparse Grid Combination Technique

	3 Time Discretization - Alternating Direction Implicit Schemes
	3.1 Stability Considerations
	3.2 High-Order Finite Difference ADI Schemes
	3.3 Stability of HO-ADI Schemes
	3.4 (Hybrid) Pseudo-Spectral ADI Schemes
	3.5 Stability of Hybrid Finite Difference/Pseudo-Spectral ADI Schemes

	4 Application to Financial Engineering
	4.1 Grid Transformation
	4.2 Non-Smooth Initial Data
	4.3 Basket Options
	4.4 Stochastic Volatility Models

	5 Conclusions and Outlook
	5.1 Conclusions
	5.2 Outlook

	References

