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CHAPTER 1
Introduction

Continuous time Markov chains (CTMCs) are used to describe many real world
processes. These processes include manufacturing systems [55], chemical re-
actions [1, 52], queueing networks [19, 20, 44] and many more. Many of these
processes have the property that they can “naturally” be split into d subsys-
tems. These subsystems can either interact with each other or they act within
their subsystem. For the modelling of these processes this property is exploited,
which then leads to a generator matrix of the form

A = ∑
(s,t)

⊗

i

E(s,t)
i − ∑

(s,t) 6=(i,i)

⊗

i

D(s,t)
i ∈ R∏ ni×∏ ni ,

where i, s, t ∈ {1, . . . , d} and E(s,t)
i , D(s,t)

i ∈ Rni×ni . With this generator matrix,
the so-called stationary distribution which describes the long term behaviour of
the process, can be computed by solving the singular linear system

Ax = 0

subject to the constraint that 1 Tx = 1.

For models with a large number of subsystems, this task is rendered difficult
by the fact that the size of the generator matrix explodes, because it is given by
the product of the sizes of the matrices from each subsystem. This phenomenon
is known as the curse of dimensionality. Therefore, designing efficient iterative
methods for solving this task is not enough. It is equally important to exploit
the naturally given structure of the generator matrix in order to be able to store
it and work with it. For this, a variety of different low-rank formats can be used,
which keep the curse of dimensionality in check. Tensor Train [56,57,59] will be
the format of choice in this thesis.

The task of this thesis is now to develop a multigrid method which exploits the
tensor structure and uses techniques for efficient matrix-vector multiplications.
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2 CHAPTER 1. INTRODUCTION

The challenge in this is to maintain the tensor structure across all grids, which,
e.g., means serious constraints for the transfer operators that can be used. The
idea for using a multigrid approach for computing the stationary distribution of
a CTMC is based on the encouraging results obtained when using multigrid for
discrete time Markov chains without tensor structure [6,12,17,24–26,73] and also
on the nice structure of the generator matrix which motivates using an approach
which is based on the graph corresponding to the matrix.

This thesis is structured as follows: In chapter 2 the definition and properties of
continuous time Markov chains are discussed. Moreover, it is explained what a
stationary distribution of a CTMC is and why we can compute it by solving a
singular linear system with right-hand side zero. Additional assumptions un-
der which the existence and uniqueness of a stationary distribution of a CTMC
are guaranteed are also presented. Subsequently, different examples of CTMCs
are shown. Therein the focus is on the construction of the corresponding gen-
erator matrices. At the end of chapter 2 the curse of dimensionality, which mo-
tivates this work, is discussed. In chapter 3 the Tensor Train format (TT) is
presented and the TT-SVD algorithm, which computes a TT-representation of
a vector, is given. Moreover, the definition of a TT-matrix, an adaption of the
Tensor Train format to matrices, and the implementation of basic linear alge-
bra operations (like matrix-vector multiplication) in Tensor Train formats are
explained. In chapter 4 a first iterative method is considered for solving the
singular system. This first method of choice is the Krylov subspace method
GMRES [64]. Because of the fact that the system is singular and non-symmetric
it has to be clarified under which conditions convergence of a Krylov subspace
method can be guaranteed. Simple numerical examples show that GMRES can
fail, but at the same time give a motivation for using a multigrid method with
GMRES as smoother. Following this observation, the basic ideas and ingredi-
ents of multigrid methods are introduced. When using a multigrid method, it
would be desirable to have a convergence analysis at hand which guarantees
that the method always finds the stationary distribution. Even for symmetric,
singular or non-symmetric, non-singular systems only few convergence results
for multigrid can be found in the literature [7, 13, 65]. In chapter 5 these results
are summarized and we try to adapt them to our setting. Unfortunately both
approaches fail to be generalizable to the non-symmetric singular case, and we
highlight the reasons for this. In chapter 6 we investigate each ingredient of
a multigrid method separately, focusing on its capability to be used for tensor
structured problems. Based on this, there will be different choices for each ingre-
dient. These will be tested and judged in chapter 7 in a first series of numerical
experiments. The construction of the multigrid method in chapter 6 is based
on the geometric structure of the models. A strategy which generates the in-
gredients adaptively instead is therefore desirable. We will concentrate on the
adaptive construction of the interpolation operators by generalizing the boot-
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strap AMG approach [6, 11, 12, 23, 27, 43] to the tensor setting. Here the main
task is to find reasonable test vectors for the least squares interpolation. Chap-
ter 8 is therefore structured as follows: first a description of a bootstrap approach
is given and afterwards the adaption to the tensor structured case is discussed.
The resulting method is then tested and compared to the method from chap-
ter 6 in further numerical experiments. In chapter 9 an alternative low-rank
tensor method for finding the stationary distribution of a CTMC is presented,
namely the alternating minimal energy method (AMEn) [29, 30, 47, 48]. AMEn
can also be combined with the multigrid method from chapter 6 for potentially
improving the coarse grid solver. In the last series of experiments the multigrid
method from chapter 6 is tested versus AMEn and a combination of multigrid
and AMEn. At the end of this thesis a summary of the results and developed
methods is given in chapter 10, together with possible directions for further re-
search.

Parts of the results presented in this thesis have already been published in [8,9].





CHAPTER 2
Continuous time Markov chains

Markov chains are often referred to as “memoryless stochastic processes” and
are typically used to describe systems whose state changes in time. While there
are many classes of Markov chains, this thesis focuses exclusively on continuous
time Markov chains (CTMCs). We therefore give a definition and an overview
of important properties of CTMCs in this chapter. For a better understanding,
we will present some model problems, which we will also use to test and gauge
numerical methods developed in this thesis.

Our presentation in this chapter is mainly based on material from [5, 50, 66].

2.1 Basic definitions and results

Stochastic processes can be described by three sets, namely

• a state space S,

• a time space T, and

• a set of random variables X(t) ∈ S, t ∈ T .

S and T describe the quality of the stochastic process. For example if S ⊆ N

and T ⊆ N, the stochastic process is discrete in space and in time. But if T ⊆ R

is uncountable, the stochastic process is continuous in time (but still discrete in
space). This case will be considered in this thesis, and we will from here on
always assume S = {1, . . . , N} with N ∈N and T = [0, ∞).

5



6 CHAPTER 2. CONTINUOUS TIME MARKOV CHAINS

We will now categorize continuous time Markov chains, which are particular
stochastic processes with continuous time and discrete space:

Definition 2.1. The stochastic process {X(t) : t ∈ [0, ∞)} on the state space
S = {1, . . . , N} is called continuous time Markov chain if for all s > 0

P[X(t + s) = j | X(u) : 0 ≤ u ≤ t] = P[X(t + s) = j | X(t)]. (2.1)

The CTMC is called homogeneous, if for all t ∈ [0, ∞) and s > 0

P[X(t + s) = j | X(t) = i] = P[X(s) = j | X(0) = i]. (2.2)

Equation (2.1) is the Markov property, namely that the conditional probability
of reaching a certain state only depends on the current state but not on previous
states. Equation (2.2) defines a time-invariant CTMC, which is the type of CTMC
considered in this thesis.

The goal is now to represent the homogeneous CTMC by a matrix. Due to the
fact that T is not discrete, but continuous, we do not have the ability to describe
the entry pi,j by the probability that a transition from state j to state i occurs,
like it would be possible for a discrete time Markov chain. Instead we have to
consider a time interval [t, t + ∆t]. So let pi,j(∆t) be the transition probability for
an observation interval of length ∆t. This results in a family P(∆t) of transition
matrices, depending on the parameter ∆t. To avoid the parameter dependency,
we consider transition rates instead of probabilities.

Definition 2.2. The transition rate for state i and j is given by

ai,j = lim
∆t→0

pi,j(∆t)
∆t

, for i 6= j (2.3)

and
ai,i = −∑

j 6=i
aj,i. (2.4)

The matrix A = (ai,j) ∈ RN×N is called transition rate matrix or infinitesimal
generator matrix of the CTMC.

Remark 2.3. The existence and finiteness of the limit in (2.3) can always be guar-
anteed and is proven in [21, Theorem II.2.5].
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From Definition 2.2 we can deduce the following properties of the transition rate
matrix A:

(i) 1 TA = 0, where 1 , 0 are the vector of all ones and all zeros, respectively,

(ii) ai,i ≤ 0 for all i,

(iii) ai,j ≥ 0 for i 6= j,

(iv) A is singular (this follows from property (i)).

Although we are working with the transition rate matrix A (instead of the proba-
bility matrices P(∆t)), we are interested in probability distributions on the states
of a CTMC. We will now clarify how these concepts are related.

Let x(∆t) ∈ RN, ∆t > 0, be a probability vector, i.e., xi(∆t) = P[X(∆t) = i] for
an observation interval ∆t. It follows immediately that

0 ≤ xi(∆t) ≤ 1 and ∑
i∈S

xi(∆t) = 1. (2.5)

Note that the multiplication P(∆s)x(∆t), where ∆s > 0, results in a probability
distribution x(∆s + ∆t).

Particularly interesting distributions in many applications are the so-called sta-
tionary distributions, i.e., distributions that do not change in time. The following
definition describes this kind of distribution precisely.

Definition 2.4. Let x ∈ RN be a probability distribution on the state space S.
Then x is called stationary distribution if for every ∆t > 0

P(∆t)x = x. (2.6)

The stationary distribution can also be computed with help of the transition
rate matrix. If we consider the Taylor expansion of pi,j as a function of ∆t with
expansion point 0, it follows

pi,j(0 + ∆t) = pi,j(0) + ai,j · (∆t− 0) + o(∆t).

Noting that pi,j(0) = 0 gives
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pi,j(∆t) = ai,j · ∆t + o(∆t). (2.7)

Therefore, using x(∆t) = P(∆t)x(0),

xi(∆t) = xi(0)

(
1−∑

i 6=j
aj,i · ∆t

)
+

(
∑
i 6=k

ai,k · xk(0)

)
∆t + o(∆t).

Because of (2.4) it follows

xi(∆t) = xi(0) +

(
∑
k

ai,k · xk(0)

)
∆t + o(∆t)

and

x′i(0) = lim
∆t→0

xi(∆t)− xi(0)
∆t

= lim
∆t→0

∑
k

ai,k · xk(0) +
o(∆t)

∆t
= ∑

k
ai,k · xk(0).

In matrix notation we have

x′(0) = A · x(0), (2.8)

where we use x′(0) as a symbolic expression for the vector containing the deriva-
tives x′i(0). The values x′(0) are also called the rates of change of x. From (2.8)
it is obvious that if there exists a stationary distribution, then its rates of change
are zero and vice versa. Summarizing we find the following result:

Lemma 2.5. A vector x ∈ RN is a stationary distribution of a CTMC with generator
matrix A if and only if

Ax = 0, 0 ≤ xi ≤ 1 and 1 Tx = 1. (2.9)

So, to compute a stationary distribution of a CTMC, we have to find a non-trivial
solution of a homogeneous system of linear equations. Whether such a solution
of (2.9) exists and is unique depends on properties of the CTMC. One important
assumption is irreducibility in the sense of the following definition.

Definition 2.6. A CTMC is irreducible, if there exist a ∆t > 0 such that all
entries of P(∆t) are strictly positive.

So irreducibility means that for any two states i, j there is a non-zero probability
that there will be a transition from i to j at some point in time.
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Lemma 2.7. If a CTMC is irreducible and has a stationary distribution x, then x is
unique.

Proof. See [50, Corollary 6.2].

For the existence of a solution of (2.9), irreducibility is not sufficient. We need
the additional requirement that the CTMC is positive recurrent.

Definition 2.8. The hitting time of state i of a CTMC is a random variable

Ti = inf{t > 0 : X(t) = i | X(0) = i}.

The state i ∈ S is positive recurrent if the expectation value E[Ti] is finite.

The CTMC is positive recurrent when all its states are positive recurrent.

Positive recurrence means that a state i which is visited once will be visited
repeatedly. Together with irreducibility, the process will arrive at each state
several times, no matter where it starts. This is the crucial property which guar-
antees the existence of a stationary distribution.

Lemma 2.9. Assume that a CTMC is irreducible. Then it is positive recurrent if and
only if there exists a solution to (2.9).

Proof. See [5, Theorem 1.25].

Remark 2.10. From the preceding discussion it immediately follows that all en-
tries of a stationary distribution x of an irreducible CTMC are strictly positive.

In this thesis we will concentrate on positive recurrent and irreducible CTMCs
and try to compute their stationary distributions. In the following section we
will introduce several model problems belonging to this class.

2.2 Model problems

In this thesis we will consider seven benchmark problems, which can be grouped
into the three categories queueing networks, kanban systems and chemical reaction
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networks. For our models we will choose the Stochastic Automata Network (SAN)
formalism [51, 60, 61]. The reason for this is that the transition rate matrices of
our CTMCs can be very large, so that storage of and computations with these
matrices cannot be done in an efficient way without exploiting their structure
somehow.

We will explain this formalism by considering an overflow queueing network, which
is also our first benchmark problem. This example is taken from [53] and is a
variation of a standard model problem introduced in [15, 16].

2.2.1 Overflow queueing networks

A finite number d ∈ N of queues Ai, i = 1, . . . , d is given with corresponding
capacities ki, i = 1, . . . , d. Each queue Ai describes an individual stochastic au-
tomaton in our SAN. One individual queue Ai is a Markov chain with ki + 1
states, where state j means that currently j − 1 customers are waiting in the
queue. So a customer can arrive at an arbitrary queue Ai and waits there to be
served if Ai is not full (full means that Ai has reached its capacity ki), otherwise
the customer leaves the system. The arrival rate for each queue is distributed
according to a Poisson process with parameter λi, i = 1, . . . , d. The service time
is exponentially distributed with rate µi, i = 1, . . . , d. By now these local pro-
cesses in one queue Ai are independent from the processes in the other queues
Aj, i 6= j and can be described by the following transition rate matrices:

E(i,i)
i =




−λi µi 0

λi −(λi + µi)
. . .

. . . . . . . . .
. . . −(λi + µi) µi

0 λi −µi




, i = 1, . . . , d. (2.10)

Note that E(i,i)
i ∈ Rni×ni with ni = ki + 1 and that the transition rate matrix of

the whole system with d independent queues is then given by

AL =
d

∑
i=1

ALi (2.11)

with
ALi = I1 ⊗ · · · ⊗ Ii−1 ⊗ E(i,i)

i ⊗ Ii+1 ⊗ · · · ⊗ Id, (2.12)
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A1

...

A2

...

A3

...

. . .

Ad−1

...

Ad

...

Figure 2.1: Structure of the model overflow.

where Ik is the identity matrix of size nk × nk. Here we assume that the states—
which can be described by d-tuples—are ordered lexicographically, which is
consistent with the ordering given by the Kronecker product, see, e.g., [60, 61].

Let us now examine the situation in which the queues interact in the following
way: If a customer arrives at Ai while Ai is full, the customer tries to enter the
subsequent queueAi+1 instead. If this queue is also full, he leaves the system. If
a customer arrives at the last queue Ad and it is full, he immediately leaves the
system. Figure 2.1 illustrates this type of model. This interaction is a synchro-
nized event in the SAN. A synchronized event is a transition in one automaton
which can cause a transition in one or more other automata. These events are
one of two fundamental types of interaction we consider in SANs. The other
type are functional transitions, which we discuss in detail in the chemical reac-
tion network problems, see section 2.2.4.

The synchronized events in which the customer enters the subsequent queue
because the situation demands it, are described by the following matrices:

• The interaction is triggered ifAi is full and a customer arrives atAi, which
leads to the following matrices

E(i,i+1)
i =




0 0

0
. . . . . .
. . . . . . . . .

. . . 0 0
0 λi




, i = 1, . . . , d− 1.



12 CHAPTER 2. CONTINUOUS TIME MARKOV CHAINS

• IfAi is full,Ai+1 gets an additional customer, which leads to the following
matrices

E(i,i+1)
i+1 =




0 0 0

1
. . . . . .
. . . . . . . . .

. . . . . . 0
0 1 0




, i = 1, . . . , d− 1.

So the interaction part of our system can be described by the matrix

AS =
d−1

∑
i=1

ASi (2.13)

with
ASi = I1 ⊗ · · · ⊗ E(i,i+1)

i ⊗ E(i,i+1)
i+1 ⊗ · · · ⊗ Id. (2.14)

Remark 2.11. Our notation for matrices appearing in an SAN description is as
follows: E(j,k)

i describes how automaton i is influenced by a synchronized event
between automaton j and automaton k. Therefore, many matrices appearing in
ASi in this model are identities, as a synchronized event between Ai and Ai+1
does not influence any other queue.

This notation also gives the reasoning for denoting the non-identity matrix de-
scribing the local transitions in (2.12) as E(i,i)

i , as they describe events that only
influence one queue.

Whereas 1 TAL = 0, we have to add correction terms to AS to arrive at this prop-
erty. The correction term can be computed in the following way:

For every ASi , i = 1, . . . , d we define

ADi = I1 ⊗ · · · ⊗ D(i,i+1)
i ⊗ D(i,i+1)

i+1 ⊗ · · · ⊗ Id, (2.15)

where D(i,i+1)
i and D(i,i+1)

i+1 are diagonal matrices with negative diagonal entries

D(i,i+1)
i (k, k) = −

ni

∑
`=1

E(i,i+1)
i (`, k), k = 1, . . . , ni

and

D(i,i+1)
i+1 (k, k) = −

ni

∑
`=1

E(i,i+1)
i+1 (`, k) k = 1, . . . , ni.
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So we can build the matrix

AD =
d−1

∑
i=1

ADi

and arrive at our transition rate matrix

A = AL + AS + AD, (2.16)

which describes the whole system including interactions. This separation of the
three components AL, AS and AD is not specific to queueing networks. We will
use (2.16) also for describing all other SAN models considered in this section.

Summarizing, the SAN formalism helps us to separate the local and the interac-
tion part of our CTMC and store them in a compact form.

Note that in general the number of summands in the local and the interaction
part is independent of d, examples for this case will be shown in other model
problems. So the benefit of SAN is that we can store our transition rate matrix A
with complexity O((2NSD + NL) · n · d), where n = maxk nk, NSD is the number
of interactions and NL is the number of local parts—instead ofO(nd)—i.e., with
complexity which is polynomial instead of exponential in d (assuming that NSD
and NL depend polynomially on d, which is the case for all models we consider
in this thesis).

2.2.2 Variations of the overflow queueing model

In this thesis we will look at three different kinds of overflow queueing models
from [53], which differ in the interaction between the queues. The first one was
described in section 2.2.1 and is illustrated in Figure 2.1 and named overflow in
the following.

The second one is labelled overflow_cycling. It is analogous to the model overflow
with the difference that if the last queue Ad is full and a customer arrives there,
he tries to enter the first queue instead of leaving the system. In this case the
matrix AS—and therefore also the matrix AD—in the formula of the transition
rate matrix (2.16) has an additional summand, which describes the interaction
between the last queue Ad and the first queue A1.

The third overflow model which we consider is named overflow_long. Here the
customers which arrive at a full queue try to enter the subsequent queues one
after the other until they find one that is not full. If they try the last queue Ad
and detect that Ad is full, they leave the system. In this model the matrices AS
and AD in (2.16) also have to be adapted. We now have interaction from Ai to
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A1

...

A2

...

A3

...
. . .

Ad−1

...

Ad

...

Figure 2.2: Structure of the model simplified_kanban.

Aj for all i < j, i, j ∈ {1, . . . , d}, which can be described analogously to (2.14). It

follows that AS (and therefore also AD) have d(d−1)
2 summands.

2.2.3 Kanban systems

In a kanban system, a finite number of automata d have to be passed through
one after the other. These kinds of models are considered, e.g., in [14, 55]. We
consider two types of kanban models here, which can also be found in the col-
lection [53].

For visualization we think of a finite number of queues d with capacity ki, i =
1, . . . , d, which have to be passed by customers one after the other.

The first kanban model we consider is called simplified_kanban. In this model
the customers arrive only at the first queue A1 and leave the system when the
first queue is full or when they have passed through all queues. The service in
a queue Ai can only be finished if the subsequent queue Ai+1 is not full and
the customer can thus be passed on. The arrival rate in the first queue A1 is
(like in the overflow systems) distributed according to a Poisson process with
parameter λ1. The service time in each queue Ai is exponentially distributed
with rate µi, i = 1, . . . , d.

Figure 2.2 illustrates this model. We again want to use the SAN formalism,
therefore we split the local and the interaction part in this model. Note that the
arrival of a customer to A1 is independent of the processes in the other queues.
The same holds true for leaving the last queue Ad. So local processes in this
SAN only exist in the first and in the last queue and can be described by the
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matrices

E(1,1)
1 =




−λ1
λ1 −λ1

. . . . . .
. . . −λ1

λ1 0




and

E(d,d)
d =




0 µd

−µd
. . .
. . . . . .
−µd µd

−µd




,

respectively.

So the matrix AL in (2.16) contains two summands AL1 and ALd of type (2.12).

The number of interactions in this SAN is the same as for the model overflow
described in section 2.2.1. We only have to replace the matrices E(i,i+1)

i , i =
1, . . . , d− 1 in (2.14) (and therefore also in (2.15)) by

E(i,i+1)
i =




0 µi
. . . . . .

. . . . . .
. . . µi

0




, i = 1, . . . , d− 1.

Note that E(i,i+1)
i+1 in (2.14) is the same as for the model overflow.

The next type of kanban system is named kanban_control. The main difference to
kanban_simplified is that the service process in one queueAi can now be finished
although the subsequent queue Ai+1 is full. To visualize this, we think of a
queue which at the same time acts as a waiting room with capacity ki (think of
sitting in a room where the server comes to the waiting customers, and after
being served the customers can sit and wait until they can pass on to the next
queue). So we now have to distinguish between customers who are in process
(that means they are waiting to get served) and customers who have already
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ki | 0 | 0 ki − 1 | 1 | 0 ki − 2 | 2 | 0 . . . 0 | ki | 0

ki − 1 | 0 | 1 ki − 2 | 1 | 1 . . . 0 | ki − 1 | 1

... . . . . . .

1 | 0 | ki − 1 0 | 1 | ki − 1

0 | 0 | ki

Figure 2.3: Possible transitions in the model kanban_control between states of a
queue with ki seats. Local transitions are depicted by solid arrows, synchronized
transitions depending on the previous or subsequent queue by dashed or dotted
arrows, respectively.

been processed and are waiting to get to the next queue now, which can only
happen if the subsequent queue is not full.

We now want to model this CTMC as an SAN. For sake of simplicity we first do
not consider the first and the last queue (although their corresponding Markov
chains are easier to describe). To distinguish between the local and interaction
part in our SAN, we consider the Markov chain corresponding to a queueAi, i =
2, . . . , d− 1. Its states can be described by three quantities:

• number of available (empty) waiting seats,

• number of customers who are in process,

• number of customers who are already processed and wait now.

Note that all three quantities always sum up to ki. The number of states is given
via the formula (ki+1)(ki+2)

2 . In Figure 2.3 the states are ordered lexicographi-
cally along the diagonals of the grid and the different possible transitions are
depicted. We can distinguish between three types of transitions: The first one is
that a customer gets processed and now has to wait. This is a local process and
is independent from the other queues and is marked by a solid arrow in Fig-
ure 2.3. The second one is the arrival of a new customer, which depends on the
previous queue (because the customer has to pass through it). This transition is
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marked by dashed arrows. The third one, depicted by dotted arrows, is that a
customer leaves the queue, this is dependent on the subsequent queue (because
the customer can only arrive at it if it is not full).

For the first and the last queue we only have a transition to the neighbouring
queue (for the first queue it is the second one and for the last one the second to
last one). In addition, the corresponding Markov chain has only ki + 1 states,
because we assume there are no empty seats in the first queue (whenever a
customer leaves the first queue, a new customer immediately enters) and the
customers served at the last queue can immediately leave.

Summarizing, in our SAN we have d local transitions and 2d− 2 interactions.

For the matrix ALi from (2.12), the adapted matrices E(i,i)
i are the transposes of

the adjacency matrices of the directed graph from Figure 2.3 with only the local
transitions as edges, multiplied by µi (with negative diagonal entries to ensure
column sum zero). So if we, e.g., have two seats, the corresponding matrix has
the form

E(i,i)
i =




0 0 0 0 0 0
0 −µi 0 0 0 0
0 µi 0 0 0 0
0 0 0 −µi 0 0
0 0 0 µi −µi 0
0 0 0 0 µi 0




, i = 2, . . . , d− 1.

The matrix AL can then be computed via (2.11) again.

For AS from (2.16) we now have to differ between the interaction with the pre-
vious and with the next queue: This can be done for i = 2, . . . , d− 1 by

ASi = I1 ⊗ · · · ⊗ Ii−2 ⊗ E(i,i−1)
i−1 ⊗ E(i,i−1)

i ⊗ Ii+1 ⊗ · · · ⊗ Id

+ I1 ⊗ · · · ⊗ Ii−1 ⊗ E(i,i+1)
i ⊗ E(i,i+1)

i+1 ⊗ Ii+2 ⊗ · · · ⊗ Id (2.17)

and then using the formula (2.13).

The matrices E(i,i−1)
i and E(i,i+1)

i+1 are the transposes of the adjacency matrices of
their corresponding graphs consisting of the dashed edges in Figure 2.3. Again
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for two seats, we would, e.g., have

E(i,i−1)
i =




0 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0




, i = 2, . . . , d− 1.

Analogously, the matrices E(i,i−1)
i−1 and E(i,i+1)

i are the transposes of the adjacency
matrices of their corresponding graphs consisting of the dotted edges in Fig-
ure 2.3. Continuing our example of two seats, we would, e.g., have

E(i,i+1)
i =




0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0




, i = 2, . . . , d− 1.

Clearly, for queue A1 and Ad only one of the two summands in (2.17) exists.

Remark 2.12. Note that—opposed to the overflow models and the model sim-
plified_kanban—the number of states in the first and last Markov chain is differ-
ent from the number of states in the other Markov chains, even if all capacities
ki ≡ k are identical. The size of the transition rate matrix A is then given via the
formula

(k + 1)2
(
(k + 1)(k + 2)

2

)d−2

.

2.2.4 Metabolic pathways

As mentioned in section 2.2.1, we consider—besides synchronized transitions in
our SAN—a different kind of transition, the so-called functional transitions. The
rates in a functional transition are now functions, which depend either on the
state of the automaton itself or on the states of the other automata. With the help
of metabolic pathway systems, we will see how functional transitions may look
like. We will consider two types of metabolic models, taken from [32, 52], also
considered in [53]. A metabolic pathway describes chemical transformations
which a substrate can go through in a specified order. We have a finite number
d of substrates, which are products of these chemical transformations. Each of
them has a capacity ki, i.e., ki is the maximum number of particles of type i
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A1

◦◦ ◦◦

A2

◦
◦
◦◦◦

A3

◦ ◦◦ . . .

Ad−1

◦
◦◦
◦

Ad

◦◦◦

Figure 2.4: Structure of the model directed_metab.

which can exist in the system at the same time. These substrates represent the
automata in our SAN. A transition between two automataAi,Aj means that the
substrate i can be converted into substrate j by some chemical reaction. The rate
at which the transformation of substrate i happens is given by

vi ·mi

mi + Ki − 1
,

where mi is the number of particles of the ith substrate and vi, Ki are constants.
This rate is also called flux rate. In contrast to the overflow models in section
2.2.1 and the kanban models from section 2.2.3, this rate is not constant, but
depends on the number of particles. In other words, it depends on the current
state of the ith substrate and is therefore functional. Note that, additionally, the
transition between two substrates is synchronized.

The first type of metabolic pathways we consider is named directed_metab. Fig-
ure 2.4 represents the interactions between the automata.

As for the model simplified_kanban in section 2.2.3, we now have processes which
the particles we put in our system have to go through. So we only have two local
parts—namely in the first substrate, where the particles enter the system, and in
the last substrate where the particles leave the system—and d− 1 interactions.
So the matrices ALi , ASi and ADi have the same Kronecker structure as in simpli-
fied_kanban, only the non-identity matrices have to be adapted. For AL1 we get
the matrix

E(1,1)
1 =




−λ1
λ1 −λ1

. . . . . .
. . . −λ1

λ1 0




,
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where λ1 is the constant influx rate. For the last substrate we have

E(d,d)
d =




0 µd1

−µd1

. . .

. . . . . .
−µdkd−1

µdkd
−µdkd




,

where

µi` =
vi · `

`+ Ki − 1
for i = 1, . . . , d and ` = 1, . . . , ki.

As in simplified_kanban we only have to replace the matrices

E(i,i+1)
i , i = 1, . . . , d− 1

in (2.14) (and therefore also in (2.15)) by

E(i,i+1)
i =




0 µi1
. . . . . .

. . . . . .
. . . µiki

0




, i = 1, . . . , d− 1.

In this manner we have AL, AS and AD and are able to compute the transition
rate matrix A for directed_metab via formula (2.16).

The last model considered in this thesis is called diverging_metab. It is a vari-
ation of directed_metab. As Figure 2.5 shows, the second substrate in our SAN
can now be transformed into two different substrates. So from this point on
there are two reaction paths which are independent of each other. The compu-
tation of the transition rate matrix is analogous to the transition rate matrix in
diverging_metab.
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A1

◦◦ ◦◦

A2

◦
◦
◦◦◦

A3

◦ ◦◦

A4

◦◦◦◦ . . .

Ad

◦◦◦

Figure 2.5: Structure of the model diverging_metab.

H
HHH

HHn
d 5 6 7 8

9 59,049 531,441 4,782,969 43,046,721
17 1,419,857 24,137,569 410,338,673 6,975,757,441
33 39,135,393 1,291,467,969 42,618,442,977 1,406,408,618,241

Table 2.1: Resulting problem sizes N for various combinations of mode sizes n
and dimensions d.

2.3 Curse of dimensionality

Every model in section 2.2 can be described by a matrix of the form

A = ∑
(s,t)

⊗

i

E(s,t)
i − ∑

(s,t) 6=(i,i)

⊗

i

D(s,t)
i ∈ R∏ ni×∏ ni , (2.18)

where i, s, t ∈ {1, . . . , d} and d is the number of Kronecker factors, also called the
dimension of the model. The values ni are called the mode sizes of the model. So if
every nk ≡ n (or n = maxd

i=1 ni) the matrix has a size of N = nd or (N = O(nd)).

Even for moderate values of d a slight increase of the mode sizes ni leads to a
huge increase of the overall system size N. To illustrate this effect we present
the resulting N for different values of d and n in Table 2.1.

Thus, if we tried to solve the system (2.9) using the standard matrix representa-
tion of the transition rate matrix A, even an optimal iterative method with linear
complexity O(N) would be infeasible already for medium-sized models (and
even just storing the vector representation of the stationary distribution is not
possible). To get an idea of this: a modern desktop PC with 32GB of random-
access memory can store just one vector of IEEE double values of size about
4.3 · 109, already for a problem of size 337 this value is surpassed, see Table 2.1.
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This clearly shows that one needs to use other, compressed representations (like,
e.g., (2.18)) both for the transition rate matrix and for all occurring vectors, to
obtain a practically usable method. This will be the topic of the next chapter.
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Summary of Chapter 2:

• Homogeneous CTMCs are memoryless stochastic processes, fulfilling

P[X(t + s) = j|X(t) = i] = P[X(s) = j|X(0) = i].

• CTMCs can be described via a transition rate matrix A.

• We are interested in a stationary distribution, i.e., x ∈ RN with

0 ≤ xi ≤ 1 and 1 Tx = 1 and Ax = 0.

• If the CTMC is irreducible and positive recurrent, there exits a unique
stationary distribution.

• SAN is a modelling formalism which helps to describe A with lower
storage cost.

• Storage cost in SAN form is polynomial in d (instead of exponential).

• Seven CTMCs from three categories are used as model problems:

Overflow queuing networks

– synchronized transitions

– one type of customers

– customers can arrive at any queue A1

...

A2

...

A3

...

. . .

Ad−1

...

Ad

...

Kanban systems

– synchronized transitions

– two types of customers

– arrival only at the first queue A1

...

A2

...

A3

...
. . .

Ad−1

...

Ad

...

Metabolic pathways

– synchronized transitions

– functional transition rates

– incoming flux at the first substrate

A1

◦◦ ◦◦

A2

◦
◦
◦◦◦

A3

◦ ◦◦ . . .

Ad−1

◦
◦◦
◦

Ad

◦◦◦

• The transition rate matrix of all considered models has the form:

A = ∑
(s,t)

⊗

i

E(s,t)
i − ∑

(s,t) 6=(i,i)

⊗

i

D(s,t)
i .

• Models of this form suffer from the curse of dimensionality.





CHAPTER 3
Tensor Train

In section 2.3 we motivated why we have to compress our vector x and our
matrix A to be able to solve the system (2.9) via iterative methods. In this the-
sis we work with a low-rank decomposition called Tensor Train Decomposition
(TT-Decomposition) [57]. There also exist other tensor formats which we do not
consider in this thesis, e.g., the canonical, or CP-, format [45, 46] and the hier-
archical Tucker format [34, 41, 49]. For a detailed introduction into the different
tensor formats and their numerical properties, we refer the reader to [39].

3.1 The TT-Decomposition

To get an idea how the TT-Decomposition works and why we benefit from it,
we look at a vector x ∈ Rn1n2·...·nd . The first act is to reshape this vector into a
matrix Xmat of size n1n2 · . . . · ndd/2e× ndd/2e+1 · . . . · nd. Instead of storing Xmat
explicitly (as a full matrix), we can save storage if we replace it by a suitable
low-rank approximation. According to the Eckart-Young theorem [31], the best
rank-r approximation of a matrix can be obtained via its singular value decompo-
sition (SVD):

Theorem 3.1. Let A ∈ Rn×m be of rank R and let 1 ≤ r ≤ R and A = UΣVT be a
singular value decomposition of A. Then Ar = UrΣrVT

r is the minimizer of ‖A−M‖F,
M ∈ Sr, where Σr = Σ(1 : r, 1 : r), Ur = U(:, 1 : r), Vr = V(:, 1 : r) and Sr is the set of
real-valued matrices of rank ≤ r.

Proof. See [33, Theorem 2.5.3].

25
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{1, . . . , d}

{1} {2, . . . , d}

{2} . . .

{d− 2} {d− 1, d}

{d− 1} {d}

n1r1 × n2 . . . nd

. . .

rd−3nd−2rd−1 × rd−1nd−1nd

rd−1nd−1rd × rdndrd+1

Resulting matrix sizesSplitting

Figure 3.1: TT-Tree.

So a rank-r approximation of Xmat via the SVD requires storage cost of

O(r(n1n2 · . . . · ndd/2e + ndd/2e+1 · . . . · nd))

or, if nk ≡ n, of O(rndd/2e), for the vector x instead of O(n1n2 · . . . · nd), or
O(nd), respectively. The computational cost for obtaining the SVD isO(N3/2) if
N = n1n2 · . . . · nd. However, this benefit is still not enough to efficiently store
x if d is large, which frequently is the case in applications. Thus we compute
rank-rk SVD approximations for every dimension successively, i.e, we keep the
matrix Urk after each SVD and work with the leftover matrix ΣrkVrk , where we
can also do a SVD and so on. Figure 3.1 illustrates this scheme and the resulting
matrix size after each decomposition. By doing so we obtain a TT-Tensor with
TT-ranks rk. In [57] this procedure is given as an algorithm called TT-SVD.

Before we give a formal definition of the tensor train format, we briefly motivate
why tensors arise naturally in our setting. To be able to use the SVD for low-
rank approximation in the preceding discussion, we reshaped the vector x into
a matrix. For d > 2, however, it is more natural to reshape x into a tensor, i.e., a
d-way array X of size n1 × n2 × · · · × nd, instead, so that

X (i1, . . . , id) = x(i1 + (i2 − 1)n1 + (i3 − 1)n1n2 + · · ·+ (id − 1)n1n2 · . . . · nd−1)

with 1 ≤ ik ≤ nk, k = 1, · · · , d. This corresponds to the MATLAB command

n=[n_1,n_2,...,n_d]; X=reshape(x,n);

There are different ways how to generalize the concept of low-rank approxima-
tion from matrices to tensors. One such concept is the TT-Decomposition:
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X1 X2 X3 . . . Xd−2 Xd−1 Xd

n1

r1

n2

r2

n3

r3 rd−3

nd−2

rd−2

nd−1

rd−1

nd

Figure 3.2: TT-Decomposition.

Definition 3.2. A tensor X is given in TT-format with TT-ranks rk, k =
1, . . . , d if each entry is given by

X (i1, . . . , id) = X1(i1) · X2(i2) · . . . · Xd(id) (3.1)

with parameter-dependent matrices Xk(ik) ∈ Rrk−1×rk for k = 1, . . . , d (and
r0 = rd = 1).

The parameter-dependent matrices Xk(ik) can also be thought of as rk−1 × nk ×
rk tensors and are called TT-cores. These tensors are formed from the matrices
Urk of the SVDs from the scheme illustrated in Figure 3.1. If a tensor X is given
in the format (3.1), we arrive at a storage complexityO((d− 2)nr2 + 2nr), where
n = maxd

k=1 nk and r = maxd
k=1 rk.

Figure 3.2 illustrates how the cores are linked among each other through the
ranks. The “free” edges determine the mode sizes of the corresponding tensor.
As mentioned at the beginning of this chapter, we also want to compress the
transition rate matrix A ∈ Rn1n2·...·nd×n1n2·...·nd . Analogously to the format (3.1)
we can define a TT-Decomposition for A. Note that in this thesis we only work
with square matrices so we only define the TT-Decomposition for those, but it
can also be defined for general rectangular matrices.

Definition 3.3. A matrix A corresponds to a TT-Matrix A, if the entries of A
are given by

A(i1, i2, . . . , id; j1, . . . , jd) = A1(i1, j1) · A2(i2, j2) · . . . · Ad(id, jd), (3.2)

where Ak(ik, jk) is a rAk−1 × rAk matrix and 1 ≤ ik, jk ≤ nk.
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A1 A2 A3 . . . Ad−2 Ad−1 Ad

n1

n1

rA1

n2

n2

rA2

n3

n3

rA3
rAd−3

nd−2

nd−2

rAd−2

nd−1

nd−1

rAd−1

nd

nd

Figure 3.3: TT-Matrix-Decomposition.

Apparently from Definition 3.3 the parameter-dependent matrices (again called
cores) Ak(ik, jk) are dependent on two parameters ik and jk instead of one as it
is the case for the matrices Xk(ik) in (3.1). Therefore, the parameter-dependent
matrices Ak(ik, jk) can be understood as rAk−1 × nk × nk × rAk tensors, similarly
to before. Note that if all ranks of a TT-matrix A are equal to 1, then the cor-
responding matrix A is given by A = A1 ⊗ · · · ⊗ Ad. Figure 3.3 shows the
connection between the cores of a TT-Matrix.

3.2 Basic operations in TT-Format

In this section, we consider basic operations with TT-Tensors and TT-Matrices.
We only briefly discuss the effect of the operations on the cores and on the ranks.
Additionally, we will also list the computational costs of these operations. We
start with the multiplication by a scalar α ∈ R. Let X be a TT-Tensor with cores
X1, . . . , Xd and α ∈ R a scalar. Then

αX (i1, . . . , id) = (αX1(i1)) · X2(i2) · . . . · Xd(id), (3.3)

i.e., one just has to multiply one of the cores by α. Note that this operation does
not have an effect on the ranks and has cost O(n1r1). Figure 3.4 illustrates this
operation.

Next, we consider the addition of two tensors X and X̂ . Let X , X̂ be TT-Tensors
with cores X1, . . . , Xd and X̂1, . . . , X̂d, respectively and let Y = X + X̂ . Then the
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cores Yk of Y are given by

Y1(i1) =
(

X1(i1) X̂1(i1)
)

,

Yk(ik) =

(
Xk(ik) 0

0 X̂k(ik)

)
, k = 2, . . . , d− 1 (3.4)

Yd(id) =

(
Xd(id)

X̂d(id)

)
.

This operation is illustrated via Figure 3.5. Two aspects should be mentioned
here. The first one is that the addition does not need any arithmetic operations.
The second one is that the ranks of the result are the sums of the ranks of the
summands. That this increase of the ranks is not always necessary but an effect
of the specific realization (3.4) can easily be seen by adding X + X which is
equal to 2X . Multiplying a tensor by a scalar does not change the ranks, as we
observed in (3.3), so the ranks of the result are unnecessarily doubled here.

The inner product of two TT-Tensors X , X̂ with ranks bounded by rX , rX̂ , re-
spectively, can be efficiently computed via multidimensional contraction [57,
Section 4.2] inO(nd max{rX , rX̂ }3) arithmetic operations. We do not go into de-
tails concerning the specific implementation of this operation here. As the result
of this operation is just a scalar and the operands are not changed, there is no ef-
fect on the ranks. For sake of completeness we also give a schematic illustration
of the result in Figure 3.6 (note that there are no free edges any more).

The last operation we consider is multiplying a TT-Matrix with a TT-Tensor.
This can be done in the following way: Let A be a TT-Matrix and X a TT-
Tensor, then the entries of Y = AX are given by:

Y(i1, . . . , id) = Y1(i1) · . . . ·Yd(id),

where
Yk(ik) = ∑

jk

(Ak(ik, jk)⊗ Xk(jk)), (3.5)

see [57, Section 4.3]. The ranks rY of Y are bounded by rArX , where rA =
max rAk and rX = max rk. A schematic illustration of this operation is given
in Figure 3.7. The arithmetic cost is O(dn2r2

Ar2
X ).

3.3 Existence and quality of a TT-Decomposition

For a statement about the existence of a TT-Decomposition we need the follow-
ing definition:
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Figure 3.4: Scalar multiplication in TT-format.
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Figure 3.5: Addition in TT-format.
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Figure 3.6: Inner product in TT-format.

Definition 3.4. The unfolding of a tensor X ∈ Rn1×n2×···×nd with respect to
the dimension indices t ⊆ {1, . . . , d} is a matrix X(t) ∈ Rñt×ñs with ñt =
∏k∈t nk and ñs = ∏k/∈t nk. The rows of X(t) correspond to the indices from t
and the columns to the indices from {1, . . . , d} \ t.

For illustration we consider the important special case that t = {1, . . . , `}: In
this case we have

X (i1, . . . , id) = X(t)(i, j)
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Figure 3.7: TT-Matrix-Vector-Multiplication.

with

i = i1 + (i2 − 1)n1 + (i3 − 1)n1n2 + · · ·+ (i` − 1)n1n2 · . . . · n`−1)

and
j = i`+1 + (i`+2 − 1)n`+1 + · · ·+ (id − 1)n`+1n`+2 · . . . · nd−1)

where 1 ≤ ik ≤ nk, k = 1, . . . , d. In MATLAB notation we have

X_t=reshape(X,prod(n(1:l)), prod(n(l+1:d)));

Theorem 3.5. LetX ∈ Rn1×n2×···×nd and rk = rank(X({1,...,k})) for k = 1, . . . , d− 1.
Then there exists a TT-Decomposition of X with TT-ranks rk.

Proof. See [57, Theorem 2.1].

In most cases there is the need of an approximation X̃ of X with smaller ranks,
because the ranks from Theorem 3.5 can be very large, as the unfolding matrices
are huge. Besides, when using the TT-format in the presence of round-off error,
it is not necessary or reasonable to work with the ”exact” rank. Instead we use
the numerical rank, i.e., the number of singular values above some specified
tolerance. The following lemma shows that the error of this approximation is
bounded by a term which includes only the “chopped part” of X .

Lemma 3.6. Let X ∈ Rn1×n2×···×nd be a tensor. Then there exists an approximation
X̃ of X with TT-ranks rk so that
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‖X − X̃ ‖F ≤

√√√√
d−1

∑
k=1

Nk

∑
`=rk+1

(
σ
{1,...,k}
`

)2
,

where σ
{1,...,k}
` is the `th singular value of X({1,...,k}) and

Nk = min{n1 · . . . · nk, nk+1 · . . . · nd}.

Proof. See [57, Theorem 2.2] together with the fact that the error of the best rank-
rk approximation of X({1,...,k}) in the Frobenius norm is

√√√√
Nk

∑
`=rk+1

(
σ
{1,...,k}
`

)2
.

Remark 3.7. Assume that one wants to approximate a TT-Tensor with an error
smaller than tol and let δ = tol√

d−1
. If one defines

rk = max



r∗ :

√√√√
Nk

∑
`=r∗

(
σ
{1,...,k}
`

)2
> δ



 , (3.6)

then Lemma 3.6 guarantees that there exists a TT-Tensor with ranks rk which
approximates X with accuracy at least tol.

The next section will give a method by which an approximation of a given
TT-Tensor X with prescribed ranks or accuracy can be obtained. The proof of
Lemma 3.6 in [57] is constructive, i.e., the tensor X̃ which yields the given error
bound is explicitly specified. This construction is termed TT-SVD. It does not
tell whether there exists a better approximation than X̃ with the same TT-rank
constraints. By now we also do not know whether for prescribed ranks rk there
exists a best approximation at all. The following corollary answers this:

Corollary 3.8. Given a tensor X and prescribed ranks rk, there exists a best approxi-
mation Xbest to X in the Frobenius norm with TT-ranks bounded by rk. In addition,
TT-SVD computes a quasi-optimal TT-Tensor Xapprox in the sense that

‖X −Xapprox‖F ≤
√

d− 1‖X −Xbest‖F. (3.7)

Proof. See [57, Corollary 2.4].
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3.4 Truncation

As discussed in section 3.2 and 3.3, it is sometimes necessary to adapt the rank
of a given TT-Tensor. This may happen either because linear algebra operations
unnecessarily increased the rank, because the rank is higher than required for
obtaining the desired accuracy or for bounding complexity.

Let X be a TT-Tensor with cores Xk(ik) ∈ Rrk−1×rk . We want to replace these
cores by cores with size r̃k < rk, such that the approximation error is smaller
than some tolerance tol. This process is called truncation (or rounding).

For sake of simplicity let us assume that we want to reduce r1, i.e., we want to re-
place the first core X1 ∈ R1×n1×r1 , and the second core X2 ∈ Rr1×n2×r2 . Because
of Lemma 3.6 it is useful to replace X1, X2 using singular vectors corresponding
to large singular values of the first unfolding X({1}). For high-dimensional prob-
lems we are not able to form the matrix X({1}), let alone compute a (reduced)
SVD of it.

From section 3.1 we know that the cores of X implicitly define a decomposition

X({1}) = UVT

where U corresponds to X1 and V to the rest of the cores. With the help of
the following lemma we can describe a reduced SVD of X({1}) without forming
X({1}) explicitly. Instead we will use X .

Lemma 3.9. If Z is a tensor where each entry is a vector with running index α1, i.e.,

Z(α1, i2, . . . , id) = Q2(i2) . . . Qd(id)

with Qk(ik) ∈ Rrk−1×rk and the matrices Qk(ik) satisfy

∑
ik

Qk(ik)Qk(ik)
T = Irk−1 , (3.8)

then the rows of Z , reshaped into a matrix of size r1 × ∏d
k=2 nk (with row indices

corresponding to α1), are orthonormal.

Proof. See [57, Lemma 3.1].

Lemma 3.9 states that we can obtain an orthonormal matrix by orthogonalizing
the individual cores. This allows to compute a QR decomposition of V through
a series of small QR decompositions of Xd, . . . , X2, see [57, Section 3] for de-
tails. Given the QR decompositions V = QvRv and U = QuRu (which is easily
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computable), we can then compute the leading r̂1 < r1 left and right singular
vectors of X̃({1}) as QuÛ, QvV̂, where Û, V̂ are the left and right singular vectors
of RuRT

v . These matrices now give us a lower-rank approximation of X({1}) as

X({1}) ≈ (QuÛ)(QvV̂)T. (3.9)

This can be translated into TT-cores as follows:

• X1 is replaced by QuÛ,

• X2 is replaced by V̂TX2,

• X3, . . . , Xd are unchanged.

The next step is to reduce r2. This can be done in the same way as it was done for
r1. We only have to orthogonalize the first and the second core before because
they were changed in the first step of the method, the other cores are unchanged
and still fulfil the orthogonality condition (3.8). The overall costs are O(dnr3),
where n = max nk and r = max rk.

3.5 TT-representation of stationary distributions

In the following we want to show which TT-ranks are necessary for accurately
representing the solutions of the models from section 2.2, and how these solu-
tions and their ranks differ between the models. For this purpose we consider
the models overflow, simplified_kanban and directed_metab, i.e., one of each cate-
gory. For a better understanding we consider d = 3 automata with mode sizes
n = 33 and different choices of the parameters, and show the components of
the stationary distribution for the corresponding parameter choice on each au-
tomaton. In addition we investigate fixed rank approximations of the solution
by showing the value of ‖AXR‖2/‖A1‖2, where XR is an approximation of the
steady state distributionX with all TT-ranks bounded by R and 1 is the normal-
ized vector of all ones (represented as a TT-Tensor). We use this value because
this will be one of the stopping criteria for all methods later on, see chapters 4
and 7–9. The results can be seen in Figures 3.8–3.10. The solution is plotted on
the right-hand side. We have three axes (one for each automaton) and each axis
describes the capacity. The value of the solution is given by the colouring of its
corresponding state. Note that only values which are at least ten percent as large
as the maximal value of the steady state solution are shown, and that we scaled
the solution such that the largest entry is equal to one. On the left-hand side the
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Figure 3.8: Accuracy ‖AXR‖2/‖A1‖2 of rank-R approximation (left) and so-
lution (right) for model overflow for parameters (a) λ = [0.1, 0.1, 0.1] and µ =
[1, 1, 1], (b) λ = [1, 0.1, 1] and µ = [0.1, 1, 0.1], (c) λ = [1.2, 1.1, 1] and µ = [1, 1, 1].



36 CHAPTER 3. TENSOR TRAIN

values ‖AXR‖2/‖A1‖2 for different rank-R approximations are shown. Note
that in some of the cases a slight decrease of accuracy can be observed for in-
creasing rank. While this is most likely a numerical effect due to finite precision
arithmetic, we stress that a monotonic decrease cannot be guaranteed because
we measure the value ‖AXR‖2/‖A1‖2 and not ‖X −XR‖2. Let us first consider
the results for the model overflow shown in Figure 3.8. The first case, shown
in Figure 3.8(a), is that the customers arrive slowly and are served rapidly. As
an obvious consequence, these queues are empty and we need only a maximal
TT-rank of 1 to reach a small value ‖AXR‖2/‖A1‖2. The second case, see Fig-
ure 3.8(b), is chosen such that the first and the third queue serve slowly and the
second one rapidly. The arrival of customers to each queue is chosen recipro-
cally. The slow serving of the first and third queue causes their capacities to
be exhausted. The distribution of the second queue shows that each scenario is
possible. Because of the slow serving of the first queue, customers who arrive
to the first queue are passed on to the second one. This results in a situation that
customers arrive at the second queue just as they will be served by it. In contrast
to the first example, the needed maximal rank is larger, namely to get a factor of
10−12 we need a maximal rank of 10 instead of 1. In the third example, depicted
in Figure 3.8(c), we have the case that the service rate is equal in all queues and
the arrival and service rates do not differ much. Customers will arrive more fre-
quently than they are served. Therefore it is more likely that the capacities of all
queues are exhausted. However, the solution shows that there is also a tendency
that the capacities are not reached. This tendency is stronger in the third queue
than in the other ones. The maximal TT-rank to get the value ‖AXR‖2/‖A1‖2
small is larger than in the first two examples. These three examples show that
the more states have a probability close to the maximum one in the solution, the
higher a maximal rank is needed to arrive at a small value of ‖AXR‖2/‖A1‖2.
Note that ‖A1‖2 is constant in the sense that it is independent of the rank R, so
we need a small value of ‖AXR‖2 to arrive at a small value of ‖AXR‖2/‖A1‖2.

Let us now consider the results for simplified_kanban presented in Figure 3.9. The
first case shown in Figure 3.9(a) is analogous to the first case in the model over-
flow, see Figure 3.8(a). In the second case we have the situation that λ1 and the
service rate in each queue are chosen to be equal. This results in two most likely
scenarios, namely that the capacity of the first and the second queue are both
exhausted or that only the capacity of the first one is exhausted. It is surprising
that the possibility that all queues are full does not belong to the most likely sce-
narios. This is due to the fact that the customers have to pass the first queue to
get to the second one and the second one to get to the third one. Notice that just
as they arrive, they will be served. The more customers are in the second queue,
the less customers will be in the first one. In the same way, the more customers
are in the third queue, the less customers are in the first and second queue. The
steady state solution has a complex structure with a lot more states which have
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Figure 3.9: Accuracy ‖AXR‖2/‖A1‖2 of rank-R approximation (left) and so-
lution (right) for model simplified_kanban for parameters (a) λ1 = 0.1 and
µ = [1, 1, 1], (b) λ1 = 0.9 and µ = [0.9, 0.9, 0.9], (c) λ1 = 1.2 and µ = [1, 1, 1].
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model parameters
overflow λi = 1.2− 0.1(i− 1), µi = 1, i = 1, . . . , d
overflow_cycling λi = 1.2− 0.1(i− 1), µi = 1, i = 1, . . . , d
overflow_long λi = 1.2− 0.1(i− 1), µi = 1, i = 1, . . . , d
simplified_kanban λ1 = 1.2, µi = 1, i = 1, . . . , d
kanban_control λi = 1.2, µi = 1, i = 1, . . . , d
directed_metab λ1 = 0.01, vi = 0.1, Ki = 1000, i = 1, . . . , d
diverging_metab λ1 = 0.01, vi = 0.1, Ki = 1000, i = 1, . . . , d

Table 3.1: Parameters used in the numerical tests.

a non-negligible probability. For the third example, shown in Figure 3.9(c), the
arrival rate is larger than the service rate. Therefore, in contrast to the previous
example, the first queue has a larger tendency to be full, and the steady state
solution is more concentrated at states corresponding to more customers. The
required rank however is the same as in the example shown in Figure 3.9(b).

The results for the model directed_metab are depicted in Figure 3.10. We again
consider three different cases, in which we vary the constants vi which control
the reaction rate, while using the same influx rate λ1 in all cases. In the first
example, see Figure 3.10(a), all vi are equal to one, which means that all sub-
strates are transformed rapidly. Therefore, in the steady state distribution, the
states corresponding to (almost) full automata have a very low probability. All
substrates behave very similarly and the resulting distribution is representable
with rather low rank. The second case (see Figure 3.10(b)) corresponds to a sit-
uation where the second substrate is converted very infrequently. So the steady
state solution is concentrated at the states corresponding to the first and second
automaton being full, while the third one is almost empty. The needed maximal
rank is not as low as one would expect. This is due to the fact, that the values
of the stationary distribution are of highly different magnitude in a very small
neighbourhood. In the third example the constants vi are changed so that all
reactions happen infrequently. Therefore the capacity of all substrates is almost
exhausted. The maximal rank needed to get the value ‖AXR‖2/‖A1‖2 small is
about 15.

So, all the examples show that the more complex the structure of the solution is
(this can, e.g., mean that the behaviour of each automaton is different from the
others or that neighbouring states have highly different probabilities) the higher
the needed maximal TT-rank to arrive at a small value of ‖AXR‖2/‖A1‖2 and
therefore to a small value of ‖AXR‖2. Besides this, these examples show that
different parameters can lead to highly different solutions. It is also worth men-
tioning that from a certain rank on, a further rank increase does not improve
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Figure 3.10: Accuracy ‖AXR‖2‖A1‖2 of rank-R approximation (left) and so-
lution (right) for model directed_metab for parameters (a) v = [1, 1, 1], K =
[1000, 1000, 1000] and λ1 = 0.01, (b) v = [0.9, 0.1, 0.9], K = [1000, 1000, 1000]
and λ1 = 0.01, (c) v = [0.1, 0.1, 0.1], K = [1000, 1000, 1000] and λ1 = 0.01.
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the result any further. This is due to the fact, that better results are not possible
using the MATLAB machine precision as the entries of X become very small.
This effect gets worse the larger the problem size is. For our numerical tests in
chapters 4 and 7–9 we choose the parameters as they are recommended in the
benchmark collection [53]. These parameters are presented in Table 3.1.
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Summary of Chapter 3:

• A TT-Tensor X with TT-ranks rk, k = 1, . . . , d is given by

X (i1, . . . , id) = X1(i1) · X2(i2) · . . . · Xd(id), with Xk(ik) ∈ Rrk−1×rk

X1 X2 X3 . . . Xd−2 Xd−1 Xd

n1

r1

n2

r2

n3

r3 rd−3

nd−2

rd−2

nd−1

rd−1

nd

Storage complexity:

O((d− 2)nr2 + 2nr)

• A TT-Matrix with TT-ranks rAk , k = 1, . . . , d is given by

A(i1, i2, . . . , id; j1, . . . , jd) = A1(i1, j1) · A2(i2, j2) · . . . · Ad(id, jd),

where Ak(ik, jk) ∈ R
rAk−1

×rAk is dependent on two indices.

A1 A2 A3 . . . Ad−2 Ad−1 Ad

n1

n1

rA1

n2

n2

rA2

n3

n3

rA3
rAd−3

nd−2

nd−2

rAd−2

nd−1

nd−1

rAd−1

nd

nd Storage complexity:

O((d− 2)n2r2
A + 2n2rA)

• Complexities of operations in TT-format:

Operation Cost Resulting tensor ranks
Summing two TT-tensors, X + Y O(1) rX + rY

TT-tensor times a scalar, αX O(n1r1) rX
Euclidean inner product, 〈X ,Y〉 O(dnr3) —
TT-matrix-vector product, AX O(dn2r4) rA · rX

Truncation O(dnr3) can be prescribed

• Existence of TT-Decomposition:

Let X ∈ Rn1×n2×···×nd and rk = rank(X({1,...,k})) for k = 1, . . . , d − 1.
Then there exists a TT-Decomposition of X with TT-ranks rk.

Let X ∈ Rn1×n2×···×nd be a TT-Tensor. Then there exists an approxima-
tion X̃ with TT-ranks rk so that

‖X − X̃ ‖F ≤

√√√√
d−1

∑
k=1

Nk

∑
`=rk+1

(
σ
{1,...,k}
`

)2
,

where σ
{1,...,k}
` is the `th singular value of X({1,...,k}) and Nk = min{n1 ·

. . . · nk, nk+1 · . . . · nd}.
• Given a tensor X and prescribed ranks rk, there exists a best approxi-

mation Xbest to X in the Frobenius norm with TT-ranks bounded by rk
and TT-SVD computes a quasi-optimal TT-Tensor Xapprox :

‖X −Xapprox‖F ≤
√

d− 1‖X −Xbest‖F.





CHAPTER 4
From GMRES to multigrid

In this chapter we want to use the iterative method GMRES for computing the
stationary distribution of a CTMC. Here the focus is not on the tensor structure
but on the general feasibility of the method for this task.

4.1 Computing the stationary distribution of a
CTMC via GMRES

In this chapter we assume that the reader is familiar with the Krylov subspace
method GMRES [64] and give the algorithm only for the sake of completeness as
Algorithm 4.1. We will motivate why it is advisable to use GMRES for solving
the linear system (2.9) and will provide convergence analysis. Note that the
transition rate matrix is singular and the right-hand side of our linear system
(2.9) is zero. Therefore we clearly need a starting vector x(0) 6= 0 for computing
our Krylov subspace and we thus have to solve the residual equation

Ae(0) = r(0), (4.1)

where e(0) = x− x(0) is the error and r(0) = b− Ax(0) is the residual of the initial
guess.

In [42] it is explained what kind of problems can occur when trying to solve a
singular system by a Krylov subspace method, namely that the solution may
not lie in the Krylov subspace. We say that a linear system Ax = b has a Krylov
solution x∗ if Ax∗ = b and there exists some m such that x∗ ∈ Km(A, r(0)), i.e., if
a solution to the linear system lies in the mth Krylov subspace corresponding to
A and r(0). To guarantee the existence of a Krylov solution, some assumptions
are necessary. Before handing this result out, we need the following definition:

43
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Algorithm 4.1: GMRES method
x(m) = GMRES(A, b, x(0), m)1

r(0) ← b− Ax(0)2

v(1) ← 1
‖r(0)‖2

r(0)3

for j = 1, . . . , m do4

w(j) ← Av(j)5

for i = 1, . . . , j do6

hi,j ← (v(i))Tw(j)7

w(j) ← w(j) − hi,jv(i)8

end9

hj+1,j ← ‖w(j)‖210

if hj+1,j = 0 then11

Stop.12

end13

v(j+1) ← 1
hj+1,j

w(j)
14

end15

Solve
∥∥∥‖r(0)‖2e1 − Hmy

∥∥∥
2
→ min16

Compute x(m) ← x(0) + Vmy17

Definition 4.1. Let λ be an eigenvalue of A. The index of λ is the size of the
largest Jordan block of A corresponding to λ.

Theorem 4.2. A linear system Ax = b has a Krylov solution if and only if b ∈
range(Ai), where i is the index of the zero eigenvalue of A.

Proof. See [42, Theorem 2].

We will show that for our system matrix A the index of the zero eigenvalue is
one.

Lemma 4.3. Let A ∈ RN×N be the generator matrix of a CTMC with unique station-
ary distribution x. Then the index of the zero eigenvalue of A is one.

Proof. First note that the condition

range(A)⊕ N(A) = RN
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is equivalent to the zero eigenvalue of A having index 1, see [42, Section 6].
Because of the uniqueness of the steady state distribution we have N(A) =
span(x) and thus dim(N(A)) = 1. Let y ∈ range(A), i.e., y = Az. Then

1 Ty = 1 T Az = 0Tz = 0,

so that we have range(A) ⊆ 1⊥. This even implies range(A) = 1⊥, because
both subspaces are of dimension N − 1. It remains to show that

range(A) ∩ N(A) = {0}.

Let 0 6= y ∈ N(A), i.e., y = αx, α 6= 0. Then

1 Ty = 1 Tαx = α1 Tx = α 6= 0,

so that y /∈ 1⊥ = range(A).

Due to Theorem 4.2 and Lemma 4.3 it follows that we need b ∈ range(A) to
guarantee the existence of a Krylov solution.

Starting with an initial guess x(0) 6= 0, for our model problems the residual
fulfils

r(0) = 0− Ax(0) = −Ax(0) ∈ range(A).

Therefore the assumption of Theorem 4.2 is always fulfilled in our setting and
it is thus reasonable to solve the system (2.9) with a Krylov subspace method.
We are able to further characterize the Krylov solution from Theorem 4.2 and
by doing so also briefly review why Krylov subspaces are good approximation
spaces for singular systems.

First we define a particular pseudo inverse of A:

Definition 4.4. Let A have a zero eigenvalue with index i. The Drazin inverse
AD of A is the unique matrix which satisfies:

AD AAD = AD, AD A = AAD, Ai+1AD = Ai.

Note that if A is non-singular then i = 0 and AD = A−1. In [18, Corollary 7.2.1]
it is shown that AAD is a projector onto range(Ai) along N(Ai), the nullspace
of Ai. Using this argument, one can prove that AADb = b if and only if b ∈
range(Ai), i.e., that ADb is a solution of Ax = b in this case.
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Figure 4.1: Number of GMRES(50) iterations for reducing the residual norm by
a factor of 10−2 for three different model problems. Left: Mode size n = 17 and
varying dimension d. Right: Dimension d = 4 and varying mode size n.

Missing for the classification of the Krylov solution from Theorem 4.2 is now
only the correlation between this Krylov solution and the Drazin inverse. As
shown in [42, Section 7], ADb can be expressed as p(A)b, where p is a polyno-
mial of degree m− i in A and m is the degree of the minimal polynomial of A,
so that ADb ∈ Km−i+1(A, b). So summing everything up gives the following
theorem [42, Theorem 3]:

Theorem 4.5. Let m be the degree of the minimal polynomial of A and i the index of
the zero eigenvalue of A. If b ∈ range(Ai) then the linear system Ax = b has a unique
solution in Km−i+1(A, b) given as x = ADb ∈ Km−i+1(A, b).

Typically, GMRES is the method of choice for non-symmetric (and possibly sin-
gular) linear systems. Especially in our case, where we want to use tensor tech-
niques (introduced in chapter 3), we benefit from the use of GMRES. Why this
is the case can easily be seen from Algorithm 4.1, which depicts the GMRES
method. The algorithm includes only basic operations, which can be realized
with the TT-Format with cost linear in d. Note that if a method needs to access
specific entries of a vector, a realization of this method in a TT format is not
possible with costs linear in d. A tensorized version of GMRES is straightfor-
wardly given, the only aspect which should be taken care of are the TT-ranks.
Therefore, truncation should be done after every basic operation. In [28] a ten-
sorized GMRES is considered and discussed. But the first step is now to look
how GMRES behaves for our models described in section 2.2 without any tensor
techniques.
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Figure 4.2: Reduction of error components belonging to different eigenvalues
after one GMRES iteration.

To get a first impression we consider only three models, one of each category.
We use restarted GMRES with restart length 50 (GMRES(50)) and stop after the
residual of our initial guess—the normalized vector of all ones—is reduced by a
factor of 10−2. In Figure 4.1 we see the number of GMRES(50)-iterations which
was needed for different problem sizes. The allowed maximum number of iter-
ations is 500 (i.e., a maximum of ten restart cycles is performed), and we use the
built-in MATLAB function gmres.

It is conspicuous that the iteration number increases superlinearly with growing
problem size. This behaviour shows that the models are not easy to solve and
that a new strategy should be considered for solving these kinds of problems.
To find such a strategy, we first take a closer look at the reason for the slow con-
vergence of GMRES. To do so, we apply a few GMRES steps to an initial guess
which is chosen such that its error has equal contributions from all eigenvectors
of A. In Figures 4.2, 4.3 and 4.4 we see the magnitude of the coefficients from
the linear combination of the eigenvectors of the error of the GMRES iterate after
one, three and five steps, respectively. The eigenvalues are ordered ascendingly
with respect to their magnitude, i.e., 0 = |λ1| < |λ2| ≤ · · · ≤ |λN|. Note that
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Figure 4.3: Reduction of error components belonging to different eigenvalues
after three GMRES iterations.

before applying the GMRES steps the contributions from all eigenvalues were
equal to one. So these figures show that only the parts corresponding to larger
eigenvalues shrink substantially. It seems that the parts to smaller eigenvalues
are “not touched” by GMRES after a few steps. Therefore the main remain-
ing task after a few GMRES steps is to reduce the error parts corresponding to
smaller eigenvalues.

In Figures 4.5–4.7 the value of each entry of the remaining error after three GM-
RES steps is indicated by the colouring of its corresponding state. Observe that
for each state there are neighbouring states with similar values (independent of
the connections in the model), so that we are able to approximate the error ac-
curately with fewer degrees of freedom (and therefore also the system matrix).
The hope is then that GMRES can handle the parts to smaller eigenvalues more
efficiently. This idea is similar to the idea of multigrid methods, although with
a slightly different motivation than usually.

Applying ν GMRES steps for the linear system (2.9) with initial guess x(0) deliv-
ers a vector x(ν). Given x(ν), to obtain the solution of the linear system (2.9), we
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Figure 4.4: Reduction of error components belonging to different eigenvalues
after five GMRES iterations.
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Figure 4.5: Error in the model overflow after three GMRES steps.
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Figure 4.6: Error in the model simplified_kanban after three GMRES steps.
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Figure 4.7: Error in the model directed_metab after three GMRES steps.

now consider the residual equation Ae = r with e = x∗ − x(ν) and r = −Ax(ν).
According to Figures 4.2–4.4 this error e can be approximated accurately within
a space V spanned by eigenvectors to small eigenvalues of A, i.e., with fewer
degrees of freedom. If the columns of V ∈ RN×Nc , where Nc is the new num-
ber of degrees of freedom, contain a basis of V we thus have Vec ≈ e for some
ec ∈ RNc . This delivers an overdetermined system AVec = r.

To avoid the overdetermination we also require the residual of the error approx-
imation to be orthogonal to V , which gives VT(AVec − r) = 0. This approach
makes sense because we assume that the parts corresponding to smaller eigen-
values cause slower convergence of GMRES which we want to eliminate. We
arrive at a system VTAVec = VTr of smaller dimension. The solution of this
system then allows us to update our iterate as x̃(ν) = x(ν) + Vec. Ideally, the
error of this iterate only contains components which can be efficiently handled
by GMRES so that a few more iterations yield a good overall approximation.

In practice this procedure is not realizable, because of two reasons:

• The eigenvector information needed to build V is not available.
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• VTAV is in general a full matrix, even when A is sparse, so that the com-
pressed system cannot be solved efficiently.

Therefore we need an easily computable and sparse matrix P, such that span(P)
approximates span(V). Figures 4.5 and 4.6 show that locally the error changes
only slowly, and this is to some extent also true for Figure 4.7. As the error
mainly consists of components from V we can assume that the vectors in V
also have this property. So a reasonable choice of P would be to have non-
zero entries only where the entries belong to neighboring states. This delivers
a sparse structure. This idea should motivate that a multigrid approach with
GMRES as smoother for the models from chapter 2.2 is reasonable.

Next, we will give the basics of a multigrid method, to make the reader familiar
with each important ingredient and our notation.

4.2 Algebraic multigrid basics

A multigrid method has the following building blocks:

• smoothing scheme,

• set of coarse variables,

• transfer operators,

• coarse grid operator.

In the remainder of this section, we briefly sketch how these building blocks are
connected to each other and which role they take within a multigrid method.
Thus, methods which we use to compute these building blocks in this thesis will
only be listed here, their explanation and a reasoning for the specific choices we
make will be given later in chapters 6 and 8.

For a thorough introduction to algebraic multigrid methods we refer the reader
to [38, 62, 68] and the references therein.

The smoothing scheme is applied by doing a few iterations of a simple iterative
method like Jacobi, Gauss-Seidel, Richardson [63], or a Krylov subspace method
like GMRES [63, 64]. Note when using Jacobi, Gauss-Seidel or Richardson we
have a so called stationary smoother. Stationary smoothers for a linear system
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Ax = b are characterized as follows: We split our system matrix A = M− N, M
non-singular which defines an iteration of the form

Mx(k+1) = Nx(k) + b. (4.2)

By elementary transformations we get an error propagation of the form

e(k+1) = M−1Ne(k) =: Se(k) (4.3)

where e(k) = x− x(k) and S is called iteration matrix of the method. The advan-
tage of stationary smoothers concerning convergence analysis is that the error
after ν smoothing steps can be written as

e(ν) = Sνe(0)

which is not possible for non-stationary methods like GMRES. This allows to
obtain convergence results more easily, see also section 5.2. The formula of the
iteration matrices for each of the three methods will not be given here, but where
the method is first used. For Richardson the iteration matrix is described in
(5.16), for Gauss-Seidel and Jacobi in (6.2) and (6.3), respectively.

The smoothing process delivers an iterate x(ν) with residual r = b − Ax(ν), so
that we can compute the error e by approximately solving the system Ae = r.
For this we restrict the residual r by a matrix-vector multiplication with the re-
striction matrix R ∈ RNc×N, and the operator A(1) := A is restricted via Petrov-
Galerkin projection, yielding the coarse grid operator A(2) = RA(1)P, where
P ∈ RN×Nc is the interpolation operator. If A(2) is small enough, i.e., comput-
ing the exact solution of the restricted system does not increase the computation
time significantly, we have already arrived at the coarsest grid. Otherwise the
process of smoothing and restriction is repeated until a coarsest grid is reached.
After the coarsest system is solved and therefore a calculated error exists, this er-
ror approximation is interpolated to the next finer grid by a matrix-vector multi-
plication with P. The interpolated error is added to the current iterate and again
a few smoothing steps are applied. This process is repeated until the finest grid
is reached. Algorithm 4.2 reflects the described procedure and Figure 4.8 illus-
trates it. Figure 4.8 also shows that the recursive calls can be visualized by the
letter V, therefore the procedure described in Algorithm 4.2 is also called V-
cycle. Note that V-cycles can be performed repeatedly until a certain number
of V-cycles has been performed or the residual has reached a certain accuracy.
Therefore, whenever we mention an iteration of a multigrid method, we mean
a complete V-cycle by this. Other cycle strategies, for example W- or F-cycles
(see, e.g., [68]) can also be used, but we will only focus on V-cycles in this thesis.

For sake of notational simplicity let us now assume that we have a two level ap-
proach. By now it is not clear how to choose Nc and how to compute the entries
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Algorithm 4.2: Multigrid V-cycle
v(`) = MG(b(`), v(`))1

if coarsest grid is reached then2

Solve coarse grid equation A(`)v(`) = b(`)3

else4

Perform νpre smoothing steps for A(`)v(`) = b(`) with initial guess v(`)5

Compute the residual r(`) ← b(`) − A(`)v(`)6

Restrict b(`+1) ← R(`)r(`)7

v(`+1) ← 08

e(`+1) = MG(b(`+1), v(`+1))9

Interpolate e(`) ← P(`)e(`+1)10

v(`) ← v(`) + e(`)11

Perform νpost smoothing steps for A(`)v(`) = b(`) with initial guess v(`)12

end13

Presmoothing Direct solve Postsmoothing

R

R

R P

P

P

Figure 4.8: Multigrid V-cycle: On each level, a presmoothing iteration is per-
formed before the problem is restricted to the next coarser grid. On the smallest
grid, the problem is typically solved exactly by a direct solver. When interpolat-
ing back to the finer grids, postsmoothing iterations are applied on each level.
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of the interpolation and restriction operator P and R to arrive at the coarse grid
space. We use geometric coarsening to split the given N variables into fine and
coarse variables, denoted with F and C, respectively, i.e., C ∪ F = {1, . . . , N}
and C ∩ F = ∅, and set Nc = |C|. If such a C/F -splitting is given, the transfer
operators are defined as

R : R|C∪F| → R|C|, P : R|C| → R|C∪F|.

It is still open how to obtain the entries of these operators. In this thesis linear
interpolation, direct interpolation [62] and a bootstrap approach [6, 11] will be
the methods of choice.

At the beginning of this chapter, the goal was to use GMRES for solving the
models from section 2.2. Smaller problem sizes already show that GMRES as a
stand-alone method does not solve this task satisfactorily. We illustrated why a
multigrid method with GMRES as smoothing scheme can be expected to work
efficiently. In the next chapter, we review some results from multigrid theory for
non-symmetric and for singular linear systems, in order to use these results as
guidance for how to choose the ingredients of our tensorized multigrid method
for Markov chains.
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Summary of Chapter 4:

• For non-symmetric systems, the Krylov subspace method GMRES is
typically the method of choice.

• Existence of Krylov solution for singular systems:

A singular linear system Ax = b has a Krylov solution if and only if
b ∈ range(Ai), where i is the index of the zero eigenvalue of A.

• The zero eigenvalue of all models from section 2.2 has index 1.

• Given an initial guess x(0) we apply GMRES to Ae = r(0) with

r(0) = b− Ax(0) = −Ax(0) ∈ range(A).

⇒ Krylov solution always exists.

• Restarted GMRES as standalone solver?
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⊕ only basic operations⇒ can be
implemented in TT-format

	 number of iterations increases
superlinearly

• Effect of GMRES on error components

– error components belonging to
large eigenvalues are reduced
efficiently.

– remaining components can be
handled on smaller subspace
⇒multigrid approach
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• Building blocks of a multigrid V-cycle

Presmoothing Direct solve Postsmoothing

R

R

R P

P

P – smoothing scheme

– set of coarse variables

– transfer operators

– coarse grid operator





CHAPTER 5
Elements of a convergence

analysis of multigrid for
non-symmetric and singular

systems

The models introduced in section 2.2 are non-symmetric and singular. A con-
vergence analysis of multigrid for these systems is not known and not easy to
develop, while for symmetric positive definite (spd) matrices a convergence anal-
ysis for multigrid (MG) exists [54, 62, 68]. In this chapter we will consider two
approaches for convergence analysis, where both of them only deal with one
issue, either non-symmetric or singular systems. Besides, we will discuss at
which point the transfer to the non-symmetric and singular case fails and which
results we can transfer. We will start with the case that our system matrix is
symmetric and singular.

5.1 The symmetric and singular case

The idea for the convergence analysis for symmetric and singular matrices is
based on the following observation: If the choice of the ingredients for MG is
such that the method can be described as a stationary iterative method with an
error propagation operator H = I − M̃A with M̃ ∈ RN×N as

x(k+1) = Hx(k) + M̃b, k = 0, 1, . . . (5.1)

where A is the symmetric, singular system matrix and I the identity matrix, then
each fixed point of (5.1) is a solution of Ax = b if M̃ is injective on the range of

57



58 CHAPTER 5. ELEMENTS OF A CONVERGENCE ANALYSIS

A. To have a criterion under which conditions convergence to such a fixed point
can be guaranteed, we need the following definition:

Definition 5.1. H is called semiconvergent if ρ(H) = 1, the eigenvalue λ = 1
is the only eigenvalue of modulus 1 and λ = 1 is a semisimple eigenvalue of
H, i.e., its geometric multiplicity is equal to its algebraic multiplicity.

Then one can show

Lemma 5.2. Iteration (5.1) converges to a fixed point x∗ for any starting vector x(0) if
and only if H is semiconvergent and M̃ is injective on range(A).

Proof. See [4, Lemma 6.13].

As motivated in [7] with the help of the bilinear form

〈., .〉A : RN ×RN, (x, y) 7→ 〈x, y〉A := 〈Ax, y〉

and the induced seminorm ‖x‖A = 〈x, x〉1/2
A we get a practical fundamental

result for analysing the convergence of the iteration (5.1), namely:

Theorem 5.3. Let H be the iteration operator of (5.1) and assume that there exists a
constant γ ∈ [0, 1) such that

‖Hx‖A ≤ γ · ‖x‖A for all x ∈ RN. (5.2)

Then

(i) M̃ is injective on range(A) and

(ii) H is semiconvergent.

Besides, for b ∈ range(A) iteration (5.1) converges to a solution of Ax = b for any
starting vector.

Proof. [7, Theorem 1].
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We want to transfer this theorem to the non-symmetric and singular case. It is
obvious that A does not induce a seminorm. But we can look at the seminorm
induced by

√
ATA, as is done in the analysis of multigrid for non-symmetric,

non-singular systems [13, 65], and we get

〈x, x〉√ATA ≥ 0 for all x ∈ RN, (5.3)

‖x‖√ATA = 0 if and only if x ∈ N(A), (5.4)

〈x, y〉√ATA = 0 for x ∈ N(A) or y ∈ N(A). (5.5)

The second and third property follow from the fact that N(
√

ATA) = N(A)

which can be seen using the SVD and that
√

ATA is symmetric. So we can adapt
Theorem 5.3 in the following way:

Theorem 5.4. Let H be the iteration operator of (5.1) and assume that there exists a
constant γ ∈ [0, 1) such that

‖Hx‖√ATA ≤ γ · ‖x‖√ATA for all x ∈ RN. (5.6)

Then

(i) M̃ is injective on range(A) and

(ii) H is semiconvergent.

Besides, for b ∈ range(A) iteration (5.1) converges to a solution of Ax = b for any
starting vector.

Proof. For the first assertion, we show that N(M̃A) = N(A). Note that N(M̃A) =

N(I − H). First, let y ∈ N(A). Then M̃Ay = M̃0 = 0, so that y ∈ N(M̃A).

Now, let y /∈ N(A). Then (5.6) implies

‖Hy‖√ATA ≤ γ · ‖y‖√ATA with ‖y‖√ATA 6= 0,

from which it follows that Hy 6= y. Therefore,

(I − H)y = y− Hy 6= 0,

i.e., y /∈ N(I − H) = N(M̃A). This proves the first assertion.

For the second part of the theorem, let x be an eigenvector of H, i.e., Hx = λx.
If x /∈ N(A) then ‖x‖√ATA > 0 and (5.6) implies

|λ| · ‖x‖√ATA ≤ γ · ‖x‖√ATA,
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so that |λ| ≤ γ < 1.

If x ∈ N(A) then Hx = x, i.e., λ = 1 which implies ρ(H) = 1, and λ = 1 is
the only eigenvalue of modulus one. Assume that λ = 1 is not semisimple. In
this case, there exists v 6= 0 such that Hv = v + u, where Hu = u, u 6= 0. Then
v is not an eigenvector of H, and thus v /∈ N(A). Further, we have u ∈ N(A),
because Hu = u and M̃ is injective on range(A). Using these facts together with
the properties of the

√
ATA-seminorm, we find

‖Hv‖2√
AT A

= 〈Hv, Hv〉√ATA

= 〈v + u, v + u〉√ATA
= 〈v, v〉√ATA + 〈v, u〉√ATA + 〈u, v〉√ATA + 〈u, u〉√ATA

= 〈v, v〉√ATA = ‖v‖2√
ATA
6= 0.

This is a contradiction to the assumption (5.6), and λ = 1 must therefore be a
semisimple eigenvalue.

We want to find conditions under which the assumption (5.2) of Theorem 5.3
is fulfilled for the iteration operator H of a two grid method. From section 4.2
we are familiar with the constitutive elements of a MG method, so therefore
it is clear that the iteration operator of a two grid method with interpolation
operator P and a stationary iterative method with iteration matrix S from (4.3)
as smoother is given by H = Sνpost ·K · Sνpre , where K is the coarse grid correction
operator given via the formula K = I− PA†

c PT A and νpre, νpost are the number of
pre- and postsmoothing steps, respectively. The following theorem is the central
result for the two grid convergence analysis in the symmetric singular case.

Theorem 5.5. Let A ∈ RN×N be symmetric and positive semidefinite. Let P ∈ RN×Nc

have full rank, let K = I − PA†
c PT A and νpre = 0, νpost = 1, i.e., H = S · K. Besides,

suppose that there exists a number δ ∈ (0, 1] such that

‖Sx‖2
A ≤ ‖x‖2

A − δ · ‖Kx‖2
A for x ∈ RN. (5.7)

Then

(i) K is an A-orthogonal projector, i.e., 〈Kx, (I − K)y〉A = 0 for all x, y ∈ RN, and

(ii) ‖Hx‖2
A ≤ (1− δ) · ‖x‖2

A for all x ∈ RN.

Proof. For (i), see [7, Theorem 2].

For (ii), note that K2 = K. With (5.7) and replacing x by Kx we get

‖Hx‖2
A ≤ (1− δ)‖Kx‖2

A. (5.8)
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Because K is an A-orthogonal projection and therefore ‖Kx‖A ≤ ‖x‖A holds for
all x ∈ RN, we arrive at (ii).

Again we would like to adapt Theorem 5.5 to the seminorm ‖ · ‖√ATA. Con-
sider the proof of statement (ii) in Theorem 5.5. It is obvious that equation (5.8)
also holds for the seminorm induced by

√
ATA, but the necessary inequality

‖Kx‖√ATA ≤ ‖x‖√ATA for concluding the proof does not hold, because albeit K

is a projection, it is not
√

ATA-orthogonal.

5.2 The non-symmetric and non-singular case

Now we consider the case that our system matrix is non-symmetric, but non-
singular. In [13,65] a convergence analysis for this case is given, which we reca-
pitulate in this section. The analysis is based on looking at two different coarse
grid projections of a two grid method and their relation to each other. The first
projection we are looking at is given via the formula

I −ΠQA with ΠQA = P(PTQAP)−1PTQA (5.9)

where P is the interpolation matrix. Here the matrix Q = VUT, where U and
V are the matrices containing the left and right singular vectors of A = UΣVT,
plays an important role, because it allows to work with an spd matrix: We have
QA = VΣVT =

√
ATA, and thus QA is an spd matrix with the same singular

values as A. We can prove that I −ΠQA is a QA-orthogonal projection, see [13,
Section 2]. Recall that the lack of an orthogonal projection was the main reason
why the first convergence analysis presented in this chapter fails in our setting.
I −ΠQA is a full matrix (because QA is a full matrix), so it is only of theoretical
interest, but not practical. For that reason we are looking at the next projection

I −ΠA with ΠA = P(RAP)−1RA (5.10)

where R is the restriction matrix. In contrast to I −ΠQA, this projection is not
orthogonal with respect to any problem-related inner product, it is an oblique
projection. The next lemma shows the relation between I −ΠQA and I −ΠA:

Lemma 5.6. The following projection identities for ΠQA and ΠA hold:

ΠQAΠA = ΠA,
ΠAΠQA = ΠQA.
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Proof. By a direct calculation, we verify

ΠQAΠA = P(PTQAP)−1PTQAP(RAP)−1RA

= P(RAP)−1RA = ΠA,
ΠAΠQA = P(RAP)−1RAP(PTQAP)−1PTQA

= P(PTQAP)−1PTQA = ΠQA.

With Lemma 5.6 and the following assumption we arrive at an estimate which
will be useful for the convergence analysis.

Definition & Lemma 5.7. If for any e ∈ RN there exists an ec ∈ RNc such that

‖e− Pec‖2
QA ≤

Ks

‖QA‖2
〈QAe, QAe〉. (5.11)

where Ks is a constant, we say that P fulfils the strong approximation property with
constant Ks.

Besides, (5.11) implies

‖(I −ΠQA)e‖2
QA ≤

Ks

‖A‖2
〈Ae, Ae〉 = Ks

‖A‖2
‖e‖2

ATA (5.12)

for all e ∈ RN.

Proof. For given e ∈ RN we have

‖e−ΠQAe‖QA = min
v∈range(P)

‖e− v‖QA,

because ΠQA is the QA-orthogonal projection onto range(P). In particular

‖e−ΠQAe‖2
QA ≤ ‖e− Pec‖2

QA

for the vector ec from (5.11). The result then follows by noting that ‖QA‖2 =
‖A‖2 and 〈QAe, QAe〉 = 〈Ae, Ae〉, because Q is unitary.

Lemma 5.8. If (5.11) holds, we have

‖(I −ΠA)e‖2
QA ≤

‖ΠA‖2
QAKs

‖A‖2
‖e‖2

ATA. (5.13)
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Proof. Because of the projection identities shown in Lemma 5.6 we have

(I −ΠA)(I −ΠQA) = I −ΠA.

Due to this identity and (5.12) we have:

‖(I −ΠA)e‖2
QA = ‖(I −ΠA)(I −ΠQA)e‖2

QA

≤ ‖(I −ΠA)‖2
QA‖(I −ΠQA)e‖2

QA

≤ ‖(I −ΠA)‖2
QA

Ks

‖A‖2
‖e‖2

ATA.

The result then follows because a projection has the same norm as its comple-
ment. This proof can be found in [13, Lemma 2.2].

Lemma 5.8 delivers an estimate for the effect of the coarse grid correction on
the error. Next we need to incorporate the effect of a smoothing iteration to
arrive at a two grid convergence result. For sake of simplicity we consider the
weighted Richardson iteration applied to the normal equations, for which the
error propagation operator S is given as

S =

(
I − 1
‖A‖2

2
ATA

)
. (5.14)

Theorem 5.9. Under the assumptions of Lemma 5.8, it holds

‖(I −ΠA)Sνe‖QA ≤
16‖ΠA‖2

QAKs

25
√

4ν + 1
‖e‖2

QA. (5.15)

Proof. It holds

‖(I −ΠA)Sνe‖QA ≤
‖ΠA‖2

QAKs

‖A‖2
‖Sνe‖2

AT A

=
‖ΠA‖2

QAKs

‖A‖2
〈QASνe, QASνe〉

=
‖ΠA‖2

QAKs

‖A‖2
‖(QA)

1
2 Sνe‖2

QA.

Decomposing e into the eigenvectors of QA (which form a basis of RN because
QA is symmetric), e = ∑N

j=1 β jvj with QAvj = σjvj, we obtain

‖(QA)
1
2 Sνe‖2

QA = ‖
N

∑
j=1

σ
1
2
j

(
1−

σ2
j

‖A‖2
2

)ν

β jvj‖2
QA

≤ s‖e‖2
QA, (5.16)



64 CHAPTER 5. ELEMENTS OF A CONVERGENCE ANALYSIS

where

s = max
σ∈[0,‖A‖2

2]
σ

(
1− σ2

‖A‖2
2

)2ν

This maximum occurs at σ̃ = ‖A‖2√
4ν+1

(see [13, Theorem 2.3]) and therefore

s =
‖A‖2√
4ν + 1

(
4ν

4ν + 1

)2ν

≤ 16‖A‖2

25
√

4ν + 1

for ν ≥ 1, because
(

4ν
4ν+1

)2ν
is monotonically decreasing for ν ≥ 1. This proof

can be found in [13, Theorem 2.3].

Remark 5.10. Note that Theorem 5.9 implies that two grid convergence can al-
ways be achieved under our assumptions, but not necessarily for any number of
smoothing steps, as the constant on the right-hand side of (5.15) may be larger
than one for small values of ν. The necessary number of smoothing steps de-
pends quadratically on the constant Ks from the approximation property.

Consider now the case that the system matrix A is singular. The first step is to
replace the inverse matrices in projections ΠQA and ΠA by the Moore-Penrose
pseudo inverse, therefore we have

I −ΠQA = I − P(PTQAP)†PTQA and (5.17)

I −ΠA = I − P(RAP)†RA. (5.18)

We have to investigate whether I −ΠQA is still a QA-orthogonal projection and
whether the projection identities still hold. If this were the case then all other ar-
guments for the proofs of Lemma 5.8 and of Theorem 5.9 would hold in exactly
the same way. To make this directly evident to the reader was the reason why
we reproduced the proofs of Lemma 5.8 and of Theorem 5.9 here instead of just
citing the results.

Lemma 5.11. I −ΠQA given by (5.17) is a QA-orthogonal projection if A is singular.

Proof. By direct calculation and with help of the properties of the Moore-Penrose
pseudo inverse, we get (I −ΠQA)

2 = I −ΠQA. So we only have to show that

〈ΠQAx, (I −ΠQA)y〉QA = 0 for all x, y ∈ RN.
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For this, consider

〈ΠQAx, (I −ΠQA)y〉QA

= 〈x, ΠT
QAQA(I −ΠQA)y〉

= 〈x, QAP(PTQAP)†PTQA(I − P(PTQAP)†PTQA)y〉
= 〈x, QAP(PTQAP)†PTQAy−QAP(PTQAP)†PTQAy〉
= 〈x, 0〉
= 0.

Remark 5.12. Note that if we use the projection I −ΠQA for the operator K in
Theorem 5.5, we have a convergence analysis for the non-symmetric singular
case, but with a non-practical operator.

Besides, it is obvious that the proof for the projection identities can not be adapted
for the singular case, because B†B 6= I if B is singular. It is known that B†B acts
as the identity on vectors from range(B†) = N(B)⊥, so for the proof of the cru-
cial identity ΠAΠQA = ΠQA from Lemma 5.6 to hold, we would need to show
that (PTQAP)†PTQA maps onto the subspace range(B†) with B = RAP. Un-
fortunately, it does not seem possible to find practical conditions under which
this can be guaranteed.
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Summary of Chapter 5:

Convergence analysis for MG for the symmetric and singular case

• Convergence if the error propagation operator H is semiconvergent.

• ‖Hx‖A ≤ γ · ‖x‖A for all x ∈ RN, γ ∈ [0, 1)⇒ H is semiconvergent.

• Choose the coarse grid correction as K = I − PA†
c PT A

⇒ K is an A-orthogonal projector and under suitable assumptions:

‖Sx‖A ≤ ‖x‖2
A − δ · ‖Kx‖2

A for x ∈ RN

implies
‖Hx‖2

A ≤ (1− δ) · ‖x‖2
A for all x ∈ RN.

Convergence analysis for MG for the non-symmetric and non-singular case

Consider projections (also coarse grid corrections) and QA =
√

ATA:

• ΠQA = P(PTQAP)−1PTQA and ΠA = P(RAP)−1RA

• I −ΠQA is a QA-orthogonal projector, but not a practical one.

• It holds ΠAΠQA = ΠQA and under suitable assumptions

‖(I −ΠQA)e‖2
QA ≤

Ks

‖A‖2
〈Ae, Ae〉 = Ks

‖A‖2
‖e‖2

QA

implies

‖(I −ΠA)Sνe‖QA ≤
16‖ΠA‖2

QAKs

25
√

4ν + 1
‖e‖2

QA.

⇒ Convergence is guaranteed for sufficiently many smoothing steps.

Transfer to the non-symmetric and singular case

• ‖Hx‖QA ≤ γ · ‖x‖QA for all x ∈ RN, γ ∈ [0, 1)⇒ H is semiconvergent.

• When A is non-symmetric K = I − PA†
c PT A is not orthogonal with

respect to the QA inner product and therefore it does not hold

‖Hx‖2
QA ≤ (1− δ) · ‖x‖2

QA for all x ∈ RN,

but for K = I −ΠQA = I − P(PTQAP)†PTQA (which is not practical).

• When A is singular ΠAΠQA 6= ΠQA with ΠA = P(RAP)†RA.

• The strong approximation property only allows a conclusion about
ΠQA. Without the projection identity we cannot relate it to ΠA.



CHAPTER 6
Multigrid for tensor-structured

problems

The convergence analysis in chapter 5 gives us a reference point how each in-
gredient for our method should be chosen. Note that we also have the demand
that the choice of each ingredient should be compatible with the tensor structure
of our system matrix A and with the TT-techniques from chapter 3. In the fol-
lowing we will discuss the selection of each ingredient with the focus on these
two demands, whereby the focus on the compatibility with the TT-techniques
is weighted more heavily.

6.1 Smoother

The proof of Theorem 5.9 motivates that we want to get the seminorm ‖(QA)
1
2 Sνe‖QA

small. Because of the following relation

‖(QA)
1
2 Sνe‖QA = 〈QA(QA)

1
2 Sνe, (QA)

1
2 Sνe〉

= (Sνe)T(QA)2Sνe
= (Sνe)T ATASνe
= 〈Sνe, Sνe〉ATA = ‖Sνe‖2

ATA

we demand that our smoother should reduce the ATA-seminorm of our error.
Recall that GMRES minimizes the two-norm of the residual over the Krylov
subspace and that

‖r‖2 = ‖Ae‖2 = ‖e‖ATA.

In contrast to the Richardson iteration (5.14), GMRES is not a stationary iteration
and cannot be described by an iteration matrix S and a reduction of the error

67
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after a few smoothing steps cannot be guaranteed by GMRES (GMRES can, e.g.,
stagnate for N− 1 steps and arrive at the solution at the Nth step, see [2,37]), so
that an estimate of the form (5.7) or (5.16) cannot be given.

This all shows that Richardson is valuable for the theory, but for the practi-
cal implementation ‖A‖2 has to be known for choosing the optimal damping
parameter. For our kind of model problems this computation is not possible
because of the curse of dimensionality. In practice we can observe that a few
GMRES steps reduce the error significantly for most considered models. Other
smoothers which are nice for the analysis and are very popular choices for multi-
grid methods are Jacobi and Gauss-Seidel [36, 63, 68]. In the following we give
the iteration matrices for both methods:

Definition 6.1. Let A ∈ RN×N be decomposed in the following way:

A = L + D + U, (6.1)

where D is a diagonal matrix, L is a strictly lower and U a strictly upper
triangular matrix. The Gauss-Seidel method is given via the iteration

x(k+1) = (D + L)−1(b−Ux(k))

and the weighted Jacobi method via

x(k+1) = ωD−1(b− (L + U)x(k)) + (1−ω)x(k)

where ω is the relaxation parameter. Therefore the iteration matrices are

SGS = (D + L)−1U = I − (D + L)−1A and (6.2)
SJ = I −ωD−1A, (6.3)

respectively.

Eye-catching is that the iteration matrices (6.2) and (6.3) include inverse matri-
ces. Naturally, a diagonal or triangular linear system is not difficult to solve,
the bigger problem in our high-dimensional setting is that this implies access to
each entry of the operator D or D + L. Recall that we want to use tensor tech-
niques to avoid the handling of each entry for reasons of storage and computa-
tional complexity. The curse of dimensionality should also again be mentioned
here. So in the tensor setting these smoothers are problematic at first sight.
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A necessary requirement for being able to use them at all is that we can represent
L, U and D in a (storage-efficient) tensor format. In the following, we explain
that this is indeed possible in our case. For this recall that the models from
section 2.2 are of the form A = AL + AS + AD, see (2.16).

Lemma 6.2. If A = AL + AS + AD is the generator matrix of a SAN, then D, L and
U from (6.1) can be computed in the following way.

• For the diagonal matrix D:

D = DL + DS + AD

with

DL =
d

∑
i=1

I1 ⊗ · · · ⊗ Ii−1 ⊗ diag(E(i,i)
i )⊗ Ii+1 ⊗ · · · ⊗ Id

and

DS = ∑
(s,t)

d⊗

i=1

diag(E(s,t)
i ).

• For the strictly lower triangular matrix L:

L = LL + LS

with

LL =
d

∑
i=1

I1 ⊗ · · · ⊗ Ii−1 ⊗ tril(E(i,i)
i )⊗ Ii+1 ⊗ · · · ⊗ Id

and

LS = ∑
(s,t)

d

∑
k=1

(
k−1⊗

i=1

diag(E(s,t)
i )

)
⊗ tril(E(s,t)

k )⊗
(

d⊗

i=k+1

E(s,t)
i

)
.

• For the strictly upper triangular matrix U:

U = UL + US

with

UL =
d

∑
i=1

I1 ⊗ · · · ⊗ Ii−1 ⊗ triu(E(i,i)
i )⊗ Ii+1 ⊗ · · · ⊗ Id

and

US = ∑
(s,t)

d

∑
k=1

(
k−1⊗

i=1

diag(E(s,t)
i )

)
⊗ triu(E(s,t)

k )⊗
(

d⊗

i=k+1

E(s,t)
i

)
.



70 CHAPTER 6. MULTIGRID FOR TENSOR-STRUCTURED PROBLEMS

Here, tril(B) and triu(B) denote the strict lower and strict upper triangular part of the
matrix B, respectively.

Proof. See [69, Theorem 2.1, Lemma A.6–A.8].

Remark 6.3. According to Lemma 6.2, L, D and U from (6.1) can be represented
by sums of tensor products and thus be stored efficiently. Note that the results
of Lemma 6.2 also hold for general Kronecker structured matrices and are not
restricted to generator matrices of SANs. In this case the “local part” given by
the matrix AL is omitted.

With Lemma 6.2 we can avoid the explicit representation of the iteration matri-
ces and can compute the products Dx and (D + L)x within the tensor format.
But this does not allow to compute the action of the inverses of these matri-
ces, so the next step is to compute the action of the inverse of (D + L) or D
approximately by an iterative method which uses matrix-vector products, e.g.,
GMRES. So in our tensor setting, one of the main advantages of the simple,
splitting-based methods—namely that their iterations can be implemented eas-
ily and performed efficiently—is unfortunately lost. Still, it is interesting to in-
vestigate these methods in order to find out if the higher cost pays off due to
better smoothing properties (e.g., in comparison to GMRES).

As in section 4.1 we again look at the magnitude of the coefficients from the
linear combination of the eigenvectors of the error after three Gauss-Seidel and
three weighted Jacobi steps, see Figures 6.1 and 6.2, respectively. Recall that
the magnitudes of these coefficients were all one at the beginning and that all
computations are done without using tensor techniques. Figure 6.1 shows that
Gauss-Seidel seems to have problems with the model overflow. Instead of get-
ting smaller, some of the coefficients increase. Besides we have peaks at different
positions. Recall Figure 4.3, where GMRES only has problems with the coeffi-
cients corresponding to low magnitude eigenvalues. This also implies that the
idea to approximate the error within a space V spanned by small eigenvectors
for better handling the problematic parts is not so obvious here as it was in the
case of GMRES. But for simplified_kanban and directed_metab we have the same
behaviour as in Figure 4.3. It should be emphasized that for the model sim-
plified_kanban the coefficients corresponding to the lower parts of the spectrum
show an increase (they are larger than one). For a stationary method, this means
that we cannot get the error arbitrarily small. But because of the nice splitting
of the problematic parts and not so problematic parts, it can be motivated that
this can be handled by the coarse grid correction within a multigrid method,
if we approximate the error within a space V spanned by smaller eigenvectors.
Figure 6.2 shows that Jacobi seems to have problems for all kinds of models.
So therefore it is not sensible to use weighted Jacobi as smoother. We choose
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Figure 6.1: Reduction of error components belonging to different eigenvalues
after three Gauss-Seidel iterations.

the relaxation parameter ω = 2
3 , like it is recommended in [63] in the case of

spd matrices. To be free from the argument that this behaviour is dependent
on the relaxation parameter, we also used the relaxation parameters ω1 = 1
and ω2 = 2/(|λmin(D−1A)|+ |λmax(D−1A)|) = 2/|λmax(D−1A)| and observed
the same behaviour, in experiments not reported here. The second relaxation
parameter ω2 is an adapted version from the spd case, where the optimal relax-
ation parameter is

ωopt =
2

λmin(D−1A) + λmax(D−1A)
,

see [40, Section 5.2.2]. Of course, there could in principle be another relaxation
parameter which is optimal for these kinds of models, but the three choices we
used are the most natural, and it can be expected that other choices would not
remedy the severe problems which the Jacobi method shows for these models.
Due to this observation we will use GMRES and approximated Gauss-Seidel as
smoothers, even though it is strongly expected that approximated Gauss-Seidel
will need more computational time and cost when used as smoother than a
tensorized GMRES. As mentioned, we will use an iterative method for approx-
imately applying the inverse of (D + L). To stay in the tensor setting, the al-
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Figure 6.2: Reduction of error components belonging to different eigenvalues
after three Jacobi iterations.

ternating minimal energy (AMEn) method, see [29, 30, 47, 48] , seems to be a
more sensible choice than a tensorized version of GMRES. As discussed in [28],
the main problem of tensorized GMRES is that accurately representing the or-
thogonal basis appearing in GMRES implies a high TT-rank and therefore an
increase of computational time, cost and storage, in contrast to AMEn, which is
an optimization-based low-rank tensor solver which will be discussed in detail
in chapter 9. So for approximating the inverse of (D + L), tensorized GMRES
seems not very sensible. As smoother, however, this is not the case because
we only use a few tensorized GMRES steps, so if we have problems with the
TT-ranks, we can be sure that this is not caused by the representation of the
orthogonal basis.

6.2 Set of coarse variables

For determining the set of coarse variables we do not have a direct demand
from the convergence analysis. So on the one hand, our motivation will based
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on Figures 4.5–4.7, where we see that we are able to approximate the error ac-
curately with fewer degrees of freedom, because GMRES as smoother seems to
produce errors that locally change slowly. On the other hand it will be based on
the strong approximation property from Definition and Lemma 5.7, which gives
us implicit evidence for the set of coarse variables.

First one should keep in mind that we want to minimize ‖e− Pec‖QA. For the
relevant error e we can assume, because of Figures 4.5–4.7, that locally it only
changes slowly, so the coarse set should be chosen in the following way: Recall
that each index in our models from chapter 2.2 corresponds to a state. So each
state 1, . . . , N should have a neighbour in the coarse set. The second demand
is that we need enough degrees of freedom, i.e., enough coarse variables, to be
able to fulfil (5.11) with a small constant Ks.

We have, however, also demands that mean that we should not choose too many
coarse variables: The larger the coarse grid system, the higher the computational
cost for solving it, which can make the method practically infeasible even if it
has a fast convergence rate, see, e.g., [67].

The choice of coarse sets therefore has to be balanced between these concurrent
demands, and neither too many nor too few coarse variables will lead to an
efficient solver.

Summarizing, it is sensible to choose the coarse variables based on the geometry
of the models (to ensure that all states have coarse neighbours). Here, neigh-
bouring can either be based on the connections of the model or on the difference
of the states of the submodels (so for example if we have states corresponding
to substates (1, 1, 1) and (1, 2, 1) in a three dimensional model we consider them
to be near to each other because only the second substate differs by one). The
fact that the generator matrices of all considered models have a nice geometric
structure, as Figures 6.3 and 6.4 show, also supports that it is reasonable to use
geometric considerations when choosing the coarse set.

By now we did not take into account the tensor structure in the demands for the
coarse set. Recall that the index set of our tensor X is of the form

{1, . . . , n1} × . . . × {1, . . . , nd}.

For keeping the tensor structure on a coarser grid, the index set of the reduced
tensor Xc should be of the form

{1, . . . , nc
1} × . . . × {1, . . . , nc

d}.

To achieve this we demand to have a compatible coarse set in the following
sense:
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Figure 6.3: Sparsity structure (left) and corresponding geometric structure
(right) for overflow (d = 3, n = 5)

Figure 6.4: Sparsity structure (left) and corresponding geometric structure
(right) for simplified_kanban and directed_metab (d = 3, n = 5)
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Definition 6.4. A coarse set C is compatible with the structure of a tensor X if

C = C1 × . . . × Cd and |Ci| ≤ ni. (6.4)

We will consider three types of coarsening: full coarsening, semi-coarsening and
aggregation.

6.2.1 Full coarsening

There is no coherent definition of the precise meaning of full coarsening. The
main idea is to coarse in every dimension of the problem. So in this thesis we
will use the following definition and meaning of full coarsening, which also
satisfies the compatibility with the tensor structure in the sense of Definition 6.4.
Before handing out the definition, note that for the ease of presentation, we
assume in the following that all mode sizes satisfy ni = 2ki + 1, ki ∈ N. In
particular, all mode sizes are odd in this case.

Definition 6.5. Full coarsening for a d-dimensional problem is given via

C = {1, 3, . . . , n1} × . . . × {1, 3, . . . , nd}.

For illustration we show the coarse sets C corresponding to full coarsening for
the model overflow with d = 1, 2, 3 and with mode size ni = 5 in Figures 6.5–
6.7, respectively. For this, we arranged the graph of the generator matrix as
a regular d-dimensional grid like in the right-hand side of Figure 6.3. For the
one-dimensional case each node either belongs to the coarse set or has a direct
neighbour which belongs to the coarse set. For d > 1 this is not true any more
and the distance to a coarse node can be up to d (where distance means the
number of edges to arrive to a coarse node). Still, each fine node has coarse
nodes which are “spatially close” to it, in the sense that the size of the whole
graph grows exponentially with d while the distance to the next coarse node
only grows linearly. Under the assumption that ni ≡ n = 2k + 1, full coarsening
reduces the model size from nd = (2k + 1)d to nd

c = (2k−1 + 1)d, i.e., by a factor
of roughly 1

2d .
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C F
Figure 6.5: Full coarsening for overflow (d = 1, n = 5).

C F
Figure 6.6: Full coarsening for overflow (d = 2, n = 5).

C F
Figure 6.7: Full coarsening for overflow (d = 3, n = 5).
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9× 9× · · · × 9

5× 5× · · · × 5

3× 3× · · · × 3

Presmoothing Direct solve Postsmoothing

R

R
P

P

Figure 6.8: Full coarsening process for a problem with mode sizes n = 9.

When applying full coarsening recursively until the mode size is 3, the coars-
ening process looks as depicted in Figure 6.8 and corresponds to a log2(n− 1)-
level method. Note that the coarsest problem size is still exponential in d, unless
coarsening is done until a mode size of one is reached, which does not lead to
a sensible coarse grid equation. In this case the coarse grid matrix would be of
size 1× 1 and the individual subsystems get lost. For large values of d, this issue
has to be taken into account when choosing the coarse grid solver.

6.2.2 Semi-coarsening

In contrast to full coarsening, semi-coarsening does not coarse in every direc-
tion. Its origin is from application of multigrid to two-dimensional anisotropic
PDEs, i.e., PDEs where the coupling between grid points in one direction is
much stronger than in the other direction. In this situation, it turns out that
either coarsening in only one direction or using so-called line smoothers yields
a much more efficient multigrid method than full coarsening and a standard
smoother, see, e.g. [68, Section 5].

But for our models the motivation for semi-coarsening is a different one. With
full coarsening we have observed that the coarsest system size is still exponen-
tial in d. With full coarsening we can only get rid of the exponential growth by
reducing every subsystem to size one simultaneously. But this seems not sen-
sible, because it results in a coarse grid system of size 1 × 1, which does not
carry meaningful information any more. With semi-coarsening we get rid of
the simultaneous reduction and can end up with a coarse system which only
includes a fixed number dc (instead of d) of subsystems (i.e., the other d − dc
subsystems are removed from the model by reducing their size to 1).

There is of course not a single generalization of semi-coarsening to our high-
dimensional tensor setting. While for d = 2, the states are reduced in one direc-
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C F
Figure 6.9: Semi-coarsening corresponding to the dimension {2} for overflow
(d = 2, n = 5).

tion and not reduced in the other direction, for d > 2 there are more choices, how
many (and which) dimensions to reduce and how many (and which) to keep
intact. Therefore, we give the following general definition of semi-coarsening
here. Which choices are appropriate then depends on the model, mode sizes, di-
mensions etc. We again assume that the mode sizes satisfy ni = 2ki + 1, ki ∈N.

Definition 6.6. Semi-coarsening for a d-dimensional problem with respect to
the dimensions {s1, . . . , sk} is given via

C = C1 × . . . × Cd,

where

Cj =

{
{1, 3, . . . , nj} if j ∈ {s1, . . . , sk}
{1, 2, . . . , nj} if j /∈ {s1, . . . , sk}

Obviously, this form of semi-coarsening is compatible with the tensor structure
in the sense of Definition 6.4.

Figures 6.9 and 6.10 illustrate possible semi-coarsenings for the overflow model
with d = 2 and d = 3.

Assume for example that we want to keep dc = 3 subsystems intact and reduce
all others to size 1. A sample coarsening process for this case is shown in Fig-
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C F
Figure 6.10: Semi-coarsening corresponding to the dimensions {2, 3} (left) and
to the dimension {2} (right) for overflow (d = 3, n = 5).

ure 6.11, where d = 6, ni ≡ n = 9 for i = 1, . . . , d and semi-coarsening is done
with respect to the dimension {1, 3, 5}, resulting in a coarse-grid system of size
ndc = 93. In general, under the assumption that ni ≡ n = 2k + 1, the size of the
system is reduced by a factor of roughly 1

2d−dc in one coarsening step, and over-
all, log2(n− 1) + 2 levels are needed to reach the coarse grid of size (2k + 1)dc . If
the mode sizes were very large, e.g., n = 1025, the above approach again leads
to a coarse grid system which may be too big to solve efficiently (note that dc
should not be chosen too small, so that, e.g., dc = 1 is not feasible).

Summarizing, full coarsening has the disadvantage that the coarsest system size
is still exponential in d and semi-coarsening—when it is applied as described
above—has the disadvantage that some of the mode sizes still have their origi-
nal value on the coarse grid. Therefore, full coarsening leads to a big coarse grid
matrix when d is large, and semi-coarsening leads to a big coarse grid matrix
when n is large. This motivates to combine the two approaches: First, reduce
all mode sizes to a manageable value nc by full coarsening, and then, in a sec-
ond phase, eliminate all but dc of the submodels by semi-coarsening, resulting
in a coarse grid size of ndc

c . Note that this approach is in fact also a special case
of our very general definition of semi-coarsening, where the first phase corre-
sponds to choosing {s1, . . . , sk} = {1, . . . , d}. We illustrate this “combined” ap-
proach in Figure 6.12 for n = 9, d = 6 and a reduction to dc = 3, nc = 3 and
{s1, . . . , sk} = {1, 3, 5} in the second phase of coarsening.
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9× 9× 9× 9× 9× 9
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Figure 6.11: Semi-coarsening process for a problem with mode sizes n = 9 and
d = 6.
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Figure 6.12: Full coarsening combined with semi-coarsening process for a prob-
lem with mode sizes n = 9 and d = 6.
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Figure 6.13: Choice of aggregates on all levels but the last for a queue with five
waiting seats.

6.2.3 Aggregation

The full-coarsening and semi-coarsening approaches described in Section 6.2.1
and 6.2.2 can successfully be applied to all model problems from Section 2.2, ex-
cept the model kanban_control. For all other models, the states of each subsystem
can be arranged as a one-dimensional chain. As Figure 2.3 shows, this is clearly
not possible for kanban_control. While it would theoretically be possible to view
the graph shown in Figure 2.3 as an incomplete regular two-dimensional grid
and apply full or semi-coarsening as shown in Figures 6.6 and 6.9 to it, this leads
to coarse grids with a different structure, making a recursive application diffi-
cult. We therefore consider a different approach in this section, which allows to
maintain the structure of the model kanban_control across all grids.

The approach we will consider is an aggregation approach [10, 70–72]. Aggre-
gation means that our coarse set is not a subset of the original states. Instead,
one coarse variable is an accumulation of states of the original system (an aggre-
gate), and two aggregates i and j are connected to each other if any one state in
i was connected to any one state in j in the graph of the original system. This
approach helps us to keep the incomplete two grid structure of each automa-
ton on the coarser grid, when the aggregates are chosen in an appropriate way.
Figure 6.13 illustrates, for a subsystem with k = 5 waiting seats, the choice of ag-
gregates and the resulting coarse grid (as well as the choice of aggregates on this
grid for a further coarsening). The grid resulting from the aggregation shown
on the right of Figure 6.13 corresponds to the coarsest grid possible, a further ag-
gregation by the same approach is not possible. To be able to coarsen up to this
point, we always assume that the number of waiting seats in each subsystem
(which is not the mode size of the system) is given as ki ≡ k = 2` + 1, resulting
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Figure 6.14: Choice of aggregates on the last level.

in a mode size of ni =
(k+1)(k+2)

2 for i = 2, . . . , d− 1 and n1 = nd = k + 1.

This approach is also compatible with the tensor structure because for each au-
tomaton we obtain a coarse set Ci and therefore the whole coarse set C is given
as C = C1 × . . . × Cd.

Thus, this approach allows to reduce the size of the overall system from N =

(k + 1)2
(
(k+1)(k+2)

2

)d−2
to 32 · 6d−2. A further reduction to 22 · 3d−2 is possible

by considering a modified aggregation on the second to last level, as shown in
Figure 6.14.

6.3 Transfer operators

First we are looking for an appropriate choice for the transfer operators for all
models but kanban_control, because there the set of the coarse variables comes
from an aggregation approach and therefore the construction of the transfer op-
erators should be treated separately. For the transfer operators we have the
following crucial demands:

(i) the interpolation operator P should minimize ‖e− Pec‖QA for “relevant”
error vectors e,

(ii) the restriction operator R should fulfil 1 TR = 1 ,

(iii) R, P should be compatible with the tensor structure of A.

Note that the demand (ii) comes for the property (2.5) of the generator matrix
A from our models, namely that 1 TA = 0, and this property should be kept
for the coarse grid matrix Ac (recall that Ac = RAP.) Besides, the smallest left
singular vector of A is a constant vector (because AT1 = 0), so if 1 TR = 1
holds the constant vector is represented exactly on the coarser grid. In [13, Ex-
ample 1.1] it is motivated to preserve the smallest left singular vector exactly in
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a non-symmetric multigrid setting. To fulfil (iii) it is necessary that the transfer
operators P, R are given via the formula

P = ∑
k

⊗

i

P(k)
i and R = ∑

k

⊗

i

R(k)
i , i = 1, . . . , d (6.5)

with P(k)
i ∈ Rni×nc

i and R(k)
i ∈ Rnc

i×ni , otherwise the multiplication to obtain the
coarse grid operator Ac = RAP is not possible within the tensor format. For
d = 2, one summand and P(1)

1 = P(1)
2 , transfer operators of this form have been

investigated in [35] for solving Sylvester equations.

It is obvious that the more summands there are in P from (6.5), the smaller the
value of ‖e − Pec‖QA that can be achieved. But more summands in P mean
higher cost when doing a matrix-vector multiplication with P, and in addition
the coarse grid operator Ac = RAP then has more summands in its represen-
tation than A, so the storage complexity of the coarse grid operator also in-
creases. Consider the case that we demand only one summand, then the follow-
ing proposition holds:

Proposition 6.7. Let A of the form (2.18) be given, with E(s,t)
i ∈ Rni×ni . Let P =

⊗d
i=1 Pi and R =

⊗d
i=1 Ri with Pi ∈ Rni×nc

i and Ri ∈ Rnc
i×ni where nc

i ≤ ni. Then
the corresponding Petrov-Galerkin operator satisfies

RAP = ∑
(s,t)

d⊗

i=1

RiE
(s,t)
i Pi − ∑

(s,t) 6=(i,i)

d⊗

i=1

RiD
(s,t)
i Pi.

Proof. The result follows directly by repeated application of the linearity of the
Kronecker product.

So Proposition 6.7 yields that the task of constructing interpolation and restric-
tion operators becomes a “local” task, i.e., part Pi of the interpolation matrix P
corresponds the ith subsystem. Recall the construction of the coarse set (dis-
cussed in section 6.2) and Definition 6.4 in particular, where we also motivated
to construct the set of coarse variables “locally”. Therefore the construction of
the set of coarse variables matches with the demand that the transfer operators
should be given as

P =
d⊗

i=1

Pi, R =
d⊗

i=1

Ri.

Thus we only have to consider how the values of each entry of each Pi, Ri can
be constructed.
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· · ·
λi λi λi λi

µi µi µi µi

Figure 6.15: Structure and transition probabilities of the one-dimensonal over-
flow model.

6.3.1 Transfer operators in case of full coarsening

We begin by describing the construction for the case that the coarse variable
are chosen by full coarsening, see section 6.2.1. Let us first concentrate on the
construction of P. For this we consider first the model overflow and recall that
each automaton Ai can be described by a one-dimensional Markov chain as
Figure 6.15 illustrates. The first approach is linear interpolation. For each Pi we
therefore look at the directed graph corresponding to the ith subsystem, see
Figure 6.15.

To obtain an indexing of the columns of Pi we define the mapping

πi : Ci −→ {1, . . . , nc
i } (6.6)

which numbers the coarse variables consecutively. Using this notation we choose
each entry p(i)k,` of Pi as

p(i)k,` =

{
1/degCi(k) k connects to π−1

i (`)

0 otherwise

where k = 1, . . . , ni, ` = 1, . . . , |Ci| and degCi(k) is the number of coarse variable
which are incident with k (including k itself, if it is chosen as a coarse variable).
The resulting Pi and the interpolation graph, i.e., the graph corresponding to ma-
trix Pi, are shown in Figure 6.16.

For a two-dimensional system we get the interpolation matrix P as P = P1 ⊗
P2, the resulting interpolation graph is given in Figure 6.17 for n1 = n2 = 5.
Observe that the resulting interpolation structure is a generalization of the one-
dimensional linear interpolation, i.e., each variable interpolates in equal parts
from all surrounding coarse variables. This is a consequence of the definition of
the Kronecker product and it is obvious that this also holds for d > 2.

Another choice for computing the interpolation matrix Pi is direct interpolation
[62, 67] . In contrast to linear interpolation, the entries of the submatrix E(i,i)

i are
involved here and the direction of the edges in the graph of each subsystem Ai
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Figure 6.16: Interpolation structure (left) and corresponding interpolation ma-
trix P (right) for one-dimensional overflow model.
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Figure 6.17: Interpolation structure for a two-dimensional overflow model in case
of full coarsening (n1 = n2 = 5).



86 CHAPTER 6. MULTIGRID FOR TENSOR-STRUCTURED PROBLEMS

is important. Each entry p(i)k,` of Pi is given via the formula

p(i)k,` =
E(i,i)

i (k, π−1
i (`))

E(i,i)
i (k, k)

, k = 1, . . . , ni and ` = 1, . . . , |Ci|. (6.7)

Note that from (6.7) it follows that p(i)k,` = 0 if there is no edge from π−1
i (`)) to

k. For the model overflow the structure of the interpolation graph for directed
interpolation is the same as for linear interpolation, because of the symmetry of
the structure of the one-dimensional Markov chain of each subsystem Ai.

For our realization of direct interpolation it is necessary that the matrix E(i,i)
i

exists for each i, which means that there exist local transitions in the model
which are independent from the other automata. This is not fulfilled for each
model from section 2.2. So we could use direct interpolation for the subsystems
which have local transitions, and linear interpolation for the others. E.g., for
direct_metab we could do direct interpolation for the first and last automaton
(i.e., P1 is given by direct interpolation with respect to E(1,1)

1 and Pd is given by

direct interpolation with respect to E(d,d)
d ), and linear interpolation for all other

automata. In numerical experiments, it turned out, however, that in this case it
is better to only use direct interpolation for P1. A possible explanation for this is
that due to the directed nature of the considered problems, events in the first au-
tomaton influence all subsequent automata, while events in the last automaton
do not have an influence on any other automaton. Therefore, it might not be rea-
sonable to introduce information into the interpolation operator which includes
weights based on the last automaton, which then would influence all automata
due to the Kronecker structure of P.

By now we only discussed the computation of P. The crucial demand for R is
1 TR = 1 T, which is obviously fulfilled for the transpose of linear interpolation,
but is in general not fulfilled by direct interpolation. Therefore, we construct
Ri as the transpose of linear interpolation for each subsystem for each model.
The property that all columns have sum one is then inherited by the matrix
R =

⊗d
i=1 Ri because

(1 ⊗ · · · ⊗ 1 )T
d⊗

i=1

Ri = 1 TR1 ⊗ · · · ⊗ 1 TRd = (1 ⊗ · · · ⊗ 1 )T.

6.3.2 Transfer operators in case of semi-coarsening

When using semi-coarsening with respect to some dimensions {s1, . . . , sk}, the
mode sizes nj with j /∈ {s1, . . . , sk} are not reduced. To reflect this in the in-
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Figure 6.18: Interpolation structure for a two-dimensional overflow model in case
of semi-coarsening with respect to dimension {2} (n1 = n2 = 5).

terpolation and restriction operator formula (6.5), we choose the correspond-
ing matrices Pj, Rj as identity matrices of size nj × nj. The other matrices Pi, Ri
for i ∈ {s1, . . . , sk} are chosen via linear or direct interpolation as described in
section 6.3.1. We again illustrate the resulting interpolation structure for a two-
dimensional problem with n1 = n2 = 5 with semi-coarsening with respect to
dimension {2}. This illustration is shown in Figure 6.18. Note that the crucial
property 1 TR = 1 T for the restriction operator still holds when using this ap-
proach.

6.3.3 Transfer operators in case of coarsening by aggregation

As discussed in section 6.2.3, for the model kanban_control our coarse set is an
accumulation of aggregates instead of coarse variables, which we denote by Ĉ(i)

` .

So each Ci includes a finite number mi of aggregates Ĉ(i)
` , ` = 1, . . . , mi and they

satisfy the following two conditions:

i) Ĉ(i)
k ∩ Ĉ(i)

` = ∅, k 6= `,

ii)
mi⋃
`=1

Ĉ(i)
` = {1, . . . , ni}.
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For Pi this means that each column corresponds to one aggregate and can be
represented by the entries

p(i)k,` =

{
1 k ∈ Ĉ(i)

`

0 else
, k = 1, . . . , ni, ` = 1, . . . , mi.

This corresponds to interpolation with constant basis functions, i.e., interpola-
tion assigns the value of a variable corresponding to the aggregate Ĉ(i)

` on the

coarse grid to all variables of the fine grid contained in Ĉ(i)
` . For the restriction

matrix R we choose Ri = PT
i and therefore each column of Ri belongs to one

state. Because of the fact that each state belongs to exactly one aggregate it
holds 1 TR = 1 T.

6.4 Coarse grid operator

The coarse grid operator is chosen as a Petrov-Galerkin operator, i.e, Ac = RAP.
Finally, on the coarsest grid the residual equation has to be solved. The de-
scribed full coarsening process is limited to modest values of d, because of the
need for solving the problem on the coarsest grid, so we have to distinguish two
cases:

(i) the coarsening results in a problem of a size for which direct solving with-
out exploiting tensor structure is possible,

(ii) the tensor structure has also to be kept on the coarsest level, because the
problem size is too big for direct solving.

In case (i), direct solving means that we use the Moore-Penrose pseudo inverse
for solving the coarse grid equation in a least squares sense. In this case, we
have to transform the solution of the singular coarse grid system into a TT-
Tensor again afterwards.

Case (ii) appears for larger values of d, because, as mentioned before, the size
of the coarse grid operator still grows exponentially in d when using full coars-
ening, see Figure 6.8. A suggestion to avoid this problem was to combine full
coarsening with semi-coarsening. But we could also use an iterative method
instead which maintains the tensor structure. Recall from the description of
the approximated Gauss-Seidel smoother in section 6.1 that the low-rank tensor
method AMEn can be used for this task. Therefore, in chapter 9 of this thesis,
we will discuss and test AMEn as a coarse grid solver in our multigrid method.
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There are several choices for each ingredient of our multigrid method, so it is
not clear at first sight which choices are the best or most appropriate for solving
our task. Therefore, the next chapter will include a first series of numerical
experiments. There we will vary the different ingredients for the tensorized
multigrid method in order to compare them and also to illustrate the efficiency
of each ingredient and therefore of our method.
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Summary of Chapter 6:

• Choose ingredients based on theory from chapter 5 and compatibility
with tensor structure.

Smoother

• GMRES is easily implementable in TT-format.

• Representation of splitting A = L + D + U is possible in TT-format.

But: Splitting methods require the action of inverses.

⇒ approximate the inverses via AMEn.

⇒ GMRES and Gauss-Seidel will be used.

Set of coarse variables

• Coarse set C should be compatible with the tensor structure of X , i.e.,

C = C1 × . . . × Cd and |Ci| ≤ ni.

• Full coarsening and semi-coarsening lead to compatible coarse sets:

⊕ deals with
large n

	 coarsest grid
size nd

c

⊕ can reduce d

	 problems with
large n

Transfer operators

• Transfer operators are chosen of the form

P =
⊗

i

Pi and R =
⊗

i

Ri, i = 1, . . . , d.

• Petrov-Galerkin operator RAP has the same tensor structure as A:

RAP = ∑
(s,t)

⊗

i

RiE
(s,t)
i Pi − ∑

(s,t) 6=(i,i)

⊗

i

RiD
(s,t)
i Pi.

• Linear restriction for Ri to achieve 1 TR = 1 T.

• Linear or direct interpolation corresponding to ith subsystem for Pi.

Coarse grid operator

• If the coarsest system is small enough solve it directly.

• Otherwise use low-rank methods, e.g., AMEn.



CHAPTER 7
Experimental comparison of

multigrid ingredients

In this chapter, we perform some first numerical tests in order to decide which of
the different ingredients presented in chapter 6 yield the best results for some of
the model problems from section 2.2. The results of these experiments are then
used as guidance to build an optimized multigrid method for further numerical
experiments in chapters 8 and 9, where all model problems (but kanban_control)
are considered and the method is compared to other techniques for computing
the stationary distribution of tensor structured Markov chains.

All tests are performed in MATLAB 2015a using the TT-Toolbox 2.2 [58] on a
Linux PC with 32 GB RAM and an Intel Core i7-4770 processor with four cores
and a clock frequency of 3.4 GHz.

7.1 Implementation details

In chapter 3 we discussed the effect of basic linear algebra operations on the
TT-ranks and motivated that truncation after these operations is necessary. In
our V-cycle, Algorithm 4.2, we therefore need to truncate after line 5, 6, 11 and
12. Recall that multiplying with P or R does not increase the TT-ranks as both
operators have TT-ranks 1. The resulting V-cycle in our tensorized multigrid
method is summarized in Algorithm 7.1.

The truncation function from the TT-Toolbox allows to input the desired trun-
cation accuracy tt_tol as well as the maximum allowed rank tt_maxr . In the
following we want to discuss how these two input parameters should be cho-

91
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Algorithm 7.1: Tensorized multigrid V-cycle
X (`) = TensorMG(F (`),X (`), max_rank)1

if coarsest grid is reached then2

Solve the coarse grid system A(`)X (`) = F (`) in a least squares sense3

else4

Perform νpre sm. steps for A(`)X (`) = F (`) with initial guess X (`)5

Truncate X (`) to maximal TT-rank max_rank6

Compute the residualR(`) ← F (`) − A(`)F (`)7

TruncateR(`) to maximal TT-rank max_rank8

Restrict F (`+1) ← R(`)R(`)9

X (`+1) ← 010

E (`+1) = TensorMG(F (`+1),X (`+1), max_rank)11

Interpolate E (`) ← P(`)E (`+1)12

X (`) ← X (`) + E (`)13

Truncate X (`) to maximal TT-rank max_rank14

Perform νpost sm. steps for A(`)X (`) = F (`) with initial guess X (`)15

Truncate X (`) to maximal TT-rank max_rank16

end17

sen. To keep the complexity low, the TT-ranks should be as small as possible
while at the same time the desired accuracy should be obtainable. Of course we
know neither the maximal rank of the unknown solution nor the maximal rank
which our method needs to compute this solution. Note that these ranks can
differ and clearly the first one is a lower bound for the second one. But the fol-
lowing observation from [35, Section 6.4] allows to deal with the problem easily:
For a fixed maximum rank tt_maxr the method behaves as if it would perform
its operations with a lower machine precision. This tells us that after a certain
accuracy is reached the method would stagnate, indicating that the currently
used rank is too small if the desired accuracy is not reached. We will use this
occurring stagnation to increase tt_maxr. Therefore we start the iteration with
tt_maxr= 15 and increase this value by a factor of

√
2 as soon as we observe

stagnation. To characterize stagnation we compare the residual norms after two
consecutive V-cycles. If they differ by less than ten percent, we interpret this as
a signal of stagnation.

The tt_tol for truncating a tensor X on the fine grid in the kth V-cycle is chosen
via the formula

tt_tol = min{10−3,
10 · ‖X ‖2 · ‖Rk−1‖2

‖Xk−1‖2
}, (7.1)
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where Xk−1 is the iterate from the k− 1st V-cycle and Rk−1 is its residual. The
reasoning behind this is as follows: The factor ‖X ‖2/‖Xk−1‖2 is used to relate
the truncation accuracy to the norm of the iterate from the last V-cycle in order
to take into account that the vectors occurring in the method have largely differ-
ent norms. The factor ‖Rk−1‖2 adapts the truncation accuracy to the approxima-
tion quality reached so far, i.e., the closer the current iterate lies to the solution,
the stricter the accuracy requirement for the truncation is chosen, see [47].

For the initial guess for our experiments we use the nice advantage of the multi-
grid setting that we can cheaply compute the right singular vector correspond-
ing to the smallest singular value of the coarsest grid matrix. This vector can
then be interpolated to the finest grid and can be used as starting vector. Simple
experiments, not reported here, show that this leads to much better results than
using, e.g., a random initial guess or the scaled vector of all ones.

We apply ten pre- and post smoothing steps on each level and for solving the
coarsest grid system we use the Moore-Penrose pseudo inverse which is com-
puted once by the built-in Matlab function pinv and then applied to the coarse
grid right-hand side in each iteration. The reasoning for using the Moore-Penrose
pseudo inverse on the coarsest system is that we cannot guarantee that the
coarsest system is consistent, i.e., that the right-hand side lies in the range of
the coarse grid operator. In this case there is no vector which solves the linear
system exactly and we instead aim for solving it in a least squares sense, which
can be achieved by using the Moore-Penrose pseudo inverse, see [3].

We stop the iteration when the residual norm is smaller by a factor of 10−2 than
the residual norm of the tensor of all ones (scaled so that the sum of its entries
is one). The value of 10−2 might appear to be large at first sight. Note however
that the iterates are scaled such that their entries sum to 1 after each iteration
which means that the 2-norm of the iterates is very small for large problem sizes.
So this value corresponds to a strict absolute accuracy. In addition this value
leads to about the same accuracy as what is demanded for the considered model
problems in [14, 15]. Besides, we stop when our maximal rank is larger than
120, a computation time of 3600 seconds is exceeded or 30 V-cycles have been
performed. In these cases the tests are considered failed.

7.2 Numerical tests for different smoothers and
interpolation operators

To get a first impression of our method we again take the models overflow, sim-
plified_kanban and directed_metab from chapter 2.2 like for testing GMRES in
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Figure 7.1: Number of iterations, running time and maximal rank for model
overflow with mode size n = 17 and varying dimension d.

chapter 4. The focus of the first experiments is on the choice of the smooth-
ing schemes and interpolation operators. First the coarse set is given by using
full coarsening (described in chapter 6.2.1) and we repeat the coarsening process
until every mode size is nc = 3. In our first tests the biggest coarsest system is of
size 37, so the pseudo inverse for solving the least squares problem on the coars-
est grid can still be computed in a reasonable amount of time and therefore no
other coarsening strategy which reduces the dimension is necessary here. Later
on we will look at the different coarsening procedures—which we discussed in
section 6.2—in section 7.3.

Recall that we motivated to use linear interpolation for the restriction operator
R (see chapter 6.3). Therefore on the basis of chapter 6, what remains is to test
the two smoothers (GMRES and approximated Gauss-Seidel (GS) ) and the lin-
ear and direct interpolation approach for P. This results in the following four
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Figure 7.2: Number of iterations, running time and maximal rank for model
simplified_kanban with mode size n = 17 and varying dimension d.

combinations:

• GMRES as smoother and P given via direct interpolation,

• GMRES as smoother and P given via linear interpolation,

• GS as smoother and P given via direct interpolation,

• GS as smoother and P given via linear interpolation.

For approximated Gauss-Seidel we use the AMEn code from [29, 30] which is
implemented in the TT-Toolbox [58] for approximating the action of the inverse
of the lower triangular matrix D + L. We use a maximum number of ten sweeps
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Figure 7.3: Number of iterations, running time and maximal rank for model
directed_metab with mode size n = 17 and varying dimension d.

and terminate the iteration when an accuracy equal to the currently used trun-
cation accuracy is reached. We stress again that AMEn will be discussed in
detail in chapter 9. In order to illustrate the scaling behaviour of the four com-
binations, we first choose a capacity of 16 in each subsystem (i.e., mode sizes
n = 17) in all models and vary the number of subsystems, i.e., the dimension d.
The Figures 7.1–7.3 depict the number of iterations, the computation time and
the maximal used rank of all four combinations for the three considered model
problems. Based on these results, the best combination with respect to compu-
tation time seems to be GMRES with direct interpolation for all problems, even
though the number of V-cycles is less when using GS as smoother with direct
interpolation. The reason for this time increase is that applying (D + L)−1 via
AMEn is too expensive. The problem directed_metab with d = 6 and 7 could
not be solved by both methods which use GS as smoother within one hour. It
is in some cases possible to slightly improve the performance of the methods
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Figure 7.4: Number of iterations, running time and maximal rank for model
overflow with dimension d = 6 and varying mode sizes n.

using GS by tuning the parameters of AMEn (e.g., the number of sweeps), but
due to the large difference in performance in comparison to GMRES (a factor of
more than 10 in terms of running time) this would not change the ranking of the
methods.

Independently of the smoother, direct interpolation performs at least as good as
or better than linear interpolation in all cases. For overflow and simplified_kanban
the difference between both approaches is marginal (except for d = 7 in the
overflow model in case of GS) but for directed_metab the gain in performance is
clearly visible.

The maximal rank used by the different methods does not differ much in all
cases, and although it is not always exactly equal, one cannot observe any par-
ticular pattern in the differences. Therefore one can assume that there is no un-
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Figure 7.5: Number of iterations, running time and maximal rank for model
simplified_kanban with dimension d = 6 and varying mode sizes n.

derlying reason based on the smoother or interpolation, but that the differences
are mostly incidental.

Although the experiments so far show a clear tendency towards direct interpo-
lation and GMRES as a smoother, we want to confirm them by a second series of
experiments in which we vary the mode sizes. Figures 7.4–7.6 show the results
of these experiments. The main differences to the previous tests is that GS fails
for a larger number of test cases, especially when the mode sizes are n = 33.
That AMEn has problems with larger mode sizes is known and was observed
in [47], see also chapter 9 of this thesis. These results also agree with the previ-
ous experiments, in that direct interpolation with GMRES seems to be a good
choice in all cases. Therefore we use this combination in all experiments from
here on (except for the tests involving kanban_control in Section 7.4).
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Figure 7.6: Number of iterations, running time and maximal rank for model
directed_metab with dimension d = 6 and varying mode sizes n.

7.3 Numerical tests for different coarsening
strategies

The next series of experiments depicts different coarsening strategies. Because
of the experiments from section 7.2, we choose GMRES as smoother and com-
pute P via direct interpolation. Besides, from the experiments from chapter 7.2,
we observe that the full coarsening strategy and GMRES as smoother seem to fit
nicely together. The main focus for the choice of the coarsening strategies should
therefore be to get the curse of dimensionality on the coarsest grid under con-
trol. For this, a combination with semi-coarsening seems a sensible choice (see
section 6.2). As mentioned in section 6.2.2, when using semi-coarsening there
exist different choices for the direction in which the coarsening process can be
applied. According to this, there are different ways to combine semi- and full
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coarsening. Besides, the depth where the combination should be applied also
has to be clarified, for this, one should aim at keeping the number of levels as
low as possible while getting rid of the dimension. There are six different coars-
ening strategies which we will test in our next series of experiments. They are
illustrated in detail in Table 7.1. Because of the experiments in section 7.2, we
observed that a reduction of the mode sizes to a value of 3 via full coarsening
seems to be a good choice. To better get the curse of dimensionality under con-
trol, we also want to test how the method behaves if we reduce every mode size
to 2 via full coarsening. This method is labelled full_coarsening, nc = 2. So if we
assume that reducing the mode sizes to 2 delivers a coarsest system which does
not include much information for the finer grids, then there is the opportunity
to reduce only some of the mode sizes to 2 while the others are still reduced to
a size of 3. This delivers a smaller coarsest system than if every mode size is
reduced to 3. Because there is no reference point which and how many of the
mode sizes should be reduced, we choose every other subsystem, starting from
the first. This method is labelled semi_coarsening 2. The coarsening strategies
labelled semi_coarsening 3 and semi_coarsening 4 are more aggressive. They si-
multaneously reduce every mode size to 1, except the first and the last one. The
difference between semi_coarsening 3 and semi_coarsening 4 is that the first and
the last subsystem are preserved through all levels in semi_coarsening 3, while in
semi_coarsening 4 they are reduced to a size of 3 instead. It is also interesting to
consider a method where first only a subset of the subsystems is reduced in size
and afterwards the remaining systems. This is done in the approach labelled
semi_coarsening 1. Thereby we can split the method into two parts, where in the
first part every other subsystem is reduced to size 2 and in the second part the
remaining systems are reduced to size 5. This allows to also test whether it is
reasonable to leave some systems at a larger size than the others.

Figures 7.7 and 7.8 illustrate these experiments for the model overflow. For the
models simplified_kanban and directed_metab we get similar conclusions as for
the model overflow, so that we do not list them here. Besides, we do not show
the needed TT-ranks in our methods for these tests, because they do not differ
noticeably between each other.

Figure 7.7 shows that most of the methods behave in the same way, that means
the number of iterations and the needed time do not differ by much. Espe-
cially the number of iterations lie closely together for all methods, so that the
focus is more on the timings. There the outliers are full_coarsening, nc = 3 and
semi_coarsening 1 for d = 8. For these two methods the sizes of the coarsest
systems are the largest ones compared to the other methods. This size differ-
ence is the reason for the time increase as the computation and application of
the pseudo inverse for solving the least squares problem on the coarsest grid
is much more expensive. If d is even larger than in the tests presented here,
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Coarsening strategies:

full_coarsening, nc = 2

n× n× · · · × n
↓

(dn
2 e)× (dn

2 e)× · · · × (dn
2 e)

↓
...
↓

2× 2× · · · × 2

⇒ no. of levels = log2(n− 1) + 1

full_coarsening, nc = 3

n× n× · · · × n
↓

(dn
2 e)× (dn

2 e)× · · · × (dn
2 e)

↓
...
↓

3× 3× · · · × 3

⇒ no. of levels = log2(n− 1)

semi_coarsening 1 (WLOG d is odd)

n× n× · · · × n× n
↓

(dn
2 e)× n× (dn

2 e)× · · · × n× (dn
2 e)

↓
...
↓

2× n× 2× · · · × n× 2
↓

2× (dn
2 e)× 2× · · · × (dn

2 e)× 2
↓
...
↓

2× 5× 2× · · · × 5× 2

⇒ no. of levels =

(log2(n− 1)− 1)
+(log2(n− 1) + 1)

semi_coarsening 2 (WLOG d is odd)

n× n× · · · × n× n
↓

(dn
2 e)× (dn

2 e)× · · · × (dn
2 e)

↓
...
↓

3× 3× · · · × 3× 3× 3
↓

2× 3× · · · × 2× 3× 2

⇒ no. of levels = log2(n− 1) + 1

semi_coarsening 3

n× n× · · · × n× n
↓

n× (dn
2 e)× · · · × (dn

2 e)× n
↓
...
↓

n× 1× · · · × 1× 1× n

⇒ no. of levels = log2(n− 1) + 2

semi_coarsening 4

n× n× · · · × n× n
↓

(dn
2 e)× (dn

2 e)× · · · × (dn
2 e)

↓
...
↓

3× 3× · · · × 3× 3
↓

3× 2× · · · × 2× 3
↓

3× 1× · · · × 1× 3

⇒ no. of levels = log2(n− 1) + 2

Table 7.1: Different coarsening strategies.
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Figure 7.7: Number of iterations and running time for model overflow with mode
size n = 17 and varying dimensions d for different coarsening strategies.

we would also expect a time increase for the methods full_coarsening, nc = 2
and semi_coarsening 2. At first sight, it thus seems that the methods which get
rid of the curse of dimensionality, namely the methods semi_coarsening 3 and
semi_coarsening 4 work the most efficiently in general (as the performance of
these is only slightly worse than that of the others here and they are not influ-
enced as much by a further increase of d).

However, if we test the methods with a small dimension and ranging mode
sizes, we get a different behaviour, as shown in Figure 7.8. Here we have a
noticeable difference in the number of iterations and a correlation between the
needed time and the number of iterations (so methods which need more itera-
tions also need more computation time). The best behaviour is exhibited by the
method full_coarsening, nc = 3 whereas, as was discussed previously in connec-
tion with Figure 7.7, this method has problems when d is large. Here, the size
of the coarsest system is not problematic. So these tests show that if d is under
control, i.e., computing or applying the pseudo inverse on the coarsest grid can
be done in an acceptable time, methods which want to get rid of the curse of
dimensionality are not necessary.

Altogether, the method semi_coarsening 4 seems to be a good method of choice.
Note that the methods with semi-coarsening strategies do not give a gain in the
iteration number, but only deliver a better time performance. Therefore it is
difficult to give a general suggestion for the best method. The performance of
course depends on the implementation and the machine and thus, depending
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Figure 7.8: Number of iterations and running time for model overflow with di-
mension d = 6 and varying mode sizes n for different coarsening strategies.

on the setting, one method may be favored over the other (depending, e.g., on
how efficient dense matrix operations can be performed versus sparse matrix or
tensor operations).

So in general if d is small, we will prefer the method full_coarsening, nc = 3. From
the tests presented here we would say that d can be considered small in this
sense when d ≤ 7. For the other case we differ between an interval for d where
the method full_coarsening, nc = 2 gives a nice performance and outside the
interval the method semi_coarsening 4 will be the method of choice. In chapter 8
there will be more tests where we also consider models with larger values of d.

7.4 Numerical tests for kanban_control

In the experiments from section 7.2 the approximate Gauss-Seidel smoother did
not perform well. The next series of numerical tests will show different results.
For this we consider the model kanban_control. Recall Figure 2.3 and the fact that
the states of each subsystem in the kanban_control model cannot be arranged into
a one-dimensional graph, see section 2.2.3. Therefore the aggregation approach
described in section 6.2.3 will be used. In the experiments in section 7.2 we ob-
served that using Gauss-Seidel as smoother is too expensive, where the main
cost comes from computing the action of (D + L)−1 via AMEn. To alleviate
the time increase due to Gauss-Seidel, we will use approximated Gauss-Seidel
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Figure 7.9: Number of iterations, running time and maximal rank for model
kanban_control with number of waiting seats k = 5 and varying dimension d.

as smoother only on the first level of our multigrid hierarchy in our next se-
ries of experiments, and GMRES on the other levels. We denote this method
as gs+gmres+aggregation in the following experiments. We compare this hybrid
method with a method where we use GMRES as smoother on each level of our
multigrid hierarchy. This method is labelled gmres+aggregation. Note again that
we have to use the aggregation based interpolation, so the tests will focus more
on the efficiency of the smoothers. Like in sections 7.2 and 7.3 we have two
kinds of test series. In the first one we fix the number of waiting seats and vary
the dimension, choosing k = 5 and d = 5, 6, 7, 8. In the second one, we vary
the number of waiting seats (note that this implies that we vary the mode sizes)
and fix the dimension. Here we choose the dimension d = 6 and, k = 3, 5, 9, 17
waiting seats in each queue.

Recall that the size of the generator matrix of kanban_control is given via the
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d 5 6 7 8
N 333,396 7,001,316 147,027,636 3,087,580,356

Table 7.2: Size of the generator matrix of kanban_control for varying dimensions
d and fixed number k = 5 of waiting seats.

k 3 5 9 17
N 160,000 7,001,316 915,062,500 277,031,690,244

Table 7.3: Size of the generator matrix of kanban_control for varying number k of
waiting seats and fixed dimension d = 6.
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Figure 7.10: Convergence behaviour of gs+gmres+aggregation and gm-
res+aggregation for model kanban_control with d = 5 and k = 5.

formula

(k + 1)2
(
(k + 1)(k + 2)

2

)d−2

.

For illustration, in Tables 7.2 and 7.3 the corresponding problem sizes for the
test cases we consider in this section are shown.

In Figures 7.9 and 7.11 we investigate these experiments by showing the number
of V-cycles, the needed computation time in seconds and the maximal needed
rank. Note that all other implementation details, like for example the stopping
criteria, are chosen as described in section 7.1. Eye-catching are the results where
we vary the dimension d, see Figure 7.2. Here the method gmres+aggregation fails
for all d > 4. For d = 4 the method gmres+aggregation needs 15 iterations, in con-
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Figure 7.11: Number of iterations, running time and maximal rank for model
kanban_control with dimension d = 6 and varying number k of waiting seats.

trast to two iterations for the method gs+gmres+aggregation. Still they both need
about the same computation time, which shows that the Gauss-Seidel smoother
is much more expensive, but also has much better smoothing properties.

The reason for the failure for d ≥ 5 is that the allowed maximal rank is ex-
ceeded. Figure 7.10 shows the convergence plot of both methods for d = 5 and
k = 5. The low convergence rate of gmres+aggregation leads to an unnecessary
rank increase, recall that we increase the rank if two consecutive residual norms
differ by less than 10 percent, which turned out to be a good choice for the other
models. In chapter 9 we will also see that with this value the methods typically
find almost exactly the rank that is necessary for representing the solution for
the desired accuracy. Note that even when allowing both more iterations and a
larger maximum rank, the method using GMRES will still fail for larger prob-
lems as the many unnecessary rank increases will lead to exploding computa-
tion time. This leads to changing parameters even further to make the method
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work for this model. Note that this was not and will not be necessary for any
of the other models, which stresses that the method really struggles with this
model. The method gs+gmres+aggregation however manages to solve all consid-
ered problem instances within the given restrictions, which also shows that the
aggregation based interpolation works well.

In chapter 9 we will argue that AMEn does not work well for larger mode sizes.
So the results for varying mode sizes in Figure 7.11 do not surprise us, namely
that the method gs+gmres+aggregation fails for k ≥ 9, which means a mode size
n ≥ 55 for the inner subsystems. If AMEn fails, then it is clear that the approx-
imated Gauss-Seidel cannot work as well and subsequently the overall multi-
grid method cannot be expected to perform well. Nevertheless the method gm-
res+aggregation fails for even smaller problems. Concerning the comparison of
running time and needed rank between both methods, we again observe the
same behaviour as when varying d.

At first glance the results of this section do not look as promising as the results
of the previous sections 7.2 and 7.3. But they should be seen in the context that
the kanban_control model is known to be extremely difficult to solve. In [47] only
capacities k = 1 were considered and already this problem was reckoned to be
more difficult to solve than, e.g., overflow queueing models.
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Summary of Chapter 7:

Numerical tests for different smoothers and interpolation operators:

• Direct interpolation is better than linear interpolation.

• GMRES is a better smoother than GS in terms of computation time.
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Numerical tests for different coarsening strategies:

• Suggestion: for d ≤ 7, full_coarsening, nc = 3
for d ≥ 8, full_coarsening, nc = 2 or semi_coarsening 4
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Numerical tests for kanban_control

• Aggregation based multigrid approach is reasonable.

• Hybrid GS+GMRES smoother works better than only GMRES.
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CHAPTER 8
Bootstrap AMG

In the previous chapters, the focus was on the computation of stationary dis-
tributions of continuous time Markov chains (CTMCs) (see chapter 2). There,
we have to deal with the curse of dimensionality, which explains the need for
using the low-rank format Tensor Train (see chapter 3). Based on this format, a
tensorized algebraic multigrid method was built. For constructing the ingredi-
ents of the multigrid method, the geometric structure of the models played an
important role.

An alternative is to find a way to get rid of using the geometric structure. This
means that we want to find out whether there is a way to build these ingredients
adaptively, i.e., by the method itself, without additional information provided
from the outside. Here, we will only focus on the entries of the interpolation
operator. In [6, 9] a bootstrap algebraic multilevel approach for discrete time
Markov chains (without tensor structure) was considered and shown to work
efficiently as a preconditioner. One nice advantage of this method, amongst
others, is that the entries of the interpolation operator were built adaptively via
a least squares approach. We will discuss this technique in the following and
develop a specialized bootstrap approach for the tensorized case.

8.1 Least squares based interpolation

Recall that the statement of the strong approximation property (see (5.11)) given
via the condition

‖e− Pec‖2
QA ≤

Ks

‖QA‖2
〈QAe, QAe〉.
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for each e on the fine grid and for a small constant Ks ≥ 0, includes the demand
that the vector e needs to be approximated in the range of P with an accuracy
that is inversely proportional to ‖QAe‖2. Besides, we discussed that the range of
P should lie in a space V spanned by eigenvectors to small eigenvalues of A (re-
call that these were the parts which cause slower convergence of the smoother).

To satisfy these two demands we use the common idea for adaptively construct-
ing suitable transfer operators which is described in [6,9,11,43]. This idea is the
following: Before starting the actual solution process, i.e., iteratively applying
V-cycles until the approximation is good enough, a first so-called setup phase is
performed in which the interpolation operator P is constructed and refined.

After applying a few smoothing steps on a set of random vectors, the parts of
the error belonging to eigenvectors corresponding to smaller eigenvalues dom-
inate (see chapter 4). These smoothed random vectors will then be our first test
vectors. Then we try to compute P so that these test vectors lie (approximately)
in range(P) via a least squares approach, i.e., given a set of normalized test vec-
tors V = {v(k) : ‖v(k)‖2 = 1; k = 1, . . . , r} we solve a weighted least squares
problem of the form

minL(pi,•) =
r

∑
k=1

ωk

(
v(k) − ∑

j∈Ji

(pi,•)j(R̃v(k))j

)2
(8.1)

to determine the non-zero entries pi,j, j ∈ Ji of each row pi,• of P, where Ji ⊂ C
is the index set of the coarse variables from which the ith variable interpolates.
R̃ is a matrix of size nc × n which describes the canonical injection of a vector
onto its coarse grid components, i.e.

r̃k,` =

{
1 k = π−1(`)

0 else

with π−1 from (6.6). This optimization procedure only determines the entries of
P and we assume that the sets Ji are given beforehand. In [6, 11] there is also
an optimization strategy for finding suitable coarse interpolation variables for
solving (8.1). Because of the tensor structure of our models, a general, purely al-
gebraic approach to compute Ji (a set of coarse variables in the neighbourhood
of i) is not sensible, either it would mean to lose the tensor structure or we arrive
at the same result as for full coarsening. Because we determine Ji via the ge-
ometry of our models, an optimization procedure over this set is not necessary
afterwards. The weights ωk are chosen like it was recommended in [6, 9, 11, 43]
as

ωk =
1

‖Ae‖2
2

.
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The idea comes from the spd case. There it is shown that the error components
which cause slower convergence satisfy the inequality ‖Ae‖2 � ‖e‖2, so these
vectors should have the largest weights in the minimization process. In our case
these weights are heuristic, but sensible because our error components have a
similar behaviour, see chapter 4. Another way to motivate these weights is that,
because the matrix Q is unitary, they can equivalently be written as

ωk =
1

‖QAe‖2
2

,

which is a natural choice in light of the strong approximation property.

The approach described above delivers an interpolation operator which fulfils
v(k) ≈ P(R̃v(k)) for the test vectors. Whether this means that P leads to a fast
converging multigrid method of course depends on the choice of those test vec-
tors. In particular, recalling again the strong approximation property, it is de-
sirable that small eigenvectors of A lie close to the range of P. This should be
reflected in the choice of the test vectors, i.e., a test vector should mostly con-
sist of small eigenvectors of A. On the finest level we are not able to compute
an eigenbasis of A, not even a single eigenvector (note that the smallest eigen-
vector of A is the stationary distribution vector we are looking for). Therefore
we can only compute a certain number of small eigenvectors on the coarsest
level which can then be interpolated to the finest grid and hopefully be good
approximations to the small eigenvectors of A.

To be able to use this approach we of course need to have a coarse grid oper-
ator available already. Therefore, a first multigrid hierarchy is built using ran-
dom, smoothed test vectors. Recalling Figures 4.2–4.4, after just a few smooth-
ing steps, the remaining error will consist mostly of small eigenvectors, so that
these test vectors give a reasonable starting point for forming a good interpo-
lation operator. After arriving at the coarsest grid we are able to compute a
certain number of eigenvectors to small eigenvalues of the coarse grid opera-
tor cheaply (details on what one has to take into account for this are given in
the next paragraph). These eigenvectors can be interpolated and used as test
vectors alongside the random, smoothed test vectors in the next setup cycle for
computing a new interpolation operator. In this manner we adaptively obtain
a better interpolation operator, i.e., an interpolation operator which interpolates
the eigenvectors to small eigenvalues more accurately. Thus, iteratively apply-
ing this approach should ideally lead to a constantly improving multigrid hi-
erarchy and thus a faster converging method. In addition, note again that the
eigenvector to the smallest eigenvalue λ = 0 is the solution we are seeking, so as
a further advantage, we should also get a better approximation of our solution
this way, which can then be used as a starting guess for the multigrid method.

A crucial point which still needs to be clarified is how to extract the “correct”
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Algorithm 8.1: BAMG setup, first cycle
Input: A` (A1 = A), T` (T1 = I), test vectors V`

(V1 = {v(k)1 , k = 1, . . . , rpre)}
Output: The set (Λ`,V`) of approximate eigenvectors and values of A
if coarsest grid is reached then1

Determine the r smallest generalized eigenvectors and eigenvalues of2

A`v
(k)
` = λ`T`v

(k)
` , k = 1, . . . , r

else3

for k = 1, . . . , rpre4

Apply smoothing to A`v
(k)
` = 0 with initial guess v(k)`5

end6

Construct P` via least squares interpolation (8.1)7

Construct R` via linear interpolation8

Compute A`+1 ← R`A`P`9

Compute T`+1 ← R`T`P`10

Set V`+1 ← {R̃`v
(k)
` : k = 1, . . . , rpre}11

(Λ`+1,V`+1) = bamg_mle(A`+1, T`+1,V`+1)12

Set (Λ`+1,V`+1)← {(λ(k)
`+1, P`v

(k)
`+1) : k = 1, . . . , r}13

for k = 1, . . . , r14

Apply smoothing to A`v
(k)
` = 0 with initial guess v(k)`15

end16

end17

eigenvector information from the coarse grid matrix Ac = RAP. Our goal is to
find vectors vc such that Pvc is a good approximation to a small eigenvector of
A, i.e., such that

APvc − λPvc ≈ 0, for a small λ.

Similar to the construction presented in chapter 4, we can do so by using a
Galerkin ansatz, demanding that the eigenvector residual is orthogonal to the
range of RT, i.e.,

APvc − λPvc ⊥ range(RT)⇔ Acvc − λRPvc = 0.

So, this approach leads to a generalized eigenvalue problem on the coarsest
level. Note that the value of λ is not affected by this construction, so we have to
compute the generalized eigenvectors to the smallest generalized eigenvalues
of Ac.

So as mentioned before, these generalized eigenvectors computed on the coars-
est grid will be interpolated up to the finer grids and some smoothing steps will
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be applied to them, so that they can be used as test vectors alongside the ran-
dom, smoothed test vectors in the next setup cycle. Algorithm 8.1 summarizes
this whole process for the first setup cycle. The subsequent setup cycles differ
from the first one only in that the approximate eigenvectors from the first setup
cycle are used as test vectors from the beginning on.

8.2 Tensorized bootstrap AMG

We would like to adapt algorithm 8.1 to the TT-format now. The main difficulty
is the part for constructing the interpolation operator via least squares (see line 7
of Algorithm 8.1). Recall that we are not able to compute the interpolation oper-
ator row-wise because of the nature of the model. Besides we also do not want
to compute it this way, because the interpolation operator should fulfil

P =
d⊗

i=1

Pi,

in order to maintain the tensor structure on the next grid (see section 6.3). There-
fore the adaptive construction of P is reduced to the adaptive construction of the
small matrices Pi. Recall that we have two kinds of test vectors,

• the random ones, to which a few smoothing steps have been applied,

• the interpolated approximate eigenvectors from the coarsest grid.

This characterization of the test vectors should be kept in the tensorized case.
However, this is not compatible with the fact that we have to construct the small
matrices Pi, because for generating Pi via the least squares problem (8.1) we need
test vectors of size ni, but we only have test vectors of size n1 × n2 × · · · × nd.
We thus need a method to generate vectors of size ni from a TT-Tensor of size
n1 × n2 × · · · × nd. In the case that we have a TT-Tensor where all TT-ranks are
ri = 1, i = 1, . . . , d, it seems sensible to take the core Xi, which in this case is also
a vector, as test vector for constructing Pi. Unfortunately, our test vectors will
never be of rank 1 because of the smoothing steps which are applied to them and
increase their rank, see chapter 3. A generalization of the rank-1 approach is to
construct the test vector as a linear combination of the columns of the ith core
Xi. In order to also incorporate information from the other cores, we generate
the coefficients of this linear combination from them as follows:

We successively reduce the other cores Xk, k 6= i to scalars by left or right multi-
plication with a vector of all ones. Figure 8.1 illustrates this approach. Note that
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Contract n1 (and therefore also r1):

X1 X2 X3 . . . Xd−2 Xd−1 Xd

n1

r1

n2

r2

n3

r3 rd−3

nd−2

rd−2

nd−1

rd−1

nd

Z

n1

Contract nd (and therefore also rd):

X1 X2 X3 . . . Xd−2 Xd−1 Xd

n1

r1

n2

r2

n3

r3 rd−3

nd−2

rd−2

nd−1

rd−1

nd

Z

n1

Z

nd

Continue until a vector of size n2 is left:

X1 X2 X3 . . . Xd−2 Xd−1 Xd

n1

r1

n2

r2

n3

r3 rd−3

nd−2

rd−2

nd−1

rd−1

nd

Z

n1

Z

nd

Z

n3

Z

nd−2

Z

nd−1

. . .

Figure 8.1: Contraction of a n1 × n2 × · · · × nd TT-Tensor to a vector of size n2
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in the rank-1 case this contraction delivers a multiple of the vector Xi, so it can
be seen as a generalization of what we sketched for the rank-1 case. Still, the ap-
proach is clearly heuristic and it has to be verified in numerical experiments that
the test vectors constructed this way allow to find a good interpolation operator.

All other operations in Algorithm 8.1 can be performed in the tensor format in
the same way as described in the tensorized multigrid method developed in
chapter 6.

8.3 Numerical tests

8.3.1 Implementation details

In the following we want to test the tensorized bootstrap approach described in
section 8.2. In our experiments we name this method Boot. For comparison, we
also test the tensorized multigrid method with direct interpolation (see chap-
ter 6). This method is now labelled Multi instead of gmres + direct_interpolation
(like in chapter 7.2). Until now, the largest dimension we tested was d = 8, while
fixing the subsystem sizes to n = 17, and the largest size of the subsystems was
n = 33, while fixing the dimension to d = 6 (see section 7.3). In this chapter, we
vary the dimension up to d = 11, while fixing n = 17, and the subsystem size
up to n = 129, while keeping d = 6. Because of the curse of dimensionality on
the coarsest grid for both methods, we use the following coarsening strategy for
the tests, based on the experiments from section 7.3: If d ≤ 7, we coarse until
each subsystem is of size 3, otherwise we coarse until each subsystem is of size
2. This way it is guaranteed that the least squares problem on the coarsest grid
can be solved in a reasonable amount of time for all test cases. Recall that the
method semi_coarsening 4 from section 7.3 also appeared to be a good method of
choice when dealing with high dimension. We now label this method Multisemi
in this chapter. Obviously this strategy can also be adapted to the bootstrap ap-
proach in a straightforward way. This adapted method is named Bootsemi. So,
we have four methods to compare. In all methods GMRES is used as smoother.
To focus on the quality of the interpolation operator (recall that this is the main
reason for using bootstrap) we use five pre- and postsmoothing steps instead of
ten as it was the case in the previous experiments (see chapter 7). The starting
rank in the solve process is now increased to 20 instead of 15, because we test
more problems of larger size and can expect a rank increase for these problems.
Apart from that, the parameters are the same as those given in section 7.1.

In the methods Boot and Bootsemi, we perform four setup cycles before starting



116 CHAPTER 8. BOOTSTRAP AMG

17 33 65 129
0

10

20

30

n

it
er

17 33 65 129
10−1

100

101

102

n

ti
m

e
in

se
c.

17 33 65 129

10

20

30

n

m
ax

im
al

ra
nk

Bootsemi Boot Multi Multisemi

Figure 8.2: Number of iterations, running time and maximal rank for model
overflow with dimension d = 6 and varying mode sizes n.

the solve part. In the setup procedure, we apply seven pre- and post smoothing
steps and also use a truncation rank of 20. The choice of seven smoothing steps
is based on the observation (in preliminary numerical tests), that this additional
work invested in the setup leads to an overall more efficient method, because
the quality of the test vectors is increased. Besides, it is possible to perform ad-
ditional setup cycles after each V-cycle, in case that divergence of the method
is observed. If the residual norm after two consecutive V-cycles increased by
more than ten percent, we interpret this as divergence and perform an addi-
tional setup cycle in order to increase the quality of the multigrid hierarchy and
hopefully overcome the divergence this way.

For solving the least squares problem (8.1) we use the Matlab built-in function
lsqlin, which applies the trust-region-reflective algorithm from [22].
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Figure 8.3: Number of iterations, running time and maximal rank for model
overflow_cycling with dimension d = 6 and varying mode sizes n.

8.3.2 Numerical tests for tensorized multigrid and bootstrap
with different coarsening strategies

First, we take a look at the results of the experiments where we vary the mode
sizes n. We illustrate these experiments by presenting the needed number of
V-cycles, computation time and the maximal rank. These results are shown in
Figures 8.2–8.7. Note that the computation time of each method includes the
computation time of its setup procedure as well, which obviously only has a
noticeable effect on the computation time of the bootstrap methods Boot and
Bootsemi. This effect is confirmed by the experiments and will be discussed first
by considering and comparing Boot and Multi. We observe that the iteration
number of Multi and Boot lie closely together for smaller mode sizes (n ≤ 17
or n ≤ 33, depending on the problem), and that for larger mode sizes Boot
often needs much fewer iterations than Multi. To be more precise, for all models
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Figure 8.4: Number of iterations, running time and maximal rank for model
overflow_long with dimension d = 6 and varying mode sizes n.

but diverging_metab the number of V-cycles in the Boot method is less than in
Multi. Although the number of iterations gives evidence of a good performance
of the Boot approach, the computation time of Boot is beaten by Multi for all
experiments with mode sizes n ≤ 33 (the other experiments with n > 33 are
considered later). So the lower number of V-cycles is not enough to compensate
for the computation time of the setup procedure.

Still, the number of V-cycles gives rise to optimism because it shows that the
Boot approach works and delivers a nice convergence. And it should not be
despised that a few problems are solved by the Boot method, but not by Multi
under the requested stopping criteria. This is the case for the model overflow
with mode size n = 129 and for the model overflow_long with mode size n = 65.
Besides, we observe that with larger mode sizes the computation time of Multi
and Boot lie closer together for all models but diverging_metab. For the models
overflow_long and simplified_kanban, the computation times are nearly the same
for the experiments with mode size n = 33, for overflow and overflow_cycling
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Figure 8.5: Number of iterations, running time and maximal rank for model
simplified_kanban with dimension d = 6 and varying mode sizes n.

this happens for n = 65. The reason for this is that these are cases where the
difference of the needed V-cycles in the Multi method is much larger than for
Boot (for example the method Boot needs 8 iterations and Multi needs 21 iter-
ations for the model overflow_long with n = 33). For the model directed_metab
the time performance of Boot is better than that of Multi for the experiment with
mode size n = 65. The reason for this is not a large difference in the number of
the needed iterations, because both methods need 22 iterations, here the adap-
tive rank increase during the method is the cause. The increase occurs earlier in
Multi than in Boot, which also shows that the convergence rate in Boot is better
than in Multi.

Now we also consider the semi-coarsening approaches Multisemi and Bootsemi.
The performance of Multisemi and Bootsemi is the same as that of Multi and
Boot, respectively, in many cases. For the models of the category overflow, Boot
and Bootsemi behave very similarly. For the models directed_metab and diverg-
ing_metab the method Bootsemi fails for all mode sizes n ≥ 17.



120 CHAPTER 8. BOOTSTRAP AMG

17 33 65 129
0

10

20

n

it
er

17 33 65 129
10−1

100

101

102

n

ti
m

e
in

se
c.

17 33 65 129

10

20

30

n

m
ax

im
al

ra
nk

Bootsemi Boot Multi Multisemi

Figure 8.6: Number of iterations, running time and maximal rank for model
directed_metab with dimension d = 6 and varying mode sizes n.

The comparison between Multisemi and Multi is very similar to that between
Bootsemi and Boot. One can again observe that the semi-coarsening approach
works quite well (but not better) for the overflow models and simplified_kanban,
and shows clearly worse performance for the metabolite models (although it
works better than Bootsemi for directed_metab). We stress that the semi-coarsening
strategies (which in our setting were mainly motivated by their potential to cure
the curse of dimensionality) can be expected to perform worse than the other
approaches for d = 6, as the time needed for solving the coarsest grid system
is very small anyway. Therefore, these approaches unnecessarily increase the
number of levels, which typically worsens the convergence rate, without any
real gain.

Concerning the maximal rank that is needed, all four methods behave almost
identically whenever they work well and converge nicely to the solution. The
only (few) major differences that can be observed are in cases where a method
does not work well and unnecessary rank increases occur due to a low conver-
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Figure 8.7: Number of iterations, running time and maximal rank for model
diverging_metab with dimension d = 6 and varying mode sizes n.

gence rate.

Now we are looking how the four methods behave when varying the dimen-
sion d. This series of experiments is shown in Figures 8.8–8.13. The general
trend we can observe from these experiments is again that Boot outperforms
Multi in terms of iteration numbers for almost all problems but diverging_metab.
However this is again not reflected in the time performance, because the setup
procedure for the bootstrap approaches is more expensive than the iterations
which are saved in the solve process.

One notable exception from this observation is the model directed_metab where
Boot outperforms Multi also in terms of computation time for d ≥ 8. One reason
for the time performance is the difference in the ranks, which the methods need.
For d = 9, e.g., the rank needed by Boot is by a factor of two smaller than the
rank needed by Multi. Additionally, it manages to solve the problem for d =



122 CHAPTER 8. BOOTSTRAP AMG

5 6 7 8 9 10 11
0

5

10

d

it
er

5 6 7 8 9 10 11
10−1

100

101

d

ti
m

e
in

se
c.

5 6 7 8 9 10 11
0

10

20

d

m
ax

im
al

ra
nk

Bootsemi Boot Multi Multisemi

Figure 8.8: Number of iterations, running time and maximal rank for model
overflow with mode size n = 17 and varying dimension d.

10 for which Multi fails. Recall that the model directed_metab does not have d
local interactions (but only two instead), so these are the models where direct
interpolation cannot be used to construct all small interpolation matrices Pi, i =
1, . . . , d, so that we had to use linear interpolation in all dimensions but the first
one (see section 6.3). Due to this, one could expect that the adaptive bootstrap
approach can be advantageous, since it does not rely on local structure at all.
The results for the model directed_metab show that this is indeed the case and one
can obtain a significantly better interpolation operator (and thus performance).
Unfortunately, this is not true for diverging_metab. Here all approaches fail at
the latest for d ≥ 8, as Figure 8.13 shows. A possible reason for this may lie in
the structure of the model. Recall that we have two reaction paths, which are
completely independent of each other from one point on. This structure cannot
be represented in a rank-1 interpolation operator.

In order to verify that the bootstrap approach does indeed give a better multi-
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Figure 8.9: Number of iterations, running time and maximal rank for model
overflow_cycling with mode size n = 17 and varying dimension d.

grid hierarchy (i.e., one which gives a better convergence factor) and not just a
better starting guess, we take a closer look at the convergence history of Boot
and Multi for directed_metab with d = 10 in Figure 8.14. One clearly sees that
not only the residual norm at the beginning is smaller for Boot, but also the re-
duction of the residual norm from one iteration to the next. Averaged over all
V-cycles, the convergence factor of Multi is about 0.8256 and the one of Boot is
0.7816.

So summarizing these experiments, we can say that the bootstrap approach
works and delivers a better interpolation and starting guess than Multi in some
cases. In general Multi and Boot are both good methods of choice. Semi-coarsening
strategies should only be used if the full coarsening strategies fail, because the
coarsest system is too large for solving it exactly. The bootstrap approach is par-
ticularly attractive in situations where direct interpolation cannot be applied to
all subsystems and one therefore would use linear interpolation in Multi.
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Figure 8.10: Number of iterations, running time and maximal rank for model
overflow_long with mode size n = 17 and varying dimension d.



8.3. NUMERICAL TESTS 125

5 6 7 8
0

5

10

d

it
er

5 6 7 8
10−1

100

101

102

d

ti
m

e
in

se
c.

5 6 7 8
0

50

100

d

m
ax

im
al

ra
nk

Bootsemi Boot Multi Multisemi

Figure 8.11: Number of iterations, running time and maximal rank for model
simplified_kanban with mode size n = 17 and varying dimension d.
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Figure 8.12: Number of iterations, running time and maximal rank for model
directed_metab with mode size n = 17 and varying dimension d.
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Figure 8.13: Number of iterations, running time and maximal rank for model
diverging_metab with mode size n = 17 and varying dimension d.
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Summary of Chapter 8:

Least squares based interpolation:

• Goal: adaptive computation of interpolation weights.

• Given test vectors v(k), compute P row-wise by least squares approach:

minL(pi,•) =
r

∑
k=1

ωk

(
v(k) − ∑

j∈Ji

(pi,•)j(R̃v(k))j

)2
.

• Two kinds of test vectors: (i) smoothed random vectors,
(ii) gen. eigenvectors of coarse grid matrix.

Tensorized Bootstrap AMG:

• Goal: Adaption of least squares approach to the case P =
⊗d

i=1 Pi.

⇒ Compute each row of each Pi via least squares.

⇒ Test vectors need to be contracted to size ni from n1 × n2 × · · · × nd:

X1 X2 X3 . . . Xd−2 Xd−1 Xd

n1

r1

n2

r2

n3

r3 rd−3

nd−2

rd−2

nd−1

rd−1

nd

Z

n1

Z

nd

Z

n3

Z

nd−2

Z

nd−1

. . .

Numerical Experiments:

⊕ Bootstrap improves convergence behaviour in terms of V-cycles.

	 But this does not always compensate for the cost of the setup.
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• Semi-coarsening approaches are not suitable for all models.





CHAPTER 9
Optimization based low-rank

tensor methods

In chapters 7 and 8 we got a feeling how our tensorized multigrid method
behaves, but by now there is no reference point how the performance of our
method is to be judged in comparison to other methods which also deal with
tensorized problems. This is what we now want to look into. Alternating op-
timization techniques are frequently used to compute approximate solutions
within a low-rank tensor format. We want to motivate this for tensor structured
Markov chain models. First note that the linear system (2.9) can be reformulated
as

min ‖Ax‖2
2 subject to 1 Tx = 1. (9.1)

Interpreting the generator matrix A as a linear operator on Rn1×···×nd and re-
placing x by a TT-Tensor X , we get

min ‖AX‖2
2 subject to 〈X ,1 〉 = 1, X is in TT-format (3.1), (9.2)

where 1 now refers to the n1× · · · × nd tensor of all ones. Using the fact that the
TT-Format is linear in each of the TT-cores, an alternating least square (ALS)
approach is given by successively optimizing one core at a time, while keeping
all other cores fixed.

This chapter will summarize how the optimization of one core can be done in a
TT-representation and will also show the limitations of ALS. These limitations
will be the motivation for the alternating minimal energy (AMEn) method, a
procedure which will also be discussed here. These two procedures are well
discussed in [29, 30], and applied to tensor structured Markov chains in [47].
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Figure 9.1: Illustration of interface matrices for d = 6.

9.1 Alternating least squares

For optimizing one core with respect to (9.2) we need to formulate a subproblem
which performs this task. In [29, 30, 47, 48] the interface matrices

G≤k−1 =
[
X1(i1) · · ·Xk−1(ik−1)

]
∈ R(n1·...·nk)×rk−1 ,

G≥k+1 =
[
Xk+1(ik+1) · · ·Xd(id)

]T ∈ R(nk+1·...·nd)×rk

are defined. This notation should be understood as follows: In G≤k−1, the first
k − 1 cores of the TT-representation of X are grouped together, and all other
cores are left out, and this group (which depends on k− 1 indices) is reshaped
into a matrix. Explicit formulas for efficiently computing these matrices via Kro-
necker products are given in [48, Section 2.1.1]. The corresponding grouping of
cores is illustrated in Figure 9.1.

With help of the interface matrices, the frame matrix

G6=k = G≤k−1 ⊗ Ink−1 ⊗ G≥k+1 (9.3)

is then constructed. The idea is now to vectorize the kth core, denoted by gk (so
gk ∈ Rrk−1nkrk), to achieve

vec(X ) = G6=kgk.

We now insert this relation into (9.1) and obtain

min ‖AG6=kgk‖2
2 subject to 〈G6=kgk,1 〉 = 1.

This problem can be solved by introducing the Lagrange multiplier λ, which
leads to the linear system

[
GT
6=k ATAG6=k ẽ

ẽT 0

] [
gk
λ

]
=

[
0
1

]
, (9.4)
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Algorithm 9.1: Alternating least squares method
Choose initial guess X with TT-ranks r0, . . . , rd1

while stopping criterion not satisfied do2

for k = 1, 2, . . . , d do3

Build G6=k via (9.3) and ẽ = GT
6=k1gk4

Solve the linear system (9.4)5

Reshape gk into a rk−1 × nk × rk tensor X̃k6

Replace Xk by X̃k7

Update Xk and Xk+1 to restore orthonormality8

end9

for k = d− 1, d− 2, . . . , 1 do10

Build G6=k via (9.3) and ẽ = GT
6=k1gk11

Solve the linear system (9.4)12

Reshape gk into a rk−1 × nk × rk tensor X̃k13

Replace Xk by X̃k14

Update Xk and Xk−1 to restore orthonormality15

end16

end17

with ẽ = GT
6=k1gk and 1gk a vector of ones of size rk−1nkrk. To obtain this system,

we used the fact that

‖Ax‖2
2 = ‖A(G6=kgk)‖2

2 = gT
k (G

T
6=k AT AG6=k)gk.

After solving (9.4), the new iterate X is constructed by reshaping gk into its kth
TT-core. An ALS procedure is now given by solving these subsystems for all
different cores. Note that in [47, 48] it is recommended for a full ALS step, also
called ALS sweep, to apply a forward sweep over the TT-cores 1, 2, . . . , d and af-
terwards a backward sweep over the TT-cores d− 1, . . . , 1. In Algorithm 9.1 the
whole ALS procedure is summarized. Recall that in chapter 3 we motivated that
it is advantageous to keep the orthonormality condition of the TT-cores intact,
so after updating a core in the ALS procedure, an orthogonalization procedure
is applied, see, e.g., [47, 48]. Note that in this way the orthonormality of the in-
terface matrices is also ensured in the subsequent optimization step. The ALS
procedure described by Algorithm 9.1 does not include any rank adaptivity. The
needed rank has to been known a priori, because each iterate has again the same
rank as the starting guess. This can be a disadvantage in practice.

AMEn is an extension of ALS, which includes rank adaptivity. Besides, it reaches
faster convergence than ALS by enriching the cores with gradient information,
which we will discuss in the following.
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Algorithm 9.2: Alternating minimal energy method (AMEn)
Choose initial guess X with TT-ranks r0, . . . , rd1

while stopping criterion not satisfied do2

for k = 1, 2, . . . , d do3

Build G6=k via (9.3) and ẽ = GT
6=k1gk4

Solve the linear system (9.4)5

Reshape gk into a rk−1 × nk × rk tensor X̃k6

Compute residual R with TT-cores Ri, i = 1, . . . , d7

Truncate the residual to low (user-specified) rank8

Replace Xk by (X̃k, Rk)9

Update Xk and Xk+1 to restore orthonormality10

end11

for k = d− 1, d− 2, . . . , 1 do12

Build G6=k via (9.3) and ẽ = GT
6=k1gk13

Solve the linear system (9.4)14

Reshape gk into a rk−1 × nk × rk tensor X̃k15

Compute residual R with TT-cores Ri, i = 1, . . . , d16

Truncate the residual to low (user-specified) rank17

Replace Xk by (X̃k, Rk)18

Update Xk and Xk−1 to restore orthonormality19

end20

end21

9.2 Alternating Minimal Energy method (AMEn)

In [29,30], the spd case was considered. In the spd case one exploits the fact that
solving a linear system AX = F (with non-zero right-hand sideF ) is equivalent
to the minimization of the convex quadratic functional

min
X

J(X ) =
1
2
〈X , AX 〉 − 〈F ,X 〉. (9.5)

This formulation has the advantage that the residual R = F − AX is a descent
direction for J(X ). Thus, the idea is to perform a steepest descent step after
solving the subproblem (which in the spd case has a simpler form than in (9.4)).
So AMEn enriches the TT-core locally by gradient information and through this
gradient information an extension of the cores is obtained. For illustrating this
extension in more detail, we consider the case d = 2. The general case d > 2
then follows analogously by applying the case d = 2 to neighbouring cores. The
AMEn method starts with an initial guess of the form X = X1XT

2 with X1 ∈
Rn1×r1 and X2 ∈ Rn2×r1 . Then we optimize the first core X1 by applying the



9.3. COMBINATION OF MULTIGRID AND AMEN 135

first step of the ALS procedure (lines 4–8 for k = 1 in Algorithm 9.1), giving the
new core X̃1. The residual, which is, as mentioned before, equal to the negative
gradient of the objective function, is then given byR = F − AX ≈ R1RT

2 . Then
a steepest descent step is applied to minimize J(X ) from (9.5) which delivers
the new iterate

X + αR ≈
(
X̃1 R1

) (
X2 αR2

)T (9.6)

where the step size is

α =
〈R,R〉
〈R, AR〉 ,

see [29, Section 4.1]. So we expand the TT-cores, and the next step would be to
orthogonalize the first core of the new iterate

(
X̃1 R1

)
and to repeat the whole

process for the second core, where, however, for the ALS part we only take the
part X2 of the second core. Thereby we get an approximationX that is at least as
good as the one obtained from one forward sweep of ALS and at least as good
as one step of steepest descent. The first statement is obvious, the second one
comes from the fact that the part αR2 of the second core would be overwritten
anyway when solving the subproblem for k = 2, so that it can be left out without
sacrificing accuracy, and it is enough to start from X2. Another advantage of
this observation is that it is not necessary to compute the step size α. In [30]
a convergence analysis for the spd case is given and it is concluded that the
practical convergence of AMEn is usually better than that of ALS.

Note that in our case the AMEn procedure is heuristic, simply for the reason that
the residual R = −AX does not have to be a descent direction for the objective
function ‖AX‖2

2. But because of the fact that α = 0 in (9.6) is also a possible
choice for the step size (and therefore the residual information cannot worsen
the approximation quality) and because of the rank adaptivity, the AMEn ansatz
is still preferable over ALS for our models and for comparing to our tensorized
multigrid method. This way, one can start with a very low rank initial guess
(e.g., a tensor of rank one) and let the method find the rank which is needed for
accurately representing the solution. The overall method for arbitrary values of
d is summarized in Algorithm 9.2.

9.3 Combination of multigrid and AMEn

In the following we will investigate the computational costs of AMEn in more
detail, which will then show the limitations of the method. If we afterwards
consider the limitations of our tensorized multigrid method with direct interpo-
lation and full coarsening strategy from chapter 6 again, we will see that there
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are advantages if we combine these two methods. So we will describe this com-
bination and will later be able to confirm that this combination may overcome
the limitations of both methods in some cases in the numerical tests.

9.3.1 Limitations of AMEn and multigrid

In AMEn, a solution of the linear system (9.4) has to be computed in each step.
The size of this system is rk−1rknk + 1 (recall the +1 comes from the additional
restriction to the solution). If we use a direct solver, the cost would be O(r̃6ñ3))

with ñ =
d

max
k=1

nk and r̃ =
d

max
k=1

rk. So if the rank and the mode sizes are large,

the cost would explode. In [8] and [47], it was recommended to use an iterative
solver, for example MINRES [36]. The idea behind this is that even though the
matrix GT

6=k ATAG6=k is not sparse, an efficient matrix-vector multiplication can
be applied because of the Kronecker structure of GT

6=k ATAG6=k. However, it was
observed in [8] and [47] that with increasing mode size the condition number of
the matrix GT

6=k ATAG6=k also increases. As a consequence, MINRES stagnates or
converges very slowly.

Recall that our tensorized multigrid method with full coarsening strategy is lim-
ited to modest values of d, see sections 6.2.1 and 7.3 and especially Figure 7.7.
By now we looked at strategies to get rid of d on the coarsest grid, for example
the combination with semi-coarsening, but it would also be possible to use a
low-rank tensor method like AMEn for solving the coarsest system. The advan-
tage of using AMEn on the coarsest grid is that the mode sizes of the coarsest
grid operator are low, so it can be expected that the subproblems appearing in
AMEn are less expensive to solve in this case.

9.3.2 MultiAMEn

So, we will test how AMEn works when using it for solving the coarsest grid
system. It should be mentioned that we have a residual equation on the coars-
est grid. So the right-hand side is non-zero and there is no apparent reason
to demand that the solution of the coarsest system should have sum 1. So we
adapted AMEn to this situation by ignoring the linear constraint and applying
it to the normal equations

ATAe = ATr.

A schematic version of the resulting method is given as Algorithm 9.3. The pre-
sentation of the algorithm is simplified in some points for improved readability.
For example the truncation tolerance is not explicitly specified.
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Algorithm 9.3: MultiAMEn V-cycle
X (`) = MGAMEn(F (`),X (`), max_rank)1

if coarsest grid is reached then2

Apply AMEn to the normal equations (A(`))T A(`)X (`) = (A(`))TF (`)3

else4

Perform νpre GMRES steps for A(`)X (`) = F (`) with initial guess X (`)5

Truncate X (`) to maximal TT-rank max_rank6

Compute the residualR(`) ← F (`) − A(`)F (`)7

TruncateR(`) to maximal TT-rank max_rank8

Restrict F (`+1) ← R(`)R(`)9

X (`+1) ← 010

E (`+1) = MGAMEn(F (`+1),X (`+1), max_rank)11

Interpolate E (`) ← P(`)E (`+1)12

X (`) ← X (`) + E (`)13

Truncate X (`) to maximal TT-rank max_rank14

Perform νpost GMRES steps for A(`)X (`) = F (`) with initial guess X (`)15

Truncate X (`) to maximal TT-rank max_rank16

end17

But also recall the nice advantage of our tensorized multigrid method that dur-
ing the setup process an initial guess can be constructed cheaply, see section
7.1, by computing the eigenvector of the coarsest grid matrix corresponding to
the eigenvalue zero. This advantage should be kept also in MultiAMEn. One
way is to use AMEn as it was described in Algorithm 9.2 for the coarsest sys-
tem. However, it is in theory not guaranteed that this approach works well,
because of the constraint 〈X ,1 〉 = 1 for the smallest eigenvector of the coarse
grid matrix. In rare cases where the eigenvector is (almost) orthogonal to the
vector of all ones this constraint may thus lead to problems, because scaling the
eigenvector to fulfil this constraint then means to multiply it by a very large
factor. To avoid this problem we use a different strategy in our experiments in
section 9.4, namely we use the same initial guess as in our standard multigrid
method Multi. Of course this is not possible if d is very large, because it requires
the explicit computation of the eigenvector corresponding to the smallest eigen-
value of the coarse grid matrix. If this is not possible one has to use AMEn on
the coarsest grid or another coarsening strategy for the setup, see section 6.2.2.
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Figure 9.2: Number of iterations, running time and maximal rank for model
overflow with mode size n = 17 and varying dimension d.

9.4 Numerical tests

9.4.1 Implementation details

In our next series of experiments we want to test AMEn and MultiAMEn and
compare their performance to that of Multi. Therefore we do the same test as in
section 8.3 and repeat the Multi results for easier reference.

For AMEn, we use the MATLAB implementation of the method described in
[47]1. As suggested in [47] we increase the rank by at most 3 when adding
residual information to each core. The starting guess for AMEn is a tensor of all
ones, scaled to have sum 1. We allow a maximum of 30 iterations, but this value

1The corresponding code was provided to us by Francisco Macedo.
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Figure 9.3: Number of iterations, running time and maximal rank for model
overflow_cycling with mode size n = 17 and varying dimension d.

was never reached in the experiments here, for details see section 9.4.2.

As coarse grid solver in MultiAMEn, we use the MATLAB function amen_solve2
from the TT-Toolbox [58]. We use the default parameters except for the enrich-
ment rank, where we also use 3.

Because MultiAMEn is meant to alleviate the curse of dimensionality on the
coarsest grid we coarse each subsystem to a size of 5 when varying the mode
sizes. In this series of experiments the coarsest system is thus of size 56 = 15,625.
Therefore we get the opportunity to potentially achieve a better convergence
behaviour compared to the method Multi from chapter 6, because we have one
level less in the multigrid hierarchy. Note that the multigrid hierarchy in Mul-
tiAMEn is the same as in Multi except for the missing last level. With the same
number of levels one could of course not expect MultiAMEn to perform better
than the standard multigrid method, as the time for solving the least squares
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Figure 9.4: Number of iterations, running time and maximal rank for model
overflow_long with mode size n = 17 and varying dimension d.

problem on the coarsest system of size 36 is negligible, and so using AMEn as
a coarse solver has no benefit. When varying d we coarse each subsystem to 3.
Therefore the largest coarse system is of size 311 = 177,147.

In [8] we already presented results of similar experiments involving the three
methods. These experiments differ in some points from the ones presented
here, because some of the parameters which are used were changed. So we
use another initial guess for MultiAMEn, the coarsening strategy for Multi and
MultiAMEn is different and the computations were done on another machine.
Nevertheless, the scaling and the qualitative behaviour are similar, although
some iteration numbers and running times differ.
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Figure 9.5: Number of iterations, running time and maximal rank for model
simplified_kanban with mode size n = 17 and varying dimension d.

9.4.2 Numerical tests for AMEn and MultiAMEn

Figures 9.2–9.7 illustrate the behaviour of the methods for varying values of d,
while the mode sizes are fixed to n = 17. We again depict the number of itera-
tions, the running time and the needed maximal rank. Note that the number of
AMEn iterations is mainly given for sake of completeness, but cannot be com-
pared to the number of multigrid iterations as completely different operations
are necessary within these iterations. So the focus of these experiments is on the
running time.

Because of the large number of results we begin by first giving an overview
of the behaviour of each of the methods and then compare the methods and
summarize our findings afterwards as in section 8.3.

We observe that AMEn fails for all models when d ≥ 9 (because of memory
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Figure 9.6: Number of iterations, running time and maximal rank for model
directed_metab with mode size n = 17 and varying dimension d.

constraints). It is also apparent that AMEn has a superlinear time increase for
growing d in the experiments, for example in Figure 9.2. The reason for this
mainly is that already n = 17 is a mode size which is often too large for AMEn.
Recall that solving the subproblems (9.4) in AMEn consumes most of the run-
ning time and that the size of these subproblems depends on the mode sizes
of the model. So these results are not very surprising and are in line with the
experiments in [8].

The two models for which AMEn worked particularly badly are simplified_kanban
and directed_metab, see Figures 9.5 and 9.6. For simplified_kanban the reason for
this are the very high ranks which are needed for accurately representing the so-
lution. Because the subproblem size depends quadratically on the ranks, these
sizes get too big even for d = 5. The reason for directed_metab is the low conver-
gence rate of AMEn for this model. Thus, many iterations were performed and
the rank was unnecessarily increased by the enrichment steps. For overflow and
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Figure 9.7: Number of iterations, running time and maximal rank for model
diverging_metab with mode size n = 17 and varying dimension d.

overflow_cycling the needed ranks are smaller and so AMEn behaves better for
these models than for the others, as can be seen from Figures 9.2 and 9.3.

The targeted better convergence of MultiAMEn, due to the lower number of
levels in the multigrid hierarchy (for d ≥ 8) can unfortunately not be observed
for most of the models. Instead, we observe the following: In many cases almost
the same results as for Multi are obtained. In some experiments, however, it can
be observed that MultiAMEn needs significantly more iterations (and therefore
also more computation time) than Multi, see for example Figure 9.3, d = 10.
The reason for this is that the convergence rate degrades, because the coarsest
system is not solved accurately enough by AMEn. On the other hand for the
model diverging_metab (see Figure 9.7) MultiAMEn clearly outperforms the other
methods. Here the lower number of levels in comparison to Multi seems to play
an important role for the convergence rate of the method MultiAMEn.



144 CHAPTER 9. OPTIMIZATION BASED LOW-RANK TENSOR METHODS

17 33 65 129
0

10

20

30

n

it
er

17 33 65 129
10−1

100

101

102

n

ti
m

e
in

se
c.

17 33 65 129

10

20

n

m
ax

im
al

ra
nk

AMEn MultiAMEn Multi

Figure 9.8: Number of iterations, running time and maximal rank for model
overflow with dimension d = 6 and varying mode sizes n.

Now we look at the experiments where we vary the mode size while keeping
d = 6 fixed. Figures 9.8–9.13 illustrate the results of these tests. Again the itera-
tion number, the computation time and the needed maximal rank are presented.

We first describe the behaviour of the method AMEn and observe that it fails for
n ≥ 33 for all models. This is again based on the fact that larger subproblems
cause running times which exceed 3600 seconds or memory demands beyond
the size of main memory. As in the previous series of experiments, the perfor-
mance is especially bad for the models simplified_kanban and directed_metab, see
Figures 9.11 and 9.12.

Although we have a lower number of levels (recall for these experiments we
coarse every subproblem to 5 instead of 3) MultiAMEn does not perform better
than Multi. For the three overflow models and simplified_kanban, both multigrid
methods behave virtually identically, with the exception that MultiAMEn fails
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Figure 9.9: Number of iterations, running time and maximal rank for model
overflow_cycling with dimension d = 6 and varying mode sizes n.

to solve overflow and overflow_cycling for n = 65 within the maximum allowed
number of iterations because its speed of convergence was slightly worse than
that of Multi, which solved those problems after exactly 30 iterations. For di-
rected_metab and diverging_metab (see Figures 9.12 and 9.13) MultiAMEn fails for
n ≥ 33. For directed_metab this can be explained by the poor performance of
AMEn for this model even for small mode sizes. For diverging_metab this be-
haviour is surprising and cannot fully be explained. In [8] this problem is not
reported, and in further experiments not reported here we could also achieve
convergence by altering some of the parameters of the coarse grid solver (e.g.,
increasing the enrichment rank to 5, lowering the tolerance by a factor of 100 and
doubling the number of allowed sweeps led to convergence for all n ≤ 65 and
d = 6). These altered parameters however led to worse convergence behaviour
for other models. So as mentioned in [8] the problem-dependent tuning of the
parameters in AMEn is also an important issue.
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Figure 9.10: Number of iterations, running time and maximal rank for model
overflow_long with dimension d = 6 and varying mode sizes n.

Summarizing, we have the following observation: AMEn is not suitable for
models with larger mode sizes, but it is the method of choice for smaller ones.
For example, in [47] it is shown that AMEn converges rapidly for the model over-
flow_long with n = 2 and d = 24. In this situation a multigrid method cannot be
used because the mode sizes cannot be reduced further. So both approaches are
complementary in the sense that their application areas are very different.

Concerning the comparison of Multi and MultiAMEn, we cannot give a univer-
sal advice on which method to prefer. For most of the test cases, the performance
of both methods was very similar, and for the few cases in which the perfor-
mance differed, sometimes Multi showed better results, and sometimes Multi-
AMEn did. One big difference between both methods is that the performance
of MultiAMEn depends on a lot of parameters, and the best values are very
problem-dependent. A suboptimal choice of these parameters may even lead to
divergence of the method. Such problems do not occur for Multi, which is thus
preferable if the user has no detailed knowledge of the model to be solved.
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Figure 9.11: Number of iterations, running time and maximal rank for model
simplified_kanban with dimension d = 6 and varying mode sizes n.

We did not discuss the needed ranks of the methods so far, because there is
almost no difference between them. This can be seen as a sign that the ranks
are really needed for representing the solution and not only when performing
the methods. This is an indicator that conceptually all three methods are well
suited for tensor structured Markov chains.
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Figure 9.12: Number of iterations, running time and maximal rank for model
directed_metab with dimesnion size d = 6 and varying mode sizes n.
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Figure 9.13: Number of iterations, running time and maximal rank for model
diverging_metab with dimesnion size d = 6 and varying mode sizes n.
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Summary of Chapter 9:

AMEn:

• AMEn is an extended alternating least squares approach.

⇒ kth subproblem: solve the linear system
[

GT
6=k ATAG6=k ẽ

ẽT 0

] [
gk
λ

]
=

[
0
1

]
.

⊕ Residual information is added to the cores for rank adaptivity.

	 Cost of solving one subproblem: O(n3r6).

MultiAMEn:

• AMEn struggles with large n, but can deal with large d.

• Multi struggles with large d, but can deal with large n.

⇒ Combination of both methods could overcome their limitations.

Numerical Experiments:

• As was expected, AMEn reaches its limitations quite fast.

• At times, MultiAMEn solves problems where Multi and AMEn fail.
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• In other cases, coarse solution is too inexact and Multi works better.
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CHAPTER 10
Concluding remarks

In this thesis we developed a tensorized multigrid method for high-dimensional
tensor structured continuous time Markov chains. The challenge was keeping
the tensor structure intact on each level of the multigrid hierarchy. Thereby
we looked at different smoothing schemes, transfer operators and coarsening
strategies to fulfil these tasks efficiently. First the geometric structure of the con-
sidered models was decisive for building the multigrid hierarchy. In a first series
of numerical tests we could show which of a variety of smoothers, interpolation
operators and coarsening strategies are promising.

We then extended our method in several ways: We developed an adaptive
method for constructing the interpolation operators by generalizing the boot-
strap AMG approach to tensor structured problems. The difficulty in this was
to find appropriate test vectors for the least squares interpolation within the ten-
sor structure. We therefore introduced a scheme which allows to contract tensor
structured test vectors in a suitable way. In a subsequent series of numerical
tests we could show that this tensorized bootstrap approach is also promising
and was in almost all cases at least as good (in terms of iteration numbers) as the
multigrid method using hand-tailored interpolation operators and even clearly
better in some cases.

For putting the behaviour of our multigrid method into context we compared
it to another state of the art method for solving tensor structured problems,
namely the low-rank method AMEn (alternating minimal energy). Thereby we
observed that the limitations of AMEn and our method motivate to combine
both methods into one method. In a last series of experiments we tested whether
the combined method overcomes the limitations of the individual methods. At
the same time we also compared the behaviour of AMEn to that of our multi-
grid method. The most important conclusion from these experiments is that the
methods developed in this thesis are able to solve high-dimensional problems
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which are completely out of reach for methods like AMEn. However we have
also seen that our approach has problems with models which have a more com-
plicated interaction between the submodels (in particular when the submodels
cannot be arranged into a one-dimensional chain).

Further research topics can be seen in an extension for the tensorized bootstrap
method by generalizing compatible relaxation, a method which generates the
set of coarse variables adaptively, to tensor structured matrices.

Another extension would be to look at rank-k interpolation operators with k >
1, while in this thesis we always used a rank-1 interpolation. This extension
may be useful for problems like diverging_metab, where there are groups of sub-
systems which do not interact with each other. Obviously, rank-k interpolation
would have the disadvantage that the coarse grid matrix would have higher TT-
ranks than the original generator matrix. In addition, more truncation would
need to be done in the solution process. But the higher number of degrees of
freedom may be useful in special cases.

In this thesis we only looked at continuous time Markov chains, but there also
exist tensor structured problems in other fields, for example high-dimensional
partial differential equations which are discretized on a regular grid. An appli-
cation of our method to these models would also be interesting.
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