
New Perspectives on
Multi-Objective Knapsack Problems

Dissertation

zur Erlangung des Doktorgrades (Dr. rer. nat.)

Fakultät für Mathematik und Naturwissenschaften

Bergische Universität Wuppertal

vorgelegt von

Britta Schulze

Wuppertal, Januar 2017

Die Dissertation kann wie folgt zitiert werden:

urn:nbn:de:hbz:468-20170427-094229-0
[http://nbn-resolving.de/urn/resolver.pl?urn=urn%3Anbn%3Ade3Ahbz3A468-20170427-094229-0]

Contents

1 Introduction 5

2 Preliminaries 13
2.1 Multi-objective combinatorial optimization 13
2.2 Knapsack problems . 18

3 Computation of extreme supported points 31
3.1 Definitions . 33
3.2 (mo.0c), weight space, zonotopes, and arrangements of hyperplanes . . . 37
3.3 Efficient computation of extreme supported solutions of (mo.0c) 44
3.4 Efficient computation of extreme supported points of (mo.1c) 71
3.5 Conclusion and further ideas . 89

4 Bi-dimensional knapsack problems with a soft constraint 91
4.1 Reformulating constraints as objectives 92
4.2 Dynamic programming algorithm . 93
4.3 Preprocessing and pruning strategies . 95
4.4 Dynamic programming with cuts . 103
4.5 Computational results . 103
4.6 Multi-dimensional knapsack problems with soft constraints 112
4.7 Conclusion and further ideas . 113

5 Rectangular knapsack problems and representative solutions 115
5.1 Quadratic knapsack problems . 116
5.2 Cardinality constrained rectangular knapsack problems 119
5.3 Approximation algorithms . 125
5.4 Computational results . 132
5.5 Hypervolume maximizing representations 133
5.6 Conclusion and further ideas . 138

6 Conclusion 141

Bibliography 143

3

1 Introduction

Imagine the following situation: You are a decision-maker of a large company and have
to decide on the projects that will be realized in the upcoming year. You have a list of
possible projects and reports on the corresponding expected benefits and costs. However,
the company sets a strict limit on the budget. So, you have to decide carefully which
projects you select to maximize the overall benefit while meeting the budget constraint.
In mathematical optimization this example can be modeled as a knapsack problem: Given

a set of items where each item has assigned values of profit and weight (usually positive),
the objective is to select a subset of items that maximizes the profit while a predefined
maximum weight is not exceeded. Due to its simple structure and frequent occurrence in
real-world applications, the knapsack problem has been studied since quite a long time.
In 1975, George Bernard Dantzig (1914 – 2005) introduced the name knapsack problem,
maybe motivated by his example of packing a knapsack or bag for a hike, and, since then,
this name is, in general, used by the optimization community.
We extend our example: The company also limits the available storage area. This

additional constraint complicates the decision since the costs and the required storage
space of a project are, in general, independent of each other.
Two constraints are taken into account, thus, the problem is now a bi-dimensional

knapsack problem. Actually, multi-dimensional knapsack problems were first motivated
by such budget planning scenarios. Additional constraints make the knapsack problem a
particularly challenging problem.
Another extension: The company decides to improve on their sustainability index. So

you also have to take into account the impact of each project on this index to maximize the
overall improvement. This makes the decision even harder since the rating of profitability
and sustainability may be conflicting.
The problem is now a bi-objective bi-dimensional knapsack problem since we take two

objectives into account. The field of multi-objective optimization is concerned with op-
timization problems with multiple objectives. In general, these objectives are conflicting
in the sense that no feasible solution exists that is optimal for each of them. Therefore,
compromise solutions have to be found. A compromise solution is a solution that cannot
be improved with respect to one objective without reducing at least one other objective
function value. In multi-objective optimization these compromise solutions are called non-
dominated, efficient or (Edgeworth-)Parteo optimal. Already in the late 19th century,
Francis Ysidro Edgeworth (1845 – 1926) and Vilfredo Pareto (1848 – 1923) defined the
most common optimality concepts of multi-objective optimization. In many real-world ap-
plications, two or more objective functions are needed to model the optimization problem.

5

Chapter 1 Introduction

Outline of this thesis

In this thesis we consider several extensions of the classical knapsack problem. We treat
multi-objective, multi-dimensional and quadratic knapsack problems, and investigate trans-
formations among them to get new insights on properties of the problems and connections
between them.

• We present interrelations between supported points, the weight space and concepts
from combinatorial geometry. These insights are used to formulate efficient al-
gorithms to compute the set of supported points of multi-objective unconstrained
combinatorial optimization problems as well as of multi-objective knapsack prob-
lems with positive and negative coefficients. The set of supported points provides a
meaningful representation for multi-objective combinatorial optimization problems.

• We analyze the trade-off between constraint satisfaction and objective value by
transforming “soft” constraints of multi-dimensional knapsack problems into objec-
tive functions. For the resulting multi-objective knapsack problem we present an
efficient algorithm that computes the original optimal solution and further efficient
solutions that are “close” to it.

• We introduce rectangular knapsack problems as a special case of quadratic knapsack
problems. Rectangular knapsack problems constitute a completely new concept for
a closed formulation for hypervolume maximization. The optimal solution of the
rectangular knapsack problem is a representative solution of a bi-objective knapsack
problem.

In our studies we use a large variety of methodological tools, including scalarization meth-
ods, combinatorial geometry, dichotomic search, dynamic programming and approximation,
among others. All results are interlinked by taking an inherently multi-objective perspective
on knapsack problems. The thesis is organized in six chapters, where the current intro-
duction constitutes Chapter 1. In the following we describe the content of the remaining
chapters in more detail.

Chapter 2 All notions, definitions and concepts from the literature that will be important
in the remainder of this work are presented in this chapter. It is organized in two parts.
First, we give a short introduction to multi-objective combinatorial optimization which in-
cludes general definitions of multi-objective optimization. In the second part, we present a
literature review on single-objective single-dimensional, multi-objective single-dimensional,
single-objective multi-dimensional, and multi-objective multi-dimensional knapsack prob-
lems, respectively. Structural properties and solution approaches are reviewed. We restrict
ourselves to exact and approximate solution approaches.

Chapter 3 We aim for an efficient procedure that computes the set of extreme supported
points of two variants of the multi-objective knapsack problem. Extreme supported points

6

are extreme points of the convex hull of all points that correspond to efficient solutions.
While knapsack problems are usually considered solely with positive coefficients, we extend
the knapsack model to (intKP) by expanding the domain of objective function coefficients
to integer numbers, i. e., by allowing positive and negative coefficients. This yields new
interesting theoretical insights and is quite reasonable since it is more convenient to model
conflicting objectives as in the case of only positive coefficients. In the first part of the
chapter, we relax (intKP) by removing the capacity constraint. The resulting problem is a
multi-objective unconstrained combinatorial optimization problem (MUCO). We show that
(MUCO) and the corresponding weight space decomposition are interrelated with zono-
topes and arrangements of hyperplanes, which are well-known concepts in combinatorial
geometry. These interrelations reveal that, for a fixed number of objectives, the number of
extreme supported solutions and, therefore, also the number of extreme supported points
of (MUCO) is polynomially bounded with respect to the number of items. Furthermore,
using the structure of the problem, an efficient algorithm for computing these solutions
is formulated. In the second part of the chapter, we review several known algorithms
for computing the set of extreme supported points of (intKP). The newly developed al-
gorithm for (MUCO) can be used as a preprocessing for all of these approaches since a
certain amount of extreme supported points of (MUCO) remains feasible for (intKP). We
present a computational study on tri-objective instances of (MUCO) and of (intKP).

Chapter 4 We consider bi-dimensional knapsack problems where one of the constraints is
soft, i. e., a constraint for which the right-hand side is not precisely fixed or uncertain. We
reformulate these problems as bi-objective knapsack problems where the soft constraint is
relaxed and interpreted as an additional objective function. In this way, a sensitivity anal-
ysis for the bi-dimensional knapsack problem can be performed: The trade-off between
constraint satisfaction, on the one hand, and the original objective value, on the other
hand, can be analyzed. It is shown that a dynamic programming based solution approach
for the bi-objective knapsack problem can be adapted in such a way that a representa-
tion of the nondominated set is obtained at moderate extra cost. In this context, we
are particularly interested in representations of that part of the nondominated set which
is in a certain sense close to the constrained optimum in the objective space. We dis-
cuss strategies for bound computations and for handling negative cost coefficients, which
occur through the transformation. Numerical results comparing the bi-dimensional and
bi-objective approaches are presented.

Chapter 5 In this chapter we introduce the cardinality constrained rectangular knapsack
problem. It is defined by a quadratic objective function, where the coefficient matrix is the
product of two vectors, and a cardinality constraint, i. e., the number of selected items is
bounded. We present structural properties of this particular problem and prove upper and
lower bounds on the optimal objective function value. These bounds are used to formulate
an approximation algorithm. We prove that this algorithm has a polynomial running time
with respect to the number of items and guarantees an approximation ratio of 4.5. We also

7

Chapter 1 Introduction

formulate an improved approximation algorithm and perform computational experiments.
The connection between the cardinality constrained rectangular knapsack problem and
the cardinality constrained bi-objective knapsack problem is analyzed. We show that the
first problem can be used to find a representative solution of the second problem that is
optimal for the hypervolume indicator. Further ideas concerning this concept and possible
extensions are discussed.

Chapter 6 We summarize the results of this thesis in the last chapter. Ideas for further
research are presented at the end of the corresponding Chapters 2, 3 and 4.

Credits

Chapter 2 contains material from a collaborative work with David Willems, Michael Stigl-
mayr, Stefan Ruzika, Luís Paquete, Kathrin Klamroth, Pascal Halffmann, Carlos Fonseca
and José Rui Figueira [see Figueira et al., 2016]. The results on the transformation
from a bi-dimensional to a bi-objective knapsack problem in Chapter 4 were obtained by
a cooperation with Luís Paquete, Kathrin Klamroth and José Rui Figueira [see Schulze
et al., 2017]. Chapter 5 is based on a joint work with David Willems, Michael Stiglmayr,
Stefan Ruzika, Luís Paquete and Carlos Fonseca.

8

Acknowledgement

During my work on this thesis, there happened so many things. Time has passed and it
is, unfortunately, hard to remember every person that supported me, especially with the
sometimes so valuable little things. So, first of all, to everybody who helped me in some
way:

Thank you!

Anyway, there are people who I want to mention:
My special thanks go to my supervisor Kathrin Klamroth: Thank you for giving me this

opportunity, for your support, your advice and your positive energy. I am grateful to Luís
Paquete for being the “Zweitgutachter” of my thesis, for his encouragement and his useful
critiques on this research work. I thank Michael Stiglmayr for spending his time, for his
motivation and for his persnicketiness with LATEX.
I spend a very good time with my former and present colleagues from the Group of

Optimization and Approximation and from the Mathewerkstatt of the university of Wup-
pertal. I thank Jens Wintermayr, Kirsten Wilshaus, Martin Wagner, Andrea Wagner,
Michael Stiglmayr, Teresa Schnepper, Anthony Przybylski, Markus Osenberg, Marco Mi-
lano, Renaud Lacour, Kathrin Klamroth, Markus Kaiser, Margareta Heilmann, Anna-Louise
Grensing, Kerstin Dächert, Magdalena Boos, Peter Beisel and Katharina Baumann for the
pleasant atmosphere and for all the inspiring technical and personal discussions.
My thanks go to the co-authors of two joint publications, to David Willems, Michael

Stiglmayr, Stefan Ruzika, Luís Paquete, Kathrin Klamroth, Pascal Halffmann, Carlos Fon-
seca and José Rui Figueira, for the enjoyable and productive work.
I am thankful for all the journeys that I went on. My thanks go to the friendly hosts,

to Margaret Wiecek, Stefan Ruzika, Anthony Przybylski, Luís Paquete, Xavier Gandibleux,
Carlos Fonseca, José Rui Figueira and Audrey Cerqueus, and to all fellow travelers for
the inspiring and “absolutely fantastic” times in Clemson, Coimbra, Koblenz and Nantes.
Thank you to the DAAD for supporting some of these travels (Project-IDs 57128839 and
57211227).
And of course I want to thank my family and friends for supporting me, motivating me

and also for sometimes distracting me from work.

9

Chapter 1 Introduction

List of abbreviations and notation

(MOCO) multi-objective combinatorial optimization problem

(MUCO), (mo.0c) multi-objective unconstrained combinatorial optimization problem

(mo.dc) multi-objective multi-dimensional knapsack problem with m objec-
tives and d constraints

(mopn...n.1c) multi-objective knapsack problem with positive coefficients in f1
and negative coefficients in all remaining objective functions

(Qo.1c) quadratic knapsack problem

(Ro.1c) rectangular knapsack problem

(_o.Cc) knapsack problem with cardinality constraint

Rn= {y ∈ Rn : yj ≥ 0,∀j = 1, . . . , n}

Rn≥ {y ∈ Rn= : y 6= 0}

Rn> {y ∈ Rn : yj > 0,∀j = 1, . . . , n}
conv(X) convex hull of the set X ⊆ Rn

2X power set of the set X ⊆ Rn

0n (0, . . . , 0)> ∈ Rn

1n (1, . . . , 1)> ∈ Rn

X ⊆ 2{0,1}
n

set of feasible solutions

XE set of efficient solutions

XsE set of supported (efficient) solutions

XeE set of extreme supported (efficient) solutions

Y = f (X) ⊆ Rm set of feasible points

YN set of nondominated points

YsN set of supported (nondominated) points

YeN set of extreme supported (nondominated) points

W̃0 normalized weight space

W0 projected weight space

pji profit of item i in the j-th objective function

p•i (p1
i , . . . , p

m
i)>, vector of profits of item i

w ki weight of item i in the k-th constraint

w •

i (w1
i , . . . , w

d
i)>, vector of weights of item i

W k capacity of the k-th constraint

cW k constraint slackness of the k-th constraint

10

Chapter 3

P polytope

Z zonotope

[u, v] closed line segment with endpoints u, v ∈ Rm, u 6= v

ej j-th unit vector in Rm

diag(β1, . . . , βm) diagonal matrix D with di ,j = 0 for i 6= j and di ,i = βi , for
i , j = 1, . . . , m

h ∈ Rm hyperplane in Rm

h+, h− positive, negative half-space in Rm defined by h

ϕ(k) face of dimension k of an arrangement of hyperplanes in Rm

(k = m: cell; k = m − 1: facet; k = 1: edge; k = 0: vertex)

Pos(λ), Pos(ϕ) position vector of point y , face ϕ

ρ(λ2, . . . , λm) weighted utility of item i

λ0
j,i root weight of item i with respect to fj

Chapter 4

{s̄1, . . . , s̄q} set of extreme supported points sorted in increasing order of s̄ j1
s̄q+1 s̄q +

(
1
−1

)
Sk stage k of a dynamic programming algorithm

S0 {(0, 0, 0)}, initial stage of a dynamic programming algorithm

s = (s1, s2, s3) state of a dynamic programming algorithm

ext(s) set of feasible extensions of state s

extj(s) set of feasible extensions e of state s with s̄ j1 ≤ e1 < s̄ j+1
1

u(s), uj(s) upper bounds on state s

C(f (xα), f (xβ)) search zone defined by f (xα) and f (xβ)

Chapter 5

ρ approximation ratio

P ..= (pi j)i=1,...,n
j=1,...,n

profit matrix with pi j = aibj for i , j = 1, . . . , n

k capacity of cardinality constraint

κ dk/2e
κ bk/2c
U ,L upper, lower bound on objective function value

11

2 Preliminaries

The focus of this thesis is on multi-objective combinatorial optimization (MOCO) and,
more specifically, mainly on the class of knapsack problems. We assume that the reader is
familiar with the basic concepts of linear, combinatorial and multi-objective optimization.
As reference work we refer to, for example, the books of Hamacher and Klamroth [2000],
Nemhauser and Wolsey [1999], and Ehrgott [2005]. In addition, complexity theory is
assumed to be known by the reader. We refer to the book of Garey and Johnson [1979]
for the fundamental concepts.
In this chapter we summarize the notions, definitions and concepts that are relevant for

the remainder of this work and give a short overview about some of the most common
solution approaches. For a more detailed discussion we recommend the surveys of Figueira
et al. [2016], Ehrgott and Gandibleux [2000] and Ulungu and Teghem [1994] on MOCO
problems and the books of Kellerer et al. [2004] and Martello and Toth [1990] on knapsack
problems.

2.1 Multi-objective combinatorial optimization

Given a finite set A = {α1, . . . , αn} of items αi , a combinatorial optimization problem
searches for an optimal combination of items. To be more precise, the goal is to find a
subset of A that is feasible for the problem specific constraints and that optimizes the
objective of the problem.
The optimization problem can refer to different fields of application and, so, the items

represent different objects. For example, A can represent a set of projects and the opti-
mization problem shall find an optimal subset of projects to realize. Another example is
an optimization problem on a graph where the items represent the edges of the graph and
an optimal subset of edges has to be chosen. Throughout this thesis, we equivalently use
the term item for the elements αi of the set A and for the index i of this element.
Combinatorial optimization problems can be modeled by introducing binary decision vari-

ables xi that indicate for each item i if it is part of the chosen subset (xi = 1) or not
(xi = 0). Thus, a subset of A is represented by a vector x = (x1, . . . , xn)> ∈ {0, 1}n. The
vector x is called a solution of the optimization problem.
The set of feasible solutions of a combinatorial optimization problem is denoted by X .

A feasible selection is a subset of the power set of A, thus X ⊆ 2{0,1}
n
. Throughout

this thesis we use the same type of restriction: a capacity constraint. Each item αi
is associated with a weight coefficient wi . A selection is feasible if the sum of weights

13

Chapter 2 Preliminaries

assigned to selected items does not exceed a given threshold, the capacity W , i. e., if

n∑
i=1

wixi ≤ W.

One typical objective function in the field of combinatorial optimization is the sum
objective function. Each item αi has one associated objective function coefficient pi . The
sum objective function f determines the sum of coefficients assigned to selected items:

f (x) =

n∑
i=1

pixi .

The sum objective function is mainly used in the remainder of this thesis.
In multi-objective combinatorial optimization (MOCO) each item αi is associated with

several objective function coefficients pji , j = 1, . . . , m with m ≥ 2. In this way, m objective
functions fj(x) are formulated. The (MOCO)-problem can now be modeled as

vmax
x∈X

f (x) = (f1(x), . . . , fm(x))>. (MOCO)

The image of the feasible set X in the objective space is called the set of feasible points
and is denoted by Y ..= f (X). Let x ∈ X . The solution x is called efficient (or Pareto
optimal) if there is no other solution x̄ ∈ X such that

fj(x) ≤ fj(x̄) for all j = 1, . . . , m with f (x) 6= f (x̄).

The corresponding point f (x) is called nondominated. Let x, x̄ ∈ X . If fj(x̄) ≤ fj(x) for
all j = 1, . . . , m and f (x̄) 6= f (x), then solution x dominates solution x̄ and point f (x)

dominates point f (x̄). The set of efficient solutions is denoted by XE ⊆ X and the set of
nondominated points by YN ⊆ Y.
A solution x ∈ X is called weakly efficient, if there is no other solution x̄ ∈ X such that

fj(x) < fj(x̄) for all j = 1, . . . , m.

Vectors in Rm can be ordered based on varying definitions since there exists no canonical
ordering for m ≥ 2. The concept of efficiency (or Pareto optimality) is based on the
componentwise order : Given two points y1, y2 ∈ Rm, we define

y1 ≤ y2 :⇔ y j1 ≤ y
j
2 for all j = 1, . . . , m, and y1 6= y2.

The concept of weak efficiency is based on the strong componentwise order :

y1 < y2 :⇔ y j1 < y j2 for all j = 1, . . . , m.

Another order of special interest is the lexicographic order. For y1, y2 ∈ Rm:

y1 ≤lex y2 :⇔ y1 = y2 or y j1 < y j2 for j = min{k : y k1 6= y k2 , k = 1, . . . , m}.

14

2.1 Multi-objective combinatorial optimization

Let Sm denote the symmetric group of order m and let π ∈ Sm denote a permutation of
the numbers 1, . . . , m. Let x ∈ X and let fπ(x) ..= (fπ(1)(x), . . . , fπ(m)(x))>. The solution
x is called lexicographically optimal with respect to π if there is no other solution x̄ ∈ X
such that

fπ(x) ≤lex fπ(x̄), with f (x) 6= f (x̄).

It is easy to see that lexicographically optimal solutions are efficient.
The Minkovski-sum of sets A and B in Rm is defined as A+B = {a+b : a ∈ A, b ∈ B}.

Let Rm=
..= {y ∈ Rm : yj ≥ 0, ∀j = 1, . . . , m} denote the non-negative orthant of Rm

and let conv(YN) denote the convex hull of the nondominated set. The nondominated
set of conv(YN), that is {y ∈ conv(YN) : conv(YN) ∩ {y + Rm=} = {y}}, is called the
nondominated frontier [cf. Ehrgott, 2005].
The set of nondominated points YN can be classified into two categories: The set of

supported nondominated points (short: supported points) YsN , where all points y ∈ YsN
are located on the nondominated frontier, and the set of unsupported nondominated points
(short: unsupported points) YuN , with YuN = YN \YsN . Furthermore, the set of supported
points that are also extreme points of conv(YN) is called the set of extreme supported
nondominated points (short: extreme supported points) YeN . Points that are supported
but not extreme are called nonextreme supported nondominated points (short: nonextreme
supported points). The corresponding efficient solutions are called supported efficient
solutions (short: supported solutions), unsupported efficient solutions (short: unsupported
solutions), extreme supported efficient solutions (short: extreme supported solutions),
and nonextreme supported efficient solutions (short: nonextreme supported solutions),
respectively. The set of supported solutions is denoted by XsE , the set of unsupported
solutions is denoted by XuE , and the set of extreme supported solutions is denoted by XeE .
For (MOCO), the set of feasible points Y is compact by definition. Therefore, it is

possible to define upper and lower bounds on the set of nondominated points. The ideal
point yI = (y1

I , . . . , y
m
I)> is defined by the individual maxima of the m objective functions,

i. e.,
y jI

..= max{y j : y ∈ Y} j = 1, . . . , m.

In general, the ideal point yI is no element of Y. Otherwise, i. e., if yI ∈ Y, it dominates
all other feasible points and YN = {yI}. The ideal point is a tight upper bound on YN . The
nadir point yN = (y1

N , . . . , y
m
N)> is defined by the minimal components of all nondominated

points for the m objective functions, i. e.,

y jN
..= min{y j : y ∈ YN} j = 1, . . . , m.

The nadir point is a tight lower bound on YN . The computation of yN is a very difficult
task in general (for m ≥ 3) since it asks for an optimization over the set of nondominated
points.
There exist several techniques for solving (MOCO). We want to introduce two com-

mon scalarization methods: The weighted sum scalarization and the ε-constraint method.

15

Chapter 2 Preliminaries

Scalarization methods are based on the formulation of one or several parametric single-
objective optimization problems that replace the original problem. These problems can be
solved using appropriate (single-objective) solution methods and the parameters usually
allow to compute a (sub-)set of the set of efficient solutions XE of the original problem.

Weighted sum scalarization In this method a weighted sum of the objective functions
of (MOCO) is built such that a single objective problem is generated. Thereby, the feasible
set remains the same, in particular the number of constraints remains equal. Thus, the
problem cannot become more difficult than the multi-objective problem. Gaas and Saaty
[1955] introduced the weighted sum for linear programming problems with two objectives
as the “parametric function”. The weighted sum scalarization is formulated as follows:

max
x∈X

m∑
j=1

λj · fj(x) = 〈λ, f (x)〉 (WS(λ))

where the weights λ are in Rm. It is well-known [Geoffrion, 1968] that for λ ∈ Rm≥ ..=

{λ ∈ Rm : λj ≥ 0, j = 1, . . . , m} every optimal solution of (WS(λ)) is a weakly efficient
solution of the initial problem. For (MOCO) the set of feasible points Y is discrete and
finite. Thus, it holds that for λ ∈ Rm> ..= {λ ∈ Rm : λj > 0, j = 1, . . . , m} every optimal
solution of (WS(λ)) is a supported efficient solution of the initial problem. We call Rm> the
weight space in the remainder of this work. Furthermore, every supported efficient solution
of the initial problem can be found as an optimal solution of (WS(λ)) using appropriate
weights λ ∈ Rm>. But no unsupported solution can be generated by the weighted sum
method, which is its major drawback.
Trivially, the optimal solution of a single objective optimization problem does not change if
the objective function is multiplied by a positive scalar. Hence, the weighted sum objective
function can be transformed so that we obtain a convex combination of the objective
function values fj(x). We define the normalized weight space W̃0 as the simplex

W̃0 ..=

{
λ ∈ Rm> :

m∑
j=1

λj = 1

}
.

Since the sum over all weights λj is fixed, the dimension of the respective affine subspace
is reduced by one to m − 1. We project the normalized weight space on Rm−1

> by setting
λ1

..= 1−
∑m
j=2 λj and introduce the projected weight space W0:

W0 ..=

{
(λ2, . . . , λm) ∈ Rm−1

> :

m∑
j=2

λj < 1

}
.

For bi-objective problems, Aneja and Nair [1979] formulate an approach for generating
all extreme supported points which is based on weighted sum scalarizations. They first
compute both lexicographic maxima y1 and y2, that are then stored in increasing order
with respect to the first objective. Furthermore, a list of “currently” adjacent points is

16

2.1 Multi-objective combinatorial optimization

generated and initialized with the pair (y1, y2). Each pair (y`, yr) in this list is explored
as follows: The weight λ ∈ W0 is generated that yields equal objective function values in
the corresponding (WS(λ)) problem for both points. (WS(λ)) is solved and if, on the one
hand, a new supported point is obtained, it is between y` and yr and the lists are updated,
and if, on the other hand, y` and yr are optimal for (WS(λ)), no extreme supported
point can be between them. The pair (y`, yr) is discarded and the algorithm continues
with the next pair until the list is empty. We describe this dichotomic search in more
detail in Section 4.3.1 and provide a literature review on multi-objective generalizations in
Section 3.4.1.

ε-constraint method In this method one objective function fk , k ∈ {1, . . . , m}, of
the (MOCO) problem is selected as objective function of the parametric problem. All
other objective functions are transformed into constraints of the problem by introducing a
bound on the respective objective function values. Thus, the ε-constraint scalarization is
formulated as follows:

max fk(x)

s. t. fj(x) ≥ εj j = 1, . . . , m, j 6= k

x ∈ X
(ε-C)

where ε ∈ Rm. Note that the component εk is not used in (ε-C). The ε-constraint method
was first introduced in Haimes et al. [1971] [see also Chankong and Haimes, 1983].
It is well-known that, for any ε ∈ Rm, every optimal solution of the ε-constraint problem is
weakly efficient for the initial problem. It is an efficient solution of the initial problem if it
is the unique optimal solution of (ε-C). Furthermore, every efficient solution of the initial
problem can be found by the ε-constraint method for any k ∈ {1, . . . , m} by choosing an
appropriate vector ε ∈ Rm, e. g., for x̄ ∈ XE , ε = f (x̄) would be an appropriate choice.

In general, (MOCO) problems are not efficiently solvable. There exist two main reasons
for that:

1. Most (MOCO) problems are intractable, i. e., the size of the set of nondominated
points |YN | may grow exponentially in the size of the problem instance n. This means
that there exists no polynomial q such that |YN | is bounded by O(q(n)).

2. The computation of unsupported efficient solutions of (MOCO) may be very de-
manding. Scalarization methods that are designed to also compute unsupported
efficient solutions, e. g., the ε-constraint method, often introduce new capacity con-
straints on objective function values to the optimization model. Hence, the resulting
problems are usually NP-hard and not efficiently solvable.

Thus, in practice, the computational effort for computing the whole nondominated set
may be too large or, for a decision-maker, the nondominated set itself may be too large
to come to a decision. In these cases one has to think about alternative approaches. One

17

Chapter 2 Preliminaries

idea is to compute a representative subset of nondominated points. A set R ⊆ YN is
called a representation of YN . We refer to the survey paper of Faulkenberg and Wiecek
[2010] for a detailed introduction to this topic. The set of extreme supported solutions is
a representative subset that can be computed rather easy for (MOCO) compared to the
computation of the whole nondominated set. Another idea is to compute an approximation
of the nondominated set [see, e. g., Papadimitriou and Yannakakis, 2000, Ruzika and
Wiecek, 2005, Vanderpooten et al., 2016]. A set R ⊆ Rm is called an approximation of
YN if no point in R is dominated by another point in R. Of course, a representation is
also an approximation and in the literature the term approximation is often used for both.
The quality of an approximation algorithm can be measured by an approximation factor ρ.

A quality guarantee is given by approximation schemes. For the following multi-objective
definitions see Erlebach et al. [2002].
For ρ ≥ 1, a solution x is called a ρ-approximation of a solution x̄ if

fj(x) ≥
fj(x̄)

ρ
, j = 1, . . . , m.

A set of feasible solutions X ⊆ X is called ρ-approximation of XE if for all x̄ ∈ XE there
exists a solution x ∈ X that is a ρ-approximation for x̄ . An algorithm Bρ that has a
ρ-approximation of XE as output and runs in polynomial time in the size of the input is
called a ρ-approximation algorithm.
A family of algorithms that contains, for every fixed constant ε > 0, a (1 + ε)-

approximation algorithm B1+ε is called a polynomial time approximation scheme (PTAS)
for XE . The family of algorithms is called a fully polynomial time approximation scheme
(FPTAS) for XE if the running time of B1+ε is polynomial in ε−1 and in the size of the
input.

2.2 Knapsack problems

The knapsack problem (1o.1c) is a combinatorial optimization problem. Given a finite
set {1, . . . , n} of items i with assigned profit and weight values pi and wi , respectively,
and a finite capacity W , the 0–1-knapsack problem decides whether or not to include
items. The capacity and profit and weight values are all assumed to be positive integer
and each item can be included at most once. The goal is to maximize the overall profit of
the selected items under the constraint that the overall weight does not exceed the given
capacity. Hence, the model consists of a sum objective function and a capacity constraint:

max f (x) =

n∑
i=1

pixi

s. t.

n∑
i=1

wixi ≤ W

xi ∈ {0, 1}, i = 1, . . . , n.

(1o.1c)

18

2.2 Knapsack problems

In this thesis, we examine knapsack problems with several sum objective functions or
with more than one capacity constraint. Therefore, more generally, we define the multi-
objective multi-dimensional knapsack problem (mo.dc) that consists of m sum objective
functions (objectives) and d capacity constraints (dimensions):

vmax f (x) =
(
f1(x), . . . , fm(x)

)
f (x) = =

(
n∑
i=1

p1
i xi , . . . ,

n∑
i=1

pmi xi

)

s. t.

n∑
i=1

w ki xi ≤ W k , k = 1, . . . , d

xi ∈ {0, 1}, i = 1, . . . , n.

(mo.dc)

For i = 1, . . . , n, the variable xi is set to 1 if item i is included in the knapsack, otherwise
xi is set to 0.
We assume that the number of items n is always larger than the number of objective

functions m and larger than the number of constraints d . The coefficient pji indicates the
profit of item i in objective function fj and all profits pji are defined to be non-negative
integer values, for i = 1, . . . , n and for j = 1, . . . , m. We assume that each item i , for
i = 1, . . . , n, has a non-zero profit pji 6= 0 in at least one objective fj , j ∈ {1, . . . , m}, i. e.,
that the vector of profits

p
•

i = (p1
i , . . . , p

m
i)>

of item i is not equal to the zero vector 0m = (0, . . . , 0)> ∈ Rm. Otherwise, i. e., if
p•i = 0m, item i does not contribute in any objective function and should, therefore, not
be selected for the knapsack. Hence, xi can be preset to 0.
The coefficient w ki indicates the weight of item i in the k-th constraint and all weights w ki

are defined to be non-negative integer values, for i = 1, . . . , n and for k = 1, . . . , d . We
assume that each item i , for i = 1, . . . , n, has a non-zero weight w ki 6= 0 in at least one
constraint, k ∈ {1, . . . , d}, i. e., that the vector of weights

w
•

i = (w1
i , . . . , w

d
i)>

of item i is not equal to the zero vector 0d . Otherwise, i. e., if w
•

i = 0d , item i does not
consume parts of the capacity in any constraint and should, therefore, be selected for the
knapsack. Hence, xi can be preset to 1.
The right-hand side W k indicates the capacity of the knapsack of the k-th constraint,

for k = 1, . . . , d . We assume that W k ∈ Z, for k = 1, . . . , d . To avoid trivial solutions,
we assume for k = 1, . . . , d that

∑n
i=1 w

k
i > W k and that w ki < W k , for i = 1, . . . , n.

Hence, W k has to be non-negative as well. For k = 1, . . . , d , the slackness cW k of a
constraint is defined by

cW k ·
n∑
i=1

w ki = W k .

19

Chapter 2 Preliminaries

Remark 2.1 Throughout the thesis, we classify the different variants of the knapsack prob-
lem by the identifier (Pos1o.Pos2c). The number of sum objective functions is given at
Position Pos1 and the number of capacity constraints is given at Position Pos2. For ex-
ample, (mo.1c) identifies the multi-objective knapsack problem with m objective functions
and one constraint and (2o.2c) identifies the bi-objective bi-dimensional knapsack prob-
lem. Some of the considered problems have additional characteristics that are reflected
by slight adaptions of the classification. These adaptions are declared at the respective
introduction of the models.

In the following we give an overview about structural properties and solution algorithms
known from the literature for four categories of knapsack problems. We start with the
classical knapsack problem (1o.1c) and continue with the two extensions including sev-
eral objectives but only one constraint (mo.1c) or allowing several constraints but only
one objective (1o.dc). Finally, we present the multi-objective multi-dimensional knapsack
problem (mo.dc).
We want to point out that there exists a huge amount of different kinds of variations and

extensions of the knapsack problem in the scientific literature. In the book of Kellerer et al.
[2004] several interesting types of knapsack problems are presented. So, the basic version
(1o.1c) and its multi-objective and multi-dimensional extensions are part of the fascinating
class of knapsack problems. In the remainder of this work we also treat quadratic knapsack
problems and multi-objective unconstrained combinatorial optimization problems. The
latter ones are no knapsack problems by definition but follow the general concept and the
above introduced classification by having m sum objective functions but no constraints.

2.2.1 Single-objective single-dimensional knapsack problems

The (single-objective single-dimensional) knapsack problem (1o.1c) is a classical problem
in combinatorial optimization. (1o.1c), as its multi-objective and/or multi-dimensional
variants, has a wide range of applications, as, for example, in project selection, cargo
loading and capital budgeting, and it appears as a frequent subproblem in more complex
situations such as, for example, network design. As a consequence, it has been very well
studied in the past.
In contrast to its simple structure the knapsack problem is hard to solve. (1o.1c) is NP-

hard and, hence, all of its extensions are NP-hard [Garey and Johnson, 1979]. Therefore,
it is very unlikely to find polynomial algorithms for this class of problems.
However, due to the large amount of research on (1o.1c) and due to its nice structural

properties, the knapsack problem can be solved relatively efficiently. Several solution algo-
rithms have been developed for its solution. Two basic algorithmic concepts for an exact
solution of (1o.1c) are:

Dynamic programming (DP) The idea of DP algorithms is to solve a small subproblem
of (1o.1c) first and iteratively extend this solution until the problem has been examined

20

2.2 Knapsack problems

completely. An extensive introduction to DP can be found in Bellman [1957]. DP is
a well-established algorithmic technique for solving optimization problems which exhibit
Bellman’s Principle of Optimality [Bellman, 1957], which says that optimal solutions of
the overall problem can be easily constructed by extending optimal solutions of smaller
subproblems. Given an optimal solution of (1o.1c) which includes item k , an elimination
of this item leads to a new knapsack instance with items {1, . . . , k − 1, k + 1, . . . , n} and
capacity W −wk . The remaining solution set is obviously an optimal solution for this new
instance. Hence, (1o.1c) satisfies the principle of Bellman.
One possible formulation of a dynamic programming algorithm is the following: The so-
lution process is divided into S stages. For the knapsack problem one stage corresponds
to the decision of fixing one variable. Thus, the number of stages is equal to the number
of variables, S = n. Each stage contains at most T different states corresponding to
solutions of exactly one subproblem. For the knapsack problem, there is one state for
every possible feasible value of the left hand side of the constraint, i. e., for every possible
feasible value of

∑n
i=1 wixi . Overall we obtain at most T = W + 1 states per stage. An

additional, initial stage is defined by the solution that includes no item.
The states in stage k , k = 1, . . . , n, can be evaluated through recursive equations applied
on the states of stage (k − 1) (or on all previously computed states), which retain the
feasibility of each solution. As described before, the recursion is based on iteratively fixing
one additional variable xk to 0 or 1, respectively, leading to new partial solutions that
extend partial solutions from the predecessor states. Bellman’s principle then guarantees
that one optimal solution for each state in stage k can be generated by only using the
optimal solutions of the states in stage (k − 1) (or in all predecessor states, respectively).
Therefore, an overall optimal solution can be computed recursively. For the knapsack
problem, the optimal solution in state t of stage k can be obtained by comparing the value
of state t of stage (k − 1) and pk added to the value of state t − wk of stage (k − 1), if
it exists.
For (1o.1c), DP algorithms can be formulated that take O(nW)-time. So, dynamic pro-
gramming implies pseudo-polynomial running time of solution algorithms for the NP-hard
knapsack problem. Furthermore, (1o.1c) can be solved in polynomial time under smooth
analysis using the DP approach by Nemhauser and Ullmann [1969] [see Beier and Vöcking,
2003, for more details].

Branch-and-bound (BB) BB algorithms focus on the whole set of feasible solutions,
which is divided into smaller subsets during the branching steps. The union of these
subsets still has to constitute the whole set of feasible solutions. During the bounding
steps, bounds are computed for a subset aiming at excluding it from further consideration.
This can be done if the bounds indicate that an optimal solution cannot be an element
of the respective subset. Kolesar [1967] presented the first BB algorithm for (1o.1c) and
numerous approaches have been presented later on in the literature.
The maybe most intuitive upper and lower bound for (1o.1c) are based on the LP-relaxation
of (1o.1c). It is obtained by relaxing the integrality constraint xi ∈ {0, 1} to 0 ≤ xi ≤ 1.

21

Chapter 2 Preliminaries

In contrast to an optimal solution of (1o.1c), an optimal solution of its LP-relaxation can
be obtained rather easily [see Dantzig, 1957]: Each item i can be rated by an efficiency
value ei , which is simply the profit to weight ratio

ei
..=

pi
wi
.

We assume that the items 1, . . . , n are sorted in non-increasing order of the efficiency
values e1, . . . , en. The first (b − 1) items, which have the largest efficiency values, are
selected, i. e., xLP

i
..= 1, for i = 1, . . . , b − 1, until the first item b would violate the

constraint if included entirely, i. e.,

b−1∑
i=1

wi ≤ W and
b−1∑
i=1

wi + wb > W.

Item b is called the break item and is set to xLP
b

..=
(
W −

∑b−1
i=1 wi

)
/wb. All remaining

items are not included, i. e., xLP
i

..= 0, for i = b+ 1, . . . , n. The optimal objective function
value of the LP-relaxation f (xLP) is an upper bound for (1o.1c).
The integral solution xB corresponding to the optimal solution of the LP-relaxation, i. e.,
the solution with xBi

..= 1, for i = 1, . . . , b−1, and xBi
..= 0, for i = b, . . . , n, is called break

solution. The break solution is optimal if
∑b−1
i=1 wi = W , otherwise it can be arbitrarily

bad. However, it provides a lower bound on (1o.1c).
In Section 4.3.2 we present another upper bound introduced by Martello and Toth [1977].
It improves the bound obtained by the LP-relaxation by considering the two cases of
selecting the break item or not.
Another approach for the computation of upper bounds is the introduction of additional
constraints to the LP-formulation. This was first applied by Balas and Zemel [1980]. The
constraints have to be formulated such that, on the one hand, they are redundant for
(1o.1c), but, on the other hand, xLP becomes infeasible. This approach leads to a smaller
optimal LP-solution value that is still an upper bound on (1o.1c). Valid inequalities for the
convex hull of the set of feasible solutions conv(X) can be used to define such constraints.

Balas and Zemel [1980] observed that the optimal solution x∗ and the break solution xB

generally vary in only a few variables and that the corresponding efficiencies are all close
to the efficiency eb. It is somehow intuitive that items with a “high” efficiency are al-
most certainly selected in an optimal solution and that items with a “low” efficiency are
almost certainly not selected. Furthermore, it seems natural that the break item defines a
“medium” efficiency and that all items with a comparable efficiency are crucial for selecting
the optimal subset. The set of these items is called the core.
If an optimal solution x∗ of (1o.1c) is known, the core can be exactly specified. We

assume that the items 1, . . . , n are again sorted in non-increasing order of the efficiency
values. We define:

b ..= max
{
i ∈ {1, . . . , n} : x∗i = 1

}
and

22

2.2 Knapsack problems

b ..= min
{
i ∈ {1, . . . , n} : x∗i = 0

}
.

The core C is given by the set of items C = {b, . . . , b}. All items in H = {1, . . . , b−1} can
be categorized has “highly” efficient and are selected in an optimal solution, i. e., xi = 1,
for i ∈ H. All items in {1, . . . , n} \ C \H = {b + 1, . . . , n} can be categorized has “lowly”
efficient and are not selected in an optimal solution, i. e., xi = 0, for i /∈ C ∪ H. The
problem (1o.1c) can be reduced to the core problem:

max
∑
i∈C

pixi +
∑
i∈H

pi

s. t.
∑
i∈C

wixi ≤ W −
∑
i∈H

wi

xi ∈ {0, 1}, i ∈ C.

For many classes of instances the size of the core is only a small fraction of n. Hence, know-
ing the core considerably simplifies the optimization problem. However, without knowing
an optimal solution in advance, which would render an optimization unnecessary, an ap-
proximated core of sufficient size has to be predefined [see, e. g., Martello and Toth, 1988]
or a predefined core has to be expanded during the solution algorithm if necessary [see,
e. g., Pisinger, 1995].

One of the most efficient algorithms in practice for (1o.1c) was introduced by Martello
et al. [1999]. It is called Combo since it combines several solution concepts. Its gen-
eral structure is based on the Minknap algorithm of Pisinger [1997]. Minknap is an
expanding core algorithm based on dynamic programming that enumerates the smallest
symmetrical core {b − δ, . . . , b + δ} around the break item during the algorithm. Thus,
the computational effort is reduced by keeping the core as small as possible. Furthermore,
the effort for sorting items is also kept small. The break item is found by a partial sorting
and an upper bound test, with a bound that can be obtained at low cost, is applied to an
item to possibly fathom the item before it is sorted. Furthermore, another upper bound
test, with a strong upper bound, is applied to sorted items to possibly fathom them before
adding them to the core. As soon as an item is included in the core, a recursion of the
dynamic programming is executed. Combo measures the hardness of the considered prob-
lem by counting the number of states of the DP. It starts as the Minknap algorithm. If
the number of states exceeds given thresholds, additional techniques are applied to tighten
the upper and lower bounds. Combo and Minknap are very fast in practice. In our
computational studies we use Minknap to solve (1o.1c).

Several further algorithms have been developed in the past for the exact solution of
(1o.1c) and also for computing approximate solutions. An introduction to all of these
ideas is beyond the scope of this thesis. Therefore, we restrict ourselves to the approaches
that are applied extended or generalized in the reminder of this work. We, again, refer to
the book of Kellerer et al. [2004] for further reading.

23

Chapter 2 Preliminaries

2.2.2 Multi-objective single-dimensional knapsack problems

The multi-objective (single-dimensional) knapsack problem (mo.1c) can be defined as:

vmax f (x) =
(
f1(x), . . . , fm(x)

)
f (x) = =

(n∑
i=1

p1
i xi , . . . ,

n∑
i=1

pmi xi

)

s. t.

n∑
i=1

wixi ≤ W

xi ∈ {0, 1}, i = 1, . . . , n.

(mo.1c)

The problem (mo.1c) is the multi-objective extension of (1o.1c) and, thus, inherits its
difficulty. Furthermore, (mo.1c) is, in general, intractable. However, exact solution meth-
ods developed for the single-objective case can be adapted to the multi-objective problem.
Furthermore, the multi-objective structure motivates a new solution concept organized in
two phases.

Dynamic programming (DP) Bellman’s principle of optimality can be extended to multi-
objective optimization problems with additional objective functions f 2, . . . , f m, see Brown
and Strauch [1965]. In this case, instead of one solution/state, there may be several
efficient solutions/states for every possible feasible value of the left hand side of the con-
straint, i. e., for every possible feasible value of

∑n
i=1 wixi . Dominated solutions can be

pruned during the process, see Figure 2.1 for an illustration. We give a more detailed
introduction to DP for (2o.1c) in Section 4.2.
Captivo et al. [2003] apply a DP algorithm on (2o.1c) by transforming it into a bi-objective
shortest path problem over an acyclic network. The DP is based on a labeling algorithm for
multi-objective shortest path problems. Figueira et al. [2013] introduce three variants of
DP approaches that make use of new introduced upper and lower bounds. These are based
on the computation of extreme supported solutions, on the convex relaxation of (2o.1c)
that is solved by a bi-objective simplex algorithm, and on the computation of an upper
bound set for every state. Rong and Figueira [2013, 2014] present several DP approaches
for (2o.1c) that prune states of the DP process using different techniques based on core
approximations, upper bound sets and structural properties of DP applied on (2o.1c).
For (mo.1c) and other versions of multi-objective knapsack problems Klamroth and Wiecek
[2000] give a detailed study of different dynamic programming approaches. Bazgan et al.
[2009b] introduce a DP algorithm that uses several complementary dominance relations
to prune states during the process that cannot lead to nondominated points of (mo.1c).
Figueira et al. [2010] present an algorithm that is based on solving the multiple objective
shortest path problem on an underlying network, cf. Captivo et al. [2003]. The authors
introduce different network models and algorithms for the respective construction.

24

2.2 Knapsack problems

1 5 10 15

1

5

f1

f2

f1

f2 add item k

k − 1 k

t

t − wk

1 5 10 15

1

5

f1

f2

1 5 10 15

1

5

f1

f2

Figure 2.1: For an instance of (2o.1c), this figure illustrates the transformation from states
in stage (k − 1) to states in stage k in a dynamic programming algorithm: The efficient
solutions in stage k , with

∑k
i=1 wixi = t, are obtained from those in stage k − 1, with∑k−1

i=1 wixi = t − wk and
∑k−1

i=1 wixi = t. The symbols and show the nondominated
points corresponding to the respective states. The symbols and show dominated points
in stage k that are filtered out.

Two phase method (2P) Visée et al. [1998] observed in numerical tests that, while
the number of efficient solutions for instances of (2o.1c) grows exponentially with the
number of items, the number of supported solutions often grows only linearly. Furthermore,
applying the weighted sum scalarization, the bi-objective problem reduces to the single-
objective knapsack problem (1o.1c) and, thus, supported solutions are rather easy to
obtain. Hence, the supported solutions can be computed in a first phase and a DP or BB
approach can be applied to compute the unsupported solutions in a second phase. During
the second phase the information obtained in the first phase can be used to improve the
process. This concept is called the two-phase approach.
Visée et al. [1998] present a “breadth first” and a “depth first” BB algorithm for the second
phase of (2P) using the upper bound of Martello and Toth [see Martello and Toth, 1990]
and several fathoming criteria based on the lower bounds that can be defined by the
supported solutions.
Delort and Spanjaard [2010, 2013] use a DP approach in the second phase where one
DP procedure is run for each pair of adjacent supported points (y`, yr). This pair defines
a triangle in the objective space where unsupported points between y` and yr can be,
see Figure 2.2 for illustration. For each state of the DP process an upper bound set is
computed. The state can be pruned if it does not intersect with the triangle defined by y`
and yr . This pruning strategy is quite successful in practice since each triangle is analyzed
individually.

25

Chapter 2 Preliminaries

f1

f2

y`

yr

Figure 2.2: Supported points in the objective space. Each pair of adjacent supported
points (y`, yr) defines a triangle where unsupported points between y` and yr can be.

Further approaches Ulungu and Teghem [1997] present a branch-and-bound algorithm
that is a bi-objective version of the method of Martello and Toth for (1o.1c) [see Martello
and Toth, 1990].
The core concept of the single-objective problem (1o.1c) is based on the definition of the
efficiencies ei that indicate the profit to weight ratios for items i = 1, . . . , n. Including m
objective functions, m efficiency values can be defined for each item of (mo.1c). Since the
objective functions are, in general, conflicting, these values can differ very much from each
other. This makes it complicated to define a core for (mo.1c). However, Gomes da Silva
et al. [2008] present a core concept for (2o.1c) assigning a core to each efficient solution.
They show that also for the bi-objective version the core contains only few variables and
formulate an exact and an approximate method for (2o.1c).
The weighted sum scalarization is generalized to find unsupported nondominated points
of (mo.1c) by Gomes da Silva and Clímaco [2013]. The authors introduce perturbation
terms for each item in each objective function. These perturbations are used to change
the shape of the set of feasible points such that unsupported nondominated points are
shifted to the nondominated frontier of the perturbed problem and can be found using the
weighted sum scalarization. They show that all unsupported nondominated points can be
generated by this approach. However, it is unclear how to define good perturbations and
how to determine that the complete set YN has been found to stop the algorithm.

Safer and Orlin [1995] prove the existence of an FPTAS for (mo.1c). Erlebach et al.
[2002] and Bazgan et al. [2009a] formulate FPTAS for (mo.1c) based on dynamic pro-
gramming. Erlebach et al. [2002] point out that it is important to approximate every
reachable profit value and not only the optimal solution values. The authors partition
the objective space in their approach to prove an approximation guarantee. Bazgan et al.
[2009a] use several dominance relations to discard states during the DP process [see also
the work on exact algorithms in Bazgan et al., 2009b].

26

2.2 Knapsack problems

2.2.3 Single-objective multi-dimensional knapsack problems

The (single-objective) multi-dimensional knapsack problem (1o.dc) can be defined as:

max f (x) =

n∑
i=1

pixi

s. t.

n∑
i=1

w ki xi ≤ W k , k = 1, . . . , d

xi ∈ {0, 1}, i = 1, . . . , n.

(1o.dc)

(1o.dc) is the multi-dimensional extension of (1o.1c) and, thus, inherits its difficulty.
The multi-dimensional knapsack problem was first mentioned in the economical context
of rationing capital [Lorie and Savage, 1955]. Markowitz and Manne [1957] introduce
formulations of several discrete programming problems. They consider multi-dimensional
knapsack problems among others and present a general solution approach which can be
adjusted to different discrete problem structures.
One technique that is frequently used to compute upper bounds for (1o.dc) is the

surrogate relaxation. The problem is relaxed by merging two or several of the constraints.
We assume that we want to merge the first d̄ constraints. As for the weighted sum
scalarization, this is done by a linear combination using non-negative multipliers µk , k =

1, . . . , d̄ . The surrogate relaxed problem (SR(µ)) of (1o.dc) is defined as [see Glover,
1965] :

max
n∑
i=1

pixi

s. t.

d̄∑
k=1

µk

n∑
i=1

w ki xi ≤
d̄∑
k=1

µkW
k

n∑
i=1

w ki xi ≤ W k , k = d̄ + 1, . . . , d

xi ∈ {0, 1}, i = 1, . . . , n.

(SR(µ))

All feasible solutions of (1o.dc) are also feasible for (SR(µ)), thus, for all non-negative
multipliers µ, the optimal solution of (SR(µ)) is an upper bound on (1o.dc). The “best”
choice of multiplier µ is defined by the smallest objective function value of (SR(µ)) that
can be achieved:

min
µ≥0

SR(µ).

This problem is called the surrogate dual problem [see Glover, 1975].
While there are several heuristic approaches for solving bi- or multi-dimensional knapsack

problems, there are rather few exact algorithms. For a review, we refer to Fréville [2004]
and to Puchinger et al. [2010].

27

Chapter 2 Preliminaries

Dynamic Programming (DP) DP algorithms for (1o.1c) can be generalized also to
multi-dimensional problems. Weingartner and Ness [1967] and Nemhauser and Ullmann
[1969] suggest dynamic programming as solution method. The number of stages is still
equal to the number of variables, i. e., S = n. Since the d constraints with their respective
capacities W k have to be taken into account, each stage contains at most

∏d
k=1(W k + 1)

states. Hence, overall we obtain O(n(Wmax)d) states, where Wmax = max{W k : k =

1, . . . , d}. Thus, DP algorithms for (1o.dc) are generally much less efficient in practice
than DP algorithms for (1o.1c), even in the bi-dimensional case. Weingartner and Ness
[1967] also present a “dual” approach where all items are selected and the DP decides about
excluding items or not. During the process items are excluded until feasible solutions are
obtained.

Branch-and-bound (BB) A first BB algorithm for (1o.dc) was given by Thesen [1975].
The algorithm is formulated in a straightforward way and the authors concentrate on the
underlying data structure to save core memory space. Shih [1979] compute upper bounds
for the BB approach in the following way: They define d instances of (1o.1c) including
only the k-th constraint, k = 1, . . . , d . The optimal solution values of the corresponding
LP-relaxations are compared and the minimum value is used as an upper bound. Gavish and
Pirkul [1985] present LP-, Lagrangian-, and surrogate relaxation for (1o.dc) and a com-
bination of the last two. They analyze the theoretical relation between these relaxations
and present extensive computational studies to compare the correspondingly generated
bounds. They also introduce concepts to reduce the problem size before and during the
BB process. Fréville and Plateau [1996] concentrate on the bi-dimensional case. In a pre-
processing phase they apply a problem reduction scheme using, among other strategies,
the surrogate dual. Martello and Toth [2003] also study BB concepts for (1o.dc). They
present improved techniques for computing optimal Lagrangian and surrogate multipliers.
Upper bounds, heuristic approaches and a reduction procedure are combined to formulate
an exact BB algorithm.

Further Approaches Boyer et al. [2010] combine the two above methods. They use
a dynamic programming heuristic that is based on surrogate relaxation and a branch-
and-bound procedure. Boussier et al. [2010] also apply different solution approaches in
a combined multi-level search strategy. The items are sorted in decreasing order w. r. t.
the reduced costs of the non-basic variables in the corresponding LP-relaxations. The
authors use Resolution Search, BB, and a simple Depth First Search (DFS) enumeration,
depending on the level of the current branch. Mansini and Speranza [2012] present a
core algorithm for the multi-dimensional KP. They split the problem into subproblems with
fewer variables and apply a variable fixing algorithm. This procedure is terminated as soon
as the number of non-fixed variables drops below a predefined threshold. The resulting
problems are named restricted core problems. They are solved by partitioning the solution
space into subspaces with a given number of included items and examining these subspaces
using a BB procedure.

28

2.2 Knapsack problems

Gens and Levner [1979] show that there exists no FPTAS for (1o.2c) unless P=NP.
Therefore, a PTAS is the best approximation result one may hope for. Frieze and Clarke
[1984] present a PTAS which is based on the computation of basic feasible solutions of
the LP-relaxation of (1o.dc). An improved version of this PTAS is given by Caprara et al.
[2000].

2.2.4 Multi-objective multi-dimensional knapsack problems

The multi-objective multi-dimensional knapsack problem inherits the difficulties of (mo.1c)
and (1o.dc). Thus, most publications on (mo.dc) are concerned with heuristic methods.
Recently, Lust and Teghem [2012] give a review on existing approaches for (mo.dc).

Branch-and-bound (BB) Florios et al. [2010] extend a multi-objective BB procedure
to the multi-dimensional case. They include several branching heuristics and use the ideal
point for fathoming branches. Cerqueus [2015] introduces a branch-and-cut method for
(2o.2c) that is based on comprehensive studies on all included concepts. The author
presents a computational study on the quality of branching strategies from the literature
and introduces new upper bounds that are based on surrogate relaxation [see also Cerqueus
et al., 2015]. Furthermore, a dynamic branching strategy and valid inequalities are shown.

Further Approaches Laumanns et al. [2006] present an ε-constraint method to solve
multi-objective optimization problems. They present an adaptive scheme to generate
new ε-values during the solution process. Mavrotas et al. [2009] and Mavrotas et al.
[2011] adapt the core concept to solve (2o.dc). The extreme supported points of the
LP-relaxation are computed to define appropriate weight vectors λ of the weighted sum
scalarization for each of these points. One set of core variables is defined for each point
and a subproblem of (2o.dc), only including the core variables, is solved by a multi-objective
BB algorithm. At the end, all “local” sets of nondominated points have to be merged to
obtain the nondominated set of (2o.dc).

Since (mo.dc) includes (1o.dc) as a special case, unless P=NP, also for (mo.dc) there
exists no FPTAS. Erlebach et al. [2002] were the first to present a PTAS for the multi-
objective multi-dimensional knapsack problem. The authors define subproblems, containing
only one of the objective functions, to obtain upper bounds. They also define lower bounds
and use them to define a subspace of the objective space in which an approximate solution
should be found. This is done by solving an LP-relaxation of the problem. The authors also
provide ideas for a more general version where some of the objectives are to be minimized.

29

3 Computation of extreme supported points

The computation of the set of supported points in a first phase followed by the computation
of all efficient points using the precomputed information in a second phase is a successful
concept for (MOCO) problems. As mentioned before, Visée et al. [1998] were motivated
by the results from numerical experiments on (2o.1c) to introduce the two phase method.
The authors observed that the number of supported points usually grows only linearly
with the number of items whereas the number of unsupported points grows exponentially.
There are examples with an exponential number of supported points, see, for example,
Gomes da Silva et al. [2004] and Ehrgott [2005]. It is an open question whether the
number of extreme supported points is bounded which we settle here for one class of
(MOCO) problems.
There are more reasons why extreme supported points play a central role in multi-

objective combinatorial optimization as, for example, that they provide information on
achievable ranges of objective values and, in this way, support the decision making process
and that they are “maximal” in the sense that they all lie on the convex hull of feasible
points and, thus, define a in the same sense “maximal” representation of YN .
In this chapter we present concepts and algorithms for an efficient procedure for the

computation of extreme supported points for two classes of (MOCO) problems. We
start our research with multi-objective unconstrained combinatorial optimization problems
(MUCO). These are (MOCO) problems that consist of m sum objective functions and no
additional constraints. We interpret (MUCO) as a relaxed version of the multi-objective
knapsack problem and introduce our classification for knapsack problems also for (MUCO)
denoting it by (mo.0c).
For knapsack problems, the profit coefficients are, in general, assumed to be non-

negative. For (mo.0c) this assumption is not reasonable. Having only non-negative profit
values, the maximization objectives tend to select all items. This choice is feasible since
no constraint limits the selection and, thus, the problem has one unique optimal solution
corresponding to the selection of all items. We assume that the objective functions are
conflicting which is realized by also allowing negative coefficients. We make this assump-
tion for (mo.0c) as well as for (mo.1c). We show that this allows a new and more general
perspective on (mo.1c).

Remark 3.1 Throughout this chapter we assume that

pji ∈ Z, i = 1, . . . , n, j = 1, . . . , m

for (mo.0c) and for (mo.1c).

31

Chapter 3 Computation of extreme supported points

As a consequence, it would be consistent to extend also the weight coefficients wi , for
i = 1, . . . , n, of (mo.1c) to negative values. However, without loss of generality we assume
that wi ≥ 0, for i = 1, . . . , n. If this is not satisfied, i. e., if wi < 0, for some i = 1, . . . , n,
this means that the capacity of the knapsack grows if the item is selected. We can then
interpret the variable in the way that the item is included and we decide about excluding it
or not. We obtain an equivalent problem with wi ≥ 0, for all i = 1, . . . , n, by substituting
the variable xi by its complement x̄i which is set to 1 if item i is excluded and set to 0 if
it is not excluded. Accordingly, all coefficients have to be replaced by their negative value,
i. e., p̄ji = −pji , for j = 1, . . . , m, and w i = −wi > 0. The capacity has to be increased by
the absolute value of the weight, i. e.,W = W − wi > W .
Ehrgott [2005] proves that (mo.0c) is intractable. Gorski et al. [2011] analyze the

connectedness of efficient solutions in multi-objective combinatorial optimization problems.
They define that two efficient solutions x and x ′ of (mo.0c) are called adjacent iff x and
x ′ differ in exactly one component, i. e., if

∑n
i=1 |xi − x ′i | = 1. The authors show that the

corresponding adjacency graph is non-connected in general whereas it always contains a
connected subgraph, which is the subgraph of supported efficient solutions. Our results
confirm this second result and, furthermore, prove a polynomial bound on the number of
extreme supported solutions for (mo.0c). Liefooghe et al. [2013] present an experimental
analysis on the connectedness of (2o.0c). They call two efficient solutions adjacent if
they differ in exactly one component or if one solution can be obtained from the other by
exchanging two items. All instances of their experimental study are connected with respect
to this definition of adjacency.
We prove the polynomial bound on the number of extreme supported solutions for

(mo.0c) using concepts from combinatorial geometry, namely arrangements of hyperplanes
and zonotopes. Furthermore, we present conditions for the occurrence of nonextreme
supported solutions. Seipp [2013] presents a polynomial bound on the number of extreme
supported points for multi-objective minimum spanning tree problems. The author proves
his result also by using arrangements of hyperplanes. Aissi et al. [2015] study the number
of supported nondominated cuts in graphs and hypergraphs with multiple edge cost func-
tions. They prove a polynomial bound with respect to the number of nodes and edges.
However, their result is based on bounds on the number of approximate global minimum
cuts and not on arrangements of hyperplanes.
The results on (mo.0c) can be applied to improve existing algorithms for computing the

set of extreme supported points of (mo.1c) in the generalized form, i. e., assuming the
profit coefficients to be positive or negative integers. The extreme supported points of
the unconstrained (relaxed) version of (mo.1c) are generated and all points that remain
feasible for (mo.1c) are used as an initial set.
This chapter is structured as follows: In Section 3.1 we introduce definitions that are

necessary for the remainder of this chapter. We present the interrelations between the
multi-objective unconstrained combinatorial optimization problem and concepts from com-
binatorial geometry in Section 3.2. These interrelations are used to prove the polynomial
bound on the number of extreme supported solutions.

32

3.1 Definitions

In Section 3.3 we analyze the properties of (mo.1c) and the relation to the previously
introduced concepts in more detail. To do so we start with the bi-objective case and intro-
duce a first solution algorithm. We generalize the problem specific observations to three
and more objectives and present a case study on tri-objective unconstrained combinatorial
optimization problems with positive coefficients in the first and negative coefficients in
the second and third objective function. This case study leads to the formulation of an
adapted algorithm. Corresponding computational results are presented. Concluding, we
discuss generalizations of the algorithmic concept to problems with arbitrary coefficients
and with an arbitrary number of objectives. We also present how all extreme points of the
convex hull of the set of feasible points can be computed.
An efficient computation of the set of extreme supported points for (mo.1c) is presented

in Section 3.4. At first we survey existing literature on this topic and explain how the
previous results can be used to improve these concepts. In more detail we, again, present
a case study on tri-objective knapsack problems with positive coefficients in the first and
negative coefficients in the second and third objective function. This induces structural
properties of that we take advantage in a solution algorithm. A description of the approach
and computational results are given. We conclude with a summary and further ideas in
Section 3.5.

3.1 Definitions

In this section, we give a short introduction to multi-objective unconstrained combinatorial
optimization problems and present the idea of weight space decomposition. Furthermore,
the studies of this chapter use several concepts from combinatorial geometry. In the
following, we recall the required definitions.

3.1.1 Multi-objective unconstrained combinatorial optimization problems

The multi-objective unconstrained combinatorial optimization problem ((MUCO) or, in
our notation, (mo.0c)) has, similar to (mo.1c), m sum objective functions, but does not
have a capacity constraint:

vmax f (x) =

(
n∑
i=1

p1
i xi , . . . ,

n∑
i=1

pmi xi

)
s. t. xi ∈ {0, 1}, i = 1, . . . , n.

(mo.0c)

We assume that all coefficients pji are integers, for i = 1, . . . , n and for j = 1, . . . , m. For
consistency, also for (mo.0c) we call pji the profit of item i in objective function j .
Ehrgott [2005] prove that (mo.0c) is NP-complete, even for m = 2. However, the

single-objective unconstrained combinatorial optimization problem (1o.0c) can be solved
explicitly.

33

Chapter 3 Computation of extreme supported points

Theorem 3.2 All solutions x with

xi


= 0 if p1

i < 0

∈ {0, 1} if p1
i = 0

= 1 if p1
i > 0

for i = 1, . . . , n, are optimal for (1o.0c) and there exist no further optimal solutions.

Proof. Items with positive coefficients p1
i increase the objective function value of (1o.0c)

and, therefore, they are included in all optimal solutions. Items with negative coefficients p1
i

decrease the objective function value and are not included in any optimal solution. Items
with coefficients p1

i = 0 do not contribute to the objective function value. Those items
lead to alternative optimal solutions because including or not including them results in the
same objective function value.

One important observation is that the decision on one item can be made independently
of the decisions on all other items. Since there is no constraint, the variables are not
interlinked. Certainly, the multi-objective version (mo.0c) is more complicated, but this
independence is preserved. As long as all coefficients of an item i , i = 1, . . . , n, have equal
signs for all objective functions, Theorem 3.2 can still be applied. However, in general, the
objective functions are conflicting and, therefore, the signs of the coefficients differ.

3.1.2 Polyhedra and zonotopes

A set P ∈ Rm is called polyhedron if it is the intersection of finitely many half-spaces. If
P is bounded, it is called polytope. It can be shown that the convex hull conv(A) of a
finite set of points A in Rm is a polytope. Let a be the number of affinely independent
points in P. The dimension dim(P) of P is defined as dim(P) = a − 1.
For a polyhedron P ⊆ Rm, an inequality λy 5 λ0 is called a valid inequality if it is

satisfied for all y ∈ P. A subset ϕ ⊆ P is called a face of P if ϕ = {y ∈ P : λy = λ0} for
some valid inequality λy 5 λ0 of P. It can be shown that a face of a polyhedron is again a
polyhedron. A face is called k-face if it is a polyhedron of dimension k and (m − 1)-faces
are called facets [definitions and results following Wolsey, 1998].
For all binary optimization problems, particularly for (mo.0c) and (mo.dc), the convex

hull conv(Y) of the set of feasible points is a polytope since all variables and, therefore,
the feasible points are bounded. Faces of conv(Y) are called nondominated if they are part
of the nondominated frontier.
A set Z ⊂ Rm is called a zonotope if it is the Minkovski-sum of a finite number of

closed line segments [ui , vi] = {y ∈ Rm : y = ui + µ · (vi − ui), µ ∈ [0, 1]}, with vectors
ui , vi ∈ Rm, ui 6= vi , for i = 1, . . . , n. Zonotopes Z are polytopes.
The center of a zonotope can be generated by summing over the midpoints ȳi of each

line segment, where ȳi = ui + 1
2 · (vi − ui). Zonotopes are centrally symmetric, which

can easily be seen by translating each line segment such that the origin is its midpoint
[definitions and results following Edelsbrunner, 1987].

34

3.1 Definitions

3.1.3 Weight space decomposition

As introduced in Section 2.1, the weighted sum scalarization can be applied to find the
extreme supported solutions of a (MOCO) problem. Benson and Sun [2000] show for
multi-objective linear programming problems that there exists a one-to-one correspondence
between supported solutions and subsets of the projected weight space W0. The weight
space decomposition gives the weight vectors that lead to each efficient basic solution.
Przybylski et al. [2010a] analyze this interrelation for multi-objective integer programming
problems with m objective functions: For a supported point y ∈ YsN , we define

W0(y) ..=
{
λ ∈ W0 : 〈λ, y〉 = min{〈λ, ȳ〉 : ȳ ∈ YeN}

}
which is the subset of weights λ in the projected weight space that define weighted
sum problems for which y is optimal. Note that a weight λ can be assigned to several
setsW0(y) if the corresponding points y realize the minimum value of {〈λ, ȳ〉 : ȳ ∈ YeN}.
The set W0(y) is a polytope and y is an extreme supported point if and only if

dim(W0(y)) = m − 1. Furthermore, for two supported points y and ȳ either the in-
tersection of W0(y) and W0(ȳ) is empty or it is the common face of maximal dimension.
The sets W0(y), for y ∈ YeN , define a decomposition of W0, i. e.,

W0 =
⋃

y∈YeN

W0(y).

All definitions and statements can be done analogously for the weight space Rm> and for
the normalized weight space W̃0.

3.1.4 Arrangements of hyperplanes

A hyperplane h in Rm is defined as the affine hull of m affinely independent points. Given
a finite set of hyperplanes H = {h1, . . . , hn}, the hyperplanes subdivide Rm into connected
polytopes of different dimensions. This is called the arrangement of hyperplanes [see
Edelsbrunner, 1987]. Every hyperplane hi subdivides Rm into two open half-spaces h+

i and
h−i , where the allocation of half-spaces to identifiers h+

i and h−i is arbitrary but fixed and
assumes to be given in the context of a problem instance. For a point λ in Rm we define
the position vector of λ as Pos(λ) = (Pos1(λ), . . . ,Posn(λ)) with

Posi(λ) =


−1 if λ ∈ h−i

0 if λ ∈ hi
+1 if λ ∈ h+

i

for i = 1, . . . , n. Two points are called equivalent if their position vectors are equal. This
defines an equivalence relation on Rm, where the equivalence classes are called faces ϕ of
the arrangement of hyperplanes. Note that the arrangement of hyperplanes is a partition
of Rm and that each point λ is assigned to exactly one face. The set of points belonging to

35

Chapter 3 Computation of extreme supported points

one face is connected and the position vector Pos(ϕ) of face ϕ is set to Pos(ϕ) = Pos(λ),
for an arbitrary point λ in ϕ. A face of dimension k is called a k-face ϕ(k). Furthermore,
a 0-face is called a vertex, a 1-face is called an edge, an (m − 1)-face is called a facet,
and an m-face is called a cell.
Let ϕ(k)

1 and ϕ(k−1)
2 be faces of an arrangement of hyperplanes with dimensions k and

k − 1, respectively, where 1 ≤ k ≤ m. If ϕ(k−1)
2 is contained in the boundary of ϕ(k)

1 ,
then ϕ(k−1)

2 is called a subface of ϕ(k)
1 . If ϕ(k−1)

2 is a subface of ϕ(k)
1 , consequently,

the position vectors Pos(ϕ
(k)
1) and Pos(ϕ

(k−1)
2) differ in positions i ∈ J ⊆ {1, . . . , n},

with |J| ≥ 1, and the corresponding entries in the position vector of ϕ(k−1)
2 are 0, i. e.,

Posi(ϕ
(k)
1) = Posi(ϕ

(k−1)
2) for i ∈ {1, . . . , n}\J and Posi(ϕ

(k−1)
2) = 0 and Posi(ϕ

(k)
1) 6= 0

for i ∈ J. In Figure 3.1 an illustrative example of the above definitions is given. We call a
pair of faces ϕ(`)

0 and ϕ(k)
k−`, with 0 ≤ ` < k ≤ m, adjacent, if there exists a set of faces

{ϕ(`+1)
1 , . . . , ϕ

(k−1)
k−`−1} such that ϕ(`+s)

s is a subface of ϕ(`+s+1)
s+1 , for 0 ≤ s < k − ` − 1.

This implies that ϕ(`)
0 is part of the closure of ϕ(k)

k−`.

−
+

h1

− +

h2

−
+

h3

−

+
h4

Figure 3.1: Arrangement of four hyperplanes in R2 with 10 cells (2-faces), 13 facets/edges (1-
faces), and 4 vertices (0-faces). The highlighted vertex () has the vector (0, 0, 0,+1)> as
position vector and is a subface of the six surrounding facets. The highlighted facet (dashed
line) has the vector (0,−1,−1,+1)> as position vector and is subface of the two neighboring
cells. The highlighted cell (shaded area) has the vector (+1,−1,−1,+1)> as position
vector. The highlighted vertex and cell are adjacent.

An arrangement of n hyperplanes in Rm with m ≤ n is called simple if the intersection
of any subset of m hyperplanes is a unique point and if the intersection of any subset of
(m + 1) hyperplanes is empty. This implies that the position vectors of ϕ(k)

1 and ϕ(k−1)
2 ,

ϕ
(k−1)
2 subface of ϕ(k)

1 , differ in one single position. The arrangement of Figure 3.1 is not
simple, since three hyperplanes, h1, h2 and h3, are intersecting in one point in R2.
In the following, the number of cells of an arrangement of hyperplanes in Rm plays an

important role. Buck [1943] showed that, for simple arrangements and fixedm, the number
of cells is equal to

∑m
i=0

(
n
i

)
. This number is an upper bound for non-simple arrangements.

In general, the number of k-faces is bounded by O(nm) for each k , 0 ≤ k ≤ m.

36

3.2 (mo.0c), weight space, zonotopes, and arrangements of hyperplanes

An arrangement of n hyperplanes in Rm with m ≤ n is called central, if 0m is contained
in every hyperplane. Trivially, unless n is equal to m, central arrangements are not simple
and simple arrangements cannot be central. Zaslavsky [1975] showed that, for central
arrangements in Rm, m fixed, the number of cells is bounded by

2 ·
m−1∑
i=0

(
n − 1

i

)
.

Hence, fixing one central intersection point reduces the number of cells to O(nm−1).
Edelsbrunner [1987] presented an algorithm to compute a graph-based representation of

the whole structure of an arrangement of hyperplanes, i. e., for representing all faces and all
relations between the faces. The algorithm works in O(nm) time, which is asymptotically
optimal since the number of faces is also in O(nm). The space complexity is as large as
the output size. Ferrez et al. [2005] presented a reverse search algorithm that identifies
all cells of a central arrangement of hyperplanes. The authors take advantage of the
centrality of the arrangement to reduce the dimension by one and, hence, work with a
general arrangement in Rm−1. The algorithm has a time complexity of O(nc LP(n,m)),
where c is the number of cells of the arrangement, which is bounded by O(nm−1); LP(n,m)

denotes the complexity for solving a linear program with n inequalities and m variables,
which can be done in polynomial time with interior-point methods [see, e. g., Karmarkar,
1984]. This is, in fact, a weaker bound than for the approach by Edelsbrunner [1987].
However, the space complexity of their algorithm is in O(nm), improving the bound of the
approach by Edelsbrunner. Moreover, the authors argue that their algorithm is easier to
implement.

3.2 Multi-objective unconstrained combinatorial optimization
problems, weight space, zonotopes, and arrangements of
hyperplanes

The multi-objective unconstrained combinatorial optimization problem, the weight space,
zonotopes and arrangements of hyperplanes are related. For a fixed number m of objec-
tive functions, these interrelations reveal a polynomial bound on the number of extreme
supported solutions for (mo.0c) with respect to the number of items n:

Theorem 3.3 The number of extreme supported efficient solutions of (mo.0c) with m
objective functions and n items is bounded by:

|XeE | ≤ 2 ·
m−1∑
i=0

(
n − 1

i

)
,

i. e., for fixed m, (mo.0c) has at most O(nm−1) extreme supported efficient solutions.

37

Chapter 3 Computation of extreme supported points

The proof of Theorem 3.3 is given in the following sections. We show that every
extreme supported solution of (mo.0c) is related to exactly one cell of an associated
central arrangement of hyperplanes. Thus, the result of Zaslavsky [1975] on the bound on
the number of cells of a central arrangement of hyperplanes holds also for the number of
extreme supported solutions of (mo.0c). We use the concept of zonotopes to show the
interrelation of (mo.0c) and arrangements of hyperplanes. The instance of Example 3.4
is introduced for illustration purposes:

Example 3.4

max − x2 + 3x3 + 6x4 − 5x5 + x6

max x1 + 2x2 − 3x3 − 2x4 − x5 + x6

s. t. xi ∈ {0, 1}, i = 1, . . . , 6.

3.2.1 Multi-objective unconstrained combinatorial optimization problems and
zonotopes

Zonotopes and (mo.0c) are related to each other. The LP-relaxation of (mo.0c), where
the constraint is relaxed to x ∈ [0, 1]n, is a link between both concepts. Let YLP be
the set of feasible points of the LP-relaxation of (mo.0c). We show that the set YLP

and the convex hull of the set of feasible points conv(Y) of (mo.0c) are equal. Let
{x1, . . . , x2n} = X = {0, 1}n denote the set of all feasible solutions of (mo.0c). Note that
p•i ∈ Zm is the profit vector of item i , for i = 1, . . . , n, cf. Section 2.2.

conv(Y) =

{ 2n∑
k=1

µk f (xk) :

2n∑
k=1

µk = 1, µk ≥ 0,∀k ∈ {1, . . . , 2n}
}

=

{ 2n∑
k=1

µk

n∑
i=1

xki p
•

i :

2n∑
k=1

µk = 1, µk ≥ 0,∀k ∈ {1, . . . , 2n}
}

=

{ n∑
i=1

(2n∑
k=1

µkx
k
i

)
p
•

i :

2n∑
k=1

µk = 1, µk ≥ 0,∀k ∈ {1, . . . , 2n}
}

(∗)
=

{ n∑
i=1

x̂ip
•

i : x̂i ∈ [0, 1],∀i ∈ {1, . . . , n}
}

= YLP.

The equality in (∗) holds since (mo.0c) is a binary problem and, therefore, all extreme
points of the convex hull of the set of feasible solutions conv(X) are defined by binary
solutions.
For a given instance of (mo.0c), we can define an associated zonotope: For each item i

of (mo.0c), for i = 1, . . . , n, we define a line segment, using the corresponding profit

38

3.2 (mo.0c), weight space, zonotopes, and arrangements of hyperplanes

vectors p•i , as [0, p•i] = {yi ∈ Rm : yi = µp•i , µ ∈ [0, 1]}. The zonotope Z defined by these
line segments is equal to the convex hull of the set of feasible points conv(Y) of (mo.0c):

conv(Y) = YLP =

{ n∑
i=1

x̂ip
•

i : x̂i ∈ [0, 1],∀i ∈ {1, . . . , n}
}

=

{ n∑
i=1

yi : yi ∈ [0, p
•

i],∀i ∈ {1, . . . , n}
}

= Z.

In particular, the extreme points of Z and conv(Y) are equal.

Example 3.5 The zonotope in R2 defined by the line segments

`1 = [(0, 0)>, (0, 1)>], `2 = [(0, 0)>, (−1, 2)>], `3 = [(0, 0)>, (3,−3)>],

`4 = [(0, 0)>, (6,−2)>], `5 = [(0, 0)>, (−5,−1)>], `6 = [(0, 0)>, (1, 1)>]

is equal to the convex hull of the set of feasible points of Example 3.4, see Figure 3.2.

f1

f2

Y

y1

y2

Z `1

`2

`3

`4

`5

`6

Figure 3.2: On the left: set of feasible points Y and its convex hull for Example 3.4. On the
right: associated zonotope Z with line segments `1 to `6 (cf. Example 3.5).

Conversely, for a given zonotope Z, we can define an associated instance of (mo.0c):
For each defining line segment [ui , vi], i ∈ {1, . . . , n}, we define a profit vector p•i = vi −ui
for item i , for i = 1, . . . , n. Additionally, each objective function has a constant term z j =∑n
i=1 u

j
i , for j = 1, . . . , m, and we define z • = (z1, . . . , zm)> =

∑n
i=1 ui . The convex hull

of the set of feasible points conv(Y) of this instance, as well as the corresponding set of
feasible points YLP of the LP-relaxation, is equal to the zonotope Z:

Z =

{ n∑
i=1

yi : yi ∈ [ui , vi],∀i ∈ {1, . . . , n}
}

=

{ n∑
i=1

yi : yi = ui + µi(vi − ui), µi ∈ [0, 1],∀i ∈ {1, . . . , n}
}

39

Chapter 3 Computation of extreme supported points

=

{ n∑
i=1

ui +

n∑
i=1

µi(vi − ui) : µi ∈ [0, 1],∀i ∈ {1, . . . , n}
}

=

{
z
•

+

n∑
i=1

µip
•

i : µi ∈ [0, 1],∀i ∈ {1, . . . , n}
}

= YLP = conv(Y).

In the following, we call an extreme point of a zonotope nondominated if the correspond-
ing point of the associated problem (mo.0c) is nondominated. Note that the corresponding
nondominated points of (mo.0c) in the objective space are extreme supported points since
they are extreme points of the nondominated frontier.

3.2.2 Arrangements of hyperplanes and zonotopes

It is well known that arrangements of hyperplanes are dual to zonotopes [see e. g., Edels-
brunner, 1987]. Let a zonotope Z ⊂ Rm be defined by n line segments [0, p•i] with p

•

i ∈ Zm,
for i = 1, . . . , n. We assume that m < n. An associated arrangement of hyperplanes can
be defined by the hyperplanes

hi = {λ ∈ Rm : 〈p•i , λ〉 = 0}

and the corresponding half-spaces

h+
i = {λ ∈ Rm : 〈p•i , λ〉 > 0}
h−i = {λ ∈ Rm : 〈p•i , λ〉 < 0}

for i = 1, . . . , n. This arrangement is central, since 0n ∈ hi for all i = 1, . . . , n.

Example 3.6 The zonotope of Example 3.5 is dual to the arrangement of hyperplanes

h1 = {λ ∈ R2 : λ2 = 0}, h2 = {λ ∈ R2 : −λ1 + 2λ2 = 0},
h3 = {λ ∈ R2 : 3λ1 − 3λ2 = 0}, h4 = {λ ∈ R2 : 6λ1 − 2λ2 = 0},
h5 = {λ ∈ R2 : −5λ1 − λ2 = 0}, h6 = {λ ∈ R2 : λ1 + λ2 = 0},

which is central, see Figure 3.3.

3.2.3 Multi-objective unconstrained combinatorial optimization problems, weight
space and arrangements of hyperplanes

As mentioned above, extreme supported points of (mo.0c) can be computed using the
weighted sum scalarization, where the weights are in Rm>. The objective function of the
weighted sum problem (WS(λ)) can be reorganized as follows:

m∑
j=1

λj · fj(x) =

m∑
j=1

λj ·

(
n∑
i=1

pji xi

)
=

n∑
i=1

(
m∑
j=1

λjp
j
i

)
xi =

n∑
i=1

〈p•i , λ〉xi .

40

3.2 (mo.0c), weight space, zonotopes, and arrangements of hyperplanes

y1

y2

Z `1

`2

`3

`4

`5

`6

λ1

λ2h6 h5 h4 h3

h2

h1

Figure 3.3: On the left: zonotope Z with line segments `1 to `6 (cf. Example 3.5). On the
right: associated dual arrangement of hyperplanes with hyperplanes h1 to h6 (cf. Exam-
ple 3.6).

The coefficients 〈p•i , λ〉, for i = 1, . . . , n, define an arrangement of hyperplanes in Rm>.
Recall that the optimal solution of (1o.0c) can be built by deciding on each variable

separately depending on the sign of the coefficient. Thus, for item i , for i = 1, . . . , n, the
position of the weight λ in Rm> defines the optimal choice for xi : If λ is in h+

i , xi = 1 is
optimal, if λ is in h−i , xi = 0 is optimal, and if λ is in hi , both alternatives are optimal. This
last case indicates that, as we know from the weighted sum scalarization, one weight λ
can correspond to several nondominated points that define a face of the nondominated
frontier. All weights λ ∈ Rm> with equal position vectors correspond to the same set of
nondominated points.
This shows that the duality of (mo.0c) (zonotopes) and the arrangement of hyperplanes

has an order reversing characteristic: A nondominated k-face of the convex hull of feasible
points in Rm corresponds to an (m−k)-face of the associated arrangement of hyperplanes,
in Rm>. Thus, extreme supported points of (mo.0c) correspond to cells of the associated
arrangement and vice versa. Since the number of cells in the arrangement is bounded, the
same bound holds for the number of extreme supported points of (mo.0c). Furthermore,
we know that a cell of the arrangement is either in h+

i or in h−i , for all i = 1, . . . , n. Thus,
either xi = 0 or xi = 1 is optimal in the corresponding solution, but not both alternatives.
Thus, the cell corresponds to one unique solution of (mo.0c).

Corollary 3.7 Every extreme supported nondominated point of (mo.0c) is realized by
exactly one extreme supported efficient solution.

The arrangement of hyperplanes hi , for all i = 1, . . . , n, can be used to define the de-
composition of the weight space Rm> for (mo.0c). Given an extreme supported solution x
and the corresponding point y = f (x), the set W0(y) consists of all faces of the arrange-
ment of hyperplanes that correspond to the solution x . These faces are the cell of the
arrangement corresponding to x and all adjacent faces in its boundary. We use the term
“weight space decomposition” also for the arrangement of hyperplanes in the remainder of

41

Chapter 3 Computation of extreme supported points

this chapter since the arrangement is in fact a decomposition of the weight space and the
weight space decomposition defined as in Section 3.1.3 can be determined knowing the
arrangement of hyperplanes.
The centrality of the arrangement confirms that the reduction from the weight space Rm>

to the normalized weight space W̃0 is justified for the weighted sum scalarization (cf.
Section 2.1): Every cell of the arrangement in Rm> intersects W̃0 and, hence, every extreme
supported point is represented in this intersection. The decomposition of the normalized
weight space W̃0 is still defined by an arrangement of hyperplanes. Due to the condition
that the sum of weights λi , for i = 1, . . . , n, should be equal to 1 this arrangement is not
central.
The original arrangement of hyperplanes can also be projected on Rm−1, such that the

projected weight space W0 is subdivided by this arrangement of hyperplanes. We call
the arrangement in the projected weight space the associated projected arrangement of
(mo.0c). A further discussion follows in Section 3.3.

Example 3.8 The instance of Example 3.4 has four extreme supported points. Hence,
the associated arrangement of hyperplanes has four corresponding cells intersecting with
the first quadrant of R2. Also the normalized weight space W̃0 and the projected weight
space W0 are subdivided into four segments by the associated projected arrangement, cf.
Figure 3.4.

f1

f2

YeN

λ1

λ2

1

1

R2
>

h4

h3

h2

W̃0

λ2

W0

0 1h4h3h2

Figure 3.4: On the left: extreme supported points of Example 3.4. In the middle: intersection
of the associated arrangement of hyperplanes with the first quadrant in R2 and intersection
with the normalized weight space W̃0. On the right: associated projected arrangement of
hyperplanes in the projected weight space W0.

Consider again the complete arrangement of hyperplanes. Each cell of the arrangement
corresponds to an extreme point of the associated zonotope and vice versa. Each or-
thant of Rm corresponds to a combination of maximization and minimization objectives
and the associated notion of dominance. To be more precise: If the weight value λj ,
for j ∈ {1, . . . , m}, is positive, then the corresponding extreme points of the zonotope
are nondominated for maximizing objective function fj(x). If the weight value λj , for

42

3.2 (mo.0c), weight space, zonotopes, and arrangements of hyperplanes

j ∈ {1, . . . , m}, is negative, then the corresponding extreme points of the zonotope are
nondominated for minimizing objective function fj(x).

Example 3.9 Consider the following modification of Example 3.4 where we switched max

to min in the second objective:

max − x2 + 3x3 + 6x4 − 5x5 + x6

min x1 + 2x2 − 3x3 − 2x4 − x5 + x6

s. t. xi ∈ {0, 1}, i = 1, . . . , 6.

In Figure 3.5, the convex hull of feasible points for this instance of (mo.0c) is shown. The
symbols highlight three extreme points that are nondominated w. r. t. the maximization
of the first and minimization of the second objective. The corresponding part of the
arrangement of hyperplanes is inside the second quadrant of R2, i. e., cells intersecting
with {(λ1, λ2) ∈ R2 : λ1 > 0, λ2 < 0}.

f1

f2

conv(Y)

min min max min

min max max max

λ1

λ2

Figure 3.5: On the left: extreme points of the convex hull of the feasible set conv(Y) of
Example 3.4, where the symbols indicate extreme supported points and the symbols
, , and indicate extreme supported points if the objectives would be changed to

(min f1,min f2), (max f1,min f2), and (min f1,max f2), respectively. On the right: associated
arrangement of hyperplanes in R2 corresponding to the associated zonotope and parts of
the arrangement of hyperplanes that have to be considered for the respective notion of
nondominance.

In this context, it is very intuitive to see that switching from maximization to minimiza-
tion in all objective functions generates the same number of nondominated points where
the efficient solutions with respect to maximization are reverse to the efficient solutions
with respect to minimization. Since the arrangement of hyperplanes is central, all cells
reappear in the opposite orthant of Rm with reversed position vector. Thus, the asso-
ciated zonotope and the convex hull of the feasible set of the corresponding instance of
(mo.0c) are centrally symmetric.

43

Chapter 3 Computation of extreme supported points

3.2.4 Summary

The following table summarizes the interrelations between (mo.0c), zonotopes and the
associated arrangements of hyperplanes:

cells of central extreme points extreme points
arrangement of hyperplanes ↔ of zonotope ↔ of conv(Y)

in Rm in Rm in Rm

⊂ ⊂ ⊂

cells of central nondominated extreme extreme supported
arrangement of hyperplanes ↔ points of zonotope ↔ points YeN

in Rm> in Rm in Rm

⊂ ↔
cells of projected

arrangement of hyperplanes
in W0 ⊂ Rm−1

>

We can conclude that the number of extreme supported efficient solutions of (mo.0c) is
equal to the number of extreme supported nondominated points of (mo.0c). This number
is again equal to the number of nondominated extreme points of the associated zonotope
and also equal to the number of cells of the arrangement of hyperplanes associated to
(mo.0c). In particular, the bound on the number of cells in the arrangement of hyperplanes
also holds for the extreme supported solutions of (mo.0c), which proves Theorem 3.3.
In Section 3.3 we explain these interrelations with regard to (mo.0c) in more detail and

give ideas, remarks and an algorithm for an efficient computation of extreme supported
solutions. We emphasize that the statements of this section are no longer true when a
constraint is added to the problem formulation. Nevertheless, we demonstrate possibilities
to use these results for (mo.1c) in Section 3.4.

3.3 Efficient computation of extreme supported solutions of multi-
objective unconstrained combinatorial optimization problems

In Section 3.2, the interrelations between (mo.0c), zonotopes, arrangements of hyper-
planes, and the weight space were presented. In this section, we review these connections
from a more problem specific perspective and, based on that, we introduce an algorithm
to efficiently compute the extreme supported solutions.
At first, the concepts are only applied to the bi-objective case. The ideas can be

explained and visualized in two dimensions very well and, afterward, the generalization to
more objectives can be done straightforward, which is done in Section 3.3.2. We present an
algorithm for the special case of m = 3 where all coefficients of the first objective function

44

3.3 Efficient computation of extreme supported solutions of (mo.0c)

are positive and all coefficients of the second and third objective function are negative in
Section 3.3.3. In Section 3.3.4, the algorithm is generalized to an arbitrary number of
objective functions and arbitrary combinations of positive and negative weights. Finally,
Section 3.3.5 describes a further generalization of the algorithm for the computation of
the extreme points of a zonotope in Rm.

3.3.1 Bi-objective unconstrained combinatorial optimization problems

In order to give a specific insight into the concepts explained in the previous section, we
start with the bi-objective unconstrained combinatorial optimization problem (2o.0c) and
have a closer look at the weighted sum scalarization of this problem.
As described above, the weighted sum scalarization can be used to compute all extreme

supported solutions of (2o.0c). In the bi-objective case, choosing weights λ ∈ W̃0 ={
λ ∈ R2

> : λ1 + λ2 = 1
}
reduces to choose values λ2 in the projected weight space

W0 = (0, 1), and setting λ1 = 1− λ2.
As explained in Theorem 3.2, the decision on each item can be made separately for

(1o.0c). Based on that, the weight space decomposition can be built. Therefore, we
introduce a function ρ(λ2) that measures the utility of item i depending on the weight λ2:

Definition 3.10 Let i ∈ {1, . . . , n}. The weighted utility of item i is defined as ρi : R→ R

with
ρi(λ2) = (1− λ2) · p1

i + λ2 · p2
i = (p2

i − p1
i) · λ2 + p1

i .

If p1
i 6= p2

i , the root of ρi(λ2), denoted by λ0
2,i , is called the root weight of item i , i. e.,

λ0
2,i =

−p1
i

p2
i − p1

i

.

Note that ρi(λ2) is a linear function of λ2 that changes its sign at the root weight λ0
2,i .

Lemma 3.11 describes the dependency of λ0
2,i and of the slope of ρi(λ2) on p1

i and p2
i .

Lemma 3.11 Let i ∈ {1, . . . , n}. The weighted utility ρi depends on the coefficients p1
i

and p2
i in the following way:

(1) ρi(λ2) has a positive slope iff 0 < p2
i − p1

i .

(2) ρi(λ2) is a constant function iff p1
i = p2

i .

(3) ρi(λ2) has a negative slope iff p2
i − p1

i < 0.

Now let p1
i 6= p2

i . Then

(I) 1 ≤ λ0
2,i iff sgn(p1

i) = sgn(p2
i) and 0 ≤ |p2

i | < |p1
i |.

(II) 0 < λ0
2,i < 1 iff sgn(p1

i) 6= sgn(p2
i) and p1

i 6= 0 and p2
i 6= 0.

(III) λ0
2,i ≤ 0 iff sgn(p1

i) = sgn(p2
i) and 0 ≤ |p1

i | < |p2
i |.

45

Chapter 3 Computation of extreme supported points

Proof.

(1)-(3) Since the weighted utility ρi can be rewritten as ρi(λ2) = (p2
i − p1

i) · λ2 + p1
i ,

statements 1.-3. follow immediately.

(I)
1 ≤ λ0

2,i =
−p1

i

p2
i − p1

i

⇔
[
(0 < −p1

i) and (0 < p2
i − p1

i) and (p2
i − p1

i ≤ −p1
i)
]

or
[
(−p1

i < 0) and (p2
i − p1

i < 0) and (−p1
i ≤ p2

i − p1
i)
]

⇔
[
(p1
i < 0) and (p1

i < p2
i) and (p2

i ≤ 0)
]
or
[
(0 < p1

i) and (p2
i < p1

i) and (0 ≤ p2
i)
]

⇔
[
(p1
i < p2

i ≤ 0)
]
or
[
(0 ≤ p2

i < p1
i)
]

⇔ (sgn(p1
i) = sgn(p2

i)) and (0 ≤ |p2
i | < |p1

i |).

(II)
0 < λ0

2,i =
−p1

i

p2
i − p1

i

< 1

⇔
[
(0 < −p1

i) and (0 < p2
i − p1

i) and (−p1
i < p2

i − p1
i)
]

or
[
(−p1

i < 0) and (p2
i − p1

i < 0) and (p2
i − p1

i < −p1
i)
]

⇔
[
(p1
i < 0) and (p1

i < p2
i) and (0 < p2

i)
]
or
[
(0 < p1

i) and (p2
i < p1

i) and (p2
i < 0)

]
⇔
[
(p1
i < 0 < p2

i)
]
or
[
(p2
i < 0 < p1

i)
]

⇔ (sgn(p1
i) 6= sgn(p2

i)) and (p1
i 6= 0) and (p2

i 6= 0).

(III)
λ0

2,i =
−p1

i

p2
i − p1

i

≤ 0

⇔
[
(−p1

i ≤ 0) and (0 < p2
i − p1

i)
]
or
[
(0 ≤ −p1

i) and (p2
i − p1

i < 0)
]

⇔
[
(0 ≤ p1

i) and (p1
i < p2

i)
]
or
[
(p1
i ≤ 0) and (p2

i < p1
i)
]

⇔
[
(0 ≤ p1

i < p2
i)
]
or
[
(p2
i < p1

i ≤ 0)
]

⇔ (sgn(p1
i) = sgn(p2

i)) and (0 ≤ |p1
i | < |p2

i |).

The results of Lemma 3.11 induce an explicit scheme for choosing the variables xi to
obtain optimal solutions for given weights λ2 in W0. Table 3.1 presents all possible cases
with respect to the coefficients p1

i and p2
i and the respective consequences for the sign of

the weighted utility ρi .

Corollary 3.12 Let λ̄2 ∈ W0. For (2o.0c), all optimal solutions of the weighted sum
scalarization for λ̄2 can be determined using the scheme of Table 3.1 by setting

xi


= 0 if ρi(λ̄2) < 0

∈ {0, 1} if ρi(λ̄2) = 0

= 1 if ρi(λ̄2) > 0

for i = 1, . . . , n.

46

3.3 Efficient computation of extreme supported solutions of (mo.0c)

coefficients case sign of ρi(λ)

0 < p1
i = p2

i (2) ⇒ ρi(λ2) > 0 for all λ2 ∈ W0

p1
i = p2

i < 0 (2) ⇒ ρi(λ2) < 0 for all λ2 ∈ W0

0 ≤ p2
i < p1

i (3) and (I) ⇒ ρi(λ2) > 0 for all λ2 ∈ W0

p1
i < p2

i ≤ 0 (1) and (I) ⇒ ρi(λ2) < 0 for all λ2 ∈ W0

p2
i < 0 < p1

i (3) and (II) ⇒


ρi(λ2) > 0 for all λ2 ∈ (0, λ0

2,i)

ρi(λ2) = 0 for λ2 = λ0
2,i

ρi(λ2) < 0 for all λ2 ∈ (λ0
2,i , 1)

p1
i < 0 < p2

i (1) and (II) ⇒


ρi(λ2) < 0 for all λ2 ∈ (0, λ0

2,i)

ρi(λ2) = 0 for λ2 = λ0
2,i

ρi(λ2) > 0 for all λ2 ∈ (λ0
2,i , 1)

0 ≤ p1
i < p2

i (1) and (III) ⇒ ρi(λ2) > 0 for all λ2 ∈ W0

p2
i < p1

i ≤ 0 (3) and (III) ⇒ ρi(λ2) < 0 for all λ2 ∈ W0

Table 3.1: Possible combinations of coefficients p1
i and p2

i and implications for the weighted
utility ρi .

Proof. The weighted sum scalarization of (2o.0c) for λ̄2 is a single-objective unconstrained
combinatorial optimization problem, cf. Theorem 3.2.

Summarizing the discussion above, all root weights λ0
2,i with 0 < λ0

2,i < 1, for i =

1, . . . , n, divide the projected weight space into intervals It ⊂ W0, see Example 3.14 and
Figure 3.6. Each interval corresponds to one specific combination of signs of the weighted
utilities ρi(λ2) and, therefore, to one extreme supported solution of (2o.0c). If a specific
weight λ2 is equal to a root weight, both solutions of the adjacent intervals in the projected
weight space are optimal for the corresponding weighted sum objective. If two or more root
weights are equal, the corresponding weighted sum objective has more than two optimal
solutions.

Remark 3.13 Nonextreme supported solutions occur if two or more items have weighted
utility values ρi(λ̄2) = 0 for on specific weight value λ̄2 ∈ W0. This results if the root
weights are equal, which occurs if the coefficients for items i and j are linearly dependent,
i. e., if there exists α ∈ R\{0} such that p1

i = α ·p1
j and p

2
i = α ·p2

j . All possible combina-
tions of including or not including those items lead to equal objective function values in the
weighted sum objective fλ̄(x). The two selections corresponding to the adjacent intervals
are extreme supported solutions, all other possible selections are nonextreme supported
solutions.

47

Chapter 3 Computation of extreme supported points

Example 3.14 We solve the following bi-objective unconstrained combinatorial optimiza-
tion problem:

max − x2 + 3x3 − 4x4 + 6x5 − 5x6 + x7

max x1 + 2x2 − 3x3 + 4x4 − 2x5 − x6 + x7

s. t. xi ∈ {0, 1}, i = 1, . . . , 7.

First, we define the weighted utilities ρi(λ2), for all items i = 1, . . . , 7, and compute the
root weights λ0

2,i :

i 1 2 3 4 5 6 7

ρi(λ2) λ2 3λ2 − 1 −6λ2 + 3 8λ2 − 4 −8λ2 + 6 4λ2 − 5 0λ2 + 1

λ0
2,i 0 1/3 1/2 1/2 3/4 5/4 –

case (1), (III) (1), (II) (3), (II) (1), (II) (3), (II) (1), (I) (2)

The root weights divide the projected weight space into four intervals I1 = (0, 1
3), I2 =

(1
3 ,

1
2), I3 = (1

2 ,
3
4), and I4 = (3

4 , 1), see Figure 3.6.

0 1/3 1/2 3/4 1 5/4
λ2

I1 I2 I3 I4

Figure 3.6: Projected weight space W0 for Example 3.14. The root weights λ0
2,i define four

segmenting intervals.

For each item and interval, the optimal value of the variable for the weighted problem
can be chosen following the scheme of Table 3.1. Variables corresponding to items with
coefficients p1

i and p2
i of equal sign in both objectives, in this example items 1, 6 and

7, can be fixed apriori in a preprocessing step. The corresponding root weights λ0
2,i are

not inside the projected weight space W0 and, consequently, the optimal choice for these
variables is equal for all supported solutions. Thus, only variables corresponding to items
with sgn(p1

i) 6= sgn(p2
i) are critical for a solution approach.

All supported solutions are listed in Table 3.2 as well as the corresponding objective
function values. Figure 3.7 illustrates the supported points in the objective space. Items 3

and 4 have the same root weight. Hence, for weight λ2 = 1/2 four different solutions have
equal weighted sum objective function values fλ(x). All four solutions are supported for
the bi-objective unconstrained combinatorial optimization problem, but two of them are
nonextreme (see Figure 3.7). The root weights λ0

2,2 and λ0
2,5 are not equal to any other

root weight and, therefore, correspond to two extreme supported solutions.

Example 3.14 shows that it is sufficient to investigate the root weights λ0
2,i within the

projected weight space to find all supported solutions of (2o.0c). On the one hand, items

48

3.3 Efficient computation of extreme supported solutions of (mo.0c)

i 1 2 3 4 5 6 7 f1(x) f2(x)

I1: λ2 ∈ (0, 1/3) x1
i = 1 0 1 0 1 0 1 10 −3

λ0
2,2: λ2 = 1/3 x1

i = 1 0 1 0 1 0 1 10 −3

x2
i = 1 1 1 0 1 0 1 9 −1

I2: λ2 ∈ (1/3, 1/2) x2
i = 1 1 1 0 1 0 1 9 −1

λ0
2,3: λ2 = 1/2 x2

i = 1 1 1 0 1 0 1 9 −1

(= λ0
2,4) x3

i = 1 1 0 0 1 0 1 6 2

x4
i = 1 1 1 1 1 0 1 5 3

x5
i = 1 1 0 1 1 0 1 2 6

I3: λ2 ∈ (1/2, 3/4) x5
i = 1 1 0 1 1 0 1 2 6

λ0
2,5: λ2 = 3/4 x5

i = 1 1 0 1 1 0 1 2 6

x6
i = 1 1 0 1 0 0 1 −4 8

I4: λ2 ∈ (3/4, 1) x6
i = 1 1 0 1 0 0 1 −4 8

Table 3.2: Supported solutions and supported points for Example 3.14 corresponding to
weights λ2.

f1

f2

−5

5

10

−5 5 10 15

f (x1)

f (x2)

f (x3)

f (x4)

f (x5)

f (x6)

Figure 3.7: Objective space with supported points for Example 3.14. Clearly, points f (x3)

and f (x4) are supported but nonextreme.

49

Chapter 3 Computation of extreme supported points

with root weights not in W0 are included or not included for all weights λ2 in W0, and on
the other hand, weights λ2 in intervals It ⊂ W0 between two consecutive root weights lead
to solutions that are also optimal for weighted sum problems for these two root weights.
Algorithm 3.1 gives a possible procedure to compute all extreme supported solutions of

(2o.0c). In the first for-loop, an initial extreme supported solution is generated (Lines 3
to 6), starting at the left-hand boundary of the projected weight space with a sufficiently
small value λ̄2 > 0, i. e., smaller than the smallest positive root weight: λ̄2 < min{λ0

2,i :

λ0
2,i > 0, i = 1, . . . , n}. Consequently, if p1

i is positive, then the weighted utility ρi(λ̄2) =

(1− λ̄2) · p1
i + λ̄2 · p2

i is also positive for λ̄2 and the variable xi is set to 1. If p1
i is equal

to zero, then the coefficient of the second objective function decides on the sign of the
weighted utility ρi(λ2) = λ2 · p2

i . Thus, if p2
i is positive, then ρi(λ2) is also positive for

all values of λ2 ∈ W0 and we set xi = 1. Every other case leads to a negative weighted
utility for λ̄2 and we set xi = 0.
All root weights are computed in the first for-loop (Lines 7 to 10). If the root weight of

item i , i = 1, . . . , n, is not defined, i. e., if p1
i = p2

i , the algorithm sets λ0
2,i = 2. By doing

so, the value of xi will not be further changed.
Let Sn denote the symmetric group of order n. The root weights are sorted in non-

increasing order and π ∈ Sn denotes the corresponding permutation of the numbers
1, . . . , n. Starting from the initial solution, new extreme supported solutions are gen-
erated by tracing the root weights with λ0

2,π(i) > 0. At each iteration, i. e., at each
root weight λ0

2,π(i) the value of the current variable xπ(i) is switched to 1 − xπ(i). If
the subsequent root weight λ0

2,π(i+1) differs from the current root weight λ0
2,π(i), the

newly generated solution x is the extreme supported solution corresponding to the interval
right-hand of λ0

2,π(i) in the projected weight space and can be stored. Otherwise, i. e., if
λ0

2,π(i) = λ0
2,π(i+1), the current solution is nonextreme supported and, thus, omitted. The

algorithm continues with the next index. The while-loop stops as soon as the first root
weight λ0

2,π(i) is greater than or equal to 1.
The algorithm has a worst case complexity of O(n log n), since the set of root weights

has to be sorted once. The while-loop requires O(n) because every variable xi is changed
at most once. If the algorithm should be adapted to compute all supported solutions, i. e.,
including nonextreme supported solutions, this can easily be done. In case of equal root
weights, all possible combinations of including or not including the respective items have to
be generated. If t items have the same root weight, there exist 2t corresponding supported
solutions. Hence, the adapted algorithm has a worst case complexity of O(2n). However,
the next supported solution can always be found in constant time. The complexity of the
algorithm is, therefore, determined by the number of supported solutions.

Arrangement of hyperplanes In the following, we draw the connection to the results of
Section 3.2. The decomposition of the projected weight spaceW0 can also be interpreted
as the associated projected arrangement of hyperplanes to (2o.0c). Every root weight λ0

2,i

defines a hyperplane hi in R and the half-spaces h−i and h+
i are defined by the sign of

50

3.3 Efficient computation of extreme supported solutions of (mo.0c)

Algorithm 3.1 Algorithm for generating all extreme supported solutions of (2o.0c).

Input: coefficients p1
i , p

2
i , for i = 1, . . . , n.

1: XeE ..= ∅, x ..= 0n
2: for i ..= 1, . . . , n do // compute initial solution and root weights
3: if p1

i > 0 then
4: xi

..= 1

5: else if p1
i = 0 and p2

i > 0 then
6: xi

..= 1

7: if p1
i = p2

i then // for p1
i = p2

i : xi fixed for all λ2 ∈ W0

8: λ0
2,i

..= 2

9: else
10: λ0

2,i
..=

−p1
i

p2
i −p

1
i

11: XeE ..= XeE ∪ {x}
12: compute permutation π ∈ Sn such that λ0

2,π(1) ≤ . . . ≤ λ
0
2,π(n)

13: i ..= 1, stop ..= 0

14: while stop = 0 do // compute further solutions
15: if λ0

2,π(i) ≥ 1 then
16: stop ..= 1

17: else if λ0
2,π(i) > 0 then

18: xπ(i)
..= 1− xπ(i)

19: if λ0
2,π(i) 6= λ0

2,π(i+1) then
20: XeE ..= XeE ∪ {x}
21: i ..= i + 1

Output: XeE

51

Chapter 3 Computation of extreme supported points

the corresponding weighted utility, i. e., the entries of the position vector of λ2 in R are
defined by

Posi(λ2) =


−1 if λ2 ∈ h−i ⇔ ρi(λ2) < 0

0 if λ2 = λ0
2,i ∈ hi ⇔ ρi(λ2) = 0

+1 if λ2 ∈ h+
i ⇔ ρi(λ2) > 0

for i = 1, . . . , n. If λ0
2,i is not defined, i. e., if p

1
i = p2

i , then hi = ∅ and either h−i = R and
h+
i = ∅ or h−i = ∅ and h+

i = R, depending on the sign of p1
i .

Another interesting perspective is offered by the associated arrangement of hyperplanes
to (2o.0c) in R2. To distinguish between the hyperplanes in R2 and the hyperplanes of
the corresponding projected arrangement in R, we define the hyperplanes as ĥi , for all
i = 1, . . . , n. Recall that the hyperplanes ĥi are defined as ĥi = {λ ∈ R2 : 〈p•i , λ〉 = 0}.
The root weight λ0

2,i and the corresponding weight λ0
1,i = 1− λ0

2,i are the coordinates of

the intersection point of the arrangement with the normalized weight space W̃0:〈(
p1
i

p2
i

)
,

(
λ0

1,i

λ0
2,i

)〉
= p1

i ·
(

1−
−p1

i

p2
i − p1

i

)
+ p2

i ·
−p1

i

p2
i − p1

i

= 0.

If p1
i = p2

i , then the corresponding hyperplane ĥi is the bisector of the second and fourth
quadrant, which is parallel to the normalized weight space W̃0. This is in accordance to
the fact that λ0

2,i is not defined in this case.
Coming back to the projected arrangement of hyperplanes, the introduction of the half-

spaces h−i and h+
i allows to compute all supported solutions of (2o.0c): For λ2 ∈ W0, we

transfer the results of Corollary 3.12:

xi


= 0 if Posi(λ2) = −1

∈ {0, 1} if Posi(λ2) = 0

= 1 if Posi(λ2) = +1

for i = 1, . . . , n.
Every cell ϕ(1) (1-face, edge) of the arrangement of hyperplanes {h1, . . . , hn} in R,

that intersects W0, corresponds to one unique extreme supported solution of (2o.0c) (cf.
Corollary 3.7 and intervals It introduced after Corollary 3.12) and all extreme supported
solutions of (2o.0c) are represented by cells ϕ(1) of the arrangement. Thus, we can state:

Corollary 3.15 The bi-objective unconstrained combinatorial optimization problem has at
most O(n) extreme supported efficient solutions.

If the arrangement of hyperplanes is simple, no nonextreme supported solutions occur.
As described in Section 3.1.4, the position vectors of the facets ϕ(0), the subfaces of the
cells, differ in one single position, where the entry is 0. Hence, a facet ϕ(0) corresponds
to two supported solutions that are also induced by the adjacent cells.
If the arrangement of hyperplanes is not simple, there might be an exponential number

of nonextreme supported solutions. If, for example, all hyperplanes hi are identical, there

52

3.3 Efficient computation of extreme supported solutions of (mo.0c)

are two extreme and (2n−2) nonextreme supported solutions for λ0
2,i ∈ W0. The number

of corresponding nonextreme supported nondominated points can be smaller if there are
equivalent solutions. Solutions x and x̄ are called equivalent if f (x) = f (x̄). Ehrgott
[2005] presented an instance with 2n feasible, non-equivalent solutions that all correspond
to supported points, where only two of them are extreme:

max

n∑
i=1

−2i−1xi

max

n∑
i=1

2i−1xi

s. t. xi ∈ {0, 1}, i = 1, . . . , n.

For this instance we get λ0
2,i = 1/2 for all items i = 1, . . . , n. Thus, the arrangement

of hyperplanes consists of two cells and one facet. Nevertheless, also in the case of non-
simple arrangements, all nonextreme solutions can be generated by going through the O(n)

facets (0-faces, vertices) and building all possible assignments for items i with entries of
the position vector Posi(λ2) equal to 0.

3.3.2 Multi-objective unconstrained combinatorial optimization problems

The set of supported solutions XsE of the multi-objective unconstrained combinatorial
optimization problem (mo.0c) for three and more objective functions can be computed in
a similar way as for the bi-objective problem. As above, for each item i , for i = 1, . . . , n,
the weighted utility ρi : Rm−1 → R

ρi(λ2, . . . , λm) = (1−
m∑
j=2

λj) · p1
i +

m∑
j=2

λj · pji

defines a hyperplane

hi =
{

(λ2, . . . , λm) ∈ Rm−1 : ρi(λ2, . . . , λm) = 0
}

and two half-spaces

h−i =
{

(λ2, . . . , λm) ∈ Rm−1 : ρi(λ2, . . . , λm) < 0
}

and

h+
i =

{
(λ2, . . . , λm) ∈ Rm−1 : ρi(λ2, . . . , λm) > 0

}
in Rm−1.

Remark 3.16 Let i ∈ {1, . . . , n}. If pji 6= p1
i for all j ∈ {2, . . . , m}, then we can equivalently

define the hyperplane hi as the affine hull of the (m−1) affinely independent root weights

λ0
j,i =

−p1
i

pji − p1
i

· ej−1, j = 2, . . . , m,

53

Chapter 3 Computation of extreme supported points

where ej−1 is the (j −1)-th unit vector in Rm−1. Note that these points resemble the root
weights of Definition 3.10. The arrangement of hyperplanes intersecting with a certain
axis in Rm−1 corresponds to a bi-objective problem where the first and j-th objective are
considered, since λj and λ1 = 1−λj are the only weights not equal to 0. The corresponding
root weights define the hyperplane hi .
If pji = p1

i for some j ∈ {2, . . . , m}, the hyperplane runs parallel to the (j − 1)-th axis.
Furthermore, if pji = p1

i for all j ∈ {2, . . . , m}, then hi is empty and either h−i = Rm−1

and h+
i = ∅ or h−i = ∅ and h+

i = Rm−1, similar to the bi-objective case.

The faces of the arrangement of hyperplanes {h1, . . . , hn} in Rm−1 that intersect with
the projected weight space W0 correspond to supported solutions of (mo.0c). All ex-
treme supported solutions can be identified by the cells ϕ(m−1) of the arrangement (cf.
Corollary 3.7). Hence, we can state:

Corollary 3.17 The multi-objective unconstrained combinatorial optimization problem has
at most O(nm−1) extreme supported efficient solutions.

As described in Section 3.2.3, the duality of the arrangement of hyperplanes in the
projected weight spaceW0 and the convex hull of the set of nondominated points conv(YN)

in the objective space has an order reversing characteristic: All weights of a k-face in
W0 ⊂ Rm−1 correspond to an ((m − 1)− k)-face in conv(YN) ⊂ Rm, thus

weights of a


cell
facet
...

vertex

 in W0 correspond to a


vertex
edge
...

facet

 in conv(YN).

A cell ϕ(m−1) in W0 always corresponds to one unique supported point since the posi-
tion vector has no 0-entries. In the case of a simple arrangement, it can be stated more
precisely that a facet ϕ(m−2) in W0 corresponds to two extreme supported points. The
position vector has exactly one 0-entry and, therefore, indicates that the weighted util-
ity ρi(λ2, . . . , λm) = 0 for exactly one item i ∈ {1, . . . , n} for weights (λ2, . . . , λm) ∈
ϕ(m−2). The corresponding weighted sum objective is undecided on item i . In general, a
k-face ϕ(k), m−1 ≥ k ≥ 0, has ((m−1)− k) 0-entries in the position vector and, hence,
corresponds to 2(m−1)−k extreme supported points and extreme supported solutions, re-
spectively.
If the arrangement is not simple, ϕ(k) may have a position vector with more than ((m−

1)− k) 0-entries and the number of corresponding supported solutions may change since
nonextreme supported solutions occur. For computing all nonextreme supported solutions
it is sufficient to analyze only k-faces, 0 ≤ k < m − 1, that have no subfaces. Recall
that all 0-entries are passed on to subfaces and therefore no information is lost by skipping
faces that have subfaces.

54

3.3 Efficient computation of extreme supported solutions of (mo.0c)

3.3.3 Case study: tri-objective unconstrained combinatorial optimization
problems with one positive and two negative objective functions

In this section, we illustrate the above results on tri-objective unconstrained combinatorial
optimization problems:

vmax f (x) =

(
n∑
i=1

p1
i xi ,

n∑
i=1

p2
i xi ,

n∑
i=1

p3
i xi

)
s. t. xi ∈ {0, 1}, i = 1, . . . , n.

(3opnn.0c)

We assume a special structure, namely that all coefficients of the first objective function
are positive and all coefficients of the second and third objective function are negative.
More precisely, p1

i > 0, p2
i < 0, and p3

i < 0, for all i = 1, . . . , n.
We know that for problem (3opnn.0c) every hyperplane hi , for i = 1, . . . , n, intersects

with the λ2- and λ3-axis at the root weights λ0
2,i and λ

0
3,i , where the intercept of the

axis is in the interval [0, 1], c. f. Type (2) of Lemma 3.11 for (2o.0c). Hence, every
hyperplane intersects with the projected weight space W0 = {(λ2, λ3) ∈ R2

> : λ2 + λ3 ≤
1}. Furthermore, every half-space h−i lies above and every half-space h+

i lies below the
corresponding hyperplane hi , i. e., given a point (λ̄2, λ̄3) ∈ hi , it holds that all points
(λ̄2, λ3) with λ3 > λ̄3 are in h−i and that all points (λ̄2, λ3) with λ3 < λ̄3 are in h+

i .
Analogously, we denote faces to lie above or below a given hyperplane if they are subsets
of h−i and h+

i , respectively. Hence, the top-most cell of the arrangement that lies above
all hyperplanes has a position vector with only entries equal to (−1). This implies that the
solution xi = 0 for all i = 1, . . . , n is supported. This agrees with the fact that for two of
the objective functions the objective function value decreases if any item is included.
Motivated by the bi-objective case, and in contrast to Ferrez et al. [2005] (where the

solution approach is based on visiting every cell of the arrangement, see also Section 3.1.4),
we focus the search for supported solutions on the intersection points of hyperplanes, i. e.,
on the vertices of the arrangement. This is possible since all information is passed from
the adjacent faces to the vertices, except for the case that a hyperplane does not intersect
any other hyperplane in the projected weight space, see Figure 3.8(b). We first discuss the
general case, that is, the intersection of two hyperplanes, and continue with the special
case later on. For ease of readability, we introduce the terms above and below also to
describe the relative positions of vertices and two of its adjacent cells. The cell that is
adjacent to the intersection point is called to be lying above/below the intersection point
if it is lying above/below all hyperplanes that define this vertex.
The intersection point λ = (λ2, λ3) of the two hyperplanes hi and hj , for i , j ∈ {1, . . . , n}

with λ ∈ W0, is a vertex of the arrangement of hyperplanes and has a position vector with
Posi(λ) = 0 = Posj(λ). The vertex λ is adjacent to four cells that have the four possible
combinations of values (−1) and (+1) as the respective entries of the position vector:
The solution with xi = xj = 0 corresponds to the cell above the intersection point, the
solution with xi = xj = 1 corresponds to the cell below the intersection point, and the
mixed assignments correspond to the respective cells that are below one and above the

55

Chapter 3 Computation of extreme supported points

other of the two hyperplanes, cf. Figure 3.8(a). All remaining entries of the position
vectors are equal for the vertex and the adjacent cells. Thus, the corresponding supported
solutions can be generated by identifying the indices of the intersecting hyperplanes and
the position of the vertex with respect to all other hyperplanes.

λ2

λ3

1

1

h1

h2

λ0
2,1

−−−+

+−++

(a) General Case: intersection of two hyper-
planes.

λ2h4

λ3

1

1

h1

λ0
2,1

h2

λ0
2,2

h3

λ0
2,3

−−−
+−−

+−+
+ + +

(b) Intersections of hyperplanes and the λ3-axis.

Figure 3.8: Arrangements of hyperplanes in W0 associated to (3opnn.0c). The strings in
{−,+}2 refer to the position vectors of corresponding cells (symbol − for entry (−1) and
symbol + for entry (+1)).

The special case of hyperplanes that do not intersect with other hyperplanes in the
projected weight space W0 can be handled in the following way: We enlarge the projected
weight space and include weights λ with λ2 = 0. Furthermore, we introduce the λ3-axis
as additional hyperplane hn+1. Every hyperplane hi , for i = 1, . . . , n, intersects hn+1,
especially the ones that do not intersect any other hyperplane. Thus, the information
of cells that would have no adjacent vertices is passed to the vertices in the λ3-axis.
In return, these vertices may also include information about cells that do not intersect
the projected weight space. This case occurs if two or more hyperplanes intersect hn+1,
see Figure 3.8(b). Due to the fixed signs in the objective functions we know that all
hyperplanes have a negative slope and that the corresponding negative half-spaces are all
lying above the hyperplane. Assume that t hyperplanes intersect hn+1 in the same vertex.
Hence, (t + 1) of the adjacent cells intersect the projected weight space. We look at the
corresponding solutions: Including none of the t items corresponds to the topmost cell and
including all of them to the lowermost. From the topmost to the lowermost cell, one entry
of the position vector is switched from (−1) to (+1) by passing one of the t hyperplanes.
In fact, the exact ordering can be identified by the decreasing order of the intersection
points λ0

2,i of the hyperplanes with the λ2-axis.
Further special cases can occur if the arrangement of hyperplanes is non-simple: Vertices

may be adjacent to more than four cells and nonextreme supported solutions have to be

56

3.3 Efficient computation of extreme supported solutions of (mo.0c)

considered. Since the projected weight space is in R2, the number of different cases is
limited:

Parallel hyperplanes do not induce nonextreme supported solutions.

t identical hyperplanes occur if t vectors of coefficients p•i = (p1
i , p

2
i , p

3
i), i ∈ {1, . . . , n},

are pairwise linearly dependent in R3. Assume that p•i = αp•ı̄ , for i , ı̄ ∈ {1, . . . , n} and for
some α ∈ R\{0}. The corresponding hyperplanes hi and hı̄ are defined by the root weights
λ0
j,i and λ

0
j,̄ı, for j = 2, 3, cf. Remark 3.16. It holds

λ0
j,i =

−p1
i

pji − p1
i

ej−1 =
−αp1

ı̄

αpjı̄ − αp1
ı̄

ej−1 =
−p1

ı̄

pjı̄ − p1
ı̄

ej−1 = λ0
j,̄ı, j = 2, 3.

Hence, hi and hı̄ are indeed identical, see Figure 3.9(a).
Every edge of the arrangement of hyperplanes on the identical hyperplanes is adjacent

to two cells. These cells correspond to the solutions where none or all of the t items
are included, respectively. The corresponding edges of the convex hull of the feasible
set conv(YN) in the objective space then consists of two extreme supported points, corre-
sponding to the two cells, and at most 2t −2 nonextreme supported points, corresponding
to all possible combinations of including at least one and at most (t−1) of the items. Some
of the nonextreme supported solutions can correspond to identical nonextreme supported
points if the sum of coefficients for those subsets of items are identical.

Intersection of t, t > 2, pairwise distinct hyperplanes in one point occurs if the
respective vectors of coefficients p•i = (p1

i , p
2
i , p

3
i), i ∈ {1, . . . , n}, are linearly dependent,

but pairwise linearly independent in R3. Assume that p•i = αp•ı̄ +βp•ı̂ , for i , ı̄, ı̂ ∈ {1, . . . , n}
and for some α, β ∈ R \ {0}. The weighted utility ρi(λ2, λ3) of item i is equal to:

ρi(λ2, λ3) = (1− λ2 − λ3)p1
i + λ2p

2
i + λ3p

3
i

= (1− λ2 − λ3)(αp1
ı̄ + βp1

ı̂) + λ2(αp2
ı̄ + βp2

ı̂) + λ3(αp3
ı̄ + βp3

ı̂)

= α
(

(1− λ2 − λ3)p1
ı̄ + λ2p

2
ı̄ + λ3p

3
ı̄

)
+ β

(
(1− λ2 − λ3)p1

ı̂ + λ2p
2
ı̂ + λ3p

3
ı̂

)
= αρı̄(λ2, λ3) + βρı̂(λ2, λ3).

It holds:

hi ∩ hı̄ =
{

(λ2, λ3) ∈ R2 : ρi(λ2, λ3) = 0 ∧ ρı̄(λ2, λ3) = 0
}

=
{

(λ2, λ3) ∈ R2 : αρı̄(λ2, λ3) + βρı̂(λ2, λ3) = 0 ∧ ρı̄(λ2, λ3) = 0
}

=
{

(λ2, λ3) ∈ R2 : ρı̂(λ2, λ3) = 0 ∧ ρı̄(λ2, λ3) = 0
}

= hı̂ ∩ hı̄

Hence, the hyperplanes hi , hı̄ and hı̂ intersect in one unique point.

57

Chapter 3 Computation of extreme supported points

λ2

λ3

1

1

λ0
3,1

= λ0
3,2

λ0
2,1 = λ0

2,2

00

−−

++

(a) Two identical hyperplanes in W0.

λ2

λ3

1

1

h1

h2

h3

λ0
2,1 = λ0

2,2

000

−−−

+−−

+ +−

+ + + −+ + −−+

(b) Intersection of three hyperplanes in one
unique point.

Figure 3.9: Arrangements of hyperplanes in W0 associated to (3opnn.0c). The strings in
{−, 0,+}2 and {−, 0,+}3, respectively, refer to the position vectors of corresponding faces
(symbol − for entry (−1) and symbol + for entry (+1)).

If two hyperplanes intersect, the corresponding vertex is adjacent to four cells. Every
additional, but distinct hyperplane that intersects the same vertex splits two of these cells,
cf. Figure 3.9(b). Thus, a vertex defined by t, t > 2, pairwise distinct hyperplanes
is adjacent to 2t cells. The cell above the intersection point again corresponds to the
solution where none of the t items are selected and the cell below the intersection point
corresponds to the solution where all of the t items are selected. Visiting all adjacent
cells in counterclockwise direction around the intersection point, starting at the cell above,
at each iteration one hyperplane is passed and, thus, one variable value is switched from
0 to 1. After t iterations all of the t items are included, which corresponds to the cell
below the intersection point. Every hyperplane has been passed from the top-most to
the bottom-most, left-hand of the intersection point and, continuing, is passed again and
in the same order from the bottom-most to the top-most, right-hand of the intersection
point. Hence, iteratively and in the same order, the variable values are switched back
from 1 to 0 until, after t iterations, the cell above the intersection point is reached again.
Therefore, the intersection point in the projected weight space corresponds to a face of
the convex hull conv(YN), which includes the 2t extreme supported points corresponding
to these solutions on the boundary of the face and 2t − 2t nonextreme supported points
in the interior of the face.

The combination of both cases induces faces in the objective space with nonextreme
supported points in the interior and on some edges of the face.

Remark 3.18 The structure of the arrangement of hyperplanes allows to determine the

58

3.3 Efficient computation of extreme supported solutions of (mo.0c)

exact number of extreme supported points that define a facet of the convex hull conv(Y),
which is even in any case, and the exact number of nonextreme supported solutions.

Example 3.19 Consider the following instance of (3opnn.0c). We determine the set of
supported solutions XsE .

max 16x1 + 21x2 + 10x3 + 9x4 + 3x5

max −24x1 − 14x2 − 10x3 − x4 − 27x5

max −4x1 − 9x2 − 10x3 − 21x4 − 12x5

s. t. xi ∈ {0, 1}, i = 1, . . . , 5.

The hyperplanes hi corresponding to items i , i = 1, . . . , 5, are visualized in Figure 3.10.
They yield ten cells in W0, hence, the problem has ten extreme supported solutions. The
arrangement is not simple since three hyperplanes, h1, h3 and h4, intersect in one point.
Therefore, also nonextreme supported solutions occur. Table 3.3 presents all 32 feasible
solutions, the corresponding objective function values and indicates if these solutions are
efficient (17 solutions), supported efficient (12 solutions) or extreme supported efficient
(10 solutions).
There are only three vertices of the arrangement inside the projected weight space. They

inherit the information about nine of the ten cells. Hyperplane h5 does not intersect any
other hyperplane inW0. The solution x = (1, 1, 1, 1, 1)> can be determined by considering
the intersection of h5 with the λ3-axis.

The algorithm Our solution algorithm for (3opnn.0c) is based on the work of Bentley and
Ottmann [1979] for reporting the intersections of line segments in the plane. Adopted to
our problem, the line segments are defined as the intersections of the respective hyperplanes
and the projected weight space. The algorithm sweeps with a vertical line from left to
right through the projected weight space, starting at λ2 = 0 and stopping at λ2 = 1

(cf. Figure 3.11). Every vertical line defines a permutation π ∈ Sn of the numbers 1, . . . , n,
where Sn denotes the symmetric group of order n. Given a fixed weight λ2, the respective
points (λ2, λ3) on the hyperplanes h1, . . . , hn define a permutation of indices 1, . . . , n in
non-increasing order of the weights λ3. This permutation is unique if and only if every
value λ3 corresponding to one hyperplane is unique. Two or more hyperplanes define equal
λ3-values if the hyperplanes intersect. Multiple permutations correspond to this vertical
line.
The idea of the method of Bentley and Ottmann [1979] is that, sweeping the vertical

line from left to right, the permutation only changes if two or more line segments intersect
at the corresponding λ2-value and that in this case only hyperplanes that are subsequent
in the permutation can intersect. Hence, starting from λ2 = 0, the permutation π is ini-
tialized and the intersections of subsequent hyperplanes in the permutation are computed.
All intersection points are stored in a list Λ. In non-increasing order of λ2, the algorithm
iteratively sweeps the vertical line through the λ2-components of the points in Λ. An in-
tersection of hyperplanes induces that their positions switch at that point, see Figure 3.11.

59

Chapter 3 Computation of extreme supported points

λ2

λ3

0.1

1.0

0.1 1.0
h1 h2h3 h4h5

−−−−−

+−−−−

++−−−

+++−−

++++−

+++++

−+−−−

−+−+−
−+++− −−−+−

0−−−−

+0−−−

++ 0−−

+++0−

++++ 0

−0−−−

−+ 0 +−

0 + ++− −0−+−
−−−0−

00−−−

0 + 00−

−0− 0−

Figure 3.10: Projected weight space W0 with arrangement of hyperplanes {h1, . . . , h5} for
Example 3.19. The strings in {−, 0,+}5 refer to the position vectors Posi((λ2, λ3)) with
symbol − for entry (−1), symbol 0 for entry 0, and symbol + for entry (+1). The symbols

identify a point of a cell, the symbols identify a point of a facet, and the symbols
identify vertices of the arrangement, respectively.

60

3.3 Efficient computation of extreme supported solutions of (mo.0c)

x1 x2 x3 x4 x5 f1(x) f2(x) f3(x) efficient supported extreme

0 0 0 0 0 0 0 0 × × ×
1 0 0 0 0 16 -24 -4 × × ×
0 1 0 0 0 21 -14 -9 × × ×
0 0 1 0 0 10 -10 -10 ×
0 0 0 1 0 9 -1 -21 × × ×
0 0 0 0 1 3 -27 -12

1 1 0 0 0 37 -38 -13 × × ×
1 0 1 0 0 26 -34 -14 ×
1 0 0 1 0 25 -25 -25

1 0 0 0 1 19 -51 -16

0 1 1 0 0 31 -24 -19 × ×
0 1 0 1 0 30 -15 -30 × × ×
0 1 0 0 1 24 -41 -21

0 0 1 1 0 19 -11 -31 ×
0 0 1 0 1 13 -37 -22

0 0 0 1 1 12 -28 -33

1 1 1 0 0 47 -48 -23 × × ×
1 1 0 1 0 46 -39 -34 × ×
1 1 0 0 1 40 -65 -25

1 0 1 1 0 35 -35 -35 ×
1 0 1 0 1 29 -61 -26

1 0 0 1 1 28 -52 -37

0 1 1 1 0 40 -25 -40 × × ×
0 1 1 0 1 34 -51 -31

0 1 0 1 1 33 -42 -42

0 0 1 1 1 22 -38 -43

1 1 1 1 0 56 -49 -44 × × ×
1 1 1 0 1 50 -75 -35 ×
1 1 0 1 1 49 -66 -46

1 0 1 1 1 38 -62 -47

0 1 1 1 1 43 -52 -52

1 1 1 1 1 59 -76 -56 × × ×∑
17 12 10

Table 3.3: Feasible solutions, corresponding objective function values and dominance charac-
teristic for Example 3.19.

61

Chapter 3 Computation of extreme supported points

The permutation can easily be updated at every iteration. Due to this update, the inter-
sections of newly subsequent hyperplanes have to be computed and, if the λ2-component
is larger than the current λ2-value of the vertical line, i. e., if the intersection point lies
right hand of the vertical line, added to Λ. The algorithm stops if the list of intersection
points is empty. All intersection points of the hyperplanes in the projected weight space
have been computed during the algorithm.

Example 3.20 Look at the example in Figure 3.11. Four hyperplanes are intersecting in
the projected weight space. The algorithm of Bentley and Ottmann [1979] proceeds as
follows:

Vertical line π Intersections Λ

λ2 = 0 (1, 2, 3, 4) h1 ∩ h2 ∩W0 = {(0.2, 0.3)}
h2 ∩ h3 ∩W0 = ∅
h3 ∩ h4 ∩W0 = {(0.1, 0.2)} {(0.1, 0.2), (0.2, 0.3)}

λ2 = 0.1 (1, 2, 4, 3) h2 ∩ h4 ∩W0 = {(0.4, 0.1)} {(0.2, 0.3), (0.4, 0.1)}
λ2 = 0.2 (2, 1, 4, 3) h1 ∩ h4 ∩W0 = {(0.25, 0.15)} {(0.25, 0.15), (0.4, 0.1)}
λ2 = 0.25 (2, 4, 1, 3) h2 ∩ h4 ∩W0 = {(0.4, 0.1)}

h1 ∩ h3 ∩W0 = ∅ {(0.4, 0.1)}
λ2 = 0.4 (4, 2, 1, 3) h2 ∩ h1 ∩W0 = {(0.2, 0.3)} ∅

The algorithm initializes with the vertical line at λ2 = 0. The first permutation π =

(1, 2, 3, 4) induces that the intersections of h1 and h2, h2 and h3, and h3 and h4 and the
projected weight space have to be computed. Two intersection points are added to Λ

and the vertical line is swept to λ2 = 0.1. Continuing, the permutation π for λ2 + ε,
for a small ε > 0, the intersection of newly subsequent hyperplanes and the resulting set
of intersections Λ is given. The algorithm of Bentley and Ottmann [1979] computes all
intersection points in five iterations.

The algorithm of Bentley and Ottmann [1979] has a complexity of O(n log n+ k log n),
where k is the number of intersection points, which is in O(n2) for an arrangement of
hyperplanes in R2. Bentley and Ottmann [1979] already indicated that the naïve approach,
of testing all (n2) possible intersections of pairs of hyperplanes, with a complexity of O(n2)

becomes more efficient than their approach if k is very close to n2. Nevertheless, we
prefer the algorithm of Bentley and Ottmann [1979] since it is very unlikely that nearly
all intersection points of the arrangement of hyperplanes are inside the projected weight
space W0.
Now that we know how to compute all intersection points in the projected weight space,

i. e., the vertices of the arrangement of hyperplanes, the set of extreme supported solutions
of (3opnn.0c) can be easily generated. In Algorithm 3.2 a possible procedure is presented.
The list Λ consists of entries (λ2, λ3, j, t) that describe intersection points of the (t + 1)

hyperplanes hπ(j) to hπ(j+t) at the point (λ2, λ3). In the general case two hyperplanes

62

3.3 Efficient computation of extreme supported solutions of (mo.0c)

λ2

λ3

1

1

h1

h2

h3

h4

Figure 3.11: The method of Bentley and Ottmann [1979] sweeps with a vertical line through
the projected weight space to identify all intersection points.

define one intersection point and, hence, t = 1. The list Λ is sorted and the k-th entry
of Λ is identified by squared brackets: Λ[k]. If Λ[1] is deleted from Λ, all following entries
increase one position in rank. If a new entry is inserted at Λ[k], the current entry Λ[k] and
all following entries scale down one position. The last entry Λ[end] is assumed to be an
empty set.
At each iteration of the algorithm, i. e., for each intersection point, the corresponding

solutions are evaluated. Since we know which hyperplanes are intersecting in the current
intersection point, the permutation π of the corresponding vertical line includes all neces-
sary information. For clarity, we use the index i to identify hyperplanes and the index j to
identify the position of the hyperplanes in π. All hyperplanes hπ(̂) that have a position ̂
in π that is smaller than the position j of the top-most intersecting hyperplane, are lying
above the intersection point. Hence, the intersection point is located in the corresponding
half-spaces h+

̂ and the variables x̂ have to be set to 1. Vice versa, all hyperplanes h̂ that
have a position ̂ in π that is larger than the position (j + t) of the lower-most intersecting
hyperplane, are lying below the intersection point. Hence, the intersection point is located
in the corresponding half-spaces h−̂ and the variables x̂ have to be set to 0. The (t + 1)

intersecting hyperplanes define the remaining (t + 1) variables.
All special cases are handled in Algorithm 3.2. At first, identical hyperplanes are filtered

out. Assume that the hyperplanes hı̂ and hı̃ are identical. Again, due to the fixed signs
of the profits p•ı̂ and p

•

ı̃ , it holds that h+
ı̂ = h+

ı̃ and h−ı̂ = h−ı̃ . Thus, for every weight
(λ2, λ3) ∈ W0, it holds for the corresponding optimal solution that xı̂ = xı̃. Hence,
by storing the information that the hyperplanes are identical, the hyperplane hı̃ can be
filtered out to simplify the procedure (function FilterIdentical) and the solutions are
completed at the end of the algorithm (function ReconstructIdentical).
Continuing with all pairwise distinct hyperplanes, Algorithm 3.2 identifies the permuta-

tion π corresponding to the vertical line with λ2 = 0. The special case of vertices on the

63

Chapter 3 Computation of extreme supported points

Algorithm 3.2 Generates all extreme supported solutions of (3opnn.0c).

Input: profit vectors p•i , i ∈ {1, . . . , ñ}
1: generate the hyperplanes hi defined by the profit vectors p•i , for i = 1, . . . , ñ

2: (h1, . . . , hn, a) ..=FilterIdentical(h1, . . . , hñ)
3: global list Λ ..= Λ[1] = ∅ // list of intersection points and corresponding hyperplanes
4: x ..= 0n // top-most cell
5: global set XeE ..= {x}
6: let π : {1, . . . , n} → {1, . . . , n} be the permutation of items i = π(j) such that{

λ3,π(j) > λ3,π(j+1), or
λ3,π(j) = λ3,π(j+1) and λ2,π(j) > λ2,π(j+1)

for j = 1, . . . , n − 1 with λk,π(j) =
−p1

i

pki −p
1
i

for k = 2, 3.

7: for j ..= 1, . . . , n do // cells adjacent to the λ3-axis
8: xπ(j)

..= 1, XeE ..= XeE ∪ {x}
9: if j < n then

10: ComputeIntersection(hπ(j), hπ(j+1), 0)

11: while Λ[1] 6= ∅ do // sweep through intersection points
12: (λ̄2, λ̄3, j, t)

..= Λ[1]

13: Λ ..= Λ[2 : end] // delete Λ[1] from list Λ

14: GenerateSolutions(π, j, t) // cells adjacent to intersection point
15: π ..=UpdatePermutation(π, j, t)
16: if j > 1 then // intersection above
17: ComputeIntersection(hπ(j−1), hπ(j), λ̄2)

18: if j + t < n then // intersection below
19: ComputeIntersection(hπ(j+t), hπ(j+t+1), λ̄2)

20: ReconstructIdentical(ñ, a)
Output: XeE

64

3.3 Efficient computation of extreme supported solutions of (mo.0c)

Algorithm 3.2 Part 2: Generates all extreme supported solutions of (3opnn.0c).

21: function FilterIdentical(g1, . . . , gñ) // merge identical hyperplanes
22: n ..= 0, a ..= 0ñ
23: for i ..= 1, . . . , ñ do
24: if a(i) = 0 then // not identical to previously examined hyperplanes
25: n ..= n + 1, hn ..= gi , a(i) ..= n

26: for k ..= i + 1, . . . , ñ do
27: if gi = gk then
28: a(k) ..= n

29: return h1, . . . , hn, a

30: end function

31: procedure ComputeIntersection(hj , hk , λ̄2)
32: compute intersection point (λ2, λ3) of hyperplanes hj and hk
33: if (λ̄2 < λ2 < 1) and (0 < λ3 < 1) then
34: r ..= 1, stop ..= 0

35: while stop = 0 do
36: if Λ[r] = ∅ then // r = end
37: Λ ..=

[
Λ[1 : r − 1], (λ2, λ3, j, 1),Λ[end]

]
// insert at the end of List Λ

38: stop ..= 1

39: else
40: (λ̂2, λ̂3, ̂, t̂)

..= Λ[r]

41: if (λ2 < λ̂2) or (λ2 = λ̂2 and λ3 > λ̂3) then
42: Λ ..=

[
Λ[1 : r − 1], (λ2, λ3, j, 1),Λ[r : end]

]
// insert into List Λ

43: stop ..= 1

44: else
45: r ..= r + 1

46: end procedure

47: procedure GenerateSolutions(π, j, t)
48: x ..= 0n
49: for k ..= 1, . . . , j − 1 do // hyperplanes above intersection point
50: xπ(k)

..= 1

51: XeE ..= XeE ∪ {x} // adjacent cells, proceed counterclockwise
52: for k ..= 0, . . . , t do
53: xπ(j+k)

..= 1, XeE ..= XeE ∪ {x}
54: for k ..= 0, . . . , t − 1 do
55: xπ(j+k)

..= 0, XeE ..= XeE ∪ {x}
56: end procedure

65

Chapter 3 Computation of extreme supported points

Algorithm 3.2 Part 3: Generates all extreme supported solutions of (3opnn.0c).

57: function UpdatePermutation(σ, j, t)
58: for k ..= 0, . . . , t do // invert ordering
59: π(j + k) ..= σ(j + t − k)

60: return π
61: end function

62: procedure ReconstructIdentical(ñ, a)
63: X ..= XeE , XeE ..= ∅, x ..= 0ñ
64: for all x̃ ∈ X do
65: for i ..= 1, . . . , ñ do
66: xi

..= x̃a(i)

67: XeE ..= XeE ∪ {x}
68: end procedure

λ3-axis are taken into account in the definition of the permutation π as described before
(Line 6). The algorithm passes from top to bottom through all intersection points of the
hyperplanes and the λ3-axis. For each hyperplane, except the last one, the intersection
to the subsequent hyperplane is computed and the solution corresponding to the adjacent
cell that is directly below the current hyperplane is generated (Lines 7 to 10).
While there are intersection points in the list Λ, the algorithm generates all solutions

of adjacent cells (function GenerateSolutions), updates the permutation π (function
UpdatePermutation) and computes new intersection points according to the method
of Bentley and Ottmann [1979] (function ComputeIntersection). If an intersection
point is defined by more than two hyperplanes, this special case is taken into account for
generating the corresponding solutions as described above.
Algorithm 3.2 has a worst case complexity of O(n3 log n). The computation of the

intersection points has a worst case complexity of O(n2 log n) (approach of Bentley and
Ottmann with O(n2) intersection points). For each intersection point the values of O(n)

variables have to be determined. Each solution has to be stored, which is possible in
O(n) time using, for example, a binary search tree. Every level of the tree constitutes
the decision of setting one variable xi , thus, the tree has a depth of n. A new solution
can be inserted in O(n). The same time is needed to detect that a solution has already
been stored. Furthermore, the number of leafs of the tree is identical with the number of
extreme supported solutions, which is in O(n2). Hence, the space complexity of the binary
search tree is in O(n · n2) = O(n3).
Note that Algorithm 3.2 generates a lot of redundant information. A solution is as

often generated as the corresponding cell has adjacent vertices. Nevertheless, the effort
for computing and saving the solutions is quite small such that it is not reasonable to
introduce counteractions.

66

3.3 Efficient computation of extreme supported solutions of (mo.0c)

In case of non-simple arrangements that generate nonextreme supported solutions, the
algorithm can be extended to compute all elements of the power set of the intersecting hy-
perplanes. The generation of solutions has to include solutions that only correspond to the
current vertex. This can easily be done by reformulating the function GenerateSolu-
tions (see Algorithm 3.3). To take all nonextreme supported solutions into account, also
all possible combinations of items corresponding to identical hyperplanes have to be gener-
ated. Hence, identical hyperplanes should not be filtered, the functions FilterIdentical
and ReconstructIdentical have to be eliminated for this purpose. The set XeE has
to be replaced by XsE . Including nonextreme supported solutions, the complexity of the
variant of Algorithm 3.2 may become exponential, due to the possibly exponential number
of supported solutions. However, the incremental complexity, i. e., the time for computing
the next supported solution, is still constant.

Algorithm 3.3 Procedure of variant of Algorithm 3.2 for generating all extreme and nonex-
treme supported solutions of (3opnn.0c).

1: procedure GenerateSolutions(π, j, t)
2: x ..= 0n
3: for k ..= 1, . . . , j − 1 do // hyperplanes above intersection point
4: xπ(k)

..= 1

5: for all (xπ(j), . . . , xπ(j+t)) ∈ {0, 1}t+1 do // generate all 2t+1 assignments
6: XsE ..= XsE ∪ {x}
7: end procedure

Computational results We implemented the general variant of the algorithm (including
nonextreme supported solutions, see Algorithm 3.3) in C++. Experiments were performed
on an Intel Quadcore 2,80GHz with 4GB RAM. Instances with 100 up to 1000 items
were generated. The coefficients were randomly and independently chosen in the interval
[1, 10n] for the first objective function and in [−10n,−1] for the second and third objective
function. In contrast to the presented pseudocode, the implementation indicates if a
solution is nonextreme supported. The experiments indicate that no nonextreme supported
solutions occur, which is most likely for randomly generated instances with a sufficiently
large interval for defining the profit values. Hence, the experiments can be used to test
Algorithm 3.2.
Table 3.4 presents average solution times (t) and numbers of extreme supported solu-

tions (|XeE |) over 30 instances. Algorithm 3.2 solves (3opnn.0c) efficiently. It computes a
large number of solutions in a short time. In Figure 3.12, we compare our computational
results with the theoretical worst case complexities, i. e., we compare the solution times
with f (n) = n3 log n (Figures 3.12(a) and 3.12(b)) and the numbers of extreme supported
solutions with f (n) = n2 (Figures 3.12(c) and 3.12(d)). Both comparisons show that the
experiments fit the theoretical results.

67

Chapter 3 Computation of extreme supported points

n t |XeE |
100 0.05 1 670.43
200 0.74 6 933.00
300 3.87 15 117.60
400 12.78 27 054.57
500 31.16 41 475.03
750 177.39 94 228.83
1000 686.98 168 324.83

Table 3.4: CPU-times and number of extreme supported solutions for instances of (3opnn.0c)
with 100 up to 1000 items (each averaged over 30 instances).

n

0 200 400 600 800 1000

t
in

s

0

100

200

300

400

500

600

700

(a) Solution time t depending on number of
items n.

n

0 200 400 600 800 1000

n
3
lo
g
(n
)

×10 9

0

1

2

3

4

5

6

7

(b) Worst case complexity of Algorithm 3.2 is in
O(n3 log n).

n

0 200 400 600 800 1000

|X
e
E
|

×10 4

0

2

4

6

8

10

12

14

16

18

(c) Number of extreme supported solutions
|XeE | depending on number of items n.

n

0 200 400 600 800 1000

n
2

×10 5

0

1

2

3

4

5

6

7

8

9

10

(d) Number of extreme supported solutions for
(3opnn.0c) is in O(n2).

Figure 3.12: Comparison of experimental and theoretical results for Algorithm 3.2.

68

3.3 Efficient computation of extreme supported solutions of (mo.0c)

3.3.4 The general case: computing extreme supported solutions for multi-
objective unconstrained combinatorial optimization problems

The idea of Algorithm 3.2 can be generalized to more complex cases:

In the case of arbitrary weights the hyperplanes do not necessarily intersect the λ3-
axis in the interval (0, 1). They can enter the projected weight space at any of the three
bounding edges, or they may not intersect W0 at all. This is not a problem, since the
algorithm by Bentley and Ottmann [1979] is designed for computing the intersections of line
segments in general. Therefore, the first step is to compute the line segments hi ∩W0,
for i = 1, . . . , n. The second difference to Algorithm 3.2 is that without the special
structure of (3opnn.0c), the half-spaces h−i and h+

i are not definitely assigned above and
below the hyperplane hi , respectively, but may also be assigned reverse. Hence, for each
intersection point and each item, the sign of the weighted utility has to be computed to
define the position vector of the vertex. Overall, the worst case complexity of the algorithm
is O(n2 log n), which is the same as for (3opnn.0c).

In the case of higher dimensions with simple arrangements the algorithm of Bentley
and Ottmann [1979] cannot be applied since it is limited to the computation of intersection
points in the plane. For (mo.0c), with m > 3, an alternative is to apply the naïve approach
of computing all (n

m−1) intersection points of (m − 1)-tuples of hyperplanes and testing
whether they are part of the projected weight space or not. To do so, m additional
hyperplanes can be introduced that define the boundary of the projected weight space.
Only position vectors with correct signs in the corresponding entries are considered. This
approach implies an easy strategy for hyperplanes that do not intersect with (m−2) other
hyperplanes in the projected weight space (cf. special case of (3opnn.0c): hyperplanes that
do not intersect with any other hyperplane in W0): For 1 ≤ t ≤ m − 1, all t-faces of the
arrangement intersect with (m − t)-faces defined by hyperplanes of the boundary of the
projected weight space. These intersection points provide the required information. For
fixed m, the modifications change the worst case complexity of the algorithm to O(nm).

In the case of higher dimensions with non-simple arrangements we distinguish two
cases:
(1) If the complete set of extreme and nonextreme supported solutions should be com-
puted, the algorithm can be applied as described above, but the complexity increases to
O(2n · nm) due to the possibly exponential number of solutions.
(2) If the nonextreme supported solutions should not be computed, the algorithm has to
be modified (as Algorithm 3.2 is a special case of the more general variant belonging to the
function in Algorithm 3.3). At first, a filtering of identical hyperplanes should be included.
In contrast to (3opnn.0c), the signs of coefficients are not fixed assigned to objective func-
tions. Therefore, the equality of hyperplanes hi and hj does not induce equality of the
half-spaces h+

i and h+
j . It is also possible, that h+

i is equal to h−j . This has to be tested

69

Chapter 3 Computation of extreme supported points

and included in the reconstruction. The second modification handles intersection points λ
that have more than (m − 1) 0-entries in the position vector, i. e., that are lying on more
than (m − 1) hyperplanes. Cells adjacent to a k-face and, hence, the extreme supported
solutions can be identified if the corresponding position vector has (m − 1− k) 0-entries.
Therefore, the edges adjacent to λ can be analyzed since the change of the dimension may
identify the surplus hyperplane. But depending on the structure, these 1-faces may still
have more than (m−2) 0-entries, i. e., that more than (m−2) hyperplanes intersect in one
edge. Hence, the algorithm has to recurse one dimension higher to the adjacent 2-faces.
Possibly, this has to be continued until the cells are computed explicitly. In the worst
case, all k-faces, 0 ≤ k ≤ m − 1, have to be considered. Including the effort for saving
the extreme supported solutions, this can be done in O

(
(nm−1)m−1 · n

)
= O

(
n(m−1)2+1

)
,

which is still polynomial for fixed m.

3.3.5 Computing all extreme points of a zonotope

The extreme points of a zonotope in Rm can be computed by examining all cells of the
corresponding central arrangement of hyperplanes which is also in Rm. In contrast to the
above approach for computing the set of supported solutions, all orthants of Rm have
to be considered as weight space. So, negative weights have to be included and weights
equal to zero are also admissible. The associated instance of (mo.0c) can be formulated
as described in Section 3.2.1. By doing so, each objective function includes a constant
term z j , for j = 1, . . . , m.
For the computation of the extreme supported solutions, the constant terms are omit-

ted. We examine each orthant separately by adapting the notion of dominance, i. e.,
by choosing an appropriate combination of maximization and minimization objectives (cf.
Section 3.2.3). The above described solution approach for (mo.0c) is applicable for ar-
bitrary weights, therefore, the minimization objectives are transformed into maximization
objectives by inverting the sign of all corresponding coefficients. Afterward, the coeffi-
cients p•i can be used to define the corresponding hyperplanes hi and the solution approach
can be used to compute all extreme supported solutions corresponding to the respective
orthant. The extreme points are computed using the original objective functions again
including the constant terms.
The centrality of the arrangement of hyperplanes associated to the zonotope allows

to concentrate on weights in one half of Rm. Every point y associated to weights with
λ1 > 0 corresponds to a point ỹ associated to weights with λ1 < 0 in the opposite orthant
of Rm. The corresponding position vectors are inverse, i. e., Posi(y) = −Posi(ỹ), for
i = 1, . . . , n, and, hence, also the corresponding extreme supported solutions are inverse,
i. e., xi = 1−x̃i , for i = 1, . . . , n. Therefore, the first component λ1 can be fixed to positive
values and the corresponding 2m−1 orthants have to be analyzed. To obtain the extreme
solutions corresponding to the remaining orthants, every solution has to be inverted.
The solution approach is presented in Algorithm 3.4. The matrix E defines the cur-

rent combination of maximization and minimization objectives. The solution approach for

70

3.4 Efficient computation of extreme supported points of (mo.1c)

(mo.0c) is executed 2m−1 times. Hence, for fixed m ≥ 2, all extreme points of a zonotope
can be computed in O(nm).

Algorithm 3.4 Algorithm for generating all extreme points of a zonotope in Rm.

Input: profit vectors p•i , for i = 1, . . . , n, constant vector z • ∈ Zm
1: P ..= ∅ // set of extreme points of the zonotope
2: β1

..= 1

3: for all (β2, . . . , βm) ∈ {−1, 1}m−1 do // for each orthant of Rm−1, λ1 ≥ 0

4: E ..= diag(β1, . . . , βm)

5: for i ..= 1, . . . , n do
6: generate the hyperplane hi defined by the profit vector E · p•i
7: compute the set of extreme supported solutions XeE using h1, . . . , hn
8: for x ∈ XeE do
9: P ..= P ∪

{∑n
i=1 p

•

ixi + z •
}

// corresponding extreme point
10: for i ..= 1, . . . , n do // invert solution
11: xi

..= 1− xi
12: P ..= P ∪

{∑n
i=1 p

•

ixi + z •
}

// opposite extreme point for λ1 ≤ 0

Output: P

3.4 Efficient computation of extreme supported points of
multi-objective knapsack problems

In contrast to (mo.0c), the multi-objective knapsack problem (mo.1c) includes a capacity
constraint. Thus, not all subsets of items are feasible in general: the feasible set of
(mo.1c) is a subset of that of (mo.0c). As a consequence, the solution approach presented
in Section 3.3.4 is not directly applicable. More precisely, since efficient solutions of
(mo.0c) may become infeasible for (mo.1c), other feasible solutions may become efficient
for (mo.1c).
Nevertheless, the projected weight space still provides all information for computing the

set of extreme supported solutions using the concept of weight space decomposition (see
Section 3.1.3 and Przybylski et al. [2010a]). The projected weight space can be decom-
posed into convex polytopes such that the weighted sum scalarization using weights that
correspond to one polytope have the same optimal solutions. Different from Section 3.3,
the polytopes are not generated by an arrangement of hyperplanes. Nevertheless, the def-
initions of k-faces, cells, facets, edges, vertices and subfaces can be applied analogously.
Note that for (mo.1c) there may exist equivalent extreme supported efficient solutions,

i. e., extreme supported solutions x and x ′ that correspond to the same extreme supported
nondominated point f (x) = f (x ′). Therefore, we focus on computing (extreme) supported
points and one corresponding solution in the following.

71

Chapter 3 Computation of extreme supported points

Several approaches for computing the set of extreme supported points for (mo.1c) have
been suggested in the literature (see Section 3.4.1). We show how these algorithms
can be improved using the results on unconstrained problems in Section 3.4.2. As in
Section 3.3.3, we perform a case study on tri-objective problems with one positive and two
negative objectives in Section 3.4.3 including computational tests.

3.4.1 Literature review on multi-objective approaches for decomposing the
weight space

Benson and Sun [2002] present an algorithm that uses a weight space decomposition to find
all extreme supported points of multi-objective linear optimization problems (MOLP). The
algorithm makes use of a duality between the objective space and the weight space. In each
iteration of the algorithm of Benson and Sun [2002], either a weight vector (λ1, . . . , λm)>

is detected that leads to a new extreme supported point or the algorithm stops since no
such weight vector exists. Each computed extreme supported point corresponds to a face
of the weight space. Since (MOLP) is linear, a weight vector that is not an element of these
polytopes can be computed solving a linear inequality system. This weight vector certainly
corresponds to a new extreme supported point of (MOLP). If no such weight vector exists,
i. e., if the linear system is infeasible, the algorithm stops. The set of extreme supported
points correspond to the complete weight space decomposition, i. e., every weight vector
of the weight space corresponds to at least one of the extreme points. All extreme points
have been computed.
The idea of the approach of Benson and Sun [2002] can be combined with the concept

of dichotomic search (cf. Sections 2.1 and 4.2) for an application on multi-objective
integer optimization problems (MOIP). We first present the general structure of such an
approach, see Algorithm 3.5, and then give a review on the literature.

A general approach For (MOIP), another concept for selecting new weights has to be
developed. Problems with three or more objective functions, computing only nondominated
extreme points causes some challenges that we explain later on. But therefore, we first
show how to compute all extreme points of the convex hull conv(Y) of feasible points. To
do so, we extend the weight space to Rm. In the following, we refer to faces of conv(Y)

as primal faces and to faces of the weight space decomposition as dual faces. Every vector
that is normal to a primal face corresponds to a weight vector in the weight space Rm. As
in the dichotomic search approach, the weights defined by these vectors are used to find
new extreme points or exclude primal faces from further consideration.
We assume that an initial set of (m+ 1) affinely independent extreme points is available

as an input for Algorithm 3.5. A naïve approach to obtain this initial set is to solve several
weighted sum problems using arbitrary weights until (m+ 1) affinely independent extreme
points have been found. Using this set of extreme points, an initial convex hull can be
computed. The vectors normal to the primal facets define the weights for applying the
weighted sum scalarization. One weighted sum problem is solved in each iteration and,

72

3.4 Efficient computation of extreme supported points of (mo.1c)

Algorithm 3.5 Algorithm for generating all extreme points of the convex hull conv(Y) of
feasible points for (MOIP).

Input: initial set Y of (m + 1) affinely independent extreme supported points
1: compute convex hull conv(Y)

2: define F as the set of primal facets and include all facets of conv(Y) in F
3: for F ∈ F do
4: let λ be the vector normal to F
5: define (P) as the weighted sum scalarization of MOIP with weight vector λ
6: compute an optimal point y of (P)
7: if y /∈ Y then
8: Y ..= Y ∪ {y}
9: update convex hull conv(Y)

10: include new facets of conv(Y) in F
11: delete F from F
Output: Y , set of extreme points of conv(Y) and, possibly, some nonextreme points on

the boundary of conv(Y)

either, a new point is found and new primal facets enter the process (Steps 8 and 10 of
Algorithm 3.5), or the extreme point was already known. In both cases this primal facet can
be excluded from consideration. The algorithm stops if all primal facets have been analyzed.
If nonextreme points on the boundary of conv(Y) exist, for example nonextreme supported
points, some of these may be found by the corresponding weighted sum scalarization during
the process. This does not affect the algorithm, but generates additional information. For
generating the convex hull of a given set of points in Rm, for example, the quickhull
algorithm of Barber et al. [1996] can be applied. For a recent survey on convex hull
algorithms see, for example, de Berg et al. [2008]. Algorithm 3.5 summarizes the approach.

A generalization of the dichotomic search for computing all extreme supported points
(i. e., now we concentrate on nondominated points) of (mo.1c), for m > 2, is not easy.
Przybylski et al. [2010a] discuss in detail possible shortcomings of Algorithm 3.5, including
problems that may occur during the initialization as well as the optimization for a given
hyperplane in the objective space. One problem is that it is unclear how to compute
initial points or how to define an initial primal facet. Furthermore, the weight vector
corresponding to a primal facet may have negative entries. In this case, on the one hand,
it cannot be guaranteed to find extreme supported points using this weight vector. But,
on the other hand, by excluding these weight vectors it cannot be guaranteed to find all
extreme supported points: For m > 2, an extreme supported point may not be adjacent to
nondominated facets of the convex hull conv(Y) but only to nondominated k-faces with
k < m− 1. So it may not be found using only weight vectors corresponding to facets and
having only positive entries.

73

Chapter 3 Computation of extreme supported points

Przybylski et al. [2010a] reinterpret the dichotomic search and concentrate on the
decomposition of the normalized weight space for computing all extreme supported points
of multi-objective integer optimization problems. By computing the common subfaces of
pairs of cells, they represent the complete normalized weight space and guarantee to find
all extreme supported points. For m = 3, the subfaces are edges which can be investigated
by solving corresponding bi-objective problems. For higher dimensions, i. e., m ≥ 4, the
approach is applied recursively.

Özpeynirci and Köksalan [2010] develop an algorithm for finding all extreme supported
points of multi-objective mixed integer optimization problems on the basis of the ideas of
Aneja and Nair [1979]. They assume that the problem has m minimization objectives
and that all components of all feasible points are positive, i. e., that fj(x) > 0 for all
j = 1, . . . , m and for all x ∈ X . The algorithm operates on the nondominated frontier,
i. e., the union of all nondominated faces of conv(Y), in the objective space. To overcome
the difficulties of a multi-objective dichotomic search described above, Özpeynirci and
Köksalan [2010] introduce dummy points in the objective space:

dj = Dej , j = 1, . . . , m (3.1)

with ej the j-th unit vector of Rm, and D ∈ R> a sufficiently large positive constant in
the sense that all extreme supported points remain extreme supported for the extended set
conv(Y∪{d1, . . . , dm}). It can be shown, that such a constant D always exists. The inclu-
sion of the dummy points slightly changes the shape of the nondominated frontier in the
objective space. In general, the nondominated frontier consists of a union of nondominated
faces of different dimensions. Including the dummy points allows to define the nondomi-
nated frontier as a union of nondominated facets. Accordingly, the corresponding weight
space decomposition is modified. Özpeynirci and Köksalan [2010] verify that for weight
values very close to the boundary of the weight space, i. e., with at least one component
smaller or equal to a predefined value ε > 0, the corresponding weighted sum problem is
solved by a dummy point. Hence, the polytopes in the weight space corresponding to the
original extreme supported points do not intersect the boundary of the weight space.
The algorithm of Özpeynirci and Köksalan [2010] initializes the search with them dummy

points and the corresponding facet and weight vector. The weighted sum problem is solved
and either the resulting point was already known, then the corresponding facet is part of
the nondominated frontier and can be stored, or a new extreme supported point has been
computed and the list of facets has to be updated. The algorithm builds the new facets
by combining the newly generated point with all subsets of points with cardinality (m− 1)

of the current facet. By doing so, in three or higher dimensions negative weight vectors
may occur. In this case, Özpeynirci and Köksalan [2010] propose to select one of the
already known extreme supported points that do not define the facet that corresponds to
the current weight vector and to generate m new facets using this point. An alternative
would be to use the quickhull algorithm of Barber et al. [1996] to update the convex
hull, which would only produce positive weights due to the dummy points. However, the

74

3.4 Efficient computation of extreme supported points of (mo.1c)

algorithm investigates each facet at most once and, hence, terminates after a finite number
of iterations.

Bökler and Mutzel [2015] present an approach for enumerating all extreme supported
points of multi-objective combinatorial optimization problems, which is based on dual vari-
ants of Benson’s algorithm for multi-objective linear optimization (see Ehrgott et al. [2012]
and Heyde and Löhne [2008]). We adapt the notation of Bökler and Mutzel [2015] to
the notation for (mo.1c). A primal polyhedron is given by P = Y − Rm≥. The extreme
supported points of (mo.1c) are the extreme points of P. A dual polyhedron D is de-
fined in Rm, where the first (m− 1) coordinates represent the projected weight space W0

((µ1, . . . , µm−1)> := (λ2, . . . , λm)>) and the m-th coordinate µm is associated to the ob-
jective value of the corresponding weighted sum scalarization of (mo.1c). Every extreme
point y of P defines a hyperplane

h(y) =

{
µ ∈ Rm : µm =

(
1−

m∑
j=2

µj−1

)
y1 +

m∑
j=2

µj−1yj

}
.

The dual polyhedron D consists of all points in Rm that are located above all of these
hyperplanes. More precisely, for each extreme point y of P a half-space

H(y) =

{
µ ∈ Rm : µm ≥ µ̄m for µ̄ ∈ h(y) with µ̄j = µj ,∀j ∈ {1, . . . , m − 1}

}
is defined and a weight set

W =

{
µ ∈ Rm : µj ≥ 0,∀j ∈ {1, . . . , m − 1}, 1−

m∑
j=2

µj−1 ≥ 0

}
.

The dual polyhedron D corresponds to the intersection of all half-spaces H(y) and W.
The duality of the two polyhedra P and D can easily be derived using the linear pro-

gramming relaxation of the weighted sum scalarization of (mo.1c). Each facet of the
lower bound of D is part of one defining hyperplane h(y) and, hence, corresponds to one
extreme point of P. The algorithm of Bökler and Mutzel [2015] works as follows: Starting
with a polyhedron that contains D at every extreme point of this polyhedron a ray is shot
into the dual polyhedron, i. e., a weighted sum scalarization of the optimization problem
is solved for the respective weight values, with optimal solution x . If this solution cor-
responds to the same extreme point of D again, then this point is also extreme for the
final polyhedron D and can be excluded from further consideration. Otherwise, the newly
generated solution x is at least weakly efficient and the corresponding point y is saved
as candidate for a extreme supported point in P. Then, the corresponding hyperplane
and half-space is constructed and intersected with the current dual polyhedron D. Newly
generated extreme points of D are included in the process. Finally, if all extreme points
of D have been analyzed, the final dual polyhedron D is obtained and, hence, all extreme
supported points of P are known. In a last step, all weakly nondominated but nonextreme

75

Chapter 3 Computation of extreme supported points

points have to be filtered out. As an alternative, Bökler and Mutzel [2015] also present a
lexicographic version to avoid weakly nondominated points that may occur in the case of
weight vectors with entries equal to 0.

Przybylski et al. [2017] introduce a straightforward dichotomic search algorithm and
two different variants for computing extreme supported points of multi-objective integer
linear programming problems. The first algorithm essentially corresponds to Algorithm 3.5,
allowing negative weights and resulting in the computation of all extreme points of the
convex hull of the set of feasible points conv(Y). As a final step, all dominated extreme
points have to be filtered out. Przybylski et al. [2017] introduce different initializations
and concepts for reducing the number of iterations in two alternative algorithms.
The first variant makes use of the concept of dummy points similar to Özpeynirci and

Köksalan [2010]. The algorithm is initialized by a set composed of the m dummy points
and one extreme supported point computed for arbitrary positive weights, e. g., for equally
weighted objective functions. The associated convex hull has solely facets with positive
coefficients in the normal vectors, except for the one facet defined by the m dummy points.
This facet is excluded from the further process. Starting with the remaining m facets, the
following steps can be performed as in the basic algorithm. Przybylski et al. [2017] show
that this variant generates only supported points and that all extreme supported points are
generated by the algorithm. A disadvantage of the approach is, that in practice the large
value required for D in the definition of the dummy points (see Equation (3.1)) can lead
to numerical imprecision.
The second variant generates an initial set of nondominated points in yet another way.

Subproblems of (mo.1c) with less objective functions, i. e., where one to m objective
functions have been deleted, are defined. Przybylski et al. [2010b] show that an extreme
supported solution of the subproblem is already extreme supported for the original problem
if it is efficient for the original problem. Thus, all m subproblems with (m − 1) objec-
tive functions are solved and the union of all computed extreme supported points is used
to initialize the algorithm. Similar to the dummy points of the previous approach, these
points are optimal for weighted sum problems with weights on the boundary of the weight
space. The algorithm proceeds as before by computing the convex hull of the initial set
of points. Only facets that define positive weights are evaluated. Przybylski et al. [2017]
showed, that this guarantees that only supported points are generated and that all extreme
supported points will be identified by the algorithm. Some initial points may be dominated
in the original problem with m objectives. Hence, these points should be filtered out at
the end.

3.4.2 Multi-objective knapsack problems

As described above, the results of Section 3.3 are not directly transferable to the con-
strained problem (mo.1c). However, the nondominated frontier of the unconstrained

76

3.4 Efficient computation of extreme supported points of (mo.1c)

problem provides an upper bound set on the nondominated frontier of the same prob-
lem with a capacity constraint (see Figure 3.13(a)). Efficient solutions of (mo.0c) that
do not violate the capacity constraint are also efficient for (mo.1c). Thereby, a cell of
the arrangement of hyperplanes associated to those solutions is contained in the polytope
of the weight space decomposition associated to (mo.1c) for the same solution. Hence,
the arrangement of hyperplanes associated to (mo.0c) can be computed in a preprocessing
step and all resulting feasible points can be used to initialize a multidimensional dichotomic
search. All faces of the arrangement corresponding to infeasible solutions have to be an-
alyzed again. We call these faces infeasible faces. Similarly, connected parts of infeasible
faces in the projected weight space are called infeasible areas. Inversely, all faces corre-
sponding to feasible solutions are called feasible faces of the arrangement associated to
(mo.1c).
For simple arrangements, the position vectors of cells ϕ(m−1)

1 and ϕ(m−1)
2 with a common

subface ϕ(m−2) differ in exactly one position i that corresponds to the hyperplane hi which
separates the cells. We assume that ϕ(m−1)

1 is a feasible cell and that ϕ(m−1)
2 is an infeasible

cell for (mo.1c). Hence, the common subface ϕ(m−2) corresponds to one feasible and one
infeasible solution. The two solutions also correspond to the subfaces of ϕ(m−2) and so
on. We call k-faces ϕ(k), 0 ≤ k ≤ m − 2, critical faces if they correspond to at least one
feasible and at least one infeasible solution for (mo.1c). For non-simple arrangements,
more solutions may correspond to a k-face than in the simple case, but still a face is called
critical if feasible and infeasible solutions are among them. Trivially, feasible and infeasible
areas are separated by critical faces.

Example 3.21

(a) Consider the following bi-objective knapsack problem:

max − x2 + 3x3 − 4x4 + 6x5 − 5x6 + x7

max x1 + 2x2 − 3x3 + 4x4 − 2x5 − x6 + x7

s. t. 5x1 + 3x2 + 2x3 + 4x4 + 5x5 + 1x6 + 4x7 ≤ 17

xi ∈ {0, 1}, i = 1, . . . , 7.

This is a constrained version of the bi-objective unconstrained combinatorial opti-
mization problem of Example 3.14. In Figure 3.13(a), the respective nondominated
frontiers are shown. Each point in the nondominated frontier of the constrained
problem is dominated by a point in the nondominated frontier of the unconstrained
problem.

(b) Consider the following tri-objective knapsack problem:

max −72x1 − 22x2 + 46x3 − 36x4 − 8x5 + 4x6 + 11x7 + 22x8

max −42x1 + 8x2 + 16x3 + 24x4 − 13x5 + 64x6 − 154x7 − 38x8

max 18x1 + 11x2 − 44x3 + 54x4 + 52x5 − 56x6 + 56x7 + 52x8

s. t. 13x1 + 6x2 + 8x3 + 8x4 + x5 + 2x6 + 13x7 + 10x8 ≤ 26

xi ∈ {0, 1}, i = 1, . . . , 8.

77

Chapter 3 Computation of extreme supported points

The unconstrained version of this instance has 25 extreme supported solutions. Seven
of the cells of the associated arrangement of hyperplanes become infeasible as soon
as the constraint is included, see Figure 3.13(b).

f1

f2

(a) Supported points and nondominated fron-
tiers of the constrained (gray) and uncon-
strained (black) problem.

λ2

λ3

1

1

(b) Arrangement of hyperplanes associated to
the unconstrained version of the instance. In-
cluding the constraint, all faces inside the
gray shaded areas correspond to infeasible
solutions. The dashed line segments high-
light the critical edges and vertices.

Figure 3.13: Objective space (a) and projected weight space (b) corresponding to Exam-
ples 3.21(a) and (b), respectively.

In Algorithm 3.6 an approach for computing all extreme supported points of (mo.1c)
is presented, using the concepts of Section 3.3.4 for unconstrained problems as a prepro-
cessing. All of the multi-objective approaches for decomposing the weight space presented
in Section 3.4.1 can be used in Steps 3 and 4 to compute all extreme supported points of
(mo.1c). In the following, we discuss the implementation of Algorithm 3.6 in combination
with these approaches.

Algorithm 3.6 Generates all extreme supported points of (mo.1c)

Input: (mo.1c)
1: compute the set of extreme supported solutions XeE of the unconstrained version of

(mo.1c) using concepts of Section 3.3.4
2: YeN ..= {y ∈ Zm : y = f (x), x ∈ XeE with

∑n
i=1 wixi ≤ W} // filter feasible

points
3: choose any algorithm of Section 3.4.1 and use all points y ∈ YeN to initialize it
4: apply the chosen algorithm to complete YeN

Output: YeN

78

3.4 Efficient computation of extreme supported points of (mo.1c)

Przybylski et al. [2010a] Utilizing the information, precomputed in Steps 1 and 2 of
Algorithm 3.6 in combination with the algorithm of Przybylski et al. [2010a] is quite natural.
All feasible areas in the projected weight space can be considered as explored and the
algorithm can start with examining the critical faces.

Özpeynirci and Köksalan [2010] The method of Özpeynirci and Köksalan [2010] first
has to be adapted to the problem structure of (mo.1c), i. e., the definition of the dummy
points has to be reconsidered. Two facts have to be kept in mind:

• (mo.1c) is a maximization problem.

• Components of feasible points may be negative, and hence the origin can in general
not be selected as reference point. Instead, an utopian point d0 = (d0

1 , . . . , d
0
m)>,

with fj(x) <
∑n
i=1 max{pji , 0} = d0

j for all x ∈ X and for j = 1, . . . , m, can be used.

Thus, for (mo.1c) the dummy points of Özpeynirci and Köksalan [2010] can be defined as

dj = d0 −Dej , j = 1, . . . , m

with D ∈ R> a sufficiently large positive constant. The existence of D can be shown
analogously to the existence of D for Equation 3.1.
Then, in Step 3 of Algorithm 3.6, the algorithm of Özpeynirci and Köksalan [2010] can

be initialized using the m dummy points and, additionally, using all feasible points found
in Step 1. I. e., the convex hull of all of these points has to be built. All facets in the
objective space that correspond to feasible vertices in the projected weight space are part
of the nondominated frontier and can be stored. All other facets are used to start the
algorithm in Step 4.

Bökler and Mutzel [2015] The initial polyhedron in the algorithm of Bökler and Mutzel
[2015] can be reduced by intersecting with all half-spaces H(y) corresponding to the pre-
computed extreme supported points y of Steps 1 and 2. This polyhedron contains D and
the algorithm can be applied as described in Step 4. Furthermore, all extreme points of the
polyhedron that correspond to feasible vertices in the projected weight space are already
extreme points of D and do not need to be analyzed.

Przybylski et al. [2017] Both enhanced solution approaches of Przybylski et al. [2017]
can easily be applied in this context by including the precomputed feasible points in the
initial convex hull.

Obviously, the efficiency of the preprocessing is directly related to the slackness in the
capacity constraint. If the constraint is tight, many solutions of (mo.0c) may become
infeasible and it is not beneficial to compute them. Otherwise, the initial information is
very helpful. Another criterion is the distribution of positive and negative coefficients in
the objective functions. Usually, all coefficients are assumed to be positive for knapsack

79

Chapter 3 Computation of extreme supported points

problems. In this case, the unconstrained problem has one single optimal solution for all
possible weight values for the weighted sum scalarization, namely to include every item.
Due to the general assumption that the capacityW is smaller then the sum of all weights wi ,
i = 1, . . . , n, this solution is infeasible for the knapsack problem and the preprocessing does
not offer any useful information. In Section 3.4.3, we present computational experiments
that show the efficiency of this preprocessing for problems of a special structure.

3.4.3 Case study: tri-objective knapsack problems with one positive and two
negative objective functions

In this section, we again demonstrate the above results on a more specific problem with
three objectives. We assume that the first objective has positive coefficients and the
second and third objective have negative coefficients.

vmax f (x) =

(
n∑
i=1

p1
i xi ,

n∑
i=1

p2
i xi ,

n∑
i=1

p3
i xi

)

s. t.

n∑
i=1

wixi ≤ W

xi ∈ {0, 1}, i = 1, . . . , n

(3opnn.1c)

with p1
i > 0, p2

i < 0, p3
i < 0, and wi > 0 for all i = 1, . . . , n.

As discussed in Section 3.3.3, the unconstrained version of (3opnn.1c), the problem
(3opnn.0c), has a specially structured weight space decomposition. For simplicity, we
again use the terms above and below to describe the relations of cells to hyperplanes and
intersection points as defined in Section 3.3.3. In the upper left part of the weight space
where the first (positive) objective function is only marginally weighted, the supported
solution x corresponding to the cell ϕ(2)

0 is x = 0n. I. e., none of the items is included,
which is certainly feasible for (3opnn.1c). If we assume that there do not exist identical
hyperplanes, which we do in the following, we can conclude that solutions corresponding
to cells that are adjacent to the same edge differ in exactly one item. Due to the fact
that all half-spaces h+

i are lying below the corresponding hyperplanes, all cells above the
separating hyperplane correspond to solutions with xi = 0 and all cells below the hyperplane
correspond to solutions with xi = 1. Since every hyperplane has a negative slope, it is
possible to define a path of cells from ϕ

(2)
0 to any cell, where at each step, from one cell

to the next, one item is included. Note that this path is, in general, not unique. Trivially,
if a cell is feasible, then all previous cells on this path are also feasible. Accordingly, if a
cell is infeasible, then all subsequent cells on a path are also infeasible.
The cell ϕ(2)

1 which has (λ2, λ3)> = (0, 0)> in its boundary corresponds to the solu-
tion x = 1n since the second and third (negative) objective function are only marginally
weighted. This solution is certainly infeasible for (3opnn.1c) (unless

∑n
i=1 wi ≤ W). Anal-

ogously to the above discussion, starting with ϕ(2)
1 , a path to every other cell of the

80

3.4 Efficient computation of extreme supported points of (mo.1c)

arrangement can be defined where one variable is set to 0 at each step. If one cell is
infeasible, then every other cell on this path up to the cell in question is also infeasible. If
one cell is feasible, then all subsequent cells on the path are also feasible.
Concluding, all feasible cells are connected as well as all infeasible cells are connected.

The weight space consists of one feasible and one infeasible area. A set of critical faces
separates the two areas and the set of critical faces is also connected.

Example 3.22 The following instance of (3opnn.1c) is a constrained version of Exam-
ple 3.19:

max 16x1 + 21x2 + 10x3 + 9x4 + 3x5

max −24x1 − 14x2 − 10x3 − x4 − 27x5

max −4x1 − 9x2 − 10x3 − 21x4 − 12x5

s. t. 4x1 + 3x2 + 3x3 + 2x4 + 1x5 ≤ 5

xi ∈ {0, 1}, i = 1, . . . , 5.

The constraint excludes five of the extreme supported solutions of Example 3.19. Fig-
ure 3.14 shows the subdivision of the projected weight space in one feasible and one
infeasible area. The two cells corresponding to the solutions (1, 1, 0, 0, 0)> with a total
weight of 7 and (0, 1, 1, 1, 0)> with a weight of 8 mark the beginning of the infeasible part
for any path from ϕ

(2)
0 to ϕ(2)

1 . One such path, subsequently including items 2, 4, 3, 1,
and 5, is illustrated in the figure.

The algorithm Due to the structure of (3opnn.1c), Steps 1 and 2 of Algorithm 3.6
can be combined by concentrating on the feasible area of the projected weight space.
Algorithm 3.2 (see Section 3.3.3) can be adapted to solely analyze the feasible area of the
arrangement of hyperplanes corresponding to the unconstrained version of (3opnn.0c) The
idea is to take advantage of the critical vertices that are computed during the process.
The set of hyperplanes is divided into three subsets that have to be updated iteratively.
In the following, we use the terms feasible, critical and infeasible hyperplanes. This is,
of course, no appropriate classification, since a hyperplane may intersect the feasible or
infeasible area several times and, hence, may also overlap with several critical faces. What
we mean is that, for a given value of λ2, the point (λ2, λ3) on this hyperplane is part of a
feasible, infeasible or critical face. Thus, during the process, the hyperplanes are classified
as feasible, infeasible or critical, which simplifies the following description. For a fixed value
of λ2, one or more hyperplanes can be classified as critical: If λ2 corresponds to a critical
vertex, then all hyperplanes that intersect at this point are classified as critical. Otherwise,
λ2 corresponds to a point on a critical edge, which is assigned to exactly one hyperplane.
In Algorithm 3.2, a permutation π ∈ Sn is defined that represents an order relation of

all hyperplanes. The permutation is used to compute intersection points of hyperplanes
systematically. Recall that the algorithm treats the intersection points from the left to the
right, i. e., with increasing values of λ2. The permutation π is only kept updated for the
feasible hyperplanes and, in addition, the critical hyperplane. If the analyzed intersection

81

Chapter 3 Computation of extreme supported points

λ2

λ3

0.1

1.0

0.1 1.0
h1 h2h3 h4h5

−−−−−

+−−−−

++−−−

+++−−

++++−

+++++

−+−−−

−+−+−
−+++− −−−+−

Figure 3.14: Projected weight space for the unconstrained version of Example 3.22, separated
into feasible (white) and infeasible (gray) area. The critical edges are dashed. A path from
ϕ

(2)
0 to ϕ(2)

1 is displayed. On this path, the decision of including item 3 makes the solution
infeasible.

82

3.4 Efficient computation of extreme supported points of (mo.1c)

point is critical, i. e., corresponds to two or more critical hyperplanes, the algorithm tests
which hyperplane corresponds to the critical edge that is adjacent to this vertex and has
larger values of λ2. It marks the position c of the item π(c) as critical. All feasible hyper-
planes have positions j < c . The infeasible hyperplanes are omitted, i. e., the permutation
is not updated for elements π(j), with c < j ≤ n. But, as described above, the sets are
not permanent and the position of the critical hyperplane has to be updated iteratively.
An infeasible hyperplane can only become critical or feasible by intersecting the critical
hyperplane and, the other way round, a feasible hyperplane can only become critical or
infeasible by intersecting the critical hyperplane. As a consequence, three amendments of
Algorithm 3.2 are necessary:

1. Initialization: Besides the set of hyperplanes hi , for i = 1, . . . , n, the weight coef-
ficients wi , for i = 1, . . . , n, and the capacity W are required as input data. The
initialization of Algorithm 3.2 (Lines 1 to 10) can be stopped as soon as the newly
generated solution is infeasible. The corresponding hyperplane builds the set of crit-
ical hyperplanes, all hyperplanes that have already been treated are feasible and the
remaining ones are infeasible. Finally, an intersection point of the critical hyperplane
has to be computed according to the algorithm of Bentley and Ottmann [1979]. We
explain this in the context of Amendment 3 below when discussing the computation
of intersection points.

2. Generation of solutions and update of the permutation: The intersection points,
which are vertices of the arrangement of hyperplanes, can be feasible, critical or
infeasible. The evaluation has to be adapted to the respective cases.

(a) If the intersection point is feasible, i. e., if both intersecting hyperplanes are
feasible, the procedures GenerateSolutions and UpdatePermutation
of Algorithm 3.2 can be applied as before.

(b) If the intersection point is critical, i. e., if the critical hyperplane is involved, every
generated solution has to be checked for feasibility. This test shows whether the
sets of critical, feasible, and infeasible hyperplanes have to be updated. Let us
assume that the critical hyperplane hπ(j) and one feasible hyperplane hπ(j−1) or
one infeasible hyperplane hπ(j+1) intersect, i. e., including all items correspond-
ing to feasible hyperplanes and not including all other items build a supported
solution and adding item π(j) is not feasible, as well as adding item π(j + 1)

afterward. As shown in Figure 3.15, there exist four possibilities:
I. Intersection of hπ(j) and hπ(j−1), where hπ(j) remains critical, i. e., after
excluding item π(j − 1), it is still not feasible to include item π(j). Then hy-
perplane hπ(j−1) switches from the feasible to the infeasible set.
II. Intersection of hπ(j) and hπ(j−1), where hπ(j) turns from critical to feasible,
i. e., after excluding item π(j − 1), item π(j) can be included without violating
the capacity constraint. Then hyperplane hπ(j−1) switches from the feasible to
the critical set.

83

Chapter 3 Computation of extreme supported points

III. Intersection of hπ(j) and hπ(j+1), where hπ(j) remains critical, i. e., after
excluding item π(j), it is feasible to include item π(j + 1). Then, hyper-
plane hπ(j+1) switches from the infeasible to the feasible set.
IV. Intersection of hπ(j) and hπ(j+1), where hπ(j) turns from critical to infeasible,
i. e., after excluding item π(j), it is still not feasible to include item π(j + 1).
Then hyperplane hπ(j+1) switches from the feasible to the critical set.
As a consequence, the update of the permutation (procedure UpdatePermu-
tation of Algorithm 3.2) has to be adapted to these changes. If more than
two hyperplanes intersect in a critical vertex, more cases have to be taken into
consideration.

I

hπ(j)

hπ(j−1)

II

hπ(j)

hπ(j−1)

III

hπ(j+1)

hπ(j)

IV

hπ(j+1)

hπ(j)

Figure 3.15: Four possible changes (I to IV) of the sets of critical, feasible and infeasible
hyperplanes at an intersection point of hyperplanes, where the current critical hyperplane
(dashed) is involved.

(c) If the intersection point is infeasible, i. e., if both intersecting hyperplanes are
infeasible, then the evaluation can be skipped. Neither does a feasible solution
correspond to an adjacent cell, nor has the permutation to be updated.

3. Computation of intersection points: Also for the update of the list of intersection
points (procedure ComputeIntersection of Algorithm 3.2) we have to distinguish
different cases. Recall that the new intersection points are computed after the update
of the feasible, critical and infeasible set and the permutation π.

(a) The considered hyperplane is feasible, i. e., the current intersection point is
already feasible or the hyperplane is the feasible one of the cases II or III. As
in Algorithm 3.2, the intersection point of the new predecessor or successor in
the permutation has to be computed.

(b) The considered hyperplane is critical, i. e., it is the critical hyperplane of the
cases I to IV. A critical hyperplane needs a special treatment since infeasible
hyperplanes can become critical or feasible by intersecting it. Thus, all intersec-
tions of the critical hyperplane and infeasible hyperplanes have to be computed.
As before, only intersection points that have a value of λ2 that is larger than

84

3.4 Efficient computation of extreme supported points of (mo.1c)

that of the current intersection point are relevant. Among those, the intersec-
tion point that has the smallest value of λ2 is saved in the List Λ of intersection
points. This corresponds to case of computing the intersection of the hyper-
plane π(j + t) and the hyperplane below it (Line 18 of Algorithm 3.2), though
here the hyperplane below has to be identified among the whole set of infeasible
hyperplanes.

In cases I and IV, the critical hyperplane has also a new predecessor and the
corresponding intersection point has to be computed. Depending on the struc-
ture of the arrangement of hyperplanes, one or both intersection points may
be relevant, i. e., feasible or critical. We present three examples: The critical
hyperplane hπ(j) in Case V of Figure 3.16 first intersects with one of its succes-
sors in π, i. e., with an infeasible hyperplane, and hπ(j) becomes infeasible. The
intersection of hπ(j) and its predecessor hπ(j−1) also has been computed, but
it is infeasible. As discussed in Amendment 2c, this intersection point will be
skipped. The critical hyperplane hπ(j) in Case VI of Figure 3.16 first intersects
with its predecessor hπ(j−1) in π, and hπ(j) stays critical. The intersection of
hπ(j) and one of its successors also has been computed and will be analyzed
in the further process. This remains true if another feasible hyperplane hπ(j−1)

first intersect hπ(j) (see, for example, Case VII in Figure 3.16). The hyper-
plane hπ(j−1) becomes critical or infeasible, which implies that hπ(j) becomes
feasible or stays critical and, as before, at least one of the computed intersec-
tion points is critical or feasible. In the example both intersection points are
feasible.

V

hπ(j)

hπ(j−1)

VI

hπ(j)

hπ(j−1)

VII

hπ(j)

hπ(j−1)

Figure 3.16: Three possibilities for the next intersection point of the current critical hy-
perplane hπ(j) with (V) an infeasible hyperplane, (VI) its successor hπ(j−1), (VII) another
feasible hyperplane.

Including these amendments in Algorithm 3.2, the adapted version can compute all sup-
ported solutions of (3opnn.1c) corresponding to the feasible area. The corresponding
supported points can easily be computed as well. This approach corresponds to Steps 1
and 2 of Algorithm 3.6 and can be seen as a preprocessing algorithm. In Steps 3 and 4 of

85

Chapter 3 Computation of extreme supported points

Algorithm 3.6, any of the approaches described in Section 3.4.1 can be applied to compute
the remaining extreme supported points of the infeasible area.

Example 3.23 Figure 3.17 presents the full decomposition of the projected weight space
corresponding to Example 3.22. In comparison to Figure 3.14, the cells associated to
(1, 0, 0, 0, 0)>, (0, 1, 0, 0, 0)> and (0, 1, 0, 1, 0)> extend and fill most of the infeasible
area. The only new solution is (0, 1, 0, 1, 1)>, which is the lexicographic maximal solution
for the first objective function.

λ2

λ3

0.1

1.0

0.1 1.0

(0, 0, 0, 0, 0)>

(1, 0, 0, 0, 0)>

(0, 1, 0, 1, 1)>

(0, 1, 0, 0, 0)>

(0, 1, 0, 1, 0)>
(0, 0, 0, 1, 0)>

Figure 3.17: Full weight space decomposition corresponding to Example 3.22. The arrange-
ment of hyperplanes associated to the unconstrained instance is marked by dashed lines and
the infeasible area in light gray.

Computational results The above described approach was implemented in C++. The
dichotomic search algorithm (Steps 3 and 4 of Algorithm 3.6) was coded using the approach
of Przybylski et al. [2017]. The classical knapsack problem (1o.1c), which arises when
solving the weighted sum problems, were solved using the Minknap algorithm of Pisinger
[2015] [see also Pisinger, 1997]. The experiments were performed on an Intel Quadcore
2,80GHz with 4GB RAM.

86

3.4 Efficient computation of extreme supported points of (mo.1c)

Instances were generated following the described scheme with positive coefficients in
the first objective function and the constraint, and negative coefficients in the second and
third objective function. The absolute values of the coefficients were randomly chosen in
the interval [1, 10n]. Three different values for the slackness c of the constraint, where
W = c ·

∑n
i=1 wi , were tested. Instances with large value for the slackness usually allow

a larger percentage of solutions that are not influenced by the constraint as compared
to instances with a small slackness value. Instances with 100 up to 1000 variables were
tested. The average solution times and numbers of extreme supported points over 30

instances are presented in Table 3.5.

time in s |XsE |
c n A PP DS A PP DS

0.25 100 0.077 0.016 0.061 657.5 439.0 218.5
200 0.783 0.087 0.696 2 554.7 1 737.9 816.8
300 2.917 0.289 2.628 5 258.1 3 626.4 1 631.7
400 8.397 0.998 7.399 9 691.0 6 949.7 2 741.4
500 18.844 2.469 16.375 14 575.0 10 544.2 4 030.7
750 100.089 12.103 87.986 32 272.8 23 405.5 8 867.3
1000 414.929 45.000 369.929 57 588.3 42 788.1 14 800.2

0.50 100 0.073 0.033 0.040 1 224.3 1 094.8 129.4
200 0.954 0.349 0.605 4 969.0 4 459.2 509.8
300 4.449 1.789 2.660 10 633.2 9 531.1 1 102.1
400 13.254 6.130 7.124 19 058.7 17 302.8 1 755.9
500 31.126 15.185 15.941 29 233.6 26 678.7 2 554.9
750 194.792 80.068 114.724 66 361.0 60 630.6 5 730.3
1000 879.887 314.798 565.089 117 892.7 108 505.5 9 387.3

0.75 100 0.061 0.049 0.012 1 552.0 1 511.3 40.7
200 0.870 0.652 0.218 6 443.2 6 289.8 153.4
300 4.413 3.469 0.944 13 951.2 13 629.1 322.1
400 14.494 11.757 2.737 25 113.5 24 578.5 535.0
500 34.734 28.822 5.912 38 529.5 37 788.9 740.6
750 209.799 158.434 51.365 87 614.3 86 087.6 1 526.7
1000 925.996 692.988 233.008 155 924.2 153 257.2 2 667.0

Table 3.5: CPU-times, number of supported points and time per point for instances of
(3opnn.1c) with 100 up to 1000 items (each averaged over 30 instances). The columns
show the results for the overall algorithm (A), and the partial results for the preprocessing
(PP) and the dichotomic search (DS).

Due to the fact that, on the one hand, the knapsack solver needs integer values as input
data, but on the other hand the weight coefficients may become too large if expanded to
values in N, the coefficients may have to be rounded. Thus, numerical instabilities may
occur and the dichotomic search may miss some extreme supported points. However, the

87

Chapter 3 Computation of extreme supported points

results are still very clear and the scope is to test the preprocessing algorithm, which is
exact. Therefore, we keep the solver of Pisinger [1997].
The results show that most of the extreme supported points belong to the feasible part

of the arrangement of hyperplanes and can be computed by the preprocessing (PP), even
for instances with a slackness c = 0.25. In contrast, most of the CPU-time is spent for
the dichotomic search (DS), which confirms that it is useful to apply the preprocessing
algorithm.

DS with PP DS without PP

c n time in s |XsE | time in s |XsE |
0.25 100 0.077 657.5 0.252 657.5

200 0.783 2 554.7 3.216 2 554.5
300 2.917 5 258.1 13.099 5 256.1
400 8.397 9 691.0 49.426 9 684.7
500 18.844 14 575.0 136.275 14 561.4
750 100.089 32 272.8 809.173 32 184.2
1000 414.929 57 588.3 2 723.480 57 356.0

0.50 100 0.073 1 224.3 0.777 1 224.0
200 0.954 4 969.0 11.477 4 968.2
300 4.449 10 633.2 62.492 10 626.7
400 13.254 19 058.7 255.941 19 038.0
500 31.126 29 233.6 659.510 29 190.0
750 194.792 66 361.0 3 617.104 66 084.5
1000 879.887 117 892.7 11 501.604 117 176.4

0.75 100 0.061 1 552.0 1.203 1 551.7
200 0.870 6 443.2 19.406 6 441.9
300 4.413 13 951.2 123.193 13 941.3
400 14.494 25 113.5 474.698 25 081.2
500 34.734 38 529.5 1 189.565 38 461.1
750 209.799 87 614.3 6 404.522 87 186.5
1000 925.996 155 924.2 20 088.693 154 820.2

Table 3.6: CPU-times and number of supported points for instances of (3opnn.1c) with 100

up to 1000 items (each averaged over 30 instances) computed by a dichotomic search
including the preprocessing as described above (DS with PP) and by a pure dichotomic
search algorithm (DS without PP).

For comparison, we also computed the set of extreme supported points for all instances
using solely the dichotomic search algorithm (DS without PP) of Przybylski et al. [2017].
The results are presented in Table 3.6 and are compared to those achieved by including the
preprocessing (DS with PP). We observe that the number of extreme supported points
differs depending on the applied approach. This can be explained by the numerical in-
stabilities, which of course have more influence when solely using the dichotomic search

88

3.5 Conclusion and further ideas

algorithm. The results again clearly show that the preprocessing considerably speeds up
the process.

3.5 Conclusion and further ideas

In this chapter we analyzed the interrelation between the multi-objective unconstrained
combinatorial optimization problem (mo.0c), zonotopes, arrangements of hyperplanes, and
weight space decompositions. We showed that the convex hull of feasible points conv(Y)

can be defined by a zonotope and that the corresponding weight space decomposition is
built by an arrangement of hyperplanes. As a consequence, it can be stated that each
extreme supported point is generated by exactly one extreme supported solution and that
the number of extreme supported solutions is bounded by 2 ·

∑m−1
i=0

(
n−1
i

)
. Hence, for a

fixed number of objectives m, (mo.0c) has at most O(nm−1) extreme supported solutions.
The observation of Visée et al. [1998] of a polynomial number of supported points for
bi-objective knapsack problems can be proved for (mo.0c).
We showed that the structure of the arrangement of hyperplanes in the weight space

allows an efficient computation of the extreme supported solutions of (mo.0c). We pre-
sented computational results for tri-objective problems with positive coefficients in the first
and negative coefficients in the second and third objective function. The algorithm runs
fast and reflects the theoretical results. We described how the algorithm can be general-
ized to arbitrary weights and to higher dimensions. As a future goal we want to implement
algorithms for these cases and test the limits of the approach.
We demonstrated that the computation of extreme supported solutions for (mo.0c) can

be used as a preprocessing for dichotomic search algorithms for (mo.1c). Our numerical
study for (3opnn.1c) reveals that this approach considerably speeds up the process of
computing all extreme supported points. Future research should address an extension to
(mo.dc) with positive coefficients in the constraints and, in a second step, to (mo.dc)
including arbitrary integer coefficients in the constraints. This extension would naturally
continue our studies. We conjecture that the computation of extreme supported points of
the corresponding (mo.0c) problem would still be a useful preprocessing.
Furthermore, it is an interesting question whether the results on (mo.0c) can be used also

for other classes of (MOCO) problems. As Seipp [2013] shows, arrangements of hyper-
planes also appear in the context of multi-objective minimum spanning tree problems. So
there may be even more (MOCO) problems that have structural properties corresponding
to concepts of combinatorial geometry.
A further idea for future research is to combine the results of this chapter with a sec-

ond phase algorithm to compute the whole set of nondominated points for (mo.0c) and
(mo.1c). It is an interesting question whether the interrelation of (mo.0c) and zono-
topes reveals new insights also in the context of unsupported points. However, this is a
challenging task since both problems are, in general, intractable.

89

4 Bi-dimensional knapsack problems with a
soft constraint

In this chapter we present a bi-objective dynamic programming approach to solve a bi-
dimensional knapsack problem. From an application point of view, on the one hand, some
of the constraints in multi-dimensional knapsack problems may be hard in the sense that
any violation, even a very minor one, is not acceptable. On the other hand, some other
constraints may be soft or even uncertain, and constraint violations may be acceptable
if the trade-off with respect to the potential improvements in the objective functions is
favorable. Conversely, it may be interesting to reduce the capacity of one constraint even
if this results in a reduction of the objective function value, as long as the trade-off is
favorable.

In this case, a sensitivity analysis on the right-hand side values of the soft constraints
provides alternative solutions that may be interesting to a decision-maker. For (1o.1c),
one may assume that adjacent problems, i. e., (1o.1c) instances where only the right-hand
sides differ and they differ by 1, have the same or at least similar optimal solutions. Blair
[1998] shows that, even though this seems to be often the case, it cannot be expected
in general. Woeginger [1999] proves a conjecture of Blair [1998] stating that already the
decision problem asking whether the optimal solutions of two adjacent (1o.1c) problems
share at least one selected item is NP-complete. Even worse so, Blair [1998] shows that
for any pair of (1o.1c) instances, two adjacent problems (1o.1c) of larger size can be
formulated that have the optimal solutions of the initial problems. Hence, all (1o.1c) with
differing right-hand side values have to be solved individually in general.

We follow a different approach in this chapter: Soft constraints are relaxed and re-
interpreted as additional objective functions in a bi- or multi-objective model. The multi-
objective perspective provides a whole set of solution alternatives, including the optimal
solution of the multi-dimensional problem and additional solutions which are in a sense close
in the objective space. Accordingly, the goal of this chapter is to propose a bi-objective
approach for bi-dimensional knapsack problems with one soft constraint by adapting a bi-
objective algorithm to the transformed problem. The additional computational effort for
providing additional information is evaluated. It is shown that in practice this is an efficient
procedure to generate solution alternatives and trade-off information.

In a more general context, the close relation between constrained optimization prob-
lems and multi-objective optimization problems is discussed in Klamroth and Tind [2007]
[see also Gorski, 2010]. From an algorithmic point of view, solution concepts originally

91

Chapter 4 Bi-dimensional knapsack problems with a soft constraint

developed for multi-objective problems can in this way be adapted for multi-constrained
problems and vice versa. For example, this is successfully implemented in the case of con-
strained shortest path problems in Lozano and Medaglia [2013] and in the case of weight
constrained minimum spanning tree problems in Henn [2007] [see also Ruzika, 2008]. Beier
and Vöcking [2006] reformulate knapsack problems (1o.1c) into bi-objective unconstrained
combinatorial optimization problems (2o.0c) and combine bi-objective dynamic program-
ming with the core concept to solve (1o.1c).
In this chapter, the special case of the bi-dimensional knapsack problem is analyzed and

an associated bi-objective KP is formulated that has one maximization (profit) and one
minimization objective (weight or cost). We study the relationship between these two
problems from a theoretical as well as from an experimental perspective. We adapt the
DP approach for bi-objective knapsack problems of Figueira et al. [2013] to the case of
one maximization and one minimization objective to produce the exact solution of the
bi-dimensional problem and, in addition, interesting solution alternatives, providing trade-
off information between profit optimization and constraint satisfaction. Since the DP
algorithm determines all alternative solutions corresponding to equal values in the objective
functions, this provides even more information to a decision-maker.
The chapter is organized as follows: In Section 4.1 the transformation between the

bi-dimensional and bi-objective knapsack problem is defined and justified. The general
structure of the bi-objective DP approach is described in Section 4.2. The preprocess-
ing algorithm and the pruning strategies that are applied during the DP algorithm are
presented in Section 4.3. This includes known dominance relations that are adapted to
the structure of the problem and bounds that can be introduced due to this structure.
In Section 4.4 we discuss the adaption of the DP algorithm for computing a predefined
subset of the nondominated solutions. Section 4.5 reports computational experiments and
the corresponding results. We reconsider our ideas in the context of multi-dimensional
knapsack problems in Section 4.6. The results of Chapter 3 play an important role for
computing extreme supported points in a first phase for higher dimensions. For (2o.1c)
with only two objectives, the dichotomic search algorithm is very fast such that we do not
use the algorithms of Chapter 3. Conclusion and avenues for future research are presented
in Section 4.7.

4.1 Reformulating constraints as objectives

Let a bi-dimensional knapsack problem (1o.2c) be given:

max
n∑
i=1

p1
i xi

s. t.

n∑
i=1

w ki xi ≤ W k , k = 1, 2

xi ∈ {0, 1}, i = 1, . . . , n.

(1o.2c)

92

4.2 Dynamic programming algorithm

We assume that the first constraint with weight coefficients w1
i and capacity W 1 is a hard

constraint, whereas the second constraint with weight coefficients w2
i and capacityW 2 is a

soft constraint. Below we continue using the terms hard and soft constraint, respectively,
to distinguish between them. Following the idea of computing several interesting solution
alternatives, the soft constraint is transformed and reinterpreted as an additional objective
function that is to be minimized. By altering the sign of the weight coefficients p2

i such
that p2

i
..= −w2

i < 0, for i = 1, . . . , n, we obtain a bi-objective knapsack problem (2opn.1c)
with both maximization objectives:

vmax f (x) = (f1(x), f2(x)) =

(
n∑
i=1

p1
i xi ,

n∑
i=1

p2
i xi

)

s. t.

n∑
i=1

w1
i xi ≤ W 1

xi ∈ {0, 1}, i = 1, . . . , n.

(2opn.1c)

For convenience, we refer to f1 as the original objective function and to f2 as the trans-
formed objective function, respectively. In this chapter, (2opn.1c) denotes the bi-objective
knapsack problem where all coefficients in the first objective function are positive and all
coefficients in the second objective function are negative.
By applying the transformation from (1o.2c) to (2opn.1c) we are interested in gener-

ating several alternative solutions to an optimal bi-dimensional solution x∗ of (1o.2c). In
particular, x∗ is an element of the set of weakly efficient solutions of (2opn.1c) and thus
we do not loose any information by the transformation.
Indeed, from a multi-objective perspective (1o.2c) can be seen as an ε-constraint scalar-

ization of (2opn.1c), with f2 reversely transformed into a constraint and the corresponding
bound value ε set toW 2. Chankong and Haimes [1983] showed that every optimal solution
of (1o.2c) is weakly efficient for (2opn.1c), and at least one of the optimal solutions of
(1o.2c) is efficient for (2opn.1c) (see also Section 2.1). Therefore, if there is a unique
optimal solution of (1o.2c), it is an efficient solution of (2opn.1c) and the set of efficient
solutions of (2opn.1c) contains at least one optimal solution of (1o.2c).
In other words, if the nondominated set YN of (2opn.1c) is known, an optimal solution

of (1o.2c) is given by:

x∗ = arg max
x∈X

{f1(x) : f (x) ∈ YN , f2(x) ≥ −W 2}.

4.2 Dynamic programming algorithm

DP algorithms are based on implicit enumeration (for a general introduction see Sec-
tion 2.2). In the case of (2o.1c), the procedure is split into n steps, called stages. Each
stage Sk , k ∈ {1, . . . , n}, contains states s = (s1, s2, s3) corresponding to feasible solu-
tions of problem (2o.1c) and their images in the objective space. In particular, we assume

93

Chapter 4 Bi-dimensional knapsack problems with a soft constraint

that all states in a stage Sk , for k = 1, . . . , n, correspond to partial solutions x ∈ {0, 1}n
in the sense that xk+1 = . . . = xn = 0. If a solution x ∈ X corresponds to a state s
this means that s1 = f1(x), s2 = f2(x) and s3 equals the value of the hard constraint,
i. e., s3 =

∑n
i=1 w

1
i xi . In the following, we use the notion of dominance also for states:

A state s is dominated by another state ŝ if and only if the corresponding solution x is
dominated by x̂ . More precisely, s is dominated by ŝ if and only if

ŝ1 ≥ s1, ŝ2 ≥ s2, and (ŝ1, ŝ2) 6= (s1, s2).

Moreover, new stages Sk are created by adding (1-extension) or not adding (0-extension)
the coefficients p1

k , p
2
k and w1

k of item k to the values s1, s2 and s3 of every state s in
stage Sk−1, respectively. This means that item k is added to the partial solution of the
previous stage, or not. The 1-extensions are only allowed if the resulting value ŝ3 = s3 +w1

k

is smaller than or equal to the capacityW 1, i. e., if the corresponding solution stays feasible.
In the following we often analyze a state s ∈ Sk , for k = 1, . . . , n − 1, and all of its
extensions, hence we define the set of feasible extensions of s:

ext(s) =
{
e = (e1, e2, e3) : e1 = s1 +

∑
i∈I

p1
i , e2 = s2 +

∑
i∈I

p2
i , e3 = s3 +

∑
i∈I

w1
i ,

e3 ≤ W 1, I ⊆ {k + 1, . . . , n}
}
.

The overall process starts with the initial stage S0 = {(0, 0, 0)} in which no item has
been selected and no item has been considered yet. The states of the last stage Sn
correspond to the complete set of feasible points Y. The corresponding solutions can be
determined using standard bookkeeping techniques.
A central idea in dynamic programming is to make use of Bellman’s Principle of Opti-

mality (see Section 2.2). We are only interested in efficient solutions and, corresponding
to that, in the nondominated set YN . We can thus prune states of the DP process that
only produce dominated extensions. The applied pruning strategies, named dominance
relations, are described in Section 4.3. These dominance relations, Dom, are applied in
a recursive way to the set of newly generated states in stage Sk based on stage Sk−1.
Then the last stage Sn corresponds to YN and all efficient solutions, including alternative
solutions corresponding to the same nondominated point, can be determined.
Summarizing the discussion above the following recursion is applied for k = 1, . . . , n,

starting with S0 = {(0, 0, 0)}:

Sk = Dom
(
Sk−1 ∪

{
(s1 + p1

k , s2 + p2
k , s3 + w1

k) : s3 + w1
k ≤ W 1, s ∈ Sk−1

})
.

Figure 4.1 illustrates a DP process, which can be described as a network without directed
cycles. A node is introduced for every pair of a stage Sk , k = 0, . . . , n, and a realized
weight value w1, 0 ≤ w1 ≤ W 1. Therefore, several states can be allocated to one node,
see Figure 4.1. Edges are connecting nodes of consecutive states, where a state allocated
to a node in Sk has to be an extension of a state allocated to the node in Sk−1, for
k = 1, . . . , n. We thus use the term DP network in the following.

94

4.3 Preprocessing and pruning strategies

S0 S1

(0, 0, 0) (0, 0, 0) (0, 0, 0) (0, 0, 0)

(p12 , p
2
2 , w2) (p12 , p

2
2 , w2)

(p13 , p
2
3 , w3)

(p11 , p
2
1 , w1) (p11 , p

2
1 , w1)

(p11 , p
2
1 , w1),

(p11 + p
1
2 , p

2
1 + p

2
2 , w1 + w2) (p11 + p

1
2 , p

2
1 + p

2
2 , w1 + w2)

(p11 + p
1
3 , p

2
1 + p

2
3 , w1 + w3)

S2 S3

(p12 + p
1
3 , p

2
2 + p

2
3 , w2 + w3)

Figure 4.1: Example of Dynamic Programming network for problem (2o.1c) where in this
example we assume that w1

1 = w1
2 + w1

3 and that w1
1 + w1

2 + w1
3 > W 1.

4.3 Preprocessing and pruning strategies

The general DP approach described above can be applied independently from the signs
of the coefficients. But it makes a difference for the applicability of pruning strategies.
Thus, the negative coefficients in the second objective function of (2opn.1c) need special
attention. In Section 4.3.2, two dominance relations DominanceA/B and UpperBound
are presented that were introduced in Figueira et al. [2013] and are adapted here to
the case of negative objective coefficients. In Section 4.3.3, an upper bound procedure
SearchZones is introduced that is based on the occurrence of negative coefficients.
The set of extreme supported points YeN has to be precomputed to apply the prun-

ing strategies. The preprocessing algorithm (Preprocessing) is done by weighted sum
scalarizations on (2opn.1c). Certainly, the results of Chapter 3 can be applied to com-
pute YeN . However, in the bi-objective case and for the number of items in our computa-
tional tests, the applied dichotomic search algorithm is very fast and, thus, we do not use
the precomputation of extreme supported solution based on the unconstrained version of
(2opn.1c). The preprocessing algorithm is described in detail in Section 4.3.1. We assume
without loss of generality that the extreme supported points {s̄1, . . . , s̄q} = YeN are sorted
in increasing order of values of the original objective function f1.
Algorithm 4.1 gives a pseudocode of the DP procedure for problem (2opn.1c). We use

the three different dominance relations (DominanceA/B, UpperBound, and Search-
Zones) and Preprocessing to compute YeN . Branch generates the candidate set for
the following stage on which the different dominance relations are performed.

4.3.1 Bi-objective dichotomic search

In the bi-objective case, the dichotomic search algorithm of Aneja and Nair [1979] can be
applied to analyze the weight space; see Algorithm 4.2, cf. Sections 2.1 and 3.4.1. First,
the two lexicographic maxima x1 and x2 are computed. All further nondominated points

95

Chapter 4 Bi-dimensional knapsack problems with a soft constraint

Algorithm 4.1 DP algorithm for (2opn.1c)

Input: n, P1 = {p1
1, . . . , p

1
n}, P2 = {p2

1, . . . , p
2
n}, W = {w1

1 , . . . , w
1
n }, W 1.

1: YeN ..= Preprocessing(P1, P2, W, W 1)
2: S ..= {(0, 0, 0)}
3: for k ..= 1, . . . , n do
4: S ..= Branch(S)
5: if k = n then
6: YN ..= DominanceB(S)
7: else
8: S ..= DominanceA(S)
9: S ..= UpperBound(P1, W, W 1, S, YeN)

10: S ..= SearchZones(P1, P2, W, W 1, S, YeN)
Output: YN

will lie within a search zone defined by the corresponding lexicographic points f (x1) and
f (x2) as follows:

C(f (x2), f (x1)) =
(
f1(x2), f2(x1)

)
+R2

=.

Note that C(f (x2), f (x1)) defines a cone in R2. Then, the algorithm computes a weighted
sum objective defined by the weights (λ1, λ2) defined as

λ1
..= f2(x2)− f2(x1) and λ2

..= f1(x1)− f1(x2).

The optimal solution x̄ of the resulting single-objective knapsack problem (1o.1c) corre-
sponds to a supported point of (2opn.1c).
The search zone C(f (x2), f (x1)) can be split into two new search zones C(f (x2), f (x̄))

and C(f (x̄), f (x1)) using the new supported point f (x̄). The procedure of solving the
weighted sum problem for a search zone C(f (xα), f (xβ)) and splitting it into two new ones
can be applied iteratively. Note that the definition of the cones gives an ordering of the
solutions: For C(f (xα), f (xβ)) we know that f1(xα) < f1(xβ) and that f2(xα) > f2(xβ).
We say that xα corresponds to the left and xβ to the right supported point defining
C(f (xα), f (xβ)). If no new supported point is generated, i. e., if the weighted sum objective
function value of the newly generated solution x̄ is equal to the weighted sum objective
function values of one of the solutions xα, xβ, then there exists no extreme supported
point of (2opn.1c) in the interior of C(f (xα), f (xβ)). The search zone C(f (xα), f (xβ)) can
be discarded in this case (Step 13 in Algorithm 4.2). The solution xα, which corresponds
to the left supported point defining the search zone, is included in the set E. In this way,
all computed solutions are included in E at some point during the course of the algorithm
since all solutions (except the lexicographic maximal solution x1 which is saved beforehand)
correspond to the left supported point for exactly one (discarded) search zone.
Note that supported but nonextreme solutions may not be detected because nonextreme

supported solutions have the same objective function value in the weighted sum scalariza-

96

4.3 Preprocessing and pruning strategies

tion as the solutions xα and xβ which define C(f (xα), f (xβ)). Therefore, it is guaranteed
that all extreme supported points are computed but no statement can be made about the
nonextreme supported solutions.
To summarize the discussion above, in a search zone C(f (xα), f (xβ)) either a new

supported point is found and two new search zones are generated or there exists no extreme
point in C(f (xα), f (xβ)) and this search zone is deleted. Note that exactly one knapsack
problem has to be solved for each search zone. Since the number of supported points is
finite, the procedure stops after a finite number of iterations, computing the set YeN and
probably some additional nonextreme supported points.
To reduce the computational effort, the dichotomic search can be stopped after a fixed

number of iterations. In this case, the dominance relations are applied using only a subset
of YeN . It is also possible to start the DP algorithm (Algorithm 4.1) with an arbitrary
approximation of YeN , which can be computed with a predefined time limit. However,
this would in general lead to a weaker performance of the dominance relations. In our
numerical tests we always executed the complete dichotomic search since this turned out
to be very fast in practice.

Algorithm 4.2 Bi-objective dichotomic search [Aneja and Nair, 1979]

Input: coefficients p1
i , p

2
i , w

1
i , for i = 1, . . . , n, W 1.

1: compute lexicographic maximal solutions x1, x2 with respect to f1(x), f2(x)

2: f (x1) ..= (f1(x1), f2(x1)), f (x2) ..= (f1(x2), f2(x2)), and E ..= {x2}
3: if f (x1) 6= f (x2) then
4: L ..= {C(f (x2), f (x1))} // list of search zones
5: ` ..= 1

6: while ` ≥ 1 do
7: select C(f (xα), f (xβ)) ∈ L
8: λ1

..= f2(xα)− f2(xβ) and λ2
..= f1(xβ)− f1(xα)

9: for i ..= 1, . . . , n do
10: p̄i

..= λ1p
1
i + λ2p

2
i

11: define (1o.1c) with profits p̄i and weights w1
i , i = 1, . . . , n

12: compute optimal solution x̄ of (1o.1c)
13: if (λ1f1(x̄) + λ2f2(x̄)) = (λ1f1(xα) + λ2f2(xα)) then
14: E ..= E ∪ {xα}
15: L ..= L \ {C(f (xα), f (xβ))}
16: ` ..= `− 1

17: else
18: L ..= L ∪ {C(f (xα), f (x̄)), C(f (x̄), f (xβ))} \ {C(f (xα), f (xβ))}
19: ` ..= `+ 1

Output: E // E corresponds to U with YeN ⊆ U ⊆ YsN , i. e., to a subset U
of YsN , which contains the complete set YeN

97

Chapter 4 Bi-dimensional knapsack problems with a soft constraint

4.3.2 Dominance relations DominanceA/B and UpperBound

In Bazgan et al. [2009b] three different dominance relations for (2opn.1c) are proposed,
which are referred to as (D1), (D2) and (D3) in Figueira et al. [2013]. While the domi-
nance relation (D1) cannot be adapted to negative coefficients, relations (D2) and (D3)
turn out to be useful in the following.
The dominance relation (D1) cannot be adapted for the following reason: It is based

on testing if the currently regarded item k and all of the remaining items k + 1, . . . , n

fit into the knapsack. Having only positive coefficients, both objective functions improve
by including items. In this case the state resulting from the 0-extension can be discarded
if the complete 1-extension, i. e., adding all items k, . . . , n, is feasible. Since in our case
one objective function with negative coefficients is maximized, this is no longer true, and
the 0-extension may still produce nondominated states even if all remaining items can be
added to the partial solution at hand.
The two remaining dominance relations can also be applied in the case of negative

coefficients. In (D2), or DominanceA and B in Algorithm 4.1, a state s ∈ Sn can be
discarded, if there exists another state ŝ ∈ Sn, s 6= ŝ, and s is dominated by ŝ. For
all stages Sk with k < n the weights s3 and ŝ3 have to be considered because the DP
algorithm can add more of the remaining items to a solution corresponding to a state with
a lower weight. So, if s is dominated by ŝ and s3 ≥ ŝ3 then every extension e ∈ ext(s)

is dominated by at least one of the extensions in ext(ŝ). Thus, s can be discarded. But
if s3 < ŝ3 it is still possible that one of the extension e ∈ ext(s) is not dominated by
any extension ê ∈ ext(ŝ). State s cannot be discarded in this case. DominanceA in
Algorithm 4.1 considers the values s1, s2 and s3. If k = n, DominanceB is used, which
only compares the first and second objective function values s1 and s2.
The third proposed dominance relation UpperBound [see (D3) with variant B-DP1 in

Figueira et al., 2013] uses an upper bound u(s) = (u1(s), u2(s)) on all possible extensions
of s, i. e., e1 ≤ u1(s) and e2 ≤ u2(s) for every e ∈ ext(s). If u(s) is already dominated by
one of the extreme supported points s̄ ∈ YeN , then s can be discarded because neither s
itself nor one of the extensions will be nondominated. Let s ∈ Sk , k ∈ {1, . . . , n}. The
state s can be discarded, if there exists a supported point s̄ j ∈ YeN , for j ∈ {1, . . . , q},
with

s̄ j1 ≥ u1(s), s̄ j2 ≥ u2(s) and s̄ j 6= u(s).

We thus need an efficient strategy to compute upper bounds u1(s) and u2(s), which can
be implemented as follows:
The upper bound in the original objective function u1(s) is computed according to the

improved Martello and Toth bound [Martello and Toth, 1977] for the classical knapsack
problem. It only uses the coefficients of f1 and the hard constraint. The not yet considered
items k+1, . . . , n are ordered non-increasing according to their efficiencies, i. e., their profit
to weight ratios p1

i /w
1
i . According to this order the items are added into the knapsack

until the break item is reached, i. e., until the first item would violate the constraint. The
break item is identified by the index b (see Section 2.2.1). The residual capacity W1 is

98

4.3 Preprocessing and pruning strategies

calculated as follows:

W
1 ..= W 1 − s3 −

b−1∑
j=k+1

w1
j .

To obtain an upper bound on f1, the integrality constraint is relaxed for one item, but not
for the break item b, to get equality in the constraint. There are two possibilities for the
optimal solution of this partially relaxed knapsack problem: The break item is included or
not. We consider all items 1, . . . , b− 1 together with item b or b+ 1, respectively. Either
item b is included, at the cost of removing a corresponding multiple (w1

b −W
1

)/w1
b−1 of

item b − 1 (note that this multiple could be larger than 1), or the corresponding multiple
W

1
/w1

b+1 of item b+ 1 is used to fill the remaining capacity. The maximum of both results
is an upper bound on the first objective value. Additionally, the assumption that all data
is integer allows to round this value down to the next integer:

u1(s) = s1 +

b−1∑
j=k+1

p1
j + max

{⌊
p1
b − (w1

b −W
1

) ·
p1
b−1

w1
b−1

⌋
,

⌊
W

1 ·
p1
b+1

w1
b+1

⌋}
.

In the transformed objective function f2 the upper bound u2(s) is set to the value s2,
i. e., u2(s) = s2. This is indeed an upper bound on the second objective since, with every
additional item, the value of f2, which is to be maximized, can only be reduced further.

4.3.3 Bounds induced by search zones

The upper bound u2(s) is in general not a strong bound. For every extension of s (that
is not equal to s itself), the value of f2 will become smaller. Additionally, we know that
nondominated, but nonextreme points can only be in regions of the objective space that
are not dominated by the extreme supported points in YeN . These regions correspond
to triangles, named search triangles, which are part of the search zone defined by a local
lower bound [Klamroth et al., 2015, Dächert, 2014]: Let s̄ j , s̄ j+1, for j ∈ {1, . . . , q − 1},
be two consecutive extreme supported points from the set YeN , i. e., s̄ j1 < s̄ j+1

1 and
s̄ j2 > s̄ j+1

2 . The point (s̄ j1, s̄
j+1
2) defines a local lower bound for the corresponding search

zone C(s̄ j , s̄ j+1) = (s̄ j1, s̄
j+1
2) + R2

≥, for all j = 1, . . . , q − 1. The search triangles are

triangles defined by the points s̄ j , s̄ j+1, and the local lower bound (s̄ j1, s̄
j+1
2). There can

be no nondominated points lying inside the search zone that are not lying in the search
triangle, because those would be supported points.
The search triangles and corresponding local lower bounds are illustrated in Figure 4.2.

In the following we investigate the regions [s̄ j1, s̄
j+1
1) × Z−, for all j = 1, . . . , q − 1, and

{s̄q1 }×Z− (illustrated for j = 2 in Figure 4.2), which also include the corresponding search
triangles. To simplify the notation, we introduce a dummy point

s̄q+1 ..= s̄q +

(
1

−1

)

99

Chapter 4 Bi-dimensional knapsack problems with a soft constraint

and increase the last region to [s̄q1 , s̄
q+1
1) × Z−. For every region with s̄ j+1

1 > s1 and
s̄ j1 ≤ u1(s), for j ∈ {1, . . . , q}, we introduce an upper bound uj2(s). It is computed by
counting the minimum number aj of items which need to be added to obtain states inside
the region. This number allows to compute a, maybe not realizable, minimum cost in f2
to implement this step, which is an upper bound on the component e2 of all extensions e
of s. Regions [s̄ j1, s̄

j+1
1) × Z− with s̄ j+1

1 ≤ s1 are not of interest because e1 ≥ s1 ≥ s̄ j+1
1

for all e ∈ ext(s), i. e., no extension can be inside these regions. The same is true for
regions where the upper bound u1(s) is smaller than s̄ j1 because e1 ≤ u1(s) < s̄ j1 for
all e ∈ ext(s). The resulting procedure is named SearchZones in Algorithm 4.1. To
simplify the notation, we partition the set of extensions of s into q subsets.

rsrs

rsrs

rsrs

f2 f1

s

u22(s)

s̄1

s̄2

s̄3

s̄4

s̄5

search triangles local lower bounds

investigated region for j = 2

Figure 4.2: Illustration of search triangles, local lower bounds, the upper bound u2
2 (s) for

extensions e of state s with s̄2
1 ≤ e1 < s̄3

1 , and the dummy point s̄5.

Definition 4.1 Let s ∈ Sk , for k ∈ {1, . . . , n}. For every extreme supported point s̄ j ∈
YeN , j ∈ {1, . . . , q}, let extj(s) be a subset of ext(s) with:

extj(s) =
{
e = (e1, e2, e3) ∈ ext(s) : s̄ j1 ≤ e1 < s̄ j+1

1

}
.

Remark 4.2 Let s ∈ Sk , for k ∈ {1, . . . , n}, with the notation of Definition 4.1.

i) It holds that
ext(s) =

⋃
j∈{1,...,q}

extj(s).

ii) Let j ∈ {1, . . . , q}. If s̄ j1 > u1(s) or if s̄ j+1
1 ≤ s1, then it holds that

extj(s) = ∅.

100

4.3 Preprocessing and pruning strategies

To compute upper bounds uj2(s), we consider both objective functions separately. So
we can use the best remaining items for each objective independently. To do so, we sort
a subset of items in non-increasing order. For a given k ∈ {1, . . . , n}, let Sn−k denote
the symmetric group of order n − k and π1, π2 ∈ Sn−k denote two permutation of the
numbers k + 1, . . . , n, where p1

π1(k+1) ≥ . . . ≥ p
1
π1(n) and p

2
π2(k+1) ≥ . . . ≥ p

2
π2(n).

Definition 4.3 Let s ∈ Sk , for k ∈ {1, . . . , n}. For s̄ j ∈ YeN , j ∈ {1, . . . , q}, with
s1 < s̄ j+1

1 and u1(s) ≥ s̄ j1 let

aj = min
b

{
b ∈ {k + 1, . . . , n} : s1 +

b∑
i=k+1

p1
π1(i) ≥ s̄

j
1

}
.

For j ∈ {1, . . . , q}, with s1 < s̄ j+1
1 and u1(s) ≥ s̄ j1, we define:

uj2(s) = s2 +

aj∑
i=k+1

p2
π2(i).

The value uj2(s) is an upper bound on the value of the second objective function for every
extension of s which has a first objective function value greater than or equal to the value
s̄ j1 of the corresponding extreme supported point s̄ j . In particular, for all j ∈ {1, . . . , q}
with s1 < s̄ j+1

1 and u1(s) ≥ s̄ j1, we have that e2 ≤ uj2(s) for all e ∈ extj(s). Now we can
formulate the following theorem.

Theorem 4.4 Let s ∈ Sk , for k ∈ {1, . . . , n}, and let J =
{
j ∈ {1, . . . , q} : s1 <

s̄ j+1
1

}
∩
{
j ∈ {1, . . . , q} : u1(s) ≥ s̄ j1

}
. If, for all j ∈ J :

uj2(s) ≤ s̄ j+1
2 (4.1)

then s itself is the only extension of s that can be nondominated, i. e., for all e ∈ ext(s), e 6=
s it holds that e /∈ YN .

Proof. Let s ∈ Sk , for k ∈ {1, . . . , n}, and J =
{
j ∈ {1, . . . , q} : s1 < s̄ j+1

1

}
∩
{
j ∈

{1, . . . , q} : u1(s) ≥ s̄ j1
}
. We assume that (4.1) holds for s for every j ∈ J . Assume

that there exists an extension s̃ ∈ ext(s) with s̃ ∈ YN .
Because s̃ ∈ YN the following statement holds:

(∗) It exists j ′ ∈ J such that s̃ ∈ extj
′
(s) with

s̄ j
′

1 ≤ s̃1 < s̄ j
′+1

1 and s̄ j
′

2 ≥ s̃2 > s̄ j
′+1

2

for s̄ j
′
, s̄ j

′+1 ∈ YeN ∪ {s̄q+1}

We know that

• s̃ ∈ ext(s) ⇒ s̃2 ≤ uj
′

2 (s)

101

Chapter 4 Bi-dimensional knapsack problems with a soft constraint

rsrs

rsrs

rsrs

f2 f1

s

u22(s)

s̄1

s̄2

s̄3

s̄4

s̄5u32(s)

u42(s)

search triangles local lower boundsrsrs

Figure 4.3: State s can be discarded: All upper bounds uj2(s) are smaller than or equal to s̄ j+1
2 ,

j ∈ J = {2, 3, 4}. Hence, all extensions e ∈ ext(s), e 6= s, are dominated. In contrast,
in Figure 4.2 the upper bound u2

2 (s) is greater than s̄3
2 and hence extensions of s can be

nondominated.

• uj
′

2 (s) ≤ s̄ j
′+1

2 because of (4.1)

• s̄ j
′+1

2 < s̃2 because of (∗)

Hence, s̃2 < s̃2, which is a contradiction. So s̃ cannot be in YN .

If (4.1) holds for s ∈ Sk with the corresponding set J (see Figure 4.3), the DP does
not need to compute ext(s). Only s itself has to remain in the process. If this case occurs
(especially at an early stage of the DP) the DP network is pruned significantly. None of
the extensions of s has to be computed. The states s ∈ Sn still correspond to YN .
If, for one or more values of j ∈ J , (4.1) is not true, s has to be extended further.

But, it is not necessarily required to check all the regions for the extensions of s again,
see Remark 4.5.

Remark 4.5 Let j ∈ {1, . . . , q}. If condition (4.1) is true for j for a state s, it is trivially
true for j for all of the extensions e ∈ ext(s) and does not need to be checked again.

In practice, this could be used in the following way: If (4.1) is true for some j ∈ J , j is
deleted from J . The extensions of s then need to be examined in J̃ =

{
j ∈ {1, . . . , q} :

s1 < s̄ j+1
1

}
∩
{
j ∈ {1, . . . , q} : u1(s) ≥ s̄ j1

}
∩ J .

102

4.4 Dynamic programming with cuts

4.4 Dynamic programming with cuts

In practice, it is unlikely that a decision-maker is interested in the whole set YN of (2opn.1c),
which can be very large even for a small number of items. However, the decision-maker
may want to define a range or region of interest.
Based on the respective application background, different scenarios may be considered:

(A) A minimal and maximal value for the second objective may be specified by the
decision-maker, e. g., based on some practical constraints.

(B) A region of interest may be defined based on the selection of two supported points
s̄ j11 , s̄

j2
1 as [s̄ j11 , s̄

j2
1]× [s̄ j22 , s̄

j1
2], for j1, j2 ∈ {1, . . . , q}, j1 < j2.

(C) A natural choice for s̄ j11 and s̄ j21 in (B) are s̄− and s̄+, that satisfy s̄− = s̄ j such that
j = max{̂ ∈ {1, . . . , q} : s̄ ̂2 ≥ −W 2} and s̄+ = s̄ j+1, i. e., min{̂ ∈ {1, . . . , q} : s̄ ̂2 <

−W 2} = j + 1. In other words, s̄− and s̄+ define the search triangle that contains
the optimal point for the associated bi-dimensional KP.

Similarly, it is possible to define a region of interest by specifying two bounds, ε1 for the
first objective, and ε2 for the second objective function. So f1(x) has to reach a lower
bound ε1, while f2(x) should not fall below a lower bound ε2.
This could be used for the DP algorithm in the following way:

• Overall DP: The computation of new stages includes a new condition:

Sk = Dom(Sk−1 ∪ {(s1 + p1
k , s2 + p2

k , s3 + w1
k) : s2 + p2

k ≥ ε2, s3 + w1
k ≤ W 1, s ∈ Sk−1}).

• DomR2 : States s in Sk could be discarded if u1(s) < ε1.

• Bound : (4.1) does not need to be checked for intervals with s̄ j+1
1 < ε1 or s̄ j2 < ε2,

j ∈ {1, . . . , q}.
Then, the last stage Sn includes all nondominated points of the specified region of

interest.

4.5 Computational results

The experiments were performed on an Intel Quadcore 2,80GHz with 4GB RAM. The
implementation of the DP algorithm was coded in C++. It is based on a DP algorithm for
(2o.1c) that was done by Marco Simões [see Figueira et al., 2013] and uses the Minknap
algorithm of Pisinger [1997]. To compare with the results of a classical bi-dimensional
approach, we used the cbc-solver from the Coin-OR-library [Forrest and Ralphs, 2015].

4.5.1 Experimental setup

We tested knapsack instances with 100 and 200 items. The instances of (2opn.1c) were
generated according to the following types of correlation structures, with parameter M =

10n and σ = (M − 1)/30:

103

Chapter 4 Bi-dimensional knapsack problems with a soft constraint

Type A The profits p1
i and weights w2

i and w1
i are integers uniformly generated in the

range [1,M], i. e., profits p2
i ∈ [−M,−1], for all i = 1, . . . , n.

Type B The profits p1
i are integers uniformly generated in the range [100,M−100], the

weights w2
i and w1

i are normal distributed with expectation µ = p1
i and standard deviation

σ restricted to the range [1,M − 1]. This induces a positive correlation between profits
and weights, i. e., a negative correlation between profits p1

i and p2
i for (2opn.1c).

Type C The profits p1
i are integers uniformly generated in the range [100,M − 100],

the weights w2
i and w1

i are normal distributed with expectation µ = p1
i and µ = M − p1

i ,
respectively, and standard deviation σ restricted to the range [1,M − 1]. This induces
a positive correlation between profits p1

i and weights w2
i , i. e., a negative correlation be-

tween profits p1
i and p2

i for (2opn.1c), and a negative correlation between profits p1
i and

weights w1
i .

Type D The profits p1
i are integers uniformly generated in the range [100,M − 100],

the weights w2
i and w1

i are normal distributed with expectation µ = M − p1
i and µ = p1

i ,
respectively, and standard deviation σ restricted to the range [1,M − 1]. This induces
a negative correlation between profits p1

i and weights w2
i , i. e., a positive correlation be-

tween profits p1
i and p2

i for (2opn.1c), and a positive correlation between profits p1
i and

weights w1
i .

Type E The profits p1
i are integers uniformly generated in the range [100,M− 100], the

weights w2
i and w1

i are normal distributed with expectation µ = M − p1
i and standard

deviation σ restricted to the range [1,M−1]. This induces a negative correlation between
profits p1

i and weights w2
i and w1

i , i. e., a positive correlation between profits p1
i and p2

i

for (2opn.1c).

We remind, that the constraint slackness cW 1 is defined by cW 1 ·
∑n
i=1 w

1
i = W 1 for a

constraint
∑n
i=1 w

1
i ≤ W 1. Two values for the constraint slackness, namely cW 2 = cW 1 =

0.25 and cW 2 = cW 1 = 0.75, were applied for every type of instance. The complexity of the
DP depends on the slackness of the hard constraint: On the one hand, a small constraint
slackness limits the depth and, therefore, the number of states in the DP network. On
the other hand, a large constraint slackness admits a large number of states. Hence, we
chose values for the constraint slackness of cW 2 = cW 1 = 0.25 and cW 2 = cW 1 = 0.75 to
test easy and hard instances for the DP algorithm, respectively.
The bounding induced by search zones was applied starting after the first half of all

stages (i. e., after 50 and 100 items have been considered, respectively). This is reasonable
because preliminary tests showed that in early stages the bounds are not tight enough to
discard states, since most of the variables are not yet set. All presented results are the
average of the results for ten random instances of the same type.

104

4.5 Computational results

We computed the complete nondominated set using the DP algorithm. However, the
motivation of our approach is to provide trade-off information between the profit of a
solution and its level of constraint satisfaction. As mentioned before, this does not generally
require to compute the whole nondominated set. Therefore, we also considered regions
of interest of different sizes to analyze the performance of the algorithm in this context.
More precisely, in our numerical experiments, the lower and upper bounds ε1 and ε2 (see
Section 4.4) were generated using the set of extreme supported points YeN . The two
supported points defining the search triangle that contains the optimal solution of (1o.2c)
(see Figure 4.4) shall be indicated by s̄− and s̄+, with s̄−2 ≥ −W 2 ≥ s̄+

2 (see again
Section 4.4). The two lexicographic maxima are given by s̄1 and s̄q. A region of interest
of size R ∈ [0, 1] is then defined by ε1 = s̄−1 −R · (s̄

−
1 − s̄1

1) and ε2 = s̄+
2 +R · (s̄+

2 − s̄
q
2).

The regions of interest with R = 1, R = 0.3 and R = 0 are visualized for an exemplary
problem instance in Figure 4.4. In particular, if R = 0, all nondominated points in the
search triangle defined by s̄− and s̄+ are computed.

f2
f1

−W 2

s̄1

s̄−

s̄+

s̄m

R = 0

R = 0

R = 1

R = 1

R = 0.3

R = 0.3

Figure 4.4: Illustration of regions of interest.

4.5.2 Computation of the nondominated set

In the classical (2o.1c) (with positive coefficients), every efficient solution is maximal in the
sense that no further item can be included in the knapsack. As we know from Chapter 3,
this is no longer true if negative coefficients occur. Therefore, a lot more combinations
including partially filled knapsacks may lead to efficient solutions. Actually, the number
of nondominated points of our instances (rows |YN | and column R = 1 in Tables 4.1
and 4.2) is considerably higher than in classical (2o.1c) [see Figueira et al., 2013]. As
a consequence, the computational time for computing the whole set YN (rows DP and
column R = 1 in Tables 4.1 and 4.2) is generally higher than for (2o.1c), while it is
comparably fast with respect to the number of nondominated points. For instances with
randomly chosen coefficients [Type A instances, analogous to Type A instances in Figueira
et al., 2013] the CPU-time per computed solution is in both cases in the magnitude of

105

Chapter 4 Bi-dimensional knapsack problems with a soft constraint

Type R 0 0.25 0.50 0.75 1

A DP 0.77 1.70 1.86 1.89 1.89
cbc 3.26 83.37 105.23 115.00 117.74
|YN | 8.00 250.60 425.00 546.00 609.10

B DP 8.84 16.90 18.35 19.04 19.04
cbc 11.59 534.51 766.42 887.81 932.04
|YN | 9.22 957.30 1761.70 2397.90 2796.90

C DP 8.70 15.10 18.05 18.86 19.08
cbc 740.03 8884.81 20241.55 30183.00 33907.17
|YN | 208.89 2100.70 3862.50 5289.20 6174.10

D DP 1.29 4.53 4.60 4.63 4.63
cbc 28.05 1292.99 1319.41 1330.47 1333.19
|YN | 5.89 129.50 158.10 178.60 192.40

E DP 0.01 0.02 0.03 0.03 0.03
cbc 0.20 27.73 39.78 44.92 45.99
|YN | 1.30 68.50 110.30 155.90 195.70

Table 4.1: CPU-times of bi-objective and bi-dimensional approach in seconds and number of
nondominated points for n = 100 items and cW 2 = cW 1 = 0.25.

Type R 0 0.25 0.50 0.75 1

A DP 0.10 2.27 4.00 4.32 4.31
cbc 0.15 45.75 75.93 89.15 93.51
|YN | 2.667 608.60 1090.90 1401.40 1544.60

B DP 10.69 60.16 90.62 105.15 107.83
cbc 10.32 1173.51 2263.75 3054.50 3341.14
|YN | 10.44 3057.30 6385.80 8988.20 10680.60

C DP 10.58 37.51 54.36 61.11 62.55
cbc 106.11 1402.78 2756.58 3937.25 4345.56
|YN | 120.67 3552.50 7367.70 10659.60 12555.30

D DP 0.24 14.18 15.99 16.16 16.39
cbc 8.57 873.60 894.94 910.13 912.41
|YN | 2.44 215.20 279.80 346.10 389.80

E DP 0.00 0.04 0.06 0.07 0.07
cbc 0.23 95.77 140.92 156.31 159.43
|YN | 1.50 139.00 231.00 295.70 357.20

Table 4.2: CPU-times of bi-objective and bi-dimensional approach in seconds and number of
nondominated points for n = 100 items and cW 2 = cW 1 = 0.75.

106

4.5 Computational results

Type R 0 0.01 0.02 0.05 0.10

A DP 32.95 35.20 37.37 43.20 50.92
cbc 48.76 101.26 152.66 313.95 540.98
|YN | 38.60 77.10 115.60 238.00 428.40

B DP 292.92 364.54 402.57 439.44 462.87
cbc 134.92 990.29 1738.43 3277.99 3982.18
|YN | 25.70 189.80 350.90 823.90 1539.20

C DP 459.47 477.02 491.67 549.98 634.58
cbc 19613.57 24399.59 63671.14 107250.20 248036,63
|YN | 348.80 680.70 1027.10 2067.30 3810.60

D DP 34.43 94.71 138.78 180.81 183.94
cbc 1956.22 17499.25 38604.51 158241.69 282236.19
|YN | 8.00 123.90 227.00 426.90 494.00

E DP 0.03 0.06 0.08 0.13 0.20
cbc 2.32 70.99 115.52 249.07 1008.64
|YN | 2.70 14.60 24.70 61.20 117.50

Table 4.3: CPU-times of bi-objective and bi-dimensional approach in seconds and number of
nondominated points for n = 200 items and cW 2 = cW 1 = 0.25.

Type R 0 0.01 0.02 0.05 0.10

A DP 2.06 4.10 6.37 14.77 32.62
cbc 1.20 25.64 50.43 91.67 154.21
|YN | 5.90 93.10 186.90 434.00 888.30

B DP 309.35 562.24 648.94 810.26 1097.23
cbc 70.29 1952.35 3140.26 4394.44 6343.19
|YN | 16.80 480.60 970.80 2396.80 4895.30

C DP 519.12 562.00 602.17 732.26 953.67
cbc 226.23 971.86 2046.62 4684.91 9679.14
|YN | 194.90 729.80 1277.20 2887.80 5589.50

D DP 4.44 188.28 299.86 386.89 464.31
cbc 14.71 26603.17 41680.23 45044.50 45270.46
|YN | 1.50 294.80 439.40 516.70 597.70

E DP 0.02 0.11 0.18 0.34 0.54
cbc 0.02 24.47 61.28 412.66 761.41
|YN | 1.10 51.50 101.00 225.10 390.90

Table 4.4: CPU-times of bi-objective and bi-dimensional approach in seconds and number of
nondominated points for n = 200 items and cW 2 = cW 1 = 0.75.

107

Chapter 4 Bi-dimensional knapsack problems with a soft constraint

milliseconds. All in all, the total computing times vary depending on the instance type,
i. e., the correlation structure and the constraint slackness.

4.5.3 Regions of interest

The CPU-times for several sizes of regions of interest are listed in the rows DP of Tables 4.1
to 4.4. The instances with 200 items have a large CPU-time, hence, only small regions of
interest were tested. For both problem sizes (n = 100 and n = 200), similar characteristics
can be observed.
To illustrate the relation between the computation time and the number of computed

nondominated points, these values are plotted for different values of R, using the case
R = 1 as a reference (100%), in the plots of Figures 4.5 and 4.6 (for instances with 100
items). The symbol + always indicates the CPU-times, and the symbol ◦ represents the
number of nondominated points.
In the case of cW 2 = cW 1 = 0.25, it can be seen that for small values of R a small

amount of time is needed, but also the gained amount of information is small. With
increasing values of R the required CPU-time grows very fast up to 100%. This means
that for determining the nondominated points in a medium sized region of interest nearly
all nondominated points have to be determined.
In the case of cW 2 = cW 1 = 0.75, the CPU-time grows at a smaller rate. As a conse-

quence, the computing time corresponds approximately to the information gained by the
computed nondominated points. A possible explanation could be that due to the larger
number of solutions, the bounds ε1 and ε2 are stronger and the DP algorithm with cuts
builds a smaller DP network.
The two graphs for problems of Type D have an interesting shape because the number

of nondominated points is very large even for small regions of interest. In Figure 4.7
the nondominated points in the objective space are plotted for one exemplary instance.
The correlation structure of Type D instances (positive correlation between both objective
functions and between first objective function and constraint) induces a distribution with
a flat angle between the points in the upper part of the nondominated set, and after a
knee the slope gets very steep in the lower part. The constraint

∑n
i=1 p

2
i xi ≥ −W 2 cuts

the graph in the lower part, so for small values of R the region of interest includes already
a large percentage of nondominated points.
The CPU-times for instances of Type E are not strictly increasing for increasing values

of R. However, in this case the computing times are very small and the deviations are in
a magnitude of milliseconds.

4.5.4 Comparison of bi-dimensional knapsack problems and bi-objective knapsack
problems with one positive and one negative objective function

We use the cbc-solver from the Coin-OR-library to compare the DP based solution ap-
proach to the direct solution of (1o.2c). To get a fair comparison also in the case of search

108

4.5 Computational results

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

110

%
tim

e
(+

)

R
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

50

60

70

80

90

100

110

%
N

D
(Y

)
(o

)
(a) Type A, cW 2 = cW 1 = 0.25.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

110

%
tim

e
(+

)

R
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

50

60

70

80

90

100

110

%
N

D
(Y

)
(o

)

(b) Type A, cW 2 = cW 1 = 0.75.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

110

%
tim

e
(+

)

R
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

50

60

70

80

90

100

110

%
N

D
(Y

)
(o

)

(c) Type B, cW 2 = cW 1 = 0.25.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

110
%

tim
e

(+
)

R
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

50

60

70

80

90

100

110

%
N

D
(Y

)
(o

)

(d) Type B, cW 2 = cW 1 = 0.75.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

110

%
tim

e
(+

)

R
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

50

60

70

80

90

100

110

%
N

D
(Y

)
(o

)

(e) Type C, cW 2 = cW 1 = 0.25.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

110

%
tim

e
(+

)

R
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

50

60

70

80

90

100

110

%
N

D
(Y

)
(o

)

(f) Type C, cW 2 = cW 1 = 0.75.

Figure 4.5: Computing times and number of nondominated points plotted for different values
of R for instances of Types A, B and C (n = 100). The case R = 1 is used as a reference
(100%).

109

Chapter 4 Bi-dimensional knapsack problems with a soft constraint

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

110

%
tim

e
(+

)

R
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

50

60

70

80

90

100

110

%
N

D
(Y

)
(o

)

(a) Type D, cW 2 = cW 1 = 0.25.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

110

%
tim

e
(+

)

R
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

50

60

70

80

90

100

110

%
N

D
(Y

)
(o

)

(b) Type D, cW 2 = cW 1 = 0.75.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

110

%
tim

e
(+

)

R
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

50

60

70

80

90

100

110

%
N

D
(Y

)
(o

)

(c) Type E, cW 2 = cW 1 = 0.25.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

110

%
tim

e
(+

)

R
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

50

60

70

80

90

100

110

%
N

D
(Y

)
(o

)

(d) Type E, cW 2 = cW 1 = 0.75.

Figure 4.6: Computing times and number of nondominated points plotted for different values
of R for instances of Types D and E (n = 100). The case R = 1 is used as a reference
(100%).

110

4.5 Computational results

0 2000 4000 6000 8000 10000 12000 14000

−18000

−16000

−14000

−12000

−10000

−8000

−6000

−4000

−2000

0

f1

f2

Figure 4.7: Set of nondominated points for one instance of Type D.

triangles, the time that would be needed by the bi-dimensional approach to compute all
nondominated points was measured, i. e., the time needed to provide the same amount
of information as the bi-objective approach. This can be realized by varying the capacity
W 2 which, in turn, relates to applying the ε-constraint method (see Section 2.1) to the
bi-objective problem. First, we set W 2 = −ε2 and solve the associated knapsack problem.
Afterward, we use the previously computed optimal solution x̄ and setW 2 =

∑n
i=1 w

2
i x̄i−1

for the next instance. This continues until f1(x̄) ≤ ε1. The resulting CPU-times are pre-
sented in Tables 4.1 to 4.4 in the row cbc. One can observe, that the DP approach is
always faster than solving all relevant bi-dimensional problems for regions of interest with
R = 0.01 or greater.

Table 4.5 presents the average solution time for computing one solution of the bi-
dimensional problem (1o.2c), where all nondominated points, i. e., R = 1, were computed
for instances with 100 items and the nondominated points for R = 0.1 were taken into
account for instances with 200 items. Especially for 200 items, one can observe a disagree-
ment between CPU-times for solving one problem on average (Table 4.5) and computing
all solutions for R = 0 (Tables 4.1 to 4.4). Solving one problem seems to be more expen-
sive than solving several problems for the smallest region of interest. This results from a
large variation in the solution times of the cbc-solver for varying right-hand side values; see
standard deviations in Table 4.5. Some particular instances are very hard to solve for the
solver and, hence, increase the average solution time over all runs, but not necessarily for
small regions of interest. This behavior especially occurs for instances of Type D and of
Type C for a slackness of 0.25 and is more extreme for instances with 200 items. In con-
trast, the DP-approach is robust against these changes since the constraint is considered
as an objective function and all solutions are computed at once.

As expected, in most cases the bi-dimensional approach is faster in computing one
specific solution, e. g., the optimal bi-dimensional solution. Surprisingly, instances with a

111

Chapter 4 Bi-dimensional knapsack problems with a soft constraint

cW 2 = cW 1 = 0.25 cW 2 = cW 1 = 0.75

Type n 100 200 100 200

A t 0.19 1.23 0.06 0.17
σ 0.19 0.49 0.04 0.10

B t 0.33 2.54 0.31 1.31
σ 0.40 2.21 0.25 1.46

C t 5.46 65.12 0.35 2.20
σ 12.91 138.30 0.50 56.87

D t 6.58 530.79 2.27 72.56
σ 16.72 3 399.41 5.37 181.80

E t 0.24 8.69 0.46 1.72
σ 0.55 308.12 1.17 6.17

Table 4.5: CPU-times (t in seconds) and standard deviation (σ) of cbc-solver solving (1o.2c)
with different values of right-hand side (all nondominated points for R = 1 for instances
with 100 items and for R = 0.1 for instances with 200 items).

negative correlation between original objective function and the remaining constraint, i. e.,
instances of Types D and E, seem to have a special structure, which makes it very effi-
cient to apply the bi-objective approach. Furthermore, the bi-objective approach becomes
dominant as soon as several solutions are requested. The DP algorithm is faster than the
cbc-solver for most considered regions of interest.

4.6 Multi-dimensional knapsack problems with soft constraints

The idea of converting soft constraints into objective functions is directly applicable to
knapsack problems with three or more constraints and with more than one objective func-
tion. When q of the d constraints of (mo.dc) are relaxed and transformed into objective
functions, an associated instance of problem ((m+q)o.(d-q)c) is obtained, that has two
types of objective functions, the first block of m objectives has only positive coefficients
whereas the second block of q objectives has only negative coefficients, and d−q remaining
hard constraints.
As indicated in Section 2.2, the dynamic programming algorithm is still applicable to this

type of problem. Including several objective functions and several constraints, this DP will
suffer from the curse of dimensionality and can thus not be expected to be efficient but
the optimal solution of the original problem can be computed as well as all nondominated
points or a subset of nondominated points in a predefined region of interest. Due to the
large number of states that can be expected in the dynamic programming algorithm it is
very important to define an accurate region of interest.
In the case of one remaining hard constraint, a precomputation of supported points can

112

4.7 Conclusion and further ideas

be applied using the results of Chapter 3. More research has to be done in this field to
handle several constraints. The supported points can be used to determine the search
zones for unsupported nondominated points [see Dächert et al., 2016, Klamroth et al.,
2015, Dächert, 2014]. An accurate definition of a region of interest can be realized based
on this information. Furthermore, we think that, as in the bi-objective case, the search
zones are an important tool to introduce pruning strategies for the dynamic programming
algorithm.
We conclude that the sensitivity analysis for (mo.dc) including soft or uncertain con-

straints provides an interesting line of research. A first step would be an extension of
the approach to single-objective tri-dimensional knapsack problems including one or two
soft constraints and to bi-objective bi-dimensional knapsack problems including one soft
constraint.

4.7 Conclusion and further ideas

In this chapter we presented a bi-objective dynamic programming approach for solving the
bi-dimensional knapsack problem with one soft constraint. The aim of this procedure is
a sensitivity analysis on the right-hand side value of the soft or uncertain constraint to
provide trade-off information. We applied a transformation, converting this constraint
into an additional objective function. The resulting bi-objective knapsack problem has a
special structure: The coefficients of the original objective function are all positive, the
coefficients of the new objective function are all negative.
We applied a bi-objective dynamic programming algorithm which we adapted to this

special structure. The extreme supported points are computed in a preprocessing step.
Dominance relations are used to prune states of the DP network. Furthermore, we take
advantage of the negative coefficients by introducing new bounds and search zones that
are induced by the extreme supported points. If the bounds indicate that no extension of
the currently analyzed state can be inside at least one search zone, all extensions of this
state can be discarded.
We also presented a specialized algorithm with cuts, which enables the decision-maker

to define a region of interest in which efficient solutions are determined. In this way, not
the whole nondominated set is computed which, in general, considerably reduces comput-
ing times. This region of interest can be defined, for example, by specifying ranges of
acceptable and/or interesting levels of constraint satisfaction.
The DP algorithm was tested on instances with 100 and 200 items, two different con-

straint slacknesses and five different correlation structures. We observed that, due to the
structure of the bi-objective problem, the number of nondominated points is very large.
Thus, the opportunity of defining a region of interest is usually of great importance for a
decision-maker. The computational results indicate very good computing times in relation
to the gained information.
We pointed out that the general idea of transforming soft constraints and applying a

113

Chapter 4 Bi-dimensional knapsack problems with a soft constraint

dynamic programming algorithm is also applicable to higher dimensions. This approach
gives rise to many aspect for future research.
An interesting question is whether some variables can be fixed during an extended pre-

processing step. Especially in the case of small regions of interest, this seems to be a
promising approach. A reduced set of variables implies less stages for the DP algorithm
which would further reduce computing times.

114

5 Rectangular knapsack problems and
representative solutions

In contrast to the previous chapters we present a single-objective single-dimensional knap-
sack problem in this chapter. We investigate a variant of the quadratic knapsack problem
(Qo.1c), thus, the objective function is not a sum objective, but is defined by a quadratic
term. For quadratic knapsack problems, in contrast to classical knapsack problems, the
profit of a selection of items is not only determined by the individual profits, but also by
profits generated by pairwise combinations of items. This can be used to model the fact
that two items may complement each other such that their profit is increased if both of
them are selected. The model still allows to model that two items are substitutes for each
other by setting the combined profit equal to 0. In this case, including both items does
not increase the profit over the sum of the individual profits.
The formulation of (Qo.1c) is very general and, therefore, its range of application is

quite wide. For example, Johnson et al. [1993] present a problem in the context of compiler
construction that may be formulated as a quadratic knapsack problem. Moreover, (Qo.1c)
have been discussed in the context of the location of airports, freight handling terminals,
railway stations, and satellite stations [Rhys, 1970, Witzgall, 1975].
(Qo.1c) is NP-hard in the strong sense. However, we present a variant of (Qo.1c)

which we call the cardinality constrained rectangular knapsack problem (Ro.Cc). The
profit matrix is built by the product of two vectors and the constraint is a cardinality
constraint.
(Ro.Cc) arises when solving a different problem. We consider the cardinality constrained

bi-objective knapsack problem (2o.Cc)

vmax

(
n∑
i=1

ai xi ,

n∑
i=1

bi xi

)

s. t.

n∑
i=1

xi ≤ k

xi ∈ {0, 1}, i = 1, . . . , n

(2o.Cc)

where a, b ∈ Nn, with a, b 6= 0n, and k ∈ N, k < n. Instead of computing the set of
efficient solutions for this optimization problem, we want to find one (or several) repre-
sentative nondominated point(s). Zitzler and Thiele [1998] introduced the hypervolume
indicator, which is a quality measure for a representation based on the volume of the

115

Chapter 5 Rectangular knapsack problems and representative solutions

objective space that is covered by the representative points. The authors presented this
measure in the context of evolutionary algorithms and it is mainly used in this field. A
reference point has to be defined to compute the hypervolume that is spanned by the rep-
resentative set and the reference point. Choices for the reference point are, for example
the origin or, if available, the nadir point of the given problem. The problem of finding
one solution of (2o.Cc) that maximizes the hypervolume, considering (0, 0)> as reference
point, is equivalent to (Ro.Cc).
The structure of (Ro.Cc) allows to formulate a polynomial time 4.5-approximation al-

gorithm, where, for some ρ > 1, an algorithm is called a polynomial time ρ-approximation
algorithm, if it computes a feasible solution in run time being polynomial in the coding
length of the input such that

ρ ≥ max

{
OPT
ALG

,
ALG
OPT

}
.

Here, OPT denotes the optimal objective function value of the maximization problem and
ALG the objective function value of the solution which is the output of the algorithm
[Cormen et al., 2001].
The remainder of this chapter is organized as follows: In Section 5.1 we give an introduc-

tion to quadratic knapsack problems. We introduce the cardinality constrained rectangular
knapsack problem in Section 5.2 and present upper and lower bounds. These bounds
motivate an approximation algorithm that is formulated in Section 5.3. Furthermore, an
approximation ratio ρ is proven for this algorithm. We also introduce an improved version
of the approximation algorithm. In Section 5.4 we present a computational study on both
algorithms. The application of the cardinality constrained rectangular knapsack problem
for computing a representative solution of (2o.Cc) is discussed in Section 5.5. Further
ideas for computing a representative set of solutions are outlined. Section 5.6 provides a
conclusion and further ideas.

5.1 Quadratic knapsack problems

Gallo et al. [1980] first introduced the binary quadratic knapsack problem (Qo.1c). It is an
expansion of the classical knapsack problem and can be concisely stated as follows: Given
n items, the profit for including item i is given by the coefficient pi i . Additionally, a profit
pi j + pj i is generated if both items i and j are selected. All profits pi j are assumed to be
non-negative integer values and can be compactly written in a profit matrix

P ..= (pi j)i=1,...,n
j=1,...,n

.

The profits pi j and pj i are either both realized, i. e., if items i and j are selected, or both
not realized, i. e., if item i or item j is not selected. Hence, pi j and pj i can be assumed
to be equally valued, which results in a symmetric matrix P . However, for the rectangular

116

5.1 Quadratic knapsack problems

knapsack problem we assume another structure for the coefficients of P that we introduce
in the next section.
As for (1o.1c), each item i has a positive integral weight wi and the goal is to select

a subset of items that maximizes the overall profit and whose sum of weights does not
exceed the given knapsack capacity W . All assumptions on the constraint are the same
as for the classical knapsack problem, cf. Section 2.2. Additionally, a simple problem
reduction is possible if wi + wj > W . This case indicates that items i and j cannot be
selected together, hence, the combined profit pi j + pj i will never be realized and can be
set to 0. As usual, the binary decision variable xi indicates if item i is selected, xi = 1, or
not, xi = 0. Thus, (Qo.1c) can be defined as follows:

max x>Px =

n∑
i=1

n∑
j=1

pi jxixj

s. t.

n∑
i=1

wixi ≤ W

xi ∈ {0, 1}, i = 1, . . . , n.

(Qo.1c)

An illustrative interpretation of (Qo.1c) can be given based on graphs. We define a
complete undirected graph G = (V, E) with vertex set V = {1, . . . , n}, i. e., each vertex
corresponds to one item of (Qo.1c). Each vertex has assigned a profit value pi i and a
weight value wi and each edge (i , j) has assigned a profit value pi j + pj i .

Definition 5.1 Given a graph G = (V, E), a clique is defined as a subset of vertices V ′ ⊂ V
where every pair of vertices i , j ∈ V ′ is connected by an edge (i , j) ∈ E.

A selected clique S ⊂ V is called feasible for (Qo.1c) if the overall assigned weight does
not exceed the capacity W . The overall profit of S consists of the profit assigned to the
vertices and edges assigned to S, i. e., an edge (i , j) represents the profit that is generated
since both vertices i and j are elements of the clique S. The optimization problem can
now be formulated as selecting a feasible clique S ⊂ V that realizes the maximal profit.
It is well known that the quadratic knapsack problem is NP-complete in the strong

sense, which can be shown by a polynomial reduction to the Clique-problem [Garey and
Johnson, 1979, Pisinger, 2007]:

Definition 5.2 Given a graph G = (V, E) and a positive integer k ≤ |V |, the Clique-
problem asks, if G contains a clique of size k or more.

A corresponding instance of (Qo.1c) can be modeled by setting the coefficients as
follows: n ..= |V |; pi i ..= 0, for i = 1, . . . , n; pi j , pj i ..= 1 if (i , j) ∈ E and pi j , pj i ..= 0

otherwise, for i 6= j , i , j = 1, . . . , n; wi ..= 1 for i = 1, . . . , n; and W ..= k . Thus, only
combinations of items/vertices that are directly connected contribute to the objective
function value. The constraint of this special instance reduces to a cardinality constraint,∑n
i=1 xi ≤ k, that is completely exploited by the optimal solution. Hence, if and only if

117

Chapter 5 Rectangular knapsack problems and representative solutions

the optimal objective function value is equal to k(k −1), the answer to the clique problem
is positive.

On the one hand, the quadratic knapsack problem has been widely studied in the lit-
erature, see Pisinger [2007] for a comprehensive survey. Exact solution algorithms are
mainly based on branch-and-bound (BB) schemes. Besides the model of (Qo.1c), Gallo
et al. [1980] also presented the first BB algorithm for this optimization problem. Their
approach makes use of upper bounds that are computed by a relaxed version of (Qo.1c).
The objective function is replaced by an upper plane, that is a linear function g such that
g(x) ≥ x>Px for any feasible solution x of (Qo.1c). Solving this new optimization prob-
lem, which is a (1o.1c) due to the linear objective function, yields an upper bound on
(Qo.1c).
Caprara et al. [1999] also use upper planes for computing upper bounds. In addition, they

present a reformulation to an equivalent instance of (Qo.1c) using Lagrangian relaxation.
The reformulated instance provides a tight upper bound at the root node of the BB
algorithm. Billionnet et al. [1999] use upper bounds based on Lagrangian decomposition
and, in a more recent version, Billionnet and Soutif [2004] introduce algorithms for fixing
variables based on these bounds. These algorithms are used to reduce the size of the
problem before applying the BB. Pisinger et al. [2007] introduce an aggressive reduction
algorithm for large instances of (Qo.1c), where aggressive means that a large effort is
spent for the reduction such that the final optimization is done rather easy. The authors
use the bounds of Caprara et al. [1999] and Billionnet et al. [1999] for the reduction of
(Qo.1c). Rodrigues et al. [2012] present a linearization scheme for (Qo.1c) that provides
tight upper bounds for a BB algorithm.
On the other hand, rather few results are known about the approximation of (Qo.1c).

Since the problem is strongly NP-hard, a fully polynomial approximation scheme (FPTAS)
cannot be expected unless P = NP. Furthermore, it is unknown whether there exists an
approximation with a constant approximation ratio for (Qo.1c). Taylor [2016] present
an approximation algorithm based on an approach for the densest k-subgraph problem.
They show that for ε > 0, (Qo.1c) can be approximated with an approximation ratio
in O(n

2/5+ε) and a run time of O(n
9/ε). Rader and Woeginger [2002] prove that for a

variant of (Qo.1c), where positive as well as negative profit coefficients pi j are considered,
there does not exist any polynomial time approximation algorithm with finite worst case
guarantee unless P = NP.
Other approximation results concentrate on special cases of (Qo.1c) where the under-

lying graph G = (V, E), with E = {(i , j) : i , j ∈ V, i 6= j, pi j 6= 0}, has a specific struc-
ture. Pferschy and Schauer [2016] present an FPTAS for (Qo.1c) on graphs of bounded
treewidth, which includes series-parallel graphs [see Bodlaender and Koster, 2008]. Fur-
thermore, the authors introduce a polynomial time approximation scheme (PTAS) for
graphs that do not contain any fixed graph H as a minor, which includes planar graphs. As
negative results, Pferschy and Schauer [2016] show that (Qo.1c) on 3-book embeddable
graphs is strongly NP-hard and Rader and Woeginger [2002] prove that (Qo.1c) on vertex
series-parallel graphs is strongly NP-hard.

118

5.2 Cardinality constrained rectangular knapsack problems

Kellerer and Strusevich [2010] introduce a very special variant of (Qo.1c): the symmetric
quadratic knapsack problem. In addition to assigning a profit to pairs of items that both
have been selected this variant also assigns a profit to pairs of items that both have not
been selected. Furthermore, the profits pi j are built as a multiplicative of two coefficients
of which one also defines the weight of the constraint. Kellerer and Strusevich [2010]
introduce an FPTAS to solve the problem, which is further improved by Xu [2012].

5.2 Cardinality constrained rectangular knapsack problems

The cardinality constrained rectangular knapsack problem (Ro.Cc) is a variant of (Qo.1c)
with the following properties:

max f (x) = x>a b>x =

n∑
i=1

n∑
j=1

aibj xixj

s. t.

n∑
i=1

xi ≤ k

xi ∈ {0, 1}, i = 1, . . . , n

(Ro.Cc)

where a, b ∈ Nn, with a, b 6= 0n, and k ∈ N, k < n. Note, that P = a b>, i. e.,
rank(P) = 1, with pi j = aibj and pj i = ajbi , i. e., in general, P is not symmetric. We
assume that k ≥ 2. Otherwise, i. e., if k = 1, the problem reduces to finding the largest
coefficient aibi , for i ∈ {1, . . . , n}.
The rectangular objective function is formulated in analogy to the Koopmans-Beckmann

form of the quadratic assignment problem, see Burkard et al. [1998], which is also a par-
ticular case of the more general Lawler formulation. In both cases, the two respective four
dimensional arrays of profit/cost coefficients are given as a product of lower dimensional
parameters.

5.2.1 Illustrative interpretation

The denotation rectangular knapsack problem is motivated by the special structure of P
given by the coefficients aibj . Every coefficient can be interpreted as the area of a rectangle.
Accordingly, for fixed item ı̂ ∈ {1, . . . , n} all rectangles corresponding to coefficients aı̂bj ,
j = 1, . . . , n, have the same width, and all rectangles corresponding to coefficients ajbı̂,
j = 1, . . . , n, have the same height. Note that, the objective function can be rewritten as

f (x) = x>a b>x = (a>x) · (b>x) =

n∑
i=1

aixi ·
n∑
i=1

bixi ,

which can be interpreted as choosing a subset S ⊂ {1, . . . , n} of items such that the area
of the rectangle with width

∑
i∈S ai and height

∑
i∈S bi is maximized.

119

Chapter 5 Rectangular knapsack problems and representative solutions

Example 5.3 We consider the following instance of (Ro.Cc):

max
(

(4, 5, 2, 12, 7)>x
)
·
(

(6, 3, 8, 5, 10)>x
)

s. t.

5∑
i=1

xi ≤ 2

xi ∈ {0, 1}, i = 1, . . . , 5

The corresponding rectangles are plotted in Figure 5.1. Each rectangle has the same
position in the overall rectangle as the corresponding coefficient pi j = aibj in the profit
matrix P . The optimal solution x = (0, 1, 0, 0, 1)> generates an objective function value
that corresponds to the highlighted area in the figure.

a5

a4

a3

a2

a1

b1 b2 b3 b4 b5

4 · 6 4 · 3 4 · 8 4 · 5 4 · 10

5 · 6 5 · 3 5 · 8 5 · 5 5 · 10

2 · 6 2 · 3 2 · 8 2 · 5 2 · 10

12 · 6 12 · 3 12 · 8 12 · 5 12 · 10

7 · 6 7 · 3 7 · 8 7 · 5 7 · 10

Figure 5.1: Visualization of coefficients pi j = aibj , interpreted as areas of rectangles.

5.2.2 Bounds

The setup of the profit matrix P implies an easy computation of bounds for (Ro.Cc). In
the following we assume that all instances are defined or reordered such that

a1 ≥ . . . ≥ an

and in case of ties, i. e., if ai = ai+1 for i ∈ {1, . . . , n − 1}, such that

bi ≥ bi+1.

Let Sn denote the symmetric group of order n and π ∈ Sn denote a permutation of
{1, . . . , n}. More specifically, consider π such that

bπ(1) ≥ . . . ≥ bπ(n)

120

5.2 Cardinality constrained rectangular knapsack problems

and in case of ties, i. e., if bπ(j) = bπ(j+1) for j ∈ {1, . . . , n − 1}, such that

aπ(j) ≥ aπ(j+1).

Using the sorted coefficients ai , bπ(j) of the objective, one can compute an upper bound
for (Ro.Cc) in a straight forward way.

Lemma 5.4 For every feasible solution x ∈ {0, 1}n of (Ro.Cc) the following inequality
holds:

f (x) ≤
k∑
i=1

ai ·
k∑
j=1

bπ(j) = U

This bound is tight, if

{π(j) : 1 ≤ j ≤ k} = {1, . . . , k}. (5.1)

Note that, in general, this upper bound does not correspond to a solution of (Ro.Cc)
since the value of a variable xi may be differently defined w. r. t. the respective sorting
of the coefficients. As soon as Equation 5.1 holds, the upper bound U corresponds to a
solution of (Ro.Cc) and this solution is optimal.

Proof. We consider the objective function of (Ro.Cc):

f (x) =

n∑
i=1

aixi ·
n∑
i=1

bixi =

n∑
i=1

aixi ·
n∑
j=1

bπ(j)xπ(j).

The cardinality constraint restricts the number of selected items to k . Due to the ordering
of coefficients ai we know that

0 ≤
n∑
i=1

aixi ≤
k∑
i=1

ai

for every feasible solution x of (Ro.Cc). Analogously, due to the definition of the permu-
tation π we know that

0 ≤
n∑
j=1

bπ(j)xπ(j) ≤
k∑
j=1

bπ(j)

for every feasible solution x of (Ro.Cc). Thus,

f (x) =

n∑
i=1

aixi ·
n∑
j=1

bπ(j)xπ(j) ≤
k∑
i=1

ai ·
k∑
j=1

bπ(j) = U .

Furthermore, if {π(j) : 1 ≤ j ≤ k} = {1, . . . , k}, the upper bound is based on the selection
of the k items 1, . . . , k :

k∑
i=1

ai ·
k∑
j=1

bπ(j) =

k∑
i=1

ai ·
k∑
i=1

bi =

n∑
i=1

aixi ·
n∑
i=1

bixi

121

Chapter 5 Rectangular knapsack problems and representative solutions

with

xi =

{
1 , for i ∈ {1, . . . , k}
0 , otherwise

The solution x is feasible and realizes U . Hence, x is optimal and U is a tight bound.

A lower bound on (Ro.Cc) can be obtained by using the sorting of the coefficients again.
Let x̃ and x̂ ∈ {0, 1}n be defined as follows:

x̃i =

{
1 , for i ∈

{
1, . . . ,

⌈
k
2

⌉}
∪
{
π(1), . . . , π

(⌊
k
2

⌋)}
0 , otherwise

(5.2)

x̂i =

{
1 , for i ∈

{
1, . . . ,

⌊
k
2

⌋}
∪
{
π(1), . . . , π

(⌈
k
2

⌉)}
0 , otherwise

(5.3)

For notational convenience, let κ ..= k
2 , κ

..=
⌈
k
2

⌉
, and κ ..=

⌊
k
2

⌋
. If k is even, the equality

κ = κ = k
2 holds, i. e., x̃ and x̂ are identical.

Remark 5.5 The definition of x̃ guarantees that at least the product

κ∑
i=1

ai ·
κ∑
j=1

bπ(j)

is realized in the objective function. Due to the ordering of coefficients ai and bπ(j) this
is the maximal possible value that a product of κ coefficients ai and κ coefficients bj
can achieve. The same holds analogously for x̂ . This property is important to prove an
approximation quality in the following, see the proof of Theorem 5.9.

Lemma 5.6 For an optimal solution x∗ of (Ro.Cc) the following inequality holds:

f (x∗) ≥ max
{
f (x̃), f (x̂)

}
= L.

Proof. The solutions x̃ and x̂ are both elements of {0, 1}n. The sets {1, . . . , κ} and
{π(1), . . . , π(κ)} have cardinality κ and the sets {π(1), . . . , π(κ)} and {1, . . . , κ} have
cardinality κ. Therefore, it holds:

n∑
i=1

x̃i ≤ κ+ κ

n∑
i=1

x̂i ≤ κ+ κ


= k.

Note that equality is obtained if the sets {1, . . . , κ} and {π(1), . . . , π(κ)} ({1, . . . , κ} and
{π(1), . . . , π(κ)}, respectively) are disjoint. If the sets are not disjoint, the bound can be
improved by including more items. We discuss this in Section 5.3.1.
Both solutions x̃ and x̂ are feasible for (Ro.Cc) and the corresponding objective function

values are lower bounds on the optimum.

122

5.2 Cardinality constrained rectangular knapsack problems

We define L̃ ..= f (x̃) and L̂ ..= f (x̂). The following example draws a connection between
the bound computation and the visualization of (Ro.Cc) as a selection of a subset of
rectangular areas.

Example 5.7 Consider the following instance of (Ro.Cc):

max
(

(6, 5, 5, 4, 3, 3, 2, 1)>x
)
·
(

(6, 11, 4, 10, 6, 9, 1, 8)>x
)

s. t.

8∑
i=1

xi ≤ 5

xi ∈ {0, 1}, i = 1, . . . , 8.

Thus, the permutation π is π = (2, 4, 6, 8, 1, 5, 3, 7)> and the permuted vector bπ is given
by bπ = (11, 10, 9, 8, 6, 6, 4, 1)> .
As described above, the coefficients ai · bπ(j), for i , j = 1, . . . , 8, can be interpreted as

rectangles with width ai and height bπ(j) and, consequently, with area ai ·bπ(j). We arrange
the rectangles line by line according to the index i , and column by column according to
the index π(j) (see Figure 5.2). In doing so, the rectangles representing the coefficients
are sorted in non-increasing manner from top to bottom and from left to right. Feasible
solutions of (Ro.Cc) correspond to 52 rectangles, which have to be part of intersections
of rows and columns with equal sets of indices I, i. e., a set of indices I ⊂ {1, . . . , 8} with
|I| ≤ 5.

• The upper bound computation chooses the 5 largest rows and columns, i. e., a1 to
a5 and bπ(1) to bπ(5). In our example, we obtain:

U =

5∑
i=1

ai ·
5∑
j=1

bπ(j) = (6 + 5 + 5 + 4 + 3) · (11 + 10 + 9 + 8 + 6) = 23 · 44 = 1012.

This corresponds to the area of the 52 largest rectangles in the upper left part of
the overall rectangle in Figure 5.2.

• For the lower bound computation at most 5 variables corresponding to the first three
and two (two and three, respectively) indices of rows and columns are selected. In
doing so, the largest 2 · 3 rectangles in the upper left part of the overall rectangle in
Figure 5.3 (lower bound L̂) are included in the solution and, in addition, feasibility
is guaranteed. In the example, the candidate solutions are x̃ = (1, 1, 1, 1, 0, 0, 0, 0)>

and x̂ = (1, 1, 0, 1, 0, 1, 0, 0)>. The lower bound is computed as:

L = max
{
L̃, L̂

}
= max

{
(6 + 5 + 5 + 4) · (6 + 11 + 4 + 10), (6 + 5 + 4 + 3) · (6 + 11 + 10 + 9)

}
= max

{
620, 648

}
= 648.

The optimal solution of this instance is x∗ = (1, 1, 1, 1, 0, 1, 0, 0)> with f (x∗) = 920. We
can verify that indeed: U = 1012 ≥ 920 ≥ 648 = L.

123

Chapter 5 Rectangular knapsack problems and representative solutions

a8

a7

a6

a5

a4

a3

a2

a1

b π
(1

)
=
b2

b π
(2

)
=
b4

b π
(3

)
=
b6

b π
(4

)
=
b8

b π
(5

)
=
b1

b π
(6

)
=
b5

b π
(7

)
=
b3

b π
(8

)
=
b7

U

Figure 5.2: Area that defines the upper bound U () for Example 5.7.

a8

a7

a6

a5

a4

a3

a2

a1

b π
(1

)
=
b2

b π
(2

)
=
b4

b π
(3

)
=
b6

b π
(4

)
=
b8

b π
(5

)
=
b1

b π
(6

)
=
b5

b π
(7

)
=
b3

b π
(8

)
=
b7

I

II

II

III

IV

IV

Figure 5.3: Area that defines the lower bound L = L̂ () for Example 5.7. The assignment
of labels I to IV become relevant for the proof of (5.4).

124

5.3 Approximation algorithms

In this context, we show that the following inequality holds:

L ≥
κ∑
i=1

κ∑
j=1

aibπ(j). (5.4)

Referring to the description of Example 5.7, the right-hand side of this inequality cor-
responds to the area of the κ · κ largest rectangles in the left upper part of the overall
rectangle (see also Remark 5.5). We partition the area corresponding to the lower bound
into four distinct areas to show that the inequality holds. If we would apply the following
derivation to Example 5.7, the four terms resulting from this subdivision correspond, in this
order, to the four areas (I to IV) in Figure 5.3. Thus, the figure can be used to illustrate
the following proof of inequality 5.4:

L ≥ L̂ =

n∑
i=1

n∑
j=1

aibj x̂i x̂j

=

κ∑
i=1

κ∑
j=1

aibπ(j) +

κ∑
i=1

π(i)/∈{1,...,κ}

κ∑
j=1

aπ(i)bπ(j)

+

κ∑
i=1

κ∑
j=1

j /∈{π(1),...,π(κ)}

aibj +

κ∑
i=1

π(i)/∈{1,...,κ)}

κ∑
j=1

j /∈{π(1),...,π(κ)}

aπ(i)bj

≥
κ∑
i=1

κ∑
j=1

aibπ(j)

Analogously, using the definition of x̃ , it holds that:

L ≥
κ∑
i=1

κ∑
j=1

aibπ(j). (5.5)

5.3 Approximation algorithms

The results of Section 5.2.2 do naturally motivate an approximation algorithm, see Al-
gorithm 5.1. It computes the solutions x̃ and x̂ and outputs the better alternative as
approximate solution.
The computation of x̃ and x̂ and of their objective function values L̃ and L̂ can be

realized in time O(n). Therefore, with a time complexity of O(n log n), the sorting of the
coefficients is the most time consuming part of Algorithm 5.1.

Lemma 5.8 Algorithm 5.1 has a time complexity of O(n log n).

125

Chapter 5 Rectangular knapsack problems and representative solutions

Algorithm 5.1 Approximation algorithm for (Ro.Cc)

Input: coefficients a = (a1, . . . , an)>, b = (b1, . . . , bn)>, capacity k
1: x̃ ..= 0n, x̂ ..= 0n, κ ..=

⌈
k
2

⌉
and κ ..=

⌊
k
2

⌋
2: compute permutation π ∈ Sn such that{

bπ(j) > bπ(j+1), or
bπ(j) = bπ(j+1) and aπ(j) ≥ aπ(j+1)

for j = 1, . . . , n − 1

3: for i ..= 1, . . . , κ do // set x̃ and x̂ analogous to 5.2 and 5.3
4: x̃i

..= 1, x̃π(i)
..= 1

5: x̂i
..= 1, x̂π(i)

..= 1

6: x̃κ
..= 1

7: x̂π(κ)
..= 1

8: L̃ ..= (a>x̃) · (b>x̃)

9: L̂ ..= (a>x̂) · (b>x̂)

10: if L̃ ≥ L̂ then
11: L ..= L̃, x ..= x̃

12: else
13: L ..= L̂, x ..= x̂

Output: lower bound L for (Ro.Cc) and corresponding solution x

In addition to the polynomial time complexity, Algorithm 5.1 yields a constant approxi-
mation ratio for (Ro.Cc).

Theorem 5.9 Algorithm 5.1 is a polynomial time 4.5-approximation algorithm for the
cardinality constrained rectangular knapsack problem.

Proof. Algorithm 5.1 returns a feasible solution in polynomial time (see Lemma 5.8).

Case 1: k even
Since the coefficients ai , bπ(j) are in non-increasing order, it holds that

U =

k∑
i=1

k∑
j=1

aibπ(j)

=

κ∑
i=1

κ∑
j=1

aibπ(j) +

k∑
i=κ+1

κ∑
j=1

aibπ(j) +

κ∑
i=1

k∑
j=κ+1

aibπ(j) +

k∑
i=κ+1

k∑
j=κ+1

aibπ(j)

≤ 4 ·
κ∑
i=1

κ∑
j=1

aibπ(j) ≤ 4L

Case 2: k odd
In analogy to case 1 we again use the fact that the coefficients ai , bπ(j) are in

126

5.3 Approximation algorithms

non-increasing order. We can assume without loss of generality that:

κ∑
i=1

κ∑
j=1

aibπ(j) ≤
κ∑
i=1

κ∑
j=1

aibπ(j).

This inequality is equivalent to:

κ∑
i=1

κ∑
j=1

aibπ(j) +

κ∑
i=1

aibπ(κ) ≤
κ∑
i=1

κ∑
j=1

aibπ(j) +

κ∑
j=1

aκbπ(j)

⇔
κ∑
i=1

aibπ(κ) − aκbπ(κ) ≤
κ∑
j=1

aκbπ(j) − aκbπ(κ)

⇔
κ∑
i=1

aibπ(κ) ≤
κ∑
j=1

aκbπ(j). (5.6)

Thus, the following inequality holds. Note that we use Equations 5.4 and 5.5 to
classify several terms.

U =

k∑
i=1

k∑
j=1

aibπ(j)

=

κ∑
i=1

κ∑
j=1

aibπ(j) +

k∑
i=κ+1

k∑
j=κ+1

aibπ(j) +

κ∑
i=1

k∑
j=κ+1

aibπ(j) +

k∑
i=κ+1

κ∑
j=1

aibπ(j)

≤ L+

κ∑
i=1

κ∑
j=1

aibπ(j) +

κ∑
i=1

κ∑
j=1

aibπ(j) +

κ∑
i=1

κ∑
j=1

aibπ(j)

≤ 2L+

 κ∑
i=1

κ∑
j=1

aibπ(j) +

κ∑
i=1

aibπ(κ)

+

κ∑
i=1

κ∑
j=1

aibπ(j)

(5.6)
≤ 3L+

κ∑
j=1

aκbπ(j) +

κ∑
i=1

κ∑
j=1

aibπ(j)

≤ 3L+ aκbπ(κ) +

κ∑
j=1

aκbπ(j) +

κ∑
i=1

κ∑
j=1

aibπ(j)

= 3L+ aκbπ(κ) +

κ∑
i=1

κ∑
j=1

aibπ(j)

≤ 4L+ aκbπ(κ) // worst case: aκbπ(κ) = aibπ(j), i = 1, . . . , κ, j = 1, . . . , κ

≤ 4L+
1

κ
·

1

κ
·
κ∑
i=1

κ∑
j=1

aibπ(j)

≤ 4L+
1

κ
·

1

κ
· L

127

Chapter 5 Rectangular knapsack problems and representative solutions

≤
(

4 +
1

κ
·

1

κ

)
· L (5.7)

≤ 4.5L

In summary, this yields the approximation factor:

max

(
L

OPT
,
OPT

L

)
≤ max

(
L
U ,
U
L

)
≤

4.5 · L
L = 4.5.

As presented in the proof of Theorem 5.9, we can guarantee better results for even
values of k . Also, for odd values of k , the quality of the approximation increases for
increasing k .

Remark 5.10

• If k is even, the result of Theorem 5.9 improves to a 4-approximation algorithm.

• For fixed odd values of k , Algorithm 5.1 is a polynomial time ρ-approximation algo-
rithm for (Ro.Cc) with (cf. Equation (5.7)):

k 3 5 7 9 11 13 15 17 19

κ 1 2 3 4 5 6 7 8 9

κ 2 3 4 5 6 7 8 9 10

ρ = 4 +
1

κ
·

1

κ

9

2

25

6

49

12

81

20

121

30

169

42

225

56

289

72

361

90

5.3.1 Improved approximation algorithm

In practice, we can formulate an improved variant of Algorithm 5.1. Due to the definition
of the lower bound solution x̃ (see Equation 5.2), we do not use the full capacity of
the cardinality constraint of (Ro.Cc) if the sets {1, . . . , κ} and {π(1), . . . , π(κ)} are not
disjoint, i. e., if

∑n
i=1 x̃i < k . Hence, it is possible to increase the lower bound value by

including further items. Algorithm 5.2 demonstrates a possible procedure to compute an
improved lower bound Limpr that takes this in consideration.
An additional parameter k ′, which we name adaptive capacity, is introduced to increase

the sets {1, . . . , κ} and {π(1), . . . , π(κ)}, and, therefore, increase the number of selected
items, without violating the constraint. At first, k ′ is set to k . After computing the lower
bound solution x̃ as defined in (5.2), the algorithm tests whether k items are selected or
not. In the latter case, the adaptive capacity k ′ is increased by the difference k −

∑n
i=1 x̃i .

A re-computation of x̃ , using k ′ as capacity, allows to include more items in accordance
with the ordering of the respective coefficients ai or bπ(i) which compensates for the fact

128

5.3 Approximation algorithms

that the original sets are not disjoint. Subsequently, it is tested again if the constraint is
satisfied with equality. If not, the adaptive capacity k ′ is further increased. Otherwise,
the algorithm continues by computing x̂ using the current value of the parameter k ′ as
capacity and testing which of the lower bound solutions is superior.

Algorithm 5.2 Improved approximation algorithm for (Ro.Cc)

Input: coefficients a = (a1, .., an)>, b = (b1, . . . , bn)>, capacity k
1: x̃ ..= 0n, x̂ ..= 0n, stop..= 0, k ′ ..= k , a ..= 1

2: compute permutation π ∈ Sn such that{
bπ(j) > bπ(j+1), or
bπ(j) = bπ(j+1) and aπ(j) ≥ aπ(j+1)

for j = 1, . . . , n − 1

3: while stop = 0 do
4: for i ..= a, . . . ,

⌊
k ′

2

⌋
do // include further items

5: x̃i
..= 1, x̃π(i)

..= 1

6: x̃⌈ k ′
2

⌉ ..= 1

7: if
∑n
i=1 x̃i < k then // no equality in constraint

8: a ..=
⌊
k ′

2

⌋
+ 1

9: k ′ ..= k ′ +
(
k −

∑n
i=1 x̃i

)
// increase adaptive capacity k ′

10: else // equality obtained
11: stop ..= 1

12: for i ..= 1, . . . ,
⌊
k ′

2

⌋
do // compute x̂

13: x̂i
..= 1, x̂π(i)

..= 1

14: x̂
π
(⌈

k ′
2

⌉) ..= 1

15: L̃ ..= (a>x̃) · (b>x̃)

16: L̂ ..= (a>x̂) · (b>x̂)

17: if L̃ ≥ L̂ then
18: L ..= L̃, x ..= x̃

19: else
20: L ..= L̂, x ..= x̂

Output: lower bound L and corresponding solution x

Lemma 5.11 If, in Step 9 of Algorithm 5.2, the solution x̃ allows to increase the adaptive
capacity k ′ to k ′ + (k −

∑n
i=1 x̃i), this is also feasible for the computation of x̂ .

Proof. For ease of notation we assume that we are examining the iteration where the
adaptive capacity k ′ is increased for the first time from the capacity k to k ′ = k + (k −∑n
i=1 x̃i). The following discussion can be applied in an analogous manner to all further

iterations by adapting the notation accordingly.

129

Chapter 5 Rectangular knapsack problems and representative solutions

If k is even, we know that x̃ = x̂ and the statement is trivially true. Otherwise, i. e., if k
is odd, we can take advantage of the fact that the solution x̃ or x̂ uses less than k items
if:

• for x̃ : {1, . . . , κ} ∩ {π(1), . . . , π(κ)} 6= ∅.

• for x̂ : {1, . . . , κ} ∩ {π(1), . . . , π(κ)} 6= ∅.

Therefore, we define

Ĩ ..={1, . . . , κ} ∪ {π(1), . . . , π(κ)},
Î ..={1, . . . , κ} ∪ {π(1), . . . , π(κ)} and
J ..= Ĩ ∩ Î = {1, . . . , κ} ∪ {π(1), . . . , π(κ)}.

It holds that
∑n
i=1 x̃i = |Ĩ| and that

∑n
i=1 x̂i = |Î|. Furthermore, we know that

|Ĩ| =

{
|J | , if κ ∈ {π(1), . . . , π(κ)}, i, e., if Ĩ = J
|J |+ 1 , else

Furthermore, we know that

|Î| =

{
|J | , if π(κ) ∈ {1, . . . , κ}, i, e., if Î = J
|J |+ 1 , else

Considering these relations, we distinguish four cases:

Case 1: |Ĩ| = |J | ∧ |Î| = |J |
Thus, k ′ can be set to k + (k − |J |) = k + (k − |Ĩ|) for x̃ and for x̂ .

Case 2: |Ĩ| = |J |+ 1 ∧ |Î| = |J |+ 1

Thus, k ′ can be set to k + (k − (|J |+ 1)) = k + (k − |Ĩ|) for x̃ and for x̂ .

Case 3: |Ĩ| = |J |+ 1 ∧ |Î| = |J |
For x̂ , k ′ can be set to k + (k − |J |) = k + (k − |Î|). Defined by x̃ , k ′ will be set
to k + (k − |Ĩ|) = k + (k − (|J |+ 1)) < k + (k − |J |) which is feasible for x̂ .

Case 4: |Ĩ| = |J | ∧ |Î| = |J |+ 1

Since |Ĩ| = |J |, we know that κ ∈ {π(1), . . . , π(κ)} (∗). In a first iteration we
examine the consequences of setting k ′ ..= k + 1. Thus, k ′ is even and we define the
corresponding solution as:

x ′i =

{
1 , for i ∈ {1, . . . , κ} ∪ {π(1), . . . , π(κ)}
0 , otherwise

,

where {1, . . . , κ} ∪ {π(1), . . . , π(κ)} (∗)
= {1, . . . , κ} ∪ {π(1), . . . , π(κ)} = Î. Thus,

setting the adaptive capacity k ′ to k + 1 does not change x̂ , i. e., x ′ = x̂ .

130

5.3 Approximation algorithms

Hence, k ′ can be set to

k + 1 + (k − (|Î|+ 1)) = k + (k − |J |) = k + (k − |Ĩ|)

for x̃ and for x̂ .

Lemma 5.12 Let n be the number of items and let k be the capacity of (Ro.Cc). Algo-
rithm 5.2 terminates and has a worst case time complexity of O(n log n).

Proof. Critical for the termination of Algorithm 5.2 is the while-loop for computing the
solution x̃ with

∑n
i=1 x̃i = k . In the first iteration, at least κ variables are set to 1. The

parameter k ′ is increased by at least 1 in each consecutive iteration and, thus, in at least
every second iteration an additional entry of x̃ is set to 1. Hence, after at most 2·κ+1 = k

iterations k variables have been selected for x̃ and the loop terminates.
We take advantage of the ordering of the coefficients to set only new variables to 1 if

the adaptive capacity is increased. Thus, the execution of the while loop requires O(k).
The complexity of Algorithm 5.2 is, as the complexity of Algorithm 5.1, determined by the
sorting algorithm, i. e., Algorithm 5.2 has a worst case time complexity of O(n log n).

Example 5.13 We apply the improved approximation algorithm, Algorithm 5.2, on the
instance of (Ro.Cc) of Example 5.7. The solution x̃ is defined by the set

Ĩ = {1, 2, 3} ∪ {π(1), π(2)} = {1, 2, 3} ∪ {2, 4} = {1, 2, 3, 4}

with |Ĩ| =
∑n
i=1 x̃i = 4 < 5. Thus, the adaptive capacity can be set to k ′ ..= 5+(5−4) = 6.

The re-computation of x̃ leads to

Ĩ = {1, 2, 3} ∪ {π(1), π(2), π(3)} = {1, 2, 3} ∪ {2, 4, 6} = {1, 2, 3, 4, 6}

with |Ĩ| =
∑n
i=1 x̃i = 5. Hence, the cardinality constraint is tight and, since k ′ is even, the

solution x = (1, 1, 1, 1, 0, 1, 0, 0)> generating the improved lower bound L = f (x) = 920

and approximating the optimal solution is found. The optimal solution of the instance is
x∗ = (1, 1, 1, 1, 0, 1, 0, 0)> and, thus, identical to the improved lower bound solution.
As proven above, setting the adaptive capacity to k ′ ..= 6 is also feasible for x̂ . The

solution x̂ defined by k ′ = 5 corresponds to the set

Î = {1, 2} ∪ {π(1), π(2), π(3)} = {1, 2} ∪ {2, 4, 6} = {1, 2, 4, 6}

with |Î| =
∑n
i=1 x̂i = 4 < 5. Hence, one additional item can be included resulting in the

same lower bound solution x = (1, 1, 1, 1, 0, 1, 0, 0)> again (with k ′ = 6). The areas of
rectangles corresponding to the lower bounds L̃ and L̂ based on the first computations of
x̃ and x̂ (Algorithm 5.1), respectively, and the improved lower bound L (Algorithm 5.2)
are shown in Figure 5.4.

131

Chapter 5 Rectangular knapsack problems and representative solutions

a8

a7

a6

a5

a4

a3

a2

a1

b π
(1

)
=
b2

b π
(2

)
=
b4

b π
(3

)
=
b6

b π
(4

)
=
b8

b π
(5

)
=
b1

b π
(6

)
=
b5

b π
(7

)
=
b3

b π
(8

)
=
b7

Figure 5.4: Lower bounds L̃ () , L̂ () and L () for Examples 5.7 and 5.13.

5.4 Computational results

Computational experiments were performed on an Intel Quadcore 2,80GHz with 4GB
RAM. We implemented both approximation Algorithms 5.1 and 5.2 in C. The instances
were randomly generated using the code of Pisinger [2016], slightly adapting it to the
special structure of the profits pi j and to the capacity constraint. The number of items n
was chosen up to 400 and the coefficients ai , bi were restricted to the range [1, n/2]. For
each size of the problem, three different constraint slacknesses ck (recall: ck ·

∑n
i=1 1 = k)

were chosen: ck = 0.25, ck = 0.5, and ck = 0.75. For every class of instances, the
presented results are the average over 10 instances.
Table 5.1 presents the averaged approximation ratios z∗/L and z∗/Limpr. The optimal

objective function value z∗ was computed by using the exact solution algorithm of Caprara
et al. [1999] [code downloaded from the web page of Pisinger, 2016]. The results indicate
for general instances, that in practice the approximation ratio of both algorithms is much
better than the guaranteed ratio of 4.5 and that the improved algorithm, Algorithm 5.2,
yields even better results than the basic version, Algorithm 5.1. It is interesting to notice,
on the one hand, that the approximation quality of Algorithm 5.1 becomes worse the
larger the constraint slackness is. This is most likely because, having a large constraint
slackness, it becomes more likely that items are chosen due to both orderings. On the
other hand, the approximation of Algorithm 5.2 becomes better because this weakness is
compensated in this algorithm and a larger capacity value k improves the approximation
(see Remark 5.10).
In practice, the quality of the approximation can only be evaluated by the ratio U/L,

and U/Limpr, respectively, where an upper bound U can be computed by the scheme of

132

5.5 Hypervolume maximizing representations

Algorithm 5.1 Algorithm 5.2

n k z∗/L U/L z∗/Limpr U/Limpr

100 25 1.36 1.77 1.20 1.56
50 1.31 1.65 1.06 1.34
75 1.38 1.56 1.02 1.15

200 50 1.35 1.77 1.17 1.52
100 1.33 1.66 1.07 1.34
150 1.37 1.54 1.02 1.14

300 75 1.34 1.76 1.18 1.55
150 1.33 1.69 1.06 1.35
225 1.35 1.52 1.01 1.14

400 100 1.33 1.75 1.18 1.54
200 1.32 1.66 1.06 1.33
300 1.37 1.56 1.02 1.15

Table 5.1: Approximation ratios ρ = z∗/L and ρ = z∗/Limpr and ratios U/L and U/Limpr of
Algorithms 5.1 and 5.2 for instances of (Ro.Cc) of different sizes.

Lemma 5.4. The results do also indicate, that, for general instances, the approxima-
tion is far better than the guaranteed ratio suggests. Furthermore, the approximations
are computed very fast: Both approximation algorithms require 0.01 seconds or less per
instance.

5.5 Hypervolume maximizing representations

In the introduction of this chapter we presented the cardinality constrained bi-objective
knapsack problem (2o.Cc). The objective function of (Ro.Cc) is determined by the prod-
uct of the two objective functions of (2o.Cc). The constraint is equal in both problems.
Therefore, a feasible solution x of (2o.Cc) is also feasible for (Ro.Cc). The objective func-
tion value of (Ro.Cc) yields the hypervolume corresponding to the solution x in (2o.Cc).
An optimal solution x∗ of (Ro.Cc) is an efficient solution of (2o.Cc) that maximizes

the hypervolume. It is, therefore, a particular representative solution of (2o.Cc) where
both objective function values are treated as equally important. Thus, Algorithms 5.1
and 5.2 approximate the optimal hypervolume, considering (0, 0)> as reference point, and
also identify a feasible solution x̃ of (2o.Cc) and the corresponding point

(
a>x̃ , b>x̃

)
that

realizes this approximation.
In Figure 5.5 the nondominated set of an instance of (2o.Cc) is shown. The non-

dominated point maximizing the hypervolume as well as the point obtained by using the
approximation (Algorithm 5.1 or 5.2) are plotted for this example. Note that, in contrast
to this example, it cannot be assumed in general that the approximating point is nondomi-
nated. Furthermore, the example does nicely illustrate that the upper bound U corresponds

133

Chapter 5 Rectangular knapsack problems and representative solutions

to the hypervolume of the ideal point of (2o.Cc). The upper bound is computed by sep-
arately choosing the k best items for each objective function, i. e., by building individual
optima.

(∑
ai x̃i ,

∑
bi x̃i
)(∑

aix
∗
i ,
∑
bix
∗
i

)

∑
aixi

∑
bixi

Figure 5.5: Nondominated points of an instance of (2o.Cc), the ideal point , and the upper
bound U() and lower bound L() on the maximal hypervolume () obtained when choosing
one feasible point.

5.5.1 Shifting the reference point

The model of (Ro.Cc) is associated to (0, 0)> as reference point. The nadir point may
also be an appropriate choice as reference point and an approach for computing an ap-
proximation of a representative set that we present in Section 5.5.2 will require several
choices of reference points. Thus, we analyze a shift of the reference point (R1, R2)>.
This necessitates a more precise formulation of the aim of optimization: A solution is
sought that is feasible for (2o.Cc), that dominates the reference point and that maximizes
the hypervolume defined by the corresponding point and the reference point. The second
condition has to be enforced, since otherwise points that are dominated by the reference
point may also generate a positive hypervolume w. r. t. (R1, R2)>, cf. Figure 5.6 for an
example.
We generalize the formulation of (Ro.Cc) to an arbitrary reference point (R1, R2)> ∈

R2. At first, the constants R1 and R2 are subtracted in the first and second objective
function of (2o.Cc), respectively. The product of both objective functions(

n∑
i=1

aixi − R1

)
·

(
n∑
i=1

bixi − R2

)

determines the hypervolume spanned by the chosen point (
∑n
i=1 aixi ,

∑n
i=1 bixi) and the

134

5.5 Hypervolume maximizing representations

(R1, R2)

∑
aixi

∑
bixi

Figure 5.6: Nondominated points of an instance of (2o.Cc), the nadir point as reference
point (R1, R2) and two feasible points () of (2o.Cc) generating a positive hypervolume (
and).

reference point (R1, R2), cf. Figure 5.6. Furthermore, two additional constraints have to
be introduced to ensure that the reference point is dominated by a feasible point of the
generalized model:

n∑
i=1

aixi ≥ R1 and
n∑
i=1

bixi ≥ R2.

To obtain a tractable problem formulation, the shift of the overall problem has to be
translated to the single items. We suggest two alternative approaches:

1. The product of the two objective functions of (2o.Cc) includes a quadratic term,
which equals the objective function of (Ro.Cc), and a linear term:(

n∑
i=1

aixi − R1

)
·

(
n∑
i=1

bixi − R2

)

=

n∑
i=1

n∑
j=1

aibj xixj −
n∑
i=1

(ai · R2 + bi · R1)xi + R1R2.

This can be interpreted in the following way: A shift of the reference point does
change the profit of including a certain item. The original profit aibi is reduced by
ai ·R2 +bi ·R1, which may result in a negative profit for including item i . In contrast,
the profits for choosing pairs of items remain unchanged.

2. We may take advantage of the following fact: It is easy to see that equality can be
assumed for the cardinality constraint of (2o.Cc) without changing the set of non-
dominated points. Since all profits are positive, the selection of additional items can

135

Chapter 5 Rectangular knapsack problems and representative solutions

never decrease the value of an objective function. By enforcing equality, subtracting
a constant R in one objective function can be passed down to the coefficients by sub-
tracting R

k from each coefficient. By selecting exactly k items, a value of k · Rk = R

is subtracted from the sum of the original coefficients. We define āi ..= ai − R1
k and

b̄i
..= bi − R2

k , for i = 1, . . . , n. Hence, for every feasible solution including k items
it holds:

n∑
i=1

āixi =

n∑
i=1

aixi − R1 and
n∑
i=1

b̄ixi =

n∑
i=1

bixi − R2

Thus, a possible model for computing the maximal hypervolume with a shifted ref-
erence point can be the following:

max

(
n∑
i=1

āixi

)
·

(
n∑
i=1

b̄ixi

)
=

n∑
i=1

n∑
j=1

āi b̄j xixj

s.t.
n∑
i=1

xi = k

n∑
i=1

āixi ≥ 0

n∑
i=1

b̄ixi ≥ 0

xi ∈ {0, 1}, i = 1, . . . , n.

(QP)

Note that R1 and R2 have been subtracted on both sides of the second and third
constraint, respectively.

(QP) has a similar structure as (Ro.Cc). One difference is, that the coefficients āi
and b̄i are generally in Z. By allowing negative coefficients, the lower bound solutions
introduced above may become infeasible: Algorithms 5.1 and 5.2 do not test whether
the coefficients āπ(i) and b̄i , for i = 1, . . . , κ, are negative. Therefore, it may
happen that the computed lower bound solution x̃ generates values

∑n
i=1 āi x̃i < 0

or
∑n
i=1 b̄i x̃i < 0, i. e., that x̃ has a negative objective function value or that it

corresponds to a feasible point of (2o.Cc) that is dominated by the reference point.
In both cases x̃ is not feasible for (QP). As a consequence, new or further ideas are
necessary to design an approximation algorithm for the remodeled problem.

If (QP) also includes a classical capacity constraint, for example instead of the cardinality
constraint, it can be proven that no polynomial time approximation algorithm with fixed
approximation ratio exists. The proof of Rader and Woeginger [2002] for the modified
quadratic knapsack problem with positive and negative coefficients, which uses a reduction
from Subset Sum ([SP3] in Garey and Johnson [1979]), already shows this. But for (QP),
to the best of our knowledge, it is unclear whether such an approximation exists or not.

136

5.5 Hypervolume maximizing representations

5.5.2 Representative set

Another interesting extension is to generalize (Ro.Cc) such that not only one representative
point but a representative set of the efficient set of (2o.Cc) could be computed. We are
searching for ` efficient solutions x1, . . . , x ` ∈ {0, 1}n, which maximize the hypervolume
spanned by the points (a>x j , b>x j)j=1,...,` and the origin. If we assume that the points
(a>x j , b>x j)j=1,...,` are ordered with respect to their first component a> x1 ≥ . . . ≥ a> x `,
the hypervolume dominated by these ` points can be computed as the hypervolume of the
first point plus the incremental hypervolume given by the following points, or as the sum
of individual hypervolumes of all points minus the intersection area of consecutive pairs of
points:

(x1)>a b>x1 +
∑̀
j=2

(x j)>a b>(x j − x j−1) (5.8)

=
∑̀
j=1

(x j)>a b>x j −
∑̀
j=2

(x j)>a b>x j−1. (5.9)

In Figure 5.7, the hypervolume spanned by three nondominated points is presented. This
selection is optimal, i. e., the points generate the maximal hypervolume spanned by three
points and the origin, in this example.

(∑
aix

1
i ,
∑
bix

1
i

)

(∑
aix

2
i ,
∑
bix

2
i

)
(∑
aix

3
i ,
∑
bix

3
i

)

∑
aixi

∑
bixi

Figure 5.7: Hypervolume () generated by three solutions x1, x2 and x3. It can be composed
by the three highlighted areas (, , and) using Equation (5.8).

The problem can be modeled as a quadratic integer programming problem (QIP) with re-
spect to the variable vector x> = ((x1)>, . . . , (x `)>), x ∈ {0, 1}` n. We use Equation (5.9)

137

Chapter 5 Rectangular knapsack problems and representative solutions

to formulate the quadratic objective function.

max x>Qx

s. t. 1n x
j ≤ k, j = 1, . . . , `

a> x j ≥ a> x j+1, j = 1, . . . , `− 1

x ∈ {0, 1}` n,

(QIP)

with objective matrix:

Q =



a b>

−a b> a b>

−a b> a b>

. . .
. . .


.

The additional constraints ensure the ordering of points, which is necessary for the
correct computation of the hypervolume, cf. Section 5.5.1. Omitting these constraints,
it would be, for example, a good strategy to choose only two different solutions: for odd
indices j set x j = x∗, where x∗ is the optimal solution for (Ro.Cc) with ` = 1, and for
even indices j set x j = 0n.
(QIP) has a very interesting structure and, furthermore, gives a closed formula for com-

puting a representation of a bi-objective optimization problem w. r. t. the hypervolume.
Therefore, it is very interesting for further research. Thinking about an approximation of
(QIP), two alternative approaches may be promising. The first idea is to apply a greedy
strategy by computing one representative after the other [see Guerreiro et al., 2016]. The
first solution can be computed using (Ro.Cc), but, during the further procedure, the ref-
erence point has to be shifted to take the already computed information into account. So,
it would be necessary to find an (efficient) approximation algorithm for (QP). The second
idea is to go the other direction: First, compute an approximation for the bi-objective
problem (2o.Cc) [see, for example, Bazgan et al., 2015], and, secondly, choose a repre-
sentation that maximizes the hypervolume among this set. It is an interesting question,
whether any quality guarantees can be given for this approach. We can conclude that
there are a many open questions in this field, and that this is a promising and challenging
line of research.

5.6 Conclusion and further ideas

In this chapter, we studied the cardinality constrained rectangular knapsack problem which
is a variant of the quadratic knapsack problem. We presented a geometric interpretation

138

5.6 Conclusion and further ideas

of this problem which motivates the denotation rectangular knapsack problem. Upper and
lower bounds for the problem can be computed by sorting the coefficients of the objective
function.
Motivated by the bound computations, we introduced an approximation algorithm for

(Ro.Cc) that computes an approximate solution in polynomial time. Furthermore, we
proved an approximation ratio of ρ = 4.5 for the algorithm. In practice, the algorithm can
be further improved by selecting further items if the cardinality constraint is not met with
equality. Thus, we also formulated an improved approximation algorithm.
We tested both algorithms on knapsack instances with up to 400 items and three dif-

ferent constraint slacknesses. The approximations were computed in 0.01 seconds or less
per instance. We observed that in practice the approximation ratios of both algorithms
are much better than the theoretically guaranteed ratio of 4.5. Thus, our approximation
algorithms are an efficient tool to compute approximations of good quality for (Ro.Cc).
We also suggested a field of application for (Ro.Cc). Finding a representative solution of

the bi-objective cardinality constrained knapsack problem that maximizes the hypervolume
with the origin as reference point is modeled by the cardinality constrained rectangular
knapsack problem. We presented further ideas for shifting the reference point and finding
a representative set of solutions rather than only one solution. These are open questions
and we think it is a promising and challenging line of research.
In the future it would be interesting to integrate the bound computations in a branch-

and-bound procedure to formulate an exact algorithm for (Ro.Cc). Furthermore, the
results of this chapter seem to be transferable to higher dimensions, where we think of
problems of the form

max f (x) =

m∏
j=1

n∑
i=1

pji xi

s. t.

n∑
i=1

xi ≤ k

xi ∈ {0, 1}, i = 1, . . . , n.

The bound computations and algorithm formulations should be convertible without prob-
lems, whereas the proof of an approximation ratio may become more complicated due to
more possible cases that may occur. Again, this problem models the search for a repre-
sentative solution of the multi-objective cardinality constrained knapsack problem (mo.Cc)
that maximizes the hypervolume with the origin as reference point and is, therefore, very
interesting for future research.

139

6 Conclusion

In this thesis we investigated several variants of the classical knapsack problem. We showed
that new perspectives on (multi-objective) knapsack problems, like more general formula-
tions or reformulations, give valuable insights in structural properties, solution alternatives
and algorithmic improvements.
We relaxed the multi-objective knapsack problem to the multi-objective unconstrained

combinatorial optimization problem (MUCO). As we revealed, this problem has structural
properties that are well-known in combinatorial geometry. The weight space decomposition
of (MUCO) is defined by an arrangement of hyperplanes. In this way, we could specify
a bound on the number of extreme supported solutions for (MUCO) depending on the
number of objective functions and the number of items. We were able to prove that, for
a fixed number of objectives, the number of extreme supported solutions is polynomially
bounded with respect to the number of items. Furthermore, based on the structure of
the arrangement of hyperplanes we described an efficient solution algorithm to compute
the set of extreme supported solutions. We implemented a corresponding algorithm for
a special variant of tri-objective problems. Our numerical test confirmed the theoretical
results and showed that the algorithm runs very fast in practice.
A second variant of the multi-objective knapsack problem was obtained by considering

integer, i. e., positive and negative objective function coefficients. This extension allows
to model conflicting objectives even better than by using only positive coefficients. We
introduced well-known algorithms that compute the set of extreme supported points for the
knapsack problem. The findings about the (MUCO) problem can be used as a preprocessing
to improve these algorithms. We implemented an algorithm for a special variant of tri-
objective problems and described the algorithmic aspects. The computational tests showed
that our preprocessing considerably speeds up the process.
For the bi-dimensional knapsack problem with one soft constraint we conversely used

the bi-objective knapsack problem to generate solution alternatives. The bi-dimensional
perspective only provides one optimal solution, whereas the bi-objective perspective allows
to find this solution and further efficient solutions that are in a certain sense close to
it. We transformed the soft constraint into an objective function. In doing so we again
allow integer coefficients in the objective functions. The original objective function only
contains positive coefficients whereas the newly generated objective function only contains
negative coefficients. We applied a dynamic programming algorithm to solve the problem.
The concept of dynamic programming is in general well-suited to solve knapsack problems
that include negative objective function coefficients. We adapted two dominance relations

141

Chapter 6 Conclusion

that are applied to prune states during the process. Further, we introduced a new pruning
strategy that is based on the specific structure of the problem and on the search zones
which are defined by supported solutions. The purpose of the transformation is to obtain
additional information. However, as our computational tests indicate, a computation of
the complete set of nondominated solutions generates too many solutions. We adapted
the algorithm such that it focuses on nondominated points in a predefined region of in-
terest in the objective space. Our numerical tests show that our bi-objective approach is
considerably faster than an iterative application of a bi-dimensional approach as soon as
several nondominated points are element of the region of interest. Our algorithm works
very fast as long as the considered region of interest is small. For larger regions of interest
the algorithm works in reasonable time as compared to the gained amount of information.
We showed that the general idea of this approach (a transformation of soft constraints
into objective functions) can also be applied for knapsack problems with more objectives
or constraints and that a dynamic programming algorithm is suited to solve this problem.
Our results on the computation of extreme supported points for multi-objective knapsack
problems provides a useful tool for problems with more objective functions or more soft
constraints.
The cardinality constrained rectangular knapsack problem is a combinatorial optimiza-

tion problem that can be used to find a representative point for the bi-objective knapsack
problem. This point maximizes the hypervolume indicator, which is a quality measure for
the representation. We presented two approximation algorithms for the rectangular prob-
lem, where one is an improvement of the other. Both algorithms are polynomial time
4.5-approximation algorithms. We demonstrated by numerical tests that both approaches
perform very well in practice. We also presented ideas that can be used to find a repre-
sentative set of points for the bi-objective problem.

Concluding, we can state:

• The multi-objective unconstrained combinatorial optimization problem, a relaxed
variant of the multi-objective knapsack problem, provides new interrelations to con-
cepts of combinatorial geometry. This knowledge improves existing algorithms for
multi-objective knapsack problems.

• The transformation of multi-dimensional knapsack problems including soft or uncer-
tain constraints to multi-objective knapsack problems provides valuable alternatives
to a decision-maker. This approach further emphasizes the great potential of multi-
objective optimization for decision making processes.

• The rectangular knapsack problem, as a reformulated bi-objective knapsack problem,
can be used to give a closed model to compute a specific representative solution.
This is a new concept and a promising and challenging line for future research.

142

Bibliography

H. Aissi, A. R. Mahjoub, S. T. McCormick, and M. Queyranne. Strongly polynomial
bounds for multiobjective and parametric global minimum cuts in graphs and hyper-
graphs. Mathematical Programming, 154(1):3–28, 2015. (Page 32)

Y. P. Aneja and K. P. K. Nair. Bicriteria transportation problem. Management Science,
25(1):73–78, 1979. (Pages 16, 74, 95, 97)

E. Balas and E. Zemel. An algorithm for large zero-one knapsack problems. Operations
Research, 28(5):1130–1154, 1980. (Page 22)

C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. The quickhull algorithm for convex hulls.
ACM Transactions on Mathematical Software, 22(4):469–483, 1996. (Pages 73, 74)

C. Bazgan, H. Hugot, and D. Vanderpooten. Implementing an efficient fptas for the 0–1

multi-objective knapsack problem. European Journal of Operational Research, 198(1):
47–56, 2009a. (Page 26)

C. Bazgan, H. Hugot, and D. Vanderpooten. Solving efficiently the 0–1 multi-objective
knapsack problem. Computers & Operations Research, 36(1):260–279, 2009b. (Pages
24, 26, 98)

C. Bazgan, F. Jamain, and D. Vanderpooten. Approximate Pareto sets of minimal size for
multi-objective optimization problems. Operations Research Letters, 43(1):1–6, 2015.
(Page 138)

R. Beier and B. Vöcking. Random knapsack in expected polynomial time. In Proceedings
of the thirty-fifth annual ACM symposium on Theory of computing, pages 232–241,
San Diego, 2003. ACM. (Page 21)

R. Beier and B. Vöcking. An experimental study of random knapsack problems. Algorith-
mica, 45:121–136, 2006. (Page 92)

R. Bellman. Dynamic Programming. Princeton University Press, Princeton, 1957. (Page
21)

H. P. Benson and E. Sun. Outcome space partition of the weight set in multiobjective
linear programming. Journal of Optimization Theory and Applications, 105(1):17–36,
2000. (Page 35)

143

Bibliography

H. P. Benson and E. Sun. A weight set decomposition algorithm for finding all efficient
extreme points in the outcome set of a multiple objective linear program. European
Journal of Operational Research, 139:26–41, 2002. (Page 72)

J. L. Bentley and T. A. Ottmann. Algorithms for reporting and counting geometric inter-
sections. IEEE Transactions on Computers, C-28(9):643–647, 1979. (Pages 59, 62,
63, 66, 69, 83)

A. Billionnet and E. Soutif. An exact method based on Lagrangian decomposition for
the 0–1 quadratic knapsack problem. European Journal of Operational Research, 157:
565–575, 2004. (Page 118)

A. Billionnet, A. Faye, and E. Soutif. A new upper bound for the 0–1 quadratic knapsack
problem. European Journal of Operational Research, 112:664–672, 1999. (Page 118)

C. Blair. Sensitivity analysis for knapsack problems: a negative result. Discrete Applied
Mathematics, 81:133–139, 1998. (Page 91)

H. L. Bodlaender and A. M. C. A. Koster. Combinatorial optimization on graphs of bounded
treewidth. The Computer Journal, 51(3):255–269, 2008. (Page 118)

F. Bökler and P. Mutzel. Output-sensitive algorithms for enumerating the extreme non-
dominated points of multiobjective combinatorial optimization problems. In N. Bansal
and I. Finocchi, editors, Algorithms - ESA 2015: 23rd Annual European Symposium,
Patras, Greece, September 14-16, 2015, Proceedings, pages 288–299. Springer, Berlin,
2015. (Pages 75, 76, 79)

S. Boussier, M. Vasquez, Y. Vimont, S. Hanafi, and P. Michelon. A multi-level search
strategy for the 0–1 multidimensional knapsack problem. Discrete Applied Mathematics,
158(2):97–109, 2010. (Page 28)

V. Boyer, D. El Baz, and M. Elkihel. Solution of multidimensional knapsack problems
via cooperation of dynamic programming and branch and bound. European Journal of
Industrial Engineering, 4(4):434–449, 2010. (Page 28)

T. A. Brown and R. Strauch. Dynamic programming in multiplicative lattices. Journal of
Mathematical Analysis and Applications, 2(12):364–370, 1965. (Page 24)

R. Buck. Partition of space. The American Mathematical Monthly, 50(9):541–544, 1943.
(Page 36)

R. Burkard, E. Çela, P. Pardalos, and L. Pitsoulis. The quadratic assignment problem.
Handbook of Combinatorial Optimization, 3, 1998. (Page 119)

A. Caprara, D. Pisinger, and P. Toth. Exact solution of the quadratic knapsack problem.
INFORMS Journal on Computing, 11(2):125–137, 1999. (Pages 118, 132)

144

Bibliography

A. Caprara, H. Kellerer, U. Pferschy, and D. Pisinger. Approximation algorithms for knap-
sack problems with cardinality constraints. European Journal of Operational Research,
123(2):333–345, 2000. (Page 29)

M. E. Captivo, J. a. Clímaco, J. Figueira, E. Martins, and J. L. Santos. Soving bicriteria
0–1 knapsack problems using a labeling algorithm. Computers & Operations Research,
30(12):1865–1886, 2003. (Page 24)

A. Cerqueus. Bi-Objective Branch-and-Cut Algorithms Applied to the Binary Knapsack
Problem: Surrogate Upper Bound Sets, Dynamic Branching Strategies, Generation and
Exploitation of Cover Inequalities. Computer Science, Université de Nantes, 2015. (Page
29)

A. Cerqueus, A. Przybylski, and X. Gandibleux. Surrogate upper bound sets for bi-objective
bi-dimensional binary knapsack problems. European Journal of Operational Research,
244(2):417–433, 2015. (Page 29)

V. Chankong and Y. Y. Haimes. Multiobjective Decision Making: Theory and Methodol-
ogy. Elsevier Science Publishing Co., New York, 1983. (Pages 17, 93)

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
MIT press, second edition, 2001. (Page 116)

K. Dächert. Adaptive Parametric Scalarizations in Multicriteria Optimization. Shaker
Verlag, Aachen, 2014. (Pages 99, 113)

K. Dächert, K. Klamroth, R. Lacour, and D. Vanderpooten. Efficient computation of the
search region in multi-objective optimization. European Journal of Operational Research,
2016. http://dx.doi.org/10.1016/j.ejor.2016.05.029. (Page 113)

G. B. Dantzig. Discrete-variable extremum problems. Operations Research, 5(2):266–277,
1957. (Page 22)

M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Geometry:
Algorithms and Applications. Springer, Berlin Heidelberg, third edition, 2008. (Page
73)

C. Delort and O. Spanjaard. Using bound sets in multiobjective optimization: Appli-
cation to the biobjective binary knapsack problem. In P. Festa, editor, Experimental
Algorithms: 9th International Symposium, SEA 2010, Ischia Island, Naples, Italy, May
20–22, 2010. Proceedings, volume 6049 of Lecture Notes in Computer Science, pages
253–265. Springer, Berlin Heidelberg, 2010. (Page 25)

C. Delort and O. Spanjaard. A hybrid dynamic programming approach to the biobjective
binary knapsack problem. Journal of Experimental Algorithmics, 18(2):1.2, 2013. (Page
25)

145

Bibliography

H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer, Berlin Heidelberg,
1987. (Pages 34, 35, 37, 40)

M. Ehrgott. Multicriteria Optimization. Springer, 2005. (Pages 13, 15, 31, 32, 33, 53)

M. Ehrgott and X. Gandibleux. A survey and annotated bibliography of multiobjective
combinatorial optimization. OR Spektrum, 22:425–460, 2000. (Page 13)

M. Ehrgott, A. Löhne, and L. Shao. A dual variant of benson’s "outer approximation
algorithm" for multiple objective linear programming. Journal of Global Optimization,
52:757–778, 2012. (Page 75)

T. Erlebach, H. Kellerer, and U. Pferschy. Approximating multiobjective knapsack prob-
lems. Management Science, 48(12):1603–1612, 2002. (Pages 18, 26, 29)

S. L. Faulkenberg and M. M. Wiecek. On the quality of discrete representations in multiple
objective programming. Optimization and Engineering, 11(3):423–440, 2010. (Page
18)

J.-A. Ferrez, K. Fukuda, and T. M. Liebling. Solving the fixed rank convex quadratic
maximization in binary variables by a parallel zonotope construction algorithm. European
Journal of Operational Research, 166:35–50, 2005. (Pages 37, 55)

J. R. Figueira, G. Tavares, and M. M. Wiecek. Labeling algorithms for multiple objective
integer knapsack problems. Computers & Operations Research, 37(4):700–711, 2010.
(Page 24)

J. R. Figueira, L. Paquete, M. Simões, and D. Vanderpooten. Algorithmic improvements
on dynamic programming for the bi-objective {0,1} knapsack problem. Computational
Optimization and Applications, 56(1):97–111, 2013. (Pages 24, 92, 95, 98, 103, 105)

J. R. Figueira, C. M. Fonseca, P. Halffmann, K. Klamroth, L. Paquete, S. Ruzika,
B. Schulze, M. Stiglmayr, and D. Willems. Easy to say they are hard, but hard
to see they are easy - towards a categorization of tractable multiobjective combi-
natorial optimization problems. Journal of Multi-Criteria Decision Analysis, 2016.
http://dx.doi.org/10.1002/mcda.1574. (Pages 8, 13)

K. Florios, G. Mavrotas, and D. Diakoulaki. Solving multiobjective, multiconstraint knap-
sack problems using mathematical programming and evolutionary algorithms. European
Journal of Operational Research, 203(1):14–21, 2010. (Page 29)

J. Forrest and T. Ralphs. Coin-OR Branch and Cut, March 2015. URL https:
//projects.coin-or.org/Cbc. (Page 103)

A. Fréville. The multidimensional 0–1 knapsack problem: An overview. European Journal
of Operational Research, 155(1):1–21, 2004. (Page 27)

146

https://projects.coin-or.org/Cbc
https://projects.coin-or.org/Cbc

Bibliography

A. Fréville and G. Plateau. The 0–1 bidimensional knapsack problem: Toward an efficient
high-level primitive tool. Journal of Heuristics, 2(2):147–167, 1996. (Page 28)

A. M. Frieze and M. R. B. Clarke. Approximation algorithms for the m-dimensional 0–1

knapsack problem: Worst-case and probabilistic analyses. European Journal of Opera-
tional Research, 15(1):100–109, 1984. (Page 29)

S. Gaas and T. Saaty. The computational algorithm for the parametric objective function.
Naval Research Logistics Quarterly, 2:39–45, 1955. (Page 16)

G. Gallo, P. Hammer, and B. Simeone. Quadratic knapsack problems. In M. Padberg,
editor, Combinatorial Optimization, volume 12 of Mathematical Programming Studies,
pages 132–149. Springer, Berlin Heidelberg, 1980. (Pages 116, 118)

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York, 1979. (Pages 13, 20,
117, 136)

B. Gavish and H. Pirkul. Efficient algorithms for solving multiconstraint zero-one knapsack
problems to optimality. Mathematical Programming, 31(1):78–105, 1985. (Page 28)

G. V. Gens and E. V. Levner. Computational complexity of approximation algorithms for
combinatorial problems. In Proceedings of the 8th International Symposium on Math-
ematical Foundations of Computer Science, volume 74 of Lecture Notes in Computer
Science, pages 292–300. Springer, Moscow, 1979. (Page 29)

A. M. Geoffrion. Proper eficiency and the theory of vector maximization. Journal of
mathematical analysis and applications, 22:618–630, 1968. (Page 16)

F. Glover. A multiphase-dual algorithm for the zero-one integer programming problem.
Operations Research, 13(6):879–919, 1965. (Page 27)

F. Glover. Surrogate constraint duality in mathematical programming. Operations Re-
search, 23(3):434–451, 1975. (Page 27)

C. Gomes da Silva and J. a. Clímaco. Using weighted-sum functions to compute nonsup-
ported efficient solutions in multiobjective combinatorial-{0,1} problems. International
Journal of Information Technology & Decision Making, 12(1):27–44, 2013. (Page 26)

C. Gomes da Silva, G. Clímaco, and J. R. Figueira. Geometrical configuration of the Pareto
frontier of bi-criteria {0, 1}-knapsack problems. Research Report 16-2004, INESC-
Coimbra, Portugal, 2004. (Page 31)

C. Gomes da Silva, J. a. Clímaco, and J. R. Figueira. New reduction strategy in the
biobjective knapsack problem. Computers & Operations Research, 35(7):2292–2306,
2008. (Page 26)

147

Bibliography

J. Gorski. Multiple Objective Optimization and Implications for Single Objective Optimiza-
tion. Shaker Verlag, Aachen, 2010. (Page 91)

J. Gorski, K. Klamroth, and S. Ruzika. Connectedness of efficient solutions in multiple
objective combinatorial optimization. Journal of Optimization Theory and Applications,
150(3):475–497, 2011. (Page 32)

A. P. Guerreiro, C. M. Fonseca, and L. Paquete. Greedy hypervolume subset selection in
low dimensions. Evolutionary Computation, 24(3):521–544, 2016. (Page 138)

Y. Y. Haimes, L. S. Lasdon, and D. A. Wismer. On a bicriterion formulation of the
problems of integrated system identification and system optimization. IEEE Transactions
on Systems, Man, and Cybernetics, 1(3):296–297, 1971. (Page 17)

H. Hamacher and K. Klamroth. Lineare und Netzwerk-Optimierung. Vieweg-Verlag, 2000.
(Page 13)

S. Henn. Weight Constrained Minimum Spanning Tree Problems. Diploma thesis, Tech-
nische Universität Kaiserslautern, 2007. (Page 92)

F. Heyde and A. Löhne. Geometric duality in multiple objective linear programming. SIAM
Journal of Optimization, 19(2):836–845, 2008. (Page 75)

E. L. Johnson, A. Mehrotra, and G. L. Nemhauser. Min-cut clustering. Mathematical
Programming, 62(1):133–151, 1993. (Page 115)

N. Karmarkar. A new polynomial-time algorithm for linear programming. Combinatorica,
4(4):373–395, 1984. (Page 37)

H. Kellerer and V. A. Strusevich. Fully polynomial approximation schemes for a symmetric
quadratic knapsack problem and its scheduling applications. Algorithmica, 57(4):769–
795, 2010. (Pages 118, 119)

H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, Heidelberg, 2004.
(Pages 13, 20, 23)

K. Klamroth and J. Tind. Constrained optimization using multiple objective programming.
Journal of Global Optimization, 37(3):325–355, 2007. (Page 91)

K. Klamroth and M. M. Wiecek. Dynamic programming approaches to the multiple criteria
knapsack problem. Naval Research Logistics, 47:57–76, 2000. (Page 24)

K. Klamroth, R. Lacour, and D. Vanderpooten. On the representation of the search
region in multi-objective optimization. European Journal of Operational Research, 245
(3):767–778, 2015. (Pages 99, 113)

P. J. Kolesar. A branch and bound algorithm for the knapsack problem. Management
Science, 13(9):723–735, 1967. (Page 21)

148

Bibliography

M. Laumanns, L. Thiele, and E. Zitzler. An efficient, adaptive parameter variation scheme
for metaheuristics based on the epsilon-constraint method. European Journal of Oper-
ational Research, 169(3):932–942, 2006. (Page 29)

A. Liefooghe, L. Paquete, and J. R. Figueira. On local search for bi-objective knapsack
problems. Evolutionary Computation, 21(1):179–196, 2013. (Page 32)

J. H. Lorie and L. J. Savage. Three problems in rationing capital. The Journal of Business,
28(4):229–239, 1955. (Page 27)

L. Lozano and A. L. Medaglia. On an exact method for the constrained shortest path
problem. Computers & Operations Research, 40(1):378–384, 2013. (Page 92)

T. Lust and J. Teghem. The multiobjective multidimensional knapsack problem: a survey
and a new approach. International Transactions in Operational Research, 19(4):495–
520, 2012. (Page 29)

R. Mansini and M. G. Speranza. Coral: An exact algorithm for the multidimensional
knapsack problem. INFORMS Journal on Computing, 24(3):399–415, 2012. (Page 28)

H. M. Markowitz and A. S. Manne. On the solution of discrete programming problems.
Econometrica: Journal of the Econometric Society, 25(1):84–110, 1957. (Page 27)

S. Martello and P. Toth. An upper bound for the zero-one knapsack problem and a branch
and bound algorithm. European Journal of Operational Research, 1(3):169–175, 1977.
(Pages 22, 98)

S. Martello and P. Toth. A new algorithm for the 0-1 knapsack problem. Management
Science, 34(5):633–644, 1988. (Page 23)

S. Martello and P. Toth. Knapsack Problems – Algorithms and Computer Implementations.
John Wiley & Sons, Inc., New York, 1990. (Pages 13, 25, 26)

S. Martello and P. Toth. An exact algorithm for the two-constraint 0–1 knapsack problem.
Operations Research, 51(5):826–835, 2003. (Page 28)

S. Martello, D. Pisinger, and P. Toth. Dynamic programming and strong bounds for the
0–1 knapsack problem. Management Science, 45(3):414–424, 1999. (Page 23)

G. Mavrotas, J. R. Figueira, and K. Florios. Solving the bi-objective multi-dimensional
knapsack problem exploiting the concept of core. Applied Mathematics and Computa-
tion, 215(7):2502–2514, 2009. (Page 29)

G. Mavrotas, J. R. Figueira, and A. Antoniadis. Using the idea of expanded core for the
exact solution of bi-objective multi-dimensional knapsack problems. Journal of Global
Optimization, 49(4):589–606, 2011. (Page 29)

149

Bibliography

G. Nemhauser and L. Wolsey. Integer and Combinatorial Optimization. John Wiley &
Sons, Inc., New York, USA, 1999. (Page 13)

G. L. Nemhauser and Z. Ullmann. Discrete dynamic programming and capital allocation.
Management Science, 15(9):494–505, 1969. (Pages 21, 28)

Ö. Özpeynirci and M. Köksalan. An exact algorithm for finding extreme supported non-
dominated points of multiobjective mixed integer programs. Management Science, 56
(12):2302–2315, 2010. (Pages 74, 76, 79)

C. H. Papadimitriou and M. Yannakakis. On the approximability of trade-offs and optimal
access of web sources. In Proceedings of the 41st Annual Symposium on Foundations
of Computer Science, FOCS ’00, pages 86–92, Washington, DC, USA, 2000. IEEE
Computer Society. (Page 18)

U. Pferschy and J. Schauer. Approximation of the quadratic knapsack problem. INFORMS
Journal on Computing, 28(2):308–318, 2016. (Page 118)

D. Pisinger. An expanding-core algorithm for the exact 0–1 knapsack problem. European
Journal of Operational Research, 87(1):175–187, 1995. (Page 23)

D. Pisinger. A minimal algorithm for the 0–1 knapsack problem. Operations Research, 46
(5):758–767, 1997. (Pages 23, 86, 88, 103)

D. Pisinger. The quadratic knapsack problem - a survey. Discrete Applied Mathematics,
155(5):623–648, 2007. (Pages 117, 118)

D. Pisinger. Minknap algorithm, October 2015. URL http://www.diku.dk/~pisinger/
codes.html. (Page 86)

D. Pisinger. Exact algorithm for the quadratic knapsack problem and instance generator,
October 2016. URL http://www.diku.dk/~pisinger/codes.html. (Page 132)

D. W. Pisinger, A. B. Rasmussen, and R. Sandvik. Solution of large quadratic knapsack
problems through aggressive reduction. INFORMS Journal on Computing, 19(2):280–
290, 2007. (Page 118)

A. Przybylski, X. Gandibleux, and M. Ehrgott. A recursive algorithm for finding all non-
dominated extreme points in the outcome set of a multiobjective integer programme.
INFORMS Journal on Computing, 22(3):371–386, 2010a. (Pages 35, 71, 73, 74, 79)

A. Przybylski, X. Gandibleux, and M. Ehrgott. A two phase method for multi-objective
integer programming and its application to the assignment problem with three objectives.
Discrete Optimization, 7(3):149–165, 2010b. (Page 76)

A. Przybylski, K. Klamroth, and R. Lacour. A simple and efficient dichotomic search
algorithm for multi-objective integer linear programmes. Work in progress, 2017. (Pages
76, 79, 86, 88)

150

http://www.diku.dk/~pisinger/codes.html
http://www.diku.dk/~pisinger/codes.html
http://www.diku.dk/~pisinger/codes.html

Bibliography

J. Puchinger, G. R. Raidl, and U. Pferschy. The multidimensional knapsack problem:
Structure and algorithms. INFORMS Journal on Computing, 22(2):250–265, 2010.
(Page 27)

D. J. Rader, Jr. and G. J. Woeginger. The quadratic 0–1 knapsack problem with series-
parallel support. Operations Research Letters, 30(3):159–166, 2002. (Pages 118, 136)

J. M. W. Rhys. A selection problem of shared fixed costs and network flows. Management
Science, 17(3):200–207, 1970. (Page 115)

C. D. Rodrigues, D. Quadri, P. Michelon, and S. Gueye. 0–1 quadratic knapsack problems:
An exact approach based an a t-linearization. SIAM Journal of Optimization, 22(4):
1449–1468, 2012. (Page 118)

A. Rong and J. R. Figueira. A reduction dynamic programming algorithm for the bi-
objective integer knapsack problem. European Journal of Operational Research, 231
(2):299–313, 2013. (Page 24)

A. Rong and J. R. Figueira. Dynamic programming algorithms for the bi-objective integer
knapsack problem. European Journal of Operational Research, 236(1):85–99, 2014.
(Page 24)

S. Ruzika. On Multiple Objective Combinatorial Optimization. Dr. Hut Verlag, München,
2008. (Page 92)

S. Ruzika and M. M. Wiecek. Approximation methods in multiobjective programming.
Journal of Optimization Theory and Applications, 126(3):473–501, 2005. (Page 18)

H. M. Safer and J. B. Orlin. Fast approximation schemes for multi-criteria flow, knap-
sack, and scheduling problems. Technical Report 3757-95, Massachusetts Institute of
Technology, 1995. (Page 26)

B. Schulze, L. Paquete, K. Klamroth, and J. R. Figueira. Bi-dimensional knapsack problems
with one soft constraint. Computers & Operations Research, 78:15–26, 2017. (Page
8)

F. Seipp. On Adjacency, Cardinality, and Partial Dominance in Discrete Multiple Objective
Optimization. Dr. Hut Verlag, München, 2013. (Pages 32, 89)

W. Shih. A branch and bound method for the multiconstraint zero-one knapsack problem.
The Journal of the Operational Research Society, 30(4):369–378, 1979. (Page 28)

R. Taylor. Approximation of the quadratic knapsack problem. Operations Research Letters,
44(4):495–497, 2016. (Page 118)

A. Thesen. A recursive branch and bound algorithm for the multidimensional knapsack
problem. Naval Research Logistics Quarterly, 22(2):341–353, 1975. (Page 28)

151

Bibliography

E. L. Ulungu and J. Teghem. Multi-objective combinatorial optimization problems: A
survey. Journal of Multi-Criteria Decision Analysis, 3:83–104, 1994. (Page 13)

E. L. Ulungu and J. Teghem. Solving multi-objective knapsack problem by a branch-and-
bound procedure. In J. a. Clímaco, editor, Multicriteria Analysis: Proceedings of the
XIth International Conference on MCDM, 1-6 August 1994, Coimbra, Portugal, pages
269–278. Springer, Berlin Heidelberg, 1997. (Page 26)

D. Vanderpooten, L. Weerasena, and M. M. Wiecek. Covers and approximations in mul-
tiobjective optimization. Journal of Global Optimization, pages 1–19, 2016. (Page
18)

M. Visée, J. Teghem, M. Pirlot, and E. L. Ulungu. Two-phases method and branch
and bound procedures to solve the bi-objective knapsack problem. Journal of Global
Optimization, 12:139–155, 1998. (Pages 25, 31, 89)

H. M. Weingartner and D. N. Ness. Methods for the solution of the multidimensional 0/1

knapsack problem. Operations Research, 15(1):83–103, 1967. (Page 28)

C. Witzgall. Mathematical models of site selection of electronic message systems (EMS).
Technical report, National Bureau of Standards, Washington, DC., 1975. (Page 115)

G. J. Woeginger. Sensitivity analysis for knapsack problems: another negative result.
Discrete Applied Mathematics, 92:247–251, 1999. (Page 91)

L. A. Wolsey. Integer Programming. Series in discrete mathematics and optimization.
Wiley-Interscience, 1998. (Page 34)

Z. Xu. A strongly polynomial FPTAS for the symmetric quadratic knapsack problem.
European Journal of Operational Research, 218(2):377–381, 2012. (Page 119)

T. Zaslavsky. Facing up to arrangements: face-count formulas for partitions of space by
hyperplanes. Memoirs of the American Mathematical Society, 1(154), 1975. (Pages
37, 38)

E. Zitzler and L. Thiele. Multiobjective optimization using evolutionary algorithms - a
comparative case study. In A. E. Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel,
editors, Parallel Problem Solving from Nature - PPSN V, 5th International Conference
Amsterdam, The Netherlands, September 27-30, 1998, Proceedings, volume 1498 of
Lecture Notes in Computer Science, pages 292–301. Springer, Berlin Heidelberg, 1998.
(Page 115)

152

	Introduction
	Preliminaries
	Multi-objective combinatorial optimization
	Knapsack problems

	Computation of extreme supported points
	Definitions
	(mo.0c), weight space, zonotopes, and arrangements of hyperplanes
	Efficient computation of extreme supported solutions of (mo.0c)
	Efficient computation of extreme supported points of (mo.1c)
	Conclusion and further ideas

	Bi-dimensional knapsack problems with a soft constraint
	Reformulating constraints as objectives
	Dynamic programming algorithm
	Preprocessing and pruning strategies
	Dynamic programming with cuts
	Computational results
	Multi-dimensional knapsack problems with soft constraints
	Conclusion and further ideas

	Rectangular knapsack problems and representative solutions
	Quadratic knapsack problems
	Cardinality constrained rectangular knapsack problems
	Approximation algorithms
	Computational results
	Hypervolume maximizing representations
	Conclusion and further ideas

	Conclusion
	Bibliography

