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Abstract
The thesis covers different approaches used in current modern computational finance.
Analytical and numerical approximative methods are studied and discussed. Effective
algorithms for solving multi-factor models for pricing of financial derivatives have been
developed.

The first part of the thesis is dealing with modeling of aspects and focuses on analytical
approximations in short rate models for bond pricing. We deal with a two-factor con-
vergence model with non-constant volatility which is given by two stochastic differential
equations (SDEs). Convergence model describes the evolution of interest rate in connec-
tion with the adoption of the Euro currency. From the SDE it is possible to derive the
PDE for bond price. The solution of the PDE for bond price is known in closed form
only in special cases, e.g. Vasicek or CIR model with zero correlation. In other cases we
derived the approximation of the solution based on the idea of substitution of constant
volatilities, in solution of Vasicek, by non-constant volatilities. To improve the quality
in fitting exact yield curves by their estimates, we proposed a few changes in models.
The first one is based on estimating the short rate from the term structures in the Vasicek
model. We consider the short rate in the European model for unobservable variable and
we estimate it together with other model parameters. The second way to improve a model
is to define the European short rate as a sum of two unobservable factors. In this way, we
obtain a three-factor convergence model. We derived the accuracy for these approxima-
tions, proposed calibration algorithms and we tested them on simulated and real market
data, as well.

The second part of the thesis focuses on the numerical methods. Firstly we study Fichera
theory which describes proper treatment of defining the boundary condition. It is useful
for partial differential equation which degenerates on the boundary. The derivation of the
Fichera function for short rate models is presented. The core of this part is based on Alter-
nating direction explicit methods (ADE) which belong to not well studied finite difference
methods from 60s years of the 20th century. There is not a lot of literature regarding this
topic. We provide numerical analysis, studying stability and consistency for convection-
diffusion-reactions equations in the one-dimensional case. We implement ADE methods
for two-dimensional call option and three-dimensional spread option model. Extensions
for higher dimensional Black-Scholes models are suggested. We end up this part of the
thesis with an alternative numerical approach called Trefftz methods which belong to
Flexible Local Approximation MEthods (FLAME). We briefly outline the usage in com-
putational finance.

Keywords: short rate models, convergence model of interest rate, bond pricing, Black-
Scholes model, option pricing, approximate analytic solution, order of accuracy, numeri-
cal methods, calibration, simulated data, real market data, ADE, splitting schemes,
Trefftz, Fichera theory
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Slovak

Práca popisuje rôzne prístupy používané v súčasnom modernom oceňovaní finančných
derivátov. Zaoberáme sa analytickými a numerickými aproximačnými metódami. Vyvi-
nuli sme efektívne algoritmy riešenia viacfaktorových modelov oceňovania finančných
derivátov.

Prvá čast’ práce sa zaoberá modelovaním rôznych aspektov a je zameraná na analytické
aproximácie cien dlhopisov v modeloch krátkodobých úrokových mier. Zaoberáme sa
dvojfaktorovým konvergenčným modelom s nekonštantnom volatilitou, ktorý je daný
dvomi stochastickými diferenciálnymi rovnicami. Konvergenčný model opisuje vývoj
úrokovej miery v súvislosti s prijatím eura. Zo stochastickej diferenciálnej rovnice je
možné odvodit’ parciálnu diferenciálnu rovnicu pre cenu dlhopisu. Riešenie parciál-
nej diferenciálnej rovnice pre cenu dlhopisu v uzavretej forme je známe iba v špeciál-
nych prípadoch, napr. Vašíčkov model alebo CIR model s nulovou koreláciou. V os-
tatných prípadoch, sme odvodili aproximáciu riešenia založenú na myšlienke substitú-
cie konštantných volatilít, v riešení Vašíčkovho modelu, nekonštantnými volatilitami. Z
dôvodu zlepšenia kvality zhody odhadnutých a presných výnosových kriviek sme navrhli
niekol’ko zmien v modeloch. Prvá z nich je založená na odhade výnosových kriviek z
časovej štruktúry úrokových mier vo Vašíčkovom modeli. Krátkodobú úrokovú mieru
považujeme za nepozorovatel’nú premennú a odhadujeme ju spolu s ostatnými parame-
trami modelu. Druhý spôsob ako vylepšit’ model je definovanie európskej krátkodobej
úrokovej miery ako súčtu dvoch nepozorovatel’ných faktorov. Týmto spôsobom získavame
trojfaktorový konvergenčný model. Odvodili sme presnost’ aproximácie, navrhli sme
postup kalibrácie a testovali sme ho na simulovaných a reálnych trhových dátach.

Druhá čast’ práce sa zameriava na numerické metódy. Najskôr študujeme Ficherovu
teóriu, ktorá popisuje správne zaobchádzanie a definovanie okrajových podmienok pre
parciálne diferenciálne rovnice, ktoré degenerujú na hranici. V práci uvádzame odvo-
denie Ficherových podmienok pre modely krátkodobých úrokových mier. Jadrom tejto
časti sú ADE (alternating direction explicit) metódy zo 60. rokov 20. storočia, ku ktorým
sa nenachádza vel’a literatúry. V práci je obsiahnutá numerická analýza, štúdium stabil-
ity a konzistencie pre konvekčno-difúzno-reakčnú rovnicu v jednorozmernom prípade.
ADE metódy implementujeme pre dvojrozmerné call opcie a trojrozmerné spread opcie.
Navrhujeme rozšírenia na viacrozmerné prípady Black-Scholesovho modelu. Túto čast’
práce ukončujeme alternatívnou metódou nazývanou Trefftz, ktorá patrí medzi Flexible
Local Approximation MEthods (FLAME).

Kl’účové slová: krátkodobé modely úrokových mier, konvergenčný model úrokovej
miery, oceňovanie dlhopisov, Black-Scholesov model, oceňovanie opcií, analytická aprox-
imácia riešenia, rád presnosti, numerické metódy, kalibrácia, simulované dáta, reálne
trhové dáta, ADE, splitting schémy, Trefftz metódy, Ficherova teória
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German
Die Doktorarbeit beinhaltet verschiedene Methoden, die in der heutigen modernen Fi-
nanzmathematik eingesetzt werden. Es werden analytische und numerische Approxi-
mationsmethoden analysiert und diskutiert, sowie effektive Algorithmen für Multifaktor-
modelle zur Bewertung von Finanzderivaten entwickelt.

Der erste Teil der Doktorarbeit behandelt Modellierungsaspekte und ist auf die ana-
lytische Approximation von Zinssatzmodellen im Anleihenmarkt fokussiert. Wir be-
handeln ein Zweifaktorkonvergenzmodell mit nichtkonstanter Volatilität, das durch zwei
stochastische Differentialgleichungen (SDG) gegeben ist. Das Modell beschreibt die
Entwicklung von Zinsraten in Verbindung mit dem Eurowechselkurs. Ausgehend von
der SDG ist es möglich eine partielle Differentialgleichung (PDG) für den Anleihekurs
herzuleiten. Eine Angabe der Lösung der PDG ist nur in Einzelfällen in geschlossener
Form möglich, z.B. im Vasicek or CIR Modell mit Korrelation null. In anderen Fällen
haben wir eine Approximation an die Lösung des CIR Modells durch Ersetzen der kon-
stanten Volatilität duch eine flexible Volatilität erhalten. Um eine höhere Genauigkeit bei
der Anpassung an die reale Zinskurve zu erhalten, haben wir einige Änderungen inner-
halb des Modells vorgeschlagen. Die erste basiert dabei auf der Schätzung des Momen-
tanzinses durch die Zinsstrukturkurse innerhalb des Vasicek-Modells. Wir betrachten den
Momentanzins im europäischen Modell für eine unbeobachtbare Variable und schätzen
diese zusammen mit den anderen Modellparametern. Als zweite Verbesserungsmöglich-
keit des Modells betrachten wir den europäischen Momentanzins als Summe von zwei
unbeobachtbaren Prozessen. Auf diesem Wege erhalten wir ein Dreifaktorkonvergenz-
modell. Wir zeigen die Genauigkeit dieser Approximationen, schlagen Kalibirierungsal-
gorithmen vor und testen die Modelle an simulierten, sowie realen Marktdaten

Der zweite Teil der vorliegenden Arbeit beschäftigt sich mit numerischen Methoden.
Zuerst erläutern wir die Fichera-Theorie, die eine systematische Untersuchung von Rand-
bedingungen erlaubt. Sie ist bei partiellen Differentialgleichungen, die am Rand degener-
ieren, von großem Nutzen. Es wird die Fichera-Funktion für Zinssatzmodelle hergeleitet.
Den Kern der Doktorarbeit bilden Alternating Direction Explicit (ADE) Verfahren, aus
den 60er des 20. Jahrhunderts die zu den nicht ausgiebig untersuchten Verfahren zählen.
Daher existiert heute nur sehr wenig Literatur zu diesem Thema. Wir führen eine nu-
merische Analyse durch und untersuchen die Stabilitäts- und Konsistenzeigenschaften
für Konvektions-Diffusions-Reaktions Gleichungen in einer Raumdimension. Wir im-
plementieren ADE Methoden für zweidimensionale Call-Optionen und dreidimension-
ale Spreadoptionsmodelle. Zusätzlich werden Erweiterungen für das höherdimensionale
Black-Scholes-Modell vorgeschlagen. Wir beenden diesen Abschnitt der Doktorarbeit
mit einer alternativen numerischen Methode, der sogenannten Trefftz-Methode, die zu
der Klasse der Flexible Local Approximation MEthods (FLAME) gehört. Wir erläutern
kurz ihre Nutzung im Rahmen der Finanzmathematik.

Schlüsselwörter: short rate Modelle (Momentanzins Modelle), Konvergenzmodell für
Zinssätze, Anleihebewertung, Black-Scholes Modell, Optionsbewertung, approximierte
analytische Lösung, Genauigkeitsordnung, Numerische Methoden, Kalibrierung, simulierten
Daten, realen Marktdaten, ADE, splitting Schemas, Trefftz, Fichera Theorie
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ODE ordinary differential equation

PDE partial differential equation

SDE Stochastic Differential Equation

BS Black-Scholes

CIR Cox-Ingersoll-Ross model of short term, in which γ = 1
2

CKLS Chan-Karolyi-Longstaff-Sanders model of short term, in which γ is given generally

FDM Finite Difference Methods

ADE Alternating Direction Explicit

EURIBOR European Interbank Offered Rate

BRIBOR Bratislava Interbank Offered Rate

xd lower index d - dependence on variable x with respect to domestic data

xe lower index e - dependence on variable x with respect to European data

y′ derivation of function y with respect to the one unknown variable, used in ODEs
dy
dt derivation of function y with respect to the one unknown variable t, used in ODEs
∂y
∂ t derivation of function y with respect to the one unknown variable t, used in PDEs
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Foreword

The goal of the thesis is to provide a wide scope of techniques used in computational
finance. On the one hand we see importance of the analytical techniques, on the other
hand we tackle with numerical schemes. Another goal is to provide models and their
solutions which are easy implementable. The better model, the better description of the
reality. But the more complex model, the more troubles. Extension to higher dimensional
(or nonlinear models) is necessary but our goal is to keep in mind the simpler model, the
better. We do not want to deal with calibration and solving too complex models, because
something it is even not possible. The suggested model or scheme must be tractable.
In recent years we are witnesses of the negative interest rates in the whole European
union. This fact must be considered and included to the all the models created in the
way that they are capable to distinguish and cover all the situations. If the case is too
complicated, we should provide an implementation in the way where it is possible and
easy to provide parallelization of the algorithm. Computational finance is applied science
and it requires knowledge from various fields in mathematics: SDEs, PDEs, analytical
techniques, numerical analysis, optimization, programming and everything with having
some knowledges from pricing of financial derivatives, such as options and bonds. Goal
of this thesis is to cover all these subjects and suggest the effective methods for the given
task. The aim was successfully reached and thesis is equally covering keywords from the
Figure below.

In the thesis we deal with one-dimensional (or in other terminology one-factor), two-
dimensional and three-dimensional models and we outline extensions to higher dimen-
sional cases. Sorting according to dimensionality is displayed in the following diagram.
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22 Foreword

This thesis is cumulative one, the chapters are mostly based on the published results and
each chapter is accesible in any order allowing a swift reading to readers. For reader
interested in numerical analysis we refer to the second part of the thesis, for reader in-
terested more in analytical techniques we recommend to read the first part of the thesis.
For reader who would like to read the thesis just partially but from both parts something
we recommend more valuable results can be found in the Chapter 3 and in the Chapter 9.
The thesis does not have extended theoretical part but it is a collection of own research
results.



1Chapter 1

Outline of the thesis and related
scientific works

1.1 Outline of the first part

In the first part of the thesis we deal with the suggestions for modeling of the interest rate
in the multi-factor models which provide a good fitting to the real market data. Bonds are
derivatives of the interest rate. As instantaneous interest rates (short rates) can be consid-
ered overnight rates (Eonia) or Euribor for a short time. Bond prices are specified by the
parameters of the model, short rates and term structure of the interest rate. Observable
data are e.g. Euribor data for 1, 2, 3, 6, 9, 12 months to the maturity. The first part of the
thesis consists of four published papers.

We indicate an overview on the short rate models and solutions of given PDE in case that
the solution is known. We focus on the derivation of an approximative analytical formula
for the general case of models in which there is any exact explicit solution. We present
a proof of accuracy of the proposed approximation. We propose a calibration algorithm
based on using information from the term structures. Defining optimization tasks, all the
model parameters were estimated. Using simulated and real market data, the algorithm
was validated. On the one hand, suggested approximation and calibration algorithm pro-
vide reasonably accurate results which was proved, but on the other hand, by comparing
accuracy of estimated and exact yield curves we did not achieve satisfactory results.

Chapter 3 is based on the following paper [14]

• Z. Bučková (Zíková), B. Stehlíková, Convergence model of interest rates of CKLS
type, Kybernetika 48(3), 2012, 567-586

where we study special case of two-factor model: convergence model of interest rate,
firstly defined by Corzo and Schwartz [20] in 2000 and its later generalizations. This
model expresses the dependence of the evolution of the domestic short rate on the short
rate of the monetary union (European monetary union). We study two-factor convergence
models with different type of the volatility functions. For the two-factor convergence
model with Vasicek type of the volatility (constant volatility) and CIR with zero corre-
lation; there are known solutions in closed form formula. But there is no closed form
formula for general CKLS model. The derivation of the analytical approximation of the
4th order and proof of its accuracy is given in [14]. We suggest an improvement of the ap-
proximation to the 6th order. Model is firstly tested on simulated data and approximative
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bond yields are compared with the reference solutions. We provide calibration procedure
which is based on the derived approximative formula and usage of the real market term
structure data and formulation of the optimization task, where the difference between the
estimated and market yield curves is minimized. Since European parameters are not de-
pendent on the domestic ones, we consider European bond yield parameters separately
and we estimate them firstly. Secondly we take these estimates and use them as start-
ing values for the estimates in the whole model. But still there are many parameters, so
we provide an optimization algorithm in more steps: starting with the estimates of the
risk-neutral drift, volatility and final adjustment of the parameters. Fitting of the bond
yield curves is satisfactory on the simulated data, but not in case of real market data. But
the weak point is already in the estimation of the European yield curves and this error is
propagated to the domestic model. The one thing which is responsible for this behavior
are ’bad data’. Overnight interest rates can be influenced by speculation on the market.
Although we are not able to influence the data, we can model them. We deal with this
idea in the Chapter 4 in our paper [31]

• J. Halgašová, B. Stehlíková, Z. Bučková (Zíková): Estimating the short rate from
the term structures in the Vasicek model, Tatra Mountains Mathematical Publica-
tions 61: 87-103, 2014

To improve the quality in fitting exact yield curves by its estimates, we proposed a few
changes in models. The first one is based on estimating the short rate from the term
structures in the Vasicek model. We consider the short rate in the European model for un-
observable variable and we estimate it together with other model parameters. The second
way to improve a model is to define the European short rate as a sum of two unobservable
factors (see the Chapter 5). In this way, we obtain a three-factor convergence model (see
Chapter 6).

The Chapter 5 explains modeling of one interest rate as a sum of two unobservable pro-
cesses. As an improvement for modeling of the European interest rate we suggest the
short rate model of interest rates in which the short rate is defined as a sum of two stochas-
tic factors. Each of these factors is modeled by SDEs with a linear drift and the volatility
proportional to a power of the factor. We propose calibration methods which - under the
assumption of constant volatilities – allow us to estimate the term structure of interest
rate as well as the unobserved short rate, although we are not able to recover all the pa-
rameters. We apply it to real data and show that it can provide a better fit compared to
a one-factor model. A simple simulated example suggests that the method can be also
applied to estimate the short rate even if the volatilities have a general form. Therefore
we propose an analytical approximation formula for bond prices in the model and derive
the order of its accuracy.

The Chapter 5 is based on [10]

• Z. Bučková, J. Halgašová, B. Stehlíková: Short rate as a sum of CKLS-type pro-
cesses, accepted for publication in Proceedings of Numerical analysis and appli-
cations conference, Springer Verlag in LNCS, 2016.

Separation in the stochastic interest rate to the two separable processes leads to more
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complex model. Instead of a one-factor short rate model, we have a two-factor model
with correlation. We derive an analytical approximation with its accuracy for this model
and we test it on simulated and real market data. The approximation in a two-factor model
is much more better than approximation in a one-factor model. We take this advantage
and we change modeled European short rate in the Chapter 3. Instead of one stochastic
process for European short rate, we define two stochastic processes of CKLS-type whose
sum represents European short rate. In total this modeling leads to the three SDEs, hence
a three-factor convergence model. Its analytical solution, accuracy and numerical exper-
iments can be found in [51]

• B. Stehlíková, Z. Bučková (Zíková): A three-factor convergence model of interest
rates. Proceedings of Algoritmy 2012, pp. 95-104.

Combining two approaches from [14] and [10] we suggested a three-factor convergence
model of interest rates. In all the previous models, the European rates are modeled by a
one-factor model. This, however, does not provide a satisfactory fit to the market data.
A better fit can be obtained using the model, where the short rate is a sum of two un-
observable factors. We model European rate by 2 SDEs and the domestic interest rate
by 1 stochastic differential equation. Therefore, we build the convergence model for the
domestic rates based on this evolution of the European market. We study the prices of
the domestic bonds in this model which are given by the solution of the PDEs. In gen-
eral, it does not have an explicit solution. Hence we suggest an analytical approximative
formula and derive the order of its accuracy in a particular case.

1.2 Outline of the second part

Alternatively to the analytical solutions of the PDEs there are numerical methods for
pricing financial derivatives. In the second part of the thesis we deal with FDM (finite
difference methods), esp. Alternative Direction Explicit (ADE) methods. We provide
numerical analysis of ADE methods in one-dimensional cases and we suggest imple-
mentation algorithm for higher-dimensional models. The Chapter 8 is based on [9]

• Z. Bučková, M. Ehrhardt, M. Günther: Fichera theory and its application to fi-
nance, Proceedings ECMI 2014, Taormina, Sicily, Italy, 2016

we discuss theory from 1960 written by Gaetano Fichera. It is very useful for equations
degenerating on the boundary, in terms of defining boundary conditions. According to the
sign of the Fichera function there is a difference between the outflow boundary where we
we must not supply BCs and inflow boundary where the definition of the BCs is needed.

In the Chapter 8 we apply this theory to the one-factor and two-factor interest rate model.
Results of boundary decomposition to the regions with positive and negative Fichera
function are displayed graphically. As a numerical example we apply FDM to the inter-
est rate model and we display situation, where the non-respecting of the Fichera theory
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leads to the significant instability in the numerical solution. Results from the Fichera
theory applied to the short rate models correspond to the well-known Feller condition.
Since current interest rates may be negative, the Feller condition can be violated.

In two last Chapters 9 and 10 we study ADE schemes which were suggested in 1958 by
Saul’ev, later developed by Larkin, Bakarat and Clark. In the last decade Leung and Os-
her and Daniel Duffy are dealing with these schemes. ADE schemes are efficient explicit
FDM with the second order of accuracy and stability similar to the implicit schemes.
The Chapter 9 is based on the following paper [8]:

• Z. Bučková, M. Ehrhardt, M. Günther: Alternating Direction Explicit Methods for
Convection Diffusion Equations, Acta Math. Univ. Comenianae, Vol. LXXXI: 309–
325, 2015

where we investigate stability and consistency properties for one-dimensional convection-
diffusion-reaction equations. The basic idea of the ADE schemes consists of combining
two explicit solutions (called sweeps). Although the consistency of the single sweep is
O(k2 + h2 + k

h), in the average the term k
h is eliminated and the consistency of the final

combined solution is of O(k2 + h2) order, where k is a time step and h is a space step.
Stability analysis for various modifications of the ADE methods consists of proofs based
on the matrix approach or von-Neumann stability approach.

The Chapter 10 is based on the paper [11]:

• Z. Bučková, P. Pólvora, M. Ehrhardt, M. Günther: Implementation of Alternating
Direction Explicit Methods to higher dimensional Black-Scholes Equation, AIP
Conf. Proc. 1773, 030001; 2016

where we suggest an algorithm for the implementation of the ADE schemes for higher-
dimensional models. The number of sweeps is not increasing with dimension, hence n-
dimensional model also requires for the purpose of preservation of the desired properties
of the scheme two sweeps. Other literature sources state possible extension to higher-
dimensional models but it is not really clear how to do it, hence it motivated us to suggest
and describe algorithm properly. As test examples we consider two-dimensional spread
option and three-dimensional basket call option. Numerical solution, with its accuracy
and experimental order of convergence, is presented in the Chapter 10. ADE schemes
are also good candidates to parallelize and they possess a good potential to succeed in
the higher dimensional models, what is one of the current challenges in computational
finance.

There is also some other alternative approach, e.g. the Trefftz method, based on the local
approximation methods which is studied in the last chapter of the thesis.



Part I

Analytical Approximations of
Interest Short Rate Models
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2Chapter 2

Introduction: Pricing of financial
derivatives

Real market observable data give us information about the evolution and dynamics of
interest rates, stock prices, exchange rates, ... The evolution is influenced by different
factors, economic situations, investors’ speculations, membership in the currency union
and a lot of others. There are a lot of attempts to create models which capture the re-
ality in the best ways. Adding more parameters, using non-constant or even stochastic
variables, instead of constant variables; modeling using nonlinear equation - all these im-
provements lead to better models which can capture very well the market data. But how
far should we go, how complex models should we construct? The more complex models,
the more difficult calibration. Solutions in closed form formulas are available only for
simple models.
There are various approaches to pricing. Dynamics of the stock price, interest rate,
volatility are described by SDEs which can be solved using analytical methods or numer-
ical simulations called Monte Carlo Method. From SDE using Itô formula and construct-
ing risk-neutral portfolio we can derive the corresponding partial differential equation
(PDE) which describes the price of the bond, or option. In our work we deal with the an-
alytical and numerical PDE approaches. Interest rate modeling using short rate models,
analytical approximations for bond pricing and its accuracy are discussed in detail in the
first part of the thesis. Second part of the thesis is focused on the efficient numerical solu-
tions of higher dimensional option pricing problems which are described by a parabolic
PDE, also called also Black-Scholes (BS) model.

Financial derivatives are contracts, each of which value is derived are derived from the
underlying assets. Interest rates, stock prices, indexes are used as underlying assets. They
are derivatives of the interest rate are bonds, swaps, caps and floors. Typical derivatives
of stocks are options. Financial derivatives are tools for protecting (hedging) the portfo-
lio. Investors are looking for an optimal allocation of stocks and bonds in their portfolios,
since they would like to minimize the risk and hence protect their portfolios. Stocks rep-
resent more risky assets with higher returns. Bonds bring lower risk and lower returns.

A bond is the simplest derivative of an interest rate which in the maturity time pays out its
owner nominal value and in the arranged times pays out regular interest, called coupon.
Bond with the nominal value equal to 1 is called a discount bond.

From the EURIBOR rates we can construct a yield curve which represents the depen-
dence of the bond yield on the maturity of the bonds. They are usually increasing, be-
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cause for the longer time, we lend with higher interest rates.

The limit value of the term structure of the interest rates (2.1, left), the r(t) = lim
T→t+

R(t,T )

is instantaneous interest rate, called short rate (2.1, right). It represents beginning of the
yield curve, hence it is an interest rate for a very short time. In practice it is approxi-
mated by an interest rate with short maturity, e.g. overnight interest rates: EONIA (Euro
Overnight Index Average). It is usual reference interest rate for one-day trading in Euro-
pean currency union.
For more details to interest rates see for example [7] , [50], [39].

Figure 2.1 shows an example of a short rate evolution and of a term structure at a given
day.

Figure 2.1: EURIBOR - term structure of interest rate (left), EONIA - short rate (right).

Good representation of the current state of the company is evolution of its stock price.
Over the time they record some fluctuations around the drift. According to the drift we
talk about bear market (decreasing trend) and bull market (increasing trend).

Option values are financial derivatives which are based on the stock prices. European call
(put) option is a contract between share holders and its buyers which gives an opportunity
to buy (sell) a stock for given price (strike price) at the maturity time. American type of
options can be exercised in any time to the maturity time. There are different types of
options, called exotic options, such as Asian, Barrier, Binary (Digital), Look-back, Rain-
bow, Russian, Bermudan and many others.

Models which are studied in this work, are described by the SDE:

dXt = µ(Xt , t)dt +σ(Xt , t)dW,

where W is Wiener process. Function µ(Xt , t) is the trend or drift of the equation and
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σ(Xt , t) describes fluctuations around the drift. A solution of this SDE is a stochastic
process Xt . For scalar Xt we have one-factor models, for vector valued Xt we deal with
multi-factor models. Dynamics of the evolution of the process Xt is described by SDE,
where Xt can represent an underlying asset, usually a stock price, but it can also be interest
rate or volatility. In case Xt is a short rate, derived PDE represents equation for pricing
of bonds. In case Xt is a stock price, derived PDE is an equation for option pricing,
called also Black-Scholes model. If additionally there is given a stochastic volatility, we
get the Heston model; and if there is given also a stochastic interest rate, it leads to the
Heston-Hull-White model.

2.1 Bond pricing in short rate models

For modeling of the interest rate in our thesis we use short rate models. Alternative to
the multi-factor short rate model represents Quadratic Gaussian, LIBOR (also known as
BGM Model (Brace Gatarek Musiela Model)) and swap market models (an evolution
of more forward interest rates) which are suitable for pricing of swaps and caps. There
are known analytical solutions for some log-normal LIBOR and swap market models.
Description of some of these models can be found in [7], [44].

A discount bond is a security which pays its holder a unit amount of money at specified
time T (called maturity). P(t,T ) is the price of a discount bond with maturity T at time
t. It defines the corresponding interest rate R(t,T ) by the formula

P(t,T ) = e−R(t,T )(T−t), i.e. R(t,T ) =− lnP(t,T )
T − t

.

A zero-coupon yield curve, also called term structure of interest rates, is then formed by
interest rates with different maturities. Short rate (or instantaneous interest rate) is the
interest rate for infinitesimally short time. It can be seen as the beginning of the yield
curve: r(t) = limt→T− R(t,T ). For a more detailed introduction to short rate modeling
see e.g. [7], [34].

In short rate models, the short rate is modeled by a SDE. In particular, in Vasicek model
[58], it is modeled by a mean-reverting Ornstein-Uhlenbeck process

dr = κ(θ − r)dt +σdw,

where κ,θ ,σ are positive parameters and w is a Wiener process. It can be shown that
after the specification of the so called market price of risk, the bond price P(τ,r) with
maturity τ , when the current level of the short rate is r, is a solution to a parabolic PDE.
In Vasicek model, it is customary to consider the constant market price of risk λ . Then,
the bond price P satisfies

− ∂P
∂τ

+(κ(θ − r)−λσ)
∂P
∂ r

+
σ2

2
∂ 2P
∂ r2 − rP = 0 (2.1)
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for all r and τ > 0 and the initial condition P(0,r) = 1 for all r. This equation has an
explicit solution which can be written as

lnP(τ,r) =
1− e−κτ

κ
(R∞− r)−R∞τ− σ2

4κ3 (1− e−κτ)2, (2.2)

where R∞ = κθ−λσ

κ
− σ2

2κ2 (see [58]). In Figure 2.2 we show a simulated behavior of the
short rate (depicting also its equilibrium value θ ) and term structures for several values
of the short rate for the parameters equal to κ = 5.00,θ = 0.02,σ = 0.02,λ =−0.5.
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Figure 2.2: Simulated behavior of the short rate (above) and examples of term structures
(below) for the parameters κ = 5.00,θ = 0.02,σ = 0.02,λ =−0.5

Note that, although the model has four parameters - short rate parameters κ,θ ,σ and
market price of risk λ - parameters θ and λ enter the PDE (2.1) and hence also its
solution (2.2) only through the term κθ − λσ . Subsequently, it is possible to find a
formula for bond price with three parameters. It is customary to do so by defining α =
κθ −λσ ,β = −κ . Parameters α,β are called risk neutral parameters, because they are
related to an alternative formulation of the model in the so called risk neutral measure.
For more details about risk neutral methodology see e.g. [34].

2.2 Short rate models

Short rate models are formulated by stochastic differential equation (SDE) for a variable
X :

dXt = µ(Xt , t)dt +σ(Xt , t)dW

which defines the short rate r = r(X). Here W is a Wiener process, function µ(X , t) is
the trend or drift part and the volatility σ(X , t) represents fluctuations around the drift.
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Choosing different drift µ(X , t) and volatility σ(X , t) leads to various one-factor models
(where X is a scalar) and multi-factor models (where X is a vector).

2.2.1 One-factor models

In one-factor models the evolution of the short rate is given by one scalar SDE:

dr = µ(r, t)dt +σ(r, t)dW. (2.3)

The Table 2.1, with data taken from [7] and [50], gives an overview of one-factor models,
in chronological order. We record also the equation for the dynamic of the short rate and
distribution of the interest rate.

Year Model SDE rt > 0 rt ∼ SOL
1977 Vasicek drt = κ (θ − rt)dt +σdWt x N X
1978 Dothan drt = artdt +σrtdWt X LN X
1985 Cox-Ingersoll-Ross drt = κ (θ − rt)dt +σ

√
rtdWt X NCχ2 X

1990 Hull & White drt = κ (θt − rt)dt +σdWt x N X
1990 Exponential Vasicek drt = rt(µ−alnrt)dt +σrtdWt X LN x
1991 Black & Karasinski drt = rt(µt −alnrt)dt +σrtdWt X LN x
1992 CKLS drt = κ (θ − rr)dt +σrγ

t dWt X - x
2000 Mercurio & Moraleda drt = rt

(
η−

(
λ − γ

a+γt

)
lnrt

)
dt +σrtdWt X LN X

Legend: Y=yes, N=no, SOL=existence of the explicit solution of the bond price in closed form formula,
N=normal distribution, LN=log-normal distribution, NCχ2=non-central Chi-squared distribution.

Table 2.1: Overview of one-factor short rate models

If the drift of the process has the form µ(r, t) = κ(θ − r), where the κ,θ > 0 are con-
stants, the model will have property called mean-reversion. It means, that short rate is
pulling to the limit value θ . If the interest rate r is bigger than θ , drift κ(θ − r) is nega-
tive, so the interest rate is pulled down to the limit value θ . Vice-versa, if the interest rate
r is smaller than the value of θ , the drift κ(θ − r) is positive, so it means the process is
pulled up to θ . It is also the case of the Vasicek model, where dr = κ (θ − r)dt +σdWt .
Its disadvantage is a normal distribution of the interest rates and in consequence it can
lead to negative interest rates. A normal distribution of the interest rates is also in the
Hull & White model. Other models have another distribution of interest rates which will
not lead to the negative interest rates. It is also the case of the Dothan model which
appeared one year after Vasicek model. But as an assumption there is a geometric Brow-
nian motion for the short rate: dr = ardt +σrdW . The explicit solution of this equation

is r(t) = r(0)e(a−
σ2
2 t)+σW (t), hence E[r(t)|r(0)] = r(0)eat . For a 6= 0 it is not realistic: if

a > 0, then E[r(t)|r(0)]→ ∞ for t → ∞, if a < 0, then E[r(t)|r(0)]→ 0. Therefore the
Dothan model is sometimes given with a = 0 (e.g. in the book [34] , we have taken the
formulation of the model from [7], where a is arbitrarily). It means, there is no trend in
the evolution of the interest rate, only a random component. The positivity of the interest
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rates r > 0, is also preserved with usage of exponential functions, e.g. in the exponential
Vasicek model or in the model of Black and Karasinski. In these models we suppose, that
lnrt (not directly interest rate) has a normal distribution. Then rt has a log-normal distri-
bution. Non-negativity of the interest rates in CIR model is preserved by the property: if
rt is close to the zero, then volatility is very small, almost zero and drift is positive. If
rt becomes zero, the volatility is zero and the drift is positive, hence rt is getting back
positive value. If the Feller condition 2κθ ≥ σ2 is satisfied, then process rt is positive
with the probability equal to one [34].

In the Table 2.1 we notice, that for classic models as Vasicek, Cox-Ingersoll-Ross there
is a closed form formula of the bond pricing equation. For other models, on the one hand
it is not possible to express this solution, but on the other hand they are more realistic to
describe the structure of the real market data. There are different approaches how to find
approximative solutions of these models, by using analytical techniques to find accurate
approximation or usage of numerical methods, such as finite difference methods, finite
elements methods. As a generalization of the Vasicek and CIR model serves the CKLS
model. We consider the CKLS model and we look for its solution. In the Table 2.1
we recognize models with time dependent drift function (e.g. Hull & White, Mercurio
& Moradela, Black & Karasinski), also called non-arbitrage models. The proper choice
of the function θt , µt , γt leads to the fit of the bond yield curve given by a yield curve
observed in the market.

In short rate models, the bond prices are given as solutions to a PDE. We deal with the
PDE approach in the following sections.

The model can be set in two ways:

• using SDE in the real (i.e. observed) probability measure and specifying so called
market price of risk,

• using SDE in the risk-neutral probability measure.

The volatilities are the same in both measures and for the drift function holds:

(risk-neutral drift) = (real drift)− (market price of risk)× (volatility), (2.4)

see [39]. Considering the equation (2.3) in the real measure and market price of risk equal
to λ (r, t), the bond price P(r, t,T ) is a solution to the PDE (see [7]):

∂P
∂ t

+µ(r, t)
∂P
∂ r

+
σ2(r, t)

2
∂ 2P
∂ r2 − rP = 0, for r > 0, ∈ (0,T ), (2.5)

satisfying the terminal condition P(r,T,T ) = 1.

We present some well known models and we refer the reader to [7], [53] for more detailed
treatment. The common feature of these models which will be useful later, is their linear
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drift in the risk-neutral measure:

dr = (b1 +b2r)dt +σ(r, t)dw. (2.6)

The simplest model is the Vasicek model which has a mean-reverting drift µ(r, t)= κ(θ−
r) and constant volatility σ(r, t) = σ in the real measure, where κ,θ ,σ > 0 are constants.
Assuming a constant market price of risk λ we obtain the risk-neutral form (2.6) with
b1 = κθ − λσ , b2 = −κ , σ(r, t) = σ . The PDE (2.5) for the bond price P(τ,r) with
maturity τ = T − t has a solution in the form:

P(r,τ) = eA(τ)−rD(τ), (2.7)

where the functions D(τ),A(τ) can be expressed as follows: (see, e.g. [7], [34], [39])

D(τ) =
−1+ eb2τ

b2
,

A(τ) =
(−1+ eb2τ

b2
− τ

)
×
(−b1

b2
− σ2

2b2
2

)
+

σ2

4b3
2

(
1− eb2τ

)2
.

(2.8)

The Cox-Ingersoll-Ross (CIR) model also assumes a mean-reverting drift in the real mea-
sure, but the volatility is taken to be σ(r, t) = σ

√
r. If λ (r, t) = λ

√
r, we again obtain

the risk-neutral process (2.6), this time with b1 = κθ ,b2 = −κ −λσ ,σ(r, t) = σ
√

r. A
solution of the PDE (2.5) again takes the form (2.7). Functions A(τ) and D(τ) are given
by (see, e.g. ([7], [34], [39])

A(τ) =−2b1

σ2
e

ln
2θe(θ−b2)

τ

2

(θ −b2)(eθτ −1)+2θ
, D(τ) =

−2
(
eθτ −1

)
(θ −b2)(eθτ −1)+2θ

, (2.9)

where θ =
√

b2
2 +2σ2

e .

A convenient property of Vasicek and CIR models is the existence of explicit solutions to
the bond pricing equation. However, their choice of volatility is not confirmed by analysis
of real data. In their pioneering paper [16] Chan-Karolyi-Longstaff-Sanders (CKLS)
considered a model with σ(r, t) = σrγ with γ ≥ 0. Most of the previously considered
models, including Vasicek and CIR, do not provide a good fit to real market data except
for a more general CKLS model which can copy reality in a better way. The CKLS
model does not admit a closed form expression for bond prices. Approximate analytical
solutions and their accuracy were studied in [18], [50], [51].

2.2.2 Two-factor models

Let us consider a model defined by the following system of SDEs:

dr = µr(r,x, t)dt +σr(r,x, t)dW1,

dx = µx(r,x, t)dt +σx(r,x, t)dW2,
(2.10)
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where ρ ∈ (−1,1) is the correlation between the increments of Wiener processes W1 and
W2, i.e. Cov(dW1,dW2) = ρdt. The process x is a random process which is connected
with an instantaneous rate. It can be a long-term interest rate, a short-term interest rate
in another country, etc. Relations between real and risk-neutral parameters are analogous
as in the one-factor case:

(risk-neutral drift function)r = (real drift function)r−λr(r,x, t)× (volatility)r,

(risk-neutral drift function)x = (real drift function)x−λx(r,x, t)× (volatility)x,

where λr, λx are market prices of risk of the short rate and the factor x respectively.

If the short rate satisfies the SDE (2.10) in the real measure and market prices of risk are
λr(r,x, t),λx(r,x, t), then the bond price P satisfies the following PDE (assuming that the
factor x is positive):

∂P
∂ t

+(µr(r,x, t)−λr(r,x, t)σr(r,x, t))
∂P
∂ r

+(µx(r,x, t)−λx(r,x, t)σx(r,x, t))
∂P
∂x

+
σr(r,x, t)2

2
∂ 2P
∂ r

+
σx(r,x, t)2

2
∂ 2P
∂x

+ρσr(r,x, t)σx(r,x, t)
∂ 2P
∂ r∂x

− rP = 0

for r,x > 0, t ∈ (0,T ) and the terminal condition P(r,x,T ) = 1 for r,x > 0. The PDE is
derived using Itô lemma and construction of risk-less portfolio, see, e.g. [34],[7].

2.2.3 Multi-factor short rate models

Considering more SDEs for the interest rate, we can capture reality much more better.
The more underlying equations with more parameters, the better fitting of the real market
data. The more complex model, the more difficult to calibrate it. So which model for
term structures should one use? With these questions authors deal in the paper [46],
where following criteria are considered.

’A practitioner wants a model which is

1. flexible enough to cover most situations arising in practice;
2. simple enough that one can compute answers in reasonable time;
3. well-specified, in that required inputs can be observed or estimated;
4. realistic, in that the model will not do silly things.

Additionally, the practitioner shares the view if an econometrician who wants

• a good fit of the model to data;

and a theoretical economist would also require
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• an equilibrium derivation of the model.’

In our thesis we deal with two-factor convergence model of interest rates in the Chapter
3. A three dimensional model is considered in the Chapter 6. This way we could continue
and extend the model, where dynamics of the process is described with n SDEs; which
leads to the n-th order PDE. Theoretically unlimited extension of the model is possible,
but we will care about simplicity of the model which can be solved in an reasonable time.

2.3 The calibration algorithm

Model calibration is certainly not a problem with a straightforward solution. In general,
calibration methods can focus on statistical analysis of time series of instantaneous inter-
est rate, match of theoretical and market yield curves, or combine these two approaches.
An example of statistical analysis is the paper [16] where the form of the volatility in one-
factor model is determined using the generalized method of moments applied to time se-
ries of short rate. An example of comparison of theoretical and estimated yield curves is
in paper [49]. The existence of explicit formulae for bond prices in one-factor CIR model
allowed the calibration of parameters in this way. The combination of these approaches
can be found for example in paper [20] about the Vasicek convergence model. All param-
eters which can be estimated from the time series of domestic and European short rates,
are estimated in this way. The remaining market prices of risk are then estimated using
the yield curves.

However, using this combined approach, most parameters are estimated from the time
series of the short rates. Information from the time series of interest rates with other
maturities (which contain several times more data) is used only to estimate the market
price of risk.

In [36] the authors consider a CIR convergence model and uses a modification of Ait-
Sahalia’s approximation of densities to estimate short rate parameters. Market price of
risk is estimated from the yield curves. However, the author claims, that by changing
some already estimated short rate parameters it is possible to obtain a significant im-
provement of objective function. Therefore, our aim was to propose such a calibration
method that would use the information from term structures to estimate all parameters.
Such an approach requires an efficient calculation of bond prices. This is achieved by
using an approximative analytical formula.





3Chapter 3

Convergence model of interest
rates of CKLS type

This Chapter is based on the following paper [14]

• Z. Bučková (Zíková), B. Stehlíková, Convergence model of interest rates of CKLS
type, Kybernetika 48(3), 2012, 567-586

Dynamics of the interest rate in various countries can be independent, but usually there
are some connections and interaction which can be expressed as a mutual connection.
Typical example is the of the interest rate before entering the monetary union.

It is worth noting that before adopting the euro, the interest rates in the country are in-
fluenced by the rates in the eurozone. We illustrate this with Figure 3.1, where we show
the Slovak and eurozone instantaneous interest rates in the last quarter before Slovakia
adopted the euro currency. These features in the models cause that we call them conver-
gence models of the interest rate. Adoption of the new currency in the country is visible
on the interest rate which converges to the interest rate of the bigger country or union. It
describes an evolution of the short rate of the one small country with respect to the evo-
lution of the short rate of the bigger country or a union of some countries. Convergence
models of interest rates are studied in Chapter 3 and 6.

Convergence model of the interest rate is a special case of two-factor short rate models.
Firstly it was proposed by Corzo and Schwartz in [20] with constant volatilities, it means
as the two-factor Vasicek convergence model. In our Chapter 3 we suggest and study
two-factor convergence model with nonconstant volatility, esp. of type of Chan-Karolyi-
Longstaff-Sanders (CKLS) model. This form of volatility was first defined in [16]. Since
solution of the suggested model is not given in a closed form formula (just for special
cases) we are looking for a suitable approximation based on the idea of Stehlíková,
Ševčovič [53]. Substituting its constant volatilities by instantaneous volatilities we ob-
tain an approximation of the solution for a more general model. We compute the order of
accuracy for this approximation, propose an algorithm for calibration of the model and
we test it on the simulated and real market data.

The Chapter is organized as follows: The Section 3.1 describes convergence models as
a special class of two-factor models. In particular, we present a generalization of the
known models which we study in the following Sections. The closed form of the bond
pricing equation is not known and hence in the Section 4 we propose an approximation
formula for the domestic bond price and derive its accuracy. In Sections 3.4 - 3.8 we
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Figure 3.1: Instantaneous interest rate - Bribor and Eonia, last quarter 2008.

deal with calibration algorithm - its description, simulation study and application to real
market data. In the last Section we give some concluding remarks.

3.1 Convergence models

Convergence models form a special class of two-factor models. A convergence model is
used to model the entry of observed country into the European Monetary Union (EMU).
It describes the behavior of two short-term interest rates, the domestic one and the in-
stantaneous short rate for EMU countries. The european short rate is modeled using a
one-factor model. It is assumed to have an influence on the evolution of the domestic
short rate and hence it enters the SDE for its evolution. This kind of model was pro-
posed for the first time in [20]. The model is based on Vasicek model, the volatilities
of the short rates are constant. Analogical model of Cox-Ingersoll-Ross type, where the
volatilities are proportional to the square root of the short rate, was considered in [35] and
[36]. In the following sections we describe these two models and show how they price
the bonds. Then we present a generalization with nonlinear volatility, which is analogous
to the volatility in one-factor CKLS model.
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3.1.1 The convergence model of Vasicek type

The first convergence model was proposed in the paper [20] by Corzo and Schwartz in
the real probability measure:

drd = (a+b(re− rd))dt +σddWd,

dre = (c(d− re))dt +σedWe,
(3.1)

where Cov(dW1,dW2)= ρdt. They considered constant market prices of risk, i. e. λd(rd,re,τ)=
λd and λe(rd,re,τ) = λe. Hence for the European interest rate we have a one-factor Va-
sicek model and we can easily price European bonds. The coefficient b > 0 expresses
the power of attracting the domestic short rate to the European one with the possibility of
deviation determined by the coefficient a. Rewriting the model into risk-neutral measure
we obtain:

drd = (a+b(re− rd)−λdσd)dt +σddWd,

dre = (c(d− re)−λeσe)dt +σedWe,
(3.2)

where Cov[dWd,dWe] = ρdt. We consider a more general model in risk-neutral measure,
in which the risk-neutral drift of the domestic short rate is given by a general linear
function of variables rd , re and the risk-neutral drift of the European short rate is a general
linear function of re. It means that the evolution of the domestic and the European short
rates is given by:

drd = (a1 +a2rd +a3re)dt +σddWd,

dre = (b1 +b2re)dt +σedWe,
(3.3)

where Cov[dWd,dWe] = ρdt. Note that the system (3.3) has the form of the system (3.2)
with a1 = a−λdσd , a2 =−b, a3 = b, b1 = cd−λeσe, b2 =−c. The price P(rd,re,τ) of
a bond with time to maturity τ = T − t then satisfies the PDE

−∂P
∂τ

+(a1 +a2rd +a3re)
∂P
∂ rd

+(b1 +b2re)
∂P
∂ re

+
σ2

d
2

∂ 2P
∂ r2

d
+

σ2
e

2
∂ 2P
∂ r2

e
+ρσdσe

∂ 2P
∂ rd∂ re

− rdP = 0,
(3.4)

for rd,re > 0, τ ∈ (0,T ) and the initial condition P(rd,re,0) = 1 for rd,re > 0. Its solution
can be found in the same way as in the original paper [20]. Assuming the solution in the
form

P(rd,re,τ) = eA(τ)−D(τ)rd−U(τ)re , (3.5)
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and inserting it into the equation (3.4) we obtain the system of ordinary differential equa-
tions (ODEs):

Ḋ(τ) = 1+a2D(τ),

U̇(τ) = a3D(τ)+b2U(τ),

Ȧ(τ) =−a1D(τ)−b1U(τ)+
σ2

d D2(τ)

2
+

σ2
e U2(τ)

2
+ρσdσeD(τ)U(τ)

(3.6)

with initial conditions A(0) = D(0) =U(0) = 0. The solution of this system reads:

D(τ) =
−1+ ea2τ

a2
,

U(τ) =
a3
(
a2−a2eb2τ +b2 (−1+ ea2τ)

)
a2 (a2−b2)b2

,

A(τ) =
τ∫

0

−a1D(s)−b1U(s)+
σ2

d D2(s)
2

+
σ2

e U2(s)
2

+ρσdσeD(s)U(s)ds.

(3.7)

Note that the function A(τ) can be easily written in the closed form without an integral.
We leave it in this form for the sake of brevity. Furthermore, we consider only the case
when a2 6= b2. If a2 = b2, then U(τ) has another form, but it is a very special case and
we will not consider it further.

3.1.2 Convergence model of CIR type

First we formulate the convergence model of CIR type (i.e.the volatilities are proportional
to the square root of the short rates) in the real measure.

drd = (a+b(re− rd))dt +σd
√

rddWd,

dre = (c(d− re))dt +σe
√

redWe,
(3.8)

where Cov[dWd,dWe] = ρdt. If we assume the market prices of risk equal to λe
√

re,
λd
√

rd we obtain risk neutral processes of the form:

drd = (a1 +a2rd +a3re)dt +σd
√

rddWd,

dre = (b1 +b2re)dt +σe
√

redWe,
(3.9)

where Cov[dWd,dWe] = ρdt. In what follows we consider this general risk- neutral for-
mulation (3.9).

The European short rate is described by one-factor CIR model, so we are able to price
European bonds using an explicit formula. The price of domestic bond P(rd,re,τ) with
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maturity τ satisfies the PDE

−∂P
∂τ

+(a1 +a2rd +a3re)
∂P
∂ rd

+(b1 +b2re)
∂P
∂ re

+
σ2

d r2
d

2
∂ 2P
∂ r2

d
+

σ2
e r2

e
2

∂ 2P
∂ r2

e
+ρσd

√
rdσe
√

re
∂ 2P

∂ rd∂ re
− rdP = 0,

(3.10)

for rd,re > 0,τ ∈ (0,T ) with the initial condition P(rd,re,0) = 1 for rd,re > 0. It was
shown in [35] (in a slightly different parametrization of the model) that solution in the
form (3.5) exists only when ρ = 0. In this case we obtain system of ODEs

Ḋ(τ) = 1+a2D(τ)−
σ2

d D2(τ)

2
,

U̇(τ) = a3D(τ)+b2U(τ)− σ2
e U2(τ)

2
,

Ȧ(τ) =−a1D(τ)−b1U(τ),

(3.11)

with initial conditions A(0) = D(0) =U(0) = 0 which can be solved numerically.

3.1.3 Convergence model of CKLS type

We consider a model in which the risk-neutral drift of the European short rate re is a
linear function of re, risk-neutral drift of the domestic short rate rd is a linear function of
rd and re and volatilities take the form σerγe

e and σdrγd
d , i.e.

drd = (a1 +a2rd +a3re)dt +σdrγd
d dWd,

dre = (b1 +b2re)dt +σerγe
e dWe,

(3.12)

where Cov[dWd,dWe] = ρdt. Parameters a1,a2,a3,b1,b2 ∈ R,σd,σe > 0,γd,γe ≥ 0 are
given constants and ρ ∈ (−1,1) is a constant correlation between the increments of
Wiener processes dWd and dWe. We will refer to this model as two-factor convergence
model of Chan-Karolyi-Longstaff-Sanders (CKLS) type. The domestic bond price P(rd,re,τ)
with the maturity τ satisfies the PDE:

−∂P
∂τ

+(a1 +a2rd +a3re)
∂P
∂ rd

+(b1 +b2re)
∂P
∂ re

+
σ2

d r2γd
d

2
∂ 2P
∂ r2

d
+

σ2
e r2γe

e

2
∂ 2P
∂ r2

e
+ρσdrγd

d σerγe
e

∂ 2P
∂ rd∂ re

− rdP = 0,
(3.13)

for rd,re > 0,τ ∈ (0,T ), with the initial condition P(rd,re,0) = 1 for rd,re > 0. Unlike
for Vasicek and uncorrelated CIR model, in this case it is not possible to find solution in
the separable form (3.5). For this reason, we are seeking for an approximative solution
(3.13).
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3.2 Approximation of the domestic bond price
solution

The bond prices in the CKLS type convergence model are not known in a closed form.
This has already been the case for the European bonds, i.e. for the one-factor CKLS
model. We use the approximation from [51]. In this approximation we consider the
one-factor Vasicek model with the same risk-neutral drift and we replace the constant
volatility by the current volatility σrγ in the closed form formula for the bond prices. We
obtain

lnPap
e (τ,r) =

(
b1

b2
+

σ2r2γ

2b2
2

)(
1− eb2τ

b2
+ τ

)
+

σ2r2γ

4b3
2

(
1− eb2τ

)2
+

1− eb2τ

b2
r. (3.14)

We use this approach to propose an approximation for the domestic bond prices. We
consider the domestic bond prices in Vasicek convergence model with the same risk-
neutral drift and we set σdrγd

d instead of σd and σerγe
e instead of σe into (3.7). Hence, we

have
lnPap = A−Drd−Ure, (3.15)

where

D(τ) =
−1+ ea2τ

a2
,

U(τ) =
a3
(
a2−a2eb2τ +b2 (−1+ ea2τ)

)
a2 (a2−b2)b2

,

A(τ) =
τ∫

0

−a1D(s)−b1U(s)+
σ2

d r2γd
d D2(s)

2
+

σ2
e r2γe

e U2(s)
2

+ρσdrγd
d σerγe

e D(s)U(s)ds.

3.2.1 Accuracy of the approximation for CIR model with zero
correlation

In CIR convergence model the domestic bond price PCIR,ρ=0 exhibits a separable form
(3.5) and functions A,D,U are characterized by a system of ODEs (3.11). This enables us
to compute Taylor expansion of its logarithm around τ = 0. We can compare it with the
expansion of the proposed approximation lnPCIR,ρ=0,ap (computed either using its closed
form expression (3.15) or the system of ODEs (3.7) for the Vasicek convergence model).
More detailed computation can be found in [13]. In this way we obtain the accuracy of
the approximation for the CIR model with zero correlation:

lnPCIR,ρ=0,ap− lnPCIR,ρ=0 =
1

24
(
−a2σ

2
d rd−a1σ

2
d −a3σ

2
d re
)

τ
4 +o(τ4) (3.16)

for τ → 0+.
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3.3 Numerical results for CIR model with zero
correlation

Let us consider real measure parameters: a = 0, b = 2, σd = 0.03, c = 0.2, d = 0.01,
σe = 0.01 and market price of risk λd = −0.25, λe = −0.1. In the risk-neutral setting
(3.9) we have a1 = a−λdσd = 0.0075, a2 = −b = −2, a3 = b = 2, b1 = cd−λeσe =
0.003, b2 =−c =−0.2, σd = 0.03, σe = 0.01. With the initial values for the short rates
rd = 1.7% a re = 1% we generate the evolution of domestic and European short rates
using Euler-Maruyama discretization. In Figure 3.2 we see that this choice of parameters
leads to a realistic behavior of interest rates. In Table 3.1 we compare the exact interest
rate (i.e. the numerical solution of the system (2.8)) and the approximative interest rate
given by (3.15). We observe very small differences. Note that the Euribor market data
are recorded with the accuracy 10−3. Choosing other days, with other combination of rd ,
re, leads to very similar results. The difference between exact and approximative interest
rates remains nearly the same.

Figure 3.2: Simulation of European and domestic short rate for 1200 days.

Mat. Exact Aprox. Diff.
[year] yield [%] yield [%] [%]

1
4 1.63257 1.63256 7.1E-006
1
2 1.58685 1.58684 1.4E-005
3
4 1.55614 1.55614 4.8E-006
1 1.53593 1.53592 1.1E-005
5 1.56154 1.56155 -5.0E-006

10 1.65315 1.65323 -8.3E-005
20 1.74696 1.74722 -2.5E-004
30 1.78751 1.78787 -3.7E-004

Mat. Exact Aprox. Diff.
[year] yield [%] yield [%] [%]

1
4 1.08249 1.08250 -8.2E-006
1
2 1.15994 1.15996 -1.7E-005
3
4 1.21963 1.21964 -7.0E-006
1 1.26669 1.26671 -1.6E-005
5 1.53685 1.53691 -6.2E-005

10 1.65113 1.65127 -1.4E-004
20 1.74855 1.74884 -2.9E-004
30 1.78879 1.78918 -3.9E-004

Table 3.1: Exact and approximative domestic yield for 1st (left) observed day, rd = 1.7%, re = 1% and
for 252nd (right) observed day, rd = 1.75%, re = 1.06%.
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3.3.1 Accuracy of the approximation for general CKLS model

The aim of this section is to derive the order of accuracy of the proposed approximation in
the general case. We use an analogous method as in [51] and [53] for one-factor models
and in [36] to study the influence of correlation ρ on bond prices in the convergence CIR
model.

Let f ex = lnPex be the logarithm of the exact price Pex of the domestic bond in two factor
convergence model of CKLS type. It satisfies the PDE (3.13). Let f ap = lnPap be the
logarithm of the approximative price Pap for the domestic bond price given by (3.15). By
setting f ap to the left-hand side of (3.13) we obtain non-zero right-hand side which we
denote as h(rd,re,τ). We expand it into Taylor expansion and obtain that

h(rd,re,τ) = k3(rd,re)τ
3 + k4(rd,re)τ

4 +o(τ4), (3.17)

for τ → 0+, where
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.

We define the function g(τ,rd,re) := f ap− f ex = lnPap− lnPex as a difference between
logarithm of the approximation and the exact price. Using the PDEs satisfied by f ex and
f ap we obtain the following PDE for the function g:
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]
.

(3.18)

Suppose that g(rd,re,τ) = ∑
∞
k=ω

ck(rd,re)τ
k. For τ = 0 is both the exact and approxima-

tive bond price equal to one, so f ex(rd,re,0) = f ap(rd,re,0) = 0. It means that ω > 0 and
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on the left hand side of the equation (5.10) the term with the lowest order is cωωτω−1.
Now we investigate the order of the right hand side of the equation 5.10.

We know that f ex(rd,re,0) = 0. It means that f ex = O(τ) and also partial derivation ∂ f ex

∂ rd

and ∂ f ex

∂ re
are of the order O(τ). From the approximation formula (3.15) we can see that

∂ f ap

∂ rd
=O(τ), ∂ f ap

∂ re
=O(τ2). Since h(rd,re,τ) =O(τ3), the right hand side of the equation

(5.10) is at least of the order τ2. The left hand side of the equation (5.10) is of the order
τω−1 and hence ω−1≥ 2, i.e. ω ≥ 3. It means that

f ap(rd,re,τ)− f ex(rd,re,τ) = O(τ3).

Using this expression we can improve the estimation of the derivative ∂ f ex

∂ re
as follows:

∂ f ex

∂ re
= ∂ f ap

∂ re
+O(τ3) = O(τ2)+O(τ3) = O(τ2). We also estimate the terms on the right

hand side in the equation (5.10):(
∂ f ex

∂ rd

)2

− ∂ f ap

∂ rd

∂ f ex

∂ rd
=

∂ f ex

∂ rd

(
∂ f ex

∂ rd
− ∂ f ap

∂ rd

)
= O(τ).O(τ3) = O(τ4), (3.19)

(
∂ f ex

∂ re

)2

− ∂ f ap

∂ re

∂ f ex

∂ re
=

∂ f ex

∂ re

(
∂ f ex

∂ re
− ∂ f ap

∂ re

)
= O(τ2).O(τ3) = O(τ5), (3.20)

2
∂ f ex

∂ rd

∂ f ex

∂ re
− ∂ f ap

∂ rd

∂ f ex

∂ re
− ∂ f ex

∂ rd

∂ f ap

∂ re
=

∂ f ex

∂ rd

(
∂ f ex

∂ re
− ∂ f ap

∂ re

)
+

∂ f ex

∂ re

(
∂ f ex

∂ rd
− ∂ f ap

∂ rd

)
= O(τ).O(τ3)+O(τ2).O(τ3) = O(τ4)+O(τ5) = O(τ4).

(3.21)

Since h(rd,re,τ) = O(τ3), the right hand side of the equation (5.10) is O(τ3) and the
coefficient at τ3 is the coefficient of the function h(rd,re,τ) at τ3, i.e. k3(rd,re). It means
that ω = 4 and comparing the coefficients at τ3 on the left and right-hand side of (5.10)
we obtain −4c4(rd,re) = k3(rd,re), i.e. c4(rd,re) =−1

4k3(rd,re). Hence we have proved
the following theorem.

Theorem 3.1. Let Pex(rd,re,τ) be the price of the domestic bond in two-factor CKLS
convergence model, i.e. satisfying equation (3.13) and let Pap be the approximative solu-
tion defined by (3.15). Then

lnPap(rd,re,τ)− lnPex(rd,re,τ) = c4(rd,re)τ
4 +o(τ4)

for τ → 0+, where coefficient c4 is given by

c4(rd,re) =−
1
24

σ
2
d γdr2γd−2

d

(
2a1rd +2a2r2

d +2a3rdre− r2γd
d σ

2
d +2γdr2γd

d σ
2
d

)
. (3.22)
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Note that if we substitute γd = 1
2 and ρ = 0 into Theorem 3.1, we obtain the formula

(3.16) for CIR model derived earlier in (3.16).

3.3.2 Improvement of the approximation

In some cases it is possible to improve an approximation by calculating more terms in
Taylor expansion of the function g = lnPap− lnPex. It is so also in this case. Using that
f ap− f ex = O(τ4), we are able to improve estimates (3.19) and (3.21) and to deduce that
also the coefficient at τ4 on the right hand side of equation (5.10) comes only from the
function h. Hence it is equal to k4(rd,re) which is given by (3.18). Comparing coefficients
at τ4 on the left and right hand side of (5.10) we obtain:

−5c5 +(a1 +a2rd +a3re)
∂c4

∂ rd
+(b1 +b2re)

∂c4

∂ re

+
σ2

d r2γd
d

2
∂ 2c4

∂ r2
d
+

σ2
e r2γe

e

2
∂ 2c4

∂ r2
e
+4ρσdrγd

d σerγe
e

∂ 2c4

∂ rd∂ re
= k4

which enables us to express c5 using already known quantities.

Let us define an approximation lnPap2 by:

lnPap2(rd,re,τ) = lnPap− c4(rd,re)τ
4− c5(rd,re)τ

5.

Then lnPap2− lnPex = O(τ6) and therefore the new approximation lnPap2 is of the order
O(τ6).

3.4 Formulation of the optimization problems in the
calibration algorithm

We consider the convergence model of CKLS type in the risk-neutral measure given by
equation (3.12). Firstly let us define the following notation

• Pap
d , Pap

e are approximations of the price of domestic and European bonds,

• Rd , Re are actual yields observed on the market,

• τd = (τ1
d , . . .τ

md
d ), τe = (τ1

e , . . .τ
me
e ) are maturities of domestic and European yields,

• the data are observed during nd , resp. ne days,

• index i corresponds to days and index j corresponds to maturities.

We consider estimation of the parameters of European interest rates as a separate prob-
lem. We assume that the relationship between European and domestic interest rates is
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not a mutual influence of two variables, but the European rates influence the domestic
ones. Hence the estimated European parameters of the model can not be dependent on
the choice of country for which we consider the convergence model and on the domes-
tic interest rates in this country. This approach was also used in [35]. The calibration
procedure is therefore divided into two steps:

1. Estimation of European parameters which is based on minimizing the function

Fe(b1,b2,σe,γe) =
1

mene

ne

∑
i=1

me

∑
j=1

we(i, j)
(
− lnPap

e (i, j)
τe( j)

−Re(i, j)
)2

.

2. Estimation of domestic parameters which is based on minimizing the function

Fd(a1,a2,a3,σd,ρ,γe) =
1

mdnd

nd

∑
i=1

md

∑
j=1

wd(i, j)
(
−

lnPap
d (i, j)

τd( j)
−Rd(i, j)

)2
,

where in the computation of Pap
d we use the values b1,b2,σe obtained in the first

step.

Functions we, wd express weights. As in [49] we choose we(i, j) = τe( j)2 a wd(i, j) =
τd( j)2. However, the proposed algorithm can be adapted also for a different choice of
weights. For our choice of weights we have the following objective functions:

Fe(b1,b2,σe,γe) =
1

mene

ne

∑
i=1

me

∑
j=1

(
lnPap

e (i, j)+Re(i, j)τe( j)
)2

, (3.23)

Fd(a1,a2,a3,σd,ρ,γd) =
1

mdnd

nd

∑
i=1

md

∑
j=1

(
lnPap

d (i, j)+Rd(i, j)τd( j)
)2

. (3.24)

3.5 The algorithm for estimating parameters in the
CIR model with zero correlation

Our first goal is to estimate parameters in the convergence CIR model with zero corre-
lation. In this case we can calculate the exact yield curve by solving a system of ODEs
(3.11). We can therefore simulate the exact data and monitor the accuracy of our calibra-
tion and its individual steps.

3.5.1 Simulated data

We choose the same parameters as in the Section 3.3. We generate the domestic and Eu-
ropean short rates for ne = nd = 1260 days, i.e.5 years (252 days per year). Furthermore,
we generate European (using the explicit formula) and domestic (numerically solving the
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system of ODEs) yields for maturities τe = τd =
( 1

12 ,
2

12 , . . .
12
12

)
, i.e. me = md = 12.

3.5.2 Estimation of the European parameters

This step is an estimate of the CIR model parameters. Estimation method is taken from
[51]. For a given value of the power γe (1

2 in this case) the estimation of the other three
parameters can be reduced to a one-dimensional problem. The remaining two parameters
can be expressed from the first-order conditions and substituted into the objective func-
tion which then becomes of one parameter. The objective function is then optimized with
respect to this parameter.

We note (see again [51]) that if we estimate a model with different γe than the true value
(in particular, if we estimate a Vasicek model parameter), the estimate of the risk-neutral
drift does not change much. This feature was an inspiration for estimation of domestic
parameters, described in the next section.

3.5.3 Estimation of the domestic parameters

Step 1: Estimation of the risk-neutral drift
Based on the results for the one-factor model we try to estimate the risk-neutral drift of
domestic interest rates as risk-neutral drift for Vasicek convergence model. When doing
so, we add an upper index vas to all parameters and objective function i.e. Fvas

d , avas
1 ,

avas
2 , etc., to emphasize that we are estimating Vasicek model. We omit this index when

using them in the subsequent steps.

The first step is to estimate the one-factor Vasicek model parameters for European data
for which we use algorithm from [51]. Then, to estimate the domestic parameters, we
optimize the function Fvas

d in the form:

Fvas
d (avas

1 ,avas
2 ,avas

3 ,σ vas
d ) =

nd

∑
i=1

md

∑
j=1

(
lnPvas

d (i, j)+Rd(i, j)τd( j)
)2

. (3.25)

Recall that in Vasicek model

lnPvas
d (rd,re,τ) = A(τ)−D(τ)rd−U(τ)re, (3.26)

hence the term in Fvas
d corresponding to the particular j−th maturity τd( j) is

nd

∑
i=1

(
A(τd( j))−D(τd( j))rd(i)−U(τd( j))re(i)+Rd(i, j)τd( j)

)2
. (3.27)

Since j is fixed, values A(τd( j)), −D(τd( j)), −U(τd( j)) are constants. The sum (3.27)
which should be small (to minimize sum over j), then resembles the linear regression

−Rd(i, j)τd( j)∼ c0 j + c1 jrd(i)+ c2 jre(i) for i = 1, . . .n. (3.28)
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For each j we solve this linear regression and write the results into matrix

C =


c01 c11 c21
c02 c12 c22
...

...
...

c0md c1md c2md

 .
Comparing (3.26) and (3.28) we see that

c0 j ∼ A(τd( j)), c1 j ∼−D(τd( j)), c2 j ∼−U(τd( j)). (3.29)

We determine the parameters of the functions A,D,U to obtain a good match of the terms
in (3.29).

• Function D depends only on the parameter avas
2 . We solve one-dimensional opti-

mization problem

G1(avas
2 ) =

md

∑
j=1

(
−D(τd( j),avas

2 )− c1 j

)2
→min

avas
2

(3.30)

and we obtain the estimate of the parameter avas
2 .

• The function U depends on the parameters avas
3 , bvas

1 . Parameter bvas
1 is already

estimated from European interest rates. Hence we have a one-dimensional opti-
mization problem again:

G2(avas
2 ) =

md

∑
j=1

(
−U(τd( j),avas

3 )− c2 j

)2
→min

avas
3

(3.31)

and by solving it we obtain the estimate of avas
3 .

• Function A depends on all parameters avas
1 , avas

2 , avas
3 , bvas

1 , bvas
2 , σ vas

d , σ vas
e , but all

parameters except avas
1 , σ vas

d are already estimated. Note that A is a linear function
of the parameters avas

1 and (σ vas
d )2. Therefore the optimal solution of the problem

G3(avas
1 ,(σ vas

d )2) =
md

∑
j=1

(
A(τd( j),avas

1 ,(σ vas
d )2)− c0 j

)2
→ min

avas
1 ,(σ vas

d )2
(3.32)

can be calculated explicitly from the first order optimality conditions by solv-
ing system of two linear equations. However, we observed (for several sets of
generated data) that these estimates are unstable because the system matrix is ill-
conditioned, with the condition number between 1018 and 1021. It turned out that
a better approach is to use only the first order condition from the derivative with
respect to (σ vas

d )2. Hence we proceed as follows.

The function lnPap is expressed in the form:

lnPap = A(τ)+D(τ)rd +U(τ)re = c0(rd,re,τ)+ c1(rd,re,τ)(σ
vas
d )2, (3.33)
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where the coefficients c0(rd,re,τ), c1(rd,re,τ) do not depend on (σ vas
d )2 and can be

expressed explicitly. For given values of remaining parameters, the optimal value
of (σ vas

d )2 is calculated.

Thus for each value avas
1 we have the corresponding optimal value (σ vas

d )2 and we
can formulate a one-dimensional optimization problem:

G4(avas
1 ) =

md

∑
j=1

(
A(τd( j),avas

1 )− c0 j

)2
→min

avas
1

. (3.34)

This procedure produces stable results.

Step 2: Estimation of the volatility
So far we have estimated the parameters b1, b2, σe for European interest rates and pa-
rameters a1, a2, a3 from the drift of the domestic interest rate. Substituting all these
parameters into the objective function Fd it remains a function of one parameter σd and
it is easy to find its optimal value.

Step 3: Final modification of the parameters
In the first two steps we have sequentially estimated all the domestic parameters. How-
ever, this does not guarantee that we have achieved the global minimum of the objective
function. Hence, we try to improve them by optimizing the function Fd with respect to all
of them together. The current estimated values (which are expected to be nearly optimal)
were taken as starting values and the optimization was performed one more time with
respect to all parameters.

3.5.4 Simulation analysis

We have implemented a numerical experiment in which we generated 1000 sets of do-
mestic and European short rates and yield curves. We have used the same parameters in
risk-neutral measure as in Sections 3.3 and 3.5.1. The initial values were generated from
uniform distribution on the interval [0.02, 0.04] for the domestic and from the interval
[0.005, 0.025] for the European short rate.

Our aim was to check the accuracy of the proposed estimation algorithm, as well as to
see the usefulness of the step 3 described above since it requires much more time that the
previous steps.

Based on the results, we decide to stop the estimation after the second step. The estima-
tion of the drift is very precise. Less precision is achieved at estimating volatility, but
it is still satisfactory. Table 3.2 shows what does this precision mean for the estimated
yield curves. We again recall that the market Euribor rates are quoted with three deci-
mal places. We conclude that using our algorithm the yield curves are estimated with a
high precision. The detailed descriptive statistics of the European estimates and of the
domestic estimates after Step 2 and after Step 3 can be found in [13].
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6 months differences in domestic yields differences in domestic yields
after 2nd step in [%] final estimates in [%]

minimum 1.19E-08 3.83E-10
maximum 4.17E-06 2.15E-06

median 4.74E-07 1.15E-07
mean value 7.01E-07 2.58E-07

standard deviation 6.85E-07 3.85E-07

12 months differences in domestic yields differences in domestic yields
after 2nd step in [%] final estimates in [%]

minimum 4.87E-09 1.54E-11
maximum 9.78E-06 1.67E-06

median 1.06E-06 6.56E-08
mean value 1.66E-06 1.70E-07

standard deviation 1.70E-06 2.58E-07

Table 3.2: Descriptive statistics for domestic estimates after 2nd step and final estimates for maturities 6
and 12 months.

3.6 Generalization for CKLS model with zero
correlation and the known γe, γd

The generalization for CKLS model with zero correlation and the known γe, γd is straight-
forward. First we estimate the European model parameters. For given value of γe the
estimation of the other three parameters can be reduced to a one-dimensional problem, as
it was defined in 3.5.2. Outcome of this optimization is an estimation of parameters b1,
b2, σe.

Secondly we estimate domestic parameters. The estimation of risk-neutral drift remains
the same as in Section 3.5.3, because it is the estimate of the Vasicek convergence model.
The estimation of volatility is realized as the minimization of the objective function over
the parameter σd in the same way as in section 3.5.3. The only change is the calcula-
tion of the objective function where instead of γd = 1

2 we consider another γd . Based
on the simulation results for the CIR model we omit final four-dimensional parameter
optimization with respect to the parameters a1, a2, a3, σd .

3.7 Estimation of correlation ρ a parameters γe, γd

To estimate the power γe we can use the procedure from [51]. The estimation described
above is performed over a range of γe. Based on the objective function, the optimal γe
is chosen. However, trying this approach to estimate γd and ρ did not work. We tried to
find an explanation why these strategies fail in [13], where a more detailed treatment can
be found.

The approximation error and the dependence on the correlation ρ and the power γd is
numerically about the same order. Probably, it is the reason why we can not distinguish
them and therefore we can not determine their correct values. However, the errors of
the consecutive steps accumulate. We refer the reader to [48] for more numerical and
analytical results on this question.



54 3 Convergence model of interest rates of CKLS type

3.8 Calibration of the model using real market data

We have used Bribor (Bratislava Interbank Offered Rate) and Euribor (Euro Interbank
Offered Rate) data from the last three months before the Slovak Republic entered the
monetary union (1. 10. 2008 - 31. 12. 2008, i.e. ne = nd = 62). As the domestic short
rate we use overnight Bribor, as the European short rate we use Eonia (Euro Over Night
Index Average). The yields are considered for the same set of maturities in both domestic
and European case. We take τe = τd = ( 1

12 ,
2

12 ,
3

12 ,
6
12 ,

9
12 ,

12
12), i.e. me = md = 6.

Using these data we have estimated the convergence CIR model (3.9) with zero correla-
tion, i.e. ρ = 0. The estimates of the parameters are summarized in Table 3.3.

parameter b1 b2 σe a1 a2 a3 σd
estimated value 0.0227 0.5000 1.1427 0.0879 -8.2052 7.3827 5.0000

Table 3.3: Estimated parameters of the CIR convergence model (3.9) with zero correlation.

We compare the exact and the estimated yield curves for several selected days. In the
Figure 3.3 we show European (left) and domestic (right) yield curves for 1st, 31st and
61st day.

Figure 3.3: Estimated and real term structures for three observed days - European (left),
Slovak (right).

In the Table 3.4 we numerically compare exact and estimated yields for one typical day.
We observe much lower accuracy for the European rates. Hence an important task is to

Mat. Market Estim. Diff. Rel.
[year] yield yield diff.

1
12 3.9140 3.2953 0.6187 0.158
2
12 4.2260 3.4461 0.7799 0.185
3
12 4.2860 3.5891 0.6969 0.163
6
12 4.3450 3.9604 0.3846 0.089
9
12 4.3810 4.2327 0.1483 0.034
12
12 4.4120 4.4065 0.0055 0.001

Mat. Market Estim. Diff. Rel.
[year] yield yield diff.

1
12 3.0100 2.9174 0.0926 0.031
2
12 3.1200 3.1490 -0.0290 0.009
3
12 3.3200 3.3336 -0.0136 0.004
6
12 3.9100 3.7805 0.1295 0.033
9
12 4.2100 4.1358 0.0742 0.018
12
12 4.2900 4.3957 -0.1057 0.025

Table 3.4: Accuracy of the estimation of European (left) and domestic (right) yield curves.



3.8 Calibration of the model using real market data 55

improve the estimation of the European data, since its results are used in finding an esti-
mate of domestic parameters. If we had chosen a different model for European interest
rates, it might have also improved the estimation of domestic yield curves.

Our next aim is to propose an alternative model for the estimation of European interest
rates and thus improve not only the fit of the European data but also the domestic ones,
because estimated European parameters enter the estimation of domestic parameters as
already known constants. Suggestions for improvement of modeling of the European
data are described in the Chapter 4 and in the Chapter 5. In the Chapter 4 we suggest the
approach, where the beginning of the yield curve can be estimated from Vasicek model
with other model parameters, instead of taking it as a known value. In the Chapter 5
we suggest approach which can be used for modeling of the European data. Instead of
considering the one-factor CKLS model for European interest rate, we can extend it to
two-factor short rate model, where the sum of two modeled factor represent our European
interest rate.





4Chapter 4

Estimating the short rate from
the term structures
in the Vasicek model

In short rate models, bond prices and term structures of interest rates are determined by
the parameters of the model and the current level of the instantaneous interest rate (so
called short rate). The instantaneous interest rate can be approximated by the market
overnight which - however - can be influenced by speculations on the market. The aim
of this chapter is to propose a calibration method where we consider the short rate to be a
variable unobservable on the market and estimate it together with the model parameters
for the case of Vasicek model.

This Chapter is based on the following paper:

• J. Halgašová, B. Stehlíková, Z. Bučková (Zíková): Estimating the short rate from
the term structures in the Vasicek model, Tatra Mountains Mathematical Publica-
tions 61: 87-103, 2014

Our aim is to use observable market term structures to calibrate the model, i.e. infer the
values of the parameters using a certain criterion. One approach to calibration of the
short rate models is based on minimizing the errors of the theoretical yields compared
to the yields observed on the market. This approach was used for example in [49], [48].
Let us denote by Ri j the yield observed on the i-th day for j-th maturity and by R(τ j,ri)
the yields computed using the Vasicek formula with j-th maturity τ j and the short rate ri
realized on the i-th day. Using the weighted mean square error (the weight given to the
i-th day and j-th maturity is wi j), we minimize the function

F =
1

mn

n

∑
i=1

m

∑
j=1

wi j
(
R(τ j,ri)−Ri j

)2
, (4.1)

where n is number of days and m is number of maturities which are observed on each of
the days.

Recall that to compute the Vasicek yields, the value of the short rate is necessary. How-
ever, the short rate, defined as the beginning of the term structure of interest rates, is only
a theoretical variable, not observed on the market. In practice, it can be approximated by
a yield with short maturity, such as overnight in [49], [48], [14] or 1-month yields in [16],
[27], etc. Using 1-month (or some other) yields is, however, not consistent with the in-
terpretation of the short rate as limit of the yields, as maturity approaches zero. Note that

57
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in the papers [16], [27] this problem did not arise, since they considered only one time
serie as an approximation of the short rate, not the whole term structure. In [49], [48],
[14], when dealing with term structures, overnight was taken to approximate the short
rate. However, even using the overnight which is closest to the short rate regarding the
time, is questionable. The overnight rate, observed on the market, can be influenced by
speculations. Hence we consider the short rate as an unobservable variable and estimate
it from the term structures together with the parameters of the model.

The Chapter is organized as follows: In the following Section we present the procedure
for calibrating model parameters and the evolution of the short rate. In the Section 4.2
we simulate data and test the proposed procedure. Finally, in the Section 4.3, we apply it
to real market data. We end the chapter with some concluding remarks.

4.1 Calibration procedure

According to the considerations in 2.3, the objective function (4.1) will be minimized
with respect to the model parameters α,β ,σ2, as well as the time series of the short rate
r = (r1, . . . ,rn)

′.

The key observation is noting that the logarithm of the bond price in the Vasicek model
(2.2) is a linear function of the parameters α and σ2 and the short rate r:

lnP(τ,r) = c0(τ)r+ c1(τ)α + c2(τ)σ
2,

where

c0 =
1− eβτ

β
, c1 =

1
β

[
1− eβτ

β
+ τ

]
, c2 =

1
2β 2

[
1− eβτ

β
+ τ +

(1− eβτ)2

2β

]
.

Hence the objective function (4.1)

F(α,β ,σ2,r) =
1

mn

n

∑
i=1

m

∑
j=1

wi j
(
R(τ j,ri)−Ri j

)2

=
1

mn

n

∑
i=1

m

∑
j=1

wi j

τ2
j

(
lnP(τ j,ri)+ τ jRi j

)2 (4.2)

is quadratic in α , σ2 and the components of r. The optimal values for the given value of
β are then easily obtained from the first order conditions which form a system of n+ 2
linear equations: [

A B
C D

]
×
[

x
y

]
=

[
u
v

]
,

where

A =

 ∑i, j
wi, j

τ2
j

c2
1 ∑i, j

wi, j

τ2
j

c1c2

∑i, j
wi, j

τ2
j

c1c2 ∑i, j
wi, j

τ2
j

c2
2

 ,
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B = C’ =

 ∑ j
w1, j

τ2
j

c1c0 ∑ j
w2, j

τ2
j

c1c0 . . . ∑ j
wn, j

τ2
j

c1c0

∑ j
w1, j

τ2
j

c2c0 ∑ j
w2, j

τ2
j

c2c0 . . . ∑ j
wn, j

τ2
j

c2c0

 ,

D =


∑ j

w1, j

τ2
j

c2
0 0 · · · 0

0 ∑ j
w2, j

τ2
j

c2
0 · · · 0

... . . . ...
0 0 · · · ∑ j

wn, j

τ2
j

c2
0

 ,

x’ =
[
α,σ2] , y’ = [r1,r2, · · · ,rn] , u’ =

[
−∑

i, j

wi, j

τ j
Ri, jc1, −∑

i, j

wi, j

τ j
Ri, jc2

]
,

v’ =

[
−∑

j

w1, j

τ j
R1, jc0, −∑

j

w2, j

τ j
R2, jc0, · · · , −∑

j

wn, j

τ j
Rn, jc0

]
.

Because of the special structure of the linear system, it is possible to reduce its dimen-
sionality. The block D is diagonal and hence it is easy to find its inverse. Consequently,
we are able to express the vector y in the following way:

Cx+Dy = v ⇒ y = D-1(v−Cx).

From the equation Ax+By = u we then obtain

(A−BD-1C)x = u−BD-1v

which is a system of two linear equations.

In this way we are able to find the optimal values of the parameters α and σ , and the short
rate vector r for the given value of β . Finding the optimal β is then a one-dimensional
optimization problem.

4.2 Application to simulated data

In the previous Section we have proposed a calibration procedure which estimates model
parameters α,σ2,r using closed formulas from the Section 2 based on the first order con-
ditions for minimizing the quadratic function for given parameter β . Given the optimal
parameters α,σ2,r for each β , it is easy to find the optimal value of the parameter β ,
since it is a one dimensional optimization problem. The estimate is robust. There are no
numerical problems in the calibration procedure.

The accuracy of the estimation, when tested on simulated data, is very good and there
seems to be no numerical problems. We show one illustrative example here.

Using the real measure parameters from the introduction (i.e. κ = 5.00,θ = 0.02,σ =
0.02,λ = −0.5) we simulate the time serie of the daily short rate values for 252 days
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(i.e. one year) and for each day we compute the yield curves with 12 maturities: 1
month, 2 months, . . . , 12 months. We use these yields as the input for the proposed
calibration procedure. Following [48] and [49], we use the weights equal to the square of
the corresponding maturity, i.e. wi j = τ2

j .

Our values of real measure parameters and the market price of risk imply the follow-
ing risk neutral parameters: α = 0.11, β = −5.00, σ = 0.02. Recall that the calibra-
tion reduces to one-dimensional optimization, where the optimal value of β is found.
Figure 4.1 shows the dependence of the objective function on β using a simulated set
of data described above. Finding the optimal β and corresponding values of α and
σ , we obtain the following estimates of the parameters: α = 0.1099999999979, β =
−5.000000000000018, σ = 0.01999999943821. As we can see, the parameters are al-
most exactly estimated. Also real and estimated short rates almost coincide; Figure 4.2
shows their difference which is of the order 10−16. Figure 4.3 shows some of the fitted
term structures.
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Figure 4.1: Dependence of the objective function F on parameter β using simulated data.
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Figure 4.2: Difference between real and estimated short rate using simulated data.
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Figure 4.3: Examples of fitted term structures using simulated data.

4.3 Application to real market data

In this section we address the following two questions:

• How is the estimated short rate related to the market overnight? Can the short rate
be approximated by market overnight or is it necessary to treat it as an unobservable
factor which needs to be estimated?

• Is the estimated short rate robust to changing the maturities of the interest rates
used for calibration?

4.3.1 Comparison between estimated short rate and overnight

One of the motivations for estimating the short rate from the market (observable) data,
are the results from the paper [14], where we considered the convergence model for the
Slovak interest rates before adoption of Euro currency in 2009. The first step, when
building the convergence model, is specifying the one-factor model for the European
rates. We have used Euribor1 term structures and Eonia2 as the approximation of the
European short rate when calibrating the model. However, this leads to a poor fit of the
term structure. The difference between the short rate as estimated from the term structures
and the market overnight would explain the observed bad quality of the fit. Therefore, we
use the proposed methodology for the Euribor rates in 2008. With a similar motivation in
mind (Estonia adopted Euro in 2011), we do the same for the Euribor rates in 2010. For

1Euribor - European Interbank Offered Rate - is the rate at which euro interbank term deposits are offered
by one prime bank to another prime bank; source: http://www.euribor-ebf.eu/

2Eonia - Euro OverNight Index Average - is the effective overnight reference rate for the euro and is
computed from overnight unsecured lending transactions undertaken in the interbank market, source:
http://www.euribor-ebf.eu/
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Figure 4.4: Comparison of estimated short rate and overnight for Euribor: 2008 (left),
2010 (right).

a comparison, we use also Estonian interest rates (Talibor3) from the same time periods.
These data sets are described in Table 4.1.

data set frequency maturities
Euribor daily 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 months
Talibor daily 1, 2, 3, 4, 5, 6 months

Table 4.1: Data sets for comparing the estimated short rate with market overnight. Every
data set is considered separately for the years 2008 and 2010.

The results are presented in Figure 4.4 (Euribor) and Figure 4.5 (Talibor). We see that
although the estimate of the short rate for Euribor in 2008 has a similar behavior as the
market overnight, it is higher and has a smaller volatility. The latter feature is especially
pronounced in 2010, when the levels are approximately the same, but they are very differ-
ent regarding the volatility. In the case of Talibor in 2008, there seems to be a difference
between the estimated short rate and the market overnight which does not vary much in
time, while their volatility is similar.

We present also the fitted term structures from 2010: Figure 4.6 and Table 4.2 show Euri-
bor term structures; Figure 4.7 and Table 4.3 show Talibor term structures. In Figures 4.6
and 4.7 we can observe good fit of term structures compared to Figure 4 in [14] where the
short rate was identified with the market values of the overnight rates. This observation
is confirmed also by Tables 4.6 and 4.7 (differences between exact and estimated yields
are 10−4-10−5) in contrast with Table 4 in [14] (differences are about 10−1). To sum it
up, we have achieved much higher estimation accuracy using estimated short rate values
in our models.

3Talibor - Tallinn Interbank Offered Rate - was based on the interest rates at which banks offered to
lend unsecured funds to other banks in the Estonian wholesale money market or interbank market in
Estonian croons, source: http://www.eestipank.ee/
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Figure 4.5: Comparison of estimated short rate and overnight for Talibor: 2008 (left),
2010 (right).
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Figure 4.6: Accuracy of estimated yield curves. Euribor 2010.
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Figure 4.7: Accuracy of estimated yield curves. Talibor 2010.
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Maturity [years] 50th day 100th day 150th day 200th day
0.083 5.30E-04 7.49E-04 3.29E-04 1.96E-04
0.167 6.22E-04 8.16E-04 5.79E-04 2.83E-04
0.25 2.00E-04 1.17E-04 1.56E-04 3.41E-04
0.33 4.73E-05 1.19E-04 8.04E-05 1.55E-05
0.42 3.98E-05 7.38E-05 1.23E-05 1.81E-05
0.5 4.17E-04 3.57E-04 2.45E-04 2.28E-04

0.58 1.19E-04 1.04E-04 5.73E-05 2.96E-05
0.67 7.25E-06 4.67E-05 8.01E-05 1.19E-04
0.75 1.68E-05 1.10E-05 3.10E-05 8.14E-05
0.83 9.34E-05 9.23E-05 1.20E-04 9.14E-05

0.917 8.05E-05 1.04E-04 5.92E-05 4.28E-05
1 2.82E-05 8.94E-05 1.27E-04 1.21E-04

Table 4.2: Accuracy of estimated yield curves - absolute values of differences between
the real and estimated rates. Euribor 2010.

Maturity [years] 50th day 100th day 150th day 200th day
0.083 6.14E-04 3.12E-05 4.27E-04 4.43E-04
0.167 3.66E-04 4.73E-05 7.90E-04 5.08E-04
0.25 4.20E-04 6.57E-05 4.00E-04 4.80E-04
0.5 7.85E-04 4.09E-04 6.32E-04 2.40E-04

0.75 3.72E-04 2.39E-04 1.47E-04 3.30E-05
1 4.12E-04 1.61E-05 3.51E-04 1.21E-05

Table 4.3: Accuracy of estimated yield curves - absolute values of differences between
the real and estimated rates. Talibor 2010.

4.3.2 Estimated short rates using different sets of maturities

Canadian interest rates4 are available for a wide range of maturities up to 30 years which
allows us to test the robustness of the short rate estimates to the choice of maturities used
in calibration. We used three sets of parameters: the first one includes equally spaced
maturities up to 30 years, the second one consists of shorter maturities up to 2 years and
the third one goes up to 10 years. Details are given in Table 4.4.

We estimate the model separately for each of the years and in Figure 4.8 we record the
different estimates of short rate depending on the input data.

Having in mind the high precision of the method on the simulated data (although we
have presented a simulation example only with maturities from 1 month to 12 months,
the procedure is very precise also for other choices of maturities), we would expect to

4yield curves for zero-coupon bonds, generated using pricing data for Government of Canada bonds and
treasury bills, source: http://www.bankofcanada.ca
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data set frequency maturities
Canada 1 daily 0.25, 2.5, 5, 7.5, 12.5, 10, 15, 17.5, 20, 22.5, 25, 27.5, 30 years
Canada 2 daily 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2 years
Canada 3 daily 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 years

Table 4.4: Data sets for comparing the estimated short rate using different maturities.
Every data set is considered separately for the years 2007, 2008, 2009, 2010
and 2011.

obtain almost identical estimates of the short rate behavior. Hence the differences, such
as those observed in Figure 4.8 would suggest the inadequacy of the Vasicek model.

On the other hand, we are also interested in the impact on accuracy of estimation of yield
curves. We present the results from the year 2011 and for each data set we compare real
and estimated yield curves for selected days in Figures 4.9, 4.10, 4.11 and Tables 4.5, 4.6,
4.7. In general, the fit can be considered to be good. Note that on the 150th day for data
set 2 we observe a term structure shape (firstly decreasing and then increasing) that is
not possible to obtain in Vasicek model which allows only monotone and humped (firstly
increasing and then decreasing) term structures (c.f.[58]). These shapes are estimated
well; recall that in the construction of the objective function we have put more weight to
estimate the longer maturities.

Maturity [years] 50th day 100th day 150th day 200th day
0.25 7.90E-03 4.53E-03 8.12E-05 1.39E-03
2.5 4.38E-03 1.51E-03 3.87E-03 8.14E-04
5 2.13E-03 3.83E-04 3.76E-03 1.12E-03

7.5 1.12E-03 3.95E-04 1.66E-03 6.38E-04
12.5 4.09E-04 7.01E-04 3.89E-04 3.10E-04
10 9.43E-05 3.63E-04 1.97E-04 2.20E-04
15 2.58E-04 1.89E-04 2.41E-04 1.61E-04

17.5 1.19E-04 5.07E-04 1.36E-04 2.04E-05
20 9.45E-05 4.63E-04 3.47E-05 1.49E-04

22.5 1.51E-04 1.92E-04 1.15E-04 2.16E-04
25 9.22E-06 8.63E-05 9.36E-05 1.18E-04

27.5 2.10E-04 2.18E-04 9.77E-05 4.65E-05
30 8.09E-05 1.74E-04 2.98E-04 4.42E-06

Table 4.5: Accuracy of estimated yield curves - absolute values of differences between
the real and estimated rates. Canada 2011, set 1.
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Figure 4.8: Estimated short rates for Canada, estimated separately for each of the years
from 2007 to 2011.
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Figure 4.9: Accuracy of estimated yield curves. Canada 2011, set 1.
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Figure 4.10: Accuracy of estimated yield curves. Canada 2011, set 2.
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Maturity [years] 50th day 100th day 150th day 200th day
0.25 1.23E-03 1.10E-03 8.67E-04 3.50E-04
0.5 7.26E-04 7.42E-04 5.57E-04 2.58E-04

0.75 4.24E-04 3.96E-04 1.68E-04 1.71E-04
1 2.10E-04 1.35E-04 8.67E-05 7.44E-05

1.25 6.92E-05 2.19E-05 2.14E-04 1.74E-05
1.5 8.48E-06 7.66E-05 2.26E-04 8.19E-05

1.75 4.30E-05 5.49E-05 1.05E-04 7.80E-05
2 7.77E-05 2.98E-06 2.03E-04 5.84E-05

Table 4.6: Accuracy of estimated yield curves - absolute values of differences between
the real and estimated rates. Canada 2011, set 2.
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Figure 4.11: Accuracy of estimated yield curves. Canada 2011, set 3.
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Maturity [years] 50th day 100th day 150th day 200th day
1 2.68E-03 1.19E-03 1.09E-03 2.50E-03
2 1.55E-03 1.90E-04 5.30E-04 1.37E-03
3 6.81E-04 2.02E-04 1.47E-03 6.15E-04
4 1.67E-04 2.55E-04 1.84E-03 1.92E-04
5 5.87E-05 2.04E-04 1.65E-03 6.98E-06
6 1.05E-04 1.52E-04 1.10E-03 7.77E-05
7 7.23E-05 1.10E-04 4.43E-04 8.79E-05
8 2.83E-05 5.23E-05 1.43E-04 7.46E-05
9 1.44E-05 4.59E-05 5.74E-04 4.82E-05

10 5.13E-05 1.88E-04 8.53E-04 6.40E-07

Table 4.7: Accuracy of estimated yield curves - absolute values of differences between
the real and estimated rates. Canada 2011, set 3.





5Chapter 5

Short rate as a sum of two
CKLS-type processes

We study the short rate model of interest rates, in which the short rate is defined as a sum
of two stochastic factors. Each of these factors is modeled by a stochastic differential
equation with a linear drift and the volatility proportional to a power of the factor. We
show a calibration methods which - under the assumption of constant volatilities - allow
us to estimate the term structure of interest rate as well as the unobserved short rate,
although we are not able to recover all the parameters. We apply it to real data and
show that it can provide a better fit compared to a one-factor model. A simple simulated
example suggests that the method can also be applied to estimate the short rate even if
the volatilities have a general form. Therefore we propose an analytical approximation
formula for bond prices in such a model and derive the order of its accuracy.

The Chapter 5 is based on:

• Z. Bučková, J. Halgašová, B. Stehlíková: Short rate as a sum of CKLS-type pro-
cesses, accepted for publication in Proceedings of Numerical analysis and appli-
cations conference, Springer Verlag in LNCS, 2016.

5.1 Model

In particular, we are concerned with a model where the short rate r is given by r = r1+ r2
and the risk neutral dynamics of the factors r1 and r2 is as follows:

dr1 = (α1 +β1r1)dt +σ1rγ1
1 dw1,

dr2 = (α2 +β2r2)dt +σ2rγ2
2 dw2, (5.1)

where the correlation between increments of Wiener processes is ρ , i.e., E(dw1dw1) =
ρdt. In particular we note that by taking γ1 > 0 and γ2 = 0 we are able to model negative
interest rates (both instantaneous short rate and interest rates with other maturities) which
were actually a reality recently in Eurozone (see historical data at www.euribor.org). This
can also be accomplished by a simple one-factor Vasicek model. However, a consequence
of Vasicek model is the same variance of short rate, regardless of its level. On the other
hand, the real data suggest that volatilities of interest rates decrease as interest rates them-
selves decrease. The model with γ1 > 0 and γ2 = 0 has the variance dependent on the level
of factor r1.

71
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Before using a certain model we need to calibrate it, i.e., estimate its parameters from the
available data. One approach to calibration of interest rate models is based on minimizing
the weighted squared differences between theoretical yields and the real market ones,
see, e.g., [48], [49]. Let Ri j be the yield observed at i-th day for j-th maturity τ j and
R(τ j,r1 j,r2 j) the yield computed from the two factor model, where r1i and r2i are factors
of the short rate at i-th day. We denote by wi j the weight of the i-th day and j-th maturity
observation in the objective function. In general, we look for the values of the parameters
and the decomposition of the short rate to the factors, which minimize the objective
function

F(r1i,r2i,αi,βi,γi,σi) =
n

∑
i=1

m

∑
j=1

wi j

(
R(τ j,r1i,r2i)−Ri j

)2
. (5.2)

In order to solve this optimization problem, we need to evaluate the yields given by the
model which is equivalent to solving the PDE for bond prices P(τ,r1,r2), which reads as

−∂P
∂τ

+[α1 +β1r1]
∂P
∂ r1

+[α2 +β2r2]
∂P
∂ r2

+
σ2

1 r2γ1
1

2
∂ 2P
∂ r2

1
+

σ2
2 r2γ2

2
2

∂ 2P
∂ r2

2
+ρσ1σ2rγ1

1 rγ2
2

∂ 2P
∂ r1∂ r2

− (r1 + r2)P = 0 (5.3)

for any r1,r2 from their domain and any time to maturity τ ∈ [0,T ), with initial condition
P(0,r1,r2) = 1 for any r1,r2, see [34]. Closed form solutions are available only in special
cases. For the model (5.1) , c.f. [7], it is only the Vasicek case γ1 = γ2 = 0 and the CIR
case γ1 = γ2 = 1/2 but only with zero correlation ρ = 0 and a mixed model γ1 = 0, γ2 =
1/2 again with ρ = 0. In the remaining cases we need some approximation, which can be
obtained using a certain numerical method, Monte Carlo simulation of an approximate
analytical solution.

The paper is formulated as follows: In the following section we consider the uncorrelated
case of the two-factor Vasicek model, i.e., the model (5.1) with γ1 = γ2 = 0 and ρ = 0,
and the possibility to estimate its parameters and the short rate factors using the objective
function (5.2). In the Section 5.3 we apply this algorithm to real data and we note its
advantage in fitting the market interest rates, compared to one-factor Vasicek model. The
Section 5.4 present a simulated example which shows a performance of this algorithm
when estimating the short rate from a general model (5.1), i.e., a robustness to misspeci-
fied volatility. This motivates us to develop an analytical approximation formula for the
bond prices for the model (5.1) and derive the order of its accuracy which we do in the
Section 5.5. We end this chapter with concluding remarks.

5.2 Two-factor Vasicek model: singularity and
transformation

In this section we consider the model (5.1) with γ1 = γ2 = 0, in which case the formulae
for the bond prices are known, see for example [7]. Moreover we assume that ρ = 0,
so the increments of the Wiener processed determining the factors of the short rate are



5.2 Two-factor Vasicek model: singularity and transformation 73

uncorrelated. We write the bond price P as

logP(τ,r1,r2) = c01(τ)r1 + c02(τ)r2 + c11(τ)α1 + c12(τ)α2 + c21(τ)σ
2
1 + c22(τ)σ

2
2 ,

where, for k = 1 and k = 2,

c0k =
1− eβkτ

βk
,c1k =

1
βk

(
1− eβkτ

βk
+ τ

)
,c2k =

1
2β 2

k

(
1− eβkτ

βk
+ τ +

(1− eβkτ)2

2βk

)

We fix the values of β1 and β2. Then the objective function (5.2) can be written as

F =
n

∑
i=1

m

∑
j=1

wi j

τ2
j

(
logP(τ j,r1i,r2i)+Ri jτ j

)2

=
n

∑
i=1

m

∑
j=1

wi j

τ2
j

(
c01(τ j)r1i + c02(τ)r2i + c11(τ j)α1 + c12(τ j)α2+

c21(τ j)σ
2
1 + c22(τ j)σ

2
2 +Ri jτ j

)2
,

which can be represented as a weighted linear regression problem without intercept, with
parameters r1i,r2i,α1,α2,σ

2
1 ,σ

2
2 to be estimated. However, the regressors are linearly

dependent and hence the estimates minimizing the objective function are not uniquely
determined. In the context of calibrating the yield curves, this means that different sets of
parameter values and factor evolutions lead to the same optimal fit of the term structures.
In particular, we have

− 1
β2

c01(τ)+
1
β2

c02(τ)+
β1

β2
c11(τ) = c12(τ).

Substituting this into the formula for the logarithm of the bond price we get

logP(τ,r1,r2) = c01(τ)r1 + c02(τ)r2 + c11(τ)α1 + c12(τ)α2 + c21(τ)σ
2
1 + c22(τ)σ

2
2

=

(
r1i−

α2

β2

)
c01(τ j)+

(
r2i +

α2

β2

)
c02(τ j)

(
α1 +

α2β1

β2

)
c11(τ j)

+c21(τ j)σ
2
1 + c22(τ j)σ

2
2 .

The objective function of the regression problem then reads as

F =
n

∑
i=1

m

∑
j=1

wi j

τ2
j

((
r1i−

α2

β2

)
c01(τ j)+

(
r2i +

α2

β2

)
c02(τ j)

+

(
α1 +

α2β1

β2

)
c11(τ j)+ c21(τ j)σ

2
1 + c22(τ j)σ

2
2 +Ri jτ j

)2

, (5.4)

which is already regular. Note that we are not able to estimate all the parameters, nor the
separate factors r1 and r2. However, the sum of the parameters corresponding to c01 and
c02 is the sum of r1 and r2, i.e., the short rate r.
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Thus, for a given pair (β1,β2) we find the optimal values of the regression problem above
and note the attained value of the objective function. Then, we optimize for the values
of β1,β2. For these optimal β1,β2 we note the coefficients corresponding to c01 and c02.
These are estimated shifted factors and their sum is the estimate of the short rate.

5.3 Application to real market data

We use this algorithm to the two data sets considered in paper [31] dealing with estimating
the short rate using one-factor Vasicek model: Euribor data from last quarter of 2008 and
last quarter of 2011. We note that in the first case, the fit of the one-factor Vasicek was
much better then in the second case.

It can be expected that in the case when already a one-factor model provides a good fit,
estimating a two-factor model does not yield much change into the results. However, if
the fit of a one-factor model is not satisfactory, the estimates from the two-factor model
can be more substantially different. From Figure 5.1 we can see that the fit of the term
structures has significantly improved by adding the second factor in the last quarter of
2011.
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Figure 5.1: Fitted yield curves using real data - a selected day in 2008 (left) and 2010
(right): blue lines show the fit from the 2-factor model, black lines from the
1-factor model, red circles are market data

5.4 Robustness of the short rate estimates

Naturally, the algorithm described in the previous section works well in case of data
simulated from the two-factor Vasicek model. However, we noted the estimate of the
short rate is remarkable accurate even when the volatility is misspecified. In particular,
since we are able to compute exact bond prices from the two-factor CIR model with
uncorrelated factors and test the algorithm on these data.
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We simulate two factor CIR model with the parameters taken from [17]: κ1 = 1.8341,θ1 =
0.05148,σ1 = 0.1543, κ2 = 0.005212,θ2 = 0.03083,σ2 = 0.06689. We simulate daily
data from one quarter (assuming 252 trading days in a year). Then, we consider market
prices of risk λ )1 =−0.1253,λ2 =−0.06650 from [17] and compute the term structures
for maturities 1,2, , . . . ,12 months for each day using the exact formulae. These data are
used as inputs to estimation of the two-factor Vasicek model. A sample result, comparing
the simulated short rate and its estimate is presented in Figure 5.2.
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Figure 5.2: Estimating short rate using data simulated from the two-factor CIR model:
simulated (points) and estimated (line) short rate.

In spite of misspecification of the model, the terms corresponding to
(

r1i− α2
β2

)
and(

r2i +
α2
β2

)
indeed estimate the factors up to a constant shift. This is displayed in Fig-

ure 5.3; note the vertical axis for each pair of the graphs.
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Figure 5.3: Estimating factors up to an additive constant using data simulated from the
two-factor CIR model.
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5.5 Approximation of the bond prices in the CKLS
model

Based on the example in the previous section, we might want to estimate the short rate by
application of the algorithms for the two-factor Vasicek model, even though we expect
the volatility to have a more general form. Estimates of the short rate factors, up to
an additive constant, might be a valuable results, since their knowledge greatly reduced
the dimension of the optimization problem (5.2). However, we need to compute the
bond prices in a CKLS general model - either their exact values or a sufficiently accurate
approximation. Since they are going to be used in a calibration of a certain kind, they
should be calculated quickly and without numerical problems. The aim of this section is
to provide an analytical approximation formula for these bond prices and to derive order
of its accuracy.

The motivation comes from the paper [51] where an approximation of bond prices for
a one-factor CKLS model was proposed. Note that if the correlation in the two-factor
CKLS model is zero, the bond price is equal to the sum of two terms corresponding to
solutions to bond pricing PDE originating from one factor CKLS models, with factors r1
and r2 taking the role of a short rate. Therefore, the bond price could be approximated as
a sum of the approximations corresponding to these one-factor models. They are obtained
from the Vasicek bond price formula, by substituting its constant volatility by instanta-
neous volatility from the CKLS model. It is shown in [51] that the error of logarithm of
the bond price is then O(τ4) as τ → 0+. We generalize this idea to the two-factor case
and suggest the following approximation.

Theorem 5.1. Let Pap be the approximative and Pex be the exact price of the bond in
CKLS model.Then for τ → 0+

lnPap(τ,r1,r2)− lnPex(τ,r1,r2) = c4(r1,r2)τ
4 +o(τ4) (5.5)

where the coefficient c4 is given by

c4(r1,r2) =−
1

24r2
1r2

2

(
(2γ

2
1 − γ1)(r

4γ1
1 r2

2σ
4
1 )+(2γ

2
2 − γ2)(r2

1r4γ2
2 σ

4
2 ) (5.6)

+ργ1(γ1−1)r3γ1
1 rγ2+2

2 σ
3
1 σ2 +ργ2(γ2−1)rγ1+2

1 r3γ2
2 σ1σ

3
2 (5.7)

+2γ2(α2 +β2r2)(ρσ1σ2r2+γ1
1 r1+γ2

2 +σ
2
2 r2

1r1+2γ2
2 )+2γ1γ2ρ

2
σ

2
1 σ

2
2 r2γ1+1

1 r2γ2+1
2
(5.8)

+2γ1r1r2
2σ1(α1 +β1r1)

(
r2γ1

1 σ1 +ρσ2rγ1
1 rγ2

2
))

. (5.9)

Remark 5.2. From the above considerations it follows that logPap− logPex is O(τ4) in
the case of zero correlation ρ . What needs to be done is showing that the same order of
accuracy is achieved also in the case of general ρ .

Proof. Let us define function f ex(τ,r1,r2) = lnPex(τ,r1,r2), where Pex is the exact so-
lution of the equation (5.3) Then the partial differential equation (5.3) for f ex is given
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by:

− ∂ f ex
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]
− (r1 + r2) = 0.

For the approximation f ap(τ,r1,r2) = lnPap(τ,r1,r2) we obtain from the former PDE
with nontrivial right-hand side h(τ,r1,r2):
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In the next step we substitute to the previous equation approximation of the bond price
and make Taylor expansion of all the terms with respect to τ:

h(τ,r1,r2) = k3(r1,r2)τ
3 +o(τ3),

where k3 reads as
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Let us consider function g(τ,r1,r2) = f ap− f ex. It satisfies the equation
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Taylor expansion of this equation with respect to τ is given by:

g(τ,r1,r2) =
∞

∑
i=0

ci(r1,r2)τ
i =

∞

∑
i=ω

ci(r1,r2)τ
i,

where coefficient cω(r1,r2)τ
ω is the first non-zero term.

Thus we have ∂τg = ωcω(r1,r2)τ
ω−1+o(τω−1). Note that ω 6= 0. Coefficient c0 can not

be the first non-zero term in the expansion, because it represents value of the function g in
the maturity time of the bond and hence it equals zero (since both f ap and f ex are equal to
1 at maturity). Except for function h(τ,r1,r2) = k3(r1,r2)τ

3 +o(τ3), all the terms in the
equation (5.10) are multiplied by at least one of the derivatives ∂r1g, ∂r2g, which are of
order O(τ). Hence all the terms, except h(τ,r1,r2), are of the order o(τω−1) for τ→ 0+.
Equation (5.10) then implies

−ωcω(r1,r2)τ
ω−1 = k3(r1,r2)τ

3.

We get ω = 4, which means that

g(τ,r1,r2) = lnPap(τ,r1,r2)− lnPex(τ,r1,r2) =−
1
4

k3(r1,r2)τ
4 +o(τ4).

Note that considering a difference of the logarithms of the bond prices is convenient
because of calculation of the relative error and the differences in the term structures.

In the next Chapter it is outlined how to implement this approach to two-factor conver-
gence model from The Chapter 3. Combing the approach from these two Chapters leads
to the three-factor convergence interest rate model. Details are explained in The Chapter
6.



6Chapter 6

A three-factor convergence
model of interest rates

We propose the three-factor convergence model of CKLS, in which the European short
rate is given as a sum of two unobservable factors on the market. The evolution of these
two-factors is described by two SDEs. The third SDE describes the evolution of the
domestic short rates. We derived the PDE for bond prices and we proposed the approxi-
mative analytical formula for the solution of this model.

• B. Stehlíková, Z. Bučková (Zíková): A three-factor convergence model of interest
rates. Proceedings of Algoritmy 2012, pp. 95-104.

A convergence model of interest rates explains the evolution of the domestic short rate in
connection with the European rate. The first model of this kind was proposed by Corzo
and Schwartz in 2000 and its generalizations were studied later. In all these models, the
European rates are modeled by a one-factor model. This, however, does not provide a
satisfactory fit to the market data. A better fit can be obtained using the model, where
the short rate is a sum of two unobservable factors. Therefore, we build the convergence
model for the domestic rates based on this evolution of the European market. We study
the prices of the domestic bonds in this model which are given by the solution of the
PDEs. In general, it does not have an explicit solution. Hence we suggest an analytical
approximative formula and derive the order of its accuracy in a particular case.

Generalization of the convergence model by Corzo and Schwarz has been studied in the
thesis [35] and the paper [14]. The European short rate is assumed to follow CIR and
general CKLS models respectively. It is shown in [36] that in the case of uncorrelated
Wiener processes governing the evolution of the European and domestic short rate, the
pricing of a domestic bond can be reduced to solving a system of ordinary differential
equations. For the general case, an analytical approximation formula has been suggested
in [14]. This model was then fit to real Euro area and Slovak data in the last quarter before
Slovakia joined the monetary union. The resulting fit is, however, not satisfying. This
is true for the modeling European rates by the CIR model in the first place. Hence the
first question when building a convergence model is the suitable model for the European
interest rates. This has been found in the thesis [30]. The instantaneous interest rate
is modeled as a sum of two unobservable mean reverting factors. Their sum is also
considered to be unobservable, instead of identifying it with an overnight rate, to prevent
the possible effect of speculations on the market affecting the overnight. This model
achieves a much better fit, see the comparison in the Figure 6.1.

79
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Figure 6.1: Fitting the European term structures from the last quarter of 2008 using the
1-factor CIR and 2-factor CIR models, selected days. Source: [14], [30].

In this Chapter we propose the convergence model, where the European short rate is
modeled as the sum of two factors of the CKLS type. Pricing European bonds is derived
in the cited work [30]. Here we focus on pricing the domestic bonds - finding explicit
solutions, proposing an analytical approximation for the general case and its preliminary
analysis.

The Chapter is organized as follows: In the Section 6.1 we define the model in terms
of a system of stochastic differential equations. The Section 6.2 deals with bond pricing
which is firstly considered in the general case and then in the special cases which will be
needed in the rest of the Chapter. In particular, we derive a closed form solution for the
Vasicek-type of a model and a reduction to a system of ODEs for a special case of the
CIR-type model. Based on the Vasicek closed form solution, we propose an analytical ap-
proximation formula for the general CKLS-type model. Using the ODE representation of
the exact solution of the CIR model, we derive the order of accuracy of the approximation
formula in this case. In the Section 6.3 we test the proposed approximation numerically.

6.1 Formulation of the model

We propose the following model for the joint dynamics of the European re and domestic
rd instantaneous interest rate. The European rate re = r1+r2 is modeled as the sum of the
two mean-reverting factors r1 and r2, while the domestic rate rd reverts to the European
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rate. Volatilities of the processes are assumed to have a general CKLS form. Hence

dr1 = κ1(θ1− r1)dt +σ1rγ1
1 dw1

dr2 = κ2(θ2− r2)dt +σ2rγ2
2 dw2

drd = κd((r1 + r2)− rd)dt +σdrγd
d dwd

with Cor(dw) =Rdt, where dw= (dw1,dw2,dwd)
T is a vector of Wiener processes with

correlation matrix R, whose elements (i.e., correlations between ri and r j) we denote by
ρi j.

Figure 6.2 and Figure 6.3 show the evolution of the factors and the interest rates for
the following set of parameters: κ1 = 3,θ1 = 0.02,σ1 = 0.05,γ1 = 0.5,κ2 = 10,θ2 =
0.01;σ2 = 0.05,γ2 = 0.5,κd = 1,σd = 0.02,γd = 0.5,ρi j = 0 for all i, j.

Figure 6.2: Simulation of the factors r1,r2 (left) and the European short rate re = r1 + r2
(right).

Figure 6.3: Simulation of the European short rate re and the domestic short rate rd .

6.2 Bond prices

To compute the bond prices, it is necessary to specify the so called market prices of
risk for each factor, in addition to the SDEs for the short rates. Denoting the market
prices of risk as λ1 = λ1(t,r1,r2,rd), λ2 = λ2(t,r1,r2,rd), λd = λd(t,r1,r2,rd) we obtain
the following PDE for the price P = P(τ,r1,r2,rd) of the bond with time to maturity
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τ = T − t (c.f. [34]):
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The PDE holds for all rd,r1,r2 > 0 and τ ∈ [0,T ] and it satisfies the initial condition
P(0,rd,r1,r2) = 1 for all rd,r1,r2 > 0.

6.2.1 Vasicek and CIR type convergence models

We define the Vasicek-type convergence model as the model, where the volatilities of the
factors are all constant (i.e., γ1 = γ2 = γd = 0), as a generalization of the one-factor model
[58]. Similarly as in this one-factor model, we consider constant market prices of risk,
i.e., λ1(t,r1,r2,rd) = λ1,λ2(t,r1,r2,rd) = λ2,λd(t,r1,r2,rd) = λd , where λ1,λ2 and λd
are constants.

Similarly, as in one-factor and two-factor models proposed in [21] we define the CIR-
type convergence model as the model with γ1 = γ2 = γd = 1/2 and the market prices of
risk proportional to the square roots of the corresponding factors, i.e., λ1(t,r1,r2,rd) =
λ1
√

r1,λ2(t,r1,r2,rd) = λ2
√

r2,λd(t,r1,r2,rd) = λd
√

rd , where λ1,λ2 and λd are con-
stants.

The PDE for the bond price then reads as

−∂P
∂τ

+µd
∂P
∂ rd

+µ2
∂P
∂ r1

+µ3
∂P
∂ r2

++
σ2

d r2γd
d

2
∂ 2P
∂ r2

d
+

σ2
1 r2γ1

1
2

∂ 2P
∂ r2

1
+

σ2
2 r2γ2

2
2

∂ 2P
∂ r2

2

+ρ1dσdrγd
d σ1rγ1

1
∂ 2P

∂ rd∂ r1
+ρ2dσdrγd

d σ2rγ2
2

∂ 2P
∂ rd∂ r2

+ρ12σ1rγ1
1 σ2rγ2

2
∂ 2P

∂ r1∂ r2
− rdP = 0,

where
µd = a1 +a2rd +a3r1 +a4r2,µ2 = b1 +b2r1,µ3 = c1 + c2r2

(note that they are in fact the so called risk neutral drifts, c.f. [7] for the relation between
bond pricing and the risk neutral measure) with

• a1 = −λdσd , a2 = −κd , a3 = κd , a4 = κd , b1 = κ1θ1− λ1σ1 ,b2 = −κ1, c1 =
κ2θ2−λ2σ2, c2 =−κ2 in the Vasicek-type model,

• a1 = 0 a2 =−κd−λdσd , a3 = κd , a4 = κd , b1 = κ1θ1, b2 =−κ1−λ1σ1, c1 = κ2θ2,
c2 =−κ2−λ2σ2 in the CIR-type model.

We show that in the Vasicek case and the uncorrelated version (i.e., if the Wiener pro-
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cesses w1,w2,wd are uncorrelated) of the CIR case, the solution of the PDE, can be
written in a separable form

P(rd,r1,r2,τ) = eA(τ)rd+B(τ)r1+C(τ)r2+D(τ). (6.1)

Furthermore, in the Vasicek model the functions A,B,C,D can be written in the closed
form. In the CIR model, they are solutions to the system of ODEs which can be solved
numerically much easier than the original PDE.

To prove the claim about the Vasicek model we insert the expected form of the solution
(6.1) into the PDE with γi = 0. We obtain

rd(−Ȧ+a2A−1)+ r1(−Ḃ+a3A+b2B)+ r2(−Ċ+a4A+ c2C)

+(−Ḋ+a1A+b1B+ c1C+
σ2

d
2

A2 +
σ2

1
2

B2 +
σ2

2
2

C2

+ρ1dσdσ1AB+ρ2dσdσ2AC+ρ12σ1σ2BC) = 0

which implies the following system of ODEs:

Ȧ = a2A−1,
Ḃ = a3A+b2B,
Ċ = a4A+ c2C,

Ḋ = a1A+b1B+ c1C+
σ2

d
2

A2 +
σ2

1
2

B2 +
σ2

2
2

C2 +ρ1dσdσ1AB

+ρ2dσdσ2AC+ρ12σ1σ2BC, (6.2)

with initial conditions A(0)=B(0)=C(0)=D(0)= 0. Functions A,B,C are easily found
to be equal to (here and in the subsequent analysis we assume that a2 6= b2 and a2 6= c2,
and we omit the very special case when the coefficients are equal)

A(τ) =
1− ea2τ

a2
,

B(τ) =
a3
(
b2(1− ea2τ)−a2(1− eb2τ)

)
a2b2(a2−b2)

,

C(τ) =
a4 (c2(1− ea2τ)−a2(1− ec2τ))

a2c2(a2− c2)
.

The function D can be found by integration. For the sake of brevity we omit the details.

Now we consider the uncorrelated CIR case. Substituting γi = 1/2 and zero correlations
ρi j = 0; and inserting the expected form of the solution (6.1) into the PDE we obtain

rd(−Ȧ+a2A+
σ2

d
2

A2−1)+ r1(−Ḃ+a3A+b2B+
σ2

1
2

B2)

+r2(−Ċ+a4A+ c2C
σ212

2
C2)+(−Ḋ+a1A+b1B+ c1C) = 0
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which implies the system of ODEs

Ȧ = a2A+
σ2

d
2

A2−1,

Ḃ = a3A+b2B+
σ2

1
2

B2,

Ċ = a4A+ c2C+
σ2

2
2

C2,

Ḋ = a1A+b1B+ c1C, (6.3)

with initial conditions A(0) = B(0) =C(0) = D(0) = 0. Firstly, we find the function A by
separation of variables. Then, we independently numerically solve the ODEs for B and
C, and finally by numerical integration we obtain the function D.

Figure 6.4 shows the examples of term structures from the CIR-type model, where we
have taken λd = λ1 = λ2 = 0. The remaining parameters are the same as in the section
6.1. Note the variety of the term structure shapes which can be obtained for the same
values of both the domestic short rate rd and the European short rate re, depending on the
decomposition of re into the factors r1 and r2.

Figure 6.4: Examples of term structures in the CIR-type convergence model. Domestic
short rate rd equals 4% (left) and 3% (right). European short rate re equals
5%, the term structures correspond to its different decompositions into fac-
tors: r1 = 4%,r2 = 1%; r1 = 2.5%,r2 = 2.5%; r1 = 1%,r2 = 4%.

6.2.2 Analytical approximation formula for general
convergence model

In the general case of the convergence model the assumption (6.1) does not lead to a so-
lution. We use the idea of finding an approximative formula which has been successfully
used in simpler models (one-factor models in [53], two-factor models in [30] and [14]).
We consider the closed form solution from the model of the Vasicek type and replace
its constant volatilities σ1,σ2,σd by instantaneous volatilities σ1rγ1

1 , σ2rγ2
2 , σdrγd

d . In this
way we obtain the approximation Pap = Pap(τ,r1,r2,rd).
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6.2.3 Order of accuracy in the case of uncorrelated CIR model

Recall that we have the separated form of the solution (6.1) for the bond price in CIR
model with zero correlations ρi j and the system of ODEs (6.3). The system (6.3) enables
us to compute the derivatives of the functions A,B,C,D at τ = 0 (see Table 6.1) and
consequently the Taylor series expansion of lnP(τ,r1,r2,rd) around τ = 0.

Table 6.1: Calculation of the derivatives of functions A,B,C,D from the CIR model with zero correlations

i 0 1 2 3 4
Ai(0) 0 −1 −a2 −a2

2 +σ2
d −a3

2 +4a2σ2
d

Bi(0) 0 0 −a3 −a3a2−a3b2 −a2
2a3 +a3σ2

d −a2a3b2−a3b2
2

Ci(0) 0 0 −a4 −a4a2−a4c2 −a2
2a4 +a4σ2

d −a2a4c2−a4c2
2

Di(0) 0 0 −a1 −a1a2−b1a3− c1a4 −a1a2
2 +a1σ2

d −a2a3b1
−a3b1b2−a2a4c1−a4c1c2

The approximation formula Pap is given in the closed form, hence the Taylor series can
be computed also for lnPap(τ,r1,r2,rd). (Alternatively, we can use the system of ODEs
similarly as in the case of the exact solution.) The derivatives needed in the expansion
are shown in Table 6.2.

Table 6.2: Calculation of the derivatives of functions A,B,C,D from the approximation of the CIR model
with zero correlations.

i 0 1 2 3 4
Ai(0) 0 −1 −a2 −a2

2 −a3
2

Bi(0) 0 0 −a3 −a3a2−a3b2 −a2
2a3−a2a3b2−a3b2

2
Ci(0) 0 0 −a4 −a4a2−a4c2 −a2

2a4−a2a4c2−a4c2
2

Di(0) 0 0 −a1 −a1a2−b1a3− c1a4 +σ2
d rd −a1a2

2−a2a3b1−a3b1b2
−a3b1b2−a2a4c1−a4c1c2

+3a2σ2
d rd

Comparing the expressions in Table (6.1) and Table (6.2) we obtain the order of the
difference lnPap(τ,r1,r2,rd)− lnP(τ,r1,r2,rd) which can be interpreted in terms of the
relative error in bond prices and the absolute error in term structures, as stated in the
following theorem and its corollary.

Theorem 6.1. Let PCIR,ρ=0 be the bond price in the CIR-type convergence model with
zero correlations and let PCIR,ρ=0,ap be its approximation proposed in the Section 6.2.2.
Then

lnPCIR,ρ=0,ap− lnPCIR,ρ=0 =− 1
24

σ
2
d (a1 +a2rd +a3r1 +a4r2)τ

4 +o(τ4)

for τ → 0+.
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Note that the form of the leading term of the approximation error (i.e., − 1
24σ2

d times
the risk neutral domestic drift) is the same as in the two-factor convergence model [14],
where the analogical strategy of forming the approximative formula has been used.

Corollary 6.2. 1. The relative error of the bond price satisfies

PCIR,ρ=0,ap−PCIR,ρ=0

PCIR,ρ=0 =− 1
24

σ
2
d (a1 +a2rd +a3r1 +a4r2)τ

4 +o(τ4)

for τ → 0+.

2. The error in interest rates R can be expressed as

RCIR,ρ=0,ap−RCIR,ρ=0 =
1

24
σ

2
d (a1 +a2rd +a3r1 +a4r2)τ

3 +o(τ3)

for τ → 0+.

Proof. The first corollary is a consequence of the Taylor expansion of the exponential
function ex = 1+ x+ o(x) for x→ 0+. The second corollary follows from the formula
R(τ,r) = − lnP(τ,r)

τ
for calculating the interest rates R from the bond prices P (c.f. [7],

[34]).

6.3 Numerical experiment

We consider the term structures presented in Figure 6.4 and compare them with the ap-
proximate values obtained by the proposed formula. The results are summarized in Table
6.3 and Table 6.4. The accuracy is very high (note that Euribor is quoted to three decimal
places) even for higher maturities.

Table 6.3: Exact interest rates and their approximations obtained by the proposed formula. The domestic
short rate is 4%, the European short rate is 5%, the columns correspond to the different values
of the factors: r1 = 4%,r2 = 1% (left), r1 = 2.5%,r2 = 2.5% (middle), r1 = 1%,r2 = 4%
(right).

maturity exact approx. exact approx. exact approx.
0 4.00000 4.00000 4.00000 4.00000 4.00000 4.00000

0.25 4.06607 4.06607 4.01638 4.01638 3.96668 3.96668
0.5 4.05591 4.05591 3.95219 3.95219 3.84847 3.84847

0.75 4.00932 4.00931 3.87493 3.87493 3.74055 3.74054
1 3.94734 3.94733 3.7995 3.79949 3.65166 3.65165
2 3.69802 3.69796 3.56221 3.56217 3.4264 3.42638
3 3.52184 3.52171 3.41487 3.41479 3.30791 3.30788
4 3.40688 3.40669 3.32208 3.32196 3.23728 3.23724
5 3.32995 3.32972 3.26077 3.26062 3.19158 3.19153
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Table 6.4: Exact interest rates and their approximations obtained by the proposed formula. The domestic
short rate is 3%, the European short rate is 5%, the columns correspond to the different values
of the factors: r1 = 4%,r2 = 1% (left), r1 = 2.5%,r2 = 2.5% (middle), r1 = 1%,r2 = 4%
(right).

maturity exact approx. exact approx. exact approx.
0 3.00000 3.00000 3.00000 3.00000 3.00000 3.00000

0.25 3.18127 3.18127 3.13158 3.13158 3.08189 3.08189
0.5 3.26898 3.26898 3.16526 3.16526 3.06154 3.06154
0.75 3.30582 3.30583 3.17144 3.17144 3.03705 3.03705

1 3.31524 3.31524 3.1674 3.16741 3.01957 3.01957
2 3.26573 3.2657 3.12992 3.12991 2.99411 2.99412
3 3.20515 3.20508 3.09818 3.09816 2.99122 2.99124
4 3.1615 3.1614 3.0767 3.07667 2.9919 2.99194
5 3.13134 3.13121 3.06215 3.06211 2.99296 2.99301





Part II

Alternating direction explicit
methods, Fichera theory and Trefftz

methods

89





7Chapter 7

Introduction to the numerical
solutions, ADE schemes,
Fichera theory and option
pricing

We focus on the ADE methods, as an efficient scheme, which can be used for a wide
range of financial problems. Originally, we had planned to implement special meshes,
such as Shishkin’s mesh, but analysis showed that usage of this mesh decreases the con-
vergence order of our scheme. Instead of a second order scheme, we would just obtain a
first order scheme.
Hence, we use a uniform mesh, in all space directions, and both in time and space.
According to the consistency proofs and experimental convergence study of the ADE
schemes, we can confirm that they are suitable for the uniform grid, because usage of a
nonuniform grid would ruin the second order accuracy, as well.

Designing the numerical scheme, we not only need to take care for the choice of a mesh,
but we also have to choose the boundary conditions carefully, as well. Because of the
issue with the boundary conditions we have studied the Fichera theory, which helped us
to distinguish how to define boundary conditions for PDEs degenerating on the boundary.
According to the sign of the Fichera function, we chose which kind of boundary condi-
tions needs to be supplied.
The second issue about boundary conditions is the influence of the stability of the numer-
ical scheme. Since the matrix approach also includes boundary conditions, we prefer to
use it for the stability analysis instead of the von Neumann stability analysis.

We have considered the ADE method, that strongly uses boundary data in the solution
algorithm and hence it is very sensible to incorrect treatment of boundary conditions.
We have implemented the ADE scheme for solving linear and nonlinear BS equations by
treating the nonlinearity explicitly. ADE scheme consists of two steps (sweeps). In the
first step an upward sweeping is used and in the second step on downward sweeping is
used and they are combined after each time step. To our knowledge, the ADE scheme
has not been applied to nonlinear PDEs before.
It can compete to the Crank-Nicolson scheme, Alternating Direction Implicit (ADI) and
locally one-dimensional LOD splitting method. Applying the ADE method to linear
models leads to an explicit scheme with unconditional stability. Applying the ADE to
nonlinear models does not lead to an explicit scheme any more. In each time step we

91



92 7 Intro to numerical solutions, ADE schemes, Fichera theory, option pricing

need to solve a scalar nonlinear equation, but no any more nonlinear system of equation.
Hence, the computational effort using ADE instead of an implicit scheme is reduced
significantly. For nonlinear cases we obtain only conditional stability. ADI methods and
Splitting methods are examples of the Multiplicative Operator Scheme (MOS), which is
difficult to parallelize. Methods from the family of Additive Operator Scheme (AOS) can
be parallelized. ADE methods also belong to this group of methods. The ADE scheme
consists of two explicit sweeps. The sweeping procedure is done from one boundary to
another and vice versa.

7.1 Proper treatment of boundary conditions, using
Fichera theory

The Fichera theory was first proposed in 1960 by Gaetano Fichera and later developed
by Olejnik and Radkevič in 1973. It turned out to be very useful for establishing the
well-posedness of initial boundary value problems for PDEs degenerating to hyperbolic
PDEs at the boundary.

The Fichera theory focuses on the question of appropriate boundary conditions (BCs) for
parabolic PDEs degenerating at the boundary. According to the sign of the Fichera func-
tion one can separate the outflow or inflow part of the solution at the boundary. Thus, this
classical theory indicates whether one has to supply a BC at the degenerating boundary.

In this paper we illustrate the application of the Fichera theory to the Cox-Ingersoll-Ross
(CIR) interest rate model and its generalization, the Chan-Karolyi-Longstaff-Sanders
(CKLS) model [16]. Here, at the left boundary the interest rate tends to zero and thus
the parabolic PDE degenerates to a hyperbolic one. For further applications of Fichera
theory to other current models in financial mathematics we refer the interested reader to
[22].

7.2 Option pricing with Black-Scholes model

In 1973 Fischer Black and Myron Scholes in the paper [5] derived the well-known Black-
Scholes formula (BS), which has the form of the PDE for the option price. Starting with
SDE for an underlying stock price, using Itô formula, constructing risk-free portfolio,
using no-arbitrage principe they derived the derived formula, whose solution is near to a
fair price in the market. Later the paper Black-Scholes options pricing model by Robert
Merton was published. In 1997 Scholes and Merton were awarded by the Nobel prize for
their work.

The Black-Scholes equation is a parabolic PDE with space dependent coefficients:

vt =
1
2

σ
2S2vSS + rSvS− rv, t ≥ 0, ∀S ∈ R, (7.1)
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where the solution v(S, t) stands for a European option price. A European call (put)
option is a contract between its buyer and holder, to buy (sell) a stock at the maturity time
T (final time) for the fixed price K, called also strike price. Solution of the linear equation
(7.1) is given in closed form formula and it is known as a Black-Scholes formula. Black-
Scholes equation is derived under strict assumptions in the market, such as no transaction
costs, illiquidity, etc. Modeling this phenomena in a more realistic way, it leads to the
nonlinear BS model which does not have any more analytical solution.

7.2.1 Multi-dimensional Black-Scholes models

One of the simplest financial derivative pricing models is the Black-Scholes model, which
has the form of a one dimensional PDE with one space dimension and one time dimen-
sion.

Considering more complex models, that include a variety of market effects such as
stochastic volatility or correlation among financial assets can increase the dimensionality
of the pricing PDE. Also, pricing financial derivatives with more than one underlying as-
set yields PDEs that have at least as many spatial dimensions as the number of underlying
assets.

Since a closed form formula can be only found in very special cases, determining solu-
tions for these models has to be done in general using numerical methods, but the higher
the dimension of the PDE models the bigger the overall complexity of the implementation
of these methods.

Since the ADE scheme is explicit, stable and thus efficient, it represents a good candidate
to compute the numerical solution of these multi-dimensional models in finance.

Here we present the implementation of the ADE schemes to two and three dimensional
models appearing in finance, esp. the multi-dimensional linear Black-Scholes model. One
of the advantages of this approach is that its fundamental implementation set-up can be
transferred to higher dimensions.

We study a financial derivative that can be exercised only at a pre-fixed maturity time T
(commonly referred as ’European’ option) and whose payoff depends on the value of N
financial assets with prices S1, . . . ,SN . We assume a financial market with the standard
Black-Scholes assumptions, explained in details e.g. in [60]. Although this is very re-
strictive from the modeling point of view, it is enough to illustrate the implementation of
the ADE schemes in a high-dimensional setting. Under this model the price of a deriva-
tive V (S1, . . . ,SN ,τ) is given by the following N−dimensional linear parabolic PDE:

∂V
∂τ

=
N

∑
i=1

N

∑
j=1

Γi jSiS j

2
∂ 2V

∂Si∂S j
+

N

∑
i=1

rSi
∂V
∂Si
− rV, τ ≥ 0, ∀S ∈ R+

0 , (7.2)

where r denotes the risk-free interest rate, τ = T − t is the remaining time to the maturity
time T and we have the covariance matrix Γ,
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Γi j ≡ ρi jσiσ j, i, j = 1, . . . ,N, (7.3)

with ρi j being the correlation between asset i and j and σi the standard deviation of the
asset i. Additionally we have an initial condition which is defined by the payoff of the
option,

V (S1, . . . ,SN ,0) = Φ(S1, . . . ,SN). (7.4)

We obtain different models by choosing different numbers of underlying assets (i.e. the
number of spatial variables) and defining different payoff functions with corresponding
initial conditions. Here we consider both spread options and call options, which have
payoffs given by:

2−D Spread option: V (S1,S2,0) = max(S1−S2−K,0),
N−D Call option: V (S1, . . . ,SN ,0) = max(max(S1, . . . ,SN)−K,0)).

7.3 Alternating Direction Explicit Schemes

ADE schemes are efficient finite-difference schemes to solve PDEs where the discretiza-
tion of the spatial derivatives is made using available information of both the current and
the previous time-steps such that the solution can be determined without solving a linear
system of equations.

ADE schemes were proposed by Saul’ev [47] in 1957, later developed by Larkin [37],
Bakarat and Clark [3] in 1964-66. More recently, these schemes have received some
attention by Duffy [24], [23] 2013 and Leung and Osher [38] 2005 who have studied and
applied these schemes in both financial modeling and other applications.

Some advantages of the ADE methods are that they can be implemented in a parallel
framework and are very fast due to their explicitness; for a complete survey on the ad-
vantages and the motivation to use them in a wide range of problems we refer the reader
to [22], [23].

Numerical analysis results focusing on stability and consistency considerations are de-
scribed in [38] and [8]. In [8] a numerical analysis of convection-diffusion-reaction equa-
tion with constant coefficients and smooth initial data is provided. The authors proved
that the ADE method applied to the one-dimensional reaction-diffusion equation on a
uniform mesh with the discretization of the diffusion according to Saul’ev [47] and the
discretization of the convection term following Towler and Yang [55] is unconditionally
stable. If a convection term is added to the equation and upwind discretization for this
term is used, the ADE scheme is also unconditionally stable c.f. [8].

In the ADE schemes one computes for each time level two different solutions which are
referred to as sweeps. Hereby the number of sweeps does not depend on the dimension.
It has been shown [8, 24, 38] that for the upward and downward sweep the consistency is
of order O((dτ)2 +h2 + dτ

h ) where dτ is the time step and h denotes the space step. An
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Figure 7.1: Upward sweep Figure 7.2: Downward sweep

exceptionality of the ADE method is that the average of upward and downward solutions
has consistency of order O((dτ)2+h2). For linear models, unconditional stability results
and the O((dτ)2 +h2) order of consistency lead to the O((dτ)2 +h2) convergence order.

Stability, consistency and convergence analysis can be extended to higher dimensional
models.

The straightforward implementation also to nonlinear cases with preserving good stabil-
ity and consistency properties of the scheme is also a strong advantage. In this paper we
show how one can implement this scheme for higher dimensional models by focusing
on a linear model. However, one could use this procedure for non-linear models as well.
One way how to do it is to solve nonlinear equation in each time level, instead of system
of nonlinear equations in case of implicit schemes. Another way is to keep nonlinearity
in the explicit form and solve it directly. Powerful tool for nonlinear equations represents
also the Alternating segment explicit-implicit and the implicit-explicit parallel difference
method [63].

7.3.1 The Idea of the ADE scheme

The ADE scheme consists of two explicit sub steps, called sweeps. A sweeping step is
constructed from one boundary to another and vice versa. Figure 7.1 is an illustrative
example of an upward sweep (analogous to the downward sweep in Figure 7.2).

Figures 7.1 and 7.2 display the grid for the calculating the price of call option in the
Black-Scholes model. The blue line represents the payoff as an initial condition and the
green lines are given by Dirichlet boundary conditions for small and big asset values.
Calculation is provided backward in time.

To calculate the value of the yellow point we use the black values. We can see that we do
not use only values from the previous time level but also already known values from the
current time level, which preserve explicitness of the scheme. After each time level we
combine the solutions from the upward and downward sweep by averaging.
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To introduce the ADE method systematically we follow the lines of Leung and Osher
[38], and Duffy [22]. The computational spatial interval (xmin,xmax), or (0,Smax), re-
spectively, is divided into J subintervals, i.e. the space step is h = (xmax−xmin)/J and the
grid points x j = jh, or h = Smax/J, S j = jh, respectively. Thus we get for the coefficients
of the BS equation (7.1) a(S j) =

1
2σ2( jh)2, b(S j) = r jh, c(S j) = r.

We consider the resulting spatial semidiscretization to the PDE (7.1), i.e. the following
system of ODEs

v′ = A(v)v, t > 0, (7.5)

with v(t) ∈RJ−1. Let us consider for simplicity a uniform grid; the time interval [0,T ] is
divided uniformly into N sub-intervals, with the step size k = T/N, i.e. we have the grid
points tn = nk. Applying the trapezoidal rule to (7.5) leads to the Crank-Nicolson scheme

vn+1 =
[
I− kA(vn)

]−1[I + kA(vn)
]
vn, (7.6)

where vn ≈ v(tn). While this classical scheme (7.6) is unconditionally stable and of sec-
ond order in time and space, it becomes computationally expensive to invert the operator
I− kA(vn) especially in higher space dimensions. In order to obtain an efficient scheme
while keeping the other desirable properties, this operator is split additively by the matrix
decomposition A = L+D+U , where L is lower diagonal, D is diagonal and U denotes
an upper-diagonal matrix. Next, following the notation of [38] we further define the
symmetric splitting

B = L+
1
2

D, C =U +
1
2

D. (7.7)

Then we can formulate the three steps of the ADE scheme with its upward/downward
sweeps and the combination (also for higher dimensions) as

UP un+1 =
[
I− kB(vn)

]−1[I + kC(vn)
]
vn, (7.8)

DOWN dn+1 =
[
I− kC(vn)

]−1[I + kB(vn)
]
vn, (7.9)

COMB vn+1 =
1
2
[
un+1 +dn+1]. (7.10)

In other words, in the two sweeps above we assign the solution values that are already
computed on the new time level to the operator to be inverted. Hence, the resulting
scheme is explicit, i.e. efficient. There remain the questions, if we could preserve the
unconditional stability and second order accuracy. This will be our main topic in the
sequel.

Let us summarize the procedure for one space dimension. The approximation to the
solution v(x, t) at the grid point (x j, tn) is c(x j, tn) =: cn

j given as an average of upward
sweep un

j and downward sweep dn
j . This combination cn

j contains the initial data at the
beginning. For n = 0,1, . . . ,N−1 we repeat the following steps:

1. Initialization: un
j = cn

j , dn
j = cn

j , j = 1, . . . ,J−1

2. Upward sweep: un+1
j , j = 1, . . . ,J−1
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3. Downward sweep: dn+1
j , j = J−1, . . . ,1

4. Combination: cn+1 = (un+1 +dn+1)/2

Using different approximation strategies for the convection, diffusion and reaction terms
we obtain different variations of the ADE schemes, which were proposed by Saul’ev [47].

7.3.2 Solving PDEs with the ADE method

We start considering the partial differential equation (PDE)

vt = avxx +bvx− cv, t ≥ 0, ∀x ∈ R, (7.11)

with the constant coefficients a ≥ const. > 0, b ≥ 0, c ≥ 0 and supplied with smooth
initial data. We denote the analytical classical solution of (7.11) by v := v(x, t) and use
subscripts to abbreviate partial differentiation, e.g. vxx := ∂ 2v/∂x2.

Secondly, we will consider the classical linear Black-Scholes (BS) equation

vt =
1
2

σ
2S2vSS + rSvS− rv, t ≥ 0, ∀S ∈ R, (7.12)

which is a generalization of the PDE (7.11) to space dependent coefficients. In compu-
tational finance a solution v(S, t) of the PDE (7.12) represents a European option price.
A European option is a contract between the holder of the option and the future buyer,
that at a time instance T , the expiration time, the underlying asset (stock) can be sold or
bought (call or put option) for a fixed strike price K. Using the Black-Scholes formula
the option price is calculated for the corresponding underlying asset price S (stock price)
in a time interval t ∈ (0,T ).

Let us note that the BS equation (7.12) is derived under quite restrictive market assump-
tions, which are not very realistic. Relaxing these assumptions leads to new models
(e.g. including transaction costs, illiquidity on the market) that are strongly nonlinear BS
equations that can only be solved analytically in very simple cases.

While there exist analytical tools to solve explicitly (7.11) and (7.12), the interest in
studying the ADE method for these simple 1D cases is the fact that we want to extend this
approach in a subsequent work to nonlinear PDEs and to higher dimensions. Applying
the ADE to the nonlinear BS equations we need to solve only a scalar nonlinear equation
(instead of a nonlinear system of equations for a standard implicit method). Thus, the
computational effort using ADE instead of an implicit scheme is highly reduced. Also,
for higher space dimensions the number of ADE sweeps does not increase, it remains
two. These facts make the ADE methods an attractive candidate to study them in more
detail.





8Chapter 8

Fichera theory and its
application to finance

Firstly, we discuss the Fichera theory that helps us to determine in which cases boundary
conditions are needed and in which cases they are not allowed.

In this Chapter we outline the application of the Fichera theory to interest rates models
of Cox-Ingersoll-Ross (CIR) and Chan-Karolyi-Longstaff-Sanders (CKLS) type. For the
one-factor CIR model the obtained results are consistent with the corresponding Feller
condition.

Chapter is based on

• Z. Bučková, M. Ehrhardt, M. Günther: Fichera theory and its application to fi-
nance, Proceedings ECMI 2014, Taormina, Sicily, Italy, 2016

8.1 The Boundary Value Problem for the Elliptic
PDE

We consider an elliptic second order linear differential operator

Lu =
n

∑
i, j=1

ai j
∂ 2u

∂xi∂x j
+

n

∑
i=1

bi
∂u
∂xi

+ cu, x ∈Ω⊂ Rn, (8.1)

where A= (ai j)∈Rn×n is symmetric and induces a semi-definite quadratic form ξ>Aξ ≥
0 for all ξ ∈ Rn. Σ denotes a piecewise smooth boundary of the domain Ω. The subset
of Σ where the quadratic form vanishes, ξ>Aξ = 0, will be denoted as Σh (hyperbolic
part) and the set of points of Σ where the quadratic form remains positive, ξ>Aξ > 0,
is denoted as a Σp (parabolic) part. For Σh, the hyperbolic part of the boundary Σh, we
introduce the Fichera function

b =
n

∑
i=1

(
bi−

n

∑
k=1

∂aik

∂xk

)
νi, (8.2)

where νi is the direction cosine of the inner normal to Σ, i.e. it is νi = cos(xi,~ni), where
~ni is the inward normal vector at the boundary.
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On the hyperbolic part of the boundary Σh we define according to the sign of the Fichera
function the three subsets Σ0 (b = 0 tangential flow), Σ+ (b > 0, outflow) and Σ− (b < 0,
inflow), i.e. the boundary Σ = Σp ∪Σh can be written as a unification of four boundary
parts: Σ = Σp∪Σ0∪Σ+∪Σ−.

Olejnik and Radkevič [41, Lemma 1.1.1] showed that the sign of the Fichera function b at
the single points Σh does not change under smooth non-degenerate changes of indepen-
dent variables in a given elliptic operator (8.1). In [41, Theorem 1.1.1] it is stated that the
subsets Σ0, Σ+, Σ− remain invariant under a smooth nonsingular changes of independent
variables in the elliptic operator (8.1).

The parabolic boundary Σp can be rewritten as a unification of two sets ΣD
p (Dirichlet

BC) and ΣN
p (Neumann BC). Let us state one simple example.

Example 8.1. [28] The boundary value problem for an elliptic PDE reads

Lu = f on Ω⊂ Rn,

u = g on Σ−∪Σ
D
p ,

ai j
∂u
∂xi

n j = h on Σ
N
p .

If ΣN
p is an empty set, we obtain a Dirichlet problem; if ΣD

p is an empty set, a Neumann
problem; if ΣD

p and ΣN
p are not empty, the problem is of mixed Dirichlet-Neumann type.

Recall that for hyperbolic PDEs one must not supply BCs for outflow boundaries (Σ+) or
boundaries where the characteristics are tangential to the boundary (Σ0), since this may
violate the information that is transported from the interior of the domain.

8.2 Application to one-factor interest rate Models
of CKLS type

We deal with the models from the first part of the thesis. We start with an interest rate
model in the form of a stochastic differential equation

dr = κ(θ − r)dt +σrγ dW, (8.3)

where κ , θ are positive constants, and γ non-negative. This CKLS model [16] is a mean-
reversion process with non-constant volatility σrγ . Using the Itô formula for a duplicat-
ing portfolio in a risk neutral world one can derive a PDE for the zero-coupon bond price
P(r,τ):

∂P
∂τ

= α(r,τ)
∂ 2P
∂ r2 +β (r,τ)

∂P
∂ r
− rP, r > 0, τ > 0, (8.4)

where α(r,τ) = 1
2σ2r2γ , β (r,τ) = κ(θ − r). A closed form formula for this model can

be given in special cases, c.f. [7]:



8.3 A two-factor interest rate Model 101

a) if γ = 0, this is the classical Vašíček model with constant volatility.

b) for γ = 0.5, we get the Cox-Ingersoll-Ross (CIR) model (CIR), [21].

For general γ (CKLS model) there is no closed form formula for the bond price P(r,τ)
and the PDE (8.4) has to be solved numerically.

The volatility term in (8.4), for a short rate r tending to zero, is α(0,τ) = 0. Thus the
parabolic PDE (8.4) reduces at r = 0 to the hyperbolic PDE

∂P
∂τ

= κθ
∂P
∂ r

, τ > 0. (8.5)

Next, the Fichera function (8.2) for our model reads

b(r) = β (r,τ)− ∂α(r,τ)
∂ r

, (8.6)

and we check the sign of (8.6) for r→ 0+:

• if lim
r→0+

b(r)≥ 0 (outflow boundary) we must not supply any BCs at r = 0.

• if lim
r→0+

b(r)< 0 (inflow boundary) we have to define BCs at r = 0.

Especially for the proposed model we get b(r) = κ(θ − r)−σ2γr2γ−1 and we we can
distinguish the following situations:

a) for γ = 0.5 (CIR model)⇒ if κθ −σ2/2≥ 0, we do not need any BCs.

b) for γ > 0.5⇒ if κθ ≥ 0, we do not need any BCs.

c) for γ ∈ (0,0.5)⇒ if lim
r→0+

b(r) =−∞, we need BCs.

Remark 8.1 (Feller condition). The Feller condition guaranteeing a positive interest
rate defined by (8.3) for the one-factor CIR model is 2κθ > σ2 and is equivalent with the
condition derived from the Fichera theory. If the Feller condition holds, then the Fichera
theory states that one must not supply any BC at r = 0.

8.3 A two-factor interest rate Model

We consider a general two-factor model given by the set of two SDEs

dx1 = (a1 +a2x1 +a3x2)dt +σ1xγ1
1 dW1, (8.7)

dx2 = (b1 +b2x1 +b3x2)dt +σ2xγ2
2 dW2, (8.8)

Cov[dW1,dW2] = ρ dt, (8.9)
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containing as special cases the Vašíček model (γ1 = γ2 = 0) and the CIR model (γ1 =
γ2 = 0.5). The drift functions are defined as linear functions of the two variables x1 and
x2. Choosing a1 = b1 = b2 = 0 we get two-factor convergence model of CKLS type (in
case of general γ1, γ2 ≥ 0). The variable x1 models the interest rate of a small country
(e.g. Slovakia) before entering the monetary EURO union and the variable x2 represents
the interest rate of the union of the countries (such as the EU).

Applying the standard Itô formula one can easily derive a parabolic PDE

∂P
∂τ

= ã11
∂ 2P
∂x2

1
+ ã22

∂ 2P
∂x2

2
+ ã12

∂ 2P
∂x1∂x2

+ ã21
∂ 2P

∂x2∂x1
+ b̃1

∂P
∂x1

+ b̃2
∂P
∂x2

+ c̃P, (8.10)

where P(x,y,τ) represents the bond price at time τ for interest rates x and y, and

ã11 =
σ2

1 x2γ1
1

2
, ã22 =

σ2
2 x2γ2

2
2

, ã12 = ã21 =
1
2

ρσ1xγ1
1 σ2xγ2

2

b̃1 = a1 +a2x1 +a3x2, b̃2 = b1 +b2x1 +b3x2, c̃ =−x1,

for x1,x2 ≥ 0, τ ∈ (0,T ), with initial condition P(x1,x2,0) = 1 for x1, x2 6= 0.

Now, the Fichera function (8.2) in general reads

b(x1,x2) =

[
a1 +a2x1 +a3x2−

(
σ

2
1 γ1x2γ1−1

1 +
1
2

ρσ1xγ1
1 σ2γ2xγ2−1

2

)] x1√
1+ x2

1

+

[
b1 +b2x1 +b3x2−

(1
2

ρσ1γ1xγ1−1
1 σ2xγ2

2 +σ
2
2 γ2x2γ2−1

2

)] x2√
1+ x2

2

.

Depending on γ1 and γ2, we get the following results:

• For γ1 = γ2 = 0 (classical Vašíček model), the Fichera function simplifies to

b(x1,x2) = (a1 +b1)+(a2 +b2)x1 +(a3 +b3)x2,

and boundary conditions must be supplied, if
x1 ≤−a1+b1+(a3+b3)x2

a2+b2
for a2 +b2 6= 0

x2 ≤−a1+b1
a3+b3

for a2 +b2 = 0,a3 +b3 6= 0
a1 +b1 ≤ 0 for a2 +b2 = 0,a3 +b3 = 0

.

• For γ1 = γ2 = 0.5 (CIR model), the Fichera function simplifies to

b(x1,x2) =

[
a1 +a2x1 +a3x2−

(
σ

2
1 γ1 +

1
4

ρσ1σ2

√
x1

x2

)]
x1√

1+ x2
1

+

[
b1 +b2x1 +b3x2−

(
1
4

ρσ1σ2

√
x2

x1
+σ

2
2 γ2

)]
x2√

1+ x2
2
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We must supply boundary conditions for ρ > 0, and must not for ρ < 0. For ρ = 0,
BCs at x2 = 0 must be posed if x1 ≤ σ2

1 γ1/(2a2)−a1/a2 (assuming a2 > 0, and for
x1 = 0, if x2 ≤ σ2

2 γ2/(2b2)−b1/b2 (assuming b2 > 0), otherwise not.

• For the general case γ1, γ2 > 0, we discuss the boundary x2 = 0,x1 > 0; due to
symmetry, the case x2 = 0,x1 > 0 follows then by changing the roles of x1 and x2,
as well as γ1 and γ2. For x2 = 0 the Fichera function simplifies to

lim
x2→0+

b(x1,x2) =

[
a1 +a2x1−σ

2
1 γ1x2γ1−1

1 − 1
2

ρσ1xγ1
1 σ2γ20γ2−1

]
x1√

1+ x2
1

=



[
a1 +a2x1−σ2

1 γ1x2γ1−1
1

]
x1√
1+x2

1
ρ = 0

−∞ 0 < γ2 < 1,ρ 6= 0[
a1 +a2x1−σ2

1 γ1x2γ1−1
1 − 1

2ρσ1xγ1
1 σ2

]
x1√
1+x2

1
γ2 = 1,ρ 6= 0[

a1 +a2x1−σ2
1 γ1x2γ1−1

1

]
x1√
1+x2

1
γ2 > 1,ρ 6= 0

For 0 < γ2 < 1 and ρ 6= 0, BCs are needed, if ρ is positive, and BCs must not be
posed, if ρ is negative. In all other cases, the sign of b, which defines whether BCs
must be supplied or not, depends on a1, a2, σ1, σ2 and γ1, see Fig. 8.1.

Figure 8.1: Boundary decomposition in two-factor CIR model.

8.4 Numerical Results

Choosing set of parameters κ = 0.5, θ = 0.05, σ = 0.1, γ = 0.5 (CIR), we get at r = 0 a
positive Fichera function b= κθ−σ2/2= 0.02> 0. This is equivalent with the statement
that the Feller condition is satisfied. According to the Fichera theory, as soon as it is
outflow part of boundary, we must not supply BCs. In this example in Fig. 8.2 and
Fig. 8.4 and Table 8.1, we intentionally supplied BCs in an ’outflow’ situation when we
should not in order to illustrate what might happen if one disregards the Fichera theory. In
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the evolution of the solution we can observe a peak and oscillations close to the boundary.
In Fig. 8.4 we plot the relative error, which is reported also in the Table 8.1.
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Figure 8.2: Numerical solution, Dirichlet BC
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Figure 8.3: Numerical solution, without BC
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Figure 8.4: Relative error, case with Dirichlet
BC
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Figure 8.5: Relative error, case without BC

Table 8.1: Relative error, case with BC

time[days] relative error
1 0.0147
40 0.0079
80 0.0029
120 (maturity) 0

Table 8.2: Relative error, case without BC

time[days] relative error
1 0.0039
40 0.0029
80 0.0015
120 (maturity) 0

In our example we used the same parameters, but with or without defining Dirichlet BC.
Here, “without BC” means that we used for the numerical BC the limit of the interior
PDE for r→ 0. The corresponding results are shown on the right hand side, in Fig. 8.3,
Fig. 8.5 and the relative errors are recorded in Table 8.1.

For the numerical solution we used the implicit finite difference method from [26]. The
reference solution is obtained either as the analytic solution for the CIR model (γ = 0.5, if
Feller condition is satisfied), c.f. [7] or in all other cases using a very fine resolution (and
suitable BCs). The conditions at outflow boundaries are obtained by studying the limiting
behavior of the interior PDE or simply by horizontal extrapolation of appropriate order.
Recall that negative values of the Fichera function (i.e. an inflow boundary) corresponds
to a not satisfied Feller condition and may destroy the uniqueness of solutions to the PDE.
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Alternating Direction Explicit
Methods for one-dimensional
Convection Diffusion Equations

Numerical analysis for one dimensional convection-diffusion-reaction equation: stability,
consistency and convergence results.

• Z. Bučková, M. Ehrhardt, M. Günther: Alternating Direction Explicit Methods for
Convection Diffusion Equations, Acta Math. Univ. Comenianae, Vol. LXXXI: 309–
325, 2015

In this chapter we investigate the stability and consistency properties of alternating di-
rection explicit (ADE) finite difference schemes applied to convection-diffusion-reaction
equations. Employing different discretization strategies of the convection term we ob-
tain various ADE schemes and study their stability and consistency properties. An ADE
scheme consists of two sub steps (called upward and downward sweeps) where already
computed values at the new time level are used in the discretization stencil. For linear
convection-diffusion-reaction equations the consistency of the single sweeps is of or-
der O

(
k2 + h2 + k/h

)
, but the average of these two sweeps has a consistency of order

(k2 +h2), where k, h denote the step size in time and space.

The structure of this chapter is as follows: In Section 7.3.2 we present the considered
PDEs and explain the basic idea of the ADE scheme and its modified difference quotients.
Next, the numerical analysis studying stability and consistency of the method is presented
in Sections 9.1 and 9.2, respectively.

9.0.1 The modified difference quotients for the ADE method

In this subsection we want to illustrate the outcome of the previous Section 7.3.1. Thus,
we select some spatial discretization and investigate which ADE scheme will result.

For the discretization of the diffusion term we use, c.f. [47]

∂ 2v(x j, tn)
∂x2 ≈

un
j+1−un

j −un+1
j +un+1

j−1

h2 , j = 1, . . . ,J−1

∂ 2v(x j, tn)
∂x2 ≈

dn+1
j+1 −dn+1

j −dn
j +dn

j−1

h2 , j = J−1, . . . ,1.

(9.1)

105
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In order to obtain a symmetric scheme we use the following approximations of the reac-
tion term, the same for the upward and downward sweep

v(x j, tn)≈
un+1

j +un
j

2
, j = 1, . . . ,J−1,

v(x j, tn)≈
dn+1

j +dn
j

2
, j = J−1, . . . ,1.

(9.2)

Different approximations of the convection term are possible [38], [15]. In the follow-
ing we state three of them. First, Towler and Yang [55] used special kind of centered
differences

∂v(x j, tn)
∂x

≈
un

j+1−un+1
j−1

2h
, j = 1, . . . ,J−1,

∂v(x j, tn)
∂x

≈
dn+1

j+1 −dn
j−1

2h
, j = J−1, . . . ,1.

(9.3)

More accurate approximations were proposed by Roberts and Weiss [45], Piacsek and
Williams [43]

∂v(x j, tn)
∂x

≈
un

j+1−un
j +un+1

j −un+1
j−1

2h
, j = 1, . . . ,J−1,

∂v(x j, tn)
∂x

≈
dn+1

j+1 −dn+1
j +dn

j −dn
j−1

2h
, j = J−1, . . . ,1.

(9.4)

As a third option we will use upwind approximations combined with the ADE technique.
Since we have in mind financial applications we will focus on left going waves, i.e. b > 0
in (7.11). Right going waves b < 0 are treated analogously.

The well-known first order approximation reads

∂v(x j, t)
∂x

≈
v j+1(t)− v j(t)

h
j = J−1, . . . ,1, (9.5)

and the forward difference of second order [59]

∂v(x j, t)
∂x

≈
−v j+2(t)+4v j+1(t)−3v j(t)

2h
, j = J−1, . . . ,1. (9.6)

Applying the ADE time splitting idea of Section 7.3.1 we obtain for the upwind strategy
(9.5)

∂v(x j, tn+1)

∂x
≈

un
j+1−un

j

h
, j = 1, . . . ,J−1,

∂v(x j, tn+1)

∂x
≈

dn
j+1−dn

j +dn+1
j+1 −dn+1

j

2h
, j = J−1, . . . ,1,

(9.7)
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and for the second order approximation

∂v(x j, tn+1)

∂x
≈
−un

j+2 +4un
j+1−3un

j

2h
, j = 1, . . . ,J−1,

∂v(x j, tn+1)

∂x
≈
−dn

j+2 +4dn
j+1−3dn

j −dn+1
j+2 +4dn+1

j+1 −3dn+1
j

4h
, j = J−1, . . . ,1.

(9.8)

We will show that this upwind approximation (9.7) leads to a stable scheme.

9.1 Stability of the ADE method

In this section we investigate the stability of the proposed ADE method using the matrix
approach in Section 9.1.1 and the classical von-Neumann method in Section 9.1.2. For
the convection-diffusion-reaction equation (7.11) we obtain unconditional stability using
the matrix approach. This stability analysis can be extended by adding homogeneous
BCs, without affecting the stability results. This is our motivation to deal with the matrix
approach.

9.1.1 Stability analysis using the Matrix approach

We are motivated by [38], where the authors claim and proof that "if A is symmetric neg-
ative definite, the ADE scheme is unconditionally stable". We have to define symmetric
discretization quotients to get symmetric discrete operators. For reaction-diffusion equa-
tion applying central difference quotients we get symmetric operator A and we can follow
the ideas for the proof for the heat equation from [38].

Using upwind discretization formulas instead of central differencing leads also to an un-
conditionally stable scheme. "If A is lower-triangular with all diagonal elements negative,
the ADE scheme is unconditionally stable" is generally claimed and proved in [38]. In
the following we choose suitable differentiating approximations, we formulate theorems
about stability properties and prove it.

Theorem 9.1. The ADE scheme applied to the reaction-diffusion PDE (7.11) (with b= 0)
is unconditionally stable.

Proof. Without loss of generality we focus on the upward sweep

un+1
j −un

j

k
= a

un
j+1−un

j −un+1
j +un+1

j−1

h2 − c
un+1

j +un
j

2
.
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Let us denote the parabolic mesh ratio α := a k
h2 , γ := ck; where a, c are constants.

un+1
j = un

j +α

(
un

j+1−un
j −un+1

j +un+1
j−1

)
− γ

2

(
un+1

j +un
j

)
(

1+α +
γ

2

)
un+1

j +(−α)un+1
j−1 =

(
1−α− γ

2

)
un

j +αun
j+1 (9.9)

We follow roughly the train of thoughts of Leung and Osher [38] and write the upward
sweep (9.9) with homogeneous BCs in matrix notation

Auun+1 = Buun, n≥ 0,

with Au, Bu ∈ R(J−1)×(J−1) given by

Au =


1+α + γ

2 0 . . . 0

−α
. . . ...

... . . . . . . 0
0 . . . −α 1+α + γ

2

= I +


α + γ

2 0 . . . 0

−α
. . . ...

... . . . . . . 0
0 . . . −α α + γ

2


Au =: I +E,

Bu =


1−α− γ

2 α . . . 0

0 . . . . . . ...
... . . . α

0 . . . 0 1−α− γ

2

= I−


α + γ

2 −α . . . 0

0 . . . . . . ...
... . . . −α

0 . . . 0 α + γ

2


Bu =: I−E>.

Next, we consider the matrices

A>u +Au = 2I +D,

where D := E +E> =


2α + γ −α . . . 0

−α
. . . . . . ...

... . . . −α

0 . . . −α 2α + γ

 .

The matrix D is positive definite and thus we can define the induced D-norm as

||C||2D := sup
x 6=0

||Cx||2D
||x||2D

= sup
x 6=0

x>C>DCx
x>Dx

,

and the upward sweep can be written as

Un+1 = A−1
u BuUn.

Next, we consider the D-norm for the upward sweep matrix A−1
u Bu

||A−1
u Bu||2D := sup

x 6=0

x>B>u A−>u DA−1
u Bux

x>Dx
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The numerator B>u A−>u DA−1
u Bu can be easily rewritten after a few algebraic steps as D−

2γ(A−1
u D)>(A−1

u D). From our notation Au = I +E and Bu = I−E> follows

B>u A−>u DA−1
u Bu = (I−E>)>A−>u DA−1

u (I−E>)

where E>=D−E. An expression in terms of matrices Au and D gets the following form:

(A>u −D)>A−>u DA−1
u (A>u −D)

= D−DA−1
u D−D>A−>u D+DA−>u DA−1

u D

= D−DA−>u A>u A−1
u D−DA−>u AuA−1

u D+DA−>u DA−1
u D

= D+DA−>u
[
−A−>u −Au +D

]
A−1

u D

= D−2(A−1
u D)>(A−1

u D)

and hence it follows

||A−1
u Bu||2D = 1−2sup

x 6=0

||A−1
u Dx||22
||x||2D

.

Thus the spectral radius of the upward sweep matrix A−1
u Bu reads

ρ(A−1
u Bu)≤ ||A−1

u Bu||D < 1

and we can conclude that the upward sweep is unconditionally stable.

An analogous result holds for the downward step. In the corresponding equation

Addn+1 = Bddn, n≥ 0 (9.10)

the matrices Ad and Bd are defined as Ad = A>u and Bd = B>u . The analysis is done
analogously: we can define a positive definite matrix and follow again the steps from the
previous proof of the Theorem 9.1. Consequently also the combination, as an arithmetic
average of these two sub steps, is also unconditionally stable.

The stability analysis using the matrix approach according to [38] worked for reaction-
diffusion equations with constant coefficients. However, this proof is not transferable for
the stability analysis of methods with non-symmetric terms, e.g. the difference quotients
for the convection term proposed by Towler and Yang (eq. 9.3), or Roberts and Weiss
(eq. 9.4), c.f. Section 9.1.2.

As a remedy we can apply a modified upwind discretization of the convection term. The
resulting structure of the matrices Au, Bu is different but we can perform a similar proof.

Theorem 9.2. ADE scheme, using upwind discretization in convection term, applied to
the reaction-diffusion-convection equation (7.11) is unconditionally stable in the upward
sweep and unconditionally stable in the downward one.

Proof. Again, without loss of generality, we focus on the upward sweep and consider an
upwind discretization for a left-going wave, i.e. b≥ 0 (since later we would like to extend
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this approach for the Black-Scholes model, where b ≥ 0). In the upward sweep we use
difference quotients using values just from the old time level (9.5)

un+1
j −un

j

k
= a

un
j+1−un

j −un+1
j +un+1

j−1

h2 +b
un

j+1−un
j

h
− c

un+1
j +un

j

2
.

Using the abbreviations α := a k
h2 , β := b k

h ≥ 0, γ := ck, we can write

−αun+1
j−1 +

(
1+α +

γ

2

)
un+1

j =
(

1−α−β − γ

2

)
un

j +
(

α +β

)
un

j+1 (9.11)

We follow again roughly the ideas of Leung and Osher [38] and consider the upward
sweep (9.11) with homogeneous BCs

Auun+1 = Buun, n≥ 0,

with the system matrices Au, Bu ∈ R(J−1)×(J−1) given by

Au =


1+α + γ

2 0 . . . 0

−α
. . . ...

... . . . . . . 0
0 . . . −α 1+α + γ

2



= I +


α + γ

2 0 . . . 0

−α
. . . ...

... . . . . . . 0
0 . . . −α α + γ

2

=: I +E,

Bu =


1−α−β − γ

2 α +β . . . 0

0 . . . . . . ...
... . . . α +β

0 . . . 0 1−α−β − γ

2



= I−


α +β + γ

2 −α−β . . . 0

0 . . . . . . ...
... . . . −α−β

0 . . . 0 α +β + γ

2

=: I−F.

where D := E +F =


2α +β + γ −α−β . . . 0

−α
. . . . . . ...

... . . . −α−β

0 . . . −α 2α +β + γ

 .

The matrix D is not symmetric but obviously positive definite.

In the sequel we have just outlined the steps which differ from the previous proof. The
numerator B>u A−>u DA−1

u Bu can be easily rewritten after a few algebraic steps as D−
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2γ(A−1
u D)>(A−1

u D).

From our notation Au = I +E and Bu = I−F follows

B>u A−>u DA−1
u Bu = (I−F)>A−>u DA−1

u (I−F)

where F := D−E. An expression in terms of matrices Au and D gets the following form:

(I +E−D)>A−>u DA−1
u (I +E−D) = (Au−D)>A−>u DA−1

u (Au−D)

and we proceed the same way as in the previous proof.

For the downward sweep we have:

dn+1
j −dn

j

k
= a

dn+1
j+1 −dn+1

j −dn
j +dn

j−1

h2 +b
dn

j+1 +dn+1
j+1 −dn

j −dn+1
j

2h
− c

dn+1
j +dn

j

2
.

Using the abbreviations α := a k
h2 , β := b k

h ≤ 0, γ := ck, we can write(
1+α +

β

2
+

γ

2

)
dn+1

j +
(
−α− β

2

)
dn+1

j+1 = αdn
j−1 +

(
1−α− β

2
− γ

2

)
dn

j +
β

2
dn

j+1

(9.12)
ADdn+1 = BDdn, n≥ 0,

with AD, BD ∈ R(J−1)×(J−1) given by matrices AD, BD. The matrix AD is upper-diagonal
AD = diag(1+α + β

2 + γ

2 ,−α − β

2 ). The matrix BD is tridiagonal with diagonal terms:
BD = diag(α,1−α − β

2 −
γ

2 ,
β

2 ). Likewise we construct matrices D = diag(−α,2α +
β + γ,−α−β ) as a tridiagonal positive definite matrix. We can follow the same way of
proof and thus we conclude the unconditional stability of the downward sweep.

9.1.2 Von Neumann stability analysis for the
convection-diffusion-reaction equation

Since analysis using matrix approach was suitable for upwind kind of approximation
in convection term, here we investigate stability properties of the ADE schemes, where
discretization of convection term is provided according to [55] and [45].

We consider the convection-diffusion-reaction equation (7.11) and focus on the sequel on
the upward sweep of the ADE procedure. An appropriate choice for the approximation
of the convection term is the one due to Roberts and Weiss [45], since performing just a
downward sweep leads to the unconditionally stable solution.

Theorem 9.3. The ADE scheme with the Roberts and Weiss approximation in the con-
vection term, applied to the PDE (7.11) is conditionally stable in the upward sweep and
unconditionally stable for the downward one.
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Proof. Using Roberts and Weiss discretization in convection term we get

un+1
j −un

j

k
= a

un
j+1−un

j −un+1
j +un+1

j−1

h2 + b
un

j+1−un
j +un+1

j −un+1
j−1

2h
− c

un+1
j +un

j

2
.

Let us denote the parabolic mesh ratio α := a k
h2 , the hyperbolic mesh ratio β := b k

h and
γ := ck; where a, b, c are nonnegative constants.

un+1
j = un

j +α

(
un

j+1−un
j −un+1

j +un+1
j−1

)
+

β

2

(
un

j+1−un
j +un+1

j −un+1
j−1

)
− γ

2

(
un+1

j +un
j

)
Applying von Neumann ansatz un

j := eξ tneiλx j the amplification factor A1 reads:

A1 =
A+Beiλh

C+De−iλh

where A = 1−α−β/2− γ/2; B = α +β/2; C = 1+α−β/2+ γ/2; D =−α +β/2.

For stability we require |A1| ≤ 1, i.e.

|A1|2 = A1A1 =

(
A+Beiλh

)(
A+Be−iλh

)
(
C+De−iλh

)(
C+Deiλh

) ≤ 1

A2 +B2 +2ABcos(λh)≤C2 +D2 +2CDcos(λh)

2(AB−CD)cos(λh)≤C2 +D2−A2−B2

(4α−4αβ −βγ)cos(λh)≤ 4α−4αβ −βγ +2γ. (9.13)

We need to check two cases with respect to the sign of (4α−4αβ −βγ).

• Case 1: By substituting α,β ,γ into 4α − 4αβ −βγ > 0 we get following condi-
tion:

α <
a

2Pe
− ck

4
(9.14)

where Pe = bh
2 is the so-called Peclet number. In this case equation (9.13) can be

rewritten as

cos(λh)≤ 4α−4αβ −βγ +2γ

4α−4αβ −βγ
∀λh (9.15)

i.e.

1≤ 1+
2γ

4α−4αβ −βγ



9.1 Stability of the ADE method 113

or
0≤ 2γ

4α−4αβ −βγ
. (9.16)

We can notice that condition (9.16) is satisfied for all the possible values of param-
eters, since γ > 0 and 4α−4αβ −βγ > 0.

• Case 2: We consider 4α−4αβ −βγ < 0, what is equivalent with the condition

α >
a

2Pe
− ck

4
. (9.17)

In this case equation (9.13) can be rewritten as

cos(λh)≥ 4α−4αβ −βγ +2γ

4α−4αβ −βγ
∀λh (9.18)

i.e.

−1≥ 1+
2γ

4α−4αβ −βγ
,

or
2≤ −2γ

4α−4αβ −βγ
(9.19)

or
1
2

βγ +2αβ −2α ≤ γ (9.20)

or
α ≤ α

β
− γ

4
+

γ

2β
(9.21)

After substituting α,β ,γ and after elementary algebraic steps we get

α ≤ a
2Pe
− ck

4
+

ch
4b

. (9.22)

Case 2 leads to conditions (9.17) and (9.22) what means that

α ∈
(

a
2Pe
− ck

4
,

a
2Pe
− ck

4
+

ch
4b

]
(9.23)

To sum up case 1 and case 2 we can claim that conditions (9.14) and (9.23) and also
considering the situation where (4α−4αβ −βγ) = 0 we get

α ≤ a
2Pe
− ck

4
+

ch
4b

. (9.24)
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For the downward sweep we get the following amplification factor:

A2 =

[
1−α + β

2 −
γ

2

]
+[α− β

2 ]e
−iλh[

1+α + β

2 + γ

2

]
+[−α− β

2 ]e
iλh

(9.25)

Stability condition |A2|2 ≤ 1 leads to the formula:

cos(λh)≤ 4α +4αβ +βγ +2γ

4α +4αβ +βγ
.

Let us note that the last condition can be simplified to the condition:

2γ

4α +4αβ +βγ
≥ 0. (9.26)

The coefficients α , β , γ are positive, i.e. the condition (9.26) is satisfied and thus we
have the unconditional stability for the downward sweep using the Roberts and Weiss
approximation, which completes the proof.

In case of the Roberts and Weiss approximation we propose to use only the unconditional
stable downward sweep.

Theorem 9.4. ADE scheme, using Towler and Yang approximation in the convection
term, applied to the PDE (7.11) is conditionally stable in both sweeps.

Proof. For the Towler and Yang approximation the stability condition for the upward
sweep reads

(4α−2αβ −βγ)cos(λh)≤ 4α−2αβ +2γ, (9.27)

where again we can distinguish 2 cases with respect to the sign of left hand side of the
equation (9.27).

• Case 1: If (4α−2αβ −βγ)> 0, it means

α <
a
Pe
− ck

2
. (9.28)

In this case equation (9.27) can be rewritten as

cos(λh)≤ 4α−4αβ −βγ +2γ

4α−2αβ −βγ
(9.29)

1≤ 1+
γ(2+β )

4α−2αβ −βγ
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0≤ γ(2+β )

4α−2αβ −βγ
. (9.30)

We can notice that condition (9.30) is satisfied for all the possible values of param-
eters, since γ ≥ 0 and (2+β )> 0 and 4α−2αβ −βγ > 0.

• Case 2: We consider (4α−2αβ −βγ)< 0, what is equivalent with the condition

α >
a
Pe
− ck

2
. (9.31)

In this case equation (9.27) can be rewritten as

cos(λh)≥ 4α−4αβ −βγ +2γ

4α−2αβ −βγ
(9.32)

−2≥ γ(2+β )

4α−2αβ −βγ

After substituting α,β ,γ and simplification it leads to the condition

α ≤ a
Pe
− ck

2
+

ch
2b

+
1
2
. (9.33)

In case 2 we obtain two conditions (9.31) and (9.33), namely:

α ∈
(

a
2Pe
− ck

2
,

a
Pe
− ck

2
+

ch
2b

+
1
2

]
(9.34)

From case 1 condition (9.28) and case 2 condition (9.34) in Towler and Yang case and
considering also possibility of (4α−2αβ −βγ) = 0 we can sum up

α ≤ a
Pe
− ck

2
+

ch
2b

+
1
2
. (9.35)

For the downward sweep the stability condition is

cos(λh)≤ 4α +2αβ +2γ

4α +2αβ +βγ
,

which leads to the condition:
k
h2 ≤

1
Pe

(9.36)

Both sweeps in Towler and Yang discretization of convection term in reaction-diffusion-
convection equation are conditionally stable under the conditions (9.35) and (9.36)
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9.2 Consistency Analysis of the ADE methods

In this section we provide a consistency analysis of the ADE methods for solving the
convection-diffusion-reaction equation (7.11) and for the BS model.

9.2.1 Consistency of the ADE scheme for
convection-diffusion-reaction equations

We study the consistency of the following ADE discretization

un+1
j −un

j

k
= a

un
j+1−un

j −un+1
j +un+1

j−1

h2 +b
un

j+1−un
j +un+1

j −un+1
j−1

2h
− c

un+1
j +un

j

2

to the convection-diffusion-reaction equation (7.11). The local truncation error (LTE) of
the upward sweep is given by

LT Eup = k
(
−1

2
vtt +

1
2

avxxt +
1
2

bvxt

)
+ k2

(
−1

6
vttt +

1
4

avxxtt +
1
4

bvxtt

)
+h2

( 1
12

avxxxx
1
6

bvxxx

)
− kh

(1
6

avxxxt +
1
4

bvxxt

)
− k

h
avxt−
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h

(1
2

avxtt

)
− k3

h

(1
6

avxttt

)
,

and analogously the LTE for the downward sweep reads

LT Edown = k
(
−1

2
vtt +

1
2

avxxt +
1
2

bvxt

)
+ k2

(
−1

6
vttt +

1
4

avxxtt +
1
4

bvxtt

)
+h2

( 1
12

avxxxx
1
6

bvxxx

)
+ kh

(1
6

avxxxt +
1
4

bvxxt

)
+

k
h

avxt +
k2

h

(1
2

avxtt

)
+

k3

h

(1
6

avxttt

)
.

Thus we end up for the LTE for the combined sweep

LT EADE = k
(
−1

2
vtt +

1
2

avxxt +
1
2

bvxt

)
+k2

(
−1

6
vttt +

1
4

avxxtt +
1
4

bvxtt

)
+h2

( 1
12

avxxxx
1
6

bvxxx

)
Assuming a constant parabolic mesh ratio k/h2, the first order term in k can be written in
the form O(k) = O(h2) and hence we get

LT EADE = k2
(
−1

6
vttt +

1
4

avxxtt +
1
4

bvxtt

)
+h2

( 1
12

avxxxx
1
6

bvxxx−
1
2

vtt +
1
2

avxxt +
1
2

bvxt

)
Hence, the order of consistency of the ADE method for the PDE (7.11) is O(k2 +h2).
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9.2.2 The Consistency of the ADE method for the linear BS
model

As an extension of the PDE (7.11) we consider now the linear BS equation.

Theorem 9.5. The order of consistency of the ADE method for the linear BS equation is
O(k2 +h2) in both sweeps and in the final combined solution.

Proof. The linear BS PDE is a special case of (7.11) with the space-dependent coeffi-
cients a(S) = 1

2σ2S2, b(S) = rS, c(S) = r. The LTE for the upward sweep reads:

LT EBS = k
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k
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)
If we assume a constant parabolic mesh ratio α = k/h2, then we get

LT E = k
(
−1

2
vtt

)
+ k2

(
−1

6
vttt

)
= αh2

(
−1

2
vtt

)
+ k2

(
−1

6
vttt

)
,

where we neglected higher order terms. A similar result holds for the downward sweep.
We have shown that consistency for the linear BS model is O(k2 + h2) in downward,
upward and hence also in the combination.

9.2.3 Application and numerical experiments with the linear
model

We apply the ADE method and calculate a price for a vanilla European call option in
a classic linear BS model with constant coefficients. Choosing the following set of pa-
rameters r = 0.03 (interest rate); q = 0 (continuous dividend yield); σ = 0.2 (volatility);
T = 1 (maturity time in years); Smax = 90 (maximal stock price); K = 30 (strike price);
and defining a grid with N = 50 time steps; J = 200 space steps we get an option price,
which is shown in Figure 3.

In this subsection we analyze the computational and theoretical order of convergence. In
Table 9.3 it is recorded an error as a difference between numerical solution using ADE
method and the closed form BS formula for different meshes with fixed mesh ratio 0.23.
In Table 9.4 ratios of errors from the Table 9.3 are calculated. One can observe that using
double space steps, ratio of errors converges to the number 4, what confirms that the
theoretical order of convergence is 2.
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Figure 9.1: Option price Figure 9.2: Solution at time t = 0 and t = T

N J mesh ratio error
3 50 0.23 0.2458
12 100 0.23 0.0855
50 200 0.23 0.0208
200 400 0.23 0.0052
800 800 0.23 0.0013

Figure 9.3: Error as a difference between
exact solution and approxima-
tion

ratio of errors
error50/error100 2.87
error100/error200 4.11
error200/error400 4
error400/error800 4

Figure 9.4: Ratio of errors

Figures 9.5–9.9 show an error on different grids, as a difference between numerical solu-
tion and the exact one (from the BS formula). Table 9.3 records the maximum value of the
error from the time t = 0, it means that we observe the maximal value of the errors whole
calculation in the current time. At the beginning of the calculation (nearby maturity time)
we can observe the highest error, which is caused by the non-smooth initial data. This
error decreases during the calculation. The finer the mesh, the faster the decrease of the
error (9.5)–(9.9).

Figure 9.5: Error, N = 3,
J = 50

Figure 9.6: Error, N =
12,J = 100

Figure 9.7: Error, N =
50,J = 200

Figure 9.8: Error, N = 200, J = 400 Figure 9.9: Error, N = 800, J = 800
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Implementation of Alternating
Direction Explicit Methods for
higher dimensional
Black-Scholes Equation

In this work we propose Alternating Direction Explicit (ADE) schemes for the two and
three dimensional linear Black-Scholes pricing model. Our implemented methodology
can be easily extended to higher dimensions. The main advantage of ADE schemes
is that they are explicit and exhibit good stability properties. Results concerning the
experimental order of convergence are included.

This Chapter is based on:

• Z. Bučková, P. Pólvora, M. Ehrhardt, M. Günther: Implementation of Alternating
Direction Explicit Methods to higher dimensional Black-Scholes Equation, AIP
Conf. Proc. 1773, 030001; 2016

The Chapter is structured as follows. After the introduction of the ADE schemes and the
multi-dimensional Black-Scholes models, we focus on the details of the ADE scheme in
the second section. In the third section we introduce the numerical scheme with differ-
ence quotients for the ADE. The fourth section consists of the numerical results focusing
on the experimental study of convergence for two examples using different payoff struc-
tures: two dimensional spread option model and three dimensional call option model.
The last section sums up results and presents the outlook.

10.1 ADE Schemes for Multi-Dimensional Models

In this section we introduce the ADE scheme for multi-dimensional PDE models. We
first consider the 2D case and then we proceed to higher dimensional cases.

10.1.1 ADE Schemes for Two-dimensional Models

We now explain in detail how to construct the ADE scheme for two-dimensional PDE
models, i.e. N = 2 in (7.2).

119
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The first key aspect of this scheme is choosing the difference quotients approximating
the partial derivatives of our equation in a way that we use the information from both
time levels without the need to solve a linear system of equations. In particular, in a
two dimensional setting, we would use the points as exemplified in Figure 10.1: we wish
to compute the value in black, at time level n+ 1, and we use the information from the
neighbor points with an empty filling, from both time level n and n+1.

The second key aspect is that in order to improve the accuracy of this scheme, for each
time-level two different calculations of the grid points are done using different difference
quotients, these are referred to as the downward sweep and the upward sweep. Then, the
solution at that time level is taken as the average of both sweeps. From Figure 10.1 right
and Figure 10.2 right the difference between the two sweeps is apparent.

Figure 10.1: Downward sweep. Left figure: time level n. Right figure: time level n+1.
We depict the spatial grid for two different time-steps. The empty circles
represent the points used in the computation of the value at the location of
the black circle. S1 and S2 denote the spatial dimensions.

Figure 10.2: Upwards sweep. As in Figure 10.1, the empty circles represent the points
used in the computation of the value at the location of the black circle. S1
and S2 denote the spatial dimensions. Left figure: time level n. Right figure:
time level n+1.

The final key aspect is that the structure imposed by the stencil illustrated in Figures 10.1
and 10.2 is not by itself enough to guarantee that the scheme is explicit, we must make
sure that the empty filling points in the time level n+ 1 have been computed before we
compute the black point. This imposes a structure on the algorithm to compute the points
as illustrated in Figure 10.3.

For a fixed time level and starting from the boundary we see that in the first step we can
only compute the points numbered as 1, since, our stencil is as described in the Figures
10.1 right, 10.2 right. After computing these points we have a total of four points that can
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be now computed, these are numbered as 2. Hence, we chose any of those points which
in turn allows new points to be computed, and so forth. As long as we respect this order,
our algorithm is fully explicit.

As we can see in the second step, we have more than one possibility per step as to what
point to compute, hence, there are different sequences of points. A natural choice is to
choose the sequence of points as shown in Figure 10.4. We called this approach of num-
bering as a jumping approach or house numbering approach. We are moving from one
corner of the square to another where diagonal points are computed and the others. We
could do the same strategy in higher dimensions, but it is not straightforward and yields
no advantage in comparison with the next approach. The approach we have implemented
is a row-wise ordering and it is displayed in Figure 10.5. It is just more straightforward
way of ordering grid points. It is also more convenient to use this approach in hypercubes.

Figure 10.3: First steps of the algorithm in the 2D case. Elements numbered 1 correspond
to the step 1 from both sweeps UP and DOWN. Elements numbered 2 corre-
spond to the elements that can be computed as the second step also for both
sweeps.

Figure 10.4: The complete algorithm in the 2D case. The points are computed in the order
of the numbering. The left part of the figure refers to the UP sweep and
the right to the DOWN sweep. Approach of numbering is called jumping
approach or house numbering.

10.1.2 ADE Schemes for Three and Higher Dimensional
Models

In this section we describe how to extend the two-dimensional ADE scheme introduced
before to three and higher dimensional models. We suggest an algorithm which can be
extended to higher dimensional models quite easily.
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Figure 10.5: The complete algorithm in the 2D case. The points are computed in the
order of the numbering. The left part of the figure refers to the UP sweep
and the right to the DOWN sweep. Approach of numbering is called line
approach or sequence approach.

As for the two dimensional case, a key part of the ADE in higher dimensions is to choose
the proper difference quotients such that we keep good stability and consistency proper-
ties and explicitness of the scheme. Solely for simplicity we will use a uniform grid.

Consider the three dimensional case where we are solving the PDE of the price of an
option under the linear Black-Scholes model introduced before, with three underlying
assets. The PDE’s solution will be a four-dimensional function where one dimension
represents time and the other three are spatial dimensions representing the values of the
underlying assets. For each time level, we have a three dimensional solution which can
be illustrated as a three-dimensional grid. Recall that the initial condition is given for
V (S1,S2,S3,0) and step by step we calculate the values for the new time layer.

As before, we retain the explicitness of the scheme by using only values that have already
been computed at the current time level. Specifically, this explicit (as in the lower dimen-
sional case) is obtained by computing the value of points in a particular sequence that
only uses points that either arise from the previous time level or that have been already
computed for the current time level.

For illustration purposes we depict a two-dimensional slice of the domain in Figure 10.6.
We see that we move in a straight line in one dimension until we hit the boundary and
then we proceed to the next point in the second dimension and so forth. By using this
approach, the extension to higher dimensional models is straightforward.

10.1.3 Boundary Conditions

In higher dimensional models we also have to deal with the issue of boundary conditions.
Just as in the three dimensional model 8 boundary conditions are required (each edge of
the cube), for a N-dimensional model 2N boundary conditions have to be prescribed. In
an ideal case we prescribe values for the maximum values of the assets prices (truncated
values) as Dirichlet boundary conditions. Alternatively one could also consider Neumann
boundary conditions or Robin type boundary conditions.
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Figure 10.6: Algorithm for computing all the points in the upward sweep solution of the
three dimensional implementation of the ADE, the grey dots represent the
boundary conditions and the black dots represent the computed values. The
arrows represent the direction and sequential order of the computation. First,
second and third direction in the pictures, respectively.

10.2 Numerical Scheme

The discretization of the PDE (7.2) is done on a uniform grid. In the time domain we
have Nτ subintervals of the interval [0,T ], thus the time step size is defined as dτ = T/Nt .
As we have N different underlying assets our spatial space is N-dimensional. In our
numerical studies we consider both N = 2 and N = 3.

For the 3-dimensional model we have 3 spatial intervals [xmin,xmax], [ymin,ymax], [zmin,zmax],
specifically [0,S1max], [0,S2max], [0,S3max] as all stocks have non-negative values.

The space steps on the uniform grid are defined by the following hα = Sαmax/Nα for
α = 1, . . . ,3, where Sαmax denotes the maximal value for the asset α and Nα denotes the
number of points for the direction of the α asset.

A point on the spatial grid is then given by [xi,y j,zk] with xi = (i− 1)h1, y j = ( j−
1)h2,zk = (k−1)h3; where i = 1, . . . ,N1 +1, j = 1, . . . ,N2 +1, k = 1, . . . ,N3 +1.

The discrete numerical solution of the 3-dimensional Black-Scholes equation at [xi,y j,zk]
and time level n for the upward sweep is denoted by un

i jk = u(xi,y j,zk,n) and for the
downward sweep is denoted by un

i jk = d(xi,y j,zk,n),

Since this notation would easily become very cumbersome we will introduce some ab-
breviations: u(xi,y j,zk,n) and d(xi,y j,zk,n) will be shortened to un and dn. When we
consider u at a point shifted from the point indexed by (i, j,k) we will introduce a sub-
script un

β+ where β denotes the direction where we’re performing the shift. For example,

u(xi,y j+1,zk,n) =: un
2+ u(xi,y j,zk−1,n) =: un

3−. (10.1)

In the case that we have shifts in multiple directions we simply introduce another sub-
script, for example,
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u(xi−1,y j+1,zk,n) =: un
1−2+ u(xi,y j+1,zk−1,n) =: un

3−2+. (10.2)

Note that this notation would not be suitable if we denote a point such as u(xi,y j+3,zk,n)
but since we are considering only a first-order scheme we will not have shifts of more
than 1 unit, therefore this notation is appropriate.

10.2.1 Algorithm of the Scheme

We can construct the upward sweep and the downward sweep separately for each time
step and then combine them, this bring opportunities for the parallelization of the scheme.
The upward sweep is calculated in a way that we are moving from one corner of the hy-
percube to the opposite. The downward sweep is constructed in the opposite way. This
procedure can be done in different ways, but it is important to keep the explicitness of
the scheme in each of the sweeps. In the following we outline the algorithms. As an
illustration the upward sweep of this algorithm is represented in Figure 10.6.
According to the described procedure we construct upward and downward sweep of the
solution and after each time level we calculated its average. This way we get final nu-
merical solution cn.
For n = 0,1, . . . ,Nt−1 we repeat
1. Initialization: un = cn; dn = cn

2. Upward: un+1
i jk ; i = 1, . . . ,N1−1; j = 1, . . . ,N2−1; k = 1, . . . ,N3−1

3. Downward: dn+1
i jk ; i = N1−1, . . . ,1; j = N2−1, . . . ,1; k = N3−1, . . . ,1

4. cn = (un+1 +dn+1)/2

10.2.2 Upward Finite Difference Quotients and Its Numerical
Scheme

Finite difference quotients using the upward sweep in the ADE scheme are introduced.
Exact continuous solution of the PDE (7.2) in the point xi,y j,zk,τn+ 1

2
is denoted as: V :=

V (x,y,z,τ)|(xi,y j,zk,τn+ 1
2
) and e.g. in the time level n it is denoted as: V n :=V (x,y,z,τ)|(xi,y j,zk,τn),

For derivatives it holds as follow: ∂V
∂τ

:= ∂V (x,y,z,τ)
∂τ

|(xi,y j,zk,τn+ 1
2
). Approximation of the V n

is denoted as un for an upward sweep.

V ' V n +V n+1

2
. (10.3)

For the time derivative the explicit Euler discretization is used:

∂V
∂τ

=
V n+1−V n

dτ
+O(τ2

n ). (10.4)
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In the convection term we choose the Robert and Weiss approximation [45]

∂V
∂Sα

=
V n

α+−V n +V n+1−V n+1
α−

2hα

+O(h2
α), ∀α = 1,2,3 (10.5)

and the diffusion term is approximated by a special kind of central difference,

∂ 2V
∂S2

α

=
V n

α+−V n−V n+1 +V n+1
α−

h2
α

+O(h2
α), ∀α = 1,2,3. (10.6)

Note that in all the above mentioned difference quotients we use values from two time
layers in the fashion that we can use all the values from the previous time layer, but due
to the algorithm explained in Figure 10.5 only known values from the current time layer
are used to keep the explicitness of the algorithm.
We approximate mixed term derivatives in an explicit way, as well:

∂ 2V
∂SαSβ

=
V n

α+β+−V n
α+β−−V n

α−β+ +V n
α−β−

4hαhβ

+O(h2
α +h2

β
) ∀α,β = 1,2,3. (10.7)

We now use the difference quotients introduced above to discretize the 3-dimensional
Black-Scholes PDE (7.2). Let us define,

γ
i j
1 (x1,x2)≡

dt
2hih j

Γi jSi(x1)S j(x2), γ
i
2(x1)≡

dt
2hi

rSi(x1),

with Si(p) = (p−1)hi. The discretized equation for the 3D model becomes,

un+1−un =
3

∑
i=1

γ
ii
1
[
un

i+−un−un+1 +un+1
i−
]

(10.8)

+
3

∑
i=1

3

∑
j=1,i 6= j

γ
i j
1
4

[
un

i+ j+−un
i+ j−−un

i− j+ +un
i− j−

]
+

3

∑
i=1

γ
i
2
[
un

i+−un +un+1−un+1
i−
]
− r

un +un+1

2

The resulting algorithm is fully explicit, if we follow the procedure illustrated in Figure
10.3. From equation (10.8) we express un+1 and we realize an explicit formula for the
scheme.
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10.2.3 Difference Quotients and Numerical Scheme for the
Downward Sweep

Let V be the exact continuous solution in point xi,y j,zk,τn+ 1
2
. Approximation of the V n

obtained by downward sweep is dn, where the following difference quotients are used:

V ' V n +V n+1

2
, (10.9)

∂V
∂τ

=
V n+1−V n

dt
+O(τ2

n ), (10.10)

∂V
∂Sα

=
V n+1

α+ −V n +V n+1−V n
α−

2hα

+O(h2
α), ∀α = 1,2,3, (10.11)

∂ 2V
∂S2

α

=
V n+1

α+ −V n−V n+1 +V n
α−

h2
α

+O(h2
α), ∀α = 1,2,3, (10.12)

∂ 2V
∂SαSβ

=
V n

α+β+−V n
α+β−−V n

α−β+ +V n
α−β−

4hαhβ

+O(h2
α +h2

β
), ∀α,β = 1,2,3.

(10.13)
In the same manner we get the discretized equation for the downward sweep,

dn+1−dn =
3

∑
i=1

γ
ii
1
[
dn+1

i+ −dn−dn+1 +dn
i−
]

(10.14)

+
3

∑
i=1

3

∑
j=1,i 6= j

γ
i j
1
4

[
dn

i+ j+−dn
i+ j−−dn

i− j+ +dn
i− j−

]
+

3

∑
i=1

γ
i
2
[
dn+1

i+ −dn +dn+1−dn
i−
]
− r

dn +dn+1

2
.

10.3 Numerical Results and Experimental Study of
Convergence

We now present numerical results for two particular cases of the implementation of the
ADE scheme to Black-Scholes pricing models. In particular, we show the results for
the price of a Spread option depending on two underlying assets S1 and S2 and a three-



10.3 Numerical Results and Experimental Study of Convergence 127

dimensional European Call Option on three underlying assets S1,S2 and S3. For both
cases we show illustrations of the obtained price surfaces and experimental convergence
rates.

10.3.1 Two Dimensional Black-Scholes Model

We denote the Black-Scholes price for a spread option by V (S1,S2,τ) where τ = T − t is
the time to maturity T . Recall that the payoff of a spread option is

V (S1,S2,0) = max(S1−S2−K,0)

where K ∈ R+ denotes the strike price. The boundary conditions are given by:

V (S1,0,τ) = BS1d(S1,τ), S1,τ ∈ R+,

V (0,S2,τ) = 0, S2,τ ∈ R+,

V (Smax
1 ,S2,τ) = e−q1τS1− e−rτ(S2 +K), Smax

1 := S1� S2 +K,

V (S1,Smax
2 ,τ) =Vkirk(S1,Smax

2 ,τ),

where BS1d(S1,τ) denotes the Black-Scholes price formula for a call option on a stock
with price S and time to maturity τ and Vkirk(S1,Smax

2 ,τ) denotes the approximation in
[2].
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Figure 10.7: Numerical solution at the final time for two dimensional spread option on
the grid with N1 = N2 = 20 space steps and Nt = 50 time steps.

We choose the parameters given by Table 10.1 and the different grid configurations dis-
played in Table 10.2.

As an example we display the numerical solution for the option price at τ = T (or equiv-
alently t = 0) with a grid of N1 = N2 = 20 spatial points and Nt = 50 temporal points in
Figure 10.7.
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Parameter Value
volatility of S2 σ2 0.3
volatility of S1, σ1 0.4
correlation of S1 and S2, ρ 0.5
maturity time T 1 ( in years )
strike price K 3
maximal stock price for S1 S1max 12
maximal stock price for S2 S2max 45

Table 10.1: Parameters in two dimensional BS model

N1 N2 Nt dτ/h2
1 dτ/h2

2
solution 1 5 5 3 0.0578 0.004
solution 2 10 10 12 0.0578 0.004
solution 3 20 20 50 0.0578 0.004
solution 4 40 40 200 0.0578 0.004
solution 5 80 80 800 0.0578 0.004
solution 6 160 160 3200 0.0578 0.004

Table 10.2: Specifications of different grids.

In the Figure 10.8 we display a log-log plot of the errors in the L2 norm (solid line) and
the theoretical second order of convergence (dashed line).
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Figure 10.8: Experimental convergence analysis

10.3.2 Three Dimensional Black-Scholes Model

We now show the results of the implementation of the ADE to the three dimensional
Black-Scholes model for the price V (S1,S2,S3,τ) of a call option, where τ = T − t de-
notes the time to maturity T and Si denotes the value of the underlying asset i. Recall the
payoff for a call option:

V (S1,S2,S3,0) = max((max(S1,S2,S3)−K,0)) .
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with K ∈ R+ denoting the strike price. The boundary conditions are taken from the nu-
merical solution of the 2D Black-Scholes model, BS2d , implemented as outlined in 10.3.1
but for a call-option payoff,

V (Si = 0, t) = BS2d(S j,Sk, t), i, j,k = 1,2,3, i 6= j 6= k

V (Si = Smax
i , t) = max(Smax

i −K,0), i, j,k = 1,2,3.

In Figure 10.9 we show the price of the call option for a fixed value of S3. The model
parameters are in Table 10.3 and the grid parameters are as follows: N1 = N2 = N3 = 20;
Nt = 50.

Parameter Value
volatility of S1 σ1 0.4
volatility of S2 σ2 0.3
volatility of S3, σ3 0.2
correlation of S1 and S2, ρ 0.0
correlation of S2 and S3, ρ 0.0
correlation of S1 and S3, ρ 0.0
maturity time T 1 ( in years )
strike price K 3
maximal stock price for S1 S1max 12
maximal stock price for S2 S2max 12
maximal stock price for S2 S2max 12

Table 10.3: Parameters in three dimensional BS model

Note that in this case we have a symmetric solution with respect to the underlying assets
and hence fixing S3 or any other asset would be identical.
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Figure 10.9: Solution of the three dimensional call option model for the fixed S3 = N3/2.

Analogously to the two dimensional case, for the three dimensional case we’ve computed
the experimental order of convergence using different grid settings c.f. Table 10.4. Ex-
perimental results (Figure 10.10) confirm that we keep second order of convergence also
in the three dimensional model.
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N1 N2 N3 Nt dτ/h2
1 dτ/h2

2 dτ/h2
3

5 5 5 3 0.004 0.004 0.004
10 10 10 12 0.004 0.004 0.004
20 20 20 50 0.004 0.004 0.004
40 40 40 200 0.004 0.004 0.004
80 80 80 800 0.004 0.004 0.004

160 160 160 3200 0.004 0.004 0.004

Table 10.4: Usage of different grids.
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Figure 10.10: Experimental order of convergence in three dimensional call option model

10.4 Influence of dimensionality on computational
complexity of the scheme

In this section we highlight the fact, where the ADE scheme has a good potential to be an
effective scheme in higher dimensions. We compare it with the behavior of the classical
Cranck-Nicolson scheme.
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Figure 10.11: Computational complexity with respect to the total number of points in the
grid for Cranck-Nicolson scheme.

Solution of the option price for Cranck-Nicolson (CN) scheme is implemented with a lot
of optimization steps, so we do not compare real time for the calculation. We focus on the
fact observed in the Figure 10.11 for CN scheme is growing with dimension. It means for
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total number of grid points

10
0

10
2

10
4

10
6

10
8

ti
m

e

10
-2

10
0

10
2

3D ADE

2D ADE

Figure 10.12: Computational complexity with respect to the total number of points in the
grid for ADE scheme.

the same number of total points in a grid we need more time in the 3D model as in the 2D
model. The explanation is coming from the construction of the scheme. Although for the
same number of total points in a grid the size of the matrix is the same, but its structure
is different. For 3D more non-diagonal terms are present and to compute solution in the
implicit scheme is becoming costly for higher-dimensional models.
Costs for the ADE schemes in Figure 10.12 for higher dimensions are not growing, even
opposite, since the calculation of the explicit scheme depends only on the total number
of grid points and size of the stencil.
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Trefftz methods for the
Black-Scholes equation, Flexible
Local Approximation Methods

This chapter is based on the cooperation with Prof.Tsukerman and his longlasting expe-
riences and results in this area. Goal of this chapter is to present a short overview on
alternative methods for solving the Black-Scholes model, as a ’proof of the concept’.

Trefftz methods are represented by Flexible Local Approximation Methods (FLAME).
They were applied in different areas, but not in finance yet. Trefftz schemes are an
alternative to traditional methods solving the for Black-Scholes equation. The Trefftz
approach may lead to new finite difference schemes.

Trefftz functions by definition satisfy the underlying differential equation. Examples
for basis functions are exponentials, plane waves, harmonic polynomials, etc. There is
a lot of study for stationary problems but how it works for time-dependent problems
like the Black-Scholes equation. One example is given in [56] pp.7-8. Here, the time is
considered as an additional coordinate. Basis functions are chosen as dependent functions
on space and time.

11.1 How Trefftz methods work?

Trefftz methods are based on flexible local approximative functions. Approach is differ-
ent from FEM and from FDM. It is an alternative approach how to define the coefficients
of the FDM scheme in another way. There is defined a mesh on the computational do-
main Ω. On Ω we define subdomains Ωi which have the stencil size. Basis functions ψ i

α

satisfy the differential equation locally. The solution of the differential equation in Ωi is
denoted by ui and it is a linear combination of the basis functions over the subdomains.

ui = ∑
α

ci
αψ

i
α in Ωi

ui = Nici,

where ci is vector of coefficients ci
α and Ni represents a matrix in the i−th subdomain. In

other notation we can specify that entries of the matrix Nαβ

133



134 11 Trefftz methods for the Black-Scholes equation, FLAME

NT
αβ

= ψα(rβ )

consists of the basis functions expressed in points from stencil.

There is vector si from nullspace of matrix Ni. Vector si directly specifies weights, coef-
ficients of the numerical scheme on the given stencil:

si ∈ Null (Ni)T .

It holds the following:
(si)T ui = 0,

i.e.
(si)T Nici = 0.

The idea is simple and derivation of this method with more technical details and proper-
ties and applications in the fields from physics can be found in [57].

For better understanding we illustrate this idea by the following examples:

Example 1: Laplace equation
uxx = 0

Trefftz basis functions:
Ψ = {1,x}

Solution as a linear combination of basis functions:

u(x, t) = c1ψ1(x)+ c2ψ2(x)

A three-point stencil with the following nodes:

x1 =−h, x2 = 0, x3 = h

Figure 11.1: Three point stencil.

Matrix:

N =

(
ψ1(x1) ψ1(x2) ψ1(x3)
ψ2(x1) ψ2(x2) ψ2(x3)

)
=

(
1 1 1
−h 0 h

)
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Nullspace of the matrix N yields the weights

(1,−2,1)T ,

i.e. we obtain the standard stencil.

Example 2: Wave equation

c2uxx−utt = 0 [0,L]

Basis functions:
Ψ = {1,x− ct,x+ ct,(x− ct)2,(x+ ct)2}

Stencil:

x1 = [0,0], x2 = [k,0], x3 = [−k,0], x4 = [0,−h], x5 = [0,h]

Figure 11.2: Five point stencil.

Matrix:

N =


ψ1(x1) ψ1(x2) ψ1(x3) ψ1(x4) ψ1(x5)
ψ2(x1) ψ2(x2) ψ2(x3) ψ2(x4) ψ2(x5)
ψ3(x1) ψ3(x2) ψ3(x3) ψ3(x4) ψ3(x5)
ψ4(x1) ψ4(x2) ψ4(x3) ψ4(x4) ψ4(x5)
ψ5(x1) ψ5(x2) ψ5(x3) ψ5(x4) ψ5(x5)

=


1 1 1 1 1
0 −ck ck −h h
0 ck −ck −h h
0 c2k2 c2k2 h2 h2

0 c2k2 c2k2 h2 h2


Nullspace of matrix N is set of weights:

(−2+2
c2k2

h2 ,1,1,−c2k2

h2 ,−c2k2

h2 )

what leads to the symmetric stencil.
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Example 3: Heat equation
uxx−ut = 0

General solution:
u(x, t) = ax2 +bx+2at +d

Basis functions:

Ψ = {1,0.5x2 + t,e−λ 2t sin(λx),e−λ 2t cos(λx)}

Stencil:
x1 = [0,0],x2 = [k,0],x3 = [−k,0],x4 = [0,−h],x5 = [0,h]

Figure 11.3: Five point stencil.

Matrix:

N =


ψ1(x1) ψ1(x2) ψ1(x3) ψ1(x4) ψ1(x5)
ψ2(x1) ψ2(x2) ψ2(x3) ψ2(x4) ψ2(x5)
ψ3(x1) ψ3(x2) ψ3(x3) ψ3(x4) ψ3(x5)
ψ4(x1) ψ4(x2) ψ4(x3) ψ4(x4) ψ4(x5)
ψ5(x1) ψ5(x2) ψ5(x3) ψ5(x4) ψ5(x5)

=


1 1 1 1 1
0 0 0 −h h
0 k −k 0 0
1 e−λ 2k eλ 2k cos(λh) cos(λh)



with the entries of the nullspace.

x1 =
cos(λh)

cos(λh)−1

x2 =
cos(λh)

−2cos(λh)+ e−λ 2k + eλ 2k

x4 =
−x1− x2(e−λ 2k + eλ 2k)

2cos(λh)
x2 = x3, x4 = x5
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what leads to the symmetric stencil with a parameter λ to be chosen.

Example 4:Linear Black-Scholes equation with transformation
A transformation to the heat equation is possible in case of linear Black-Scholes model
with constant coefficients and we refer to the Example 3.

Example 5:Linear Black-Scholes equation, ’cheating mode’
Here the basis functions are chosen functions from the closed form formula solution
of Black-Scholes. That’s why we denote this approach as a ’cheating mode’ since the
solution is known in advance. We just want to highlight that using this functions, it leads
to the generating the coefficients of the finite difference scheme.

Example 6:Linear Black-Scholes equation, without cheating mode, generating basis
funtions using Taylor expansion
First step is to remove the ’cheating mode’ with the exact solution as basis function. We
can use functions with some financial interpretation: discount factor: e−r(T−t) or espe-
cially Ke−r(T−t) which satisfies the Black-Scholes equation locally. Another posssiblity
is choice of the basis function as a stock price S.
Another possibility is to generate basis functions ’automatically’, using Taylor expan-
sions to an arbitrary order. High-order schemes can be generated by replacing the Taylor
expansions with Trefftz approximations which typically have much higher accuracy. We
can do it by using expansion of V (S, t) around any given point into the Taylor series in
S, t to an arbitrary order, substituting this expansion into the Black-Scholes equation and
eliminating as many low-order terms as possible, to obtain approximate Trefftz functions.

11.2 Numerical results with Six-Point FLAME
Scheme

In this section we provide numerical results of solving linear Black-Scholes equation.
There is displayed exact solution of Black-Scholes in the Figure 11.4 upper left, upper
right is an option price which we get using FLAME method. There was used six-point
FLAME scheme. Trefftz basis function are generated in an ’automatic way’ by using
Taylor expansion. There is recorded error in the FLAME scheme as in the Figure 11.4
down as a difference between exact and numerical solution.

11.3 Comparison of FLAME and Crank-Nicolson
scheme

In the Figure 11.5 we compare Crank-Nicolson (CN) scheme and 6 point FLAME scheme.
There is displayed the ratio of errors of these 2 schemes for different space and time steps.
Most of the time the error is lower for CN scheme. There are some regions with approx-
imately the same error for both schemes.
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Black-Scholes, 6-pt FLAME solution. r, σ, K, ∆S, ∆t = 0.05, 0.1, 1, 0.05, 0.1,
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Figure 11.4: Exact (left) and FLAME (right) solutions. Trefftz basis functions obtained
via Taylor expansions. Solution is accurate up to round-off. Six-point
FLAME scheme: 2 levels in t × 3 layers in S. (with permission of Igor
Tsukerman)

Error ratio: 6-pt C-N vs. FLAME. Black-Scholes.
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Figure 11.5: Ratio of errors - FLAME vs. CN scheme (with permission of Igor Tsuker-
man)

11.4 Further potential of the Trefftz schemes

This chapter serves as a proof of concepts that Trefftz methods can be used in differ-
ent fields. However there is a lot of scope for improvement and suggesting the FLAME
scheme with good properties. Big potential of FLAME methods is to generate as good
exact solution as possible based on the choice of the basis functions. In a series of ex-
periments we observe some numerical instabilities which are the subject for a deeper
study. Suggestions of using Trefftz basis function in another approaches, e.g. Discon-
tinuous Galerkin method are challenging, as well. FLAME has a great deal of flexibility
which makes this method competitive. The application to nonlinear equations and usage
of nonuniform meshes can be a nice enrichment of these approaches (it can save a lot of
computational time, it is convenient to use nonuniform mesh for financial problems; e.g.
a mesh according to [32]).
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This dissertation thesis has fulfilled its goal capturing a wide overview of handling multi-
dimensional models. On the one hand it studies analytical approximations, on the other
hand it focuses on the numerical analysis of the ADE methods.

The first part of the thesis is focused on searching for a suitable approximative solution
of the convergence CKLS model. Crucial part is in the Chapter 3 where approximation
for domestic and European bond is suggested and its accuracy derived. We suggest an
improved approximation with higher accuracy order. A complete analysis of the model
and its approximation, testing on simulated and providing calibration using real market
data are included. Since the results with real market were not perfectly satisfactory, we
implemented a few improvements. One of them is the estimation of the overnight interest
rates based on the modeling from the term structures of the interest rate in Vasicek model
in the Chapter 4. We have proposed and tested a procedure for estimating the short rates
together with the parameters of the Vasicek model. Simulations show that the procedure
exhibits high precision. When applying it to the real data, we obtain a good fit of the term
structures. However, when taking different sets of maturities as inputs to the calibration,
we often obtain quite different estimated evolutions of the short rate. Nevertheless, the
fit of the term structures is good. We would like to study this phenomenon more deeply,
find its financial interpretation and possible explanation.

Another possibility how to improve modeling of the stochastic interest rate model is to
suggest the alternative model, where the one-dimensional stochastic process is modelled
as a sum of two unobservable processes. Since calibration of the bond yields is dependent
on the European data, improvement in fitting of the bond yield in European model will
also influence the accuracy of the domestic bond yield curves.

In the Chapter 5 we studied a particular class of two-factor models of interest rates in
which the short rate is defined as a sum of two CKLS-type processes. We developed a
method of estimating the short rate and fitting the term structures for the special Vasicek
case model and showed its usefulness by applying it to fitting Euribor interest rates. An
example from the simulated data where the procedure gave a very precise estimate of the
short rate even if applied to data generated from a model with nonconstant volatilities,
motivated us to propose an approximation of bond prices in such a model and prove its
order of accuracy. We note that besides a precise estimate of the short rate, we have also
its decomposition into the factors, but these are shifted by a constant. Still, it provides a
lot of information about the process and hence our future work will be concerned with
using this information together with the approximation of the bonds which were derived
to obtain estimates for all the parameters of the model.
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We end up this modeling and analytical part of the thesis with three-factor convergence
model of interest rate with the Chapter 6. Combining two-factor convergence short rate
model and improvement in modeling of one interest rate as a sum of two CKLS-type
processes lead to the three-factor model. We have numerically tested the proposed ap-
proximation on the CIR model with zero correlations, for which the exact solution can be
expressed in a simpler form and also analytically derived its accuracy in this case. The
difference of logarithms of the exact solution and the proposed approximation is of order
O(τ4). Our next aim is to derive the order of accuracy in the general case. The special
form of the solution in the case considered in this thesis makes the analysis more direct,
however, it is possible to study the accuracy of the approximation of the bond prices
also without this structure (see the Chapter 3 for the analysis of a two-factor convergence
model). Furthermore, we will look for a suitable calibration algorithm and calibrate the
model to the real data to see, whether the increase complexity leads to a significant im-
provement in fitting the market data.

In the second part of the thesis we discuss one and two factor interest rate models and
apply the classical Fichera theory to the resulting degenerate parabolic PDEs. This theory
provides highly relevant information how to supply BCs in these applications.

We provided a numerical analysis for ADE methods solving linear convection-diffusion-
reaction equations. The stability was investigated by two different approaches. The ma-
trix approach yields unconditional stability in the downward sweep using upwind dis-
cretization. The von-Neumann analysis yields unconditional stability of the downward
sweep using the Roberts and Weiss approximation. It turned out that the order of con-
sistency is O(k2 + h2 + k/h) for the upward or downward sweeps, but its combination
exhibits an increase order of consistency O(k2+h2). Next, for the BS model, as an appli-
cation in computational finance, we obtained an order of consistency O(k2+h2) for both
downward and upward sweeps.

We suggest the usage of ADE methods to numerically solve higher-dimensional PDEs.
We implemented it for the linear 2D and 3D Black-Scholes pricing equation. The or-
der of consistency of the implemented ADE method is O(k2 + h2) and this was verified
experimentally.

Further studies will be made on the implementation of this scheme to higher-dimensional,
non-linear Black-Scholes models, e.g. of Zakamouline [62]. Also, since the ADE ap-
proach is quite suitable to parallelization, an implementation using a parallel computing
environment will be envisaged.

In the last Chapter 11 we briefly introduce an alternative approach of solving the Black-
Scholes equation based on the flexible local approximative schemes, also called Trefftz
methods. The results are very preliminary and there is a lot of room for improvements.

The thesis deals with broad scope of numerical and analytical techniques. It brings unique
results in form of approximations in closed form formula in short-rate models and brushes
up forgotten ADE schemes, brings its numerical analysis and implements it in higher
dimensional models. Also some other side results appeared as a surprise which had not
been really planned (e.g. Chapter 11 or Chapter 8) what is of course a positive finding.
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The thesis deals with wide scope of numerical and analytical techniques in computational
finance. Unique results in form of approximations in closed form formula in short-rate
models are included and forgotten ADE schemes have been reminded and studied. Im-
plementation for one, two, three dimensional models is provided and extensions to higher
dimensional models have been outlined.
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(in Slovak: Kapitoly z finančnej matematiky). Epos, 2005.

[40] R. C. Merton. Theory of Rational Option Pricing. The Bell Journal of Economics
and Management Science, 4(1):141, jan 1973.
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