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Abstract

Three Dimensional Polarized Light Imaging (3D-PLI) is a neuroimaging technique that is
used to study the structural connectivity of the human brain at the meso- and microscale.
In 3D-PLI, the complex nerve fiber architecture of the brain is modeled by 3D orientation
vector fields that are derived from polarimetric measurements of unstained histological
brain sections.
In this thesis, a new algorithmic framework for an unbiased data interpretation of the
polarimetric measurements at the mesoscale has been developed. By extending standard
3D-PLI measurements to include data acquired with a tiltable specimen stage, this new
framework facilitates an enhanced accuracy of reconstructed orientation vectors. In a
proof of concept study the capabilities of the new algorithms were explored and it has
been shown how these algorithms can be employed to investigate the fiber architecture
of the human brain.
In order to extend the developed framework to the microscale, the second part of this
thesis is dedicated to the implementation of an oblique illumination system for 3D-PLI
microscopy. For this purpose, the optical setup of the illumination has been designed and
optimized. A proof of concept measurement provided evidence that the acquired data is
equivalent to that acquired with a tiltable specimen stage. With this new capability in
3D-PLI microscopy it is now possible to extend the application of developed algorithms
to the microscale and facilitate even more complex data analytics in the future.

iii





Kurzzusammenfassung

3D Polarized Light Imaging (3D-PLI) ist ein bildgebendes Verfahren, das in den Neu-
rowissenschaften benutzt wird um die anatomische Konnektivität des (menschlichen)
Gehirns auf mesoskopischer und mikroskopischer Auflösung zu studieren. Dazu wird in
3D-PLI die komplexe Nervenfaserarchitektur des Gehirns durch 3D Vektorfelder model-
liert, die auf Basis polarimetrischer Messungen von ungefärbten histologischen Gehirn-
schnitten berechnet werden.
In dieser Arbeit sind Algorithmen entwickelt worden, die eine unabhängige Datenanalyse
der polarimetrischen Messungen auf der Mesoskala ermöglichen. Durch die Ergänzung
der standardisierten 3D-PLI Messkette um Messungen mit einem verkippten Proben-
tisch ermöglichen diese Algorithmen eine höhere Genauigkeit bei der Bestimmung von
Orientierungsvektoren. In einer Machbarkeitsstudie wurde untersucht, wie diese Algo-
rithmen die Erforschung der Faserarchitektur des menschlichen Gehirns unterstützen.
Um die entwickelten Algorithmen auch im mikroskopischen Bereich nutzen zu können,
wurde im zweiten Teil dieser Arbeit ein Beleuchtungssystem mit schiefem Lichteinfall
für die 3D-PLI Mikroskopie entwickelt. Hierzu wurde der optische Aufbau des Beleuch-
tungssystems entworfen und optimiert. In einer Machbarkeitsstudie wurde nachgewiesen,
dass dieses Beleuchtungssystem eine Datenbasis liefert, die äquivalent zu den Daten
genutzt werden kann, die mit Hilfe des verkippbaren Probentisches im mesoskopischen
Bereich gemessen werden. Durch diese neuen Methoden in der 3D-PLI Mikroskopie ist
es nun möglich, die in dieser Arbeit entwickelten Algorithmen sowohl im mesoskopis-
chen als auch im mikroskopischen Bereich zu nutzen und in zukünftigen Studien die
Datenanalyse zu erweitern.
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1
A short Introduction to Brain Mapping

The study of the human brain promises unprecedented insights into the working mech-
anisms of neural networks and their information processing capabilities. Understanding
how brain function emerges from the structural organization of its building blocks may
eventually yield applications in several fields ranging from healthcare to novel computing
and interfacing technologies [31, 66, 79]. The modeling of the principles of information
processing in neural networks has already led to significant advances in the field of ma-
chine learning especially in the area of pattern recognition [66, 47]. Current research
is dedicated to developing and advancing computing architectures (e.g. neuromorphic
computing architectures) in order to better emulate biological neural networks [80, 33].
Furthermore, a detailed knowledge of the brain’s anatomy and the function of specific
brain regions is critical for understanding and eventually treating neuro-degenerative
diseases such as Parkinson’s or Alzheimer’s disease [31]. With the recent launch of the
Human Brain Project in Europe [2] and the Brain Initiative in the US [55] these re-
search goals have been acknowledged by the scientific community for their importance
for society.
The main challenges of studying the human brain are due to its complexity and multi-

Figure 1.1: Sketch of a neuronal cell. The cell receives excitatory or inhibitory
input at its dendrites. When a certain threshold is exceeded, it fires and an action
potential propagates along the axon until it reaches the axon terminals, where the
signal leads to the excitation or inhibition of other neurons. This figure was adapted
from [1] and labeled according to [20].
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Chapter 1. A short Introduction to Brain Mapping

scale organization. At the microscale, the brain is built-up of individual neurons, which
are electrically excitable cells, each consisting of a cell body, dendrites and an axon (cf.
Fig. 1.1). The primary function of the dendrites is to receive signals from other neu-
rons whereas the axon allows the propagation of electro-chemical signals. Upon firing of
a neuron, an electro-chemical pulse propagates along the axon by opening sodium ion
channels in its membrane, which leads to a change in the membrane potential and opens
further channels along the nerve fiber. On its own, the conduction velocity of this ac-
tion potential is very slow. Thus, long ranged axons are typically insulated by glial cells,
which allow Saltatory conduction [20]. These glial cells form a myelin sheath around the
axon, which allows the action potential to occur only at the “nodes of Ranvier” between
glial cells, where the signal is refreshed by opening new sodium ion channels. As the
action potential propagates from node to node, the conduction velocity is increased by
up to two orders of magnitude. When the action potential reaches the axon terminals,
most synapses release neurotransmitters into the synaptic cleft, where they are detected
by neuroreceptors at the dendrites of other neurons.
On a macroscopic level, the brain can be subdivided into the cerebral cortex (also called
gray matter) and the subcortical white matter (which appears white in dissected brains
due to its high myelin content). The cerebral cortex of the brain describes the outermost,
2mm − 4mm thick layer and consists mostly of cell bodies [20]. In the field of brain
mapping, the brain’s organization is typically described by a parcellation into distinct
brain regions based on function and structure.
Brain function is typically studied by functional Magnetic Resonance Imaging (fMRI),
which is based on the blood-oxygen-level-dependent (BOLD) response. When assigning
specific tasks to a subject, the brain activity increases in brain regions that are relevant
for the respective task, leading to an increased local energy consumption by brain cells
which can be identified based on the BOLD contrast [51].
On a structural level, the cortex can be subdivided based on different features such as
neuron density or the distribution of certain neuroreceptors [3, 81]. By cross referencing
functional and structural mapping techniques, researchers aim to understand the link
between the organization visible on a structural level and the respective function that
is observed in vivo [21].
In general, even performing simple tasks requires the co-activation of multiple brain
regions. Hence, it is critical not only to map brain regions but also to understand how
they are connected to each other. Similar to the subdivision of the brain into different
regions, connectivity can be studied on a functional and on a structural level. Functional
connectivity is defined as the temporal co-activation of different brain regions and can
be studied through fMRI.
The present study addresses an imaging modality for structural connectivity, i.e. the
physical connection between different brain regions. These connections are analyzed
to develop a comprehensive network model of the human brain called connectome [71],
which includes connections ranging from large macroscopic fiber bundles down to single
axon terminations in the cortex. Hence, studying structural connectivity of the (human)
brain is a multiscale challenge, ranging across several orders of magnitude, from 102mm
(approximate size of the human brain and long ranged interhemispheric connections)
to 10−3mm (the approximate diameter of an axon) or even 10−5mm (the diameter of
single neurofilaments within axons) [20]. A broad variety of imaging methods have been
developed in order to investigate the fiber architecture of the brain at different scales.
So far, diffusion weighted Magnetic Resonance Imaging (dMRI) is the only means of
imaging the course of fiber pathways in vivo. This technique is capable of measuring the
orientation sensitive diffusion of water molecules. As the walls of nerve fibers impose
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spatial restrictions on the diffusion, the orientation-dependent magnitude of diffusion
makes it possible to infer orientations of fiber pathways. The highest spatial resolution
achieved in dMRI measurements of complete human brains to date is 1.25mm [75] in
vivo, while for post mortem measurements even a sub-millimeter resolution has been
achieved [52].
For any 3D imaging technique, the brain volume is virtually subdivided into volume ele-
ments called voxels. In Diffusion Tensor Imaging (DTI), the connectome is represented
by assigning a diffusion tensor to each of these voxels. These tensors are visualized by
ellipsoids whose main axis indicate the predominant fiber orientation. Ellipsoids are
well suited to visualize single fiber orientations (in cigar shaped ellipsoids) and to vi-
sualize the level of uncertainty the measurement is afflicted with (i.e. with increasing
uncertainty the ellipsoids become more spherical).
It has been argued that the tensor is not sufficient to represent voxels that contain fibers
oriented in two (or more) distinct orientations [73]. Due to the relatively coarse resolu-
tion of dMRI this issue is highly relevant, as in many voxels multiple fiber orientations are
present. Hence, more complex measurement protocols such as High-angular-resolution
diffusion imaging (HARDI) have been developed [73], representing the statistical dis-
tribution of fiber orientations by orientation distribution functions (ODFs) [74]. These
ODFs make it possible to adequately quantify and visualize crossing fiber structures in
every voxel.
For post mortem studies of the human connectome, several histological imaging meth-
ods have been developed. Myelin staining techniques such as the Luxol fast blue stain
or the Heidenhain-Woelcke stain utilize the chemistry of the myelin sheath to bind dye
particles and reveal the fiber architecture in histological sections [43, 78]. Histological
sections with stained myelin are often used to validate other imaging techniques such as
dMRI [48]. However, reconstructing a whole brain volume requires extensive image reg-
istration as shearing forces during the preparation procedure deform each brain section
individually. Furthermore, myelin stains only offer the possibility to image the myelin
density but not the actual orientation of nerve fibers. While it is possible to deduce
the orientation of homogeneous fiber bundles based on the morphological features made
visible in myelin stains, more complex structures cannot be thoroughly examined. For
visualization purposes, structure tensor analysis can be applied to myelin stained sec-
tions in order to make the in-plane orientation more accessible [10].
Recently, Chung et al. have developed a protocol (called CLARITY ) that makes it
possible to transform opaque biological tissue into an optically transparent nanoporous
hydrogel. By means of immunohistochemical labeling they were able to reveal detailed
fiber connections in an unsectioned mouse brain [14]. In their study, the tissue sample
was imaged by in-depth scanning the hydrogel hybridized and lipid free tissue with an
optical microscope. To date, the maximal tissue thickness that can be analyzed with
this approach is restricted to the ≈ 10mm regime due to the limited working distance
of microscope objective lenses.
This study focuses on 3D Polarized Light Imaging (3D-PLI), a histological imaging tech-
nique that analyzes unstained brain sections and is capable of extracting 3D orientation
vectors that model the brain’s fiber architecture. 3D-PLI is primarily based on the
birefringence of the myelin sheath, an optical effect that changes the polarization state
of polarized light [67]. While the birefringence of nerve fibers has been known for al-
most a century, only the advances in digital image processing in recent years have made
this method feasible for a comprehensive study of the connectome. Polarimetric mea-
surements of unstained brain sections make it possible to deduce the three dimensional
orientation of myelinated axons (a comprehensive introduction to the theory of polari-
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Chapter 1. A short Introduction to Brain Mapping

Figure 1.2: The 3D-PLI orientation vector for a nerve fiber can be represented
in spherical coordinates by the inclination angle α and the direction angle ϕ. The
color sphere shows how these orientations vectors can be visualized by color in order
to make vector maps more accessible.

metric measurements and its application in 3D-PLI is given in Chap. 2). In 3D-PLI,
these fiber orientations are represented by vectors, which are tangential to the course of
the respective nerve fiber. As depicted in Fig. 1.2, such a vector can be parameterized
in spherical coordinates by its inclination angle, which denominates the out of plane
angle, and the direction angle, which describes the orientation within the section plane.
As 3D-PLI is a histological imaging technique, image registration of the individual mea-
sured brain sections is required to reconstruct a complete brain volume. In this volume
a vector is assigned to every voxel. Hence, the 3D-PLI connectome is given by a three
dimensional vector field that provides the (tangential) orientation of nerve fibers in every
point.
The resolution of 3D-PLI is primarily limited by the optical design of the respective
imaging system. Therefore, 3D-PLI is highly scalable as it is capable of analyzing the
structural connectivity in brain sections at a mesoscopic level (with a field of view corre-
sponding to the size of the brain) and at a microscopic level (with resolution limited by
the wavelength of the light at approximately 0.5 µm). While this multiscale approach re-
quires multiple polarimetric imaging systems [5], the working principle is the same and
recent efforts have ensured the comparability across different 3D-PLI platforms [64].
One important step in this process was an improvement in the calibration process that
has been developed in the course of this study and which is presented in Chap. 3.
3D-PLI is currently being established as a bridging modality that makes it possible
to compare and cross validate structural connectivity data between different imaging
methods. By applying structure tensor analysis to histological myelin stains, it is pos-
sible to generate information comparable to the direction angle information in 3D-PLI.
Furthermore, recent efforts by Axer et al. demonstrated that introducing so called PLI
Orientation Distribution Functions (pliODF) makes it possible to connect 3D-PLI with
dMRI measurements and facilitate cross-validation between these two modalities [6].
The theoretical model of the birefringence of nerve fibers which the data analytics of
3D-PLI are based on, makes it possible to directly measure the direction of fibers. The
inclination, on the other hand, has to be inferred from the measurement of a physical
quantity called retardation. Axer et al. have demonstrated that this relationship can be
unraveled in white matter regions with a constant myelination and fiber density. How-
ever, they also noted that their method was flawed in the transition regions between
white and gray matter and at the axon terminals in the gray matter [4].
In this study, new algorithms have been developed to address ambiguities in this rela-
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tionship on the basis of measurements with a tiltable specimen stage. By tilting the
brain section, small changes are applied to the orientation of nerve fibers, which in-
creases the available information and allows a non-ambiguous signal interpretation. In
Chap. 4 the mathematical foundation of two algorithms is derived and it is shown that
both algorithms enhance the reconstruction of the fiber architecture. Both algorithms
essentially reconstruct similar orientation vectors, but differ in terms of the trade-off be-
tween accuracy and required computing resources. The advantages and pitfalls of each
algorithm are explored and use cases demonstrate how they can be applied to investigate
the fiber architecture.
As previously argued, one of the main advantages of 3D-PLI over other modalities is
its multiscale applicability. While this holds true for the imaging principle and most
image processing steps, the tiltable specimen stage is only feasible in a system whose
field of view matches the specimen dimensions. In a microscopic imaging system on the
other hand, such a specimen stage is not feasible. In order to prevent the developed
algorithms from inhibiting the scalability of 3D-PLI, Chap. 5 deals with extending the
current hardware concept of 3D-PLI microscopy. An oblique illumination system is de-
veloped in order to provide data similar to that of a tiltable specimen stage. Proof of
principle measurements with a prototype demonstrate the feasibility of the new concept.

5





2
Basics of Birefringence Polarimetry and

Its Application in Neuroscience

In the course of this chapter a review of the basics of 3D Polarized Light Imaging is pre-
sented. The first part deals with the physical principles of polarimetry and describes the
mathematical calculus that is used throughout this study. In contrast to previous studies
on 3D-PLI by Axer et al. [4, 5], which described the theoretical foundation of 3D-PLI us-
ing the Jones calculus, the mathematical framework here is based on the Mueller-Stokes
calculus. This calculus enables the description of unpolarized and partially polarized
light which is required for the polarimetric calibration methods developed in Chap. 3.
The current model for the interaction of polarized light with brain tissue is explained
in Sec. 2.2. It is demonstrated how this model is used to extract information about the
nerve fiber architecture with state of the art imaging systems. Further sections deal
with the preparation of brain tissue before it is measured, and with the post processing
of data for interpretation and visualization purposes.

2.1 Polarized Light and its Mathematical Description in
Experiments

In general, polarization is a property of a transversal wave and describes the orientation
of the associated oscillation plane. Light as a transversal electro-magnetic wave obeys
the Maxwell equations and can be described by an oscillating electric field vector E(z, t̃).
Presuming a wave propagating along the z-axis of the coordinate system a solution to
the wave equation is given by

E(z, t̃) = E0e
i(kz−ωt̃), (2.1)

where E0 ∈ C2 is the polarization state of the wave, also known as the Jones vector [36].
The imaginary constant is represented by i =

√
−1, k denotes the wave number, ω the

angular frequency of the wave and t̃ the time parameter.
The interaction between polarized light and polarization sensitive optical elements can be
described by the Jones calculus, where elements in the optical pathway, which influence
the polarization state, are represented by complex 2×2-matrices. Multiplying the Jones
vector with such a Jones matrix describes the changes in polarization when passing the

Parts of this chapter have been adapted from Wiese et al. [76].
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Chapter 2. Basics of Birefringence Polarimetry

corresponding optical element. This Jones formalism is well suited to describe coherent
and completely polarized light (e.g. in laser applications). Previous studies on 3D-PLI
[46, 4, 5] have used the Jones formalism to describe the experimental setup and the effects
of birefringent brain tissue on polarized light. However, in this study the Mueller-Stokes
calculus is used for the description of polarized light, since it relates directly to the
measurands in the experiment. The camera of a common imaging system only records
scalar gray value intensities. In the Mueller-Stokes formalism the light intensity values
for basic polarization states are directly calculated, while the Jones formalism focuses on
the description of the electric field. Hence, the Mueller-Stokes calculus is more common
in literature on polarization sensitive imaging techniques [13, p. 22.14].
In the Mueller-Stokes calculus the polarization state of a light beam is described by the
real valued Stokes vector which relates to the Jones vector by

S =


S0
S1
S2
S3

 =


E0xE

∗
0x + E0yE

∗
0y

E0xE
∗
0x − E0yE

∗
0y

E0xE
∗
0y + E0yE

∗
0x

iE0xE
∗
0y − iE0yE

∗
0x

 . (2.2)

The first component S0 of this vector denotes the total light intensity, while each of
the parameters S1, S2 and S3 describe the predominance of two orthogonal polarization
states. The Stokes parameter S1 denotes the prevalence of linear horizontally over linear
vertically polarized light, while the parameter S2 describes the same for linearly ±45°
polarized light and S3 describes the predominance of right handed over left handed
circularly polarized light [15, p. 13]. In this representation of a polarized light beam,
measurands that can be observed in the experiment (e.g. the light intensity) are directly
accessible (e.g. in S0). When using the Jones formalism on the other hand, the measured
light intensity I ∝ E0 · E∗0 has to be derived after calculating the Jones vector E0. It
is often useful to normalize the Stokes vector by S/S0 so that the Stokes parameters
assume values of −1 ≤ S1, S2, S3 ≤ 1. In addition, it is important to note that the
Stokes parameters also must obey

S2
0 ≤ S2

1 + S2
2 + S2

3 ,

with ≤ turning into = for completely polarized light. For partially polarized light it is
useful to define the degree of polarization as

p =

√
S2
1 + S2

2 + S2
3

S0
.

A change in the polarization state of a light beam is described by multiplying the
Stokes vector with a real valued 4× 4-Mueller matrix. Unpolarized light represented by
S = I0

(
1 0 0 0

)† can be changed into any polarization state by using a combination
of three basic components [15, pp. 17-23]:

1. The linear polarizer has a preferred transmission axis that allows transmission
of the linear polarization components parallel to the axis whereas light polarized
perpendicular to that axis is strongly absorbed. Such a linear polarizer can be
described by the Mueller matrix

Mpol(px, py) =
1

2


p2x + p2y p2x − p2y 0 0

p2x − p2y p2x + p2y 0 0

0 0 2pxpy 0
0 0 0 2pxpy

 , (2.3)
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2.1. Polarized Light and its Mathematical Description in Experiments

where px and py denote the percentage of transmitted light with polarization
states in x and y direction. Hence, an ideal polarizer with its transmission axis in
x-direction would be described by the Mueller matrix Mpol(1, 0). In experiments,
the polarization filters are always flawed to some extent, reducing their efficiency
to polarize light to a percentage p. Such a more realistic partial polarizer can be

modelled by the Mueller matrix Mpol

(√
1+p
2 ,
√

1−p
2

)
.

2. The retarder (sometimes also called waveplate when referring to an optical filter)
induces a polarization-dependent change in the phase of the electromagnetic wave
(also called retardance and denoted by δ). Such a retarder consists of a birefringent
medium that has a polarization dependent refractive index. Hence, it induces the
polarization-dependent phase shift1, that can be described by the Mueller matrix

Mwp(δ) =


1 0 0 0
0 1 0 0
0 0 cos(δ) − sin(δ)
0 0 sin(δ) cos(δ)

 . (2.4)

In technical applications, the two most common waveplates are the quarter-wave
plate and the half-wave plate. The quarter-wave plate (δ = π/2) converts circularly
polarized light into linear polarized light, and linear polarized light is converted
into circularly polarized light if its polarization axis is at an angle of ±45° relative
to the main axis of the retarder. The half-wave plate (δ = π) generally rotates a
linear polarized beam by an angle defined through the polarization plane relative
to the axis of the waveplate.

3. The rotator (sometimes also called circular retarder) rotates the direction of linear
polarized light by an angle θ. Such a rotation occurs in optical active media, e.g.
in solutions of chiral molecules. Its Mueller matrix is given by [15, p. 22]

Mrot(θ) =


1 0 0 0
0 cos(2θ) sin(2θ) 0
0 − sin(2θ) cos(2θ) 0
0 0 0 1

 . (2.5)

Additionally, the rotation matrix Mrot(θ) can be used to account for a rotation
between the coordinate system of a polarizing element and the laboratory system.
Given M as the matrix of an optical element, the transformation

M(θ) = Mrot(−θ) M Mrot(θ), (2.6)

yields the matrix M(θ), which describes the polarization effects if the respective
element is rotated by an angle θ.
For this study, the rotated matrix of the retarder and the linear polarizer are of
particular interest. The Mueller matrix of a general retarder with retardance δ
and fast axis orientation θ is

Mwp(δ, θ) =


1 0 0 0
0 cos2(2θ) + cos(δ) sin2(2θ) (1− cos(δ)) sin(2θ) cos(2θ) sin(δ) sin(2θ)
0 (1− cos(δ)) sin(2θ) cos(2θ) sin2(2θ) + cos(δ) cos2(2θ) − sin(δ) cos(2θ)
0 − sin(δ) sin(2θ) sin(δ) cos(2θ) cos(δ)

.
(2.7)

1Further details on birefringence are given in Sec. 2.2
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Chapter 2. Basics of Birefringence Polarimetry

The matrix of an ideal linear polarizer with px = 1 and py = 0 rotated at an angle
θ is given by

Mpol,x(θ) =
1

2


1 cos(2θ) sin(2θ) 0

cos(2θ) cos(2θ)2 sin(2θ) cos(2θ) 0
sin(2θ) sin(2θ) cos(2θ) sin(2θ)2 0

0 0 0 0

 . (2.8)

Respectively, the matrix of a rotated partial polarizer, which generates linear po-
larized light to a degree of polarization p, is given by

Mpol,x(p, θ) = 1
2


1 p cos(2θ) p sin(2θ) 0

p cos(2θ) cos(2θ)2 + 2 sin(2θ)2
√

1− p2 sin(2θ) cos(2θ)(1− 2
√

1− p2) 0

p sin(2θ) sin(2θ) cos(2θ)(1− 2
√

1− p2) sin(2θ)2 + 2 cos(2θ)2
√

1− p2 0

0 0 0 2
√

1− p2

.
(2.9)

These Mueller matrices cover all polarization effects that are discussed in this study;
however, they do not represent a complete list of all possible polarization effects. A
more extensive review is given by Chipman et al. [13].
In experimental studies polarimeters are employed to determine the Stokes vector of a
light beam (light-measuring polarimeters) or the Mueller matrix of a sample (sample-
measuring polarimeters). The measurement principle of a sample-measuring polarimeter
is explained in the following. The beam irradiated from an (unpolarized) light source is
polarized by a filter (also called polarization state generator - PSG) into a well defined
polarization state. After passing the sample the light is analyzed by a second polarization
filter (called the polarization state analyzer - PSA) and the beam intensity is recorded
with a suitable sensor [13, p. 22.17]. Given the Stokes vector of a light source Ssource

(often Ssource =
(
I0 0 0 0

)† in case of initially unpolarized light) and the Mueller
matrix MPSG of the polarization state generator, the polarization state that illuminates
the sample can be written as

SPSG = MPSG Ssource. (2.10)

Similarly, the transposed Stokes vector for the polarization state analyzer S†PSA can be
determined by multiplying the matrix of the polarization state analyzer MPSA from the
left with the Stokes vector of the sensor S†sensor (e.g. S†sensor =

(
1 0 0 0

)
for an ideal

detector):
S†PSA = S†sensor MPSA. (2.11)

By controlling the PSG and the PSA the measured intensity becomes a linear combi-
nation of the sixteen Mueller matrix elements. In order to disentangle these elements,
multiple measurements with different states of the PSG and PSA are conducted, and
the intensity of the k-th measurement can be denoted as

Ik = S†PSA,k Msample SPSG,k. (2.12)

Therefore, determining all elements of an entirely unknown Mueller matrix requires at
least sixteen measurements that provide sixteen linearly independent equations, which
need to be analyzed by a suitable algorithm to provide the (least square) solution. How-
ever, some Mueller matrices are already fully characterized by only a few parameters.
Hence, if the structure of the Mueller matrix is already known2, it is sufficient to de-
termine a subset of the Mueller matrix elements and infer the remaining ones. In these

2e.g. the sample is a birefringent medium which is completely described by the Mueller matrix of a
retarder with two independent parameters
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2.2. Birefringence of Nerve Fibers

cases the setup of the polarimeter can be simplified (which will then be called an in-
complete sample-measuring polarimeter) [13, pp. 22.20-22.24].
Due to the regular occurrence of trigonometric functions in the Mueller-Stokes calculus
the trigonometric identities

sin(x± y) = sin(x) cos(y)± cos(x) sin(y),

cos(x± y) = cos(x) cos(y)∓ sin(x) sin(y),

sin(x)2 =
1

2
(1− cos(2x)) ,

cos(x)2 =
1

2
(1 + cos(2x)) ,

sin(2x) = 2 sin(x) cos(x),

cos(2x) = 1− 2 sin(x)2,

are used in several calculations throughout this study. The intensity in Eq. (2.12) is often
measured under the rotation of polarization filters and can be described by superposition
of sinusoidal signals

Ik =
∑
j

(
aj cos(jρk) + bj sin(jρk)

)
.

Here ρk denotes the angle of rotation ranging from 0° to 360° in equidistant steps. For
such a signal we can perform a discrete Fourier transformation yielding the Fourier
coefficients [62]

a0 =
1

N

N∑
k=0

Ik,

aj =
2

N

N∑
k=0

Ik cos(jρk),

bj =
2

N

N∑
k=0

Ik sin(jρk).

In a second step, the desired information such as the Mueller matrix of a sample can be
derived from these coefficients. This, however, depends on the actual application and
the experimental setup.
After understanding the concepts of polarimetry, the next section deals with the po-
larimetric effects of brain tissue and how we can utilize them to determine the fiber
architecture.

2.2 Birefringence of Nerve Fibers

3D-PLI is based on the optical birefringence of myelinated nerve fibers. In general,
birefringence describes the dependency of the refractive index of a medium on the po-
larization state of the incident light and occurs in anisotropic media. This dependency
can be described by a refractive index ellipsoid, which is depicted in Fig. 2.1. The prin-
cipal axes of this ellipsoid indicate the refractive index of the medium for light that is
polarized in the corresponding directions. Depending on the anisotropic structure, the
index ellipsoid has a rotational symmetry with two identical axes nx = ny 6= nz (uniaxial
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Chapter 2. Basics of Birefringence Polarimetry

Figure 2.1: Uniaxial index ellipsoid for positive birefringence. Depending on the
orientation of the main axis (x) relative to the direction of propagation (k) the
refractive index for the extra ordinary (ne(α)) ray changes.

birefringence) or it has three different axes nx 6= ny 6= nz 6= nx (biaxial birefringence)3.
In the case of uniaxial birefringence the index ellipsoid is also called indicatrix [9, p.
799].
To illustrate how the macroscopically observable polarization effects arise from this
model, we presume a polarized light ray propagating along the z-axis through a medium
with uniaxial birefringence. The main axis (also called optic axis) of the indicatrix is
oriented along the orientation vector x, as visualized in Fig. 2.1. The cross section of
the indicatrix with the x-y-plane yields an ellipse whose main axes determine the re-
fractive indices (ne(α) and no) for the respective linear polarization states. The Jones4

vector of the incident light E0 can be written as a superposition of two orthogonal linear
polarization states, oriented along these two axes

E0 = Eo + Ee,

also called the ordinary (Eo) and the extraordinary (Ee) wave. Since the optical path
length in a medium is proportional to the refractive index, each of these waves expe-
riences an individual phase shift (δo = 2πnot

λ and δe = 2πnet
λ ) while passing through

the birefringent medium, with λ as the wavelength of the incident light and t as the
thickness of the medium. Hence, the electric field vector can be written as

E = Eoe
iδo + Eee

iδe

=
(
Eoe

i δo−δe
2 + Eee

−i δo−δe
2

)
ei
δo+δe

2 ,

where the first part yields the new Jones vector

E0
′ = Eoe

i δo−δe
2 + Eee

−i δo−δe
2 ,

while the second part is the phase shift experienced by both waves, which is irrelevant
in terms of polarization effects. The relative phase shift between the two waves

δ = δe − δo =
2πt(ne − no)

λ
, (2.13)

3The biaxial model is not relevant in the context of this study due to the rotational symmetry of
fibers and will therefore not be discussed any further.

4The polarized light is described by the Jones vector since birefringence results in a phase shift,
which is not described by Stokes vector.
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2.2. Birefringence of Nerve Fibers

is called retardance, i.e. the ordinary wave is retarded by δ relative to the extraordinary
wave. The refractive index for the extraordinary wave ne depends on the orientation
of the optic axis relative to the direction of light propagation indicated by the vector k
(cf. Fig. 2.1). Therefore, the refractive index is a function of the angle α, which can be
derived from the elliptic geometry of the indicatrix, yielding

ne(α) =
1√

sin(α)2

no
+ cos(α)2

nE

, (2.14)

where nE and no denote the two axes of the indicatrix. For small differences of these
two indices Eq. (2.13) can be approximated by5

δ ≈ 2πt∆n

λ
cos(α)2, (2.15)

where the quantity ∆n = nE − no denotes the magnitude of the optical anisotropy and
is called birefringence. Depending on the sign of ∆n, it is often distinguished between
positive and negative uniaxial birefringent materials. For a more concise mathematical
treatment in the following calculations, the relative thickness trel = 4t∆n/λ is intro-
duced, yielding

δ ≈ π

2
trel cos(α)2. (2.16)

This simplification was first introduced by Axer et al. [4]. It takes into account that
only the combined effect of sample thickness t, birefringence ∆n and wavelength λ is
relevant for the signal interpretation but not the individual values.
The theoretical model behind the 3D-PLI image analysis presumes that the birefringence
of a myelinated axon is described by a uniaxial indicatrix, whose principal axis is aligned
along the fiber orientation [46]. This macroscopic optical property of myelinated axons
originates from the microstructural organization of filaments within the axon as well
as the ordered arrangement of lipids and proteins in the myelin sheath [28, 68]. The
strongest contribution to the experimentally observable birefringence is caused by the
sheath, which can be modelled by multiple radially oriented positive indicatrices. Studies
by Bear et al. [8] and Menzel et al. [53] demonstrated that this microscopic anisotropy
leads to a macroscopic negative birefringence of myelinated axons, which was observed
experimentally in several studies [8, 12, 18].
Apart from the polarimetric effects, the myelin sheath of an axon also causes strong
light scattering and absorption [72, 34]. The combined effect causes light attenuation
during imaging which is described by the Lambert-Beer law

I = I0e
−µt. (2.17)

The optical effect of brain tissue, including both negative uniaxial birefringence6 and
light attenuation, is represented by the Mueller matrix

Mfiber = e−µt


1 0 0 0

0 cos2(2ϕ) + cos(δ) sin2(2ϕ) (1− cos(δ)) sin(2ϕ) cos(2ϕ) − sin(δ) sin(2ϕ)

0 (1− cos(δ)) sin(2ϕ) cos(2ϕ) sin2(2ϕ) + cos(δ) cos2(2ϕ) sin(δ) cos(2ϕ)
0 sin(δ) sin(2ϕ) − sin(δ) cos(2ϕ) cos(δ)

.
(2.18)

This matrix (which is similar to the matrix of a general retarder in Eq. (2.4)) is param-
eterized by the in plane orientation ϕ, the retardation sin(δ) and absorption e−µt 7. In

5This approximation has been used in several studies [46, 4, 5]. A more detailed derivation based
on a Taylor expansion is presented in Appx. A.1.

6Here, δ is defined positive and the signs in the matrix are changed.
7It is important to note that δ is defined as a positive quantity, while the signs of the respective

matrix elements reflect the negative sign of the birefringence.
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Chapter 2. Basics of Birefringence Polarimetry

order to derive the course of nerve fibers within histological sections of the brain, a suit-
able polarimetric setup is needed to determine these quantities, which will be discussed
in the following section.

2.3 Established Experimental Methods in 3D-PLI

For this study two polarimetric systems were employed - a large area polarimeter (LAP)
capable of capturing whole human brain sections in a single shot at a pixel size of 64 µm×
64 µm, and a polarizing microscope (PM) with a pixel size of 1.33 µm × 1.33 µm. This
section covers the experimental setup of these two systems and shows the established
approach to interpret the recorded data.
In a standard 3D-PLI measurement with the LAP (shown in Fig. 2.2), an unstained
histological brain section is illuminated with circularly polarized light. The brain tissue
changes the polarization state which is examined with a linear analyzer. The circularly
polarized light is created by a linear polarizer and a quarter-wave retarder whose fast axis
is rotated by π/4 with respect to the polarizer. In principle, this system allows all three
filters to be rotated independently of each other. For a standard 3D-PLI measurement
as described by Axer et al. [4] all three filters are rotated simultaneously by an angle of
ρk. Hence, the polarization state generator is described by

SPSGLAP = Mrot(−ρk) Mwp

(π
2
,
π

4

)
Mpol(1, 0) Mrot(ρk)


I0
0
0
0

 =
I0
2


1
0
0
−1

 , (2.19)

and the polarization state analyzer by

S†PSALAP
=
(
1 0 0 0

)
Mrot(−2ρk)Mpol(0, 1) Mrot(2ρk)

=
1

2

(
1 − cos(2ρk) − sin(2ρk) 0

)
. (2.20)

The setup of the PM is similar to that of the LAP but differs in two aspects regarding its
polarimetry. First, the polarization generator and analyzer are switched, meaning that
the brain tissue is illuminated with linearly polarized light and the resulting polarization
state is analyzed with a circular analyzer. Second, only the polarizer is rotated while
the circular analyzer remains in the same position. Hence, the input polarization state
at a rotation angle ρk of the polarizer is given by

SPSGPM = Mrot(−ρk) Mpol(1, 0) Mrot(ρk)


I0
0
0
0

 =
I0
2


1

cos(2ρk)
sin(2ρk)

0

 , (2.21)

and the polarization state analyzer is given by

S†PSAPM
=
(
1 0 0 0

)
Mpol(0, 1) Mwp

(π
2
,
π

4

)
=
I0
2

(
1 0 0 −1

)
. (2.22)

The polarimetric imaging systems used in this study were custom made. In the in-house
developed LAP, the illumination is realized by a LED panel (NSPG 510S manufactured
by Nichia corporation) consisting of an array of 36 × 36 single LEDs. This LED array
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2.3. Established Experimental Methods in 3D-PLI

(a) LAP (b) PM

Figure 2.2: Sketch of the LAP (a) and PM (b) setup. In both systems, light is
polarized into a well defined state and analyzed after it has passed the specimen.
The LAP is equipped with a tiltable specimen stage, while the microscope employs
an x-y-stage in order to scan the sample tile-wise.

illuminates an area of 300mm × 300mm at a central wavelength of λ = 529nm. To
ensure a constant brightness, the LED array is powered by a constant current source,
while a water cooling system stabilizes the operating temperature. The illumination field
is homogenized by diffuser plates made out of acrylic glass which are placed above the
LED panel. The employed polarization filters manufactured by Jos. Schneider Optische
Werke GmbH are made out of polymer foils and have a diameter of 240mm. Each filter
can be individually rotated or even removed from the system, so that also nonstandard
measurements can be conducted. Due to the lack of commercially available filters with
such a diameter, the retarder is not an exact match for the illumination wavelength and
is specified for a wavelength of λ = 568 nm. This discrepancy in the wavelength of illu-
mination and retarder introduces a bias in the quantitative image analysis and creates
the need for a suitable calibration, which is discussed in Chap. 3. The brain section is
mounted on a two-axes tiltable specimen stage that allows to tilt the brain section up
to 8° around each axis. This feature is unique to the LAP and is not present in the PM.
The PM, constructed by Taorad GmbH, has a reversed setup compared to the LAP. The
light source consists of a single white light emitting LED (IntraLED 2020+ operated at
24 W) filtered by a band-pass optic with a central peak wavelength of λ = 550nm±5 nm
to match the specified wavelength of the employed quarter-wave retarder. The employed
polarization filters are standard filters for polarization microscopy with a diameter of
approximately 25.4mm. To ensure a uniform illumination of the sample, a Koehler
illumination system was employed8. The PM has a field of view of approximately
2.7mm × 2.7mm. Hence, a histological brain slice is scanned tile-wise by employing
an x-y-table as a specimen stage. The individual images are stitched together by an
in-house developed software tool. Thereby, 3D-PLI is capable of generating a high res-
olution image of the whole brain slice without loss in the field of view.
For each system, the resulting light intensity signal Ik under the rotation of the filters

8Further details on the working principles of a Koehler illumination can be found in Chap. 5.
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Chapter 2. Basics of Birefringence Polarimetry

is calculated by the Mueller-Stokes calculus

Ik = S†PSA,k Mfiber SPSG,k. (2.23)

This leads to the same formula for both systems, which has been described by Axer et
al. [4]

Ik =
I0e
−µt

4
+
I0e
−µt

4
sin(δ) cos(2ϕ) sin(2ρk)−

I0e
−µt

4
sin(δ) sin(2ϕ) cos(2ρk) . (2.24)

Performing a Fourier analysis on this recorded intensity signal leads to the Fourier
coefficients9

a0 =
1

N

N−1∑
k=0

Ik =
I0e
−µt

4
,

a1 =
2

N

N−1∑
k=0

Ik cos(2ρk) = −I0e
−µt

4
sin(δ) sin(2ϕ),

b1 =
2

N

N−1∑
k=0

Ik sin(2ρk) =
I0e
−µt

4
sin(δ) cos(2ϕ).

From these Fourier coefficients the so called transmittance, retardation and direction
(or direction angle) are generated by a transformation of the parameter space. The
transmittance is calculated by

IT =
I0e
−µt

2
= 2a0, (2.25)

displaying the attenuation coefficient of the tissue. This parameter map resembles the
image obtained by standard transmission imaging techniques. The definition of IT is
chosen in order to comply with the one introduced by Axer et al. [4]. The retardation

sin(δ) =

√
a21 + b21
a0

, (2.26)

is the relative amplitude of the intensity profile Ik and is related to the fiber inclination
and the relative thickness. The phase of the intensity profile given by

ϕ =
1

2
arctan 2 (a1,−b1) +

π

2
, (2.27)

is equal to the in-plane direction angle of the nerve fibers. Each of these calculations is
carried out for every image pixel, providing the respective parameter maps depicted in
Fig. 2.3.
As the main goal of 3D-PLI is to determine the fiber orientation vector, the next step of
the data analysis is to derive the fiber inclination angle from the measured retardation.
This is significantly more challenging since the inclination is always conjointly measured
with the relative thickness. Hence, a method for isolating these two entangled variables
is required. For addressing this issue Axer et al. first verified that the condition

trel ≤ 1, (2.28)
9Here I deviate from the notation of the Fourier coefficients introduced by Axer et al. to comply

with the more common notation of Fourier coefficients. Hence, the meaning of a1 and b1 is switched
compared to published 3D-PLI literature [4, 5].
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(a) Transmittance map (b) Retardation map

(c) Direction map (d) Inclination map

Figure 2.3: The different modalities obtained by the standard 3D-PLI analysis.

applies for the imaged histological slides. This condition is important, to obtain un-
ambiguously the phase retardance δ = π

2 trel cos(α)2 from a measured retardation value
sin(δ) by simply applying the arcsin-function. Presuming a constant relative thickness
across a whole brain section, Axer et al. determined the parameter trel by a statistical
analysis [4]. They argued that the highest values sin(δ)max in a retardation map are as-
sumed for fibers with an inclination of α = 0. Hence, the relative thickness is calculated
by

trel =
2

π
arcsin (sin(δ)max) , (2.29)

and for every image pixel the respective inclination can be calculated by inverting
Eq. (2.16), yielding

|α| = arccos

(√
2

π

1

trel
arcsin (sin(δ))

)
. (2.30)

In order to avoid the influence of outliers, the value sin(δ)max was determined by fitting
a sigmoid-function to the tail of the frequency distribution [4]. While the presumption
of a constant trel is reasonable for deep white matter regions, it will also lead to mis-
interpretation of the fiber inclination in cortical regions and in the transition domains
between white and grey matter. In these regions, variations in myelination and fiber
density occur [46] resulting in a change of trel. This issue is observable in the inclination
map in Fig. 2.3d, where the whole cortex appears to contain only fibers oriented along
the z-axis.
The second issue of determining the inclination arises from an inherent sign ambiguity
due to the relationship δ ∝ cos(α)2 even if the value of trel is known. Solving this sign
ambiguity was addressed by Kleiner et al. who employed a tiltable specimen stage in the
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LAP in order to apply small rotations to the fiber orientation vector [42]. By examining
the changes in the respective retardation values, Kleiner et al. were able to infer the sign
of the inclination.
In Chap. 4 new ways of a more accurate inclination reconstruction are explored, by using
the additional data obtained with the tiltable specimen stage. It is demonstrated that
this data holds information about the sign of the inclination as well as the local fiber
density. Chap. 5 deals with implementing the necessary hardware to perform such an
analysis not only on a mesoscopic but also on a microscopic resolution scale.

2.4 3D-PLI Data Visualization

Once a brain section is measured and the obtained data is processed, the information of
the fiber orientation needs to be visualized. Since the fiber pathways are represented by
a vector field in three dimensional space, one well suited possibility of data visualization
is to encode the orientation in an RGB color map, also known as Fiber Orientation Map
(FOM). By converting the determined spherical coordinates α and ϕ into Cartesian
coordinates, the colors of the FOM are calculated by

Red = 255 |cos(α) cos(ϕ)| ,
Green = 255 |cos(α) sin(ϕ)| ,
Blue = 255 |sin(α)| .

Fig. 2.4a shows a typical FOM generated by the 3D-PLI procedure. Red colored pixels
indicate that fibers are oriented along the horizontal axis of the image, while green col-
ored ones indicate a vertical fiber orientation. Fibers oriented out of the section plane
are encoded by a blue coloring. Since only the absolute value of the Cartesian coordi-
nates is visualized, there is an inherent ambiguity in this type of color-coding. However,
this coloring is well known from the visualization of DTI Tensor Fields.
Interpreting FOMs by contrast can already provide significant information to neurosci-
entists about the course of fiber pathways, especially at a microscopic resolution. For
lower resolved images provided by the LAP, small fiber pathways are often below the
resolution limit. In these cases, the fiber orientation is solely indicated by the coloring
and is not always easily accessible to the observer.
When a more accurate visual interpretation of the orientations is necessary, the depic-
tion can be enhanced by plotting the actual vector field as shown in Fig. 2.4b. While
the color-coding remains the same, additionally the orientation of the nerve fibers can
now be directly assessed. In this two dimensional representation of the vector field, the
length of the line encodes the vector component perpendicular to the image plane (i.e.
the shorter the line the steeper is the course of the respective fiber). Depending on the
level of detail needed in an analysis it is sometimes helpful to display only every n-th
pixel as a vector to generate a more concise overview. This data reduction is especially
useful in relatively homogeneous areas with only slowly changing fiber orientations. The
interpretation of very heterogeneous tissue is likely to suffer since important data might
be neglected in this visualization.
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(a) Fiber Orientation Map (FOM) colors en-
code the 3D orientation.

(b) Retardation map overlayed with a visu-
alization of the vector field. Only every 40th
Vector was mapped

Figure 2.4: Visualization of the PLI vector field. In both figures, the color-coding
represents the different orientations of the vectors according to the color sphere.
While the RGB coloring (a) provides more details, in the vector representation (b)
the in plane orientation can be assessed more accurately.

2.5 Preparation of Histological Brain Slides and Volumet-
ric Reconstruction

In this study, datasets from two different human brains were analyzed. Both brains were
obtained through donor programs in accordance with the local legal requirements. The
brains were removed within 24 hours after the patients’ death and fixed with 4% solu-
tion of buffered formaldehyde to avoid tissue degeneration. Before freezing the brain, it
was immersed in a 20% solution of glycerin with Dimethyl sulfoxide (DMSO) for cryo-
protection. The brains were frozen and sectioned coronally into slices with a thickness
of 70 µm by a cryostat microtome (Polycut CM 3500, Leica, Germany). For each brain
slice a so-called block-face image of the cutting surface was captured in order to create
a reference for the volumetric reconstruction. The slices were then mounted on glass
slides, immersed in a 20% solution of glycerin to avoid dehydration and protected from
exposure by a coverslip.
The dataset from the first brain features a whole human brain section, which is used for
the evaluation of fibers oriented parallel to the section plane. The section investigated
in this study covers the mid-brain abreast of the Thalamus. The second dataset consists
of approximately 220 consecutive slides from the right hemisphere of a second brain.
This dataset is used to examine the fiber pathways oriented along the cutting direction
(i.e. the z-axis). In order to follow the pathways, the 3D-Volume of these slices needs
to be reconstructed. The position of this reconstructed volume within the hemisphere
is shown in Fig. 2.5.
During the cutting process the brain slices are deformed and do not match the original
structure. Hence, a multi-step image registration procedure is used to computation-
ally reverse these deformations [59]. For this process, first the block-face images are
stacked in order to create a reference volume [69]. Then, an affine image transformation
(i.e. a global transformation that includes translation, rotation, reflection and shearing)
morphs the image of each slide onto its corresponding block-face image. When applying
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Figure 2.5: Reconstructed block-face volume of the examined brain hemisphere.
The planes represent the boundaries of the dataset that was used to validate the
algorithms in Chap. 4.

the transformation it is necessary to also reorientate the calculated vectors accordingly
(cf. [59] for further details). However, this preprocessing only transforms the image as
a whole, while deformations in the tissue are often localized to certain regions. Thus, in
a second step a more sophisticated b-spline registration is applied, which is capable of
applying local deformations. The best volume reconstruction to date is achieved by a
third processing step which uses a simultaneous b-spline transformation. This method
accounts not only for information in the image plane, but also along the z-axis [22, 27]
and is thereby capable of ensuring smoother transitions along the z-axis.
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3
Polarimetric Calibration of the LAP

This chapter deals with the calibration of recorded 3D-PLI measurement data. The
calibration is especially relevant for the analysis presented in Chap. 4, which is based
on small changes of the measured intensity profile when tilting the sample. Hence, a
directive needs to be developed to ensure the accurate polarimetric measurement of the
histological brain sections.
The approach presented here is based on a description of the polarization filters, which
considers an inhomogeneous absorption and non ideal polarization properties. The cur-
rent calibration method that is used for all 3D-PLI imaging systems is presented in
Sec. 3.1. It is well suited to compensate for inhomogeneous absorption, but not for the
actual polarization properties. Hence, in Sec. 3.2 a new polarimetric calibration is de-
veloped, which accounts for the systematic errors introduced by real polarization filters.
In Sec. 3.3 it is described how the filter properties of the LAP can be determined in
order to apply the calibration procedure to the measured data, and Sec. 3.4 provides a
short discussion on the influence of the polarimetric calibration.

3.1 The Standard Intensity Based Calibration in 3D-PLI

The currently used image calibration for the 3D-PLI imaging systems developed by
Dammers et al. [16] compensates for the accumulated effect of several error sources.
While the LED-Array is homogenized by diffuser plates the illumination does not display
a constant intensity level across the whole image. Additionally, the polarization filters
display inhomogeneities in the level of absorption, which are rotated with the filters.
When recording the images, each pixel within the CCD array of the camera displays a
unique light sensitivity characteristic and is also distorted by read out noise.
To account for these effects Dammers et al. proposed to determine gain factor frames
(g(x, y, ρk)) for each of the 18 rotation angles of the polarization filters which account
for the accumulated effects [16]. Multiplication of these gain factors with the measured
intensity I ′(x, y, ρk) at location x, y and angle ρk yields the calibrated intensity profile

I(x, y, ρk) = g(x, y, ρk)I
′(x, y, ρk). (3.1)

Parts of this chapter have been published [64], however, the analysis has been recalculated using
Mueller-Stokes and extended to account for partial polarization.
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(a) Transmittance before calibration. (b) Transmittance after calibration.

Figure 3.1: Shown are transmittance images with an empty specimen stage be-
fore and after the calibration. It is clearly visible that the illumination field is
homogenized by the calibration and the only remaining artifacts are cause by dust
particles on the filters.

In order to generate the gain factors a set of 100 calibration images (so called flat fields)
for each of the 18 rotation angles of the polarization filters is recorded under experimental
conditions. From these sets the average calibration image Īflat(x, y, ρk) is calculated for
each angle, to minimize the influence of noise. A single reference value Iref for the
intensity is defined as the mode (most common value) across the joint distribution of all
1800 recorded flat fields. The gain factors were then constructed by

g(x, y, ρ) = Iref/Īflat(x, y, ρ). (3.2)

This intensity based calibration creates a uniform background as shown in Fig. 3.1.
However, this method only corrects errors that contribute in a multiplicative manner to
the measured intensity (i.e. absorption, detection sensitivity etc.). Changes in intensity
that are caused by polarimetric errors, depend not only on the system but also on the
sample that is being measured. These errors occur when there is a systematic difference
between the presumed and actual polarization states that are generated and analyzed by
the imaging system. Hence, it is necessary to complement the intensity based calibration
by a polarimetric calibration, which is presented in the next section.

3.2 Accounting for Non-Ideal Polarization Filters

In general there are numerous effects that cause polarization filters to behave in a non-
ideal manner. For example the polarization properties of a filter depend on the operating
temperature, the incident angle of the light relative to the filter or simply the variations
caused by limitations of the fabrication process [29, pp. 503-528]. Modern manufactur-
ing technologies allow a reliable production of polarization elements with high quality.
However, since laser applications pose the driving market for polarization elements these
quality standards are only feasible for small diameter filters. Commercially available
large diameter filters (such as the ones used in the LAP) on the other hand, lack both
quality and variety.
The two predominant effects of non ideal filters that influence the measurements of the
LAP are the degree of polarization p achieved by the linear polarizers and the actual
retardance γ of the waveplate. The limited degree of polarization is virtually present in
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3.2. Accounting for Non-Ideal Polarization Filters

all linear polarizers and particularly relevant for the large diameter filters utilized in the
LAP. The quarter-wave retarder is specified for a wavelength of λret = 568 nm of the
incident light while the employed light source emits at a wavelength of λsource = 529nm.
This discrepancy causes a deviation of the retardance induced by the waveplate so that
it is not exactly a quarter of the wavelength. Hence, the PSG and PSA are not exactly
as described in Sec. 2.3, making a more accurate description necessary.
To account for similar effects, Chipman et al. [13] have described in their study a way to
determine Mueller matrix elements from a data reduction algorithm, which is capable
of accounting for arbitrary but well-known polarization generator (SPSG) and analyzer
(SPSA) states. However, this procedure requires that the polarization states generate
a sufficient set of linearly independent equations which is not the case for the present
measurement protocol. Establishing a new measurement protocol would cause conflicts
with the standardized 3D-PLI workflow and lead to the obstruction of other studies.
While such a change might be feasible in the long run, for the purpose of this study
it is more desirable to adapt the current analysis with respect to the non-ideal filter
properties.
In order to understand the effects of the real polarization filters on the measurement,
the intensity profile in Sec. 2.3 is recalculated with the ideal linear polarizer matrices
in Eq. (2.20) and Eq. (2.21) being replaced by the matrices of partial polarizers (see
Eq. (2.9)). Since the two polarizers are structurally identical, both filters display the
same degree of polarization p. Additionally, the matrix of an ideal quarter wave retarder
in Eq. (2.21) is replaced with that of a retarder with arbitrary retardance γ. This results
in the generated polarization states

S̃PSGLAP (ρk) = Mrot(−ρk) Mwp (γ) Mpol

(√
1 + p

2
,

√
1− p

2

)
Mrot(ρk)


I0
0
0
0



=
I0
2


1

p cos(γ) cos(2ρk)
p cos(γ) sin(2ρk)
−p sin(γ)

 , (3.3)

while the analyzer state is correctly described by

S̃†PSALAP (ρk) =
(
1 0 0 0

)
Mrot(−ρk) Mpol

(√
1− p

2
,

√
1 + p

2

)
Mrot(ρk)

=
1

2

(
1 −p cos(2ρk) −p sin(2ρk) 0

)
. (3.4)

The measurement of nerve fiber tissue with the polarization states results in a new
formula for the intensity profile measured in each pixel. Under the rotation of the filters
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by an angle ρk this profile is now given by1

Ĩ(ρk) =S̃PSALAP (ρk)MfiberS̃PSGLAP (ρk) (3.5)

=
I0e
−µt

4

[
1− p2 cos(γ)

1

2
(1 + cos(δ)) (3.6)

− p2 cos(γ)
1

2
(cos(4ρk)) (1− cos(δ)) cos(4ϕ) (3.7)

− p2 cos(γ)
1

2
sin(4ρk) (1− cos(δ)) sin(4ϕ) (3.8)

− p2 sin(γ) cos(2ρk) sin(δ) sin(2ϕ) (3.9)

+ p2 sin(γ) sin(2ρk) sin(δ) cos(2ϕ)
]
. (3.10)

A Fourier analysis of this profile yields the coefficients

ã0 =
I0e
−µt

4

(
1− p2 cos(γ)

2
(1 + cos(δ))

)
,

ã1 = −I0e
−µt

4
p2 sin(γ) sin(δ) sin(2ϕ),

b̃1 =
I0e
−µt

4
p2 sin(γ) sin(δ) cos(2ϕ),

ã2 = −I0e
−µt

8
p2 cos(γ)(1− cos(δ)) sin(4ϕ),

b̃2 = −I0e
−µt

8
p2 cos(γ)(1− cos(δ)) cos(4ϕ).

(3.11)

Note that for γ = π/2 and p = 1 these coefficients are identical to those calculated
for the ideal case as one would expect. From these coefficients the transmittance and
retardation maps can be calculated by

IT = 2
ã0 − sign(cos(γ))

√
ã22 + b̃22

1− p2 cos(γ)
, (3.12)

and

sin(δ) =

√
ã21 + b̃21

I0e−µt

4 |sin(γ)| p2
. (3.13)

In contrast, the formula for the direction angle

ϕ =
1

2
arctan 2(a1,−b1) +

π

2
,

remains the same as the filter deviations do not affect the phase of the intensity profile.
This new directive for determining the corrected retardation and transmittance makes
it possible to account for systematic errors induced by non-ideal polarization filters. In
order to apply these equations in the 3D-PLI data analysis, first the filter properties p
and γ need to be determined.

1A detailed derivation of the following calculations is presented in Appx. A.2.
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3.3 Determination of the Filter Properties

In a first step we aim to determine the degree of polarization which is achieved by the two
linear polarizers. For this experiment only the two crossed polarizers are inserted in the
LAP and the waveplate is removed. By rotating the analyzer, while the polarizer remains
in the default position, the degree of polarization p can be determined. According to
the Mueller-Stokes calculus (as described in Sec. 2.1) the resulting intensity profile is
described by

Ip(ρk) =
(
1 0 0 0

)
Mpol,x

(
p, ρk +

π

2

)
Mpol,x(p, 0)


I0
0
0
0


= I0/4

(
1− p2 cos(2ρk)

)
. (3.14)

From a measurement of this profile the degree of polarization p can be calculated from
the ratio between amplitude ap1 and average intensity ap0 by

p =

√
|ap1|
ap0

. (3.15)

This measurement was performed with the rotation angle of the analyzer varying from
0° to 178° with a sampling step size of 2°. A region of interest (ROI) of approximately
5.5× 105 pixels in the center of the field of view was evaluated in order to avoid fringe
effects from absorbing elements that are visible at the borders of the image (cf. Fig. 3.1b).
The average degree of polarization across this region of interest was p = 0.9832 with a
standard deviation of σp = 0.0018.
Next, the retardance γ of the waveplate needs to be determined, since its behavior for
the wavelength of the LED array is not specified. For this purpose, a second quarterwave
retarder is used as a sample in a standard measurement. This sample retarder (whose
specifications are given in Tab. 3.1) is much more homogeneous compared to the one
employed in the LAP and its operating wavelength (532 nm) is almost an exact match
to the wavelength of the LED array (529 nm). Hence, when measuring this sample,
a retardation value of sin(δ) = 1 is expected and any deviations from this value are
attributed to the incorrect description of retarder properties of the LAP.
In order to determine the retardance of the LAP waveplate, the sample was measured
with the standard measurement protocol. For the acquired dataset a least square fit
was used to determine a value for γ such that calculating the retardation values of the
sample according to Eq. (3.13) resulted in an average of sin(δ) = 1. Thereby, it was
possible to determine the actual retardance of the LAP waveplate to be γ = 0.5061π,
which deviates from an ideal quarter waveplate (γ = 0.5π) by 1.2%.

Operating Wavelength (λret) 532 nm
Retardation λ/4
Retardation Accuracy ±λ/300
Diameter 25.4mm

Table 3.1: Specifications of the sample retarder (Newport 10RP04-16)
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3.4 Discussion of the Polarimetric Calibration

In this chapter, a polarimetric calibration method was developed, which makes it possi-
ble to exclude systematic errors in a 3D-PLI measurement with the LAP. These errors
are induced by the limited degree of polarization achieved by the employed linear po-
larizers and the wavelength discrepancy between waveplate and light source. While the
pixelwise intensity calibration in Sec. 3.1 makes it possible to correct an inhomogeneous
absorption, the polarimetric calibration in Sec. 3.2 assumes a non ideal polarization
property which is constant across the whole filter. If the retardation is calculated with-
out the polarimetric calibriation, i.e.

sin(δ) =

√
ã21 + b̃21

ã0
,

the retardation measurement in the LAP (assuming γ = 0.5061π and p = 0.9832 as the
filter properties) is afflicted with a systematic error ranging between 4.3% and 5.2% (cf.
Fig. 3.2). This error is corrected by using Eq. (3.13) to determine the retardation value.
However, the developed model for the polarization filters does not describe all possible
polarimetric effects that can occur in real filters and in the future a more sophisticated
calibration might be necessary. A more advanced method could describe the correct
Stokes vectors of the PSG and the PSA in every image pixel and for every filter position.
This would require a change in the general approach of the 3D-PLI image acquisition
and analysis, e.g. towards the data reduction algorithms proposed by Chipan et al. [13,
pp. 22.17-22.19].
The developed polarimetric calibration is complementary to the established intensity
based calibration and fits well into the current 3D-PLI image processing pipeline. With
this method, it is now possible to compensate for the predominant sources of error and
to calculate the corrected retardation by Eq. (3.13). Both, the developed polarimetric
calibration and the intensity based calibration were applied to all experimental data
presented in Chap. 4.

Figure 3.2: The relative error that is caused by the imperfect quarter-wave plate
depending on the actual retardation of the respective sample. The error that ranges
between 4.3% and 5.2% can be corrected by employing the polarimetric calibration
presented in this chapter.
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4
Deriving Fiber Orientations from

Tiltable Specimen Stage Experiments

It was discussed in Sec. 2.3 that inferring the inclination of a fiber from the measured
data poses a challenging problem in 3D-PLI due to an ambiguity in the theoretical model.
Hence, reconstructed orientations in FOMs make it possible to distinguish different fiber
pathways visually, whereas the orientation vectors themselves are only reliable in deep
white matter regions. In this chapter new approaches are explored to derive the fiber
inclination from additional measurements conducted at different positions of a tiltable
specimen stage; thereby aiming to facilitate the determination of reliable orientation
vectors in transition regions between gray and white matter and in the termination
fields.
For the interpretation of the measured data two new algorithms are developed. The first
algorithm is well-suited for high throughput applications, as it enables fast computation,
but it is also sensitive to noise. The second algorithm employs a maximum likelihood
method and is based on a statistical model of the data acquisition process. Thereby, the
noise stability is enhanced at the cost of computing time.
Both derived algorithms are verified by simulated datasets in order to compare the
results to well-known reference values. After testing the algorithms in this controlled
environment, their performance for experimental data is evaluated. Due to the lack of
a suitable phantom (an object with a known and well-defined structure that produces
the same physical effects in the imaging process as the biological tissue), the extracted
orientations are compared with the conjectural course of anatomically visible structures.

4.1 A Review on Ambiguities in 3D-PLI

Determining the inclination of a uniaxial indicatrix from polarization measurements
of a birefringent medium (e.g. nerve fiber tissue) is challenging due to mathematical
ambiguities which inhibit the direct calculation from measured data. As discussed in
Sec. 2.3, these ambiguities are caused by the relation between the measured retardation
and the fiber inclination (see Eq. (2.15))

sin(δ) = sin
(π

2
trel cos(α)2

)
,

Parts of this chapter have been adapted from Wiese et al. [76].
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Chapter 4. Deriving Fiber Orientations from Tiltable Specimen Stage Experiments

which is not bijective in general. The ambiguities of this relation are threefold:

• Since two parameters (trel and α) are mapped onto only one measurement value,
the function cannot be inverted from only one measurement.

• The symmetry of the cos-function conceals the sign of the inclination which is
defined on α ∈ [−π/2, π/2].

• For trel > 1 the periodicity of the outer sin-function introduces an additional
ambiguity.

These ambiguities are well-known in crystallography applications, where the determina-
tion of the indicatrix of a crystal yields information about its structural symmetry. The
basic physics of this problem is the same as in 3D-PLI, whereas the concrete imaging
concept differs. In the following, developed concepts in crystallography are analyzed for
their applicability to 3D-PLI.
Geday et al. [23] have developed a multi-wavelength approach to derive the actual op-
tical retardance δ from the measured retardation sin(δ) for samples with trel > 1. They
have demonstrated that by varying the wavenumber k = 2π

λ of the incident light, the
induced change in the retardance

∂δ

∂k
= t∆n+

tk∂∆n

∂k
, (4.1)

can be utilized to unfold the periodicity of the sine. As shown by Axer et al. [4], the
current 3D-PLI preparation of histological sections only leads to values for the relative
thickness of trel ≤ 1. Hence, the phase retardance δ can be extracted for 3D-PLI mea-
surements by simply applying the arcsin-function.
Approaches to gain sufficient information to derive the orientation of the optic axis
consider additional measurements obtained by either tilting the sample [42, 58] or by
means of light-field imaging [56]. Pajdzik et al. have demonstrated in a proof-of-concept
experiment that by employing a tiltable specimen stage the inclination of quartz crystals
can be determined [58]. In their study, a non-linear model for the change in retardation
has been developed based on a geometrical description of the tilting process. The model
was fitted to the retardation data acquired for several different positions of the tiltable
specimen stage revealing the inclination of the analyzed crystal. Their approach was
designed for the analysis of single crystals and is not feasible for a high throughput
application in image processing, where such an analysis would need to be conducted in
every pixel.
Following a different concept, Oldenbourg et al. [56] have developed a polarized light-
field microscope1, which is capable of capturing the birefringence information of the
sample from different perspectives in a single shot. However, their analysis of the light
field data followed a manual evaluation of the conoscopic view. It was argued that in
order to analyze complete images comprising typically 120 × 120 microlenses, fast and
robust processing algorithms still need to be developed [56].
For the investigation of nerve fiber architecture, previous studies by Axer et al. [4] uti-
lized a statistical approach to determine trel from the distribution of retardation values
over a whole brain section (described in Sec. 2.3). This approach presumes a uniform
relative thickness across the whole section and does not take local variations in myelin
density into account. Hence, their method allows the correct determination of orienta-
tions in deep white matter regions where little change in the relative thickness occurs.

1Further details on polarization sensitive light-field imaging can be found in Sec. 5.1.
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Transitions at the white matter / gray matter border and gray matter regions on the
other hand cannot be interpreted correctly with this approach.
Kleiner et al. [42] addressed the challenge of solving the sign ambiguity of the inclina-
tion in 3D-PLI. By mounting histological brain sections onto a tiltable specimen stage
and analyzing the obtained retardation data (which included a Markov Random Field
approach to correct for statistical outliers), the sign has been successfully determined.
However, the study did not investigate how this approach can be utilized to account for
variations in trel in order to improve the inclination reconstruction.

4.2 Basic Theory of the Tiltable Specimen Stage Data Ac-
quisition

The general concept of complementing the planar (i.e. the not tilted) measurement
with data acquired from a tilted specimen stage can be illustrated by considering the
functional relationship α, trel → sin(δ), as depicted in Fig. 4.1. It is shown that for the
measurement of a certain retardation value, the corresponding inclination is ambiguous
in terms of the sign and the relative thickness trel. By tilting the sample (i.e. the un-
known inclination α is varied by a well-defined amount) additional information about the
local gradient ∂ sin(δ)

∂α is obtained. Collecting this information yields for α ∈ (−π/2, π/2)
and trel ∈ (0, 1] the bijective transformation

α, trel → sin(δ),
∂ sin(δ)

∂α
,

which needs to be inverted in order to get the desired information2.
In order to turn this approach into a viable image analysis, it is necessary to apply
well-defined changes to the inclination and to develop a directive on how to analyze the

Figure 4.1: Displayed is the dependency of the retardation sin(δ) on the inclina-
tion value α. For a retardation value in the planar measurement (e.g. sin(δ) ≈ 0.4),
the inclination that is reconstructed depends on the relative thickness trel. It is
only by measuring the local gradient that it is possible to distinguish between the
different cases.

2The proof for bijectivity is presented in Appx. A.3.
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resulting datasets. A tiltable specimen stage is capable of applying a rotation to a fiber
orientation vector x that can be expressed by a 3 × 3 rotation matrix R resulting in a
tilted orientation vector

x′ = R x. (4.2)

The exact composition of the rotation matrix depends on the employed tilting system.
In our case the tiltable specimen stage of the LAP is realized by a nested two-axis system
that can be rotated around the y-axis by an angle of −8° ≤ τy ≤ 8° and then around
the x-axis by an angle of −8° ≤ τx ≤ 8°. Hence, the matrix can be described by

R(τx, τy) =

1 0 0
0 cos(τx) − sin(τx)
0 sin(τx) cos(τx)

 ·
 cos(τy) 0 sin(τy)

0 1 0
− sin(τy) 0 cos(τy)

 . (4.3)

For the approaches presented in Sec. 4.3 and Sec. 4.4, the planar measurement is gen-
erally supplemented by Nt measurements, each with a different tilted position of the
specimen stage. In the following, quantities for the planar measurement are indicated
by an index 0 to distinguish them from the tilted measurements. The latter are indexed
with i, whereas i ∈ [1, 2, . . . , Nt] refers to the variable for the respective position of the
tiltable specimen stage defined by a rotation matrix Ri.
Applying a rotation to the orientation vector x0 written in spherical coordinates leads
to the tilted orientation vector

xi =

cos(αi) cos(ϕi)
cos(αi) sin(ϕi)

sin(αi)

 = Ri

cos(α0) cos(ϕ0)
cos(α0) sin(ϕ0)

sin(α0)

 . (4.4)

This new orientation vector represents the spatial orientation of the indicatrix relative
to the imaging system. Hence, the measured retardation and direction values change
respectively, yielding a set of measured direction angles ϕi and retardations sin(δi) for
every image pixel. Deriving the inclination from this data requires a suitable algorithm.
In Sec. 4.3 and Sec. 4.4 two different algorithms are presented that are capable of de-
termining the parameters of the fiber model (α, ϕ, trel) from the additional data.
For a practical application of the described theory, experimental effects must also be
considered. It has been discussed by Pajdzik et al. [58] that due to refraction at the
sample surface, the external rotation applied by the tiltable specimen stage is not equal
to the actual rotation of the sample relative to the path of light. When considering a
sample tilted by an angle τext, this refraction causes the light to enter the sample at a
different angle, which can be calculated according to Snell’s law3

sin(τint)

sin(τext)
= nsample. (4.5)

Here, nbrain denotes the refractive index of the brain tissue and τint is the internal tilt-
ing angle which is relevant to the interpretation of birefringence information (i.e., which
needs to be used for τ in the analysis in Sec. 4.3). For the average refractive index a
value of nsample ≈ 1.45 is presumed, based on optical studies of brain tissue by Vidal et
al. [17]. Considering the maximal tilting angle τext = 8° of the employed specimen stage
leads to a reduced internal angle of τint ≈ 5.5°.
Due to tilting, it also needs to be considered that the path length through the tissue is

3Birefringence effects that could cause a different refraction for the ordinary and extraordinary ray
are negligible here due to the low birefringence of ∆n ≈ 10−2.
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tilted 
specimen

τext

τint
t

t eff

Figure 4.2: When applying an outer rotation specified by the angle τext to the
specimen, refraction at the specimen surface reduces this angle to the internally
observable τint. Furthermore, the length of the light path through the specimen is
increased from t to t/ cos(τint)

slightly elongated [58]. In Fig. 4.2, the distance of the lower and upper surface of the
tilted sample is set apart by a distance t. As the sample is tilted, the path of light is
changed resulting in a longer distance t/ cos(τint). Since the retardance is proportional
to the optical path length, this effect can be reversed by rescaling the measured retar-
dance according to δi cos(τint) for all tilted measurements (i.e. i 6= 0).
To improve the readability of following formulas, these experimental adjustments are
implicitly used; the tilting angle τ refers to the internal tilting angle τ = τint and the
phase retardance δi will be considered as already corrected, i.e. multiplied by the factor
cos(τint) in a preprocessing step.
Imaging a tilted sample leads to parallax effects, which have been co-registered for all
experimental data in this study. Co-registration was achieved by a projective transfor-
mation, which was generated from matching scale-invariant features (cf. [7]) between
the tilted and planar images.

4.3 An Analytical Solution to Calculate the Inclination of
a Uniaxial Indicatrix

Previous work by Pajdzik et al. on deriving the inclination of a birefringent medium
from tilting measurements have focused on nonlinear regression to evaluate the mea-
sured retardations [58]. In this section, it is demonstrated that given a suitable coordi-
nate system it is possible to find an analytical solution to the problem. This approach
complies with the demands of high throughput image processing in 3D-PLI.

4.3.1 Deriving the Inclination from Measurement Data

The Tilting Coordinate System

For the purpose of the mathematical analysis, first a suitable definition of the rotation
is needed, which describes the tilting process. Kleiner et al. [42] introduced a coordinate
system where the angle ψ defines the direction in which the sample is tilted, while the
angle τ defines the actual tilt of the specimen stage. This rotation is described by the
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tilting matrix
Ri = Rz(ψi)R

y(τ)Rz(−ψi),

where the tilting direction is defined in equidistant steps as

ψi = 2π
i− 1

Nt
with i ∈ [1, 2, . . . , Nt]. (4.6)

This definition is necessary for the analysis developed in the next section, yet the speci-
men stage in the experiment can only be tilted around the x- and y-axis by an angle of
±8◦, which is described by a tilting matrix

R = Rx(τx)Ry(τy). (4.7)

Here, τx denotes the rotation around the x-axis and τy the rotation around the y-axis,
respectively. It can be shown that these two transformations cannot be converted into
each other, i.e. for an arbitrary tilting (ψ, τ) it is not possible to find a (τx, τy), so that

Rz(ψi)R
y(τ)Rz(−ψi) = Rx(τx)Ry(τy). (4.8)

In the experiment, there are, however, two approaches to work around this issue. While
a general solution to Eq. (4.8) does not exist, it is possible to find one for the special case
Nt = 4 (as the specimen stage is only rotated around one of the two axes). A second
approach considers that the analysis presented here is purely based on the retardation
values, meaning only the z-component of the orientation vector is relevant. Hence, it is
sufficient to ensure that the third row of the matrices in Eq. (4.8) is identical, which is
achieved by choosing4

τx = − arcsin(sin(τ) sin(ψ)),

τy = arctan(tan(τ) cos(ψ)).

Retrieving the Inclination from Retardation Measurements

For the derivation of the inclination angle from the acquired retardation dataset, first it is
derived how the tilting influences the measured retardation and then it is demonstrated
how this enables the reconstruction of the inclination.
Tilting the sample by an angle τ in the tilting direction ψi results in a three-dimensional
rotation of the fiber orientation vector described by

xi = Rz(ψi)R
y(τ)Rz(−ψi)x0. (4.9)

Considering the vector x0 in spherical coordinates, the z-component of the rotated vector
xi is given by

sin(αi) = sin(τ) cos(α0) cos(ψi − ϕ0) + cos(τ) sin(α0), (4.10)

where αi denotes the inclination of a fiber of the i-th tilting measurement. Using the
identity cos(αi)

2 = 1− sin(αi)
2, this result can be inserted into the relation of the phase

retardance Eq. (2.15) yielding

δi =
π

2
trel
[
1− (sin(τ) cos(α0) cos(ψi − ϕ0) + cos(τ) sin(α0))

2
]
. (4.11)
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(a) (b)

Figure 4.3: When tilting the specimen in different directions ψ, the orientation
vector x precesses on a trajectory depicted in (a). As this changes the inclination
angle of the vector relative to the optic axis, the measured phase retardance δ
oscillates as shown in (b).

This equation means that tilting the specimen stage in different directions specified by
the angles ψi results in a sinusoidal oscillation of the phase retardance obtained from
the 3D-PLI measurement, as depicted in Fig. 4.3. While the offset of this oscillation
relates to the retardance of a planar measurement, the amplitude of this dataset carries
complementary information which is similar to the gradient discussed in Sec. 4.2. In
order to extract the inclination, a Fourier analysis is performed across δi yielding the
coefficients5

aδ,1 =
2

N

Nt∑
i=1

δi cos(ψi) = πtrel sin(τ) cos(τ) sin(α0) cos(α0) cos(ϕ0), (4.12)

bδ,1 =
2

N

Nt∑
i=1

δi sin(ψi) = πtrel sin(τ) cos(τ) sin(α0) cos(α0) sin(ϕ0). (4.13)

This information gained from the tilting measurements can now be combined with the
information from the planar measurement from Eq. (2.16)

δ0 =
π

2
trel cos2(α0).

Thereby it is possible to calculate the inclination angle α0 from the information ob-
tained by the planar measurement (δ0), information obtained by the tilted measurement
(aδ,1, bδ,1) and the knowledge about the applied tilting (τ):

|α0| = arctan


√
aδ,12 + bδ,1

2

2δ0| sin(τ) cos(τ)|

 . (4.14)

This formula represents a method for the analytical determination of the inclination
regardless of the parameter trel. Hence, the reconstruction is no longer biased by varia-
tions in myelination of fibers or the local fiber density in the tissue.

4For the detailed derivation refer to Appx. A.4.
5The retardance signal δi also yields second order Fourier coefficients aδ,2, bδ,2 which, however, are

not needed in the following context. A comprehensive derivation can be found in Appx. A.5
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Finally, to obtain the correct fiber orientation, it is necessary to determine the sign of
the inclination. The sign can be calculated by

sign(α0) = sign(aδ,1 cos(ϕ0) + bδ,1 sin(ϕ0)) · sign(τ), (4.15)

using the fiber direction angle from the planar measurement ϕ0 and the information
provided by the tilted measurements in aδ,1 and bδ,1.
In addition to the fiber orientation, it is also interesting to calculate the relative thickness
trel. This scalar contains structural information about the tissue and is related to the
degree of myelination and the fiber density in the analyzed pixel. Once the inclination
has been determined, this structure parameter can be computed according to

trel =
2δ0

π cos(α0)2
. (4.16)

These theoretical findings provide a directive to determine the exact and unambigu-
ous inclination angle. Since the Fourier analysis is a linear combination of the tilted
retardation maps, the inclination can be calculated without the need for iterative and
computationally time consuming model fitting. However, it is important to note that
while the analytic solution to this problem is straightforward for ideal signals, it is nec-
essary to determine its numerical stability when dealing with small signals affected by
noise, as present in gray matter brain regions. The influence of noise is examined in the
next section on the basis of simulated datasets, while Sec. 4.3.3 deals with the validation
for experimental datasets.

4.3.2 Validation for Simulated Datasets

In this section the numerical stability of the proposed analytical solution is examined.
More precisely, recorded images and the corresponding retardation signals are affected by
noise, which can cause deviations between the underlying ground truth and the solution
found by Eq. (4.14). In biological samples the underlying ground truth is generally
unknown and can at best be estimated from indicators such as the macroscopically
visible structure or other imaging techniques. To date, artificial phantoms that could
be used to validate the 3D-PLI measurement principle and data analysis do not exist.
Therefore, a simulation approach based on the current theory of 3D-PLI (see Sec. 2.3)
was chosen for which a ground truth can be arbitrarily defined.

Methods

For the simulation an initial orientation vector xsim,0 was specified which is defined by
an inclination αsim,0 and a direction angle ϕsim,0. For this vector the simulated intensity
profile of the planar measurement was calculated according to Eq. (2.24):

Ik =
I0e
−µt

4

(
1 + sin

(π
2
trel cos (αsim,0)

2
)

sin (2ρk − 2ϕsim,0)
)
.

For the relative thickness of the simulated sample, values of trel = 0.5 and trel = 0.1
were chosen to represent tissue samples within the white matter and the gray matter,
respectively. The average intensity was chosen to be I0e−µt

2 = 5000, which corresponds
approximately with the measured transmittance of white matter tissue. Noise was added
to each of the 18 values of the intensity profile according to the Poisson distribution with
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an expectation value equal to the respective intensity value of the simulated profile. The
Poisson distribution was chosen as it is the best model for the noise caused by the ran-
domized detection of photons in a camera sensor [77]. The original vector was then
rotated by four tilting matrices, so that a set of tilted vectors xsim,i was obtained ac-
cording to Eq. (4.9). Each of these four vectors simulates the orientation for a different
position of the tiltable specimen stage. For every simulated position of the tiltable spec-
imen stage a corresponding intensity profile was calculated as it had been for the planar
position. For these noisy signals the transmittance, retardation and direction values
were calculated and according to the developed analysis the inclination was computed.
From the developed analysis a calculated orientation vector xcalc was obtained. This
vector differed from the original vector due to the influence of noise during image ac-
quisition. For the comparison to the “ground truth”, a suitable measure is given by the
acute angle β between these two vectors xsim and xcalc. It can be calculated by

β = arccos

(
|xsim · xcalc|
|xsim| |xcalc|

)
. (4.17)

This measure is well-suited for the comparison between ground truth and result because
it respects the symmetry of the problem, i.e. two vectors oriented antiparallel to each
other describe the same course of a nerve fiber. In this example, the angle between the
two antiparallel vectors would be 180°, while the acute angle is β = 0°. In order to
evaluate the average effect of noise rather than statistical outliers, the simulation was
repeated 100 times for every initial vector and the average acute angle β̄ was calculated.

Results

Fig. 4.4 shows the average angular deviation for different initial conditions. The coordi-
nates on the sphere represent the different initial orientations of the vector xsim, while
the coloring visualizes the respective average angular deviation β̄ for this vector. Each
sphere was simulated for a different relative thickness. Fig. 4.4a shows the resulting
deviation for white matter regions with a relative thickness of trel = 0.5. In Fig. 4.4b
the deviations from the initial vector are depicted for a relative thickness of trel = 0.1
representing gray matter regions.
In Fig. 4.4a it can be seen that most fiber orientations of the simulated white matter
tissue could be reconstructed with an error of up to β̄ ≈ 1.5°. The direction angle of
the initial fiber orientation had no relevant effect on the accuracy. Fibers with an initial
inclination of αsim ≈ 0° could only be reconstructed with a slightly lower accuracy of
β̄ ≈ 3°. For an initial fiber inclination of αsim ≥ 85°, the accuracy dramatically de-
creased and at an initial inclination angle of exactly αsim = 90° the error reached a value
of β̄ ≥ 30°. This large statistical error means that the reconstructed fiber orientation
was almost entirely random, making it impossible to draw any conclusions about the
initial fiber orientation.
In the case of the second scenario, which simulated a region where fibers transition into
the gray matter, overall the accuracy of the reconstruction was decreased compared to
the first scenario, while it behaved in a similar fashion. The reconstruction for most
initial vectors was afflicted with a statistical error of β̄ ≈ 8°. For an initial inclination
angle of αsim ≈ 0° this error increased up to β̄ ≈ 11°. For steep fibers with an inclina-
tion of αsim ≥ 80° it was impossible to reconstruct their orientation by the developed
algorithm with a reasonable accuracy.
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Discussion

The simulation showed that in general the algorithm is capable of recovering the pa-
rameters of the original fiber structure, with very high (in white matter regions) to
reasonable accuracy (in gray matter regions). The algorithm makes it possible unravel
the co-jointly measured inclination of the fiber structure and relative thickness of the
tissue, without making any additional presumptions such as a constant parameter trel.
However, the simulated datasets also revealed that fibers oriented almost perpendicu-
larly to the image plane cannot be reconstructed. This limitation originates from the
retardation characteristic depicted in Fig. 4.1. As was pointed out in Sec. 4.2, the
relationship

α, trel → sin(δ),
∂ sin(δ)

∂α
,

is bijective on the intervals α ∈ (−π/2, π/2) and trel ∈ (0, 1]. For exactly |α| = 90° it is
not bijective since we obtain δ = 0 and ∂ sin(δ)

∂α = 0 for all possible values of trel. While
this issue is theoretically only relevant for exactly one orientation vector, in practice, the
presence of noise also leads to a poor reconstruction for all adjacent vectors. In Fig. 4.4,
it can be seen that a lower relative thickness (and thus a lower signal-to-noise ratio of the
recorded data) leads to more orientation vectors being affected. The loss in accuracy that
was observed for an original fiber inclination of α = 0°, can also be explained with the
retardation characteristic. For this particular fiber inclination, neighboring inclinations
only exhibit small changes in the gradient and the retardation value. Due to noise these
small differences are more difficult to distinguish than for other fiber inclinations (e.g.
α = 45°).
The presented approach to reconstruct the fiber orientations is solely based on the model
for the measured retardation value. However, changes in fiber direction angle ϕ when
tilting the sample, also contain information on the fiber inclination. This additional
information is not exploited yet. Hence, to overcome the limitations of the algorithm
particularly for steep fibers, in Sec. 4.4 a second approach is presented to analyze the
dataset of tilted measurements, including available information in the measured direction
angles.

(a) trel = 0.5 (b) trel = 0.1

Figure 4.4: The spheres visualize how well any given orientation vector can be
reconstructed by the algorithm, for two different values of trel. Every point on the
sphere encodes the accuracy β̃ for the respective orientation vector.
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4.3.3 Validation for Experimental Datasets

After analyzing the performance of the algorithm with simulated datasets, this section
is dedicated to providing the proof of principle on experimental datasets. As already
discussed, a phantom for 3D-PLI does not exist; however, by validating the computed
vectors with different indicators of the fiber orientation, it is possible to substantiate
the working principle of the algorithm.

Methods

In a first experiment, the acquired data of a single brain section is processed in order
to demonstrate the working principle of the algorithm. Since it is of particular interest
whether fiber orientations in the transition regions to the cortex can be reconstructed,
the results were complemented by a close-up recorded with the polarizing microscope.
This microscopic image adds valuable information since the fiber architecture in the
transition regions is clearly visible in the retardation map, independently of orientations
calculated by an algorithm.
To verify if the retardation values change when tilting the sample according to the de-
scribed theory, the standard recording procedure was varied. Instead of conducting a
standard LAP measurement with Nt = 4 different positions of the tiltable specimen
stage, the sampling rate was increased to Nt = 72 different positions of the tiltable
specimen stage. Hence, ψi is varied by a step size of 5°, resulting in a fine sampling of
the retardation values. By determining the inclination and relative thickness in a single
pixel and then computing the expected changes in the retardation value, it is possible
to compare theory and experiment.
In order to evaluate the reconstructed z-components of the orientation vectors in the
white matter, they were compared to the anatomical visible course of the sagittal stra-
tum. For this purpose, a set of 220 consecutive sections from the right hemisphere of a
human brain was analyzed. The brain sections were measured according to the standard
3D-PLI measurement protocol (i.e. every section is measured in the default position and
Nt = 4 tilted positions of the specimen stage) and co-registered as described in Sec. 2.5.
To extract the anatomical structure, the retardation maps of the sections were stacked
and virtually resliced along the z-axis at two positions, depicted in Fig. 4.8a. Based
on the retardation value, the vector field was masked along the visible outlines of the
sagittal stratum.

Results

The FOM generated by the developed tilting analysis displays consistent fiber orientation
for the transition from white to gray brain matter and within the gray matter. In
contrast to the FOMs created by the standard 3D-PLI analysis (cf. Sec. 2.3), it can
be seen in Fig. 4.5a that fiber orientations in the cortex are no longer biased towards
the z-axis. It is evident that the reconstructed orientations in the gray matter are
as diverse as in the white matter. In addition to the FOM, the developed analysis
provides a trel-map depicted in Fig. 4.5b. This new modality contains complementary
information about the fiber architecture, e.g. the distinction between white and gray
brain matter. For visualization purposes this new parameter map can be combined with
the FOM through multiplication. Such a weighted FOM encodes the orientation by color
as before, while the structure parameter trel is encoded in the brightness (cf. Fig. 4.5c).
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For this particular brain section only few structures seem to be orientated out of the
imaging plane, expressed by the overall lack of blue coloring. It can be seen that blue
coloring in some cases coincides with a very high value in trel. Such regions can often
be found at the intersection of two fiber bundles (cf. arrows in Fig. 4.5a and Fig. 4.5b).
The reconstruction of fiber orientations for a transition region between gray and white
matter is shown in Fig. 4.6. In the microscopic retardation map Fig. 4.6a the fibers in the
gyrus are bundled in the lower right corner and then fan out into the cortex. In the lower
resolved retardation map, generated by the LAP (Fig. 4.6b background), this is only
visible as a decrease of the overall retardation. The fiber orientations derived by the new
algorithm match well with the microscopic structures. Though individual fibers cannot
be observed at the LAP resolution, the general fiber architecture can still be recovered
for the transition regions between white and gray matter and for the termination fields
in the gray matter.
To evaluate how well the experimental data fits the theoretical model, retardation values
were measured for Nt = 72 different positions of the tiltable specimen stage. Fig. 4.7
shows the changes in retardation when tilting the sample for two exemplary pixels (cf. red
dots in Fig. 4.5b). The recovered parameters from this data were α = −52.3° and trel =
0.74 for the first pixel (red line) and α = 17.7° and trel = 0.26 for the second pixel (blue
line). Given these parameters the lines show the respective theoretical models describing
the expected retardation values for the different positions of the tiltable specimen stage.
The match between theoretical model and measured data points was measured by the
square root of the mean square error, with ∆ sin(δ) = 0.012 for the first and ∆ sin(δ) =
0.008 for the second pixel. Apart from statistically distributed errors, there was also a
distinct phase offset between theoretical curve and experimental data in the first pixel
(red curve) and an offset in the retardation value for the second pixel (blue curve).
For the evaluation of the z-component of fiber orientation vectors the orientations were
compared to the anatomical course of the sagittal stratum that is visible in retardation
maps. Fig. 4.8 shows the retardation dataset of 220 consecutive brain sections of the right
hemisphere. Fig. 4.8a gives an overview of the hemisphere. The colored lines indicate
where the dataset was virtually resliced along the z-axis to analyze the z-component of
the orientation vectors.
The resliced retardation map in Fig. 4.8d shows a part of the sagittal stratum that has
an inclination angle of approximately α = 60° with respect to the sectioning plane. The
lower retardation values compared to the surrounding fiber bundles are due to inclined
fibers. Most of the reconstructed vectors in Fig. 4.8d are well aligned with the outer
boundaries of the fiber bundle that are made visible by the retardation map.
The resliced retardation map in Fig. 4.8c features the sagittal stratum at a different
position. The boundaries of this part of the sagital stratum, which are visible in the
retardation map, suggest that the fiber tract is now aligned almost perpendicularly
to the imaging plane. The majority of the extracted fiber orientations in the upper
part match reasonably well with this predicted orientation. In the lower part, however,
the orientation vectors are dispersedly oriented and do not follow any path. When
zooming in on the upper part of the tract, it also becomes visible that two distinct
fiber orientations are present (cf. Fig. 4.8b). The left-hand side features vectors oriented
along the z-axis, as expected, while the vectors on the right-hand side also display a
component oriented along the y-axis6. Additionally, in each resliced view registration
artifact are visible, which do not affect the analysis as every calculation is performed
pixelwise and is not dependent on the alignment of the sections.

6For these resliced views the y-axis corresponds to the axis perpendicular to the image plane.
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(a) Fiber orientation map generated with the results of the new
algorithm. It can be seen that the orientations are continuous from
white to gray matter

(b) Visualization of the parameter trel. This modality makes it
possible to distinguish between white and gray matter.

(c) Enhanced fiber orientation map that encodes orientations by
color and trel by brightness. This visualization combines both sets
of information in a single map.

Figure 4.5: The different modalities that can be generated from the new algo-
rithm. It is possible to separate the inclination and relative thickness and even
display both sets of information in one map, while still being able to distinguish
them.

←

←

←

←
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(a) Microscopic retardation map of the
ROI. Individual fibers within the plane are
visible.

(b) Vector field generated by the algo-
rithm. Only the orientation of every 4th
pixel is depicted.

Figure 4.6: Comparison of the fiber structure that is visible in a retardation map
generated with the PM (a) and the recovered fiber orientations with the LAP (b).
Visualized is a ROI featuring a single gyrus with a thick fiber bundle that fans out
and terminates in the cortex.

Discussion

So far, tracing fibers from white brain matter into the regions of their termination fields
in the cortex has been reserved to microscopic studies. While in microscopic datasets
individual fibers are visible in the gray matter, in LAP datasets these fibers could previ-
ously not be traced reliably. For the first time, it is now possible to resolve the ambiguous
interpretation of retardation maps by collecting additional data from measurements with
a tilted sample. Though individual fibers cannot be observed in the lower resolved LAP
images, the inferred orientation vector field is in agreement with the microscopically
observed architecture (cf. Fig. 4.6).
It has been demonstrated that the developed algorithm is capable of separating the
structure parameter trel and the fiber inclination angle α. Thereby, two complementary
maps were generated. The created FOM is not afflicted with a bias anymore, which
had been caused by presuming a constant trel across the whole brain section in previous
studies (cf. [4, 46]). Discontinuities in the fiber orientations at the border between white
and gray matter are no longer present; instead it is now possible to trace fibers from
the white matter fiber bundles to the termination fields in the cortex. The generated
trel-map is a measure for the birefringence of the examined material. It is related sec-
ondarily to other quantities such as fiber density7. This dependency could provide a
valuable tool for a statistical description of the terminations of myelinated fibers in the
cortex. However, further research will be necessary to precisely understand the link
between these quantities and avoid misinterpretation.
The brain section in Fig. 4.5 displays small regions which are afflicted with interpre-
tation artifacts. These regions were found at the intersection of two different in-plane
fiber bundles. At such an intersection, the signals of the differently oriented fibers are
superimposed and thereby cancel each other out. In the fiber orientation map such

7The basic reasoning behind this relation is that the more fibers are present, the more birefringent
material is in the optical path, which adds up to the total effect that is being observed.
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Figure 4.7: Retardation values in two independent pixels (which are highlighted in
Fig. 4.5b) for Nt = 72 different positions of the tiltable specimen stage. Apart from
small distortions, the experimental data oscillates as predicted by the theoretical
model.

regions were represented by unusually high trel-values and an orientation perpendicular
to the image plane. This type of artifact cannot be avoided since a fiber crossing cannot
be represented by a vector field model that only allows one vector for each pixel. Such
a crossing scenario is represented by a low retardation value which resembles the signal
for a perpendicularly oriented fiber. In order to resolve this issue, a new fiber model
will be needed to represent a multi directional fiber architecture within a single pixel.
Similar representations are known from HARDI measurements in dMRI (however, at a
much lower scale) and the recently introduced pliODF, for which the fiber structure in
a voxel is represented by orientation distribution functions. These functions are statisti-
cal representations of the underlying fiber orientations that give information about the
percentage of fibers oriented into any possible direction [6]. The more difficult challenge,
however, will be how to relate the parameters of such a model to the actual measurement
data.
The experimentally observed retardation values were assessed in individual pixels and
conformed with the theoretically predicted oscillation (cf. Eq. (4.11)) of the retarda-
tion signal within a reasonable margin of error (cf. Fig. 4.7). This result confirms the
premise of the approach quantitatively, thereby providing further evidence for the em-
ployed model. Though the retardation values behave as predicted when the sample is
tilted, this verifies the self-consistency of the retardation model, while the direct validity
of the derived fiber orientations has yet to be proven.
Achieving a direct validation of calculated orientation vectors is impeded by lack of infor-
mation about the actual fiber orientations in the examined brain tissue. Since phantoms
for 3D-PLI have not been developed yet, in this study a reconstructed brain volume was
used, consisting of 220 consecutive sections. In this brain volume, the overall course of
the sagittal stratum was estimated by assessing the retardation contrast. This approach
has several pitfalls. For a heterogeneous structure, the overall orientation of the bundle
might not be equivalent to the orientations in every single point (e.g. imagine a rope
like structure where the individual yarns are twisted and their tangential orientations
differ from the primary course of the rope). Another issue is that the cross sections
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(a) Overview of the analyzed hemisphere. The
colored lines indicate the position of the resliced
views in (c) and (d).

(b) Zoom of the vector field in (c). Ev-
ery 2nd vector is depicted. 2 distinct
structures are visible, one oriented along
the z-axis the other along the y-axis.

(c) Resliced view of (a) (red line) featuring the vector field of a fiber bundle inclined by
approximately 90° (every 8th vector is plotted). The vectors in the upper part of the bundle
fit to the outer boundaries, while vectors in the lower part seem randomly distributed.

(d) Resliced view of (a) (cyan line) featuring the vector field of a fiber bundle inclined by
approximately 60° (every 8th vector is plotted). The orientations fit very well with the outer
boundaries.

Figure 4.8: Virtually resliced views of a stack of 220 consecutive sections to
compare the reconstructed vectors with the anatomically visible course. The vector
field has been masked manually based on the retardation values.

←boundary of the
sagittal stratum

←boundary of the
sagittal stratum

registration artifact

↓

←registration
artifact
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shown in Fig. 4.8d and Fig. 4.8c reduce a three-dimensional structure to two dimen-
sions. Finally, this evaluation is only qualitative in its nature and does not provide a
quantitative measure. Yet, it is currently the best way to validate the calculated vectors
and with these limitations in mind, the presented data provides evidence that the fiber
orientations indeed can be calculated from the measurements of a tilted sample.
The orientation of part of the sagittal stratum depicted in Fig. 4.8d was reconstructed
very well and the vectors follow the structure which is inclined by approximately 60°
with respect to the image plane. For the part of the sagittal stratum that is inclined by
approximately 90° (cf. Fig. 4.8c), the calculated orientations are more diverse. Given the
limitations of this analysis, it is possible that there are actually two different fiber con-
stellations in the upper part of the sagittal stratum. It is also possible that the observed
vectors are caused by a small systematic error, which leads to a significant misinterpre-
tation. For simulated datasets, it was shown that the reconstruction of fibers with an
inclination of α = 90° is particularly afflicted with random noise. Hence, the algorithm
is also susceptible to minor systematic errors in the calculation, which would lead to a
larger error in the derived orientation. The almost random orientations observed in the
lower part of the sagittal stratum could be evidence for the random orientations that
were predicted in the simulation for fibers inclined by α = 90°.
To either confirm or deny any of these possibilities, the algorithm needs to be improved
so that the instability at α = 90° is eliminated. This can only be achieved by using
information that is not already included in the measured retardation values. So far,
the measured direction angles of tilting measurements were neglected. In Sec. 4.4, a
more advanced approach is developed, which takes both the amplitude and phase of the
intensity signal for every position of the specimen stage into account. This new problem
cannot be solved analytically any more and instead a maximum likelihood approach is
employed. In order to differentiate the developed algorithm from the following approach,
it is also referred to as the “DFT-based algorithm” as it calculates the inclination from
a discrete Fourier transform of the retardance data.
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4.4 Maximum Likelihood Estimation of the Birefringence
Parameters from a Noise Model of the Data Acquisi-
tion Process

In the previous section, it has been shown that an analytical solution can be found for
retrieving the inclination from a set of retardation data acquired at different positions
of the tiltable specimen stage. In most cases, this approach yields deeper insights into
the fiber architecture of the human brain and represents a significant improvement to
the standard 3D-PLI analysis described in Sec. 2.3. An analysis of the noise stability
in Sec. 4.3.2 revealed, however, that especially fibers with an inclination of α ≈ π/2 are
prone to be afflicted with noise. Hence, an algorithm for the 3D-PLI analysis is needed,
which takes all available data into account and also respects the noise sensitivity of
individual data points.
The data is analyzed using the maximum likelihood method, which aims to determine
the most probable parameters of a model given an observed dataset that is afflicted by
measurement errors (i.e. noise). To this end, it is necessary to understand the influ-
ence of model parameters on the probability distribution of the measurands. Hence, in
Sec. 4.4.1, the noise of the imaging system is examined and based on these observations,
Sec. 4.4.2 gives a derivation of the statistical model of the data acquisition process.
Once the probability of a certain observation for a given parameter can be described, an
algorithm (cf. Sec. 4.4.3) is needed to find the maximal plausible parameter. For valida-
tion of the developed algorithm, the same datasets as in Sec. 4.3 are examined and the
reconstruction of the underlying fiber architecture is compared to the previous results.
Additionally, crossing fiber structures are analyzed, to gain a better understanding of
how they influence the signal interpretation.

4.4.1 Noise Sensitivity of the LAP Imaging System

For the development of a likelihood based algorithm, a correct description of noise
occurring in the imaging system is key. Hence, in this section, an examination of the
detection noise is presented.

Methods

In order to analyze the noise level during image acquisition, a tissue sample was inserted
into the LAP imaging system in order to create a broad variety of different intensity
values. To generate a statistical database, n = 100 images of the same brain section
were taken. This dataset was analyzed pixelwise for its sample mean

Ī =
n∑
j=1

1

n
Ij , (4.18)

which estimates the expectation value E[Ij ] and its sample variance

S2 =
n∑
j=1

1

n− 1
(Ij − Ī)2, (4.19)
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which estimates the variance Var[Ij ] across the 100 images. The value Ij denotes the
observed intensity value in each pixel and the index j specifies the jth-measurement.
Shot noise, which is typically the predominant source of noise in bright field imaging, is
expected to follow a Poisson distribution driven by the statistics of photon detection [77].
For such a Poisson distribution, the standard deviation depends on the expectation value
by σ =

√
E[Ij ]. To verify that the camera noise is indeed described by these statistics,

the expectation value and variance were compared to those observed in the dataset. It
can be shown that the expectation value of the variance estimator S2 is given by

E[S2] = Var[Ij ] = σ2, (4.20)

and the variance of the sample variance can be calculated according to8

Var(S2) =
2σ4

n− 1
. (4.21)

Results and Discussion

In the 2D-histogram in Fig. 4.9, the measured sample variances are plotted against
the measured sample means. It can be seen that instead of the expected behavior of
σ =

√
E[Ii] the noise actually follows a distribution whose standard deviation is given

by σ =
√

3E[Ii]. However, accepting the factor of three between the expected and
observed results, the distribution follows the predicted behavior (this behavior being
characterized by the linear increase and the respective variance bounds). Hence, in the
following derivations the noise is described by the Poisson model but a gain factor of
g = 3 needs to be taken into account. This gain factor is due to the internal signal
processing steps in the camera. It most likely originates from the conversion of the
electronic signal recorded by the camera chip into an RGB-image. RGB information is
recorded by applying color filters on individual pixels on the camera chip in the so called
Bayern-pattern. With this technique each camera pixel is only sensitive to one color.
To generate the RGB information within an image pixel, demosaicing algorithms can
by used to interpolate the missing color information [41]. These algorithms are designed
by the manufacturer and not accessible to the public. Due to the factor of 3, which is
equal to the number of color channels, it is possible that the gain factor originates from
the processing steps of such an algorithm. Another possible reason might be a simple
signal amplification in the camera electronics.
Now that the behavior of the camera noise is known, it can be utilized to describe the
data acquisition in a probabilistic model.

4.4.2 Theoretical Model of the 3D-PLI Data Acquisition Process

As discussed in Sec. 4.2, tilting the sample corresponds to a rotation of the orientation
vector x, which is defined by an inclination α and a direction angle ϕ. The tilting can
be expressed by a rotation according to

xi = Ri x . (4.22)

After tilting the sample, we obtain a tilted vector xi with an inclination αi and a
direction angle ϕi. In this calculus, the planar measurement is treated as any tilting

8Further details on the respective derivations can be found in [11, p. 331].
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Figure 4.9: Normalized 2D-histogram of the camera detection statistics. The
sample variance increases proportionally to the sample mean. Except for the factor
of 3, the average increase as well as the distribution of the observed sample variance
match with the theory.

measurement with a rotation matrix R0 = I3×3. For the following calculations, ideal
polarization filters in the imaging system are presumed9. Hence, a 3D-PLI measurement
of the tilted sample yields the intensity profile

Ik,i =
I0e
−µt

4

(
1 + sin

(π
2
trel cos(αi)

2
)

sin(2ρk − 2ϕi)
)
,

as derived in Sec. 2.3. For this measurement the two normalized Fourier coefficients are
defined

Ai =
a1,i
a0,i

=
2

N

1
1
N

∑
k

Ik,i

∑
k

Ik,i cos(2ρk), (4.23)

Bi =
b1,i
a0,i

=
2

N

1
1
N

∑
k

Ik,i

∑
k

Ik,i sin(2ρk). (4.24)

These measurands carry the relative amplitude (i.e. retardation) and phase (i.e. di-
rection angle) information of the sinusoidal intensity profile. The normalization by
1
N

∑
k Ik,i ensures a value range of Ai, Bi ∈ [−1, 1], thereby removing any influence of

the transmittance on the measurands. The expectation values 〈Ai〉 and 〈Bi〉 of these
measurands are then given by

〈Ai〉 = − sin
(π

2
trel cos(αi)

2
)

sin(2ϕi), (4.25)

〈Bi〉 = sin
(π

2
trel cos(αi)

2
)

cos(2ϕi). (4.26)

For a given measurement, the measurands Ai and Bi are statistically distributed around
their expectation values due to detection noise during image acquisition. Given a tilting

9In Sec. 4.4.7 the influence of non ideal polarization filters is discussed
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position of the specimen stage defined by the rotation matrixRi the likelihood to observe
Ai and Bi can be defined as

P (Ai, Bi | trel, α, ϕ,Ri) = P (Ai | trel, α, ϕ,Ri)P (Bi | trel, α, ϕ,Ri) , (4.27)

for any parameter set (trel, α, ϕ) that describes the fiber architecture of the brain tissue.
According to Bayes’ theorem10, the probability to measure the acquired data for all
different positions of the tiltable specimen stage can be defined by the cumulative density
function

P (trel, α, ϕ |Measurements) =

Nt∏
i=0

P (Ai | trel, α, ϕ,Ri)P (Bi | trel, α, ϕ,Ri) . (4.28)

For the next step, a concrete expression for this probability needs to be derived, so
that the most probable parameter set (trel, α, ϕ) can be determined from the available
measurement data.
When measuring an arbitrary intensity the observed value will be statistically distributed
around Ik,i due to shot noise. As investigated in Sec. 4.4.1 the shot noise is modelled
by a Poisson distribution. Since the intensity values are large (i.e. Ik,i � 10), the
photon detection can be modelled by a Gaussian distribution with mean Ik,i and variance
σIk,i =

√
gIk,i. Here, the gain factor g accounts for the conversion between the actual

photon count of the camera and the gray value displayed in an image, which was observed
in Sec. 4.4.1.
For any tilting measurement the measurand Ai is calculated from the intensities of the
acquired images by Eq. (4.23). Using Gaussian error propagation, the standard deviation
of Ai can be determined. With the partial derivative

∂Ik,iAi =
2

N

cos(2ρk)
1
N

∑
k

Ik,i − 1
N

∑
k

Ik,i cos(2ρk)(
1
N

∑
k

Ik,i

)2 =
4

N

cos(2ρk)− 1
2Ai

IT,i
, (4.29)

the standard deviation of the measurand is given by11

σAi =

√∑
k

(
∂Ik,iAi σIk,i

)2
=

√
4 g

N IT,i

(
1− 1

2
A2
i

)
. (4.30)

Similarly, the standard deviation of the second measurand can be calculated by

σBi =

√∑
k

(
∂Ik,iBi σIk,i

)2
=

√
4 g

N IT,i

(
1− 1

2
B2
i

)
. (4.31)

10Bayes’ theorem states that the probability P of an event X given a condition Y can be written
as P (X|Y ) = P (X)P (Y |X)/P (Y ). In our case this means that the probability that the brain tissue is
correctly characterized by a parameter set (trel, α, ϕ) for the given information acquired in the 3D-PLI
measurement can be written as

P (trel, α, ϕ |Measurements) =
P (trel, α, ϕ)P (Measurements|trel, α, ϕ)

P (Measurements)
.

However, there is no inherent reason for any measurement or any parameter set to be more or less likely
than any other. Hence, the prior as well as the normalization factor assume a uniform distribution and
the equation can be simplified to

P (trel, α, ϕ |Measurements) = P (Measurements|trel, α, ϕ).

11A more detailed derivation is given in Appx. A.6
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The theoretical transmittance for each tilting measurement I0,i in both equations is
unknown. Thus, the measured transmittance is used as an estimator of this value.
With the calculated expectation value 〈Ai〉 and the standard deviation σAi , the Gaussian
probability density function can be written as

P (Ai | trel, α, ϕ,Ri) =
1√

2πσAi
exp

(
−(Ai − 〈Ai〉)2

2σ2Ai

)
, (4.32)

Respectively we obtain the probability density function for the second measurand

P (Bi | trel, α, ϕ,Ri) =
1√

2πσBi
exp

(
−(Bi − 〈Bi〉)2

2σ2Bi

)
. (4.33)

The probability to obtain all of the measured data (i.e. the set of all Ai and Bi) is
given by the product of these Gaussian density functions as described by Eq. (4.28).
For optimization purposes it is common to calculate the logarithmic likelihood function,
which is not as strongly peaked as the original likelihood function, so that the maximum
can be found more easily. Additionally, most optimization algorithms are designed to
find the minimum of a function rather than the maximum. Hence, a negative sign is
added and the function that needs to be minimized is given by

− log(P (trel, α, ϕ|Measurements)) =

Nt∑
i=0

log(σAi) + log(σBi) + 2

Nt∑
i=0

log(
√

2π)

+ 0.5

Nt∑
i=0

(
(Ai − 〈Ai〉)

σAi

)2

+

(
(Bi − 〈Bi〉)

σBi

)2

.

(4.34)

The term 2
∑Nt

i=0 log(
√

2π) of this equation can be neglected for the optimization process,
since it represents a constant offset. In Fig. 4.10 this probability function is depicted for
three different simulated measurements, each being parameterized by a set (trel, α, ϕ).
It can be seen that the function is not necessarily convex (thereby disabling convex
optimization methods) and assumes very different shapes. Hence, a certain flexibility
is required of the optimization algorithm which is supposed to find the minimum. In
the next section, an optimization algorithm is discussed that is capable to minimize the
function for all possible cases.

4.4.3 The Likelihood Orientation Estimation Algorithm

In order to create an algorithm that is capable of finding the maximum of the likelihood
function (i.e. the minimum of Eq. (4.34) due to the negative sign), first the optimization
problem is characterized. In Fig. 4.10 it can be seen that in general the likelihood func-
tion is not convex, thereby eliminating all algorithms which require a convex function.
An analytical solution of the problem is not possible, since it would require calculating
the gradient of Eq. (4.34) and determining its root analytically, but the trigonometric
dependence of 〈Ai〉 and 〈Bi〉 on the parameters prevents such an approach.
The second important feature of the probability fields is the often long stretched iso-
surfaces around the minimum (cf. Fig. 4.10a, Fig. 4.10c). Of particular interest is the
field in Fig. 4.10a, whose contours resemble the Rosenbrock function. This function is
known to be troublesome for gradient descent methods. Due to the shape of the long
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(a) − log(P ) for trel = 0.65,
α = 45°, ϕ = 90°

(b) − log(P ) for trel = 0.9,
α = 0°, ϕ = 90°

(c) − log(P ) for trel = 0.01,
α = 0°, ϕ = 90°

iso-surface values:

Figure 4.10: Iso-surfaces of the function − log(P (trel, α, ϕ|Measurements)) for
different simulated fiber structures.

stretched valley, the descent is often directed almost perpendicularly to the direction
of the minimum. This results in a strongly oscillating pathway, while the algorithm
searches for the minimum of the valley. Such a path can cause a high number of neces-
sary iterations and sometimes even premature termination of the algorithm [65]. Hence,
for the optimization problem posed here, the Nelder Mead simplex algorithm is chosen,
which has been proven to be robust when tested with the Rosenbrock function [54].
This algorithm spans a simplex with four edges (given the three-dimensional parameter
space). By iteratively comparing and moving these points through the parameter space,
the simplex converges to the minimum of the sampled function.
In order to utilize the Nelder Mead simplex algorithm, two issues need to be solved.
First of all, a suitable starting point needs to be determined. The planar measurement
of the sample already provides a good estimate of the fiber direction angle ϕ0, since it
can be directly measured. For the initial values of trel and α an evenly spaced grid of
6× 6 points is used to determine the best starting point using brute force minimization.
From this starting point, the Nelder Mead simplex algorithm is used, which converges to
the true minimum as depicted in Fig. 4.11.The second issue that needs to be overcome
is the bounded parameter space (i.e. −90° ≤ α ≤ 90°, 0° ≤ ϕ ≤ 180° and trel ≥ 0). The
simplex algorithm has no inherent rules to deal with hard boundaries. A common way
to deal with bounded optimization problems is accepting parameter values outside the
boundaries but introducing a penalty term that forces the algorithm back into the origi-
nal parameter space [45]. Such a method, however, requires multiple iterations (meaning
a higher demand on computational resources) and can still lead to the algorithm getting
stuck at the boundary. For the problem at hand, a more preferable way to deal with the
boundaries is to symmetrize the parameter space. Considering a vector in spherical co-
ordinates, this is achieved by allowing all values for the polar and azimuthal angles and
then calculating the respective angles that describe the same orientation vector but are
within the parameter space. Given the unbounded parameters α̃ and ϕ̃, the symmetry
is therefore described by

α =
[
α̃−

⌊(
α̃+

π

2

)
/π
⌋
· π
]
· sign

(
−bϕ̃/πc mod 2 +

1

2

)
, (4.35)

ϕ = ϕ̃− bϕ̃/πc · π. (4.36)
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Figure 4.11: Visualization of the optimization algorithm. First a suitable starting
point (indicated by the red dot) is chosen from a brute force grid (black dots). In
a second step the Nelder Mead simplex converges to the minimum (indicated by
the red star). The black line in the right figure shows the path the algorithm takes
through the parameter space.

The subtraction (or addition) of multiples of π calculates the spherical coordinates of
the vector within the desired parameter range. In Eq. (4.35) the sign of the inclination
is changed if an uneven multiple of π is subtracted from the unbounded direction angle
ϕ̃. This change of sign is necessary so that vectors that are antiparallel to vectors within
the parameter boundaries are correctly represented by their counterparts.
For the relative thickness, it is sufficient to consider the absolute value of the unbounded
parameter t̃rel in calculations

trel =
∣∣t̃rel∣∣ . (4.37)

The described symmetry of the probability field is depicted in Fig. 4.12. The coloring
of the α/ϕ-plane indicates which parameter values represent the same fiber orientation,
while the gray plane indicates the symmetry of the parameter trel which leads to a mir-
roring of the probability field. Although there are multiple minima in the unbounded
parameter space, each of them represents the same fiber model. Hence, for the optimiza-
tion algorithm it is sufficient to converge to any of these minima. To summarize, the
probability of a certain measurement to occur for any given parameter set is calculated
by the function:

Function − logP (α̃, ϕ̃, t̃rel, (A0, B0), . . . , (ANt , BNt)):
symmetrize α̃, ϕ̃ and t̃rel;
determine αi and ϕi ∀i ∈ {0, . . . , Nt};
calculate 〈Ai〉, 〈Bi〉 ∀i ∈ {0, . . . , Nt};
calculate σAi , σBi ∀i ∈ {0, . . . , Nt};

return −
Nt∑
i=0

log(σAi) + log(σBi)− 2
Nt∑
i=0

log(
√

2π)− 0.5
Nt∑
i=0

(
(Ai−〈Ai〉)

σAi

)2
+
(

(Bi−〈Bi〉)
σBi

)2
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Figure 4.12: The symmetry of the probability field for values outside the de-
fined parameter range. The coloring indicates orientation parameters that represent
identical orientation vectors due to the periodicity of the spherical coordinates. For
negative values of trel the value of the probability function is mirrored at trel = 0
as indicated by the grey plane.

The optimization is then performed by:

Data: Maps of sin(δi), ϕi, IT,i ∀i ∈ {0, 1, . . . , Nt}
Result: Maps of α0, φ0, trel0, −logP0

initialization;
for every image pixel do

Ai = sin(δi) cos(ϕi);
Bi = sin(δi) sin(ϕi);
for αj , trelj ∈ Bruteforce-Grid do

P j = − logP (αj , ϕ0, trel
j , (A0, B0, IT,0), . . . , (ANt , BNt , IT,Nt));

end
determine initial αm, trelm from the minimum of min(P j);
Nealder Mead simplex optimization of − logP with initial point αm, ϕ0, trelm;

end

This algorithm will be referred to in the following as the Likelihood Orientation Esti-
mation (LOriE ) algorithm.
In this study, the LOriE algorithm was implemented prototypically, using the program-
ming language python. For the numerical calculation the package NumPy and the im-
plementation of the Nelder Mead simplex algorithm from the SciPy package were used
[35]. Since the optimization needs to be carried out in every pixel of the image data, the
necessary computation time was extensive. Together with two colleagues (Tim Huetz
and Stefan Koehnen) a second piece of software was developed based on the prototypical
software to parallelize the algorithm pixel wise and thereby enable the employment of
high performance computing resources. In the current implementation between 60 and
90 core hours were needed to process a single brain section.
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4.4.4 Simulative Examination of the Noise Stability

Methods

The LOriE algorithm is evaluated based on the same datasets as the DFT-based al-
gorithm. Simulated datasets were created and analyzed as described previously in
Sec. 4.3.2. That is, for a known fiber orientation vector the expected intensity profiles
were created (one for each position of the tiltable specimen stage) and shot noise was
added. After reconstructing the fiber orientation with the LOriE algorithm, the average
angular deviation β̄ between the original and reconstructed orientation was calculated.

Results

The average angular deviation for different initial fiber orientation vectors is depicted in
Fig. 4.13. As before, each point on the sphere represents the corresponding initial fiber
orientation vector and the coloring of the sphere visualizes the deviation β̄.
The reconstruction of fiber orientations with the LOriE algorithm achieved a very high
precision for the simulated white matter dataset (cf. Fig. 4.13a). For this scenario, most
fiber orientations were reconstructed with an accuracy of β̄ ≈ 1.5°. As in Sec. 4.3.2,
a loss in accuracy for fibers with an inclination α = 0° or |α| = 90° was observed.
In contrast to the reconstruction achieved with the DFT-based algorithm, the angular
deviation accomplished by the LOriE algorithm did not exceed a value of β̄ ≈ 3°.
For the scenario of a gray matter region (with trel = 0.1) the resulting accuracy of
the LOriE algorithm is depicted in Fig. 4.13b. The angular deviation for most initial
orientation vectors was around β̄ ≈ 5°. Only for fiber inclinations of |α| = 80° to |α| =
90°, the angular deviation increased to a value of β̄ = 18°. In this scenario, no significant
loss in the reconstruction accuracy was observable for fibers with an inclination of α = 0°.

(a) trel = 0.5 (b) trel = 0.1

Figure 4.13: The spheres visualize how accurate any given orientation vector can
be reconstructed by the LOriE algorithm for two different values of trel. Every
point on the sphere encodes the accuracy β̃ for the respective orientation vector.
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Discussion

In both cases (i.e. the simulated white matter and the simulated gray matter region),
the developed LOriE algorithm provided the same or better reconstruction accuracy as
the first developed algorithm. In comparison with the previous results in Sec. 4.3.2, the
error for the reconstruction of vectors with an initial inclination of |α| ∈ [10°, 80°] re-
mained the same or slightly decreased (by not more than 2°). The true advantage of the
LOriE algorithm is clearly visible for the reconstruction of white matter fiber bundles
oriented out of the imaging plane. While the DFT-based approach in Sec. 4.3 is not
capable of reconstructing these fiber orientations with any certainty, the LOriE based
approach achieves a reconstruction accuracy of β̄ ≈ 3°. Hence, for the LOriE algorithm,
reconstruction of the fiber architecture in white brain matter is not significantly impeded
by detection noise.
For the scenario of a gray matter region, the LOriE algorithm is capable of reconstruct-
ing the original orientation vector with good accuracy. For the reconstruction of steep
fibers, shot noise is still an issue, though the effect is less pronounced than before. The
recorded data does not provide enough information to distinguish between the different
orientations in this scenario. Solving this issue would, therefore, require additional in-
formation from a different, unexploited modality.
Overall, the LOriE algorithm achieves an even better reconstruction of the fiber architec-
ture by taking more information into account (i.e. not only the changes of the retardation
value but also the change of the fiber direction is analyzed by the algorithm). This im-
provement comes at the cost of a strong increase in the required computational resources
(the required time increases by a factor of ≈ 105). Hence, researchers employing these
techniques will have to evaluate whether the results justify the necessary effort on a case
by case basis. This decision can only be based on evaluating experimental data and will
depend on the structure that is examined.

4.4.5 Simulation of Crossing Fibers

In the previous section it was examined how accurate a fiber bundle with a single
orientation is reconstructed. In biological tissue, however, fibers are often oriented more
heterogeneously. Thus, it is of particular importance for the analysis of experimental
datasets, how crossing fibers within a single volume element are interpreted by the
algorithm. Such structures cannot be represented by a single vector and it is important
to know how they manifest in measured datasets to avoid a misleading interpretation.

Methods

In order to obtain a basic understanding of how crossing fibers affect the results of the
LOriE algorithm, two principle scenarios are analyzed. The first scenario consists of two
fiber bundles oriented perpendicularly to each other with both bundles running within
the image plane (cf. Fig. 4.14a). In the second scenario, one bundle still resides within
the image plane, while the other bundle is oriented perpendicularly to the section (cf.
Fig. 4.14b).
To simulate the first scenario (with both fiber bundles oriented in the section plane),
the collective optical properties of the fibers within the considered volume element were
represented by two Mueller matrices, one for each fiber orientation. The combined
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(a) Scenario of two crossed fiber bun-
dles oriented parallel to the image
plane.

(b) Scenario of fibers perpendicular
to the image plane crossing in-plane
fibers.

Figure 4.14: Visualization of crossing fiber scenarios. The signal is a mixture of
all fibers within each cube.

thickness of the two bundles must be equal to the total sample thickness. Hence, a
mixture parameter q ∈ [0, 1] is introduced that describes the predominance of one fiber
orientation over the other. Given the relative thickness trel = 0.5 for a sample that
consists of a homogeneous fiber constellation, the relative thickness of each fiber bundle
is then given by qtrel and (1 − q)trel, respectively. With this information the Mueller
matrix for each bundle was computed according to Eq. (2.18). Since transmitted light
has to pass both bundles, the overall effect was obtained by multiplying the two matrices
and considering the resulting matrix as the sample in the polarimeter12

Mtot = Mfiber (x1, qtrel) ·Mfiber (x2, (1− q)trel) . (4.38)

From this combined Mueller matrix the simulated signal was generated by Eq. (2.23)

Ik = StPSA,k Mtot SPSG,k.

To simulate the tilting measurements, the two orientation vectors of the respective fiber
bundles were rotated accordingly (cf. Sec. 4.3.2) and the steps of computing the Mueller
matrices were repeated. The simulated signals were analyzed with the LOriE algorithm
for different values of the mixture parameter q. The resulting orientation vector was
compared to the two original orientations, by assessing the angular differences β1 and
β2 (cf. Eq. (4.17)), which were computed according to Eq. (4.17).
Simulating the second fiber scenario (consisting of one fiber bundle within and one
perpendicular to the section plane) requires a slightly different simulative approach.
Light that is transmitted through the sample only passes one fiber bundle represented
by the respective Mueller matrix. Hence, the intensity profile can be calculated as for
a single fiber bundle. However, all light that passes the assessed voxel is measured
within a single camera pixel and it is impossible to distinguish whether it passed fibers
perpendicular to the image plane or fibers within the plane. Therefore, the overall
intensity profile is given by simple signal averaging. Given Ik,‖ as the intensity profile
for fibers oriented parallel to the image plane and Ik,⊥ as the intensity profile for fibers
oriented perpendicularly to the image plane, the overall intensity was computed by

Itot = qIk,‖ + (1− q)Ik,⊥. (4.39)

The tilted measurements were simulated respectively. For the evaluation of this scenario,
the angular differences β‖ and β⊥ were computed according to Eq. (4.17).

12Computing an overall matrix from a set of matrices, each representing a small part of the tissue is
a common approach in simulative studies on 3D-PLI [19, 53].
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Results

For two simulated fiber bundles running within the section plane and oriented perpendic-
ularly to each other, the LOriE algorithm extracted the predominant fiber orientation
and neglected the orientation of the other fiber bundle. This is visible in Fig. 4.15a
where β1 and β2 are plotted depending on the mixture parameter. The plot shows that
β1 flips from 0° to 90° when the orientation x2 becomes predominant over x1 at q = 0.5;
whereas β2 behaves vice versa. Instead of significantly influencing the reconstruction
of the orientation, the crossing fibers lead to a reduced signal strength. The relative
thickness reconstructed by the algorithm decreases linearly from trel = 0.5 with an in-
creasing amount of crossing fibers. For an even fiber mixture (q = 0.5), the relative
thickness drops to trel = 0 and then rises back to its starting value with an increasing
predominance of the second orientation.
The respective results for the scenario of a fiber bundle oriented parallel to the section
plane crossing a bundle out of the section plane are shown in Fig. 4.15b. In this scenario,
the orientation derived by the LOriE algorithm does not correspond to the orientation
of the prevalent fiber bundle but almost always to the orientation of the bundle oriented
parallel to the section. Only if the perpendicularly oriented fiber bundle makes up more
than 97% of the tissue within the considered volume element, is its orientation recog-
nized. The relative thickness decreases linearly with the mixture parameter q until it
reaches a value of trel ≈ 0 at q ≈ 0.97. For fiber constellations with q ≥ 0.97, it almost
instantly returns to its original value of trel = 0.5.

(a) In this scenario, the LOriE algorithm re-
constructs the predominant orientation, while
the value of trel decreases with increased mix-
ing of the two orientations.

(b) In this scenario, the LOriE algorithm re-
constructs the orientation parallel to the im-
age plane preferentially. Only if the fiber bun-
dle is almost free of differently oriented fibers,
will the orientation perpendicular to the image
plane be reconstructed.

Figure 4.15: Results of the simulation of crossing fiber structures. The plots depict the
deviations of the computed orientation vector from the two original orientation vectors
that describe the crossing structure (red and blue line) depending on the mixture per-
centage q of the two simulated fiber bundles. The computed structural parameter trel is
also shown (dashed line). (a) features the results for the crossing scenario with both fiber
bundles oriented parallel to the image plane, while in (b) the results for the scenario with
one bundle perpendicular and one bundle parallel to the image plane are presented.
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Discussion

For crossing fibers within the sectioning plane, the observed reconstruction is in agree-
ment with theoretical predictions. The birefringence effect of the first fiber structure is
opposed to that of the second one. Hence, the overall observed retardance is essentially
the difference between the two individual values and the optical effect of the prevalent
fiber orientation is observed. In this scenario, the derived relative thickness is reduced
due to the opposing birefringence effects that cancel each other out. This behavior is
useful when it comes to interpreting crossing fibers in experimental datasets. Since it
is not possible to recover the structure of a heterogeneous fiber architecture within a
single voxel using the current 3D-PLI model, recovering the predominant orientation
is the next best alternative. For experimental datasets, the drop in the trel-parameter
is helpful to identify crossed fiber bundles in deep white matter regions. Due to the
linear dependence between the mixture q and the relative thickness trel it might even
be possible to deduce the actual mixture within the pixel (e.g. as a 50%-50% or a 30%-
70%). For a crossing structure with an even mixture of 50%-50% for each orientation,
the algorithm will not be able to reconstruct a reliable orientation of any of the two
fiber structures, since the birefringence of both bundles cancel each other out (trel = 0)
and there is no signal left to interpret.
For most cases of crossed fiber structures with one bundle oriented within the plane and
one perpendicular to the imaging plane, the LOriE algorithm reconstructs the orienta-
tion parallel to the section. This can be theoretically understood by remembering that
fibers with an inclination of |α| = 90° display no retardation signal and only by tilting
the sample and also considering the direction angle values in the LOriE algorithm can
the original orientation be reconstructed. Thus, if there is even a small secondary signal
introduced by a few fibers oriented parallel to the section, this signal will dominate the
small signal of perpendicular fibers. It is only for structures which consist by more than
97% of fibers oriented perpendicularly to the brain section that this predominant fiber
orientation is reconstructed. This knowledge about how crossing fiber structures are
reconstructed is important for the interpretation of the results, since biological tissue
almost always displays some level of heterogeneity.
In general we can conclude that a heterogeneous fiber architecture can impede the re-
construction of fiber pathways in a vector field based model. It was observed that even
small “parasitic” fibers (i.e. fibers whose orientation deviates distinctly from that of the
surrounding ones) can significantly influence the outcome of the LOriE algorithm. How-
ever, it was also shown that there are crossing structures for which the algorithm can
be considered as stable, meaning that the prevalent orientation is reconstructed. For
the two analyzed scenarios the resulting orientation vector always corresponds to one of
the two intermingled orientations. This is a huge advantage compared to the common
3D-PLI reconstruction. For that reconstruction method, Dohmen et al. investigated sim-
ulated crossing fiber scenarios and found that the reconstructed orientation is almost
always misinterpreted [19]. To understand every possible signal composition in the ex-
periment, a more detailed survey of crossing fiber structures would be necessary. For
now, the two analyzed compositions are sufficient to interpret the experimental results
presented in the following section.
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4.4.6 Validation of the LOriE Algorithm for Experimental Datasets

In Sec. 4.3.3, it has been observed that in an exemplary experimental dataset a fiber
bundle oriented perpendicularly to the image plane was only partially reconstructed.
Since the simulative analysis of the two developed algorithms revealed a distinct ad-
vantage of the LOriE algorithm for exactly this scenario, the reasons for the previously
observed issues are investigated in this section. Additionally, the simulative study in
Sec. 4.4.5 predicted the behavior of the LOriE algorithm for crossing fiber constellations,
which is now investigated experimentally.

Methods

The LOriE algorithm was used to re-examine the dataset of 220 consecutive brain sec-
tions that was already presented in Sec. 4.3.3. For the interpretation of the resulting
vector field, the parameter maps of the relative thickness and the transmittance were
consulted.
To investigate crossing fibers, the optic chiasm of a hooded seal (Cystophora cristata)
was chosen as an experimental model. In the optic chiasm, the optic tracts of the right
and left hemisphere intersect each other and transition into the optic nerve. It is as-
sumed that most of the fibers decussate from the one optic nerve to the contralateral
optic tract. However, the percentage is highly dependant on the respective species [19].
The chiasm was cut in such a way that both optic tracts and optic nerves are oriented
parallel to the section plane.

Results

First, the derived vector field of the virtually resliced stack of 220 sections of the right
hemisphere is re-examined. The resulting vector fields of the LOriE algorithm are shown
in Appx. B.1 in direct comparison with the results of the DFT-based algorithm intro-
duced previously. In the direct comparison, small improvements are observable and the
vectors extracted by the LOriE algorithm seem to fit even better with the course of
the sagittal stratum that is visible in the retardation maps. This observation might,
however, be subjective and is not quantifiable due to the qualitative nature of this com-
parison and the lack of a known ground truth. More importantly the reconstruction
of the supposed perpendicular fiber bundle does not show major improvements. While
parts of the bundle are reconstructed with an inclination of almost α = 90° to the right
of these orientations there is still a region with fibers oriented in the y-direction.
In Fig. 4.16 the derived relative thickness and the measured transmittance are shown
in a region of interest. It can be seen that the transmittance in Fig. 4.16a was constant
across the whole bundle, while the relative thickness displayed two distinct levels. One
of these levels coincided with the fibers oriented out of the section plane at trel ≈ 0.35
and the second level, which coincided with the fibers oriented along the y-axis, has a
value of trel ≈ 0.17.
The optic chiasm of a hooded seal as a model for crossing fibers is shown in Fig. 4.17.
The FOM in Fig. 4.17b displays the optic tracts and optic nerves with the crossing
region in the center. It can be seen that the orientations in the crossing region consisted
mostly of the two main orientations of the primary fiber tracts. Additionally, in a few
pixels orientation vectors out of the section plane were reconstructed. The trel-map in
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(a) The sagittal stratum is visible in the
transmittance map. The red lines indicate
the borders based on the measured values.

(b) In the trel-map a sub-division of the
structure is visible (blue line). The left part
has a high trel value, while the right part ap-
pears to have a significantly lower trel value.

Figure 4.16: Region of interest of the considered fiber bundle. While the light
absorption caused by the myelin content is constant across the sagittal stratum
(cf. (a)), the trel-map (cf. (b)) implies that the myelin density across the sagittal
stratum is subdivided into two distinct regions. The discrepancy between the two
maps indicates that a minority of crossing fibers is present.

Fig. 4.17c displays a constant value of trel ≈ 0.45 for the individual fiber bundles which
decreased down to trel ≈ 0 in the crossing region. The probability map in Fig. 4.17d
features the negative logarithmic probability that the LOriE algorithm achieved when
it was finished with optimization. While this value was approximately − log(P ) ≈ −40
for the homogeneous tracts, it increased up to − log(P ) ≈ 80 in the crossing region.

4.4.7 Discussion

Reconstructing the vector field of the resliced stack with the LOriE algorithm provided
results which are in agreement with the anticipated orientation indicated by the retar-
dation maps. The vectors were reconstructed with the same or even slightly improved
quality as for the first developed algorithm, thereby validating the working principle of
the LOriE algorithm.
For the α = 90° scenario no major changes were observed in the reconstruction (cf.
Appx. B.1). This result excludes the possibility that the orientations are afflicted with
the known noise instability of the DFT-based algorithm, since simulative studies demon-
strated that the LOriE algorithm would not be affected by this issue in deep white matter
regions. The constant transmittance value across the fiber bundle indicates that there
are no major changes in fiber density. A study by Reckfort et al. has shown that the
attenuation of the transmittance is linked to the density of myelinated fibers in brain
matter [63]. However, the trel-map generated by the LOriE algorithm, which is also in-
dicative for fiber density, shows two distinct values for the two differently reconstructed
orientations. It is known from the simulative investigation of crossing fibers in Sec. 4.4.5
that a minor in-plane fiber population dominates the signal over a major fiber popu-
lation oriented out of the image plane. Hence, it is now evident that some fibers from
the neighboring structure, which is also oriented along the y-axis, are interlaced with
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(a) (b)

(c) (d)

Figure 4.17: Shown are the different modalities generated by the LOriE algorithm
for the optic chiasm of a hooded seal (displayed in (a) before sectioning). In the
FOM (b) the extracted orientation in the crossing region is equal to one of the two
primary orientations. In the trel-map (c) it can be seen that the value drops in the
crossing region as expected. The optimized likelihood (d) highlights the crossing
region due to bad agreement between the model and the experimentally observed
data.
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the examined bundle. As it was shown in simulations, these fibers dominated the signal
causing the algorithm to reconstruct their orientation instead of the prevalent orienta-
tion along the z-axis.
To assess the results for in-plane crossing fibers, the optic chiasm of a hooded seal was
analyzed as an experimental model. The results match with predictions of the simu-
lative study, i.e. for most pixels either of the two main orientations was reconstructed
and the relative thickness declines with an increasing fiber mixture. Additionally, it
was observed that the probability of the deduced tissue parameters determined by the
LOriE algorithm is lower in the crossing region. Generally, one would expect that this
probability measure is poor whenever the measured data cannot be described well by the
model. This can be due to a broad range of different reasons, such as outliers caused by
dust particles. However, the changes in the signal when tilting a crossing fiber structure
are not well defined by the employed model. Therefore, the algorithm cannot always
fit the data to the model. In conclusion, this means that the LOriE algorithm provides
another modality (i.e. the value − log(P ) after optimization) that not exclusively but
indicatively highlights regions of crossing fibers running within the section plane.
In a recent study, Reckfort et al. [63] were able to demonstrate a link between the trans-
mittance and the parameter trel, thereby providing a different way to entangle inclination
and relative thickness from a retardation measurement. The transmittance map of a
brain section is dependent on brain preparation and changes of the transmittance over
time have been observed in in-house studies. This method was applied with reasonable
success to microscopic datasets, but it turned out to be less reliable for LAP datasets.
While the exact quantitative relation between the observed transmittance and the rela-
tive thickness is not always evident, the transmittance can serve at least as an indicator.
Here, this indicator was used as supplementary information for the interpretation of the
fiber architecture in a region with crossing fibers. Due to the likelihood based estima-
tion, this indicator could be used as a Bayesian prior to enhance the automatic analysis
in the future. Such an approach would make it necessary to determine a probability dis-
tribution which specifies how likely it is to obtain a certain trel-value, given an observed
value for the transmittance.
The developed LOriE algorithm is based on the description of the signal that presumes
an ideal sample measuring polarimeter. However, in Chap. 3 it has been shown that
non-ideal polarization filters lead to a more complex signal. Here, this was accounted
for by deriving the retardation and transmittance values according to Eq. (3.13) and
Eq. (3.12). This calibration leads to retardance values that fit to the developed theory,
yet any effects on the standard deviation are not factored in. Since the expectation
values comply with the theoretical model, the optimization will still find the correct
minimum. However, by more carefully using all information of the experimental sig-
nal (i.e. it was shown that also 2nd order Fourier coefficients are to be expected, cf.
Sec. 3.2) it might be possible to improve the analysis even further. Here, merely a proof
of principle for the maximum likelihood estimation is presented, which has resulted in
the elimination of the noise instability in the DFT-based algorithm. The LOriE algo-
rithm has the major advantage that the likelihood based approach can be extended and
adjusted by a suitable prior, thereby including additional information.
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4.5 Conclusion

For the signal interpretation of 3D-PLI data, it is known that measured retardation val-
ues depend on the fiber inclination and the relative thickness of the birefringent tissue.
This ambiguity has been a major challenge for the interpretation of 3D-PLI data. In
this chapter, it was demonstrated how complementing the measured data with measure-
ments of the tilted sample makes it possible to unravel this ambiguity. An algorithm
was derived that is capable of analytically deriving the fiber inclination directly from the
measured data. Both simulative and experimental evidence were presented to provide
the proof of concept for the developed algorithm.
For fibers inclined by α = 90°, a noise instability was observed in the simulative dataset.
The instability in the data interpretation was successfully resolved by developing a sec-
ond algorithm based on a maximum likelihood approach. While this second algorithm
is theoretically needed to reconstruct fibers which are oriented perpendicularly to the
brain section, in the studied experimental datasets only small improvements were visible.
Due to the analytical solution in the DFT-based algorithm, the data of a single brain
section can be processed within seconds, while the optimization process in the LOriE
algorithm requires up to 60 core hours13 per brain section, thereby creating the need
for high performance computing. Thus, for future studies it will be necessary to assess
whether the benefits in noise stability of the second algorithm outweigh the demands on
computing resources.
Another issue when investigating fiber structures oriented perpendicularly to the brain
section are crossing fibers. It has been observed that even small amounts of “parasitic”
fibers can influence the tilting interpretation and lead to a misleading reconstruction.
By a careful examination of all available data, however, the underlying crossing fiber
architecture could be inferred manually. Thus, future studies should investigate whether
it is possible to derive a fiber model that allows the structure of a heterogeneous fiber
architecture to be analyzed and represented based on 3D-PLI measurements and tilted
data.
To summarize, two new tools for the 3D-PLI data analysis have been developed in the
context of this study and their performance was assessed for both simulative and exper-
imental datasets. While the DFT-based algorithm is better suited for high throughput
applications, the second algorithm focuses on accuracy over speed. It has been demon-
strated how these tools can be employed to investigate the fiber architecture and how
misinterpretation especially for crossing fiber structures can be avoided.

13Core hour is a unit to measure the computing time for parallelized computer programs. E.g. a task
that runs on 8 CPU cores parallel for half an hour requires 4 core hours.
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5
Developing an Oblique Illumination

System for 3D-PLI Microscopy

5.1 Microscopic Techniques to Complement Planar 3D-
PLI Measurements

A tiltable specimen stage makes it possible to add crucial information to the 3D-PLI
data analysis and thereby enhances the reconstruction of fiber orientations in histolog-
ical brain sections (cf. Chap. 4). It also provides structural information by computing
the parameter trel, which is indicative for the fiber density. So far, the required data for
the developed algorithms can only be acquired with the LAP imaging system. However,
one of the advantages of 3D-PLI over other neuroimaging techniques is the possibility
of a multiscale analysis of the fiber architecture. This is achieved by employing multiple
imaging systems each designed for an analysis at a different resolution scale but rely-
ing on the same polarimetric measurement principle. To obtain this advantage, each
3D-PLI imaging system must offer the same data acquisition modes. While the tiltable
specimen stage data acquisition is possible in the LAP, a similar technique has yet to
be implemented for microscopic 3D-PLI.
This study aims to identify a suitable experimental setup and to provide a proof of prin-
ciple for the technique. Furthermore, a guideline for the optical design of the imaging
system is developed to construct a fully operational high throughput microscope with an
oblique illumination. In a proof of principal experiment a prototype of the microscope
is validated by employing the algorithms developed in the previous chapter.

Considerations Regarding a Tiltable Specimen Stage in a Microscopy
Application

Pajdzik et al. have employed a tiltable specimen stage in a polarizing microscope to
analyze the birefringence of crystals [58]. In their study it was demonstrated that the

The microscope was developed in collaboration with Philipp Schloemer and Taorad GmbH. Philipp
Schloemer helped with implementing the experimental setup on the breadboard system as well as testing
the camera and the light source. Taorad GmbH have provided comprehensive market research for the
camera, light source and quarter-wave retarder and they seek to implement the developed setup in this
study.
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experimental setup makes it possible to enhance the interpretation of birefringent struc-
tures similar to the algorithms that were developed in Chap. 4. However, the analyzed
crystals in their study had a homogeneous structure and considerations regarding image
quality and resolution were irrelevant for their application. In 3D-PLI, on the other
hand, image quality is critical. Tilting the specimen would result in a decreasing image
resolution towards the edges of the image due to the limited depth of field of a micro-
scope. To illustrate this in more detail the depth of field and the shift of the sample are
calculated.
In the current setup of the polarizing microscope, the objective lens which essentially de-
fines the resolution properties is specified for a magnification of M = 5 and a numerical
aperture1 of NAobj = 0.15. The lateral resolution, i.e. the minimal distance necessary to
distinguish between two objects in the focus plane, is limited due to diffraction at the
aperture of the objective lens. This diffraction causes a point object to be imaged as a
so called Airy disc (the two dimensional version of the squared sinc-function). Accord-
ing to the Rayleigh criterion, it is possible to distinguish two imaged points as long as
the central peak of the Airy disc is not closer than the first minimum of the next Airy
disc [57]. Theoretically the minimal distance to be able to resolve two imaged points is
calculated by

dxy =
0.61λ

NAobj
≈ 2.2 µm, (5.1)

with λ = 550 nm being the peak wavelength of the illumination. Several criteria have
been defined to describe the depth of field i.e. the ability to resolve points located out
of the focus plane. Depending on the magnification M of the imaging system the depth
of field is limited by diffraction described by wave optics or by the circle of confusion
which can be derived from geometrical optics [38, 57]. A theoretical calculation of the
total depth of field, which includes both effects is given by

dtot =
λ

NA2
obj

+
1

M NAobj
dxy ≈ 27.4 µm, (5.2)

where dtot is the maximal allowed distance to the focus plane of the objective lens.
Given a field of view of 3.3mm× 3.3mm, tilting the sample by an angle of τ = 8° leads
to an offset of 3.3mm

2 tan(τ) ≈ 0.23mm at the edges of the image. By comparing this
value with the depth of field it becomes obvious, that tilting the sample in a microscopic
imaging system is not feasible for the purpose of 3D-PLI.

Polarized Conoscopy and Polarized Light field Imaging

Historically, polarized light microscopy for crystal analysis has been practised in two
different observation modes, the orthoscopic and conoscopic view. In orthoscopy the
specimen is imaged directly, while in conoscopy every image point corresponds to a
ray that passed through the specimen at a different angle. Thereby, the conoscopic
view simultaneously reveals information similar to that gathered by tilting the specimen
stage into different directions. The maximal tilting angle that can be analyzed in the

1The numerical aperture (NA) of a lens is a common concept in optics which describes the ability
to collect light within an acceptance angle θ. It can be calculated from the clear aperture of the lens
(D) and the focal length f by NA = sin(θ) = sin

(
arctan

(
D
2f

))
.
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conoscopic view depends on the numerical aperture of the objective lens which allows
oblique rays to pass only if the angle between the ray and the optic axis is less than

τmax = arctan(NAobj). (5.3)

Similar to the tiltable specimen stage setup developed by Pajdzik et al., a conoscopic
inspection suffers from the same restriction; it is limited to a homogeneous sample.
Oldenbourg et al. have demonstrated that polarized light field imaging offers the pos-
sibility to combine the orthoscopic and the conoscopic view, and thereby generate a
dataset that offers both spacial and angular resolution of the sample at the same time
[56]. The principle of this imaging technique is based on inserting a microlens array at
the position of the sensor in a common microscope, while the sensor is moved to the
back focal plane of the lens array (Oldenbourg et al. introduced an additional relay lens
behind the microlens array as it allowed more flexibility in the construction). The num-
ber of micro lenses in the array is decisive for the spacial resolution, while the angular
resolution is determined by the number of sensor pixels assigned to each micro lens2.
In their study, Oldenbourg et al. have imaged a calcite film that consisted of multiple
calcite crystals. Their setup employed a micro lens array consisting of 120× 120 lenses
and the conoscopic view of each individual lens was imaged by an array of 12× 12 sen-
sor pixels. Thereby it was possible to determine the inclination angle of each individual
crystal by assessing the respective conoscopic views.
The light field technology would in principle be feasible for 3D-PLI imaging; yet two
experimental constraints need to be discussed. In the optical design of a light field micro-
scope there is an inherent trade-off between the angular and spacial sampling rate as the
number of pixels on a camera sensor is limited. In contrast to a tiltable specimen stage
experiment, it is not possible to manually select the oblique rays. Instead, the oblique
rays are sampled at an approximately equidistant rate up to the maximum oblique an-
gle τmax. These two properties of a light field microscope have severe implications on
the data storage requirements of 3D-PLI. In the current version of the PM the planar
measurement of a single human brain section generates approximately 0.7TB worth of
data. Since a loss in the spacial resolution is not acceptable, a higher magnification
would be required and the amount of data would increase linearly with the number
of pixels per micro lens. The most significant information for the purpose of the data
analysis presented in Chap. 4 is generated for large tilting angles. Thus, the equidistant
angular sampling in a light field microscope would generate a large amount of redundant
information, which could be used to maximize the SNR in the tilting analysis but is not
necessary to obtain good results. Therefore, it is more desirable to individually select
the oblique rays and only record the necessary information, which can be realized with
an oblique illumination. While light field imaging generally benefits from simultaneously
recording all data for real time applications, oblique illumination techniques offer more
control but are only suited for stationary samples (such as the histological brain sections
in 3D-PLI).

Oblique Illumination Techniques

Several studies have investigated different experimental setups to generate oblique illumi-
nation for a multitude of applications in the field of microscopy. Instead of illuminating

2A more comprehensive explanation of the working principles of light field microscopy has been
presented by Levoy et al. [50]
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the sample with a broad range of oblique rays and then differentiating them within the
imaging optics (as is done in polarized light field microscopy), the basic idea is to select
the rays as desired in the illumination system. In this way compromises with regards to
image quality can be mostly avoided.
Levoy et al. have developed one of the most comprehensive imaging systems to control
and record the light field [49]. They employed a custom build epi illumination system
that is capable of shaping both spacial and angular features of the illumination beam,
by projecting light from a digital light processor onto a micro lens array. Additionally
a micro lens array in front of the camera sensor made it possible to record the light
field behind the specimen plane. While their system facilitated the study of the reflec-
tion and scattering characteristics of a sample extensively, adapting the system for the
purpose of 3D-PLI microscopy would require to overthrow almost every single aspect of
the construction principle and redesign the system. Hence, for simply achieving oblique
illumination in 3D-PLI microscopy other design principles are considered.
An oblique illumination system for polarized microscopy has been developed by Shribak
and Oldenbourg based on liquid crystal technology [70]. In their study, the illumination
cone was partially masked in the aperture plane of the condenser lens by an aperture
scanning device. This device consisted of a set of three liquid crystal modulators which
enable the control of polarization states. Each of the modulators was subdivided into
8 pie-shaped sectors. Thereby it was possible to mask out e.g. three quarters of the
aperture and the central ray of the created illumination cone was oblique relative to the
optic axis of the imaging system. It was demonstrated that this oblique illumination
made it possible to determine the orientations of birefringent microtubules of an aster,
a biological structure that is formed during mitosis. This technique achieved a similar
purpose as desired for the 3D-PLI analysis and shows that oblique illumination might
be used to enable the analysis presented in Chap. 4 for microscopic datasets. However,
the device does not offer a very precise control of the incidence angle of the light. Ad-
ditionally the rays around the central ray of the illuminating cone will not be evenly
distributed, as the shape of the aperture is changed from a circular shape to a circle
segment.
A well known technique for creating oblique illumination is achieved by slightly shift-
ing the aperture at the stop of the condenser lens in a Koehler illumination3 system
[37]. This technique has been used by microscopists for almost a century, in order to
achieve a higher contrast in images. Kawata et al. developed an oblique illumination
system based on this technique for the purpose of optical tomography [39, 40]. In their
system the aperture was placed off-axis and then rotated around the optic axis of the
imaging system. Thereby slightly different views of the specimen were created and by
computationally reversing the optical setup, these views were utilized to reconstruct the
original three dimensional structure of the imaged object. While their application was
very different from the one desired for 3D-PLI, their oblique illumination system allowed
them precise control through the well defined offset of the pupil.
As the current version of the PM already employs a Koehler illumination to ensure a
uniform background, adapting this approach for 3D-PLI seems the most promising way
forward. In the following section the detailed working mechanisms of this design will be
analyzed and a proof of principle setup will be presented.

3Further details on the working principle of the Koehler illumination are presented in Sec. 5.4.1.
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5.2 Basics of Geometrical Optics

A fundamental understanding of optical principles is most important when developing
an oblique illumination system. Hence, this section covers a review of the basics of
optics that are used for designing a suitable optical setup. These basics do not cover
a comprehensive introduction to optics but they build the foundation for theoretical
considerations regarding the optical design of the oblique Koehler illumination. Fur-
thermore, the most common lens shapes are introduced and a few principle guidelines
on how to choose the correct lens for a certain application are presented. Based on these
concepts, the following section (cf. Sec. 5.3) presents a simulation approach based on
ray optics that is used throughout this study to simulate the optical train and to gain
a better understanding on how to optimize the illumination system.
The basic concept of geometrical optics is to describe light as rays, which represent the
direction of propagation and can also be characterized as the normals to the wave fronts
in the description of light as an electromagnetic wave. This theoretical description does
not account for diffraction and interference effects.
Image formation in geometrical optics is based on Snell’s law, which describes the change
in direction of a light ray at a surface between two optic media. Given the refractive
indices of the two media n1 and n2 this change in direction is described by

n1 sin(θ1) = n2 sin(θ2), (5.4)

with θ1 and θ2 being the respective angles between the rays and the surface normal [38,
p. 23]. Consequently, it is possible to design a curved surface (i.e. the surface of a lens),
which is capable of refracting rays which diverge from a single object point so that they
converge in a second point - the image of the object point. The most basic shape of a
lens is defined by two spherical surfaces defined by the spherical radii R1 and R2. As
there are multiple radii combinations for such a spherical lens which yield nearly the
same optical properties, lenses are rather defined by their focal length. The focal length
of a lens is the distance in which collimated rays are focused into a single point. It can
be computed from the lensmaker’s equation

1

f
= (n− 1)

(
1

R1
− 1

R2
+

(n− 1)CT
nR1R2

)
, (5.5)

where n denotes the refractive index of the lens material and CT the thickness in the
center of the lens [38, p. 26]. The focal length can be either positive, indicating the
capability to focus a divergent beam, or negative, in which case it has a divergent effect
on a light beam. If the thickness of the lens is negligible compared to its focal length,
image formation can be easily expressed through the thin lens approximation. For a
thin lens with focal length f , the distance of the object do and distance of the image di
to the lens are interrelated by the formula

1

f
=

1

do
+

1

di
. (5.6)

For a given distance of the object to the lens, the magnification (i.e. the size of the image
hi relative to the size of the original object ho) can be calculated by

hi
ho

=
di
do
. (5.7)
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The ratio di/do is also called conjugate ratio and it is said to be infinite if either the
object or the image are at infinity.
For a thick lens, for which the thin lens approximation does not apply, different types
of aberrations occur. Spherical aberrations, describe the phenomenon that parallel rays
which are refracted at the outer parts of the lens are focused to a different point than
those which are closer to the optic axis. This effect is more prominent the wider the
diameter of a lens is relative to its curvature. In the image this usually leads to a slight
blurring. This issue can be resolved for example by replacing a single lens with multiple
ones, thereby reducing the refractive angle at the different surfaces (cf. Kasunic et al.
for more details [38, pp. 72-77]).
Chromatic aberrations are caused by the wavelength dependency of the refractive index,
meaning that the focal length of a lens actually varies with the wavelength of the incident
light. While this poses a problem for many imaging applications, for the purpose of this
study it is irrelevant as the bandwidth of the illumination is limited to a few nanometers.
Off-axis aberrations such as coma - a point like object is imaged like a comet tail - occur
especially in telescopes when the viewed object is not in the center of the image but
rather in the periphery of the view. While off-axis aberrations are particularly relevant
for telescopes, all optical systems with an infinite conjugate ratio need to consider them.
Minimizing aberrations in an optical system is very complex and the form of a spherical
lens can have a huge impact. Hence, it is useful to define the Coddington shape factor

q =
R1 +R2

R1 −R2
, (5.8)

which makes it possible to describe the form of a positive lens. Lenses with a shape
factor of q = ±1 are called plano-convex, lenses with |q| < 1 are called bi-convex lenses
and lenses with a shape factor of |q| > 1 are called meniscus lenses. It can be shown
that a lens with a refractive index of n ≈ 1.5 displays minimal spherical and coma
aberrations for a shape factor of q ≈ 0.8 [38, p. 82]. Such a lens is also called best form
lens. As best form lenses require more effort in the manufacturing cycle they are often
replaced by plano-convex lenses with q = 1, which display similar properties.
In contrast to spherical lenses, aspheres are a group of lenses, whose surface is conic.
These surfaces make it possible to specifically address different types of aberrations and
sometimes even eliminate them completely. The aspherical surface is generally being
parameterized by

z(r) =
r2

R

(
1 +

√
1− (1 + κ) r

2

R2

) +
∑
j

εjr
2j , (5.9)

r

z(r)

R

Figure 5.1: Illustration of an aspherical lens whose surface is defined
by a function z(r).
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Lens Type Conjugate Ratio Application Purpose
Plano-Convex 5× - Infinite Focusing a Collimated Beam, Colli-

mating a Point Source
Bi-Convex 0.2× - 5× Relay Imaging (Real Object and Im-

age), Focusing a Divergent Beam
Best Form Infinite Focusing a Collimated Beam, Colli-

mating a Point Source
Aspheric Condensers Infinite Light Collection, Collimation of In-

coherent Light
Aspheric Collimators Infinite Optimized On-Axis Performance,

Laser Diode Collimation, Fiber
Coupling

Aspheric Lens Pairs 1× - 3.66× Optimized On-Axis Performance,
Relay Imaging (Real Object and Im-
age)

Table 5.1: Commercially available lenses from Thorlabs and their designated
application purpose according to the manufacturer.

where R is the radius of the surface, r is the distance to the optic axis and κ the conic
constant (cf. Fig. 5.1). Depending on the conic constant the surface can assume different
conic shapes:

• hyperbolic for κ < −1

• parabolic for κ = −1

• elliptic for κ > −1 and κ 6= 0

• spheric for κ = 0

Additionally, the polynomial term
∑

j εjr
2j makes it possible to include further correc-

tions that cannot be accomplished by a purely conical shape. Only polynomials with
even exponents are considered for surface corrections to ensure that lenses retain their
axial symmetry. By adjusting the aspheric coefficients in a rigorous ray tracing optimiza-
tion the performance of a lens can be improved even further for a specific application.
When developing an optic system, ideally the surfaces of each lens are adjusted to their
specific purpose in the optic train and address relevant aberrations. For the development
of the prototype of the illumination in this study, this is however not feasible due to the
extensive costs of manufacturing single custom lenses. Hence, suitable lenses have to be
chosen from a commercially available range of products. According to the manufacturer
Thorlabs their different lenses are each optimized for a specific purpose [32], so that
some aberrations can be minimized by choosing the most suited lens shapes. In Tab. 5.1
the most relevant lenses for this study are listed as well as their designated application
purpose which is primarily defined by the conjugate ratio.
Assessing the performance of a lens is commonly based on calculations and ray tracing
simulations. The most basic approach to analyze the ray propagation along the optical
train is offered by the paraxial approximation, which assumes that the angle θ between a
ray and the optic axis of the system is sufficiently small for approximating trigonometric
functions by

sin(θ) = tan(θ) = θ. (5.10)
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This approximation makes it possible to define any ray by its distance to the optic axis
and its angle relative to the optic axis. Hence, a ray can be represented by a 2-D vector
(x, θ)†. Calculating the transition of the ray at one plane along the optic axis to another
is achieved by a ray transfer matrix so that(

x2
θ2

)
=

(
A B
C D

)(
x1
θ1

)
. (5.11)

Examples for such a ray transfer matrix are [24]

•
(

1 d
0 1

)
when the ray propagates a distance d in free space,

•
(

1 0
n2−n1
Rn1

n2
n1

)
when the ray is refracted at a curved surface with radius R between

two optic media with refractive indices n1 and n2.

As the ray transfer matrix analysis depends on the paraxial approximation, it is suscep-
tible to errors when larger angles occur. To avoid this fallacy, simulations in this study
are instead based on Snell’s law in vector form, which makes it possible to accurately
refract rays at any surface. Given the original direction of propagation of a ray (repre-
sented by the vector l̂1) and the local surface normal of a refractive surface (n̂) the new
direction of propagation is calculated by

l̂2 =
n1
n2

l̂1 +

(
−n1
n2

n̂ · l̂1 −

√
1− n21

n22

(
1− (n̂ · l̂1)2

))
n̂, (5.12)

with n1 and n2 as the refractive indices of the respective optical media [26, p. 140].
Based on this equation a simulation toolkit was developed in the context of this thesis
which is presented in Sec. 5.3.

5.3 Simulating the Optical Train

Open source software for simulation in optics is scarce and commercially available soft-
ware is very expensive and often lacks key features needed for this study (such as off-axis
placement of elements). Hence, a custom simulation toolkit was developed to examine
the path of light through the optical train. All figures in this chapter that display parts
of the optical train were created with this toolkit.
The simulation presented here has been limited to a two dimensional representation, as
most optical effects can be understood based on such a 2D-model due to the rotational
symmetry of optic elements. The toolkit has been implemented in python and utilizes
the NumPy and SciPy packages for mathematical calculations and the Matplotlib pack-
age for visualization [35].
The structure of the simulation is depicted in Fig. 5.2 as an UML-diagram. The core
of the simulation toolkit is the Manager class which has two public methods to register
light sources and objects (“add_source” and “add_object”).
In the context of this simulation a light source is a collection of light rays. It is repre-
sented by the ABC_source class4 which has to provide a method “init_rays” to initiate

4An abstract base class (ABC) in python is a class that can enforce derived classes to implement
certain methods (which are defined as abstract methods in the ABC) that are required so it provides
the features needed by another class (in this case the Manager class).
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the rays relative to the position of this particular source.
The Ray class has a list of segments (points in 2D-space) which when connected track the
light path of the represented light ray. The orientation of a ray is always the direction
of propagation from the last segment as the next segment has yet to be determined. A
ray can be terminated which means that it will no longer propagate through the optical
train.
The derived class Directed_source initiates rays all at the same origin with their ori-
entations being distributed according to an angular distribution function. Every ray is
initiated at a quantile of the cumulative distribution function whereas the ray for the
50%-quantile usually coincides with the primary orientation of the directed light source.
In this study two source models have been used which each represent a model for the
angular irradiance characteristic of a commercially available diffuser. The first model
is a uniform model which initializes the rays in equidistant steps around the primary
orientation of the source within a given opening angle. The second model is used to
represent a Gaussian shaped angular irradiance characteristic.
This directed source class was used to model the light sources in this study. In princi-
ple, however, the concept of the simulation makes it possible to implement broad range
of source models by subclassing ABC_source implementing the respective source model
when initiating the rays.
An object represented by the ABC_Object class has attributes that define its positioning
and size. The method propagate_ray specifies how the object modifies a ray and the
method draw defines how the object is visualized on the canvas. Objects are further
subdivided into two classes. Those which can be represented by a planar surface (that
is to say a line in 2D-space) are derived from the class ABC_plane_surf and all others
are derived from ABC_curved_surf. The primary function of this subdivision is to pro-
vide suitable methods to calculate the impact point of a ray with the surface. This is
straight forward for a planar surface (one simply needs to calculate the intersection of
two lines). For a curved surface, the intersection with a “front” and a “back” plane is
calculated, which constitute the boundaries for the object. This initial information is
used to compute the actual collision point of a ray with the more complex surface.
The planar surfaces implemented for this study were absorbers which absorb (that is to
say terminate) all rays upon impact, apertures which only allow rays within the inner
radius to pass, and thin lenses which are able to refract rays as governed by Eq. (5.6) and
Eq. (5.7). Curved surfaces are used in this study for the sole purpose of modelling the dif-
ferent lens shapes. A refracting surface (represented by the class ABC_refracting_surf)
defines a surface function z(r) which calculates the distance relative to a plane surface
(analogue to the definition of an aspherical surface, cf. Fig. 5.1). For a spherical surface
this function is given by

z(r) = R−
√
R2 − r2 (5.13)

with R as the radius of the spherical surface. For aspherical surfaces the function is
given by Eq. (5.9). Once the surface function is defined, the impact point of a ray
on the surface can be determined by a root finding algorithm (Brent’s method was
used which is readily implemented in the SciPy package [35]). At this location the
surface normal is calculated and the vector form of Snell’s law Eq. (5.12) is employed
to determine the new orientation of the ray. The refractive index N-BK7 glass assumed
in this calculation was nN−BK7 = 1.5195 at a wavelength of λ = 532nm according to
Polyanskiy et al. [61].
Upon starting the routine “simulate” of the Manager class, it iterates over all rays of all
sources and passes them through the optical train. The objects are passed sequentially
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in the order they were registered to the Manager, which means that registration of the
objects must correspond to the alignment of the components. Finally calling the “draw”
routine visualizes the scene on the canvas.
The simulation toolkit has been used for the simulative assessment of optical components
and for all illustrations of the light path in this chapter.

5.4 Designing an Oblique Koehler Illumination

The Koehler illumination is frequently used in microscopes due to its homogeneity, as
well as the possibility to control spot size and numerical aperture. The optic principles
and basic setup of the Koehler illumination are described in this section, followed by a
discussion on how to introduce modifications to achieve oblique illumination. In a third
step, the individual components are analyzed for their properties and inherent trade-
offs and an optical design for an oblique illumination system for 3D-PLI microscopy is
proposed.

5.4.1 The Standard Koehler Illumination

Along the optical path of a microscope there are two distinct sets of so called “conjugate”
focal planes, which occur alternatingly along the optical train. Planes of each set are
superimposed in the image formation and an object placed in one of these planes will
be visible in all consecutive focal planes of the considered set. The first set can be
observed in the “normal mode” (also referred to as orthoscopic mode) of the microscope.
Commonly only the specimen plane is visible in this set; however, if needed a scale can
be placed in a conjugated plane to superimpose with the image of the specimen, making
it possible to measure the length of certain features.
Optical filters on the other hand are often afflicted with dust particles, finger prints or
other defects which would result in image artifacts if these were placed in the normal
conjugate set. Thus, optical filters are commonly placed in a plane reciprocal to the
specimen plane, which is completely out of focus in the normal observation mode. This
other conjugate set, which is reciprocal to the first, can be observed by using an eyepiece
telescope instead of ocular. As the rear aperture of the objective lens is in focus, this
mode is also referred to as “aperture mode” (or alternatively “conoscopic mode”). The
reciprocal nature of the two sets can be expressed through a two dimensional Fourier
transformation which transforms the spacial domain into an angular spectrum [30, p.
1.75]. Knowledge of the interrelation between the two conjugate sets is very useful when
trying to manipulate the optical setup to accommodate custom features.
In his essay from 1893, August Koehler formulated the three basic properties that are
required of an illumination system in optical microscopy [44]. He stated that

• the numerical aperture of the illumination needs to be adaptable to fit the numer-
ical aperture of the current objective lens.

• the size of the illuminated spot should match the field of view in the microscope
to avoid reflections and minimize light exposure of the specimen.

• the illumination conditions need to be the same for every spot of image point.
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Figure 5.2: UML diagram of the developed simulation framework for geometrical
optics.
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Figure 5.3: Standard optical setup of the Koehler illumination in the thin lens
approximation. The light path of rays irradiated from three distinct points of the
light source is visualized (red, green and blue rays).

These conditions are met in the so called Koehler illumination which utilizes the con-
cept of conjugated planes. By placing the light source in a plane of the aperture set,
every point is completely out of focus in the image plane, thereby creating a very even
illumination. A diaphragm placed in the aperture set makes it possible to adjust the
numerical aperture of the illumination while a diaphragm placed in a preceding conju-
gated plane of the specimen makes it possible to adjust the size of the illumination spot.
In the standard optical setup of the Koehler illumination an image of the light source
is created with a collector lens as depicted in Fig. 5.3. The optical elements of the
illumination system are arranged in such a way that the image created by the collector
lens is in the focal plane of the condenser lens. Hence every point of the light source is
mapped onto the whole field of view and an uneven irradiance of the light source will
be homogenized in the image.
A field diaphragm is placed right after the collector lens. The image of this field stop is
created by the condenser lens in the focal plane of the objective lens, thereby enabling
the control of the illumination spot size. The aperture diaphragm on the other hand
is placed in the plane of the image of the light source making it possible to control the
numerical aperture of the system.

5.4.2 Realizing an Oblique Illumination

In the Koehler illumination the numerical aperture usually is selected to match that of
the objective lens. However, if the numerical aperture is reduced, it is possible to realize
oblique illumination by displacing the aperture stop off-axis. This concept is depicted
in Fig. 5.4 where it can be seen that the specimen is now illuminated at an angle τ . By
centering the aperture diaphragm and widening its diameter the imaging system works
like a standard polarizing microscope. This poses an advantage over other oblique illu-
mination systems as one can convert the system to a standard already established for
3D-PLI at any time.
Realizing this oblique illumination has implications that need to be considered. While
most of the Koehler illumination works as before, the numerical aperture is significantly
reduced in order to select individual angular segments of the illumination cone. The
lateral resolution of a microscope depends on the numerical aperture of both the illumi-
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nation system (NAillu) and the objective lens (NAobj) and is calculated by5

dxy =
1.22λ

NAobj + NAillu
. (5.14)

Considering the limit of a pinhole aperture diaphragm (NAillu = 0) and neglecting other
diffraction effects, this design of an oblique illumination results in a maximal loss of
lateral resolution by a factor of 2. This trade off seems to be acceptable when compared
to the loss of pixel resolution in a light field microscope, yet it is still a trade-off that
needs to be kept in mind.
As the aperture stop is moved to different positions, thereby creating different angles for
the oblique illumination, it also selects different parts of the light source image. Given an
inhomogeneous light source this means, that different oblique angles may have different
background intensity levels, while the field of view is still illuminated in a homogeneous
manner. To avoid having very different intensities for different oblique angles, therefore
it is desirable to employ a light source that is as homogeneous as possible to begin with.
If quantitative comparability between intensity values is necessary, this issue can be
compensated for by an intensity calibration (i.e. scaling the observed intensity values
with suitable calibration factors).

specimen plane

condenser lens

shifted aperture
diaphragm

field diaphragm

collector
lens

light source

Figure 5.4: Schematic of an oblique Koehler illumination setup. By reducing the
diameter of the aperture diaphragm and shifting it off-center an oblique illumination
is accomplished.

5.4.3 Engineering and Optimization of the Optical Design

When designing the optical setup of the polarizing microscope a comprehensive as-
sessment of the individual components is necessary to achieve the best illumination
properties for 3D-PLI microscopy. In this section the different optical elements and
their influence on the illumination is analyzed with the simulation toolkit presented in
Sec. 5.3. To study the different components experimentally, a prototype of the optical
train was built on a breadboard system from Thorlabs, Inc.

5In Eq. (5.1) it was presumed that both numerical apertures were identical in order to simplify the
formula.
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Principle Alignment of the Optical Components

In the Koehler illumination the position of several optical elements is predefined by
the positions of the conjugated planes (cf. Sec. 5.4.1). By approximating the optics
as thin lenses the spacing between optical elements can be described mathematically.
Essentially there are three degrees of freedom - the focal length of the collector and
condenser lens (fcoll and fcond) and the distance between light source and condenser
docoll. The position of the aperture diaphragm is given by the position of the image of
the light source created by the collector lens. This distance can be calculated by

dicoll =

(
1

fcoll
− 1

docoll

)−1
. (5.15)

If hocoll is the diameter of the light source, the size of the generated image is given by

hicoll = hocoll
dicoll
docoll

. (5.16)

As the image of the light source has to be in the focal plane of the condenser lens, the
distance between the condenser lens and the aperture diaphragm is predetermined by
the focal length fcond. The field diaphragm is positioned closely (i.e. at a distance ∆)
behind the collector lens to control the size of the illumination spot. As the sample has
to be placed in its conjugate plane, the sample position can be calculated by determining
the position at which the image of the field diaphragm is created by the condenser lens
by

dicond =

(
1

fcond
− 1

docond

)−1
. (5.17)

Knowing the position of the different components now enables us to compute the size
of the illuminated spot hicond in the sample plane depending on the diameter of the field
diaphragm hocond. This spot size can be calculated by

hicond = hocond
dicond
docond

, (5.18)

whereas the position of the field diaphragm relative to the condenser lens is given by

docond = dicoll + fcond −∆. (5.19)

To give a better overview, the respective positions of the different optical elements are
depicted in Fig. 5.5. The length of the complete illumination system is therefore given
by

lillu = docoll + dicoll + fcond + dicond. (5.20)

As a constructional requirement this length was kept below 300mm, in order to avoid
an oversized system. The comprehensive description of these distances in the Koehler
system makes it possible to simulate the illumination in the thin lens approximation and
also provides a good indication for the placement of components in the experimental
setup.
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Figure 5.5: The designated distances in the oblique Koehler illumination setup.

The Imaging System

Starting with the imaging part of the microscope, the camera (SVS-vistek evo 4070
MFLGEC) has been chosen for its capability of fast image acquisition at a high res-
olution. The sensor consists of an array of 2048 × 2048 pixels and has a size of
15.2mm× 15.2mm. For the optical imaging components an objective lens (Nikon Plan
Apo 4× 0.2NA) and an according tube lens (Nikon CFI60) were acquired. The objective
lens has been chosen for its high numerical aperture6 of NAobj = 0.2, which is particularly
important for this application, as it not only limits the resolution and depth of field but
also the possibility to capture oblique rays. Given the size of the sensor and the magni-
fication factor of the objective lens ofM = 4× the field of view is 3.8mm×3.8mm wide.
Hence, the requirements for the illumination system are to create a suitable spot size
diameter to illuminate the complete field of view (i.e. hicond ≥ 3.8mm

√
2) and the capa-

bility to exploit the numerical aperture to the full extent (i.e. maximize the oblique angle
between the rays and the optic axis which is theoretically limited by τ ≤ arcsin(NAobj)).
The polarization filters in the imaging path are placed between objective and tube lens
reciprocal to the imaging plane. The employed quarter-wave retarder (Newport 10RP34-
532) was chosen for its large clear aperture of 17.8mm while at the same time having a
high retardation accuracy of ±λ/350. A large clear aperture of the filter is important
as it is placed in the imaging path of the microscope and can therefore place a limit on
the numerical aperture in addition to the objective lens. A linear polarizer (Thorlabs
LPVISE100-A) with an extinction ratio of > 5000 : 1 was placed at an angle of 45°
relative to the retarder, thereby forming a circular analyzer.

The Light Source

For the light source, output power is critical to enable short exposure times and thereby
facilitate rapid measurements. Hence, an ultra high powered LED source (Prizmatix
UHP-Mic-LED-520) is employed, which delivers collimated light with an optical output
power of > 900mW at a central peak wavelength of 520nm and a spectral bandwidth

6While this numerical aperture is not high in general, it is high at 4× magnification. Employing
a lens with a higher magnification would also yield a higher numerical aperture with the possibility to
increase the oblique angle but also dramatically increase the data storage requirements.

77



Chapter 5. Developing an Oblique Illumination System for 3D-PLI Microscopy

of 36 nm (full width half maximum). High quality quarter-wave retarders are not com-
mercially available at this particular wavelength. Hence, a bandpass filter (Thorlabs
FL532-10) is employed to shift the central peak to the more common wavelength of
532 nm with a bandwidth of 10 nm (full width half maximum).
The Koehler illumination in general is not designed for a collimated light source. In
fact, due to the reciprocal nature between the angular and spacial distribution in the
two conjugated plane sets, it is important that the light source has a homogeneous
angular distribution which transforms into a homogeneous spacial illumination in the
specimen plane. Hence, it is necessary to employ a diffuser to create a divergent light
source.
To analyze the influence of this relationship in more detail, a standard Koehler illumi-
nation was simulated. In the illumination setup the lenses were modelled as thin lenses
to avoid an overlay with effects caused by lens aberrations. The source was modelled
by 1000 individual directed point sources each emitting 1000 rays. The directed point
sources emit rays according to a uniform angular spectrum with a bandwidth of ±10°
for the first and a Gaussian shaped angular spectrum with a bandwidth of ±7.5° for the
second simulation scenario. The two angular spectra are modelled to emulate the exper-
imentally measured angular distributions of two considered diffusers (Thorlabs ED1-C20
and Thorlabs DG10-600) as provided by the manufacturer (cf. Appx. B.2).
In Fig. 5.6 it can be seen, how the angular distribution of the light source and the il-
lumination uniformity in the specimen plane are interrelated. For a Gaussian shaped
angular spectrum of the diffuser (which emulates a standard ground glass diffuser) the
intensity profile in the specimen plane follows also a (clipped) Gaussian distribution (cf.
Fig. 5.6b and Fig. 5.6c). To avoid this issue, a windowed uniform diffuser (Thorlabs
ED1-C20) is employed which in contrast to standard issue diffusers scatters the light to
a windowed uniform distribution across the different angles. The simulation shows that
for such a uniform diffuser the background illumination in the specimen plane is also
uniform (cf. Fig. 5.6b and Fig. 5.6c). According to the manufacturer this engineered
diffuser consists of microlens units, whose surface profiles and positions are individually
specified to achieve the desired beam shaping. By introducing a certain level of ran-
domization, the properties of the diffuser are made impervious to different illumination
conditions.
For all following considerations regarding the alignment of components in the Koehler
setup, the surface of this diffuser constitutes the origin of the light source, rather than
the LED itself.

The Collector and Condenser Lens

So far, the principle of the Koehler illumination has only been discussed on the basis
of the thin lens approximation. This is usually sufficient for applications where only
a homogeneous illumination is required. However, in our case a much higher level of
control over the illumination beam is required which comes at the cost of being more
sensitive to perturbations. Hence, determining suitable lens shapes for the collector and
condenser lens is important.
The collector lens creates an image of the light source. The optimal conjugate ratio
depends on two factors:

• For a conjugate ratio of approximately 1 the length of the illumination system (cf.
Eq. (5.20)) is minimal.
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(a) (b) (c)

Figure 5.6: This simulation data demonstrates the interrelation between the an-
gular spectrum of the source (a) and the resulting illumination uniformity in the
specimen plane. The relative intensity observable across the sensor is presented in
(b) for a centered aperture diaphragm and in (c) for an off-set aperture diaphragm
(i.e. an oblique illumination).

• For optimizing the radiometric properties of the illumination it is desirable that the
size of the image is only as large as necessary. The irradiance is anti-proportional
to (hicoll)

2 as the light is distributed across the illuminated area. Hence the best
conjugate ratio from a radiometric point of view would be defined by the image
size in relation to the maximal displacement of the aperture diaphragm (hicoll =
rd + rapt).

In any case, according to Tab. 5.1 a bi-convex lens is best suited for relay imaging with
a conjugate ratio between 0.2 and 5.0. In this study a conjugate ratio of ≈ 1 was cho-
sen to allow scope for experimental adjustments rather than optimizing the radiometric
output. The collector lens employed in this study is a spherical bi-convex lens (Thorlabs
LB1761-A) with a focal length of fcoll ≈ 25.4mm.
In the alignment of the Koehler illumination, the condenser lens is inserted at an infi-
nite conjugate ratio. For this purpose the overview in Tab. 5.1 suggests to utilize either
best form lenses, plano-convex condensers or aspheric condensers. As best form lenses
are only available at a diameter of 25.4mm, using such a lens would significantly limit
the maximal possible shift of the aperture diaphragm. Plano-convex condenser lenses
and aspheric condenser lenses are essentially designed for the same purpose. Aspheric
condensers offer better performance whereas plano-convex condensers are usually more
cost efficient. As the performance of the condenser lens is critical for the illumination
quality, an asphere is better suited for our application. However, to ensure that such a
lens is indeed the best match for the application both lens forms were tested in a simu-
lation (cf. complementary data in Appx. B.3). It was found that both lenses offer good
on-axis performance, while an oblique illumination scenario leads to an inhomogeneous
background for the spherical lens.
The aspheric lens chosen in this study (Thorlabs ACL4532-A) offers a high numerical
aperture of NA = 0.6. The high numerical aperture is particularly useful, as the best
performance is usually achieved in the center of a lens and decreases towards the periph-
ery. While the numerical aperture exceeds the requirements (the numerical aperture of
the objective lens is NAobj = 0.2), it allows us to only use the central part of the lens
and avoid significant deviations.
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The Complete Optical Train

After carefully specifying all components, the illumination system and microscope op-
tics can be set up. The CAD drawing in Fig. 5.7 visualizes the complete optical train
as constructed on the breadboard system. In this setup the aperture diaphragm was
connected to a manual x-y-stage to enable radial off-sets in arbitrary directions, which
has to be motorized in the final design of the microscope.
The linear analyzer and quarter-wave plate were placed in the infinity path of the mi-
croscope optics. The angle between waveplate and linear analyzer (which needs to be
exactly 45°) was calibrated by using a known circular polarizer as a sample and adjust-
ing the angle to achieve maximal obliteration.
The linear polarizer was placed together with the bandpass filter into a motorized ro-
tation stage between field and aperture diaphragm. The motorized rotation stage was
driven by an axes controller, that was programmed7 to trigger the camera to facilitate
a continuous image acquisition for the 18 images of a standard 3D-PLI measurement.
The size of the aperture diaphragm influences several properties of the illumination
system. As the aperture diaphragm is located in a reciprocal plane to the specimen, it
controls the angular spectrum of the illumination. Therefore, an increase in its diameter
leads to a larger numerical aperture of the illumination. This is in general beneficial for
the irradiance of the illumination system, but also implies a broader distribution of rays
around the desired oblique illumination angle. Additionally, due to the wave properties
of light, this diaphragm can also cause diffraction effects which are more pronounced
the smaller the diameter of the diaphragm.
Based on the implementation of the optical train, the effects of the aperture diaphragm
were studied experimentally. The diameter of the aperture diaphragm was varied from
dapt = 1mm to dapt = 7mm. The illumination homogeneity was evaluated based on a
diagonal profile of the measured intensity values.
Fig. 5.8 features the measured background intensity profile for different diameters of
the aperture diaphragm. The data shows that for diameters between dapt = 1mm and
dapt = 4mm the background uniformity increases, while diameters above dapt = 5mm
yield no significant changes in the intensity profile. In principle a non-uniform back-
ground can be easily compensated by an intensity based calibration (i.e. measured in-
tensity values are divided by the background intensity cf. Chap. 3). However, post
measurement data cleaning has secondary side effects such as a loss in the signal noise
ratio. Therefore the reduction of necessary calibration efforts to a minimum is preferred.
Based on the measured profiles a diameter of dapt = 4mm is chosen as the best com-
promise between a uniform background illumination and a well defined oblique angle.
In first experimental tests it was determined that with this setup the maximal possi-
ble shift of the aperture diaphragm is rd = 3mm, before the field of view is partly
shadowed. By simulating the setup with the exact lenses and spacings as those in the
experiment, the respective oblique angle was determined to τext = 5.7° (cf. Fig. 5.9).
This value is significantly lower than the maximal accepted angle of the objective lens
given by arcsin(NAobj) ≈ 11.5°. By considering that the illumination in the specimen
plane is not collimated, but also has a numerical aperture, the observed discrepancy
can be explained. In the simulation of the experimental setup the opening angle of the
illumination was determined to θillu ≈ 3.5°, given an aperture diaphragm opening of
rapt = 2mm. For every oblique angle τ not only the central ray but also rays with an
angle of τ ± θillu need to be within the acceptance range of the objective lens or illu-

7Philipp Schloemer programmed the script for the axes controller.
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Figure 5.7: CAD drawing of the optical setup. The rotation stage for the quarter-
wave retarder makes it possible to calibrate the angle between waveplate and linear
polarizer to 45°. The manual z-stage at the objective lens allows the specimen to
be brought into focus. The aperture diaphragm is connected to an x-y-stage (which
is not visible in the drawing for visualization purposes) thereby making it possible
to shift the diaphragm off center. The linear polarizer is mounted in an automated
rotation-stage and can be triggered to conduct a standard 3D-PLI measurement
automatically.
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Figure 5.8: Measured background intensity profiles for different diameters of the
aperture diaphragm. The uniformity improves with an increase in the diameter up
to dapt = 4mm. A further increase yields no major changes in the profile.

mination artifacts are likely to occur. Taking this into account the experimental setup
(5.7° + 3.5° = 9.2°) is close to the theoretical limit placed by the objective lens (11.5°).
The remaining difference can be explained by a component (e.g. the diameter of a filter
mount) in the imaging path additionally limiting the acceptance angle.
The polarizing microscope is now equipped with a fully functional oblique illumination
system that achieves an oblique angle of up to τ = 5.7°. While the system was carefully
optimized, it still needs to be examined whether such an oblique illumination system is
capable of providing additional measurements that improve the interpretation of nerve
fiber orientations in a histological brain specimen.
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Figure 5.9: Simulation of the experimental setup for a centered (a) and an off-set
aperture diaphragm (b).
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5.5 Validating the Oblique Illumination System for 3D-
PLI

The illumination system has been designed and carefully optimized from an engineering
point of view. In the next step, the validity of the approach for its application in 3D-PLI
is tested experimentally by measuring and analyzing actual brain tissue. By applying
the algorithms developed in Chap. 4 to the acquired data, it is assessed whether data
acquired with the oblique illumination is equivalent to the data acquired with the tiltable
specimen stage in the LAP.

Methods

For evaluating the capabilities of the oblique illumination system, a coronal section of a
rat brain was examined. This section features the corpus callosum (cc), external capsule
(ec) and the caudate-putamen (CPu), thereby providing both in-plane and out-of-plane
oriented structures (regions were labeled according to [60, p. 31]). As the developed
microscopic system was only a prototype on a bread board, acquiring a complete tiled
scan of the sample was not possible. Instead only a single field of view was recorded.
The measurement with the prototype was carried out according to the standard 3D-PLI
procedure (i.e. images were recorded for 18 different rotation angles of the polarizer
with a sampling step size of 10°). One measurement was conducted with the aperture
diaphragm in the central position and Nt = 12 oblique measurements with the aperture
diaphragm being displaced along a circle with radius rd = 3mm. Consequently, the x-
and y-position of the aperture diaphragm were determined by

x = rd cos(ψi),

y = rd sin(ψi),

with ψi = 2π(i−1)
Nt

as the direction of the oblique illumination (which is equivalent to the
tilting direction in Chap. 4), whereas i ∈ [1, 2, ..., Nt].
In the developed microscope it is only possible to rotate the polarizer but not the ana-
lyzer, hence the polarimetric calibration developed in Sec. 3.2 could not be applied. As
only high quality polarization filters are employed, a full polarimetric treatment of the
calibration is not required and the data is only corrected by an intensity based calibra-
tion as presented in Sec. 3.1. Due to the limited automation of this preliminary setup,
only one flat frame was recorded for every position of the polarizer instead of 100.
In order to analyze the generated data with the algorithms, it is necessary to know
the oblique angle τ that results from a given radial displacement rd of the aperture
diaphragm. To determine the best possible estimate for this angle, the experimental
setup was simulated with respect to the employed lenses (cf. Sec. 5.4.3) and the spacing
between the optical elements. For rd = 3.0mm the oblique angle generated by the aper-
ture displacement was determined to τext ≈ 5.7°. This external oblique angle translates
to an internal angle of τint = arcsin(sin(τext)/nbrain) ≈ 3.9° (cf. Sec. 4.2)
With the determination of these angles, measured signals can be interpreted by the LO-
riE and the DFT-based algorithms that have been introduced in Chap. 4. Based on the
results of the algorithms, trel-weighted FOMs are created for an initial screening. For
a more quantitative analysis, the statistical distribution of the determined inclination
values is examined and the results of both algorithms are compared. The retardation
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signals for different oblique angles (specified by τ and ψi) are compared to the theoret-
ically model in exemplary pixels.
The working principle of the oblique illumination was validated by comparing it with
a LAP measurement of the same sample. While the data acquisition with the tiltable
specimen stage in the LAP is well understood, it also provides less information due to
its limited resolution. In order to ensure the comparability between the two imaging
systems, the acquired microscopic images were downscaled by a factor of 32 (grayscale
values in neighboring pixels were averaged) so that the pixel size in object space is al-
most identical to the one of the LAP. The resulting inclination maps were evaluated
by comparing FOMs and histograms. To analyze the process of downscaling the micro-
scopic data, the cumulative distribution functions (CDF) of the calculated inclinations
were compared for a downscaling factor of 2m with m ∈ {2, 3, 4, 5}.
By calculating the variance pixelwise across all generated retardation maps for the dif-
ferent oblique illumination directions, it is possible to visualize regions with a drastic
change in retardation. This approach makes it possible to reveal certain artifacts such
as perspective shifts for an otherwise stationary specimen.

Results

After calculating the inclination and the trel map from the acquired data with the two
algorithms, trel weighted FOMs were generated for visualization8. Fig. 5.10 features
the resulting FOMs for the DFT-based algorithm in the left column and for the LOriE
algorithm in the right column. When examining the complete field of view (first row
in Fig. 5.10), it is can be seen that both algorithms yielded similar orientations for the
corpus callosum (the dense fiber tract that is visible in the upper right corner) and the
external capsule (the fiber tract at the left boundary of the image). In contrast, the
calculated orientations in the CPu (the region in the center of the image) displayed
differences between the two algorithms. While several of the white matter tracts are
colored similarly, overall the DFT-based results are dominated by a strong z-component
(indicated by the blue hue). The orientations calculated by the LOriE algorithm on the
other hand, indicate the presence of in-plane fiber structures (indicated generally by the
more disperse coloring and especially the green hue in some areas).
The ROIs presented in Fig. 5.10 (second and third row) make it possible to examine
the results in more detail. In the first ROI a part of the cortex bordering the external
capsule is presented. The FOM that is generated based on the results of the LOriE algo-
rithm shows that a few fibers (visible as dark green lines) branch from the white matter
into the cortex. These fibers are oriented within the section plane and the trel weighting
causes a darker coloring in comparison with similar oriented white matter fibers. In the
FOM generated by the DFT-based algorithm these fibers are barely visible and noise
dominates the signal in the cortex.
The second ROI (third row of images in Fig. 5.10) features a part of the CPu. In this
region, both algorithms calculated a large out of plane component (indicated by the blue
coloring) for the truncated fiber bundles. However, the reconstruction is not uniform
across each fiber bundle and the coloring is different towards a specific edge of each
bundle. In the area between these fiber bundles a field of birefringent in-plane fibers
is visible in the LOriE reconstruction whereas in the FOM of the DFT-based approach
only noise is observed between the truncated fiber bundles.
For a statistical overview of the results Fig. 5.11 shows histograms of the reconstructed

8cf. Sec. 4.3.3 for details on trel weighted FOMs.
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DFT-based LOriE

Figure 5.10: trel-weighted FOMs generated from the results of the DFT-based
algorithm (left column) and from the results of the LOriE algorithm (right column).
The coloring represents the orientation while the brightness of the colors indicates
the respective trel value. The first row features the complete field of view, while the
second and third rows display two ROIs to visualize the results in more detail.
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(a) DFT-based algorithm (b) LOriE algorithm

Figure 5.11: Histogram of the inclination across the whole field of view. The
inclination was calculated from the oblique measurements by employing the DFT-
based algorithm (a) and the LOriE algorithm (b).

inclination angles across the entire field of view. The inclinations reconstructed with the
DFT-based algorithm assume most frequently values of α ≈ ±70°, while values of α = 0°
and α = ±90° are virtually non-existent (cf. Fig. 5.11a). In between these boundary
values the relative frequency of occurrence scales almost linearly.
On the other hand the LOriE reconstruction offers a more disperse range of inclinations.
While there is a clear maximum at α ≈ −70°, all other inclination values are still quite
common. Additionally it is noticeable that there is a singular peak at an inclination
value of α = 0° which disrupts the otherwise smooth distribution (cf. Fig. 5.11b).
Overall there are significant differences in the fiber orientation reconstruction with the
two algorithms, but there is also a common ground with α ≈ −70° being the most fre-
quent inclination value in both reconstructions.
In order to understand why the two algorithms display these differences in their re-
spective results, the underlying retardation values were examined. Fig. 5.12 shows the
retardation values for the different oblique measurements in two exemplary pixels, as
well as the models describing the expected retardation values. The reconstructed values
of the model parameters α and trel are given in the table below.
For both algorithms the square root of the mean squared error ∆ sin(δ) was calculated as
a measure for the deviation between measurement and theory. In all cases the deviation
is quite high and about an order of magnitude larger than the one observed in the LAP
(cf. Sec. 4.3.3). For both pixels the deviation for the LOriE algorithm is slightly lower
than for the DFT-based algorithm. Additionally both algorithms calculate values of
trel > 1, which violates the premise of trel ≤ 1 that has been made to avoid ambiguities
in the theory (cf. Sec. 4.3.1).
After downscaling the measurement data and recalculating the inclinations with the
LOriE algorithm, the trel weighted FOM for the LAP and the developed oblique PM
deliver comparable results (cf. Fig. 5.13). Based on the FOMs no significant differences
in the reconstructed orientations are visible. The resolution in the downscaled micro-
scopic image (cf. Fig. 5.13a) is higher than in the LAP image (cf. Fig. 5.13b), as the
downscaling procedure of the oblique PM data was only conducted with respect to the
sampling rate but not the optical resolution.
Comparing the relative frequency of occurrence of the inclination values by considering
the histograms in Fig. 5.14a yields similar observations. The main difference between
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Red data Blue data
α trel ∆ sin(δ) α trel ∆ sin(δ)

LOriE −50.2° 0.78 0.09 −77.7° 3.06 0.15

DFT −61.7° 1.33 0.11 −82.2° 5.64 0.17

Figure 5.12: The plot shows the measured retardation values of the oblique mea-
surements for two different pixels (red and blue data points). The dashed line
indicates the theoretically expected retardation values based on the inclination and
trel-value reconstructed by the LOriE algorithm. The dotted line represents the the-
oretical model for the DFT-based algorithm. The table below contains the model
parameters reconstructed by the respective algorithm and the deviation between
measurement and theory.

the two histograms is the slightly more pronounced peak at α ≈ −35° in the LAP
data. To evaluate the role of downscaling the data, the cumulative distribution function
(CDF) of the inclination is evaluated for multiple resolution steps in Fig. 5.14b. At the
original microscopic resolution the CDF represents a broad distribution of inclination
values (a uniform inclination distribution would be represented by a linear CDF). By
artificially downscaling the data, the CDF converges continuously towards the CDF for
the LAP. At a scaling factor of 32 which represents approximately equal pixel sizes in
object space, only minor differences between the CDF for the LAP and the CDF for the
oblique PM are still visible. In the microscopic data a small step increase in the CDF is
observable at α = 0, which is not present in the LAP data and which becomes smaller
with higher downscaling factors.
The inclinations reconstructed with the DFT-based algorithm are distributed differ-
ently (as was shown in Fig. 5.11) but they converge to the distribution for the LAP
as well when downscaling the image data. The respective results can be found in
Appx. B.4. Fig. 5.15 displays the variance of the retardation across all oblique measure-
ments. While the variance in the background assumes values between Var[sin(δ)] = 0
and Var[sin(δ)] = 0.2 × 10−2 the variance observed for truncated fiber bundles reaches
values of Var[sin(δ)] = 1.0 × 10−2. At the edges of the bundles, the observed variance
increases even further and values of Var[sin(δ)] = 2.0 × 10−2 and above are observed.
Hence, the truncated fiber bundles of the CPu are clearly visible in this variance map
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(a) (b)

Figure 5.13: trel-weighted FOM for the downscaled microscopic data (a) and the
LAP data (b) based on inclinations derived with the LOriE algorithm. The LAP
image is blurred in contrast to the downscaled microscope, as the limited optical
resolution of the LAP was not considered when downscaling the microscopic images.
Overall, the coloring is very similar, meaning that the reconstructed orientations
are comparable.

(a) (b)

Figure 5.14: Analysis of the distribution of inclinations that were calculated by
the LOriE algorithm. The distribution of inclinations derived on the bases of the
downscaled data of the oblique illumination system resembles the distribution that
is based on the data acquired with the tiltable specimen stage in the LAP (a). The
CDFs in (b) show that the original distribution of inclinations derived from the
microscopic data converges to the CDF of inclinations in the LAP.
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Figure 5.15: Variance across all retardation maps of the different oblique mea-
surements. In the displayed ROI the boundaries of truncated fiber bundles in the
CPu are clearly highlighted.

and especially their boundaries are highlighted.

Discussion

In this proof of principle measurement the new oblique illumination system made it
possible to acquire a dataset that could be analyzed with the algorithms presented in
Chap. 4. By downscaling the original data to the resolution of the LAP and compar-
ing the results of both systems, it has been demonstrated that the developed oblique
illumination system provides the same advantages as the tiltable specimen stage in the
LAP. The derived FOMs and the histograms of the inclination are very similar for both
systems. In the FOMS at the original resolution, the LOriE algorithm in particular pro-
vided a graphic representation of the fiber structure which is rich in detail and makes it
possible to reconstruct even single nerve fibers. While the visualization of single nerve
fibers has been achieved in previous studies on 3D-PLI microscopy [5], now for the first
time a bias free reconstruction of the orientation vectors has been performed.
Upon comparison of the results of the two available algorithms major differences in the
data interpretation are revealed as well. Overall the DFT-based algorithm predicts more
inclined fibers than the LOriE algorithm with a strong bias towards an inclination of
α ≈ ±70°. While the value α ≈ −70° is also predominant for the inclinations calculated
by the LOriE algorithm, overall the distribution is much more uniform. The distinct
value of α ≈ −70° is plausible for the field of truncated fiber bundles in the CPu, which
explains its predominance in both modalities.
On the other hand, the external capsule and the fiber structures visible in the cortex
suggest also the presence of fibers with a strong in-plane component (i.e. an inclination
of α ≈ 0°). However, such orientations were only reconstructed by the LOriE algorithm.
The strong peak in the distribution of the LOriE-reconstructed inclinations at α = 0°
indicates a lack of sensitivity when trying to distinguish between in-plane fibers with
slightly different inclinations. In proximity to this peak a small dip in the histogram is
observed which supports this interpretation (cf. Fig. 5.11b).
While overall the inclination values provided by the LOriE analysis are more plausible,
it is important to recognize that the ground truth is unknown. Hence, the scenarios
implied by the two modalities are both possible. Furthermore, the strong discrepancy
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between the two modalities indicates that the theoretical model, which both algorithms
are based on, is incomplete. This interpretation is supported by the observation of values
trel > 1 which are inconsistent with the premises of the model. The strong discrepancy
observed between the measured retardation values and those predicted by the model
also indicates that the model is not well-suited to describe the experimental results with
a sufficient precision.
Noise sensitivity has been shown to be a source of error, which can lead to discrepancies
between the two employed algorithms (cf. Sec. 4.4.4). However, mere detection noise is
not sufficient to explain the observed differences. A clue for the major source of error is
provided by the variance map across all oblique retardation maps. In general a variance
in the retardation is expected from the theoretical model (cf. Sec. 4.3.1) when changing
the direction of the oblique illumination. This change should be particularly visible
in white matter fiber bundles such as the truncated bundles in the CPu. The strong
variance that is solely observed at the edges of fiber bundles on the other hand can only
be attributed to a perspective shift when observing the sample for different settings of
the oblique illumination.
Such a parallax effect is expected to occur as it is the basis for the optical tomography
method developed by Kawata et al. [39] and for light field microscopy [50]. While those
imaging techniques utilize the parallax for their respective methodology, in our case it
is an undesired secondary effect as it becomes problematic to differentiate between the
optical and the polarization effects.
The origin of the perspective shift can be understood by considering the scenario in
Fig. 5.16. Two distinct features (red and blue dot) have the same x and y position but
one is located in the focal plane while the other is at the surface of the sample. When
imaged with a straight illumination, the two features will be superimposed in the final
image as they are both in the path of the same ray. For an oblique illumination on the
other hand, the two features will appear as separate features in the microscope as they
are imaged by different rays. The feature in the focal plane (blue dot) will maintain
its position for every oblique illumination, while the apparent position of the surfaces
feature depends on the respective illumination settings and will be different for every
oblique angle9.
The magnitude of the shift depends on the distance of the considered object to the
focal plane (i.e. at most half of the sample thickness) and on the angle of the oblique
illumination. Considering the typical sample thickness of t = 70 µm and an oblique
angle of τ = 5.7° this means that the apparent displacement for a feature at the sample
surface is approximately t/2 · tan(τ) ≈ 3.5 µm, which corresponds to roughly two to
three image pixels. In the experiment this effect can become larger if the focal plane is
not placed exactly in the center of the sample, or if the sample is not exactly parallel
to the focal plane. While this shift is particularly problematic at the boundaries of any
fiber structure where large variations in the birefringence occur, it is bound to lead to
deviations from the theoretical model in almost any case, as even thick white matter
fiber bundles cannot be considered as homogeneous on a microscopic resolution.
To resolve this issue several approaches can be considered. While reducing the sam-
ple thickness seems the most straightforward, to date the lowest section thickness that
has been achieved for 3D-PLI at a steady quality is t = 70 µm for human brains and
t = 60 µm for rodent brains. This limitation is mostly due to the cryogenic preparation
technique used in 3D-PLI (cf. Sec. 2.5) and is unlikely to change in the near future.

9As a secondary effect, the feature located at the surface of the specimen will be blurred. However,
in this application the depth of field still makes it possible to image features located close to the surface
of the specimen.
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sample

oblique
illumination

straight
illumination

focal plane

Figure 5.16: When imaging a histological specimen with oblique illumination,
parallax effects can cause an apparent displacement of certain features. In this
example, one feature of the histological brain section is located exactly in the focal
plane of the microscope (blue dot) while a second feature (red dot) is located close
to the surface of the specimen. When imaged with a straight illumination these
two features will be superimposed. An oblique illumination on the other hand will
image the two features next to each other, as they are no longer in the light path
of the same ray.

Reducing the camera resolution so that the shift of structures is below the resolution
limit of the imaging system would also be possible. As one big advantage of 3D-PLI
over other imaging techniques is its rich detail in microscopic images, this solution is
not considered as it would trade a main advantage of 3D-PLI in favor of an easier data
interpretation. While applying the LOriE analysis seems to provide reasonable results,
in future studies the data analysis should be adapted with respect to a suitable model
that describes both parallax and polarimetric effects in a polarizing microscope equipped
with an oblique illumination system. Eventually, exploring such a comprehensive model
might not only make it possible to calculate fiber orientations free of aberrations but
also allow a z-axis resolution that exceeds the section thickness.
By studying the cumulative distribution function of the inclination values it was also
possible to reveal a resolution dependent effect in the reconstruction. This effect can
be explained in part by the parallax effect described above. As this effect is only rel-
evant at a microscopic resolution, its influence should not extend to the mesoscopic
scale. However, downscaling the microscopic data by a factor of 32 still leaves minor
differences in the reconstruction between the oblique PM and the LAP. Hence, a large
part of the difference in the CDFs is probably attributed to the increased sensitivity of
the microscopic system towards small fiber structures that are oriented differently than
the surrounding structures. When downscaling the data for such diverse structures, a
gradual change of the CDF would be expected as was observed in Fig. 5.14b.
Overall, this proof of principle experiment demonstrated that the developed microscopic
system is capable of providing additional data to the established microscopic 3D-PLI
measurement, similar to the tiltable specimen stage system employed in the LAP. It
has been shown that the measured data can be interpreted to some extent with algo-
rithms originally developed for the LAP. While the analysis methodology still needs to
be improved, the developed illumination system is a major step in ensuring that the
capabilities of the microscope do not fall short in comparison with the LAP.
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5.6 Conclusion

In this chapter an oblique illumination system was developed in order to enable measure-
ments similar to those provided by the tiltable specimen stage in the LAP. The designed
setup was based on the Koehler illumination and chosen as it does not significantly
change the image acquisition and still makes it possible to perform standard 3D-PLI
measurements. This advantage means that most of the standard 3D-PLI workflow can
be maintained and ensures the comparability to the previous microscopic 3D-PLI mea-
surements. The steps described in Sec. 5.4.3 not only enabled us to build this specific
oblique illumination system, but also provide a general approach on how to design such
a system for any given microscope. In the future, this might lead to advances in other
microscopy applications, that could benefit from a well adjusted oblique illumination
system.
It has been demonstrated that the oblique illumination can be utilized in a polarizing
microscope to deliver similar information to that provided by the tiltable specimen stage
in the LAP. On the basis of the acquired data it was possible to reconstruct the fiber
orientations in an exemplary brain specimen by employing the same analysis methods
that were developed for the LAP. Hence, the developed illumination system is an im-
portant step to ensure that the microscopic system offers the same features as the LAP
and thereby enables the scalability of 3D-PLI. While these results are promising it was
also discovered that the theoretical model developed for the LAP falls short of includ-
ing optical effects in addition to the polarimetric theory. To utilize the additional data
generated with the oblique illumination to the full extent, the theoretical model and the
analysis algorithms will need to be refined to account for the observed parallax effects.
Extending the theoretical model and respective data analytics in the future will not
only improve the accuracy of reconstructed orientation but also offers the possibility to
increase the z-axis resolution.
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6
Impact on Future 3D-PLI Data

Interpretation Techniques

Until now, the reconstruction of 3D-PLI orientation vector fields was only quantitatively
reliable in deep white matter regions with a steady fiber density. This limitation was
inherent in the 3D-PLI analysis as the polarimetric effects of fiber orientation and fiber
density are always combined to a single measurand. In this work, it was demonstrated
that complementing a planar 3D-PLI measurement with additional measurements from
a tiltable specimen stage yields information that makes it possible to separate the ori-
entation vector field from the fiber density. By exploiting the additional information,
for the first time it was possible to access these two types of information independently
of each other.
For the required data analysis, two algorithmic approaches were developed, which differ
in terms of noise sensitivity and required computational resources. The first DFT-based
algorithm utilized an analytical calculation derived from the polarimetric model of a
3D-PLI measurement, whereas the second LOriE algorithm employed a probabilistic
approach. Proof of principle experiments provided conclusive evidence that utilizing
this framework makes it possible to reconstruct the fiber architecture in a multitude of
different fiber scenarios.
While the working principle of this algorithmic framework has been thoroughly investi-
gated, it is desirable to conduct further studies in the future that focus on the possibility
to exploit more of the information provided by the tiltable specimen stage especially for
the purpose of investigating crossing fiber scenarios. To this end, analyzing simulations
of the 3D-PLI pipeline with the SimPLI toolkit developed by Dohmen et al. [19] is
particularly interesting as measured signals can be simulated for a broad variety of fiber
constellations. Eventually this approach might make it possible to extend the current
model of a single fiber orientation per voxel towards a comprehensive model that is also
capable of describing a disperse distribution of fibers within one voxel.
In this context, it is also interesting to investigate the applicability of a full Mueller
polarimeter as described by Chipman et al. [13] in contrast to the partial Mueller po-
larimeter currently used for 3D-PLI measurements. While the current polarimetric
approach is sufficient for a purely birefringent specimen, other (minor) effects such as
depolarization and diattenuation cannot be investigated. It has been theorized [25] that
especially depolarization might be indicative for the dispersity of the fiber architecture.
As this study has for the first time presented a comprehensive treatment of the 3D-PLI
data analysis with the Mueller-Stokes calculus, a first step towards such an approach
has been made. Though the benefit of the Mueller-Stokes calculus in this study was
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limited to the calibration procedure, it also opens up the possibility of employing state
of the art polarimetric techniques in future studies on 3D-PLI.
So far, the benefit of a tiltable specimen stage for 3D-PLI data analytics has been re-
stricted to mesoscopic setups due to the inherent optical limitations of a microscope. In
the course of this thesis an oblique illumination system was specifically developed for
3D-PLI microscopy in order to facilitate equivalent data analytics at a high resolution.
It has been demonstrated that the collected data can be used to apply the same infor-
mation processing principles as in a mesoscopic system. However, it was also discovered,
that due to the high resolution further optical effects occur which inhibit the current
data analytics at full resolution but might also carry valuable additional information.
An important issue for 3D-PLI is that while the resolution in the x-y plane is dependant
on the optical setup, the z-axis resolution is determined by the thickness of the exam-
ined histological brain section. At the mesoscale this leads to an approximately isotropic
resolution whereas at the microscale the height of a voxel exceeds its x-y dimensions by
a factor of approximately 50. By introducing optical tomography methods to 3D-PLI
microscopy, it might be possible to resolve this impairment and increase the z-axis res-
olution. However, this requires a novel theoretical approach as the oblique illumination
system introduces a combination of optical and polarimetric effects that have not been
described yet.
The new methods that have been explored in this study have demonstrated that linking
theoretical models and experimental data yields huge benefits for 3D-PLI data analytics
and will advance the capabilities of this imaging method in the future.
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Appendix A

Mathematical Derivations

A.1 Derivation of ne(α)− no ≈ (nE − no) · cos2(α)

For a uniaxial index ellipsoid the rotational symmetry makes it possible to reduce the
problem to a two dimensional cross section of the indicatrix. Fig. A.1 features the
resulting ellipse, which is described by the equation

x2

n2E
+
y2

n2o
= 1. (A.1)

Using the trigonometric relations

sin(α) =
y

ne
,

and
cos(α) =

x

ne
,

Eq. (A.1) can be written as

n2e cos(α)2

n2E
+
n2e sin(α)2

n2o
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α

nE

no ne

x

y

Figure A.1: Cross section of the index ellipsoid in order to derive the extra
ordinary index from the equation of an ellipse.
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From this equation we obtain the inclination dependent refractive index for the extra
ordinary ray

ne(α) =
1√

cos(α)2

n2
E

+ sin(α)2

n2
o

. (A.2)

When trying to approximate this equation for small differences in the refractive indices,
we view it as a scalar function f(no, nE). The Taylor expansion of this function in a
point (no, no) to the linear order is given by

f(no, nE) ≈ f(no, no) + Jf |no,no ·
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no − no
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)
, (A.3)

where Jf denotes the Jacobian matrix
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With the partial derivatives
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this leads to the linear Taylor expansion of f(no, nE) in (no, no):
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(A.6)
Hence, the difference of the refractive indices can be approximated by

ne(α)− no ≈ (no + (nE − no) · cos2(α))− no
= (nE − no) · cos2(α).

(A.7)
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A.2 The Intensity Profile for Imperfect Polarization Fil-
ters

In order to account for partial polarization and a mismatched quarter-wave retarder
in the LAP, the observable intensity profile is derived. According to Eq. (2.18), the
birefringent tissue is represented by the Mueller matrix

Mfiber = e−µt


1 0 0 0

0 cos2(2ϕ) + cos(δ) sin2(2ϕ) (1− cos(δ)) sin(2ϕ) cos(2ϕ) − sin(δ) sin(2ϕ)

0 (1− cos(δ)) sin(2ϕ) cos(2ϕ) sin2(2ϕ) + cos(δ) cos2(2ϕ) sin(δ) cos(2ϕ)
0 sin(δ) sin(2ϕ) − sin(δ) cos(2ϕ) cos(δ)

.
As explained in Sec. 3.2 the polarization state generator and analyzer are represented
by the Stokes vectors

S̃PSGLAP (ρk) =
I0
2


1

p cos(γ) cos(2ρk)
p cos(γ) sin(2ρk)
−p sin(γ)

 ,

S̃†PSALAP (ρk) =
1

2

(
1 −p cos(2ρk) −p sin(2ρk) 0

)
.

Next, the intensity profile for these states has to be calculated. In an intermediate step,
we calculate:

S̃†PSALAPMfiber =
e−µt

2


1

−p cos(2ρk)
(
cos2(2ϕ) + cos(δ) sin2(2ϕ)

)
− p sin(2ρk) (1− cos(δ)) sin(2ϕ) cos(2ϕ)

−p cos(2ρk) (1− cos(δ)) sin(2ϕ) cos(2ϕ)− p sin(2ρk)
(
sin2(2ϕ) + cos(δ) cos2(2ϕ)

)
p cos(2ρk) sin(δ) sin(2ϕ)− p sin(2ρk) sin(δ) cos(2ϕ)


†

.

With this equation, it is possible to calculate the expected intensity profile:

Ĩ(ρk) =S̃†PSALAPMfiberS̃PSGLAP

=
I0e
−µt

4

[
1

− p2 cos(γ) cos(2ρk)
2
(
cos2(2ϕ) + cos(δ) sin2(2ϕ)

)
− p2 cos(γ) cos(2ρk) sin(2ρk) (1− cos(δ)) sin(2ϕ) cos(2ϕ)

− p2 cos(γ) sin(2ρk) cos(2ρk) (1− cos(δ)) sin(2ϕ) cos(2ϕ)

− p2 cos(γ) sin(2ρk)
2
(
sin2(2ϕ) + cos(δ) cos2(2ϕ)

)
− p2 sin(γ) cos(2ρk) sin(δ) sin(2ϕ)

+ p2 sin(γ) sin(2ρk) sin(δ) cos(2ϕ)
]
.

By using the trigonometric identities

sin(2ρk)
2 =

1

2
(1− cos(4ρk)) ,

cos(2ρk)
2 =

1

2
(1 + cos(4ρk)) ,

sin(2ρk) cos(2ρk) =
1

2
sin(4ρk),
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in ρk we obtain the formula:

Ĩ(ρk) =
I0e
−µt

4

[
1

− p2 cos(γ)
1

2
(1 + cos(4ρk))

(
cos2(2ϕ) + cos(δ) sin2(2ϕ)

)
− p2 cos(γ)

1

2
sin(4ρk) (1− cos(δ)) sin(2ϕ) cos(2ϕ)

− p2 cos(γ)
1

2
sin(4ρk) (1− cos(δ)) sin(2ϕ) cos(2ϕ)

− p2 cos(γ)
1

2
(1− cos(4ρk))

(
sin2(2ϕ) + cos(δ) cos2(2ϕ)

)
− p2 sin(γ) cos(2ρk) sin(δ) sin(2ϕ)

+ p2 sin(γ) sin(2ρk) sin(δ) cos(2ϕ)
]
.

Simplifying this equation yields

Ĩ(ρk) =
I0e
−µt

4

[
1− p2 cos(γ)

1

2
(1 + cos(δ))

− p2 cos(γ)
1

2
(cos(4ρk)) (1− cos(δ))

(
cos2(2ϕ)− sin2(2ϕ)

)
− p2 cos(γ) sin(4ρk) (1− cos(δ)) sin(2ϕ) cos(2ϕ)

− p2 sin(γ) cos(2ρk) sin(δ) sin(2ϕ)

+ p2 sin(γ) sin(2ρk) sin(δ) cos(2ϕ)
]
.

Using the trigonometric identities

cos(2ϕ)2 − sin(2ϕ)2 = cos(4ϕ),

sin(2ϕ) cos(2ϕ) =
1

2
sin(4ϕ),

the intensity profile can be rewritten as

Ĩ(ρk) =
I0e
−µt

4

[
1− p2 cos(γ)

1

2
(1 + cos(δ))

− p2 cos(γ)
1

2
(cos(4ρk)) (1− cos(δ)) cos(4ϕ)

− p2 cos(γ)
1

2
sin(4ρk) (1− cos(δ)) sin(4ϕ)

− p2 sin(γ) cos(2ρk) sin(δ) sin(2ϕ)

+ p2 sin(γ) sin(2ρk) sin(δ) cos(2ϕ)
]
.

A Fourier analysis on this profile yields the coefficients:

ã0 =
I0e
−µt

4

(
1− p2 cos(γ)

2
(1 + cos(δ))

)
ã1 = −I0e

−µt

4
p2 sin(γ) sin(δ) sin(2ϕ)

b̃1 =
I0e
−µt

4
p2 sin(γ) sin(δ) cos(2ϕ)

ã2 = −I0e
−µt

8
p2 cos(γ)(1− cos(δ)) sin(4ϕ)

b̃2 = −I0e
−µt

8
p2 cos(γ)(1− cos(δ)) cos(4ϕ).

(A.8)
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By analyzing these Fourier coefficients it is now possible to calculate the correct values
of the retardation and the transmittance. For this purpose, the following terms are
calculated first:√

ã22 + b̃22

=

√(
−I0e

−µt

8
p2 cos(γ)(1− cos(δ)) sin(4ϕ)

)2

+

(
−I0e

−µt

8
p2 cos(γ)(1− cos(δ)) cos(4ϕ)

)2

=
I0e
−µt

8
p2 |cos(γ)| (1− cos(δ)),

with (1− cos(δ)) ≥ 0 for all δ ∈ [0, π/2]. Furthermore, we determine:

√
ã21 + b̃21 =

√(
−I0e

−µt

4
p2 sin(γ) sin(δ) sin(2ϕ)

)2

+

(
I0e−µt

4
p2 sin(γ) sin(δ) cos(2ϕ)

)2

=
I0e
−µt

4
p2 |sin(γ)| sin(δ).

With the help of these expressions, the transmittance can be calculated by:

2
ã0 − sign(cos(γ))

√
ã22 + b̃22

1− p2 cos(γ)

=2

I0e−µt

4

(
1− p2 cos(γ)

2 (1 + cos(δ))
)
− I0e−µt

8 p2sign(cos(γ)) |cos(γ)| (1− cos(δ))

1− p2 cos(γ)

=2

I0e−µt

4

(
1− p2 cos(γ)

2 (1 + cos(δ))
)
− I0e−µt

4
p2 cos(γ)

2 (1− cos(δ))

1− p2 cos(γ)

=2

I0e−µt

4

(
1− p2 cos(γ)

2 (1 + cos(δ) + 1− cos(δ))
)

1− p2 cos(γ)

=2
I0e−µt

4

(
1− p2 cos(γ)

)
1− p2 cos(γ)

=
I0e
−µt

2
=IT .

Once the transmittance is known, deriving the retardation is straight forward:√
ã21 + b̃21

IT
2 |sin(γ)| p2

=
I0e−µt

4 p2 |sin(γ)| sin(δ)
I0e−µt

4 |sin(γ)| p2
= sin(δ).
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A.3 Proof of Bijectivity for α, trel → sin(δ), ∂ sin(δ)/∂α

We want to demonstrate that the transformation

f : α, trel → sin(δ),
∂ sin(δ)

∂α
,

is bijective for α ∈ (−π/2, π/2) and trel ∈ (0, 1], with

δ =
π

2
trel cos(α)2,

and the partial derivative

∂ sin(δ)

∂α
= − cos

(π
2
trel cos(α)2

)
π trel sin(α) cos(α).

Proving surjectivity for the transformation f is trivial. For injectivity it must be proven
that f(α1, trel1) = f(α2, trel2)⇒ α1, trel1 = α2, trel2:

f

(
α1

trel1

)
= f

(
α2

trel2

)

⇒
(

sin
(
π
2 trel1 cos(α1)

2
)

− cos
(
π
2 trel1 cos(α1)

2
)
π trel1 sin(α1) cos(α1)

)
=

(
sin
(
π
2 trel2 cos(α2)

2
)

− cos
(
π
2 trel2 cos(α2)

2
)
π trel2 sin(α2) cos(α2)

)
.

For α ∈ (−π/2, π/2) and trel ∈ (0, 1] it directly follows that δ ∈ (0, π/2]. On this interval
both the sin- and the cos-function are bijective. Hence, we can conclude that

sin
(π

2
trel1 cos(α1)

2
)

= sin
(π

2
trel2 cos(α2)

2
)

⇒ − cos
(π

2
trel1 cos(α1)

2
)

= − cos
(π

2
trel2 cos(α2)

2
)
.

With this information the previous equation can be simplified to

⇒
(

π
2 trel1 cos(α1)

2

π trel1 sin(α1) cos(α1)

)
=

(
π
2 trel2 cos(α2)

2

π trel2 sin(α2) cos(α2)

)
⇒
(

trel1 cos(α1)
2

trel1 sin(α1) cos(α1)

)
=

(
trel2 cos(α2)

2

trel2 sin(α2) cos(α2)

)
.

Dividing the second equation by the first equation, leads to

⇒ tan(α1) = tan(α2)

⇒α1 = α2 ∀α1, α2 ∈
(
−π

2
,
π

2

)
.

Inserting this result into one of the previous equations directly implies

⇒trel1 cos(α1)
2 = trel2 cos(α1)

2

⇒trel1 = trel2.

Hence, the transformation f is bijective and can be inverted.
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A.4 Transformation between Tilting Coordinate Systems.

In Sec. 4.3.1, two different coordinate systems were used to describe the position of the
tiltable specimen stage. The first one is based on the experimental setup, with a rotation
around the y-axis followed by one around the x-axis:

R(τx, τy) =

1 0 0
0 cos(τx) − sin(τx)
0 sin(τx) cos(τx)

 ·
 cos(τy) 0 sin(τy)

0 1 0
− sin(τy) 0 cos(τy)


=

 cos(τy) 0 sin(τy)
sin(τx) sin(τy) cos(τx) − sin(τx) cos(τy)
− cos(τx) sin(τy) sin(τx) cos(τx) cos(τy)

 .

However, for theoretical calculations the following description is more useful:

R(ψ, τ) = Rz(ψ)Ry(τ)Rz(−ψ)

=

cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 ·
 cos(τ) 0 sin(τ)

0 1 0
− sin(τ) 0 cos(τ)

 ·
 cos(ψ) sin(ψ) 0
− sin(ψ) cos(ψ) 0

0 0 1


=

 cos(τ) cos(ψ)2 + sin(ψ)2 (cos(τ)− 1) sin(ψ) cos(ψ) cos(ψ) sin(τ)
(cos(τ)− 1) sin(ψ) cos(ψ) cos(τ) sin(ψ)2 + cos(ψ)2 sin(ψ) sin(τ)

− cos(ψ) sin(τ) − sin(ψ) sin(τ) cos(τ)

 .

Hence, we need to find a parameter set (τx, τy) for every (τ, ψ) so that both expression
equate to the same rotation matrix, i.e.

R(ψ, τ) = R(τx, τy).

Comparing the first row of these matrices yields

(cos(τ)− 1) sin(ψ) cos(ψ) = 0,

which is obviously is not valid for arbitrary values of ψ and τ . It was argued in Sec. 4.3.1
that it is sufficient if the third row of both matrices is equal. Comparing the third row
yields the three equations

− cos(ψ) sin(τ) = − cos(τx) sin(τy),

− sin(ψ) sin(τ) = sin(τx),

cos(τ) = cos(τx) cos(τy).

In order to find a solution, the approach

τx = − arcsin(sin(τ) sin(ψ)),

τy = arctan(tan(τ) cos(ψ)), (A.9)

is used in combination with the trigonometric identities

sin(arctan(x)) =
x√

1 + x2
and cos(arctan(x)) =

1√
1 + x2

.
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This approach yields

− cos(τx) sin(τy) = − cos(− arcsin(sin(τ) sin(ψ))) sin(arctan(tan(τ) cos(ψ)))

= −
√

1− sin(− arcsin(sin(τ) sin(ψ)))2
tan(τ) cos(ψ)√

1 + tan(τ)2 cos(ψ)2

= −
√

1− sin(τ)2 sin(ψ)2
sin(τ) cos(ψ)

cos(τ)
√

1 + tan(τ)2 cos(ψ)2

= −
√

1− sin(τ)2 sin(ψ)2√
cos(τ)2 + sin(τ)2 cos(ψ)2

sin(τ) cos(ψ)

= −
√

1− sin(τ)2 sin(ψ)2√
1− sin(τ)2 + sin(τ)2(1− sin(ψ)2)

sin(τ) cos(ψ)

= −
√

1− sin(τ)2 sin(ψ)2√
1− sin(τ)2 sin(ψ)2

sin(τ) cos(ψ)

= − sin(τ) cos(ψ),

for the first equation. The second equation can be validated by

sin(τx) = sin(− arcsin(sin(τ) sin(ψ)))

= − sin(τ) sin(ψ),

and the third equation can be confirmed as well:

cos(τx) cos(τy) = cos(− arcsin(sin(τ) sin(ψ))) cos(arctan(tan(τ) cos(ψ)))

=
√

1− sin(− arcsin(sin(τ) sin(ψ)))2
1√

1 + tan(τ)2 cos(ψ)2

=
√

1− sin(τ)2 sin(ψ)2
cos(τ)

cos(τ)
√

1 + tan(τ)2 cos(ψ)2

= cos(τ)

√
1− sin(τ)2 sin(ψ)2√

cos(τ)2 + sin(τ)2 cos(ψ)2

= cos(τ)

√
1− sin(τ)2 sin(ψ)2√

1− sin(τ)2 + sin(τ)2(1− sin(ψ)2)

= cos(τ)

√
1− sin(τ)2 sin(ψ)2√
1− sin(τ)2 sin(ψ)2

= cos(τ).

Hence, Eq. (A.9) is a valid transformation, in order to achieve an identical z-component
for both coordinate systems.
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A.5 The Derivation of the Phase Retardance Signal and
Its Analysis

Tilting the sample by an angle τ in the tilting direction ψi results in a three dimensional
rotation of the fiber orientation vector according to

xi = Rz(ψi)R
y(τ)Rz(−ψi)x0.

By considering the vectors x0 and xi in spherical coordinates we obtain:cos(αi) cos(ϕi)
cos(αi) sin(ϕi)

sin(αi)

 =

 cos(τ) cos(ψ)2 + sin(ψ)2 (cos(τ)− 1) sin(ψ) cos(ψ) cos(ψ) sin(τ)
(cos(τ)− 1) sin(ψ) cos(ψ) cos(τ) sin(ψ)2 + cos(ψ)2 sin(ψ) sin(τ)

− cos(ψ) sin(τ) − sin(ψ) sin(τ) cos(τ)

·
cos(α0) cos(ϕ0)
cos(α0) sin(ϕ0)

sin(α0)

 .

Hence, the z-component of the rotated vector xi is given by

sin(αi) = − cos(ψ) sin(τ) cos(α0) cos(ϕ0)− sin(ψ) sin(τ) cos(α0) sin(ϕ0) + cos(τ) sin(α0)

= cos(τ) sin(α0)− sin(τ) cos(α0) cos(ψi − ϕ0).

This result can be used to calculate the phase retardance of a tilted measurement:

δi =
π

2
trel cos(αi)

2

=
π

2
trel(1− sin(αi)

2)

=
π

2
trel
{

1− (cos(τ) sin(α0)− sin(τ) cos(α0) cos(ψi − ϕ0))
2
}

=
π

2
trel

{
1− cos(τ)2 sin(α0)

2 + 2 cos(τ) sin(α0) sin(τ) cos(α0) cos(ψi − ϕ0)

− sin(τ)2 cos(α0)
2 cos(ψi − ϕ0)

2
}

=
π

2
trel

{
1− cos(τ)2 sin(α0)

2

+ 2 cos(τ) sin(α0) sin(τ) cos(α0)[cos(ψi) cos(ϕ0) + sin(ψi) sin(ϕ0)]

− sin(τ)2 cos(α0)
2 1

2
[1 + cos(2ψi − 2ϕ0)]

}
=
π

2
trel

{
1− cos(τ)2 sin(α0)

2 − 1

2
sin(τ)2 cos(α0)

2

+ 2 cos(τ) sin(α0) sin(τ) cos(α0)[cos(ψi) cos(ϕ0) + sin(ψi) sin(ϕ0)]

−1

2
sin(τ)2 cos(α0)

2[cos(2ψi) cos(2ϕ0) + sin(2ψi) sin(2ϕ0)]

}
.

The first order Fourier coefficients of this signal are:

aδ,1 =
2

N

Nt∑
i=1

δi cos(ψi) = πtrel sin(τ) cos(τ) sin(α0) cos(α0) cos(ϕ0),

bδ,1 =
2

N

Nt∑
i=1

δi sin(ψi) = πtrel sin(τ) cos(τ) sin(α0) cos(α0) sin(ϕ0).
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A.6 Error Propagation of Detection Noise

In this section, it is demonstrated how the detection noise specified by σIk,i =
√
gIk,i

propagates to the measurand

Ai =
a1,i
a0,i

=
2

N

1
1
N

∑
k

Ik,i

∑
k

Ik,i cos(2ρk).

In the following calculations these formulas are used:

Ik,i =
IT,i
2

(1 + sin(δi) sin(2ρk − 2ϕi))

IT,i = 2a0 =
2

N

∑
k

Ik,i

cos(2ρk)
2 =

1

2
(1 + cos(4ρk))∑

k

Ik,i cos(4ρk) = 0. (A.10)

For the Gaussian error propagation, the derivative ∂Ik,iAi needs to be calculated:

∂Ik,iAi =
2

N

cos(2ρk)
1
N

∑
k

Ik,i − 1
N

∑
k

Ik,i cos(2ρk)(
1
N

∑
k

Ik,i

)2

=
2

N

cos(2ρk)− 1
2Ai

1
N

∑
k

Ik,i

=
4

N

cos(2ρk)− 1
2Ai

IT,i

with this intermediate step, the error of the measurand can be calculated:

σAi =

√∑
k

(
∂Ik,iAi σIk,i

)2

=

√√√√∑
k

(
4

N

cos(2ρk)− 1
2Ai

IT,i

)2

gIk,i

=

√√√√ 4 g

N IT,i

∑
k

4

N

(
cos(2ρk)− 1

2Ai
)2

IT,i
Ik,i

=

√√√√ 4 g

N IT,i

∑
k

4

N

cos(2ρk)2 − cos(2ρk)Ai + 1
4A

2
i

IT,i
Ik,i
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By using Eq. (A.10) this term can be simplified further:

=

√√√√ 4 g

N IT,i

∑
k

4

N

1
2(1 + cos(4ρk))− cos(2ρk)Ai + 1

4A
2
i

IT,i
Ik,i

=

√
4 g

N IT,i

IT,i − 2a1,iAi + 1
2A

2
i IT,i

IT,i

=

√
4 g

N IT,i

(
1−A2

i +
1

2
A2
i

)

=

√
4 g

N IT,i

(
1− 1

2
A2
i

)
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Complementary Data

B.1 A Direct Comparison between the LOriE and the DFT-
based Algorithm

The dataset in Sec. 4.3.3 has been reexamined with the LOriE algorithm. In Fig. B.2,
Fig. B.3 and Fig. B.4 a direct comparison between the results of the DFT-based algo-
rithm and the LOriE algorithm is presented. Significant differences in the results are
not observable. Only in Fig. B.4, the vector field reconstructed by the LOriE algorithm
seems to fit slightly better with the course of the bundle.

Figure B.1: Overview of the analyzed hemisphere. The colored
lines indicate the position of the resliced views in Fig. B.2 and
Fig. B.4.
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(a) DFT-based algorithm

(b) LOriE algorithm

Figure B.2: Resliced view of Fig. B.1 (red line) featuring the vector field in the
sagittal stratum of a fiber bundle inclined by approximately 90° (every 8th vector
is plotted).

(a) DFT-based algorithm (b) LORIE algorithm.

Figure B.3: Zooms of the vector fields in Fig. B.2a and Fig. B.2b.
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B.1. A Direct Comparison between the LOriE and the DFT-based Algorithm

(a) DFT-based algorithm

(b) LOriE

Figure B.4: Resliced view of Fig. B.1 (red line) featuring the vector field in the
sagittal stratum of a fiber bundle inclined by approximately 60° (every 8th vector
is plotted).
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B.2 Angular Spectrum of the Diffuser

In Sec. 5.4.3 a simulation was performed to assess the influence of different diffusers. The
angular spectrum for each diffuser was modeled to resemble the characteristics provided
by the manufacturer, which is shown in Fig. B.5.

(a) (b)

(c)

Figure B.5: The angular spectra of standard issue ground glass diffusers (Thor-
labs DG10-600) in (a) and an engineered diffuser (Thorlabs ED1-C20) in (b) were
provided by Thorlabs. (c) shows the respective source models that were used in
the simulation in order to emulate the diffuser.
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B.3 Shape of the Condenser Lens

In Fig. B.6 the influence of the shape of the condenser lens is studied. When using
an aspheric condenser lens, the specimen is illuminated evenly by both central rays
and oblique rays. When a spherical condenser lens is employed, the central rays are still
parallel and illuminate the specimen in a uniform manner. The oblique rays on the other
hand are slightly focused, causing the size of the illuminated spot to be reduced and the
uniformity to decrease. Due to the longer focal length (f = 60mm instead of f = 32mm)
the oblique angle is reduced as well. When aiming to achieve the same oblique angle as
for the aspheric lens (i.e. τ = 5.7°), the quality of the oblique illumination is reduced
even further.

(a)

(b)

(c)

Figure B.6: Simulation of the experimental setup for different condenser lenses.
(a) features the simulation for an aspheric condenser lens (Thorlabs ACL4532-A). In
(b) a spherical plano convex condenser lens (Thorlabs LA1401-A) was used instead.
Due to the different lens shape the oblique angle is reduced to τ ≈ 4° when the same
set-up is considered. (c) features the same condenser lens as (b), but the oblique
angle now matches the one achieved for the aspheric condenser lens.
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B.4 Influence of the Resolution

When scaling down the data that was recorded with the new microscope, the distribution
of the reconstructed inclinations converges towards the one determined in the LAP (as
it has been observed for the LOriE algorithm in Sec. 5.5).

(a) (b)

Figure B.7: Analysis of the distribution of inclinations that were calculated by
the DFT-based algorithm. The distribution of inclinations derived on the bases of
the downscaled data of the oblique illumination system resembles the distribution
that is based on the data acquired with the tiltable specimen stage in the LAP (a).
The CDFs in (b) show that the original distribution of inclinations derived from
the microscopic data converges to the CDF of inclinations in the LAP.
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List of Symbols

Symbol Explanation
E(z, t̃) electric field vector
E0 Jones vector
E0x, E0y components of the Jones vector
k wavenumber
z z-coordinate
ω angular frequency of a wave
t̃ time parameter
S Stokes vector
S0, S1, S2, S3 components of the Stokes vector
p degree of polarization
I intensity
I0 initial intensity
M an arbitrary Mueller matrix
Mpol(px, py) Mueller matrix of a polarizing element, with px and py as

the polarization efficiency in the respective directions
Mwp(δ) Mueller matrix of a retarder with retardance δ
Mrot(θ) Mueller matrix of a rotator at an angle θ
M(θ) the rotated version of an arbitrary Mueller matrix
Mwp(δ, θ) Mueller matrix of a rotated retarder
Mpol,x(θ) Mueller matrix of an ideal polarizer
Mpol,x(p, θ) Mueller matrix of a non-ideal polarizer
Ssource Stokes vector of the light source
SPSG Stokes vector of the polarization state generator
MPSG Mueller matrix of the polarization state generator
S†PSA Stokes vector of the polarization state analyzer
MPSA Mueller matrix of the polarization state analyzer
Ik intensity of the k-th measurement defined by the respective

states S†PSA,k and SPSG,k

Msample Mueller matrix of an arbitrary sample
nx, ny, nz main axes of a refractive index ellipsoid of a birefringent

material
no, nE main axes of a uniaxial index ellipsoid
ne(α), ne both symbols represent the refractive index for the extraor-

dinary wave (the second notation is the short form)
Eo, Ee the components of the Jones vector split up into ordinary

and extraordinary wave

117



Abbreviations Explanation
x orientation vector of the indicatrix, therefore also denotes

the presumed fiber orientation within a voxel
t thickness of the birefringent sample
λ wavelength of the light
∆n birefringence
α inclination angle of the fiber (or the respective indicatrix)
ϕ in-plane direction angle of the fiber (or the respective indi-

catrix)
µ attenuation coefficient of the sample
ρk rotation angle of the polarization filters
δ phase retardance
sin(δ) retardation
trel relative thickness
IT transmittance
SPSGLAP , S

†
PSALAP

Stokes vectors of the PSA and PSG for the LAP
SPSGPM , S†PSAPM

Stokes vectors of the PSA and PSG for the PM
a0, a1, b1 Fourier coefficients of the measured intensity profile in a

standard measurement
λret specified wavelength of the retarder
λsource wavelength of the source
γ actual phase retardance of the waveplate
S̃PSGLAP ,
S̃†PSALAP

Stokes vectors of the PSA and PSG for the LAP, considering
non-ideal polarization filters

Ĩ(ρk) intensity profile for non-ideal polarization filters
ã0, ã1, b̃1, ã2, b̃2 Fourier coefficients of the signal Ĩ(ρk)
Ip(ρk) intensity profile for two linear polarizers
ap1, a

p
0 Fourier coefficients of the signal Ip(ρk)

nsample refractive index of the specimen
τ angle of the tiltable specimen stage
τext externally applied tilting angle
τint tilting angle within the tissue
R rotation matrix that describes the tilting
x0, xi orientation vector for the planar and tilted positions of the

specimen stage
α0, αi inclination angle for the planar and tilted positions of the

specimen stage
ϕ0, ϕi direction angle for the planar and tilted positions of the

specimen stage
δ0, δi phase retardance for the planar and tilted positions of the

specimen stage
ψi tilting direction
aδ,1, bδ,1 Fourier coefficients of the phase retardance signal
β acute angle between two orientation vectors
β̄ average acute angle between two orientation vectors across

severel measurements
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Abbreviations Explanation
Ī sample mean
S2 sample variance
σ standard deviation
Ai, Bi normalized Fourier coefficients
〈Ai〉, 〈Bi〉 expectation values of Ai, Bi
σAi , σBi standard deviation of Ai, Bi
P probability
α̃, ϕ̃, t̃rel unbounded versions of α, ϕ and trel
dxy in-plane resolution
dtot total depth of field
NAobj numerical aperture of the objective lens
M magnification of the imaging system
D clear aperture of a lens
n refractive index of the lens material
z(r) function describing the lens curvature
κ conic constant
NAillu numerical aperture of the illumination system
τmax maximal possible oblique angle
f focal length of a lens
ho size of an object that is imaged
hi size of an image created by a lens
do distance between object and lens
di distance between image and lens
dapt, rapt diameter and radius of the aperture diaphragm
rd radial offset of the aperture diaphragm
∆ distance between collector lens and field diaphragm
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List of Abbreviations

Abbreviations Explanation
3D-PLI Three Dimensional Polarized Light Imaging
ABC Abstract Base Class
BOLD Blood Oxygen Level Dependent
cc corpus callosum
CCD Charge-Coupled Device
CDF Cumulative Distribution Function
CPu caudate-putanem
DFT Discrete Fourier Transform
dMRI diffusion MRI
DMSO Dimethyl sulfoxide
DTI Diffusion Tensor Imaging
ec external capsule
fMRI functional MRI
FOM Fiber Orientation Map
HARDI High Angular Resolution Diffusion Imaging
LAP Large Area Polarimeter
LED Light Emitting Diode
LOriE Likelihood Orientation Estimation
MRI Magnetic Resonance Imaging
ODF Orientation Distribution Function
pliODF polarized light imaging ODF
PM Polarizing Microscope
PSA Polarization State Analyzer
PSG Polarization State Generator
RGB Red Green Blue
ROI Region of Interest
SNR Signal Noise Ratio
UML Unified Modeling Language
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List of Figures

1.1 Sketch of a neuronal cell. The cell receives excitatory or inhibitory in-
put at its dendrites. When a certain threshold is exceeded, it fires and
an action potential propagates along the axon until it reaches the axon
terminals, where the signal leads to the excitation or inhibition of other
neurons. This figure was adapted from [1] and labeled according to [20]. 1

1.2 The 3D-PLI orientation vector for a nerve fiber can be represented in
spherical coordinates by the inclination angle α and the direction angle
ϕ. The color sphere shows how these orientations vectors can be visualized
by color in order to make vector maps more accessible. . . . . . . . . . . 4

2.1 Uniaxial index ellipsoid for positive birefringence. Depending on the ori-
entation of the main axis (x) relative to the direction of propagation (k)
the refractive index for the extra ordinary (ne(α)) ray changes. . . . . . 12

2.2 Sketch of the LAP (a) and PM (b) setup. In both systems, light is
polarized into a well defined state and analyzed after it has passed the
specimen. The LAP is equipped with a tiltable specimen stage, while the
microscope employs an x-y-stage in order to scan the sample tile-wise. . 15

2.3 The different modalities obtained by the standard 3D-PLI analysis. . . . 17

2.4 Visualization of the PLI vector field. In both figures, the color-coding
represents the different orientations of the vectors according to the color
sphere. While the RGB coloring (a) provides more details, in the vector
representation (b) the in plane orientation can be assessed more accurately. 19

2.5 Reconstructed block-face volume of the examined brain hemisphere. The
planes represent the boundaries of the dataset that was used to validate
the algorithms in Chap. 4. . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Shown are transmittance images with an empty specimen stage before
and after the calibration. It is clearly visible that the illumination field
is homogenized by the calibration and the only remaining artifacts are
cause by dust particles on the filters. . . . . . . . . . . . . . . . . . . . . 22

3.2 The relative error that is caused by the imperfect quarter-wave plate
depending on the actual retardation of the respective sample. The error
that ranges between 4.3% and 5.2% can be corrected by employing the
polarimetric calibration presented in this chapter. . . . . . . . . . . . . . 26
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4.1 Displayed is the dependency of the retardation sin(δ) on the inclina-
tion value α. For a retardation value in the planar measurement (e.g.
sin(δ) ≈ 0.4), the inclination that is reconstructed depends on the rela-
tive thickness trel. It is only by measuring the local gradient that it is
possible to distinguish between the different cases. . . . . . . . . . . . . 29

4.2 When applying an outer rotation specified by the angle τext to the spec-
imen, refraction at the specimen surface reduces this angle to the inter-
nally observable τint. Furthermore, the length of the light path through
the specimen is increased from t to t/ cos(τint) . . . . . . . . . . . . . . . 31

4.3 When tilting the specimen in different directions ψ, the orientation vector
x precesses on a trajectory depicted in (a). As this changes the inclina-
tion angle of the vector relative to the optic axis, the measured phase
retardance δ oscillates as shown in (b). . . . . . . . . . . . . . . . . . . . 33

4.4 The spheres visualize how well any given orientation vector can be recon-
structed by the algorithm, for two different values of trel. Every point on
the sphere encodes the accuracy β̃ for the respective orientation vector. 36

4.5 The different modalities that can be generated from the new algorithm.
It is possible to separate the inclination and relative thickness and even
display both sets of information in one map, while still being able to
distinguish them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.6 Comparison of the fiber structure that is visible in a retardation map
generated with the PM (a) and the recovered fiber orientations with the
LAP (b). Visualized is a ROI featuring a single gyrus with a thick fiber
bundle that fans out and terminates in the cortex. . . . . . . . . . . . . 40

4.7 Retardation values in two independent pixels (which are highlighted in
Fig. 4.5b) for Nt = 72 different positions of the tiltable specimen stage.
Apart from small distortions, the experimental data oscillates as predicted
by the theoretical model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.8 Virtually resliced views of a stack of 220 consecutive sections to compare
the reconstructed vectors with the anatomically visible course. The vector
field has been masked manually based on the retardation values. . . . . 42

4.9 Normalized 2D-histogram of the camera detection statistics. The sample
variance increases proportionally to the sample mean. Except for the
factor of 3, the average increase as well as the distribution of the observed
sample variance match with the theory. . . . . . . . . . . . . . . . . . . 46

4.10 Iso-surfaces of the function − log(P (trel, α, ϕ|Measurements)) for different
simulated fiber structures. . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.11 Visualization of the optimization algorithm. First a suitable starting
point (indicated by the red dot) is chosen from a brute force grid (black
dots). In a second step the Nelder Mead simplex converges to the mini-
mum (indicated by the red star). The black line in the right figure shows
the path the algorithm takes through the parameter space. . . . . . . . 50

4.12 The symmetry of the probability field for values outside the defined pa-
rameter range. The coloring indicates orientation parameters that repre-
sent identical orientation vectors due to the periodicity of the spherical
coordinates. For negative values of trel the value of the probability func-
tion is mirrored at trel = 0 as indicated by the grey plane. . . . . . . . . 51
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4.14 Visualization of crossing fiber scenarios. The signal is a mixture of all
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4.15 Results of the simulation of crossing fiber structures. The plots depict
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depending on the mixture percentage q of the two simulated fiber bun-
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plane are presented. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.16 Region of interest of the considered fiber bundle. While the light absorp-
tion caused by the myelin content is constant across the sagittal stratum
(cf. (a)), the trel-map (cf. (b)) implies that the myelin density across the
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4.17 Shown are the different modalities generated by the LOriE algorithm for
the optic chiasm of a hooded seal (displayed in (a) before sectioning). In
the FOM (b) the extracted orientation in the crossing region is equal to
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5.2 UML diagram of the developed simulation framework for geometrical optics. 73
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5.7 CAD drawing of the optical setup. The rotation stage for the quarter-
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and linear polarizer to 45°. The manual z-stage at the objective lens
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