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1. Introduction

Maintenance plays an important role in gas turbine operation, because it ensures the
reliable and safe operation. Next to fuel consumption, service cost are the second largest
portion of life cycle cost in the operation of a gas turbine. Therefore the outage schedule
for a gas turbine is important.

Today, predictive maintenance actions for a gas turbine are determined by one global
life counter cgiobar () which represents the engine model with regards to the consumed
life of the gas turbine, confer [57|. If the gas turbine reaches the life counter limit [, for
the respective maintenance interval, then the operator has to carry out the respective
service according to its maintenance manual. This approach is based on deterministic
lifetime limits. It does not utilize the full lifetime of the individual components. With
certain changes in this set up, we can improve the flexibility and performance of a
maintenance schedule.

The main change to overcome this drawback is to establish a multi life counter approach.
With this idea, we track life consumption on parts or component level. Further, we will
consider the probabilistic nature of failure mechanism which affects the gas turbine
and take into account the risk connected to a failure. With these improvements the
maintenance concepts become more flexible, but it is also a harder task to find a good
tailor-made maintenance schedule.

There are many mathematical tools, which help us to quantify the risk of a failure.
We have stochastic methods like reliability statistics to describe the risk of a failure,
confer [34]. Further, we can use stochastic models to represent the probability of a
failure for a certain failure mechanism which affects a component. For example in
[80] a probabilistic low cycle fatigue (LCF) model was presented. Also methods from
insurance mathematics help us to model the associated cash flows in our maintenance
models, confer [56]. All of these methods give us the opportunity to model how the
maintenance concept affects the key performance indicators (KPI) of the gas turbine
operator, like for example availability, performance or revenue. In this thesis we will
focus on revenue.

The mentioned methods will help us to model our maintenance problem for a fixed
maintenance concept. Therefore, we use stochastic modeling and optimization methods
to create optimization problems which improve the KPI's. This is the main focus of
the thesis.
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In this thesis we present three different modeling methods which use three different
mathematical methodologies. We use an impulse control approach, confer [12] and [24],
Dynamic Programming, confer [10], and a partially observable Markov Decision Process,
confer [19]. With the help of these models, we are able to create optimization problems
for our maintenance models. These methods give us the possibility to establish the
optimal timing for the two service actions of type replacement and inspection which
are commonly used service types, confer [65]. It is important to distinguish these two
service actions. In general a replacement sets a component into an as new condition and
we know the state of the desired component exactly. An extension of this model is that
we allow the repair after a failure to a “as new” condition. In contrast, in the case of an
inspection, we do not know the state of the component exactly. The inspection gives us
information about the exact actual state of the component. The gathered information
can lead to a premature replacement. This observation increases the complexity of
models which include inspection. But in real applications, we often find the service
action of type inspection. Further, we have to adjust, if possible, our probabilistic
failure models such that they can make use of inspection. In general, an inspection
can reduce the risk of a failure, because it readjusts the failure probability like in the
case of failures due to cracks. But this is not possible for all failure mechanisms like
for example LCF or high cycle fatigue (HCF). In [2] respectively in [83], it was proved
that the Dynamic Programming and POMDP approaches can be used for maintenance
modeling.

A further important part of this thesis is the numerical implementation of the mentioned
methods. We show that it is possible to implement them for real sized problems and
that we can find exact or approximate solutions within acceptable time limits. Today,
many personal computers have multi processor or multi core systems. Therefore, we
do also speed up the algorithm with the use of parallelization. This is often possible,
because the methods often include loops and the single loop steps do not depend on
each other.

In this thesis we use the well known approaches like mentioned in the paragraph be-
fore the last one. For the impulse control problem approach, we use the idea of the
algorithm presented in [22] and we extend the introduced maintenance model in [23]
through a more complex one with multiple components. As presented in [2], we use
dynamic programming for maintenance scheduling. Therefore, we implement the basic
backward algorithm from [10] and extend it to an algorithm which is suitable for a
parallel implementation. Further, we use methods from [73] to build an approximate
dynamic programming algorithm. We exploit the structure of our problem and use a
parallel implementation. As last step with use the algorithm from [18] and [32] to solve
our POMDP problem. To speed up the algorithms, we extend them so that we can
use a multi processor environment. Despite many of the approaches and algorithms
used in this thesis are well known, a systematic comparison and application to real
world problems has been missing so far. In particular this applies to the combination
of risk based maintenance scheduling with probabilistic life calculation. In this thesis
it is shown for the first time, how the probabilistic characterization of material failure



can be included into the optimization of maintenance intervals. Further, we present for
the first time a parallel implementation of some algorithms mentioned before.

As last step of the short introduction we outline the structure of the thesis shortly. In
Chapter 2, we give a short overview about actual and future maintenance concepts.
Therefore, we introduce how lifetime consumption can be tracked and calculated. For
the future multiple life counter approaches we introduce a probabilistic LCF life pre-
diction model based on the work of [80].

In Chapter 3 we present two simple toy models with one component respectively two
components to introduce our basic idea of our maintenance modeling approach. We
show for very idealized examples how we incorporate the notion of risk into our model
and how we create an optimization problem from this idea.

In Chapter 4 we discuss our first “real” maintenance model which includes only the
service type of replacement. More particularly, we set the component back into as new
condition. We introduce an impulse control framework to solve the problem and further
we establish basic maintenance modeling approaches. We follow the ideas from [12] for
the impulse control theory and [22] for the solution method. We also present and discuss
numerical results.

Chapter 5 deals with an advanced replacement model. The advanced model has the
option to repair the gas turbine after a failure. This is an additional feature compared
to the replacement model in Chapter 4. The solution strategy for the optimal service
problem, posed by this model, is based on the mathematical theory of Dynamic Pro-
gramming which we present briefly. We follow the ideas of [10]. Further, we establish
approximate Dynamic Programming to reduce complexity in the Dynamic Program-
ming framework like in [73|. This step is needed, because our approach suffers from the
curse of dimensionality. At the end of the chapter we present numerical analysis for the
runtime and compare the exact algorithm against the approximate algorithm.

In Chapter 6 we discuss our last model. First, we introduce the service action of
inspection. In case of an inspection we replace parts only, if they do not fulfill certain
criteria. To illustrate this, we establish a simple probabilistic crack growth model for
inspection. Then we use this crack model in a partially observable Markov Decision
Process to set up and solve our maintenance problem. For this model we also present
two solution methods, one exact algorithm (Incremental-Pruning), confer [18|, and one
approximate algorithm (o-min-Algorithm), confer [32]. We present numerical results
which compare the performance of both algorithm.

In the last Chapter a brief summary of the presented research work is provided and we
give an outlook to future research based on the results achieved in this thesis.

In Appendix A, we present essential probability theory definitions and results.






2. Gas Turbine Maintenance
Overview

A gas turbine is an internal combustion engine which consists of a compressor, a com-
bustion chamber and a turbine. For a detailed cross sectional view, see Figure 2.1. The
combustion chamber is located between the compressor and the turbine. The compres-
sor takes the ambient air and compresses it during its way to the combustion chamber.
In the combustion chamber the compressed air is mixed with fuel and ignited. The
hot combustion gas flows into the turbine and expands there. During this process, the
enthalpy of the high pressure fluid is transformed into mechanical energy. This energy
is used to drive the compressor and an electrical generator. But some enthalpy is still
remaining in the exhaust gas. This thermodynamical cycle is called Brayton cycle [57].

Based on this cycle, we can identify damage mechanisms which affect gas turbine life-
time and increase wearout. There can be erosion from dirt in the ambient air and the
fuel. In combination with high temperatures this can lead to corrosion inside the gas
turbine. Due to high thermal load in the combustion chamber and turbine section,
there is creep damage and oxidation present. Creep is one of the main limiting life
factors. The changing thermal and mechanical loads during operations lead to LCF
(low cycle fatigue) damage. Further, components and parts are effected by HCF (High
cycle fatigue) damage which occurs for example as a result of vibration at the blades,
confer [57].

Based on the existence of the different damage mechanisms, the wearout of the gas
turbine increases and the gas turbine becomes continuously more unreliable. The per-
formance also decreases. The wearout can lead to failures of parts. The failures can
cause performance loss or more dramatical consequences like unplanned outages, loss
of revenue, total loss of the gas turbine or it affects human safety. The failure of a gas
turbine reduces the reputation of the gas turbine manufacturer.

To reduce the mentioned risks, there is a need of maintenance for the gas turbine to
negate them. Every gas turbine manufacturer sells its gas turbine with a maintenance
concept. The concept consists of operating interval limits in terms of (equivalent)
operating hours and starts and a list of corresponding service actions. Starts play an
important role in the concepts, because they correspond to cyclic damage mechanisms
like LCF or crack growth. The service scope includes a list of parts which are inspected
or replaced. The interval limits prevent the operator to run the gas turbine parts over
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Figure 2.1.: 3d sectional view of a gas turbine: 1=Generator coupling; 2=Rotor
bearings; 3=Variable inlet guide vanes; 4=Compressor; 5=Fuel nozzles,
6—=Combustion chamber; 7=Turbine rotating blades; 8=Turbine casing.
The figure is taken from [85].

their lifetime limits. Therefore, all risks connected to gas turbine operation within a
tolerable limits.

It is important to predict the lifetime of components very accurately and to use this
information to determine service interval lengths. Also, we need to count or track
the life consumption of the gas turbine to schedule the outages and to stay below the
lifetime limits.

This chapter contains a short overview of how lifetime limits are determined and how
lifetime counting works. Further, it presents a summary about actual maintenance
concepts and future maintenance concepts. The last section describes more closely the
motivation for this thesis.
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2.1. Lifetime Limits

We select LCF for polycrystalline metal as a model damage mechanism to show how
we can determine the lifetime for a part. LCF for polycrystalline metal is important,
because various expensive hot gas path (HGP) parts of the gas turbine are made of
polycrystalline metal. Further, we introduce a probabilistic lifetime model for LCF,
because our work is based on failure probabilities and not on deterministic lifetimes.
We follow the main ideas from [35], [45] and [80] where a probabilistic LCF model was
developed.

2.1.1. LCF Life Prediction

To describe the deformation of components made of polycrystalline metal under a cyclic
load, we use linear isotropic thermoelasticity. This approach is based on continuum me-
chanics and assumes small deformations inside the component. We present a definition
which gives us a partial differential equation to determine the displacement field of the
component. It is taken from the work of [16] and [26]. It also establishes the important
term of the stress tensor.

Definition 2.1 (Mixed Problem of Linear Isotropic Thermoelasticity)

Let Q C R? be a domain with piecewise Lipschitz boundary, let v be the normal of the
boundary O and let f : Q — R? be an external load. Let 0 = 0QpUOy be a partition
and let g : 0y — R3 be a surface load on OQy. Then, the mized problem of linear
1sotropic thermoelasticity is given by the boundary value problem for the component
displacement field v : Q — R3:

Vo (u)+ f=0 in Q,

o (u) = p [Vu+ Vu'] + A (Vu) — arpe (3X + 2p) (T — Tp)] in Q,
u=0 on 0Q)p,
c(u)-v=g on 0y,

where the temperature field T satisfies the boundary value problem
AT =0 1inQ

with either one of the following thermal boundary conditions

T—-Ty, =T, on OS2 (prescribed temperature),
kVT -v=gq on 0f) (prescribed heat flux),
RVT v =aprc(T —T,) on Of) (heat transfer to ambient).

Here, Ty is the reference temperature field at which the displacement field is everywhere
zero and T, is the temperature of the ambient at a distance far from 0Q. X and p
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are called Lame coefficients, argpc thermal extension coefficient, ayrc heat transfer
coefficient and k heat conduction coefficient. q is the amount of heat flux into the
boundary surface by an outside source. The components of the (elastic) stress tensor
0 (u) : Q@ = R*? are denoted by of; (u), i,j = 1,2,3.

We can interpret the stress tensor o¢ as force per unit area which acts in a virtual cross
section on an object. Another important quantity is the linearized strain rate tensor €°
which is defined as

€0 =R € (u) = % (Vu + VuT) : (2.1)

According to a generalization of Hooks law [90] this tensor depends on the stress tensor
and describes the relative displacement of the material under external load.

2.1.2. Fatigue

In 1858 August Wohler analyzed fatigue systematically, confer [97|. He realized that
material can be much easier damaged under cyclic loading than under static load. This
is very important, because in many engineering applications cyclic loading is present
like in a start-stop process (start and shutdown of a gas turbine). We can use fatigue
analysis to determine the number of cycles until a failure occurs. Failure means that the
material properties are so much degenerated that the considered object can not fulfill
certain design criteria. For polycrystalline metal, which is used for turbine blades, the
fatigue process can be roughly divided in three parts:

1. Crack initiation
2. Stable crack growth under cyclic loading
3. Residual fracture

For more detailed explanation of the three phases confer for example [88]. In the next
step, we derive a model to estimate the time n in terms of cycles to crack initiation
following closely [76]. The model is based on tests with specimens which are exposed
to cyclic load. The test determines the number of cycles N until failure under a given
stress amplitude 0, = (Omax — Omin) /2. The results are presented in S — N diagrams,
confer Figure 2.2. These curves are called “Wohler curves”. Another approach for
the test procedure is, to use a strain controlled test, where the strain amplitude ¢, =
(€max — €min) /2 18 given instead of a stress amplitude o,. The Coffin-Manson-Basquin
(CMB) equation is a quantitative description of Wéhler curve for the strain case. The
equation is given by ,
i
E
with Young’s modulus F, the fatigue strength coefficient o', the fatigue strength ex-
ponent b, fatigue ductility coefficient € and fatigue ductility exponent c¢. The equa-

(2N;) + €; (2N))° (2.2)

€q —
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fatigue strength at N cycles

stress amplitude

N cycles to failure

Figure 2.2.: S — N diagram.

tion describes the relation between the number of cycles /N; until crack initiation and
the strain amplitude ¢,. The first summand is called Basquin equation and can be
used to describe the elastic part of the Wohler curve. The second summand is called
Coffin-Manson equation, which describes the plastic range of the Wohler curve. The
parameters can be estimated from test data.

With the help of the CMB equation we can predict the lifetime of a component. There-
fore we search in the component for the location with the highest strain amplitude ¢,
and calculate with the CMB equation the maximal number of cycles N., until fail-
ure. The Number N,., gives us a predicted lifetime end. This gives us an important
information for our maintenance concept.

In general we can not use the CMB equation directly. As we see in Figure 2.3, the CMB
equation is a fit trough the data points and we see a large scatter in the data points which
gives us an uncertainty. The origin of the uncertainty comes from the natural scatter
in the material parameters. To cover the uncertainty, we have to shift the curve into
a more conservative position. The method is called safe life approach or deterministic
lifetime. Further, we include thermal dependency of the material parameters to take
the material’s thermal behavior into account.

Now, we want to introduce a local probabilistic model for LCF. The model takes size
effects, inhomogeneous strain, temperature fields into account and the scatter in the
material parameters. It gives us an alternative to the use of safety factors.

2.1.3. A probabilistic LCF Model

We consider a time continuous failure process like in [37] and [65]. Let N denote a
continuous random variable on some probability space with range in R,. We call N
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strain amplitude

cycles to failure

Figure 2.3.: E — N diagram with safe life approach. The black line represents the fitted
CMB equation and the dashed red line the transformed curve under the
safe life approach.

failure time or number of cycles until failure. Let Pr be the underlying probability
measure. Then

F(n)=Pr(n<N) (2.3)
is the cumulative distribution function and
d
= —F 2.4
fn) =+ (n) (24)

the density function. The hazard rate function or instantaneous failure rate function is
denoted by

P N An|N
h(n):AhmO r(n < <£+ n|N > n)
n— n

and it will be important in our modeling approach. Here, Pr (A|B) is the conditional
probability, confer Appendix A. There also exists the cumulative hazard rate function

(2.5)

H(n) = /O” h(t)dr. (2.6)

There are two relationships between the previously defined functions in equations (2.3)
to (2.6) given by

h(n) = 1—f(—l;lzn) and S(n)=1—F(n)=exp(—H (n)). (2.7)

S (n) is called survival function. For a small “cycle/time step” An, the product h (n)-An
is an approximation for the conditional probability that there will be a failure in the
next step An, if there was no one before n.

10
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early failures random failures wearout failures

[ I I I I I I |
0 5 10 15 20 25 30 35

Figure 2.4.: Bathtub curve: First zone describes early failures, second zone random
failures, third zone wearout failures.

For our model we need an important property of the hazard rate. Let N; and Ny be two
independent continuous random variables with range in R, := {z € R: 2z > 0} and their
corresponding hazard rates h; and hy. Then the random variable N = min (Nq, N»)
has the hazard rate h = h; + ho. This corresponds to a serial connection of different
systems compared to Section 4.3.2. Each of the four previously defined functions, from
Equations (2.3) to (2.6), can be used as a characterization of our probabilistic failure
model. The hazard rate function is an often used approach to model failure times in
reliability engineering. We show the concept of hazard rate modeling in Figure 2.4.
This curve is called bathtub curve and is divided into three areas.

The early failure period (“infant mortality”) with a falling hazard rate which refers to
failures due to assembling or material faults. The period within the normal lifetime
has a constant hazard rate that describes the occurrence of random failures. The final
segment with increasing hazard rate that originate from wearout at the end of the
regular lifetime. In this work we consider only the last part of the bathtub curve and
neglect the other parts for simplicity.

After this introduction, we can start with the description of the model following [45]
and [80]. We start with a geometry Q2 C R? of a component and consider a LCF failure
process on the boundary 0). We also consider a random failure time N in terms of
cycles and we subdivide the surface of €2 into a partition {Ai}izl,...,m of 092, e.g.

00=|JA; and AinA; =0 fori#j.

i=1

11



2. Gas Turbine Maintenance Overview

We present two important assumptions for our LCF model which are established in [45]:

Assumption 2.2

The LCF failure process on OS2 induces a failure process on each A; with crack initi-
ation times N;, © = 1,...,m, such that the random wvariables N;, i = 1,...,m, are
independent.

If the assumption holds, then we get N = min (Ny, ..., N,,) for the first LCF crack initi-
ation time on 02 and we can represent the hazard rate h of N according to Section 4.3.2

as
m

h=>Y h

i=1
with h; = hga, is the hazard rate according to N;, + = 1,...,m respectively connected
to the surface region A;. For polycrystalline metal this assumption is reasonable in the
phase prior to significant crack growth and we introduce the stronger assumption:

Assumption 2.3

In any measurable surface region A C §, the corresponding hazard rate ha is a local
functional of the displacement field w and of the temperature field T in that particular
TEGLON:

ha(n) = / P (n; Vu, Vu, T) dA.
A

We restrict ourselves to the second assumption and change the dependency of p from
u to the strain amplitude field €, on 02 and we get

h(n)= /mp(n; €a, T) dA.

With this approach and the relation F'(n) = 1 — exp(—H (n)), we obtain for the
probability for LCF crack initiation on 0f2 until cycle n the following expression:

F(n) =1—exp(—H (n))

— 11— exp (-/jh(ﬂ&)
— 11— exp (— /On/an(n; €. T) dAdT). (2.8)

As last step we need an explicit representation for hazard density p in our approach.
We use a Weibull model,

F(n)=1—exp (— (%)m> and  h(n) = % (%)m_l,

to model the time N to crack initiation. We use the following hazard function

m n

Niy. (€a (@), T (x)) (]\Qdet (0 (2), T (7)) ) " :

p(niz) =p(nie(z), T (z)) = (2.9)

12



2.1. Lifetime Limits

The local scale parameter N;,, = N, (€, (z),T (z)) gives us a link to the deterministic
CMB equation with an underlying temperature model. We use m € (0,00) as shape
parameter of the Weibull model to model the scatter. A large value of m gives us a
small scatter and m = oo is the deterministic lifetime limit. The choice m > 1 is
suitable for a LCF failure mechanism, because the hazard rate increases over the time.

To get our final cumulative failure distribution function for LCF failure, we combine
equation (2.8) and equation (2.9) and we obtain

m

rmimew <_/ T o (@) deA)
(2.10)

~1-eo (- [ (5o ,T<x>>)m‘“‘) ' 210

We note that in Equation (2.11) the expression NV, (€, (z),T (x)) has the function of
scale parameter 1 of the Weibull model and N;,_, has the units [N;, ] = cycles X meter?.
According to our derivation, we can define our model as presented in [80]:

Definition 2.4 (Local probabilistic LCF Model)

Let Q C R3 be a domain with boundary OS2 representing a geometry which is exposed to
a cycling load. Further let the scale field N;,, = N;,., (€4 (x),), © € 09, be the solution
of the CMB equation

_ o (T (x))

€o (7) = VIA)] ()T e a0, (212)

(2Ni,,, ()" 4 €, (T (2)) (2N

det

where €, is the strain amplitude field and T the temperature field which determines the
CMB parameters via a suitable temperature model. Then the local probabilistic LCF
model is given by the cumulative distribution function in equation (2.10) for n € Ry
and m > 1, which yields the probability for LCF crack initiation in the interval [0, n].

There are different ways to estimate the missing parameters in our model. We can
determine the temperature and strain amplitude fields by experiments or simulate it
by a finite element analysis (FEA), like in [81], or use fleet experience. We also have to
calibrate CMB-parameters by experiments, confer [82].

To determine the lifetime in a probabilistic model we can choose an acceptable risk
using equation (2.10) and the following equation

Niax (Flimit) = max {n : F'(n) < Flinit }

to determine the maximal number Nyay (Flimis) of tolerable cycles. This thesis will
present better methods to calculate the number NV,,., of maximal cycles in a probabilis-
tic context.

13



2. Gas Turbine Maintenance Overview

The general advantage of probabilistic lifetime models is that we get failure probabilities
which help us to quantify the risk of a failure or the risk of an interval extension.
Further, it helps to explain, how inspection influences our component lifetimes and
outage scheduling, which we will explain in Section 6.2.1 in more detail.

2.2. Life Counter

With the methods of the last Section 2.1, we can determine lifetime limits of the gas
turbine components and define service interval lengths. We must track the life con-
sumption to stay in our limits and to have the opportunity to schedule the outages. For
this reason, we introduce lifetime counters which are based on linear damage accumu-
lation introduced by Miner [62] and Palmgren [67]. It is a well known concept for gas
turbine’s life consumption tracking, confer [57].

The idea behind counters is very simple. We assume that we have a lifetime limit n,
for a reference start and stop cycle C; and a lifetime limit n, for a second start and
stop cycle Cy. Then our lifetime end is reached if

holds. Here m; and msy are the numbers of cycles of type C; and C5. To make the
equation more clear and user friendly, we scale the last equation with the reference cycle
lifetime limit and get

Now, every cycle of type (] is weighted with the factor 1 and the cycles of type Cy are
weighted with the factor 2. We compare every portion of consumed life to a reference
condition. This is the reason, why we talk about equivalent hours, starts or cycles. In
a more elaborated method, we count the cycles with a more sophisticated method as
for example the rainflow counting algorithm presented in [27].

We introduce two basic models for total lifetime counting, which are used for gas turbine
life counting today, confer [25] and [57]:

¢ EOH-Model: The Equivalent Operating Hours-Model assumes that there is
a connection between cyclic and time based damage. In this case a cyclic event
reduces the number of allowable operating hours. Our counter is in general defined

14



2.2. Life Counter
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Figure 2.5.: Example ES, EBH, EOH counter trends for a fixed operating regime.

by two equations

Ns Non

tgon = Z FgiAg; + Z FoniAow;

i=1 i=1

Ns
Nstarts = E 1
=1

with Ny starts, start factor Fs, Nong operating modes, operating factor Foy, Ny
different start types, Ag; starts of type ¢ and time Agpy; in operating mode 1.
The factors Fs and Fpgy represent the weights for the lifetime consumption in
different operating modes. These factors depend on many input parameters like
temperatures or load levels of the gas turbine. Starts are counted unweighted.

Box-Model: The Box-Model assumes that there is no connection between cyclic
and time based damage. In this case, we will count equivalent starts (ES) and

15



2. Gas Turbine Maintenance Overview

33 25 1) 50.0 1000  ‘Eom (KEOH)
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Figure 2.6.: EOH Arrow for maintenance concept representation. The white, red, green
and dark blue vertical lines refer to different outage types. Every outage
type is connected to a EOH and start limit.

equivalent baseload hours (EBH).

Non

teBH = Z FoniAomi

i=1

N
nEs = g FgiAg;
i1

with Nog different operating modes, operating factor Fpy, time Apy; in operating
mode i, Ny different starts types, the start factor Fgs and startsAg; for start mode
1. The factors Fg and Fpoy represent the weighting for the life consumption in
different operating modes. These factors again can be weights depending on
many input parameters like temperatures or load level of the gas turbine.

The factors in the equation consider the different operating modes of the gas turbine.
In Figure 2.5 we see different examples of counters plotted over the time. We see that
the ES counter has got the shape of a step function and increases with every GT start
or cyclic event. The EBH counter is a continuous and monotone increasing function.
The EOH counter is a mixture between the last two types. At every start there is a
jump and after the start the counter will increase piecewise linearly in time.

2.3. Maintenance Concepts

We now have all tools, lifetime determination and lifetime counter, to create a mainte-
nance concept. In general, a maintenance concept is a list of EOH or EBH/(E)S limits
and a corresponding list of measures, like inspection or replacement of parts. The EOH
or EBH (E)S limits represent the lifetime limits of the gas turbine parts.

For example, we illustrate a maintenance concept in Figure 2.6. There are four different
outage types which are illustrated by the vertical lines in the gray arrow. Outage type
3 (green line) will be carried out every 50000 EOH, or 1800 starts, whichever occurs
first. The list of measures is different for every outage.
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2.3. Maintenance Concepts

Figure 2.7.: A gas turbine overview with exemplary attached counters. The orange
circles highlight part groups which need an exclusive life counter and the
green boxes mark single parts.

It is very easy to determine the calendar date of an outage, because we only have to
take into account, when the counter reaches a limit. Through the expected operating
regime we can estimate the date.

2.3.1. Actual Situation and Outlook

Today, many gas turbine maintenance concepts are based on one lifetime counter of type
EOH or BOX for the whole gas turbine. The counters include the different operating
modes and regimes by factors in the counter equations. The limits represent the lifetime
limits of the parts. Every outage type includes the replacement or inspection of different
parts according to their individual lifetime limit.

With this concept, it is very easy to schedule the calendar dates of outages. We only
have to consider the expected operating regime and predict the date of reaching the
limit. If the operating regime of the gas turbine is constant or has got a periodic
pattern, the outage plan will end up in a periodic pattern. This is very nice for planning
outages. But there are some drawbacks. For example, if the outage is scheduled for
a time with a high electrical price, then the operator has two options. The operator
could execute the outage and loose money or the operator could prepone the outage
and loose remaining lifetime of the gas turbine parts. Waste of remaining lifetime of
parts is also lost money. In the end there is always some financial disadvantage. A
second drawback is the existence of only one counter for the whole gas turbine. As a
result of this, there will be often a waste of lifetime for specific parts. For example, if
the gas turbine uses contaminated fuel, then the operating factor Fopy; of the counter

17



2. Gas Turbine Maintenance Overview

will increase. The accelerated counting process is a result of faster wearout of the hot
gas path parts due to the fuel. Therefore, the replacement and inspection of compressor
parts will be preponed while the wearout of the compressor is not influenced by the
fuel.

Due to the missing flexibility of the one counter concept and the deterministic lifetime
limits, there is the need to develop new maintenance concepts. One new idea is to
use multiple lifetime counters on part level and to consider failure probabilities instead
of deterministic lifetimes. Every important part or part group gets its own lifetime
counter to consider the parts specific lifetime consumption. In Figure 2.7 relevant parts
or components are marked which are candidates for individual lifetime counter. Here,
important means that a part is very expensive or the overall reliability / availability has
got a strong dependency of this part. The failure probability gives us more flexibility
in the interval lengths, if we take the involved risks into account. In this case we are
able to relax the interval limits, if the economic reward is promising.

The multiple counter concepts establish a new problem. It is now more difficult to create
a good outage schedule, because we have more lifetime counters and soft limits which
determine the outages. The simplest solution is to schedule an outage, if a counter
reaches its deterministic lifetime limit. This approach is not the best, because there
is benefit to combine outages for different parts. The advantage is available, because
there are certain dependencies in the dismantling process of a gas turbine which will
save time and increase the availability of the gas turbine or we can save cost connected
to the disassemble process. Through good outage scheduling, we can reduce service
cost of the gas turbine or increase availability. In the end, the gas turbine will become
more profitable and reliable. Figure 2.8 illustrates the multiple counter problem.

18



2.3. Maintenance Concepts

0.0 one counter

0.5 multiple counter

* * *
A A A A A A
1.0 optimization deterministic
* * *
A A A A A A
2.0 optimization based on risk
* * *
A A A A A
I T T T T T T T T T 1
0 8 16 24 32 40 48 56 64 72 80

Figure 2.8.: Outage schedule problem: 0.0 one counter schedule; 0.5 multiple counter
and start every time a outage if a limit is reached; 1.0 multiple counter and
deterministic lifetime limits with optimization; 2.0 multiple counter and

failure probabilities with optimization. The z-axis represents the time in
kh.
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3. The Toy Model

In this chapter, we present a method to calculate an “optimal” outage schedule for a
simple toy model. It represents the basic idea for our maintenance scheduling approach.
We try to maximize expected revenue for the gas turbine operator. Therefore, we
analyze the operator’s cash flow and maximize it with the help of service actions. The
presented methods in this chapter and thesis work for every technical device. For the
sake of simplicity we keep calling it gas turbine. This wording fits better in our context.

We consider a gas turbine which has only one lifetime counter and there is only one
outage type. Further, the counter counts only real operating hours, because all factors
in the counter equations are set to one. The outage sets the gas turbine in an as ‘new
state” by replacing all critical parts. The gas turbine operator participates in the market
of electricity where the operator sells electrical power for a constant price. The operator
can order service at every time for a constant prize. Further, the operator has to pay a
penalty fee, if the gas turbine fails. The gas turbine will not be replaced, if it fails. The
operating regime of the gas turbine is constant and due to this fact the outage will be
done in a periodic way. See Figure 3.1(a). In this case a good outage scheduling means
to find an optimal interval length between two outages that maximizes the operator’s
profit.

We start with basic notations to model the problem as an optimization problem:

Definition 3.1 (Basic Definitions)
We define for our model the following parameters:

e Time span between two service actions: A > 0.

Duration of the maintenance action: W > 0.

Hazard rate (risk) of the gas turbine without maintenance: h (t).

Cumulative hazard rate of the gas turbine without maintenance:

Survival function of the gas turbine without maintenance:

S*(t) — o H) _ o= [y h(r)dr
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3. The Toy Model

32
[
I Y |
>
>

©
-
o /
_ Q _—
ST | | | | | o | | | | |
0 8 16 24 32 40 0 8 16 24 32 40
(a) Operating Regime (b) Hazard rate trend

Figure 3.1.: Schematic model representation of the toy model.

o The operators revenue I, the financial risk of a gas turbine failure C'r, the main-
tenance cost Cy, nominal discount factor i,,.

e i-th operating interval:

I=[i (A+W), (G +1)A+iW], i=1,....

e The complete operating time:

1=0

3.1. Modeling the one Component Case

Now, we deduce the maintenance model. Our first assumption is that after every service
action the hazard rate / risk will be set to zero, i.e,

hG(A+W))=0,i=0,1,2,...

This idea is illustrated in Figure 3.1(b). We define the hazard rate of a gas turbine
with periodic maintenance as

h(t):=h(t modi(A+W)) fortel;, i=0,1,2,.... (3.1)

We get the cumulative hazard rate H (t) and the survival function S (¢) of the gas
turbine with periodic maintenance directly by:

¢ A t mod A+W
:{A—FWJ i h(T)dT+/0 h(T)dr
+ X X
= H(A)+H A
{A—%WJ (A)+ H(t mod A+ W)
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3.1. Modeling the one Component Case

and

S(t):=exp(—H(t) = exp (— {A+WJFI(A)—}AI(1€ mod A+W))

— exp <— LAjWJﬁ(A)) exp (~H (t mod A+ 1))
t )

—S)l=wl §@t mod A+ W),

where |-| denotes the floor operator and it is defined by
|z] =max{y € Z:y <z}.

With this informations we can model the cash flow of the gas turbine operator. The
operator earns a revenue [ per unit of time, if the gas turbine is in operation. The oper-
ator has to pay Cly, if the gas turbine starts a maintenance action. The operator loses
Cr units of money, if the gas turbine fails. We will use the present value formulation
with interest rate i,, > 0. In summary we get the operators discounted cash flow by

—inoT
pv (T) =e 7T X{gas turbine in operation and not failed until 7}
—inoT
—e " 'CR : 5{7 is equal to failure time}

—inoT
—e " CM ) 5{7’ equal outage start} X {gas turbine did not fail until 7} (32)

with the indicator function

1, f(t) is true
X{f®} = 0. else

and the delta distribution

else oo

— +o0
5{t};:{0+°°’ =0 it / §(t—to) f(t)dt = f(t).

In the next step we introduce the random failure time 7t and we rewrite the cash flow
equation equation (3.2)

pV (7_) — e*’inoT .I . X{T<Tf} . X{TEH}
—e ™" -Cp - 5{T—Tf}

— e O+ 8z modi(A+ W)} * X{r<T1}-

The complete income of the operator in the interval [0, ¢] is given by

PV (t) :/0 pv (7)dr

t
— / e e X{r<T¢} ([ * X{ren} — CR : 6{7’—Tf} - CM(;{T mOdi(A+W)}) ar.
0
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3. The Toy Model

Since the lifetime T} of the gas turbine is a random variable, we calculate the expected
present value. The gas turbine operator earns only money at time ¢, if the gas turbine
survives until ¢ with the (survival) probability S (¢). The operator has to pay only for
service action at t, if the gas turbine survives until £. But there is also a probability
S (t)h(t)dr that the gas turbine fails in the next time step dr, if the gas turbine
survived until ¢. With this considerations we get the expected present value by

EPV = / e o7 § (7‘) (I * X{rel} — Cr-h (7’) —Cwv - 5{Tmodi(A+W)}) dr.
0
With the definitions from above we can eliminate the indicator functions and we obtain

EPV = / e S (1) (I Xgreny — CrA(T) = OOz modi(asw)y) dT
0

0 p(HD)AHW
_ / e 7 S (r) (I — Cyh (7)) dr

@
=) Cye AT G (G4 1) A4 iW) (3.3)
=0

(b)
Next, we simplify the first sum of (3.3):

o A(HDAHW
(33.a) =Y / e~ S (1) (I — Crh () dr
i Ji(A+W)

0 A
= Z/ e meTHIAT) S (7 4 i (A+ W) (I = Crh (T + i (A + W) dr
i=0 V0

oo

_ Z o inoi(A+W) /A e T S (1) S (A ([ — Crh (T)) dr
0

1=0
> . . ~ . A . ~ ~

=) oA G (A / e 7 $(7) (1 = Crh (7)) dr.
i=0 0

Since A
I(A,S, hyine, I CR> - / e~ioT & (1) (1— Crh (T)) dr
0
does not depend on 7 and
e~ ino(i+1)(A+W) Sv (A)”l

L — oA G(A) <1
e—inoi(A+W) G (A’

holds, the geometric series properties are true and we obtain

. -’Z'-(A?S?}ALainoaIvCR)
A) = ~ .
B = e g (A)

(3.3.2) =T (A, S b i, 1, CR> f: e—inoil(A+W) §

=0
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3.2. Existence of a Solution

In the second sum of equation (3.3), we can use the same geometric series arguments
as before and we obtain

(3.3b) =) Cye AW G (4 1) A+ iW)

1=0

_ Z Chr efino((iJrl)AJriW) Sv (A)Hl
i=0
Cre 2 S (A)

~

1 ino(AW) S (A)

Finally, we get for the objective function the following representation

T (A8, hyine. 1, Cr) e g
1 — e—ino(A+W) § (A) 1 — e—ino(A+W) § (A)
v <A, g, iL, Tno, ], OR> — Cum g oA S' (A)

1 — e—ino(A+W) § (A)

(3.3) =

= J(A).

The function J (A) gives the expected profit of the gas turbine operator who uses main-

tenance intervals of the length A for an infinite time horizon. Now, we can formulate

our optimization problem as

z (A, S’, iL, Tno, 1, CR> — Cyu e oA S’ (A)
1 — e—ino(A4+W) § (A)

max
A

= max J(A)

subject to
A >0.

3.2. Existence of a Solution

In this section we present the existence of a solution A of maxaso J (A), i.e.

A= argglgg)(J (A).

We assume that h, S € C* ([0,00)) and that they satisfy the following properties
h(t)>0, I (t)>0 forallt>0.

The mentioned assumptions are not too strong, because the risk of a failure increases
over time and we can claim A’ (¢) > 0. To find critical points A we use the necessary
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3. The Toy Model

conditions .J' = 0. We use for shorter notation Z and S instead of Z (A, S , ﬁ, Tnos 4, C’R>
and S (A) and we start with

<1 — o o (AFW) 5’) (I’ + Cypigo €"0A § — Oy e~ tnold Q’)
J =

<1 — omino(A+W) g>2
<Z SN 5’) <z’n0 e oA G g=inoA 5”)

(1 —einiaem §)°
(1 e @MY (T4 Gy (35— §'))
(1 — e~ino(A+W) S)Q
e (T = Cyre 3 §) (inoS — 9)

(1 — e—ino(A+W) g)Q (3.4)
Since
T =e A S (I — CR]}> :
we obtain
(3.4) = (1 _ o imo(A+W) 5‘) <efinoA S (I — CRiL) 4 Oy eined (inog B S’))

A\ 2
(1 — o—ino(A+W) S)

e ol (I — Oy e oA 5’) (inog — 5")

(1 eimisim) S)Q
. (1 e ino(AFW) s) <S <I — Crh+ CMz> - CMS')
(1-eimam §)°
(I ~ Cppeined S) (an - S)
(1 - eimam §)°

=€

_ino
— €

We use the intermediate value theorem, confer [40], to show the existence of a solution

in the interval Ig := [O, A] with A < h1 (CLR> The restriction to the interval Ig is
not very tight, because

I—Crh(A)>0 forall Aelg
and the gas turbine operator has got only positive expected revenue. We observe that

Z(A)>0 forall Ae .
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3.2. Existence of a Solution

Further, we remark, that J is continuous in A which is necessary for the intermediate
value theorem. Thus, we obtain

1) (1 o) 08 5 (- 5)

J(0) = = e—z’noW)2

(©) >0

g Namtere .

( <h (0) + CMZHO) —0uS Oy (2 — S')

= 7 + , 5 (3.5)
1 —ino (1 _ e—lnow)
\—,_/
>0 >0

If equation (3.5)(c) > 0 holds, we have J' (0) > 0. It is true, if ”g% > h(0). As next
step, we estimate an upper bound for .J’ (A) We obtain
R o (1 — eiino(AJrW) S) (S’ (I — CR]Al + OMin0> — CMSI)
J(A) =emih : .
(1 _ o—ino(A+W) g)

s <I _ Cyeined S) (an . S*’)
(1 _ o—ino(A+W) 3)2
. (1 _ mino(A+W) S) <5’C’Mz’no - CMS’)
e <1 _ oo (A+W) §>2
s (TG 5) (1o - §')
) (1 o —zno A—i—W >
(1 _ mino(B4W) s) Cni — T + Cye—o2 §

< —zno A+W S>2

<2 >0
- —

— o (1,8 (B) - & (& ))( S(8)emd (1-e)) Cu-1(8)

‘ ; (1= (3))

— €

— €

— ol (inog — 5")

It
T (A) > 20 (3.6)

holds, then J' (A) < 0 follows and we have J'(0) > 0 > J' (A) The intermediate
value theorem delivers the existence of at least one

¢el, withJ'(¢)=0. (3.7)
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Figure 3.2.: J (A): Expected present value for a gas turbine with maintenance for dif-
ferent cash flows I.

We need the assumption in equation (3.6) to avoid the case that A = A = oo becomes
the optimal solution. If ¢ # 0 and ¢ # A, then there exists ¢ > 0 that holds

J(A)>0forall A€ ((—¢¢) and J (A)<Oforall Ae((,(+e). (3.8)

Therefore, equations (3.7) and (3.8) deliver us the fulfillment of the necessary and
the sufficient conditions for a maximum, confer Theorem 4.13 and Theorem 4.15 from
section 4.1.3.

3.3. Example for one Component

In the following, we present a numerical example for our toy model. We consider a
Weibull distribution for the hazard rate k() with a shape parameter m and scale
parameter n for the failure probability. According to section 2.1.3, we get for the
hazard rate, cumulative hazard rate and the survival function without maintenance the
following representations

b (1) = % (%)m_l, (1) = — (%)m and § (1) = (3"
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3.3. Example for one Component

I | 3 | 40 | 50 | 60 | 70
A* [ 241 | 254 | 265 276 287
J(A%) | 3085.2 | 6025.9 | 8987.1 | 11966.1 | 14960.9

Table 3.1.: Results for the toy model with one component. We present the optimal
interval length A* and the associated value of J (A*) for the different I.

For the associated functions with maintenance we obtain
m [t mod A +W\™ !
n n

mo-- x| (5) - ()

s ([t () (2120

Finally, our cost functional has the following representation

o T (A, S, Ry ines I, CR) ~ Crpe B G (A)
1 — e—mo(A+W) § (A)
S8 et § (1) (1 — Crh (7)) dr — Crpeo™ G (A)
1 — e—ino(A+W) § (A)

\m m—1 . m
fOA o—inor o= (3) (] — Cpm (%) ) dr — Cype—inod o= (3)

1 — e—to(A+W) ef(%)m
In our example we consider the following parameters: The shape and scale parameter
of the Weibull distribution are

n =2000.0 and m =24.

The parameters are chosen according the data from [13] and [70]. In particular we ori-
entated us at estimate data, [70], and actual maintenance concepts, [13|. The financial
parameter are

I =30,40,...,70, Cy = 300, Cr = 500000, %y, = 0.003 and W = 30.

We considered data from European Energy Exchange to determine the parameter I,
confer [36].

In Section 3.3, we see J (A) plotted against A for different values I = 30,...,70 of the
operators revenue. In Table 3.1, we see the optimal interval length A* for the different
I and the associated values of the objective function J. If the revenue I doubles from
30 to 60 the overall revenue J becomes four times bigger, but the interval length growth
only by 1.19. In general, the increasing revenue I has bigger effect on the optimal value
of J (A*), than on the optimal interval length A*.
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3. The Toy Model

3.4. The Extension to a two Component Model

We extend our maintenance model to a gas turbine which consists of two component
groups and has got two life counters. This takes us a step closer to our problem
formulation from Section 2.3.1 where we consider multiple components. For the two
component case in our toy model we allow following two service actions:

1. Replace component group one or
2. Replace component group one and two.

The operating time between two service actions of type 1 is given by A; > 0 and Ay > 0
is the operation time between two maintenance actions of type 2. The service actions
are done periodically and we assume

Ay = A, for a fixed § € N.

W1 > 0 is the duration for the service action of type 1 and W5 > 0 is a the additional
time to do the service action of type 2. Therefore, Wi + W5 is the complete service
duration of service action of type 2. Cy;, denotes the maintenance costs for the service
action 1 and (), denotes the additional costs to do service action 2. As before the
complete maintenance cost for service action 2 are given by Cy, + Cyr,. According to
Definition 3.1 we obtain:

Definition 3.2
Fori=1,2 we define:

A~

e Hazard rate of the i-th component without maintenance: h; (t)

Cumulative hazard rate of the i-th component without maintenance:

Survival function of the the i-th component without maintenance:

S; (t) = e W) = o= Jy hir)ar

Survival function of the gas turbine without maintenance (serial connection):

A

S(t) =81 (t) - S (t) = e Jom)tha(r)dr

I the operators revenue, Cr the financial risk of a gas turbine failure, Cyy, the
maintenance cost for i-th component, i,, discount factor.
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3.4. The Extension to a two Component Model

o The ki-th operating interval:
Tpi := [0 (A + Wh) + EWa, (i 4+ 1) Ay + iWy + kW5
fork=0,1,..., i=kB,...,kB+ [ — 1.

e Querall operating time:
oo kB+B-1

= U

k=0 i=kp

As in the one component case, a service action resets the hazard rate to zero after
maintenance for the respective component group. For notational simplicity, we define
the following quantities: The number of outages of component 2 until ¢:

t
"2 {A2 + AW, + W2J (3:9)

and the number of outages of component 1 after the last outage of component 2 until
t:

ny ‘=

t
t— LA2+5W1+W2J (Ag + Wy + W5) B V —ny (Agy + W) + W2)J (3.10)
Al + W1 A1 + Wl ‘ ‘
According to Definition 3.2 and equations (3.9) and (3.10), we get the hazard rate
functions

hy () :=hy (t — ny (Dg + BWy + Wa) —ny (A + W), (3.11)

~

hg (t) Z:hg (t — Ny (AQ + ﬁW1 + WQ) - n1W1) R (3.12)

the cumulative hazard rate functions for the two components

t—n2(A2+pW1+W2)—n1(A1+W1)
/ hy (T)dT

Hy (t) Z:(/@HQ—Fnl)/O lﬁl(T)dT+ 0

. t—n2(A2+pW1+Wa)—n1(A1+Wh)

= (Bna +n1) Hy (A1) + / hy (1) dr, (3.13)
0

/tng(A2+,3W1+W2)n1W1 R

As
Hy (1) =y / o (7) dr + hy (7) dr
0 0

/tn2 (Do+BW1+Wo)—miWi

—nyoHy (As) + ho (1) dr (3.14)

0

and the survival functions for the two components

Sl (t) = exXp (—Hl (t)) = Sl (A1>5n2+n1 5’1 (t — Ny (Ag + 5W1 + Wg) — 11 (Al + Wl)) y
(3.15)

Sy (t) :=exp (—Ha (t)) = S5 (A2)™ Sy (t — no (Ag 4+ SWy 4+ W) — nyWh) . (3.16)
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Now, we can use the expected cash flow derivation from the Section 3.1 and we obtain

EPV = /OOO €™ 8 (7) 8 (7) (Ixgren = O+ (I (7) + bz (7))

— OMi 07 mod (A1+Wi+5W2))
_CM26{’T mod (A1+W1+W2)}) dr. (317)

for expected discountend cashflow. Further, we can split equation (3.17) with the help
of equations (3.11) to (3.16) and the definition of the operating time I into three parts:
The revenue and risk part

00 k5+ﬁ Lo e ) A +iWi+kWy
S % / 7T Sy (1) S (1) (I = Cr - (bt (7) + ha (7)) dr,  (3.18)
k=0 i=kg UBIFWI)+EW:

the service cost for component 1

= Oy, e ol (BFDRFRIWIERIR) G, (| 4 1) Ag + kB, + kW)

k=0
So (k4 1) Ay + kW, + EWs) (3.19)
and the service cost for component 2
Bk—B—1
D Oy, e e lHNMHWR W) G (64 1) Ay + iW) + kW)
i=Bk
So (14 1) Ay 4+ Wy + kW) . (3.20)

To simplify equation (3.18) we use the same arguments for the geometric series as in
Section 3.1. We obtain

o f- 1/A1+(z+k6 YW +kWa
(A

ZZ

0

e T S (1) Sy (1) (I — Cr - (hy (1) + hy (7)) dT

(i+EkB) (A1+W1)+EW,

B
Il

p”qg

/ o ino(THIFRA) (AT W) HRWR) G\ ()R Gy (1) Sy (7)F Sy (1 + i)
i=0 70

iy
o

VS

[—Cr- (/%1 (7) + ha (7 + ml))) dr

o p-1
= Ze—z’no(kﬁ(A1+W1)+kW2) S, (T)k S, (T)ﬁk g oD+ W) G (T)Z
k=0 =0
Al . A
/ eilnoT;SH( )SQ <T+2A1 ([ CR 1 +h2 T+2A )))d
0
25 L q—inoi(A1+W1) § fAl —inoT S (1) S5 (T + i) dr

1_ ZHO(B(A1+W1 )+EWa) SQ( )5’1 (T)
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3.4. The Extension to a two Component Model

- (1 . (151 (7) + ho (7 + ml)))
A <A17 57 gl) SQa illy iLZ) Z‘noa I7 CRa Wla WQ)
1 — e—ino(B(AL+W1)+kW2) G, (1) S, (T)ﬂ

As next step we simplify equation (3.20) minus equation (3.19)
(3 20) — (3.19) =

— § C *1110 (k+1 A2+kBW1+kW2)

. 5’1 ((k+1) Ay + ESWy + EW5) Sy (k4 1) Ay + kW, + kW)

-1
=) Cy, e molCHAREDSFEEIIWIEN2) G, (i 4 1+ BE) Ay + (i + Bk) W + kW)

=0

S (1 + 1+ k) Ay + (i + SE) Wy + kW)

Z —ino((k+1) Ao +kBW1+kW2) Sﬁkﬂ? (A1> Svéc—i—l (A2)

k=0
-1
Z Ci, —ino ((i+Bk+1)A1+(i+Bk)W1+kWa2) SZ+1+57€ (Al) Aéc (A2) S2 ((Z + 1) Al)

[

(o]
Z o~ ino (kA2 +kBW1+kW?2) Sﬁk (Al) Aéc (A2)
k=0

B—1
Chiy €02 S (A1) 8o (Ag) = D Ciy, e mollFDAHIN) Gitd (Al)S’g((iJrl)Al))

i= O
_ Oy e 082 87 (A1) S5 (A) = 3575 Oy e DAY GHL (A ) S, (i +1) Ay)
1—e zno(ﬁ(AlJrWl +W2) 515 (Ay) S, (Ay)

Car (D1, 8,81, 82, b, oy g, 1, G, Wi, W)
1 — e imo(B(AL+W)+W2) §F (A1) G, (A,)
Summarizing, we have the following representation for the expected present value
T (Al,ﬁ, Sy, 8y ha havine, I, Cr, WA, W2>
1 — e ine(BAEWIIW2) §F (A}) S5 (A,)
Cat (D1, 8,51, S5, b, o o 1,C. W2, W)
1 emineBar ) §F (A1) 8 (Ay)
and our optimization problem for the two component case is given by

max J (A, )

J(Ahﬁ) =

subject to 8 € N,
Ay > 0.
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Figure 3.3.: J (Ay, 8): Expected present value for a gas turbine with predictive mainte-
nance which consists of two components. The bold green line refers to the
optimal choice of § = 4.

3.5. Example for two Components

In the following, we present an example for the two component toy model. We consider a
Weibull distribution for the hazard rate h; (t), i = 1,2, with shape parameters m; = 1.4
and msy = 1.1 and scale parameters 7; = 2000 and 7, = 2200. In particular we obtain for
the representations of the hazard rates and the survival functions without maintenance
the following form:

A 24 ( t " . 21 (¢t \"
hi(t) = —— ([ —— ho(t) = —— [
1= 2000 (2000) +h2 (1) = 5555 <2200> ’
~ ¢ \24 R ;. \2-1

S (t) = e~ (000 and Sy (t) = e (mm)

The financial model parameters are summarized in table 3.2 and they are based on the
same sources as the parameters in Section 3.3.
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3.5. Example for two Components

o | I | Cr |Wi| Wy | Cy | Cwmy
0.003 | 50 | 500000 | 20 | 10 | 100 | 200

Table 3.2.: Financial model parameters for two component toy model.

Then we obtain for the solution:

max J (Ay, ) & 4740.588 = J (68.4,4)

and in Figure 3.3 we see J (A1, 5) plotted against A; for different values of 5 = 1,...,5.
Despite the small difference in the Weibull parameters, 7o /n; = 1.1 and mg/m; = 0.875,
there is a big difference 5 = 4 in the interval length for the two components. It should
be a result of the higher maintenance cost Cy;, of component two.
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4. Replacement Model

The task of the toy model in Chapter 3 was to present in a simple way the principle
in our modeling approach to calculate and optimize the expected value of a discounted
cash flow. To get a more realistic model, we extend the toy model to a replacement
model.

The new model has a lot of advantages when compared to the toy model. We can
include an arbitrary number of parts in the model and we do not need the restriction
that the outage times are integer multiplies of each other as requested in the toy model in
Section 3.4. Further, the time horizon is finite, in contrast to the toy model. As a further
improvement, all model parameters like the financial data can be time dependent. There
are no restrictions to the outage pattern and outage combination. We include the
dismantle dependencies of the gas turbine parts to get a more realistic model and model
the advantage of combining service actions. In addition the operating regime of the gas
turbine can be flexible and need not be constant. But we keep the restriction that a
failed component won’t be replaced and that every service action sets the corresponding
components to an “as new” condition.

This chapter is organized as follows: First, we give a short introduction to optimal
control and we extend it to impulse control. Impulse control theory is the basis of our
solution approach. Further, we present necessary and sufficient optimality conditions
for this type of optimal control problems. Then we transform the service outage problem
into a solvable nonlinear optimization problem. We introduce definitions and ideas to
model our replacement problem in terms of impulse control. In the last section, we
present numerical results for a model problem.

4.1. Optimal Control Theory

Optimal control theory is an extension or a generalization of calculus of variations the-
ory. Since 1696 the attention in calculus of variations has grown. Johann Bernoulli
postulated his famous Brachistochrone-Problem to various mathematician like Newton
and Leibniz. For a more detailed description confer [71]. Optimal control belongs to
a class of optimization problems to get control polices and it is infinite dimensional.
The development was motivated by military applications like ballistic trajectory opti-
mization since 1950. Further important applications can be found in test drive simu-
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4. Replacement Model

lation, robotic control or business management. The important results were delivered
by Pontryagin and his students in [72]. They postulated and proved necessary opti-
mal conditions for optimal control problems. Hestenes proved independently the same
results, confer [49]. In 1977 Blaquiere proved necessary optimal conditions for control
problems with impulse dynamics, confer [12]. Chahim used this approach to optimize
the dike heights, confer [21]. In [23] the authors presented a maintenance model for ma-
chine replacement which is less complex than our model. It does not support multiple
components, disassembly constraints or failure probabilities.

In the next part we present the basic results of optimal control problems. We are
interested in the dynamical development of a state x. The state z can belong to
a mechanic or economic system or problem which can be described with a (partial)
differential equation. In general we can influence such a system by a control w. It is
possible that there are boundary conditions for the state x or control u, because there
are, for example, physical restrictions present. We are not interested in all feasible states
and controls, we are searching the optimal pair of control and state which minimize a
given objective function J (-, ). In summary we have the following elements of a control
problem, confer [43]:

e The state variables x (t) € R™ at time t.
e The control variables u () € R™ at time ¢.
e The differential equation & (t) = g (z (t),u (t),t) € R™ for the system dynamics.

e The objective function
J(u(t),x(t) =e ™" Gy(x(0),z(T)) + /0 e ™t Gz (t),u(t),t)dt

which is dived into the terminal cost Gy and the continuous reward G.
e The mixed restrictions ® (z (¢),u (t),t) € R™®.
e The state restrictions z (t) € Q, () C R"=.
e The control restrictions u (¢) € Q, (t) C R™.

In general the optimal control problem has got the following form and it is illustrated
in Figure 4.1:

Problem 4.1 (General Optimal Control)
Find a control u (t) and a state x (t) which solve

U,

maxe” " Gy (2 (T)) + /0 et G (t) ,u(t),t)dt
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4.1. Optimal Control Theory

Tend

Figure 4.1.: Schematic illustration of the general control Problem 4.1. The red line

represents the state x and the blue line the control wu.

subject to
T(t)=g(x(t),u(t),t), 0<t<T (dynamics)
x (0) = xo, (boundary restriction)
O (z(t),u(t),t) <0, 0<t<T, (mized restriction)
z(t)e,, 0<t<T, (state restriction)
u(t) e Q,, 0<t<T. (control restriction)

Next, we give an academical example of a rocket car to illustrate the formulation of

Problem 4.1 and to introduce a special kind of solution which will be important later in
this thesis. Our problem is to reach a target destination as fast as possible with a rocket
car. We can control the thrust « € [Umin, Umax] Of the rocket car. Further, the initial
position zy is given and newtons second law of motion gives us the state dynamics by
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with the car mass m. In summary the control problem is given by

T
min / ldt = minT (minimize the time)
0

u u

subject to

Here, the optimal control u* is
(1) = —si.gn (x0), t€]0,T*/2]
sign (zg), te€[T%/2,T%

with the minimal and optimal time 7™. Such kind of a solution is of type “bang-bang”,
because the control takes only values on the boundaries of §2,,. It will become important
in our maintenance problem to reduce the complexity of the solution. We discuss it in
Section 4.1.1 and Section 4.4 again. The following section delivers us basic theoretical
results about optimal control problems and especially about impulse control problems.

4.1.1. Theoretical Results

We deliver for simplicity only results for optimal control problem with mixed state and
control restriction and without explicit state and control constraints. This distinction
is only important from a theoretical point of view. Results for the general case are
presented in [79] and [91].

The Maximum Principle

We start with the definition of the Hamiltonian function of our control problem by
Ham (¢, 2 (1), u (), A (1) = A1) g(z (1), u(t),t)+ G (z(t),u(t),1)

where A (t) € R"™ is a vector function of costate variables. Further, we define the
Lagrangian £ by

L(ta (), u(t) A1), p () = Ham (t,a (t) ,u(t), A () +p () (@ (t),ut),1)

The Hamiltonian gives us important information for the necessary optimal condition
and Pontryagin used it to deliver his minimal principle which is also known as the
maximum principle, confer [15], [41], [72] and [91]:
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Theorem 4.2 (Maximum Principle)

Let the following condition be true for the optimal control problem from Problem 4.1:

1. The functions Go, G, g, ® are continuous regarding all arguments and continu-

ously differentiable in x and u.

2. Let (z*,u*) be a mazimum of the optimal control problem with mized constraints.

3. The optimal solution (x*,u*) satisfies the constraint qualifications, namely that

the ng x (ne + 1)-matriz

D@y (), u(t),t) By (x(t),ult),t) ... 0

2@, (z(t),u(t),t) 0 s B (2 (t),u(t),t)
has, along the optimal solution (z*,u*), full rank for every t € [0,T].

4. There are no state or control restrictions.

Then there exist a continuous and piecewise continuously differentiable function X (-) €
R™ and a piecewise continuous multiplier function u(-) € R™ satisfying the following

conditions at every time t where u* is continuous:

1. Adjoint differential equation:

\ . 0 * *
A (t> - ZTLO}‘ (t) - %ﬁ (tv Y (t) y U (t) ) A (t) y b (t)) )
2. Transversality condition:
A (Tona) = -G (a* (1)
end) — 81’ 0 9

3. Complementary slackness condition:

o) >0, o) ® (@ (t),u" (t),t)=0

4. Optimality condition:
Ham (t,2* (1) " (1), A (£)) = max Ham (t,2* (£) ,u (1), A (£))

u(’)
a%c(t,x* (t),u* (1), A (), 0 (t) = 0.

The optimal condition in equation (4.4) can be changed to:

Ham (¢, 2% (t) ,u* (t),A(t)) > Ham (¢, 2" (t),u(t),A(t)) for all u € Q,.

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)
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In this case the optimal control ©*, as mentioned before, maximizes the Hamilton func-
tion Ham. The optimal control function u* is characterized as an implicit function
of the state * and the adjoint variables A\*. For a fixed time point ¢ equations (4.4)
and (4.6) represent an finite dimensional optimization problem. We can use finite di-
mensional optimization results for necessary and sufficient conditions and associated
algorithms to solve the problem.

Bang-Bang Control

In this subsection we consider a special class of optimal control problems where the
problem depends linearly of the control u (¢). The optimal control @ of this class of
problems has got a special structure which is very important for our modeling approach.
But first, we define the new problem class and for simplicity we assume n, = 1:

Problem 4.3 (Optimal control problem with linear control)
Find a continuous control u (t) and a state x (t) which solves

maxe T Gy (2 (Tona)) + / et (Gy (1 (8) + Go (1 (£)) u (1)) dt

T, Ty

subject to

(t)=g (t,x () + g2 (t,x(t))u(t) forallt € (To, Tena),
z (0) = o,
u(t) €U = [Umin, Umaz)  for all t € [Ty, Tena) -

We divide the cost function G from our general Problem 4.1 into two parts G; and
(G5, because G is linear in v and we can write it as G = G7 + Gou. With the same
argumentation we did the breakdown of g. For further notation we define the function
[ [T, Tena] X R™ x R™ +— R by

T (t,z,\) =Gy (t,x) + A\Tgs (¢, 2) (4.7)

and name it “shifting function” of Problem 4.3. We use the maximum principle from
Theorem 4.2 and we obtain

Ham (t,z,u,\) = Gy (t,2) + A\Tq1 (t,2) + T (¢, 2, \, ) u

for the Hamilton function Ham, if we use the shifting function. From the maximum
principle we obtain

u* (t) = arg maJ("Ham (t,z,u,\) =arg max [ (t,z,\)u.
ue

Umin SuSumax
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Since Ham is linear in wu, confer [5|, we obtain the result for the optimal control u*
directly, if I' # 0:
Urnin, if I'(t,z,\) <0
U (t) = < Umax, if ' (t,z,\) > 0. (4.8)
unknown, if I'(¢,z,A) =0
Equation (4.8) gives us the information that the minimum principle cannot determine

the optimal control u*, if the shifting function vanishes in a time interval [tq,t5]. We
use this observation for an accurate definition:

Definition 4.4 (Bang-Bang-Control and Singular Control)
Let w be a linear control and [ty,ts] C [Ty, Tend)-

e The control u is named Bang-Bang-control in [t1,t5], if I' has got only isolated
roots. The 1solated roots are called shifting points.

e The control u is named singular control in [t1,ts], if T =0 in [t1,ts].

In Figure 4.2 we show exemplary a bang-bang and a singular control with the corre-
sponding shifting function. If all roots of I' are isolated, then we can use equation (4.8)
to determine the control directly. The shifting points ¢; are implicit given through the
condition

[ (t,x,\) =0.

4.1.2. Impulse Control

Here we present an extension of the optimal control approach which allows and controls
jumps in our our state variable x (¢). We follow closely the ideas from [12]. The general
formulation of the impulse control Problem is:

Problem 4.5 (General Formulation of Impulse Control)
Find a continuous control u (t), a number N of jump points 7 € RN, 7, < 7,41, and
jump control v € RY which solves

T N
max / el G (t),u(t),t)dt + E e T Gy (x (7)) 0 1) + e Go (z (1))
0 ;

N,u,v,7
=1

subject to

x
(t :g(x(t)7u(t)at)7 t¢{7—17"'7TN}

g[(ﬂf(Ti_),Ui,Ti_>, 1=1,...,N
€ Qu € Qyvel,nel0,T).

43



4. Replacement Model

umax P —— P — Umax

Umin — Umin

¢ ' ¢

(a) Bang bang control without singular sections (b) Bang bang control with singular sections and
and the corresponding shifting function. the corresponding shifting function.

Figure 4.2.: Bang Bang and singular controls with the corresponding shifting functions.
The upper part shows the control u and the lower part the corresponding
shifting function T'.

In this case z is the state variable, u is a control variable and v’ is the impulse control
variable. The functions z (¢) and u (t) are piecewise continuous. The future rewards are
discounted by the discount factor e~ with the discount rate i,,. The number of jumps
is denoted by N and 7; is the time moment of the i-th jump or impulse of the system.
7'j+ and 7, are the time points just after and before 7;. The terminal time of the system
is T > 0. The income or revenue of the system is given by G (z (t),u(t),t) and the
cost of the i-th jump is represented by Gi (z (t),v%,t). Go (z (T™T)) is the salvage value.
Figure 4.3 illustrates an impulse control example schematically. The continuous change
of the state variable x () is described by g (x (t) ,u (t) ,t) and gr (x (t) , v, t) denotes the
instantaneous change of the state variable at an impulse jump. Further, we assume
that the domains €2, C R™ and 2, C R™ are bounded convex sets.

Furthermore, we extend our definition of the Hamiltonian function by the present value
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- e e e e e e e e e e e e e e e e e e e e e e e e e e e e e = = = -

Figure 4.3.: Schematic illustration of impulse control Problem 4.5 with a jump at ;.
The red curve represents the state x, the blue curve the continuous control
u and the green one the impulse control v;.

Hamiltonian function formulation given by
Ham (t,x (1), u(t), A1) =" G (z(t) ,u(t), t) + A(t) g (2 (1), u(t))
and we establish the present value impulse Hamiltonian by

THam (t,z (t) 0", A (1)) :=e ™" Gy (z (¢),v",t) + A(t) g1 (z (2), 0, 1) .

Necessary and Sufficiency Conditions

Now, we deliver necessary conditions for the general impulse control Problem 4.5 which
was delivered by Blaquiere in [12]|. But we take the formulation from [24] to be consistent
in notation.

Theorem 4.6 (Impulse Control Necessary Conditions)

Let (z*(t),u* (t), N*, 75, ..., 7%, 0", ..., v™*) be an optimal solution for the impulse
control problem defined in Problem 4.5. Then there exists an adjoint variable \ such
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that the following conditions hold:

u* (t) = arg iré%x?-[am (t,x* (t),u(t), A (1)) (4.9)
f(t) = —%Ham (t,x* (t),u(t), A (1)) (4.10)

At the jump points, it is true that

a%IHam (77,2 (777) , 0" A (77)) (0 = 0™) <0 for allv' € Q, (4.11)
M) = A (7) = =L THam (2 () 0%\ (7)) (4.12)

ox
Ham (Ti*, x* (Ti+*) , (T;r*) A (T;r*)) — Ham (Ti*, x* (Ti_*) ,u” (7'»_*) A (7'._*))
9 >0 fortr=0
— —THam (77, 2" (777) , 0" A (77%)) S =0 for 7 € (0,7T) (4.13)

or !
<0 fortr="T.
For all points in time at which there is no jump, i.e. t #1;, 1 =1,... k,
0 Z-
a—ZHam( (t),0,A(t))v" <0. (4.14)
v

At the horizon date T the transversality condition

AT) = e Ly (o (1)) (4.15)

holds.

We present a proof for Theorem 4.6 only for the case that G (z (t),u(t),t) =0 and ¢
does not depends on u (t). Further, the state dynamic functions g and gy do not depend
on t. We follow the ideas from [77| strictly. The assumption of the proof give us the
opportunity to use the concept of “needle variation” from [39]| to prove the theorem.
The “needle variation” concept is an often used method to prove necessary conditions in
optimal control, confer [51] and therefore more general. It uses the idea of a variation
of a curve, we will produce variations of trajectories and controls with this method. A
needle variation changes the value of the control instantaneously to a constant value
over a closed interval of specified length. This will let us study how changing the control
affects the system.

To follow the proof from [77|, we further need the following two assumptions:

A1l: The functions g (-), Go and g; (-, 7, ) are continuously differentiable on R™ for every
v € Q,,

A2: For every x € Q, the set {g1 (x: v7), v/ € Q,} is convex.
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4.1. Optimal Control Theory

Now, we are able to present the proof:

Proof. The proof starts with the definition of the needle variations of our control, state
and terminal reward. Then, we show that partial derivatives of needle variation of the
terminal reward exists. As last step, we present that this partial derivatives of the
needle variations imply the optimal conditions of our theorem.

Let v € ,, j < N and € > 0 be such that
T, +e<Tiy1 and T, —e€> T .

From assumption A2, the convexity of g; in v/, it follows that for arbitrary 8 € [0, 1]
there exists a v (f) € €, such that

gt (z(15),07) + B8 (g1 (x (1) ,v) = g1 (2 (73) ,07)) = g1 (2 () v (B)) -
Without loss of generality we may assume
v(0) =" and v(1)=w.
Let o € (17 — €, 7; + €). Then, we define:

1, B) = ((7’1, cey Tio1) (Ul, . ,vj_l)) ,
™ (o, B) := ((7‘1, e Tio1, @) (vl, . ,vj_l,v(ﬁ))) ,
7™ (a, B) := ((Tl, ey T O Tty - - Th) (Ul, o (B) 0T L ,Uk)) ,

k=j+1,...,N.

Here, 7 defines a possible solution / policy of our impulse control problem. We vary
the optimal control v/ in a small area. The parameter « gives us the variation around
7; and 3 presents the variation in the control v7. These variations in the control lead
to the name “needle variation”. Let

¥ (t; a, B) = g™ (@h) (t) forte[0,T], k=j—1,...,N,

be the resulting state trajectory to policy w. In particular it is the solution of the
boundary value problem in the impulse control problem where (3 is the boundary value
at time a. We remark that

N (ta, B)=x(t), t€[0,T].
We obtain for arbitrary o € (7; — €, 7; + €) that
o (a,B) = Go (zV (T;a, B)) < Go (2 (T375,0)) = Go (2 (T)) .

Therefore, the function ¢ has got first order partial derivatives at (7;,0) and we obtain

0 :

Ed (1;,0) =0, ifr; >0, (4.16)
0 :

pd (1;,0) <0, ifr; =0, (4.17)
0

%O' (1;,0) <0, for all 7;. (4.18)
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4. Replacement Model

The main idea of the proof is to show that equations (4.16) to (4.18) imply the condition
in equations (4.11) and (4.13) of Theorem 4.6. The conditions in equations (4.16)
to (4.18) transform under the proof’s assumptions to

A (7';“) (gl (:v (Tl) ,Ui) — g (:c (TZ) ,v)) >0, forwvefq, (4.19)
A g (x (7)) = M) g (x(m) =0, if 75 >0, (4.20)
Z 0, if Tj = 0.

We start to prove that equation (4.19) holds. We define
§(B) =0 (13,8) =G (2 (T;7;,8)), Bel0,1].

From the chain rule we obtain that

0 N .
Gﬁg(ﬁ) aiCGO (.Z' (TaTjaﬂ)) 85 (T T]aﬁ)
(9 N X
— 3G (2% (7373, ) 50 (T30 (5)) (4.21)

with ox (8) = 2V (7n5; 75, 8) + o1 ( w7y, B) v 1). Further, we remark that the
function
A(s) = A1) Q(75,8), s €[, Tj4]
fulfills
: 0
A= —)\g (z) on [1j,7j:1] and p () = A(7;h,) Q (741, 7)) (4.22)

for arbitrary j = 1,...,7T and with the definition

Q(t,s) = %g (t,s;z(s)), t,s€l0,7T].

The remarks follows from classical results of ordinary differential equation theory. We
conclude with the help of the remark for the function &:

B o
SO =AD Q) (%W (v 752 8) o
+8£ng (xN_l (TN;Tj,ﬁ) >UN) %xN ! (TN)TWB) |5 0)

Further, we obtain with the help of the remark in equation (4.22) and equation (4.12)

MT)Q(T,7y) = A ()
A7) g1 (N (7w 75, 0),0™) = M (rw) = A () -
Hence, the partial derivative of £ (0) fulfills

0 0
55< ) = A (%) %CU]H (735 75, B8) lp=0 + (A (7av) = A (7)) %fﬁN Y (w75, 8) | =0
— A (ry) %xN ! (i ) 5o
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4.1. Optimal Control Theory

With a simple induction argument we get

0 g

%f (0) = A(7541) %55] (7j+1: 75, B) | =0
Similar to equation (4.21) and the help of assumption A1 we obtain

! (Tj+1;7-j76) =T (TjJrlaTju(sj (ﬁ))
with
0; (8) = 2" (75375, 8) + g1 (27~ (75575, B) , v (B))
= (1) + g1 (2 (73) ,07) + B (g1 (x (73) ,v) — g1 (2 (73) ,07)) -
Therefore, we obtain for the partial derivative

0

% (0) (Tj+1) Q@ (Tj+177j+) (91 (z (Tj) V) = g1 (I (Tj) ﬂfj))

() (91 (& (1) ,v) = g1 (2 (73) 7)) .
From this point equation (4.19) follows, because we have

0 0
%U(Tj,()) = %

=A
=A

£(0) <0.
As next step we prove equation (4.20). We define for an arbitrary a € (1; — €, 7; +¢€)
U (o) = Go (=" (T;,0)).

With the help of the chain rule we obtain

0 . N . 0 N
a—a\lf () = £G0 (N (T; «,0)) a7 (T;,0)
0 0
= 5-Go (¢ (T50,0)) == (T, 75y ()
with vy (@) = 2% (7v; @, 0) + g1 (z¥ 7 (75; @, 0)). Further, we obtain
0

—U(r;)=A(T)Q (T, TRL,) (xN_l (7375, 0) a—r,

0 _ N
+£gl (V1 (w375, 0) ,07) %xN "(7w; @, 0) |a7j> :

We conclude with the help of the remark in equation (4.22) about the function () and
equation (4.12) that

0

a—a‘I’(Tj) =\ (7

) 0
) a—OéxNil (TN; Q, O) |a:7j + (>\ (TN) —H (T]J\?)) 8_O(xN71 (TN; «, O) |a:7'j
0

= M(ry) 52" (

TN, &, O) |a:'rj~
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4. Replacement Model

As before an induction argument delivers:

0 .
%\Ij (75) = A(7541) %x] (Tj41;@,0) |a=r,-

By definition we get
@’ (Tj1150,0) = 2 (7511, ;75 (@)
with
v (@) = 277 (a; @, 0) + g1 (xj_l (cv; 0, 0) ,vj) .
Therefore, we obtain

(1) =M (170) (=9 (& (700,752 () 1 (2 (), 7))
+ Q) (9@ + g @) ) e )
= A g () + A (7) 9 (1)
FA) oo (2(5) ) 9 (7,)

and equation (4.12) leads to

8%‘1’ () = = M741) 9 (2 (75501)) + A (7)) g (2 (7)) + (A (1) = A (7)) 9 (2 (7))

== AM741) 9 (Y (7j51)) + A(73) g (2 (75)) -
We obtain
A (Tj_) 9 (x (TJ‘—F)) =A (Tj—:-l) 9 (m541)),
because the function ¢ — A (¢) g (= (¢)) is constant on (7, 7j11]. Finally, we get

0

a—a\I/ (;) =A(15) g (z(15)) = A (Tj+) g (x (Tf)) . (4.23)
We obtain the condition in equation (4.19) by combining equation (4.23) with equa-
tions (4.16) and (4.17). O

We remark that the work in [77| presents an approach to weak the assumption about
the objective function and system dynamics to prove a more general case.

Furthermore, Blaquiere presented and proved in [12] sufficient conditions for the impulse
control problem. As before we take the formulation from [24]:

Theorem 4.7 (Impulse Control Sufficiency Conditions)

Let there be a feasible solution (x* (t),u* (), N*,75,..., 75, 0™, ..., oN*), for the im-
pulse control Problem 4.5 and a piecewise continuous trajectory, so that the necessary
optimality conditions of Theorem 4.6 hold. When the maximized Hamiltonian function

Ham = m(a)X’Ham (t,2,u, \)

is concave in x for all (\(t),t), the THam is concave in (x,v) for all t and S (x) is
concave in x, then that solution (x* (), u* (), N*, 7, .., Tr, 0 ,UN*), is optimal.
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4.1. Optimal Control Theory

4.1.3. Nonlinear Optimization

For later use, we establish a short overview about some basic definitions and results from
nonlinear programming (NLP) which we need for our solution algorithm in Section 4.2.
The algorithm uses nonlinear optimization techniques. In General, a NLP is given by
J
s/ ()
subject to G (z) = 0
H (z) >0,

(NLP)

where .J: R" = R is the objective function, G (z) = 0 with G': R” — R"& are equality
constraints and H (x) > 0 with H: R" — R"# are inequality constraints. For simplicity,
we assume that all functions are two times continuously derivable on a sufficiently big
subset D C R™. We start with elementary definitions which are taken from [1]:

Definition 4.8 (Feasible Set)
The set . .
Fi= {x e RYG (2) =0, H(x)> o}

is called the feasible set of problem (NLP). A point x € F is named feasible point. The
problem (NLP) itself is called feasible, if F # ().

Further, we need the definition of a local and global maximum:

Definition 4.9 (Local and global Maximum)
Let F be the feasible set of (NLP).

o A feasible point x* € F is a local mazximum point or local maximum, if there
exits a v > 0, such that J(2*) > J(x) holds for all x € F N B, (x*), where
B, (x*) is a Ball with radius r and midpoint z*. If we have J (x*) > J (z) for all
r € FN B, (z¥)\ {z*}, then x* is a strict local mazimum.

o A feasible point x* € F is a global mazimum point, if J (z*) > J (x) holds for all
r € F. If we have J (z*) > J (x) for all x € F \ {a*}, then z* is a strict global
mazimum.

We denote the gradient of the objective function by V.J () . In our case it is a column
vector and VG (v) € R™"¢ as well as VH (z) € R™"# are the transposed Jacobian
matricies of G and H. With this notation we can define the active set of inequalities
in Z:

Definition 4.10 (Active set) )

Let F be the feasible set of (NLP). A inequality H; (z) > 0, 1 <1 < ng, is called active
at point T € F, if H; (Z) = 0 holds. The set I (z) := {1 <i<ngl|H; ()= 0} is called

the active set of point .
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4. Replacement Model

The next definition gives us the important notion of linear independence constraint
qualification (LICQ) which we need later on.

Definition 4.11 (Regular point and LICQ)
Let ¥ € F be a feasible point. T is called reqular, if the joint Jacobian matriz of the
active inequalities in T has got full row rank,

ran V~(~J (j)T =NnA X
k (VHI@ (x)T) s 11 (@)

This condition is called linear independence constraint qualification (LICQ).

As the last definitions, we establish the Lagrange function, the complementary condi-
tion, strictly active inequalities and the tangent cone:

Definition 4.12 (Lagrangian, complementary condition, strictly active inequalities,
tangent cone)

e The function ) )
Lz, A p)=J(x) = NG (2) — p'H ()

is called Lagrangian function of problem (NLP). The vectors X € RYa and p €
R¥i are called Lagrange multipliers associated to the equalities and inequalities
restrictions.

e The triple (T, A\, ) satisfies the complementary condition, if uTiz (z) > 0. We
obtain, then p; = 0 or H; (£) = 0 or both for all 1 < i < ng. In the case, we
either have strictly p; = 0 or H; (z) = 0, the triple (Z, A\, ) satisfies the strict
complementary condition.

o An inequality H, () > 0 with Lagrange multiplier u; is called strictly active at
point T, if H; () =0 and p; > 0 hold. The associate index set of the strict active
imequalities is given by

I (z) = {1 <0 < nplH (3)Ap > 0}.
o Let T € F be a feasible point of problem (NLP). The set

T (z) = {p ERYVE, (7)p>, il (:z)} ,

15 named the tangent cone.

We remark that I (Z) = I (Z), if we obtain strict complementary. Now, we describe
the optimality conditions from [53] to characterize the optimal solution. We start with
first order necessary conditions:
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4.2. The Direct Solution Method

Theorem 4.13 (First order necessary conditions)

Le x* € F be a feasible point and a local mazimum of problem (NLP). Further, let x*
be a reqular point. Then there are Lagrange multipliers \* € R"é¢ and p* € R"a such
that

VL (%, N, 1) = VJ (z%) = VG (z*) N = VH (%) " = 0 (stationarity)
pTH (z%) =0 (complementarity)
@ >0 (dual feasibility)

This necessary condition is called Karush-Kuhn-Tucker-Condition or in short KKT-
Condition by their discoverers. Further, every local maximum satisfies this condition,
but also local minima and saddle points do. Therefore, we call the triple (z*, \*, u*) a
stationary point. With the help of the Hessian matrix V2L of the Lagrange function £
we can deduce second order necessary conditions:

Theorem 4.14 (Second order necessary conditions)
Let the triple (x*, \*, u*) be a stationary point and let x* be regular point and a local
mazimum. Then the following holds

pINVAL (2, N ) p >0 forallp e T (2%).

From Theorem 4.14 we can conclude that the Hessian matrix of the Lagrange function
L is positive definite. As last result we present a sufficient condition of second order:

Theorem 4.15 (Second order sufficient conditions)
Let the triple (z*, \*, u*) be a stationary point and x* be reqular. Further, we assume
that the strict complementary condition and

p V2L (2 N, ) p >0 forallp € T (z%)\ {0}

hold. Then x* 1s a strict local mazimum.

The proofs can be taken from [53, Chapter 6]. This results can be used as theoretical
background for optimization algorithm like IPOPT (Interior Point OPTimizer)) which
will be used in our work, confer [92].

4.2. The Direct Solution Method

To solve the optimal control problem we use “the direct method” or “gradient based
method”, confer [22]. The direct method uses a suitable approximation of the state
variables x and control variable v and v. This discretization strategy consists of three
main parts:
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4. Replacement Model

1. Parametrization of the control:

We choose for the control u a suitable function approximation u;. For example

we can choose a piecewise linear function on a grid. The index h refers to the
mesh size of the underlying discretization / grid.

2. Discretization of the differential equation:

We have to choose a suitable discretization method for the differential equation
E(t) =gtz (t),u(t)),
e.g. the Euler-Method.
3. Optimization:

After the discretization of the control and state we obtain a finite and possi-
bly nonlinear optimization problem. We need to choose a suitable optimization
algorithm, e.g. an interior point method, to solve the discretized problem.

In general, the three parts mentioned have to be chosen problem specifically, because
they have to reflect the problem characteristics. To illustrate the main idea behind the
method we consider Problem 4.5. We select a mesh

Mﬁiz{t020<t1<...<tT:Tend}

with step sizes hy, = terr —te, E=0,...,T —1 and mesh width
il = max }Alk.

k=0,..,T—1
For the discretization of the differential equation we use Euler’s method, confer [99]
or |28]. We start with the forward finite difference method to derive Euler’s method.
We get

= (t+ﬁ) = 2 () + hi (¢)
=2 <t+h> — 2 (t) + hg (t,z (1) ,u(t))
If we use the grid points, then we obtain

T (thar) = @ (8) + g (b, (), u () -
We will use the abbreviation

xp =z (ty) and wg:=u(ty).
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4.2. The Direct Solution Method

to make the notation simpler. We get
Tpy1 = Tl + g (tg, z,ux) and o = Zo. (4.24)

Equation (4.24) is Euler’s method to give us an approximation of the ordinary differ-
ential equation (ODE). For the control variable u approximation u; we use a piecewise
constant function wu; which is defined as

Ug, € (tk,tk+1], k= 1,...,T.
As next step we define

- _ + —
T; —tk—l, T; —tk and Ti—tk.

We obtain for our jump cost function

GI (.CE (7’-_) ,Ui,Ti_) = GI (xk_l,vk,tk) .

1

Further, the discrete jump dynamics are

x — 1 = g1 (zpo1, 0", te)

We claim the fulfillment of the constraints only at the grid points. Further, we ap-
proximate the integral in the objective function with the help of the rectangle rule,
confer [96]. We obtain

In summary the discrete version of Problem 4.5 is:

Problem 4.16 (Discrete Optimal Control Problem)
Find coefficients xy,, v' and u,, k = 1,....T on a given mesh M, which solve the
optimization problem

T+1 T
max E h; e tnolk 3 (xk, Uk, tk) — E g tnolk Gy (;Ck,l, Uk, tk)
x}mukvvk k=1 k=1

under the difference equations constraint
Tky1 = T +Bk9(tk,$k,uk), k=0,....,T,
the boundary condition

Ty = o,
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4. Replacement Model

the jump dynamics
Tk — Tp—1 = g1 (xk_l,vk,tk_l) Jk=1,...,T,
the mized state and control constraints
O (tg, xp,u) <0, k=1,...,T—1,
the state constraints
O, (tg,xx) <0, k=1,...,T,
and the control constraints

@u(tk,uk) SO, k‘zl,,T

As we see Problem 4.16 is a finite dimensional, nonlinear optimization problem which
can be written in the general form:

max J (z)

subject to G (z) <0,
=0

G
with the optimization variable

zZ = (Io, co 3 TNng+ngs U0, - -+ s UNny+ny) V0Os - - - aanv-‘,-nU) y
the inequality constraints

P (o, o, up)

(P (tN7 TN, UN)
®, (to, xo)

O, (tn, zN)

D, (to, up)

D, (tn, un)
and the equality constraints

x1 — Zoho — g (to, To, wo)

TN —TN-1hN-1 — g (tN-1, N1, UN_1)
H(z):= o — T
x1 — xo = g1 (29, 0", to)

oy —an-1 = gr (wn—1, 0V, ty1)
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Figure 4.4.: Example of factors which influence the life consumption of a component.

We see that our problem can be very large, because we have (n, +n, +n,) - (N + 1)
optimization variables and (ne; + ney) - (N + 1) 4+ 2n, - (N + 1) 4+ 1 constraints.

4.3. General Maintenance Modeling

To model our replacement problem we have to introduce basic definitions and ideas
which will be as well important in the later Chapters 5 and 6. We start with the defini-
tion of the life counter function related to our consideration about lifetime consumption
in Section 2.2.

4.3.1. General Defintions
Life Counter

According to Chapter 2, the life consumption of a part or component depends on various
factors like for example the load of the gas turbine, ambient temperature or the quality
of the fuel. Therefore, the life counter must consider these effects properly. For example
the life consumption of turbine blades will accelerate, if the fuel has bad quality. See
Figure 4.4 for example where we see how influence parameter change over the time.
Thus we could define a life counter as function of the various factors which influence
the life consumption. The influencing factor changes over time and therefore the speed
of life consumption will change over time. But the life counter is a monotone increasing
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4. Replacement Model

function. Due to these facts we define a life counter (function) in general as
c:Ry =Ry, t—c(t) (4.25)

and we neglect the direct dependence of the influencing factor for convenience. We as-
sume, the influencing factors are included implicitly. Therefore, the life counter masks
the information how the operating factors change over time. But the life counter func-
tion gives us explicit the information of how much life is consumed. Further, the life
counter ¢ (t) need not be continuous, like we see in our EOH-model in Section 2.2 or in
particular in Figure 2.5.

Financial Data

Another important aspect is the financial data modeling, because our objective will
be to maximize expected gas turbine operator’s revenue. In our case we model the
financial data through four main functions:

e Revenue:

I'Ry —» R, t—1I(t) (4.26)
is the function which gives us information how big the revenue of the gas turbine
operator is. It is implicitly connected to the operating scenario of the gas turbine,
because the revenue will be lower, if the gas turbine does not run at full load or
the revenue changes, if the fuel changes.

e Equipment costs:
OMEI R+ — R, t— CME (t) (427)

is the function which gives the actual cost for the parts which are replaced or more
accurately to set the component back into an as new condition, e.g. by repair.
That can be for example costs for spare parts or nondestructive testing.

e Assembly costs:
CMAI R+ — R, t— CMA (t) (4.28)

is the function which gives the actual cost to dismantle a part. Further, the
assembly costs reflect the outage duration, because they include the revenue loss
of the gas turbine operator due to the downtime.

e Failure costs:
CRI R+ — R, t— CR (t) (429)
is the function which gives the penalty fee of the gas turbine operator, if a com-
ponent of the gas turbine fails.

The overall maintenance cost Cy; is always the sum of the equipment cost Cyg and
assembly cost Cyia defined by

Cum (t) = CuE (t) + Cuva (t) . (430)
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Figure 4.5.: Disassembling dependency tree T of a gas turbine. If we want to disassem-
ble Part i, then we must dissemble all parts of the path between GT and
Part 1.

In Section 6.3 we will extend the maintenance cost definition by two additional functions
Cwi (t) and Cyp (t) to model the inspection cost.

Assembly Dependencies

Due to the construction of the gas turbine there are many assembly dependencies. For
example, a rotor lift requires a complete disassembly of the gas turbine. This fact must
be included in our model, because we can create a benefit from it. We can save time
and money, if we do several service actions at the same outage.

Therefore, we try to model the disassembly dependency with a tree 7 = (V| E) with
nodes/vertices V and edges E. A schematic example is shown in Figure 4.5. The basic
idea is to put the part which must be disassembled first on the top and attach parts in
the order of the dismantling process. This gives us the disassembling order. Some parts
may have many children and some not. Depending on the position of a part in the
tree, the disassembling time will vary. A part with a deeper position in the tree needs
a longer dismantle time, than a part with a higher position. The disassembling cost
also increases. Every node of the tree gets the information of the additional dismantle
time and assembly cost when compared to its parent. In this case, the definition of the
assembly cost Cya in equation (4.28) changes and gives us the additional cost, only.
We get the whole disassembly time for a part, if we count all dismantle times of the
path from the part node P to the tree root. Following this process, we define a function

Tp:TxV =R, (T,P)—Tp(T,P),

where T is the set of all possible dependency trees. If we dismantle more than one part,
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4. Replacement Model

02040

Figure 4.6.: Serial system with n parts.

e.g. n, then we get the outage duration by the maximum of the single outage durations
by
TDO = max (TD (T, Pl) s ,TD (T, Pn))

If we want to replace a set of parts {Py,..., P,}, then we get the overall disassembly
cost Cya (r) by counting every single disassembly cost Ca, (t) once which is need to
replace every part P, € {Py,..., P,}. This process is defined by

Cya: Ry xTxP(V)—=R, (t,7T,P)—1Tp(t,T,P), (4.31)
where P (V) := {A|]A C V'} is the power set of V.

4.3.2. System Reliability Modeling

We extend our modeling approach by reliability modeling. Therefore, we recall our
reliability functions

e Hazard rate function: h (t) (Equation (2.5))

e Survival/Reliability function: S (¢) (Equation (2.7))
e Failure function: F'(f) =1—S(t) =1 —exp (— fot h(T) d7‘> (Equation (2.3))

from Section 2.1.3 and show how to connect them. But first we define that the hazard
rate depends on the life counter ¢ (t), e.g.

hnew (t) = h01d (C (t)) : (432)

Due to the relationships in equation (2.7) the failure and survival functions F' () and
S (t) depend on the life counter ¢(t). As mentioned before a gas turbine consists of
multiple components and therefore system reliability is an important part of modeling.
We introduce three basic rules of system reliability and show how we can use them to
model more complex ones. We follow the ideas from [34] and [64].

Serial Systems

We start with the reliability of a serial system. We assume our system consists of n
parts, see Figure 4.6 for an illustration. The system fails, if one part fails. Furthermore,
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SYCJeYe

Figure 4.7.: Parallel system with n parts.

we assume that the random failure events are independent. For such a system we can
calculate the reliability / survival probability by

Ser = f[ S;. (4.33)
=1

The reliability decreases, if the number of parts in the serial connection increases. In
terms of hazard rate functions we calculate the reliability by

S (1) = exp (- /0 > (T)>. (4.34)

Parallel Systems

The second system is a parallel system which fails, if all parts fail. The schematic
diagram is presented in Figure 4.7. We calculate the reliability by the complementary

approach and we obtain

Spr =1 =[] (1= 5)). (4.35)

i=1

The reliability increases, if the number of parts increases.

k out of n Systems

A k out of n System consists of n parts and it works, if £ or more parts did not fail. It
is a mixture between a serial and parallel system. A 1 out of n System is full a parallel
system and a n out of n System is a serial system. If S; is the reliability of a single
part, than we get overall reliability of a k out of n System by

Se=Y_T[S [] @-5,) with N={1,...,n}.

JCN ieJ  jeN\J
| T[>k
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(a) Complex system divided into subsystems by (b) Reduced system to serial system
dashed rectangles.

Figure 4.8.: Calculation method for complex system.
Complex Systems

The reliability of complex system can be calculated, if we split the system in small
parallel or serial systems and calculate the reliability for the small systems. We repeat
this method until we have the whole system reliability. We illustrate this method for
the example in Figure 4.8(a). First at all, we divide the system 1 in two parallel systems
as we see in Figure 4.8(a) marked by the dashed rectangles. For the two subsystems we
get the following system reliabilities

2 4

Si=1-J[(1-95) and Sy=1-JJ1-5)

i=1 =3

We replace the parallel systems with the system reliabilities 57 and S, and get the serial
system 2 as presented in Figure 4.8(b). The new system has the reliability

2 2 27
s=1Is=1I(1- II «@-s»
i=1 i=1 j=142(1—1)

This methodology give us the possibility to calculate all necessary system reliabilities
for all cases in our modeling approach.

Replacement Modeling

Now, we introduce the effect of service in our replacement model. We assume that every
service action resets the consumed life of a part back to zero or in other words in an as
new state. Therefore, we say that all our service actions are replacements. Further, we
can assume that our life counter ¢ (¢) of a component is set back to zero and thus the
the hazard rate is set back to zero. In general, we can redefine a life counter ¢ (t) after
an replacement at time t* by

c(t):=c(t)—c(tr), t>t" (4.36)
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4.4. The Replacement Model

In this section we show how we connect to the impulse control theory from Section 4.1.2,
the modeling approach from Section 4.3 and direct solution method from Section 4.2
to solve our replacement model.

In our model we assume that the gas turbine has m different life counters ¢; (t) which
belong to different parts or components. First, we show how we can model the effect of
replacement with the help of impulse control. As mentioned in equation (4.36) after a
replacement of a part, the counter is reseted to zero. We use the state variables z; (t),
¢t = 1,...,n from the impulse control problem to model the resetting of the counter.
We redefine the counter by

Gta)=ct)—zl), i=1...,m
The new life counter fulfills
¢ (rj,2;) =0 forallj=1,...,N, (4.37)

at every service time point 7; for part ¢ which was demanded. To reach this aim, we need
to establish certain restrictions and dynamics for the state variables x;, i = 1,...,m
to consider the full resetting of the counter at the discrete time points. The following
state dynamics and restrictions deliver the right behavior of the state variable in our
impulse control problem:

e State dynamics:

8 &
o=
=
Il

, (4.38)

e Jump dynamics:

ZT; (7';_) — I; (Tj_) :UZJ [Ci (Tj) — T; (Tj_” y Z: 1,...,771, j: 1,...,N, (439)

Jump control 1 for equipment:

0<v/ <1 fori=1,...,m, j=1,...,N, (4.40)

e Jump control 2 for assembly:

0<w/ <1 fori=1,...,m, j=1,...,N, (4.41)

Disassemble dependencies:

vl <w] fori=1,...,m, k€ P, j=1,...,N, (4.42)
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(=
< —_ G
Xi
- Cis
o _|
™
o _|
~
o _|
—
o - /
[ I I I I ]
0 8 16 24 32 40

Figure 4.9.: Service state modeling: Dashed black line is the counter ¢; (¢), the dashed
green line x; (t), the bold red line ¢ (¢, x;).

e State restrictions:

0<wz(t)<c¢(t) forte|0,T] andi=1,...,m, (4.43)

where 75, 5 = 1,..., N, are the jump times and give us the service time points. Con-
dition 4.38 guarantees that our life counter ¢} is manipulated by service only at service
times. The condition 4.39 delivers the right “jump height” for our state variables x;,
1=1,...,m.

Further, it guarantees that we get vf =1or vf = 0. Strictly, the restrictions 4.40 and
4.41 should be

vl wl € {0,1} fori=1,...,m and j=1,...,N.

Since our modeling approach meets the conditions for a bang-bang solution, we can use
the relaxed version from equations (4.40) and (4.41) and we see the linear dependency of
the control variables vj-' and w{ in equation (4.39). We will derive the linear dependency
of the objective function later in equation (4.44).

Equations (4.40) and (4.41) give us the information to change part i and disassemble
part k at time 7;. In condition 4.42 the set P, C {1,...,m} gives us the disassemble
dependencies. More in detail, P; is the set of all parts which must be disassembled when
we want to replace part i. The impulse dynamics are shown schematically in Figure 4.9.

The hazard rates with service are defined by

Bt = hi( (b)), i=1,....m.
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The definition is equal to our old version. We only changed the life counter. We
model our multi component system as a serial connection according to section 4.3.2
and therefore, according to equation (4.34), we obtain for the overall hazard rate

m

B (t) = Z () =) hi(c (t,2:))

=1

and for the overall survival function

S (t) == exp (- /0 Zh; (1) d7> — exp (- /0 Zh (¢S (t,xi))d7>.

Now, we are able to define the cost for the j-th jump:
Gr ( (77) 0w, ) = 8 () Y (o (77 )+ Chuns (77 ) wd). (440
i=1
and it gives us the expected cost for service in present value formulation. Thereby

ino € [0, 1] is the discount factor. Equation (4.44) and the restriction in equation (4.42)
represent the assembly cost Cya in Equation (4.42).

The continuous cost function G is given by

Gz (t),u(t),t)=e™"S(t) |I(t) - Cr(t) Z b (1)

= IS (@) [1(t) = Cr(t) I ()]

and it handles the expected revenue and risk cost. We remark that an extension to
different Cp, is possible to take different risks into account. In summary, our model
problem with replacement is given by:

Problem 4.17 (Replacement Model)
Find a number N of outage times, time points T € Rf, 7; < Tjt1, replacement control
v/ €R™, j=1,...,N and disassemble control w € R™, j =1,..., N which solves

max [ S ) (10 - Cr 0 0)

Nyl wi, T
N m
_ Z e ey § (Tj_) Z Cupi (Tj_) Uzj + Chai (Tj_) wg (4.45)
=1

j=1

subject to the constraints in equations (4.38) to (4.43).

Now, we need to solve Problem 4.17 to get our optimal maintenance schedule. We use
the well established direct solution method from Section 4.2. We also use all discretizing
steps as mentioned in Section 4.2 with an equidistant mesh M = {¢;,...,tr} with step
size h. In summary, we get the following discrete version of Problem 4.17 which is our
starting point for the numerical analysis in the next Section 4.5:
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Problem 4.18 (Discrete Replacement Model)

Find state vectors z; € RT and control vectors v',w' € [0,1], i = 1,...,n which solves
T
max hY e e S (1) [I (t) — Cr (t) b (t)]
;0w 1
T m
— Z e_'Lnutk—l S (tk—l) Z CME’L (tk;_l) fUZI‘g + CMAi (tk—l) 'Ujf

k=1 i=1

(4.46)

subject to the discrete jump dynamics
xi (te) — x5 (tp1) = 0 [ (t) — i (Br)], i =1,...,m, k=1,...,T,
the jump control for equipment
0<uvi<t1, i=1,....m, k=1,...,T,
the jump control for assembly
0<wr<1, i=1,....m, k=1,...,T,
the disassemble dependencies,
oF <wf, i=1,....m, l€P, k=1,...,T,
and the state restrictions
0<uaz(ty) <ci(tg), i=1,....m, k=1,...,T,

to get the optimal outage schedule.

We can read off the set of optimal service time points T* := {t7,...,t}} from the
optimal solution of Problem 4.18 by searching for all k = 1,...,T with vf = 1, i =
L,...,mand set t, =, =1,..., N. Further, v¥ encodes the replacement of the i-th

part at time ;.

4.5. Numerical Analysis

In this Section we present numerical results from our discrete replacement model. We
start with a description of the numerical implementation and then present different
results concerning mesh sizes. various model sizes, input data and comparison between
actual maintenance concepts and the optimized one.
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Figure 4.10.: Flow chart of the replacement model implementation.

4.5.1. Numerical Implementation

The software to solve Problem 4.18 was written in R 3.2.3 which is programming lan-
guage and software environment for statistical computing, confer [75|. Figure 4.10
illustrates the general structure of the implementation. First, we have to define the
various model parameters which we divide into three groups: The first group contains
all technical data like the number of components, the failure probabilities, assembly de-
pendencies and the life counter functions. The second group includes all financial data
like the revenue, the risk cost, service cost and the time duration. The last group takes
model parameters into account which we need for the discretization and the control of
the nonlinear solver.

The preprocessor block takes financial and technical input and adapts them to the model
parameters. This step is necessary, because we need to connect the continuous given
values like the gas turbine operator’s revenue I (t) to the discrete values I, = I (tx) at
time t; which are influenced by the step size h. We describe the process for the financial
data shortly. We assume that a mesh M; = {t; < ...tr} and a revenue function I (¢)
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are given. Then we define

1 tet+1
Ik::—/ Tdt, k=0, . . T-1 (4.47)
ler1 — i Jy,

as mean value of the revenue I in the interval [ty,tx11]. We make the same approach
for the risk and maintenance cost:

1 trt+1
oRk;:—/ Cr(t)dt, k=0,....T—1 (4.48)
tk"r]. - tk tr
1 tet1
Cupp = ———— Cug (t)dt, k=0,....T—1 (4.49)
ler1 — Ui Jy,
1 trt+1
CMAk = — / CMA (t) dt, k= 0, e ,T -1 (450)
U1 — T Jy,

With this preprocessed data we are able to set up and solve the optimization problem.
We use the open source nonlinear solver IPOPT 3.11.9 (Interior Point OPTimizer)
which was developed by Wichter, confer [92]. TPOPT uses a interior point method to
solve the optimization problem. The last block post process the result data from solver
to present the solution.

4.5.2. Numerical results

We present four different case studies for validation purposes. First, we present the
difference between the actual outage schedule and the optimized one. Next, we show
how the solution is influenced by the size of the mesh. Then we analyze how financial
data or operating regimes influence the outage schedule. As last step we increase
the number of the counters to show that the problem is still solvable in a reasonable
computation time.

We used for the following calculations a Linux workstation with an Intel Xeon E5-2643
v3 3.4GHz CPU and 256GB RAM.

Comparison of the Optimal vs Standard Outage Schedule

We start with an example of a gas turbine with three lifetime counters - a gas turbine
which consists of three components Cy, Cy and Cs, respectively. The three components
represent important component groups like the hot gas path parts, the compressor and
the rotor & casings. The important quantities of the model are summarized in Table 4.1.
The financial data and other model data are based on the sources in Section 3.3, but
they are fictitious for all following examples in this thesis. In Figures 4.12(a) and 4.12(b)
we present the financial data. The revenue of the gas turbine operator changes between
high price periods and low prices periods, confer Figure 4.12(b). This time depending
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Model parameter

Number of counters: 3

Time duration: 12 years

Risk: Complete loss of the GT (3330.0Mio. Euro)

Failure probabilities: Weibull Model with parameters: m; 3 = 2.12 and 1, =
8.5-10%, mp = 1.2-106, n3 = 2.2- 10°

Life counter: c3 (t) = 2.2¢1 (t) = 2.0¢y (t) for all t (ALL EOH-Model)

Power: 300MW

Operating hours per year: 8030

Starts per year: 30

Equipment cost: COvrr = 9.0 - 10°, Cyige = 1.7 - 108, Cygs = 7.0 - 10°

Assernbly cost: CMAl = 0-3CME17 CMAQ = O-BCME27 CMAg = 03CME3

Outage duration: Cp1 = 10days, Cps = bdays, Cps = 4days

Table 4.1.: Model parameters of the 3 counter model.

Service Action
05 15 25 35

— Z 2 2 2
. i | s i
— 1 1 1 1 1 1 1 1 1
- I I | | | | | I I
T T T T T T
0 20 40 60 80 100
time in kKOH

Figure 4.11.: The Figure presents the optimal outage schedule for the 3 counter problem.
The gray marked schedule represents the standard schedule and the black,
red and green colored represents the optimized schedule. The blue dashed
line indicates the electrical price profile.

price profile is typical for various regions in the world, for example in countries where
people use air condition a lot during summer. Further, the dismantle dependencies are
very simple: If we want to disassemble component C;, then we must disassemble all
components C; with j < 7. In addition, if we replace component C;, then we replace the
components C; with j < 1, also.

In Figure 4.11, we see a comparison between an optimal and standard maintenance
schedule for the three counter example. The gray marked outage schedule applies to
the standard outage schedule. This standard schedule refers to the EOH model from
Section 2.3. We define for that reason a new global life counter ¢, (-) by

g (t) == max{c; (t),c2(t),c3(t)}

to reflect that we have only one life counter. In the global life counter approach the
highest stressed component is always leading. According to the counter ¢, we replace
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n h in hours optimal value | runtime in s | iterations
200 525.60 4.8972141e+04 3.0 105
500 210.24 5.2865214e+-04 9.9 158
1000 105.12 5.4111597e+04 32.5 238
2000 52.56 5.5588646e+04 76.9 231
5000 21.02 5.6338496e+04 463.2 222
7000 15.02 5.6490020e+04 982.8 364
9000 11.68 5.6480962e+-04 1094.4 255

13000 8.09 5.6617032e+04 2757.8 316
17000 6.13 5.6667140e+04 4909.1 346

Table 4.2.: Convergence study, number of iterations and runtime for different mesh sizes
h.

every 8333EOH component 1, every 25000EOH component 2 and every 50000EOH
component 3. The black, red and green colored optimal outage schedule in Figure 4.11 is
less dense than the standard outage schedule and fits better to the electrical price profile.
The optimal value of the objective function is 56.33Mio. Euro compared to 0.03Mio.

Euro in the standard case. The revenue was increased by the factor 50%3331%100 = 1877.7.

Influence of Mesh Size

Now, we start analyzing the effect of the mesh size on the solution to our problem. We
take the same model as in the last section. We assume that the step sizes of the mesh

Mﬁlz{t020<t1<...<tT:Tend}

are constant. Therefore, we obtain h = % In Table 4.2 we see how the mesh size
changes the optimal solution. We identify that the optimal solution does not change
significantly, if we choose n > 5000. The relative difference between the optimal solution
for n = 5000 and n = 17000 is

5.6490020e + 04
5.6667140e + 04

- 100% =~ 0.313% (4.51)

Further, the optimal outage schedules are presented in Figure 4.12(c). As we see, the
outage schedule stays quite the same, if we increase n over 5000. Therefore, we can
assume that a mesh size h = 21.02h & 1day is fine enough. From a practical view this
step size is small enough, because outages are planed on a daily basis or an even longer
times basis. We can conclude that our approach reaches convergence in reasonable
runtimes well below one hour.
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Parameter Variation

In this section we present how the change of model parameters like financial data or
failure probabilities influences the solution. This study is important to analyze the
sensitivity of the solution influenced by estimated input parameter. First, we keep the
high price profile from the last sections and change the failure probabilities. We change
only the scale factors n; of the Weibull distribution. We use the following sets for 7);:

Ey = {m =850-10°m, = 1.2-10° 1 = 2.2 - 10°} ,
By = {m =4.25-10°,p, = 6.0 10°, 73 = 1.1-10°} ,
By = {m =1.70-10° 1, = 2.4 - 10 13 = 4.4 - 10°} ,
By = {m =3.40-10%n, = 4.8 -10% 73 = 8.8 - 10°} .

Further, we use n = 5000 for the time discretization. The resulting outage schedules
are presented in Figure 4.13. As anticipated, the density of outages decreases, if the
failure probabilities decreases which is connect to the change of the scale parameter
n. But a special feature of the high price period model is that all bigger / longer or
more expensive outages are scheduled before or after the high price time period. This
behavior is reasonable, because it decreases the risk of a failure in a high price period
and it minimize the revenue loss in the high price period.

Next, we change the revenue profile to a constant revenue profile with 3 Euro per MWh.
The service cost are constant, too. The other model parameters are the same as in the
first model. The resulting outage schedule is illustrated in Figure 4.14. We see that
the outage schedule has a fixed pattern. Every second outage is of type 2 and the time
difference between two outages is always the same, approximately 10400 hours.

As last parameter variation, we give an example where we use real market data from
the “European Energy Exchange” (EEX) to show that our approach works with real
revenue data. In Figure 4.15(a) we see the revenue data which give us the the price for
one baseload hour in the day ahead market, but the presented data does not include
the fuel cost. This data was made available for this thesis by the EEX, confer [36].
Figure 4.15(b) illustrates the associated service costs and the final outage schedule is
presented in Figure 4.15(c). The outage schedule is very dense compared to our previous
examples, because the revenue is higher as in the other models and therefore the impact
of the penalty fee of failure is not big.

Counter Variation

In our last example we increase the number of counters and look at the calculation time
in terms of time and iterations. The size of our optimization problem strongly depends
on n (time discretization) and m (components) . We have 3nm optimization variables
and 4mn — n — m constraints. We take our high price model from above and further
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component 7 ChiEgi Cpi | ¢
4 3.2-10% | 600000.0 | 2 | 1.5
5 4.2-10° | 500000.0 | 2 | 1.0
6 5.2-10° | 450000.0 | 2 1.1
7 6.6 -10% | 400000.0 | 2 | 1.0
8 7.6-10° | 300000.0 | 2 | 1.0
9 8.7-10% | 250000.0 | 2 | 1.1
10 9.8-10° | 200000.0 | 2 | 1.0

Table 4.3.: The model data for the different components.

# constraints

# components | iterations
3 222
5 358
8 362
10 392

runtime in sec | # variables
463.2 45000
1823.5 75000
2538.7 120000
4264.5 250000

54997
94955
154992
194990

Table 4.4.: Runtime, iteration count and model size for different number of components.

we extend it by more lifetime counters. The model data for the additional counters
are presented in Table 4.3. The results are presented in Table 4.4. We can conclude
that we also can solve problems with a high number of life counters, needed for real
world applications like our gas turbine outage scheduling problem, in an acceptable
computation time. If we take the rotor, compressor, casing, combustion chamber and
the four turbine stages into account, then we need 8 lifetime counters, corresponding
to less than one hour for one optimization.
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(b) High price period revenue trend, n = 17000.
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(c) Optimal outage schedules for different n. The black / red / green symbols correspondent to
replacement of component 1 / 2 / 3,

Figure 4.12.: Financial data and results for the three life counter examples with high
price periods in the revenue.
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Figure 4.13.: Optimal outage schedules for different sets E; of the Weibull shape pa-
rameter . The dashed line shows the revenue trend to support the rep-
resentation of the revenue influence to the outage time points.
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Figure 4.14.: Optimal outage schedule for constant revenue /. The black + signs belongs
to service action 1, the red + signs belong to service action 2 and the green

+ sign belongs to service action 3
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(¢) Outage Schedule for EEX data. The black cross refers to service action 1, the red cross refers to
service action2 and the green cross refers to service action 3.

Figure 4.15.: Financial data and results for the three counter example with EEX data.
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In the last chapter we presented a method to calculate the optimal outage schedule of
a gas turbine, where the gas turbine or a particular component is not replaced after
a failure. This is a valid approach, because the failure of components like the rotor
will yield to a complete loss of the gas turbine. But in reality, there are component
failures which won’t yield to complete damage of the gas turbine like for example a
failure of a turbine blade. It is possible to repair the gas turbine after turbine failure in
a relatively short time period and go back into operation. Mostly, we find this situation
in real applications of gas turbine maintenance. Therefore, we would like to establish
a model which includes this feature. Further, we have to figure out, if potentially the
replacement of additional components during a forced outage event is beneficial.

Therefore, we need to find an optimal maintenance strategy which depends on the
history of our gas turbine and the future operating regime of gas turbine including
possible future failures. The new solution approach will deliver an optimal maintenance
policy depending on the actual time step and state.

We establish the mathematical framework of Dynamic Programming to model this new
feature. Therefore, we present the basic theory of Markov Decision Processes and Dy-
namic Programming. Then we describe our replacement model in terms of Dynamic
Programming and present a numerical analysis. Finally, we show an approximate solu-
tion for the advanced replacement model with numerical results.

The usage of an approximate method is necessary, because the Dynamic Programming
approach suffers from the curse of dimensionality. The model grows in the number of
components exponentially and therefore exact solution methods become unattractive.
The approximate methods can mitigate this effect.

The work of Bellman and Howard, confer [8] and [50], made the theory of Dynamic
Programming popular. But Cayley presented in 1875 first results about stochastic
sequential decision making, confer [20]. Modern research about sequential decision
making started after 1940 with the work of Wald and Massé, confer [59] and [93]. Both
authors presented fundamental theory insight of the decision problem and Wald pre-
sented an analysis of water resource management problems. Further analyzed problems
are stochastic inventory problems, confer [4], pursuit problems, confer [52], and aircraft
engine maintenance problems, confer [2]. An important text book about approximate
Dynamic Programming was published by Powell in 2007, confer [73]. The presented
methods were used to solve an energy dispatch problem, confer [66]. This short his-
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torical overview followed the informations of [74]. As compared to the maintenance
problem from [2] we use more components and we present an approximate solution
methods which exploit the structure of the problem.

5.1. Markov Decision Theory

We start with a brief introduction to Markov Decision Process (MDP) theory. In this
section we essentially follow [74]. But first, we start with the definition of stochastic
processes, confer [69], because the Markov Decision Theory underlies a Markov process.

Definition 5.1 (Stochastic Process)

Given a probability space (2, F, P) and a measurable space (S,X), a S-valued stochastic
process X is a collection {X;: t € T} of S-valued random variables X; on ), indezed
by a totally ordered set T'. In particular for every fixed t, X; is a random variable. The
space S is then called the state space of the process.

In general a stochastic process can be time discrete or time continuous. Here, we
consider only time discrete processes. We consider only a set of finite or countable
states. In a stochastic process the system state changes at every time step according to
a probability distribution. The transition probabilities can be presented as a matrix.
For example, we have a state space S = {1,2,3} and we get the following matrix
notation for the transition probabilities:

1 2 3
1 02 05 0.3
2 06 02 0.2
3 0.1 02 0.7

(5.1)

The matrix entry p;; gives us the probability to change from state i to state j. We call
such a matrix P stochastic matrix if:

1. pi; > 0 for all 4, j,
2. Zj pi; = 1 for every .

We can interpret every row of P as a discrete probability distribution and these are
conditional probabilities. For more information see Appendix A. The condition is given
by the actual state. With this observation we can define a Markov chain which is a
special case of a stochastic process. We need a countable set S, the state space, a
distribution I on S and a stochastic matrix P = [p;]"._;. A sequence {X;}, X;: Q—
S, t € Ny, of random variables with values in S is called (pg, P)-Markov-Chain, if

1. Pr(Xo=1) = Pro(i) = po (i) for all i and
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2. For every t € Ny and j € S and for all (n + 1)-tuples (ig,...,i;) € Sy with
P?”(XO :io,...,Xt :Zt) > 0 it holds

Pr (X = jlXo =jdo,..., Xy = 1) = Pr(Xyp1 = j| Xy = i) = pinje

The first condition is called initial distribution. The second one is called Markov prop-
erty and mean that the transition probability does not depend on the history of the
process. It depends only on the actual state and time. Also, we can define a Markov
chain on finite time horizon T, e.g. 0 < t <T. In Markov chains there can exists a
special class of states. We label them with e. They have the properties pee = 1 p.; =0
for all j # e. They are called terminal states, because in this state the process stops or
more exactly the state does not change any more.

Next, we show how to calculate multi step transition probabilities like the following

Pr (X2 = 1|X0 = 3) > (52)
where we take the stochastic matrix from equation (5.1) into account. For the mentioned
example in equation (5.2) we obtain

3
Pr(X;=1Xo=3)=> Pr(X,=1X, =k|X, =3)

k=1

3
= Pr(Xp=1|X, =k Xo=1)- Pr(X, = k|Xo = 3)

k=1

= Pr(1|k) Pr(k|3)

k=1
3
= E Pr1P3k-
k=1

The last term is the same as (3,1)-th entry of the matrix P?. By induction on n it is

easy to see that
Pr(Xpmin = 7| Xm = 1) (5.3)

is the same as the (i, j)-th entry of the matrix P" which was proved by Chapman and
Kolmogorow, confer [55]. This result will be important in a later section of the thesis
by a small modification which we introduce now.

A further important result is to know the absolute probability to be in state ¢ and how
it is influenced by the initial distribution Pry. We get

Pr(Xp=j) = PriXo=1i) Pr(Xm=jlXo=i) =3 Pro(i) Pr(jli)  (54)

=1

where Pry is the initial distribution of the (Pry, P)-Markov Chain.
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Figure 5.1.: Schematically representation of the MDP and Dynamic Programming
Framework.

We expand a Markov Chain to a Markov Decision Process (MDP) by introducing a
control a. In particular the transition probability changes to

Pr (X =Xy = j,a) = Pr(ilj,a)

and thus our stochastic matrix P depends on the control variable a, e.g. P (a). With
the action a we influence our stochastic matrix P. In summary we obtain the definition
from [29]:

Definition 5.2 (Markov Decision Process)
A Markov Decision Process (MDP) consists of a tuple M = (S, A, Pr, Pro,r,in, 1)
where

e SCRY deN, is a finite set of discrete states x,
e ACR™ meN, isa finite set of actions a,

e Pr: S x Ax S — [0,1] is a transition function which denotes the conditional
probability
Pr(ziq|xg, a) == Pr (X = x| Xy = 24, 0)

to change from state j under action a to state i which fulfills the Markov property.
Further, it holds Y. pji (a) = >, Pr(ilj,a) =1 for all j and a, e.g. P (a) is a
stochastic matriz for every a,

® o is the initial states distribution att =0,

e r: S X A R is a reward function which denotes the received reward when we
erecute action a in x.

a is the discount factor and
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5.2. Dynamic Programming

e T is finite time horizon.

A Markov Decision Process and a Markov Chain are called stationary, if the transition

probability does not depend on the actual stage t = 1,...,T. Further, we can calculate
the probability Pr (X, = j|X; = i) by the matrix product P (a;) - ... P (a,) for a
given action sequence aq,...,a,. This result is based on the work of Chapman and

Kolmogorow about the multi step transition from equation (5.3).

The MDP is the connection to Dynamic Programming approach, because it describes
how the state of our model changes over the time. The general framework is illustrated
in Figure 5.1.

In general the state x € S of a system can consist of n subsystem with substates x;,
i = 1,...,n. In particular, we have x = (xq,...,2,) € & X ... x S,. The action
a can be also divided into n subactions a; for every subsystem x;. For this case our
conditional probability to change from state x to 2’ under action a can be presented in
general as

Pr(a|z,a) = Pr(z),... 2|1 ... xp, a1, ... ap) .

We call our MDP transition independent, if it satisfies
n
Pr(2'|z,a) = Pr(ay,...2)|z1...,2p, 01, .. 0,) = H Pr (z|x;, a;) .
i=1

In this case the n subsystems are independent of each other. The actions for one
subsystem do not influence the behavior of the other systems. If our reward function r
can be represented as

n
r(r,a) = Zm (x4, a;) ,
i=1

then our MDP decomposes into n single MPD’s where one agent controls one subsystem.
In this case we can solve every MDP independently to get our solution. In general there
is an advantage, if the agents carry out different actions at the same time. We establish
a joint reward function r; (a4, ..., a,) which represents the gained reward by executing
the joint action @ = (a,...,a,). A joint reward function r; arises for example in
maintenance scheduling for gas turbines. Due to the construction of the gas turbine,
we can save money and time, if we do different service actions at the same time.

5.2. Dynamic Programming

Dynamic Programming is a framework to solve problems where decisions are made in
stages. The framework is closely connected to MDP from the last section. At each
stage, the state of the system is observed, and an action influencing the system has to
be made. The decided action deterministically or stochastically influences the state to
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5. Advanced Replacement Model

be observed at the next stage. Further, an immediate reward is gained. The goal is
to maximize the reward and obtain a policy which gives us the best decision for every
stage and state of our problem. The main challenge is to balance the decision policy
in such a way that we get high actual and future reward. We strictly follow [10], [11]
and [73].

Our basic (discrete) Dynamic Programming model consists of two parts:
1. A discrete time dynamic system which is given by
Tip1 = g (2, ap,w0p), t=0,1,...,T =1,
with

t € Ny indexes the discrete time step,
r; € S CR" is the system state at time ¢ from state space S,
a; € Ay CR"™ is the control / decision variable to be selected at time step ¢
from action space A,
wy € R™ is a random parameter which represents uncertainty,
T € N is the time horizon and

gt (x4, ar,wy) is a function which characterize how the system state is updated.

2. A reward function Gy (x4, as,w;) that is additive over time or in particular over
every time step t. This means that the reward accumulates over time. As overall

reward we get
T-1

Gr (xr) + > G (x4, ar,wy),
t=1

with some terminal reward G (z7) at the final time step 7.

We assume for simplicity that our state space is discrete. In general we have uncertainty
in our parameter w; in our system dynamic and reward function which underlies a proper
probability distribution. In order to take uncertainty into account, we have to formulate
our problem as optimization of the expected reward

T-1

E |Gr (zr) + Z Gy (24, ar,wy)

t=1

This gives us a risk neutral approach. We need two further inputs to complete our
problem definition. The two missing inputs are:

1. Transition probabilities between states: We need a function which gives the prob-
ability that we change to state j from state ¢ at time ¢, if we choose action a,
ie.

Pr(xiyq = jloy = i,as = a) = Pr(jli,a).
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Since 441 = g¢ (x4, ag,wy) depends on wy, our transition probability Pr (j|i,a) is
connected to the probability distribution of w,. Further, we remark that Pr (j|i,a)
depends only on the actual state. In particular, the transition probabilities are
conditional probabilities.

2. We need the term of a policy or decision strategy which is a tuple of functions
7= (m,...,7p) with m:8— A.

The function 7, maps the state z; to an action m (x;) = a;. The set A; (zy)
consists of all allowable actions for the state x; at time step t. A policy is called
admissible, if 7, (z;) € A; (x;) holds for all states z; € S; and for all time steps
t=1,...,T. Further, we name with II the set of all admissible policies.

We remark that in our definition the policy depends only on the actual state x; at
time ¢ and not on history. We have to prove later that this policies are optimal, confer
Theorem 5.3. With the term of a policy m we can rewrite our system dynamics as

T+1 :gt(xtaﬂt(-rt)awt)7 t=1,...,T -1,

and the accumulated reward over the time horizon T as
T—1

Ve (w0) =E |Gr (27) + Y Gy (wr,m (2,) , wy)

t=1

We define an optimal policy 7* by
" = argmax Vz (zo)

We note that the optimal policy 7* depends on the initial state xy. Further, the Dynamic
Programming approach tries to find an optimal policy 7* which is optimal for every
initial state xo. We note that the optimal value V« (zq) = V* (x¢) depends on zy and
is defined by
V* (z9) = max V. (o) .
mell

We call V* the optimal value function. Further, we interpret VV* as a mapping from
initial states zo to optimal rewards V* (zo).

5.2.1. The Principle of Optimality

In this section we present the principle of optimality which is the main idea behind
Dynamic Programming and it was discovered by Bellman in 1957 [8]. The principle of
optimality means:

“An optimal policy has the property that whatever the initial state and ini-
tial decision are, the remaining decisions must constitute an optimal policy
with regard to the state resulting from the first decision”, confer [§].
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5. Advanced Replacement Model

Here, we take the theorem as formulated in [10]:

Theorem 5.3 (The Principle of Optimality)

Let m* = (7, ..., 75) be an optimal solution for the the Dynamic Programming problem,
and assume that when using 7™, a given state x; occurs at time t with a positive prob-
ability. Consider the subproblem whereby we are at x; at time t and wish to minimize
the “reward to go” from time t to time T

T-1
E GT (xT) -+ Z Gt (i[)t, Tt (l't) ,wt)
t=t
Then the truncated policy (7th, e ,7r2}) is optimal for this subproblem.

Proof. The proof of the principle of optimality is very simple. If the truncated policy
were not optimal as claimed, we would be able to switch the policy for our subproblem
to one with higher reward in our initial problem, if we reach the state z;. This is a
contradiction to our assumption that 7* is optimal. O]

This principle is in our case the foundation to calculate the optimal maintenance policy.
It shows that m; (z;) does not depend on the history.

5.2.2. The Backward Algorithm

Next, we present an algorithm to solve the Dynamic Programming problem in an exact
way. It is based on the principle of optimality from Theorem 5.3. The algorithm
steps backward through the time to find the optimal value function V; and policy m,
t="T,...,1. The following theorem from [10] gives us the theoretical foundation:

Theorem 5.4 (Backward-Algorithm or DP-Algorithm)

For every initial state xq, the optimal reward V* (xqg) of the basic problem is equal to
Vo (zo), given by the last step of the following algorithm, which proceeds backward in
time from period T — 1 to period 1:

VT (xT) = GT (iL'T)
Vi(xy) = atglﬁét)E Gy (24, a, wi) + Vi (g1 (24, ar, wy))] (5.5)

where the expectation is taken with respect to the probability distribution of wy, which
depends on xy and a;. Furthermore, if af = 7w} (x;) maximizes the right side of equa-
tion (5.5) for each x; and t, then the policy 7 = (7%,..., %) is optimal.

The proof of Theorem 5.4 follows [10].
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5.2. Dynamic Programming

Proof. For any admissible policy 7 = (my,...,7r) and each t = 1,...,T, we denote
7t = (m,...,mp). For t =1,...,T, let V;* () be the optimal reward for the (T' — t)-
stage-problem that starts at state x; and time ¢, and ends at time 7T,

V¥ (z¢) = max E

-1
Gr (zr) + Z Gy (vp,mp (xy) ,Wt’)] .

t'=t

For k = N, we define V} (z7) = Gr (xr). We will show by induction that the functions
V- are equal to the functions V; generated by the DP algorithm, so that for ¢t = 0, we
will obtain the desired result.

Indeed, we have by definition V} = Vp = Gp. Assume that for one ¢t and all z;,;, we
have Vi (2141) = Vig1 (@441). Then, since 7° = (7, m41), we have for all z:

V¥ (z;) = max E

{me,me41}

T—1
Gy (xy, m () ,wi) + Gr (xr) + Z Gy (xy, Ty () N%/)]

t'=t+1
= H;ftiX]E (G (g, 1 (1) W)

T-1
+ r}%ii{ (E GT (.TT) + Z Gt/ (l’t/, Ty (.Tt/) ,wt/)] )] (56)
t'=t+1
= max R (G (e, e (20) ,wi) + Viy (g (e, (20)  wr)] (5.7)
= HfX]E (Gt (e, T (20) ,we) + Vi (e (2, 7 (20) 5 w01))] (5.8)
= g\a@ )E Gy (x4, ar, wi) + Vigr (ges (24, ag, wy))] (5.9)
- ‘/t (xt) )

completing the induction. In equation (5.7), we used the definition of V%, and in
equation (5.8) we used the induction hypothesis. In equation (5.9), we converted the
maximization over m; to a maximization over a;, using the fact that for any function K
of x and a, we have

max K (z,7 (r)) = max K (z,a),
max K (z, 7 (2)) ax (z,q)

where M is the set of all functions 7 (x) such that 7 (z) € A; (x) for all x. O

The presented proof presents an interpretation for the function V; (x;) as optimal value
function for a (T' — t)-stage problem starting at state x; and time step t.

For a deeper insight in the DP-Algorithm, we reformulate it by taking the transition
probability into account and remove the parameter w; from the reward function G;.
This case will fit better to our maintenance problem in the later section of the thesis.
From now, we assume that the reward depends only on the actual state x; and the
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Algorithm 5.1 The Backward-Algorithm, confer [74].
function BACKWARD(T)

for z € S do
Vr () = maxaea, Gr (2, 0)
end for
fortinT —1to1do
for z € S do
Vi (2) = maxg,ea, (o) (G (20 a0) + 3 ,e5 Pr (@], ar) Vi (2))
end for
end for
return Vp,... Vp

end function

action a; an not on w;. We obtain

Vi(xy) = . g‘aé )E (Gt (x4, ar) + Vi (gre1 (2, a, wy))]

= max (G (zy,ai) + E[Vier (g1 (24, a,w1))])

at€A(xt)
= max (Gt (we, @) + Y Pr(zla, ;) Vi (x)) . (5.10)
FeAT z€S

Due to this assumption we need only to calculate the expected value of every value func-
tion Viy1 (ges1 (24, ar,wy)) and we can write out equation (5.10). Further, we introduce
at this point the Q)-functions which are defined by

Qaryt (1) = Gy (w4, a¢) + Z Pr(x|ay, ap) Viga () (5.11)

€S

A @Q-function gives us the value of the actual and future expected reward @, (z;) for
specific action a; and state x;. With the help of a Q)-function we can rewrite our value
function V; from equation (5.10) as

Vi(xy) = max Qg ().

at€A (x¢)

With this formulation we are able to calculate our optimal value functions V; (z;) in a
recursive manner for every state x; and time step t. To achieve this we have to create
a lookup table which includes for every time step t = 1,...,7T and every state x; € S
the optimal value function V; (x;). The lookup table has T" columns and |S| rows. We
summarize the Backward-Algorithm in Algorithm 5.1.

This lookup table approach leads to the main drawback in the DP-Algorithm: The
curse of dimensionality. Assume that we want to calculate Vpr_; (z;). In this case we
have to calculate V; (z;) for every z;, because we need the value function V; (z;) to
calculate the expectation in V;_; (x;). This can be a hard task, if the state space S is
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very big. This is called the curse of dimensionality in the state space. There is also a
curse of dimensionality in the time horizon, if T" gets big as compared to the time step.
Further, the action space A; can suffer from the curse of dimensionality, if there are
many actions to choose. The calculation of the expectation operator E (-) in the value
function V; can be hard to compute, if the possible size of future states x;.; is large.

5.3. The Advanced Replacement Model

The last Section 5.2 delivered the theoretical background for our modeling approach and
now we formulate our advanced replacement model in terms of Dynamic Programming.
In the next sections we present definitions of every piece of the DP framework to set
up our maintenance scheduling model.

The Time Interval

As first step we divede the reviewed time interval [0,T = Ti,q] of our maintenance
scheduling problem into 7' € N equal distributed stages, e.g. we get a set

{to =0,t1,...,t0 = Tona} with t;41 —t; =const foralli =1,..., 7T — 1.

To simplify notation we mention only the stages number ¢ = 1,...,7T instead of the
real time points t;.

The State Space

Next, we give the description of the state x; of one gas turbine’s component. In general
we have

rne{-1}uC=38, CCR,.

The set C'is finite and it includes all possible ages of the component in terms of EOH,
EBH, S or ES. It represents the consumed life of the component. The state z; = —1
gives us the information that the component is failed. If our gas turbine consists of m
components, then we define the complete state space S as

S:=8 x... x5, (5.12)

The Action Space

Our action space A for one component is very straight forward defined by

A:=1{0,1},
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-1 —1
Sa < S /
- N \ A
(a) Transition graph for ag (b) Transition graph for
ar
Figure 5.2.: The transition graphs for all actions a € A.
where a = 1 encodes to replace the component and a = 0 to do nothing. If a component

is failed, we only can replace it. Therefore, A depends on the actual state x;. The
complete action space for the gas turbine is defined like in equation (5.12) by

A=A, x...x A,

The State Dynamics

The transition function g; (z;, as,w;) = x4 for the state of a component is defined by

Ti41 :ZEt‘l—ACt, ay :0, wt:O
gr (T4, @y, wy) = Ty = Acy, ag =1, wy =0 )
Ti41 :—1, at:{O,l}, wtzl
where Ac; is the amount of consumed life between t and t+1. In Figure 5.2 we illustrated

the transition behavior. The state transition function for a gas turbine which consists
of m components is given by

gt (It, Gy, Wt) = (gtl (Iﬂ, Ay, Wﬂ) y oo Jtm (Itm Qg th)) .

We assume that all component are independent of each other.

Transition Probabilities

Next, we show our model for the transition probability of a single component. We
assume that a survival distribution S (z;) of a component is given. Then we define the
transition probabilities Pr (x4 1|2, ar) by

e No replacement:

S (w441)
S (@)

Pr(zyq|ry, a0 =0) = 0 <z < xypq
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and
S (zs + Ac
Pr(xt+1:—1|xt,at:0):1—%, 0<$t.
e Replacement:
Pr ($t+1 == ACt|fEt7at = 1) = S(Act)
and
Pr(zi = —1lz,a=1)=1—-5(Acy) .
The probability to change from z; = —1 to x;,; = —1 is included in the replacement

case. For the case of no replacement, we have to use conditional probabilities. The
transition probability for the complete gas turbine state with m components is defined
by

m
Pr(zep|m, a) == HPT (@e1il @i, @) -

=1

The Reward Function

As last missing piece, we have to define the reward function of our model. As in
our replacement model from Section 4.4, we assume that the costomer has a certain
revenue [; per time interval. The gas turbine operator has to pay a penalty fee Cry;, if
component ¢ fails. Further, we split the maintenance cost in two parts. The equipment
cost Oy > 0 and assembly cost Cyvag > 0 per component i. Also, there are dismantle
dependencies between the parts. For simplicity, we suppose that if we disassemble
component ¢, then we have to dismantle all components 7 < . We define the complete
reward function for the complete gas turbine state as

=1

Gt (27, a) = [t + Z ORti min (QTZ', O) — Z OMEtiai — max (ai Z OMAtj) . (513)
i=1 j
In equation (5.13) the term min (x;,0) says that the operator pays the penalty only in

the case of a failure and max; <ati Z; Cu Aj> ensures that all dismantle cost are charged

only once for our assumed assembly dependency.

Remarks

The size of S; and therefore the size of S is directly influenced by the discretization of
our time interval [0, Typq] or more in detail the number T of stages. Between two stages
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t and t + 1 we have a certain increase Acy; of life consumption for every component 1.
Therefore, we have to take all Ac; into account to create all possible states z;. If we
look at one component ¢ and Ac¢; = const, then we have T+ 1 possible states for the
component . We have

Si={-1}U{jAcylj=1,...,T}.

We can decrease this number by introducing a maximal life x,,,, for every component.
On this cases we get additional restrictions to our action space A. If z; = T .y, then we
can choose only the service action of replacement. Further, the definition of the state
space as Cartesian product presents the reason why our approach suffers from the curse
of dimensionality.

5.4. Numerical Analysis of the Backward-Algorithm

In this section, we present the numerical implementation of our advanced replacement
problem and we show numerical results of our various example models.

5.4.1. Numerical Implementation

The complete implementation was realized in R like our replacement model in Sec-
tion 4.5.1. We used a multi cpu implementation through the R package “snow”, con-
fer [89]. The general structure of our implementation is the same as in our replacement
model, confer Figure 4.10. We have the same three groups of input parameters techni-
cal, financial and model. Then we have to preprocess the input data such that it fits
our discretization. The main part is to create a labeling that distinguishes all possi-
ble states x; € S which is needed for our lookup table. The box “solve optimization
problem” is different compared to Section 4.5.1, because use a brute force parallelized
search to solve

Vi () = max (Ft (74, ;) +e ™ Z Pr(x|zy, ar) Vigq (x)) (5.14)

at€EA(xt) oS

for every t and x;. More precisely, it calculates the a cell of the lookup table which is
associated with state x; and time step ¢. The main input parameters are the time step ¢
the value function V; of the next time step and the state z;. The max-operation is done
by simple testing all possible actions a; € A; (x;). In our case this method is suitable,
because the size of the action space A is relative small. For the parallel implementation,
we split the state space S into #cpu=number of cpu sets S;, i = 1,.. .., #cpu and we let
each cpu solve the optimization problem in equation (5.14) for one set S;. Finally, after
our distributed calculations have terminated and transfered their results to a control

90



5.4. Numerical Analysis of the Backward-Algorithm

) Value
frepu BRSSP ¥ function V;q
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solve V; () V; (z4) for
for z, € & = S#Cpu

g l ~
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Vi (x4) from
subsolutions
and recover

L the policy m; |

Figure 5.3.: Flow chart of the replacement model implementation.

node, we calculate

arg max V;(z
gatGAt(xt) t( t)

to recover the optimal policy. Therefore, we have a lookup table for the optimal action
a; € A, too. This approach to parallelization only generates communication overhead
when reporting the results to the the control node. Therefore, a very efficient scaling
behavior can be expected in the number of cores.

5.4.2. Numerical Results

In this section we present numerical results for the various maintenance models for our
Dynamic Programming approach. We will change the size of the state space in terms
of number of components and in terms of possible state of one component, e.g. we
increase m=1,...,5in §:=8; x ... X S, and |S;|. The size of S; indicates how fine
we have discretized the time steps. If we assume that it is possible to start an outage
every day, we need a fine discretization of the state space, because many states will be
possible. Further, we will analyze the dependencies between used cpu cores and the
runtime. Therefore, we test our implementation on a Linux machine equipped with 16
cpu cores (two Intel Xeon cpu’s with 2.4GHz and 8 cores) and 64GB RAM.
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Time duration: 12 years
Power: 300MW
Operating hours per year: 8030
Starts per year: 30

. Euro
Revenue: 3 Wi

Table 5.1.: Model parameters for Variation.

#  Crq Cri Chai ni m; & Cmax
[mioE] [mioE] [mioE] [kEOH] (522 ]  [KEOH]
1 150 50 0250 2000 21 1.0 100.8
2 200 2.0 0.100 31000 23 2.0 100.8
3 5.0 1.0 0.050 250.0 22 15 60.0
4 500 3.0  0.150 1000.0 2.8 1.0 90.0
5 300 2.5 0125 533.0 24 3.0 80.0

Table 5.2.: Component data for model parameters for Variation.

As last step, we compare the standard policy from section 4.5.2 against the optimal
policy calculated by the Backward-Algorithm.

Variation of the Time Discretization and the Number of Counters/Components

In this paragraph, we analyze how the the computation time changes, if we increase
the number of components and/or change time discretization. Further, we check how
the number of cpu cores influences the runtime. The important model parameters
are summarized in Table 5.1. We assume for every component a Weibull model for
the failure distribution. Further, life consumption is constant over time, but every
component accumulates life at a different speed %ci. The component specific data is
presented in Table 5.2.

We start with a more detailed review of the two component model, because it will face
up again in Sections 5.5 and 5.6. In Figure 5.4 we see the results of the two component
model for a step size of 3 months. In Figures 5.4(a) to 5.4(c) we see the polices and in
Figures 5.4(d) to 5.4(f) the associated value functions V; for time points ¢, tg5 and t;1¢.
We recognize that the value function jumps at a certain state in all three cases and all
not represented time points. This is reasonable, because there is always a critical state
Tyerit OF age to replace a part and therefore we will replace it for all x; > .. The
jump point depends on the revenue I;. We also see this behavior in the policies. There
are structured areas where we do one distinct action.

Now, we start with our analysis of the runtime, if we change the number of components,
the size of the discretization and use a different number of cpu cores. We discretize

i . . 12
always the time span of 12 years in equal time steps At and therefore we have T' = =7
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Figure 5.4.: Results for the two component model. The first row shows the policy.
Blue means two replace both components, green replace component 1, red
replace component 2, black do nothing. The second row presents the value
function for fixed states of component 2.

stages. In Table 5.3 we see the results. The runtime in brackets [-] represents the mean
runtime per time step. We use this representation to eliminate the effect of the different
number 7" of stages and to compare the runtime better. We do not calculate all possible
parameter combinations, because for certain combinations the computation time is too
long for example the case with 5 components and 1 cpu.

If we increase the number of cpu cores, then the runtime decreases. The scaling is not
perfect, because if we increase the number of used cpu cores by the factor 2, then the
runtime decreases only by the factor 1.5. Further, we see in Table 5.3 that the runtime
increases linearly, if we keep the number of cpu cores and components constant and
decrease the mesh size. In addition, the runtime increases if the size |S| of the state
space keeps constant, but the number of components increases. The reason for this
effect is that the state space becomes bigger. The size of the action space A doubles, if
we add one component.
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5. Advanced Replacement Model

# components | T At |S]| runtime in seconds
[months| #cpu: 2 4 8 16
2 120 1 10585 3424.1  1981.8 1345.6 1019.1
28.5]  [165] [11.2]  [8.5]
60 2 2701 444.7 257.8 197.4 157.2
[7.4] 4.3] [3.3] [2.6]
30 3 1225 104.1 58.2 474 44.9
[3.5] [1.9] [1.6] [1.5]
20 6 325 19.1 11.6 11.1 17.6
[1.0] 0.6] [0.6] [0.9]
3 120 1 645685 — — — 161955.0
- - (-] [1349.6]
60 2 83731 — — 13350.0  10650.5
[—] [—] [222.5]  [177.5]
30 3 25725 — — 2149.7 1671.1
- [ A T 2
20 6 3575 — — 200.8 164.4
- (-] [100]  [82]
4 30 3 1.183 - 10° — - — 218228.3
S S
20 6 0.082 - 10° — — — 10227.0
- - -] [5114]
) 20 6 0.657 - 10° — — — 73408.6
- - (-] [3670.4]

Table 5.3.: Runtime of the Backward-Algorithm for various m and At. The runtime in
brackets [-] is the mean runtime per stage.

Comparison of the Optimal vs Standard Outage Policy

In this paragraph, we compare the standard maintenance policy from section 4.5.2
against the optimal one for different At. We replace component 1 at the age of
S8000EOH, component 2 at the age of 25000EOH and component 3 at the age of
50000EOH. A Failure also leads to a replacement of a component. Further, we re-
place component 1 and 2, if we replace component 3. Also, we replace component 1,
if we replace component 2. The results of our comparison are presented in Table 5.4.
We compare the associated value functions V;°® (z) and V** (2) for a complete new gas
turbine. On average the value function for the as news state connected to the optimal
policy is 100.00Mio. Euro better than the standard policy as we see in Table 5.4.
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AT in month | V" (z) in Mio.Euro | V& (x) in Mio.Euro
1 54.18 —91.79
2 54,28 —66.70
3 43.65 —53.29
6 54.71 —68.29

Table 5.4.: Comparison of the Optimal vs Standard Outage policy in terms of the value
function for the case that we start we a complete new gas turbine.

5.5. Approximate Dynamic Programing

The results in Table 5.3 show that the method does not scale very well, because it
suffers from the curse of dimensionality. The state space grows fast, if we increase the
number of components or decrease the step size At of the discretization. We extract this
observation from Table 5.3. We need an approach to overcome this point. Therefore,
we present the idea of approximate Dynamic Programing (ADP) in this section and we
follow ideas from [73].

The LP-Algorithm

Before we start with the presentation of approximate Dynamic Programing, we in-
troduce an algorithm which is based on linear programming to solve our Dynamic
Programing problem instead of the Backward-Algorithm, confer [73]. We recapitulate
the optimal value function

V,(z,) = max (E (w0 ar) + €7 Pr (@], ar) Vi (x)) , (5.15)

at€A¢(xt) es

We obtain from equation (5.15) |S] - |.A| linear inequalities in V; () for every time step
which are given by

Vi (x) > Fy (24, ap) + e e Z Pr(x|zs, at) Vigr (z) for all z, € S, ap € A; (z¢). (5.16)
€S

We remark that the equality sign in equation (5.16) holds for the optimal action a}.
Therefore, we interpret the inequalities in equation (5.16) as lower bounds of the value
functions V; (z;) in z; € S. If we take the values of V; (z;) as variables, we can a build a
linear program with |S| variables and |S| - |A| linear inequalities. The complete linear
program is given by

subject to

Vi (2y) > Fy (24, a0) + e ZPT (x|zy, ar) Vigr (x) for all a; € Ay (x;) and 4 € S.

z€eS
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In the LP-Algorithm we also have to start at 7" and step backward trough the time
t. The idea behind the algorithm is to find the biggest lower bound of equation (5.16)
which is equal to the optimal value function V;* (z;). One advantage is that we have
only to solve T linear programs and not T - |S| optimization problems to get the value
functions.

We can recover the optimal action a} for state x; in the LP-Algorithm, if we search
the inequality in equation (5.16) for the case where equality holds. The corresponding
action ay; is the optimal one.

But the LP-Algorithm also suffers from the curse of dimensionality. Every linear pro-
gram consists of |S| variables and there are |S|-|A;| constraints. This can lead to very
huge linear programs. So there is no big benefit to use the LP-Algorithm compared to
the Backward-Algorithm, but it is a good starting point for the approximate Dynamic
Programing Algorithm (ADP-Algorithm) presented in the following section.

5.5.1. ADP-Algorithm

As presented in [73], we show a method to solve Dynamic Programing problems in an
approximative way. We start with the assumption that we can represent every value
function V; (z;) as

Vi () = Z Britwi (1) - (5.17)

More precisely, we see V; (z;) as a function of z; and we assume that there exists a basis
expansion of V; (z;). The basis function can be chosen arbitrary for example splines or
piecewise linear functions. The main requirement of the basis functions is that they
represent the main features of V; (x;) very well. Therefore, we have to choose the basis
function problem specifically.

As next step we combine our LP-Algorithm with the basis evolution in equation (5.17).
We obtain for the constraints in equation (5.16) new inequalities by

Z Britwi (x1) > Fy (24, a4) + et Z Pr(x|x, ar) Z Bri1ibe1i () -

i=1 zeS i=1

for all z; € S and a; € A; (z;). The objective function changes to

T%tln Z Z Briti (1) = T%tlﬂ Z Bri Z bri (24) -
€8S i=1 i=1 €S

The variables changes from V; (z;) to 8y. Therefore, the number of variables in the

linear program changes from |S| to the number of basis function m which reduces the

problem size in terms of variables. But the number of constrains keeps unchanged. We

can reduce the number of constraints problem specifically which we show in the next

section.
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Figure 5.5.: 3d view of the value function Vigy (z190) partition for the 2 component
model from Section 5.4.

5.5.2. An ADP-Algorithm for the Advanced Replacement Model

As a showcase for approximate Dynamic Programing, we present how to build an ADP-
Algorithm for the two component model from Section 5.4. In Figures 5.5 and 5.6 we
see the value function Vjgy and policy g for time step t = 100 for our two component
model. The value function is divided into different areas which are separated by jumps
in the value function. This corresponds to the policy and two special states families.
The special states are the cases, where one or both components reach their maximal
life or they fail. We see the mentioned structure in all other time steps ¢ and for
different model parameters like the revenue I. We use this structure to build a good
approximation V; of the value function V.

Therefore, we divide our state space into maximally thirteen subspaces S: and approx-
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Figure 5.6.: Partition of the policy piigok for the 2 component model from Section 5.4.

imate the value function on each of these subsets separately. The first four subsets S;,
t=1,...,4, are given by

S, = {z € S|z, = -1},
Sy :={x € S|zy = —1},
Ss := {z € S|z, = max (1)},
Sy = {z € S|z, = max (z,)} .

For these subsets we use our standard Backward-Algorithm to calculate the value func-
tion. This means we have to solve equation (5.14) 2|S;|+2|S,| times. As the next step,
we divide the remaining states

re$=S\{SiuSUSUS]

into nine subsets S;, i =5,...,13. Therefore, we search in the value function V; (x)
restricted on the sets S;, ¢ = 1,...,4 for jumps. In more detail we are looking for a
change in the policy 7 (z) restricted on §;, @ = 1,...,4. To make this point clearer, we

show it for example for the set S,. In this case we must always replace component 2 and
we have to find the age of component 1 after which we replace component 1, too. In
Figure 5.7 we see the corresponding value function V; for time step ¢ = 100. We replace

component 1, if component 1 is older than approximately 83kEOH and component 2 is
failed.

If we identified all four jump points Zi, ..., &4 with Z; = (Z;1, Z;2), then we divide S
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Figure 5.7.: Value function Vg restricted on S,. There is a clear jump at 102 = 81.2.
The constant part where we replace the component is marked green.

into nine subsets. For example S5 and S are defined by

S5 := [min (24) , min (&1, #3)] x [min (z;) , min (%5, #,)] and

Se := [min (71, 3) , max (&1, &3)] x [min (), min (2, Z4)] .

In Figure 5.8 we illustrate the subdivisions schematically. Also, we see why we get nine
subsets. This reason is why the jumps in S; and S; respectively S, and S, are not
necessarily at the same point, e.g. in general T1o # T35 and To; # T41.

Then, on the subsets Ss, . .., S5 we use a local linear interpolation method to capture
the function behavior in the different areas. Therefore, we create on every subset S;,
1=29,...,13 amesh G; by a latin hypercube sampling method from the R package “lhs”,
confer [17]. Further, we use the LP-Algorithm to determine the coefficients f;; of the
local linear interpolation approach which is implemented by the R package “geometry”,
confer |47] and [60| for more background information. As linear program solver we use
“Ip_solve”, confer [9]. We use in the LP-Algorithm only |G| states 2, € G; C S; to
create the linear inequalities in (5.16). Therefore, we define |G;| local basis functions
¢y; with following property

1, k=j

e 9 €Gi={g1,--.. 906}

b (gr) = {

In summery we need only
13

2|81| + 2/Sa| + ) |Gl

=5
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Figure 5.8.: Schematic subdividing of S according to the structure of V.

states to build a reasonable approximation V; of V;. In the next section, we will show
the associated numerical results.

5.6. Numerical Analysis of the ADP-Algorithm

Now, we present results how good we can approximate our advanced two compo-
nent replacement model with our approximate Dynamic Programing method from Sec-
tion 5.5.2. We will compare the value functions V; and the policy # from the ADP-
algorithm with the results V; and 7 from the Backward-Algorithm. Therefore, we
introduce two error measures vale, and pol..,. For the value function error vale,, we
calculate

Vi (l't)

AT

Valeyy <‘~/t, V},mt> = €[0,1] foreveryx; € Sandt=1,...,7 (5.18)
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and for the error in the policy pole,, we define

_ Zl’i‘l ei (7, mt)
S

POleyy (g, ) := 1 €e0,1] fort=1,...,T (5.19)

where
1, lf 7},5 (5177,) = Tt (l’l),

i (7o, m) = {O else

gives us the information that the policies deliver the same service action for the state
x; € §. The error in the approximated policy and value function is small, if pole,
respectively vale,, is near zero.

In Figures 5.9(a) and 5.9(b) we represent the error measures from equations (5.18)
and (5.19) in a graphical way. The maximal error in the value function approximation
V; is 0.46 in time step ¢t = 81 for state zg = (38500, —1). The mean error is 0.0007.
Further, we see that for 90.0% of the states z; € S, t = 1,...,120, the error is smaller
than 0.001 and for 98.0% of the states x; € S, t = 1,...,120, the error is smaller than
0.01. Therefore, we can assume that the value function approximation V, fits very well.

As next step, we analyze the error in the approximated policy 7. The overall error
pole, according to equation (5.19) is 0.11. This means that in 11.0% of the states
the resulting action pair (aj,as) is wrong. For a more detailed review, we split the
error of 7 in the two components 7 and 7, which deliver the action for component
one or respectively for component two. The graphical representation can be found in
Figures 5.9(c) and 5.9(d). The overall error for 7; is 0.09 and for 75 is 0.05 according
to equation (5.19). We see that the error in 7 is bigger than in 7;. Further, we see in
Figure 5.9(c) that for certain states the policy 7 is always wrong.

But in general, the quality of the approximation is very satisfying in view of the small
runtime. The presented approximated solution V; was calculated in 275.5 seconds with
the use of 2 cpu cores compared to 1019.1 respectively 3424.1 seconds of the Backward-
Algorithm with the use of 16 respectively 2 cpu cores. But, we remark that we have to
spend additional time to calculate the policy @ compared to the Backward-Algorithm
which delivers policy lookup table simultaneously for all states z; € S. But this is no
drawback, because we can calculate the optimal action a; for a state x; in need. Also,
the the calculation of the policy table in the Backward-Algorithm does not increase
computational time significantly, because the policy table is an attachment of the opti-
mization calculation in the value function lookup table. It saves only the result of the
arg max (-) operator.
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(a) Error in value function approximation V; according to equation (5.18).
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(b) Error in policy approximation 7 according to equation (5.19).
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Figure 5.9.: Error in the approximated value function V, and policy 7.
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There is one main drawback in our modeling approaches from Chapters 4 and 5. The
models require that we know the actual state of the gas turbine’s components exactly
to schedule maintenance. This means, there is no uncertainty in the actual state and
we can observe it perfectly. But in general, we cannot do this. For example, if we
introduce a criterion like the presence of a crack to the state of a component, then we
can see the crack only during an inspection, but not during normal operation. There
are various components like turbine blades in the gas turbine which are only accessible
during an outage. We need a special testing equipment like an ultrasonic testing device
to find the crack.

Therefore, we need to extend our models with observability features and we apply the
partially observable Markov Decision Processes (POMDP) for that reason. Further, the
POMDP framework gives us the opportunity to establish the new service action type
“inspection” which is often used in real world applications and connected to the case
mentioned above.

During an inspection we gather information about the actual state of our component
and we can leave the component as is or replace it prematurely to reduce the risk
of a failure. In general the gained information during an inspection will change the
probability of failure for the inspected component, because the gathered information
lets us readjust the probability of a failure. We must use conditional probabilities which
take the inspection criterion into account. Further, we have to establish a probability
that a component fulfills one or more inspection criteria or not. With these probabilities
we are able to model the state dynamics in a reasonable way. Therefore, we derive and
present a simple inspection model. This model is based on crack growth.

Sirjaev and Dynkin started with research about POMDP, confer [33] and [84]. But
as in the Dynamic Programming case the work of Wald from 1947 was important,
confer [93]. Drake was the first person who developed the first explicit POMDP model
in 1962, confer [30]. Astrom formulated independently at the same time finite horizon
POMDP, confer [6]. Astrom also presented important results about the belief state
of a POMDP. He proved that the belief state is a sufficient history. In 1971, Sondik
presented essential results about the structure of the optimal solution and he established
a solution algorithm based on this structure, confer [87|. This short overview is based
on the work from [63]. In contrast to all presented examples in the overview, this work
deals with a problem with a big state space which makes the problem’s solution more
complex.
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Figure 6.1.: Schematically representation of the POMDP Framework.

To establish the inspection model, we organize the chapter as follows: First, we extend
the Markov Decision Processes from the last chapter to a partially observable Markov
Decision Processes. Then, we present two solution approaches for partially observable
Markov Decision Processes. One solution method, the IP-Algorithm, delivers the exact
solution and the other one, a-min-Algorithm, an approximate solution. In the next
step, we deduce a simple probabilistic inspection model for crack growth which includes
inspection. Thereafter, we combine the POMDP approach with the crack growth model
to set up our inspection model. As the last point, we present numerical results for our
inspection model.

6.1. Partially Observable Markov Decision Process

Now, we establish a more general Markov Decision Process, a partially observable
Markov Decision Process (POMDP), to overcome the problem that we do not always
know the state of our system exactly. This will be true in our inspection model, where
we do not know, if there exists a crack of a certain size. The basic properties of a
POMDP and a MDP are quite the same. We have a state space, action space and state
transition model based on the actual state and action. Further, the system behavior is
like in a MDP, but we add a set of observations to the model. An observation becomes
available to the agent after each state transition of the system, but it must not deter-
mine the complete state of the system. We illustrate the framework in Figure 6.1 and
we define the POMDP through:

Definition 6.1 (POMDP)
A partially observable Markov Decision Process is defined as a tuple

Mpo: <S,A,P7‘,R,0,0>,
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where
o the tuple M = (S, A, Pr,R) is a Markov Decision Process,
e O is a finite set of observations the agent can see,

e 0:S8 x A [0,1] is the observation function, which gives for an action a € A
and a resulting state x € S, a probability to make observation o € O.

In more detail, we define our observation function for a single observation o; at time ¢
by

Pr (Ot\xt,at,l) = Pr (Ot = Ot|Xt = xt,at,l)

where a;_; is the action at time ¢ — 1 and z; the resulting state at time .

6.1.1. Policies and Belief States

To find an optimal policy of a POMDP we have to take the complete process history
into account. In general it is not feasible to record the complete histories. Thus, we
need other approaches to address this point. For MDP’s we can use Markov policies
which only use the actual state of the system. This type of policies contains the optimal
policy as shown before, confer [6].

For POMDP we can not use the Markovian property and to take the complete history
into account is more complex due to the observation space. We establish belief states
to resolve this point. A belief state is a probability distribution over states. It is a
summary statistic of the entire MDP history. This statistic is sufficient for the MDP
history as shown in [6] and [86]. For that reason, an optimal policy can be calculated
by the belief state instead of the complete history. It is true that the process over belief
states is Markov, confer [6] and [86]. But we remark that our new state space is now
continuous and it is defined by

5|
I(S) :=4beRSDY b =1, b >0

=1

The i-th component of a belief state b € II(S) represents the probability that the
system is in the i-th state.

Next, we derive a formula how the belief state b changes to V', if we are taking action
a when making an observation o . We use Bayes formula, confer appendix A. We can
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write b/, as:

b, =Pr(2'|o,a,b)
Pr(o|2’,a,b) Pr(z'|a,b)
a Pr(o|a,b)
Pr(ola’,a) ) .5 Pr(2'|a,b,x) Pr(x|a,b)
- Pr(ola,b)
Pr(ola',a) ), cs Pr(2'|z,a) b,
- Pr(o|a, b)

(6.1)

Where the denominator Pr (o|a, b) normalizes the resulting belief state to guarantee

> b, =1

z'eS

and is given by

Pr(ola,b) = Z Pr(o,2|a,b)

z'eS
= Z Pr (2'|a,b) Pr(o|z', a,b)
s'eS
= Z Z Pr (z|a,b) Pr (z'|x,a,b) Pr(o|2’,a)
'eS €S
= Z Pr (0|x/,a)ZPr (2|2, a) by. (6.2)
a'€s €8

The calculations in equations (6.1) and (6.2) are taken from [54] and [58]. They show
that we need only basic probability theory and the transition and observation probabil-
ities to get the update formula for the new belief state. Further, we define b? € II(S)
as the belief state which results from taking action a and making observation o.

6.1.2. Value function

In this section we present how to calculate the optimal value function of a POMDP
model. As in the MDP case, we can use the optimal value function to determine an
optimal policy. In general, a non stationary t-step policy can be represented by a tree
or a policy tree of depth ¢ as presented in [54]. The top node of the policy determines
the first action to be performed. Depending on the agent observation, the agent follows
an arc of the tree to a node of the ¢ + 1 level which represents the next action.

Since the use of belief states gives us back the Markov property, we can use value
function representation from the MDP / Dynamic Programming approach with a con-
tinuous states space II(S) like shown in [19]. The action set A is the same as in the
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original POMDP. The actual reward to be in belief state b and taking action a is
Rib=> R(x,a)b,. (6.3)

z€S

where R (z,a) is the reward function from the underlying MDP. It is the expected
reward over all states. Further, we define the set of possible successor belief states
under action a by

B(b,a) == {b%o € O}.
With this notation and the observation probability function Pr (o|a,b), we obtain the
following value function representation for our continuous belief state MDP by
Vi1 (b) = max Rib+e > Pr(ola,b)V; (b3). (6.4)

a€AL_1 o
o

This formulation is equivalent to our classical value function formulation of a finite
state MDP or Dynamic Programing method. We define for future use to equation (6.4)
related value functions like in [18] as:

1

Ve () =15 b e Pr(ofa.b) Vi (). (6.5)

Ve (b) =) Vi (b), (6.6)
o€

Vi (6) = max Vi (). (6.7

The function V,* (b) is the POMDP counterpart to the Q-functions in the classical MDP
setting as presented in equation (5.11) from Section 5.2.2. V; (b) is equivalent to the
value function in equation (6.4). The function V" (b) has quite the same interpretation
as V;* (b), but it includes only one observation o € O and 5-th of the actual reward

0]
R,.

The value functions of our continuous MDP has got a special structure namely it is a
piecewise linear and convex (PWLC) function. The structure results from the convert-
ing of the POMDP to a MDP with a continuous state space. This observation does not
hold in general for continuous MDP. Sondik proved the PWLC property in [87]. The
property is very important, because it gives us the opportunity to represent the value
function using a finite set V of vectors. The vectors in the set V are called a-vectors.
The PWLC property is the starting point for many exact algorithms for finite hori-
zon POMDP problems. To proof the PWLC property we need two basic properties of
piecewise linear convex function:

Lemma 6.2 (PWLC Function)
Let f and g be two PWLC functions. Then hy = af + bg, a,b > 0, and hy = max (f, g)
are PWLC' functions.

Further, we conclude from Lemma 6.2 that the functions V,*? (), V,* (b) and V, (b) are
PWLC functions. This result give us the possibility to prove Theorem 6.3 which was
presented by Sondik in [87]:
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Theorem 6.3 (PWLC Value Function)
The optimal value function Vi (b) for a partial observable Markov Decision Process is a
piecewise linear and convex function independent of the time stept =1,...,T.

Proof. We use induction over the remaining time horizon length 7" to proof Lemma 6.2.
We start with the time horizon length 7" = 1. In this case only a single decision is
remaining and we have not to take future rewards into account and we obtain

1
V2 (b) = WRaTb, for all a € A and 0 € O.

Thus, the value function V}*(b) for every a and o is a linear function and there-
fore V*? (b) is PWLC. The functions V/* (b) and V; (b) are also PWLC as a result of
Lemma 6.2.

For the induction step we assume that Vp_y (b) is PWLC. Every PWLC function and
especially Vr_; (b) has the representation

Vr_1(b) = max a’b,
QEVT 1

where Vr_; C RISl is a finite set of vectors. We define

ar— (b) = arg ag?X1 ath

and we get
iy (b3) = @roy (63)" 0.

Using this fact, the induction hypothesis and the representation of V;° from equa-
tion (6.5), we obtain

Vi (b) = WR% o Pr(ofa,b) Vi (b2)

= WRTb +e ™ Pr(ola,b) ar_; (bZ)T by

and continuing calculations lead to

Vy? (b) —@RTZ) + e Pr(o]a,b) dr_y (b%)" b2

ZRaxb +e" ZZb Pr(2'|x,a) Pr(ol2’,a) ar_q (b2),

xES zeS 2’eS
—Zb (9 Ry +e’ ZPT |z, a) Pr(olz’,a) ar_y (V%)
z€S ’ ’ z'eS

We define

1 )
——Ry.+e " Z Pr(2']) Pr(olz', a) é—1 (b2),,

az? (b, x) = O]

z’'eS
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[ I I I I |
0.0 0.2 0.4 0.6 0.8 1.0

Figure 6.2.: The bold red line is the resulting PWLC function. For example the blue
marked linear function is in no section dominant compared to the resulting
one.

and it follows

Vi? () = 0 (1) .

Since the number of vectors a:® (b) is finite, we conclude again from Lemma 6.2 that
Vr (b) is PWLC. O

Every a-vector in the set V; belongs to a policy tree and we can use it to determine the
best action for the actual time step belief state pair.

For a two state example, we can represent the belief state (b, by) by one single number
b1, because we can make use of the constraint b; + by = 1 and the associated value
function V' (b) = max; g; (b1) is the max over a set over linear functions g; in b;. In
Figure 6.2 we see such an example where the red line is the resulting PWLC function.
We see that only three functions are active and every one belongs to one action. The
blue function is never dominant. This observation implies that every PWLC function
can be represented as

maxa’b where V is a minimal set.
acy

In this case minimal set means that for every a € V there exists a belief state b € 11 (S)
such that aTb > a™b for every @ € V — a. The idea was proposed in [19].
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6. Inspection Model

Algorithm 6.1 DOMINATE checks if a vector @ € V is dominant or not, confer [18|.

function DOMINATE(a,))
L = (z,b) « solve (LP (a,V))
if IsInfeasible (L) or z < 0 then
return TRUE
else
return FALSE, b
end if
end function

6.1.3. IP-Algorithm - The Exact Solution Algorithm for
POMDP

The use of the standard value iteration algorithm is infeasible for a POMDP, because
the set of belief states is infinite and not countable. Therefore, the PWLC property is
the starting point for all exact POMDP algorithms, because the concept is always to
calculate a minimal set of a-vectors. The simplest, but not efficient idea is to enumerate
all possible a-vectors for one time step ¢ in a set V; and remove all a € V; which are
never active, confer [63]. The check for domination of an a-vector can be done through
a linear program (LP («,V)) which is given by

max z

subject to
(a—@)"b>z forallaeV (LP(a, V))
bell(S).

If the optimal value z* is greater zero, then the vector « is dominant in some belief
state region and should not be pruned. If z* is negative, then we have to prune the
vector « from the set V, e.g.

V=V\{a}.
The complete domination check method is presented in Algorithm 6.1.

Now, we present the Incremental-Pruning-Algorithm (IP-Algorithm) which was pro-
posed in [18] and [98]. Basically the algorithm enumerates all possible a-vectors, but it
prunes vectors during the generation to keep the possible size of a-vectors small. For a
more detailed review we establish four notations. The cross sum of two vector sets A
and B is defined as

A®B:={a+b:acAbe B}.

Further, we define three vector sets which are associated to the a-vectors of our value
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6.1. Partially Observable Markov Decision Process

Algorithm 6.2 PRUNE reduces a set V to its minimal representation, confer [18|.

function PRUNE(V)
S« 0
for x € S do
Q4 arg maxgey ' e > e; is the i-th unit vector
S+ Su{a}
V< V\{a}
end for
while V # ) do
aeV
(sol,b) < DOMINATE (o, V)
if sol then
V< V\{a}
else
Q 4 argmaxgey 0l b
S+ Su{a}
V< V\{a}
end if
end while
return S
end function

function representations in equation (6.5) to equation (6.7). We define

1 .
V" :=prune ({@Ra +e " Pr(ola,b) ay|ay € Vt}) (6.8)
Vi | :=prune (@ Vf_’01> (6.9)
o€
V,_1 :=prune (U Vta_1> : (6.10)
acA

Equation (6.9) is comparable to the definition of the @-function from equations (5.11)
and (6.6).

The prune (-) function reduces a set of vectors to its minimal representation according
to the definition from above. We use the DOMINATE operation from Algorithm 6.1
for the prune operation. The method to calculate V| from V" is taken from [63].
The IP-Algorithm focuses on an efficient method for calculating the set Vi ;. We note
that

prune (A @ B @ C) = prune (prune (A & B) & C)

and rewrite V;' | as

Viy = prune (... prune (prune (V23 © V) © VET) .. 0 Vi)
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6. Inspection Model

Algorithm 6.3 Incremental-Pruning (IP): calculate V; for all ¢.

function IP(a,...,a,)
Vi {oq,..., a0}
Vr < prune (Vr)
fort=T-1,...,1do

for a € A do > This loop will be used for a parallel implementation.

for o € O do
V,"? < prune ({ﬁRa + e e Pr(ola,b) a1y € Vt+1}>

end for
V& + prune (@06@ Vta’o)

end for

V; < prune (UaeA Vt“)

end for

return V,, t=1T,... 1
end function

with m = |O|. We summarized the approach in Algorithm 6.3. Further, we note

V := | prune (VY @V, T)| > max (| prune (V°%)|, | prune (V,"7)]) .

It follows that V is monotonically non decreasing. According to [18], we get for the

complexity
0 (Wﬁ Z|v;“’|> .

6.1.4. a-min-Algorithm - The Approximate Algorithm for finite
Horizon POMDP

Based on the work in [32] we now propose an approximate algorithm to solve a finite
horizon problem. The motivation is this: The exact algorithm tries to compute a
minimal set V; of a-vectors to get a representation of PWLC value function as V; (b) =
max,,cy, af b. This task can be very hard, because the size of V is bounded by |A||S|1.
Approximate algorithms like point-based approaches try to update the value function
by a finite subset of sampled belief states II C TI(S). The belief states by € IT are
chosen such that the corresponding af’“—vectors are a good approximation of V;. We

define
Y, = {ai”“|bk € ﬁ} )

In this case corresponding a-vector means that

b
o =arg  max o by,

atGP(Vt+1)
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6.1. Partially Observable Markov Decision Process

where

P <1~/t+1) = U Vi = U @Vta’o = U @ {ﬁRa +e ™ Pr(ola,b) ala € Vt+1}

acA a€A 0O a€A 0O

is the back projection of Vi1 to time step t. We define the back projection operator
BL (‘;%_A'_l) (+) for one belief state b by

BL <‘~/t+1> (b) := aefn’%%il) atb =V, (b).

Further, we have

Vie1 CVip and Vi CP ()}t—t-l) C P (V1)

Therefore, V; is not necessary a minimal set. In general we define:

Definition 6.4
We call & the vector function such that for every by € I1(S)

a(by) =arg max o] by
at€P<Vt+1)

A point based algorithm delivers very easily a lower approximation of the true value
function for every time step. At the final time step t = T" we are setting Vr = Vr and
we calculate for every t =T — 1,...,1 the following sets

V, = {a (by) |bp € T1(S)}

For every t, we have

V; (b) = maxa'b < maxa'b =V (b).
aeﬁt o€V

Thus, we can calculate the maximal error err; between V; and V, through

erry = brer}_lzg) BL (V}+1> (b) = Vi (b). (6.11)

Thus, our maximal error on V; for any t is given by

T
E erry.
k=t

We will prove this later in Lemma 6.5. This error measurement is very common in
different approximation methods like presented in [48].
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6. Inspection Model

Lemma 6.5 (Error in V;)

Lett=T —1,...,1 and Vi41 be a lower bound approximation of Vi1 with
Vig1 (0) < Vigy (b) < Vi () + € for allb e T1(S).

Then, 5 .
Vi(b) <Vi(b) <Vi(b)+€ forallbell(S),

where V, = BL (f/tﬂ) and V; = BL (Vi11).

We strictly follow the proof from [31]:

Proof. Let by € T1(S), a; with ob, =V, (by). Let a; € A

such that
=Ro+ > (

Ot+1€(9

041 € O and ag (V™" € Vyyq. Further, let @, € A such that

= Ra+ Y (afen) M

Ot+1 €O

= V; (bt) and dt with dtht

Oft 0t+1

t+1 at Ot41)

Qt,0¢+41)

& - .
where &;{7""" € Vi and 0,1 € O. We define M,, ,,,, and Mz, ,,.,, as |S|x|S|-matrices

Maz,0t+1 (l’t+17 xt) = Pr (0t+1’l’t+17 at) Pr ($t+1|xt7 Clt) and

Ma, 0,41 (@441, 20) = Pr(op1|es, @) Pr(z|eg, ar) .

We suppose first the case that a; = a;. We obtain

¥ T ~T
‘/; (bt) — ‘/;5 (bt) = at bt — Olt bt
T

_ E Qt,0t41 TM § : ~ 0,0t +1 TM b
- (at+1 ) at,0t41 eIN] Qt,0t+1 t

0t+160 Ot+1€(9

Qi ,0¢41 Qt,0t41 T
§ ' t,0t+ ~ O,0t 4

< (Oét+1 — Oy ) Mat,0t+1

0t+1€o .
= § Ao+1 at,0t+1

ot+1€(9

o0

with the help of the Hélder inequality and ||b;||

< 1. For every 0;41 € O and by € I1(S)

we get from the assumptions of Lemma that A} ;b < e. Given that every standard

basis vector e; satisfies e; € I1(S), we obtain

Aol <€

for every 0,11 € O and

T T
Ao+1Mat70t+1 < E Mat ;0t+19
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6.1. Partially Observable Markov Decision Process

where E = (e,...,€)". Thus

Vt (bt> - ‘71% (bt) < ET Z Mat70t+1

o
ot+1€ 0

Further, we have that ) M, 0,1 = Ty, is stochastic and we get

0t+1€0

ET Z Mg, o041 <e.

(@]
or4+1€ o

Finally, we obtain

Vi (be) = Vi (b) < e
Now, we choose a; € A arbitrary. Let be
T

‘Z&at (bt) = Rat + Z (d?—t&—’le)T Mat70t+1 bt'

0t4+1€0

By definition of V; (b;), which is the maximum over @;, we obtain that V; (b)) > f/t“t (by).
Then, V; (b;) — Vi (b)) < Vi(by) — Vi (b)) < e. The demonstration of positivity of

Vi (b)) — Vi (b;) is similar but easier and is therefore omitted. O

Later, we will use Lemma 6.5 to control the error in our Algorithm 6.6. The next
equation

b = arg max BL (Vier) () = Vi (0) (6.12)

gives us important information to improve our approximation set V. Equation (6.12)
gives us the belief state b* with the greatest error between the approximation and the
exact solution. We can reduce the error by adding @ (b*) to V,. If we solve equa-
tion (6.12), then we can add new vectors which are not dominated by other ones. This
procedure is illustrated in Figure 6.3. But it is NP-hard to solve it directly. So, we are
seeking for another way. As first step we reformulate equation (6.12) as a quadratic

program (QP):
max g

subject to
gr < Oé;rbt—&thtydt € f}t
|S|

Z b =1
i=1

b, >0 (QP)
o € P <l~/t+1) .
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(a) The error gap err; marked by the arrow.  (b) Reduced error gap err; after adding new a-

vector @ (6) for belief point b.

Figure 6.3.: Illustration of the error gap in equation (6.12). The red dashed line refers
to V; (b) and the black lines refers to V; (b) with V, = {@ <l~)1> e, QU <B4> }

bs, ay and g; are the variables of (QP) and a]b; is the a-vector formulation of the
backward projection BL (‘N/tﬂ) (b;) and the same holds for dtT b; with respect to f/t.
Also, this QP is not easy to solve, because it is not a concave QP and further the set
P (fﬁtH) is not given. Therefore, we reformulate the QP as a mixed integer linear

program (MILP) which can be solved efficiently.

We start with a formulation of the set P ()}t+1). We need to find a set of linear
inequalities to describe the convex hull C; of P (]}t+1). We start with the following
description of C;:

Ct = {O{t € R‘Sli O{tht S dt (bt)T bt; bt eIl (8)7 (6% 2 O} .

This formulation uses an infinite number of inequalities to describe C;. We can use a
finite number of constraints to approximate C; through a convex polyhedron

Cn = {at RS oTh <a, () B, i=1,....n, a zo},

where bl € TI1(S), i = 1,...,n with n > |S|. Tt follows C; C C? and we get a quadratic
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6.1. Partially Observable Markov Decision Process

program QP, (b}, ..., b"):
max g,
subject to
g < af M0y — &b} G €V,
1" =1 (QP,)
by >0
al' € C
The solution of the new QP,, satisfies error bounds similar to Lemma 6.5. In particular
we obtain from [31] and [32]:

Lemma 6.6
Let &%, a%, b and g be an optimal solution of QP,. Then,

e o
s BL (Vi) (b) = Vi ) < 7 < mave B (Vi) +07,

where 67 = a"Tbr — &TH at the optimum of QP,.

Lemma 6.6 gives us the information, when should we expand our sampled belief state
set IT or not. We should expand the set, if 67 is not small enough. Then we use IS? to
construct a new constraint of C't” and better approximation of C; by C’f“. For the con-
vergence of the algorithm it is important that we can add new facets from the solution

ay of QP, which are not already in C~'t" We call this procedure GenFacet (d?, VY, + 1).

Next, we cite the important result from [31] and [32] that C?* converges to C; if we add
facets through the solution of QP,, and GenFacet <df Vi + 1).

Theorem 6.7 (Convergence of cr)
C™ converges to Cy. Thus, there exits n* € N such that the solution &2 of QP, belongs
to Cy, i.e. 07" = 0. For a given tolerance ¢ > 0 there exits n. € N such that 5 < e.

Unfortunately, QP,, remains non concave and it is hard solve. But we know the structure
of the optimal solution &;'. It belongs to a vertex of C}' and it fulfills

afbi <ay () 0, i=1,...,n,

alh < a (b;) B, j=1,....]S|. (6.13)

If we choose b! € II affinely independent, for example the corners of the simplex II (S),
then we can represent b as convex combination of b and we get

|S| IS|

0> By with Y By =1, 8> 0.
i=1 j=1
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The observation from the system (6.13) and the convex combination of b let us refor-

mulate ol b; as
S|

alty =3 p,a (bjk‘)T b (6.14)
j=1

Equation (6.14) gives us a linearization of the quadratic term ofb; and we can refor-
mulate QP,, as a mixed integer linear program (MILP,):

max gy
subject to g; < W; — Uy,
|S]

j=1

1%y, =1,

b= Bib,
=1

afb 4y =a () b, i=1,...,n,

Yy <MQA—-3%;), i=1,...,n,

U, > afb, a eV, (MILP,,)
B <, i=1,...,n,

n
i=1

thO, yzE0,0gﬁlgl, izl,...,n,
#e{0,1}, i=1,...,n,
Wt7 Ut7 gt207

where M = max, (R,). A further theorem from [31] gives us the equivalence of QP,,
and MILP,,.

Theorem 6.8 (QP, = MILP,,)
Let bt € 1 (8S), n > |S|. Problem QP, (b}, ... ,b}) is equivalent to MILP, (b}, ..., b}).

This is the last missing result to create a procedure to solve equation (6.12) with a given
error tolerance. We call the procedure FBB (Find Best Belief) which is represented in
Algorithm 6.4. Further the number of operations to execute FBB is bounded by a finite
number as shown in [31] and [32]. The result is included in the next lemma:

Lemma 6.9 (Complexity of FBB)

FBB terminates in a finite number of iterations and it requires O (PN x 2NHISI 4 1)
operations in the worst case, where N € N is the number of facets of C; and Py is a
polynomial in N.
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6.1. Partially Observable Markov Decision Process

Algorithm 6.4 Find the best belief state, confer [32]. Compared to [32] we added an
iteration counter for the approximation of C}.
function FBB(¢, By, Yy, Viin, €ps Tmax)
for nin {1,...,|S|+ 1} do
b} = ey, > e, € II(S) are unit vectors

n+ |S|+1
Niter < 0
while A > ¢, and nj, < Npax do

<ag, b, g;l) « solve MILE, (b}, ..., b7)
. ANT .
A =arT —a (bg) by
F}' < GenFacet <d?, 1}t+1>
ol b
n<n+1
Niter < iter + 1
end while

return g7, by, nyr, A
end function

To have a control of the number of generated facets in GenFacet, we establish in Algo-
rithm 6.4 an iteration counter ny, compared to [32]. In this case it is possible that we
do not reach the prescribed error tolerance e,.

A further result is that the Algorithm 6.5 or e-min can be used to construct an approx-
imative solution of our POMDP with maximal error € equally distributed over all time
steps, if we skip our introduced iteration limit n;, for the facet generation. We obtain
from [31] and [32]:

Theorem 6.10 (e-min)
Let be € > 0. The e-min-Algorithm solves approximately every finite horizon POMDP
in finite time with maximum error €, if we those €, < € in the e-min-Algorithm.

The original e-min-Algorithm is very powerful, because we solve any POMDP for a
prescribed error tolerance which is uniformly distributed over all T' time steps. But,
the drawback is that there is no control over the number of a-vectors. In the worst case
we will add a huge number of vectors to reach the prescribed error tolerance which can
take a long time. Therefore, we present the a-min-Algorithm which gives control over
the number of a-vectors at each time step and delivers a error bound. We present the
detailed procedure in Algorithm 6.6. In summary we get the following result from [31]
and [32]:

Theorem 6.11 (a-min-Algorithm)
The a-min-Algorithm solves approzimately any POMDP with an arbitrary number N of
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Algorithm 6.5 e-min: Solve a given POMDP with maximum error tolerance e equiv-
alent distributed over all time steps ¢t = 1,..., T}, confer [32].

function e-min(7, A, S, O, €, €, Nmax)

Vi + prune ({R,]a € A})

err <=0

forte {T,...,1} do
By < bivit > Arbitrary b € IT(S)
erry < 00

end for

forte{T—-1,...,1} do
Ny < 0
while err; > =5 and (ni < Nmax and A <¢,) do

(err, b, iy 8) < FBB(t, Biy Vio Vi, 727, o)
B, + B, U {b;}
Vi <V, U{a (b))}

end while
err =1 err,
end for
return f/t, t=1,....,T, err

end function

a-vectors per time step in finite time. Further, the a-min-Algorithm provides an error
bound between the optimal and approzimate solution.

But in general with this method we will not reach the prescribed error tolerance e from
the e-min-Algorithm. The advantage of this algorithm over the e-min-Algorithm is that
we can balance the computation time and error bound with the two parameters e and

N.

6.2. Modeling Inspection

A further important service action is the inspection of a part. The modeling is more
complex, than the modeling of replacement. We must take the information gain of the
inspection into account. Basically, we gain the information whether the part fulfills
the inspection criteria or not. For our further discussion we have only one inspection
criterion which leads to a replacement if not met. First, we remark that we do not
know the outcome of the inspection. There are two possible scenarios: We leave the
part as is or we replace it by a new one. The modeling of the replacement is the same
as before. We only reset the counter back to zero. If we leave the part as found, then
we have to adapt the failure probabilities which need new considerations.
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Algorithm 6.6 a-min: Solve POMDP with a maximum of N «-vectors and error
tolerance ¢, confer [32].
function a-min(7', A, S, O, N, €,, Nmax)
Vi < prune ({R,|a € A})
errp =10
forte {T,...,1} do
By « binit > Arbitrary bt € I1(S)
erry <— 0o
end for
forte {T'—1,...,1} do
Nity < 0
while err, > =4 and |l>t| < N and (nitr < Npax and A < Tgfl) do

(GTTt, b;;y Mitr, A) < FBB (ta Bta f}h f}t—i-la %7 nmax)
B; + B, U {b;}
Vi« Veu{a (b))}

end while
err =S, err
end for
return V,, t = 1,....T, err

end function

At this point we introduce a model which describes the adaption of the failure proba-
bility due to an inspection.

6.2.1. A Simple Inspection Model Based on Mode | Crack
Growth and Failure

We introduce a simple inspection model based on fracture mechanics. We start with a
short repetition of basic principles of fracture mechanics and follow the ideas of 78].

In continuum based fracture mechanics a 3 dimensional (3d) crack can be modeled
by a 2 dimensional separation of material. We can describe all possible 3d material
openings by the linear combination of the three orthogonal crack opening modes I-III.
The three modes are presented in Figure 6.4. We assume the existence of mode I cracks,
because it gives us the largest crack growth for a cyclic stress-field in isotropic material.
Further, we note that our approach describes only the observed phenomena and it can
not describe the relevant mechanism. The relevant mechanism takes place at atomistic
scale and we need only the effect and macro scale. Further, we assume that we describe
the stress around the crack by linear elastic fracture mechanics and that our crack shape
is a “penny” shape, e.g. it is circular.

We use the Paris’ law to describe the crack growth under cyclic loading, confer [68]
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Figure 6.4.: Crack-modes I-III from the left to the right, cf. [78].

and [78]. Tt is given by

d _
ﬁ — AKT. (6.15)

It is a power law where a is the crack length, n is the cycle number, A and n are material
constants and K7 is the stress intensity factor for mode I cracks which summarize the
stress intensity around the crack depending on the crack shape and the load. For a
penny shaped crack we get

K =oyma (6.16)

where o is a tensile comparison stress. We sum up the two equations (6.15) and (6.16)
and we obtain the following differential equation for mode I crack growth

2 AnBotgs (6.17)

We get the solution of differential equation (6.17) by the method “separation of vari-
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ables”, [3]:
da [}
— = Anr20"az2
in T20"a
d Ao
= —Z = Arzo"dn
a2
a(n) d n S
= / —Z = Am20"dn + ¢
ag a2 0

=a(n)7F — aé_g = (1 — g) Ar30™n (¢ = 0 initial condition)
= a (n)l_% = (1 — g) Am2o™n + aé_%

n [ 1-2 ﬁ
= a(n) = |:<1—§>A7T20 n+ a, 2] =: pn (ag,0)

where ¢, (ap, o) is the flow map associated to Paris’ law. The function a (n) gives us
the possibility to calculate the crack length a depending on the number of cycles n,
the initial crack length ag and the stress field o. If we know the critical crack length
aerit, then we are able to calculate the remaining number of cycles until failure in a
deterministic manner. In general, we do not know the initial crack length ag, because
it is often unobservable. We try to describe this effect.

A Simplified Probabilistic Model for Failure

In contrast to Bolten, Gottschalk, Schmitz in [14] we assume that all cracks are in
the worst possible position and failure is only possible in tensile stress mode I, see
Figure 6.4. It should be a conservative assumption.

We need to define a tensile comparison stress o for our calculations. Let o be a stress
tensor and oy, oy and oy the three principal stresses. We define

oT = max (Ji,af{,aﬁl) , of=max(0;,0), J=LILIII
for all orientations 7 € S? := {x € R?: ||z||; = 1} of the crack surface.

As next step we need a failure criterion. Components fail, if the stress intensity factor
K7 associated with a crack reaches a critical value. This value is the fracture toughness
Kj,. Then we obtain for the failure criterion:

2
1 (K,
[(IC = 0T/ TQcrit = Aerit = — .
s (%ks)
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In general the shape € of a component with one or more cracks is a subset of the R?
like in Section 2.1.3. Therefore, the stress tensor o will depend on the position x € €.
We get 0 = o (z) and as direct consequence our related comparison stress scalar field
or () depends on z. Further, let C = 2 x R, be the crack configuration space for a
single crack

c=(z,a)

with the crack location x € Q and crack size a € Ry. For a given load situation o (z)
the following set is the critical set of crack configurations

-flomen (25}

All cracks in K. will lead to a failure. Therefore, we need a possibility to estimate
this number |KC.|. Let now p (z,-) be a random measure on (ag,+00). The measure p
should be finite on compact sets I C R. In general the measure p does not have to be
normalizable, but it should satisfy

O (z,a) :=p(z,[a,00)) < oo forallaec(0,00).

As we will see, ® (z,a) has the interpretation: “Average number of cracks per unit
volume of crack size > a”, It is reasonable to assume that there can only be finite
number of cracks larger than a in the unit volume.

We define an intensity measure A: 2 x R, — R by
A(C) = / / 1c (z,a) p(x,a)dadz, C CC is measurable
QJry

with the indicator function

1c(z,a) = {17 (z,a) € C'.

0, else

Further, we assume a uniform distribution of cracks over 2 for the case that p(x,-)
does not depend on z. Then we consider a Poisson Point Process (PPP) on the crack
configuration space C such that

N (C') = Number of cracks with crack configuration in C

is a counting measure. From Poisson Statistics we get with the intensity measure \:

Y oy
P(N(C)=m)=e (0)%

which gives us the probability of the occurrence of m cracks in our component with
shape ). In particular, we obtain the following probability of failure

PoF = P(N (K¢) > 1) =1—P (N (K¢) =0) =1 — e Me) |
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6.2. Modeling Inspection

Now, we deliver an example for a random measure p which was established by Weibull
in 1939 as he studied the phenomena of fracture mechanics, confer [94] and [95]. For
simplicity we assume that p and op do not depend on z. In this case we have a
homogeneous stress state. Weibull defined p by

p(a) = poa”,

where 7 > 1 is a material constant. Then we obtain for the intensity measure

ace) = [ [ ko (2.0)p (o) dad

o /Q / s

T\ oT

Y

1—
o / 1 [ K\ i
_’7—1 Q7™ \oT !
1—
ool 1 KN
B ™ oT

v—1
In particular we get for the probability of failure (PoF')

1=y
_PO\Q‘

PoF (K¢) =1 —e %) =1 —exp .
fy —

1 (Ke\?
s orT
This representation gives us the PoF for the initial crack configuration. But we are

interested in a PoF as a function of the cycle number. In the next section we einclude
crack dynamics into the PoF.

Dynamics of the Crack Process

We follow ideas from [7], [38] and [94]. We assume that the flow ¢,, induces a flow on
the space of crack configurations according to

P (¢) = on (2, 0)) = (2,0 (a, 00 (2))) €C, ¢ = (x,a) €C.
Physically this is based on two assumptions:
1. The crack stays where it is. It just grows in site.

2. The crack does not feel any effect from a stress change, so crack growth can be

conducted with stress o (). Roughly - iao < ZOL; with oy as typical stress in

the component.
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We note that neglecting stress change is not necessarily conservative, in general just
the opposite.

Locally, on a compact set C' C C, we have the representation of the Poisson counting

measure by
N Jo=) 4,
j=1

with Poisson random number n and random location c¢; in C. The crack growth dy-
namics thus transforms the counting measure N locally to

N TCW N’”« r%"n(c): Z(g@"(cj)
j=1
or in other words it holds
N(C)=Nau(ga(C)), CCC.
If we replace C' with @, ! (C), then we obtain
N (g, (C)) =N, (C) & N,=puN.

So N, is the image (random) counting measure of N under the flow @. Thus we get

P (N, (C) = m) = o~ Mer'(@) Alen (O)

m)

—(@neN)(C) () (C)"

=e
m!

for the probability of m cracks after n cycles in crack configuration C. Hence, N, (C)
is a Poisson Point Process with intensity measure @,,A on C. Thus, we obtain the
probability of failure as function of time n:
PoF (n) = P (N, (K¢) > 1)
— 1= P(N, (Kc) = 0)
— 1 — g PmA(Ko)

— 1 — e Mentka)

We conclude

and we obtain
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6.2. Modeling Inspection

for the crack length before n cycles. If we apply this to the critical set Kp, then we
obtain

71t (o) = {mwam ey eciaz (o )}

m \or ()

_ {(g;,a) € C: gy (0,01 (2) > - <af(lcx)>2}

:{@,a)ec:azgo;l (%( R )2 x))}

1/ K. \> 3 7 . 2
=< (z,a)eC:a> ;<O'T($) —(1—§>A7T50%(x)n
From this we obtain

L (Ke) = / / L P dode = /Q B, (5 (or (2))) da

1

n
-3

~—

with

5 (on (@) = (%(ﬁg) - (1-2) axlof (o)n

We can understand this approach in the way of searching for the initial length of cracks
which become critical after n cycles. If we want to include embrittlement, than we have
to make K. = K. (n) a decreasing function to model the material degeneration.

Finally, we calculate \,. Let

then

and
P (@) =~ 0 (@) = i 0" 0,0 (2))) o (000 (0)

If we use the two observations, then we finally get

_ /Q /R e (00) o ) dad

Now, we are able to calculate the probability of failure after n cycles. In the next
section we want to investigate the effect of an inspection.
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failure length

replacement limit

crack length
\
\
\
\
\
\
\
\
\
\
\
4
/1
\
\
\
\
\
\
\
\
\

1 /hnit. crack distribution /
[ t

time

Figure 6.5.: The black line refers to the initial crack length distribution at ¢3. The red
and green dashed line refers to crack distribution at ¢;. The part will be
replaced during an inspection at tq, if the crack length is in the red dashed
section. The blue dashed line at 5 refers to the crack length distribution,
if there was an inspection at ¢; without an indication. The black line is the
corresponding distribution, if there was no inspection at t;.

The Effect of Inspection

We assume that our inspection procedure can detect a crack with length of a with a
certain probability of detection PoD (a). In the extreme case, when all cracks > ag
are detected and of size below ag, PoD (a) is the step function. We consider this case
for simplicity. In addition we assume for simplicity that the component will always be
exchanged, if a crack is detected. PoD (a) has the properties of a distribution function
in the crack length a.

We first calculate the probability that after n load cycles a crack is detected. To
reach this aim, let p,, (a) be the original density and let p2, (a) = PoD (a) pyn (a).
Accordingly, we define

AP (C) = /Q /R e (a,a) p2, (a) dadz.

Let NP is the Poisson point process associated to the intensity measure \2. Then NP
is the counting measure of detected cracks. The probability for a premature exchange
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6.2. Modeling Inspection

of the component after n load cycles is thus
PoE (n) = P (N} (C) >

=1-P(N(€)=0)

=1—e WO c QxR

?

If the component is exchanged, start with Ay for the new component. If the component
is not exchanged, then replace po, (a) with g}, (a) = (1 — PoD (a)) . (a) with n the
number of load cycles since last inspection and the overall load cycles N > n. Then
we start recursively from the beginning. In detail we get for our intensity measure of

failure
~ [ [ 1c@a)p. (@ dads
QJr, ’

_ / /R 10 (2,0) (1~ PoD (0)) s (a) dad

D(J:
/ / a) dadx
aki(z)

with the critical detection length
ay, (x) = ¢, (ao, or (z))

and the critical failure length

7" (z) = min | o2 (z), (% <Jf(1;))2> o - (1 . g) Ar3R (2)n

This leads to the following formula for the probability of a failure after an inspection
at n and N overall load cycles

1
1—

3|

AF,’H.

PoF (N,n) =1—e¢ v (©) (6.18)

Here, we see very clearly the effect of inspection: It reduces the integration area in

the second integral from (aﬁ, oo) to (aﬁ, aP ) This property is shown in Figure 6.5.

Analogously, we get the intensity measure A N’" for the PoE after an inspection at n
load cycles by
AR (e / / a) dadx

a, (z) = ¢, (ap, 01 (2)) and ay (z) = ¢y (ag, o1 ().

The PoE is then given by

with

PoE(N,n) =1 —e " @ (6.19)
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Figure 6.6.: The black line represents the PoE for a new part and the red line represents
the associated PoF.

We can summarize that the PoF and PoE depends only on the overall load cycles N
and the load cycles n at the last inspection. In particular, the PoE and PoF after an
inspection n are not influenced by inspection prior to n in the case that no exchange was
performed. Therefore, the Markov property holds. We can see this effect in Figure 6.5.
Further, we see in Figure 6.6 an exemplary trend for the PoE (black line) and PoF (red
line) for a new part.

6.3. The Inspection Model

We start with the description of our inspection model in terms of a partially observable
Markov Decision Process. In the next sections we define the different elements of the
POMDP and how they are connected to the gas turbine maintenance/inspection model.

The Time

As first step we divided the reviewed time interval [0, Tnq] of our maintenance scheduling
problem into 7" € N equal distributed stages, e.g. we get a set {to = 0,t,...,tr = Tona}
with t;.1 = t; = const for all i = 1,...,T — 1. To simplify the notation we mention
only the stage number ¢t = 1,...,T instead of the real time points ;. This is the same
approach as in Section 5.3.
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6.3. The Inspection Model

The State Space

We assume that our gas turbine consists of m components. Further, we assume that
every component can be inspected and there is one inspection criterion which is checked.
In this case we will check for a crack of a certain length. The state x of the i-th
component is given through a 3 dimensional vector. In particular we have

XTi = ('rAivinaxCi> < {_17d17 s 7dn = dmaxv} X {07d17 e Jdnflv} X {_170} = Sz

where x5 is either the age of the component or it indicates the failure state x5 = —1,
x1 is the age at the last inspection and x¢ indicates that the inspection criterion is
fulfilled z¢ = 0 or not xc = —1. Like in Section 5.3 the discretization of the age of the
component depends on the time discretization and the maximal allowable age of the
component. The complete state x of the gas turbine is defined by

S =8 x...x8,.

We remark that the size of the state space growth faster than in the advanced re-
placement model, because the size |S;| is much bigger. Further, we remark that in
this model we measure the age in equivalent starts (ES) which fits better to the cyclic
damage mechanism.

The Action Space

The action space A; for the i-th component is defined by
A ={0,1}>.

Further, we split a € A; into a = (ag, a;) where ag indicates that we replace (ag = 1)
the component or not (ag = 0). The second component ay represents the service type of
inspection with a; = 1 inspect the component and a; = 0 do not execute an inspection.
Since, it is only possible to do nothing, replace or inspect the component, we introduce
the constraint

ar +ay < 1.

If a component is in the failed state zo = —1, we can only execute the service action
replacement, e.g. a = (1,0). The complete action state space A for multi component
system is defined by

A=A x...x A,

The State Dynamics

The random variable w; is split into two components w; = (wp,w;) € {0, 1}2. The first
component wrg indicates a failure, e.g. wgp = 1 and the second component w; indicates
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(c) Transition graph for a = (0, 1)

Figure 6.7.: The transition graphs for all actions a.

that the inspection criterion is fulfilled w;y = 0 or not w; = 1. Further, we have the
constraint w; > wr to ensure that a failed component does not fulfill the inspection
criterion. This follows directly, because the component fails due to the existence of a
critical crack and this crack length is longer than the crack length for the inspection
criterion. The two events are not independent. Then the state dynamics function
gi (T4, ag, wy) of the state x; of the i-th component is defined by

(

Tip1 = (A + Acy, x,wr),  ar = (0,0), wy = (0,wr)
T = (Acy, 0, wr), a; = (1,0), wy = (0,wr)
Gi (T, ap,wi) = S w1 = (A + Acy, za,w1), a;=(0,1), wy = (0,w1), zc=0.
Typ1 = (Act,O wr) , a; = (0,1), wy = (0,wr), zc =1
(Tt = (=1,0,-1), wy = (1,1)

The state dynamics are illustrated in Figure 6.7 for every possible action a € A;. The
complete state dynamics for all m components are given by the following function

g (ze,ae,wi) = (g1 (T, s win) s -y G (Tems Qe Wem)) -

The Transition Probabilities

Now, we use the failure and exchange probabilities from Section 6.2.1, the probabilistic
crack growth model, to create the transition probabilities. As described in Section 6.2.1,
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6.3. The Inspection Model

we assume that the probability of detection is a step function, and we assume that we
replace the component, if we find a crack during an inspection. The critical crack length
for a premature replacement is equal to the detection length. Therefore, we take the
three probabilities PoF, PoE and PoC according to equations (6.18) and (6.19) into
account. In detail we have

PoF (za,z1) and PoE (za, ).

Then the conditional transition probabilities Pr (x;1|xs, a;) for the different service
actions are defined by

Do nothing a; = (0,0)

e No failure and inspection criterion fulfilled:
Pr(zi1]7s,a1) = 1 — PoE (zast1, Tat)

with xa¢, Tare1, Tor, Torrr > 0. This case is equivalent to there being no
crack at t and t + 1.

e Failure:
Pr (|2, a) = PoF (zar41, war)
with @a, vce > 0, Taryr, Topr = — 1.
e No failure and inspection criterion not fulfilled:

Pr(zi|oe, a;) =1 — (1 = PoE (zar41, Tar) + PoF (zary1, Tar))
= PoE (zat11, 7ar) — PoF (Ta41, Zar)

with @as, Tars1, 2o > 0, T = —1.
e No failure, but inspection criterion keeps unfulfilled:
Pr(xiq|xg, ar) = 1 — PoF (zapy1, o1)
with Zas, a1 > 0, Toppr, o = —1.
e Failure, but inspection criterion was unfulfilled:
Pr (zi41|zy, ay) = PoF (zai41, 21)

with xas > 0, Tory1, Tor, Tarp = — 1
Replacement a;, = (1,0)

e No Failure and inspection criterion fulfilled:
Pr(xiq|xy, ar) = 1 — PoE (2a441,0),

with vai11 = Acy, 1 =0, 21 = 0.
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e Failure:
Pr(ze41]ze, ar) = PoF (zar41,0),
with a1 = =1, 241 =0, 2o = —1.
e No Failure and inspection criterion not fulfilled:

Pr ($t+1|$t, at) =1- (1 — PoE (xAt+17 0) + PoF (xAt—i-lv 0))
= PoE (za44+1,0) — PoF (2a441,0)

with za1 = Acy, g1 =0, oo = — 1

e Remark: In this case we need no distinction of the state at x;, because the
replacement set the component back into the “as new” state.

Inspection a; = (0,1)
e No failure and inspection criterion fulfilled:
Pr(zii1|xe, ar) =1 — PoE (xati1, Tar)
with Tag, Tae1, Tews Torer > 0, Trpr = Tae
e No failure and inspection criterion not fulfilled:

Pr(zy|ry,a0) = 1 — (1 — PoE (za¢41, 7a¢) + PoF (441, 7ar))
= PoE ($At+1, fﬂAt) — PoF (xAt+1, fﬂAt)

with @as, Tagy1, Ter > 0, Ty = Tar, Topr = —1.
e Failure:
Pr(zii1|me, ar) = PoF (xagr1, Tat)
with zas, ey > 0, Ty41 =0, Ta1, Togr = —1
e No failure, no crack and premature replacement:
Pr(xiq|xy, ar) =1 — PoE (2a441,0)
with was, Zeip1 > 0, 2 =0, a1 = Agy, 200 = —1.
e No failure, crack and premature replacement:

Pr(xziq|xy, ar) =1 — (1 — PoE (za441,0) + PoF (2a441,0))
= PoE (za44+1,0) — PoF (2a441,0)

with @as, Torp1 > 0, T = 0, a1 = Acy, 20 = —1.
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e Failure and premature replacement:
Pr(x4q|xy, ap) = PoE (za441,0)

with 2o > 0, 1 = 0, Zar1 = Acy, T, oo = —1.

e Remark: The last three cases for premature replacement are same as in the
replacement case.

As in the last chapter, the over all transition function Pr for the gas turbine state with
m components is defined by

m
Pr ($t+1|513t, at) = HPT ($t+1z‘|$ti, ati) .

i=1

The Reward Function

As in our replacements models, the inspection model’s reward function G, represents
the revenue of the gas turbine operator in the time step t. The reward function is
divided into three parts. The first part gives information about the revenue I; per time
step. The second part summarize the maintenance cost in dependency of the service
action a; and the state x;. The service cost is split into four parts. We have equipment
cost Cvey > 0, assembly cost Cyagy; > 0, inspection cost Chyy; > 0 and a penalty fee
Cympy; > 0 for a premature replacement during an inspection. To penalize a premature
replacement we claim Cypy; > Cyvre. The last part represents the failure cost Cry; > 0
per component. In summary we have

Gy (r,a) =1+ Z Cr; min (0, xa;)

i=1

m
— Z Cyugtiari — (Cuvrs — Cupy min (0, 2¢y)) ay
i=1

m 7
— E max (max (aRi, ax;) E C’MAU-).
K3
i=1 j=1

In this model we assume as before, that if we want to disassemble component 7, then we
have to dismantle all components j with j < i. The term Cyy; — Cypy; min (0, z¢;) sum-
marizes the cost for an inspection and includes the penalty for a premature replacement,
if needed.

The Observation Space

According to Definition 6.1 we need to define a observation space O for inspection model
as POMDP. The observation space O is a subset of our state space S. In particular we
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have
O={reS:2c=0}U{(-1,0,—-1)}.

This choice is reasonable, because we cannot see the cracks before we perform an in-
spection for various parts. Further, a detected crack during an inspection leads to a
premature replacement. Therefore, we will never leave a part with detected crack inside
the gas turbine. But the age x5 and the age x at the last inspection is traceable during
operation. Also, we can detect or observe a failure of a component at every time.

The Observation Function

As last missing part of the POMDP model, we need to define the observation function
Pr (o4|wy, a;—1) which gives us a probability to make the observation o, € O, if we
performed action a;_; and we are in the resulting state x;. In general, we have the
following three cases for a single component

Do nothing a;; = (0,0)
1, oa=ma, o =1, To — 71 > Acy

Pr(ojzy,ai-1) =1, xpa=o0a=-1, ;1=01=0, ¢ = —1

0, else

Replacement a;, ; = (1,0)
1, on=xa=Ac¢, o =21=0

Pr(ozy,ai-1) =<1, za=o0a=-1, ;1=01=0, ¢ = —1

0, else

Inspection a;—; = (0,1)

1, on=xa, or=21>0, xpo — 21 = Acy

1, opn=xa=Ac¢, op=21=0
Pr(o4|xy, ai—1) =

1, za=o0oa=—-1, 21=01=0, 2¢c =—1

0, else

This mapping follows from the definition of the observation space O and the stated
dynamics g, because the single uncertainty in the state is the fulfillment of the inspection
criterion which is represented by x¢. Further, we can only reach distinct states after a
service action a.
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6.4. Numerical Analysis

In this section, we present a numerical analysis of the inspection model in terms of
a POMDP. In the first part, we describe the numerical implementation. In the sec-
ond part, we show numerical results for example models and compare the results and
runtimes of Algorithm 6.3 and Algorithm 6.5.

But first, we describe the model which we analyze. We consider a gas turbine which
consists of one component only. We consider only one component to reduce the compu-
tational effort. We allow the three service actions “do nothing” a = (0, 0), “replacement”
a = (1,0) and “inspection” a = (0,1) from Section 6.3. We take a time duration of 12
years and 2400 operating hours per year into account. Further, we assume 25 starts per
month with 8 operating hours per start. We summarize all important model parameters
for the inspection model in the following list:

Revenue function parameters:

Failure cost Cr = 50.0Mio. Euro

e Equipment cost Cyg = 3.0Mio. Euro

e Assembly cost Cya = 0.15Mio. Euro

e Inspection cost Cy = 0.6Mio. Euro

e Inspection penalty fee Cyip = 6.3Mio. Euro

e Revenue [ = 40 . 300MW - 81 . 25 8L . Ay — 24000020 . A¢
e Nominal discount factor i,, = 0.05

Crack model parameters:

e Material constants A = 3.86- 1071, v = 1.05, i = 2.25

e Detection length ager = 0.81cm

e Failure length a..; = 4.06cm
For simplicity we assume in the crack model that all model parameters do not depend
on the location x of the component. Further, we assume a Weibull model like in

the example in Section 6.2.1. The material parameters are comparable with the data
from [61]. The financial data are based on the assumption from Chapters 4 and 5.
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Figure 6.8.: Flow chart of the inspection model implementation.

6.4.1. Numerical Implementation

Basically, we implemented the two Algorithms 6.3 and 6.5 in R, [75], and used gurobi,
[46], as LP solver. The used software versions and hardware configuration is the same
as in Chapter 5. The implementation concept is similar two the one of the replacement
model, compare Figure 4.10 and Figure 6.8. The main difference is that we have to loop
over the time steps and solve many optimization problems. At this point we parallelize
the execution of the the optimization problems.

In Algorithm 6.3 we parallelize the prune operation over the three different action a € A
to save computational time. We get the best set of a-vectors for every action a and
can reduce it then to V, finally. Therefore, we can use 3 cpu cores simultaneously since

A = 3.
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Algorithm 6.7 Back-Projection (BL): Calculates &; for a given belief state b.
function BL(b, V, i1, R,)
for a € A do > This loop will be used for a parallel implementation.
af < R,
for o € O do > This loop will be used for a parallel implementation.
af 4= a4 argmaxa,,,ev,., (e~ Pr(ola,b) o, b)
end for
end for
(y 4~ arg maXag (@)™ b
return o
end function

In Algorithm 6.5 we use a parallel implementation of the back projection algorithm
which calculates & or in particular it finds the best a-vector from the set P (f/t+1> for

a given belief state b € I1(S). For the definition of the back projection algorithm confer
Algorithm 6.7. This algorithm parallelize the loop over the different actions a € A.
Further, for every action a € A we split the the observation space O into #cpu core
subsets O;. By this measure, we can use more than one cpu core for every action a € A
to find @. In our implementation approach we use 14 cpu cores.

In addition gurobi takes advantage of a multi cpu core system in both algorithms. The
LP-solver gurobi runs a different algorithm / solution strategy on every cpu core and
takes the solution from the fastest one, confer [44]|. In our case it uses 16 cpu cores.
This leads to 16 different strategies.

In the a-min-Algorithm 6.6 we choose the following parameters to bound the iteration
steps. First, we define N as number of the unique a-vectors which are created due to
the back projection of the |S| unity vectors e; € II(S) where the i-th component takes
the value 1. We can calculate these back projected a-vectors very fast, because it can
be done simultaneously. Then we take N = N + 5 < |S| 4 5 as maximal number of a-
vectors per time step. For the maximal number n,,, of iteration steps to approximate
the convex polyhedron C; by CN'f’ we choose ny.x = 10.

6.4.2. Numerical Results

To measure the error of the a-min-Algorithm we can use the error gap from Lemma 6.6
like presented in Table 6.1. Further, we create randomly 10* belief states and use the
absolute error measure according to equation (6.11), e.g.

max a’b — maxa’b|, (6.20)
aEVy a€Vy

valaphs <Vt, 1}157 b) =

to calculate the error. The results for time step ¢ = 1 are presented in the histograms in
Figure 6.11. We see that the approximation fits in all four cases very well. We compare
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runtime [mean time per stage] in sec | #a-vectors gap
T | At | |S] P a-min IP | a-min | err
40 | 3 | 2353 | 1208.9 [30.22] 61334.3 [98] 117 | 25828 | 121.504
20| 6 | 601 | 86.7[4.34] A737.0 [236.85] | 57 | 3481 | 58.7
10 | 12 | 157 8.8 [0.88] 1377.8 [137.78] 27 607 27.5
5 | 24 | 43 1.1 ]0.23] 435.2 [87.04] 12 105 11.9

Table 6.1.: Different result parameters for the IP and a-min-Algorithm. The runtime
in brackets [-] is the average runtime per time stage. #a is the number of
a-vectors over all time stages t. At is given in months.
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Figure 6.9.: The error gap err; from Algorithm 6.6 over the time.

the results of the IP and a-min-Algorithm with a second error measure according to
equation (5.18), e.g. we have

T
aEVy « b
maxgey, a1b|

max

valye (Vt,f/t,b> — ‘1 — (6.21)
Therefore, we use the 10* randomly created belief states to create the histograms in Fig-
ure 6.12 to compare the approximate results with the real results from the IP-Algorithm.
In this case the error is very small. We can conclude that, the created solution from
the a-min-Algorithm approximates the real solution very well. In Figure 6.9 we present
the error gap err; over the different time steps. We can conclude that the error does
not change significantly over the time steps.

However, the runtime of the a-min-Algorithm is even worse compared to the exact
IP-Algorithm. As we see in Table 6.1 the runtimes of the a-min-Algorithm are much
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Figure 6.10.: Parameters per time step. We recognize that the runtime of the a-min-
Algorithm increases with the number of « in V.

longer for the problems with 7" = 5,10, 20,40. There are two possibly reasons for this
behavior: First, the most time consuming part in the a-min-Algorithm is the back
projection Algorithm which suffers from the high dimensionality of the observation
space 0. Secondly, the high number of created a-vectors increases the runtime of the
BL-Algorithm. As we see in Figure 6.10(a) the number of the a-vectors increases when
we step back in the time. Therefore, the runtime of the back projection Algorithm
increases, because we have to do many multiplication and addition operations with
dense matrices. In opposite, the IP-Algorithm creates only a small number of a-vectors
per time step. In our case this are two or less a-vectors as we see in Figure 6.10(b).
This behavior increases the speed of the algorithm radically, because it keeps the size
of the sets V;"%, V# and V, from equations (6.8) to (6.10) very small. We could get a
runtime advantage for the a-min-Algorithm, if we are able to increase the efficiency of
the back projection Algorithm 6.7 or decrease the maximal number N of a-vectors per
time stage.
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Figure 6.11.: Histograms according to the absolute error measure from equation (6.20).
Every histogram presents the error measure for time step t = 1 and we
chosen 10* belief states b randomly.
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Figure 6.12.: Histograms according to the relative error measure from equation (6.21).
Every histogram presents the error measure for time step ¢ = 1 and we
chosen 10* belief states b randomly.
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7. Conclusion and Outlook

At the end of the this thesis, we draw conclusions from the presented work and we
a give an outlook on future research work. The subjects presented in this work were
different models to optimize maintenance scheduling of a gas turbine according to its
life consumption. The models take into account that the gas turbine consists of different
components which age at different rates. Further, the models capture the probabilistic
nature of the different damage mechanisms which influence life consumption. At the
end we get optimal maintenance strategies.

We present three different models which differ in the used service actions. We start
with a simple replacement only model. In this case our service action sets the affected
component always back into as new condition. Further, we only consider the risk of
a total damage of the gas turbine. The modeling approach is similar to a risk life
insurance. To solve this type of model, we first present a simple toy model. After
this, we use an impulse control approach for a more complex and realistic model. This
approach scales very well and is also suitable, if we increase the number of components.

As a next step, we extend the replacement model to an advanced replacement model. In
this model the service action is still replacement, but we can repair the gas turbine after
a failure. The repair action sets the effected component back into as new condition. We
use a Dynamic Programing framework to solve this problem. We demonstrate that our
model suffers from the curse of dimensionality. But we present an approximate Dynamic
Programming approach to mitigate this behavior. In the ADP-Algorithm, we exploit
the special structure of our problem and demonstrate for a two component model that
we can reduce computational effort significantly with acceptable errors compared to the
exact solution.

In the last step, we introduce the service action of inspection which is often used in real
applications. In this case components are replaced prematurely, if they do not fulfill
certain inspection criteria. In this case we gain information at every outage and we
can readjust the failure probability. But the complexity increases, because we have no
perfect state information like in the two models before. Therefore, we use a partially
observable Markov Decision Process framework to model this type of service type. We
develop a simple probabilistic model for crack growth under inspection to make use of
the gain of information during an inspection. For the POMDP approach we also present
an exact solution method, the IP-Algorithm, and an approximate method, the a-min-
Algorithm, to solve the problem. Further, we show that the error of the approximate
solution remains within tolerable bounds, but the runtime behavior of the approximate
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algorithm is not so good as assumed.

An important result of the numerical case studies is that the optimal solution for the
replacement and advanced replacement model is better than the standard maintenance
schedule / policy which is used today. A Comparison for the inspection model was
not carried out. In the replacement model we achieve a 56.30Mio. Euro higher rev-
enue than in the standard maintenance case. The calculated optimal policies in the
advanced replacement model are on average approximately 100.0Mio. Euro better than
the standard policy.

The three mentioned models give us the possibilities to create an optimal maintenance
schedule. In our case it is always a cost optimal maintenance model. It should be very
easy to extend the model to different objective functions for example like availability
or performance. This could be the next first step for future research on this topic.
Also, we can use these models for every mechanical or electrical equipment which need
maintenance.

Another interesting topic is to analyze how many life counters we really need. As
mentioned in the thesis, an increase of the counters is equivalent to an increase of
complexity. Therefore, it is important to choose the right number and location of life
counter or to merge parts in groups together.

A main further research topic is the tuning and development of further approximate
solution techniques for the approximate solution methods. In general we can explore the
special structure of our problem in the Dynamic Programing framework to extend the
model to more than two components. Further, we can explore the structure for different
objective functions which should be quite the same to generate further approximate
methods. In the POMDP framework respectively in the inspection model, one also
should be able to tune the point based a-min-Algorithm, if one can find important
belief states according to our maintenance pattern and the state transition function.
Today, we can cover all three models in the POMDP framework, but it increases the
complexity significantly. Therefore, a further important topic is a smart combination
of the models introduced here.

As a last interesting future research topic, we mention the introduction of uncertainty
in the operating regimes or in the financial data. In the presented work these two
points are fixed by assumption, but in general they are scattered which can change the
proposed outage schedule. This point also will increase the complexity of the models.
In general the Dynamic Programming and POMDP approach are capable to handle
such extensions as well.
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A. Appendix - Stochastics

This subsection summarizes the necessary background information of stochastic theory
and notation in an axiomatic way based on the work of [42]. First we deliver all
necessary information about a random variable w which describes the uncertainty in
our models. We start with the definition of a o-algebra which is state space of a random
variable w. It describes all possible results of a random experiment.

Definition A.1 (o-algebra)
Let Q2 be some set, and let P () represent its power set. Then a subset F C P () is
called a o-algebra if it satisfies the following three properties:

e F is non-empty: There is at least one E C § in F.

o F s closed under complementation: If E 1is in F, then so is its complement,

O\ E.

o F is closed under countable unions: If Ei, FEs, Es, ... are in F, then so is

We call €2 the sample space and F is a family of events which are possible results of our
random parameter w. Next, we need two measure theoretical definitions to establish
the term of probability space and distributions.

Definition A.2 (Measure & measurable space)
Let Q be a set and F a o-algebra over Q. A function p: F — RU{—o0} U {400} is
called a measure if it satisfies the following properties:

e Non-negativity: For all E € F: p(E) > 0.
o Null empty set: u (D) = 0.
e o-additivity: For all countable collections {E;},. of pairwise disjoint sets in F:
(U) - Su
ieEN ieEN

A probability measure Pr, is a measure with total measure one Pr(®) = 1. The pair
(Q,F) is called a measurable space, the members of F are called measurable sets. A
triple (2, F, p) is called a measure space.
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The next theorem presents important properties of a probability measure Pr.

Theorem A.3 (Probability Measure)
For every probability measure Pr on a measure space (0, F, 1) we have the following
properties for every event A, B, Ay, Ay, ... € F:

1. Pr(0) =0,

2. finite additivity: Pr (AUb) + Pr(ANB) = Pr(A) + Pr(B) and it particularly
Pr(A)+ Pr(A°) =1,

3. monotony: A C B = Pr(A) < Pr(B),
4. o-subadditivity: Pr (Uk21 Ay) < > s Pr(Ar),
5. o-continuity: If Ay 1+ A (e.g. Ay C Ay C ... and A= J,_y Ax) or Ay | A, then
it follows Pr(Ag) — Pr(A) for k — oc.
Next, we define a measurable function:

Definition A.4 (Measurable function)
Let (2, F) and (Q,f") be measurable spaces. A function f: F — F is said to be

measurable if the preimage under f is in F for every E in F, ie.

fﬁl<E> :Z{wEQ:f(w)EE}E}" forall E€F.

If we put these pieces together, then we get a triple W = (Q,F, P) which is our
probability space. In particular we obtain:

Definition A.5 (Probability Space)
A probability space W is a triple W = (Q, F, P):

e () s its sample space

o F CP(RQ) is its o-algebra of events

o P is its probability measure
Now, we concentrate on the probability measure which describes a random variable. A
random variable is defined by

Definition A.6 (Random variable)
A random variable X : 0 — E is a measurable function from the set of possible outcomes
Q to some set E C R. Q belongs to a probability space W = (2, F, P).
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Conditional Probabilities

We present a brief introduction of conditional probabilities, confer [42]. In general we
can say: A conditional probability measures the probability of an event given that
another event has occurred. We give T. Bayes definition:

Definition A.7 (Conditional Probability)

Given two events A and B from the sigma-algebra of a probability space with Pr (B) > 0,
the conditional probability of A given B is defined as the quotient of the probability of
the join of events A and B, and the probability of B:

pr(Ap) = Lr4NB) 7}3(;‘(;)3 )

If A and B are two stochastic independent events, we get

Pr(AnB) Pr(A)Pr(B)
Pr(B) ~  Pr(B)

Pr(A|B) = = Pr(A)

and for the case of depending events Bayes formula says that

Pr(B|A) Pr(A)

PrAB) = =5
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List of Abbreviation and Symbols

3d
ADP
CMB
DP
EBH
EOH
ES
FBB
HCF
KKT
LICQ
LP
LCF

MDP
MILP

NLP
ODE

POMDP
PWLC
PPP
PoD
PoE
PoF

3d dimensional.

Approximate Dynamic Programming.
Coffin-Manson-Basquin.

Dynamic Programming.

Equivalent baseload hours.
Equivalent operating hours.
Equivalent starts.

Find best belief (state).

High cycle fatigue.
Karush-Kuhn-Tucker-Condition.
Linear independence constraint qualification.
Linear program.

Low cycle fatigue.

Markov Decision Process.
Mixed integer linear program.

Non linear program.
Ordinary differential equations.

Partially observable Markov Decision Process.
Piecewise linear and convex.

Poisson Point Process.

Probability of detection.

Probability of premature exchange.
Probability of failure.
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List of Abbreviation and Symbols

e, exp ()

F (), f(t),5()
Ham

h(t), H (1)

TZHam
X{}
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Quadratic program.

Adjoint variables / Lagrange multiplier.
Approximated set of a-vectors.
Set of a-vectors.

Belief state space associated with §.
Boundary of the set Q2 C R".

Conditional probability.

Delta distribution.
Time derivate of f.
Discount factor.

Expectation operator.
Exponential function.

Failure distribution, failure density, survival distribution.
Fracture toughness.

Hamilton function associated with a control problem.
Hazard rate, cumulative hazard rate.

Impulse Hamilton function associated with a impulse control problem
Indicator function.

Jacobian matrix / gradient of function f.

Lagrange function.
Life time counter.

Mesh size.

Objective function.
Observation probability.
Optimal solution or value marked by a *.

1-th partial derivative of f.
Policy for time step t.

Terminal reward function.
Jump reward function.
Continuous / per time step reward function .



List of Abbreviation and Symbols

A Set of all actions.

Z Set of integers numbers.

N Set of natural numbers.

@ Set of observations.

Q Set of Rational numbers.

R™ Set of all real valued n-dimensional vectors.
Rmxm Set of all real valued m x n matrices.
R, All positive real numbers.

S Set of all states.

L (t,x, \) Shifting function.

Ck(Q) Space of k times continuously differentiable functions on €.
Q. Control space.

L? ((a,b),Q) Lebesgue space on 2 C R™.

WP ((a,b), Q) Sobolev space on {2 C R™.

Q, State space.

P, P (a) Stochastic matrix.

o(-) Stress field.

K Stress intensity factor.

Tena Time horizon.

T Number of time steps.

Ty Time horizon beginning.
p(s,a,s),Pr(s'|s,a),pij (a) Transition probabilitiy.

2T, AT Transpose of vector x, matrix A.

Vi (x4) Value function for time step t.

m,mn Weibull parameter: Shape and scale.
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