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1 Introduction

The theory of the big bang describes the evolution of our Universe. It starts from a state with
high temperature and pressure. During the expansion it cools down to today’s temperature
measured from the cosmic microwave background of approximately 3 K. In the course of this
extreme cooling several cross-over transitions happen leading to our matter today. [2, 3]

The metric of the Universe was found by Friedmann as

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2) (1.1)

where a is the so called scale factor. With the Einstein equations the energy conservation can
be written in the form

ρ̇a3 − 3(ρ+ p)a2ȧ = 0 (1.2)

with the energy density ρ and the pressure p of both matter and radiation [2]. To describe
the development of the Universe one needs the equation of state that relates energy density
and pressure. It can be obtained from calculations in the framework of the standard model of
particle physics.

However in today’s Universe only a fraction of the matter in our Universe is made of baryonic
matter, which is described by the standard model. We know, for example from the rotation
curves of galaxies and from the large scale structures in the Universe, that there must be
some form of matter that does interact through gravity and only very weakly, if at all, though
other forces. It is called dark matter [4]. Both the development of the Universe and a possible
candidate for a dark matter particle will be discussed in this work.

This thesis is structured as follows: It starts with a brief introduction to the phases of the
early Universe and the standard model of particle physics in chapter 2. Then the theory of
strong interaction will be discussed in more detail in chapter 3. After a discussion of the
main ingredients of the theory of strong interactions, Quantum Chromodynamics (QCD)
in section 3.1, the main focus of this chapter lies on the techniques used in lattice QCD
calculations. These are presented in section 3.2. In this section I describe the techniques
that are later used for computations in this work. Starting from the gauge action, I discuss
staggered fermions which were used for most computations in this thesis. In addition I
introduce overlap fermions, as the overlap operator was used for some calculations in chapter
5. After establishing the lattice formulation I briefly explain the main simulation techniques
to make lattice simulations computationally feasible in section 3.2.3. Afterwards I focus on
lattice QCD at finite temperature and density, giving a summary of the field. Then I describe
the current status of investigations of the QCD phase diagram, focusing on the hadronic phase
and the quark gluon plasma. In some energy ranges QCD is accessible perturbatively. An
important technique for high energy perturbative QCD, the hard thermal loop expansion, is
presented in section 3.4. Finally I discuss the strong CP problem of QCD that could could
give insight to some beyond standard model physics.

Jana Günther - Dissertation 1
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1 Introduction

In the next two chapters I concentrate on computations I was working on. In chapter 4 I
focus on computations at finite density QCD. These are especially relevant to understand the
physics in heavy ion collisions. Section 4.1 describes the efforts made to meet the conditions in
those experiments. The next section gives an overview over the configurations that were used.
There are two main analysises from those configurations. First the computation of the cross
over temperature in section 4.3 and second the computation of the equation of state in section
4.4 both at non zero baryon chemical potential. The two analysises are described in detail.

In chapter 5 I discuss some aspects of the search for axions. In section 5.1 I describe the
computation of the topological susceptibility that is necessary to estimate the mass of axions
but is very difficult to compute on the lattice. In section 5.2 I present some properties of a
possible experiment that could be used to detect axions. This computations have not been
published previously. The thesis closes with a conclusion.

The results obtained in the course of this thesis have been published in [5, 6, 7, 8]. Since the
work for this papers was done in a large working group that is necessary to handle all the
different aspects of the computations I will give a short overview of my contribution to this
results. All calculations were done at least by two people independently.

Tuning to the strangeness neutral point: I made the calculations necessary to tune a
simulation to the strangeness neutral point and wrote a program that extrapolates the data
to the strangeness neutral point, to reduce the numerical error.

Calculating Tc: I performed the analysis for the crossover temperature on all the used
observables. It includes the renormalization of ψ̄ψ and χψ̄ψ, fits in several directions and the
extrapolation of Tc to finite µB with an estimate of both statistical and systematic errors.

Extrapolating data at high temperatures: I wrote a program that extrapolates the data

for 1
µ̂B

dP̂
dµ̂B

from zero to imaginary chemical potential at high temperatures as described in
section 4.4.1.

The equation of state: I performed the analysis for the equation of state at finite chemical
potential. It includes various fits, the determination of the Taylor coefficients of the pressure,
the matching of the isentropic trajectories to the beam energies of RHIC and an estimate of
both statical and systematic errors.

HRG results: I wrote a program that calculates the pressure for an ideal HRG model and
tested the influence of different particles to the result.

Generating configurations: I generated some of the configurations at imaginary chemical
potential, using our simulation code Janos, on the Blue Gene/Q at the Forschungszentrum
Jülich.

2 Jana Günther - Dissertation
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Topological susceptibility: I performed the eigenvalue reweighing described in section 5.1.1
and tested for the influence of a different definition for the included number of zero modes. I also
performed a continuum extrapolation for χ and b form 3+1-flavour simulations, investigating
different fit choices to estimate the systematic error.

Dielectric mirror: I performed the computations necessary to generalize the matrix formal-
ism for classical electrodynamics to a theory with coupling between photons and axions. I
wrote a program that computes different properties of a dielectric mirror both for classical
electrodynamics and with the new theory for axions.

Jana Günther - Dissertation 3





Lattice investigations of the QCD phase diagram

2 Theory

In this section there will be given a brief overview over the topics covered in this thesis and
put them into the context of the general framework of high energy physics. Values given
through-out this thesis are usually in units of energy. This is possible in a system of units
where c = ~ = 1, with c the speed of light and ~ the Planck constant divided by 2π, is

used. As a unit of energy we use electron Volt (eV). In SI units 1 eV = 1.602 kg·m2

s2
. Also

µeV = 10−6 eV, keV = 103 eV, MeV = 106 eV and GeV = 109 eV are used.

2.1 The early Universe

The Standard Model of Cosmology describes the different eras of the Universe. An overview
can be seen in figure 2.1. In this section the early phases will be discussed. These are the
phases most interesting for particle physics at the moment. This discussion follows [4].

Experimental determination yields a positive Hubble parameter. This means that we live in
an expanding Universe. Also, if one extrapolates back in time, it implies that the Universe
was denser and hotter in the past. The hot big bang theory describes a Universe that was
very hot and very dense at early stages and can be investigated by means of thermodynamics.
It is assumed that the Universe was nearly all the time in thermal equilibrium.

During the recombination era, at temperatures of approximately 0.3 eV the nuclei and electrons
that were free at higher temperatures combined to atoms. This made the Universe transparent
for photons. Also the cosmic microwave background was formed during this epoch. The
cosmic microwave background contains information about the Universe up to temperatures of
approximately 0.26 eV and it is and has been under investigation by different experiments for
example COBE, WMAP and Planck [10].

Before the recombination the nuclei had to be formed as a combination of neutrons and
protons. There are several mechanism how nuclei are created in the Universe. Heavier nuclei
are formed during stellar evolution in thermonuclear reactions within the stars or in supernova
explosions. Light nuclei were already produced in the early Universe at temperatures between
1 MeV and 50 keV. This timespan is called the era of nucleosynthesis. At that time the
Universe was only between 1 and 300 seconds old. Consequently earlier phases of the Universe
latest for very brief times compared to everyday time scales.

While decoupling of photons happened in the era of recombination, neutrinos became free
at an earlier point, at temperatures of 2 to 3 MeV. This makes them an interesting subject
for cosmological observations. Directly observing the neutrino background would allow for
observations at higher temperatures than the temperatures reachable by photon observation.
Several experiments try to observe neutrinos, investigating the early Universe as well as
younger sources of neutrinos like for example supernovae. However due to their weakly

Jana Günther - Dissertation 5
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2 Theory

Figure 2.1: An overview of the phases of the Universe. [9]

interacting nature neutrinos are extremely hard to detect and a direct observation of the
neutrino background is not possible with today’s technology.

At even higher temperatures the time of cosmological transitions took place. They can be
studied by lattice calculations. There were several transitions in this epoch. While frequently
being called phase transitions they were in fact analytic crossovers. In the latest of these
transitions at approximately 160 MeV [11, 12, 13] the quark gluon plasma, consisting of
quarks and gluons goes over to hadronic states. A more detailed description of this transition
and about its investigation can be found in section 3.3. During the same time also the chiral
symmetry breaking takes place.

Going to even higher temperatures, the next transition is the electroweak cross over [14]. It
takes place at a time approximately 10−12 s to 10−11 s after the big bang at a temperature
of O(100) GeV [15]. At higher temperatures the elementary particles were massless [3]. The
spontaneous symmetry breaking in the electroweak theory yields a transition between the
symmetric or high temperature phase and the Higgs phase or broken phase. However this
transition is not responsible for the majority of mass that is experienced in daily live. Nearly
all of this mass is due to the energy of strong interaction within the hadrons [16]. The mass of
elementary particles like the W - and Z-boson is generated due to the Higgs mechanism.

6 Jana Günther - Dissertation
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2.2 The Standard Model of particle physics

At temperatures of about 1016 GeV there might have been the so called Grand Unification
transition prior to which the strong, weak and electromagnetic force can not be distinguished
any longer. It is not clear if the early Universe ever had such a high temperature especially
in models that include inflation. Therefore it might never have happened and remains a
theoretical model. [4]

Up to here the particle content of the early Universe can be described within the Standard
Model of particle physics (see section 2.2). However within this framework some questions
can not be answered. For example the excess of baryons over anti-baryons in the Universe.
If matter is created form energy, as it is done in collision experiments and presumably also
happened during the big bang, matter and anti-matter is created in equal parts. Since the
electroweak transition has been found to be a crossover there is no mechanism where the
baryon number non-conversation is strong enough to fully explain the baryon asymmetry.
Also the configuration of matter that can be measured today would require quite complicated
initial conditions. Another problem is, that in the hot phase of the Universe there were density
fluctuations that can be seen in the cosmic microwave background, but can not be explained
within the Standard Model. [4]

This problems can be solved by the introduction of an inflationary period. This is a period of
rapid expansion prior to the epoch of cosmological phase transitions. It can be described by
adding new fields to the Standard Model or extra terms in the action of gravity. The rapid
expansion leads to a magnification of small fluctuations, for example vacuum fluctuations,
that leads to the density fluctuations in the normal matter which can be observed today.

2.2 The Standard Model of particle physics

The Standard Model of particle physics is the theory that describes with great success our
current knowledge of the elementary particles in the Universe. It contains the strong and
electroweak interaction, but does not include gravity, which is described by general relativity.
It contains 17 particles and their corresponding anti particles. Twelve particles are fermions
and five are bosons. The fermions can be divided in two groups. Each group contains three so
called families and each family contains again two particles. An overview over the particles is
given in figure 2.2.

One of the groups contains the quarks, which make up the elementary building blocks of
nuclei and therefore of atoms. The lightest family contains the up and the down quark which
are the valence quarks of protons and neutrons. The heavier families contain the charm and
the strange quark and the top and the bottom quark. While they are not contained as valence
quarks in everyday matter, they become important at high temperature and density, as for
example in the early Universe or in particle colliders. Every quark carries a so called colour
charge as well as a fractional electric charge. Below the crossover temperature of approximately
150 MeV quarks only exist in bound states, which are called hadrons. Every bound state has
an integer electric charge and is colour neutral. The fact that quarks only exist in bound
states is called confinement.

The other group contains the leptons. Similar to the quarks the leptons can be divided into
three families. Each family contains one charged particle: Either electron, muon, or tau and

Jana Günther - Dissertation 7
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2 Theory

Figure 2.2: An overview over the elementary particles in the standard model taken from [17]. In
the quark and lepton section the particles placed in the same column belong to the same family.

their corresponding neutral partner which is called a neutrino. Neutrinos are extremely light
particles that where thought to be massless in previous versions of the standard model. The
fact that neutrinos actually have a mass was shown experimentally by the Sudbury Neutrino
Observatory [18] and Super-Kamiokande [19], which measured neutrino oscillation. Neutrions
only interact very weakly with matter which makes them hard to detect and to measure. As
with the quarks only the first family contributes to our “normal” matter. The muon and the
tau are mainly relevant for astronomical observations and collision experiments.

The remaining five particles are the so called bosons. Four of these five are the so called
gauge bosons that carry the forces between the particles. The standard model describes
three of the four known forces: the strong interaction, the electromagnetic interaction and
the weak interaction. It does not include gravity. The exchange particles of the weak force
are the massive Z- and W -bosons. This interaction is the weakest of the three forces in the
standard model, even though it is stronger than gravity. The electromagnetic interaction
acts on electrically charged particles: the quarks, electron, muon, tau and the W-bosons. Its
exchange particle is the massless photon. Since the photons are not charged they do not
interact with each other directly. The last interaction, the so called strong interaction, acts on
particles with a colour charge. These are the quarks and the gluons, which are the carriers
of the strong force. Since the gluons themselves carry the colour charge the gluons have
self interaction. While the coupling of the strong interaction is large at low energies, which
prevents a proper perturbative treatment of QCD in that regime, the coupling reduces with
increasing energy. This concept is called asymptotic freedom.

8 Jana Günther - Dissertation
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2.2 The Standard Model of particle physics

The last particle is the Higgs boson. Even though it was predicted a long time ago in 1964
[20, 21, 22, 23, 24], it was discovered only in 2012 [25, 26] at the Large Hadron Collider
(LHC). While nearly all the mass we encounter in our daily life is a result of the spontaneous
chiral symmetry breaking, the mass of the elementary particles themselves is produced via
spontaneous symmetry breaking in the so called Higgs mechanism that is described, for
example in [27, 28]. In this mechanism the Higgs particle is created. Its detection at the LHC
completed the standard model.

Jana Günther - Dissertation 9
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3 Strong interactions

A main topic of this thesis is the investigation of the transition between the quark gluon
plasma and the hadronic phase. Since the participants in this transition, the quarks and
gluons, are colour charged particles they are subjected to the strong interaction. Therefore we
will discuss in this chapter some aspects of the theory of strong interaction. We will briefly
introduce the Lagrangian of the theory. In this thesis the tool of choice for investigating the
deconfinement transition is lattice QCD. Therefore it will be also be discussed in this section.
Another important topic in this thesis is idea of an axion as a dark matter candidate. Its
introduction is strongly related to the vacuum structure of QCD and the strong CP-problem
that will also be discussed in this chapter.

3.1 Quantum Chromodynamics

Quantum Chromodynamics (QCD) is the widely accepted theory of strong interactions. In
this section there will be given a very brief introduction in the most basic principles of QCD.
More extensive textbooks on the subject are for example [29, 30], on which this discussion is
based.

The Lagrangian of QCD is given as:

L = −1

4
F aµνF

aµν +

Nf∑

k=1

ψ̄k (iγµDµ −mk)ψ
k (3.1)

where k is summed over all flavours, a is summed over the SU(3) degrees of freedom a =
1, 2, . . . 8, and

F aµν = ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν (3.2)

Dµ = ∂µ − igT aAaµ. (3.3)

Here fabc are the SU(3) structure constants and T a the eight SU(3) generators. Therefore
the indices a, b and c run from one to eight [30]. The Aaµ are the gauge fields. They are
elements of su(3), the Lie algebra of SU(3). As colour octets they transform under the adjoint
representation of the Lie group SU(3). The ψ represent the quark fields. As colour triplets
they transform under the fundamental representation of SU(3). Since the quarks are fermions
(they have a spin of 1

2) they transform as spinors in the Dirac space and are denoted by
Grassmann variables in the path integral formalism, meaning that

{ψi, ψj} = 0 (3.4)

Jana Günther - Dissertation 11
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3 Strong interactions

The Lagrangian is gauge invariant. This means it does not change under a local gauge
transformation where [31]

ψ(x) −→ eiα
a(x)Ta

ψ(x) (3.5)

Aaµ(x) −→ ef
abcαb(x)Acµ(x). (3.6)

In principle there could be an extra term in the Lagrangian of the form

LCP =
g2

32π2
θ̄F aµνF̃ aµν (3.7)

where θ̄ is the so called vacuum angle and F̃µν is the dual field strength tensor given as
F̃µν = 1

2ǫµνσλF
σλ. As described in section 3.5, θ̄ is constrained by the measurement of the

neutron electric dipole moment to |θ| < 10−9 [32]. Therefore this term vanishes in the standard
model [33].

Unlike the electric charge the colour charge of quarks cannot be observed directly in experiments.
However there are convincing arguments for the existence of the colour charge. First it ensures
confinement. If all hadrons transform as singlets under colour transformation, it explains why
no free particles with fractional electric charges are observed. Another motivation comes from
the ∆++ particle. It is interpreted as a state with three u valence quarks. Its wave function
would be completely symmetric under the exchange of spin or flavour quantum numbers. At
the same time the quarks are fermions and have to obey the Fermi-Dirac statistics (or Pauli
principle). This contradiction is solved if the three quarks do not have the same quantum
numbers, due to the different colour charges.

An indirect measurement of the colour charge can be done using the process of Bhabha
scattering, where two electrons (e+e−) annihilate. The produced virtual photon creates pairs
of charged particles with a probability proportional to the crossections of the final states. The
crossection for this process can be analysed and split by whether there are hadrons or muons
(µ+µ−) in the final state. Each color state is produced with equal probability, thus the ratio
of the two crossections

R =
σe+e−−→hadrons

σe+e−−→µ+µ−
(3.8)

is proportional to the number of different colour charges Nc. R is a factor of three larger than
one would expect without consideration of the colour charge. Therefore Nc = 3.

In addition to the local gauge symmetry of the Lagrangian, L is invariant or nearly invariant
under several global transformations of the quark fields. In the case of Nf fermion flavours
with equal mass L is invariant under a transformation

ψ −→ ψ′ = eiΓ
aαaψ, (3.9)

12 Jana Günther - Dissertation
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3.1 Quantum Chromodynamics

where Γa are the generators of either U(1) or SU(Nf ). The corresponding conserved Nöther
current is defined as

Jaµ = − ∂L
∂(∂µψ)

∂ψ′

∂αa
(3.10)

= ψ̄γµΓ
aψ. (3.11)

From the zeroth component one can then defined the corresponding charge Qa as

Qa =

∫
d3x J0

a (x) (3.12)

=

∫
d3x ψ†(x)Γaψ(x). (3.13)

Qa is constant in time implying that
dQa
dt

= 0. (3.14)

There are several choices for Γaαa. If the Γa are taken to be the generators of U(1) (just
meaning that Γa = 1) this leads to the transformation of

ψ −→ eiαψ (3.15)

and to the charge

Q =

∫
d3x ψ†(x)ψ(x). (3.16)

This is the definition of the baryon number. Therefore the baryon number is conserved under
the strong interaction.

For Nf = 2 and equal masses mu = md = mud the Lagrangian is invariant under a transfor-
mation of SU(2) where the generators are

Γa =
τa
2

(3.17)

with the three Pauli matrices τa. This corresponds to the conservation of the isospin in QCD
and is called isospin symmetry. Although in reality [34]

mu ≈ md

2
(3.18)

these masses are sufficiently small in comparison to the scale of the spontaneous breaking of
the chiral symmetry. Therefore in QCD thermodynamic calculations with degenerate u and d
quarks are common. They are precise enough to allow for percent level accuracy in the final
results.

In the case of Nf = 3 and equal masses mu = md = ms the Lagrangian is invariant under a
SU(3) transformation with the generators

Γa =
λa
2

(3.19)
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where λa are the eight Gell-Mann matrices. This leads to the conserved current

Jµa = ψ̄γµ
λa
2
ψ. (3.20)

However in nature the mass of the strange quark is larger than the mass of the u or d quark.
Therefore the derivative of the current does not vanish exactly but

Jµa ∝ (ms −mud). (3.21)

Another not exactly realized symmetry is the so called chiral symmetry. Classically it exists
in the limit of massless quarks and describes the invariance to opposite rotations of ψR and
ψL in flavour space where

ψR =
1

2
(1 + γ5)ψ (3.22)

ψL =
1

2
(1− γ5)ψ (3.23)

and γ5 = iγ0γ1γ2γ3. The Lagrangian of massless QCD can be written as

LχQCD = −1

2
FµνF

µν +

Nf∑

k=1

ψ̄kR (iγµDµ)ψ
k
R +

Nf∑

k=1

ψ̄kL (iγ
µDµ)ψ

k
L (3.24)

However the mass term breaks the chiral symmetry explicitly and mixes left and right handed
quarks. Since the masses of up and down quarks are very small, massless QCD can be the
starting point for a systematic approximation to Nf = 2-QCD. This gives rise to the field of
chiral perturbation theory that also has a strong influence on lattice QCD.

3.2 Lattice QCD

Since the theory of the strong interaction, Quantum Chromodynamics (QCD), can not be
treated perturbatively in every parameter region, a common way of solving QCD is the use of
lattice QCD (LQCD). The concept of lattice QCD can be understood in the path integral
formalism. As a first step one Wick rotates the path integral

〈O〉 = 1

Z

∫
D[U ]Dψ̄DψOe−iSMinkowski , (3.25)

thus replacing the Minkowski time τ with the Euklidean time it. This results in the Euclidean
path integral

〈O〉 = 1

Z

∫
D[U ]Dψ̄DψOe−SF−SG . (3.26)
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Here U are the gauge links, and ψ̄ and ψ denote the fermion fields. The D symbol denotes the
integrals over the field at every point in space time. For example

Dψ =
∏

x

dψ(x). (3.27)

So every integral in equation (3.26) actually denotes infinitely many integrals. LQCD replaces
the continuous space time by a discrete four dimensional lattice, thus allowing to solve the
path integral with a finite number of integrals. The discrete lattice points serve as ultraviolet
regulator while the finite extent of the lattice supplies an infrared cut-off.

The integral over the Grassmann fields ψ and ψ̄ can be solved analytical yielding

〈O〉 = 1

Z

∫
D[U ]O det[M ]e−SG (3.28)

where M is the fermion matrix given as

∫
Dψ̄Dψe−SF = detM. (3.29)

det[M ]e−SG can be interpreted as Boltzmann weight for detM ≥ 0, thus allowing importance
sampling for solving the integral.

In this section some of the techniques that made it possible to determine the results of this
thesis will be presented. A more detailed and complete introduction to LQCD can be found
for example in [27, 35, 36, 37].

3.2.1 Gauge actions

Here the relation of the lattice action with the continuum action is derived. The derivation
follows [27] and [38]. Also some improvement program will be discussed. The standard
unimproved gauge action on the lattice is the Wilson action, which is given as

S[U ] =
β

3

∑

x

∑

µ<ν

ℜ tr (1− Ux,µν) (3.30)

with the gauge fields U ∈ SU(3) and the plaquette Ux,µν that is depicted in figure 3.2.

The link variables U are the so called gauge fields that build the links of the lattice. They are
related to the continuum fields Aµ via the formula

Uxµ = eigAxµ . (3.31)

Since the Axµ are in the SU(3) algebra, su(3), this yields that U ∈ SU(3). From figure 3.1 the
relation

U †
x−µ̂,µ = Ux,−µ (3.32)

becomes apparent.
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Figure 3.1: The interchanging of the orientation of a link variable.

In the continuum the Lagrangian of the pure gauge theory includes the square of the field
strength tensor Fµν , which is given as

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ]. (3.33)

The field strength tensor describes the infinitesimal change of the fields per area, if they are
transported in an infinitesimal circle. Due to the discrete nature of the lattice there cannot
be an object like an infinitesimal circle. Instead one uses a plaquette, which is the smallest
square on the lattice. A graphic representation of this plaquette can be found in figure 3.2.
The plaquette is calculated as the product of the four link variables in the direction of the
arrow. If necessary the orientation of the gauge fields can be changed by the use of equation
3.32. This gives the formula

Ux,µν = UxµUx+µ̂,νU
†
x+ν̂,µU

†
xν . (3.34)

To relate this with the continuum action one can Taylor expand this expression to recover
the field strength tensor in equation (3.33). Since the gauge fields do not commute with each
other on has to make use of the Baker-Cambell-Hausdorff-formula

eAeB = eA+b+
1

2
[A,B]+··· (3.35)

during this expansion.
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Figure 3.2: Schematic of a plaquette.

If one replaces the link variables in the plaquette with the the continuum fields as given in
(3.31) this yields

Ux,µν = eigaAxµeigaAx+µ̂,νe−igaAx+ν̂,µe−igaAxν . (3.36)

After applying the Baker-Cambell-Hausdorff-formula (equation (3.35))

Ux,µν = eigaAxµ+igaAx+µ̂,ν−
a2g2

2
[Axµ,Ax+µ̂,ν ]+O(a3)e−igaAx+ν̂,µ−igaAxν−

a2g2

2
[Ax+ν̂,µ,Axν ]+O(a3).

Applying the formula a second time, yields

Ux,µν = exp (igaAxµ + igaAx+µ̂,ν − igaAx+ν̂,µ − igaAxν

+
a2g2

2
(−[Ax+ν̂,µ, Axν ]− [Axµ, Ax+µ̂,ν ] + [Axµ, Ax+ν̂,µ]

+[Axµ, Axν ] + [Ax+µ̂,ν , Ax+ν̂,µ] + [Ax+µ̂,ν , Axν ]) +O(a3)
)
. (3.37)

The A fields themselves can now be expanded in a as

Ax+µ̂,ν = Axν + a∂µAxν +O(a2). (3.38)

This results in the expression

Ux,µν = eia
2g(∂µAxν−∂νAxµ+ig[Axµ,Axν ])+O(a3) (3.39)

= eia
2gFµν (3.40)

for the plaquette. Another expansion in a2 yields

Ux,µν = 1+ ia2gFµν −
a4g2

2
(Fµν)

2 +O(a6) (3.41)
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Figure 3.3: A Wilson loop of size 2× 1.

This Successfully relates the Wilson gauge action

S[U ] =
β

N

∑

x

∑

µ<ν

ℜ tr (1− Ux,µν) (3.42)

=
β

N

∑

pl

ℜ tr (1− Upl) (3.43)

with the continuum action

S[A] =

∫
d4x

1

4
trFµνF

µν . (3.44)

for

β =
6

g2
. (3.45)

Of course the discretization of the action is not unique. It is possible to add other terms that
do not change the continuum limit. This allows to add terms that cancel contributions of low
order in a thus improving on the convergence towards the continuum. Simulations on large
lattice that are required to achieve a continuum limit are computationally very expensive.
Therefore it is usually worth heaving extra effort in computing the action in exchange for an
improved continuum behaviour. For the simulations contributing to this work a Symanzik
improved gauge action was used [39, 40, 41]. For the Symanzik gauge action SSymanzik one
does not only use the plaquette, but also 2× 1 rectangles Rµν as shown in figure 3.3. Such a
closed loop is called a Wilson loop. The improved action can then be written as [42]

SSymanzik = β
∑

x

∑

µ<ν

(
c0

(
1− 1

3
ℜ(Uµν)

)
+ c1

(
1− 1

3
ℜ(Rµν)

))
. (3.46)
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The optimal choice for c0 and c1 has to be computed. This can be done by lattice perturbation
theory. At tree level this yields

c0 =
5

3
(3.47)

c1 = − 1

12
(3.48)

resulting in an action that is of order O(αsa
2) [42].

3.2.2 Fermions

Apart from the gauge fields which are the links on the lattice also the fermions have to be
discretized. The fermions are denoted by the Grassmann fields ψ and ψ̄ and are located on
the lattice sites. This sections starts from the naive discretization and then introduces the two
formulations that were used in the simulations for this thesis.

3.2.2.1 Naive discretization

The action of a free fermion

SF [ψ, ψ] =

∫
d4xψ(x) (γµ∂µ +m)ψ(x). (3.49)

can be discretized on a lattice by replacing the derivative by the central differential quotient
as

SF [ψ, ψ] = a4
∑

n∈Λ

ψ(n)




4∑

µ=1

γµ
ψ(n+ µ)− ψ(n− µ)

2a
+mψ(n)


 . (3.50)

However if one wants to couple the gauge fields with the fermions one has to take into account
that the action should be invariant under rotation in colour space. Therefore the action is not
allowed to change under a transformation

ψ(n) → ψ′(n) = Ω(n)ψ(n) (3.51)

ψ(n) → ψ′(n) = ψ(n)Ω(n)† (3.52)

where Ω ∈ SU(3). For this to hold one has to add the discretized covariant derivatives so that
the action reads

SF [ψ, ψ, U ] = a4
∑

n∈Λ

ψ(n)




4∑

µ=1

γµ
Uµ(n)ψ(n+ µ)− U−µ(n)ψ(n− µ)

2a
+mψ(n)


 . (3.53)

By Taylor expansion of the gauge fields, similar to the calculations in section 3.2.1, this can
be related to the continuum action

SF [ψ, ψ,A] =

∫
d4xψ

(f)
(x)
(
γµ(∂µ + iAµ(x)) +m(f)

)
ψ(f)(x). (3.54)
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Note that it is possible to rewrite this action as

SF [ψ, ψ, U ] = a4
∑

n∈Λ

ψ(n)
4∑

µ=1

γµ
Uµ(n)ψ(n+ µ)

2a

− a4
∑

n∈Λ

ψ(n)
4∑

µ=1

γµ
U−µ(n)ψ(n− µ)

2a

+ a4
∑

n∈Λ

ψ(n)mψ(n) (3.55)

= ψM [U ]ψ (3.56)

for an appropriately chosen fermion matrix M . This allows for the fermionic fields which are
Grassmann variables to be integrated out in a way that

∫
Dψ̄Dψe−SF = detM (3.57)

However if the fermion propagator is calculated for this action a problem with this naive
discretization becomes obvious. On the lattice the propagator is proportional to a term of the
form

1∑
µ sin

2 (pµa)
(3.58)

while in the continuum the propagator is proportional to

1

p2
. (3.59)

The continuum propagator has a pole at p = (0, 0, 0, 0) corresponding to one fermion. On the
other hand the lattice propagator has a pole whenever each component of p is equal either to
0 or to π

a . Since there are 16 possible ways of arranging the components of p fulfilling this
condition this corresponds to 16 fermions, of which only one represents the desired continuum
fermion while the others are the so called doublers. To get rid of those doublers other fermion
discretizations have to be found. Two possible discretizations are described in the following to
sections.

For the discussion of fermion discretizations on the lattice the Nielsen-Ninomiya-no-go theorem
[43, 44, 45] is important. It states that under some reasonable assumptions it is impossible
to discretize fermions on the lattice in a way that removes the doublers and fulfils the chiral
symmetry relation

Dγ5 + γ5D = 0 (3.60)

at the same time.

3.2.2.2 Staggered-Fermions

The idea of the Staggered-Fermions (or Kogut-Susskind-Fermions) is to construct an action
that is diagonal in Spinor space, thus sorting the extra fermions in four groups, that are exact
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Figure 3.4: The distribution of a fermion field in the staggered fields on a two dimensional lattice
[46]. The coupling to the neighbouring lattice sites comes from the derivative.

copies of each other. Then the unwanted replica spinors can be droped, leaving instead of
fifteen only three doubler fermions. This is possible because at each lattice point a spinor only
couples to itself and one spinor component at the next neighbor lattice site. This situation is
illustrated in figure 3.4. By transforming the fermion fields with a transformation that mixes
spinor and space-time indices it is possible to rearrange the fermion degrees of freedom in a
way that the transformed fields, on the corners of a hypercube, can be identified with dirac
spinors. This is achieved by replacing the fermion fields in the naive fermion action in equation
3.53 with ψ′(n) as

ψ(n) = γn1

1 γn2

2 γn3

3 γn4

4 ψ(n)′ (3.61)

ψ̄(n) = ψ̄(n)′γn4

4 γn3

3 γn2

2 γn1

1 , (3.62)

where n1 . . . n4 are the coordinates of the site n. Since γ2µ = 1 it is obvious that the mass
term is invariant under this transformation. In the kinematic term there is an imbalance in
the number of γ-matrices for ψ and ψ̄ since they are not at the same lattice point but at
neighboring spots. However this gets exactly compensated by the extra γ-matrix in the action.
Because of the anticommutation of γ-matrices the interchanging necessary to achieve the
correct order of γ-matrices may result in an extra sign. Therefore the γµ in the action has to
be replaced by the staggered sign functions

η1 = 1

η2 = (−1)n1

η3 = (−1)n1+n2

η4 = (−1)n1+n2+n3 .
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This results in the action

SF [ψ, ψ, U ] = a4
∑

n∈Λ

ψ(n)′




4∑

µ=1

ηµ(n)1
Uµ(n)ψ(n+ µ)′ − U−µ(n)ψ(n− µ)′

2a
+mψ(n)′


 .

(3.63)
Since there are no more γ-matrices appearing in the action it is diagonal in spinor space. It
also has the same form for every spinor index. Therefore the fermion field ψ′ can be replaced
by an other field χ that has only color but no spinor indices. Keeping only one copy of the
spinor structure yields the equation

SF [χ, χ, U ] = a4
∑

n∈Λ

χ(n)′




4∑

µ=1

ηµ(n)
Uµ(n)χ(n+ µ)′ − U−µ(n)χ(n− µ)′

2a
+mχ(n)′


 .

(3.64)
To interpret the χ fields one can rewrite the action in terms of dirac spinors where a quark
field is given as

q(n)at =
1

8

∑

si=0,1

(γs11 γ
s2
2 γ

s3
3 γ

s4
4 )αt χ(2n+ s), (3.65)

if one assumes an even number of lattice sites in all directions. The index t is the so called
taste. It distinguishes between the four remaining copies of the fermions. The action in terms
of the q fields can then be written as

SF [q, q̄] = (2a)4
∑

n

(mq̄(n)q(n)) +
∑

µ

tr (q̄(n)γµ∇µq(n))− a
∑

µ

tr (q̄(n)γ5△µq(n)γµγ5) .

(3.66)
The first two terms are the same as in the naive fermion action. However now instead of
neighbouring terms there are next-to neighbouring terms in the derivatives. These two terms
are diagonal in the taste. The last term mixes the tastes. Therefore it is called the taste
breaking term.

There are still three fermion doublers one has to deal with. A common practice is the so
called rooting to remove the extra fermions. This means, that one takes the fourth root of
the fermion determinant assuming that the four different fermions are approximately the
same and the taste splitting is small. The reduction of the fermion fields by a factor of
four makes the staggered fermions computational cheap, thus allowing for simulations that
are not feasible with other fermion discretizations. Computations that have been repeated
with other fermions did not reveal any problems due to the rooting [47]. Another feature of
staggered fermions in comparison to for example Wilson fermions is that a remnant of the
chiral symmetry survives the removal of the doubles, resulting in the absence of an additive
quark mass renormalisation.

3.2.2.3 Overlap-Fermions

Overlap fermions [48] are the theoretically most elegant fermion discretization used in lattice
simulations. They implement exact chiral symmetry on the lattice without the difficulties that
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arise with the rooting in staggered fermions. However they are at the same time the computa-
tional most expensive choice, which makes their use unfeasible in many computations.

The Ginspark-Wilson relation [49], that is a requirement for chiral symmetry on the lattice,
replaces the continuum condition of chiral symmetry

Dγ5 + γ5D = 0 (3.67)

for the Dirac operator D by
Dγ5 + γ5D = aDγ5D. (3.68)

This allows chiral symmetry to be defined on a finite lattice. The overlap operator fulfills the
Ginspark-Wilson relation thus realizing chiral symmetry.

The Overlap operator is given as

Doverlap =
1

a
(1+ γ5 sgnH) (3.69)

with
H = γ5A (3.70)

and A a suitable Dirac operator that is projected to chiral symmetry by the overlap operator.
The simplest choice for the kernel A is

A = aDW − 1(1 + s) (3.71)

where DW is the Wilson Dirac operator and s is a parameter that can be tuned to optimize
the locality of the overlap operator. The sgn function in the operator can be either defined
via the spectral representation or by writing

sgnH = H
(
H2
)− 1

2 . (3.72)

Here the inverse square root is a matrix that is not necessarily sparse, thus introducing entries
that relate terms form all over the lattice instead of only nearest neighbor terms. Therefore
the overlap operator is not ultralocal. However it still fulfils the relation

|D(n|m)αβ,ac| ≤ Ce−γ||n−m|| (3.73)

with constants C and γ that do not depend on the gauge fields. 1
γ is a fixed length in lattice

units and therefore reduces to zero in the continuum limit yielding a local field theory as
required.

3.2.3 Monte Carlo Simulations

To evaluate the path integral in lattice QCD Monte Carlo simulations are the usual choice.
The expectation value of an observable O is given as

〈O〉 =
∫
D[U ]O detMe−SG

∫
D[U ] detMe−SG

(3.74)
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Instead of using naive uniformly distributed random numbers to solve the integral (3.74), as
that would take way to long, one rewrites the expectation value to

〈O〉 = lim
N−→∞

1

N

N∑

n=1

O, (3.75)

with fields that are generated according to the probability distribution

dP (U, ψ̄ψ) =
D[U ] detMe−SG

∫
D[U ] detMe−SG

. (3.76)

This approach is called importance sampling.

The generation of configurations with this probability distribution can be achieved via different
algorithms that have to meet certain requirements:

1. The probability T (U ′|U) to move from U to U ′ has to bee larger than zero:

T (U ′|U) ≥ 0 ∀U (3.77)

2. The sum of all probabilities T (U ′|U) is normalized. This implies

∑

U ′

T (U ′|U) = 1 ∀U. (3.78)

3. For the probability P (U ′) for the system to be in a state U ′ the stability equation

P (U ′) =
∑

U

T (U ′|U)P (U). (3.79)

is fulfilled.

4. For every U and U ′ it exists a k, so that

T k(U ′|U) > 0 (3.80)

is fulfilled. This condition is called ergodicity.

An even stronger form of the third condition is the so called detailed balance condition:

T (U ′|U)P (U) = T (U |U ′)P (U ′). (3.81)

This is fulfilled by most common algorithms.

One of the simplest algorithms that fulfills these conditions for lattice QCD is the Metropolis
algorithm, that was introduced in 1953 [50]. However it is also rather inefficient and therefore
hardly used in lattice simulations. For pure gauge theory, quenched QCD or any model where
the action is bosonic and ultralocal the heat bath algorithm is a common choice. For SU(3)
gauge theory it was introduced by N. Cabibbo and E. Marinari in 1982 [51].
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The most common algorithm for full lattice QCD simulations that is also used for the
generation of configurations in this thesis is the Hybrid Monte Carlo (HMC) algorithm. A
detailed description of this algorithm can be found in [27]. The idea of the Hybrid Monte
Carlo algorithm is to use molecular dynamics to move along hypersurfaces with constant
energy in phase space by solving fictitious Hamilton equation of motion

dP

dt
= −∂H

∂Q
(3.82)

dQ

dt
= −∂H

∂P
. (3.83)

However one should note that this is not the Hamilton function of the physical system but
an artificial or fictitious Hamilton function which allows for an efficient computation. To
solve this equations one needs the momenta π that are generated according to a Gaussian
probability distribution. The evolution of this equations is done by Leap Frog algorithm (a
description can be found in [27]) along a fictitious Monte Carlo time τ . This procedure allows
for large steps in phase space which reduces the autocorrelation time of the simulations. Since
the calculation of the hyperplanes is done numerically the energy is not strictly conserved.
Therefore the molecular dynamics needs to be combined with an accept reject step as in the
Metropolis algorithm. Then the algorithm is exact for any choice of τ > 0. Each update with
the Hybrid Monte Carlo Algorithm consist of the following steps:

1. Generation of the momenta π according to a Gaussian probability distribution

2. Determination of the Energy E on the current configuration

3. Using the molecular dynamics with a Monte Carlo time τ to generate a new configuration

4. Deriving the energy E′ of the new configuration

5. Accepting the new configuration with the probability

p = min
(
1, eE−E′

)
(3.84)

During the the update the fermion determinant detM has to be evaluated. Due to the large
size of the fermion matrix M a direct evaluation is not feasible. Instead one can do a stochastic
evaluation of the determinant. One introduces the pseudo fermion fields ξ that are chosen
randomly from a probability distribution

p ∝ e−ξ
†ξ. (3.85)

The square of the fermion determinant can then be calculated as

det(MM †) =

∫
DξD ξ†e−ξ

†(MM†)−1ξ

∫
DξDξ† e−ξ†ξ

. (3.86)

For the HMC algorithm only the application of the fermion matrix to a vector has to be known.
The inverse (MM †)−1 applied to a vector can be determined by solving the corresponding
system of linear equations for example by applying the conjugate gradient algorithm [52].
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The square of the fermion determinant is only relevant for a simulation with an even number
of degenerate flavours and without rooting. Since in QCD most simulations use 2+1 or 2+1+1
flavor and one wants to be able to use staggered fermions (see section 3.2.2.2) one needs to
determine the fermion determinant to the power of some rational number r. This can be done
by using the rational approximation

xr ≈ α0 +
∑

i

αi
x+ βi

. (3.87)

The coefficients αi and βi can be determined with the Remes algorithm [53]. A Hybrid Monte
Carlo algorithm that uses this rational approximation is then called a Rational Hybrid Monte
Carlo (RHMC) algorithm.

3.2.4 Finite temperature and thermodynamics

To study thermodynamics on the lattice one has to introduce some definition of a temperature.
This can be done by identifying the path integral on the lattice with the partition sum of
statistical mechanics. The partition sum reads

Z =

∫
D[U ]Dψ̄Dψe−S . (3.88)

For a quantum mechanical system the partition sum is

Z(T ) = tr

(
e
− Ĥ

kBT

)
= tr

(
e−βĤ

)
(3.89)

with β = 1
T , if kB is set to one. Note that this is not the same β as the inverse gauge coupling

introduced in section 3.2.1 and also Ĥ is not the H from the HMC algorithm, but the physical
Hamiltonian. If we identify this with our path integral on the lattice the trace implies that
we have to have periodicity (up to a phase factor) in the time direction. The bosonic fields
are periodic in time while the fermionic fields are antiperiodic. This allows to identify the
temporal extent of the lattice aNt with the inverse temperature

aNt =
1

T
= β. (3.90)

If one takes the limit β −→ ∞ at constant Nt the temperature vanishes, while if β −→ 0 the
temperature rises to infinity. To keep the temperature constant while taking the continuum
limit aNt has to be constant while a goes to zero. This is achieved by keeping the ratio Ns

Nt

constant while increasing Nt and Ns to approach the continuum.

As expected from a regularized theory the bare parameters depend on the cutoff, in this case
the lattice spacing a. The behaviour of a and g while the continuum limit is approached can
be studied in perturbation theory by the so called β-function [54]

− β(g) = a
dg

da
. (3.91)
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Here one should confuse the β-function neither with the inverse coupling nor the inverse
temperature. For small couplings the β-function can be expanded and then reads

β(g) = −g3
(
β0 + β1g

2 + β2g
4 + . . .

)
. (3.92)

The first two coefficients are independent of the renormalisation scheme and were calculated
in [55, 56, 57, 58] as

β0 =
1

(4π)2

(
11− 2

3
Nf

)
, (3.93)

β1 =
1

(4π)2

(
102− 38

3
Nf

)
. (3.94)

To two loop order the dependence of the lattice spacing on the bare parameter then reads
[54]

a =
1

Λ

(
β0g

2
)− β1

2β2
0 e

− 1

2β0g
2 , (3.95)

where the parameter Λ has to be determined. However if one is interested in the difference
between two couplings g1 and g2, Λ will cancel.

If the simulation is meant to describe a physical system, this implies that the physics has
to be constant as well. Therefore one has to tune the quark masses to their desired physical
values for each new Nt, thus moving along a line of constant physics (LCP). The LCP is
obtained by repeated tuning of the bare quark masses at several lattice spacings. The bare
masses are tuned such that the ratios of physical observables, for example hadron masses,
match the experimental results.

Historically the idea to study the confinement of quarks in gauge theories on the lattice has been
introduced in 1974 by K. G. Wilson [59]. The earliest simulation algorithm is the Metropolis
algorithm that had already been invented in 1953 [50]. 1980 M. Creutz introduced the heat
bath algorithm for SU(2)-gauge theory on a lattice [60] that reduces the autocorrelation time
compared to the Metropolis algorithm significantly. This allowed early numerical studies of
the deconfinement transition in SU(2) gauge theory [61, 60, 62, 63, 64]. In 1982 the heat bath
algorithm was extended to SU(N) gauge theories by N. Cabibbo and E. Marinari [51]. This
new algorithmic development then allowed to study the SU(3) deconfinement transition and
thermodynamic quantities like the latent heat [65, 66, 67] on relatively small lattices with a
temporal extend of typically Nt = 4 or Nt = 6. The heat bath algorithm was advanced 1985
to the so called Kennedy-Pendleton-algorithm [68]. In the 1990s this was used together with
the overrelaxation algorithm [69] to investigate the electroweak symmetry breaking transition
in the SU(2)-Higgs-model [70].

However in a calculation that also includes fermions the heat bath algorithm and local update
algorithms in general are very inefficient due to the fermion determinant and the non locality
of the action (see section 3.2.2 and section 3.2.3). A remedy for this, the Hybrid Monte Carlo
algorithm, has been introduced in 1887 [71]. Anyway simulations of real QCD with dynamical
fermions and physical quark masses were far out of reach at that point. In 1990 while the order
of the deconfinement transition in pure SU(3) gauge theory was not finally settled [72, 73],
first simulations with dynamical fermions where performed [74]. This simulations where done
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with staggered fermions mostly either for two or four degenerate flavours [75, 76, 77, 78]. Also
first attempts towards the continuum extrapolation of the transition temperature with lattices
as large as Nt = 8 were made [79, 80, 81].

Five years later by 1995 the value for the transition temperature in the SU(3) gauge theory
could be continuum extrapolated with lattices as large as Nt = 12 [82]. Simulations with
dynamical fermions were now mostly done with two or three flavours [83], though some
simulations with 2+1-flavours [84] were done as well. Besides the staggered quarks also first
simulations with Wilson quarks were performed in thermodynamics [84]. Also in addition to the
computation of the kind of the transition and the transition temperature other thermodynamic
quantities like the equation of state were computed [85]. First steps towards finite chemical
potential, at that point restricted to pure gauge simulations, were taken as well [86, 87].

About six years later in 2001 it was believed that the cost of Hybrid Monte Carlo simulations
scale with the inverse quark masses as m−3

q [88] making it impossible to ever reach physical
quark masses on lattices large enough for continuum extrapolation. This was later known as
the Berlin Wall problem, due to the venue of the lattice conference in 2001 in Berlin [89].
However this pessimistic outlook has been mitigated mostly due to algorithmic developments
as well as the development of faster computers as for example described in [90].

Today the equation of state is known at 2+1+1-flavour over a large temperature range [7]
and several attempts for calculations at finite density are made as described in section 3.2.5.
The deconfinement transition at physical quark masses has been established to be crossover
[91]. However the detailed structure of the Columbia plot (as described in section 3.3) still
remains a mystery (see section 3.3). Also the study of some realtime quantities is now a topic
for lattice QCD [92].

3.2.5 Chemical potential

The following arguments follow the discussion in [27]. For simulation without chemical potential
there are on average the same number of particles and antiparticles. Therefore the expectation
value of the overall baryon number density 〈nB〉 is zero. To describe a system with finite
baryon density we need to introduce a finite quark chemical potential µq to the Lagrangian. In
the continuum this is relatively simple to achive by adding a term of the form ψγ4ψ. However,
on the lattice, it is not that simple. Adding a similar term to the Dirac operator leads to a
divergent energy density in the continuum limit [27], which is clearly unphysical. Instead one
follows the idea of Hasenfratz and Karsch in [93] where the chemical potential is understood
as the temporal component of an imaginary vector field. The temporal hopping term has then
the form

− 1

2a

∑

n∈Λ

(
e

µ
T (η4)αβU4̂(n)abδn+4̂,m + e−

µ
T (η4)αβU

†

4̂
(n− 4̂)abδn−4̂,m

)
. (3.96)

It recovers the original action for µ = 0 and at linear order in aµ it reproduces the correct
density term with µ

T = aµNt. However this term breaks the γ5-hermiticity of the Dirac
operator and leads for real µ to a complex fermion determinant. Instead of the γ5-hermicity
of the Dirac operator where

γ5Dγ5 = D† (3.97)
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with a chemical potential one gets

γ5D(µ)γ5 = D†(−µ). (3.98)

This means that e−
µ
T = f is replaced by (e

µ
T )∗ = 1

f∗ . For the determinant this yields

det (D(f)) = det

(
D

(
1

f∗

))
, (3.99)

meaning that the determinant is only real if

f =
1

f∗
. (3.100)

For real f this is only fulfilled if f = e−
µ
T = 1, and therefore µ = 0. However if µ = iµI is

chosen to be purely imaginary this yields

f = e−iµ
I

T (3.101)

=

(
ei

µI

T

)∗

(3.102)

=
1

f∗
. (3.103)

Thus the determinant is real for a purely imaginary chemical potential. As described in section
3.2.3 the fermion determinant enters in the Boltzmann weight factor which has to be real to
allow a Monte Carlo simulation. There have been several ideas in lattice QCD on how to obtain
results at real finite chemical potential like reweighting techniques [94, 95, 96, 97], Taylor
expansion [98, 99, 100, 101, 102], density of state methods [103, 104], using the canonical
ensemble [105, 106, 107], formulations with dual variables [108], Lefschetz thimbles [109, 110]
or complex Langevin [111, 112]. In this work we will use the fact that while we cannot do
simulations at real µ, there is no problem with introducing a purely imaginary chemical
potential. From this calculations we can then do an analytical continuation form −µ2 to µ2 as
illustrated in figure 3.5.

3.3 The phase diagram of QCD

In current lattice QCD there are two main phase diagrams of QCD under investigation. One
is at vanishing chemical potential. It shows the dependence of the order of the deconfinement
transition on the quark masses resulting in the Columbia plot (figure 3.6b) [113]. The second
one is the T -µB-plane of the phase diagram at physical quark masses as shown in figure 3.7.
For both the inclusion of imaginary chemical potential can be helpful.

For physical quark masses and µB = 0 the deconfinement transition has been found to be
an analytical crossover [114], at a temperature of approximately 160 MeV [11, 12, 13]. This
is the “physical point” in figure 3.6b. For infinitely large quark masses (upper right corner)
the quarks decouple and SU(3) gauge theory remains. Here the deconfinement transition is
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Figure 3.5: Ilustration of the analytical continuation to real chemical potential

well established to be of first order [91]. Since a first order phase transition does not appear
isolated, a region of first order is expected. It is limited by a second order critical line, before at
intermediate quark masses the transition becomes analytical. This scenario has been confirmed
in [114]. While studies with only heavy quarks are computationally easier on a lattice the
opposite is true for light quarks. While a similar scenario as in the upper right corner is also
expected for the lower left corner, it has not been possible to find the second order critical
line for low quark masses in the continuum. Therefore this topic is still under investigation
[91]. Here it is helpful to extend the simulations to imaginary chemical potential where a
second order transition may be realized at higher, thus more feasible, quark masses [115]. It
also remains unclear whether the first order region ends for a finite strange mass as shown in
figure 3.6b or if it extends to infinitely heavy strange quarks as shown in figure 3.6c.

An other popular representation of the QCD phase diagram is in the T -µB-plane (figure 3.7).
The µB = 0 axis is well investigated by lattice QCD [91]. For low chemical potential and
temperature there is a hadronic phase of colour neutral bound states which is described in
more detail in section 3.3.1. At high temperatures the effective degrees of freedom are the
quarks and gluons. This phase is called the quark gluon plasma (see section 3.3.2). This two
phases are separated by a crossover at low and zero chemical potential. The transition is
expected to change to a first order transition for higher µB with a critical second order point
in between. The position of the critical point is under investigation at the moment both by
heavy ion collision experiments [117] and by theoretic calculations [118, 119]. For very large
chemical potential a colour super conducting phase [120, 121] is expected.
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Figure 3.7: The µB-T -plane of the QCD phase diagram
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Figure 3.8: An illustration of the quark content and the interactions for the proton. The larger
quarks u, u and d represent the valence quarks while the smaller quarks always appearing as a
quark-anti-quark-pair represent the sea quarks. The spirals represent the gluons. In QCD quarks
and gluons as well as gluons and gluons interact with each other.

3.3.1 Hadronic description of strong interactions

Below a transition temperature of approximately 160 MeV [11, 12, 13] quarks can only be
found in colour neutral bound states: the hadrons. Hadrons can be divided in two groups
of either a quark and an antiquark (mesons) or three quarks (baryons), that have been
proven to exist. In principle other bound states of four, five or even more quarks are possible.
Even though until now there has been no definite prove for their existence [122, 123], there
is growing experimental evidence for tetra quarks, a bound state of two quarks and two
antiquarks [124, 125, 126]. In the following the formulation that a particle contains quarks,
refers to the so called valence quarks. Beside the valence quarks also the sea quark content is
present in every state. These are quark-anti-quark-pairs that are created from the vacuum. A
graphical representation for the proton with valence and sea quarks can be found in figure 3.8.
The main part of the hadronic mass comes from this interaction and not from the masses of
the valence quarks [16].

The first group of hadrons are the mesons. These are particles containing one quark and
one antiquark. The lightest mesons are the pions that consist of up and down quarks. The
second group are the baryons that consist of three quarks each with a different colour. The
lightest baryon is the proton, which together with the neutron, is the main building block for
common matter on earth. Other hadrons were mostly discovered by particle colliders. The
largest momentarily active particle colliders are the Large Hadron Collider (LHC) at Cern
in Geneva, Switzerland and the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven
National Laboratory (BNL) in Upton, New York, USA. A complete overview over all known
hadrons and their properties can be found in [127].
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On the lattice the masses of hadrons can be calculated from first principles. To do so the
hadron correlators have to be calculated on zero temperature lattices. The short summary of
correlators and the mass extraction that is presented here follows the discussion in [27] where
a more detailed introduction can be found.

A general Euclidean corrlator 〈O2(t)O1(0)〉T can be defined as

〈O2(t)O1(0)〉T =
1

ZT
tr
[
e−(T−t)ĤO2e

−tĤO1

]
(3.104)

where O1 and O2 are two operators. In the case of hadrons they are the creation and the
annihilation operator of the respective hadron. Here t is the time of the observation and T is
a maximal time that will be taken to infinity later on. ZT can be rewritten as

ZT = tr
[
e−TĤ

]
=
∑

n

〈n|e−TĤ |n〉 =
∑

n

e−TEn , (3.105)

if |n〉 is a compete set of eigenstates, corresponding to the eigenvalues En. With another
complete set of eigenvalues |m〉 the correlator can be rewritten as

〈O2(t)O1(0)〉T =

∑
m,n e

−(T−t)Eme−tEn〈m|O2|n〉〈n|O1|m〉
∑

n e
−TEn

(3.106)

=
e−tE0e−(T−t)E0

∑
m,n e

−(T−t)(Em−E0)e−t(En−E0)〈m|O2|n〉〈n|O1|m〉
e−TE0

∑
n e

−T (En−E0)

(3.107)

=

∑
m,n e

−(T−t)(Em−E0)e−t(En−E0)〈m|O2|n〉〈n|O1|m〉
∑

n e
−T (En−E0)

. (3.108)

After taking the limit T −→ ∞ this yields

〈O2(t)O1(0)〉 =
∑

n

〈0|O2|n〉〈n|O1|0〉e−t∆En . (3.109)

with En−E0 = ∆En. For a large Euclidean time separation t the exponential functions for all
∆En except the lowest have vanished, leaving the energy of the ground state as the dominating
contribution. Since the energy of the ground state is equivalent to the mass of a particle,
the mass can be extracted from the correlator. For the determination of the mass there are
two main methods. The first one is to fit the correlator Γ(t) with one or several exponential
functions. Here it might be a difficult decision which t to choose as starting point for the fit.
Alternatively one uses the method of an effective mass fit, where instead of the correlator one
looks at plot of Γ(t)

Γ(t+1) . This will show a plateau if the correlator is dominated by the ground
state. However here it can also be difficult to identify the extend of the plateau.

Figure 3.9 shows the calculation of the light hadron spectrum form [16]. π, K and Σ were used
for scale setting and to identify the physical point. They appear therefore without errorbars
and in perfect agreement with the experimental values. An overview over the research effort
on for the light hadron spectrum can be found in [128].
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Figure 3.9: The light hadron spectrum from [16]. For the scale setting π, K and Σ were used.
Therefore they appear without errorbars and in perfect agreement with the experimental values
in the plot.

Even though the main contribution to the hadron masses comes from the strong interaction,
by now lattice calculations are precise enough that QED effects become relevant. Figure 3.10
shows the mass splitting of hadrons due to QED effects from [34]. ∆Ξ, ∆ΞCC and ∆CG have
not been found by experiment or have a larger experimental error. Therefore they are listed
as predictions. If one compares the scales of figure 3.9 and figure 3.10 it becomes obvious how
tiny these QED effects are.

To describe the behaviour of hadronic matter in lattice simulation one can use finite temperature
simulation to compute for example the equation of state. For vanishing chemical potential
it has been computed over a large temperature range [7]. Computations for the equation of
state at finite chemical potential are presented in section 4.4.

Another approach to describe the behaviour of hadronic matter is the Hadron Resonance
Gas (HRG) Model. It assumes that hadronic matter can be described as free gas of hadronic
bound states. Then the partition sum for QCD is given as

1

V
lnZ = −

∫
d3p

(2π)3

∑

a

ζaga ln
(
1− ζae

−
√
p2+M2

a/T
)
, (3.110)

where Ma is the mass of a hadron or resonance, ga is the degeneracy factor , ζa = 1 for
bosons and ζa = −1 for fermions [129]. The thermodynamic features of QCD emerges from
the summation over the infinite hierarchy of resonances [130]. This is the formula for an ideal
HRG model with stable, non-interacting hadrons. There are several methods to reintroduce
interactions or the broadness of the resonances (see for example [129, 131, 132]). Some of
them are also including results from lattice simulations. However the results always depend
on which particles are included in the first place. Figure 3.11 shows results for the calculation
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Figure 3.10: The mass splitting of hadrons due to QED effects from [34]. ∆Ξ, ∆ΞCC and ∆CG

had not been found by experiment at the time of the calculation or have a larger experimental
error and are therefore listed as predictions.

of the pressure within an ideal HRG model using three different lists of particles as input:
first the list of the PDG from 2012, second a list of the PDG from 2014 and third a list from
the PDG that does also contain particles that have been observed but not yet confirmed. As
can be seen from figure 3.11 the HRG model is quite sensitive to the particle input. Therefore
it might also be used to estimate areas where particles have not been found yet [133].

In any case the HRG model describes matter only in the hadronic phase. Since the transition
to the Quark Gluon Plasma at zero chemical potential is a crossover it is not clear up to which
temperature the HRG model is valid and it might even be different for different observables. A
good assumption is however that the description by hadrons breaks down around the transition
temperature.

3.3.2 Quark gluon plasma

At high temperatures or large densities quarks and gluons do no longer form bound states.
The medium is in a state of quark gluon plasma (QGP). Here will only be given a very brief
introduction to the QGP. A more detailed overview can be found in [134, 135, 136].

Historically there were two main ideas of what would happen if hadronic matter (see section
3.3.1) was heated to very high temperatures. In the first model, the so called Boostrap model
[137], a maximum temperature is predicted. Beyond this so called Hagedorn temperature a
further heating would produce more species of heavy hadrons but not increase the temperature
any further. The second model was the Quark model. There it was thought that free quarks,
so called cosmological quarks, existed [138]. Finally the concept of asymptotic freedom resolved
this conflict [55, 56]. Asymptotic freedom means the vanishing of the QCD coupling at infinitely
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Figure 3.11: The pressure calculated in an ideal HRG model for different lists of particles.

high energies. Therefore with increasing temperature the interaction between the quarks gets
weaker. At some point the quarks are no longer confined in hadrons [139]. This new state of
matter is called quark gluon plasma.

Experimentally the quark gluon plasma was detected at RHIC in 2005 [140, 141, 142, 143].
Some earlier hints of a quark gluon plasma had also been reported from the SPS collider
at Cern in collisions of lead [144]. Against common expectations the quark gluon plasma is
not a free gas of quarks and gluons but a strongly interacting plasma [145, 146] with plasma
parameter of ΓQGP = 1.5− 6 [147]. The plasma parameter Γ compares the strength of the
coupling to the product of interparton distance and the square of the temperature. A plasma
is considered strongly interacting if Γ ≥ 1.

The behaviour of the quark gluon plasma can be calculated in lattice QCD at vanishing
chemical potential. Figure 4.27 shows a comparison for the equation of state calculated with
different actions and compared to the hadron resonance gas model. In figure 3.12b it can be
seen, that even for temperatures above the phase transition the energy density does not reach
the non-interacting limit, implying that even at such high energies there is a significant level
of interaction left.

An interesting question for the phenomenology of heavy ion collisions is whether there is a so
called softest point in a transition region as predicted in [150]. The softest point is a minimum
in ratio of pressure and energy density p

ǫ as a function of ǫ. It hints to the energy range where
the cooling of the plasma slows down. Since the system spends a longer time in this energy
range there are specific signatures expected from that region. It also leads to a very small
speed of sound. The speed of sound can be calculated in lattice QCD. The results are shown
in figure 3.13.
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Figure 3.12: The lattice and HRG results for the equation in the crossover region (marked by the
yellow band)[148]. The results obtained with the stout action are from [149].

Again these are results at vanishing chemical potential. Calculations at finite chemical potential
are very difficult on the lattice (see section 3.2.5). Some attempts to reach at least small
values of the chemical potential for the transition temperature and the equation of state are
presented in chapter 4.

3.4 Perturbative regime

At high energies the coupling of QCD becomes small. Therefore QCD quantities become
accessible by perturbation theory [151]. Still thermal perturbation theory for QCD is not
straightforward due to the slow convergence of perturbative orders [152, 153]. A common
remedy is the hard thermal loop resummation technique [154, 152] . A good introduction
to the subject of QCD thermodynamics with hard thermal loop perturbation theory can be
found in [155]. Here will be given a short summary over the possibilities and restrictions.

A four momentum Pµ =
(
−iω, ~p

)
is called soft if both ω and |~p| are of order gT for a

temperature T . Pµ is called hard if either ω or |~p| is of order T [156]. The simplest example for
a hard loop diagram is the tadpole diagram of a scalar gφ4 theory. An example of a tadpole
diagram is shown in figure 3.14. The hard thermal loop perturbation theory is an effective
theory for the soft modes, while the hard loops are integrated out. The resummation scheme for
QCD in terms of this hard thermal loops was introduced by Braaten and Pisarki [154]. Their
scheme was a development of the static ring resummation scheme for static thermal quantities
that had been invented much earlier [157]. However this scheme shows a bad convergence
not only in QCD but also for simple toy models like the φ4-theory [158]. This problem was
solved by the introduction of a different resummation scheme for hard thermal loops in
[159, 160]. The self interaction of gluons which makes QCD a non-abilean gauge theory, limits
the applicability of perturbation theory for the thermodynamic potential to order O(g6 ln g)
[161]. Also something called collinear singularities appear in some real time observables. This
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Figure 3.13: The lattice and HRG results for the speed of sound in the crossover region (marked
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Figure 3.14: Example of a tadpole diagram.

is described in detail in [155]. To calculate this quantities some non-perturbative input is
required. This can come, for example from lattice QCD.

To test the validity of the hard thermal loop approach it is interesting to compare results with
non-perturbative calculations. Fluctuations of conserved charges or quark number suscepti-
bilities have been calculated both in hard thermal loop-resummed thermodynamics and in
lattice QCD [162, 163]. Figure 3.15 shows the comparison between calculation in the hadron
resonance gas model, lattice calculation and the hard thermal loop expansion for different
quark correlators.

3.5 The strong CP problem and axionic dark matter

Even though the standard model is so far extremely successful in describing our Universe,
there are some riddles that are not answered completely. One of this riddles is the so called
strong CP problem. This section will briefly describe the strong CP problem and also one
proposed solution by axions as beyond standard model particles. The discussion follows [33]
and [166].
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Figure 3.15: The comparison of the lattice data from [163] and [162] with the result of the hard
thermal loop expansion from [164] for the fourth order derivative of the free energy with respect
to the chemical potential of the u quark [165].

The vacuum structure of non abilean gauge theories, thus also of QCD, is non trivial. To
understand this, it is convenient to concentrate on an SU(2) subgroup in the temporal gauge
A0
a = 0 [167, 168]. Here the spatial field transforms under a gauge transformation as [167]

Ai(~r) −→ Ω(~r)Ai(~r)Ω−1(~r) +
i

g
Ω(~r)∇iΩ−1(~r). (3.111)

For ~r −→ ∞ the Ω(~r) go to unity. However there are different classes for which

lim
~r−→∞

Ωn(~r) = e2πin. (3.112)

Different vacuum configurations can then be characterized by the topological winding number
n, given as

n =
ig3

24π2

∫
d3r tr

(
ǫijkA

iAjAk
)
. (3.113)

This formulas are also valid for QCD. One can construct a gauge invariant vacuum state |θ〉
in terms of the degenerate states |n〉 as

|θ〉 =
∑

n

einθ|n〉. (3.114)

This non trivial vacuum structure can be interpreted as an effective interaction, that can be
written in the Lagrangian as

Lθ =
g2

32π2
θF aµνF̃ aµν . (3.115)
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This term describes an additional interaction of the gauge fields that violates P and CP .
However this is not the only source for CP violation. Another one comes from the spontaneous
symmetry breaking of the electroweak gauge symmetry. The mass term for the quark fields
reads [169]

Lmass = q̄RMqL + q̄LM†qR (3.116)

with the quark mass matrix M. M can in general be complex. To write this term in a physical
basis one has to diagonalize M. In the process one does a chiral transformation that changes
θ by arg(detM). Therefore the whole CP violating term for QCD reads

LCP =
g2

32π2
θ̄F aµνF̃ aµν (3.117)

where
θ̄ = θ + arg(detM). (3.118)

However this extra term in the Lagrangian is not only CP violating, it can also be related to
an electric dipole moment for the neutron which is proportional to θ̄. These effects are not
observed in nature. If there were at least one massless quark species the term proportional to
θ could be removed by a chiral rotation of the quark masses. But this is not the case either.
Therefore θ̄ must be extremely small. Experimentally it can be shown [32] that

|θ̄| < 10−9. (3.119)

The question of why the two contributions to θ̄ cancel in a way that leaves θ̄ so small (or even
zero) is called the strong CP problem.

An attractive solution to this problem was proposed in 1977 by Peccei and Quinn [170]. They
proposed to take θ̄ as an dynamical field which goes to zero due to its classical potential [33].
This is accomplished by introducing an additional spontaneously broken U(1)PQ symmetry. The
spontaneously broken symmetry results in an additional Nambu-Goldstone boson [171, 172],
that is called axion. Due to a chiral anomaly in the PQ symmetry the axion has a mass of
order

ΛQCD

fPQ
where fPQ is the scale of the spontaneous symmetry breaking. This yields an

additional term in the Lagrangian for the axion field ϕ

Laxion = Caxion
ϕ

fPQ

g2

32π2
F aµνF̃ aµν (3.120)

where Caxion is a model depend constant. This term together with LCP form a potential that
is minimized if

〈ϕ〉 = − θ̄fPQ
Caxion

. (3.121)

With this value for 〈ϕ〉 the θ̄ term gets cancelled. In this theory there are no restrictions on
fPQ and therefore on the mass of the axion. Since there has been no detection of axions yet
their interaction with normal matter can be assumed to be small. This makes the axion a
candidate for a dark matter particle. Under some assumptions it is possible to narrow down
the axion mass. For example if one assumes that the axions were created after the inflation
period in a so called misalignment mechanism, and one assumes some number for today’s
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axion density it is possible to determine the axion mass from the equation of state and the
topological charge susceptibility.

The misalignment mechanism is described in detail in [166] and a summary is given in [7].
First we shift the angle θ̄ taking

θa = θ̄ + Caxion
〈ϕ〉
fPQ

(3.122)

where θa is called the axion angle. Then the mechanism involves solving the equation of motion
for θa which is given as

d2θa
dt2

+ 3H(T )
dθa
dt

+m2
a(T ) sin θa = 0 (3.123)

where ma is the axion mass and H is the Hubble parameter. The evolution of the axion can
be split in three stages [166]:

1. While the Compton wavelength is larger then the Hubble scale, the axion is nearly
massless.

2. At a scale of ma ≈ 3H the axion starts to roll down towards the minimum at θa = 0
where it starts oscillating.

3. Axions become indistinguishable from pressureless matter and na

s is conserved.

A numerical solution from [166] that shows these three phases. It can be seen in figure 3.16.

If one assumes that θa changes slowly in space one can get from the Friemann equations [7]:

H2 =
8π

3M2
P l

ρ (3.124)

dρ

dt
= −H(ρ+ p) = −3HsT (3.125)

where MP l is the Plank mass, ρ is the energy density, p is the pressure and s is the entropy
density. Since at the temperatures where the axion production takes place, the axion contribu-
tion to ρ and s is negligible, the equation of state of the standard model can be used. In [7]
the effective degrees of freedom gρ and gs have been calculated. They can be related to ρ and
s as

ρ =
π2

30
gρT

4 (3.126)

s =
2π2

45
gsT

3. (3.127)

The combination of those equations yields

dt

dT
= −MP l

√
45

64π3
1

T 3gs
√
gρ

(
T
dgρ
dT

+ 4gρ

)
. (3.128)
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Figure 3.16: A numerical solution for the axion dynamics from [166]. For ma < 3H the axion
mass remains small. Then at ma ≈ 3H it increase and the axion angle starts oscillating around
zero. Finally θa and the axion density reach a nearly constant value.
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Together with the equation of motion this results in the equation

d2θa
dT 2

+

[
3H(T )

dt

dT
− d2t

dT 2
/
dt

dT

]
dθa
dT

+
χ(T )

f2A

(
dt

dT

)2

sin θ = 0. (3.129)

This equation then has to be integrated over the three stages of the dynamics described above.
In the last stage where the oscillation already slows down on can extract the ratio na

s by
averaging the expression

na
s
(T ) =

45

2π2
f2A

mAgsT 3

[
1

2

(
dθa
dT

/
dt

dT

)2

+
χ(T )

f2A
(1− cos θ)

]
(3.130)

for the temperature range 0.8Ts – 0.2Ts [7]. Here Ts is the temperature where the first sign
change in θa happens. From the conservation of the ratio na

s one can calculate

na;today =
na(T )

s(T )
stoday (3.131)

ρa;today = mAna;today (3.132)

The entropy density in the Universe can be calculated from the temperature Tγ of cosmic
microwave background. If one then assumes that a certain percentage of the dark matter
is composed of axions, one can estimate the axion mass from the equation of state and the
topological susceptibility. A calculation of the topological susceptibility is presented in section
5.
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To analyse the quark gluon plasma that is created in heavy ion collision experiments at the
LHC or RHIC a theoretical understanding of the quark gluon plasma in QCD is needed. In
the region of the deconfinement transition lattice QCD is a good tool to study QCD since this
area can not be accessed perturbatively. At the moment direct simulations that are continuum
extrapolated and at physical quark masses are restricted to vanishing or imaginary chemical
potential (see section 3.2.5). On the other hand the collisions especially at RHIC take place
away from the axis of zero µB [173]. Therefore information in that region are needed. Even
though it is not possible to do direct lattice simulations, it is possible to extrapolate observables
from zero or imaginary chemical potential. This method is called analytical continuation.

In this chapter we will present results that are gained from simulations at zero and imaginary
µB . The analysed quantities are then ploted against the µ2B axes and the function is analytical
continued to the realm of finite chemical potential. An illustration of this is shown in figure
3.5. An other possibility is to determine the Taylor coefficients of the function that discribes a
quantities from the derivatives of the partition sum at zero chemical potential. The Taylor
coefficients can then be used to extrapolate to finite chemical potential.

The results that are presented in this section have been published in [5, 6, 174, 175].

4.1 Matching experimental conditions

Since our analysis is supposed to serve as input for the investigation of the quark gluon plasma
that is created in heavy ion collisions it is important to match the experimental conditions
as closely as possible. This means mainly two things. First of all if we introduce a baryon
chemical potential µB in our simulation. This will also introduce some baryons with strange
content and therefore a nonvanishing strange number nS . In the experiments however the gold
or lead ions used in the collision have no net strange content. Therefore we have to introduce
a strangeness chemical potential µS that compensates for the strange content through µB.
Since tuning parameters in the simulation is expensive and time consuming it is very helpful
if one can predict the correct value for µS in advance. Therefore I will describe a method
[5, 175] to reach the strangeness neutral point for the simulation by solving the differential
equation 〈nS〉 = 0 ⇔ 0 = ∂ logZ

∂ µS
.

The second point is that the ratio between the charge and the baryon number for gold or lead

is
〈nQ〉
〈nB〉 ≈ 0.4. In principle it is possible to introduce isospin asymmetry in lattice calculation.

However again this would increase the tuning effort and make our calculations more expensive,
since then the up and down quarks require separate pseudo-fermion fields in the RHMC
algorithm. Therefore here we will use the easier way of doing the simulations for the isospin
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symmetric case and then later extrapolate from
〈nQ〉
〈nB〉 = 0.5 to the physical ratio

〈nQ〉
〈nB〉 = 0.4.

The necessary calculations for this extrapolations are also described here.

4.1.1 Notation

The various derivatives of the free energy are here named as

χq1q2...qn = − 1

T 4

∂n

∂(µq1/T )∂(µq2/T ) . . . ∂(µqn/T )

T

V
logZ (4.1)

where q1 . . . qn are generic flavours. It is important to note that even if the u and the d quark
are degenerate χud 6= χuu. This is because even though the u and the d quark are simulated
with degenerate masses, they are still independent particles. But because of the degeneracy
χdd = χuu. The influence of the charm quark is small compared to the influence of the lighter
quarks as it can be seen in figure 4.1. Therefore it will be neglected in this calculation. This
leads to four independent derivatives of second order in the basis of {u, d, s}: χuu, χud, χus
and χss. It is also possible to use the basis of {B,Q, S}. To change between them one can use
the relations

µu =
1

3
µB +

2

3
µQ (4.2)

µd =
1

3
µB − 1

3
µQ (4.3)

µs =
1

3
µB − 1

3
µQ − µS . (4.4)

If one changes to the basis of {B,Q, S} there are six different derivatives of second order: χBB ,
χBS , χBQ, χQS , χQQ and χQS which are not independent.

4.1.2 Solving the differential equation

We assume we know the value for µS(µB) so that 〈ns〉 = 0 for µS(µ
0
B) and µS(µ

0
B −∆µB)

with all the derivatives. Now we want to know the value for µS(µ
0
B +∆µB). This we can get

by doing a step with the Runge-Kutta-algorithm of second order as

µs(µ
0
B +∆µB) = µS(µ

0
B −∆µB) + 2∆µB

dµs
dµB

(µ0B). (4.5)

Due to the nature of numerical simulations for the simulations with µ0B and µ0B −∆µB , µS is
not precisely tuned. To repeat the simulation would be very expensive therefore we need to
find a way to correct µS and dµs

dµB
so that they are at the strangeness neutral point. This is

fairly easy for µS . We want to solve the differential equation

〈nS〉 = 0 ⇔ ∂ logZ

∂µS
= 0. (4.6)
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Figure 4.1: The light, strange and charm contributions to the disconnected diagrams below and
above Tc with a comparison between calculation in the hadron resonance gas model, lattice
calculation and perturbative calculations for different quark correlators [165]. The results for
perturbative calculations are from [176]

Assuming we know the correct value of µS for one µB so that 〈nS〉 = 0 and now want to know
it for another value of µB. We assume that the correct value of µS is µ̃S = µS +∆µS . We
then can write

〈nS〉 =
∂ logZ

∂µ̃S
(4.7)

=
∂ logZ

∂µS
+
∂2 logZ

∂µ2S
∆µS (4.8)

= 0. (4.9)

This yields

∆µS = − χS
χSS

. (4.10)

An example of the resulting values of µS for several µB can be found in figure 4.2.

At this point one should not confuse the role of ∆µB and ∆µS . While ∆µB is the step size in
the Runge-Kutta-algorithm that can be chosen freely, as long as it is not too large, ∆µS is
the deviation from the strangeness neutral point, that is calculated by a Taylor expansion.
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The correction of the derivative of µS with respect to µB is a little bit more complicated.
First we need to determine the derivative dµ̃s

dµB
= ∂µ̃s

∂µB
. Therefor we look at the second order

derivative of the partition function

d

dµB

(
∂ lnZ

∂µ̃S

)
=

∂2 lnZ

∂µ̃S∂µB
+
∂2 lnZ

∂µ̃S
2

dµ̃s
dµB

(4.11)

= χ̃BS + χ̃SS
dµ̃s
dµB

(4.12)

= 0 (4.13)

This yields

dµ̃s
dµB

= − χ̃SB
χ̃SS

|〈ns〉=0 (4.14)

= −χSB
χSS

− χSSBχSS − χSSSχSB
(χSS)2

∆µS +O(∆µ2S) (4.15)

= −χSB
χSS

−∆µS

(
χSSB
χSS

− χSSSχSB
(χSS)2

)
+O(∆µ2S) (4.16)

With the value for ∆µS from equation 4.10 we get the correct value of the derivative as well.

4.1.3 Extrapolating to 〈nS〉 = 0 and 0.4〈nB〉 = 〈nQ〉

As already mentioned the experiments fulfil the constrains 〈nS〉 = 0 and 0.4〈nB〉 = 〈nQ〉.
As described above we tune our simulation parameters to the strangness neutral point.
Because of the nature of numerical simulations we will never reach it perfectly and need to
extrapolate, as can be seen in figure 4.3. In addition our simulations are at 0.5〈nB〉 = 〈nQ〉,
the isospin symmetric point. But in heavy ion collision experiments 0.4〈nB〉 = 〈nQ〉 is realized.
Simulations away from the isospin symmetric point would be complicated and result in more
tuning efforts. Since the difference is only small it is possible and easier to extrapolate the data

to 0.4〈nB〉 = 〈nQ〉 via another Taylor expansion. The aim is to calculate dP/T 4

dµB
at 〈nS〉 = 0

and 0.4〈nB〉 = 〈nQ〉. It is

dP/T 4

dµB
=
T

V

d

dµB
lnZ (4.17)

=
T

V

(
∂ lnZ

∂µB
+
∂ lnZ

∂µS

dµS
dµB

+
∂ lnZ

∂µQ

dµQ
dµB

)
(4.18)

= χB + χS
dµS
dµB

+ χQ
dµQ
dµB

(4.19)

To extrapolate this expression, we will extrapolate the single terms

χB −→ χB + χBQ∆µQ + χBS∆µS (4.20)

χS −→ 0 (4.21)

χQ −→ 0.4χB (4.22)
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Figure 4.2: The correct value of µS that is gained from the solving of the differential equation
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Figure 4.3: The deviation from zero of strangeness after the simulation [177].
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The extrapolated value of dP̃/T 4

dµB
then is given as

dP̃/T 4

dµB
= χB + χBQ∆µQ + χBS∆µS + 0.4χB

(
dµQ
dµB

+∆µQ
∂

∂µQ

(
dµQ
dµB

))
(4.23)

+ χQS∆µS
dµQ
dµB

+ χQ∆µS
∂

∂µS

(
dµQ
dµB

)
(4.24)

dµQ
dµB

, dµS
dµB

, ∆µQ and ∆µS can be determined from the equations (4.20) to (4.22). For the
derivatives we derive the conditions with respect to µB yielding

0 = χS (4.25)

= χBS + χSS
dµS
dµB

+ χQS
dµQ
dµB

(4.26)

and

0.4χB = χQ (4.27)

⇒ χBB + χBS
dµS
dµB

+ χBQ
dµQ
dµB

= χBQ + χQS
dµS
dµB

+ χQQ
dµQ
dµB

. (4.28)

Solving for
dµQ
dµB

and dµS
dµB

, µQ leads to

dµQ
dµB

=
(0.4χBS − χQS)χBS − (0.4χBB − χBQ)χSS
(0.4χBQ − χQQ)χSS − (0.4χBS − χQS)χQS

(4.29)

dµS
dµB

= −
χQS

dµQ
dµB

+ χBS

χSS
. (4.30)

To get the extrapolated values of the derivatives it is easiest to replace each χXY by the

extrapolated values χ
(e)
XY = χXY + χXY S∆µS + χXYQ∆µQ. On the other hand we can solve

the conditions

0 = χS +∆µQχQS +∆µSχSS (4.31)

0.4χB +∆µQχBQ +∆µSχBS = χQ +∆µQχQQ +∆µSχQS (4.32)

for ∆µQ and ∆µS yielding

∆µS =
(0.4χB − χQ)χQS + (χQQ − 0.4χBQ)χS

(χQS − 0.4χBS)χQS − (χQQ − 0.4χBQ)χSS
(4.33)

∆µQ = −χS +∆µSχSS
χQS

. (4.34)

Both strategies only differ in higher orders, and the numerical difference is about one order of
magnitude smaller than the statistical error of the quantities.

An example of the difference between the direct simulation and the data after the extrapolation
can be seen in figure 4.4. The blue data are at the strangeness neutral point. The values from
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Figure 4.4: An example of how different choices of simulation points influence the strange
susceptibility [5]. The red data set shows χSS at zero chemical potential. The blue data is at
the strangness neutral point. The values from extrapolation to µB

T
= i 5

8
π from µB = 0 agree

nicely. The green data is not at the strangeness neutral point but at µs = µu = µd. Since we did
no actual simulations with this setting both data sets shown here are extrapolated, though from
different starting points.

extrapolation to µB
T = i58 from µB = 0 agree nicely. The green data is not at the strangeness

neutral point but at µs = µu = µd. Since we did no actual simulations with this setting both
data sets shown here are extrapolated, though from different starting points. Also these two
data sets agree nicely. However they differ significantly from the simulations at the strangeness
neutral point.

4.2 The data

In this section we will describe which simulations were used for the analysis described below.
However not all the data were used in each project, as the data were generated in a simulation
effort over several years. Also in the analysis of the transition temperature (see section 4.3)
higher values of µB change the shape of the fit to the observables, which does not allow for a
combined fit as it was done here.

For the simulations we used a tree level Symanzik improved gauge action. The dynamical
fermions were four times stout smeared staggered fermions [178]. The smearing parameter
was ρ = 0.125. The simulations were performed with 2+1+1 flavours. The up and the down
quark have degenerate masses that were together with the strange quark mass tuned in a way
that the pion and the kaon mass divided by the pion decay constant are set to their physical
value for every lattice spacing. The charm mass was set in a way that mc

ms
= 11.85 as described
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in [179]. The lattice spacing ranges between a = 0.063 fm and a = 0.2 fm. For every lattice
spacing Lmπ > 4 is fulfilled in the zero temperature runs.

For the finite temperature and density simulations µB has to be smaller then iπT due to the
Roberge-Weiss transition (see for example [180, 181, 182]). Our values for µB were chosen
as

µ
(j)
B = iT

j

8
π (4.35)

for j ∈ {0, 1, 2, 3, 4, 5, 6, 6.5, 7}. The value for µS is tuned in a way that the simulation is
at the strangeness neutral point as described in section 4.1. For each value of µB we have
simulations for sixteen temperatures between 135 MeV and 210 MeV. For the simulations
with j = 3 to j = 7 and for j = 0 we have data on lattices with sizes 323 × 8, 403 × 10,
483 × 12 and 643 × 16. For j = 1 and j = 2 we only have data for Nt = 8, 10 and 12 lattices.
This simulations were later not used in the analysis since they do not differ a lot from the
j = 0 simulations. However they were needed to tune to the strangeness neutral point. For
each set of parameters we generated between 10000 and 20000 Hybrid Monte Carlo updates
for the finite density configurations and 5 to 10 times more statistics for the µB = 0 runs.
For Nt = 8, 10 and 12 every 5th configuration was analysed. For Nt = 16 we analysed every
10th configuration. The higher statistics for µB = 0 allows us to check which interpolating
functions for each observables ensure a good fit.

4.3 The transition temperature

The most interesting region in the QCD phase diagram in the µB-T -plane is the transition
region where hadronic matter is deconfined and becomes quark gluon plasma. On the lattice
we can calculate the temperature where this deconfinement transition takes place. Since we
already know that at µB = 0 the transition is an analytic crossover, the temperature can
vary for different observables. For this analysis we use the data described in section 4.2 from

the runs with µ
(j)
B = iT jπ

8 with j ∈ {0, 3, 4, 5, 6}. We work with three different observables
χψ̄ψ, 〈ψ̄ψ〉 and χSS that are introduced in section 4.3.1. The first two observables have to be

renormalized. To obtain an analytical formula for the shape of the observable o at every µ
(j)
B

we make a fit o(T ) in the temperature direction. To respect the correlation that is introduced

in the renormalizaition procedure this will be a combined fit for all µ
(j)
B at a fixed value for

Nt. From the analytical form we can determine the transition temperature that we define
either as the location of the maximum of a peak or as the location of the inflection point of a

sigmoid function. The next step is to identify the dependence on µ̂2B =
µ2B
T 2 of the transition

temperature. We do this with a linear fit which can describe the data of µ
(0)
B , µ

(3)
B , µ

(4)
B and

µ
(5)
B . If also µ

(6)
B is included in the analysis we need to use a second order fit. From this fit

we can determine the curvature κ of the temperature Tc(µB) at µB = 0 for which there are
several other analysises to compare with, which will be done in section 4.3.7. We can of course
also determine the transition temperature itself. Finally we calculate continuum extrapolated
results. This can either be done in a continuum extrapolation of the results of the fit Tc(µB)
or as a combined fit for the µB and Nt dependence.
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For χSS we also use several data sets, extrapolated to different settings that we can analyse
for comparison. We also attempt to gain the curvature κ by the Taylor coefficient method for

our data at µ
(0)
B .

4.3.1 The observables

In this analysis we will use three different observables: χψ̄ψ, 〈ψ̄ψ〉 and χSS . Of this three χψ̄ψ
and 〈ψ̄ψ〉 have to be renormalized by subtraction of the zero temperature data. χψ̄ψ has a the
form of a peak, while 〈ψ̄ψ〉 and χSS take the form of a sigmoid function. In the following we
will describe how we gain an analytical description of the function o(T ) from which we can
extract the crossover temperature.

4.3.1.1 Analysing χψ̄ψ

The main observable is the chiral susceptibility χψ̄ψ which is defined as [12, 13]

χψ̄ψ =
T

V

∂2 lnZ

∂m2
q

. (4.36)

It has to be renormalized by substracting the zero temperature data. Therefore we write for
the renormalized chiral susceptibility χr

ψ̄ψ

χrψ̄ψ =
(
χψ̄ψ(T, β)− χψ̄ψ(0, β)

) m2
l

a2m4
π

. (4.37)

For the renormalizaition we need to fit the zero temperature simulations. For this we us two
different ansatzes. First the polynomial ansatz

χψ̄ψ(0, β) =
6∑

k=0

Akβ
k (4.38)

and second an ansatz containing negative powers of β

χψ̄ψ(0, β) =
2∑

k=−2

Akβ
k. (4.39)

With the zero temperature data fitted we can calculate χr
ψ̄ψ

. It shows the form of a peak. For

fitting the data points we use again two different ansatzes:

χrψ̄ψ(T ) =

{
C +A2(µ̂B)

(
1 +W 2(µ̂B)(T − Tc(µ̂B))

2
)α/2

for T ≤ Tc

C +A2(µ̂B)
(
1 + b2W 2(µ̂B)(T − Tc(µ̂B))

2
)α/2

for T > Tc
(4.40)

and

χrψ̄ψ(T ) = C +
A(µ̂B)

1 +W 2(µ̂B)(T − Tc(µ̂B))2 + a3W 3(µ̂B)(T − Tc(µ̂B))3
(4.41)
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Figure 4.5: The fit to the zero temperature values χψ̄ψ(0, β).

where all fitting parameters depend on Nt. The fit of (4.40) or (4.41) to the data for each

value of µ
(j)
B and the fit of (4.38) or (4.39) are performed simultaneously to account for the

correlation of the renormalized χr
ψ̄ψ

with the zero temperature fit. The result for the zero

temperature fit is shown in figure 4.5 and an example for the finite temperature fits is shown
in figure 4.6. Since the fit functions only work well for the range of the peak in all finite
temperature fits we have only used data points with χψ̄ψ(T, β) > c to remove the tails of
the peak. We choose c ∈ {0.03, 0.04, 0.05}. This observable is best suited to determine the
transition temperature, because Tc can be easily defined and read of as the maximum of
the peak. The other observables show the form of a sigmoid function, where the transition
temperature would be the point of inflection. Since this is more difficult to fit it leads to larger
errors on Tc, but the distance between the curves and the relative change in Tc can still be
determined fairly well. For the figure 4.6 the data are rescaled and shifted in a way that all

data points lie on the curve of µ
(0)
B .
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Figure 4.6: The fits to the finite temperature values χr
ψ̄ψ

(T ) using eqn. (4.40).
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Figure 4.6: The fits to the finite temperature values χr
ψ̄ψ

(T ) using eqn. (4.40).
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Figure 4.7: The fit to the zero temperature values ψ̄ψ(0, β).

4.3.1.2 Analysing ψ̄ψ

The next observable is the chiral condensate ψ̄ψ. Like the susceptibility it has to be renormalized
by substracting the zero temperature values and is defined as [13]

ψ̄ψr = −
(
〈ψ̄ψ〉(T, β)− 〈ψ̄ψ〉(0, β)

) ml

a3m4
π

. (4.42)

For fitting the zero temperature data we use the polynomial ansatz

χψ̄ψ(0, β) =
K∑

k=0

Akβ
k (4.43)

with K ∈ {6, 7}.
ψ̄ψr shows a sigmoid like behaviour. For fitting it we use the two different ansatzes:

ψ̄ψr(µ, T ) = A(µ) (1 +B tanh [C (T − Tc(µ))] +D (T − Tc(µ))) (4.44)

and
ψ̄ψr(µ, T ) = A(µ) (1 +B arctan [C (T − Tc(µ))] +D (T − Tc(µ))) (4.45)

where again all fit parameters depend on Nt.

The fit (4.44) or (4.45) for each value of µ and the fit (4.43) to the zero temperature data are
performed in the same manner as for χr

ψ̄ψ
. The result for the zero temperature fit is shown in

figure 4.7 and an example for the finite temperature fits is shown in figure 4.8. A fit window
is chosen in a way that a < ψ̄ψr < b with a ∈ {0.25, 0.3} and b ∈ {0.7, 0.75}.
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Figure 4.8: The fits to the finite temperature values ψ̄ψr(T ) using eqn. (4.45) shifted by the
respective Tc and rescaled.
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Figure 4.8: The fits to the finite temperature values ψ̄ψr(T ) using eqn. (4.45) shifted by the
respective Tc and rescaled.
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4.3.1.3 Analysing χSS

The strange susceptibility is defined as

χSS =
∂2 logZ

∂µ2S
. (4.46)

The calculation of the different versions of χSS that are described below was done as described
in section 4.1. For this analysis the data was supplied with ten Jack-Knife samples and the
resulting errors. Since this analysis relies on the Bootstrap method and needs more then ten
samples to calculate the correlation matrices for the extrapolation fits later in the analysis, we
assumed that the Jack-Knife error is correct and that Bootstrap samples for the independent
ensembles have a Gaussian distribution. Then the values for the Bootstrap samples are chosen
as random values from a one dimensional Gaussian distribution where the mean value is the
central value for χSS and the width is the jack knife error. An introduction to the Jack-Knife
and the Bootstrap method can be found for example in [27].

A great advantage of the strange susceptibility is that it does not need to to be renormalized.
Therefor the finite temperature fits for χSS can be performed independently for every Nt. χSS
shows a similar behaviour as ψ̄ψ and is therefore fitted with the same ansatzes as shown in
equation (4.44) and (4.45). The fit window is chosen in a way that a < χSS < c(Nt)b with
a ∈ {0.15, 0.2, 0.25, 0.3} and b ∈ {0.6, 0.65, 0.7, 0.75}. c(Nt) is the treelevel correction given
as

c(Nt) =





1.28037 for Nt = 8

1.15739 for Nt = 10

1.09721 for Nt = 12

1.0659 for Nt = 16

. (4.47)

We analysed several different calculation of the strange susceptibility:

• χSS : The chiral susceptibility simulated at the strangeness neutral point where 〈nS = 0〉
and 〈nQ〉 = 0.5〈nB〉.

• χESS : The chiral susceptibility simulated at the strangeness neutral point with a small
extrapolation in 〈nS〉, so that with better prezision 〈nS〉 = 0 and 〈nQ〉 = 0.4〈nB〉.

• χextraSS : The same as χSS , but only simulated at µ = 0 and than extrapolated via a Taylor
expansion to imaginary µ.

• χE,extraSS : The same as χESS , but only simulated at µ = 0 and than extrapolated via a
Taylor expansion to imaginary µ.

• χl,extraSS : The chiral susceptibility extrapolated from µs = 0 for simulations with µS = 0.

• χb,extraSS : The chiral susceptibility extrapolated from µs = 0 for simulations with µu =
µd = µs.

The fits for χE,extraSS are shown in figure 4.9.
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Figure 4.9: The fits to the finite temperature values χSS using eqn. (4.44). The data were shifted
by the respective Tc and rescaled.
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Figure 4.9: The fits to the finite temperature values χSS using eqn. (4.44). The data were shifted
by the respective Tc and rescaled.
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4.3.2 Curvature Fit

The curvature κ is defined via the equation

Tc(µB)

Tc(0)
= 1− κ

(
µB
Tc

)2

− 1

2
λ

(
µB
Tc

)4

+O(µ6B). (4.48)

We take the fitted Tc values for each lattices size from the fit described in the previous section.
We then compute Tc(µB)/Tc(0) so that correlations of Tc(µB) and Tc(0) cancel in the error
estimation of the data points. Afterwards we fit the data to equation (4.48) for each lattice
size separately. Note that the data point at µB = 0 is not shown, as it is per definition exactly
(0, 1). Each fit takes into account the full correlation matrix between the data points.

To be able to fit the data with a linear ansatz we do not take into account the data for the
largest value of µ. Exemplary results are shown in figure 4.10.

To fit the last value of µ we have to introduce an O(µ4B) contribution in equation (4.48). We
have several possibilties how to add this second order term. We will call

Tc(µB)

Tc(0)
= Ci

(
µ2B
T 2
c

)
. (4.49)

We then use

C1(x) = 1 + ax+ bx2 (4.50)

C2(x) =
1 + ax

1 + bx
(4.51)

C3(x) =
1

1 + ax+ bx2
. (4.52)

We then can extract κ and λ as

κ =





−a for C1

b− a for C2

a for C3

(4.53)

λ =





−1
2b for C1

ab− b2 for C2

b− a2 for C3

(4.54)
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Figure 4.10: The fits to extract κ via eqn. (4.52).
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Figure 4.10: The fits to extract κ via eqn. (4.52).
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4.3.3 Continuum extrapolation

In the scaling region the continuum extrapolation can be parameterized as

κ = κcont +A

(
1

Nt

)2

. (4.55)

We use the result from the fit described in the previous section and perform a correlated fit.
The results for the continuum fit for κ extracted from ψ̄ψ can be seen in figure 4.11. During
the analysis it turned out that even though it looks like the data points from Nt = 8, 10, 12 lie
on a straight line (figure 4.11a) and therefore are in the scaling regime, this assumption turns
out to be wrong when the data point of Nt = 16 is added in figure 4.11b. As a consequence
in all further analysises we only use data from Nt = 10, 12, 16. The resulting continuum
extrapolation can be seen in figure 4.11c.

4.3.4 Combined continuum extrapolation and curvature fit

Instead of performing the fit of the curvature and the continuum extrapolation seperatly it is
possible to combine the fits. If we do that we fit the data for a first order curvature fit with
the function:

Tc(µB)

Tc(0)
= 1−

(
κc + c1

1

N2
t

)(
µB
Tc

)2

. (4.56)

For the second order curvature fit we use the fit functions

C1(x) = 1 +

(
a+ c1

1

N2
t

)
x+

(
b+ c2

1

N2
t

)
x2 (4.57)

C2(x) =
1 +

(
a+ c1

1
N2

t

)
x

1 +
(
b+ c2

1
N2

t

)
x

(4.58)

C3(x) =
1

1 +
(
a+ c1

1
N2

t

)
x+

(
b+ c2

1
N2

t

)
x2
. (4.59)

The combined fit describes the data with less parameters then the separate fits. For the first
order fit in µB there are two parameters in the combined fit, while for the separate fit there is
one parameter for every Nt and an additional two for the continuum slope resulting in a total
number of five parameters. For the second order fit there are two parameters in every µB fit,
giving a total number of eight parameters compared to three in the combined fit. Also this
gives us another method for the analysis that we can use to estimate the systematic error.
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Figure 4.11: The continuum extrapolations of the curvature parameter κ.
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Table 4.1: Results for the curvature of the transition line in the QCD phase diagram.

observable κ

χψ̄ψ 0.0158± 0.00067 + 0.00013− 0.00023

ψ̄ψ 0.0138± 0.0006 + 0.0005− 0.0004
c2S 0.0149± 0.0006 + 0.0006− 0.001
c2SE 0.0149± 0.0006 + 0.0005− 0.0008

4.3.5 Results

To determine the systematical error we repeat our analysis with different parameters and look
at the histogram. As mean value we use the median. The systematical error is determined
in a way that 68% of the results of the different analyses fall within the error band. This so
called histogram method was introduced in [16]. The statistical error is the bootstrap error of
the median of every bootstrap sample. The resulting histograms can be seen in figure 4.12 to
4.14.

In the analysis for χψ̄ψ we have two methods of scale setting, two fits for T > 0, two fits for
the zero temperature data, three different fit windows and either a combined or a separated
fit for the µB and Nt dependence. This gives a total of 2 · 2 · 2 · 3 · 2 = 48 analyses. For the
chiral condensate we have four fit windows and otherwise the same analyses, given a total of
25 = 64 analyses. For χSS there are no zero temperature fits and otherwise the same analyses,
adding up to a total number of 32.

The resulting values are given in 4.1. From the table and even easier from the histograms in
figure 4.12 it can be seen that the values for all three observables lay quite close together even
if it is not nessesarry that they give the same temperature, since the transition is a crossover.
Since they are so close together, they can be joint into a single quantity, giving an overall
value for the curvature of

κ = 0.0149± 0.0021. (4.60)

From figure 4.12 it can also be seen that between the strange susceptibility at 〈nQ〉 = 0.5〈nB〉
(χSS) and at 〈nQ〉 = 0.4〈nB〉 (χESS) there is no difference in the mean value. Any effect coming
from the isospin asymmetry vanishes within our error. Therefore it is not necessary to do this
extrapolation for the other two observables.

Figure 4.13 shows the results for the different analyses where the data was obtained by Taylor
expansion from the µB = 0 data. Since we have significantly less statistics than for the other
analyses, the errors are quite large and we can not make a definite statement about the
differences between the observables. Therefore in figure 4.14 we show the results from our
analysis on an Nt = 10 lattice, without continuum extrapolation. Of course this excludes the
analyses from the combined fit. Now in figure 4.14 we can see that the data from the analysis
with Taylor expansion and the actual simulations are in agreement within the errors, even if
the data from the Taylor expansion tends a bit to the lower end (lower two histograms). Also
we can see that the data where µs is set to zero and the result for data that has been tuned
to the strangeness neutral point agree quite well. If instead of µs, µS is set to zero the result
however differs significantly (upper two histograms).
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Figure 4.12: The resulting histograms for κ from the different observables.
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Figure 4.13: The resulting histograms for κ from the different settings of χSS.
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Figure 4.14: The resulting histograms for κ from the different settings of χSS on the Nt = 10
lattice.
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Figure 4.15: The extrapolation of Tc from ψ̄ψ

4.3.6 Extrapolating Tc

To determine the critical temperature we will use the functions for the curve fit which were
described in section 4.3.2 and 4.3.4. We take the continuum extrapolated parameters a and b
(or only a for first order fits) and solve the equation

Tc(µB)

Tc(0)
= Ci

(
µ2B
T 2
c

)
(4.61)

numercially for Tc(µB). The value of Tc(0) we obtain from the fits of ψ̄ψ (see section 4.3.1.2)
which we extrapolate in the same manner as described in section 4.3.2 for κ and λ. This
will be done for approximately 100 values of µ2B. For each of this points we calculate the
histogram as described in section 4.3.5. We calculate the combined error for each point by
adding systematic and statistical error quadratically. The result for ψ̄ψ can be seen in figure
4.15. In that figure the dark line shows the result and the error that comes from the analysis
of ψ̄ψ. The light blue shade behind the curve shows an approximation for the spread from the
different observables. The widening of the curve comes from the higher order terms and the
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statistical errors. It gives us an estimate of how far we can extrapolate, always assuming that
we do not encounter the critical endpoint. Beyond a baryon chemical potential of about 400
MeV the error grows extremely large.

On should note that the extrapolation in the region of finite chemical baryon potential by
the method of analytical continuation only works as long as there is no critical endpoint. As
described in section 3.3 one expects a critical endpoint somewhere on the transition line. Since
this endpoint is a non-analyticity we cannot detect it by analytical continuation independent
of the error on our transition line. It has to be calculated or measured by different methods
and our extrapolation is only valid up to that point. Since the critical endpoint has not been
found yet, we show our curve up to a point where the error increase drastically.

4.3.7 Other results

At first we want to discuss how well we agree with other determinations for the curvature κ. In
figure 4.16 there is an overview over the available continuum extrapolated lattice results. The
first two data points by Bellwied et al. [5] are the ones obtained from the analyses described
above. The next point bei Cea et al. [183, 184] is from an analysis with the HISQ gauge
action and staggered fermions on lattices with Nt = 6, 8, 10 and 12 by means of analytical
continuation from imaginary chemical potential. The next group of points by Bonati et al.
[185, 186, 187] are the results of another analysis with simulations at imaginary chemical
potential. The simulations were done with a Symanizik improved gauge action and staggered
fermions on Nt = 6, 8, 10 and 12 lattices. All this points that were obtained from a similar
analysis agree within the error bars.

The red points on the other hand are obtained from the Taylor expansion method. This means
that instead of using simulations at imaginary chemical potential one calculated derivatives of
the observables with respect to µB at µB = 0. For example the pressure can be written as
[188]

P

T 4
=

∞∑

i,j,k=0

1

i!j!k!
χBQSijk

(µB
T

)i (µQ
T

)j (µS
T

)k
(4.62)

with with X = B,Q, S and

χXn =
∂n
(
P
T 4

)

∂
(µX
T

)n . (4.63)

The χXn can be calculated on µB = 0 simulations. This gives the Taylor coefficients that can be
used to analytical continue the observable to positive µ2B as well. The point of Kaczmarek et
al. [102] was calculated from simulations with the p4-action on Nt = 4 and 8 lattices. Also an
extrapolation in the quark masses had to be performed. The points by Endrödi et al. [189] are
obtained from simulations with the Symanzik improved gauge action and staggered fermions
on Nt = 6, 8, and 10 lattices.

The values for κ from the Taylor expansion method and from the simulations at imaginary
chemical Potential do not agree within error. However in both of the analyses from the Taylor
expansion method only statistical uncertainties are provided. Therefore the errorbars should
be increased by the systematic errors. Also the lattices are smaller than the ones used in the
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newer analysises by the imaginary µB simulations. However the Quark confinement and the
hadron spectrum conference 2016 preliminary results for the equation of state from the Taylor
expansion method were presented [188]. Therefore we can hope for up to date results on the
curvature soon.

Besides other lattice results, we can try to compare to data from other sources. In figure
4.17 we plot our data from figure 4.15 together with the freeze-out points from experiments
[190, 191, 192, 193, 194] and a calculation done by the Dyson-Schwinger equation [195, 196]
that also gives an estimate for the critical endpoint. Since it is assumed that the chemical
freeze-out that can be measured by experiments is lower than the deconfinement transition it
is a little surprising that some points are above our curve. However the experimental values
seem to depend on the exact method of analysis. Also all the points still lie in the area that
is approximately spanned by the observables in our analysis. The same is true for the curve
calculated by the Dyson-Schwinger equation.
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Figure 4.16: Different values for the curvature κ.

Figure 4.17: The extrapolation of Tc in comparison to the phenomenological modelling of experi-
mental data for the freeze out points and a calculation by the Dyson-Schwinger equation.
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4.4 The equation of state

In this section we are going to analyse the equation of state at finite density from simulations

at imaginary baryon chemical potential. We will use the simulations for µ
(0)
B to µ

(7)
B on lattices

with Nt = 10, 12 and 16, at temperatures in each dataset between 135 MeV and 210 MeV.

4.4.1 Data at high temperatures

As described in section 4.2 our simulations range up to a temperature of 210 MeV. However for
the equation of state we would like to have an analysis that reaches up to approximately 300
MeV where the system is clearly in a state of quark gluon plasma. Since we have simulations
in that temperature range for µB = 0 we could use the Taylor expansion method in that area.
However, we would like to do the same analysis at all temperatures. Therefore instead of using
the Taylor expansion method to determine the equation of state directly, we construct some
extrapolated data we then analyse. The derivative of the pressure is given as:

1

µ̂B

d

dµ̂B

(
P

T 4

)
=

d2P̂

dT 2
µ̂2B +

d4P̂

dT 4
µ̂4B, (4.64)

assuming that higher order terms can be neglected at this high temperatures. This means we
are analysing a dataset

dP̂

dµ̂B

∣∣∣∣∣
µ̂B

=





dP̂
dµ̂B

∣∣∣
simulated at µ̂B

for T < Tconn

dP̂
dµ̂B

∣∣∣
extrapolated to µ̂B

for T ≥ Tconn
. (4.65)

To check whether it is save to neglect higher order contributions we will use two different
connection points Tconn from which on we will use the extrapolated data: One at 200 MeV and
one at 220 MeV. The difference in this two analysises will then add to our systematic error.

To calculate the high temperature data one has formulate the total derivatives of the pressure
in terms of partial derivatives of the partition sum. We use here the notation that has been
introduced in section 4.1.1. The first first derivative of the pressure is given as

dP̂

dµ̂B
= χB + χS

dµ̂S
dµ̂B

+ χQ
dµ̂Q
dµ̂B

. (4.66)

Now we can derive this a second time yielding

d2P̂

dµ̂2B
= χBB + 2χBS

dµ̂S
dµ̂B

+ 2χBQ
dµ̂S
dµ̂Q

+ χSS

(
dµ̂S
dµ̂B

)2

+ χQQ

(
dµ̂Q
dµ̂B

)2

+ 2χQS
dµ̂S
dµ̂B

dµ̂Q
dµ̂B

+ χS
d2µ̂S
dµ̂2B

+ χQ
d2µ̂Q
dµ̂2B

. (4.67)
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Note that at µB = 0 where we actually need the derivatives, all odd number of derivatives
vanish. However they are still needed to calculate the next order derivative and therefore
written down here. Therefore we can now derive the third order derivative as

d3P̂

dµ̂3B
= χBBB + 3

dµ̂S
dµ̂B

χBBS + 3
dµ̂Q
dµ̂B

χBBQ

+ 3

(
dµ̂S
dµ̂B

)2

(χBSS + χBS) + 3

(
dµ̂Q
dµ̂B

)2

(χBQQ + χBQ)

+ 6
dµ̂S
dµ̂B

dµ̂Q
dµ̂B

χBQS +

(
dµ̂S
dµ̂B

)3

χSSS +

(
dµ̂Q
dµ̂B

)3

χQQQ

+ 3
dµ̂Q
dµ̂B

(
dµ̂S
dµ̂B

)2

χQSS + 3
dµ̂S
dµ̂B

(
dµ̂Q
dµ̂B

)2

χQQS

+ 3
dµ̂S
dµ̂B

d2µ̂S
dµ̂2B

χSS + 3
dµ̂Q
dµ̂B

d2µ̂Q
dµ̂2B

χQQ + 3
dµ̂S
dµ̂B

d2µ̂Q
dµ̂2B

χQS + 3
dµ̂Q
dµ̂B

d2µ̂S
dµ̂2B

χQS

+ 3χBQ
d2µ̂Q
dµ̂2B

+ 3χBS
d2µ̂S
dµ̂2B

+ χS
d3µ̂S
dµ̂3B

+ χQ
d3µ̂Q
dµ̂3B

. (4.68)
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Finally we can derive the fourth derivative. Here we can actually omit all odd number of
derivatives as no further derivatives are needed. This yields

d4P̂

dµ̂4B

∣∣∣∣∣
µB=0

= χBBBB + χBBBS
dµ̂S
dµ̂B

+ χBBBQ
dµ̂Q
dµ̂B

+ 3
dµ̂S
dµ̂B

(
χBBBS + χBBSS

dµ̂S
dµ̂B

+ χBBQS
dµ̂Q
dµ̂B

)

+ 3
dµ̂Q
dµ̂B

(
χBBBQ + χBBQS

dµ̂S
dµ̂B

+ χBBQQ
dµ̂Q
dµ̂B

)

+ 3

(
2
dµ̂S
dµ̂B

d2µ̂S
dµ̂2B

χBS +

(
dµ̂S
dµ̂B

)2(
χBBSS + χBSSS

dµ̂S
dµ̂B

+ χBQSS
dµ̂Q
dµ̂B

))

+ 3

(
2
dµ̂Q
dµ̂B

d2µ̂Q
dµ̂2B

χBQ +

(
dµ̂Q
dµ̂B

)2(
χBBQQ + χBQQS

dµ̂S
dµ̂B

+ χBQQQ
dµ̂Q
dµ̂B

))

+ 6
dµ̂Q
dµ̂B

dµ̂S
dµ̂B

(
χBBQS + χBQSS

dµ̂S
dµ̂B

+ χBQQS
dµ̂Q
dµ̂B

)

+

(
dµ̂S
dµ̂B

)3(
χBSSS + χSSSS

dµ̂S
dµ̂B

+ χQSSS
dµ̂Q
dµ̂B

)

+

(
dµ̂Q
dµ̂B

)3(
χBQQQ + χQQQS

dµ̂S
dµ̂B

+ χQQQQ
dµ̂Q
dµ̂B

)

+ 3
dµ̂Q
dµ̂B

(
dµ̂S
dµ̂B

)2(
χBQSS + χQSSS

dµ̂S
dµ̂B

+ χQQSS
dµ̂Q
dµ̂B

)

+ 3
dµ̂S
dµ̂B

(
dµ̂Q
dµ̂B

)2(
χBQQS + χQQSS

dµ̂S
dµ̂B

+ χQQQS
dµ̂Q
dµ̂B

)

+ 3

((
d2µ̂S
dµ̂2B

)2

+
dµ̂S
dµ̂B

d3µ̂S
dµ̂3B

)
χSS + 3

((
d2µ̂Q
dµ̂2B

)2

+
dµ̂Q
dµ̂B

d3µ̂Q
dµ̂3B

)
χQQ

+ 3

(
2
d2µ̂S
dµ̂2B

d2µ̂Q
dµ̂2B

+
dµ̂S
dµ̂B

d3µ̂Q
dµ̂3B

+
dµ̂Q
dµ̂B

d3µ̂S
dµ̂3B

)
χQS

+
d3µ̂S
dµ̂3B

(
χBS + χSS

dµ̂S
dµ̂B

+ χQS
dµ̂Q
dµ̂B

)

+
d3µ̂Q
dµ̂3B

(
χBQ + χQS

dµ̂S
dµ̂B

+ χQQ
dµ̂Q
dµ̂B

)
. (4.69)

Now these whole quantities have to be extrapolated to 〈nS〉 = 0 and 0.4〈nB〉 = 〈nQ〉. However
it is significantly simpler to extrapolate all the derivatives, analogously to what has been done
in section 4.1.3

4.4.2 Observables

For the equation of state the pressure P , the particle number n, the trace anomaly I, the
energy density ǫ and the entropy S will be determined. All this quantities can be derived
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from the logarithm of the partition sum lnZ. When calculating the derivatives one has to pay
attention to the fact that in the simulations (see section 4.2) µ̂B = µB

T is held constant while
we frequently need derivatives where µB itself is constant. We can get the right derivatives by
using the formula for a function f(x, y) from [197]:

∂f

∂x

∣∣∣∣
z(x,y)

=
∂f

∂x

∣∣∣∣
y

+
∂f

∂y

∣∣∣∣
x

∂y

∂x

∣∣∣∣
z(x,y)

, (4.70)

∂f

∂z

∣∣∣∣
y

=
∂f

∂x

∣∣∣∣
y

∂x

∂z

∣∣∣∣
y

. (4.71)

So for a function depending on T , µ̂B, µ̂S and µ̂Q:

∂f

∂T

∣∣∣∣
µB ,µS ,µQ

=
∂f

∂T

∣∣∣∣
µ̂B ,µ̂S ,µ̂Q

+
∂f

∂µ̂B

∣∣∣∣
T,µ̂S ,µ̂Q

∂µ̂B
∂T

∣∣∣∣
µB ,µS ,µQ

+
∂f

∂µ̂S

∣∣∣∣
T,µ̂B ,µ̂Q

∂µ̂S
∂T

∣∣∣∣
µS ,µB ,µQ

+
∂f

∂µ̂Q

∣∣∣∣
T,µ̂B ,µ̂S

∂µ̂Q
∂T

∣∣∣∣
µQ,µB ,µS

(4.72)

=
∂f

∂T

∣∣∣∣
µ̂B ,µ̂S ,µ̂Q

− µB
T 2

∂f

∂µ̂B

∣∣∣∣
T,µ̂S ,µ̂Q

− µS
T 2

∂f

∂µ̂S

∣∣∣∣
T,µ̂B ,µ̂Q

− µQ
T 2

∂f

∂µ̂Q

∣∣∣∣
T,µ̂B ,µ̂S

. (4.73)

For a derivative with respect to µi while keeping the temperature and the remaining two
chemical potentials µx and µy constant, we get

∂f

∂µi

∣∣∣∣
µx,µy ,T

=
∂f

∂µi

∣∣∣∣
µ̂x,µ̂y ,T

+
∂f

∂µ̂x

∣∣∣∣
µi,µy ,T

∂µ̂x
∂µi

∣∣∣∣
µx,µy ,T

+
∂f

∂µ̂y

∣∣∣∣
µi,µx,T

∂µ̂y
∂µi

∣∣∣∣
µx,µy ,T

. (4.74)

Since ∂µ̂x
∂µi

∣∣∣
µx,µy ,T

= 0 and
∂µ̂y
∂µi

∣∣∣
µx,µy ,T

= 0, we get

∂f

∂µi

∣∣∣∣
µx,µy ,T

=
∂f

∂µi

∣∣∣∣
µ̂x,µ̂y ,T

(4.75)

=
∂f

∂µ̂i

∣∣∣∣
µ̂x,µ̂y ,T

∂µi
∂µ̂i

∣∣∣∣
µ̂x,µ̂y ,T

(4.76)

= T
∂f

∂µ̂i

∣∣∣∣
µ̂x,µ̂y ,T

. (4.77)

This tells us that partial derivatives with respect to µi can be easily replaced by derivatives
with respect µ̂i. One just gets the expected factor of T that keeps the dimensions correct.
When doing derivatives with respect to T one has to be a bit more careful. However due to
the nature of the temperature scans we will only be able to perform total derivatives with
respect to T .
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The first observable we look at is the pressure P which is given as

P

T 4
=

1

T 3V
lnZ. (4.78)

As described in section 4.1.1 we can only determine derivatives of the partition sum. Therefore
we only have data for 1

µ̂B
d

dµ̂B

(
P
T 4

)
. We know [198] that

T
∂

∂µi

(
P

T 4

)
=
ni
T 3
. (4.79)

Therefore we get:

n̂i =
ni
T 3

=
∂

∂µ̂i

(
P

T 4

)
. (4.80)

So the total derivative of P
T 4 can be rewritten as

d

dµ̂B

(
P

T 4

)
= n̂B + n̂S︸︷︷︸

0

χBS + n̂Q︸︷︷︸
0.4n̂B

χBQ. (4.81)

Having data for the total derivative of the pressure with respect to µ̂B allows us to later
integrate our function that describes the µ̂B dependence of the data to obtain the pressure.

Besides the pressure we also like to investigate the entropy and the trace anomaly. The entropy
is defined as

S =
∂P

∂T

∣∣∣∣
µi

. (4.82)

We now need to rewrite it in terms of the total derivative with respect to T . This is given as

dP̂

dT
=
∂P̂

∂T

∣∣∣∣∣
µi

+
dµB
dT

n̂B
T

+
dµQ
dT

n̂Q
T
. (4.83)

The total derivatives of the chemical potentials can be written as

dµB
dT

=
d(µ̂BT )

dT
= µ̂B, (4.84)

dµQ
dT

=
d(µ̂QT )

dT
= µ̂Q + T

dµ̂Q
dT

. (4.85)

Leaving the entropy as

Ŝ =
S

T 3
(4.86)

= 4P̂ + T
dP̂

dT
− µ̂Bn̂B − µ̂Qn̂Q − µ̂QT

dµ̂Q
dT

(4.87)

= 4P̂ + T
dP̂

dT
− n̂B (µ̂B + 0.4µ̂Q)− 0.4µ̂BT

dµ̂Q
dT

. (4.88)
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This leaves us with the extra three terms marked in green, that can not be determined by the
pressure. That means besides the data for the pressure we also always analyse the data for
n̂B and µ̂Q, to determine their dependence on T and on µB.

Similarly we get for the energy density

ǫ =
T 2

V

∂ lnZ

∂T

∣∣∣∣
µi

+
∑

i

µini (4.89)

= T 2 ∂

∂T

(
T 3 P

T 4

)∣∣∣∣
µi

+
∑

i

µini (4.90)

= T 5 ∂

∂T

(
P

T 4

)∣∣∣∣
µi

+ 3P +
∑

i

µini. (4.91)

Now we can again replace the partial with the total derivative. However this time some of the
extra terms cancel conveniently with the sum over µini, yielding:

ǫ̂ =
ǫ

T 4
(4.92)

= T
dP̂

dT
+ 3P̂ − 0.4µ̂BT

dµ̂Q
dT

. (4.93)

Finally the trace anomaly can be calculated from the pressure and the energy density as

Î = ǫ̂− 3P̂ (4.94)

= T
dP̂

dT
− 0.4µ̂BT

dµ̂Q
dT

. (4.95)

The computation of
dµ̂Q
dT can also serve another purpose beside the computation of the extra

terms for the equation of states. Some phenomenological considerations that can be done with
dµ̂Q
dT are presented in [8].

4.4.3 Temperature fit

As in the analysis for the transition temperature (see section 4.3) the first step is to interpolate

the data for dP̂
dµ̂B

, as well as the data for n̂B and µ̂Q in the temperature direction. Even
though the data shows a sigmoid like form similar as the chiral condensate or the strangeness
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Figure 4.18: An example for a fit in the T direction.

susceptibility in section 4.3.1 the tangent hyperbolicus does not provide a good fit. We use
the same four fitting functions in all cases in the analysis for the equation of state:

A1(T ) = a+ b(T − f) +
c

T − f
+ d arctan(e(T − f)) (4.96)

A2(T ) = a+ b(T − f) +
c

T − f
+

d

(1 + |e(T − f)|g)1/g , (4.97)

A3(T ) = a+ b(T − f) + c(T − f)2 + d arctan(e(T − f)) (4.98)

A4(T ) = a+ b(T − f) + c(T − f)2 +
d

(1 + |e(T − f)|g)1/g . (4.99)

Where a, b, c, d, e, f and g are the fitting parameters. We do independent fits for every µB and
every lattice size. An example for a single fit can be seen in figure 4.18. This interpolating fits
allow us to align the different temperatures from the different lattice spacings. Second it allows
for taking the derivatives with respect to T , that are needed as described in section 4.4.2.
Again this fits are only meant as an interpolation and should not be extrapolated beyond the
scope of the data as the limits for T −→ 0 or T −→ ∞ clearly give not the correct values.

From here on we have to decide in which direction we do the analytical continuation in the
µ2B-T -plane. We decide to analyse each observable at a constant temperature as visualized in
figure 3.5. Therefore we continue our analysis for every temperature (and every observable)
separately from here on. Since the interpolating fit in the T direction also introduces a
correlation between different temperatures, this allows us to avoid correlated fits in the further
analysis.
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4.4.4 µB- and continuum fit

The next step in the analysis is to fit the data in the µ̂2B direction. For this we use three
different fit functions:

B1(µ̂) = a+ bµ̂2 + cµ̂4, (4.100)

B2(µ̂) =
a+ bµ̂2

1 + cµ̂2
, (4.101)

B3(µ̂) = a+ bµ̂2 + c
sin(µ̂)

µ̂
. (4.102)

An example of such a fit is shown in figure 4.19a. If we expand this functions we can get the
Taylor coefficients as

c2 =





a
2 for B1

a
2 for B2

a
2 for B3

(4.103)

c4 =





b
4 for B1

b−ac
4 for B2

b
4 for B3

(4.104)

c6 =





c
6 for B1
c(ca−b)

6 for B2

c
6·120 for B3

(4.105)

c8 =





0 for B1

c2b−ac3

8 for B2

c
8·5040 for B3

. (4.106)

They are normalized in a way that the pressure can be written as

P (µB, T )

T 4
= c0(T ) + c2(T )

(µB
T

)2
+ c4(T )

(µB
T

)4
+ c6(T )

(µB
T

)6
+ c8(T )

(µB
T

)8
+O(µ10B ).

(4.107)
The first two functions are chosen in a way that they allow a wide range for the c8 coefficient. In
B1

c8
c6

= 0 while in B2
c4
c6

≈ c6
c8
. The function B3 is chosen to resemble the expected behaviour

expected for low and for high temperatures. For low temperatures the HRG (see section
3.3.1) predicts that the part of the free energy density that depends on µB is proportional to
cosh

(µB
T

)
. If now µB is chosen to be purely imaginary this yields sin(µ̂) for the imaginary

energy density. This can be realized by a and b becoming zero or almost zero. For high
temperatures the pressure is expected to have the form [199]

P

T 4
=

8π2

45
+

7π2

60
Nf +

1

2

∑

f

(
µ2f
T 2

+
µ4f

2π2T 4

)
, (4.108)

which can be realized with non-zero a and b and vanishing c.
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Figure 4.19: An example for the fit in µ̂2

B and the continuum extrapolation.
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Figure 4.20: The influence of the different fit functions on the systematical error. [6]

The different fit functions allow us to estimate how far we can actually extrapolate. As it can
be seen in figure 4.20 all three functions describe the data well in the range of µ2B ≤ 0. Still
they can differ significantly in the µ2B ≥ 0 range, depending on the temperature. The plot in
figure 4.20 is for the Nt = 12 lattice as this allows a comparison to the raw data.

The next step is the continuum extrapolation. Again as in the analysis for the temperature
(see section 4.3.3 ) we use a linear fit though the data from Nt = 10, 12 and 16. An example
plot for the c2 coefficient of the pressure is shown in figure 4.19b.

Again as described in section 4.3.4 for the crossover temperature we use a combined fit for
the µB direction and the continuum extrapolation. The fit functions we use for this have the
form

B1(µ̂) = a1 +
a2
N2
t

+

(
b1 +

b2
N2
t

)
µ̂2 +

(
c1 +

c2
N2
t

)
µ̂4, (4.109)

B2(µ̂) =
a1 +

a2
N2

t
+
(
b1 +

b2
N2

t

)
µ̂2

1 +
(
c1 +

c2
N2

t

)
µ̂2

, (4.110)

B3(µ̂) = a1 +
a2
N2
t

+

(
b1 +

b2
N2
t

)
µ̂2 +

(
c1 +

c2
N2
t

)
sin(µ̂)

µ̂
. (4.111)

Again the combined fit reduces the number of fit parameters significantly. A fit in the
combined fitting approach has six fit parameters, while in the separate approach there are
two fit parameters for every µB out of seven on three lattice sizes plus two fit parameter for
the continuum extrapolation adding up to 2 · 7 · 3 + 2 = 44 fit parameters.
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The error is determined in the same way as described in section 4.3.5. The statistical error is
determined via the bootstrap method with 1000 bootstrap samples. For the systematic error
we use a histogram of all different analysises and take the central 68%. In this case we have
the following options to chose from for different analysises:

• two methods of scale setting

• four fits in the T direction

• three fits in the µB direction

• combined and separate µB-fit and continuum extrapolation

• two different points Tconn from which we use the data extrapolated from µB = 0 at high
temperatures.

This adds up to a total of 2 · 4 · 3 · 2 · 2 = 96 analysises.

4.4.5 Taylor coefficients

From the equations (4.103) to (4.105) we can determine the Taylor coefficients of the pressure as
given in equation (4.107). The continuum extrapolated results, together with the expectations
from the HRG model (see section 3.3.1) are shown in figure 4.21. The values for c0 are taken
from [149]. As expected the results of the HRG model agree with our calculation up to a
temperature of approximately 150 MeV which is already close to the transition. For c6 a sign
change is expected from chiral models [200]. Even though we can not show that c6 is lager
then zero at any point as it is always compatible to zero below T = 160 MeV, it clearly drops
below zero in the range between 160 MeV and 190 MeV.

For temperatures larger then 220 MeV we know that c6 has to be exactly zero, as our
extrapolations at this temperatures do not include a sixth order coefficient (see section 4.4.2).
The error that our results have in this range gives us a feeling of how much of the uncertainties
is introduced as a systematic by our analysis, even if the statistical precision of the data would
be perfect.

From the Taylor coefficient we can calculate n̂B to different orders. Using only the c2 coefficient
is a calculation up to O(µB) as the pressure has to be integrated over µB compared to n̂B . For
a temperature of 145 MeV only the c2 and c4 coefficient contribute to the result as shown in
figure 4.22a. Extending the extrapolation to order O(µ5B) we only increase the error compared
to a third order calculation. This is not surprising as figure 4.21 shows that at T = 145 MeV
c6 is compatible with zero. However at a temperature where c6 differs significantly from zero,
for example 170 MeV, the additional order has a definite influence as can be seen in figure
4.22b.

Finally we can compare our results to other calculations. In [201] the coefficients c2 to c6 were
presented on Nt = 6 and Nt = 8 lattices. They can be seen in figure 4.23. They were calculated
with the HISQ action and staggered fermions in the same set-up as our calculation: at the
strangeness neutral point and with 0.4〈nB〉 = 〈nQ〉. However they were not calculated from
simulations at imaginary chemical potential but with the Taylor expansion method. Therefore
even if they are not continuum extrapolated yet, they are a good choice for a comparison.
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Figure 4.21: The Taylor coefficients of the pressure. The values for c0 are taken from [149]. The
red line shows the expectations of the HRG model.
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Figure 4.22: The contribution of the different order coefficients to the baryon number. [6]
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Figure 4.23: The Taylor coefficients of the pressure on lattices with Nt = 6 and Nt = 10 from
[201].

88 Jana Günther - Dissertation



Lattice investigations of the QCD phase diagram

4.4 The equation of state

Figure 4.24: Result for χ2 = 2c2. [202] The red points are calculated at the strangeness neutral
point, while the green points are calculated for µu = µd = µs.

c2 starts a little below 0.02, grows in the transition region and reaches a value shortly below
0.1 at 280 MeV. This fits well to our results. As the values for Nt = 6 and Nt = 8 are very
close together in figure 4.23a, we can assume that the result is already close to the continuum.
Also the values for c4 seem to be in good agreement. In both cases there is a peak slightly
below 160 MeV reaching a value of approximately 0.005. Then for high temperatures c4 drops
down to a value of about 0.0005 as shown in figure 4.23b. For c6 (see figure 4.23c) however
the errors are too large and the results for Nt = 6 and Nt = 8 are too far apart to make a
good comparison.

An other possibility for comparison is [202]. Here continuum extrapolated results for χ2 = 2c2
are presented, which are calculated by the Taylor expansion method. The results at the
strangeness neutral point are shown by the red points in figure 4.24. Here the temperature
range that was analysed is larger. It goes up to 400 MeV, where χ2 reaches a value of 0.2.
This fits our results where at a temperature of 280 MeV c2 is a little bit below 0.1.

4.4.6 Isentropic trajectories

In heavy ion collisions if one neglects dissipative effects, the quark gluon plasma created in the
collision expands with a fixed baryon number and without generation of entropy. Therefore
the ratio S

NB
is constant. The medium cools down along isentropic trajectories (where S

NB
is

constant) in the T -µB-plane. In this section we are going to calculate these trajectories and
match them to the freeze-out values for the temperature and the baryon chemical potential
that are given in [203].

The baryon number density nB we can calculate directly from the expansion of our fit functions
given in equation (4.100) to (4.102). For the entropy however we have to integrate equation
(4.100) to (4.102) over µB . To determine the integration constant we use the values from [149]
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and determine the offset in a way that at µB = 0 the entropy matches the result from [149].
Afterwards we have to solve the equation

S

NB
=

s

nB
= c (4.112)

for various values of the constant c until we match the points given in [203]. The result can
be seen in figure 4.25. The black points are the values calculated in [203] while the solid
lines are predictions of the HRG model that we use to continue our trajectories at lower
temperatures. The energy given at each trajectory is the RHIC beam energy that corresponds
to the trajectory. As it can be seen from the errors the trajectory with S

NB
= 30 corresponding

to a beam energy of 14.5 GeV is at the end of how far we can extrapolate in µB.

Finally we want to know how large the influence, of the higher order coefficients we calculated,
is. Therefore we extrapolate only with the polynomial fit function B1(µB) (see equation
(4.100)) and use a different number of coefficients in the extrapolation. The result is shown in
figure 4.26. For high beam energies and small µB the first coefficient would have been enough
and higher order coefficients do not change the result at all. However for lower beam energies
and larger chemical potential c4 becomes relevant. For the lowest beam energy of 14.5 GeV
and S

NB
= 30 we were unable to solve the equation with the c2 coefficient only. This is a

quadratic equation that did not have a real solution at all temperatures. We also can see a
difference in the result when including the c6 coefficient at some temperatures. Even though at
the moment the error is to large to distinguish the results for the whole temperature range.

4.4.7 The equation of state

Finally we can compute the equation of state along the trajectories introduced in section
4.4.6. Since the error on the trajectory with S

NB
= 30 is quite large, we focus on the trajectory

next to it with S
NB

= 51 that corresponds to a beam energy of 19.6 GeV and the trajectory

with the largest ratio of S
NB

= 420. In figure 4.27 we show the pressure and the trace anomaly
calculated along these trajectories. Again to get this curve we have to integrate equation
(4.100) to (4.102) over µB and in the same way we did for the entropy (section 4.4.6), we use
the results from [149] to set the value at µB = 0. It can be seen from the figure 4.27 that both
the pressure and the trace anomaly are higher for larger µB, which corresponds to smaller
S
NB

. However while the difference for the pressure is most noticeably for large temperatures,
for the trace anomaly it mostly influences the middle temperature region.

Again for comparison to other results we can look at [202]. Here the equation of state was
also computed along trajectories with constant S

NB
. Also in their plots we can make the

observation that the increase in µB matters for the pressure mostly at high temperatures, it
is most relevant for the trace anomaly in the region of its peak.
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As described in section 3.5 axions are interesting candidates for dark matter particles. To
determine the mass of axions the topological susceptibility is one important ingredient. In
this chapter we present in section 5.1 a calculation for the topological susceptibility that has
been published in [7]. In section 5.2 we then discuss some properties of a possible experiment
to search for axions in the mass range predicted in [7].

5.1 The topological susceptibility

As described in section 3.5 from the equation of state and the topological susceptibility the
axion mass can be estimated. However the topological susceptibility is very hard to calculate
on the lattice as discussed in the following section. Here we will introduce some new techniques
that made it possible to calculate the topological susceptibility in [7].

On the lattice the topological charge can be defined in different ways. One is the so called
fermionic definition. The topological charge q is defined as the difference of the left handed
zero modes n− and the right handed zero modes n+ [27]. This definition is related via the
index theorem [204, 205] to the definition [206]

q(f) =
a

2
tr (γ5D) = n− − n+. (5.1)

Another definition for the topological charge is the so called gluonic definition

q(g) =
1

16π2

∑

x

Fµν(x)F̃
µν(x), (5.2)

where F is a lattice definition of the field strength tensor, for example

Fµν(x) =
1

8

(
Gµν(x)−G†

µν(x)
)

(5.3)

where G is the clover leave term: The sum over four neighbouring plaquettes in a plane [42].
However as described in [42] q(g), as defined by the gluonic definition, is not necessarily an
integer as its counterpart from the fermionic definition q(f). q(g) and q(f) have to be equivalent
in the continuum limit.

The gradient flow is defined via the differential equation

d

dτ
Aµ(τ) = DνFνµ(τ) (5.4)
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where Aµ(0) is the continuum gauge field Aµ andDν is the covariant derivative. The appropriate
lattice definition of this equation is the so called Wilson flow [207]. It has many interesting
properties. One of these is that it brings a gauge configuration closer to a classical solution
of the equation of motions, which is a local minimum of the action. Thus this also brings
the gluonic definition of the topological charge closer to an integer value. For appropriate
flow times the remaining non integer part vanishes in the continuum limit. For an integer
definition on the lattice configurations one can determine the renormalisation factor Z from
minimizing the expression ∑

i

(Zqi − round (Zqi))
2 , (5.5)

where i runs over all configurations in the ensemble and round sets Zqi to the closest integer
value [42]. The renormalized charge can then be defined as

Q = round (Zq) . (5.6)

The topological susceptibility is then given as

χ =
〈Q2〉
V

. (5.7)

One problem one encounters while computing the topological susceptibility on the lattice, is
that for the topological susceptibility staggered quarks have very large cutoff effects. This can
be reduced by a technique called eigenvalue reweighting that is introduced in section 5.1.1.
Another difficulty is that it takes very long to sample different topological sectors. This can
be circumvented by the fixed sector integral method that is introduced in section 5.1.2

5.1.1 Eigenvalue reweighting technique

In figure 5.1 it can be seen, that the continuum behaviour of the topological susceptibility
with staggered fermions is problematic. For the brute force approach, that is shown by the
green points, the continuum slope is very strong. To obtain the correct continuum limit very
fine lattice are needed. For figure 5.1 lattices up to Nt = 20 were used.

The strong cutoff effects of the staggered fermions are related to the fact, that on the lattice
the would be zero eigenmodes are not exactly zero in the staggered operator. In figure 5.2 it
can be seen how the zero modes of the overlap operator split up and contribute two modes
slightly above and two modes lightly below zero for the staggered operator.

A zero mode in the quark determinant contributes a factor 2mf to the weight of configuration
in the topological susceptibility for every dynamical flavour. Since for quark masses close to
the physical ones mf is very small, configurations with zero modes, corresponding to higher
topological sectors, are strongly suppressed. However when the staggered operator is used,
instead of a factor 2mf one gets a factor 2mf + iλ0 where λ0 is the would-be eigenmode of
the staggered operator. Therefore the suppression is much milder, increasing the influence
of higher topological sectors. This leads to large cutoff effects and a bad convergence in the
continuum limit.
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Figure 5.1: The behaviour of the topological susceptibility in the continuum extrapolation for
three different methods described in [7]. The plot shows Nf = 2 + 1 + 1 flavour simulations with
staggered fermions at a temperature of T = 150 MeV.
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The idea of the Eigenvalue reweighting technique is to bring the weight closer to the continuum
weight for each configuration. For a staggered operator that is used with rooting the weight
for a configuration U is given as:

w(U) =
∏

f

2Nmax∏

n=1

∏

σ=±

(
2mf

σiλn(U) + 2mf

)nf
4

. (5.8)

Here f runs over all dynamical flavours in the simulation. The
nf

4 exponent is a result of the
rooting procedure. Nmax is number of zero modes. The factor two, together with the product
over σ takes into account that a zero mode splits up to four would-be zero modes in the
staggered operator. Of this four eigenmodes two lay above and two below zero [208].

For the definition of Nmax there are two possible choices. The first one is to take the absolute
value of the gluonic definition of the topological charge. The second one is to take the sum of
the number of instantons nI and the number of anti-instantons nA. To determine nI + nA we
look at eigenvalues λi of the overlap operator where |λi|2 < 10−4. From figure 5.3 we can see,
that if there is no instanton as in stream one, even the smallest eigenvalue will be larger. An
instanton-anti-instanton pair will lead to 10−13 < |λi|2 < 10−4 as in stream 3. If |λi|2 < 10−13

we assume the presences of a single instanton or anti-instanton. From this we can calculate
nI + nA = Nmax. We then take the 2Nmax eigenvalues with the smallest magnitude.

In figure 5.4 we show the histograms for the topological charge before the renormalisation for
the different reweighting techniques as well as without reweighting. It can be seen that the
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weight of the configurations with higher topological charge decreases in figure 5.4b and figure
5.4c compared to figure 5.4a where no reweighting was used.

We now calculate the topological susceptibility on 323 × 8, 403 × 10, 483 × 12 and 643 × 16
lattices and determine the continuum limit for T = 300 MeV. The result is shown in figure
5.5. The two possible reweighting techniques converge to the same continuum value within
the error, while the result without any reweighting gives a different value.

As the rooting procedure for the staggered operator this reweighting technique is a non local
modification of the path integral. This topic is discussed in [7] where several numerical evidence
for its correctness are presented. [7] also discusses another choice for “smallest” eigenvalue.
Instead of choosing the eigenvalues with smallest magnitude one can also chose the eigenvalues
with largest magnitude of chirality and the appropriate sign. This procedure gives a consistent
result in the continuum limit as well.

5.1.2 Fixed sector integral method

The dilute instanton gas approximation (DIGA) [210, 211] can be used to estimate the
topological susceptibility at high temperatures. It predicts a power law behaviour. In [209] the
exponent of this power law has been calculated in quenched lattice simulations to be about
−7. As it can be seen in figure 5.6, this means that the topological susceptibility decreases
rapidly with increasing temperature and agrees well with the results from the DIGA. Thus for
hight temperatures the weight of the Q = 0 sectors increases. This makes it harder to measure
χ. Also with smaller lattice spacing the simulation stays longer in one topological sector as
shown in [212]. Both points lead to the need for very long streams at hight temperatures and
small lattice spacing. There are some methods that increase the tunnelling between different
topological sectors [213, 214, 215]. However here we are using a different method that was
developed simultaneously in [216] (for quenched QCD) and [7] (also for fermions). The idea of
this method is to do simulations in fixed topological sectors and than calculate the weight for
the different topological sectors. If ZQ is the partition sum in the topological sector Q one
can define

bQ =
d ln

(
ZQ

Z0

)

d lnT
=

dβ

d ln a
(〈SG〉Q − 〈SG〉0) (5.9)

Where 〈SG〉Q is the expectation value of the gauge action in the topological sector Q. bQ is a
renormalized quantity as the ultraviolet divergences are cancelled by the subtraction of the
expectation values. The computation time necessary to determine bQ does not depend on the
temperature.

To obtain the ratio
ZQ

Z0
one can integrate bQ yielding

ZQ
Z0

(T ) = exp

(∫ T

T0

d lnT ′bQ(T
′)

)
ZQ
Z0

(T0). (5.10)

The starting temperature T0 can then be chosen low enough that the simulation is still
feasible.
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If the temperature is high enough the only relevant sectors are Q = 1 and Q = 0. The
topological susceptibility is then given as

χ =
2Z1

Z0N2
sNta4

(5.11)

and the rate of change of the susceptibility can be calculated as

b =
dχ

d lnT
= b1 − 4 (5.12)

where the −4 comes from the change of the physical volume with the temperature.

Several numerical test, as well as another trick to further decreases the computation time
are discussed in [7]. However the next step is to generalize this method for fermions. For a
system where the temperature is increased along a line of constant physics this is done with
defining

bQ =
d ln

(
ZQ

Z0

)

d lnT
=

dβ

d ln a
(〈SG〉Q − 〈SG〉0) +

∑

f

d lnmf

d ln a
mf

(
〈ψ̄ψf 〉Q − 〈ψ̄ψf 〉0

)
. (5.13)

Here the problem arises that 〈ψ̄ψf 〉 has large cutoff effects for staggered fermions. This is
related to the zero modes similar to the case of the topological susceptibility and can be cured
by the same eigenvalue reweighting technique that is described in section 5.1.1.

The result achieved by this method for b from Nf = 3 + 1 staggered simulations can be seen
in figure 5.7. The red band shows the continuum limit from Nt = 4, 6, 8 and 10 lattices. It
includes both the systematic and the statistic error. The statistic error is obtained via the
Jack-Knife method with twenty Jack-Knife-samples. The analysis was done on lattices with
the lattice sizes 83 × 4, 123 × 4, 163 × 4, 243 × 4, 123 × 6, 163 × 8 and 203 × 10. The continuum
extrapolation and the temperature fit uses a fit of the form

b(τ) = bT0 + bT1τ + bT2τ
2 + bT3τ

3 +
bA
N2
t

+ bL

(
Nt

Ns

)3

(5.14)

where

τ =
1000

T
. (5.15)

For the systematic error either bT3, bT3 and bT2 or bT3 and bT2 and bT1 or no parameter at
all was set to zero. This four fits were weighted among each other with the AIC information
criteria. This gives a weight w of

w = e−
1

2(χ
2+2n) (5.16)

to each fit, where χ2 is the sum of the squared difference between data and fit and n the
number of parameters in the fit [217].

Then fits were performed either on lattices with Nt = 4, 6, 8, 10 or on lattices with Nt = 6, 8, 10
or only on lattices with Nt = 8, 10. As the AIC information criteria can only be used as long
as one has always the same input data, these three groups of fits were combined with equal
weights.
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This gives us a total of twelve fits. The systematic error is calculated as their standard
deviation. The result is the red band in 5.7.

5.1.3 Results

In this section we present the results for the topological susceptibility. In figure 5.8 we show
the result for the continuum extrapolated topological susceptibility from Nf = 3+1 staggered
simulations. It shows results from the direct approach up to 500 MeV, and results from the
fixed sector integral method from 400 MeV. The two methods overlap nicely. It also shows
the result from the dilute instanton gas approximation.

To calculate the topological susceptibility for physical quark masses, also simulations with
nf = 2 + 1 + 1 are needed. Figure 5.9 shows an overview over all simulations done in [7] to
obtain the topological susceptibility. The final result is then shown in figure 5.10. The inset
shows the region around the QCD deconfinement transition.

As described in section 3.5 the topological susceptibility can be used to estimate the mass of an
axion, assuming axions are part of the dark matter. To do this estimate one needs the equation
of state, which was also calculated in [7]. Finally some assumptions have to made on which
amount of the dark matter was created in the misalignment mechanism described in section
3.5. If one assumes that between 1% and 50% of dark matter come from the misalignment
mechanism this leads to an axion mass between 50 µeV and 1500 µeV.
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the result from the dilute instanton gas approximation. [7]
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Figure 5.11: Schematic of an axion hitting a dielectric surface [218]. The incoming axion wave
X0 leads, in addition to a reflected and a transmitted axion wave XR and XT , to a reflected
and a transmitted photon wave AR and AT

nh nl nh nl

Figure 5.12: Schematic of a dielectric mirror that is constructed to enhance the reflected photon
wave [218].

5.2 Dielectric mirror with axions

After narrowing down the mass range for axions in a possible scenario (see section 5.1), it is
interesting to investigate how an experiment for axion detection might look like.

In [218] it was suggested to use a dielectric mirror. A direct mirror consist of several layers
of dielectric materials that a stacked one after the other. For example one could have two
materials one with a high refraction index nh and one with low refraction index nl that are
alternating. This situation is shown in figure 5.12. On each surface there will be a transmitted
and a reflected wave. The thickness of the dielectric layers can be chosen in a way that the
reflected waves interfere positively, thus enhancing the reflected wave. If there is a small
interaction between axions and photons, an axion hitting a dielectric surface would lead to the
reflection of a photon. This is schematically shown in figure 5.11. The incoming axion wave
X0 leads, in addition to a reflected and a transmitted axion wave XR and XT , to a reflected
and a transmitted photon wave AR and AT . The dielectric mirror can be used to enhance the
reflected photon wave.

Since the interaction of the axion with matter is small they hardly loose any energy when
passing through the dielectric mirror. Therefore it is possible to stack many dielectric layers.
If they are strategically placed with a distance of half the wavelength of the photon in the
respective medium, the generated photons will interfere positively, thus enhancing the photon
wave enough to allow a detection. This scheme is shown in figure 5.12.
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For the description of the axions as a plane wave in the framework of a classical field theory
the interaction must happen sufficiently often. Therefore, to increase the interaction rate, a
strong magnetic field is needed to increase the photon density until this assumption is valid
[219].

To calculate the enhancement that can be achieved for this construction one can generalize
the matrix formalism that is used for this kind of calculations in electrodynamics to an
action which includes axions. In this section we will first shortly show the formalism for
electrodynamics and than show how it can be generalized to include axions.

5.2.1 Light only

In this section we will shortly review the matrix formalism for the dielectric mirror in classical
electrodynamics. Here the problem of the N layers stacked in a row is rewritten in a way that
the influence of each layer can be calculated by a matrix multiplication. The presentation
given here follows [220].

Electromagnetic waves are denoted by plane waves of the form

~E = ~Eae
i(~k·~x−ωt). (5.17)

We will call the amplitude of the initial wave E0. Er is the amplitude of the reflected wave
and Et the amplitude of the transmitted wave. The reflection and transmission coefficints r
and t are then r = Er

E0
and t = Et

E0
. They can be calculated from the entries of the matrix

M̃ =

(
M̃00 M̃01

M̃10 M̃11

)
by the equation

(
1
r

)
=

(
M̃00 M̃01

M̃10 M̃11

)(
t
0

)

as

t =
1

M̃00

and r =
M̃10

M̃00

.

The matrix M̃ is given as:

M̃ =
1

t0,1

(
1 r0,1
r0,1 1

)
M1M2 . . .MN−1

where

Mn =

(
e−iδn 0
0 eiδn

)(
1 rn,n+1

rn,n+1 1

)
1

tn,n+1
.

Since the photon is massless, electrodynamic waves are transversal waves, meaning that ~E ⊥ ~k.
This does not define the direction of ~E uniquely. Here we will look at two common polarisation.
The first one is the s-polarisation where ~E is perpendicular to the plane denoted by the
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incoming and the transmitted beam. The second one is p-polarisation where ~E is parallel to
the same plane. For s-polarisation r and t are given as

rn,n+1 =
nn cosϑn − nn+1 cosϑn+1

nn cosϑn + nn+1 cosϑn+1
(5.18)

tn,n+1 =
2nn cosϑn

nn cosϑn + nn+1 cosϑn+1
(5.19)

and for p-polarisation

rn,n+1 =
nn+1 cosϑn − nn cosϑn+1

nn+1 cosϑn + nn cosϑn+1
(5.20)

tn,n+1 =
2nn cosϑn

nn+1 cosϑn + nn cosϑn+1
. (5.21)

Here ϑ is the angle between the incoming wave and the surface normal of the dielectric layer.
The angle ϑn+1 can be related to the angle ϑn by the Snell’s law:

nn sinϑn = nn+1 sinϑn+1

We can therefore calculate cosϑn+1 as:

cosϑn+1 =

√
1− n2n

n2n+1

(1− cos2 ϑn)

δn is the product of the thickness of the layer with wave vector of the forward-travelling wave
in that layer

δn = (thinkness of layern)(kz for the forward− travelling wave in layern). (5.22)

This yields

kz =
2πnn cosϑn

λvac
(5.23)

δn =
2πnn cosϑn

λvac
dn (5.24)

With all these information it is straight forward to calculate the reflected intensity R = |r|2.
As an example we show R for the setup in table 5.1 in figure 5.13.

Table 5.1: The set-up for our test calculation with λ = 550 nm

layer d n

0 - 1

1 λ
4n 1.38

2 λ
2n 2.2

3 λ
4n 1.96

4 - 1.5
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Figure 5.13: Result for the reflected intensity R = |r|2 from the set-up in table 5.1.

5.2.2 Adding Axions

The formalism that will be used to construct a dielectric mirror for the detection of axions
was introduced in [221]. It introduces a Lagrangian for an additional massive vector particle.
This vector particles are another class of candidates for dark matter and are called hidden
photons [222, 223, 224]. As we will discuss in the following the formalism that is used for the
hidden photons can be easily adapted to describe axion as well. The Lagrangian that includes
this hidden photons reads [221]

L = −1

4
FµνF

µν − 1

4
XµνX

µν − 1

2
χXµνFµν +

m2

2
XµX

µ + JµA
µ. (5.25)

Here Aµ, Fµν and Jµ are the photon field, the field strength tensor and the charged current
from ordinary electrodynamics. Xµ is the additional vector field of the hidden photon with
the mass m and the respective field strength tensor

Xµ = ∂µXν − ∂νXµ. (5.26)

χ is a dimensionless coupling that gives the strength of the so called kinetic mixing. The
possible parameter space for χ and m is shown in figure 5.14. After a transformation Xµ −→
Xµ + χAµ +O(χ2) the Lagrangian can be rewritten in the flavour eigenstates and takes the
from [221]

L = −1

4
FµνF

µν − 1

4
XµνX

µν +
m2

2
(Xµ − χAµ) (X

µ − χAµ) + JµA
µ. (5.27)
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Figure 5.14: Limits on the coupling χ and the mass m for hidden photons as presented in
[218, 225]. The plot includes data from [221, 226, 227].

Due to the mass term m2

2 XµX
µ this Lagrangian is not gauge invariant. This can be mitigated

by the Stueckelberg mechanism [228, 229] that keeps the Lagrangian invariant under some
modified gauge transformation [221].

On the other hand axions are pseudo-scalar particles that couple to two photons, and can be
described by the Lagrangian [225]

L = −1

4
FµνF

µν +
1

2
∂µx∂

µ − 1

2
m2
xx

2 − gxγγ
4
xFµνF̃

µν , (5.28)

where gxγγ is the coupling strength and x is the scalar axion field with a mass mx. The allowed
parameter space for gxγγ and mx is shown in figure 5.15. It can be shown, that in the presence
of an magnetic background field B this Lagrangian gives the same equation of motion as the
Lagrangian in equation (5.27) with the following substitutions [218, 225]

Aµ −→ A‖ (5.29)

Xµ −→ x (5.30)

χ −→ gxγγBω

m2
(5.31)

in equations (5.44) to (5.47). This can be understood in a way, that the role of Xµ is taken
over by the vector field xBµ. The coupling between the photons and the axion is maximal if
the magnetic field is perpendicular to the incoming axion. If this is not the case there will be
an additional factor sin θB in the coupling where θB is the angle between the magnetic field
and the incoming axion. In the following we will keep the notation from the Lagrangian of the
hidden photon, keeping in mind, that it is easy to change to axion.
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The next step is to add axions to the formalism described for electrodynamic waves in section
5.2.1. This will enlarge the matrices to the size of 4× 4. We start from the Lagrangian for the
interaction of photons and axions/HP in the form [218]

L = −1

4
FµνF

µν − 1

4
XµνX

µν +
m2

2
(XµX

µ − 2χAµX
µ + χ2AµA

µ),

neglecting for now the charged current Jµ. From this we can derive the equations of motion:

∂ρ
∂L

∂(∂ρAσ)
=

∂L
∂Aσ

(5.32)

−∂ρF ρσ = m2(−χXσ + χ2Aσ) (5.33)

and

∂ρ
∂L

∂(∂ρXσ)
=

∂L
∂Xσ

(5.34)

−∂ρXρσ = m2(Xσ − χAσ). (5.35)

As in [218] we use the gauge fixing A0 ≈ X0 ≈ 0 [230]. Now we split up the two equations in
the temporal and the spacial part. For σ = 0 we get

∂0∂iA
i = 0 (5.36)

∂0∂iX
i = 0 (5.37)
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and for σ = j this yields

∂j∂iA
i − ∂ρ∂

ρAj = m2(χ2Aj − χXj) (5.38)

∂j∂iX
i − ∂ρ∂

ρXj = m2(Xj − χAj). (5.39)

Now we use the ansatzes given in [230]. For photon like waves:

(
A
X

)
= Â

(
1
χeff

)
e−i(ωt−

~k~x)

And for axion/HP like waves:

(
A
X

)
= X̂

(
−χeff

1

)
e−i(ωt−~p~x)

Using the ansatz for A of the photon like wave we get for σ = 0 :

∂0∂iA
i = ∂0i~kÂe

−i(ωt−~k~x) (5.40)

= ω~kÂe−i(ωt−
~k~x) (5.41)

= 0 (5.42)

Since w 6= 0 ⇒ ~kÂ = 0. This means that A is a transversal wave. For σ = j on the other hand
we have the equation

−(−ω2 + ~k2)Aj = m2(χ2Aj − χXj). (5.43)

Analogously we get the for X :

−(−ω2 + ~k2)Xj = m2(Xj − χAj)

X has to be a transversal wave as well. Repeating the calculation for the axion/HP like waves,
we obtain four equations to determine ~k, ~p and χeff :

(ω2 − k2)−M2 −m2(χ2 − χχeff ) = 0 (5.44)

(ω2 − k2)χeff −m2(−χ+ χeff ) = 0 (5.45)

−(ω2 − p2)χeff +M2χeff +m2(χ2χeff + χ) = 0 (5.46)

ω2 − p2 −m2(χχeff + 1) = 0 (5.47)

Here M = ω2(1− n2) has been introduced to describe the interaction of the photons with
matter. This yields:

χeff = χ
m2

m2 −M2
(5.48)

p2 = ω2 −m2(χχeff + 1) (5.49)

k2 = ω2 −M2 −m2(χ2 − χχeff ) (5.50)
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5.2 Dielectric mirror with axions

χeff can be derived consistently both from equation (5.44) and (5.45) and from equation (5.46)
and (5.47), up to first order in χ.

We choose our coordinate system in a way that the dielectric layer is in the y = 0 plane and
we want the waves and its first derivative with respect to y to be continous at this plane.
We assume for now that the axion enters the dielectric mirror perpendicular to the dielectric
mirror. We get the following set of equations:

X0

(
-χ1

1

)
e−iωt +XR

(
-χ1

1

)
e−iωt (5.51)

+A0

(
1
χ1

)
e−iωt +AR

(
1
χ1

)
e−iωt (5.52)

=XT

(
-χ2

1

)
e−iωt +AT

(
1
χ2

)
e−iωt (5.53)

and

p1X0

(
-χ1

1

)
e−iωt − p1XR

(
-χ1

1

)
e−iωt (5.54)

+k1A0

(
1
χ1

)
e−iωt − k1AR

(
1
χ1

)
e−iωt (5.55)

=p2XT

(
-χ2

1

)
e−iωt + k2AT

(
1
χ2

)
e−iωt (5.56)

Since this equations have to hold for every t from now on, we will use t = 0.

However there is one difficulty. We get p1 ≪ k1 from ω ≈ m. If we set ω = m and look at the
equation for p we get:

p2 = ω2 −m2(χχeff + 1) (5.57)

≈m2 −m2(χχeff + 1) (5.58)

= −m2χχeff < 0 (5.59)

This makes or p very small but imaginary. Since k is real this means that there is no reflection
of the light. However if we choose our m slightly smaller than ω nothing like this will happen.
For the following pictures we set ω = m

1+10−6 .

Now we can solve the system of linear equations for XT

X0
, XR

X0
, AT

X0
and AR

X0
for given A0

X0
. Since

the system is linear, this could be done analytically. However since the equations are quite
lengthy for this work the system was solved numerically. From this solution we can get the
matrices t and r that are chosen in a way that

(
XT

AT

)
= t

(
X0

A0

)
(5.60)

and (
XR

AR

)
= r

(
X0

A0

)
. (5.61)
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Figure 5.16: Illustration of the waves moving forward and backward in each layer.[220]

This implies that r and t are now matrices of size 2× 2.

As a next step we need to determine what happens to a wave that passes from a layer n to the
next layer n+ 1. Each wave consists of a forward moving part vi and a backward moving part
wi. Each wave has an axion part and a photon part. If tn,n+1 is the transition matrix from
layer n to n+ 1 and rn,n+1 the corresponding reflection matrix, we can use the illustration in
figure 5.16 from [220] to determine

vn+1 = tn,n+1vne
iδn + rn+1,nwn+1 (5.62)

wn = eiδn
(
tn+1,nwn+1 + rn,n+1e

iδnvn

)
(5.63)

where

δn =

(
pndn cosϑn 0

0 kndn cosϕn

)
(5.64)

with dn being the thickness of the nth layer. This equations are constructed analogously to the
calculation in [220]. However we have to keep in mind that r and t are now matrices instead
of numbers. We then can solve this equation for vn and wn yielding

(
vn
wn

)
=

(
e−iδn 0
0 eiδn

)(
t−1
n,n+1 −t−1

n,n+1rn+1,n

rn,n+1t
−1
n,n+1 tn+1,n − rn,n+1t

−1
n,n+1rn+1,n

)(
vn+1

wn+1

)
. (5.65)

Now we can read of the matrix Mn as

Mn =

(
e−iδn 0
0 eiδn

)(
t−1
n,n+1 −t−1

n,n+1rn+1,n

rn,n+1t
−1
n,n+1 tn+1,n − rn,n+1t

−1
n,n+1rn+1,n

)
(5.66)

and as before
M̃ =M0M1 . . .MN−1 (5.67)
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5.3 Results

where we set δ0 = 0. This allows us to write




1
0
rX
rA


 = M̃




tX
tA
0
0


 (5.68)

with rX and rA being the reflected amount of the axion and the photon wave and tX and tA
being the transmitted amount. Solving equation (5.68) yields

tX =
1

M̃00 − M̃01M̃10

M̃11

(5.69)

tA = −M̃10

M̃11

tX (5.70)

rX = M̃20tX + M̃21tA (5.71)

rA = M̃30tX + M̃31tA. (5.72)

From this we finally get the reflected intensity of the photon wave as

RA = |rA|2. (5.73)

5.3 Results

In this section we are going to show some results gained from the calculation above, which
might be useful for a possible experiment. In our example we use a frequency for the axion of
ω = 60 µeV and N layers of a medium with n = 3.2, which could be sapphire, alternating
with air, where n = 1.

We start by calculating the amplification that comes from having N layers compared to a
single layer, when the incoming axion is perpendicular to the medium’s surface. In figure
5.17 we can see that the amplification rises with the number of layers. We also see that the
maximum amplification is reached at the mass for which the construction is obtimized for, in
our case m ≈ 60 µeV. There the amplification is given by N2 as already determined in [218].
We can also see that the peak gets narrower for an increasing number of layers. Therefore it is
interesting to look at the integral of the peak. We integrated over a mass range between 56
µeV and 70 µeV and normalized the integral to the integral of the peak for a dielectric mirror
with one layer. As it can be seen in figure 5.18, the integral rises linear with the numbers of
layers. Since in an experiment one will have to scan a large mass range for the axions one has
to find a compromise between a wider peak, that allows to scan for more masses at the same
time and a large number of plates that increases the intensity.
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Figure 5.17: The amplification compared to a single layer at ϑ = 0
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Figure 5.18: The integral over the peak for different number of layers in the dielectric mirror.
The integration range was chosen to be between 56 µeV and 70 µeV
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6 Conclusion and outlook

The understanding of the early universe and the investigation of dark matter are fascinating
topics. In this thesis a small step in both areas was made. The first part of this thesis
investigated the QCD phase diagram at finite baryon chemical potential with lattice QCD.
Since this can not be done directly due to the sign problem, we used simulations at imaginary
baryon chemical potential to extrapolate to real chemical potential. An extrapolation up to
µB ≈ 400 MeV was possible. All simulations were done at the strangeness neutral point to
match conditions in heavy ion collision experiments.

First the cross over temperature was investigated. It was determined from three main ob-
servables: the chiral susceptibility χψ̄ψ, the chiral condensate ψ̄ψ and several definitions of
the strange susceptibility χSS . The crossover temperature was defined as the position of the
maximum for the peak like observable χψ̄ψ and as the point of inflection for the observable
that show a sigmoid like shape ψ̄ψ and χSS . For the curvature of the cross over line we
determined a value of

κ = 0.0149± 0.0021. (6.1)

We also investigated the equation of state. We determined the Taylor coefficients of the
pressure up to O(µ6B) in the continuum limit. We then calculated the pressure and the trace
anomaly along the isentropic trajectories. The trajectories were matched to the RHIC beam
energies.

In principal it would be straight forward to enhance this calculations by increasing the statics
or adding simulations at different values for the imaginary chemical potential. One might then
be able to extrapolate further in the realm of positive chemical potential. However before
this is done, the position of the critical end point should be determined to check whether a
further extrapolation is actually useful. There are other calculations that might be done on
the same data set, though. For example it might be interesting to calculate some fluctuations
to determine not only the cross over but also a freeze-out curve.

In the second part of this thesis some calculations were presented that investigate the axion as
a possible dark matter candidate. As a first step the topological susceptibility was computed.
Since this is a quantity that is difficult to measure on the lattice two methods to enhance
the computations, the eigenvalue reweighting technique and the fixed sector integral method,
were described. The topological susceptibility together with the equation of state allow for an
estimate of the axion mass, if one assumes that a given amount of the dark matter consists of
axions that were produced in the misalignment mechanism. This leads to an estimate for the
axion mass between 50 µeV and 1500 µeV. This is still a large range that might prove difficult
to cover in an experiment. Therefore a further enhancement of this computations would be
helpful.
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6 Conclusion and outlook

As a second step an aspects of an experimental setup to detect potential axions was introduced,
based on the idea of a dielectric mirror that reflects photons while an axion passes through
it. In this thesis some first computations for the properties of such a dielectric mirror were
performed. The enhancement depending on the number of plates has been investigated. The
next steps would be to allow axions that enter from different angles and to compute the
influence of defects in the material or the positioning of the plates.
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