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Abstract

The lattice Boltzmann method (LBM) was originally developed as a numerical scheme in
the field of computational fluid dynamics. In this dissertation the LBM is considered and
the topic of this work lies on the construction of artificial boundary conditions (ABCs) –
well suited boundary conditions for artificial boundaries. Artificial boundaries are intro-
duced when a spatial domain is confined to a smaller computational domain. A boundary
condition (BC) not tailored for artificial boundaries, like a fixed pressure or velocity con-
dition, behaves in an unphysical manner and generates spurious reflections. Ideally, a BC
does not interact with the fluid. Thus, any fluctuation from the interior should leave the
computational domain without generating a reflection when impinging on the artificial
boundary.
At the beginning of this dissertation a theoretical embedding of the LBM is given. As an
example, the D3Q19 model is analytically derived with a numerical integration approach.
Moreover the connection of the LBM to macroscopic fluid models (Navier-Stokes equa-
tions) is shown, and it is demonstrated that the application of the LBM is not limited to
simulate fluid flows.
Based on the theoretical foundation, the features of an ideal boundary condition for arti-
ficial boundaries are elucidated. Approaches from literature for the treatment of artificial
boundaries are presented. Here a focus lies on perfectly matched layer (PML) approaches
and LODI-based characteristic boundary conditions (CBCs). Then the LODI-based CBCs
are extended and thus novel ABCs for one- to three-dimensional problems are developed.
CBCs are fully described on a macroscopic level, thus differently to the fluid description
the LBM is based on. It is explained that from the perspective of the LBM any CBC
eventually describes a Dirichlet BC for macroscopic quantities, whose implementation in-
troduces errors.
Afterwards, in the main part of this dissertation the construction of ABCs, which are com-
pletely described on the discrete level of the LBM, is pursued. Firstly, a novel procedure
based digraphs is introduced for understanding the (temporal) evolution of the discrete
quantities within the LBM. With this new understanding a theoretical basis for the for-
mulation of novel general discrete ABCs is constructed by analytically deriving an exact
BC for artificial boundaries in 1D. A consistency condition satisfied by this exact discrete
ABC is deduced. The one-dimensional exact discrete ABC is approximated, whereby a
new parameter is introduced which controls the accuracy of the approximation. The ap-
proximated discrete ABC is interpreted as a separate lattice Boltzmann simulation, and
this interpretation is generalized. Hence, a discrete ABC for general lattice Boltzmann
simulations (not restricted to models recovering Navier-Stokes equations) in higher di-
mensions is formulated. Error sources of the discrete ABCs, details for their efficient
implementation as well as their computational costs are discussed.
All novel ABCs are implemented and applied for a variety of one- to three-dimensional
test scenarios. Their performance is compared to selected ABCs from literature. One
numerical simulation explains the working principle of the discrete ABCs visually.
Finally, the results of this dissertation are summarized and additionally possible future
research tasks are pointed out.



Zusammenfassung

Die Lattice Boltzmann Methode (LBM) ist ursprünglich als ein numerisches Verfahren
im Bereich der numerischen Strömungsmechanik entwickelt worden. Diese Arbeit befasst
sich mit der LBM und entwickelt für diese künstliche Randbedingungen (kRBen) – spezi-
ell geeignete Randbedingungen für künstliche Ränder. Man stößt auf künstliche Ränder,
wenn man ein gegebenes räumliches Gebiet für eine Simulation auf ein kleineres Rechenge-
biet beschränkt. Randbedingungen (RBen), welche nicht für künstliche Ränder konzipiert
wurden (beispielsweise RBen, die einen konstanten Druck oder konstante Geschwindigkeit
umsetzen) zeigen kein physikalisches Verhalten, da diese störende Reflexionen erzeugen.
Idealerweise sollte eine RB nicht das Fluid beeinflussen, das heißt alle Schwankungen aus
dem Inneren sollten das Rechengebiet ohne Erzeugung von Reflexionen verlassen, sobald
diese auf den Rand treffen.
Am Anfang dieser Arbeit wird die LBM theoretisch eingebettet. Als ein Beispiel wird das
Model D3Q19 analytisch hergeleitet, indem Verfahren aus der numerischen Integration
angewandt werden. Der Zusammenhang zwischen der LBM und makroskopischen Fluid-
modellen (Navier-Stokes Gleichungen) wird dargestellt, außerdem wird aufgezeigt, dass
sich die möglichen Anwendungsfälle der LBM nicht auf Simulationen von Fluidströmun-
gen beschränken.
Aufbauend auf der theoretischen Grundlage, werden die Merkmale einer idealen RB für
künstliche Ränder erläutert. Aus der Literatur bekannte Ansätze zur Behandlung künstli-
cher Ränder werden dargestellt. Hierbei liegt ein Schwerpunkt auf PML (perfectly matched
layer) basierten Ansätzen sowie auf charakteristischen RBen, welche auf den LODI Glei-
chungen basieren. Diese LODI basierten charakteristischen RBen werden erweitert und
dadurch neue kRBen zur Anwendung ein- bis drei-dimensionaler Problemstellungen ent-
wickelt. Charakteristische RBen sind vollständig auf makroskopischer Ebene formuliert,
und unterscheiden sich diesbezüglich von der Fluidbeschreibung innerhalb der LBM. Es
wird erklärt, dass vom Standpunkt der LBM, jede charakteristische RB einer Dirichlet RB
makroskopischer Größen entspricht, deren Umsetzung in der LBM mit Fehlern einhergeht.
Im Hauptteil der Arbeit wird die Entwicklung von kRBen, die vollständig auf der dis-
kreten Ebene der LBM formuliert sind, verfolgt. Zunächst wird eine neue Vorgehensweise
eingeführt, die auf gerichteten Graphen aufbaut. Diese dient dem Verständnis der (zeitli-
chen) Entwicklung diskreter Größen innerhalb der LBM. Mit Hilfe dieser Vorgehensweise
wird analytisch eine exakte eindimensionale diskrete kRB konstruiert. Diese exakte, dis-
krete kRB stellt die theoretische Grundlage zur Formulierung allgemeingültiger, diskreter
kRBen dar. Eine Konsistenzbedingung, welche die exakte diskrete RB erfüllt, wird herge-
leitet. Die eindimensionale kRB wird approximiert, wobei ein neuer Parameter eingeführt
wird, der die Genauigkeit der Approximation steuert. Die approximierte diskrete RB wird
als Lösung einer eigenständigen Lattice Boltzmann Simulation interpretiert. Diese Inter-
pretation wird generalisiert, wodurch diskrete kRBen für allgemeingültige, höherdimensio-
nale Lattice Boltzmann Simulationen entstehen. Fehlerquellen, die Details einer effizienten
Implementierung sowie Rechenaufwände der diskreten kRBen werden behandelt.
Alle neuen kRBen werden implementiert und in verschiedenen ein- bis drei-dimensionalen



Testszenarien angewandt. Die Ergebnisse werden mit ausgewählten, bereits existierenden
kRBen verglichen. Anhand einer numerischen Simulation wird die Vorgehensweise der ent-
wickelten diskreten RBen visuell dargestellt.
Zum Abschluss werden die Ergebnisse dieser Arbeit zusammengefasst und es werden mög-
liche weitere Forschungsaufgaben aufgezeigt.
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Notation

Throughout this thesis, vectors, matrices and higher order tensors are noted with bold-
face letters. The components of a vector are written by adding a subscript to the same
(nonbold) letter. As an example the fluid velocity in a 𝑑-dimensional setting reads
𝑢 = (𝑢1, . . . , 𝑢𝑑)

⊤, where the superscript indicates a transposition. Analogously, the
entries of a matrix, say 𝐴, are written as 𝐴𝑗,𝑘. In this thesis we do not use Einstein
notation. We intend to use a mathematical clean notation, for which we assume that a
vector is always a column.

We use the common notation of spaces, in which R denotes the set of real numbers, as well
as N and Z the set of natural and integer numbers, respectively. The inner product of two
(numeric) vectors 𝑎 and 𝑏 is written as ⟨𝑎, 𝑏⟩. The nabla operator ∇ = ( 𝜕

𝜕𝑥1
, . . . , 𝜕

𝜕𝑥𝑑
)⊤ is

formally seen as a vector constructed of spatial differential operators 𝜕
𝜕𝑥𝑗

. The divergence
div(𝑢) of a vector field is therefore equivalent to ∇ · 𝑢. The application of the nabla
operator to a matrix shall be understood as follows:

∇ ·𝐴 :=

⎛⎜⎝div
(︀
𝐴⊤

1,−
)︀

...
div(𝐴⊤

𝑚,−)

⎞⎟⎠ ,

where 𝐴⊤
𝑗,− is the vector corresponding to the 𝑗-th row of 𝐴. That is, the nabla operator

is applied to each row of the matrix. The Laplace operator is denoted as Δ = ∇ ·∇.
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1 Chapter 1

Introduction

This thesis considers a specific numerical method in the field of computational fluid dy-
namics (CFD). This method, known as the lattice Boltzmann method (LBM), originates
from lattice gas automata, and was first introduced by McNamara and Zanetti in 1988
[74]. Since its first appearance the LBM was permanently improved and is nowadays well
established in industry, e.g., the widely used CFD software products of Exa Corp. are
based on the LBM.
In contrast to lattice gas automata, which compute the evolution of single particles on a
computational grid [120], the LBM focuses on the evolution of ensemble averages (so-called
populations). By this, statistical fluctuations are eliminated, where lattice gas automata
suffer from. However, it inherits the algorithmic advantages of its predecessor, which
makes the LBM computational efficient and competitive to earlier established methods in
the field of CFD. Indeed, mathematical analysis can show its relation with the Navier-
Stokes equations (NSE), such that the LBM can be seen as an approximate explicit solver
for the NSE [55]. Hence, although it is based on a mesoscopic formulation, its applica-
tion usually focuses on the macroscopic behavior. However, the LBM also benefits from
its kinetic-based formulation, which distinguishes it from conventional CFD solvers. The
advantages particularly lie in an easy handling of complex and irregular geometries and in
the ease of incorporating effects which are harder to describe on a macroscopic level [103].
Thus, the LBM has demonstrated its success for various applications where macroscopic
solvers have more difficulty with. In particular, the simulation of flows in complex porous
media [35, 58, 79], as well as multiphase and multicomponent flows [15, 40, 73].
The local particle collisions in simulations with lattice gas automata is transferred to lat-
tice Boltzmann (LB) simulations as a local and explicit evaluation of a collision formula
in terms of populations. Non-local operations usually consist only in the exchange of pop-
ulations between adjacent grid points. Differently speaking, the method is fully explicit
and the majority of calculations is done locally, which declares the direct possibility for a
parallelization of the implementation. Therefore, it can also be implemented efficiently on
conventional graphics hardware [110, 121]. To sum up, the LBM emerged as an efficient
numerical method in the field of CFD, capable of solving the NSE approximately. Chap-
ter 2 deals with the LBM, where we especially derive the method analytically and show
its relation to the Boltzmann equation and to the NSE.

The efficiency of a simulation is not only determined by the underlying method, but also
by the size of the computational domain. Usually in an application one is interested in
the solution only in a bounded domain of interest, while the problem itself is theoretically
formulated on a much larger or even unbounded domain. For instance, when simulating
the flow past an object, the flow behavior nearby the object is relevant, while the situation
far away from the object is not. The restriction to a bounded domain introduces artificial
boundaries, where a priori no physical information is known. However, for all boundaries
we have to formulate boundary conditions (BCs), this task holds for any simulation inde-
pendent of the method used. Ideally these BCs, so-called artificial boundary conditions
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2 1 Introduction

(ABCs), are chosen such that the solution on the bounded domain matches the solution on
the larger/unbounded domain. Unfortunately, using a standard BC which can implement
known physical information, e.g., a prescribed pressure or velocity, leads to an unphysical
behavior at the boundary. That is, the boundaries produce unphysical reflections, which
influence the results in the interior of the computational domain. An intuitive way to
overcome spurious reflections from the boundaries is to extend the computational domain.
Not only that it would be inefficient, but also a long-term simulation would never be possi-
ble, since reflected waves eventually reach the domain of interest anyway. Thus, using an
ABC increases the efficiency of the simulation, and also allows for long-term simulations.
On the macroscopic scale, several studies on ABCs in the field of CFD were performed.
Here, the pioneering work for wave equations was established by Engquist and Majda
[27]. Hedstrom [44] and later Thompson [108, 109] developed non-reflecting characteristic
boundary conditions (CBCs) for nonlinear hyperbolic equations. Kröner [65] devised ap-
proximations to exact absorbing BCs for the two-dimensional linear Euler equations. Non-
reflecting boundary conditions (NRBCs) for the Navier-Stokes equations were presented by
Poinsot and Lele [84]. A review on absorbing boundary conditions for hyperbolic systems
can be found in [25].
In a fully discrete approach, Wilson [119] and later Rowley and Colonius [90] derived non-
reflecting BCs for the linear Euler equations. Their fully discrete approaches, formulated
directly for the chosen numerical scheme, possess the advantage that the BCs are already
perfectly adapted to the interior scheme resulting in higher accuracy and better stability
properties compared to the previous approaches.

For the LBM the situation is different, there exist only a few studies on ABCs. Kam
et al. [57] compared first approaches in their article from 2007. In a LB simulation a
BC has the task to determine unknown populations, hence any macroscopic formulation
of an ABC cannot be applied directly. Therefore, if possible at all, a macroscopic ABC
has to be transferred appropriately to the mesoscopic level of populations. Studies based
on such a transfer are done by Izquierdo and Fueyo [54] and Kim et al. [59], who trans-
fer a non-reflecting CBC based on the local one-dimensional inviscid (LODI) equations.
Another approach on ABCs for the LBM is pursued by the works of Najafi-Yazdi and
Mongeau [77], Craig and Hu [18], as well as Tekitek et al. [106]. The principle in these
works is based on Bérenger’s concept of perfectly matched layer [4], devised for the absorp-
tion of electromagnetic waves. Furthermore, Schlaffer [93] introduced recently impedance
boundary conditions for the LBM, in which the acoustic impedance of the fluid is chosen
appropriately, aiming that reflections are prevented. In Chapter 3 we go into more detail
and present ABCs for LB simulations, which originate from macroscopic considerations.
Here we also present our work [46], developed to improve existing non-reflecting CBCs.
Moreover we give further enhancements to the non-reflecting CBCs from the literature.

The implementation of macroscopic information to the populations is not uniquely possible,
thus errors are likely created. This problem concerns not only when using BCs derived
from macroscopic considerations, but also occurs in the initialization of the method, where
usually only a macroscopic information is known. Initialization of a LB simulation is also
subject of research [113]. On the other hand, in the last two decades the LBM has been
greatly developed. Hence, apart from being a solver for the NSE, in recent years the LBM
has been shown to be applicable also for other kind of problems [67, 70, 75, 76, 78, 97,
111, 124, 126]. Thus, macroscopic BCs for NSE are not applicable.
A major goal of this thesis is to overcome these issues and to devise a novel concept for
artificial BCs, which is formulated purely on the discrete level. The discrete formulation
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has the advantage to be applicable in any LB simulation, including those in addition to
the NSE. A discrete BC can be used even if no macroscopic formulation of a BC exists.
To realize our goal we first consider the LBM with a linear collision term in Chapter 4
and derive an exact BC, formulated on the discrete level of populations. In Chapter 5 we
approximate the exact discrete BC and generalize the approximation to LB simulations
with arbitrary collision models. The next subsection further explains the structure of this
thesis.

1.1 Outline of this thesis

In this thesis we study various approaches for artificial boundary conditions in the LBM.
Next we state a brief summary of the following chapters.

Chapter 2 – Fluid dynamics and the lattice Boltzmann method The goal of this
chapter is to provide a theoretical embedding of the LBM. We begin with a short presenta-
tion of fluid flow models on different levels of description. There, we continue considering
the Boltzmann equation and show its relation to macroscopic models. An alternative ap-
proximate collision model is introduced and we derive the LBM by a discretization of the
Boltzmann equation, where the discrete velocities of the so-called D3Q19 model are an-
alytically derived from a numerical integration approach. Moreover, it is elucidated that
the choice of the equilibrium distribution within the collision term strongly influences the
equivalent macroscopic formulation. The chapter ends with the introduction of a short
cut notation of a complete lattice Boltzmann simulation, used in the following chapters.
Hereby we also explain the boundary problem in the perspective of a lattice Boltzmann
simulation.

Chapter 3 – Non-reflecting boundary conditions In this chapter we explain the
features of an ideal boundary condition for artificial boundaries in the LBM. We present
several existing approaches for the treatment of artificial boundaries in the LBM, aimed at
preventing spurious reflection at the artificial boundaries. In detail we consider impedance
boundary conditions, the concept of perfectly matched layer and LODI-based CBCs. Then
we present in detail our contribution to CBCs, where we extend the LODI-based boundary
conditions. Furthermore we explain further enhancements of CBCs.

Chapter 4 – Exact discrete artificial boundary condition for linear collision
model At the beginning of this chapter we explain the use of digraphs to understand
the evolution of populations in a general lattice Boltzmann simulation. Afterwards, we
restrict the consideration to a one-dimensional lattice Boltzmann model with two discrete
velocities (D1Q2 model) and a linear collision operator. For this model, we apply the
digraph interpretation and obtain weighted digraphs. With their help an exact artificial
boundary condition is formulated purely on the discrete level. Its mathematical formulation
is analytically derived in detail and we compute a consistency condition satisfied by this
exact discrete artificial boundary condition.



4 1 Introduction

Chapter 5 – Discrete artificial boundary conditions (DABCs) We begin with
a derivation of an analytically founded approximation to the exact boundary condition
of Chapter 4. The accuracy of this approximation is controlled by a free parameter, the
history depth, which remains present in the general case. We give an interpretation of
this approximate boundary condition as a separate lattice Boltzmann simulation. Based
on this interpretation we generalize the boundary condition and achieve discrete artificial
boundary conditions for general lattice Boltzmann simulations in higher dimensions. This
chapter ends with an analysis of discrete artificial boundary conditions, where we elucidate
their error sources, explain an efficient implementation and consider their computational
costs.

Chapter 6 – Numerical results In this chapter we present the results of six numer-
ical tests ranging from one to three space dimensions. The first example focuses on the
approximate discrete artificial boundary condition for the 1D model of Chapter 4. Then
we consider a one-dimensional pressure wave to test several artificial boundary conditions.
At the third test case we visually explain the working principle of the general discrete
boundary conditions. Afterwards, we present the results of the simulation of an isolated
two-dimensional vortex. The next numerical test is academic and demonstrates how errors
of boundary conditions depend on the angle of incidence, shown on the basis of a plane
wave simulation. Finally we simulate the flow past an obstacle in a three-dimensional duct
and present the results.

Chapter 7 – Conclusions and outlook The last chapter summarizes the results of
this thesis. Additionally, we point out possible future research tasks.

1.2 Related scientific works

During the doctoral studies of the author, five scientific manuscripts have been written by
the authors Heubes, Bartel and Ehrhardt. In chronological order, they are:

An Introduction to the Lattice Boltzmann Method for Coupled
Problems

(2013)
[45]

In: M. Ehrhardt (Ed.), Progress in Computational Physics, Volume 3:
Novel Trends in Lattice-Boltzmann Methods: Reactive Flow, Physicochemical Transport
and Fluid-Structure Interaction, pages 3–30

Abstract: The first part of this introduction is devoted to the known derivation of the
lattice Boltzmann method (LBM): We track two different derivations, a historical one
(via lattice gas automata) and a theoretical version (via a discretization of the Boltzmann
equation). Thereby the collision term is approximated with a single relaxation time model
(BGK) and we motivate the introduction of this common approximation. By applying a
multiscale expansion (Chapman-Enskog), the solution of the numerical method is verified
as a meaningful approximation of the solution of the Navier-Stokes equations. To state
a well posed problem, common boundary conditions are introduced and their realization
within a LBM is discussed.
In the second part, the LBM is extended to handle coupled problems. Four cases are inves-
tigated: (i) multiphase and multicomponent flow, (ii) additional forces, (iii) the coupling
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to heat transport, (iv) coupling of electric circuits with power dissipation (as heat) and
heat transport.

Characteristic boundary conditions in the lattice Boltzmann
method for fluid and gas dynamics

(2014)
[46]

Journal of Computational and Applied Mathematics, 262: 51–61

Abstract: For numerically solving fluid dynamics problems efficiently one is often facing
the problem of having to confine the computational domain to a small domain of interest
introducing so-called non-reflecting boundary conditions (NRBCs).
In this work we address the problem of supplying NRBCs in fluid simulations in two
space dimensions using the lattice Boltzmann method (LBM): so-called characteristic
boundary conditions are revisited and transferred to the framework of lattice Boltzmann
simulations.
Numerical tests show clearly that the unwanted unphysical reflections can be reduced sig-
nificantly by applying our newly developed methods. Hereby the key idea is to transfer
and generalize Thompson’s boundary conditions originally developed for the nonlinear
Euler equations of gas dynamics to the setting of lattice Boltzmann methods. Finally, we
give strong numerical evidence that the proposed methods possess a long-time stability
property.

Exact Artificial Boundary Conditions for a Lattice Boltzmann
Method

(2014)
[47]

Computers & Mathematics with Applications, 67(11): 2041–2054

Abstract: When using a lattice Boltzmann method on an unbounded (or very large)
domain one has to confine this spatial domain to a computational domain. This is real-
ized by introducing so-called artificial boundary conditions. Until recently, characteristic
boundary conditions for the Euler equations were considered and adapted to the lattice
Boltzmann method.
In this work we propose novel discrete artificial boundary conditions which are derived
directly for the chosen lattice Boltzmann model, i.e., on the discrete level. They represent
the first exact artificial boundary conditions for lattice Boltzmann methods. Doing so, we
avoid any detour of considering continuous equations and obtain boundary conditions that
are perfectly adapted to the chosen numerical scheme. We illustrate the idea for a one
dimensional, two velocity (D1Q2) lattice Boltzmann method and show how the computa-
tional efficiency can be increased by a finite memory approach. Analytical investigations
and numerical results finally demonstrate the advantages of our new boundary condition
compared to previously used artificial boundary conditions.

Concept for a one-dimensional discrete artificial boundary
condition for the lattice Boltzmann method

(2015)
[48]

Computers & Mathematics with Applications, 70(10): 2316–2330

Abstract: This article deals with artificial boundaries which you encounter when a large
spatial domain is confined to a smaller computational domain. Such an artificial bound-
ary condition should not preferably interact with the fluid at all. Standard boundary
conditions, e.g., a pressure or velocity condition, result in unphysical reflections. So far,
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existing artificial boundary conditions for the lattice Boltzmann method (LBM) are trans-
ferred from macroscopic formulations.
In this work we propose novel discrete artificial boundary conditions (ABCs) which are
tailored on the LBM’s mesoscopic level. They are derived directly for the chosen LBM
with the aim of higher accuracy. We describe the idea of discrete ABCs in a three velocity
(D1Q3) model governing the Navier-Stokes equations in one dimension. Numerical results
finally demonstrate the superiority of our new boundary condition in terms of accuracy
compared to previously used ABCs.

Discrete artificial boundary conditions for the lattice Boltzmann
method in 2D

(2015)
[49]

ESAIM: Proceedings and Surveys, 52: 47–65

Abstract: To confine a spatial domain to a smaller computational domain, one needs
artificial boundaries. This work considers the lattice Boltzmann method and deals with
boundary conditions for these open boundaries. Ideally, such a condition does not inter-
act with the fluid at all. We present novel two-dimensional discrete artificial boundary
conditions to pursue that goal and we discuss four different versions. This type of con-
dition is formulated on the discrete lattice Boltzmann level and does not require a PDE
formulation of the fluid. We set a special focus on the D2Q9 model. Our numerical results
compare the novel discrete artificial boundary conditions to simulations using the existing
non-reflecting characteristic boundary condition and an exit boundary condition.



2 Chapter 2

Fluid dynamics and the lattice
Boltzmann method

A fluid refers to substances, which will continually deform under an application of shear
stress. The deformation of the fluid is commonly called the fluid flow. The shape and
size of fluids can change in time, due to compressibility and application of forces. Fluids
normally refer to liquids or gases, where liquids only adapt their shape to the container in
which they are filled in, whereas gases additionally change their size impressively. Gases
fill the entire available space. For additional general information about fluids and their
dynamics, we refer to the books [3, 85, 100].

The goal of computational fluid dynamics (CFD) is to numerically simulate the fluid
flow. To this end, the fluid flow has to be described by a mathematical model. This
model, usually a system of differential equations, is solved numerically. Doing so, an
approximate solution to the mathematical model and thus the fluid’s motion is found
[28, 118]. Moreover, there is no unique model describing a fluid flow, but several approaches
exist.

2.1 Modeling fluid flows

We briefly present some models for describing a fluid’s motion, which are here sorted
according to the level of description. The choice which level can be used for a simulation
is mainly based on the given problem, especially it is based on the attributed properties
of the fluid. If the fluid is given as a highly rarefied gas, each molecule is important
and a macroscopic model has to be discarded, since its underlying continuum assumption
is violated [51, 99]. On the contrary, if the continuum assumption holds a simulation
based on a microscopic model might become very inefficient, due to the high number
of molecules. However some effects can be easier depicted and thus incorporated into a
model on a microscopic level, why it can be useful to consider a microscopic model even
if a continuum assumption is satisfied. A special focus lies on the mesoscopic fluid flow
models, since the lattice Boltzmann method (LBM) is based on a formulation on this level.
The mesoscopic level is settled in between a microscopic and macroscopic formulation, it
combines the advantages of both approaches [10].

2.1.1 Microscopic formulation

Considering a gas consisting of 𝑁 particles (molecules), the motion of this fluid can be
described by simulating each particle of the gas explicitly, taking into account the interac-
tion with other particles. Newton’s rules of mechanics hold for each particle and a system

7
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of kinematic equations of motions for all 𝑁 particles can be constructed. Alternatively,
the fluid flow can be expressed microscopically by the Hamilton equations of motion [2]:

d𝑞𝑘(𝑡)
d𝑡

=
𝜕ℋ(𝑡, 𝑞,𝑝)

𝜕𝑝𝑘(𝑡)
,

d𝑝𝑘(𝑡)

d𝑡
= −𝜕ℋ(𝑡, 𝑞,𝑝)

𝜕𝑞𝑘(𝑡)
, 𝑘 = 1, . . . , 𝑁. (2.1)

The system of differential equations (2.1) describes the temporal change of generalized
position coordinates 𝑞(𝑡) = (𝑞1, . . . , 𝑞𝑁 ) and generalized momenta 𝑝(𝑡) = (𝑝1, . . . ,𝑝𝑁 ).
The time variable is denoted by 𝑡 and the Hamiltonian ℋ(𝑡, 𝑞,𝑝) expresses the energy of
the system.

A microscopic simulation of an entire fluid is usually not practical, since the number of
particles is then too large, 𝑁 > 1020. There might be situations where one is interested in
the movement of individual particles. However, then it is usually sufficient to concentrate
on a smaller fraction of the gas, having a manageable amount of particles.

2.1.2 Macroscopic formulation

In many applications, there is no need to have a detailed information about the movement
of each particle. Instead, it is sufficient to know the average quantities within small vol-
umes, e.g., the average velocity of particles in the volume. The values should be computed
by averaging a sufficient amount of particles within a volume, such that they are not af-
fected by stochastic fluctuations, especially they should not be determined by one specific
particle if the volume is decreased. It requires that the gas is sufficiently dense. Then the
volumes can become infinitesimal small without that the averaged quantities change, such
that the average values are given pointwise. That is, the gas is described as a continuum,
which means the gas is considered as if there are no empty spaces between the particles.
This assumption obviously also holds for liquids. The Knudsen number Kn for gases is
defined as the ratio of the mean free path 𝑙𝑓 and a representative physical length scale 𝐿
[102]:

Kn :=
𝑙𝑓
𝐿
.

The continuum assumption is equivalent to the mathematical requirement of having a very
small Knudsen number Kn ≪ 1. In liquids the molecules are predominantly not in random
motion, but in a vibrational mode. Therefore, the mean free path 𝑙𝑓 in the definition of the
Knudsen number is less reasonable and may be replaced by the intermolecular free length
𝑙im for liquids [63]. As an example, for water this length is about 10−10 nm, resulting in
a Knudsen number close to zero, approving the continuum assumption is valid for liquids
as well.

Mathematical models for describing the fluid’s motion in the continuum range are usu-
ally formulated in terms of pointwise given average quantities with respect to the fluid’s
particles, referred to as macroscopic dynamic quantities. These quantities are continu-
ous and their local change can be expressed by differentials. Therefore, one obtains a
model for the fluid dynamic by a system of appropriate differential equations in terms of
the dynamic quantities. The resulting system often further depends on fluid dependent
parameters. Typically the differential equations express conservation laws for dynamic
quantities [107].
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In the hydrodynamic regime Kn ≤ 0.01 the motion of an incompressible Newtonian fluid,
featured by having a constant mass density 𝜌0 ∈ R+, can be modeled by the incompressible
Navier-Stokes equations (NSE) [107]:

∇ · 𝑢 = 0, (2.2a)

𝜌0
𝜕𝑢

𝜕𝑡
+ 𝜌0 (𝑢 ·∇)𝑢 = −∇𝑝+ 𝜇Δ𝑢. (2.2b)

Unknowns of this system are the fluid velocity 𝑢 = 𝑢(𝑥, 𝑡) ∈ R𝑑 and the local pressure
𝑝 = 𝑝(𝑥, 𝑡) ∈ R, where 𝑥 ∈ R𝑑 is the space coordinate in a 𝑑-dimensional space. The
first equation (2.2a) states the incompressibility of the fluid. The second equation (2.2b)
describes a balance equation of momenta. Here, the fluid is driven by pressure fluctuations,
and a viscous stress term 𝜇Δ𝑢, with the fluid dependent dynamic viscosity 𝜇 ∈ R+. The
equations (2.2) describe appropriately the flow of a compressible fluid, if the compressibility
effects are negligible. However, if they become more important the model has to be
extended. So, for compressible fluids, i.e., when the mass density 𝜌 = 𝜌(𝑥, 𝑡) ∈ R+ is not
a constant, but may vary in space and time, we need to consider a compressible version
of the NSE [83]:

𝜕𝜌

𝜕𝑡
+∇ · (𝜌𝑢) = 0, (2.3a)

𝜕𝜌𝑢

𝜕𝑡
+∇ ·

(︁
𝜌𝑢𝑢⊤

)︁
= −∇𝑝+∇ · 𝜎. (2.3b)

Equation (2.3a), known as the continuity equation, describes the conservation of mass.
For a constant density this equation reduces to (2.2a). The second equation (2.3b) again
is a balance equation for momenta, i.e., it describes the conservation of momenta. In the
second term on the right hand side 𝜎 is the deviatoric stress tensor, e.g., it can have the
form

𝜎 = 𝜇

[︂
∇𝑢+∇𝑢⊤ − 2

3
(∇ · 𝑢)𝐼

]︂
,

where 𝐼 ∈ R𝑑×𝑑 denotes the identity. For a discussion and other choices see, e.g., [19].
Normally the system (2.3) is expanded by an energy conservation equation, but we omit
this equation here, because we consider the LBM for athermal flows. For the system of
conservation equations for compressible flows (here (2.3) without energy conservation) a
closure relation is required. This becomes directly obvious by inspecting the number of
unknowns and the number of equations. If (2.3) is compared to the system (2.2), we
have the same amount of equations, but since 𝜌 is a dynamic quantity, one additional
unknown. Usually, the system of the compressible NSE is closed by an equation of state,
which models the pressure in dependence of the mass density [28].

If the given fluid becomes inviscid, meaning viscous effects are negligible, the Navier-Stokes
system transforms into the Euler equations (here for the compressible version (2.3)):

𝜕𝜌

𝜕𝑡
+∇ · (𝜌𝑢) = 0, (2.4a)

𝜕𝜌𝑢

𝜕𝑡
+∇ ·

(︁
𝜌𝑢𝑢⊤

)︁
+∇𝑝 = 0. (2.4b)

The Euler equations can be formally seen as the NSE with viscosity set to zero. From
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a mathematical point of view the systems (2.3) and (2.4) differ not only by the viscous
stress term. But, the system of NSE (2.3) is parabolic, whereas the Euler equations (2.4)
are hyperbolic.

The macroscopic fluid models are nowadays the commonly most used ones. Analytical
solutions of the NSE are known only for few problems, e.g., [23, 89]. Especially the
nonlinearity in the convective term causes mathematical difficulties. So generally the NSE
(or Euler equations) are solved numerically. Several techniques exist, details are given for
example in [28, 29, 71, 118].

2.1.3 Mesoscopic formulation

A fluid flow can also be described on a level between a microscopic (Section 2.1.1) and
a macroscopic formulation (Section 2.1.2). This is done commonly by the Boltzmann
equation, which uses a mesoscopic description of the fluid. The Boltzmann equation can
be derived, e.g., from a microscopic formulation by some approximations. The derivation
is sketched here, a full (and also different) derivation can be found in [10, 102]. Instead
of beginning the derivation with Hamilton equations of motion (2.1) one considers an
𝑁 -particle distribution function 𝑃𝑁 . Here,

𝑃𝑁 (𝑞1,𝑝1, 𝑞2,𝑝2, . . . , 𝑞𝑁 ,𝑝𝑁 , 𝑡) d𝑞1 . . . d𝑞𝑁 d𝑝1 . . . d𝑝𝑁

gives the probability to find this 𝑁 -particle ensemble with the 𝑖-th particle in an infinites-
imal small space volume d𝑞𝑖 around 𝑞𝑖 and with momentum in the infinitesimal small
volume d𝑝𝑖 around 𝑝𝑖 at time 𝑡. Then the Liouville equation, which describes the tempo-
ral evolution of 𝑃𝑁 , is equivalently written as the so-called BBGKY-hierarchy [2, 9]. The
well-known abbreviation is due to the initials of Bogoliubov [6, 7], Born & Green [8], Kirk-
wood [61, 62] and Yvon [122]. The BBGKY-hierarchy is a system of coupled equations,
the 𝑠-th equation is an evolution equation for the 𝑠-particle distribution function

𝑃
(𝑠)
𝑁 (𝑞1,𝑝1, 𝑞2,𝑝2, . . . , 𝑞𝑠,𝑝𝑠, 𝑡)

=

∫︁
𝑃𝑁 (𝑞1,𝑝1, 𝑞2,𝑝2, . . . , 𝑞𝑁 ,𝑝𝑁 , 𝑡) d𝑞𝑠+1 . . . d𝑞𝑁 d𝑝𝑠+1 . . . d𝑝𝑁 ,

and has an direct coupling only to the (𝑠 + 1)-th distribution function. The integration
is done with respect to the coordinates and momenta of 𝑁 − 𝑠 molecules. For more
details we refer for example to [10]. Thus, the first equation of the equivalent BBGKY-
hierarchy is an equation for a single particle distribution function and it is coupled to higher
particle distribution functions by an integral describing collisions of particles. To obtain
the Boltzmann equation, only two particles are assumed to be involved in a collision and
it is assumed that the involved particles are uncorrelated before collision. We end up with
the Boltzmann equation for the single particle distribution 𝑓(𝜉,𝑥, 𝑡)

(︀
which is proportional

to 𝑃 (1)
𝑁

)︀
[10]:

𝜕𝑓(𝜉,𝑥, 𝑡)

𝜕𝑡
+ 𝜉 ·∇𝑓(𝜉,𝑥, 𝑡) = 𝑄(𝑓). (2.5)

Here, 𝑓(𝜉,𝑥, 𝑡) d𝜉 d𝑥 (for infinitesimal small d𝜉 and d𝑥) gives the number density, mul-
tiplied by particle mass 𝑚, of a particle having the velocity 𝜉 ∈ R𝑑 at position 𝑥 ∈ R𝑑

and time 𝑡 ∈ R. The 𝑄(𝑓) on the right hand side gives the contribution from collisions
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of particles under the assumption stated above. In equation (2.5) the particle velocity
𝜉 ∈ R𝑑 appears as a parameter, hence the Boltzmann equation (2.5) is formally an infinite
system of equations. The collision is modeled as an elastic collision of two particles, such
that kinetic energy and momenta are conserved. The collision integral due to Boltzmann
reads in three-dimensional space (𝑑 = 3)

𝑄(𝑓) =

∫︁
R3

∫︁
S2

𝜎(Ω) |𝜉 − 𝜉2|
[︀
𝑓(𝜉,𝑥, 𝑡)𝑓(𝜉2,𝑥, 𝑡)− 𝑓(𝜉,𝑥, 𝑡)𝑓(𝜉2,𝑥, 𝑡)

]︀
dΩ d𝜉2, (2.6)

with pre-collision velocities 𝜉, 𝜉2. The post-collision velocities 𝜉, 𝜉2 can be computed
depending on the pre-collision velocities and the impact angle [11]. Moreover in (2.6),
𝜎(Ω) denotes the differential collision cross section and the inner integration is done over
all possible solid angles Ω ∈ S2. For (2.6) there exist five elementary collision invariants
[10]

𝜓1 = 1, (𝜓2, 𝜓3, 𝜓4) = 𝜉 and 𝜓5 = |𝜉|2 , (2.7a)

which are classified by vanishing integrals as follows:∫︁
R𝑑

𝜓𝑘𝑄(𝑓) d𝜉 = 0, 𝑘 = 1, . . . , 5. (2.7b)

As for the macroscopic formulation, several techniques for directly solving the Boltzmann
equation exist [1, 11, 64]. It is important to understand that the single particle distribution
contains all information which on a macroscopic level are expressed with several dynamic
quantities. Therefore, the sole knowledge of only a few macroscopic dynamic quantities
does not correspond to a unique value of the single particle distribution. Conversely, the
information of 𝑓(·,𝑥, 𝑡) (for all 𝜉) is sufficient to uniquely determine a pointwise (at 𝑥)
corresponding macroscopic quantity at time 𝑡. We explain this connection in more detail
in what follows next.

2.2 Boltzmann equation and its macroscopic limit

The system of NSE is derived by conservation considerations of physical quantities. The
same holds for the Euler equations. They both are widely accepted descriptions for fluid
flows. In the following, we link the Boltzmann equation and the NSE [92].

2.2.1 Moments of the single particle distribution

Given the Boltzmann equation (2.5), we consider the single particle distribution 𝑓(𝜉,𝑥, 𝑡).
Based on physical interpretation we obtain the fluid’s (local) mass density by the integral
of the single particle distribution with respect to all possible velocities [51, 92]:

𝜌(𝑥, 𝑡) =

∫︁
R𝑑

𝑓(𝜉,𝑥, 𝑡) d𝜉. (2.8)
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This corresponds to the zeroth moment of the single particle distribution. Furthermore,
the (local) fluid velocity is given as an average of particle velocities

𝑢(𝑥, 𝑡) =
1

𝜌(𝑥, 𝑡)

∫︁
R𝑑

𝜉𝑓(𝜉,𝑥, 𝑡) d𝜉. (2.9)

In fact, the first moment of 𝑓 , integral in (2.9), is required to determine the fluid velocity.
Higher moments can also be interpreted physically. Here only the moments which are
used in this work are presented, remaining moments can be found, e.g., in [51, 102]. The
internal energy of the fluid is derived from the mesoscopic level by

𝑒(𝑥, 𝑡) =
1

𝜌(𝑥, 𝑡)

∫︁
R𝑑

|𝜉 − 𝑢(𝑥, 𝑡)|2

2
𝑓(𝜉,𝑥, 𝑡) d𝜉, (2.10)

and the total stress tensor is given as

𝑝(𝑥, 𝑡) =

∫︁
R𝑑

(𝜉 − 𝑢) (𝜉 − 𝑢)⊤ 𝑓(𝜉,𝑥, 𝑡) d𝜉. (2.11)

A common way to identify the pressure 𝑝(𝑥, 𝑡) is to take the isotropic part of the total
stress 𝑝, i.e., the trace of 𝑝 divided by dimension 𝑑:

𝑝(𝑥, 𝑡) =
1

𝑑
tr
(︀
𝑝(𝑥, 𝑡)

)︀
=

1

𝑑

∫︁
R𝑑

|𝜉 − 𝑢(𝑥, 𝑡)|2 𝑓(𝜉,𝑥, 𝑡) d𝜉. (2.12)

With the pressure 𝑝 given, the deviatoric stress tensor 𝜎 can be computed by

𝜎(𝑥, 𝑡) = 𝑝(𝑥, 𝑡)𝐼 − 𝑝(𝑥, 𝑡). (2.13)

2.2.2 Moments of the Boltzmann equation

So far, all dynamic quantities of the NSE (2.3) are defined in terms of the single particle
distribution (2.8)–(2.13). From the Boltzmann equation (2.5) we have the information of
the evolution of the single particle distribution. This then implies an evolution for each
macroscopic quantity (2.8)–(2.13). We achieve the corresponding macroscopic evolution
equations by computing moments of the Boltzmann equation (2.5). The zeroth and first
moment bring the macroscopic fluid density (2.8), velocity (2.9) and the stress tensor
(2.11) into a system of differential equations [92]:

𝜕𝜌

𝜕𝑡
+∇ · 𝜌𝑢 =

∫︁
R𝑑

𝑄(𝑓) d𝜉, (2.14a)

𝜕𝜌𝑢

𝜕𝑡
+∇ ·

(︁
𝜌𝑢𝑢⊤

)︁
+∇ · 𝑝 =

∫︁
R𝑑

𝜉𝑄(𝑓) d𝜉. (2.14b)

The system (2.14) resembles the compressible NSE (2.3), and due to (2.7) both systems
even match. The equation of state for the system (2.14) is achieved by combining (2.10)
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and (2.12) to

𝑝(𝑥, 𝑡) =
2

𝑑
𝜌(𝑥, 𝑡)𝑒(𝑥, 𝑡). (2.15)

We point out that properties of the collision term (2.6) are crucial for the system (2.14)
to agree with the NSE (2.3). A Boltzmann-like equation, where the collision term 𝑄(𝑓)
is replaced by a different model �̃�(𝑓), is called a kinetic model. So any kinetic model can
lead to the NSE provided the required properties of 𝑄(𝑓) remain valid also for �̃�(𝑓). In
detail we require the conservation conditions of the collision term (2.6) as∫︁

R𝑑

𝜓𝑘𝑄(𝑓) d𝜉 = 0, 𝑘 = 1, . . . , 4. (2.16)

Two other important properties which are satisfied by the collision integral (2.6) are related
to Maxwellian distributions [10]

𝑀(𝜉; 𝜌,𝑢, 𝑇 ) := 𝜌

(︂
𝑚

2𝜋𝑘𝐵𝑇

)︂𝑑/2

exp

(︂
−𝑚
2𝑘𝐵𝑇

|𝜉 − 𝑢|2
)︂
. (2.17)

In (2.17) 𝑘𝐵 denotes the Boltzmann constant and 𝑇 is the fluid temperature. A Maxwellian
describes an equilibrium distribution for the Boltzmann equation, where an equilibrium is
defined as a homogeneous steady state. On the one hand, the collision integral vanishes
for any Maxwellian distribution, i.e.,

𝑄(𝑀) = 0. (2.18)

On the other hand, we have that the collision term satisfies∫︁
R𝑑

log
(︀
𝑓(𝜉,𝑥, 𝑡)

)︀
𝑄(𝑓) d𝜉 ≤ 0, (2.19)

with equality holding if, and only if, 𝑓 is Maxwellian. The latter equation is essential for
Boltzmann’s famous 𝐻-theorem, which is in accordance with the second law of thermody-
namics [10]. Thus for any kinetic model an analogue to Boltzmann’s 𝐻-theorem has to be
valid. Next, we present one collision alternative for 𝑄(𝑓) satisfying all required properties.

2.2.3 Alternative collision model

If the collision term (2.6) is replaced by another (maybe simpler) model �̃�(𝑓), the conser-
vation conditions (2.16) and properties (2.18) and (2.19) have to be retained. The second
property (2.19) expresses that in a closed system any initial single particle distribution
𝑓(𝜉,𝑥, 𝑡) describing the state of a fluid tends locally to a Maxwellian distribution [10].
This tendency towards a Maxwellian can be easily taken into account. The effect of colli-
sion has to change any particle distribution 𝑓 by an amount which is proportional to the
discrepancy of 𝑓 from a Maxwellian. The collision model of Bhatnagar, Gross and Krook
(BGK) [5] realizes this principle by

�̃�(𝑓) := −1

𝜏

[︀
𝑓(𝜉,𝑥, 𝑡)−𝑀(𝜉; 𝜌,𝑢, 𝑇 )

]︀
. (2.20)
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Here 𝜏 is a constant, called the relaxation parameter of the collision model. The BGK
model is a single-relaxation-time (SRT) model. We refer to [10] for a validation that
�̃�(𝑓) satisfies (2.19). In order that the BGK collision model satisfies the conservation
conditions (2.16) the three dynamic quantities of the Maxwellian in (2.20) have to be
fixed by moments of 𝑓 , see (2.8) to (2.10). Note that the temperature 𝑇 can be computed
from the energy. For a monatomic gas we have the relation

𝑒 =
𝑑

2
𝑅𝑇, (2.21)

where 𝑅 = 𝑘𝑏
𝑚 is the specific gas constant [10]. Obviously the property (2.18) is satisfied

by the BGK collision model. The full kinetic model with the BGK collision model then
reads

𝜕𝑓(𝜉,𝑥, 𝑡)

𝜕𝑡
+ 𝜉 ·∇𝑓(𝜉,𝑥, 𝑡) = −1

𝜏
[𝑓(𝜉,𝑥, 𝑡)−𝑀(𝜉; 𝜌,𝑢, 𝑇 )] . (2.22)

2.3 Lattice Boltzmann method

The LBM is nowadays seen as a certain discretization of the Boltzmann equation or of
another kinetic model. However, historically, it originates from cellular automata, and
specifically lattice gas automata. A cellular automaton is a discrete model introduced
by von Neumann (see [117]), which has simple rules but allows for a more complex be-
havior [66]. Lattice gas automata were derived from classical cellular automata with the
intention of an application to physical processes [120]. The first proposed lattice gas
automaton of Hardy et al. [38] still could not be used to correctly simulate fluid flows.
Whereas the famous FHP-model of Frisch, Hasslacher and Pomeau [30] introduced in
1986, could overcome the difficulties of previous lattice gas automata. Hence, starting
with the introduction of the FHP-model, several lattice gas automata governing the NSE
were proposed for different kind of problems [123]. As only one example we mention a
lattice gas automaton for a simulation of flows through porous media [14]. Very soon
after the FHP-model was proposed, in 1988, a modification to lattice gas automata was
published from McNamara and Zanetti [74]. Hereby the boolean variables of lattice gas
automata were changed into real variables representing averaged particle distributions on
a mesoscopic level. This work is nowadays considered as the first article on the LBM. Four
years later, in 1992, a BGK-based collision model for the LBM was proposed to recover
the Navier-Stokes macroscopic equations [13, 86].

An interpretation as a discretization of the Boltzmann equation was found five years later,
thus not until after the introduction of the method [43]. For a formal derivation of the LBM
we consider here the kinetic model (2.22), that is the Boltzmann equation with a BGK
collision model (2.20) instead of the original collision term. We refer to this equation (not
quite correctly) as the BGK-Boltzmann equation. It is integrated along its characteristic
curves and the outcome is approximated. Afterwards the still continuous velocity space
is discretized, which introduces so-called lattice vectors. We here present the derivation of
the D3Q19 velocity model by numerical integration conditions (Section 2.3.3), which (to
our best knowledge) has been worked out for the first time in literature in our work [45].
Before the integration of (2.22) is performed, we give a general summary of characteristics
for hyperbolic differential equations.
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2.3.1 Characteristic curves

The description of characteristics follows the one-dimensional approach of [69]. At first,
we consider the Cauchy problem of a general advection equation:

𝜕𝑧

𝜕𝑡
+ 𝑎 ·∇𝑧 = 0, 𝑧(𝑥, 0) = 𝑧0(𝑥). (2.23)

Here we seek 𝑧 = 𝑧(𝑥, 𝑡) : R𝑑 × R+ → R, where 𝑧0 : R𝑑 → R denotes the initial profile
and 𝑎 ∈ R𝑑 is a given advection velocity vector. The unique solution of (2.23) for 𝑡 ≥ 0 is
given as

𝑧(𝑥, 𝑡) = 𝑧0(𝑥− 𝑎𝑡),

thus the initial data propagates in a direction defined by 𝑎, while the norm of 𝑎 gives
the propagation speed. If the solution is sketched in a 𝑡-𝑥-plane, we would see that the
solution is constant along each line 𝑥 = 𝑥0 + 𝑎𝑡, for any 𝑥0 ∈ R𝑑. These rays are called
the characteristics (or characteristic curves) of the equation (2.23). The characteristics
are solutions to the ordinary differential equations (ODEs)

𝜕𝑥

𝜕𝑡
= 𝑎, 𝑥(0) = 𝑥0. (2.24)

For a space dependent 𝑎 = 𝑎(𝑥) in (2.23), the characteristics are not rays, but curves,
which explains the naming of characteristic curves. Along them the solution 𝑧 satisfies an
ODE which can be solved easily.

Now, let 𝑧 be a vector valued function 𝑧 : R× R → R𝑛. We consider the linear system

𝜕𝑧

𝜕𝑡
+𝐴

𝜕𝑧

𝜕𝑥
= 0, 𝑧(𝑥, 𝑡) = 𝑧0(𝑥), (2.25)

where 𝐴 ∈ R𝑛×𝑛 is a constant diagonalizable matrix with real eigenvalues 𝜆1, . . . , 𝜆𝑛. In
this case (2.25) is a hyperbolic system and we can find a matrix 𝐵, such that

𝐵𝐴 = diag(𝜆1, . . . , 𝜆𝑛)𝐵.

By a (left-)multiplication with 𝐵 the system (2.25) is decoupled. Introducing so-called
characteristic variables �̄� = 𝐵𝑧, we get

𝜕�̄�

𝜕𝑡
+ diag(𝜆1, . . . , 𝜆𝑛)

𝜕�̄�

𝜕𝑥
= 0. (2.26)

This is a decoupled system of 𝑛 equations of type (2.23) (for 𝑑 = 1), where the directions
of advection are determined by the eigenvalues of 𝐴.

2.3.2 Integration of the kinetic model along its characteristics

The BGK-Boltzmann equation (2.22) is of the same form as (2.23), apart from the non-
zero right hand side. Along its characteristic curves the BGK-Boltzmann equation satisfies
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the ODE

d
d𝑡
𝑓(𝜉,𝑥, 𝑡) +

1

𝜏
𝑓(𝜉,𝑥, 𝑡) =

1

𝜏
𝑀(𝜉; 𝜌,𝑢, 𝑇 ), (2.27)

with the advective differential operator d
d𝑡 =

𝜕
𝜕𝑡 + 𝜉 ·∇. Note that (2.22), as well as the

Boltzmann equation (2.5) and any kinetic model, is an infinite set of equations, one for
each 𝜉 ∈ R𝑑. Hence, the ODE (2.27) is an equation only for one fixed velocity 𝜉, which
still enters as a parameter.

For the integration of (2.27), we follow the strategy from He and Luo [43]. The Maxwellian
on the right hand side of (2.27) depends on space and time only via the macroscopic
dynamic quantities 𝜌, 𝑢 and 𝑇 . To underline this space and time dependency we rewrite
the Maxwellian by introducing an equilibrium distribution 𝑓 eq as

𝑓 eq(𝜉,𝑥, 𝑡) :=𝑀
(︀
𝜉; 𝜌(𝑥, 𝑡),𝑢(𝑥, 𝑡), 𝑇 (𝑥, 𝑡)

)︀
. (2.28)

Formally, the solution of (2.27) at 𝑡+Δ𝑡 for an arbitrary time step Δ𝑡 ≥ 0 reads

𝑓(𝜉,𝑥+ 𝜉Δ𝑡, 𝑡+Δ𝑡) (2.29)

=
1

𝜏
exp

(︂
−Δ𝑡

𝜏

)︂ Δ𝑡∫︁
0

exp
(︁ 𝑠
𝜏

)︁
𝑓 eq(𝜉,𝑥+ 𝜉𝑠, 𝑡+ 𝑠) d𝑠+ exp

(︂
−Δ𝑡

𝜏

)︂
𝑓(𝜉,𝑥, 𝑡).

Next, the integrand is approximately substituted by 𝑓 eq(𝜉,𝑥, 𝑡), which arises from a Taylor
expansion (around 𝑠 = 0) and neglect of terms of order 𝒪(𝑠):

exp
(︁ 𝑠
𝜏

)︁
𝑓 eq(𝜉,𝑥+ 𝜉𝑠, 𝑡+ 𝑠) = 𝑓 eq(𝜉,𝑥, 𝑡) +𝒪(𝑠).

The other two exponentials appearing in (2.29) are substituted by their Taylor series.
Neglecting all terms of order 𝒪(Δ𝑡2) yields the following approximation of the BGK-
Boltzmann equation as a time discrete formulation:

𝑓(𝜉,𝑥+ 𝜉Δ𝑡, 𝑡+Δ𝑡)− 𝑓(𝜉,𝑥, 𝑡) = −Δ𝑡

𝜏

[︀
𝑓(𝜉,𝑥, 𝑡)− 𝑓 eq(𝜉,𝑥, 𝑡)

]︀
. (2.30)

For the approximations which led to (2.30), the Maxwellian is assumed to be locally smooth
enough in space and time. Also the time step size Δ𝑡 is assumed to be chosen sufficiently
small. Note that in (2.30) space 𝑥 and velocity 𝜉 are still continuous. Another very
common notation, which is also used in the sequel, replaces the right hand side coefficient
by a relaxation time 𝜔 = Δ𝑡

𝜏 .

2.3.3 Analytical derivation of the D3Q19 velocity set

In the following we derive a discretization of the velocity space for (2.30). A velocity
space discretization implies a spatial discretization and we end up with a fully discretized
equation, which is the core equation of the LBM. Here, we derive the discrete velocities
used in the D3Q19 model, that is a 19 velocity model in three space dimensions. In general,
the common notation D𝑑Q𝑞 by Qian et al. [86] represents a 𝑑-dimensional model with 𝑞
discrete velocities. For the derivation we follow the procedure of He and Luo [43], in which
the D3Q27 model is derived. In the derivation of D3Q27 the three space dimensions are
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separated and can be considered independently of each other. Since such a separation is
not possible for D3Q19, this makes the derivation here more complex.

In the context of the LBM the collision model and especially the equilibrium distribution
used in the BGK model is essential. In (2.30) the equilibrium (2.28) is a Maxwellian,
which we approximate by a truncated Taylor series up to order 𝒪(𝑢2):

𝑓 eq ≈ 𝜌

(︂
1

2𝜋𝑅𝑇

)︂𝑑/2

exp

(︃
− |𝜉|2

2𝑅𝑇

)︃[︃
1 +

⟨𝜉, 𝑢⟩
𝑅𝑇

+
⟨𝜉, 𝑢⟩2

2(𝑅𝑇 )2
− |𝑢|2

2𝑅𝑇

]︃
, (2.31)

with the inner product ⟨𝜉, 𝑢⟩. We made the substitution 𝑅 = 𝑘𝑏
𝑚 in contrast to the

definition of a Maxwellian in (2.17). It is easily possible to incorporate higher order terms
in the previous so-called low-Mach-number approximation. In what follows this truncated
expansion shall be used as the equilibrium distribution instead of the full Maxwellian
(2.17).

The derivation of the discrete velocity space is based on a numerical consideration of
integrals in the form

𝐼(Ψ) =

∫︁
R𝑑

exp

(︃
− |𝜉|2

2𝑅𝑇

)︃
Ψ(𝜉) d𝜉, (2.32)

where the exponential function is coming from the equilibrium distribution. The nodes and
weights of a quadrature rule for a numerical computation of these integrals are derived
from the condition that polynomials Ψ(𝜉) up to a certain maximal degree 𝑑𝑝 shall be
integrated exactly. The term within in the square brackets of the equilibrium distribution
(2.31) is a polynomial of second degree in 𝜉. Thus, it follows 𝑑𝑝 ≥ 2, in order to integrate
the equilibrium distribution exactly. As the 𝜓𝑘 in the required conservation conditions
(2.16) are themselves polynomials up to order one, we even have 𝑑𝑝 ≥ 3. Besides moments
of the equilibrium distribution also moments (up to the second order) of the unknown
single particle distribution 𝑓 are required to obtain the macroscopic conservation equations
(2.14), which further increases 𝑑𝑝 as can be seen below. The problem that the single
particle distribution is unknown is addressed, e.g., by using a Chapman-Enskog expansion
[12]

𝑓(𝜉,𝑥, 𝑡) = 𝑓 eq(𝜉,𝑥, 𝑡) + Kn 𝑓 (1)(𝜉,𝑥, 𝑡) + Kn2 𝑓 (2)(𝜉,𝑥, 𝑡) +𝒪(Kn3).

The first order term in the Chapman-Enskog analysis is approximately given by

𝑓 (1)(𝜉,𝑥, 𝑡) ≈ −𝜏

(︃
𝜕(1)

𝜕𝑡
+ 𝜉 ·∇(1)

)︃
𝑓 eq(𝜉,𝑥, 𝑡).

Also higher order terms (𝑓 (𝑘), 𝑘 ≥ 2), can be expressed approximately in terms of the
equilibrium distribution. However the conservation equations (2.14) can be derived by
only taking 𝑓 eq and 𝑓 (1) into account. Hereby, the first order term 𝑓 (1) is necessary to
obtain the viscous terms in the conservation equations (2.14). A more detailed view is
achieved when performing a Chapman-Enskog analysis, see, e.g., [15].
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Quadrature rule for D3Q19 With the aforementioned explanations, the computation
of a second moment of the unknown single particle distribution is equivalent to the com-
putation of a third moment of the equilibrium distribution. In total, the condition to a
quadrature rule for the integrals (2.32) reads to be exact for polynomials Ψ of degree at
least up to order 5, i.e., 𝑑𝑝 ≥ 5 = 3 + 2. Hereby 3 is the order of the highest required
moment and 2 results from the low-Mach-number approximation. In other words, as the
integral is a linear operator, we can consider integrals

𝐼𝑚,𝑛,𝑝 =

(︂
1

2𝜋𝑅𝑇

)︂3/2 ∫︁
R3

exp

(︃
− |𝜉|2

2𝑅𝑇

)︃
𝜉𝑚𝛼 𝜉

𝑛
𝛽𝜉

𝑝
𝛾 d𝜉

= 𝜋−3/2(2𝑅𝑇 )
𝑚+𝑛+𝑝

2

∫︁
R3

exp
(︁
− |𝜁|2

)︁
𝜁𝑚𝛼 𝜁

𝑛
𝛽 𝜁

𝑝
𝛾 d𝜁,

for 𝑚,𝑛, 𝑝 ∈ N+
0 , where equality of a quadrature rule is required for all choices satisfying

𝑚+ 𝑛+ 𝑝 ≤ 5. Note that the first factor arises from the equilibrium distribution and we
have explicitly set 𝑑 = 3. We take the following ansatz for the quadrature rule 𝑄𝑚,𝑛,𝑝

𝐼𝑚,𝑛,𝑝 ≈ 𝑄𝑚,𝑛,𝑝 := 𝜋−3/2(2𝑅𝑇 )
𝑚+𝑛+𝑝

2

∑︁
(𝑗,𝑘,𝑙)∈𝒥

𝑤𝑗,𝑘,𝑙 𝜁
𝑚
𝑗 𝜁𝑛𝑘 𝜁

𝑝
𝑙 ,

with weights 𝑤𝑗,𝑘,𝑙 and nodes 𝜁𝑖. To obtain the velocity set of D3Q19, the index set 𝒥
shall be given by

𝒥 =
{︁
(𝑗, 𝑘, 𝑙) ∈ {−1, 0, 1}3 | 𝑗 = 0 ∨ 𝑘 = 0 ∨ 𝑙 = 0

}︁
. (2.33)

The or-operator (∨) in the definition of 𝒥 is seen to be non-exclusive. The solution for
𝑄𝑚,𝑛,𝑝 under the given requirements has nodes of a Gauß-Hermite quadrature [87]

𝜁−1 = −
√︀
3/2, 𝜁0 = 0, 𝜁1 =

√︀
3/2,

and corresponding weights as follows

𝑤𝑗,𝑘,𝑙 =

⎧⎪⎪⎨⎪⎪⎩
𝜋3/2

3 for (𝑗, 𝑘, 𝑙) = (0, 0, 0),
𝜋3/2

18 for (𝑗, 𝑘, 𝑙) ∈
{︁
(±1, 0, 0), (0,±1, 0), (0, 0,±1)

}︁
,

𝜋3/2

36 otherwise.

The quadrature rule for the integrals (2.32) is thereby fully given, and we can proceed
with deriving the discrete velocities for the D3Q19 model.

Lattice vectors of D3Q19 A discrete set of velocities

𝒱 =
{︀
𝑐𝑖 ∈ R3 | 𝑖 = 0, . . . , 𝑞 − 1

}︀
(2.34)

is obtained from the quadrature rule by constructing vectors 𝑐𝑖 =
√
2𝑅𝑇 (𝜁𝑗 , 𝜁𝑘, 𝜁𝑙)

⊤. Each
index 𝑖 corresponds to a combination of indices 𝑗, 𝑘, 𝑙, i.e., to an element of index set 𝒥 .
Also new weights are constructed by the same mapping 𝑤𝑖 =

1
𝜋3/2𝑤𝑗,𝑘,𝑙. Note that 𝒥 is a

set of 19 vectors, therefore 𝑞 = 18 and the discrete velocity set 𝒱 of D3Q19 is therefore
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Figure 2.1: Lattice vectors of D3Q19 – Illustration of the lattice vectors (2.36) of the
D3Q19 model. Vectors shown in red are unitary, while vectors shown in blue
satisfy ‖𝑐𝑗‖ =

√
2𝑐.

defined. By introducing

𝑐 =
√
3𝑅𝑇 (2.35)

these discrete velocities, also called lattice vectors, in D3Q19 are

𝑐0 =

⎛⎝0
0
0

⎞⎠ , 𝑐1−6 =

⎧⎨⎩
⎛⎝±𝑐

0
0

⎞⎠ ,

⎛⎝ 0
±𝑐
0

⎞⎠ ,

⎛⎝ 0
0
±𝑐

⎞⎠⎫⎬⎭ ,

𝑐7−18 =

⎧⎨⎩
⎛⎝±𝑐
±𝑐
0

⎞⎠ ,

⎛⎝±𝑐
0
±𝑐

⎞⎠ ,

⎛⎝ 0
±𝑐
±𝑐

⎞⎠⎫⎬⎭ .

(2.36)

See also Fig. 2.1 for a visual depiction. For the chosen assignment from 𝒥 to an index 𝑖
the corresponding weights 𝑤𝑖 read

𝑤0 =
1

3
, 𝑤1−6 =

1

18
and 𝑤7−18 =

1

36
.

Thus with the discrete velocities (2.36), any moment of the equilibrium distribution is
approximately given as∫︁

R3

𝜓(𝜉)𝑓 eq(𝜉,𝑥, 𝑡) d𝜉 ≈
18∑︁
𝑗=0

𝜓(𝑐𝑗)𝜌𝑤𝑗

[︃
1 +

3⟨𝑐𝑗 , 𝑢⟩
𝑐2

+
9⟨𝑐𝑗 , 𝑢⟩2

2𝑐4
− 3 |𝑢|2

2𝑐2

]︃
. (2.37)

By construction, the quadrature rule is exact for polynomials 𝜓 up to third degree.

The lattice Boltzmann (LB) equation can be formulated now by combining the time dis-
crete BGK-Boltzmann equation (2.30) and the discrete lattice velocities. A short presen-
tation of other very common discrete velocity sets can be found in Appendix A.
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2.3.4 Lattice Boltzmann equation

The velocity 𝜉 in the time discrete BGK-Boltzmann equation (2.30) is treated like a free
parameter. In particular, (2.30) represents an individual equation for each fixed 𝜉 ∈ R𝑑,
thus (2.30) describes an infinite system. We use the discrete velocities to obtain a finite
number of equations and a fully discretized scheme, since a space discretization is implied:

Δ𝑥 = 𝑐𝑖Δ𝑡. (2.38)

It is important to note, that an expression like (2.37) also holds for other velocity models
(see Appendix A). From (2.37) it is obvious to define a discrete equilibrium distribution
as follows

𝑓 eq
𝑖 (𝑥, 𝑡) = 𝜌𝑤𝑖

[︃
1 +

3⟨𝑐𝑖, 𝑢⟩
𝑐2

+
9⟨𝑐𝑖, 𝑢⟩2

2𝑐4
− 3 |𝑢|2

2𝑐2

]︃
, (2.39)

where the weights for common discrete velocity models are given in Table 2.1 [103]. With
help of the low-Mach-number approximation (2.31) we can conclude (see also [42])

𝑓 eq
𝑖 (𝑥, 𝑡) = (2𝜋𝑅𝑇 )𝑑/2 exp

(︃
|𝑐𝑖|2

2𝑅𝑇

)︃
𝑤𝑖𝑓

eq(𝑐𝑖,𝑥, 𝑡) +𝒪(𝑢3).

Similarly a discrete analogy of the single particle distribution, so-called populations, are
defined by

𝑓𝑖(𝑥, 𝑡) := (2𝜋𝑅𝑇 )𝑑/2 exp

(︃
|𝑐𝑖|2

2𝑅𝑇

)︃
𝑤𝑖𝑓(𝑐𝑖,𝑥, 𝑡).

Using the discrete distributions, the BGK-Boltzmann equation (2.30) reduces to a finite
system of 𝑞 equations as follows

𝑓𝑖(𝑥+ 𝑐𝑖Δ𝑡, 𝑡+Δ𝑡) = 𝑓𝑖(𝑥, 𝑡) := 𝑓𝑖(𝑥, 𝑡) + CBGK,𝑖, (2.40)

with the discrete BGK collision model

CBGK,𝑖 := −𝜔
[︀
𝑓𝑖(𝑥, 𝑡)− 𝑓 eq

𝑖 (𝑥, 𝑡)
]︀
. (2.41)

Equation (2.40) is known as the lattice Boltzmann equation (LBE). Often the term lattice
BGK equation is used, to emphasize the collision model. In the discrete variant the
macroscopic dynamic quantities, originally defined in (2.8) and (2.9) by moments of the
single particle distribution, are computed via

𝜌(𝑥, 𝑡) =

𝑞−1∑︁
𝑗=0

𝑓𝑗(𝑥, 𝑡), 𝑢(𝑥, 𝑡) =
1

𝜌(𝑥, 𝑡)

𝑞−1∑︁
𝑗=0

𝑐𝑗𝑓𝑗(𝑥, 𝑡). (2.42)

We note that 𝑐 is fixed in the LBM, meaning the temperature 𝑇 does not have to be
computed. Thus, the LBM simulates isothermal flows of fluids. For later use we note
that the local computation of 𝑓𝑖(𝑥, 𝑡) in (2.40) is commonly known as the collision step.
The assignment to the left hand side, i.e., the movement to adjacent grid points and the
temporal progress, is called streaming step (also transport step).
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Table 2.1: Weights of the discrete equilibrium distribution – Values of the weights 𝑤𝑗 in
the discrete equilibrium distribution (2.39) for several discretization models.

weights for
|𝑐𝑗 | = 0 |𝑐𝑗 | = 𝑐 |𝑐𝑗 | =

√
2𝑐 |𝑐𝑗 | =

√
3𝑐

D1Q3 2
3

1
6 - -

D2Q7 1
2

1
12 - -

D2Q9 4
9

1
9

1
36 -

D3Q15 2
9

1
9 - 1

72

D3Q19 1
3

1
18

1
36 -

D3Q27 8
27

2
27

1
54

1
216

Although first order approximations have been used above, the LBM is second order in
space and time [101], since the discretization error can be absorbed into the viscosity term,
such that it reads:

𝜈 =
Δ𝑡

3

(︂
1

𝜔
− 1

2

)︂
𝑐2. (2.43)

An asymptotic analysis, like a Chapman-Enskog expansion [12], shows that the fluid quan-
tities (2.42) evolve according to the compressible NSE. Moreover we remark that the col-
lision model principally determines the macroscopic behavior. So, for example the incom-
pressible NSE can be recovered when the equilibrium distribution in the BGK model (2.41)
is slightly changed, see, e.g., [41]. Another example can be found below in Section 2.4.1.
Without going into details, we also point out the existence of other collision models than
the BGK operator. Popular alternatives are the multiple-relaxation-time (MRT) model
[21] and the two-relaxation-time (TRT) model [32]. For discussion of these models, their
advantages and other alternatives, we refer to literature. A nice first overview of several
further enhancements is given in [104], it contains, e.g., the incorporation of forces and
the simulation of multiple phases/components [36, 95, 96].

2.4 Lattice Boltzmann beyond Navier-Stokes equations

In previous sections the LBM was considered solely as a scheme for solving the NSE. The
aim of the current section is to demonstrate that the LBM allows for more applications
than classic fluid flows described by NSE. Above we have hinted at the influence of the
equilibrium distribution to the macroscopic expression. Regarding this, we go into more
detail in Section 2.4.1 and demonstrate that a simple one-dimensional lattice Boltzmann
model can be constructed to achieve mainly an advection equation. This model will later
be the central component of the considerations in Chapter 4. In Section 2.4.2 we further
demonstrate that the LBM is not limited to isothermal NSE by discussing thermodynami-
cal flows. Moreover we list some further applications of the LBM, showing that the method
has a wide range of applications.
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2.4.1 Advection equation with the D1Q2 model

We consider the lattice BGK equation (2.40) for the one-dimensional discretization 𝑐1 = −𝑐
and 𝑐2 = 𝑐 (D1Q2). This model is a restriction of the D1Q3 discretization, where the rest
velocity of D1Q3 has been neglected. Hence, to simplify the comparison between both
models (in upcoming chapters) we enumerate the discrete velocities starting with index 1
for D1Q2. For the sake of simplicity we assume 𝑐 = 1 in the following. We remark that
based on D1Q2 no model can be constructed, which would recover the NSE. Here, in the
lattice BGK equation we take a simple discrete equilibrium distribution as follows

𝑓 eq
𝑖 (𝑥, 𝑡) =

1

2
𝜌(𝑥, 𝑡) (1 + 𝑎𝑐𝑖) , (2.44)

with a parameter 𝑎 ∈ (−1, 1) and the local quantity 𝜌 defined by the zeroth moment:

𝜌 = 𝑓1 + 𝑓2. (2.45)

Next, we use a Chapman-Enskog analysis [12] to obtain the macroscopic evolution equation
for the given model. The grid and time spacing shall be given by ℎ > 0.

Chapman Enskog expansion for D1Q2 For the Chapman-Enskog analysis the popula-
tions are expanded

𝑓𝑖 = 𝑓
(0)
𝑖 + ℎ𝑓

(1)
𝑖 + ℎ2𝑓

(2)
𝑖 + ℎ3𝑓

(3)
𝑖 +𝒪(ℎ4), (2.46)

where 𝑓 (0)𝑖 = 𝑓 eq
𝑖 is the local equilibrium distribution (2.44). We omit the arguments of

the populations throughout the Chapman-Enskog analysis. The operators are formally
expanded as

𝜕

𝜕𝑡
=
𝜕(0)

𝜕𝑡
+ ℎ

𝜕(1)

𝜕𝑡
+ ℎ2

𝜕(2)

𝜕𝑡
,

𝜕

𝜕𝑥
=
𝜕(0)

𝜕𝑥
. (2.47)

The Chapman-Enskog analysis begins with a Taylor series expansion of the left hand side
of (2.40) (Δ𝑡 = ℎ), resulting in

ℎ

(︂
𝜕

𝜕𝑡
+ 𝑐𝑖

𝜕

𝜕𝑥

)︂
𝑓𝑖 +

ℎ2

2

(︂
𝜕

𝜕𝑡
+ 𝑐𝑖

𝜕

𝜕𝑥

)︂2

𝑓𝑖

+
ℎ3

6

(︂
𝜕

𝜕𝑡
+ 𝑐𝑖

𝜕

𝜕𝑥

)︂3

𝑓𝑖 +𝒪(ℎ4) = −𝜔
(︁
𝑓𝑖 − 𝑓

(0)
𝑖

)︁
.

(2.48)

For later use we introduce the abbreviations

D𝑡 =
𝜕

𝜕𝑡
+ 𝑐𝑖

𝜕

𝜕𝑥
and D(0)

𝑡 =
𝜕(0)

𝜕𝑡
+ 𝑐𝑖

𝜕(0)

𝜕𝑥

for the substantial derivative, where the formal expansion of D(0)
𝑡 is explained by (2.47).

The expanded expressions (2.46) and (2.47) are inserted in the Taylor expanded lattice
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BGK equation (2.48). The outcome is split with respect to powers of ℎ:

ℎ1 : D(0)
𝑡 𝑓

(0)
𝑖 = −𝜔𝑓 (1)𝑖 ,

ℎ2 :
(︁
1− 𝜔

2

)︁
D(0)

𝑡 𝑓
(1)
𝑖 +

𝜕(1)

𝜕𝑡
𝑓
(0)
𝑖 = −𝜔𝑓 (2)𝑖 ,

ℎ3 :
𝜕(2)

𝜕𝑡
𝑓
(0)
𝑖 +

𝜕(1)

𝜕𝑡
𝑓
(1)
𝑖 + D(0)

𝑡 𝑓
(2)
𝑖 − 𝜔

𝜕(1)

𝜕𝑡
𝑓
(1)
𝑖 +

(︂
1

2
− 𝜔

6

)︂(︁
D(0)

𝑡

)︁2
𝑓
(1)
𝑖 = −𝜔𝑓 (3)𝑖 .

In the Chapman-Enskog analysis, macroscopic equations are achieved by computing mo-
ments of this expanded equation. For our purpose, it is sufficient to compute the zeroth
moment, which is done below in the split formulation, i.e., we compute the moment for
each order of ℎ separately. Although we are only interested in zeroth moments, we also
have to compute some first moments, because a first moment of the ℎ𝑘-terms is required
to express the zeroth moment of ℎ𝑘+1-terms. That means, we have to compute the zeroth
and the first moment of ℎ1- and ℎ2-terms, as well as the zeroth moment of ℎ3-terms. All
moments of 𝑓 (𝑘)𝑖 , 𝑘 ≥ 1, can be reduced to a calculation of higher moments of the local
equilibrium (2.44). The latter can be stated explicitly. In fact, zeroth moments of 𝑓 (𝑘)𝑖

vanish for all 𝑘 ≥ 1. Furthermore, the zeroth moment of 𝑓𝑖 is exclusively defined by the
discrete equilibrium. In total we get the following zeroth moments:

ℎ1 :
𝜕(0)

𝜕𝑡
𝜌+ 𝑎

𝜕(0)

𝜕𝑥
𝜌 = 0,

ℎ2 :
𝜕(1)

𝜕𝑡
𝜌 = 𝜂

𝜕(0)

𝜕𝑥

𝜕(0)

𝜕𝑥
𝜌,

ℎ3 :
𝜕(2)

𝜕𝑡
𝜌 = 𝜆

𝜕(0)

𝜕𝑥

𝜕(0)

𝜕𝑥

𝜕(0)

𝜕𝑥
𝜌,

with

𝜂 =

(︂
1

𝜔
− 1

2

)︂
(1− 𝑎2), 𝜆 = 2𝑎

(︁ 1

𝜔2
− 1

𝜔
+

1

6

)︁(︁
1− 𝑎2

)︁
. (2.49)

All terms are recomposed to a single equation, this yields

𝜕𝜌

𝜕𝑡
+ 𝑎

𝜕𝜌

𝜕𝑥
= ℎ𝜂

𝜕2𝜌

𝜕𝑥2
+ ℎ2𝜆

𝜕3𝜌

𝜕𝑥3
+𝒪(ℎ3).

Thus, for ℎ small the dominant behavior of the D1Q2 model with equilibrium (2.44) is
given by an advection with constant velocity defined by 𝑎. Additionally, on a lower scale
numerical diffusion appears. The same result is obtained by Junk and Rheinländer [56]
with their more general asymptotic expansion.

2.4.2 Thermodynamical flows and other applications

The previous section gave already a detailed example for a LBM with another application
than the NSE. As an explicit numerical scheme with only local operations, the LBM
is naturally attractive for all kind of problems. It has the advantage of being easy to
implement on recent computer architectures focusing on parallel computations. And it is
especially suitable for computations on graphics processing units (GPUs), e.g., [110, 121].
In this section we merely list some partial differential equations (PDEs) which can be
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numerically solved with a suitable LBM. By this we aim to demonstrate that the LBM is
by now a more universal scheme than originally developed.

The model of the previous section has shown to recover mainly a one-dimensional ad-
vection equation. The approach can be extended so the LBM can also be used to solve
higher dimensional (nonlinear) convection-diffusion equations [97, 111]. A LBM can be
constructed for solving the Korteweg-de Vries equations [124] and the shallow water equa-
tions [70, 126]. It is noteworthy that the shallow water equations can be derived from the
NSE and therefore do not represent a completely different class of problems. However,
LBMs for PDEs which have a clear distance from the NSE exist. They comprise the Kohn-
Sham equations [76], Maxwell equations [75], (second order) Benjamin-Ono equations [67]
and quantum LB simulations for Bose–Einstein condensates (Gross-Pitaevskii equation)
[78].

Moreover let us go into more detail for a method used for thermodynamical processes, such
as the Rayleigh-Bénard convection [31]. For thermodynamical flows the NSE (2.3) are
often considered alongside with an energy conservation equation. Firstly, we recapitulate
that the basic LBM simulates isothermal flows of fluids. Secondly, for the derivation
of the D3Q19 velocities the conservation condition (2.16) was used, which implied the
requirement 𝑑𝑝 ≥ 5 (see Section 2.3.3 for details). To recover an energy equation with the
LBM the conservation condition (2.16) has to be extended by∫︁

R𝑑

𝜓5𝑄(𝑓) d𝜉 = 0,

with 𝜓5 = |𝜉|2, see (2.7). This implies 𝑑𝑝 ≥ 6 and it can be shown that the D3Q19 is not
capable to satisfy the resulting requirement. Therefore to obtain an energy conservation
equation the lattice vectors have to be adapted, e.g., by using multi-speed models. A
review of multi-speed models for thermodynamical simulations is given in [34]. Using a
multi-speed approach with the BGK approximation has the limitation to have a fixed
Prandtl number. This is caused by having only one free parameter. The problem can be
overcome by using a collision operator having more free parameters or by using a double
distribution function approach instead [34]. In double distribution function approaches
the energy equation is obtained by a separate LBM. It is also conceivable to construct
a hybrid method, where the NSE (2.3) are solved by a classical solver and the energy
equation by a LB scheme, as presented here. A hybrid method the other way round is
proposed in [68]. We here consider only the energy LBM, given by the LBE for the energy
populations, say 𝑔𝑖:

𝑔𝑖(𝑥+ 𝑐𝑖Δ𝑡, 𝑡+Δ𝑡)− 𝑔𝑖(𝑥, 𝑡) = C𝑖(𝑥, 𝑡).

The flow variables, i.e., density and fluid velocity are assumed to be known already, such
that the energy variations may only have a negligible effect on the real fluid’s motion. In
the model of He et al. [39] the right hand side is chosen by a BGK approximation plus a
source term. In this way, their model is able to incorporate viscous dissipation as well as
compression work. Neglecting additional source terms, i.e., when having a simple BGK
like collision term

C𝑖(𝑥, 𝑡) = −𝜔𝑔 [𝑔𝑖(𝑥, 𝑡)− 𝑔eq
𝑖 (𝑥, 𝑡)] ,

the model is not considering viscous dissipation and compression work. Thus it satisfies
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an advection-diffusion-equation [80, 81]

𝜕(𝜌𝑒)

𝜕𝑡
+∇ · (𝜌𝑒𝑢) = ∇ · (𝜌𝜒∇𝑒) ,

provided the following 𝑑-dimensional discrete energy equilibrium is used in the collision
term

𝑔eq
𝑖 (𝑥, 𝑡) = 𝑤𝑖𝜌𝑒

[︃
3
⃒⃒
𝑐2𝑖
⃒⃒

𝑑𝑐2
+

(︃
9 |𝑐𝑖|2

𝑑𝑐2
− 6

𝑑

)︃
⟨𝑐𝑖, 𝑢⟩
𝑐2

+
9

2

⟨𝑐𝑖, 𝑢2⟩
𝑐4

− 3

2

|𝑢|2

𝑐2

]︃
,

with model dependent weights 𝑤𝑖 as in Table 2.1. The relaxation time 𝜔𝑔 is related to
the thermal conductivity 𝜒, and the zeroth moment of 𝑔𝑖 computes the energy density
[39, 80, 81]

𝜌(𝑥, 𝑡)𝑒(𝑥, 𝑡) =

𝑞−1∑︁
𝑗=0

𝑔𝑗(𝑥, 𝑡).

This model again emphasizes that the equilibrium distribution is essential for the macro-
scopic evolution.

2.5 Problem formulation

In this section we summarize a complete LB simulation solving an arbitrary physical
problem. For later use, we introduce the notation

𝑃 := LB(𝒢, 𝒯 ,𝒱,C, 𝑓𝑗 , 𝐼𝑗 , 𝐵𝑗),

where LB(𝒢, 𝒯 ,𝒱,C, 𝑓𝑗 , 𝐼𝑗 , 𝐵𝑗) represents a complete LB setup as explained below, shortly
referred to as 𝑃 . Next, the arguments of LB() are explained in detail by summarizing the
procedure described in the sections above.

Discrete spaces Let Ω ⊂ R𝑑 be the 𝑑−dimensional computational domain on which the
problem is formulated. The LB simulation is working on a computational grid 𝒢, which
is a discrete subset of Ω:

𝒢 ⊆ Ω ∩ 𝜚Z𝑑, 𝜚 ∈ R.

A set of discrete velocities, sometimes called lattice vectors, is essential for the simulation:

𝒱 = {𝑐𝑗 ∈ R𝑑 | 𝑗 ∈ ℐ}.

Hereby ℐ is the set of feasible indices for discrete velocities, populations and any derived
quantities. It depends on the chosen discretization model. Using the temporal step size
Δ𝑡 and an initial time 𝑡0 we obtain a set of (𝑁𝑡 + 1) discrete time levels

𝒯 = {𝑡𝑘 ∈ R | 𝑡𝑘 = 𝑡0 + 𝑘Δ𝑡, 𝑘 = 0, . . . , 𝑁𝑡}.
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The LBM computes the evolution of populations

𝑓𝑗 : 𝒢 × 𝒯 → R, 𝑗 ∈ ℐ.

The evolution process is split into a streaming step and a collision step. Hereby, the local
collision is described by a term C.

Type of grid points We can distinguish two categories, ℬ and ℱ , for a lattice point
𝑥 ∈ 𝒢 = ℬ ∪ ℱ . First, a boundary point 𝑥 ∈ ℬ is given when there is a lack of adjacent
points. That is, 𝑥𝑏 ∈ ℬ is called a boundary point if there is at least one lattice vector
𝑐𝑗 ∈ 𝒱, such that 𝑥𝑏 − 𝑐𝑗Δ𝑡 /∈ 𝒢. The reason for writing the last statement in this form
(i.e., with a minus sign) is, because it is this lack of an adjacent lattice point which leads
to an undetermined population 𝑓𝑗(𝑥𝑏, 𝑡). The first category ℬ ⊂ 𝒢 is formally given by

ℬ := {𝑥 ∈ 𝒢 | ∃𝑗 ∈ ℐ : 𝑥− 𝑐𝑗Δ𝑡 /∈ 𝒢, 𝑐𝑗 ∈ 𝒱} . (2.50)

The second category ℱ := 𝒢 ∖ℬ is the set of all ordinary lattice points, for which the LBE
is used to compute new populations.

Initialization For the algorithm to work, obviously, populations have to be initialized at
𝑡 = 𝑡0, that is done formally by 𝑓𝑗(𝑥, 𝑡0) = 𝐼𝑗(𝑥), 𝑥 ∈ 𝒢, with functions

𝐼𝑗 : 𝒢 → R, 𝑗 ∈ ℐ.

Boundary problem For each boundary lattice point 𝑥𝑏 ∈ ℬ, as defined via (2.50), we
can split the index set ℐ into three disjunctive subsets

ℐ−
𝒢 (𝑥𝑏) := {𝑗 ∈ ℐ | 𝑥𝑏 − 𝑐𝑗Δ𝑡 /∈ 𝒢} , (2.51a)

ℐ+
𝒢 (𝑥𝑏) :=

{︀
𝑗 ∈ ℐ ∖ ℐ−

𝒢 (𝑥𝑏) | 𝑐𝑘 = −𝑐𝑗 , 𝑘 ∈ ℐ−
𝒢 (𝑥𝑏)

}︀
, (2.51b)

ℐ0
𝒢(𝑥𝑏) := ℐ ∖

(︀
ℐ−
𝒢 (𝑥𝑏) ∪ ℐ+

𝒢 (𝑥𝑏)
)︀
. (2.51c)

For each boundary point 𝑥𝑏 ∈ ℬ, the populations 𝑓𝑗(𝑥𝑏, 𝑡), 𝑗 ∈ ℐ−
𝒢 (𝑥𝑏), are not explained

by the LBE, due to the lack of a required adjacent lattice point. To ensure having all
populations in all grid points 𝑥 ∈ 𝒢 at any time, an additional equation is necessary to
compute the undetermined populations 𝑓𝑗(𝑥𝑏, ·), 𝑗 ∈ ℐ−

𝒢 (𝑥𝑏). This is exactly the minimal
task of a boundary condition (BC) within the LBM. Therefore, the general formulation of
a LB simulation ends with imposing BCs for these undetermined populations:

𝑓𝑗(𝑥𝑏, 𝑡) = 𝐵𝑗(𝑥𝑏, 𝑡), 𝑥𝑏 ∈ ℬ, 𝑗 ∈ ℐ−
𝒢 (𝑥𝑏), 𝑡 ∈ 𝒯 := 𝒯 ∖ {𝑡0}. (2.52)

Each 𝐵𝑗 is seen as a function 𝐵𝑗 : ℬ×𝒯 → R, where 𝑗 ∈ ℐ−
𝒢 (𝑥𝑏). We note that some BCs

also recompute (some) already known populations at a boundary point (e.g., [98]), then
𝑗 ∈ ℐ. At a first glance, the choice of 𝐵𝑗 is in some sense arbitrary, although a derivation
from a physical condition is more reasonable. For example one can compute the unknown
populations in such a way that a fluid pressure or velocity at the boundary is specified
[127]. If a boundary of the computational domain is aligned with a physical boundary often
a physical condition can be chosen. Exemplarily, for a boundary which physically agrees
with a wall, often no-slip BCs are applicable [52]. However, for open boundaries, which
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are not aligned with any physical boundary, a condition has to be found, which behaves
still physically correct. The following chapters focus on this and aim finding conditions
for open boundaries.





3 Chapter 3

Non-reflecting boundary conditions

We consider open boundaries, i.e., boundaries not aligned with a physical boundary. Ap-
plying for instance a fixed pressure condition here will generate some unphysical, spurious
reflections. For open boundaries the BC should compute the incoming populations such
that the boundary preferably has no interaction with the fluid. In this chapter we first
discuss such an ideal transparent boundary condition (ITBC) for open boundaries (Sec-
tion 3.1). This ITBC is of importance for measuring errors of other BCs. The second
section (Section 3.2) gives a short literature survey of existing concepts of open boundaries
for the LBM for fluid flows. Hereby, we go into more detail for so-called impedance bound-
ary conditions (IBCs) [93] and perfectly matched layer (PML) approaches [18, 77, 106],
since they are used to draw comparisons with our own BCs, which are found in this and in
upcoming chapters. One of our BCs is an extension to characteristic boundary conditions
(CBCs) [53, 59]. The original version and our extension is presented in Section 3.3, in Sec-
tion 3.4 one finds further enhancements of CBCs. The upcoming two chapters deal with
remaining BCs developed by us, which unlike the BCs of this chapter are fully described
on the discrete level.

For what follows, let all populations in interior grid points 𝑥 ∈ ℱ be given at all time levels
up to time 𝑡 = 𝑡𝑠+1. This assumption implies that all populations in a boundary point
𝑥𝑏 ∈ ℬ up to time 𝑡 = 𝑡𝑠 are known, as well as 𝑓𝑗(𝑥𝑏, 𝑡𝑠+1), 𝑗 ∈ ℐ ∖ ℐ−

𝒢 (𝑥𝑏). Especially,
also the macroscopic quantities (2.42) at time level 𝑡 = 𝑡𝑠 are known in a boundary point.
Hence, we concentrate on open BCs for the time level 𝑡 = 𝑡𝑠+1, having the task to compute
the unknown populations for 𝑥𝑏 ∈ Γ at time 𝑡 = 𝑡𝑠+1. Here Γ ⊆ ℬ is the set of all boundary
points which correspond to an open boundary. The boundaries considered here are further
assumed to be aligned with the main lattice direction. In other words, we are considering
a LB setup 𝑃 (see also Section 2.5)

𝑃 := LB(𝒢, 𝒯 ,𝒱,C, 𝑓𝑗 , 𝐼𝑗 , 𝐵𝑗) (3.1)

and are looking for the values of 𝐵𝑗(𝑥𝑏, 𝑡𝑠+1), 𝑥𝑏 ∈ Γ, 𝑗 ∈ ℐ−
𝒢 (𝑥𝑏). For 𝑥𝑏 ∈ ℬ ∖ Γ the

boundary populations 𝐵𝑗(𝑥𝑏, 𝑡𝑠+1) shall be given, e.g., derived from physical information
at these boundaries.

3.1 An ideal transparent boundary condition

Let be given the setup 𝑃 of (3.1), i.e., a LB simulation on a computational grid 𝒢 with
initial data 𝐼𝑗(𝑥) for all 𝑥 ∈ 𝒢. Furthermore, we consider

𝑃 ref := LB(𝒢ref, 𝒯 ,𝒱,C, 𝑓 ref
𝑗 , 𝐼ref

𝑗 , 𝐵ref
𝑗 ),

29
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open boundary points Γ open boundary points Γrefinlet

Figure 3.1: Extension of a computational grid for a two-dimensional channel flow – On
top the computational grid 𝒢 for a two-dimensional channel flow is visualized,
while its extended grid 𝒢ref is shown at the bottom. Within the extension the
open boundary points of 𝒢 become usual interior fluid points.

this is another, equally discretized LB simulation on a sufficiently larger computational grid
𝒢ref ⊃ 𝒢. Let Γref ⊆ ℬref denote the set of lattice points corresponding to open boundaries
of ℬref. The reference grid 𝒢ref is said to be sufficiently larger if the populations 𝑓 ref

𝑗 (𝑥𝑏, ·),
𝑥𝑏 ∈ Γ ⊂ 𝒢 ⊂ 𝒢ref, are independent of 𝐵ref

𝑗 (𝑥, 𝑡), for all 𝑥 ∈ Γref and 𝑡 ∈ 𝒯 . That is,
the boundary populations 𝐵𝑗 in (3.3) are independent of open boundary values 𝐵ref

𝑗 (𝑥, ·),
𝑥 ∈ Γref. In particular for 𝒢ref this implies an extension specially at the open boundaries,
that is Γ∩Γref = ∅. We illustrate an extended grid for a two-dimensional channel flow in
Fig. 3.1. The formulation equally discretized used above refers to the equal choice of the
velocity discretization model 𝒱 as well as using same spatial and temporal step sizes. The
superscript in the setup 𝑃 ref indicates that the populations 𝑓 ref

𝑗 serve as reference values.
For these reference populations we require a consistent initialization in the joint lattice
points 𝒢ref ∩ 𝒢 = 𝒢:

𝐼ref
𝑗 (𝑥) = 𝐼𝑗(𝑥) for all 𝑥 ∈ 𝒢. (3.2)

Eventually, an ITBC for the open boundary is equivalent to compute the unknown popu-
lations of 𝑃 by

𝑓𝑗(𝑥𝑏, 𝑡𝑠+1) = 𝐵𝑗(𝑥𝑏, 𝑡𝑠+1) := 𝑓 ref
𝑗 (𝑥𝑏, 𝑡𝑠+1), 𝑥𝑏 ∈ Γ, 𝑗 ∈ ℐ−

𝒢 (𝑥𝑏). (3.3)

Clearly, the ideal populations depend not only on the initial values of (3.2), but also
on the initial populations 𝐼ref

𝑗 (𝑥) in the points 𝑥 ∈ 𝒢ref ∖ 𝒢. Hence, an ITBC takes
exterior information into account (from the view of 𝑃 ). Unless differently mentioned, the
exterior populations are assumed to be chosen homogeneously in an equilibrium state.
The equilibrium is computed with appropriate values of 𝜌 and 𝑢, such that no inflow is
expected to 𝒢.
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After the BC (3.3) has been applied all populations are known at a point 𝑥𝑏, and new val-
ues 𝜌(𝑥𝑏, 𝑡𝑠+1) and 𝑢(𝑥𝑏, 𝑡𝑠+1) can be computed, see (2.42). Therefore some corresponding
values for macroscopic quantities are implied by an ITBC, but it is noteworthy that the
knowledge of these values (i.e., 𝜌(𝑥𝑏, 𝑡𝑠+1) and 𝑢(𝑥𝑏, 𝑡𝑠+1)) would not be sufficient to com-
pute the ideal populations (3.3). More precisely, any boundary condition 𝐵𝑗(𝑥𝑏, 𝑡𝑠+1),
𝑗 ∈ ℐ−

𝒢 (𝑥𝑏), implies corresponding macroscopic quantities and we emphasize that these
quantities are linked to each other: There is a commonly known connection between the
density and the normal velocity, see, e.g., [127]. For the explanation we consider a bound-
ary node 𝑥𝑏 ∈ ℬ of the computational grid (no edge or corner). The unknown populations
are 𝑓𝑗 with 𝑗 ∈ ℐ−

𝒢 (𝑥𝑏), whereas the populations corresponding to the opposite directions,
i.e., 𝑓𝑗 with 𝑗 ∈ ℐ+

𝒢 (𝑥𝑏), are known. Let their sum be denoted by 𝜌+ =
∑︀

𝑗∈ℐ+
𝒢 (𝑥𝑏)

𝑓𝑗

and the sum of the remaining (also known) populations by 𝜌0 =
∑︀

𝑗∈ℐ0
𝒢(𝑥𝑏)

𝑓𝑗 . The latter
is the sum over all populations corresponding to directions tangential to the boundary
and the rest population. The implied density 𝜌(𝑥𝑏, 𝑡) and normal velocity component
𝑢𝑛(𝑥𝑏, 𝑡) = ⟨𝑛, 𝑢(𝑥𝑏, 𝑡)⟩ satisfy the following equations:

𝜌(𝑥𝑏, 𝑡) = 𝜌+(𝑥𝑏, 𝑡) + 𝜌−(𝑥𝑏, 𝑡) + 𝜌0(𝑥𝑏, 𝑡),

𝜌(𝑥𝑏, 𝑡)𝑢𝑛(𝑥𝑏, 𝑡) = 𝜌+(𝑥𝑏, 𝑡)− 𝜌−(𝑥𝑏, 𝑡).

Analogously, it is 𝜌− =
∑︀

𝑗∈ℐ−
𝒢 (𝑥𝑏)

𝑓𝑗 . Both previous expressions are an immediate con-
sequence of the definitions (2.42). The unit normal vector 𝑛 of the boundary is pointing
outside the computational domain. Both equations can be combined, such that no un-
known populations occur anymore:

𝜌(𝑥𝑏, 𝑡) =
2𝜌+(𝑥𝑏, 𝑡) + 𝜌0(𝑥𝑏, 𝑡)

1 + 𝑢𝑛(𝑥𝑏, 𝑡)
. (3.4)

This relation is in some sense fundamental, since it is valid for any BC and not only for an
ITBC. As a direct consequence, there is no actual BC, which implements arbitrary values
of the mass density and the normal velocity at the same time, but only those values which
satisfy (3.4). However arbitrary values can be implemented when also actually known
populations in the boundary point are recomputed.

3.2 Artificial boundary conditions

One has to deal with an artificial boundary if the computational domain is confined,
although the physical problem is easily formulated on a much larger or even an unbounded
domain. Since these open boundaries are not aligned with a physical boundary, finding
a BC describing the open boundary physically correct (see ITBC above) is a challenging
task. Using a standard BC at an open boundary would create unphysical reflections [54].
For example, let us assume we would prescribe a fixed velocity at an open boundary, which
fits to the (unperturbed) background flow of the problem. Any pressure wave traveling
has a fluid velocity component deviating from this background flow velocity. Now, the
only way that the fixed velocity BC can be satisfied when the pressure wave hits the
open boundary is by reflection, so that the deviating fluid velocities of the original and
the reflected wave cancel. To obtain an ideal open boundary, it follows that the velocity
has to be chosen dynamically. For open boundaries in the LBM there exist a couple of
techniques and we list some selected approaches.
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In an exit boundary condition proposed by Chikatamarla et al. [16] the inward populations
at a boundary point 𝑥𝑏 are computed by evaluating a non-equilibrium distribution based
on Grad’s approximation [33]:

𝐵𝑗(𝑥𝑏, 𝑡) = 𝑓G
𝑗

(︀
𝜌(𝑥𝑏, 𝑡−Δ𝑡),𝑢(𝑥𝑏, 𝑡−Δ𝑡),𝑃 (𝑥𝑏, 𝑡−Δ𝑡)

)︀
:= 𝜌𝑤𝑗

⎛⎝1 + 3
⟨𝑐𝑗 , 𝑢⟩
𝑐2

+
9

2

[︁
𝑃 − 𝑐2𝑠𝜌𝐼

]︁
:
[︁
𝑐𝑗𝑐

⊤
𝑗 − 𝑐2𝑠𝐼

]︁
𝑐4

⎞⎠ ,

with values for 𝜌, 𝑢 and 𝑃 from the previous time level. Here 𝐴 : 𝐵 := tr(𝐴𝐵⊤) is the
Frobenius inner product as well as 𝐼 ∈ R𝑑×𝑑 the identity and 𝑃 the pressure tensor

𝑃 (𝑥, 𝑡) =

𝑞−1∑︁
𝑗=0

𝑓𝑗(𝑥, 𝑡)𝑐𝑗𝑐
⊤
𝑗 .

Vergnault et al. [115] extend the computational domain by some additional layers. In this
added zone the viscosity is artificially increased by varying the relaxation parameter. Due
to the monotonically increasing viscosity all waves entering this absorbing layers are aimed
to be damped, so that smaller reflections are observed at the boundary of the extended
domain. Similarly, a technique for damping of acoustic waves is described by Viggen in
[116]. In a strict sense, this concept does not describe a boundary condition, but an
absorbing layer treatment, which still needs a BC to close the layer.

Kam et al. [57] discuss additional BCs for artificial boundaries in their article. In the
following two subsections we present further approaches for artificial boundaries in more
detail, including both a BC and an absorbing layer.

3.2.1 Perfectly matched layers

The concept of a perfectly matched layer (PML) was originally introduced by Bérenger
for absorbing electromagnetic waves of the Maxwell equations [4]. In this approach the
computational grid is extended by a PML region, such that all waves entering this region
are damped or absorbed. To be more precise, the PML technique is not a BC in a strict
sense. It introduces a damping zone in the (extended) computational domain, for which
a BC is still required. The equations in the PML region are constructed, such that, at
least theoretically, waves are not reflected at the interface of the actual computational
domain and the PML region. To explain the PML technique we consider an auxiliary
two-dimensional system of equations

𝜕𝑈

𝜕𝑡
+𝐴

𝜕𝑈

𝜕𝑥1
+𝐵

𝜕𝑈

𝜕𝑥2
= 0, (3.5)

where 𝑈 = 𝑈1+𝑈2 is split. Next, absorption coefficients 𝜎𝑗 are introduced by considering
a decomposed formulation for the above auxiliary system:

𝜕𝑈1

𝜕𝑡
+𝐴

𝜕𝑈

𝜕𝑥1
= −𝜎𝑥𝑈1,

𝜕𝑈2

𝜕𝑡
+𝐵

𝜕𝑈

𝜕𝑥2
= −𝜎𝑦𝑈2.
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This system for the split variables 𝑈 𝑗 can be recast into a system for the original variable
𝑈 by a transformation to the frequency domain, an ensuing analytical combination and
finally a transformation back to the time domain. Details can be found, e.g., in [50], and
the result reads

𝜕𝑈

𝜕𝑡
+𝐴

𝜕𝑈

𝜕𝑥1
+𝐵

𝜕𝑈

𝜕𝑥2
= −(𝜎𝑥 + 𝜎𝑦)𝑈 − 𝜎𝑥𝜎𝑦𝑄− 𝜎𝑦𝐴

𝜕𝑄

𝜕𝑥1
− 𝜎𝑥𝐵

𝜕𝑄

𝜕𝑥2
, (3.6a)

𝜕𝑄

𝜕𝑡
= 𝑈 . (3.6b)

The concept of a PML for the LBM was proposed by Najafi-Yazdi and Mongeau [77] as
well as Tekitek et al. [106]. In the work of Tekitek et al. an MRT collision model is mod-
ified, such that in the asymptotic limit the method recovers the PML formulation of the
macroscopic conservation equations. We do not further examine this approach here. An-
other approach is followed by Najafi-Yazdi and Mongeau [77], which incorporates the PML
technique into the LBM via the mesoscopic level of the discrete velocity BGK-Boltzmann
equation (DVBE) (see, e.g., [82] for more information about the DVBE). Similarly, in the
work of Craig and Hu [18] another PML formulation is given for the DVBE. Although the
focus in [18] lies on finite difference methods for the DVBE, the PML formulation can be
used for the LBM as well. Next, we further explain the PML approaches of Najafi-Yazdi
and Mongeau [77] as well as of Craig and Hu [18].

The PML of Najafi-Yazdi and Mongeau To implement the concept of PMLs to the
LBM Najafi-Yazdi and Mongeau [77] consider the DVBE [82]

𝜕𝑓𝑖
𝜕𝑡

+ 𝑐𝑖 ·∇𝑓𝑖 = CBGK,𝑖, (3.7)

where 𝑓𝑖(𝑥, 𝑡) : R𝑑 ×R → R is the distribution related to a given particle velocity 𝑐𝑖. The
DVBE is equivalently written in a vector notation

𝜕𝑓

𝜕𝑡
+𝐴

𝜕𝑓

𝜕𝑥1
+𝐵

𝜕𝑓

𝜕𝑥2
= CBGK,

where 𝐴 = diag (𝑐0,1, . . . , 𝑐𝑞−1,1) and 𝐵 = diag (𝑐0,2, . . . , 𝑐𝑞−1,2) are diagonal matrices
using 𝑐𝑖 = (𝑐𝑖,1, 𝑐𝑖,2)

⊤, and 𝑓 = (𝑓𝑗)𝑗=0,...,𝑞−1. For an application of the PML technique in
[77] the distribution functions are decomposed as

𝑓 = 𝑓
eq

+ 𝑓
eq

+ 𝑓neq, 𝑓 eq = 𝑓
eq

+ 𝑓
eq
, 𝑓neq = 𝑓 − 𝑓 eq, (3.8)

where the bar and tilde denote the mean and perturbed equilibrium portions, respectively,
and 𝑓neq are the non-equilibrium portions. It is concluded that the DVBE for 𝑓

eq
reads

𝜕𝑓
eq

𝜕𝑡
+𝐴

𝜕𝑓
eq

𝜕𝑥1
+𝐵

𝜕𝑓
eq

𝜕𝑥2
= 0,

and therefore is of the form (3.5), such that the damped PML formulation (3.6) can be
applied to 𝑓

eq
. The authors of [77] propose to use 𝜎𝑥 = 𝜎𝑦 = 𝜎 to overcome numerical

instabilities. After combining all equations for the portions in (3.8), one obtains the PML-
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DVBE to be solved in the PML region:

𝜕𝑓

𝜕𝑡
+𝐴

𝜕𝑓

𝜕𝑥1
+𝐵

𝜕𝑓

𝜕𝑥2
= CBGK + CPML, (3.9)

with

CPML = −𝜎
[︂
𝐴
𝜕𝑄

𝜕𝑥1
+𝐵

𝜕𝑄

𝜕𝑥2
+ 2𝑓

eq
+ 𝜎𝑄

]︂
,

𝜕𝑄

𝜕𝑡
= 𝑓

eq
.

A spatial and temporal discretization of the DVBE (3.7) yields the usual LBE, see, e.g.,
[120]. Together with a discretization of CPML we obtain the LBM with a PML damping
zone. The three-dimensional formulation can be found in [77].

The PML of Craig and Hu Another PML formulation for the DVBE is given by Craig
and Hu in [18]. In contrast to the previous formulation it is based on a decomposition

𝑓 = 𝑓
eq

+ 𝑓 ′,

with 𝑓
eq being the mean flow equilibrium distribution as above in (3.8). The PML equa-

tion is derived for the perturbed portion 𝑓 ′, and thus also non-equilibrium portions are
considered. Moreover a space-time transformation is applied for stability reasons. For a
mean flow in 𝑥1-direction with velocity 𝑢0 it reads

𝑡 = 𝑡+ 𝛽𝑥1, 𝛽 = − 𝑢0
𝑐2𝑠 − 𝑢20

.

Then, the PML formulation is given by (3.9), but with

CPML = −𝜎𝑦𝐴
𝜕𝑄

𝜕𝑥1
− 𝜎𝑥𝐵

𝜕𝑄

𝜕𝑥2
− (𝜎𝑥 + 𝜎𝑦)𝑓

′ − 𝜎𝑥𝜎𝑦𝑄− 𝜎𝑥𝛽𝐴
[︀
𝑓 ′ + 𝜎𝑦𝑄

]︀
− 𝜎𝑦𝛽𝐴𝑓 ′ − 𝜔 [(𝜎𝑥 + 𝜎𝑦)𝑟1 + 𝜎𝑥𝜎𝑦𝑟2] ,

𝜕𝑄

𝜕𝑡
= 𝑓 ′,

𝜕𝑟1
𝜕𝑡

= 𝑓neq,
𝜕𝑟2
𝜕𝑡

= 𝑟1.

The terms in the second line of CPML result from taking non-equilibrium portions into
account. The parameter 𝜔 is explained by the BGK collision model. In [18] also an
alternative PML formulation is achieved, called a split formulation. It mainly differs from
(3.6) by not combining the split equations for 𝑈1 and 𝑈2 in the frequency domain in the
derivation leading to (3.6). For details we refer to [18], the outcome reads as follows:

CPML = −𝜎𝑥𝑞1 − 𝜎𝑦𝑞2 − 𝜎𝑥𝛽𝐴𝑓 ′,

where the auxiliary variables 𝑞1 and 𝑞2 satisfy

𝜕𝑞1
𝜕𝑡

+ 𝜎𝑥𝑞1 + 𝜎𝑥𝛽𝐴𝑓 ′ +𝐴
𝜕𝑓 ′

𝜕𝑥1
= 0,

𝜕𝑞2
𝜕𝑡

+ 𝜎𝑦𝑞2 +𝐵
𝜕𝑓 ′

𝜕𝑥2
= 0.

Like the previous PML approach of Najafi-Yazdi and Mongeau, both PML formulations
are implemented in the LBM in the same way. That is, in the PML region a discretized
variant of CPML is added to the usual lattice BGK equation.
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3.2.2 Impedance boundary condition

The specific acoustic impedance 𝑧 defined as the ratio of pressure to the flow per unit area
is a property of a medium. In acoustics it is well known that a pressure wave is partially
reflected at an interface of two media, when the impedances of both media are not equal
[60]. The impedance boundary condition (IBC) for the LBM developed by Schlaffer [93]
is derived under the assumption that any pressure variation propagates with the speed
of sound 𝑐𝑠. For the IBC of Schlaffer [93] the velocity at the boundary is derived from a
balance equation for the incoming momentum flux and the rate of momentum change in
a control volume, such that both terms cancel out. By this the impedance of the medium
is set appropriately. For a pressure wave with normal incidence the density and normal
velocity 𝑢𝑛 should satisfy

𝜌(𝑥𝑏, 𝑡𝑠+1) [𝑢𝑛(𝑥𝑏, 𝑡𝑠+1)− 𝑢𝑛(𝑥𝑏, 𝑡𝑠)]

(︂
𝑐𝑠 ±

1

2
[𝑢𝑛(𝑥𝑏, 𝑡𝑠+1)− 𝑢𝑛(𝑥𝑏, 𝑡𝑠)]

)︂
(3.10)

± [𝜌(𝑥𝑏, 𝑡𝑠+1)− 𝜌(𝑥𝑏, 𝑡𝑠)] 𝑐
2
𝑠 = 0,

where the plus and minus sign are chosen according to the boundary location. This
expression can be solved explicitly for 𝑢𝑛 by the use of (3.4), such that the normal velocity
is the only unknown. This gives (for the minus sign equation)

𝑢𝑛(𝑥𝑏, 𝑡𝑠+1) = 𝑢𝑛(𝑥𝑏, 𝑡𝑠) + 𝑐2𝑠𝜌𝑧(𝑥𝑏)

+ 𝑐𝑠

(︂
1−

√︁
(𝑐𝑠𝜌𝑧(𝑥𝑏) + 1)2 + 2𝜌𝑧(𝑥𝑏)

[︀
1 + 𝑢𝑛(𝑥𝑏, 𝑡𝑠)

]︀
− 2

)︂
,

where

𝜌𝑧(𝑥𝑏) =
𝜌(𝑥𝑏, 𝑡𝑠)

𝜌0(𝑥𝑏, 𝑡𝑠+1) + 2𝜌+(𝑥𝑏, 𝑡𝑠+1)
.

With the normal velocity given, the density 𝜌(𝑥𝑏, 𝑡𝑠+1) can be computed via (3.4). In
higher dimensions each parallel velocity can be chosen freely, however in [93] it is computed
with a non-equilibrium bounce-back condition (for further details see [93]). Also the inward
populations at a boundary point are computed by evaluating the equilibrium distribution
(2.39) with the dynamic quantities found in addition to a bounce-back rule for the non-
equilibrium portions. Schlaffer also derived further adaptations of the IBC, such as an
isotropic IBC, advantageous for non-orthogonal angles of incidence. Hereby, (3.10) is
substituted by another non-linear expression, for which no explicit solution is available,
thus, as a drawback of the isotropic IBC a numerical solution is required (e.g., by Newton’s
method). For further details and other adaptations, such as those for fixed reference levels
of density and velocity, or an IBC for an incompressible model, see [93]. Lastly we remark,
although populations enter the above computation, the IBC is not derived from discrete
considerations.

3.3 Characteristic boundary conditions

Already before the LBM was known Hedstrom [44] and later Thompson [108] developed
the concept of a characteristic boundary condition (CBC) for nonlinear hyperbolic equa-
tions. Recall that characteristic curves are explained only for hyperbolic equations, see
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Section 2.3.1. The starting point of a CBC is a system (basic system) of hyperbolic equa-
tions (or an equivalent formulation) for the dynamic quantities where the reflection is
aimed to be eliminated. The CBC is then formulated by considering the characteristic
form of the basic system and by performing some analytical steps, which are described
in more detail below. Intuitively, it is best if the basic system agrees with the system
describing the evolution in the interior of the computational domain.

Thus, for an application in CFD, if the fluid in the interior of the computational domain is
modeled by the Euler equations (2.4), the CBC should also select the Euler equations as
the basic system and performs the characteristic analysis on them. Let us remind that the
Euler equations are hyperbolic, while the Navier-Stokes equations represent a singularly
perturbed parabolic system. Therefore, the concept of CBCs is not directly applicable to
Navier-Stokes equations and an appropriate basic system for the characteristic analysis
has to be selected. Below we focus on the application of the CBCs in the LBM.

The CBCs for the LBM presented in the current section below (i.e., [46, 53, 59]) are
constructed with the aim to be perfectly non-reflective. With perfectly non-reflecting
boundaries, we have no control of the pressure at the boundary after the waves have left
the computational domain. Contrary, if we specify a fixed pressure at the boundary, the
boundary loses the non-reflective feature. Similarly, a velocity BC is reflecting, while a
perfectly non-reflecting boundary condition (NRBC) does not give control of the mean
boundary velocity. Modifications shown in Section 3.4 are a compromise of both features,
i.e., the specification of values at the boundary and a non-reflective feature. Non-reflecting
CBCs for the LBM were first introduced by Izquierdo & Fueyo [53] and Kim et al. [59].
In both works the local one-dimensional inviscid (LODI) equations are taken as the basic
system in the derivation of the BC. As an improvement of the LODI based CBCs we
developed a CBC which is based on an extended system [46]. Details are given below for
each the LODI based and our CBC. In all three publications [46, 53, 59] the CBCs focus on
two-dimensional problems, whereas also three dimensional problems are considered below.

3.3.1 Basic systems of characteristic boundary conditions

The macroscopic evolution in the LBM is described by (2.14). This system can easily be
written in the form of Navier-Stokes equations (2.3) by substituting the total stress tensor,
see (2.13), and by using the conservation conditions (2.16). The equation of state (2.15)
is transformed to

𝑝(𝑥, 𝑡) =
𝑐2

3
𝜌(𝑥, 𝑡), (3.11)

by help of (2.21) and (2.35), so the speed of sound 𝑐𝑠 can directly be derived to

𝑐𝑠 =
𝑐√
3
. (3.12)

Therefore the rewritten system (2.14) reads

𝜕𝜌

𝜕𝑡
+∇ · 𝜌𝑢 = 0, (3.13a)

𝜕𝜌𝑢

𝜕𝑡
+∇ ·

(︁
𝜌𝑢𝑢⊤

)︁
= −𝑐2𝑠∇𝜌+∇ · 𝜎, (3.13b)
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and due to being not hyperbolic it is not able to provide as the basic system for a CBC.
The authors in [53, 59] take the LODI equations for two-dimensional problems as the basic
system for their CBCs. Here we state the LODI equations for an open boundary normal to
the 𝑥1-direction, which we call the 𝑥1-LODI equations. Unlike [53, 59], we directly neglect
the energy conservation equation and use the equation of state (3.11) of the LBM:

𝜕𝜌

𝜕𝑡
+ 𝑢1

𝜕𝜌

𝜕𝑥1
+ 𝜌

𝜕𝑢1
𝜕𝑥1

= 0, (3.14a)

𝜕𝑢1
𝜕𝑡

+ 𝑢1
𝜕𝑢1
𝜕𝑥1

+
𝑐2𝑠
𝜌

𝜕𝜌

𝜕𝑥1
= 0, (3.14b)

𝜕𝑢2
𝜕𝑡

+ 𝑢1
𝜕𝑢2
𝜕𝑥1

= 0. (3.14c)

The LODI system (3.14) can be derived from (3.13) by the following approximations: In
(3.13b) the deviatoric stress term is neglected and all tangential derivatives are suppressed.
The drop of the deviatoric stress term is necessary to obtain hyperbolic equations. Con-
trary, the basic system in our CBC [46] is obtained also by neglecting the deviatoric stress
term, but we keep the parallel derivatives. The resulting system reads in vector notation

𝜕𝑈2

𝜕𝑡
+𝐴2,𝑥1

𝜕𝑈2

𝜕𝑥1
+𝐴2,𝑥2

𝜕𝑈2

𝜕𝑥2
= 0, (3.15)

with vector of characteristic variables 𝑈⊤
2 =

(︀
𝜌, 𝑢1, 𝑢2

)︀
. The coefficient matrices are

𝐴2,𝑥1 = 𝐴2,𝑥1(𝑈2) =

⎛⎜⎝𝑢1 𝜌 0
𝑐2𝑠
𝜌 𝑢1 0

0 0 𝑢1

⎞⎟⎠ , 𝐴2,𝑥2 = 𝐴2,𝑥2(𝑈2) =

⎛⎜⎝𝑢2 0 𝜌
0 𝑢2 0
𝑐2𝑠
𝜌 0 𝑢2

⎞⎟⎠ . (3.16)

While the LODI system in the formulation (3.14) is valid only for boundaries normal to
the 𝑥1-direction, the system (3.15) is not limited to a certain boundary orientation. The
systems (3.14) and (3.15) coincide when setting 𝐴2,𝑥2 to zero. Hence, to easily obtain the
𝑥2-LODI equations for a boundary normal to the 𝑥2-direction, we use (3.15) with 𝐴2,𝑥2

from (3.16), but 𝐴2,𝑥1 set to zero. The general 𝑑-dimensional basic system for the vector
of unknowns 𝑈⊤

𝑑 = (𝜌, 𝑢1, . . . , 𝑢𝑑) reads

𝜕𝑈𝑑

𝜕𝑡
+

𝑑∑︁
𝛼=1

𝐴𝑑,𝑥𝛼

𝜕𝑈𝑑

𝜕𝑥𝛼
= 0, 𝑑 = 1, 2, 3. (3.17)

In the one-dimensional case when no tangential derivatives are present, clearly the LODI
based approach and ours coincide. For three-dimensional problems, the LODI based CBC
requires the two coefficient matrices corresponding to parallel derivatives to vanish.

3.3.2 Characteristic analysis

Continuing with (3.17), we omit all subscripts 𝑑 for a better readability. All statements
comprise also LODI based CBCs by neglecting all terms involving parallel derivatives.
The coefficient matrices in (3.17) are (real) diagonalizable, i.e., it holds

𝑅𝑥𝛼𝐴𝑥𝛼𝑅
−1
𝑥𝛼

= Λ𝑥𝛼 , (3.18)
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with diagonal matrices Λ𝑥𝛼 = diag(𝜆𝑥𝛼,1, . . . , 𝜆𝑥𝛼,𝑑+1) of eigenvalues

𝜆𝑥𝛼,1 = 𝑢𝛼 − 𝑐𝑠, 𝜆𝑥𝛼,2 = 𝑢𝛼 + 𝑐𝑠, 𝜆𝑥𝛼,𝑗 = 𝑢𝛼, 𝑗 = 3, . . . , 𝑑+ 1.

Note that the dimension 𝑑 has no effect to the first two eigenvalues, but only determines
the algebraic and geometric multiplicity of the eigenvalue 𝜆 = 𝑢𝛼. Each matrix 𝑅𝑥𝛼 is
constructed from the corresponding eigenvectors, e.g., for 𝑅𝑥1 we get (here 𝑑 = 2)

𝑅𝑥1 =

⎛⎜⎜⎝
𝑐2𝑠 −𝑐𝑠𝜌 0

𝑐2𝑠 𝑐𝑠𝜌 0

0 0 1

⎞⎟⎟⎠ , 𝑅−1
𝑥1

=

⎛⎜⎜⎝
1
2𝑐2𝑠

1
2𝑐2

0

− 1
2𝑐𝑠𝜌

1
2𝑐𝑠𝜌

0

0 0 1

⎞⎟⎟⎠ .

The matrices for other dimensions and directions can be found in Appendix B.

Depending on the location of a boundary point, we identify a number of 𝑁𝑛 spatial deriva-
tives as orthogonal, and the other 𝑁𝑝 = 𝑑−𝑁𝑛 derivatives as parallel. For a usual bound-
ary point there is exactly one orthogonal derivative (𝑁𝑛 = 1), and there are 𝑁𝑝 = 𝑑 − 1
parallel ones. If the boundary point is located at a corner of the computational domain,
then all spatial derivatives are assumed to be orthogonal (𝑁𝑛 = 𝑑). Moreover, in three
dimensions a boundary point may be located on an edge. In this case there shall be two
orthogonal (𝑁𝑛 = 2) and only one parallel derivative (𝑁𝑝 = 1). We denote the orthogonal
derivative(s) with 𝜕

𝜕𝑛𝑗
(normal), with 𝑗 = 1, . . . , 𝑁𝑛. In an analogue manner, the parallel

derivatives are written as 𝜕
𝜕𝑝𝑗

, for 𝑗 = 1, . . . , 𝑁𝑝. For instance let us consider a boundary,
for which the 𝑥1-direction is normal, then 𝑛1 = 𝑥1. On the other hand, for a boundary
point (in three dimensions) lying on an edge which is parallel to the 𝑥2-axis, we have two
orthogonal derivatives, 𝑛1 = 𝑥1 and 𝑛2 = 𝑥3, as well as one parallel derivative 𝑝1 = 𝑥2.
Written in this notation the basic system (3.17) reads

𝜕𝑈

𝜕𝑡
+

𝑁𝑛∑︁
𝑗=1

𝐴𝑛𝑗

𝜕𝑈

𝜕𝑛𝑗
+

𝑁𝑝∑︁
𝑗=1

𝐴𝑝𝑗

𝜕𝑈

𝜕𝑝𝑗
= 0.

The information (3.18) is sufficient to construct a characteristic system, analogue to (2.26):

𝑅𝑛1

𝜕𝑈

𝜕𝑡
+Λ𝑛1𝑅𝑛1

𝜕𝑈

𝜕𝑛1
(3.19)

+𝑅𝑛1

⎡⎣𝑁𝑛∑︁
𝑗=2

𝐴𝑛𝑗𝑅
−1
𝑛1

𝑅𝑛1

𝜕𝑈

𝜕𝑛𝑗
+

𝑁𝑝∑︁
𝑗=1

𝐴𝑝𝑗𝑅
−1
𝑛1

𝑅𝑛1

𝜕𝑈

𝜕𝑝𝑗

⎤⎦ = 0.

Hereby, only one of the orthogonal derivatives is written in characteristic form. In- and
outgoing waves with respect to 𝑛1-direction can be separated by inspecting the sign of the
eigenvalues (entries of Λ𝑛1), see Section 2.3.1. The outgoing waves can be expressed in
terms of the known interior information. However, it is not possible to use the interior
information to compute the incoming waves. If available, an exterior solution can be used
at this. Hedstrom [44] and Thompson [108] proposed for NRBCs that incoming waves are
annihilated. That is, the system (3.19) is modified by substituting Λ𝑛1 with a diagonal
matrix ̃︀Λ𝑛1 . In ̃︀Λ𝑛1 all eigenvalues (entries of Λ𝑛1) corresponding to an incoming wave
are replaced by zero. The modified system is (left-)multiplied with 𝑅−1

𝑛1
to get a system
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in the original variables:

𝜕𝑈

𝜕𝑡
+𝑅−1

𝑛1
̃︀Λ𝑛1𝑅𝑛1

𝜕𝑈

𝜕𝑛1
+

𝑁𝑛∑︁
𝑗=2

𝐴𝑛𝑗

𝜕𝑈

𝜕𝑛𝑗
+

𝑁𝑝∑︁
𝑗=1

𝐴𝑝𝑗

𝜕𝑈

𝜕𝑝𝑗
= 0.

Based on this system, a characteristic analysis is successively repeated for the remaining
orthogonal derivatives. Eventually, we get the CBC system

𝜕𝑈

𝜕𝑡
+

𝑁𝑛∑︁
𝑗=1

̃︀𝐴𝑛𝑗

𝜕𝑈

𝜕𝑛𝑗
+

𝑁𝑝∑︁
𝑗=1

𝐴𝑝𝑗

𝜕𝑈

𝜕𝑝𝑗
= 0, ̃︀𝐴𝑛𝑗 = 𝑅−1

𝑛𝑗
̃︀Λ𝑛𝑗𝑅𝑛𝑗 , (3.20)

which formulates a BC on the macroscopic level. The non-diagonal matrices ̃︀𝐴𝑛𝑗 are
stated in Appendix B. Unlike (3.17), the CBC system (3.20) can be solved with interior
information. We note that all coefficient matrices are time dependent, since mass density
and velocity components are dynamic. We refer to (3.20) as the perfectly non-reflecting
CBC, since it follows the aim to neglect any reflections. However, numerical experiments
will show that in fact there are small reflections, for details see Chapter 6.

3.3.3 Solution of the CBC system

For an application to the LBM, the system which finally formulates a CBC on a macro-
scopic level (such as (3.20) in the case above), has to be solved in each boundary lattice
point 𝑥𝑏. There is no restriction on the procedure how to solve this system numerically,
so the explanation below is only one possible realization.

In the CBC system different types of derivatives appear: We have a time derivative, at least
one spatial derivative orthogonal to the boundary and possibly parallel spatial derivatives.
Each type is treated differently. In a first step all spatial derivatives are discretized using
finite differences, this gives the so-called method of lines approach. Doing so, the PDE
system turns into a system of ODEs. For the parallel derivatives a centered finite difference
stencil can be applied, such as (see, e.g., [88])

𝜕𝑧(𝑥𝑏, 𝑡)

𝜕𝑝
≈ 1

2

(︁
𝑧(𝑥𝑏 + 𝑐Δ𝑡𝑒𝑝, 𝑡)− 𝑧(𝑥𝑏 − 𝑐Δ𝑡𝑒𝑝, 𝑡)

)︁
. (3.21)

Here 𝑧 is an arbitrary quantity and 𝑝 is a parallel direction (i.e., 𝑥1, 𝑥2 or 𝑥3, depending on
the boundary orientation). The vector 𝑒𝑝 is the unit vector in positive 𝑝-direction. We note
that there is a lattice vector 𝑐𝑗 = 𝑐𝑒𝑝, such that 𝑥𝑏 ± 𝑐Δ𝑡𝑒𝑝 refer to the nearest lattice
points in positive and negative 𝑝-direction, respectively. However, for the orthogonal
derivatives with respect to 𝑛 (𝑛 ∈ {𝑥1, 𝑥2, 𝑥3}) a centered difference stencil cannot be
applied, due to a lack of adjacent lattice points. Instead we have to use a one-sided
finite differences. As above 𝑒𝑛 is the unit vector in (positive) 𝑛-direction. Let 𝑛 be the
corresponding unitary normal vector of the boundary, pointing outside the computational
domain. Then the orthogonal derivatives of the CBC system can be discretized with a
second order one-sided finite difference [88]:

𝜕𝑧(𝑥𝑏, 𝑡)

𝜕𝑛
≈ ⟨𝑛, 𝑒𝑛⟩

2

(︁
− 3𝑧(𝑥𝑏, 𝑡) + 4𝑧

(︀
𝑥𝑏 − �̃�𝑛, 𝑡

)︀
− 𝑧
(︀
𝑥𝑏 − 2�̃�𝑛, 𝑡

)︀)︁
(3.22)
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with �̃�𝑛 = 𝑐⟨𝑛, 𝑒𝑛⟩Δ𝑡𝑒𝑛. The inner product ⟨𝑛, 𝑒𝑛⟩ of 𝑛 and 𝑒𝑛 is either −1 or 1.
As above, 𝑧 is an arbitrary quantity. At edges or corners the unitary normal vector 𝑛
is not uniquely defined. In (3.22) the only role of 𝑛 is to specify a sign, in order to
approximate the derivatives correctly. Therefore, we can easily assume to have several
unit normal vectors, one for each orthogonal derivative. For instance, at a corner node
in two-dimensional problems the 𝜕

𝜕𝑥1
-terms would take 𝑛 = (±1, 0)⊤, while the 𝜕

𝜕𝑥2
-terms

would take 𝑛 = (0,±1)⊤ instead. This vector is always chosen, such that it points outside
the computational domain.

With the finite differences (3.21) and (3.22) applied to the spatial derivatives of the CBC
system, the latter turns into a system of ODEs

𝜕𝑈

𝜕𝑡
(𝑥𝑏, 𝑡) = ℎ (𝑈 , 𝑡) , (3.23)

one ODE for each boundary lattice point. They have to be integrated from time level
𝑡 = 𝑡𝑠 to level 𝑡 = 𝑡𝑠+1 = 𝑡𝑠 +Δ𝑡. The right hand side function ℎ depends on the solution
itself, as well as on quantities at adjacent lattice points. On the one hand, the latter involve
interior lattice points, resulting from finite difference stencils for orthogonal derivatives.
On the other hand, for 𝑑 ≥ 2 the function ℎ in general depends also on adjacent boundary
lattice points, which enter via the finite differences of parallel derivatives. The latter
couples the systems for each boundary points. It is also noteworthy that macroscopic
quantities at interior lattice points are not continuously given, but only discrete in time.
If evaluations of these are required for intermediate time points 𝑡 ∈ (𝑡𝑠, 𝑡𝑠+1), the values
could be approximated by interpolation. Lastly, we note that 𝑈(𝑥𝑏, 𝑡𝑠) is known and is
used as initial condition for (3.23). The ODEs (3.23) for all boundary points 𝑥𝑏 are solved,
e.g., by using one explicit Euler step [37]

𝑈(𝑡𝑠+1) = 𝑈(𝑡𝑠) + Δ𝑡ℎ (𝑈(𝑡𝑠), 𝑡𝑠) . (3.24)

Using an explicit Euler method, no interpolation of interior macroscopic quantities is
needed. Alternatively, other methods can be used, such as Runge-Kutta methods. For in-
tegration of (3.23) Thompson [108] proposed the explicit second order Runge-Kutta scheme
corresponding to a Butcher tableau as follows:

0 0 0 0 0

1/4 1/4 0 0 0

1/3 0 1/3 0 0

1/2 0 0 1/2 0

0 0 0 1

(3.25)

Eventually, the integration of (3.23) yields a Dirichlet BC which has to be transferred to
the LBM, i.e., to the boundary populations.

3.3.4 Determination of boundary populations

By the steps above, the complete CBC is reduced to the final task of computing the pop-
ulations, such that a Dirichlet BC is applied. More precisely, this is a Dirichlet condition
for the mass density and all velocity components. We recall that only if the Dirichlet
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values satisfy the relation (3.4), the condition can be implemented by computing only the
unknown populations. The transfer of a general Dirichlet condition for both the mass den-
sity and normal velocity requires to recompute also given populations. In more detail, the
numerical solution of (3.23) yields Dirichlet values denoted by 𝜌𝐷 and 𝑢𝐷. The simplest
strategy to transfer the condition is by evaluating the equilibrium distribution

𝐵𝑖(𝑥𝑏, 𝑡𝑠+1) := 𝑓 eq
𝑖 (𝑥𝑏, 𝑡𝑠+1)

= 𝜌𝐷(𝑥𝑏)𝑤𝑖

[︃
1 +

3⟨𝑐𝑖, 𝑢𝐷(𝑥𝑏)⟩
𝑐2

+
9⟨𝑐𝑖, 𝑢𝐷(𝑥𝑏)⟩2

2𝑐4
− 3 |𝑢𝐷(𝑥𝑏)|2

2𝑐2

]︃
,

(3.26)

for all 𝑖 = 0, . . . , 𝑞 − 1 . We refer to this procedure as equilibrium boundary condition
(EBC). It is the equilibrium portion of the populations which determines the macroscopic
quantities (2.42). Thus, compared to any other approach which transfers a Dirichlet
condition the populations will differ only by their non-equilibrium part

𝑓neq
𝑖 (𝑥, 𝑡) = 𝑓𝑖(𝑥, 𝑡)− 𝑓 eq

𝑖 (𝑥, 𝑡).

Several possibilities arise for computing the 𝑓neq
𝑖 at the boundary nodes. Following the

idea in [125] the non-equilibrium part at the boundary node can be determined by extrap-
olation. Thus, we obtain

𝐵𝑖(𝑥𝑏, 𝑡𝑠+1) = 𝑓 eq
𝑖 (𝑥𝑏, 𝑡𝑠+1) + 𝛼𝑓neq

𝑖 (𝑥𝑏 − �̃�𝑛, 𝑡𝑠+1) + 𝛽𝑓neq
𝑖 (𝑥𝑏 − 2�̃�𝑛, 𝑡𝑠+1), (3.27)

with �̃�𝑛 as in (3.22). We have a linear extrapolation by the choice 𝛼 = 2 and 𝛽 = −1. By
𝛼 = 1 and 𝛽 = 0 we obtain a constant extrapolation of the non-equilibrium part. In both
cases the extrapolation is performed normal to the boundary. Here, for a corner lattice
node or an edge node we assume the normal direction 𝑛 (used in �̃�𝑛) to be the diagonal
direction. Note that the non-equilibrium parts of interior lattice points can be computed
at the new time level, since the necessary information is known. We denote the BC (3.27)
as non-equilibrium boundary condition (nEBC) in the sequel.

3.4 Enhanced characteristic boundary conditions

Compared to literature, the novelty of the CBC presentation in the previous section lies
on the three-dimensional generalization, each for the LODI based CBC and also of our
CBC. In this section we further present novel enhancements for CBCs in the LBM. Except
for the last one they can be combined with each other.

3.4.1 Incorporation of viscous terms

In what follows we consider the CBC, whose basic and CBC system is given by (3.17) and
(3.20), respectively. Recall that for an implementation of the CBC in the LBM the BC
formulated as (3.20) is transferred to the discrete populations in several steps. The CBC
system is first solved numerically and the resulting Dirichlet condition is used to determine
the boundary populations for the LB simulation. In this complete procedure several error
sources can be identified. Errors are created in the numerical solution of the CBC system,
however they can be tackled by using other procedures (e.g., implicit methods). Also errors
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in the determination of populations, i.e., in implementing the Dirichlet condition are done.
They can be reduced by techniques computing non-equilibrium parts, e.g., (3.27), but even
more by use of advanced techniques [112, 114]. Furthermore, the basic system of a CBC
and the CBC system already differ by terms

𝑁𝑛∑︁
𝑖=1

(︁
𝐴𝑑,𝑛𝑖

− ̃︀𝐴𝑑,𝑛𝑖

)︁ 𝜕𝑈𝑑

𝜕𝑛𝑖
.

The basic system (3.17) fits nicely to the Euler equations, however the interior fluid model
for the LB simulation is given by (3.13). Thus, another error source of the CBC lies in
neglecting the deviatoric stress terms

∇ · 𝜌𝜈
[︂
∇𝑢+∇𝑢⊤ − 2

3
(∇ · 𝑢)𝐼

]︂
in the momentum equations, where 𝜈 is the kinematic viscosity (2.43). This term has to
be neglected in the basic system, since otherwise the equations would not be hyperbolic
and the characteristic analysis could not be performed. Following the idea of [84], we
reincorporate viscous terms after the characteristic analysis is done. More precisely, the
CBC system (3.20) formulating the CBC turns into the adapted version

𝜕𝑈

𝜕𝑡
+

𝑁𝑛∑︁
𝑗=1

̃︀𝐴𝑛𝑗

𝜕𝑈

𝜕𝑛𝑗
+

𝑁𝑝∑︁
𝑗=1

𝐴𝑝𝑗

𝜕𝑈

𝜕𝑝𝑗
= 𝜏 , (3.28)

with

𝜏 =
Δ𝑡

3

(︂
1

𝜔
− 1

2

)︂
𝑐2

(︃
0

∇ ·
[︀
∇𝑢+∇𝑢⊤ − 2

3(∇ · 𝑢)𝐼
]︀)︃ .

Like (3.20), the extended CBC formulation (3.28) is solved numerically and corresponding
populations are calculated with its solution, by implementing a Dirichlet condition as
described above. We call this extended version the viscous CBC (vCBC).

3.4.2 Inlet and outlet characteristic boundary conditions

This section deals with two issues, both related to the work of Poinsot and Lele [84] for
direct Navier-Stokes solvers. First, the explanation below states a strategy for the com-
putation of the pressure or normal velocity when the other is specified (paragraph b).
Therefore we need to recompute known populations in boundary lattice points, meaning
the relation (3.4) can be disregarded. Let us recall, that unless known populations are
recomputed, the relation only allows to choose parallel velocity components, when a pres-
sure or a normal velocity Dirichlet condition in the LBM is applied. Secondly, we present
a modification which combines the possibility to specify an average pressure and to have
non-reflective properties at the boundary (paragraph c).
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a) Introduction of wave amplitude variations

For the sake of simplicity we consider standard boundaries having only one orthogonal
derivative, i.e., 𝑁𝑛 = 1. Let 𝑥𝑘 be the only orthogonal direction, meaning 𝑛1 = 𝑥𝑘
holds. The following explanation is based on so-called wave amplitude variations ℒ𝑥𝑘,𝑗

(also simply called amplitudes in the following) defined in vector notation by

ℒ𝑥𝑘
=

⎛⎜⎜⎝
ℒ𝑥𝑘,1

...
ℒ𝑥𝑘,𝑑+1

⎞⎟⎟⎠ = Λ𝑥𝑘
𝑅𝑥𝑘

𝜕𝑈

𝜕𝑥𝑘
.

Note the relation to the basic system as follows 𝑅−1
𝑥𝑘

ℒ𝑥𝑘
= 𝐴𝑥𝑘

𝜕𝑈
𝜕𝑥𝑘

. The amplitudes are
independent of the dimension 𝑑 and given by:

ℒ𝑥𝑘,1 = (𝑢𝑘 − 𝑐𝑠)

(︂
𝑐2𝑠
𝜕𝜌

𝜕𝑥𝑘
− 𝑐𝑠𝜌

𝜕𝑢𝑘
𝜕𝑥𝑘

)︂
,

ℒ𝑥𝑘,2 = (𝑢𝑘 + 𝑐𝑠)

(︂
𝑐2𝑠
𝜕𝜌

𝜕𝑥𝑘
+ 𝑐𝑠𝜌

𝜕𝑢𝑘
𝜕𝑥𝑘

)︂
,

ℒ𝑥𝑘,𝑗+2 = 𝑢𝑘
𝜕𝑢𝑝𝑗
𝜕𝑥𝑘

, 𝑗 = 1, . . . , 𝑑− 1.

Slightly different in notation, here the indices 𝑝𝑗 ∈ {1, . . . , 𝑑} ∖ {𝑘} refer to the parallel
components. Each amplitude is linked to a direction via its corresponding eigenvalue. Only
outward amplitudes can be computed from interior information, see also the previous
Section 3.3. The perfectly non-reflecting CBC (3.20) is equivalent to set inward wave
amplitude variations to zero. A tilde denotes the modified wave amplitude variations,
which for the perfectly non-reflecting CBC exhibits the form

̃︀ℒ𝑥𝑘
=

⎛⎜⎜⎝
̃︀ℒ𝑥𝑘,1

...̃︀ℒ𝑥𝑘,𝑑+1

⎞⎟⎟⎠ , ̃︀ℒ𝑥𝑘,𝑖 =

{︃
ℒ𝑥𝑘,𝑖 outgoing
0 incoming

. (3.29)

The perfectly non-reflecting CBC (3.20) for 𝑁𝑛 = 1 and 𝑛1 = 𝑥𝑘 is equivalently written
with amplitudes by

𝜕𝑈

𝜕𝑡
+

𝑑−1∑︁
𝑗=1

𝐴𝑝𝑗

𝜕𝑈

𝜕𝑝𝑗
= −𝑅−1

𝑥𝑘
̃︀ℒ𝑥𝑘

. (3.30)

b) Relations of wave amplitude variations

Instead of setting inward amplitudes to zero, as done in (3.29), we are looking for other
reasonable strategies. To this end we consider the 𝑥𝑘-LODI equations, which serve for find-
ing relations of inward and outward wave amplitude variations. The 𝑥𝑘-LODI equations
in terms of wave amplitude variations read

𝜕𝑈

𝜕𝑡
+𝑅−1

𝑥𝑘
ℒ𝑥𝑘

= 0,
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see also (3.14) for an alternative formulation. This system represents the scalar equations:

𝜕𝜌

𝜕𝑡
+

1

2𝑐2𝑠

(︀
ℒ𝑥𝑘,1 + ℒ𝑥𝑘,2

)︀
= 0, (3.31a)

𝜕𝑢𝑘
𝜕𝑡

+
1

2𝑐𝑠𝜌

(︀
ℒ𝑥𝑘,2 − ℒ𝑥𝑘,1

)︀
= 0, (3.31b)

𝜕𝑢𝑝𝑗
𝜕𝑡

+ ℒ𝑥𝑘,𝑗+2 = 0, 𝑗 = 1, . . . , 𝑑− 1. (3.31c)

Both (3.31a) and (3.31b) contain an inward and an outward wave amplitude variation.
Whenever either the density (respectively the pressure) or normal velocity is prescribed
at the boundary, one of this two equations can be used to explicitly write the inward wave
amplitude variation. As an example let us consider the situation with a given normal
velocity for a boundary for which 𝑥𝑘 is the inner normal, then ℒ𝑥𝑘,2 is an inward amplitude.
Instead of setting ̃︀ℒ𝑥𝑘,2 to zero, as proposed by (3.29), we compute the inward amplitude
by

̃︀ℒ𝑥𝑘,2 = ℒ𝑥𝑘,1 − 2𝑐𝑠𝜌
𝜕𝑢𝑘
𝜕𝑡

. (3.32)

Moreover, in the resulting system we can omit all equations which correspond to prescribed
quantities. The remaining equations are solved with the amplitudes computed as in (3.32).
The amplitudes ℒ𝑥𝑘,3 to ℒ𝑥𝑘,𝑑+1 for 𝑑 > 1 need some further discussion: At outlets these
amplitudes can be computed from interior information. For inlets, the procedure above
requires the corresponding parallel velocity to be known such that (3.31c) can be used
to estimate the amplitude. However, when the parallel velocity is prescribed, there is no
need of the corresponding wave amplitude variation, since in (3.30) this amplitude enters
only the equation corresponding to this velocity component and would be omitted anyway.
Therefore, we can only either prescribe the parallel velocity or we set the corresponding
amplitude to zero, which is analogue to the perfectly non-reflecting CBC.

c) Amplitudes for average quantities

The approach of the previous paragraph leading to modified amplitudes (3.32) requires
knowledge of either the density or the normal velocity at the boundary. It turned out
that in case of parallel velocities only a fixed velocity or a zero wave amplitude variation
was possible. We now focus on the situation where no macroscopic information at the
boundary is given and aim at finding modified amplitudes other than (3.29). The only
condition we pose is to have an average density of 𝜌∞ at the outlet. The inward wave
amplitude is computed as a relaxation towards this value:

̃︀ℒ𝑥𝑘,{1,2} = 𝐾𝑐2𝑠
(︀
𝜌− 𝜌∞

)︀
, (3.33)

where 𝜌 is the best known value of the current density at the boundary. Note only one of̃︀ℒ𝑥𝑘,1 and ̃︀ℒ𝑥𝑘,2 is computed, which is the inward amplitude. The value of 𝐾 (unit 𝑠−1)
has a strong influence on the simulation results, for details see, e.g., [84]. It was suggested
by Rudy and Strikwerda [91] to scale 𝐾 as follows

𝐾 = 𝜎
(︀
1−Ma2

)︀𝑐𝑠
𝐿
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and in [94] a test case dependent range for the constant 𝜎 ∈ [0.2, 𝜋] is proposed. Here 𝐿 is
the domain size and Ma the maximal Mach number of the flow. As above, (3.30) is solved
with the amplitude (3.33) together with the unmodified outgoing amplitudes.





4 Chapter 4

Exact discrete artificial boundary
condition for linear collision model

In this chapter we develop an exact BC for a LBM with a linear equilibrium distribution.
We focus on the D1Q2 model, i.e., a model with discrete velocity space 𝒱D1Q2 = {−𝑐,+𝑐}.
Thus, we consider a setup of the form

𝑃lin := LB(𝒢, 𝒯 ,𝒱D1Q2,Clin, 𝑓𝑗 , 𝐼𝑗 , 𝐵
ex
𝑗 ), (4.1)

with

Clin =
𝜔

2

(︃
−(𝑎+ 1) −(𝑎− 1)

𝑎+ 1 𝑎− 1

)︃(︃
𝑓1

𝑓2

)︃
, (𝜔, 𝑎) ∈ (0, 2)× (−1, 1). (4.2)

This collision term Clin is equivalent to a BGK collision with the linear equilibrium (2.44).
The developed BC of this chapter is given in a fully discrete formulation, i.e., all com-
putations are done on the discrete level of the given LB simulation. In contrast to many
common BCs for the LBM, neither computations on the macroscopic level nor macro-
scopic quantities are required at all. Our derived BC is exact in the sense of an ITBC, see
Section 3.1. However, an increasing computational effort when time evolves, makes a real
application of the BC non-practical. The main focus of the development therefore does not
lie in the formulation of a practical BC, but in the preparation for an approximate discrete
artificial boundary condition (DABC). This approximate DABC will be the topic of the
subsequent chapter. Thereby, the restriction to linear collision models will be relaxed.

In Section 4.1 we explain the use of digraphs for describing the evolution of populations.
Afterwards, the second section applies this novel perspective to 𝑃lin, which results in
weighted digraphs. The weighted digraphs are used in Sections 4.3 and 4.4, in which we
first discuss the construction idea of the exact DABC and afterwards present its outcome.
Sections 4.2 to 4.4 mainly follow our work [47], whereas the main part of Section 4.1 is
based on our work [48]. In addition to the content of the articles, we here provide complete
proofs of all lemmas.

4.1 Evolution represented with digraphs

Here we introduce digraphs to express any population in dependence on past information.
Thereby, the past information need not be given necessarily as a population from the
previous time level. This general approach is used in the subsequent section for the linear
collision model of the problem setup (4.1). In the sequel, a node 𝑛 = (𝑥, 𝑡) refers to a pair
consisting of a lattice point 𝑥 ∈ 𝒢 and a time 𝑡 ∈ 𝒯 . Nodes are denoted by 𝑛 throughout,
possibly equipped with super- and subscripts.

47
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𝑛1

𝑛2

time

space

𝑡 = 𝑡0

𝒟(𝑛1)

𝒟(𝑛2)

Figure 4.1: Domains of dependence for two nodes in a space-time diagram – The space-
time diagram shows the domains of dependence 𝒟(𝑛1) and 𝒟(𝑛2) for two nodes
𝑛1 and 𝑛2, respectively.

4.1.1 Domain of dependence

In general, each population 𝑓𝑗(𝑥, 𝑡) in a node 𝑛 = (𝑥, 𝑡) takes into account information
from previous nodes up to the initial time. The domain of dependence 𝒟(𝑛), for a certain
node 𝑛 comprises all nodes from previous time levels, which affects the populations at node
𝑛. 𝒟(𝑛) is increasing with time, in the sense that the number of contributing nodes from
initial time 𝑡 = 𝑡0 is increasing with every time step which is simulated, see the discrete
space-time diagram shown in Fig. 4.1. Here the domains of dependence for two nodes 𝑛1
and 𝑛2 having the same location 𝑥, but different time levels are shown. It is important
to clarify that such a dependence of nodes from previous time levels in particular also
holds for a boundary point. Considering the case where the unknown populations are
computed with an ITBC shows that besides interior nodes up to the initial time also
exterior information should be considered.

The update rule of the LBM specifies a formula for a population in terms of populations
from the directly previous time level. Nonetheless, due to its iterative application, pop-
ulations depend on all information from the domain of dependence. In other words, any
population which can be computed with (2.40) generally contains also information from
all time levels prior to the previous one.

4.1.2 Lattice Boltzmann equation with reversed perspective

We rewrite the LBE, see also (2.40), in a goal oriented version:

𝑓𝑗(𝑥, 𝑡) = 𝑓𝑗(𝑥− 𝑐𝑗Δ𝑡, 𝑡−Δ𝑡) + C
(︀
𝑓(𝑥− 𝑐𝑗Δ𝑡, 𝑡−Δ𝑡)

)︀
, 𝑗 = 0, . . . , 𝑞 − 1, (4.3)

where 𝑞 gives the number of lattice vectors. Here C(𝑓) is an arbitrary collision model and
𝑓(𝑥, 𝑡) =

(︀
𝑓𝑗(𝑥, 𝑡)

)︀
𝑗=0,...,𝑞−1 is the vector of all populations in a given node. Recapitulate

that the equilibrium distribution (2.39) used above in the BGK collision model can be
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time

space

𝑡− 2

𝑡− 1

𝑡

𝑡+ 1

𝑥−
2

𝑥−
1

𝑥
𝑥
+
1

𝑥
+
2

𝑥
+
3

𝑛𝑡

Figure 4.2: Population symbolized by an arrow – The arrow shown in the space-time dia-
gram symbolizes the population 𝑓1(𝑥, 𝑡). It depends on information from the
square node.

written purely in populations, since the fluid quantities (2.42) are functions of populations:

𝜌(𝑥, 𝑡) = 𝜌
(︀
𝑓(𝑥, 𝑡)

)︀
, 𝑢(𝑥, 𝑡) = 𝑢

(︀
𝑓(𝑥, 𝑡)

)︀
.

The complete right hand side of (4.3) therefore depends solely on 𝑓 . By introducing
post-collision populations 𝑔𝑖,

𝑔𝑖
(︀
𝑓(𝑥, 𝑡)

)︀
:= 𝑓𝑖(𝑥, 𝑡) + C

(︀
𝑓(𝑥, 𝑡)

)︀
, (4.4)

each population determined by (4.3) is given by

𝑓𝑖(𝑥, 𝑡) = 𝑔𝑖
(︀
𝑓(𝑥− 𝑐𝑖Δ𝑡, 𝑡−Δ𝑡)

)︀
(4.5a)

= 𝑔𝑖
(︀
𝑓0(𝑥− 𝑐𝑖Δ𝑡, 𝑡−Δ𝑡), . . . , 𝑓𝑞−1(𝑥− 𝑐𝑖Δ𝑡, 𝑡−Δ𝑡)

)︀
. (4.5b)

This equation represents a generalized LBE. Obviously, it gives a dependence from the
previous time level. However, for constructing a BC it would be helpful to have an alter-
native, which helps to better understand the contribution of specific populations from the
domain of dependence, i.e., from arbitrary past time levels.

4.1.3 Visualization by digraphs

We use digraphs in a space-time diagram to track the influence of certain populations.
The statements and explanations in the following of this section hold for any dimension,
any discretization model and any collision model. Note, in contrast to other models for
D1Q2 the enumeration of velocities begins with index 1. For the sake of a better clarity
the visualized space-time diagrams however only correspond to the one-dimensional LB
models D1Q2 and D1Q3, respectively. Exemplarily, we visualize the computation of a
population 𝑓1 according to (4.5) for a one-dimensional model by an arrow in a space-
time diagram, shown in Fig. 4.2. The arrow symbolizes the transport of the post-collision
population in an intuitive way. For a better readability in all figures, the labels are written
under the assumption Δ𝑡 = 1 and 𝑐 = 1. We interpret the arrow as a digraph and use the
common terminology of graph theory as given next. For more details on graph theory see,
e.g., [22].
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time

space

𝑡− 2

𝑡− 1

𝑡

𝑡+ 1

𝑥−
2

𝑥−
1

𝑥
𝑥
+
1

𝑥
+
2

𝑥
+
3

𝑛1

𝑛2 𝑛3

𝑛𝑡

Figure 4.3: Population represented with a digraph – Each edge of the digraph visualizes
the transport of a population. The population 𝑓1(𝑥, 𝑡) in the terminal node 𝑛𝑡
depends on information from contributing nodes (squares). Nodes 𝑛2 and 𝑛3
are contributing nodes for both D1Q2 and D1Q3, whereas the dashed square
node 𝑛1 is a contributing node only for D1Q3.

Terminology An arrow as shown in Fig. 4.2 is called an edge. The node at its tip (node
𝑛𝑡 = (𝑥, 𝑡) in Fig. 4.2) is called head and the node at its source (node 𝑛 = (𝑥 + 1, 𝑡 − 1)
in Fig. 4.2) is called tail. A path of length 𝑚 is a sequence of edges 𝑒1 to 𝑒𝑚, for which
the tail of 𝑒𝑗 equals the head of 𝑒𝑗−1, 𝑗 = 2, . . . ,𝑚. The path starts in the tail of 𝑒1 and
ends in the head of 𝑒𝑚. The in-degree of a node is given as the number of edges which
end in this node. Analogously, the out-degree is the number of edges which begin in the
node. If there is a path from a node 𝐴 to a node 𝐵, then the node 𝐵 is called a successor
of node 𝐴. Vice versa, node 𝐴 is a predecessor of node 𝐵. Additionally, we call the final
node, which has in-degree 1 and out-degree 0, the terminal node, in the following always
denoted as 𝑛𝑡. Furthermore, all predecessors of the terminal node, which have an in-degree
less than 𝑞 are called contributing nodes. The populations corresponding to missing edges
in contributing nodes are called contributing populations. Moreover for D1Q2 directional
terms can be defined: An edge is said to be leftward, if the space coordinates of its head
𝑥𝐻 and its tail 𝑥𝑇 satisfy 𝑥𝐻 = 𝑥𝑇 − 𝑐Δ𝑡 = 𝑥𝑇 − 1. Analogously, the edge is rightward if
the equation 𝑥𝐻 = 𝑥𝑇 + 𝑐Δ𝑡 = 𝑥𝑇 + 1 holds.

Populations represented with digraphs In our interpretation, an edge in a space-time
diagram symbolizes a pre-collision population in its head. Consequently, the maximal
in-degree of a node is equal to the number of discrete velocities 𝑞. Each edge visualizes
the transport of a post-collision population from its tail to its head. Note that after a
transport step, a post-collision population turns into a pre-collision population. Thus,
for each edge a local collision at its tail is implied. For contributing nodes, each missing
inward edge shall be equivalent to the knowledge of the corresponding population, i.e.,
of the contributing population. Therefore, if a node has in-degree zero, we assume all
populations are known in this node. To illustrate this further, we consider the digraph
in Fig. 4.3 for both the D1Q2 and the D1Q3 model. In both models the populations 𝑓1
and 𝑓2 at node 𝑛1 = (𝑥 + 𝑐Δ𝑡, 𝑡 − Δ𝑡) = (𝑥 + 1, 𝑡 − 1) are computed from 𝑓(𝑥, 𝑡 − 2)
and 𝑓(𝑥 + 2, 𝑡 − 2), respectively. Thus, for D1Q2 all populations are unknown at node
𝑛1. In contrast, for D1Q3 𝑛1 is a contributing node, where the missing edge from node
(𝑥 + 1, 𝑡 − 2) to 𝑛1 means that the population 𝑓0(𝑥 + 1, 𝑡 − 1) is known, hence it is
a contributing population. Note, such an edge would not be reasonable for the D1Q2
model. Moreover, all populations in nodes 𝑛2 = (𝑥, 𝑡 − 2) and 𝑛3 = (𝑥 + 2, 𝑡 − 2) are
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known.
Certainly, not every digraph is reasonable. For each edge the head has to be on the very
next time level compared to its tail. Also an edge is only reasonable if there is a lattice
vector connecting its tail’s with its head’s space coordinate.

Computation of the population in the terminal node Given a digraph, the final popula-
tion at the terminal node 𝑛𝑡 can be computed with information (contributing populations)
from all contributing nodes. The corresponding formula is a composition of functions
(4.5b), which is obtained by traversing the digraph backwards when starting in the ter-
minal node. The inward edge at the terminal node 𝑛𝑡 corresponds to a population 𝑓𝑗(𝑛𝑡),
expressed as a function 𝑔𝑗 evaluated at an adjacent node, see (4.5b). Each argument of
this function 𝑔𝑗 is either a population 𝑓𝑚, taken if it is known, or otherwise, it is a function
𝑔𝑚 itself. The arguments of this function itself are again chosen under consideration of
the next edge. This approach terminates in all cases, at latest when nodes from initial
time 𝑡 = 𝑡0 are reached (here the in-degree is always zero). As an example, the digraph of
Fig. 4.3 would result in the formula (for D1Q3)

𝑓1(𝑥, 𝑡) = 𝑔1
(︀
𝑓0(𝑥+ 𝑐Δ𝑡, 𝑡−Δ𝑡), 𝑔1

(︀
𝑓(𝑥+ 2𝑐Δ𝑡, 𝑡− 2Δ𝑡)

)︀
, 𝑔2
(︀
𝑓(𝑥, 𝑡− 2Δ𝑡)

)︀)︀
. (4.6)

4.2 Weighted digraphs for linear collision models

The general digraph interpretation leads to compositions of post-collision functions, e.g.,
(4.6), which in general are expensive to evaluate. This is mainly due to the nonlinearity
of the collision model and hence of the post-collision functions 𝑔𝑗 . To compensate this
difficulty in the remainder of the current chapter, we consider the linear collision model
Clin (4.2) for the D1Q2 discretization corresponding to (4.1).

For the setup at hand the post-collision populations (4.4) are

𝑔1(𝑥, 𝑡) = (1 + 𝛼)𝑓1(𝑥+ 𝑐Δ𝑡, 𝑡−Δ𝑡) + 𝛽𝑓2(𝑥+ 𝑐Δ𝑡, 𝑡−Δ𝑡), (4.7a)
𝑔2(𝑥, 𝑡) = 𝛾𝑓1(𝑥− 𝑐Δ𝑡, 𝑡−Δ𝑡) + (1 + 𝛿)𝑓2(𝑥− 𝑐Δ𝑡, 𝑡−Δ𝑡), (4.7b)

where the four weights follow from the linear equilibrium (2.44):

𝛼 = −1

2
𝜔(1 + 𝑎), 𝛽 =

1

2
𝜔(1− 𝑎), 𝛾 =

1

2
𝜔(1 + 𝑎), 𝛿 = −1

2
𝜔(1− 𝑎). (4.8)

Node weights Due to the linearity of (4.7) any composition of post-collision functions
remains a linear function, such that a population in the terminal node is expressed by

𝑓𝑖(𝑥, 𝑡) =
∑︁
𝑛𝑘∈𝒩

(︀
𝑊1(𝑛𝑘)𝑓1(𝑛𝑘) +𝑊2(𝑛𝑘)𝑓2(𝑛𝑘)

)︀
, (4.9)

where 𝒩 is the set of all contributing nodes. A node weight 𝑊𝑗(𝑛𝑘) is zero, if 𝑓𝑗(𝑛𝑘) is
not a contributing population, i.e., if the digraph has an inward edge at 𝑛𝑘 corresponding
to 𝑓𝑗 . Applying the strategy explained in the previous section, it follows that the non-zero
node weights 𝑊𝑗(𝑛𝑘) depend on every path 𝑝𝑘𝑚, 𝑚 = 1, . . . , ℓ𝑘, from 𝑛𝑘 to the terminal
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𝛽 1 + 𝛿

(c)

Figure 4.4: Edge weights for D1Q2 with linear collision model – The edge weights for the
weighted digraphs used to express a population in the D1Q2 discretization with
linear collision operator. The weights depend on the direction of the current
edge as well as on the direction of the previous edge. Weights 𝛽 and 𝛾 occur
when the path has a directional change, while (1 + 𝛼) and (1 + 𝛿) define the
edge weight if there is no change in direction.

node 𝑛𝑡, where ℓ𝑘 is the number all paths from 𝑛𝑘 to 𝑛𝑡. Then the non-zero node weights
are given as the sum of path weights ̃︀𝑤𝑗 :

𝑊𝑗(𝑛𝑘) =

ℓ𝑘∑︁
𝑚=1

̃︀𝑤𝑗(𝑛𝑘, 𝑝
𝑘
𝑚). (4.10)

Weighted digraphs Obviously as a composition of functions (4.7) each path weight in
(4.10) is a product of (1 + 𝛼), 𝛽, 𝛾 and (1 + 𝛿), where each edge of the path contributes
exactly one factor, a so-called edge weight. To explain the choice of a weight for a certain
edge (the current edge) we use the directional terms leftward and rightward, as explained
above. We recapitulate that a leftward edge visualizes the transport of a 𝑔1 population,
while a rightward edge shows a moving 𝑔2 population. As 𝑔1, see (4.7a), only contains
the coefficients (1 + 𝛼) and 𝛽, they are the only possible edge weights if the current edge
is leftward. We further conclude that (1 + 𝛼) is used as coefficient for the 𝑓1 population,
i.e., if a 𝑓1 population leaves a node as a population of same direction. In the perspective
of a path: when both the current edge and its previous edge are leftward. Contrary,
the edge weight 𝛽 appears if the previous edge was rightward, that is, the path has a
directional change. Analogously, a rightward edge has edge weight (1 + 𝛿), if the previous
edge was also rightward, whereas 𝛾 is used, when the path changes its direction from left
to right. The first edge of a path has no real previous edge, but we can add a fictitious
one where its direction is determined whether a node weight for 𝑗 = 1 or for 𝑗 = 2 is
computed. The complete situation is summarized in Fig. 4.4. The dashed edge is the
previous (possibly fictitious) edge. If we equip each edge with a weight, then the digraph
turns into a weighted digraph. An example of a thus obtained weighted digraph is shown
in Fig. 4.5. It is important to see that we obtain weighted digraphs for each 𝑗 in (4.10),
however, they differ only by the first edge weight.

Computation of path weights Given a weighted digraph, the path weights ̃︀𝑤𝑗 are com-
puted by multiplying all edge weights of the path. The following corollary summarizes
their computation.

Corollary 1. Let be given one path 𝑝𝑘 from a contributing node 𝑛𝑘 to the terminal node
𝑛𝑡. The path shall have the property 𝑝 = (𝑐𝑙, 𝑐𝑟, 𝑠𝑙, 𝑠𝑟), where
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Figure 4.5: Two weighted digraphs – The fictitious previous edge (dashed arrow) of the
starting edge is assumed to be leftward in the weighted digraph on the left
hand side. This assumption is done when computing a path weight ̃︀𝑤1. In
the weighted digraph on the right hand side, the fictitious previous edge is
rightward, as necessary in the computation of a path weight ̃︀𝑤2.

∙ 𝑐𝑙 gives the number of changes from right to left,

∙ 𝑐𝑟 gives the number of changes from left to right,

∙ 𝑠𝑙 is the number of leftward edges, for which the previous edge was also leftward,

∙ 𝑠𝑟 is the number of rightward edges, for which the previous edge was also rightward.

The fictitious previous edge of the first edge is chosen according to the following rule: It
is leftward in the computation of ̃︀𝑤1, and it is rightward for ̃︀𝑤2. Then, the path weight
corresponding to a contributing population 𝑓𝑗(𝑛𝑘) is given by:

̃︀𝑤𝑗(𝑛𝑘, 𝑝
𝑘) = �̄�𝑗(𝑝) := (1 + 𝛼)𝑠𝑙 · 𝛽𝑐𝑙 · 𝛾𝑐𝑟 · (1 + 𝛿)𝑠𝑟 . (4.11)

If we apply rule (4.11) to the digraph of Fig. 4.5 we get

̃︀𝑤1 = (1 + 𝛼)2 · 𝛽 · 𝛾 · (1 + 𝛿), ̃︀𝑤2 = (1 + 𝛼) · 𝛽2 · 𝛾 · (1 + 𝛿).

Eventually, when considering all paths from a certain node the node weights (4.10) can be
computed.

4.3 Construction principle of the exact discrete artificial
boundary condition

The (weighted) digraph view is now used to illustrate the construction of an exact BC.
To this end we consider the boundary lattice point 𝑥𝑏. The task of a BC is to compute
the inward directed population 𝑓𝑗(𝑥𝑏, 𝑡𝑘) for all time levels 𝑡𝑘 ∈ 𝒯 . We like to compute
the unknown populations, such that they equal the ones of an ITBC. For the ITBC the
information of 𝑓𝑗(𝑥𝑏, 𝑡𝑘) comes from an adjacent lattice point, which is not present in
our case. We add fictitious lattice nodes in the exterior of the computational domain to
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Figure 4.6: Full weighted digraph for constructing an exact boundary condition – The di-
graph shown is used to compute the inward population 𝑓1 in the terminal
node 𝑛𝑡 = (𝑥𝑏, 𝑡𝑘). Nodes in the exterior of the computational domain (un-
filled circles) are only fictitious. We distinguish two type of contributing nodes
(squares), past boundary nodes and fictitious nodes from initial time level.

compensate the lack of missing adjacent lattice points theoretically. This idea is visualized
for a right boundary in Fig. 4.6. The unfilled circles shown in the space-time diagram are
fictitious nodes. The contributing fictitious nodes of the digraph are located at initial
time 𝑡 = 𝑡0. Therefore it would be sufficient to assume that populations in the fictitious
lattice points are known only at initial time. In fact we assume that the populations are
homogeneously initialized in an equilibrium state 𝐸𝑖, that is for all fictitious locations 𝑥𝐸 :

𝑓𝑖(𝑥𝐸 , 𝑡0) = 𝐸𝑖, (4.12)

which agrees with the assumption of ITBCs, see Section 3.1. Under the assumption (4.12)
the digraph can be shortened without loss of information, since all populations at nodes
within the triangle in Fig. 4.7 retain the initial equilibrium state. The reduced digraph is
shown in Fig. 4.7. For the use below, we abbreviate

𝜅 =
⌊︀
𝑘
2

⌋︀
, (4.13)

where ⌊·⌋ denotes the floor function. All populations at contributing fictitious nodes, see
(4.15) below, are known by the equilibrium used in (4.12). In fact, there are contributing
nodes, 𝑛𝑘1 to 𝑛𝑘𝜅, located at the boundary:

𝑛𝑘𝑚 = (𝑥𝑏, 𝑡𝑘 − 2𝑚Δ𝑡), 𝑚 = 1, . . . , 𝜅. (4.14)

The superscript is used to emphasize that the nodes are used to compute the unknown
population at time level 𝑡 = 𝑡𝑘. All other remaining contributing nodes (𝑛𝑘𝜅+1 to 𝑛𝑘𝜅+𝜅)
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Figure 4.7: Adapted weighted digraph for constructing an exact boundary condition – The
digraph is used to compute the inward population in the terminal node 𝑛𝑡.
The nodes in the exterior of the computational domain (unfilled circles) are
fictitious. When these nodes are assumed to be initialized in a homogeneous
equilibrium, then all nodes within the dashed triangle are also in this equilib-
rium state and the digraph can be shorten.

are fictitious and are located in the dashed triangle of Fig. 4.7:

𝑛𝑘𝜅+𝑚(𝑘) =
(︁
𝑥𝑏 ±

(︀
𝜅+ 2−𝑚

)︀
𝑐Δ𝑡, 𝑡0 +Δ𝑡

(︀
𝑏(𝑘) + 𝜅−𝑚

)︀)︁
, 𝑚 = 1, . . . , 𝜅. (4.15)

The plus sign in the spatial component is used if 𝑥𝑏 is at the right boundary of 𝒢 and the
minus sign for 𝑥𝑏 lying at the left boundary. Moreover, 𝑏(𝑘) = ⌈𝑘2⌉ − ⌊𝑘2⌋ is a binary state
function, which is zero/one for 𝑘 being even/odd, respectively. The digraph in the space-
time diagram of Fig. 4.7 suggests that we can compute the inward population 𝑓𝑗(𝑥𝑏, 𝑡𝑘),
in terms of 𝐸𝑖 and previous boundary information 𝑓(𝑥𝑏, 𝑡ℓ) with 0 ≤ ℓ < 𝑘. Thus, we can
conclude the following structure for the exact DABC

𝑓𝑗(𝑥𝑏, 𝑡𝑘) = 𝐵ex
𝑗 (𝑥𝑏, 𝑡𝑘) :=

𝜅∑︁
𝑚=1

2∑︁
𝑙=1

(︁
𝑊𝑙(𝑛

𝑘
𝑚)𝑓𝑙(𝑥𝑏, 𝑡𝑘 − 2𝑚Δ𝑡) +𝑊𝑙(𝑛

𝑘
𝜅+𝑚)𝐸𝑙

)︁
. (4.16)

It remains to explicitly state calculation rules for the node weights 𝑊𝑙. This is done in
the following section.

4.4 Exact discrete artificial boundary condition

To determine the node weights in (4.16) we need to investigate each path connecting a
contributing node with the terminal node 𝑛𝑘𝑡 = (𝑥𝑏, 𝑡𝑘). Note that due to our setup all
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node weights are non-zero, because there are no contributing nodes, where populations
are only partially known.

The node weights are defined according to (4.10) where the required path weights are
calculated by the rules given in Corollary 1. Obviously, the path weights are equal for all
paths from a certain node 𝑛𝑗 when having the same property 𝑝. Hence, given the number
of paths 𝑃 = 𝑃 (𝑛𝑗 ,𝑝) from a node 𝑛𝑗 with property 𝑝, we can compute the node weights
equivalently to (4.10) by

𝑊𝑙(𝑛𝑗) =
∑︁
𝑝∈𝒫

𝑃 (𝑛𝑗 ,𝑝) · �̄�𝑙(𝑝), (4.17)

where the sum is taken over all appearing properties 𝒫.

We split our further explanation into two parts, which are separately investigated in the
following two subsections. The first part investigates the contributing nodes (4.15), and
the second part the nodes (4.14). For convenience, below we use superscripts 𝐹 and
𝐵, respectively, to distinguish the two parts. Thereby, 𝐹 denotes fictitious nodes, and
𝐵 previous boundary nodes. For both parts we state the number of paths 𝑃 and their
corresponding path weights. Doing so, we determine the required node weights (4.17). In
both cases we will explicitly use, that under consideration of the location of a node, the
total number of directional changes is the essential variable to obtain the property 𝑝.

4.4.1 Node weights for contributing fictitious nodes

Here we compute the node weights (4.17) for contributing fictitious nodes

𝑛𝑘ℓ = 𝑛𝑘𝜅+𝑚, 𝑚 = 1, . . . , 𝜅,

given by (4.15), and obviously it holds ℓ = 𝜅+𝑚. We consider an arbitrary path from a
node 𝑛𝑘ℓ to the terminal node 𝑛𝑡. By a graphical observation, see Fig. 4.7, we can directly
conclude that the length of the path is equal to ℓ = 𝜅 +𝑚, thus the length depends on
the time level 𝑘. Furthermore, we see for a right (left) boundary that 𝜅 + 1 and 𝑚 − 1
give the number of leftward (rightward) and rightward (leftward) edges, respectively. The
first and last edge are always of the same direction, which implies that the number of all
directional changes has to be even and the number of left-right and right-left directional
changes has to be equal, provided the first and its (fictitious) previous edge have same
direction. Obviously, the number of directional changes has to be smaller than 2(𝑚− 1),
otherwise the path could not end in 𝑛𝑡. As the following corollary shows, by consideration
of the location of 𝑛𝑘ℓ and the number of all directional changes, we achieve the required
property 𝑝 to calculate the path weights.

Corollary 2. Let be given a path from node 𝑛𝑘ℓ to the terminal node 𝑛𝑡, which has 2𝑣
directional changes in total and we assume the first and its (fictitious) previous edge have
same direction, i.e., no additional directional change in 𝑛𝑘ℓ . Then, the path has property

𝑝 = (𝑣, 𝑣,𝑚− 1− 𝑣, 𝜅+ 1− 𝑣) or 𝑝 = (𝑣, 𝑣, 𝜅+ 1− 𝑣,𝑚− 1− 𝑣).

for a left or right boundary, respectively.
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Proof. We only show the validity for a right boundary, the left boundary follows analo-
gously.

i) The number of leftward edges is 𝑠𝑙 + 𝑐𝑙 = 𝜅+ 1.

ii) The number of rightward edges is 𝑚− 1, i.e.: 𝑠𝑟 + 𝑐𝑟 = 𝑚− 1.

iii) There is an equal number of left-right and right-left directional changes: 𝑐𝑙− 𝑐𝑟 = 0.

iv) The total amount of directional changes is given by 2𝑣, in detail: 𝑐𝑙 + 𝑐𝑟 = 2𝑣.

The solution of the corresponding linear system leads to the stated values in 𝑝.

As a consequence, all computations of weights for a given node are reduced to depend only
on one variable, that is the total number of directional changes. We denote by �̄�𝐹

𝑖 (𝑘,𝑚, 𝑣)
the path weight of a path from a node 𝑛𝑘ℓ = 𝑛𝑘𝜅+𝑚 to the terminal node 𝑛𝑘𝑡 = (𝑥𝑏, 𝑡𝑘),
which has 2𝑣 directional changes in total. Again the amount of directional changes should
not take into account a possible change in the first node.

Lemma 3. The path weights �̄�𝐹
𝑖 (𝑘,𝑚, 𝑣), are given for a right boundary by

�̄�𝐹
1 (𝑘,𝑚, 𝑣) = (1 + 𝛼)𝜅+1−𝑣 · 𝛽𝑣 · 𝛾𝑣 · (1 + 𝛿)𝑚−𝑣−1, (4.18a)

�̄�𝐹
2 (𝑘,𝑚, 𝑣) =

𝛽

1 + 𝛼
�̄�𝐹
1 (𝑘,𝑚, 𝑣). (4.18b)

For a left boundary they read:

�̄�𝐹
2 (𝑘,𝑚, 𝑣) = (1 + 𝛼)𝑚−𝑣−1 · 𝛽𝑣 · 𝛾𝑣 · (1 + 𝛿)𝜅+1−𝑣, (4.19a)

�̄�𝐹
1 (𝑘,𝑚, 𝑣) =

𝛾

1 + 𝛿
�̄�𝐹
2 (𝑘,𝑚, 𝑣). (4.19b)

Proof. The path weights (4.18a) and (4.19a) follow directly from Corollary 2. Since Corol-
lary 2 assumed there is no directional change in 𝑛𝑘ℓ , the edge weight of the first edge in
case of a right boundary is (1+𝛼). This assumption is violated for a right boundary when
computing �̄�𝐹

2 (𝑘,𝑚, 𝑣), and the first edge weight is 𝛽 instead, which implies the property
𝑝 = (𝑣 + 1, 𝑣, 𝜅− 𝑣,𝑚− 1− 𝑣) and thus (4.18b). Analogously, we can argue the validity
of (4.19b).

Lemma 3 gives the path weight for a certain path, however in order to state the node
weights (4.17) we need their amount. To this end, let 𝑃𝐹 (𝑘,𝑚, 𝑣) give the number of
paths from the node 𝑛𝑘ℓ = 𝑛𝑘𝜅+𝑚 to the terminal node 𝑛𝑘𝑡 = (𝑥𝑏, 𝑡𝑘) having 2𝑣 directional
changes in total, counted as above.

Lemma 4. For 𝑃𝐹 (𝑘,𝑚, 𝑣), we have:

a) The possible arguments of 𝑃𝐹 (𝑘,𝑚, 𝑣) are:

𝑘 ∈ N+, 𝑚 = 1, . . . , 𝜅, 𝑣 = 0, . . . ,𝑚− 1.

b) If 𝑘 is even, then holds for all possible choices of 𝑚 and 𝑣:

𝑃𝐹 (𝑘 + 1,𝑚, 𝑣) = 𝑃𝐹 (𝑘,𝑚, 𝑣).
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𝑛𝑡

Figure 4.8: Digraph restricted to contributing fictitious nodes – The digraph here is a sub-
graph of the digraph from Fig. 4.7, limited to the contributing fictitious nodes.
This view is sufficient for the proof of Lemma 4. The colored nodes show the
nodes (4.22).

c) For all 𝑘 ∈ N+: If 𝑚 = 1 then there is only one path with no directional change:

𝑃𝐹 (𝑘,𝑚, 0) = 1.

If 𝑚 > 1 then there are no paths having no directional change:

𝑃𝐹 (𝑘,𝑚, 0) = 0.

d) The remaining non-zero values for 𝑘 ≥ 4 can be computed as

𝑃𝐹 (𝑘,𝑚, 𝑣) =

(︂
1− 𝑚− 1

𝜅

)︂
·

(︃
𝜅

𝑣

)︃
·

(︃
𝑚− 2

𝑣 − 1

)︃
, (4.20)

with 𝑚 = 2, . . . , 𝜅 and 𝑣 = 1, . . . ,𝑚− 1.

Proof. a) The restriction of 𝑚 follows directly from (4.15), whereas the one for 𝑣 has
been argued at the beginning of the current subsection.

b) If 𝑘 is even then at the next time level 𝑡 = 𝑡𝑘+1 the amount of nodes (4.15) remains
the same. All contributing nodes are displaced by one level positive in time, i.e.,
𝑏(𝑘) in (4.15) switches from 0 to 1. The structures of the digraphs for 𝑘 and 𝑘 + 1
are the same.
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c)+d) The unique path for 𝑚 = 1 (from the node 𝑛𝑘𝜅+1) has no directional change (i.e.,
𝑣 = 0). The paths from other nodes must have at least two directional changes.
Therefore, it immediately follows 𝑃𝐹 (𝑘, 1, 0) = 1 and 𝑃𝐹 (𝑘,𝑚, 0) = 0 for 𝑚 > 1.
Moreover it follows that in (4.20) 𝑣 has to be positive, i.e., 𝑣 = 1, . . . ,𝑚 − 1. The
validity of (4.20) for 𝑘 = 4 is easily clarified by a graphical consideration. For 𝑘 ≥ 4
we argue the validity of the following recursion and eventually verify that (4.20)
satisfies the recursion:

𝑃𝐹 (𝑘,𝑚, 𝑣) = 𝑃𝐹 (𝑘 − 2,𝑚, 𝑣) +
𝑚−1∑︁
𝑝=1

𝑃𝐹 (𝑘 − 2, 𝑝, 𝑣 − 1), 𝑚 = 1, . . . , 𝜅− 1,

(4.21a)

𝑃𝐹 (𝑘, 𝜅, 𝑣) =
𝑚−1∑︁
𝑝=1

𝑃𝐹 (𝑘 − 2, 𝑝, 𝑣 − 1). (4.21b)

The following argumentation is done for a right (left) boundary. Let 𝑘 ≥ 4, we
consider the digraph of Fig. 4.8, which shows only the relevant edges of the general
digraph in Fig. 4.7. The colored nodes shown in the plot visualize the nodes

�̃�𝑝 =
(︀
𝑥𝑏 ±

(︀
𝜅+ 1− 𝑝

)︀
𝑐Δ𝑡, 𝑡0 +Δ𝑡

(︀
𝑏(𝑘) + 𝜅+ 1− 𝑝

)︀)︀
, (4.22)

with 𝑝 = 1, . . . , 𝜅− 1. Their relative location to 𝑛𝑘𝑡 is the same as the nodes 𝑛𝑘−2
· of

(4.15) have to the terminal node 𝑛𝑘−2
𝑡 of two time levels ago. Hence, the number of

paths starting in a colored node �̃�𝑝, for which the first edge is leftward (rightward),
is given by an appropriate evaluation of 𝑃𝐹 (𝑘 − 2, 𝑝, ·). We investigate 𝑃𝐹 (𝑘,𝑚, 𝑣)
and consider three cases, depending on the choice of 𝑚:

Case 1) 𝑚 = 2, . . . , 𝜅 − 1: 𝑃𝐹 (𝑘,𝑚, 𝑣) is the number of paths starting in a con-
tributing node. The first edge of each path from a contributing node is leftward
(rightward). Obviously, the head of the first edge is a colored node, which is ar-
rived without a change of direction. The number of all paths, whose second edge
continues leftward (rightward) is therefore 𝑃𝐹 (𝑘 − 2,𝑚, 𝑣). That is the first term
of (4.21a). If the second edge however is rightward (leftward) a directional change
occurs. Without an additional change of direction only other colored nodes can be
reached. The second directional change is therefore done in one of the colored nodes.
After this change is done the number of paths is given by 𝑃𝐹 (𝑘−2, 𝑝, 𝑣−1), for one
𝑝 = 1, . . . ,𝑚− 1 according to where the second directional change occurs. Since we
want to count all paths, we have to sum those 𝑃𝐹 (𝑘 − 2, 𝑝, 𝑣 − 1) over all possible
𝑝. Thus the second term of (4.21a) is explained. In total this argues the validity of
(4.21a) for 𝑚 = 2, . . . , 𝜅− 1.
Case 2) 𝑚 = 1: The number of paths 𝑃𝐹 (𝑘, 1, 𝑣) is equal to 𝑃𝐹 (𝑘 − 2, 1, 𝑣), since
the second edge has to continue leftward (rightward). The sum in (4.21a) is zero,
hence the recursion is also valid for 𝑚 = 1.
Case 3) 𝑚 = 𝜅: Here all paths have a directional change after its first edge. There-
fore the first term in (4.21a) has to vanish and we obtain (4.21b).

The proof is finished by showing that (4.20) satisfies the recursion (4.21). This is
done by straightforward analysis, which is presented in Appendix C.

The node weights for contributing fictitious nodes (4.15) can now be computed with (4.17)
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as follows:

𝑊𝑙(𝑛
𝑘
𝜅+𝑚) =

𝑚−1∑︁
𝑣=0

𝑃𝐹 (𝑘,𝑚, 𝑣) · �̄�𝐹
𝑙 (𝑘,𝑚, 𝑣), (4.23)

where Lemmas 3 and 4 define the right hand side terms.

4.4.2 Node weights for past boundary nodes

Here, we compute the node weights for the contributing nodes of past boundary nodes
(4.14). If we consider the node 𝑛𝑘𝑚, then all paths from here to 𝑛𝑘𝑡 have length 2𝑚.
The directions of the first and last edge of each path are fixed and are opposite to each
other, implying an odd number, say (2𝑣 − 1), of total directional changes. Moreover at
least one directional change has to occur. If we omit the first and last edge (with fixed
directions) each, then each reduced path defines a Dyck-path of semilength 𝑚 − 1 [20].
Transferred to the terminology of Dyck-paths, the total amount of (2𝑣 − 1) directional
changes corresponds to a number of 𝑣 peaks and 𝑣 − 1 valleys, for more details see [20].

The number of Dyck-paths of semilength 𝑚− 1 with 𝑣 peaks are [20]

𝐷(𝑚− 1, 𝑣) =
1

𝑚− 𝑣

(︃
𝑚− 1

𝑣

)︃(︃
𝑚− 2

𝑣 − 1

)︃
, 𝑣 = 1, . . . ,𝑚− 1. (4.24)

The amount of contributing nodes in (4.14) is influenced by the time level 𝑘, however the
relative location of each node 𝑛𝑘𝑚 to the corresponding terminal node 𝑛𝑘𝑡 is independent
of 𝑘. By this, neither the number of paths nor the corresponding path weights depend on
𝑘. Analogue to the previous subsection, let 𝑃𝐵(𝑚, 𝑣) denote the total number of paths
starting in the contributing node 𝑛𝑘𝑚 = (𝑥𝑏, 𝑡𝑘 − 2𝑚), ending in 𝑛𝑘𝑡 and having (2𝑣 − 1)
changes of directions.

Lemma 5. For the number of paths 𝑃𝐵(𝑚, 𝑣) it holds:

i) If 𝑚 = 1 there is only one path, and this path has exactly one directional change.
Thus:

𝑃𝐵(𝑚, 𝑣) = 𝑃𝐵(1, 1) = 1. (4.25)

ii) For 𝑚 ≥ 2 the non-zero values are computed by

𝑃𝐵(𝑚, 𝑣) =
1

𝑚− 𝑣

(︃
𝑚− 1

𝑣

)︃(︃
𝑚− 2

𝑣 − 1

)︃
, (4.26)

where 𝑣 = 1, . . . ,𝑚− 1.

Proof. i) For 𝑚 = 1 the length of a path from node 𝑛𝑘𝑚 to 𝑛𝑘𝑡 is equal to 2, where the
first and last edge have different directions. Hence, 𝑃𝐵(1, 1) = 1 is obvious. Since a path
cannot have more directional changes than its length, no other values for 𝑣 are possible.
ii) The result (4.26) follows from the Dyck-path enumeration (4.24).
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By the previous lemma we know the number of paths, but in order to eventually state the
node weights (4.17) we need to have the corresponding path weights �̄�𝐵

𝑖 . Let �̄�𝐵
𝑖 (𝑚, 𝑣) de-

note the path weight according to a path enumerated by 𝑃𝐵(𝑚, 𝑣). We have the following
result:

Lemma 6. The path weights �̄�𝐵
𝑖 (𝑚, 𝑣) for a right boundary are given by

�̄�𝐵
2 (𝑚, 𝑣) = (1 + 𝛼)𝑚−𝑣 · 𝛽𝑣 · 𝛾𝑣−1 · (1 + 𝛿)𝑚−𝑣+1, (4.27a)

�̄�𝐵
1 (𝑚, 𝑣) =

𝛾

1 + 𝛿
�̄�𝐵
2 (𝑚, 𝑣). (4.27b)

For a left boundary they read:

�̄�𝐵
1 (𝑚, 𝑣) = (1 + 𝛼)𝑚−𝑣+1 · 𝛽𝑣−1 · 𝛾𝑣 · (1 + 𝛿)𝑚−𝑣, (4.28a)

�̄�𝐵
2 (𝑚, 𝑣) =

𝛽

1 + 𝛼
�̄�𝐵
1 (𝑚, 𝑣). (4.28b)

Proof. We only show the derivation of weights for a right boundary, the left boundary
follows in an analogue manner. We use the general form for the path weight �̄�𝐵

2 implied
by Corollary 1:

�̄�𝐵
2 (𝑚, 𝑣) = (1 + 𝛼)𝑠𝑙 · 𝛽𝑐𝑙 · 𝛾𝑐𝑟 · (1 + 𝛿)𝑠𝑟 .

There are four conditions to the exponents:

i) The number of leftward edges is determined exclusively by 𝑚: 𝑠𝑙 + 𝑐𝑙 = 𝑚.

ii) The first condition holds also for rightward edges: 𝑠𝑟 + 𝑐𝑟 = 𝑚.

iii) There is one right/left directional change more than left/right changes: 𝑐𝑙 − 𝑐𝑟 = 1.

iv) The total amount of directional changes depends on 𝑣, in detail: 𝑐𝑙 + 𝑐𝑟 = 2𝑣 − 1.

The unique solution of the corresponding linear system for the exponents leads to (4.27a).
In the computation for �̄�𝐵

1 (𝑚, 𝑣) the edge weight of the first edge is 𝛾 instead of (1 + 𝛿).
This implies the relation (4.27b).

Lemmas 5 and 6 are used to state the node weights for contributing nodes (4.14):

𝑊𝑙(𝑛
𝑘
1) = �̄�𝐵

𝑙 (1, 1), (4.29a)

𝑊𝑙(𝑛
𝑘
𝑚) =

𝑚−1∑︁
𝑣=1

𝑃𝐵(𝑚, 𝑣) · �̄�𝐵
𝑙 (𝑚, 𝑣), 𝑚 = 2, . . . , 𝜅. (4.29b)

4.4.3 Exact discrete artificial boundary condition

We take the previously computed node weights (4.23) and (4.29), to express the inward
population at a boundary lattice point 𝑥𝑏 ∈ Γ ⊆ ℬ by (4.16). So, under the assumption
that the exterior domain was initialized in equilibrium, see (4.12), it follows an exact



62 4 Exact discrete artificial boundary condition for linear collision model

DABC:

𝐵ex
𝑗 (𝑥𝑏, 𝑡1) = 𝐸𝑗 , (4.30a)

𝐵ex
𝑗 (𝑥𝑏, 𝑡𝑘) =

2∑︁
𝑙=1

(︃
𝜅∑︁

𝑚=1

𝛼𝑙(𝑚)𝑓𝑙(𝑥𝑏, 𝑡𝑘 − 2𝑚Δ𝑡) + 𝛽𝑙(𝑘)𝐸𝑙

)︃
, 𝑘 ≥ 2, (4.30b)

where the node weights 𝛼𝑙 for past boundary nodes are directly available by (4.29)

𝛼𝑙(1) = �̄�𝐵
𝑙 (1, 1), (4.31a)

𝛼𝑙(𝑚) =
𝑚−1∑︁
𝑣=1

𝑃𝐵(𝑚, 𝑣) · �̄�𝐵
𝑙 (𝑚, 𝑣), 𝑚 = 2, . . . , 𝜅. (4.31b)

Due to (4.12) all populations in contributing fictitious nodes are equal, thus we can write
the BC with one node weight for the equilibrium 𝐸𝑙, see (4.12):

𝛽𝑙(𝑘) =
𝜅∑︁

𝑚=1

𝑚−1∑︁
𝑣=0

𝑃𝐹 (𝑘,𝑚, 𝑣) · �̄�𝐹
𝑙 (𝑘,𝑚, 𝑣). (4.32)

When evolving in time the node weights 𝛼𝑙 remain unchanged, however additional node
weights have to be computed. Contrary, the node weights 𝛽𝑙 depend on the time level,
however they change only after two time steps, since for even 𝑘 holds:

𝛽𝑙(𝑘 + 1) = 𝛽𝑙(𝑘).

This follows directly as 𝑘 only appears in 𝜅, see (4.13). Next we show that the 𝛽𝑙 can be
determined alternatively, only in dependence of the node weights 𝛼𝑙.

Alternative computation of the node weights First we assume that also all interior
populations are homogeneously initialized with the same equilibrium values 𝐸𝑖, i.e., 𝐼𝑖 in
(4.1) shall satisfy

𝐼𝑖(𝑥) = 𝐸𝑖, for all 𝑥 ∈ 𝒢. (4.33)

Then, as an exact BC all inward populations computed by (4.30) are equally given by 𝐸𝑗 .
Therefore, equation (4.30) exhibits the form

𝐵ex
𝑗 (𝑥𝑏, 𝑡𝑘) =

[︂
𝑆𝜅
𝛼1

+
1 + 𝑎

1− 𝑎
𝑆𝜅
𝛼2

+ 𝛽1(𝑘) +
1 + 𝑎

1− 𝑎
𝛽2(𝑘)

]︂
𝐸1 (4.34a)

=

[︂
1− 𝑎

1 + 𝑎
𝑆𝜅
𝛼1

+ 𝑆𝜅
𝛼2

+
1− 𝑎

1 + 𝑎
𝛽1(𝑘) + 𝛽2(𝑘)

]︂
𝐸2. (4.34b)

In the derivation of (4.34), we used the general relation

𝐸2 =
1 + 𝑎

1− 𝑎
𝐸1,
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which holds for any equilibrium populations in the present D1Q2 model. Moreover, we
used the short-hand notation

𝑆𝑞
𝛼𝑗

:=

𝑞∑︁
𝑚=1

𝛼𝑗(𝑚). (4.35)

We conclude that the corresponding coefficient of 𝐸𝑗 (square bracket term) in (4.34) has
to be equal to one. If 𝛼𝑙 and 𝛽𝑙 are computed by (4.31) and (4.32), respectively, this
requirement is naturally satisfied. Hence, the node weights 𝛽𝑙, see (4.32), can also be
determined uniquely by solving the linear system

(1− 𝑎)𝛽1(𝑘) + (1 + 𝑎)𝛽2(𝑘) = (1± 𝑎)− (1− 𝑎)𝑆𝜅
𝛼1

− (1 + 𝑎)𝑆𝜅
𝛼2
, (4.36)

in combination with one of the following relations implied by (4.18b) or (4.19b), respec-
tively:

𝛽2(𝑘) =
𝛽

1 + 𝛼
𝛽1(𝑘) or 𝛽2(𝑘) =

1 + 𝛿

𝛾
𝛽1(𝑘). (4.37)

The first equation of (4.37) has to be combined with the minus sign in (4.36) for a right
boundary. Having a left boundary the plus sign in (4.36) is taken in combination with the
second equation of (4.37). We remark that a relation analogue to (4.37) holds also for the
node weights 𝛼1 and 𝛼2, and thus also for their sums (4.35).





5 Chapter 5

Discrete artificial boundary conditions

The previous chapter provided an exact DABC for a one-dimensional LB simulation with a
linear collision model. Its computational effort is too high to serve as a practical BC itself.
The main goal of the present chapter is to formulate a practical BC, which is derived from
the exact DABC. Thereby it is also formulated purely on the discrete level. We emphasize
that we do not confine ourselves to one-dimensional problems, but consider also higher
spatial dimensions.

To accomplish our goal, we pursue the following steps. First we devise an approximation
to the exact DABC for the one-dimensional linear collision model, used in the previous
chapter (Section 5.1). Hereby we introduce a so-called history depth, which serves as
a key parameter for the DABCs. In a second step (Section 5.2), we interpret this ap-
proximate DABC as the solution of a separate problem, a so-called subproblem. These
are individual LB simulations, where the history depth is its most important parameter.
Based on this view, in Section 5.3, the idea of this approximate DABCs is transferred
to a one-dimensional nonlinear collision model. In Section 5.4 it is generalized to higher
dimensions, any collision models, and arbitrary discretization models, especially including
the nonlinear models used to recover the Navier-Stokes equations. Lastly, in Section 5.5,
we investigate DABCs in terms of error sources, relations between their history depth
and their subproblem’s initialization, as well as on an efficient implementation and its
computational cost.

This chapter combines results of our works. Section 5.1 is based on [47], while Sections 5.2,
5.3 and 5.5 rests upon [48]. The content of [49] is found in Section 5.4.

5.1 One-dimensional discrete artificial boundary conditions
for a linear collision model

The basis for deriving a practical (approximate) DABC 𝐵𝑗 for a setup in the form of (4.1),
i.e.,

𝑃lin = LB(𝒢, 𝒯 ,𝒱D1Q2,Clin, 𝑓𝑗 , 𝐼𝑗 , 𝐵𝑗), (5.1)

is the exact DABC (4.30). We recall that its computational effort consists in the deter-
mination of additional node weights 𝛼𝑖 necessary when time is evolving. Also these costs
do increase with advancing time, since the sum in (4.31b) contains more and more sum-
mands. To obtain the approximate DABC we aim to reduce the computational effort at
the expense of accuracy. This is achieved by truncating the sum in (4.31b). The idea of
truncation is motivated by the result of the following subsection.

65
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5.1.1 Decreasing node weights

Let us consider the exact DABC (4.30) for the special case 𝜔 = 1 (see (4.2)) of the setup
(5.1), then the weights (4.8) satisfy

1 + 𝛼 = 𝛽, 1 + 𝛿 = 𝛾.

It follows that the path weights defined in Lemma 6 are independent of the boundary
location

�̄�𝐵
𝑗 (𝑚, 𝑣) =

[︂
1

4
(1− 𝑎2)

]︂𝑚
≤ 4−𝑚, 𝑗 = 1, 2,

where the upper bound holds due to 𝑎 ∈ (−1, 1). If one uses this estimate, the node
weights (4.31) have an upper bound, which tends to zero for 𝑚 going to infinity:

0 ≤ 𝛼𝑖(𝑚) ≤ 4−𝑚
𝑚−1∑︁
𝑣=1

1

𝑚− 𝑣

(︃
𝑚− 1

𝑣

)︃(︃
𝑚− 2

𝑣 − 1

)︃
≤ 1

4𝑚
√︀
𝜋(𝑚− 1)

.

This estimate holds, since the sum represents the Catalan number 𝐶𝑚−1 with known
bounds [24, 72]

𝐶𝑚−1 =
1

𝑚

(︃
2𝑚− 2

𝑚− 1

)︃
≤ 4𝑚−1

𝑚
√︀
𝜋(𝑚− 1)

.

We conclude the node weights 𝛼𝑖(𝑚) are decreasing for increasing 𝑚. This is a motivation
to disregard the populations corresponding to large 𝑚 in the exact DABC (4.30) to obtain
an efficient approximation.

5.1.2 Approximate discrete artificial boundary condition

We will show in Section 5.1.3 that the decay of 𝛼𝑖(𝑚) is not limited to the case 𝜔 = 1.
So, in the exact DABC (4.30), we neglect populations corresponding to large 𝑚 to obtain
a suitable approximation. To this end, in (4.30b) the inner sum is truncated at some
ℎ̃(𝑘) ∈ N:

𝐵𝑗(𝑥𝑏, 𝑡𝑘) =

2∑︁
𝑙=1

⎛⎝ ℎ̃(𝑘)∑︁
𝑚=1

𝛼𝑙(𝑚)𝑓𝑙(𝑥𝑏, 𝑡𝑘 − 2𝑚Δ𝑡) + 𝛽𝑙(𝑘)𝐸𝑙

⎞⎠ , 𝑘 ≥ 2. (5.2)

The function ℎ̃(𝑘) controlling the truncation should be bounded above ℎ̃(𝑘) ≤ �̃� for all
𝑘 ∈ N, where �̃� ∈ N is fixed. This avoids the high computational costs of the exact
DABC, i.e., the approximation (5.2) becomes efficient. Also the first sum in (4.32) has an
increasing computational effort, which is compensated by substituting the 𝛽𝑙 by new node
weights 𝛽𝑙, which are solutions to

(1− 𝑎)𝛽1(𝑘) + (1 + 𝑎)𝛽2(𝑘) = (1± 𝑎)− (1− 𝑎)𝑆ℎ̃(𝑘)
𝛼1

− (1 + 𝑎)𝑆ℎ̃(𝑘)
𝛼2

,
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and

𝛽2(𝑘) =
𝛽

1 + 𝛼
𝛽1(𝑘) or 𝛽2(𝑘) =

1 + 𝛿

𝛾
𝛽1(𝑘).

Such a system was derived for the original node weights above, see (4.36) and (4.37). We
can conclude that the new node weights are equivalent to

𝛽𝑙(𝑘) =

ℎ̃(𝑘)∑︁
𝑚=1

𝑚−1∑︁
𝑣=0

𝑃𝐹 (𝑘,𝑚, 𝑣) · �̄�𝐹
𝑙 (𝑘,𝑚, 𝑣).

This choice of 𝛽𝑙 ensures that a global equilibrium is retained by the approximate DABC
(5.2).

History depth The boundary population computed by (5.2) depends on populations from
the past time levels

𝑡 = 𝑡𝑘 −𝑚Δ𝑡 with 𝑚 = 1, . . . , 2ℎ̃(𝑘).

The truncated formulation with ℎ̃(𝑘) ≤ �̃� exhibits a finite memory, which gives rise to
call ℎ(𝑘) = 2ℎ̃(𝑘) the history depth of time level 𝑡 = 𝑡𝑘. Analogously, 𝐻 = 2�̃� is denoted
as the maximal history depth. The history depth of the exact DABC is ℎ(𝑘) = 2𝜅, and
thus not bounded above. We suggest to choose the truncation parameter such that the
corresponding history depth satisfies

ℎ(𝑘) = min {2𝜅, 𝐻} . (5.3)

Thus, the approximate DABC (5.2) with (5.3) is exact at the beginning of the simulation
as long as 2𝜅 ≤ 𝐻 holds.

5.1.3 Proof of node weights’ general decrease

We end this section by showing the convergence of node weights 𝛼𝑖 = 𝛼𝑖(𝑚) (for 𝑚→ ∞)
for any (𝜔, 𝑎) ∈ 𝐹 := (0, 2)× (−1, 1), where 𝐹 is the full parameter domain. This makes
the truncation reasonable, furthermore it yields an analytical basis for the history depth
being an accuracy parameter. We consider the auxiliary node weights

�̃�(𝑚) =
𝑚−1∑︁
𝑣=1

1

𝑚− 𝑣

(︃
𝑚− 1

𝑣

)︃(︃
𝑚− 2

𝑣 − 1

)︃
(1 + 𝛼)𝑚−𝑣 𝛽𝑣 𝛾𝑣 (1 + 𝛿)𝑚−𝑣. (5.4)

The actual weights (4.31) are obtained by 𝛼𝑖(𝑚) = 𝐶 · �̃�(𝑚) with an appropriate constant
𝐶, which can be omitted in the convergence investigation:

lim
𝑚→∞

|𝛼𝑖(𝑚)| = 0 ⇔ lim
𝑚→∞

|�̃�(𝑚)| = 0. (5.5)

Before we prove the convergence (5.5) (see Lemma 9 below) we gather some properties of
the edge weights:
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Lemma 7. It holds:

a) The weights 𝛽 and 𝛾 are positive for all (𝜔, 𝑎) ∈ 𝐹 .

b) The weights (1 + 𝛼) and (1 + 𝛿) are non-negative for (𝜔, 𝑎) ∈ 𝐷1 ⊂ 𝐹 , where

𝐷1 :=
{︁
(𝜔, 𝑎) ∈ 𝐹 | 𝜔(1 + 𝑎) ≤ 2 ∧ 𝜔(1− 𝑎) ≤ 2

}︁
. (5.6)

For (𝜔, 𝑎) ∈ 𝐹 ∖𝐷1 either (1 + 𝛼) or (1 + 𝛿) is negative, but they are not negative
simultaneously.

The domain (5.6) is visualized in Fig. 5.1.

Proof. a) This follows directly from the definitions of 𝛽 and 𝛾, see (4.8).

b) An equivalent condition for (1 + 𝛼) being negative is given as follows:

(1 + 𝛼) < 0 ⇔ 1− 1

2
𝜔(1 + 𝑎) < 0 ⇔ 𝜔(1 + 𝑎) > 2

Analogously, we obtain (1 + 𝛿) < 0 ⇔ 𝜔(1− 𝑎) > 2. Both conditions taken together
imply the non-negativity on 𝐷1, since for (𝜔, 𝑎) ∈ 𝐷1 neither 𝜔(1 + 𝑎) > 2 nor
𝜔(1− 𝑎) > 2 is satisfied.
It remains to show 𝜔(1 + 𝑎) > 2 ⇒ 𝜔(1 − 𝑎) ≤ 2, such that the negativity of
(1 +𝛼) implies the non-negativity of (1 + 𝛿): It obviously holds (1 + 𝑎) ∈ (0, 2) and
𝜔 ∈ (0, 2). Therefore the validity of 𝜔(1 + 𝑎) > 2 implies 𝜔 > 1 and 𝑎 ∈ (0, 1).
With (𝜔, 𝑎) ∈ (1, 2) × (0, 1) it directly follows 0 ≤ 𝜔(1 − 𝑎) ≤ 2. Analogously, we
can show the implication 𝜔(1− 𝑎) > 2 ⇒ 0 ≤ 𝜔(1 + 𝑎) ≤ 2.

One part of the proof of the convergence (5.5) is based on an estimate presented in the
following lemma.

Lemma 8. Let us consider

𝑆𝑝1,𝑝2,𝑞1,𝑞2(𝑚) :=

𝑚−1∑︁
𝑣=1

1

𝑚− 𝑣

(︃
𝑚− 1

𝑣

)︃(︃
𝑚− 2

𝑣 − 1

)︃
𝑝𝑚−𝑣
1 𝑝𝑚−𝑣

2 𝑞𝑣1𝑞
𝑣
2 , (5.7)

for 𝑚 ≥ 2 and 𝑝𝑖, 𝑞𝑖 ∈ R. If both 𝑝𝑖 and both 𝑞𝑖 are non-negative, then there exists an
upper bound:

𝑆𝑝1,𝑝2,𝑞1,𝑞2(𝑚) ≤ [(𝑝1 + 𝑞1)(𝑝2 + 𝑞2)]
𝑚

𝑚
.

Proof. The statement is shown by using the rather rough estimate

𝑛∑︁
𝑘=1

𝑎𝑘𝑏𝑘 ≤

(︃
𝑛∑︁

𝑘=1

𝑎𝑘

)︃(︃
𝑛∑︁

𝑘=1

𝑏𝑘

)︃
,

which holds if all 𝑎𝑘 and 𝑏𝑘 are non-negative. The function 𝑆𝑝1,𝑝2,𝑞1,𝑞2(𝑚) is estimated as
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Figure 5.1: Visualization of the subdomains 𝐷1 and 𝐷2 – The rectangle describes the full
parameter domain 𝐹 . The blue subdomain visualizes the domain 𝐷1 (5.6), on
which the weights (4.8) satisfy certain properties (see Lemma 7) and on which
(5.8) is proven in Lemma 9 with application of (5.7). Furthermore, the green
subdomain 𝐷2 gives the extension of 𝐷1 for which Lemma 8 could be used at
most to prove (5.8).

follows:

𝑆𝑝1,𝑝2,𝑞1,𝑞2(𝑚) =
1

𝑚

𝑚−1∑︁
𝑣=1

(︃
𝑚

𝑣

)︃(︃
𝑚− 2

𝑣 − 1

)︃
𝑝𝑚−𝑣
1 𝑝𝑚−𝑣

2 𝑞𝑣1𝑞
𝑣
2

≤ 1

𝑚

[︃(︃
𝑚−1∑︁
𝑣=1

(︃
𝑚

𝑣

)︃
𝑝𝑚−𝑣
1 𝑞𝑣1

)︃
·

(︃
𝑚−1∑︁
𝑣=1

(︃
𝑚− 2

𝑣 − 1

)︃
𝑝𝑚−𝑣
2 𝑞𝑣2

)︃]︃

≤ 𝑝2𝑞2
𝑚

[︃(︃
𝑚∑︁
𝑣=0

(︃
𝑚

𝑣

)︃
𝑝𝑣𝑞𝑚−𝑣

)︃
·

(︃
𝑚−2∑︁
𝑣=0

(︃
𝑚− 2

𝑣

)︃
𝑝𝑚−2−𝑣
2 𝑞𝑣2

)︃]︃
=

𝑝2𝑞2
𝑚(𝑝2 + 𝑞2)2

[(𝑝1 + 𝑞1)(𝑝2 + 𝑞2)]
𝑚

≤ [(𝑝1 + 𝑞1)(𝑝2 + 𝑞2)]
𝑚

𝑚
.

All required preparations to show the convergence (5.5) are now settled and the following
lemma corroborates the statement analytically.

Lemma 9. For all (𝜔, 𝑎) ∈ 𝐹 := (0, 2) × (−1, 1) the node weights (5.4) satisfy the
convergence (5.5), i.e., it holds

lim
𝑚→∞

⃒⃒⃒⃒
⃒
𝑚−1∑︁
𝑣=1

1

𝑚− 𝑣

(︃
𝑚− 1

𝑣

)︃(︃
𝑚− 2

𝑣 − 1

)︃
(1 + 𝛼)𝑚−𝑣 𝛽𝑣 𝛾𝑣 (1 + 𝛿)𝑚−𝑣

⃒⃒⃒⃒
⃒ = 0. (5.8)
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Proof. i) In the first part, we show (5.8) for (𝜔, 𝑎) ∈ 𝐷1, where the domain is defined
in (5.6): For (𝜔, 𝑎) ∈ 𝐷1 Lemma 8 can be applied directly with

𝑝1 = 1 + 𝛼 = 1− 𝛾, 𝑝2 = 1 + 𝛿 = 1− 𝛽,

𝑞1 = 𝛾, 𝑞2 = 𝛽.

Then the convergence (5.8) follows immediately.

ii) In the second part we prove the convergence for all (𝜔, 𝑎) ∈ 𝐹 ∖𝐷1: To this end, we
rewrite (5.4) as

�̃�(𝑚) = [(1 + 𝛼)(1 + 𝛿)]𝑚𝑁𝑚−1(𝑞), (5.9a)

𝑁𝑚−1(𝑞) =
𝑚−1∑︁
𝑣=1

1

𝑚− 1

(︃
𝑚− 1

𝑣

)︃(︃
𝑚− 1

𝑣 − 1

)︃
𝑞𝑣, (5.9b)

where 𝑁𝑚−1(𝑞) is a Narayana polynomial with argument 𝑞 = 𝛽𝛾
(1+𝛼)(1+𝛿) , see [72].

Note that the identity

1

𝑚− 𝑣

(︃
𝑚− 2

𝑣 − 1

)︃
=

1

𝑚− 1

(︃
𝑚− 1

𝑣 − 1

)︃

was used to obtain this result. For the present case the argument 𝑞 is negative due
to Lemma 7. Now we use an equivalent expression of a Narayana polynomial [72]:

𝑁𝑚−1(𝑞) = (𝑞 − 1)𝑚
𝑞/(𝑞−1)∫︁
0

𝑃𝑚−1(2𝑥− 1) d𝑥 =
(𝑞 − 1)𝑚

2

𝑏∫︁
−1

𝑃𝑚−1(𝑧) d𝑧, (5.10)

with 𝑃𝑚−1 being the (𝑚 − 1)-th Legendre polynomial and the upper integration
bound 𝑏 = 𝑞+1

𝑞−1 satisfying −1 < 𝑏 < 1. We use the following estimate for Legendre
polynomials [105]

|𝑃𝑛(𝑥)| <
√
2

√
𝑛𝜋(1− 𝑥2)1/4

, 𝑥 ∈ (−1, 1), 𝑛 ∈ N,

to estimate the Narayana polynomial (5.10):

|𝑁𝑚−1(𝑞)| ≤
|𝑞 − 1|𝑚

2

𝑏∫︁
−1

|𝑃𝑚−1(𝑧)| d𝑧 ≤ |𝑞 − 1|𝑚

2

1∫︁
−1

|𝑃𝑚−1(𝑧)| d𝑧

≤ |𝑞 − 1|𝑚√︀
2(𝑚− 1)𝜋

1∫︁
−1

1

(1− 𝑧2)1/4
d𝑧

=
|𝑞 − 1|𝑚√︀
2(𝑚− 1)𝜋

𝜋/2∫︁
−𝜋/2

√︀
cos(𝑡) d𝑡

≤ |𝑞 − 1|𝑚
√
𝜋√︀

2(𝑚− 1)
.
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𝑛1 𝑛2

time

space

𝑡 = 𝑡0

𝒟(𝑛1) 𝒟(𝑛2)

Figure 5.2: Domain of dependence for two adjacent nodes in D1Q2 – The space-time di-
agram shows the domains of dependence 𝒟(𝑛1) and 𝒟(𝑛2) for two adjacent
nodes 𝑛1 and 𝑛2, respectively. Within each domain of dependence the nodes
which influence the information at node 𝑛1 and 𝑛2 are marked, respectively.

In total we obtain for (5.9)

|�̃�(𝑚)| ≤ |(1 + 𝛼)(1 + 𝛿)(𝑞 − 1)|𝑚
√
𝜋√︀

2(𝑚− 1)
,

and the convergence (5.8) follows due to

|(1 + 𝛼)(1 + 𝛿)(𝑞 − 1)| = |𝜔 − 1| < 1.

This completes the proof.

We end this section with a remark: Based on the result of Lemma 8 the convergence
can be shown only for some (𝜔, 𝑎) ∈ 𝐹 ∖ 𝐷1. Since negative edge weights occur in this
case we need to consider absolute values when intending to apply Lemma 8. By choosing
optimal values for 𝑝𝑖 and 𝑞𝑖 the convergence can additionally be shown at most for the
green domain 𝐷2 ⊂ 𝐹 ∖ 𝐷1 visualized in Fig. 5.1. For details we refer to Appendix D.
Thus, the alternative approach used in part (𝑖𝑖) of the proof was necessary. Vice versa,
the approach followed in part (𝑖𝑖) is not applicable for (𝜔, 𝑎) ∈ 𝐷1, either.

5.2 Interpretation as subproblems

In preparation for generalizing the approximate DABC (5.2) we explain a certain inter-
pretation of the BC in the current section. However, let us first remark, that in D1Q2
only every second node in space and time has a contribution to the terminal node, as one
can see in Fig. 5.2 and also in previous figures (Figs. 4.3 to 4.8). In Fig. 5.2 we show the
domains of dependence 𝒟(𝑛1) and 𝒟(𝑛2) for two adjacent nodes 𝑛1 and 𝑛2. Clearly the
D1Q2 model computes the evolution of two separate groups, where information is never
exchanged between them. That is the reason why the approximate DABC (5.2) depends
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bo
un

da
ry

time

space

computational part of
the fluid domain (inte-
rior)

not computed part of
the fluid domain /
fictitious nodes

ℎ(𝑘) steps

ℎ(𝑘) + 1 points

𝑡 = 𝑡𝑘

𝑡 = 𝑡𝑘−ℎ(𝑘)

𝑡 = 𝑡𝑘−2

𝑘-th subproblem
with history
depth ℎ(𝑘)

Figure 5.3: Digraph corresponding to an approximate discrete boundary condition – For a
given history depth ℎ(𝑘) the digraph visualizing the exact discrete boundary
condition (Fig. 4.6) is cut at time level 𝑡 = 𝑡𝑘−ℎ(𝑘) and new contributing ficti-
tious nodes are introduced. The dashed box containing the digraph symbolizes
the 𝑘-th subproblem (5.14).

not on all past boundary nodes

𝑛𝑚 = (𝑥𝑏, 𝑡𝑘 −𝑚Δ𝑡), 𝑚 = 1, . . . , ℎ(𝑘), (5.11)

but only on those where 𝑚 is even. However, an equivalent formulation formally taking
all nodes (5.11) into account is easily written down:

𝐵𝑗(𝑥𝑏, 𝑡𝑘) =

2∑︁
𝑙=1

⎛⎝ℎ(𝑘)∑︁
𝑚=1

𝛼′
𝑙(𝑚)𝑓𝑙(𝑥𝑏, 𝑡𝑘 −𝑚Δ𝑡) + 𝛽𝑙(𝑘)𝐸𝑙

⎞⎠ , 𝑘 ≥ 2, (5.12)

with node weights 𝛼′
𝑙(𝑚) = 𝛼𝑙(𝑚/2) for even 𝑚 and 𝛼′

𝑙(𝑚) = 0 otherwise.

A graphical interpretation for the approximate DABC is given by the digraph of Fig. 5.3,
if we set the populations in the nodes

𝑛𝑚 = (𝑥𝑏 − 𝑐𝑗𝑚Δ𝑡, 𝑡𝑘 − ℎ(𝑘)Δ𝑡), 𝑚 = 1, . . . , ℎ(𝑘) (5.13)

(for appropriate 𝑚) to 𝐸𝑖. If we consider this digraph, we can split the contributing nodes
into two types: Past boundary nodes (5.11) and fictitious contributing nodes (5.13). For
both types of nodes the history depth ℎ(𝑘) is directly related to the number of contributing
nodes each. In our interpretation the processes within the dashed rectangle are described
by some separate LB setup 𝑆𝑘. This means that the boundary population 𝐵𝑗(𝑥𝑏, 𝑡𝑘) of
(5.12) is equivalently given as the solution of a separate LB simulation, which is called the
𝑘-th subproblem. It should be emphasized that for each time level a new subproblem is
considered.
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Next, we describe the setup of the 𝑘-th subproblem

𝑆𝑘 = LB(𝒢𝑘, 𝒯 𝑘,𝒱D1Q2,Clin, ℎ
𝑘
𝑖 , 𝐼

𝑘
𝑗 , 𝐵

𝑘
𝑗 ), (5.14)

in more detail, where we use the notation introduced in Section 2.5. Remark that the
original problem at hand is given by 𝑃lin, see (5.1). We observe that the 𝑘-th subproblem
inherits the velocity discretization 𝒱D1Q2 and the collision model Clin from 𝑃lin. The
computational grid of 𝑆𝑘, i.e.,

𝒢𝑘 = {𝑥𝑘1, 𝑥𝑘2, . . . , 𝑥𝑘ℎ(𝑘)+1}

consists of ℎ(𝑘) + 1 grid points, where ℎ(𝑘) = 2ℎ̃(𝑘) is the chosen history depth of time
level 𝑡 = 𝑡𝑘 ∈ 𝒯 . We identify the boundary point of 𝒢𝑘 for which 𝑐𝑗 points outwards of
the computational grid as a so-called intersection grid point denoted by 𝑥𝑘𝐼 ∈ Γ𝑘 ⊂ 𝒢𝑘. In
this context, 𝑗 is the index of the boundary population 𝐵𝑗 , which is needed in the original
problem. The name stems from the fact, that 𝑥𝑘𝐼 = 𝑥𝑏 ∈ 𝒢𝑘 ∩𝒢 holds. Exemplarily, if the
BC (5.12) is applied for the right boundary of the original computational grid 𝒢, then the
intersection grid point 𝑥𝑘𝐼 lies on the left boundary of 𝒢𝑘. The corresponding populations
of 𝑆𝑘, denoted by ℎ𝑘𝑖 , shall be initialized according to

𝐼𝑘𝑖 (𝑥
𝑘
𝐼 ) = 𝑓𝑖(𝑥𝑏, 𝑡𝑘 − ℎ(𝑘)Δ𝑡), (5.15)

and for other grid points by

𝐼𝑘𝑖 (𝑥
𝑘
𝑚) = 𝐸𝑖, 𝑥𝑘𝑚 ∈ 𝒢𝑘 ∖ {𝑥𝑘𝐼}. (5.16)

The inward boundary populations at the intersection grid point are set by

𝐵𝑘
𝑖 (𝑥

𝑘
𝐼 , 𝑡

𝑘
0 + 𝑗Δ𝑡) = 𝑓𝑖

(︀
𝑥𝑏, 𝑡𝑘 − (ℎ(𝑘)− 𝑗)Δ𝑡

)︀
, 𝑗 = 1, . . . , ℎ(𝑘)− 1, (5.17)

whereas the populations at the opposite boundary of 𝒢𝑘 can be chosen arbitrarily, since
they are not relevant for our purpose. The initial time of the 𝑘-th subproblem is 𝑡𝑘0 =
𝑡𝑘 − ℎ(𝑘)Δ𝑡, and ℎ(𝑘) time steps have to be simulated, thus we have

𝒯 𝑘 = {𝑡𝑘0, 𝑡𝑘0 +Δ𝑡, 𝑡𝑘0 + 2Δ𝑡, . . . , 𝑡𝑘0 + ℎ(𝑘)Δ𝑡}. (5.18)

The boundary population 𝐵𝑗(𝑥𝑏, 𝑡𝑘) of the original problem is given, equivalently to (5.12),
at the latest time level of the 𝑘-th subproblem:

𝐵𝑗

(︀
𝑥𝑏, 𝑡𝑘

)︀
= ℎ𝑘𝑗

(︀
𝑥𝑘𝐼 , 𝑡

𝑘
0 + ℎ(𝑘)Δ𝑡

)︀
. (5.19)

The DABC, formulated by (5.19) as the solution of a separate LB simulation (𝑆𝑘), can be
generalized to arbitrary collision models. We focus on this issue in the upcoming sections.

5.3 One-dimensional discrete artificial boundary conditions
for a nonlinear collision model

The aim of this section is to perform the first of two steps to generalize the DABC (5.19)
to arbitrary (nonlinear) collision models in any dimension. In this first step, we formulate
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a DABC for a nonlinear collision model, but remain in one space dimension. The second
step, done in the subsequent section, transfers the idea to higher dimensions, eventually
leading to the most general formulation of our DABCs.

Here, we consider the usual LBE (2.40) in one space dimension with a BGK collision
operator and three velocities 𝑐0 = 0, 𝑐1 = −𝑐 and 𝑐2 = 𝑐 (D1Q3). In contrast to the
previous sections we now focus on

𝑃non-lin = LB(𝒢, 𝒯 ,𝒱D1Q3,Cnon-lin, 𝑓𝑗 , 𝐼𝑗 , 𝐵𝑗), (5.20)

with nonlinear Cnon-lin given by (2.39) and (2.41). In this case the post-collision popula-
tions (4.4) read

𝑔0(𝑓) = 𝑔0(𝑓0, 𝑓1, 𝑓2) = 𝑓0 −
𝜔

3

𝑓0
2 + 𝑓1

2 + 𝑓2
2 − 𝑓0(𝑓1 + 𝑓2)− 10𝑓1𝑓2
𝑓0 + 𝑓1 + 𝑓2

, (5.21a)

𝑔1,2(𝑓) = 𝑔1,2(𝑓0, 𝑓1, 𝑓2) = 𝑓1,2 +
𝜔

6

𝑓0
2 + 𝑓1

2 + 𝑓2
2 − 𝑓0(𝑓1 + 𝑓2)− 10𝑓1𝑓2
𝑓0 + 𝑓1 + 𝑓2

, (5.21b)

and are clearly nonlinear. Noteworthy, the use of a BGK collision term is done solely for
simplicity, but it does not represent a limitation of the derived BC. Also the equilibrium
distribution used in the BGK model can be taken differently.

For 𝑃non-lin we can formulate, at least theoretically, an exact BC using digraphs as ex-
plained in Section 4.1. Unfortunately, due to the nonlinearity such an exact BC cannot
be written as an efficient formula. Therefore, a DABC for a nonlinear collision model
cannot be derived by an analytical approximation of this theoretical exact DABC. The
expedient is to incorporate the nonlinearity into the approximate DABC for the linear
collision model. To this end, we use the subproblem interpretation (5.19) of the BC, but
solve a subproblem having a nonlinear collision model as well. More precisely, the efficient
approximate DABC has the history depth as a free parameter. In order to compute the
inward boundary population 𝐵𝑗

(︀
𝑥𝑏, 𝑡𝑘

)︀
at time level 𝑡 = 𝑡𝑘 we solve the 𝑘-th subproblem

𝑆𝑘; it reads for the nonlinear case:

𝑆𝑘 = LB(𝒢𝑘, 𝒯 𝑘,𝒱D1Q3,Cnon-lin, ℎ
𝑘
𝑗 , 𝐼

𝑘
𝑗 , 𝐵

𝑘
𝑗 ). (5.22)

As in the linear case, the subproblem’s grid 𝒢𝑘 has ℎ(𝑘) grid points, which are initialized
by (5.15) and (5.16). Again, the physical location of the grid points give a logical extension
of 𝒢, i.e., 𝒢𝑘 ⊆ 𝒢ref. Past boundary nodes of the original problem serve as BC for the
subproblem, see (5.17). For the simulation of 𝑆𝑘 we use the same nonlinear model Cnon-lin
as for the original problem (5.20). So the unknown population given by (5.19) depends
nonlinearly on past boundary populations and the initial data (5.16). Figs. 5.4 and 5.5
summarize the procedure of the DABC.
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...

collision on 𝒢 (usual LB step)
Time level: 𝑡 = 𝑡𝑘−1

streaming on 𝒢 (usual LB step)
Time level: 𝑡 = 𝑡𝑘

BC: Compute unknown populations at 𝑥 ∈ Γ by solving 𝑆𝑘, see Fig. 5.5

collision on 𝒢 (usual LB step)
Time level: 𝑡 = 𝑡𝑘

streaming on 𝒢 (usual LB step)
Time level: 𝑡 = 𝑡𝑘+1

BC: Compute unknown populations at 𝑥 ∈ Γ by solving 𝑆𝑘+1, see Fig. 5.5

...

Figure 5.4: Flow chart explaining the application of the DABC – After an usual collision
step we advance in time by the usual streaming step of the algorithm. At the
new time level, say 𝑡 = 𝑡𝑘, the inward populations are computed by solving
the 𝑘-th subproblem 𝑆𝑘. The flow chart of Fig. 5.5 gives more details for the
subproblem.

5.4 General discrete artificial boundary conditions in any
dimension

The DABCs considered so far dealt only with one-dimensional problems. In principle the
idea of the DABC can be directly transferred also to higher dimensional problems

𝑃gen = LB(𝒢, 𝒯 ,𝒱,C, 𝑓𝑗 , 𝐼𝑗 , 𝐵𝑗),

without any restrictions to the velocity model 𝒱 and the collision model C. As in the
one-dimensional case we solve subproblems to achieve the missing boundary populations.
However in higher dimensions the choice of a subproblem’s (here 𝑘-th subproblem) com-
putational grid 𝒢𝑘 needs special consideration. Another issue arises from dealing with
corners and edges. In the current section we discuss these issues.

5.4.1 Computational grid

In the one-dimensional problems considered above there are at most two open boundary
points. These points were considered independently since they are on the left and right
boundary of the computational grid and thus are not related to each other. There, for each
boundary point exactly one population has to be determined and each population is found
by solving a separate subproblem. In the general (higher dimensional) problem 𝑃gen the
open boundary points Γ ⊆ ℬ are generally not separated from each other. As a beneficial
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𝑘-th subproblem 𝑆𝑘

Given grid of 𝑆𝑘 depending on history depth ℎ(𝑘).
initialize populations ℎ𝑘𝑖 (�⃗�𝑚, 𝑡

𝑘
0) for all �⃗�𝑚 ∈ 𝒢𝑘, e.g., via (5.15) and (5.16).

collision on 𝒢𝑘 (usual LB step)

streaming on 𝒢𝑘 (usual LB step)

apply BC (5.17)

repeat ℎ(𝑘)− 1 times

collision on 𝒢𝑘 (usual LB step)

streaming on 𝒢𝑘 (usual LB step)

obtain the unknown populations by (5.19)

Figure 5.5: Flow chart explaining the procedure of a subproblem – The 𝑘-th subproblem
𝑆𝑘 is solved to compute inward populations at time level 𝑡 = 𝑡𝑘, see Fig. 5.4.
It is first initialized and then evolves according to the usual approach of a LB
algorithm. After all iterations have been computed, the inward populations of
the original problem are given by outward populations of 𝑆𝑘.

consequence we do not need to consider one individual subproblem for each 𝑥𝑏 ∈ Γ,
but one subproblem for all ℎ(𝑘)-connected open boundary points. In this context, two
boundary points 𝑥𝑏,1 and 𝑥𝑏,2 are called ℎ(𝑘)-connected if one can construct a reasonable
path out of lattice vectors 𝑐𝑖 ∈ 𝒱 from 𝑥𝑏,1 to 𝑥𝑏,2 of length at most ℎ(𝑘) on the grid 𝒢ref ∖
𝒢 ∪ {𝑥𝑏,1,𝑥𝑏,2}. Otherwise we call the nodes ℎ(𝑘)-disconnected. We give two theoretical
examples in Figs. 5.6 and 5.7, one for the connected case and one for the disconnected
case.

Analogue to the one-dimensional explanations above, Γ ⊆ ℬ denotes the set of open
boundary points in the original problem 𝑃gen. Let the set Γ be split into as many as
possible disjunctive non-empty subsets

Γ = Γ1 ∪ . . . ∪ Γ𝑁 , (5.23)

such that for a given history depth the splitting satisfies the following condition:

∙ There are no ℎ(𝑘)-connected points 𝑥𝑏,1 ∈ Γ𝑙 and 𝑥𝑏,2 ∈ Γ𝑚 if 𝑙 ̸= 𝑚.

Then, the boundary values 𝐵𝑗(𝑥𝑏) for all 𝑥𝑏 ∈ Γ𝑚 (𝑚 fixed) are computed by the same
subproblem. In fact, whether the boundary values 𝐵𝑗(𝑥𝑏,1) and 𝐵𝑗(𝑥𝑏,2) for two arbitrary
boundary points 𝑥𝑏,1,𝑥𝑏,2 ∈ Γ can be obtained by considering the same subproblem de-
pends on the reference grid 𝒢ref and the chosen history depth ℎ(𝑘). A decision based only
on the location of the boundary point is not possible, as one can also see in Fig. 5.6. In
the following we describe the DABC for one set Γ𝑚, but omit the subscript. To get the
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open boundary points Γ𝐸

Figure 5.6: Theoretical example of ℎ(𝑘)-connected boundaries – Let the history depth be
ℎ(𝑘) ≥ 19. This theoretical example shows open boundary points Γ𝑁 and
Γ𝐸 , where the points 𝑥 ∈ Γ𝑁 and 𝑦 ∈ Γ𝐸 are ℎ(𝑘)-connected, one path is
shown exemplary. Therefore the splitting (5.23) is given by only one subset
Γ1 = Γ𝑁 ∪ Γ𝐸 . (Note, history depths ℎ(𝑘) < 19 yield a splitting Γ1 = Γ𝑁 and
Γ2 = Γ𝐸 instead, i.e., for ℎ(𝑘) < 19 Γ𝑁 and Γ𝐸 are ℎ(𝑘)-disconnected.)

boundary values 𝐵𝑗(𝑥𝑏, 𝑡𝑘), 𝑥𝑏 ∈ Γ ⊆ ℬ ⊂ 𝒢, 𝑗 ∈ ℐ−
𝒢 (𝑥𝑏), we consider one subproblem

𝑆𝑘 = LB(𝒢𝑘, 𝒯 𝑘,𝒱,C, ℎ𝑘𝑗 , 𝐼𝑘𝑗 , 𝐵𝑘
𝑗 ).

The set of discrete time points 𝒯 𝑘 is chosen exactly as in the one-dimensional case ex-
plained above, meaning by (5.18), where ℎ(𝑘) is the chosen history depth and 𝑡𝑘0 =
𝑡𝑘 − ℎ(𝑘)Δ𝑡. Also the size of the computational grid 𝒢𝑘 is determined by the history
depth. Unfortunately, there is no general choice of 𝒢𝑘, which is correct for all possible
cases, but 𝒢𝑘 depends strongly on the given problem and the boundary arrangement.
Next, we explain the individual choice for 𝒢𝑘 based on its theoretical requirements and we
give a construction principle.

Theoretical requirements of the computational grid For the computational grid 𝒢𝑘 we
select points belonging to a sufficiently larger lattice extension of 𝒢, meaning 𝒢𝑘 ⊆ 𝒢ref.
The computational grid 𝒢𝑘 is chosen such that the open boundary points of 𝑃gen lie in
the intersection ℋ𝑘 = 𝒢 ∩ 𝒢𝑘, i.e., Γ ⊆ ℋ𝑘. Moreover, the intersection shall not contain
regular lattice points: ℱ ∩𝒢𝑘 = ∅. We emphasize that, however, we possibly have to add
some further boundary points 𝑥 ∈ ℬ ∖ Γ to the computational grid 𝒢𝑘. By this inclusion
we avoid having boundary points 𝑥𝑏 ∈ ℬ𝑘 in the problem 𝑆𝑘, which do neither belong
to ℬref nor to ℋ𝑘. This is important because otherwise there could be a lack of missing
populations in these points when solving 𝑆𝑘. Note that these additional boundary points
are equipped with regular BCs.
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open boundary points Γ𝐸open boundary points Γ𝑊

Figure 5.7: Theoretical example of disconnected boundaries – The set of open boundary
points Γ𝑊 and Γ𝐸 are separated, such that 𝑥 ∈ Γ𝑊 and 𝑦 ∈ Γ𝐸 are ℎ(𝑘)-
disconnected for all history depths. Therefore the splitting (5.23) is given by
Γ1 = Γ𝑊 and Γ2 = Γ𝐸 .

open boundary points Γ

open boundary points Γ𝑘 = Γ𝑘
0

Figure 5.8: Construction of the computational grid of a subproblem – The dashed container
describes the set 𝒢𝑘

0 . The red nodes are boundary points of 𝒢𝑘
0 without any

prescribed information, such that the blue points have to be added. This union
gives the computational grid 𝒢𝑘 of the 𝑘-th subproblem.

Construction of the computational grid We consider the example of a two-dimensional
channel flow in Fig. 5.8 to better understand the construction of the computational grid.
We describe an approach yielding 𝒢𝑘 for a given history depth ℎ(𝑘): Firstly, we get a
preliminary version 𝒢𝑘

0 ⊂ 𝒢𝑘 by considering the reference grid 𝒢ref, and then disregard all
points of 𝒢 except for Γ, i.e.,

𝒢𝑘
0 = Γ ∪ (𝒢ref ∖ 𝒢).

Next, we also disregard all points 𝑥1 ∈ 𝒢ref ∖𝒢, which are ℎ(𝑘)-disconnected to each point
𝑥2 ∈ Γ. By this we get rid of irrelevant grid points, the outcome is denoted as 𝒢𝑘

0 ⊂ 𝒢𝑘
0 and

in Fig. 5.8 it is shown by all points surrounded by the dashed box. If the thus obtained
grid has boundary points 𝑥𝑏 ∈ 𝒢𝑘

0 ∖ Γ𝑘
0, for which no physical values are prescribed (i.e.,

𝑥𝑏 /∈ ℬref), we add the corresponding missing adjacent points. These points are always
elements of ℬ∖Γ. After this addition, the computational grid 𝒢𝑘 is found. In the illustrated
example, this means the blue points have to be added, since otherwise the red points would
be boundary points for which no condition is given. Thus for the given example, the grid
𝒢𝑘 consists of 𝒢𝑘

0 and the two blue points.
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5.4.2 Solving the subproblem

Given the computational grid 𝒢𝑘 the 𝑘-th subproblem can be solved, provided initial and
boundary values 𝐼𝑘𝑖 and 𝐵𝑘

𝑗 are present, respectively. Basically, the same rules as above
hold also for the general problem 𝑃gen. The relevant boundary values 𝐵𝑘

𝑗 for 𝑆𝑘 are either
given by information from the problem 𝑃gen (if 𝑥 ∈ ℋ𝑘) or by known physical conditions
(if 𝑥 ∈ ℬ𝑘 ∖ ℋ𝑘). Here we state the BC for the 𝑘-th subproblem only for the intersection
points:

𝐵𝑘
𝑗 (𝑥, 𝑡) = 𝑓𝑗

(︀
𝑥, 𝑡
)︀
, 𝑥 ∈ ℋ𝑘, 𝑗 ∈ ℐ−

𝒢𝑘(𝑥), 𝑡 ∈ 𝒯 𝑘.

The initial populations are chosen consistently in the intersection points, i.e.,

𝐼𝑘𝑖 (𝑥) = 𝑓𝑖
(︀
𝑥, 𝑡𝑘0

)︀
, 𝑥 ∈ ℋ𝑘, 𝑡𝑘0 ∈ 𝒯 𝑘.

Lastly, all other points are initialized following the procedure of one-dimensional problems
by

𝐼𝑘𝑖 (𝑥) = 𝑓 ref
𝑖 (𝑥, 𝑡0), 𝑥 ∈ 𝒢𝑘 ∖ ℋ𝑘. (5.24)

Specially, this means the interior points of the subproblem are initialized in the same way
as the reference populations would have been initialized at the very beginning at 𝑡 = 𝑡0.
In the next section, we end this chapter with further investigations of DABCs.

5.5 Analysis of the discrete artificial boundary conditions

The investigations of the DABCs are valid for all problems 𝑃gen. However they are ex-
plained in an intelligible manner assuming one-dimensional problems. We first discuss the
error sources of DABCs, afterwards we explain the relation of history depth and initial-
ization. In the third section we show how DABCs are efficiently implemented and finally,
the last section discusses their computational costs.

5.5.1 Error sources

To measure the accuracy of the DABC we refer to the ITBC of Section 3.1. Let us first
assume that all interior populations up to time level 𝑡 = 𝑡𝑘 are exactly given in the sense
of an ITBC, i.e.,

𝑓𝑖(𝑥, 𝑡𝑠) = 𝑓 ref
𝑖 (𝑥, 𝑡𝑠), ∀𝑥 ∈ 𝒢, 𝑡0 ≤ 𝑡𝑠 < 𝑡𝑘. (5.25)

This assumption is true at the beginning of the simulation, if the history depth satisfies

ℎ(𝑘) = min {𝑘, 𝐻} . (5.26)

We discuss the error 𝛿𝑗(𝑥𝑏, 𝑡𝑘) of the inward population 𝑓𝑗(𝑥𝑏, 𝑡𝑘) at the current time level
𝑡 = 𝑡𝑘. It is given as the deviation from the ideal value:

𝛿𝑗(𝑥𝑏, 𝑡𝑘) :=
⃒⃒
𝑓𝑗(𝑥𝑏, 𝑡𝑘)− 𝑓 ref

𝑗 (𝑥𝑏, 𝑡𝑘)
⃒⃒
.
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Clearly, computing the inward population by the DABC with history depth ℎ(𝑘) = 𝑘
yields 𝛿𝑗(𝑥𝑏, 𝑡𝑘) = 0. Generally, for a smaller history depth ℎ(𝑘) < 𝑘, solving the 𝑘-th
subproblem initialized with (5.15) and (5.16) leads to non-zero errors. However, if the
initial interior populations of the 𝑘-th subproblem were chosen, instead of (5.16), by the
(theoretical) values

𝐼𝑘𝑖 (𝑥
𝑘
𝑚) = 𝑓 ref

𝑖

(︀
𝑥𝑘𝑚, 𝑡𝑘 − ℎ(𝑘)Δ𝑡

)︀
∀𝑥𝑘𝑚 ∈ 𝒢𝑘 ∖ {𝑥𝑘𝐼}, (5.27)

we would obtain a vanishing error as well. It is important to see that this statement holds
for any history depth ℎ(𝑘) > 0. The statement can be validated, since using the initial-
ization (5.27) in the 𝑘-th subproblem, the subproblem would only describe the relevant
processes in the first (ℎ(𝑘) + 1) grid points of 𝒢ref not lying in 𝒢 anymore.

As soon as an error 𝛿𝑗(𝑥𝑏, 𝑡𝑘) > 0 is done for the first time, due to an inexact initialization,
the assumption (5.25) is violated. Then, these (inexact) boundary populations from time
level 𝑡 = 𝑡𝑘 are used in the BC (5.17) of subproblems for later time levels. Thus, even if
the exact initialization (5.27) is used for later time levels, an error is created by inexact
boundary populations in the subproblems.

To sum up, any error of the DABC is introduced by assigning inexact data at the ini-
tialization of the subproblems. We can classify two sources for the error 𝛿𝑗(𝑥𝑏, 𝑡𝑘), both
related to subproblems’ initialization:

E1 The use of inexact initial values in the 𝑘-th subproblem gives an error directly linked
with the initialization.

E2 An indirect error results from inexact initial values in preceding subproblems (𝑠-th
subproblem, with 𝑠 < 𝑘). They lead to inexact populations in earlier time levels,
which enter the 𝑘-th subproblem via the BC, see (5.17).

We point out, that under assumption (5.25) no errors of type E2 exist. However, an error
of type E1 causes the assumption to be violated, such that an indirect error E2 follows
later.

5.5.2 On history depth and initialization

As we have seen above, the errors of the DABC are related to the initialization of the
subproblems. However, it is intuitively clear that a large history depth close to the exact
value ℎ(𝑘) = 𝑘 yields smaller errors. This intuitive view will be confirmed by numerical
experiments, for which we refer to Chapter 6. The aim of the current section is to work
out the link between the history depth and the quality of initialization. We concentrate
on the directly linked error E1, that is assuming (5.25) holds.

Let us consider the 𝑘-th subproblem (5.22) with an enlarged history depth ℎ(𝑘)+𝑠, 𝑠 ≥ 1,
called 𝑆𝑘:

𝑆𝑘 = LB
(︁
𝒢𝑘
ℎ(𝑘)+𝑠, 𝒯

𝑘,𝒱D1Q3,Cnon-lin, ℎ̃
𝑘
𝑗 , 𝐼

𝑘
𝑗 , �̃�

𝑘
𝑗

)︁
.

We recall that its computational grid 𝒢𝑘
ℎ(𝑘)+𝑠 consists of an intersection point 𝑥𝑘𝐼 and a

number of ℎ(𝑘) + 𝑠 adjacent grid points. The subscript emphasizes the dependence on
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the history depth. The eventually required population ℎ̃𝑘𝑗
(︀
𝑥𝑘𝐼 , 𝑡𝑘

)︀
(see also equation 5.19)

depends on information from all nodes

𝑛 =
(︀
𝑥𝑘𝑚, 𝑡𝑘 − (ℎ(𝑘) + 𝑠)

)︀
, 𝑥𝑘𝑚 ∈ 𝒢𝑘

ℎ(𝑘)+𝑠.

After each time step of 𝑆𝑘 the number of relevant grid points decreases, such that after 𝑠
steps only information from nodes

𝑛 = (𝑥𝑘𝑚, 𝑡𝑘 − ℎ(𝑘)Δ𝑡), 𝑥𝑘𝑚 ∈
{︁
𝑥 ∈ 𝒢𝑘

ℎ(𝑘)+𝑠

⃒⃒⃒
𝑥 = 𝑥𝑘𝐼 − 𝑐𝑗𝑟Δ𝑡, 𝑟 = 0, 1, . . . , ℎ(𝑘)

}︁
is relevant. Obviously this set is equivalent to 𝒢𝑘

ℎ(𝑘), that is the computational grid of the
usual 𝑘-th subproblem 𝑆𝑘. Therefore, the boundary population obtained by solving 𝑆𝑘 is
equivalent to solving 𝑆𝑘 when it is initialized as follows:

𝐼𝑘𝑖 (𝑥
𝑘
𝑚) = ℎ̃𝑘𝑖

(︀
𝑥𝑘𝑚, 𝑡𝑘 − ℎ(𝑘)Δ𝑡

)︀
, 𝑥𝑘𝑚 ∈ 𝒢𝑘. (5.28)

Thus, simulating the problem 𝑆𝑘 for 𝑠 time steps, yields an alternative initialization for 𝑆𝑘,
which intuitively leads to smaller errors. Also for a later subproblem, that is a (𝑘+ 𝐽)-th
subproblem, 𝐽 ≥ 1, an initialization according to (5.28) can be reasonable, if 𝐽 is not too
large. Provided the corresponding history depth satisfies ℎ(𝑘+𝐽) ≤ ℎ(𝑘) we can initialize
the subproblem by

𝐼𝑘+𝐽
𝑖 (𝑥𝑘+𝐽

𝑚 ) = ℎ̃𝑘𝑖

(︁
𝑥𝑘+𝐽
𝑚 , 𝑡𝑘 − ℎ(𝑘)Δ𝑡

)︁
, 𝑥𝑘+𝐽

𝑚 ∈ 𝒢𝑘+𝐽 . (5.29)

Note that ℎ(𝑘+ 𝐽) ≤ ℎ(𝑘) implies 𝒢𝑘+𝐽 ⊆ 𝒢𝑘
ℎ(𝑘), and so all populations on the right hand

side are given.

We may conclude that the use of a larger history depth is related to the goal of obtaining
a better initialization of a subproblem. As we have seen before, ideally, the initialization
is done with reference populations, see (5.27). Thus any populations raising the claim to
be close to the unknown reference populations seem to serve as a promising initialization.
For example one might think of an initialization as

𝐼𝑘𝑖 (𝑥
𝑘
𝑚) = 𝑓 eq

𝑖

(︀
𝑥𝑘𝐼 , 𝑡𝑘 − ℎ(𝑘)Δ𝑡

)︀
, 𝑥𝑘𝑚 ∈ 𝒢𝑘, (5.30)

which describes a constant extrapolation of a past boundary population.

5.5.3 Implementation

The solution of the 𝑘-th subproblem is required at time level 𝑡 = 𝑡𝑘. However, it is efficient
to start the simulation of the 𝑘-th subproblem not just when it is needed, i.e., when time
has reached level 𝑡 = 𝑡𝑘, but as soon as necessary data is available. That is, the simulation
of the 𝑘-th subproblem should start at time level 𝑡 = 𝑡𝑘0 = 𝑡𝑘−ℎ(𝑘). In general a LB
simulation is structured as

. . .→ 𝐶 → 𝑆 → 𝐵𝐶 → 𝐶 → 𝑆 → 𝐵𝐶 → 𝐶 → 𝑆 → 𝐵𝐶 → . . . ,

where we have the steps collision (C), streaming (S) and boundary condition (BC). Recall
that the streaming step gives the time stepping. Also note that the information from
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intermediate time levels, 𝑡𝑘0 < 𝑡 < 𝑡𝑘, is entering a subproblem only in the boundary con-
dition step via (5.17). In fact, all information exchange between the original problem and
a subproblem is done either in the BC step, see (5.17) and (5.19), or for the initialization
of a subproblem, see (5.15). Fig. 5.9 visualizes the time range of several subproblems,
using (5.26) with maximal history depth 𝐻 = 5. A black box indicates that a certain
subproblem (ordinate) gives the inward boundary population of the original problem at
the corresponding time level (abscissa). Furthermore, the figure shows labeled boxes in
the row of a 𝑘-th subproblem. A box with label j states that information from time level
𝑡 = 𝑡𝑘−𝑗 is entering the computation of the 𝑘-th subproblem.

Inspecting a fixed time level in Fig. 5.9, e.g., 𝑡 = 𝑡15, we see that there are multiple
subproblems using data from that time level. We focus on the boundary condition steps
(BC) and briefly demonstrate that there is no lack of information, when we compute all
these subproblems simultaneously. After the streaming step the inward population of the
original problem is given by the solution of the corresponding subproblem. The information
entering the subproblems which were initialized in previous time levels is given from the
original problem. Also the same information is used for all subproblems which have to
be initialized at the current time level. After the subsequent collision and streaming step
the situation remains the same. We remark that no information is exchanged between
subproblems directly.

In an efficient implementation like explained above, one has to handle several subproblems
simultaneously, but then the collision and streaming steps of all subproblems can be done
in alignment with those of the original problem. Hence one inherits the computational
benefits of the LBM, e.g., the possibility of parallel computing.

5.5.4 Computational costs

The computational effort of the DABC chiefly depends on three quantities. In particular
each subproblem solved is a LB problem related to the original problem 𝑃gen, hence the
chosen velocity discretization 𝒱 and the collision term C (e.g., SRT or MRT) are crucial.
Due to this dependence, the computational costs of the DABC cannot be stated by a
generally valid number of required arithmetic operations. But, the computational costs
can be measured in terms of corresponding grid points.

If the history depth is chosen according to (5.26), then the computational grids 𝒢𝑗 and
𝒢𝑚 of a 𝑗-th and 𝑚-th subproblem, 𝑗,𝑚 ≥ 𝐻 are equal. So for simplicity, we may
assume that all subproblems have the same number of grid points 𝐽 . The implementation
strategy described in Section 5.5.3 considers 𝐻 subproblems simultaneously, where the
collision and streaming steps of the subproblems and the original problem are computed
simultaneously. Therefore one does not need to distinguish whether a grid point belongs
to a subproblem or to the original problem. It follows, the total computational costs of the
DABC is equivalent to a lattice enlargement by 𝐻 · 𝐽 nodes. Indeed it is even less, since
with each time step a certain number of grid points of a subproblem becomes irrelevant
and thus could be omitted. Therefore, besides 𝒱 and C the third key quantity determining
the computational effort is the maximal history depth 𝐻.
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Figure 5.9: Subproblems’ data dependence from different time levels – The illustration as-
sumes a maximal history depth of 5 and shows subproblems on the ordinate
and time level on the abscissa. A black box indicates when a subproblem deter-
mines the inward population at a certain time level. Other boxes indicate that
information from the corresponding time level enters the corresponding sub-
problem. The presence of several subproblem in a vertical line (e.g., within the
rectangle) shows the potential to compute several subproblems simultaneously.





6 Chapter 6

Numerical results

In this chapter we present the results of several numerical simulations ranging from one to
three dimensions. In Section 6.1, we first give a condense overview of all BCs, which are
used in numerical simulations. The simulations are ordered with respect to their spatial
dimension. Section 6.2 considers only the (approximate) one-dimensional DABC for the
linear problem (4.1). A test case with the same initialization is considered in Section 6.3,
but for the nonlinear case resulting in a one-dimensional pressure pulse, whose evolution
is described by the Navier-Stokes equations. Thereby we present results for all our BCs in
comparison to chosen benchmark BCs. The first problem considered in two dimensions,
in Section 6.4, is used to visualize the working principle of the DABC at the example of a
concentric pressure wave. We simulate an isolated vorticity wave as a benchmark problem
for two-dimensional BCs in Section 6.5. The second two-dimensional test case for the
artificial BCs is based on a theoretical example presented in Section 6.6. Here we simulate
plane waves and investigate the errors of the BCs with respect to the angle of incidence.
Finally, we show the results of a three-dimensional simulation in Section 6.7, where we
consider the flow past an obstacle within a square duct.

6.1 Terminology

Reference solution For all simulations presented in the sequel, we always compute a
reference solution by applying an ideal transparent boundary condition (ITBC) to all open
boundaries of the computational domain. The ITBC has been described in Section 3.1.
All quantities corresponding to the reference solution are marked with the superscript ·ref
and curves in the plots are named ITBC.

Error measurement Using this reference solution, we measure the effects of other BCs
by computing the maximal absolute error

Err𝑧(𝑡) := max
𝑥∈𝒢

⃒⃒
𝑧(𝑥, 𝑡)− 𝑧ref(𝑥, 𝑡)

⃒⃒
, (6.1)

where 𝑧 stands for any possible quantity. Moreover, we consider an ℓ2-error

ℓ2𝑧(𝑡) := ‖𝑧(𝑥, 𝑡)− 𝑧ref(𝑥, 𝑡)‖ℓ2 =

√︃∑︁
𝑥∈𝒢

(︀
𝑧(𝑥, 𝑡)− 𝑧ref(𝑥, 𝑡)

)︀2
. (6.2)

and a maximal ℓ2-error

𝐿𝑧 := ‖𝑧(𝑥, 𝑡)− 𝑧ref(𝑥, 𝑡)‖ℓ2,∞ = max
𝑡∈𝒯

ℓ2𝑧(𝑡). (6.3)
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Discrete artificial boundary conditions We distinguish two DABCs in our simulations.
On the one hand, the DABCs (5.2) for the problem (5.1) with the linear collision model
(4.2), are denoted by linDABC. On the other hand, the general DABCs (for nonlinear
collision models) introduced in Sections 5.3 and 5.4 are denoted by DABC. The DABC are
initialized according to (5.24).

Characteristic boundary conditions We distinguish CBCs (Sections 3.3 and 3.4) with
respect to their basic system, see Section 3.3.1 for details. If they are based on the LODI
equations, we refer to them as LODI, whereas CBC denotes a boundary condition based on
the general basic system (3.17). Unless no name affix is used, the characteristic systems are
solved with an explicit Euler step (3.24) and the resulting Dirichlet condition is transferred
by (3.26). The following name affixes are possible:

-Neq the Dirichlet values are transferred with linear extrapolation of non-equilibrium por-
tions, see (3.27).

-RK the characteristic system is solved with the Runge-Kutta scheme (3.25).

vis- the extended characteristic system (3.28) is considered.

Impedance boundary conditions The IBC as described in Section 3.2.2 is denoted by
ImpBC. Moreover, we consider Schlaffer’s isotropic adaptation (isoImpBC), we refer to [93]
for a detailed description. The implementation of isoImpBC is based on the source code
given in [93]. Both BCs cannot be applied at corners or edges, therefore all results denoted
by ImpBC and isoImpBC use a LODI based BC at corners and edges.

Perfectly Matched Layers In Section 3.2 we presented different kind of PMLs for the
LBM. For the numerical tests we focus on the PML formulation of Najafi-Yazdi and
Mongeau [77] denoted by PML. The absorption coefficient 𝜎 is linearly increasing from zero
to 𝜎max = 0.05 in the PML zone, which has a thickness of 30 grid points. At the boundary
of the PML zone (grid points 𝑥𝑏), we set the inward populations by 𝑓𝑗(𝑥𝑏, 𝑡) = 𝐼ref

𝑗 (𝑥𝑏)
throughout.

6.2 Approximate discrete artificial boundary conditions for
linear collision models

In this test case for linDABC, the mass density 𝜌, see (2.45), is initialized at 𝑡 = 0 as [56]

𝜌0(𝑥) =

{︃
1 for 𝑥 ≤ 0.3 or 𝑥 ≥ 0.7,

1 + 0.4 · exp
(︁

−15−2

(𝑥−0.3)2

)︁
· exp

(︁
−15−2

(𝑥−0.7)2

)︁
for 0.3 < 𝑥 < 0.7,

(6.4)

such that 𝜌0 ∈ 𝐶∞(R). The corresponding populations for the LB simulation are initial-
ized by equilibrium distributions (2.44) evaluated with (6.4). The computational grid 𝒢
corresponds to an equidistant discretization of the interval [0, 1] with step size ℎ = 0.005.
The free parameters in the simulation are the advection velocity 𝑎 ∈ (−1, 1), the collision
parameter 𝜔 ∈ (0, 2) and the maximal history depth 𝐻.
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Figure 6.1: Mass density evolution in a LB simulation with linear collision operator – The
four plots show the mass density at initial time, as well as after 300, 500
and 1000 time steps, respectively. The dashed lines show the reference signal
modeling an ITBC at 𝑥 = 1. The solid lines refer to the density profiles for a
simulation with linDABC (𝑎 = 0.2, 𝐻 = 5 and 𝜔 = 1.1).

To begin with, we select 𝑎 = 0.2, 𝐻 = 5 and 𝜔 = 1.1 and plot the mass density for
different time levels in Fig. 6.1, where linDABC is used at the right boundary. Here, also
the reference solution is plotted, given by the dashed line. Note that we have plotted the
reference curve also in the exterior of the computational domain, for a better readability.
As one can clearly see linDABC leads to errors near the boundary, which are obviously
transported out of the computational domain. To measure the error in dependence of
the free parameters, we compute the maximal absolute error (6.1), here Err𝜌, for different
simulations, where always two of the three free parameters are fixed and only one varies.
In Fig. 6.2 the varying parameter is the maximal history depth 𝐻 and we see that the
error is decreasing when we take a larger value for 𝐻. This result confirms impressively
the analytical investigations of Section 5.1. In Fig. 6.3, we kept all parameters except
for the advection velocity 𝑎 and the relaxation parameter 𝜔, respectively. We observe
that the error is smaller the faster the initial peak comes upon the artificial boundary.
Furthermore, the larger the relaxation parameter 𝜔 is chosen the smaller are the maximal
absolute errors. The coefficient of numerical diffusion, see (2.49), is becoming small when
𝜔 is increased. We presume that the higher numerical diffusion for small 𝜔 causes the
larger errors.
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Figure 6.2: Errors of the approximate DABC with varying history depths – The plot shows
the maximal absolute errors Err𝜌(𝑡) for the approximate linDABC. The maxi-
mal history depth varies, while the advection velocity and the collision param-
eter are set to 𝑎 = 0.2 and 𝜔 = 1.1, respectively. Errors decrease for larger
maximal history depths.
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Figure 6.3: The DABC with varying advection velocity and collision parameter – Both
plots show the maximal absolute errors Err𝜌(𝑡) for the approximate linDABC
with a maximal history depth of 𝐻 = 20. The plot on the left gives the errors
when the advection velocity 𝑎 is varied, whereas the collision parameter is set
to 𝜔 = 1.1. Vice versa, on the right plot the collision parameter varies, while
we set 𝑎 = 0.25.
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Figure 6.4: Mass density in a 1D LB simulation with nonlinear collision operator – The
two plots show the mass density for several BCs after 150 and 300 iterations,
respectively. The simulation is done with the settings 𝑢0 = 0 and 𝜏 = 0.8.
The deflections visible in the range 0 ≤ 𝑥 ≤ 1 on the right plot are reflected
waves generated at the boundary at 𝑥 = 1.

6.3 One-dimensional pressure wave

For the next test, the mass profile (6.4) is used in a usual LB simulation, i.e., where the
collision model is given by (2.41) with (2.39), and thus the macroscopic quantities evolve
according to the Navier-Stokes equations. Analogously, the populations are initialized by
an evaluation of the equilibrium distribution (2.39), where the fluid velocity 𝑢 is homoge-
neously given by 𝑢 = 𝑢0. We test different choices for 𝑢0, including negative and positive
values. We consider the interval [−1, 1], where an ITBC is applied to the left boundary,
such that the right boundary is used to test different BCs. In Fig. 6.4 the density is plot-
ted for a simulation with 𝑢0 = 0 and 𝜏 = 0.8 after 150 and 300 time steps, respectively.
We see that the initial pressure pulse is split into two pressure waves, where one is going
left and the other going right. In the right plot, corresponding to time level 300, we see
some unphysical waves, which were generated at the boundary at 𝑥 = 1 and are traveling
back into the computational domain. All BCs fail to reach the ideal level of the signal
(density given by dashed line) after the pulse has left the computational domain. We
also see that the boundary conditions LODI have different errors, depending on how they
are implemented, especially, a consideration of the non-equilibrium portions for LODI is
advantageous here.

Recall that our CBC coincides with LODI in the one-dimensional case, therefore the novel
BCs in this simulation are DABC. To test the BC in more detail, we compute the maximal
ℓ2-error (6.3) for simulations with different values for the parameters 𝑢0 and 𝜏 . In Figs. 6.5
and 6.6 we see this kind of error for varying velocities 𝑢0 and relaxation times 𝜏 , respec-
tively. The error is only shown for the density, the error curves for velocity are omitted,
since they look very similar (except for scaling). The DABC is considered for maximal his-
tory depths 𝐻 = 10, 20, 40 in Figs. 6.5 and 6.6, and we can clearly see that errors decrease
for larger maximal history depths. In Fig. 6.5 it is noteworthy, that vis-LODI on the left
plot (𝜏 = 0.8) has the largest errors, while for 𝜏 = 1 this BC behaves much better. It is
not shown on the third plot (𝜏 = 1.5), since the error of vis-LODI is several magnitudes
higher compared to errors of the other BCs. For 𝜏 = 1, LODI and LODI-Neq are clearly
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Figure 6.5: Errors of boundary conditions with respect to velocity – On the plots the max-
imal ℓ2-error of the mass density is illustrated for several BCs. The simulation
refers to a one-dimensional pressure wave. We have selected three relaxation
times 𝜏 = 0.8, 1, 1.5.

equal, but also ImpBC and LODI-RK are visually matching. Strikingly, for 𝜏 = 1.5 LODI has
smaller errors than LODI-Neq, a feature which cannot be observed for the first two plots.
The properties derived from Fig. 6.5 are also visible in the plots of Fig. 6.6. That is, we
can see that the error of vis-LODI is strongly depending on 𝜏 , where smallest errors are
obtained for a relaxation time about 𝜏 = 1. When comparing LODI with LODI-Neq the
former has smaller errors for 𝜏 > 1. The curves of ImpBC and LODI-RK intersect around
𝜏 = 1, while LODI-RK and LODI are very similar throughout.

As a final result, Fig. 6.7 visualizes errors similar to Fig. 6.6, but only for DABCs with
different history depths. Comparing only history depths of one category (even or odd),
a larger value decreases the error, as expected. However, we can clearly see a different
behavior for even and odd values, and taking odd history depths seems to be advantageous.
We came to the same conclusion in one of our previous works after some more tests, see
[48].

We conclude that our DABCs can be tuned (higher history depth, preferring an odd value)
to outperform existing BCs with respect to accuracy. For an extensive investigation of the
DABCs with respect to an initialization according to (5.29) we refer to our article [48].
Moreover, in [48] an additional test case (an acoustic sinusoidal signal) can be found.
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Figure 6.6: Errors of boundary conditions with respect to relaxation time – On the plots
the maximal ℓ2-error of the mass density is illustrated for several BCs. The
simulation refers to a one-dimensional pressure wave. Two velocities have been
selected. The curve related to vis-LODI continues in the exterior of the chosen
range.
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Figure 6.7: Errors of DABCs for different maximal history depths – Situation as in Fig. 6.6,
but here we focus on the errors for DABC, when the maximal history depths is
varied. The dashed curves are related to an even maximal history depth, while
the solid curves refer to errors of an odd maximal history depth.
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Figure 6.8: Pressure pulse in a two-dimensional simulation – The temporal evolution of a
Gaussian pressure pulse is illustrated. Snapshots show the corresponding mass
density at the time levels 𝑡 ∈ {𝑡0, 𝑡100, 𝑡185, 𝑡255, 𝑡400} (from left to right). At
the left boundary an ITBC is applied. On the right boundary we use DABC,
here, a reflected wave can be observed traveling back into the interior. The
square rectangle on the third snapshot gives the domain considered in Fig. 6.9.

6.4 Visual interpretation of discrete artificial boundary
conditions

The first two-dimensional simulation focuses on a visualization of the working principle
of our DABC. We consider a rectangular computational domain [−1, 1] × [−5, 5] with a
Gaussian pressure pulse:

𝑝(𝑥, 𝑦) = 𝑝0 + (𝑝max − 𝑝0) exp

(︂
−(𝑥2 + 𝑦2)

2𝑠2

)︂
,

where pressure values are related to the density by (3.11). We set 𝑠 = 0.1 and the pressures
𝑝0 and 𝑝max according to 𝜌0 = 1 and 𝜌max = 1.15, respectively. The fluid velocity is
homogeneously set to zero, the maximal history depth to 𝐻 = 40 and 𝜏 = 1. We simulate
the pressure pulse on a computational grid of dimension 201 × 1001, representing the
computational domain with an equidistant spatial step-size of ℎ = 0.01. We apply periodic
BCs at the top and bottom boundary, an ITBC at the left boundary and the DABC on
the right boundary. In Fig. 6.8 the density profile is plotted for different time levels. We
can clearly see a reflection generated at the right boundary, traveling leftwards. To explain
the working principle of the DABC visually, we consider the situation at time 𝑡 = 𝑡185. In
fact, we only focus on the marked section in the third snapshot of Fig. 6.8. In Fig. 6.9
the mass density profile of the original problem is shown for time 𝑡 = 𝑡185. Moreover, a
cut-out (cropped in 𝑥2 direction) of the mass density of the 185-th subproblem is shown,
for selected time levels 𝑡 ∈ 𝒯 185 during the simulation of the subproblem, while the profile
of the original problem is frozen. The first plot shows the subproblem’s density profile at
its initialization. The intermediate time levels are not relevant for finding the unknown
populations of the original problem, but only the last plot (final time) is relevant. We can
see that at final time the profiles of the original problem and of the subproblem seem to
match. However, in fact there is a small mismatch, which causes the reflection visible in
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Figure 6.9: Density profile evolution in a subproblem – The plots show the temporal evo-
lution of the 185-th subproblem (𝑥1 ∈ [201, 241]) in the domain marked in
Fig. 6.8. The profile of the original problem (𝑥1 ≤ 200) is shown for fixed time
𝑡 = 𝑡185. From the perspective of a BC for the original problem only the last
plot (after iteration 40) is relevant.
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Figure 6.10: An isolated vortex – The plot shows the vector field of the velocity 𝑣(𝑥),
which is used to model an isolated vortex.

Fig. 6.8. Thus, the DABC constructs a suitable extension of the computational domain in
fictitious points, which provides then the unknown populations. This interpretation also
clarifies that the initialization of a subproblem determines the accuracy of the DABC.

6.5 An isolated vorticity wave

As the first test of BCs in two-dimensional applications we consider a vorticity wave with
the following initial conditions inspired by an example in [18]:

𝜌0(𝑥) = 1, 𝑢0(𝑥) = 𝑎(𝑥) +

{︃
0 for 𝑥 /∈ ℬ0.7(0),

𝑣(𝑥) for 𝑥 ∈ ℬ0.7(0)
,

where ℬ𝑟(𝑐) = {𝑥 ∈ R2 | ‖𝑥− 𝑐‖2 < 𝑟2} is the open disc around 𝑐 ∈ R2 with radius 𝑟 > 0
and

𝑎(𝑥) =

(︃
0.2𝑐𝑠

0

)︃
, 𝑣(𝑥) =

⎛⎝ 1
2𝑥2 exp

(︁
−(ln 2)

𝑥2
1+𝑥2

2
𝑏2

)︁
−1

2𝑥1 exp
(︁
−(ln 2)

𝑥2
1+𝑥2

2
𝑏2

)︁⎞⎠
with 𝑏 = 0.15. Hence, the vortex (shown in Fig. 6.10), modeled by 𝑣(𝑥) is traveling in
positive 𝑥1-direction due to 𝑎(𝑥). The restriction to ℬ0.7(0) causes a negligible disconti-
nuity at the boundary of the disc, meaning a jump of the velocity magnitude less than
10−11. Here we introduced the compact support of the vortex to ensure the vortex is
not interacting with the boundary of the computational grid at initial time. The grid is
given by a discretization of [−3

4 ,
3
4 ] × [−3, 3] with ℎ = 1

250 . We select periodic BCs in
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Figure 6.11: Errors in the simulation of an isolated vorticity wave – The plots show the
ℓ2-errors in the mass density and both velocity components for a simulation of
an isolated vorticity wave. With an ITBC the vortex leaves the computational
domain after around 3200 time steps. Errors of DABC (𝐻 = 30) are barely
visible smaller than errors of DABC (𝐻 = 31).

𝑥2-direction and an ITBC at the left boundary. Therefore, the right boundary is used to
test different BCs. For the simulations we have taken a relaxation parameter of 𝜏 = 0.8.
Having an ITBC at the right boundary the vortex would leave the computational domain
completely after around 3200 time steps. Fig. 6.11 shows the time dependent ℓ2-error
(6.2) for all macroscopic quantities. In contrast to the one-dimensional pressure pulse,
no significant difference between the DABCs with even/odd maximal history depth of
𝐻 = 30 and 𝐻 = 31, respectively, can be observed. Two further striking observations can
be done. First, the errors of CBC are unmistakably larger, hence for the given test case the
incorporation of non-orthogonal derivatives has a negative impact on the accuracy. This
result is striking, since larger errors of CBC compared to LODI have not been observed in
previous simulations [46]. Second, the errors in the velocity (second and third plot) for
isoImpBC become worse after around 2500 iterations, whereas the density error does not
show this behavior.

For the simulation with DABC at the right boundary we visualize the transverse velocity at
selected time levels by contour plots in Fig. 6.12. Already at the second plot (time level
𝑡 = 𝑡1000) one can see that the contour lines are squeezed together in an unphysical way.
For later time levels we clearly see a deformation which results from a non-ideal behavior
of the BC. In Appendix E we also show contour plots for simulations with other BCs. For
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a better comparability all contour levels are chosen equally across all figures. The levels
are chosen equidistantly in the range given by the color bar.

Moreover, we consider the vorticity during the simulation. The vorticity of a three-
dimensional flow is defined as the curl of the velocity [3]:

𝜔(𝑥, 𝑡) = rot(𝑢(𝑥, 𝑡)) = ∇× 𝑢(𝑥, 𝑡).

In the two-dimensional problem at hand, where the velocity does not depend on the 𝑧
component of the velocity, it can be simply expressed by a scalar valued function

𝜔3(𝑥, 𝑡) =
𝜕𝑢2(𝑥, 𝑡)

𝜕𝑥1
− 𝜕𝑢1(𝑥, 𝑡)

𝜕𝑥2
, (6.5)

since the first and second component of 𝜔 are always zero. In Fig. 6.13 we show the
vorticity (6.5) for the simulation with DABC, whereas results for other BCs are given in
Appendix E. Again all contour levels are chosen equally across all figures, except for the
last contour plot corresponding to time level 𝑡 = 𝑡2500. Obviously, the DABC leads to
unphysical effects, however the effects are small and seem to be confined to the region
near the boundary.

6.6 Plane waves with different angles of incidence

In this academic example we consider a plane wave impinging on the boundary with
different angles of incidence 𝜑 > 0. With this test we compare the magnitude of reflection
with respect to 𝜑 for several BCs. The corresponding LB simulation is initialized with
equilibrium populations corresponding to zero velocity and a density according to

𝜌0(𝑥1, 𝑥2) = 1 +
1

10
exp

(︂
−�̂�1(𝑥1, 𝑥2)2

2𝑠2

)︂
,

with 𝑠 = 1
50 and transformed locations(︃

�̂�1(𝑥1, 𝑥2)

�̂�2(𝑥1, 𝑥2)

)︃
=

(︃
cos(𝜑 𝜋

180) sin(𝜑 𝜋
180)

− sin(𝜑 𝜋
180) cos(𝜑 𝜋

180)

)︃(︃
𝑥1

𝑥2

)︃
.

The computational grid is a discretization of a rectangular domain with step-size ℎ = 1
200 ,

its size chosen such that the density is maximal in the bottom right corner, as also shown
in Fig. 6.14. The dimension of the domain depends on the angle of incidence 𝜑. Due to
initialization the density profile splits into two spreading plane waves. In the simulation we
use ITBCs for the left, bottom and upper boundary. Moreover, for the first 250 iterations
of the simulation also the right boundary is equipped with an ITBC. Considering the
maxima, one plane wave is traveling away from the bottom right corner along the bottom
boundary, while the other is traveling along the right boundary, see also Fig. 6.14. The
size of the computational domain is chosen, such that after 250 iterations the plane wave
traveling along the right boundary has reached one third of its total height. From the
251st iteration on, we change the BC at the right boundary, and measure the maximal
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Figure 6.12: Iso-transverse-velocity contours for an isolated vortex using DABC – The plots
show the evolution of contour lines of the non-orthogonal velocity component
𝑢2 in the simulation of an isolated vorticity wave using a DABC at the right
boundary. The maximal history depth for the DABC is 𝐻 = 30.
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Figure 6.13: Iso-vorticity contours for an isolated vortex using DABC – The contour plots
show the evolution of the vorticity (6.5) using a DABC at the right boundary.
The maximal history depth for the DABC is 𝐻 = 30. Except for the last
plot, the contour levels are the same for all time levels.
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Figure 6.14: Density profiles for plane wave simulation – The left plot shows the density
initialization (𝑡 = 𝑡0). The initial setting generates two spreading plane waves.
After 250 iterations (computed with ITBCs) the situation on the right picture
is reached.
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Figure 6.15: Maximal errors for plane waves with respect to the angle of incidence – The
maximal error 𝐸𝜌, (6.6), is plotted for different angles of incidence in the
range from 10∘ to 80∘.

error

𝐸𝑧 := max
𝑡∈𝒯

max
𝑥∈ℱ𝑏

⃒⃒
𝑧(𝑥, 𝑡)− 𝑧ref(𝑥, 𝑡)

⃒⃒
, ℱ𝑏 =

{︃
𝑥 ∈ ℱ

⃒⃒⃒
𝑥+

(︃
𝑐

0

)︃
Δ𝑡 ∈ ℬ

}︃
(6.6)

along a vertical line at the boundary. More precisely, the line runs through the column
of the last ordinary grid points ℱ𝑏, so that errors on the boundary are irrelevant. We
compute 600 iterations after the BC is changed, thus it holds 𝒯 = {𝑡0, . . . , 𝑡850}. The
measured errors of simulations with different BCs and different angles of incidence are
visualized in Fig. 6.15. The errors for LODI and ImpBC are monotonically increasing with
the angle of incidence. This behavior coincides with results of Schlaffer [93]. The error for
CBC shows an atypical decrease for angles of incidence 𝜑 > 70∘. Even more remarkable are
the errors of DABC. For DABC we illustrate the error 𝜌(𝑥, 𝑡850)− 𝜌ref(𝑥, 𝑡850) for simulations
𝜑 = 40∘ and 𝜑 = 60∘ in Fig. 6.16. Although the maximal deviation is comparable in an
absolute sense, the direction of deviation is different. A positive deviation can be seen
for angles of incidence 𝜑 < 50∘, while a negative is seen for 𝜑 > 50∘, this explains the
behavior of the maximal error in Fig. 6.15. Analogue to Fig. 6.15, we plotted the errors
𝐸𝑢1 and 𝐸𝑢2 in Fig. E.12, see Appendix E. We did not consider isoImpBC in this example,
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Figure 6.16: Errors created by DABCs for two angles of incidence – The left surface with
a positive deviation shows the error in a simulation with DABC, when the
plane wave has an angle of incidence 𝜑 = 40∘. The surface on the right
hand side corresponds to a simulation with angle of incidence 𝜑 = 60∘, the
deviation is mainly negative. The 𝑥3-axis (not shown) has same scaling for
both visualizations.

due to an oscillating behavior of this BC, see also Fig. E.11 (appendix). The reason for
the presence of this oscillation is unknown, but it might be an effect of the switch from
ITBC to isoImpBC after 250 iterations.

6.7 3D square duct flow past an obstacle

The final test case consists of a three-dimensional simulation of a duct flow past an obstacle
at Re ∼= 150. The duct has a square cross-section of 90× 90 inner grid points, whereas its
length in flow direction is 200 grid points. The obstacle is a thin asymmetric plate located
in the duct at one quarter of its total length, an illustration is given in Fig. 6.17, where one
side wall was removed to reveal the obstacle. There is no slit between the obstacle and the
side walls. In an earlier simulation we first computed the stationary solution for the flow
with a given maximal velocity, but without having an obstacle in the duct. This stationary
solution is used to initialized the duct flow past an obstacle. At the inlet we impose the
parabolic-like velocity profile of the stationary solution, and at the outlet we test several
artificial BCs. In total we compute 8000 time levels, in Fig. 6.18 we see the velocity at
final time using ITBC for the outlet. We can see that the velocity profile at the outlet is
far from showing a parabolic-like behavior, where the velocity would be maximal in the
center. However, the subproblems in the DABC are initialized with such a parabolic-like
velocity profiles, furthermore we set the maximal history depth to 𝐻 = 30. Hence, if we
consider the DABC simulation and investigate the error⃦⃦

𝑢(𝑥, 𝑡8000)− 𝑢ref(𝑥, 𝑡8000)
⃦⃦
2

(6.7)

at final time, visualized in Fig. 6.19 (left), we can see the largest error in the center at
the outlet. We also show the analogue error for the simulation with LODI (right), here
the maximal error is also located in the center at the outlet. However, the error of the
DABC is smaller by almost a factor of two. Finally, we consider a time-dependent error by
considering the ℓ2-error (6.2). In Fig. 6.20 we can see this error for the velocity component
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Figure 6.17: Thin plate located in a duct – An obstacle (thin plate, asymmetric) in a three-
dimensional duct is visualized. The right side wall of the duct is not shown.
Streamlines are delineated, showing the flow past the obstacle.

Figure 6.18: Velocity profile of flow past an obstacle – The velocity (magnitude) profile of
a simulation past a thin asymmetric plate is shown. One side wall of the duct
is not shown. At the outlet (𝑥1 = 200) an ITBC is applied.

in flow direction and for a non-orthogonal velocity component. Here we also see, that the
errors in the DABC simulation are smaller than the ones of the LODI simulation.
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Figure 6.19: Errors of DABC and LODI for a flow past an obstacle – The left picture shows
the error (6.7) of our DABC, while the right picture does for LODI. The four
slices are located at the outlet (𝑥1 = 200), at 𝑥1 = 100, 150, as well as shortly
behind the obstacle at 𝑥1 = 60. Note the different color ranges in the left and
right picture.
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Figure 6.20: Errors in velocities in 3D duct flow simulation – The left plot shows the
ℓ2-error (6.2) for the velocity component in direction of the flow, while the
plot on the right hand side gives the same error for a non-orthogonal velocity
component.



7 Chapter 7

Conclusions and outlook

This thesis dealt with artificial boundary conditions for open boundaries in the lattice
Boltzmann method. With an ideal artificial boundary condition no spurious reflections are
generated at the open boundaries. Therefore, the use of an artificial boundary condition
allows to confine the computational domain to the most important domain of interest.
The content of this work can basically be split in three parts.

The first part (Chapter 2) of the thesis focused on establishing a theoretical basis for the
development of artificial boundary conditions. We derived the three-dimensional lattice
Boltzmann model D3Q19 as the analytical result of a numerical integration. Moreover,
we explained in detail the influence of the collision operator to the equivalent macroscopic
model.

In the second part of this thesis (Chapter 3) we began with a short overview of existing
approaches, designed to minimize the reflections at open boundaries. We explained that
an ideal artificial boundary condition has to depend on processes in the exterior of the
computational domain. Consequently, any boundary condition which solely depends on
interior information can be ideal, only if it depends on interior information up to initial
time and at the same time uses a consistent assumption for the initial exterior domain.
Existing approaches for open boundaries can be grouped in two categories.
The first one consists of approaches which extend the computational domain by a region
in which any fluctuations are damped out, such that the boundary at the end of the ex-
tension creates only a negligible reflection. The principal representative in this category
are perfectly matched layers, which we summarized in Section 3.2.1.
The second category, which we have addressed more extensively in this work, consists of
boundary conditions in its actual sense. We have considered the recent impedance boundary
conditions in Section 3.2.2. As a noteworthy drawback, their principle cannot be applied
for edges and corners. This impedance boundary condition is featured for avoiding the
necessity of computing neither spatial nor temporal derivatives, as well as assuming that
any pressure changes are propagating with the speed of sound. Another common represen-
tative in the category of boundary conditions is a characteristic based boundary condition.
Existing characteristic boundary conditions for the lattice Boltzmann method are based
on the LODI equations, which are then analytically treated, such that they can be solved
stably with interior information only. The LODI equations represent an approximation
to the macroscopic model of the interior, hence their solution yields macroscopic values,
which still have to be transferred to the lattice Boltzmann method. In this work we have
extended the existing characteristic boundary conditions (Sections 3.3 and 3.4). Our char-
acteristic boundary conditions are not based on the LODI equations, but on an extension,
which does not suppress non-orthogonal derivatives. In Section 3.4.1 we also describe an
idea for a further enhancement, where in contrast to LODI based and our characteristic
boundary conditions also viscous terms are incorporated.
The theoretical considerations of characteristic boundary conditions are supported by
results of numerical examples (Chapter 6). The results demonstrate that their way of
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implementation has a non-negligible effect. Our approach to incorporate non-equilibrium
portions by an extrapolation seemed to be advantageous for values of the relaxation time
𝜏 ≤ 1, while for 𝜏 > 1 this procedure enlarged the errors. Since a more detailed study of
the relation between the accuracy of characteristic boundary conditions and their imple-
mentation has not been addressed in this thesis, this issue provides as subject for further
research. Also the incorporation of viscous terms could drastically reduce the errors when
𝜏 ≈ 1, we recognize a possible potential for this viscous characteristic boundary condition.
They should be subject for possible future investigations.
From the perspective of the discrete lattice Boltzmann method all characteristic based
boundary conditions are simply a Dirichlet condition, where the Dirichlet values are com-
puted appropriately on the macroscopic scale. The macroscopic calculations do not obey
the relation (3.4), which relates the normal velocity and the mass density at the bound-
ary. However, the corresponding macroscopic quantities of an ideal artificial boundary
condition satisfy this relation. Therefore, incorporating this relation appropriately into
characteristic based boundary conditions might result in an improvement. If we supple-
ment the characteristic system (3.20) with an algebraic equation corresponding to the
relation (3.4) at final time, the solvability of the characteristic system is in generally vio-
lated. Hence an incorporation requires more advanced techniques and we see an interesting
research task here.

The final part of this thesis handled discrete artificial boundary conditions (Chapters 4
and 5). Here we developed a novel concept of treating artificial boundaries in the lattice
Boltzmann method. We began with deriving an exact artificial boundary condition for
a one-dimensional lattice Boltzmann method with a linear collision operator. The exact
artificial boundary condition was already formulated solely on the discrete level, however
it was not efficient due to its computational costs. The exact discrete boundary condition
assumed that the exterior domain was initialized in a known homogeneous equilibrium
state. We investigated the boundary condition analytically and thereby could find an ef-
ficient approximation, which is based on a truncation of a sum in the formulation of the
exact discrete boundary condition. The parameter controlling the truncation is related
to the history depth of the later derived general discrete boundary conditions. In order
to retain an equilibrium state when using the efficient approximate discrete boundary
condition, we developed a consistency condition and incorporated it to the approximate
discrete boundary condition. The derivation of discrete artificial boundary conditions for
the more general case (not limited to the linear collision term), was based on a digraph
interpretation of the discrete artificial boundary condition. We explained the use digraphs
in detail. With their help we could show that at every time level the discrete artificial
boundary condition is equivalent to the result of an appropriate lattice Boltzmann sim-
ulation, a so-called subproblem. We gave details for an efficient implementation of the
subproblems, this efficiency is a feature of our novel concept. The truncation parameter
of the linear case remains as a free parameter (history depth) in the general case. We
theoretically elucidated that the initialization of the subproblems represents a key role,
since all errors of our discrete artificial boundary condition are generated here. This the-
oretical result was confirmed by our numerical tests. For this task of the initialization we
presented one natural choice, which in the numerical simulations turned out to lead to
a competitive boundary condition. However, the initialization of subproblems represents
the most obvious subject of future subsequent research tasks. Especially if we consider
Fig. 6.9, we see that profiles in the subproblem’s domain are shaped during the iterations
of the subproblem. Using an appropriately pre-shaped profile, obtained for instance from
a coarser grid might be a possible idea. Alternatively tracking the effective mass flow
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across the boundary could help to dynamically adjust the level of the subproblem’s initial
profile. The numerical experiments also demonstrated a significant difference in the use
of even and odd history depths, respectively. We have not studied the reason for this
different behavior, hence it naturally yields a starting point for future research.





A Appendix A

Alternative discrete velocity models

In Section 2.3 we have derived the discrete velocities of the D3Q19 model. This is not the
only possible realization of a discrete velocity space (2.34). Below we list some further
models.

Contrary to D3Q19, the amount of velocities in three space dimensions can be reduced to
15. This yields the D3Q15 model, where 𝒱 is given by the discrete velocities

𝑐0 =

⎛⎜⎜⎝
0

0

0

⎞⎟⎟⎠ , 𝑐1−6 =

⎧⎪⎪⎨⎪⎪⎩
⎛⎜⎜⎝
±𝑐
0

0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0

±𝑐
0

⎞⎟⎟⎠ ,

⎛⎜⎜⎝
0

0

±𝑐

⎞⎟⎟⎠
⎫⎪⎪⎬⎪⎪⎭ , 𝑐7−14 =

⎛⎜⎜⎝
±𝑐
±𝑐
±𝑐

⎞⎟⎟⎠ .

The D3Q27 model is also very common in three space dimensions, that is a a discretization
with 27 velocities, consisting of the D3Q19 vectors plus

𝑐19−26 =

⎛⎜⎜⎝
±𝑐
±𝑐
±𝑐

⎞⎟⎟⎠ .

The three-dimensional models stated here are illustrated in Fig. A.1. The projection of
the D3Q27 vectors into the two-dimensional space yields the D2Q9 model, with lattice
vectors given by

𝑐0 =

(︃
0

0

)︃
, 𝑐1−4 =

{︃(︃
±𝑐
0

)︃
,

(︃
0

±𝑐

)︃}︃
, 𝑐5−8 =

(︃
±𝑐
±𝑐

)︃
.

The D2Q7 model is inherited from the lattice gas automata of Frisch, Hasslacher and
Pomeau (FHP model) [30]. It is based on a hexagonal lattice, with discrete velocities

𝑐0 =

(︃
0

0

)︃
, 𝑐𝑗 = 𝑐

(︃
cos(𝜋3 𝑗)

sin(𝜋3 𝑗)

)︃
, 𝑗 = 1, . . . , 6.

In an one-dimensional space the projection of the D2Q9 model is a possible realization,
that is the D1Q3 model, where the discrete velocities read

𝑐0 = 0, 𝑐1 = −𝑐 𝑐2 = 𝑐. (A.1)

All models stated here satisfy the macroscopic equations (2.14) in its 𝑑-dimensional for-
mulation. However they do not represent a complete list of discretizations satisfying the
macroscopic equations (2.14). For other models, for instance multi-speed models, we only
refer to literature, e.g., [17, 34].
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Figure A.1: Lattice vectors of D3Q15 and D3Q27 – Illustration of the lattice vectors of
the D3Q15 and D3Q27 model, respectively. Vectors shown in red are unitary,
vectors shown in blue satisfy ‖𝑐𝑗‖ =

√
2𝑐, while green vectors satisfy ‖𝑐𝑗‖ =√

3𝑐.



B Appendix B

Matrices for characteristic boundary
conditions

B.1 Matrices of the basic system

The characteristic boundary conditions of Section 3.3 are based on the basic system (3.17).
Here we explicitly give the coefficient matrices 𝐴𝑑,𝑥𝛼 and a possible choice for the product
(3.18).

In 1D the coefficient matrix reads

𝐴1,𝑥1 = 𝐴1,𝑥1(𝜌, 𝑢1) =

(︃
𝑢1 𝜌
𝑐2𝑠
𝜌 𝑢1

)︃
,

and the product (3.18) can be realized with

𝑅−1
1,𝑥1

=

(︃
1
2𝑐2𝑠

1
2𝑐2𝑠

− 1
2𝑐𝑠𝜌

1
2𝑐𝑠𝜌

)︃
, 𝑅1,𝑥1 =

(︃
𝑐2𝑠 −𝑐𝑠𝜌
𝑐2𝑠 𝑐𝑠𝜌

)︃
.

The matrices for two-dimensional problems are given already in Section 3.3. In three-
dimensions the coefficient matrices 𝐴𝑑,𝑥𝛼 = 𝐴3,𝑥𝛼(𝜌, 𝑢1, 𝑢2, 𝑢3) read

𝐴3,𝑥1 =

⎛⎜⎜⎜⎜⎝
𝑢1 𝜌 0 0
𝑐2𝑠
𝜌 𝑢1 0 0

0 0 𝑢1 0

0 0 0 𝑢1

⎞⎟⎟⎟⎟⎠ ,

𝐴3,𝑥2 =

⎛⎜⎜⎜⎜⎝
𝑢2 0 𝜌 0

0 𝑢2 0 0
𝑐2𝑠
𝜌 0 𝑢2 0

0 0 0 𝑢2

⎞⎟⎟⎟⎟⎠ , 𝐴3,𝑥3 =

⎛⎜⎜⎜⎜⎝
𝑢3 0 0 𝜌

0 𝑢3 0 0

0 0 𝑢3 0
𝑐2𝑠
𝜌 0 0 𝑢3

⎞⎟⎟⎟⎟⎠ .

The eigenvectors of 𝐴𝑑,𝑥𝛼 are used to construct the matrices 𝑅−1
𝑑,𝑥𝛼

for (3.18). A possible
choice, for 𝑑 = 3, is given as follows:

𝑅−1
3,𝑥1

=

⎛⎜⎜⎜⎜⎝
1
2𝑐2𝑠

1
2𝑐2𝑠

0 0

− 1
2𝑐𝑠𝜌

1
2𝑐𝑠𝜌

0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎠ , 𝑅3,𝑥1 =

⎛⎜⎜⎜⎜⎝
𝑐2𝑠 −𝑐𝑠𝜌 0 0

𝑐2𝑠 𝑐𝑠𝜌 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎠ ,
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𝑅−1
3,𝑥2

=

⎛⎜⎜⎜⎜⎝
1
2𝑐2𝑠

1
2𝑐2𝑠

0 0

0 0 1 0

− 1
2𝑐𝑠𝜌

1
2𝑐𝑠𝜌

0 0

0 0 0 1

⎞⎟⎟⎟⎟⎠ , 𝑅3,𝑥2 =

⎛⎜⎜⎜⎜⎝
𝑐2𝑠 0 −𝑐𝑠𝜌 0

𝑐2𝑠 0 𝑐𝑠𝜌 0

0 1 0 0

0 0 0 1

⎞⎟⎟⎟⎟⎠ ,

𝑅−1
3,𝑥3

=

⎛⎜⎜⎜⎜⎝
1
2𝑐2𝑠

1
2𝑐2𝑠

0 0

0 0 1 0

0 0 0 1

− 1
2𝑐𝑠𝜌

1
2𝑐𝑠𝜌

0 0

⎞⎟⎟⎟⎟⎠ , 𝑅3,𝑥3 =

⎛⎜⎜⎜⎜⎝
𝑐2𝑠 0 0 −𝑐𝑠𝜌
𝑐2𝑠 0 0 𝑐𝑠𝜌

0 1 0 0

0 0 1 0

⎞⎟⎟⎟⎟⎠ .

B.2 Coefficient matrices of the characteristic system

Moreover we consider the perfectly non-reflecting CBC (3.20) and give results for the
coefficient matrices ̃︀𝐴𝑑,𝑥𝛼 . Let 𝑑 = 1, we have to distinguish two cases. First ̃︀Λ1,𝑥1

contains only non-negative entries, then we get ̃︀𝐴+

1,𝑥1
. Second, if in ̃︀Λ1,𝑥1 all positive

eigenvalues are set to zero, then we obtain ̃︀𝐴−
1,𝑥1

:

̃︀𝐴+

1,𝑥1
:=

(︃
𝑐𝑠+𝑢1

2
𝜌(𝑐𝑠+𝑢1)

2𝑐𝑠
𝑐𝑠(𝑐𝑠+𝑢1)

2𝜌
𝑐𝑠+𝑢1

2

)︃
, ̃︀𝐴−

1,𝑥1
:=

(︃
−𝑐𝑠+𝑢1

2
𝜌(𝑐𝑠−𝑢1)

2𝑐𝑠
𝑐𝑠(𝑐𝑠−𝑢1)

2𝜌
−𝑐𝑠+𝑢1

2

)︃
.

Next, we consider 𝑑 = 2, where four cases have to be considered:

i) 𝑢𝑥𝛼 > 0 and all positive eigenvalues are set to zero in ̃︀Λ2,𝑥𝛼 . Then the modified
coefficient matrices in (3.20) read:

̃︀𝐴2,𝑥1 :=

⎛⎜⎜⎝
𝑢1−𝑐𝑠

2
(𝑐𝑠−𝑢1)𝜌

2𝑐𝑠
0

𝑐𝑠(𝑐𝑠−𝑢1)
2𝜌

𝑢1−𝑐𝑠
2 0

0 0 0

⎞⎟⎟⎠ , ̃︀𝐴2,𝑥2 :=

⎛⎜⎜⎝
𝑢2−𝑐𝑠

2 0 (𝑐𝑠−𝑢2)𝜌
2𝑐𝑠

0 0 0
𝑐𝑠(𝑐𝑠−𝑢2)

2𝜌 0 𝑢2−𝑐𝑠
2

⎞⎟⎟⎠ .

ii) 𝑢𝑥𝛼 < 0 and all positive eigenvalues are set to zero in ̃︀Λ2,𝑥𝛼 . Then the modified
coefficient matrices in (3.20) read:

̃︀𝐴2,𝑥1 :=

⎛⎜⎜⎝
𝑢1−𝑐𝑠

2
(𝑐𝑠−𝑢1)𝜌

2𝑐𝑠
0

𝑐𝑠(𝑐𝑠−𝑢1)
2𝜌

𝑢1−𝑐𝑠
2 0

0 0 𝑢1

⎞⎟⎟⎠ , ̃︀𝐴2,𝑥2 :=

⎛⎜⎜⎝
𝑢2−𝑐𝑠

2 0 (𝑐𝑠−𝑢2)𝜌
2𝑐𝑠

0 𝑢2 0
𝑐𝑠(𝑐𝑠−𝑢2)

2𝜌 0 𝑢2−𝑐𝑠
2

⎞⎟⎟⎠ .

iii) 𝑢𝑥𝛼 > 0 and all negative eigenvalues are set to zero in ̃︀Λ2,𝑥𝛼 . Then the modified
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coefficient matrices in (3.20) read:

̃︀𝐴2,𝑥1 :=

⎛⎜⎜⎝
𝑐𝑠+𝑢1

2
(𝑐𝑠+𝑢1)𝜌

2𝑐𝑠
0

𝑐𝑠(𝑐𝑠+𝑢1)
2𝜌

𝑐𝑠+𝑢1
2 0

0 0 𝑢1

⎞⎟⎟⎠ , ̃︀𝐴2,𝑥2 :=

⎛⎜⎜⎝
𝑐𝑠+𝑢2

2 0 (𝑐𝑠+𝑢2)𝜌
2𝑐𝑠

0 𝑢2 0
𝑐𝑠(𝑐𝑠+𝑢2)

2𝜌 0 𝑐𝑠+𝑢2
2

⎞⎟⎟⎠ .

iv) 𝑢𝑥𝛼 < 0 and all negative eigenvalues are set to zero in ̃︀Λ2,𝑥𝛼 . Then the modified
coefficient matrices in (3.20) read:

̃︀𝐴2,𝑥1 :=

⎛⎜⎜⎝
𝑐𝑠+𝑢1

2
(𝑐𝑠+𝑢1)𝜌

2𝑐𝑠
0

𝑐𝑠(𝑐𝑠+𝑢1)
2𝜌

𝑐𝑠+𝑢1
2 0

0 0 0

⎞⎟⎟⎠ , ̃︀𝐴2,𝑥2 :=

⎛⎜⎜⎝
𝑐𝑠+𝑢2

2 0 (𝑐𝑠+𝑢2)𝜌
2𝑐𝑠

0 0 0
𝑐𝑠(𝑐𝑠+𝑢2)

2𝜌 0 𝑐𝑠+𝑢2
2

⎞⎟⎟⎠ .

Finally, let 𝑑 = 3, the same four cases as above are considered

i) 𝑢𝑥𝛼 > 0 and all positive eigenvalues are set to zero in ̃︀Λ3,𝑥𝛼 . Then the modified
coefficient matrices in (3.20) read:

̃︀𝐴3,𝑥1 :=

⎛⎜⎜⎜⎜⎝
𝑢1−𝑐𝑠

2
(𝑐𝑠−𝑢1)𝜌

2𝑐𝑠
0 0

𝑐(𝑐𝑠−𝑢1)
2𝜌

𝑢1−𝑐𝑠
2 0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎠ ,

̃︀𝐴3,𝑥2 :=

⎛⎜⎜⎜⎜⎝
𝑢2−𝑐𝑠

2 0 (𝑐𝑠−𝑢2)𝜌
2𝑐𝑠

0

0 0 0 0
𝑐(𝑐𝑠−𝑢2)

2𝜌 0 𝑢2−𝑐𝑠
2 0

0 0 0 0

⎞⎟⎟⎟⎟⎠ , ̃︀𝐴3,𝑥3 :=

⎛⎜⎜⎜⎜⎝
𝑢3−𝑐𝑠

2 0 0 (𝑐𝑠−𝑢3)𝜌
2𝑐𝑠

0 0 0 0

0 0 0 0
𝑐(𝑐𝑠−𝑢3)

2𝜌 0 0 𝑢3−𝑐𝑠
2

⎞⎟⎟⎟⎟⎠ .

ii) 𝑢𝑥𝛼 < 0 and all positive eigenvalues are set to zero in ̃︀Λ3,𝑥𝛼 . Then the modified
coefficient matrices in (3.20) read:

̃︀𝐴3,𝑥1 :=

⎛⎜⎜⎜⎜⎝
𝑢1−𝑐𝑠

2
(𝑐𝑠−𝑢1)𝜌

2𝑐𝑠
0 0

𝑐(𝑐𝑠−𝑢1)
2𝜌

𝑢1−𝑐𝑠
2 0 0

0 0 𝑢1 0

0 0 0 𝑢1

⎞⎟⎟⎟⎟⎠ ,

̃︀𝐴3,𝑥2 :=

⎛⎜⎜⎜⎜⎝
𝑢2−𝑐𝑠

2 0 (𝑐𝑠−𝑢2)𝜌
2𝑐𝑠

0

0 𝑢2 0 0
𝑐(𝑐𝑠−𝑢2)

2𝜌 0 𝑢2−𝑐𝑠
2 0

0 0 0 𝑢2

⎞⎟⎟⎟⎟⎠ , ̃︀𝐴3,𝑥3 :=

⎛⎜⎜⎜⎜⎝
𝑢3−𝑐𝑠

2 0 0 (𝑐𝑠−𝑢3)𝜌
2𝑐𝑠

0 𝑢3 0 0

0 0 𝑢3 0
𝑐(𝑐𝑠−𝑢3)

2𝜌 0 0 𝑢3−𝑐𝑠
2

⎞⎟⎟⎟⎟⎠ .

iii) 𝑢𝑥𝛼 > 0 and all negative eigenvalues are set to zero in ̃︀Λ3,𝑥𝛼 . Then the modified
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coefficient matrices in (3.20) read:

̃︀𝐴3,𝑥1 :=

⎛⎜⎜⎜⎜⎝
𝑐𝑠+𝑢1

2
(𝑐𝑠+𝑢1)𝜌

2𝑐𝑠
0 0

𝑐(𝑐𝑠+𝑢1)
2𝜌

𝑐𝑠+𝑢1
2 0 0

0 0 𝑢1 0

0 0 0 𝑢1

⎞⎟⎟⎟⎟⎠ ,

̃︀𝐴3,𝑥2 :=

⎛⎜⎜⎜⎜⎝
𝑐𝑠+𝑢2

2 0 (𝑐𝑠+𝑢2)𝜌
2𝑐𝑠

0

0 𝑢2 0 0
𝑐(𝑐𝑠+𝑢2)

2𝜌 0 𝑐𝑠+𝑢2
2 0

0 0 0 𝑢2

⎞⎟⎟⎟⎟⎠ , ̃︀𝐴3,𝑥3 :=

⎛⎜⎜⎜⎜⎝
𝑐𝑠+𝑢3

2 0 0 (𝑐𝑠+𝑢3)𝜌
2𝑐𝑠

0 𝑢3 0 0

0 0 𝑢3 0
𝑐(𝑐𝑠+𝑢3)

2𝜌 0 0 𝑐𝑠+𝑢3
2

⎞⎟⎟⎟⎟⎠ .

iv) 𝑢𝑥𝛼 < 0 and all negative eigenvalues are set to zero in ̃︀Λ3,𝑥𝛼 . Then the modified
coefficient matrices in (3.20) read:

̃︀𝐴3,𝑥1 :=

⎛⎜⎜⎜⎜⎝
𝑐𝑠+𝑢1

2
(𝑐𝑠+𝑢1)𝜌

2𝑐𝑠
0 0

𝑐(𝑐𝑠+𝑢1)
2𝜌

𝑐𝑠+𝑢1
2 0 0

0 0 0 0

0 0 0 0

⎞⎟⎟⎟⎟⎠ ,

̃︀𝐴3,𝑥2 :=

⎛⎜⎜⎜⎜⎝
𝑐𝑠+𝑢2

2 0 (𝑐𝑠+𝑢2)𝜌
2𝑐𝑠

0

0 0 0 0
𝑐(𝑐𝑠+𝑢2)

2𝜌 0 𝑐𝑠+𝑢2
2 0

0 0 0 0

⎞⎟⎟⎟⎟⎠ , ̃︀𝐴3,𝑥3 :=

⎛⎜⎜⎜⎜⎝
𝑐𝑠+𝑢3

2 0 0 (𝑐𝑠+𝑢3)𝜌
2𝑐𝑠

0 0 0 0

0 0 0 0
𝑐(𝑐𝑠+𝑢3)

2𝜌 0 0 𝑐𝑠+𝑢3
2

⎞⎟⎟⎟⎟⎠ .



C Appendix C

Completion of the proof of Lemma 4

The proof of Lemma 4 as given in the main document is incomplete. For part d) we
proved the validity of the recursion (4.21) and it remains to show that (4.20) satisfies this
recursion. This last step to complete the proof is done next.

Due to part b) of Lemma 4 we can restrict the calculation to even 𝑘 = 2𝑗. Then (4.20) is
equivalent to

𝑃𝐹 (2𝑗,𝑚, 𝑣) =
𝑗 −𝑚+ 1

𝑗
· 𝑗!

(𝑗 − 𝑣)! 𝑣!
· (𝑚− 2)!

(𝑚− 𝑣 − 1)! (𝑣 − 1)!
. (C.1)

We consider 𝑚 = 1, . . . , 𝑗−1 and investigate (4.21a). The first summand 𝑃𝐹 (2𝑗−2,𝑚, 𝑣)
on its right hand side satisfies

𝑃𝐹 (2𝑗 − 2,𝑚, 𝑣) =

(︂
1− 𝑚− 1

𝑗 − 1

)︂(︃
𝑗 − 1

𝑣

)︃(︃
𝑚− 2

𝑣 − 1

)︃

=
𝑗 −𝑚

𝑗 − 1

(𝑗 − 1)! (𝑚− 2)!

(𝑗 − 𝑣 − 1)! 𝑣! (𝑚− 𝑣 − 1)! (𝑣 − 1)!

=
(𝑚− 2)! (𝑗 − 2)! 𝑗

(𝑗 − 𝑣)! 𝑣! (𝑚− 𝑣 − 1)! (𝑣 − 1)! 𝑗
· (𝑗 −𝑚) (𝑗 − 𝑣) (C.2)

The sum on the right hand side of (4.21a) satisfies

𝑚−1∑︁
𝑝=1

𝑃𝐹 (2𝑗 − 2, 𝑝, 𝑣 − 1) =
𝑚−1∑︁
𝑝=1

(︂
1− 𝑝− 1

𝑗 − 1

)︂(︃
𝑗 − 1

𝑣 − 1

)︃(︃
𝑝− 2

𝑣 − 2

)︃

=

𝑚−1∑︁
𝑝=𝑣

𝑗 − 𝑝

𝑗 − 1
· (𝑗 − 1)! (𝑝− 2)!

(𝑗 − 𝑣)! (𝑣 − 1)! (𝑝− 𝑣)! (𝑣 − 2)!

=
(𝑗 − 1)!

(𝑗 − 1) (𝑗 − 𝑣)! (𝑣 − 1)! (𝑣 − 2)!
·
𝑚−1∑︁
𝑝=𝑣

(𝑗 − 𝑝) (𝑝− 2)!

(𝑝− 𝑣)!

=
(𝑗 − 1)!

(𝑗 − 1) (𝑗 − 𝑣)! (𝑣 − 1)! (𝑣 − 2)!
· (𝑚− 1 + 𝑗𝑣 −𝑚𝑣) (𝑚− 2)!

(𝑣 − 1) 𝑣 (𝑚− 𝑣 − 1)!

=
(𝑚− 2)! (𝑗 − 2)! 𝑗

(𝑗 − 𝑣)! 𝑣! (𝑚− 𝑣 − 1)! (𝑣 − 1)! 𝑗
· (𝑚− 1 + 𝑗𝑣 −𝑚𝑣). (C.3)
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The complete right hand side of (4.21a), i.e., the sum of (C.2) and (C.3) is

𝑃𝐹 (2𝑗 − 2,𝑚, 𝑣) +
𝑚−1∑︁
𝑝=1

𝑃𝐹 (2𝑗 − 2, 𝑝, 𝑣 − 1)

=
(𝑚− 2)! (𝑗 − 2)! 𝑗

(𝑗 − 𝑣)! 𝑣! (𝑚− 𝑣 − 1)! (𝑣 − 1)! 𝑗
·
[︁
(𝑗 −𝑚)(𝑗 − 𝑣) + (𝑚− 1 + 𝑗𝑣 −𝑚𝑣)

]︁
=

(𝑚− 2)! (𝑗 − 2)! 𝑗

(𝑗 − 𝑣)! 𝑣! (𝑚− 𝑣 − 1)! (𝑣 − 1)! 𝑗
· (𝑗 − 1)(𝑗 −𝑚+ 1)

=
(𝑚− 2)! 𝑗! (𝑗 −𝑚+ 1)

(𝑗 − 𝑣)! 𝑣! (𝑚− 𝑣 − 1)! (𝑣 − 1)! 𝑗
,

which is exactly (C.1).

Now, let 𝑚 = 𝑗, we obtain for (4.20)

𝑃𝐹 (2𝑗, 𝑗, 𝑣) =
1

𝑗
· 𝑗!

(𝑗 − 𝑣)! 𝑣!
· (𝑗 − 2)!

(𝑗 − 𝑣 − 1)! (𝑣 − 1)!
=

(𝑗 − 1)! (𝑗 − 2)!

(𝑗 − 𝑣)! 𝑣! (𝑗 − 𝑣 − 1)! (𝑣 − 1)!
.

We obtain the same result when we investigate (4.21b):

𝑗−1∑︁
𝑝=1

𝑃𝐹 (2𝑗 − 2, 𝑝, 𝑣 − 1) =

𝑗−1∑︁
𝑝=𝑣

(︂
1− 𝑝− 1

𝑗 − 1

)︂(︃
𝑗 − 1

𝑣 − 1

)︃(︃
𝑝− 2

𝑣 − 2

)︃

=
(𝑗 − 1)!

(𝑗 − 1) (𝑗 − 𝑣)! (𝑣 − 1)! (𝑣 − 2)!
·
𝑗−1∑︁
𝑝=𝑣

(𝑗 − 𝑝)(𝑝− 2)!

(𝑝− 𝑣)!

=
(𝑗 − 1)!

(𝑗 − 1) (𝑗 − 𝑣)! (𝑣 − 1)! (𝑣 − 2)!
· (𝑗 − 1) (𝑗 − 𝑣) (𝑗 − 2)!

(𝑣 − 1) 𝑣 (𝑗 − 𝑣)!

=
(𝑗 − 1)! (𝑗 − 2)!

(𝑗 − 𝑣)! 𝑣! (𝑗 − 𝑣 − 1)! (𝑣 − 1)!
.

This completes the proof of Lemma 4.



D Appendix D

Optimal selection for expanding the
domain of convergence

The proof of Lemma 9 is split into two parts. The first part uses the result of Lemma 8
to prove the statement for the domain 𝐷1, see (5.6). In the second part the remaining
domain 𝐹 ∖𝐷1 is considered with another approach. For 𝐹 ∖𝐷1 the Lemma 8 cannot be
used directly since the non-negativity assumption is violated. However one can consider
absolute values, but as we show next the result of Lemma 8 does not have the potential
to prove the convergence for the complete remaining domain 𝐹 ∖𝐷1.

Before we consider (5.4) as in Lemma 9 we investigate the unsplit auxiliary formulation

�̂�(𝑚) =
𝑚−1∑︁
𝑣=1

1

𝑚− 𝑣

(︃
𝑚− 1

𝑣

)︃(︃
𝑚− 2

𝑣 − 1

)︃
𝐴𝑚−𝑣 𝐵𝑣. (D.1)

With a factorization 𝐴 = 𝑎1𝑎2 and 𝐵 = 𝑏1𝑏2 it follows

|�̂�(𝑚)| ≤
𝑚−1∑︁
𝑣=1

1

𝑚− 𝑣

(︃
𝑚− 1

𝑣

)︃(︃
𝑚− 2

𝑣 − 1

)︃
|𝑎1|𝑚−𝑣 |𝑎2|𝑚−𝑣 |𝑏1|𝑣 |𝑏2|𝑣 ,

and Lemma 8 would give

|�̂�(𝑚)| ≤
[︀
(|𝑎1|+ |𝑏1|)(|𝑎2|+ |𝑏2|)

]︀𝑚
𝑚

, (D.2)

with 𝑝𝑗 = |𝑎𝑗 | and 𝑞𝑗 = |𝑏𝑗 |. In other words, the statement of Lemma 9 can be proven
when the factorization is taken, such that (|𝑎1|+ |𝑏1|)(|𝑎2|+ |𝑏2|) < 1 holds. That means
we have to solve ⎧⎪⎨⎪⎩

minimize 𝐽(𝑎1, 𝑎2, 𝑏1, 𝑏2),

such that 𝑎1𝑎2 = 𝐴,

𝑏1𝑏2 = 𝐵,

(D.3)

with 𝐽(𝑎1, 𝑎2, 𝑏1, 𝑏2) = (|𝑎1|+ |𝑏1|)(|𝑎2|+ |𝑏2|) and given 𝐴 and 𝐵. Due to

𝐽(𝑎1, 𝑎2, 𝑏1, 𝑏2) = |𝐴|+ |𝐵|+ |𝑎1𝑏2|+ |𝑎2𝑏1|

the problem (D.3) is equivalent to⎧⎪⎨⎪⎩
minimize |𝑎1𝑏2|+ |𝑎2𝑏1| ,
such that 𝑎1𝑎2 = 𝐴,

𝑏1𝑏2 = 𝐵,

(D.4)
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𝐷1

�̃�2

Figure D.1: Visualization of two subdomains – The rectangle describes the full parameter
domain 𝐹 . The blue subdomain visualizes the domain 𝐷1 (5.6), on which
(5.8) is proven in Lemma 9 with application of (5.7). Furthermore, in green
the subdomain �̃�2 is shown.

We can substitute 𝑎2 = 𝐴
𝑎1

and 𝑏1 = 𝐵
𝑏2

and thus have to minimize |𝑎1𝑏2|+ |𝐴𝐵|
|𝑎1𝑏2| . Obviously

this is equivalent to

min
𝑥≥0

(︂
𝑥+

|𝐴𝐵|
𝑥

)︂
,

which yields 𝑥 =
√︀

|𝐴𝐵|. The solutions of the problem (D.3) therefore satisfy

|𝑎1𝑏2| =
√︀
|𝐴𝐵|, 𝑎1𝑎2 = 𝐴, 𝑏1𝑏2 = 𝐵.

Hence one solution is given by

𝑎1 = sgn(𝐴)
√︀
|𝐴|, 𝑎2 =

√︀
|𝐴|, 𝑏1 = sgn(𝐵)

√︀
|𝐵|, 𝑏2 =

√︀
|𝐵|. (D.5)

Equation (D.1) is related to (5.4) by 𝐴 = (1 + 𝛼)(1 + 𝛿) and 𝐵 = 𝛽𝛾. From Lemma 7
it follows sgn(𝐴) = −1 and sgn(𝐵) = 1 for 𝐹 ∖𝐷1. We consider the numerator of (D.2)
with the factorization (D.5):[︀

(|𝑎1|+ |𝑏1|)(|𝑎2|+ |𝑏2|)
]︀𝑚

=
[︀
|𝐴|+ |𝐵|+ 2

√︀
|𝐴𝐵|

]︀𝑚
=
[︀
𝛽𝛾 − (1 + 𝛼)(1 + 𝛿) + 2

√︀
−𝛽𝛾(1 + 𝛼)(1 + 𝛿)

]︀𝑚
=

[︃
(𝜔 − 1) + 2

√︂
𝜔3 − 𝜔2

4
(1− 𝑎2)− 𝜔4

16
(1− 𝑎2)2

]︃𝑚
The green domain shown in Fig. 5.1 is given by

𝐷2 :=

{︃
(𝜔, 𝑎) ∈ 𝐹 ∖𝐷1

⃒⃒⃒⃒
⃒
[︃
(𝜔 − 1) + 2

√︂
𝜔3 − 𝜔2

4
(1− 𝑎2)− 𝜔4

16
(1− 𝑎2)2

]︃
≤ 1

}︃
.
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On 𝐷2 the statement of Lemma 9 is proven with the above consideration. Alternatively,
in Fig. D.1 we show the domain of convergence �̃�2 obtained with the naive factorization

𝑎1 = 1 + 𝛼, 𝑎2 = 1 + 𝛿, 𝑏1 = 𝛽, 𝑏2 = 𝛾.

Noteworthy, the slightly different factorization

𝑎1 = 1 + 𝛼, 𝑎2 = 1 + 𝛿, 𝑏1 = 𝛾, 𝑏2 = 𝛽,

would not even yield an expansion of the domain of convergence at all.





E Appendix E

Additional numerical results

This part of the appendix assembles additional results of the numerical experiments, which
are not shown in the main part of this thesis.

In addition to Fig. 6.12, which visualizes the transverse velocity when using a DABC in
the simulation of an isolated vorticity wave, we present results for other BCs in Figs. E.1
to E.5. These contour plots show the transverse velocity for ITBC, CBC, LODI, isoImpBC
and PML, respectively. Compared to the ideal evolution of Fig. E.1, all other BCs show
an unphysical behavior. While for the CBC, LODI, and PML the contour plot of the last
time level shows at most two lines, the situation is different for isoImpBC. Here we have
a profile remaining in the given range near the boundary. Furthermore, Figs. E.6 to E.10
show the vorticity (6.5) for the same BCs. Considering the last time level, isoImpBC again
behaves differently compared to the other BCs.

In the simulation of plane waves (Section 6.6) we did not show results of an isotropic
impedance boundary condition. The reason is, that this boundary generated oscillations,
as one can see in Fig. E.11. For the same test example we here show the errors, 𝐸𝑢1 and
𝐸𝑢2 , see (6.6), in Fig. E.12.
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Figure E.1: Iso-transverse-velocity contours for an isolated vortex using ITBC – The plots
show the evolution of contour lines of the non-orthogonal velocity component
𝑢2 in the simulation of an isolated vorticity wave using an ITBC at the right
boundary.
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Figure E.2: Iso-transverse-velocity contours for an isolated vortex using CBC – The plots
show the evolution of contour lines of the non-orthogonal velocity component
𝑢2 in the simulation of an isolated vorticity wave using our CBC.
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Figure E.3: Iso-transverse-velocity contours for an isolated vortex using LODI – The plots
show the evolution of contour lines of the non-orthogonal velocity component
𝑢2 in the simulation of an isolated vorticity wave using LODI.



123

x
1

0 0.2 0.4 0.6

x
2

-0.6

-0.4

-0.2

0

0.2

0.4

#750

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

x
1

0 0.2 0.4 0.6

x
2

-0.6

-0.4

-0.2

0

0.2

0.4

#1000

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

x
1

0 0.2 0.4 0.6

x
2

-0.6

-0.4

-0.2

0

0.2

0.4

#1200

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

x
1

0 0.2 0.4 0.6

x
2

-0.6

-0.4

-0.2

0

0.2

0.4

#1400

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

x
1

0 0.2 0.4 0.6

x
2

-0.6

-0.4

-0.2

0

0.2

0.4

#1600

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

x
1

0 0.2 0.4 0.6

x
2

-0.6

-0.4

-0.2

0

0.2

0.4

#1800

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

x
1

0 0.2 0.4 0.6

x
2

-0.6

-0.4

-0.2

0

0.2

0.4

#2000

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

x
1

0 0.2 0.4 0.6

x
2

-0.6

-0.4

-0.2

0

0.2

0.4

#2250

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

x
1

0 0.2 0.4 0.6

x
2

-0.6

-0.4

-0.2

0

0.2

0.4

#2500

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Figure E.4: Iso-transverse-velocity contours for an isolated vortex using isoImpBC – The
plots show the evolution of contour lines of the non-orthogonal velocity com-
ponent 𝑢2 in the simulation of an isolated vorticity wave using the isotropic
impedance boundary condition.
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Figure E.5: Iso-transverse-velocity contours for an isolated vortex using PML – The plots
show the evolution of contour lines of the non-orthogonal velocity component
𝑢2 in the simulation of an isolated vorticity wave using a PML damping zone
in the formulation of Najafi-Yazdi and Mongeau.
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Figure E.6: Iso-vorticity contours for an isolated vortex using ITBC – The contour plots
show the evolution of the vorticity (6.5) using an ITBC at the right boundary.
Except for the last plot, the contour levels are the same for all time levels.
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Figure E.7: Iso-vorticity contours for an isolated vortex using CBC – The contour plots
show the evolution of the vorticity (6.5) using our CBC at the right boundary.
Except for the last plot, the contour levels are the same for all time levels.
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Figure E.8: Iso-vorticity contours for an isolated vortex using LODI – The contour plots
show the evolution of the vorticity (6.5) using LODI at the right boundary.
Except for the last plot, the contour levels are the same for all time levels.
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Figure E.9: Iso-vorticity contours for an isolated vortex using isoImpBC – The contour
plots show the evolution of the vorticity (6.5) using the isotropic impedance
boundary condition at the right boundary. Except for the last plot, the contour
levels are the same for all time levels.
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Figure E.10: Iso-vorticity contours for an isolated vortex using PML – The contour plots
show the evolution of the vorticity (6.5) using a PML damping zone in the
formulation of Najafi-Yazdi and Mongeau at the right boundary. Except for
the last plot, the contour levels are the same for all time levels.
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Figure E.11: Error of an isotropic IBC in simulation of a plane wave – This cutout shows
the error in the simulation of a two-dimensional plane wave using isoImpBC as
boundary condition. We see an oscillation at the boundary where isoImpBC
is applied.
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Figure E.12: Velocity errors of plane waves with respect to the angle of incidence – The
maximal errors 𝐸𝑢1 and 𝐸𝑢2 , (6.6), are plotted for different angles of incidence
in the range from 10∘ to 80∘.
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