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Abstract
The financial crisis of 2008 highlighted the need for better regulation mecha-
nisms for the stabilization of financial systems. The innovations in financial
products and the evolution of financial market technologies and operations
observed in the last decades do not only offer new opportunities but also im-
ply systemic risks. They contributed to the establishment of interconnected
financial systems in which the failure of certain single financial institutions
(the so-called systematically important financial institutions: SIFI) can spread
through contagion effects, thus causing the failures of other financial insti-
tutions and threatening the stability of a financial system.
The regulatory authorities reacted to this problem by designing and imple-
menting various new risk management concepts and tasks, such as 1) the esti-
mation of the potential financial loss suffered by the financial system if a given
financial institution defaults, 2) the identification of SIFIs 3) the calculation of
individual bank’s contribution to resolution funds and 4) the elaboration and
the performance of bail-in-operations. These tasks necessitate the development
of financial risk measures that are based not only on individual losses in iso-
lation, as are standard risk measures such as Value-at-Risk (VaR), but also
consider loss dependency. One of the main tools proposed for this purpose is
the CoVaR-method of Brunnermeier and Adrian [2011]. The CoVaR-method
is based on the statistic CoVaR, which is defined as the VaR of one financial
system conditional on the state of a given financial institution.
The main contribution of this thesis is the development of methods for the
computation of CoVaR in a wide variety of stochastic settings. We derive,
using copula theory, a general formula for CoVaR, which takes into account
all information on the involved distribution. This allows us to consider not
only the normal but also the extreme part of the assumed distributions as well
as different types of dependency structure. We make some illustrative applica-
tions and related analysis. Also, using the theory of elliptical distributions
we derive an expression of CoV aR that is more accessible to financial prac-
titioners. Both approaches allow us to consider not only Gaussian- but also
non-Gaussian distribution. Furthermore, we highlight several inconsisten-
cies in the CoV aR-method and suggest alternative approaches.

v
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Chapter 1

Introduction

1.1 Background

The recent financial crisis revealed how financial systems are vulnerable to
systemic risk. The structure of contemporary financial systems allows con-
tagion effects across participants of the financial system. As we saw dur-
ing the last financial crisis, the failure of certain financial institutions, the so
calledsystemically important financial institutions (SIFIs), can have an
adverse impact on an entire financial system and on the real economy, thus giv-
ing rise to a systemic crisis. This forced the regulatory authorities to rethink
the ways in which financial systems should be regulated. The redefinition (or
the adjustment) of policies aiming to assure the proper functioning and thus
the stability of financial systems is indispensable. We classify these policies
into three categories: risk (or crisis) prevention, risk control and crisis

management.

1.1.1 Risk and Crisis Prevention

Under risk (or crisis) prevention we can group all policies aiming to prevent
of adverse financial impacts ex ante and to mitigate risky situations. One
example of risk prevention policy is the regulation No. 648/2012 of the Eu-
ropean Parliament and of the Council of 4 July 2012 on OTC derivatives,
central counterparties and trade repositories1. It requires certain classes of
over-the-counter (OTC) derivatives contracts to be cleared through a cen-
tral counterparty (CCP). This policy aims to reduce counterparty risk in
OTC derivative markets. The idea behind this requirement is to mitigate
counterparty risk in OTC markets by concentrating (or transferring) the risk

1http://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX%3A32012R0648

1



2 1.1. BACKGROUND

associated with OTC derivatives to CCPs.

1.1.2 Risk Control

Under risk control we group the policies aiming to control the risks taken
by financial institutions in their daily business. These policies generally
impose some restrictions or requirements on the balance sheet of financial
institutions (balance sheet regulation). The main idea here is to ensure an
equilibrium between the risk taken by financial institution and their capital
(or risk absorbing capacity).

The balance sheet of a financial institution can be seen as a list of its sources
of funds (liabilities) and uses to which these funds are put (assets)2. It rep-
resents, at a given time, an overview of the assets, liabilities, and equity a
financial institution posses. Table 1.1 shows the balance sheet of an hypothet-
ical commercial bank. For a detailed description of the items of this balance
sheet we refer the reader to Mishkin and Eakins [2012], Chap. 17.

Assets Amount Liabilities Amount

Reserves and cash 20 Deposits 400
- Short-term 100

Government bonds 100 - Long-term 300

Loans 800 Other liabilities 400
- State and local government 100 - Short-term Financing 100
- Commercial and industrial 360 - Long-term bonds 300
- Real estate 200
- Interbank 50 Borrowings 100
- Consumer 20
- Other 70 Total liabilities 900

Other assets 80 Equity 100

Total 1000 Total 1000

Table 1.1: Bank balance sheet

2Financial institutions (financial intermediaries) generate fund by borrowing and by is-
suing liabilities (e.g. bonds and deposits). The generated funds are then used to finance
assets (e.g. loans)
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Note that the equity of a bank is defined as the difference between its assets
and liabilities:

Equity = Assets− liabilities.

The primary way to regulate the balance sheet of financial institutions is to
impose conditions on its capital.

Remark 1. Note that the capital of a bank consist mainly but not only of its
equity. Other liability instruments can also count as bank capital. We have in
this context:

Capital ≥ Assets− Liabilities.

One example of such a requirement imposed on bank capital are capital

adequacy ratios (CAR):

CAR :=
C

A
≥ α

where C is the capital, A is the sum of all assets and α is a limit specified
by the respective regulatory authority. In this context the balanced sheet of a
bank can be reduced to the following representation:

Assets Liabilities

Asset Type 1 (A1)
Asset Type 2 (A2) Capital (C)

.

.

. Others liabilities
Asset Type n (An)

Table 1.2: Reduced bank balance sheet

The CAR is often defined accordingly to the riskiness of asset types. This
is done by assigning to each asset type (Ai) a risk weight (Wi).

CAR =
C

n∑
i=1

Ai ×Wi

.

This principle is followed by the Basel Committee on Banking Supervi-

sion(BCBS). The BCBS was created by the Group of Ten (G-10) countries
in the wake of the bankruptcy of the Herstatt Bank in 1974. Its mission is to
contribute to the stabilization of the international financial system by defin-
ing guidelines and recommendations of best practice for financial regulation
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(the so-called Basel Accords). The Basel Accords are not legally binding for
single countries, but represent guidelines and recommendations that need to
be translated into law.3 The first Basel Capital Accord is that of 1988 also
known as Basel I. It is a risk-based capital regulation in the sense that
it requires financial institutions to keep a minimum of capital, the so-called
regulatory capital (RC), depending on the risk they take. This means that,
the risks that a financial institution is allowed to take depends on its financial
capital. Under Basel I the capital instruments are regrouped, depending on
their capacity to absorb losses (quality) 4 into two categories: (i) Tier 1
capital (Core capital) and (ii) Tier 2 capital (supplementary capital). The
total capital is defined as the sum of Tier 1 capital and Tier 2 capital.

• The Tier 1 capital consists of permanent shareholder’s equity and dis-
closed reserves (retained earnings after tax).

• The Tier 2 capital consists of reserves, provisions, hybrid capital, subor-
dinated debt with minimum maturity of 5 years.

Tier 1 capital are high-quality and consist primarily of equity. They are able
to absorb losses in a going-concern basis, i.e on the assumption that the
considered financial institution will still in business for an indefinite period
whereas Tier 2 capital is supposed to absorb losses in a gone-concern, i.e.
basis when the bank becomes insolvent.

Remark 2. A going-concern financial institution has positive equity capital.

In the context of the Basel accords the assets of financial institution are
splitted into banking book, trading book and cash. The banking book
contains assets that are assume to be held until the maturity (e.g. as loans).
The trading book contains assets and instruments that are intentionally held
for short-term resale or for hedging other instruments of the trading book.

Remark 3. These trading book assets are typically valuated on a mark-to-

market basis using only quoted market prices. while banking books could be
valuated at their original cost.

The Basel I focus credit risk arising from both, trading book and banking
book. It required the ratio between capital of a bank and a weighted sum of

3For example, the Basel III is implemented in EU through Capital Requirements Directive
IV (CRD IV).

4Equity is for the Basel Committee the preferred eligible capital because it is permanent
and more reliable.
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all its assets (RWA) to be equal or greater than 8% (see Basel Capital Accord
[1988]). The corresponding CAR is then:

CAR =
Tier 1 capital + Tier 2 capital

RWA =
n∑
i=1

RWAi

≥ 0.08

with RWAi = Ei ×RWi,

where n is the number of a bank’s assets including on-balance sheet and off-
balance sheet items excluding derivative items, Ei is the financial exposure
associated with asset i and RWi is the risk-weight associated with asset i.

Remark 4. Off-balance-sheet items doe not appear on the (current) balance
sheet of financial institution. However, they could generate a loss in the future,
hence affecting the future shape of balance sheet. Example of off-balance-sheet
items are options and guarantees.

The assignment method of RW is defined by the BCBS in such a way to
reflect the inherent risk (i.e. the probability of default and the expected loss

in the case of a default) of the associated asset. In Basel I, they took only 5
values 0%, 10%, 20%, 50% and 100%. Table 1.3 shows a sample of risk weights
for certain on-balance-sheet items as specified in Basel I. As we can see, cash
and securities issued by governments of OECD5 countries are considered to be
risk free and have then a risk weight of zero. Loans to corporations have a risk
weight of 100%. Loans to banks and government agencies in OECD countries
have a risk weight of 20%. Residential mortgages have a risk weight of 50%.

Asset Type Risk Weight

Cash, gold, loans to governments in OECD countries 0%
Loans to domestic public-sector entities 0%
Loans to banks in OECD countries 20%
Residential mortgages loans 50%
Loans to corporate-sector, consumer loans, real-estate investments 100%

Table 1.3: Risk weights for certain on-balance-sheet items.

Remark 5. According to table 1.3, a bank that, has only exposures to OECD
sovereign debt does not have to hold any regulatory capital (RC = 0), since
the RW associated to loans to governments in OECD countries is zero.

5The group of countries that are full members of the Organisation for Economic Coop-
eration and Development
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The RWA of off-balance sheet instruments is generally calculated in two
steps

1. the nominal amount E of an off-balance sheet instrument is transformed
into an equivalent on-balance sheet loan (credit equivalent amount). This
is done by multiplying the principal amount of off-balance sheet instru-
ment by a predefined credit conversion factor (CCF).

2. the appropriate risk-weight is assigned to the resulting equivalent credit.

The RWAi off an off-balance instrument i is thus computed by

RWAi := Ei × CCFi ×RWi.

Remark 6. In practice, the financial exposure Ei associated with an asset i
is estimated by the exposure at default (EAD). The formula for computing
the RWA becomes,

RWAi = EADi ×RWi.

Basel I also requires at least 50% of the required RC to be in Tier 1. This
means that the Tier 1 capital ratio, which is given by

Tier 1 capital ratio :=
Tier 1 capital

RWA
,

must be at least 4% (Tier 1 capital ratio ≥ 0.04). For a more detailed under-
standing of the weighting system and the capital definition in Basel I, we refer
to Basel Capital Accord [1996]. The Basel accord evolved considerably since
1988. Changes in the Basel accord usually appear in the form of amendments
or releases. These changes in the Basel accords aim to adapt the regulation
framework to changes in financial markets or to react to a financial crisis.
For example, a partial amendment of the accord of 1988 was made in 1996 (see
Basel Capital Accord [1996]). It required banks to additionally allocate capital
to cover market risk, i.e. risk due to movements in market values, such as
interest rate risk, equity position risk, foreign exchange risk and commodities
risk. It also defined a new category of eligible capital, that was exclusively
eligible to cover market risk only. This capital is called Tier 3 capital.6

The corresponding CAR was then given by

CAR =
Bank’s capital

Credit risk RWA + Market risk RWA
≥ 0.08

6The Tier 3 capital consists naimly of short-term subordinated debt.
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Remark 7. In practice the risk capital for credit risk (CRC: credit risk charge)
and that of market risk (MRC: market risk charge) are computed separately.
And the total risk charge (TRC) is computed as the sum of CRC and MRC.

The release of the Basel accord of 26 June 2004 (see Basel Capital Accord
[2004]) also known as Basel II adopts the same philosophy as that of Basel I.
It continues to apply a risk weights based CAR. However, it focuses not only
on market and credit risk, but also considers operational risk, which is
defined as the risk resulting from inadequate or failed workflow processes. It
also changed the way as risk weights were calculated.

Note that one of the main problems in the Basel I accords is that the assign-
ment method for the risk weights does not take into account the credibility of
the borrower. For example, under Basel I, a bank that lent a given amount to
a company with a good credit standing were obliged to hold exactly the same
amount of regulatory capital as that he would if lent the same amount to a
company on the edge of bankruptcy. Basel II has elaborated alternative meth-
ods in which the credibility of the borrower is taken into account (or modeled)
by its default probability (PD).

Basel II provided three different approaches for the determination of risk
weights for credit risk: 1) the standardized approach (SA), 2) the foundation
internal rating based approach (F-IRB) and 3) the advanced IRB approach.
In the standardized approach (SA), the default probability of borrower depend
on ratings provided by external specialized financial institutions, the so called
credit rating agencies. In the IRB approach the default probabilities of
borrowers are based on a bank’s internal rating system.7 Figure 1.1 illustrates
the link between rating and risk weights for exposures to countries, banks, and
corporations under Basel II’s standardized approach.

Figure 1.1: Rating vs. Risk Weights (in %). Source: Hull [2012]

Another innovation in Basel II is the adoption of a three "Pillar"-structure
in the formulation of regulatory policies. Through this structure, the Basel

7This need to be approved by relevant regulatory institutions such as the BaFin (Bun-
desanstalt für Finanzdienstleistungsaufsicht) in Germany.
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Committee aims at integrating the three main aspects of financial risk man-
agement, namely the quantitative, qualitative, and market discipline (trans-
parency) aspect in the regulation of the financial system.

1. Pillar 1 (quantitative aspect) provides the rule for the calculation of
regulatory capital. It consists of similar risk capital ratios as Basel I and
additionally considers operational risks.

2. Pillar 2 (qualitative aspect) provides principles for the supervisory review
process. Following these principles a bank can estimate, using it own
models, the capital that it needs to cover the economic effects of risk-
taking activities and to secure the survival of its business on a going
concern basis. This capital is called economic capital.

3. Pillar 3 (market discipline aspect) aims at promoting discipline and trans-
parency in the financial system by calling on banks to disclose more
information about the way they allocate capital and the risks they take.

Remark 8. Under Basel II, the capital requirements for the banking book was
generally higher than that for trading the book. Some financial institutions
used this gap and developed practice to reduce their regulatory capitals while
holding the same risks (regulatory arbitrage). They transfer for this purpose
their banking book assets to the trading book. This is done by first transform
via secularization techniques the considered asset (e.g. a loan) into a tradable
asset (e.g. a bond) then distributes them to other financial institutions.

As a reaction to the latest financial crisis the BCBS published in December
2010 a revision of the Basel accords, the so- called Basel III. As we can read
in Basel Committee on Banking Supervision [2009],

”the objective of Basel III is to improve the banking sector’s ability to absorb
shocks arising from financial and economic stress, whatever the source, thus
reducing the risk of spillover from the financial sector to the real economy”.

This statement clearly asserts that the main focus of Basel III is the man-
agement of systemic risk. The main aspects of Basel III are:

• The redefinition of the concept of eligible capital8. Under Basel III, the
Tier 3 capital is eliminated and the Tier 1 capital is splitted into Com-

mon Equity Tier 1(CET1) and Additional Tier 1 capital and the
relative amount of tier 1 is increasing from 4% to 6%. This increases the

8See e.g. CRR article 28
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quality of regulatory capital. The augmentation of the regulatory capi-
tal is assured by the introduction of three new capital components such
as the Capital Conservation Buffer , the Counter-Cyclical Buffer
and the systemic risk capital buffer for globally systemically im-

portant banks (G-SIBs). The total risk capital is then:

TRC = Tier 2 + Tier 1 + capital conservation buffer

+ countercyclical capital buffer

+ systemic risk capital buffer for G-SIBs

• The difference in the treatment of systemically important institu-

tions. These are for example required to hold extra regulatory capital
(systemic risk capital buffer).

• The introduction of liquidity requirements, namely the liquidity cov-

erage ratio (LCR) and the net stable funding ratio (NSFR). The
LCR aims to ensure that banks have enough amount of unencumbered
High-Quality Liquid Assets (HQLA)9 to withstand a period of 30-days
of liquidity disruptions while the NSFR aims to ensure that sufficient
funding is available in order to cover a period of at least one year.

• The introduction of requirements on leverage. The Basel III leverage
ratio (LR) is defined by:

Leverage Ratio =
Tier 1 capital

Exposure measure

The exposure measure can be seen here as the sum of all a bank’s expo-
sures (or all assets).

Remark 9. Contrary to others capital ratios the denominator of the LR is
not the RWA.

1.1.3 Crisis management

With crisis management we refer to procedures aimed at managing financial
institutions, being in critical situation, in an orderly way in order to preserve
financial stability. Their main objectives are:

• avoid contagion effects,

• protect client funds,
9HQLA can be rapidly into cash, with a limited loss in value, in financial markets.
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• ensuring that the financial system’s banking services remain uninter-
rupted10.

The commonly used instruments or tools, for the management of financial
institutions being in a critical financial situation are:

• credit,

• asset purchases,

• liquidity facilities,

• guarantees,

• and nationalizations.

The use of these instruments generate costs, which need to be financing. This
can be done using taxpayer’s money or via special fund called resolution

fund. One of the prominent examples of crisis management operation are
the Troubled Asset Relief Program (TARP) in the US and the quantitative
easing (QE) program of the European central bank. The TARP was been
signed into law in October 2008. The TARP provided to the US treasury
a fund of $ 700 billion to purchase subprime and other mortgage backed
securities from financial institutions in difficulty in order to stabilize the US
financial system.11 The aim of the QE is to increase the money supply in
the European financial system by buying securities, such as corporate and
government bonds, from financial institutions.

Remark 10. Note that in the case of TARP and the QE the financial assis-
tance given to financial institutions in difficulty is supported using external

funds (provided by the governments and other financial authorities). This
procedure corresponds to a Bail-out.

The bail-out of private financial institutions by government are very un-
popular, because they involve a massive use of taxpayer money to finance the
losses caused by financial institutions.12.

10This imposes a continuity of the essential (or critical) financial and economic functions
of unsound or failing financial institutions.

11Updated information about the recipients, the amount disbursed, the amount re-
turned, the revenues of the TARP program can be seen in the following web-page:
https://projects.propublica.org/bailout/list.

12Bail-out can be interpreted by the taxpayer as if they have the obligation to participate
in the loss (but not the gain) of financial institutions.
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However, it is important to note that the cost generated by the collapse of
real economies are generally very high13. Hence, to avoid the collapse of their
financial system and their real economies some governments were forced to
bail-out certain financial institutions. In fact, some financial institutions are
considered so important (large and highly interconnected with other financial
institutions) that their failure could potentially bring down an entire regional
(domestic or global) financial system, thereby causing a high social and eco-
nomic cost for governments and society as a whole. These financial institutions
are commonly called ’too big to fail’.

It is in this context that the German government has set up, in October
2008, a special fund called SoFFin (Sonderfonds Finanzmarktstabilisierung -
Special Financial Market Stabilization Fund) for the financing of its bail-out
actions. The SoFFin is administrated by the Financial Market Stabilisation
Agency (FMSA) which was also in charge of the coordination of the bail-out
actions taken by the German government.

Table 1.4: Bail-out recipients in Germany: Status: 31.12.2009, in bn EUR
Institution Guarantees Financial Aids

Aaereal Bank 2.0 0.5
Bayern LB 5.0 0.0
Commerzbank AG 5.0 18.2
Corealcredit 0.5 0.0
Düsseldorfer Hypothekenbank AG 2.5 0.0
HSH Nordbank AG 17.0 0.0
Hypo Real Estate Holding AG 95.0 6.3
IKB Deutsche Industriebank AG 7.0 0.0
Portigon (WestLB AG) 0.0 2.6
Sicherungseinrichtungsgesellschaft
deutscher Banken mbH 5.4 0.0

The table 1.4 shows the actions and the recipients of the German bail-out
operation per 31.12.2009.

The bail-out of financial institutions can be seen as an effective way to
contain the propagation of financial distress across a financial system and the
real economy. However, there are at least three aspects of the governmental
bail-out actions that pose a problem:

13Example of the effect of crisis in the real economic are: reduction of consumption and
investment, rising unemployment and the shortfall in economic growth.



12 1.1. BACKGROUND

1. They are funded by taxpayer money.

2. The money used by the government for a bail-out action is generally
transferred to other financial institutions and not to the real economic.
As an illustrative example, the table 1.5 shows some financial charges
assumed by the US government in the bail-out of the American Interna-
tional Group (AIG).

Table 1.5: Collateral amounts posted by AIG to its counterparties after it
began receiving government assistance. Data source: www.aig.com
Counterparty Amount Posted in Billion $ Country

Societe Generale 4.1 France
Deutsche Bank 2.6 Germany
Goldman Sachs 2.5 USA
Merrill Lynch 1.8 USA
Calyon 1.1 USA
Barclays 0.9 UK
UBS 0.8 Swiss
DZ Bank 0.7 Germany
Wachovia 0.7 USA
Rabobank 0.5 Hollande
KFW 0.5 Germany
JPMorgan 0.4 USA
Banco Santander 0.3 Spain
Danske 0.2 Danmark
Reconstruction Finance Corp 0.2 USA
HSBC Bank 0.2 UK
Morgan Stanley 0.2 USA
Bank of America 0.2 USA
Bank of Montreal 0.2 Canada
Royal Bank of Scotland 0.2 UK
Other 4.1

Remark 11. Table 1.5 also highlights the internationalization of finan-
cial transactions.

3. The bail-out of financial institutions by their respective governments
implicitly implies that the stability of one given financial system (or
financial sub-system) depends on the ability of the respective government



CHAPTER 1. INTRODUCTION 13

to bail-out (or to finance) the respective systemically important financial
institutions.14 This poses a problem when the considered financial system
encloses many governments such as the Eurozone. Because the stability
of such a financial system can only be assured if all its sub-financial
system are stable, this requires a harmonized stability mechanism. The
lack of harmonized stability mechanisms can lead to a political crisis.

Recall that the Eurozone is a currency union with a common monetary
policy under the responsibility of the European Central Bank (ECB) and
with the Euro as common currency. One main aspect of the Eurozone is
the liberalization of all legal financial transactions (capital flows and risk
transfers) between financial institutions from different members coun-
tries. This promotes the establishment of huge financial system called
euro area.

The EU recognized these problems and reacted by elaborating harmonized
frameworks for the management of failing financial institutions across the euro
area. The main frameworks are:

• The Bank Recovery and Resolution Directive15(BRRD).16.

• The single Resolution Mechanism (SRM) and the Single Resolution
Fund (SRF).

The BRRD provides a minimal17 harmonized legal framework for the man-
agement of failing financial institutions without (or less) contagion effects18

and without resort to bail-out operations using public funds (resolution). It is
builds on the following three main pillars (or tasks)

1. resolution planning: The scope of resolution planning is to develop res-
olutions strategy and identify the obstacles to resolution operation that
need to be addressed in order to facilitate the resolution operation if need
be.

2. Mitigation of financial institution’s default. This is done using tools such
as recovery operation (Sets of measures taken by a financial institutions

14From this perspective it is not a surprise why the financial crisis persists in Greece and
not in Germany

15see http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:32014L0059
16The BRRD is implemented in the German law through the Sanierungs- und Abwick-

lungsgesetz - SAG (see www.gesetze-im-internet.de/bundesrecht/sag/gesamt.pdf)
17The BRRD allows state to use their own recovery and resolution strategy, insofar as it

is not in conflict with the BRRD
18this imposes the maintain of the financial institution’s critical functions
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in financial dificulty in order to restore its busness operations to a normal
condition) and early intervention19.

3. resolution operation.

It provides to competent authorities legal instruments, which can be used for
resolution purpose (resolution tools) . Examples of resolution tools are:

• the sale of business unit (Article 38 BRRD).

• the building of bridge institution(Article 40 BRRD). The is to transfer
certain asset to a third-party financial institution.20

• separation of bank assets (Bad Bank, Article 42 BRRD). The aim of this
instrument is to preserve the systematically relevant part of the failing
financial institution whilst liquidating the non-systematically relevant
part part.

• and bail-in (Article 43 BRRD). In fact, the BRRD stipulates that, should
a bank fail, its shareholders, creditors and uninsured depositors should
be first in line to assume losses if the bank gets into financial difficulty.
This principle is called ’bail-in’.

In the context of BRRD, the bail-in is used as instrument to ensure the se-
quential allocation of losses and the write down of the claims of shareholders,
subordinated creditors, and senior creditors.

Remark 12. Depositors below EUR. 100,000 are in general excluded from suf-
fering losses, their claims are protected by national Deposit Guarantee Schemes,
such as the Einlagensicherungsgesetz21 in Germany or the Federal Deposit In-
surance Corporation (FDIC) in the USA.

The BRRD is implemented in the euro area through the SRM. Under the
SRM, resolution operations are funded by the SRF. The SRF is a resolution
fund that is financed through the ex ante contributions of banks and cer-
tain investment firms established in the countries subject to the SRM. The
individual ex ante contribution is calculated, at least annually, by the SRB
based on a method22, which takes into account the systemic importance of
the focused financial institution and a predefined target level of 55 billion EUR

19see Articles 27-30 BRRD
20 such as the Erste Abwicklungsanstalt (EAA)
21URL: http://www.gesetze-im-internet.de/einsig/
22URL: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32015R0063
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(1% of covered deposits of all credit institutions established in the countries
subject to the SRM estimated on 2011 reported data).23 Following the BRRD
requirements, the bail-in instrument has to be used before any public funds or
SRF.

Remark 13. In case that the SRF is insufficient to finance a resolution oper-
ation additional ex-post contributions could be collected.

The individual contributions are collected at a national level by relevant the
relevant national resolution authority NRA and transferred to the single
resolution Board (SRB)24, which is an EU agency entrusted with the task
to prepare resolution planning and to ensure the effectiveness of the resolution
actions. To perform its tasks, the SRB uses two documents: 1) the recovery
plan and 2) the resolution plan. The recovery plans are elaborated by the
financial institutions, its show how they would act during financial turmoil in
order restore their financial activities (financial continuity plan) and thus avoid
liquidation and default. The resolution plans are elaborated by the resolutions
authorities (the SRB and the NRA)25. It address how to handle a bank in
resolution.26

Remark 14. Recovery plans are concerned by time before the default or
resolution.

Remark 15. Generally bail-in operations (resolution operations in general)
take place when the financial institution is still balance sheet solvent. The
starting time and the magnitude of a bail-in operation is decided, based on
some preamble analysis, such as the estimation of the potential financial loss
suffered by the financial system if the considered financial institution fails and
the impact of the planed bail-in operations on the corresponding financial sys-
tem. For example, the

Article 44(3) of the BRRD gives resolution authorities the discretion to
exclude or partially exclude certain bail-in-liabilities from the bail-in-operation
(resolution), in exceptional circumstances, e.g. in the case that the assumed
bail-in-operation could lead to a systemic risk.

23The data necessary for the calculation are reported to the SRB via the relevant national
resolution authority

24https://srb.europa.eu/
25Following Articles 10-14 of the BRRD resolution plans are elaborated by national reso-

lution authorities under the supervision of the SRB
26To facilitate their work, the resolution authorities can require financial institutions to

submit information or to suggest ways in which they could be resolved.
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The capital generated by a bail-in operation may be insufficient to absorb
a loss entirely. The effectivity of a bail-in operation depends thus on the loss
absorbing capacity of the involved Bail-in liabilities (i.e. the set of liabilities
that are eligible to be written down or converted into equity by a bail-in
operation). That is the motivation behind the definition of two ratios:

• The minimum requirement of own funds and eligible liabili-

ties(MREL) for all financial institutions in the European Union27

• and the total loss-absorbing capacity (TLAC) for all Global System-
atically Important Banks.

The aim of these two measures is to require financial institutions to main-
tain a minimum amount of liabilities (bail-inable liabilities) that should be
sufficient to adsorb losses in case of a bail-operation.

There are in the financial market some securities that behave as eligible li-
abilities, but whose management is not assumed by a resolution authority but
by their respective contract terms. The most prominent example of such in-
struments is the contingent convertible bond (CoCo-bond). Traditionally,
convertible bonds are usual corporate bonds where the investor has the right
but not the obligation to convert the bond into shares.28 A CoCo-bond is
different in that the conversion of the bond into equity or the write-down of
the bond face value is trigger automatically when a certain contractual pre-
defined trigger conditions is satisfied.29 The trigger conditions are typically
defined based on regulatory capital ratios such as the Common Equity Tier 1
(CET1) ratio. In this context CoCo-bonds can be see as a supplementary cap-
ital that adjust (increase) the capital of financial institutions in difficulties30 in
order to allow them to meet the regulatory capital ratios. furthermore, under
CRD IV CoCo-bonds are allowed to count as Additional Tier 1 this means
that CoCo-bond can account up to 1.5% of a bank RWA.

Remark 16. Note that, for the CoCo-bonds, the conversion or the haircut
takes place when the bank is still a going concern (i.e. has positive equity
capital), while a bail-in operation takes place when the bank is almost collapsed.

27Article 45 BRRD
28Typically the investor chooses to convert the bond into share when the stock price is

high
29A CoCo-bond can have more than one trigger condition. In this case the conversion or

the write-down is triggered when at least one condition is satisfied
30when CET1-ratio falls below a certain level
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1.2 Motivation and Contribution

1.2.1 The need for Macro-Prudential Regulatory Policies

One of the main gaps in the pre crisis financial stability policies was that
the problem of financial stability had been considered only from a micro per-
spective (micro-prudential regulation). The regulatory authorities tried to
ensure the stability of entire financial system by reducing the probability
of default of individual financial institutions in isolation.

This was incorrect. The evolution and internationalization of financial mar-
kets and financial services has contributed to the establishment of a globally
interconnected and partially non-regulated31 financial system concentrated
around a few big financial institutions. As an illustrative example, Fig-
ure 1.2 shows how the primary-secondary market design for government
debt is concentrated around a few financial institutions known as primary

dealers32, that have the exclusive authorization (privileges) to act as initial
buyer for securities issued by the government.

As observed in the last crisis, the links between financial institutions provide
a channel through which individual risks or failures can spread across the
financial system. This is the macro nature of financial risks (macro-financial

risk) that was ignored and that the regulatory authorities need to face now in
order to stabilize the modern financial system.

In this context, the stability of the financial system can only be assured
by regulatory policies that also take into account the potential contagion risk
resulting from the interactions of financial institutions within the financial
system. Such regulatory policies should aim at meeting the following two
objectives:

1. make the failure of individual financial institutions less likely

2. reduce the impact of the failure of a single financial institution on the
financial system (reduce the contagion effect).

Direct consequences of the last financial crisis are the measures adopted by
governments and regulatory institutions to address the problem of the man-
agement of systemic risks. Some important measures are:

31Since OTC market was not regulated at this time.
32The main activity of a primary dealer is to buy government securities in the primary

market and to resell them in a secondary market (typically over-the-counter) to other finan-
cial institutions



18 1.2. MOTIVATION AND CONTRIBUTION

Figure 1.2: Schema of the primary-secondary market system. The government
is in the middle and acts as the primary issuer of securities. The dealers are
represented by the large boxes containing number. End-users are symbolized
by smaller boxes containing letters. The bold arrows represent the primary
market and the light arrows represent the secondary market.

1. The treatment of financial institution depending on their systemic im-
portance. three categories of SIFIs are defined for this purpose: 1) global
systemically important financial institutions (G-SIFI), that is a finan-
cial institution whose failure could have a negative impact on the global
financial system , 2) domestic systemically important financial institu-
tions (D-SIFIs) and 3) non systemically important financial institutions
(N-SIFIs). The systemic importance of a financial institution depends
on the effect that its failure could have on a financial system. This can
be estimated by analyzing its size, the nature of its activities and the
contracts it has entered into with other financial institutions (i.e. its
degree of inter-linkage with the rest of the financial system)33. Global
systemically important banks (G-SIBS) are, due to their system rele-
vance, subject to stricter regulatory rules than other banks. They are
for example required to hold a certain amount of bail-in eligible liability
(Total Loss Absorbency Capacity: TLAC). This measure aims to ensure
an effective bail-in operation in case it is needed.

33The Basel Committee uses a scoring methodology to determine which banks are G-SIBs
(see Basel Committee on Banking Supervision [2014])
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2. The elaboration of resolution plan. Note that, following BRRD the res-
olution plans of a given financial institution has to elaborated by the
respective resolution authority based on an analysis of the effect of

the failure of this institution on the financial system.

3. The requirement by some governments and financial authorities for fi-
nancial institution to contribute to the funding of aResolution Funds,
for example the Financial Crisis Responsibility Fee in the USA and
the Single Resolution Fund in the countries subject to the SRM.

4. The requirement standard over-the-counter (OTC) derivatives contracts
to be cleared through an eligible central counterparty (CCP)34. CCPs
manage their financial risk by requiring their members to provide ade-
quate amounts of collateral (in the form of variation and initial margin)
and to make contributions to a so-called default fund (or guarantee
fund). Default funds are used by CCPs to absorb losses that cannot be
covered by the collateral posted by a defaulting CCP member. Doing
this, the CCP distributes the losses of defaulting members among the
non-defaulting members. For more details on the functions CPPs, we
refer the reader to Loader [2002].

Remark 17. The use of CCPs contributes to the stabilization of the
financial system by managing the financial system losses due to the de-
fault of OTC market participants and by simplifying and increasing the
transparency of the derivatives market transactions. However, they are,
because of their size and function, systematically important.35

Remark 18. The points 3) and 4) are in some sense methods to mutualize
losses from individual defaults. In this context, the risk associated to an indi-
vidual financial institution should not only depend on its idiosyncratic risk but
also on the idiosyncratic of other financial institutions in the same financial
system as well as their interdependency (systemic risk contribution with the
CCP as financial system).

An effective estimation of systemic risk contribution in general and in partic-
ular an understanding of the way how factors such as the size and interdepen-
dency of financial institutions in distress can influence the financial system, is
preeminent for solving the problem posed by the implementation of the above
measures. The main problem here are:

34By the European Market Infrastructure Regulation (EMIR)
35Since, the failure of a CCP could leads to a significant systemic disturbance.
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• The identification of the systemically important financial institutions (in
particular, G-SIBs, D-SIBs and N-SIBs)

• The estimation of individual contribution to a mutual default fund.

This necessitates the definition and computation of new types of measures
of financial risk that are able to estimate systemic risk contribution.

This problem poses a new challenge for academics and regulatory insti-
tutions, since the common risk measures such as Value-at-Risk (VaR) and
Expected Shortfall (ES) only focus on one institution in isolation, thus ignor-
ing the interdependence between financial institution and the related possible
contagion effect.

1.2.2 CoV aR-Method as a Tool for the estimation of Sys-

temic Risk Contributions

The CoV aR-method of Brunnermeier and Adrian [2011] is the most used tool
for the analysis of systemic risk. It builds on the term CoV aR. This is defined
as the Value-at-Risk (V aR) of a financial system conditional on a given state
of the considered single financial institution.

Contrary to the traditional financial risk measures, e.g. V aR and ES36,
CoV aR not only involves variables characterizing the univariate behavior of
the considered financial institution in isolation (e.g. its loss) but also variables
characterizing the univariate behavior of the entire financial system as well as
variables characterizing the joint behavior of the considered financial institu-
tion and the financial system (e.g. the correlation coefficient between their
losses). This allows CoV aR to integrate the interdependency structure (or the
link) between the considered financial institutions i and the financial system
s, thus enabling it to describe the systemic risk contribution among financial
institutions.

However, the calculation methods proposed so far for the estimation of
CoV aR are restrictive. Brunnermeier and Adrian [2011] for example adopted
a statistical approach (i.e. no closed form or analytical formula) which is based
on normal linear quantile regression (cf. Koenker and Bassett [1978]), Jäger-
Ambrożewicz [2010] developed a closed formula for the special case where the
losses of the financial institution and that of the financial system in focus are
modeled by a bivariate normal distribution.

36These financial risk measures only consider variables characterizing the financial insti-
tution in isolation. For this reason they are called micro-risk measures.



CHAPTER 1. INTRODUCTION 21

The estimation methods cited above have their relative advantages and dis-
advantages but they share the common restriction that both impose a bivariate
normal distribution as a stochastic model. It is well known that the bivari-
ate normal distribution can lead to difficulties relative to the modeling of the
single marginal variables of a multi-variate stochastic variables as well as the
respective joint stochastic behavior (or dependence structure).

In fact, the bivariate normal distribution imposes the univariate normal
distribution as a model for univariate margins and the linear correlation coef-
ficient as the unique dependence parameter. Based on the fact that the linear
correlation coefficient measures only linear dependence and is controlled by
movements around the mean of the distribution while movements in the
extreme are neglected and considered as abnormal, we think that the linear
correlation coefficient is not the appropriate measure of dependence for the
analysis of systemic risk contribution.

Note that, in general, institution defaults and systemic crisis can be consid-
ered as extreme events. Indeed, the default that produces the contagion effect
corresponds generally to a shock (large loss) relative to an expected loss. This
can be characterized by an extreme value which appears in the tails of the
corresponding loss distributions.

Hence, systemic risk contribution is particularly concerned with the proba-
bility of simultaneous large losses and hence with the tail of the loss distri-

butions. Therefore, the analysis of systemic risk should be based on models
which are able to specify how extreme losses are interdependent.

In this thesis we propose formulas for computing CoV aR in a general
stochastic setting. Doing this we provide a flexible framework for an effec-
tive analysis of systemic risk contribution. In chapter 4.1, a general formula
for the computation of CoV aR in a wide stochastic setting is provided. This
formula is derived using the theory of bivariate Copula functions, which is
introduced beforehand in chapter 3.

Bivariate copula functions represent a class of bivariate distribution func-
tions defined on the unit square [0, 1]2 with uniformly standard distributed
margins. The power of copulas is their ability to describe the dependence struc-
ture of bivariate random vectors separately of their marginal distributions. In
particular the theorem of Sklar [1959] allows to decompose any multidimen-
sional joint distribution function into its univariate marginal distributions and
a copula which models the entire joint behavior on a quantile scale. These
features give the copula the ability to represent joint distribution with univari-
ate margins of different types and to describe dependence structure precisely
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in any region of joint distribution. It is for this reason that we use copula
in order to model precisely extreme co-movement and hence contagion effects.
By connecting the CoV aR concept to copula’s theory we develop an analytical
formula allowing the analysis and the computation of CoV aR for a more gen-
eral stochastic setting than only the normal distribution setting. We apply our
formula to the Gaussian and the non-Gaussian setting. As non-Gaussian set-
ting we consider the class of elliptical and Archimedean copulas as well as the
convex combination of copulas. In chapter 6, we consider the CoV aR under
elliptical distribution. The assumption of elliptical distributions, as model for
the computation of CoV aR, represents a good compromise between the need
of pragmatical and practicable risk measure for the definition of regulatory
rules on the one hand and the need of flexible and consistent risk measure for
the analysis of systemic risk contribution on the other hand.

Both approaches allow to consider not only the normal dependence models,
especially those which are appropriate for the modeling of the simultaneous
(tail) behavior i.e. model with positive tail dependence coefficient.

One another main contribution of this thesis is the critical analysis of the
CoV aR-method. By providing an example in which the CoV aR-method do
not takes into account of the effect tail dependence, we show that the CoV aR-
method as provided by Brunnermeier and Adrian [2011] is in general not sensi-
ble to tail effect. Also, we highlight the fact the CoV aR-method is not coherent
with the phenomena of contagion effect. We propose alternative models that
cover these gaps.



Chapter 2

Modeling Systemic Risk

Contribution

An effective modeling of systemic risk contribution requires an understanding
of how the modern financial system works, how individual financial institutions
and different financial risks are related and how their interaction can lead
to systemic crises. For more details about this topic we refer to Claessens
and Forbes [2014]. In this chapter, we will give, from a quantitative risk
management perspective, a basic understanding of the notion of systemic risk
contribution. Then, based on this, we will introduce the CoV aR-method as a
model for the analysis of systemic risk contribution.

2.1 Financial System and Systemic Risk

The quantitative analysis and modeling of systemic contribution requires an
understanding of the notion of a financial systems. It is thus important
to precise some important notions that are related to financial system and
systemic risk.

A financial system can be seen as a network of institutions in which funds
and financial services are moving across time and space from one institution to
an another institution (e.g. from a bank to a firms). For a detailed analysis of
the notions of a financial system, we refer the reader to Schinasi [2005], Neave
[2010] and Mishkin and Eakins [2012].

One of the main aspect of the modern financial system is the existence of a
huge number of direct-1 and indirect-2 contractual linkages between financial

1e.g. between buyer and seller of CDS
2e.g. when many financial institutions undertake correlated or common risky investments

exposing therefor themselves to common risk factors

23
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institutions. This is illustrated in figure 2.1. Hence, financial institutions,
that consist a financial system, have exposures to each other. So, in case of
the default of one financial institution the other financial institutions could be
negatively affected. This provides a channels through which individual failures
can spread across the financial system and thus undermine financial stability.

Figure 2.1: Financial linkages

The term systemic risk refers in general to the risk of collapse of an entire
complex system as a result of the actions taken by the individual components
that comprise this system. Systemic risk in financial systems can be defined
as the risk that an initial default by one financial institution threatens the
stability of the whole financial system by causing, via different propagation
mechanisms, the default of other financial institutions of the system. This
description corresponds to the view of systemic risk in a narrow sense (cf.
De Bandt and Hartmann [2000] and De Bandt, Olivier and Hartmann, Philipp
and Peydró, José Luis [2012]). Systemic risk in the broad sense is caused by
a common shock to many financial institutions or an entire financial system.
In this thesis i assume the systemic risk in a narrow sense .

The initial default that give rises to systemic risk is called systemic event

(from a narrow sense perspective). Such a systemic event was the failure
of Lehman Brothers on 15th. september 2008, which is assumed to be the
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systemic event of the recent financial crisis.

Assumption 1. We consider here the systemic risk in the narrow sense. That
is, we assume that systemic risk is caused by an initial default by one financial
institution, that then spread in the whole financial system.

The mechanisms by which the failure of a financial institution spreads in
the whole financial system is referred to contagion effect (cf. e.g. Allen and
Gale [2008] or Allen and Gale [1998]).

Contractual or economical linkages between financial institutions are an im-
portant transmission channels of contagion but not the only one. In fact, they
are two main classes of contagion channels. The first is the fundamental

channel. It the part of shock transition that could be completely explained
using economic elements such as changes in ECB interest rates or the price of
energy. The second is so called informational channel. It is the part of shock
transition that can not be explained using fundamental economic analysis. It
can be seen as the result of actions taken by economic participants or agents
(such as fund manager or broker) based on a subjective (emotional) interpre-
tation of financial news. For example, if one systemically important financial
institutions defaults, the market will generally expected a negative trend in
the whole financial system. This could have the following consequences.

1. A reduction in depositors confidence. As a consequence several severs
could close out their accounts causing thus a liquidity crunch for the
financial institution.

2. The decreasing in ratings of financial institutions. As a consequence,
the funding cost of financial institutions will increase. This might leads
to a situation in which the financial institutions are not able to satisfy
their financial obligations and hence become distressed.

Remark 19. It is important to note that informational contagions leads in
general to a liquidity risk and market risk, while fundamental contagions lead
in general to a (counterparty) credit risk.

2.2 Basic Stochastic Model for Systemic Risk

The existing quantitative methods for the analysis of systemic risk can be
summarized into two main approaches.
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The first approach compares the linkages between financial institutions (or
markets) during a relatively stable period with the linkages during an un-

stable period. This approach is supported by many empirical studies. For
example, Dobric et al. [2007] show that there are differences in the dependence
structures of stock returns in bull and bear markets. There are also many
studies that assert that the dependence between financial returns increases as
the market is going down.

The second approach consists to model the direct linkage between financial
institutions using network theory. The direct contagion mechanisms are then
analyzed via simulations or stress-tests (cf. e.g. Cont et al. [2013] or Reyes
and Minoiu [2011]).

The models considered in this thesis follow the first approach. We denote
by i the financial institution in focus and by s the corresponding financial
system. The loss taken by i and s are modeled following McNeil et al. [2005]
(Section 2.1) respectively by the positive random variables Li and Ls, which
are defined on a probability space (Ω,F , P r). The distribution functions of
Li and Ls are denoted by Fi and Fs respectively. The interconnectedness of
the financial institution i to the financial system s is modeled by the degree of
dependence between Fi and Fs. This is done by assuming that the random
variables Li and Ls are stochastically dependent and that their joint behavior
is described by a bivariate joint distribution function.

Assumption 2. We consider only random variables which have strictly pos-
itive density function. So, if a bivariate joint distribution function is consid-
ered, it is assumed that it has a strictly positive density and that its marginal
distributions have strictly positive densities.

Due to this assumption all distribution functions considered in this thesis
are assumed to be absolutely continuous and strictly increasing.

2.3 Systemic Crisis and Financial Extreme Events

Systemic crises are closely related to two kinds of extreme events. First, the
default of one systemically relevant financial institution (financial default) and
second, the propagation of failures across financial institutions after the failure
of one system relevant financial institution (contagion effect).
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2.3.1 Financial Default and Extremes Events

From a quantitative risk management view, the failure of one financial insti-
tution is the consequence of the realization of a large loss. Intuitively, such
an event can be interpreted as an extreme value appearing in the upper tail
region of the corresponding loss distribution. Mathematically, the notion of a
financial distress can be characterized using special function called financial

risk measure.

Definition 1. Let L be the class of losses defined on a probability space
(Ω,F , P r). A mapping R : L → R is called a monetary measure of risk if
it satisfies the following conditions for all L1, L2 ∈ L

1. Monotonicity: If L1 ≤ L2 a.s., then R (L1) ≤ R (L2)

2. Cash invariance: If L ∈ L and l ∈ R then R (L+ l) = R (L) + l

Then, from the cash invariance property is motivated by the interpretation
of R (L) as regulatory capital. It suggests that the financial risk measure
associated to a loss L can be adjusted by an amount l by adding or subtracting
a deterministic quantity l to L.

A loss L such that R (L) ≤ 0 is called acceptable in the sense that a
financial institution whit loss L is not required by the regulator to keep any
regulatory capital. The set of acceptable losses associated with a risk measure
R is given by

AR = {L ∈ L | R (L) ≤ 0} .

That is, a loss L is acceptable with respect to the risk measure R if L ∈ AR.
Let L be a non-acceptable loss i.e. L /∈ AR. By adding to L a positive

cash amount of R (L), we define an adjusted loss (cf. McNeil et al. [2005],
Section 6.1)

L̃ := L−R (L) .

Then, from the cash invariance property of monetary risk measures we have

R(L̃) = R (L−R (L)) = R (L)−R (L) = 0,

so that L̃ ∈ AR. Hence, one can interpret R (L) as the minimum amount
of capital that a financial institution with a loss L should keep as regulatory
capital. In this context the monotonicity property implies that financial insti-
tutions with higher losses need higher risk capitals.
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Recall that, from a purely economic point of view, financial distress may be
defined as a situation where a financial institution’s operating cash flow are
not sufficient to satisfy current obligations (cf. e.g. Ross et al. [1999], A7 3.1).
From a quantitative risk management perspective, given a monetary measure
of risk RC, we can define distressed financial institutions as follows.

Definition 2 (Distressed financial Institutions). Let L be the loss of the finan-
cial institution B. Let RC be the regulatory capital associated with the loss L.
Let l be the realization of L at the time t. We say that the financial institution
B is in distress at the time t if l is greater than the associated regulatory capital
RC, i.e.

l > RC.

If we assume that the regulatory capital RC is determined by a risk measure
such as the Value-at-Risk (i.e. we assume that RC:=Value-at-Risk), then we
say that the financial institution B is in distress at time t if

l > Value-at-Risk. (2.1)

2.3.2 Contagion Effect and Extreme dependence

Contagion effect and systemic risk are closely related to the mathematical
concept of extreme dependency.

Remark 20. During the crisis, (many) asset prices, independent of their re-
spective nature, tend to move in the same direction. this increases the probabil-
ity that single financial institutions fail together with the whole financial system
or that a large number of financial institutions fail simultaneously. This phe-
nomenon is well captured by the figure 2.2. It shows three periods of financial
crisis (1930-1940, 1980-1994 and 2008-2014). Each period is characterizing
by a concentration of massive simultaneous financial institution defaults.

In fact, as observed by many authors e.g. Chan-Lau, Jorge A. ; Mathieson,
Donald J. ; Yao, James Y. [2002], the dependence between asset returns are
often higher during the crisis than in normal situation. This can be explained
by the fact that in normal situation the dependencies between assets prices are
a reflection of their fundamental properties (for example similar assets tend
to move in similar ways). But, this situation changes in a crisis or more pre-
cisely after a shock. The behavior of the assets prices is in this situation much
more affected by the measures taken by the financial market participants as
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Figure 2.2: Bank Failures in the United States, from 1934 to 2015. (Source: Federal

Deposit Insurance Corporation (FDIC)

reaction to the shock. These can be based on fundamental or informational
point of view. A typical example, that describes how the actions taken by
financial market participants can change the dependence between asset prices,
is described in Brunnermeier and Pedersen [2009]. The authors showed how
firesale3 can create new forms of dependence between assets held by similar in-
vestors by adversely impacting on the asset prices of other financial institutions
(see figure 2.3).

In this context, an increased in the dependency can be see as feature of fi-
nancial market turmoil and financial crisis. Following this, Forbes and Rigobon
[1999] defined contagion as a significant increase in financial market linkages af-
ter a shock to one market (or a group of markets). This definition means that,
contagion effects are the consequence of a significant increase in the interde-
pendence of financial institutions after a systemic event. In the same sense
, Brunnermeier and Adrian [2011] argue that "the main idea of systemic risk
measurement is to capture the potential for the spreading of financial distress
across institutions by gauging the increase in tail co-movement".

From a probabilistic point of view, a contagion effect may be seen as a phe-
nomenon in which the failure of one financial institution increases the proba-
bility of the failure of other financial institutions. This can be characterized
by a raise of the probability of simultaneous large losses. Therefore, in the
analysis of contagion effects and hence of systemic risk contributions we are
particularly interested in the dependence structure in the upper tails of joint

3This can happen because the considered financial institutions suffers from a lack of
funding liquidity
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Figure 2.3: Loss spiral: Source Brunnermeier and Pedersen [2009].

loss distributions. Notice that, if losses are independent in the tail of the joint
loss distribution, large losses and hence the failures of financial institutions
appear to occur independently of each other. Hence, there would be no conta-
gion effect and the systemic risk contribution of the respective element of the
system would be equal to zero.

It is thus important to model the extreme (or tail) dependence when an-
alyzing systemic risk contribution. In the next section, we present the usual
approaches for the modeling of tail dependence.

2.3.3 Measuring the Dependencies of Extreme Events in

Finance

There are two different approaches for modeling extreme dependence. The
first approach consist to describe extreme dependence by considering a "con-
ditional" or "local"-version of an existing dependence measure. The second
consist to describe the dependence in the tail region of the assumed distribu-
tion using conditional probability.

Conditional Correlations Coefficient

The Conditional Correlations Coefficient is the typical example of the first
approach. The idea behind conditional correlation is to measure the correla-
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tion between financial institutions conditioned on certain extreme events, for
example extreme losses (co-exceedance correlation).

Definition 3 (cf. Malevergne and Sornette [2006], Definition 6.2.1). Let X and
Y be two real random variables and C a subset of R such that Pr (Y ∈ C) > 0.
The conditional correlation coefficient ρC of X and Y conditioned on Y ∈ C
by definition, can be expressed as

ρC =
Cov (X, Y |Y ∈ C)√

V ar (X|Y ∈ C) · V ar (Y |Y ∈ C)
. (2.2)

So, by defining C := [v,+∞), it is possible to examine whether a model
is asymptotically dependent by making v tend to ∞. For example, in the
case that the variables X and Y have a bivariate normal distribution with an
(unconditional) correlation coefficient ρ, we have the following theorem.

Theorem 1 (Boyer et al. [1999], Theorem 1). Consider a pair of bivariate
normal random variables X and Y with variances σ2

X and σ2
Y respectively, and

covariance σXY . Set ρ = σXY
σ2
Xσ

2
Y
, the unconditional correlation between X and

Y . Consider any event Y ∈ C, where C ∈ R such that 0 < Pr (Y ∈ C) < 1.
The conditional correlation ρC between X and Y , conditional on the event
Y ∈ C, is equal to

ρC :=
ρ√

ρ2 + (1− ρ2) V ar(X)
V ar(X|Y ∈C)

. (2.3)

Malevergne and Sornette [2006] show that for large v the formula (2.3) may
be transformed into the following closed formula (cf. Malevergne and Sornette
[2006], Formula (6.3)):

ρC ∼ lim
v→∞

ρ√
(1− ρ2)

1

|v|
. (2.4)

This slowly goes to zero as v goes to infinity. That is, the bivariate normal
distribution is asymptotically independent and is therefore not a good model
for the analysis of systemic risk contributions. A detailed theoretical back-
ground about conditional correlation in particular and conditional dependence
in general could be found in Malevergne and Sornette [2006] Chapter 6.

Tail dependence coefficient

The main idea of the measurement of extreme dependence via the coefficient
of tail dependence4, is to describe the dependence in the tail region of the dis-
tribution through a conditional probability. Let X and Y be random variables

4For more details about the measures of dependence between a pair of random variable
we refer to Nelsen [2006], Chapter 5 and Balakrishnan and Lai [2009], Chapter 4
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with the joint distribution function H and univariate marginal distribution
functions F and G, respectively. If Pr (X > x) > 0, then the dependence in
the upper tail region of the distribution may be expressed by

Pr (Y > y|X > x) =
Pr (X > x, Y > y)

Pr (X > x)
. (2.5)

By replacing in equation (2.5) x and y by their α-quantiles F−1 (α) and G−1 (α)

respectively, we obtain the tail dependence measure χ (α) (cf. Coles et al.
[1999]).

χ (α) = Pr
(
Y > G−1 (α) |X > F−1 (α)

)
(2.6)

χ (α) measures the probability that Y exceeds G−1 (α) given that X ex-
ceeds F−1 (α). In the context of the analysis of systemic risk contribution the
equation (2.6) can be used to express the probability that the financial sys-
tem s undergoes a large loss given that the single financial institution i also
undergoes a large loss. From this perspective the tail dependence measure

χ (α) = Pr
(
Ls > F−1

s (α) |Li > F−1
i (α)

)
(2.7)

can be seen as a natural indicator of the potential contagion effect (and hence
systemic risk contribution) from financial institution i on the financial system
s over a given threshold α.5

χ (α) expresses for α → 1 the probability of extreme co-movements and
corresponds to the well-known upper tail dependence coefficient λu.

Definition 4 (cf. McNeil et al. [2005] Definition 5.30). Let (X, Y ) be a bivari-
ate random variable with marginal distribution functions F and G, respectively.
The upper tail dependence coefficient of X and Y is the limit (if it exists) of
the conditional probability that Y is greater than the 100α− th percentile of G
given that X is greater than the 100α− th percentile of F as α approaches 1,
i.e.

λu := lim
α→1−

Pr
(
Y > G−1 (α) |X > F−1 (α)

)
. (2.8)

If λu ∈ (0, 1] then (X, Y ) is said to show upper tail dependence or extremal
dependence in the upper tail; if λu = 0, they are asymptotically independent in
the upper tail.
Similarly, the lower tail dependence coefficient λl is the limit (if it exists) of
the conditional probability that Y is less than or equal to the 100αth percentile

5Note that, the typical value of α in our context are 0.99 or 0.995
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of G given that X is less than or equal to the 100α-th percentile of F as α
approaches 0, i.e.

λl := lim
α→0+

Pr
(
Y ≤ G−1 (α) |X ≤ F−1 (α)

)
. (2.9)

λu measures the probability that Y exceeds the threshold G−1 (α), con-
ditional on that X exceeds the threshold F−1 (α). Thus, λu measures the
tendency for extreme events to occur simultaneously.

Remark 21. If F = G, it follows

λu = lim
z→∞

Pr (Y > z|X > z) = lim
z→∞

Pr (Y > z,X > z)

1− Pr (X ≤ z)
, (2.10)

λl = lim
z→−∞

Pr (Y ≤ z|X ≤ z) = lim
z→−∞

Pr (Y ≤ z,X ≤ z)

Pr (X ≤ z)
. (2.11)

Remark 22. If (Li, Ls) does not exhibit tail dependence the extreme events
of Li and Ls will appear to occur independently in each margin. This would
mean that they are no potential systemic risk contribution from i on s.

Condition 1 (Necessary condition for a systemic risk model). A suitable model
for the quantification and analysis of systemic risk contribution should allow
for positive tail dependence coefficients.

2.4 Measuring Systemic Risk Contribution us-

ing CoVaR-Method

The idea behind the CoV aR-Method is to measure the systemic risk contri-
bution of a given financial institution by comparing the Value-at-Risk (V aR)
of the financial system, under the condition that the considered financial in-
stitution realizes a loss corresponding to its expected loss, to the V aR of the
financial system when the considered financial institution is supposed to be in
distress.

The CoV aR-Method builds on the term CoV aR
s|C(Li)
α . This is defined as

the Value-at-Risk at the level α of a financial system s conditional on some
event C (Li) depending on the loss Li of the financial institution in focus i.

CoV aR
s|C(Li)
α estimates the effect of the loss of the financial institution i to the

V aR of the the financial system s. Doing this, it provides a macro-prudential
view of the risk of the individuals financial institutions.
CoV aR can thus be used as basic measure for the definition of quantitative

rules in a context of a macro-prudential regulation.
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COVAR-METHOD

As CoV aR is based on Value-at-Risk, it is important to recall the definition
of of Value-at-Risk in order to introduce the term CoV aR

s|C(Li)
α . We follow

for this McNeil et al. [2005] definition 2.10.

Definition 5 (Value at Risk). Let L be a random variable, defined on a
probability space (Ω,F , P r), representing a loss. Given some confidence level
α ∈ (0, 1) the V aR of L at the confidence level α is given by the smallest
number l such that the probability that the loss L exceeds l is no larger than
(1− α). Formally

V aRα := inf {l ∈ R : Pr (L > l) ≤ 1− α}

= inf {l ∈ R : Pr (L ≤ l) ≥ α} .

Recall that, since we assume L to be a positive random variable the number
α denotes the confidence level6, it usually assumes the values 0.95 or 0.99.

From a statistical view, the so defined V aRα is the quantile of the loss
distribution at the level α (cf. McNeil et al. [2005], Definition 2.12).

Definition 6 (Generalized inverse and quantile function).

a) Given some increasing function T : R→ R, the generalized inverse of T
is defined by T←(y) := inf {x ∈ R : T (x) ≥ y}.

b) Given some distribution function F , the generalized inverse F← is called
the quantile function of F . For α ∈ (0, 1) we have

qα (F ) = F← (α) := inf {x ∈ R : F (x) ≥ α} .

Thus if we assume for the loss L a distribution function F . The Value-at-
Risk of L for a given level α ∈ (0, 1) satisfies the relation

V aRα = F← (α) = inf {l ∈ R : F (l) ≥ α} (2.12)

and its follows

F (V aRα) = α.

Note that, if F is continuous and strictly increasing. F← is unique and we
have

F← (α) = F−1 (α) ,

6This should not be confused with the significance level 1−α which is used when the profit
and loss (P&L) instead of the the loss is modeled (cf. McNeil et al. [2005], remark 2.1.).



CHAPTER 2. MODELING SYSTEMIC RISK CONTRIBUTION 35

where F−1 is the (ordinary) inverse of F . So, due to Assumption 2 all dis-
tribution functions F considered here are continuous and strictly increasing.
Hence

V aRα = F−1 (α) and F (V aRα) =

V aRα∫
−∞

f(x)dx = α,

where f is the density function associated to F .
CoV aR

s|C(Li)
α can therefore be implicitly expressed as the α-quantile of the

conditional probability of the financial system’s loss:

Pr

(
Ls ≤ CoV aR

s|C(Li)
α |C

(
Li
))

= α. (2.13)

Brunnermeier and Adrian [2011] considered the case in which the condition
C (Li) refers to the loss Li of the financial institution i being exactly at its
Value-at-Risk and at its mean (see Definition 8). This approach can be gen-
eralized in order to allow Li to assumes any value l ∈ R (cf. Hakwa, Jäger-
Ambrożewicz, and Rüdiger [2015]). Equation (2.13) becomes then

Pr
(
Ls ≤ CoV aRs|Li=l

α |Li = l
)

= α. (2.14)

Following Breiman [1992] (Definition 4.7) we can implicitly define, in the con-
text of Assumption 2, a conditional probability of the form Pr (Ls ≤ h|Li = l)

for a fixed h as a function of l:

Pr
(
Ls ≤ h, Li ≤ y

)
=

∫ y

−∞
Pr
(
Ls ≤ h|Li = l

)
fi (l) dl ∀y ∈ R. (2.15)

Consider, the function

Rl (h) := Pr
(
Ls ≤ h|Li = l

)
. (2.16)

Since Rl (h) is strictly increasing, it follows that it is invertible. Based on this
CoV aR

s|Li=l
α can be expresses as follows(cf. Hakwa et al. [2015]).

Definition 7. Assume that Li and Ls have densities that satisfy Assumption 2.
Then, for a given α ∈ (0, 1) and for a fixed l ∈ R, CoV aRs|Li=l

α is defined as:

CoV aRs|Li=l
α := inf

{
h ∈ R : Pr

(
Ls > h|Li = l

)
≤ 1− α

}
= inf

{
h ∈ R : Pr

(
Ls ≤ h|Li = l

)
≥ α

}
= R−1

l (α) .

For a fixed α we define the function

CoV aRs|i
α (l) := CoV aRs|Li=l

α , ∀ l ∈ R. (2.17)
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COVAR-METHOD

Definition 8. ∆CoV aR
s|i
α is defined by Brunnermeier and Adrian [2011] as

the difference between CoV aR
s|C(Li)
α conditioned on the loss of the financial in-

stitution i being exactly at its Value-at-Risk V aRi
α (i.e. C (Li) = {Li = V aRi

α})
and the CoV aR

s|C(Li)
α conditioned on the financial institution experiencing the

mean loss µi := E [Li](i.e. C (Li) = {Li = µi}):

∆CoV aRs|i
α := CoV aRs|Li=V aRiα

α − CoV aRs|Li=µi
α . (2.18)

Definition 9. For some l1, l2 ∈ R

∆CoV aRs|i
α (l1, l2) := CoV aRs|i

α (l1)− CoV aRs|i
α (l2) (2.19)

Especially we have

∆CoV aRs|i
α = ∆CoV aRs|i

α

(
V aRi

α, µi
)

= CoV aRs|i
α

(
V aRi

α

)
− CoV aRs|i

α (µi) .

The above definitions show clearly that the main task by the analysis of
systemic risk contribution using the CoV aR-method (see Definition 8) is the
computation of the value

CoV aRs|Li=l
α , ∀ l ∈ R.

The computation methods proposed so far present problems with the modeling
and the integration of the relevant probabilistic features of the loss distribu-
tions. For instance, Brunnermeier and Adrian [2011] proposed an estimation
method based on "linear quantile regression"; M. Jäger-Ambrożewicz [2010] de-
veloped a closed formula for the special case where the random vector (Li, Ls)

is modeled by a bivariate normal distribution. These two approaches have in
common that there are difficulties with the integration of the tail dependence
and whit flexibly modeling of the univariate stochastic behaviors of the loss
distribution of individual financial institutions. This is due to the fact that
these methods assume the bivariate normal distribution for (Li, Ls).

Our aim is thus to improve the quality of systemic risk analysis by provid-
ing a general and flexible framework for the calculation and the theoretical
analysis of CoV aRs|Li=l

α for a large class of stochastic settings. This approach
is necessary for a better of the effect of tail dependence as well as the stylized
features of marginal losses distribution such as skewness, fat tails.



Chapter 3

Notion of Copula

In this section we introduce the notion of copula and give some basic definitions
and fundamental results. Our focus is on properties that will be useful when
expressing CoV aRs|Li=l

α in term of Copula. For a detailed analysis of copulas,
we refer the reader to Darsow et al. [1992], Joe [1997], McNeil et al. [2005],
Nelsen [2006] or Roncalli [2009] and the references therein.

As preliminary we first recall some useful results on the probability inte-
gral transform that link copula and and a specific class of joint distribution
functions (those with non-standard uniformly distributed margins). Especially
probability integral transformation techniques are used to transform univariate
continuous distributed random variables into uniformly standard distributed
random variables.

Remark 23 (McNeil et al. [2005], Proposition 5.2. and Lemma A.2.). Assume
F is a distribution function such that its inverse function F−1 is well defined.

1. Consider a random variable X, then

Pr (F (X) ≤ F (x)) = Pr (X ≤ x) .

2. Let U be a standard uniform distributed random variable (i.e. U ∼
U (0, 1)), then

Pr
(
F−1 (U) ≤ x

)
= F (x) .

3. Let U ∼ U (0, 1), then

X := F−1 (U) ∼ F. (3.1)

37
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4. Let X be a random variable with distribution function F (i.e. X ∼ F ),
then for 0 < u < 1 it holds

Pr(F (X) ≤ u) = Pr
(
X ≤ F−1 (u)

)
= F

(
F−1 (u)

)
= u.

5. Let X ∼ F , then F (X) has a uniform standard distribution i.e.

F (X) ∼ U (0, 1) .

3.1 Definition and Basic Properties

The copula concept was motivated by a (inverse) problem stated by Fréchet
[1951]:
”Suppose we have the distribution functions F and G of two random variables
X and Y defined on the same probability space (Ω,F , P r) then what can we
say about the set of bivariate distribution functions whose marginals are F
and G.”
Indeed,Fréchet [1951] wanted to know how the margins F andG can be coupled
in order to built a bivariate distribution function. This problem led to the
definition of the so called Fréchet class (denoted by F). F is defined as the
class of multivariate distributions with some given margins (cf. Joe [1997],
Chapter 3). That is, a bivariate joint distribution function H is an element of
the Fréchet class F (F,G) if the following two conditions hold:

H (x,∞) = F (x) and

H (∞, y) = G (y) .

It is in this context that Sklar [1959] introduced the notion of copula as a
partial response to this problem.1 He defined a bivariate copula as follows:2

Definition 10 (Nelsen [2006], Definition 2.2.2).). A 2-dimensional copula is
a (distribution) function C : [0, 1]2 → [0, 1] satisfying:

• Boundary conditions:

1) For every u ∈ [0, 1] : C (0, u) = C (u, 0) = 0.

2) For every u ∈ [0, 1] : C (1, u) = u and C (u, 1) = u.

1”partial” because he assumes the margins to be standard univariate
2Original definition from Sklar [1959] (Definition 1, Page 229). Nous appelerons copule

à n dimensions toute fonction C continue et non-décroissante au sens employé pour une
fonction de répartition à n dimensions définie sur le produit Cartésien de n intervalles fermés
[0, 1] et satisfaisant aux conditions C (0, . . . , 0) = 0 et C (1, . . . , 1, u, 1, . . . , 1)
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• Monotonicity condition:

3) For every (u1, u2) , (v1, v2) ∈ [0, 1]× [0, 1] with u1 ≤ u2 and v1 ≤ v2 :

C (u2, v2)− C (u2, v1)− C (u1, v2) + C (u1, v1) ≥ 0.

Conditions (1) and (3) imply that the so defined bivariate copula C is a
bivariate joint distribution function (cf. Nelsen [2006] Definition 2.3.2) and
condition (2) implies that the copula C has margins that are uniformly stan-
dard distributed. That is, a copula is a special multivariate distribution whose
margins are standard uniformly distributed.3 An alternative definition of a
bivariate Copula can be formulated using the fact that a bivariate distri-
bution function can be characterized through the notion of 2-increasing and
grounded function. Let S1, S2 ∈ R

⋃
{+∞}

⋃
{−∞}. Consider the function

f : S1 × S2 → R.

Definition 11. If S1 and S2 have a smallest element s1 and s2 respectively,
then we say that the function f is grounded if and only if

f (x, s2) = 0, ∀x ∈ S1 and

f (s1, y) = 0, ∀y ∈ S2.

Grounded function vanishes on the lower and the upper boundary of its
domain (cf.Nelsen [2006], Page 9).

Definition 12. f is said to be a 2-increasing function if for every (x1, x2) , (y1, y2) ∈
S1 × S2 with x1 ≤ x2 and y1 ≤ y2

f (x2, y2)− f (x1, y2)− f (x2, y1) + f (x2, y2) ≥ 0. (3.2)

Remark 24. The 2-increasing condition ensures the non-negativity of the
probabilities Pr (u1 ≤ U ≤ v1, u2 ≤ V ≤ v2).

Definition 13 (Embrechts et al. [2003], Definition 2.3). A bivariate joint dis-
tribution function is a function H (x, y) with domain [−∞, ∞]2 such that

1. H (x, y) is 2-increasing,

2. H (x, y) is grounded

3. H (∞, ∞) = 1.

3Copulas form thus a sub class of the Fréchet class.
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The margins F and G of H are given by

F (x) = H (x,∞) and G (y) = H (∞, y) .

Based on this definition, a bivariate copula can be define as follows:

Definition 14 (Joe [1997], Page 12). Let C : [0, 1]2 → [0, 1] be a bivariate
distribution function on [0, 1]2. Then C is called a copula if all its univariate
marginals are standard uniformly distributed, i.e. ∀u, v ∈ [0, 1] the following
two conditions hold

• C (u, v) = Pr (U ≤ u, V ≤ v) with V, U ∼ U (0, 1)

• C (u, 1) = u and C (1, v) = v.

Any bivariate copula has a lower and an upper bound. In fact by setting
u2 = v2 = 1 in the monotonicity condition of copula (see Definition 10) we
obtain

1− v1 − u1 + C (u1, v1) ≥ 0.

Hence

C (u1, v1) ≥ u1 + v1 − 1

and because of the non-negativity of copula we can write

C (u1, v1) ≥ max (u1 + v1 − 1, 0) .

This means that any bivariate copula C (u, v) is bounded below by max (u+ v − 1, 0).
Consider again the monotonicity condition and set u1 = 0, v2 = 1. We

obtain:

C (u2, 1)− C (u2, v1) ≥ 0 ⇒ C (u2, v1) ≤ C (u2, 1) = u2.

Similarly, if we set u2 = 1 and v1 = 0, we obtain

C (1, v2)− C (u1, v2) ≥ 0. ⇒ C (u1, v2) ≤ C (1, v2) = v2.

Hence, for any bivariate copula C (u, v)

C (u, v) ≤ u and C (u, v) ≤ v.

We can write

C (u, v) ≤ min (u, v) .
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This means that any bivariate copula C (u, v) is bounded upper by min (u, v).
In general, for higher dimensional copulas we have (cf. Nelsen [2006], The-

orem 2.10.12):

W (u1, . . . , ud) ≤ C(u1, . . . , ud) ≤M(u1, . . . , ud),

where

W (u1, . . . , ud) = max

{
1− d+

d∑
i=1

ui, 0

}
and M(u1, . . . , ud) = min{u1, . . . , ud}.

The functions W and M are called the lower and the upper Fréchet-Hoeffding
bound respectively. It is important to note that M is a copula for any dimen-
sion but W is a copula in two dimensions only, because it does not satisfy the
monotonicity condition in the case of dimension more than two dimensions.
Random vectors that have the upper or the lower Fréchet-Hoeffding bound as
copula are called comonotone or countermonotone, respectively. The comono-
tone copula (countermonote copula) characterizes in some sense the perfect
or the deterministic positive (deterministic negative) dependence. If M is the
copula associated with the random vector (U, V ), then V is an almost surely
(a.s.) non-decreasing function of U , i.e.

U = f (V ) for some a.s. non-decreasing function f.

Example 1. The random vector (U, V ) with U = V is comonotone

C (u, v) = Pr (U ≤ u, V ≤ v)

= Pr (U ≤ u, U ≤ v)

= Pr (U ≤ min (u, v))

= min (u, v) .

Similarly, ifW is the copula associated with the random vector (U, V ), then
V is an almost surely non-increasing function of U , i.e.

U = g (V ) for some a.s. decreasing function g.

Example 2. The random vector (U, V ) with U = 1− V is counter-monotone

C (u, v) = P (U ≤ u, V ≤ v)

= P (U ≤ u, 1− U ≤ v)

= P (1− v ≤ U ≤ u)

= max (u− (1− v), 0)

= max (u+ v − 1, 0) .
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The independence is characterized by the product copula

Π (u1, . . . , ud) = u1 · . . . · ud.

The following figure shows the graph of M , W and Π for d = 2 (bivariate
copula).

The following lemma is a direct consequence of the monotonicity condition
(see Definition 10)

Lemma 2. For any u1 and u2 satisfying 0 ≤ u1 ≤ u2 ≤ 1 the mapping

v 7→ C (u2, v)− C (u1, v) (3.3)

is non-decreasing on [0, 1].
Similarly, for any v1 and v2 satisfying 0 ≤ v1 ≤ v2 ≤ 1 the mapping

u 7→ C (u, v2)− C (u, v1) (3.4)

is non-decreasing on [0, 1].

Proof. The monotonocity condition state that for every (u1, u2) , (v1, v2) ∈
[0, 1]× [0, 1] with u1 ≤ u2 and v1 ≤ v2 :

C (u2, v2)− C (u2, v1)− C (u1, v2) + C (u1, v1) ≥ 0 (3.5)

⇒ C (u2, v2)− C (u1, v2) ≥ C (u2, v1)− C (u1, v1) .

This means that the mapping v 7→ C (u2, v) − C (u1, v) is non-decreasing. It
also follows from (3.5) that

C (u2, v2)− C (u2, v1) ≥ C (u1, v2)− C (u1, v1) .

This means that the mapping u 7→ C (u, v2)− C (u, v1) is non-decreasing.

It follows that bivariate copulas are non-decreasing with respect to each of
theirs arguments, i.e. for every u and v ∈ [0, 1] the mappings

v 7→ C (u, v)

u 7→ C (u, v)

are non-decreasing4. The following properties are based on Lemma 2.
4To see this set u1 = 0 and v1 = 0 in (3.3) and (3.4) respectively.
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Property 1. For every u, v, u1, u2, v1, v2 ∈ [0, 1] such that if u1 ≤ u2, v1 ≤ v2,
it holds

1. 0 ≤ C (u2, v)− C (u1, v) ≤ u2 − u1

2. 0 ≤ C (u, v2)− C (u, v1) ≤ v2 − v1

3. 0 ≤ C(u2, v2)− C(u1, v1) ≤ u2 − u1 + v2 − v1

4. |C(u2, v2)− C(u1, v1)| ≤ |u2 − u1|+ |v2 − v1|

Point 4. implies that copulas are Lipschitz continuous with Lipschitz con-
stant equal to 1.

Note that the monotonicity condition implies that copulas are almost every-
where differentiable with respect to the Lebesgue measure. Since copulas are
increasing (with respect to each parameter) their derivatives are positive where
they exist. Because copulas are Lipschitz continuous with Lipschitz constant
equal to 1, it follows that their partial derivatives are bounded by 1. All this
is summarized in the following theorem.

Theorem 3 (Nelsen [2006], Theorem 2.2.7). Let C be a copula. For any
u, v ∈ [0, 1], the partial derivative ∂C (u, v) /∂u exists for almost all u, and for
such v and u

0 ≤ ∂C (u, v)

∂u
≤ 1.

Similarly, the partial derivative ∂C (u, v) /∂v exists for almost all v, and for
such u and v

0 ≤ ∂C (u, v)

∂v
≤ 1.

Furthermore, the functions u 7→ ∂C (u, v) /∂v and v 7→ ∂C (u, v) /∂u are de-
fined and non-decreasing everywhere on [0, 1].

The following theorem is the main theorem when using Copula for stochas-
tic modeling, because it provides a copula representation of joint distribution
function.

Theorem 4 (Sklar’s Theorem; cf. Nelsen [2006], Theorem 2.3.3). Let H be a
joint distribution function with marginal distribution functions F and G. Then
there exists a copula C such that for all x, y ∈ R ∪ {−∞} ∪ {+∞}

H (x, y) = C (F (x) , G (y)) . (3.6)

If F and G each have a density, then C is unique. Conversely, if C is a
copula and F and G are distribution functions, then the function H defined by
equation (3.6) is a joint distribution function with margins F and G.
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For any x, y ∈ R, we have

H (x,∞) = C (F (x) , 1) = F (x) , (3.7)

H (∞, y) = C (1, G (y)) = G (y) . (3.8)

Corollary 5 (cf. e.g. Nelsen [2006], Corollary 2.3.7). Let H denotes a bivari-
ate distribution function with margins F and G satisfying assumption 2. Then
there exists a unique copula C such that for all (u, v) ∈ [0, 1]2

C (u, v) = H
(
F−1 (u) , G−1 (v)

)
. (3.9)

If H satisfies assumption 2, then the transformed random variables U :=

F (X) and V := G (Y ) follow each a standard uniform distribution and C (u, v)

is the joint distribution of (U, V ). In fact

C (u, v) = Pr (U ≤ u, V ≤ v)

= Pr (F (X) ≤ u, G (Y ) ≤ v)

= Pr
(
X ≤ F−1 (u) , Y ≤ G−1 (v)

)
= H

(
F−1 (u) , G−1 (v)

)
= H (x, y) ,

where x = F−1 (u) and y = G−1 (v).
Sklar’s theorem asserts that, joint distributions are formed by coupling to-

gether marginal distributions with a copula. Therefore, we can use copulas
to extract the dependence structure between the components X and Y of the
vector (X, Y ) independently from the marginal distributions F and G. This
allows us to model the dependence structure and marginals separately, as il-
lustrated in the following figures.

Figure 3.1: Construction of a bivariate distributions function through combi-
nation of a given copula with given continuous marginal distributions
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Figure 3.2: Separation of the dependence structure from the margins

Remark 25. Assume (X, Y ) is a bivariate random variables with copula C

and joint distribution H satisfying Assumption 2, with corresponding marginals
distribution functions F and G. Then the transformed randoms variables
U := F (X) and V := G (Y ) follows each a standard uniform distribution
and C (U, V ) is the joint distribution of (U, V ), i.e.,

C (u, v) = Pr (U ≤ u, V ≤ v) .

As showed by Schweizer and Wolff [1981], the copula of a pair of random
variables (X, Y ) is invariant under strictly increasing transformations of X
and Y and any property of the joint distribution function of X and Y which is
invariant under such transformations is solely a function of their copula. The
following theorem is a simplified version of the theorem provided by Schweizer
and Wolff [1981], Theorem 3.

Theorem 6 (Nelsen [2006], Theorem 2.4.3). Let X and Y be two random
variables satisfying assumption 2 with copula C. Let C be the copula of X
and Y . If f and g are strictly increasing function on the ranges of X and Y ,
respectively, then

C (f (X) , g (Y )) = C (X, Y ) ,

Theorem 6 means that, C (X, Y ) is invariant under strictly increasing trans-
formations of X and Y .

Remark 26. Let U and V be two standard uniformly distributed random vari-
ables. Assume that (U, V ) has the copula C as joint distribution function. Let
X and Y be two univariate random variables with distribution functions F and
Gsatisfying Assumption 2. Then by Theorem 6 we have that:

C (U, V ) = C
(
F−1 (U) , G−1 (V )

)
= C (X, Y ) .
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This shows that the copula C contain the complete information about the de-
pendence structure of random variables X and Y .

Remark 27. Due to Assumption 2 any Copula C considered in this thesis is
associated with a joint distribution function, that have density. Hence, if we
assume a copula C, then there exists a unique function c : [0, 1]2 → [0,∞) such
that

C (u, v) =

∫ v

0

∫ u

0

c (s, t) dsdt.

The function c is called copula density of C, with

c (u, v) =
∂2C (u, v)

∂u∂v
.

Hence, all bivariate copulas considered here are almost everywhere two times
differentiable.

Consider equation (3.6) in theorem 4(Sklar’s Theorem):

H (x, y) = C (F (x) , G (y)) (3.10)

Given Assumption 2, there exist corresponding joint density function h (x, y)

and marginal density functions f (x) and g (y). From basic probability theory,
we know that the joint density function h (x, y) can be obtained by differenti-
ating (3.10) with respect to x and y. i.e.

h (x, y) =
∂2C (F (x) , G (y))

∂x∂y

= c (F (x) , G (y)) · f (x) · g (y) . (3.11)

Moreover, for any u, v ∈ (0, 1)

c (u, v) =
h (F−1 (u) , G−1 (v))

f (F−1 (u)) g (G−1 (v))
. (3.12)

3.2 Copula and Tail Dependence Coefficient

As already seen here, copulas are invariant under strictly increasing transfor-
mations and they express dependence on a quantile scale. This feature gives
copulas the ability to precisely describe the dependencies of extreme events.
In particular the tail coefficients can be expressed in terms of copulas.

Recall that the expression of the upper and the lower tail dependence coef-
ficients are definided by equation (2.8) and equation (2.9), respectively

λu := lim
α→1−

Pr
(
Y > G−1 (α) |X > F−1 (α)

)
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and

λl := lim
α→0+

Pr
(
Y ≤ G−1 (α) |X ≤ F−1 (α)

)
,

can be reformulated as follows

λu := lim
α→1−

χu (α) , λl := lim
α→0+

χl (α) , (3.13)

where

χu (α) := Pr
(
Y > G−1 (α) |X > F−1 (α)

)
and

χl (α) := Pr
(
Y ≤ G−1 (α) |X ≤ F−1 (α)

)
.

Assume two random variables X and Y with a joint distribution function H
and univariate marginal distribution functions F and G, respectively. Further,
assume that C is the copula of X and Y . Then it holds:

χu (α) = Pr
(
Y > G−1 (u) |X > F−1 (u)

)
= Pr (V > u|U > u)

=
Pr (U > u, V > v)

Pr (U > u)

=
1− Pr (U ≤ u)− Pr (V ≤ u) + Pr (U ≤ u, V ≤ u)

1− Pr (U ≤ u)

=
1− 2u+ C (u, u)

1− u
Hence, if the limits in equations (3.13) exists, it follows

λu = lim
u→1−

1− 2u+ C (u, u)

1− u
(3.14)

and

λl = lim
u→0+

C (u, u)

u
. (3.15)

Example 3 (Tail Dependence Coefficient of the bivariate W , Π and M).

a) W (u, v) = max (u+ v − 1, 0). Hence W (u, u) = max (2u− 1, 0). Then
from equations (3.14) and (3.15) it follows that

λu = lim
u→1−

1− 2u+W (u, u)

1− u

= lim
u→1−

1− 2u+ max (2u− 1, 0)

1− u

= lim
u→1−

1− 2u+ 2u− 1

1− u
= 0
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and

λl = lim
u→0+

W (u, u)

u

= lim
u→0+

max (2u− 1, 0)

u

= lim
u→0+

0

u

= 0.

b) Π (u, v) = uv. Hence Π (u, u) = u2. from equations (3.14) and (3.15) it
follows that

λu = lim
u→1−

1− 2u+ Π (u, u)

1− u

= lim
u→1−

1− 2u+ u2

1− u

= lim
u→1−

(1− u)2

1− u
= lim

u→1−
1− u

= 0

and

λl = lim
u→0+

Π (u, u)

u

= lim
u→0+

u2

u

= lim
u→0+

u

= 0.

c) M (u, v) = min (u, v).Hence min (u, u) = u. From equations (3.14) and
(3.15) it follows that

λu = lim
u→1−

1− 2u+M (u, u)

1− u

= lim
u→1−

1− 2u+ u

1− u

= lim
u→1−

1− u
1− u

= lim
u→1−

1

= 1
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and

λl = lim
u→0+

M (u, u)

u

= lim
u→1−

u

u

= lim
u→1−

1

= 1.

Example 4 (Tail Dependence Coefficient of the bivariate Gumbel copula).
The bivariate Gumbel copula function is given by (cf. Nelsen [2006], Chapter 4)

CGu
θ (u, v) = exp

(
−
[
(− ln (u))θ + (− ln (v))θ

] 1
θ

)
, 1 ≤ θ <∞.

Hence,

CGu
θ (u, u) = exp

(
−
[
(− ln (u))θ + (− ln (u))θ

] 1
θ

)
= exp

(
2

1
θ ln (u)

)
= u2

1
θ .

By applying the L’hopital rule to equations (3.14) and (3.15) we obtain

λu = lim
u→1−

1− 2u+ CGu
θ (u, u)

1− u

= lim
u→1−

1− 2u+ u2
1
θ

1− u

∗
= lim

u→1−

(
1− 2u+ u2

1
θ

)′
(1− u)′

= lim
u→1−

−2 + u2
1
θ−1·2 1

θ

−1

= 2− 2
1
θ .

and

λl = lim
u→0+

CGu
θ (u, u)

u
.

= lim
u→0+

u2
1
θ

1− u

= lim
u→0+

(
u2

1
θ

)′
(1− u)′

∗
= lim

u→0+

−u2
1
θ−1·2 1

θ

−1

= 0.
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* holds because (
u2

1
θ

)′
=

d

du

(
u2

1
θ

)
=

(
2

1
θ · u2

1
θ
−1

)
=u2

1
θ−1·2

1
θ .

Example 5 (Tail Dependence Coefficient of the bivariate Clayton copula).
The bivariate Clayton Copula function is given by (cf. Nelsen [2006], Chap-
ter 4)

CC
θ (u, v) =

(
u−θ + v−θ − 1

)− 1
θ . 0 < θ <∞. (3.16)

Hence,

CC
θ (u, u) =

(
u−θ + u−θ − 1

)− 1
θ

=
(
2u−θ − 1

)− 1
θ .

By applying the L’hopital rule to equations (3.14) and (3.15) we obtain

λu = lim
u→1−

1− 2u+ CC
θ (u, u)

1− u

= lim
u→1−

1− 2u+
(
2u−θ − 1

)− 1
θ

1− u

= lim
u→1−

(
1− 2u+

(
2u−θ − 1

)− 1
θ

)′
(1− u)′

∗∗
= lim

u→1−

−2 + 2u−θ−1·
(
2u−θ − 1

)−1
θ
−1

−1

= 2− 2 = 0

and

λl = lim
u→0+

CC
θ (u, u)

u

= lim
u→0+

(
2u−θ − 1

)− 1
θ

u

= lim
u→0+

(
2u−θ − 1

)− 1
θ

(u−θ)−
1
θ

= lim
u→0+

(
2u−θ − 1

u−θ

)− 1
θ

= lim
u→0+

(
2− uθ

)− 1
θ

= 2−
1
θ .



CHAPTER 3. NOTION OF COPULA 51

** holds because

(
1−

(
2u−θ − 1

)− 1
θ

)′
=

d

du

1− 1(
2

uθ
− 1

) 1
θ


=− d

du

 1(
2
uθ
− 1
) 1
θ


=−

d
du

((
2
uθ
− 1
) 1
θ

)
((

2
uθ
− 1
) 1
θ

)
2

=
1
θ

(
2
uθ
− 1
) 1
θ
−1 · d

du

(
2
uθ
− 1
)(

2
uθ
− 1
) 2
θ

=

2 · d
du

(
1

uθ

)
·
(

2
uθ
− 1
)−1
θ
−1

θ

=

2 ·
− d

du

(
uθ
)

(uθ)2 ·
(

2

uθ
− 1

)−1
θ
−1

θ

=
−2θuθ−1 ·

(
2
uθ
− 1
)−1
θ
−1

θu2θ

= −2u−θ−1·
(

2

uθ
− 1

)−1
θ
−1

.



52 3.2. COPULA AND TAIL DEPENDENCE COEFFICIENT



Chapter 4

CoVaR-Method using Copula.

We provide here a flexible and general formula for CoV aRs|i
α (l) using Cop-

ula. The essential of the results presented here is published in Hakwa, Jäger-
Ambrożewicz, and Rüdiger [2015]. The formula presented here is based on an
expression of CoV aRs|i

α (l) in terms of copula. This expression is obtained by
using the relation between conditional probability and copula as presented in
Darsow et al. [1992]. The so derived formula inherits from copula the ability
to represent multivariate distributions as combinations of univariate margins
and copula functions. It allows to analyze systemic risk contribution in various
stochastic settings, including elliptical models as well as models with complex
dependence structures. We did some application, in which we compute and
analyze CoV aRs|i

α (l) and ∆CoV aR
s|i
α in different stochastic settings, including

Gaussian and non-Gaussian settings. Doing this we highlight several impor-
tant properties of CoV aRs|i

α (l) and ∆CoV aR
s|i
α .

4.1 A General Expression for CoV aRs|i
α (l) using

Copula

Let Li and Ls be two random variables representing the loss of financial institu-
tion i and that of the financial system s with univariate distribution functions
Fi and Fs, respectively. Assume that the joint distribution H of Li and Ls

satisfies Assumption 2. Let C be the copula associated with H, i.e.

H (x, y) = C (Fi (x) , Fs (y)) .

Assumption 2 implies that the copula C has a strictly positive density function
c, such that (see Remark 27)

C (u, v) =

∫ v

0

∫ u

0

c (s, t) dsdt ∀ u, v ∈ [0, 1] . (4.1)

53



544.1. A GENERAL EXPRESSION FOR COV AR
S|I
α (L) USING COPULA

We define the function

g (v, u) :=
∂C (u, v)

∂u
.

Remark 28. Given Assumption 2, the function g (v, u) is well defined and for
each fixed u ∈ [0, 1] invertible with respect to the parameter v.

In fact, by differentiating (4.1) with respect to u and applying the Fubini’s
theorem (as in Klenke [2008], Theorem 14.16) we obtain

g (v, u) =
∂C (u, v)

∂u

=
∂

∂u

∫ v

0

∫ u

0

c (s, t) dsdt

=

∫ v

0

(
∂

∂u

∫ u

0

c (s, t) ds

)
dt

=

∫ v

0

c (u, t) dt. (4.2)

Since the copula density c is strictly positive (due to Assumption 2), it follows
that, for a fixed u ∈ [0, 1] the function g (v, u) is strictly increasing and thus
invertible with respect to v.

Theorem 7 (Hakwa, Jäger-Ambrożewicz, and Rüdiger [2015]). If we assume
Assumption 2. Then for all l ∈ R and a given α ∈ (0, 1), CoV aRs|i

α (l) is given
by

CoV aRs|i
α (l) = F−1

s

(
g−1 (α, Fi (l))

)
. (4.3)

Proof. Recall that the implicit definition of CoV aRs|Li=l
α is given by:

Pr
(
Ls ≤ CoV aRs|Li=l

α |Li = l
)

= α

⇔Pr
(
Fs (Ls) ≤ Fs

(
CoV aRs|Li=l

α

)
|Fi
(
Li
)

= Fi (l)
)

= α.

We define V := Fs (Ls) , U := Fi (L
i) , v := Fs

(
CoV aR

s|Li=l
α

)
and u := Fi (l).

Hence,

Pr
(
Fs (Ls) ≤ Fs

(
CoV aRs|Li=l

α

)
|Fi
(
Li
)

= Fi (l)
)

= Pr (V ≤ v|U = u) .

Given Assumption 2, it follows from Remark 23 that V and U are stan-
dard uniform distributed and hence continuous. The conditional probability
Pr (V ≤ v|U = u) can thus be computed in the following way (cf. e.g. (Breiman
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[1992], equation. (4.4)) and (Roncalli [2009], Page 263))

Pr (V ≤ v|U = u) = lim
∆u→0+

Pr (V ≤ v, u ≤ U ≤ u+ ∆u)

Pr (u ≤ U ≤ u+ ∆u)

= lim
∆u→0+

Pr (V ≤ v, U ≤ u+ ∆u)− Pr (V ≤ v, U ≤ u)

Pr (U ≤ u+ ∆u)− Pr (U ≤ u)

= lim
∆u→0+

C (v, u+ ∆u)− C (v, u)

∆u

=
∂C (v, u)

∂u

= g (v, u) .

consequently,

Pr
(
Fs (Ls) ≤ Fs

(
CoV aRs|Li=l

α

)
|Fi
(
Li
)

= Fi (l)
)

= Pr (V ≤ v|U = u)

= g (v, u)

= g
(
Fs

(
CoV aRs|Li=l

α

)
, Fi (l)

)
.

Based on this relation and due to the fact that the function g (v, u) is invertible
with respect to v for any fixed u ∈ [0, 1] (see Remark 28), we are able to derive
explicit expressions for CoV aRs|Li=l

α . We can do this by expressing v as a
function of α and u as follow

v = g−1 (α, u) .

By replacing v by Fs
(
CoV aR

s|Li=l
α

)
and u by Fi (l) we obtain

Fs
(
CoV aRs|L=l

α

)
= g−1 (α, Fi (l)) .

Hence,

CoV aRs|i
α (l) = Fs

(
CoV aRs|L=l

α

)
= F−1

s

(
g−1 (α, Fi (l))

)
. �

Remark 29. A similar expression of CoV aR was been developed, indepen-
dently from our work, by Bernard et al. [2012]. One important feature of
our formula is that, it allow one to estimate the systemic risk contribution of
the financial institution i to the financial system s by modeling the individual
losses and the interconnectedness of i to s separately. In fact, the expression
CoV aR

s|Li=l
α , as in Equation (4.3), can be decomppose under three distinct

components:

1. The marginal distributions Fi, which represent the purely univariate fea-
tures of the single financial institution i.
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2. The marginal distributions Fs, which represent the purely univariate fea-
tures of the financial system s, .

3. The function g−1, which models the interconnectedness of the single fi-
nancial institution i to financial system s.

This feature in the spirit of Sklar’s theorem is very important for the analysis
of systemic risk contribution, because it allows us to investigate the effects of
the marginal distributions Fi and Fs and the assumed copula C (dependence
structure) on the systemic risk contribution of the financial institution i.

Remark 30 (Hakwa, Jäger-Ambrożewicz, and Rüdiger [2015]). We can see
from Equation (4.3) that CoV aRs|Li=l

α is nothing other than a quantile of the
loss distribution Fs of the financial system s.

CoV aRs|Li=l
α = F−1

s (α̃) with α̃ := g−1 (α, Fi (l)) . (4.4)

Hence, CoV aRs|i
α (l) can be seen as the Value-at-Risk of the whole financial

system at an adjusted level α̃, with

α̃ = g−1 (α, Fi (l)) . (4.5)

This fact motivates the following corollary, which connects the CoV aRs|i
α (l)

to a Value-at-Risk of the financial system s.

Corollary 8 (Hakwa, Jäger-Ambrożewicz, and Rüdiger [2015]). Under As-
sumption 2, we have that

CoV aRs|i
α (l) = V aRs

α̃ with α̃ = g−1 (α, u) , (4.6)

where u = Fi (l).

It follows that CoV aRs|Li=l
α as a function of α̃ has the same properties as a

comon Value-at-Risk. For example, CoV aRs|Li=l
α increases when the marginal

distribution function Fs exhibits heavy-tail and positive skewness (cf. Alexan-
der [2009], Section IV.2.8.1).

In general, the following corollary of Theorem 7 holds:

Corollary 9 (Hakwa, Jäger-Ambrożewicz, and Rüdiger [2015]). Under As-
sumption 2, the risk measure ∆CoV aR

s|i
α is computed using Definition 8 as

follows:

∆CoV aRs|i
α = CoV aRs|Li=V aRiα

α − CoV aRs|Li=E[Li]
α

= F−1
s

(
g−1

(
α, Fi

(
V aRi

α

)))
− F−1

s

(
g−1

(
α, Fi

(
E
[
Li
])))

= F−1
s

(
g−1 (α, α)

)
− F−1

s

(
g−1 (α, Fi (µi))

)
,

where µi = E [Li] .



CHAPTER 4. COVAR-METHOD USING COPULA. 57

Remark 31 (Hakwa, Jäger-Ambrożewicz, and Rüdiger [2015]). If we assume
a symmetric distribution for Li, then

∆CoV aRs|i
α = F−1

s

(
g−1 (α, α)

)
− F−1

s

(
g−1 (α, 0.5)

)
. (4.7)

Remark 32 (Hakwa, Jäger-Ambrożewicz, and Rüdiger [2015]). In practice
the conditional level l for the financial institution i is implicitly defined bya
given confidence level β ∈ (0, 1) :

l = F−1
i (β) . (4.8)

The confidence level β is specified by the respective regulatory institution and
represents the probability with which the financial institution i remains solvent
over a given time horizon.

Based on this information, we can express CoV aRs|Li=l
α as follows:

CoV aRs|Li=l
α = F−1

s

(
g−1 (α, β)

)
. (4.9)

We observe that for a given marginal distribution function Fs, CoV aR
s|Li=l
α can

be expressed as a function of α and β. This motivates the following definition.

Definition 15 (Hakwa, Jäger-Ambrożewicz, and Rüdiger [2015]).

CoV aRβ
α := CoV aR

s|Li=F−1
i (β)

α

∆CoV aRβ
α := CoV aR

s|Li=F−1
i (β)

α − CoV aRs|Li=E(Li)
α

:= CoV aRβ
α − CoV aR

s|Li=E(Li)
α .

It follows

∆CoV aRβ
α = F−1

s

(
g−1 (α, β)

)
− F−1

s

(
g−1 (α, Fi (µi))

)
The subsequent sections are devoted to the application of the formula pre-

sented in the Theorem 7.In the course of this applications we investigate the
respective qualities of different stochastic models regarding the analysis of sys-
temic risk contribution. We do this by analyzing the abilities, of the considered
models, to describe tail dependence.

As we have seen in Section 3.3, the tail dependence coefficients λl and λu
are natural measures for the strength of dependence in the extreme parts of
joint distributions. Thus, by considering the tail dependence coefficient of a
given stochastic model, we can appreciate its ability to describe extreme co-
movement and hence systemic risk contribution. In fact, if the joint behavior
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of Li and Ls is modeled in such a way that the vector (Li, Ls) does not show
tail dependence (i.e. λu = λu = 0), then the extreme events (losses) in Li

and Ls would appear to occur independently. In that case there is no possible
systemic risk contribution from i to s.

As first application, we consider the Gaussian copula. The Gaussian copula
is the most used copula. The use of the Gaussian copula is motivated by
its mathematical properties. However, as mentioned by many authors (e.g.
Embrechts et al. [1999]), the Gaussian copula may presents some problems in
the description of certain specific stochastic behaviors observed in empirical
data.

4.2 Application to Gaussian Copula

Assume here that the dependence structure between Li and Ls is described by
a bivariate Gaussian copula.
The bivariate Gaussian copula is defined as follows (cf. Nelsen [2006], Equa-
tion 2.3.6 ):

Cρ (u, v) = Φ2

(
Φ (u)−1 ,Φ (v)−1) ,

where Φ2 denotes the bivariate standard normal distribution with linear corre-
lation coefficient ρ, and Φ denotes the univariate standard normal distribution.
Hence,

Cρ (u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π
√

1− ρ2
exp

(
2ρst− s2 − t2

2 (1− ρ2)

)
dsdt.

Let X = (U, V ) be a standard Gaussian random vector with correlation coef-
ficient ρ. Then it follows that

Φ2 (u, v) = Pr (U ≤ u, V ≤ v)

=

∫ u

−∞

∫ v

−∞

1

2π
√

1− ρ2
exp

(
2ρsu− s2 − t2

2 (1− ρ2)

)
dsdt
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and
∂Φ2 (u, v)

∂u
=

∫ v

−∞

1

2π
√

1− ρ2
exp

(
2ρut− u2 − s2

2 (1− ρ2)

)
ds

=

∫ v

−∞

1

2π
√

1− ρ2
exp

(
− (s− uρ)2 + ρ2u2 − u2

2 (1− ρ2)

)
ds

=

∫ v

−∞

1

2π
√

1− ρ2
exp

(
− (s− uρ)2 − u2 (1− ρ2)

2 (1− ρ2)

)
ds

=

∫ v

−∞

1

2π
√

1− ρ2
exp

(
−u2

2
+
− (s− uρ)2

2 (1− ρ2)

)
ds

=
1√
2π

exp

(
−u2

2

)∫ v

−∞

1
√

2π
√

1− ρ2
exp

(
− (s− uρ)2

2 (1− ρ2)

)
ds

= φ (u) · Φ

(
v − uρ√

1− ρ2

)
,

where φ denotes the density of the standard univariate normal distribution.
Therefore,

Φ2 (u, v) =

∫ u

−∞
φ (x) · Φ

(
v − xρ√

1− ρ2

)
dx.

We have thus

Cρ (u, v) = Φ2

(
Φ−1 (u) ,Φ−1 (v) , ρ

)
=

∫ Φ−1(u)

−∞
φ (x) · Φ

(
Φ−1 (v)− xρ√

1− ρ2

)
dx.

By substituting s with Φ (x) (s = Φ (x)), we obtain

Cρ (u, v) =

∫ u

0

Φ

(
Φ−1 (v)− ρΦ−1 (s)√

1− ρ2

)
ds

and by Theorem 7 we have that

g (v, u) =
∂Φ2 (u, v)

∂u
= Φ

(
Φ−1 (v)− ρΦ−1 (u)√

1− ρ2

)
. (4.10)

Since the function g (v, u) is invertible with respect to v, we can compute
its inverse by setting

g (v, u) = α

and then solve for v:

v = g−1 (α, u) = Φ
(
ρΦ−1 (u) +

√
1− ρ2Φ−1 (α)

)
. (4.11)

Now, using Theorem 7, we derive the analytical formula for CoV aRs|Li=l
α

for Gaussian copula.
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Figure 4.1: g−1 of the bivariate Gaussian copula

Corollary 10. Assume that the copula associated with the joint distribution
of Li and Ls is a Gaussian copula, then

CoV aRs|Li=l
α = F−1

s

(
Φ
(
ρΦ−1 (Fi (l)) +

√
1− ρ2Φ−1 (α)

))
, (4.12)

where F i and F s represent the univariate distribution functions of Li and of
Ls, respectively.

In the context of Remark 30:

CoV aRs|Li=l
α = F−1

s (α̃) ,

with α̃ = Φ
(
ρΦ−1 (Fi (l)) +

√
1− ρ2Φ−1 (α)

)
.

Remark 33. Under the Gaussian copula, the interconnectedness of the finan-
cial institution i to the financial system s is modeled only by the correlation
coefficient ρ.

The formula for ∆CoV aR
s|i
α according to Definition 8 and using Corollary 10

becomes:

∆CoV aRs|i
α =F−1

s

(
Φ
(
ρΦ−1 (α) +

√
1− ρ2Φ−1 (α)

))
− F−1

s

(
Φ
(
ρΦ−1 (Fi (µi)) +

√
1− ρ2Φ−1 (α)

))
Remark 34. If ρ = 0 then α̃ = α, it follows:

CoV aRs|Li=l
α = F−1

s (α)

= V aRs
α.

This is not a surprise because zero correlation means independence under the
normal copula setting and consequently

∆CoV aRs|i
α = V aRs

α − V aRs
α = 0.
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It is important to note that the distribution functions Fi and Fs can assume
any type of univariate distribution function satisfying Assumption 2. In the
follows, we consider certain special cases

1. Fi is symmetric, then we have

∆CoV aRs|i
α = F−1

s

(
Φ
(
ρΦ−1 (α) +

√
1− ρ2Φ−1 (α)

))
− F−1

s

(
Φ
(
ρΦ−1 (0.5) +

√
1− ρ2Φ−1 (α)

))
= F−1

s

(
Φ
(
ρΦ−1 (α) +

√
1− ρ2Φ−1 (α)

))
− F−1

s

(
Φ
(√

1− ρ2Φ−1 (α)
))

.

2. Assume that only Ls (the loss of the financial system s) is normally
(univariate) distributed:. Then,

CoV aRs|i
α (l) = σsΦ

−1 (α̃) + µs

= V aRs
α̃,

with α̃ = Φ
(
ρΦ−1 (Fi (l)) +

√
1− ρ2Φ−1 (α)

)
. Hence,

CoV aRs|i
α (l) = σs

(
ρΦ−1 (Fi (l)) +

√
1− ρ2Φ−1 (α)

)
+ µs,

and

∆CoV aRs|i
α (l1, l2) = σs

(
Φ−1 (α̃1)− Φ−1 (α̃2)

)
= V aRs

α̃1
− V aRs

α̃2
,

where α̃1 = g−1 (α, Fi (l1)) and α̃2 = g−1 (α, Fi (l2)). As special case we
have

∆CoV aRs|i
α = σs

(
Φ−1 (α̃d)− Φ−1 (α̃m)

)
,

with α̃d and α̃m are the adjusted levels when the financial institution i
is under distress and when it has its mean loss respectively. i.e. α̃d =

g−1 (α, Fi (V aR
i
α)) and α̃m = g−1 (α, Fi (E [Li])).

3. Let us now consider the particular case in which Li and Ls both assume
univariate normal distributions with expected values µi, µs and standard
deviations σi, σs respectively. W denote by Ni and Ns the distribution
function of Li and Ls, respectively, i.e. Ni := N (µi, σ

2
i ) and Ns :=

N (µs, σ
2
s).

Corollary 11 (Hakwa, Jäger-Ambrożewicz, and Rüdiger [2015]). Assume that
the copula of (Li, Ls) is a Gaussian copula and that Li and Ls both follow uni-
variate normal distribution with expected values µi, µs and standard deviations
σi, σs, respectively. Then the formula for CoV aRs|Li=l

α is given by:

CoV aRs|i
α (l) = ρ

σs
σi

(l − µi) +
√

1− ρ2σsΦ
−1 (α) + µs. (4.13)
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Proof. In fact by Theorem 7 we have:

CoV aRs|i
α (l) = N−1

s

(
Φ
(
ρΦ−1 (Ni (l)) +

√
1− ρ2Φ−1 (α)

))
= N−1

s

(
Ns

(
σsρΦ−1 (Ni (l)) + σs

√
1− ρ2Φ−1 (α) + µs

))
= σsρΦ−1 (Ni (l)) + σs

√
1− ρ2Φ−1 (α) + µs

= σsρΦ−1

(
Φ

(
l − µi
σi

))
+ σs

√
1− ρ2Φ−1 (α) + µs

= σsρ

(
l − µi
σi

)
+ σs

√
1− ρ2Φ−1 (α) + µs

= ρ
σs
σi

(l − µi) +
√

1− ρ2σsΦ
−1 (α) + µs. �

If µi = µs = 0, then

CoV aRs|i
α (l) =

(
ρ
σs
σi

)
l +
√

1− ρ2σsΦ
−1 (α)

=

(
ρ
σs
σi

)
l +
√

1− ρ2V aRs
α.

Let l be the Value-at-Risk at the level β of the financial institution i (i.e.
l = V aRi

β = F−1
i (β)). Then, we have

CoV aRs|i
α

(
V aRi

β

)
=

(
ρ
σs
σi

)
V aRi

β +
√

1− ρ2V aRs
α

=

(
ρ
σs
σi

)
σiΦ (β) +

√
1− ρ2V aRs

α

= ρσsΦ (β) +
√

1− ρ2V aRs
α .

Furthermore, if β = α:

CoV aRs|i
α

(
V aRi

α

)
= ρσsΦ (α) +

√
1− ρ2V aRs

α

= ρV aRs
α +

√
1− ρ2V aRs

α

= V aRs
α ·
(
ρ+

√
1− ρ2

)
. (4.14)

Remark 35. Equation (4.14) allows us to analyze the effect of the correlation
coefficient ρ on CoV aRs|i

α (V aRi
α).

Consider the term
(
ρ+

√
1− ρ2

)
.

Then

∂
(
ρ+

√
1 + ρ2

)
∂ρ

=
∂ρ

∂ρ
+
∂
(
ρ+

√
1 + ρ2

)
∂ρ

= 1 +
1

2
√

1− ρ2
· ∂(1− ρ2)

∂ρ

= 1 +
−2ρ

2
√

1− ρ2

= 1− ρ√
1− ρ2

. (4.15)
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By solving the inequality

1− ρ√
1− ρ2

> 0

we obtain as solution ρ ∈
[
−1, 1√

2

]
. This means that the term

(
ρ+

√
1− ρ2

)
as function of ρ increases for ρ ∈

[
−1, 1√

2

]
and decreases for ρ > 1√

2
. This non-

monotonic behavior shows that CoV aRs|i
α (V aRi

α), under the normal copula
setting (i.e. ρ as measure of dependence), is not appropriate for the analyze of
systemic risk contribution. .

Remark 36. The last case considered above, in which a combination of a
bivariate Gaussian copula and two univariate Gaussian distributed margins
are combined corresponds (bivariate normal distribution setting) was already
analyzed in Jäger-Ambrożewicz [2010]. However, differently from the method
applied here, Jäger-Ambrożewicz derived a closed formula for CoV aRs|Li=V aRiα

α

by using the expression of the conditional probability for bivariate normal dis-
tribution (cf. e.g. Feller [1968], Equation 2.6).

Equation (4.13) coincides with the formula provided by Jäger-Ambrożewicz
[2010]. Therefore, the formula proposed by Jäger-Ambrożewicz can be seen as
a special case of the formula provided in Theorem 7.

Corollary 12. Assume that the copula of (Li, Ls) is a Gaussian copula and
that Li and Ls both follow univariate normal distributions with expected values
µi, µs and standard deviations σi, σs, respectively. Then

a) ∆CoV aRs|i
α (l1, l2) = ρ

σs
σi

(l1 − l2) (4.16)

and

b) ∆CoV aRs|i
α = ρσsΦ

−1 (α) = ρ · (V aRs
α − µs) . (4.17)

Proof. According to Definition 8 and Definition 11 we have:

a) ∆CoV aR
s|i
α (l1, l2) = CoV aR

s|i
α (l1)− CoV aRs|i

α (l2)

∆CoV aRs|i
α (l1, l2) = ρ

σs
σi

(l1 − µi) +
√

1− ρ2σsΦ
−1 (α) + µs

−
[
ρ
σs
σi

(l2 − µi) +
√

1− ρ2σsΦ
−1 (α) + µs

]
= ρ

σs
σi

(l1 − l2) .
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b) ∆CoV aR
s|i
α = CoV aR

s|Li=V aRiα
α − CoV aRs|Li=µi

α

∆CoV aRs|i
α = CoV aRs|Li=V aRiα

α − CoV aRs|Li=µi
α

= CoV aRs|i
α

(
V aRi

α

)
− CoV aRs|i

α (µi)

= ρ
σs
σi

(
V aRi

α − µi
)

= ρ
σs
σi

(
σiΦ

−1 (α) + µi − µi
)

= ρ
σs
σi

(
σiΦ

−1 (α)
)

= ρσsΦ
−1 (α) . �

Remark 37. The ratio ρσs
σi

in Equation (4.16) have not to confound with
the beta coefficient βCAPM of the capital asset pricing model (CAPM). This is
defined as

βCAPM = ρ
σi
σs
. (4.18)

Recall that under the CAPM framework, the return Ri of a stock i is expressed
as a linear combination of a constant αi, a component due to the market (or
the system), Rs, and a residual εi:

Ri = αi + βi ·Rs + εi (4.19)

The βi coefficient represents in this context the part of the return (or of the
risk), that comes from the market (or from the financial system). It is also
called systematic risk of the stock i.

4.3 Criticisms on Gaussian Copula as a Model

for Systemic Risk Contribution

The main problem with Gaussian copula is its inability to describe tail behav-
iors. Nevertheless, it still a good model for the center parts of joint distribu-
tions1. This can be explained by the fact that the linear correlation coefficient
is the only dependency parameter in a Gaussian copula model.

Recall hat the linear correlation coefficient ρXY of two random variables
X and Y with means µX and µY and standard deviations σX and σY can be
expressed as:

ρX,Y = E

[(
X − µX
σX

)(
Y − µY
σY

)]
. (4.20)

1The most empirical data can be well fitted in their center parts by Gaussian copula
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Recall that the covariance ΣXY of the two random variables X and Y , which
is defined as

ΣXY = E [(X − µX) (Y − µY )] , (4.21)

describes how X and Y move together around their respective means µX and
µY . Since the correlation coefficient ρXY can be seen as a normalization of
the covariance ΣXY with the standard deviations σX and σY (see equation
4.20). It follows that the linear correlation coefficient measures only the joint
dependence of X and Y around their respective means. It is also well know
that the linear correlation can only describe the dependence between X and
Y when the assume relationship (between X and Y ) is linear. This poses a
problem when the considered variables are related in a non-linear way.

Let us now consider the tail dependence coefficients of the Gaussian copula.
Recall that the Gaussian copula does not have a closed form. therefore, such
that the calculation of its tail dependence coefficients using Equation (3.14)
and (3.15) pose a problem. Nevertheless, λu and λl can also be expressed
in terms of conditional probabilities. By applying elementary calculus rules
(l’Hopital’s and differential calculus rule) to equations (3.14) and (3.15), we
obtain:

λu = lim
u→1−

1− 2u+ C (u, u)

1− u

= lim
u→1−

d (1− 2u+ C (u, u))

d (1− u)

= − lim
u→1−

−2 +
dC (u, u)

du

= − lim
u→1−

(
−2 +

∂1C (u, u)

∂u
+
∂2C (u, u)

∂u

)
= − lim

u→1−
(−2 + Pr (V ≤ u|U = u) + Pr (U ≤ u|V = u))

= lim
u→1−

(Pr (V > u|U = u) + Pr (U > u|V = u)) (4.22)

and

λl = lim
u→0+

C (u, u)

u

= lim
u→0+

dC (u, u)

du

= lim
u→0+

(
∂1C (u, u)

∂u
+
∂2C (u, u)

∂u

)
= lim

u→0+
(Pr (V ≤ u|U = u) + Pr (U ≤ u|V = u)) . (4.23)
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Remark 38. If the copula C is symmetric in the sense that
C (u, v) = C (v, u) ∀u, v then

Pr (V ≤ u|U = u) = Pr (U ≤ u|V = u) (4.24)

Since the Gaussian copula is symmetric, the following expression for the
upper tail-dependence coefficients of the Gaussian copula follows:

λl = λu = 2 lim
α→1−

Pr (V > u|U = u)

= 2 lim
α→1−

[1− Pr (V ≤ u|U = u)] .

Furthermore, from equation (4.10) it follows that

λu = 2 lim
u→1−

[
1− Φ

(
Φ−1 (u)− ρΦ−1 (u)√

1− ρ2

)]

= 2 lim
u→1−

[
1− Φ

(
Φ−1 (u)

√
1− ρ√

1 + ρ

)]
.

Hence,

λu =

{
0 if ρ < 1

1 if ρ = 1.

Figure 4.2: Plot of the function λu (u) := 1− Φ
(

Φ−1(u)
√

1−ρ√
1+ρ

)
.

Therefore if we assume the bivariate Gaussian copula as the dependence
model for (Li, Ls), then as we can see in Figure 4.2 regardless of how high a
correlation we choose, if we go far enough into the tail, extreme events appear
to occur independently in Li and Ls. Thus the Gaussian copula is related to
the independence in the tail of distributions and hence does not capture tail
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co-movements. This presents, as already mentioned in this thesis, a significant
shortcoming, since tail events and especially tail co-movements, are the main
features of systemic financial crises.

Remark 39 (Hakwa, Jäger-Ambrożewicz, and Rüdiger [2015]). This property
of the Gaussian copula is transmitted to the estimation method proposed by
Brunnermeier and Adrian [2011] and to the closed formula provided by Jäger-
Ambrożewicz [2010]. Both approaches assume that the random vector (Li, Ls)

follows a bivariate Gaussian distribution, thus implicitly assuming a Gaussian
copula as model for the dependence.

4.4 Application Non-Gaussian Copula

In this section, we use the formula provided in Theorem 7 to analyze and
quantify the systemic risk contribution for non Gaussian copulas. Of par-
ticular interest are models that allow for tail dependence. We consider the
bivariate t-copula as a special case of the class of bivariate elliptical copulas.
We furthermore consider the case of Archimedean copula and that of mixtures
of copulas.

4.4.1 Application to t-copula

The most used copula besides the Gaussian copula is the t-copulas (Student’s
copula). Both copulas belong to the class of Elliptical copulas. They are de-
rived from multivariate elliptical distribution functions using Sklar’s theorem.
IN fact according to Corollary 5, if H is a bivariate distribution function with
margins F and G, then the corresponding elliptical copula is given by

C (u, v) = H
(
F−1 (u) , G−1 (v)

)
, ∀ (u, v) ∈ [0, 1]2 . (4.25)

In their central parts, the Gaussian copula and the t-copula exhibit the
same behavior and properties but show different behaviors in their tail.

The Student copula can be considered as a generalization of the normal
copula, that allows the consideration of tail-dependence. It has, in addition
to the correlation coefficient ρ, a second dependence parameter, the degree of
freedom ν, which controls the heaviness of the tails.

Definition 16. The distribution function of a bivariate t distributed random
variable with correlation coefficient ρ degree of freedom ν is given by:

tρ,ν (u, v) =

∫ u

−∞

∫ v

−∞

1

2π
√

1− ρ2

(
1 +

s2 + t2 − 2ρtst

ν (1− ρ2)

)− ν+2
2

dsdt.
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For ν < 3, the variance does not exist and for ν < 5, the fourth moment
does not exist. The t-copula and the Gaussian copula are close to each other
in their central parts, and become closer and closer in their tail only when ν
increases. Especially both copulas are almost identical when ν →∞.

Definition 17. The bivariate t-copula, Ct
ρ,ν, is defined as

Ct
ρ,ν (u, v) = tρ,ν

(
t−1
ν (u) , t−1

ν (v)
)

=

∫ t−1
ν (u)

−∞

∫ t−1
ν (v)

−∞

1

2π
√

1− ρ2

(
1 +

s2 + t2 − 2ρtst

ν (1− ρ2)

)− ν+2
2

dsdt,

where tν denotes the distribution function of a standard t univariate distributed
random variable with ν degrees of freedom.

Proposition 1. Let (X, Y ) be a bivariate standard t-distributed random vector
with ν degrees of freedom and linear correlation ρ. Then conditional on X = x

we have: (
ν + 1

ν + x2

)1/2
Y − ρx√

1− ρ2
∼ tν+1. (4.26)

The proof of Proposition 1 is done using the transformation rule for density
function.

Theorem 13 (Transformation formula (cf. Klenke [2008], Theorem 1.101)).
Let µ be a measure on R that has a continuous (or piecewise continuous)
density f : R→ [0,∞) That is

µ ((−∞, x]) =

∫ x

−∞
f (t) dt, ∀ x ∈ R

Let A ⊂ R be an open or a closed subset of R with µ (R \ A) = 0. Further, let
B ⊂ R be open or closed. Finally, assume that ϕ : A → B is a continuously
differentiable bijection with derivative ϕ′ Then the image measure µ ◦ ϕ−1 has
the density

fϕ (x) =


f(ϕ−1(x))

|det(ϕ′(ϕ−1(x)))| , if x ∈ B
0, if x ∈ R \B.

Proof. Let (X, Y ) a random vector following a bivariate t-distribution. Define
a new random variable

R := ϕ (Y ) =

(
ν + 1

(ν + x2) (1− ρ2)

)1/2

Y − ρx.
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Applying Theorem 13, yields:

fR|x (r) =

fY |x

(
r
(

ν+1
(ν+x2)(1−ρ2)

)−1/2

+ ρx

)
(

ν+1
(ν+x2)(1−ρ2)

)1/2
. (4.27)

Recall that the conditional density of Y given X = x is given by (cf. Kotz and
Nadarajah [2004], Equation (1.15)):

fY |X (y) =
Γ
(
ν+2

2

)√
νπ (1− ρ2)Γ

(
ν+1

2

) [1 +
(y − ρx)2 + x2 (1− ρ2)

ν (1− ρ2)

]− ν+2
2 [

1 +
x2

ν

] ν+1
2

.

(4.28)

By setting y = ϕ−1 (r) we obtain

fY |X
(
ϕ−1 (r)

)
=

Γ
(
ν+2

2

)√
νπ (1− ρ2)Γ

(
ν+1

2

)
1 +

(
r

(
(1−ρ2)(ν+x2)

ν+1

) 1
2

)2

+ x2
(
1− ρ2

)
ν (1− ρ2)


− ν+2

2 [
1 +

x2

ν

] ν+1
2

=
Γ
(
ν+2

2

)√
νπ (1− ρ2)Γ

(
ν+1

2

)
1 +

r2(1−ρ2)(ν+x2)
ν+1 + x2

(
1− ρ2

)
ν (1− ρ2)

−
ν+2

2 [
1 +

x2

ν

] ν+1
2

=
Γ
(
ν+2

2

)√
νπ (1− ρ2)Γ

(
ν+1

2

) [1 +
r2
(
ν + x2

)
ν (ν + 1)

+
x2

ν

]− ν+2
2 [

1 +
x2

ν

] ν+1
2

=
Γ
(
ν+2

2

)√
νπ (1− ρ2)Γ

(
ν+1

2

) [(1 +
r2

ν + 1

)(
1 +

x2

ν

)]− ν+2
2
[
1 +

x2

ν

] ν+1
2

=
Γ
(
ν+2

2

)√
νπ (1− ρ2)Γ

(
ν+1

2

) (1 +
r2

ν + 1

)− ν+2
2
(

1 +
x2

ν

)− ν+2
2
[
1 +

x2

ν

] ν+1
2

=
Γ
(
ν+2

2

)√
νπ (1− ρ2)Γ

(
ν+1

2

) (1 +
r2

ν + 1

)− ν+2
2
(

1 +
x2

ν

)− 1
2

=
Γ
(
ν+2

2

)
Γ
(
ν+1

2

) (1 +
r2

ν + 1

)− ν+2
2
((
νπ
(
1− ρ2

))(
1 +

x2

ν

))− 1
2

=
Γ
(
ν+2

2

)
Γ
(
ν+1

2

) (1 +
r2

ν + 1

)− ν+2
2 (

π
(
1− ρ2

) (
ν + x2

))− 1
2

=
Γ
(
ν+2

2

)
Γ
(
ν+1

2

) (1 +
r2

ν + 1

)− ν+2
2
(

ν + 1

π (ν + 1) (1− ρ2) (ν + x2)

) 1
2

=
Γ
(
ν+2

2

)
Γ
(
ν+1

2

) (1 +
r2

ν + 1

)− ν+2
2
(

1

π (ν + 1)

) 1
2
(

ν + 1

(1− ρ2) (ν + x2)

) 1
2

=
Γ
(
ν+2

2

)√
π (ν + 1)Γ

(
ν+1

2

) (1 +
r2

ν + 1

)− ν+2
2
(

ν + 1

(1− ρ2) (ν + x2)

) 1
2

.
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This implies according to equation (4.27) that

fR|X (y) =
Γ
(
ν+2

2

)√
π (ν + 1)Γ

(
ν+1

2

) (1 +
r2

ν + 1

)− ν+2
2

. (4.29)

This follows then from the fact that the density function of an univariate t-
distribution with degrees of freedom ν is given by:

tν(r) =
Γ(ν+1

2
)

√
νπ Γ(ν

2
)

(
1 +

r2

ν

)− ν+1
2

�

Based on Proposition 1, the tail dependence coefficients of the t-copula Ct
ρ,ν

can be computed using equation 4.23 (cf. Embrechts et al. [2003])

λl =λu = 2− 2tν+1

((
(ν + 1) (1− ρ)

1 + ρ

) 1
2

)
.

Hence,

λu

{
> 0 if ρ > −1

= 0 if ρ = −1
.

So, given ρ > −1, the bivariate t-copula captures the dependence of extreme
values and is thus appropriate for modeling the analyzing systemic risk con-
tribution.

The t-copula Ct
ρ,ν (u, v) can be expressed as follows (cf. e.g. Roncalli [2009],

Page 299):

Ct
ρ,ν (u, v) =

∫ u

0

tν+1

((
ν + 1

ν + [t−1
ν (u)]2

)1/2
t−1
ν (v)− ρt−1

ν (t)√
1− ρ2

)
dt. (4.30)

The expression of g (v, u) is then given by:

g (v, u) =
∂Ct

ρ,ν (u, v)

∂u

= tν+1

((
ν + 1

ν + [t−1
ν (u)]2

)1/2
t−1
ν (v)− ρt−1

ν (u)√
1− ρ2

)
.

The function g is invertible with respect to v and its inverse is obtained by
solving the equation

g (v, u) = tν+1

((
ν + 1

ν + [t−1
ν (u)]2

)1/2
t−1
ν (v)− ρt−1

ν (u)√
1− ρ2

)
= α

for v:

v = g−1 (α, u) = tν

ρt−1
ν (u) +

√
(1− ρ2)

(
ν + [t−1

ν (u)]2
)

ν + 1
t−1
ν+1 (α)

 .

Using this, we obtain the following formulas for CoV aRs|Li=l
α and CoV aRβ

α
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Proposition 2 (Hakwa, Jäger-Ambrożewicz, and Rüdiger [2015]). Let the
t-copula be the copula of (Li, Ls). Then for every l ∈ R

CoV aRs|Li=l
α = F−1

s

tν
ρt−1

ν (Fi (l)) +

√
(1− ρ2)

(
ν + [t−1

ν (Fi (l))]
2)

ν + 1
t−1
ν+1 (α)


and

CoV aRβ
α = F−1

s

tν
ρt−1

ν (β) +

√
(1− ρ2)

(
ν + [t−1

ν (β)]2
)

ν + 1
t−1
ν+1 (α)

 ,

where Fi and Fs represent the univariate distribution function of Li and Ls,
respectively, and β denotes the regulatory risk level of financial institution i.

Remark 40. Differently to the Gaussian copula case where the interconnect-
edness of the financial institution i to the financial system s is modeled only
by the correlation coefficient ρ (see Remark 33), the interconnectedness of the
financial institution i to the financial system s is modeled, under the t-copula,
by the correlation coefficient ρ and the number of degrees of freedom ν. system
s.

Corollary 14 (Hakwa, Jäger-Ambrożewicz, and Rüdiger [2015]). Assume that
Li and Ls both follow univariate standard t distribution with ν degrees of free-
dom. Then for every l ∈ R

CoV aRs|i
α (l) = ρl +

√
(1− ρ2) (ν + l2)

ν + 1
t−1
ν+1 (α) . (4.31)

It follows that

∆CoV aRs|i
α (l1, l2) = CoV aRs|i

α (l1)− CoV aRs|i
α (l2)

= ρl+

√
(1− ρ2) (ν + l21)

ν + 1
t−1
ν+1 (α)− ρl2 −

√
(1− ρ2) (ν + l22)

ν + 1
t−1
ν+1 (α)

= ρ (l1 − l2) +

√
1− ρ2

ν + 1
t−1
ν+1 (α)

[√
ν + l21 −

√
ν + l22

]
Especially, we have that ∆CoV aRs|i as defined in Brunnermeier and Adrian

[2011] (see definition 9), is given by

Corollary 15.

∆CoV aRs|i = ρV aRi
α +

√
1− ρ2

ν + 1
t−1
ν+1 (α)

[√
ν + (V aRi

α)2 −
√
ν

]
(4.32)
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where we use the fact that the standard t-distribution with ν degrees of
freedom has a mean equal to zero.

The standard t-distribution can be extended through linear transformation:

X := a+ bZ, Z ∼ tν .

The distribution of X is called generalized t-distribution (X ∼ T (a, b2, ν)),
the mean of X is equal to (E [X] = a) and its variance V [X] is given by
V [X] = b2V [Z] = b2 ν

ν−2
. The corresponding density function fT can be

obtained using the transformation formula for density (cf. e.g. Klenke [2008],
Theorem. 1.101). Let ft be the density function of the standard t-distribution,
then

fT (x) = ft (g (z)) =
ft(g

−1(z))

|g′(g−1(z))|
, with g (z) = a+ bz.

Hence

fT (x) = ft

(
x− a
b

) ∣∣∣∣1b
∣∣∣∣ , b 6= 0.

Note that

T (x) = Pr (X ≤ x) = Pr (a+ bZ ≤ x) = Pr

(
Z ≤ x− a

b

)
= tν

(
x− a
b

)
.

Such that

T (x) = α ⇔x− a
b

= t−1
ν (α)

⇔x = bt−1
ν (α) + a

⇔T−1 (α) = bt−1
ν (α) + a. (4.33)

Let us now compute CoV aRs|i
α (l) and ∆CoV aR

s|i
α (l1, l2) for following cases:

1. Let µs := E (Ls). If Ls ∼ T
(
µs, σ

∗
s

2, ν
)
, i.e.

(
Ls−µs
σ∗s

)
follows an univari-

ate standard t-distribution with ν degrees of freedom, then

CoV aRs|i
α (l) = F−1

s

tν
ρt−1

ν (Fi (l)) +

√
(1− ρ2)

(
ν + [t−1

ν (Fi (l))]
2)

ν + 1
t−1
ν+1 (α)


= σ∗st

−1
ν

tν
ρt−1

ν (Fi (l)) +

√
(1− ρ2)

(
ν + [t−1

ν (Fi (l))]
2)

ν + 1
t−1
ν+1 (α)

+ µs

= σ∗s

ρt−1
ν (Fi (l)) +

√
(1− ρ2)

(
ν + [t−1

ν (Fi (l))]
2)

ν + 1
t−1
ν+1 (α)

+ µs.
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2. Let µi := E (Li) and µs := E (Ls). If Li ∼ T
(
µi, σ

∗
i

2, ν
)
and Ls ∼

T
(
µs, σ

∗
s

2, ν
)
, i.e.

(
Li−µi
σ∗i

)
and

(
Ls−µs
σ∗s

)
both follow an univariate stan-

dard t distribution with ν degrees of freedom, then

CoV aRs|iα (l) =σ∗s

ρt−1
ν (Fi (l)) +

√√√√(1− ρ2)
(
ν +

[
t−1
ν (Fi (l))

]2)
ν + 1

t−1
ν+1 (α)

+ µs

=σ∗s

ρt−1
ν

(
tν

(
l − µi
σ∗i

))
+

√√√√√(1− ρ2)

(
ν +

[
t−1
ν

(
tν

(
l−µi
σ∗i

))]2
)

ν + 1
t−1
ν+1 (α)

+ µs

=σ∗s

ρ
(
l − µi
σ∗i

)
+

√√√√√(1− ρ2)

(
ν +

(
l−µi
σ∗i

)2
)

ν + 1
t−1
ν+1 (α)

+ µs

=
σ∗sρ

σ∗i
(l − µi) + σ∗s t

−1
ν+1 (α)

√√√√√(1− ρ2)

(
ν +

(
l−µi
σ∗i

)2
)

ν + 1
+ µs.

Recall

∆CoV aRs|iα (l1, l2) = CoV aRs|iα (l1)− CoV aRs|iα (l2)

= F−1
s

tν
ρt−1

ν (Fi (l1)) +

√√√√(1− ρ2)
(
ν +

[
t−1
ν (Fi (l1))

]2)
ν + 1

t−1
ν+1 (α)




−

F−1
s

tν
ρt−1

ν (Fi (l2)) +

√√√√(1− ρ2)
(
ν +

[
t−1
ν (Fi (l2))

]2)
ν + 1

t−1
ν+1 (α)



 .

Consider again the previous two cases
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1. If Ls ∼ T
(
µs, σ

∗
s

2, ν
)
, then

∆CoV aRs|iα (l1, l2) = σ∗s

ρt−1
ν (Fi (l1)) +

√√√√(1− ρ2)
(
ν +

[
t−1
ν (Fi (l1))

]2)
ν + 1

t−1
ν+1 (α)

+ µs

−

σ∗s
ρt−1

ν (Fi (l2)) +

√√√√(1− ρ2)
(
ν +

[
t−1
ν (Fi (l2))

]2)
ν + 1

t−1
ν+1 (α)

+ µs


= σ∗sρ

[
t−1
ν (Fi (l1))− t−1

ν (Fi (l2))
]

+
σ∗s t
−1
ν+1 (α)

√
1− ρ2

√
ν + 1

([
t−1
ν (Fi (l1))

]2 − [t−1
ν (Fi (l2))

]2)
= σ∗sρ

(
t−1
ν (Fi (l1))− t−1

ν (Fi (l2))
)

+

[
σ∗s t
−1
ν+1 (α)

√
1− ρ2

√
ν + 1

(
t−1
ν (Fi (l1))− t−1

ν (Fi (l2))
) (
t−1
ν (Fi (l1)) + t−1

ν (Fi (l2))
)]

=σ∗s
[
t−1
ν (Fi (l1))− t−1

ν (Fi (l2))
] [
ρ+

t−1
ν+1 (α)

√
1− ρ2

√
ν + 1

(
t−1
ν (Fi (l1)) + t−1

ν (Fi (l2))
)]
.

2. If Li ∼ T
(
µi, σ

∗
i

2, ν
)

and Ls ∼ T
(
µs, σ

∗
s

2, ν
)
, then

∆CoV aRs|iα (l1, l2)

=
σ∗sρ

σ∗i
(l − µi) + σ∗s t

−1
ν+1 (α)

√√√√√(1− ρ2)

(
ν +

(
l−µi
σ∗i

)2
)

ν + 1
+ µs

−

σ
∗
sρ

σ∗i
(l − µi) + σ∗s t

−1
ν+1 (α)

√√√√√(1− ρ2)

(
ν +

(
l−µi
σ∗i

)2
)

ν + 1
+ µs


=
σ∗sρ

σ∗i
(l1 − l2) +

σ∗s t
−1
ν+1 (α)

√
1− ρ2

√
ν + 1

((
l1 − µi
σ∗i

)2

−
(
l2 − µi
σ∗i

)2
)

=
σ∗sρ

σ∗i
(l1 − l2) +

σ∗s t
−1
ν+1 (α)

√
1− ρ2

√
ν + 1

(
l1 − µi
σ∗i

− l2 − µi
σ∗i

)(
l1 − µi
σ∗i

+
l2 − 2µi
σ∗i

)
=
σ∗sρ

σ∗i
(l1 − l2) +

σ∗s t
−1
ν+1 (α)

√
1− ρ2

√
ν + 1

(
l1 − l2
σ∗i

)(
l1 + l2 − 2µi

σ∗i

)
=
σ∗s
σ∗i

(l1 − l2)

[
ρ+

t−1
ν+1 (α)

√
1− ρ2

√
ν + 1

(
l1 + l2 − 2µi

σ∗i

)]
. (4.34)

Corollary 16 (Hakwa, Jäger-Ambrożewicz, and Rüdiger [2015]). Let µi :=

E (Li) and µs := E (Ls). If Li ∼ T
(
µi, σ

∗
i

2, ν
)
and Ls ∼ T

(
µs, σ

∗
s

2, ν
)
, i.e.(

Li−µi
σ∗i

)
and

(
Ls−µs
σ∗s

)
both follow univariate standard t-distribution with ν de-

grees of freedom, then

∆CoV aRs|Li=l
α = σ∗st

−1
ν (α)

[
ρ+ t−1

ν (α)
t−1
ν+1 (α)

√
1− ρ2

√
ν + 1

]
. (4.35)
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Proof. From equation (4.34) we know that

∆CoV aRs|Li=l
α = ∆CoV aRs|i

α

(
V aRi

α, µi
)

=
σ∗s
σ∗i

(
V aRi

α − µi
) [
ρ+

t−1
ν+1 (α)

√
1− ρ2

√
ν + 1

(
V aRi

α + µi − 2µi
σ∗i

)]
.

Since

V aRi
α = µi + σ∗i t

−1
ν (α) ,

it follows that

∆CoV aRs|L
i=l

α

=
σ∗s
σ∗i

(
µi + σ∗i tν

−1 (α)− µi
) [
ρ+

t−1
ν+1 (α)

√
1− ρ2

√
ν + 1

(
µi + σ∗tν−1 (α) + µi − 2µi

σ∗i

)]

= σ∗s t
−1
ν (α)

[
ρ+ t−1

ν (α)
t−1
ν+1 (α)

√
1− ρ2

√
ν + 1

]
.

�

4.4.2 Archimedean copula

Note that the dependence in the Gaussian and t-copulas setting are essentially
determined by the correlation coefficient ρ (Because both are elliptical copula).

In contrast to elliptical copulas, the dependence in bivariate Archimedean
copula is controlled by a function ϕ called generator.

Theorem 17. [Nelsen [2006], Theorem 4.1.4] Let ϕ be a continuous, strictly
decreasing function from [0, 1] to [0,∞] such that ϕ (1) = 0 and let ϕ[−1] (t)

be the pseudo-inverse of ϕ defined by

ϕ[−1] (t) =

{
ϕ−1 (t) if 0 ≤ t ≤ ϕ (0)

0 if ϕ (0) < t ≤ ∞.
,

then the function C from [0, 1]2 to [0, 1] is given by

C (u, v) = ϕ[−1] (ϕ(u) + ϕ(v)) (4.36)

is a copula if and only if ϕ is convex.

Definition 18. A function ϕ satisfying the conditions of Theorem 17 is called
generator of a copula. A copula constructed through a generator is called Archi-
median copula.
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Remark 41. .

1. For any constant c > 0, ϕ and c · ϕ generate the same Archimedean
copula. Indeed

C (u, v) = ϕ[−1] (ϕ(u) + ϕ(v))

=
ϕ[−1]

c
(c · ϕ(u) + c · ϕ(v)) .

2. ϕ[−1] (ϕ (t)) = t, ∀ t ∈ [0, 1] .

If ϕ (0) =∞, the generator is said to be strict and its pseudo-inverse ϕ[−1]

coincide with the ordinary functional inverse ϕ−1 (cf. Nelsen [2006] Defini-
tion 4.1.1).

The lower and upper tail dependence coefficients of an Archimedean copula
can be computed using the following corollary.

Corollary 18 (Nelsen [2006], Corollary. 5.4.3). Let C be an Archimedean cop-
ula with a continuous, strictly decreasing and convex generator ϕ, then

λu = 2− lim
x→0+

1− ϕ−1 (2x)

1− ϕ−1 (x)
and λl = lim

x→∞

1− ϕ−1 (2x)

1− ϕ−1 (x)

In the context of systemic risk analysis, we are particularly interested in
Archimedean copulas showing positive tail dependence (e.g. Gumbel and Clay-
ton copula).

Remark 42. If we assume a copula with positive upper (lower) tail depen-
dence, losses have to be defined as positive (negative) numbers (cf. McNeil
et al. [2005]).

Example 6 (Gumbel Copula). The generator of the Gumbel copula is defined
by

ϕθ (t) = (− ln (t))θ for θ ≥ 1. (4.37)

It holds ϕθ (0) = ∞, i.e. ϕθ is strict and its inverse is ϕ−1
θ (t) = exp

(
−t 1

θ

)
.

The Gumbel copula is then according to equation 4.36 given by:

CGu
θ (u, v) = exp

(
−
[
(− ln (u))θ + (− ln (v))θ

] 1
θ

)
, 1 ≤ θ <∞,

where θ represents the strength of dependence. Using Corollary 18, we can
compute the tail dependence coefficients λu and λl of the Gumbel copula.

λu = 2− 2
1
θ and λl = 0.
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The Gumbel copula is thus able to model contagion effects and is therefore a
good model for the analysis of systemic risk contribution.

According to Theorem 7, the corresponding function g is given by:

gGu (v, u) :=
∂CGuθ (u, v)

∂u

=

∂ exp

(
−
(

(− ln (u))θ + (− ln (v))θ
) 1
θ

)
∂u

= exp

(
−
(

(− ln (u))θ + (− ln (v))θ
) 1
θ

)
·
(

(− ln (u))θ + (− ln (v))θ
)− θ−1

θ · (− ln (u))θ−1

u
.

For u ∈ (0, 1) and θ > 1, the function g is strictly increasing with respect
to v and therefore invertible. Hence, according to Theorem 7, we can compute
CoV aR

s|Li=l
α as

CoV aRs|Li=l
α = F−1

s

(
g−1
Gu (α, Fi (l))

)
. (4.38)

By imposing certain conditions to the generator ϕ of an Archimedean cop-
ula, We derive, using Theorem 7, an explicit expression of CoV aRs|Li=l

α in
terms of ϕ .

Proposition 3 (Hakwa, Jäger-Ambrożewicz, and Rüdiger [2015]). Assume
that the copula C associated with the joint distribution of (Li, Ls) is a bivariate
Archimedean copula with generator ϕ. If ϕ is strict and its derivative ϕ′ is
invertible, then the explicit formula for CoV aRs|Li=l

α for a given confidence
level α,∈ (0, 1) is given by

CoV aRs|Li=l
α = F−1

s

(
ϕ−1

(
ϕ

(
ϕ′−1

(
ϕ′ (Fi (l))

α

))
− ϕ (Fi (l))

))
. (4.39)

Proof. In fact, let C be an Archimedean copula with a strict generator ϕ.
Then

C(u, v) = ϕ−1 (ϕ(u) + ϕ(v))

and it holds

ϕ (C (u, v)) = ϕ (u) + ϕ (v) . (4.40)

Hence,

∂ [ϕ (C (u, v))]

∂u
=
∂ [ϕ (u) + ϕ (v)]

∂u
,

such that

∂C (u, v)

∂u
· ϕ′ (C (u, v)) =

∂ϕ (u)

∂u
= ϕ′ (u) .
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Consequently

∂C (u, v)

∂u
=

ϕ′ (u)

ϕ′ (C (u, v))
=

ϕ′ (u)

ϕ′ (ϕ−1 [ϕ (u) + ϕ (v)])
.

We have thus

g (v, u) =
∂C (u, v)

∂u
=

ϕ′ (u)

ϕ′ (ϕ−1 [ϕ (u) + ϕ (v)])
.

If ϕ′ is invertible, setting g (v, u) = α solving for v yields to:

g−1 (α, u) = ϕ−1

(
ϕ

(
ϕ′−1

(
ϕ′ (u)

α

))
− ϕ (u)

)
.

It follows then from Theorem 7 that,

CoV aRs|Li=l
α = F−1

s

(
g−1 (α, Fi (l))

)
= F−1

s

(
ϕ−1

(
ϕ

(
ϕ′−1

(
ϕ′ (Fi (l))

α

))
− ϕ (Fi (l))

))
.

�

Corollary 19 (Hakwa, Jäger-Ambrożewicz, and Rüdiger [2015]).

CoV aRβ
α = F−1

s

(
ϕ−1

(
ϕ

(
ϕ′−1

(
ϕ′ (β)

α

))
− ϕ (β)

))
.

Remark 43. Under to the Archimedean copula the interconnectedness of the
financial institution i to the financial system s is not modeled by the parameters
as in the Gaussian copula (see Remark 33) and the t-copula (see Remark 40)
but by a function namely the generator ϕ.

Example 7 (Clayton copula). The generator of the Clayton copula is define
as

ϕ (t) =
1

θ

(
t−θ − 1

)
, θ ∈ [−1,∞)− {0} .

For θ > 0, the generator of the Clayton copula is strict and be thus expressed
as follows

CCl
θ (u, v) =

(
u−θ + v−θ − 1

)− 1
θ , ∀ u, v ∈ (0, 1) . (4.41)

Furthermore, we have ϕ−1
θ (s) = (1 + θs)−

1
θ , ϕ′θ (t) = −t−θ−1, ϕ′−1

θ (z) =
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−z−
1
θ+1 . From Proposition 3, follows

CoV aRs|L
i=l

α = F−1
s

(
ϕ−1

(
ϕ

(
ϕ′−1

(
ϕ′ (Fi (l))

α

))
− ϕ (Fi (l))

))

= F−1
s


1 + θ


1

θ

−(−Fi (l)−(θ+1)

α

)− 1
θ+1

−θ
− 1

− Fi (l)−θ − 1

θ


− 1
θ


= F−1

s

ϕ−1
θ

1

θ


−(−Fi (l)−(θ+1)

α

)− 1
θ+1

−θ − 1

− Fi (l)−θ − 1

θ




= F−1
s

(
ϕ−1
θ

(
1

θ

(
Fi (l)−θ

α
θ
θ+1

− 1

)
− Fi (l)−θ − 1

θ

))

= F−1
s

(
ϕ−1
θ

(
1

θ

(
Fi (l)−θ

α
θ
θ+1

− 1− Fi (l)−θ + 1

)))

= F−1
s

(
ϕ−1
θ

(
Fi (l)−θ

θ

(
α−

θ
θ+1 − 1

)))

= F−1
s

(1 + θ

(
Fi (l)−θ

θ

(
α−

θ
θ+1 − 1

)))− 1
θ


= F−1

s

((
1 + Fi (l)−θ

(
α−

θ
θ+1 − 1

))− 1
θ

)
.

4.4.3 CoV aR
s|Li=l
α for Convex Combinations of Copulas

The convex combinations of copulas offer greater flexibility in the description
of complex (tail) dependence structures. In particular, in the context of the
analysis of systemic risk contribution, it is very important to model different
state of dependence in order to be consistent with the real financial market
behavior in which the normal and the crisis time are characterized by different
state (type) of dependence. Especially as already see in section 2.3.2 the crisis
time is characterized by tail dependence.

Since bivariate copulas are bivariate distributions, the convex linear combi-
nation of two copulas is again a copula (see e.g. Nelsen [2006], Chapter 2).

Formally, let C1 and C2 be two copulas. Then the function C defined by

C (u, v) := αC1 (u, v) + (1− α)C2 (u, v) ,∀ u, v, α ∈ (0, 1)

is a copula, too. The following remark specifies the effect of tail dependence
of the underlying copulas on that of their convex combination.

Remark 44. Let C be a convex combination of two bivariate copulas C1 and
C2, i.e.

C (u, v) := αC1 (u, v) + (1− α)C2 (u, v) , ∀ u, v, α ∈ (0, 1) .
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Denote by λ1
u (λ1

l ), λ2
u (λ2

l ) and λu (λl) the upper (lower) tail dependence
coefficients of C1, C2 and C, respectively. Then

λu = αλ1
u + (1− α)λ2

u and λl = αλ1
l + (1− α)λ2

l . (4.42)

Since C is a copula its tail dependence coefficients can be computed using
equations (3.14) and (3.15), respectively:

λu = lim
u→1−

1− 2u+ C (u, u)

1− u

= lim
u→1−

1− 2u+ αC1 + (1− α)C2

1− u

= α lim
u→1−

1− 2u+ C1 (u, u)

1− u
+ (1− α) lim

u→1−

1− 2u+ C2 (u, u)

1− u
= αλ1

u + (1− α)λ2
u

and

λl = lim
u→0+

C (u, u)

u

= lim
u→0+

αC1 + (1− α)C2

u

= α lim
u→0+

C1 (u, u)

u
+ (1− α) lim

u→0+

C2 (u, u)

u

= αλ1
l + (1− α)λ2

l . �

Remark 45. Let C1 and C2 be two copulas satisfying Assumption 2. If we
assume that the copula C associated with the joint distribution of (Li, Ls) is
a convex combination of C1 and C2 such that

C (u, v) := αC1 (u, v) + (1− α)C2 (u, v) , u, v, α ∈ (0, 1) ,

then the function g (v, u) := αg1 (v, u) + (1− α) g2 (v, u) (where gi (v, u) :=
∂Ci(u,v)

∂u
, i ∈ {1, 2}) is invertible with respect to the parameter v.

From remark 45 we have that

g (v, u) = αg1 (v, u) + (1− α) g2 (v, u) .

Given Assumption 2, g1 and g2 are strictly increasing with respect to v (see
Remark 28). This implies, that g (v, u) is also strictly increasing with respect
to v and therefore invertible. Hence by Theorem 7 the formula for CoV aRs|L=l

α ,
under a convex combination of two copulas, is given by:

CoV aRs|L=l
α = F−1

s

(
g−1 (α, Fi (l))

)
, ∀l ∈ R, α ∈ (0, 1) , (4.43)

where

g (v, u) =
∂C (u, v)

∂u
= αg1 (v, u) + (1− α) g2 (v, u) .
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Example 8 (Convex combination of Clayton and Gumbel copula). Denote
with C the convex combination of the Clayton Copula CCl

θ1
and the Gumbel

copula CGu
θ2

C (u, v) := αCCl
θ1

(u, v) + (1− α)CGu
θ2

(u, v) , α ∈ (0, 1)

For the Clayton copula CCl
θ1

(u, v) =
(
u−θ1 + v−θ1 − 1

)− 1
θ1 we have:

g1 =
∂CCl

θ1
(u, v)

∂u
= u−θ1−1

(
u−θ1 + v−θ1 − 1

)− θ1+1
θ1 , λu = 0 and λl = 2

− 1
θ1 .

By Lemma 44, the upper tail dependence coefficient of C are given by

λu = α · 0 + (1− α)
(

2− 2
1
θ2

)
= (1− α)

(
2− 2

1
θ2

)
.

The copula C has thus a positive upper tail dependence coefficient and is hence
appropriate for the analysis of systemic risk contribution.

We have

g (v, u) =
∂C (u, v)

∂u

= α
∂CClθ1 (u, v)

∂u
+ (1− α)

∂CGuθ2 (u, v)

∂u

= α

(
u−θ1−1

(
u−θ1 + v−θ1 − 1

)− θ1+1
θ1

)

+ (1− α)

[
e

(
−((− ln(u))θ2+(− ln(v))θ2)

1
θ2

)
·
(

(− ln (u))θ2 + (− ln (v))θ2
)− θ2−1

θ2 · (− ln (u))θ2−1

u

]
.

(4.44)

g (v, u) is strictly increasing with respect to v and hence invertible. Based on
this we derive the following corollary of Theorem 7.

Corollary 20 (Hakwa, Jäger-Ambrożewicz, and Rüdiger [2015]). If the copula
C of (Li, Ls) is a convex combination of the Clayton and the Gumbel Copula,
namely

C (u, v) := αCCl
θ1

(u, v) + (1− α)CGu
θ2

(u, v) , α ∈ (0, 1) , θ1, θ2 > 0,

then for a given l ∈ R

CoV aRs|L=l
α = F−1

s (α̃) , (4.45)

where α̃ is the solution of the equation g
(
α̃, F−1

i (l)
)

= α and g is given by
(4.44),
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Remark 46 (An Expression of Conditional Quantile in Terms of Copula).
Under assumption 2, Theorem 7 can be rewritten to give an expression of the
conditional quantile in terms of copula.

In fact, let U, V be two standard uniformly distributed random variables. Let
C be the copula of (U, V ), then for a fixed u ∈ (0, 1) we have for any α ∈ (0, 1)

Pr
(
V ≤ g−1 (α, u) |U = u

)
= α,

with

g (v, u) =
∂C (u, v)

∂u
.

This means, that g−1 (α, u) is the α-(conditional) quantile of the distribution
of V |U = u.

Now assume two random variables X and Y satisfying Assumption 2 with
distribution functions F and G, respectively. Let C be the copula of X and Y .
Set V := G (Y ) given U := F (X). If q1

α is the α-quantile of the distribution
of Y given X = x, i.e.

Pr
(
Y ≤ q1

α|X = x
)

= α,

then from Theorem 7 we have:

q1
α = G−1

(
g−1 (α, u)

)
,

where g (v, u) := ∂C(u,v)
∂u

.



Chapter 5

Alternative Models for the

Measurement of Systemic Risk

Contribution

5.1 Some Critical Notes on CoV aR
s|Li=l
α

In this section, we first highlight certain gaps presented by the CoV aR-method.
Then, by making some modifications in the initial definition of Brunnermeier
and Adrian [2011] in order to cover these gaps, we define alternative risk mea-
sures that are more appropriate for the analysis of systemic risk.

5.1.1 ∆CoV aR
s|i
α may not captures Tail Dependence Ef-

fects

It is well known that the main idea of the measurement of systemic risk con-
tribution using the ∆CoV aR

s|i
α is to capture the effect of tail dependence (see

Brunnermeier and Adrian [2014]). However, the initial definition of ∆CoV aR
s|i
α

shows in some cases abnormal responses to the tail dependence. This has been
already observed via simulation studies by Jäger-Ambrożewicz [2010]. We
demonstrate here that ∆CoV aR

s|i
α , as defined by Brunnermeier and Adrian

[2011] (see definition refd4) may not be sensitive to tail dependence effects.
We do this, by defining a case in which ∆CoV aR

s|i
α does not take into account

tail dependence coefficients.

From Proposition 4.4.3 we know that it is possible to construct copula using
convex combinations of two or more copulas. Based on this we define the copula
Ch as follows:

83
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Definition 19.

Ch
ρ,θ (u, v) := (1− θ)CGau

ρ (u, v) + θM (u, v) . θ ∈ (0, 1) , (5.1)

where CGau and M denote the Gaussian copula and the comonotonicity copula,
respectively.

By Equation (4.42) we have that the tail dependence coefficient λhu of Ch is
given by:

λhu = θλGauu + (1− θ)λMu
= (1− θ) · 0 + θ · 1

= θ. (5.2)

The two parameter ρ and θ of Ch have different functions:

• θ controls the tail dependence while

• ρ controls the linear dependence.

So, using Ch, we can precisely specify the tail dependence as well as the
dependence around the means.

From Theorem 7 we know that. for a given copula C, if

g (v, u) :=
∂C (u, v)

∂u

is invertible with respect to v. Then

CoV aRs|i
α (l) = F−1

s

(
g−1 (α, Fi (l))

)
.

The function g associated with Ch is given by

g (v, u) :=
∂Ch (u, v)

∂u

=
∂
[
(1− θ)CGau

ρ (u, v) + θM (u, v)
]

∂u

=
∂
[
(1− θ)CGau

ρ

]
∂u

+
∂ [θM (u, v)]

∂u

= (1− θ)
∂CGau

ρ

∂u
+ θ

∂M (u, v)

∂u

= (1− θ)

[
Φ

(
Φ−1 (v)− ρΦ−1 (u)√

1− ρ2

)]
+ θ

∂M (u, v)

∂u
.

Note that

∂CM (u, v)

∂u
=

{
1 if u < v

0 if u > v.
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Assumption 3. For simplification reason, we only assume the case where
u < v.

The function g becomes then:

g (v, u) = (1− θ) ·

[
Φ

(
Φ−1 (v)− ρΦ−1 (u)√

1− ρ2

)]
+ θ. (5.3)

By setting g (v, u) = α and solving for v, we obtain

(1− θ) ·

[
Φ

(
Φ−1 (v)− ρΦ−1 (u)√

1− ρ2

)]
+ θ = α

⇔ Φ

(
Φ−1 (v)− ρΦ−1 (u)√

1− ρ2

)
=
α− θ
1− θ

⇔ Φ−1 (v)− ρΦ−1 (u)√
1− ρ2

= Φ−1

(
α− θ
1− θ

)
⇔ Φ−1 (v)− ρΦ−1 (u) = Φ−1

(
α− θ
1− θ

)
·
√

1− ρ2

⇔ Φ−1 (v) = Φ−1

(
α− θ
1− θ

)
·
√

1− ρ2 + ρΦ−1 (u)

⇔ v = Φ

[
Φ−1

(
α− θ
1− θ

)
·
√

1− ρ2 + ρΦ−1 (u)

]
.

This leads to the following corollary of the Theorem 7.

Corollary 21. Let

Ch
ρ,θ (u, v) := (1− θ)CGau

ρ (u, v) + θM (u, v) , θ ∈ (0, 1)

be the copula associated with the joint distribution of (Li, Ls). Then for all
l ∈ R and a given α > θ, α ∈ [0, 1],

CoV aRs|i
α (l) = F−1

s

(
Φ

[
Φ−1

(
α− θ
1− θ

)
·
√

1− ρ2 + ρΦ−1 (Fi (l))

])
(5.4)

Remark 47. Equation (5.4) shows that CoV aRs|i
α (l) under Ch generalizes the

CoV aR
s|i
α (l) under Gaussian copula by accounting for tail dependence through

the parameter θ. In fact, if θ = 0 (i.e. there is no tail dependence) then
CoV aR

s|i
α (l) under Ch and CoV aRs|i

α (l) under Gaussian copula coincides (see
equation (4.12)).

Assume that the loss Ls of the financial system follows a normal distribution
with parameter µs = E (Ls) and σs =

√
V ar (Ls), i.e. Ls ∼ N (µs, σs). For
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that setting

∆CoV aRs|Li=i
α = CoV aRs|Li=V aRiα

α − CoV aRs|Li=µi
α

= CoV aRs|i
α

(
V aRi

α

)
− CoV aRs|i

α (µi)

= F−1
s

(
Φ

[
Φ−1

(
α− θ
1− θ

)
·
√

1− ρ2 + ρΦ−1
(
Fi
(
V aRi

α

))])
− F−1

s

(
Φ

[
Φ−1

(
α− θ
1− θ

)
·
√

1− ρ2 + ρΦ−1 (Fi (µi))

])
= Φ−1

(
α− θ
1− θ

)
·
√

1− ρ2 + ρΦ−1
(
Fi
(
V aRi

α

))
− µs

−
[
Φ−1

(
α− θ
1− θ

)
·
√

1− ρ2 + ρΦ−1 (Fi (µi)) + µs

]
= ρ

[
Φ−1

(
Fi
(
V aRi

α

))
− Φ−1 (Fi (µi))

]
. (5.5)

We see that the parameter θ has no effect on ∆CoV aR
s|Li=i
α . This shows that

∆CoV aR
s|Li=i
α is, in this setting (copula Ch and normally distributed Ls),

insensitive to tail dependence.

Conclusion 1. From the previous analysis, we conclude that ∆CoV aR
s|Li=l
α

in general does not capture the variations in tail risk.

5.1.2 ∆CoV aR
s|Li=l
α is not Consistent with the Notion Sys-

temic Risk

Recall that the modeling of systemic risk contribution through the CoV aR-
method builds on the consideration of the notion of systemic risk in a narrow
sense. This assume that the initial shock that leads to a systemic risk is the
default of one single financial institution (see Assumption 1). That is, in the
case we analyze the systemic risk contribution of the financial institution i.
The default of the financial institution i is supposed to be the initial shock
that leads to systemic risk contribution from the financial institution i to the
financial system s.

Furthermore, the CoV aR-Method also implicitly assumes the Value-at-Risk
as measure for the regulatory capital. Therefore, following Definition 2, the
financial institution i is assumed to be in default, if its realized loss l is greater
than its Value-at-Risk:

l > V aRi
α. (5.6)

Recall that in Brunnermeier and Adrian [2011] the default of the financial
institution is characterized by the situation when Li = V aRi

α (C (Li) =
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Loss

V aRiα

Default regionSafely region

{Li = V aRi
α} in definition 8). This condition does not satisfy equation 5.6

(default condition ). In fact, a loss equal to the Value-at-Risk does not lead
to a default. Since, the financial institution i is supposed to hold minimum
capital (regulatory capital) equal to its Value-at-Risk (V aRi

α). Therefore, any
losses smaller or equal to V aRi

α is absorbed. Such losses can not therefore lead
to the default of i and hence to a systemic risk contribution from i to s.

Conclusion 2. The initial definition of ∆CoV aR
s|Li=l
α (as defined in Brunner-

meier and Adrian [2011], here definition 8) can not capture contagion effects.
It is thus not an appropriate model for the analysis of systemic risk contribu-
tion.

5.2 Alternative Measures

We present in the following two risk measures that are consistent with the
notion of systemic risk contribution. These results are also presented in Hakwa,
Jäger-Ambrożewicz, and Rüdiger [2015].

These alternative measures built, like ∆CoV aR, on the term CoV aR
s|C(Li)
α ,

but differ fundamentally in the way the condition C (Li) is formulated.
As first, we define a measure that is based on the commonly used and

well-known risk measure expected shortfall (ES).

Definition 20 (Hakwa, Jäger-Ambrożewicz, and Rüdiger [2015]).

ECoV aRs|i
α := E

(
CoV aRs|i

α

(
Li
)
|Li ≥ V aRi

α

)
(5.7)

∆ECoV aRs|i
α := E

(
CoV aRs|i

α

(
Li
)
|Li ≥ V aRi

α

)
− CoV aRs|Li=V aRiα

α (5.8)

The conditioning event Li ≥ V aRi
α ensures the integration of the default

condition. The advantage of this model is that it integrates all information
about the distribution of losses that can not be hedged with the regulatory
capital (loss excess). This allows to estimate the financial system loss induced
by the default of the financial institution i.

Remark 48. The estimated financial system loss induced in case of the default
of a given financial institution, can be used as measure for the identification
of that financial institution’s systemic importance. Furthermore, regulatory



88 5.2. ALTERNATIVE MEASURES

authorities such as can use the ECoV aR
s|i
α to make a ranking of financial

institutions with respect to their systemic importance.

Proposition 4 (Hakwa, Jäger-Ambrożewicz, and Rüdiger [2015]).

ECoV aRs|i
α =

1

1− Fi (V aRi
α)

∫ ∞
V aRiα

CoV aRs|i
α (l) fi (l) dl. (5.9)

Proof. From basic probability theories (as in Klenke [2008], Definition 8.9),
we know that

ECoV aRs|i
α := E

(
CoV aRs|i

α

(
Li
)
|Li ≥ V aRi

α

)
=
E
(
CoV aR

s|i
α (Li)1{Li≥V aRiα}

)
Pr (Li ≥ V aRi

α)

=
1

1− Fi (V aRi
α)

∫ ∞
V aRiα

CoV aRs|i
α (l) fi (l) dl. �

Remark 49. We can assume different confidence level for the Value-at-Risk
of the financial institution i (e.g. β) and for the CoV aR (e.g. α, α 6= β). The
expression of ECoV aR becomes then

ECoV aRs|i
α =

1

1− β

∫ ∞
V aRiβ

CoV aRs|i
α (l) fi (l) dl. (5.10)

Let us consider the figure 5.1.2 and the initial definition of ∆CoV aR
s|i
α , here

Definition 8:

∆CoV aRs|i
α := CoV aRs|Li=V aRiα

α − CoV aRs|Li=µi
α .

If we replace in the first term of "=" by a ">" we ensures that the considered
region is in the distressed region in the Figure 5.6). This means that all the
information about the distribution of the losses of the financial institution i ,
that can not be hedged with the regulatory capital (loss excess) are integrated.
This leads to the definition of the second alternative risk measure.

Definition 21 (Hakwa, Jäger-Ambrożewicz, and Rüdiger [2015]).

∆CoV aR>
α = CoV aRs|Li>V aRiα

α − CoV aRs|Li=V aRiα
α . (5.11)

The new challenge here is the computing of the value CoV aRs|Li>V aRiα
α .

Definition 22 (Hakwa, Jäger-Ambrożewicz, and Rüdiger [2015]). Assume
that Li and Ls both have densities that satisfy Assumption 2. Then for a given
α ∈ (0, 1) and for a fixed l, CoV aRs|Li>l

α is defined as:

CoV aRs|Li>l
α := inf

{
h ∈ R : Pr

(
Ls > h|Li > l

)
≤ 1− α

}
= inf

{
h ∈ R : Pr

(
Ls ≤ h|Li > l

)
≥ α

}
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CoV aR
s|Li>V aRiα
α is then implicitly defined by

Pr
(
Ls ≤ CoV aRs|Li>V aRiα

α |Li > V aRi
α

)
= α, (5.12)

which is a special case of the generalized CoV aR
s|C(Li)
α (see equation (2.13)),

in which the conditioning event is the default of the financial institution i (i.e.
C (Li) = {Li > V aRi

α} .

Remark 50 (Hakwa, Jäger-Ambrożewicz, and Rüdiger [2015]). Given As-
sumption 2 the function

J (u, v) := u− C (u, v) = C (u, 1)

is for each fixed v ∈ [0, 1] strong monotone increasing and hence invertible as
a function of u. In fact from the boundary condition for 2-dimensional copula
(see Definition 10) follows

J (u, v) = u− C (u, v) = C (u, 1)− C (u, v) . (5.13)

Since we assume Assumption 2, the copula C has a strictly positive density c
(see Remark 27). By taking this into account and applying some calculus rules
we obtain

J (u, v) = C(u, 1)− C(u, v)

=

∫ u

0

∫ 1

0

c (x, y) dxdy −
∫ u

0

∫ v

0

c (x, y) dxdy

=

∫ u

0

(∫ 1

0

c (x, y) dy

)
dx−

∫ u

0

(∫ v

0

c (x, y) dy

)
dx

=

∫ u

0

(∫ 1

0

c (x, y) dy −
∫ v

0

c (x, y) dy

)
dx

=

∫ u

0

(∫ 1

v

c(x, y)dy

)
dx. (5.14)

So that, for a fixed v ∈ [0, 1], the function J (u, v) is strictly increasing and
thus invertible with respect to u. Since because of Assumption 2 the density c
is strict positive (see Remark 27).

Define the function

j (u, v) :=
J(u, v)

1− v
. (5.15)

j (u, v) is also for each v fixed invertible as a function of u. Using this result
we introduce the following theorem for the calculation of CoV aRLi>l

α .
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Theorem 22 (Hakwa, Jäger-Ambrożewicz, and Rüdiger [2015]). Under As-
sumption 2,

CoV aRLi>l
α = F−1

s

(
j−1(α, Fi(l))

)
. (5.16)

Proof. Recall that for a given l ∈ R, CoV aRLi>l
α is implicitly defined by

Pr
(
Ls ≤ CoV aRLi>l

α |Li > l
)

= α.

By setting U := Fs (Ls), V := Fi (L
i), u := Fs

(
CoV aRLi>l

α

)
and v := Fi (l)

we obtain

Pr
(
Ls ≤ CoV aRLi>l

α |Li > l
)

= Pr (U ≤ u|V > v)

=
Pr (U ≤ u, V > v)

Pr (V > v)

=
Pr (U ≤ u)− Pr (U ≤ u, V ≤ v)

1− Pr (V ≤ v)

=
u− C (u, v)

1− v
= j (u, v) .

We therefore have Pr
(
Ls ≤ CoV aRLi>l

α |Li > l
)

= j (u, v) = α. It follows that

u = Fs

(
CoV aRLi>l

α

)
= j−1 (α, v) .

Thus

CoV aRLi>l
α = F−1

s

(
j−1 (α, Fi(l))

)
. � (5.17)

Remark 51. Similarly to CoV aRLi=l
α , we observe that CoV aRs|Li>l

α is also
expressed in form of a quantile of the loss distribution Fs. We have

CoV aRs|Li>l
α = F−1

s (ᾱ) = V aRs
ᾱ, (5.18)

with ᾱ := j−1 (α, Fi (l)) .

We provide here for some given copula C the function J . For this, we need
to express the copula density c of the considered copula C.

Recall that, due to Assumption 2, all copulas considered here have a strictly
positive density c (see Remark 27).

c (u, v) =
∂2C (u, v)

∂u∂v
. (5.19)

Example 9 (Gaussian Copula).
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By equation (5.19) the density of the Gaussian copula is given by

cGauρ (u, v) =
∂2CGau

ρ (u, v)

∂u∂v

=

∂2

[∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞
1

2π
√

1−ρ2
exp

(
2ρst−s2−t2

2(1−ρ2)

)
dsdt

]
∂u∂v

=
1√

1− ρ2
exp

(
−1

2

(
x2 − 2ρxy + y2

1− ρ2

)
− x2 − y2

)
with x = Φ−1 (u) and y = Φ−1 (v). We have thus

J (u, v) =

∫ u

0

∫ 1

v

1√
1− ρ2

e

(
− 1

2

(
Φ−1(t)2−2ρΦ−1(t)Φ−1(s)+Φ−1(s)2

1−ρ2

)
−Φ−1(t)2−Φ−1(s)2

)
dtds.

Example 10 (Gumbel Copula). By equation (5.19) the density of the Gumbel
copula is given by

cGuρ (u, v) =
∂2CGu

ρ (u, v)

∂u∂v

=

∂2

[
exp

(
−
[
(−ln (u))θ + (−ln (v))θ

] 1
θ

)]
∂u∂v

=

[− ln (u)− ln (v)]θ−1 e−[(− ln(u))θ+(− ln(v))θ]
1
θ

([
(− ln (u))θ + (− ln (v))θ

] 1
θ

+ θ − 1

)
uv

([
(− ln (u))θ + (− ln (v))θ

]2− 1
θ

) .

We have thus

J (u, v) =

∫ u

0

∫ 1

v

[− ln (t)− ln (s)]θ−1 e−[(− ln(t))θ+(− ln(s))θ]
1
θ

([
(− ln (t))θ + (− ln (s))θ

] 1
θ

+ θ − 1

)
st

([
(− ln (t))θ + (− ln (s))θ

]2− 1
θ

) dtds.

Example 11 (Clayton Copula). By equation (5.19) the density of the Clayton
copula is given by

cClρ (u, v) =
∂2CCl

ρ (u, v)

∂u∂v

=
∂2
[(
u−θ + v−θ − 1

)− 1
θ

]
∂u∂v

= (θ + 1) (uv)−(θ+1) (u−θ + v−θ − 1
)− 2θ+1

θ .

We have thus

J (u, v) =

∫ u

0

∫ 1

v

(θ + 1) (st)−(θ+1) (s−θ + t−θ − 1
)− 2θ+1

θ dtds.
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Chapter 6

Computing CoV aRs|iα (l) under

Elliptical Distribution

One of the main challenges for the regulatory authorities in the aftermath of
the last financial crisis is to define pragmatical and practicable risk concepts
for the control and the regulation of systemic risks. They need for this purpose
risk models that on one hand can capture the macro dimension of systemic
risk, and on the other hand can be easily implemented and audited. Since
regulatory rules or best-practice recommendations require models that can be
easily implemented and audited, the consideration of models that are based on
CoV aR

(s|i)
α (l) under elliptical distribution is a reasonable trade-off. Although

the class of elliptical distributions can be seen as a sub class of distributions
that can be generated using copula (Namely, the class of elliptical copula
(see Subsection 4.4.1) ), They have the particularity, that they share many of
the analytical properties of the multivariate normal distribution and remain
flexible enough to model extreme co-movements as those observed during the
last financial crisis. This fact is highly important for the consistent use of
elliptical distributions as model for the analysis of systemic risk contribution.

As we will see here, the computation of CoV aR(s|i)
α (l) under elliptical dis-

tributions is based on parameters that are widely used in financial industry.
Furthermore, the quantitative risk-management techniques based on elliptical
distributions are well studied and in general compatible with the standard
concepts used in modern risk management. For example, Embrechts et al.
[1999] showed that the Value-at-Risk is coherent for elliptically distributed
losses, Kamdem [2004] provided analytic formulas for the computation of the
Value-at-Risk and Expected-Shortfall for linear and quadratic portfolios of el-
liptically distributed risk factors, Chamberlain [1983] showed that portfolio
analysis based on the mean-variance analysis of Markowitz works only if the
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6.1. ELLIPTICAL DISTRIBUTION: DEFINITION AND BASIS

PROPERTIES

returns assume elliptical distributions.

6.1 Elliptical Distribution: Definition and basis

Properties

Definition 23 (cf. Embrechts et al. [2003], Definition 5.1). Let X be a n-
dimensional random vector. For some µ ∈ Rn and some non-negative definite,
symmetric matrix Σ ∈ Rn, if the characteristic function ϕX−µ (t) of X − µ is
a function of the quadratic form t′Σt, i.e.

ϕX−µ (t) = φ (t′Σt) , t ∈ Rn,

then we say that X has an elliptical distribution with location parameter µ,
dispersion parameter Σ and characteristic generator φ. We denote this by
X ∼ En (µ,Σ, φ).

Elliptical distributions can also be defined as affine transformations of spher-
ical distributions.

Definition 24 (McNeil et al. [2005], Definition 3.18). A random vector Z =

(Z1, . . . , Zn)′ has a spherical distribution, if for every orthogonal matrix O ∈
Rn×n (i.e. O′O = I ′) OZ and Z have the same distribution. We denote this
by

OZ d
= Z. (6.1)

Recall that orthogonal matrices can characterize rotations and/or a reflec-
tions. Equation (6.1) implies also that spherical distributions are invariant
under rotations and reflections. If we assume O = −I, then we have

−Z = −IZ d
= Z. (6.2)

Equation 6.2 shows that Z is symmetric with respect to its origin. This prop-
erty plays an important role in the characterization of the characteristic func-
tion of spherical distributions.

Theorem 23 (Fang et al. [1990], Theorem 2.1). The random variable Z has
a spherical distribution if there exists a functions φ of a scalar variable such
that its characteristic function ψZ (t) satisfies

ψZ (t) = φ (t′t) , t ∈ Rn. (6.3)
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Note that t′t = t21 + t22 + · · · + t2n = ‖t‖2
2, where ‖‖2 denotes the Euclidean

norm. From this we can rewrite 6.3 as

ψZ (t) = φ
(
‖t‖2

2

)
, t ∈ Rn.

The function φ is called characteristic generator of Z. We follow (cf McNeil
et al. [2005], Section 3.3) and use the notation

Z ∼ Sn (φ) ,

to indicate that Z is a n-variate spherical distributed random variable with
characteristic generator φ.

A spherical distributions can also be represented as a mixture of standard
uniformly distributed random variable. In fact let U be a random variable
which is uniformly distributed on the unit sphere surface SnL2 := {x ∈ Rn : ‖x‖2 = 1}
. Then every Z ∼ Sn (φ) can be represented stochastically as follow

Z
d
= RU, (6.4)

where R ≥ 0 is a random variable independent of U (cf. McNeil et al. [2005],
Theorem 3.22.).

Definition 25 (Fang et al. [1990], Definition 2.2). A n-variate random variable
X is said to have an elliptical distribution with location parameter µ ∈ Rn and
dispersion parameter Σ ∈ Rn×n if

X
d
= µ+ A′Z, with A′A = Σ,

where µ ∈ Rn and A ∈ Rk×n represents a linear shift and a linear transforma-
tion of the spherical random variable Z, respectively.

From equation (6.4) we have the following stochastic representation for an
elliptical distribution

X
d
= µ+RA′U (6.5)

Furthermore, it holds (cf. Fang et al. [1990], Corollary 2):

Q (X) := (X − µ)′Σ−1 (X − µ)
d
= R2.

Note that the existence of the density of a random vector X ∼ En (µ,Σ, φ)

is not always guaranteed, but if it exists, it must be of the following form(cf.
Fang et al. [1990], Equation (2.43))

f (x) = |Σ|−
1
2 gn

(
(x− µ)′Σ−1 (x− µ)

)
(6.6)

= |Σ|−
1
2 gn (Q (x)) , x ∈ Rn,
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The term |Σ| denotes here the determinant of Σ. The function gn : R+ → R+

is called density generator. Some times the expression X ∼ En (µ,Σ, gn) is
used instead of X ∼ En (µ,Σ, φ) (cf. Fang et al. [1990], Section 2.2.3).

The density generator gn must satisfy the condition∫ ∞
0

xn/2−1gn (x) dx <∞. (6.7)

In fact if R has a density fR. The relation between gn and fR is given by
the following theorem.

Theorem 24 (cf. Fang et al. [1990], Theorem 2.9). If X d
= RU ∼ Sn (φ), then

X possesses a density generator gn if and only if R has a density fR, and the
relationship between gn and fR is as follows:

fR (x) =
2πn/2

Γ (n/2)
xn−1gn

(
x2
)

for x ≥ 0. (6.8)

From equation (6.8) we have that

gn
(
x2
)

= x1−nfR (x)
Γ
(
n
2

)
2πn/2

. (6.9)

Let FR be the distribution function of R, then

FR (x) =

∫ x

0

fR(z)dz

=

∫ x

0

2π
n
2

Γ
(
n
2

)zn−1gn
(
z2
)
dz

=
2π

n
2

Γ
(
n
2

) ∫ x

0

zn−1gn
(
z2
)
dz

=
π
n
2

Γ
(
n
2

) ∫ x

0

sn/2−1gn (s) ds,

so the function gn must met the condition (6.7).

Furthermore, it must hold∫ ∞
0

π
n
2

Γ
(
n
2

)xn/2−1gn (x) dx = 1.

The characteristic generator φ and the density generator gn (and thus the
Definition 23 and the Definition 25) can be related by the following equality∫

Rn
e(itx)gn (x′x) dx = φ (t′t) . (6.10)

This is the characteristic function of a n-variate elliptical random vector X
with µ = 0, Σ = In and density generator gn (X ∼ En (0, In, gn)).
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Proposition 5 (cf. McNeil et al. [2005], Proposition 3.28.). Let X ∼ En (µ,Σ, φ)

then

Z := Σ−
1
2 (X − µ) ∼ Sn (φ)

and if the spherical vector Z has a density generator gn, then X := µ+
√

ΣZ.

has a density

f (x) =
1

|Σ|
1
2

gn
(
(x− µ)′Σ−1 (x− µ)

)
.

Remark 52. If µ = 0 and Σ = In we have

f (x) = gn (Q (x)) = gn
(
x2
)
.

This corresponds to the expression of the density of a spherical random variable.

Remark 53. For each fixed constant constant c > 0,

E (c) = {x : Q (x) = c}

is an ellipse centered at µ.

If we assume two constants c1 and c2 such that c1 > c2 then E (c1) is in-
side E (c2) because gn is by its definition decreasing. Also the iso-probability
(i.e {x : f (x) = c}) contours of elliptical distributions are ellipsoids (see. Fig-
ure 6.1). It is for this reason that this family of distributions is called ”elliptical
distribution”.

Figure 6.1: Gaussian and t-ellipse
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The mean and the covariance vector of an elliptically distributed random
variable X ∼ En (µ,Σ, φ) is given by (Fang et al. [1990], Theorem 2.17)

E [X] = µ, Cov [X] =
E [R2]

n
Σ. (6.11)

Therefor, a necessary condition for the existence of Cov [X] is that E [R2] <∞.
Recall that the covariance, Cov [X1, X2], of two random variables X1 and

X2 is given by

Cov [X1, X2] = E [(X1 − µ1) (X2 − µ2)] .

Where µj = E [Xj] , j ∈ {1, 2} denotes the mean of the random variable Xj.
The so defined covariance Cov [X1, X2] specifies how X1 and X2 move together
around their respective means µ1 and µ2.

By normalizing the covariance Cov [X1, X2] with the standard deviations σ2
1

and σ2
2, with σ2

j = V ar [Xj] := E
[
(Xj − µj)2] , j ∈ {1, 2} of X1 and X2, we

obtain the linear correlation coefficient of X1 and X2.
So, let X = (X1, X2) ∼ E2 (µ,Σ, g) be a bivariate elliptically distributed

random vector with Σ =

(
Σ11 Σ12

Σ21 Σ22

)
. So, if Cov [X] exists and V ar [X1] , V ar [X2] <

∞, then the linear correlation coefficient ρ of X by can be expressed as follows

ρ =
Cov [X]√

V ar [X1]
√
V ar [X2]

. (6.12)

6.1.1 Examples

Bivariate Normal Distribution

The standard (or spherical) normal distribution has the following stochastic
representation (cf. Embrechts et al. [1999], Page 9)

X
d
= RU,

where U is a random variable that is uniformly distributed on the unit sphere
surface SnL2 := {x ∈ Rn : ‖x‖2 = 1} and the random variable R satisfies

R
d
=
√
χ2
n,

where χ2
n denotes a chi-squared random variable with degree of freedom n.

Recall that the density of χ2
n is given by

fχ2
n

(x) =


x
n
2
−1e−

x
2

2
n
2 Γ(n

2
)

, x > 0

0 , x ≤ 0.



CHAPTER 6. COMPUTING COV AR
S|I
α (L) UNDER ELLIPTICAL

DISTRIBUTION 99

We can compute the density fR of R through the transformation rule for
density functions (cf. e.g. Klenke [2008], Theorem 1.101). We obtain

fR (x) = 2x · fχ2
n

(
x2
)
.

By equation (6.9) we have that

g1

(
x2
)

=
1√
2π
e−

x2

2 .

This implies that:

g1 (x) =
1√
2π
e−

x
2 .

And, from Remark 52 follows that the density of the univariate spherical dis-
tribution associated with the normal distribution is

f (x) = g1

(
x2
)

=
1√
2π
e−

x2

2 .

Since E [R2] = E [X 2
n ] = n, it follows from equation (6.11) that

Cov [X] = Σ. (6.13)

Bivariate t-Distribution

The density generator of the n-multivariate t distribution is given by (cf. Mc-
Neil et al. [2005], page 93):

g (x) = (πν)−
n
2

Γ
(
ν+n

2

)
Γ
(
ν
2

) (
1 +

x

ν

)− ν+n
2
.

Hence, the density of a n-multivariate t-distributed random variable X with
location parameter µ = 0, dispersion parameter Σ = In (spherical or standard
t-distribution: X ∼ t (0, In)) is given by

f (x) = (πν)−
n
2

Γ
(
ν+2

2

)
Γ
(
ν
2

) (1 +
x2

ν

)− ν+n
2

.

The density function of a t distributed random variable with location param-
eter µ and dispersion parameter Σ is

f (x) = |Σ|−
1
2 (πν)−

n
2

Γ
(
ν+n

2

)
Γ
(
ν
2

) (
1 +

(x− µ)′Σ−1 (x− µ)

ν

)− ν+n
2

.

A n-multivariate t distributed random variable Y with location parameter
µ = 0 and dispersion parameter σ = In and degree of freedom ν ∈ N (Y ∼
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tn (0, In, ν)) has the following stochastic representation (cf. Fang et al. [1990],
Example 2.5)

Y =

√
νZ

S
=

√
νRU

S
= R̂U, with R̂ =

√
νR

S
,

where Z ∼ N (0, In), R ∼ Xn and S ∼ Xν . And U and s are independent.

Remark 54. It holds

Y =

√
νZ

S
d
=

Z√
S2

ν

.

Hence, for ν → ∞ we have Y d
= Z, i.e. the multivariate t distribution tends

to the normal distribution when ν tends to infinity.

Remark 55. Note that:

R̂√
n

=

√
R2

n√
S2

ν

=

√
R2

n
S2

ν

.

Since R2 ∼ X 2
n and S2 ∼ X 2

ν , we have according to the definition of the F-
distribution1 that R̂2

n
is F-distributed with parameters n and µ:

R̂2

n
∼ F (n, ν)

Hence,

E
(
R̂2
)

=
νn

ν − 2
, ν > 2.

Furthermore, it follows from equation (6.11) that

Cov (Y ) =
E
(
R̂2
)

n
Σ =

1

n

νn

ν − 2
Σ =

ν

ν − 2
Σ.

Therefore, the covariance of t-distribution is generally not equal to Σ, but it
converges to Σ when ν →∞.

6.2 Elliptical distribution and Extreme Depen-

dence

Starting from the requirement that a stochastic model has to be able to de-
scribe extreme dependency in order to be suitable for the modeling and the

1If X ∼ χ2
d1

and Y ∼ χ2
d2

are independent, then X/d1

Y/d2
∼ F(d1, d2)
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analysis of systemic risk contribution. It is important to precise when an el-
liptical distribution is tail-dependent. For this we rely on the work of Schmidt
[2002]. In Schmidt [2002], a characterization of tail-dependence for elliptical
distribution is provided by using the notion on of regularly varying functions.

Definition 26. A measurable function f : (0,∞) → (0,∞), is said to be
regularly varying with index α ∈ R if

lim
x→∞

f (tx)

f (x)
= tα for any t > 0.

Theorem 25 (Schmidt [2002]). A bivariate elliptically distributed random vec-

tor (X1, X2) ∼ E2 (µ,Σ, g) with positive definite matrix Σ =

(
Σ11 Σ12

Σ21 Σ22

)
and

stochastic representation (6.5) is tail-dependent if its density generator g is
regularly varying with index α > 0 and −α

2
− 1 < 0. Then the tail dependence

coefficient λ = λu = λl(see Definition 4) is given by

λ =

∫ r(ρ)

0
uα√
1−u2du∫ 1

0

uα√
1− u2

du
,

where ρ = Σ12/
√

Σ11

√
Σ22 and r (ρ) =

{
1 + (1−ρ)2

1−ρ2

}−1/2

.

Here, we have λ = λu = λl, this is a consequence of the fact that elliptical
distributions are symmetric.

Furthermore using Theorem 25 Schmidt [2002] showed that the normal dis-
tribution does not have positive tail dependence for ρ < 1 (Schmidt [2002],
Section 6.1). He also shows that all elliptically distributed random variables
which have density generator of the form:

g (x) = (πν)−
1
2
n Γ (N)

Γ
(
N − n

2

) (1 +
x

ν

)−N
, N >

n

2

(The so-called Pearson-type VII distribution (see Fang et al. [1990] Section 3.4)),
have positive tail dependence (cf. Schmidt [2002], Theorem 6.4).

Since the bivariate t-distribution is a special case of the class of symmetric
multivariate Pearson type VII distributions (Namely the case where N = ν+2

2
),

it follows that the t distribution has positive tail dependence.

From this we can argue that the t distribution is a suitable model for the
analysis of systemic risk contribution, while the normal distribution is not.
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6.3 Computing CoV aRs|i
α (l) when

(
Li, Ls

)
∼ E2 (µ,Σ, φ)

In this section we present a general formula for the computation a CoV aRs|i
α (l)

when assumes a bivariate elliptical distribution. We first recall the results of
the theory of elliptical distribution that will be use here.

Theorem 26 (cf. Fang et al. [1990]). Let X ∼ En (µ,Σ, φ), such that

X =

(
X1

X2

)
, µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, (6.14)

where µ1 ∈ Rm×1, Σ11 ∈ Rm×m and φ is the characteristic generator. Then
we have

X1 ∼ Em (µ1,Σ11, φ) and X2 ∼ En−m (µ2,Σ22, φ) .

This means that the marginal distributions of elliptical distributions are
also elliptical with the same characteristic generator.

We introduce in the following the characterization of the conditional dis-
tribution of elliptically distributed random vector. We first note that for an
elliptical distributed random vector X =

(
X1

X2

)
, the standard formulation of the

distribution function of X1 given X2 = x2, x2 ∈ R

FX1|X2=x2 (x1) = Pr (X1 ≤ x1|X2 = x2) (6.15)

=
Pr (X1 ≤ x1, X2 = x2)

Pr (X2 = x2)
, ∀x1 ∈ R

cannot be used here, because the condition {X2 = x2} is a zero-probability
event (i.e. Pr (X2 = x2) = 0). However, we can define, in the context of
Assumption 2, FX1|X2=x2 (x1) through a probability density function as follows:

FX1|X2=x2 (x1) =

∫ x1

−∞
fX1|X2=x2 (x) dx, (6.16)

where

fX1|X2=x2 (x1) =
fX1,X2 (x1, x2)

fX2 (x2)
. (6.17)

The denominator fX2 (x2) :=
∫∞
−∞ fX2,X1 (x2, v) dv is the marginal density of

X2, and we must assume it is strictly positive for every x2.

In fact, under Assumption 2 the conditional distribution function (6.15) can
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be defined as

Pr (X1 ≤ x1|X2 = x2) = lim
∆x→0

Pr (X1 ≤ x1|x2 < X2 ≤ x2 + ∆u)

= lim
∆u→0

Pr (X1 ≤ x1, x2 < X2 ≤ x2 + ∆u)

Pr (x2 < X2 ≤ x2 + ∆x)

≈ lim
∆u→0

∫ x1

−∞

(∫ x2+∆u

x2
fX2,X1 (u, v) du

)
dv

fX2 (x2) ∆u

≈ lim
∆u→0

∫ x1

−∞ fX2,X1 (x2, v) ∆udv

fX2 (x2) ∆u

=

∫ x1

−∞

fX2,X1 (x2, v)

fX2 (x2)
dv.

From now we use the notation X1|X2 = x2 to denote a random vector
possessing the density fX1|X2=x2 (as defined in (6.17)).

The following theorem gives the characterization of the distribution of X1

given that X2 assumes a value x (We write X1|X2 = x) when (X1, X2) is an
elliptical distributed random vector.

Theorem 27 (cf. Fang et al. [1990] Theorem 2.18). Let X ∼ En (µ,Σ, φ). If
we assume the partition (6.14), then we have

(X1|X2 = x) ∼ Em

(
µ̃, Σ̃, φ̃

)
,

with µ̃ = µ1 + Σ12Σ−1
22 (x− µ2) and Σ̃ = Σ11 − Σ12Σ−1

22 Σ21.

Notice that the generator φ̃ is in general not the same as φ. Thus from
Theorem 27 we have that, if two random variable X1 and X2 have a joint
elliptical distribution, then the conditional distribution of the random variable
X1 given X2 take a value x (X1|X2 = x)2 is again elliptical, but its type is not
necessary the same as that of X.

Remark 56 (Embrechts et al. [2003]). Notice that for a given elliptically dis-
tributed random variable X the representation En (µ,Σ, φ) is not unique. It
uniquely determines µ but Σ and φ are only determined up to a positive con-
stant. More precisely, if X ∼ En (µ,Σ, φ) and X ∼ En

(
µ̃, Σ̃, φ̃

)
,

µ̃ = µ, Σ̃ = cΣ, φ̃ (·) = φ
( ·
c

)
,

for some constant c > 0.

2 X1|X2 = x is a random vector having the distribution function ofX1 under the condition
that X2 = x.
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Remark 57. Let ρ be the correlation coefficient of Li and Ls, then the distri-
bution of Ls|Li = l is an elliptical distribution with scale parameter µ∗ and Σ∗

given by

µ∗ = µs + ρ

√
Σss√
Σii

(l − µi)

Σ∗ = Σss

(
1− ρ2

)
Proof. In fact from Theorem 27 we have that Ls|Li = l is univariate ellipti-
cally distributed with scale parameter µ∗ and Σ∗ given by

µ∗ = µs + ΣsiΣ
−1
ii (x− µs)

Σ∗ = Σss − ΣsiΣ
−1
ii Σis.

Consider the correlation coefficient ρ of Li and s (see equation 6.12). It holds

ρ : =
Cov (Li, Ls)√

V ar [Li]
√
V ar [Ls]

=
hΣis√

hΣi

√
hΣs

=
Σis√

Σii

√
Σss

=
Σsi√

Σii

√
Σss

.

It follows from this that

Σis = Σsi = ρ
√

Σii

√
Σss. (6.18)

Furthermore, we have that

µ∗ = µs + ΣsiΣ
−1
ii (x− µs)

= µs + ρ
√

Σii

√
ΣssΣ

−1
ii (x− µs)

= µs + ρ

√
Σss√
Σii

(l − µi)

and

Σ∗ = Σss − ΣsiΣ
−1
ii Σis

= Σss − ρ
√

Σii

√
ΣssΣ

−1
ii ρ
√

Σii

√
Σss

= Σss − ρ2Σss

= Σss

(
1− ρ2

)
. �
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Theorem 28. Assume that the distribution of (Li, Ls) is an elliptical distri-

bution with location parameter µ =
(
µi
µs

)
and scale parameter Σ =

(
Σii Σis

Σsi Σss

)
.

Let ρ be correlation coefficient of Li and Ls. If we assume Assumption 2, then

CoV aRs|i
α (l) = µs + ρ

√
Σss√
Σii

(l − µi) +
√
cΣss (1− ρ2)F−1

Z (α) ,

where FZ is the distribution function of a specific spherical random variable Z
and c > 0 is a constant.

Proof. From Theorem 27 we know that Ls|Li = l is univariate elliptically
distributed with scale parameter µ∗ and Σ∗ given by:

µ∗ = µs + ΣsiΣ
−1
ii (x− µs)

Σ∗ = Σss − ΣsiΣ
−1
ii Σis.

That is Ls|Li = l ∼ E1

(
µ∗,Σ∗, φ̃

)
.

By Remark 57 we have that

Ls|Li = l ∼ E1

(
µs + ρ

√
Σss√
Σii

(l − µi) ,Σss

(
1− ρ2

)
, φ̃

)
. (6.19)

Following Remark 56 we can rewrite Equation 6.19 as follows:

Ls|Li = l ∼ E1

(
µs + ρ

√
Σss√
Σii

(l − µi) , cΣss

(
1− ρ2

)
, φ′
)
,

where c > 0 is a constant and φ′ = φ̃
( ·
c

)
.

Furthermore, Proposition 5 allows us to represent stochastically the random
variable Ls|Li = l as follows:(

Ls|Li = l
) d

= µs + ρ

√
Σss√
Σii

(l − µi) +
√
cΣss (1− ρ2)Z (6.20)

where Z is a spherical random variable.
Due to Assumption 2 we have that the random variable (Ls|Li = l) has a

strictly positive density. We denote it by fs|i.
Let g∗ be the generator of Z, then by Remark 52 we have that the density

function fZ of Z is given by

fZ (x) = g∗
(
x2
)

and from Proposition 5 we have that

fs|i (x) =
1√

cΣss (1− ρ2)
g∗


x−

[
µs + ρ

√
Σss√
Σii

(l − µi)
]

√
cΣss (1− ρ2)

2


=
1√

cΣss (1− ρ2)
fZ

x−
[
µs + ρ

√
Σss√
Σii

(l − µi)
]

√
cΣss (1− ρ2)

 .
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The distribution function Fs|i of (Ls|Li = l) is thus given by:

Fs|i (x) =

∫ x

−∞
fs|i (u) du

=

∫ x

−∞

1√
Σ∗
fZ

u−
[
µs + ρ

√
Σss√
Σii

(l − µi)
]

√
cΣss (1− ρ2)

 du. (6.21)

By setting t =
x−

[
µs+ρ

√
Σss√
Σii

(l−µi)
]

√
cΣss(1−ρ2)

and apply the substitution rule of integration

theory to (6.21) we obtain

Fs|i (x) =

∫ x−
[
µs+ρ

√
Σss√
Σii

(l−µi)

]
√

cΣss(1−ρ2)

−∞
fZ (t) dt

= FZ

x−
[
µs + ρ

√
Σss√
Σii

(l − µi)
]

√
cΣss (1− ρ2)

 . (6.22)

FZ is the distribution function of Z.
Let us consider now Equation 2.14

Pr
(
Ls ≤ CoV aRs|Li=l

α |Li = l
)

= α, l ∈ R. (6.23)

Given Fs|i we can rewrite equation (6.23) as follows:

Fs|i

(
CoV aRs|Li=l

α

)
= α.

From Equation (6.22) it holds

Fs|i

(
CoV aRs|Li=l

α

)
= FZ

CoV aRs|Li=l
α −

[
µs + ρ

√
Σss√
Σii

(l − µi)
]

√
cΣss (1− ρ2)

 = α

Note that because of Assumption 2, we have that FZ is strictly increasing and
thus invertible. Using this, we obtain,

F−1
Z (α) =

CoV aR
s|Li=l
α −

[
µs + ρ

√
Σss√
Σii

(l − µi)
]

√
cΣss (1− ρ2)

.

This implies that

CoV aRs|Li=l
α =

[
µs + ρ

√
Σss√
Σii

(l − µi)
]

+
√
cΣss (1− ρ2)F−1

Z (α) . �

Remark 58. The term cΣss (1− ρ2) can be interpreted as a conditional scale
of Ls under the condition that Li = l and may depends on l. In this context,
since Σss (1− ρ2) is given by the distribution parameters, we see that only the
term c can depends on l (and we write cl).



CHAPTER 6. COMPUTING COV AR
S|I
α (L) UNDER ELLIPTICAL

DISTRIBUTION 107

Based on this we can rewrite the formula in Theorem 28 as follows:

Corollary 29.

CoV aRs|Li=l
α = µs + ρ

√
Σss√
Σii

(l − µi) +
√
cl
√

Σss (1− ρ2)F−1
Z (α) . (6.24)

Proposition 6. Assume that the distribution of (Li, Ls) is an elliptical dis-

tribution with location parameter µ =
(
µi
µs

)
, scale parameter Σ =

(
Σii Σis

Σsi Σss

)
and correlation coefficient ρ. If we assume Assumption 2, then

∆CoV aRs|i
α (l1, l2) = ρ

√
Σss√
Σii

(l1 − l2) +
√

Σss (1− ρ2)F−1
Z (α)

[√
cV aRiα −

√
cµi
]
.

Proof.

∆CoV aRs|i
α (l1, i2) = CoV aRs|i

α (l1)− CoV aRs|i
α (l2)

=

[
µs + ρ

√
Σss√
Σii

(l1 − µi)
]

+
√
cl1
√

Σss (1− ρ2)F−1
Z (α)

−
[
µs + ρ

√
Σss√
Σii

(l2 − µi)
]

+
√
cl2
√

Σss (1− ρ2)F−1
Z (α)

= ρ

√
Σss√
Σii

(l1 − l2) +
√

Σss (1− ρ2)F−1
Z (α)

[√
cl1 −

√
cl2
]

�

Especially we have that (see definition 9)

∆CoV aRs|i
α := ∆CoV aRs|i

α

(
V aRi

α, µi
)

= ρ

√
Σss√
Σii

(
V aRi

α − µi
)

+
√

Σss (1− ρ2)F−1
Z (α)

[√
cV aRiα −

√
cµi
]
.

6.4 Applications

In this section, we use the Theorem 28 to compute CoV aRs|i
α for the normal

and the t distribution.

6.4.1 Application to the Bivariate Normal Distribution

Recall that the density generator of the n-variate normal distribution is given
by

gn (x) =
1

(2π)
n
2

e−
x
2 .

And from 6.6 we have that the density function of the bivariate normal distri-
bution with location parameter µ ∈ R2 and scale parameter Σ ∈ R2×2 is given
by

f (x) =
1

2π |Σ|
1
2

e−
((x−µ)′Σ−1(x−µ))

2 , x =

(
x1

x2

)
∈ R2
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where

µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

It holds

Σ−1 =
1

Σ11Σ22 − Σ2
12

(
Σ22 −Σ12

−Σ21 Σ11

)
.

By replacing Σ12 and Σ21 by ρ
√

Σ11

√
Σ22 (see 6.18) we obtain

Σ−1 =
1

Σ11Σ22 − Σ2
12

(
Σ22 −Σ12

−Σ21 Σ11

)
=

1

Σ11Σ22 (1− ρ2)

(
Σ22 ρ

√
Σ11

√
Σ22

−ρ
√

Σ11

√
Σ22 Σ11

)
.

It follows that

(x1 − µ2, x2 − µ2) Σ−1

(
x1 − µ1

x2 − µ2

)
=

Σ22 (x1 − µ1)2 + Σ11 (x2 − µ2)2 − 2ρ
√

Σ11

√
Σ22 (x1 − µ1) (x2 − µ2)

Σ11Σ22 (1− ρ2)

=
1

1− ρ2

[
(x1 − µ1)2

Σ11

+
(x2 − µ2)2

Σ22

− 2ρ (x1 − µ1) (x2 − µ2)√
Σ11

√
Σ22

]
.

(6.25)

Hence,

f (x1, x2)

=
1

2π
√

ΣiiΣss

√
1− ρ2

e

(
− 1

2(1−ρ2)

[
(x1−µ1)2

Σ11
+

(x2−µ2)2

Σ22
− 2ρ(x1−µ1)(x2−µ2)√

Σ11
√

Σ22

])
.

The marginal density of X2 is then given by

fX2 (y) =

∫ +∞

−∞
f (x, y) dx

=
1√

2πΣ22

exp

(
−(x− µ2)2

2Σ22

)
.

Let (Li, Ls) follows a bivariate normal distribution with location and scale
parameter given by:

µ =

(
µi
µs

)
, and Σ =

(
Σii Σis

Σsi Σss

)
, µi = E

[
Li
]
, µs = E [Ls] .
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The conditional density fs|i of Ls|Li = l is given by

fs|i =
f (ls, l)

fLi (ls)

=

1

2π
√

Σss
√

Σii
√

1−ρ2
exp

(
− 1

2(1−ρ2)

[
(ls−µs)2

Σss
+ (l−µi)2

Σii
− 2ρ(ls−µs)(l−µi)√

Σss
√

Σii

])
1√

2πΣii
exp

(
− (l−µi)2

2Σii

)
=

1√
2π
√

Σss
√

1−ρ2
exp

(
− 1

2(1−ρ2)

[
(ls−µs)2

Σss
+ (l−µi)2

Σii
− 2ρ(ls−µs)(l−µi)√

Σss
√

Σii

])
exp

(
− (l−µi)2

2Σii

)

=

exp

(
− 1

2(1−ρ2)

[
(ls−µs)2

Σss
+ (l−µi)2

Σii
− 2ρ(ls−µs)(l−µi)√

Σss
√

Σii
− (1−ρ2)(l−µi)2

Σii

])
√

2π
√

Σss

√
1− ρ2

=

exp

(
− 1

2(1−ρ2)

[
(ls−µs)√

Σss
− ρ(l−µi)√

Σii

]2
)

√
2π
√

Σss

√
1− ρ2

=

exp

(
− 1

2(1−ρ2)

[
1√
Σss

(
(ls − µs)− ρ

√
Σss(l−µi)√

Σii

)]2
)

√
2π
√

Σss

√
1− ρ2

=

exp

(
− 1

2(1−ρ2)Σss

[
ls −

(
µs + ρ

√
Σss(l−µi)√

Σii

)]2
)

√
2π
√

Σss

√
1− ρ2

. (6.26)

Remark 59. Equation (6.26) corresponds to the expression of the density of
an univariate normal distributed random variable with mean equals to µs +
ρ
√

Σss(l−µi)√
Σii

and variance equals to (1− ρ2) Σss.

Hence, following equation 6.20 we can represent (Ls|Li = l) as follows:(
Ls|Li = l

) d
= µs +

ρ
√

Σss (l − µi)√
Σii

+
√

(1− ρ2)
√

ΣssZg.

Furthermore, we have that, the distribution of Zg is the univariate spherical
distribution associated with the normal distribution (i.e. Zg is a standard
normal distributed random variable) and the constant c is equal to 1.

By using these information and by applying theorem 28 we obtain the fol-
lowing expression for CoV aRs|Li=l

α when (Li, Ls) assumes a bivariate normal
distributions

Corollary 30. Let (Li, Ls) assumes a bivariate normal distribution with cor-
relation coefficient ρ, location parameter µ =

(
µi
µs

)
and scale parameter Σ =(

Σii Σis

Σsi Σss

)
. Then

CoV aRα = µs + ρ
σs
σi

(li − µs) + σs
√

1− ρ2Φ−1 (α) (6.27)
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where σi and σs denote the standard deviation of the financial institution i and
s respectively.

Proof. From theorem 28 we know that (see equation (6.24))

CoV aRs|Li=l
α = µs + ρ

√
Σss√
Σii

(l − µi) +
√
cl
√

Σss (1− ρ2)F−1
Z (α) .

From the previous development we know that Z is standard normal distributed
and that cl = 1. This leads to

CoV aRs|Li=l
α = µs +

ρ
√

Σss (l − µi)√
Σii

+
√

(1− ρ2)
√

ΣssΦ
−1 (α) , (6.28)

where Φ denote the distribution of the standard Gaussian distribution.

Recall that the covariance matrix V of a normally distributed random vari-
able corresponds to its scale matrix Σ (see equation (6.13)). That is, let σi and
σs denote the standard deviation of the financial institution i and s respectively,
then

Σ =

(
Σii Σis

Σsi Σss

)
= V =

(
Vii Vis

Vsi Vss

)
=

(
σ2
i ρσ2

sσi

ρσiσs σ2
s

)
.

Using this, we can rewrite equation (6.28) as follows:

CoV aRα = µs + ρ
σs
σi

(li − µi) + σs
√

1− ρ2Φ−1 (α) . �

It follows from proposition 6, that

∆CoV aRs|i
α (l1, l2) = ρ

√
Σss√
Σii

(l1 − l2) +
√

Σss (1− ρ2)Φ−1 (α) [1− 1]

= ρ
σs
σi

(l1 − l2) .

Especially, we have that ∆CoV aRs|i as defined in Brunnermeier and Adrian
[2011] (see definition 9), is given by

Corollary 31.

∆CoV aRs|i = ρ
σs
σi

(
V aRi

α − E
(
Li
))
. (6.29)

Remark 60. The formula in corollary 30 (equation (6.27)) coincides with
the formula provided by Jäger-Ambrożewicz [2010]. Therefore, the formula
proposed by Jäger-Ambrożewicz can be seen as a special case of the formula
provided in Theorem 28.
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6.4.2 Application to the Bivariate t-Distribution

Recall that, the density function of a n-multivariate t-distribution random
variable X with degree of freedom ν and scale parameter Σ (X ∼ td (ν,Σ)) is
given by (McNeil et al. [2005], Example 3.7)

fn (x) =
Γ
(
ν+n

2

)
(νπ)

n
2 Γ

(
ν
2

)
|Σ| 12

(
1 +

x′Σ−1x

ν

)− ν+n
2

.

Using (6.25), we can express the density function f2 of a bivarite t dis-
tributed random variable (X1, X2) with ν degree of freedom ν and correlation
coefficient ρ as follows:

f2 (x1, x2) =
Γ
(
ν+2

2

)
(νπ) Γ

(
ν
2

)√
(1− ρ2)

1 +

1
1−ρ2

[
x2

1

Σ11
+

x2
2

Σ22
− 2ρ(x1x2)√

Σ11
√

Σ22

]
ν

−
ν+2

2

.

Without loss of generality, let (Li, Ls) follows a standard bivariate t-distribution
(i.e Σii = Σss = 1) with ν degree of freedom ν. The conditional density fs|i of
Ls|Li = l is given by

fs|i =

Γ( ν+2
2 )

(νπ) Γ( ν2 )
√

(1−ρ2)

(
1 +

1
1−ρ2 [l2s+l2−2ρlsl]

ν

)− ν+2
2

Γ( ν+1
2 )

√
νπ Γ( ν2 )

(
1 + l

ν
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2
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Γ
(
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2

)
Γ
(
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2

)√
νπ
√

(1− ρ2)

(
1 +

1
1−ρ2 [l2s+l2−2ρlsl]

ν
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2

(
1 + l2

ν

)− ν+1
2

=
Γ
(
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2

)
Γ
(
ν+1

2

)√
νπ
√
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(
ν+ 1
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ν
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2

(
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ν
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2

=
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(
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Γ
(
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2
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νπ
√

1− ρ2

(
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2 (
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ν
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2

=
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(
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2
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1
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(
ν+2

2

)
Γ
(
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2 . (6.30)
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Remark 61. Equation (6.30) represents the expression of the density function
of an univariate t-distributed random variable with ν + 1 degree of freedom,
location parameter equals to ρl and scale parameter equals to

√
(1−ρ2)(ν+l2)
√
ν+1

.

Proof. Recall that density function of the t-distribution with ν degree of free-
dom, location parameter µ and scale parameter σ2 can be expressed as:

tν,µ,σ2 (x) =
Γ(ν+1

2
)

Γ(ν
2
)
√
πνσ2

(
1 +

(x− µ)2

νσ2

)− ν+1
2

.

Hence, the density function of the t-distribution with ν + 1 degree of freedom,
location parameter µ and scale parameter σ2 is thus given by

tν+1,µ,σ2 (x) =
Γ(ν+2

2
)

Γ(ν+1
2

)
√
π (ν + 1)σ2

(
1 +

(x− µ)2

(ν + 1)σ2

)− ν+2
2

. (6.31)

Now, consider the expression (6.31) and set

x = ls,

µ = ρl and

σ2 =
(1− ρ2)(ν + l2)

ν + 1
.
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We obtain

tν+1,µ,σ2 (ls) =
Γ(ν+2

2
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Γ(ν+1
2
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2 �

Based on remark 61, we can follow equation 6.20 and represent (Ls|Li = l)

as: (
Ls|Li = l

) d
= ρl +

√
(1− ρ2)(ν + l2)√

ν + 1
Zt, (6.32)

where Zt follows an univariate t-distribution with ν+1 degree of freedom. Fur-
thermore, we have that the constant cl is equal to

√
ν+l2√
ν+1

. By using these infor-

mation and by applying theorem 28 we derive the expression of CoV aRs|Li=l
α

when (Li, Ls) assumes a bivariate t-distributions.

Corollary 32. Assume that (Li, Ls) follows a standard bivariate t-distribution
with ν degree of freedom, and correlation coefficient ρ, then

CoV aRs|Li=l
α = ρl +

√
ν + l2√
ν + 1

√
1− ρ2 t−1

ν+1 (α) , (6.33)
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where t−1
ν+1 denote the distribution function of a standard t distributed radom

variable with ν + 1 degree of freedom.

Proof. From theorem 28 we know that (see equation (6.24))

CoV aRs|i
α (l) = µs + ρ

√
Σss√
Σii

(l − µi) +
√
cl
√

Σss (1− ρ2)F−1
Zt

(α) .

From the previous development we know that Zt follows a standard t-distribution
with ν + 1 degree of freedom and that cl = ν+l2

ν+1
(see equation (6.32)). This

leads to

CoV aRs|Li=l
α = ρl +

√
ν + l2

ν + 1

√
1− ρ2 t−1

ν+1 (α) ,

where t−1
ν+1 denote the distribution function of a standard t distributed random

variable with ν + 1 degree of freedom. �

It follows from Proposition 6, that

∆CoV aRs|i
α (l1, l2) = ρ (l1 − l2) +

√
(1− ρ2)t−1

ν+1 (α)

√ν + l21
ν + 1

−

√
ν + l22
ν + 1


= ρ (l1 − l2) +

√
1− ρ2

ν + 1
t−1
ν+1 (α)

[√
ν + l21 −

√
ν + l22

]
(6.34)

Especially, we have that ∆CoV aRs|i as defined in Brunnermeier and Adrian
[2011] (see definition 8), is given by

Corollary 33.

∆CoV aRs|i = ρV aRi
α +

√
1− ρ2

ν + 1
t−1
ν+1 (α)

[√
ν + (V aRi

α)2 −
√
ν

]
(6.35)

Remark 62. Equation (6.33) coincides with the formula in equation (4.31).



Chapter 7

Conclusion

In this thesis, we deal with the problem of the modeling and estimating of sys-
temic risk contribution. This task is essential for the effective implementation
of the new risk management concepts that have been developed in response to
the latest financial crisis. These concepts includes:

• The estimation of the potential financial loss suffered by a financial sys-
tem if a given financial institution fails.

• The determination of the systemic importance of financial institutions.

• the calculation of the individual financial contribution to a mutual de-

fault funds and resolution funds such as the single bank resolution
fund for financial institutions in the countries subject to the SRM and
the default fund for CCPs members.

• The preparation of bail-in-operation (cf. Remark 15).

Our starting point was the CoVaR-method proposed by Brunnermeier and
Adrian [2011]. The CoVaR-method is one of the most used tools for the anal-
ysis of systemic risk. It builds on the statistic CoV aRs|i

α (l), which is defined
as the Value-at-Risk of a financial system s conditional on the loss of a given
financial institution i. Thus, the CoVaR-method is a tools for the investigation
of the impact of idiosyncratic losses upon the loss of a financial system.

Brunnermeier and Adrian [2011] estimated the potential financial impact of
the failure of a given financial institution i upon a financial system s i.e. the
risk contribution of the financial institution i on the system s computed as the
difference between the CoV aR conditional on the institution being in distress
and the CoV aR conditional on the institution being in a normal situation.
They assumed that a financial institution is in distress when its loss is equal
to its Value-at-Risk at the level α (V aRi

α), and in normal situation when its
loss is equal to is equals to its expected loss E [Li]. This difference (between
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CoV aR
s|i
α (V aRi

α) and CoV aR
s|i
α (E [Li])) is called ∆CoV aR. Therefor, the

main challenge of the estimation of systemic risk contribution using CoVaR-
method is the computation of CoV aRs|i

α (l) for any l ∈ R.

The method for the computation of CoV aRs|i
α (l) proposed sofar (especially

those of Brunnermeier and Adrian [2011] and Jäger-Ambrożewicz [2010]) as-
sume the normal distribution. They cannot take into account the stylized
behaviors of financial variables during the crisis (such as tail dependence, skew-
ness and fat tails) and are not flexible enough to allows an effective analysis
of systemic risk contribution.

We use copula’s theory to derive a general formula for CoV aRs|i
α (l) that

integrates all information on the assumed distributions. This allows us to con-
sider not only the normal (which describes the non-crisis period) but also the
extreme part (which describes the crisis period) of the assumed distribution.
Our formula expresses the CoV aR of a given financial institutions as a func-
tion of its own loss Li, its dependence with the financial system, and the loss of
the financial system Ls. This makes our formula consistent with the concept
of macro-prudential risk measure and allows us to appreciate separately the
effect of the interconnectedness of individual financial institution to a financial
system (which are modeled by the dependence structure between the consid-
ered financial institution and a financial system), of the idiosyncratic losses
(which are modeled by the individual loss of the focused financial), and of the
systematic risk (which is modeled by the loss of the financial system) on the
systemic risk contributions. We use our formula to derive the expressions of
CoV aR

s|i
α (l) , l ∈ R for the Gaussian copula and for some Non-Gaussian cop-

ula (including the t-copula, Archimedes copula and the convex combinations
of copula). We show that the computation method used by Brunnermeier and
Adrian [2011] and the formula proposed by Jäger-Ambrożewicz [2010] can be
seen as a special case of our formula.

Considering the economic and practical aspects of financial distress, we
highlight several gaps in the formulation of the CoVaR-method. We illus-
trated this with a case in which ∆CoV aR

s|i
α is not sensitive to tail dependence

coefficient of the assumed joint distribution functions. We go on and affirm
that, in general, ∆CoV aR

s|i
α is not an appropriate measure for extreme co-

movement. Furthermore, we highlight the fact that ∆CoV aR
s|i
α as defined by

Brunnermeier and Adrian [2011] is not consistent with the notions of financial
distress and contagion, because it builds on the assumption that a financial
institution is in distress when its loss equals its Value-at-Risk. This is not
consistent with the economic perception of financial distress.
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A significant part of our work consist on the fundamental analysis we are
make through this thesis. This was a necessary task as we aimed to produce
results that are consistent with the real economic problems that have motivated
our research. In particular, in chapter 1, we present from a quantitative risk
management perspective, the foundations of the modern financial system in
particular those that promote systemic risk. Also, in section 2.1, based on a
fundamental analyze of the notion of contagion effect we precise the view of
systemic risk that we followed in this thesis. We assume in Assumption 2,
that a system risk is due to the propagation of a single financial institution
distressed to the other financial institution in the financial system. We also
provide in Definition 2 a consistent definition of the notion of financial distress.

Following the fundamental concepts of quantitative risk management we
propose alternative methods for a consistent estimation of systemic risk con-
tribution. The alternative models we propose allow us to integrate all infor-
mation about the assumed loss distributions especially about the part of losses
that can not be absorbed by the regulatory capital (loss excess) and will be
therefor transferred to the financial system in case of the default of the corre-
sponding financial institution. Thus, we can estimate the potential financial
system loss induced by the default of a given financial institution.

Finally we consider CoV aRs|i
α (l) under elliptical distributions. Our aim

here is to develop a computation method, which is accessible easily for financial
practitioners and financial regulators. In fact, the financial regulation needs
risk concepts that can be easily implemented and audited. Assuming elliptical
distributions is a reasonable trade-off between rigorous measurement of sys-
temic risk and effective implementation. Elliptical distributions have the par-
ticularity that they share many of the analytical properties of the multivariate
normal distribution, but are flexible enough to model extreme co-movements
as those observed during financial crises. We present a closed form-formula for
the computation of CoV aRs|i

α (l) under elliptical distributions, which we use to
derive expressions of CoV aRs|i

α (l) for Gaussian distribution and t-distribution.
The alternative models we propose allow us to analyze the effect of the

main factors of systemic risk (namely, the interconnectedness and the size) on
the systemic risk contribution of individual financial institutions in a general
stochastic framework that includes the Gaussian and the non-Gaussian world.
They provide insights for academic education (cf. Smart [2013]) as well as
new perspectives for research and application in the field of the quantitative
modeling and analysis of financial risk contribution (cf. for example Fischer
et al. [2015], Chen and Khashanah [2015] and Huang et al. [2016]).
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