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Zusammenfassung in deutscher Sprache

In dieser Arbeit behandeln wir die Itô-Formel für milde Lösungen von stochastis-
chen partiellen Di�erentialgleichungen (SPDG) bzgl. das Gauÿschen sowie des
Nicht-Gauÿschen Rauschens (kompensiertes Poisson-Zufallsmaÿ). Hierbei be-
trachten wir die Funktionen Ψ ∈ C1,2([0, T ]×H), wobei Ψ : [0, T ]×H → R und
H ein reeller separabler Hilbertraum ist. Wir schreiben zuerst die Itô-Formel für
die starken Lösungen der SPDG auf und leiten daraus die Itô-Formel für milde
Lösungen mit Hilfe der Yosida-Approximationen ab. Dann zeigen wir, wie man
die Techniken für die Itô-Formel für milde Lösungen benutzen kann, um Resul-
tate über exponentielle Stabilität und Exponentially Ultimate Boundedness im
quadratischen Mittel für milde Lösungen zu beweisen. Auch bringen wir diese
Itô-Formel in Zusammenhang mit einer Itô-Formel für milde Lösungen, die von
Ichikawa für das Gauÿsche Rauschen eingeführt wurde. Ferner verallgemein-
ern wir die Itô-Formel von Ichikawa für milde Lösungen der SPDG mit Lévy-
Rauschen. Wir zeigen auch, dass die milde Itô-Formel von Da Prato, Jentzen
und Röckner, die bisher nur für das Gauÿsche Rauschen gezeigt worden ist, auch
für Nicht-Gauÿsches Rauschen gilt. Dann geben wir einige Beispiele, auf die wir
unsere Theorie anwenden. Auÿerdem untersuchen wir die Stetigkeit und Dif-
ferenzierbarkeit der milden Lösungen bezüglich des Anfangswertes für SPDG,
sowohl mit Gauÿschem Rauschen als auch mit Nicht-Gauÿschem Rauschen.
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Abstract

In this thesis we study the Itô formula for mild solutions of SPDEs with respect
to the Gaussian and non-Gaussian noise (compensated Poisson random mea-
sure). We consider the functions Ψ ∈ C1,2([0, T ]×H), where Ψ : [0, T ]×H → R
and H is a real separable Hilbert space. First we write the Itô formula for the
strong solutions of SPDEs, then by Yosida approximation we obtain our Itô
formula for mild solutions. Then we show how we can apply the arguments of
our Itô formula for mild solutions for proving the results of exponential stabil-
ity and exponentially ultimate boundedness in the mean square sense for the
mild solutions. We also relate this Itô formula to an Itô formula for mild so-
lutions provided by Ichikawa for the Gaussian noise. We generalize Ichikawa's
Itô formula for mild solutions to SPDEs with Lévy noise. Then we extend Da
Prato, Jentzen and Röckner's mild Itô formula for the Gaussian case to the non-
Gaussian case. Then we present a set of examples where we apply our theory.
We also study the continuity and di�erentiability results of the mild solutions
with respect to the initial condition for SPDEs which contain both Gaussian
and non-Gaussian noise.
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Chapter 1

Introduction

The Itô formula for the strong solutions of SPDEs can be derived similarly as
for the SDEs, see e.g. [16], [28] for the Gaussian case and [23], [22] for the
non-Gaussian case. In [8]; Da Prato, Jentzen and Röckner showed that under
suitable conditions one can obtain a mild Itô formula for the mild solutions of
SPDEs driven by Brownian Motion. They transform the mild solution to a stan-
dard Itô process by using the techniques of [14], through the works of Nagy [33],
[34], [35]. However this relation between the two processes does not allow us to
study the asymptotics of the solution as done in [24] for the non-Gaussian case
and in [16] for the Gaussian case. Here, we studied the asymptotic properties
of the mild solutions for both the Gaussian and non-Gaussian noise as appli-
cations of the Itô formula for mild solutions. In [1], our purpose is two fold.
In the �rst place we obtain through Yosida approximation an Itô formula for
mild solutions to SPDEs driven by Wiener process and general Lévy processes,
which is di�erent from the mild Itô formula of [8]. We also relate this idea to
the original Itô formula for mild solutions provided by Ichikawa in [19], for the
Gaussian case and show its applications in this work.

In Section 2.1 we present required de�nitions, inequalities, existence and
uniqueness of mild solutions and discuss under what assumptions the mild so-
lution is also a strong solution. In Section 2.2 we present our results of [1],
where we show how we can approximate the mild solution by a sequence of
strong solutions by using Yosida approximation technique and obtain our Itô
formula for mild solutions, for those functions Ψ ∈ C1,2([0, T ] × H). This is
proved in Theorem 6, ([1]). Then in the next Section 2.3, we present some
applications of the Itô formula for mild solutions of Theorem 6 to prove the
results of exponential stability and exponentially ultimate boundedness in the
mean square sense of the mild solutions. In [19], Ichikawa obtained an Itô for-
mula for mild solutions and w.r.t. the Gaussian noise and discussed also how
to relate the generator of a semigroup with the generator of a Markov process.
This will be recalled in Section 2.4 w.r.t. both Gaussian and non-Gaussian
noise. Moreover in [1], we also present an Itô formula for mild solutions fol-
lowing Ichikawa [19] w.r.t. both Gaussian and non-Gaussian noise, for those
functions Ψ ∈ C1,2([0, T ] × H) for which the function LΨ can be extended to
a continuous function, where L denotes the in�nitesimal generator of the ho-
mogeneous Markov process {Xx(t), t ≥ 0}. In [1], we also relate the semigroup

7
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with the operator L, this is presented in Section 2.4. As a consequence we get,
in [1], the Kolmogorov's backward equation for mild solutions w.r.t. Gaussian
and non-Gaussian noise, this is in Corollary 2 (equation (2.79)). However, in
Ichikawa's Itô formula for mild soltions, the assumption that- the function LΨ
can be extended to a continuous function, is rather restrictive to study the
stability theory of Lyapunov functions. So, following Ichikawa's result for the
Gaussian case, in [1], we introduce Corollary 4, which is useful in applications
since continuous extension of the function LΨ is not required. In Corollary 4, we
assume that the function LΨ(x) ≤ U(x), where U(x) is a continuous function.
As a result we obtain an inequality instead of an Itô formula but we can also
apply the Itô formula of Theorem 6 for those functions, where LΨ(x) is con-
trolled by a continuous function U(x). This allows us to study the exponential
stability in the mean square sense of the solution (this is explained through the
last example). In [1], we are able to obtain Da Prato, Jentzen and Röckner's
mild Itô formula, but w.r.t. the non-Gaussian noise, this is presented in Section
2.5. Here we used the transformation of [14]. In [1], we also present a set of
examples where we apply our theory. These examples are presented here in
Section 2.6. Through some of these examples, we also relate our Itô formula for
mild solutions with that of Ichikawa's.

In Chapter 3, we study the continuity and di�erentiability results of the
mild solutions with respect to the initial condition for SPDEs which contain
both Gaussian and non-Gaussian noise. These results are also shown in [22], [2]
for the non-Gaussian case and in [16], [9] for the Gaussian case seperately. We
unify these results.

In Chapter 4 (Appendix), we write the explanation of- how we can write the
Itô formula for strong solutions w.r.t. both Gaussian and non-Gaussian noise.



Chapter 2

The Itô formula for mild

solutions

2.1 Preliminaries

The contents of this Chapter is mainly from our paper, [1]. First we introduce
some basic de�nations and ideas, which are related to our thesis. We will start
our discussions with Semigroup theory and Abstract Cauchy problem, and how
they are inter-related (for details, see [16], [12]).

De�nition 1. A family S(t) ∈ L(X), t ≥ 0, of bounded linear operators on a
Banach space X is called a strongly continuous semigroup (or a C0-semigroup)
if
(S1) S(0) = I,
(S2) (Semigroup property) S(t+ s) = S(t)S(s) for every t, s ≥ 0,
(S3) (Strong continuity property) limt→0+ S(t)x = x for every x ∈ X.

Let S(t) be a C0-semigroup on a Banach space X. Then there exist con-
stants α ≥ 0 and M ≥ 1 such that ‖S(t)‖L(X) ≤Meαt, t ≥ 0.

If M = 1, then S(t) is called a pseudo-contraction semigroup. If α = 0, then
S(t) is called uniformly bounded, and if α = 0 and M = 1 (i.e. ‖S(t)‖L(X) ≤ 1),
then S(t) is called a semigroup of contractions.

For any C0-semigroup S(t) and arbitrary x ∈ X, the mapping t → S(t)x ∈
X, t ∈ R+, is continuous.

De�nition 2. Let S(t) be a C0-semigroup on a Banach space X. The linear
operator A with domain

D(A) := {x ∈ X : lim
t→0+

S(t)x− x
t

exists}

de�ned by

Ax := lim
t→0+

S(t)x− x
t

is called the in�nitesimal generator of the semigroup S(t).

9
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A semigroup S(t) is called uniformly continuous if limt→0+ ‖S(t)−I‖L(X) =
0. A linear operator A is the in�nitesimal generator of a uniformly continuous
semigroup S(t) on a Banach space X i� A ∈ L(X). We have S(t) = etA =∑∞
n=0

(tA)n

n! , the series convergeing in norm for every t ≥ 0.

We will however be mostly interested in the case where A /∈ L(X).

Let A be an in�nitesimal generator of a C0-semigroup S(t) on a Banach
space X. Then the following properties hold-

i) For x ∈ X, limh→0
1
h

∫ t+h
t

S(t)xds = S(t)x.

ii) For x ∈ D(A), S(t)x ∈ D(A) and d
dtS(t)x = AS(t)x = S(t)Ax.

iii) For x ∈ X,
∫ t

0
S(s)xds ∈ D(A), and A

∫ t
0
S(s)xds = S(t)x− x. If x ∈ D(A)

then
∫ t

0
S(s)Axds = S(t)x− x.

iv) For x ∈ D(A), S(t)x− S(s)x =
∫ t
s
S(u)Axdu =

∫ t
s
AS(u)xdu.

v) D(A) is dense in X, and A is a closed linear operator.

De�nition 3. The resolvent set ρ(A) of a closed linear operator A on a Banach
space X is the set of all complex numbers λ for which λI − A has a bounded
inverse, i.e., the operator (λI − A)−1 ∈ L(X). The family of bounded linear
operators

R(λ,A) = (λI −A)−1, λ ∈ ρ(A),

is called the resolvent of A.

We note that R(λ,A) is a one-to-one transformation of X onto D(A), i.e.,

(λI −A)R(λ,A)x = x, x ∈ X,
R(λ,A)(λI −A)x = x, x ∈ D(A).

In particular, if x ∈ D(A) then AR(λ,A)x = R(λ,A)Ax.

Let S(t) be a C0-semigroup with in�nitesimal generator A on a Banach space
X. If α0 = limt→∞ t−1 ln ‖S(t)‖L(X), then any real number λ > α0 belongs to

the resolvent set ρ(A), and R(λ,A)x =
∫∞

0
e−λtS(t)xdt, x ∈ X. Furthermore,

for each x ∈ X, limλ→∞ ‖λR(λ,A)x− x‖X = 0.

Theorem 1. (Hille-Yosida) Let A : D(A) ⊂ X → X be a linear operator on a
Banach space X. Necessary and su�cient conditions for A to generate a C0-
semigroup S(t) are
(1) A is closed and D(A) = X.
(2) There exist real numbers M and α such that for every λ > α, λ ∈ ρ(A) (the
resolvent set) and ‖(R(λ,A))r‖L(X) ≤ M(λ − α)−r, for r = 1, 2, · · · . In this
case, ‖S(t)‖L(X) ≤Meαt, t ≥ 0.

We will now introduce Yosida approximation of an operator A and of the
C0-semigroup it generates. For λ ∈ ρ(A), consider the family of operators

Rλ = λR(λ,A).
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Since the range R(R(λ,A)) ⊂ D(A), we can de�ne the Yosida approximation of
A by

Aλx = ARλx, x ∈ X;

Aλx = RλAx, x ∈ D(A).

Let Sλ(t) denote the (uniformly continuous) semigroup generated by Aλ,

Sλ(t)x = etAλx, x ∈ X.

Theorem 2. (Yosida Approximation) Let A be an in�nitesimal generator of a
C0-semigroup S(t) on a Banach space X. Then

lim
λ→∞

Rλx = x, x ∈ X;

lim
λ→∞

Aλx = Ax, x ∈ D(A);

lim
λ→∞

Sλ(t)x = S(t)x, x ∈ X.

The convergence in the last eq. i.e. limλ→∞ Sλ(t)x = S(t)x, for x ∈ X, is
uniform on compact subsets of R+. The following estimate holds:

‖Sλ(t)‖L(X) ≤M exp{tλα/(λ− α)}

with the constants M , α determined by the Hille-Yosida theorem.

Abstract Cauchy Problem

Basically we can see the semigroups as a solution to PDEs. Let A be a linear
operator on a real separable Hilbert space H. Let us consider the abstract
Cauchy problem given by{

du(t)
dt = Au(t), 0 < t < T

u(0) = x, x ∈ H.
(2.1)

De�nition 4. A function u : [0, T [:→ H is a (classical) solution of the problem
(2.1) on [0, T [ if u is continuous on [0, T [, continuously di�erentiable and u(t) ∈
D(A) for t ∈ [0, T [, and (2.1) is satis�ed on [0, T [.

If A is an in�ntesimal generator of a C0 semigroup {S(t), t ≥ 0}, then for
any x ∈ D(A), the function ux(t) = S(t)x, t ≥ 0, is a solution of (2.1).

If x /∈ D(A), then ux(t) = S(t)x is not a solution in the usual sense, but it
can be viewed as a �generalized solution�, which will be called a �mild solution�.
Infact, the concept of mild solutions can be introduced to study the following
nonhomogeneous initial-value problem:{

du(t)
dt = Au(t) + f(t), 0 < t < T

u(0) = x, x ∈ H,
(2.2)

where f : [0, T [→ H.
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De�nition 5. Let A be an in�ntesimal generator of a C0 semigroup S(t) on
H, x ∈ H and f ∈ L1([0, T ], H) be the space of Bochner-integrable functions on
[0, T ] with values in H. The function u ∈ C([0, T ], H) given by

ux(t) = S(t)x+

∫ t

0

S(t− s)f(s)ds, 0 ≤ t ≤ T,

is the mild solution of the initial-value problem (2.2) on [0, T ].

Note that for x ∈ H and f ≡ 0, the mild solution is S(t)x, which is not in
general a classical solution.

Now we will discuss about Hilbert space valued Wiener process (for details,
see [16], [9]).

We assume that a �ltered probability space (Ω,F , (Ft)t≥0, P ), satisfying the
�usual hypothesis�, is given by:
(i) Ft contains all null sets of F , for all t s.t. 0 ≤ t <∞.
(ii) Ft = F+

t , where F+
t = ∩u>tFu, for all t s.t. 0 ≤ t < ∞, i.e. the �ltrartion

is right continuous.
(iii) the �ltration F0 is independent of (Ft)t>0.

First we de�ne K-valued Gaussian random variable, where K is a real sep-
arable Hilbert space. Let L1(K) be the space of trace-class operators on K,

L1(K) = {L ∈ L(K) : τ(L) := tr((LL∗)1/2) <∞},

where the trace of the operator [L] = (LL∗)1/2 is de�ned by

tr([L]) =

∞∑
j=1

〈[L]fj , fj〉K

for an ONB {fj}∞j=1 ⊂ K. tr([L]) is independent of the choice of ONB and
L1(K) is equipped with the trace norm τ is a Banach space. Let Q : K → K
be a symmetric nonnegative de�nite trace-class operator.

Assume that X : K → L2(Ω,F , P ) satis�es the following conditions:
(1) The mapping X is linear.
(2) For an arbitrary k ∈ K, X(k) is a Gaussian random variable with mean
zero.
(3) For arbitrary k, k′ ∈ K, E(X(k)X(k′)) = 〈Qk, k′〉K .

Let {fj}∞j=1 be an ONB in K diagonalizing Q, and let the eigenvalues cor-
responding to the eigenvectors fj be denoted by λj , so that Qfj = λjfj . We
de�ne

X(ω) =

∞∑
j=1

X(fj)(ω)fj . (2.3)

Since
∑∞
j=1 λj < ∞, the series converges in L2(Ω,F , P ) and hence P -a.s.. In

this case, P -a.s.

〈X(ω), k〉K = X(k)(ω),
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so that X : Ω → K is F/B(K)-measurable, where B(K) denotes the Borel σ-
�eld on K. We can show that, (2.3), converges in L2(Ω,F , P ) in the following
way

E[‖X(ω)‖2K ] = E[‖
∞∑
j=1

X(fj)(ω)fj‖2K ]

=

∞∑
j=1

E(X(fj)(ω))2 [by Parseval's identity]

=

∞∑
j=1

〈Qfj , fj〉K [since, E(X(k)X(k′)) = 〈Qk, k′〉K ]

=

∞∑
j=1

λj <∞. [since, Q is trace-class operator]

De�nition 6. We call X : Ω→ K de�ned above a K-valued Gaussian random
variable with covariance Q.

De�nition 7. Let Q be a nonnegative de�nite symmetric trace-class operator
on a separable Hilbert space K, {fj}∞j=1 be an ONB in K diagonalizing Q, and
let the corresponding eigenvalues be {λj}∞j=1. Let {wj(t)}t≥0, j = 1, 2, · · · , be
a sequence of independent Brownian motions de�ned on (Ω,F , {Ft}t, P ). The
process

Wt =

∞∑
j=1

λ
1/2
j wj(t)fj (2.4)

is called a Q-Wiener process in K.

We can show that, how (2.4) is connected to (2.3), by an identi�cation of
the coe�cients via the covariance operator Q. Let

Wt =

∞∑
j=1

cjwj(t)fj .

Now for the covariance matrix Q, when i = j

E[(cjwj(t))
2]− (E[cjwj(t)])

2 = c2jE[(wj(t))
2]− c2j (E[wj(t)])

2

= c2j t− 0 = c2j t.

Since wj(t) is a Brownian motion E[wj(t)] = 0 and E[w2
j (t)] = t.

When i 6= j, then

E[ciwi(t)cjwj(t)]− E[ciwi(t)]E[cjwj(t)] = cicjE[wi(t)]E[wj(t)]− cicjE[wi(t)]E[wj(t)]

= 0.

Since wi(t) and wj(t) are independent Brownian motion.
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Since Q is the covariance matrix, symmetric nonnegative de�nite, diagonal-
izable and λj are the eigenvalues, therefore

c2j t = λjt =⇒ cj = λ
1/2
j .

Therefore,

Wt =

∞∑
j=1

λ
1/2
j wj(t)fj .

Now we will give a brief introduction about Itô integral w.r.t. Jump process
(for details, see [22], [23]). Let (Ω,F , (Ft)t≥0, P ) be a �ltered probability space
satisfying the usual hypothesis. Let (F, ‖.‖) denote a separable Banach space.
Suppose (E, E) be a measurable space which we assume to be a Blackwell space,
for example every Polish space with its Borel σ-�eld is a Blackwell space. Let
N be a time-homogeneous Poisson random measure on R+ × E. Then its
compensator is ν(dt, dx) = dtβ(dx), where β is a σ-�nite measure on (E, E).
q(dt, dx) := N(dt, dx) − ν(dt, dx) is the associated compensated Poisson ran-
dom measure (cPrm). We �x an arbitrary T ∈ R+. Let us consider the set of
progressively measurable functions on the time interval [0, T ], i.e.

MT (E/F ) :={f : Ω× [0, T ]× E → F : f is B[0, T ]⊗ E ⊗ FT −measurable and

f(t, x) is Ft −measurable for all t ∈ [0, T ] and x ∈ E}.

We de�ne

MT,2
ν (E/F ) := {f ∈MT (E/F ) :

∫ T

0

∫
E

E[‖f(t, x)‖2]ν(dt, dx) <∞}.

De�nition 8. A function f ∈MT (E/F ) belongs to the set
∑
T (E/F ) of simple

functions, if there exist n,m ∈ N such that

f(t, x) =

n−1∑
k=1

m∑
l=1

1Ak,l(x)1Fk,l1(tk,tk+1](t)ak,l,

where β(Ak,l) < ∞, tk ∈ (0, T ], tk < tk+1, Fk,l ∈ Ftk , ak,l ∈ F , and for all
k ∈ 1, · · · , n− 1 we have Ak,l1 × Fk,l1 ∩Ak,l2 × Fk,l2 = ∅ if l1 6= l2.

The set
∑
T (E/F ) of simple functions is dense in the Banach spaceMT,2

ν (E/F )
with norm

‖f‖2 :=

√∫ T

0

∫
E

E[‖f(t, u)‖2]ν(dt, dx).

The Itô integral of simple functions is de�ned as usual pathwise in a very natural
way, for f ∈

∑
T (E/F )

∫ T

0

∫
A

f(t, x)q(dt, dx) =

n−1∑
k=1

m∑
l=1

ak,l1Fk,lq((tk, tk+1] ∩ (0, T ]×Ak,l ∩A).
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Let M2
T (F ) be the linear space of all F -valued square integrable martingales

M = (Mt)t∈[0,T ] with norm

‖M‖M2
T

= (E[‖MT ‖2])1/2.

The Itô integral for functions f ∈ MT,2
ν (E/F ) is well de�ned, if the linear

operator∑
T

(E/F )→M2
T (F ), f 7→

(∫ t

0

∫
E

f(s, x)q(ds, dx)

)
t∈[0,T ]

(2.5)

can be uniquely extended to a continuous linear operator

MT,2
ν (E/F )→M2

T (F ), f 7→
(∫ t

0

∫
E

f(s, x)q(ds, dx)

)
t∈[0,T ]

. (2.6)

In particular, for all f ∈ MT,2
ν (E/F ) there is sequence (fn)n∈N ⊂

∑
T (E/F )

s.t. limn→∞ ‖f − fn‖2 = 0 and

lim
n→∞

E

[
‖
∫ T

0

∫
E

(f(s, x)− fn(s, x))q(ds, dx)‖2
]

= 0.

Let, K2
T,β(E/F ) denotes the linear space of all progressively measurable f ∈

MT (E/F ) such that

P

(∫ T

0

∫
E

‖f(s, x)‖2dsβ(dx) <∞

)
= 1.

If (2.6) is well de�ned, then the de�nition of the Itô integral can be extended to
all f ∈ K2

T,β(E/F ). For all f ∈ K2
T,β(E/F ) we de�ne the sequence of stopping

times

τn := inf
{
t ∈ [0, T ] :

∫ t

0

∫
E

‖f(s, x)‖2dsβ(dx) ≥ n
}
, n ∈ N.

Note that f1[0,τn] ∈ MT,2
ν (E/F ) for all n ∈ N. Hence, we can de�ne the Itô

integral∫ t

0

∫
E

f(s, x)q(ds, dx) := lim
n→∞

∫ t

0

∫
E

f(s, x)1[0,τn]q(ds, dx), t ∈ [0, T ]

which is a local martingale.

Now, we gradually proceed towards our main results of this Chapter. Let
K and H be real separable Hilbert spaces. Let (H\ {0} ,B(H\ {0}), β) be a
σ-�nite measurable space, with B(H\ {0}) denoting the Borel sets of H\ {0}
and β a positive measure on B(H\ {0}) with

∫
H\{0}

(‖u‖2H ∧ 1)β(du) <∞.
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We refer to this as a Lévy measure on H\ {0}.

We shall denote the compensated Poisson randommeasure (cPrm) by q(ds, du) :=
N(ds, du)(ω) − dsβ(du) on a �ltered probability space (Ω,F , {Ft}t≤T , P ) sat-
isfying the usual hypothesis. ds denotes the Lebesgue measure on B(R+) and
N(ds, du)(ω) is a Poisson distributed σ-�nite measure on the σ-algebra B(R+, H\ {0}),
generated by the product semiring B(R+) × B(H\ {0}) of the Borel σ-algebra
B(R+) and the trace borel σ-algebra B(H\ {0}). Then E(q(A×B))2 = β(A)λ(B),
for any A ∈ B(H\ {0}), B ∈ B(R+), 0 /∈ Ā, λ(B) is the Lebesgue measure of B.
(For more details we refer section 1 of [2]).

The de�nition of stochastic integral with respect to compensated Poisson
random measure and their properties are given in, e.g. [3], [22], [2], [4], [29],
[30], [20], [32].

Consider the following stochastic partial di�erential equation with values in
H,

dX(t) = (AX(t) + F (X(t)))dt+B(X(t))dWt +

∫
H\{0}

f(v,X(t))q(dv, dt);

X(0) = ξ. (2.7)

Where ξ is an F0-measurable random variable. We assume that, the terms in
(2.7) satisfy the following conditions:

(A1) A is the in�nitesimal generator of a pseudo-contraction semigroup
{S(t), t ≥ 0} on H. This means in particular that there exists a constant
α ∈ R+ s.t. ‖S(t)‖ ≤ eαt.

(A2) (Wt)t≥0 is a K-valued Ft-Wiener process with covariance Q on a com-

plete �ltered probability space
(

Ω,F , {Ft}t≤T , P
)
satisfying the usual hypoth-

esis, where Q is a nonnegative de�nite symmetric trace-class operator on the
real separable Hilbert space K. q(ds, du) := N(ds, du)(ω) − dsβ(du) is a com-
pensated Poisson random measure (cPrm) on a complete �ltered probability

space
(

Ω,F , {Ft}t≤T , P
)
satisfying the usual hypothesis. (Wt)t≥0 is assumed

to be independent of cPrm q(dv, dt).

(A3) F : H → H, B : H → L(K,H), f : H\ {0} ×H → H are continuous,
and Bochner measurable functions satisfying:

‖F (x)‖2H + tr(B(x)QB∗(x)) +

∫
H\{0}

‖f(v, x)‖2H β(dv) ≤ l(1 + ‖x‖2H);

and ∥∥F (x)− F (y)
∥∥2

H
+ tr((B(x)−B(y))Q(B(x)−B(y))∗)
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+

∫
H\{0}

∥∥f(v, x)− f(v, y)
∥∥2

H
β(dv) ≤ K

∥∥x− y∥∥2

H
;

for all x, y ∈ H. Where l, K are positive constants.

Let L(K,H) be the space of all linear bounded operators from K to H. Let
{fj}∞j=1 be an ONB in K diagonailizing Q and let the corresponding eigenvalues

be {λj}∞j=1. (For more details we refer to Section 2.1.2 of Chapter 2 of [16]).

The space KQ = Q1/2K equipped with the scalar product

〈u, v〉KQ =

∞∑
j=1

1

λj
〈u, fj〉K 〈v, fj〉K

is a separable Hilbert space with an ONB
{
λ

1/2
j fj

}∞
j=1

.

L2(KQ, H) is the space of Hilbert-Schmidt operators from KQ to H. If
{ej}∞j=1 is an ONB in H, then the Hilbert -Schimdt norm of an operator L ∈
L2(KQ, H) is given by,

‖L‖2L2(KQ,H) =

∞∑
j,i=1

〈
L(λ

1/2
j fj), ei

〉2

H

=

∞∑
j,i=1

〈
LQ1/2fj , ei

〉2

H

=
∥∥∥LQ1/2

∥∥∥2

L2(K,H)

= tr((LQ1/2)(LQ1/2)∗).

The scalar product between two operators L,M ∈ L2(KQ, H) is de�ned by,

〈L,M〉L2(KQ,H) = tr((LQ1/2)(MQ1/2)∗).

Since the Hilbert spaces KQ and H are separable, then the space L2(KQ, H) is
also separable.

Let L ∈ L(K,H). If k ∈ KQ, then

k =

∞∑
j=1

〈
k, λ

1/2
j fj

〉
KQ

λ
1/2
j fj ,

and L, considered as an operator norm from KQ to H, de�ned as

Lk =

∞∑
j=1

〈
k, λ

1/2
j fj

〉
KQ

λ
1/2
j Lfj ,

has a �nite Hilbert-Schmidt norm. (For more details we refer section 2.2 of
chapter 2 of [16], Chapter 4 of [9], or [27]).
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Let Λ2(KQ, H) be the class of L2(KQ, H) valued measurable processes as
mapping from ([0, T ]×Ω,B([0, T ])⊗F) to (L2(KQ, H),B(L2(KQ, H))), adapted
to the �ltration {Ft}{t≤T}, and satisfying the condition

E
[ ∫ T

0

‖φ(t)‖2L2(KQ,H) dt
]
<∞.

Λ2(KQ, H) when equipped with the norm

‖φ‖Λ2(KQ,H) =

(
E
[ ∫ T

0

‖φ(t)‖2L2(KQ,H) dt
])1/2

,

is a Hilbert space.

De�nition 9. A stochastic process {X(t), t ≥ 0} is called a mild solution of
(2.7) in [0, T ], if for all t ≤ T
(i) X(t) is Ft-adapted on the �ltered probability space (Ω,F , {Ft}t≤T , P ),
(ii) {X(t), t ≥ 0} is jointly measurable and

∫ T
0
E[‖X(t)‖2H ]dt <∞,

(iii)

X(t) = S(t)ξ +

∫ t

0

S(t− s)F (X(s))ds+

∫ t

0

S(t− s)B(X(s))dWs

+

∫ t

0

∫
H\{0}

S(t− s)f(v,X(s))q(dv, ds)

holds in [0, T ] a.s..

De�nition 10. A stochastic process {X(t), t ≥ 0} is called a strong solution of
(2.7) in [0, T ], if for all t ≤ T
(i) X(t) is Ft-adapted on the �ltered probability space (Ω,F , {Ft}t≤T , P ),
(ii) X(t) is càdlàg with probability one,

(iii) X(t) ∈ D(A), dt⊗ dP a.e.,
∫ T

0
‖AX(t)‖H dt <∞ P a.s.,

(iv)

X(t) = ξ +

∫ t

0

(AX(s) + F (X(s)))ds+

∫ t

0

B(X(s))dWs

+

∫ t

0

∫
H\{0}

f(v,X(s))q(dv, ds)

holds in [0, T ] a.s..
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Lemma 1. Let L2
T,β(H) be the space s.t. L2

T,β(H) :=
{
ϕ : (H\ {0})× [0, T ]×

Ω → H, such that ϕ is jointly measurable and Ft-adapted for all v ∈ H\{0},
t ∈ [0, T ] with E[

∫ T
0

∫
H\{0} ‖ϕ(v, t)‖2H β(dv)dt] <∞

}
.

a) Let B(s) ∈ Λ2(KQ, H) with E[
∫ T

0

∥∥B(s)
∥∥2

L2(KQ,H)
ds] < ∞. Then for any

stopping time τ , there exists a constant C1, depending on α, T s.t.

E

[
sup

0≤t≤T∧τ

∥∥ ∫ t

0

S(t− s)B(s)dWs

∥∥2

H

]
≤ C1E

[∫ T∧τ

0

∥∥B(s)
∥∥2

L2(KQ,H)
ds

]
.

b) Let ϕ ∈ L2
T,β(H) and τ be a stopping time. Then, there exists a constant C2,

depending on α, T s.t.

E

[
sup

0≤t≤T∧τ

∥∥∫ t

0

∫
H\{0}

S(t− s)ϕ(v, s)q(dv, ds)
∥∥2

H

]

≤ C2E

[∫ T∧τ

0

∫
H\{0}

‖ϕ(v, s)‖2H β(dv)ds

]
.

Proof. For the proof of the �rst inequality we refer Lemma 3.3(b) of [16]. And
for the second inequality we refer Lemma 5.1.9(1) of [22], [5].

Let

I(t, ξ(t)) =

∫ t

0

S(t− s)F (ξ(s))ds+

∫ t

0

S(t− s)B(ξ(s))dWs (2.8)

+

∫ t

0

∫
H\{0}

S(t− s)f(v, ξ(s))q(dv, ds).

Lemma 2. Let {S(t), t ≥ 0} be a pseudo-contraction semigroup. Assume that
E[sup0≤s≤T ‖ξ(s)‖2H ] < ∞ and the coe�cients F , B, f satisfy (A1), (A2),
(A3). Then for any stopping time τ

E

[
sup

0≤s≤t∧τ
‖I(s, ξ(s))‖2H

]
≤ C3

(
t+

∫ t

0

E[ sup
0≤u≤s∧τ

‖ξ(u)‖2H ]ds

)
,

where C3 is a constant depending on α, T and l. I(s, ξ(s)) is de�ned in (2.8).

Proof. Here we followed the proof of, Lemma 3.4 of [16] and Theorem 5.2.1 of
[22].
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sup
0≤s≤t∧τ

‖I(s, ξ(s))‖2H ≤ 2 sup
0≤s≤t∧τ

∥∥∥∥∫ s

0

S(s− u)F (ξ(u))ds

∥∥∥∥2

H

+ 2 sup
0≤s≤t∧τ

∥∥∥∥∫ s

0

S(s− u)B(ξ(u))dWu

∥∥∥∥2

H

+ 2 sup
0≤s≤t∧τ

∥∥∥∥∥
∫ s

0

∫
H\{0}

S(s− u)f(v, ξ(u))q(dv, du)

∥∥∥∥∥
2

H

.

Now from (A3) we can write

E

[
sup

0≤s≤t∧τ

∥∥∥∥∫ s

0

S(s− u)F (ξ(u))ds

∥∥∥∥2

H

]
≤ E sup

0≤s≤t∧τ
lCα,t

∫ s

0

(1 + sup
0≤r≤u

‖ξ(r)‖2)du

≤ Cα,T,l
(
t+

∫ t

0

E sup
0≤u≤s∧τ

‖ξ(u)‖2 ds
)
.

From Lemma 1 and (A3) we can write

E

[
sup

0≤s≤t∧τ

∥∥∥∥∫ s

0

S(s− u)B(ξ(u))dWu

∥∥∥∥2

H

]
≤ Cα,tE

∫ t∧τ

0

‖B(ξ(s))‖2 ds

≤ E sup
0≤s≤t∧τ

lCα,t

∫ s

0

(1 + sup
0≤r≤u

‖ξ(r)‖2)du

≤ Cα,T,l
(
t+

∫ t

0

E sup
0≤u≤s∧τ

‖ξ(u)‖2 ds
)
.

Again from Lemma 1 and (A3) we write

E

 sup
0≤s≤t∧τ

∥∥∥∥∥
∫ s

0

∫
H\{0}

S(s− u)f(v, ξ(u))q(dv, du)

∥∥∥∥∥
2

H


≤ Cα,tE

∫ t∧τ

0

∫
H\{0}

‖f(v, ξ(s))‖2 β(dv)ds

≤ E sup
0≤s≤t∧τ

lCα,t

∫ s

0

(1 + sup
0≤r≤u

‖ξ(r)‖2)du

≤ Cα,T,l
(
t+

∫ t

0

E sup
0≤u≤s∧τ

‖ξ(u)‖2 ds
)
.

Now combining the last 3 inequalities we get our desired inequality.

Lemma 3. Let {S(t), t ≥ 0} be a pseudo-contraction semigroup. Assume that
E[sup0≤s≤T ‖ξ(s)‖2H ] < ∞ and the coe�cients F , B, f satisfy (A1), (A2),
(A3). Then

E

[
sup

0≤s≤t
‖I(s, ξ1(s))− I(s, ξ2(s))‖2H

]
≤ C4

∫ t

0

E[ sup
0≤u≤s

‖ξ1(u)− ξ2(u)‖2H ]ds,
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where C4 is a constant depending on α, T and K. I(s, ξ(s)) is de�ned in (2.8).

Proof. Here we followed the proof of, Lemma 3.5 of [16] and Lemma 5.2.2 of [22].

E

(
sup

0≤s≤t
‖I(s, ξ1(s))− I(s, ξ2(s))‖2H

)
≤ 2E sup

0≤s≤t

∥∥∥∥∫ s

0

S(s− u)(F (u, ξ1(u))− F (u, ξ2(u)))du

∥∥∥∥2

+ 2E sup
0≤s≤t

∥∥∥∥∫ s

0

S(s− u)(B(u, ξ1(u))−B(u, ξ2(u)))dWu

∥∥∥∥2

+ 2E sup
0≤s≤t

∥∥∥∥∥
∫ s

0

∫
H\{0}

S(s− u)(f(v, ξ1(u))− f(v, ξ2(u)))q(dv, du)

∥∥∥∥∥
2

.

Now by (A3)

E sup
0≤s≤t

∥∥∥∥∫ s

0

S(s− u)(F (u, ξ1(u))− F (u, ξ2(u)))du

∥∥∥∥2

≤ KCα,TE sup
0≤s≤t

∫ s

0

sup
0≤r≤u

‖ξ1(r)− ξ2(r)‖2 du

= Cα,T,K

∫ t

0

E sup
0≤u≤s

‖ξ1(u)− ξ2(u)‖2 ds.

From Lemma 1 and (A3)

E sup
0≤s≤t

∥∥∥∥∫ s

0

S(s− u)(B(u, ξ1(u))−B(u, ξ2(u)))dWu

∥∥∥∥2

≤ Cα,TE
∫ t

0

‖B(u, ξ1(u))−B(u, ξ2(u))‖2 du

≤ Cα,T,K
∫ t

0

E sup
0≤u≤s

‖ξ1(u)− ξ2(u)‖2 ds.

Again from Lemma 1 and (A3)

E sup
0≤s≤t

∥∥∥∥∥
∫ s

0

∫
H\{0}

S(s− u)(f(v, ξ1(u))− f(v, ξ2(u)))q(dv, du)

∥∥∥∥∥
2

≤ Cα,TE
∫ t

0

∫
H\{0}

‖f(v, ξ1(u))− f(v, ξ2(u))‖2 β(dv)du

≤ Cα,T,K
∫ t

0

E sup
0≤u≤s

‖ξ1(u)− ξ2(u)‖2 ds.

Now combining the last 3 inequalities we get our desired inequality.
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2.1.1 Existence and uniqueness of the mild solutions

Let (D[0, T ], H) be the space of càdlàg functions de�ned on [0, T ] and with
values in H, with the sup norm ‖.‖∞ := supt∈[0,T ] ‖.‖H . Let HT2 denote the
space of (D[0, T ], H)-valued random processes ξ(t), which are jointly measur-

able, adapted to the �ltration {Ft}t∈[0,T ], with E[sup0≤s≤T ‖ξ(s)‖
2
H ] <∞. The

space HT2 , equipped with the norm ‖X‖HT2 :=
(
E[sup0≤s≤T ‖X(s)‖2H ]

)1/2
is a

Banach space (see Section 4.1 of [22]).

Theorem 3. Let the coe�cients F , B, f satisfy (A1), (A2), (A3); let {S(t), t ≥
0} be a pseudo-contraction semigroup generated by A and assume that E[‖X(0)‖2H ] <
∞. Then equation (2.7) has a unique mild solution X(t) ∈ (D[0, T ], H) satisfy-

ing E[sup0≤s≤T ‖X(s)‖2H ] <∞, i.e. the mild solution is in HT2 .

Proof. Here we followed the proof of, Theorem 3.3 of [16] and Theorem 3.3 of [2].

We have E ‖X(0)‖2H < ∞. Let, I(t,X) be de�ned similarly as (2.8), and
consider I(X)(t) = I(t,X). Then by Lemma 2, I : HT2 → HT2 . The solution
can be approximated by the following sequence:

X0(t) = S(t)X(0),

Xn+1(t) = S(t)X(0) + I(t,Xn), n = 0, 1, · · ·

Indeed, let vn(t) = E sup0≤s≤t ‖Xn+1(s)−Xn(s)‖2H . Then from previous
Lemma 2, we have a constant Vα,l,T s.t.

v0(t) = E sup
0≤s≤t

‖X1(s)−X0(s)‖2H ≤ Vα,l,T .

Similarly by Lemma 3, there exists a constant Cα,K,T s.t.

v1(t) = E sup
0≤s≤t

‖X2(s)−X1(s)‖2H = E sup
0≤s≤t

‖I(s,X1)− I(s,X0)‖2H

≤ Cα,K,T
∫ t

0

E sup
0≤u≤s

‖X1(u)−X0(u)‖2H ds

≤ Cα,K,TVα,l,T t.

And in general,

vn(t) ≤ Cα,K,T
∫ t

0

vn−1(s)ds ≤ Vα,l,T (Cα,K,T t)
n

n!
.

Let

εn =

(
Vα,l,T (Cα,K,TT )n

n!

)1/3

.

Then by applying Chebychev's inequality we get
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P ( sup
0≤t≤T

‖Xn+1(t)−Xn(t)‖H > εn) ≤
Vα,l,T (Cα,K,TT )n

n!(
Vα,l,T (Cα,K,TT )n

n!

)2/3
= εn.

Because
∑∞
n=1 εn <∞, by the Borel-Cantelli lemma, sup0≤t≤T ‖Xn+1(t)−Xn(t)‖H <

εn P -a.s.. Thus, the series

∞∑
n=1

sup
0≤t≤T

‖Xn+1(t)−Xn(t)‖H

converges P -a.s., showing that Xn converges to some X a.s. in (D[0, T ], H).

Moreover

E sup
0≤t≤T

‖X(t)−Xn(t)‖2H = E lim
m→∞

sup
0≤t≤T

‖Xn+m(t)−Xn(t)‖2H

= E lim
m→∞

sup
0≤t≤T

∥∥∥∥∥
n+m−1∑
k=n

(Xk+1(t)−Xk(t))

∥∥∥∥∥
2

H

≤ E lim
m→∞

(
n+m−1∑
k=n

sup
0≤t≤T

‖Xk+1(t)−Xk(t)‖H

)2

= lim
m→∞

E

(
n+m−1∑
k=n

sup
0≤t≤T

‖Xk+1(t)−Xk(t)‖H k
1

k

)2

≤
∞∑
k=n

E sup
0≤t≤T

‖Xk+1(t)−Xk(t)‖2H k
2

( ∞∑
k=n

1

k2

)
.

This converges to 0 as n → ∞, because the second series converges and

the �rst series is bounded by:
∑∞
k=n vk(t)k2 ≤

∑∞
k=n

Vα,l,T (Cα,K,T t)
k

k! k2 →
0 as n → ∞. Therefore Xn(t) converges to X(t) in HT2 , as n → ∞ and

Esup0≤s≤T ‖X(s)‖2H <∞.

Now, we will prove the uniqueness. SupposeX(t) and Y (t) are two solutions.
Let

ϑt = E sup
0≤s≤t

‖X(s)− Y (s)‖2H .

Then by the similar calculation as above, we get

ϑt ≤ Cα,K,T
∫ t

0

ϑsds

and by induction
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ϑt ≤
(Cα,K,T t)

n

n!
E sup

0≤s≤T
‖X(s)− Y (s)‖2H → 0

when n→∞, i.e. ϑt = 0; for all t ∈ [0, T ].

2.1.2 When a mild solution is a strong solution

Theorem 4. Suppose,
(a) S(t) is a pseudo-contraction semigroup, ξ ∈ D(A), S(t − r)F (y) ∈ D(A),
S(t− r)B(y) ∈ D(A), S(t− r)f(v, y) ∈ D(A);
X(t) ∈ D(A) dt⊗ dP a.e., for r < t, y ∈ H and v ∈ H\ {0}.

(b)

E

∫ T

0

‖B(X(t))‖2L2(KQ,H) dt <∞,

and ∫ T

0

∫ T

0

∫
H\{0}

E‖f(v,X(s))‖2Hβ(dv)dsdt <∞,

(c)

‖AS(t− r)F (y)‖H ≤ g1(t− r)(1 + ‖y‖H);

with g1 ∈ L1(0, T ) and

‖AS(t− r)B(y)‖H ≤ g2(t− r)(1 + ‖y‖H);

with g2 ∈ L2(0, T ),

(d) ∫
H\{0}

‖AS(t− r)f(v, y)‖2 β(dv) ≤ g3(t− r)(1 + ‖y‖2H);

with g3 ∈ L1(0, T ).
Then any mild solution of (2.7) (if it exists) is a strong solution.

Proof. Here we follow the methods provided in [18] and [24]. In [18] it is done
for the Gaussian case and in [24] it is done for non-Gaussian case.

From the de�nition of mild solution we have,

X(s) = S(s)ξ +

∫ s

0

S(s− r)F (X(r))dr +

∫ s

0

S(s− r)B(X(r))dWr

+

∫ s

0

∫
H\{0}

S(s− r)f(v,X(r))q(dv, dr).
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From the assumptions we can write,

∫ t

0

AX(s)ds =

∫ t

0

AS(s)ξds+

∫ t

0

∫ s

0

AS(s− r)F (X(r))drds+

∫ t

0

∫ s

0

AS(s− r)B(X(r))dWrds

+

∫ t

0

∫ s

0

∫
H\{0}

AS(s− r)f(v,X(r))q(dv, dr)ds.

Since, we know∫ t

0

∫ s

0

f(s− r)g(r)drds =

∫ t

0

∫ t

0

f(s− r)g(r)χ[0,s](r)drds

=

∫ t

0

∫ t

0

f(s− r)g(r)χ[0,s](r)dsdr

=

∫ t

0

∫ t

0

f(s− r)g(r)χ[r,t](s)dsdr

=

∫ t

0

∫ t

r

f(s− r)g(r)dsdr.

And, by the given conditions we have∫ T

0

∫ t

0

‖AS(t− r)F (X(r))‖ drdt <∞

with probability one,∫ T

0

∫ t

0

‖AS(t− r)B(X(r))‖2 drdt <∞

with probability one and∫ T

0

∫ t

0

∫
H\{0}

E ‖AS(t− r)f(v,X(r))‖2 β(dv)drdt <∞

with probability one. Hence, by applying Fubini theorem we get,

∫ t

0

AX(s)ds =

∫ t

0

AS(s)ξds+

∫ t

0

∫ t

r

AS(s− r)F (X(r))dsdr +

∫ t

0

∫ t

r

AS(s− r)B(X(r))dsdWr

+

∫ t

0

∫
H\{0}

∫ t

r

AS(s− r)f(v,X(r))dsq(dv, dr).

(For stochastic Fubini theorem we refer theorem (2.8) of [16] and theorem (3.1)
of [24]). Now we apply the formula,

∫ t

0

AS(s)ξds = S(t)ξ − ξ;
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when ξ ∈ D(A). Hence AX(t) is integrable with probability one and∫ t

0

AX(s)ds = S(t)ξ − ξ +

∫ t

0

S(t− r)F (X(r))dr −
∫ t

0

F (X(r))dr

+

∫ t

0

S(t− r)B(X(r))dWr −
∫ t

0

B(X(r))dWr

+

∫ t

0

∫
H\{0}

S(t− r)f(v,X(r))q(dv, dr)−
∫ t

0

∫
H\{0}

f(v,X(r))q(dv, dr).

Hence ∫ t

0

AX(r)dr = X(t)− ξ −
∫ t

0

F (X(r))dr −
∫ t

0

B(X(r))dWr

−
∫ t

0

∫
H\{0}

f(v,X(r))q(dv, dr).

Therefore

X(t) = ξ +

∫ t

0

AX(r)dr +

∫ t

0

F (X(r))dr +

∫ t

0

B(X(r))dWr

+

∫ t

0

∫
H\{0}

f(v,X(r))q(dv, dr).

By De�nition 10, {X(t), t ≥ 0} is a strong solution of equation (2.7).

2.2 Main Theorems

Now we consider the approximating system of equation (2.7),

dX(t) = (AX(t) +RnF (X(t)))dt+RnB(X(t))dWt +

∫
H\{0}

Rnf(v,X(t))q(dv, dt);

X(0) = ξ ∈ D(A). (2.9)

Here A generates a pseudo-contraction semigroup. Let R(n,A) = (nI−A)−1

denote the resolvent of A evaluted at n where Rn = nR(n,A), with n ∈ ρ(A)
the resolvent set of A. We have Rn : H → D(A) and An = ARn are the Yosida
approximations of A (see Chapter 1 of [16]). We assume that F , B, f satisfy
conditions (A1), (A2), (A3).

By applying Theorem 3, we can conclude that equation (2.9) has a unique
mild solution, denoted by Xξ

n(t). Then

Xξ
n(t) = S(t)ξ +

∫ t

0

S(t− s)RnF (Xξ
n(s))ds+

∫ t

0

S(t− s)RnB(Xξ
n(s))dWs
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+

∫ t

0

∫
H\{0}

S(t− s)Rnf(v,Xξ
n(s))q(dv, ds). (2.10)

Since the range R(R(n,A)) ⊂ D(A) (see Chapter 1 of [16]) and the condi-
tions of Theorem 4 are satis�ed, therefore we can conclude that Xξ

n(t) ∈ D(A)
is also a strong solution.

Now we are in a position to approximate the mild solution of equation (2.7)
with respect to the strong solutions of equation (2.9). The mild solution of
equation (2.7), say Xξ(t), satis�es

Xξ(t) = S(t)ξ +

∫ t

0

S(t− s)F (Xξ(s))ds+

∫ t

0

S(t− s)B(Xξ(s))dWs

+

∫ t

0

∫
H\{0}

S(t− s)f(v,Xξ(s))q(dv, ds). (2.11)

2.2.1 Approximating a mild solution by the strong solu-

tions

Theorem 5. Let S(t) be the pseudo-contraction semigroup and the coe�cients
F , B, f satisfy (A1), (A2), (A3). The stochastic partial di�erential equation
(2.9) has a unique strong solution

{
Xξ
n(t), t ≥ 0

}
in D([0, T ], L2((Ω,F , P ), H)

for T �nite and

lim
n→∞

E

[
sup

0≤t≤T

∥∥Xξ
n(t)−Xξ(t)

∥∥2

H

]
= 0, (2.12)

where
{
Xξ(t), t ≥ 0

}
is the mild solution of equation (2.7).

Proof. We proved this result in [1].

In Theorem 3 we have already proved that there exists a unique solution
of (2.9) in D([0, T ], L2((Ω,F , P ), H) and by Theorem 4 this is also a strong
solution. Now we will prove (2.12).

E sup
0≤t≤T

∥∥Xξ
n(t)−Xξ(t)

∥∥2

H

= E sup
0≤t≤T

∥∥∫ t

0

S(t− s)(RnF (Xξ
n(s))− F (Xξ(s)))ds

+

∫ t

0

S(t− s)(RnB(Xξ
n(s))−B(Xξ(s)))dWs

+

∫ t

0

∫
H\{0}

S(t− s)(Rnf(v,Xξ
n(s))− f(v,Xξ(s)))q(dv, ds)

∥∥2

H
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= E sup
0≤t≤T

∥∥ ∫ t

0

S(t− s)Rn(F (Xξ
n(s))− F (Xξ(s)))ds+

∫ t

0

S(t− s)(Rn − I)F (Xξ(s))ds

+

∫ t

0

S(t− s)Rn(B(Xξ
n(s))−B(Xξ(s)))dWs +

∫ t

0

S(t− s)(Rn − I)B(Xξ(s))dWs

+

∫ t

0

∫
H\{0}

S(t− s)Rn(f(v,Xξ
n(s))− f(v,Xξ(s)))q(dv, ds)

+

∫ t

0

∫
H\{0}

S(t− s)(Rn − I)f(v,Xξ(s))q(dv, ds)
∥∥2

H

≤ C
{
E sup

0≤s≤t

∥∥∫ s

0

S(s− r)Rn(F (Xξ
n(r))− F (Xξ(r)))dr

∥∥2

H

+E sup
0≤s≤t

∥∥∫ s

0

S(s− r)(Rn − I)F (Xξ(r))dr
∥∥2

H

+E sup
0≤s≤t

∥∥∫ s

0

S(s− r)Rn(B(Xξ
n(r))−B(Xξ(r)))dWr

∥∥2

H

+E sup
0≤s≤t

∥∥∫ s

0

S(s− r)(Rn − I)B(Xξ(r))dWr

∥∥2

H

+E sup
0≤s≤t

∥∥∫ s

0

∫
H\{0}

S(s− r)Rn(f(v,Xξ
n(r))− f(v,Xξ(r)))q(dv, dr)

∥∥2

H

+E sup
0≤s≤t

∥∥∫ s

0

∫
H\{0}

S(s− r)(Rn − I)f(v,Xξ(r))q(dv, dr)
∥∥2

H

}

≤ C
{
E sup

0≤s≤t

∥∥∫ s

0

S(s− r)Rn(F (Xξ
n(r))− F (Xξ(r)))dr

∥∥2

H

+E sup
0≤s≤t

∥∥ ∫ s

0

S(s− r)(Rn − I)F (Xξ(r))dr
∥∥2

H

+E sup
0≤s≤t

∥∥∫ s

0

S(s− r)Rn(B(Xξ
n(r))−B(Xξ(r)))dWr

∥∥2

H

+C1E

∫ t

0

∥∥(Rn − I)B(Xξ(r))
∥∥2

L2(KQ,H)
dr
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+E sup
0≤s≤t

∥∥ ∫ s

0

∫
H\{0}

S(s− r)Rn(f(v,Xξ
n(r))− f(v,Xξ(r)))q(dv, dr)

∥∥2

H

+C2E

∫ t

0

∫
H\{0}

∥∥(Rn − I)f(v,Xξ(r))
∥∥2

H
β(dv)dr

}
,

where C1, C2 are constants depending on α and T . By Lemma 3, the �rst,

third and �fth summands are bounded by G1K
∫ t

0
E sup0≤r≤s

∥∥Xξ
n(r)−Xξ(r)

∥∥2

H
dr

for n > n0 (n0 su�ciently large), where G1 is a constant which depends on
sup0≤t≤T ‖S(t)‖L(H) and supn>n0

‖Rn‖L(H) and K is the Lipschitz constant.

By the properties of Rn, the integrands in the second, fourth and sixth sum-

mands converge to zero. The integrands are bounded by G2l(1+
∥∥Xξ(r)

∥∥2

H
) (by

condition (A3)) for some constant G2 depending on ‖S(t)‖L(H) and ‖Rn‖L(H),
and the constant l is the linear growth condition. So by Lebesgue DCT the
integrals converge to zero as n→∞. Therefore there exists ε > 0 s.t. for su�-
ciently large n each of the three summands are less or equal ε. So for su�ciently
large n,

E sup
0≤t≤T

∥∥Xξ
n(t)−Xξ(t)

∥∥2

H
≤ 3G1K

∫ t

0

E sup
0≤r≤s

∥∥Xξ
n(r)−Xξ(r)

∥∥2

H
dr + 3ε.

By Gronwall's lemma (for su�ciently large n),

E sup
0≤t≤T

∥∥Xξ
n(t)−Xξ(t)

∥∥2

H
≤ 3εe3G1Kt.

Hence we can conclude that

lim
n→∞

E sup
0≤t≤T

∥∥Xξ
n(t)−Xξ(t)

∥∥2

H
= 0.

{
Xξ
n(t)

}
in the above theorem are the Yosida approximation of the mild

solution of (2.7).

De�nition 11. We call a continuous, non-decreasing function h : R+ → R+

quasi-sublinear if there is a constant C > 0 such that

h(x+ y) ≤ C(h(x) + h(y)), x, y ∈ R+,

h(xy) ≤ Ch(x)h(y), x, y ∈ R+.

Let C1,2([0, T ]×H) denote the class of real valued continuous functions Ψ on
[0, T ]×H with continuous Fréchet derivatives ∂sΨ(s, x), ∂xΨ(s, x), ∂s∂xΨ(s, x),
∂x∂sΨ(s, x) and ∂x∂xΨ(s, x). From (2.9), ξ ∈ D(A) and Xξ

n(t) ∈ D(A), where
Xξ
n(t) denotes the strong solution of equation (2.10). Let Ψ ∈ C1,2([0, T ]×H)
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and Ψ : [0, T ]×H → R. Moreover assume that the following conditions (a) and
(b) hold:

(a)

‖Ψx(s, x)‖H ≤ h1(‖x‖H)

and

‖Ψxx(s, x)‖L(H) ≤ h2(‖x‖H).

(b)∫ T

0

‖F (s)‖Hds <∞ P -a.s., P
{∫ T

0

‖B(s)‖2L2(KQ,H)ds <∞
}

= 1

and let h1, h2 : R+ → R+ be quasi-sublinear functions such that,

∫
H\{0}

‖f(v, s)‖2 β(dv) +

∫
H\{0}

h1(‖f(v, s)‖)2 ‖f(v, s)‖2 β(dv)

+

∫
H\{0}

h2(‖f(v, s)‖) ‖f(v, s)‖2 β(dv) <∞

P -a.s. for all s ∈ [0, T ]. Then due to the results of [23], [16], the Itô formula for
strong solutions is well de�ned:

Ψ(t,Xξ
n(t))−Ψ(0, ξ) =

∫ t

0

(Ψs(s,X
ξ
n(s)) + LnΨ(s,Xξ

n(s)))ds (2.13)

+

∫ t

0

〈
Ψx(s,Xξ

n(s)), RnB(Xξ
n(s))dWs

〉
H

+

∫ t

0

∫
H\{0}

[
Ψ(s,Xξ

n(s) +Rnf(v,Xξ
n(s)))−Ψ(s,Xξ

n(s))
]
q(dv, ds),

where

LnΨ(s,Xξ
n(s)) =

〈
Ψx(s,Xξ

n(s)), AXξ
n(s) +RnF (Xξ

n(s))
〉
H

(2.14)

+
1

2
tr(Ψxx(s,Xξ

n(s))(RnB(Xξ
n(s)))Q(RnB(Xξ

n(s)))∗)

+

∫
H\{0}

[
Ψ(s,Xξ

n(s) +Rnf(v,Xξ
n(s)))−Ψ(s,Xξ

n(s))−
〈
Ψx(s,Xξ

n(s)), Rnf(v,Xξ
n(s))

〉
H

]
β(dv).

P -a.s. for all s ∈ [0, T ]. See Appendix, 4.
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2.2.2 The Itô formula for mild solutions

Here we will prove our main theorem.

Theorem 6. Assume that S(t) is a pseudo-contraction semigroup and Ψ ∈
C1,2([0, T ]×H). Let the coe�cients F , B, f satisfy (A1), (A2), (A3). Moreover
assume that
(a)

‖Ψx(s, x)‖H ≤ h1(‖x‖H)

and

‖Ψxx(s, x)‖L(H) ≤ h2(‖x‖H),

(b) ∫ T

0

‖F (s)‖Hds <∞ P -a.s., P
{∫ T

0

‖B(s)‖2L2(KQ,H)ds <∞
}

= 1

and let h1, h2 : R+ → R+ be quasi-sublinear functions such that,

∫
H\{0}

‖f(v, s)‖2 β(dv) +

∫
H\{0}

h1(‖f(v, s)‖)2 ‖f(v, s)‖2 β(dv) (2.15)

+

∫
H\{0}

h2(‖f(v, s)‖) ‖f(v, s)‖2 β(dv) <∞.

P -a.s. for all s ∈ [0, T ]. Then the following Itô Formula for mild solutions
hold P -a.s. for all t ∈ [0, T ]

lim
n→∞

∫ t

0

〈
Ψx(s,Xξ

n(s)), AXξ
n(s)

〉
H
ds (2.16)

= Ψ(t,Xξ(t))−Ψ(0, ξ)−
∫ t

0

(Ψs(s,X
ξ(s)))ds

−
∫ t

0

〈
Ψx(s,Xξ(s)), F (Xξ(s))

〉
H
ds

−
∫ t

0

1

2
tr(Ψxx(s,Xξ(s))(B(Xξ(s)))Q(B(Xξ(s)))∗)ds

−
∫ t

0

∫
H\{0}

[
Ψ(s,Xξ(s) + f(v,Xξ(s)))−Ψ(s,Xξ(s))−

〈
Ψx(s,Xξ(s)), f(v,Xξ(s))

〉
H

]
β(dv)ds

−
∫ t

0

〈
Ψx(s,Xξ(s)), B(Xξ(s))dWs

〉
H

−
∫ t

0

∫
H\{0}

[
Ψ(s,Xξ(s) + f(v,Xξ(s)))−Ψ(s,Xξ(s))

]
q(dv, ds).
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Proof. We proved this result in [1].

First, we rewrite eq. (2.13) as follows

Ψ(t,Xξ
n(t))−Ψ(0, ξ)

=

∫ t

0

(Ψs(s,X
ξ
n(s)) + LnΨ(s,Xξ

n(s)))ds+

∫ t

0

〈
Ψx(s,Xξ

n(s)), RnB(Xξ
n(s))dWs

〉
H

+

∫ t

0

∫
H\{0}

[
Ψ(s,Xξ

n(s) +Rnf(x,Xξ
n(s)))−Ψ(s,Xξ

n(s))
]
q(dx, ds)

=

∫ t

0

(Ψs(s,X
ξ
n(s)))ds+

∫ t

0

Ln(Ψ(s,Xξ
n(s)))ds+

∫ t

0

〈
Ψx(s,Xξ

n(s)), RnB(Xξ
n(s))dWs

〉
H

+

∫ t

0

∫
H\{0}

[
Ψ(s,Xξ

n(s) +Rnf(v,Xξ
n(s)))−Ψ(s,Xξ

n(s))
]
q(dv, ds)

Now we substite Ln(Ψ(s,Xξ
n(s))),

=

∫ t

0

(Ψs(s,X
ξ
n(s)))ds+

∫ t

0

〈
Ψx(s,Xξ

n(s)), AXξ
n(s) +RnF (Xξ

n(s))
〉
H
ds

+

∫ t

0

1

2
tr(Ψxx(s,Xξ

n(s))(RnB(Xξ
n(s)))Q(RnB(Xξ

n(s)))∗)ds

+

∫ t

0

∫
H\{0}

[
Ψ(s,Xξ

n(s) +Rnf(v,Xξ
n(s)))−Ψ(s,Xξ

n(s))−
〈
Ψx(s,Xξ

n(s)), Rnf(v,Xξ
n(s))

〉
H

]
β(dv)ds

+

∫ t

0

〈
Ψx(s,Xξ

n(s)), RnB(Xξ
n(s))dWs

〉
H

+

∫ t

0

∫
H\{0}

[
Ψ(s,Xξ

n(s) +Rnf(v,Xξ
n(s)))−Ψ(s,Xξ

n(s))
]
q(dv, ds). (2.17)

Now our task is to show that the above equation converges P -a.s.(term by
term) and also to �nd the limit.

The convergence in Theorem 5 (equation (2.12)) allows us to choose a sub-
sequence Xξ

nk
such that,

Xξ
nk

(t)→ Xξ(t), 0 ≤ t ≤ T , P -a.s.
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We will denote such a subsequence again by Xξ
n.

In fact, we can say that

sup
0≤t≤T

‖Xn(t)−X(t)‖H → 0, (2.18)

P a.s.. This implies that the set

S = {Xn(t), X(t) : n = 1, 2..., 0 ≤ t ≤ T} (2.19)

is bounded in H, hence all the values of Ψ and its derivatives evaluated on S
are bounded by some constant. Now we are ready to show the term by term
convergence of equation (2.17).

First consider the �rst term of the L.H.S. of eq. (2.17). Since Ψ is continuous,
from (2.18) we can conclude that

Ψ(t,Xξ
n(t))→ Ψ(t,Xξ(t)),

P -a.s.

Now consider the �rst term of the R.H.S. of eq. (2.17). Ψs is continuous,
Ψs(s,X

ξ
n(s)) < C by equation (2.18). So by applying Lebesgue DCT we can

conclude that

∫ t

0

(Ψs(s,X
ξ
n(s)))ds→

∫ t

0

(Ψs(s,X
ξ(s)))ds,

P -a.s.

Now consider the second term of the R.H.S. of eq. (2.17),

∫ t

0

〈
Ψx(s,Xξ

n(s)), AXξ
n(s) +RnF (Xξ

n(s))
〉
H
ds

=

∫ t

0

〈
Ψx(s,Xξ

n(s)), AXξ
n(s)

〉
H
ds+

∫ t

0

〈
Ψx(s,Xξ

n(s)), RnF (Xξ
n(s))

〉
H
ds.

Since Ψx is continuous, by (2.18) we get Ψx(s,Xξ
n(s))→ Ψx(s,Xξ(s)). Since

F is continuous and Rn(F (Xξ
n(s)) is a double sequence, therefore we have

‖Rn (F (Xn(s)))− F (X(s))‖H ≤ ‖Rn (F (Xn(s))− F (X(s)))‖H + ‖Rn (F (X(s)))− F (X(s))‖H
≤ ‖Rn‖H ‖F (Xn(s))− F (X(s))‖H + ‖(Rn − I)F (X(s))‖H .(2.20)

Therefore Rn (F (Xn(s))) → F (X(s)) because of the uniform boundedness of
‖Rn‖L(H), and the convergence of (Rn − I)x → 0. So, by (2.18) and Lebesgue
DCT,

∫ t

0

〈
Ψx(s,Xξ

n(s)), RnF (Xξ
n(s))

〉
H
ds→

∫ t

0

〈
Ψx(s,Xξ(s)), F (Xξ(s))

〉
H
ds



34 CHAPTER 2. THE ITÔ FORMULA FOR MILD SOLUTIONS

P -a.s..

We will discuss the convergence of the term,∫ t

0

〈
Ψx(s,Xξ

n(s)), AXξ
n(s)

〉
H
ds

at the end.

Now consider the third term of the R.H.S. of eq. (2.17),∫ t

0

1

2
tr(Ψxx(s,Xξ

n(s))(RnB(Xξ
n(s)))Q(RnB(Xξ

n(s)))∗)ds.

We have

tr(Ψxx(s,Xξ
n(s))(RnB(Xξ

n(s)))Q(RnB(Xξ
n(s)))∗)

= tr((RnB(Xξ
n(s)))∗Ψxx(s,Xξ

n(s))(RnB(Xξ
n(s)))Q)

=

∞∑
j=1

λj
〈
Ψxx(s,Xξ

n(s))(RnB(Xξ
n(s)))fj , (RnB(Xξ

n(s)))fj
〉
H
.

Here we used the property that, for a symmetric operator T ∈ L(H) and
φ ∈ L(K,H),

tr(TφQφ∗) = tr(φ∗TφQ).

Ψxx being continuous, B is continuous, ‖Rn‖L(H) is uniformly bounded and

having the convergence of (Rn − I)x → 0, by a similar calculation as in (2.20)
we can deduce that

〈
Ψxx(s,Xξ

n(s))(RnB(Xξ
n(s)))fj , (RnB(Xξ

n(s)))fj
〉
H

→
〈
Ψxx(s,Xξ(s))(B(Xξ(s)))fj , (B(Xξ(s)))fj

〉
H
.

Hence,

tr(Ψxx(s,Xξ
n(s))(RnB(Xξ

n(s)))Q(RnB(Xξ
n(s)))∗)

→ tr(Ψxx(s,Xξ(s))(B(Xξ(s)))Q(B(Xξ(s)))∗).

Also we have,

tr(Ψxx(s,Xξ
n(s))(RnB(Xξ

n(s)))Q(RnB(Xξ
n(s)))∗) ≤ ‖Ψxx(s,Xξ

n(s))‖‖RnB(Xξ
n(s))‖2

by (A3) ≤ ‖Ψxx(s,Xξ
n(s))‖‖Rn‖2l(1 + ‖Xξ

n(s)‖2).
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So by (2.18) and Lebesgue DCT we can conclude that,

∫ t

0

tr(Ψxx(s,Xξ
n(s))(RnB(Xξ

n(s)))Q(RnB(Xξ
n(s)))∗)ds

→
∫ t

0

tr(Ψxx(s,Xξ(s))(B(Xξ(s)))Q(B(Xξ(s)))∗)ds,

P -a.s..

Now consider the fourth term of the R.H.S. of eq. (2.17),

∫
H\{0}

[
Ψ(s,Xξ

n(s) +Rnf(v,Xξ
n(s)))−Ψ(s,Xξ

n(s))−
〈
Ψx(s,Xξ

n(s)), Rnf(v,Xξ
n(s))

〉
H

]
β(dv).

Using Theorem 5, (2.18), the continuity of Ψ, Ψx, f and (Rn − I)x→ 0, we
can conclude

[
Ψ(s,Xξ

n(s) +Rnf(v,Xξ
n(s)))−Ψ(s,Xξ

n(s))−
〈
Ψx(s,Xξ

n(s)), Rnf(v,Xξ
n(s))

〉
H

]
converges to[

Ψ(s,Xξ(s) + f(v,Xξ(s)))−Ψ(s,Xξ(s))−
〈
Ψx(s,Xξ(s)), f(v,Xξ(s))

〉
H

]
P -a.s.. Again by Taylor's theorem, the Cauchy Schwarz inequality and as-

sumption (a) of the theorem we get

∫
H\{0}

∥∥Ψ(s,Xξ
n(s) +Rnf(v,Xξ

n(s)))−Ψ(s,Xξ
n(s))−

〈
Ψx(s,Xξ

n(s)), Rnf(v,Xξ
n(s))

〉
H

∥∥β(dv)

=

∫
H\{0}

∥∥∥∥∫ 1

0

Ψxx(s,Xξ
n(s) + θRnf(v,Xξ

n(s)))
〈
Rnf(v,Xξ

n(s)), Rnf(v,Xξ
n(s))

〉
dθ

∥∥∥∥β(dv)

≤
∫
H\{0}

∫ 1

0

∥∥Ψxx(s,Xξ
n(s) + θRnf(v,Xξ

n(s)))
∥∥∥∥Rnf(v,Xξ

n(s))
∥∥2
dθβ(dv)

≤
∫
H\{0}

∫ 1

0

h2

(∥∥Xξ
n(s) + θRnf(v,Xξ

n(s))
∥∥) ∥∥Rnf(v,Xξ

n(s))
∥∥2
dθβ(dv)

≤ C
∫
H\{0}

∫ 1

0

(
h2(
∥∥Xξ

n(s)
∥∥) + Ch2(θ)h2(

∥∥Rnf(v,Xξ
n(s))

∥∥)
) ∥∥Rnf(v,Xξ

n(s))
∥∥2
dθβ(dv)

≤ C
∫
H\{0}

h2(
∥∥Xξ

n(s)
∥∥)
∥∥Rnf(v,Xξ

n(s))
∥∥2
β(dv)

+ C2h2(1)

∫
H\{0}

h2(
∥∥Rnf(v,Xξ

n(s))
∥∥)
∥∥Rnf(v,Xξ

n(s))
∥∥2
β(dv) <∞,
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P -a.s. by the condition (2.15). Since ‖Rn‖L(H) is uniformly bounded, there-
fore by Lebesgue DCT

∫ t

0

∫
H\{0}

[
Ψ(s,Xξ

n(s) +Rnf(v,Xξ
n(s)))−Ψ(s,Xξ

n(s))−
〈
Ψx(s,Xξ

n(s)), Rnf(v,Xξ
n(s))

〉
H

]
β(dv)ds

converges to

∫ t

0

∫
H\{0}

[
Ψ(s,Xξ(s) + f(v,Xξ(s)))−Ψ(s,Xξ(s))−

〈
Ψx(s,Xξ(s)), f(v,Xξ(s))

〉
H

]
β(dv)ds

P -a.s..

Now consider the �fth term of the R.H.S. of eq. (2.17),∫ t

0

〈
Ψx(s,Xξ

n(s)), RnB(Xξ
n(s))dWs

〉
H
.

Now,

E
∥∥∫ t

0

〈
Ψx(s,Xξ

n(s)), RnB(Xξ
n(s))dWs

〉
H
−
∫ t

0

〈
Ψx(s,Xξ(s)), B(Xξ(s))dWs

〉
H

∥∥2

≤ C
∫ t

0

E
∥∥(B(Xξ(s)))∗(Ψx(s,Xξ

n(s)−Ψx(s,Xξ(s)))
∥∥2

L2(KQ,H)
ds

+C

∫ t

0

E
∥∥((B(Xξ(s)))∗ − (RnB(Xξ

n(s)))∗)Ψx(s,Xξ
n(s))

∥∥2

L2(KQ,H)
ds

≤ C
∫ t

0

E(
∥∥(B(Xξ(s))

∥∥2

L2(KQ,H)

∥∥Ψx(s,Xξ
n(s))−Ψx(s,Xξ(s))

∥∥2

H
)ds

+C

∫ t

0

E(
∥∥(B(Xξ(s)))∗ − (RnB(Xξ

n(s)))∗
∥∥2

L2(KQ,H)

∥∥Ψx(s,Xξ
n(s))

∥∥2

H
)ds.

Here, the �rst integral converges to zero, since the �rst factor is an inte-
grable process, and the second factor converges to zero almost surely, so we can
apply Lebesgue DCT. The second integral is bounded by M

∥∥(B(Xξ(s)))∗ −
(RnB(Xξ

n(s)))∗
∥∥2

Λ2(KQ,H)
for some constant M (from (2.18), Ψx is bounded by

some constant), since RnB(Xξ
n(s))→ B(Xξ(s)) in the space Λ2(KQ, H), so the

second integral also converges to zero by Lebesgue DCT. Hence we can conclude
that,∫ t

0

〈
Ψx(s,Xξ

n(s)), RnB(Xξ
n(s))dWs

〉
H
→
∫ t

0

〈
Ψx(s,Xξ(s)), B(Xξ(s))dWs

〉
H
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in mean square, therefore in probability.

Now consider the sixth term of the R.H.S. of eq. (2.17),

∫ t

0

∫
H\{0}

[
Ψ(s,Xξ

n(s) +Rnf(v,Xξ
n(s)))−Ψ(s,Xξ

n(s))
]
q(dv, ds).

Now,

∥∥{Ψ(s,Xξ
n(s) +Rnf(v,Xξ

n(s)))−Ψ(s,Xξ
n(s))

}
−
{

Ψ(s,Xξ(s) + f(v,Xξ(s)))−Ψ(s,Xξ(s))
}∥∥2

=
∥∥[Ψ(s,Xξ

n(s) +Rnf(v,Xξ
n(s)))−Ψ(s,Xξ(s) + f(v,Xξ(s)))

]
+
[
Ψ(s,Xξ(s))−Ψ(s,Xξ

n(s))
]∥∥2

≤ 2
∥∥Ψ(s,Xξ

n(s) +Rnf(v,Xξ
n(s)))−Ψ(s,Xξ(s) + f(v,Xξ(s)))

∥∥2

+2
∥∥Ψ(s,Xξ(s))−Ψ(s,Xξ

n(s))
∥∥2

≤ 2
∥∥Xξ

n(s) +Rnf(v,Xξ
n(s))−

{
Xξ(s) + f(v,Xξ(s))

}∥∥2
sup

0<θ≤1
‖Ψx(s, η1(θ))‖2

+2
∥∥Xξ(s)−Xξ

n(s)
∥∥2

sup
0<θ≤1

‖Ψx(s, η2(θ))‖2

to obtain the above inequality, we used the following inequality

‖Ψ(x)−Ψ(y)‖ ≤ ‖x− y‖ sup
0<θ≤1

‖Ψx(y + θ(x− y))‖.

Where

η1(θ) = Xξ(s) + f(v,Xξ(s)) + θ
(
Xξ
n(s)−Xξ(s) +Rnf(v,Xξ

n(s))− f(v,Xξ(s))
)

and

η2(θ) = Xξ
n(s) + θ

(
Xξ(s)−Xξ

n(s)
)
.

Therefore, by using condition (a) of the theorem, we can write the above in-
equality is

≤ 4
{∥∥Xξ

n(s)−Xξ(s)
∥∥2

+
∥∥Rnf(v,Xξ

n(s))− f(v,Xξ(s))
∥∥2
}

sup
0<θ≤1

{h1(‖η1(θ)‖)}2

+2
∥∥Xξ(s)−Xξ

n(s)
∥∥2

sup
0<θ≤1

{h1(‖η2(θ)‖)}2.

Now as n → ∞, the R.H.S. of the above inequality converges to 0 P -a.s..
Therefore

lim
n→∞

∫ t

0

∫
H\{0}

‖
{

Ψ(s,Xξ
n(s) +Rnf(v,Xξ

n(s)))−Ψ(s,Xξ
n(s))

}
(2.21)

−
{

Ψ(s,Xξ(s) + f(v,Xξ(s)))−Ψ(s,Xξ(s))
}
‖2β(dv)ds = 0
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P -a.s.. Again by Taylor's theorem, the Cauchy Schwarz inequality and as-
sumption (a) of the theorem we get

∫ t

0

∫
H\{0}

∥∥Ψ(s,Xξ
n(s) +Rnf(v,Xξ

n(s)))−Ψ(s,Xξ
n(s))

∥∥2
β(dv)ds

=

∫ t

0

∫
H\{0}

∥∥∥∥∫ 1

0

Ψx(s,Xξ
n(s) + θRnf(v,Xξ

n(s)))Rnf(v,Xξ
n(s))dθ

∥∥∥∥2

β(dv)ds

≤
∫ t

0

∫
H\{0}

∫ 1

0

∥∥Ψx(s,Xξ
n(s) + θRnf(v,Xξ

n(s)))
∥∥2 ∥∥Rnf(v,Xξ

n(s))
∥∥2
dθβ(dv)ds

≤
∫ t

0

∫
H\{0}

∫ 1

0

h1(
∥∥Xξ

n(s) + θRnf(v,Xξ
n(s))

∥∥)2
∥∥Rnf(v,Xξ

n(s))
∥∥2
dθβ(dv)ds

≤ C2

∫ t

0

∫
H\{0}

∫ 1

0

{
h1(
∥∥Xξ

n(s)
∥∥) + Ch1(θ)h1(

∥∥Rnf(v,Xξ
n(s))

∥∥)
}2 ∥∥Rnf(v,Xξ

n(s))
∥∥2
dθβ(dv)ds

≤ 2C2

∫ t

0

∫
H\{0}

h1(
∥∥Xξ

n(s)
∥∥)2
∥∥Rnf(v,Xξ

n(s))
∥∥2
β(dv)ds (2.22)

+ 2C4h1(1)

∫ t

0

∫
H\{0}

h1(
∥∥Rnf(v,Xξ

n(s))
∥∥)2
∥∥Rnf(v,Xξ

n(s))
∥∥2
β(dv)ds <∞,

P -a.s. by the condition (2.15). Therefore from (2.21) and (2.22) we can
conclude that

lim
n→∞

∫ t

0

∫
H\{0}

[
Ψ(s,Xξ

n(s) +Rnf(v,Xξ
n(s)))−Ψ(s,Xξ

n(s))
]
q(dv, ds)

=

∫ t

0

∫
H\{0}

[
Ψ(s,Xξ(s) + f(v,Xξ(s)))−Ψ(s,Xξ(s))

]
q(dv, ds)

in probability.

Thus we have showed the term by term convergence of left- and right- hand
sides of eq. (2.17) except for the term

∫ t
0

〈
Ψx(s,Xξ

n(s)), AXξ
n(s)

〉
H
ds. Now

since all the terms of the eq. (2.17) converge, so the term
∫ t

0

〈
Ψx(s,Xξ

n(s)), AXξ
n(s)

〉
H
ds

has to converge. Where the nonstochastic integrals converge in P -a.s. sense and
stochastic integrals converge in probability. In conclusion, possibly for a subse-
quence of left- and right- hand sides of eq. (2.17) converges in P -a.s. sense for
all t ∈ [0, T ]. Hence we can conclude that eq. (2.13) converges P -a.s. and we
can write it as,

lim
n→∞

∫ t

0

〈
Ψx(s,Xξ

n(s)), AXξ
n(s)

〉
H
ds
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= Ψ(t,Xξ(t))−Ψ(0, ξ)−
∫ t

0

(Ψs(s,X
ξ(s)))ds

−
∫ t

0

〈
Ψx(s,Xξ(s)), F (Xξ(s))

〉
H
ds

−
∫ t

0

1

2
tr(Ψxx(s,Xξ(s))(B(Xξ(s)))Q(B(Xξ(s)))∗)ds

−
∫ t

0

∫
H\{0}

[
Ψ(s,Xξ(s) + f(v,Xξ(s)))−Ψ(s,Xξ(s))−

〈
Ψx(s,Xξ(s)), f(v,Xξ(s))

〉
H

]
β(dv)ds

−
∫ t

0

〈
Ψx(s,Xξ(s)), B(Xξ(s))dWs

〉
H

−
∫ t

0

∫
H\{0}

[
Ψ(s,Xξ(s) + f(v,Xξ(s)))−Ψ(s,Xξ(s))

]
q(dv, ds).

This completes the proof.

Remark 1: When Xξ(t) ∈ D(A), then AXξ(t) is well de�ned. Hence,we get
back the same Itô formula for strong solutions as in eq. (2.13), as by Theorem
4 when Xξ(t) ∈ D(A), then it is also a strong solution.

De�nition 12. Let Xξ
n(s) be the strong solution of (2.9) de�ned in (2.10) and

Xξ(s) be the mild solution of (2.7) de�ned in (2.11). Let us de�ne the processes
LnΨ(s,Xξ

n(s)) and LΨ(s,Xξ(s)) respectively as follows-

LnΨ(s,Xξ
n(s)) :=

〈
Ψx(s,Xξ

n(s)), AXξ
n(s) +RnF (Xξ

n(s))
〉
H

(2.23)

+
1

2
tr(Ψxx(s,Xξ

n(s))(RnB(Xξ
n(s)))Q(RnB(Xξ

n(s)))∗)

+

∫
H\{0}

[
Ψ(s,Xξ

n(s) +Rnf(v,Xξ
n(s)))−Ψ(s,Xξ

n(s))−
〈
Ψx(s,Xξ

n(s)), Rnf(v,Xξ
n(s))

〉
H

]
β(dv)

and

LΨ(s,Xξ(s)) := lim
n→∞

〈
Ψx(s,Xξ

n(s)), AXξ
n(s)

〉
+
〈
Ψx(s,Xξ(s)), F (Xξ(s))

〉
H

(2.24)

+
1

2
tr(Ψxx(s,Xξ(s))(B(Xξ(s)))Q(B(Xξ(s)))∗)

+

∫
H\{0}

[
Ψ(s,Xξ(s) + f(v,Xξ(s)))−Ψ(s,Xξ(s))−

〈
Ψx(s,Xξ(s)), f(v,Xξ(s))

〉
H

]
β(dv),

where Xξ
n(s) ∈ D(A).



40 CHAPTER 2. THE ITÔ FORMULA FOR MILD SOLUTIONS

Corollary 1. Assume that F , B, f satisfy (A1), (A2), (A3) and conditions
(a), (b) of Theorem 6 hold. Let Xξ

n(s) ∈ D(A) be the strong solution of (2.9)
de�ned in (2.10) and Xξ(s) be the mild solution of (2.7) de�ned in (2.11).
Let LnΨ(s,Xξ

n(s)) and LΨ(s,Xξ(s)) be de�ned as in De�nition 12. Then
LΨ(s,Xξ(s))− LnΨ(s,Xξ

n(s))→ 0, P -a.s. as n→∞.

Proof. We proved this result in [1].

LΨ(s,Xξ(s))− LnΨ(s,Xξ
n(s)) = lim

n→∞

〈
Ψx(s,Xξ

n(s)), AXξ
n(s)

〉

+
〈
Ψx(s,Xξ(s)), F (Xξ(s))

〉
H

+
1

2
tr(Ψxx(s,Xξ(s))(B(Xξ(s)))Q(B(Xξ(s)))∗)

+

∫
H\{0}

[
Ψ(s,Xξ(s) + f(v,Xξ(s)))−Ψ(s,Xξ(s))−

〈
Ψx(s,Xξ(s)), f(v,Xξ(s))

〉
H

]
β(dv)

−
〈
Ψx(s,Xξ

n(s)), AXξ
n(s)

〉
−
〈
Ψx(s,Xξ

n(s)), RnF (Xξ
n(s))

〉
H

−1

2
tr(Ψxx(s,Xξ

n(s))(RnB(Xξ
n(s)))Q(RnB(Xξ

n(s)))∗)

−
∫
H\{0}

[
Ψ(s,Xξ

n(s) +Rnf(v,Xξ
n(s)))−Ψ(s,Xξ

n(s))−
〈
Ψx(s,Xξ

n(s)), Rnf(v,Xξ
n(s))

〉
H

]
β(dv).

Now as n→∞,

LΨ(s,Xξ(s))− LnΨ(s,Xξ
n(s))

= lim
n→∞

〈
Ψx(s,Xξ

n(s)), AXξ
n(s)

〉
− lim
n→∞

〈
Ψx(s,Xξ

n(s)), AXξ
n(s)

〉
= 0

P -a.s.. As, all other terms converge to the respective terms P -a.s. from
Theorem 6.

2.3 Applications of the Itô formula for mild solu-
tions

In this section we will present some applications of the Itô formula for mild
solutions of Theorem 6 to prove the results of exponential stability and expo-
nentially ultimate boundedness in the mean square sense (m.s.s.).

First, we will show how we use the limiting argument of Theorem 6 and
Corollary 1 to prove the results of exponential stability in the mean square
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sense of the mild solutions. These results are proved, for the Gaussian case in
chapter 6 (Theorem 6.4 and Theorem 6.5) of [16] and for the non-Gaussian case
in [24] (Theorem 4.2 and Theorem 4.3). But here we prove the same results in
much shorter way.

Consider the following stochastic partial di�erential equation with values in
H,

dX(t) = (AX(t) + F (X(t)))dt+B(X(t))dWt +

∫
H\{0}

f(v,X(t))q(dv, dt);

X(0) = x ∈ H. (2.25)

Which satisfy conditions (A1), (A2) and (A3).

De�nition 13. Let {Xx(t), t ≥ 0} be a mild solution of (2.25). We say that
Xx(t) is exponentially stable in the mean square sense (m.s.s.) if for all t ≥ 0
and x ∈ H,

E ‖Xx(t)‖2H ≤ ce
−βt ‖x‖2H ; c, β > 0. (2.26)

Let C2(H) be the space of continuous functions on Λ : H → R, with contin-
uous partial Fréchet derivatives Λ′(x) and Λ′′(x) exists for x ∈ H. Let C2

2p(H),
with p ≥ 1, denote the subspace of C2(H) consisting of functions Λ : H → R
whose �rst two derivatives satisfy the following growth conditions:

‖Λ′(x)‖H ≤ C ‖x‖
2p
H and ‖Λ′′(x)‖L(H) ≤ C ‖x‖

2p
H

for some constant C ≥ 0.

Theorem 7. Let us assume that F , B, f satisfy (A1), (A2), (A3) and the con-
ditions (a), (b) of Theorem 6 hold. The mild solution of (2.25) is exponentially
stable in the m.s.s. if there exists a function Λ : H → R satisfying the following
conditions:
(I) Λ ∈ C2

2p(H).
(II) There exist �nite constants c1, c2 > 0 such that; for all x ∈ H

c1 ‖x‖2H ≤ Λ(x) ≤ c2 ‖x‖2H

(III) There exists a constants c3 > 0 such that

LΛ(x) ≤ −c3Λ(x) for all x ∈ D(A)

with LΛ(x) de�ned in (2.14).

Proof. The detailed proof is in Theorem 6.4 of [16], Theorem 4.2 of [24]. Here
we show, how we use the the limiting argument of Theorem 6 and Corollary 1
in the proof.
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First we will apply the Itô formula for strong solution to the function ec3tΛ(Xx
n(t)).

Where Xx
n(t) ∈ D(A) are the sequence of strong solutions which approximate

the mild solution Xx(t). Now after applying the Itô formula to the function
ec3tΛ(Xx

n(t)), we take expectations on both sides and obtain

ec3tEΛ(Xx
n(t))− Λ(Xx

n(0)) = E

∫ t

0

ec3s (c3Λ(Xx
n(s)) + LnΛ(Xx

n(s))) ds.

(2.27)

Now from condition (III),

c3Λ(Xx
n(s)) + LnΛ(Xx

n(s)) ≤ −LΛ(Xx
n(s)) + LnΛ(Xx

n(s))

⇒ ec3tEΛ(Xx
n(t))− Λ(Xx

n(0)) ≤ E
∫ t

0

ec3s (−LΛ(Xx
n(s)) + LnΛ(Xx

n(s))) ds.

(2.28)

Now from (2.23) and (2.24)

−LΛ(Xx
n(s)) + LnΛ(Xx

n(s)) (2.29)

= 〈Λ′(Xx
n(s)), AXx

n(s)〉 − lim
n→∞

〈Λ′(Xx
n(s)), AXx

n(s)〉

+ 〈Λ′(Xx
n(s)), (Rn − I)F (Xx

n(s))〉H

+
1

2
tr {(Λ′′(Xx

n(s))[(RnB(Xx
n(s)))Q(RnB(Xx

n(s)))∗)− (B(Xx
n(s)))Q(B(Xx

n(s)))∗)]}

+

∫
H\{0}

[Λ(Xx
n(s) +Rnf(v,Xx

n(s)))− Λ(Xx
n(s) + f(v,Xx

n(s)))]β(dv)

+

∫
H\{0}

〈Λ′(Xx
n(s)), (Rn − I)f(v,Xx

n(s))〉H β(dv).

Now by Cauchy-Schwarz inequality and condition (II) we get,

|〈Λ′(Xx
n(s)), (Rn − I)F (Xx

n(s))〉H | ≤ ‖Λ
′(Xx

n(s))‖ · ‖(Rn − I)F (Xx
n(s))‖

≤ c4 ‖Xx
n(s)‖ · ‖(Rn − I)F (Xx

n(s))‖ .

By (2.18), ‖Rn‖ is uniformly bounded, (Rn− I)x→ 0 and Λ′, F are contin-
uous, hence we get by Theorem 5 and Lebesgue DCT

E

∫ t

0

ec3s 〈Λ′(Xx
n(s)), (Rn − I)F (Xx

n(s))〉H ds→ 0. (2.30)
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With the similar argument, we can conclude

E

∫ t

0

∫
H\{0}

ec3s 〈Λ′(Xx
n(s)), (Rn − I)f(v,Xx

n(s))〉H β(dv)ds→ 0. (2.31)

Now

tr {(Λ′′(Xx
n(s))(RnB(Xx

n(s)))Q(RnB(Xx
n(s)))∗)}

→ tr {(Λ′′(Xx(s))(B(Xx(s)))Q(B(Xx(s)))∗)}

and

tr {(Λ′′(Xx
n(s))(B(Xx

n(s)))Q(B(Xx
n(s)))∗)}

→ tr {(Λ′′(Xx(s))(B(Xx(s)))Q(B(Xx(s)))∗)} .

Again,

tr {(Λ′′(Xx
n(s))(RnB(Xx

n(s)))Q(RnB(Xx
n(s)))∗)} ≤ ‖Λ′′(Xx

n(s))‖ ‖RnB(Xx
n(s))‖2

[by (2.18), for some constant c5 > 0] ≤ c5 ‖RnB(Xx
n(s))‖2

[by assumption on B, in (A3)] ≤ c5 ‖Rn‖2 l(1 + ‖Xx
n(s)‖2).

Similarly

tr {(Λ′′(Xx
n(s))(B(Xx

n(s)))Q(B(Xx
n(s)))∗)} ≤ c5l(1 + ‖Xx

n(s)‖2).

By (2.18) and ‖Rn‖2 is uniformly bounded, Λ′′, B are continuous, hence we
get by Theorem 5 and Lebesgue DCT

E

∫ t

0

ec3s
1

2
tr{(Λ′′(Xx

n(s))[(RnB(Xx
n(s)))Q(RnB(Xx

n(s)))∗) (2.32)

−(B(Xx
n(s)))Q(B(Xx

n(s)))∗)]}ds→ 0.

Now consider the term

∫
H\{0}

[Λ(Xx
n(s) +Rnf(v,Xx

n(s)))− Λ(Xx
n(s) + f(v,Xx

n(s)))]β(dv).

Now

Λ(Xx
n(s) +Rnf(v,Xx

n(s)))→ Λ(Xx(s) + f(v,Xx(s)))

and

Λ(Xx
n(s) + f(v,Xx

n(s)))→ Λ(Xx(s) + f(v,Xx(s))).

Again
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‖Λ(Xx
n(s) +Rnf(v,Xx

n(s)))− Λ(Xx
n(s) + f(v,Xx

n(s)))‖

≤ ‖(Rn − I)f(v,Xx
n(s))‖ sup

0<θ≤1
‖Λ′{Xx

n(s) + θ(Rn − I)f(v,Xx
n(s))}‖ .

By (2.18), ‖Rn‖ is uniformly bounded, (Rn − I)x→ 0 and Λ, f are contin-
uous, hence by Theorem 5 and Lebesgue DCT

E

∫ t

0

∫
H\{0}

ec3s[Λ(Xx
n(s) +Rnf(v,Xx

n(s)))− Λ(Xx
n(s) + f(v,Xx

n(s)))]β(dv)ds→ 0.

(2.33)

And also

lim
n→∞

〈Λ′(Xx
n(s)), AXx

n(s)〉 − lim
n→∞

〈Λ′(Xx
n(s)), AXx

n(s)〉 (2.34)

= 0.

Therefore from (2.30), (2.31), (2.32), (2.33) and (2.34) we can conclude as
n→∞, the R.H.S. of (2.28) converges to 0. Hence by Lebesgue DCT and using
the continuity of Λ, from (2.27) we obtain

ec3tEΛ(Xx(t)) ≤ Λ(x) (2.35)

⇒ c1E ‖Xx(t)‖2H ≤ EΛ(Xx(t)) ≤ e−c3tΛ(x) ≤ c2e−c3t ‖x‖2H [from condition (ii)]

⇒ E ‖Xx(t)‖2H ≤
c2
c1
e−c3t ‖x‖2H . (2.36)

Since the mild solution Xx(t) depends continuously on the initial condition
x, therefore (2.36) holds for all x ∈ H. Now choosing c = c2

c1
and β = c3, we

can conclude that, the mild solution Xx(t) is exponentially stable in the mean
square sense (m.s.s.).

De�nition 14. The function Λ satisfying conditions (I)-(III) of Theorem 7, is
called a Lyapunov function.

Now we consider the linear case of eq. (2.25) with F (x) = 0, B(x) = B0x
and f(v, x) = f0(v)x. We consider the solution of the equation,

dX(t) = AX(t)dt+B0X(t)dWt +

∫
H\{0}

f0(v)X(t)q(dv, dt); (2.37)

X(0) = x ∈ H
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Where B0 ∈ L(H,L(K,H)), f0(v) : H\ {0} → R, ‖B0x‖ ≤ d1 ‖x‖H and∫
H\{0} ‖f0(v)x‖2H β(dv) ≤ d2 ‖x‖2H for x ∈ H.

Mild solutions are solutions of the corresponding integral equation

X(t) = S(t)x+

∫ t

0

S(t− s)B0X(s)dWs +

∫ t

0

∫
H\{0}

S(t− s)f0(v)X(s)q(dv, ds).

(2.38)

We can show that the existence of a Lyapunov function is a necessary con-
dition for exponential stability in the m.s.s. of the mild solutions of (2.37). The
following notation will be used:

L0Ψ(x) = 〈Ψ′(x), Ax〉H +
1

2
tr(Ψ′′(x)(B0x)Q(B0x)∗) (2.39)

+

∫
H\{0}

[Ψ(x+ f0(v)x)−Ψ(x)− 〈Ψ′(x), f0(v)x〉H ]β(dv)

for x ∈ D(A).

Theorem 8. Let us assume that F , B, f satisfy (A1), (A2), (A3) and the
conditions (a), (b) of Theorem 6 hold. Assume that A generates a pseudo-
contraction semigroup of operators {S(t), t ≥ 0} on H and that the mild solution
of (2.37) is exponentially stable in the m.s.s. Then there exists a function Λ0(x)
satisfying conditions (I) and (II) of Theorem 7 and the condition and L0Λ0(x) ≤
−c3Λ0(x), x ∈ D(A), for some c3 > 0.

Proof. The detailed proof is in Theorem 6.5 of [16], Theorem 4.3 of [24]. Here
we show, how we use the the limiting argument of Theorem 6 and Corollary 1
in the proof.

Let

Λ0(x) =

∫ ∞
0

E‖Xx(t)‖2Hdt+ α‖x‖2H , (2.40)

where the value of the constant α > 0 will be determined later. Note that
Xx(t) depends on x linearly. The exponential stability in the m.s.s. implies
that

∫ ∞
0

E‖Xx(t)‖2Hdt <∞.

Hence, by the Schwarz inequality,

T (x, y) =

∫ ∞
0

E 〈Xx(t), Xy(t)〉H dt
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de�nes a continuous bilinear form on H ×H, and there exists a symmetric
bounded linear operator T̃ : H → H such that

〈
T̃ x, x

〉
H

=

∫ ∞
0

E‖Xx(t)‖2Hdt.

Let

Ψ(x) =
〈
T̃ x, x

〉
H
.

Using the same arguments, we de�ne bounded linear operators on H by

〈
T̃ (t)x, x

〉
H

=

∫ t

0

E‖Xx(s)‖2Hds.

Consider solutions {Xx
n(t), t ≥ 0} to the following equation:

dX(t) = AnX(t)dt+B0X(t)dWt +

∫
H\{0}

f0(v)X(t)q(dv, dt),

X(0) = x ∈ H,

obtained by using the Yosida approximations of A. Just as above, we have
continuous bilinear forms Tn, symmetric linear operators T̃n(t), and real-valued
continuous functions Ψn(t), de�ned for Xn,

Tn(t)(x, y) =

∫ t

0

E 〈Xx
n(u), Xy

n(u)〉H du,

〈
T̃n(t)x, x

〉
H

=

∫ t

0

E‖Xx
n(u)‖2Hdu,

Ψn(t)(x) =
〈
T̃n(t)x, x

〉
H

=

∫ t

0

E‖Xx
n(u)‖2Hdu. (2.41)

Let {Pt}t≥0 be the Markov semigroup associated with the stochastic process

Xx(t). Let ϕ : H → R; ϕ(h) = ‖h‖2H and (Ptϕ)(x) = Eϕ(Xx(t)), x ∈ H. Using
the Markov property we have,

EΨn(t)(Xx
n(s)) = Ψn(t+ s)(x)−Ψn(s)(x). (2.42)

With t and n �xed, we use the Ito formula for the function Ψn(t)(x), then
take the expectation of both sides to arrive at
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E(Ψn(t)(Xx
n(s))) = Ψn(t)(x) +

∫ s

0

E(LnΨn(t)(Xx
n(u)))du. (2.43)

Where

LnΨn(t)(x) = 2
〈
T̃n(t)x,Anx

〉
H

+ tr(T̃n(t)(B0x)Q(B0x)∗) (2.44)

+

∫
H\{0}

[
〈
T̃n(t)(x+ f0(v)x), (x+ f0(v)x)

〉
H
−
〈
T̃n(t)x, x

〉
H
− 2

〈
T̃n(t)x, f0(v)x

〉
H

]β(dv).

From (2.42) and (2.43) we get,

Ψn(t+ s)(x)−Ψn(s)(x) = Ψn(t)(x) +

∫ s

0

E(LnΨn(t)(Xx
n(u)))du. (2.45)

From (2.41), lims→0
Ψn(s)(x)

s = lims→0
1
s

∫ s
0
E‖Xx

n(u)‖2Hdu = ‖x‖2H . Hence
from (2.45) we get,

d

dt
Ψn(t)(x) = LnΨn(t)(x) + ‖x‖2H . (2.46)

Now x ∈ D(A),

LnΨn(t)(x) = 2
〈
T̃n(t)x,Anx

〉
H

+ tr(T̃n(t)(B0x)Q(B0x)∗)

+

∫
H\{0}

[
〈
T̃n(t)(x+ f0(v)x), (x+ f0(v)x)

〉
H
−
〈
T̃n(t)x, x

〉
H
− 2

〈
T̃n(t)x, f0(v)x

〉
H

]β(dv).

This converges to

L0Ψ(t)(x) = 2
〈
T̃ (t)x,Ax

〉
H

+ tr(T̃ (t)(B0x)Q(B0x)∗)

+

∫
H\{0}

[
〈
T̃ (t)(x+ f0(v)x), (x+ f0(v)x)

〉
H
−
〈
T̃ (t)x, x

〉
H
− 2

〈
T̃ (t)x, f0(v)x

〉
H

]β(dv).

P -a.s. for x ∈ D(A) by the similar limiting argument as in Theorem 6.

Again from (2.41) we get,

d

dt
Ψn(t)(x) = E‖Xx

n(t)‖2H → E‖Xx(t)‖2H =
d

dt
Ψ(t)(x). (2.47)

Therefore we can write when x ∈ D(A)
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d

dt
Ψ(t)(x) = L0Ψ(t)(x) + ‖x‖2H . (2.48)

⇒ d

dt

〈
T̃ (t)x, x

〉
H

= L0

〈
T̃ (t)x, x

〉
H

+ ‖x‖2H . (2.49)

Now, when t→∞, then from the exponential stability condition we get

d

dt
Ψ(t)(x) = E‖Xx(t)‖2H → 0 (2.50)

and, since
〈
T̃ (t)x, x

〉
H
→
〈
T̃ x, x

〉
H

so by the weak convergence of T̃ (t)x

to T̃ x we conclude

L0

〈
T̃ (t)x, x

〉
H
→ L0

〈
T̃ x, x

〉
H

= L0Ψ(x). (2.51)

Hence from (2.49)

L0Ψ(x) = −‖x‖2H ; x ∈ D(A). (2.52)

Therefore by construction of Λ0,

Λ0(x) = Ψ(x) + α ‖x‖2

=
〈
T̃ x, x

〉
+ α ‖x‖2

≤
∥∥∥T̃ x∥∥∥ · ‖x‖+ α ‖x‖2

≤ ρ1 ‖x‖2 + α ‖x‖2 . [since, T̃ is bounded linear operator]
(2.53)

for some constatnt ρ1. Therefore, we can conclude that Λ0 ∈ C2
2p(H) satisfy

conditions (I) and (II) of Lyapunov function.

Now x ∈ D(A)

L0‖x‖2H = 2〈x,Ax〉+ tr((B0x)Q(B0x)∗) +

∫
H\{0}

‖f0(v)x‖2β(dv) (2.54)

≤ (2λ+ d2
1tr(Q) + d2) ‖x‖2H .

Hence, x ∈ D(A)

L0Λ0(x) ≤ −‖x‖2H + α(2λ+ d2
1tr(Q) + d2) ‖x‖2H ≤ −c3Λ0(x)

c3 > 0, by choosing α small enough.

Therefore Λ0 satis�es all the properties of a Lyapunov function.
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Then we will show how we use the limiting argument of Theorem 6 and
Corollary 1 to prove the results of exponentially ultimate boundedness in the
m.s.s. of the mild solutions. These results are proved, for the Gaussian case in
chapter 7 (Theorem 7.1 and Theorem 7.2) of [16] and for the non-Gaussian case
in [24] (Theorem 5.2 and Theorem 5.5). But here we prove the same results in
much shorter way.

De�nition 15. We say that the mild solution of (2.25) is exponentially ulti-
mately bounded in the mean square sense (m.s.s.) if there exist positive constants
c, β, M such that

E ‖Xx(t)‖2H ≤ ce
−βt ‖x‖2H +M ; for all x ∈ H. (2.55)

Theorem 9. Let us assume that F , B, f satisfy (A1), (A2), (A3) and the
conditions (a), (b) of Theorem 6 hold. The mild solution {Xx(t), t ≥ 0} of
(2.25) is exponentially ultimately bounded in the m.s.s. if there exists a func-
tion Λ ∈ C2

2p(H) satisfying the following conditions:

(i) c1 ‖x‖2H − k1 ≤ Λ(x) ≤ c2 ‖x‖2H − k2; for all x ∈ H

(ii) LΛ(x) ≤ −c3Λ(x) + k3; for x ∈ D(A),

Where c1, c2, c3, k1, k2 and k3 are �nite, positive constants.

Proof. The detailed proof is in Theorem 7.1 of [16], Theorem 5.2 of [24]. Here
we show, how we use the the limiting argument of Theorem 6 and Corollary 1
in the proof.

Consider the function ec3tΛ(Xx
n(t)), then we write the Itô formula for strong

solution for this function and taking expectation, we get

ec3tEΛ(Xx
n(t))− Λ(Xx

n(0)) = E

∫ t

0

ec3s (c3Λ(Xx
n(s)) + LnΛ(Xx

n(s))) ds.

(2.56)

Now from condition (ii) we have, when Xx
n(s) ∈ D(A)

c3Λ(Xx
n(s)) + LnΛ(Xx

n(s)) ≤ −LΛ(Xx
n(s)) + k3 + LnΛ(Xx

n(s)).

⇒ ec3tEΛ(Xx
n(t))− Λ(Xx

n(0)) ≤ E
∫ t

0

ec3s (−LΛ(Xx
n(s)) + k3 + LnΛ(Xx

n(s))) ds

(2.57)

= E

∫ t

0

ec3s (−LΛ(Xx
n(s)) + LnΛ(Xx

n(s))) ds+

∫ t

0

ec3sk3ds.

Now by similar calculation as in Example 2 we can prove
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E

∫ t

0

ec3s (−LΛ(Xx
n(s)) + LnΛ(Xx

n(s))) ds→ 0.

Therefore as n → ∞, from (2.57), using the continuity of Λ and Lebesgue
DCT, we get

ec3tEΛ(Xx(t)) ≤ Λ(x) +

∫ t

0

ec3sk3ds (2.58)

= Λ(x) +
k3

c3
(ec3t − 1).

⇒ EΛ(Xx(t)) ≤ e−c3tΛ(x) +
k3

c3
(1− e−c3t). (2.59)

Now from condition (i) and (2.59), for all x ∈ H

c1E ‖Xx(t)‖2H − k1 ≤ EΛ(Xx(t)) ≤ e−c3t
(
c2 ‖x‖2H − k2

)
+
k3

c3
(1− e−c3t)

(2.60)

≤ c2e−c3t ‖x‖2H +
k3

c3
(1− e−c3t).

⇒ c1E ‖Xx(t)‖2H ≤ c2e
−c3t ‖x‖2H +

k3

c3
(1− e−c3t) + k1,

⇒ E ‖Xx(t)‖2H ≤
c2
c1
e−c3t ‖x‖2H +

1

c1

(
k1 +

k3

c3

)
.

Now choosing c = c2
c1
, β = c3 and M = 1

c1

(
k1 + k3

c3

)
we can conclude

that the mild solution Xx(t) is exponentially ultimately bounded in the m.s.s..
Since the mild solution Xx(t) depends continuously on the initial condition x,
therefore (2.60) holds for all x ∈ H.

Theorem 10. Let us assume that F , B, f satisfy (A1), (A2), (A3) and the
conditions (a), (b) of Theorem 6 hold. Assume that A generates a pseudo-
contraction semigroup of operators {S(t), t ≥ 0} on H. If the solution of the
linear equation (2.37) is exponentially ultimately bounded in the m.s.s., then
there exists a function Λ0 ∈ C2

2p(H) which satis�es condition (i) of Theorem 9
and L0Λ0(x) ≤ −c3Λ0(x) + k3; for x ∈ D(A).

Proof. The detailed proof is in Theorem 7.2 of [16], Theorem 5.5 of [24]. Here
we show, how we use the the limiting argument of Theorem 6 and Corollary 1
in the proof.

Let
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Λ0(x) =

∫ T

0

E‖Xx(t)‖2Hdt+ α‖x‖2H , (2.61)

where T and α are positive constants, to be determined later. Let

Ψ0(x) =

∫ T

0

E‖Xx(t)‖2Hdt, (2.62)

which is �nite for T <∞ by the exponential ultimate boundedness in m.s.s..
Infact we can show

Ψ0(x) ≤
∫ T

0

(ce−βt ‖x‖2H +M)dt (2.63)

=
c

β
(1− e−βT ) ‖x‖2H +MT

≤ c

β
‖x‖2H +MT.

If ‖x‖2H = 1, then Ψ0(x) ≤ c
β +MT .

Since Xx(t) is linear in x (i.e. Xkx(t) = kXx(t), for any positive constant
k), therefore

Ψ0(kx) =

∫ T

0

E‖Xkx(t)‖2Hdt = k2

∫ T

0

E‖Xx(t)‖2Hdt = k2Ψ0(x). (2.64)

Let c′ = c
β +MT , then for all x ∈ H,

Ψ0(x) = ‖x‖2H Ψ0

(
x

‖x‖H

)
≤
(
c

β
+MT

)
‖x‖2H = c′ ‖x‖2H . (2.65)

Then there exists a bounded linear form on H × H. Hence there exists a
symmetric operator C, ‖C‖L(H) ≤ c′ such that, for all x, y ∈ H

〈Cx, y〉 =

∫ T

0

E 〈Xx(t), Xy(t)〉H dt.

Therefore Ψ0(x) = 〈Cx, x〉. Hence Ψ′0(x) = 2Cx and Ψ′′0(x) = 2C. So, by
construction

Λ0(x) = Ψ0(x) + α‖x‖2H = 〈Cx, x〉+ α‖x‖2H ≤ c′‖x‖2H + α‖x‖2H , (2.66)

So, we can conclude that Λ0 ∈ C2
2p(H) satis�es condition (i). To prove

the second part, we can use our limiting argument of Theorem 6, to show that

limn→∞ L0,nΨn
0 (x) = L0Ψ0(x) for x ∈ D(A). Where Ψn

0 (x) =
∫ T

0
E‖Xx

n(t)‖2Hdt.
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From the Markov property,

EΨn
0 (Xx

n(r)) =

∫ T+r

r

E‖Xx
n(u)‖2Hdu. (2.67)

And we have

L0,nΨn
0 (x) =

d

dr
(EΨn

0 (Xx
n(r)))

∣∣
r=0

(2.68)

= lim
r→0

EΨn
0 (Xx

n(r))− EΨn
0 (x)

r

= lim
r→0

{
1

r

∫ T+r

r

E‖Xx
n(u)‖2Hdu−

1

r

∫ T

0

E‖Xx
n(u)‖2Hdu

}
[by (2.67)]

= lim
r→0

{
−1

r

∫ r

0

E‖Xx
n(u)‖2Hdu+

1

r

∫ T+r

0

E‖Xx
n(u)‖2Hdu−

1

r

∫ T

0

E‖Xx
n(u)‖2Hdu

}

= lim
r→0

{
−1

r

∫ r

0

E‖Xx
n(u)‖2Hdu+

1

r

∫ T+r

T

E‖Xx
n(u)‖2Hdu

}
= −‖x‖2H + E‖Xx

n(T )‖2H .

Therefore

L0Ψ0(x) = −‖x‖2H + E‖Xx(T )‖2H (2.69)

≤ −‖x‖2H + ce−βT ‖x‖2H +M [by (2.55)]

= (−1 + ce−βT ) ‖x‖2H +M.

Again from (2.54), we have L0‖x‖2H ≤ (2λ+ d2
1tr(Q) + d2) ‖x‖2H . Hence for

x ∈ D(A)

L0Λ0(x) = L0Ψ0(x) + αL0‖x‖2H (2.70)

≤ (−1 + ce−βT ) ‖x‖2H + α(2λ+ d2
1tr(Q) + d2) ‖x‖2H +M.

Now taking T > ln c
β and α small enough, we get the desired result.

2.4 Ichikawa's Itô formula for the mild solutions

In this section we prove that Ichikawa's Itô formula for the mild solutions ob-
tained by Ichikawa for SPDE driven by Gaussian noise in [19] can also be gener-
alized to the case of SPDE driven by non-Gaussian noise. Let A be the generator
of a pseudo-contraction semigroup, then for x ∈ D(A), let us de�ne

LΨ(s, x) := 〈Ψx(s, x), Ax+ F (x)〉H +
1

2
tr(Ψxx(s, x)(B(x))Q(B(x))∗)

+

∫
H\{0}

[Ψ(s, x+ f(v, x))−Ψ(s, x)− 〈Ψx(s, x), f(v, x)〉H ]β(dv).
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Let Ψ ∈ C1,2([0, T ]×H), Ψ : [0, T ]×H → R and conditions (a), (b) of Theorem
6 hold. Then for Xξ(t) ∈ D(A), the Itô formula is well de�ned:

Ψ(t,Xξ(t))−Ψ(0, ξ) =

∫ t

0

(Ψs(s,X
ξ(s)) + LΨ(s,Xξ(s)))ds

+

∫ t

0

〈
Ψx(s,Xξ(s)), B(Xξ(s))dWs

〉
H

+

∫ t

0

∫
H\{0}

[
Ψ(s,Xξ(s) + f(v,Xξ(s)))−Ψ(s,Xξ(s))

]
q(dv, ds),

where,

LΨ(s,Xξ(s)) =
〈
Ψx(s,Xξ(s)), AXξ(s) + F (Xξ(s))

〉
H

(2.71)

+
1

2
tr(Ψxx(s,Xξ(s))(B(Xξ(s)))Q(B(Xξ(s)))∗)

+

∫
H\{0}

[
Ψ(s,Xξ(s) + f(v,Xξ(s)))−Ψ(s,Xξ(s))−

〈
Ψx(s,Xξ(s)), f(v,Xξ(s))

〉
H

]
β(dv).

Let C̃1,2([0, T ]×H) be the class of functions Ψ ∈ C1,2([0, T ]×H) with the
properties:

(I1) The function LΨ(s, x) can be extended to a continuous function LΨ(s, x)
on [0, T ]×H for x ∈ H.

(I2) ‖Ψ(s, x)‖ + ‖Ψx(s, x)‖ + ‖Ψxx(s, x)‖ + ‖LΨ(s, x)‖ ≤ k(1 + ‖x‖2), for
x ∈ H, s ∈ [0, T ] and for some k > 0.

Since the function LΨ(s, x) can be extended to a continuous function LΨ(s, x)
in C̃1,2([0, T ]×H), therefore it follows LΨ(s,Xξ(s)) = limn→∞ LnΨ(s,Xξ

n(s)),
where LnΨ(s,Xξ

n(s)) is de�ned in (2.14).

2.4.1 Ichikawa's Itô formula

Theorem 11. Assume that S(t) is a pseudo-contraction semigroup and Ψ ∈
C̃1,2([0, T ]×H). Moreover assume that the following conditions are satis�ed:
(a)

‖Ψx(s, x)‖H ≤ h1(‖x‖H)

and

‖Ψxx(s, x)‖L(H) ≤ h2(‖x‖H).



54 CHAPTER 2. THE ITÔ FORMULA FOR MILD SOLUTIONS

(b) ∫ T

0

‖F (s)‖Hds <∞ P -a.s., P
{∫ T

0

‖B(s)‖2L2(KQ,H)ds <∞
}

= 1

and let h1, h2 : R+ → R+ be quasi-sublinear functions such that,

∫
H\{0}

‖f(v, s)‖2 β(dv) +

∫
H\{0}

h1(‖f(v, s)‖)2 ‖f(v, s)‖2 β(dv)

+

∫
H\{0}

h2(‖f(v, s)‖) ‖f(v, s)‖2 β(dv) <∞.

P -a.s. for all s ∈ [0, T ]. Let the coe�cients F , B, f satisfy (A1), (A2),
(A3). Then the following Itô Formula for mild solutions hold P -a.s. for all
t ∈ [0, T ]

Ψ(t,Xξ(t))−Ψ(0, ξ) =

∫ t

0

(Ψs(s,X
ξ(s)) + LΨ(s,Xξ(s)))ds (2.72)

+

∫ t

0

〈
Ψx(s,Xξ(s)), B(Xξ(s))dWs

〉
H

+

∫ t

0

∫
H\{0}

[
Ψ(s,Xξ(s) + f(v,Xξ(s)))−Ψ(s,Xξ(s))

]
q(dv, ds).

Proof. We proved this result in [1].

Here we assumed that Ψ ∈ C̃1,2([0, T ] ×H). So, it satis�ed the conditions
(I1) and (I2). From (I1) the continuous extension of LΨ(s, x) exists in [0, T ]×H,
which is LΨ(s, x). Therefore we can write,

LΨ(s,Xξ(s)) = lim
n→∞

LnΨ(s,Xξ
n(s))

=
〈
Ψx(s,Xξ(s)), F (Xξ(s))

〉
H

+ lim
n→∞

〈
Ψx(s,Xξ

n(s)), AXξ
n(s)

〉
H

+
1

2
tr(Ψxx(s,Xξ(s))(B(Xξ(s)))Q(B(Xξ(s)))∗)

+

∫
H\{0}

[
Ψ(s,Xξ(s) + f(v,Xξ(s)))−Ψ(s,Xξ(s))−

〈
Ψx(s,Xξ(s)), f(v,Xξ(s))

〉
H

]
β(dv)

P -a.s., where Xξ
n(s) ∈ D(A) and Xξ(s) ∈ H. LnΨ(s,Xξ

n(s)) is de�ned in
(2.14). By (I2) LΨ(s,Xξ(s)) is bounded by integrable function, so by applying

Lebesgue DCT, we can conclude that,
∫ t

0
LnΨ(s,Xξ

n(s))ds→
∫ t

0
LΨ(s,Xξ(s))ds.

We can show the term by term convergence of all terms similarly as in Theorem
6. Hence we can conclude the Itô Formula of (2.72).
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Remark 2: From Theorem 11 we can remark that whenever Ψ ∈ C̃1,2([0, T ]×
H) i.e. LΨ(s, x) exists and conditions of Theorem 11 are satis�ed, then we can
interchange the limit with the integral in the Itô formula for mild solutions of
Theorem 6. Then the Itô formula for mild solutions of Theorem 6 (eq. 2.16)
can be rewritten as follows-∫ t

0

lim
n→∞

〈
Ψx(s,Xξ

n(s)), AXξ
n(s)

〉
H
ds (2.73)

= Ψ(t,Xξ(t))−Ψ(0, ξ)−
∫ t

0

(Ψs(s,X
ξ(s)))ds−

∫ t

0

〈
Ψx(s,Xξ(s)), F (Xξ(s))

〉
H
ds

−
∫ t

0

1

2
tr(Ψxx(s,Xξ(s))(B(Xξ(s)))Q(B(Xξ(s)))∗)ds

−
∫ t

0

∫
H\{0}

[
Ψ(s,Xξ(s) + f(v,Xξ(s)))−Ψ(s,Xξ(s))−

〈
Ψx(s,Xξ(s)), f(v,Xξ(s))

〉
H

]
β(dv)ds

−
∫ t

0

〈
Ψx(s,Xξ(s)), B(Xξ(s))dWs

〉
H

−
∫ t

0

∫
H\{0}

[
Ψ(s,Xξ(s) + f(v,Xξ(s)))−Ψ(s,Xξ(s))

]
q(dv, ds).

2.4.2 Relating semigroup with the generator of the solu-

tion process

Now we will relate the semigroup associated with the stochastic process with
the operator L. Let A be the generator of a pseudo-contraction semigroup, then
for x ∈ D(A), let us de�ne

LΨ(x) := 〈Ψx(x), Ax+ F (x)〉H +
1

2
tr(Ψxx(x)(B(x))Q(B(x))∗)

+

∫
H\{0}

[Ψ(x+ f(v, x))−Ψ(x)− 〈Ψx(x), f(v, x)〉H ]β(dv).

Here we put an additional restriction that the coe�cients F , B and f are in-
dependent of time t, depend only on x ∈ H. The mild solution Xx(t) ∈ H of
(2.11) satis�es the Markov property, where Xx(t) = X(t, 0;x) with determin-
istic initial condition x ∈ H (see, section 3.4 of [16] and section 6 of [2]). Let
us denote the semigroup associated with the process Xx(t) by Pt, where Pt is
the bounded linear operator on H. We will relate Pt with L. We also assume
that Ψ ∈ C2

b (H), the space of bounded continuous functions on H, with contin-
uous bounded partial Fréchet derivatives of Ψx(x) and Ψxx(x) exists for x ∈ H.
Since Ψ ∈ C2

b (H) hence Pt(Ψ) ∈ C2
b (H). We de�ne for a bounded measurable

function Ψ on H,

[PtΨ](x) = E[Ψ(Xx(t))]

for x ∈ H (for more detailed discussion we refer to section 3.4 of [16] and section
6 of [2]).
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Theorem 12. Assume that the solution of SPDE (2.7), Xx(t) ∈ D(A) and Pt
be the semigroup associated to Xx(t). Let F , B and f be independent of time
t and satisfy (A1), (A2) and (A3). Assume that Ψ ∈ C2

b (H) and the condition
(b) of Theorem 11 holds. Then for x ∈ D(A)

[PtΨ](x)−Ψ(x) =

∫ t

0

[PsLΨ](x)ds (2.74)

and

lim
t↓0

[PtΨ](x)−Ψ(x)

t
= [LΨ](x). (2.75)

Proof. We refer sections 4.1, 4.2 of [13] or sections 3.2, 3.3 of [4] for related
theory.

First we rewrite (2.13) when it is independent of t and Xx(t) ∈ D(A),

Ψ(Xx(t))−Ψ(x) =

∫ t

0

LΨ(Xx(s))ds (2.76)

+

∫ t

0

〈Ψx(Xx(s)), B(Xx(s))dWs〉H

+

∫ t

0

∫
H\{0}

[Ψ(Xx(s) + f(v,Xx(s)))−Ψ(Xx(s))] q(dv, ds).

Now take the expectation on both sides of (2.76). Second and third term of
R.H.S. of (2.76) will be zero, because of martingale and we get,

E[Ψ(Xx(t))]− E[Ψ(x)] =

∫ t

0

E[LΨ(Xx(s))]ds.

Then we substitute [PtΨ](x) = E[Ψ(Xx(t))], and we get

[PtΨ](x)−Ψ(x) =

∫ t

0

[PsLΨ](x)ds.

Again to prove (2.75), we can rewrite (2.76) as,

dΨ(Xx(t)) =

〈
dΨ(Xx(t))

dx
,AXx(t) + F (Xx(t))

〉
H

dt

+
1

2
tr

(
d2Ψ(Xx(t))

dx2
(B(Xx(t))Q1/2)(B(Xx(t))Q1/2)∗

)
dt

+

∫
H\{0}

[
Ψ(Xx(t) + f(v,Xx(t)))−Ψ(Xx(t))−

〈
dΨ(Xx(t))

dx
, f(v,Xx(t))

〉
H

]
β(dv)dt

+

〈
dΨ(Xx(t))

dx
,B(Xx(t))dWt

〉
H
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+

∫
H\{0}

[Ψ(Xx(t) + f(v,Xx(t)))−Ψ(Xx(t))] q(dv, dt).

Now, since [PtΨ](x) = E[Ψ(Xx(t))], so by Lebesgue DCT

lim
t↓0

[PtΨ](x)−Ψ(x)

t

= E lim
t↓0

1

t

∫ t

0

〈
dΨ(Xx(s))

dx
,AXx(s) + F (Xx(s))

〉
H

ds

+
1

2
E lim

t↓0

1

t

∫ t

0

tr

(
d2Ψ(Xx(s))

dx2
(B(Xx(s))Q1/2)(B(Xx(s))Q1/2)∗

)
ds

+E lim
t↓0

1

t

∫ t

0

∫
H\{0}

[
Ψ(Xx(s) + f(v,Xx(s)))−Ψ(Xx(s))−

〈
dΨ(Xx(s))

dx
, f(v,Xx(s))

〉
H

]
β(dv)ds

=

〈
dΨ(x)

dx
,Ax+ F (x)

〉
H

+
1

2
tr

(
d2Ψ(x)

dx2
(B(x)Q1/2)(B(x)Q1/2)∗

)

+

∫
H\{0}

[
Ψ(x+ f(v, x))−Ψ(x)−

〈
dΨ(x)

dx
, f(v, x)

〉
H

]
β(dv)

= [LΨ](x).

Hence the proof.

Now we consider also the case when Xx(t) /∈ D(A). Ψ is independent of
time t and Ψ ∈ C̃2(H) ∩C2

b (H). Where C2(H) denote the space of real valued
continuous functions on H, with continuous partial Fréchet derivatives Ψx(x)
and Ψxx(x) are well de�ned for x ∈ H. Let C̃2(H) be the class of functions
Ψ ∈ C2(H) with the properties:

(1̃) The function LΨ(x) can be extended to a continuous function LΨ(x) on
H for x ∈ H.

(2̃) ‖Ψ(x)‖+ ‖Ψx(x)‖+ ‖Ψxx(x)‖+ ‖LΨ(x)‖ ≤ k(1 + ‖x‖2), for x ∈ H and
for some k > 0.

Corollary 2. Let Pt be the semigroup associated to Xx(t). Let F , B and
f be independent of time t and satisfy (A1), (A2) and (A3). Assume that
Ψ ∈ C̃2(H) ∩ C2

b (H) is independent of t and the condition (b) of Theorem 11
holds. Moreover assume that LΨ satis�es the condition

‖LΨ(y)− LΨ(z)‖ ≤ k‖y − z‖2(‖y‖2 + ‖z‖2) (2.77)
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for some k > 0. Then for x ∈ H we can write

[PtΨ](x)−Ψ(x) =

∫ t

0

[PsLΨ](x)ds (2.78)

and

lim
t↓0

[PtΨ](x)−Ψ(x)

t
= [LΨ](x). (2.79)

Proof. We proved this result in [1].

First we rewrite (2.72), when it is independent of t, as

Ψ(Xx(t))−Ψ(x) =

∫ t

0

LΨ(Xx(s))ds (2.80)

+

∫ t

0

〈Ψx(Xx(s)), B(Xx(s))dWs〉H

+

∫ t

0

∫
H\{0}

[Ψ(Xx(s) + f(v,Xx(s)))−Ψ(Xx(s))] q(dv, ds).

Then we take the expectation on both sides of (2.80) and obtain (2.78) similarly
as in the proof of Theorem 12.

The condition (2.77) assures the continuity of PsLΨ in s. Hence we can
write

lim
t↓0

[PtΨ](x)−Ψ(x)

t
= E lim

t↓0

1

t

∫ t

0

LΨ(Xx(s))ds = [LΨ](x).

Hence the proof is completed.

Now x ∈ H, Ψ ∈ C̃2(H) ∩ C2
b (H) satisfying the conditions of Corollary 2,

we de�ne

[AΨ](x) := [LΨ](x). (2.81)

Where A is de�ned to be the weak generator of the Markov process Xx(t)
(to show that the mild solution Xx(t) is a Markov process we refer to Section
3.4 of [16] and Section 6 of [2]). The existence of LΨ is rather restrictive. So,
we introduce a class of functions which is larger than C̃2(H), where continuous
extension of the function LΨ is not required. We say that Ψ ∈ V if Ψ ∈ C̃2(H)
and satis�es:

(i) The function LΨ(x) ≤ U(x), for x ∈ D(A), where U(x) is a continuous
function on H,

(ii) ‖U(x)‖+ ‖Ψ(x)‖+ ‖Ψx(x)‖+ ‖Ψxx(x)‖ ≤ k(1 + ‖x‖2) for some k > 0.
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Corollary 3. Assume that F , B, f satisfy (A1), (A2), (A3) and conditions
(a), (b) of Theorem 11 hold. Let LnΨ(x) ≤ U(x). Then LΨ(x) ≤ U(x) for
x ∈ D(A). Where Ln and L are de�ned as in De�nition 12.

Proof. We proved this result in [1].

For x ∈ D(A),

LnΨ(x) =〈Ψx(x), Ax+RnF (x)〉+
1

2
tr(Ψxx(x)(RnB(x))Q(RnB(x))∗)

+

∫
H\{0}

[Ψ(x+Rnf(v, x))−Ψ(x)− 〈Ψx(x), Rnf(v, x)〉]β(dv)

≤ U(x).

Now taking limit n→∞ of the both sides of the inequality, we get

LΨ(x) =〈Ψx(x), Ax+ F (x)〉+
1

2
tr(Ψxx(x)(B(x))Q(B(x))∗)

+

∫
H\{0}

[Ψ(x+ f(v, x))−Ψ(x)− 〈Ψx(x), f(v, x)〉]β(dv)

≤ U(x). [ by Yosida approximation (Rn − I)x→ 0]

Hence the result.

Corollary 4. Let Ψ(x) ∈ V with properties:
(i) The function LΨ(x) ≤ U(x), for x ∈ D(A), where U(x) is a continuous
function on H;
(ii) ‖U(x)‖+ ‖Ψ(x)‖+ ‖Ψx(x)‖+ ‖Ψxx(x)‖ ≤ k(1 + ‖x‖2) for some k > 0.
Moreover assume that F , B, f satisfy (A1), (A2), (A3) and conditions (a), (b)
of Theorem 11 hold. Then

Ψ(Xx(t))−Ψ(x) ≤
∫ t

0

U(Xx(s))ds (2.82)

+

∫ t

0

〈Ψx(Xx(s)), B(Xx(s))dWs〉H

+

∫ t

0

∫
H\{0}

[Ψ(Xx(s) + f(v,Xx(s)))−Ψ(Xx(s))] q(dv, ds).

If, in particular, U(x) = 0, then Ψ(Xx(t)) is a supermartingale.

Proof. We proved this result in [1].

From (i) we have LnΨ(Xx
n(s)) ≤ U(Xx

n(s)), when Xx
n(s) ∈ D(A). By Theo-

rem 6, we have limn→∞ LnΨ(Xx
n(s)) exists P -a.s. and U(Xx

n(s)) → U(Xx(s))
P -a.s.. Therefore limn→∞ LnΨ(Xx

n(s)) ≤ U(Xx(s)). Now we have already
proved in Theorem 5
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lim
n→∞

E sup
0≤t≤T

‖Xx
n(t)−Xx(t)‖2H = 0.

Therefore,

sup
0≤t≤T

‖Xn(t)−X(t)‖H → 0,

P a.s.. This implies that the set

S = {Xn(t), X(t) : n = 1, 2..., 0 ≤ t ≤ T}

is bounded in H. Therefore continuous function U evaluated on S is bounded
by some constant. Hence

∫ t
0
U(Xx(s))ds exists. Hence

∫ t

0

lim
n→∞

LnΨ(Xx
n(s))ds ≤

∫ t

0

U(Xx(s))ds.

Therefore we can conclude (2.82).

For the second part, we take the conditional expectation in both sides of
(2.82), then we get

E[Ψ(Xx(t))|FX0 ]− E[Ψ(x)|FX0 ] ≤ 0,

since U(x) = 0 and terms containing the Gaussian and non-Gaussian noise in
the R.H.S. of (2.82) are martingales.

⇒ E[Ψ(Xx(t))|FX0 ] ≤ Ψ(x).

Therefore a supermartingale.

2.5 [Da Prato, Jentzen, Röckner]'s; mild Itô for-
mula w.r.t. cPrm

Here we obtain the mild Itô formula of [8] for Lévy noise. In [8], they did it
for the Gaussian case. They transformed the mild Itô process to a standard Itô
process and then they apply standard Itô formula over this transformed stan-
dard Itô process. At the end by relating this transformed standard Itô process
with the original mild Itô process with a suitable relation, they obtained their
mild Itô formula.

We consider the SPDE with values in H as

dX(t) = (AX(t) + F (X(t)))dt+

∫
H\{0}

f(v,X(t))q(dv, dt);
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with initial condition X(0) ∈ H. Where H is a real separable Hilbert space and
conditions (A1), (A2), (A3) are satis�ed (but without Gaussian term). Then
from de�nition 9, the milld solutions are de�ned as

X(t) = S(t)X(0) +

∫ t

0

S(t− s)F (X(s))ds+

∫ t

0

∫
H\{0}

S(t− s)f(v,X(s))q(dv, ds)

with probability one for t ∈ [0, T ]. Then we have the following mild Itô formula.

Theorem 13. Assume that ϕ ∈ C1,2([0, T ] × H), ϕ : [0, T ] × H → R. S(t)
is the pseudo-contraction semigroup. Also assume that the conditions (a) and
(b) of Theorem 6 hold. Where H is a real separable Hilbert space. Then the
following mild Itô formula holds

ϕ(t,X(t)) = ϕ(S(t)X(0)) +

∫ t

0

(∂1ϕ)(s, S(t− s)X(s))ds (2.83)

+

∫ t

0

(∂2ϕ)(s, S(t− s)X(s))S(t− s)F (X(s))ds

+

∫ t

0

∫
H\{0}

[ϕ(s, S(t− s)X(s) + S(t− s)f(v,X(s)))− ϕ(s, S(t− s)X(s))

− 〈(∂2ϕ)(s, S(t− s)X(s)), S(t− s)f(v,X(s))〉]β(dv)ds

+

∫ t

0

∫
H\{0}

[ϕ(s, S(t− s)X(s) + S(t− s)f(v,X(s)))− ϕ(s, S(t− s)X(s))] q(dv, ds)

P -a.s. for all t ∈ [0, T ]. Here (∂1ϕ)(t, x) = (∂ϕ∂t )(t, x) and (∂2ϕ)(t, x) =

(∂ϕ∂x )(t, x). (∂1ϕ) ∈ C([0, T ]×H,R) and (∂2ϕ) ∈ C([0, T ]×H,L(H,R)).

Proof. We proved this result in [1].

Here we use the transformation technique, given in [14]. For existence and
uniqueness of the mild solutions w.r.t. cPrm we refer [2].

Let Ut ∈ L(H), t ∈ [0,∞), is a strongly continuous pseudo-contractive semi-
group on H and S(t− s) = U(t−s) ∈ L(H) for all 0 ≤ s ≤ t ≤ T .

Then there exists a separable R-Hilbert space (H, 〈., .〉H, ‖.‖H) with H ⊂ H
and ‖v‖H = ‖v‖H for all v ∈ H and a strongly continuous group Ut ∈ L(H),
t ∈ R,(Here we use the fact that, the strongly continuous pseudo-contracitve
semigroup can be dilated to strongly continuous group); such that

Ut(v) = P (Ut(v)) (2.84)

for all v ∈ H ⊂ H and all t ∈ [0,∞) where P : H → H is the orthogonal
projection from H to H.
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Now we transform our mild Itô process X : [0, T ]×Ω→ H to a standard Itô
process X̄, by following the technique of [14], roughly speaking by multiplying
the mild Itô process with U−t for t ∈ [0, T ]. Let, X̄ : [0, T ] × Ω → H be the
unique adapted, càdlàg stochastic process such that,

X̄t = X(0) +

∫ t

0

U−sF (X(s))ds+

∫ t

0

∫
H\{0}

U−sf(v,X(s))q(dv, ds). (2.85)

P -a.s. for all t ∈ [0, T ]. Here we use the following transformation,

P (Ut(X̄s)) = P (Ut(X(0))) +

∫ s

0

PU(t−u)F (X(u))du+

∫ s

0

∫
H\{0}

PU(t−u)f(v,X(u))q(dv, du)

(2.86)

= S(t)X(0) +

∫ s

0

S(t− u)F (X(u))du+

∫ s

0

∫
H\{0}

S(t− u)f(v,X(u))q(dv, du)

= S(t− s)
(
S(s)X(0) +

∫ s

0

S(s− u)F (X(u))du

+

∫ s

0

∫
H\{0}

S(s− u)f(v,X(u))q(dv, du)
)

= S(t− s)X(s).

⇒ P (Ut(X̄t)) = X(t) and P (Ut(X̄0)) = S(t)X(0).

P -a.s. for all s, t ∈ [0, T ] with s ≤ t.

Now we will apply the Itô formula for strong solution of [23] to the test
function ϕ(s, P (Ut(v))) for s ∈ [0, t], v ∈ H

ϕ(t,X(t)) = ϕ(t, P (Ut(X̄t))) = ϕ(P (Ut(X̄0))) +

∫ t

0

(∂1ϕ)(s, P (Ut(X̄s)))ds

(2.87)

+

∫ t

0

(∂2ϕ)(s, P (Ut(X̄s)))PU(t−s)F (X(s))ds

+

∫ t

0

∫
H\{0}

[ϕ(s, P (Ut(X̄s)) + PU(t−s)f(v,X(s)))− ϕ(s, P (Ut(X̄s)))

−
〈
(∂2ϕ)(s, P (Ut(X̄s))), PU(t−s)f(v,X(s))

〉
]β(dv)ds

+

∫ t

0

∫
H\{0}

[
ϕ(s, P (Ut(X̄s)) + PU(t−s)f(v,X(s)))− ϕ(s, P (Ut(X̄s))

]
q(dv, ds)

P -a.s. for all ϕ ∈ C1,2([0, T ] × H). Now substituting (2.84) and (2.86) in
(2.87), we get our Mild Itô formula of (2.83).
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2.6 Examples

These examples are done in [1].

Example 1:-

Let Λ : H → R. Assume that the conditions of Theorem 6 hold. Now if we
apply the Itô formula for mild solutions, of Theorem 6, for the function ectΛ(x)
where c > 0, t ≥ 0 then it will be

lim
n→∞

∫ t

0

ecs
〈
Λ′(Xξ

n(s)), AXξ
n(s)

〉
H
ds

= ectΛ(Xξ(t))− Λ(ξ)−
∫ t

0

cecs(Λ(Xξ(s)))ds

−
∫ t

0

ecs
〈
Λ′(Xξ(s)), F (Xξ(s))

〉
H
ds

−
∫ t

0

ecs
1

2
tr(Λ′′(Xξ(s))(B(Xξ(s)))Q(B(Xξ(s)))∗)ds

−
∫ t

0

∫
H\{0}

ecs
[
Λ(Xξ(s) + f(v,Xξ(s)))− Λ(Xξ(s))−

〈
Λ′(Xξ(s)), f(v,Xξ(s))

〉
H

]
β(dv)ds

−
∫ t

0

ecs
〈
Λ′(Xξ(s)), B(Xξ(s))dWs

〉
H

−
∫ t

0

∫
H\{0}

ecs
[
Λ(Xξ(s) + f(v,Xξ(s)))− Λ(Xξ(s))

]
q(dv, ds)

P -a.s..

We can also wrtie the Itô formula for mild solutions, of Theorem 6, for the
functions Ψ(x) = ‖x‖2, Ψ(x) = ect‖x‖2; for x ∈ H and Lyapunov function in
stability theory.

Example 2:-

Let A be a symmetric linear operator and the conditions of Theorem 6
hold. Assume that, for a �xed l > 0, l ∈ (0,∞), Ψ(s, x) = elAΛ(s, x) and
Λx(s, x) ∈ D(A). Where, 0 ≤ s ≤ t ≤ T , x ∈ H. Also assume that Ψ satis�es
the following property,
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(i) There exists constants c1, c2, c3 > 0 s.t.

‖Ψ(s, x)‖ ≤ c1 ‖x‖2H ; ‖Ψx(s, x)‖ ≤ c2 ‖x‖H ; ‖Ψxx(s, x)‖ ≤ c3 ‖x‖H

for all x ∈ H.

Hence, from the given conditions, there exists a constant C > 0 s.t.

〈
Ψx(s,Xξ

n(s)), AXξ
n(s)

〉
H
≤ C

∥∥Xξ
n(s)

∥∥2

H
. (2.88)

Here,

〈
Ψx(s,Xξ

n(s)), AXξ
n(s)

〉
H

=
〈
elAΛx(s,Xξ

n(s)), AXξ
n(s)

〉
H

=
〈
A∗elAΛx(s,Xξ

n(s)), Xξ
n(s)

〉
H

≤ C
∥∥Xξ

n(s)
∥∥2

H
.

The last inequality we get from (2.88). We can write from second to third
equality, due to the fact that, elAΛx(s,Xξ

n(s)) ∈ D(A) ⊂ D(A∗) as we assumed
Λx(s, x) ∈ D(A) and A to be a symmetric linear operator. By Theorem 5 we can
choose a subsequence s.t. Xξ

n(s) → Xξ(s) P a.s.. So by (2.18) and Lebesgue

DCT
∫ t

0

∥∥Xξ
n(s)

∥∥2

H
ds →

∫ t
0

∥∥Xξ(s)
∥∥2

H
ds. Therefore by applying Generalized

Lebesgue DCT (Theorem 3.4 of [16]) we can conclude that,

∫ t

0

〈
elAΛx(s,Xξ

n(s)), AXξ
n(s)

〉
H
ds→

∫ t

0

〈
A∗elAΛx(s,Xξ(s)), Xξ(s)

〉
H
ds

P -a.s.. Therefore we can write the Itô formula for mild solutions of Theorem
6 for the function Ψ(s, x) = elAΛ(s, x), for x ∈ H, as follows

elAΛ(t,Xξ(t))− elAΛ(0, ξ) =

∫ t

0

elAΛs(s,X
ξ(s))ds (2.89)

+

∫ t

0

〈
elAΛx(s,Xξ(s)), F (Xξ(s))

〉
H
ds+

∫ t

0

〈
A∗elAΛx(s,Xξ(s)), Xξ(s)

〉
H
ds

+

∫ t

0

1

2
tr(elAΛxx(s,Xξ(s))(B(Xξ(s)))Q(B(Xξ(s)))∗)ds

+

∫ t

0

∫
H\{0}

elA
[
Λ(s,Xξ(s) + f(v,Xξ(s)))− Λ(s,Xξ(s))−

〈
Λx(s,Xξ(s)), f(v,Xξ(s))

〉
H

]
β(dv)ds
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+

∫ t

0

〈
elAΛx(s,Xξ(s)), B(Xξ(s))dWs

〉
H

+

∫ t

0

∫
H\{0}

elA
[
Λ(s,Xξ(s) + f(v,Xξ(s)))− Λ(s,Xξ(s))

]
q(dv, ds)

P -a.s. and by Theorem 11, we obtain

LΨ(s,Xξ(s)) =
〈
elAΛx(s,Xξ(s)), F (Xξ(s))

〉
H

+
〈
A∗elAΛx(s,Xξ(s)), Xξ(s)

〉
H

+
1

2
tr(elAΛxx(s,Xξ(s))(B(Xξ(s)))Q(B(Xξ(s)))∗)

+

∫
H\{0}

elA
[
Λ(s,Xξ(s) + f(v,Xξ(s)))− Λ(s,Xξ(s))−

〈
Λx(s,Xξ(s)), f(v,Xξ(s))

〉
H

]
β(dv).

Example 3:-

In Example 2, if we consider l = 0, then we have, Ψ(s, x) = Λ(s, x) for x ∈ H.
And assume that Λx(s,Xξ(s)) ∈ D(A∗) (Here we don't need the assumption
that A is a symmetric linear operator). Then we can also write the Itô formula
for mild solutions by Theorem 6 as,

Λ(t,Xξ(t))− Λ(0, ξ) =

∫ t

0

Λs(s,X
ξ(s))ds (2.90)

+

∫ t

0

〈
Λx(s,Xξ(s)), F (Xξ(s))

〉
H
ds+

∫ t

0

〈
A∗Λx(s,Xξ(s)), Xξ(s)

〉
H
ds

+

∫ t

0

1

2
tr(Λxx(s,Xξ(s))(B(Xξ(s)))Q(B(Xξ(s)))∗)ds

+

∫ t

0

∫
H\{0}

[
Λ(s,Xξ(s) + f(v,Xξ(s)))− Λ(s,Xξ(s))−

〈
Λx(s,Xξ(s)), f(v,Xξ(s))

〉
H

]
β(dv)ds

+

∫ t

0

〈
Λx(s,Xξ(s)), B(Xξ(s))dWs

〉
H

+

∫ t

0

∫
H\{0}

[
Λ(s,Xξ(s) + f(v,Xξ(s)))− Λ(s,Xξ(s))

]
q(dv, ds)

P -a.s. and by Theorem 11, we obtain
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LΨ(s,Xξ(s)) =
〈
Λx(s,Xξ(s)), F (Xξ(s))

〉
H

+
〈
A∗Λx(s,Xξ(s)), Xξ(s)

〉
H

+
1

2
tr(Λxx(s,Xξ(s))(B(Xξ(s)))Q(B(Xξ(s)))∗)ds

+

∫
H\{0}

[
Λ(s,Xξ(s) + f(v,Xξ(s)))− Λ(s,Xξ(s))−

〈
Λx(s,Xξ(s)), f(v,Xξ(s))

〉
H

]
β(dv).

Now we discuss two speci�c examples of this case. If we consider Ψ(x) =
Λ(x) = 〈x, h〉2; x, h ∈ H. Then Λx(x) = 2〈x, h〉h. And we can say,

∫ t

0

〈
Λx(Xξ

n(s)), AXξ
n(s)

〉
H
ds→

∫ t

0

〈
2〈Xξ(s), h〉A∗h,Xξ(s)

〉
H
ds

P -a.s.. Hence we can write the Itô formula for mild solutions following (2.90).
In [7], we have this sort of Itô formula for mild solutions.

But, If we consider, Ψ(x) = Λ(x) = ‖x‖2; x ∈ H. Then we can not write
the Itô formula for mild solutions by following (2.90). Because in this case
Λx(Xξ(s)) = 2Xξ(s) /∈ D(A∗). Where as by applying Theorem 6, we can write
the Itô formula for mild solutions as follows-

lim
n→∞

∫ t

0

〈2Xξ
n(s), AXξ

n(s)〉ds (2.91)

= ‖Xξ(t)‖2 − ‖ξ‖2 −
∫ t

0

〈2Xξ(s), F (Xξ(s))〉ds−
∫ t

0

tr((B(Xξ(s)))Q(B(Xξ(s)))∗)ds

−
∫ t

0

∫
H\{0}

[‖Xξ(s) + f(v,Xξ(s))‖2 − ‖Xξ(s)‖2 − 〈2Xξ(s), f(v,Xξ(s))〉]β(dv)ds

−
∫ t

0

〈2Xξ(s), B(Xξ(s))dWs〉 −
∫ t

0

∫
H\{0}

[‖Xξ(s) + f(v,Xξ(s)‖2 − ‖Xξ(s)‖2]q(dv, ds)

P -a.s..

Example 4:-

Let A be a symmetric linear operator and the conditions of Theorem 6 hold.
Now, we consider Ψ(s, x) = e(t−s)AΓ (x) for x ∈ H. Assume that Ψ satis�es the
condition (i) of Example 2. Also assume that Γ, Γx ∈ D(A). Now,

Ψs(s,X
ξ
n(s)) =

(
−Ae(t−s)AΓ (Xξ

n(s))
)
→
(
−Ae(t−s)AΓ (Xξ(s))

)
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P -a.s.. The convergence of all other terms are similar as in Example 2. So,
we can write the Itô formula of Theorem 6 as,

Γ (Xξ(t))− etAΓ (ξ) =

∫ t

0

(
−Ae(t−s)AΓ (Xξ(s))

)
ds (2.92)

+

∫ t

0

〈
e(t−s)AΓx(Xξ(s)), F (Xξ(s))

〉
H
ds+

∫ t

0

〈
A∗e(t−s)AΓx(Xξ(s)), Xξ(s)

〉
H
ds

+

∫ t

0

1

2
tr(e(t−s)AΓxx(Xξ(s))(B(Xξ(s)))Q(B(Xξ(s)))∗)ds

+

∫ t

0

∫
H\{0}

[e(t−s)AΓ (Xξ(s) + f(v,Xξ(s)))− e(t−s)AΓ (Xξ(s))

−
〈
e(t−s)AΓx(Xξ(s)), f(v,Xξ(s))

〉
H

]β(dv)ds

+

∫ t

0

〈
e(t−s)AΓx(Xξ(s)), B(Xξ(s))dWs

〉
H

+

∫ t

0

∫
H\{0}

[
e(t−s)AΓ (Xξ(s) + f(v,Xξ(s)))− e(t−s)AΓ (Xξ(s))

]
q(dv, ds)

P -a.s. and by Theorem 11, we obtain

LΨ(s,Xξ(s)) =
〈
e(t−s)AΓx(Xξ(s)), F (Xξ(s))

〉
H

+
〈
A∗e(t−s)AΓx(Xξ(s)), Xξ(s)

〉
H

+
1

2
tr(e(t−s)AΓxx(Xξ(s))(B(Xξ(s)))Q(B(Xξ(s)))∗)

+

∫
H\{0}

[e(t−s)AΓ (Xξ(s) + f(v,Xξ(s)))− e(t−s)AΓ (Xξ(s))

−
〈
e(t−s)AΓx(Xξ(s)), f(v,Xξ(s))

〉
H

]β(dv).

Example 5:-

Let A be a symmetric linear operator and the conditions of Theorem 6 hold.
Let us consider the function Ψ(s, x) = 〈S(t− s)y, x〉, where y ∈ D(A).

Therefore, for y ∈ D(A),

Ψs(s,X
ξ
n(s)) = −

〈
AS(t− s)y,Xξ

n(s)
〉
, (2.93)
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Ψx(s,Xξ
n(s)) = S(t− s)y

and

Ψxx(s,Xξ
n(s)) = 0.

Hence 〈
Ψx(s,Xξ

n(s)), AXξ
n(s)

〉
=
〈
S(t− s)y,AXξ

n(s)
〉
.

Since, A is a symmetric operator

〈
Ψx(s,Xξ

n(s)), AXξ
n(s)

〉
=
〈
AS(t− s)y,Xξ

n(s)
〉
. (2.94)

So from (2.93) and (2.94)

Ψs(s,X
ξ
n(s)) +

〈
Ψx(s,Xξ

n(s)), AXξ
n(s)

〉
= 0.

Therefore we can write the Itô formula for mild solutions of Theorem 6 for
the above function as follows,

〈
y,Xξ(t)

〉
− 〈S(t)y, ξ〉 =

∫ t

0

〈
S(t− s)y, F (Xξ(s))

〉
H
ds

+

∫ t

0

∫
H\{0}

[
〈
S(t− s)y,Xξ(s) + f(v,Xξ(s))

〉
−
〈
S(t− s)y,Xξ(s)

〉
−〈S(t− s)y, f(v,Xξ(s))〉H ]β(dv)ds

+

∫ t

0

〈
S(t− s)y,B(Xξ(s))dWs

〉
H

+

∫ t

0

∫
H\{0}

[〈
S(t− s)y,Xξ(s) + f(v,Xξ(s))

〉
−
〈
S(t− s)y,Xξ(s)

〉]
q(dv, ds)

P -a.s. and by Theorem 11, we obtain

LΨ(s,Xξ(s)) =
〈
S(t− s)y, F (Xξ(s))

〉
H

+

∫
H\{0}

[
〈
S(t− s)y,Xξ(s) + f(v,Xξ(s))

〉
−
〈
S(t− s)y,Xξ(s)

〉
− 〈S(t− s)y, f(v,Xξ(s))〉H ]β(dv).

Example 6:-
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Consider the stochastic heat equation

dX(x, t) =
∂2

∂x2
X(x, t)dt+B(X(x, t))dWt +

∫
H\{0}

f(v)X(x, t)q(dv, dt),

(2.95)

with

0 < x < 1.

X(0, t) = X(1, t) = 0; X(x, 0) = X0(x); X0, B, f ∈ L2(0, 1).

Here we take H = L2(0, 1), A = d2/dx2 and

D(A) = {f ∈ H|f ′, f ′′ ∈ H; f(0) = f(1) = 0} .

Since A has eigenvectors
{√

2 sinnπx
}
and eigenvalues

{
−n2π2

}
for n ∈ N.

Then X ∈ D(A), 〈AX,X〉 ≤ −π2 |X|2 (see example 6.1 of [19]).

Now consider the function Ψ(x) = ‖x‖2. Therefore Ψx(x) = 2x and Ψxx = 2.
Hence, for x ∈ D(A)

〈Ψx(x), Ax〉 ≤ −2π2 ‖x‖2 ,

1

2
tr(Ψxx(x)(B(x))Q(B(x))∗) = tr((B(x))Q(B(x))∗) ≤ l(1 + ‖x‖2),

by (A3) and

∫
H\{0}

[Ψ(x+ f(v)x)−Ψ(x)− 〈Ψx(x), f(v)x〉]β(dv)

≤
∫
H\{0}

‖f(v)x‖2 × sup
0≤θ≤1

|Ψxx(x+ θf(v)y)|β(dv)

≤ 2l(1 + ‖x‖2) [since, |Ψxx| = 2.]

by (A3). To get the above inequality we followed the argument used in the
proof of Theorem 6. Therefore for x ∈ D(A),

LΨ(x) = L‖x‖2 ≤ −2π2 ‖x‖2 + (l + 2l)(1 + ‖x‖2)

= (−2π2 + 3l)‖x‖2 + 3l

⇒ Ψ(x) ∈ V.

The description of V is given in Corollary 4 and the inequality of Corollary 4
will be-
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‖X(t)‖2 − ‖X(0)‖2 ≤
∫ t

0

{(−2π2 + 3l)‖X(s)‖2 + 3l}ds (2.96)

+

∫ t

0

〈2X(s), B(X(s))dWs〉

+

∫ t

0

∫
H\{0}

[‖X(s) + f(v)X(s)‖2 − ‖X(s)‖2]q(dv, ds).

So, from Corollary 4, we obtain the inequality of (2.96) for the function

Ψ(x) = ‖x‖2 but from (2.91) we are able to write the Itô formula for mild solu-

tions for the function Ψ(x) = ‖x‖2.

Now whenever π2 > 3
2 l, then for some constant k > 0

‖X(t)‖2 − ‖X(0)‖2 ≤
∫ t

0

{−k‖X(s)‖2 + 3l}ds+

∫ t

0

〈2X(s), B(X(s))dWs〉

(2.97)

+

∫ t

0

∫
H\{0}

[‖X(s) + f(v)X(s)‖2 − ‖X(s)‖2]q(dv, ds).

Now applying expectation on both sides of (2.97)

E[‖X(t)‖2] ≤ −k
∫ t

0

E[‖X(s)‖2]ds+ 3lt+ ‖X(0)‖2 (2.98)

≤ −k
∫ t

0

E[‖X(s)‖2]ds+ λ‖X(0)‖2 [for su�ciently large λ > 0].

Therefore, by Gronwall's lemma

E[‖X(t)‖2] ≤ λe−kt‖X(0)‖2,

hence by de�nition 13, we can conclude that the solution X(t) is exponentially
stable in the mean square sense.



Chapter 3

Di�erentials of SPDEs

In this Chapter, we study the continuity and di�erentiability results of the mild
solutions with respect to the initial condition for SPDEs which contain both
Gaussian and non-Gaussian noise.

Consider the following stochastic di�erential equation with values in H
(where H is a real separable Hilbert space),

dX(t) = (AX(t) + F (t,X(t)))dt+B(t,X(t))dWt +

∫
H\{0}

f(t, v,X(t))q(dv, dt);

X(0) = ξ0 ∈ H. (3.1)

The initial condition ξ0 is an F0-measurable H-valued random variable. Where
X(t) ∈ D([0, T ], H) such that F , B nad f do not depend on ω. Where
(D[0, T ], H) is the space of càdlàg functions de�ned on [0, T ] and with values
in H, with the sup norm ‖.‖∞ := supt∈[0,T ] ‖.‖H . The terms in (3.1) satisfying
the following conditions:

(K1) A is the in�nitesimal generator of a pseudo-contraction semigroup
{S(t), t ≥ 0} on H. This means in particular that there exists a constant
α ∈ R+ s.t. ‖S(t)‖ ≤ eαt.

(K2) Wt is a K-valued Ft-Wiener process with covariance Q on a complete

�ltered probability space
(

Ω,F , {Ft}t≤T , P
)
satisfying the usual hypothesis,

where Q is a nonnegative de�nite symmetric trace-class operator on the real
separable Hilbert space K. q(ds, du) := N(ds, du)(ω) − dsβ(du) is a compen-
sated Poisson random measure (cPrm) on a complete �ltered probability space(

Ω,F , {Ft}t≤T , P
)
satisfying the usual hypothesis. (Wt)t≥0 is assumed to be

independent of cPrm q(dv, dt).

(K3) F : [0, T ]×H → H, B : [0, T ]×H → L2(KQ, H), f : [0, T ]×H\ {0}×
H → H are continuous, and jointly measurable functions satisfying:

71
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‖F (t, x)‖2H + tr(B(t, x)QB∗(t, x)) +

∫
H\{0}

‖f(t, v, x)‖2H β(dv) ≤ l(1 + ‖x‖2H);

and, ∥∥F (t, x)− F (t, y)
∥∥2

H
+ tr((B(t, x)−B(t, y))Q(B(t, x)−B(t, y))∗)

+

∫
H\{0}

∥∥f(t, v, x)− f(t, v, y)
∥∥2

H
β(dv) ≤ K

∥∥x− y∥∥2

H
;

for all x, y ∈ H, t ∈ [0, T ] and where l, K are positive constants.

Let H̃2 denote the class of H-valued stochastic processes X that are mea-
surable as mappings from ([0, T ] × Ω,B([0, T ]) ⊗ F) to (H,B(H)) adapted to
the �ltration {Ft}t≤T , and satisfying E[sup0≤s≤T ‖X(s)‖2H ] < ∞. Then H̃2 is
a Banach space (see Section 4.1 of [22]) with the norm

‖X‖H̃2
=
(
E[ sup

0≤t≤T
‖X(t)‖2H ]

) 1
2 .

In Theorem 3 of earlier chapter, we proved that- if {S(t), t ≥ 0} is a pseudo-

contraction semigroup and F , B, f satisfy (K1), (K2), (K3) with E[‖X(0)‖2H ] <
∞. Then equation (3.1) has a unique mild solution X(t) ∈ (D[0, T ], H) satisfy-

ing E[sup0≤s≤T ‖X(s)‖2H ] <∞.

Here we assume that the coe�cients F , B and f are independent of ω.

Lemma 4. Let {S(t), t ≥ 0} be a pseudo-contraction semigroup, ξ ∈ L2(Ω, H)
and X ∈ D([0, T ], H) with E[sup0≤s≤T ‖X(s)‖2] <∞. Let

Ĩ(ξ,X)(t) = S(t)ξ +

∫ t

0

S(t− s)F (s,X(s))ds+

∫ t

0

S(t− s)B(s,X(s))dWs

+

∫ t

0

∫
H\{0}

S(t− s)f(s, v,X(s))q(dv, ds) (3.2)

and F , B, f satisfy conditions (K1), (K2), (K3). Then, for 0 ≤ t ≤ T ,
(I)

E

[
sup

0≤t≤T

∥∥∥Ĩ(ξ,X)(t)− Ĩ(η,X)(t)
∥∥∥2

H

]
≤ C1,TE

[
sup

0≤t≤T
‖ξ − η‖2H

]
,

(II)

E

[
sup

0≤t≤T

∥∥∥Ĩ(ξ,X)(t)− Ĩ(ξ, Y )(t)
∥∥∥2

H

]
≤ C2,T

∫ T

0

E

[
sup

0≤s≤T
‖X(s)− Y (s)‖2H

]
ds,

for some positive constants C1,T , C2,T .
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Proof. Here we followed the proof of Lemma 3.7 of [16] as well as Lemma 5.5.6
of [22].

(I) Let Xξ(t) and Xη(t) be mild solutions of (3.1) with initial conditions ξ
and η, respectively. Then, by applying Lemma 1

E sup
0≤t≤T

∥∥Xξ(t)−Xη(t)
∥∥2 ≤ 4Cα,T

(
E ‖ξ − η‖2

+ E
{∫ T

0

∥∥F (s,Xξ(s))− F (s,Xη(s))
∥∥2
ds

+

∫ T

0

∥∥B(s,Xξ(s))−B(s,Xη(s))
∥∥2
ds

+

∫ T

0

∫
H\{0}

∥∥f(s, v,Xξ(s))− f(s, v,Xη(s))
∥∥2
β(dv)ds

})
by (K3),

≤ 4Cα,T

(
E ‖ξ − η‖2 +K

∫ T

0

E sup
0≤s≤T

∥∥Xξ(s)−Xη(s)
∥∥2
ds

)
.

Now, by using the Gronwall's lemma, we obtain our result.

(II)

E sup
0≤t≤T

∥∥∥Ĩ(ξ,X)(t)− Ĩ(ξ, Y )(t)
∥∥∥2

H

≤ C
{
E sup

0≤t≤T

∥∥∥∥∫ t

0

S(t− s)(F (s,X(s))− F (s, Y (s)))ds

∥∥∥∥2

+ E sup
0≤t≤T

∥∥∥∥∫ t

0

S(t− s)(B(s,X(s))−B(s, Y (s)))dWs

∥∥∥∥2

+ E sup
0≤t≤T

∥∥∥∥∥
∫ t

0

∫
H\{0}

S(t− s)(f(s, v,X(s))− f(s, v, Y (s)))q(dv, ds)

∥∥∥∥∥
2 }

by applying Lemma 1,

≤ Cα,T
{
E

∫ T

0

‖F (s,X(s))− F (s, Y (s))‖2 ds

+ E

∫ T

0

‖B(s,X(s))−B(s, Y (s))‖2 ds

+ E

∫ T

0

∫
H\{0}

‖f(s, v,X(s))− f(s, v, Y (s))‖2 β(dv)ds
}

by (K3),

≤ Cα,TK
∫ T

0

E sup
0≤s≤T

‖X(s)− Y (s)‖2 ds.
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Hence the proof.

Lemma 5. Let Ĩ : H×H̃2 → H̃2 be such that its projection at time t ∈ [0, T ] is
given by Ĩ(ξ,X)(t). Assume that F , B, f satisfy conditions (K1), (K2), (K3).
Then there exists a constant αT , depending on T , s.t. αT ∈ (0, 1) and

‖Ĩ(ξ,X)− Ĩ(ξ, Y )‖H̃2
≤ αT ‖X − Y ‖H̃2

. (3.3)

Proof. Here we follow the proof of Lemma 5.5.7 of [22].

Let SX := Ĩ(ξ,X)(t). We will prove that, Sn is a contraction operator on
H̃2, for su�ciently large n ∈ N. From Lemma 4(II), it follows by induction

E sup
0≤t≤T

‖SnX(t)− SnY (t)‖2H ≤ Cn2,T
∫ T

0

ds1

∫ T

0

ds2 · · ·
∫ T

0

E sup
0≤s≤T

‖X(sn)− Y (sn)‖2Hdsn

≤ Cn2,T
Tn−1

(n− 1)!

∫ T

0

E sup
0≤s≤T

‖X(s)− Y (s)‖2Hds.

Therefore, for su�ciently large n ∈ N, Sn is a contraction operator on H̃2.
Hence, has a unique �xed point. Suppose that Sn0 is a contraction operator on
H̃2. Therefore

E sup
0≤t≤T

‖SX(t)− SY (t)‖2H = E sup
0≤t≤T

‖Skn0+1X(t)− Skn0+1Y (t)‖2H

≤ Ckn0+1
2,T

T kn0

(kn0)!

∫ T

0

E sup
0≤s≤T

‖X(s)− Y (s)‖2Hds

→ 0, when k →∞.

This completes the proof.

We now prove the continuity of the mild solutions w.r.t. the initial value.

Theorem 14. Let Xn be the mild solutions to the sequence of equations (3.1)
with coe�cients Fn, Bn, fn and initial conditions ξn, so that the following
equations hold P -a.s. for t ∈ [0, T ]:

Xn(t) = S(t)ξn +

∫ t

0

S(t− s)Fn(s,Xn(s))ds+

∫ t

0

S(t− s)Bn(s,Xn(s))dWs

+

∫ t

0

∫
H\{0}

S(t− s)fn(s, v,Xn(s))q(dv, ds).

Assume that Fn, Bn, fn satisfy conditions (K1), (K2), (K3). And in addi-
tion, let the following conditions hold:
I)

sup
n∈N0

E[‖ξn‖2] <∞,
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II) with n→∞

‖Fn(t, x)− F0(t, x)‖2H + ‖Bn(t, x)−B0(t, x)‖L2(KQ,H)

+

∫
H\{0}

∥∥fn(t, v, x)− f0(t, v, x)
∥∥2

H
β(dv)→ 0,

III)

E[‖ξn − ξ0‖2H ]→ 0.

Then

lim
n→∞

E sup
0≤t≤T

[‖Xn(t)−X0(t)‖2H ] = 0.

Proof. Here we followed the proof of Theorem 3.7 of [16] and Theorem 8.1 of [2].

For any t ≤ T ,

E sup
0≤t≤T

‖Xn(t)−X0(t)‖2

≤ 4
{
E sup

0≤t≤T
‖S(t)(ξn − ξ0)‖2

+ 2E sup
0≤t≤T

∥∥∥∥∫ t

0

S(t− s)(Fn(s,Xn(s))− Fn(s,X0(s)))ds

∥∥∥∥2

+ 2E sup
0≤t≤T

∥∥∥∥∫ t

0

S(t− s)(Fn(s,X0(s))− F0(s,X0(s)))ds

∥∥∥∥2

+ 2E sup
0≤t≤T

∥∥∥∥∫ t

0

S(t− s)(Bn(s,Xn(s))−Bn(s,X0(s)))dWs

∥∥∥∥2

+ 2E sup
0≤t≤T

∥∥∥∥∫ t

0

S(t− s)(Bn(s,X0(s))−B0(s,X0(s)))dWs

∥∥∥∥2

+ 2E sup
0≤t≤T

∥∥∥∥∥
∫ t

0

∫
H\{0}

S(t− s)(fn(s, v,Xn(s))− fn(s, v,X0(s)))q(dv, ds)

∥∥∥∥∥
2

+ 2E sup
0≤t≤T

∥∥∥∥∥
∫ t

0

∫
H\{0}

S(t− s)(fn(s, v,X0(s))− f0(s, v,X0(s)))q(dv, ds)

∥∥∥∥∥
2 }

by (K3) and Lemma 1,

≤4e2αT
{
E ‖ξn − ξ0‖2 +K

∫ T

0

E sup
0≤s≤T

‖Xn(s)−X0(s)‖2 ds

+ 2E

∫ T

0

‖Fn(s,X0(s))− F0(s,X0(s))‖2 ds

+ 2E

∫ T

0

‖Bn(s,X0(s))−B0(s,X0(s))‖2 ds

+ 2E

∫ T

0

∫
H\{0}

‖fn(s, v,X0(s))− f0(s, v,X0(s))‖2 β(dv)ds
}
. (3.4)
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Now from (III), we have E ‖ξn − ξ0‖2H → 0 and from (II)

‖Fn(t, x)− F0(t, x)‖2H + ‖Bn(t, x)−B0(t, x)‖L2(KQ,H)

+

∫
H\{0}

∥∥fn(t, v, x)− f0(t, v, x)
∥∥2

H
β(dv)→ 0.

Also from (K3)

‖Fn(t,X0(s))‖2H + ‖Bn(t,X0(s))‖2L2(KQ,H)

+

∫
H\{0}

‖fn(t, v,X0(s))‖2H β(dv)

≤ l(1 + ‖X0(s)‖2H)

= l(1 + ‖ξ0‖2H).

Therefore as n→∞,

E

∫ T

0

‖Fn(s,X0(s))− F0(s,X0(s))‖2 ds+ E

∫ T

0

‖Bn(s,X0(s))−B0(s,X0(s))‖2 ds

+ E

∫ T

0

∫
H\{0}

‖fn(s, v,X0(s))− f0(s, v,X0(s))‖2 β(dv)ds→ 0.

Therefore by applying Gronwall's lemma to (3.4), we can conclude that

lim
n→∞

E sup
0≤t≤T

‖Xn(t)−X0(t)‖2H = 0.

Hence the proof.

Theorem 15. Assume that F : [0, T ]×H → H, B : [0, T ]×H → L2(KQ, H),
f : [0, T ]×H\ {0} ×H → H and satisfy conditions (K1), (K2) and (K3).
(a) If the Fréchet derivatives DF (t, .), DB(t, .) and Df(t, v, .) are continuous
in H and bounded,

||DF (t, x)y||2H + ||DB(t, x)y||2L2(KQ,H) +

∫
H\{0}

||Df(t, v, x)y||2Hβ(dv) ≤M1‖y‖2H

(3.5)

uniformly for x, y ∈ H, t ∈ [0, T ] andM1 ≥ 0 is a constant. Then the �rst-order
Fréchet partial derivatives of Ĩ : H × H̃2 → H̃2 are given by(

∂Ĩ(x, ξ)

∂x
y

)
(t) = S(t)y,
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∂Ĩ(x, ξ)

∂ξ
η

)
(t) =

∫ t

0

S(t− s)DF (s, ξ(s))η(s)ds+

∫ t

0

S(t− s)DB(s, ξ(s))η(s)dWs

(3.6)

+

∫ t

0

∫
H\{0}

S(t− s)Df(s, v, ξ(s))η(s)q(dv, ds)

P -a.s.; with ξ, η ∈ H̃2; x, y ∈ H; 0 ≤ t ≤ T .

(b) If in addition, the second-order Fréchet derivatives D2F (t, .), D2B(t, .)
and D2f(t, v, .) are continuous in H and bounded,

||D2F (t, x)(y, z)||2H + ||D2B(t, x)(y, z)||2L2(KQ,H)

+

∫
H\{0}

||D2f(t, v, x)(y, z)||2Hβ(dv) ≤M2‖y‖2H‖z‖2H

(3.7)

uniformly for x, y, z ∈ H, t ∈ [0, T ] and M2 ≥ 0 is a constant. Then the
second-order Fréchet partial derivative of Ĩ : H × H̃2 → H̃2 is given by(
∂2Ĩ(x, ξ)

∂ξ2
(x, ξ)(η, ζ)

)
(t) =

∫ t

0

S(t− s)D2F (s, ξ(s))(η(s), ζ(s))ds

+

∫ t

0

S(t− s)D2B(s, ξ(s))(η(s), ζ(s))dWs

+

∫ t

0

∫
H\{0}

S(t− s)D2f(s, v, ξ(s))(η(s), ζ(s))q(dv, ds)

(3.8)

P -a.s.; with ξ, η, ζ ∈ H̃2; x ∈ H; 0 ≤ t ≤ T .

Proof. Here we followed the proof of Theorem 3.8 of [16].

Consider

Ĩ(x+ h, ξ)(t)− Ĩ(x, ξ)(t)− S(t)h

‖h‖H
=
S(t)(x+ h)− S(t)x− S(t)h

‖h‖H
= 0,

proving the �rst equality of (a). To prove the second equality, let

rF (t, x, h) = F (t, x+ h)− F (t, x)−DF (t, x)h,

rB(t, x, h) = B(t, x+ h)−B(t, x)−DB(t, x)h,

rf (t, v, x, h) = f(t, v, x+ h)− f(t, v, x)−Df(t, v, x)h.
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Here, we will use the following result- Let H1, H2 be two Hilbert spaces.
For a Fréchet di�erentiable function L : H1 → H2, de�ne rL(x, h) = L(x+ h)−
L(x)−DL(x)h and rDL(x, h1) = DL(x+h1)h−DL(x)h−D2L(x)(h, h1). Then

‖rL(x, h)‖H2
≤ 2 sup

x∈H1

‖DL(x)‖L(H1,H2) ‖h‖H1
(3.9)

and

‖rDL(x, h1)‖H2
≤ 2 sup

x∈H1

∥∥D2L(x)
∥∥
L(H1×H1,H2)

‖h‖H1
‖h1‖H1

(3.10)

Now with ∂Ĩ(x,ξ)
∂ξ as given by the r.h.s. of (3.6), we have

rĨ(x, ξ, η)(t) = Ĩ(x, ξ + η)(t)− Ĩ(x, ξ)(t)−

(
∂Ĩ(x, ξ)

∂ξ
η

)
(t)

=

∫ t

0

S(t− s)rF (s, ξ(s), η(s))ds+

∫ t

0

S(t− s)rB(s, ξ(s), η(s))dWs

+

∫ t

0

∫
H\{0}

S(t− s)rf (s, v, ξ(s), η(s))q(dv, ds)

= I1 + I2 + I3.

We need to show that, as ‖η‖H̃2
→ 0,

‖rĨ(x, ξ, η)‖H̃2

‖η‖H̃2

→ 0.

Consider

(
E sup0≤t≤T

∥∥∥∫ t0 S(t− s)rF (s, ξ(s), η(s))ds
∥∥∥2

H

)1/2

‖η‖H̃2

≤ C

(
E

∫ T

0

‖rF (s, ξ(s), η(s))‖2H
‖η(s)‖2H

‖η(s)‖2H
‖η‖2H̃2

1{‖η(s)‖H 6=0}ds

)1/2

.

Since F is Fréchet di�erentiable, therefore as ‖η(s)‖2H → 0

‖rF (s, ξ(s), η(s))‖2H
‖η(s)‖2H

→ 0,

by (3.9) and (3.5), this is bounded by some constant. In addition, the factor

‖η(s)‖2H
‖η‖2H̃2

1{‖η(s)‖H 6=0} ≤ 1.
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Consequently, by the Lebesgue DCT,
‖I1‖H̃2

‖η‖H̃2

→ 0 as ‖η‖H̃2
→ 0.

Again, by Lemma 1

(
E sup

0≤t≤T

∥∥∥∥∫ t

0

S(t− s)rB(s, ξ(s), η(s))dWs

∥∥∥∥2
)1/2

≤ C

(
E

∫ T

0

‖rB(s, ξ(s), η(s))‖2ds

)1/2

,

and by Lemma 5.1.9(1) of [22]

E sup
0≤t≤T

∥∥∥∥∥
∫ t

0

∫
H\{0}

S(t− s)rf (s, v, ξ(s), η(s))q(dv, ds)

∥∥∥∥∥
2
1/2

≤ C

(
E

∫ T

0

∫
H\{0}

‖rf (s, v, ξ(s), η(s))‖2β(dv)ds

)1/2

.

Therefore, by doing similar calculation as I1, we obtain
‖I2‖H̃2

‖η‖H̃2

→ 0 and

‖I3‖H̃2

‖η‖H̃2

→ 0, as ‖η‖H̃2
→ 0.

This concludes the proof of (a). Proof of (b) can be carried out by using
similar arguments. Let

rDF (t, x, h1) = DF (t, x+ h1)h−DF (t, x)h−D2F (t, x)(h, h1),

rDB(t, x, h1) = DB(t, x+ h1)h−DB(t, x)h−D2B(t, x)(h, h1),

rDf (t, v, x, h1) = Df(t, v, x+ h1)h−Df(t, v, x)h−D2f(t, v, x)(h, h1).

Now with ∂2Ĩ(x,ξ)
∂ξ2 as given by the r.h.s. of (3.8), we have

r ∂Ĩ
∂ξ

(x, ξ, η)(t) =

(
∂Ĩ(x, ξ + η)

∂ξ
ζ

)
(t)−

(
∂Ĩ(x, ξ)

∂ξ
ζ

)
(t)−

(
∂2Ĩ(x, ξ)

∂ξ2
(x, ξ)(η, ζ)

)
(t)

=

∫ t

0

S(t− s)rDF (s, ξ(s), η(s))ds+

∫ t

0

S(t− s)rDB(s, ξ(s), η(s))dWs

+

∫ t

0

∫
H\{0}

S(t− s)rDf (s, v, ξ(s), η(s))q(dv, ds)

= J1 + J2 + J3.

We need to show that, as ‖η‖H̃2
→ 0,∥∥∥r ∂Ĩ

∂ξ

(x, ξ, η)
∥∥∥
H̃2

‖η‖H̃2

→ 0.
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Consider (
E sup0≤t≤T

∥∥∥∫ t0 S(t− s)rDF (s, ξ(s), η(s))ds
∥∥∥2

H

)1/2

‖η‖H̃2

≤ C

(
E

∫ T

0

‖rDF (s, ξ(s), η(s))‖2H
‖η(s)‖2H

‖η(s)‖2H
‖η‖2H̃2

1{‖η(s)‖H 6=0}ds

)1/2

.

Since DF is Fréchet di�erentiable, therefore as ‖η(s)‖2H → 0

‖rDF (s, ξ(s), η(s))‖2H
‖η(s)‖2H

→ 0,

by (3.10) and (3.7), this is bounded by some constant. In addition, the factor

‖η(s)‖2H
‖η‖2H̃2

1{‖η(s)‖H 6=0} ≤ 1.

Consequently, by the Lebesgue DCT,
‖J1‖H̃2

‖η‖H̃2

→ 0 as ‖η‖H̃2
→ 0.

Again, by Lemma 1

(
E sup

0≤t≤T

∥∥∥∥∫ t

0

S(t− s)rDB(s, ξ(s), η(s))dWs

∥∥∥∥2
)1/2

≤ C

(
E

∫ T

0

‖rDB(s, ξ(s), η(s))‖2ds

)1/2

,

and by Lemma 5.1.9(1) of [22]

E sup
0≤t≤T

∥∥∥∥∥
∫ t

0

∫
H\{0}

S(t− s)rDf (s, v, ξ(s), η(s))q(dv, ds)

∥∥∥∥∥
2
1/2

≤ C

(
E

∫ T

0

∫
H\{0}

‖rDf (s, v, ξ(s), η(s))‖2β(dv)ds

)1/2

.

Therefore, by doing similar calculation as J1, we obtain
‖J2‖H̃2

‖η‖H̃2

→ 0 and

‖J3‖H̃2

‖η‖H̃2

→ 0, as ‖η‖H̃2
→ 0. This completes the proof.

Now we will use the following lemma on contractions depending on a pa-
rameter, for proving the next theorem i.e. Theorem 16.
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Lemma 6. Let X, U be Banach spaces, and f : X × U → U be a contraction
with respect to the second variable, i.e., for some 0 ≤ α < 1,

‖f(x, u)− f(x, v)‖U ≤ α‖u− v‖U , x ∈ X, u, v ∈ V (3.11)

and let for every x ∈ X, ϕ(x) denote the unique �xed point of the contraction
f(x, .) : U → U . Then the unique transformation ϕ : X → U de�ned by

f(x, ϕ(x)) = ϕ(x) for every x ∈ X (3.12)

is of class Ck(X) whenever f ∈ Ck(X × U), k = 0, 1, · · · . The derivatives of ϕ
can be calculated using the chain rule; in particular,

Dϕ(x)y =

[
I − ∂f(x, ϕ(x))

∂u

]−1(
∂f(x, ϕ(x))

∂x
y

)
, (3.13)

D2ϕ(x)(y, z) =

[
I − ∂f(x, ϕ(x))

∂u

]−1 (∂2f(x, ϕ(x))

∂x2
(y, z)

+
∂2f(x, ϕ(x))

∂x∂u
(Dϕ(x)y, z) +

∂2f(x, ϕ(x))

∂u∂x
(y,Dϕ(x)z)

(3.14)

+
∂2f(x, ϕ(x))

∂u2
(Dϕ(x)y,Dϕ(x)z)

)
.

Let {fn}∞n=1 be a sequence of mappings in Cl(X×U) satisfying condition (3.11),
denote by ϕn : X → U the unique transformations satisfying condition (3.12),
and assume that for all x, x1, · · · , xk ∈ X, u, u1 · · · , uj ∈ U , 0 ≤ k + j ≤ l,

lim
n→∞

∂k+jfn(x, u)

∂xk∂uj
(u1, · · · , uj , x1, · · · , xk) =

∂k+jf(x, u)

∂xk∂uj
(u1, · · · , uj , x1, · · · , xk).

(3.15)

Then

lim
n→∞

Dlϕn(x)(x1, · · · , xl) = Dlϕ(x)(x1, · · · , xl). (3.16)

Proof. For the proof of the lemma, we refer to Appendix C (Proposition C.0.3
and Proposition C.0.5) of [6]. Also see Lemma 3.8 of [16].

Now we consider the approximating system of equation (3.1),

dX(t) = (AX(t) +RnF (X(t)))dt+RnB(X(t))dWt +

∫
H\{0}

Rnf(v,X(t))q(dv, dt);

X(0) = x ∈ D(A). (3.17)

Here A generates a pseudo-contraction semigroup. Let R(n,A) = (nI−A)−1

denote the resolvent of A evaluted at n where Rn = nR(n,A), with n ∈ ρ(A) the
resolvent set of A. We have Rn : H → D(A) and An = ARn are the Yosida ap-
proximations of A. We assume that F , B, f satisfy conditions (K1), (K2), (K3).
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By applying Theorem 3, we can conclude that equation (3.17) has a unique
mild solution, denoted by Xx

n(t). Then

Xx
n(t) = S(t)x+

∫ t

0

S(t− s)RnF (Xx
n(s))ds+

∫ t

0

S(t− s)RnB(Xx
n(s))dWs

+

∫ t

0

∫
H\{0}

S(t− s)Rnf(v,Xx
n(s))q(dv, ds). (3.18)

Since the range R(R(n,A)) ⊂ D(A) and the conditions of Theorem 4 are satis-
�ed, therefore we can conclude that Xx

n(t) ∈ D(A) is also a strong solution.

Now we are in a position to approximate the mild solution of equation (3.1)
with respect to the strong solutions of equation (3.17). The mild solution of
equation (3.1), say Xx(t) (with initial condition x ∈ H), satis�es

Xx(t) = S(t)x+

∫ t

0

S(t− s)F (Xx(s))ds+

∫ t

0

S(t− s)B(Xx(s))dWs

+

∫ t

0

∫
H\{0}

S(t− s)f(v,Xx(s))q(dv, ds) (3.19)

and limn→∞E
[
sup0≤t≤T ‖Xx

n(t)−Xx(t)‖2H
]

= 0. This follows from Theorem

5.

We are now ready to prove a result on di�erentiability of the solution w.r.t.
the initial condition.

Theorem 16. Assume that F : [0, T ]×H → H, B : [0, T ]×H → L2(KQ, H),
f : [0, T ] × H\ {0} × H → H satisfy conditions (K1), (K2) and (K3). Let
the Fréchet derivatives DF (t, .), DB(t, .), Df(t, v, .), D2F (t, .), D2B(t, .) and
D2f(t, v, .) be continuous in H and satisfy conditions (3.5) and (3.7). Then
the solution Xx of (3.1) with initial condition x ∈ H, viewed as a mapping
X : H → H̃2, is twice continuously Fréchet di�erentiable in x and for any y,
z ∈ H, the �rst and second derivative process DXx(.)y and D2Xx(.)(y, z) are
mild solutions of the equations

dZ(t) = (AZ(t) +DF (t,Xx(t))Z(t))dt+DB(t,Xx(t))Z(t)dWt

+

∫
H\{0}

Df(t, v,Xx(t))Z(t)q(dv, dt), (3.20)

Z(0) = y,

and

dZ(t) = (AZ(t) +DF (t,Xx(t))Z(t) +D2F (t,Xx(t))(DXx(t)y,DXx(t)z))dt
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+(DB(t,Xx(t))Z(t) +D2B(t,Xx(t))(DXx(t)y,DXx(t)z))dWt (3.21)

+

∫
H\{0}

(Df(t, v,Xx(t))Z(t) +D2f(t, v,Xx(t))(DXx(t)y,DXx(t)z))q(dv, dt),

Z(0) = 0.

If Xn is the solution to the approximating system of (3.1) with deterministic
initial condition x ∈ H, then for y, z ∈ H, we have the following approximations
for the �rst and second derivative processes:

lim
n→∞

‖(DXx
n(.)−DXx(.)) y‖H̃2

= 0, (3.22)

lim
n→∞

∥∥(D2Xx
n(.)−D2Xx(.)

)
(y, z)

∥∥
H̃2

= 0. (3.23)

Proof. Here we will follow the proof of Theorem 3.9 of [16].

H̃2 is a Banach space. By Lemma 5, Ĩ is a contraction. Therefore, from the
unique �xed point theorem, we get Xx = Ĩ(Xx). Now we will apply (3.13) and
(3.6) respectively. Therefore

DXx(.)y =

[
I − ∂Ĩ(x,Xx(.))

∂Xx(.)

]−1(
∂Ĩ(x,Xx(.))

∂x
y

)

⇒ DXx(.)y =
∂Ĩ(x,Xx(.))

∂x
y +

∂Ĩ(x,Xx(.))

∂Xx(.)
DXx(.)y

= S(t)y +

∫ t

0

S(t− s)DF (s,Xx(s))DXx(.)yds

+

∫ t

0

S(t− s)DB(s,Xx(s))DXx(.)ydWs

+

∫ t

0

∫
H\{0}

S(t− s)Df(s, v,Xx(s))DXx(.)yq(dvds).

Therefore we can conclude that DXx(.)y is a mild solution of the equation
(3.20). Similarly, we can prove that, D2Xx(.)(y, z) is a mild solution of the
equation (3.21) in the following way. From (3.14)

D2Xx(.)(y, z) =

[
I − ∂Ĩ(x,Xx(.))

∂Xx(.)

]−1 (∂2Ĩ(x,Xx(.))

∂x2
(y, z)

+
∂2Ĩ(x,Xx(.))

∂x∂Xx(.)
(DXx(.)y, z) +

∂2Ĩ(x,Xx(.))

∂Xx(.)∂x
(y,DXx(.)z)

+
∂2Ĩ(x,Xx(.))

∂Xx(.)2
(DXx(.)y,DXx(.)z)

)
.
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⇒ D2Xx(.)(y, z) =
∂2Ĩ(x,Xx(.))

∂x2
(y, z) (3.24)

+
∂2Ĩ(x,Xx(.))

∂x∂Xx(.)
(DXx(.)y, z) +

∂2Ĩ(x,Xx(.))

∂Xx(.)∂x
(y,DXx(.)z)

+
∂2Ĩ(x,Xx(.))

∂Xx(.)2
(DXx(.)y,DXx(.)z) +

∂Ĩ(x,Xx(.))

∂Xx(.)
D2Xx(.)(y, z).

Now,

∂2Ĩ(x,Xx(.))

∂x2
(y, z) =

∂2Ĩ(x,Xx(.))

∂x∂Xx(.)
(DXx(.)y, z) =

∂2Ĩ(x,Xx(.))

∂Xx(.)∂x
(y,DXx(.)z) = 0.

(3.25)

Because, from Theorem 15,(
∂Ĩ(x, ξ)

∂x
y

)
(t) = S(t)y,

(
∂Ĩ(x, ξ)

∂ξ
η

)
(t) =

∫ t

0

S(t− s)DF (s, ξ(s))η(s)ds+

∫ t

0

S(t− s)DB(s, ξ(s))η(s)dWs

+

∫ t

0

∫
H\{0}

S(t− s)Df(s, v, ξ(s))η(s)q(dv, ds).

Therefore

lim
h→0

‖∂Ĩ(x+h,ξ)
∂x y − ∂Ĩ(x,ξ)

∂x y − 0.h‖
‖h‖H

= lim
h→0

‖S(t)y − S(t)y − 0.h‖
‖h‖H

= 0

⇒ ∂2Ĩ(x, ξ)

∂x2
= 0,

and

lim
h→0

‖∂Ĩ(x+h,ξ)
∂ξ η − ∂Ĩ(x,ξ)

∂ξ η − 0.h‖
‖h‖H

= 0

⇒ ∂2Ĩ(x, ξ)

∂x∂ξ
= 0,
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and

lim
‖η‖H̃2

→0

‖∂Ĩ(x,ξ+η)
∂x y − ∂Ĩ(x,ξ)

∂x y − 0.η‖
‖η‖H̃2

= lim
‖η‖H̃2

→0

‖S(t)y − S(t)y − 0.η‖
‖η‖H̃2

= 0

⇒ ∂2Ĩ(x, ξ)

∂ξ∂x
= 0.

Hence, we can conclude (3.25). Again, from Theorem 15,

∂2Ĩ(x,Xx(.))

∂Xx(.)2
(DXx(.)y,DXx(.)z) (3.26)

=

∫ t

0

S(t− s)D2F (s,Xx(s))(DXx(.)y,DXx(.)z)ds

+

∫ t

0

S(t− s)D2B(s,Xx(s))(DXx(.)y,DXx(.)z)dWs

+

∫ t

0

∫
H\{0}

S(t− s)D2f(s, v,Xx(s))(DXx(.)y,DXx(.)z)q(dv, ds)

and

∂Ĩ(x,Xx(.))

∂Xx(.)
D2Xx(.)(y, z) (3.27)

=

∫ t

0

S(t− s)DF (s,Xx(s))D2Xx(.)(y, z)ds

+

∫ t

0

S(t− s)DB(s,Xx(s))D2Xx(.)(y, z)dWs

+

∫ t

0

∫
H\{0}

S(t− s)Df(s, v,Xx(s))D2Xx(.)(y, z)q(dvds).

Now substituting (3.25), (3.26) and (3.27) into (3.24) we get

D2Xx(.)(y, z)

=

∫ t

0

S(t− s)(DF (s,Xx(s))D2Xx(.)(y, z) +D2F (s,Xx(s))(DXx(.)y,DXx(.)z))ds

+

∫ t

0

S(t− s)(DB(s,Xx(s))D2Xx(.)(y, z) +D2B(s,Xx(s))(DXx(.)y,DXx(.)z))dWs

+

∫ t

0

∫
H\{0}

S(t− s)(Df(s, v,Xx(s))D2Xx(.)(y, z) +D2f(s, v,Xx(s))(DXx(.)y,DXx(.)z))q(dvds).

Therefore we can conclude that D2Xx(.)(y, z) is a mild solution of the equation
(3.21).
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Now we will prove, limn→∞E
[

sup0≤t≤T ‖(DXx
n(.)−DXx(.))y‖2H

]
= 0.

Consider the Yosida Approximation of (3.20),

dZ(t) =(AZ(t) +RnDF (t,Xx(t))Z(t))dt+RnDB(t,Xx(t))Z(t)dWt

+

∫
H\{0}

RnDf(t, v,Xx(t))Z(t)q(dv, dt),

Z(0) = y,

that is,

DXx
n(.)y = S(t)y +

∫ t

0

S(t− s)RnDF (s,Xx
n(s))DXx(.)yds

+

∫ t

0

S(t− s)RnDB(s,Xx
n(s))DXx(.)ydWs

+

∫ t

0

∫
H\{0}

S(t− s)RnDf(s, v,Xx
n(s))DXx(.)yq(dvds).

Now,

E
[

sup
0≤t≤T

‖(DXx
n(.)−DXx(.))y‖2H

]

=E[ sup
0≤t≤T

∥∥∫ t

0

S(t− s)(RnDF (s,Xx
n(s))−DF (s,Xx(s)))DXx(.)yds

+

∫ t

0

S(t− s)(RnDB(s,Xx
n(s))−DB(s,Xx(s)))DXx(.)ydWs

+

∫ t

0

∫
H\{0}

S(t− s)(RnDf(s, v,Xx
n(s))−Df(s, v,Xx(s)))DXx(.)yq(dv, ds)

∥∥2

H
]

=E[ sup
0≤t≤T

∥∥ ∫ t

0

S(t− s)Rn(DF (s,Xx
n(s))−DF (s,Xx(s)))DXx(.)yds

+

∫ t

0

S(t− s)(Rn − I)DF (s,Xx(s))DXx(.)yds

+

∫ t

0

S(t− s)Rn(DB(s,Xx
n(s))−DB(s,Xx(s)))DXx(.)ydWs

+

∫ t

0

S(t− s)(Rn − I)DB(s,Xx(s))DXx(.)ydWs

+

∫ t

0

∫
H\{0}

S(t− s)Rn(Df(s, v,Xx
n(s))−Df(s, v,Xx(s)))DXx(.)yq(dv, ds)

+

∫ t

0

∫
H\{0}

S(t− s)(Rn − I)Df(s, v,Xx(s))DXx(.)yq(dv, ds)
∥∥2

H
]
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by Lemma 1,

≤C
{
E[

∫ T

0

∥∥S(t− s)Rn(DF (s,Xx
n(s))−DF (s,Xx(s)))DXx(.)y

∥∥2

H
ds]

+ E[

∫ T

0

∥∥S(t− s)(Rn − I)DF (s,Xx(s))DXx(.)y
∥∥2

H
ds]

+ E[

∫ T

0

∥∥S(t− s)Rn(DB(s,Xx
n(s))−DB(s,Xx(s)))DXx(.)y

∥∥2

L2(KQ,H)
ds]

+ E[

∫ T

0

∥∥(Rn − I)DB(s,Xx(s))DXx(.)y
∥∥2

L2(KQ,H)
ds]

+ E[

∫ T

0

∫
H\{0}

∥∥S(t− s)Rn(Df(s, v,Xx
n(s))−Df(s, v,Xx(s)))DXx(.)y

∥∥2

H
β(dv)ds]

+ E[

∫ T

0

∫
H\{0}

∥∥(Rn − I)Df(s, v,Xx(s))DXx(.)y
∥∥2

H
β(dv)ds]

}
.

Now from Theorem 5 of Chapter 2, we have limn→∞E
[
sup0≤t≤T ‖Xx

n(t)−Xx(t)‖2H
]

=

0. This allows us to choose a subsequence Xx
nk

such that,

Xx
nk

(t)→ Xx(t), 0 ≤ t ≤ T , P -a.s..

We will denote such a subsequence again by Xx
n . In fact, we can say that

sup
0≤t≤T

‖Xn(t)−X(t)‖H → 0, (3.28)

P a.s.. This implies that the set

S = {Xn(t), X(t) : n = 1, 2..., 0 ≤ t ≤ T}

is bounded in H, hence any continuous function evaluated on S are bounded
by some constant. Since DF (t, .), DB(t, .), Df(t, v, .) are continuous, therefore
by (3.28) DF (s,Xx

n(s)) → DF (s,Xx(s)), DB(s,Xx
n(s)) → DB(s,Xx(s)) and

Df(s, v,Xx
n(s))→ Df(s, v,Xx(s)) P -a.s.. sup0≤t≤T ‖S(t)‖L(H) and supn>n0

‖Rn‖L(H)

(for n0 su�ciently large) are uniformly bounded. Therefore, by (3.28) and
Lebesgue DCT, we can conclude that 1st, 3rd and 5th integral of the R.H.S.
of above equation converge to zero. Again (Rn − I)x → 0, Therefore by the
Lebesgue DCT we can conclude that 2nd, 4th and 6th integral of the R.H.S. of
above equation also converge to zero. Therefore E

[
sup0≤t≤T ‖(DXx

n(.)−DXx(.))y‖2H
]
→

0, which means limn→∞ ‖(DXx
n(.)−DXx(.)) y‖H̃2

= 0. Similarly, we can prove

limn→∞
∥∥(D2Xx

n(.)−D2Xx(.)
)

(y, z)
∥∥
H̃2

= 0.
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Chapter 4

Appendix

Discussion about the Itô formula for strong solutions w.r.t. Gaussian

and non-Gaussian noise.

Itô formula for strong solutions w.r.t. Gaussian noise as well as non-Gaussian
noise is well known (see [16], [9], [22], [23]). Here we give an short description
of, how we can write the Itô formula for strong solutions, when the stochastic
process contains both Gaussian and non-Gaussian noise.

•Let H be a real separable Hilbert space.
•Let F ∈ (C1,2[0, T ]×H); F : [0, T ]×H → R such that

‖∂yF (s, y)‖ ≤ h1(‖y‖), (s, y) ∈ R+ × F (4.1)

‖∂yyF (s, y)‖ ≤ h2(‖y‖), (s, y) ∈ R+ × F (4.2)

for quasi-sublinear functions h1, h2 : R+ → R+.
•Let ψ : Ω × R+ → H be a Fs-measurable P -a.s. Bochner-integrable process

on [0, T ], s.t.
∫ T

0
‖ψ(s)‖ds <∞ P -a.s..

•Let f : Ω×R+×H\{0} → H be a progressively measurable process such that
for all t ∈ R+ we have P -a.s.

∫ t

0

∫
H\{0}

‖f(v, s)‖2β(dv)ds+

∫ t

0

∫
H\{0}

h1(‖f(v, s)‖)2‖f(v, s)‖2β(dv)ds

(4.3)

+

∫ t

0

∫
H\{0}

h2(‖f(v, s)‖)‖f(v, s)‖2β(dv)ds <∞

•So whenever we have the H valued Itô process

Yt = Y0 +

∫ t

0

ψ(s)ds+

∫ t

0

∫
H\{0}

f(v, s)q(dv, ds).

89
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Then we can write the Itô formula for strong solution, according to [23] as,

F (t, Yt) =F (0, Y0) +

∫ t

0

∂sF (s, Ys)ds+

∫ t

0

〈∂yF (s, Ys), ψ(s)〉ds

+

∫ t

0

∫
H\{0}

(
F (s, Ys + f(v, s))− F (s, Ys)− 〈∂yF (s, Ys), f(v, s)〉

)
β(dv)ds

+

∫ t

0

∫
H\{0}

(
F (s, Ys− + f(v, s))− F (s, Ys−)

)
q(dv, ds)

P -a.s., for t ≥ 0.

Again, let K, H are real separable Hilbert spaces. Wt is K-valued Q-
Wiener process on a �ltered probability space (Ω,F , {Ft}0≤t≤T , P ). Consider
L2(KQ, H), the space of Hilbert-Schemidt operators fromKQ toH. Let P(KQ, H)
denote the class of L2(KQ, H)-valued stochastic processes adapted to the �l-
tration {Ft}t≤T , measurable as mappings from ([0, T ] × Ω,B([0, T ]) ⊗ FT ) to

(L2(KQ, H),B(L2(KQ, H))), and satisfying the condition P{
∫ T

0
‖B(s)‖2L2(KQ,H)ds <

∞} = 1. If, we have the H valued Itô process

Xt = X0 +

∫ t

0

ψ(s)ds+

∫ t

0

B(s)dWs.

Where ψ(s) is a Fs-measurable P -a.s. Bochner-integrable process on [0, T ] s.t.∫ T
0
‖ψ(s)‖ds <∞ P -a.s. and B(s) ∈ P(KQ, H). Then for F ∈ (C1,2[0, T ]×H);

F : [0, T ] ×H → R, we can write the Itô's formula, as Theorem 2.9 of [16], as
following

F (t,Xt) =F (0, X0) +

∫ t

0

∂sF (s,Xs)ds+

∫ t

0

〈∂xF (s,Xs), ψ(s)〉ds

+

∫ t

0

1

2
tr[∂xxF (s,Xs)(B(s)Q1/2)(B(s)Q1/2)∗]ds

+

∫ t

0

〈∂xF (s,Xs), B(s)dWs〉

P -a.s., for t ≥ 0.

So, whenever we have a H valued Itô process as

Zt = Z0 +

∫ t

0

ψ(s)ds+

∫ t

0

B(s)dWs +

∫ t

0

∫
H\{0}

f(v, s)q(dv, ds),

ψ, B and f satisfying all the above conditions. Then we can write the Itô
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formula for strong solution as

F (t, Zt) =F (0, Z0) +

∫ t

0

∂sF (s, Zs)ds+

∫ t

0

〈∂zF (s, Zs), ψ(s)〉ds

+

∫ t

0

1

2
tr[∂zzF (s, Zs)(B(s)Q1/2)(B(s)Q1/2)∗]ds

+

∫ t

0

∫
H\{0}

(
F (s, Zs + f(v, s))− F (s, Zs)− 〈∂zF (s, Zs), f(v, s)〉

)
β(dv)ds

+

∫ t

0

〈∂zF (s, Zs), B(s)dWs〉

+

∫ t

0

∫
H\{0}

(
F (s, Zs− + f(v, s))− F (s, Zs−)

)
q(dv, ds)

P -a.s., for t ≥ 0. Where F ∈ (C1,2[0, T ]×H); F : [0, T ]×H → R.

Because, we can show that the cross variation of two stochastic processes Xt

and Yt is zero i.e. [X,Y ](t) = 0. Here we only prove that, the cross variation of
Wiener process and cPrm is zero. Let us de�ne,

M(t) :=

∫ t

0

B(s)dWs

and

N(t) :=

∫ t

0

∫
H\{0}

f(v, s)q(dv, ds).

Now we will evaluate the cross variation of the process M(t) and N(t) for
t ∈ [0, T ]. We denote Π = {0 = t0 < t1 · · · < tn = T} be the set of times on the
time interval [0, T ]. Let us de�ne,

CΠ(M,N) :=

n−1∑
j=0

(M(tj+1)−M(tj))(N(tj+1)−N(tj))

Where ‖Π‖ := maxj(tj+1 − tj). Now the cross variation of M and N on
[0, T ] is de�ned to be,

[M,N ](T ) := lim
‖Π‖→0

CΠ(M,N)

Now,

M(tj+1)−M(tj)

=

∫ tj+1

0

B(s)dWs −
∫ tj

0

B(s)dWs
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=

∫ tj+1

tj

B(s)dWs.

Similarly,

N(tj+1)−N(tj)

=

∫ tj+1

tj

∫
H\{0}

f(v, s)q(dv, ds).

So,

[M,N ](T ) = lim
‖Π‖→0

CΠ(M,N)

= lim
‖Π‖→0

n−1∑
j=0

(M(tj+1)−M(tj))(N(tj+1)−N(tj))

= lim
‖Π‖→0

n−1∑
j=0

(∫ tj+1

tj

B(s)dWs

)(∫ tj+1

tj

∫
H\{0}

f(v, s)q(dv, ds)

)

≤ lim
‖Π‖→0

max
0≤j≤n−1

∥∥∥∥∥
∫ tj+1

tj

B(s)dWs

∥∥∥∥∥
∥∥∥∥∥∥
n−1∑
j=0

∫ tj+1

tj

∫
H\{0}

f(v, s)q(dv, ds)

∥∥∥∥∥∥
= lim
‖Π‖→0

max
0≤j≤n−1

∥∥∥∥∥
∫ tj+1

tj

B(s)dWs

∥∥∥∥∥
∥∥∥∥∥
∫ T

0

∫
H\{0}

f(v, s)q(dv, ds)

∥∥∥∥∥
We will show that [M,N ](T ) = 0. As ‖Π‖ → 0; max0≤j≤n−1

∥∥∥∫ tj+1

tj
B(s)dWs

∥∥∥→
0. So, we have to show that

∥∥∥∫ T0 ∫H\{0} f(v, s)q(dv, ds)
∥∥∥ <∞.

Now, for t ∈ [0, T ]

E[‖
∫ t

0

∫
H\{0}

f(v, s)q(dv, ds)‖2] =

∫ t

0

∫
H\{0}

E[‖f(v, s)‖2]β(dv)ds <∞.

(4.4)

Here the �rst equality holds due to Itô Isometry and second inequality holds,
becuase Itô integral w.r.t. cPrm to be well de�ned (for this we refer to the in-
troductory sections of [2] and [23]).

Now, by Jensen's inequality
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(
E[‖

∫ t

0

∫
H\{0}

f(v, s)q(dv, ds)‖]

)2

≤ E[‖
∫ t

0

∫
H\{0}

f(v, s)q(dv, ds)‖2] (4.5)

So, combining (4.4) and (4.5) we get

(
E[‖

∫ t

0

∫
H\{0}

f(v, s)q(dv, ds)‖]

)2

<∞

⇒ E[‖
∫ t

0

∫
H\{0}

f(s, x)q(dv, ds)‖] <∞.

⇒ For t ∈ [0, T ]; for almost every ω, ‖
∫ t

0

∫
H\{0} f(v, s)q(dv, ds)‖ <∞.

Hence, we can conclude that, [M,N ](T ) = 0.
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