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Abstract

In this thesis, electromagnetic wave propagation in a dielectric periodic medium, pho-

tonic crystal, described by an incomplete photonic bandgap are studied.

A total omnidirectional reflection from a one-dimensional periodic dielectric medium

is predicted. The origins of the omnidirectional reflection are discussed and optimum

parameters of an omnidirectional mirror are presented. Theoretical predictions are

compared with experimental realization of the mirror at optical frequencies.

The influence of a strong anisotropy of a three-dimensional periodic dielectric

medium on emission properties of the classical dipole is studied. It is shown that

the anisotropy of a photonic crystal leads to modifications of both the far-field radi-

ation pattern and the radiated power of a dipole. If the dipole frequency is within a

partial bandgap, the radiated power is suppressed in the direction of a stopband and

enhanced in the direction of the group velocity, which is stationary with respect to

a small variation of the wave vector. Such an enhancement is explained in terms of

photon focusing phenomenon.

Several numerical examples illustrating modification of radiation pattern are given.

Theoretical predictions of radiation pattern are compared with experimental photolu-

minescence of laser dye molecules embedded in an inverted opaline photonic crystal.

It is shown that far-field radiation pattern of the classical dipole can be also modified

due to interference of photonic crystal eigenmodes at the detector plane. The physical

reasons for the interference and the possibilities of its experimental observation are

discussed.

A two-dimensional photonic crystal is proposed, which cancels out a natural diffrac-

tion of the laser beam for a wide range of beam widths and beam orientations with

respect to the crystal lattice. The spreading of the beam is counteracted by the crystal

anisotropy, like in the case of spatial solitons the nonlinearity of the medium counter-

acts the natural spreading of the beam due to diffraction.
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Zusammenfassung

In dieser Arbeit wird die Ausbreitung elektromagnetischer Wellen in einem dielek-

trischen periodischen Medium mit einer unvollständigen photonischen Bandlücke un-

tershucht.

Die vollständige omnidiretkionale Reflektion eines eindimensionalen periodischen

dielektrischen Mediums wird vorhergesagt. Die Herkunft der omnidiretkionalen Re-

flektion wird diskutiert und optimale Parameter für die Geometrie und das Material

eines solchem Reflektors berechnet. Die theoretischen Vorhersagen werden mit exper-

imentellen Ergebnisen bei optischen Frequenzen verglichen.

Untersucht wurde desweiteren der Einfluß einer starken Anisotropie eines drei-

dimensionalen periodischen Dielektrikas auf Emissionseigenschaften des klassischen

Dipols. Es zeigt sich, daß Anisotropien zu einer Modifizierung des Fernfeld-Strahlungs-

Diagramms und der Emissionsintensität eines Dipols führt. Falls sich eine Dipolfre-

quenz innerhalb des partiellen Bandgaps befindet, so erzeugt eine Fernfeld-Emissions-

intensität eine Unterdrückung in der Richtung des Stopbandes und eine Verstärkung

in der Richtung der Gruppengeschwindigkeit, welche für eine kleine Variation des

Wellenvektors mathematisch stationär ist. Solch eine Verstärkung wird bezüglich des

Photonfokussierungs-Phänomens erklärt.

Es wird eine Anzahl von numerischen Beispielen der Strahlungsdiagramm-Modifika-

tion gegeben und die theoretischen Vorhersagen der Emissionsmodifikation werden mit

Photolumineszensexperimenten in einem dreidimensionalen photonischen Kristall ver-

glichen.

Weiterhin wird gezeigt, daß aufgrund der Interferenzen der photonischen Kristall-

eigenwerte an der Detektorebene das Fernfeld-Strahlungsdiagramm des klassischen

Dipols geändert werden kann. Dabei werden die physikalischen Ursachen der Inter-

ferenzen und die Möglichkeiten ihrer experimentellen Beobachtung diskutiert.

Ein zweidimensionaler photonischer Kristall, der die natürliche Diffraktion eines

Laserstrahls über einen weiten Bereich der Stahlbreite und Strahlorientierung bezüglich

des Kristallgitters aufhebt, wird vorgeschlagen. Der Verbreiterung des Strahles wirkt
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die Kristallanisotropie entgegen, wie dies in nichtlinearen Medien für räumliche Solito-

nen der Fall ist.
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Chapter 1

Introduction

1.1 Photonic crystals

Periodic media are well acknowledged for their capability to control the propagation and

emission of electromagnetic waves and have gained a substantial attention as photonic

crystals or photonic bandgap structures.

Photonic crystals are characterized by three parameters: the lattice topology, the

spatial period and the dielectric constants of the constituent materials. By suitable

selection of these parameters, a gap in the electromagnetic dispersion relation can

be created, within which the linear propagation of electromagnetic waves is forbidden.

This forbidden frequency range is called the photonic bandgap. It is said that a photonic

bandgap is complete, if a forbidden gap exists for all polarizations and all propagation

direction. It is common to distinguish one-, two- and three-dimensional photonic crys-

tals by the number of dimensions within which the periodicity has been introduced

into the structure. Examples of one-, two- and three-dimensional photonic crystals

are given in figure 1.1. Necessary but not sufficient conditions to obtain a complete

photonic bandgap are a periodicity in three spatial directions and a large difference in

the dielectric constants of the constituent materials.

The first self-consistent treatment of light emission in a periodic medium with a

strong modulation of the dielectric function was made by Bykov in 1972 [4]. Bykov

pointed out the possibilities to realize a complete photonic bandgap and the inhibi-

tion of the spontaneous emission of atoms embedded in a periodic medium. The first

self-consistent treatment of electromagnetic eigenmodes and photonic band structure

in a three-dimensional periodic medium with a large dielectric function modulation

was given by Ohtaka in 1979 [5]. These two pioneering works did not gain the at-

tention they deserved at the time. It was only after the appearance of the papers
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Figure 1.1: Examples of one-, two- and three-dimensional photonic crystals. Left:
SEM image of the cross section of a 1D all-silicon photonic crystal (after Bruyant et.
al. [1]). Center: SEM image of a 2D silicon photonic crystal with a straight waveguide
(after Loncar et. al. [2]). Right: SEM image of a 3D silicon photonic crystal, woodpile
structure (.after Lin et. al. [3]).

of Yablonovitch [6] and John [7] in 1987, than the idea to control the flow of light

by means of a periodic medium become popular. Yablonovitch [6] proposed to use a

three-dimensional periodic medium, which he called a photonic crystal, to inhibit the

spontaneous emission of atoms and to realize localized defect modes and consequently

to enhance the spontaneous emission. In the same year, John [7] proposed the use

of a disordered three-dimensional periodic medium to localize electromagnetic waves.

Many interesting quantum optical phenomena such as the bound state of photons [4, 8]

and non-exponential decay of the spontaneous emission [4, 8] were predicted. These

ideas actively stimulated research area, which leads both to various unexpected results

in the fundamental understanding of light–matter interaction and to various new op-

toelectronics and photonics applications. Summaries of early studies can be found in

[9, 10] and more recent results can be found in [11, 12].

Opportunities to control light emission and extraction using photonic crystals offer

vast potential in improving existing light sources. For example, the external efficiency

of light-emitting diodes typically does not exceed 2-5%, while the internal quantum

efficiency of their active material can be as high as 99%. The introduction of a two-

dimensional photonic crystal into the light-emitting diode design can significantly im-

prove its external quantum efficiency [13, 14]. Another example of improved light

source properties is a highly directional light source employing a three-dimensional

photonic crystal [15, 16]. An inhibited spontaneous emission should result in substan-

tially reduced threshold of semiconductor lasers, which solves the problem with removal

of excess heat generated by the finite laser threshold.

Even a passive integrated optical circuit incorporating waveguides, bends, junctions

and couplers typically extends over several centimeters rather than micrometers in size.
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Wave guided light does not readily negotiate sharp bends, so transitions need to be

gradual. Couplers typically have long interaction lengths with respect to the wave-

length of light. Photonic crystals possessing a complete photonic bandgap offer one

of the possible solutions to miniaturization of integrated optics. Optical waveguides,

sharp bends and large-angle Y-junctions with virtually no excess loss have been de-

signed in the micrometer and sub-micrometer length scale using photonic crystals [17].

Another important issue for integrated optics is filtering. Photonic crystals are proven

to be good materials for realization of high quality resonators with very sharp filtering

characteristics [17]. A compact photonic crystal based add/drop filters suitable for

wavelength division multiplexing (WDM) applications have been proposed based on

photonic crystal waveguides and resonators [18, 19].

In the microwave and millimeter wave domain, photonic crystals and photonic

bandgap are usually called electromagnetic crystals and electromagnetic bandgap, re-

spectively. Electromagnetic crystals are mainly used as antenna substrates [20, 21, 22,

23, 24, 25]. Conventional integrated circuit antennas on a semiconductor substrate of

dielectric constant ε have the drawback that the power radiated into the substrate is

a factor ε3/2 larger than the power radiated in free-space [20]. Thus, antennas on a

typical semiconductor radiate only about 2% of their power in free-space. By fabri-

cating the antenna on an electromagnetic crystal with a driving frequency within a

complete electromagnetic bandgap, no power should be transmitted into the crystal

if there are no evanescent surface modes. Several successful antenna designs with im-

proved directionality and efficiency up to 70% have been reported [20, 21, 22]. To

suppress surface modes of an antenna substrate a electromagnetic crystal can be used

as a high-impedance surface [23, 24, 25]. Microwave and millimeter wave filters, cou-

plers, resonators, reflectors and guiding structures can be also designed on the basis of

electromagnetic crystals [26].

Although the main expectations associated with photonic crystals rely on the exis-

tence of a complete photonic bandgap, photonic crystals with an incomplete photonic

bandgap can also influence dramatically the electromagnetic wave propagation. At pho-

tonic bands frequencies a photonic crystal displays strong dispersion and anisotropy.

Anisotropy of photonic crystals known to be a reason for the number of anomalies in

an electromagnetic beam propagation, which are usually referred to as superprism or

ultrarefractive phenomena [27, 28, 29]. The first self-consistent theoretical and exper-

imental study of ultrarefractive phenomena in a one-dimensional period medium was

reported by Russell [27] and Zengerle [28] in 1986 and 1987, respectively. Ten years

later, Kosaka et al. reported the experimental observation of the ultrarefraction in a

three-dimensional photonic crystal [29]. Since that time an extraordinary large or neg-

ative beam bending [29], a beam self-collimation [30] and the photon focusing [31, 32]
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were reported. More recently, a photonic crystal superprism was proposed for WDM

applications [33].

1.2 Dissertation organization

The focus of the work presented in this thesis, was the theoretical study of the pe-

culiarities of electromagnetic wave propagation in a dielectric periodic medium with

an incomplete photonic bandgap. The main goal of this work was to show that a

photonic crystal with an incomplete photonic bandgap can essentially influence both

electromagnetic wave flow and light emission processes.

Dissertation is organized in four parts. The first part (chapters 2 and 3) provides

an introduction to the basic theoretical concepts required for the material that follows.

Parts two to four contain main results of the thesis. The influence of an incomplete

photonic bandgap upon total reflection on, light emission in and light refraction by a

photonic crystal is studied in part II (chapter 4), part III (chapters 5, 6 and 7) and

part IV (chapter 8) respectively.

The general properties of the wave equation in periodic media are introduced and

discussed in chapter 2. In chapter 3, total reflection on, anomalous refraction by and

modified emission in a photonic crystal are explained using simple examples.

Chapter 4 reports on a remarkable property of a one-dimensional photonic crystal.

A one-dimensional periodic medium can totally reflect electromagnetic waves of any

polarization at all angles of incidence within a given frequency region. In this chapter,

design criteria for and experimental demonstration of an omnidirectional mirror are

presented.

Chapter 5 presents an asymptotic analysis of a radiation pattern of a classical

dipole in a photonic crystal with an incomplete photonic bandgap. A far-field radiation

pattern demonstrates a strong modification with respect to the dipole radiation pattern

in vacuum. The radiated power is suppressed in the direction of the spatial stopband

and is strongly enhanced in the direction of the group velocity, which is stationary

with respect to a small variation of the wave vector. An effect of the radiated power

enhancement is explained in terms of photon focusing. A numerical example is given for

a square-lattice two-dimensional photonic crystal. Predictions of asymptotic analysis

are substantiated with finite-difference time-domain calculations.

In chapter 6 it is reported that a far-field radiation pattern of the classical dipole

can be additionally modified due to the interference of photonic crystal eigenmodes at

the detector plane. In particular, a modulation of angle resolved emission spectra from

a coherent light source will be the result of both emission rate modification and light

interference at the detector position. In this chapter, a physical picture of interference
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fringes formation in the far-field radiation pattern of the classical dipole is discussed in

the framework of an asymptotic analysis of Maxwell’s equations. A numerical example

is given for a two-dimensional square lattice of air holes in polymer. The relevance of

the results for experimental observation is discussed.

Chapter 7 describes the influence of an incomplete photonic bandgap upon the pho-

toluminescence of a dye embedded in a three-dimensional opaline photonic crystal. A

modification of emission directionality diagrams with respect to free space is reported.

An enhancement and suppression of the emission intensity in some directions are inter-

preted as the spontaneous emission rate modification and explained in terms of photon

focusing phenomenon. A theoretical model developed in chapter 5 reveals a reasonable

agreement with experiment results.

In chapter 8 a two-dimensional photonic crystal is proposed, which cancels out

a natural diffraction of the laser beam for a wide range of beam widths and beam

orientations with respect to the crystal lattice. It is shown that for some frequencies

the form of iso-frequency contours mimics the form of the first Brillouin zone of the

crystal. A wide angular range of flat dispersion exists for such frequencies. The regions

of iso-frequency contours with near zero curvature cancel out diffraction of the light

beam, leading to a self-guided beam.

The overall conclusions and discussions of future research directions are given in

chapter 9, which completes this thesis.
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Part I

Principles of photonic crystals



Chapter 2

Eigenmodes of inhomogeneous

dielectric media

The goal of this chapter is to introduce the reader to the main mathematical tools and

underlying physical ideas, which are behind the theory of the electromagnetic waves

propagation in periodic dielectric media, photonic crystals. The chapter consists on two

sections. In section 2.1 the general properties of the wave equation in inhomogeneous

media are introduced and discussed. Solutions of homogeneous and inhomogeneous

wave equations are given in terms of normal modes expansion. In section 2.2 the influ-

ence of the periodicity on the properties of eigenwaves of an inhomogeneous dielectric

medium is presented. Specifically, the Bloch theorem and the concept of Bloch waves

are introduced. It is important to note, that this chapter should be regarded as a mini-

mum introduction, sufficient for the appreciation of the results presented in this thesis.

The chapter should not be considered as a complete and comprehensive introduction to

the topic of electromagnetic waves propagation in photonic crystals. For more details,

the reader is referred to existing textbooks covering the topic of electromagnetic wave

propagation in periodic media [1, 2, 3] or the first few chapters of a solid-state physics

textbooks [4, 5, 6].

2.1 Inhomogeneous dielectric media

2.1.1 Wave equations

All macroscopic electromagnetic theory, including light propagation and emission in in-

homogeneous media, is governed by the macroscopic Maxwell’s equations. In Gaussian
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units (cgs units), the source-free Maxwell’s equations take the form [7]

∇× E (r, t) = −1

c

∂B (r, t)

∂t
, (2.1)

∇×B (r, t) =
1

c

∂D (r, t)

∂t
, (2.2)

∇ ·D (r, t) = 0, (2.3)

∇ ·H (r, t) = 0. (2.4)

Here, the standard notations for the electric field, E, the magnetic field, H, the electric

displacement, D, and the magnetic induction, B, are used. c is the speed of light in

vacuum. To solve Maxwell’s equations (2.1-2.4), one should complete them with the

constitutive equations, which relate the electric displacement, D, to the electric field,

E, and the magnetic induction, B, to the magnetic field, H. In the following, a general

linear, non-magnetic, dielectric medium is studied. Then, the constitutive equations

read

D (r, t) = ε(r)E (r, t) , (2.5)

B (r, t) = H (r, t) , (2.6)

where ε(r) is a position-dependent dielectric permittivity.

Combining Maxwell’s equations (2.1-2.4) with the constitutive equations (2.5-2.6)

and eliminating the electric field E (r, t) or magnetic field H (r, t) in (2.1) and (2.2),

one can obtain the following wave equations:

∇×∇× E (r, t) +
1

c2
ε(r)

∂2E (r, t)

∂t2
= 0, (2.7)

∇×
{

1

ε(r)
∇×H (r, t)

}
+

1

c2

∂2H (r, t)

∂t2
= 0. (2.8)

Because the emission and the interaction between radiation and matter will be one

of the main focus of this thesis, it is convenient to introduce the vector potential A (r, t)

[7]. From Maxwell’s equations (2.1-2.4) it is clear that the vector potential A (r, t) and

the scalar potential ϕ (r, t) can be introduced via the familiar relations [7]:

E (r, t) = −∇ϕ− 1

c

∂A (r, t)

∂t
, (2.9)

B (r, t) = ∇×A (r, t) . (2.10)

The gauge that is most commonly used in the radiation problems is the Coulomb or

“radiation” gauge [7]. The absence of charge density implies that the scalar potential
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ϕ (r, t) is zero (ϕ (r, t) = 0). With this choice, the transversality condition on D (r, t)

(2.3) becomes [8]

∇ · [ε(r)∂A (r, t)

∂t
] = 0. (2.11)

One may now fix the gauge by imposing the requirement

∇ · [ε(r)A (r, t)] = 0, (2.12)

which automatically fulfills condition (2.11). The gauge condition (2.12) is a general-

ization of the Coulomb gauge condition (∇ ·A (r, t) = 0) appropriate to the presence

of a dielectric [8].

Then, taking into account the constitutive equations (2.5-2.6), the electric and

magnetic fields can be written in terms of the vector potential A (r, t) via:

E (r, t) = −1

c

∂A (r, t)

∂t
, (2.13)

H (r, t) = ∇×A (r, t) . (2.14)

Combining equations (2.13-2.14) with Maxwell’s equations (2.1-2.4) one obtains the

homogeneous wave equation for the vector potential A (r, t):

∇×∇×A (r, t) +
1

c2
ε(r)

∂2A (r, t)

∂t2
= 0. (2.15)

2.1.2 Eigenvalue problem

To find the solutions of wave equations (2.7-2.8) and (2.15) in the form of the time-

harmonic function

F (r, t) = Fk (r) e−iωkt, (2.16)

where the vector F is the electric field, E, the magnetic field, H, or the vector potential,

A, the vector function Fk (r) should satisfy equations:

LEEk (r) ≡ 1

ε(r)
∇× {∇× Ek (r)} =

ω2
k

c2
Ek (r) , (2.17)

LHHk (r) ≡ ∇×
{

1

ε(r)
∇×Hk (r)

}
=

ω2
k

c2
Hk (r) , (2.18)

LAAk (r) ≡ 1

ε(r)
∇× {∇×Ak (r)} =

ω2
k

c2
Ak (r) , (2.19)

where three linear differential operators LE, LH and LA are defined by the first equality

in each of the above equations.
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Equations (2.17-2.19) represent the eigenvalue problems for differential operators

(LE, LH and LA) and correspond to the vector fields (Ek (r), Hk (r) and Ak (r)). The

eigenvectors Fk (r) are the field patterns of the harmonic modes and the eigenvalues

(ωk/c)
2 are proportional to the squared eigenfrequencies, ωk, of those modes. The

subscript k labels the avaliable solutions and it may run through discrete or continuous

values.

2.1.3 Normal modes expansion

A differential operator L is a Hermitian operator, if 〈LF,G〉 = 〈F,LG〉 holds for any

vector fields F (r) and G (r). Here the inner product of two complex vectorial functions

F (r) and G (r) is defined by

〈F,G〉 ≡
∫

d3rF (r) ·G∗ (r), (2.20)

where ∗ denotes the complex conjugate.

It is a simple exercise to show that the differential operator LH in (2.18) is a Hermi-

tian operator, while differential operators LE (2.17) and LA (2.19) are not Hermitian.

An important property of the Hermitian eigenvalue problem is that the eigenfunc-

tions of a Hermitian operator form a complete set of orthogonal functions. Then, any

solution of the wave equation (2.8,2.18) can be expanded in terms of these eigenfunc-

tions (normal modes)

H(r, t) =
∑

k

∫
d3kCk(t)Hk(r), (2.21)

where Ck(t) are the time-dependent amplitude coefficients, the summation is over a

discrete value of index k, while the integration is over continuous values of index

k. For a Hermitian eigenvalue problem the orthogonality, the normalization and the

completeness conditions are given by:

∫
d3rHk(r) ·H∗

k′(r) = δ(k− k′), (2.22)

∑

k

∫
d3kHk(r) ·H∗

k(r
′) = δ(r− r′), (2.23)

where δ is the Dirac delta function.

Another important property of the Hermitian eigenvalue problem (2.18) is that the

eigenfunction Hk(r) must have a real eigenfrequency ωk. In fact, taking the inner

product of equation (2.18) with the eigenfunction Hk(r) and taking into account that

for a Hermitian operator L, 〈LF,G〉 = 〈F,LG〉, and for any operator F , 〈FF,G〉∗ =
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〈F,FG〉, one has:

〈Hk,LHHk〉∗ =

(
ω2

k

c2

)∗
〈Hk,Hk〉 = 〈LHHk,Hk〉 =

(
ω2

k

c2

)
〈Hk,Hk〉 .

So, it follows that (ω2
k)
∗

= ω2
k, or that ω2

k is real. Further, one can show that [2]

(
ω2

k

c2

)
〈Hk,Hk〉 = 〈Hk,LHHk〉 =

∫
d3r

1

ε(r)
|∇ ×Hk (r)|2 .

Since dielectric function ε(r) is positive everywhere, the integrand on the right-hand

side is also positive everywhere. Therefore all ω2
k must be positive, and eigenfrequency

ωk is real.

2.1.4 Eigenvalue problem for the vector potential

The differential operator LA of the vector potential eigenvalue problem (2.19) is not

a Hermitian operator. At the same time, the full set of the eigenfunctions of equa-

tion (2.19) can be chosen to fulfill the orthogonality condition [8, 9, 10]. These eigen-

functions Ak(r) obey the gauge condition (2.12), ∇· [ε(r)Ak(r)] = 0, and are therefore

transverse with respect to this gauge. Here any vector that satisfies the ε-transverse

gauge condition (2.12) is called “ε-transverse” [9]. Then, an arbitrary ε-transverse so-

lution of the wave equation (2.15), which satisfies the gauge condition (2.12), can be

expanded in terms of the eigenfunctions Ak(r) (normal modes)

A(r, t) =
∑

k

∫
d3kCk(t)Ak(r), (2.24)

where Ck(t) are again the time-dependent amplitude coefficients. The same applies to

the eigenvalue problem of the electric field (2.17), since differential operators LE and

LA are identical.

That property follows from the observation that for the vector functions

Qk (r) ≡
√

ε(r)Ak (r) , (2.25)

equation (2.19) can be written in the form of a Hermitian eigenvalue problem

LQQk (r) =
ω2

k

c2
Qk (r) . (2.26)
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The differential operator

LQQk (r) ≡ 1√
ε(r)

∇×
{
∇× 1√

ε(r)
Qk (r)

}
(2.27)

is Hermitian and its eigenfunctions Qk (r) are complete and orthogonal [8, 9, 10]. This

leads to the following orthogonality and normalization condition for the eigenfunctions

Ak(r) ∫
d3rε(r)Ak(r) ·A∗

k′(r) = δ(k− k′), (2.28)

where orthogonality condition (2.22) and the definition of the vector functions Qk (r)

(2.25) were used.

The eigenfunctions Qk (r) obviously provide a complete set in the subset of func-

tions, that is defined by the gauge condition ∇· [
√

ε(r)Qk(r)] = 0. For these functions

the completeness condition is defined as

∑

k

∫
d3kQk(r) ·Q∗

k(r
′) = Iδ(r− r′), (2.29)

where I is an identity operator on this subset of functions [8]. In analogy, the com-

pleteness condition for the ε-transverse eigenfunctions Ak(r) can be introduced as [8]:

∑

k

∫
d3kAk(r) ·A∗

k(r
′) = Iε⊥δ(r− r′), (2.30)

where Iε⊥ is an identity operator on the subset of the ε-transverse functions. The action

of Iε⊥δ(r−r′) can be explained as follows. Let FT denotes an arbitrary transverse vector

field, ∇ · FT = 0, and FL denotes an arbitrary longitudinal vector field, ∇× FL = 0.

Then the following relations hold

∫
d3r′Iε⊥δ(r− r′)FT (r′) = FT (r), (2.31)

∫
d3r′Iε⊥δ(r− r′)FL(r′) = 0. (2.32)

2.1.5 Normal modes expansion of dipole field

A general time-dependent electromagnetic field produced by an arbitrary current dis-

tribution, J, is governed by Maxwell’s equations in the form

∇× E = −1

c

∂H

∂t
, (2.33)

∇×H =
1

c
ε(r)

∂E

∂t
+

4π

c
J, (2.34)
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∇ · [ε(r)E] = 0, (2.35)

∇ ·H = 0. (2.36)

Then in the generalized Coulomb gauge (2.12), the inhomogeneous wave equation for

the vector potential A can be written as:

∇×∇×A +
1

c2
ε(r)

∂2A

∂t2
=

4π

c
J. (2.37)

An important example of the current density distribution, J, is a harmonically

oscillating dipole:

J(r, t) = −iω0dδ(r− r0)e
−iω0t. (2.38)

Here, ω0 is a frequency, d is a real dipole moment and r0 is a location of the dipole inside

an inhomogeneous medium. A point dipole (2.38) suites as a good basic model for many

electrodynamic problems, where radiation of electromagnetic waves is considered.

A solution of the inhomogeneous wave equation (2.37) can be constructed by a

suitable superposition of the eigenfunctions of the homogeneous wave equation (2.15).

Then the field of the point dipole (2.38) is given by the normal modes expansion (2.24)

and the amplitude coefficients Ck(t) can be easily obtained from the wave equation

(2.37). Substituting (2.24) into the wave equation (2.37) and using the homogeneous

wave equation (2.15), one obtains

∫
d3k

(
∂2Ck(t)

∂t2
+ ω2

kCk(t)

)
ε(r)Ak(r) = 4πcJ(r, t).

Then taking the inner product between every term of this equation and an eigenfunction

Ak′(r), i.e., multiplying by A∗
k′(r) and integrating over the inhomogeneous medium,

one finally obtains the differential equation for the amplitude coefficients Ck(t)

∂2Ck(t)

∂t2
+ ω2

kCk(t) = −i
4πcω0

V
(A∗

k(r0) · d) e−iω0t,

where the orthogonality of the eigenfunctions (2.28) and a specific form of the source

term (2.38) were taken into account. Then assuming the initial conditions Ck(0) = 0,

one has the following solution of this differential equation

Ck(t) = −i
4πcω0

V

(A∗
k(r0) · d)

(ω2
k − ω2

0)
e−iω0t. (2.39)

Finally, the electromagnetic field radiated by a point dipole located at r0 can be rep-
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resented in terms of normal modes as:

A(r, t) = −i
4πcω0

V

∫
d3k

(A∗
k(r0) · d)Ak(r)

(ω2
k − ω2

0)
e−iω0t. (2.40)

The integrand in (2.40) has a pole at ω2
k = ω2

0, and the integral is singular. This is a

typical behavior for any resonant system, where dissipation is neglected. The standard

way to regularize the integral is to add a small imaginary part to ω2
0. A regularized

integral reads

A(r, t) = −i
4πcω0

V

∫
d3k

(A∗
k(r0) · d)Ak(r)

(ω2
k − ω2

0 − iγ)
e−iω0t. (2.41)

2.2 Periodic dielectric media

2.2.1 Translational symmetry

Being an optical analogy of crystalline solids, a photonic crystal is a space lattice built

of basic blocks, “atoms”, which are macroscopic dielectric materials. The lattice is

characterized by space periodicity or translational symmetry. This means that there

exist basis vectors, a1, a2, a3, such that the dielectric structure remains invariant under

translation through any vector which is the sum of integer multiples of these vectors.

The primitive unit vectors aα, α = 1, 2, 3, are the shortest vectors by which a crystal

can be displaced and be brought back to itself. If the origin of the coordinate system

coincides with a lattice site, the position vector of any other site is given by

R = l1a1 + l2a2 + l3a3, (2.42)

where lα (α = 1, 2, 3) are integers (Fig. 2.1). Then, an actual crystal consists of endless

repetitions of “atoms”, or group of “atoms”, placed similarly about each lattice site.

It is obvious that the whole crystal can be defined if the contents of a single unit

cell is specified—for example, the parallelepiped subtended by the primitive vectors

a1, a2, a3 (Fig. 2.1). The whole crystal is made up of repetitions of this object stacked

like bricks in a wall. A possible choice of the primitive vectors, and thus the unit cell,

is to some extent arbitrary. At the same time, the volume of the unit cell remains the

same for any possible choice of the primitive vectors, and is given by V = a1 ·(a2 × a3).

An example of alternative unit cells in a two-dimensional lattice is shown in figure 2.1.

An important choice of the unit cell is the Wigner-Seitz cell, constructed by drawing

the perpendicular bisector planes of the translation vectors from the chosen center to

the nearest equivalent lattice cites. The Wigner-Seitz cell is shown in figure 2.1 as a

grey region.
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Figure 2.1: Alternative unit cells (hatched regions) in a two-dimensional triangular
lattice. The Wigner-Seitz cell is shown (grey region).

The unit cell can contain one or more “atoms”. Naturally, if it contains only one

“atom”, it is centered at the lattice site, and the lattice is called a Bravais lattice. If

there are several atoms per unit cell, than the lattice is called a lattice with a basis.

2.2.2 Periodic functions and reciprocal lattice

The optical properties of a dielectric non-magnetic photonic crystal are described by

its dielectric function, which, reflecting the translation symmetry of the lattice, must

be a periodic function:

ε(r + R) = ε(r) (2.43)

for all points r in space and for all lattice translations R (2.42).

It is natural to analyze periodic functions by taking their Fourier transform. That

is, the periodic function ε(r) is build out of the plane waves with various wave vectors:

ε(r) =

∫
dq g(q) exp(iq · r). (2.44)

Here g(q) is the coefficient on the plane wave with the wave vector q. Requiring the

translation symmetry of the dielectric function (2.43) in the expansion (2.44) yields

ε(r + R) =

∫
dq g(q) exp(iq · r) exp(iq ·R) =

∫
dq g(q) exp(iq · r). (2.45)

That is, the periodicity of the function ε(r) implies that its Fourier transform g(q)

has the special property g(q) = g(q) exp(iq ·R), which is possible only if g(q) = 0

or exp(iq ·R) = 1. In other words, the transform g(q) is zero everywhere, except for

the values of q such that exp(iq ·R) = 1 for all R. This means, to build a lattice-
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periodic function, one needs only those plane waves with wave vectors q such that

exp(iq ·R) = 1, or equivalently, q ·R = 2πl, for all of the lattice vectors R and

integer l.

Those vectors q are called reciprocal lattice vectors and are usually designated by

the letter G. The reciprocal vectors form a lattice of their own, that is, the sum of

integral multiples of these vectors yields another reciprocal lattice vector. To construct

reciprocal lattice vectors, for a given crystal lattice, the requirement GR = 2πl should

be satisfied, for all of the lattice vectors R and integer l. Using the primitive unit

vectors, aα, and primitive reciprocal unit vectors, bβ, this requirement boils down to

the form

GR = (l1a1 + l2a2 + l3a3)(m1b1 + m2b2 + m3b3) = 2πl,

where lα, mβ (α, β = 1, 2, 3) and l are integers. This requirement can be satisfied, if

the primitive reciprocal vectors bβ are constructed so that aαbβ = 2πδαβ, which can

be easily done as follows:

b1 =
2π

V
(a2 × a3) , b2 =

2π

V
(a3 × a1) , b3 =

2π

V
(a1 × a2) , (2.46)

where V is the volume of the unit cell of the direct lattice. The parallelepiped con-

structed from the primitive reciprocal vectors bβ is called the unit cell of reciprocal

lattice. The space where the reciprocal lattice exists is called reciprocal space.

In summary, when the Fourier transform of a lattice-periodic function ε(r) is taken,

one only needs to include terms with wave vectors that are reciprocal lattice vectors,

as follows

ε(r) =
∑
G

ε (G) exp(iG · r), (2.47)

with the Fourier coefficients given by:

ε (G) =
1

V

∫

V

d3rε(r) exp(−iG · r). (2.48)

2.2.3 Translation symmetry and Bloch theorem

In the case of an unbounded periodic medium (2.43), the differential operator LH (2.18)

is translationaly invariant:

LH (r + R) = LH (r) , (2.49)

for all points r in space and for all lattice translations R (2.42). For the lattice trans-

lation R (2.42) one can introduce the translation operator TR such that

TRf (r) = f (r + R) , (2.50)
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where f (r) is an arbitrary function. Then an application of the translation operator

TR to the eigenvalue equation (2.18) gives

TRLH (r)Hk (r) = LH (r + R)Hk (r + R)

= LH (r)Hk (r + R)

= LH (r) TRHk (r)

which is valid for any eigenfunction Hk (r). This simply means that translation oper-

ators commute with the operator LH

TRLH = LHTR. (2.51)

At the same time, the translation operators commute among themselves. Then, eigen-

functions of the operator LH can be find in a way to be simultaneously eigenfunctions

of both operators LH and TR for all lattice translations R (e.g. [11]):

LHHk (r) =
(ωk

c

)2

Hk (r) , (2.52)

TRHk (r) = c (R)Hk (r) . (2.53)

Applying two successive translations to the eigenfunction Hk (r) one has

TRTR′Hk (r) = c (R) TR′Hk (r) = c (R) c (R′)Hk (r) .

Due to the fact, that for two arbitrary translations, TRTR′ = TR+R′ , the eigenvalue of

the resulting transformation is

TRTR′Hk (r) = TR+R′Hk (r) = c (R + R′)Hk (r) .

Then, eigenvalues of the translation operators TR obey the relation

c (R + R′) = c (R) c (R′) . (2.54)

For the primitive unit translation in the basic direction aα, the eigenvalue of the

corresponding translation operator can be chosen in the form

c (aα) = exp (ikαlα) .

Then for the translation operator TR the eigenvalue can be written as

c (R) = exp (ik ·R) ,
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where a vector k is defined by

k = k1b1 + k2b2 + k3b3

and b1, b2 , b3 are the primitive reciprocal lattice vectors (2.46).

Now, applying an arbitrary lattice translation R to the eigenfunction Hk (r) one

obtains

TRHk (r) = Hk (r + R) = c (R)Hk (r) = eik·RHk (r) ,

which leads to the Bloch’s theorem : for any eigenfunction Hk (r) of the wave equa-

tion (2.8,2.18) with periodic dielectric function ε(r), there exists a vector k such that

translation by a lattice vector R is equivalent to the multiplying by the phase factor

exp (ikR),

Hk (r + R) = eik·RHk (r) . (2.55)

2.2.4 Bloch eigenwaves

There is another common way to formulate the Bloch’s theorem: the eigenfunction

Hk (r) of the wave equation ( 2.8,2.18) with periodic dielectric function ε(r), can be

chosen to have the form of a plane wave times a vector function with the periodicity of

the lattice:

Hk (r) = hk (r) eik·r, (2.56)

where

hk (r + R) = hk (r) (2.57)

for all points r in space and all lattice translations R.

To prove (2.56-2.57), one simply substitutes (2.56) in (2.55)

Hk (r + R) = hk (r + R) eik·(r+R) = eik·Rhk (r) eik·r,

which gives condition (2.57) on the periodic vector function hk (r).

Eigenfunctions (2.56) of the eigenvalue problem (2.8,2.18) are called the Bloch eigen-

waves, or simply, the Bloch waves and they are the eigenmodes of a periodic medium.

Bloch waves form a complete set of orthogonal functions (Sec. 2.1.3), which satisfy

the Bloch theorem. Then, any solution of the wave equation (2.8,2.18) with periodic

dielectric function, ε(r), can be found as a superposition of the Bloch waves (Sec. 2.1.3).

It is instructive to present the Bloch wave as a superposition of the plane waves.

Due to the lattice periodicity of the functions hk (r), their Fourier expansion leads to
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(Sec. 2.2.2)

hk(r) =
∑
G

hk(G) exp(iG · r), (2.58)

where summation is over reciprocal lattice vectors and Fourier coefficients are given

by:

hk(G) =
1

V

∫

V

d3rhk(r) exp(−iG · r). (2.59)

Then, the Bloch waves (2.56) can be represented in the terms of plane waves

Hk(r) =
∑
G

hk(G) exp(i(k + G) · r). (2.60)

The periodic dielectric function can be also expanded in the Fourier series

ε−1(r) =
∑
G

ε̃(G) exp(iG · r), (2.61)

where the Fourier coefficients are given by:

ε̃ (G) =
1

V

∫

V

d3rε−1(r) exp(−iG · r). (2.62)

Substituting (2.60) and (2.61) in the wave equation (2.18), an infinite linear system of

homogenous equations for the unknown Fourier coefficients hk(G) is obtained:

−
∑

G′
ε̃(G−G′)(k + G)× {(k + G′)× hk(G

′)} =
ω2

k

c2
hk(G). (2.63)

By solving these set of equations numerically, one can obtain the dispersion relation of

the eigenfunctions [1, 2]. This numerical method, based on the Fourier expansion of

the electromagnetic field and the dielectric function, is called the plane-wave expansion

(PWE) method. It will be discussed in more details in chapter 3.

2.2.5 Existence of photonic band structure

In general the Bloch theorem should be written in the following form

Hnk (r) = hnk (r) eik·r, (2.64)

where the index n appears because for the given k there may be many solutions of

the wave equation (2.8,2.18). Here, it is assumed that index k is fixed and a vector

function hnk (r) is a periodic function on the crystal lattice. Then, the function hnk (r)
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Figure 2.2: The reciprocal lattice of the two-dimensional triangular lattice (Fig. 2.1).
All wave vectors k are reduced to the wave vector k′, which lies in the first Brillouin
zone (grey region).

is determined by the following eigenvalue problem

(∇+ ik)×
{

1

ε(r)
(∇+ ik)× hnk (r)

}
=

(ωk

c

)2

hnk (r) (2.65)

with the periodic boundary condition (2.57)

hnk (r + R) = hnk (r) . (2.66)

Because of the periodic boundary condition, one can regard (2.65-2.66) as an Her-

mitian eigenvalue problem restricted to a single primitive cell of the crystal. Moreover,

since the eigenvalue problem is set in a fixed volume, an infinite family of solutions with

discretely spaced eigenvalues is expected. These discrete solutions are labeled with the

band index n.

In the same time, the wave vector k appears only as a parameter in the eigen-

value problem (2.65-2.66). Then, each of the discrete eigenvalues is expected to vary

continously as the wave vector varies. In this way, a family of continuous functions

(dispersion relations) ω = ωn (k) is defined. These functions are labeled in order of

increasing frequency by the band index. The information contained in the dispersion

relations is called the photonic band structure of the photonic crystal. In addition, as

it will be shown by direct examples in chapter 3, continuous branches ω = ωn (k) can

be generally separated by a forbidden frequency gap [12, 13].
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Figure 2.3: A two-dimensional square lattice (left) and the corresponding first Brillouin
zone (right). The irreducible zone is the grey triangular wedge. The special point at
the center, corner and face of the first Brillouin zone are conventionally known as Γ,
M and X.

2.2.6 Brillouin zone

One important feature of the Bloch waves is that different values of the wave vector k

do not necessarily lead to different eigenwaves. In fact, for an eigenwave with the wave

vector k = k′ + G, where G is a reciprocal lattice vector, the Bloch’s theorem (2.55)

reads

Hnk (r + R) = ei(k′+G)·RHnk (r)

= eik′·ReiG·RHnk (r) = eik′·RHnk (r) .

Here the last equality is due to Eq. (2.45). This relation means, that the eigenwave

Hnk (r) satisfies the Bloch’s theorem as it had the wave vector k′. So, the original label

k is not unique: every eigenwave has a whole host of possible wave vectors, differing

from one another by the vectors of the reciprocal lattice.

It is common to choose the value of G in k = k′+G to make |k′| as small as possible,

i. e., to lie as near to the origin of the reciprocal lattice as it can. This means that

|k′| is to lie nearer to the origin than to any other sites of the reciprocal lattice, which

amounts to saying that k′ lies within the Wigner-Seitz cell (Sec. 2.2.1) of the reciprocal

lattice. The Wigner-Seitz cell of the reciprocal lattice is called the first Brillouin zone.

It is evident that one can reduce any wave vector k in the reciprocal space to a point in

the first Brillouin zone (Fig. 2.2), so any eigenwave can be given a label in the reduced

zone scheme and can be characterized by its reduced wave vector.

2.2.7 Symmetries of the crystal lattice

A photonic crystal might have symmetries other than discrete translations. The full

set of rotation, mirror-reflection or inversion transformations, which leaves the crystal
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invariant, is called the point group of the crystal. The band structure of the crystal

are also invariant with respect to the point group transformations and has additional

redundancies of the crystal eigenwaves within the Brillouin zone.

This property is illustrated here on the example of the rotational symmetry. Sup-

pose the operator R is a rotation operator. To rotate a vector field Hnk (r), the vector

Hnk together with its argument r should be rotated

RHnk (r) = RHnk

(R−1r
)
, (2.67)

where the vector field rotation operator R was introduced. If the rotation by R leaves

the system invariant, then the operator R should commute with the differential operator

LH (2.18), that leads to

LH (RHnk (r)) = R (LHHnk (r)) =
(ωk

c

)2

(RHnk (r)) . (2.68)

Relation (2.68) means, that the rotated field RHnk (r) is itself an eigenwave of the wave

equation (2.8,2.18) with the same eigenfrequency as an original eigenwave Hnk (r).

Further, it can be shown that the eigenwave RHnk (r) is simply an eigenwave with

the wave vector Rk. To prove this statement, one should show that RHnk (r) is an

eigenfunction of the translation operator TR with eigenvalue exp (iRkR), where R is

a lattice vector. Taking into account that operators TR and R commute, one has

TR (RHnk (r)) = R (TR−1RHnk (r))

= R
(
ei(kR−1R)Hnk (r)

)

= ei(RkR) (RHnk (r)) ,

which proves that the eigenwave RHnk (r) has the wave vector Rk, so

ωn (Rk) = ωn (k) . (2.69)

Since the band structure ω = ωn (k) possesses the full symmetry of the point group,

it is not necessary to consider it at every point in the first Brillouin zone. The smallest

region within the first Brillouin zone for which the ω = ωn (k) are not related by

symmetry of the crystal is called the irreducible Brillouin zone. For example, a photonic

crystal with the symmetry of a simple square lattice has a square first Brillouin zone

(Fig. 2.3). Then, the irreducible Brillouin zone is a triangular wedge with 1/8 the area

of the full Brillouin zone (Fig. 2.3). The rest of the Brillouin zone contains redundant

copies of the irreducible zone.

The mirror reflection symmetry in a photonic crystal deserves special attention.
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Under certain conditions it allows to separate the wave equations (2.7,2.8) into two

separate and independent equations, one for each field polarization [2]. In one case

the magnetic field, Hnk, is perpendicular to the mirror plane and the electric field

vector, Enk, is parallel; while in the other case the magnetic field vector is in the

plane and the electric field vector is perpendicular to the plane. This simplification

provides immediate information about the eigenmode symmetries and facilitates the

numerical calculation of their eigenfrequencies. The separation of the wave equations

(2.7,2.8) by the field polarization is possible in the case of one- and two-dimensional

periodic medium [2]. In the later case, the electromagnetic wave propagation should

be restricted to the plane of periodicity.

2.2.8 Time reversal symmetry and scaling law

If the crystal has an inversion center, that is, if the periodic dielectric function is

ε (r) = ε (−r), the band structure ω = ωn (k) also possesses the inversion symmetry

ωn (k) = ωn (−k). Comparing the wave equation (2.65) with its complex conjugate

(∇− ik)×
{

1

ε(r)
(∇− ik)× h∗nk (r)

}
=

(ωk

c

)2

h∗nk (r) (2.70)

and using the fact that eigenfrequencies are real (Sec. 2.1.3), one can see, that the

Bloch wave h∗nk (r) satisfies the same wave equation as hnk (r) (2.65), with the very

same eigenfrequency, but with the wave vector −k. It follows that

ωn (k) = ωn (−k) (2.71)

and that the band structure of the crystal has inversion symmetry even if the crystal

itself does not. Taking the complex conjugate of hnk (r) is equivalent to reversing the

sign of the time in the Maxwell’s equations (2.1-2.4). So, the property (2.71) is a

consequence of the time-reversal symmetry of the Maxwell’s equations.

Another useful property of the photonic band structure is the scaling law. Sup-

pose that for the crystal with a dielectric function ε (r), an eigenwave Hnk (r) has the

eigenfrequency ωnk. An eigenwave Hnk (r) satisfies the wave equation (2.8,2.18)

∇×
{

1

ε(r)
∇×Hnk (r)

}
=

ω2
nk

c2
Hnk (r) . (2.72)

Now, performing the scale transformation r′ = r/s, which is just a compression or
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expansion of the original crystal, a change of variables can be done in (2.72) leading to

s∇′ ×
{

1

ε(r′/s)
∇′ ×Hnk (r′/s)

}
=

ω2
nk

c2
Hnk (r′/s) , (2.73)

where a new dielectric function is ε′ (r) = ε(r′/s), r′ = rs and ∇′ = ∇/s. Recognizing

that ε(r′/s) = ε′ (r′) and dividing equation (2.73) by s, one have an eigenvalue problem

for the field H′
nk (r′) = Hnk (r′/s)

∇′ ×
{

1

ε′(r′)
∇′ ×Hnk (r′/s)

}
=

(ωnk

sc

)2

Hnk (r′/s) , (2.74)

which gives a new eigenfrequency ω′nk = ωnk/s. That is, the mode profile and its

eigenfrequency after changing the length scale by factor s are simply the mode profile

and the frequency of the original crystal scaled by the same factor s. This simple fact

is of considerable practical importance. Assuming that a dielectric function is the same

at any length scale, all modeling and design can be done for a single length scale, e.g.,

for optical or microwave regime, with a guarantee that the obtained results will be valid

at any other length scales.
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Chapter 3

Reflection, refraction and emission

in photonic crystals

The existence of the continuous photonic bands (allowed bands) separated by for-

bidden gaps in the dispersion relations of a periodic medium leads to a number of

unusual properties of photonic crystals. In this chapter a total reflection, an anoma-

lous refraction and a modified emission are illustrated using examples of one-, two-

and three-dimensional photonic crystals respectively. In section 3.1, a one-dimensional

photonic crystal is introduced and analyzed using a band structure formalism. A

one-dimensional photonic crystal slab acts as a high reflector at the forbidden gap fre-

quencies. In section 3.2, using an example of a two-dimensional photonic crystal it is

demonstrated, how the allowed bands anisotropy leads to the anomalous refraction.

The concept of iso-frequency surfaces is introduced. In section 3.3, the radiated power

of oscillating dipole placed in a three-dimensional photonic crystal is introduced and

analyzed. It is shown that both suppression and enhancement of radiated power over

some frequency regions are possible. In this chapter two numerical methods, namely,

the transfer matrix and the plane wave expansion methods, are introduced and dis-

cussed. Both methods have been routinely used in the work reported in this thesis.

3.1 Bragg mirror as a one-dimensional photonic crys-

tal

The subject of this section is the simplest type of photonic crystals, i.e., media which

are periodic in one spatial direction (Fig. 3.1). Such structures are widely used in

modern optoelectronics, ranging from Bragg mirrors for distributed-feedback lasers
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Figure 3.1: Two examples of one-dimensional photonic crystals, (a) a thin-film multi-
layer structure and (b) a planar corrugated waveguide.

to narrow-band filters for dense wavelength division multiplexing (WDM) systems (see

e.g. [1, 2, 3]). Thin-film growth, especially molecular-beam epitaxy, make it possible to

grow almost any thin-film structure with well-controlled periodicity and layer thickness

[1, 2].

A typical example of a one-dimensional periodic medium is a Bragg mirror [Fig.

3.1(a)], which is a multilayer made of alternating transparent layers with different

refractive indices. Assuming a laser beam is incident on a Bragg mirror, the light will

be reflected and refracted at each interface (Fig. 3.2). Constructive interference in

reflection occurs when the condition

mλ = 2Λ cos αinc (3.1)

is satisfied [4]. Here, λ is the wavelength of the incident light, Λ is a period of the

periodic medium, m is an integer number and αinc is an angle of incidence. This

relation is known as the Bragg condition. It can be easily derived by considering the

phase difference between rays reflected from successive layers. Constructive interference

occurs when the optical path difference between rays reflected from successive lattice

planes contains an integer number of wavelengths. Thus, reflection spectrum of a

Bragg mirror consists of alternating regions of strong and weak reflection, with a strong

reflection corresponding to the Bragg condition (3.1).

3.1.1 Light propagation in periodic layered media: transfer

matrix method

The simplest periodic medium is one made up of alternating layers of transparent

dielectric materials with different refractive indices, n1 and n2. Here it is assumed,

that alternating layers have thicknesses, d1 and d2. Further, subscripts 1 and 2 are

used for low and high index layers, respectively. Formally, then such a structure is
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Figure 3.2: Schematic representation of a one-dimensional periodic medium. The co-
ordinate system and light rays refracting and propagating through a stack are shown.
The angle of incidence is designated by αinc. Refractive indices of alternating regions
and an ambient medium are n1, n2 (n1 < n2) and n, respectively. Thicknesses of
alternating regions are d1 and d2. Λ = d1 + d2 is a period.

described by the periodic refractive index

n(z) =

{
n1, 0 < z < d1

n2, d1 < z < Λ
(3.2)

with

n (z) = n (z + Λ) , (3.3)

where the z axis is normal to the layer interfaces and Λ = d1 + d2 is the period. The

geometry of the structure is sketched in figure 3.2.

To solve for the electromagnetic field in such a structure, the approach described in

[5] is followed. The general solution of the wave equation for the multilayered structure

can be written in the form

E (r) = E (z) ei(−kyy+ωt), (3.4)

where it is assumed that the plane of propagation is the yz plane (Fig. 3.2), ky is the

y component of the wave vector k, which remains constant throughout the medium.

The electric field within each homogeneous layer can be expressed as a superposition

of an incident and a reflected plane wave. The complex amplitudes of these two waves

can be represented as the components of a column vector. The electric field in layer α
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(α = 1, 2) of the n-th unit cell can thus be represented by a column vector

(
a

(α)
n

b
(α)
n

)
, α = 1, 2. (3.5)

As a result, the electric field distribution in the same layer can be written

E (y, z) =
[
a(α)

n e−ikαn(z−nΛ) + b(α)
n eikαn(z−nΛ)

]
e−ikyy (3.6)

with

kαz =
[(

nαω
c

)2 − k2
y

]1/2

, α = 1, 2. (3.7)

Here kαz is the z component of the wave vector k in the α’s layer, c is speed of light in

vacuum.

The column vectors (3.5) are not independent of each other. They are related

through the continuity conditions at the interface. As a consequence, only one vector

can be chosen arbitrary. Due to the planar geometry of the problem, the separation of

the electromagnetic field into TE (transverse electric) and TM (transverse magnetic)

polarization states is possible (chapter 2). Then, in the case of TE waves (the electric

field E perpendicular to the plane of propagation yz), imposing the continuity of Ex

and Hy at the interfaces z = (n− 1) Λ and z = (n− 1) Λ + d2, leads to the following

two matrix equations:

(
1 1

1 −1

) (
an−1

bn−1

)
=

(
eik2zΛ e−ik2zΛ

k2z

k1z
eik2zΛ −k2z

k1z
e−ik2zΛ

)(
cn

dn

)
(3.8)

(
eik2zΛ e−ik2zΛ

eik2zΛ −e−ik2zΛ

)(
cn

dn

)
=

(
eik1zΛ e−ik1zΛ

k1z

k2z
eik1zΛ −k1z

k2z
e−ik1zΛ

)(
an

bn

)
(3.9)

where an ≡ a
(1)
n , bn ≡ b

(1)
n , cn ≡ a

(2)
n and dn ≡ b

(2)
n . By eliminating column vector

(
cn

dn

)

in (3.8-3.9), one can obtain the following matrix equation,

(
an−1

bn−1

)
=

(
Ap Bp

Cp Dp

)(
an

bn

)
, (3.10)

which relates the complex amplitudes of the plane waves in layer 1 of the unit cell to

those of the equivalent layer in the next unit cell. Here index p can be chosen as TE
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or TM for TE and TM waves, respectively. The matrix

(
Ap Bp

Cp Dp

)
(3.11)

is called a unit-cell translation matrix. Because unit-cell translation matrix in (3.10)

relates the field amplitudes in two equivalent layers with the same index of refraction,

it is unimodular

ApDp −BpCp = 1. (3.12)

In the case of TE waves, the form of the matrix elements in (3.10) follows from

(3.8-3.9) and is given by

ATE = eik1zd1

[
cos k2zd2 +

1

2
i

(
k2z

k1z

+
k1z

k2z

)
sin k2zd2

]
(3.13)

BTE = e−ik1zd1

[
1

2
i

(
k2z

k1z

− k1z

k2z

)
sin k2zd2

]
(3.14)

CTE = eik1zd1

[
−1

2
i

(
k2z

k1z

− k1z

k2z

)
sin k2zd2

]
(3.15)

DTE = e−ik1zd1

[
cos k2zd2 − 1

2
i

(
k2z

k1z

+
k1z

k2z

)
sin k2zd2

]
(3.16)

In the case of TM waves, for which the magnetic field H is perpendicular to the

propagation plane yz, the complex amplitudes of the plane wave in two successive unit

cells are also related via the matrix equation (3.10), but with slightly different matrix

elements

ATM = eik1zd1

[
cos k2zd2 +

1

2
i

(
n2

2k1z

n2
1k2z

+
n2

1k2z

n2
2k1z

)
sin k2zd2

]
(3.17)

BTM = e−ik1zd1

[
1

2
i

(
n2

2k1z

n2
1k2z

− n2
1k2z

n2
2k1z

)
sin k2zd2

]
(3.18)

CTM = eik1zd1

[
−1

2
i

(
n2

2k1z

n2
1k2z

− n2
1k2z

n2
2k1z

)
sin k2zd2

]
(3.19)

DTM = e−ik1zd1

[
cos k2zd2 − 1

2
i

(
n2

2k1z

n2
1k2z

+
n2

1k2z

n2
2k1z

)
sin k2zd2

]
(3.20)

It is important to note that a unit-cell translation matrix which relates the field

amplitudes in layer 2 of the unit cell is different from the matrices (3.13-3.16) and

(3.17-3.20). However, these matrices possess the same trace. It will be shown later,

that the trace of a unit-cell translation matrix, Ap +Dp, is directly related to the band

structure of the periodic medium.

As it was noted above, only one column vector (3.5) is independent. One can
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choose it, for example, as the column vector of the layer 1 in the zeroth unit cell. The

remaining column vector of the equivalent layers are related to that of the zeroth unit

cell by (
a0

b0

)
=

(
Ap Bp

Cp Dp

)n (
an

bn

)
, (3.21)

which can be inverted to yield

(
an

bn

)
=

(
Ap Bp

Cp Dp

)−n (
a0

b0

)
. (3.22)

By using the identity

(
Ap Bp

Cp Dp

)−1

=

(
Dp −Bp

−Cp Ap

)

for unimodular matrices (3.12) one can write

(
an

bn

)
=

(
Dp −Bp

−Cp Ap

)n (
a0

b0

)
. (3.23)

The matrix in equation (3.23) is a translation matrix, or transfer matrix, of the n-

periods multilayer structure, relating the complex amplitudes of the plane waves in

layer 1 of the zeroth unit cell to those of the equivalent layer in the last unit cell of the

medium.

3.1.2 Photonic band structure

A periodic layered medium is equivalent to a one-dimensional crystal which is invariant

under lattice translations. If the translation operator is defined by Tzz = z− lΛ, where

l is an integer, the field in the periodic layered structure obeys the relation

TzE (z) = E (z + lΛ) . (3.24)

Then, the transfer matrix in (3.10) is a representation of the unit-cell translation op-

erator. According to the Bloch theorem (chapter 2), the electric field of the eigenwave

in a periodic medium can be found in the form

E (r, t) = EK (z) e−iKze−ikyyeiωt, (3.25)

where EK (z) is a periodic function with period Λ and the wave vector k is separated

in the y component ky, which remains constant throughout the medium, and in the z
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component K, which remains to be determined. The subscript K indicates that the

function EK (z) depends on K. The z component of the wave vector is known as the

Bloch wave number.

Equations (3.24) and (3.25) together with the transfer matrix (3.10) specify the

dispersion relations for the periodic layered medium. The problem at hand is thus to

determine the Bloch wave number K and the Bloch eigenwave EK (z) as a function of

frequency ω and the tangential component of the wave vector ky.

In terms of the column vector representation, the periodic condition on the field,

EK (z) = EK (z + Λ), is simply given by

(
an

bn

)
= e−iKΛ

(
an−1

bn−1

)
. (3.26)

Then, taking into account the matrix equation (3.10) and periodicity condition (3.26),

one can find, that the column vector of the Bloch eigenwave satisfies the following

eigenvalue equation

(
Ap Bp

Cp Dp

)(
an

bn

)
= eiKΛ

(
an

bn

)
. (3.27)

The phase factor exp (iKΛ) is thus the eigenvalue of the transfer matrix (3.11) and

satisfies the secular equation

∣∣∣∣∣
Ap − eiKΛ Bp

Cp Dp − eiKΛ

∣∣∣∣∣ = 0,

the solutions of which are

eiKΛ =
1

2
(Ap + Dp)±

{[
1

2
(Ap + Dp)

]2

− 1

}1/2

. (3.28)

The eigenvectors corresponding to the eigenvalues (3.28) are obtained from (3.27) and

are equal to (
a0

b0

)
=

(
Bp

eiKΛ − Ap

)
. (3.29)

For the n-th unit cell the corresponding column vectors are given according to (3.26),

by (
an

bn

)
= e−inKΛ

(
Bp

eiKΛ − Ap

)
.
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Figure 3.3: The sketch of the photonic band structures of a periodic layered medium.
The inset shows the orientation of the medium. Only two-dimensional slices of the
wave vector space are presented. The band structure is presented for one polarization.

Then finally, the Bloch eigenwave in layer 1 of the n-th unit cell is given by

EK (z) eiKz =
[(

a0e
−ik1z(z−nΛ) + b0e

ik1z(z−nΛ)
)
eiK(z−nΛ)

]
e−iKz, (3.30)

where amplitudes a0 and b0 are given by (3.29). It is important to note, that the func-

tion inside the square brackets is independent of the unit cell number n and therefore

is periodic with period Λ, in agreement with the Bloch theorem (3.25).

The Bloch eigenwaves (3.30) can be considered as the eigenvectors of the transfer

matrix (3.11) with the eigenvalue exp (iKz) given by (3.28). The two eigenvalue in

(3.28) are reciprocals to each other, since the transfer matrix is unimodular (3.12).

Equation (3.28) gives the dispersion relation between frequency ω, tangential compo-

nent of the wave vector ky, and the Bloch wave number K. The dispersion relation

defines the photonic band structure of the periodic layered medium, a one-dimensional

photonic crystal, and it has the form

K (ω, ky) =
1
Λ

cos−1

[
1
2

(Ap + Dp)

]
. (3.31)

Regimes where
∣∣1

2 (Ap + Dp)
∣∣ < 1, corresponds to real Bloch wave numbers K and

thus to propagating Bloch waves. However, when
∣∣1

2 (Ap + Dp)
∣∣ > 1 , the Bloch wave

number is a complex number, K = mπ/Λ+iImK, and so the Bloch wave is evanescent.
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Figure 3.4: Projected band structure of a typical one-dimensional photonic crystal
for TE (right panel) and TM (left panel) polarizations. The frequency, ω, and the
tangential component of the wave vector, ky, are normalized as ωΛ/2πc and kyΛ/π,
respectively. The shaded areas correspond to allowed bands. The dashed line corre-
sponds to the Brewster angle.

These regions are called forbidden bands, or photonic bandgaps, of the periodic medium.

The band edges, defining bandgaps, are given by
∣∣1

2 (Ap + Dp)
∣∣ = 1.

The dispersion relation (3.31) gives the component of the Bloch wave vector along

the z direction, K = kz, for the Bloch wave with frequency ω and the tangential

component of the wave vector ky. It can be represented by a surface in a three-

dimensional space (kz, ky, ω). An example of such a three-dimensional band structure

is presented in figure 3.3. The intersection of this surface with the planes kz = mπ/Λ

are curves which represents band edges. The projection of these curves on the kyω

plane gives projected band structure.

An example of the projected band structure is given in figure 3.4. The refractive

indices of a periodic layered medium are chosen close to ones of SiO2 and Si in the near

IR region and are n1 = 1.4 and n2 = 3.4, respectively. Thicknesses of the layers are

equal, d1 = d2. The right panel is for TE waves, and the left one for TM waves. Shaded

zones are the allowed bands, where the Bloch wave number K = kz is a real number. It

is interesting to note that the TM bandgaps shrink to zero, when ky = (ω/c) n2 sin αB

with αB equal to the Brewster angle, since at this angle the reflection at the interfaces

between layers vanishes and the incident and reflected waves are uncoupled.

In figure 3.5 the band structure of the SiO2/Si periodic layered medium (Fig. 3.4)

is shown for the special case ky = 0, which corresponds to the normal incidence. The
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Figure 3.5: Photonic band structure of a typical one-dimensional photonic crystal for
ky = 0 (normal incidence). The frequency is normalized as ωΛ/2πc. The Bloch wave
number K is normalized as KΛ/π. The dashed curves give the imaginary part of the
Bloch wave number K in arbitrary units.

band structure represents the dependence of the Bloch wave number as a function of

the frequency ω. The photonic bands (allowed bands) separated by clearly defined

photonic bandgaps (forbidden bands) are shown. The imaginary part of the Bloch

wave number is shown as dashed curves. Its value vanishes within allowed bands and

is non-zero within forbidden bands.

3.1.3 Bragg reflection

Consider a periodic layered medium with N unit cells placed in a dielectric medium

with refractive index n = n1 (Fig. 3.2). Assuming an incident field coming from the

left, the reflection coefficient is given by

rN =
a0

b0

, (3.32)

where a0 and b0 are complex amplitudes of incident and reflected field, correspondingly.

Here, it is assumed that there is no wave incident on the periodic medium from the

right (i.e., bn = 0). From (3.21) one has

(
a0

b0

)
=

(
Ap Bp

Cp Dp

)N (
an

bn

)
, (3.33)
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where the N -th power of the unimodular matrix (3.8) can be simplified by the following

matrix identity

(
Ap Bp

Cp Dp

)N

=

(
ApUN−1 − UN−2 BpUN−1

CpUN−1 DpUN−1 − UN−2

)
(3.34)

with

UN =
sin (N + 1) KΛ

sin KΛ
(3.35)

and the Bloch wave number K given by equation (3.31). The complex reflection coef-

ficient is obtained from equations (3.32-3.35) as

rN =
CpUN−1

ApUN−1 − UN−2

(3.36)

and the reflectivity of the periodic medium is obtained from (3.36) by taking the square

of the complex reflection coefficient rN :

|rN |2 =
|Cp|2

|Cp|2 +
(

sin KΛ
sin NKΛ

)2 . (3.37)

The term |Cp|2 in (3.37) is roughly equal to the reflectivity of a single unit cell.

This follows from the equation (3.37) with N = 1 and by taking into account that

the reflectivity of the unit cell is usually much less than unity. For a large number

of periods N , the second term in the denominator of relation (3.37) is a fast-varying

function of the Bloch wave number K, or equivalently, of the tangential component

of the wave vector ky and frequency ω. This term dominates the structure of the

reflectivity spectrum of the layered periodic medium.

Within allowed bands, the reflectivity oscillates with frequency having exactly N−1

nodes where the reflectivity vanishes. For frequencies within a forbidden band, the

Bloch wave number (3.31) is complex

K = mπ/Λ + iImK

and reflectivity formula (3.37) becomes

|rN |2 =
|Cp|2

|Cp|2 +
(

sinh Im(K)Λ
sinh NIm(K)Λ

)2 . (3.38)

For large N , the second term in the denominator of relation (3.38) approaches zero

exponentially as exp [−2 (N − 1) Im (K) Λ]. So, the reflectivity of a Bragg mirror (one-
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dimensional photonic crystal) is near unity for the medium with a substantial number

of periods and a Bragg mirror acts as a high reflector within the frequency range of a

forbidden band of the periodic medium.

The reflectivity of the typical Bragg reflector as a function of frequency and angle of

incidence is presented in figure 3.6-top. The light is impinging on the 10-period Bragg

mirror from the ambient medium with n = n1. The indices of refraction are n1 = 1.4

and n2 = 3.4, and the layers thicknesses are equal, d1 = d2 (see Fig. 3.4). The total

reflection is colored blue, while the vanishing reflection is colored red.

At the center of each forbidden band, the period of the layered medium is approxi-

mately equal to an integer multiple of the light wavelength. The light is highly reflected,

since successive reflections from neighboring interfaces are in phase with one another

and therefore are constructively superimposed. Regions of high reflection are shown in

blue in figure 3.6-top. For comparison, the photonic band structure of an infinite peri-

odic medium (Fig. 3.4) projected onto the ωαinc plane is presented in figure 3.6-bottom.

Here αinc is angle of incidence. The projected band structure (Fig. 3.4) is related to

the projected band structure (Fig. 3.6-bottom) via ky = (ω/c) n sin αinc, which relates

the tangential component of the wave vector with the angle of incidence αinc. Regions

of high reflection coincide with the forbidden bands of the periodic medium.

TE and TM polarized waves have different band structures and different reflectivi-

ties. In figure 3.6, the left panel is for TM waves and the right panel in for TE waves.

For TM waves incident at the Brewster angle αB, there is no reflected wave (Fig. 3.6)

regardless of the number of periods forming a Bragg mirror, since at this angle the re-

flection at the interfaces between layers vanishes and the incident and reflected waves

are uncoupled.

Analytical expression (3.37) gives reflectivity of the periodic layered medium in the

case when the light is incident from a medium with a refractive index n1. Typically,

a refractive index of an ambient medium, n, is different from refractive indices of the

layers. In such a case, the reflection coefficient of the layered medium surrounded by

two homogenous dielectric media with refractive indices n and nl is given by [4]

r =
(t11 + t12pl) p− (t21 + t22pl)

(t11 + t12pl) p + (t21 + t22pl)
, (3.39)

where tij are elements of the transfer matrix of the layered medium (3.23), which can

be calculated numerically using matrix elements of the unit-cell translation matrix

(3.13-3.20). In equation (3.39), coefficients p and pl are defined as p = n cos αinc

and pl = nl cos αl, where αinc and αl are angles between the z axis and incident and

transmitted waves, respectively. The reflectivity is given by the square of the reflection

coefficient (3.39), |r|2.
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Figure 3.6: Top: a two-dimensional map of reflectivity spectrum of a 10-period Bragg
reflector for TE (right) and TM (left) polarizations. Bottom: Photonic band structure
of the corresponding infinite periodic medium projected onto the ωαinc plane. Here αinc

is angle of incidence, which is related to the tangential component of the wave vector
via ky = (ω/c) n sin αinc. The light impinges on the Bragg mirror from the ambient
medium with n = n1. The indices of refraction are n1 = 1.4 and n2 = 3.4, and the
layers thicknesses are equal, d1 = d2 (see Fig. 3.4).
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3.2 Form-anisotropy of photonic crystals

The dispersion relation between the eigenfrequency, ωn (k), and the wave vector, k,

defines a photonic band structure of a periodic medium and describes properties of the

Bloch eigenmodes. Dispersion relation can be formally written as

ω = ωn (k) , (3.40)

where n is the band index. To build an intuitive understanding of the Bloch wave

properties it is illustrative to introduce a geometrical representation of the dispersion

relation (3.40). This can be done by defining an iso-frequency surface. An iso-frequency

surface or constant frequency surface is a surface in k-space constructed by solving

equation (3.40)

ωn (k) = ω0, ω0 = constant (3.41)

independently for each band n.

Iso-frequency surfaces of a periodic medium are strongly non-spherical (Fig. 3.3).

This is a result of the anisotropy of a periodic medium. The anisotropy of periodic

layered media is a well known phenomenon [4]. In the long-wavelength regime (λ À Λ)

it is usually referred to as a form birefringence. In the limit of long wavelengths, iso-

frequency surfaces of a one-dimensional photonic crystal are similar to the iso-frequency

surface of a negative uniaxial crystal [4]. At shorter wavelengths (higher frequencies),

the form of iso-frequency surfaces strongly deviates from a sphere (Fig. 3.3). In general,

the anisotropy of a periodic medium cannot be described by simple uniaxial or biaxial

crystals and this phenomenon is referred to as a form-anisotropy.

3.2.1 Dispersion relations: plane wave expansion method

Dispersion relation (3.40) for a general periodic medium can be solved only numerically.

One of the most popular method to find eigenfrequencies and eigenmodes of two- and

three-dimensional photonic crystals is a plane wave expansion method. As it was shown

in chapter 2, by expressing a Bloch wave as a superposition of plane waves

Hkn(r) =
∑
G

hkn(G) exp(i(kn + G)r), (3.42)

where summation is over reciprocal lattice vectors and hkn(G) are Fourier coefficients,

the wave equation

∇×
{

1

ε(r)
∇×Hkn (r)

}
=

ω2
kn

c2
Hkn (r) (3.43)
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Figure 3.7: Photonic band structure of the square lattice photonic crystal made of
dielectric rods in vacuum. Rods have the refractive index 2.9 and radius r = 0.15d,
where d is the lattice period. The band structure is given for TM polarization. The
frequency is normalized to Ω = ωd/2πc = d/λ. c is the speed of light in the vacuum.
Insets show the first Brillouin zone (left) and a part of the lattice (right). Yellow region
is a complete photonic bandgap in TM polarization.

can be transformed to an infinite linear system of homogenous equations for the un-

known Fourier coefficients hkn(G)

−
∑

G′
ε̃(G−G′)(kn + G)× {(kn + G′)× hkn(G′)} =

ω2
kn

c2
hkn(G). (3.44)

Numerical solution of this linear system of equations gives unknown Fourier coefficients

hkn(G) and eigenfrequencies, ωkn, as a function of the wave vector, which allows to

obtain a photonic band structure.

In the actual numerical calculations of the photonic bands, an infinite system of

equation (3.44) is truncated to a sufficiently large number N of reciprocal lattice vectors

G. Then, an eigenvalue problem for each wave vector k is solved, which is equivalent

to the diagonalization of the matrix defined by the left-hand side of (3.44). In fact,

the convergence of the plane wave expansion method is not good when the amplitude

of the spatial variation of the dielectric function is large. Typically, one needs up to

several thousands of plane waves in the expansion (3.42) to keep numerical error below

1%. Computer memory demands of the plane wave expansion methods scales as N

with the number of plane wave. The CPU time scales as N log N . Discussions on

the convergence of the plane wave expansion method can be found in [6, 7]. Recently,

several modifications of the plane wave expansion method were proposed to improve

its convergence [8, 9, 10].

46



In figure 3.7 the photonic band structure of a square lattice photonic crystal made of

dielectric rods in vacuum calculated using the plane wave expansion method is depicted.

Rods have the refractive index 2.9 and radius r = 0.15d, where d is the lattice period.

In the case of electromagnetic waves propagation in the plane of periodicity, one can

separate Maxwell’s equations by polarizations (chapter 2): TE and TM polarization, if

the magnetic or electric field is parallel to the axis of the rods, respectively. In figure 3.7

the band structure is presented for TM polarization. One can see, a complete photonic

bandgap in TM polarization between the first and the second allowed bands (yellow

region). For the calculation of the band structure in figure 3.7 as well as for all plane

wave calculations presented in this thesis, a freely available software realization of the

plane wave expansion method was used [9].

3.2.2 Beam steering

A form-anisotropy of a photonic crystal leads to the beam steering effect. In essence,

beam steering means, that the energy velocity direction of the medium’s eigenmode

does not necessarily coincide with the direction of the eigenmode wave vector. Here,

energy velocity is defined as the velocity of propagation of the electromagnetic energy.

This important concept can be illustrated using the Huygens principle [4], i.e., by

constructing the wave front from an extended disturbance as a superposition of waves

from point sources along the boundary of the disturbance.

An isotropic point source placed in a homogeneous isotropic medium generates a

circular wave front [Fig. 3.8(a)]. If a line source generates a plane wave in an isotropic

medium, its wave front is easily constructed, as shown in the right panel of figure 3.8(a).

For propagation distances smaller than the length of the line source, the electromagnetic

energy is radiated outward in the direction perpendicular to the wave front of the plane

wave. The energy velocity is parallel to the wave vector.

An isotropic point source placed in an anisotropic medium, like an uniaxial crystal

in figure 3.8(b), produces a non-spherical wave front due to the difference in the speed

of light in different directions of the crystal. In the case of an uniaxial crystal the

corresponding wave front will by an ellipse. A line source placed in an anisotropic

medium at an arbitrary angle with respect to the crystal optical axes will generate a

plane wave with the wave front shown at the right panel of figure 3.8(b). The energy

flux travels along the highest velocity direction of the medium. The energy velocity is

in general not parallel to the the wave vector.

In the homogeneous medium the energy velocity coincides with the group velocity,

which is defined as the gradient of the dispersion relation (3.40) in k-space

Vg = ∇kω (k) . (3.45)
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Figure 3.8: (a) Wave fronts emanating from a point isotropic source and a line source
in an isotropic medium. (b) Wave fronts emanating from a point isotropic source and
a line source in an anisotropic medium. In this case, the wave vector k, which is
perpendicular to the wave front, is not parallel to the energy flow, which is along the
energy velocity direction, Ve. (After Wolfe [11], p. 24)

From (3.45) follows that the group velocity is a vector which is perpendicular to the

iso-frequency surface. An important property of a non-absorbing periodic medium is

that, as in the case of a homogeneous medium, the energy velocity vector associated

with the Bloch wave coincides with its group velocity vector. So, the iso-frequency

surface fully defines directions of electromagnetic energy propagation in a photonic

crystal for a given Bloch wave denoted by its wave vector.

The proof of this important statement is given here following [12]. The energy

velocity is defined by

Ve ≡ 〈S〉
〈U〉 , (3.46)

where the brackets 〈 〉 denote an average over the unit cell of a periodic medium. S and

U are time-averaged Poynting’s vector and electromagnetic energy density, respectively,
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defined by

S =
c

8π
Re [E×H∗] , (3.47)

U =
1

16π
Re [EεE∗ + HH∗] , (3.48)

where ε is a dielectric function and a periodic medium is assumed to be non-magnetic.

Taking into account, that due to the Bloch theorem (chapter 2) electric and magnetic

field can be written as Ek (r) = ek (r) exp (ikr) and Hk (r) = hk (r) exp (ikr), the

following equation for the energy velocity can be obtained

Ve ≡
〈

c
8π

Re [ek × h∗k]
〉

〈
1

16π
Re [ekεe∗k + hkh∗k]

〉 , (3.49)

where ek and hk are periodic functions. The Maxwell’s equations for the Bloch waves

transform to

∇× hk + ik× hk = iε
ωk

c
ek, (3.50)

∇× ek + ik× ek = −i
ωk

c
hk. (3.51)

Suppose that the wave vector k is changed by an infinitesimal vector δk. The

corresponding changes in eigenfrequency, ωk, electric, ek, and magnetic, hk, fields

are denoted by δω, δek and δhk. Rewriting Maxwell’s equations (3.50-3.51) for the

eigenmode with the wave vector k + δk and performing several algebraic steps, the

following relation can be obtained [12]

δω = Veδk, (3.52)

where the relation (3.49) giving the energy velocity was taken into account. At the

same time, from the definition of the group velocity (3.45) follows that

δω = (∇kωk) δk = Vgδk. (3.53)

The shift wave vector δk is an arbitrary vector, so finally an equality of the energy and

group velocities follows from (3.52) and (3.53):

Ve = Vg. (3.54)

Since the group velocity is defined as the derivative of the angular frequency with

respect to the wave vector (3.45), it can be calculated by numerical differentiation. To

perform this numerical differentiation one needs first to find a numerical solutions of dis-
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Figure 3.9: Schematic illustration of refraction at the surface of the photonic crystal
depicted in figure 3.7). Iso-frequency contours are for normalized frequencies Ω1 =
0.565 (blue line) and Ω2 = 0.58 (red line). A plane wave with a wave vector kinc is
incident on the crystal surface at the same angle α for both frequencies. The refracted
wave propagates in the direction of the group velocity Vg.

persion relations (3.40) in the form of eigenfrequencies as a function of the wave vector.

Alternatively, having a numerical solution both for eigenfrequency and corresponding

eigenvector, one can calculate the group velocity avoiding numerical differentiation by

application of the Hellmann-Feyman theorem [13].

3.2.3 Anomalous refraction

The beam steering effect known to be a reason for the number of anomalies in an elec-

tromagnetic beam propagation inside a photonic crystal. Such anomalies are usually

referred to as superprism or ultrarefractive phenomena [14, 15, 16].

Anomalous refraction is a result of both form-anisotropy and strong dispersion of

photonic crystal. In figure 3.9 iso-frequency contours of the two-dimensional square

lattice photonic crystal (Fig. 3.7) are presented for two normalized frequencies Ω1 =

0.565 (blue curve) and Ω2 = 0.58 (red curve). Here it is assumed, that a plane wave

with a wave vector kinc is incident on the surface of the photonic crystal at an angle α,

first having the frequency Ω1 (Fig. 3.9-left) and then Ω2 (Fig. 3.9-right). The tangential

component of the wave vector should be conserved at the air–crystal interface. The

wave vector of a refracted wave has its end point on the iso-frequency contours given by

the band structure. This condition determines the wave vector of the refracted wave.

Then, the propagation direction, i. e., the direction of the energy flow, is perpendicular

to the iso-frequency surface and parallel to the group velocity of the refracted wave,

Vg. In figure 3.9, the difference in the propagation directions are larger than 50◦ for

the plane waves incident on the photonic crystal at the same incident angle α, but
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Figure 3.10: Anomalous refraction. Photographs showing refracted beams inside a
photonic crystal (left) and a silicon wafer (right) for incident lights with two different
wavelengths, 0.99 and 1.0 µm. The TM polarized laser lights were incident at an tilting
angle of 15◦ measured from normal to the edge of the crystal. The photonic crystal
size was 500 × 500 µm2. (After Kosaka et al. [17])

having different frequencies. The relative shift of frequency is less than 3%.

In figure 3.10, an experimental demonstration of an anomalous refraction is pre-

sented in the case of laser beam interaction with a three-dimensional photonic crystal

[17]. The difference in the propagation direction of refracted beam reaches 50◦ with

only a 1% shift of incident wavelength at around 1 µm. In this example a three-

dimensional photonic crystal is a graphite-like periodic medium fabricated by mean of

the autocloning technique [18].

Among other optical phenomena, the appearance of which are due to beam steering,

an extraordinary large or negative beam bending [16] and beam self-collimation [19]

can be mentioned.

3.3 Spontaneous emission in photonic crystals

Purcell [20] was the first who pointed out, that the spontaneous emission of atom and

molecule depends on their environment. Since then, an influence of non-trivial bound-

ary conditions in the vicinity of an excited atom on its emissive properties has been

the subject of active research [21, 22, 23]. Important examples of such an influence

are an enhancement and inhibition of the spontaneous emission by a resonant environ-

ment [20], e.g., microcavity [21, 22]. These phenomena were first demonstrated by Goy
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et. al. [24] and Kleppner [25], respectively, and continue to be the subject of intense

research not only due to their contribution to the better understanding of the light

matter interaction, but, to a great extent, due to the practical importance of control-

ling the light emission process. Light-emitting diodes [26, 27, 28] and thresholdless

lasers [29, 30, 31] are just a few examples, where the light extraction and spontaneous

emission control by mean of optical microcavity lead to improved performance.

Photonic crystal is a good example of non-trivial boundary conditions on the elec-

tromagnetic field, which can lead to modifications of the spontaneous emission. One of

the consequence of the complete photonic bandgap is an inhibited spontaneous emission

for the atomic transition frequency inside the gap [32, 33, 34].

A number of papers were devoted to the study of the spontaneous emission in

photonic crystals, considering the spontaneous emission using both classical [35, 36,

37, 38, 39, 40] and quantum [32, 41, 42, 38, 43, 44, 45, 46] formalisms. It is commonly

accepted that a classical description leads to the same results as an entirely quantum

electrodynamical approach [35, 38]. In the classical description, the modification of

the spontaneous emission is due to the radiation reaction of the back-reflected field on

the classical dipole [47, 48, 49]. Then within the framework of the Weisskopf-Wigner

approximation [50, 44], the spontaneous emission rate, Γ, is related to the classical

radiated power P (r0) = (ω/2) Im[d∗ · E(r0)] via Γ = P/~ω [48], where d is a real

dipole moment and E(r0) is a field in the system. A well known interpretation of the

emission rate modification follows from that relation [47, 49], as the dipole interaction

with the out-of-phase part of the radiation reaction field. In the classical picture, a

non-relativistic Lamb shift is due to the dipole interacting with the in-phase part of

the reaction field [49, 51] and it is also seen to be a purely classical effect [49, 51].

Although the magnitude of the anomalous Lamb shift in a realistic photonic crystal is

actively and controversially discussed [41, 42, 43, 45], this question is out of the scope

of this work.

3.3.1 Radiated power of classical dipole

A light source situated in an inhomogeneous medium is immersed in its own electric

field emitted at an earlier time and reflected from inhomogeneities in the medium.

By conservation of energy, the decay rate at which energy is radiated is equal to the

rate at which the charge distribution of the source does work on the surrounding

electromagnetic field. For an arbitrary current density J, the radiated power is given

by [52]:

P (t) = −
∫

V

d3rJ(r, t) · E(r, t), (3.55)
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Figure 3.11: Diagram showing the relations between k-space and coordinate space
quantities. Iso-frequency contours for frequencies ωnk and ωnk + dω are presented.

where V is a volume containing a current density source J. For the time-averaged

radiated power, one has:

P = −1

2
Re

[∫

V

d3rJ∗(r, t) · E(r, t)

]
, (3.56)

or, specializing to a point dipole (2.38)

P =
ω0

2
Im [d∗ · E(r0)] . (3.57)

Consider an excited molecule or atom at a position r0 in a photonic crystal. As-

suming that the presence of the molecule does not change the band structure of the

crystal, the only possible mode it can emit in, is an eigenmode of the photonic crystal.

In the classical approach, the molecule is modeled by a point dipole d (2.38). The

radiation reaction field will be given by a normal mode expansion (2.41), which is valid

for any point r in the crystal which is distinct from (but as close as required to) the

dipole location r0. Such a choice of radiation reaction field basically corresponds to

the Weisskopf-Wigner approximation [50, 44]. Then the radiated power (emission rate)

(3.57) of a classical dipole in a photonic crystal is given by:

P = Im

[
2πω3

0

V

∑
n

∫

BZ

d3kn
|Ank(r0) · d|2

(ω2
nk − ω2

0 − iγ)

]
. (3.58)

where equation (2.13), relating E = −(1/c)∂A/∂t, was used. With the aid of the

integral representation:
1

x− iγ
= −1

i

∫ ∞

0

dτe−ixτ−γτ , (3.59)
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one can transform the integral (3.58) to the form:

P = Im

[
i
2πω3

0

V

∑
n

∫

BZ

d3kn |Ank(r0) · d|2
∫ ∞

0

dtei(ω2
0−ω2

nk)t

]
. (3.60)

Now, making use of the time-reversal symmetry of the Maxwell’s equations [53], which

for a periodic medium implies that ωn,k = ωn,−k (2.71), one can rewrite the time

integral in (3.60) to obtain:

∫ ∞

0

dtei(ω2
0−ω2

nk)t =
1

2

∫ ∞

−∞
dtei(ω2

0−ω2
nk)t = πδ(ω2

0 − ω2
nk).

Then, the total time-averaged radiated power of a dipole is given by:

P =
2π2ω3

0

V

∑
n

∫
d3kn |Ank(r0) · d|2 δ(ω2

0 − ω2
nk). (3.61)

The volume integral in (3.61) can be transformed to the surface integral over the iso-

frequency surface ωnk = ω0. Changing the integration variable to the eigenfrequency

ωnk by using the relations |∇kωnk| dk = dωnk and d3kn = dkd2kn, where d2kn is an

element of the iso-frequency surface ωnk = ω0 (Fig. 3.11), one has:

P =
2π2ω3

0

V

∑
n

∫
d2kn

∫
dωnk

|Ank(r0) · d|2
|∇kωnk| δ(ω2

0 − ω2
nk),

where the integral over the eigenfrequency ωnk can be easily evaluated to obtain:

P =
π2ω2

0

V

∑
n

∫
d2kn

|Ank(r0) · d|2
|Vnk| , (3.62)

where, Vnk = ∇kωnk, the group velocity of the eigenwave (n,k) is introduced.

The expressions (3.61) and (3.62) give the total time-averaged radiated power of a

dipole situated inside a photonic crystal [35, 37]. This result agrees with fully quantum

electrodynamical result for spontaneous emission rate of a two-level atom within the

Weisskopf-Wigner approximation [50]. The factor |Ank(r0) · d|2 in (3.61) and (3.62)

gives a coupling strength of the dipole moment with a photonic crystal eigenmode at

the dipole position.

3.3.2 Enhancement and suppression of radiated power

To estimate the influence of photonic crystal upon the spontaneous emission, it is

instructive to express radiated power (3.61) by the corresponding photonic total density
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Figure 3.12: (a) Photonic band structure and (b) total DOS of a three-dimensional
fcc lattice of closed packed air voids in a dielectric host. Dielectric constant of host
material is ε = 12.25. (c) Total radiated power relative to that in free space. The
oscillating dipole is situated in the host material between air voids with the dipole
moment orientation along [100] direction of the fcc lattice. The frequency is normalized
to Ω = ωa/2πc = a/λ. c is the speed of light in the vacuum. a is a period of the cubic
lattice. (After Suzuki et al. [36])

of states (DOS). The total DOS is defined by

ρ (ω) =
∑

n

∫
d3knδ(ω − ωnk) = 2ω

∑
n

∫
d3knδ(ω

2 − ω2
nk) (3.63)

and gives a total number of avaliable eigenmodes of a periodic medium with eigen-

frequency ω. Then, assuming that the coupling strength |Ank(r0) · d|2 is on average

the same for all photonic crystal eigenmodes, the total radiated power (3.61) can be
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approximated as

P (ω) ≈ π2ω2
0

V
|Ank(r0) · d|2ρ (ω) , (3.64)

where |Ank(r0) · d|2 denotes the averaged value of |Ank(r0) · d|2. The radiated power

of the oscillating dipole is thus proportional to the total DOS ρ (ω). If the total DOS

is equal to zero in a certain frequency range, no dipole radiation takes place. On

opposite, if the total DOS is larger than an appropriate DOS in vacuum, the radiated

power can be enhanced with respect to the dipole radiation in free space. These lead

to the observation that the spontaneous emission rate can be suppressed or enhanced

in a photonic crystal environment [32, 33].

The photonic band structure of a three-dimensional face-centered cubic (fcc) lattice

of closed packed air voids in a dielectric host and the corresponding total DOS are

presented in figure 3.12 [36]. Such a photonic crystal possesses a complete photonic

bandgap between 8th and 9th bands, which leads to zero total DOS and radiated power

for the corresponding frequency region. In is important to note, that suppression

and enhancement of radiated power do not exactly follow the total DOS, because

the coupling strength |Ank(r0) · d|2 can vary for different dipole locations and dipole

moment orientations.

An intrinsic properties of a photonic crystal is that its band structure can be en-

gineered by choosing an appropriate combination of materials and lattice geometry

[53, 13]. This opens an opportunity to modify in purpose the spontaneous emission

rate, enhancing and suppressing it within specified spectral ranges.
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Part II

Reflection



Chapter 4

Omnidirectional Bragg mirror1

Probably one of the most widespread application of one-dimensional periodic media is

a Bragg mirror. Mirrors come in two basic varieties: a metallic mirror with dissipative

losses of few-percent, being in fact an omnidirectional reflector, and a dielectric Bragg

mirror. A dielectric Bragg mirror can be made nearly lossless, but it is typically highly

reflecting only within a limited angular range. A structure combining the properties

of both mirror types, i.e., being omnidirectional and lossless, is of strong interest as

it is likely to find many applications in optoelectronics and all-optical systems. Until

recently, the possibility to design such a “perfect mirror” was exclusively associated

with three-dimensional photonic crystals having a complete photonic bandgap. In this

chapter, it is reported, that a simple-to-fabricate Bragg mirror suffices to design a low-

loss omnidirectional reflector [1, 2, 3, 4]. In section 4.1 basic design criteria to obtain

an omnidirectional reflection with a Bragg mirror are presented. A way to design an

omnidirectional mirror with a maximum spectral bandwidth is given in section 4.2.

A comparison of the theoretical predictions with experimental results is presented in

section 4.3 for optical frequencies. Section 4.4 summarizes this chapter.

4.1 Omnidirectional reflectance

A Bragg mirror is a one-dimensional periodic medium. In this case the dielectric

function is periodic in one direction, ε(z + lΛ) = ε(z), where z is the direction of

periodicity, Λ = d1 + d2 is the period and l is an integer (Fig. 4.1). The dispersion

1This chapter is based on: D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko,
“Observation of total omnidirectional reflection from a one-dimensional dielectric lattice,” Appl. Phys.
A 68, 25–28 (1999); D. N. Chigrin, A. V. Lavrinenko, D. A. Yarotsky, and S. V. Gaponenko, “All-
dielectric one-dimensional periodic structures for total omnidirectional reflection and partial sponta-
neous emission control,” J. Lightwave Tech. 17, 2018–2024 (1999).

62



Figure 4.1: Schematic representation of a one-dimensional periodic medium. The co-
ordinate system and light rays refracting and propagating through a stack are shown.
Refractive indices of alternating regions and an ambient medium are n1, n2 (n1 < n2)
and n, respectively. Thicknesses of alternating regions are d1 and d2. Λ = d1 + d2 is
the period. The full domain of incident angles αinc in the range from −π/2 to π/2 is
mapped onto the internal cone of half-angle αmax

1 = arcsin n/n1 (light gray area). αB

is the Brewster angle.

relation of Bloch waves in such a medium can be derived analytically [5, 6] (chapter 3)

K
(
ω,k‖

)
=

1
Λ

arccos

[
1
2

(A + D)

]
. (4.1)

A particular form of the functions A
(
ω,k‖

)
and D

(
ω,k‖

)
may be found elsewhere [5, 6]

(e.g. chapter 3), here K is the Bloch wave number and k‖ is the tangential component

of the Bloch wave vector.

The projected band structure of an infinite periodic layered medium is depicted

in the figure 4.2. The refractive indices, n1 = 1.4 and n2 = 3.4, are chosen close to

those of SiO2 and Si in the near IR region. The layers have equal thickness (d1 = d2),

which corresponds to the filling fraction η = 0.5, where the filling fraction is defined

via η = d2/ (d1 + d2). An infinite periodic structure can support both propagating and

evanescent Bloch waves. In figure 4.2, grey areas correspond to the propagating states,

whereas white areas contain the evanescent states only and are referred to as photonic

bandgaps.

When the frequency and the wave vector of a wave, impinging externally at an

angle, αinc, from a homogeneous medium of refractive index n onto a one-dimensional

periodic medium (Fig. 4.1), lies within the bandgaps, the incident wave undergoes

strong reflection. Pronounced high reflection bands depend strongly on frequency and
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Figure 4.2: Projected band structure of a typical 1D photonic crystal for TE (right
panel) and TM (left panel) polarizations. The frequency and the tangential component
of the wave vector are defined to be normalized as ωΛ/2πc and

∣∣k‖
∣∣ Λ/π, respectively.

The hatched areas correspond to omnidirectional reflection bands. The solid lines are
the ambient-medium light-lines.

angle of incidence. These can be easily understood from figure 4.2. Photonic bandgaps

(i) rapidly move to higher frequencies with increasing incident angle, denoted by the

increase of the tangential component of the wave vector, and (ii) the TM band gaps tends

to zero when approaching the Brewster light-line, where ω = c
∣∣k‖

∣∣ /n1 sin αB (Fig. 4.2),

and αB = arctan n2/n1 is the Brewster angle at n1 − n2 interface. These properties of

the band structure restrict the angular aperture of a polarization insensitive range of

high reflectance.

In essence, omnidirectional reflectance can be achieved due to the limitation of the

number of modes that can be excited by externally incident waves inside the Bragg

mirror. Light coming from the low-index ambient medium (n < n1, n2) is funneled

into the internal cone narrowed by Snell’s law (Fig. 4.1). Then, (i) a sufficiently

large contrast between refractive indices of layers constituting the periodic medium with

respect to a refractive index of an ambient medium ensures that light coming from the

outside will never go below the Brewster’s angle inside the crystal (Fig. 4.1) and (ii) a

sufficiently large refractive index contrast of the layers themselves can keep the bandgaps

open up to grazing angles [1, 2, 3, 4].

A reduced region of k-space, where propagating Bloch modes of the photonic crys-

tals can be excited by externally incident wave, lies above the light-line (Fig. 4.2),

which is a projection of the band structure of an ambient medium on the ω
∣∣k‖

∣∣ plane.

For example, in the case of the Si/SiO2 periodic medium situated in air the first two

bandgaps are open for all external angles of incidence (hatched areas in figure 4.2).
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Figure 4.3: Top: A two-dimensional map of reflectivity spectrum of a 10-period Bragg
reflector for TE (right) and TM (left) polarizations. Bottom: Photonic band structure
of the corresponding infinite periodic medium projected onto the ωαinc plane. Here αinc

is angle of incidence, which is related to the tangential component of the wave vector
via

∣∣k‖
∣∣ = (ω/c) n sin αinc. The light impinges on the Bragg mirror from air (n = 1.0).

The indices of refraction are n1 = 1.4 and n2 = 3.4, and the layers thicknesses are
equal, d1 = d2 (see Fig. 4.2).

No propagating mode is allowed in the stack for any propagating mode in the ambient

medium for either polarizations. This is how total omnidirectional reflection arises.

The reflectivity of such an omnidirectional Bragg reflector as a function of frequency

and angle of incidence is presented in figure 4.3-top. The reflectivity was calculated

using the transfer matrix method [7, 5] (chapter 3). The light impinges on the 10-
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period Bragg mirror from air (n = 1). The total reflection is colored blue; the vanishing

reflection is colored red. The bands of high omnidirectional reflection are clearly seen

in the reflectivity spectrum.

The photonic band structure of the infinite periodic medium (Fig. 4.2) projected

onto the ωαinc plane is presented in figure 4.3-bottom for comparison. The projected

band structure (Fig. 4.2) is related to the projected band structure (Fig. 4.3-bottom)

via
∣∣k‖

∣∣ = (nω/c) sin αinc, which relates the tangential component of the wave vector

with the angle of incidence αinc. Regions of high reflection coincide with the forbidden

bands of the periodic medium.

4.2 Optimization of an omnidirectional mirror

To design an omnidirectional mirror, one needs to have total reflection for all incident

angles and all polarization states. The TM photonic band gap is narrower than the

TE one and this determines the bandwidth of an omnidirectional reflection band. The

upper edge of the reflection band corresponds to the upper edge of the forbidden gap at

normal incidence. The lower edge is defined by the intersection of the ambient-medium

light-line with the upper edge of the corresponding TM band (Fig. 4.2).

For given parameters of the periodic structure, the refractive index of an ambient

medium may be used to control the bandwidth. By increasing the refractive index

of an ambient medium from n = 1 to some n = nmax the bandwidth decreases till an

omnidirectional reflection band is closed. In figure 4.4 the maximum refractive index of

the ambient medium nmax, for which the first omnidirectional reflection band is closed

up, is presented as a function of the index ratio δn = n2/n1 for various values of the

refractive index of the low index layer n1 and the fixed filling fraction η = d2/Λ = 0.5.

The filling fraction η = d2/Λ optimizes the relative reflection bandwidth ∆ω/ω0

of an omnidirectional reflection band with respect to the given refractive indices of

the layers constituting one-dimensional periodic medium and the index of an ambient

medium. Here ∆ω is the width of the omnidirectional reflection band and ω0 is its

central frequency. In figure 4.5 overall band gaps leading to the omnidirectional total

reflection bands are presented versus the filling fraction. For the first overall band gap,

gaps corresponding to the normal and grazing incidence are presented. The solid curves

correspond to normal incidence. The dashed (dotted) curves are for grazing incidence

of TE (TM) polarized light. The omnidirectional reflection band, which is due to the

overlap of the gaps corresponding to the normal and grazing incidence, is depicted as

the hatched area. The omnidirectional reflection bands of the higher order are opened.

The inset in figure 4.5 shows the relative bandwidth of the first total reflection band

66



Figure 4.4: Maximum refractive index of an ambient medium, for which the omnidirec-
tional reflection band is closedobtained, as a function of the index ratio δn = n2/n1 for
different values of refractive index of the low index layer, n1, and fixed filling fraction
η = 0.5. Numbers at the curves indicate the refractive index of the low index layer, n1.

Figure 4.5: Overall band gaps leading to omnidirectional total reflection bands. For
the first overall band gap, gaps corresponding to normal and grazing incidence are
presented. The hatched area denotes the first omnidirectional reflection band. The
solid curves indicates normal incidence. The dashed (dotted) curves are for grazing
incidence for TE (TM) polarization. The inset shows the relative bandwidth versus
filling fraction. Here n = 1, n1 = 1.4 and n2 = 3.4.

versus filling fraction. There is a clear optimum filling fraction ηopt leading to the

maximum of the relative bandwidth.

In figure 4.6 a set of contour plots, which provides full information about the

first omnidirectional total reflection band for given parameters of the system is pre-

sented. An optimal filling fraction and corresponding central frequency are shown in
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Figure 4.6: (a) Optimal filling factor ηopt as a function of the index ratio δn for different
values of index ratio δn0. (b) Central frequency ω0 as a function of the index ratio
δn for different values of index ratio δn0 for optimal filling factor ηopt. (c) Relative
bandwidth ∆ω/ω0 as a function of the index ratio δn for different values of index ratio
δn0 for optimal filling factor ηopt. Numbers at the curves indicate the index ratio δn0.
Dashed curves correspond to the quarter-wave stack.

figures 4.6 (a) and 4.6 (b), respectively, as functions of the index ratio δn = n2/n1 for

different values of index ratio δn0 = n1/n. The dashed curve in figure 4.6 (a) corre-

sponds to the filling factor of a quarter-wave stack, which is ηλ/4 = 1/(1 + δn). Within

a given parameter range a quarter-wave stack is not an optimal configuration to reach a
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Figure 4.7: Top: A two-dimensional map of the reflectivity spectrum of a 10-period
Bragg reflector for TE (right) and TM (left) polarizations. Bottom: Photonic band
structure of the corresponding infinite periodic medium projected onto the ωαinc plane.
Here αinc is angle of incidence, which is related to the tangential component of the
wave vector via

∣∣k‖
∣∣ = (ω/c) n sin αinc. The light impinges on the Bragg mirror from

air (n = 1.0). The indices of refraction are n1 = 1.4 and n2 = 3.4, and filling fraction
is ηopt = d2/Λ = 0.324.

maximum relative bandwidth for the omnidirectional reflection band, however it gives

the relative bandwidth, which is usually a few percent smaller than for optimal one

[Fig. 4.6 (c)]. In figure 4.6 (c) the optimal relative bandwidth is depicted as a function

of the index ratio δn for different values of index ratio δn0. A wide omnidirectional

total reflection band exists for reasonable values of both δn and δn0. To obtain an
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omnidirectional band with bandwidth larger than 5% the index ratio should be larger

than 1.5 (δn > 1.5, δn0 > 1.5). A decrease in one of the index ratios is partially

compensated by an increase in the other one.

For the SiO2/Si (n1 = 1.4, n2 = 3.4) structure in air (n = 1.0) the omnidirectional

reflection band is centered at the normalized frequency ωΛ/2πc = 0.275 with the opti-

mal filling fraction ηopt = 0.324. The relative bandwidth is about 25%. For example, to

obtain an omnidirectional reflection centered at the wavelength λ = 1.5 µm, the period

of the structure should be about 0.412 µm.

The reflectivity of a 10-period SiO2/Si omnidirectional Bragg reflector as a function

of frequency and angle of incidence together with its corresponding photonic band

structure projected onto the ωαinc plane are presented in figure 4.7 for the optimal

filling fraction ηopt = 0.324. The reflectivity was calculated using the transfer matrix

method [7, 5] (chapter 3). The light impinges on the 10-period Bragg mirror from air

(n = 1). The total reflection is colored blue; the vanishing reflection is colored red. A

wide omnidirection band of high reflection is clearly seen in the reflectivity spectrum

for frequencies near ωΛ/2πc = 0.275.

4.3 Comparison with experiment

In this section, experimental results obtained at the Institute of Molecular and Atomic

Physics (Belarusian Academy of Sciences, Minsk, Belarus) [2, 4], on the omnidirec-

tional Bragg mirror are compared with theoretical predictions presented in section 4.1.

To check theoretical predictions, a Bragg mirror in the optical wavelength range was

chosen.

A lattice consisting of 19 layers of Na3AlF6 and ZnSe (n1 = 1.34 and n2 ∈ [2.5, 2.8]

correspondingly) was fabricated by standard optical technology using layer by layer

deposition of the materials on a glass substrate [2, 4]. The multilayer stack was ter-

minated at both ends with ZnSe layer. The thickness of each layer was d1 = d2 =

90 nm. An omnidirectional total reflection was expected within the spectral band

∆λ ∈ [604.3, 638.4] nm with a relative bandwidth of 5.3%.

Transmission spectra for TE- and TM- polarizations at different incident angles in

the range of 0 − 60◦ were measured using a Cary 500 spectrophotometer (right panel

in figure 4.8). The calculated transmission spectra are depicted in the left panel of the

figure 4.8, a good agreement is obtained. From figure 4.8 one can see that for spectral

range 600–700 nm the transmission coefficient is very low for both polarizations. For

example, the absolute values of transmission for TE-polarization in spectral range 600–

700 nm was less than 0.001 within the ±0− 60◦ aperture, corresponding to a reflection
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Figure 4.8: Calculated transmission spectra (left panel) and measured transmission
spectra (right panel) of Na3AlF6/ZnSe 19-layer structure for TE-polarized (a) and
TM-polarized (b) light at different angles of incidence (0◦–solid line, 20◦–dashed line,
40◦–dotted line, 60◦–dash-dotted line). The triangles indicate the calculated edges of
the omnidirectional reflection band.

coefficient of 99.9%.

To reach larger values of angle of incidence a simple set-up consisting of a He-Ne

laser and a CCD detector was used. The intensity of the laser beam passed through the

sample was detected by CCD camera. The sample was mounted on rotational stage

to allow different angles of incidence. With this set-up one can directly determine

the transmission coefficient of samples at angles up to 70◦. For larger angles it is

necessary to measure the reflection coefficient of samples. The dependence of the

transmission coefficients for TE- and TM-polarized incident radiation of a He-Ne laser

at 632.8 nm on angle of incidence is presented in the figure 4.9. For TM-polarization

circles depict the directly measured transmission coefficient, and squares depict data

obtained from reflection measurements. Mismatch between them can be explained

by additional reflection from air–ZnSe, ZnSe–substrate and substrate–air interfaces.

The solid (dashed) curve in the figure 4.9 gives theoretically calculated transmission

coefficients for TE-(TM-) polarized light.

As can be seen in figure 4.9, the transmission coefficient of TM-polarized radiation

remains below 10−3 over a wide angular range. Due to the Brewster effect at the

air–ZnSe, ZnSe–substrate and substrate–air interfaces at large angles, it increases to

0.33 at 80◦ and then decreases again. In contrast, the transmission of TE-polarized
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Figure 4.9: Dependence of the transmission coefficient of a Na3AlF6/ZnSe structure
on angles of incidence at 632.8 nm (HeNe laser) for two polarizations of incident light.
Circles denote the measured transmission coefficients for TM polarized light. Squares
mark transmission coefficients calculated from reflection measurement data. For TE-
polarization (triangles) the signal at angles larger than 60◦ is out of the sensitivity range
of the experimental set-up. The solid (dashed) curve is the theoretically calculated
transmission coefficient for TE- (TM-) polarized light. The dotted curve corresponds
to the transmission coefficient of the structure terminated at both ends with a low
index layer, Na3AlF6, for TM-polarized light.

radiation decreases monotonically with growing angle of incidence being less than 10−5

for angles larger than 40◦. Transmission coefficients of less than 10−5 are beyond the

capabilities of the experimental set-up used. For this reason, the transmitted signal at

angles of incidence larger than 60◦ cannot be detected and therefore no data points for

TE-polarization at these angles are presented in the figure 4.9.

The reflectivity of TM-polarized radiation at large angles can be enhanced in struc-

tures terminated at both ends with a low index layer, Na3AlF6, (Fig. 4.9). In this case,

the transmission at 80◦ is as small as 0.03, corresponding to a reflection coefficient

of 97%. The overall reflectivity can be enhanced in structures with larger number of

layers.

4.4 Summary

In conclusion, the possibility to achieve a total omnidirectional reflection with one-

dimensional periodic dielectric structures was demonstrated in this chapter. The origin

of the total omnidirectional reflection has been discussed. Optimization criteria to

design totally reflecting omnidirectional mirror were presented. It was found that for
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reasonable values of Bragg mirror parameters (δn > 1.5, δn0 > 1.5) a relatively large

omnidirectional total reflection band (> 5%) may be obtain, making the fabrication of

an omnidirectional dielectric Bragg mirror feasible. The experimental demonstration

of the omnidirectional reflection from a Bragg mirror was presented in the optical range

in a full agreement with theoretical prediction of the phenomenon.

Since the first prediction and demonstration of the omnidirectional reflection from

a one-dimensional periodic medium in 1998 [1, 2, 3, 4], several further developments

have been made. The idea of omnidirectional mirror has also obtained a favorable

press coverage [8, 9, 10, 11] over last years. The total number of publication devoted

to this subject exceeds one hundred and many new publications appear every year. To

mention a few examples of the successful applications of this idea, an improved planar

microcavity [12], optical fibers [13, 14, 15] and Fabry-Perot resonator [16] can be cited.
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Part III

Emission



Chapter 5

Radiation pattern of a classical

dipole in a photonic crystal: photon

focusing1

As it was shown in chapter 3, a photonic crystal can be a promising artificial material

to control the spontaneous emission. Being able to modify in purpose the emission

rate within a specific spectral range and simultaneously in specific directions could

add a significant flexibility in improving light sources. In this chapter, questions like

modification of the emission rate in a specific direction and modification of the emission

pattern due to the photonic crystal environment are considered.

Special opportunities in controlling directionality of emission exist within spectral

ranges of allowed photonic bands, where photonic crystals display strong dispersion

and anisotropy. The consequence of anisotropy is photon focusing phenomenon [1, 2].

Photon focusing is similar to phonon focusing, a phenomenon observed in the ballistic

transport of phonons in crystalline solid [3]. The term phonon focusing refers to the

strong anisotropy of heat flux in crystalline solid. First observed in 1969 by Taylor

et. al. [4], phonon focusing is a property of all crystals at low temperatures. The term

“focusing” does not imply a bending of particle paths, as in the geometrical-optics

sense of the term. The physical reason of the phonon focusing is the beam steering.

In particular, waves with significantly different wave vectors can have nearly the same

group velocity, so the energy flux associated with those waves bunches along certain

crystalline directions. In some special cases, a heat flux can display intricate focusing

caustics, along which flux tends to infinity [3]. This happens than the direction of

1This chapter is based on: D. N. Chigrin, “Radiation pattern of a classical dipole in a photonic
crystal: photon focusing,” submitted to Phys. Rev. E
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the group velocity is stationary with respect to a small variation of the wave vector.

An optical cousin of the acoustic phenomenon opens a unique opportunity to design a

caustics pattern in purpose, enhancing and suppressing emission in specific directions.

In this chapter a description of an angular distribution of radiated power of a clas-

sical dipole embedded in a photonic crystal is presented. In section 5.1 the evaluation

of the asymptotic form of the radiated field is given in the radiation zone. In section

5.2, an angular distribution of radiated power is introduced. A modification of the

radiation pattern is discussed in terms of photon focusing in section 5.3. Numerical

examples of an angular distribution of emission power radiated from a point isotropic

light source are presented in section 5.4 for the case of a two-dimensional square lattice

photonic crystal of dielectric rods in air. Section 5.5 summarizes the main results of

the chapter.

5.1 Asymptotic form of dipole field

To obtain the dipole field in the radiation zone, an asymptotic form of normal mode

expansion (2.41)

A(r) = −i
4πcω0

V

∑
n

∫

BZ

d3kn
(a∗nk(r0) · d)

(ω2
nk − ω2

0 − iγ)
ank(r)e

ikn·(r−r0) (5.1)

is evaluated and analyzed. Here the Bloch theorem, Ank(r) = ank(r)e
ikn·r, has been

used. Further, an asymptotic analysis of the Green’s function presented by Maradudin

[5] for the phonon scattering problem is followed.

Using the integral representation (3.59) one can rewrite (5.1) as:

A(r) =
4πcω0

V

∑
n

∫

BZ

d3kn

∫ ∞

0

dτ (a∗nk(r0) · d) ank(r)e
iFnk(τ), (5.2)

where

Fnk(τ) = kn · (r− r0)− τ(ω2
nk − ω2

0) (5.3)

and a limit γ → 0 was taken.

In a typical experiment |x| = |r− r0| À λ, where λ is the wavelength of the

electromagnetic wave. For large x an exponential function in the integral (5.2) will

oscillate very rapidly and one can use the method of stationary phase to evaluate the

integral.

The principal contribution to the integral comes from the neighborhood of those

points in τ - and k-space where the variation of Fnk(τ) is the smallest. This means that

one can set the gradient of the function Fnk(τ) in k-space equal to zero as well as the
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derivative of the function with respect to τ . This gives the conditions:

∂Fnk

∂τ
= ω2

nk − ω2
0 = 0 (5.4)

∇kFnk = x− τ∇kω
2
nk = 0. (5.5)

Equations (5.4-5.5) determine the values of τ and kn around which the principal contri-

butions to the integral (5.2) arise. These points are called stationary points. Further,

the stationary points are denoted by τν and kν
n. Assuming that value of the eigenvector

ank(r) is approximately constant ank(r) ≈ aν
nk(r) for τ close to τν and for the wave

vectors close to kν
n, the integral (5.2) is reduced to the sum of the integrals in the

vicinities of the stationary points (τν ,k
ν
n) [5, 6]

A(r) ≈ 4πcω0

V

∑
ν

∑
n

(aν∗
nk(r0) · d) aν

nk(r)

∫

kν
n

d3kn

∫

τν

dτeiFnk(τ), (5.6)

Here an extra summation is over all possible solutions of Eqs. (5.4-5.5).

Due to Eq. (5.4) the principal contribution to the asymptotic behavior of A(r)

comes from the iso-frequency surface in k-space defined by ω2
nk = ω2

0 or equivalently

defined by ωnk = ω0 (eigenfrequency ωnk is positive and real). At the same time, due

to Eq. (5.5) the portion of the iso-frequency surface, ωnk = ω0, which contributes to

the asymptotic field is the portion near the point on this surface where the gradient

∇kω
2
nk is parallel to x. One can express the latter condition in an alternative fashion.

Equation (5.5) can be simplified as:

x = 2τωnkVnk,

where Vnk = ∇kωnk is the group velocity of the eigenwave (n,k). So, equation (5.5)

just says that the principal contribution to the asymptotic behavior of the field A(r)

at large |x| = |r− r0| À λ comes from the neighborhood of the points kν
n on the

iso-frequency surface ωnk = ω0 at which the eigenwave group velocity is parallel to

observation direction x. Since τ is positive by definition (3.59), Vν
nk and x should not

only be parallel, but should point in the same direction as well, x ·Vν
nk > 0.

Assuming that the major contribution comes from the regions near the stationary

points, a small error is made by extending the integration in (5.6) over all space

A(r) ≈ 4πcω0

V

∑
ν

∑
n

(aν∗
nk(r0) · d) aν

nk(r)

∫ ∞

−∞
d3kn

∫ ∞

−∞
dτeiFnk(τ). (5.7)
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Then, the integral over τ is simply given by Dirac δ-function:

∫ ∞

−∞
dτeiτ(ω2

0−ω2
nk) = 2πδ(ω2

0 − ω2
nk)

and one can further convert the volume integration in k-space to an integral over the

iso-frequency surface ωnk = ω0. In fact, by using the relations |∇kωnk| dk = dωnk and

d3k = dkd2k, and integrating over the eigenfrequency ωnk, the volume integration over

k transforms to:

∫ ∞

−∞
d3kne

ikn·(r−r0)δ(ω2
0 − ω2

nk) =

∮ ∞

−∞
d2kn

π

ω0

eikn·(r−r0)

|Vnk| .

So, the asymptotic form of the field A(r) is finally given by:

A(r) ≈ 4π2c

V

∑
ν

∑
n

(aν∗
nk(r0) · d) aν

nk(r)

|Vν
nk|

∮ ∞

−∞
d2kne

ikn·(r−r0), (5.8)

where the comparatively slow varying function Vnk was replaced by its value at sta-

tionary point kν
n and was taken outside the integral over k.

To evaluate the integrals in the Eq. (5.8) an analysis of the form of the iso-frequency

surface in the vicinity of one of the stationary points, kν
n, should be done. It is conve-

nient to introduce the local curvilinear coordinates ξi with the origin at the stationary

point and with one of the coordinate aligned perpendicular to the iso-frequency surface,

e.g., ξ3. One can expand the function h (ξ1, ξ2) = kn · x̂ near the stationary point as:

h (ξ1, ξ2) = kν
n · x̂ +

1

2

2∑
i,j=1

αν
ijξiξj +

1

6

2∑

i,j,k=1

βν
ijkξiξjξk + O (ξ1, ξ2)

4 , (5.9)

where

αν
ij =

(
∂2h

∂ξi∂ξj

)

ν

, βν
ijk =

(
∂3h

∂ξi∂ξj∂ξk

)

ν

and x̂ is a unit vector in the observation direction. All derivatives are evaluated at the

stationary point kν
n.

The result of the integration in (5.8) depends on the local topology of the iso-

frequency surface near the stationary point. One can generally classify the local topol-

ogy of the surface by its Gaussian curvature [7]. The Gaussian curvature K is the

product of the two principal curvatures (inverse radii, K1 and K2) at a point on the

surface, i.e., K = K1K2. The points on an iso-frequency surface can be elliptical, hy-

perbolic and parabolic. If the Gaussian curvature K > 0, the corresponding point on

the iso-frequency surface is called elliptical, and if K < 0 it is called hyperbolic. For a

complex surface, such as the iso-frequency surface in Fig. 5.1, the regions with positive

80



and negative Gaussian curvature alternate. The surface is parabolic at the borders

between regions with curvatures of opposite signs, e.g, convex and saddle. The lines

along which the curvature changes its sign are called parabolic lines. The Gaussian

curvature at a parabolic point is equal to zero.

Further, an analysis of the asymptotic form of the integral (5.8) is undertaken, when

the stationary points are elliptical or hyperbolic. Then in the close vicinity of such a

stationary point the following expansion holds:

h (ξ1, ξ2) = kν
n · x̂ +

1

2

2∑
i,j=1

αν
ijξiξj, (5.10)

where only quadratic terms in the expansion (5.9) were kept. By choosing the orien-

tation of the local coordinate axes ξ1 and ξ2 along the main directions of the surface

curvature at that point kn = kν
n, one can diagonalize the matrix αν

ij. Then:

h (ξ1, ξ2) = kν
n · x̂ +

1

2

(
αν

1ξ
2
1 + αν

2ξ
2
2

)
, αν

1 = αν
11, αν

2 = αν
22. (5.11)

With such a choice of local coordinates in k-space, the product Kν
nk = αν

1α
ν
2 determines

the Gaussian curvature of the iso-frequency surface at the stationary point kn = kν
n.

Using expansion (5.11) the asymptotic form of the field (5.8) is now given by:

A(r) ≈ 4π2c

V

∑
ν

∑
n

(aν∗
nk(r0) · d) aν

nk(r)

|Vν
nk|

eikν
n·x

×
∮ ∞

−∞
dξ1dξ2 exp

(
i |x|
2

(
αν

1ξ
2
1 + αν

2ξ
2
2

))
. (5.12)

The integral in Eq. (5.12) is calculated simply to be:

∫ ∞

−∞
dξ exp

(
i
xα

2
ξ2

)
=

√
2π

x |α| exp

(
−iπ

4
sign (α)

)
(5.13)

and an asymptotic form of the vector potential (5.1) at the position r far from the

dipole is given by

A(r, t) ≈
∑

ν

∑
n

exp
(
−i

(
ω0t +

π

4
(sign(αν

1) + sign(αν
2))

))

× c

V

(Aν∗
nk(r0) · d)Aν

nk(r)

|Vν
nk|

8π3

|Kν
nk|1/2 |r− r0|

, (5.14)

where Aν
nk(r) = aν

nk(r)e
ikν

n·r and summation is over all stationary points with x ·Vν
nk >

0.
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Figure 5.1: The central region of the iso-frequency contour for normalized frequency
Ω = ωd/2πc = d/λ = 0.569 of the infinite square lattice 2D photonic crystal made
out of dielectric rods placed in vacuum. Rods have the optical index 2.9 and radius
r = 0.15d, where d is the period of the lattice (see Sec. 5.4 for details). The stationary
points, k1, k2 and k3, corresponding to the same observation direction x̂ are indicated.

According to the Eq. (5.14) the electromagnetic field inside a photonic crystal

represents a superposition of several diverging waves, the number of which equals the

number of stationary phase points on the iso-frequency surface ωnk = ω0 (Fig. 5.1).

Each of these waves has its own shape and its own propagation velocity. One comment

is important here, the asymptotic expansion (5.14) describes an outgoing wave (kν
n ·x >

0) only if the corresponding group velocity is an outward normal to the iso-frequency

surface ωnk = ω0 at point kν
n. It can happen, however, that the group velocity becomes

an inward normal for some frequencies and regions of k-space (Fig. 5.1). In such a

case the dot product kν
n · x is not positive in the asymptotic expansion (5.14) and the

expansion describes incoming waves. In such a situation, one should change a sign of

the small imaginary part γ in regularized equation (5.1) [5]:

A(r) = −i
4πcω0

V

∑
n

∫

BZ

d3kn
(a∗nk(r0) · d)

(ω2
nk − ω2

0 + iγ)
ank(r)e

ikn·(r−r0) (5.15)

and proceed as it has been describe above (5.2-5.14), but using the integral represen-

tation
1

x + iγ
=

1

i

∫ ∞

0

dτeixτ−γτ (5.16)

instead of (3.59).
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5.2 Angular distribution of radiated power

Using the definition of the solid angle, dΩnk = d2k cos ϕ/ |kn|2, where dΩnk is the solid

angle subtended by the surface element d2kn, ϕ is the angle between the wave vector kn

and the group velocity Vnk = ∇kωnk (Fig. 5.2), on changing the integration variables,

one can modify the equation for the total radiated power (3.62) to the form:

P =
∑

n

∫ 4π

0

dΩnk

(
π2ω2

0

V

|Ank(r0) · d|2
|Vnk|

|kn|2
cos ϕ

)
, (5.17)

where the function enclosed in the brackets basically defines the radiated power of the

dipole per solid angle in k-space

dP

dΩnk

=
π2ω2

0

V

|Ank(r0) · d|2
|Vnk|

|kn|2
cos ϕ

. (5.18)

To derive an angular distribution of radiated power in coordinate space, one should

change the integration variables in (5.17) from k-space to coordinate space.

The k-space distribution of radiated power (5.18) is a function of a k-space direc-

tion, given by the polar, θnk, and azimuthal, φnk, angles of the wave vector kn. The

direction of energy propagation in a non-absorbing periodic medium coincides with the

group velocity direction [8]. Whereas the angular dependence of the radiated power in

coordinate space is given by the corresponding group velocity direction in coordinate

space (θ, φ). Here θ and φ are the polar and azimuthal angles of the group velocity in

coordinate space. The k-space to coordinate space transformation may be expressed

formally as:

cos θ = f(cos θnk, φnk), (5.19)

φ = g(cos θnk, φnk), (5.20)

where the functions f and g are determined from the components of the group velocity

vector Vν
nk ‖ x̂, where x̂ is the unit vector in the observation direction. The Jacobian

of the transformation (5.19-5.20):

Jnk =
∂f

∂ cos θnk

∂g

∂φnk

− ∂f

∂φnk

∂g

∂ cos θnk

(5.21)

relates a small solid angle in coordinate space with a corresponding solid angle in

k-space via:

dΩ = d(cos θ)dφ = Jnkd(cos θnk)dφnk = JnkdΩnk. (5.22)

According to the result presented in the Section 5.1, different wave vectors can result
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Figure 5.2: Diagram to derive the relation between solid angles in the k-space and
coordinate space. An iso-frequency contour for frequency ωnk is presented. The Jaco-
bian of the transformation (5.19-5.20) is given by the ratio dΩ/dΩnk. By the definition
of the solid angle, a solid angle in k-space is dΩnk = d2k cos ϕ/ |kn|2, while a corre-
sponding solid angle in coordinate space is dΩ = d2k |Knk|. That gives a Jacobian
Jnk = |kn|2 |Knk| / cos ϕ. Here ϕ is an angle between the wave vector and the group
velocity vector. d2k is a surface element of the iso-frequency surface.

in the group velocity with same direction in coordinate space. That means that the

following equation:

dΩν
nk =

1

Jν
nk

dΩ

should hold for each stationary wave vector, which satisfies x̂ ·Vν
nk > 0. Changing the

integration variables in (5.17) one should then sum individual contributions from all

these wave vectors:

P =
∑

n

∑
ν

∫ 4π

0

1

Jν
nk

dΩ

(
π2ω2

0

V

|Aν
nk(r0) · d|2
|Vν

nk|
|kν

n|2
cos ϕ

)
, (5.23)

The geometrical relationship between solid angles in k-space and coordinate space

(Fig. 5.2) results in the following formula for the Jacobian (5.21)

Jν
nk = |kν

n|2 |Kν
nk| / cos ϕ.

Then, equation (5.23) can be transformed to the form:

P =

∫ 4π

0

dΩ

(∑
n

∑
ν

π2ω2
0

V

|Aν
nk(r0) · d|2
|Vν

nk| |Kν
nk|

)
, (5.24)

where Vν
nk = ∇kωnk is the group velocity and Kν

nk determines the Gaussian curvature

of the iso-frequency surface at the stationary point kn = kν
n. Finally, the radiated power

of the dipole per solid angle in coordinate space is given by the function enclosed in
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the brackets in (5.24)
dP

dΩ
=

∑
n

∑
ν

π2ω2
0

V

|Aν
nk(r0) · d|2
|Vν

nk| |Kν
nk|

. (5.25)

Formula (5.25) provides a simple route to calculate the angular distribution of

radiated power of a point dipole (2.38) inside a photonic crystal. It can be interpreted

as a decay rate, at which a dipole transfers energy to the electromagnetic waves with

the group velocity in the observation direction. Then, (dΓ/dΩ) = (dP/dΩ)/~ω0 is

related to the probability of the radiative transition of an excited atom emitting a

photon traveling in the given direction of observation.

Basically, formulae (5.24-5.25) involve calculations of the Bloch wave vectors kν
n,

ending at the iso-frequency surface ωnk = ω0, the corresponding group velocity vectors

Vν
nk, the Gaussian curvature of the iso-frequency surface Kν

nk and the local coupling

strength of the dipole moment with a Bloch eigenwave (n,k), given by the factor

|Aν
nk(r0) · d|. The primary difficulty in obtaining the coordinate space distribution

of radiated power (dP/dΩ) (5.25) is that the wave vector, the group velocity and

the Gaussian curvature are all functions of a k-space direction, whereas, the angular

dependence of the radiative power (dP/dΩ) is given by the corresponding group velocity

direction (θ, φ). To calculate a radiated power (dP/dΩ) (5.25) one should take an

inverse of the mapping (5.19-5.20). However, this inverse is not necessarily unique. In

the case of multiple stationary points (5.4-5.5), one direction (θ, φ) results from several

different k-space directions (θk, φk) (Fig. 5.1). This requires that the inversion of the

mapping (5.19-5.20) must be done point-by-point.

As a simple exercise, formula (5.25) is applied here to calculate the angular distri-

bution of power radiated by a dipole in free space. The wave vector and the group

velocity in free space are parallel and their values are simply given by |k| = ω0/c and

c, respectively. The Gaussian curvature of the iso-frequency surface is a square of the

inverse wave vector 1/ |k|2 and the appropriate normal modes are plane waves:

Ank(r) =

√
V

(2π)3
eik·rânk,

where ânk is a polarization vector orthogonal to the wave vector k. Then, the radiated

power is given by (5.25):

(
dP

dΩ

)

free

=
1

8π

ω4
0

c3
|d|2 sin2 θ (5.26)

yielding the usual results for radiation pattern in free space [9].
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5.3 Photon focusing

The factor |Aν
nk(r0) · d|2 in relation (5.25), giving the coupling strength of dipole mo-

ment with a photonic crystal eigenmode at the dipole position, can display a complex

angular behavior, which depends on eigenmode structure and dipole orientation with

respect to the crystal lattice. To study the net result of the influence of a photonic

crystal on the radiation pattern of an emitter, it is instructive to model an isotropic

light source producing a uniform distribution of wave vectors. Moreover, an isotropic

point source is usually a good model for a common experimental situation of emitters

with random distribution of dipole moments (dye molecules [10, 11, 12], quantum dots

[10, 13], etc.). Then, the radiated power (5.25) should be averaged over the dipole

moment orientation, which simply yields a factor of |d|2 /3:

(
dP

dΩ

)

i

=
∑

n

∑
ν

(2πc)3

V ω2
0

|Aν
nk(r0)|2

|Vν
nk| |Kν

nk|
. (5.27)

Here the result was normalized to the radiated power in free space. Now, the factor

|Aν
nk(r0)|2 gives the field strength at the source position and has no angular dependence.

Thus, the radiation pattern of a point isotropic emitter is defined by:

(
dP

dΩ

)

i

∼
∑

n

∑
ν

|Vν
nk|−1 |Kν

nk|−1 . (5.28)

The radiated power (5.28) is proportional to the inverse group velocity, |Vν
nk|−1,

and to the inverse Gaussian curvature, |Kν
nk|−1 of iso-frequency surface (Sec. 5.2). A

large enhancement of emission rate is expected when the group velocity is small. This

can be interpreted as a consequence of the long interaction time of the emitter and the

radiation field [14, 15, 16]. In a similar fashion, a small Gaussian curvature formally

implies an enhancement of radiated power along a certain observation direction. While

spontaneous emission enhancement due to a small group velocity involves non-linear

interaction of radiation and emitter, an enhancement due to a small Gaussian curva-

ture is a linear phenomenon related to the anisotropy of a photonic crystal and is a

result of the beam steering effect. Being a measure of the rate, at which an emitter

transfers energy in photons with a given group velocity, the radiated power (5.28) will

be enhanced if many photons with different wave vectors reach the same detector. An

enhancement of the radiated power, which is due to a small Gaussian curvature will

be called photon focusing [1, 2] and has a major influence on the radiation pattern of

a point source in a photonic crystal.

The physical picture of the photon focusing can be illustrated in the following

manner (Fig. 5.3). An iso-frequency surface of an isotropic and homogeneous medium
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Figure 5.3: Iso-frequency and wave contours. Left: The central region of the iso-
frequency contour for normalized frequency Ω = ωd/2πc = d/λ = 0.569 of the infinite
square lattice 2D photonic crystal made out of dielectric rods placed in vacuum. Rods
have the optical index 2.9 and radius r = 0.15d, where d is the period of the lattice (see
Sec. 5.4 for details). The stationary points, k1, k2 and k3, corresponding to the same
observation direction x̂ are indicated. Right: Corresponding wave contour with folds.
The shaded and black regions show how two equal solid angle sections in coordinate
space (right) map to widely varying solid angle sections in k-space (left). The wave and
group velocity vectors with numbers illustrate the folds formation of the wave contour.

is a sphere. There is only one stationary point with x̂ · Vν
nk > 0 and thus only one

wave propagating in the given direction. Figure 5.3-left is an example of a part of

the actual iso-frequency contour of a two-dimensional photonic crystal made out of

dielectric rods placed in vacuum (see Sec. 5.4 for further details). The anisotropy

of the crystal implies a complex non-spherical iso-frequency surface, which can have

several stationary points with x̂ ·Vν
nk > 0 (Fig. 5.3-left). Several waves can propagate

in a given direction inside a photonic crystal. It is illustrative to construct the wave

surface in coordinate space. To construct the wave surface one should plot a ray in the

observation direction x̂ starting from the point source position and having the length

of the group velocity |Vν
nk|. An example of the wave contour is presented in figure

5.3-right. The existence of multiple stationary point implies that the wave surface is

a complex multivalued surface parameterized by wave vector kn. Figure 5.3 illustrates

how this can result in a fold of the wave surface.

In the vicinity of the parabolic point with zero Gaussian curvature an iso-frequency

surface is flat. That implies, that a very large number of eigenwaves with wave vectors

in the vicinity of a parabolic point have nearly the same group velocity, contributing

to the energy flux in the direction parallel to that group velocity. In the figure 5.3,

it is illustrated this by mapping two equal solid angle sections along different obser-
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d

Figure 5.4: A two-dimensional photonic crystal: square lattice of dielectric rods in
vacuum, with lattice constant d and radius 0.15d. The point light source is situated
inside the crystal. The square represents a unit cell of the lattice.

vation direction in the coordinate space onto the corresponding solid angle sections

in k-space [17]. The black solid angle section in coordinate space maps onto a single

smaller solid angle section in k-space implying a “defocusing” of the energy flux. The

shaded solid angle section in coordinate space, which crosses three different branches

of the wave contour, maps onto two different and larger solid angle sections in k-space

implying enhancement (“focusing”) of the energy flux in this group velocity direction.

This results in strongly varying angular distribution of emission intensity with sharp

singularities (caustics).

5.4 Numerical example

In this section theoretical approach developed in previous sections is applied to nu-

merical calculations of the radiation pattern of a point source placed inside a two-

dimensional photonic crystal. A point source is placed in the crystal and it produces

an isotropic and uniform distribution of wave vectors kn with the frequency ω0.

An infinite two-dimensional square lattice of dielectric rods in vacuum (Fig. 5.4)

is considered in the case of in-plane propagation of TM polarized light. The photonic

band structure of the crystal made of rods with the refractive index n = 2.9 and radius

0.15d is presented in figure 5.5. Here d is a period of the lattice. The refractive index

is chosen close to that of alumina in the microwave region. In this case the separation

between the center of rods along the lattice vectors should be on the order of a few

centimeters.

In figure 5.6 iso-frequency contours of the two-dimensional square lattice photonic

crystal (Fig. 5.4) are presented for two frequencies belonging to the first photonic

band (Fig. 5.5). To plot an iso-frequency contour, the photonic band structure for all
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Figure 5.5: Photonic band structure of TM modes for the square lattice photonic crystal
(Fig. 5.4) with refractive index of the rods n = 2.9. The frequency is normalized to
Ω = ωd/2πc = d/λ. c is the speed of light in vacuum. Inset shows the first Brillouin
zone of the crystal with the irreducible zone shaded light gray.

wave vectors within the irreducible Brillouin zone was calculated and then an equation

ω(k) = ω0 was solved for a given frequency ω0. Frequencies have been chosen below

(Ω = 0.31) and above (Ω = 0.34) the low edge frequency of the stopband in the ΓX

direction of the crystal (Fig. 5.5). The iso-frequency contours below and above the

stopband edge frequency show an important difference.

As the frequency stays below the stopband, an iso-frequency contour is closed and

almost circular (Fig. 5.6). The corresponding wave contour (see Section 5.3 for def-

inition) is presented in the figure 5.7. The group velocity |Vν
nk| and the Gaussian

curvature |Kν
nk| of the iso-frequency contours are relatively slow functions of the wave

vector. The Gaussian curvature does not vanish for any wave vector. This implies a

small anisotropy in the energy flux inside the crystal (5.28).

To find how the radiated power varies in coordinate space, one should calculate

the group velocity and the Gaussian curvature on the iso-frequency contour ω(k) = ω0

as functions of an angle in coordinate space. As the wave contour is a single-valued

function, the inverse of the mapping (5.19-5.20) from k-space to coordinate space is

one-to-one and can be easily done. In figure 5.8 a polar plot of radiated power (5.28)

is presented, which shows a small amount of anisotropy. The angular distribution of

the radiated power possesses the four-fold rotational symmetry of the crystal.
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Figure 5.6: Iso-frequency contours of the square lattice photonic crystal (Fig. 5.4) for
the normalized frequencies Ω = 0.31 (dashed line) and Ω = 0.34 (solid line). Parabolic
points are marked by black dots. The first Brillouin zone of the lattice is plotted in
order to show the spatial relation between zone boundary and iso-frequency contours.

Increasing the frequency up to the stopband, the topology of an iso-frequency con-

tour changes abruptly. The stopband developed in the ΓX direction and the iso-

frequency contour becomes open (Fig. 5.6). This topology changes result in a complex

contour with alternating regions of Gaussian curvature with a different sign. Parabolic

points, where the Gaussian curvature vanishes, are marked by black dots in the figure

5.6. As discussed in section 5.3, a vanishing curvature results in the folds of the wave

contour. The wave contour corresponding to the iso-frequency Ω = 0.34 is presented in

figure 5.9. A pair of parabolic points in the first quarter of the Brillouin zone results in

a cuspidal structure of the wave contours in the first quarter of the coordinate space.

This dramatically increases anisotropy of the energy flux.

The folds in the wave contours yields that inverse of the mapping (5.19-5.20) from

k-space to coordinate space is no longer one-to-one any more. To apply formula (5.28)

to calculate an angular distribution of radiated power in such a case, one should proceed

as follows. First, the Gaussian curvature as a function of the wave vector should be

calculated. Then, wave vectors and group velocities corresponding to the parabolic

points on the iso-frequency surface should be found. An inversion of the mapping

(5.19-5.20) should be calculated separately for each of the branches of the wave contour.

The total radiated power is the sum of the different contributions from these branches.
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Figure 5.7: Wave contour corresponding to the normalized frequency Ω = 0.31. The
group velocity is plotted in units of the speed of light in vacuum. The symmetry
directions of the square lattice are specified.
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Figure 5.8: Angular distribution of radiative power corresponding to the normalized
frequency Ω = 0.31. High symmetry directions of the square lattice are specified.

In figure 5.10 a polar plot of radiated power (5.28) corresponding to the normalized

frequency Ω = 0.34 is presented. The energy flux is strongly anisotropic for this

frequency, showing relatively small intensity in the directions of the stopband, and
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Figure 5.9: Wave contour corresponding to the normalized frequency Ω = 0.34. The
group velocity is plotted in the units of the speed of light in vacuum. The directions
corresponding to the folds of the wave contour are shown.

infinite intensity (caustics) in the directions of the folds.

To substantiate this behavior, a finite difference time domain (FDTD) calculations

was done [18, 19]. The simulated structure was a 50 × 50 lattice of rods in vacuum.

The crystal is surrounded by an extra 5d wide layer of a free space. The simulation

domain was discretized into squares with a side ∆ = d/32. The total simulation region

was 1920 × 1920 cells plus 8-cell wide perfectly matched layer (PML) [20]. A point

isotropic light source was modeled by a soft source [18, 19] with a homogeneous spatial

dependence and sinusoidal temporal dependence of the signal. All FDTD calculations

presented in this thesis were performed with a commercial tool [21].

In figure 5.11 a map of the modulus of the Poynting vector field is shown, when the

crystal is excited by an isotropic point source at the normalized frequency Ω = 0.34.

The point source is placed in the middle of the crystal. A field map is shown for one

instant time step. The snap-shots were captured after 10000 time steps, where the

time step was 4.38× 10−17 s (0.99 of the Courant value). The structure of the crystal

is superimposed on the field map. The highest values of the field are colored red, while

the lowest are colored blue. From figure 5.11 one can see, that the emitted light is

focused in the directions coinciding with the predicted directions of the folds (black

lines in Fig. 5.11).

In figures 5.12-5.14, a more complicated example of the anisotropy of a photonic

crystal is presented. Iso-frequency contours for three frequencies belonging to the
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Figure 5.10: Angular distribution of radiative power corresponding to the normalized
frequency Ω = 0.34. The directions of infinite radiative power (caustic) coincide with
the directions of the folds of the wave contour (Fig.5.9).

Figure 5.11: FDTD calculation. Map of the modulus of the Poynting vector field for
a 50 × 50 rod photonic crystal excited by a isotropic point source at the normalized
frequency Ω = 0.34. The location of the crystal in the simulation is shown together
with asymptotic directions of photon focusing caustics.

second photonic band of the crystal are plotted in the figure 5.12. While iso-frequency

contours for the normalized frequencies Ω = 0.55 and Ω = 0.58 have non-vanishing
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Figure 5.12: Iso-frequency contours of the square lattice photonic crystal (Fig.5.4) for
the normalized frequencies Ω = 0.55 (red line), Ω = 0.565 (solid and dashed line) and
Ω = 0.58 (blue line). Two branches of the iso-frequency contour of Ω = 0.565 are
plotted as solid and dashed lines. Parabolic points are marked by black dots. The first
Brillouin zone of the lattice is plotted in order to show the spatial relationship between
zone boundary and iso-frequency contours.

Gaussian curvature for all wave vectors leading to only limited anisotropy of the energy

flux, an iso-frequency contour for the normalized frequencies Ω = 0.565 displays several

parabolic points. More over the iso-frequency contour consists of two branched with

slightly different shapes (solid and dashed lines in figure 5.12). Two branches yield two

wave contours with cuspidal folds in coordinate space (Fig. 5.13). Applying the formula

(5.28) to the radiative power calculation, one should sum over contributions coming

from all branches of the wave contours in coordinate space. The angular distribution of

the radiative power at the normalized frequency Ω = 0.565 is presented in figure 5.14.

Within the first quarter of the coordinate space, four caustics with infinite radiated

power present in the energy flux corresponded to four parabolic points on two branches

of the iso-frequency contours.

5.5 Summary

By analyzing a dipole field in the radiation zone it was shown, that the principal

contribution to the far-field of the dipole radiating in a photonic crystal comes from

regions of the iso-frequency surface in the wave vector space, where the eigenwave group
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Figure 5.13: Wave contours corresponding to the normalized frequency Ω = 0.565.
Solid (dashed) wave contour corresponds to solid (dashed) iso-frequency contour in
figure 5.12. The group velocity is plotted in the units of the speed of light in vacuum.
The directions corresponding to the folds of the wave contour are shown.
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Figure 5.14: Angular distribution of radiative power corresponding to the normalized
frequency Ω = 0.565. The directions of infinite radiative power (caustic) coincide with
the directions of the folds of the wave contour.
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velocity is parallel to observation direction x̂. It was also shown that the anisotropy

of a photonic crystal reveals itself in the strongly non-spherical wave front leading

to modifications of both far-field radiation pattern and spontaneous emission rate. By

systematic analysis of the Maxwell equations a simple formulae to calculate the angular

distribution of radiated power due to a point dipole placed in a photonic crystal was

derived. The formulae only involves calculations of the wave vectors, the group velocity

and the Gaussian curvature on an iso-frequency surface corresponding to the frequency

of the oscillating dipole. This can be done by simple plane wave expansion method and

is not computationally demanding. A numerical example was given for a square-lattice

two-dimensional photonic crystal. It was shown by applying developed formalism and

substantiated by FDTD calculations, that if a dipole frequency is within a partial

photonic band gap, a far-field radiation pattern is strongly modified with respect to

the dipole radiation pattern in vacuum, demonstrating suppression in the directions of

the spatial stopband and enhancement in the direction of the group velocity, which is

stationary with respect to a small variation of the wave vector.
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Chapter 6

Radiation pattern of a classical

dipole in a photonic crystal:

self-interference of Bloch

eigenwaves1

The signal detected in the given observation direction far from the radiating dipole

is proportional to the emission rate in this direction. Due to the anisotropy of a

photonic crystal, eigenwaves with significantly different wave vectors can have the same

direction of their group velocities. As it was demonstrated in chapter 5, that leads to

the enhancement of the radiated power of a point dipole in the corresponding group

velocity direction. In the same time, if there are several waves reaching the detector

and there is a relative difference in the lengths or directions of their wave vectors, these

waves can interfere yielding an oscillation in the energy flux distribution at the detector

plane. Thus, the modulation of angle resolved emission spectra from a coherent light

source can be interpreted as the result of both emission rate modification and light

interference at the detector position.

In this chapter, a physical picture of an interference fringes formation in the far-field

radiation pattern of a classical dipole is discussed in the framework of the asymptotic

analysis of Maxwell equations. The evaluation of the asymptotic form of the radiated

field is given in section 6.1. A physical explanation and a relevance of results for

experimental observation are discussed in section 6.2. In section 6.3 numerical examples

are given. The main results of the chapter are summarized in section 6.4.

1This chapter is based on: D. N. Chigrin, “Radiation pattern of a classical dipole in a photonic
crystal: self-interference of Bloch eigenwaves,” manuscript in preparation for Phys. Rev. E
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6.1 Asymptotic form of dipole field

Strictly speaking, the asymptotic behavior of the vector potential (5.14) is valid only

if quadratic terms in the expansion (5.9) do not vanish, so that all higher order terms

in the expansion can be neglected. A parabolic point of the iso-frequency surface is an

example of vanishing quadratic terms in (5.9). Generally, the Gaussian curvature is

zero at a parabolic point and one (both) of the principal curvatures of the iso-frequency

surface is zero. Actually, the asymptotic behavior of the vector potential changes at

parabolic points, i.e., the dependence of the vector potential on the inverse distance

(∼ |x|−1), changes to a power dependence upon the inverse distance.

As an illustration one can consider the simple parabolic point k0 = k0
n in the vicinity

of which the function h (ξ1, ξ2) = kn · x̂ has the expansion:

h (ξ1, ξ2) = k0 · x̂0 +
1

2
αξ2

1 +
1

6
βξ3

2 , α = α0
11, β = β0

111, (6.1)

where x̂0 is the unit vector in the direction normal to the iso-frequency surface at the

parabolic point k0. The local curvilinear coordinates ξi has the origin at the parabolic

point k0, with the coordinates ξ1 and ξ2 aligned along the directions of the principal

curvatures of the iso-frequency surface at this point and with the coordinate ξ3 aligned

along x̂0. For the parabolic point k0 one of the principal curvatures vanishes (α0
22 = 0),

while another principal curvature remains non-zero. Using the expansion (6.1) the

asymptotic form of the field (5.8) is given by:

A(r) ≈ 4π2c

V

(a∗0(r0) · d) a0(r)

|V0| eik0·x

×
∮ ∞

−∞
dξ1dξ2 exp

(
i |x|

(
α

2
ξ2
1 +

β

6
ξ3
2

))
, (6.2)

where A0(r) = a0(r)e
ik0·r and V0 are the vector potential and the group velocity of

the Bloch eigenwave associated with the parabolic point k0, respectively. Calculating

the integral in (6.2), apart from the integral

∫ ∞

−∞
dξ exp

(
i
xα

2
ξ2

)
=

√
2π

x |α| exp

(
− iπ

4
sing (α)

)
(6.3)

for the direction ξ1, one has another integral for direction ξ2, namely:

∫ ∞

−∞
dξ exp

(
i
xβ

6
ξ3

)
=

3
3
√

x |β|Γ
(

4

3

)
, (6.4)

where Γ
(

4
3

)
is the Gamma function. Now, combining (6.3) and (6.4) the following
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Figure 6.1: Plot of the Airy function [Ai (x2/a)]2 (solid line) and its mean value

(1/4π)−1 (x2/a)−1/2 (dashed line). The dashed line can be considered as the “geo-
metrical optics” approximation of the Airy function.

expression for the asymptotic vector potential associated with the parabolic point (6.1)

can be obtained:

A(r, t) ≈ exp

(
−i

(
ω0t +

iπ

4
(sign(α))

))
Γ

(
4

3

)

× c

V

(A∗
0(r0) · d)A0(r)

|V0|
12
√

2π5

|α|1/2 |β|1/3 |r− r0|5/6
. (6.5)

The amplitude of the vector potential in (6.5) is proportional to |x|−5/6 in contrast

to the inverse dependence on distance of the asymptotic vector potential (5.14). Then

the emission intensity associated with a parabolic point falls off with the distance as

|x|−5/3 in contrast to the usual inverse square law |x|−2 for other directions. If there

are no additional singularities on the parabolic line, the product |α| |β|1/2 ∼ K, where

K is the Gaussian curvature at an arbitrary point of the iso-frequency surface. Then

the emission intensity is also proportional to K−1 |β|−1/6. Thus, at large |x|, the energy

flux along the direction corresponding to a parabolic point on the iso-frequency surface

exceeds the energy flux along the direction corresponding to an elliptical point by a

factor |x|1/3 |β|1/6.

The expression (6.5) gives an asymptotic vector potential in the direction x̂0 asso-

ciated with a parabolic point on the iso-frequency surface k0, i. e., in the direction of

the group velocity at the parabolic point. Now, the asymptotic field for directions x̂
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near the direction of that group velocity will be calculated. As before, the origin of

the coordinates ξi is chosen at the parabolic point, where the direction x̂ is coincides

with direction x̂0. It is assumed, that the principal curvature vanishes in the ξ2 direc-

tion. Let the position x (x‖x̂) be described by coordinates xi, which have the same

orientation as the coordinates ξi. Then, since x is nearly parallel to x̂0 one has from

(6.1):

ξ3 =
1

2
αξ2

1 +
1

6
βξ3

2

and

kn · x ≈ k0 · x + ξ1x1 + ξ2x2

+

(
1

2
αξ2

1 +
1

6
βξ3

2

)
x3. (6.6)

Using expansion (6.6) the asymptotic form of the field (5.8) is given by:

A(r) ≈ 4π2c

V

(a∗0(r0) · d) a0(r)

|V0| eik0·x

×
∫ ∞

−∞
dξ1e

i(x1ξ1+ 1
2
α|x|ξ2

1)
∫ ∞

−∞
dξ2e

i(x2ξ2+ 1
6
β|x|ξ3

2) (6.7)

where the fact that |x| and x3 are approximately equal was used. The integral in (6.7)

over ξ1 is calculated simply to be:

∫ ∞

−∞
dξ1e

i(x1ξ1+ 1
2
α|x|ξ2

1) =

√
2π

|α|1/2 |x|1/2
e−i

x2
1

2α|x| e−
iπ
4

sign(α),

while the integral over ξ2 results in:

∫ ∞

−∞
dξ2e

i(x2ξ2+ 1
6
β|x|ξ3

2) =
24/3π

|β|1/3 |x|1/3
Ai

(
x2

21/3

|β|1/3 |x|1/3

)
,

where Ai is the Airy function. Then the asymptotic vector potential (6.7) is finally

given by:

A(r, t) ≈ c

V
exp

(
−i

(
ω0t +

x2
1

2α |x| +
π

4
sign (α)

))

× (A∗
0(r0) · d)A0(r)

|V0|
8π325/6π

|α|1/2 |β|1/3 |r− r0|5/6
Ai

(x2

a

)
, (6.8)

where a = (|β| |x| /2)1/3.

As in the case of the asymptotic field (6.5), the amplitude of the vector potential in

(6.8) is proportional to |x|−5/6 and K−1/2 |β|−1/12. This causes the energy flux in the
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direction x to fall off as |x|−5/3 and exceeds the energy flux along the other directions in

the ratio |x|1/3 |β|1/6. The dependence of the energy flux in the plane of the vanishing

principal curvature is given by the square of the Airy function [Ai (x2/a)]2. When x2/a

is positive, the energy flux is small and drops exponentially while the angle between

the direction of observation and the direction corresponding to the parabolic point

increases (Fig. 6.1). For negative x2/a, the flux oscillates rapidly and has a mean value

averaged over one cycle proportional to ∼ (x2/a)−1/2 (Fig. 6.1). The mean value of

the energy flux is then proportional to |α|−1 |β|−1/2 ∼ K−1 and |x|−2 and coincides

with the asymptotic energy flux associated with an elliptical point of the iso-frequency

surface (5.14), demonstrating focusing of the energy flux in the direction corresponding

to the parabolic point of the iso-frequency surface.

6.2 Interference of Bloch eigenwaves

In the far field, where the source-to-detector distance is much larger than the source

size and the wavelength, the part of the wave surface limited to the small solid angle

can be approximated to a Bloch eigenwave with its group velocity within this angle.

Then, for the direction near the fold of the wave surface (Figs. 5.3 and 6.2) the field is a

superposition of three Bloch eigenwaves (Fig. 6.2). If there is a relative difference in the

lengths or directions of the wave vectors of these Bloch eigenwaves, the eigenwaves can

interfere yielding oscillations in the energy flux distribution. Two general conditions

are required for interference to occur. The polarization states of the Bloch eigenwaves

must be nonorthogonal and the Bloch eigenwaves must overlap in space [1]. This kind

of interference of the Bloch eigenwaves will be called further a self-interference, to

stress the fact that the field produced by the light source inside a photonic crystal can

interfere with itself producing an interference patten in the energy flux distribution. A

similar self-interference effect also happens in the case of ballistic phonons propagation

in an acoustically anisotropic crystals [2, 3].

For a more qualitative measure of the self-interference effect an iso-frequency surface

superimposed on a photonic crystal is considered in figure 6.3. Here the evaluation

presented by Hauser et al. [3] for the self-interference of ultrasound in a crystal is

followed. In figure 6.3, dots are parabolic points of zero curvature. A light source

is located near the bottom surface of a photonic crystal and generates an uniform

distribution of wave vectors. A Bloch eigenwave with wave vector k0 propagates with

the group velocity V0, normal to the iso-frequency surface at k0, arriving at a point R0

on the opposite surface of the crystal. Near a parabolic point the iso-frequency surface

is practically flat, neighboring wave vectors have nearly the same group velocity. This

gives rise to the high-intensity caustic in the detected intensity distribution (Fig. 6.3-
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Figure 6.2: Diagram illustrating the self-interference of the Bloch eigenwaves in a
photonic crystal. A section of the wave surface with a fold is shown (thick solid line).
An asymptotic intensity (solid line) displays oscillations as the angle passes the fold
section of the wave surface. An asymptotic intensity in the “geometrical optics” limit
demonstrates focusing caustics in the direction of the folds (dashed line). Within
a small solid angle the far-field of a point source arises from the superposition of
three Bloch eigenwaves with different wave vectors. These Bloch eigenwaves interfere
leading to oscillations in the intensity distribution. For clarity only two wave vectors
are illustrated.

left). If the detector is moved to a point R1 slightly away from R0, two distinct Bloch

eigenwaves with different wave vectors k′1 and k′2 near k0 arrive at the detector (Fig. 6.3-

right). If the surface were perfectly flat near k0, then k′1 ·R1 = k′2 ·R1, and the two

eigenwaves would always remain in phase at the detector, interfering constructively. In

reality the iso-frequency surface is curved near the parabolic point, so as R1 is rotated

downward the corresponding waves begin to interfere destructively, producing an Airy

pattern (Figs. 6.1-6.3). If k′1 and k′2 are close to k0, and q ≡ k′1 − k0 ≈ k′2 − k0, then

destructive interference will take place, if the total phase difference of the light as it

travels through the sample, 2q ·R1, is an odd integer multiple of π.

Strictly speaking, there is one more Bloch eigenwave following in the observation

direction in the fold region of the wave surface (Figs. 6.2-6.3). This eigenwave is

depicted as k1 and k′3 in the left and right panels of figure 6.3, respectively. To obtain

a complete picture of the self-interference near the fold of the wave surface, a three-

wave interference should be taken into account, which would lead to more complicated

interference patterns in the intensity distribution. Here, the influence of this third

eigenwave is neglected for simplicity, hence this eigenwave usually has a relatively
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Figure 6.3: Schematics of self-interference in a photonic crystal. The iso-frequency
surface is a sketch of the iso-frequency surface of a real 2D photonic crystal. The plot
on the top is the detected intensity distribution. Left: For the wave vector k0, the
group velocity is V0 and the wave arrives at R0. Right: There are two eigenwaves with
different wave vectors k′1 and k′2, the group velocities of which ( V′

1 and V′
2 respectively)

point in the same direction R1. The difference in the wave vectors of these eigenwaves
results in the waves arriving at R1 with different phases leading to interference. Slow
eigenwaves contributing to the total flux in the observation direction are depicted as
k1 and k′3 (see text for further details).

small group velocity and could arrive at the detector too late to interfere with the

eigenwaves k′1 and k′2.

From the perspective of the self-interference effect, the mean value of the asymp-

totic energy flux (6.8) averaged over one cycle of Airy oscillations can be viewed as

a “geometrical optics” approximation of the actual energy flux. This approximation

then corresponds to the ray description of wave propagation, where the energy flux is

simply proportional to the density of rays crossing a detector surface. In this picture

the interference among different rays is neglected. As it has been mentioned above, the

mean value of the asymptotic flux (6.8) coincides with the asymptotic energy flux (5.14)

derived for elliptical points of the iso-frequency surface. So, the asymptotic energy flux

corresponding to an elliptical point can be also considered as a “geometrical optics”

approximation, and can be used for all points of the iso-frequency surface within this

approximation.

In a typical experiment the differences between the energy flux (6.8) and its “geo-

metrical optics” approximation (5.14) will be reduced by the effect of the finite size of

105



the light source and the detector. It is clear that if the linear dimensions of the source

area and detector are L, the intensity is averaged over x2 values with a spread of L.

To see the oscillations of the energy flux one therefore needs L ≤ ∆θ × R1, where R1

is the distance between the source and the detector and ∆θ is an angular separation

of the fringes of intensity distribution.

To estimate this angular separation, Bloch eigenwaves k′1 and k′2 are further ap-

proximated by plane waves. Then their superposition at the detector position R1,

assuming that they have the same polarization, is:

eik′1·R1 + eik′2·R1 = 2 cos (∆k ·R1) eik0·R1 ,

which is a plane wave with average wave vector k0 = (k′1 + k′2) /2, modulated by a

cosine function with effective wave vector ∆k/2 = (k′2 − k′1) /2. When ∆k · R1 =

∆k‖R1 = π, the waves interfere destructively at the detector. To estimate ∆k‖ a local

Cartesian coordinate system ξi with the origin at k0 and ξ3 along V0 is chosen as it is

shown in figure 6.3-left. Then, an iso-frequency surface near the parabolic point can

by parameterized as ξ3 = −aξ3
2/k0 and ∆k‖ = −2ξ3 = 2aξ3

2/k
2
0. Therefore, the first

minimum in the intensity will occur when

ξ2 =
(
πk2

0/2aR1

)1/3 ∼ R
−1/3
1 λ−2/3,

where λ = 2π/k0 is the average wavelength. Finally, the coordinate-space angle be-

tween the intensity maximum and the first minimum is given by [3]:

∆θ ≈ |V′
1 −V0| /V0 = 3a (π/2ak0R1)

2/3 ∼ (λ/R1)
2/3 . (6.9)

Then for an optical wavelength, e.g., 500 nm, and a distance to the detector of 1

cm, the linear dimension of the light source and the spatial resolution of the detector

should be smaller than 10 µm. Thus, in most experiments the “geometrical optics”

approximation reasonably represents an asymptotic emission intensity of a light source

inside a photonic crystal.

6.3 Numerical example

In this section different approximations of the light emission pattern discussed in pre-

vious sections are compared. Numerical calculations are performed for a point source

placed inside a two-dimensional polymer photonic crystal. A point source produces an

isotropic and uniform distribution of wave vectors kn with the frequency ω0. Polymer

has the refractive index 1.56 . Radius of holes is r = 0.15d, where d is the lattice
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Figure 6.4: Photonic band structure of the square lattice of air holes made in a polymer
with refractive index 1.56. Radius of holes is r = 0.15d, where d is the lattice period.
The band structure is given for TM polarization. The frequency is normalized to
Ω = ωd/2πc = d/λ. c is the speed of light in the vacuum. Insets show the first
irreducible Brillouin zone (right) and a part of the lattice (left).

Figure 6.5: Iso-frequency contour of the square lattice photonic crystal (Fig. 6.4) for
the normalized frequence Ω = 0.333. Parabolic point are marked by the black dots.
The first Brillouin zone of the lattice is plotted in order to show the spatial relation
between zone boundary and iso-frequency contours.
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Figure 6.6: Wave contour corresponding to the normalized frequency Ω = 0.333. The
group velocity is plotted in units of the speed of light in vacuum. The directions
corresponded to the folds of the wave contour are shown.

period. The refractive index is chosen close to that of polystyrene in the optical region.

In this case the separation between the center of rods along the lattice vectors should

be on the order of a few hundreds micrometers. The photonic band structure for TM

polarized light is presented in the figure 6.4.

As it was pointed out in section 6.1, the main contribution to the far-field of a

point source inside a photonic crystal comes from the vicinity of the wave vector of

the eigenmodes with the group velocity in the observation direction. That means that

the far-field emission intensity of a point source is mainly given by the square of the

integral in (5.8)

Iw ∼
∑

n

∣∣∣∣
∮ ∞

−∞
d2kneikn·(r−r0)

∣∣∣∣
2

. (6.10)

In the “geometrical optics” approximation (5.14) the main contribution to the far-

field emission intensity is given by an inverse Gaussian curvature of the iso-frequency

surface,

Ig ∼
∑

ν

∑
n

|Kν
nk| .−1 (6.11)

The iso-frequency contours for the normalized frequency Ω = 0.333 is presented

in figure 6.5. The frequency belongs to the first photonic band and it is within the

first stopband in the ΓX direction of the crystal. The iso-frequency contour is an

open contour and has alternating regions of Gaussian curvature with a different sign.
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Figure 6.7: Angular distribution of radiative power corresponding to the normalized
frequency Ω = 0.333. The directions of infinite radiative power (caustic) coincide with
the directions of the folds of the wave contour (Fig. 6.6).

Parabolic points, where the Gaussian curvature vanishes, are marked by black dots in

the figure 6.5. A vanishing curvature results in the folds of the wave contour and in

the focusing of the light in the folds direction. The wave contour corresponding to the

iso-frequency Ω = 0.333 is presented in figure 6.6. A pair of parabolic points in the

first quarter of the Brillouin zone results in a cuspidal structure of the wave contours

in the first quarter of the coordinate space. In the figure 6.7 a polar plot of the main

contribution to the far-field intensity (6.11) is presented. The energy flux is strongly

anisotropic, showing relatively small intensity in the directions of the stopband, and

infinite intensity (caustics) in the directions of the folds.

In figure 6.8 a comparison of the “geometrical optics” (6.11) and “wave optics”

(6.10) approximations of the far-field emission intensity is given. A normalized inverse

Gaussian curvature of the iso-frequency surface Ω = 0.333 is presented in the top

panel. Focusing directions, 23◦ apart from the [11] direction of the square lattice, are

clearly seen. The integral (6.10) evaluated at a distance 100 periods apart from the

point source is given in the middle and bottom panels of figure 6.8. A normalized

intensity distribution presented in the middle panel was calculated by reducing the

integration limits in (6.10) to the close neighborhood of the parabolic point of the

iso-frequency surface. Then the result of the integration is similar to one in (6.8)

and an angular distribution of the emission intensity resembles the square of the Airy

function. In practice, this approximation takes into account an interference of only
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Figure 6.8: “Geometrical optics” Eq. (6.11) and “wave optics” Eq. (6.10) approxi-
mations of the far-field emission intensity. Normalized frequency is Ω = 0.333. The
distance between a point source and a detector is 100 lattice periods. The top panel
is for the “geometrical optics” approximation. The middle and bottom panels are for
the “wave optics” approximations. See text for more details.

two Bloch eigenwaves in the fold region. If the three wave interference is taken into

account, by extending the integration limits in (6.10) over all iso-frequency surface in

the first quarter of the Brillouin zone, a more complex interference pattern appears

in the angle resolved emission intensity distribution (Fig. 6.8-bottom). Both “wave
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Figure 6.9: An asymptotic map of the intensity distribution inside a 50 × 50 periods
photonic crystal. The normalized frequency is Ω = 0.333. The structure of the crystal
is superimposed on the field map. The highest values of the field are colored red; the
lowest are colored blue. Fold directions are shown by black lines.

optics” approximations show an intensity enhancement along the fold directions.

In figure 6.9 a two dimensional map of the intensity distribution inside a 50 × 50

periods photonic crystal is presented. The intensity distribution was calculated using

(6.10) by integrating over the complete iso-frequency contour Ω = 0.333. The structure

of the crystal is superimposed on the field map. The highest values of the field are

colored red; the lowest are colored blue. Fold directions are shown by black lines. A

focusing of the light in the fold direction together with an Airy-like oscillations between

folds directions are clearly seen in figure 6.9.

To substantiate the results of the asymptotic analysis, FDTD calculations were

done [4, 5]. The simulated structure was a 50×50 lattice of air holes in a polymer with

refractive index n = 1.56 and holes radius is r = 0.15d. The crystal is surrounded by

an extra 2d wide layer of polymer. The simulation domain was discretized into squares

with a side ∆ = d/32. The total simulation region was 1728 × 1728 cells plus 8-cell

wide perfectly matched layer (PML) [6]. An isotropic point light source was modeled

by a soft source [4, 5] with a homogeneous spacial dependence and sinusoidal temporal

111



Figure 6.10: FDTD calculation. Map of the modulus of the Poynting vector field for
a 50 × 50 rod photonic crystal excited by an isotropic point source at the normalized
frequency Ω = 0.333. The location of the crystal in the simulation is shown together
with asymptotic directions of photon focusing caustics.

dependence of the signal.

In figure 6.10 the map of the modulus of the Poynting vector field is shown, when

a 50 × 50 periods crystal is excited by an isotropic point source at the normalized

frequency Ω = 0.333. The point source is placed in the middle of the crystal. A field

map is shown for one instant time step. The snap-shots were captured after 10000 time

steps, where the time step was 4.38×10−17 s (0.99 of the Courant value). The structure

of the crystal is superimposed on the field map. The highest values of the field are

colored red; the lowest are colored blue. It is seen, that the emitted light is focused

in the directions of the folds (black lines). Moreover, an interference pattern between

the folds directions is in a reasonable agreement with an interference pattern predicted

using an asymptotic analysis (Fig. 6.9). For the FDTD calculations, a periodic modu-

lation of the intensity in the radial direction (Fig. 6.10) will go away if time averaging

is performed. A comparison of the intensity distribution 20 periods apart from the

point source is given in figure 6.11. A reasonable agreement between interference min-

ima and maxima positions for the asymptotic (solid line) and the FDTD (dashed line)
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Figure 6.11: A comparison of the intensity distribution of the asymptotic (solid line)
and the FDTD (dashed line) calculations. The distance between a point source and a
detector is 20 lattice periods in both cases.

calculations is shown. A disagreement in the absolute values of the angular intensity

distributions is mainly because of prefactor of the integral in (5.8) which was neglected

in (6.10) for simplicity.

6.4 Summary

In this chapter it was shown that the intensity modulation of angle resolved emission

spectra can be both due to the emission rate modification and the interference of

several photonic crystal eigenmodes with different wave vectors approaching detector

at the same time. Using an asymptotic analysis of Maxwell’s equations, “geometrical

optics” and “wave optics” approximations of the dipole field in the radiation zone

were introduced. The physical reasons for the interference pattern formation and the

possibilities of experimental observation of them were discussed. A numerical example

was given in the case of polymer two-dimensional photonic crystal. It was shown

that rigorous FDTD calculations are in a reasonable agreement with the developed

approximate analysis.
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Chapter 7

Angular distribution of emission

intensity in inverted opals1

In general, photonic crystal possesses a lattice periodicity on the light wavelength scale.

This constraint sets a serious challenge to fabricate a three-dimensional photonic crys-

tal operating in the visible. There are several approacher towards three-dimensional

photonic crystals, such as a sequential layer-by-layer stacking of two-dimensional struc-

tures fabricated by electron-beam lithography [1, 2] or parallel processing by focused

ion beam etching [3], autocloning [4] or light interference lithography [5, 6, 7]. So far,

the only three-dimensional photonic crystal in the visible are opals [8, 9, 10]. In this

chapter, experimental results, obtained at the University of Wuppertal (Wuppertal,

Germany) [11], on the photoluminescence (PL) of dye molecules embedded in a three-

dimensional opaline photonic crystal with a directional bandgap are analyzed within

the theoretical model developed in chapter 5.

Opals are composed from identical-size dielectric spheres self-assembled in the face-

centered cubic (fcc) lattice [8]. Empty interstitials between dielectric spheres can be

infilled with another material to produce complex composites from, e.g. high refractive

index semiconductors [9]. Spheres of opal can be then dissolved leaving behind inverted

opals consisting of the semiconductor carcass and air spheres. In the inverted opal the

filling fraction of dielectric is less than 26 volume percents, which favors opening of the

complete photonic bandgap, if the refractive index of dielectric exceeds the threshold

value of 3.0 [12]. Several examples of Si- [13] and Sb2Se3-inverted [14] opals with large

1This chapter is based on: S. G. Romanov, D. N. Chigrin, V. G. Solovyev, T. Maka, N. Gaponik,
A. Eychmuller. A. L. Rogach, C. M. Sotomayor Torres, “Light emission in a directional photonic
bandgap,” Phys. Stat. Sol. (a) 197 662–672 (2003); D. N. Chigrin, T. Maka, S. G. Romanov and C.
M. Sotomayor Torres, “Angular distribution of emission intensity in inverted opals,’’ manuscript in
preparation for Phys. Rev. E
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enough contrast have been realized for the near-infrared part of the spectrum, but no

complete photonic bandgap in the visible have been reported so far. For this reason

all reported experiments in the visible were performed with opal photonic crystals

of a directional bandgap. The gap, which is, usually, addressed in experiments, is

the one due to the Bragg diffraction resonance on a stack of (111) planes of opal.

In the case of opals made from dielectric or air spheres, the midgap frequency of

the Bragg resonance changes dramatically with the angle of observation due to the

lattice symmetry. Correspondingly, one can expect the anisotropy of those emission

phenomena, which relate to the Bragg stopband.

In section 7.1, a brief description of experimental results is given. An angular

distribution of radiated power of an isotropic point light source is analyzed in section

7.2. The enhancement of photoluminescence in some directions is explained in terms

of photon focusing. A comparison of experimental and theoretical results is given in

section 7.3. A summary is presented in section 7.4.

7.1 Photoluminescence directionality diagrams

The samples under study were inverted opal films of ∼ 1 cm2 area. The crystals have

been formed by infilling the voids of the fcc lattice of the poly-methyl-methacrylate

(PMMA) beads with SnS2 and subsequent removal of the PMMA. PMMA spheres were

crystallized in the fcc lattice with (111) planes along the substrate plane (Fig. 7.1).

The beads diameter of studied samples was D ≈ 300 nm. Samples were prepared at

the University of Mainz (Mainz, Germany), further details are given elsewhere [15].

In the right panel of figure 7.2, the transmission spectrum of the inverted crystal

is presented for normal incidence. Transmission spectra were measured under white

light illumination from a tungsten lamp. The transmitted light was collected at a

solid angle of approximately 2◦. The Bragg stopband covers the energy region between

1.96− 2.30 eV. The suppression of the transmission is about 20 times near the Bragg

stopband center. The Bragg stopband corresponds to the first photonic bandgap of

the opaline photonic crystal, which is open in the [111] direction of the fcc lattice.

In the left panel of figure 7.2, photonic band structure, calculated using the plane-

wave expansion method [16], is presented. The best fit to experimental data has been

obtained for the crystal modeled by the fcc lattice of overlapping air spheres with

diameter D = 304 nm in a dielectric background with a refractive index n = 2.3 and

a filling fraction of 13%. The refractive index of the bulk SnS2 is nb = 3.4 at the

absorption bandedge, so an effective refractive index n = 2.3 means that the inverted

opaline photonic crystal is porous and SnS2 occupies only a part of the avaliable free

volume in the PMMA template [15]. A calculated Bragg stopband spans the frequencies
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Figure 7.1: Scanning electron microscopy image of the inverted opal film. One can see
a hexagonal lattice, which corresponds to the (111) plane of the fcc lattice. (Courtesy
of Dr. S. G. Romanov, University of Wuppertal.)

from 0.670 to 0.775 (2πc/a), here a =
√

2D is the lattice constant, showing a good

agreement with experimental data. The gap width to midgap frequency ratio ∆ω/ω is

about 14.5%.

The midgap frequency of the Bragg stopband changes dramatically with the angle

of observation due to the lattice symmetry (Fig. 7.2-left). It is instructive to describe

the spatial anisotropy of electromagnetic wave propagation in opals using the concept of

the Bragg cone, which is defined as the angular interval covered by the Bragg stopband

at a given frequency or the corresponding interval of wave vectors in the k-space. If the

aperture of the collecting optics is less than the angular width of the Bragg cone, then

there will be no ballistic eigenmodes of allowed bands, which propagate linearly along

the photonic bandgap direction. The Bragg cone changes its width with frequency,

which allows comparison of the spontaneous emission inside and outside the bandgap

at the same frequency by changing the observation direction.

The study of emission from opals require integrating them with light sources. One

can use laser dyes [17, 18], rare-earth ions [19] or semiconductor nanocrystals [17, 20] for

this purpose. In the experiments discussed here [11], the dye perylene was chosen as a

light source. Perylene dye molecules were placed inside the inverted crystal penetrating

the porous carcass by immersing it in a 2.5 g/l perylene in chloroform solution and

subsequent drying [18]. The emission band of a perylene dye overlaps with the Bragg

stopband of the samples studied. Dye molecules have been homogeneously distributed
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Figure 7.2: Photonic band structure (left) and normalized transmission spectrum
(right) of SnS2 inverted opaline photonic crystal recorded at normal incidence. Arrows
mark energies at which angle resolved PL spectra have been obtained. The frequency
is normalized to Ω = ωa/2πc. c is the speed of light in vacuum.

over the internal surface of air spheres. The photoluminescence was excited by the

351 nm line of an Ar+-laser operating in continuous-wave (CW) mode and collected

within a 5◦ fraction of the solid angle from the sample face opposite to that exposed

the laser beam.

In figure 7.3, the angle resolved PL intensity (directionality diagrams) measured far

from the sample are shown (solid line with filled dots). To obtain the directionality

diagrams the PL intensity at a given frequency was measured as a function of the angle,

θ, by rotating the sample. Given the [111] growth direction of the opal lattice with

respect to the substrate, the angle θ is a measure of the detection angle with respect

to the normal to (111) planes. In order to take into account the intensity increase due

to the longer optical path of the laser beam in the film, the resulting diagrams were

multiplied by cos θ.

The evolution of experimental directionality diagrams can be described as follows

(Fig. 7.3). At frequencies below the Bragg stopband it acquires a bell-like shape, which

is slightly narrower than the directionality pattern of the Lambert law [21] shown by

the red line. When the sample frequency enters the Bragg stopband range from its

low-energy side, the directionality pattern shows two lobes centered approximately

at θ = ±20◦ with respect to the [111] axis. A further increasement in frequency

results, firstly, in the increase of the lobe angular separation and, secondly, in the

development of a third lobe corresponding to [111] direction. The central lobe grows

steadily with increasing frequency, whereas the magnitude of side lobes, which are set

at approximately θ = ±40◦ after the emergence of the central lobe, gradually decreases.
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Figure 7.3: Angle resolved PL intensity of the perylene dye-loaded inverted opaline
photonic crystal (solid line with dots). The Lambert law (red line) is shown for com-
parison. The detection angle θ = 0◦ corresponds to the [111] direction of the fcc
lattice. The energies are those of Fig. 7.2. (Courtesy of Dr. S. G. Romanov, University
of Wuppertal.)

At frequencies above that of the upper frequency edge of the Bragg stopband along

the [111] direction the directionality diagram acquires a shape elongated towards the

central lobe with the small side lobes.

At frequencies within the Bragg stopband, the angle resolved PL intensity shows

a common behavior. When compared with emission intensity in free space (red line

in Fig. 7.3), the PL intensity of the dye in the inverted opal is suppressed near the

[111] direction and it is enhanced at some angle with respect to the [111] direction of

the fcc lattice (Fig. 7.3). If an effective channel of non-radiative recombination exists

in the system, the PL intensity is directly proportional to the spontaneous emission

rate [22]. Thus, for the emission of dye in an opal, one can claim a suppression and an

enhancement of spontaneous emission rate with respect to free space in some spatial

directions for the frequencies within the Bragg stopband.
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Cut A

Cut B

Figure 7.4: The first Brillouin zone and a schematic view of the iso-frequency surface
corresponding to the first photonic band of an inverted opal photonic crystal for a
frequency inside the Bragg stopband. The iso-frequency surface of the second band
has a similar topology and is not shown for clarity.

7.2 Angular distribution of radiated power

In the angle resolved measurements, the PL intensity in the given observation direction

is averaged only over a small solid angle near this direction. At the same time, dipole

moments of dye molecules are randomly distributed in space, so the emission intensity

should be averaged over the dipole moment orientation. As it was shown in chapter 5,

in this situation the radiated power per solid angle in coordinate space is given by

relation (5.28), which reads as

(
dP

dΩ

)

i

∼
∑

n

∑
ν

|Vν
nk|−1 |Kν

nk|−1

where Vν
nk is the group velocity and Kν

nk is Gaussian curvature of iso-frequency surface.

Summation over ν is over all Bloch eigenwaves having their group velocity vectors

pointing in the observation direction, while summation over n is over all photonic

bands.

A schematic view of the iso-frequency surface of an inverted opaline photonic crystal

is presented in figure 7.4 for a frequency inside the Bragg stopband. The iso-frequency

surface of inverted opaline photonic crystal deviates from a sphere mainly near the [111]

directions. Here the Bragg stopband is open and the iso-frequency surface is strongly

distorted, forming a neck. Such a surface consists of alternating regions with nega-
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Figure 7.5: Iso-frequency contours for the frequencies below (dashed), inside (solid)
and above (dotted) the Bragg stopband, where the normalized frequencies, Ω, are 0.64,
0.72 and 0.80. Iso-frequency contours are shown for two cuts of the first Brillouin zone
of the fcc lattice, cut A (top) and cut B (bottom) as depicted in Fig. 7.4.

tive and positive Gaussian curvature separated by the parabolic lines with vanishing

curvature.

In figure 7.5, iso-frequency contours are presented for three different frequencies: be-

low (Ω = 0.64), inside (Ω = 0.72) and above (Ω = 0.80) the Bragg stopband (Fig. 7.2).

The iso-frequency contours are plotted for two cuts of the Brillouin zone containing

[111] direction. They cut the Brillouin zone through the symmetry points K, W, L and

Γ (cut A) and through the points X, U, L and Γ (cut B). Cuts are depicted in figure

7.4 by dotted and dashed lines, respectively. The cut A displays a mirror symmetry

about [111] axis, while the cut B does not. In what follows, an angular distribution

of the radiative power will be presented only for the symmetric cut A. It is assumed

here, that the macroscopic measurements of the PL intensity average away the differ-

ence among Brillouin zone cuts, leading to the angular intensity distribution possessing

mirror symmetry about the [111] direction.

As the frequency stays below the stopband, an iso-frequency contour is closed and

almost circular (Fig. 7.5). The Gaussian curvature does not vanish for any wave vector.

This results in a small anisotropy in the energy flux inside the crystal. A wave contour,

corresponding to the normalized frequency Ω = 0.64, is presented in the figure 7.6 (a)

for the first photonic band of the opaline photonic crystal. The wave contour is a

single valued function of the observation direction [Fig. 7.6 (a)]. In figure 7.7 (a), an

angular distribution of the radiated power for the normalized frequency Ω = 0.64 is
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Figure 7.6: Wave contours corresponding to normalized frequencies Ω = 0.64 (a),
Ω = 0.72 (b) and Ω = 0.80 (c). Only the wave contours corresponding to the first
and third bands are shown in the diagrams (a-b) and (c), respectively. The light grey
region in (b) is a stopband. The group velocity is given in units of the speed of light
in vacuum. The dashed circle is a wave contour in vacuum.

presented. It shows small amount of anisotropy and reasonably resembles the Lambert

law (dashed line). To calculate the radiated power (5.28), one should sum over all

photonic bands, which are avaliable at the given frequency. It is assumed here, that

the probability of the emission coupling with a given band is equal for all bands.

With increasing the frequency up to the stopband, the topology of an iso-frequency

contour changes abruptly. The stopband developed in the [111] direction and the iso-

frequency contour becomes open (Fig. 7.5). These topology changes result in a complex

contour with alternating regions of different Gaussian curvature. The vanishing cur-

vature results in the folds of the wave contour. The wave contour corresponded to the

iso-frequency Ω = 0.72 is presented in the figure 7.6 (b) for the first photonic band

of the opaline photonic crystal. The folds in the wave contours yield that two Bloch

eigenwaves are traveling in any observation direction outside the stopband. Contri-

butions from both eigenwaves should be taken into account, when the total radiated

power is calculated. In figure 7.7 (b), an angular distribution of the radiative power

corresponding to the normalized frequency Ω = 0.72 is presented. The energy flux is

strongly anisotropic for this frequency, showing zero intensity in the direction of the

stopband, and infinite intensity in the direction of the folds of the wave contours (at

approximately θ = ±40◦ with respect to the [111] direction).

When the frequency crosses the upper boundary of the Bragg stopband, the third

and fourth photonic bands develop and the stopband closes near the [111] directions.

An angular distribution of the radiative power corresponding to the normalized fre-

quency Ω = 0.80 is presented in the figure 7.7 (c). It shows an infinite intensity at

approximately θ = ±40◦ and a Gaussian-like lobe centered at [111] direction. An in-

122



00 2020 −20−20 4040 −40−40 6060 −60−60 8080 −80−80

Angle (degrees)

In
te

n
si

ty
 (

a.
u

.)

0 20−20 40−40 60−60 80−80

� �� �

Figure 7.7: Angular distribution of the radiated power for normalized frequencies Ω =
0.64 (a), Ω = 0.72 (b) and Ω = 0.80 (c) calculated with Eq. (5.28). The radiated
power in free space (Lambert law) is shown for comparison (dashed line).

finite intensity corresponds to the points of vanishing Gaussian curvature of the first

and second photonic bands, while the central lobe is associated with the third and

fourth bands. In figure 7.6 (c), a wave contour of the third band corresponding to the

normalized frequency Ω = 0.80 is depicted. It is single valued function elongated along

[111] direction, which leads to the preferable energy flux in that direction.

7.3 Comparison of experimental and theoretical re-

sults

To compare experimental results with the theoretical model, the radiated power (5.28)

was calculated with a 5◦ angular step and was integrated within a 5◦ aperture around

the observation direction. The resulting normalized angular distribution of radiated

power is presented in figure 7.8 by blue lines with dots. Experimental PL intensity is

depicted by black line with dots. The Lambert law (red line) is shown for comparison.

A reasonable agreement between experimental and theoretical results is obtained for

all frequencies studied. The main difference between theory and experiment appeases

within the stopband region. In contrast with a complete suppression of the radiated

power predicted by theory for an infinite photonic crystal, the experimentally obtained

PL intensity displays only 40-50% decrease of the emission intensity.

For a crystal with a finite thickness, one can estimate the emission suppression

by comparing the sample thickness with the Bragg attenuation length. The Bragg

attenuation length can be deduced from ∆ω/ω0 = 2d/πLB and gives the length over

which the emission intensity drops by a factor 1/e due to Bragg reflection. Here d is

the (111) inter-plane distance and ∆ω/ω0 is the full width at the half maximum of the

Bragg minimum in the transmission spectrum. For the sample studied here (Fig. 7.2),
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Figure 7.8: Experimental (black lines with dots) and theoretical (blue lines with dots)
angular distribution of the emission intensity of dye-loaded inverted opaline photonic
crystal. Lambert law (red line) is shown for comparison.

the Bragg attenuation length is 1 µm. Then, for a sample of 20 µm thickness, a 99.99%

drop of the emission intensity is expected for a light source at the Bragg resonance

frequency, ω0, if it is located 10 µm away from the sample surface. This conclusion is

only valid, if the crystal lattice is perfect.

Due to a self-assembly nature of opals formation, a typical research-grade opal

intrinsically has a finite density of structural defects. Then, the emission from an opal

with embedded light sources is made up of two components: the ballistic component,

made out of photons which reach the detector without scattering, and the scattered

component composed of photons, which experience scattering on defects before being

detected. The scattered component becomes essential, if the optical path of the light

within the photonic crystal exceeds the mean free path (MFP). The MFP in the opal

decreases from infinity in the perfect lattice to l = 7 − 15 µm in the current research

quality opals [23].

The necessary condition to observe an influence of photonic crystal on the emission
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Figure 7.9: Experimental (black lines with dots) and theoretical (blue lines with dots)
angule resolved PL intensity of dye-loaded inverted opaline photonic crystal. The
theoretical results were obtained by adding 4 cos θ to the ballistic results presented in
figure 7.8. Lambert law (red) is shown for comparison.

spectrum is LB < l. It means that in the crystal between successive scattering events

light propagates in the form of the Bloch eigenwave. If the sample thickness is much

larger than the MFP, the emission coming from the rear part of the sample is diffusively

scattered before reaching the detector, i.e., it acquires an isotropic directionality dia-

gram. The emission from the upper near-surface part of the sample, i.e., from the layer

with the thickness smaller than the Bragg attenuation length, is not strongly affected

by the photonic crystal and is therefore charectarized by an isotropic directionality dia-

gram. The contribution to the detected signal coming from the interior of the opal film

consists of multiple scattered photons, which have experienced one or more successive

scattering event at lattice defects. Consequently, the observed weak decrease of the PL

intensity in the stopband region is an indication of a strong contribution of diffusively

scattered light and the near-surface emission to the total detected luminescence.

The isotropic component of the emission provides the background, the intensity
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of which varies as cosine of the detection angle (Lambert law). To compare ballistic

model (5.28) with experiment, it is assumed that the detected luminescence consists of

isotropic and ballistic components only. Within this approximation the contribution

from multiply scattered photons is neglected. In figure 7.9, the sum of the ballistic

radiated power (5.28) with the isotropic background in the form 4 cos θ is presented.

An overall improvement of the correspondence between theory and experiment is ob-

tained as compared with figure 7.8. If additionally one takes into account the multiple

scattered component of the luminescence, the broadening of the photon focusing side

lobes together with overall smoothening of the radiated power directionality diagrams

would be obtained.

The slight disagreement in the angular position of the photon focusing direction

predicted by the model as compared with the experiment (Figs. 7.8-7.9) is due to

the refraction of the emitted light at the boundary of the sample, which is not taken

into account in the presented model. Due to the strongly inhomogeneous nature of the

Bloch eigenwaves, their refraction at the photonic crystal–air interface cannot be simply

analyzed by the Snell law. An analysis of the inhomogeneous Bloch wave refraction at

the photonic crystal–air interface should include all spatial harmonics constituting the

eigenwave and it is beyond the scope of this chapter.

7.4 Summary

In this chapter, the method developed in chapter 5 was applied to analyze experimental

results of PL in an inverted opaline photonic crystal. The reported directionality

diagrams of the emission of dye molecules embedded in the inverted opaline photonic

crystal reveal the suppression of the emission in the direction of the Bragg stopband

and the enhancement of the emission intensity in the photon focusing directions. A

reasonable agreement between the developed theory and experiment is reported. The

possibilities of further theory improvement to take into account a complexity of the

research-grade opals were discussed.

126



Bibliography

[1] S. Y. Lin and J. G. Fleming, “A three dimensional optical photonic crystal,” J.

Lightwave Technol. 17, 1944–1947 (1999).

[2] S. Noda, N. Yamamoto, M. Imrada, H. Kabayashi, and M. Okato, “Alignment

and stacking of semiconductor photonic bandgaps by wafer-fusion,” J. Lightwave

Technol. 17, 1948–1955 (1999).

[3] K. Wang, A. Chelnokov, S. Rowson, P. Garoche, and J. M. Lourtioz, “Focused-

ion-beam etching in macroporous silicon to realize three-dimensional photonic

crystal,” J. Phys. D: Appl. Phys. 33, L119–L123 (2000).

[4] T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, “Pho-

tonic crystals for the visible range fabricated by autocloning technique and their

applications,” Opt. Quantum Electron. 34, 63–77 (2002).

[5] M. Campbell, D. N. Sharp, M. T. Harrison, R. G. Denning, and A. J. Turber-

field, “Fabrication of photonic crystals for the visible spectrum by holographic

lithography,” Nature 404, 53–56 (2000).

[6] S. Shoji and S. Kawata, “Photofabrication of three-dimensional photonic crystals

by multibeam laser interference into a photopolymerizable resin,” Appl. Phys.

Lett. 76, 2668–2670 (2000).

[7] Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch,

C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic

photonic crystal templates by laser holography: fabrication, optical characteriza-

tion, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003).

[8] V. G. Balakirev, V. N. Bogomolov, V. V. Zhuravlev, Y. A. Kumzerov, V. P. Petra-

novskii, S. G. Romanov, and L. A. Samoilovich, “Three-dimensional superlattices

in opal matrices,” Crystall. Rep. 38, 348–353 (1993).

127



[9] S. G. Romanov and C. M. Sotomayor Torres, “Three-dimensional lattices of nanos-

tructures: the template approach,” in Handbook of Nanostructured Materials and

Technology, H. S. Nalwa, ed., (Academic Press, San Diego, 2000), pp. 231–323.

[10] T. Maka, D. N. Chigrin, S. G. Romanov, and C. M. Sotomayor Torres, “Three

dimensional photonic crystaks in the visible regime,” in Progress In Electromag-

netics Research, A. Priou and T. Itoh, eds., (EMW Publishing, Cambridge, 2003),

pp. 307–335.

[11] D. N. Chigrin, T. Maka, S. G. Romanov, and C. M. Sotomayor Torres, “Angular

distribution of emission intensity in inverted opals,” in preparation .

[12] S. John and K. Busch, “Photonic bandgap formation and tunability in certain

self-organizing systems,” J. Lightwave Technol. 17, 1931–1943 (1999).

[13] E. Palacios-Lidon, A. Blanco, F. Ibisate, M. Meseguer, C. Lopez, and J. Sanchez-

Dehesa, “Optical study of the full photonic band gap in silicon inverse opals,”

Appl. Phys. Lett. 81, 4925–4927 (2002).

[14] B. H. Juarez, S. Rubio, J. Sanchez-Dehesa, and C. Lopez, “Antimony trisulfide

inverted opals: Growth, characterization, and photonic properties,” Adv. Mater.

14, 1486–1490 (2002).

[15] M. Muller, R. Zentel, T. Maka, S. G. Romanov, and C. M. Sotomayor Torres,

“Photonic crystal films with high refractive index contrast,” Adv. Mater. 12, 1499–

1503 (2000).

[16] S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain meth-

ods for Maxwell’s equations in a planewave basis,” Optics Express 8, 173–190

(2001).

[17] S. V. Gaponenko, V. N. Bogomolov, E. P. Petrov, A. M. Kapitonov, A. A. Eych-

mueller, A. L. Rogach, I. I. Kalosha, F. Gindele, and U. Woggon, “Spontaneous

emission of organic molecules and semiconductor nanocrystals in a photonic crys-

tal,” J. Lightwave Technol. 17, 2128–2137 (1999).

[18] S. G. Romanov, T. Maka, C. M. Sotomayor Torres, M. Muller, and R. Zentel,

“Emission in a SnS2 inverted opaline photonic crystal,” Appl. Phys. Lett. 79,

731–733 (2001).

[19] S. G. Romanov, A. V. Fokin, and R. M. De La Rue, “Eu3+ emission in an

anisotropic photonic band gap environment,” Appl. Phys. Lett. 76, 1656–1658

(2000).

128



[20] S. G. Romanov, D. N. Chigrin, V. G. Solovyev, T. Maka, N. Gaponik, A. Eych-

muller, A. L. Rogach, and C. M. Sotomayor Torres, “Light emission in a directional

photonic bandgap,” Phys. Stat. Sol. (a) 197, 662–672 (2003).

[21] M. Born and E. Wolf, Principles of Optics (Pergamon, New York, 1980).

[22] A. F. Koenderink, L. Bechger, A. Lagendijk, and W. L. Vos, “An experimental

study of strongly modified emission in inverse opal photonic crystals,” Phys. Stat.

Sol. (a) 197, 648–661 (2003).

[23] J. Huang, N. Eradat, M. E. Raikh, Z. V. Vardeny, A. A. Zakhidov, and R. H.

Baughman, “Anomalous coherent backscattering of light from opal photonic crys-

tals,” Phys. Rev. Lett. 86, 4815–4818 (2001).

129



Part IV

Refraction



Chapter 8

Self-guiding in two-dimensional

photonic crystals1

As it was shown in chapter 3, anomalous refraction is a consequence of a strong photonic

crystal anisotropy. Among other manifestations of photonic crystal anisotropy is self-

collimation [1] phenomenon. A self-collimated beam of light does not spread when it

propagates in a photonic crystal. In contrast to spatial solitons, where the nonlinearity

of the homogeneous medium counteracts the natural spreading of the beam due to

diffraction, the formation of self-collimated, or self-guided, beams in a photonic crystal

is a purely linear phenomenon. The spreading of the beam is counteracted by the

crystal anisotropy, such that all wave vectors building the beam lead to the power flux

in the same direction. This can be realized for the wave vectors ending at the flat

regions on an iso-frequency surface of a photonic crystal. The self-collimation regime

reported by Kosaka et at. [1] relies on the inflection points of an iso-frequency surface,

where the Gaussian curvature of the surface tends to zero. Typically, a flat region

spreads over very limited wave vector directions centered at the wave vector ending at

the inflection point. As a consequence, self-collimation can occur only for very limited

orientations of the beam with respect to the crystal lattice and for limited beam widths.

In this chapter, it is shown that for some frequencies the form of iso-frequency

surface mimics the form of the Brillouin zone of the crystal. In figure 8.1, iso-frequency

contours for realistic square (left) and triangular (right) lattice photonic crystals are

depicted. The anisotropy of a photonic crystal changes dramatically with changing

frequency, iso-frequency contours evolve from convex (red contours in Fig. 8.1) to

1This chapter is based on: D. N. Chigrin, S. Enoch, C. M. Sotomayor Torres, and G. Tayeb, “Self-
guiding in two-dimensional photonic crystals,” in Proceedings of SPIE “Photonic bandgap materials
and devices” 4655 63–72 (2002); D. N. Chigrin, S. Enoch, C. M. Sotomayor Torres, and G. Tayeb,
“Self-guiding in two-dimensional photonic crystals,” Opt. Express 11, 1203-1211 (2003)
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Figure 8.1: Convex (red), concave (blue) and flat (black) iso-frequency contours. Iso-
frequency contours on the left (right) panel correspond to the second band of a two-
dimensional square (triangular) lattice photonic crystal made of dielectric rods in vac-
uum. Rods have the refractive index 2.9 and radius r = 0.15d, where d is the lattice
period. The wave vectors resulting in the Bloch eigenwaves with the group velocity
pointing to the direction normal to the Brillouin zone boundary are depicted with
arrows.

concave (blue contours in Fig. 8.1). There exists a frequency range where an iso-

frequency contour forms an almost perfect square (left) or hexagon (right). Then, a

wide angular range of flat dispersion exists canceling out diffraction of a light beam

with the corresponding range of wave vectors (Fig. 8.1).

In section 8.1, a physical insight on the the self-guiding phenomenon is given. The

radiation pattern of a point source in a photonic crystal is analyzed, taking advantage

of an asymptotic analysis developed in chapter 5. The direct numerical simulation

of the beam propagation in a finite size photonic crystal is given in section 8.2. The

numerical results are obtained using the FDTD method. In section 8.3 the main results

of the chapter are summarized.

8.1 Fourier space analysis

Without loss of generality, the consideration is restricted to the case of a two-dimension

photonic crystal based on a square lattice, which is identical to one investigated in

chapter 5. The refractive index of dielectric rods is 2.9 and rods radius is r = 0.15d,

where d is the period of the lattice. Photonic band structure is shown in figure 8.2 for

TM polarization.

The iso-frequency contours of the first two bands of the crystal evolve from convex
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Figure 8.2: Photonic band structure of a square lattice photonic crystal made out of
dielectric rods in vacuum. Rods have the refractive index 2.9 and radius r = 0.15d,
where d is the lattice period. The band structure is given for the TM polarization. The
frequency is normalized to Ω = ωd/2πc = d/λ. c is the speed of light in the vacuum.
Insets show the first Brillouin zone (left) and a part of the lattice (right).

to concave topology. In figure 8.3 transition iso-frequency contours corresponding to

the normalized frequencies Ω = 0.3567 (the first band) and Ω = 0.5765 (the second

band) are depicted. The iso-frequency contour for the normalized frequency Ω = 0.3567

forms a square with rounded corners, rotated by 45◦ with respect to the Brillouin zone

and centered at M-point of the first Brillouin zone (Fig. 8.3-left). The iso-frequency

contour for the normalized frequency Ω = 0.5765 consists of two branches, which are

plotted in red and blue in figure 8.3-right. Both branches mimic the form of the first

Brillouin zone of the crystal being squares with rounded corners. The ”red” branch

is centered at the Γ-point and the ”blue” branch is centered at the M-point of the

Brillouin zone (Fig. 8.3-right).

To analyze how this special kind of anisotropy affects the propagation of light in a

photonic crystal, the radiation pattern of a point light source radiating into the crystal

is further investigated using the method developed in chapter 5.

In figure 8.4, the angular distribution of the radiated power is presented for the nor-

malized frequencies Ω = 0.3567 (left) and Ω = 0.5765 (right) for the crystal parameters

given in the caption of Fig. 8.2. The important feature of the wave propagation inside

a photonic crystal at the normalized frequencies considered is that, even a cylindrical

initial wave results in an energy flow strongly focused along some specific directions,

while it remains negligible for all other directions. To emphasize this special type of

self-collimated electromagnetic wave propagation inside a photonic crystal it is called
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Figure 8.3: Iso-frequency diagram for the normalized frequencies Ω = 0.3567 (left) and
Ω = 0.5765 (right). The shaded regions show the wave vectors resulting in the Bloch
eigenwaves with the group velocity vectors pointing in the same direction. The crystal
parameters are given in the caption of figure 8.2.

here self-guiding.

For the first band (Fig. 8.4-left), the radiation pattern is strongly focused along the

[11] direction of the lattice. The radiation pattern for the second band (Fig. 8.4-right)

is more complex, due to the presence of two branches of the iso-frequencies contour

(Fig. 8.3-right). While the ”red” branch displays very strong focusing along the [10]

direction of the square lattice, the ”blue” branch, having some finite curvature, shows a

more complex focusing pattern with two rays focused in the directions separated from

the [10] direction by approximately 1◦ (Fig. 8.4-right).

In the self -guiding regime the radiation pattern obtained due to a point source

suggests that the strongly collimated light propagation is insensitive to the divergence

of the initial beam and almost insensitive to the orientations of the beam with respect

to the crystal lattice. This property can lead to useful applications of self -guiding for

waveguide design. A mechanism of spatial light confinement in a self-guiding regime

differs significantly, form the wave-guiding mechanisms in both conventional dielectric

waveguides [2] and in more recent photonic bandgap waveguides [3]. Strong confine-

ment takes place due to total internal reflection [2] in the former case and due to the

complete photonic bandgap [3] in the latter case. Neither a full photonic bandgap

nor a physically defined waveguide region are necessary in the case of self-guiding.

The spreading of the beam in a photonic crystal is counteracted then by the crystal

anisotropy, like in the case of spatial solitons where the nonlinearity of the medium

counteracts the natural spreading of the beam due to diffraction.
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Figure 8.4: Radiation pattern of a point source inside the photonic crystal with the
parameters given in the caption of figure 8.2. The normalized frequencies are Ω =
0.3567 (left) and Ω = 0.5765.

8.2 Real space analysis

In this section, FDTD method is used to simulate light propagation in a finite two-

dimensional photonic crystal in a self-guiding regime. First, the emission of an isotropic

point light source inside a two-dimensional photonic crystal is studied. The simulated

structure was a 50× 50 lattice of dielectric rods in vacuum. The crystal is surrounded

by an extra 5d wide layer of a free space. The simulation domain was discretized into

squares with a side ∆ = d/32. The total simulation region was 1920 × 1920 cells

plus 8-cell wide perfectly matched layer (PML) [4]. A point isotropic light source was

modeled by a soft source [5, 6] with a homogeneous spacial dependence and sinusoidal

temporal dependence of the signal.

In figure 8.5 maps of the modulus of the Poynting vector field are shown at the

normalized frequencies Ω = 0.3567 (left) and Ω = 0.5765 (right). The point source is

placed in the middle of the crystal. A field map is shown for one instant time step. The

snap-shots were captured after 10000 time steps, where the time step was 4.38× 10−17

s (0.99 of the Courant value). The structure of the crystal is superimposed on the field

map. The highest values of the field are colored red; the lowest are colored blue. From

figure 8.5 one can see, that the emitted light is guided in channels in the [11] (left)

and [10] (right) directions of the square lattice. This behavior supports the prediction

made in the previous section (Fig. 8.4).

To study the beam interaction with a two-dimensional photonic crystal in the self-

guiding regime, a 10 × 20 rods photonic crystal placed in vacuum was modeled. A

simulation domain was 610× 640 cells (Fig. 8.6), with a cell size ∆ = d/32. The total

simulation domain was surrounded by an 8-cell wide perfectly matched layer (PML)
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Figure 8.5: Map of the modulus of the Poynting vector field for a 50× 50 rod photonic
crystal excited by a point isotropic source. Left: Ω = 0.3567. Right: Ω = 0.5765. The
location of the crystal in the simulation is shown.

[4]. To introduce a light beam, a plane wave with a truncated wave front was taken.

A temporal dependence of the signal was sinusoidal. A waist of the beam was located

at the top of the simulation region, 152 cells apart from the crystal boundary and has

a width of 80 cells (2.5d). A field generated by a truncated plane wave is equivalent

to the field produced by a slit illuminated by a plane wave. For a plane wave incident

on a slit from the region x < 0, the diffracted wave in the region x > 0 arising from

a slit can be obtained from Kirchoff integral formulae [7]. A resulting diverging beam

generates a wide range of wave vectors.

The beam propagating in free space is shown in figure 8.6-left. A Poynting vector

modulus field map is shown for one instant time step after 10000 time steps. In

figure 8.6 the structure of the crystal is superimposed on the field map. The highest

values of the field are colored red; the lowest are colored blue. The simulation was

done for the normalized frequency Ω = 0.5765. The beam is clearly diverging as it

propagates in free space (Fig. 8.6-left).

The beam interaction with the photonic crystal at the same normalized frequency

is shown in figure 8.6-right. The guiding of the beam is obvious in the crystal, as

seeing by comparing the width of the beam at the bottom of the crystal and at the

same position in free space (Fig. 8.6-right). In figure 8.7 the beam intensity along

the front and back faces of the photonic crystal are given for the same time step as
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Figure 8.6: Self-guiding in a finite photonic crystal. Left: Map of the modulus of
the Poynting vector field of a beam with waist 2.5d and the normalized frequency
Ω = 0.5765 propagating in free space. Right: Map of the modulus of the Poynting
vector field of 10 × 20 rod photonic crystal illuminated by the same beam as in the
left panel of the figure. The crystal structure is shown in the left panel of the figure to
facilitate the comparison.
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Figure 8.7: Self-guiding in a finite photonic crystal. The modulus of the Poynting
vector along the front and back faces of the crystal, orthogonal to the beam axes.
There is only a slight difference in the width of the beam before and after propagation
through the crystal. The field is given for the instant time step after 10000 simulation
steps (Fig. 8.6-right).
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Figure 8.8: Self-guiding in a finite photonic crystal. Map of the modulus of the Poynting
vector field of 10× 20 rod photonic crystal illuminated by a beam with waist 2.5d and
the normalized frequency Ω = 0.5765. The angle of incidence is 0◦ (5◦) for upper left
(right) panel and 10◦ (15◦) for bottom left (right) panel.

138



Figure 8.9: Crossing of two self-guided beams. Left: Map of the modulus of the
Poynting vector field of two beam with waist 2.5d and the normalized frequency Ω =
0.5765 propagating in free space. Right: Map of the modulus of the Poynting vector
field of a 15 × 15 rod photonic crystal illuminated by the same beams as in the left
panel of the figure. The crystal structure is shown in the left panel of the figure to
facilitate the comparison.
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in figure 8.6-right. There is only a slight difference in the width of the beam above

and below the crystal. Here, the front (back) face of the crystal is the first (last) face

approached by the incident beam.

Figure 8.8 illustrates the influence of the angle of incidence on the self-guiding prop-

agation of the beam in the photonic crystal. The simulation domain for calculations

was the same as in figure 8.6-right. Based on the analysis presented in section 8.1,

one can expect, that self-guiding reveals a weak dependence on beam orientation with

respect to the crystal lattice. In figure 8.8 the modulus of the Poynting vector for the

angle of incidence 0◦, 5◦, 10◦ and 15◦ are shown. The snap-shots were captured after

10000 time steps. One can see, that with increasing angle of incidence the [10] direc-

tion of the square lattice remains the preferred direction of propagation and self-guided

beam remains strongly focused in this direction.

Figure 8.9 shows a 15 × 15 rod photonic crystal illuminated by two beams of the

normalized frequency Ω = 0.5765. The first beam impinges from the top of the crystal

and the second one impinges from the right. The first beam is identical to the incident

beam of the figure 8.6, but its waist is located 88 cells apart from the crystal. The waist

of the second beam is located at the very right of the simulation region, 88 cells apart

from the crystal boundary. The width of beams is 80 cells (2.5d). A simulation domain

contained 610 × 610 cells (Fig. 8.9), with a cell size ∆ = d/32, and was surrounded

by 8-cell wide perfectly matched layer (PML) [4]. The Poynting vector modulus field

map after 10000 simulation steps is shown in figure 8.9 for two beam propagating

in free space (left) and in a photonic crystal (right). The key feature of self-guiding

illustrated in this figure is that two beams can cross each other without cross-talk, in

a contrast to the case of narrow dielectric waveguides. This effect offers an advantage

for applications as it is not trivial to design crossed waveguides with no cross-talk in a

comparable size scale.

8.3 Summary

In this chapter it was shown, that, by careful engineering of a photonic crystal band

structure, one can design an anisotropic crystal which cancel out the natural diffraction

of the light beam. A signature of the light beam propagation is such a photonic crystal

is a self-guiding of the beam in some specific lattice directions. Unique features of

self-guiding are the tolerance to misalignment and no cross-talk between self-guided

beams.
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Chapter 9

Conclusion

Fabrication of a photonic crystal with a complete photonic bandgap in the optical

or near infrared spectral range remains a challenging technological problem. This is

why, most of the predicted phenomena relying on a complete photonic bandgap still

await their experimental demonstration. The study, which results in this thesis, was

originally indented (i) to push the limits of photonic crystals with incomplete photonic

bandgap to optical applications as well as (ii) to contribute to a solid understanding of

light-matter interaction phenomena in photonic crystals with an incomplete photonic

bandgap. A contribution to the first more engineering task was achieved by developing

ideas of omnidirectional Bragg mirror and photonic crystal-based self-guides. The

author hopes that the development of the asymptotic analysis of the classical dipole

radiation in a photonic crystal adds to the general understanding of emission processes

in periodic medium and contributes to the more fundamental second original task.

A one-dimensional photonic crystal is the simplest example of the medium with

an incomplete photonic bandgap. In this thesis, total omnidirectional reflection has

been predicted for such a medium. Although detailed criteria of omnidirectional Bragg

mirror design are presented in this thesis, further work is necessary to introduce such

a mirror in the design of optical devices. This is especially important in the view

of successful experimental demonstrations of total omnidirectional reflection from a

one-dimensional photonic crystal. Some directions of the future work could include

application of omnidirectional mirror to the development of antenna substrates, optical

microcavities and fibers.

A two-dimensional photonic crystal is another example of the periodic medium with

incomplete photonic bandgap. An exploration of the fact, that a photonic crystal is

a strongly anisotropic medium, leads to the idea of self-collimation, in other words,

diffractionless laser beam propagation in a photonic crystal. In original proposal of
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Kosaka et al. the region of self-collimation behavior was limited to a small sections of

the k-space.

In this thesis a two-dimensional photonic crystal has been proposed, which cancels

out a natural diffraction of the laser beam for a wide range of beam widths and beam

orientations with respect to the crystal lattice. The spreading of the beam is counter-

acted by the crystal anisotropy, as in the case of spatial solitons where the nonlinearity

of the medium counteracts the natural spreading of the beam due to diffraction. All

calculation of the self-guiding phenomenon presented in this thesis were performed in

two-dimensions. In reality a two-dimensional photonic crystal comes as a slab sus-

pended in air or supported by a substrate. An important question still to be answered

is to what extend predictions made for two-dimensional system will apply in the three-

dimensional case. Questions such as vertical wave confinement, out-of-plane losses,

spectral bandwidth, among other are of primarily importance for applications of the

self-guiding phenomenon in real optical devices.

The most complex example of a periodic medium with incomplete photonic bandgap

is a three-dimensional photonic crystal. Nevertheless, the analysis and modeling of

three-dimensional photonic crystals provide maximum flexibility in designing optical

devices. For example, in the domain of materials with incomplete photonic bandgap

the most promising applications are light sources. Being able to tailor the emission

rate within a specific spectral range and simultaneously in specific directions could add

a significant flexibility in improving light sources. However, well before designing a

light source, a basic physical understanding of emission processes in three-dimensional

photonic crystal is essential.

In this thesis, an asymptotic analysis of the classical dipole radiation has been

developed. The method introduced gives information on both the far-field radiation

pattern and the radiated power modification. If the dipole frequency is within a par-

tial bandgap, the radiated power is suppressed in the direction of a stopband and

enhanced in the direction of the group velocity, which is stationary with respect to

a small variation of the wave vector. This asymptotic analysis applied to the case

of three-dimensional photonic crystal describes reasonably well experimental data on

photoluminescence of laser dye molecules embedded in an inverted opaline photonic

crystal.

Light emission in a photonic crystal is a very active and controversial research

topic. So far there is no clear indications of spontaneous emission rate suppression in

a photonic crystal. This is partly because an experiment to observe non-ambiguously

spontaneous emission rate modification are still to be performed. In this thesis a small

step in the direction of building a consistent explanation of experimental results has

been made. For example, it has been shown that far-field radiation pattern of the
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classical dipole can be modified due to interference of photonic crystal eigenmodes at

the detector plane leading to the added complexity of detected signal.

A classical model of light emission in a photonic crystal corresponds to the quan-

tum mechanical Weisskopf-Wigner approximation, where the problem of the field back-

reaction on an emitting dipole is solved assuming that the back-reaction happens in-

finitely fast. This approximation hides a lot of interesting non-Markovian phenomena,

which are worth of a more detailed study. Another common approximation is a perfect

periodic lattice of a photonic crystal. Research-grade photonic crystals are not per-

fect crystalline media, but inhomogeneous media with different sorts of imperfections:

dislocation disorder, positioning disorder, etc. While the spectrum of elementary exci-

tations of a perfectly periodic medium is continuous, the spectrum of a random medium

is a point spectrum. Imperfect photonic crystal rolls in between of these two classes,

leading to a critical spectrum of elementary excitations. Tasks to develop a method to

construct spectra of elementary excitations of disordered photonic crystals and to study

how criticality of their eigenstates influence the emission of light are both important

from a fundamental and a practical point of view.

Photonic crystals remain an active topic of fundamental and applied research and

any solved problem contributes to the general understanding of the electromagnetic

phenomena in periodic media thereby opening many new exciting question and research

problems for future studies.
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