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1 Introduction

1.1 Possible use of BaTiO3 as a high density memory material

As early as 1950s when the demand for high-capacity computer memories came, ferroelectric

materials were intensively studied in the world, as they seemed to be prime candidates of new

materials for binary memories [1~3]. Later in the period of 1965 to 1975, tremendous efforts

were taken to develop ferroelectric-semiconductor memories by the use of a thin film of

semiconductors deposited on a bulk ferroelectric single crystal or ceramics materials. Though

the basic concept was valid, the instability of semiconductor thin films at that time did not

permit a viable memory to be built. In recent years, ferroelectric materials have attracted

much more attention because of the combination of their unique properties of spontaneous

polarization, i.e. the so-called ferroelectric domains of the materials, to CMOS techniques of

microelectronic industry [4, 5]. This combination has led to a large variety of new devices in

computer technology and transducing devices in electromechanic, electrochemic, electrooptic,

and acoustooptic fields.

Among all the ferroelectrics used during the development of modern memory devices, Barium

titanate (BaTiO3) material system is one of the most interesting ferroelectric material systems

up to now [2]. BaTiO3 single crystal has ferroelectric structures which are far simpler than

those of any other ferroelectrics known and thus provides a good base for the research and

understanding of whole ferroelectric phenomena. It is chemically and mechanically stable and

has a Curie temperature at about 120°C. Its hysteresis loop has rather sharp corners and a

good rectangular appearance. The value of its coercive field, measured at room temperature,

varies from a minimum of 5 kV/m to a maximum of 200 kV/m. The dielectric constant in the

direction of polarization ( 160≈ε rzz ) is much smaller than that perpendicular to it

( 2920≈ε rxx ) and they exhibit pronounced anomalies at the transitions from tetragonal to

orthorhombic and from orthorhombic to rhombohedral states. BaTiO3 polycrystalline

materials, the so-called ceramics, and their modifications offer even more applications in

various fields of engineering. It is easy to produce a hard BaTiO3 ceramics body by standard

sintering process and its body form can also be easily modified according to the industry

applications. The polarization direction of ceramics can be chosen as required. BaTiO3 thin

films, and other perovskite-type films such as Lead Zirconate Titanate (PZT), Strontium

Bismuth Titanate film (SBT) and so on, are intensively studied recently due to the integration

of these kind of films to CMOS circuits to produce various novel devices [4, 5]. In general,
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BaTiO3  and other perovskite type ferroelectric materials provide today an intensively active

research and application field. Even though its technical and commercial importance is

substantial, many breakthrough applications may still lie ahead of us.

1.2 Present research on ferroelectric domains

Although present applications of ferroelectric materials in the modern microelectronic

industry provide a great prospect and almost unlimited opportunities, there is much work to be

done [5~13]. Under macroscopic view, problems associated with application of BaTiO3 and

other current ferroelectrics are that their properties are often controlled by the contributions

from the so-called extrinsic effects which are responsible for polarization fatigue, aging,

frequency and field dependence of piezoelectric, elastic and dielectric properties. These

contributions are generally described as domain-wall effects [11~13]. The theoretical

treatment and experimental study on all these contributions present us a big challenge since

long time. Although substantial insights into the nature of ferroelectrics have been achieved,

all the theoretical models, most of which are phenomenological in nature, and experiment

results provide only a global or macroscopic view of the ferroelectrics. The present

application of ferroelectric materials combined with CMOS integrated circuits requires that

such problems be further studied under micrometer or even in difficult cases in nanometer

range. To keep pace with this new technological trend, non-destructive techniques to

investigate the ferroelectric domains under such spatial resolution must be developed.

Whereas the resolution of conventional optical microscopy is limited by the diffraction limit,

a number of non-destructive methods have been developed to study ferroelectric domains

[14~17]. Scanning electron microscopy (SEM) [14] is non-destructive but has a disadvantage

that contrast and resolution are dependent on time. In combination with acoustics, a non-

destructive technique with resolution and contrast independent of time, scanning electron

acoustic microscopy (SEAM), is used to visualize ferroelectric domains [15, 16].

Unfortunately, SEAM has only a resolution down to several micrometers due to the

interaction area formed by  primary electrons injected into the sample. Although transmission

electron microscopy (TEM) [17] has a resolution down to nanometer range, this technique

needs a difficult sample preparation. Whether the preparation process would affect

ferroelectric domains is not clear. With the invention of scanning probe microscopy (SPM)

[18], non-destructive methods to image ferroelectric domains with submicrometer or

nanometer spatial resolutions have emerged recently [19~31]. F. Saurenbach, et. al. [19]

imaged the ferroelectric domain of GMO ( 342 )(MoOGd ) material system by the use of SPM
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in non-contact topography mode. R. Lüthi et. al. [20] presented ferroelectric contrast of

GASH ( OHSOAlNHC 22432 6)()( ⋅ ) and M.-K. Bae et. al. [21] of TGS

( 42322 )( SOHCOOHCHNH ⋅ ) materials by the use of contact topography mode of SPM

respectively. By applying an ac voltage and measuring of the first harmonic signal from

topography feedback, K. Franke et. al. [22] introduced imaging and modification of domains

in PZT film. For BaTiO3 material system, S.-I. Hamazaki et. al. [23] presented results by the

use of SPM contact topography mode on ferroelectric BaTiO3 single crystal and suggested

that the topography image of SPM is also ferroelectric domain image. L. M. Eng et. al. [24]

also showed results of domain contrast of ferroelectric BaTiO3 single crystal by the use of the

non-contact mode as well as the friction mode of SPM. Thereafter, there were mainly two

kinds of modes of SPM which were used frequently to image ferroelectric domains of BaTiO3

material system in the literatures. One is the so-called topography mode [23] and the other

piezoresponse mode [19, 22]. To study the contrast mechanism of both methods, A.

Gruverman et. al. [25] explained the contrast of topography mode of SPM on BaTiO3

revealed the difference of a-c domain boundary and piezoelectric response mode imaged the

c-c domain boundary.

Based on the principle of topography mode of SPM, some literatures [26-29] presented the

comparison of domain contrast from topography mode of SPM with the results from optical

microscopy, SEM, and surface potential microscopy based on SPM respectively. As the

topography mode of SPM requires an absolutely flat sample surface, this mode is impossible

to apply to image ferroelectric domains of samples with rough surface such as ceramics or

electronic devices non-destructively. A systematic analysis of contrast mechanism of this

mode and the contrast comparison to other techniques are also difficult.

At the base of the piezoelectric response mode of SPM, U. Rabe et. al. studied ferroelectric

domains from PZT ceramics [30]. L. Eng. et. al. presented the domain imaging on PZT and

BaTiO3 ceramics, writing and  switching on a bulk BaTiO3 single crystal [31]. C. Harnagea

studied the domain imaging and switching on BaBi4Ti4O15 thin films [32]. In order to analyze

the ferroelectric domains by SPM quantitatively, C. Durkan et. al. presented a theoretical

model for the calculation of the electric field in the system of the piezoelectric response mode

of SPM [33]. Although the work [31] has made a comparison of the results by piezoelectric

response mode of SPM on BaTiO3 ceramics with results by chemical etching method, the

chemical etching method is actually a destructive method and an explanation of the contrast

difference between these two methods would be difficult. Meanwhile, although the theoretical

model [33] for the piezoelectric response mode of SPM on ferroelectric films has been



1. Introduction
___________________________________________________________________________

4

introduced, from our point of view, the theoretical treatment of the model can not be the right

theoretical analytic method. Neither can the model be used systematically to analyze electric

field distributions in different samples, such as bulk materials, thin films or multilayered

films. Electric and mechanic field distributions and the energy exchange between them in the

system of piezoelectric response mode of SPM remain unsolved up to today.

1.3 Aim of present work

In this work, a new set-up, Scanning near-field Acoustic Microscopy based on SPM (SNAM),

is developed to image ferroelectric domains of both single crystal and ceramics of BaTiO3

material system [34, 35, 36]. The results of ceramics are compared to the results at identical

areas of the same ceramics by another established non-destructive acoustic technique,

Scanning Electron Acoustic Microscopy (SEAM) [15, 16, 37]. Based on the classic

phenomenological theory, a theoretical model for both the SNAM set-up developed and the

SEAM on ferroelectric BaTiO3 materials is grounded. The ferroelectric domains are analyzed

quantitatively according to the model established. Different modes based on SPM are also

compared. The ferroelectric domains of BaTiO3 ceramics are imaged temporally, thermally

dynamically, and electrically dynamically [37].

As shown at the end of this work, both SEAM and SNAM techniques are complementary

tools for the future research and application of ferroelectric materials and devices. The

theoretical and experimental methods presented can further be applied to other near-field

acoustic microscopy techniques and other ferroelectric materials.

1.4 Structure

This work is mainly divided into the following chapters: Chapter 2 will mention briefly main

theories on electric and ferroelectric properties of BaTiO3 crystal and ceramics. The typical

methods and new works to image ferroelectric domains are also discussed. From the

discussion, two near-field techniques, SEAM and SNAM, are chosen as examples for the

further discussion. Chapter 3 is concentrated to electric and mechanic coupling of near-field

acoustic microscopy and a BaTiO3  single crystal with a monodomain structure is chosen as an

example to simplify the discussion. The contrast mechanism for both near-field acoustic

microscopy techniques is analyzed. Chapter 4 treats the physical background, signal

generation, contrast mechanism, and experiment set-up of SEAM on BaTiO3 material system.

Chapter 5 discusses the physical background, signal generation, contrast mechanism, and

experiment set-up of SNAM developed in this work on BaTiO3 material system. Then the

comparison of the contrast of the developed system to that of another mode of SPM, the so-
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called piezoelectric response mode, is studied. Finally the domain structures of BaTiO3

ceramics are studied dynamically. Chapter 6 discusses the experimental details in this work

and Chapter 7 presents some typical experiment results. Chapter 8 discusses the

complementary study by both near-field techniques on identical areas and presents an

explanation for the study at the base of the theoretical model grounded. A small summary will

be given in Chapter 9 and future prospects will be briefly mentioned in Chapter 10. All

theoretical calculations will be presented in the Appendix in detail.
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2 Theoretic description of electric and ferroelectric  properties of BaTiO3

2.1 Definition of ferroelectric domains

Ferroelectric domains are referred to as volumes of spontaneous polarization in ferroelectrics

whose polarization can be changed by an electric field [1, 3]. The boundaries separating

domains are referred as domain walls. If a ferroelectric crystal is brought to the ferroelectric

state from paraelectric phase by decreasing temperature, the electrostatic interaction on the

surface and the inhomogeneity of stress in the materials affect the internal energy and thus

result in ferroelectric domains in ferroelectric phase. As for the polycrystal materials, the

domain equilibrium size [5~7] in any case is determined by the minimum in energy which is

necessary to preserve the shape of the grain when passing from the paraelectric to

ferroelectric states. As this ferroelectric phase change is related to electric, elastic, and

thermal energy changes, it is necessary to discuss energy functions and state equations of

materials at first.

2.2 State equations and thermodynamics of materials

2.2.1 The state equations

According to the thermodynamics, it is assumed that the thermal, elastic, and dielectric

behavior of a homogeneous dielectric is fully described by six variables: temperature T ,

entropy S, Strain x
�

, Stress X
�

, electric field E
�

, and electric displacement D
�

.

According to the first law of thermodynamics, the change in internal energy U (per unit

volume) when an infinitesimal quantity of heat dQ  is received by a unit volume of dielectric

is given by:

dWdQdU += Eq.2-1

where dW  is the work done on this same volume during the resulting quasi-static

transformation.

Assuming reversibility, the second law of thermodynamics relates dQ  to the absolute

temperature and entropy in the form:

TdSdQ = Eq.2-2
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If only the mechanic and electric work are related, the first law of thermodynamics is:

mE dWdWdQdU ++= Eq.2-3

Where EdW  and mdW  are electric and elastic works, which can be written as:

EdW = iidDE

mdW = II dxX Eq.2-4

Here the Voigt´s notations (‘I’ means the tensor suffix and is from 1 to 6; ‘i’  means vector

suffix and is from 1 to 3.) are used to express tensors and vectors [39]. This method provides

some briefness for the expression of tensors and vectors. Some work used the same simplified

notation for tensor but different notations for vectors (‘i’ means vector suffix and is x, y, or z.)

[53] and this notation method is closer to the custom of electrical engineers. For the

discussion of the present work, both notation methods are used interchangeably, as the

notation of ‘i’ from both notation methods gives the same physical meaning. The Einstein

notation for the summation of vectors and tensors is also used.

To describe a system, eight different thermodynamic potentials are defined:

Helmholtz free energy: TSUAE −=

Enthalpy: iiII DExXUHE −−=

Elastic enthalpy:  II xXUHE −=1

Electric enthalpy:  ii DEUHE −=2

Gibbs free energy: iiII DExXTSUGb −−−=

Elastic Gibbs energy: II xXTSUGb −−=1

Electric Gibbs energy: ii DETSUGb −−=2 Eq.2-5

The elastic Gibbs energy 1Gb  is frequently used in the literatures on ferroelectric phase

transitions. By choosing ),,( iI DXT  as independent variables, the differential form of elastic

Gibbs energy can be written as:
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1dGb = iiII dDEdXxSdT +−−  Eq.2-6

The other variables can be calculated as:

DX
T

Gb
S

��

,

1






∂

∂−= , =Ix
DTIX

Gb
�

,

1






∂
∂− , iE

XTiD

Gb
�

,

1






∂
∂= Eq.2-7

2.2.2 Linear state equations of materials and Maxwell relations

If only linear forms will be calculated, the other variables of state can be calculated as:

dT
T

S
dS

XD
��

,






∂
∂= I

TDI

dX
X

S

,
�







∂
∂+ i

TXi

dD
D

S

,
�







∂
∂+ Eq.2-8

dT
T

x
dx

XD

I
I

��

,






∂
∂

= I

TDI

I dX
X

x

,
�







∂
∂

+ i

TXi

I dD
D

x

,
�







∂
∂

+ Eq.2-9

dT
T

E
dE

XD

i
i

��

,






∂
∂

= I

TDI

i dX
X

E

,
�







∂
∂

+ i

TXi

i dD
D

E

,
�







∂
∂

+ Eq.2-10

The coefficients in the above equations are called compliances. In the same way, by choosing

different variables, different coefficients can be obtained. For the cases of isothermal (or

adiabatic), the equations can be generally described as:

TD
JII cdX ,

,

�

= Jdx T
jIh ,

~− jdD Eq.2-11

=idE T
Jih ,− Jdx +

Tx
jik ,

,

�

jdD Eq.2-12

TD
JII sdx ,

,

�

= JdX +
T

jIg ,
~

jdD Eq.2-13

=idE T
Jig ,− JdX +

TX
jik ,

,

�

jdD Eq.2-14

TE
JII sdx ,

,

�

= JdX +
T

jId ,

~
jdE Eq.2-15

=idD T
Jid , JdX +

TX
ji
,

,

�

ε jdE Eq.2-16

TE
JII cdX ,

,

�

= Jdx T
jIe ,

~− jdE Eq.2-17
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=idD T
Jie , Jdx +

TX
ji
,

,

�

ε jdE Eq.2-18

The last four equations are called piezoelectric stain and stress equations. As the isothermal

(or adiabatic process) will be usually discussed, the sign of constant T in the expression above

is omitted in the following discussion.

2.2.3 Non-linear state and approximations

The linear state equations above are described by the linear differential equations. But some

of the most important characteristics of ferroelectrics such as hysteresis loop, electrostriction,

polarization reverse and so on are fundamentally non-linear effects and hence require an

extension of the theory to higher orders. Generally the nonlinear state of materials can be

described by expansion of the state equations to arbitrarily high orders to define the non-linear

compliances, but the practical difficulties of tensor mathematics at high orders make it almost

impossible. In order to show the physical meanings more clearly, some approximations have

to be added:

•  The prototype state is iD = IX =0, which means the original state has neither polarization

nor stress;

•  The state with polarization has its polarization along one of the crystallographic axes;

•  Non-polar state is centrosymmetric.

Under the assumption above, the elastic free energy can be expanded as Taylor series [5, 40]:

+α+α+α+= 6
3

4
2

2
1101 6

1

4

1

2

1
)( DDDTGbGb 2

2

1
sX + �+2XDQes Eq.2-19

Here, for the sake of simplicity, the suffixes of vectors and tensors are omitted as it will not

change the physical meaning of the expression. In the following discussion, the same

simplicity is also used until it is necessary to analyze the components of vectors and tensors.

2.3 Theoretical description of BaTiO3 materials

2.3.1 Crystal symmetry and ferroelectric phases of BaTiO3  single crystal

Two kinds of structures of BaTiO3 are known. One belongs to the hexagonal system, and the

other is perovskite. The first one does not show ferroelectricity and hence only the perovskite

structures will be further discussed in this work. The perovskite-type structure, which is the
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large family of compounds with the general

formula ABO3, has the cubic non-polar

phase (centrosymmetrical) and the spatial

lattice is shown in Fig.2-1. The ‘a’ is the

lattice constant. The perovskite BaTiO3

belongs to this kind of materials and is

cubic and nonpiezoelectric above the Curie

point (about 130 °C). It is the tetragonal

lattice system from Curie point to 0 °C,

orthorhombic from 0 °C to –90 °C, and

rhombohedral below –90 °C. The different ferroelectric polarization directions (shown as

arrows) at different phases observed by experiments are illustrated in Fig.2-2.

a

a

a

a

c

a a

c

b

ar

ar

ar

Fig.2-2a: Cubic

T > 130 °C

Fig.2-2b: Tetragonal

130°C > T > 0 °C

Fig.2-2c:

Orthorhombic

0 °C >T> –90 °C

Fig.2-2d:

Rhombohedral

-90 °C >T

Under the assumption that phase change is small and the crystal has only a monodomain at

ferroelectric phases, a phenomenological theory [40] was presented to explain the polarization

in BaTiO3 materials. The principle is to minimize the elastic Gibbs energy when the material

goes through the phase changing point. From the equation Eq.2-19, by neglecting the terms

higher than 6D , the electric field can be written as:

D

Gb
E

∂
∂= 1

=
5

3
3

21 DDD α+α+α =0 Eq.2-20

here D is equal to P , if electric field does not exist. During the phase change, P
�

 has three

components:

A

B

O

a

Fig.2-1: Perovskite-type structure ABO3
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 == PD
��

xP xa
�

+ yP ya
�

+ zP za
�

Eq.2-21

According to the Eq.2-20, the ( xP , yP , zP ) can be solved for four possibilities:

a) ( xP , yP , zP )=0, aGb =0

b) xP = yP =0, zP ≠ 0, bGb ≠ 0 Tetragonal state, 130°>T>0°

c) xP =0, yP = zP ≠ 0, cGb ≠ 0 Orthorhombic state, 0°>T>-90°

d) xP = yP = zP ≠ 0, dGb ≠ 0 Rhombohedral state, -90°>T

Here aGb , bGb , cGb , and dGb  are the Gibbs energy at the corresponding states. These

four states before and after spontaneous polarization describe the facts which have been

observed in experiments, as shown above in Fig.2-2.

To the same approximation, if X and E  do not exist during the phase change, according to

Eq.2-7 and Eq.2-19, it must be noted that the spontaneous strain:

x =
X

Gb

∂
∂ 1

=
2PQes Eq.2-22

Here esQ  is the electrostrictive coefficient. Because the electrostrictive effect exists in all

materials, it means that spontaneous strain always accompanies spontaneous polarization.

The piezoelectric voltage coefficient is:

DX

Gb
g

∂∂
∂= 1

2

=2 esQ P Eq.2-23

The piezoelectric strain constant in the direction of polarization can be written as [5]:

PQd esz ε= 23  Eq.2-24

That means that piezoelectric effect of ferroelectric materials at monodomain state is

proportional to spontaneous polarization through electrostrictive constant.

2.3.2 The general domain structures of BaTiO3 single crystal in tetragonal phase

In reality, the monodomain state of material at ferroelectric phase, which is assumed above
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for the simplicity of discussion, does not exist [1~3]. Ferroelectric domain structures at

ferroelectric phases are always formed by the electrostatic interaction on the surface and the

inhomogeneity of stress in the materials, when BaTiO3  single crystal goes through the phase

change. At tetragonal phase, there are totally four structures of ferroelectric domains of

BaTiO3 single crystal material. The domain with a spontaneous polarization perpendicular to

the surface of the material is called  ‘c-domain’ and that with a spontaneous polarization on

the surface of the material ‘a-domain’. There are totally four possibilities of domain

boundaries, that is, if the surface is assumed as the [001] plane,  the 90° a-a [110], 90° a-c

[011], 180° a-a [010], and 180° c-c domain boundaries (domain walls). The last one has an

arbitrary boundary form which is vertical to the surface. It should also be emphasized here

that the domain walls exist possibly in any equivalent planes. On the surface of the c-domains,

there are surface screen charges. Fig.2-3 shows the domain structures on a thin plate of

BaTiO3 single crystal.

For the structures above, the domain wall width after the phase transition can be described by

the minimizing the total free energy [3, 40~42]. The Gibbs free energy under the assumption

above can be written as:

∫ α+α++++= VmdipE dVDDWWWGbGb )
4

1

2

1
( 4

2
2

10 Eq.2-25

Pa

Pa

Surface

Domain boundary

Pc Pa

Surface

Domain boundary

Fig.2-3a: 90° a-a domain wall [110] Fig.2-3b: 90° a-c domain wall [101]

Surface

Domain boundary

Pa Pa

Surface

Domain boundary

Pc Pc

Fig.2-3c: 180° a-a domain wall[010] Fig.2-3d: 180° c-c domain wall
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Here EW , dipW , and mW  are electric energy, energy by the dipolar interaction, and the elastic

energy. The high order term of 6D  is further neglected for the simplicity. According to the

theory above and by minimizing the total free energy, some work [41, 42] have analyzed the

domain walls and leads to an estimation of wall thickness and wall energy of some materials.

The typical values of BaTiO3 single crystal are shown in table 1.

This prediction is naturally under the assumption that all the parameters and dimensions of

domain walls can be described macroscopically. The results of the wall width calculated

above are naturally not of a macroscopic dimension. There is also a microscopic approach

which gives the same value of wall energy [43]. The methods and values here will be

therefore accepted in this work, as other work do.

Materials Wall thickness (nanometer) Wall energy (mJ/m2)

BaTiO3 180° walls 0.5~2 10

BaTiO3 90° walls 5~10 2~4

Table 1: The typical properties of domain walls of BaTiO3  single crystal

2.3.3 The general domain structures of BaTiO3 ceramics

The formation of domains in ceramics is different from that in single crystals because domain

structures of a grain are formed under clamped conditions, whereas a single crystals is free.

The domain size at equilibrium state in any case is determined by the minimum of the intern

energy which is necessary to preserve the shape of the grain when passing from the

paraelectric to ferroelectric state. Although there has been a lot of efforts to explain the

relationship among grain sizes, domain widths, elastic, piezoelectric, dielectric properties and

so on, a generally accepted theory to describe and explain all the relations needs also to be

established [5~13]. Furthermore, how many kinds of structures of ferroelectric domains at the

tetragonal phase of BaTiO3 ceramics exist generally is still not clear. The following is the

most widely accepted description of ferroelectric domain structures of BaTiO3 ceramics at

tetragonal phase in recent literatures [6~10].

It is found that there are different structures of domains in BaTiO3 ceramics but two kinds of

domain structures in BaTiO3 ceramics are typically observed by chemical etching method.

One exists mainly in the grains with sizes smaller than 10 µm and have simple laminated 90°

domain structures. The other kind composes mainly of banded 90° domains if grain sizes are
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larger than 20 µm [6, 7].

For the first kind of domains in BaTiO3 ceramics, according to the same phenomenological

theory above, some work to calculate the relationship between the domain width and the grain

size is presented. The domain width ( wd ) with respect to the grain size g  is calculated as [7]:

2/1)(gd w ∝ Eq.2-26

The typical width of 90° domains is several hundred nanometers.

Another kind of ferroelectric domains exists whose domain structures are typically 90°

banded domains and shown in Fig.2-4 [6, 8, 9, 10]. This kind of structures of BaTiO3

ceramics was observed mostly if the grain size is larger than 20 µm. The two 90° domain

structures of this kind of domains are shown in Fig.2-4. The α  structure has a one-to-one

correspondence of conjugated domain areas whereas the γ  structure without any

correspondence. The domain width ´
wd  can be calculated as [10]:

´
wd (µm) )

34.0

004.0
1(104.0

3/1
3/1

−
+≈

g
g Eq.2-27

If a coarse grain of BaTiO3 ceramics has a dimension of 50 µm, the domain width is about

300 nm.

It is clear that the domain widths whose structures are known today are in the range of several

hundred nanometer in BaTiO3 ceramics.

X

Y

Grain size g Domain width dẃ

X

Y

Fig.2-4a: α  structure of 90° domain

laminated structures

Fig.2-4b: γ  structure of 90° domain

laminated structures
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Other types of domains of ferroelectric BaTiO3 ceramics, such as those with no relationship to

grain sizes, because of their complex natures and P
�

⋅∇ 0≠  in the bulk materials, are less

studied and little documented. The complicated relationships among domain structures,

temperatures, electric and ferroelectric properties, and grain sizes are usually studied

experimentally.

In recent literatures, domains and their effects on macroscopic properties of ferroelectric

ceramics are studied experimentally. The dielectric, elastic, piezoelectric properties of

ferroelectric ceramics are described by recent studies as the sum of intrinsic and extrinsic

properties [11~13]. The intrinsic property of ferroelectric materials is defined as properties of

the material with a monodomain and the extrinsic property the contribution from other parts

of the material, such as domain wall movements. The dielectric constant ε , piezoelectric

constant d , and elastic compliance s , are therefore written as follows:

ε
�

exin ε+ε=
��

d
�

exin dd
��

+=

s
�

exin ss
�� += Eq.2-28

The subscripts ‘in’ and ‘ex’ denote the intrinsic and extrinsic contributions.

Although a model for ferroelectric ceramics to describe the relationship between the intrinsic

and extrinsic contributions under weak fields has only been presented recently, a generally

accepted theory even by phenomenological methods is still not well developed [13]. The

piezoelectric relation of Rayleigh model for ferroelectric ceramics will be accepted in this

work [12]:

max1103 7.112 XPQd zrzzz +εε= Eq.2-29

where 3zd  is the actual piezoelectric constant for ferroelectric ceramics; 11Q , zP , and maxX

are the electrostrictive constant, spontaneous polarization, and the maximum value of

periodical stress by external fields. The first term is the so-called intrinsic piezoelectric effect.

The detailed discussion of Rayleigh model and the dielectric and elastic relations will not be

mentioned here for the simplicity of our discussion of the near-field acoustic imaging in this

work.
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2.4 Standard methods to image ferroelectric domains

The microscopic characterization of ferroelectric domains is always a challenge for scientists

in this area. The classic work will be shortly mentioned here.

2.4.1 Chemical etching

This is the earliest way to visualize ferroelectric domains in ferroelectrics. Concentrated HCl

etches the a- and c-domains of BaTiO3 at different rates, and also +c and –c ends of the

domains, so that a different texture or shade appears when the etched specimen is examined

under a microscope [3]. It is a destructive method and how such an etching process influences

subsequent domains is also not documented.

2.4.2 Powder methods

This method uses colloidal suspensions of charged particles, which deposit preferentially on

either positive or negative ends of domains. It is a nondestructive method, but the difficult

choice of powders and the limited resolution and contrast makes it not feasible for industry.

Furthermore it is also very difficult to use it on materials with rough surfaces because the

surface topography will add to the contrast of powder contrast.

2.4.3 Optical polarising microscopy

To observe ferroelectric domians, the usual method is the optical microscopy with a polariser

and an analyzer. When the polariser and analyzer of the optical microscope are crossed at 90°

orientations, no light is transmitted through microscope unless the specimen inserted produces

a phase change between two differently polarized light rays passing through it. If it is

assumed that the optical axis is also polar axis, for BaTiO3, the c-domains will not change the

phase of the light and appear dark. The a-domains will change the phase of the light and

appear bright. It is also shown that one can image +c and –c domains by studying the strain-

induced biaxial material along each domain wall [44]. Unfortunately, the optical method is

limited by the diffraction limit of the focused light beam and the resolution is only about half

of the light wavelength used. It will be difficult to obtain the resolution in submicrometer or

nanometer range. Moreover, although this technique is the most common method to image

ferroelectric domains of single crystals, it is very difficult to image ferroelectric domains of

ceramics non-destructively, as the surface has to be polished to get sufficient contrast. To

what extend the polishing process changes the domain structures is still not well studied.
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2.4.4 X-ray diffraction and topography

Both methods require the polishing of the surface to increase the image contrast. The X-ray

diffraction method is a typical method for the research of single crystals and films. It is an

indirect method and by analyzing the diffraction angle, the surface polarization can be

indirectly shown [44].

The contrast mechanism of X-ray topography [3, 45, 46] is that the anomalous dispersion of

X-rays causes a difference between the X-ray intensity reflected from the positive and

negative ends of domains.  By using wavelengths close to an absorption edge of a constituent

element this difference can be maximized. The domains in BaTiO3 have been successfully

observed by this methods. Although it is a classic method to analyze ferroelectric domains, its

resolution and requirement of surface roughness limit its application.

2.4.5 SEM

Methods using SEM to observe domains are also presented [14]. The principle is based on

changes of surface electric potential from domains to domains which will be imaged in

secondary electron image. It has only a resolution of about several µm. The stability of the

contrast of this method and its comparison with other techniques needs to be studied.

2.4.6 TEM

This method is the most powerful method to observe ferroelectric domains [15, 47, 48]. It

presents a good resolution down to several nanometers or lower. But the sample preparation

of this method is difficult and destructive, and whether the sample preparation would change

the domains on the sample surface requires further investigation.

2.5 New methods and works to image ferroelectric domains

There are a large amount of literature which reported new techniques to image ferroelectric

domains. It is but impossible to mention all the techniques here. Only some typical techniques

will be briefly discussed in the followings.

2.5.1 Optical methods based on the second-harmonic generation

This technique can be used in principle for any crystal which can be matched in phase for

second-harmonic generation with light propagation close to the polar axis [3, 49, 50]. Some

work  have also combined this technique with near-field optical methods [51]. Although some

results on single crystals are presented, this method has no advantages for the analyses of
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BaTiO3 ceramics which are usually very rough at the surface and opaque.

2.5.2 Scanning Electron Environment Microscopy

This is a relatively new methods [52] and the principle is almost similar as that of SEM to

image ferroelectric domains. But, because it uses a special environment in the vacuum

chamber in SEM, the image contrast can be held for several hours. For crystal materials, some

results have been obtained but those on ceramics have not been presented up to now. Its

resolution is also in the range of several micrometer.

2.5.3 SEAM

This method uses a very thin gold film on the surface of the material to avoid surface charging

effects and the results of both single crystal and ceramics are shown [16, 17, 37, 38]. The

detailed description of the method will be discussed later in Chapter 4.

2.5.4 Scanning near-field acoustic microscopy based on SPM techniques

The name, Scanning near-field acoustic microscopy (SNAM), was introduced in 1989 [64]

and there are a lot of developments with this technique up to today. For the sake of simplicity

of the present work, the name SNAM would be used to mean all the systems based on SPM

techniques to image acoustic properties. These methods are new and there is still a lot of

discussion on it. To characterize the contrast of SNAM techniques on BaTiO3 materials,

although different set-ups and different results have been presented as discussed in Chapter 1,

a new nondestructive method with nanometer resolution based on the combination of SPM

and acoustic microscopy is introduced in this work [34~37]. This method provides a

possibility to compare contrast of SEAM and SNAM techniques both theoretically and

experimentally. A detailed description of this set-up of SNAM to image ferroelectric domain

structures of BaTiO3 will be presented later in Chapter 5.

2.6  Limitation: quasi-static

For all the discussion above, one of the most fundamental assumption is used. The discussion

and imaging of ferroelectric domains are only discussed quasi-statically. The high frequency

properties of ferroelectric domains will not be discussed here because the imaging mechanism

of SEAM and SNAM will be mainly concerned in this work.
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3 Electric and acoustic coupling in Scanning Near-field Acoustic Microscopy

3.1 General equations of electric and acoustic couplings in solids

Electrical and acoustic coupling equations are briefly discussed in Chapter 2. Their

application combined with the classic electromagnetic and acoustic theories in actual near-

field acoustic microscopy systems is discussed here. From Eq.2-15 to Eq.2-18, the

piezoelectric strain and stress equations can be obtained by integration under the assumption

of zero values of all the field components at equilibrium state:

E
JII sx

�

,= JX + jId ,

~
jE Eq.3-1

=iD Jid , JX +
X

ji

�

,ε jE Eq.3-2

E
JII cX

�

,= Jx - jIe ,
~

jE Eq.3-3

=iD Jie , Jx +
X

ji

�

,ε jE Eq.3-4

Eq.3-1 and Eq.3-2 are piezoelectric strain equations and Eq.3-3 and Eq.3-4 stress equation.

The constant Jid ,  ( jId ,

~
 constants of the transposed matrix) is piezoelectric strain constant and

Jie ,  ( jIe ,
~  constants of the transposed matrix) piezoelectric stress constant.

The Maxwell equations to describe general electric and magnetic phenomena are [53]:

×∇  E
�

= 
t

B

∂
∂−
�

Eq.3-5

×∇  H
�

= 
t

E

∂
∂
�

+ cJ
�

+ sJ
�

Eq.3-6

where E
�

 and H
�

 are electric and magnetic field; D
�

 and B
�

 are electric displacement and

magnetic flux density; cJ
�

 and sJ
�

 are conducting and source currents.

Acoustic vibrations or waves in solid materials are governed by the Newton´s law for

dynamic motion under the classic view. Motions can be classified into two kinds: translational

and rotational motions.

For translational motions, the Newton´s law can be written as:

F
u

X
���

−
∂
∂ρ=⋅∇

2

2

t
Eq.3-7

where u
�

 is the displacement field of  particles in materials and F
�

 is an external body force.
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For the simplicity of discussion below, the velocity of particles ( v
�

=
t

u

∂
∂ �

) is used and Eq.3-7

can be written as:

F
v

X
���

−
∂
∂ρ=⋅∇

t
Eq.3-8

For rotational motions, the Newton´s law can be written as:

0=+− kijji GXX  Eq.3-9

ijX  and ijX  are stress components and kG  is body torque.

Under the small signal and weak piezoelectric coupling approximations, the body torque can

be neglected even if most of the materials of piezoelectric transducers are frequently

ferroelectric, so that the stress tensor is always a symmetric tensor. Combining the

electromagnetic and acoustic equations with the piezoelectric equations, one can obtain the

general coupled equations for fields and waves in piezoelectric materials as [53]:
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∂
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0 Eq.3-10

The equations above are theoretically brief but physical meanings are not easy to see directly.

In order to study the contrast mechanism in near-field acoustic systems clearly, it is easier to

analyze the coupling by separating Eq.3-9 and Eq.3-10 to different coupled groups. It is also

necessary that the system be simplified so that analytical methods can be used.

3.2 Direct imaging of the coupling by a transducer

A general set-up of near-field acoustic microscopy is shown in Fig.3-1. In near-field area, if

there is a certain stimulation which produces acoustic vibrations, the vibrations will transmit

to a transducer which is in solid contact with the sample and will change the acoustic

vibrations into electric signals. To understand the system systematically, we must study how

the stimulation produces acoustic vibrations, how the vibrations transmit to the transducer,

and how the transducer changes the acoustic waves into electric signals in the typical set-up.

At first, the electric and acoustic signal change in the transducer will be discussed. The

acoustic waves in near-field and their transmission in the sample, as they are more

complicated, will be discussed in the next section.

Some typical data about this set-up are: the thickness of the sample is usually 2~5 mm and the
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lateral dimension of the sample several 1~2 centimeter. The transducer has normally a

thickness of 1~2 mm and a lateral dimension of 1~2 centimeter. The width of the near-field in

lateral direction is dependent on the system and the material properties of the sample. Typical

value of SEAM techniques on dielectric materials is several micrometers [57, 73]. As for

SNAM discussed later in Chapter 5, the near-field width is several tens of nanometer.

Because the lateral dimension of the sample and the transducer is much larger than their

thickness, the sample and PZT transducer can be approximately treated as thin plates with

unlimited dimension in the lateral direction. Under such an approximation, the coupling in

both kinds of material can be analyzed as the electric and acoustic coupling in one dimension.

Principally, the coupling in one dimension can be solved by the general coupling equation

Eq.3-9 and Eq.3-10, but it is clearer to see the physical meanings by separating the basic

equations to find different kinds of couplings. For a typical use of a transducer as the acoustic

detector, electric signals, which are changed from acoustic signals, are always in the range of

µV and can be treated as a small signal. The so-called small signal and weak piezoelectric

coupling can be used. Under such approximations, a detailed calculation of electric and

acoustic couplings in one dimension for BaTiO3 crystal and PZT is presented in Appendix A1.

If the z direction is chosen as the transmission direction, there are three kinds of couplings in

both materials. The first is the coupling between a quasi-static electric field zE  [53] and an

acoustic longitudinal plane wave ( zv , 3X ) which can be described by the coupling equation:

Good acoustic
matching 

To lock-in
amplifier

Z

y

PZT

D : Thickness

of the Sample
1

Near-field
depth d

Near-field
width w

D : thickness

of the transducer
2

D : thickness

of the copper electrode
3

1εr

Fig. 3-1: Typical set-up of near-field acoustic microscopy
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( zv , 3X ) are the velocity of particles and the stress in z direction; 3x  is the strain in z

direction. The quasi-static electric field zE  is coupled to acoustic wave ( zv , 3X ) through

strain component 3x .

The other two types of couplings are coupling between two electromagnetic plane waves

( xE , yH ) and ( yE , xH ) and two shear acoustic plane waves ( xv , 5X ) and ( yv , 4X ):
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The physical meaning of Eq.3-11 is that, if a quasi-static electric field in a certain material is

given, the electric and acoustic stiffened coupling can be detected by measuring the acoustic

longitudinal plane wave produced by the electric field in that material; Or, if an acoustic

longitudinal plane wave is given, there exists certainly a quasi-static electric field in z

direction and by measuring this electric field, the coupling can be detected as well. Because a

longitudinal transducer of the developed system is used to detect the longitudinal waves

produced in the system in z direction, only the first coupling of Eq.3-11 will be further

discussed in this work.

In the transducer, the harmonic acoustic longitudinal plane wave ( 3
zv , 3

3X ) can be written by

the use of normal mode as [53]:

2/)( 333
3

tjeaaX ω−+ +−=  Eq.3-14

3
333 2/)( Zeaav tj

z
ω−+ −=  Eq.3-15

+3a = )( 1
3 Da + )( 13 Dzjke −−

Eq.3-16

−3a = )( 1
3 Da − )( 13 Dzjke −

Eq.3-17

in which )( 1
3 Da +  and )( 1

3 Da −  are amplitudes, 3Z  the characteristic resistance, and 3k  the

wave number of the acoustic longitudinal wave in z direction in the transducer. The suffix ‘3’

at the right top corner means waves in the transducer, and ‘+’ and ‘-’ indicate the wave

transmission directions.

At the interface between the PZT transducer and the copper electrode, if the acoustic reflect
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constant at the boundary between the transducer and the back electrode is R , the wave forms

+3a  and −3a  must satisfy the condition:

23

23

)(

)(

1
3

1
3

Djk

Djk

eDa

eDa
R −+

−

= Eq.3-18

)( 1
3 Da −

= 232
1

3 )( DjkeDRa −+
Eq.3-19

The electric field in the transducer in z direction under the open circuit condition can be

expressed as [Appendix A1]:

zE = 





ε

−
PZT
zz

PZT
ze 3

3x Eq.3-20

Here PZT
Pc , PZT

zzε , and  PZT
ze 3  are stiffened stiffness, dielectric, and piezoelectric constants of

PZT in z-direction; 3x  is the strain in z-direction of longitudinal waves and has the form:

3x =
z

v

j
z

∂
∂

ω

31
= 

32

1

Z
−

pV

1
)( 33 −+ + aa )( 13 Dzjke −−

Eq.3-21

From Eq.3-19 and Eq.3-20, the quasi-static electric field in the transducer is:

zE = 





ε

−
PZT
zz

PZT
ze 3

3x

= 





εPZT

zz

PZT
ze 3
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1

Z pV

1
)Re1( 232 Djk−+ )( 1

3 Da + )( 13 Dzjke −−
Eq.3-22

The voltage between two electrodes of the transducer under the open circuit condition is:

outputV = ∫
+ 21

1

DD

D

z dzE

32

1

jk
= 





εPZT

zz
PZT
P

PZT
z

c

e 3 )( 1
3 Da + )Re1( 232 Djk−+ (1- 23Djke− ) Eq.3-23

In all the equations above, )( 1
3 Da +  is a constant determined by both the system boundary

condition and the stimulation in near-field.

If the acoustic wave amplitude )( 1
3 Da +  equals to one unit, which means that a homogenous

acoustic longitudinal plane wave with unit amplitude transmits to the transducer, the

amplitude and phase response of the transducer output signal to the frequency of the typical

set-up shown in Fig.3-1 can be obtained. The amplitude and phase signal responses of the
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output to frequency are shown in Fig.3-2a and Fig. 3-2b.

Although Eq.3-23 describes the quantitative relationship between the acoustic longitudinal

waves and the output signal of the transducer at open circuit condition, in the actual case of a

scanning near-field acoustic microscopy system, the constant )( 1
3 Da +  is dependent not only

on the boundary conditions but also on the coupling source in the near-field. Therefore, it is

necessary to analyze the coupling mechanism in the near-field and the whole transmission

property of the system.

3.3 Piezoelectric coupling in near-field of the scanning near-field acoustic microscopy

To couple acoustic waves in a sample, different methods are used in non-destructive testing

industry [59]. Conventional scanning acoustic microscope (CSAM) uses an acoustic lens to

focus and inject the acoustic waves into the sample and therefore the resolution depends on

the acoustic wave length according to the Rayleigh´s criterion. Although technologically

usable acoustic waves in solids can reach to several GHz up to now, the required coupled

liquid in CSAM system has such a high attenuation at this frequency range that the CSAM

can only use the frequency below this range and the resolution can only reach several

micrometers at most.

There is another kind of techniques whose resolution has no such a limitation, the so-called

near-field acoustic methods [55~62]. A typical set-up is shown in Fig.3-1. The principle of

this kind of microscopy is to produce acoustic waves by various interaction effects within a

tiny volume at the direct vicinity of the sample surface. This volume is frequently defined as

acoustic near-field and its dimension is much smaller than the wave length of acoustic waves

µV
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Fig. 3-2a: Amplitude response of the

transducer to a unit longitudinal plane wave

Fig. 3-2b: Phase response of the transducer

to a unit longitudinal plane wave
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used. Both lateral and depth profiling of these methods are generally dependent on this

dimension [57~63]. The main interactions between the external stimulation and the material

in near-field are photo, ion, electron, and, recently, probe acoustic coupling interactions. The

acoustic waves generated in near-field by a certain interaction or several interactions will

further transmit through the sample, be detected by a transducer, and finally be imaged by the

system. Generally, the main interaction by different methods can be generalized as thermal

coupling, generation of internal electric field, change of lattice constant and so on. The main

types of microscope systems which use the near-field interaction can be generalized in the

following.

Scanning photo acoustic microscopy (SPAM) uses a focused laser beam to produce acoustic

waves in near-field [61]. The laser beam used has a wavelength typically in the visible range

and a power from several mW to several hundred mW. According to the samples tested, the

contrast mechanisms are mainly thermal and optoacoustic couplings. The former can be

explained as that the chopped laser beam warms the sample in the near-field periodically, and,

because of this periodical thermal energy change, the tiny piece of material in the near-field

expands and contracts periodically. These periodical expansion and contraction produce

acoustic waves which are related to thermal and acoustic properties. In the special case of

optoacoustic samples, the direct optoacoustic coupling is used to produce acoustic waves. As

the dimension of near-field area depends on the beam width of the injecting laser beam, which

is formed by a focusing system, the resolution of this method is also dependent on factors

such as the wavelength of the laser beam and the material properties of the sample. Except for

the optoacoustic structures, the limited laser power presents a main drawback to the electric

and acoustic coupling in near-field.

Scanning ion acoustic microscopy (SIAM) has a modulated microprobe with either a low [62]

or a high [63] ion energetic (200 keV) beam implanter. The coupling mechanism is thermal

acoustic coupling and the generation of excess carriers which form an internal electric field.

This field can produce acoustic waves when the sample is piezoelectric. Although a low

energy ion beam can be directly concentrated on the illuminated surface and obtain a good

axial resolution, it presents a great risk of sample damage. Conversely, fast ions can penetrate

further into the specimen, but the penetrating depth is so large that the axial resolution

becomes worse. To characterize ferroelectric domains with high resolution and non-

destructively, this kind of microscopy will not be convenient enough for the purpose.

Scanning electron acoustic microscopy (SEAM) has been developed considerably since its

introduction in 1980 [55, 56] and different coupling mechanisms are discussed thoroughly
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[16, 55~60]. It is principally a near-field technique which uses a tiny volume at the injecting

point to generate acoustic waves. The acoustic coupling mechanisms are mainly classified as

thermal acoustic coupling, piezoelectric acoustic coupling, and excess carrier acoustic

coupling. Which contrast mechanism plays the most important role during the imaging is

naturally dependent on the materials imaged [16]. For most metals, thermal coupling is the

dominant effect [55~59]. If semiconductor materials concerned, the excess carrier coupling

plays a main role by SEAM [16]. When piezoelectric materials are imaged, the piezoelectric

coupling in the near-field has main effects on sound generation [16, 60]. During the last

twenty years, different theories for the calculation of diffusion depth and lateral resolution of

this technique have been developed [57, 58] and different results on different materials have

also been presented. However, although much effort has also been given to image

ferroelectric materials by SEAM [16, 60], the  contrast mechanism of SEAM on ferroelectric

materials is still not well understood because of the complexity of ferroelectric materials and

SEAM technique. It is therefore necessary to analyze the contrast mechanism of SEAM on

ferroelectric materials further. Moreover, as SEAM is a non-destructive acoustic method with

a resolution in micrometer range, it presents itself as a perfect tool for a complementary

analysis and an experimental basis for the development of new kinds of near-field microscopy

with a resolution of submicrometer or nanometer range.

With the invention of Scanning probe microscope (SPM) in 1986 [18], different principles

and experimental set-ups of Scanning near-field acoustic microscopy (SNAM) based on SPM

have been developed recently [19~37, 64~70]. The principle of all the SNAM bases on

coupling acoustic waves in near-field and detecting them by various methods. According to

the set-ups developed, the main work can be roughly classified into two classes. One class

uses a tunnel fork as an acoustic coupling source [64, 67, 68]. The other uses a common tip to

couple or detect acoustic waves [19, 30~37]. According to the operation modes, SNAM can

then be classified as SNAM with direct acoustic vibration coupling [64, 67, 68], direct contact

force coupling [30, 34~35, 65, 66, 69, 70], or piezoelectric coupling [19, 22, 30, 31~33, 36,

37]. A detailed discussion on all the work is beyond the range of this work. Only the

technique which is developed by the use of a transducer to detect the acoustic longitudinal

waves produced in near-field for the analysis of ferroelectric materials [36, 37] will be

discussed in detail in this work. The resolution of this mode of SNAM is basically dependent

on the dimension of the near-field which is formed just beneath the contact point of a

scanning probe by an applied ac voltage. Because the scanning probe has a very sharp form

and a diameter down to 10 nm at the very tip, the lateral dimension of the near-field under the
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probe has also a lateral resolution with almost the same order. This provides an ideal

condition to study ferroelectric domains and material properties at submicrometer or

nanometer resolution. Furthermore, the use of an acoustic transducer at the backside of the

sample for the detection of acoustic vibrations produced in near-field provides a solid base for

the comparison of contrast among different near-field acoustic microscopy systems both

experimentally and theoretically.

For the comparison of the contrast in this work, two typical near-field techniques which have

the highest resolution among all the near-field acoustic microscopy techniques, the developed

SNAM set-up and SEAM, will be chosen and discussed. For the analysis of ferroelectric

properties of BaTiO3 materials by both techniques, only the mechanism of the generation of

internal electric field in near-field will be discussed here, as both techniques rely on this

mechanism to generate acoustic vibrations in near-field. For SEAM, the electric field in near-

field is produced by the trapped charges in the sample. For SNAM system developed, the

electric field is concentrated just under the tip because of the very sharp form of the tip and

will be discussed in Chapter 5 in detail. Naturally, for the reliability of complementary

analyses, both techniques use the same experiment set-up, such as the same transducer and

sample holder, to investigate the same sample at identical areas.

Although it is necessary to make a thin gold film (about several nanometer thick) on the

sample for SEAM study, this film is so thin that it will not change the acoustic boundary

conditions and therefore has no effect on the harmonic acoustic wave solutions. In the same

way, although the tip of SNAM is in contact with the sample surface, the contact force

between the tip and the sample surface is kept constant during the scanning by the

topographical feedback control unit of SPM. For the harmonic acoustic waves, this constant

force has no effect on the harmonic acoustic wave solutions either.

Based on the discussion above and from the point view of acoustic transmission, we can

generalize both systems on ferroelectric BaTiO3 materials as one typical set-up shown in

Fig.3-1 with an electric field stimulation in near-field.

In this typical near-field acoustic system with an electric field stimulation in near-field, some

basic assumptions have to be introduced in order to analyze the system quantitatively:

•  The working frequency is usually in the range from several kHz to several hundred kHz.

The wave length of electromagnetic waves is several kilometers and that of acoustic

waves several centimeters. The set-up has a typical dimension of several centimeters.

Because the wavelength of electromagnetic wave (several km) in the system is much

greater than the dimension of the set-up and the wavelength of an acoustic waves (several
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centimeter) has the same dimension as the set-up, the electric problem can be treated as a

quasi-stationary problem and the acoustic problem a wave transmission problem;

•  Based on the theory of acoustic plate wave guide [53], the acoustic waves produced by the

electric field in near-field are very complicated and there are different modes. According

to the orthogonality of acoustic wave modes, all the wave modes can be expanded as a

sum of plane waves with different spatial transmission directions. Because a longitudinal

transducer is used in the system to change acoustic longitudinal waves into electric

signals, only the longitudinal waves transmitted in z direction will be changed into electric

signals by the transducer. As the lock-in technique is used to amplify the changed electric

signal with the same frequency as the electric field source, we need only to consider the

acoustic plane wave with the same frequency as that of the source. For the acoustic plane

waves transmitted only in z direction with the frequency of the source field, we can use

the transmission line mode to calculate only these longitudinal plane waves in the near-

field approximately. A detailed calculation of electric and acoustic coupling of plane

waves in BaTiO3  is shown in Appendix A2;

•  Because the field is concentrated in the middle of the sample and transducer, the boundary

effects in the transactional plane is neglected for wave transmission. It means the plane

wave approximation for both electric and acoustic fields can be used in the sample and in

the transducer;

•  The signal is so weak that the small signal approximation in acoustics can be used;

•  The coordinate axes are chosen to coincide with the crystal axes in the sample and

transducer;

•  The contact between the sample and the electrode of the transducer and between the

transducer and the copper electrode, and both electrodes of the transducer are so thin that

their effects are neglected;

•  The backside of the copper electrode is acoustically matched so well that there is no

reflected acoustic waves back to electrode;

•  The impedance of the lock-in amplifier is so large that the transducer can be assumed to

work under open circuit condition approximately.

Under the assumptions above, if an electric field source E
�

= sE za
�

 in near-field is given, the

harmonic acoustic longitudinal plane wave ( 1
zv , 1

3X ) produced in the near-field by this source

is governed by the equation (Appendix A1):
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The suffix ‘1’ at the right top corner in the expression ( 1
zv , 1

3X ) means the area in near-field

of the sample.

The stable harmonic solutions of the longitudinal plane wave in near-field can be solved by

the one-dimensional transmission line mode as (A2, Appendix):
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Here 0Z = pcρ  is the characteristic resistance of wave ( 1
zv , 1

3X ) in near-field. )(1 zas
+  and

)(1 zas
−  are wave amplitude terms resulting from the source electric field in near-field. )0(1+a

and )(1 da −  are constants which are determined by boundary conditions as shown in the set-up

of Fig.3-1, if the source is given.

The waves outside the near-field but still in the sample are governed only by the wave

equations without source (Eq.3-11) and can be written as ( 2v , 2
3X  ):

2/)( 2
2

22
3

tjeaaX ω−+ +−= Eq.3-30

0
222 2/)( Zeaav tj

z
ω−+ −= Eq.3-31

)(22 2)( dzjkedaa −−++ = Eq.3-32

)(22 2)( dzjkedaa −−− = Eq.3-33

Here )(2 da +  and )(2 da −  are constants which can be determined by boundary conditions of
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the system and the source, ω the angular frequency, and 2k  acoustic longitudinal wave

number in the z direction in the sample outside the near-field. The suffix ‘2’ at the right top

corner indicates the area outside the near-field but still in the sample.

It is clear that the wave number inside and outside the near-field is the same, as all the

longitudinal waves transmit inside and outside the near-field with the same material constants.

That means k = 1k = 2k .

The acoustic boundary conditions of the model shown in Fig.3-1 are generally the same:

1
3X =0 if z = 0; Eq.3-34

2
3X =

1
3X  if z = d; Eq.3-35

2
3v =

1
3v if z = d; Eq.3-36

3
3X =

2
3X if z = 1D Eq.3-37

3
3v =

2
3v if z = 1D Eq.3-38

)( 1
3 Da −

= 232
1

3 )( DjkeDRa −+
if z = 1D + 2D Eq.3-39

here R  is the acoustic reflection constant of the copper electrode to the longitudinal wave.

The backside of copper electrode is well matched acoustically.

From the set-up shown in Fig.3-1, the acoustic waves in near-field are described by Eq.3-26

to Eq.3-29, waves in the sample but outside the near-field area by Eq.3-30 to Eq.3-33, and

waves in the transducer by Eq.3-14 to Eq.3-17. If the source field in near-field is given,

)(1 das
+  and )0(1−

sa  are two terms of source integration in near-field and are also given. There

are six constants )0(1+a , )(1 da − , )(2 da + , )(2 da − , )( 1
3 Da + , and )( 1

3 Da − . There are also six

independent linear boundary equations from Eq.3-33 to Eq.3-39. There is only one single

solution for all the constants. A detailed solution of all the constants can be found in

Appendix A2. The acoustic longitudinal wave amplitude in the transducer under the open

circuit and weak coupling conditions can be written as:
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The expression is very complicated but the physical meaning is very clear. The term

∫ ζζ
∂

∂d
s dk

t

E

0

)sin(  at the right side of Eq.3-40 is the source coupling in near-field. The rest at

the right side of Eq.3-40 is the system transmission function which is determined by the

boundary conditions of the system. The acoustic wave amplitude )( 1
3 Da +  is dependent on

both the coupling source in near-field and the transmission function of the system. From Eq.3-

40, the output signal of the transducer under the open circuit and weak coupling conditions

can be easily found from Eq.3-23:
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The final output signal of the transducer is:
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Eq.3-41

The first term at the right side of Eq.3-41 is only related to the material properties in near-

field; the second term is the term determined by source electric field in near-field; the third

term is the parameter of PZT transducer; The rest is dependent on the detecting system shown

in Fig.3-1.

Eq.3-41 means that if the source E
�

= sE za
�

in near-field is given, the output signal of the

transducer at the open circuit condition for set-up shown in Fig.3-1 can be obtained. For a

given system, if the source field sE  is kept constant during the scanning, the change of outputV

is only related to material properties (
p

e

c

e 3 ) in near-field. As it is shown in Eq.2-24, the

piezoelectric constant 3zd  (i.e. 3ze  in Eq.3-41) is dependent on polarization. Therefore, if the

coupled source electric field in near-field can be kept constant during the scanning and there

is difference of polarization in near-field of every scanning point, the final acoustic image of

experiment set-up Fig.3-1 is an image of the change of ferroelectric polarization in near-field.

This is the contrast mechanism of near-field set-up shown in Fig.3-1 to image ferroelectric

domains in BaTiO3 material systems. It can be seen later that this is also the theoretical

background for the complementary study on ferroelectric domains of BaTiO3 materials by

SEAM and SNAM techniques, as the contrast mechanism of both techniques is the same. If,

however, the coupled source electric field distribution is scattered by a defect in near-field,
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the output signal of the transducer will be naturally dependent on the scattering source and the

average piezoelectric effect in near-field. This is also the contrast origin of defects in near-

field which can be imaged by SEAM and SNAM.

Furthermore, for the development of experimental set-ups of both near-field techniques based

on the theory above, it is also necessary to estimate the value of output signal from the

transducer. From the Eq.3-41, the value of piezoelectric constants 3ze  of piezoelectric BaTiO3

and PTZ transducer have almost the same value. The stiffened piezoelectric constant in near-

field is about 1011 for BaTiO3 and dielectric constant of PZT PZT
zzε is about 10-12. The near-

field depth is usually in the range of µm. The thickness of the sample and transducer is also in

millimeter range. If it is assumed that the typical electric field in the near-field is smaller than

10 kV/m, which is small enough not to change the domain structures in near-field, the output

signal of the transducer is in the range of µV.  This signal is naturally in the background of

white noise. We have  to use the lock-in amplifier to detect such a small signal submerged in

the white noise background.

How these two kinds of near-field microscopy techniques couple the source electric field in

near-field, how the detailed experiment set-ups for both systems are established based on the

theory above, and how large is the near-field depth of both systems will be discussed in a

parallel way in the following chapter 4 and 5.
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4 Scanning Electron Acoustic Microscopy

4.1 Physical background, signal generation, and contrast mechanism

The physical processes by injecting electrons in Scanning electron microscopy (SEM) are

discussed thoroughly by some work [55~60, 71~73]. The Scanning electron acoustic

microscopy (SEAM) was developed from the commercial SEM to analyze the acoustic

properties of materials [55, 56]. According to different applications, the mechanisms can be

generally classified into thermal acoustic coupling, piezoelectric coupling, and excess carrier

coupling [16]. For the thermal acoustic coupling, some authors introduced a detailed

discussion of coupling equation and output signal of the transducer in SEAM [58, 75] which

will not be discussed in this work.

For the piezoelectric coupling mechanism, although some work has been done to analyze the

coupling mechanism [16], a detailed explanation of this kind of mechanism for the imaging of

ferroelectric domains in SEAM has not been introduced until recently [60]. In that work, the

authors have discussed the piezoelectric coupling effect in the ferroelectric BaTiO3 material

by SEAM, but the acoustic solutions were assumed the same inside and outside the near-field.

It was an assumption which did not satisfy the acoustic wave equation Eq.3-11 in the area

outside the near-field but still in the sample.

For the future analysis of ferroelectric materials by near-field acoustic microscopy techniques,

it is obligatory to study this mechanism further. As this kind of mechanism concerns the

coupling of mechanic and electric phenomena in near-field, a detailed analysis of physical

process of electron injection in near-field by primary electrons (PE) is also necessary.

If only the insulating materials are concerned, some authors introduced some models to

describe field distributions in the insulating materials bombarded by PE [71~74]. Most of the

models have assumed that the electric field in electron injecting area is uniform in the

injection direction. This is naturally against Gauss´s theorem. A more accurate model to

calculate electric field formed by injection electrons was introduced [74]. Although this model

is impossible to explain all the actual phenomena of bombardment on insulating materials by

PE, it is the most accepted model in this aspect today. Therefore this model is chosen as the

base for the analyses of the contrast mechanism of SEAM on ferroelectric BaTiO3  materials.

According to the model, the PE injects into a sample and forms a trapped charge distribution.

For a typical set-up of SEAM system, the charge distribution in an insulator by a

bombardment of primary electrons is shown in Fig. 4-1. The charge accumulating area has
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two parts. The first is the positive charged area +ρ , which is caused by the emission of

secondary electrons (SE) with a quantum yield δ . The depth +d  of this area is less than

several nm for metals and from 10 to 50 nm for insulators. The rest of PE inject through this

area and further into the sample until they come to rest. A fraction of electrons will be back

scattered (with a backscattering coefficient Eη ) and the rest of electrons form a negative

charged layer with density of −ρ  and depth −d . The depth of penetration d  is +d + −d  which

is dependent on accelerating voltage and the material properties [57, 60].

If the PE keeps on injecting the area, the charge will be accumulated. The conductivity of the

sample will discharge this charge distribution. At the same time, the electric field which is

formed by the accumulated charge will force the electrons to migrate up to the surface. If the

sample surface is grounded by a thin metal layer, the injecting electrons and the electrons

discharged and migrated will have an equilibrium state after a time eτ . In this state, a stable

electric field will be produced in the injected area in the sample. Unfortunately, this time

constant eτ  is very difficult to evaluate, because it depends on both material properties and

experiment arrangement and currently can only be decided by experiment.
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Fig.4-1: Process of electron bombardment on a ferroelectric material
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If the intensity of PE is modulated with an angular frequency ω, the electric field distribution

can also be established after a delay time factor longer than eτ . In this case, the electric field

formed has also an angular frequency of ω. To study the problem further, some

approximations have to be made. As it can be seen later, even under such approximations, the

solution of piezoelectric mechanism in SEAM has a very complicated form.

Besides the fundamental approximations to analyze near-field microscopy systems in Chapter

3, some special approximations for SEAM must be assumed here:

•  The dimension of near-field of SEAM is so small compared to sample and wavelength,

that the anisotropic properties for the calculation of electric field in near-field can be

neglected;

•  The emission of SE takes place mainly at the surface of the metallic layer, so that there is

only a negatively charged area in the sample with a density of −ρ  ;

•  The penetration charge will be assumed that it is a charge cylinder (diameter 2a and length

d ) in the sample with defocus condition, so that the electric field component in radial

direction is neglected and the electric field component zE  is uniform and equals the

electric field in the middle of the near-field;

•  The illumination time of PE at every scan point is greater than the discharge delay time eτ

of the materials, so that a stable harmonic field distribution is established.

From Fig. 4-1, if the sample has a thin layer of metal on the surface, the stable electric field

distribution can be calculated by the use of an image charge distribution. With the

approximations above, the electric field along the z axis is [74]:

sE =
tjedzA ω− )´(  ( 0 <z<d , 222 ayx ≤+ )

sE =0 ( z >d and z<0, 222 ayx ≥+  ) Eq.4-1

where −ρ  is the density of stable charge distribution in near-field and zzε  is the dielectric

constant in z direction of BaTiO3 materials. The x, and y components of electric field are

neglected as they are small compared to z component. The electric field distribution of Eq.4-1

is the source field sE  in near-field of SEAM.

The electric field source in near-field with harmonic time variation is:

sE =
tjedzA ω− )´( = ee τ−

da

I

zz

E

επ
η−
2

0)1( tjedz ω− )(  Eq.4-2

The acoustic source in near-field for BaTiO3:
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E τ−
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The output signal of a PZT transducer under the open circuit condition is [A3, appendix]:

outputV =2 j ( s
zz
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ρε
3 )( ee

da

IE τ−

π
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2
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) 
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In Eq.4-4, 1α =
1
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−
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−
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−
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The term in the first bracket of Eq.4-4 is directly related to the material properties in near-

field; The term in the second bracket is about the charge distribution in near-field; The term in

the third bracket is related to the properties of the PZT transducer; The remaining four terms

are related to detecting set-up and have a very complicated frequency dependence.

As it is explained in chapter 2, if the extrinsic contribution of the domain walls to the

piezoelectric effect in ferroelectric materials is neglected, the constant of 3ze  (or 3zd ) is

directly related to ferroelectric polarization [see Eq.2-24]. If there are c- and a- domains on

the two areas on the surface of BaTiO3 materials, the area of c-domains has polarization

parallel to the z direction and has a non-zero value of 3ze  in near-field. Whereas the area of a-

domains, which has a polarization perpendicular to the z direction, will have zero value of

3ze . This is the contrast mechanism of SEAM on the ferroelectric BaTiO3 single crystal.

Eq.4-4 has a very complicated frequency dependence, which is proved by SEAM experiments

[34, 38]. This dependence results from the frequency term in Eq.4-4 and can only be analyzed

by computer simulation. The computer simulation is completed by the use of the free Linux

software Octave Ver. 2.0.13 and the result is shown in Fig.4-2. As the typical frequency range

of most lock-in amplifier is from several Hz to 200 kHz, the amplitude and phase response of

the output signal of the transducer in this frequency range has a dependence of frequency

shown in Fig.4-2. Early experimental work [38] revealed the same tendency of the acoustic

output signal in SEAM in this frequency range.
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If there is domain contrast, the output signal is directly proportional to primary beam current.

It is proved by experiment that the domain contrast of SEAM is better with large beam current

[38]. However, the dependence of domain contrast with respect to injecting depth is relatively

difficult. Up to now, most of the models to describe SEAM contrast have only mentioned the

thermal mechanism whose contrast is originated from the periodical thermal diffusion by the

injection of modulated PE. For the contrast originated from ferroelectric domains, as it is

shown by the model discussed above, the near-field area is actually the whole injecting depth

of primary electrons. Detailed discussion about this injecting depth has been presented [57,

73] and the injection depth will be used directly here.

4.2 Experiment set-up

The experimental set-up of SEAM is shown in Fig.4-3. It can be developed from a

commercial SEM. The SEM used in this work is Model S150 and CS2 from Cambridge

Microscope Ltd. The software from Triple-O

Microscopy Company Ltd. is used to control

the simultaneous imaging of secondary

electron image (SEI) and electron acoustic

image (EAI). The function generator HP8801

is used as the signal source and the lock-in

amplifier Itaho3053 is used to amplify the

electron acoustic signal. The system acquires

both SEI and EAI simultaneously, so that the

occasional noise will be minimized. The beam

current is measured by a normal Faraday cup.
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Fig.4-2a: Amplitude of the output signal of

the transducer in SEAM
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Fig.4-3: Setup of SEAM
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The piezoelectric transducer is PX5 piezoelectric ceramics from Company Valvo [76]. Some

of the typical results are presented [34, 36, 37, 38].

4.3 Discussion of the signal and noise

To evaluate an imaging system, it is always to analyze some important parameters, such as

time resolution and bandwidth, lateral and depth resolution, sensitivity and signal-noise ratio,

stability, and the test time.

As discussed above, The illumination time of PE at every scan point is greater than the

discharge delay time eτ  of the materials, so that a stable harmonic field distribution is

established. This discharge delay time eτ  is dependent on both the injecting beam and the

sample studied. A typical value for insulating materials under the bombardment of the PE

with current density of 1µA/mm2 is 0.1 ms [74]. For a typical image of 400*400 resolution

scanned by a computer controlled SEM, the scanning beam can stay for 10 ms at every pixel.

That means this delay time has no significant effect on the typical SEAM imaging process.

As presented by other work [55~61], the lateral and depth resolution of SEAM are mainly

dependent on the interaction volume of PE penetration, which is defined as the volume of

near-field for SEAM in this work. Whereas the near-field volume has the dimension of the

thermal diffusion volume in case of thermal mechanism, the near-field volume by

piezoelectric mechanism has a depth resolution of the whole PE penetration depth. Typical

value of penetration depth of SEAM image with 20 keV primary electrons is about 2~3 µm

[55] which is dependent on  the materials studied.

The lateral resolution is also dependent on the dimension of the near-field. For the imaging of

ferroelectric material, if there is a surface polarization in near-field, this polarization will

naturally affect the lateral distribution of electrons of injecting PE. As a result, the dimension

of the near-field is changed. Because the piezoelectric vibration mode change and lateral

electric field distribution in near-field are very complicated and little documented in the

literatures up till today, it can only be estimated experimentally. Unfortunately, from the

experiment results this effect is little documented too.

The signal to noise ratio can also be estimated. If the noise from function generator, SEM, and

the measuring circuit and lock-in amplifier are Gσ , SEMσ , and mσ , it is necessary to add the

noise of acoustic detecting system Aσ  which is composed of thermal noise in near-field, the

acoustic transmission noise, and the thermal noise of transducer. The total noise totalσ  is:
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totalσ =
2222
AmSEMG

σ+σ+σ+σ Eq.4-6

The SEMσ , Gσ ,  mσ  are known for a certain SEM system, a certain function generator, and a

given lock-in amplifier. But Aσ  is very difficult to evaluate and could only be decided

experimentally up to now. A typical value of signal to noise ratio at frequency of 100kHz

after the lock-in amplifier is 3~5 for SEAM.

There are two factors which affect the stability of SEAM by piezoelectric imaging

mechanism. One is the stability of field distribution in near-field. The other is the stability of

SEM. Usually the stability of SEM is given for a certain system. According to the experiment,

the stability of field distribution in near-field is very sensitive to the beam current, as the

thermal effect by the injecting PE has a considerable effect on the stability. Under normal

conditions, if the beam current is less than 100~500 nA, there is no problem of stability

caused by thermal effect.
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5 Scanning Near-field Acoustic Microscopy based on SPM (SNAM)

5.1 Physical background, signal generation, and contrast mechanism

To analyze the ferroelectric properties by SPM, much work has been done and different

experiment SNAM set-ups based on SPM have been developed [19~37]. Only recently, a

model for the study of ferroelectric thin films by piezoelectric response mode of SNAM is

presented [33, 77]. Even in that model, the electric field solutions could not satisfy the electric

boundary conditions of the presented model. Neither could the introduced theoretical method

be used as a systematic theoretical technique even only to analyze the quasi-stationary

electric field for different samples such as bulk materials or thin films. For a systematic

analysis of the electric and acoustic coupling fields in ferroelectric samples studied by SNAM

systems, no other work has been documented because of the complexity. The first difficulty is

that the electric and mechanical fields in the near-field in the sample is very difficult to

calculate in SNAM systems [77, 78]. The second difficulty results from surfaces of

ferroelectric materials which are also unknown to us. Although experiment results are

presented from both piezoelectric response mode [19,33] and the system developed in this

work [34, 37], an explanation of contrast of SNAM can only be qualitative, as the electric and

mechanical coupling in near-field is still under study. Although there have been a lot of

numerical solutions of the electric field distribution under the tip, it would be difficult to use

the numerical solutions to study the contrast mechanism of SNAM systems. Therefore, a

simple analytical solution of electric and mechanical coupling will be important for both the

analysis of contrast mechanism and the estimation of properties of ferroelectric materials

studied by SNAM systems.

As briefly discussed in the introduction, a new set-up of SNAM based on SPM for the

characterization of BaTiO3 material system is developed in this work. To characterize the

system developed, a systematic theoretical model based on classical electromagnetic and

acoustic theories for the set-up is presented in this chapter. Detailed theoretical calculations

can be found in Appendix A4.

The SNAM system to be introduced in the following is developed from a commercial SPM

system. The SPM works in contact mode and an alternating voltage is applied between the tip

and the backside of the sample. A transducer is used to detected acoustic vibrations produced

by the converse piezoelectric effect of the sample [34~37]. As briefly discussed in Chapter 3,

the use of the transducer provides a solid base for a theoretical and experimental comparison
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of the contrast of SNAM system developed in this work to other established near-field

acoustic methods, such as SEAM. Some work [19, 22, 25, 30~33] introduced the so-called

piezoelectric response mode of SNAM which uses the laser signal to detect the acoustic

vibrations in near-field. A comparison of results of the developed system with the results of

the piezoelectric response mode is also presented later. To analyze the developed set-up

systematically, some important parameters of the system should be introduced at first.

By the contact mode of SPM, the distance between the tip and the sample surface is smaller

than 10 nanometer. The tip used in the SNAM has a spherical form with a curvature radius of

10 nm at the pinnacle. The ac voltage between the tip and the back electrode is usually fixed

at a certain value at which the ferroelectric domains would not be affected. The transducer

and sample holder are exactly the same as those used in SEAM, so that the same acoustic

boundary conditions for both near-field techniques can be ensured for the complementary

study discussed in Chapter 8.

The sample studied is usually anisotropic and the SNAM has complicated boundary

conditions because of the conductive tip. It is impossible to obtain a simple analytic solution

without certain approximations. Usually, the near-field under the tip in SNAM is usually

small, and, for the analysis of quasi-stationary electric field problems, the electric anisotropic

properties of the sample can be neglected. Only for the analysis of acoustic problems, the

anisotropic properties must be taken into account, as the dimension of the acoustic

transmission is much larger than the dimension of near-field.

The form of the tip presents another

problem for the analytic solution of

the electric field in SNAM. Under the

microscopic view, the form of the tip

is different from one another.

Theoretically, the surface of the

conductive tip can be equated by an

infinite series of point charges, but it

would be too complicated to see main

physical meanings in SNAM system.

As discussed in Chapter 4, the sample

and the transducer in near-field

microscopy system have usually a

D1

q

(0, 0, h )0

(0, 0, -h)

(0, 0, 0)
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a

Scanning Probe
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Fig.5-1: Simplified model for the set-up
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lateral dimension of 1-2 centimeter. The thickness of the bulk ceramics or crystal samples is

normally 2 millimeter and a typical thin film sample 1000 nm. The scanning tip has only a

diameter of 10 nm at the pinnacle. Because of this difference of the geometrical dimension

between the sample and the tip, the tip can be normally simplified as a point charge which is

at the curvature center of the pinnacle of the tip [33, 77, 79]. The sample and transducer, as

discussed in chapter 3 for a typical near-field acoustic system, are simplified as plates with an

unlimited lateral dimension. The simplified model to characterize the electric field

distribution of the set-up developed in this work is shown in Fig.5-1. The approximations for

SNAM system developed, as in the case of SEAM, are generalized as:

•  For the calculation of quasi-stationary electric field in near-field, the anisotropic of

electric property of the sample is neglected; Only by the treatment of acoustic

transmission problem, the anisotropic properties of materials will be taken into account;

•  The tip will be equivalent as a point charge at the curvature center of the pinnacle of the

tip;

•  At the pinnacle point of the tip )h,0,0( 0 , the potential will be given as the voltage of the

tip, because it is the nearest point to the sample and has the strongest effect on the field

distribution [77, 79].

According to the model and under the approximations above, the electric and mechanic

coupling in the system can be analyzed. The analytic solution of the quasi-stationary  electric

field in the SNAM system developed should be a solution of the Poisson´s equation with a

point source under the given boundary condition shown in Fig.5-1. The most effective way to

solve this quasi-stationary  field is the solution of the Green´s function of the system.

5.1.1 Green´s function of the model

The electric field distribution can be analyzed by the use of Green´s function. The field

distribution of a point charge q  at (0,0,-h) in cylindrical coordinate system can be obtained by

separating variables as [80~82]:

V=
04πε

q
∫ ββ
∞ +β−

0
0 )( derJ hz

 Eq.5-1

The Green´s function for the model shown in Fig.5-1 can be written as:

In the region - ∞ <z<0;

V0=
04πε

q
[ ∫ ββ

∞ +β−

0
0 )( derJ hz

+ ∫ βββ
∞

β

0
0 )()( derJA z

] Eq.5-2
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In the region 0<z<D1;

V1=
04πε

q
[ ∫ βββ

∞
β−

0
0 )()( derJB z

+ ∫ βββ
∞

β

0
0 )()( derJC z

] Eq.5-3

At z = D1, the metal interface is earthed, so the voltage at the interface:

V1=0 Eq.5-4

As the interface between the sample and PZT transducer is earthed, it is only necessary to

characterize the electric field distribution in two regions above. By solving the boundary

conditions of the system, the constants can be decided [Appendix A4.2].

The Green´s function V0 in the region of - ∞ <z<0 is divided into three terms:

The first term:

04πε
q

∫ ββ
∞ +β−

0
0 )( derJ hz

 Eq.5-4

It can be treated as a point charge at (0, 0, -h)

The second term:

04πε
q

∫
∞

0
(- 1η ) he β−2

12
11

1
De β−η+

ββ β derJ z)(0

=
04πε

q
∫
∞

0
(- 1η ) )(0 rJ β β−β de hz )(

+
04πε

q
∫
∞

0

2
1η ββ +−β derJ hDz )]2([

0
1)(

+
04πε

q
∫
∞

0
(

3
1η )4( 1 hDe +β− +...) ββ β derJ z)(0 Eq.5-5

Here 1η =
1

1

1

1

+ε
−ε

r

r
.

The terms at the right side of Eq.5-5 can be treated as image charges 0mQ = - 1η q, 1mQ = 2
1η  q ,

... at the position of (h, 2D1+h, 4D1+h,...) at z axis.

The third term:

04πε
q

∫
∞

0
(-1) )2( 1 hDe +β−

 
12

11

1
De β−η+

ββ β derJ z)(0

=
04πε

q
∫
∞

0
(-1) ββ +−β derJ hDz )]2([

0
1)( + 

04πε
q

∫
∞

0
1η ββ +−β derJ hDz )]4([

0
1)(
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+
04πε

q
∫
∞

0
[ 2

1η )6( 1 hDe +β− +...] ββ β derJ z)(0 Eq.5-6

In the same way, terms at the right side of Eq.5-6 can be treated as the image charges 0nQ = -

q, 1nQ = 1η q , ... at the position of (2D1+h, 4D1+h,...) at z axis.

The physical meaning of the calculation above is that the Green´s function for the area above

the sample in SNAM can be equivalent as the sum of potentials which are produced by a

series of point image charges. The final image charge distribution for Green´s function V0 is

shown in Fig.5-2.

The Green´s function V1 in the region of D1>z>0 is obtained in the same way and divided

into two terms (Appendix A4.2):
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1η q
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)1(
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1jQ =
)1(

2

1 +εr
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Fig.5-2: Equivalent point charges for the

Green´s function in the half space z < 0

Fig.5-3: Equivalent point charges for the

Green´s function in the space (D1>z>0).
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The first term of V1:

04πε
q

∫ βββ
∞

β−

0
0 )()( derJB z

=
04πε

q
)1(

2

1 +εr

∫
∞

0
ββ +β− derJ hz )(

0 )(
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− q
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2
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1η ∫

∞
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1)(
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− q
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∫
∞

0
[ he β−2  ( 1η 12 De β− )2 -...] ββ β− derJ z)(0 Eq.5-7

The term at the right side of Eq.5-7 can be equivalent as image charges 0iQ =
)1(

2

1 +ε r

q,

1iQ =
)1(

2

1 +ε
−

r
1η q, ... at the position of (-h, -(2D1+h), ...) at z axis.

The second term of V1:

04πε
q

∫
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0 )()( dkekrJkC kz
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04πε
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(-1)

)1(

2

1 +εr

∫
∞
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1η ∫

∞
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dkekrJ Dhzk )4([

0
1)( +−

+
04πε

q
 ∫

∞

0
[

)2( 1Dhke +−
( 1η 12kDe−

)2+...] dkekrJ kz)(0 Eq.5-8

The terms at the right side of Eq.5-8 can be equivalent as image charges 0jQ =
)1(

2

1 +ε
−

r

q,

1jQ =
)1(

2

1 +ε r
1η q, ... at the position of (2D1+h, 4D1+h, ...) at z axis. The image charge

distribution of Green´s function V1 is shown in Fig.5-3.

5.1.2 Modeling of thick samples

The near-field area of SNAM is just beneath the sample surface. If the sample is very thick

compared to the distance h (D1>>h), the charge at (0,0,-h) and the image charge at (0,0,h)
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with charge qQm 10 η−=  have the greatest contribution to the Green´s function of V0 in the

vicinity of the tip contact area and the contribution of other image charges can be further

neglected (see Fig.5-2). In the same way and under the same approximation above, the field

distribution in near-field in the sample can also be calculated by the image charge at (0, 0, -h)

with a charge of qQ
r

i 1

2
0 +ε

= (see Fig.5-3). The physical meaning of the approximation is

that the sample is treated as an infinite half space with dielectric constant rε  approximately.

Under the approximation above and from the Green´s function, if the rectangular Cartesian

coordinate system is used for the sake of further analyses of acoustic problems, the electric

potential under the approximation above can be written as:

V0=
04

1

πε
(

222 )( hzyx

q

+++ 222

0

)( hzyx

Qm

−++
+ ), for z<0 Eq.5-9

in which 0mQ = - 1η q; Eq.5-10

V1=
04

1

πε 222

0

)( hzyx

Qi

+++
, for z>0 Eq.5-11

in which qQ
r

i 1

2
0 +ε

= . Eq.5-12

The system capacitance can be calculated by the Green´s function above. To make the best

approximation for the tip, the point )h,0,0( 0  at the pinnacle point of the tip will be given the

voltage of Vs. The equivalent charge, as mentioned above, is at the curvature center at the

pinnacle point with a curvature radius of 10 nm. The equivalent charge q :

q = eqC Vs = 04πε
1

01
1

0 )()(

1
−− +η−− hhhh

Vs Eq.5-13

From Eq.5-73, the source field distribution in the sample can be written as:

sE
�

= xa
x

�

∂
∂− V1

( + ya
y

�

∂
∂ V1

+ )
V1

za
z

�

∂
∂

The x and y  and z components of sE
�

 have the forms:

sxE =
04

1

πε 3222 ))(( hzyx

x

+++
0iQ  Eq.5-14
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syE =
04

1

πε 3222 ))(( hzyx

y

+++
0iQ Eq.5-15

szE =
04

1

πε 3222 ))((

)(

hzyx

hz

+++
+

0iQ Eq.5-16

To understand the near-field effect of the SNAM system, an estimation of electric field under

the tip is necessary. The x and y components are zero in the middle of the near-field area and

small in the vicinity compared to z component, so that they can be neglected for further

analysis. The BaTiO3 crystal has a typical value of rzzε =112 . In the contact mode of SPM, the

distance h0 in the model is usually smaller than 5 nm. The curvature radius at the pinnacle

point is about 5 nm. From Fig.5-4, h =10 nm. With the help of free mathematical simulation

program Octave 1.2, the electric field in the sample of szE  for typical BaTiO3 single crystal

material is simulated. The simulation shows clearly that the field is concentrated itself on

several h under the surface. At the depth of the material about 9h, the field is decreased to 1%

of the value at the surface. Under the model above, the field is naturally proportional to the

voltage if the capacitance is calculated as Eq.5-13 which is generally accepted [33, 77, 79].

The electric field in z direction for SNAM is:

szE =
04

1

πε 3222 ))((

)(

hzyx

hz

+++
+

0iQ Eq.5-17

If  the near-field approximation like that for SEAM is also made here:

•  The near-field dimension in lateral direction is defined as the area where the value of the
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Fig.5-4a: The change of szE  with depth (z/h)

at the tip voltage of 1 Volt

Fig.5-4b: The change of szE  with the tip

voltage at sample surface (z = 0)
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szE  at the boundary is decreased to 1/e of the value in the middle;

•  Within the lateral dimension of the near-field defined above, the electric field szE  is

homogeneous in lateral direction and equals the field in the middle of the near-field;

Then the electric field sE  in the whole near-field area can be approximately written as:

sE = szE =
04

1

πε 2)(

1

hz + 0iQ Eq.5-18

If the source voltage is time harmonious function with a highest frequency of several hundred

kHz, it will produce a quasi-stationary  electric field in the z direction. The amplitude of this

quasi-stationary field is also expressed by Eq.5-18 with only a time variable tje ω . By the use

of transmission line mode and by solving the system acoustic equations shown in Chapter 3,

the amplitude of acoustic waves in transducer in SNAM can be obtained in the same way as:
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The output signal of transducer is from Eq.3-23:

outputV =
32
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If the system boundary is given and the source field is kept constant during scanning, the

output signal is only proportional to material

constants 
p

z

c

e 3  and ∫ ζζ
1

0

)sin(
D

s dkE . Here the

term ∫ ζζ
1

0

)sin(
D

s dkE  must be discussed in detail

to see the physical meaning of the near-field

effect in SNAM. At a given point, the material

properties at the point are given, the output

signal of the transducer in SNAM is only

proportional to ∫ ζζ
1

0

)sin(
D

s dkE . Because this

integration has no simple form, we can only calculate the output signal of the transducer
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Fig.5-5: The change of output signal of

the transducer with sample thickness D1
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through the Octave mathematical program. The output signal of the transducer at a certain

frequency (f=100kHz) with the change of thickness of the sample is shown in Fig.5-5. It is

clear that, after D1 = 20h, the signal changes very slowly and reaches almost the final value.

That means that the contrast of SNAM comes from the surface layer in the range from the

surface to several hundred nanometer deep. The reason is that most of the source electric field

in the model is concentrated in this area because of the form of the tip, as shown in Fig.5-4a.

After the discussion of near-field area in the thick sample, the contrast of ferroelectric

domains can be explained in the same way as in the case of SEAM. If the extrinsic

contribution of the domain walls to the piezoelectric effect in ferroelectric materials is

neglected, the constants of 3ze  (or 3zd ) is directly related to ferroelectric polarization [see

Eq.2-24]. If there are two areas of c- and a-domains on the surface of BaTiO3 materials, the

area of c-domains has polarization in the z direction and has a non-zero value of 3ze  in near-

field. When the scanning tip is on this area, the output signal of the transducer has a certain

value. Whereas the area of a-domains, which has a polarization perpendicular to the z

direction, will have zero value of 3ze . When the tip is on this a-domain area, the output signal

of the transducer, will have a zero value (or more accurately, very small value). As the

amplitude signal is used as the imaging signal, the c-domain will appear bright and a-domain

will appear black in acoustic image of SNAM system. This is the contrast mechanism of

SNAM on ferroelectric BaTiO3 single crystals. Here we must notice that the near-field

dimension is much smaller than that of SEAM.

5.1.3 Modeling of thin samples or films

If the sample is not so thick compared to the distance h (D1 ≅ h), or the sample is a

ferroelectric thin film which usually has a thickness of several hundreds to several thousands

nanometers, the condition D1>> h is not satisfied in this case. According to the Green´s

function of Eq.5-4 to Eq.5-8, the electric fields above the sample and in the sample are

dependent on series of image charges. The final field distribution is the sum of field

contributions from every single image point charge. How many image charges should be used

to decide the Green´s function of the system, is naturally dependent on the thickness of the

sample and the accuracy of the calculation. The typical thin film studied in this work has a

thickness of 1 µm and the distance of h is 10 nm. For this typical thin film system with the

first order of approximation, only the field contribution of the image point charges at the

distance to the surface in the range of (2D1+h) will be considered. The contribution of other

image charges at the distance outside this range is assumed so small that the contribution can
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be neglected.

Under the approximation above and according to the Green´s function discussed above, the

Green´s function V0 is constructed by q at position of (0, 0, -h), qQm 10 η−=  at (0, 0, h),

qQm
2
11 η−=  and qQn −=0  at h)D2,0,0( 1 + . The Green´s function V1 (see. Fig. A3) can be

constructed by charges of qQ
r
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If the rectangular Cartesian coordinate system is used for the sake of simplicity of further

analyses of acoustic problems, the Green´s functions for thin film under the condition above

can be written as:
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The system capacitance can be calculated in the same way. With the source Vs, the equivalent

charge q  is:
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The field distribution in the sample can be obtained as:
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If  the near-field approximation like that of SEAM is also made here:

•  The near-field dimension in lateral direction is defined as the area where the value of the

zE  at the boundary is decreased to 1/e of the value in the middle;

•  Within the lateral dimension of the near-field defined above, the electric field zE  is

homogeneous in lateral direction and equals the field in the middle of the near-field;

Then the electric field in the whole near-field can be approximately written as:
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The output signal of the transducer can also be obtained by Eq.5-19 and Eq.5-20. It must be

noted that, if the thickness of the film is D1=1 µm, the electric field in z direction in near-field

has little change according to Eq.5-27 as the last two terms in Eq.5-27 are much smaller than

the first one. That means that the two image charges 1iQ  and 0jQ  have so small an effect to

the electric field distribution in the near-field that the effect can be neglected as well. Only if

the thickness of the film is comparable to the parameter h, the field distribution should be

estimated according to different order of approximation to the Green´s function Eq.5-4 and

Eq.5-8, and finally the equivalent image charges can be decided.

5.2 Experiment set-up
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The developed SNAM system is shown in Fig.5-6 if the switch is turned to position (a). The

SPM system is a topometrix Explorer. The tip used is the electric conductive tip of the

Company Nanosensors [83].  The transducer and sample holder are the same as those used in

SEAM discussed in Chapter 4.

By the use of a transducer, it is also possible to compare the direct and converse piezoelectric

effect in near-field. The set-up to check the direct piezoelectric effect is shown in Fig.5-7. The

tip is modulated and the contact force between the tip and the surface of the sample is

modulated as well. This modulated force will act as a point stress source on the sample

surface and produce different acoustic waves in the sample among which there are acoustic

longitudinal waves transmitted in z direction. According to the discussion of the electric and

acoustic coupling presented in Chapter 3, because the sample of BaTiO3 is piezoelectric, the

acoustic longitudinal plane waves will produce a coupled quasi-stationary electric field in the

sample. This coupled field can be imaged by measuring the voltage between the conductive

tip and the bottom side of the sample, if the tip and the sample can be well shielded from

other disturbance signals, such as the disturbance signal from the PZT actuator in SPM. It

means that it is theoretically possible to image the direct piezoelectric effect in this way. The

set-up of Fig.5-6 at the switch position (a) can measure the converse piezoelectric effect. By

comparison of the set-up of Fig.5-7 with the set-up of Fig.5-6 at the switch position (a), it is

Fig.5-6: Set-up of SNAM with a transducer

(a) and of piezoelectric response mode (b)

Fig.5-7: Set-up of SNAM with force

modulation
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theoretically possible to compare direct and converse piezoelectric effect in near-field. One of

the results is shown in Fig.7-5.

The so-called piezoresponse mode of SPM [19,22,25,30~33] is based on such a principle: An

ac voltage is also applied between the conductive tip and the backside of the sample to

produce the vibration in near-field of ferroelectric samples. As the tip is in contact with the

sample surface, the near-field vibrations transmit also to the cantilever and the laser beam is

modulated by the vibration. The photodiodes in SPM demodulate the laser signal and form the

so-called T-B-signal, which is the difference of signals obtained from top and bottom diode

sections of a quadrant detector. It carries the information of vibrations in near-field. By

detecting the T-B signal, the information in near-field can be detected indirectly, as shown in

Fig.5-6 with switch to (b). The tip used is a commercial electrical conducting tip. The ac

voltage Vs used must be so small that the ferroelectric domains will not be affected.

In order to compare contrast between the set-up developed in this work and the piezoelectric

response mode, the same sample at the same environment is also imaged by both techniques

and the results are shown in Fig.7-8. Both of the two methods are proved to be able to image

ferroelectric domains in BaTiO3 materials [37]. Theoretically, for the study of ferroelectric

domains, both methods can be used principally. For the contrast comparison among different

near-field acoustic microscopy techniques, as it is done in this work, the system developed in

this work is advantageous, as the use of the transducer provide a unique base of the same

acoustic boundary condition so that the same acoustic treatment can be used. Because the

piezoelectric response mode of SPM uses laser signal to detect the acoustic vibrations on the

cantilever of the tip and the cantilever has a very complicated vibration transmission function

[84], it would be very difficult to compare the contrast of this technique with other established

near-field techniques quantitatively. However, the piezoelectric response mode would be very

advantageous to study the thermal dynamic behavior of ferroelectric domains, as the thermal

drift of acoustic properties of the transducer can be avoided. In this work, for the dynamic

study of ferroelectric domains in BaTiO3, both methods are used to image the ferroelectric

domains at given areas at first, and then the second method is used at the same areas to study

the same ferroelectric domains dynamically.

The principle of dynamic study is shown in Fig.5-8. For thermal dynamic study, a thermal

element is used to raise the temperature of the sample and a temperature sensor is used to

check the temperature of the sample surface. At different temperature points, the ferroelectric

domain are imaged. For electric dynamic study, a bias dc voltage V is added to the source ac
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voltage Vs. This bias dc voltage will add a

bias static electric field in near-field

besides the quasi-stationary  field. By

changing the bias dc voltage, the change

of domains at different bias field can be

imaged dynamically [37].

5.3 Discussion of the signal and noise in
SNAM developed

As the SNAM is mainly used as an

imaging technique, spatial resolutions play

an important role. As discussed above,

both the lateral resolution and depth

penetration of SNAM are decided by the

parameter h which is the distance of the

equivalent charge of the tip to the surface. From the approximation in this work, this distance

is about 10 nm. According to the assumption of near-field for SNAM above, the lateral

dimension of  the defined near-field can be calculated theoretically according to the field

distribution Eq. 5-17. At the surface 0=z , the dimension of near-field in lateral direction has

a radius of ≈−13eh 4.3h nm. That means the lateral resolution of the SNAM developed can

reach 86 nm, which is verified by the experiment results very well [36, 37]. The depth of

imaging would be the integration of the electric field in z direction in near-field for thick

samples and, according to Eq.5-20 and Fig.5-5, the depth of imaging by SNAM on thick bulk

BaTiO3  sample is about 200 nm.

The imaging time of the system is mainly dependent on the scanning speed of SPM. In order

to get a good topography, the scanning speed is usually slow, smaller than 1200 pixel/second.

For an image of 400X400 pixel, it takes about 1~2 minutes to take a picture.

The signal to noise ratio can also be estimated. Like in the case of SEAM, If the noise from

function generator, SPM, and the measuring circuit and lock-in amplifier are Gσ , SPMσ , and

mσ , it is necessary to add the signal to noise ratio of acoustic detecting system Aσ  which is

composed of the acoustic transmission noise and the thermal noise of transducer. The total

noise totalσ  is:

Fig.5-8: Set-up of SNAM for dynamic study
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totalσ =
2222
AmSPMG

σ+σ+σ+σ Eq.5-28

The Gσ , SEMσ , mσ  are given for a certain SEM system. Principally, because there is no

thermal noise in the near-field of Aσ  compared to SEAM, the signal to noise ratio of SNAM

would be much better than that SEAM. But Aσ  is also very difficult to evaluate and can only

be decided experimentally. According to our experiments, typical values of signal to noise

ratio of the acoustic signal imaged after the lock-in amplifier can be measured by the line

measurement of the software of SPM. At 100 kHz, a typical value is in the range of 7~10

[36]. It can be expected that the contrast of SNAM acoustic images would be better than that

of SEAM under the same experiment condition.
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6 Experiment procedure

6.1 Description of Specimen

As it is explained in chapter 2, ferroelectric BaTiO3 materials has the typical a- and c- domain

structures. BaTiO3 ceramics samples AC0 was fabricated by the Institut für Anorganische

Chemie, Martin-Luther-Universität Halle-Wittenberg. One of a sample of single crystal for

SEAM study was provided by Lab. of function ceramics, Shanghai Institute of ceramics. The

single crystal sample for SNAM study was provided by Department of Applied Physics,

University of Electronic Science and Technology of China. The film sample for the SEAM

study was provided by Institut für Schicht- und Ionentechnik (ISI), Forschungszentrum Jülich,

Germany. The other BaTiO3 film was provided by Max-Planck-Institut für Mikrostruktur-

physik, Germany. All the samples had crude surface and no treatment was required for both

SEAM and SNAM studies. The ceramics sample AC0 was sintered with excess 1 % mol of

TiO2 and had an average grain size from 10 to 50 micrometer [86].

6.2 Specimen preparation and treatment

As both techniques, SEAM and SNAM, are nondestructive techniques, the surface of a

sample needs no handling and treatment. In order to study the same area of a sample with two

kinds of microscopy techniques, it is necessary that the surface topography and the other

properties of the sample be kept unchanged during the study. Furthermore, to make the

comparison study of two microscopes, the same sample must be studied in one of the

microscope, then be moved to the other microscope. As the area studied is usually smaller

than 100 micrometer and the samples have almost no peculiar surface characters, it results in

a very difficult task to find the same area after the change of microscopes. For SEAM, in

order to avoid the charge effect, a thin gold layer of about 10 to 50 nanometer is usually

coated on the surface of the sample.

To solve the problems above, the SEAM experiment is arranged at first. There are two

advantages to do so. Firstly, the SEAM is a relative stable and established technique.

Although it has a resolution of micrometers, its large scan range, which can reach several

hundred micrometers, provides a useful way to image the ferroelectric domains broadly.

Secondly, by the use of the strong interaction between the sample and electron beam, it is

possible to make some surface characters, such as orientation lines outside the studied area, so

that the same area can be located precisely for the later SNAM experiment.

There is but one problem with this procedure. For SEAM, to avoid the surface charge effect
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and thermal energy accumulation at every scan point, it is usually better to make a thin gold

layer on the surface of the sample. For the later SNAM experiment, the surface must be kept

as clean as possible. To solve this problem, the sample surface is exposed to wax vapor for

several seconds before it is coated with gold for SEAM study. The accurate thickness of wax

layer is difficult to estimate but SPM study on the sample surface showed there is no obvious

topography change before and after the wax layer. In this way, it is effective to make the

surface free from gold layer after SEAM study.

6.3 Schemes of measurements

6.3.1 Choice of frequency

As theoretically shown in Chapter 3, the acoustic near-field techniques have usually a strong

frequency dependence. It is always important for both techniques to select a right frequency to

get the contrast which resulted from the interaction in near-field. The usual experiment

procedure is to adjust other experiment parameters to the best state at first. With the line

scanning of the control software for SEAM and SNAM, the output signal can be analyzed line

by line. By changing working frequency of the signal generator, one can get the best contrast

at a certain frequency and the images can finally be recorded. This is the most effective way

to find the right acoustic contrast from near-field.

6.3.2 Amplitude and phase imaging

In most modern lock-in amplifiers, it is possible to obtain the amplitude and phase signal.

Both amplitude and phase signal, as shown in Chapter 3, are theoretically dependent on the

near-field interaction and detecting system. If a right frequency is chosen, the output signal of

the transducer is solely dependent on the interaction of the material with the stimulation

source in near-field.

6.3.3 Variation of parameters

If the system is optimized, the dependence of the output signal can be recorded with different

parameters, such as the frequency dependence, change of the signal with the source, and so on

[38]. Whereas the change of parameters is relative easy in SNAM based on SPM, the change

of parameters in SEAM is relatively difficult, as the SEM is relative complicated and the

change of one parameter will sometimes affects other parameters slightly. This change will

result in contrast deterioration and should therefore be avoided during experiments.

6.3.4 Dynamic imaging

For dynamic experiments, it is also necessary to carry out an experiment until all the

experimental parameters are stable. It is especially difficult for thermal experiments, because
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ferroelectric samples usually have a poor thermal conductivity. Whereas the thermal effect

from the environment can be neglected in the vacuum chamber of SEAM, the thermal effect

from the air environment of SNAM is an important factor for thermal dynamic experiments.

One effective way to solve this problem is to wait so long a time until experimental

parameters such as the temperatures of the sample and the environment near the sample are

stabilized. A thermal isolation of SPM system in a vacuum chamber is also an effective way

to keep the results from external thermal disturbances.
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7 Results

This chapter shows some typical results by SEAM and SNAM and some explanation

respectively. The results of complementary study of ferroelectric domains by both techniques

as well as the discussion will be presented in Chapter 8.

7.1 Single crystal

A single crystal of BaTiO3 (from Shanghai Institute of Ceramics, P. R. of China) is imaged by

the SEAM [38]. Another single crystal of BaTiO3 (from University of Electric Science and

Technology of China) imaged by SNAM technique and shown in Fig.7-2. The ferroelectric

domain contrast, which is totally different from topography, exists only in acoustic images.

Fig. 7-1a: SEI of one single BaTiO3  crystal Fig.7-1b: The in situ EAI of the crystal

178 nm

0 nm

5 µm

Surface defects Surface defects

Domains

Fig. 7-2a: Topography of one single

BaTiO3  crystal by SPM

Fig.7-2b: The in situ acoustic image by

SNAM
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7.2 Ceramics

Ferroelectric BaTiO3 ceramics are also imaged by both kind of techniques. One kind of

ferroelectric domains structure of BaTiO3 ceramics (from Martin-Luther-Uiversität Halle-

Wittenberg, Germany) are imaged by SEAM and results shown in Fig.7-3 [35, 36, 37]. The

same sample is also imaged by SNAM and results shown in Fig.7-4 [36, 37].

From Fig.7-3, the surface defects are visible in both SE image and EA image. Domain

structures are imaged only in acoustic image. From Fig.7-4, there are only domain structures

of the ceramics in acoustic image by SNAM as well.  By comparison of both acoustic images

on the same ceramics, it can be seen that the domain structures of the ceramics are imaged

principally the same by both techniques. The contrasts have the typical stripe structures of

laminated ferroelectric domains of BaTiO3. But there is a difference between the acoustic

20 µm
Surface defects

Domains

Surface defects

Fig. 7-3a: SEI of one BaTiO3 ceramics Fig.7-3b: The in situ EAI of the ceramics

455 nm

0 nm

2.5 µm

Grain boundary Grain boundary

Domains

Fig. 7-4a: Topography of the same BaTiO3

ceramics by SPM

Fig.7-4b: The in situ acoustic image of the

ceramics by SNAM
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contrasts of both techniques. At first, the acoustic contrasts from both techniques have

different widths. The SEAM show the bright stripes of about 10 µm wide. The SNAM shows

the bright stripes with widths of several hundred nanometer. Further, the contrast of black

stripes in SEAM acoustic image is very narrow and the boundaries between the bright and

dark contrast is not clear. In acoustic image obtained by SNAM, there are clear periods

between the good periodical arrayed bright or dark structures at the area studied. The

boundaries between the bright and dark stripes are also clear.

Furthermore, as discussed in ‘Experimental set-up’ of SNAM in Chapter 5, if the electric field

distribution in near-field is scattered by defects, the main contrast of SNAM will be

dominated by the defects. As shown in Fig.7-5, the defects at subsurface of one kind of

ceramics (from Shanghai Institute of Ceramics) can be shown by the check of direct and

converse piezoelectric response by SNAM [34, 35]. It must be noted that two kinds of

ceramics are imaged with the same SNAM technique but the acoustic images have a totally

different contrast (Fig.7-4b and Fig.7-5a). The same phenomena are also observed from other

ceramics. Why is there such a great difference between the acoustic images with the same

SNAM technique? It is still a question which requires further study. According to the model

presented in Chapter 3, the domain contrast can be explained only under two conditions: One

is that the external piezoelectric effect resulted from domain wall movements are neglected

(see Eq.2-28 and Eq.2-29); The other is that the source electric field is concentrated in near-

field and the materials in near-field is homogenous (see chapter 3). Only under such

conditions can the 90° domain structures be imaged clearly by SNAM and explained by the

model of near-field acoustics. If there are defects in the sample, such as air bubbles, structure

fractures, and mismatches of crystal lattice, which exist frequently in ceramics, these defects

will scatter the field distribution of source electric field as well as change electric and

piezoelectric properties in near-field in the sample. As a result, the contrast of acoustic images

will be affected by these defects and will be the sum of all the effects, such as field scattering,

inhomogeneity of piezoelectric effect, and inhomogeneity of elastic and electric properties. A

clear domain contrast by SNAM could not be possible in this case, as shown in Fig.7-5a. It is

classified roughly as inhomogeneity [34]. Some similar results are also reported by SEAM

techniques [89]. If, however, a ceramics is highly homogeneous and has a very good

ferroelectric properties, the ferroelectric domains can be imaged by SNAM clearly, as shown

in Fig.5-4b. Because there are few literatures for the discussion of all these defects of

ceramics in micro- or nanometer range, a complete explanation for the defects imaged could

not be reached yet.
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7.3 Films

Ferroelectric films (Forschungszentrum Julich, Germany) are also studied by SEAM. The

thickness of the film was about 1 µm and the substrate material was MgO2 which is not

ferroelectric. The substrate had a thickness of 1 millimeter. The accelerating voltage of the

primary electrons used was 20 kV. The typical results are shown in Fig.7-6 [35]. The defects

exist in both SEI and EAI, but there is some acoustic contrast which is not the same as the

secondary electron contrast. As the 20 keV for PE was used and the thermal diffusion depth is

about 2~3 µm in the sample, the acoustic contrast could contain both the information of

ferroelectric polarization and the thermal diffusion. As little work on ferroelectric thin films is

documented in present literatures, there is no concrete evidence about the contrast mechanism

up to now. By comparison of the BaTiO3 film thickness and the thermal diffusion depth, it

could be possible that the thermal mechanism could play a main role for this acoustic contrast.

Therefore the contrast would be simply referred to the inhomogeneity of stress in this work. A

clear explanation of the contrast mechanism needs to be studied further.

5.5 µV

0 µV
Defects

20 µm

4.5 µV

0 µVDefects

20 µm

Fig.7-5a: The acoustic image by an ac

voltage between the tip and the bottom of

the sample.

Fig.7-5b: The voltage image by an

modulated force between the tip and the

sample surface.
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Another ferroelectric BaBi4Ti4O15 thin film (Max-Plank-Institut für Mikrostruckturphysik,

Halle, Germany) is imaged by the SNAM. The film is 1 µm thick and the substrate material is

the conductive LNO [32]. The typical results are shown in Fig.7-7. There is acoustic contrast

on one grain whose boundary is shown by an arrow. The same contrast is also presented by

other work with piezoelectric response mode of SNAM and the contrast is classified as

domains on one grain of the film [32].

7.4 The image mode comparison of SNAM

To compare the image contrast of the set-up developed in this work with other SPM based

techniques, the same structure of the same sample is studied by both the developed SNAM

technique and the piezoresponse mode of SPM. As described in Chapter 5, although this

50 µm Defects

Inhomogenity of stress

Defects

Fig.7-6a: SEI of one BaTiO3  film Fig.7-6b:The in situ EAI of the film at

f=127 kHz

650 nm

19 nm

0 nm

Grain boundary

Ferroelectric domain

Grain boundary

Fig.7-7a: Topography of one BaTiO3  film

by SPM

Fig.7-7b:The in situ acoustic image of the

film by SNAM at f=89 kHz
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mode of SPM has a complicated transmission function of the cantilever in SPM [84] and is

not ideal to compare the contrast between different acoustic near-field techniques, this

experimental set-up provides a better thermal dynamic image possibility than the SNAM set-

up developed in this work, as the laser detection system, if the experiment time is not so long,

will not be affected by the thermal conduction in the sample and thermal element. To evaluate

both techniques, a comparison of contrast on the same structures with the same experiment

environment between the developed SNAM technique and the piezoresponse mode is studied

and only acoustic images are shown in Fig.7-8. The studied area is about the same as that

shown in Fig.7-4. The grain boundary and ferroelectric domain structures are imaged in Fig.7-

8 with the same contrast at a certain frequency (f=131.1 kHz).

7.5 Dynamic study of ferroelectric domain structures

To study the temporal stability of domains of BaTiO3, one BaTiO3 ceramics sample (from

Martin-Luther-Uiversität Halle-Wittenberg, Germany) was imaged by SNAM developed in

this work in 1998 and the acoustic image is shown in Fig.7-9a [36]. After two years, the same

structures at the same area were imaged once more and the acoustic image is shown in Fig.7-

9b [37]. The grain boundary in both images can be seen clearly. The triangles in both images

are used as a sign to identify the same structures. It is shown clearly that the domain structures

have almost no change for two years. It implies also that the ferroelectric domains of the

ceramics studied are very stable.

2.5 µm

Grain boundary Domain
structures

2.5 µm

Domain
structures

Grain boundary

Fig.7-8a: acoustic image by SNAM with a

transducer of the BaTiO3  ceramics

Fig.7-8b: acoustic image by piezoresponse

mode at the identical area as Fig.7-8a



7. Results

___________________________________________________________________________

65

To study the thermal property of ferroelectric domains of the BaTiO3 ceramics, the same

sample is thermally heated over 130 °C, the Curie temperature of BaTiO3, and then the

sample is cooled down to room temperature. The ferroelectric domain structures at the

identical area, as shown in Fig.7-9a and Fig.7-9b, was imaged by the developed SNAM

system once more after the thermal treatment. The acoustic image is shown in Fig.7-10 [37].

By comparison of the Fig.7-10 and Fig.7-

9, it is clear that some structures at certain

places remained the same, as shown in the

triangle. But some changed, as shown by

arrows. It can be explained that the

thermal treatment changed the internal

energy of the ceramics. When the sample

was heated over the Curie temperature, the

symmetry of the sample was changed to

cubic and the internal energy was changed.

When the sample was cooled down from

Curie temperature to room temperature,

the ferroelectric polarization would change

the polarization in such a way that the internal energy had a minimum under the existed

thermal, elastic, and electric boundary conditions. The boundary conditions under which the

sample was cooled down were different from those when the domain structures in Fig.7-9 had

5 µm

Grain boundary
Grain boundary

5 µm

Fig.7-9a: ferroelectric domain structure

imaged by  SNAM in 1998

Fig.7-9b: The same structure imaged by

SNAM in 2000

5 µm

Structures
changed

Grain boundary

Fig.7-10: The structure at the same area after

the thermal treatment



7. Results

___________________________________________________________________________

66

been established, so that some domain structures must change their distribution to ensure the

internal energy had a minimum value. Therefore, some areas had new structures shown by

arrows and some areas had no change of structures shown by the triangular in Fig.7-10.

To study ferroelectric domain structures near the Curie temperature, the same structures are

imaged by dynamic set-up of SNAM developed from piezoresponse mode by the use of a

thermal element and a temperature control unit. The experiment set-up is shown in Fig.5-8.

The acoustic images at different temperatures are shown in Fig.7-11. The studied area is the

same as that studied above. All the images in Fig.7-11 have the same dimension of 20 µm at

the same area and the grain boundary, which is not changed during the thermal dynamic

imaging, can be seen clearly from Fig.7-11b to Fig.7-11f. Therefore, the µ-bar to show the

dimension of the images and the arrow to show the grain boundary are only noted in the first

acoustic image Fig.7-11a.

When the sample was heated gradually from room temperature to Curie temperature of

BaTiO3 ceramics (130°C), the domain structures disappeared gradually, as shown from Fig.7-

11a to Fig.7-11d. At the Curie temperature, ferroelectric domains disappeared totally, as

shown in Fig.7-11d. When the same sample was cooled down gradually from Curie

temperature to room temperature, ferroelectric domains appeared gradually, as shown in

Fig.7-11e and Fig.7-11f. It must be noted that there is a contrast difference between the Fig.7-

11a and Fig.7-11f at the same room temperature. The ferroelectric domains changed their

polarization distribution if the temperature of the sample is changed. The same phenomenon

is also shown in Fig.7-9b and Fig.7-10.

By the use of a bias voltage between the tip and the backside of the sample, the electric

dynamic property of ferroelectric domains of the same structures are imaged by SNAM

developed. The results are shown in Fig.7-12. The studied area is the same as that studied

above. All the images in Fig.7-12 have the same dimension of 20 µm and the grain boundary

was imaged clearly in all the images. Therefore, the µ-bar to show the dimension of the

images and the arrow to show the grain boundary are only noted in Fig.7-12a as well. In

Fig.7-12a, domain structures were imaged under 0V bias voltage by SNAM developed. Under

40V bias voltage, the same area was imaged by the same set-up and the acoustic image is

shown in Fig.7-12b. Then the bias voltage was switched off and the same area was imaged

immediately once more, as shown in Fig.7-12c.

It is clear that most of structures disappeared when the area was scanned by a dc bias voltage

of 40V between the tip and the backside of the sample. After the dc bias voltage was

removed, some ferroelectric structures appeared once more but with changed structures.
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Because the ferroelectric structures at the top surface of ferroelectric BaTiO3 materials, which

are believed to be different from the bulk structures [1~4], are little documented in literatures,

the phenomena could only be explained by the use of the theoretical model developed.

At first, it is necessary to note that a ceramics does not change its polarization totally in one

direction even when the ceramics is under an electric field which is much greater than its

coerce field. Some domains will change their polarization under the coerce field and some

remain always in the same direction, as the polarization direction is decided from the

minimum of the internal energy under the clamped conditions among different grains (see

Chapter 2).

When the 40 V dc bias between the tip and the backside of the sample was applied, according

to the calculation of the field intensity in Chapter 5, the field intensity has a value varied from

2000 kV/m at the surface to 50 kV/m at a depth of 6h=60 nm. Because the field intensity

within this depth is greater than the ferroelectric coerce field intensity of the BaTiO3 materials

[from 50 kV/m to 200 kV/m], if the clamped conditions allowed, some domains would

change polarization to the direction of the electric field within this depth. As a result, the

periodical array of a- and c-domains in this area would be changed. The contrast, which

comes from the integration between the polarization and the concentrated field, would be

changed.

If the clamped condition of one area was so strong that the polarization of the domains at that

area could not be changed even under the same coerce field, the contrast of the SNAM at that

area would not change, so that the integration was the same as the integration without the dc

bias field. The contrast in this area would not be changed.

Naturally, this electric field intensity changed the internal energy of the area, where the

domains were changed. When the tip moved away from the area, the ferroelectric domain

structures at the recent scanned area would change in such a way that the internal energy at

the area would have a minimum under the new boundary conditions. These new boundary

conditions, such as the elastic and electric fields from the neighboring area which was just

being scanned, were naturally not the same as the boundary conditions when the domain

structures in Fig.7-12a had been established. Therefore, the change of polarization of the

ceramics would take place as soon as the tip moved away from the area studied. Finally, this

change of ferroelectric domain structures was imaged clearly in Fig.7-12c when the dc bias

voltage was switched off.
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5 µm

T=25°C

Domain
structures

Grain boundary

T=50°C

Domain
structures

Fig.7-11a: Acoustic image of SNAM at

room temperature (25°C)

Fig.7-11b: Acoustic image of SNAM when

temperature went up to 50°C

T=118°C

Domain
structures

T=130°C

All the structures
disappeared

Fig.7-11c: Acoustic image of SNAM when

temperature went up to 118°C

Fig.7-11d: Acoustic image of SNAM at

temperature over Curie point

T=110°C

Domain
structures

T=25°C
Domain
structures

Fig.7-11e: Acoustic image of SNAM when

temperature went down to 110°C

Fig.7-11f: Acoustic image of SNAM when

temperature went back to 25°C
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5 µm

0V bias

Domain
structures

Grain boundary

40V bias

Structures
disappeared

Structures
unchanged

Fig.7-12a: The acoustic image of one

structure imaged under 0 V bias voltage

Fig.7-12b: The acoustic image of the same

area imaged under 40 V bias

0V bias

Structures
changed

Structures
unchanged

Fig.7-12: The acoustic image after the bias

voltage was switched off
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8 Discussion of both near-field acoustic techniques

8.1 Quality of imaging compared to other techniques

The SNAM and SEAM imaging techniques have many advantages over other techniques to

image ferroelectric domains. The most exciting characteristics of both techniques are the

nondestructive imaging of ferroelectric domains with no sample preparation. The easy

development from commercial SPM or SEM systems is another advantage. SNAM has further

advantages over SEAM in these respects, such as no vacuum system, better resolution down

to nanometer, and flexibility of dynamic imaging of ferroelectric domains of materials. On the

other hand, SEAM has such peculiarities as large imaging depth and broad imaging area

which are also not so easy to obtain only by the use of SNAM. Therefore, both techniques

will be applied complementarily to study ferroelectric materials in the future.

8.1.1 Speed of experiment

The imaging speed of SEAM is limited by the near-field establishing time in ferroelectric

materials. As it is discussed in Chapter 4, the time required to established the electric field in

near-field in SEAM depends on the charge accumulation in near-field and the properties of

materials. typical values for semiconductor and ceramics are in the range of 10-4 second. To

ensure good acoustic image of SEAM, the time at every pixel is usually chosen as 1 ms. For

one typical image with 400X400 pixels, it would take about 1~2 minutes to take one image.

SNAM technique has to scan the tip (or sample) by a piezoelectric scanning unit. Unlike

SEAM, it needs almost no delay time to establish the electric field in near-field. The imaging

time of the system is mainly dependent on the scanning speed of SPM. In order to ensure a

good topography, the scanning speed is usually slow, smaller than 1200 pixel/second. For an

image of 400X400 pixels, it takes about 1~2 minutes to take a picture.  It is clear that both

techniques have almost the same image speed.

8.1.2 How quantitative

Generally speaking, the SEAM and SNAM are both scanning imaging techniques which

record the relative variation among scanning pixels in a given scanned area. If physical

properties of one scan pixel or one area can be determined quantitatively, the rest of scan

pixels can hereafter be imaged quantitatively.

SEAM technique has a very complicated interaction on the surface of ferroelectric materials,

when the primary electrons bombard the surface. Although much effort has been paid to

analyze interactions of primary electrons bombarding on metal materials, semiconductors, and
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some dielectric materials, both experimental and theoretical work on ferroelectric materials

are little documented in present literatures. A quantitative analysis requires the estimation of

parameters of experimental environments and their errors. If some basic parameters of SEAM

on ferroelectric materials, such as the accurate electric field intensity in near-field, the

accurate penetration depth of PE, the calculable relationship of different imaging mechanisms

and so on, are not quantitatively determined, the quantitative analysis of ferroelectric

polarization by SEAM would be impossible. Unfortunately, these important factors have been

sparsely documented in the present literatures. Therefore, the SEAM technique remains in

principle a qualitative imaging technique up till today.

Whether the SNAM or the related techniques are quantitative tools, is still a recent study

which is heavily debated today [31~33, 85]. To analyze the problem, it would be better to

review some basic approximations which are often used in the present literatures to

characterize ferroelectric materials by SNAM systems. Firstly, as discussed in Chapter 2, the

piezoelectric constant of ferroelectric ceramics depends on spontaneous polarization only

under the condition that external piezoelectric effect is neglected and polarization will not be

affected during the imaging; Secondly, to determine the electric field in the sample, all the

literatures assume that the sample is isotropic; Thirdly, only the main mode of the vibrations

in near-field is calculated and the acoustic mode conversions and nonlinear effects in near-

field are neglected; Finally, by detecting the near-field vibration through laser beam and

photodiodes in piezoelectric response mode, there exists a very complicated vibration

transmission function of the cantilever [84, 85] from which an accurate estimation of errors

would be difficult. On the other hand, by detecting the near-field vibrations through a

transducer, as it is done in this work, all the theoretical calculation must be under the

approximation of acoustic plane wave. Possible errors incurred under so many

approximations by the modeling of SNAM would be difficult to estimate at present as well. It

would be necessary to say that under all the approximations above, the theoretical model

developed for both SEAM and SNAM in this work can be used to calibrate the acoustic

contrast or domain structures quantitatively.

8.2 Comparison of SEAM and developed SNAM system

8.2.1 Image comparison and analyses

To compare the image of two kinds of microscopy techniques, it is necessary to compare the

properties at identical areas. As it is concerned with the nondestructive study of the

ferroelectric domains, the domain structures should not be damaged during the change of
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microscopes. The method is

already described in Chapter 6. By

the use of optical microscopy, one

area of sample AC0, from the

University of Halle, Germany, is

imaged as a standard to compare

topography, as shown in Fig.8-1.

The same area is imaged by

SEAM, as shown in Fig.8-2.

From SEAM images of Fig.8-2,

the contrast of domain structures

are imaged only in acoustic images. The contrast in acoustic images has typical 90° striped

structures with the width from 5 to 10 µm. By the comparison to the optical image Fig.8-1 in

which the grain size are usually from 10 µm to 50 µm, the contrast from ferroelectric domains

in acoustic images of SEAM has naturally no relationship with grain sizes.

After the ceramics was studied by SEAM, two typical coarse grains were chosen to be studied

complementarily by SNAM. One grain, which has a diameter of 30 µm, is marked as point 1

in optical image Fig.8-1 and in SE images of Fig.8-2c and Fig.8-2e. The acoustic contrast of

the grains by SEAM are marked as a white insert with dashed line in SEAM acoustic images

Fig.8-2d and Fig.8-2f. The other grain, which has a diameter 60 µm, is marked as point 2 in

optical image Fig.8-1 and in SE images of Fig.8-2c. The acoustic contrast of the grain by

SEAM is marked as a white insert with dashed line in SEAM acoustic image Fig.8-2d.

Domain structures are shown clearly by the acoustic images of Fig.8-3 and Fig.8-4. The

contrast from domain structures have widths from one hundred to several hundred nanometer.

It has the same order of domain size which is calculated theoretically by other works [6~10].

Furthermore, it is shown in Fig.8-3f that some domains have correspondence of contrast, as

shown at the lower part in Fig.8-3f. This can be explained as that the sample in this area has

the α  structure of domain structures of coarse grains in BaTiO3 [6]. The same structures can

also be seen clearly at the upper side in Fig.8-4f. Some domain structures such as those

imaged in the upper part of Fig.8-3f, have no correspondence of contrast. This can be

explained as the γ  domain structures of ferroelectric domains discussed in Chapter 2.

It must be noted, If the acoustic images by SEAM in Fig.8-2 and the acoustic images by

SNAM in Fig.8-3 and Fig.8-4 on the both grains are compared, it can be seen clearly that the

acoustic contrasts on the same grains by both techniques are totally different.

Point 1

Point 2

50 µm

Fig.8-1: Optical image of one area of sample AC0
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100 µm

Surface defect

Domains

Surface defect

Fig.8-2a: SE image of the same sample as

Fig.8-1

Fig.8-2b: SEAM in situ acoustic image of

Fig.8-2a

50 µm

Point 2

Point 1

Surface defect

Domains

Surface defect

Fig.8-2c: SE image of the insert with black

line in Fig.8-2a

Fig.8-2d: SEAM in situ acoustic image of

Fig.8-2c

Point 1

Surface defect

Domains

Surface defect

Fig.8-2e: SE image of the insert with black

line in Fig.8-2c

Fig.8-2f: SEAM in situ acoustic image of

Fig.8-2e
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Grain boundary Grain boundary

Domains

Fig.8-3a: Topography of point1 in Fig.8-1

by SPM

Fig.8-3b: SNAM in situ acoustic image of

Fig.8-3a

562 nm

0 nm

Grain boundary Grain boundary

Domains

Fig.8-3c: Topography of the insert in Fig.8-

3a by SPM

Fig.8-3d: SNAM in situ acoustic image of

Fig.8-3c

455 nm

0 nm

Grain boundary Grain boundary

Domains

Fig.8-3e: Topography of the insert in Fig.8-

3c by SPM

Fig.8-3f: SNAM in situ acoustic image of

Fig.8-3e
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Point2

Fig.8-4a: Topography of the area near the
point 2 in Fig.8-1 by SPM

Fig.8-4b: SNAM in situ acoustic image of
Fig.8-4a

Grain boundary Grain boundary

Domains

Fig.8-4c: Topography of the point 2 in

Fig.8-4a by SPM

Fig.8-4d: SNAM in situ acoustic image of

Fig.8-4c

Domains

Fig.8-4e: Topography of the insert in

Fig.8-4c by SPM

Fig.8-4f: SNAM in situ acoustic image of

Fig.8-4e
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8.2.2 Explanation of the results

The contrast difference of acoustic images by SEAM and SNAM at the identical areas (point

1 and point 2) can be explained as the depth difference of near-fields of both techniques. As it

is explained in Chapter 4 and Chapter 5 theoretically, the contrast of both near-field acoustic

imaging techniques (SEAM or SNAM) comes from interaction between the average

piezoelectric effect in near-field and the electric field formed by injecting electrons (SEAM)

or the concentrated field of the scanning tip (SNAM). As it is not well understood up to now

how the domain wall movements contribute to the piezoelectric, elastic and dielectric

properties of ferroelectric ceramics extrinsically [8, 11~13] and how many kinds of domain

structures of BaTiO3 ceramics exist totally [9, 10], an accurate theory of average piezoelectric

effects in near-field area for both techniques on BaTiO3 materials would be impossible. As a

result, a clear explanation of contrast of both near-field acoustic methods seems also difficult

at present. The following would be an explanation which bases solely on the present theory

and experimental facts:

•  The typical domain structures in ceramics have the typical width of several hundred

nanometers for coarse grains, as predicated by present theories and experimental methods

[9, 10];

•  The electric field in the near-field is so weak that it produces only vibration through

intrinsic converse piezoelectric effect and small movements of domain walls but no

change of the whole domain structures [13];

By SEAM, the near-field dimension is almost 1-2 µm wide and 2-3 µm deep at 20 keV

accelerating voltage for PE, and the interaction area is not homogeneous [57]. For the typical

domain structures which are clear to us [9], such as shown in Chapter 2, the domain width is

usually several hundred nanometer. Here, we would take a coarse grains of BaTiO3 ceramics

as an example. The typical domain structures have been studied [9, 10]. The domains have

typically four structures, shown as structure 1-4 in Fig.8-5.

As shown in Chapter 4, the acoustic amplitude contrast of SEAM of every scan point comes

from the average interaction between the electric field formed by injecting electrons and the

average piezoelectric effect in the whole interaction area. For scan point N and any other scan

points in area of structure 1, there is no difference of the average integration in near-field.

That means that there is no contrast difference by SEAM in the area of structure 1. With the

same argument, there is no contrast difference for any scan point M in the area of structure 2.

Similarly, any scan point in the areas of structure 3 or 4 has no contrast difference with any

other points in the same structure respectively.
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Furthermore, according to Eq.2-24 in Chapter 2, the piezoelectric effect of ferroelectric

ceramics is dependent on the polarization and extrinsic effect. If the electric field in near-field

area in SEAM is small enough, the extrinsic effects (mainly of domain wall movements) can

be neglected [13]. Thus the piezoelectric effect in near-field area of SEAM is solely

dependent on the spontaneous polarization. We can draw qualitatively the spontaneous

polarization for structure 1-4 which contribute to acoustic longitudinal waves in z direction in

near-field of SEAM system as Fig.8-6.

Zdp

Pz

Zdp

Pz

Zdp

Pz

Zdp

Pz

Fig.8-6a: Structure 1 Fig.8-6b: Structure 2 Fig.8-6c: Structure 3 Fig.8-6d: Structure 4

Because the output signal of transducer is the integration between the converse piezoelectric

effect and the source electric field in near-field area according to Eq.3-38, after the linear

amplification of the lock-in amplifier, the output signal of the lock-in amplifier is proportional

Scan point M

Y

X

Scan point N

Structure 1 Structure 2
Stru

cture 3
Stru

cture 4

Domain width

d: Depth of near-field
of SEAM

Fig:8-5: The contrast mechanism of SEAM on the ceramic sample
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to this integration. As only amplitude signal of the lock-in amplifier is used as the imaging

signal of SEAM, the gray lever of the acoustic image of SEAM is naturally proportional to

amplitude of this integration as well. As shown in Fig.8-6a and Fig.8-6d, the average

polarization in structure 1 and structure 4 has the same value but only changes its sign. If the

source electric field is kept the same during scanning, the amplitudes of the integration

between the converse piezoelectric effect and the source electric field in these two areas have

the same absolute value but only different signs. That means these two areas have the same

gray lever in acoustic image of SEAM.

According to the same reasoning, there would be no contrast difference between structure 2

and structure 3 either.

At the base of reasoning above, there are only two structures, structure 1 and structure 2

shown in Fig.8-6a and Fig.8-6b above, in which the scanning pixels, such as the pixel M in

structure 2 and pixel N in structure 1 shown in Fig.8-5, have possibly different contrast in

acoustic image of SEAM. In other words, under the present knowledge of domain structures

in ferroelectric BaTiO3 ceramics, the acoustic image of SEAM would image only the

difference between different laminated areas. The imaged ‘domain wall’ could be the wall

between different 90° domain laminated structures of BaTiO3 ceramics.

If the same structures are studied by SNAM technique, the contrast can be analyzed in the

same way. Because of the form of the tip, most of the source electric field is concentrated just

beneath the contact point under the tip, as it is discussed and calculated in Chapter 5 in this

work, so that the near-field area of SNAM is as small as several hundred nanometer (see

Eq.5-18 and Fig.5-5). Under the same week field approximations discussed above and

according to Eq.5-20, the output signal of the transducer in SNAM is proportional to the

integration between the converse piezoelectric effect and the source electric field in near-field

area of every scan points of SNAM. After the linear amplification of the lock-in amplifier, the

output signal of the lock-in amplifier is proportional to this integration as well. As only the

amplitude signal of the lock-in amplifier is used as the imaging signal of SNAM, the gray

lever of the acoustic image of SNAM is naturally proportional to the amplitude of this

integration. Two scan points in area of structure 1 shown in Fig.8-7 are taken as an example.

The scan point N has a polarization parallel to the source electric field. The converse

piezoelectric effect in near-field in the direction of the field is non-zero. The integration

between the converse piezoelectric effect and the field is non-zero too. The contrast in

acoustic image of SNAM at this point has a non-zero gray lever.

On the other hand, the scan point M has the polarization perpendicular to the source electric



8. Discussion of both near-field acoustic techniques
___________________________________________________________________________

79

field in near-field and the converse piezoelectric effect in near-field in the direction of the

field would be zero. The integration between the converse piezoelectric effect and the field

would be zero as well. This means that the contrast at this point in acoustic image of SNAM

has a zero gray lever. As the point N and M are arbitrarily chosen in the area of structure 1, if

the source electric field is kept the same during scanning, any scan point which has a

polarization in the direction of the source electric field in structure 1 has the same non-zero

gray lever in acoustic images of SNAM; Whereas any point which has a polarization

perpendicular to the direction of the source electric field has the zero gray lever.

In other words, the contrast of acoustic image of SNAM comes from difference of

ferroelectric polarization directions of 90° domain structures. It can be seen easily that the

reasoning is also valid in area of structure 2, 3, or 4. By comparison of Fig.8-5 and Fig.8-7, it

is clear that the 90° degree domains will show different width and totally different contrast by

SEAM and SNAM techniques.

X

Y

Scan point N

Scan point M

Structure 1 Structure 2 Stru
cture 3

Stru
cture 4

Depth of near-field
of SNAM

Domain width

Fig.8-7: The contrast mechanism of SNAM system developed



9. Conclusions
___________________________________________________________________________

80

9 Conclusions

Investigations of ferroelectric domain structures are essential for both fundamental and

applied perspectives since they determine, to a large extend, the macroscopic response of

ferroelectric materials. In microscopic range, they dominate the behavior of almost all

ferroelectric devices in the microelectronic industry. The results presented in this work on

ferroelectric BaTiO3 materials show the fascinating world of this kind of materials. The

dimension of the imaged ferroelectric domain structures by SNAM provides experimental

evidence for the theory of these structures in coarse grained BaTiO3 ceramics, which are only

proved by destructive methods such as the chemical etching techniques before now.

Temporal behavior of ferroelectric domain structures at an identical area of BaTiO3 ceramics

has been imaged at submicrometer range for the first time. The domain structures of the

ceramics remain unchanged for two years. It implies that ferroelectric polarization of this kind

of ceramics is very stable and it would be an ideal medium for applications such as memory

devices.

Thermal dynamical properties of ferroelectric domain structures at an identical area of

BaTiO3 ceramics are imaged by SNAM at submicrometer range. When the temperature of the

ceramics is over Curie temperature, the domain structures disappear totally. The ferroelectric

domains change their polarization distribution if the temperature of the sample changes.

Electrical dynamical study of ferroelectric domains at an identical area of BaTiO3 ceramics

has also been studied. With a bias voltage, the change of the same structures are imaged

clearly. Based on the developed theoretical model, the field intensity under the tip and the

physical process of polarization change on the sample surface are analyzed. These dynamic

investigations lays the foundations for future dynamic analysis of ferroelectric domains of

other materials by SNAM.

The system developed for dynamic research of ferroelectric domain structures in this work

can be easily modified from a commercial SPM system. For the further study of other

ferroelectric materials and devices, this system is easy to use, with submicrometer or

nanometer resolution, and high thermal and electric stability if simple control units are used.

It presents an ideal tool for the non-destructive dynamic testing and modeling of both

ferroelectric materials in material engineering and ferroelectric devices in microelectronic

industry.

The explanation of the contrast from acoustic non-destructive imaging systems remains

always a challenge for researchers in this area. The SNAM system developed by the use of an

acoustic transducer provides a base for both theoretical and experimental complementary
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analyses of the acoustic contrast among different kinds of acoustic near-field systems. As an

example, the complementary analysis of SEAM and SNAM reveals the acoustic contrast

mechanisms of both near-field techniques. The different contrast which are revealed by

complementary analysis at identical areas can be well-explained using the current theory for

BaTiO3 ceramics. The experimental methods developed for the complementary analysis can

be further applied to analyze other properties of materials and devices among different

microscopy systems.

The theoretical modeling of SNAM analysis, i.e. the Green´s function to determine the quasi-

stationary fields in the system and the transmission line mode of acoustic longitudinal waves

within the sample, is applied successfully for the first time to characterize electrical and

mechanical field distributions of BaTiO3 materials studied by SNAM. Based on the theoretical

solutions presented in this work, other ferroelectric materials can be analyzed similarly.

Under the same theoretical approximations as those of SNAM system, the contrast of SEAM

system on ferroelectric materials has been characterized by these theoretical techniques as

well. Although only acoustic plane wave modes are analyzed, the simple solution reveals

some basic behavior of SEAM system on ferroelectric materials. The modelling technique

would be also applicable to other beam injecting acoustic imaging systems.
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10 Future aspect

The characterization of ferroelectric materials at submicrometer or even in nanometer range,

both in lateral direction and in depth profiling, is of vital importance for the development of

future ferroelectric materials and integrated devices. Unfortunately, the present knowledge of

ferroelectric domains at this resolution range is not enough to predict the so-called ‘domain’

influence on the materials. Whereas common methods have different limitations for this

purpose, the non-destructive methods based on SPM provide a new breakthrough for this

goal. Although much effort on this technique has been given and many results are presented

for different ferroelectric materials by different techniques based on SPM, from our point of

view, a clear relationship between these domain effects and properties of ferroelectric

materials require further investigations.

The quantitative description of energy change of ferroelectric domains during switching

processes is not well understood. As discussed in many literatures [1~13], this energy change

is a process including thermal, electrical, and elastic energy. Although this work has shown

some changes of domain structures by external thermal and electrical influences, the accurate

relationship among the thermal, elastic, and electrical energy changes should be further

investigated. To understand this process as accurately as possible, different non-destructive

methods at this resolution range, such as thermal and acoustic near-field techniques, should be

used complementarily.

The thermal behavior of ferroelectric domains of BaTiO3 is another problem which needs

further study as well. Although current literatures present many theoretical and experimental

results on this effect [1~5], a quantitative study of thermal behavior of domain structures of

BaTiO3 at submicrometer or nanometer resolution is still not reached. Even though some

thermal dynamic investigation has been presented in this work, a quantitative relationship

between ferroelectric domain structures and the external thermal energy change has not been

obtained yet. To achieve this goal, a complementary analysis on ferroelectric BaTiO3 by

thermal and acoustic near-field techniques would be ideal.

The metal-doped BaTiO3 is widely used in industry for different purposes [86]. Although

some work has been done to reveal the relationship among grain sizes, electrical, elastic, and

piezoelectric properties, ferroelectric domain structures from doped BaTiO3 materials are little

studied. The theoretical relationship between grain sizes and ferroelectric domain structures

for doped BaTiO3 is not achieved either. The presented SEAM and SNAM techniques are the

best non-destructive tools for experimental investigations and basis for the modeling and

manufacturing of this kind of materials.
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Ferroelectric thin films are used intensively in the micro-electronic industry and some

properties of thin films are also intensively studied [4, 22, 31~35]. But, from our point of

view, ferroelectric domain structures and their formation process under external influences

needs to be studied further. Problems such as how the domains change their structures during

switching processes, how much is the switching time of different structures, what are the main

sources of the fatigue of the ferroelectric polarization and so on require further study. To

answer all the questions, a thorough understanding and modeling of ferroelectric thin films,

both experimentally and theoretically, would be necessary.

Although this work has presented a systematic theoretical method to study the electrical and

acoustical field distributions from different sample structures in SNAM system, there is still a

lot of work to do to characterize all the field components quantitatively. Whereas the electric

field distributions in the system can be determined by the Green´s functions, the acoustic field

solutions are only based on plane wave modes. For quantitative characterization of

ferroelectric materials by SNAM, it is necessary to analyze the acoustic fields more

accurately. The acoustic field mode conversion in near-field and the non-linear effects of

ferroelectric materials should be further studied.

Recent literature [87] points out  that modern chip industries face severe problems for

modeling of devices and failure analysis as multilayered systems are used intensively in the

nanometer regime. The characterization of electrical, thermal, and acoustical field

distributions in these systems is of vital importance to develop new devices. As the structures

of these devices have nanometer dimensions, some basic conditions for present

phenomenological theories cannot be fulfilled any more. New basic theoretical backgrounds

including a combination of quantum-mechanics and quantum-electronics for the

characterization of these devices must be thoroughly developed. However, the systematic

phenomenological methods are foundations for this future advancement.
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11 Appendix

A1: Solution of one-dimensional piezoelectric stiffened plan wave in BaTiO3 and PZT

The piezoelectric strain and stress relationships are:

E
JII sx

�

,= JX + jId ,

~
jE Eq.A-1

=iD Jid , JX +
X

ji

�

,ε jE Eq.A-2

E
JII cX

�

,= Jx jIe ,
~− jE Eq.A-3

=iD Jie , Jx +
x

ji

�

,ε jE Eq.A-4

To characterize the typical near-field acoustic system of present work on BaTiO3, it is

necessary to discuss at first the coupling between electric and acoustic fields generally in both

PZT transducer and BaTiO3 sample in one dimension. The polarized PZT ceramics can be

analyzed by a crystal lattice of 6mm and the crystal lattice of single BaTiO3 with only c-

monodomain is 4mm [53]. The piezoelectric tensor and dielectric tensor for both material

systems have the same form but different values of components. This allows us to treat the

coupling in transducer as well as in near-field theoretically together. Only if quantitative

values of each material are concerned, actual values of the tensor components will be used

respectively.

If z direction is chosen as the transmission direction, the differential 
x∂

∂
 and 

y∂
∂

 are equal to

zero if the lateral dimension is unlimited. Only 
z∂

∂
 is non-zero for every electric and

mechanic field components.

From Maxwell equation Eq.3-1, if there are no conducting and source currents ( cJ
�

 and sJ
�

) in

a given material, electromagnetic fields and waves which transmit only in z direction will be

described as [53]:
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or 
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The equations above can be written as:

z

E

t

H yx

∂
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=
∂

∂
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xy
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t

Dz

∂
∂

=
t

H z

∂
∂

=0 Eq.A-9

Eq.A-7 and Eq.A-8 describe two electric magnetic waves and Eq.A-9 two quasi-stationary

fields.

If the body torque is neglected under the small signal approximation, the basic acoustic

equations in materials are:

F
u

X
���

−
∂
∂ρ=⋅∇

2

2

t
Eq.A-10

x
�

= us

�∇  Eq.A-11
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in which x
�

 and X
�

 are strain and stress in the material respectively, and ρ , u
�

, and F
�

 are

density of the material, displacement field, and body force respectively.

The signs of ⋅∇  and s∇  mean the followings:
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Here the Voigt´s notation for stress and strain tensors is used and the stress and strain tensors

are written as:

X
�

= ),,,,,( 654321 XXXXXX

x
�

= ),,,,,( 654321 xxxxxx

If the velocity of a particle in solids is v
�

= zzyyxx vavava
��� ++ , it can be written as:

v
�

=
t∂

∂
u
�

 Eq.A-14

If there is no body force, the acoustic equations Eq.A-10 and Eq.A-11 can be written by the

use of particle velocity as:

z

X

∂
∂ 3 = 

t

vz

∂
∂ρ  and 

z

vz

∂
∂

=
t

x

∂
∂ 3 Eq.A-15
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z

X

∂
∂ 4 =
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∂
∂

ρ  and 
z
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∂
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=
t

x

∂
∂ 4 Eq.A-16

z

X

∂
∂ 5 =

t

vx

∂
∂ρ  and 

z

vx

∂
∂

=
t

x

∂
∂ 5 Eq.A-17

Eq.A-15 describes one longitudinal acoustic plan wave; Eq.A-16 and Eq.A-17 describe two

shear acoustic waves.

According to piezoelectric coupling equations Eq.A-1 to Eq.A-4 and piezoelectric tensor of

BaTiO3, the electric and acoustic coupling can be written as:

zD =
s
zzε zE + 3ze 3x Eq.A-18

yD =
s
yyε yE + 5xe 4x Eq.A-19

xD =
s
xxε xE + 5xe 5x Eq.A-20

3X = 33c 3x 3ze− zE Eq.A-21

4X = 44c 4x 5xe− yE Eq.A-22

5X = 44c 5x 5xe− xE Eq.A-23

From electromagnetic wave equations Eq.A-7 to Eq.A-9, acoustic equations Eq.A-15 to

Eq.A-17, and electric and acoustic coupling Eq.A-18 to Eq.A-23, the general coupling of

electric and mechanic field components in BaTiO3 can be analyzed. The acoustic longitudinal

wave described by Eq.A-15 will be studied with detail in the following.

According to Eq.A-9, the electric displacement zD  is a constant. For a harmonic study of

fields, zD  can be treated as zero. From Eq.A-18, the quasi-static electric field [53] in z

direction is:

zE = 





ε

− s
zz

ze 3
3x  Eq.A-24

Form Eq.A-24 and Eq.A-21, the stress in z direction is:

3X =( 33c + s
zz

ze

ε

2
3 ) 3x Eq.A-25

The constant pc = 33c +
s
zz

ze

ε

2
3  is the so-called piezoelectric stiffened stiffness. If Eq.A-25 is

combined with Eq.A-15, the so-called piezoelectric stiffened wave equations for the stiffened
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longitudinal wave ( zv , 3X ) are:

z

X

∂
∂ 3 = 

t

vz

∂
∂ρ  Eq.A-26

z

vz

∂
∂

=
pc

1

t

X

∂
∂ 3 Eq.A-27

Eq.A-26 and Eq.A-27 describe a stiffened acoustic wave in BaTiO3 single crystal without

source. It can be rewritten as the wave equation:

0
2

2

2

2

=
∂
∂ρ−

∂
∂

t

v

cz

v z

p

z
Eq.A-28

The physical meaning of the equation above can be explained by piezoelectric theory as the

stiffened effect [53]. It seems that this wave behaves as if the elastic stiffness 33c  were

increased to pc = 33c +
s
z

ze

3

2
3

ε
. The electric and acoustic coupling for this wave is the coupling of

the quasi-static electric field and the acoustic longitudinal wave ( zv , 3X ).

The coupling of longitudinal waves in PZT transducer is the same, if only the material

constants in all the expressions above should be changed to material constants of PZT

ceramics.

If there is a harmonic source electric field in z direction sE
�

= sE za
�

, the total electric field in z

direction in the BaTiO3  crystal studied can be written as:

sztotal EEE += Eq.A-29

zE  is the coupled stiffened electric field in the crystal. Because only the harmonic stable state

will be studied and the acoustic field ( zv , 3X ) must satisfy the same stiffened condition, the

coupled stiffened electric field in the crystal is the same as the field without source.

Form Eq.A-18 and Eq.A-21, the stress in the crystal with source:

3X =( 33c + s
z

ze

3

2
3

ε ) 3x - 3ze sE Eq.A-30

in which the constant pc = 33c +
s
z

ze

3

2
3

ε
 is the piezoelectric stiffened stiffness.

Because of the source electric field sE , the wave equations for acoustic longitudinal waves

can be obtained in the same way:
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∂ρ  Eq.A-31

z

vz

∂
∂

=
pc

1 +
∂

∂
t

X 3

p

z

c

e 3

t

Es

∂
∂

Eq.A-32

Eq.A-31 and Eq.A-32 can also be written as the wave equation with source:
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The same process can be applied to the other two coupled waves Eq.A-16 and Eq.A-17 in the

crystal studied. The coupling equations are:
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s
yyε =

s
xxε  for BaTiO3) Eq.A-35

At the first sight, the coupling mechanism seems almost the same as the coupling discussed

above. But a detailed discussion [53] shows that these kinds of coupling are much more

complex than the stiffened electric and mechanic coupling. A detailed discussion is beyond

the scope of the present work and some discussion can be found in other works [53, 54].

A2: Transmission line mode of acoustic waves in near-field

In near-field of piezoelectric materials, the electromagnetic and acoustic coupling phenomena

are even more complicated than the coupling in the transducer, because the acoustic wave

here is the piezoelectric acoustic wave with source electric field szz EaE
��

= . Under the

assumption described in Chapter 3, the acoustic transmission can be compared to the

transmission of voltage waves in a transmission line with source [53].

If there are plane longitudinal harmonic acoustic waves ( 1
zv , 1

3X ) produced in the near-field in

the crystal studied, the equations according to Eq.A-31 and Eq.A-32 are written as the

followings:

z
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Eq.A-36
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Here, the suffix ‘1’ at the top right corner indicates the near-field area in the sample.

As a comparison, the equations of transmission line with sources sV  and sI  will be discussed:

z

tzV

∂
∂ ),(

= 
t

tzI
L

∂
∂− ),(

sV+ ),( tzRI+ Eq.A-38

z

tzI

∂
∂ ),(

= C−
t

tzV

∂
∂ ),(

sI+ ),( tzGV+ Eq.A-39

Here ( ),( tzV , ),( tzI ) is a solution of a voltage or current wave of a one-dimensional

transmission line and has the form:

),( tzV =
)( kztj

meV −ω
Eq.A-40

),( tzI =
)( kztj

meI −ω
 Eq.A-41

where mV  and mI  are amplitudes of the voltage and current wave which are decided by the

source and boundary conditions.

In the case of a transmission line without loss, the equations can be written as:

z

tzV

∂
∂ ),(

= 
t

tzI
L

∂
∂− ),(

sV+ Eq.A-42

z

tzI

∂
∂ ),(

= C−
t

tzV

∂
∂ ),(

sI+ Eq.A-43

If the one-dimensional transmission line with a source limited in the area 1z < z < 2z , a general

solution of the equations Eq.A-42 and Eq.A-43 above is:

),( tzV =( )(za+ + )(za− )/2 Eq.A-44

),( tzI =( )(za+ )(za−− )/2Z0 Eq.A-45

)(za+ )(
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)()( zzjk
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ss

jkz eZadeIZVe −−+ζ− +∫ ζ+= ( z > 1z ) Eq.A-46

)(za−
=

)(
20

2
2

)()( zzjk
z

z

jk
ss

jkz eZadeIZVe −−ζ− +∫ ζ−−   ( z < 2z ) Eq.A-47

where TR =
C

L
 is the characteristic resistance of voltage wave of transmission line.

By comparison of Eq.A-42 and Eq.A-43 with Eq.A-36 and Eq.A-37, if the following

comparison is made:

),( tzV = 3X− : the voltage wave is compared to negative stress in z direction of the
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longitudinal wave;

),( tzI = zv : the current wave is compared to velocity of the particle;

L =ρ : the inductance is compared to density of the sample;

C =1/ pc =1/ )/( 2
333 zzzec ε+ : the capacitance is compared to reciprocal of the stiffened

elastic stiffness;

sI =
p

z

c

e 3

t

Es

∂
∂

: the current source is compared to the time differential of source electric field;

Eq.A-36 and Eq.A-37 will have the same solution as that of Eq.A-42 and Eq.A-43.

For the near-field system shown in Fig.5-1 with an electric field source in near-field, the

stable harmonic solutions of the longitudinal wave in near-field can be written from above

comparison as:

2/)( 111
3

tjeaaX ω−+ +−= Eq.A-48

0
111 2/)( Zeaav tj

z
ω−+ −= Eq.A-49
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0 (0 ≤ z ≤ d) Eq.A-51

Here +1
sa (z) and −1

sa (z) are terms resulted from source in near-field. 0Z = pcρ  is the acoustic

characteristic resistance of wave ( 1
zv , 1

3X ) in near-field and )0(1+a  and )(1 da −  are constants

which can be determined by boundary conditions in Fig.5-1.

The acoustic waves outside the source area can be compared to the transmission line mode

without source. The acoustic wave outside the near-field but still in the sample is governed

only by the wave equations without source Eq.A-26 and Eq.A-27, and the solution can be

written as ( 2v , 2
3X  ):

2/)( 2
2

22
3

tjeaaX ω−+ +−= Eq.A-52

2
222 2/)( Zeaav tj

z
ω−+ −= Eq.A-53
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)(22 2)( dzjkedaa −−++ = Eq.A-54

)(22 2)( dzjkedaa −−− = Eq.A-55

Where )(2 da +  and )(2 da −  are constants which can be decided by the boundary condition of

the system, ω the angular frequency, and 2k  acoustic longitudinal wave number in z direction

in the sample outside the near-field. It is clear that the wave number and acoustic

characteristic resistance inside and outside the near-field in the sample are the same, that is

k = 2k  and 20 ZZ = . The suffix ‘2’ at the top right corner indicates the area outside the near-

field but still in the sample.

The final solution of the acoustic waves can be obtained by matching of boundary conditions

in different areas. The acoustic boundary conditions for the typical system shown in Fig.3-1

are generally the same.

1
3X =0 if z = 0; Eq.A-56

2
3X =

1
3X  if z = d; Eq.A-57

2
zv =

1
zv if z = d; Eq.A-58

3
3X =

2
3X if z = 1D Eq.A-59

3
zv =

2
zv if z = 1D Eq.A-60

)( 1
3 Da −

= 232
1

3 )( DjkeDRa −+
if z = 1D + 2D Eq.A-61

here R  is the acoustic reflect constant of the longitudinal wave at the interface between PZT

transducer and the copper electrode. The backside of copper electrode is well matched

acoustically so that there is no more reflection after the copper electrode.

Although the SNAM based on SPM technique has a constant force of the tip at z =0, for the

discussion of harmonic solutions of acoustic waves, it plays no role for the harmonic

solutions. At this base, a generally discussion of solutions of different scanning near-field

acoustic microscopy systems is possible.

At boundary z=0, there is only one boundary condition Eq.A-56 for 1
3X ,

)0()0( 11 ++ + aas +
jkd

s edaa −−− + )()0( 11
=0

)0(1+
sa =0

)0(1+a + )0(1−
sa +

jkdeda −− )(1
=0 Eq.A-62



11. Appendix

___________________________________________________________________________

93

At the boundary z = d, there are boundary conditions Eq.A-57 and Eq.A-58 for both ( 1
zv , 1

3X )

and ( 2v , 2
3X  ):

jkdjkd
s eaeda −+−+ + )0()( 11

 + )()( 11 daeda jkd
s

−− + = )(2 da +
+ )(2 da −

)(1 das
−

=0

)(1 das
+ jkde−

+
jkdea −+ )0(1

 + )(1 da −
= )(2 da +

+ )(2 da −
Eq.A-63

0

1

Z
{[ jkdjkd

s eaeda −+−+ + )0()( 11 ] - [ )()( 11 daeda jkd
s

−− + ]}=
0

1

Z
{ )(2 da + - )(2 da − }

jkdjkd
s eaeda −+−+ + )0()( 11

- )(1 da −
= )(2 da +

- )(2 da −
Eq.A-64

At boundary z= 1D , the boundary conditions Eq.A-59 and Eq.A-60 are

)( 1
3 Da + {1 + 232 DjkeR − }= )(2 1)( dDjkeda −−+ + )(2 1)( dDjkeda −−

Eq.A-65

3

0

Z

Z
)( 1

3 Da + { 1- 232 DjkeR − }= )(2 1)( dDjkeda −−+ - )(2 1)( dDjkeda −−
Eq.A-66

If the source field in near-field is given, )(1 das
+  and )0(1−

sa  are two source integration terms

in near-field and are given from Eq.A-50 and Eq.A-51 respectively.

There are six constants )0(1+a , )(1 da − , )(2 da + , )(2 da − , )( 1
3 Da + , and )( 1

3 Da − . There are

six independent linear equations from Eq.A-61 to Eq.A-66. There is only one single solution

for all the constants. All the constants can be written as the functions of )(1 das
+  and )0(1−

sa .

Let 1α =
1

1

2

2

1
1

jkD

jkD

e

e
−

−

+
−

, 2α =
23

23

2

2

Re1
Re1

Djk

Djk

−

−

+
−

, The final expression of )( 1
3 Da + can be calculated as

the following:

From Eq.A-59: 
+1

sa (z)= ∫ ζ
∂

∂ ζ
z

jks

p

z de
t

E

c

e
Z

0

3
0 )(  (0 ≤ z ≤ d),

we can get the expression of )(1 das
+

:

)(1 das
+

= ∫ ζ
∂

∂ ζ
d

jks

p

z de
t

E

c

e
Z

0

3
0 )(
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From Eq.A-60, 
−1

sa (z)= ∫ ζ
∂

∂ ζ−
d

z

jks

p

z de
t

E

c

e
Z )( 3

0   (0 ≤ z ≤ d),

we can get the expression of )0(1−
sa :

)0(1−
sa = ∫ ζ

∂
∂ ζ−

d
jks

p

z de
t

E

c

e
Z

0

3
0 )( .

If the source field is given, the term )(1 das
+

 and )0(1−
sa  are obtained.

From Eq.A-71, we can get the term )0(1+a :

)0(1+a = )0([ 1−− sa + ])(1 jkdeda −−

If we add and subtract Eq.A-72 with Eq.A-73, we can get the term )(2 da +
 and )(2 da −

 :

)(2 da +
= )(1 das

+ jkde−
+

jkdea −+ )0(1

)(2 da −
= )(1 da −

If we put the term )0(1+a  into the term )(2 da +
 above, we get the following expression:

)(2 da +
+ )(2 da − jkde 2−

=[ )(1 das
+

- )0(1−
sa ]

jkde−

The term at the right side of the equation above is the source integration in near-field.

If we add and subtract Eq.A-74 with Eq.A-75, we can get the following expression:

)( 1
3 Da + {[1 + 232 DjkeR − ]+ aβ [1- 232 DjkeR − ]}=2 )(2 da + )( 1 dDjke −−

)( 1
3 Da + {[1 + 232 DjkeR − ]- aβ [1- 232 DjkeR − ]}=2 )(2 da − )( 1 dDjke −

We can eliminate the )(2 da +
 and )(2 da −

 terms in the equations above and get the

relationship between the term )( 1
3 Da +  and the source term:

)( 1
3 Da +

=
)Re1)(1(

1
231 22 DjkjkDe −− ++ a

jkD
ss eada

βαα+
− −−+

21

11

1

)]0()([2 1

1jkDe−

Eq.A-67

Here 1α =
1

1

2

2

1
1

jkD

jkD

e

e
−

−

+
−

, 2α =
23

23

2

2

Re1
Re1

Djk

Djk

−

−

+
−

, and aβ =
3

0

Z

Z
=

3

2

Z

Z
.

Eq.A-67 can be simplified as the followings:
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1)]0()([2 11 jkD
ss eada −−+ − = 4

p

z

c

e
Z 3

0
1jkDe− ∫ ζ−

∂
∂ ζ−ζd jkjk

s d
ee

t

E

0 2

= 4j
p

z

c

e
Z 3

0
1jkDe− ∫ ζ−

∂
∂ ζ−ζd jkjk

s d
j

ee

t

E

0 2
= 4j

p

z

c

e
Z 3

0
1jkDe− ∫ ζζ

∂
∂d

s dk
t

E

0

)sin(

)( 1
3 Da +

)Re1)(1(

1
231 22 DjkjkDe −− ++

=
a

d
s

p

z dk
t

E

c

e
jZ

βαα+

∫ ζζ
∂

∂

21

0

3
0

1

)sin(4

The output signal of the transducer under the open circuit condition is:

outputV =2(
p

z

c

e 3
)( ∫ ζζ

∂
∂d

s dk
t

E

0

)sin( ) 





εPZT

zz

PZT
ze 3 ( ω

1
)(

1

23

21
1

jkD

Djk

e

e
−

−

+
−

)(
a

jkD
ae

βαα+
β −

211

1

)

Eq.A-68

A3: Solution of SEAM

A3.1 The acoustic boundary condition of SEAM can be written as:
1
3X =0 if z = 0; Eq.A-69

2
3X =

1
3X  if z = d; Eq.A-70

2
zv =

1
zv if z = d; Eq.A-71

3
3X =

2
3X if z = 1D Eq.A-72

3
zv =

2
zv if z = 1D Eq.A-73

)( 1
3 Da −

= 232
1

3 )( DjkeDRa −+
if z = 1D + 2D Eq.A-74

A3.2 The source electric field in the near-field of SEAM and output signal of transducer

The source electric field in the near-field of SEAM can be obtained by using the image charge

and solving the Possion´s equation at the given electric boundary conditions in the sample.

Based on the assumption in Chapter 4.1, the electric field under every scanning point can be

written as [74]:

sE = tjedzA ω− )´(  ( 0 <z<d , 222 ayx ≤+ )

sE =0 ( z >d and z<0, 222 ayx ≥+  ) Eq.A-75

here ´A =
ee

da

I

zz

E τ−

επ
η−
2

0)1(
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in which Eη  is the backscattering constant, 0I  the beam current, eτ  the charge accumulation

time, a  is the radius of the primary electron beam.

p

z

c

e 3

t

Es

∂
∂

= )( dzA − tje ω
, and A = ωj

p

z

c

e 3
´A = ωj

p

z

c

e 3 ee
da

I

zz

E τ−

επ
η−
2

0)1(
 

Eq.A-76

The source term in near-field of SEAM is:

 
p

z

c

e 3 ∫ ζζ
∂

∂d
s dk

t

E

0

)sin( =A ])[sin(
1

2
kdkd

k
−

The output signal of PZT transducer under open circuit condition is:

outputV =2A ])[sin(
1

2
kdkd

k
− 





εPZT

zz

PZT
ze 3 ( ω

1
)(

1

23

21
1

jkD

Djk

e

e
−

−

+
−

)(
a

a

βαα+
β

211
) 1jkDe−

=2 j
p

z

c

e 3 ee
da

I
s
zz

E τ−

επ
η−
2

0)1(
])[sin(

1
2

kdkd
k

− 





εPZT

zz

PZT
ze 3 (

1

23

21
1

jkD

Djk

e

e
−

−

+
−

)(
a

a

βαα+
β

211
) 1jkDe−

=2 j s
zz

ze

ρε
3 ee

da

IE τ−

π
η−

2
0)1(







εPZT

zz

PZT
ze 3 )

)sin(
(

2ω
− kdkd

(
1

23

21
1

jkD

Djk

e

e
−

−

+
−

)(
a

jkD
ae

βαα+
β −

211

1

)

Eq.A-77

in which ρ  is the density of BaTiO3 material, 1α =
1

1

2

2

1
1

jkD

jkD

e

e
−

−

+
−

, 2α =
23

23

2

2

Re1
Re1

Djk

Djk

−

−

+
−

 and

aβ =
3

0

Z

Z
.

A4: Solution of SNAM developed from SPM

A4.1 The acoustic boundary conditions of the system

The boundary conditions for SNAM developed in this work are almost the same as those of

SEAM system. The only difference is at z=0 plane. The actual acoustic boundary conditions

are:

1
3X = tipF  if z = 0; Eq.A-78

2
3X =

1
3X  if z = d; Eq.A-79

2
zv =

1
zv if z = d; Eq.A-80
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3
3X =

2
3X if z = 1D  Eq.A-81

3
zv =

2
zv if z = 1D Eq.A-82

)( 1
3 Da −

= 232
1

3 )( DjkeDRa −+
if z = 1D + 2D Eq.A-83

here R  has the same meaning as that discussed before. The contact force tipF  is kept constant

by the feedback control unit of SPM and has a typical value from several nN to several mN. It

is actually a constant force which acted on the z =0 boundary of the near-field. For the

harmonic solutions of near-field acoustics, it plays no role in the solution, as the time

differential is zero.

A4.2 Green´s function of the model

The electric field distribution of the system can be obtained by solving the Poisson´s equation

with a point charge under the given electric field boundary condition of the simplified model

shown in Fig.5-1.

If the potential in the region - ∞ <z<0 is V0 and in the region 0<z<D1 is V1, the electric field

boundary condition can be written as:

At z = 0:

V0=V1 Eq.A-84

z

V1

z

V0

∂
∂=

∂
∂

 Eq.A-85

At z = D1:

V1=0 Eq.A-86

The field distribution of a point charge at (0,0,-h) in cylindrical coordinate system can be

obtained as [80~82]:

V=
04πε

q
∫ ββ
∞

+β−

0
0 )( derJ hz

 Eq.A-87

Here the )(0 rJ β  is the Bessel´s function of zero order. β  is the spatial periodical constant in z

direction. The potential V is also called the Green´s function of a point charge in cylindrical

coordinate system. The Green´s function for the simplified SNAM system can be written as:

In the region - ∞ <z<0;

V0=
04πε

q
[ ∫ ββ

∞ +β−

0
0 )( derJ hz

+ ∫ βββ
∞

β

0
0 )()( derJA z

]               Eq.A-88

In the region 0<z<D1;
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V1=
04πε

q
[ ∫ βββ

∞
β−

0
0 )()( derJB z

+ ∫ βββ
∞

β

0
0 )()( derJC z

] Eq.A-89

In Eq.A-88 and Eq.A-89, )(βA , )(βB , and )(βC  are constants which are only dependent

on the system geometry and variable β . These constants can be solved by the three

independent equations from electric boundary conditions Eq.A-84, Eq.A-85, and Eq.A-86.

The constants are solved in the following way.

According to Eq.A-84 and Eq.A-85:

At z =0:

he β−
+ )(βA = )(βB + )(βC  Eq.A-90

-
he β−

+ )(βA =[- )(βB + )(βC ] 1rε  Eq.A-91

According to Eq.A-86, at z = D1:

)(βB 1De β−
+ )(βC 1Deβ

=0 Eq.A-92

If we let 1η =
)1(

)1(

1

1

+ε
−ε

r

r
, the constants )(βA , )(βB , and )(βC  can be obtained by solving

Eq.A-90, Eq.A-91, and Eq.A-92. The constants are:

)(βA 1η−= he β−
12

11

1
De β−η+

)2( 1 hDe +β−−
12

11

1
De β−η+ Eq.A-93

)(βB
)1(

2

1 +ε
=

β−

r

he
12

11

1
De β−η+ Eq.A-94

)(βC = 12 De β−−
)1(

2

1 +ε

β−

r

he
12

11

1
De β−η+ Eq.A-95

The Green functions for the system shown in Fig.5-1 are obtained according to Eq.A-88 and

Eq.A-89 if all the constants are known.

To see the physical meanings of the Green´s function more clearly, we can discuss the

Green´s function in the following way.

The Green´s function in region - ∞ <z<0, according to Eq.A-88:

V0 =
04πε

q
∫ ββ
∞ +β−

0
0 )( derJ hz

+
04πε

q
∫ βββ
∞

β

0
0 )()( derJA z

The first term of V0 is the potential of a point charge q at (0, 0, -h).

The second term of V0 is further composed of two terms:
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The first part of  
04πε

q
∫ βββ
∞

β

0
0 )()( derJA z

 is:

04πε
q

∫
∞

0
(- 1η ) he β−2

12
11

1
De β−η+

ββ β derJ z)(0

According Taylor series 
x±1

1
=1� x � 2x � 3x � ..., Eq.A-96

The term 
12

11

1
De β−η+  can be expanded into Taylor series [88]:

 
12

11

1
De β−η+ = [1 1η− −β− 12 De ( 1η 12 De β− )2

1(η− 12 De β− )3...] Eq.A-97

Then, the first part of  
04πε

q
∫ βββ
∞

β

0
0 )()( derJA z

 is:

04πε
q

∫
∞

0
(- 1η ) he β−2

12
11

1
De β−η+

ββ β derJ z)(0

=
04πε

q
∫
∞

0
(- 1η ) )(0 rJ β β−β de hz )( +

04πε
q

∫
∞

0

2
1η ββ +−β derJ hDz )]2([

0
1)(

+
04πε

q
∫
∞

0
(

3
1η )4( 1 hDe +β−

+...) ββ β derJ z)(0 Eq.A-98

The terms at the right side of Eq.A-98 can be treated as image charges 0mQ = - 1η q, 1mQ = 2
1η  q

, ... at the position of (h, 2D1+h, 4D1+h,...) at z axis.

The second part of 
04πε

q
∫ βββ
∞

β

0
0 )()( derJA z

 is:

04πε
q

∫
∞

0
(-1) )2( 1 hDe +β−

 
12

11

1
De β−η+

ββ β derJ z)(0

According to Eq.A-97, it can be written as the following:

=
04πε

q
∫
∞

0
(-1) ββ +−β derJ hDz )]2([

0
1)( + 

04πε
q

∫
∞

0
1η ββ +−β derJ hDz )]4([

0
1)(

+
04πε

q
∫
∞

0
[ 2

1η )6( 1 hDe +β− +...] ββ β derJ z)(0 Eq.A-99
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In the same way, terms at the right side of Eq.A-99 can be treated as the image charges 0nQ =

-q, 1nQ = 1η q ..., at the position of (2D1+h, 4D1+h,...) at z axis. The distribution of image

charges for the Green´s function of V0 is shown in Fig.5-2.

The Green´s function V1 in the region 0<z<D1 according to Eq.A-89 is:

V1=
04πε

q
∫ βββ
∞

β−

0
0 )()( derJB z

+
04πε

q
∫ βββ
∞

β

0
0 )()( derJC z

From Eq.A-97, the first term of V1 can be written as:

04πε
q

∫ βββ
∞

β−

0
0 )()( derJB z

=
04πε

q
)1(

2

1 +ε r

∫
∞

0
−ββ +β− derJ hz )(

0 )(

04πε
q

)1(

2

1 +ε r
1η ∫

∞

0
−ββ ++β− derJ hDz )]2([

0
1)(

04πε
q

)1(

2

1 +ε r

∫
∞

0
[ he β−2  ( 1η 12 De β− )2 -...] ββ β− derJ z)(0 Eq.A-100

The image charges are 0iQ = 
)1(

2

1 +ε r

q, 1iQ =-
)1(

2

1 +ε r
1η q, ... at the position of (-h, -(h+2D1),

...) at z axis.

From Eq.A-97, the second term of V1 can be written as:

04πε
q

∫ βββ
∞

β

0
0 )()( derJC z

=
04πε

q
(-1)

)1(

2

1 +ε r

∫
∞

0
ββ +−β derJ Dhz )]2([

0
1)( +

04πε
q

)1(

2

1 +ε r
1η ∫

∞

0
ββ +−β derJ Dhz )4([

0
1)( +

04πε
q

∫
∞

0
[ )2( 1Dhe +β− ( 1η 12 De β− )2+...] ββ β derJ z)(0 Eq.A-101

The image charges are 0jQ =
)1(

2

1 +ε
−

r

q, 1jQ =
)1(

2

1 +ε r
1η q, ... at the position of (2D1+h,

4D1+h, ...) at z axis. The distribution of image charges for the Green´s function of V1 is

shown in Fig.5-3.

A5: Material constants of PZT and BaTiO3

The elastic tensor of BaTiO3 single crystal with a monodomain:
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If only the elastic or piezoelectric properties of polarized BaTiO3 ceramics are studied, the

polarized BaTiO3 ceramics can be described as material with 6mm crystal lattice and the

elastic tensor is:
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11c =15.0x1010N/m2, 12c =6.6x1010N/m2, 13c =6.6x1010N/m2, 33c =14.6x1010N/m2,

44c =4.4x1010N/m2

The elastic stiffness tensor of PZT ceramics has the same form as that of BaTiO3  ceramics.

The values of tensor components of PZT ceramics are:

11c =12.6x1010N/m2, 12c =7.95x1010N/m2, 13c =8.41x1010N/m2, 33c =11.7x1010N/m2,
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44c =2.3x1010N/m2

The piezoelectric tensor of BaTiO3  for both single crystal and ceramics
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1ze = -2.74 C/m2, 3ze = 3.70 C/ m2, 5xe = 21.3 C/ m2

The piezoelectric tensor of PZT ceramics has the same form. The component values:

PZT
zd 1 = -274 x 10-12 C/N, 

PZT
zd 3 = 593 x 10-12 C/N, 

PZT
xd 5 = 741 x 10-12 C/N

PTT
ze 1 = -6.5 C/m2, 

PTT
ze 3 =9 C/ m2, 

PTT
xe 5 = 9.8 C/ m2

The dielectric tensor of BaTiO3  materials is:
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, 
X
xxε =2920 0ε , 

X
zzε =168 0ε  

here the X at the top right corner denotes the dielectric tensor under constant stress.
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Here the x at the top right corner denotes the dielectric tensor under constant strain.

The dielectric tensor of PZT ceramics has the same form as that of BaTiO3 ceramics but

different values of tensor components. The correspondent values are:

XPZT
xx

,ε =3130 0ε , 
XPZT

zz
,ε =3400 0ε

xPZT
xx

,ε =1700 0ε , 
xPZT

zz
,ε =1470 0ε
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