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Introduction

Cohomology theories in algebraic and arithmetic geometry provide an important tool to construct and
study representations of a group (for example: an algebraic group, a finite group of Lie type, a p-adic
Lie group or a Galois group) which roughly works as follows:

• Find a geometric object (for example an algebraic or analytic variety) on which the group acts.

• Pick a cohomology theory with the desired coefficients in such a way that the group acts on the
cohomology of the geometric object.

One very prominent aspect of this approach is the use of `-adic cohomology theories to study rep-
resentations with `-adic coefficients of finite groups of Lie type (over a finite field k of characteristic
p 6= `, with q elements). According to Lusztig [39, Item 17], this development was started by Tate and
Thompson [56] in 1965. They realized a certain irreducible representation of the finite unitary group
U3(k′) (of degree 3, over a quadratic extension k′ of k) as the first `-adic cohomology of the projective
curve over k defined by the equation Xq+1

0 +Xq+1
1 +Xq+1

2 = 0.
In 1974 Drinfeld [8] constructed a Langlands correspondence for the general linear group of de-

gree 2 over a function field of positive characteristic. He further observed that all so-called cuspidal
representations (with `-adic coefficients) of the finite special linear group of degree 2 over k can be
realized in the `-adic cohomology (with compact supports) of the affine curve defined by the equation
XY q −XqY = 1 that now bears his name. This was taken up around the same time by Lusztig [38]
and a couple of years later in a joint paper with Deligne [6]: For an arbitrary connected reductive
group over k and for each element of the Weyl group of this reductive group, they constructed vari-
eties – today called Deligne-Lusztig varieties – whose `-adic cohomology with compact supports with
respect to certain coefficient systems realizes all irreducible representations of the finite group of Lie
type associated with the given algebraic group.

Drinfeld’s affine curve reappears as a finite principal covering of a certain Deligne-Lusztig variety
for the group SL2 (associated with the Coxeter element of its Weyl group) which is isomorphic to
Drinfeld’s upper half plane P1

k \ P1
k(k) ∼= A1

k \A1
k(k) over k. This leads to the following generalization:

Drinfeld’s upper half space over k (of dimension n) is by definition the affine k-variety obtained by
removing all k-rational hyperplanes from Pnk . It was first defined and studied by Drinfeld [9] in 1976.
This variety is always isomorphic to the Deligne-Lusztig variety for the group SLn+1 (or GLn+1)
associated with the standard Coxeter element of its Weyl group. There is an analogous definition –
also introduced by Drinfeld – in the case where k is replaced by a finite field extension K of the field
Qp of p-adic numbers. In this case, the resulting rigid-analytic space is of high interest in the local
Langlands program, since the `-adic cohomology of certain coverings of this space realizes the full
supercuspidal spectrum of the local Langlands correspondence, as proved by Harris and Taylor in [21]
in 2001.

There are of course several other more geometrically motivated reasons why studying any of the
spaces mentioned above is of interest. For example, Drinfeld’s upper half space over a p-adic field pos-
sesses an interpretation as the generic fiber of a formal scheme which parametrizes certain p-divisible
groups, cf. [9]. Furthermore, it turns up in p-adic Hodge theory, cf. e.g. the introduction in [5], and its
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counterpart over a finite field can be viewed as a “toy model” for the p-adic theory, as the geometry
involved is considerably easier over a finite field. According to Pink [47], Drinfeld’s upper half space
over a finite field can be viewed as a moduli space for certain Drinfeld modules which themselves are
of particular interest in the Langlands program.

A (partial) list of known results on the cohomologies of Drinfeld’s upper half space reads as follows:

• Over a p-adic field, the de Rham cohomology of Drinfeld’s upper half space was determined by
Schneider and Stuhler [54] in 1991. Different proofs of their result were later given by de Shalit
[7], Iovita and Spieß [30], Alon and de Shalit [1], and Orlik [45]. Furthermore, Schneider and
Stuhler also computed the `-adic cohomology in this situation.

• The `-adic cohomology of Drinfeld’s upper half space over a finite field k was computed by Orlik
[42] as a representation of the group of k-rational points of the general linear group over k and
as a Galois representation1. In particular, Orlik’s complex, which will be used extensively in
this thesis, appears for the first time in [42]. Partial results were known before due to Kottwitz
and Rapoport, cf. [50, 51].

• In the p-adic situation, Orlik considered in [44] equivariant vector bundles for the general linear
group over the respective p-adic field on Drinfeld’s upper half space. He managed to construct
and describe equivariant filtrations on the spaces of global sections of those bundles, generalizing
earlier work of Schneider and Teitelbaum [55] and of Pohlkamp [48].

• Große-Klönne studied in [14] the rigid cohomology of Deligne-Lusztig varieties and therefore
in particular of Drinfeld’s upper half space over a finite field. Among other results, he found
that after identifying the respective coefficient fields, the Euler-Poincaré characteristic of this
cohomology is the same as the one obtained from `-adic cohomology, seen essentially as a (virtual)
module over the finite group of Lie type associated with the respective general linear group over
k.

Content of this Thesis

The object of interest in this work is Drinfeld’s upper half space2 X (n+1) ⊂ Pnk = Proj k[T0, . . . , Tn]
over a finite field k. As explained above, this space is defined as the complement of the union of
all k-rational hyperplanes in Pnk and therefore, it carries the structure of an affine k-variety which is
Zariski-open in Pnk . Fix an algebraic action of the algebraic k-group scheme Gk = GLn+1,k on Pnk by
(g, x) 7→ g.x = xg−1 (on closed points). Then this action induces one of the finite group G = Gk(k)
of k-rational points of Gk on X (n+1).

Part I: Equivariant Vector Bundles on Drinfeld’s Upper Half Space over a Finite
Field

In the first part (Chapter 2) of this thesis, the cohomology H∗(X (n+1),F) of X (n+1) with coefficients
in a Gk-equivariant vector bundle F on Pnk is considered. This is the analog over k of the situation
studied by Orlik in [44] over a p-adic field. In both situations, F has no higher cohomology on X (n+1),
i.e.

H∗(X (n+1),F) = H0(X (n+1),F),

1Note that on both the `-adic and the p-adic cohomology there is an induced action of the absolute Galois group of
k which comes via functoriality from the Galois action on Drinfeld’s upper half space.

2See Chapter 1 for a detailed account of the notation used in the sequel.
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as X (n+1) is affine (resp. a Stein space in [44]). As in op. cit., one can construct a complex indexed by
certain closed subvarieties of the complement Y(n+1) of X (n+1) in Pnk with values in the constant sheaf
with value Z over Y(n+1). This complex – called Orlik’s complex from now on – is acyclic and induces
a spectral sequence which computes pieces of a G-equivariant filtration on H0(X (n+1),F). These are
then described in terms of the following objects. Let j ∈ {0, . . . , n− 1}.

• Denote by Pjk the subvariety of Pnk characterized by the vanishing of the coordinate functions
Tj+1, . . . , Tn. This subvariety is stabilized by the standard-parabolic subgroup P(j+1,n−j),k (with
respect to the Borel subgroup Bk of lower triangular matrices) of Gk which is associated with
the decomposition n+ 1 = (j + 1) + (n− j).

• Let

H̃
n−j
Pjk

(Pnk ,F) = ker

(
Hn−j

Pjk
(Pnk ,F)→ Hn−j(Pnk ,F)

)
,

where Hn−j
Pjk

(Pnk ,F) is the local cohomology of Pnk with values in F and support in Pjk and the

map is the one which appears in the long exact cohomology sequence associated with the closed

embedding Pjk ⊂ Pnk . The module H̃
n−j
Pjk

(Pnk ,F) carries naturally the structure of a representation

of the group P(j+1,n−j),k.

• Write Stn−j(k) for the Steinberg representation of the factor GLn−j,k(k) appearing in the group of
k-valued points of the Levi subgroup L(j+1,n−j),k of P(j+1,n−j),k and denote by vGP

(j+1,1n−j),k
(k)(k)

the generalized Steinberg representation of G with respect to the finite standard-parabolic
subgroup P(j+1,1n−j),k(k) (again with respect to Bk) of G associated with the decomposition

n+ 1 = (j + 1) + (n− j) · 1. Write vGP
(j+1,1n−j),k

(k)(k)′ for the k-dual of this module.

The precise result is the following:

Theorem. (see Theorem 2.1.2.1) On H0(X (n+1),F) there is a filtration by G-submodules

H0(X (n+1),F) = F(X (n+1))0 ⊃ F(X (n+1))1 ⊃ . . . ⊃ F(X (n+1))n = H0(Pnk ,F)

such that the successive quotients F(X (n+1))j/F(X (n+1))j+1 with j ∈ {0, . . . , n− 1} appear as exten-
sions in short exact sequences of G-modules

(0) → IndGP(j+1,n−j),k(k)(H̃
n−j
Pjk

(Pnk ,F)⊗k Stn−j(k))→ F(X (n+1))j/F(X (n+1))j+1

→ vGP
(j+1,1n−j),k

(k)(k)′ ⊗k Hn−j(Pnk ,F)→ (0). (1)

This theorem is a careful translation of Orlik’s result [44, Corollary 2.2.9] and its algebraic content.
With the help of this filtration, the problem of describing H0(X (n+1),F) as a G-module essentially

reduces to describing for each j = 0, . . . , n − 1 the reduced local cohomology module H̃
n−j
Pjk

(Pnk ,F).

Under different assumptions, there are given three types of descriptions of these modules, essentially
as representations of L(j+1,n−j),k resp. its subgroup L(j+1,n−j),k(k) of k-valued points.

The first description is for bundles F = Fλ which are associated with an integral weight λ =
(λ0, λ1, . . . , λn) of Gk where λ0 ∈ Z and (λ1, . . . , λn) is a dominant integral weight of GLn,k (which
is identified as a subgroup of Gk). The result is a direct translation of Orlik’s result [44, 1.4.2] and
reads as follows.
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Proposition. (see Proposition 2.2.1.1) For j ∈ {0, . . . , n − 1} there is an irreducible L(j+1,n−j),k-

module Lz−1
n−jµn−j,λ

, depending only on j and λ, such that the L(j+1,n−j),k-module H̃
n−j
Pjk

(Pnk ,Fλ) is a

quotient of the L(j+1,n−j),k-module(⊕
l∈N0

Syml((kj+1)′) �k Syml((kn−j)′)′
)
⊗k Lz−1

n−jµn−j,λ

∼=
(⊕
l∈N0

V (l · εj)′ �k V (l · εn)

)
⊗k Lz−1

n−jµn−j,λ
.

Here, the V (l · εj) resp. V (l · εn) are certain Weyl modules of the factors GLj+1,k resp. GLn−j,k of
L(j+1,n−j),k.

The second description uses the canonical projection Pnk \ P
j
k → Pn−j−1

k and for arbitrary bundles
F it gives the following result:

Proposition. (see Corollary 2.2.2.4) Let r be the rank of F . Then there exist integers a1, . . . , ar ∈ Z,
depending on F , such that the L(j+1,n−j),k-module H̃

n−j
Pjk

(Pnk ,F) is a quotient of

r⊕
l=1

⊕
m∈N0

m−al≥n−j

V (m · εj)′ �k det−1 ⊗k V ((m− al − n+ j) · εn).

Again, the modules appearing are Weyl modules for the factors of L(j+1,n−j),k. This result (and

its proof) yield concrete descriptions for H̃
n−j
Pjk

(Pnk ,F) in the cases of twisted structure sheaves F =

OPnk (i), i ∈ Z, and sheaves of differential forms F = Ωi
Pnk/k

, i = {0, . . . , n}.

The third description is for bundles F such that
⊕

i∈N0
Hi(Pnk ,F(i)) is a graded k[T0, . . . , Tn]-

module generated in degrees≤ 1 and which are acted upon by a k-algebra Û(gk)c defined as follows: Let
K be a finite extension field of Qp with valuation ring V and residue field k. Let G := GLn+1,V (viewed
as an algebraic V-group scheme) and similarly write P(j+1,n−j) resp. L(j+1,n−j) for the parabolic
subgroup scheme associated with the decomposition n+ 1 = (j + 1) + (n− j) resp. its Levi subgroup
(with respect to the Borel subgroup of lower triangular matrices). The algebraic k-group schemes
used above are then the respective base changes to k of these group schemes. Consider the universal
enveloping algebra U(g ⊗V K), where g = Lie(G) is the Lie algebra of G with standard V-basis
{L(u,v) | 0 ≤ u, v ≤ n} corresponding to elementary matrices. Define a V-subalgebra Û(g) which is
the subalgebra generated by all divided powers

1

(
∑

0≤u6=v≤nmu,v)!

∏
0≤u6=v≤n

L
mu,v
(u,v)

for mu,v ∈ N0, and
L(u,u) · (L(u,u) − 1) · . . . · (L(u,u) −m+ 1)

m!
for 0 ≤ u ≤ n, m ∈ N0. This algebra is called the enriched crystalline enveloping algebra associated
with G. Such an algebra can be associated with each subgroup scheme of G, in particular with the
opposite U+

(j+1,n−j) of the unipotent radical of P(j+1,n−j) : The enriched crystalline enveloping algebra

associated with U+
(j+1,n−j) is the subalgebra Û(u+

(j+1,n−j)) of Û(g) which is generated by all divided
powers

1

(
∑

0≤u6=v≤nmu,v)!

∏
0≤u6=v≤n

L
mu,v
(u,v)

5



for mu,v ∈ N0 with mu,v = 0 if u ∈ {j+1, . . . , n} or v ∈ {0, . . . , j}. The algebras Û(g) and Û(u+
(j+1,n−j))

are too big to admit meaningful representations in the context of this work. Therefore, the following
subalgebras Û(g)c ⊂ Û(g) resp. Û(u+

(j+1,n−j))c ⊂ Û(u+
(j+1,n−j)) are defined:

By definition, Û(g)c is the subalgebra of Û(g) generated by all divided powers

1

(
∑

0≤u6=v≤nmu,v)!

∏
0≤u6=v≤n

L
mu,v
(u,v)

for mu,v ∈ N0, such that there exists w ∈ N0 with mu,v = 0 for all (u, v) ∈ {0, . . . , n}×{0, . . . , n}\{w}
and by all

L(u,u) · (L(u,u) − 1) · . . . · (L(u,u) −m+ 1)

m!

for 0 ≤ u ≤ n, m ∈ N0. The algebra Û(u+
(j+1,n−j))c is then defined as the intersection of Û(g)c and

Û(u+
(j+1,n−j)) in Û(g). Denote by Û(gk) the base change to k of Û(g) and similarly for the other algebras

just defined. Finally, write LÛ(u+
(j+1,n−j),k)c for the algebra which is generated by all L(j+1,n−j),k(k)-

translates of Û(u+
(j+1,n−j),k)c inside Û(u+

(j+1,n−j),k). The result concerning H̃
n−j
Pjk

(Pnk ,F) is then the

following.

Proposition. (see Proposition 2.5.1.3) Under the assumption that Û(gk)c acts on F (induced by the
Gk-action on F) and that the graded k[T0, . . . , Tn]-module

⊕
i∈N0

Hi(Pnk ,F(i)) is generated in degrees

≤ 1, there is a P(j+1,n−j),k-submodule Nj ⊂ H̃
n−j
Pjk

(Pnk ,F) of finite k-dimension and an epimorphism

of L(j+1,n−j),k(k)-modules

ϕj : LÛ(u+
(j+1,n−j),k)c ⊗k Nj � H̃

n−j
Pjk

(Pnk ,F).

It should be pointed out here that the direct analogy with Orlik’s paper [44] fails: H̃
n−j
Pjk

(Pnk ,F) is

not finitely generated as a module over either the universal enveloping algebra U(gk) or the distribution
algebra Dist(Gk). This is shown in Section 2.3.2. Therefore, it seems that the algebra Û(gk) and its
subalgebras are the proper replacements for Dist(Gk) resp. U(gk) in the context of this work. In the
first chapter, a notion of a semisimplification MH−ss. of a filtered H-module M for a finite group H is
constructed. The above proposition is then used to obtain the following theorem. Write dj = ker(ϕj).

Theorem. (see Theorem 2.5.1.4) Under the assumptions on F made above, the P(j+1,n−j),k(k)-semi-

simplifications (LÛ(u+
(j+1,n−j),k)c ⊗k Nj/dj)

P(j+1,n−j),k(k)−ss. and (H̃
n−j
Pjk

(Pnk ,F))P(j+1,n−j),k(k)−ss. exist

and there is an isomorphism of P(j+1,n−j),k(k)-modules

(LÛ(u+
(j+1,n−j),k)c ⊗k Nj/dj)

P(j+1,n−j),k(k)−ss. ∼−→ (H̃
n−j
Pjk

(Pnk ,F))P(j+1,n−j),k(k)−ss..

For a graded k-vector space V =
⊕

i∈Z Vi, denote by V ∨ its graded dual, i.e. V ∨ =
⊕

i∈Z V
′
i . It

is shown that the L(j+1,n−j),k(k)-modules Û(u+
(j+1,n−j),k) and O(U+

(j+1,n−j),k) are in graded duality

with each other (Lemma 2.4.2.4). This duality leads to the definition of a functor IndG,U
+−alg

P(j+1,n−j),k(k)(−)

from the category of L(j+1,n−j),k(k)-modules (with inflated P(j+1,n−j),k(k)-action) to the category of
G-modules, defined by

IndG,U
+−alg

P(j+1,n−j),k(k)(−) = IndGP(j+1,n−j),k(k)(O(U+
(j+1,n−j),k)⊗k −).
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The above duality for Û(u+
(j+1,n−j),k) is extended to one for the module

H̃
n−j
Pjk

(Pnk ,F)⊗k Stn−j(k) ∼=
(
LÛ(u+

(j+1,n−j),k)c ⊗k Nj/dj

)
⊗k Stn−j(k)

appearing in (1). Under this extended (and then induced) duality, the G-module

IndGP(j+1,n−j),k(k)

((
LÛ(u+

(j+1,n−j),k)c ⊗k Nj

)
/d⊗k Stn−j(k)

)
corresponds to a subquotient

IndG,U
+−alg

P(j+1,n−j),k(k)(N
′
j ⊗ Stn−j(k)′)

dj⊗Stn−j(k)
red

of IndG,U
+−alg

P(j+1,n−j),k(k)(N
′
j⊗Stn−j(k)′), see Proposition 2.4.2.9. This yields a reinterpretation of the kernels

of the short exact sequences for the filtration steps of the above filtration on H0(X (n+1),F).

Theorem. (see Theorem 2.5.2.4) Let j ∈ {0, . . . , n − 1}. Under the assumptions on F made in the
last theorem, the G-semisimplifications of the quotients F(X (n+1))j/F(X (n+1))j+1 exist and appear as
extensions in short exact sequences of G-modules

(0) →
((

IndG,U
+−alg

P(j+1,n−j),k(k)(N
′
j ⊗ Stn−j(k)′)

dj⊗Stn−j(k)
red

)∨)G−ss.
→ (F(X (n+1))j/F(X (n+1))j+1)G−ss.

→ (vGP
(j+1,1n−j),k

(k)(k)′ ⊗k Hn−j(Pnk ,F))G−ss. → (0).

It is shown in Lemma 2.6.2.1 that the algebra Û(gk)c acts on the twisted structure sheaves
OPnk (i), i ∈ Z, and on the sheaves of differential i-forms Ωi

Pnk/k
, i = 0, . . . , n, on Pnk (induced by

the Gk-action on these sheaves). Of these, the sheaves OPnk (i), i ≥ −1, satisfy the assumptions made
in the theorem.

Part II: Rigid Cohomology of Drinfeld’s Upper Half Space over a Finite Field

In the second part (Chapter 3) of this thesis, the rigid cohomology H∗rig(X (n+1)/K) (resp. the rigid

cohomology H∗rig,c(X (n+1)/K) “with compact supports”) of X (n+1) with coefficients in a finite field
extension K/Qp with residue field k is considered as a representation of both G and the absolute
Galois group Gal(k/k) of k. The result is the following theorem.

Theorem. (see Theorem 3.2.4.3 and Theorem 3.3.4.2) The rigid cohomology of X (n+1) with coeffi-
cients in K is

i) H∗rig,c(X (n+1)/K) =
⊕n

i=0 v
G
P(i+1,1n−i),k(k)(K)(−i)[−n− i],

ii) H∗rig(X (n+1)/K) =
⊕n

i=0 v
G
P(i+1,1n−i),k(k)(K)′(i− 2n)[−n+ i].

The modules appearing in this theorem are again generalized Steinberg representations, this time
with coefficients in K. Furthermore, [−i] means that the respective module lives in degree i and (i)
determines the Tate twist, i.e. its structure as a Gal(k/k)-representation (over K).

As stated above, the Euler-Poincaré characteristic
∑

i∈N0
(−1)iHi

rig,c(X (n+1)/K) (considered as a
virtual G-module) was determined by Große-Klönne [14]. Here, this cohomology is computed once
directly as a hypercohomology and once by considering the associated de Rham complex. Both times,
modified versions of Orlik’s complex from Part I are used. For technical reasons, many computations
take place in the category of Huber’s adic spaces.
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Rigid cohomology computed directly as a hypercohomology

Recall that for a projective k-variety Y ⊂ Pnk , its rigid cohomology is simply the de Rham cohomology

H∗dR(]Y [p,K) with values in K of its rigid analytic tube ]Y [P⊂ Pn,rigK . Therefore, in this first part,
the de Rham cohomology of the rigid analytic tube ]Y(n+1)[P of Y(n+1) (the complement of X (n+1)

in Pnk) is computed and the rigid cohomology of X (n+1) is then known by applying the long exact

cohomology sequence for the pair of inclusions X (n+1)
open
⊂ Pnk

closed
⊃ Y(n+1). The key ingredient for

the computation of the rigid cohomology H∗rig(Y(n+1)/K) = H∗dR(]Y(n+1)[P ,K) is a modified version

of Orlik’s complex for ]Y(n+1)[P with values in the de Rham complex Ω•
]Y(n+1)[P /K

on ]Y(n+1)[P . In

this situation, Orlik’s complex is indexed by the tubes associated with certain projective subvarieties
of Y(n+1) and as in the first part of this thesis, this complex is shown to be acyclic, see Corollary
3.2.1.2. It then induces a spectral sequence converging to H∗rig(Y(n+1)/K) with computable entries on
the E1-page. This spectral sequence degenerates on its E2-page (Lemma 3.2.3.2) and the evaluation
of the associated grading on H∗rig(Y(n+1)/K) then yields this cohomology (Proposition 3.2.4.1).

Rigid cohomology computed from the associated de Rham complex

For a quasi-projective k-variety X ⊂ Pnk , its rigid cohomology H∗rig(X/K) is defined as the hypercoho-

mology on Pn,rigK with values in the direct limit of the de Rham complexes of a system of strict open

neighborhoods of ]X[P , the rigid-analytic tube of X, in Pn,rigK . In the first step towards computing

H∗rig(X (n+1)/K), a cofinal system (Um)m∈N of affinoid strict open neighborhoods of ]X (n+1)[P in Pn,rigK

is constructed, see Lemma 3.3.0.4. It is then shown that in order to use the associated de Rham
complex for the determination of the above hypercohomology, it is enough to compute the spaces of
sections H0(Um,Ωi

Pn,rigK /K
) of the sheaves of differential i-forms Ωi

Pn,rigK /K
on Um and then take their

direct limit (Lemma 3.3.0.5). The spaces Um are constructed in such a way that one can again make
use of an adapted version of Orlik’s complex to determine all spaces H0(Um,Ωi

Pn,rigK /K
). To be precise,

Orlik’s complex in this situation (which is again acyclic, see Proposition 3.3.1.1) yields a spectral
sequence which computes the local cohomology H1

Ym(Pn,rigK ,Ωi
Pn,rigK /K

) of Pn,rigK with supports in the

complement Y m = Pn,rigK \Um of Um in Pn,rigK and values in Ωi
Pn,rigK /K

. The key to the evaluation of this

spectral sequence is again the fact that it has computable entries in its E1-page, see Lemma 3.3.3.1.
The remainder of the evaluation of this spectral sequence then proceeds in analogy with the respective
section of Orlik’s paper [44]. The result is the following. Recall that G = GLn+1,V .

Theorem. (see Theorem 3.3.3.3) On each H0(Um,Ωi
Pn,rigK

) there exists a filtration

Ωi
Pn,rigK

(Um)• =
(

H0(Um,Ωi
Pn,rigK

) = Ωi
Pn,rigK

(Um)0 ⊃ Ωi
Pn,rigK

(Um)1 ⊃ . . .

. . . ⊃ Ωi
Pn,rigK

(Um)n−1 ⊃ Ωi
Pn,rigK

(Um)n = H0(Pn,rigK ,Ωi
Pn,rigK

)
)

by G(V)-submodules such that each filtration step appears in a short exact sequence

(0) → Ind
G(V)
P(j+1,n−j)(V)(1)(H̃

n−j
]Pjk[P,λm

(Pn,rigK ,Ωi
Pn,rigK

)⊗ Stn−j(K))→ E i(Um)j/E i(Um)j+1

→ v
G(V)
P

(j+1,1n−j)
(V)(1)(K)′ ⊗K Hn−j(Pn,rigK ,Ωi

Pn,rigK

)→ (0)

for j = 0, . . . , n− 1. For j = n, there is an identification

E i(Um)n = H0(Pn,rigK ,Ωi
Pn,rigK

).

These filtrations are compatible with G-equivariant morphisms between the involved sheaves.
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Here, λm = p1/m and ]Pjk[P,λm is the tube of radius λm of Pjk in Pn,rigK . The groups P(j+1,n−j)(V)(1)
and P(j+1,1n−j)(V)(1) are the respective inverse images under the canonical map G(V) → G of

the groups P(j+1,n−j),k(k) and P(j+1,1n−j),k(k). Furthermore, the modules H̃
n−j
]Pjk[P,λm

(Pn,rigK ,Ωi
Pn,rigK

),

Stn−j(K) and v
G(V)
P

(j+1,1n−j)
(V)(1)(K) are the analogues of the modules appearing in Part I of this intro-

duction.
The functoriality of the filtrations obtained in the last theorem then imply that the de Rham

complex
0→ H0(Um,OPn,rigK

)→ H0(Um,Ω1
Pn,rigK

)→ . . .→ H0(Um,Ωn
Pn,rigK

)→ 0

is actually a filtered complex. The associated spectral sequence degenerates on its E1-page with
computable entries and taking direct limits one then obtains the desired rigid cohomology. The key
result is Lemma 3.3.4.1 which asserts that for each j = 0, . . . , n− 1, the complex

(0) → lim−→
m∈N

H̃
n−j
]Pjk[P,λm

(Pn,rigK ,Ω0
Pn,rigK /K

)→ lim−→
m∈N

H̃
n−j
]Pjk[P,λm

(Pn,rigK ,Ω1
Pn,rigK /K

)→ . . .

→ lim−→
m∈N

H̃
n−j
]Pjk[P,λm

(Pn,rigK ,Ωn
Pn,rigK /K

)→ (0)

consisting of direct limits of reduced local cohomologies with support in ]Pjk[P,λm is acyclic.

Structure of this Work

For the convenience of the reader, a short overview of the organization of the content of this work is
given in the sequel:

In Chapter 1 the general notation used in the course of this thesis is fixed in Section 1.1. Sections
1.2, 1.3 and 1.4 then contain some reminders on representations of groups, on Drinfeld’s upper half
space and on sheaves and their cohomology, respectively. In particular, in Section 1.2 a notion of
semisimplification for a representation of a group is constructed and some of its properties needed in
the sequel are proved.

Chapter 2 deals with the computation of the cohomology of Gk-equivariant vector bundles on
X (n+1). The notion of a Gk-equivariant vector bundle on a Gk-scheme is recalled in an introduction
to this chapter. In Section 2.1 the construction of Orlik’s complex is reviewed. The description of

the spaces H̃
i
Pjk

(Pnk ,F) starts in Section 2.2. In particular, this section contains the first two types of

descriptions (Proposition 2.2.1.1 and Corollary 2.2.2.4) as mentioned above. Section 2.3 deals with
the actions of the universal enveloping algebra of Lie(Gk) and of the distribution algebra Dist(Gk)

on H̃
i
Pjk

(Pnk ,F). In particular, it is shown in Subsubsections 2.3.2 and 2.3.3 that H̃
n−j
Pjk

(Pnk ,F) is not

a finitely generated module over either of these two algebras. In Section 2.4 the enriched crystalline
enveloping algebra Û(g) and its subalgebras Û(g)c, Û(g)r are constructed and it is shown under
which conditions representations of these algebras can be obtained from a representation of G resp.
of Gk. This is demonstrated in two examples in Subsection 2.4.1. The special case of the algebra
Û(u+

(j+1,n−j),k) is considered in Subsection 2.4.2, both as an algebra and as a representation over the

group L(j+1,n−j),k. In Section 2.5 the algebra LÛ(u+
(j+1,n−j),k)c is employed to give a description of

the module H̃
n−j
Pjk

(Pnk ,F). Subsection 2.5.1 contains the result asserting that for bundles F on which

Û(g+
k )c acts and which are of the type described above, there is an epimorphism

LÛ(u+
(j+1,n−j),k)c ⊗k Nj � H̃

n−j
Pjk

(Pnk ,F)

of L(j+1,n−j),k(k)-modules for a P(j+1,n−j),k-module Nj of finite k-dimension (Proposition 2.5.1.3).

This gives a description of the P(j+1,n−j),k(k)-semisimplification of H̃
n−j
Pjk

(Pnk ,F) as an epimorphic
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image of the P(j+1,n−j),k(k)-semisimplification of LÛ(u+
(j+1,n−j),k)c ⊗k Nj in Theorem 2.5.1.4. This

description is reinterpreted in terms of O(U+
(j+1,n−j),k) in Subsection 2.5.2, followed by the definition of

the functor IndG,U
+−alg

P(j+1,n−j),k(k) and Theorem 2.5.2.4. Chapter 2 concludes with the study of examples in

Section 2.6: First, some classes of G-modules resp. Gk-equivariant vector bundles which carry actions
of Û(gk)c are exhibited. Then the cohomologies H0(X (n+1),O(a)) (a ∈ N0) of positively twisted
structure sheaves are studied in light of Theorem 2.5.2.4.

Chapter 3 consists of four sections: In Section 3.1 the construction of rigid cohomology (of a
quasi-projective k-variety) is reviewed together with some concepts from p-adic geometry which are
needed in the sequel. Sections 3.2 and 3.3, where the computations of the rigid cohomologies in the
two ways mentioned are done, then each have the following structure: Orlik’s complex is adapted for
certain classes of tubes of rigid varieties (Subsections 3.2.1 and 3.3.1), a spectral sequence is set up
(Subsections 3.2.2 and 3.3.2), computed (Subsections 3.2.3 and 3.3.3) and the result is used to finally
compute the rigid cohomology modules of X (n+1) (Subsections 3.2.4 and 3.3.4).
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Chapter 1

Preliminaries

In this first brief chapter, the general notation used throughout this work shall be fixed. Furthermore,
there are some short reminders concerning the following topics: the representation theories of the
groups involved in this thesis, the definition of the main object studied (Drinfeld’s upper half space
over a finite field), on flasque resolutions arising from the use of Godement sheaves, and on the theory
of (local) cohomology of sheaves on a general topological space.

1.1 General Notation

The symbols Z,Q,R, have their usual meaning; N denotes the set of natural numbers (with 0 excluded),
N0 = N∪{0}. Furthermore, for a prime p, the field of p-adic numbers is denoted by Qp. The cardinality
of a set X will be denoted by #X.

Let k = Fq, the field with q elements, for q = pe a prime power and fix an algebraic closure k of k.
Furthermore, fix a finite extension field K/Qp with residue field k and denote by V its valuation ring,
by m its unique maximal ideal and let π ∈ V be a uniformizing element, i.e. m = (π). Choose a norm
| | : K → R≥0, normalized such that |π| = q−1.

For n ∈ N, let G be the algebraic group GLn+1,V over V with lower Borel subgroup B (i.e. for
a V-algebra R, the group B(R) is the subgroup of lower triangular matrices in G(R)) and diagonal
torus T ⊂ B. Write

X(T) = Hom(T,Gm)

for the Z-module of algebraic characters of T. For i ∈ {0, . . . , n}, denote by εi ∈ X(T) the character
which sends an element (t0, . . . , tn) ∈ T(R), R a V-algebra, to ti. For 0 ≤ i 6= j ≤ n, write

αi,j = εi − εj .

Then
Φ = {αi,j | 0 ≤ i 6= j ≤ n}

is the set of roots of G (with respect to T) and

∆ = {α0 = α1,0, . . . , αn−1 = αn,n−1}

is the set of simple roots (with respect to B ⊃ T). Let

Φ = Φ+ ∪ Φ−

be the decomposition of Φ into the set of positive roots

Φ+ = {αi,j | 0 ≤ j < i ≤ n}
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and the set of negative roots
Φ− = {αi,j | 0 ≤ i < j ≤ n}

of G. The set of dominant weights of T (with respect to Φ+) is

X(T)+ = {λ ∈ X(T) | ∀α ∈ Φ+ : 〈λ, α∨〉 ≥ 0}

where α∨ denotes the coroot associated with α ∈ Φ+. With every proper subset I ( ∆ there is
associated a uniquely determined standard-parabolic subgroup PI ⊃ B with Levi subgroup LI and
unipotent radical UI . The respective Lie algebras of the aforementioned groups are denoted by Gothic
letters such as

g = Lie(G), b = Lie(B), pI = Lie(PI), uI = Lie(UI),

etc. Whenever it is more convenient, the alternative description of standard-parabolic subgroups
in terms of decompositions of n + 1 will be used: Let (i0, . . . , ir) be a decomposition of n + 1, i.e.
n+1 = i0 + . . .+ ir with i0, . . . , ir ∈ N. Then (i0, . . . , ir) corresponds to a standard-parabolic subgroup
P(i0,...,ir) = PI with

I = {α0, . . . , αi0−2} ∪ {αi0 , . . . , αi0+i1−2} ∪ . . . ∪ {αi0+...+ir−1 , . . . , αi0+...+ir−2}

(where all undefined sets are to be understood as being empty).
For a V-algebra R, write

GR = G×SpecV SpecR

and similarly for the subgroups and their respective Lie algebras mentioned above. In particular, in
the case that R = k, set

G = Gk(k), B = Bk(k), PI = PI,k(k), LI = LI,k(k), UI = UI,k(k), T = Tk(k)

for the respective finite groups of k-rational points and similarly in the case where I is replaced by its
associated decomposition of n+ 1 in the above sense.

Let
S = k[T0, . . . , Tn]

be the polynomial ring in n + 1 variables over k with its usual grading S =
⊕

i∈N0
Si (i.e. Si is the

k-vector space of homogeneous polynomials of degree i) and write

Pnk = ProjS.

For j ∈ {0, . . . , n− 1}, denote by Pjk the closed subvariety V+(Tj+1, . . . , Tn) ⊂ Pnk .
For a field L and an L-vector space M, denote by M ′ its dual space

M ′ = HomL(M,L).

If M =
⊕

i∈N0
Mi is a graded L-vector space, then write

M∨ =
⊕
i∈N0

M ′i

for its graded dual space. Note that M∨ injects into M ′ via

(fi)i∈N0 7→

∑
i∈N0

fi : (mi)i∈N0 7→
∑
i∈N0

fi(mi)


and that (M∨)∨ ∼= M if all Mi are finitely generated L-vector spaces. Suppose that N =

⊕
i∈N0

Ni

is another graded L-vector space and that f = (fi)i∈N0 : M → N is a graded homomorphism.
Dualization of each fi yields a graded homomorphism f∨ : N∨ →M∨, called the graded dual of f.
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1.2 Representations

For the next few pages, let G be an abstract group. A representation of G over a field L is a left
LG-module M, where LG denotes the group algebra of G over L. Usually, in this thesis, the field L
will be clear from the context and will be dropped from the terminology, i.e. a representation of G
will sometimes be just called a G-module. Furthermore, the effect of a group element g ∈ G on an
element m ∈M will be denoted by g.m.

The category of LG-modules will be denoted by repL(G). The full subcategory of LG-modules
which as L-vector spaces are finite dimensional will be denoted by repL(G)f .

In the particular case that G is an algebraic group, the notion of a representation of G will be used
in the sense of Jantzen’s book [32].

1.2.1 Induced Representations

Let H ⊂ G be a subgroup of finite index and let M be an LH-module. The following three descriptions
of the induced LG-module IndGH(M) will be used interchangeably, cf. e.g. [34, § 2.3]:

IndGH(M) = LG⊗LH M

∼=
⊕

g∈G/H

g ∗M

∼= {f : G→M | ∀g ∈ G, h ∈ H : f(gh) = h−1.f(g)}.

Here, g∗M is just a formal symbol for a copy of M indexed by the coset g and G acts on
⊕

g∈G/H g∗M
by g.(h∗m) = (gh)∗m. Furthermore, G acts on a function f : G→M as above by left translation, i.e.
(g.f)(x) = f(g−1x). In this context, both versions of Frobenius reciprocity hold, i.e. for a G-module
N and an H-module M, there are bijections of sets

HomLG(N, IndGH(M))
∼−→ HomLH(N,M)

resp.
HomLG(IndGH(M), N)

∼−→ HomLH(M,N),

cf. [34, 2.3.8,(2.26)], and IndGH is an exact functor from the category of LH-modules to the category
of LG-modules, cf. [53, 10.2]

1.2.2 Composition Series and Semisimplifications

Suppose that a G-module M has a well-ordered ascending composition series of the following type:
There is a finite ascending chain

(0) = M0 (M1 (M2 ( . . . (Mn = M,

n ∈ N0, of G-submodules such that for i = 1, . . . , n, each submodule Mi possesses itself an ascending
chain

Mi−1 = Mi,0 ⊂Mi,1 ⊂Mi,2 ⊂ . . . ⊂Mi

of G-submodules, possibly of countably infinite length, with

Mi =
⋃
l∈N0

Mi,l

13



and such that each subquotient Mi,l+1/Mi,l is a simple G-module. Then the semisimple G-module

MG−ss. :=
n⊕
i=1

⊕
l∈N0

Mi,l+1/Mi,l

is called the G-semisimplification of M. Here (0)G−ss. is defined to be (0). By a theorem of Birkhoff
(cf. [3, Th. 1], which generalizes the classical theorem of Jordan-Hölder), MG−ss. is well-defined as a
G-module up to isomorphism. The following properties hold:

Lemma 1.2.2.1. Let H ⊂ G be a subgroup of finite index, let M be a G-module and N an H-module.

i) If N has a well-ordered ascending composition series of the above type with simple subquotients of
finite L-dimension, then so does IndGH(N). Furthermore, there is an isomorphism of G-modules

IndGH(NH−ss.)G−ss. ∼= IndGH(N)G−ss..

ii) Suppose that M ′ is a G-submodule of M. If M has a well-ordered ascending composition series of
the above type, then so do M ′ and M/M ′.

iii) Let

(0)→M ′
ι−→M

θ−→M ′′ → (0)

be a short exact sequence of G-modules such that M ′ and M ′′ each have a well-ordered ascending
composition series with simple subquotients. Then M also has such a series and there is an exact
sequence

(0)→M ′G−ss.
ι−→MG−ss. θ−→M ′′G−ss. → (0)

of semisimple G-modules.

Proof. i) Let
(0) = N0 ( N1 ( N2 ( . . . ( Nn = N

with Ni =
⋃
l∈N0

Ni,l for i = 1, . . . , n be a well-ordered ascending composition series of N in the
above sense such that each Ni+1,l/Ni,l is of finite L-dimension (and H-simple). Application of
the induction functor to each Ni,l yields G-modules

N ′i,l = IndGH(Ni,l)

and a chain

(0) = N ′0 ( N ′1 = IndGH(N1) ( N ′2 = IndGH(N2) ( . . . ( N ′n = IndGH(Nn) = IndGH(N)

of G-submodules of N ′ = IndGH(N). By construction, each N ′i has itself an ascending chain of
G-submodules

N ′i−1 = N ′i,0 ⊂ N ′i,1 ⊂ N ′i,2 ⊂ . . . ,

possibly countably infinite, with

N ′i =
⋃
l∈N0

N ′i,l.

From exactness of induction it follows that

N ′i,l+1/N
′
i,l
∼= IndGH(Ni,l+1/Ni,l)
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for all i and l. Since the latter module is L-finite dimensional by the assumptions on the Ni,l and
on the finiteness of the index of H in G, it now follows that each inclusion N ′i,l ⊂ N ′i,l+1 can be
refined into a finite series

N ′i,l = (N ′i,l+1)0 ( (N ′i,l+1)1 ( . . . ( (N ′i,l+1)mi,l+1
= N ′i,l+1

with simple subquotients (N ′i,l+1)r+1/(N
′
i,l+1)r. By combining all series so obtained, one now

checks that IndGH(N)G−ss. exists. Furthermore, from the facts that induction and G-semisimpli-
fication commute with direct sums, it follows that

(
IndGH(NH−ss.)

)G−ss.
=

IndGH

 n⊕
i=1

⊕
l∈N0

Ni,l+1/Ni,l

G−ss.

=

(
n⊕
i=1

⊕
l∈N

IndGH(Ni,l+1/Ni,l)

)G−ss.
∼=

n⊕
i=1

⊕
l∈N

(
N ′i,l+1/N

′
i,l

)G−ss.
∼=

n⊕
i=1

⊕
l∈N

mi,l+1−1⊕
r=0

(N ′i,l+1)r+1/(N
′
i,l+1)r,

and the latter module equals IndGH(N)G−ss. by construction.

ii) Write M ′′ = M/M ′. Given chains for M as in the beginning of this subsection, one obtains chains
for M ′ resp. M ′′ by putting

M ′i,l = Mi,l ∩M
resp.

M ′′i,l = (Mi,l +M ′)/M ′.

The claim follows since M ′i,l+1/M
′
i,l canonically injects into Mi,l+1/Mi,l on the one hand and

M ′′i,l+1/M
′′
i,l
∼= (Mi,l+1 + M ′)/(Mi,l + M ′) is canonically isomorphic to an epimorphic image of

Mi,l+1/Mi,l on the other. Therefore, each of these modules is either simple or the zero module
and one now obtains M ′G−ss. and M ′′G−ss. in the manner described above.

iii) Given families of submodules {M ′i,l | i = 1, . . . , n; l ∈ N0} resp. {M ′′j,m | j = 1, . . . , r;m ∈ N0} for
M ′ resp. M ′′ (and some n, r ∈ N) which give rise to the respective G-semisimplifications of M ′

resp. M ′′, define a family of submodules {Mi,l | i = 1, . . . , n+ r, l ∈ N0} by

Mi,l =

{
ι(M ′i,l) , for i = 1, . . . , n; l ∈ N0

θ−1(M ′′i−n,l) , for i = n+ 1, . . . , n+ r; l ∈ N0

.

In this way, one obtains a finite chain

(0) = M0 = M1,0 ( M1 = M2,0 ( . . . (Mr = Mn+1,0 = ι(M ′)

( . . . (Mn+r−1 = Mn+r,0 (Mn+r := M

of G-submodules of M such that for each i = 1, . . . , n+ r, there is a chain

Mi−1 = Mi,0 ⊂Mi,1 ⊂Mi,2 ⊂ . . . ⊂Mi

of G-submodules with simple subquotients as in the beginning of this subsection. It follows at once
that MG−ss. exists as claimed and that it is by construction isomorphic to M ′G−ss. ⊕M ′′G−ss..
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1.2.3 (Generalized) Steinberg Representations

Return to the convention that G = G(k) and suppose that H = PI is the group of k-points of a
standard-parabolic subgroup PI ⊂ G. Equip L with the trivial action of G. For each intermediate
group H ⊂ H ′ ⊂ G, there are G-equivariant embeddings IndGH′(L) → IndGH(L) and the generalized
Steinberg representation of G with respect to L and H is defined as

vGH(L) = IndGH(L)/
∑

H(H′⊂G
IndGH′(L).

If H = B, then vGH(L) is called Steinberg representation and denoted by StGH(L). This representation
is irreducible and self-dual, cf. [28]. The generalized Steinberg representation is irreducible if and only
if I is either empty or of the shape I = {α0, α1, . . . , αi}, i ∈ {0, . . . , n− 1}, cf. [46, Prop. 2.5].

In particular, given a decomposition n+ 1 = r + s, set

Sts(L) = St
GLs(k)
GLs(k)∩B(L)

resp.

Str(L) = St
GLr(k)
GLr(k)∩B(L),

where GLr and GLs are considered as factors of L(r,s).

1.2.4 The Simple (Algebraic) Representations of GLn+1,k and GLn+1(k), and Weyl
Modules

Following [32, II.2] (and originally due to Steinberg), one can give a parametrization of the irreducible
(algebraic) representations of Gk over k by X(Tk)+. For λ ∈ X(Tk), denote by kλ the one-dimensional
Tk-module over k on which Tk acts via λ and set

H0(λ) = indGk
Bk
kλ.

Here, indGk
Bk

is the induction functor from the category of algebraic Bk-modules to the category of

algebraic Gk-modules, cf. [32, Ch. 3]. Then H0(λ) 6= (0) if and only if λ ∈ X(Tk)+ and in this case,
H0(λ) has a unique irreducible Gk-submodule L(λ) (of highest weight λ and of finite k-dimension).
Furthermore, every irreducible Gk-module over k is isomorphic to an L(λ) for some λ ∈ X(T)+. From
this description, one can derive a parametrization of the irreducible G-modules over k : Write

Xe(Tk) = {λ ∈ X(Tk)+ | ∀α ∈ Φ+ : 0 ≤ 〈λ, α∨〉 < pe}.

This is the set of pe-restricted dominant weights of Tk. Let

X0(Tk) = {λ ∈ X(Tk) | ∀α ∈ Φ : 〈λ, α∨〉 = 0}.

Then X0(Tk) is a subset of Xe(Tk) and a system S of representatives for Xe(Tk)/ ∼, where

λ ∼ µ⇐⇒ λ− µ ∈ (pe − 1)X0(Tk),

gives a system of representatives {L(λ) | λ ∈ S} for the set of isomorphism classes of irreducible
G-modules over k. This last statement (and a proof) can be found for example in [25, 3.10] where it
is attributed to Jantzen.
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Recall the following identifications of the graded pieces Symr((kn+1)′) of the symmetric algebra
of (kn+1)′ in terms of Weyl modules. For compatibility with the action of Gk on Pnk specified in the
next section, consider the action of Gk on An+1

k given on closed points by

(g, x) 7→ g.x = xg−1.

In [32, 2.16] it is shown that for every r ∈ N0, there is an isomorphism of Gk-modules

Symr((kn+1)′) ∼= H0(r · ε0).

Denote by w0 the longest element in the Weyl group of Gk. Then, for any character λ ∈ X(Tk), its
associated Weyl module V (λ) is defined as

V (λ) = H0(−w0λ)′.

In particular, for every dominant λ ∈ X(Tk)+, the associated simple Gk-module L(λ) is the unique
simple quotient of V (λ). Furthermore, in the language of Weyl modules, the above symmetric powers
can be identified as

Symr((kn+1)′) ∼= V (−r · εn)′.

1.3 Drinfeld’s Upper Half Space over a Finite Field

The n-dimensional Drinfeld upper half space over k is the affine open subvariety

X (n+1) = Pnk \
⋃
f∈S1

V+(f)

of Pnk which arises by removing all k-rational hyperplanes from Pnk . Denote by Y(n+1) its closed com-
plement in Pnk , i.e.

Y(n+1) =
⋃
f∈S1

V+(f),

which is thus a projective subvariety of Pnk .
Consider the action of Gk on Pnk which on closed points is given by

(g, [x0 : . . . : xn]) 7→ [x0 : . . . : xn]g−1.

This action restricts to an action of the finite group G on X (n+1) resp. on Y(n+1), since G permutes
the hyperplanes V+(f) (with f ∈ S1).

1.4 Sheaves and Cohomology

The usual notation for sheaves and their (local) cohomology is adopted, cf. e.g. [23, Ch. 3] and [18]
resp. [22]. Let X be a topological space, F a sheaf of abelian groups on X and U ⊂ X open. Then
Γ(U,F) = F(U) denotes the sections of F over U and the i-th right derived functor of Γ(X,−) is
written Hi(X,−). Furthermore, if Z = X \U is the (closed) complement of U in X, then Hi

Z(X,F) is
the i-th local cohomology module with values in F and support in Z, i.e. Hi

Z(X,−) is the i-th right
derived functor of the functor ΓZ(X,−) where ΓZ(X,F) are the sections in F(X) with support in Z.
The following facts will be used:
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• There is a long exact sequence

. . .→ Hi−1(U,F)→ Hi
Z(X,F)

δi−→ Hi(X,F)→ Hi(U,F)→ Hi+1
Z (X,F)→ . . .

of cohomology groups. For i ∈ Z set

H̃
i
Z(X,F) = ker(δi).

• Denote by Z the constant sheaf on Z with value Z. Then there is an isomorphism

H∗Z(X,F) ∼= Ext∗(i∗Z,F),

where i : Z ↪→ X is the inclusion, cf. [18, I.2.3].

Denote by G(F) the Godement sheaf associated with F , i.e. for U ⊂ X open, the sections of G(F)
over U are given by

Γ(U,G(F)) =
∏
x∈U
Fx,

where, as usual, Fx denotes the stalk of F in x. This is a flasque sheaf and it comes with a natural
monomorphism

0→ F d0

−→ G(F).

Let
G0(F) = G(F)

and inductively define
Gi(F) = G(coker(di−1)),

where di : Gi−1(F)→ Gi(F) is the canonical map. In this way, one obtains a flasque resolution

0→ F → G•(F)

which is functorial in F (cf. e.g. [52, 6.72-73]). In particular, Hi(X,F) is isomorphic to the i-th
cohomology hi(Γ(X,G•(F))) of the complex Γ (X,G• (F)) =

(
Γ
(
X,Gi (F)

))
i∈N0

. Furthermore, given
a finite complex

F• = F0 → . . .→ Fr

of sheaves of abelian groups on X, its hypercohomology can be computed as

H∗ (X,F•) = hi (Γ (X,G (F•))) ,

cf. [10, Appendix], where Γ (X,G (F•)) is the complex

Γ
(
X,G

(
F0
))
→ Γ

(
X,G

(
F1
))
→ . . .→ Γ (X,G (Fr)) .
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Chapter 2

Cohomology of Equivariant Vector Bundles on
Drinfeld’s Upper Half Space over a Finite Field

Recall the convention that Gk acts on Pnk via

σ :
Gk × Pnk → Pnk

(g, x) 7→ g.x = xg−1

for closed points g ∈ Gk and x ∈ Pnk .
Let F be a Gk-equivariant algebraic vector bundle on Pnk . This means that F is a finite locally

free (and hence coherent, cf. [15, 5.4]) OPnk -module of constant rank together with isomorphisms

Φg : g∗F ∼−→ F

for all g ∈ Gk, considered as morphisms g : Pnk → Pnk , such that the diagram

h∗(g∗F) = (gh)∗F
Φgh - F

h∗F

Φ h

-
h ∗

Φ
g

-

commutes for all g, h ∈ Gk, cf. [40, Ch. 1,§ 3]. Let U ⊂ Pnk be Zariski-open such that U is stabilized
by an algebraic subgroup H of Gk. Restrict σ to H×U. Then the above condition gives an algebraic
action of H on Γ(U,F), as each h ∈ H induces a morphism

Γ(U,F)→ Γ(U, h∗h
∗F) = Γ(h−1.U, h∗F) = Γ(U, h∗F)

Γ(U,Φh)−−−−−→ Γ(U,F)

and the commutativity of the above diagram ensures that one obtains indeed a group representation.
Via functoriality, each cohomology module Hi(U,F), i ∈ Z, is then an algebraic H-module.
The structure sheaf OPnk (and each of its twists OPnk (i), i ∈ Z) is always considered as a Gk-equivariant
vector bundle with respect to its natural linearization induced by σ.

The goal of this chapter is to describe the cohomology H∗(X (n+1),F) of F on Drinfeld’s upper half
space X (n+1) over k as a representation of the finite group G. As X (n+1) is affine, this task reduces to
describing H0(X (n+1),F).

2.1 Orlik’s Complex for the Cohomology of Equivariant Vector Bun-
dles

In a first step towards determining H0(X (n+1),F), one can use Orlik’s complex and its associated
spectral sequence to essentially reduce this problem to determining the local cohomology of Pnk with
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support in certain closed subvarieties. For the sake of completeness, the construction shall be recalled
here. The content of this section is an adaption of methods of Orlik, cf. for example [42] or [44].

2.1.1 Construction of the Complex

For a proper subset I ( ∆ with i = i(I) = min{j ∈ N0 | αj ∈ ∆ \ I} let

YI = P i(I)
k ⊂ Pnk .

Each inclusion I ⊂ J ( ∆ then induces closed embeddings

ιI,J : YI ↪→ YJ

and for any two I, J ( ∆ the identity YI∩J = YI ∩ YJ holds. The variety YI is stabilized by the
parabolic subgroup PI,k under the action of Gk on Pnk . By construction, there is then an identification

Y(n+1) =
⋃
I(∆

⋃
g∈G/PI

g.YI .

For I ( ∆ and g ∈ G/PI write
Φg,I : g.YI ↪→ Y(n+1)

for the closed embedding given by inclusion. If furthermore J ( ∆ and h ∈ G/PJ with I ⊂ J and
such that gPI is mapped to hPJ under the canonical map G/PI → G/PJ , then write

ιg,hI,J : g.YI ↪→ h.YJ

for the closed embedding given by inclusion.

Let Z = ZY(n+1) be the constant sheaf on Y(n+1) with value Z. The triangle of closed embeddings
of algebraic varieties

Y(n+1)

g.YI ⊂
ιg,hI,J-

⊂

Φ g
,I

-

h.YJ

Φh,J

∪

6

gives rises to a morphism

pg,hI,J : (Φh,J)∗(Φh,J)−1Z→ (Φg,I)∗(Φg,I)
−1Z

of sheaves on Y(n+1) via the adjunction property of the involved functors. Define

Zg,I = (Φg,I)∗(Φg,I)
−1Z,

ZI =
⊕

g∈G/PI

Zg,I ,

and set

pI,J =
⊕

(g,h)∈G/PI×G/PJ

pg,hI,J ,

dI,J =

{
(−1)ipI,J , if J = I∪̇{αi}
0 , else,

20



where pg,hI,J = 0 if gPI does not map to hPJ . The maps dI,J now induce differentials so that the following
complex is defined:

0→ Z→
⊕
I⊂∆

#I=n−1

ZI →
⊕
I⊂∆

#I=n−2

ZI → · · · →
⊕
I⊂∆
#I=1

ZI → Z∅ → 0. (2.1)

This is Orlik’s complex and it has the following fundamental property:

Theorem 2.1.1.1. (cf. [42, Satz 5.3], [44, 2.1.1]) The complex (2.1) is acyclic.

A variant of the proof will be given in a slightly different setting in the third chapter of this thesis
(see Prop. 3.2.1.1) and therefore, in order to keep repetition at a minimum, it is omitted here.

2.1.2 An Equivariant Filtration on the Cohomology of Drinfeld’s Upper Half
Space

Denote by
ι : Y(n+1) ↪→ Pnk

the closed embedding given by inclusion and choose an injective resolution 0 → F → I• of F . Write
the complex (2.1) as

0→ Z→ Z• → 0

with Z in degree −1. The double complex Hom(ι∗(Z•), I•) then induces a (first quadrant) spectral
sequence

Er,s1 = Exts(ι∗(Zr),F) =⇒ Extr+s(ι∗Z,F),

cf. [20, 4.6]. The relationship between Ext-modules and local cohomology recalled in Section 1.4 as
well as the definition of Z• imply that this spectral sequence can be rewritten as

Er,s1 =
⊕
I⊂∆

#I=n−1−r

IndGPIH
s
YI

(Pnk ,F) =⇒ Hr+s
Y(n+1)(Pnk ,F).

Evaluation of this spectral sequence in the same manner as in [44, 2.2] and avoidance of the use of
duals yields the following theorem1:

Theorem 2.1.2.1. (cf. [44, 2.2.9] and [45, Lemma 4])

i) On H0(X (n+1),F) there is a filtration by G-submodules

H0(X (n+1),F) = F(X (n+1))0 ⊃ F(X (n+1))1 ⊃ . . . ⊃ F(X (n+1))n = H0(Pnk ,F)

such that the successive quotients F(X (n+1))j/F(X (n+1))j+1 with j ∈ {0, . . . , n − 1} appear as
extensions in short exact sequences of G-representations

(0) → IndGP(j+1,n−j)
(H̃

n−j
Pjk

(Pnk ,F)⊗k Stn−j(k))→ F(X (n+1))j/F(X (n+1))j+1

→ vGP
(j+1,1n−j)

(k)′ ⊗k Hn−j(Pnk ,F)→ (0).

ii) The filtration in i) behaves functorially, i.e. any morphism E → F of Gk-equivariant vector
bundles induces G-equivariant morphisms

E(X (n+1))j → F(X (n+1))j

for j = 0, . . . , n.

1Again, in a similar case, some of the arguments will be presented in Section 3.2.1.
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(Recall the definition of Stn−j(k) resp. of H̃
n−j
Pjk

(Pnk ,F) from Section 1.2 resp. 1.4.)

If one considers the cohomology H∗(Pnk ,F) of F on Pnk as known, then the above theorem implies

that in order to describe H0(X (n+1),F) as a G-module, it is sufficient to describe each H̃
n−j
Pjk

(Pnk ,F)

as a P(j+1,n−j),k-module. This will be the objective of the rest of this chapter.

2.2 Local Cohomology I: First Descriptions

Fix j ∈ {0, . . . , n− 1}. First of all,

Hi
Pjk

(Pnk ,F) =

{
(0) , if i < n− j,
Hi(Pnk ,F) , if i > n− j,

(2.2)

see the reasoning in [44, 1.2] which is independent of the ground field and only uses the fact that Pjk
is smooth in Pnk . This implies that H̃

i
Pjk

(Pnk ,F) = (0) for each i 6= n − j and therefore, the remaining
case to be studied is i = n− j.

A fact that will be used in the following is that the P(j+1,n−j),k-module Hn−j
Pjk

(Pnk ,F) fits into the

P(j+1,n−j),k-equivariant exact sequence

(0)→ Hn−j−1(Pnk ,F)→ Hn−j−1(Pnk \ P
j
k,F)→ Hn−j

Pjk
(Pnk ,F)→ Hn−j(Pnk ,F)→ (0).

This follows from (2.2) and the fact that Hi(Pnk \ P
j
k,F) = (0) for all i ≥ n − j, which is verified by

considering the Čech complex with respect to the covering

Pnk \ P
j
k =

n⋃
i=j+1

D+(Ti)

by affine open subvarieties.

In the next two subsections, two attempts to describe the reduced local cohomology H̃
n−j
Pjk

(Pnk ,F)

appearing in Theorem 2.1.2.1 as quotients of known L(j+1,n−j),k-modules will be presented. The first
one is for bundles arising from certain L(1,n),k-representations and is due to Orlik [44, 1.4]. The second

attempt is for general bundles and uses the canonical projection Pnk \ P
j
k → Pn−j−1

k .
Once and for all, identify the character groups of the standard diagonal tori of the factors GLj+1,k

and GLn−j,k appearing in L(j+1,n−j),k as subgroups of X(T) in the obvious way.

2.2.1 Bundles arising from Representations of a Levi Subgroup

In the case where the bundle F arises from an irreducible representation of the Levi subgroup

L(j+1,n−1),k, the reduced cohomology H̃
n−j
Pjk

(Pnk ,F) can be written as a quotient of well-known rep-

resentations in the following way:

Fix a dominant integral weight

λ′ = (λ1 ≥ λ2 ≥ . . . ≥ λn) ∈ Zn

of GLn,k and denote by L(λ′) the irreducible GLn,k-module associated with λ′. Fix λ0 ∈ Z, set

λ = (λ0, λ1, . . . , λn) ∈ Zn+1
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and then denote by Lλ the L(1,n),k-module detλ0 �L(λ′), i.e. Lλ equals L(λ′) as a k-vector space, the

factor GL1,k of L(1,n),k = GL1,k ×GLn,k acts by detλ0 and the factor GLn,k acts as it does on L(λ′).
Via inflation, Lλ is then considered as a P(1,n),k-module. Set Fλ = FLλ . This is the vector bundle on
Pnk associated with Lλ, cf. [32, 5.8]. For example F(a,0,...,0) = OPnk (a) for a ∈ Z. Let W be the Weyl
group of G. For i = 0, . . . , n − 1, denote by si the simple reflection in W associated with the simple
root αi ∈ ∆ and let

wi+1 = si · si−1 · . . . · s0,

w0 = 1.

Let ρ = 1
2

∑
α∈Φ− α and consider the dot action

• :
W ×X(T)⊗Z Q → X(T)⊗Z Q

(w, µ) 7→ w • µ = w(µ+ ρ)− ρ.

Denote by i0 either the unique integer i ∈ {0, . . . , n} such that wi0 • λ is dominant, if it exists, or else
the unique integer in {0, . . . , n− 1} such that wi0 • λ = wi0+1 • λ and set

µi,λ =

{
wi−1 • λ , if i ≤ i0,
wi • λ , if i > i0.

This is a dominant weight for the Levi subgroup L(i,n−i+1),k and the corresponding irreducible module
over L(i,n−i+1),k is denoted by Li,λ. Consider Li,λ as a P(i,n−i+1),k-module via inflation. Let

zi =

(
0 Ii

In+1−i 0

)
∈ Gk,

where Ii ∈ GLi,k denotes the identity element. Using the Grothendieck-Cousin complex associated
with the covering of Pnk by Schubert cells and translating to Weyl modules, one shows the following
result in direct analogy with [44, 1.4.2]. The notable difference is that one has to replace the Lie
algebras used in loc. cit. by the respective distribution algebras.

Proposition 2.2.1.1. For j ∈ {0, . . . , n − 1}, the L(j+1,n−j),k-module H̃
n−j
Pjk

(Pnk ,Fλ) is a quotient of

the L(j+1,n−j),k-module (⊕
l∈N0

Syml((kj+1)′) �k Syml((kn−j)′)′
)
⊗k Lz−1

n−jµn−j,λ

∼=
(⊕
l∈N0

V (−l · εj)′ �k V (−l · εn)

)
⊗k Lz−1

n−jµn−j,λ
.

Remarks.

i) In the p-adic setting in [44, 1.4], where k is replaced by a finite extension field K/Qp, Orlik uses

this result to further make explicit the structure of H̃
n−j
PjK

(PnK ,Fλ). This works by making extensive

use of the universal enveloping algebra associated with gK = Lie(GK). In the present case, the

action of the universal enveloping algebra (and of the distribution algebra) on H̃
n−j
Pjk

(Pnk ,Fλ) is not

as well-behaved as in the case of characteristic 0, as will be seen in the next section. Therefore,
no further adaption of the results of op. cit. has been made.
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ii) Nevertheless, in the particular case of Proposition 2.2.1.1, since the construction is – up to re-
placing K by k – the same as in [44, 1.4.2], the kernel of the map(⊕

l∈N0

V (−l · εj)′ �k V (−l · εn)

)
⊗k Lz−1

n−jµn−j,λ
� H̃

n−j
Pjk

(Pnk ,Fλ)

obtained from this Proposition has the same description as the one obtained from loc. cit., after
replacing the field K with k.

2.2.2 Using the Canonical Projection onto a Projective Subvariety

Denote by f : Pnk \ P
j
k → V+(T0, . . . , Tj) ∼= Pn−j−1

k the projection which on closed points is given by

[x0 : . . . : xn] 7→ [xj+1 : . . . : xn].

Consider f as a L(j+1,n−j),k-equivariant morphism with respect to the following actions of this group:

On Pnk \ P
j
k, the group L(j+1,n−j),k acts via restriction of the Gk-action on Pnk . On V+(T0, . . . , Tj), the

factor GLn−j,k of L(j+1,n−j),k acts via restriction from the same action and the factor GLj+1,k acts
trivially.

In this subsection, it is shown how this morphism can be used to describe the L(j+1,n−j),k-module

Hn−j−1(Pnk \ P
j
k,F) as a quotient of direct sums of certain Weyl modules on the one hand and to give

explicit descriptions of H̃
n−j
Pjk

(Pnk ,F) as an L(j+1,n−j),k-module for F = OPnk (a), with a ∈ Z and for

F = Ωi
Pnk/k

, with i = 1, . . . , n, on the other. A similar map is considered by Schneider and Stuhler [54]

in the analog p-adic situation. For general F , the following holds:

Lemma 2.2.2.1. For every i ∈ Z, there is a natural isomorphism of L(j+1,n−j),k-modules

Hi(f∗) : Hi(Pnk \ P
j
k,F) = Hi(Pnk \ P

j
k,F|Pnk\Pjk)

∼−→ Hi
(
Pn−j−1
k , f∗

(
F|Pnk\Pjk

))
,

Proof. The existence of the Hi(f∗) as isomorphisms of k-vector spaces follows from [17, Cor. 1.3.3] since
f is an affine morphism (cf. [23, p. 128] for a definition). The sheaf F|Pnk\Pjk inherits an L(j+1,n−j),k-

linearization via restriction of the Gk-linearization Φ of F , cf. the beginning of this chapter. This

linearization then induces a L(j+1,n−j),k-linearization on the sheaf f∗

(
F|Pnk\Pjk

)
: For g ∈ L(j+1,n−j),k,

define Φ′g := f∗Φg : f∗g
∗
(
F|Pnk\Pjk

)
→ f∗

(
F|Pnk\Pjk

)
. From the fact that f∗ and g∗ commute and from

the functoriality of f∗, it follows that this is indeed a linearization. Furthermore, the isomorphisms
Hi(f∗) are then L(j+1,n−j),k-equivariant by functoriality.

Recall from the introduction of this chapter that F is in particular a coherent OPnk -module. From

the fact that Pnk \ P
j
k is noetherian, it follows that the direct image M = f∗

(
F|Pnk\Pjk

)
is a quasi-

coherent OPn−j−1
k

-module, cf. [23, II.5.8]. Thus there is now a graded k[Tj+1, . . . , Tn]-module M such

thatM = M∼ is the OPn−j−1
k

-module associated with M on Pn−j−1
k , cf. [23, II.5.13]. In the case where

F = OPnk (a), a ∈ Z, is a twist of the structure sheaf, one can explicitly determine the structure of M.

Lemma 2.2.2.2. Let a ∈ Z and let

Ma =
⊕

m0,...,mj∈N0

k[Tj+1, . . . , Tn]

(
−

j∑
i=0

mi + a

)
· Tm0

0 · . . . · Tmjj ,
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considered as a graded k[Tj+1, . . . , Tn]-module for the induced grading of the direct sum and where all
Tmii , i = 0, . . . , j, have by definition degree 0. Then the associated OPn−j−1

k
-module is

M∼a =
⊕

m0,...,mj∈N0

OPn−j−1
k

(
−

j∑
i=0

mi + a

)
· Tm0

0 · . . . · Tmjj

and there is an isomorphism of OPn−j−1
k

-modules

f∗

(
OPnk (a)|Pnk\P

j
k

)
∼= M∼a .

Proof. It is enough to consider the case a = 0 since the general case will then follow by shifting the
grading accordingly. Therefore, let

M = M0 =
⊕

m0,...,mj∈N0

k[Tj+1, . . . , Tn]

(
−

j∑
i=0

mi

)
· Tm0

0 · . . . · Tmjj

(as a graded k[Tj+1, . . . , Tn]-module) and consider the standard affine covering

Pnk \ P
j
k = D+(Tj+1) ∪ . . . ∪D+(Tn).

For each i ∈ {j + 1, . . . , n}, denote by D
+,Pn−j−1

k
(Ti) the affine subvariety of Pn−j−1

k which is defined

by the non-vanishing of the coordinate function Ti. Then the restriction of f to D+(Ti) induces a
morphism

fi : D+(Ti)→ D
+,Pn−j−1

k
(Ti)

of affine k-varieties. Homogeneous localization of M with respect to Ti yields

M(Ti) =
⊕

(m0,...,mj)∈Nj+1
0

k [Tj+1, . . . , Tn](Ti) ·
(
T0

Ti

)m0

· . . . ·
(
Tj
Ti

)mj
which is equal to S(Ti) as a module over k[Tj+1, . . . , Tn](Ti). In other words, fi induces the identity
map between the k[Tj+1, . . . , Tn](Ti)-modules Γ(D

+,Pn−j−1
k

(Ti),M
∼) and Γ(D

+,Pn−j−1
k

(Ti), S
∼
(Ti)

) where

S(Ti) is again considered as a module over k[Tj+1, . . . , Tn](Ti). From [13, 7.24] it follows that the

k[Tj+1, . . . , Tn]∼(Ti)-module S∼(Ti) is isomorphic to fi∗(S
∼
(Ti)

) = fi∗

((
OPnk |Pnk\P

j
k

)
|D+(Ti)

)
, where in the

last expression S(Ti) is now considered as a module over itself. Comparing sections, one checks that
the identity

fi∗

((
OPnk |Pnk\P

j
k

)
|D+(Ti)

)
=
(
f∗OPnk |Pnk\P

j
k

)
|D

+,Pn−j−1
k

(Ti)

holds. Therefore, there is an isomorphism of (OPn−j−1
k

)|D
+,Pn−j−1

k

(Ti)-modules

(
f∗OPnk |Pnk\P

j
k

)
|D

+,Pn−j−1
k

(Ti)

∼−→M∼|D
+,Pn−j−1

k

(Ti)
.

The lemma is proved if these isomorphisms are compatible with gluing of the D
+,Pn−j−1

k
(Ti). To check

this, consider i, l ∈ {j + 1, . . . , n} with i 6= l. Then the gluing isomorphism

M∼|D
+,Pn−j−1

k

(Ti)

(
D

+,Pn−j−1
k

(Ti) ∩D+,Pn−j−1
k

(Tl)
)
∼−→M∼|D

+,Pn−j−1
k

(Tl)

(
D

+,Pn−j−1
k

(Tl) ∩D+,Pn−j−1
k

(Ti)
)
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is induced by Tl
Ti
7→ Ti

Tl
resp. Tm

Ti
7→ Tm

Tl
/TiTl . But the same maps induce the gluing isomorphisms(

OPnk\P
j
k

)
|D+(Ti)

(D+(Ti) ∩D+(Tl))
∼−→
(
OPnk\P

j
k

)
|D+(Tl)

(D+(Tl) ∩D+(Ti))

and thus the proof of the lemma is finished.

Endow Ma with the following L(j+1,n−j),k-action: The factors GLn−j,k resp. GLj+1,k act on
k[Tj+1, . . . , Tn] (and its twists) resp. the variables Tj+1, . . . , Tn in accordance with the convention
of the action of Gk on S. With these preparations, one can now explicitly give the structure of the
L(j+1,n−j),k-module Hn−j−1(Pnk \P

j
k,OPnk (a)) with a ∈ Z. During the proof of the following proposition,

identifications of the cohomologies of OPnk (a) as Gk-modules are needed. They are given by

Hi(Pnk ,OPnk (a)) =


Syma((kn+1)′) , if a ≥ 0, i = 0,

det−1 ⊗k Sym−n−1−a((kn+1)′)′ , if a ≤ −n− 1, i = n,

(0) , else,

(2.3)

cf. [23, III.5.1]. Recall the action of Gk on An+1
k specified in Subsection 1.2.4.

Proposition 2.2.2.3. Let a ∈ Z. Then there is an isomorphism of L(j+1,n−j),k-modules

Hn−j−1(Pnk \ P
j
k,OPnk (a)) ∼=

⊕
m∈N0

m−a≥n−j

V (−m · εj)′ �k det−1 ⊗k V ((−m+ a+ n− j) · εn).

Proof. With the notation and identifications from above, one computes

Hn−j−1(Pnk \ P
j
k,OPnk (a)) = Hn−j−1(Pn−j−1

k ,M∼a )

=
⊕

m0,...,mj∈N0

Hn−j−1

(
Pn−j−1
k ,OPn−j−1

k

(
−

j∑
i=0

mi + a

))
· Tm0

0 · . . . · Tmjj

=
⊕

m0,...,mj∈N0∑j
i=0

mi−a≥n−j

(
det−1 ⊗k Sym

∑j
i=0mi−a−n+j((kn−j)′)′

)
· Tm0

0 · . . . · Tmjj

=
⊕
m∈N0

Symm((kj+1)′) �k det−1 ⊗k Symm−a−n+j((kn−j)′)′.

Now use the identification of symmetric powers in terms of Weyl modules, cf. Subsection 1.2.4.

For general F , one can now derive the following result on the structure of Hn−j−1(Pnk \P
j
k,F) resp.

H̃
n−j
Pjk

(Pnk ,F).

Corollary 2.2.2.4. There exist integers a1, . . . , ar ∈ Z, depending on F , where r is the rank of F ,
such that the L(j+1,n−j),k-module Hn−j−1(Pnk \ P

j
k,F) – and thus H̃

n−j
Pjk

(Pnk ,F) – is a quotient of

r⊕
l=1

⊕
m∈N0

m−al≥n−j

V (−m · εj)′ �k det−1 ⊗k V ((−m+ al + n− j) · εn).

Proof. There exist integers al ∈ Z such that F can be written as a quotient of
⊕r

l=1OPnk (al), cf. [23,
Cor. II.5.18]. In other words, there exists an OPnk -module J and an exact sequence of OPnk -modules

0→ J →
r⊕
l=1

OPnk (al)→ F → 0.

26



Since f is affine (and thus quasi-compact) and the variety Pnk \ P
j
k is separated by definition, the

sequence

0→ f∗J|Pnk\Pjk → f∗

r⊕
l=1

OPnk (al)|Pnk\P
j
k

→ f∗F|Pnk\Pjk → 0

is exact as well (cf. [16, Cor. 5.2.2]). This sequence then induces the usual long exact cohomology
sequence for the functor H∗(Pn−j−1

k ,−). From the fact that Hn−j(Pn−j−1
k , f∗J|Pnk\Pjk) = 0 (for dimen-

sional reasons, cf. [23, II.2.7]), it follows then that the module Hn−j−1(Pn−j−1
k , f∗F|Pnk\Pjk) is a quotient

of

Hn−j−1(Pn−j−1
k , f∗

r⊕
l=1

OPnk (al)|Pnk\P
j
k
) =

r⊕
l=1

Hn−j−1(Pn−j−1
k , f∗OPnk (al)|Pnk\P

j
k
)

which was identified in terms of Weyl modules in the previous proposition.

As an application, one can now give a complete description of H̃
n−j
Pjk

(Pnk ,F) in terms of Weyl

modules for Serre twist sheaves F = OPnk (a), a ∈ Z, and for sheaves of differential i-forms F =

Ωi
Pnk/k

, i = 1, . . . , n. Recall that the cohomologies of the sheaves Ωi
Pnk/k

of differential i-forms are given

by

Hs(Pnk ,Ωi
Pnk/k

) =

{
k , if 0 ≤ s = i ≤ n,
(0) , else,

(2.4)

with Gk acting trivially, cf. e.g. [19, 1.1].

Corollary 2.2.2.5.

i) Let a ∈ Z and write F = OPnk (a). Then, as an L(j+1,n−j),k-module, there is an identification of

H̃
n−j
Pjk

(Pnk ,F) with either

⊕
m∈N0

m−a−n+j≥0

V (−m · εj)′ �k det−1 ⊗k V ((−m+ a+ n− j) · εn)

/ a⊕
l=0

V (−l · εj)′ �k V ((−a+ l) · εn)′

(if a ≥ 0, j = n− 1) or⊕
m∈N0

m−a−n+j≥0

V (−m · εj)′ �k det−1 ⊗k V ((−m+ a+ n− j) · εn)

(in all other cases).

ii) Let F = Ω1
Pnk/k

. There is an identification of H̃
n−j
Pjk

(Pnk ,F) with an L(j+1,n−j),k-submodule of

n+1⊕
r=1

⊕
m∈N0

m+1+j−n≥0

V (−m · εj)′ �k det−1 ⊗k V ((−m− 1− j + n) · εn)

such that the associated quotient is isomorphic to⊕
m∈N0

m+j−n≥0

V (−m · εj)′ �k det−1 ⊗k V ((−m− j + n) · εn).
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iii) More generally, for each i = 1, . . . , n there is an identification of H̃
n−j
Pjk

(Pnk ,Ωi
Pnk/k

) with an

L(j+1,n−j),k-submodule of

(n+1
i )⊕

r=1

⊕
m∈N0

m+i−n+j≥0

V (−m · εj)′ �k det−1 ⊗k V ((−m− i+ n− j) · εn)

such that the associated quotient is isomorphic to Hn−j−1(Pnk/P
j
k,Ω

i−1
Pnk/k

), and the structure of the

latter module is computable inductively.

Proof. Recall from the beginning of this section that there is an exact sequence

(0)→ Hn−j−1(Pnk ,F)→ Hn−j−1(Pnk \ P
j
k,F)→ Hn−j

Pjk
(Pnk ,F)→ Hn−j(Pnk ,F)→ (0). (2.5)

i) Consider first the case that a ≥ 0. For j = n − 1 the sequence (2.5) together with (2.3) gives a
short exact sequence

(0)→ H0(Pnk ,F) = Syma((kn+1)′)→ H0(Pnk \ Pn−1
k ,F)→ H1

Pn−1
k

(Pnk ,F)→ (0)

and for j < n− 1 it gives an isomorphism

Hn−j−1(Pnk \ P
j
k,F)

∼−→ Hn−j
Pjk

(Pnk ,F).

There are thus isomorphisms

H̃
1
Pn−1
k

(Pnk ,F) ∼= H0(Pnk \ Pn−1
k ,F)/Syma((kn+1)′)

and
H̃
n−j
Pjk

(Pnk ,F) ∼= Hn−j−1(Pnk \ P
j
k,F)

for j < n− 1.

Now consider the case that a < 0. For j = 0 the sequence (2.5) together with (2.3) gives a short
exact sequence

(0)→ Hn−1(Pnk \ P0
k,F)→ Hn

P0
k
(Pnk ,F)→ Hn(Pnk ,F)→ (0)

and for j > 0 it gives an isomorphism

Hn−j−1(Pnk \ P
j
k,F)

∼−→ Hn−j
Pjk

(Pnk ,F).

Both times, there is thus an isomorphism

H̃
n−j
Pjk

(Pnk ,F) ∼= Hn−j−1(Pnk \ P
j
k,F).

Invoking Proposition 2.2.2.3 one then obtains an identification of H̃
n−j
Pjk

(Pnk ,OPnk (a)) with either

⊕
m∈N0

m−a−n+j≥0

V (−m · εj)′ �k det−1 ⊗k V ((−m+ a+ n− j) · εn)

/
Syma((kn+1)′)
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(if a ≥ 0, j = n− 1) or⊕
m∈N0

m−a−n+j≥0

V (−m · εj)′ �k det−1 ⊗k V ((−m+ a+ n− j) · εn)

(in all other cases). The claim follows from observing that, as an L(j+1,n−j),k-module and for
a ∈ N0, the module Syma((kn+1)′) is isomorphic to

a⊕
l=0

Syml((kj+1)′) �k Syma−l((kn−j)′) ∼=
a⊕
l=0

V (−l · εj)′ �k V (−(a− l) · εn)′.

ii) Write F = Ω1
Pnk/k

. For j = n − 1 the sequence (2.5) combined with (2.4) gives a short exact
sequence

(0)→ H0(Pnk \ Pn−1
k ,F)→ H1

Pn−1
k

(Pnk ,F)→ H1(Pnk ,F) = k → (0),

for j = n− 2 it gives a short exact sequence

(0)→ H1(Pnk ,F) = k → H1(Pnk \ Pn−2
k ,F)→ H2

Pn−2
k

(Pnk ,F)→ (0),

and for j < n− 2 it gives an isomorphism

Hn−j−1(Pnk \ P
j
k,F)

∼−→ Hn−j
Pjk

(Pnk ,F).

Therefore, if j = n− 1 or j < n− 2, there is an isomorphism

H̃
n−j
Pjk

(Pnk ,F) ∼= Hn−j−1(Pnk \ P
j
k,F), (2.6)

and if j = n− 2, there is an isomorphism

H̃
n−j
Pjk

(Pnk ,F) ∼= Hn−j−1(Pnk \ P
j
k,F)/k. (2.7)

The module F fits into an exact sequence

0→ F → OPnk (−1)n+1 → OPnk → 0,

cf. [23, II.8.13]. This sequence in turn induces a long exact sequence

. . . → Hi−1(Pnk \ P
j
k,OPnk )→ Hi(Pnk \ P

j
k,F)→ Hi(Pnk \ P

j
k,OPnk (−1)n+1)

→ Hi(Pnk \ P
j
k,OPnk )→ . . . ,

which abbreviates to

(0) = Hn−j−2(Pnk ,OPnk ) = Hn−j−2(Pnk \ P
j
k,OPnk )

→ Hn−j−1(Pnk \ P
j
k,F)→ Hn−j−1(Pnk \ P

j
k,OPnk (−1)n+1)→ Hn−j−1(Pnk \ P

j
k,OPnk )

→ Hn−j(Pnk \ P
j
k,F) = (0)

in case j 6= n− 2 (cf. (2.2) and (2.3)) resp. to

(0) = H0(Pnk ,OPnk (−1)n+1) = H0(Pnk \ Pn−2
k ,OPnk (−1)n+1)

→ k = H0(Pnk ,OPnk ) = H0(Pnk \ Pn−2
k ,OPnk )

→ H1(Pnk \ Pn−2
k ,F)→ H1(Pnk \ Pn−2

k ,OPnk (−1)n+1)→ H1(Pnk \ Pn−2
k ,OPnk )

→ H2(Pnk \ Pn−2
k ,F) = (0)
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in case j = n−2 (once more using (2.2) and (2.3)). Again reading off from the previous proposition

and applying (2.6) resp. (2.7), one can thus realize H̃
n−j
Pjk

(Pnk ,F) as a submodule of

n⊕
r=0

⊕
m∈N0

m+1−n+j≥0

V (−m · εj)′ �k det−1 ⊗k V (−(m+ 1− n+ j) · εn)

such that the associated quotient has the asserted structure.

iii) This is just an iteration of ii), using the exact sequence

0→ Ωi
Pnk/k

→ OPnk (−i)(
n+1
i ) → Ωi−1

Pnk/k
→ 0,

which arises by evaluating the filtration on
∧iOPnk (−1)n+1 = OPnk (−i)(

n+1
i ) which is obtained

from [23, Ex. II.5.16]. Alternatively, cf. [19, 1.6(7)].

2.3 Local Cohomology II: Failure of “Classical” Lie Algebraic Meth-
ods

As was already noted in the last section, in Orlik’s paper [44] there is made extensive use of Lie
algebraic methods to determine the structure of the algebraic local cohomology modules in the p-adic
setting. The objective of this section is to show that those methods are not as powerful in the case
of a finite field. First of all, a different description of Hn−j−1(Pnk \ P

j
k,F) as a k-space shall be given,

namely in terms of generalized fractions.

2.3.1 Generalized Fractions

As F is locally free of finite rank, it is coherent. Thus there is a graded S-module F =
⊕

l∈N0
Fl of

finite type, for example

F =
⊕
l∈N0

H0(Pnk ,F(l)),

such that F∼ = F . Furthermore, F is an algebraic Gk-module such that Gk acts homogeneously and
compatibly with its action on S, i.e. for any k-algebra R, the formula

g.(sf) = (g.s)(g.f)

holds for all g ∈ Gk(R), s ∈ S ⊗k R, f ∈ F ⊗k R.
Then, for j ≤ n− 2 there is an identification

Hn−j−1(Pnk \ P
j
k,F) = lim−→

l∈N
(F/(T lj+1, . . . , T

l
n)F )l(n−j)

and for j = n− 1 there is an exact sequence

(0)→ H0(Pnk ,F)→ H0(Pnk \ P
j
k,F)→ lim−→

l∈N
(F/T lnF )l → (0),

cf. [17, 2.1.5.1-2]. Here, the degree of a coset f + (T lj+1, . . . , T
l
n)F is defined as the degree of f and the

transition maps are induced by

ιl,m : F/(T lj+1, . . . , T
l
n)F → F/(Tmj+1, . . . , T

m
n )F

f + (T lj+1, . . . , T
l
n)F 7→ Tm−lj+1 · . . . · T

m−l
n · f + (Tmj+1, . . . , T

m
n )F
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for m ≥ l. It is then convenient to use the natural identification of lim−→
l∈N

(F/(T lj+1, . . . , T
l
n)F )l(n−j) as a

quotient of (FTj+1·...·Tn)0 via

ρ : (FTj+1·...·Tn)0 → lim−→
l∈N

(F/(T lj+1, . . . , T
l
n)F )l(n−j)

f

T lj+1 · . . . · T ln
7→ f + (T lj+1, . . . , T

l
n)F,

cf. op. cit., § 2. Under this map, the transition maps ιl,m are induced by the maps

f

T lj+1 · . . . · T ln
7→

Tm−lj+1 · . . . · Tm−ln · f
Tmj+1 · . . . · Tmn

on (FTj+1·...·Tn)0. From now on, write

(FTj+1·...·Tn)ρ0 = (FTj+1·...·Tn)0/ ker(ρ)

and for an element f
T lj+1·...·T ln

∈ (FTj+1·...·Tn)0 denote its image in this quotient under the canonical map

by

[
f

T lj+1·...·T ln

]
. The above formulas imply that, up to a k-finite-dimensional part, it suffices to describe

(FTj+1·...·Tn)ρ0 as a representation of P(j+1,n−j),k in order to describe H̃
n−j
Pjk

(Pnk ,F) as a representation

of this group. Therefore, for the rest of this chapter, the focus will lie on (FTj+1·...·Tn)ρ0.

2.3.2 The Action of the Universal Enveloping Algebra

The action of Gk on F induces an action of the Lie algebra gk = Lie(Gk) = g⊗V k, where g = Lie(G),
– and thus also an action of its universal enveloping algebra – on F which shall now be explained.

Denote by G
(1)
k the first infinitesimal neighborhood of the identity element, considered as a group over

the algebra k[ε] = k[T ]/(T 2) of dual numbers, i.e.

G
(1)
k = Spec k[Gk]/I

2

where I ⊂ k[Gk] is the ideal defining the identity element 1 ∈ Gk. Then the action of Gk on F can

be restricted to an action of G
(1)
k . This action can be differentiated to an action of gk as follows: For

a Zariski-open subset U ⊂ Pnk , let f ∈ Γ(U,F) be a section and let η ∈ gk. Consider η as an element

of G
(1)
k via η 7→ 1 + εη. Then η acts on f via

η.f =
d

dε ε=0
((1 + εη).f),

where d
dε means algebraic differentiation of the morphism

G
(1)
k → GL(Γ(U,F))

whose matrix entries are rational functions. The usual Leibniz rule then applies in this context, i.e.
for s ∈ Γ(U,OPnk ), f ∈ Γ(U,F) and η ∈ gk the formula

η.(sf) = s(η.f) + (η.s)f (2.8)

holds. This action extends to an action of the universal enveloping algebra U(gk) of gk by the universal
property of this algebra. Furthermore, if U is stabilized by a closed subgroup H ⊂ Gk, then both
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H and gk act on Γ(U,F) compatibly with respect to the adjoint action of H on gk, i.e. for f ∈
Γ(U,F), g ∈ H, η ∈ gk the formula

g.(η.f) = (g.η).(g.f) (2.9)

holds since

g.(η.f) = g.(η.((g−1g).f)) = g.

(
d

dε ε=0
((1 + εη).((g−1g).f))

)
=

d

dε ε=0
((g(1 + εη)g−1).(g.f))

=
d

dε ε=0
((1 + εgηg−1).(g.f)) = (gηg−1).(g.f) = (g.η).(g.f).

In this way, Γ(U,F) becomes a representation of the semi-direct product H n gk and of the semi-
direct product H n U(gk) since the adjoint action of H on gk extends to one on U(gk). All actions
mentioned also extend by functoriality to the higher cohomologies Hi(U,F) , i ∈ Z, and also to the
local cohomologies Hi

Z(Pnk ,F) for Z = Pnk \ U, i ∈ Z. Furthermore, the long exact sequence from local
cohomology is equivariant with respect to those actions.

Once and for all fix an ordering of Φ and for each αu,v ∈ Φ denote the standard generator of the
weight space gαu,v ,k ⊂ gk by L(u,v) = Lαu,v . Denote the (ordered) standard basis of tk by (L0, . . . , Ln).
The k-algebra U(gk) is then generated by

{Li | i = 0, . . . , n} ∪ {L(u,v) | 0 ≤ u 6= v ≤ n}.

In the case of the structure sheaf F = OPnk the action of gk and thus of U(gk) on Γ(X (n+1),F) can be
written down very explicitly: For

µ =
n∑
i=0

miεi ∈ X∗(T)

with
∑

imi = 0 define Ξµ ∈ Γ(X (n+1),OPnk ) by

Ξµ(T0, . . . , Tn) = Tm0
0 · . . . · Tmnn .

Then direct calculation gives

L
lu,v
(u,v).Ξµ =

mv!

(mv − lu,v)!
Ξµ+lu,vαu,v

Lli.Ξµ = ml
iΞµ,

for lu,v, l ∈ N0 and u, v, i, µ as above.

Failure of using the Universal Enveloping Algebra

In the case of U = Pnk \ P
j
k and general F the action of gk on Hn−j−1(Pnk \ P

j
k,F) can be described by

using the Čech complex associated with the covering

Pnk \ P
j
k =

n⋃
l=j+1

D+(Tl)

which computes H∗(Pnk \ P
j
k,F). The i-th component of this complex is⊕
j+1≤l1<l2<...<li+1≤n

Γ(D+(Tl1 · . . . · Tli+1
),F).
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It is acted upon by gk similarly as the functions Ξµ above and the transition maps of this complex are

equivariant with respect to this gk-action. Let u ∈ {0, . . . , j}, v ∈ {j + 1, . . . , n} and let f
Tmj+1·...·Tmn

∈

(FTj+1·...·Tn)0 be a representative of an element of Hn−j−1(Pnk \ P
j
k,F). Then

L(u,v).
f

Tmj+1 · . . . · Tmn
=

L(u,v).f

Tmj+1 · . . . · Tmn
−mTu · Tj+1 · . . . · T̂v · . . . · Tn · f

Tm+1
j+1 · . . . · T

m+1
n

. (2.10)

In similar fashion, basis elements L(u,v) with the roles of u and v reversed decrease the degree in the
second summand. A toral basis element Ll with l ∈ {0, . . . , n} acts as

Ll.
f

Tmj+1 · . . . · Tmn
=


Ll.f

Tmj+1·...·Tmn
, if l ∈ {0, . . . , j}

Ll.f
Tmj+1·...·Tmn

−m f
Tmj+1·...·Tmn

, if l ∈ {j + 1, . . . , n}.
(2.11)

The algebra U(gk) then acts accordingly by iteration of the above formulas. To simplify later calcula-
tions, note that there is no harm done in thinking of the element f

Tmj+1·...·Tmn
as a “completely reduced

fraction”, i.e.

L(u,v).
T il f

Tmj+1 · . . . · Tmn
= L(u,v).

f

Tmj+1 · . . . Tml−1 · T
m−i
l · Tml+1 · . . . · Tmn

for l ∈ {j + 1, . . . , n}, 0 ≤ i < m, and f ∈ F.
In the analog p-adic situation where k is replaced by a finite extension K of Qp and thus the

Drinfeld half space over K is considered, Orlik constructs in [44, Lemma 1.2.1] a K-finite dimensional
representation of the parabolic group P(j+1,n−j),K over K which generates the local cohomology mod-

ule H̃
n−j
PjK

(PnK ,F) over the universal enveloping algebra U(gln+1,K). Trying to copy this verbatim to

the situation here does not work, since it follows from the formulas (2.10) and (2.11) that U(gk).M is
of finite k-dimension whenever M ⊂ H̃

n
Pjk

(Pnk ,F) is: Without loss of generality, it can be assumed that
M is contained in {

f

Tmj+1 · . . . · Tmn
| f ∈ Fm(n−j)

}
for some m ∈ N. Suppose that l ∈ N is the smallest integer which is larger than m and divisible by p.

Then it follows that U(gk).M ⊂
{

f
T lj+1·...·T ln

| f ∈ Fl(n−j)
}
.

2.3.3 The Action of the Distribution Algebra

Now consider the the distribution algebra Dist(Gk) of Gk (cf. [32, I.7,II.1]). For l ∈ N, denote by

G
(l)
k the l-th infinitesimal neighborhood of 1 ∈ Gk. By construction, Dist(Gk) is equal to the union⋃
l∈N Dist(G

(l)
k ). For each l ∈ N, the action of G

(l)
k on F induces an action of Dist(G

(l)
k ) on F . Therefore,

Dist(Gk) acts on F as well. Furthermore, compatibility with group actions in the sense of (2.9) and
with S-action in the sense of (2.8) hold.

Failure of using the Distribution Algebra

The distribution algebra Dist(Gk) of Gk can be realized as a divided power algebra over k in the
following way: Consider U(g ⊗V K), the universal enveloping algebra of g ⊗V K and consider the
V-subalgebra U̇(g) generated by all divided powers

L
(lu,v)
(u,v) =

1

lu,v!
L
lu,v
(u,v),
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where 0 ≤ u 6= v ≤ n, lu,v ∈ N0, and by all expressions of the form(
Li
l

)
=
Li · (Li − 1) · . . . · (Li − l + 1)

l!
,

where 0 ≤ i ≤ n, l ∈ N0. Then there is an isomorphism

Dist(Gk) ∼= U̇(g)⊗V k,

cf. [32, II.1.12]. In this way, one can then read off the action of Dist(Gk) on (FTj+1·...·Tn)ρ0 from the
previous subsubsection by adjusting for the respective divided powers.

One might suspect that the distribution algebra manages to finitely generate H̃
n
Pjk

(Pnk ,F) in general,

but this is wrong. The problem is again the vanishing behavior mod p of the (binomial) coefficients
appearing. A counterexample will be given in the following proposition. As this involves calculating
binomial coefficients mod p, the reader is reminded of the following result, called Lucas’s Theorem,
cf. e.g. [11]:

Let a, b ∈ N with p-adic expansions a =
∑l

i=0 aip
i, b =

∑l
i=0 bip

i, i.e. 0 ≤ ai, bi < p for all
i = 0, . . . , l. Then (

a

b

)
≡

l∏
i=0

(
ai
bi

)
(mod p).

Here and in the following,
(
a
b

)
is defined to be 0 for a, b ∈ N0 with b > a.

Proposition 2.3.3.1. Let p > 2. The Dist(GL3,k)-module H̃
1
P1
k
(P2
k,OP2

k
) is not generated by a sub-

module of finite k-dimension.

Proof. In this special case, F = S and

(FTj+1·...·Tn)ρ0 = (ST2)ρ0 = k

[
T0

T2
,
T1

T2

]
/k.

Therefore, it is enough to show that the proposition holds true with k[T0
T2
, T1
T2

] instead of H̃
1
P1
k
(P2
k,OP2

k
).

Suppose that there were in fact a k-finite dimensional Dist(GL3,k)-submodule N ⊂ k[T0
T2
, T1
T2

] with

k[T0
T2
, T1
T2

] = Dist(GL3,k).N. Without loss of generalization, it can be assumed that N = k[T0
T2
, T1
T2

]≤ph+1

for some h ∈ N. The subalgebra Dist(P(2,1),k) then stabilizes N and from the PBW decomposition

Dist(GL3,k) = Dist(P(2,1),k)⊗k Dist(U+
(2,1),k)

(cf. [32, II.1]) it follows that
Dist(GL3,k).N = Dist(U+

(2,1),k).N,

i.e. it is enough to show that Dist(U+
(2,1),k).N ( k[T0

T2
, T1
T2

] to contradict the assumption on N. This will

be achieved by showing that for g = ph+1 and g′ = g+1
2 , the monomial f =

T g
′

0 ·T
g′
1

T g+1
2

is not contained

in Dist(U+
(2,1),k).N. Consider the canonical monomial basis

{
Ta0 T

b
1

Ta+b
2

| a, b ∈ N0

}
of k[T0

T2
, T1
T2

]. Then it

suffices to show by decreasing induction on a+ b that f does not appear as a summand of any of the
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elements contained in Dist(U+
(2,1),k).

Ta0 ·T b1
Ta+b

2

for 0 < a + b ≤ g with respect to this choice of basis. The

generators of Dist(U+
(2,1),k) act on a basis element

Ta0 ·T b1
Ta+b

2

by

L
(l)
(0,2).

T a0 T
b
1

T a+b
2

= (−1)l
(
a+ b+ l − 1

l

)
T a+l

0 T b1
T a+b+l

2

L
(l)
(1,2).

T a0 T
b
1

T a+b
2

= (−1)l
(
a+ b+ l − 1

l

)
T a0 T

b+l
1

T a+b+l
2

for l ∈ N0. Let
l = l0 + l1p+ l2p

2 + . . .+ lhp
h + . . .+ lrp

r

be the p-adic expansion of l (for some r ∈ N0, with coefficients li ∈ {0, . . . , p− 1}).

i) Suppose that a+ b = g. Since g − 1 has p-adic expansion

g − 1 = (p− 1) + (p− 1)p+ . . .+ (p− 1)ph,

the condition
(
g+l−1
l

)
6≡ 0 (mod p) requires l0 = . . . = lh = 0, according to Lucas’s Theorem. This

means that either l = 0 or l ≥ g and g | l. Therefore,

Dist(U+
(2,1),k).

T a0 T
b
1

T g2
⊂ k

[
T0

T2
,
T1

T2

]
g

⊕
∑
r,s∈N0
r+s=2g

T r0T
s
1

T r+s2

k

[
T0

T2
,
T1

T2

]

and so f is not contained as a summand of any element of this latter set.

ii) Suppose that 1 < a+ b < g. Let

a+ b− 1 = c0 + c1p+ c2p
2 + . . .+ chp

h

be the p-adic expansion of a+b−1 (with coefficients ci ∈ {0, . . . , p−1} and at least one ci < p−1
and at least one cj > 0). For

(
a+b+l−1

l

)
mod p to be not equal to 0, the inequality ci+li ≤ p−1 has

to hold for each i ∈ {0, . . . , h}, according to Lucas’s Theorem. But this implies that a+ b+ l− 1
has p-adic expansion

a+ b+ l − 1 = (c0 + l0) + (c1 + l1)p+ (c2 + l2)p2 + . . .+ (ch + lh)ph + lh+1p
h+1 + . . .+ lrp

r.

In turn, this latter fact means that there are two possibilities:

(1) a+ b+ l − 1 < g, if lh+1 = . . . = lr = 0. In this case one applies the induction hypothesis.

(2) a+ b+ l− 1 > g+ 1, if there is at least one i ∈ {h+ 1, . . . , r} with li 6= 0. Recall that at least
one cj is not equal to 0.

This implies that

Dist(U+
(2,1),k).

T a0 T
b
1

T g2
⊂ k

[
T0

T2
,
T1

T2

]
≤g
⊕

∑
r,s∈N0
r+s=g+2

T r0T
s
1

T r+s2

k

[
T0

T2
,
T1

T2

]

and so f is not contained as a summand of any element of this latter set.
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iii) Suppose that a + b = 1. Without loss of generalization, it can be assumed that a = 1, b = 0, i.e.
Ta0 ·T b1
Ta+b

2

= T0
T2
. Application of either L

(l)
(0,2) or L

(l)
(1,2) to this element with l ∈ N0 yields either ±T l+1

0

T l+1
2

or ±T0·T l1
T l+1

2

. According to the induction hypothesis, the element f is not a summand of any element

in (Dist(U+
(2,1),k) ·L

(l)
(1,2)).

T0
T2

+ (Dist(U+
(2,1),k) ·L

(l)
(0,2)).

T0
T2

for l ∈ {0, . . . , g− 1}. On the other hand,

since (l+ 1, 0), (1, l) 6= (g′, g′) for all choices of l ≥ g, the element f is also not a summand of any

element in (Dist(U+
(2,1),k) · L

(l)
(1,2)).

T0
T2

+ (Dist(U+
(2,1),k) · L

(l)
(0,2)).

T0
T2

for l ≥ g.

2.4 Enriched Crystalline Enveloping Algebras: Adding more Di-
vided Powers to the Distribution Algebra

Inspired by the purely algebraic construction of Dist(G) as a divided power algebra over V, one can
try to carry this process a bit further in order to solve the problem of finite generation considered in
the last section with the help of a “higher divided power algebra” instead of Dist(G) (and similar for
modules over V-algebras R, in particular for R = k).

Definition 2.4.0.2. Define the enriched crystalline enveloping algebra of g as the V-algebra Û(g)
which is the V-subalgebra of the universal enveloping algebra U(g ⊗V K) = U(g) ⊗V K generated by
all expressions of the form

n∏
u,v=0
u6=v

L
[lu,v ]
(u,v) :=

1(∑
0≤u,v≤n
u6=v

lu,v

)
!

n∏
u,v=0
u6=v

L
lu,v
(u,v)

with lu,v ∈ N0 for all 0 ≤ u 6= v ≤ n and(
Lu
l

)
:=

Lu · (Lu − 1) · . . . · (Lu − l + 1)

l!

with u ∈ {0, . . . , n}, l ∈ N0. For a V-algebra R, define the enriched crystalline enveloping algebra of
gR as the R-algebra

Û(gR) := Û(g)⊗V R.

Note that the V-algebra Û(g) is not finitely generated. Furthermore, it is not true in general that
a representation of G induces a representation of Û(g) (compatible with those of U(g) and Dist(G)),
see the examples in Subsection 2.4.1 below. Over k, one can use reduction mod π of G-representations
(cf. [32, I.10.1]) to produce Û(gk)-representations from Gk-representations:

Lemma 2.4.0.3. Let V = W ⊗V k be a Gk-representation which is induced by reduction mod π from
a G-representation W over V. Suppose that the G-action on W induces a Û(g)-action on W. Then
the Gk-action on V induces a Û(gk)-action on V.

Proof. By assumption, W has the structure of a Dist(G)-module which extends to the structure of a
Û(g)-module on W. Extension of scalars yields on V the structure of a Û(gk)-module via

V = W ⊗V k = (W ⊗
Û(g)

Û(g))⊗V k = W ⊗
Û(g)

(Û(g)⊗V k) = W ⊗
Û(g)

Û(gk).

Remark. The adjoint action of G on Dist(G) does not extend to an action of G on Û(g). This can
already be verified in the case that G = GL2.
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2.4.1 First Examples, Row Algebras and Column Algebras

The trivial representation of G induces the trivial representation of Û(g). In particular, Lemma 2.4.0.3
then applies to the trivial representation of Gk.

Example I

Let G act on An+1
V via (g, x) 7→ gx for g ∈ G(R), x ∈ An+1

V (R), R a V-algebra. The induced action of
G on S̃ = V[An+1

V ] ∼= V[T0, . . . , Tn] is then given by

(g, f) 7→ (g.f : x 7→ f(g−1x)),

hence a non-toral basis element L(u,v) (with u 6= v) of g acts on a basis element of S̃ by

L(u,v).(T
m0
0 · . . . · Tmnn ) =

d

dε ε=0

((
1 + L(u,v)ε).(T

m0
0 · . . . · Tmnn

))
= −muT

−1
u · Tv · Tm0

0 · . . . · Tmnn

and thus

Ll(u,v).(T
m0
0 · . . . · Tmnn ) = (−1)l

mu!

(mu − l)!
T−lu · T lv · T

m0
0 · . . . · Tmnn

for l ∈ N0. Then, for w ∈ {0, . . . , n} \ {u, v} and m ∈ N0, one gets

(Lm(w,v)L
l
(u,v)).(T

m0
0 · . . . ·Tmnn ) = (−1)l+m

mu!

(mu − l)!
mw!

(mw −m)!
T−mw ·T−lu ·T l+mv ·Tm0

0 · . . . ·Tmnn (2.12)

and

(Lm(v,w)L
l
(v,u)).(T

m0
0 · . . . · Tmnn ) = (−1)l+m

mv!

(mv − l)!
(mv − l)!

(mv − l −m)!
T−l−mv · T lu · Tmw · T

m0
0 · . . . · Tmnn

= (−1)l+m
mv!

(mv − l −m)!
T−l−mv · T lu · Tmw · T

m0
0 · . . . · Tmnn . (2.13)

Therefore, in this case, the full algebra Û(g) does not act on S̃ (compatibly with Dist(G)) since, for

example, the element L
[m]
(w,v)L

[l]
(u,v) does not: Let l = mu,m = mw in (2.12) to see that the expression

on the right-hand side is not in general divisible by (m+ l)!.

Example II

Now consider the action G × An+1
V → An+1

V given by (g, x) 7→ xg−1 for g ∈ G(R), x ∈ An+1
V , R a

V-algebra. This again induces actions of G and g on S̃. The latter is now given by

L(u,v).(T
m0
0 · . . . · Tmnn ) =

d

dε ε=0

(
(1 + L(u,v)ε).(T

m0
0 · . . . · Tmnn )

)
= mvTu · T−1

v · Tm0
0 · . . . · Tmnn

and thus

Ll(u,v).(T
m0
0 · . . . · Tmnn ) =

mv!

(mv − l)!
T lu · T−lv · T

m0
0 · . . . · Tmnn
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for l ∈ N0. Then, for w ∈ {0, . . . , n} \ {u, v} and m ∈ N0, one gets

(Lm(w,v)L
l
(u,v)).(T

m0
0 · . . . · Tmnn ) =

mv!

(mv − l)!
(mv − l)!

(mv − l −m)!
Tmw · T lu · T−l−mv · Tm0

0 · . . . · Tmnn

=
mv!

(mv − l −m)!
Tmw · T lu · T−l−mv · Tm0

0 · . . . · Tmnn ,

and

(Lm(v,w)L
l
(v,u)).(T

m0
0 · . . . · Tmnn ) =

mu!

(mu − l)!
mw!

(mw −m)!
Tm+l
v · T−lu · T−mw · Tm0

0 · . . . · Tmnn .

By similar reasoning as before, the full algebra Û(g) again does not act on S̃ (compatibly with Dist(G)).

Remark. In particular, Lemma 2.4.0.3 is not applicable to the Gk-representations on S ∼= k[Ank ]
induced by reduction mod π of the above examples.

The study of those examples leads to the following definition.

Definition 2.4.1.1. Define V-subalgebras Û(g)r and Û(g)c of Û(g) as follows:

i) Let Û(g)r be the V-subalgebra of Û(g) generated by the union of the sets{
n∏

u,v=0
u6=v

L
[lu,v ]
(u,v) ∈ Û(g)

∣∣∣∣ ∀u, v ∈ {0, . . . , n}, u 6= v : lu,v ∈ N0,

∃w ∈ {0, . . . , n}∀u ∈ {0, . . . , n} \ {w}, v ∈ {0, . . . , n} : lu,v = 0

}

and {(
Lv
l

)
∈ Û(g)

∣∣∣ v = 0, . . . , n; l ∈ N0

}
.

Here, the “r” in the notation Û(g)r stands for “row”. For w ∈ {0, . . . , n}, write

n∏
v=0
v 6=w

L
[lw,v ]
(w,v)

for the generator
∏n

u,v=0
u 6=v

L
[lu,v ]
(u,v) of Û(g)r for which lu,v = 0 for all u 6= w.

ii) Let Û(g)c be the V-subalgebra generated by the union of the sets{
n∏

u,v=0
u6=v

L
[lu,v ]
(u,v) ∈ Û(g)

∣∣∣∣ ∀u, v ∈ {0, . . . , n}, u 6= v : lu,v ∈ N0,

∃w ∈ {0, . . . , n}∀v ∈ {0, . . . , n} \ {w}, u ∈ {0, . . . , n} : lu,v = 0

}

and {(
Lv
l

)
∈ Û(g)

∣∣∣ v = 0, . . . , n; l ∈ N0

}
.
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Here, the “c” in the notation Û(g)c stands for “column”. For w ∈ {0, . . . , n}, write

n∏
u=0
u6=w

L
[lw,v ]
(w,v)

for the generator
∏n

u,v=0
u6=v

L
[lu,v ]
(u,v) of Û(g)c for which lu,v = 0 for all v 6= w.

iii) For a V-algebra R, define
Û(gR)r := Û(g)r ⊗V R

and
Û(gR)c := Û(g)c ⊗V R.

Lemma 2.4.1.2.

i) The V-algebra Û(g)r acts on the G-module S̃ from Example I (compatibly with Dist(G)).

ii) The V-algebra Û(g)c acts on the G-module S̃ from Example II (compatibly with Dist(G)).

Proof. It suffices to prove case ii) as i) then follows by symmetry. It has to be checked that the induced
action of U(g) and Dist(G) on S̃ extends to an action of Û(g)c on S̃. First of all, this has to be done
for generating elements of Û(g)c. For elements of type

(
Lv
l

)
this is clear as those are already contained

in Dist(G.) Therefore, let v ∈ {0, . . . , n} and consider
∏n

u=0
u6=v

L
lu,v
(u,v) ∈ U(g) and f = Tm0

0 · . . . ·Tmnn ∈ S̃.
Then

n∏
u=0
u6=v

L
lu,v
(u,v).f =

mv!

(mv −
∑n

u=0
u6=v

lu,v)!
T
mv−

∑n
u=0
u6=v

lu,v

v · T l0,v0 · . . . · T̂ lv,vv · . . . · T ln,vn · f. (2.14)

Since the coefficient of this element is divisible by (
∑n

u=0
u6=v

lu,v)!, it follows indeed that the element∏n
u=0
u6=v

L
[lu,v ]
(u,v) ∈ U(g)c acts on f. But this already implies that Û(gk)c acts on S̃ as claimed, since

n∏
u=0
u6=w

L
lu,w
(u,w).

 n∏
u=0
u6=v

L
lu,v
(u,v).f

 =

 n∏
u=0
u6=w

L
lu,w
(u,w) ·

n∏
u=0
u6=v

L
lu,v
(u,v)

 f

and this element then similarly has a coefficient (in V) which is divisible by (
∑n

u=0
u6=w

lu,w)! ·(
∑n

u=0
u6=v

lu,v)!.

More examples are discussed in Section 2.6.

2.4.2 Some Subalgebras and Duality

For the rest of this chapter, only certain subalgebras of Û(g) (resp. of Û(gk)) will be of use and
therefore of interest. On the one hand, this is due to the fact that the action of Gk on Pnk comes from
the action of Gk on An+1

k as described in Example II above. On the other hand, for technical reasons,
the Lie algebra g (resp. gk) has to be replaced by the Lie algebra u+

(j+1,n−j) (resp. u+
(j+1,n−j),k) which

is the Lie subalgebra of g opposite to the Lie subalgebra u(j+1,n−j) (with respect to the decomposition
n+ 1 = (j + 1) + (n− j)).
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Definition 2.4.2.1.

i) Let Û(u+
(j+1,n−j)) be the V-subalgebra of Û(g) generated by the set
∏

0≤u,v≤n
u6=v

L
[lu,v ]
(u,v) ∈ Û(g)

∣∣∣∣ ∀u, v : lu,v ∈ N0; ∀v ∈ {0, . . . , j}, u ∈ {j + 1, . . . , n} : lu,v = 0

 .

Similarly as above, write
∏

0≤u≤j
j+1≤v≤n

L
[lu,v ]
(u,v) for the generator

∏
0≤u,v≤n
u6=v

L
[lu,v ]
(u,v) of Û(u+

(j+1,n−j)) for

which lu,v = 0 for all u ∈ {j + 1, . . . , n}, v ∈ {0, . . . , j}.

ii) Let
Û(u+

(j+1,n−j))c = Û(g)c ∩ Û(u+
(j+1,n−j)),

i.e. Û(u+
(j+1,n−j))c is the V-subalgebra of Û(u+

(j+1,n−j)) generated by{ ∏
0≤u≤j
j+1≤v≤n

L
[lu,v ]
(u,v) ∈ Û(u+

(j+1,n−j))

∣∣∣∣ ∀u, v : lu,v ∈ N0;∃v ∈ {j + 1, . . . , n}∀w ∈ {j + 1, . . . , n} \ {v}

∀u ∈ {j + 1, . . . , n} : lu,w = 0

}
.

Similarly as above, for v ∈ {j + 1, . . . , n}, write
∏

0≤u≤j L
[lu,v ]
(u,v) for the generator of Û(u+

(j+1,n−j))c
for which lu,w = 0 for all u ∈ {0, . . . , j} and all w ∈ {j + 1, . . . , n} \ {v}.

iii) For a V-algebra R, define the R-algebras

Û(u+
(j+1,n−j),R) = Û(u+

(j+1,n−j))⊗V R

and
Û(u+

(j+1,n−j),R)c = Û(u+
(j+1,n−j))c ⊗V R.

Remark. All of the algebras defined above are commutative since U+
(j+1,n−j) is a commutative group.

Furthermore, as a V-module, Û(u+
(j+1,n−j)) is free with basis

∏
0≤u≤j
j+1≤v≤n

L
[lu,v ]
(u,v)

∣∣∣∣∣ lu,v ∈ N0

 .

Endow Û(u+
(j+1,n−j)) with the following grading: For m ∈ N0, the V-submodule of Û(u+

(j+1,n−j))
of elements of degree m is precisely the V-module generated by the set

∏
0≤u≤j
j+1≤v≤n

L
[lu,v ]
(u,v) ∈ Û(u+

(j+1,n−j))

∣∣∣∣∣ ∑
u,v

lu,v = m

 .

The universal enveloping algebra U(u+
(j+1,n−j)) has a similar grading as a V-module. Consider the

adjoint action of G on U(g). This action restricts to an action of L(j+1,n−j) on U(g). Furthermore,

this action of L(j+1,n−j) on U(g) stabilizes the universal enveloping algebra U(u+
(j+1,n−j)) and the

resulting action is homogeneous with respect to the natural grading of the V-module U(u+
(j+1,n−j)) as

discussed above.
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Lemma 2.4.2.2.

i) The adjoint action of the group L(j+1,n−j) on U(u+
(j+1,n−j)) extends to an action of L(j+1,n−j) on

Û(u+
(j+1,n−j)).

ii) The V-linear map U(u+
(j+1,n−j))→ Û(u+

(j+1,n−j)) induced by∏
0≤u≤j
j+1≤v≤n

L
lu,v
(u,v) 7→

∏
0≤u≤j
j+1≤v≤n

L
[lu,v ]
(u,v)

is an isomorphism of L(j+1,n−j)-modules.

Proof.

i) The follows from the fact that L(j+1,n−j) acts homogeneously on U(u+
(j+1,n−j)).

ii) The above map is an isomorphism of V-modules by construction and the fact that the action of
L(j+1,n−j),k is preserved follows at once from the fact that it is homogeneous on both sides, see
i).

Consider again the V-algebra k.

Lemma 2.4.2.3. There is an action of L(j+1,n−j),k on Û(u+
(j+1,n−j),k) such that, as an L(j+1,n−j),k-

module, Û(u+
(j+1,n−j),k) is isomorphic to U(u+

(j+1,n−j)). Furthermore, there is an isomorphism of

L(j+1,n−j),k-modules2

Û(u+
(j+1,n−j),k)

∼=
⊕
l∈N0

Syml((kj+1)′) �k Syml((kn−j)′)′. (2.15)

Proof. The first two statements of the lemma are obtained by reduction mod π of the corresponding
action resp. isomorphism of the last lemma. The isomorphism (2.15) is then obtained from the natural
isomorphism of L(j+1,n−j),k-modules

U(u+
(j+1,n−j),k)

∼=
⊕
l∈N0

Syml((kj+1)′) �k Syml((kn−j)′)′.

The L(j+1,n−j)-module Û(u+
(j+1,n−j),k) can be viewed as the graded k-dual of the L(j+1,n−j)-module

structure of the k-algebra O(U+
(j+1,n−j),k) (induced by the conjugation action of L(j+1,n−j),k on

U+
(j+1,n−j),k) of algebraic functions on U+

(j+1,n−j),k (which is isomorphic to the polynomial k-algebra

k [{Tu,v | 0 ≤ u ≤ j; j + 1 ≤ v ≤ n}]). Consider this module as a graded k-vector space for the grading
which corresponds to the degree of polynomials and recall that for a graded k-vector space M, its
graded k-dual is denoted by M∨.

Proposition 2.4.2.4.

i) There exists a non-degenerate L(j+1,n−j)-equivariant pairing

β : Û(u+
(j+1,n−j),k)×O(U+

(j+1,n−j),k)→ k

of k-vector spaces.

2Recall the convention on the action of Gk on kn+1 from the beginning of this chapter.
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ii) There is a graded isomorphism of L(j+1,n−j)-modules

Γ : Û(u+
(j+1,n−j),k)

∼−→ O(U+
(j+1,n−j),k)

∨.

Proof. i) Define β on basis elements by

β(
∏

0≤u≤j
j+1≤v≤n

L
[lu,v ]
(u,v),

∏
0≤u≤j
j+1≤v≤n

T
mu,v
u,v ) :=

{
1 ∀u ∈ {0, . . . , j}, v ∈ {j + 1, . . . , n} : lu,v = mu,v

0 else.

This pairing is well-defined and it is non-degenerate by definition. Furthermore, it is L(j+1,n−j)-
equivariant since the actions of L(j+1,n−j) on both spaces are dual to each other.

ii) The above pairing induces an L(j+1,n−j)-equivariant embedding of Û(u+
(j+1,n−j),k) into the dual

spaceO(U+
(j+1,n−j),k)

′ and the image is exactlyO(U+
(j+1,n−j),k)

∨ : A basis element
∏

0≤u≤j
j+1≤v≤n

L
[lu,v ]
(u,v)

of Û(u+
(j+1,n−j),k) is mapped to the dual basis element

(∏
0≤u≤j
j+1≤v≤n

T
mu,v
u,v

)∗
∈ O(U+

(j+1,n−j),k)
′

associated with
∏

0≤u≤j
j+1≤v≤n

T
mu,v
u,v .

Remarks.

i) The isomorphism Γ is an isomorphism of graded vector spaces with respect to the gradings on
both sides as described above.

ii) The natural action of U(u+
(j+1,n−j)) on O(U+

(j+1,n−j)) = V[U+
(j+1,n−j)] which is induced by the

action of U+
(j+1,n−j) on itself by left (or right) multiplication does not extend to an action of

Û(u+
(j+1,n−j)) on O(U+

(j+1,n−j).

The subalgebra LÛ(u+
(j+1,n−j))c and reduced duality

In general, the V-subalgebra Û(u+
(j+1,n−j))c ⊂ Û(u+

(j+1,n−j)) is not an L(j+1,n−j)-submodule: For

example, in the case n = 3, j = 1,K = Q2,V = Z2, the element g =

(
1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

)
∈ L(2,2)(V) applied to

L
[1]
(0,2)L

[1]
(1,2) yields

L
[1]
(0,2)L

[1]
(1,2) − L

[1]
(0,3)L

[1]
(1,2) − L

[1]
(0,2)L

[1]
(1,3) + L

[1]
(0,3)L

[1]
(1,3) ∈ Û(u+

(2,2)),

and while L
[1]
(0,2)L

[1]
(1,2)+L

[1]
(0,3)L

[1]
(1,3) is contained in Û(u+

(2,2))c, the summand−
(
L

[1]
(0,3)L

[1]
(1,2) + L

[1]
(0,2)L

[1]
(1,3)

)
is not. This is due to the fact that up to sign, this last expression equals 1

2(L(0,3)L(1,2)+L(0,2)L(1,3)). By

definition, Û(u+
(2,2))c as a V-module is generated by the elements 1

(a+b)!
1

(u+v)!L
a
(0,2)L

b
(1,2)L

u
(0,3)L

v
(1,3) with

a, b, u, v ∈ N0 and since 2 is not invertible in V, the claim follows and thus g.L
[1]
(0,2)L

[1]
(1,2) /∈ Û(u+

(2,2))c.

For this reason, the following L(j+1,n−j)(V)-submodule of Û(u+
(j+1,n−j)) will be employed in the

next chapter.
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Definition 2.4.2.5.

i) Let LÛ(u+
(j+1,n−j))c be the V-subalgebra of Û(u+

(j+1,n−j)) which is generated by all L(j+1,n−j)(V)-

translates of Û(u+
(j+1,n−j))c inside Û(u+

(j+1,n−j)). In particular, this is an L(j+1,n−j)(V)-submodule

of Û(u+
(j+1,n−j)).

ii) Set LÛ(u+
(j+1,n−j),k)c := LÛ(u+

(j+1,n−j))c ⊗V k. This is a k-subalgebra of Û(u+
(j+1,n−j),k) which is

in particular an L(j+1,n−j)-submodule.

Consider all three algebras in the cases n = 1 and n = 2.

Example 2.4.2.6.

i) Let n = 1. Then, necessarily, j = 0 and all three algebras Û(u+
(1,1)), Û(u+

(1,1))c and LÛ(u+
(1,1))c

coincide; they are actually isomorphic to Dist(U+
(1,1)).

ii) Let n = 2.

a) Let j = 1. In this case, Û(u+
(2,1))c = Û(u+

(2,1)) by construction and thus both algebras are equal

to LÛ(u+
(2,1))c.

b) Let j = 0. In this case, Û(u+
(1,2))c is properly contained in Û(u+

(1,2)) : If p |
(
i+l
l

)
, the element

L
[i]
(0,1)L

[l]
(0,2) ∈ Û(u+

(1,2)) is not contained in Û(u+
(1,2))c since the latter algebra is generated by

{L[a]
(0,1) | a ∈ N0} ∪ {L[b]

(0,2) | b ∈ N0} and the relation (in Û(u+
(1,2)))

L
[a]
(0,1) · L

[b]
(0,2) =

(
a+ b

a

)
L

[a]
(0,1)L

[b]
(0,2)

holds for all a, b ∈ N0. Still, in this particular case, the module Û(u+
(1,2))c is stabilized by the

L(1,2)-action: Let R be a V-algebra. Application of g =

(
a 0 0
0 α β
0 γ δ

)
∈ L(1,2)(R) to a product

L
[i]
(0,1) · L

[l]
(0,2) ∈ Û(u+

(1,2))c ⊗V R yields

(
a

αδ − βγ

)i+l
·

(
i∑

r=0

δr(−β)i−rL
[r]
0,1 · L

[i−r]
0,2

)
·

(
l∑

s=0

αl−s(−γ)sL
[s]
0,1 · L

[l−s]
0,2

)

which is contained in Û(u+
(1,2))c ⊗V R.

Restrict the pairing β from the last proposition to a pairing

βc : LÛ(u+
(j+1,n−j),k)c ×O(U+

(j+1,n−j),k)→ k

and recall from e.g. [36, XIII,§ 5] the notion of non-degeneracy on the left resp. on the right of a
pairing.

Lemma 2.4.2.7.

i) The pairing βc is L(j+1,n−j)-equivariant and non-degenerate on the left.
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ii) For an L(j+1,n−j)-module N of finite k-dimension, the pairing βc extends to an L(j+1,n−j)-
equivariant pairing

βc,N : LÛ(u+
(j+1,n−j),k)c ⊗k N ×O(U+

(j+1,n−j),k)⊗k N
′ → k

(η ⊗ x, f ⊗ λ) 7→ λ(x)βc(η, f)
,

non-degenerate on the left, which induces an L(j+1,n−j)-invariant embedding

LÛ(u+
(j+1,n−j),k)c ⊗k N ↪→ (O(U+

(j+1,n−j),k)⊗k N
′)′.

Proof. These statements follow from the previous proposition.

Let N be an L(j+1,n−j)-module of finite k-dimension and let d ⊂ LÛ(u+
(j+1,n−j),k)c ⊗k N be an

L(j+1,n−j)-submodule. In the next section, the quotient module LÛ(u+
(j+1,n−j),k)c⊗k N/d will be used

for certain choices of N and d. In order to extend the duality obtained in Proposition 2.4.2.4 to this
module, consider the following L(j+1,n−j)-modules:

Definition/Lemma 2.4.2.8. Let N and d as above.

i) Define

O(U+
(j+1,n−j),k;N

′)d :=
{
X ∈ O(U+

(j+1,n−j),k)⊗k N
′ ∣∣ βc,N (d, X) = 0

}
.

This is an L(j+1,n−j)-submodule of O(U+
(j+1,n−j),k) ⊗k N

′ and in particular, βc,N induces an
L(j+1,n−j)-equivariant pairing

γN,d : LÛ(u+
(j+1,n−j),k)c ⊗k N/d×O(U+

(j+1,n−j),k;N
′)d → k.

ii) Denote by O(U+
(j+1,n−j),k;N

′)dres the kernel on the right of γN,d, i.e.

O(U+
(j+1,n−j),k;N

′)dres :=
{
Y ∈ O(U+

(j+1,n−j),k;N
′)d
∣∣∣ γN,d (LÛ(u+

(j+1,n−j),k)c ⊗k N/d, Y
)

= 0
}

and let
O(U+

(j+1,n−j),k;N
′)dred := O(U+

(j+1,n−j),k;N
′)d/O(U+

(j+1,n−j),k;N
′)dres.

This is an L(j+1,n−j)-quotient of O(U+
(j+1,n−j),k;N

′)d and γN,d induces an L(j+1,n−j)-equivariant
pairing

γred
N,d : LÛ(u+

(j+1,n−j),k)c ⊗k N/d×O(U+
(j+1,n−j),k;N

′)dred → k.

By construction, γred
N,d is nondegenerate on the right and thus induces an injection of L(j+1,n−j)-

modules
O(U+

(j+1,n−j),k;N
′)dred ↪→ (LÛ(u+

(j+1,n−j),k)c ⊗k N/d)′. (2.16)

Proof. This follows from general properties of pairings, cf. [36, XIII, § 5].

Proposition 2.4.2.9. If in the above situation N has the additional structure of a graded k-vector
space on which the group L(j+1,n−j) acts homogeneously and if d is additionally a graded k-subspace

of LÛ(u+
(j+1,n−j),k)c⊗kN, then the embedding obtained in part ii) of the last definition/lemma induces

a graded isomorphism of L(j+1,n−j)-modules

O(U+
(j+1,n−j),k;N

′)dred
∼−→ (LÛ(u+

(j+1,n−j),k)c ⊗k N/d)∨.

(with respect to the induced gradings on the tensor products, submodules and quotients appearing).
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Proof. Reconsider the (graded) isomorphism

Γ : Û(u+
(j+1,n−j),k)

∼−→ O(U+
(j+1,n−j),k)

∨

from Proposition 2.4.2.4. Since LÛ(u+
(j+1,n−j),k)c is a graded submodule of Û(u+

(j+1,n−j),k), this iso-

morphism induces an L(j+1,n−j)-equivariant (graded) embedding

LÛ(u+
(j+1,n−j),k)c ↪→

(
O(U+

(j+1,n−j),k)
)∨

.

Since N is also graded, this embedding extends to an L(j+1,n−j)-equivariant embedding

LÛ(u+
(j+1,n−j),k)c ⊗k N ↪→

(
O(U+

(j+1,n−j),k)⊗k N
′
)∨

.

Graded dualization of this embedding (cf. Section 1.1) yields a surjection

O(U+
(j+1,n−j),k)⊗k N

′ �
(
LÛ(u+

(j+1,n−j),k)c ⊗k N
)∨

.

By construction of O(U+
(j+1,n−j),k;N

′)d and from the fact that all spaces involved are graded, it follows
that this surjection descends to a surjection

O(U+
(j+1,n−j),k;N

′)d �
(
LÛ(u+

(j+1,n−j),k)c ⊗k N/d
)∨

.

Again by construction, the kernel of this last map is precisely O(U+
(j+1,n−j),k;N

′)dres, so that reduction
modulo this kernel yields the claimed isomorphism.

2.5 Local Cohomology III: Description via Enriched Crystalline En-
veloping Algebra

The enriched crystalline enveloping algebra can now be used to give descriptions of (FTj+1·...·Tn)ρ0 and

H̃
n−j
Pjk

(Pnk ,F) as representations of the finite group L(j+1,n−j).

From Lemma 2.5.1.3 on through the rest of this chapter, it has to be assumed that, as a graded
S-module, F is generated in degrees ≤ 1. This technical restriction is essential and it should be noted
that it is not enough to assume that, via the usual procedure of thinning out3, F is associated to some
module (over some ring) generated in degrees ≤ 1.

2.5.1 Employing the Enriched Crystalline Enveloping Algebra

Write S̃ = V[T0, . . . , Tn] and suppose that there is a finitely generated graded S̃-module F̃ together
with an algebraic action of the group G such that the Gk-module F is the reduction mod π of F̃ .
Furthermore, assume that the induced action of Dist(G) on F̃ extends to an action of Û(g)c. In
particular, the Gk-action on F then induces an action of Û(gk)c on F in the sense of Lemma 2.4.0.3
(adapted to the algebra Û(gk)c). This assumption holds for example in the situation of the following
lemma.

3Let f1, . . . , fr ∈ F be homogeneous generators over S, denote by d the least common multiple of the degrees which
are nonzero (set d = 1 if all generators have degree 0) and let S(d) =

⊕
i∈N0

Sdi. Then there is an isomorphism of

schemes ProjS → ProjS(d) induced by the inclusion of S(d) into S. The same procedure applied to F yields a graded
S(d)-module F (d) =

⊕
i∈N0

Fdi which is now generated in degree ≤ 1 and by construction, F∼ ∼= (F (d))∼ as modules over

S∼ ∼= (S(d))∼. Finally, Gk acts homogeneously on S and F and therefore the above isomorphism is even an isomorphism
of Gk-equivariant vector bundles.
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Lemma 2.5.1.1. Let V be a P(1,n)-module which is finitely generated as a V-module. Write Vk =
V ⊗V k. Suppose that F = FVk is the vector bundle on Pnk associated with Vk, cf. [32, I.5.8]. Then the

Gk-action on F induces a Û(gk)c-action on F .

Proof. Since F is the quasi-coherent OPnk -module associated with the S-module

F =
⊕
l∈N0

H0(Pnk ,F(l)),

it is enough to show that the Gk-action on each H0(Pnk ,F(l)) induces a Û(gk)c-action. The claim will
then follow by functoriality.

For each l ∈ N0, denote by Vl the 1-dimensional P(1,n)-module over V on which the factor GL1 of

the Levi subgroup L(1,n)
∼= GL1 ×GLn acts by detl and on which the factor GLn acts trivially. Write

Vl,k = Vl ⊗V k. Then FVl,k = OPnk (l) and there are thus identifications

H0(Pnk ,F(l)) = H0(Pnk ,OPnk (l)⊗OPn
k
F)

= H0(Pnk ,FVl,k ⊗OPn
k
FVk)

= H0(Pnk ,FVl,k⊗kVk)

= indGk
P(1,n),k

(Vl,k ⊗k Vk),

cf. [32, I.5.12,II.4.1-3], where the last module is the algebraic induction of the P(1,n),k-module Vl,k⊗kVk
to Gk, cf. [32, I.3]. According to loc. cit., this last module is isomorphic to the Gk-module of P(1,n),k-

invariants ((Vl,k ⊗k Vk) ⊗k k[Gk])
P(1,n),k on which Gk acts via its action on k[Gk]. Furthermore,

((Vl,k ⊗k Vk) ⊗k k[Gk])
P(1,n),k is isomorphic to ((Vl ⊗V V ) ⊗V V[G])P(1,n) ⊗V k, i.e. the Gk-module

indGk
P(1,n),k

(Vl,k ⊗k Vk) is isomorphic to the reduction mod π of the G-module indG
P(1,n)

(Vl ⊗V V ). In

Lemma 2.6.1.1 ii) it is shown that the U(g)-module structure on V[G] induced by the natural G-
module structure (with respect to the action G×G→ G, (g, h) 7→ hg−1) extends to a Û(g)c-module
structure on V[G]. Thus the G-module structure on Vl ⊗V V ⊗V V[G] also induces a Û(g)c-module
structure. Since this Û(g)c-action only differs by scalars from the U(g)-action, the submodule of
P(1,n)-invariants is stabilized by Û(g)c. This proves the lemma.

Summarizing, the following assumption is supposed to hold for the rest of this chapter for technical
reasons.

Assumption 2.5.1.2. From now on, it is assumed that F =
⊕

l∈N0
H0(Pnk ,FVk) with Vk as in the

previous lemma. As was shown in the proof of this lemma, F is then the reduction mod π of an
G-module F̃ as described in the beginning of this subsection. Finally, it is assumed that F is generated
in degrees ≤ 1 as an S-module.

Proposition 2.5.1.3. There is a P(j+1,n−j),k-submodule Nj ⊂ H̃
n−j
Pjk

(Pnk ,F) of finite k-dimension and

an epimorphism of L(j+1,n−j)-modules

ϕj : LÛ(u+
(j+1,n−j),k)c ⊗k Nj � H̃

n−j
Pjk

(Pnk ,F).

Proof. First of all, it is enough to show that the lemma is true with (FTj+1·...·Tn)ρ0 instead of H̃
n
Pjk

(Pnk ,F),

see Subsection 2.3.1. Denote by ρ̃ the canonical lift of ρ to (F̃Tj+1·...·Tn)0, i.e. let

ρ̃ : (F̃Tj+1·...·Tn)0 → lim−→
l∈N

(F̃ /(T lj+1, . . . , T
l
n)F̃ )l(n−j)

g

T lj+1 · . . . · T ln
7→ g + (T lj+1, . . . , T

l
n)F̃
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and write
(F̃Tj+1·...·Tn)ρ̃0 := (F̃Tj+1·...·Tn)0/ ker(ρ̃).

This is a P(j+1,n−j)-module and the Û(u+
(j+1,n−j))c-action on F̃ extends to one on this module. Write[

g
T lj+1·...·T ln

]
for the element of (F̃Tj+1·...·Tn)ρ̃0 induced by the element g

T lj+1·...·T ln
∈ (F̃Tj+1·...·Tn)0 under

the residue map. The proposition is proved if it can be shown that the following holds true:

Assertion. There is a P(j+1,n−j)-submodule Ñj ⊂ (F̃Tj+1·...·Tn)ρ̃0, finitely generated as a V-module,

such that as a Û(u+
(j+1,n−j))c-module, (F̃Tj+1·...·Tn)ρ̃0 is generated by Ñj .

If this is the case, then there is an epimorphism of L(j+1,n−j)(V)-modules

ϕ̃j : (LÛ(u+
(j+1,n−j))c ⊗V Ñj � (F̃Tj+1·...·Tn)ρ̃0.

But this implies that there is also an epimorphism of L(j+1,n−j)-modules

ϕj = ϕ̃j ⊗ idk :
(
LÛ(u+

(j+1,n−j))c ⊗V Ñj

)
⊗V k � (F̃Tj+1·...·Tn)ρ̃0 ⊗V k ∼= (FTj+1·...·Tn)ρ0.

Now let Nj = Ñj ⊗V k. It follows that

LÛ(u+
(j+1,n−j),k)c ⊗k Nj

∼=
(
LÛ(u+

(j+1,n−j))c ⊗V k
)
⊗k Nj

∼= LÛ(u+
(j+1,n−j))c ⊗V (k ⊗k Nj)

∼= LÛ(u+
(j+1,n−j))c ⊗V (Nj ⊗k k)

∼=
(
LÛ(u+

(j+1,n−j))c ⊗V Nj

)
⊗k k

∼=
(
LÛ(u+

(j+1,n−j))c ⊗V
(
Ñj ⊗V k

))
⊗k k

∼=
((

LÛ(u+
(j+1,n−j))c ⊗V Ñj

)
⊗V k

)
⊗k k

∼=
(
LÛ(u+

(j+1,n−j))c ⊗V Ñj

)
⊗V (k ⊗k k)

∼=
(
LÛ(u+

(j+1,n−j))c ⊗V Ñj

)
⊗V k

and thus the proposition is proved.

As for the assertion, set

Ñj =

{[
f

Tj+1 · . . . · Tn

] ∣∣∣ f ∈ F̃n−j} .
It is enough to show that all elements of type

[
g

Tmj+1·...·Tmn

]
∈ (F̃Tj+1·...·Tn)ρ̃0 (with g ∈ F̃m(n−j), m ∈ N)

are contained in Û(u+
(j+1,n−j))c.Ñj . For this, since F̃ is generated in degrees ≤ 1 by assumption, it can

be assumed that either

i) g = T i00 · T
i1
1 · . . . · T

ij
j · T

ij+1

j+1 · . . . · T inn · f with exponents il ∈ N0 such that 0 ≤ il < m for

l ∈ {j + 1, . . . , n} and
∑n

l=0 il = m(n− j)− 1 for some f ∈ F̃1 or

ii) g = T i00 · T
i1
1 · . . . · T

ij
j · T

ij+1

j+1 · . . . · T inn · f with exponents il ∈ N0 such that 0 ≤ il < m for

l ∈ {j + 1, . . . , n} and
∑n

l=0 il = m(n− j) for some f ∈ F̃0.
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Suppose that case i) applies, i.e. f ∈ F̃1. Write g
Tmj+1·...·Tmn

in the shape

g

Tmj+1 · . . . · Tmn
=
T i00 · T

i1
1 · . . . · T

ij
j · f

T
m−ij+1

j+1 · . . . · Tm−inn

and simultaneously decrease the exponents ir (for r = 0, . . . , j) and m − is (for s = j + 1, . . . , n) to

obtain an element
T
a0
0 ·T

a1
1 ·...·T

aj
j ·f

Tj+1·...·Tn with
∑j

r=0 ar = n − j − 1. In other words, for r ∈ {0, . . . , j} and

s ∈ {j + 1, . . . , n}, there are non-negative numbers ar,mr,s ∈ N0 such that the following conditions
are fulfilled:

•
∑j

l=0 al = n− j − 1,

• ar +
∑n

l=j+1mr,l = ir,

• 1 +
∑j

d=0md,s = m− is.

In particular,

[
T
a0
0 ·T

a1
1 ·...·T

aj
j ·f

Tj+1·...·Tn

]
is an element of Ñj . Now compute

X =

j∏
l=0

L
[ml,j+1]

(l,j+1) .

(
j∏
l=0

L
[ml,j+2]

(l,j+2) . · · · .

(
j∏
l=0

L
[ml,n]

(l,n) .

[
T a0

0 · . . . · T
aj
j · f

Tj+1 · . . . · Tn

])
· · ·

)

=
1∏n

r=j+1(
∑j

l=0ml,r)!

j∏
l=0

L
ml,j+1

(l,j+1).

(
j∏
l=0

L
ml,j+2

(l,j+2). · · · .

(
j∏
l=0

L
ml,n
(l,n) .

[
T a0

0 · . . . · T
aj
j · f

Tj+1 · . . . · Tn

])
· · ·

)
.

In a first step, using the Leibniz rule, one gets4

j∏
l=0

L
ml,j+1

(l,j+1).

(
· · ·

j∏
l=0

L
ml,n−1

(l,n−1).

(
j∏
l=0

L
ml,n
(l,n) .

[
T a0

0 · . . . · T
aj
j · f

Tj+1 · . . . · Tn

])
· · ·

)

=

j∏
l=0

L
ml,j+1

(l,j+1).

(
· · ·

j∏
l=0

L
ml,n−1

(l,n−1).

(
(−1)

∑j
l=0 ml,n(

j∑
l=0

ml,n)!

 T
a0+m0,n

0 · . . . · T aj+mj,nj · f

Tj+1 · . . . · Tn−1 · T
1+
∑j
l=0ml,n

n


+

 g′

T
∑j
l=0ml,n

j+1 · . . . · T
∑j
l=0 ml,n

n

) · · ·)

for some g′ ∈ F̃(n−j)(m−1). Simply applying the operators successively, one obtains in similar fashion

j∏
l=0

L
ml,j+1

(l,j+1). · · · .

(
j∏
l=0

L
ml,n
(l,n) .

[
T a0

0 · . . . · T
aj
j · f

Tj+1 · . . . · Tn

])

= (−1)
∑n
r=j+1

∑j
l=0ml,r

n∏
r=j+1

(

j∑
l=0

ml,r)!

[
T i00 · . . . · T

ij
j · T

ij+1

j+1 · . . . T inn · f
Tmj+1 · . . . · Tmn

]

+

[
g′

Tm−1
j+1 · . . . · T

m−1
n

]
4Recall that to simplify the calculations, the generalized fractions can be thought of as completely reduced.
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for some g′ ∈ F̃
(n−j)

∑j
l=0ml,n

. Therefore, X equals

(−1)
∑n
r=j+1

∑j
l=0 ml,r

[
T i00 · . . . · T

ij
j · T

ij+1

j+1 · . . . T inn · f
Tmj+1 · . . . · Tmn

]
+

[
g′

Tm−1
j+1 · . . . · T

m−1
n

]
∈ Û(u(j+1,n−j))c.Ñj

for some g′ ∈ F̃
(n−j)

∑j
l=0 ml,n

. This finishes the proof, since the construction for case ii) (i.e. when

f ∈ F̃0) is completely analogous.

Denote by dj the kernel of ϕj . This is a L(j+1,n−j)-submodule of H̃
n−j
Pjk

(Pnk ,F). Let P(j+1,n−j) act

on LÛ(u+
(j+1,n−j),k)c by inflation.

Theorem 2.5.1.4. Under the assumptions made in Assumption 2.5.1.2, the P(j+1,n−j)-semisimplifi-

cations (LÛ(u+
(j+1,n−j),k)c ⊗k Nj/dj)

P(j+1,n−j)−ss. and (H̃
n−j
Pjk

(Pnk ,F))P(j+1,n−j)−ss. exist and there is an

isomorphism of P(j+1,n−j)-modules

(LÛ(u+
(j+1,n−j),k)c ⊗k Nj/dj)

P(j+1,n−j)−ss. ∼−→ (H̃
n−j
Pjk

(Pnk ,F))P(j+1,n−j)−ss..

Proof. The proof proceeds in several steps:

i) The module M = (FTj+1·...·Tn)ρ0 has an ascending filtration

(0) = M0 (M1 (M2 ( . . . ,

with

Mi =

{[
f

T ij+1 · . . . · T in

] ∣∣∣∣ f ∈ F(n−j)i

}
⊂ (FTj+1·...·Tn)ρ0

such that M =
⋃
i∈N0

Mi and such that each Mi is a finitely generated L(j+1,n−j),k-module. By
Lemma 1.2.2.1, there is then an induced filtration

(0) = M ′0 (M ′1 (M ′2 ( . . .

of the same type on the quotient M ′ = H̃
n−j
Pjk

(Pnk ,F). Therefore (H̃
n−j
Pjk

(Pnk ,F))L(j+1,n−j)−ss. exists.

ii) As was previously mentioned and used in the proof of Proposition 2.4.2.4, the k-vector space
V = Û(u+

(j+1,n−j),k) possesses an N0-grading V =
⊕

i∈N0
Vi. Since the group L(j+1,n−j),k acts

homogeneously on V, each Vi is stabilized by the L(j+1,n−j),k-action. Finally, each Vi is of finite
k-dimension so that one obtains an ascending filtration

(0) (W0 = V0 (W1 = V0 ⊕ V1 ( . . . (Wl =

l⊕
i=0

Vi ( . . .

on V =
⋃∞
i=0Wi of the type considered in Subsection 1.2.2. For i ∈ N, set

W ′i = (Wi−1 ∩ LÛ(u+
(j+1,n−j),k)c)⊗k Nj .

Then
(0) =: W ′0 (W ′1 (W ′2 ( . . .

is an ascending filtration of LÛ(u+
(j+1,n−j),k)c) ⊗k Nj =

⋃
i∈NW

′
i of the type considered in Sub-

section 1.2.2. By Lemma 1.2.2.1, the quotient LÛ(u+
(j+1,n−j),k)c ⊗k Nj/dj then also has such a

filtration W ′′• . Therefore, (LÛ(u+
(j+1,n−j),k)c ⊗k Nj/dj)

L(j+1,n−j)−ss. exists.
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iii) By construction, ϕj induces an isomorphism W ′′i
∼−→ M ′i (cf. the proof of the last proposition).

Therefore, ϕj induces an isomorphism of L(j+1,n−j)-modules

(LÛ(u+
(j+1,n−j),k)c ⊗k Nj/dj)

L(j+1,n−j)−ss. ∼−→ (H̃
n−j
Pjk

(Pnk ,F))L(j+1,n−j)−ss..

iv) The simple P(j+1,n−j)-modules over k only depend on their L(j+1,n−j)-structure and therefore,
the theorem is proved.

2.5.2 Functorial Reinterpretation: U+-Algebraic Induction and Extension of Du-
ality

With the help of the description of H̃
n−j
Pjk

(Pnk ,F) found in the last subsection, one can now describe

the kernels of the extensions (2.2) appearing in Theorem 2.1.2.1 purely in terms of the representation
theory of G and its subgroups by using U+-algebraic induction and extending the duality developed
in Subsection 2.4.2.

First of all, Proposition 2.5.1.3 suggests to consider the following category C. Recall from Section
1.2 the definitions of the categories repk(H) and repk(H)f for a group H.

Definition 2.5.2.1. Let C be the full subcategory of repk(L(j+1,n−j)) defined as follows: An L(j+1,n−j)-
module M over k is an object of C if there exists an L(j+1,n−j)-submodule W ⊂M which is an object

of repk(L(j+1,n−j))
f and an epimorphism of L(j+1,n−j)-modules

LÛ(u+
(j+1,n−j),k)c ⊗k W �M.

In the next step, U+-algebraic induction will be defined.

U+-Algebraic Induction

Consider O(U+
(j+1,n−j),k) as a P(j+1,n−j),k-module via inflation with respect to the quotient epimor-

phism P(j+1,n−j),k � L(j+1,n−j),k.

Definition 2.5.2.2. Let W be an object of repk(L(j+1,n−j))
f , considered as a P(j+1,n−j)-module by

inflation.

i) Set

IndG,U
+-alg

P(j+1,n−j)
(W ) := IndGP(j+1,n−j)

(O(U+
(j+1,n−j),k)⊗k W ).

The induced functor

IndG,U
+-alg

P(j+1,n−j)
: repk(L(j+1,n−j))

f → repk(G)

is called U+-algebraic induction.

ii) Let d be an L(j+1,n−j)-submodule of LÛ(u+
(j+1,n−j),k)c ⊗k W. Set

IndG,U
+−alg

P(j+1,n−j)
(W )dred := IndGP(j+1,n−j)

(O(U+
(j+1,n−j),k;W

′)dred),

where O(U+
(j+1,n−j),k;W

′)dred is defined as in Proposition 2.4.2.9.
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Extension of Duality

The duality developed in Subsection 2.4.2 can now be extended to the following situation.

Proposition 2.5.2.3. Let M be an object of C. There exists an epimorphism of L(j+1,n−j)-modules

LÛ(u+
(j+1,n−j),k)c ⊗k W �M.

Let d be its kernel. Suppose that M and W each have the additional structure of a graded k-vector
space on which L(j+1,n−j) acts homogeneously. If the homomorphism LÛ(u(j+1,n−j),k)c ⊗W � M is
homogeneous, then there is an isomorphism of G-modules

IndGP(j+1,n−j)
(M) ∼=

(
IndG,U

+−alg
P(j+1,n−j)

(W )dred

)∨
.

Proof. By assumption, d ⊂ L(j+1,n−j),k Û(u+
(j+1,n−j),k)⊗kW is a graded k-subspace. Therefore, it follows

from Proposition 2.4.2.9 that there are isomorphisms of L(j+1,n−j)-modules

M ∼= LÛ(u+
(j+1,n−j),k)⊗k W/d ∼= (O(U+

(j+1,n−j),k;W
′)dred)∨.

Application of the induction functor IndGP(j+1,n−j)
yields an isomorphism

IndGP(j+1,n−j)
(M) ∼= IndGP(j+1,n−j)

((O(U+
(j+1,n−j),k;W

′)dred)∨).

Up to isomorphism, induction in the present setting commutes with duals and in particular with
graded duals. Thus the right-hand side of the above isomorphism is isomorphic to the graded dual

(IndGP(j+1,n−j)
(O(U+

(j+1,n−j),k;W
′)dred))∨ and the claim follows from the definition of IndG,U

+−alg
P(j+1,n−j)

(W )dred.

Theorem 2.1.2.1 can now be rewritten. Recall assumption 2.5.1.2.

Theorem 2.5.2.4. On H0(X (n+1),F) there is a G-equivariant filtration

H0(X (n+1),F) = F(X (n+1))0 ⊃ F(X (n+1))1 ⊃ . . . ⊃ F(X (n+1))n = H0(Pnk ,F)

such that for j ∈ {0, . . . , n− 1}, the G-semisimplifications of the quotients F(X (n+1))j/F(X (n+1))j+1

exist and appear as extensions in short exact sequences of G-modules

(0) →
((

IndG,U
+−alg

P(j+1,n−j)
(N ′j ⊗ Stn−j(k)′)

dj⊗Stn−j(k)
red

)∨)G−ss.
→ (F(X (n+1))j/F(X (n+1))j+1)G−ss.

→ (vGP
(j+1,1n−j)

(k)′ ⊗k Hn−j(Pnk ,F))G−ss. → (0).

Proof. Recall from Theorem 2.1.2.1 that for j = 0, . . . , n− 1, there are extensions of G-modules

(0) → IndGP(j+1,n−j)
(H̃

n−j
Pjk

(Pnk ,F)⊗k Stn−j(k))→ F(X (n+1))j/F(X (n+1))j+1

→ vGP
(j+1,1n−j)

(k)′ ⊗k Hn−j(Pnk ,F)→ (0).

Fix j ∈ {0, . . . , n − 1}. It was shown in Theorem 2.5.1.4 that H̃
n−j
Pjk

(Pnk ,F)P(j+1,n−j)−ss. exists. Since

Stn−j(k) is a finite dimensional k-vector space, it follows from the general construction of semisim-

plifications in Subsection 1.2.2 that (H̃
n−j
Pjk

(Pnk ,F) ⊗k Stn−j(k))P(j+1,n−j)−ss. exists as well. From

Lemma 1.2.2.1 it follows that the G-semisimplification IndGP(j+1,n−j)
(H̃

n−j
Pjk

(Pnk ,F) ⊗k Stn−j(k))G−ss.
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exists. The G-module vGP
(j+1,1n−j)

(k)′ ⊗k Hn−j(Pnk ,F) is of finite k-dimension and therefore has a

G-semisimplification (vGP
(j+1,1n−j)

(k)′ ⊗k Hn−j(Pnk ,F))G−ss.. Again from Lemma 1.2.2.1 it now follows

that (F(X (n+1))j/F(X (n+1))j+1)G−ss. exists and fits into an exact sequence of G-modules

(0) → (IndGP(j+1,n−j)
(H̃

n−j
Pjk

(Pnk ,F)⊗k Stn−j(k)))G−ss. → (F(X (n+1))j/F(X (n+1))j+1)G−ss.

→ (vGP
(j+1,1n−j)

(k)′ ⊗k Hn−j(Pnk ,F))G−ss. → (0).

Using Lemma 1.2.2.1 one more time, it follows that IndGP(j+1,n−j)
(H̃

n−j
Pjk

(Pnk ,F) ⊗k Stn−j(k))G−ss. is

isomorphic to (
IndGP(j+1,n−j)

(
H̃
n−j
Pjk

(Pnk ,F)⊗k Stn−j(k)
)Pj+1,n−j−ss.

)G−ss.
.

Since the simple Pj+1,n−j-modules only depend on their Lj+1,n−j-module structure, this last module
is isomorphic to(

IndGP(j+1,n−j)

(
Res

P(j+1,n−j)
L(j+1,n−j)

(
H̃
n−j
Pjk

(Pnk ,F)⊗k Stn−j(k)
))Lj+1,n−j−ss.

)G−ss.
∼=

(
IndGP(j+1,n−j)

(
Res

P(j+1,n−j)
L(j+1,n−j)

(
H̃
n−j
Pjk

(Pnk ,F)⊗k Stn−j(k)
)))G−ss.

.

Here the group P(j+1,n−j) now acts by inflation on the argument of the induction. According to

Proposition 2.5.1.3, each L(j+1,n−j)-module H̃
n−j
Pjk

(Pnk ,F) is an object of the category C. It follows that

H̃
n−j
Pjk

(Pnk ,F)⊗k Stn−j(k) is also an object of C by virtue of the homomorphism

ϕj ⊗ id : (LÛ(u(j+1,n−j),k)c ⊗k Nj)⊗k Stn−j(k) � H̃
n−j
Pjk

(Pnk ,F)⊗k Stn−j(k).

Consider the k-vector space Nj as a graded space which is concentrated in degree 1 and the k-
vector space Stn−j(k) as a graded space which is concentrated in degree 0. Give the k-vector space
LÛ(u(j+1,n−j),k)c ⊗k Nj ⊗k Stn−j(k) the induced grading of the tensor product. It follows from the
proof of Proposition 2.5.1.3, that the assumptions made in Proposition 2.5.2.3 apply to the case

M = H̃
n−j
Pjk

(Pnk ,F)⊗k Stn−j(k),W = Nj ⊗ Stn−j(k)

i.e. M inherits via ϕj ⊗ id a grading and this map then respects this grading by construction. The
claim follows from Proposition 2.5.2.3.

Remark. For a given P(j+1,n−j)-module W of finite k-dimension as considered above, it does not seem

possible to view IndG,U
+-alg

P(j+1,n−j)
(W ) as a vector space of functions from Gk resp. G to k̄ ⊗k W in any

reasonable way. Therefore, the analogy with [44] once again fails as in the case of a p-adic ground field
K, the resulting induction can be described nicely in terms of locally analytic functions on G(K), cf. op.

cit., Section 2.2. In the present situation, there is only a rather naive interpretation of IndG,U
+-alg

P(j+1,n−j)
(W )

as functions on a variety or group: Recall from Section 1.2 that there is an isomorphism of G-modules

IndG,U
+-alg

P(j+1,n−j)
(W ) ∼=

⊕
g∈G/P(j+1,n−j)

g ∗ (O(U+
(j+1,n−j),k)⊗k W ).
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Therefore, as a k-vector space, IndG,U
+-alg

P(j+1,n−j)
(W ) can be identified with ∐

g∈G/P(j+1,n−j)

U+
(j+1,n−j),k → k̄ ⊗k W k-regular


with G acting as a permutation group via the canonical epimorphism G→ G/P(j+1,n−j).

2.6 Examples

First of all, it is shown that the natural U(g)-action on the regular representation V[G] extends to
an action of Û(g)c resp. Û(g)r (depending on the action of G on itself). In particular, the regular
representation k[Gk] is then a module over Û(gk)c resp. Û(gk)r. Then it is shown that the same holds
true for twisted structure sheaves and sheaves of differential forms (with Gk-linearization). Finally,
Theorem 2.5.2.4 is applied for twisted structure sheaves.

2.6.1 The Regular Representation of GLn+1

It was shown in Lemma 2.4.1.2 that the G-module S̃ ∼= V[An+1
V ] has the structure of either an Û(g)r-

module or an Û(g)c-module, depending on the action of G on An+1
V . Furthermore, there is the following

specific example of the regular representation of G :

Lemma 2.6.1.1.

i) Consider the action of G on itself given by

G×G→ G, (g, h) 7→ gh.

Then the induced G-module M = OG(G) = V[G] is a Û(g)r-module.

ii) Consider the action of G on itself given by

G×G→ G, (g, h) 7→ hg−1.

Then the induced G-module M = OG(G) = V[G] is a Û(g)c-module.

Proof. It suffices to consider case ii) as i) then follows by symmetry. The induced action of G on M
is in this case given by

(g, f) 7→ g.f

where
(g.f)(x) = f(xg)

for x ∈ G. The V-algebra V[G] is realized as localization V[{Tu,v | 0 ≤ u, v ≤ n}]det−1 of the polynomial
algebra V[{Tu,v | 0 ≤ u, v ≤ n}] with respect to the determinant. For v ∈ {0, . . . , n}, consider the

element
∏n

i=0
i6=v

L
li,v
(i,v) of U(g). This element acts on an element T

mu,w
u,w ∈ V[{Tu,v | 0 ≤ u, v ≤ n}] by

n∏
i=0
i6=v

L
li,v
(i,v).T

mu,w
u,w =


m!

(m−
∑n

i=0
i 6=v

li,v)!

(∏n
i=0
i6=v

T
li,v
u,i

)
T
m−

∑n
i=0
i 6=v

lu,i

u,w if w = v

0 if w 6= v.

.

As the coefficients appearing are divisible by (
∑n

i=0
i 6=v

li,v)!, this action extends to an action of Û(g)c on

V[{Tu,v | 0 ≤ u, v ≤ n}]. Using the Leibniz formula for determinants, one now checks that this action
extends to one on V[G].
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2.6.2 Some Equivariant Vector Bundles on Pnk admitting Actions of the Enriched
Crystalline Enveloping Algebra

In the last section, it had to be assumed that the algebra Û(gk)c acts on the sheaf F on Pnk under
consideration. In the following lemma, it is shown that this holds true for the twisted structure sheaves
and for sheaves of differential forms on Pnk .

Lemma 2.6.2.1.

i) Let a ∈ Z. Then the algebra Û(gk)c acts on OPnk (a) (induced by the Gk-action on OPnk (a)).

ii) The algebra Û(gk)c acts on Ω1
Pnk/k

(induced by the Gk-action on Ω1
Pnk/k

).

iii) The algebra Û(gk)c acts on Ωi
Pnk/k

, i = 2, . . . , n (induced by the Gk-action on Ωi
Pnk/k

).

Proof. i) This follows either via functoriality from the fact that OPnk (a) = S(a)∼ and from Lemma
2.4.1.2,ii) or from the fact that OPnk (a) is the OPnk -module associated with the P(1,n)-module Va,k
as in (the proof of) Lemma 2.5.1.1.

ii) This follows also from Lemma 2.5.1.1 since Ω1
Pnk/k

is the OPnk -module associated with the P(1,n)-

module Lie(Gk/P(1,n),k)
′, cf. [32, II.4.2(4)]. Alternatively, one may use the realization of Ω1

Pnk/k
as

the sheaf associated with the S-module M which appears as the kernel of the S-homomorphism
(graded, of degree 0)

λ :
E =

⊕n
i=0 S(−1) → S

(f0, . . . , fn) 7→
∑n

i=0 Tifi,

cf. [23, II.8.13].

iii) This follows also from Lemma 2.5.1.1 since Ωi
Pnk/k

=
∧i Ω1

Pnk/k
is the OPnk -module associated with

the P(1,n)-module
∧i (Lie(Gk/P(1,n),k)

′) , cf. [32, II.4.1(3)].

Remark. The sheaves F = OPnk (a) for a < −1 and F = Ωi
Pnk/k

, i = 1, . . . , n, do not – in general – have

the property that they are associated with S-modules generated in degrees ≤ 1. Therefore, Proposition
2.5.1.3 does not apply for them.

2.6.3 The (Twisted) Structure Sheaf

In this subsection, the case of positively twisted structure sheaves is considered once more. Thus, for
a ∈ N0, let

F = OPnk (a) = S(a)∼,

endowed with the natural Gk-linearization corresponding to the action

Gk × S(a)→ S(a)

which is just the shift of the action of Gk on S considered in Subsection 2.4.1, Example II. In this
case,

H∗(Pnk ,F) = H0(Pnk ,F) = Sa = Syma((kn+1)′)
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so that

H̃
n−j
Pjk

(Pnk ,F) = (S(a)Tj+1·...·Tn)ρ0

∼=
⊕

l0,...,ln∈N0
lj+1,...,ln>0∑j

u=0 lu−
∑n
v=j+1

lv=a

k
T l00 · . . . · T

lj
j

T
lj+1

j+1 · . . . · T
ln
n

,

see Subsection 2.3.1. Thus the proof of Proposition 2.5.1.3 gives

Nj =

{[
f

Tj+1 · . . . · Tn

] ∣∣∣ f ∈ S(a)n−j = Sa+n−j

}
⊂ (S(a)Tj+1·...·Tn)ρ0,

which, as an L(j+1,n−j),k-module, is isomorphic to Syma+n−j((kj+1)′)�det−1, cf. Proposition 2.2.2.3.
Since the higher cohomology groups of F on Pnk vanish, the description of the semisimplifications

of the subquotients associated G-filtration F(X (n+1))• amounts to giving isomorphisms

(F(X (n+1))j/F(X (n+1))j+1)G−ss.

∼−→ IndGP(j+1,n−j)

((
LÛ(u+

(j+1,n−j),k)⊗k Nj/dj

)
⊗k Stn−j(k)

)G−ss.
. (2.17)

One can now – at least theoretically – go ahead and first determine the structure of dj as a
L(j+1,n−j)-module, then determine the L(j+1,n−j)-structure of the full argument of the above induction

and finally deduce from this the composition factors of (F(X (n+1))j/F(X (n+1))j+1)G−ss.. For example,
there is a formula which allows to compute the multiplicity with which the Steinberg representation
StG appears in a given homogeneous component Sl, see [35], but for general simple G-modules, this
question is still open (see also [29, 19.5-6] and the comments made there).

A Complete Description in the Case G = GL2, k = Fp,F = OP1
k

In the case G = GL2, k = Fp one can give a complete description by hand which shall be exemplified
for the case a = 0.

Assume for simplicity that p 6= 2. For

(a, b) ∈ {0, . . . , p− 2} × {0, . . . , p− 2}

denote by χa,b the 1-dimensional T -module over k defined by the character

T → k×, (t1, t2) 7→ ta1t
b
2.

For l ∈ Z, write l for the representative in {0, . . . , p − 2} of l + (p − 1)Z ∈ Z/(p − 1)Z. The formula
(2.17) collapses to giving an isomorphism

H0(X (1),F)G−ss. ∼=

(
IndGP(1,1)

(⊕
l∈N

χl,−l

))G−ss.
:

The module St1(k) is the trivial representation of P(1,1), the module N0 equals
{[

αT0
T1

]
| α ∈ k

}
, and

the map

ϕ0 : LÛ(u+
(1,1),k)c ⊗k N0 → H̃

1
P0
k
(P1
k,F)
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is induced by L
(l]
(0,1) ⊗

[
T0
T1

]
7→ (−1)l

[
T l+1

0

T l+1
1

]
and thus an isomorphism. Note that LÛ(u+

(1,1),k)c =

Dist(U+
(1,1),k), cf. Example 2.4.2.6.

The set of isomorphism classes of simple G-modules in this case is parametrized by the set

M = {(u, v) ∈ N0 × N0 | 0 ≤ u ≤ p− 2, 0 ≤ v − u ≤ p− 1}.

For (u, v) ∈ M denote the associated simple G-module by L(u, v). It is realized as a submodule of S
via

L(u, v) = Symv−u((k2)′)⊗ detu.

In particular, its dimension is v−u. Using Frobenius reciprocity, one can now check that for a, b ∈
{0, . . . , p−2}, a ≤ b, the composition factors of IndGP(1,1)

(χa,b) are L(a, a) = deta and L(p− 1 + a, a) =

StG ⊗ deta in case a = b resp. L(a, b) and L(b, p− 1 + a) in case a < b (see e.g. [24, Lemma 10]).
The composition factors of IndGP(1,1)

(χb,a) are then known by duality. This then gives the composition

factors of IndGP(1,1)
(χl,p−1−l) for l = 0, . . . , p− 2 and thus of H0(X (1),F)G−ss. :

• If l = 0, then the composition factors are L(0, 0) = det0 and L(p− 1, 0) = StG.

• If l ∈ {1, . . . , p−1
2 }, then the composition factors are L(l, p− 1− l) and L(p− 1− l, p− 1 + l).

• If l ∈ {p−1
2 + 1, . . . , p− 2}, then the composition factors are the respective duals of the ones just

given.

Each factor appears with infinite multiplicity.
Note that one can also use the identifications X (1) = P1

k \ P1
k(k) ∼= A1

k \ A1
k(k) and then rather

easily verify the existence of an isomorphism of the above type.

Negatively Twisted Structure Sheaves

There are of course many interesting bundles F = F∼ on Pnk which do not fulfill the condition that F
is generated in degrees ≤ 1. Among them are the negatively twisted structure sheaves F = O(−a) =
S(−a)∼ for a > 1, as F = S(−a) as an S-module is generated in degree a. The cohomology of F on
Pnk is via Serre duality given by

H∗(Pnk ,F) = Hn(Pnk ,F) = det−1 ⊗ Syma−(n+1)((kn+1)′)′.

Furthermore, (FTj+1·...·Tn)ρ0 (as a k-vector space) is isomorphic to

⊕
l∈N

i0,...,in∈N0
ij+1,...,in<l

i0+...+in+a=l(n−j)

k
T i00 · . . . · T inn
T lj+1 · . . . · T ln

.

For example in the case (n, j) = (1, 0), the latter space is isomorphic to 1
Xa

1
· k[X0

X1
] and the element

L(0,1) ∈ g acts on a basis element via

L(0,1)
Xi

0

Xa+i
1

= −(a+ i)
Xi+1

0

Xa+i+1
1

.
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Therefore, the enriched enveloping algebra Û(u+
(1,1),k)c (which is actually equal to Dist(U+

(1,1),k) in this

particular case) would have to be replaced by (the base-change to k of) an algebra5 which – over V –
is generated by expressions of the form

(a− 1)!

(a+ l − 1)!
Ll(0,1) (l ∈ N0)

in order to adapt the proof of Lemma 2.5.1.3. But this algebra does not act on S(−a) (or S, for that
matter) compatibly with Gk, gk, etc. and therefore, this method does not work.

5See the construction of the algebra Û(g) and its subalgebras above for an exact description.
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Chapter 3

Rigid Cohomology of Drinfeld’s Upper Half
Space over a Finite Field

This chapter is devoted to the calculation of the rigid cohomology modules of X (n+1) with coefficients
in K.

First of all, the construction of this cohomology theory shall be recalled briefly. Throughout this
chapter, there will be made use of the concepts of rigid-analytic spaces over K (originally due to Tate,
cf. e.g. [4, 12]) and of adic spaces over K in the sense of Huber (cf. e.g. [26, 27]). The following notation
and facts will be used: For a K-variety X, denote by Xrig its associated rigid-analytic K-variety (as in
[4, 9.3.4]) and by Xad its associated adic space (as in [26, Par. 4]). If X is a rigid-analytic K-variety,
its associated adic space will also be denoted by Xad , cf. loc. cit. To be a little more precise, recall
that there are the following functors:

• (−)rig from the category of K-varieties to the category of rigid analytic K-varieties,

• (−)ad from the category of rigid analytic K-varieties to the category of adic spaces over K,

• (−)ad from the category of formal schemes over K to the category of adic spaces over K,

such that for a K-variety X, there is an isomorphism (Xrig)ad ∼= Xad (where, on the right-hand side,
X is considered as a formal scheme). Furthermore, each of these functors induces an equivalence of
the respective topoi of sheaves, which are, respectively, the topos of sheaves on the Zariski topology of
a K-variety, the topos of sheaves on the Grothendieck site associated with a rigid-analytic K-variety,
and the topos of sheaves of an adic space over K. So in particular, for a rigid-analytic K-variety X
and a sheaf F on its Grothendieck topology, there is an isomorphism

Hi(X,F) ∼= Hi(Xad ,Fad )

of cohomology groups, where Fad denotes the sheaf on Xad induced by F via the above equivalence.
For all facts mentioned in this paragraph, cf. [26, Par. 4] resp. [27, 1.1.11-12].

Concerning this thesis, the main advantage of working in the category of adic spaces at times
instead of the category of rigid analytic spaces is that the former are in fact topological spaces (cf.
their definition in, for example, [27, Ch. 1]). In particular, this means that sheaves on adic spaces
are well-behaved with respect to localization in points.

Throughout this chapter, fix a completion K̂ of an algebraic closure K of K and also denote by

| | : K̂ → R≥0 the uniquely determined extension of | | to K̂.

3.1 Construction of Rigid Cohomology and some Properties

For this section, references are for example [2, 37].
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3.1.1 Berthelot’s Definition of Rigid Cohomology (with and without Supports)

Let P = P̂nV be the formal completion of PnV along its special fiber Pnk . There is then a closed embedding
Pnk ↪→ P, which is a homeomorphism of the underlying topological spaces. Furthermore, there is a
map

sprig : Pn,rigK → Pnk ,

called specialization map, which on points is given by

[x0 : . . . : xn] 7→ [x̄0 : . . . : x̄n] ∈ Pnk

for [x0 : . . . : xn] unimodular, i.e. |xi| ≤ 1 for all i ∈ {0, . . . , n} and |xj | = 1 for at least one
j ∈ {0, . . . , n}. Here and in the sequel, x̄ denotes the element of k defined by an element x in the ring

of integers of K̂ by reduction modulo its maximal ideal.
Let X ⊂ Pnk be a locally closed (quasi-projective) smooth k-subvariety. By definition, there is a

closed subvariety Y ⊂ Pnk together with an open embedding X ⊂ Y. Set

]X[P= (sprig)−1(X).

This is a rigid-analytic subvariety of Pn,rigK , called the tube of X (of radius 1). For the purposes of this
work, it will suffice to assume that either Y = Pnk or X = Y, i.e. X is either open or closed in Pnk .

Suppose first that X is open in Pnk = Y and denote by Z = Pnk \X its closed complement. A strict

open neighborhood of ]X[P in Pn,rigK is an admissible open subset V ⊂ Pn,rigK such that ]X[P⊂ V and

such that (V, ]Z[P ) is an admissible covering of Pn,rigK . The category of coefficients of rigid cohomology
is the category of overconvergent F -isocrystals on X/K whose objects can be briefly described as
follows: An overconvergent F -isocrystal on X/K is a locally free coherent OV -module F on some
strict open neighborhood V of ]X[P in Pn,rigK together with an integrable connection F → F ⊗OV Ω1

V

such that certain overconvergence conditions are fulfilled and such that locally, there is an isomorphism
F ∗F ∼−→ F , where F denotes a local lift of the absolute (q-power) Frobenius1 on Pnk to Pn,rigK , cf. e.g. [2,
§ 4] or [37, § 7-8]. Then the rigid cohomology of X with values in F is defined as the hypercohomology

H∗rig(X/K,F) = H∗
(
Pn,rigK , lim−→

V ′
(jV ′∗)

(
j∗V ′,V

)
(F ⊗OV Ω•V )

)
.

Here, the limit is taken over all strict open neighborhoods V ′ of ]X[P in Pn,rigK which are contained in
V and

jV ′,V : V ′ ↪→ V,

jV ′ : V ′ ↪→ Pn,rigK

are the respective embeddings of admissible open subsets given by inclusion. In the case of the
trivial isocrystal, i.e. when F is just the structure sheaf, then write H∗rig(X/K) for the resulting rigid
cohomology.

If X is closed in Pnk , then an overconvergent F -isocrystal on X/K is an O]X[P -module with the
above additional properties and the definition of rigid cohomology of X with values in F simplifies to

H∗rig(X/K,F) = H∗(]X[P ,F ⊗O]X[P
Ω•]X[P

).

In particular, in the case of the trivial isocrystal, its rigid cohomology on X is just the usual de Rham
cohomology of ]X[P .

1Note that in the context of varieties over k, the absolute and relative Frobenius morphisms are identical.
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There is a notion of rigid cohomology “with compact supports”, written H∗rig,c(X/K,F). Here, F
(as above) is replaced by

Γ(F) = ker(F → ι∗ι
∗F),

where ι : V ∩]Z[P ↪→ V is the inclusion, and then, by definition,

H∗rig,c(X/K,F) = H∗(V,RΓ(F ⊗OV Ω•V )).

Again, in the case that F is trivial, the notation reduces to H∗rig,c(X/K).

3.1.2 Some Properties of Rigid Cohomology

Here are some facts concerning rigid cohomology2.

• The above definitions of rigid cohomology and of rigid cohomology with compact supports are
essentially (i.e. up to canonical isomorphism) independent of all choices made.

• For each i ∈ N0, the K-spaces Hi
rig(X/K,F) and Hi

rig,c(X/K,F) are finite-dimensional.

• Via functoriality, the absolute Frobenius morphism of X acts on each Hi
rig(X/K,F) and each

Hi
rig,c(X/K,F). Therefore, the absolute Galois group Gal(k/k) of k acts on each of the spaces

Hi
rig(X/K,F) and Hi

rig,c(X/K,F) as well, upon identification of the absolute Frobenius with the

arithmetic Frobenius automorphism σ : x 7→ xq of k.

• If X = X1 t X2 is a disjoint union in the category of k-varieties, then there are canonical
isomorphisms

Hi
rig(X/K,F) ∼= Hi

rig(X1/K,F)⊕Hi
rig(X2/K,F)

Hi
rig,c(X/K,F) ∼= Hi

rig,c(X1/K,F)⊕Hi
rig,c(X2/K,F)

for i ∈ Z.

• If X is of dimension n, then Hi
rig,c(X/K,F) = 0 for i > 2n.

• For each i ∈ Z, there is a canonical Gal(k/k)-equivariant homomorphism Hi
rig,c(X/K,F) →

Hi
rig(X/K,F) which is an isomorphism if X is proper.

• Let Z ⊂ X be a closed subvariety and let U = X \ Z be its open complement. Then there is a
long exact sequence

. . .→ Hi−1
rig,c(Z/K,F)→ Hi

rig,c(U/K,F)→ Hi
rig,c(X/K,F)→ Hi

rig,c(Z/K,F)→ . . .

which is Gal(k/k)-equivariant.

• If X is of dimension n, then for each i ∈ {0, . . . , 2n}, there is a perfect pairing

Hi
rig(X/K,F)×H2n−i

rig,c (X/K,F∨)→ K(−n)[−2n]

of K-spaces which is Gal(k/k)-equivariant, where F∨ is the isocrystal dual to F (defined in
the usual way). Here and in the sequel, (−)(l) means that the Frobenius automorphism σ acts
by multiplication with q−l (“l-th Tate twist”) and (−)[j] means “shift in degree −j”. For an
arbitrary K-vector space V and an integer i ∈ Z, set

V (i) = V ⊗K K(i),

i.e. Gal(k/k) acts on this space through its action on K(i).

2For attribution of the respective results, the interested reader should have a look at [37, 9.1], for example.
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• If X is affine of dimension n, then Hi
rig(X/K,F) = 0 for i /∈ {0, . . . , n}.

• Let n ∈ N0. Then there are the following identifications:

H∗rig(Pnk/K) =
n⊕
i=0

K(−i)[−2i],

H∗rig,c(Ank/K) = K(−n)[−2n], (3.1)

H∗rig(Ank/K) = K(0)[0].

3.2 Rigid Cohomology computed as Hypercohomology

In this section, the rigid cohomology H∗rig(Y(n+1)/K) = H∗rig,c(Y(n+1)/K) of the closed complement

Y(n+1) of X (n+1) in Pnk is computed directly as a hypercohomology. Then, the long exact sequence for
rigid cohomology with compact supports for the pair of inclusions

X (n+1) open
↪→ Pnk

closed←↩ Y(n+1)

is used to determine H∗rig,c(X (n+1)/K). The rigid cohomology of X (n+1) is then known via Poincaré
duality.

3.2.1 Adaption of Orlik’s Complex

In order to compute H∗rig(Y(n+1)/K), there will be made use of the following modified version of Orlik’s
complex: Use the same notation for objects YI with I ( ∆ as in Section 2.1.1, associate to each object
its tube and then the respective adic space, i.e. there are adic spaces ]Y(n+1)[ad

P and ]g.YI [
ad
P for I ( ∆,

g ∈ G, all of which are open in Pn,ad
K . The closed embeddings of k-varieties

ιg,hI,J : g.YI ↪→ h.YJ ,

Φg,I : g.YI ↪→ Y(n+1)

considered in 2.1.1 for I ⊂ J ( ∆ and g, h ∈ G with gPI 7→ hPJ give rise to open embeddings of adic
spaces associated with the respective tubes

]g.YI [
ad
P ↪→ ]h.YJ [ad

P ,

]g.YI [
ad
P ↪→ ]Y(n+1)[ad

P .

Denote by
spad : Pn,ad

K → Pnk
the adic specialization map. It is continuous, cf. [27, 1.9] resp. [26, Section 4], and for a locally
closed subvariety X ⊂ Pnk , the adification ]X[ad

P of its rigid-analytic tube identifies with the interior
(spad )−1(X)o of its adic tube, cf. [27, Lemma 5.6.9]. For each I ⊂ J and gPI 7→ hPJ as above, there
is then a commutative triangle

(spad )−1(Y(n+1))

(spad )−1(g.YI) ⊂
ιg,h,ad
I,J -

⊂

Φ
ad
g,
I

-

(spad )−1(h.YJ)

Φad
h,J

∪

6

(3.2)
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of closed embeddings of closed subspaces of (spad )−1(Y(n+1)). Here, the maps appearing in the triangle
are again induced by the respective maps of k-varieties above. Let E be a sheaf of abelian groups on
(spad )−1(Y(n+1)). As in the situation of Subsection 2.1.1, one then obtains a complex

0→ E →
⊕
I(∆

#I=n−1

EI → . . .→
⊕
I(∆
#I=1

EI → E∅ → 0 (3.3)

of sheaves on (spad )−1(Y(n+1)) where, as in loc. cit.

EI =
⊕

g∈G/PI

Eg,I

with
Eg,I = (Φad

g,I )∗(Φ
ad
g,I )−1E .

Proposition 3.2.1.1. (cf. [42, Satz 5.3]) The complex (3.3) is acyclic.

Proof. For i ∈ {0, . . . , n− 1}, set

Ei =
⊕
I(∆

#I=n−1−i

EI .

As was mentioned in the introduction to this chapter, sheaves on adic spaces are in particular sheaves
on topological spaces. Therefore, to prove the proposition, it is sufficient to check that for each point
x ∈ (spad )−1(Y(n+1)), the localized complex

(0)→ (E)x → (E0)x → (E1)x → . . .→ (En−1)x → (0)

is acyclic. By construction, this last complex is equal to

(0)→ Ex →
⊕
I(∆

#I=n−1

⊕
g∈G/PI

x∈(spad )−1(g.YI )

Ex → . . .→
⊕
I(∆
#I=1

⊕
g∈G/PI

x∈(spad )−1(g.YI )

Ex →
⊕

g∈G/P∅(k)

x∈(spad )−1(g.Y∅)

Ex → (0). (3.4)

Let
X =

{
gPI ∈ G/PI

∣∣ #I = n− 1, x ∈ (spad )−1(g.YI)
}

and equip X with a partial order structure “≤” by identifying∐
I⊂∆

#I=n−1

G/PI

with {
U ⊂ kn+1 k-subspace | U 6= (0), kn+1

}
and its natural partial order structure given by inclusion. Then X is identified with the set{

U ⊂ kn+1 k-subspace
∣∣ U 6= (0), kn+1 and x ∈ (spad )−1(P(U))

}
.

Furthermore, X is nonempty since (spad )−1(Y(n+1)) is covered by the union of all (spad )−1(P(U))
with U running through all proper subspaces of kn+1.

For i ∈ {0, . . . , n− 1}, let

Xi = {(x0, . . . , xi) | ∀j ∈ {0, . . . , i} : xj ∈ X,x0 < x1 < . . . < xi}.
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By construction, X• =
⋃n−1
i=0 X

i has the structure of a simplicial complex with Xi the set of i-simplices
and (3.4) is the chain complex with values in Ex associated with this simplicial complex.

Let U0 ∈ X be a subspace of minimal dimension and let U ∈ X be arbitrary. It follows that

x ∈ (spad )−1(P(U0)) ∩ (spad )−1(P(U)) = (spad )−1(P(U0) ∩ P(U)) = (spad )−1(P(U0 ∩ U)).

so that U ∩U0 6= (0) (as otherwise P(U ∩U0) would be empty). By minimality of U0, this implies that
U0 ∩ U = U0. Therefore, the identity map

id : X → X,U 7→ U,

fulfills
U0, U ≤ id(U)

for all U ∈ X and by Quillen’s criterion (cf. [49, 1.5]), the complex (3.4) is then acyclic. This proves
the proposition.

Corollary 3.2.1.2. Let E• be a finite complex of sheaves of abelian groups on (spad )−1(Y(n+1)). Then,
the complex

0→ E• →
⊕
I(∆

#I=n−1

E•I → . . .→
⊕
I(∆
#I=1

E•I → E•∅ → 0 (3.5)

is acyclic, i.e. (3.5) is an exact sequence in the category of complexes of sheaves of abelian groups on
(spad )−1(Y(n+1)).

3.2.2 Construction of a Spectral Sequence

Denote by
f : ]Y(n+1)[ad

P = (spad )−1(Y(n+1))o ↪→ (spad )−1(Y(n+1))

the canonical open immersion of the interior of (spad )−1(Y(n+1)). For the rest of this section, let

E• = O(spad )−1(Y(n+1)) → Ω1
(spad )−1(Y(n+1))

→ Ω2
(spad )−1(Y(n+1))

→ . . .→ Ωn
(spad )−1(Y(n+1))

be the de Rham complex on (spad )−1(Y(n+1)). Plug this complex into (3.5) and set

E•−1 = E•,

E•i =
⊕
I(∆

#I=n−1−i

E•I

for i = 0, . . . , n− 1. The functor f∗ is exact and therefore, the complex

0→ f∗E•−1 → f∗E•0 → f∗E•1 → . . .→ f∗E•n−1 → 0

(consisting of complexes of sheaves on ]Y(n+1)[ad
P ) is still acyclic. Application of the Godement functor

G (cf. Section 1.4) to each sheaf appearing in (3.5) plus application of the global sections functor induces
a first quadrant double complex of K-vector spaces

63



Γ(]Y(n+1)[ad
P ,G(f∗En0 )) - Γ(]Y(n+1)[ad

P ,G(f∗En1 )) - . . . - Γ(]Y(n+1)[ad
P ,G(f∗Enn−1))

...

6

...

6

...
...

6

Γ(]Y(n+1)[ad
P ,G(f∗E1

0 ))

6

- Γ(]Y(n+1)[ad
P ,G(f∗E1

1 ))

6

- . . . - Γ(]Y(n+1)[ad
P ,G(f∗E1

n−1))

6

Γ(]Y(n+1)[ad
P ,G(f∗E0

0 ))

6

- Γ(]Y(n+1)[ad
P ,G(f∗E0

1 ))

6

- . . . - Γ(]Y(n+1)[ad
P ,G(f∗E0

n−1))

6

with exact rows.
There is then canonically a quasi-isomorphism of the complex Γ(]Y(n+1)[ad

P ,G(f∗E•)) into the
associated total complex of the above double complex which implies the existence of a spectral sequence

Er,s1 = hs(Γ(]Y(n+1)[ad
P ,G(f∗E•r ))) =⇒ hr+s(Γ(]Y(n+1)[ad

P ,Tot(G(f∗E•• ))))
= hr+s(Γ(]Y(n+1)[ad

P ,G(f∗E•)))
= hr+s(Γ(]Y(n+1)[ad

P , f∗G(E•)))
= hr+s(Γ(]Y(n+1)[ad

P ,G(E•))).

It follows from the description of hypercohomology in Section 1.4 and from the fact that Y(n+1) is
closed in Pnk , that

h∗(Γ(]Y(n+1)[ad
P ,G(E•))) = H∗rig(Y(n+1)/K),

see also Subsection 3.1.1.

3.2.3 Evaluation of the Spectral Sequence

The E1-Page

Lemma 3.2.3.1. Let r, s ∈ Z. Then there is an identification

Er,s1 =
⊕
I(∆

#I=n−1−r

IndGPIH
s
rig(YI/K).

Proof. Using compatibility of Godement resolution with direct and inverse images of sheaves in the
present situation, one calculates as follows:

Er,s1 = hs
(

Γ
(

]Y(n+1)[ad
P ,G (f∗E•r )

))
= hs

(
Γ
(

]Y(n+1)[ad
P ,G (E•r )

))
= hs

Γ

]Y(n+1)[ad
P ,G

 ⊕
I(∆,

#I=n−1−r

⊕
g∈G/PI

(Φad
g,I )∗(Φ

ad
g,I )∗E•
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=
⊕
I(∆,

#I=n−1−r

⊕
g∈G/PI

hs
(

Γ
(

]Y(n+1)[ad
P ,G

(
(Φad

g,I )∗(Φ
ad
g,I )∗E•

)))
=

⊕
I(∆,

#I=n−1−r

⊕
g∈G/PI

hs
(

Γ
(

]Y(n+1)[ad
P , (Φad

g,I )∗G
(

(Φad
g,I )∗E•

)))
=

⊕
I(∆,

#I=n−1−r

⊕
g∈G/PI

hs
(

Γ
(

]Y(n+1)[ad
P ∩(spad )−1(g.YI),G

(
(Φad

g,I )∗E•
)))

.

By definition, ]Y(n+1)[ad
P ∩(spad )−1(g.YI) is open in (spad )−1(g.YI) and therefore, it is contained

in (spad )−1(g.YI)
o. On the other hand, (spad )−1(g.YI)

o =]g.YI [
ad
P is open in both ]Y(n+1)[ad

P and
(spad )−1(g.YI) which implies

]Y(n+1)[ad
P ∩(spad )−1(g.YI) =]g.YI [

ad
P

for all I ( ∆ and all g ∈ G/PI . Again from the description of hypercohomology given in Section 1.4,
it then follows that

Er,s1 =
⊕
I(∆,

#I=n−1−r

⊕
g∈G/PI

hs
(

Γ
(

]g.YI [
ad
P ,G

(
(Φad

g,I )∗E•
)))

.

=
⊕
I(∆,

#I=n−1−r

⊕
g∈G/PI

Hs
(

]g.YI [
ad
P , E•|]g.YI [ad

P

)
=

⊕
I(∆,

#I=n−1−r

⊕
g∈G/PI

Hs
(

]g.YI [P , E•|]g.YI [P

)
.

For g ∈ G(V) also denote by g its induced automorphism on Pn,rigK via the action

G(V)× Pn,rigK → Pn,rigK , (g, x) 7→ g.x = xg−1.

Then the diagram

Pn,rigK

g - Pn,rigK

Pnk

sprig

?
g - Pnk

sprig

?

commutes, where g is the image of g under the canonical map G(V)→ G. Therefore,

g.]YI [P = g.
{
x ∈ Pn,rigK

∣∣ sprig(x) ∈ YI
}

=
{
g.x ∈ Pn,rigK

∣∣ sprig(x) ∈ YI
}

=
{
x ∈ Pn,rigK

∣∣ sprig(g−1.x) ∈ YI
}

=
{
x ∈ Pn,rigK

∣∣ (g)−1.sprig(x) ∈ YI
}

=
{
x ∈ Pn,rigK

∣∣ sprig(x) ∈ g.YI
}

= ]g.YI [P .
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Define PI(V)(1) to be the preimage of PI with respect to the above map G(V)→ G. Then PI(V)(1)
stabilizes ]YI [P . For g ∈ G(V)/PI(V)(1), set

g.Hs(]YI [P , E•|]YI [P
) = Hs(g.]YI [P , E•|g.]YI [P

).

This is well-defined and from the identity above, since G(V)/PI(V)(1) ∼= G/PI , it then follows that

Er,s1 =
⊕
I(∆,

#I=n−1−r

⊕
g∈G(V)/PI(V)(1)

Hs
(
g.]YI [P , E•|g.]YI [P

)
=

⊕
I(∆,

#I=n−1−r

⊕
g∈G(V)/PI(V)(1)

g.Hs
(

]YI [P , E•|]YI [P

)
=

⊕
I(∆,

#I=n−1−r

⊕
g∈G/PI

g.Hs
rig (YI/K)

=
⊕
I(∆,

#I=n−1−r

IndGPIH
s
rig (YI/K) .

The last identity holds since, by functoriality, Hs
rig(YI/K) is a PI -module and as a K-vector space,

g.Hs
rig (YI/K) is isomorphic to Hs

rig(YI/K), cf. the descriptions of induced representations in Subsection
1.2.1. This finishes the proof.

Directly from the definition, the fact that YI ∼= Pi1k for i1 ∈ {0, . . . , n−1} minimal with αi1 ∈ ∆\I,
gives

H∗rig(YI/K) =

i1⊕
j=0

K(−j)[−2j],

see (3.1). For j ∈ {0, . . . , n− 1}, set

Ij =

{
{α0, . . . , αj−1} if j ∈ {1, . . . , n− 1}
∅ if j = 0.

Then, a row E•,s1 of the first page of the spectral sequence has non-zero entries only for even s ∈
{0, 2, . . . , 2n− 2} and reads

E•,s1 : E0,s
1 =

⊕
I s

2
⊂I(∆

#I=n−1

IndGPIK(−s
2

)→ . . .→
⊕

I s
2
⊂I(∆

#I= s
2 +1

IndGPIK(−s
2

)

→ E
n−1− s

2
,s

1 = IndGPI s
2

K(−s
2

).

The E2-Page

For each proper subset J ( ∆, the sequence

(0)→ K →
⊕
J⊂I(∆

#(∆\I)=1

IndGPIK → . . .→
⊕
J⊂I(∆

#(∆\I)=n−1−#J

IndGPIK → vGPJ (K)→ (0) (3.6)

of G-modules is exact, see e.g. [5, 3.2.5]. Therefore, the E2-terms of the spectral sequence can be read
off:
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Lemma 3.2.3.2. Let r, s ∈ Z. Then there is an identification

Er,s2 = hr(E•,s) =



vGPI s
2

(K)(− s
2) if s ∈ {0, 2, . . . , 2(n− 2)}, r = n− 1− s

2

K(− s
2) if s ∈ {0, 2, . . . , 2(n− 2)}, r = 0

IndGPIn−1
K(−(n− 1)) if s = 2n− 2, r = 0

(0) else.

Taking into account the fact that there are no nontrivial homomorphisms of Galois modules of
different Tate twist, one can now read off from the shape of the E2-page that all resulting morphisms
in Em, m ≥ 2, are necessarily trivial and therefore, the spectral sequence degenerates in the E2-page.

3.2.4 Computation of the Rigid Cohomology Modules

Evaluation of the filtration associated with the spectral sequence now yields the rigid cohomology of
Y(n+1).

Proposition 3.2.4.1. The rigid cohomology modules of Y(n+1) have the following shape:

Hs
rig(Y(n+1)/K) =



K(− s
2) if s ∈ {0, . . . , n− 2} even

K(− s
2)⊕ vGPIn−1−s

(K)(n− 1− s) if s ∈ {n− 1, . . . , 2n− 3} even

vGPI1+s−n
(K)(n− 1− s) if s ∈ {n− 1, . . . , 2n− 3} odd

IndGPIn−1
(K)(−(n− 1)) if s = 2n− 2

(0) else.

During the proof of this proposition, the following fact on extensions of Galois modules is needed.
The proof is reproduced from [41].

Lemma 3.2.4.2. Let l,m ∈ Z with l 6= m. Then every extension of the Gal(k/k)-module K(l) by
K(m) splits, i.e.

Ext1
Gal(k/k)

(K(m),K(l)) = (0).

Proof. By exactness of Tate twist, it is enough to consider the case l 6= 0, m = 0. By definition of
group cohomology as a derived functor cohomology, there is an identification

Ext1
Gal(k/k)

(K(0),K(l)) = H1(Gal(k/k),K(l)).

Recall that σ denotes the standard arithmetic Frobenius automorphism in Gal(k/k) which, in par-
ticular, is a topological generator of this group. Then the latter module is isomorphic to the module
K(l)/((σ − id)K(l)), which is trivial for l 6= 0.

Proof of Proposition 3.2.4.1. Recall that

h∗(Γ(]Y(n+1)[ad
P ,G(E•))) = H∗rig(Y(n+1)/K).

By construction, E2 = E∞ now describes steps of descending filtrations of G-modules on each
Hs

rig(Y(n+1)/K), s ∈ N0, via

Er,s2 = grr(Hr+s
rig (Y(n+1)/K)).
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There are thus descending filtrations on each Hs
rig(Y(n+1)/K) with filtration steps

grr(Hs
rig(Y(n+1)/K)) = Er,s−r2 =



vGPI s−r
2

(K)(− s−r
2 ) if s− r ∈ {0, 2, . . . , 2(n− 2)},

r = n− 1− s−r
2

K(− s−r
2 ) if s− r ∈ {0, 2, . . . , 2(n− 2)},

r = 0

IndGPIn−1
K(−(n− 1)) if s− r = 2n− 2, r = 0

(0) else.

This shows that for each s ∈ {0, . . . , 2n − 2}, the associated graded module of the rigid cohomology
module Hs

rig(Y(n+1)/K) has the following shape:

gr•(Hs
rig(Y(n+1)/K)) =


K(− s

2) if s ∈ {0, . . . , n− 2} even

K(− s
2)⊕ vGPIn−1−s

(K)(n− 1− s) if s ∈ {n− 1, . . . , 2n− 3} even

vGPI−n+1+s
(K)(n− 1− s) if s ∈ {n− 1, . . . , 2n− 3} odd

IndGPIn−1
(−(n− 1)) if s = 2n− 2.

Each filtration splits as the above lemma shows that there are no non-split extensions between Galois
modules of different Tate twist and therefore,

gr•(Hs
rig(Y(n+1)/K)) ∼= Hs

rig(Y(n+1)/K) = Hs
rig,c(Y(n+1)/K).

Theorem 3.2.4.3. The rigid cohomology with compact supports of X (n+1) is given by

H∗rig,c(X (n+1)/K) =
n⊕
i=0

vGPIi
(K)(−i)[−n− i].

Proof. Using the respective property from Subsection 3.1.2, it follows from the fact that X (n+1) is a
smooth affine variety of dimension n that Hi

rig,c(X (n+1)/K) = 0 for all i /∈ {n, . . . , 2n}. Now employ
the long exact sequence for rigid cohomology with compact supports for the pair of inclusions

X (n+1) open
↪→ Pnk

closed←↩ Y(n+1).

For each i ∈ {n, . . . , 2n}, there are thus exact sequences of G×Gal(k/k)-modules

Hi−1
rig (Pnk/K)→ Hi−1

rig (Y(n+1)/K)→ Hi
rig,c(X (n+1)/K)→ Hi

rig(Pnk/K).

Inductive evaluation of those exact sequences (plugging in the result from Proposition 3.2.4.1 and of
course the fact that rigid cohomology of Pnk is known (see Subsection 3.1.2)) finishes the proof. Here,
one has to use the additional fact that, as a Galois module, Hi

rig,c(X (n+1)/K) is pure which means
that it cannot contain submodules of different Tate twist, cf. e.g. [5, Prop. 3.3.8] (which only uses the
fact that – as is rigid cohomology – `-adic cohomology is a Weil cohomology).
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3.3 Rigid Cohomology computed from the Associated De Rham
Complex

The goal of this section is to show how – in principle – the rigid cohomology H∗rig(X (n+1)/K, E) of

X (n+1) with values in a G-equivariant overconvergent F -isocrystal E which is defined on3 Pn,rigK can
be computed from its associated de Rham complex. The main tool will again be an adapted version
of Orlik’s complex.

First of all, a cofinal family of strict open neighborhoods (with respect to the reverse inclusion
ordering) of ]X (n+1)[P in Pn,rigK suitable for the purpose of adapting Orlik’s complex has to be con-
structed. Let X ⊂ Pnk be an open subset and write Z = Pnk \ X for its closed complement. For

λ ∈ (0, 1) ∩ |K×|, let
V λ = Pn,rigK \]Z[P,λ.

Here, ]Z[P,λ is the open tube of Z of radius λ in Pn,rigK which can be described as follows, cf. [37,
2.3]: Suppose that the vanishing ideal of Z is generated by the homogeneous polynomials f1, . . . , fr ∈
k[T0, . . . , Tn]. For each l ∈ {1, . . . , r}, let f̃l ∈ V[T0, . . . , Tn] be a (homogeneous) lift of fl. Then

]Z[P,λ=
{
x ∈ Pn,rigK (unimodular)

∣∣∣ ∀l ∈ {0, . . . , r} : |f̃l(x)| < λ
}
.

According to [37, 3.3.1], V λ is a strict open neighborhood of ]X[P in Pn,rigK . Moreover, the system

(V λ)λ∈(0,1) is even a cofinal system of quasi-compact strict open neighborhoods of ]X[P in Pn,rigK , cf.
[37, 3.3.3]. For m ∈ N, let

λm = |π|1/(m+1) ∈ |K×|.

Then the countable system (V λm)m∈N is cofinal in (V λ)λ∈(0,1) and thus it is itself a cofinal system of

strict open neighborhoods of ]X[P in Pn,rigK .
Now specialize to the case X = X (n+1). A slight technical problem in adapting Orlik’s complex is

the fact that the “operation” ] − [P,λ does not commute with taking finite unions. Therefore, there

will now be constructed a cofinal system (Um)m∈N of strict open neighborhoods of ]X (n+1)[P in Pn,rigK

better suited for the task at hand.
For m ∈ N, set

Um = Pn,rigK \
⋃
I(∆

⋃
g∈G/PI

]g.YI [P,λm .

Lemma 3.3.0.4.

i) The set Um is a strict open neighborhood of ]X (n+1)[P in Pn,rigK .

ii) The set Um is an affinoid subvariety of Pn,rigK .

iii) The family {Um | m ∈ N} is cofinal in the family of all strict open neighborhoods of ]X (n+1)[P in
Pn,rigK .

Proof. i) Since

Um =
⋂
I(∆

⋂
g∈G/PI

Pn,rigK \]g.YI [P,λm

3By definition, Pn,rigK is in particular a strict open neighborhood of ]X[P in Pn,rigK .
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is a finite intersection of admissible open subsets of Pn,rigK , it is admissible open in Pn,rigK itself.
Directly from the definition of tubes, it follows that

⋃
I(∆

⋃
g∈G/PI ]g.YI [P,λm is contained in

]Y(n+1)[P,λm . Therefore, V λm = Pn,rigK \]Y(n+1)[P,λm is contained in Um and the claim follows from
[37, 3.1.2].

ii) Denote by H the set of all n-dimensional k-subspaces of kn+1. Then there is an identification

Um = Pn,rigK \
⋃
H∈H

]P(H)[P,λm

=
⋂
H∈H

Pn,rigK \]P(H)[P,λm .

Since a finite intersection of affinoid subvarieties of Pn,rigK is again an affinoid subvariety (this is

due to the fact that Pn,rigK is separated, cf. [12, 4.10.1 and 4.3.4]), it is enough to show that each

Pn,rigK \]P(H)[P,λm is an affinoid subvariety of Pn,rigK . Possibly after a coordinate transformation,
one can reduce to the case that H = V+(Tn). Then

Pn,rigK \]P(H)[P,λm =
{
x = [x0 : . . . : xn] ∈ Pn,rigK unimodular

∣∣ |xn| ≥ λm}
∼=

{(
x0

xn
, . . . ,

xn−1

xn

)
∈ (K̂)n

∣∣∣ ∀i = 0, . . . , n− 1 : | xi
xn
| ≤ λ−1

m

}
=

{
(z0, . . . , zn−1) ∈ (K̂)n

∣∣ ∀i = 0, . . . , n− 1 : |πzm+1
i | ≤ 1

}
and the last set is an affinoid K-variety.

iii) The family (V λ)
λ∈(0,1)∩|K×| is a cofinal family of strict neighborhoods. Therefore, it is enough to

show that for each λ as above, there exists some m ∈ N such that Um ⊂ V λ. By [37, 2.3.6], there
is an admissible covering

]Y(n+1)[P,λ⊂
⋃
I(∆

⋃
g∈G/PI

]g.YI [P,λ′

for λ′ such that ∏
I(∆

∏
g∈(G/PI)(k)

λ′ = (λ′)

(∑
I(∆

∑
g∈G/PI

1
)

= λ.

Choose m ∈ N large enough so that λ′ ≤ λm. Then there is an admissible covering

]Y(n+1)[P,λ⊂
⋃
I(∆

⋃
g∈G/PI

]g.YI [P,λm ,

hence
V λ = Pn,rigK \]Y(n+1)[P,λ⊃ Pn,rigK \

⋃
I(∆

⋃
g∈G/PI

]g.YI [P,λm= Um

which finishes the proof of the lemma.

Denote by
jm : Um ↪→ Pn,rigK

the inclusion. Then the above lemma implies that the rigid cohomology of X (n+1) with values in E
can be computed as

H∗rig(X (n+1)/K, E) = H∗(Pn,rigK , lim−→
m∈N

jm∗j
∗
m(E ⊗O

Pn,rig
K

Ω•Pn,rigK

)).
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From now on, for i = 0, . . . , n, set

E i = E ⊗O
Pn,rig
K

Ωi
Pn,rigK

.

To make use of the associated de Rham complex for the computation of the above hypercohomology,
one has to calculate the cohomology spaces H∗(Pn,rigK , lim−→

m∈N
jm∗j

∗
mE i) for each i ∈ N0.

Lemma 3.3.0.5. For each i = 0, . . . , n, there is an identification

H∗(Pn,rigK , lim−→
m∈N

jm∗j
∗
mE i) = lim−→

m∈N
H0(Um, E i)[0].

Proof. First of all, applying [27, 2.3.13] to the parallel situation of adic spaces yields isomorphisms

H∗(Pn,rigK , lim−→
m∈N

jm∗j
∗
mE i) = lim−→

m∈N
H∗(Pn,rigK , jm∗j

∗
mE i).

The morphism jm is quasi-Stein in the sense of [37, p. 20] which in particular implies that the higher
direct images Rljm∗(j

∗
mE i) vanish for l ≥ 1, cf. loc. cit. From this, it follows that

H∗(Pn,rigK , jm∗j
∗
mE i) = H∗(Um, j∗mE i) = H0(Um, j∗mE i) = H0(Um, E i)

since higher coherent cohomology on affinoid spaces vanishes by Kiehl’s Theorem B, cf. [33, 2.4]. This
finishes the proof.

So in essence, to compute H∗rig(X (n+1)/K, E), one has to compute H0(Um, E i) for all i, apply the
direct limit lim−→

m∈N
, plug the resulting spaces into a spectral sequence and describe the associated gradings.

This will be done in the next few subsections using the methods of [44, 45] by Orlik. The strategy to
determine the spaces H0(Um, E i) is the same as in the previous chapter in the case of finite ground
fields, namely to use local cohomology, but this time of rigid analytic spaces. For this purpose, this
cohomology theory shall be recalled briefly (cf. [57, 1.2-3]):
Let X be a rigid analytic K-space, let Z ⊂ X be an admissible open subset such that U = X \ Z is
also admissible open in X. For an abelian sheaf H on X, set

H0
Z(X,H) = ker(H0(X,H)→ H0(U,H)).

Then H0
Z(X,−) is a left exact functor and therefore it has right derived functors

Hi
Z(X,−) = RiH0

Z(X,−).

The following hold and will be used freely in the sequel:

• There is a long exact sequence

. . .→ Hi(X,H)→ Hi(U,H)→ Hi+1
Z (X,H)→ Hi+1(X,H)→ . . . ,

cf. [57, 1.3], which also holds in the more general situation presented here.

• From the fact that the functor (−)ad induces an equivalence of topoi combined with the fact
that H∗Z(X,H) is computed by using an injective resolution of H, it follows that there is an
isomorphism

H∗Xad \Uad (Xad ,Had ) ∼= H∗Z(X,H) (3.7)

where the local cohomology for adic spaces is defined as usual for topological spaces.
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.
Now set

Y m = Pn,rigK \ Um =
⋃
I(∆

⋃
g∈G/PI

]g.YI [P,λm .

Then there are local cohomology groups H∗Ym(Pn,rigK , E i) and an exact sequence

(0)→ H0(Pn,rigK , E i)→ H0(Um, E i)→ H1
Ym(Pn,rigK , E i).

The groups H1
Ym(Pn,rigK , E i) can be computed using an adapted version of Orlik’s complex and one can

then determine H0(Um, E i).
Because of technical reasons concerning the localization of sheaves in points, it is again more

convenient to use the framework of adic spaces.

3.3.1 Adaption of Orlik’s Complex

For m ∈ N, set
Zm = Pn,ad

K \ Um,ad

and for I ( ∆ and g ∈ G/PI , set

Zmg,I = Pn,ad
K \

(
Pn,rigK \]g.YI [P,λm

)ad
.

Both Zm and Zmg,I are closed subspaces in Pn,ad
K . As in Subsection 2.1.1, an inclusion I ⊂ J of proper

subsets of ∆ together with a mapping gPI 7→ hPJ under the canonical map

G/PI → G/PJ

induces a closed embedding of closed subspaces

γg,hI,J : Zmg,I ↪→ Zmh,J

of Zm. Furthermore, for each I and g as above, there are closed embeddings

δg,I : Zmg,I ↪→ Zm,

so that for all g, h and I, J as above, there are commutative triangles

Zm

Zmg,I
⊂

γg,hI,J -
⊂

δ g
,I

-

Zmh,J

�

δ
h
,J

⊃

of closed embeddings. Let F be a sheaf of abelian groups on Zm. For I ( ∆ and g ∈ G/PI , set

Fg,I = δg,I∗δ
−1
g,IF ,

FI =
⊕

g∈G/PI

Fg,I .
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Proposition 3.3.1.1. For any sheaf F of abelian groups on Zm, there is an acyclic complex

0→ F →
⊕
I(∆

#I=n−1

FI →
⊕
I(∆

#I=n−2

FI → . . .→
⊕
I(∆
#I=1

FI → F∅ → 0 (3.8)

of sheaves of abelian groups on Zm.

Proof. (cf. the proof of Proposition 3.2.1.1) The proof is again by localization of the above complex
with respect to a point x ∈ Zm. Consider the set

X =
{
U ( kn+1 k-subspace

∣∣ U 6= (0), x ∈ Pn,ad
K \ (Pn,rigK \]P(U)[P,λm)ad

}
.

This set is not empty since, by construction,

Zm =
⋃

(0)(U(kn+1

Pn,ad
K \ (Pn,rigK \]P(U)[P,λm)ad

with U running through all proper non-zero subspaces of kn+1. Choose a minimal subspace U0 ∈ X
and let U ∈ X be arbitrary. Directly from the definition of tubes of radius λ (see page 69), one
observes that the identity

]P(U0)[P,λm∩]P(U)[P,λm=]P(U0) ∩ P(U)[P,λm

holds. Both Pn,rigK \]P(U0)[P,λm and Pn,rigK \]P(U)[P,λm are finite unions of affinoid spaces which is seen

by using the standard affinoid covering of Pn,rigK . Therefore, the covering

Pn,rigK \]P(U0) ∩ P(U)[P,λm= Pn,rigK \]P(U0)[P,λm∪ Pn,rigK \]P(U)[P,λm

has a refinement consisting of finitely many affinoid subsets and is thus admissible. By [27, 1.1.11 (c)],
this implies that(

Pn,rigK \]P(U0) ∩ P(U)[P,λm

)ad
=
(
Pn,rigK \]P(U0)[P,λm

)ad
∪
(
Pn,rigK \]P(U)[P,λm

)ad
,

thus

x ∈
(
Pn,ad
K \

(
Pn,rigK \]P(U0)[P,λm

)ad
)
∩
(
Pn,ad
K \

(
Pn,rigK \]P(U)[P,λm

)ad
)

= Pn,ad
K \

((
Pn,rigK \]P(U0)[P,λm

)ad
∪
(
Pn,rigK \]P(U)[P,λm

)ad
)

= Pn,ad
K \

(
Pn,rigK \]P(U0 ∩ U)[P,λm

)ad
.

It follows that U0 ∩U cannot be equal to (0) and, by minimality of U0, this means that U0 ∩U = U0.
Therefore, the identity map id : X → X fulfills

U0, U ⊂ id(U)

for all U ∈ X and, again by Quillen’s criterion, the simplicial complex X• associated with X is
contractible (cf. the construction in the proof of Proposition 3.2.1.1). This implies that the chain
complex

(0)→ Fx →
⊕
I(∆

#I=n−1

⊕
g∈G/PI
x∈Zmg,I

Fx → . . .→
⊕
I(∆
#I=1

⊕
g∈G/PI
x∈Zmg,I

Fx →
⊕

g∈G/P∅
x∈Zm

g,∅

Fx → (0)

associated with X• with values in X is acyclic. Since this complex is precisely the localization of (3.8)
with respect to x, the proposition is proved.
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3.3.2 Construction of a Spectral Sequence

Let m ∈ N and consider the case that F = ZZm is the constant sheaf on Zm with value Z. Let

ιm : Zm ↪→ Pn,ad
K

be the inclusion which is in particular a closed embedding. For r = 0, . . . , n− 1, set

Fr =
⊕
I(∆

#I=n−1−r

FI .

As in Subsection 2.1.1, there is then a (second quadrant) spectral sequence

Er,s1 = Exts(ιm∗F−r, E i,ad ) =⇒ Extr+s(ιm∗F , E i,ad ) = Hr+s
Zm (Pn,ad

K , E i,ad ).

This spectral sequence is evaluated in the next subsection. Recall that

Y m =
⋃
I(∆

⋃
g∈G/PI

]g.YI [P,λm .

It follows from (3.7) that

Hr+s
Zm (Pn,ad

K , E i,ad ) = Hr+s
Ym (Pn,rigK , E i).

3.3.3 Evaluation of the Spectral Sequence

The E1-Page

Lemma 3.3.3.1. Let r, s ∈ Z. Then there is an identification

Er,s1 =
⊕
I(∆

|I|=n−1+r

Ind
G(V)
PI(V)(1)H

s
]YI [P,λm

(Pn,rigK , E i).

Proof. For brevity, write Z = Z]Y(n+1)[ad
P,λm

. Then

Er,s1 = Exts(ιm∗F−r, E i,ad )

=
⊕
I(∆

|I|=n−1+r

⊕
g∈G/PI

Exts(ιm∗(δg,I)∗(δg,I)
−1Z, E i,ad )

=
⊕
I(∆

|I|=n−1+r

⊕
g∈G/PI

Exts((ιm ◦ δg,I)∗Z|Zmg,I , E
i,ad )

=
⊕
I(∆

|I|=n−1+r

⊕
g∈G/PI

Hs
Zmg,I

(Pn,ad
K , E i,ad )

∼=
⊕
I(∆

|I|=n−1+r

⊕
g∈G/PI

Hs
]g.YI [P,λm

(Pn,rigK , E i) (3.9)

=
⊕
I(∆

|I|=n−1+r

⊕
g∈G(V)/PI(V)(1)

Hs
g.]YI [P,λm

(Pn,rigK , E i)

=
⊕
I(∆

|I|=n−1+r

Ind
G(V)
PI(V)(1)H

s
]YI [P,λm

(Pn,rigK , E i),
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where the isomorphism (3.9) is an application of (3.7). Here, the fact that g.]YI [P,λm=]ḡ.YI [P,λm for

all g ∈ G(V) is used to establish the action of the group G(V) on
⊕

g∈G/PI Hs
]g.YI [P,λm

(Pn,rigK , E i). For

this and also for the definition of the subgroup PI(V)(1) ⊂ G(V), cf. the proof of Lemma 3.2.3.1.

Note that the action of G(V) on Bn+1(K̂) = {x = (x0, . . . , xn) | ∀i = 0, . . . , n : |xi| ≤ 1} given by

(g, x) 7→ xg−1 preserves the unimodular points of Bn+1(K̂).

By definition, YI = Pi1k for ∆ \ I = {αi1 , . . . , αit} with i1 < . . . < it (cf. the construction in
Subsection 2.1.1) so that

Hs
]YI [P,λm

(Pn,rigK , E i) = Hs

]Pi1k [P,λm
(Pn,rigK , E i).

In [44, 1.3] it is shown that Hs

]Pi1k [P,λm
(Pn,rigK , E i) carries the structure of a K-Banach space in such a

way that the inclusion
Hs

Pi1,rigK

(Pn,rigK , E i) ⊂ Hs

]Pi1k [P,λm
(Pn,rigK , E i)

of the algebraic local cohomology space Hs

Pi1,rigK

(Pn,rigK , E i) has dense image. Thus, for s 6= n − i1, the

description of the local cohomology modules amounts to

Hs

]Pi1k [P,λm
(Pn,rigK , E i) =

{
(0) if s < n− i1
Hs(Pn,rigK , E i) if s > n− i1,

(3.10)

cf. the remarks at the beginning of Section 2.2. Write

M s
I =

Hs
]Pn−sk [rigP,λm

(Pn,rigK , E i) if αn−s /∈ I

Hs(Pn,rigK , E i) if αn−s ∈ I

for I ( ∆, s ∈ {2, . . . , n}. Then, each row E•,s1 with s ∈ {1, . . . , n} of the E1-page of the spectral
sequence has the following shape: For s ∈ {2, . . . , n}, one gets

E•,s1 : E
−(s−1),s
1 = Ind

G(V)
P{α0,...,αn−1−s}(V)(1)H

s
]Pn−sk [P,λm

(Pn,rigK , E i)→

E
−(s−2),s
1 =

⊕
I(∆

#I=n−s+1
α0,...,αn−1−s∈I

Ind
G(V)
PI(V)(1)M

s
I → . . .→ E0,s

1 =
⊕
I(∆

#I=n−1
α0,...,αn−1−s∈I

Ind
G(V)(1)
PI(V)(1)M

s
I .

For s = 1, one gets

E•,11 : E0,1
1 = Ind

G(V)
P{α0,...,αn−2}(V)(1)H

1
]Pn−1
k [rigP,λm

(Pn,rigK , E i).

The E2-Page

The evaluation of the E2-page proceeds in complete analogy with [44, 2.2], the notable difference to
the present case being the avoidance of duals. The main point – at least in the present case – is
that for each s ∈ {2, . . . , n}, the complex E•,s1 is acyclic apart from the positions −(s − 1) and 0, cf.
[44, 2.2.4]. In order to avoid any (more) repetition, the proof of the following proposition is therefore
omitted.

Proposition 3.3.3.2. The E2-page of the above spectral sequence has the following description:

i) If r = 0 and s ∈ {2, . . . , n}, then
Er,s2 = Hs(Pn,rigK , E i).
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ii) If s ∈ {2, . . . , n} and r = −(s− 1), then there are short exact sequences of G-modules

(0) → Ind
G(V)
P(n+1−s,s)(V)(1)

(
H̃
s
]Pn−sk [P,λm

(Pn,rigK , E i)⊗ Sts(K)
)
→ E

−(s−1),s
2

→ v
G(V)
P(n+1−s,1s)(V)(1)(K)′ ⊗K Hs(Pn,rigK , E i)→ (0)

where

• the P(s+1−j,s)(V)(1)-module Sts(K) is the inflation to P(s+1−j,s)(V)(1) of the Steinberg rep-
resentation (over K) of the factor GLs(V) of L(n+1−s,s)(V), cf. Subsection 1.2.3, and

• the P(s+1−j,s)(V)(1)-module H̃
n−j
]PjK [P,λm

(Pn,rigK , E i) is defined as

H̃
n−j
]PjK [P,λm

(Pn,rigK , E i) = ker

(
Hn−j

]PjK [P,λm
(Pn,rigK , E i) d−→ Hn−j(Pn,rigK , E i)

)
,

where d is the (P(s+1−j,s)(V)(1)-equivariant) map appearing in the long exact sequence as-
sociated with local cohomology of rigid analytic varieties as defined in the beginning of this
subsection.

iii) In all other cases, Er,s2 = 0.

Degeneration and the resulting Filtration

With the same arguments as in [44, p. 633], the spectral sequence degenerates on its E2-page and
therefore, E2 = E∞ describes filtration steps of a (descending) filtration by G(V)-submodules on
H1
Ym(Pn,rigK , E i). This filtration can be pulled back along the G(V)-morphism

H0(Um, E i)→ H1
Ym(Pn,rigK , E i).

Theorem 3.3.3.3. On each H0(Um, E i), there exists a filtration

E i(Um)• =
(

H0(Um, E i) = E i(Um)0 ⊃ E i(Um)1 ⊃ . . . ⊃ E i(Um)n−1 ⊃ E i(Um)n = H0(Pn,rigK , E i)
)

by G(V)-submodules such that each filtration step appears in a short exact sequence

(0) → Ind
G(V)
P(j+1,n−j)(V)(1)(H̃

n−j
]Pjk[P,λm

(Pn,rigK , E i)⊗ Stn−j(K))→ (E i(Um)j/E i(Um)j+1)

→ v
G(V)
P

(j+1,1n−j)
(V)(1)(K)′ ⊗K Hn−j(Pn,rigK , E i)→ (0)

for j = 0, . . . , n− 1. For j = n, there is an identification

E i(Um)n = H0(Pn,rigK , E i).

These filtrations are compatible with G-equivariant morphisms between the involved sheaves.

Proof. The proof is in complete analogy with the one of the corresponding result [44, Cor. 2.2.9], the
notable exception again being avoidance of the use of duals. The compatibility assertion is proved in
[45, Lemma 4].
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3.3.4 Computation of the Rigid Cohomology Modules

From Theorem 3.3.3.3, one obtains a G(V)-filtration lim−→
m∈N
E i(Um)• of each

H0(Pn,rigK , lim−→
m∈N

jm∗j
∗
mE i) = lim−→

m∈N
H0(Pn,rigK , jm∗j

∗
mE i) = lim−→

m∈N
H0(Um, E i),

i ∈ {0, . . . , n}, (which is also compatible with morphisms between the involved sheaves) such that
each filtration step appears in a short exact sequence

(0) → lim−→
m∈N

Ind
G(V)
P(j+1,n−j)(V)(1)(H̃

n−j
]Pjk[P,λm

(Pn,rigK , E i)⊗ Stn−j(K))→ lim−→
m∈N

(E i(Um)j/E i(Um)j+1)

→ v
G(V)
P

(j+1,1n−j)
(V)(1)(K)′ ⊗K Hn−j(Pn,rigK , E i)→ (0)

for j = 0, . . . , n− 1. Here, one of course uses the fact that taking the direct limit lim−→
m∈N

in this context

preserves exactness and thus is also compatible with taking quotients. For j = n, one gets

lim−→
m∈N
E i(Um)n = lim−→

m∈N
H0(Pn,rigK , E i) = H0(Pn,rigK , E i).

These filtrations can now be used to compute the rigid cohomology modules of X (n+1) as G-
modules. The methods used are those of [45] by Orlik.

First of all, compatibility with G-morphisms (see Theorem 3.3.3.3) gives complexes

(0) → lim−→
m∈N
E0(Um)j/E0(Um)j+1 → lim−→

m∈N
E1(Um)j/E1(Um)j+1 → . . .

→ lim−→
m∈N
En(Um)j/En(Um)j+1 → (0)

for j = 0, . . . , n−1 (induced by the complex E•) the totality of which can be considered as the E0-page
of the spectral sequence induced by the filtered complex

(0)→ lim−→
m∈N
E0(Um)→ lim−→

m∈N
E1(Um)→ . . .→ lim−→

m∈N
Er(Um)→ (0)

computing H∗rig(X (n+1)/K, E), i.e.

Er,s0 = lim−→
m∈N
Er+s(Um)r/ lim−→

m∈N
Er+s(Um)r+1 =⇒r Hr+s

rig (X (n+1)/K, E). (3.11)

Depending on some cohomological information about E , one might now be able to compute this
spectral sequence and thus H∗rig(X (n+1)/K, E) explicitly. As an illustration, consider again

E = OPn,rigK
,

i.e.
E i = Ωi

Pn,rigK /K
,

which has the following property:
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Lemma 3.3.4.1. The complex

(0) → lim−→
m∈N

H̃
n−j
]Pjk[P,λm

(Pn,rigK ,Ω0
Pn,rigK /K

)→ lim−→
m∈N

H̃
n−j
]Pjk[P,λm

(Pn,rigK ,Ω1
Pn,rigK /K

)→ . . .

→ lim−→
m∈N

H̃
n−j
]Pjk[P,λm

(Pn,rigK ,Ωn
Pn,rigK /K

)→ (0)

is acyclic for all j = 0, . . . , n− 1.

Proof. (cf. the proof of [45, Prop. 5]) Fix j ∈ {0, . . . , n − 1}. First of all, by construction, there are
isomorphisms

H̃
n−j
]Pjk[P,λm

(Pn,rigK ,Ωi
Pn,rigK /K

) ∼= coker
(

Hn−j−1(Pn,rigK ,Ωi
Pn,rigK /K

)→ Hn−j−1(Pn,rigK \]Pjk[P,λm ,Ω
i
Pn,rigK /K

)
)

for all i = 0, . . . , n. As n− j − 1 < n− j, it follows from (3.10) that

Hn−j−1

]Pjk[P,λm
(Pn,rigK ,Ωi

Pn,rigK /K
) = (0)

for all i = 0, . . . , n. Therefore, for each i ∈ {0, . . . , n}, using the long exact sequence from local
cohomology, one obtains a short exact sequence

(0) → lim−→
m∈N

Hn−j−1(Pn,rigK ,Ωi
Pn,rigK /K

) = Hn−j−1(Pn,rigK ,Ωi
Pn,rigK /K

)

→ lim−→
m∈N

Hn−j−1(Pn,rigK \]Pjk[P,λm ,Ω
i
Pn,rigK /K

)→ lim−→
m∈N

H̃
n−j
]Pjk[P,λm

(Pn,rigK ,Ωi
Pn,rigK /K

)→ (0)

– again by exactness of lim−→
m∈N

– which then gives rise to a short exact sequence of complexes

(0) →
(

Hn−j−1(Pn,rigK ,Ωi
Pn,rigK /K

)
)
i=0,...,n

→

(
lim−→
m∈N

Hn−j−1(Pn,rigK \]Pjk[P,λm ,Ω
i
Pn,rigK /K

)

)
i=0,...,n

→

(
lim−→
m∈N

H̃
n−j
]Pjk[P,λm

(Pn,rigK ,Ωi
Pn,rigK /K

)

)
i=0,...,n

→ (0).

Application of the Snake Lemma then yields a long exact sequence of cohomology objects

. . . → hl−1

(
lim−→
m∈N

H̃
n−j
]Pjk[P,λm

(Pn,rigK ,Ωi
Pn,rigK /K

)

)
i=0,...,n

→ hl
(

Hn−j−1(Pn,rigK ,Ωi
Pn,rigK /K

)
)
i=0,...,n

→ hl

(
lim−→
m∈N

Hn−j−1(Pn,rigK \]Pjk[P,λm ,Ω
i
Pn,rigK /K

)

)
i=0,...,n

→ hl

(
lim−→
m∈N

H̃
n−j
]Pjk[P,λm

(Pn,rigK ,Ωi
Pn,rigK /K

)

)
i=0,...,n

→ . . . .

Now, because of the fact that

h∗
(

Hn−j−1(Pn,rigK ,Ωi
Pn,rigK /K

)
)
i=0,...,n

= K[−(n− j − 1)] (3.12)

by rigid GAGA, cf. [12, 4.10.5], it is sufficient to show that

h∗

(
lim−→
m∈N

Hn−j−1(Pn,rigK \]Pjk[P,λm ,Ω
i
Pn,rigK /K

)

)
i=0,...,n

= K[−(n− j − 1)] (3.13)
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to prove the lemma. This will be done by computing the rigid cohomology H∗rig((Pnk \ P
j
k)/K) from a

system of strict open neighborhoods of ]Pnk \P
j
k[P in Pn,rigK and then comparing with the formula which

can be obtained from (3.1):

By definition,

Pnk \ P
j
k =

n⋃
l=j+1

D+(Tl),

with closed complement Pjk =
⋂n
l=j+1 V+(Tl) in Pnk . For each m ∈ N, set

Wm = Pn,rigK \]Pjk[P,λm

and denote by
fm : Wm ↪→ Pn,rigK

the inclusion. By construction (see page 69), the system (Wm)m∈N is a cofinal system of strict open
neighborhoods of ]Pnk \ P

j
k[P in Pn,rigK . Thus, by definition,

H∗rig((Pnk \ P
j
k)/K) = H∗(Pn,rigK , lim−→

m∈N
fm∗f

∗
mΩ•Pn,rigK /K

).

Taking the tube of radius λ commutes with taking finite intersections of closed subspaces (cf. [37,
2.3.5]). Therefore,

Wm = Pn,rigK \
n⋂

l=j+1

]V+(Tl)[P,λm

=

n⋃
l=j+1

Pn,rigK \]V+(Tl)[P,λm

and thus each fm is a quasi-Stein morphism in the sense of [37, p. 20], since Wm is a finite union of
affinoid varieties, cf. (the proof of) Lemma 3.3.0.4, ii). This particularly implies that the higher direct
image Rifm∗ vanishes for i > 0 so that the above hypercohomology can be computed as

H∗(Pn,rigK , lim−→
m∈N

fm∗fm
∗Ω•Pn,rigK /K

) = lim−→
m∈N

H∗(Pn,rigK , fm∗f
∗
mΩ•Pn,rigK /K

)

= lim−→
m∈N

H∗(Wm, f∗mΩ•Pn,rigK /K
)

= lim−→
m∈N

H∗(Wm,Ω•Pn,rigK /K
).

Therefore, it can be computed as the cohomology of the total complex associated with the double
complex  lim−→

m∈N

⊕
j+1≤l0<...<lr≤n

Γ

(
r⋂
e=0

Pn,rigK \]V+(Tle)[P,λm ,Ω
s
Pn,rigK /K

)s=0,...,n

r=0,...,n−j

which has, say, as r-th row the Čech complex for the sheaf Ωr
Pn,rigK

, r = 0, . . . , n, associated with the

above covering of W λm . Taking cohomology along the rows of this double complex yields the E1-page
of a spectral sequence

Er,s1 = lim−→
m∈N

Hs(Pn,rigK \]Pjk[P,λm ,Ω
r
Pn,rigK /K

) =⇒ H∗rig((Pnk \ P
j
k)/K).
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Combining (3.10) with the long exact local cohomology sequence and (3.12), one now obtains the
desired result (3.13) from computing the E2-page of this spectral sequence: it can be seen from (3.1),
again using the long exact cohomology sequence for rigid cohomology, that

H∗rig((Pnk \ P
j
k)/K) =

n−j−1⊕
l=0

K[−2l].

It follows that the complex

(0) → lim−→
m∈N

Ind
G(V)
P(j+1,n−j)(V)(1)

(
H̃
n−j
]Pjk[P,λm

(Pn,rigk ,Ω0
Pn,rigK /K

)⊗ Stn−j(K)
)
→ . . .

→ lim−→
m∈N

Ind
G(V)
P(j+1,n−j)(V)(1)

(
H̃
n−j
]Pjk[P,λm

(Pn,rigk ,Ωn
Pn,rigK /K

)⊗ Stn−j(K)
)
→ (0)

is acyclic for all j = 0, . . . , n− 1, hence the E1-page of the spectral sequence (3.11) computes as

Er,s1 = hs(Er,•0 )

= hs( lim−→
m∈N
Fr+•(Um)r/Fr+•(Um)r+1)

= hs(v
G(V)
P(r+1,1n−r)(V)(1)(K)′ ⊗K Hn−r(Pn,rigk ,Ωr+•

Pn,rigK /K
))

=

{
v
G(V)
P(r+1,1n−r)(V)(1)(K)′ if r ∈ {0, . . . , n}, s = n− 2r

(0) else.

From this shape it follows that the spectral sequence degenerates on its E1-page, i.e.

Er,s1 = Er,s∞ = grr(hr+s( lim−→
m∈N

Ω•Pn,rigK /K
(Um))) = grr(Hr+s

rig (X (n+1)/K)).

Furthermore, for each I ( ∆, the natural identification

G(V)/PI(V)(1)→ G/PI

of sets with G(V)-action yields an isomorphism

v
G(V)
PI(V)(1)(K)

∼−→ vGPI (K)

of G(V)-modules. Therefore, the following theorem is (re)proved:

Theorem 3.3.4.2. The rigid cohomology of X (n+1) is given by

H∗rig(X (n+1)/K) =

n⊕
i=0

vGP(1+n−i,1i)
(K)′[−i].

Adding Tate twists then yields the formula that would be obtained from Theorem 3.2.4.3 by using
Poincaré duality.
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