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Kurzfassung

3D-Polarized Light Imaging (3D-PLI) ist eine Methode, welche die optischen Eigen-
schaften von myelinisierten Nervenfasern nutzt, um die anatomische Konnektivität
in post-mortem Gehirnen zu erforschen. Für die dargelegte Studie wurden zwei un-
terschiedliche optische Systeme verwendet: das Large Area Polarimeter (LAP) und
das Polarizing Microscope (PM). In beiden Systemen werden histologische Schnitte
untersucht, indem diese mit polarisiertem Licht durchleuchtet werden. Aus der
gemessenen Änderung des Polarisationszustandes des Lichtes, die durch das dop-
pelbrechende Gewebe verursacht wird, können die räumlichen Verläufe von Nerven-
fasern bestimmt werden. Im Falle von menschlichen Gehirnschnitten fällt ein Daten-
volumen von bis zu einem Terabyte an. Da das gemessene Signal durch Rauschen,
Streuung und Filterinhomogenitäten beeinflußt wird, wurde die Independent Com-
ponent Analysis (ICA) eingeführt, die bisher nur für das LAP eine Wiederherstellung
des ursprünglichen 3D-PLI Signals ermöglicht. Die Signalstärke, die mit der dop-
pelbrechenden Myelinscheide skaliert, variiert von der grauen zur weißen Substanz.
So weisen schwache Signale, die in der grauen und an Grenzen zwischen der grauen
und weißen Substanz liegen, ein geringeres Signal-Rausch-Verhältnis auf als stärkere
Signale in der weißen Substanz.
Aus diesem Grund führt diese Arbeit ein neues datenorientiertes ICA-Verfahren ein,
welches spezifisch für die graue und die angrenzende weiße Substanz der vorhande-
nen Messdaten optimiert wurde. Die Methode basiert auf der constrained ICA,
worin apriori Informationen der unterliegenden Signale genutzt werden, um die
Signaltrennung zu optimieren und zu beschleunigen. Die verwendeten apriori Infor-
mationen bestehen aus den Verteilungsfunktionen der grauen und weißen Substanz,
was zu einer gewebespezifischen Signaltrennung führt. Das neue Verfahren weist
im Vergleich zu der gegenwärtigen ICA für 3D-PLI eine schnellere Signaltrennung
und erhöhte Signalverbesserung auf. Zusätzlich ist ein neues Konzept der ICA, das
auf großen Datensätzen des PMs basiert, entwickelt worden. Die Nutzung von High
Performance Computing (HPC) und des datenorientierten ICA-Verfahrens ist in
der neuen parallelisierten ICA-Methode einbezogen worden.
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Abstract

3D-Polarized Light Imaging (3D-PLI) is a method which uses the optical properties
of myelinated fiber tracts to investigate the anatomical connectivity in post-mortem
human brains. For the presented study, two different optical systems were used to
map connectivity: the Large Area Polarimeter (LAP) and the Polarizing Micro-
scope (PM). In both systems the histological sections are studied by passing linear
polarized light. From the measured changes of polarized light caused by passing
through a birefringent tissue, the 3D-information of the nerve fibers are extracted.
These optical systems provide for human histological sections image sizes up to one
Terabyte. Since the measured polarized light signal is deteriorated by noise, light
scatter and filter inhomogeneities to name a few, Independent Component Analysis
(ICA) was introduced only for the LAP to recover the original PLI signal on a whole
histological section. The signal strength, which scales with the multiple layers of
the birefringent myelin sheaths, varies from the gray matter to the white matter.
Thus, weaker signals located in the gray and at boundaries between gray and white
matter are more afflicted with noise than stronger signals in the white matter.
This thesis introduces a new data-driven ICA approach specifically developed for
the gray and boundaries between gray and white matter of histological sections.
The method is based on constrained ICA, where a priori information of the un-
derlying sources is used to optimize and accelerate signal decomposition. Thereby,
prior information is incorporated by using the density distribution of the gray and
white matter, which leads to a tissue specific signal decomposition algorithm. The
new approach reveals a faster signal separation and increased signal enhancement
compared to the current standard ICA approach in 3D-PLI. Additionally, a new con-
cept for applying ICA on large high-resolution data sets of the PM is introduced.
The exploitation of High Performance Computing (HPC) and the data-driven ICA
approach are included in the new parallelized ICA method.
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1. Introduction

In the 21st century a major challenge in neuroscience is the decoding of the human
brain. To understand the human brain it is fundamental to gain profound insights
in structural and functional brain connectivity. For the structural connectivity an
essential aspect are the linkages of the morphological entities such as neurons. Since
the beginning of the 20th century, it is well known that myelinated nerve fibers
of neurons in the brain exhibit optical birefringence [45, 99, 100]. Birefringence
is induced by the regular arrangement of proteins and lipids in the myelin sheath,
which surrounds most nerve fibers [9, 81]. During the late 1990s a polarizing imaging
technique was developed based on the optical birefringence of the myelin sheaths
[5–7]. This new technique, which is referred to as 3D-Polarized Light Imaging (3D-
PLI), visualizes the fiber architecture in post-mortem human brains at macroscopic
and microscopic scales [6, 8, 9]. 3D-PLI is able to map the courses of single fibers
up to thick fiber bundles within a brain. Therefor, two different optical systems
are available: the Large Area Polarimeter (LAP) and the Polarizing Microscope
(PM). For both optical systems the post-mortem brain is cut into thin histological
sections of about 50 µm− 70 µm yielding up to 3500 histological sections. The LAP
and PM generate raw images of different data volumes ranging from approximately
a few hundred Megabyte (MB) up to one Terabyte (TB) for each histological brain
section, which results in TBs of data for a whole brain. Thus, image processing
and analysis methods that are scalable to handle Big Data problems are of crucial
importance.

One of these image processing methods is the Independent Component Analysis
(ICA), which has been successfully used in a variety of neuroscience applications,
both for analyzing brain data recorded in the time domain [31, 33, 67, 97] as well
as in the spatial domain [11, 13, 14, 36]. Dammers et al. [30, 32] introduced the
first application of ICA on 3D-PLI and showed that the measured birefringence
signals which are afflicted with noise and artifact components can be restored to
their original state. Motivated by these results a new algorithm, referred to as
constrained ICA for Polarized light imaging (cICAP), has been developed by Breuer
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1. Introduction

et al. [21]. In cICAP, an expected birefringence signal is incorporated to improve
the signal separation quality with a directly included component selection. So far,
the application of the cICAP was only developed for the LAP setup and tested on
whole histological brain sections yielding a general decomposition of deteriorated
measured signals in both gray and white matter. Since noise and artifacts have a
signal strength that can deteriorate the measured signal of the birefringence signal
different in gray and white matter, a specific cICAP application adapted on these
different brain tissue types is essential. Moreover, due to the challenge of processing
data in the MB to TB range, which includes parallel I/O, analysis, storage, transfer
and efficient usage of the provided hardware, a parallelized cICAP for LAP and PM
is required that can exploit High Performance Computing (HPC).

This thesis focuses on adapting the cICAP for different brain tissue types and on de-
veloping a novel and fast parallelized cICAP for both the LAP and PM setup. The
thesis is composed of eight chapters. The principles of 3D-PLI including the cur-
rent work flow and signal interpretation, for which the cICAP is used and has been
optimized are described in the second chapter. In Chapter 3 the concept of cICAP
is explained. The cICAP is based on Information based maximization (Infomax)
[15], a deep-rooted principle in information theory, and Chapter 4 provides relevant
aspects in HPC. Chapter 5 describes the development and validation of the newly
adapted cICAP on different tissue types. In Chapter 6 the intrinsic parameters in
cICAP, i.e., threshold and confidence parameter and stopping criterion, are opti-
mized with the help of the Downhill Simplex Algorithm (DSA). Chapter 7 presents
a new parallelized concept for cICAP, which is developed specifically for processing
ICA on Big Data in 3D-PLI. The results of the newly developed parallelized cICAP
are then compared with the sequential and newly adapted cICAP. Furthermore, a
hybrid implementation using Compute Unified Device Architecture (CUDA) and the
Message Passing Interface (MPI) is proposed. The presented results are critically
discussed in Chapter 8. Based on the discussion, Chapter 9 concludes and indicates
new paths for future research.
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2. Principles of 3D-Polarized Light
Imaging

3D-PLI determines the orientations of nerve fibers in histological sections of post-
mortem brains down to the micrometer level by measuring local changes in the
polarization state of light [6, 8, 9]. Due to the birefringence of the myelin sheaths
of the nerve fibers the linearly polarized light is refracted in two rays experiencing a
phase shift (retardation) when passing the brain tissue. The change of the incoming
linearly polarized light caused by the brain tissue can be quantified by the “Jones
Calculus” [64, 65] (Sec. 2.3), enabling the determination of the 3D fiber orientation.

The following sections describe the 3D-PLI workflow, starting from the prepara-
tion procedure of the brain tissue (Sec. 2.1), followed by the polarimetric measure-
ments in the LAP and the PM (Sec. 2.2). The theoretical background for analyzing
polarimetric signals is described in Section 2.4. In Section 2.5 an outline of the
post-processing of the acquired polarimetric images is given.

For the sake of clarity and comprehension, the definition of variables and abbrevia-
tions for the following sections are summarized in Table 2.1.

Table 2.1.: Definition of variables and abbreviations in this chapter.

definition
A Ideal linear vertical polarizer
α Out-of-plane/Inclination angle
a0, a1, b1 Fourier coefficients
β Absolute positions of the PM tiles
β̂ Estimated absolute positions of the PM tiles
δ Phase shift
d Thickness of the brain section

Some parts of this chapter have been adapted from my diploma thesis [105]
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2. Principles of 3D-Polarized Light Imaging

~E′ Outgoing electric field
~E Incoming electric field
f(uρ) Theoretically expected function
g(ρ) Gain factor
λ Wavelength
Mtissue Assumed model of birefringent tissue as a single retarder
Mλ/4 Quarter-wave retarder
∆n Local birefringence
ω Weighting factor
P Ideal linear horizontal polarizer
ϕ In-plane/Direction angle
R Rotation matrix
ρ Rotation angle
t̂ Translation vector
wrGOF Weighted relative goodness-of-fit
X Regressor matrix

CCD Charge-Coupled Device
EPA Efficient PLI Analysis
FOM Fiber Orientation Map
LAP Large Area Polarimeter
LED Light Emitting Diode
PM Polarizing Microscope
sICA Spatial Independent Component Analysis
3D-PLI 3D-Polarized Light Imaging
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2. Principles of 3D-Polarized Light Imaging

2.1. Histological Preparation of Brain Tissue

In order to investigate the nerve fibers, the brain has to be cut into sections. Since
3D-PLI is restricted to post-mortem brains, the current workflow starts with this
histological preparation of the brain tissue and its subsequent slicing.

The first step after removing the brain from the skull is the fixation of the brain.
The brain is immersed in a 4% buffered formaldehyde solution [8], which conserves
the brain and prevents the decay of myelin. This step is followed by a cryoprotection
step preventing the development of ice crystals, for which the brain is immersed in
a 20% solution of glycerin for several days. After the cryoprotection the brain is
frozen to −80°C and cut into sections with a thickness between 50 µm and 70 µm

using a large scale cryostat microtome. Finally, the brain sections are mounted onto
glass slides, embedded in glycerin, covered by a glass sheet and sealed with lacquer.

2.2. Polarimetric Measurement

3D-PLI enables the investigation of morphological entities such as nerve fibers at
different spatial scales. In general, passing linearly polarized light through a bire-
fringent tissue results in local changes of the polarization state of light, which is
then captured by a camera. This principle is referred to as polarimetry. In 3D-PLI
two fully automatized rotating polarimeter are employed: the LAP and the PM
(Fig. 2.1). The LAP has an in-plane sampling resolution of 64 µm × 64 µm and al-
lows the mapping of small fiber bundles, whereas the PM has an in-plane sampling
resolution of 1.33 µm×1.33 µm, which enables to visualize a high level of detail such
as single fibers. Due to the field of view of 24 cm in diameter in the LAP, single-shot
imaging of a whole histological section is performed. In contrast, the PM enables a
tessellated scan of a whole histological section covering an area of 2.7 mm× 2.7 mm

[9].

Both setups consist of a light source, two linear polarizers (Fig. 2.1 (I, IV)), a
specimen stage (Fig. 2.1 (II)), a quarter-wave retarder (Fig. 2.1 (III)) and a high-
resolution, light-sensitive camera (Charge-Coupled Device (CCD)). For the LAP
setup, a green Light Emitting Diode (LED) grid is used that emits partial unpolar-
ized light. The first linear polarization filter (polarizer, (IV)) converts the incoming
unpolarized light into linearly polarized light. The quarter-wave retarder (III) is
employed to transform the linearly polarized light from the polarizer into circularly
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2. Principles of 3D-Polarized Light Imaging

ρ

ρ

ρ

ρ
I. linear polarizer

II. specimen stage
(with brain tissue)

III. quarter-wave
retarder

IV. linear polarizer

camera light source
(with band-pass filter)

cameralight source

Large-area Polarimeter (LAP) Polarizing Microscope (PM)

ν

Figure 2.1.: Measurement setup for the LAP and the PM in 3D-PLI. The light path
is illustrated (green arrow) going through all optical elements in the
polarimeter of the LAP and PM. During the measurement the labeled
optical elements are rotated simultaneously at 18 different rotation an-
gles ρ ranging from 0° to 170°. Only the specimen stage in the LAP can
be tilted by an angle ν in the range of 0° to 8°.

polarized light. With respect to the birefringence of the myelin sheaths in the his-
tological section, the mounted brain tissue in the specimen stage (II) induces an
additional phase shift to the refracted rays of the incoming light so that the out-
coming light is elliptically polarized. The transmission axis of the second linear
polarizer (analyzer, (I)) is set perpendicular to the transmission axis of the first
one. At the end of the light path a CCD camera captures the transmitted light
(Fig. 2.1).
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2. Principles of 3D-Polarized Light Imaging

There are a few differences between the two systems LAP and PM. In the LAP, the
light is passed through the optical system from below and the specimen stage can be
tilted from 0° to 8°. The tilting of the specimen allows a more accurate determination
of the out-of-plane angles of the nerve fibers [9, 109]. Furthermore, the polarizer,
the quarter-wave retarder and the analyzer are rotated simultaneously. In the PM,
the light comes from above and a white LED with a band-pass filter is used. After
each acquisition of the PM tile the specimen stage is moved in meandering pattern
with an overlap of 30% between the tiles.

A standard 3D-PLI measurement produces an image for each rotation angle in the
range of ρ = 0°, 10°, ..., 170°, so that a series of 18 images is acquired. The signal
profiles of two pixels located on a birefringent myelinated and a non-birefringent
nerve fiber, respectively, are exemplary illustrated in Figure 2.2. A non-birefringent
nerve fiber is characterized by a flat curve, whereas birefringent myelinated nerve
fibers show sinusoidal profiles.

0 45 90 135 180
rotation angle ρ(◦)

2000

4000

6000

8000

10000

12000

li
g
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in
te

n
s
it

y
 (

a
.u

.)

birefringent

non-birefringent

Figure 2.2.: Example of light intensities of two pixels at different rotation angles ρ.
Each data point (circle) corresponds to one measured intensity value of
two pixels located on a birefringent myelinated nerve fiber (blue) and
on a non-birefringent nerve fiber (red), respectively.
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2. Principles of 3D-Polarized Light Imaging

2.3. Jones Calculus applied on 3D-PLI

In optics, a mathematical description of polarized light in an optical system was
introduced by R. C. Jones in 1941 [65] and 1942 [64]. Mathematically, the effect of
a linear polarization filter on a polarized light beam can always be represented as a
linear transformation of the components of the electric field vector. This algorithm
is referred to as “Jones Calculus”. The “Jones Calculus” can only describe completely
polarized light. With respect to the two transverse components of the electric field
vector of the light, linear polarizing filters and retardation plates can be expressed
as two-by-two matrices.

In the analysis of 3D-PLI, it is assumed that each volume element of the brain tissue,
which contributes to one image pixel, acts as a single retarder due to its birefringent
properties. Hence, the 3D-PLI setup for the LAP at every pixel location px and py
may be mathematically expressed as (the mathematical expression for the PM is
described in Appendix A.2)

~E′px, py = Apx, py ·Mtissue, px, py ·Mλ/4, px, py · Ppx, py · ~Epx, py, (2.1)

where ~E′px, py is the outgoing electric field vector, ~Epx, py is the incoming electric field
vector of the LAP setup, Ppx, py and Apx, py correspond to two orthogonal linear
polarizers, Mλ/4, px, py describes a quarter-wave retarder and Mtissue, px, py denotes
the assumed model of birefringent tissue as a single retarder (see Appendix A).
Mtissue, px, py is expressed as

Mtissue, px, py = Rpx, py [− (ρ− ϕ)] ·
(
e

i
2
δ 0

0 e−
i
2
δ

)
·Rpx, py (ρ− ϕ) , (2.2)

where i is the imaginary unit, Rpx, py is a rotation matrix, δ describes the phase
retardation and ϕ denotes the in-plane fiber direction. It is noted that the embodied
polarization filters are rotated simultaneously in counter-clockwise direction with an
angle ρ. For simplicity, the mathematical equivalence is considered in which only
the specimen stage is rotated in counter-clockwise direction with an angle −ρ while
the polarization filters are fixed. Furthermore, the rotation matrix Rpx, py is given
by

8



2. Principles of 3D-Polarized Light Imaging

Rpx, py (ρ− ϕ) =

(
cos (ρ− ϕ) sin (ρ− ϕ)

− sin (ρ− ϕ) cos (ρ− ϕ)

)
. (2.3)

The retardation δ is the phase shift induced to the electric vector of the incident
light through the birefringent brain tissue. This phase shift between the compo-
nents of the electric vector depends on the thickness d of the brain section, the
wavelength λ, the local birefringence ∆n and the out-of-plane angle α of the fiber
(see Appendix A.3). An approximation of δ [76] is given by

δ ≈ 2π
d∆n

λ
cos2 α. (2.4)

Thus, the Jones calculus permits to describe the transmitted light intensity through
the following expression (see Appendix A.1):

Ipx, py (ρ) =
I0

2
[1 + sin (2 (ρ− ϕ)) sin (δ)] , (2.5)

where I0 is referred to as transmittance and sin (δ) is referred to as retardation. The
in-plane fiber direction ϕ referred to as direction can also be derived from Equation
2.5, whereas the out-of-plane angle α, referred to as inclination, can be derived from
the retardation and from the Equations 2.4 and 2.5.

2.4. Fourier Analysis of the 3D-PLI Signal

The light transmittance through the polarimeter, which is described in Equation
2.5, can be fitted by means of discrete harmonic Fourier analysis [8]:

Ipx, py (ρ) =
I0

2
+
I0

2
|sin (δ)| cos (2ϕ) sin (2ρ) (2.6)

−I0

2
| sin (δ) | sin (2ϕ) cos (2ρ) (2.7)

≡ a0 + a1 sin (2ρ) + b1 cos (2ρ) , (2.8)

with the Fourier coefficients a0 =
I0

2
, (2.9)

a1 =
I0

2
|sin (δ)| cos (2ϕ) and (2.10)

b1 = −I0

2
| sin (δ) | sin (2ϕ) , (2.11)

9



2. Principles of 3D-Polarized Light Imaging

where |sin (δ)| is the absolute value of the retardation. The convention of the Equa-
tion 2.8 and its Fourier coefficients conform to the used nomenclature introduced in
Axer et al. [8]. The Equations 2.9, 2.10 and 2.11 can be discretized accordingly to
the standard 3D-PLI measurement at rotation angles (ρ1, ρ2, . . . , ρN ) with N = 18.
By using a discrete approximation the Fourier coefficients can be expressed as

a0 =
1

N

N∑

i=1

Ipx, py (ρi), (2.12)

a1 =
2

N

N∑

i=1

sin (2ρi) Ipx, py (ρi) and (2.13)

b1 =
2

N

N∑

i=1

cos (2ρi) Ipx, py (ρi) . (2.14)

2.5. Workflow

In order to reconstruct and analyze the orientation of the nerve fibers with 3D-
PLI, different image processing steps are required after the image acquisition. The
post-processing consists of the following steps:

Calibration Due to electronic noise and thermal effects in the CCD camera, inten-
sity variations can occur at each pixel. Additionally, inhomogeneities in the polar-
izers can lead to non-linear signal variations across the pixels of the image (Fig. 2.3
(a)). Thus, a calibration is needed to compensate for the latter effect (Fig. 2.3 (b)).

For calibration, a set of 60 flat images (i.e., measurements without a brain section in
the polarimeter) are acquired for each angle ρ. From the 60 flat images an average
intensity value Ī (ρ) is calculated at each pixel and rotation angle ρ. Iref denoting
the peak intensity is calculated from the joint density of all 1080 (18× 60) flat
images, so that the calibration can be described as

I(ρ) = g(ρ)I ′(ρ), (2.15)

where I ′(ρ) is the intensity before calibration and I(ρ) is the intensity after cal-
ibration, accordingly. The gain factor g(ρ) can be calculated as g(ρ) = Iref

Ī(ρ)
and

describes the factor that compensates the fluctuation in the image [32].
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2. Principles of 3D-Polarized Light Imaging

(a) (b)

Figure 2.3.: Contrast enhanced flat images before (a) and after (b) calibration of the
LAP. Here only the flat images of ρ0 are shown. (c) shows the intensity
distributions before (red) and after (blue) the image calibration. It is
evident that the image inhomogeneity is reduced after calibration.

Segmentation In order to ensure that only brain tissue is processed, the back-
ground is removed from the acquired images. Different approaches for the LAP
and PM are currently employed. However, for this thesis a manual segmentation
approach for the LAP was used since an automated algorithm was lacking. For the
PM images, on the contrary, an automatic in-house segmentation based on region
growing algorithm was available.
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2. Principles of 3D-Polarized Light Imaging

Spatial Independent Component Analysis An important part of 3D-PLI analysis
is the processing of images with the spatial Independent Component Analysis (sICA).
The sICA decomposes the acquired images into spatial independent components.
Noise and artifacts, which are superimposed on the optical signal, are effectively
rejected using sICA. By taking the components of interest, the birefringent 3D-PLI
signal, referred to as original signal, is reconstructed. Components of interest are
identified by the sinusoidal nature of the 3D-PLI signal. sICA in 3D-PLI is an
integral part of this thesis, which will be addressed in detail later on (see Sec. 3.5).

Estimation of Signal Enhancement After applying sICA and reconstructing the
images freed from artifacts, i.e., dust particles, and noise components, the signal
enhancement is estimated. This estimation evaluates how well the sICA filtered
data, fits the theoretical function predicted by the “Jones Calculus”. Therefore,
a Goodness-Of-Fit (GOF) test is performed using the Pearson’s chi-squared test
before and after the sICA application [32]. The simplified chi-squared statistic χ2

includes the variance σ2
ρ obtained from 60 flat images in the calibration process:

χ2 =
1

ν

N∑

i=1

(Ipx, py (ρi)− fpx, py(uρi))2

σ2
ρi

, (2.16)

with Ipx, py (ρi) being the measured intensity at angle ρ and fpx, py(uρ) denoting the
theoretically expected function, which is fitted based on Equation 2.8. ν describes
the degrees of freedom and normalizes the sum over N angles. It has a size of
(N −#parameters− 1). The parameters which reduce the degrees of freedom are
a0, a1 and b1. A good fit is achieved when the squared difference between the
measurement and the expected function is equal to the variance of the measurement.
This results in a chi-square value equal to one. In order to obtain a measure that
indicates a fit improvement after sICA, the ratio of χ2

raw before and χ2
ICA after sICA

is calculated:

rGOF =
χ2

raw

χ2
ICA

, (2.17)

where rGOF describes the relative goodness-of-fit value. A fit improvement is
indicated by rGOF > 1. However, the rGOF cannot take into account whether
any component of interest after sICA is missing. Therefore, to consider missing
gray or white matter components, a weighting factor ω is included, which penalizes

12



2. Principles of 3D-Polarized Light Imaging

the goodness of fit value, if any component of interest is missing [30]. The weighted
rGOF (wrGOF ) can be described as follows:

wrGOF =
1

ω

χ2
raw

χ2
ICA

, (2.18)

with

ω =
1

ν

N∑

i=1

(fraw(uρi)− fICA(uρi))
2

σ2
ρi

,

and ω ≥ 1.

Using the included weighting factor ω, a penalty term is computed whenever the
squared difference between the two expectation functions fraw(uρ) and fICA(uρ) is
large. When a component of interest is missing, the signal strength of the sICA
filtered data is reduced at the corresponding pixel locations. This yields a difference
in the amplitude of the expectation function fICA(uρ). It is assumed that the signal
power (across the rotation angles) of the signal of interest is larger than the noise
level [30].

Efficient 3D-PLI Analysis The Efficient PLI Analysis (EPA) calculates the pa-
rameters called transmittance, retardation and direction from calibrated and sICA
corrected images according to Axer et al. [8]. These parameters are generated by
the appropriate combinations of the fit parameters a0, a1 and b1 (Eq. 2.8). The
transmittance maps, which are sensitive to absorption and scattering processes, are
calculated as

I0 = 2a0. (2.19)

The retardation maps include information about the elevation of fibers out of the
section plane. The retardation is defined as

| sin (δ) | =
√
a2

1 + b21
a0

. (2.20)

It can also be interpreted as the relative amplitude (| sin (δ) | = 4I
I0

) of the sinusoidal
intensity function in Figure 2.4. Furthermore, the direction maps are obtained by
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2. Principles of 3D-Polarized Light Imaging

ϕ =
1

2
arctan2 (−b1, a1) +

π

2
=





1
2arctan (−b1/a1) + π

2 , a1 > 0
1
2arctan (−b1/a1) + 3π

2 , b1 ≥ 0, a1 < 0
1
2arctan (−b1/a1)− π

2 , b1 < 0, a1 < 0

π, b1 > 0, a1 = 0

0, b1 < 0, a1 = 0

. (2.21)

The direction can also be obtained from the phase shift relative to the minimum of
the fitted intensity profile (Fig. 2.4).
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Figure 2.4.: Measured light intensities of one pixel at different rotation angles ρ.
Each data point (blue circle) on the sinusoidal profile corresponds to
one measured intensity value. The continuous line illustrates the derived
transmitted light intensity from the "Jones Calculus" for one pixel.

Stitching Stitching is a processing step in 3D-PLI, where several PM tiles are
combined together into one continuous PM image without the measured overlap
(Fig. 2.5). The first step for stitching is computing EPA on each PM tile. By using
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2. Principles of 3D-Polarized Light Imaging

Scale-Invariant Feature Transform (SIFT, [78, 79]) on the resulting transmittance
or direction tile maps, keypoint descriptors are extracted. The correspondence of
each keypoint descriptor in one transmittance or direction map to its neighboring
tile is found by matching the keypoint descriptors via brute-force approach. The
displacements of all PM tiles can be written as

t̂ = X · β, (2.22)

where t̂ corresponds to the translation vector of the matching keypoint descriptors,
X denotes a regressor matrix of the affected PM tiles and β describes the unknown
absolute positions of the PM tiles. A unique global minimum at β can be estimated
with

β̂ = arg min
β

∥∥∥t̂−X · β
∥∥∥ (2.23)

=
(
XT ·X

)−1 ·XT · t̂, (2.24)

where ‖·‖ describes the L2-norm and β̂ denotes the estimated absolute positions of
the PM tiles.
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16 15 14 13 12 11 10 9

17 18 19 20 21 22 23 24

(b)

Figure 2.5.: The stiching procedure combines all tiles together with the best cor-
respondences. In (a) the transmittance maps of the acquired PM tiles
(numbered in meandering pattern) with an overlap of 30% were calcu-
lated. In (b) a combined transmittance map after stitching without the
overlap is shown.
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2. Principles of 3D-Polarized Light Imaging

Fiber Orientation Map By means of the direction ϕ and the inclination α, which
is derived from the retardation | sin (δ) |, a fiber orientation is calculated per pixel.
Thus, a Fiber Orientation Map (FOM) is created (Fig. 2.6). In a FOM each image
pixel is characterized by a unit vector given by

x = cosα cosϕ (2.25)

y = cosα sinϕ

z = sinα.

Figure 2.6 shows a FOM in an HSV (H: Hue, S: Saturation, V: Value) color scheme,
where the direction ϕ and the inclination α is transformed as

H = 2ϕ, (2.26)

S = 1− α

90°
and

V = 1− α

90°
.

The stacking of FOMs results in a volume of fiber orientations, which represents the
basis for high-resolution structural fiber mapping using 3D-PLI data sets [8].
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2. Principles of 3D-Polarized Light Imaging

Figure 2.6.: A color coded FOM in HSV color space of a transversal brain section
acquired in the LAP.
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3. Principles of the Independent
Component Analysis

In neural network research, a challenge is to find a representation of data that de-
pends on multiple variables, referred to as multivariate data. The representation is
often simplified as a linear transformation of the original data that finds indepen-
dent sources of activity. Independent Component Analysis (ICA) is one of many
linear transformation methods, such as principal component analysis [51], factor
analysis [25] and projection pursuit [43]. Generally, the linear transformation of the
original data and the independent sources are latent since they are not directly ob-
servable. The goal of ICA is to find a linear transformation of independent sources,
where the independent sources, referred to as independent components, have non-
gaussian distributions [55]. The statistically independent components can represent
the signal of interest, noise and artifact components. By rejecting noise and artifact
components, only the original signal is retained.

ICA was first introduced by Jutten et al. [68] and incorporates two different aspects
[15]: first, the information-theoretic unsupervised learning rule for neural networks
[4, 12, 77], and second, the use of higher-order statistics for separating out mixtures
of independent sources [27]. Moreover, “standard” ICA can be subdivided into
either spatial (sICA) or temporal (tICA) ICA [103]. In the case of 3D-PLI, sICA is
used. It is assumed that light scattering in the investigated object, different light
sources, reflections and dust may affect the original 3D-PLI signal in each pixel of
the acquired image (Fig. 3.1). Thus, the measured light intensity is a linear mixture
from different contributing sources. Dammers et al. [30, 32] and Breuer et al. [21]
have previously shown that sICA applied to polarized light images can be used to
effectively remove the contribution from impairing light sources and to restore the
original sinusoidal intensity profile.

A detailed description of the general model of blind source separation is given in
Section 3.1. Section 3.2 provides a common theoretical framework for solving the
problem of blind source separation through the use of information-theoretic func-
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3D-PLI images
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Estimated sources

··
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s̃

Figure 3.1.: Schematic illustration of the mixing process in 3D-PLI and the decom-
position in sICA (adapted from [21]), where s denotes the independent
sources, A describes the unknown mixing process, x refers to the 18
acquired 3D-PLI images, W denotes the estimated mixing process and
s̃ describes the estimated independent sources.

tions applied to neural networks. The ambiguities of sICA (and ICA in general) are
described in Section 3.3. Section 3.4 provides an insight into the pre-processing steps
of sICA. The chapter is concluded with a new concept of sICA applied specifically
to 3D-PLI (Section 3.4).

For the sake of clarity and comprehension, the definition of variables and abbrevia-
tions for the following sections are summarized in Table 3.1.

Table 3.1.: Definition of variables and abbreviations in this chapter.

definition reference
A Mixing matrix
Â Orthogonal mixing matrix
A Event of an experiment
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3. Principles of the Independent Component Analysis

â (ρ) Basis vector of Â
â∗ (ρ) Basis vector with prior information
B Event of an experiment
Dx Whitening matrix
DW Random whitening matrix
ε threshold value
η Confidence value
f (uρ) Theoretically expected function see Chapter 2
g Cost-function
I Identity matrix
k Sequence of signal
m Number of receivers
n Number of primary or source signals
P Permutation matrix
ς Constant
s Vector of source signals
s̃ Vector of estimated source signals passed

through the cost-function g
s̃′ Vector of centered source signals
S̃ Resulting vector after passing s̃ through the

cost-function g
t tolerance value
τ Learning rate
v Vector of random noise
W Unmixing matrix
Ŵ Orthogonal unmixing matrix
W0 Bias weight
x Vector of recorded sensor signals
x̃′ Vector of centered sensor signals
x̂ Vector of centered sensor signals after the

whitening process

BSS Blind Source Separation
cICAP Constrained Independent Component Analysis

for 3D-PLI
ICA Independent Component Analysis
Infomax Information based maximization
MIMO Multiple-Input/Multiple-Output
sICA Spatial Independent Component Analysis
tICA Temporal Independent Component Analysis
3D-PLI 3D-Polarized Light Imaging see Chapter 2
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3. Principles of the Independent Component Analysis

3.1. Blind Source Separation

Blind Source Separation (BSS) addresses the problem of decomposing a set of mixed
signals into its underlying sources, without the aid of a priori knowledge (or with
exploiting some a priori information about the mixing system). In case of speech
decomposition, a demonstration tackling this problem is, e.g., the “cocktail party
problem” [24]. The “cocktail party problem” describes a source separation problem,
where a listener tries to focus on one discussion in a room of simultaneously talking
people. The human brain is able to solve this problem effortlessly. The general
problem can be formulated as follows:

Let x (k) = [x1 (k) , . . . , xm (k)]T be the vector of sensor signals received from
a Multiple-Input/Multiple-Output (MIMO) nonlinear dynamical system, where m
refers to the number of receivers and k denotes the sequence of the signal. Now the
aim is to estimate n primary or original source signals s (k) = [s1 (k) , . . . , sn (k)]T

with m ≥ n by finding the inverse system without knowing the underlying mixing
characteristics. The inverse system can be modeled as a neural network which was
firstly introduced in [47, 68]. Jutten et al. [68] firstly described a recursive linear
adaptive filter mimicking the architecture of a neural network (Fig. 3.2).

Since the mixing and the decomposition process are unknown, the models are as-
sumed linearly composed (Fig. 3.2). This simplification (usually with m ≥ n) for
the mixing process can be described as




x1 (k)

x2 (k)
...

xm (k)




= A ·




s1 (k)

s2 (k)
...

sn (k)




+




v1 (k)

v2 (k)
...

vm (k)




(3.1)

where A describes an unknownm×nmixing matrix and v (k) = [v1 (k) , . . . , vm (k)]T

is an additive random noise vector influencing the records of sensor signals x (k).
Since the distribution of v (k) is unknown it is generally impossible to estimate the
exact source signals s (k) [27]. Hence, the mixing process is expressed as

x (k) = A · s (k) . (3.2)

The corresponding decomposition process reads as follows
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◦s1(k)
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··
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··
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Figure 3.2.: Block diagram showing the linearized BSS problem. The number of
noise and sensors m can be greater, equal or even less than the number
of sources n (adapted from [26]).

s̃ (k) = W · x (k) , (3.3)

with s̃ (k) = [s̃1 (k) , . . . , s̃n (k)]T being a vector of the estimated source signals. W

denotes an unknown n×m unmixing matrix.

3.2. Information Based Maximization

The basic problem addressed by the Information based maximization (Infomax) [15]
is to find an unmixing matrix W that decomposes a set of mixed signals into statis-
tically independent sources s̃ (k) and at the same time maximizes the information
flow of the corresponding neural network. For fully understanding how to obtain
statistical independence and what “information” entails, an explanation according
to information theory is given in the next paragraph, followed by the presentation
of the Infomax principle.
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3. Principles of the Independent Component Analysis

Some Theoretical Background in Information Theory Measuring the degree of
statistical independence is of importance in Infomax and is one of the elementary
problems in information theory. The concept of statistical independence can be
formulated as follows. In an experiment two events A and B are described as
independent only if

P (AB) = P(A)P(B), (3.4)

with P being the probability that the event occurs. The conditional probability
P (B|A) is described as

P (B|A) =
P (AB)

P (A)
. (3.5)

If the probability P (A) 6= 0, independence will be implied by P (B|A) = P (B).
This implication holds for Equation 3.5 if A and B are interchanged. Analogously,
independence of two random variables x and y is given if

P (x ∈ A, y ∈ B) = P(x ∈ A)P(y ∈ B), (3.6)

for A, B ⊂ R. In case of existing densities, the Equation 3.6 will be equivalent to

fxy (x, y) = fx (x) fy (y) , (3.7)

where fxy (x, y) is the joint probability density function (joint pdf) of the marginal
probability density functions (marginal pdf) fx (x) and fy (y).

Thus, the conditional pdf fy (y|x) becomes for independent marginal densities [91]:

fy (y|x) =
fxy (x, y)

fx (x)
(3.8)

= fy (y) . (3.9)

In this case, Equation 3.7 implies that if the marginal pdfs fx (x) and fy (y) are
known, the joint pdf fxy (x, y) will be also known. Furthermore, Equation 3.8
implies that a value of one random variable gives no information about a value of
the other random variable.

In order to measure the information content in a given variable, the entropy is used
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(Eq. 3.10). Assumed are the possible outcomes Ai of the partition A = [A1 , . . . , An ]

prior to the performance of an experiment, e.g., a fair-die experiment. The less likely
an eventAi occurs in an experiment, the more information it provides when it occurs
[91]. This information can be measured by the entropy

H (A) = −
∑

i

pi log pi, (3.10)

where the probabilities pi = P (A = Ai) and i is an index ranging over all partitions
of A. To define the entropy of a discrete random variable xD, a suitable partition
has to be defined. Let pi = P(xD= xi), where the events {xD = xi} are mutually
exclusive. Unified they define a certain event. This partition is denoted by Ax .
Hence, the entropy H (xD) is equal to the entropy H (Ax): H (xD) = H (Ax ) [91].
Furthermore, the entropy as a measure of information (Eq. 3.10) has a maximum
value of log pi if all pi values are uniformly distributed. Thus, a uniform probability
distribution corresponds to a maximal entropy distribution [103]. It is important
to note that a uniform probability distribution implies bounded signals. For the
case of signals with the constrain of unit variance, gaussian distributed signals have
maximum entropy [56].

To measure only changes in information, the differential entropy is regarded. The
differential entropy for a continuous random variable x is expressed as [44]

H (x) = −
∞̂

−∞

fx (x) log fx (x) dx. (3.11)

When changes in information about x are measured in which y occurs, the condi-
tional differential entropy will be considered. The conditional differential entropy is
described by

H (x|y) = −
∞̂

−∞

fy (y)

∞̂

−∞

fx (x|y) log fx (x|y) dx dy. (3.12)

Thus, relating the information between x and y, the average mutual information is
defined as [44]
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I (x, y) = H (x) +H (y)−H (x, y) (3.13)

= H (x)−H (x|y) = H (y)−H (y|x) , (3.14)

with

H (x, y) = H (y) +H (x|y) (3.15)

= H (x) +H (y|x) . (3.16)

The joint entropy can also be denoted by

H (x, y) = −
∞̂

−∞

∞̂

−∞

fxy (x, y) log fxy (x, y) dx dy. (3.17)

In terms of distributions Equation 3.14 is formed to

I (x, y) =

∞̂

−∞

∞̂

−∞

fxy (x, y) log

(
fxy (x, y)

fx (x) fy (y)

)
dx dy, (3.18)

which is also defined as the Kullback-Leibler distance between the joint pdf fxy (x, y)

and the product of fx (x) fy (y) [73]. The Kullback-Leibler distance is zero if
fxy (x, y) = fx (x) fy (y). From this definition one can infer that the mutual in-
formation of random variables is zero if the random variables are statistically inde-
pendent. This criterion is fundamental for Infomax.

The Principle of Infomax Infomax is a method of ICA rooted in information-
theoretic learning, which aim is to calculate statistical independent source signals by
maximizing the entropy distribution. Therefore, it is important to find an unmixing
matrix W that maximizes the joint entropy H (s̃ (k)) (Eq. 3.17) yielding statistical
independence between s̃1 (k) , . . . and s̃n (k). The idea is to map s̃ (k) to an alternate
set of signals (Fig. 3.3)

S̃ (k) = g (s̃ (k)) (3.19)
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that are uniformly distributed and, thus, have a maximal entropy distribution. In
order to achieve the information transfer between s̃ (k) and S̃ (k), an invertible
monotonic increasing nonlinear function g (referred to as cost-function, Eq. 3.25) is
used. For simplicity, the cost-function is assumed to be bounded between 0 and 1.
The minimization of the mutual information (Kullback-Leibler distance) between
the derivative of the cost-function

g′ (s̃ (k)) = |dS̃ (k)

ds̃ (k)
| (3.20)

and the distribution fs̃ will be equivalent to the maximization of the entropy of
H
(
S̃ (k)

)
([86], see Appendix B). The Kullback-Leibler distance is minimal if

fs̃i = g′ (s̃i). When the entropy H
(
S̃ (k)

)
is maximal it becomes evident that

the cumulative density function (cdf) of bounded s̃ (k) matches the cost-function g.
Therefore, the components of S̃ (k) become statistically independent by finding the
matching cost-function g. The retrieved signals

s̃ (k) = g−1
(
S̃ (k)

)
(3.21)

are also independent because g is an invertible function. In general it can be said
that any invertible function of maximum entropy signals yields signals that are also
mutually independent [103]. This approach is known as “cdf-matching” and can be
seen as one of the principles of Infomax.

The “cdf-matching” is performed by iteratively estimating the optimal unmixing
matrix W using the natural-gradient [1, 3, 22] version of Infomax (see Appendix B)
which is described by

s̃ (k) = W · x (k) + W0, (3.22)

∆W = τ
[
I + (1− 2g (s̃ (k))) s̃ (k)T

]
W and (3.23)

∆W0 = I (1− 2g (s̃ (k))) , (3.24)

where I describes the identity matrix, τ is the learning rate, W0 refers to the
bias weight which is initialized at the beginning of the iteration as W0 = I and
∆W denotes the estimated differential unmixing matrix and is also initialized as
W = I. The learning rate τ is consistently decreasing for every iteration step which
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0
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Figure 3.3.: Schematic diagram of the principle of Infomax where a uniform dis-
tribution is obtained if the transformation of the signal matches its
own cdf (adapted from [15, 103]). A normally distributed signal
s̃ (k) = [s̃ (1) , . . . , s̃ (10000)]T was generated where in (a) only 200
of the 10000 signal values are shown. (b) shows the approximated pdf
fs̃(k) of all signal values. By integrating the pdf fs̃(k), an approximation
to the cost-function g of s̃ (k) is calculated (dashed arrow to (d)). If the
obtained cdf matches the cost-function g, a uniformly distributed signal
S̃ (k) will be received (dashed arrow to (c)). The corresponding pdf f

S̃(k)

is shown in (c) rotated by 90 degrees. The signal S̃ (k) is uniformly dis-
tributed because f

S̃(k)
∆S̃ (k) (shaded areas in (d)) must correspond to

fs̃(k)∆s̃ (k) (shaded areas in (b)). Thus, the intervals ∆s̃ (k) are either
comprassed or expanded by mapping them through the cost-function g
to the corresponding intervals ∆S̃ (k) [103]. (e) shows 200 signal values
of S̃ (k) which are calculated by applying the cost-function g on s̃ (k).

becomes noticeable in smaller changes of ∆W. A measure for the changes in ∆W

is the euclidean norm. If the euclidean norm is under a specified threshold then the
optimal unmixing matrix Wopt is found and the algorithm stops [22]. Furthermore,
the natural-gradient version provides isotropic convergence properties for any local
minimum [2]. In Infomax the density in f

S̃(k)
depends on matching the slope of g

with the bias weight W0 on the mean of the pdf fs̃(k) where g is assumed to be a
sigmoidal function with

g (s̃ (k)) =
1

1 + e−s̃(k)
, (3.25)
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since many underlying natural processes follow a sigmoidal distribution [15].

3.3. Ambiguities of Independent Component Analysis

As ICA belongs to the class of BSS, its goal is to estimate the unknown unmixing
matrix W in order to receive the original source signals s (k). However, the source
signals s (k), which are unknown, can be estimated accepting a few restrictions.
Features that cannot be recovered are the scaling and the signs of the components
in s (k). In case of no additive noise, any multiplication of a constant ςi with
si (k), i = 1, . . . , n, can be canceled by dividing the corresponding column aj (i),
j = 1, . . . , m of the mixing matrix A by the same constant ςi:

xj (k) =

n∑

i=1

(
1

ςi
aj (i)

)
(si (k) ςi) . (3.26)

Hence, any component of s (k) can be recovered up to a multiplicative constant,
where the components have unit variance. Furthermore, for any component si (k)

the negative signed component −si (k) can as well be considered, which leads to a
sign ambiguity.

Another restriction is the undetermined order of the components si (k). The order
in A and in s (k) can jointly vary without effecting the observed signals x (k) =

A · s (k). In terms of a permutation matrix P and its inverse P−1 the observed
signals x (k) can be written as

x (k) = A ·P−1 ·P · s (k) (3.27)

without taking any effect on the result [55–57].

3.4. Pre-processing

The pre-processing is the first step before applying ICA on the records of sensor
signals. There are mainly two pre-processing steps, namely the “centering” and the
“whitening”. In case of 3D-PLI, the recorded sensor signals are the 18 acquired 3D-
PLI images, in the following referred to as PLI image series, which are calibrated and
segmented. The calibrated and segmented PLI image series are then pre-processed.
These two pre-processing steps are formulated as follows:
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The PLI image series x are vectorized for each angle ρ taking the form

x =




xT1
xT2
...

xT18




=




(
x1, 1 · · · x1,K

)
(
x2, 1 · · · x2,K

)

...(
x18, 1 · · · x18,K

)



, (3.28)

where K describes the total number of pixels per image.

The vectorized PLI image series are then centered (Fig. 3.4) by subtracting their
sample mean x̄ = E {x}, thus, the centered PLI image series x′ are described by

x′ = x− x̄. (3.29)

Accordingly, the estimated source images s̃′ are zero averaged as well, since

s̃ = W · x⇐⇒s̃−W·̄x = W ·x−W · x̄⇐⇒ s̃−W·̄x = W (x− x̄)⇐⇒ s̃′ = W ·x′.
(3.30)

After estimating the unmixing matrix W, the estimated source images s̃ can be
reconstructed by adding W · x̄ to the estimated source images s̃′. For simplicity, x

and s̃ are denoted in the following as images that are already centered.

As a second of the sICA’s pre-processing step, the centered PLI image series x are
whitened (Fig. 3.5), i.e., images xj of the 18 3D-PLI images are uncorrelated and
their variances are made equal to unity [56]:

Cov
(
x, xT

)
= E

{
x · xT

}
= I, (3.31)

where Cov
(
x, xT

)
is the covariance matrix of the outer product between x and xT .

Note, whitening is a term coming from white noise, which has a constant power
spectrum over all frequencies [56]. One possible way to achieve whitening (Eq. 3.31)
is to apply eigenvalue decomposition (EVD) to the covariance matrix

E
{
x · xT

}
= E ·Λ ·ET , (3.32)

where E is an orthogonal matrix containing the eigenvectors of E
{
x · xT

}
and

Λ is a diagonal matrix of the corresponding eigenvalues λi, i = 1, . . . , 18 with
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λ1 ≥ . . . ≥ λ18.

Whitening is applied by:

x̂ = E ·Λ−1/2 ·ET · x, (3.33)

= Dx · x, (3.34)

where Λ−1/2 = diag
(
λ
−1/2
1 , . . . , λ

−1/2
18

)
, Dx is the whitening matrix and x̂ are the

whitened PLI image series (Fig. 3.6). Thus, whitening transforms the mixing matrix
A into a new matrix referred to as Â by:

x̂ = E ·Λ−1/2 ·ET · x = E ·Λ−1/2 ·ET ·A · s = Â · s. (3.35)

Furthermore, Â is orthogonal:

E
{
x̂ · x̂T

}
= Â · E

{
s · sT

}
· ÂT = Â · I · ÂT = Â · ÂT = I. (3.36)

The new orthogonal mixing matrix Â contains n (n− 1) /2 degrees of freedom in-
stead of n2 parameters (for n = m) that correspond to the elements of the original
mixing matrix A. Thus, whitening reduces the complexity of the problem and solves
almost half of the parameters to be estimated. The remaining parameters are es-
timated by the following sICA, which task is now well-posed due to the whitening
procedure [26, 55].
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Figure 3.4.: Joint distribution of the first two centered images of one PLI image
series x1 and x2 where only the first 5000 values are shown. The corre-
sponding distributions fx1 (x1) and fx2 (x2) are depicted at the x1 and
x2 axis.
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Figure 3.5.: Joint distribution of the first two centered images of one PLI image
series x̂1 and x̂2 after whitening. Only two first 5000 pixel values are
shown in the joint distribution. After whitening the joint distribution
is more spreaded across the x̂1 and x̂2 plane yielding to a set of uncor-
related signals x̂1 and x̂2 with unit variance.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure 3.6.: (a) - (r) show the decorrelated PLI image series [x̂1, . . . , x̂18] after
whitening. Note, that the intensities in the whitened PLI image se-
ries are arbitrary. Since all components of x̂ can be attributed to white
and gray matter structure, an identification of noise and artifact com-
ponents is not feasible.
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3.5. Constrained Independent Component Analysis for
3D-PLI

Constrained Independent Component Analysis for 3D-PLI (cICAP, [21]) is a new
derived approach from sICA applications. In cICAP, Infomax is the basic implemen-
tation with the additional incorporation of prior information to the cost-function.
The addition of prior information enables a faster extraction of the original si-
nusoidal profile in the set of 3D-PLI images and the automatic identification of
components of interest [21].

For applying cICAP on 3D-PLI images, three assumptions for a valid sICA appli-
cation are regarded [26, 57]:

� The source signals are statistically independent, since different physical pro-
cesses generate outputs that are independent of each other [103]. In 3D-PLI,
spatial independent components at different rotation angles ρ are expected,
where the mixing process occurs across space.

� The source signals must be nongaussian distributed in order to estimate the
mixing matrix A. In case of gaussian distributed source signals sICA is not
feasible, since uncorrelated gaussian variables are already independent (see
Appendix C).

� The number of source signals n may not exceed the number of observed signals
m. Note, in 3D-PLI the number of source signals are assumed to be equal to
the number of observed signals yielding an estimation of a squared 18 × 18

unmixing matrix W and 18 source signals.

Application of Constrained Independent Component Analysis for 3D-PLI In
cICAP, the centered and whitened PLI image series are decomposed in spatially
independent components, referred to as basis vectors (columns of the mixing ma-
trix A), yielding maximal independent source images s̃. Figure 3.8 shows noise
sources and the typical sources attributed to white and gray matter structure for
one histological section. By removing noise and artifact components, the underlying
sinusoidal profile in the PLI image series can be restored. The application of cICAP
in pseudocode reads as
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Algorithm 1 Constrained Independent Component Analysis for 3D-PLI
Precondition: x is centered and whitened

1: W0 ← DW ·WΠ

2: W∗
0 ← I

3: c ← 0
4: while 4Wc > 10−10 AND c ≤ 500 do
5: s̃c ← Wc · x + W∗

0
6: g (s̃c) ← 1

1+e−s̃c

7: 4Wc ← τ
[
I + (1− 2g (s̃c)) s̃c

T
]
Wc

8: 4W∗
0 ← I (1− 2g (s̃c))

9: Wc ← 4Wc + Wc

10: W∗
0 ← 4W∗

0 + W∗
0

11: Incorporation of prior information
12: c ← c+ 1
13: end while

with W∗
0 being a bias weight matrix, 4W∗

0 denoting the differential bias weight
matrix, I representing the identity matrix, 4Wc being the differential unmixing
matrix, and Wc being the unmixing matrix [21].

For c = 0, Wc is initialized with a random orthogonal matrix

DW = EW ·ΛW
−1/2 ·EW

T (3.37)

multiplied by a uniformly distributed matrix WΠ in order to avoid local minima
and computational bias [55]. During the learning algorithm the differential unmixing
matrix 4Wc and the differential bias weight matrix 4W∗

0 are estimated (step 7,
8) and added to the estimated matrices of the previous iteration step c− 1 (step 9,
10).

In the last step the prior information is incorporated as follows:

The weight matrix Wc has to be adjusted by

Ŵc = Dx ·Wc (3.38)

with the whitening matrix Dx of the decorrelation process of the centered PLI image
series. The adjustment in Ŵc is mandatory for retrieving the temporal signal in
the columns of Âc for the subsequent automatic identification of gray and white
matter [21]. Then, Âc and n theoretically expected functions fj (uρ) , j = 1, ..., n
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Algorithm 2 Incorporation of prior information

1: Ŵc ← Dx ·Wc

2: Âc ← Ŵ−1
c

3: Calculation of N theoretically expected functions
4: Identification of basis vectors, whose entries are most similar to the correspond-

ing expectation function (Fig. 3.7)
5: Modification of basis vectors
6: Check if quadratic difference between the modified basis vectors and the corre-

sponding expectation function are in a predefined tolerance
7: Wc

∗ ← (Â∗−1
c ·Dx)−1

are calculated. The theoretically expected functions fj (uρ), which are fitted from
the n basis vectors of Âc (Fig. 3.7, red curves), consists of the parameters a0, a1 and
b1 as described by Equation 2.8. In step 3, a comparison between the n basis vectors
âj (ρ), j = 1, ..., n and the expected functions fj (uρ) is performed (Fig. 3.7). The
set of âj (ρ) that is most similar to fj (uρ) is determined. The similarity is measured
by the kurtosis of

dj = âj (ρ)− fj (uρ) . (3.39)

Therefore, the kurtosis can be expressed as:

kurt (dj) =
1

N

N∑

ρ

(
dj − d̄j
σj

)4

− 3, (3.40)

with d̄j being the mean of the deviation function of the jth basis vector and σj

denoting the variance. The kurtosis is the only known measure providing a 100%
positive rate for the automatic identification of gray and white matter as has been
demonstrated in [30].

Moreover, the selection of each âj (ρ) is performed in two steps. First, the mini-
mum of dj is taken. Second, prior information is included. Step 4 describes the
incorporation of this prior information as

â∗j (ρ) = (1− η) âj + ηfj (uρ) , (3.41)

where η denotes the confidence value between 0 and 1. To decide whether the
difference of the modified basis vector â∗j (ρ) and fj (uρ) is within a predefined
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Figure 3.7.: Two exemplary basis vectors (blue) with their theoretically expected
functions f (uρ) (red). (a) shows a basis vector that differs across all
rotation angles ρ from its f (uρ). Hence, this basis vector is identified
as noise component. (b) depicts an identified component with signal of
interest which fits its f (uρ). The identified basis vector representing
signal of interest will be modified further by including prior information.

tolerance value t, the squared difference is computed with

1

N

N∑

ρ

[
â∗j (ρ)− fj (uρ)

]2
(Step 5). (3.42)

If

t >
1

N

N∑

ρ

[
â∗j (ρ)− fj (uρ)

]2
(3.43)

the entries of â∗j (ρ) are fixed, because they represent a part of the signal. The fixed
entries of â∗j (ρ) are therefore approximately identical with fj (uρ). The last step is

the calculation of Wc
∗ ← (Â∗−1

c ·Dx)−1. All steps are repeated until convergence.
The selection of components of interest and differentiation of updating â∗j (ρ) is

repeated for all remaining columns in Â∗c . A stopping criterion for the iteration is
a predefined threshold ε for the squared difference (with ε� t) and until no further
components of interest are found in Â∗c [21].

An important factor for an accurate application of cICAP is the right choice for
the parameters η, t and ε. The selection of these parameters was performed by
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Breuer et al. [21] in an independent data set of 100 brain sections, where the best
parameters were found to be η = 0.16, t = 2.2 · 10−7 and ε = 0.01.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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(j) (k) (l)

(m) (n) (o)

(p) (q) (r)

Figure 3.8.: (a) - (r) show the independent source images [̃s1, . . . , s̃18] after cICAP.
Note, that the intensities in the components of s̃ are arbitrary. The
white and gray matter structure in (b), (d), (m) and (q) are clearly
accentuated by their contrast edges and hue difference and can be easily
separated from noise and artifact components.
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In the LAP and PM a great amount of data, ranging from a few hundred MB up
to one TB for one histological brain section, are accumulated during the acquisition
procedure. The acquired PLI image series are processed independently for both
optical systems following the workflow procedure of 3D-PLI. In case of the PM, the
acquired tiles for one histological section are passed through the workflow, where
the intermediate results of similar size are stored. Furthermore, parts of the work-
flow, e.g., the segmentation and the ICA procedure, require to handle an entire
histological section at once. Consequently, each image processing software used in
the workflow is confronted with the problems of processing and properly managing
Big Data. So far the traditional sequential method was used which has reached its
limitations. However, processing in a sequential fashion means discretizing a com-
putational task into a series of instructions, where each instruction is executed on a
single processor sequentially. In contrast, parallel computing solves the discretized
tasks in a concurrent manner by using multiple compute resources, for example a
desktop computer with multiple cores or cluster of single computers connected by
a network. Such an approach is able to speed up the compute process and to pro-
vide sufficient memory in a scalable manner. Hence, a high performance computing
system is required to provide efficient analysis, concurrency and to process Big Data.

The Forschungszentrum Jülich hosts a variety of High Performance Computing
(HPC) platforms, e.g., the Jülich Blue Gene/Q (JuQUEEN), the Jülich Research
on Exascale Cluster Architectures (JuRECA), the Dynamical Exascale Entry Plat-
form (DEEP) and the Jülich Dedicated GPU Environment (JuDGE), to name a few
[62]. For this work, the Graphics Processing Unit (GPU) cluster JuDGE is used,
providing suitable conditions for running cICAP in parallel.

The system configuration of JuDGE is described in Section 4.1. Section 4.2 empha-
sizes the parallel programming paradigms. In Section 4.3, parallelization strategies
are explained. The last section focuses on the models for parallel programming used
in this work.
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For the sake of clarity and comprehension, the definition of abbreviations for the
following sections are summarized in Table 4.1.

Table 4.1.: Definition of abbreviations in this chapter.

definition reference
API Application Programming Interface
cICAP Constrained Independent Component Analysis

for 3D-PLI
see Chapter 3

COMA Cache Only Memory Access
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
DEEP Dynamical Exascale Entry Platform
GB Gigabyte
GHz Gigahertz
GPU Graphics Processing Unit
GPGPU General Purpose GPU programming
HPC High Performance Computing
ICA Independent Component Analysis see Chapter 3
INM-1 Institute of Neuroscience and Medicine 1
JuQUEEN Jülich Blue Gene/Q
JuDGE Jülich Dedicated GPU Environment
JuRECA Jülich Research on Exascale Cluster Architec-

tures
JSC Jülich Supercomputing Center
LAP Large Area Polarimeter see Chapter 2
MB Megabyte
MIMD Multiple Instruction - Multiple Data
MISD Multiple Instruction - Single Data
MPI Message Passing Interface
NUMA Nonuniform Memory Access
PE Processor Element
PM Polarizing Microscope see Chapter 2
SIMD Single Instruction - Multiple Data
SISD Single Instruction - Single Data
TB Terabyte
UMA Uniform Memory Access
3D-PLI 3D-Polarized Light Imaging see Chapter 2
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4.1. System Configuration of JuDGE

JuDGE is a supercomputer hosted at the Jülich Supercomputing Center (JSC).
During the research period of this thesis, JuDGE was the only supercomputer in the
JSC providing GPUs together with Central Processing Units (CPUs). A description
of the specific system configuration is given in Table 4.2.

122 compute nodes are dedicated for tasks of the Institute of Neuroscience and
Medicine 1 (INM-1) including tasks of 3D-PLI.

Table 4.2.: System configuration of JUDGE (adapted from [59])

Complete System

• 206 compute nodes

• Compute node:





• 2 CPUs Intel Xeon X5650 (Westmere)
6-core processor 2.66 GHz

• 2 GPUs NVIDIA Tesla M2050/M2070
1.15 GHz 3GB/6GB memory

• 96GB main memory
• 239 TeraFLOPS* peak performance
• Infiniband QDR** network (40GB/s)
* Floating Operation Per Second (FLOPS)
** Quad Data Rate (QDR)

4.2. Parallel Programming Paradigms

In order to develop parallelized software on a supercomputer, it is necessary to un-
derstand the underlying computer architecture and the programming paradigms1.
The computer architecture, which defines the granularity supported on the super-
computer, together with the type of parallelism determine the paradigms that can
be applied [102]. In 1966, Michael Flynn [39] distinguished four different categories
of computer architectures, known as “Flynn taxonomy”. Flynn classified four cate-
gories based on the data stream and number of concurrent instructions (Table 4.3,
Fig. 4.2). In addition, another programming paradigm exists which defines thread-

1The interaction between application implementation and architectural development defines a
"co-design" process.
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level parallelism at various granularity levels within a single die [92]. The “Flynn
taxonomy” and the core multi-threading are described in the following.

Table 4.3.: Flynn’s taxonomy classifying the four categories: Single Instruction -
Single Data (SISD), Single Instruction - Multiple Data (SIMD), Multiple
Instruction - Single Data (MISD) and Multiple Instruction - Multiple
Data (MIMD) architecture.

Single Instruction Multiple Instruction

SISD MISD Single Data
SIMD MIMD Multiple Data

Single Instruction - Single Data (SISD) SISD describes a single core computer
that performs no parallel computation in either the data stream or instructions.
SISD generally refers to a Personal Computer (PC) based on the Von Neumann
architecture [88].

Single Instruction - Multiple Data (SIMD) SIMD refers to a computer which
consists of array or vector processors. The array or vector processors compute
the same instructions synchronously on multiple incoming data streams. The first
operational machine using an SIMD array architecture was the ILLIAC IV in 1972
[60]. Some applications of SIMD include 3D rendering, image and video processing.
For instance, the SIMD architecture of GPUs exhibits data level parallelism with a
high arithmetic throughput for general purpose programming [98, 110]. Compared
to GPUs the Intel Xeon Phi coprocessor offers a better programmability and a
broader applicability and demonstrated that exploiting SIMD parallelism achieves
significant speed ups [63, 107].

Multiple Instruction - Single Data (MISD) MISD is an architecture where pipelin-
ing is performed to achieve parallelism. Fault tolerance computers that executes con-
sistently the same instructions for error detection belong in the category of MISD
[37].
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Figure 4.1.: A schematic illustration of SISD, SIMD, MISD and MIMD. SISD is
characterized by one Processor Element (PE), one data and instruction
stream. SIMD and MISD consist of n PEs with either one instruction
stream or one data stream. MIMD describes an architecture with n
instruction streams, n data streams and n PEs (adapted from [38]).

Multiple Instruction - Multiple Data (MIMD) MIMD consists of multiple inter-
connected processors performing synchronously different instructions on different
data streams. A distinction in MIMD is drawn between a tightly coupled system
and a loosely coupled system. A tightly coupled system refers to a multiprocessor
system, whereas the loosely coupled system describes a multicomputer system. A
multiprocessor system is also a shared memory system where each processor unit
shares main memory and peripherals. Every shared memory system can be subdi-
vided into: Uniform Memory Access (UMA), Nonuniform Memory Access (NUMA)
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and a Cache Only Memory Access (COMA). In case of a multicomputer system each
computer has its individual memory, referred to as distributed memory system, con-
nected via a local network. If a processor in a distributed memory system needs
data from another processor’s memory, messages are passed between those two [37,
53].

Core Multi-Threading Core multi-threading provides a concurrent execution of
multiple threads within one core, where a thread is defined as the execution of
computational steps in a algorithm at a time. In general, three different granular-
ity levels are distinguished in core multi-threading, namely block, interleaved, and
simultaneous multi-threading.

In a block multi-threading each thread runs until a long latency event is encoun-
tered. At this point, the thread with the long latency event is suspended and the
next thread starts running. In case of an interleaved multi-threading, all threads
run simultaneously, where the processing of instructions from different threads are
performed in consecutive cycles. The simultaneous multi-threading is an extension
of interleaved version, where the instructions from simultaneous running threads are
executed and processed in each and every CPU cycle [34].

4.3. Parallel Programming Strategies

In order to achieve a performance scaling on different computer architectures, spe-
cialized parallel programming strategies have been introduced. In the following,
parallel programming strategies are described which vary from dividing a data set
onto multiple processors to partitioning an algorithm in parallel.

Cloning/Farming Cloning/Farming is a strategy which focuses on performing the
same task on multiple processors independently. All processors use their own pa-
rameter space for the calculations and no communication between the processors
is needed. By covering a wide range of parameters, different analysis can be per-
formed, e.g., achieving an optimal parameter combination for biological results [16]
or establish a large statistical summary.

Master - Slave The master-slave programming strategy consists of one master
entity and multiple slave entities. The master divides a big computing task into
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partial tasks and distributes these small tasks to all slave processes. After compu-
tation the master gathers the partial results to form a total result. In contrast, the
slave processes execute the given tasks and deliver them back to the master process.
Thus, the only communication processes that are performed are between master
and slaves. This strategy achieves a load-balancing and scales with the number of
slave processes. However, a bottleneck arises if a large number of slaves are used
and the entire communication is performed through one master process only [102]
(Fig. 4.2).
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Figure 4.2.: A master-slave setup with a task and communication workflow (adapted
from [102]).

Data Decomposition Another strategy for parallel programming is data decom-
position, where concurrency is represented by the decomposition of its core data
structure. A core data structure can be recursive, linear or represented as arrays.
In all cases the algorithms need to take the composition into account. If a recur-
sive data structure is given, divide-and-conquer patterns are feasible in which a
problem is split into subproblems and solved concurrently. In case of a linear or
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array representation, the data structure is divided into subregions with separated
tasks processing each subregion. This decomposition is referred to as geometric
decomposition. The resulting subregions with one or more dimension, referred to
as chunks, are processed concurrently. Moreover, a geometric decomposition can be
represented by overlapping chunks or by disjoint chunks. However, a consequence
of this strategy is the choice of the sizes of the chunks. The communication of infor-
mation between tasks should not exceed the processing time of each chunk. Hence,
larger chunks are feasible with the constrain that too large chunks may antagonize
a good load-balancing [82] (Fig. 4.3).

Functional Decomposition In functional decomposition, an algorithm is divided
in tasks, which are insured to be disjoint. For computation, the disjoint tasks may
require either disjoint data or overlapping data, where the computation of a task is
dependent on the result of another task. The partition is complete if the disjoint
tasks hold disjoint data. Thus, a divide-and-conquer approach is used. In case of
data dependencies, the calculations can be viewed as a workflow through all tasks,
referred to as pipelining [82] (Fig. 4.4).
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Figure 4.3.: A data decomposition strategy in which the core data structure is di-
vided into chunks. Each processor load its prescribed chunk. After
calculating and exchanging information with the other processors the
results are collected (adapted from [102]).
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Figure 4.4.: Workflow of a pipeline strategy. The first PE1 processes the first data
element and sends the result to PE2. After that, PE2 continues process-
ing the received results while PE1 processes the second data element.
This is performed until completion of all tasks (adapted from [82]).

4.4. Parallel Programming Models

Parallel programming models provide different implementation approaches for dif-
ferent architectures. A parallel programming model which can be applied and exe-
cuted is valued by concurrency, scalability, locality and modularity [41]. The ability
to perform many instructions simultaneously is referred to as concurrency, whereas
scalability shows the ability to accommodate loads on increasing number of proces-
sors. Furthermore, locality indicates the access ratio between local and remote mem-
ory. Modularity means to simplify complex entities into simpler modules. Hence,
many models with differing support regarding these four attributes have been pro-
posed. In this work, the Compute Unified Device Architecture (CUDA) and Message
Passing Interface (MPI) are used and described in the following.

Compute Unified Device Architecture An alternative to CPUs is using hardware
accelerators, more precisely, GPUs. Due to the high arithmetic throughput with
programmable pipelines, GPUs have attracted many researchers. Hence, the graph-
ics hardware and graphics Application Programming Interface (API) were redirected
to perform general purpose programming, referred to as General Purpose GPU pro-
gramming (GPGPU). Since the introduction of CUDA in 2007 the general purpose
programming on NVIDIA graphic cards was simplified rendering parallel program-
ming on GPUs available to a broader range of developers [98, 110].
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Due to the fact that the supercomputer JuDGE at the JSC is equipped with NVIDIA
graphic cards, CUDA with the available third party wrapper in Python, referred
to as PyCUDA [72], was chosen for the implementation of this work. CUDA and
PyCUDA offer an extensive documentation with tools for debugging and optimizing
the performance of applications. Moreover, PyCUDA takes advantage of the inter-
preter language Python to access the complete CUDA API. Due to the abstraction
in Python, the performance demands and efforts on the part of the programmer
are reduced while nearly retaining the same full performance compared to C based
GPU-code [72].

A simplified view of the components in CUDA-capable GPUs is given in the follow-
ing list:

� Host interface

� Copy engine(s)

� Device memory interface

� Streaming multiprocessors

The host interface synchronizes the GPU and CPU, different engines on the GPU
and multiple GPUs. Additionally, the host interface dispatches the GPU commands
to the hardware units. The copy engine(s) performs a memory transfer between host
and device and vice versa while computations are performed by the streaming mul-
tiprocessors. Furthermore, the device memory interface joins memory requests and
supports bandwidths of more than 100GB per second. The streaming multiproces-
sors contain processors that perform 32-bit integer and single- and double-precision
floating-point arithmetics. Each streaming multiprocessor contains a register file
and shared memory and connections to the global, constant and texture memory in
the device memory. Moreover, the streaming multiprocessors are allowed to perform
arbitrary read and write operations to their registers and shared memory [98, 110].

Message Passing Interface MPI specifies a variety of library interfaces to pro-
vide collective and remote-memory operations, parallel I/O and dynamic process
creation to function mainly on MIMD architectures. If data is moved from one
process to another through arbitrarily cooperative operations on each process, a
communication environment for message-passing is mandatory, which is addressed
by MPI [40]. MPI features thread safety, point-to-point and collective communica-
tions for all MPI-processes. If a point-to-point communication is performed between
processes, different sending modes are therefore available:
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� Standard: Minimal transfer time but no guarantee that the corresponding
receive instruction has started.

� Synchronous: The send instruction only completes when the corresponding
receive instruction has started.

� Ready: User has to guarantee that the receive instruction is already called
before sending.

� Buffered: The buffer space needs to be declared. Irrespective of the receiver
instruction the communication always completes.

In contrast, the receive instructions in MPI operate on all modes. Moreover, all rou-
tines are either blocking or non-blocking. A blocking communication returns when
the sending and receive instructions are locally complete. In case of a non-blocking
communication, deadlocks and idle times are avoided. Non-blocking communica-
tion returns immediately and the resulting overlap can be used for further com-
munications or computations. The completion of a non-blocking communication is
performed by waiting.

On the other hand, collective operations involve a group of processes where an
action is performed on each process. For instance, collective actions are broadcast
and reduce operation. In a broadcast operation a root process sends its buffer
content to all processes in a group, whereas a global operation (sum or product)
is performed in case of a reduce operation. Furthermore, all collective actions are
defined as blocking communications [40].

Due to MPI’s maturity of standardization and programming model it allows to
write portable programs for any hardware architecture in the compiled programming
language (C, Fortran) and also in an interpreter programming language (Python).
The third party wrapper, MPI for Python [28], which was used in this work, is based
on the standard MPI-2 C++ bindings. MPI for Python allows two different ways
of communication with either generic Python objects or memory buffers on the C
side. Thus, advantages provided from the C interface in MPI are combined with
the convenience of Python.
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In the community of neuroscience several ICA variants have been proposed in or-
der to reveal features or hints of neuronal activities in the acquired data. As an
example, signals of interest such as neuronal oscillations may be extracted from
recordings of Magnetoencephalography (MEG) and Electroencephalography (EEG)
[29, 84, 89]. Also source localization in EEG and MEG applications are performed
using ICA approaches [49]. In addition to seeking neuronal activities, identifying
artifact signals, e.g., ocular artifacts, cardiac artifacts and muscle activity, using
ICA has become a promising way to separate noise\artifacts from signals of interest
in EEG and MEG [20, 31, 35, 66, 70, 80]. Furthermore, ICA is effectually used in
functional Magnetic Resonance Imaging (fMRI) to denoise the measurements from
random noise, pulsation and breathing artifacts. ICA in fMRI also allows to detect
unexpected responses to stimuli [83].

For 3D-PLI, studies [21, 30, 32] showed that ICA is capable of restoring deteri-
orated polarized light signals by identifying the signal of interest, more precisely
the sinusoidal nature of 3D-PLI, throughout the histological section. However, in
contrast to MEG, EEG and fMRI the underlying sources in gray (GM) and white
matter (WM) are still not understood sufficiently. The generalized source separa-
tion method (Eq. 3.25) proposed by Dammers et al. [30, 32] and Breuer et al. [21]
elicits a global improvement of the Signal-to-Noise Ratio (SNR), but disregards the
fact that the birefringence signal in gray and white matter varies in signal strength,
whereas the distortion of gray matter signals due to noise is in magnitude higher
than in white matter signals. As a consequence, the analysis of PLI signals requires
a source separation method adapted to the signal dynamics across the histological
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section, taking into account the birefringence property.

This chapter focuses on the development and reproducibility of a cICAP algorithm
adapted on white and gray matter. The new method introduced here is specifically
designed for the PLI image series and is based on cICAP, in which prior information
of the underlying source signals of the gray and white matter is incorporated. This
leads to a faster signal decomposition and an increased signal enhancement. In this
new technique, referred to as adapted constrained ICA (acICA), different separation
functions are used depending on the underlying source signals of the histological
section.

For the sake of clarity and comprehension, the definition of variables and abbrevia-
tions for the following sections are summarized in Table 5.1.

Table 5.1.: Definition of variables and abbreviations in this chapter.

definition reference
b Parameter for varying the growth rate
G Gray level of intensity
h (G) Gray level histogram
g (s̃) (Sigmoidal) cost-function see Chapter 3
ga (s̃) Adapted cost-function
J (T ) Criterion function of the minimum error thresh-

olding
µ Mean
P (T ) Priori probability
q Parameter for varying the point of inflection
r Parameter for varying the characteristic of the

sigmoidal curve
σ Standard deviation
s̃ Vector of estimated source signals passed

through the cost-function g
see Chapter 3

sjack Sample standard deviation
SEjack Standard error
T Intensity threshold
θ̂ Jackknife estimator
W Unmixing matrix see Chapter 3
W0 Bias weight see Chapter 3
wrGOF Weighted relative goodness-of-fit see Chapter 2
x Vector of recorded sensor signals see Chapter 3
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x̃ Median of the 50 wrGOF images

acICA Adapted constrained Independent Component
Analysis

cICAP Constrained Independent Component Analysis
for 3D-PLI

see Chapter 3

cdfGM Cumulative Density Function of Gray Gatter
cdfpcWM Cumulative Density Function of Percentiles of

White Matter
EEG Electroencephalography
EPA Efficient PLI Analysis see Chapter 2
fMRI Functional Magnetic Resonance Imaging
GM Gray Matter
ICA Independent Component Analysis see Chapter 3
Infomax Information based maximization see Chapter 3
IQR Interquantile Range
LAP Large Area Polarimeter see Chapter 2
MEG Magnetoencephalography
pcWM Percentiles of White Matter
PM Polarizing Microscope see Chapter 2
SNR Signal-to-Noise Ratio
WM White Matter
3D-PLI 3D-Polarized Light Imaging see Chapter 2

5.1. Experimental Setup

To understand the underlying source signals in 3D-PLI, the analysis of gray and
white matter was evaluated on the acquired PLI image series of the LAP and the
PM. For this purpose, a series of histological sections of one post-mortem vervet
monkey brain was acquired in the LAP and the PM. The frozen vervet brain (male;
age 2.4 years) was cut into coronar sections with a thickness of 60 µm using a
cryotome. The number of histological sections amounts to 1182. The acquisition of
the PLI image series of the 1182 sections in both optical setups is not finished yet.
Thus, 140 sections were used for this work. These sections range from the frontal
to the occipital pole and show a symmetric distribution across the brain (Fig. 5.1).

For the evaluation of the reproducibility and performance of the acICA approach a
section in the center of the 140 sections was chosen which comprised both gray and
white matter. This section was measured 50 times consecutively in the LAP result-
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140 samples

1

Figure 5.1.: A schematic of 1182 coronar sections from a post-mortem vervet brain,
where 140 samples were taken and acquired in the LAP and PM.

ing in 50 PLI image series which is in the following referred to as 50 “repro series”.
For the PM, 20 PLI image series out of the 140 sections ranging equidistantly from
the frontal to the occipital pole were chosen due to the limitation of working storage
and time-span needed to fulfill a prompt analysis. All the 140 PLI image series and
50 repro series of the LAP and the 20 PLI image series of the PM were acquired
with an exposure time of 70 ms and calibrated afterwards for further processing.

5.2. Methods

The analysis of gray and white matter relies upon accurate segmentation of brain
regions from the PLI image series. At present, the accepted standard in the LAP
for removing the background from a histological section is manual segmentation. In
case of the PM, the removal of the background is performed by an in-house seg-
mentation tool based on region growing algorithm. However, relying on manual
segmentation to separate brain regions such as the gray and white matter results in
a labor intensive and longsome process. In addition, the fact that manual segmen-
tation among different observer may lead to different criteria renders an automated
segmentation approach necessary.

The automated segmentation of gray and white matter evaluated here uses thresh-
olding for segmenting gray level images of the LAP and PM. The method uses
minimum error thresholding [71], which is based on the Bayesian classification rule
[90], to determine an optimum threshold in order to separate the gray from the
white matter in an image. This method supposes normal distributed components in
the bi-modal gray level histogram h (G) with G gray levels. The unknown standard
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deviations σi, the unknown means µi and the unknown a priori probabilities Pi
of the normal distributed components need to be estimated from h (G) via fitting
techniques. For the two classes (i = 1, 2), white and gray matter, the parameters
σi, µi and Pi can be estimated with

Pi (T ) =
b∑

G=a

h (G) , (5.1)

µi (T ) =
1

Pi (T )

b∑

G=a

h (G)G and (5.2)

σ2
i (T ) =

1

Pi (T )

b∑

G=a

(G− µi (T ))2 h (G) , where (5.3)

a =





0 i = 1

T + 1 i = 2
and (5.4)

b =




T i = 1

n i = 2
. (5.5)

By varying the threshold T the normal distributed components change. The more
the estimated model fits the data, the smaller the overlap of the two normal dis-
tributed components resulting to a smaller classification error [71]. The criterion
function incorporating the classification error is formulated as

J (T ) = 1 + 2 [P1 (T ) log (σ1 (T )) + P2 (T ) log (σ2 (T ))]

−2 [P1 (T ) log (P1 (T )) + P2 (T ) log (P2 (T ))] . (5.6)

The minimum error threshold is then calculated by minimizing J (T ).

For determining an optimal histogram bin width, the Freedman-Diaconis rule was
used. The Freedman-Diaconis rule gives a simple and robust rule, namely, bin width =

2 (IQR)n−1/3, where IQR is the interquantile range of the data and n is the number
of observations [42, 61].

In order to segment white and gray matter, all 140 PLI image series of the LAP and
20 PLI image series of the PM were processed first via EPA (see Section 2.5). Thus,
direction, transmittance and retardation maps were generated for each PLI image
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series. According to Axer et al. [9] the transmittance map roughly provides a general
separation between white and gray matter due to the different light extinctions. By
taking advantage of the transmittance map and applying minimum error threshold-
ing, 140 LAP masks for gray and white matter were generated, respectively. For the
50 repro series one mask for gray and white matter was computed. In case of the
PM, an in-house segmentation tool produced 20 masks separating tissue from back-
ground. Subsequently, minimum error thresholding and manual correction yielded
20 gray and white matter masks each.

With the intention of understanding how the different masks affect the signal sep-
aration and signal enhancement (wrGOF , Eq. 2.18) in cICAP, the 50 repro series
with the corresponding masks for white and gray matter were processed with cICAP.
Due to fact that cICAP, which was applied to the entire white matter, identified
only components of interest no noise/artifact component could be removed. Thus,
cICAP applied on partitions containing percentiles of the white matter density was
carried out. By applying the corresponding gray matter and percentiles of the white
matter masks to the 140 and 20 PLI image series respectively, two cdfs each were
generated for the LAP and PM. For this purpose, the Freedman-Diaconis rule was
also used to determine the same bin width for both cdfs. These two cdfs, which
represent mostly the density of gray and percentiles of white matter, were used to
optimize the cost-function (Eq. 3.25).

The here newly introduced ICA-based method for gray and white matter in 3D-PLI
is slightly in line with the approach of Breuer et al. [20]. As a starting point the
natural-gradient version of Infomax (see Section 3.2) was taken into account. The
presented approach uses a modified cost-function g (s̃ (k)), where the generated cdfs
of the individual gray (cdfGM) and percentiles of white matter (cdfpcWM) are em-
bedded. By fitting g (s̃ (k)) to the cdfGM and to the cdfpcWM, two optimal analytical
cost-functions for each optical setup are computed with

ga (s̃ (k)) =
1

(
1 + q · e−b·̃s(k)

) 1
r

, (5.7)

where q affects the point of inflection, b describes the growth rate and r allows the
characteristic of the sigmoidal curve to be varied. The cost-function ga (s̃ (k)) is an
adapted version of the Richards curve [96]. It should be noted that if q = b = r = 1,
the cost-function ga (s̃ (k)) will match the standard sigmoidal function g (s̃ (k)). All
three parameters q, b and r are fitted in terms of the minimum square error to the
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curves of the cdfGM and of the cdfpcWM.

By modifying the cost-function ga (s̃ (k)) the learning rule described in Equation
B.17 and B.18 is newly evaluated. First, the cost-function ga (s̃ (k)) with s̃ (k) =

W · x (k) + W0 is formed to

ga (s̃ (k)) =
(

1 + q · e−b·̃s(k)
)− 1

r with the first derivative (5.8)

g′a (s̃ (k)) =
W · ga (s̃ (k)) · b

r
(1− gra (s̃ (k))) . (5.9)

Second, we newly derive d
dW (g′a (s̃ (k))) analogous to Equation B.15 as

d

dW

(
g′a (s̃ (k))

)
=

d

dW

(
W · ga (s̃ (k)) · b

r
(1− gra (s̃ (k)))

)

=
b · ga (s̃ (k))

r

[
I +

W · s̃ (k) · b
r

(1− gra (s̃ (k)))2−

W · s̃ (k) · b
r

(1− gra (s̃ (k))) gra (s̃ (k))− gra (s̃ (k))

]
.

(5.10)

By dividing Equation 5.10 by Equation 5.9 a new learning rule is calculated for
ga (s̃ (k)), which is formulated as

∆W =
d

dW
H
(
S̃ (k)

)
= τ

(
g′a (s̃ (k))

)−1 d

dW

(
g′a (s̃ (k))

)
WTW (5.11)

= τ

[
I +

b

r
(1− 2gra (s̃ (k))) s̃ (k)T

]
W, (5.12)

∆W0 = I (1− 2gra (s̃ (k))) . (5.13)

The resulting ∆W, ∆W0 and ga (s̃ (k)) are integrated in the acICA algorithm for
estimating the optimal unmixing matrix Wopt individually for gray and percentiles
of white matter.

In order to test the reproducibility and the signal enhancement of acICA, all 50 repro
series were processed by acICA. Afterwards, 50 wrGOF images were generated. By
means of a Jackknife test [85, 101] the standard error and confidence interval was
estimated [17]. For this, the median x̃ of all wrGOF images was computed, where
the estimator in the Jackknife test is supposed to be θ̂ = x̃. By leaving out one
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wrGOF image at the time, one can compute θ = 1
n

∑n
i=1 θ̂(i), where θ̂(i) denotes the

estimate calculated from the wrGOF images with the ith wrGOF image removed
and n is the total number of images. Thus, the Jackknife estimator θ̂jack is generated
as

θ̂jack =
1

n

n∑

i=1

θ̃i = nθ̂ − (n− 1) θ. (5.14)

Hence, the standard error SEjack is calculated with

SEjack =
sjack√
n
, (5.15)

where sjack describes the sample standard deviation. The confidence interval with a
confidence level of 95% (α = 0.05) was used and constructed as: θ̂jack±t1−α

2
;n−1SEjack,

where t is the Student’s t-distribution with n− 1 degrees of freedom [104].

5.3. Results

The transmittance maps, which were first removed from background, are processed
via minimum error thresholding yielding white and gray matter masks for the LAP
and PM. For simplicity, the results of the segmentation of the 50 repro series is
described. As the 50 repro series were acquired by measuring 50 times consecutively
the same histological section in the LAP, only one white and gray matter mask
is necessary. Therefore, by constructing a histogram with a bin width of 57.92

and 130 bins, resulting from the Freedman-Diaconis rule, a bimodal distribution is
observed (Fig. 5.2 (a)). The minimizing criterion J (T ) for this histogram has its
local minimum at a gray value of 11917.64 (arbitrary unit) corresponding to the
threshold value for segmenting mostly the white from the gray matter (Fig. 5.2 (b)).
Note that the peak of the larger mode (13448.6) corresponds mostly to the gray
matter, whereas the mode at 10582.72 represents the white matter (Fig. 5.2 (a)).
Thus, a white and gray matter mask for the 50 repro series was generated. Similar
results for the white and gray matter distributions were observed for 140 PLI image
series of the LAP. The image series acquired with the PM showed no clear bimodal
distribution, making it difficult to locate a local minimum of J (T ) which clearly
separates white from gray matter. Due to this reason, the gray and white matter
masks for the PM image series were afterwards manually corrected.
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Figure 5.2.: A histogram of one transmittance map of the 50 repro series with 130
bins (a) and its criterion function J (T ) (b).

To evaluate signal enhancement on white and gray matter, cICAP was applied on
white and gray matter of the 50 repro series. For the cICAP application on the
whole white matter no signal enhancement (wrGOF = 1) was observed. Thus, a
brute-force approach on percentiles of the white matter density of the retardation
and transmittance map was carried out. Figure 5.3 provides a summary of these
results. The wrGOF minima of all percentiles of the transmittance map are below
1 (Fig. 5.3 (a)), whereas cICAP on white matter of the retardation map is significant
at 4 percentiles with a wrGOF of 10.34 (Fig. 5.3 (b)).

Consequently, all 140 image series of the LAP were masked and one cdfGM and
cdfpcWM was generated. The resulting cdfGM and cdfpcWM, illustrated in Figure
5.4, show major differences. The cdfGM is steeper compared to the cost function
g (s̃ (k)) and the cdfpcWM, whereas the cdfpcWM has a higher progression at the
lower asymptote than the g (s̃ (k)).

Then, ga (s̃ (k)) is fitted to both cdfs resulting to the parameters q, b and r. Analo-
gously, one cdfGM and cdfpcWM of the 20 PLI image series of the PM were produced
with the same number of bins. The resulting parameters for both optical setups are
shown in Table 5.2.

The cdfGM and cdfpcWM of the 20 PLI image series of the PM are depicted in Figure
5.5, where both cdfs show a slight resemblance to the cost function g (s̃ (k)).

To compare acICA∗ with cICAP and Infomax∗, all three methods were tested on the
50 repro series of the LAP. In case of acICA∗ and cICAP, the optimal parameters

61



5. Development of an Adapted cICAP on White and Gray Matter

0 20 40 60 80 100

0

5 · 10−2

0.1

0.15

0.2

percentiletransmittance

m
in
(w

rG
O
F
)

(a)

0 4 20 40 60 80 100

0

2

4

6

8

10

percentileretardation

m
in
(w

rG
O
F
)

(b)

Figure 5.3.: Percentiles of the white matter distribution of the transmittance map
(percentiletransmittance) and retardation map (percentileretardation) were
processed by cICAP. Then the minimum of all wrGOF values was cal-
culated for percentiletransmittance (a) and percentileretardation (b).
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Figure 5.4.: Comparison of cdfs of GM (a) and pcWM (b) generated from the 140
PLI image series of the LAP. Illustrated are the default sigmoidal func-
tion g (s̃ (k)) (blue, dashed) used in the cICAP, the cdfGM/cdfpcWM
(green, dot) and ga (s̃ (k)) (red, solid) of this work.

for GM and for pcWM were first determined. Table 5.3 shows the comparison of the
three methods in terms of number of iterations. The fitted ga (s̃ (k)) in InfomaxGM

and in acICAGM converged approximately 25% and 19% faster than using g (s̃ (k))

in Infomax and in cICAP, respectively. For the pcWM, InfomaxpcWM and Infomax
were not able to converge. In contrast, acICApcWM performed approximately 6%
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Table 5.2.: Parameters for the GM and pcWM of the LAP and PM.

q b r

GM of the LAP 3.8599 32.7346 1.9251
pcWM of the LAP 50.0522 21.4897 4.4419
GM of the PM 0.7761 7.1339 0.9109
pcWM of the PM 2.9898 · 10−6 6.1503 1.682 · 10−4
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Figure 5.5.: Comparison of cdfs of GM (a) and pcWM (b) generated from the 20 PLI
image series of the PM. Illustrated are the default sigmoidal function
g (s̃ (k)) (blue, dashed) used in the cICAP, the cdfGM/cdfpcWM (green,
dot) and ga (s̃ (k)) (red, solid) of this work.

faster than cICAP on pcWM. Additionally, the standard deviation of the number of
iterations decreased by about 73% for acICAGM and by about 13% for acICApcWM.

A second comparison including the wrGOF of each method is illustrated in Table
5.4. acICA∗, cICAP and Infomax∗ applied either on GM or pcWM show a significant
higher mean of wrGOF s than the standard Infomax and cICAP applied on the
whole histological section. Minor variations between the means and the standard
errors for GM and pcWM of acICA∗, cICAP and Infomax∗ are found. By comparing
InfomaxGM with acICAGM, a 17% increased signal enhancement is observed. As
InfomaxpcWM and Infomax on pcWM did not converge, acICApcWM and cICAP
on pcWM were able to increase the signal enhancement where the mean wrGOF
values were found to be at 149.1 and 155.27, respectively.
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Table 5.3.: A comparison of number of iterations from acICA, cICAP and Infomax.

Application mean (min, max) median
standard
deviation

Infomax on GM 103.16 (102, 114) 103 1.66
InfomaxGM on GM 76.78 (74, 96) 76 3.62
cICAP*on GM 99.14 (76, 132) 89 17.07
acICAGM

†on GM 80.04 (71, 89) 79.5 4.57
Infomax on pcWM — — —
InfomaxpcWM on pcWM — — —
cICAP**on pcWM 479.88 (299, 500) 500 52.51
acICApcWM

††on pcWM 451.08 (346, 500) 449.5 45.41
* with optimized parameter: η = 0.15597, t = 1.17482 · 10−6 and ε = 0.01
** with optimized parameter: η = 0.137, t = 1.19814 · 10−6 and ε = 0.004
† with optimized parameter: η = 0.164, t = 9.61183 · 10−7 and ε = 0.015
†† with optimized parameter: η = 0.178, t = 1.02125 · 10−6 and ε = 0.01

Table 5.4.: A comparison of wrGOFs from acICA, cICAP and Infomax.

Application mean
standard
error

confidence
interval

lower/upper
endpoint

Infomax on GM 276.31 3.87 268.52/284.11
InfomaxGM on GM 270.36 2.82 264.69/276.04
cICAP*on GM 325.71 2.53 320.61/330.81
acICAGM

†on GM 326.67 2.57 321.49/331.85
Infomax on pcWM — — —
InfomaxpcWM on pcWM — — —
cICAP**on pcWM 155.27 4.54 146.14/164.41
acICApcWM

††on pcWM 149.1 5.39 138.26/159.93
Infomax on the whole section 19.51 0.08 19.35/19.68
cICAP on the whole section 70.05 24.1 21.62/118.48

Looking at each wrGOF value per pixel of one of the 50 repro series for the stan-
dard cICAP and the new acICA application (Fig. 5.6), strikingly increased signal
enhancement at almost all pixels across the processed tissue is observed. The mag-
nified region of interest in Figure 5.6 provides a closer view to pixels in the GM for
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cICAP and acICA.

In order to visualize the effect of acICA on the PLI image series, one pixel of GM,
pcWM andWMwas chosen. The profile of these pixels are compared with the pixels,
which were not processed via acICA (Fig. 5.7). The results of this comparison show
that the sinusoidal nature of the PLI signals has been restored for the case of the
GM and pcWM (Fig. 5.7(a) and (b)). For the WM, the measured light intensity
profile shows a pronounced and undeteriorated sinusoidal characteristic.

(a) (b)

(a) (b)(a) (b)

Figure 5.6.: wrGOF values in arbitrary units per pixel generated after standard
cICAP applied on the whole histological section (a) and the new acICA
applied on GM and pcWM (b). Note that for comparison reasons only
the processed pixels of GM and pcWM are illustrated.
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Figure 5.7.: Measured light intensities of one pixel at different rotation angles ρ
before (blue) and after acICA (red). (a) and (b) illustrate two light
intensity profiles of pixels located in GM and pcWM, respectively. The
measured signals before acICA in (a) and (b) show how sensitive the
GM and pcWM signals are to noise. In contrast, strong signals in WM
are less affected to noise. One light intensity profile located in WM is
shown in (c).
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5.4. Discussion

The acICA approach newly introduced here is based on the cICAP, in which prior
information of the sinusoidal profile in 3D-PLI is added for a faster extraction of
signal sources and automatic identification of components of interest [21]. The
new acICA adds further prior information to the existing cICAP, by incorporating
GM and pcWM-specific cost functions for the LAP and PM. Hence, two types of
source signals may be separated in the algorithm for each of the optical setups. For
the remaining pixels of WM no acICA is applied as the level of magnitude of the
sinusoidal WM signals is up to several orders larger than the noise level and thus
they are less affected by deterioration (Fig. 5.7(c)). Overall, almost 94% of WM
pixels provide a pronounced high SNR such that no improvement can be made by
applying acICA, where only signal sources were found resulting in a wrGOF=1
(Fig. 5.3). Pixels in GM and between the boundaries of GM and WM, however, are
afflicted with noise leading to a lower SNR (Fig. 5.7(a) and (b)).

In contrast to acICA, cICAP [21] and Infomax use the sigmoidal function as the
nonlinear cost function, which presents a good compromise for a generalized source
separation as it is known that many types of source activities follow a sigmoidal
distribution [15]. However, an eligible signal separation can only be performed
if the data driven cdfs of the applied cost function and the distribution of the
signal sources are very similar to each other, yielding a faster cdf-match [103]. The
advantage of an automatic identification of components of interest and the strategy
to improve the “cdf-matching” has been employed in acICA.

In order to gain information about the relevant distributions of GM and of pcWM,
140 PLI image series of the LAP and 20 PLI image series of the PM were processed.
For the LAP the distributions in both regions showed deviant characteristics com-
pared to the sigmoidal function making the latter unsuitable for an optimal signal
separation. On the other hand, the distributions in GM and pcWM for the PM
present a higher resemblance to the sigmoidal function and differ from their dis-
tributions in the LAP. This may be explained by the different in-plane sampling
resolution and sensitivities of both optical setups [95], considering that the PM
provides more intensity information per LAP pixel. As a result of this work, GM
and pcWM-specific cost functions for both optical setups have been generated sep-
arately. These cost functions derived from fitting the distributions to ga (s̃ (k)) and
integrated in acICA were tested on the 50 repro series and compared to the well
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established Infomax and cICAP applications. The comparison showed that the here
introduced acICA method performed 25% faster for the GM and 6% faster for the
pcWM than cICAP, whereas the standard deviation decreased for both cases (Table
5.3). Additionally, due to the fact that the initial weight matrix Wc is initialized
with a random orthogonal matrix and the decorrelated data is permuted in each
iteration step (see Section 3.5) for each acICA application and for all 50 repro se-
ries, local minima and computational biases are avoided during the estimation of
an optimal weight matrix Wopt [50]. Hence, the decreased standard deviation of
acICA with the fast signal decomposition are indicators for a reliable convergence
and reliable denoised PLI image series.

By taking the wrGOF of Infomax, cICAP and acICA into account, it can be seen
that the algorithms provide approximately the same signal enhancement if they
are applied independently on both regions (except for Infomax applied on pcWM),
whereas a poor signal enhancement has been observed for the applications of In-
fomax and cICAP on whole histological sections (Table 5.4). The standard error,
which measures the uncertainty of the wrGOF s, and the 95% confidence intervals
show close similarities for acICA and cICAP indicating that the results of the new
approach acICA agrees with the one of cICAP yielding reproducible wrGOF s for
acICA.

As a result, the adapted cost function in acICA provides a 6 − 25% faster compu-
tation and tissue-specific signal enhancement with respect to GM and pcWM for
each histological section.
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Adapted Constrained Independent
Component Analysis

Optimization or tuning of the intrinsic parameters η, t and ε (see Section 3.5) plays
an important role in acICA, as these parameters affect the accuracy of signal sepa-
ration as well as the convergence of the algorithm. Since the right choice of intrinsic
parameters is dependent on the input images and may vary for each histological
section, the question arises if the parameters are needed to be found for each histo-
logical section separately.

Breuer et al. [21] used a brute-force approach for finding the optimal parameters
in cICAP, where multiple cICAP runs were performed on only one PLI image se-
ries. Subsequently, the optimal parameters were incorporated in cICAP for further
applications on histological sections. However, it is still unknown how different
histological sections across a full brain affect the optimal selection of the intrinsic
parameters. Additionally, the brute-force approach is a naive and computational in-
tensive optimization technique, where the entire parameter space must be searched
for the right parameter candidates. Therefore, to speed up the search an alternative
optimization technique is necessary, which needs less iterations than the brute-force
approach and, at the same time, finds a local maximum/minimum throughout the
parameter space.

This chapter goes a new way, focusing on finding the right parameter candidates
for acICA at histological sections across a full brain by using the downhill simplex
algorithm [87]. The ascertained parameters are evaluated as to their distribution
across all histological sections.

For the sake of clarity and comprehension, the definition of variables and abbrevia-
tions for the following sections are summarized in Table 6.1.
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Table 6.1.: Definition of variables and abbreviations in this chapter.

definition reference

Â Orthogonal mixing matrix see Chapter 3
â∗ (ρ) Basis vector with prior information see Chapter 3
ε threshold value see Chapter 3
η Confidence value see Chapter 3
f (k) Function value of x(k)

f (uρ) Theoretically expected function see Chapter 2
κc Contraction parameter
κe Expansion parameter
κr Reflection parameter
κs Shrinkage parameter
t tolerance value
wrGOF Weighted relative goodness-of-fit see Chapter 2
x(k) Vertex of kth iteration step

acICA Adapted constrained Independent Component
Analysis

see Chapter 5

cICAP Constrained Independent Component Analysis
for 3D-PLI

see Chapter 3

DSA Downhill Simplex Algorithm
GM Gray Matter
LAP Large Area Polarimeter see Chapter 2
MSE Mean Square Error see Chapter 3
pcWM Percentiles of White Matter

6.1. Methods

The Downhill Simplex Algorithm (DSA), also referred to as the Nelder-Mead algo-
rithm in the literature, is a widely used method for nonlinear unconstrained opti-
mization [87, 108]. This method belongs to the class of direct search algorithms
and requires only function values, without the need for gradient information. The
DSA begins with a geometric figure, which is defined by its n + 1 vertices x(k),
with k denoting the iteration steps. For each vertex the associated function value
is calculated and sorted, such that

f
(k)
1 ≤ f (k)

2 ≤ . . . ≤ f (k)
n+1, (6.1)
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where the function value f (k)
i describes f

(
x

(k)
i

)
. The vertex with the highest func-

tion value f (k)
n+1 is replaced with a new point of the form

x = (1 + κ)x− κxn+1, (6.2)

with x =
∑n

i=1
xi
n being the centroid. The value κ can be interpreted as one of the

parameters

κr > 0, κe > 1, 0 < κc < 1 and 0 < κs < 1, (6.3)

with κe > κr, depending on the function value f (k)
i . The choices used for these

parameters are typically κr = 1, κe = 2, κc = 0.5 and κs = 0.5. These parameters
define the rules for reflection, expansion, contraction and shrinkage [74], respec-
tively. The algorithm terminates if f (k)

n+1 − f
(k)
1 is sufficiently small or the total

number of function evaluations has been exceeded. Lagarias et al. [74, 75] published
a theoretical analysis of DSA, proving the convergence to a unique minimum for
dimensions one and two.

With the requirement to maximize the wrGOF s for all pixel locations in GM
and pcWM for the LAP, the intrinsic parameters η and t of acICA are estimated
by DSA. As the parameter ε is determined by the Mean Square Error (MSE =

1
N

∑N
ρ

[
â∗j (ρ)− fj (uρ)

]2
, see Section 3.5) between components representing sig-

nals of interest and noise components, this parameter was optimized without DSA.
Thus, the DSA used here constructs a triangle simplex in R2 with a starting vertex
η = 0.16 and t = 2.2 · 10−7 [21] and initiation step size of 0.05. For iteratively
computing a function value of a new vertex, Equation 6.2 is applied, resulting in
a new pair of parameters η∗ and t∗. These parameters are then used in acICA for
processing GM and pcWM, respectively, until optimal ηopt and topt are found. As a
control measure the wrGOF values are computed after each acICA application and
a minimal wrGOF value was checked. The minimal wrGOF serves as a function
value for DSA.

In order to evaluate the distributions of the intrinsic parameters of acICA, DSA was
performed individually on GM and pcWM of the 140 PLI image series, resulting in
optimal parameters ηopt and topt for both GM and pcWM of each PLI image series.
Subsequently, the evolution of the MSE values for all iteration steps at each acICA
run of the 140 PLI image series was used to determine the optimal stopping criteria

71



6. Parameter Optimization of the Adapted cICAP Analysis

ε. For this, the means of both estimated parameters ηopt and topt were used and
fixed for each acICA run.

6.2. Results

The identification of the optimal parameter candidates is important for the signal
decomposition in acICA, where the weight update of Âc is optimized by means of
the incorporation of prior information, which models the expected signal in PLI by
utilizing the Jones calculus (Eq. 2.8). Therefore, the optimal parameters ηopt and
topt were determined using DSA on GM and pcWM of the 140 PLI image series.

As a starting point for each DSA run the optimal parameters reported by Breuer
et al. [21] were used. Figure 6.1(a) and (b) provide a summary of these results. The
confidence values for GM and pcWM settle at values close to 0.16, whereas the
threshold values for GM can be clearly distinguished from the threshold values for
pcWM. Table 6.2 shows the mean, median and standard deviation of the confidence
and threshold values gained from the DSA. For simplicity, if only the means of ηGM

and ηpcWM are considered, then a marginal difference of 1.2 · 10−3 is observed. On
the other hand, the mean of tGM and tpcWM have a significant visible difference of
8.503 · 10−7 (Fig. 6.1(b)).

Table 6.2.: Mean, median and standard deviation of the optimized parameters η
and t for GM and pcWM.

mean median
standard
deviation

ηGM 0.164 0.1637 8.2 · 10−3

ηpcWM 0.1628 0.16 7.5 · 10−3

tGM 1.0739 · 10−6 1.0746 · 10−6 5.4 · 10−8

tpcWM 2.2357 · 10−7 2.2 · 10−7 7.5 · 10−9

By using the mean of ηGM and ηpcWM and respectively the mean of the threshold
values, the stopping criterion ε, controlling the number of iterations, is determined
for each acICA run. For this purpose, the largest and smallest error, which is
expressed by the MSE, found in â∗j (ρ) of Âc is investigated. For all iterations in
acICA the maximal MSE of all identified signal components and the minimal MSE
of all noise components across the columns of Âc were observed.
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Figure 6.1.: Parameter benchmark of the confidence value η, the threshold value t
and the stopping criterion ε. (a) and (b) show the resulting ηopt and
topt of 140 PLI image series after computing DSA for GM (blue) and for
pcWM (orange). The mean of the maximal and minimal MSE for GM
and pcWM is shown in (c) and (d), respectively. Note that the minimal
MSE is plotted for noise components (green), whereas the maximal
MSE is plotted for signal components (red). Furthermore, the dashed
gray line shows the threshold, where both components can be clearly
identified.
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Figure 6.1(c) and (d) depict the mean of the maximal and minimal MSE for GM
and pcWM, respectively. Throughout all PLI image series the maximal MSE for
GM was found to be well below 0.013 yielding an optimal parameter εGM = 0.013.
In contrast, the distinction of the maximal and minimal MSE for pcWM can not be
classified by one threshold value across the PLI image series. Thus, the optimization
of the optimal parameter εpcWM is performed on three partitions of the 140 PLI
image series. In the first partition ranging from the first to 31st PLI image series,
εpcWM,1 was found at a value of 0.01. For the second partition ranging from the
32nd to 85th PLI image series εpcWM,2 was set to 0.016. The last partition range
from the 86th to the 140th PLI image series in which εpcWM,3 = 0.01.

6.3. Discussion

The aim of this chapter is to document and discuss the optimized parameters of
acICA across the whole vervet brain. It is of importance to acquire information
about the distribution of the determined parameters for an accurate signal decom-
position throughout the 140 PLI image series. This may answer the question if
unique parameters have to be found for each histological section.

For this purpose DSA was applied on GM and pcWM of all PLI image series yielding
140 values for each η and t. While the parameters ηGM and ηpcWM differ only
marginally from each other with values of 0.164 and 0.1628 across all PLI image
series and are thus less affected by the different tissue types, the parameter t showed
noticeable differences between GM and pcWM. It is noted that the parameter t is the
tolerance value where the entries of â∗j (ρ) are fixed and if MSE is below t, â∗j (ρ) and
fj (uρ) become similar leading to the identification of the original sinusoidal profile
of the 3D-PLI signal. Following this, t has a strong linkage to the underlying sources
during signal separation and thus it may be more affected by the choice of the input
data, i.e., GM and pcWM. Thus, when processing GM the parameters need to be
set to ηGM = 0.164 and tGM = 1.0739 · 10−6, whereas when processing pcWM the
parameters need to be set to ηpcWM = 0.1628 and tpcWM = 2.2357·10−7 (Table 6.2).
Additionally, the means of tGM show also a distinct difference to the published value
of t = 2.2 · 10−7, whereas the means of ηGM and ηpcWM correspond roughly to the
published value of η = 0.16 [21]. It is noted, however, that most DSA runs on pcWM
exceeded the total number of function evaluations yielding optimal parameters to be
equal to the initialized parameters η = 0.16 and t = 2.2 · 10−7. A similar noticeable
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difference between GM and pcWM is also observed for the stopping criterion ε. The
stopping criterion ε, which controls the number of iterations and has the condition
of ε � t, is dependent on the distance between the maximal MSE of the sources
of interest and the minimal MSE of noise components (Fig. 6.1). Therefore, ε is
also dependent on the combination of η and t, which regulates the distance of the
minimal and maximal MSE. By fixing the optimal parameter η and t for all PLI
image series and evaluating the DSA results, it was observed that εGM can be set to
0.013 throughout the histological sections, whereas εpcWM has to be determined for
three partitions of the histological sections. While εGM and εpcWM,2 differ slightly
from the published value of 0.01, εpcWM,1 and εpcWM,3 are equal to ε = 0.01 [21].
Hence, the histological sections laying approximately in the frontal and occipital
lobe need an εpcWM = 0.01. For the histological sections laying approximately in
the temporal lobe εpcWM needs to be set to 0.016. The three different partitions
for εpcWM from the frontal to the temporal lobe and from the temporal to the
occipital lobe, respectively, may be explained by the increasing and then decreasing
of number of pixels laying in the 4th percentile of WM.
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7. A New Parallelization Concept for
Adapted Constrained Independent
Component Analysis

The analysis of PLI image series acquired with the PM poses two major difficul-
ties: the involvement of high dimensional data and the usually low Signal-to-Noise
Ratio (SNR) for birefringence signals with weak signal strengths. Huge amounts of
memory and computing power are needed to analyze brain signals with ICA. Due
to limited time and resources, these difficulties render a purely sequential procedure
of ICA impossible. Various modalities in neuroscience, e.g., EEG, MEG and fMRI,
share the same difficulties. However, in recent years, research in EEG, MEG and
fMRI has overcome the constraint of sequential execution and memory limitations
of ICA. One approach in EEG analysis is to use parallel computing clusters with
the potential to exploit two different ICA implementations: FastICA relying on
MPI, and Infomax using an Open Multi-Processing (OpenMP) implementation [69].
While the Infomax algorithm is the relevant one for our purposes, it was observed
that the approach with OpenMP for Infomax of Keith et al. [69] shows lack of par-
allelism and scalability. A different way of introducing parallelism is the usage of
SIMD architectures as proposed by Raimondo et al. [94], where one GPU was used
for ICA calculation on EEG data. It was observed that the use of a common shared
memory and one GPU could reduce the processing time by a factor of 25. While
this may be only valid for smaller data sets that fit the GPU’s onboard memory,
very large data sets, which are common for the PM, would lead to a quite ineffec-
tive procedure when performed on one GPU only. Another strategy was proposed
by Boubela et al. [19], where MR data of 300 subjects are distributed on multiple
machines for processing ICA independently. Subsequently, a group-level analysis is
applied, referred to as group ICA, which combines single subject ICA results [19].

By considering the current state of research of parallelized ICA conducted on dif-
ferent modalities in neuroscience, a new concept to parallelize acICA in 3D-PLI for
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PM is introduced in this thesis. The new concept of parallelized acICA for PM, re-
ferred to as pICAP, needs to deal with huge amount of data and, at the same time,
needs to provide a fast analysis of the PLI image series using the GPU-enhanced
supercomputer JuDGE.

The development of a new parallelized ICA specifically designed for 3D-PLI is sub-
ject of this chapter. In Section 7.1 the concept and the implementation of pICAP
is presented. Additionally, an approach is proposed which uses massive parallel
processors in the GPU for linear algebra operations in pICAP. Finally, pICAP is
compared to the sequential version acICA and a runtime analysis is performed. In
Section 7.3 a summary of achievements is discussed.

For the sake of clarity and comprehension, the definition of variables and abbrevia-
tions for the following sections are summarized in Table 7.1.

Table 7.1.: Definition of variables and abbreviations in this chapter.

definition reference

Â Orthogonal mixing matrix see Chapter 3
â∗ (ρ) Basis vector with prior information see Chapter 3
αFP False positive rate
α Significance level
BI Regularized incomplete beta function
C Covariance matrix
c Iteration step
clusterIdxs Array of cluster indices
D Diagonal matrix with eigenvalues
Dx Whitening matrix see Chapter 3
E Matrix containing the eigenvectors
γ Similarity
ga (s̃) Adapted cost-function see Chapter 5
ν Degrees of freedom
p Probability used to decide statistical significance
p Array of p-values
p̄ Mean of p-values for each cluster
s Vector of source signals see Chapter 3
τ Learning rate
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W∗ Estimated unmixing matrix
W0 Bias weight see Chapter 3
wrGOF Weighted relative goodness-of-fit see Chapter 2
x Vector of recorded sensor signals see Chapter 3

acICA Adapted constrained Independent Component
Analysis

see Chapter 5

CPU Central Processing Unit
CUBLAS CUDA Basic Linear Algebra Subroutines
EEG Electroencephalography
fMRI Functional Magnetic Resonance Imaging
GB Gigabyte
GM Gray Matter
GPU Graphics Processing Unit see Chapter 4
HDF5 Hierarchical Data Format version 5
ICA Independent Component Analysis see Chapter 3
JuDGE Jülich Dedicated GPU Environment see Chapter 4
MB Megabyte
MEG Magnetoencephalography
MPI Message Passing Interface see Chapter 4
OpenMP Open Multi-Processing
pcWM Percentiles of White Matter
pICAP Parallelized Independent Component Analysis

for 3D-PLI
PM Polarizing Microscope see Chapter 2
SIMD Single Instruction - Multiple Data see Chapter 4
SNR Signal-to-Noise Ratio
3D-PLI 3D-Polarized Light Imaging see Chapter 2

7.1. Concept Development, Implementation and
Procedure

pICAP is a new method which incorporates all properties of acICA and performs
a related group ICA on disjoint partitions of a PLI image series acquired with the
PM. In general, group ICA is applied on recorded data from many subjects where
sufficient similar components are found [23, 36]. The new approach is related to
the method introduced by Himberg et al. [50], where the components are clustered
by repetitively performing single ICA runs with different starting conditions. As
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the components may be related to signals of interest or artifacts, a component
selection and sorting is mandatory. Hyvärinen et al. [54, 58] proposed therefore an
inter-subject consistency of components or mixing matrices, where ICA is performed
separately for all subjects in either EEG, MEG or fMRI. The estimated components
or mixing matrices are then clustered. Reliable source signals are found based on
principles of statistical estimation theory, where similar sources are defined by the
consistency of the columns of the mixing matrix or the spatial components across
all subjects. In a last step, consistent sources are clustered together, where a cluster
is restricted to contain only one component from each subject. In case of pICAP,
the subjects can be represented by the disjoint partitions of PLI image series where
the similarity of the estimated components is defined based on the columns â∗j (ρ)

of the mixing matrix Â∗c , resulting in clusters that represent source and artifact
components, respectively (see Section 3.5). The combination of a related group
ICA and an inter-subject consistency is incorporated in pICAP.

7.1.1. Development of a Parallelized ICA Concept

Simplified data structure

First disjoint partition

MPI process 0

Parallel I/O

Second disjoint partition

MPI process 1

Figure 7.1.: Exemplary procedure to read data in a cyclic manner of one large data
set resulting in a geometric decomposition (see Section 4.3). The 2 MPI
processes hold a disjoint data partition of one large data set.

Figure 7.2 schematically explains the new concept of pICAP. The PLI image series
and the corresponding mask, which are stored in a Hierarchical Data Format ver-
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sion 5 (HDF5) [46, 106], are read simultaneously in a row cyclic manner resulting
in disjoint data partitions in parallel (Fig. 7.1). Subsequently, the segmentation,
centering and decorrelation of each partition is performed. On each decorrelated
partition a single acICA is performed resulting in a parallel execution of acICA on
the different partitions loaded. Each acICA generates at every iteration step one es-
timated unmixing matrix W∗

c . In contrast to a standard group ICA, the estimated
unmixing matrix W∗

c is passed to the next acICA, which updates W∗
c dependent

on the present partition.

Looking at the update of the unmixing matrix W∗
c , which is passed consecutively

to the next acICA on each iteration step, a resemblance to the sequential procedure
of acICA can be observed. The update is performed until convergence criteria are
met. For simplicity reasons, a detailed description of the convergence criteria and
the update of the mixing matrix is provided later in this chapter.

The subsequent method for inter-subject consistency [54, 58] uses the covariance
matrix C, which is defined as

C =
1

nr

i=n; k=r∑

i=1; k=1

â∗ik · â∗Tik , (7.1)

where â∗ik, i = 1, . . . , n, k = 1, . . . , r, are the columns of the mixing matrix Â∗k =

[â∗1k, â
∗
2k, . . . , â

∗
nk] of r partitions and n independent components. From the eigen-

value decomposition of

C = E ·D ·ET , (7.2)

the diagonal matrix D and the orthogonal matrix E containing the eigenvectors are
obtained. Here, the full rank of D and E was used. With the matrices E and D

the similarities γ of â∗ik can be defined as

γij, kl =
|â∗Tik ·R · â∗jl|√

â∗Tik ·R · â∗ik
√
â∗Tjl ·R · â∗jl

, where (7.3)

R = E ·D−1 ·ET , (7.4)

for all i, j = 1, . . . , n and k, l = 1, . . . , r, k 6= l. The goal here is to use a statistical
test to determine if the different partitions have significantly similar basis vectors
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Figure 7.2.: Scheme of the estimation procedure for generating an overall mixing
matrix Â∗tot in pICAP.
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HDF5

**Tiles

PLI image series**Mask for pcWM**Mask for GM** or

Parallel I/O

Segmentation  Centering  Decorrelation

Application of the overall weight matrix

Reconstruction

HDF5

denoised PLI image series**

Parallel I/O

Figure 7.3.: Scheme of the reconstruction of the identified source components back
into the PLI space. The reconstructed data is saved again as tiled PLI
image series. 83
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â∗ik. The here assumed null hypothesis models the case where â∗ik of the different
partitions have no similarities. Hyvärinen et al. [54] showed that the distribution
of the statistical test under the null hypothesis follows a beta distribution with
the parameters 1

2 and n−1
2 . By knowing the distribution of the statistical test the

similarities γ can be transformed to p-values. The p-values are calculated with

pij, kl = 1−BI
(
γ2
ij, kl,

1

2
,
n− 1

2

)
, (7.5)

where BI
(
γ2
ij, kl,

1
2 ,

n−1
2

)
describes the regularized incomplete beta function. Thus,

the null hypothesis is rejected if the p-values pij, kl are less then a significance level
α and accepted otherwise. By means of the significant p-values clusters are defined
[54].

This method clusters similar components of Â∗c from all partitions yielding the

calculation of one unmixing matrix W∗
tot =

(
Â∗−1
tot ·Dx

)−1
(see Section 3.5). In the

same manner as in acICA, pICAP is applied separately on GM and pcWM of a PLI
image series acquired with the PM. Thus, two different unmixing matrices W∗

tot ,GM

and W∗
tot , pcWM are generated. For the estimation of the unmixing matrices the

corresponding fitted cost functions ga (s̃ (k)) of GM and pcWM for PM were used
(see Chapter 5). In order to manage an accurate signal separation and convergence
the optimal parameter ηopt, topt and εopt for GM and pcWM of the LAP were used
in the pICAP algorithm (see Chapter 6).

For avoiding that doubled or fourfold information are processed due to the 30%

overlap area of the acquired tiles in the PM, the calibrated tiles were firstly stitched
together resulting in stitched PLI image series. Analogously, the generated tiled
masks are stitched creating a stitched mask. The stitched masks of GM or pcWM
with the stitched PLI image series provide the input of pICAP.

Since each tile may be afflicted with noise and dust particles, which may affect the
result of the stitching procedure, the estimated unmixing matrices W∗

tot ,GM and
W∗

tot , pcWM are used to denoise the tiles of the same histological section (Fig. 7.3).
For this step the PLI image series of the tiles and the corresponding tiled masks are
read simultaneously in a row cyclic manner. Analogously, the pre-processing steps,
i.e., segmentation, centering and decorrelation, are performed. The weight matrices
are applied individually on the decorrelated partitions. After keeping components
of interest in Â∗tot ,GM and Â∗tot , pcWM, respectively, and rejecting noise and artifact
components, the denoised partitions are reconstructed back into PLI space. Subse-
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quently, the reconstructed partitions are written simultaneously as tiled PLI image
series in HDF5. The denoised tiles are then stitched again and provide the basis for
further analysis.

7.1.2. Implementation

In the following the pICAP algorithm is shown in pseudocode in order to give a
detailed view and to emphasize relevant parts of the method.

Algorithm 3 Parallelized Independent Component Analysis for 3D-PLI (pICAP)

1: MPI initialization
2: comm ← MPI_COMM_WORLD
3: rank ← MPI_Comm_rank(comm)
4: nprocs ← MPI_Comm_size(comm)

5: function LoadData(rank)
6: xrank ← HDF5ReadPLIImageSeries(rank)
7: mrank ← HDF5ReadMask(rank)
8: return xrank, mrank

9: end function

10: function PreProcessing(xrank, mrank)
11: idxdimX, idxdimY ← GetIndicesGreaterZero(mrank)
12: Loadbalancing(idxdimX, idxdimY)
13: xrank,masked ← Segmentation(xrank, idxdimX, idxdimY)
14: Compute total sample mean x̄ of xrank,masked

15: xrank, centered ← Centering(xrank,masked, x̄)
16: Compute total covariance matrix
17: xrank,whitened ← Whitening(xrank, centered)
18: end function
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19: q∗, b∗, r∗ ← GetACICAParameterGMOrPCWM()
20: η∗, t∗, ε∗ ← GetOptParameterGMOrPCWM()
21: right ← (rank + 1) mod nprocs
22: left ← (rank − 1 + nprocs) mod nprocs
23: W0 ← DW ·WΠ

24: W∗
0 ← I

25: τ0 ← 0.01

26: c ← 0

27: while 4Wc > 10−10 AND c ≤ 500 do
28: xrank,whitened ← Permute(SeedPoint(c), xrank,whitened)
29: if c > 0 then
30: Recieve unmixing matrix Wc, right, bias weight matrix W∗

0, right

and learning rate τright from left neighbor
31: Wc, left, W∗

0, left, τleft ← Wc, right, W∗
0, right, τright

32: else
33: Wc, left, W∗

0, left, τleft ← W0, W∗
0, τ0

34: end if
35: Wc, right, W∗

0, right, τright← Infomax(xrank,whitened,Wc, left,W
∗
0, left, τleft, q∗, b∗, r∗)

36: Incorporation of prior information by using η∗, t∗ and ε∗ (see Algorithm 2)
37: Gather Â∗c, right of all MPI processes

38: clusterIdxs, p ← InterSubjectConsistency(
[
Â∗c, 0 Â∗c, 1 · · · Â∗c, nprocs−1

]
)

39: p̄ ← ComputeMean(p)
40: idxp̄ ← GetIndices(p̄ < 0.05)
41: if size(idxp̄) ≥ Indices of identified components then
42: break
43: end if
44: Send unmixing matrix W∗

c, right, bias weight matrix W∗
0, right

and learning rate τright to the right neighbor
45: end while
46: Â∗tot ← ComputeMedian(

[
Â∗c, 0 Â∗c, 1 · · · Â∗c, nprocs−1

]
, clusterIdxs)

47: W∗
tot ←

(
Â∗−1
tot ·Dx

)−1
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48: function LoadData(rank)
49: xrank ← HDF5ReadPLIImageSeriesTiles(rank)
50: mrank ← HDF5ReadMaskTiles(rank)
51: return xrank, mrank

52: end function

53: function PreProcessing(xrank, mrank)
54: idxdimX, idxdimY ← GetIndicesGreaterZero(mrank)
55: xrank,masked ← Segmentation(xrank, idxdimX, idxdimY)
56: xrank, centered ← Centering(xrank,masked, x̄)
57: xrank,whitened ← Whitening(xrank, centered)
58: end function

59: function Reconstruction(Â∗tot, W∗
tot, xrank,whitened)

60: idxSOI ← IdentifySignalsOfInterest(Â∗tot)
61: s′rank ← W∗

tot · xrank,whitened

62: xrank, denoised ← ComputeReconstruction(s′rank, Â∗tot, idxSOI, x̄)
63: end function

64: function WriteData(rank, xrank, denoised)
65: HDF5WritePLIImageSeriesTiles(rank, xrank, denoised)
66: end function
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After each MPI process loads its partitions (step 6 and 7) of the stitched PLI image
series and stitched mask, a load balancing of the masking indices is performed due
to the unevenly distributed area of the histological section across the stitched image
(step 12). The now evenly distributed pixels on all MPI processes are pre-processed
individually (step 11-17). Thereafter, every MPI process initializes (c = 0) a random
orthogonal weight matrix W0 and a bias weight matrix W∗

0. By defining the right
and left neighbors in terms of MPI processes a ring topology is constructed (step
21 and 22). For iteration step c = 0 all processes perform the Infomax algorithm
with the adapted learning rule according to Equation 5.12 and 5.13 (step 35). In
step 36 the optimal parameters are used to modify the basis vectors âj (ρ) to select
and to fix components of interest and to stop the algorithm, if convergence criteria
are met (see Algorithm 2).

The following inter-subject consistency step needs the estimated mixing matrices
of all MPI processes to compute reliable clusters. Each component that belongs to
a specific cluster is subscripted with a corresponding cluster index. All indices are
stored in an array referred to as clusterIdxs (step 38).

Furthermore, the consistency of a cluster of components is reflected by its p-value.
A p-value is significant if it is smaller then a predefined threshold αFP/ν, where αFP

describes the false positive rate and ν is the number of degrees of freedom. Here,
the false positive rate αFP was set to 0.05 according to [54, 58]. The p-values are
also stored in an array referred to as p. The idea is to compute the mean of the
p-values p̄ for each cluster, referred to as average-linkage strategy, where each entry
in p̄ has to be significant (step 39). Here, the entries in p̄ are considered significant
if they are below a defined threshold of 0.05, which is set purposely equal to αFP

(step 40).

The pICAP algorithm converges when the number of significant components are at
least equal to the number of identified component of interest (step 41). This is the
case due to stronger similarities among components of interest resulting in reliable
clusters compared to the similarities among noise components. However, if one of
the convergence criteria are not met, the updated unmixing matrix W∗

c, right, the
bias weight matrix W∗

0, right and the learning rate τright are send to the next MPI
process (step 44). The simultaneous updating of the unmixing matrices at each
iteration step, the clustering and the circular communication in the ring topology
are performed until pICAP converges. The performance compromise between the
parallelization effort in pICAP and the convergence criteria of each acICA process
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(see Section 3.5) is explained in the following sections. At the final stage the esti-
mated Â∗c, right and clusterIdxs are gathered to form one total mixing matrix Â∗tot
and unmixing matrix W∗

tot (step 46 and 47).

In order to denoise the tiles for further post-processing, the disjoint partitions of the
tiled PLI image series xrank are first pre-processed and subsequently the components
of interest of Â∗tot are identified. The source components are then computed with
W∗

tot · xrank,whitened (step 61). By zeroing the columns of Â∗tot (see Section 3.5),
which represent noise and artifact components and apply the resulting matrix on
s′rank, the denoised partitions xrank, denoised can be computed.

7.1.3. Experimental Procedure

To determine the amount of time the pICAP algorithm needs to converge, a runtime
analysis was performed. For this case the largest data set in terms of storage from
the 20 PLI image series of the PM was used. This data set included both stitched
and tiled PLI image series and stitched and tiled masks. The storage sizes of the
generated data from different steps of the 3D-PLI workflow are shown in Table 7.2.

Table 7.2.: Size of data for different steps of the 3D-PLI workflow.

size

stitched PLI Image series 127.46GB
tiled PLI Image series 312.19GB
stitched mask 1.8GB
tiled mask 4.4GB

The runtime analysis was performed by measuring the elapsed time of the LoadData,
PreProcessing, Reconstruction and WriteData functions and the core algorithm
of pICAP on JuDGE (see Algorithm 3). By increasing the number of MPI processes
with the same size of workload the runtime scalability was measured. Therefore,
each reserved compute node launched one MPI process with 90GB allocated mem-
ory. The MPI process is mapped to one core of a JuDGE compute node. Thus, the
total workload is distributed in form of data decomposition between the compute
nodes. The allocation of 90GB of memory per compute node is necessary due to
the internal memory management of the Python interpreter (version 2.7.x), where
the memory of a deallocated Python object is not released to the operating system
but marked as a freed object in a pool’s free list [93].
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As a second step, the integration of GPUs was achieved for large vector-matrix
and matrix-matrix multiplications. The integration of GPUs is restricted to the
pre-processing and reconstruction steps due to two primary reasons. Firstly, the
intrinsic dependencies in the learning rule of the here used Infomax and the inter-
subject consistency are not able to be unraveled to parallelism. Secondly, the
constant accumulating overhead of kernel launches on the GPU, due to the addi-
tional calls for memory transfer operations at each iteration step originated mainly
by the random permutation of xrank,whitened and by the receiving and sending of
weight matrices, could cause a lack of improvement, thus making the GPU usage
for the acICA routines unsuitable. For this reason, the computation of a covariance
matrix Cov

(
xrank, centered, xTrank, centered

)
for large sizes of xrank, centered in the pre-

processing procedure is performed on GPUs. The same holds for the decorrelation
of large xrank, centered and the retrieval of the sources s′rank. Thus, the advantage of
high arithmetic throughput of GPUs is exploited. Hence, PyCUDA with standard
CUBLAS routines was used for the above mentioned parts of the pre-processing and
reconstruction steps in pICAP and a subsequent comparison in terms of computing
time with a standard CPU approach was performed. Note that, in the following, a
single GPU is assigned to only one MPI process.

In order to verify the mixing matrices of pICAP produced and the wrGOF s gener-
ated hereafter, a comparison with the sequential acICA was carried out. Therefore,
an approximately 9 times smaller data set taken from the 20 histological sections,
which were acquired in the PM, was used. The smaller data set includes stitched
PLI image series with a size of approximately 13.9GB and a stitched mask with a
size of approximately 197MB. For verification purposes both algorithms used the
same data set.

7.2. Results

7.2.1. Scalability

The main objective of pICAP is the accurate processing of PM images with a fast
analysis of PLI image series. For the latter activity, a runtime analysis was carried
out using the largest data set of the 20 PLI image series, with the optimal parameters
ηopt, topt and εopt and the fitted cost function ga (s̃ (k)) of GM and pcWM being
incorporated in pICAP. By analyzing the GM part (≈ 18× 576 · 106 pixels) of the
127.46GB large PLI image series and increasing the used number of MPI processes
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for each measurement, a reduction of the runtime up to 50 MPI processes is observed
(Fig. 7.4). Note that the connected measurement points start with 10 MPI processes.
A marginal growth of runtime was then observed for 60 MPI processes. pICAP
performed with 20 MPI processes runs approximately 50% faster than pICAP with
10 MPI processes. Moreover, the optimal working point of 50 MPI processes found
performed approximately 17.1% faster than with 40 MPI processes.

6,200 estimated runtime

10 20 30 40 50 60
0

100

200

number of MPI processes

ti
m
e
in

m
in

Figure 7.4.: Runtime measurements including the core method of pICAP with the
mandatory pre-processing steps, which were applied on the GM of the
stitched PLI image series with a size of 127.46GB. The runtime for a
single process was extrapolated on the basis of the sequential acICA by
processing the GM of a PLI image series of size 13.9GB.

Due to the limited memory of 96GB per compute node the runtime measurement of
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the GM part with one MPI process had to be extrapolated by using the sequential
acICA, which was applied on the GM (≈ 18× 100 · 106 pixels) of a PLI image series
being 13.9GB smaller. The estimated runtime for the sequential acICA amounts to
approximately 6200min. Here, only the runtime scalability of GM is described since
the performance of processing the pcWM part would show the same characteristic.

A detailed analysis of the entire pICAP application is shown in Figure 7.5, where
LoadData, PreProcessing, Reconstruction and WriteData functions together
with the core pICAP algorithm were profiled. pICAP was executed with the opti-
mal number of 50 MPI processes on GM of the PLI image series of size 127.46GB.
It was observed that the core algorithm of pICAP consumed approximately 77% of
the total computational time followed by parallel loading and writing taking 7.52%

and 12.3% of the total runtime, respectively. Moreover, the pre-processing and re-
construction steps took each 0.6% and 2.4% of total time. The share of computing
time for the initialization of the algorithm is negligible.

Initialization (0.06%)

Loading data (7.51%)

Preprocessing (0.6%)
ICA (77.13%)

Reconstruction (2.4%)

Writing data (12.3%)

Figure 7.5.: Total runtime shares starting from the parallel reading to the parallel
writing of tiled PLI image series of a complete pICAP application with
the runtime optimal 50 MPI processes.

7.2.2. GPU Acceleration

In the next step the massive parallel processors in the GPU were used to re-
duce the computing time of linear algebra operations in the PreProcessing and
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Reconstruction functions, which need to handle large matrices and vectors.

covariance matrix whitening and
reconstruction
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Figure 7.6.: Comparison of elapsed time between the kernel execution on the GPU
and standard execution on the CPU for matrix-matrix and vector-
matrix multiplication.

Note that the vectors described here hold, for each entry, a vectorized image of
the PLI image series, resulting in 18 vectorized PLI image series. In order to use
the GPUs, a smaller data set was used for fitting the disjoint partitions and the
results in the memory of each GPU. It was found that with 50 MPI processes and
a data set size of 13.9GB the disjoint partitions (≈ 18 × 4 · 106 pixels per MPI
process) are able to be processed on a single GPU for each compute node. The
matrix-matrix and vector-matrix calculations were performed on 50 compute nodes
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using one GPU per compute node. Figure 7.6 shows a comparison of computing
time between GPU kernel launches and CPU for the calculation of the covariance
matrix, the whitening procedure and the reconstruction step. This Figure highlights
the increased speed of the calculation of the covariance matrix by about a factor of
3, whereas an increased speed of the decorrelation and reconstruction step, which
have the same linear algebra operation, by about a large factor of 32 is achieved.

7.2.3. Validation and Consistency

In order to verify the results of the pICAP algorithm with the sequential acICA,
a comparison of consistency of the estimated mixing matrices from both methods
was carried out. To this end, both algorithms were applied on the same data set
by using the optimal parameters and the fitted ga (s̃ (k)) of GM and pcWM for the
PM, respectively. Figure 7.8 and 7.9 provide a summary of the resulting mixing
matrices of the acICA and pICAP algorithms for GM. The red, green and orange
highlighted basis vectors from pICAP and acICA were identified as components of
interest, whereas the remaining basis vectors (blue), which differ from the expected
sinusoidal profile, were rejected (see Section 3.5). By observing the course and the
range of values of the identified signal components from both algorithms and by
considering the sign ambiguity (see Section 3.3) a clear resemblance is observed.
Similar basis vectors which were identified as signal components in both algorithms
are colored in the same color (see Figure 7.8 and 7.9 the corresponding red, green and
orange highlighted basis vectors). Furthermore, Figure 7.9 shows clearly separated
clusters with their basis vectors gathered from all MPI processes. In particular, the
identified signal components of each cluster in Figure 7.9 (a), (b) and (c) only show
marginal deviations. The same applies for pcWM (see Appendix D).

After the estimation of the mixing matrices of both pICAP and acICA algorithms,
components representing signal of interest are reconstructed back to PLI space.
The subsequent wrGOF calculations are performed individually for both methods
at each pixel location of the same data set. Figure 7.7 (b) shows the color coded
wrGOF values for the acICA algorithm. In the entire data set, the mean value of the
wrGOF s was found to be 396, which indicates a significant signal enhancement due
to acICA. Moreover, in some pixel locations of the gray matter a better performance
of acICA is observed (indicated by the bright colored pixels in Figure 7.7 (b)).

For the case of the pICAP algorithm Figure 7.7 (a) shows the achieved signal en-
hancements. Here, the overall mean of the wrGOF s was found to be 131 with an
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increased local performance of pICAP in the outer boundaries of the gray matter.
For both methods a signal improvement (wrGOF > 1) and a threefold signal en-
hancement are observed for the acICA algorithm on both GM and pcWM compared
to the pICAP algorithm.

a) b)

Figure 7.7.: wrGOF values in arbitrary units per pixel generated after the new
pICAP algorithm (a) and the sequential acICA (b) applied on GM
and pcWM. Only the processed pixels of GM and pcWM of the left
hemisphere of the histological section are illustrated.
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Figure 7.8.: Basis vectors â∗j (ρ) of the mixing matrix Â∗c after completion of the
acICA algorithm applied on GM. The identified signal components are
highlighted in red, green and orange.
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Figure 7.9.: Basis vectors â∗j, rank (ρ) of the mixing matrices Â∗c, rank from all MPI
processes after completion of the pICAP algorithm and the clustering
applied on GM. The identified clustered signal components are high-
lighted in red, green and orange. The basis vectors of each cluster are
colored gradually in a transparent manner.
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7.3. Summary of Achievements

In order to denoise large high-resolution data sets very fast and accurately, a novel
ICA approach was developed. This new method, referred to as pICAP, encompasses
the acICA approach. A demonstrator, pICAP was implemented on the supercom-
puter JuDGE at the Jülich Supercomputing Centre. pICAP is especially designed
for image sizes of several gigabytes, acquired from the PM in 3D-PLI. Therefore,
multiple, simultaneously running acICA processes with GM and pcWM-specific cost
functions for the PM were used. The approach of simultaneously running acICA
processes is based on the strategy of Himberg et al. [50] for MEG and fMRI data
and on a group level ICA [19, 23, 36], where consistent spatial ICA components for
an entire data set are found by combining the acICA results of single partitions.
Additionally, the incorporation of prior knowledge of the underlying source signals
enables a specific signal decomposition for both GM and pcWM on each acICA.
Thus, the parallelized signal decomposition is performed fast and tissue-specific
with respect to GM and pcWM for large high-resolution data sets.

The performance of this approach was analyzed on the GM of the largest data set
from one of the 20 histological sections of a vervet monkey brain (Table 7.2). It was
shown that the runtime optimal number of MPI processes is 50, since the runtime
slightly increases for a number of MPI processes larger than 50. The increasing
runtime can be explained by the increasing amount of communication among all
MPI processes in the established ring topology, where the time of all executed
communication processes may outperform the processing time of the acICA.

A first major achievement is that the entire runtime of 55.1 min for 50 MPI processes
shows a 112 fold increased performance compared to the conservatively estimated
sequential acICA runtime of at least 6199 min. This increased performance is in-
duced primarily by the data decomposition applied, where each MPI process has a
smaller portion to process.

Secondly, the newly included convergence criterion after the inter-subject consis-
tency, which takes effect if the consistency of a cluster of ICA components is signif-
icant, will lead to an advanced termination of the pICAP algorithm.

A third substantial improvement could be achieved through the speed up of large
vector-matrix and matrix-matrix multiplications by means of the NVIDIA GPUs
of JuDGE avoiding processing bottlenecks of the pICAP algorithm. This results
show that with almost no cost an increase of speed of 32 fold for the decorrelation
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and reconstruction step and threefold for the computation of the covariance matrix
can be achieved. By taking the profiling of the implementation of the algorithm
(see Fig. 7.5) into account, it can be seen that the pre-processing and reconstruction
steps consume 3% of the total computational time without GPUs. Due to the
achieved speed-up of GPUs the 3% may be minimized to a neglectable processing
time for both the pre-processing, i.e., the covariance matrix and the whitening
procedure, and the reconstruction procedures. Furthermore, approximately 20% of
the runtime is consumed by the parallel I/O, which may only be altered by the
underlying hardware and network of the supercomputer.

When comparing the identified components, which represent signals of interest of
the estimated mixing matrices for the pICAP and acICA algorithms a strong re-
semblance in the characteristics and data ranges is observed. Only the compo-
nents with signals of interest are of importance since the remaining components
are rejected during the reconstruction procedure. By reconstructing the compo-
nents with signals of interest for both GM and pcWM for each algorithm, the
wrGOF values are generated. The findings in terms of the wrGOF values for
pICAP and acICA, respectively, showed a threefold different wrGOF range and
slightly different local performances (see Fig. 7.7 (a) and (b)). The different wrGOF
ranges are explained by the small differences in the almost similar mixing ma-
trices of pICAP and acICA, which cause slightly different signal enhancements
per pixel throughout the examined histological section. The small differences be-
tween the mixing matrices Â∗acICA and Â∗pICAP result in slight different sources

s′acICA =
(
Â∗−1

acICA ·Dx

)−1
· xwhitened and s′pICAP =

(
Â∗−1

pICAP ·Dx

)−1
· xwhitened

for both GM and pcWM. After keeping the signals of interest the denoised PLI
image series xdenoised, acICA/pICAP = Â∗acICA/pICAP · s′acICA/pICAP are transformed
back in PLI space. The deviations of the estimated mixing matrices are now ex-
pressed in the slight differences of the denoised PLI images series xdenoised, acICA and
xdenoised, pICAP which can explain the different signal improvements in Figure 7.7
(a) and (b). Moreover, the spots with less signal enhancements can be induced by
a relatively higher local SNR of the unprocessed data set, whereas areas with lower
SNR of the unprocessed data set may exhibit higher wrGOF values due to the ICA
filtering. This may be caused by the inhomogenous preparation of the brain tissue
on the glass slides. However, both algorithms showed on average an increased signal
enhancement throughout the histological section.

In summary, the pICAP algorithm provides a fast and practical tool to effectively
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denoise large high-resolution data sets with exploiting HPC techniques on super-
computers.
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8. Discussion

As an established method for signal decomposition, ICA found widespread use in
neuroscience, both for noise and artifact removal [20, 31, 35, 66, 70, 80] and extrac-
tion of signals of interest [29, 83, 84, 89]. Over the last years ICA has also been
demonstrated to be an effective tool to remove noise and artifacts in the acquired
images of the LAP for 3D-PLI [21, 30, 32]. An ICA concept for the LAP was devel-
oped which incorporates the expected birefringence signal and component selection
[21]. Generally, incorporating prior information and constraints in ICA improves
the signal decomposition [10, 48, 52]. Additionally, Huang et al. [52] and Breuer
et al. [20] demonstrated that by imposing the information of the underlying source
signal, a faster and source signal sensitive signal decomposition occurs.

Motivated by this strategy a new data-driven approach in ICA for 3D-PLI was intro-
duced in this thesis. The new acICA algorithm encompasses the prior information
of the expected birefringence signal, the automatic component selection and the
information of the underlying sources in the GM and parts of the WM. In order to
accurately separate the underlying sources in the different regions of the histological
section, two different cost functions were implemented: one for the GM and one for
the pcWM. This allows for a fast and tissue-specific signal enhancement of each
histological section acquired in the LAP.

In 3D-PLI the accurate determination of the orientation of nerve fibers in both
optical setups, PM and LAP, is of importance. The reconstruction of nerve fibers
strongly depends on the magnitude of the captured optical signal and its quality at
the receiver side of the optical systems. Particularly, the different tissue types in
a histological section, i.e., GM and WM, exhibit variations of the measured signal
amplitude ([32], Fig. 5.7). Thus, strong signal variations indicating their birefringent
properties are mostly located in the WM, whereas weaker signal variations are either
located in the GM or at boundaries between GM and WM [32]. acICA considers
the signal dynamics of both tissue types, since the impact of noise on weaker signals
is higher compared to stronger signals located in the WM. For this work, each
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histological section was therefore partitioned into three areas. The first area contains
pixels located in the GM. The second area includes pixels located at the boundaries
between GM and WM, referred to as pcWM, whereas the third area comprises
pixels in the WM (see Chapter 5). Since the third area already provides a high
SNR, an acICA filtering is considered as redundant. Using the newly introduced
two separate cost functions the first two areas GM and pcWM could be denoised
fast and optimally in terms of their unique birefringent properties. According to
the findings described in Chapter 5, the acICA algorithm also showed a higher
signal enhancement compared to the standard procedure of pICAP on an entire
histological section [21].

There are three parameters involved in the acICA algorithm representing the con-
straints and prior information that affect the accuracy of signal separation and the
convergence of the algorithm. Breuer et al. [21] demonstrated that a unique mini-
mizer in R2 can be found via a naive brute-force method for the cICAP algorithm.
The determined optimal parameters of one histological section were then applied to
various cICAP applications of all histological sections across a post-mortem brain.
This may be valid under the assumption that the percentage of white and gray
matter on all histological sections and the amount of pixels to be processed is the
same. For this study different percentages of white and gray matter ranging from
frontal to the occipital lobe were observed due to the preliminary subdivision of
GM and pcWM for the acICA algorithm. The DSA used here was applied on a set
of representative histological sections of an entire post-mortem vervet brain. It can
be assumed that for each histological section a unique minimizer is found due to
the convex surface mapped by the function values of each parameter combination
[21]. Chapter 6 showed that only one set of parameters throughout the post-mortem
vervet brain for each GM and pcWM is needed, whereas the third parameter ε needs
to be broken down into three brain regions: frontal, parietal/temporal and occipital
lobe. In due consideration of these parameters subsequent applications of acICA on
comparable post-mortem brains can be carried out accurately.

The PM in 3D-PLI established a pathway to investigate single fiber architectures at
a high level of detail. The higher spatial resolution in the PM compared to the LAP
comes at the cost of larger data volumes to be stored. For analyzing and recon-
structing nerve fibers at the microscopical scale of the PM, the standard workflow in
3D-PLI (see Section 2.5) needs to handle the Big Data problems in an effective and
fast fashion. Fur this purpose the usage of supercomputers and the exploitation of
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HPC techniques provide a suitable strategy. However, an ICA filtering strategy for
high-resolution data sets is still missing in the standard workflow. Since a sequential
acICA application applied on a whole stitched PLI image series of the PM would
require huge amounts of memory and take many days to process, a new parallelized
concept of acICA was introduced in this thesis, which overcomes the constraint of
sequential execution and memory limitations. In principle, the new pICAP algo-
rithm estimates a global solution in terms of a mixing matrix by combining the
results of multiple simultaneously running acICAs on single disjoint partitions of
an entire data set (see Chapter 7). Different from the sequential acICA algorithm
for the LAP, the cost functions for both GM and pcWM of the PM were used in
pICAP (see Chapter 5). The resulting mixing matrices for both GM and pcWM
are subsequently applied again on tiled PLI image series. This ensures an adequate
stitching on denoised tiled data sets and post-processing, i.e., generation of FOMs
and tractography.

The pICAP algorithm exhibits a 112-fold increased performance compared to the
estimated sequential acICA runtime using 50 MPI processes. Furthermore, the
advantage of SIMD architectures such as GPUs for the large scale linear algebra
operations in the pre-processing and reconstruction steps of pICAP was taken into
account. NVIDIA’s CUDA with the available third party wrapper in Python [72]
and CUBLAS were chosen for the GPU implementation, taking advantage from
the straightforward implementation, extensive documentation and abstraction in
Python. The usage of GPUs decreased the pre-processing and reconstruction steps
of pICAP by a factor of 32 and 3, respectively. As shown in Chapter 7, the small
aberrations of the mixing matrices compared to the mixing matrix of the sequential
acICA algorithm caused unequal denoised PLI image series and therefore different
signal enhancements per pixel throughout the histological section. Still a distinct
tendency of high signal enhancement was maintained with pICAP, mainly due to the
incorporation of prior information and the GM and pcWM-specific cost functions
for the PM at each iteration step.

With the good portability and abstraction of Python for exploiting HPC on su-
percomputers, pICAP can be applicable ad-hoc on future supercomputer systems.
Additionally, the pICAP approach will strongly benefit from the increased through-
put and affordability of recent GPUs and performances of modern supercomputers.
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The aim of this work was to develop a tissue-specific signal separation method
for both optical systems in 3D-PLI, the Large Area Polarimeter (LAP) and the
Polarizing Microscope (PM). For the new acICA algorithm the learning rule of the
natural-gradient version of Infomax was adapted in order to fit the newly introduced
cost functions. For each of the optical systems two cost functions representing the
cumulative distributions of GM and pcWM were generated. acICA was demon-
strated to be faster and to exhibit a better quality of signal separation on GM
and pcWM reflected by the increased wrGOF s compared to the cICAP algorithm.
Thus, a higher SNR and signal restoration on areas prone to noise was achieved. Also
whole-brain parameter sets for acICA were provided with the help of the downhill
simplex method. With these parameter sets and the usage of the acICA algorithm
an accurate signal restoration on various histological sections throughout an entire
post-mortem brain is possible. The obstacle of filtering microscopical data sets due
to the large size of data volumes was overcome by the development of a new paral-
lelized ICA concept on a supercomputer. Processing ICA on large-size data volumes
in a sequential fashion, e.g., on a single desktop computer, results in utterly long
computation times. To tackle the time-intensive ICA procedure, pICAP discretizes
tasks such as acICA processes on partitions in a concurrent manner, where compu-
tational bottlenecks in the pre-processing and reconstruction steps are outsourced to
the GPUs. From these findings it can be concluded that the new pICAP algorithm
provides a noise and artifact removal in a drastically shortened time due to the
intrinsic tissue-specific cost functions. Since, accurate and reliable profiles are cru-
cial for generating three-dimensional spatial orientations of the reconstructed nerve
fibers in both LAP and PM datasets, acICA and pICAP are mandatory elements
of 3D-PLI.

In the future a third cost function representing dust particles may be added to the
specific applications of acICA and pICAP. A captured dust particle which is placed
on one of the rotating polarizers in the optical systems may deteriorate the sinusoidal
profile in the WM. For this purpose it is necessary to find a cost function related
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to dust particles and identify components related to it in the WM. By transforming
only the remaining components to the PLI space an efficient artifact rejection is
achieved. With the introduced acICA and pICAP algorithms and the usage of a
third cost function specifically designed to remove dust particles in the WM, the
SNR in the WM could be enhanced.

At present pICAP and acICA are performed on single histological sections of a
post-mortem brain. In order to filter multiple histological sections at a time a
promising way in the future would be the usage of a multilinear ICA approach.
This model uses multilinear (tensor) algebra to find sets of independent sources
across the histological sections. The multilinear ICA approach would additionally
benefit from the usage of a supercomputer and GPUs due to the increased data
volume to process and the sophisticated multilinear algebra operations.

Finally, the replacement of hard drives with faster solid-state drives could improve
in the future the data access rates and, therefore, significantly reduce the load and
store time of pICAP.
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A. Derivation of the 3D-PLI Signal

Jones matrices for an ideal linear horizontal polarizer (Px) and an ideal linear vertical
polarizer (Py) are given by:

Px =

(
1 0

0 0

)
, (A.1)

Py =

(
0 0

0 1

)
.

A wave retarder is specified with a wave retardance γ for a specific wavelength. The
wave retarder can be described by a Jones matrix, when the retarder introduces
a phase shift, i.e., γ = δ

2 , with δ being the phase difference, along the fast axis
(x-axis) and −γ = − δ

2 along the slow axis (y-axis). Thus, the Jones matrix for a
wave retarder is given by

Mret =

(
eiγ 0

0 e−iγ

)
. (A.2)

Furthermore, if an optical element is rotated counter-clockwise by an angle ψ, the
rotated optical element will be expressed as:

J (ψ) = R (ψ) · J ·R (−ψ) , (A.3)

with J describing the Jones matrix and R denoting the rotation matrix. R is given
by:

R (ψ) =

(
cosψ − sinψ

sinψ cosψ

)
. (A.4)

Hence, a quarter-wave retarder with γ = π
4 and ψ = −π

4 is described by:
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Mλ/4 (ψ) = R (ψ) ·Mret ·R (−ψ)

=

(
cos
(
−π

4

)
− sin

(
−π

4

)

sin
(
−π

4

)
cos
(
−π

4

)
)
·
(
ei
π
4 0

0 e−iπ
4

)
·
(

cos
(
−π

4

)
sin
(
−π

4

)

− sin
(
−π

4

)
cos
(
−π

4

)
)

=
1√
2

(
1 −i
−i 1

)
. (A.5)

Each volume element of the brain tissue, which contributes to one image pixel, can
be described as a single wave retarder where the x-axis is in direction of the optic
axis of the nerve fibers. If all the optical elements are rotated simultaneously by
angle ρ with respect to the nerve fiber direction ϕ, the rotation of the brain tissue
will be expressed by ψ = ϕ− ρ. Thus, the brain tissue is described by:

Mtissue (ψ) = R (ψ) ·Mret ·R (−ψ)

=

(
cosψ − sinψ

sinψ cosψ

)
·
(
eiγ 0

0 e−iγ

)
·
(

cosψ sinψ

− sinψ cosψ

)

=

(
cos γ + i sin γ cos (2ψ) i sin γ sin (2ψ)

i sin γ sin (2ψ) cos γ − i sin γ cos (2ψ)

)
. (A.6)

A.1. Jones Calculus for the LAP

As already shown in Equation 2.1 the 3D-PLI setup for the LAP can be described
by the Jones calculus. For reason of simplicity Py is denoted as the analyzer A and
Px is denoted as the polarizer P .

~E′ = A ·Mtissue ·Mλ/4 · P · ~E

=

(
0 0

0 1

)
·Mtissue ·

1√
2

(
1 −i
−i 1

)
·
(

1 0

0 0

)
·
(
Ex

Ey

)

=
Ex√

2
[i sin γ sin (2ψ)− i cos γ − sin γ cos (2ψ)]~ey

=
Ex√

2
[sin γ cos (2ψ) + i (sin γ sin (2ψ)− cos γ)]~ey (A.7)
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For I ∼ | ~E|2 :

I = Re2( ~E′) + Im2( ~E′)

=
I0

2

[
sin2 γ cos2 (2ψ) + (sin γ sin (2ψ)− cos γ)2

]

=
I0

2
[1− sin (2γ) sin (2ψ)] (A.8)

For γ = δ
2 and ψ = ϕ− ρ:

I =
I0

2
· [1 + sin (2 (ρ− ϕ)) sin δ] . (A.9)

A.2. Jones Calculus for the PM

Since in the PM setup the quarter-wave retarder and the second linear polarizers are
fixed, only the first linear polarizer is rotated (Fig. 2.1). The x-axis of the quarter-
wave retarder is positioned by ψ = −π

4 with respect to the second linear polarizer.
Hence, the quarter-wave retarder is described by:

Mλ/4 (ψ) = R (ψ) ·Mret ·R (−ψ)

=

(
cos
(
−π

4

)
− sin

(
−π

4

)

sin
(
−π

4

)
cos
(
−π

4

)
)
·
(
ei
π
4 0

0 e−iπ
4

)
·
(

cos
(
−π

4

)
sin
(
−π

4

)

− sin
(
−π

4

)
cos
(
−π

4

)
)

=
1√
2

(
1 −i
−i 1

)
. (A.10)

Since the emitted light of the light source in the PM is unpolarized, the Jones
calculus is not applicable. To fulfill the Jones calculus’s prerequisite the linearly
polarized light after the first linear polarizer is considered. Thus, the incoming
electric field vector of the PM setup is expressed as

~E (ρ) = E0

(
cos ρ

sin ρ

)
, (A.11)

with Ex = Ey = E0, where ρ describes the rotation angle of the first linear polarizer.
Therefore, the Jones calculus for the PM setup is expressed as
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~E′ = Py ·Mλ/4 ·Mtissue · ~E (ρ) (A.12)

=

(
0 0

0 1

)
· 1√

2

(
1 −i
−i 1

)
·Mtissue · E0

(
cos ρ

sin ρ

)

=
E0√

2

[
−i cos γ cos ρ+ sin γ cos (2ϕ) cos ρ+ i sin γ sin (2ϕ) cos ρ

+ sin γ sin (2ϕ) sin ρ+ cos γ sin ρ− i sin γ cos (2ϕ) sin ρ
]
~ey

For I ∼ | ~E|2 :

I =
E2

0

2

[
cos2 γ + sin2 γ sin2 (2ϕ) + sin2 γ cos2 (2ϕ)− 2 cos γ sin γ sin (2ϕ)

·
(
cos2 γ − sin2 γ

)
+ 4 cos γ sin γ cos (2ϕ) cosϕ sin ρ

]

=
E2

0

2
[1− sin (2γ) sin (2ϕ− 2ρ)]

=
E2

0

2
[1 + sin (2γ) sin (2ρ− 2ϕ)]

=
I0

2
[1 + sin (2γ) sin (2ρ− 2ϕ)] .

(A.13)

For γ = δ
2 :

I =
I0

2
[1 + sin (2 (ρ− ϕ)) sin δ] . (A.14)

A.3. Derivation of the Phase Retardation

When light passes through a birefringent medium, it is decomposed in two waves
with perpendicular linear states of polarization. The waves are referred to as the or-
dinary and extraordinary wave. Since a birefringent medium has different refractive
indices, a phase shift is induced between the ordinary and extraordinary wave. The
phase shift δ depends on the extraordinary and ordinary refractive indices ne and
no, thickness d of the brain section, the wavelength λ and the out-of-plane angle α
[18]:

110



A. Derivation of the 3D-PLI Signal

δ =
2πd

λ
(ne (α)− no) . (A.15)

The two refractive indices describe an index ellipsoid [18, 111] with semi-axis of
length no and nE , where nE corresponds to the maximal extraordinary refractive
index. By choosing the coordinate system in which the light propagates parallel to
the z-direction and the biregringent histological section is fixed in the xy-plane, the
extraordinary refractive index ne (α) which is depending on the out-of-plane angle
α of the nerve fiber can be described as

(
x

y

)
=

(
ne cos (α)

ne sin (α)

)
. (A.16)

A plane in an index ellipsoid is an ellipse with a mathematical expression of

x2

n2
o

+
y2

n2
E

= 1. (A.17)

By using Equation A.16 in Equation A.17 then

ne cos (α)

n2
o

+
ne sin (α)

n2
E

= 1, resulting to (A.18)

ne (α) =
1√

cos2(α)
n2
o

+ sin2(α)
n2
E

. (A.19)

It is assumed that the birefringence of the histological section ∆n = nE − no is
small, thus, the expression ne (α) − no can be approximated by ∆n cos2 (α) [76].
Equation A.15 can now be expressed as

δ ≈ 2πd

λ
∆n cos2 (α) . (A.20)
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B. Derivation of the Natural-gradient
Version of Infomax

In order to determine the unmixing matrix W, it is mandatory to know the descrip-
tion of the density of S̃ (k) = g (s̃ (k)) in terms of s̃ (k).

For a simplified understanding, a univariate density of S̃ (k) is first taken into ac-
count which will be denoted as the density of S̃ (k). To find f

S̃(k)
for a specific

S̃ (k), s̃ (k) is dissolved in its roots, i.e., s̃ (k) = s̃1 (k) [91, 103],

S̃ (k) = g (s̃1 (k)) . (B.1)

If now a small interval ∆s̃ (k) around a value s̃1 (k) is determined, the probability
that s̃ (k) would be in the set of s̃1 (k)− ∆s̃(k)

2 and s̃1 (k) + ∆s̃(k)
2 is

P
(
s̃1 (k)− ∆s̃ (k)

2
< s̃ (k) ≤ s̃1 (k) +

∆s̃ (k)

2

)
= fs̃(k) (s̃1 (k)) ∆s̃ (k) . (B.2)

Analogously, the probability that S̃ (k) is in the set of S̃1 (k)− ∆S̃(k)
2 and S̃1 (k) +

∆S̃(k)
2 is

P

(
S̃1 (k)− ∆S̃ (k)

2
< S̃ (k) ≤ S̃1 (k) +

∆S̃ (k)

2

)
= f

S̃(k)

(
S̃1 (k)

)
∆S̃ (k) . (B.3)

Using the increasing monotonic nonlinear cost-function g the value s̃1 (k) can be
mapped to S̃1 (k). Furthermore, ∆S̃ (k) can be determined by ∆s̃ (k) with

∆S̃ (k) = g

(
s̃1 (k) +

∆s̃ (k)

2

)
− g

(
s̃1 (k)− ∆s̃ (k)

2

)
. (B.4)

Due to the mapping the areas s̃1 (k)± ∆s̃(k)
2 and S̃1 (k)± ∆S̃(k)

2 are equivalent (see
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shaded areas in Figure 3.3),

fs̃(k) (s̃1 (k)) ∆s̃ (k) = f
S̃(k)

(
S̃1 (k)

)
∆S̃ (k) . (B.5)

Thus, with lim
∆s̃(k)→0

∆S̃(k)
∆s̃(k) the generalized form is given by

f
S̃(k)

(
S̃ (k)

)
=
fs̃(k) (s̃ (k))

|dS̃(k)
ds̃(k) |

, (B.6)

where the absolute values of dS̃(k)
ds̃(k) are considered for avoiding negative values in the

derivative when a monotonically decreasing cost-function g is used [91, 103].

In case of multivariate densities of S̃ (k), the derivative of dS̃(k)
ds̃(k) is a Jacobian matrix

J [103] and the vertical bars |.| describe the absolute value of the determinant J ,

f
S̃(k)

(
S̃ (k)

)
=

fs̃(k) (s̃ (k))

|J| , with (B.7)

|J| = |dS̃(k)
ds̃(k) | = g′ (s̃ (k)) . (B.8)

If now an unmixing matrix W exists that maximizes the entropy of the mutual in-
formation I

(
S̃ (k) , s̃ (k)

)
= H

(
S̃ (k)

)
−H

(
S̃ (k) |̃s (k)

)
(Eq. 3.14) and is involved

in the mapping from s̃ (k) to S̃ (k), I
(
S̃ (k) , s̃ (k)

)
can be differentiated as follows:

d

dW
I
(
S̃ (k) , s̃ (k)

)
=

d

dW
H
(
S̃ (k)

)
, (B.9)

where H
(
S̃ (k) |̃s (k)

)
is a noise term and in the absence of noise the maximization

of the mutual information is equal to the maximization of the entropy of S̃ (k). If
a change of variable is performed, using fs̃(k)ds̃ (k) = f

S̃(k)
dS̃ (k) (Eq. B.5) with

dS̃ (k) = g′ (s̃ (k)) ds̃ (k) (Eq. B.8), the entropy H
(
S̃ (k)

)
will be equal to the

Kullback-Leibler distance of the pdf fs̃(k) to the pdf g′ (s̃ (k)) [86]:

d

dW
H
(
S̃ (k)

)
=

d

dW


−

∞̂

−∞

fs̃(k) log

(
fs̃(k)

g′ (s̃ (k))

)
ds̃ (k)


 . (B.10)

Thus, maximizing the mutual information is equivalent to minimizing the Kullback-
Leibler distance which in return infers the statistical independence of the signals
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s̃ (k).

Since the mixing matrix A is nonsingular the above equation is replaced by the
following natural gradient descent equation [3]:

d

dW
H
(
S̃ (k)

)
= τ

d

dW


−

∞̂

−∞

fs̃(k) log

(
fs̃(k)

g′ (s̃ (k))

)
ds̃ (k)


WTW, (B.11)

where τ is the learning rate. If E[.] denotes the expected value equation B.11 gives

d

dW
H
(
S̃ (k)

)
=

d

dW

(
E
[
τ log g′ (s̃ (k))

]
− E

[
τ log fs̃(k)

])
WTW. (B.12)

Because the term E
[
τ log fs̃(k)

]
is considered unaffected by the changes of W de-

termining g, only the term E [τ log g′ (s̃ (k))] needs to be maximized [15]. Replacing
the expectation values by their instantaneous values the derivation of τ log g′ (s̃ (k))

is

d

dW

(
τ log g′ (s̃ (k))

)
= τ

(
g′ (s̃ (k))

)−1 d

dW

(
g′ (s̃ (k))

)
. (B.13)

If a sigmoidal logistic function g (s̃ (k)) = 1
1+e−s̃(k) , s̃ (k) = W · x (k) + W0, is used,

the above terms will be evaluated as

g′ (s̃ (k)) = W · g (s̃ (k)) (1− g (s̃ (k))) and (B.14)
d

dW

(
g′ (s̃ (k))

)
= g (s̃ (k)) (1− g (s̃ (k))) [I + W · s̃ (k) (1− 2g (s̃ (k)))] .(B.15)

Dividing Equation B.15 by Equation B.14 the following rule is calculated:

∆W =
d

dW
H
(
S̃ (k)

)
= τ

[(
WT

)−1
+ (1− 2g (s̃ (k))) s̃ (k)

]
WTW(B.16)

= τ
[
I + (1− 2g (s̃ (k))) s̃ (k)T

]
W. (B.17)

Analogously, the bias weight W0 is described without the learning rate τ by:

∆W0 = I (1− 2g (s̃ (k))) . (B.18)
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C. Nongaussianity for Source Signals
in Independent Component
Analysis

Nongaussian distributions for the source signals s is a mandatory requirement
in ICA. For understanding why gaussian variables are forbidden in ICA already
whitened data is assumed.

Furthermore, it is assumed that the joint distribution of two source components s1

and s2 is gaussian. Thus, the joint pdf is described by

fs1s2 (s1, s2) =
1

2π
e

(
− s

2
1+s

2
2

2

)
=

1

2π
e

(
− ‖s‖

2

2

)
. (C.1)

Furthermore, lets assume that the mixing matrix A is orthogonal as the data is
already whitened. By using the change of pdf’s in Equation B.7 and by using the
rule of a orthogonal matrix A−1 = AT , the above equation is formulated as the
joint pdf of x1and x2:

fx1x2 (x1, x2) = fs1s2 (s1, s2) |A−1|, (C.2)

fx1x2 (x1, x2) =
1

2π
e

(
− ‖A

T ·x‖2
2

)
|AT |, with (C.3)

x = A · s⇐⇒ s = A−1 · x⇐⇒ s = AT · x, (C.4)

where |AT | denotes the absolute value of the determinant of AT . Due to the fact
that A is orthogonal, the determinant |AT | = 1, i.e., ||AT ·x||2 = ||x||2. Hence, the
joint pdf’s of s and x are equal and the above equation reduces to
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fx1x2 (x1, x2) =
1

2π
e

(
− ‖x‖

2

2

)
, (C.5)

which proves that the orthogonal mixing matrix A does not change the joint pdf
as it is not included in the formula. Thus, the pdfs of the source signals and the
acquired data are identical [56].

The joint pdf of x1 and x2 is illustrated in the following figure (Fig. C.1).
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Figure C.1.: Joint pdf of two independent gaussian variables x1 and x2. The joint
pdf is rotationally symmetric, thus, no information on the directions
of the columns of the mixing matrix A can be infered, i.e., A is not
determinable for gaussian variables. This results to an identical joint
pdf of any orthogonalization of two gaussian distributed source signals
s1 and s2. Hence, x1 and x2 are statistically independent.
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Figure D.1.: Basis vectors â∗j (ρ) of the mixing matrix Â∗c after completion of the
acICA algorithm applied on pcWM. The identified signal components
are highlighted in red and green.
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Figure D.2.: Basis vectors â∗j, rank (ρ) of the mixing matrices Â∗c, rank from all MPI
processes after completion of the pICAP algorithm and the clustering
applied on pcWM. The identified clustered signal components are high-
lighted in red and green. The basis vectors of each cluster are colored
gradually in a transparent manner.
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