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Chapter 1

Introduction

From the very start of the science of mechanics strings and beams played a crucial
role in the research, starting from the consideration of e.g. the dynamics of a mass
attached to a string. At the beginning models had been considered for which the
flexibility of the string or beam had been neglected and quite often they additionally
had been idealised to be mass less. Later on, the mathematical instruments had
not yet been developed far enough to take also the deflection dynamics of strings or
beams in consideration, or, more crucial, the mathematical models for the dynamics
had not yet been developed. In fact, lot of these should change in the two hundred
years following the publication of Newton’s Principa (1687). As Truesdell [Tr68]
points out, the Principa did not constitute the completion of the formalisation of
mechanics in mathematical language, but were rather the beginning of a more for-
mal, mathematical description of dynamics, [Tr68] p. 93. In Chapter IT of [Tr68] the
author draws the history from the work of Newton to the Méchanique Analitique
(1788) by Lagrange, for the more specific topic of the history of vibration theory
following the publication of the Principa we also refer to the monograph [CaDo81].
This history includes break-through achievements, especially new ideas and tech-
niques, as well as failures, inaccuracies and severe mistakes. Within this fruitful
research period several mathematical physicians contributed to the development of
models for beam mechanics, hydrodynamics and rigid body dynamics. Within this
thesis we consider linear versions of some of these models for a beam of a string.
In fact, it was d’Alembert who in 1746 first derived the wave equation as a par-
tial differential equation model of a string ([TrGg|, p. 114), although already both
Newton and Taylor had been close to it about thirty years before, see e.g. Chapter
2, p. 10 in [CaDo81]. However, this model does not take any bending forces into
account as Daniel Bernoulli and Leonhard Euler did, where the latter introduced
the so-called Young’s modulus (1727) ([Tr68], p. 124), leading later on to another
beam model, the so-called Euler-Bernoulli beam model, again a partial differential
equation of second order in time, but not in second (as the wave equation), but in
forth order in space. Only some time later more sophisticated beam models had
been introduced. E.g. Stephen Timoshenko proposed the Timoshenko beam model.
It gives a more precise description of vibrating beams as the models considered
before. As this is a Ph.D. thesis on mathematics we will not go into details how
these models can be derived from considerations in physics and mechanics. In fact,
we will always start with a particular model for the dynamics of a vibrating string
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or beam and only work based on this particular model by means of mathematical
techniques to show well-posedness and stability properties of such systems. By a
model we will always mean a description of the dynamics of a system via (a system
of) partial differential equations (PDE) plus boundary (feedback) conditions, hence
we start right away with the wave equation, the Euler-Bernoulli beam equation or
the Timoshenko beam equation etc. ignoring any physical-mechanical justification
for such description of a string or beam. However, let us mention that today by
the techniques developed by Lagrange (Lagrange formalism based on his Principle
of Least Action (1761), [Tr68] p. 132) and Hamilton (Hamilton formalism), already
in the derivation of such a PDE one usually starts by modelling the total energy
H =T + S of a system, consisting of a kinetic part 7" and a potential part .S, de-
pending on state variables x(¢) and their time derivatives &(¢). Then the Lagrange
equations or the Hamilton equation, respectively, lead to the PDE model of the
system, e.g. for the one-dimensional wave equation

7= [ o0kt O ac

5= / O lwe(t, O d¢

and therefore (following the Lagrange formalism) for the Lagrange functional L =
T-S5
0 0L 0L

Ot dwy  Ow
i.e.

p(Qwir(t, ) = (T(Qwe)e (8,€), =0, C€(0,1)

or following the Hamilton formalism with (r, p) = (w, pw;)

0
2 (et =~ 2, ¢
Ew(tv C) =

leading to
p(Quwre(t, ¢) = (T(Qawe), (,€)
wt(tvg) :wt(tvc)a t>0, C€ (071)

where the second equation is superfluous, obviously. Note that similarly also the
Euler-Bernoulli beam equation

p(Qwee(t, €) + (BI(Qwee)ee(t.¢) =0
and the linear Timoshenko beam equations
POt C) = (K () (we — #)), (£.),
Ip¢tt(t7 C) = (EI(C)(bC)C (ta C) + K(C)(WC - ¢)(ta C)7 t>0, C € (0’ 1)

can be derived. All these three equations have in common that the energy change of
the (classical) solutions depends only on the energy exchange with the environment



at the boundary (¢ = 0,1), so it is quite easy to characterise dissipative boundary
conditions, i.e. boundary conditions for which the energy does not increase for every
classical solution. For such dissipative equations the solution theory is relatively
simple in the sense that the Lumer-Phillips Theorem provides easy necessary and
sufficient conditions for the existence of unique solutions given an appropriate initial
condition. In the language of semigroup theory which has been developed in the
middle of the twenties century this means that there are simple conditions for the
operator A in the formulation as abstract Cauchy problem (ACP)

4
dt”
x(0) =z

(t) = Az(t), t>0

on a suitable Hilbert space X to generate a strongly continuous contraction semi-
group. Regarding the above mentioned string and beam equations, starting from the
late 1980’s the PDE mentioned above were investigated with techniques developed
in semigroup theory, also to prepare results in the new arising field of control theory
and in fact, still nowadays the investigations of these beam equations is highly pop-
ular and relevant, e.g. in modelling nano-tweezers which on nano scale manipulate
DNA molecules and for which oscillations were highly undesirable since they would
make any precise manipulation of the molecules more or less impossible. Therefore,
several research articles (e.g. [RaTa74], [Ch+87], [Ch+87a], [LiMa&8]|, [LiHuCh89|,
[CoLaMa90], [CoZu95], [FeShZh98], [GuHu04], [GuWaYu05|, [Zh07] etc.) of the
last decades considered the well-posedness and stability properties of particular
string or beam equations with particular boundary (feedback) conditions. On the
other hand, quite recently using the notion of Dirac structures efforts have been
made to understand so-called port-Hamiltonian systems (e.g. [Go02], [VaMa02],
[Va06]) better from a more abstract and structural level, starting mainly with ODE
systems in port-Hamiltonian form, but also including more and more approaches
to infinite-dimensional port-Hamiltonian systems in PDE form (e.g. [LeZwMa05],
[Vi+09)], [Zw+10], [JaZw12]). In this thesis we take — similar to the research articles
[LeZwMa05] and [Vi+09] and the monograph [JaZw12] — a view which more or less
lies in between the case-to-case PDE level investigation and the Dirac structural
level, therefore combining both approaches and consider port-Hamiltonian systems
in the abstract differential form

N k
(0= 3 Pger (Ha)(1.0), 120, G € 0.1 (1.1)
plus suitable boundary conditions. The latter we will interpret as feedback laws for
boundary control and observation, which will enable us to classify the PDE examples
above by the type of feedback law which constitutes the boundary conditions. The
idea behind this approach is to understand and unify the case-to-case results on
specific equations on the more abstract level, so that the structure behind stability
properties becomes more clear. For example, one might then ask whether for a given,
say linear and static boundary conditions, the same well-posedness results hold, if
this linear static boundary feedback is replaced by a suitable nonlinear and/or
dynamic boundary feedback. As we will see, for the well-posedness in contraction
semigroup sense, there is an easy condition on generation of contraction semigroups
for this kind of systems: Dissipativity of the corresponding operator A is enough.
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See Chapter [3|for the case of static and linear boundary feedback, which is mainly a
revision of previous results in [LeZwMa05] and its (slight) generalisation in [JaZw12]
and [AuJal4]. In fact, with the well-posedness results in this dissipative case, where
the both necessary and sufficient conditions are quite easy to check, at hand, we
may then come to the core topic of this thesis: Stability of these systems. Actually
we employ several techniques to establish either asymptotic (strong) stability of the
trajectories (for every given initial datum) or even uniform exponential stability
of the system in different scenarios. We classify these systems and structure the
thesis based on the classification of the different types of boundary feedback laws
mentioned above. In fact, this distinction is made upon the following the questions.

1. Are the boundary (feedback) conditions linear (Chapters[4]and [5]) or nonlinear
(Chapters [6] and [7))?

2. Is the boundary feedback determining the boundary conditions static (Chap-
ters [d] and [6)) or dynamic (Chapters [5 and [7))?

3. How large is the natural number N, the order of the port-Hamiltonian system,

in equation (1.1))7

As we will see not every method to approach stability of these systems is applicable
in every case, but the applicable methods depend heavily on the case distinction
above. The following gives a rough overview on the thesis and the contents of the
different chapters. Before actually starting with the investigation of the PDE (|1.1)),
we first recall some concepts from operator theory which we need throughout the
thesis. The corresponding Chapter [2| consists of three sections on functional analysis
and partial differential equations (Section , evolution equations and semigroup
theory (Section [2.2)) and systems theory and boundary control and observation sys-
tems (Section These sections are mainly based on the monographs [We(6],
[EnNa00] and [TuWeQ9], respectively, with some further information extracted in
particular from [Ad75] and [Sh97]. After that in Chapter [3| we actually start with
the investigation of the PDE . First we introduce the structural assumptions
on the PDE (l.1)) and motivate them in Section with the beam equations of
the articles mentioned above as examples and later on possible applications of the
abstract theory. Then in Section we prepare the generation theorem and also
find that the transfer function exists on the right-half complex plane for so called
impedance passive port-Hamiltonian systems. The latter is not needed in the linear
feedback case, but will prove quite useful in the nonlinear setting.

Thereafter in Section we give the generation theorem for the case of static and
linear boundary feedback and slightly generalise the result of [LeZwMa05] (and
[JaZw12], [AuJald]) to the case of Py with spatial dependence Py € Lo (0, 1; F4*®).
Section [3:4] sketches how one may get from the boundary control and observation
setting considered here to the more standard form in systems theory.

Chapter [4]is dedicated to the stability properties of the semigroups generated by the
dissipative operators with static linear feedback in the previous chapter. We begin
in[4.1] by recalling the results of [Vi-09] for systems of the form for N =1 with
its original proof, based on the ideas of [RaTa74], a sideways-energy estimate which
may also be seen as a final observability result. The presentation also takes into
account its possible generalisation to systems with nonlinear or dynamic feedback.
Then we will see that an immediate generalisation to the case where N > 2 seems to
be not possible, so that other techniques have to be used for them. We shall see in



Section that the most intuitive generalisation of the exponential stability result
in [Vi+09] does not work, in the sense that one will not obtain uniform exponential
stability. Therefore, employing a (simple) version of the Arend-Batty-Lyubich-Vi
Theorem, we first investigate sufficient conditions for asymptotic (strong) stability.
Only after that we return to the problem of uniform exponential stability in Section
[43] First we present two alternative ways to prove the stabilisation result of [I.]
for the case N = 1. One of them may be seen as a Lyapunov method, whereas the
other employs the Gearhart-Greiner-Priss-Huang Theorem on exponential stability
of Cy-semigroups on Hilbert spaces. Then we apply the same techniques to systems
of order N > 2 and see that the proof via the Gearhart-Greiner-Priiss Theorem
may be generalised to systems with order N = 2, or under less restrictive boundary
conditions to the Euler-Bernoulli beam equations, and even to port-Hamiltonian
systems of arbitrary order N > 1. We conclude the Chapter with some comments
on the H-dependence of uniform exponential stability in Section [£.4] and some ap-
plications to the examples of Section in Section

Whereas in Chapter [3] and Chapter [d] we considered the case of static boundary
feedback, in Chapter |5| we investigate systems with dynamic feedback, i.e. port-
Hamiltonian systems which are interconnected with a (finite-dimensional) linear
control system. We see in Section that the generation theorem for contraction
semigroups (now on the product Hilbert space) is actually a intuitive generalisa-
tion of the static feedback generation theorem of Section [3.3] Thereafter we turn
our attention to asymptotic stability properties again. In Section [5.2] we start with
the naive approach of considering interconnection systems with a internally stable
controller and such that the interconnected system is dissipative in exactly those
terms which are enough for asymptotic or uniform exponentially stability in the
static feedback scenario. As one could have hoped the results from the static case
naturally generalise to this hybrid system setup. However, in the dynamic case the
assumptions of Section [5.2] are far too restrictive when it comes to applications.
Therefore, in Section [5.3] and Section [5.4] we only consider control systems which
are strictly impedance passive or strictly output passive, respectively. These kind of
systems had already been considered in [RaZwLel3] and we mainly follow the lines
of [AuJald], with only small deviation from the path in the latter article. Section
may be seen as an attempt to combine the strictly input passive (SIP) and the
strictly output passive (SOP) controller scenario, so it is a generalisation of the two
preceding sections. We comment on the relation between the static feedback and
the dynamic feedback case in Section [5.6] at least for the scenario of control systems
with collocated input and output. We illustrate the abstract results of the chapter
within Section [5.7] using again the examples from Section [3.1]

The results of Chapter 4] and Chapter [5] are for most parts the same as those in the
research article [AuJal4] plus some additional comments and slight generalisations.
On the other hand the topics of Chapter [f] and Chapter [7] have not been covered
by the article [AuJald], since in contrast to Chapter 4] and Chapter |5| the control
feedback is not necessarily linear any more. Of course, this brings additional prob-
lems and in fact, the generation theorem has to be generalised to this nonlinear
scenario. On the other hand, there is no nonlinear version of the Gearhart-Greiner-
Priiss-Huang Theorem known, so that only the Lyapunov technique proof may be
generalised to the nonlinear setting.

We start in Chapter [6] with the case of nonlinear and static boundary feedback,
starting from an impedance passive port-Hamiltonian system. That said, we will
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employ the results of Section [2.2| on nonlinear m-dissipative operators and prove
the nonlinear generation theorem in Section Similar to the static scenario we
begin with the port-Hamiltonian systems of order N = 1 and find that in that
case two methods — the Lyapunov technique and the final observability estimate
— are applicable for a uniform exponential stability result, see Section [6.2} Then
in Section [6.3] and Section [6.4] we apply this Lyapunov method to systems of or-
der N = 2 and with the special Euler-Bernoulli beam structure. For a constant
Hamiltonian density matrix H we can more or less generalise the results from the
linear case to the nonlinear situation, however, for H with spatial dependence we
need smallness conditions on the (weak) derivative H' (compared to H). Again we
devote a section, here Section [6.5] to some examples for the general theory, based
on the beam models of Section [B.1}

In Chapter [7]we combine the two generalisation approaches of the previous chapters
and consider the feedback interconnection of a port-Hamiltonian PDE ([1.1)) with a
dynamic controller which now may be nonlinear. We first give the generation the-
orem in this scenario, see Section [7.1] and afterwards explore some asymptotic and
uniform exponential stability results in Section Similar to the linear scenario,
the results for static nonlinear feedback may be used also to cover the dynamic
nonlinear case. We also include some examples to illustrate the abstract theory.
Afterwards, in Section we follow a different approach then in the previous sec-
tions and instead of looking for m-dissipative maps (in the nonlinear sense) look for
systems which also have decaying energy, but which are not necessarily related to
a strongly continuous contraction semigroup because there may be solutions which
for themselves decay in energy, but for which the distance between the two may be
non-decreasing, e.g. if one of them decays much faster to zero. On the other hand we
will need more restrictions on the port-Hamiltonian system and we therefore shall
assume that it is well-posed (in the systems theoretic sense) to obtain a well-posed
(in the PDE sense) interconnection system.

In the concluding Chapter |8 we collect some further results, which may be closely
related to the topics treated before, but not quite the same. In particular, we have
a look on the interconnection of several port-Hamiltonian systems, see Section (8.1
remark that the uniform exponential stability proof of [Vi+09] also works for time-
variant #(t), provided existence of a solution, see Section In Section we
collect some results taken from the article [AuJalal5| for port-Hamiltonian system
which have an additional structural damping, e.g. the wave equation, leading to a
holomorphic Cy-semigroup, or more general in the non-autonomous case to maximal
L,-regularity.



Chapter 2

Some Background on
Functional Analysis,
Evolution Equations and
Systems Theory

Preparing for the main part of this thesis, we first recall some well-known notions
and results on the following topics. Meanwhile we also fix some notation we use
throughout the thesis. The prerequisites include the following. We start with
Section 2.1l on Functional Analysis and Partial Differential Equations (PDE), as we
later on investigate a special class of PDE with operator theoretical methods which
heavily rely on both the theory of Functional Analysis and of Partial Differential
Equations. Then we recall some results on some more specific topics, namely the
theory of evolutionary equations and systems theory, each in a separate subsection.
Within the context of evolution equations we introduce the quite natural concept
of a strongly continuous semigroup and its generator and repeat some of the most
important results which characterise generators of such semigroups (Section .
Then in Section we recall some notions from systems theory and in particular
introduce the concept of a Boundary Control and Observation System (BCOS),
since the class of PDE under consideration in this thesis will be interpreted as
BCOS and boundary conditions as feedback laws for the corresponding input and
output maps.

2.1 Background on Functional Analysis and Par-
tial Differential Equations

We will need some background knowledge on Functional Analysis as well as on
Partial Differential Equations (PDE) later on. In this section we repeat some def-
initions and basic results and also use this for fixing some notation we use in this
thesis.

First of all, all Banach spaces or Hilbert spaces in this thesis are taken over the field

11
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F = R, the real numbers, or F = C, the complex numbers. With N = {1,2,...} we
denote the natural numbers, starting from 1, i.e. 0 € N. On the other hand, if we
want to include 0 we write Ny := NU{0} instead. The most common Banach spaces
are the finite dimensional spaces X = F¢ and the L,-spaces L, (), see below. Unless
stated otherwise we always equip F¢ := {z = (z1,...,24) 1 2; €F (j = 1,...,d)}
with the Euclidean norm

d
Z \zj|2, z € F¢
j=1

and write the standard inner product as

d

<21,22>Fd = ZTZQ = ZTJ‘ZQJ‘, 21,22 € F? (2.1)
j=1

where 2] denotes the transposed complex conjugate of z; € F¢ and throughout,
i.e. also for other Hilbert spaces, we take inner products in such a way that they
are linear in the second component and anti-linear (linear if F = R) in the first
component.

If X and Y are (real or complex) Banach spaces B(X,Y") denotes the Banach space
of all the linear and bounded operators B : X — Y. For X =Y we simply write
B(X) := B(X, X). A special role play the dual space X' := B(X,F) of a Banach
space and the bidual X" = (X').

More generally, usually A : D(A) C X — Y denotes a linear (not necessarily
bounded) operator from a linear subspace D(A) of X (the domain of A) to Y and
for the case X =Y we define the resolvent set p(A) as

p(A) ={ e C: A - A: D(A) - X is bijective}

and as o(A) := C\ p(A) the spectrum of A. (In the real case these and the following
notions are defined via complexification of the spaces and operators and then the
definitions for the complexified operators.) For any A € p(A) the operator

R\ A):= (M — A7 : X — D(A)
is called the resolvent operator. Further we denote by
op(A):=={AeC:3x € D(A),z #0, Az = Az}

or(A) :={A € C: (A — A)D(A) not dense}
Oap(A) :={A € C: I(xp)n>1 C D(A), |z,]| =1, Az, — Az, — 0}

the point spectrum, the residual spectrum and the approximate point spectrum,
respectively. If X is a Hilbert space and A : D(A) C X — X a densely defined
linear operator we define its Hilbert space adjoint as

DA)={reX: Jy, € X,Vz2€ D(A): (Az,2)x = (2,9¥z)x}
Ax =y,

see Definition V.5.1 in [Well].
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The Lebesgue space L,(Q2) := L,(4;F) (p € [1,00)) (where Q@ C R™ is an open
subset of R™) consists of all L,-integrable functions, i.e. all measurable functions
f:Q — F for which the integral

/ FOF d¢ < oo
Q

with respect to the Lebesgue measure is finite. More precisely, L, (£2) is the family of
all equivalence classes of Ly-integrable functions where two functions are said to be
equivalent if they coincide on Q\ N where N C ) is a set of Lebesgue measure zero.
In the following we will not distinguish between a function f and its equivalence
class, following a convenient, sloppy, but very common convention.

Similarly for the case p = oo we denote by Lo (2) = Loo(€2;F) the (equivalence
classes of ) essentially bounded functions, i.e. (the equivalence classes of) those mea-
surable f : Q) — FF such that

[ fllg., = esssup|f(¢)] < oo
Cen

For the case that = (a,b) C R is an open interval we write L,(a,b) := L, ().
By C(9) and C(2) we denote the space of continuous scalar functions on  and Q,
respectively, where the latter is a Banach space when equipped with the supremum-
norm |-l = [|[|¢@) = I'll . and accordingly by Ck(Q) and C*(Q) (k € NgU{oo})
the functions f for which all the derivatives

oled n
Dofi= = <k
f {)x?l...&zrgnfa |al ;a <

exist and lie in C(2) and C(Q), respectively. For every k € Ny the space C*(Q) is
a Banach space for the norm

I fllor := max{[|D*fllc : [al <k}, fe CHQ).
Then C.(Q) is the space of continuous functions with compact support

supp f :={z € Q: f(¢) # 0} (2.2)

and C¥(Q) := C.(Q2) N C*(Q). Moreover, we need the Sobolev spaces W (Q) (k €
N, p € [1,00]) which are defined as follows.

Definition 2.1.1. Let an open set Q@ C R? and a number p € [1,00] be given. We
then define
W () = Ly()

and iteratively for k € N
k A k—1 . d . _ . ax 0o .
Wy(Q) :={f e W, () :Va e N, |a| <k:3g, =:0"f,V¢ € C°(Q) :

/ FOD¢)()d¢ = (—1)l / 9a(Q)p(¢)dc¢} (2.3)
Q Q

equipped with the norm

1/p
o e L (Srzeloorl,) " pe oo,

esssupjq <y [|0°fll, . P = oo
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All the Sobolev spaces Wy () are Banach spaces, see Theorem 3.2 in [Ad75], in

particular for k € Ny the spaces H*(Q) := WF(Q2) are Hilbert spaces for the inner
product

=2 / 9 f(€),0°9(Q))rdC,  f.g € H* ().

|| <k

We list a series of well-known results on Lebesgue spaces L,(£2) and Sobolev spaces
WP (). We start with Holder’s Inequality on products of two functions lying in
appropriate Lebesgue spaces.

Theorem 2.1.2 (Holder’s Inequality). Let p,p’ € [1,00] be such that l i

=1
(where we use the convention that = :=0). Then for all f € L, () and g e L (Q)
we have that fg € L1(Q) and

1fgllL, <IFllz, llgllz, -

Proof. See Theorem 2.3 in [Ad75] for the case where p,p’ € (1,00) and note that
the inequality also holds if p = oo or p’ = 0o, see 2.2 in [AdT75]. O

With Holder’s Inequality the following embedding theorem follows quite easily.

Corollary 2.1.3. Assume that ) has finite measure, i.e. 1 € L1(Q2). Then for
1 <p<q < 4o the embeddings

Loo(2) = Ly(Q2) = Ly(R2) — L1(2)
are continuous and for f € Lo (Q2) one has

£l = Yim 171, -

Proof. See Theorem 2.8 in [AdT5] where also the embedding constants have been
computed explicitly. O

Another important result is the following approximation result which says that
any L,(2)-function (p € [1,00)) can be approximated by a smooth function with
compact support.

Theorem 2.1.4. The set of smooth functions with compact support
CE(Q)={feC>®(): supp f C Q is compact}

is dense in L,(Y) for every p € [1,00).

Proof. See Theorem 2.19 in [Ad75]. O

Lemma 2.1.5 (Fundamental Lemma of Calculus of Variations). Let Q C R™ be an
open set and let

F€L110c():={g:Q—=F: glyv € L1(U) for every bounded open U C Q}
be such that for all ¢ € C(£2)

Then f =0 a.e. on €.
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Proof. See Lemma 3.26 in [Ad75). O

Lemma 2.1.6 (Fundamental Lemma of Calculus of Variations for Positive Test
Functions). Let Q@ C R™ be an open set and let f € L1 10(€2;R) be such that for all
¢ € C(Q) with ¢ > 0 the integral

| Toots)s =0
Q
vanishes. Then f =0 a.e. on €.

Proof. By the fundamental lemma of calculus of variations we only have to show
that

/ f(s)p(s)ds =0, forall ¢ € C°().
Q

This can be done as follows. Take any ¢ € C2°(§2) which therefore is bounded, so
that we find ¢ € C2°(2) such that ¥ + ¢ > 0 and ¢ — ¢ > 0 both are positive
functions in C2°(€2). By assumptions the integrals

/Q T+ 6)(s)ds = 0
/ T W — 6)(s)ds = 0
Q

vanish and subtracting these equations also

/ F(s)p(s)ds. =0
Q

Since ¢ € C°(€2) has been arbitrary this holds for every ¢ € C°(Q) and the
assertion follows from the Fundamental Lemma of Calculus of Variations 2.1.5l [

Very often we also consider F?-valued spaces, e.g. L,(Q;F¢), the Fl-valued L,-
spaces, which may be expressed as

Ly(QFY) = {f = (f1,..., fa) : Q = F4 f; € L, (G F)}

and for which the standard norm is denoted by ||-[|;, as well, defined as

1/p
7], = (/ If(C)IpdC> . T e Ly@:FY.

For the Hilbert space case p = 2 this norm is inherited from the standard inner
product (-, )1, given by

Fra)ia = /Q (O 9(O)eadl,  frg € Lo(@FY),

More generally, all the spaces considered so far can be easily generalised to the F¢-
valued case, i.e. WP (S F?), CH(Q;F?), CF(Q;F?) etc. Also most of the preceding
results easily generalise to an Fé-valued version. However, more involved is the
case of more general Banach spaces E as range space, e.g. L,(; E) or WP (4 E),
because in this case the Lebesgue integral has to be replaced by a Bochner integral.
For details on these Bochner L,-spaces we refer to Appendix C in [EnNa00].
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Lemma 2.1.7. Let Q C R™ be open and M : Q — F¥>? be q measurable and
essentially bounded function such that M(¢) = M({)* is symmetric for a.e. ( €
(0,1). Then

1. M(w) is positive semi-definite for a.e. w € Q if and only if

for all f € Lo(Q;FY) . (f, M f)r, > 0.

2. M(w) =0 equals the zero matriz for a.e. w € Q if and only if

for all f € Lo(QFY) . (f,Mf)r, = 0.

Proof. First assume that there is a set of positive measure where M (w) is not
positive semidefinite. Hence, A(©2) > 0 for the by continuity of the inner product
and measurability of M measurable set

Q={Ce(0,1): 3zeFN: (M({)z, 2)pva <0}.
Note that
Q=) =1mQ
};i € 523% €

for the measurable sets
Q. ={Ce©1): 3eFY: (M(Q)z v < —¢ 4}
_ {g €(0,1): FzeFY: (M(Q)z 2)pva < —a|z|2}
where we write

Rg =Q and @:Q =Q+1iQ

and for the second line used that Q is dense in R. Since the sets €. are ordered,
there is ¢ > 0 such that A(€.) > 0. For z € FV? we now write

0F = {g €(0,1): (M(()z2) < —5|z|2}

(measurable) and observe that

.= (J .

Nd
z€Fy

Since ]ng is countable, A(QZ) > 0 for some z € ng and so for f = 1g:z €
L2(0,1;F?) we find that

(Mf, f)r, :/ (M({)z,2) < —A(Q)e < 0.

zz
Hence, for (f, M f) > 0 (Vf € L(0,1;F%)) it is necessary (and clearly also sufficient)
that M (w) is positive semidefinite for a.e. w € . The second part easily follows

from the first one since a matrix equals the zero matrix if and only if it is both
positive and negative semidefinite. O
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Theorem 2.1.8 (Rellich-Kondrachov). Let Q@ C R"™ be a bounded domain, j € Ny
and m € N integers and let p € [1,00]. If Q satisfies the strong local Lipschitz
property, see 4.5 in [Ad7Y], then the following embeddings are compact.

W™ (Q) = C7(Q),
W] (Q) — WI(Q).

Proof. See Theorem 6.2 in [AdT5] O

Remark 2.1.9. In particular, the embeddings H*(0,1) < Lo(0,1) are compact for
every k € N.

Another lemma we will use is the following one-dimensional version of the famous
Gagliardo-Nirenberg inequality.

Lemma 2.1.10. Let (a,b) C R any interval, p € [1,00), N € N and ¢ > 0
be given. Then there is a constant K = K(go, N,p,b — a) such that for every
g€ (0,e0], €{0,1,...,N —1} and f € szv(a,b) one has

N
< Ke

+ Ke NN Fll L sy -
Ly(a,b)

I
Ly(a,b)

¢

acn !

Proof. This is a special version of the general Gagliardo-Nirenberg Theorem 4.14
in [Ad75] and in the one-dimensional special case follows from Lemma 4.10 and
Lemma 4.12 in [Ad75]. O

Remark 2.1.11. The Sobolev space WE (0,1) (k € N) can be characterised as
WE(0,1) = {f e C*10,1] : f*=Y is Lipschitz continuous }.

In particular
WL (0,1) = Lip(0,1) = {f : [0,1] — F: f Lipschitz-continuous}.

Proof. See Proposition 8.4 in [Brll]. O

Proposition 2.1.12 (Strict Contraction Principle). Let F': X — X be a map on
a complete metric space (X,d) and assume that F is uniformly strictly contractive,
i.e. there is p € (0,1) such that

d(F(z), F(%)) < pd(z,Z), =z, € X.
Then F has a unique fized point xo = F(zo).
Proof. See Theorem ITI.2.2 in [We06] for a slightly more general version. O

Proposition 2.1.13. Let P € B(X) be a coercive operator on a Hilbert space X and
n € N be a natural number. Then there is a coercive operator Q =: P/™ € B(X)
such that

P=qQ", |PI=lQI".

In particular, for every given p > 0 there is a number m € N such that

fr-pom) <
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Proof. For the existence of operator P/ € B(X), see Korollar VIL.1.16 in [Well].
Since PY/™ € B(X) is coercive, we also have

n

1Pl = [P

[

n—roo

so that HPl/”H —— 1. Then we calculate that

2

HI—PI/" = sup H(I—Pl/")xH
lll|=1
2 2
— sup (||:c||2+HP1/"x’ —2HP1/2"x’>
llzl|=1
n—oo 0

and hence I — P'/™ — 0 in B(X) as n — ooc. O

Besides the usual Sobolev spaces Wf(Q) we also encounter the Bessel potential
spaces H;(S2) from time to time, where

S _ S s|+1
Hy(©) = (W@ Wi @)
is a complex interpolation space of Sobolev spaces, cf. [Am95)], with |s| = sup{n €
Np : n < s} denoting the floor function.

Theorem 2.1.14 (Embedding Theorem for Hy). Let E be a Banach space of class
HT (that is, a UMD space, see Section 4.4 in [Am95]), k € N and Q C R? be
an open subset with the k-th extension property. Further let a,r < s € [0,k],
p,q € [1,00). Then the following embeddings are continuous

if  s— d >r— d then Hy(Q E) — Hy (% E),
b q

if s— d > then Hy (G E) = CY(Q E).
p

Remark 2.1.15. Recall that an open set Q C R? is said to have the k-th extension
property if there exists a bounded linear operator & € B(H*(Q); H*(R?)) such that
Efla = f for any f € H*(Q). Note that open sets Q with C*-boundary have the
k-th extension property, see Theorem 4.26 in [?]. In particular, the theorem holds
ford=1 and Q = (a,b) any open interval and E =TF™ finite dimensional.

Proof. For the case Q = R? and the first embedding see, e.g., Corollary 1.4
in [MeVel2]. For general Q the result follows by the extension property and the
characterisation of Bessel-potential spaces as complex interpolation spaces. For the
second embedding, see, e.g. Proposition 2.10 in [MeScI2]. Also the general case
seems to be well-known. O

Proposition 2.1.16 (Poincaré-Friedrichs inequality). Let k € Ny and Q C RY be
any bounded open set with the k-th extension property and define

HE Q) = T
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Then there exists a constant ¢ = c(2) > 0 such that

e < Y 1D fllp, s f € Hy ().

o=k
Moreover, if d =1 and Q = (a,b) is an interval of finite length, then also for
Hg(a,b] := {f € H"(a,b) : f(a) = ... = f*V(a) = 0},
there exists ¢ = c(a,b) > 0 with

,  f€H[(ab].
Lo

f<k>’

[l <€

Proof. We restrict ourselves to the case k = 1 and remark that for k£ > 1 one may
proceed by induction. The first statement is the most well-known version of the
Poincaré-Friedrichs inequality, thus we omit the proof here and only focus on the
second statement. Since D := C°(a, b] is dense in HE¥(a, b] we only need to consider
functions f € D. For any such f we have

b b
1712, = / FOPd¢ = /

b [ ¢ 2 b ¢
s/a (/ |f’(£>d5) d@g/a / 12d5/a () ded
b

b— 2
< [c-aaciriz, = S5,

¢ 2
/ F(€)de| dc

Now the result follows by approximation. O

As a consequence we find an equivalent norm on H¥(a, b] for any bounded interval
(a,b).

Corollary 2.1.17. Let k € N and (a,b) any open and bounded interval. Then

2

=3 [rO@| 5] f € H*(a,b)
=0

Lo(ab)’

defines a norm equivalent to the usual norm on H*(a,b).

Proof. By the continuous embedding H*(a,b) < C*~'[a,b] of Theorem [2.1.14] we
have the estimate

2
2 2 — 2
712 S U s + =0 S 1
2

Moreover, the function

fO(a), ¢elab),
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lies in H¥(a,b] with g;k) = f®) 5o that by the Poincaré-Friedrichs estimate we
deduce for [ =0,1,...,k — 1 that

k-1 2

Z l'(( — a)mil f(mfl)(a)

2 2
O, =Pl
Hf Lo 95 L2+ m!

Lo
Wi, N" ? 2
S|l 2 @) <A1 f € HE b,
2 m=l

which implies the assertion. O

Remark 2.1.18. Here we used the notation f < g if there is a fived constant ¢ > 0
such that f < cg and which does not depend on the particular functions f and g.
Moreover, we write f ~ g if both f < g and g < f.

Lemma 2.1.19. Let 0 < k < N € Ny and § € (0,1) such that n :== ON €
(k+ 3,k +1). Then there exist a constant cg > 0 such that for all f € HV(0,1)

1-6 0
[fller < collfllp,” I1f T -

Further for o := % there exists a constant c, > 0 such that for all f € HY(0,1)

1—
£l e < co A1, 17 -

Proof. Let p € (1,00) such that 77—% > k+1 —% > k. Then by the Sobolev-Morrey
Embedding Theorem

k+1 k
W, (0,1) < C*[0,1]

is continuously embedded. Further, using the notation of [Tr83], we have by the
theorems of Subsections 3.3.1 and 3.3.6 in [Tr83] that

Wyth0,1) = FX510,1) < Fy,(0,1)
- (F20,2(07 1)7 FZJYQ(Ov 1))9’2
= (L2(07 1)a HN(O7 1))9,2

and the first of the assertions follows from the interpolation inequality. The second
assertion is a spacial case of the Gagliardo-Nirenberg inequality. In the language
and with the theory of [Tr83] it results from

H"(0,1) = FJ,(0,1) = (F35(0,1), F35(0,1))
= (L»2(0,1),HM(0,1))

0,2

a2

2.2 Background on Evolution Equations

Within this section we recall some background on evolution equations and the theory
of strongly continuous semigroups. As a starting point we take the abstract Cauchy
problem (ACP)

e
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on a Banach space X where A : D(A) C X — X denotes a closed linear operator
on X which determines the evolution of the state space variable z(t) € X. Our plan
is as follows.

1. We begin by defining what we understand to be a solution of the evolution
equation (2.4). In particular, we introduce the concept of classical solutions
and the more general concept of mild solutions.

2. Then we recall criterions ensuring, or even characterising, the existence of
unique solutions for the problem , given a suitable initial value zy €
X. These considerations lead naturally to the concept of strongly continuous
semigroups (of linear operators) which determine the time evolution of the
state z(t) for any arbitrary initial value zo € X. In particular, we recall the
famous Hille-Yosida Theorem and the easier applicable, but more restrictive
Lumer-Phillips Theorem where the latter will turn out to be very useful later
on.

3. After that we focus on the asymptotic properties of solutions x of the ACP
, provided they exist. We recall different stability concepts and some re-
sults which connect properties of the generator A in and stability prop-
erties of the corresponding semigroups, i.e. the solutions of . Namely we
recall the Arend-Batty-Lyubich-Vi Theorem (on asymtotic stability) and the
Gearhart-Greiner-Priiss-Huang Theorem (on uniform exponential stability).

4. Finally we also consider some known results for the situation where the linear
operator A is replaced by a nonlinear and possibly multi-valued map A :
D(A) C X = X, so that the adjusted evolution equation takes the form

{jtx(t) € Az(t), t>0 25)
z(0) = xo.

Also for this case we recall solution concepts and a theorem ensuring exis-
tence of a unique solution, namely the Komura-Kato Theorem. Similarly the
concept of a strongly continuous semigroup of linear operators is generalised
to the notion of a nonlinear strongly continuous semigroup.

Let us proceed by coming back to the abstract Cauchy problem . As noted
before A : D(A) C X — X is assumed to be a linear operator on a Banach space
X. (In fact, within this thesis X usually denotes a Hilbert space.) We consider the
slightly more general inhomogeneous evolution equation

{;tx(t) = Az(t) + f(t), t>0

S (2.6)

where f: R, — X is a measurable function. For a function z : Ry — X to satisfy
equation pointwise,  should lie in C* (R4 ; X) and x(t) € D(A) should lie in the
domain of the linear operator A for every ¢ > 0. In that case, formally integrating
equation over s € [0,¢t] for some t > 0 we get the integral formulation

() = 70 + A/Otx(s)ds+ /Otf(s)ds
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provided that time-integration and the operator A may be interchanged. This leads
to two notion of solutions as in the following definition (cf. Definitions I1.6.1 and
I1.6.3 in [EnNa00]).

Definition 2.2.1. Let f € L 10c(R4+; X), 20 € X and z € C(R4; X).

1. The function x is called a mild solution of the evolution equation @ if the

value of the integral fg x(s)ds lies in the domain D(A) of the linear operator
A and

x(t) = zo + A/o z(s)ds —|—/0 f(s)ds, t>0.

2. Assume that f € C(Ry;X). The function x is called classical solution if
r € CYRy; X)NC(Ry; D(A)) such that

4 g = Ax
{f(())(t) _;40.(75)+f(t), t>0 e

We will recall and re-interpret these solution concepts after introducing the terms
well-posedness (cf. Definition 11.6.8 in [EnNa00]) and strongly continuous contrac-
tion semigroups.

Definition 2.2.2. Consider the abstract Cauchy problem , It is called well-
posed if D(A) C X is dense in X, for every xg € D(A) there is a unique classical
solution & = z(-;29) € CH(Ry; X) N C(Ry; D(A)) and the solution depends con-
tinuously on the initial value xq, i.e. for all T > 0 and € > 0 there is § > 0 such
that

sup |lz(t; o) — x(t; Z0)||x <&, t€[0,7], To € Bs(xo) N D(A).
te[0,7]

Next we introduce the concept of a strongly continuous semigroup. As a motiva-
tion assume that the abstract Cauchy problem is well-posed. Then for every
xo € D(A) there exists a unique solution z(-;z¢) € C1(R4; X) N C(R4; D(A)) and
therefore for every fixed ¢ > 0 the map

T(t)xo := x(t;x0) € D(A), xo € D(A)
is well-defined and has the following properties.

1. T(0)xg = x(0;20) = o for all zp € D(A), i.e. T(0) is the identity map on
D(A).

2. For every given s > 0 and xg € D(A) the function

ra(t) = {:1:(75;950)7 t<s

x(t — s;x(s;20)), t>s

is a classical solution of (2.4 for the initial value xg and by uniqueness of
classical solutions coincides with z(-; ), i.e. z(t;z0) = z(t — s;2(s;x0)) for
all 0 < s <t and zg € D(A), so that

Tt)=T(t—s)T(s), 0<s<t.
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3. For all g € D(A) the function T'(-)xg = z(-;20) lies in the intersection of
C'(R4; X) and C(R4; D(A)), and
4. supyepo - |T()woll = supsepo ) |[2(t20) — 2(£:0)]| = 0 as xg — 0in ||| .

Together these properties imply that T'(-) : D(A) — D(A) has a unique continuation
to a strongly continuous semigroup (see Definition I1.5.1 in [EnNa00]).

Definition 2.2.3 (Cy-semigroup). A family (T(t))i>0 € B(X) of bounded linear
operators on a Banach space X is called strongly continuous semigroup, or Cy-
semigroup (of bounded linear operators), if it has the following properties

1. semigroup property: T(0) = I is the identity map on X and

T(t+s)=T#)T(s), s,t>0.

2. strong continuity: For every xo € X, the map T(-)x € C(R4;X) is continu-
ous.

In that case

Az = 1im LT =7
t—0 t
T(t)x —
D(A) ={ze X: }irr(l) # € X exists}
—

is called the generator of the Cy-semigroup (T'(t))i>0. Moreover, a Co-semigroup
(T'(t))+>0 is called bounded if

T <M, t>0

for some constant M > 1 and contractive if the choice M = 1 is admissible.

The infimum of those w such that there is such a constant M,, > 1 is called the
growth bound wo(T'(+)) of the Cy-semigroup,

wo(T(+)) := inf{w € R : IM,, > 1 such that |T(¢)|| < M,e** (t > 0)}.

Remark 2.2.4. Note that every Cy-semigroup ||T(t)|| < Me*" is the exponential
bounded in the following sense: There are constants M > 1 and w € R such that

IT(t)]| < Me®*, ¢>0.
In particular, the infimum of these w exists in [—oo, +00).

Proof. This result is based on the Principle of Uniform Boundedness, see Propo-
sition 1.5.5 in [EnNa00]. O
Above we have seen that the solutions of a well-posed ACP naturally define a
Cy-semigroup on the Banach space X, but in fact this actually characterises the
generators of a Cy-semigroup.

Theorem 2.2.5. For the abstract Cauchy problem and the closed linear op-
erator A : D(A) C X — X the following are equivalent.
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1. The abstract Cauchy problem is well-posed.
2. The operator A generates a Cy-semigroup on X .

3. The abstract Cauchy problem has a unique classical solution for every initial
value xo € D(A) and the resolvent set p(A) is not empty.

4. The abstract Cauchy problem has a unique classical solution for every initial
value xg € D(A) and there is a sequence (\,) C R converging to +oo such
that all operators \,I — A are surjective.

Proof. This is Theorem I1.6.7 in [EnNa00]. O

Hence, the question of whether the abstract Cauchy problem is well-posed can
be equivalently rephrased as: Does A generate a Cy-semigroup?

For more background on the following we refer to Section I1.3 in [EnNa00], from
where we cite the following generation results. In fact, the question of characterising
the Cy-semigroup generators has been solved around 1950, first by Hille and Yosida
(1948) for the contractive case, and then by Feller, Miyadera, Phillips (1952) for
the general case. Still, today also the general generation theorem due to Feller,
Miyadera and Phillips is mainly known as Hille-Yosida Theorem. It states the
following.

Theorem 2.2.6 (Hille-Yosida Theorem (General Version due to Feller, Miyadera,
Phillips)). Let A: D(A) C X — X be a linear operator and M > 1 and w € R be
constants. Then the following are equivalent.

1. A generates a Co-semigroup (T'(t))i>0 with

[T(@t)]| < Me**, t>0.

2. The operator A is closed and densely defined and every X > w lies in the
resolvent set and

3. The operator A is closed and densely defined and for every A € C with Re A >
w one has A € p(A) and

[(A=w)RAAM <M, neNA>w.

n M
[R(A, A)"| <

_m, nGN, Re A > w.

Proof. This is Theorem I1.3.8 in [EnNa00]. O

For contractive Cy-semigroups the Lumer-Phillips Theorem provides a much easier
criterion to check whether a given operator A generates a contraction semigroup.
As we are mainly concerned with Hilbert spaces in this thesis, we do not give the
Banach space version here and from the start assume that A is closed, referring to
Theorem I1.3.15 in [EnNa0Q0] for its general version on Banach spaces.

Theorem 2.2.7 (Lumer, Phillips (1962)). Let A be a densely defined, closed linear
operator on a Hilbert space X. Then A generates a contractive Cy-semigroup on X
if and only if A is m-dissipative, i.e. A is dissipative,

Re (Az,x2)x <0, x€ D(A) (2.8)
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and the following range condition holds: \I — A : D(A) C X — X is surjective for
some (then: all) A > 0.

Proof. See Theorem I1.3.15 in [EnNa(0] for a slightly more general version. O

Remark 2.2.8. Closely related to the notion of a Cy-semigroup, but slightly more
restrictive is the concept of a strongly continuous (s.c.) group of linear operators
(or, Co-group). Consider the abstract Cauchy problem on the whole of R,

d
%x(t) = Ax(t), teR

I’(O):’JJQ eX

i.e. solving the abstract Cauchy problem not only forward in time, but backward
in time as well, hence the solutions not only live on Ry, but on the real line R.
Well-posedness is defined analogously to well-posedness on Ry and the following
definition is similar as well. Actually, well-posedness of the problem is equivalent
to the existence of a Co-group.

Definition 2.2.9. A family (T'(t))ier € B(X) of bounded linear operators on a
Banach space X is called a Cy-group, if it has the following properties.

1. group property: T(0) = I is the identity map on X and
T(t+s)=Tt)T(s), s,teR.
2. strong continuity: For every xg € X, the map T(-)x € C(R; X) is continuous.

In that case

Az = Jim LT =T
t—0 t
T(t)x —
D(A) ={ze X: }irr(l) Wz == € X exists}
—

is called the generator of the Co-group (T (t))i>0. Moreover, a Co-group (T'(t))i>0
is called isometric if
IT@)z|| = ||z||, teR, z€X

and unitary if each operator T(t) (t € R) is unitary, i.e.
T(-t)=T), teR.

We then have

Theorem 2.2.10 (Stone). A closed linear operator A : D(A) C X — X generates
a unitary Co-group if and only if A = —A' is skew-Hermitian, if and only if both A
and —A are dissipative.

In particular, the isometric Cy-groups are exactly the unitary Cy-groups.

Proof. For the proof of the first equivalence (Stone’s Theorem) see Theorem I1.3.24
in [EnNa00]. There it is also shown that A = —A’ implies that A and —A are
dissipative, and then it is shown that this already implies that A generates a unitary
Cy-group. O
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After introducing characterisations of semigroup generators and hence well-posed
abstract Cauchy problems we proceed by introducing some terminology concerning
the long-time behaviour of the solutions of the semigroup. Here we are mainly
interested in the question whether the solutions tend to zero as t — +oo and
how fast this occurs. We give the corresponding definitions in the framework of
Cp-semigroups. Considering the one-to-one correspondence between Cyp-semigroups
and well-posed abstract Cauchy problems the conditions may be easily reformulated
in the context of the well-posed abstract Cauchy problem . There are several
stability concepts: (uniform) exponential stability, polynomial stability, asymptotic
(strong) stability or weak stability, to name just a few. The difference between
the stability concept is the topology on which convergence to zero is investigated,
e.g., in operator norm, the strong or only in the weak topology. For more general
stability concepts and the theory thereof we refer to [Eil0] and [Va96] whereas here
we mainly focus on (uniform) exponential stability and asymptotic (strong) stability
which are defined as follows.

Definition 2.2.11 (Stability Concepts). A Cy-semigroup (T'(t))i>0 on a Banach
space X 1is called

e asymptotically (strongly) stable if for all x € X

t—o0

T(t)r —— 0,

e (uniformly) exponentially stable if there exist w < 0 and M > 1 such that
IT@)| < Me*, t>0.

Remark 2.2.12. Let (T(t))i>0 be a Co-semigroup on some Banach space X and
assume that ||T(7)|| < 1 for some 7 > 0. Then the Cy-semigroup is uniformly
exponentially stable.

Proof. See Proposition V.1.7 in [EnNa00]. O

Remark 2.2.13. If |[T(7)|| = p € (0,1) for some T > 0, the constants (M,w) €
[1,00) x (—00,0) may be chosen as
Inp

w=——, M=e".
T

A sufficient condition for asymptotic stability using spectral properties of the gen-
erator A has been given both by Arendt and Batty [ArBa88] and by Lyubich and
Vi |[LyPh88] who independently obtained the following result.

Theorem 2.2.14 (Asymptotic Stability). Let A generate a bounded Cy-semigroup
(T(t))i>0 on a Banach space X and assume that o.(A) NiR = 0. If o(A) NiR is
countable, then (T(t))i>o0 is asymptotically (strongly) stable.

Proof. See Stability Theorem 2.4 in [ArBa88| or the theorem in [LyPh88]. O
0

Remark 2.2.15. For reflexive Banach spaces X the assumption o.(A) NiR =
reduces to op(A) NiR = (.
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Proof. This is a special case of Corollary 2.6 in [ArBa88]. O

In the case that the generator A has compact resolvent, i.e. D(A) is relatively
compact in X this can even be stated as a characterisation of asymptotic stability
of the Cy-semigroup by means of the spectrum of its generator.

Corollary 2.2.16. Let A have compact resolvent and generate a bounded Cpy-
semigroup (T'(t))i>0 on a Banach space X. Then the Cy-semigroup (T'(t))i>o0 is
asymptotically (strongly) stable if and only if

op(A) NiR = 0.

Proof. For operators with compact resolvent the equality o(A4) = o,(A) holds true
which follows from the Fredholm alternative, see e.g. Satz VI.2.4 in [We(06]. Now
the corollary follows from Theorem [2:2.14] and the fact that an operator A with
op(A) NiR # () clearly cannot generate an asymptotically stable semigroup. O
On the other hand it is not possible to characterise exponential stability merely by
the spectrum of the generator A (although there are some semigroups which have the
Spectral Bound Equals Growth Bound Property, e.g. analytic semigroups or, more
general, eventually norm continuous semigroups or semigroups with the Riesz basis
property, see, e.g. some results in Chapter 5 of [EnNa00]) and for Banach spaces the
characterisation of exponentially stable semigroup-generators is quite complicated.
However, in the Hilbert space case the characterisation is much easier, namely by
a spectral condition and uniform boundedness of the resolvent operators on the
right half plane. The result is initially due to Gearhart who considered only the
contraction case. The theorem has then be generalised (in several ways) by Huang
and Priiss. Accordingly the theorem is often referred to as Gearhart’s Theorem or
Gearhart-Greiner-Priiss Theorem or (especially in the systems theory community)
as Huang’s Theorem. For its formulation we introduce

Fl:={2€F: Rez>w}, welR
and later similarly write

Fo

={z€F: Rez<w}, wekR

Theorem 2.2.17 (Exponential Stability). Let A generate a Co-semigroup (T'(t))i>0
on a Hilbert space X. Then (T'(t));>0 is uniformly exponentially stable if and only

if
s(A):=sup{Re A: A€ 0(A)} <0 and sup |R() A)| < +oo.
xecd

Proof. See, e.g. Theorem 4 and Corollary 5 in [Pr84]. O
For bounded semigroups this result reads as follows.

Corollary 2.2.18. Let A generate a bounded Cy-semigroup (T'(t))i>0 on a Hilbert
space X. Then (T(t))i>0 is uniformly exponentially stable if and only if

o(A)NiR =0 and sup||R(iB,A)| < +oo.
BER

There also is a sequence criterion which proves quite convenient for differential
operators with dissipative boundary conditions.
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Corollary 2.2.19 (Sequence Criterion). Let A generate a bounded Cy-semigroup
(T'(t))t>0 on a Hilbert space X. Then (T'(t))i>o0 is uniformly exponentially stable if
and only if 0(A) C Cy and the following sequence criterion holds: If (xy, Bn)n>1 C
D(A) x R is a sequence such that

sup ||zy || y < 400,
neN

|@Aﬁjfém7

n—oo

Az, —iB,x, — 0,
then already ., 2% 0 tends to zero in X.

Proof. We show that the sequence criterion is equivalent to the uniform bounded-
ness of the resolvent operators on the imaginary axis. First assume that

sup | (-, A)]| < +oc
iR

and take any sequence (zn,[(,) C D(A) x R where sup, ¢y [|zn]y < +oo0 and
|Brn| = oo and such that Az, —i8,2, — 0 as n — co. Then we obtain

lzallx < sup [RGB, A)|| (A = iBn)za x =2 0.

On the other hand, if sup;p || R(-, A)|| = 400, then there is a sequence (2, 3, )n>1 C
D(A) x R such that ||z, x =1 (n € N) and |8,,] == oo with

n— oo

|R(%Bn, A)zpn|| —— +o0.

Then we set x,, := ”ggzgzi% € D(A) and observe that ||z,[y =1 (n € N), but

still

. [EX n—o0
Az, —iBpxy] = - 0,
n = nonll = i, ]
so that the sequence criterion cannot hold true. The corollary follows from the
Gearhart-Greiner-Priiss-Huang Theorem [2.2.17] O

Let us finally leave the linear situation and consider the abstract Cauchy problem
where the linear operator A : D(A) € X — X is replaced by a nonlinear
map A : D(A) C X = X as follows. We restrict ourselves to the contractive case
here since only dissipative nonlinear systems will be considered within this thesis.
More general results on nonlinear semigroups may be found in [Mi92]. Also we
restrict ourselves to the Hilbert space scenario where we state the nonlinear version
of the Lumer-Phillips Theorem [2.277] i.e. the Komura-Kato Theorem [2:2:29] below.
We start with the generalisation of the concept of dissipative (resp. monotone)
operators to the nonlinear scenario. For more details see, e.g. Chapter IV in [Sh97].

Definition 2.2.20. Let A : X — P(X) :={B C X} be a power set valued-map.
We denote by D(A) its domain
D(A) :={z e X : A(x) # 0}

and then also use the notation A : D(A) C X = X. In case that A(x) = {y,} is
single-valued for all x € D(A) we call A an operator and write — analogously to the
linear situation —

Az :=vy,, for the unique y, € A(x).

Otherwise we say that A is multi-valued.
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We use the notation A + B for the sum of two maps A : D(A) C X = X and
B : D(B) C X =2 X which we define as follows

(A+B)(z) ={y1 +y2 € X 1 y1 € A(2), y2 € B(x)}.

In particular, the domain of the sum D(A 4+ B) = D(A) N D(B) is the intersection
of the domains of the maps and for the particular case where B : X — X is a
bounded linear operator (A+ B)(z) = {y1 + Bx : y1 € A(x)} for all x € D(A+ B).
Moreover, for any scalar a € F we define the operator a4 by

(@A) (z) :={ay € X : y € A(z)},

i.e. D(aA) = D(A). Note that for linear operators these definitions coincide with
the usual notation.

Definition 2.2.21. Let X be a Hilbert space and A : D(A) C X = X be a map
which may be nonlinear and/or multi-valued. We say that the map A is dissipative
(and —A monotone (or, accretive)), if for all z, ' € D(A) andy € A(x), vy € A(z')
one has

Re(y —y',z—2')x <0.

If additionally for some A > 0 (then: all A > 0) the map A satisfies the range-
condition

{yeX:qzeDA) :ye (M —-A)(x)}=ran (M —A) =X

then A is called m-dissipative (and —A is called m-monotone (or, m-accretive)).
We call A : D(A) C X = X mazimal dissipative, if it is dissipative and has no
proper dissipative extension, i.e. if B : D(B) C X = X with D(A) C D(B) and
A(zx) C B(x) for all x € D(A) is a dissipative extension, then already A = B.

Remark 2.2.22. Let A : D(A) = X be an m-dissipative map on some Hilbert
space X. Then for all v € D(A) the set A(x) is closed and conver and therefore
there is a unique z € A(x) with minimal norm. This defines the minimal section
AY of A:
A%z =2z, |z||= inf |y|, D(A°) = D(A).
yeA(x)

Consequently we may define

Az| = ||A%| = inf .
|Az| = || A%|| yelg(m)llyll

Moreover, for all z € X and A\ € F§ the element y € D(A) such that
e (M = A)y)

is uniquely determined and we may write y = (A — A)~'x defining a nonlinear and
contractive operator (A — A)’1 on X. In particular, every m-dissipative operator
is maximal dissipative.

Proof. Let x € D(A) be arbitrary and y € A(x) lie in the closure of A(zx). We
show that actually y € A(z). First, take a sequence (yn)n>1 € A(z) such that

Yn —= 3y and observe that for every 2/ € D(A) and 3/ € A(2') we get

Re{r —2',y —y)x = lim Re(z —2',y, —y)x <O0.
n—oo
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Moreover, from the m-dissipativity of A we find 2’ € D(A) such that x —y €
ran (I — A), le. 2/ —x +y € A(z'), and hence

[ =2/ =Re(z —a’,y = (2’ —z+y)) <0

which implies that ' = x and y € A(x), proving closedness of A(z). Next, we show
that A(x) is convex. Let © € D(A) be arbitrary and y, z € A(z), A € [0,1]. Then,
since A is m-dissipative there is & € D(A) such that

A +A-Nz—ze(A-1)(2T),
ie. Ay+ (1 =Nz+ 2 —2x € A(Z). From the dissipativity of A we thus obtain

0<llz—& =M +1-Nz—Qy+(1—-Nz—a+7),z— i)
=My—(ANy+Q-XNz—z+2),z—3)
+ (1 =Mz=My+1=Nz—x+7),2—-7) <0,

hence £ =z and Ay + (1 — \)z € A(z).
For the second statement let A > 0 and x € (A — AI)(y) N (A — AI)(z), then
z+ Ay € A(y) and = + Az € A(2), so

05 (y—2y—2) =3l +X) - (+12),y—2) O

and it follows y = z. For the last statement note that any dissipative extension A
of an m-dissipative operator is again m-dissipative, thus A\l — Ais injective as we
just saw, but as extension of the surjective map AI — A both maps then have to be
equal, i.e. A = A is no proper extension. O

Lemma 2.2.23. If A: D(A) = X is m-dissipative and B : X — X is dissipative
and Lipschitz continuous, then also A+ B : D(A) = X is m-dissipative.

Proof. We follow the line of proof for Lemma IV.2.1 in [Sh97]. First, we note that
the sum of two dissipative operators is again dissipative (take the intersection of
their domains as the domain of the sum) and also multiplicating an (m-)dissipative
operator by a > 0 gives another (m-)dissipative operator. Writing A+ B = é(aA—i—
aB) where o > 0 we may therefore assume that B is a strict contraction (i.e. its
Lipschitz constant is strictly less than 1). For given f € X we shall find z €
D(A+ B) = D(A) such that f € v — A(z) — Buz, i.e.

= ®(x):= (I - A)~(f - Bx).

Here @ is a strict contraction and thus from the Strict Contraction Principle Propo-
sition [2.1.12] this equation has a unique solution z € D(A). O

To round out let us also mention Minty’s Theorem.

Theorem 2.2.24 (Minty). On a Hilbert space X the m-dissipative operators are
exactly the mazximal dissipative operators.

Proof. Combine Lemma 2.2.12(iii) and Corollary 3.2.27 in [Mi92]. O

As in the linear (Cp-semigroup) case, m-dissipative operators are closely related to
the generators of contraction semigroups which are defined as follows.
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Definition 2.2.25 (Semigroup). Let X be a Banach space and let Xg C X be a
closed subset. A family (S(t))e>0 of mappings S(t) : Xo — Xo (t > 0) is called
semigroup (or, dynamical system) if it satisfies the properties

1. S(0) = Ix,, the identity map on Xo, and

2. S(t+s)=S(t)S(s) for all s,t > 0.

We speak of a strongly continuous (abbr.: s.c.) (nonlinear) semigroup (or, dy-
namical system) if S(t) € C(Xo;Xo) (t > 0) and for all x € Xy the map S(-)x €
C(Ry4; X) is continuous on Ry. A semigroup (S(t))i>o is called contractive, if all
maps S(t) (t > 0) are contractions, i.e.

ISz = S®)a'lly < llz—a'llx, 2" €Xo, t=0.

Remark 2.2.26. Note that if additionally Xo = X and all maps S(t) (t > 0) are
linear, i.e. S(t) € B(X), then the definition above coincides with the usual defini-
tion of a Cy-semigroup of linear operators and also the definitions of contractive
semigroups are compatible.

Definition 2.2.27. Let (S(t))i>0 be a (nonlinear) strongly continuous contraction
semigroup on X. Set

D:={zeX:8()zeLipRy;X)}.

We define the (infinitesimal) generator of the s.c. contraction semigroup (S(t))i>o0
as
Stz —x S(t)x

D(Ag) ={zx e X: tlirn % € X exists}

Ap(z) :=lim m

N0 t ’

and the (g)-operator A : D(A) C X = X as the mazimal dissipative extension of
Ao with D(A) C D.

Remark 2.2.28. By Zorn’s Lemma every dissipative operator has a mazximal dissi-
pative extension (see Lemma 2.2.12(ii) in [Mi92]). Hence, the (g)-operator always
exists. Also note that the infinitesimal operator Ay (or the (g)-operator A) uniquely
determines the s.c. contraction semigroup, see Corollary 3.4.17 in [Mi92)].

The following results shows that for m-dissipative maps the nonlinear version of the
abstract Cauchy problem is well-posed and — similar to the Lumer-Phillips Theorem
— the solution is given by a nonlinear contraction semigroup.

Theorem 2.2.29 (Komura-Kato). Let A: D(A) C X = X be a (possibly multi-
valued) map on a Hilbert space X. If A is m-dissipative, then il generates a

nonlinear strongly continuous contraction semigroup (S(t))i>0 on X := D(A)
More precisely, for each xg € D(A) there is a unique absolutely continuous solution
r € WL(Ry; X) of the abstract nonlinear Cauchy problem

d
Za(t) € A(w(t), >0

z(0) = xo. (2.9)
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Also ||%x||Lm(R+.X) < HAO:COHX, the function ||AO:cHX is decreasing and for every

t > 0 and the right-derivative % one has

d* . x(t+s)—az(t) 0
— = _ 7 = > 0.
o x(t) %{% . A’z(t), t>0
Proof. See Proposition IV.3.1 in [Sh97]. O

Remark 2.2.30. If A is m-dissipative and 0 € A(0), then S(t)(0) = 0 for all t > 0.
Consequently in this case

IS@®zlx <llzllx, =0

Remark 2.2.31. Let (S(t))t>0 be a s.c. contraction semigroup on some closed
subset Xo of a Hilbert space X. Assume that there is T > 0 and a constant p € (0,1)
such that for all x,% € X the estimate

[S(T)z — S(T)z|| < pllz —
is valid. Then there are constants M > 1 and w < 0 such that for all x,z € X
IS(r)a — S(r)z|| < Me |l — ||, ¢>0.

Proof. Take any ¢t = 7k + s € Ry where k € Ny and s € [0,7). Then for all
z,T € X we obtain iteratively that

IS#®)x — S(t)Z|| = ||S(kT + s)x — S(kT + 3)Z||
= HS(T)kS(S).'L‘ — S(T)kS(s)QEH
< pP(IS(s)z — S(s)F| < 7 ||z — |

= o - g

_lnp ,lnp

<e Tt |z -z = Me*t ||z —z||, t>0.

where M := e‘lnTp >1and w= thp < 0, indeed. O
Let us mention a stability result due to Dafermos and Slemrod [DaSI73] which is
some sense is the nonlinear version of the Arendt-Batty-Lyubich-Vu Theorem
and at the same time is an improvement over the topological version of LaSalle’s
Invariance Principle, see Theorem 9.2.3 in [CaHa98].

Theorem 2.2.32. Let A : D(A) C X = X be an m-dissipative operator on a
Hilbert space X generating a strongly continuous contraction semigroup (S(t))i>o0
on Xg := D(A). Assume that Xg is conver, 0 € ran A and that the map (AN — A)~!
is compact for some X\ > 0, i.e.

M —A)-1(B)C X (2.10)

is compact for every bounded set B C X. Then for every xg € D(A) and [ €
Li1(Ry; X) the mild solution z € C(Ry; X) of

Lalt) + 1) € AG() (42 0), 2(0) =0
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approaches a compact subset C C {z € X : ||z — 20|l = r} of a sphere with centre
z0 € A7N0) and radius v < ||zo — zol| + || f]l,,. Moreover, (S(-)|c)i=0 defines an
isometric affine group on C, i.e.

Te(t)z .= S(t)(z 4+ 20) — 20, t>0, z€C — 2

extends to an isometric Cy-group (of linear operators) onlin{C —zy}. Moreover, if
xo € D(A) and f € W (Ry; X), then C C D(A), the image of C under the minimal
section A°(C) C X lies on a sphere with centre 0 € X, and also the closed convex
hull of C is contained in D(A).

Proof. See Theorems 4 and 5 in [DaSI73]. O

2.3 Background on Systems Theory

Within the standard framework of PDE and operator theory mostly Cauchy prob-
lems of the form

La(t) =Ax(t)+ f(t), t>0
z(0) = o

are considered where the evolution of the system is mainly determined by the state
of its state variable (e.g. f = 0) and an interaction with the environment of the
system is only possible if we think of f modelling some influence of the environment
on the system. On the other hand in systems theory the interaction of a system
with its environment is heavily emphasised. Thus, instead of only taking the state
variable z(t) on the state space X into consideration, also an input space U and an
output space Y appear. Usually X, U and Y may be arbitrary Banach spaces, but
here we restrict ourselves to the situation where X,U and Y are actually Hilbert
spaces. We first introduce the standard formulation of such a system which takes
the form

= Ax(t) + Bu(t)
=Cux(t)+ Du(t), t>0

plus some initial condition 2(0) = o € X. Here x(t) € X denotes the state space
variable in the state space X, u(t) € U denotes the input and y(t) the output at time
t > 0. Accordingly U and Y are called input space and output space, respectively.
All the maps A, B,C and D of the linear system ¥ = (A, B,C, D) are assumed to
be linear, but A, B and C' may be unbounded, whereas D € B(U,Y) is bounded.
Since the system should be well-posed (in the sense of an abstract Cauchy problem)
for the particular choice u(t) = 0 (¢t > 0) as input, the operator A is assumed to
be the generator of a Cy-semigroup (T'(t))¢>o of linear operators. The operators B
and C' will be assumed to be continuous in some weaker sense, we make precise in
a moment. For this, we first need to introduce the interpolation space X{* and the
extrapolation space X*,. The following material is extracted from [TuWe09].

Definition 2.3.1 (The Space Xi{'). Let A: D(A) C X — X be a densely defined,
closed operator on a Hilbert space X and assume that p(A) # 0, i.e. A has a non
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empty resolvent set. Fiz any A € p(A) and define the interpolation space X{* as
D(A) equipped with the norm

lallys == (A= Aally, @ e X7

By Proposition 2.10.1 in [TuWe09] the space X{' is a Hilbert space and is continu-
ously embedded into X. Moreover, different choices of A € p(A4) lead to equivalent
spaces and any bounded operator B € B(X) for with BD(A) C D(A), ie. the
domain is B-invariant, restricts to a bounded operator By := B|ya € B(X{Y).

Definition 2.3.2 (The Space X4,). Let A: D(A) C X — X be a densely defined,
closed operator on a Hilbert space X and assume that p(A) # 0. Fiz any X € p(A)
and on X define the norm

||xHXi;1 = ||()\I—A)_1;E||X, z e X.

Then the extrapolation space X4, is defined as the completion of X with respect to
the norm ||‘||XA1.

Then thanks to Proposition 2.10.2 in [TuWe09] X4, is a Hilbert space and every
bounded operator B € B(X) for which D(A’) is invariant under its Hilbert space ad-
joint B, i.e. B'D(A’) C D(A’), admits a unique continuous extension to a bounded
linear operator B_; € B(X4,).

Remark 2.3.3. By Proposition 2.10.8 in [TulVe09] the operator A as in the pre-
ceding definitions is bounded as operator A € B(X{*,X) and has a unique con-

tinuous extension A_1 € B(X,X4,). Moreover, for every X\ € p(A) we have
R\ A) € B(X, X{') and R(\, A_1) € B(X4,, X) exists.

Proposition 2.3.4. Let A generate a Cy-semigroup (T'(t))i>0 on a Hilbert space X.
Denote by (T1(t))i>0 € B(X{}) its restriction to X{* and by (T_1(t))i>0 C B(X?A))
its unique continuous evtension to XA,. Then (T1(t))>o0 and (T-1(t))i>0 are Co-
semigroups on Xi* and X%, respectively, with generators A, := Alpazy and A_y,
respectively.

Proof. See Proposition 2.10.4 in [TuWe09]. Note that in particular D(A) is T'(:)-
invariant, i.e. T(¢t)D(A) C D(A) for every t > 0. O

Assuming that B € B(U, X4,) and C € B(X{*,Y) we can make sense of the control
system ¥ = (A, B,C, D)

%x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t), t=>0.

Namely we may interpret the first equation © = Ax + Bu as an equation on the
extrapolation space X4, where B € B(U, X%,) is a bounded input, so that for all
U € L1 joc(Ry;U) and 29 € X C X_A1 the mild solution in X‘_“1 is given by

xz(t) =T (t)xo + /ot T_1(t — s)Bu(s)ds, t>0.

Even for initial values zy € X this function not necessarily has values x(t) which
also lie in X since Bu(s) € X, only lies in the extrapolation space, in general.
Therefore, one introduces the following notion of admissibility.
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Definition 2.3.5. Let p € (1,00) and B € B(U, X?,) be given. Then the input
operator B is called p-admissible if for all t > 0 the map

¢
O, L,(0,t;U) = X_q, UH/T,l(t—s)Bu(s)ds
0

has a range ran ®; C X which lies in X. In that case the maps ®; are bounded
linear operators mapping from L,(0,t;U) to X.

Proof. See Proposition 4.2.2 in [TuWe09]. O

Remark 2.3.6. For an admissible input operator B € B(U; X%,) and the corre-
sponding maps @, (t > 0) we may define ® : Ry — B(Lpj0c(R1;U); X) as

D(t)f = Py fl0,) (2.11)

where
Lp,IOC(RJr; U) = {f Ry = U: f|(0,t) € Lp(07t3 U) (t > 0)}

We see that for s,t > 0 we obtain
Ot +5)f = Porsfl(o,t4s)
t+s
:/ T 1(t+s—r)f(r)dr
0
s t+s
z/ T_l(t+s—r)f(r)dr+/ T 1(t+s—7r)f(r)dr
0 s

= Ta(0) [ Toals =)yt [ T 100+ s)ar
T)P(s)f +P(t)f(- + s).

Similarly the second equation y = Cx + Du makes sense if we take z € C(Ry; X{)
and assume that C' € B(X{',Y). In this case an admissibility condition concerns the
unique continuation property of the state-output map. Namely given o € D(A) =
X{ and neglecting the input u = 0, we have that the output is then given as

y(t) = CT(t)xo, >0, z9 € X{"

Definition 2.3.7. Let p € (1,00) and C € B(X{',Y) be given. Then the output
operator C is called p-admissible if for all t > 0 the map

Uy X{P = Ly(0,Y), a0 CT(-)xg
has a continuous extension to an operator ¥, € B(X, L,(0,t;Y)).
Remark 2.3.8. The maps V; are compatible in the sense that

Voro = [Wixo] |(0,5), 0<s5<t, x0€ X,
Therefore, the definition of ¥ : Ry — B(X; Ly i0c(Y)) via

U(t)zg := (Vrxo)(t), 7>0, 0 € X a.e. te(0,7) (2.12)
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makes sense. For this map we have

(W(t+ s)z0)(r) = (Vrzo)(r)

= CT(r)xg
T (r = t)(T(t)xo), 7€ [t,t+s]
| oT(r)a, r € [0,t]

(2.13)

_ {(‘I’S(T(t)wo))(r —t), reltt+s]
(¥ (t)xo)(r), r € [0,t]

for every zo € X{* and by approzimation the equality holds for every zo € X.

The semigroup (7'(t))s>0 and — for admissible input operator B € B(U; X4,) and
output operator C € B(X{';Y) — the families of maps (®(¢))i>0 and (¥(t))i>0
are almost enough to describe the dynamics of the control system . In fact, if
B € B(U;X) and C € B(X;Y) are admissible, one needs a forth family of maps
(F'(t))t>0 such that for every input function w € Ly 0.(R4;U) and initial value
2o € X the mild solution of the system ¥ = (A, B,C, D) is given by

x=T()xo+ ®(-)u
y=Y()zo+ F()u.

Here we only give a formula for F(t) in the scenario where the input operator
B € B(U; X) and the output operator C € B(X;Y') are both bounded. Then define
(Fyu)(s) :== Du(s) —I—/ C(s—r)Bu(r)dr, t>0, ue Ly,(0,t;U) ae.se (0,¢)

0

with defines a map F; : L,(0,£;U) — L,(0,¢;Y) and similar to the definition of ¥
one may set

(Ff)(s):= (th|(07t))(s)7 f€LpiocRy;U), t>0, ae. se(0,1)

defining a map F : Ly joc(R1;U) = Ly joc(Ry;Y).
In the following we introduce the notion of a well-posed linear system and for any
two functions f,g: Ry — Z and t > 0 we write f < g for the function

i

(fO9)(s) =

t

{f(s), se 0,4

g(s—1t), s>t
Definition 2.3.9. Let p € [1,00) be fized. The quadruple
. ( T() o) )
() F()

is called o (Lp-)well-posed linear system if the following hold:

1. (T(t))i>0 C B(X) is a Cy-semigroup on X with generator A,

2. ®(t) € B(Lp 1oc(R+;U); X) (t > 0) such that

D(t+s)(udv) =TE)P(s)u+ P(t)v

S
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3. W(t) € B(X; Ly oe(Ry;Y)) (£ > 0) such that

U(t+ s)xg = ¥(t)xo <t> U(s)T(t)zg, P(0)=0

4. F(t) € B(Lp1oc(R4;U); Ly 1oc(R4;Y)) (t > 0) such that

F(t+ 8)(u<t>v) = F(t)u <t>(\I/(s)<I>(t)u + F(s)v), F(0)=0.

For well-posed linear systems we may define the notion of impedance passivity.
Definition 2.3.10. A well-posed linear system X = (T, ®, ¥, F') is called impedance
passive if U =Y and

3 12Ol < 5 120)1% + [ Reu(s).u(s)ods

where x = T(-)xg + (P(T)u)(t) and y(t) = (Yao + F(t)u)(t), for every t > 0 and
u € Ly 1oc(Ry;U). Moreover, the system is called impedance energy preserving if

3 120l = 5 120)1% + [ Re(u(s).u(s))ods

or scattering passive if

1 1 ¢
5 lz(t)|% < 3 2(0)[1 % +/0 uc()1 = lye(s)]13 ds

(not necessarily U =Y ) hold instead.

Remark 2.3.11. The norms ||F(t)|| are non-decreasing in t > 0, but in general it
may happen that
lim [P(0)] = inf |F(0)] > 0.

Example 2.3.12 (Boundary Control of the Uniform 1D Wave Equation). Consider
the one-dimensional wave equation with constant coefficients p,T > 0

We set ¢ = \/é and calculate F(t) for the following choice of the input and output

function
u(t) = Twe(t,0),  y(t) =w(t,0), t=0

and some conservative or dissipative boundary condition at the right end, say
w(t,1) =0, t>0. (2.14)

Our starting point is the d’Alembert solution formula for the wave equation on R
which is given by

f(C+et) + f(¢—ct) n g(C +et) —g(C —ct)
2 2 ’

w(t, ) = t>0, CeR
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where f,g € W loc( 1) are two functions determined by the initial condition
(w,wt) = (wo,wl) € W oc(Ry) X Wp 10c(R4). If we assume that the input func-
tion u € W ZOC(RJF) has sufficient regularity properties, then the solution w has the
same form but the functions f,g € Wzloc( 1) have to be extended to functions
frg € Wp 1oc(R+) which outside of (0,1) may also depend on the input function

u € W 1oc(Ry). Indeed, we calculate

JCHt) = fC=et) | JCHet) +g (¢t

Wt (t’ C) =

2 2
it = 11 5 fCcl) | pgetel ;9’«; —ct)

u(t) = Tese(t,0) = TTADHTE) 7810 = g1

St~ fct) | glet) + g (et
2 2 ’

y(t) = wt(t?o) =

t>0

and using the initial condition (w,w;)(t,-) = (wo,w1) we find that

wo(¢) = w(0,¢) = ()
w1(¢) = wi(0,¢) = cg'(¢), ¢ €[0,1].

We then deduce that for a.e. s € [0,1] we have

f(=s) —g(=s) = (f = 9)(0) — /(f’( r) = g'(=r))dr

— wo(0) — QT/O u(r/) dr—/os(f’+g’)(r)dr
= wp(0) — 2T/O u(r/c)dr — /Os wo(r) + %wl(r)dr.

and hence

wolCtet)Hwo(Cct) + L f““t s)ds, ¢ € (ct,1— ct)
1,0) = { nlaepzatts 3 (75

ds

+et od/ic (s/c)ds, ¢ €10,ct]
so that in particular

= wh(ct) +wilct) + e tu(t), te0,e7h).

It can be easily seen that the dynamics of this one-dimensional wave equation with
boundary input and output give a well-posed linear system and we obtain that

(F(t)u)(s) = Ls<pu(s), t€[0,¢7), u€ Lyioe(Ry), a.e. s> 0.

In particular, |F(t)ll g1, 0.4)) = ¢! for every t € (0,¢71) and hence

_ 1
inf IEOl L, 0.0 =¢ >0



2.3. SYSTEMS THEORY 39

However, within this thesis we will take a different approach which is closer to
the physical interpretation of the systems later on, namely systems which behave
according to some PDE on some domain and which can be manipulated via control
and observation at the boundary. Therefore, these systems naturally fit into the
setting of Boundary Control and Observation Systems.

Definition 2.3.13 (Boundary Control and Observation System). Let X,U and Y
be Hilbert spaces. A triple & = (A,B,€) of linear operators A : D(A) C X —
X, B:DB)CX —-Uand €:D(€) C X =Y is called a Boundary Control and
Observation System if it has the following properties.

1. D(A) € D(B), D(€), i.e. B and € may only have larger domains than A,

2. the restriction A = Ulxermnp)y of A to the kernel of B generates a Co-
semigroup (T'(t))i>0 on X,

3. there is a right-inverse B € B(U, X) of *B such that

ran BC D), AB € B(U,X), BB =1.

4. € is bounded from D(A) toY where D(A) is equipped with the graph norm of
A.

Moreover, a pair (,B) as above with the first three properties is called Boundary
Control System.

We interpret a Boundary Control and Observation System (2, ‘B, €) as the operators
in the following evolutionary system.

x(t) = Ax(t)
x(O) =1z
%x(t) = u(t)
ealt) = ylt), 20 (2.15)

where 2y € X is the initial state of the system, u € L; j,.(R4;U) is a given input
function (control function) and y : Ry — Y is the (unknown) output function
(observation function). One may define classical and mild solutions of Boundary
and Control and Observation Systems as follows.

Definition 2.3.14. Let & = (A, *B, €) be a Boundary Control and Observation Sys-
tem. If xo € D(A) and u € C*(Ry;U), then a pair x € C*(Ry; X) N C(R4; D(RA))
andy € C(Ry;Y) solving is called classical solution of the Boundary Control
and Observation System .

Theorem 2.3.15. Let & = (AU,B,€) be a Boundary Control and Observation
System. For every given xo € D() and u € C?*(Ry;U) with Bxg = u(0), the
unique classical solution of the Boundary Control System is given by

z(t) = T(t)(xg — Bu(0)) + /0 T(t — s)(ABu(s) — Bu(s))ds + Bu(t),

y(t) = Cx(t), t>0.
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Proof. See Theorem 11.2.1 in [JaZw12]. O
The following result can be found in Section 13.1 in [JaZw12].

Lemma 2.3.16. Assume that (2,B) is a Boundary Control System and let xy €
D) and u € C*([0,7];U). Then the Boundary Control System has a unique mild
solution x € C([0, 7]; X') which can be written as

z(t) = T(t)xo + /Ot T(t — s)ABu(s)ds — A_; /Ot T(t — s)Bu(s)ds, t>0

where (T(t))¢>0 is the semigroup generated by A = 2| payrker 2 -

Also for Boundary Control and Observation Systems we may define the terminology
well-posedness.

Definition 2.3.17. A Boundary Control and Observation System & = (2, B, &) is
called well-posed if there are constants T > 0 and m, > 0 such that for every initial
value xg € D(A) and input function u € C%([0,7]; U) with Bxg = u(0) one has the
estimate ) ) ) )

le B + 19100y <m0 (20l + Nl o)) - (2.16)

Theorem 2.3.18. If a Boundary Control and Observation System is well-posed,
then for every T > 0 there is a constant m,; > 0 such that holds. Moreover,
every well-posed Boundary Control and Observation system may be equivalently
described as a well-posed linear system (T, ®, U, F).

Proof. See Theorem 13.1.7 in [JaZw12] for the first statement and its proof and
Definition 13.1.8 in [JaZw12] for the formulation as a well-posed linear system. [

For scattering passive system one gets well-posedness for free.

Proposition 2.3.19. If every classical solution of the Boundary Control System
satisfies

Do) < )P o)

then the system is well-posed.

Proof. Integrating the inequality from 0 to 7 we find

)% — ool < / ()% dt - / L2 d.

From here well-posedness follows easily. O
Let us also introduce the concept of a transfer function which is closely related
to the Laplace transform of the semigroup (7'(¢)):>o0 generated by A. (For more
background on transfer functions we refer to Chapter 12 in [JaZw12].)

Definition 2.3.20 (Transfer function). Consider the abstract boundary control and
observation problem
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where & = (A, B, €) is a Boundary Control and Observation system and let \ € F.
We write A € D(G) if there is G(X) € B(U,Y) such that for all uw € U there is a
unique solution of

Ax = Az
u = Bx
y=Cr (2.17)

where x € D) and y € Y is given by y = G(\)u.

Remark 2.3.21. It is known (Theorem 3.6 in [We9j)J) that for well-posed linear
systems the Laplace transform of F(t) coincides with the transfer function G(\) on
some complex right-half plane.
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Chapter 3

Hyperbolic Partial
Differential Equations on a
One-dimensional Spatial
Domain

Throughout this thesis we are concerned with evolution equations of the form

k

0 S
k=0

The evolution of the system always depends on suitable boundary conditions we
introduce later on and which may be static or dynamic, i.e. boundary conditions
determined by a feedback via a dynamic control system which itself is governed by
an evolution equation (usually an ODE). Step by step we are going to introduce
the assumptions we impose on the choice of the matrix-valued function H and the
matrices Py (k=0,1,...,N). However, let us first begin with z(¢, () which has the
following interpretation. First of all, let us take F = R or C to be either the real or
the complex field. Unless stated otherwise, all results in this thesis hold for both
choices of F, however note that when it comes to technical real life applications the
choice F = R very often makes more sense, although this is not necessarily true in
all the cases. In fact, for transmission lines in electronic circuits usually the choice
F = C is more practical. Then z(¢,¢) € F¢ describes the state of a certain object,
e.g. the displacement of a string or beam, in time ¢ > 0 and at position ¢ € (0, 1).
Here d € N ={1,2,...} denotes any natural number. For # let us for the moment
assume that H = I € F¥*? is the identity matrix, which will be a legitimate choice
later on, so that the evolution equation simplifies to

k

0 N ok
570t 0) = ZPka—Ckx(t,C), t>0, ¢ e (0,1). (3.2)
k=0

Let us introduce the objects Py, (k= 0,1,..., N) next. First of all we need to fix the
order N € N of the system. Then the evolution equation is a first order evolution

43
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equation in time where we expect the right hand side to be an differential operator
of order N € N. Thus, we assume that P, € F™*¢ = B(F%,F¢) (k = 0,1,...,N)
are matrices, which we identify with the (bounded) linear operators on F¢. Also let
us assume that Py € F?¥4 is invertible. (For the case of non-invertible Py € Fd*4
we refer to Section 6 in the PhD thesis [Vi07].) Then the right hand side plus
a suitable domain actually give a differential operator for different choices of the
function space X in which the functions x(t) := x(¢, -) should lie. One could think
of X = C([0,1];F¢) to be the Banach space of continuous Fé-valued functions or
X = L,(0,1;F%) to be the Banach space of (equivalence classes of) Fé-valued L,-
functions (where p € [1,00]). Indeed, depending on the particular application the
choices X = C([0,1];F4), L1(0,1;F%) or L (0,1;F%) can be very intuitive, e.g. for
a string we might assume that it has a smooth slope, in the sense that there are no
jumps, so the choice X = C([0, 1]; F?) makes a lot of sense, while in the case of a
transport equation where z(t, () models the mass density at ¢ € (0,1) in time ¢t > 0
it might make more sense to consider X = L1 (0, 1; F¢) where [[[[, is related to the
total mass in the system. However, as will be emphasised below we put our focus
on the energy of a system which in our case will be given by a quadratic functional,
namely (up to a constant and, later on, weights) the square of the Lo-norm H||i2
So assume that z(t,-) € La(0,1;F9) is a square-integrable function (for all ¢ > 0)
and (formally) consider the change of the energy H(t) := 3 |lz(t, )||i2 whilst the
time evolution ¢t € Ry := {s € R : s > 0}. For sufficiently smooth solutions we
formally get

) ) N o
llz(t, )|z, = Re @w(t, )ty ))p, = Z Re <Pk87kw(t, )zt )L,
k=0

d1
dt 2
Forgetting about boundary conditions for the moment we assume that x(¢,-) €

C>(0,1;Fd) := {g € C*>(0,1;F?) : supp g is compact}. Then for the right hand
side we obtain via integration by parts that

N 8k
ZkZ:ORe (Pka—gkx(t, ), x(ty)) L,
N PL k
= ;(Pkaickx(tv )ax(t’ ')>L2 + <£U(t, ')7Pk87<kx(tv ')>L2
N ok ., OF
= Z(Pk aCkx<t7 )7x(t’ ')>L2 + (_1) <87<k'r(ta ')apkm(tv )>L2
k=0
N 6k
= (P + (*1)'“1313‘)87@95(@ ), x(t,-)) L,

For the differential operator to be formally skew-symmetric (as the title of this
chapter indicates) on X = L5(0,1;F¢) we choose the matrices P, € F4*? such
that P} = (—=1)k*'P, (k = 0,1,...,N) are skew-adjoint (for k € 2N even) or
self-adjoint (for K € 2N + 1 odd) (with respect to the standard inner product on
F4), respectively. Finally let us come to the case where H does not necessarily
equal the identity matrix. The idea is illustrated in the examples within the next
subsection, however, for the moment one might think of H as a kind of energy
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density, i.e. if x(¢,-) takes the same value in two different regions, e.g. (disjoint)
subintervals (a,b), (¢,d) C (0,1) of same length, it still might be possible that the
regions contribute differently to the total energy which now is given as a weighted
integral of |z(t,¢)|?, i.e.

1

1) =5 [ (0.0, H(Oa(t,rud.

From here we may already derive the first assumptions on H which are intuitive.
First of all, an energy H(t) should be real for all x(t) = x(t,-) € Lo(0,1;F%).
Therefore, on the one hand (for the integral to always exist) H € Lo (0, 1;F9¥9)
should be an essentially bounded measurable function and (for the integral to be
real) H(¢) = H(¢)* should be self-adjoint for a.e. ¢ € (0,1). In fact, as Lemmal[2.1.7]
— applied to the imaginary part of H(t) — shows, in the complex case F = C for
H (t) to be real valued for every possible choice of x(t) € Ly(0,1;CY) it is necessary
that H(() is self-adjoint for a.e. ¢ € (0,1). Secondly, if we think of x = 0 as being
the unique equilibrium of the system, H (t) > 0 should be strictly positive whenever
x#0,50 2*H({)z > 0 forall z € F¢, 2 # 0, and a.e. ¢ € (0,1). Also we additionally
assume that a measurable function z : [0,1] — F¢ should lie in Ly(0, 1;F?) if and
only if it has finite energy. This leads to the assumption that there is m > 0 such
that
(2, H(O)2)pa > m 2>, z€F? ae € (0,1).

Later on we use the following notation for estimates like this.

Remark 3.0.22. For any matrices My, My € F™*™ we write My > Mo if both
matrices My = M{ and My = M3 are symmetric and

<ZaMlz>Fm > <Z7M2Z>]Fm7 z € Fd'
In particular, for a symmetric matric M € F™*™ we write M > ol where o € R if
(z, M z)pm > oz|z|27 z € F4,

Note that M > 0 if and only if the matriz M is positive semi-definite. Further we
write My > My for matrices My, My € F™*™ such that My > My + €l for some
e > 0. In this case M > 0 if and only if the matriz is (strictly) positive definite.

Coming back to the differential operator in the evolution equation (3.1) above we
see that if X is equipped with the standard inner product (-,-);,, the operator

Zgzo Pk%(H-) is not formally skew-symmetric any more, because via integration
by parts of the terms (assuming that Hx € C2°(0, 1;F4))

N ak
D Re (P (Ha) (0, ), (1, )1
k=0

in general not all the terms cancel. Therefore, we adjust the inner product on
X = L5(0,1;F?) properly, namely we choose

()x=Cn =MoL,
i.e. for all z,y € X = Ly(0,1;F?) we have

(@5 x = (@ y)n = / (#(C) H(OW(C)) padC.
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Remark 3.0.23. Note that we choose inner products in such a way that they are
linear in the second and anti-linear in the first component. This convention is
quite standard in the context of physics, especially quantum mechanics, however in
mathematics very often the convention is the other way round, i.e. linearity in the
first components and so on.

We gather all the assumptions made so far in

Assumption 3.0.24. We consider systems which are described by an evolution
equation of the form

) Yo
ax(faC) = ZPkaiCk(Hx)(f,C)a t=>0 (3.3)
k=0

where the energy state space variable x(t) = xz(t,-) is assumed to be a Fé-valued
Lo-function, i.e. x(t) € Ly(0,1;F9) for allt > 0. N € N and d € N are assumed to
be natural numbers, P, € Fixd (k=0,1,...,N) matrices with Py invertible and
H : [0,1] — F*9 g measurable function such that the following holds.

o P = (—-1)*1P, fork=0,1,...,N.
o Py is invertible

o There are 0 < m < M < +oo such that for all z € F? and a.e. ¢ € (0,1)

m|z)® < 2H()z < M|z,
Then the energy state space X is the Hilbert space Lo(0,1;F?) equipped with the
inner product (-, Yx = (-, ).

Remark 3.0.25. In the context of infinite dimensional port-Hamiltonian systems
authors very often use the energy state space X = La(a,b;F4) with a < b real
numbers and thus put more emphasis on the physical interpretation of the interval
I = (a,b). However, the restriction to the case I = (0,1) may be done without loss
of generality since for given real numbers a < b and a measurable H : [a,b] — Fdxd
with mI < 7—2(() < MTI for a.e. ¢ € (a,b), the map

Lo(a,b;FY) = X 57+ 2 = &(-(b—a) + a) € X := Ly(0,1; F%)

where X = Lo (a,b;F9) is equipped with the inner product

b
(F)x = [ (HOFQgQsade, fige X

is an isometric isomorphism whenever X = Ly(0,1;F9) is equipped with (-,-)% for
H(Q) = (b—a)H(a+((b—a)), (€(0,1).

However, note that if one is interested in explicit decay rates of the energy (for
suitable boundary conditions) these may very well depend on the length b — a of the
interval.
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3.1 Examples

So far, we did not motivate why we are interested in evolution equations of the par-
ticularly skew-symmetric form introduced above. Within this subsection we focus
on this task and do so by giving some examples which fall under this structure and
which appear from time to time again as possible applications to the abstract the-
ory. We start with examples where N = 1 and only afterwards consider applications
where N = 2.

Example 3.1.1 (Transport Equation). We consider a thin pipe of length I > 0,
where in view of Remark w.l.o.g. we may assume that | = 1, and water
streaming though the pipe from right to left with a constant velocity ¢ > 0. Then
(cf. Abschnitt 1.2 in [ArUr00]) for x(t,¢) describing the density of the water at the
point ¢ € (0,1) in time t > 0 the PDE modelling the dynamics of the water is given
as 5 9 § 1

&x(tC)—CaiCx(t,C)"‘f(t,C), tfov CG(O, )

where f describes possible sinks and sources of water, i.e. water flowing to and off
the pipe. If we set f = 0, i.e. assume that no sinks or sources are present, the
equation simplifies to the linear transport equation

(6,0 = e alt,0)), £20, CE(O,1)

= o
which for the choice N =d =1, H(¢) = ¢ (a.e. ( € (0,1)) and P, =1, Py =0 is
the simplest case of an evolution equation governed by a formally skew-symmetric
differential operator on the interval (0,1). Already the first generalisation is the case
where the velocity of the water is not assumed to be constant throughout the pipe,
but — due to the geometric properties of the pipe, e.g. spatial dependant diameter —
depends on the spatial variable ¢ € (0,1) instead, in such a way that the velocity
defines a measurable bounded, e.g. continuous, function ¢ : [0,1] — R such that
c(¢) > € for somee >0 and a.e. ( € (0,1). In this slightly more sophisticated form
the nonuniform linear transport equation then reads as

5760 = 5 C(Oa(t.0), 20, ¢ O (3.4)

with H(C) = ¢(¢) € F =F* for this case. Moreover, the energy of the system then
is given by

1) =3 | (@) la(t. O dc.

Example 3.1.2 (Wave Equation). We consider a nonuniform vibrating string, e.g.
a string of a violin, and w.l.o.g. assume that (possibly after rescaling) it has length
Il = 1. By w(t,{) we denote the transverse displacement of the string at position
¢ €(0,1) in time t > 0. Here, for simplicity, we assume that the string only moves
i a 2D-plane and all effects concerning change of the length of the string due to
stretching are neglected. Then a simple model to describe the time evolution of the
string is the wave equation
0? 1 0

0
et = o2 (TO ), 20 ceon)  (35)

A
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where p(¢) > 0 denotes the mass density of the string, or more precisely the mass
density times the cross sectional area, at position ¢ € (0,1) and T(¢) > 0 denotes
the Young’s modulus of the string at position ¢ € (0,1). In the simplest case both
T(C) =Ty and p(¢) = po are constant (uniform string), but in general both p, T :
[0,1] = R (measurable) may depend on the space variable ¢ € (0,1), however (in
our context) they should at least be bounded and uniformly positive, i.e.

M | =

> T(C),p(¢) >, ae Ce(0,1) (3.6)

for some € > 0. Then the energy of the system consists of two parts.

1

Buaalt) = 5 [ 0(0) (0. O ¢ (hinetic energy)
1

Epoi(t) := %/0 T(¢) \wc(t,()|2 d¢ (potential energy).

Obviously equation does not take the form , therefore we change the
observables describing the state w(t, () of the system. Note that the (e.g. classical)
solution space of 18 invariant with respect to adding a constant ¢ € F, i.e. for
every solution {w(t, ) }e=0 of (3.4), also {w(t,)+c}ixo solves (3.5), so the evolution
equation is not affected by adding or subtracting any constant ¢ € F. (So far we did
not speak about boundary conditions.) On the other hand, the slope of a solution
{w(t,)}1>0 modulo a constant c € F, i.e. identifying solutions which only differ by
a constant ¢ € F, clearly is determined by {w¢(t,-)}s>0. Therefore, we may choose
the following variables to reformulate the wave equation as evolution equation

of the form (3.3).
2(t,¢) = ( i;gig > = < ”(i?ﬁ,%o >

#0= [ g |

ne[td] me[t ]

For this choice the dynamics of the wave equation s equivalently described by
the evolution equation .

Example 3.1.3 (Timoshenko Beam Equation, cf. Example 7.1.4 in [JaZw12]). The
next example is closely related to the wave equation before. Instead of a string we
now consider a (more rigid) beam of length | > 0, w.l.o.g. | =1 again. Additionally
to the model before we also consider torsion forces which result from the beam not
only moving up and down but also twisting a little bit. These twisting effects have
been neglected for a string since the parameters connected to the torsion appearing
below are relatively small compared to all other parameters of the system. However,
a beam, e.g. a wooden or plastic beam, is much more difficult to twist, so that the
forces resulting from this twisting cannot be neglected any more. Additionally to the
transverse displacement w(t, () we therefore also introduce the rotation angle ¢(t, ¢)

and then
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of a segment of the beam. The evolutionary dynamics are then described by the
Timoshenko beam equations

P0) ztt:6) = o (K10 (att ) - 9(1.)) ).

ac \M e
2
1(0)gz0(t:0) = 5 (BI0 5000 ) + KO (5060 - 9(0.0)) . ()

fort >0 and ¢ € (0,1) where p,I,,EI,K : [0,1] — R are measurable functions
and again both bounded and uniformly positive, and have the following physical
interpretation. As before p(¢) denotes the mass density times the cross sectional
area whereas 1,(¢), EI(¢) and K({) are the rotatory moment of inertia of cross
section, the product of Young’s modulus and the moment of inertia, and the shear
modulus, respectively. In this case the total energy of the system is given by

1) = 5 [ (K100 = 6t OF + (0 (0. OF

+EI(Q) [6c(t. Q) + L,(Q) (. ) ) dC

and from there the following energy state space variables are intuitive

x1(t, ) = we(t, ¢) — o(t,¢) (shear displacement)
z2(t, ¢) = p(Qwe(t, ) (momentum)
z3(t,¢) = ¢¢(t, Q) (angular displacement)
z4(t,¢) = I,(Q) (2, Q) (angular momentum,)

and the system may be reformulated in style of by choosing

K(¢) )
_ P (¢)
Ho= EI(Q)
i I,74(¢)
[0 1 0 0 00 0 —1
10 0 0 00 0 0
P=lo oo 1| =100 0 o
(00 10 100 0

So far these all have been examples for which N = 1 and which have been inves-
tigated thoroughly in the monograph [JaZw12]. Additionally we give the following
example, see Example 7.8 in [Vi07], which on the first look may not directly be
written in the form , but introducing additional input and output operators it
will have the form of a bounded perturbation of a system in the form .

Example 3.1.4 (Suspension System). We consider a suspension system modelled
by the following system of PDE (cf. Example 7.8 in [Vi07)]).

Pl 51(8:6) = - (Tul0)5u(6,0) ) = alO)u(t,0) = (0,0
2
PO 011:0) = 3 (TOFU(1.0)) +al0)u(t.0) —o0.0)  (38)
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where py,py € Loo(0,1) (the mass densities of the two strings) and T,,T, €
Lo (0,1) are both uniformly positive and o € Lo (0,1) is a uniformly positive func-
tion modelling the interaction of the two strings as (a continuous version of ) springs
connecting the two strings (cf. Example 7.8 in [Vi07] where the parameters are taken
to be constants). There are at least two ways to interpret this system in a form ,
although in both cases not all conditions are satisfied or additional constructions are
needed. On the one hand one may introduce the energy state space variables

Il(ta C) Pu(()“t(tv C)
l‘g(t, C) uC(t7 C)
m(tv C) = T3 (ta C) = pU(C)Ut (t’ C)
{E4(t, C) ’U((t, C)
Ts5 (ta C) u(tv 4) - U(tv C)
and then
M 0 0 0 0
0 Tu<<) 0 0 0
HWo=| o 0 4o o o |
0 0 0 T, 0
| 0 0 0 0 a(Q)
[0 1.0 0 0
1 0 0 00
Pr=10 0 0 10
00 1 00
L 00 0 0 O
[0 0 0 0 -1
00 0 0 O
Phb=]10 0 0 0 1
00 0 0 O
10 -1 0 0

Then the total energy of the system is given by
1
@) =5 [ palQ)luet. ) + Tu(0) Juc(t. O
0
+ po(Q) [oc(t, O + To(Q) [ve (8, O + () [(u— ) (¢, ) dC.

Here the difference to the usual assumptions on is the fact that Py € F5%5 is
not invertible. A possible way to overcome this is considering the following system
with dynamic feedback.

:E1Et; C; Pu(o(ut(t)v ¢)
o To t, C _ 'LLC t7<
z(t, o - T3 (t, C) o Pu (C)Ut (t7 O
za(t, ) ve(t, ¢
with 010 0
1 0 0 O
Pr=19 0 0 1
0 010
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and Py = 0 € F*** which at first only gives the uncoupled system of two nonuniform
strings modelled by wave equations

02 0 0
€ g0 = 5t Tl gt 0))
0? 0 0
P00t = 3 (TO50(00)) . 20,
We extend the equation by an additional input summand
) N o
2010 =2 Pegag (Ha)(t, Q) + (Bu(®)(), t20 (3.9)
k=0

where in our case the input space is U = L2(0,1) xF and B € B(U, X) is a bounded
linear operator. The input u(t) € U is determined by a (linear) control system 3.
of the form

0
agf;c(t) = ACCCC(t) + BcuC(t)

Ye(t) = Cee(t) + Deoue(t) (3.10)

where in this case x.(t) € X, =F and u.(t) € Ug, y.(t) € Y. and here U, =Y, =
L5(0,1) x F. Also in this case A., B.,C. and D, all are bounded linear operators,
namely

A. =0,
Bc [ 0 I]F ] S B(UmXc)
(chC)(C) Te, Cc € B(Xc’aYc)y

¢
(Detre)(C) = /O we(s)ds, Do € BU.Y.). (3.11)

This system is equivalent to the original equation (@ if we take the feedback in-
terconnection u. = y = Cx and u = —y. and the operators

()u()
B:D(B)=U=Ly(0,1) xF — X : B(%)= (_a(gu(.)> :
0

C:D(C)=HY0,1)C X =Y = Ly(0,1) xF: Czx= (((;"_‘;"))éo)))
and identifying x.(t) with u(t,0) —v(t,0). The advantage is that in this case Py is
invertible. However, this comes to the price that we have a system with dynamic
feedback and also the dissipativity of the total system (for appropriate boundary
conditions) is not as immediate as in the first case, here we have

1

1
H(t) = /O pu(Q) ue(t, O + Tu() fuc(t: O + pu(C) o (1, )

2

¢
FTo(0) ot O + a(C) |we(t) + / (ur(t, ) — vo(t,r))dr| dC.
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It is also possible to consider systems where N = 1 is not enough to be described
in the form (3.3). We also give examples for them.

Example 3.1.5 (Schrédinger Equation). Similar to the transport equation for the
case N = 1, in case that N = 2 the simplest example is given by the Schrodinger
equation. However, in contrast to all examples considered before, the Schrédinger
equation demands F = C to be the complex numbers. Let ¥ (t,{) be the wave
function at the position ¢ € (0,1) at time t > 0. (We exclusively consider the
one-dimensional Schrédinger equation here.) Its modulus squared |z(t,¢)]> may
be interpreted as the (time-dependant) probability density of a particle in a one-
dimensional boz if ||1(t, -)||L2(0’1) = 1. The Schridinger equation of a free particle
of mass m > 0 moving in a one-dimensional direction is then given by

., 0 n? 92

G0, C) = —g Q) 20

Here h > 0 denotes the Planck constant. To get the standard form one simply
has to divide by ih and gets for x(t,¢) = ¥(t,¢) and H(¢) = % and Py =1, Py=0
equation as wished. The energy is given by the (weighted) squared Lo-norm of
the wave equation.

1) = = [ 0P

Actually the Schrodinger equation will not play an important role within this thesis,
however it will prove useful to obtain some counterexample on uniform exponential
stability. More frequently we consider the Euler-Bernoulli beam equation as an
example for a system with N = 2.

Example 3.1.6 (Euler-Bernoulli Beam). The Fuler-Bernoulli beam model may be
seen as a refinement of the wave equation for structures which are not as flexible
as a string, e.g. beams, and for which bending forces cannot be neglected any more.
However, in comparison to the Timoshenko beam equation, it is still less precise to
describe a beam since any shear effects are neglected. Again (as for the wave equation
or the Timoshenko beam equation) w(t, () denotes the transverse displacement of the
beam at position ¢ € (0,1) in time t > 0. Then the Euler-Bernoulli beam equation
reads

2

0

t, —

p(Quie(t, Q) + a2

Here the uniformly bounded and strictly positive functions p, E, I : [0,1] = R have

the following interpretation: p(C) is the mass density times the cross sectional area,

E({) the modulus of elasticity and I(C) the area moment of the cross section. The
energy of the system is (similar to the wave equation)

(EI(Qwee(t,€)) =0, t>0.

1

1) = 3 [ o0kt OP + BIO boce(t. P a6, 120

where in contrast to the wave equation the (weighted) integral over the second deriva-
tive (squared) instead over the first derivative (squared) determines the potential
part of the energy. Now one may easily rewrite this system as an evolution equation
governed by a second order formally skew-symmetric operator, namely setting

o= (2418)- (A2
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and choosing the Hamiltonian density matriz function H and the structural matrices
P, € F?*2 (i =0,1,2) as

o= "9 0]
0 -1

e[t ] mea [

Remark 3.1.7. For the derivation on the underlying modelling assumptions for
the Timoshenko beam equation and the Fuler-Bernoulli beam equation as well as
for the related Rayleigh beam and shear beam models, where the latter have not been
considered here, we refer e.g. to the overview article [HaBeWe99].

Note that an example for an equation where N = 3 is the one-dimensional Airy
equation
wi(t,¢) +weee(t,¢) =0, t>0,¢€(0,1).

However, within this thesis we mainly focus on the cases N =1 and N = 2.

3.2 Port-Hamiltonian Systems

Up to now we introduced the evolution equation without any boundary condi-
tions, so that an initial value problem with the evolution rule alone will never
be well-posed in the sense of existence of a unique solution continuously depending
on the initial value x(0,-) = 29 € X. (For a more precise version of this statement
we refer to Section in particular Lemma m) As a preparation we introduce
the (maximal) port-Hamiltonian operator 2 (given by the right hand side of
on an appropriate domain D(2) C X) and the boundary control and observation
operators B and €, respectively, which play a crucial role in describing the boundary
conditions and prove quite useful especially in the context of nonlinear boundary
feedback later on. In contrast to Assumption [3.0.24] we also allow for P to be not
necessarily constant and skew-symmetric, but possible only an essentially bounded
measurable function Py : [0,1] — F?X4. We also recall the assumptions on H and
the matrices Py, (k= 1,...,N) in the following definition.

Definition 3.2.1 (Port-Hamiltonian Operator). Let N € N be a natural number
and P, € F*? (k = 1,...,N) matrices with P; = (=1)k*'P, (k = 1,...,N).
Further let Py € Loo(0,1;F*4) and the energy state space X = Lo(0,1;F%) be
equipped with the inner product (-,-)x = (-,-)y where H : [0,1] — F*4 js mea-
surable, pointwise symmetric, essentially bounded and uniformly positive definite,
i.e.
m|z]> < (2, H(()2)pa < M |2|*, 2z €F ae (€ (0,1)

for some constants 0 < m < M < +oo. Then the operator A : D(A) C X — X
defined via

N
Az = Pp(Ha)®)
k=0
D) ={zeX: Haxe HY(0,1;F")}

is called (mazximal) port-Hamiltonian operator.
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Remark 3.2.2. Observe that the operator 2 (or, more precisely, its domain D(2L))
does not inherit any boundary conditions. Therefore, it does not generate a Cjy-
semigroup, or, in other words, the initial value problem

0
ax(t) =Az(t) (t>0), z2(0)=zoeX

is not well-posed since it does not have a unique (strong) solution, but (as we will see
below) infinitely many classical solutions x € C*(Ry; X)NC(Ry; D(A)) for suitable
initial values x € D(A). However, the operator U is closed and its graph norm ||-||y
is equivalent to the norm ||[H-||y~, see the following lemma.

Lemma 3.2.3. The operator 2 is a closed and densely defined operator on X and
there are constants c1,co > 0 such that for every x € D(2A) one has

Jia112 2
€1 ||Hx||HN(0,1;1Fd) < lzlly = lzlx + [[*zllx < c2 ||Hm||HN(o,1;]Fd) :

Proof. Since the multiplication operator X = (L2 (0, 1;F%); (-,-)3) > z — PyHz €
(L2(0,1;F%); (-, )1, ) is an isomorphism we first consider the special case H = I and
Py = I. Here the denseness is clear since C2°(0,1;F¢) C HN(0,1;F?) is dense in
L3(0,1;F?). As a first step we assume that P, = 0 for k < N, so that
o N d

is the N*" order derivative operator. By Lemma [2.1.10| the Lp-norms of the j*
derivative (1 < j < N) can be estimated by the La-norm of the function and the
Lo-norm of its N*" derivative. Therefore, in this case the two norms are equivalent.
Now the assertion follows from the two subsequent lemmas. O]

Lemma 3.2.4. Let A : D(A) = HN(0,1;F%) C Ly(0,1;F%) — Ly(0,1;F?) be
any closed operator (i.e. a bounded operator HN (0,1;F4) — L5(0,1;F%)) and B :
D(B) € X — X another closable operator with D(B) 2 H¥(0,1;F%) for some
ke {0,...,N —1}. Then also the sum A+ B:D(A+B)=D(A)C X —- X isa
closed opemtor In fact, B is relatively A-bounded with A-bound ag = 0.

Proof. Since A is bounded as linear operator from HY(0,1;F?) to L(0,1;F?) it
is enough to show that for every € > 0 there is ¢. > 0 such that

“Bx“LQ <ee ||1'||L2 +e Hx”HN(o,l;]Fd) .

Since B € B(H*(0,1;F%); Ly(0,1;F%)) is a bounded linear operator, this follows
from Lemma [2.1.10] Then closedness of the operator sum A + B follows from
Lemma I11.3.4 in [EnNa00). O

Lemma 3.2.5. Let Xy, X1, X2 and X3 be Banach spaces and A : D(A) C X; — X5
be a closed operator. Further let B € B(Xo, X1) and C : D(C) C Xo — X3 be such
that C~1 € B(X3,X5) : X3 — D(C) C X, exists as bounded linear operator. Then
also the following operators are closed.

AB with domain D(AB) = {z € Xy : Bx € D(A)},
CA with domain D(CA) ={z € D(A) : Az € D(C)}.
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Proof. The proof is standard, we give it here for sake of completeness. We both
times use the sequence criterion for closed operators. To begin with, let (zy,)n>1 C
D(AB) be a sequence such that

Tn — 2 € Xy, ABz, 5>y € Xs (n— 0).

n—oo

Then from B € B(Xy; X1) is also follows D(A) 3 z, := Bx,, —— Bz =: z and
closedness of A implies that z € D(A) with Az =y, so x € D(AB) with ABx = y.
Secondly, let (z,,)n>1 € D(C'A) be a sequence such that

Ty =z € Xy, CAr,—yeXs (n—o0). (3.12)

n— oo

Then from C~! € B(X3; X») it also follows that Ax,, = C~1(CAx,) — C~ly =:
z and from the closedness of A we have z € D(A) with Az = 2 = C™ly, ie.
x € D(CA) with CAz = y. Hence, both operators AB and C' A are closed. O

Let us also note that thanks to the Rellich-Kondrachov Theorem 2.1.8 the domain
D(2l) is compactly embedded into X.

Lemma 3.2.6. The embedding D(1) — X is compact.

Proof. The operators H : La(0,1;F%) — X and H~' : D) — HN(0,1;F9)
are continuous and by the Rellich-Kondrachov Theorem the embedding igyw~ :
HN(0,1;F?) « Ly(0,1;F9) is compact. Therefore, also the embedding ip@) :
D(2) — X is compact since ipy) = Hoign oH ! is the composition of a compact
operator with two bounded operators and therefore compact, see Satz V.6.3 in
[We06]. O

After this side remark let us introduce the input and output maps B and € via the
boundary flow and the boundary effort.

Definition 3.2.7 (Boundary Flow and Effort). We define the trace operator 7 :
HN(0,1;F) — F2Nd = (F)2N g5 the linear map

x(N_l)(O)

Given a mazimal port-Hamiltonian operator A we then define the boundary flow
fa,1e and the boundary effort ep g, as

( Jomz ) = Reper(Ha) (3.13)

€0, Hx
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where the matriz Rege € FPNX2N s defined as

Rezt:1|:Q Q:la

iR
P, P, - ... Py
P Py . —Py 0
Q= : :
(-)N'Py 0 - 0 0

Remark 3.2.8. The matriz Q € F2N2Nd 4nd the map x — (f"“”) depend on

€9, Hx
H € Loo(0,1;F4*) and all matrices P, € F*? (k =1,...,N). However, they do
not depend on the matriz-valued function Py € Lo (0,1;F4xd),
Lemma 3.2.9. Thanks to the condition P; = (—=1)¥*'P, (k > 1) the matriz
Q = Q* is symmetric. Moreover, for invertible Py and since |det Q| = |det PN|N,

also the matriz QQ is invertible and then R..: is invertible with inverse matrix

~ 1 [ Qo I
Remlt = ﬁ |: _Q71 I :| .

Proof. The last statement is part of Lemma 3.4 in [LeZwMa05]. All other assertions
are obvious. O

We are now in the position to introduce the boundary control and boundary obser-
vation operators 8 and €&, respectively, and the terminology of a port-Hamiltonian
system in boundary control and observation form.

Definition 3.2.10 (Port-Hamiltonian System). Let A be a (maximal) port-Hamil-

. . . fo. e
tonian operator with associated boundary flow and effort (egzr) Further let

Wy, Weo € FNdx2Nd pe 10 Sfull rank matrices such that [Vw‘;ﬁ] is tnvertible. Then
we define the input map B : D(B) = D(A) C X — U := FN? gnd the output map
C:D(@)=DRA) C X =Y :=FN yiqg

%Z‘:WB< fa,?‘-[r )

€0, Hx

Cr = WC ( f@,?—[m )

€9, Ha

and call & = (2,8, €) a port-Hamiltonian system in boundary control and obser-
vation form to which we associate the boundary control and observation problem

& a(t) = 2a(t)
z(0) = g
u(t) = Ba(t)
y(t) = €x(t), t>0. (3.14)

Remark 3.2.11. Observe that the maps B and € may also be described in the form
Br = Wpr(He), Cx=Wer(He)

where both WB = WpgRes and WC = WeReg € FNX2Nd paye full rank thanks to
Ry € F2NAX2NA boing invertible.
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Definition 3.2.12 (Impedance Passivity). Quite often we encounter systems which
have a special form, namely where the system & = (2, B, €) is impedance passive
(in the boundary control and observation sense), i.e.

Re (/z,z)x < Re(Bx,Cx)pna, x € D(A).

In particular, in this case the operator A = Ulyers s dissipative and as we will
see in the next subsection this already implies that A gemerates a contraction Cop-
semigroup on the Hilbert space X = (L3(0,1;F%); (-, Vx). In case that Py(¢)* =
—Po(Q) is skew-symmetric for a.e. ¢ € (0,1) it may also happen that the system
S = (2, B, €) not only is impedance passive, but even impedance energy preserving
(in the boundary control and observation sense), i.e.

Re (Qx, z) x = Re (Bx,Cx)pne, x € D(A).

One particular choice of B and € to make & = (A,B,¢) (for dissipative Py €
Loo(0,1;F4*4)) an impedance passive (or impedance energy preserving) system re-
sults from the following lemma which describes how for the formally skew-symmetric
part of the operator 2 the boundary conditions influence the change of energy.

Lemma 3.2.13. The operator 2 satisfies

Re %z, z)x = Re <fa77.[x, 637’}-[3;>FNd + Re (PoHx, Hx)r,, x € D). (3.15)

Proof. Since the multiplication operator PyH is a bounded operator on Lo(0, 1; F9)
and Py has no influence on the boundary flow and the boundary effort we may and
will assume that that Py = 0 in the following. Then the identity is validated
by straightforward computation via integration by parts and the property P} =
(—=1)*=1P;, (k > 1). One readily verifies that for every z € D(2A)

N
Re (Az,z)x = Re <Z Pu(Hz)®) Ha)p,

N
=3 1@+ <—1>’“P;><Hx><kwx>h]
k=1
RS 1
+3 > (_1)l<(HI)(l)(<)aPk(Hx)(kl1)(<)>Fd]
k=1 1=0 0

using integration by parts and the condition P = (—=1)**+1 P, on the matrices for
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k > 1. On the other hand, also using that @ = Q*, we compute

Re <f8,?-lma 68,7{:1:>]FN‘1

= % Re(Qm (Hx) — Qro(H), 71 (Ha) + 1o(Hx))prva
= (), Qra(Ha))ers — 3 (ro(Ha), Qro(Ha)) v

+ 5 Re ((Q — Q) (Ha). mo(Ha)) v

Il
M| —
M=

N—nt1 1
(Hz)" (), > (—1)"_1Pm+n—1(Hﬂﬁ)(m_l)(@w]
0

m=1

3
Il
—

I
] =
] =

<—1)"—1<(Hx><"—”<<>,Pkmx)“f—")(om]

Ln=1k=n
1 [N k !
=32 Z<1>"1<<H:c><””(c),Pk(Hx)(’W(om]
Lk=1n=1
1 [N k-1 1 ’
=3 |2 <—1>l<<m><”<<>,Pkmx)“—l-”(c»w]
Lk=1 =0 0

where we used the symmetry of the matrix Q = Q* € F2N4x2Nd an( the substitu-
tions k = m 4+ n — 1 and (in the last step) I =n — 1. O

For the choice of boundary flow and boundary effort as input and output this results
in the following corollary.

Corollary 3.2.14. For every port-Hamiltonian operator A with dissipative Py, i.e.
Sym Py(€) := 3(Po(¢) + Po(€)*) < 0 negative semidefinite for a.e. ¢ € (0,1), the
choice Bx = fon. and Cx = ey py, i.e. Wp = [ I 0 ] and We = [ 0 I ],
(or the other way around) gives an impedance passive system & = (2,B, €) which
is even impedance energy preserving if (and only if) Po(()* = —Py(C) is skew-
symmetric for a.e. ¢ € (0,1).

Remark 3.2.15. Actually the conditions Sym Py(¢) < 0 negative semidefinite for
a.e ¢ € (0,1) or Py(¢) = —Py(¢) skew-symmetric for a.e. ¢ € (0,1) are necessary
for G to get a system which is impedance passive or impedance energy preserving,
respectively.

Proof. Since C2°(0,1;F%) C HD(A) is dense in X = L(0, 1;F%) it follows from

Re (PyHz,Hz)r, = Re ™z, x) x
< Re (B, Cx)pnva =0, € H1CX(0,1;F?)

for impedance passive port-Hamiltonian systems that
Re (Po#, %), <0, &€ Ly(0,1;F%).
Then by Lemma [2.1.6

Sym Py(¢) <0, a.e. ¢€(0,1). (3.16)
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The impedance energy preserving case follows from the observation that the system
G = (2,8, €) is impedance energy preserving if and only if both the system & and
the system (—2[, =95, €) are impedance passive. O
Starting from Corollary we may use the general definition of B and € to
conclude that

Re <fa77.[z, ea’Hz>FNd = 1<< f@,?—[m ),E ( f@,?—[m ))]Fsz

2 €9, Hx €o, Hx

ARG NG

1 B B
—2<< Q:x )7PWB7WC < ¢x >>]F2Nd
where .
p-1 _ Wpg S Wpg _ WeEW5 WBEW5
Wi, We We We WCZWE WCEWg ’

Hence, the following holds.

Proposition 3.2.16 (Characterisation of Impedance Passive and Impedance En-
ergy Preserving Systems). Impedance passive and impedance energy preserving sys-
tems may be characterised by the matrices W, We € FN®2Nd gnd the matriz-
valued function Py € La(0,1;F4).

1. The system & = (A,B,€) is impedance energy preserving if and only if
Py(¢)* = —Py(C) 1is skew-symmetric for a.e. ¢ € (0,1) and Py, w. = %,
i.e.

WEEWh = WeSWg =0, WeSW§ = 1.

2. The system & = (A, B, €) is impedance passive if and only if the symmetric
part Sym Py(¢) := 3(Py(¢) + Po(¢)*) < 0 is negative semidefinite for a.e.
¢ € (0,1) and the matriz Pw, w, — X is negative semidefinite. In particular,
for & to be impedance passive WpXW5 > 0 and WeXWE > 0 are necessarily
positive semidefinite.

Proof. Since a system & = (2,8, €) is impedance energy preserving if and only if
both & and &' = (-2, —9B, €) are impedance energy preserving (using the linearity
of 2,8 and €) and Py(¢) = —FPy(¢) is skew-symmetric for a.e. ¢ € (0,1) if and only
if both Sym Py(¢) < 0 and Sym (—Fy(¢)) = — Sym Py(¢) < 0 are negative semidef-
inite, it is enough to verify part 2.). However, this follows from the considerations
just above. The last assertion may be shown as in the proof of Theorem 7.2.4 in
[JaZw12] (or, Theorem , noting that for impedance passive port-Hamiltonian
systems we have that

Re (fo,24z: €0 Ha)prva <0, x € ker B Uker €.
O
Lemma 3.2.17. Let k€N, W = [ Wy, Wh ] € Ch*2k gnd ¥ = [9[] € C2kx2k,
1. Then W has a decomposition
W = S[ I+V 1I-V }
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with S € F*** jnvertible and V' € F*** if and only if the matriz W1 + Wy is
invertible. In particular, then the matriz W has full rank vk W = k.

2. The matriz W has full rank tk W = k and the matric WXW™ is positive
semidefinite if and only if

W=S[I+V I-V]

with S € F**F jnvertible and V€ F**F where I — VV* > 0 is positive
semidefinite.

Proof. Part 2.) is Lemma 7.3.1 in [JaZw12]. Clearly part 1.) is closely related
to the second assertion and similar ideas are used for its proof. First, let W =
S[ I+V I-V ] with S invertible. Then

Wi+ Wo=8I+V)+SI-V)=2S

is invertible by hypothesis. On the other hand, if W7 4+ W5 is invertible we may set
S =L(Wi+W,)and V = (W + W)L (W, —Wa) to get the desired decomposition.
Also in that case k > rk W > rk (W7 + W3) = k, so that W has full rank. O

We give a characterisation of the matrices W and W¢ leading to impedance energy
preserving systems in the next lemma which is mainly (i.e. for the case —FPy(¢)* =
Py(¢) = Py constant) due to Villegas ([Vi07]).

Lemma 3.2.18 (Characterisation of Impedance Energy Preserving Systems). Let
S = (A,B, €) be a port-Hamiltonian system. Then

1. & is impedance energy preserving if and only if Po(()* = —Py(¢) for a.e.
¢ € (0,1) and there are matrices Sg,Sc € F2NI*¥2Nd and unitary matrices
Vi, Vo € FNXNA such, that

WBZSB[ I1+Vp I—VB]
We=Sc|[I+Ve I-Vo ]
T = 250(I — Ve Vi) S

Then one has in particular that

WiWe + WeEWp =% = [ ? é ] € F2Ndx2Nd.

2. & is impedance passive if and only if Py(C) is dissipative for a.e. { € (0,1)
and there are matrices Sg, Sc € F2NAX2Nd gnd matrices Vi, Vo € FNdxNd
with VBV, VeV < I such that

WB:SB[I—‘rVB I—VB]
WC:SC[ I+Ve I-Vo ]IZQSc([—chg)SE.

In that case one has in particular that

WiWe + WC*’WB =Y .= |: ? é ] € F2Ndx2Nd
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Although this result is not new by any means and in principle can be found as
Theorem 2.16 in [Vi07] we give a full prove anyway because in [Vi07] (and also
in [LeZwMa05]) only the case F = R and Py(¢) = —Py({)* constant is considered
(which do not too much harm), but more importantly the statements are only
proved after the well-posedness (in the sense of existence of unique solutions) of the
system G.

Proof. As we have seen above the conditions are sufficient to get an impedance
energy preserving system. It remains to check necessity. Let & = (2,8, ) be an
impedance energy preserving system. Then in particular for every x € X such that
Hx € C(0,1;F?) we find

Re <P07'L’E, H.’E>L2 = Re <P07‘l$, H.T>L2 + Re <f8,7—(;1;7 68’7.[1>[FN11
= Re (/Uz,z)x
= Re <%$, Q:$>FNd =0.

Hence, Py(¢) = —Py(¢)* has to be skew-symmetric for a.e. { € (0,1) by Lemma
[2.1.7] Finally we have to find whether the conditions given in Lemma [3.2.18 on W5
and We are both necessary and sufficient for G to be impedance energy preserving.
This comes down to checking when the condition Py, w, = X is satisfied. For
Wg,We as in the lemma we have

WpSWg =S [ I+Vs I-Vg | ? é [I+Vs I-Vs ] Si
=2S5(I — VEV})Sh

WeSWE = 25a(I — Ve Vi) SE

WBZWC:SB[I"_VB I—VB] ? é [I+VC I-Ve ]*SE’

= 285(I — VsVE)SE

and therefore VpVg = I and VoVA = I, i.e. both Vp and V¢ should be unitary,
and I = 2Sp(I —VV)SE are both necessary and sufficient conditions for & to be
impedance energy preserving when Py(¢)* = —Py(¢) for a.e. ¢ € (0,1). O
When we introduced the port-Hamiltonian system & = (2, B, ) we said that it
were in boundary control and observation form. However, for & to be a Boundary
Control and Observation system it has to satisfy the following two properties.

1. The restriction A = A|yer s of the maximal port-Hamiltonian operator 2 to
the kernel of the boundary input map B has to generate a Cy-semigroup on
the Hilbert space X = L(0,1;F4). A quite large class of input operators
for which this property holds will be investigated in the next section, namely
the case where the Cy-semigroup is contractive, or at least quasi-contractive.
Actually we are going to characterise all the boundary conditions leading to
(quasi-)contractive Cp-semigroups.

2. For the boundary control operator B there exists a continuous right-inverse
B € B(FN4, D()).

We show that the second condition is always satisfied, so that the only condition
left to check is the generator property of A = A|xer 3.
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Lemma 3.2.19. Let d and N € N be natural numbers and assume that the matriz
Wg € FNI2Nd haye full rank. Define 7 : HN(0,1;F4) — F2Nd = (F4)2N py
7i(z) = 2U=V(1), 755 n(z) = 2U~D(0) for j =1,...,N. Then there is an operator
B € B(FN4, HN(0,1;F)) such that

(WB o T)B = I]FNd.
Proof. (Cf. step 2 in the proof of Theorem 4.2 in [LeZwMa05].) Let {e;};=1,.. 2nd
be the standard orthogonal basis in F2V and choose f; € HY (0, 1;F¢) with 7(f;) =

ej for j =1,...,2Nd. Since W has full rank there is a matrix V € F?N4xNd guch
that WV = Igna. Decompose V as

i
V=
Vana

where V; € F*Nd for j =1,...,2Nd. Now set

2Nd
Bz ::Zijfj € HY(0,1;F%), z e PV
j=1
Then clearly B € B(FV4; HN(0,1;F%)) and
2Nd 2Nd
(WeoT)(Bz)=Wg > Viar(f;)=Wg Y _ Vize,
j=1 Jj=1

=WpVz=2  zeFV%

O
Corollary 3.2.20. Let A be a port-Hamiltonian operator and let Wg € FNdx2Nd
have full rank,
Bz = Wg ( Joue ) , zeDA).
€0, Hx
Then there is a right-inverse B € B(FN9; D(2)) of B, i.e. BB = Izna.
Proof. We write .
B =WpReztoToH=:WpoToH,
choose B from Lemma [3.2.19| for Wg and set
B:=H 'oB.
Then BB =WgoroH LoB=WgoroB = Igna, indeed. O

In particular, the preceding Corollary [3.2.20] states that under the assumptions of
Theorem for any vector (/) € ker Wp there exists z € D(A) such that

(1)=( 2
€ €0, Hx '

Therefore, we easily conclude the following theorem which states that for a port-
Hamiltonian system & = (2,B,€) to be a Boundary Control and Observation
System it is enough that A := |y, generates a Cp-semigroup.
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Theorem 3.2.21. A port-Hamiltonian system & = (2,B, €) in boundary control
and observation form is a Boundary Control and Observation System if and only if
the operator A = U|er s generates a Co-semigroup on X.

Proof. Since 7o H : (D(),]"|loq) — (F?N4,]-]) is a bounded and linear map, it is
enough to find B € B(U, D(21)) such that BB = Ig~a. This is provided by Corollary
13.2.20) O

Remark 3.2.22. Similarly a port-Hamiltonian system (2, B) without output map €
is a Boundary Control System if and only if A = Ul|er s generates a Co-semigroup.

Theorem 3.2.23. Consider the port-Hamiltonian system & = (A, B, €) and the
corresponding evolution equations

B N gk
k=0

u(t) = Bx(t) = Wp ( Jo.ma(t) )

€9, Ha(t)

y(t) = Ca(t) = We ( Jonatw ) ,  t20
€0, Ha(t)

and assume that A := Ulerss generates a Cy-semigroup on X. Then for all u €

C*Ry;FNY) and xo € D(A) with u(0) = Wp (fa’”“o) the system has a unique

€s,Hax
classical solution

z € C'(Ry; X)NC(Ry; D)),y € C(Ry;FNY).
If additionally Po(¢) = —Py(¢)* for a.e. ¢ € (0,1), then

i 1O = (40 ) P (00 e ez

WESW; Weswy 177
WeSW WeSWwg |-

where

Pwpywe = [

Proof. By Theorem the system & = (2,9, €) is a Boundary Control and
Observation System. From Theorem we find that for any u and zg as above
there exists a classical solution z € C'(R4;X) N C(Ry; D(A)). Moreover, € €
B(D(2A),FN?) and we thus have

y = Cx € C(Ry;FNY).
If additionally Py(¢) = —Py(¢)* for a.e. ¢ € (0,1) we compute

d
2t = 2Re (coas fouabse

= << zg; ),PWB,WC ( Zg; >>]FNda

cf. the calculations before Proposition [3.2.16 O
The following lemma shows that for impedance passive port-Hamiltonian systems
the transfer function G(A) is defined for every Re A > 0 and its symmetric part
Sym G(X) > 0 is positive semidefinite.
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Lemma 3.2.24. Let & = (U, B, €) be an impedance passive port-Hamiltonian sys-
tem. Then Fg C D(G) and Sym G()\) > 0 for all X € T, i.e. for all A € F{ there
is my > 0 such that

Re (z,G(\)z)y > my |2)°, zeU=FVY

More precisely, for every X\ € F§ there are operators ®(\) € B(X), ¥(\) € B(U, X)
and F(X) € B(X,Y) such that for all f € X and u € U there is a unique solution
of the problem

A=)z =f
u = Bx
y=~Cx

which is given by

=N f+TNu
y=FMNf+GMu.

Without loss of generality we may assume that H = I for the proof. In fact, for
any impedance passive Boundary control and Observation System & = (2, B, €)
(on Hilbert spaces X and U =Y) and P € B(X) any coercive operator on X, also
Gp = (AP, BP,CP) is an impedance passive Boundary Control and Observation
System (on Xp = X equipped with {(-,-)x, := (-, P-)x) and the transfer function
exists on F§ for (2,8, @) if and only if it exists on F{ for &p = (AP, BP, C€P) (the
situation is similar for @, ¥ and F' as in Lemma.

Proposition 3.2.25. Let X and U =Y be Hilbert spaces and assume that (A, ‘B, €)
is a Boundary Control and Observation System. Further let 0 < P = P* € B(X)
be a strictly coercive operator on X and Xp := X equipped with the inner product
(Yxp = (PYx. If (A,B,€) is an impedance passive Boundary Control and
Observation system on (X,U,Y) and for some X\ € F& there are operators ®(\) €
B(X),¥(\) € B(U,X),F(\) € B(X,Y) and G(\) € B(U,Y) such that for all f € X
and u € U there is a unique solution of the problem

A=Az =f
u = Bx
y==Cx

which is given by

=P\ f+T(Nu
y=FXNf+GNw,

then also (AP, B P, CP) is an impedance passive Boundary Control and Observation
System on (Xp,U,Y) and there are operators ®(\) € B(X),¥(\) € B(U,X),F(\) €

B(X,Y) and G(\) € B(U,Y) such that for all f € X and @ € U there is a unique
solution of the problem

(AP — N)i = f

>
I
2

Pz
Pz

<
I
G
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which is given by

2>
I
K>
=B
>

()
E()

()

+
+ G\

&'w &">
i:>

Proof. First note that (AP,BP,€P) is an impedance passive Boundary Control
and Observation System on Xp. Namely for all £ € D(2(P) one has Pz € D(2),
thus

Re (AP, &) x, = Re (AP, Pi)x < Re (BPi,CPi)y

Further A = A|p(ay where D(A) = {z € D(A) : Bx = 0} generates a contractive
Co-semigroup and so does AP = AP|papy by Lemma 7.2.3 in [JaZw12] (also see
Lemma u 5| below). Clearly P~'B (where B is the right-inverse of B) serves as
right-inverse of BP and €P : D(AP) — U is bounded since

1€P2]|y; S [[PE] 4

A~ 112 2 ~
= JI1Pal% + 2Pl = ] .,

for all z € D(AP) since the norms |||, [|[PY/2| =: ||y, and ||P- HX are equiv-
alent. Further observe that ®(\) = R(\, A), in particular [|®()\)|| < o~ by the
Hille-Yosida Theorem “ Let n € N be such that for the n**-root Q pi/n
of P, 0 < Q = Q" € B(X), one has [|Q~* I||B(X tp < R\if\ (0,1], see
Proposition Note that then for X := X equipped with the inner product
()= (-, Q%) x for k=0,1,...,n one has

@il = @t -], = i@ - e,

ie. HQ b HB(Xk) ||Q ! IHB(X) p < R\if\ for k =0,1,...,n. We consider

the case n = 1, the general case then easily follows by induction. Hence

pIAl
||B(X) < Re )\

[A@(A) (P! <1

and by Neumann’s series (I — A®(\)(P~! — 1))~ € B(X) exists. Note that given
f € Xp,u € U, also writing x = PZ, one has the following equivalence of problems

—= A-Nz=f+ANP =Dz, Br=10, Cz=7
o == BN f + AN (PL = D+ T(N\)i,
y=FNf+IFN)(P ' —Dz+ G\

g = PY I = A\ (P~L = 1)) Y@\ f + T (N)a),
§g=F\)f+AFO\) (P~ = I)Pz + G\

!
—N—
2>
Il
Y

From here the assertion follows. O

Proof of Lemma (3.2.24. By Proposition [3.2.25 we may and will assume that
H = I is the identity map on Lo(0,1;F?). Also we only consider the case of
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constant Py € F¥*?, Let \ € ]Far, uw € FN? and f € X be given. First, observe that
the equation

A—Wa=f
has the general solution @ = hy for b := (z,a’,...,2N"1) : 0,1] = (F)N=FN
and h(¢) = eSPrh(0) + ¢4 (¢) where
0 1 0 0
0 0 1
B, = )
. 0
0 1
AP =Py Py —PR'P e e Py Py

and (If(C) _ foc e(C—5)Bx 0 ds. Writing Ey = eBx input v = Bz and output
—f(s)
y = €x may be written as

u=WpRezt [E;‘] h(O) + WpRert [qfél)] ,
y = WoRew [ ]1(0) + WeRewr (V]

Since the system (2,8, ) is impedance passive both the matrices Wg Rt [EI*]
and WeReg [ %] are invertible since otherwise (choosing f = 0 and h(0) in the
kernel of one of these matrices) A € Fg N o(™U|kers) or A € Ff N o(A|kere), in
contradiction to Aler s and A|xer ¢ being dissipative. As a result, for any given
u € FN? and f € X there is a unique solution (x,y) € D(2A) x FN9 and clearly

the map (f,u) — (z,y) =: [?8; ggi” [

reasoning one finds (for f = 0 fixed) the inverse map G(\)~! : y — u, so that G(\)

is bijective. Further we have for all u € FN4\ {0} and the corresponding solution
(z,y) € D(A) x FN4 of (2.17) that

] is linear and bounded. By the same

Re (u, G\ u)pna > Re Az, z), = Re (Azx,z)r, = Re A ||33||i2 >0

so that in fact the symmetric part Sym G(\) > 0 is strictly positive definite. O

3.3 The Generation Theorem

Up to now we did not impose any boundary conditions on the port-Hamiltonian
partial differential equation, so we could not expect 2 to be the generator of a
Cy-semigroup. To make this more clear, let us state the following lemma which
(together with the Hille-Yosida Theorem implies that 2 itself cannot be a
generator, indeed.

Lemma 3.3.1. Let A be a (mazimal) port-Hamiltonian operator where the matrix-
valued functions H and Py € WL (0,1;F4*) are Lipschitz continuous. Then

op(A) =TF.

Proof. The proof is based on the theory of non-autonomous ODE. In fact for every
A € F we have that the equation
Axr = Az
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may be written as the ODE

d
d?hK) = BA(Qh(¢), ¢ €[0,1]

where we identify h = (Hz, (Hz)',...,(Hz)N=V) € Ly(0,1;F4)Y and the matrix-
valued function By € W1 (0,1; FN4*Nd) ig given by

0 1
0 1
By (Q) =
0 0 .. 1
PV OHTYO) - Po(Q) —Py'A —Py'Py_1 O

Since H and Py are Lipschitz continuous by the Picard-Lindel6f Theorem, see e.g.
Satz II1.2.5 in [WeQG], the equation has a unique solution on [0, 1], for every given
initial value h(0) = hg € FN?.  Choosing hg # 0 then gives an eigenfunction
x=H"1(h;)j=1. 4 D)\ {0} of A for the eigenvalue A, thus o, () = F. O

Corollary 3.3.2. Let 2 be a (maximal) port-Hamiltonian operator where H €
WL(0,1;F¥*4) s Lipschitz continuous and Py € C([0,1];F¥*9). Then

o) =T.

Proof. By the Stone-Weierstrass Theorem (see Theorem VIIL.4.7 in [Well]) there
are polynomials Py € C°°([0, 1]; F¥*?) converging to Py in ||-|| . Assume that there
was A € p(2), i.e. (A —A)~! € B(X) exists. Thanks to the Neumann series then
(A=A~ (P}—Py)H)~ ! € B(X) exists also for n > ny € N sufficiently large. However,
by Lemma o(A+ (P} — PO)H) = o(A,) =F for A, = Sp, Pr(Ha)®) + Py
with D(2(,,) = D(21). A contradiction. O
We hope that for suitable boundary conditions, defining a subspace D(A) C D(2()
the restricted operator A = 2|p(4) has the generator property. In the following let
B and € be such that & = (2, B, €) is a port-Hamiltonian system.

Remark 3.3.3. In fact, we do not necessarily need the output operator € here and
therefore remark that whenever we have Wy € FN*2Nd qefining the input operator

Br=Wg (f6=””) we can always find Wg € FN2Nd sych that [%ﬁ] € F2Ndx2Nd

€a, Ha
is invertible.

For the port-Hamiltonian system & = (2,8, €) we consider the port-Hamiltonian
operator with boundary conditions

A= Ql|ker(‘B+K€)

where K € FNIxNd i5 5 feedback matrix, i.e. the domain D(A) realises the boundary
condition
Br=-KCx, x€ D(A)

Remark 3.3.4. Within this subsection we may and will always assume that K = 0,
i.e. D(A) = kerB. Note that we did not demand anything more of & than being a
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port-Hamiltonian system. Therefore, replacing B by B + K€, i.e. replacing Wg by
Wp+ KW¢, we may reduce the feedback case to the case where K = 0. However, let
us also note that in the context of nonlinear boundary feedback an extra assumption
of impedance passivity for & will appear. In that case K € FNN i1l be replaced
by a nonlinear feedback operator.

A very useful tool for the characterisation of contraction semigroups is the following
lemma, which states that the contractive semigroup generator property is preserved
under right multiplicative perturbation by a coercive operator provided the Hilbert
space Xp = X is equipped with the inner product {(-,-)p = (-, P-). However,
remark that this fact heavily depends on the contraction property and for general
semigroups the assertion is false in general, see Section 6 in [Zw+10].

Lemma 3.3.5. Let X be some Hilbert space with inner product (-,-) and some
strictly positive operator P € B(X), i.e. P is self-adjoint and P > eI for some
€ > 0. Denote by Xp the Hilbert space X equipped with the inner product (-,)p =
(-, P-). Given some linear operator A : D(A) C X — X, consider the operator
AP : D(AP) C Xp — Xp with D(AP) = {z € Xp : Px € D(A)}. Then the
following are equivalent:

1. The operator A generates a contractive Cy-semigroup on X.

2. The operator AP generates a contractive Cy-semigroup on Xp.

Proof. For this result, see Lemma 7.2.3 in [JaZw12]. O

For port-Hamiltonian operators with boundary conditions the contraction semi-
group generators can be characterised either by a simple matrix condition or by
dissipativity of the operator A. Note that usually the hard part of proving that
an operator A generates a contraction semigroup (via the Lumer-Phillips Theorem
is the range condition ran (Al — A) = X for some A > 0.

Theorem 3.3.6. Let G = (A, B, €) be a port-Hamiltonian system and K € FNdxNd
some matriz. Consider the operator A = Ulyer(w+xe). The following are equivalent.

1. A generates a contraction Cy-semigroup,
2. A is dissipative, i.e. Re (Ax,z)x <0 for all x € D(A),

3. Wp + KWe)S(Wp + KWe)* > 0 is positive semi-definite and Po(C) is

dissipative for a.e. ¢ € (0,1), where ¥ = { ? é ] c 2dx2d

Note that this result is a combination of Theorem 7.2.4 in [JaZw12], where the
authors focused on the case N = 1, and Theorem 4.2 in [LeZwMa05], where the
general case of N-th order Port-Hamiltonian systems is treated for the equivalence
of 1.) and 3.). However, in both cases the authors only treat the case Py = —F
being a constant skew-symmetric matrix. For the general case where Py # —F, is
not skew-adjoint we shall use a perturbation argument. In fact, we also generalise
Theorem 2.3 in [AuJal4] where only the case Py constant had been considered to the
(-dependant P, case. Still we use the same strategy as in the proof of Theorem 7.2.4
in [JaZw12] with obvious modifications also employing some results of [LeZwMa05].
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Lemma 3.3.7. Let W = S[1+V 1-V ] with S € F™*™ jnvertible and V € F™*™.
Then the equality

(3.17)

kerW:ran[ I=v }

—1-V
holds.

Proof. Cf. the proof of Lemma 7.3.2 in [JaZw12]. Note that

kW =tk [I+V I-V ]|=tk[I+V 2I]=m,

and similarly rk [ _I;_VV] = m. Then the result follows from ran [ _I;_VV] C kerW
and noticing that these two linear subspaces have the same dimension m.

Proof of Theorem First of all, let us note that by Lemma [3.3.5] we may
and will assume that H = I, so that X = Ly(0,1;F?) with the standard inner
product. Moreover, we may and will assume that K = 0 to make the presentation
clearer. Also, let us further assume that Py = 0 for the moment. Our strategy is as
follows, cf. Theorem 7.2.4 in [JaZw12]. We use the Lumer-Phillips Theorem
to establish the equivalence of 1.) and 2.). Then we show that also 2.) and 3.) are
equivalent, indeed. As a last step we remove the restriction Py = 0 to obtain the
claimed result.

For the equivalence of 1.) and 2.) note that by the Lumer-Phillips Theorem [2.2.7]
the operator A generates a contractive Cy-semigroup if and only if it is dissipative
and satisfies the range condition

ran (Al — A) =X

for some A > 0 (and then in fact for all A € F{). Therefore, it remains to check
that for the port-Hamiltonian operator A dissipativity already implies the range
condition. So let A be dissipative and take an arbitrary f € X and (for simplicity)
set A = 1. We consider the problem

find x € D(A) : (I-Az=f
which is equivalent to the problem
find x € D) : (I-Wz=f, Bax=-KCx

where we may and will assume that K = 0, see Remark Observe that the
problem (I — ) = y may be equivalently expressed as the ODE

N
2(Q) =Y P () = f(Q), ¢ €[0,1].
k=1
Writing h := (x, 2/, ..., 2N "1) € Ly(0,1; FN9) and using the invertibility of Py we

may rewrite this N**-order ODE as the first order ODE

d

dfch(C) = Bh(¢) +9(¢), ¢<[0,1].



70 CHAPTER 3. HYPERBOLIC PDE ON A 1D-DOMAIN

where

[0 1 0 0

0 0 1 . :
_ ) _ . NdxNd r (pdxd\NxN
B= : . . 0 eF (F9)

0 ) 1

i pﬁl _p];lp1 _pJ;lef1

0
9(¢) = ; € L(0,1;FNY) 2 (L,(0, 1; F*))".
-Pyly(Q)

Therefore, we obtain the general solution formula
h(¢) = " h(0) + q(¢)

with ¢(¢) = foc e(¢=9)Bg(s)ds for ¢ € (0,1). For the corresponding x € D(A) we
then have z € D(A) if and only if

0=WpRecat ( Z;ég ) = WpReut ( eBh(;)L)(J)— al) ) )

or equivalently

eB

WBRezt |: I :| h(O) = WBRezt ( q(ol) )
As a result, invertibility of the matrix WgReat [8;3 | will imply that there is = €
D(A) such that (I — A)z =y, so that ran (I — A) = X. Assume that WgReqe [ ]
were not invertible. Then there were hg # 0 such that hg € ker Wg Ry [SIB ] For
the special choice h(0) = hg and g = 0, i.e. g = 0, then equation would lead
to an eigenvector x € D(A) of A with eigenvalue A = 1, a contradiction to A being
dissipative. Hence, 1.) and 2.) are equivalent.

Secondly, let us focus on the equivalence of 2.) and 3.), still under the assumption
that Py = 0. We have by Lemma [3.2.13| that

Re (fo. 1a, €0 1a)pNve = Re Rz, 2)x, x € D(A) C D).
and by Corollary [3.2:20] and Lemma [3.2.17]

{( =) we DUy = ker Wy —kersu [ 14V 1=V ]
O, Hx

:ker[I+VB I*VB]

_ I1-Vg
= ran [ IV }
so that
A dissipative <=V f € ran I=Vs : Re(f,e)pnva <0
(& —I — VB

= VIeFN: Re((I —Vp)l,—(I+Vg)l)pnva <0
<— WXWpg > 0 is positive semidefinite
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where we used Corollary [3.2.20| again. Hence, we established the equivalence of 2.)
and 3.).

Finally let us consider the general case that Py Z 0. Whenever Py(() is dissipative
for a.e. ¢ € (0,1), the operator-valued function Py may be considered as bounded
dissipative perturbation of the operator A — Py and thus whenever WgXWpg > 0
is positive semidefinite, the operator A — P, generates a contractive Cy-semigroup
and so does A = (A — Py) + Py, see Theorem I11.2.7 in [EnNa00]. Therefore, it
remains to prove that whenever A is dissipative, then A — P, is dissipative and
Py(¢) is dissipative for a.e. ¢ € (0,1). On the one hand, if A is dissipative then
C(0,1;F4) C D(A) and

Re (Azx, )1, = Re (Pox,2)p, <0, € C(0,1;F?)

and since C2°(0,1;F¢) C L(0,1;F9) is dense this implies that qo(¢) is dissipative
for a.e. ¢ € (0,1) thanks to Lemma On the other hand if A — Py were not
dissipative there were (f,e) € ker Wg such that

Re (f,e)pnva =1

and taking = € C([0, 1]; F%) such that (s, 30, €0,22) = (f,€) and | Poll,_ |27, <
% this leads to the contradiction

1
0 > Re (Ax,x)r, = Re (A — Py)z,z), + Re (Pox, x) 1, > 5> 0.

To conclude the proof we show that A has compact resolvent whenever there is A €
p(A). In fact, this easily follows from the fact that for A € p(A), the operator R(\, A)
is bounded as linear operator from X to D(A) C D() and D(2) is compactly
embedded into X, see Lemma so that the operator R(\, A) : X — X is
compact. O

As a byproduct, with this result we can also characterise the port-Hamiltonian
operators A which generate a unitary Co-semigroup (T'(¢))¢>0. For the case of
constant and skew-adjoint Py = —Fj this has already been stated in Theorem 4.4
of [LeZwMa03)].

Corollary 3.3.8. Let A = Ulxers be a port-Hamiltonian operator where B has the

form
Bz =Wp ( Jots ) :

€9, Hx

Then A generates a unitary Cy-semigroup if and only if Po(¢)* = —Py(C) for a.e.
¢€(0,1) and WgEW} =0 for X =[;1].

Proof. By Stone’s Theorem the operator A generates a unitary Cp-group
if and only if both A and —A are dissipative. By Theorem these condi-
tions are equivalent to the symmetric part of Py being both positive semi-definite
Sym Py(¢) > 0 and negative semi-definite Sym Py(¢) < 0 for a.e. ¢ € (0,1), and the
matrix WpXW} being positive semi-definite and negative semi-definite at the same
time. This can only hold true if and only if Py(¢) = —Py(¢)* is skew-symmetric for
a.e. ( € (0,1) and WpEXW} = 0 is the zero matrix.

Let us also point out the following consequence of the generation theorem for
impedance passive port-Hamiltonian systems.
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Corollary 3.3.9. Any impedance passive port-Hamiltonian system & = (2, B, €)
is an impedance passive Boundary Control and Observation System.

Proof. For every impedance passive port-Hamiltonian system the operator A =
AUlker 5 18 dissipative and thus generates a contractive Cp-semigroup, thanks to Theo-
remm Then by Theoremthe system & = (2, B, €) is a Boundary Control
and Observation system. O

Another, even more direct consequence of Theorem [3.3.6| is

Corollary 3.3.10. Let A = Ulyer(s+xe) be a port-Hamiltonian operator. Then A
generates a quasi-contractive Co-semigroup (T (t))¢>o, i-e.

1T < e, t>0

for some w € R, if and only if (Wp + KWe)E(Wp + KWe)* > 0 is positive
semidefinite.

Proof. Let w > 0. Then A generates a Cy-semigroup of type (1,w) if and only if
A — wl is dissipative, if and only (A — Py) + (Pp — wl) is dissipative by Theorem
if and only if (Wp + KWe)E(Wp + KWe)* > 0 is positive semidefinite and
Py — wl € Loo(0,1;F4¥9) is dissipative. From here the assertion follows. O

3.4 Standard Control Operator Formulation

Let us continue with the study of port-Hamiltonian systems which so far we con-
sidered in the boundary control and observation form

N

Az = Pe(Ha)® + Po(-)(Ha)
k=1

Br = WpRep:7(Ha)

Cx = WeRepm(He)

D(A) = D(B) = D(€) = {x € Ly(0,1;F) : Ha e HN(0,1;F)}.
We are interested in rewriting the boundary control part
x(t) = Ax(t), Bx(t) =u(t), t>0 (3.18)
in the more standard form
z(t) = A_q1z(t) + Bu(t), t>0 (3.19)

where A_; denotes the extension of A = Ay, to the extrapolation space X fl
and B € B(U;X_1). Of course, to define X4, and A_; the resolvent set p(A)
of A should be nonempty. This is always satisfied whenever A is a Cy-semigroup
generator, i.e. whenever (2, B) is a Boundary Control System. We want to identify
the correct input operator B corresponding to the boundary input operator 8 and
we utilise the following characterisation of B for given operators 8.
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Proposition 3.4.1. The Hilbert space adjoint B' € B(D(A"),U) for the control
operator B (in the standard formulation as control system) of a Boundary Control
System (U,B) is given by

(Bz, B'y)y = Az,y)x — (x,A'y)x, =z € D®A),ye DA
where A = Ulkerss and A’ is its Hilbert space adjoint operator.

Proof. See Remark 10.1.6 in [TuWe09]. O
This approach obviously makes it necessary to know the Hilbert space adjoint A’
of A, hence we first determine A’ in the port-Hamiltonian case. This can be done
quite easily via integration by parts and rewriting the boundary conditions. Let us
assume that Wg = [Ws1 We.2 ] such that Wg 1 + Wp o is invertible, so that due to
Lemma W = Wpy € FNdx2Nd 154 the form

W=S[1+V I-V]

for some square matrices S,V € F4*¢ with S invertible, where for dissipative A we

have VV* < I. Also we recall the definition of the boundary port variables, namely

< fo,Ha ) = Rey7(Hz)

€0, Hx

where R, is defined as

P P Py
1 . _P2 _PN
Rezt = —= Q Q s Q = .
valr o1 :
(_1)N71PN

To describe the adjoint operator we analogously set Q = —Q = —Q* and
fa,?—[a: D D _ L Q _Q
( éé),?-[w = Reth(rHI)a Reyt = \/i I I .

Remark 3.4.2. In particular, this means that

< foa > ~ < —fos ) e D),

6877-[(13 ef),’Hz

but as we will see in just a moment the boundary port variables fa,ﬂz and €p 1 are
ezactly those belonging to the operator structure of the adjoint operator A’.

We then have

Proposition 3.4.3. Assume that A = A|yer s generates a Cy-semigroup and Wg =
S[1+v 1-v] with S,V € F4*% and S invertible. Then the (Hilbert space) adjoint
operator A’ of A is given by

N
Az ==Y P(Ha)® + Py () Ha
k=1

D(A')_{xeX:(’HI)GHN(Ovl?Fd)’ [ I+v I-v*] < ffzzx > _0}'
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Remark 3.4.4. Note that this statement in principle is the same as Theorem 2.2/
in [Vi07]. Further observe that whenever Py(¢)* = —Py(C) for a.e. ¢ € (0,1), then
AI = _QllD(A’) .

Lemma 3.4.5. Denote by Aoy := Alp(ay,) with D(Ag) = {x € X : Hax €
C2°(0,1)} the minimal port-Hamiltonian operator. Then its Hilbert space adjoint
is given by

N
Apgr = =Y Pu(Hz)® + Py (Y Hz, x € D(Af) = D(2).
k=1

In particular, if Py(¢)* = —FPo(C) for a.e. ¢ € (0,1), then Ay, = —2.

Proof. First of all we may and will assume that Py = 0 since Py’H is bounded as
linear operator on X. Also we only have to consider the case that H = I is the
identity matrix, using that

(AooH " YHa, Hy) 1, = Kooz, y)x, =,y € D(Aoo).

Then for the scalar-valued case we may refer to Theorem VI.1.9 in [Go66] (for the
Banach space adjoint) and using the Riesz Representation Theorem, which solves
the case d = 1. In fact, the proof given there can be easily extended to the vector-
valued case if one takes care of additional transpositions appearing and replaces
scalar multiplication by the dot product whenever necessary. O]
Proof of Proposition Let A’ denote the adjoint operator of A. Since
Ago C A is an extension of the minimal operator Agy we have that A’ C A, is a
restriction of the Hilbert space adjoint of the minimal operator. In particular,

N
Az ==Y P(Hx)® — Py (-)(Hx), x€ D(A') C D(Ay) = D).
k=1

Moreover, for all x € D(A) and y € D(A’) we obtain
0= (Az,y)x — (z, A'y)x

= (P(Ha)®), (Hy)) 1, — (Ha), = Pu(Hy) ) L,

Il
ol
M=

—
|
—_
=
| —
~
v
*
8
B
=
=
=
—~
I
o
=
<
S
=
—
I
N—
=
=S|

=N

LE
o

l L k=l+1 0

Noa | (H)(C) !
= (1@ : , (Hy) D () pa

=0 [ H) NV ) ) 0

= (r(Ha), | @ g | Ty
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Thus
D(A) = {y e D) : [Q 7Q} T(Hy) L r(Ha), o € D(A)}
={yep@): R [? |70ty L (£3), we D)}
—{yep@): rZ; (¢ o] r0t) Lran [ %]}
={yeD@): [1-v: —av | R [? o] r(y) = 0}

where we used that
{({gg:) NS D(A)} = ker [I+V I-V ] =ran {_fﬁrvv)} .
Now the statement follows since
[1-v* —(+Vv") ] R, [Q 7Q} =[1+v~ I—V*]Rext.

O

We are almost ready to state the result on B’ for port-Hamiltonian systems, but
first need the following auxiliary result.

Lemma 3.4.6. Let V € F™>*™, Then the matriz “J_rg _g;_:/v)} is invertible and

I-v: —(I+V

[I—H/* I-V ]1
1{ (I+VVH-! (I)+V) (I+VVHYI-V) ]
2

I+ VV) LI -V —(I+VV) LI +V¥)

Proof. Note that I + VV™* and I + V*V are invertible since VV* V*V > 0 are
positive semidefinite. Also

VI+VV) =T +VV)V.

Then one easily calculates that above matrix is the inverse matrix, indeed. O

Finally it is time to state the result on the adjoint operator B’ of the input operator
B € B(U; X_1) in the standard formulation.

Proposition 3.4.7. Let (A,B) be a port-Hamiltonian Boundary Control System
with Wpg = S[ I+V I-V ] for some invertible S € FNNd and some V €

FNAXNd - Then the Hilbert space adjoint B' € B(D(A'),U) of the control operator
B € B(U; X_1) in the standard formulation is given by

Bz = %S**(IJFVV*)* [I-V I+V ] [ ? _IQ :|T('H.r), € D(A).

Proof. We may and will assume that .S = I in the decomposition of W = Wg. For
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every x € D() and y € D(A’) one has

ol ok ok
)~ (o A = Y- (P (o), () + o P s () )

T (Po(Ha), (M) 1 — (M), P ()

N k—1 1—1
-y [<Pk‘9<<m><<>, (,fdlmy)(om}

1

= 0
_ @

= < _Q T(H:E), T(Hy)>F2Nd.

Thus, from Proposition we have for all z € D(2) and y € D(4')

0= (Bz, B'y)pnva — ((Az,y)x — (x, A'y)n)
= {([1+V I-V ]| Regy7(Hx), B'y)pna

—{[@ o] ). (g
_ <[If_+vv* _(II;‘V/*)} Rearr(Ha), [ BV ])zona
v oI=vr ve -ve 17 e Q
<{I—V —(1+V)]Rewt7(7{x)a[1—v —(1+v)} Ro -Q 7(Hy))p2na
1

N B’ I+VVHTLa+v) d+vve)~la-v)
= <\I’(H$), ( Oy) - Z {(I-‘,—V*V)*l(l—\/*) —(I+V*V)71(I+V*)] Reth(Hy)>F2Nd

where U(Hz) := [Ilj‘y* 7(111“//*)} Rert7(Hz) and since ran ¥ = F2V4 it follows

By = i(uvv*)*l [I+V I-V] { Cf _IQ }T(Hy), y € D(A)

as claimed. O



Chapter 4

Stabilisation of
Port-Hamiltonian Systems
via Static Linear Boundary

Feedback

In the previous chapter we have seen that any dissipative port-Hamiltonian operator
A = | p(a) with a dissipative boundary condition generates a contractive Cp-semi-
group on the energy state space X = Lo(0, 1;F?) equipped with the energy norm
Il x = II-ll3;- Also we have seen that the dissipative boundary condition may often
appear in the form of a static boundary feedback Bz = —K €z for 6 and € being
the (boundary) input and (boundary) output maps of a port-Hamiltonian system
G = (2,%8,¢) in boundary control and observation form. We also noticed that
the contraction property physically means that the energy H(t) = 1 [l(t)|% of the
system decreases, or more precisely does not increase. Within this section we go
a step further and ask whether a given system not only has non-increasing energy,
but actually is decreasing in the long term. (From a stabilisation design point of
view the problem may be reformulated as finding suitable sufficient conditions on
the feedback operator K (and the system &) to obtain the desired stabilisation
property.) In other words, we investigate adequate conditions under which a port-
Hamiltonian system with dissipative boundary conditions is stable (in some sense).
We stress that the fact that this includes only stability in the semigroup sense, i.e.
the boundary conditions are fixed and may result from a static linear boundary
feedback (Bx = —K€x). In fact, a variety of stability concepts are known for Cjy-
semigroups of which we only consider two, arguably the two most important ones.
On the one hand we have asymptotic (strong) stability, i.e. given a Cy-semigroup
(S(t))1>0 on some Banach space, do all the trajectories (S(t)x);>o converge to 0 for
every z from that Banach space? On the other hand (uniform) exponential stability,
i.e. given an (asymptotically stable) Cy-semigroup (S(t))¢>0 on some Banach space,
are there constants M > 1 and w < 0 such that the decay is uniform in x, so that
for all x from this space

IS@®)zll < Me*! ||z, =07

77
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In the following (T'(t)):>0 always denotes the contractive Cy-semigroup generated
by a dissipative port-Hamiltonian operator A = 2A|p ke resulting from a port-
Hamiltonian system & = (2,8, ¢) and a suitable feedback matrix K € FN4xNd
ensuring dissipativity of the operator

N
Az =" Pe(Ha)® + Py()(Ha)
k=1
D(A)={z e X: Hz e HY(0,;F%), Bz = —KCxz}.

(Note that w.l.0.g. we may always assume that K = 0.) Since the resolvent set
p(A) # ) is non-empty and A then has a compact resolvent, see Theorem we
have the spectral theorem

o(A) = o,(4)

which proves very useful in the context of asymptotic stability.

4.1 Known Results for the Case N =1

We start by giving an overview on previous results on stability of port-Hamiltonian
systems for the case N = 1, i.e. within this section 2 always has the form

Ar = Py (Hz) + Po(-)(Hz), x € D).

Systems of this form have been considered especially in the article [Vi+09] and
most of the results mentioned here may be found there. However, for analytic
Hamiltonian density matrix functions H this topic had already been addressed in
[RaTa74] and, in fact, some ideas of the latter article were used in [CoZu95] and then
again in the aforementioned [Vi+09]. (Also note that exponential stability plays a
crucial part in the PhD thesis [Vi07] by one of the coauthors of [Vi+09].) Moreover,
the results have been presented in the monograph [JaZw12]. All these articles have
in common that they prove exponential stability (for suitable dissipative boundary
conditions) in the same way, using a final observability estimate which in [CoZu95]
is called a sideways energy estimate. It says the following.

Lemma 4.1.1. Let H be Lipschitz-continuous. There are constants T > 0 and
¢ > 0 such that for every solution x € WL (Ry; X) N Loo(Ry; D(A)) of

d

%x(t) =Ax(t), t>0

with ||z(t)|| y non-increasing the inequality

le@)% < e / (M) (2,0 e
holds.

Before actually proving this result we comment on some variants and the history of
this lemma.
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Remark 4.1.2. 1. If one is only interested in one particular contraction Cy-
semigroup the lemma may be expressed in the following way. Let A be be
a dissipative port-Hamiltonian operator of order N = 1 (with Lipschitz con-
tinuous Hamiltonian density matriz function H) generating the contractive
Co-semigroup (T (t))i>0. Then there are constants T > 0 and ¢ > 0 such that
for every xog € D(A) and the trajectory x(t) := T (t)xo (t > 0) one has

lz(m)|% < c/OT |(Hx)(t,0)]* dt.

For this version see, e.g. Lemma III.1 in [Vi+09] and Lemma 9.1.2 in [JaZw1Z)].
Also this estimate had already been used in the proof of Theorem 3 in [RaTaTj).

2. The slightly more general, but arguably more complicated formulation above
takes into account that later on we want to use the same result in the context
of nonlinear boundary feedback.

3. Note that the inequality in Lemmal[/.1.1] is quite similar to a usual observability
inequality of the form

l2O)llx < ellCllL,ry)

but in the port-Hamiltonian case above only the evolved state at time T >
0 may be estimated from the observation of (Hx)(t,0) for times t € [0,7].
Therefore, the terminology final observability.

Proof of Lemma We use the same strategy as in the proof of Lemma 9.1.2
in [JaZw12]. In fact, the proof carries over almost literally. We begin by choosing
~v > 0 such that

Prl+aH(Q) 20, =Pl +9H(¢) 20, ae(€(0,1)
are positive semidefinite and x > 0 such that
2Re (P Po(QYH(Q)) + H'(C) < kH(C), ae. C € (0,1) (4.1)

and then 7 > 2v. Now let z € WL (Ry; X)N Lo (R4; D(2A)) be a solution of & = Az
and define

T—=v(1-=¢)
FO= [ O HO Ot CE0Y (2

Since H is Lipschitz continuous, the function F : [0,1] — R is a.e. differentiable
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with

T—v(1-¢)
FO= [ (0. 5 (HQalt, s + (5ot O HOa(t, Ot

(1-¢) ¢ ’ ¢
(a1 — €, O, HQalr(1 = 0,
(e = (1 - 0,0, HQalr — (1~ ), e
T—y(1- C 9
-/ L eon? (5.0 = B(Q) )1, C) vt

T—y(1=0) L0
Pl d
L BT E0.20)

— (H'(Q)z(t,¢) + Py ' Po(2)(Ha)(t,¢), (t, C))padt
+ 9 {(@(y(1 =€), ), H(Q)m(v(1 = ), {))wa
+y{z(r = y(1 =€), Q) H(Q)a(r — y(1 =€), {))pa

T—(1-0) 4 .
[ 0P
-

T=v(1-0C)
L Ot

1=9

T—=y(1=0)
-/ g 2RE(EOPIRQ M) et
(1L =€), O HOz(v(1 — ), Q)

Y@ (r — (1 =), ), H(Qz(T — v(1 = (), ())pa
T—v(1-¢)
= —2Re / (x(t,0), (Pllpo(C)H(O + Hl(()) z(t, C))padt

1
1-¢) 2
+ (z(1 —~v(1 = (), <), (P +yH(Q)z (T — (1 = (), ())pa

+@(v(1 =€), ), (=P +7H () (v (1 =€), O))pa-
By the choice of 7,7 > 0 we find that

+
+

T—v(1-¢)

F'(¢) > —2Re /

1
(w(t.0) (PTROHO) + 51O ) alt. et
v(1-¢)
and since H', Py € Lo (0, 1; F9*?) are essentially bounded, this implies
T—=v(1=¢)
FO2zx [ @t HQa(t.O)uudt = ~rF(Q).
¥(1=¢)

Then
F(1) > e "17OF() > e "F(¢), ¢€l0,1]

and since the energy 2 ||$(t)||§( is non-increasing we get
T_W 2 2
/ lz(®)[ dt = (1 = 27) lz(r =)l
~

> (r = 29) l=(r) %
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and then
,

(r—29) lz(D)% < lo(8)])% dt

1 T—"

<$(t, C)’ H(C)l’(t, C))Fddtdc

o— S
S~

A

1 pr—v(1-¢)
<[] (2(t, ), H(O)(t, ) padtdC
0 Jy(1-¢)
1

| F(Q)d¢ < e"F(1)

=&A%wnﬁmnwomﬁ

1 K T 2
e [ e ora

IN

and the result follows for .
e

= 2m(T — 27)’

O

Corollary 4.1.3. If the contraction condition of Lemmal[{.1.1] is dropped, the as-
sertion is the following. There are constants T,y and ¢ > 0 with 7 > 2 such that
for every solution x € WL | (Ry;X) N Lootoe(Ry; D(A)) of & = Ax the estimate

oo,loc

T—"y T
[ e <e [ o0
Y 0
is satisfied.

Proof. Note that we only needed the contraction property for the proof of Lemma
BT Tl to show that

T—

K 2
()] dt.

ﬁfhwdﬂﬁg/

~
Without this estimate at hand, the observation inequality takes the form above. [

Remark 4.1.4. Similarly, if
2 2 2
lz(t+ )% < lz@lx +11L,0040, $t=0
for some function f € Lajoc(R4; X), then

ol < ¢ [ IO 151y
Proof. Use that

2 1 T_'Y 2
L LG L
1
T — 2y
1
T — 2y

IN

T

2 2
/ Je @I + £, 0
Yy

IN

=Y
2 2
ﬁ le(®)1% dt + 1F12, ¢, -
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O

Actually it is quite simple to deduce uniform exponential stability (under appropri-
ate dissipation conditions) using the inequality of Lemma

Theorem 4.1.5. Let ‘H be Lipschitz-continuous. If the operator A satisfies the
assumption
Re (Az,z)x < —k|(Hz)(0)]*,  z € D(A)

for some k > 0, then A generates a uniformly exponentially stable and contractive
Cy-semigroup on the Hilbert space X.

Proof. We again follow the lines of proof in [JaZw12], there Theorem 9.1.3. From
Lemma we have constants 7,¢ > 0 such that for every o € D(A) and the
corresponding classical solution z = T(-)z € C'(R4;X) N C(Ry;D(A)) of the
Cauchy problem & = Az, x(0) = xg we have

2 2
(7)< e l(Ha) (- 0)L, 0,754 -
Moreover, since z € C*(Ry; X) N C(Ry; D(A)) is a classical solution the derivative

1d

5 7 12Ol = Re {Az(1), 2()x

exists for all ¢ > 0 and hence

1 1 T
3 1Ol = 5 1O = [ Re (e, a(t)xat
< [ 00t 0P dt
0
K 2
<= .
< -Zamlk
This implies that
c c
7)ol = la(Dllx < 4/ = 20)Lx = /= ool

and since this inequality holds for every choice of £y € D(A) which is a dense subset

of X, we obtain that
c
()| < <1,
TN < 3/ o0

so that the Cy-semigroup (7'(¢))¢>o is uniformly exponentially stable by Remark
2.2.12 O
This is the original proof of Theorem [4.1.5] as it already appeared in the articles
[RaTa74] and [Vi+09]. However, within this PhD thesis we also encounter two new
proofs of the same theorem, using two different methods which also can be used to
tackle the stability problem for systems where N > 2. Clearly the proof of Theorem
[4.175] does not make any use of the fact that N = 1 except for the validity of the
observability inequality which is of the form

IT(T)xollx < clICT()zoll 0,7y
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where in this case Cz = 2(0) is the point evaluation at ¢ = 0, but more generally
may be an admissible observation operator. The proof of Theorem [4.1.5] actually
shows the following. If A is any generator of a contraction Cop-semigroup (T'(¢)):>0
on a Hilbert space X and there are constants ¢, 7 > 0 and a linear map C : D(C) C
D(A) — Y (where Y is another Hilbert space) such that

IT(r)zollx < clCT()xollp, 0,7y, %o € D(A)
and the operator A satisfies the dissipation inequality
Re (Az,z)x < —k ||C'x||§,, x € D(A)

for some x > 0, then the Cy-semigroup (T'(t)):>o is uniformly exponentially stable.
Therefore, it is sufficient to establish an observability inequality as above to obtain
uniform exponential stability. Unfortunately, for port-Hamiltonian systems with
N > 2 we were not able for prove a similar inequality. Because of this other
methods are used for N > 2 to get asymptotic and uniform exponential stability
results.

4.2 Asymptotic Stability

We continue with the investigation of stability properties for port-Hamiltonian sys-
tems of a higher order N > 2. The following example should serve as a motivation
why in this section we do not tackle the problem of uniform exponential stability
directly, but rather start with the much less restrictive problem of finding dissipa-
tion conditions under which the systems is asymptotically stable at least. In fact,
this example shows that for port-Hamiltonian systems asymptotic and exponential
stability are not equivalent (as they are for finite dimensional systems). Since it
is well-known that for Cp-semigroups on infinite dimensional systems asymptotic
stability does not necessarily imply uniform exponential stability, this result is no
surprise. More important is the other information we receive from the example,
namely that for exponential stability of port-Hamiltonian systems with order N > 2
— in contrast to port-Hamiltonian systems of order N = 1 — it is not enough to have
strictly dissipative boundary conditions at one end and arbitrary conservative or
dissipative boundary conditions at the other end. This leads to the conclusion that
for port-Hamiltonian systems of order N > 2 it is more difficult to design boundary
feedback controllers such that the closed loop system becomes exponentially sta-
ble. Another reason for first having a look on asymptotic stability, is the technique
of proof we utilise. Namely for exponential stability, the Gearhart-Greiner-Priiss-
Theorem will help, but as assumption requires that the spectrum of the generator
o(A) C Cy lies in the open left half plane, and by compactness of the resolvent
for the port-Hamiltonian operators this is equivalent to the semigroup (T'(¢)):>o0
generated by A being asymptotically stable. From that perspective this subsection
may also be seen as a preparation for the uniform exponential stability results that
follow in the subsequent sections.

Example 4.2.1 (Schrodinger Equation). (Cf. Ezample 2.18 in [AuJalj)].) We have
seen that for N = 1 it was enough to have strict dissipative boundary conditions
at one end whereas the boundary conditions at the other end may be conservative
or dissipative, as we wish. Therefore, one might ask whether a similar result also
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holds for port-Hamiltonian systems of order N > 2, i.e. given a port-Hamiltonian
operator of order N > 2 and with boundary conditions such that

, x€D(A)

for some k > 0, is the Cy-semigroup (T'(t))i>0 generated by A then always uniformly
exponentially stable? Unfortunately this is not the case, as we show now, repeating
Ezample 2.18 in [AuJal]|]. We consider the simplest port-Hamiltonian system with
order N > 2 we can think of, namely the one-dimensional Schrédinger equation on
the unit interval

ow 0w
IS0+ GE R0 =0. 120, Ce () (13)
where F = C and we choose the following boundary conditions

Ow .
874(15, 0) = _ZkW(t, 0),
Ow
- — > .
ac (t, 1) = aw(t, 1), t>0 (4.4)

for some constants k > 0 and o € R\ {0}. In the introductory examples we have
already seen that the energy functional is given by

1 1
Elw(t,)] = 5/ lw(t, O dc, >0 (4.5)
0
and this is a second order port-Hamiltonian operator
Az =iz’ D(A) ={z€ H*0,1;C) : 2/(0) = —ik2(0),2/(1) = az(1)}  (4.6)

i.e. the Hamiltonian density function H = 1 is identically one, P, = Py = 0 are
identically zero and Py = i is the multiplication operator for the factori. Integration
by parts and using the boundary conditions we deduce

Re (Az, z) 1, =TIm ((2/(0),2(0))c — ((1),2(1))c)

——5 (FeOF + {l?OF) . weD@). @

We claim that the semigroup (T'(t))i>0 generated by A is not uniformly exponen-
tially stable, but only asymptotically (strongly) stable. We show this assertion by
applying the Gearhart-Greiner-Priss-Huang Stability Theorem|[2.2.17 and prove that
o(A) CCy, but

sup || R(-, A)|| = oo.

iR

Let us first prove asymptotic stability. Thanks to the following characterisation of
asymptotically stable semigroups whenever its generator A has compact resolvent,
this is quite standard and easy.

(T'(t))i>0 asymptotically stable <= o,(A) C Cy, (4.8)
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see Corollary|2.2.16l First we consider the case S = 0 and solve the problem
findxe D(A): —Azx=f

for f € X = L5(0,1;C), finding that then

0= ot [ [ o [ s f 10

Now take any B € R\ {0} and f € X. We solve the problem
findze D(A): (if—Az=f (4.9)
and obtain the solution

<
(cosh(v/B¢) — —smh (VBO))xp. 4 ( )+/0 ﬁsinh(\/g(g“—s))f(s)ds

with the value x(0) = x5 ¢(0) given by

Jo iteosh(/B(1 =€) = g sinh(vB(1 ~ ) (€)ds
(a + ik) cosh(v/B) — (wzk i \/»> h(v/B) .

First of all this shows that the resolvent R(i3, A) € B(X) exists for all 8 € R, i.e.
iRNo,(A) =0, and since A has compact resolvent and is dissipative this already
implies

zp,1(0) =

o(A) = 0,(4) € Cy

and the Co-semigroup (T(t))e>o is asymptotically stable thanks to Corollary[2.2.16,
Moreover, having the explicit formula for the resolvents on iR at end we can even
say more, namely we show that the resolvents are not uniformly bounded on the
imaginary azis and thus (T'(t))t>0 is not uniformly exponentially stable. For this
end we choose f =1 € Ly(0,1) and obtain for 8 # 0 that

(R(iB, A)1)(¢) = (cosh(v/B) — smh (V/B0))
) z‘(ﬁ sinh(v/B) — 4 cosh(\/B) +3)
(o + ik) cosh(v/B) — (9% + V/B) sinh(v/B)
Thus, for all ¢ € (0,1)

g2 (BB, A1)(C)
e\/ﬁ(

_eoshlyB0) [ psinb(yB) -~ VBeosh(WB) +vE | o
VP (a+ ik) cosh(v/B) — (m‘k + f) B ) sinh(y/B)

N ksinh(\/BC) V/Bsinh(y/B) — cosh(v/B) + 1 /B
eV (o + ik) cosh(v/B) — (w‘k 4 \f) B) sinh(v/B) eVBC

i )
B cosh(v/B¢) — 5
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cosh(v/B()
=k+o(l)+ —

B cosh(v/B) + B + (a + ik)v/B cosh(v/B) — iak sinh(y/F)
(o + ik) cosh(v/B) — (mk + f) sinh(+1/3)
B—00

—— k+i(l - (a+ik)) =2k +i(1 —a) #0, (4.10)

so that in particular

. B—4o00
| R(iB, A1,

as a result, the resolvents cannot be uniformly bounded on the imaginary axis and

then A does not generate a uniformly exponentially stable Cy-semigroup.

The lesson we learn from the example above is that it may be advisable as a first step
to consider only asymptotic stability, still demanding dissipation conditions similar
to those which for the case N = 1 actually were sufficient to show exponential
stability, but already for the most simplest example for the case N = 2 only lead
to asymptotic stability. We therefore show

Theorem 4.2.2. Let A be a port-Hamiltonian operator of order N € N with
Lipschitz-continuous Hamiltonian density matriz function H and Py and boundary
conditions such that for some k > 0

2

N-1
Re (Az,z)x <~k Y ‘(m)@)(m .z e D(A) (4.11)
k=0

then A generates a contractive and asymptotically stable Cy-semigroup (T (t))i>o0-

Proof. From the dissipativity of A it follows that A generates a contractive Cy-
semigroup on X, thanks to Theorem [3.3.6] Since by the same theorem A has
compact resolvent it suffices to prove that o,(A) C C, i.e. we have to show that
iR C p(A). Let 8 € R be arbitrary and consider a solution & € D(A) of the problem

ifx = Azx.

Then, from the dissipation condition on A we conclude that

N—-1 2 1
’(”Hx)(k)(o)‘ < —Re(4a,2)x =0,
k=0

so that x € ker(if — ) and 2?;01 ‘(Hm)(k)(0)|2 = 0. Next we show that this
already implies that = 0, so that i8 & 0,(A4) = 0(A). In fact,

N—-1 9
2 € ker(if — ), ‘(m)“v)(())‘ ~0
k=0
N N-1
< ipz(C) — ZPk(HJ;)(k)(C) =0, a.e. ¢ €(0,1), Z ‘ (Ha)®) (0 ‘ =0
k=0 k=0

and since ‘H and P, are Lipschitz continuous this ordinary differential equation has
the unique solution x = 0. We deduce that i ¢ 0,(A) and since 8 € R had been
arbitrary this implies iR N o,(A) = (. Asymptotic stability follows from Corollary
2.2.16 O
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Remark 4.2.3. Although already quite short in total, the proof of[4.2.9 consists of
two parts, namely first noting that A generates a contractive Cy-semigroup and that

whenever x € ker(iff — A) we have sz:_Ol ’(Hm)(k) (O)’2 = 0. Then in the second
part we actually showed that for any x € ker(if — 2A) with Zg:_ol |(7—£$)(k)(0)‘2 =0
we must have x = 0. Therefore, the second part is actually a statement on A rather
than on A which leads us to the definition and corollary below.

Definition 4.2.4. Let B : D(B) C X — X be a closed linear operator and R €
B(D(B); H) for some Hilbert space H. We say that the pair (B, R) has property
if for all B € R we have ker(i — B) Nker R = {0}, i.e.

ifr =Bz and Re =0 = x=0. (ASP)

Remark 4.2.5. In the article [AuJalj)] we used a slightly different terminology,
namely there we would say that R has property [ASH for the operator B. Also in
that case we did not necessarily demand that R would be linear and directly started

from implication (ASP)) as definition.

Remark 4.2.6. Let (B, R) a pair with pmpem‘y and By C B a closed restric-
tion of B and Ry € B(D(By); Hy) (Ho another Hilbert space) such that ker Ry C
ker R, then also the pair (By, Ro) has property . In particular, for every k # 0

the pair (B, kR) has property[ASP,

Proof. For every 8 € R we have
ker(if — By) Nker Ry C ker(if — B) N ker R.

From here the statement is obvious. [
Therefore, the second part of the proof of Theorem says the following.

Corollary 4.2.7. Let 2 be a (mazimal) port-Hamiltonian operator of order N € N
and assume that H and Py are Lipschitz continuous. Then for R € B(D(2); FN?)

given by
(Hz)(0)
(H=)'(0)
Rz = 19(Hx) = .

(Hz) N =1 (0)

the pair (A, R) has property .

Moreover, we have the abstract result connecting property [ASP]to asymptotic sta-
bility of the Cy-semigroup (T'(t));>0 generated by a port-Hamiltonian operator A.

Proposition 4.2.8. Let A be a port-Hamiltonian operator with boundary conditions
such that
Re (Az,7)x < — | Ra|)”

for some R € B(D(); H) such that the pair (2, R) has property . Then A
generates an asymptotically stable contraction Cy-semigroup (T'(t))i>o0-

Proof. Due to Re (Az, z) < 0 we especially have o(A) C Fg. Since R has property
then for every = € ker(i — A) where § € R we also have

|Rz||> < —Re (Az,z)x =0
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ie. z € ker(if — ) Nker R and by the property it follows = = 0, so that
iRNop(A) =0 and asymptotic stability follows by Corollary [2.2.16 O

For special structures of the port-Hamiltonian system we may also conclude asymp-
totic stability under slightly weaker, or different at least, boundary conditions.

For the particular example of an undamped nonuniform Euler-Bernoulli Beam we
conclude the following.

Lemma 4.2.9. On X = L,(0,1;F?) consider the port-Hamiltonian operator of
Euler-Bernoulli type

= [V 3 o [ o ] (2)
D) = {x € X : Ha € H*(0,1;F?)}
={z = (z1,12) € X : Hyx1, Hazxo € H*(0,1)}

where Hi and Hi are uniformly Lipschitz continuous and strictly positive scalar
functions on [0,1]. Then for every solution x € D(2l) of Yz = iz with

(H121)(0) = (H121)'(0) = 0
iB(Haz2)(0)
iB(Ha22)'(0)

the functions

(7‘[11‘1), (’Hlxl)’, Hg(’Hlxl)” = iﬂHQI’Q and (7‘[2(7‘[1%1)”)/ = iﬂ(’ngg)/
(4.12)
are either all strictly positive on (0,1] or all equal zero.

Proof. Let 5 € R be arbitrary and = € D(2) be a solution of Az = ifx. Then

—(Hawa)" = ifxy € HT ' H?(0,1)
(Hlxg)” = Z'ﬁxg S H;1H2(07 1)

so that from the continuous embedding H?(0,1) < C*[0, 1] and the Lipschitz con-
tinuity of H; and Hs we conclude that

¢ s1
(Haz1)(C) = (Haz1)(0) + / (Har)'(0) + / (Haz1)"(0)

+Hy ' (s )/32(7{2(%1951)//)/(0)+/53(Hz(Hlxl)//)/'(84)d34d53d32d81

// iBx2(0 —|—H2 52/ / B(Hax2)'(0)

+ 221 (84)dsadszdsads,
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and accordingly

Gﬁmﬂ0=/zma +H231/ / B(Har2) (0)

+5 I 83 d83d82d81

(H2(Ha21)")(C) = ifz2(0 / / B(Hax2)'(0) + B221(s52)ds2ds:

WN%%VHO=/ZM%MM)+ﬁmMM&

0

From here we conclude the assertion. In fact, assume that at least i3(Haz2)(0) > 0
or i3(Haxz2) (0) > 0. Then (Hix1), (Hiz1)', Ho(Hiz1)” and (Ha(Hiz1)") > 0 are
strictly positive on some interval (0, ] for some € € (0,1]. Let € be the supremum
of these €. Then by continuity the functions above are non-negative of (0,2] and
strictly positive on (0,%). From the formulas it then follows that all these functions
are strictly positive on [0,g]. Then € = 1 since otherwise these functions are strictly
positive on some proper supintervall (0,¢) D (0,Z], contradicting the definition of
E. O

Corollary 4.2.10. Let 2 be a port-Hamiltonian operator of Fuler-Bernoulli type
with Lipschitz-continuous H and Py as in the preceding lemma and let R : D() —
F* be given by

(H121)(0)

(Hi21)'(0)

(Haw2)(0)
R4$

Rx =

where Ryr = (Hax2)'(0), (Hix1)(1), (Hix1)' (1) or (Haw2)'(0). Then the pair
(2, R) has property[ASP, Also the pair (A, R) with

has property [ASH

Proof. Let 8 € R and = € D(2) such that Az = ifz and Rx = 0. Then from
the preceding lemma either Hi2z1 = 0 or (possibly after multiplication with some
a € ) all the functions Hyx1, (Hi1z1)’,i8(Haxs) and i8(Haxo)' are strictly positive

n (0,1], in particular i5(Haz2)(1) > 0 and i8(Hax2)'(1) > 0, but the latter is
impossible whenever Rz = 0. The second statement follows in similar fashion. O

Remark 4.2.11. Although the stability properties of port-Hamiltonian systems with
conservative boundary conditions, but which are damped through the dissipative term
Py € Loo(0,1;F¥*%) are in general not in the focus of this thesis, we state the
following asymptotic stability result, nevertheless. Let X = Ly(0,1;F?) and consider
the Euler-Bernoulli type port-Hamiltonian operator with viscous damping, i.e. for
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some Lipschitz continuous function v € WL (0,1;F) such that Re v > 0 on some
interval (€1,e2) € (0,1) and Re v > 0 on (0,1) we consider

Ql_0—16271110 1 Yy O || Hi 0 L1
Tl o0 o] 0 H w2 ) [0 0] 0 H T2
D) = {z € X : Hz € H*(0,1;F?)}
= {x = (xl,xQ) € X :Hixy, Hoxo € H2(071)}

Then for every choice of (¢1,¢2) € {(0,0),(0,1),(1,1)} and {c1,c2} = {0,1} and
R: D) — F* defined as

(Hiz1)(C1)
ca(Hiz1)(1—¢) + (1 —e1)(Haz2)' (1 — 1)
(Haw2)(C2)
ca(Haz2)(1 — C2) + (1 — c2)(Hiz1)' (1 — C2)

the pair (A, R) has property .

Proof. Let x € D(2() be a solution of Axr = ifz with Rx = 0. Then we observe
that

0 = Re (ifz,z)x = Re (~z,z) x
= —Re (y(Hiz1), (Hiz1)) L, + Re (fo 11e) €0,712) 72
= —Re <’7(7‘l1$1)7 (H1$1)>L2

because Re (f5,72,€02z)r2 = 0 follows from Rz = 0. Since v > 0 on (e1,&2) it
follows that (H121) = (Hiz1)' = (Hiz1)” =0 on (e1,€2). Then from

iﬁl‘l = _(HQI'Q)N — 2’)/(7'[1131), i,@l‘g = (7‘[1131)”

we deduce that in the case that § # 0 we have also (Haze) = (Haxa)' = (Haze)” =0
on (e1,€2). Solving the initial value problems

iBr(Q) = — [ 3] (He)"(¢) = [+(©) —1] (Hx)(C), ¢ € (0,1)
(H >(> (Ha)'(e1) =
iBr(Q) = — [ 3] (Ha)"(¢) — [+ —1] (H=x)((), ¢ € (e2,1)

(H)(e2) = (Hx)'(e2) =0

we conclude that x = 0 provided 5 # 0. On the other hand, if 5 = 0, we have
(H1z1)” =0 on (0,1), so that (H121) takes the form

(H121)(C) = (H121)(0) + ¢((H121)'(0), ¢ €[0,1]

but since (Hi21) = 0 on (£1,e2) this implies that already (H121) = 0 on the whole
interval (0, 1). Then also (Haz2)” =0 on (0,1), i.e

(Haw2)(C) = (H2w2)(0) + ((Haw2)'(0), ¢ €[0,1]

and from the additional constraint that Rz = 0 and ¢; # ¢y we obtain that z =0
in any case. O
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4.3 Uniform Exponential Stability

We continue with the investigation of stability properties and after our short trip
to asymptotic stability again focus on uniform exponential stability. Here the main
focus lies on systems with order N > 2, however we also encounter new methods
to prove the known results for the case N = 1. Therefore, we start by considering
the special case N = 1 once again and using two new techniques to obtain the
very same results as had been established by the sideways-energy method before.
Only then we look at higher order systems and afterwards consider systems with
strict dissipation at both ends. We will see that strict dissipation at both ends in
any case leads to uniform exponential stabilisation, regardless of the order N € N
of the port-Hamiltonian system. Although this result is not surprising at all, it
helps to understand the ideas behind the proof techniques better. We can give
uniform exponential stability results under much less restrictive conditions than
strict dissipation at both ends.

4.3.1 First Order Port-Hamiltonian Systems

Within this subsection, the port-Hamiltonian operator 2 always is of order N =1,
i.e. A always has the form

Az = Py (Hz) + Po(Hz).

As for the known uniform exponentially stability results of Section [I.I] - and also
for the asymptotic stability results in Section [4.2] — we assume that H and P, are
Lipschitz continuous. Our aim is to give alternative proofs for Theorem for
which the technique of proof may also apply to port-Hamiltonian systems of order
N > 2.

Theorem 4.3.1 (= Theorem . Assume that the Hamiltonian-density matriz
function H and Py are Lipschitz-continuous. If the operator A satisfies the assump-
tion

Re (Az,z)x < —k|(Hz)(0)]*, =z € D(A)
for some Kk > 0, then A generates a uniformly exponentially stable and contractive
Co-semigroup on the Hilbert space X.

Alternative Proof via the Gearhart-Greiner-Priiss Theorem. The first
alternative proof we present is based on the Gearhart-Greiner-Priiss Theorem [2.2.17]
It had already been presented in Proposition 2.12 of [AuJal4] for the case that P, is
a constant matrix. Here the results of the preceding Section [4.2] come at hand since
from Theorem we can already deduce that the semigroup (7T'(t)):>0 generated
by the operator A is asymptotically stable and o(A) = 0,(A) C Cy . Therefore, it
remains to check the uniform boundedness of the resolvents on the imaginary axis,
ie.

sup [[R(i8, A)]| < +o0

BER

or, equivalently, the following sequence criterion, see Corollary [2.2.19

n—oo

V(Zn, Bn)n>1 € D(A) x R with sup ||z, ||y < +oo and |B,| —— +o0:
neN

By — Az, 225250 = |zl

n—oo

—— 0.
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So let (zn, Bn)n>1 € D(A) x R be any sequence with sup,,cy ||zn|l x < 400, |Bn] —
+o0 (as n — o0) and such that

. —
180Ty — Axy, nzteo ),

Then
n—-+oo

k& |(Hz)(0))? < —Re (Azy — iBpan, Tn) x ——a2s 0.

Thus, we have a sequence (Zn,Bn)n>1 € D(R) x R with sup,, ||z,]y < +oo and
|Bn| = 400 (as n — o00) such that

iBrtn — Ay —=225 0, (Hxy,)(0) 2225 0.

Next we show that this already implies that ||z,|y — 0 (n — 00). For this end, we
employ the following useful lemmas.

Lemma 4.3.2. Let Q € WL (0,1;F4*?) be a Lipschitz-continuous function of sym-
metric matrices and x € H(0,1;F?). Then

1 1

Re (¢!, Qo)1 = — (0. Qa)i, + 5 (O, QU

Proof. Using the self-adjointness of Q(¢) for a.e. ¢ € (0,1) we compute

2Re (2", Qx)p, = (', Qx)p, + (x,Q2') 1,
= —(2,Q') L, + [(x(0), Q(O)x(C))xaly -
O

Lemma 4.3.3. Let o > 0 and 8,7 > 0 be given. Then there is a scalar function
n € C*([0,1];R) with n(0) = 0 and strictly positive derivative ' > 0 such that

an'(¢) = An(¢) = v, ¢ €[0,1]. (4.13)

Proof. Scaling n by the factor % it is enough to consider the case v = 1. We make
the ansatz n(¢) = e’ — 1 for A > 0 which we are going to specify. Then equation

is equivalent to
(@A —B)e* >1- 5 (C€[0,1]).

Choosing A > w this condition holds. O
Let us also introduce some notation. For sequences (s,,)nen and (7, )neny we write

Tn = Sp +0(1)

if the sequence (r,, — sy )nen of differences is a null sequence.
Continuation of the proof. Since Ax, — i8,r, — 0 converges to zero in X
and the sequence (z,,)n>1 C X is bounded, also the sequence % is bounded in the

graph norm ||-||y and by Lemma we get

(Han)'

< +00.
Bn

sup
neN

Lo
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Moreover, observe that since Py(¢) is dissipative for a.e. ( € (0,1) we may also
conclude that (recall that A is dissipative if and only if P, is dissipative and A — Py
is dissipative)
0 Z Re <POHl‘n, Hl‘n>L2
= —Re <f8 Hzx, » €O 7-[9:,1>]FNd + Re <Axn7 xn>X

n—oo

> Re (Azp,xn)x —— 0

so that (Sym PO)’Hxn 272 0 in X. Letting ¢ € C([0,1];R) with ¢(1) = 0 and
having Lemma 2| in mind we find

0« Bi Re (Aan, — iBnn, ig(Han) ) 1,

n

N ﬂi Re <P1(Hmn)/7 iq(Han) ) L,

—|— — R ( (Hmn) iq(Hzy) ), — Re (Tn, ¢(Hzy) ) L, + 0o(1)
1 <mn, 2P°) (o) 1,
[ w011 (42578 <<><Hxn><<>>wh>

Re (T, qH)) 1y — (T, qH T0) 1, + 0(1)

1
L (M) ) 1 — 3 [(@n(Q)s a(QHQ)zn(C))palg — (s gH @) 1, + 0(1)
1
= 7§<wna (qu - q/H)xn>L2 + 0(1)7
since (Hxz,)(0) — 0, ¢(1) = 0 and |5,| — oo, using integration by parts and
P, = Pf. In particular, we may choose ¢ < 0 with ¢’ > 0 such that

Aq(¢) +mg'(¢) >0,  C€[0,1].

where H(¢) > mlI and +H'(¢) < M for a.e. ¢ € [0,1], see Lemmal4.3.3] so ¢'H —qH’
is coercive as multiplication operator on X. This implies that

2l x = V/{@n, (@H — qgH )wn) L, == 0.

T2

Hence, the sequence criterion for uniform exponential stability is satisfied and
therefore the Cp-semigroup (T'(t));>o is uniformly exponentially stable by Corol-
lary O
As the proof for the asymptotic stability result, Theorem this proof of Theo-
rem [£.1.5] leads us to a definition closely related to uniform exponential stability of
the Cy-semigroup (T'(t))¢>0-

Definition 4.3.4. Let B : D(B) C X — X be a closed linear operator and R €
B(D(B); H) where H is another Hilbert space. We then say that the pair (B, R)
has property if the following holds. For all sequences (xy, Bn)n>1 € D(B) xR

n—-+oo

with sup,,ey ||z || < +oo and |B,| ——— +o0

iBpxn — Bxy, — 0 and Rx,, -0 = x,— 0. (AIEP)
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Moreover, we say that the pair (B, R) has property if it has properties
[ASP and[ATEPL (ESP)

Remark 4.3.5. Note that as for the notion [ASH another notation had been used
in JAuJalj)]. Instead of saying that the pair (2, R) has property there we
would say that R has property [ATED for the operator 2.

With the properties [ATEP] and [ESP] we may find the following general result.

Proposition 4.3.6. Let A be a port-Hamiltonian operator with suitable boundary
conditions and R € B(D(1); H) for some Hilbert space H such that

Re (Az,z)x < —|Rz||3,, =z € D(A).

If 0,(A) C Cy and the pair (A, R) has property then the contraction Cop-
semigroup (T'(t))i>0 generated by A is uniformly exponentially stable. In particular,
if the pair (2, R) has property then the Cy-semigroup (T'(t))i>o is uniformly
exponentially stable.

Proof. Let (zn,fn)n>1 € D(R) x R be any sequence with sup, oy ||zn]|z, < +o0
and |5, — +oo such that 2, —i5,2, — 0. Then the dissipation condition implies
that

0 ¢ Re (iBp2n — Azp,zn)x > ||Ren >0,

ie. R, — 0 as n — +o0o. Since the pair (2, R) has property |[ATEP| this leads
to x,, — 0 and therefore the sequence criterion for uniform exponential stability is
satisfied, i.e. the Cy-semigroup (7'(¢)):>0 is uniformly exponentially stable. O

Remark 4.3.7. The advantage of the method presented above is the fact that it
is possible to generalise it to port-Hamiltonian systems of order N > 2. How-
ever, since the Gearhart-Greiner-Priss Theorem states how exponential stability of
Cy-semigroups of linear operators is connected to spectral properties of its linear
generator A, the method cannot be applied to systems which inherit nonlinearities.
Since later on in Chapter[6 and Chapter [ we also want to consider systems with
nonlinear feedback, this is an unfortunate restriction. Therefore, below we present
another method which may also apply for systems with nonlinear feedback, however
with the drawback that not all situations which can be covered by the method above
for the linear case, can also be treated with the latter technique.

Alternative proof using a Lyapunov function. The proof is based on the
following result.

Proposition 4.3.8. Let % be a port-Hamiltonian operator of order N = 1 where
H and Py are Lipschitz continuous. Then there is ¢ : X — R with |q(z)| < ¢ Ha:||§(
such that for every solution v € WL (Ry; X) N Loo(Ry; D(A)) of

4,
dt
one has q(x) € WL (R4 ;R) with

d

t —
l(®)lx + 5

(t) = Ax(t)

q(z(t)) < ¢|(Hz)(t,0)]*, a.e. t > 0.



4.3. EXPONENTIAL STABILITY 95

Remark 4.3.9. In fact, also the following variants hold true for
q(z) = Re(z,nP; '), x€X

as in the proof below. If the solution lies in CY(Ry; X) N C(Ry; D)), i.e it is
classical, then also q(z) € C*(Ry; R). If the solution merely lies in W ,  (Ry; X)N

oo,loc
Looioc(Ry; D)), then q(x) € WL, (Ry; X). In both cases the claimed estimate
holds for (a.e.) t > 0.

Jloc

Proof. On X = Ly(0,1;F?) we define the quadratic functional
q(x) := (x,nP'x)p,, x€X

where 7 € C*([0,1];R) is a differentiable function with 7(1) = 0 and n’ > 0 uni-
formly on [0,1] (so that in particular 7 < 0) to be chosen at a later point. Let
r € WL(R,; X) be any solution of i = 2z. Then also ¢(z) € WL (R.;R) and
using Lemma [4.3.2] (in the last line) we obtain that for a.e. t >0

“a(e(t) = 2Re (Py(8), mr(0) 1,
= 2Re ((Ha(t)) + P Po(Ha(t)), ne(t)) L,
= —(Ha(t), (P H ™ +n(H™) = 2pRe (K7 PR Ha (b)) L,
+ [(Ha(t,C), (M) (OH(t, C)pal o -

Since 7(1) = 0 we conclude that

d
OII% + —q(z(t
eIk + Zaa(®)
< c|(Ha)(t,0)”
+ (Ha(t), (L= n)YH ™" = n(H ") + 2nRe (™' P Po) ) Ha(t)) 1, -
There are constants mg, My, Ms, M3 > 0 such that
mol < H1(C) < Mo,

(H™H'(¢) < MiI
—M3I <Re (H™Y(Q)P'PRy) < MsI, ae. (€ (0,1).

Using Lemma (for f(¢) = —n(1 —¢)) we find f € C?([0,1];R) with f(0) =0
and f’ > 0 such that

f(Q)mo — f(Q)[ My + 2M3] > My
< 07

ie. Mo — 1" (¢)mo — n(¢)[M7 + 2M3] ¢e(0,1)

and we find that

1 =7"(OH Q) +n) [-(H () +2Re (H (P ' Py)]
< (Mo — 7' (Q)mo — n(¢) [My +2M3]) I <0, a.e. ¢ € (0,1).

This concludes the proof of the proposition. O
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We proceed with the proof of Theorem by a Lyapunov functional technique.
Let zg € D(A) be arbitrary and set

x=T()zo € Cy(Ry; X) N Cy(Ry; D(A)) € W (Ry; X) N Loo(Ry; D(A))

where for any Hilbert space H we denote by Cp(Ry; H) = C(Ry; H) N Lo (R4 H)
the space of bounded continuous functions with values in H and C}(Ry; H) :=
{x € CY(R;H): x,2" € Cy(Ry; H)} is the space of all continuously differentiable
H-valued functions such the function and its first derivative are bounded. Let
q : X — R be given by Proposition in particular independent of xg € D(A),
and set

D(t) ==t |=(t)|5 + a(z(t), t>0. (4.14)
Then ® € W ,,.(Ry;R) with
Lb(t) = (1) + 21 Re (Ax(t), 20 x + o ala(t)

< (e —2tr) |(Hz)(t,0))*, ae. t>0.
Then for ¢y := 5-, which is independent of the initial value zo € D(A), we have

d
—Po(t) <0, t>t
dt ()—7 1]

and thus ® decreases on (tg,00). Since |g(f)] < c|\f||§< for some ¢ > 0 and all
f € X we also have the following estimate for ¢ > t;.

tllz(t)l% < () +cllz(t)lx < ®(to) + cllz(t)llx
and then for ¢ > max{to, c}

@(to) < to +c

2 t0+C
t <
20 < 0 ot I

2
< 22 ol

lz ()l <

Since ¢y is independent of o € D(A) we conclude from the density of D(A) in X
that for ¢ > max{to, c} the estimate

to+ ¢
t—c

1Ttz x < [#llx, zeX
is valid, so that || T'(t)|] < 1 for sufficiently large ¢. As a result, the Cy-semigroup
(T'(t))+>0 is uniformly exponentially stable thanks to Remark [2.2.12 O

Let us further address the following question to which we give a partial answer
afterwards.

Problem 4.3.10. Let A be a port-Hamiltonian operator of order N = 1 (with
boundary conditions) such that H and Py are Lipschitz continuous. Assume there
exists a constant £ > 0 and an orthogonal projection matriz Q = Q* € F¥*? such
that

Re (Az,z)x < —k (|Q7—[:c(0)\2 (- Q)H;c(m?) .z € D(A).

Does A generate an exponentially stable Cy-semigroup then?
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First we provide an easy example showing that this cannot be true, in general.

Example 4.3.11. Let d =2, H=1, Py = —P; € F¥*? and for some p12 € F let

— | 0 p12
P = [T ; }

Define A: D(A) C X — X = L2(0,1;F?) as

Az = Pll'/ + Pow
D(A) := {x € H'(0,1;F?) : 21(0) = 25(1) = 0}

and let Q = [ ] be the projection matriz on the first component. Then we have
for all x = (x1,22) € D(A)

1

Re (4r. )i, = 5 [ (0. Aa' () + (@'(Q). Pra()eadC

n / Re (2(C), Poz(C))pedC

[(2(Q), Pre(Q))e]
[(21(C), Praw2(¢))e + 22(Qpiar1 (C)ely = 0
= =k (|Qz(O)F +1(I = Q=1

N~ N~

and the Cy-semigroup is isometric (so neither strongly nor exponentially stable),
although

Re (Az,2)r, < =k (|Qz(O)F +1(I = Qa(V]*), = € D(A).

Remark 4.3.12. A more detailed analysis of the above example shows that an
operator

__ [P11 P12 /
Ar = [mpm] «" + Pox

D(A) = {y € H'(0,1)* : y1(0) = y2(0) = 0}

with p11,p22 € R generates a contractive and asymptotically (then: uniformly expo-
nentially) stable Cy-semigroup if and only if

p11 <0, pao >0 and |1011|2 + |]922|2 > 0.

Proof. First observe that A is dissipative (and then the generator of a contractive
Co-semigroup) if and only if

11 12 1 Tl 1
Re <A£U, $>L2 = [Re<[§f2 222} (302 )7 (J-“z )>]F2]O
= pu1 21(1)* = poa [22(0)]* <0, x € D(A)

and this is the case if and only if p1; < 0 and pas > 0. Moreover, if additionally at
least one of the parameters p1; # 0 or pas # 0 does not equal zero, then

Re (Az, ), < = [pul [2(1)]* = Ipa2| [2(0)]*, @ € D(4)
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then Theorem [4.1.5| implies uniform exponential stability of the Cy-semigroup. On
the other hand, if both p;; = p22 = 0 equal zero, then the Cy-semigroup is iso-
metric (as we have seen before), so cannot be asymptotically or even uniformly
exponentially stable. O

On the other hand, for projection matrices that commute with all other structural
matrices Py, Py(¢) and H(¢) (a.e. ¢ € (0,1)) in the definition of the operator A we
have a positive result which essentially follows from decomposing the system and
switching the setting of left and right for the components.

Proposition 4.3.13. Let H be uniformly positive definite and Lipschitz continuous,
P, = Py € F4*4 invertible, Py Lipschitz continuous and on X = (Lg (0, 1; Fd); (-, >X)
let the operator A be given by

Az = Pl(H.T)/ + PQ(HZ‘),
D(A) = {y e H  HY0,1)* : W (ffww) =0}

€o, Ha

where W € F*24 has full rank. Assume that there exists a orthogonal projection
matriz Q = Q? € F¥?4 commuting with all other matrices

HQ-QH=0, AQ—-QP =0, hQ-QF =0
and > 0 such that for all x € D(A)

Re (Az,2)x < —k (|QH$(O)|2 (- Q)m«a)ﬁ) .
Then the Cy-semigroup generated by A is uniformly exponentially stable.

Proof. Clearly A generates a contraction Cp-semigroup (7'(t))¢>o. Since F¢ =
ran Q @ ker Q there is an isometric isomorphism ® : F¢ — F¢ such that ®(ran Q) =
Fo x {0} C F? and ®(ker Q) = {0} x F% C F? where d; = dimran Q and dy =
d — dy = dimker Q. We write

Ox = (Byx, Dox) € T x Fo2
and set
(®2)(C) = (®1()), @21 =), @ € La(0, 1F), ¢ €(0,1)
defining a continuous map ® : Ly(0,1;F%) — Ly(0,1; F?). Further we define H €
WL (0,1;F¥*4) by setting
H(C) = D(H(®'7)), & € La(0,1;F?)
and similar P; € F*4 and Py € Lo (0, 1; F*4) via
Pz :=®(Pd'2), zelF?
Pyi = ®(Py®'%), &€ Ly(0,1;FY).
Then # is uniformly positive definite since for every z € F¢ we have
(2, H(Q)2)ra = (2, (BHET'12)(() )pa
= (&, (PHET11Q2) (s + (3, (PHET'U(L = Q)2)(C) e
= (5, PH(OP ™ Q2)pa + (£, PH(1 — ()7 (I — Q)2)(C))ra
= (271 ZH(O)P T Qa)pa + (272 H(1 = ()27 (I = Q)2)(¢))ps
> mo Q2 +mo [(I - Q)2 = mo|2*, ae. (€ (0,1).
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Similar we deduce that P; is symmetric and it is also invertible since ]51 OP o]
the product of invertible matrices. Now define on X = Ly(0,1; F¥*9) with (-, >X =

(-,H-)1, the operator

Pi(H® '2) + Py(HP %))

| (HE) + Po(H7)

D(A) = &(D(A))
ieX: HeeHY0,1;FY), Bi=0}

A7 = (4 )
(

for Bz := BP1z. Observe that
2% = (& PHE '),
= (B3, HO 7)), = Hcir%”i, ieX. (4.15)
Then due to
Re (A7,7) ¢ = Re (PAD 17, OHI1F) L,
=Re (40717, 0718)
“(|amaof + [ - @éaw)|)

— —k |2 #(0)|* = —k[2(0)]?

IN

uniform exponential stability of the semigroup (T(t))tzo generated by A follows
from Theorem and hence because of the identity

T(t)(dz) = (BT (H)d )bz = ST (t)x

(by similarity A = ®AD! of the generators and hence the semigroups) also the
Co-semigroup (T'(t))¢>0 is uniformly exponentially stable. O

Example 4.3.14. Consider three vibrating strings described by the wave equation,
cf. Example 9.8 in [JaZwIZ],

2
Q) gan(t.0) = o (O gt ) ) 20, Ce 0.1, i= 1,25

Here the physical parameters p;,T; are assumed to be uniformly positive and Lip-
schitz continuous. Now let the right end of the first beam and the left end of the
other beams be connected via a (mass-less) bar, i.e. by balance of forces

Owy Ows Ows
Ti(1 T T: =0.
WG + T(0) 52 (0) + T5(0) 52(0) =0
Further assume that at the other ends of the beams point dampers are attached, so
3w1 o 8w1
Tl(O)TC(O) = alﬁ(o)
80.)1 - awk o
Tk(l)TC(l) =- kﬁ(l), k=23
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for some constants a; > 0 (i = 1,2,3). The energy of the system is given by

Z/m

and using the boundary conditions one easily obtains the balance equation

ow;

0 +1i0|%ewof

C) d¢

2 2 2

dE

8
— (= -

ot

8W1

ot

—, (t,0)

-, (t:3)

To reformulate the problem in our port-Hamiltonian standard form we set similar

to Example[3.1.9

Wi, Tio = ==w;, =123

0
T ac "
and H = diag (H1, Ha2, H3) € WL (0,1;F*6) where

1
R pi
e [F ]

Moreover, Py =0 € %6 and the matriz P, € F%6 is given as

Clearly Py and H commute with the orthogonal projection @Q : F¢ — F? x {0} on
the first two components and we have for the operator Ax = Py(Hz)" with

D(A) = {x € Ly(0,1;F%) : Hx € H*(0,1;FS) satisfies the b.c.}
the dissipation relation
Re (Az, ) x = —a1 [(H121)2(0)[* — a2 [(Haws)a(1)|* — a3 | (Haws)o(1)|”

for all x € D(A). If we assume that o; > 0 (i = 1,2,3) we obtain for k :=
min{on, ag, ag} > 0 that

Re (Az, 2) < = (I(Haz) () + |(Hawa) (DI + [(Haas) (1))
=~ (JQH)O) + (T = Q)(Ha) (1))
for allx € D(A). As a result, from Pmposz’tion we obtain uniform exponen-
tial stability. [
4.3.2 Second Order Port-Hamiltonian Systems

As we have seen in the preceding subsection, for first order (N = 1) port-Hamiltonian
systems the sufficient criterion for asymptotic stability in Theorem even guar-
antees uniform exponential stability, see Theorem In this subsection — just as
in the article [AuJald] — we consider second order port-Hamiltonian systems, i.e.

Az = Py(Hx)" + Py(Hx) + Py(Hx), x€ D) =H1H?*0,1;F?)
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and
A =Alpe) for D(A) = {w € D) : W (L7 ) = 0}.

€o, Ha

We observe that for port-Hamiltonian systems of order N = 2 we may obtain ex-
ponential stability by adding an additional term in the dissipativity relation 7
which had been enough for asymptotic stability, see Theorem but not suffi-
cient for uniform exponential stability, see Example

Theorem 4.3.15. Let A be a port-Hamiltonian operator of order N = 2 and as-
sume that Py and H € WL (0,1;F9*4) are Lipschitz continuous and A satisfies the
stronger dissipativity condition

Re (Az,2)x < —& [|(H2) (O) +|(Ha) (0))

+ T (Ha) (D] + (T — T Py(Ha)' (1) (4.16)

for some positive constant k > 0 and some orthogonal projection I1 : FN4 — FNd,
Then for R: D() — F4d

(L0
Rz = (M) (1) (4.17)
(I = 1) (Ha)'(1)

the pair (A, R) has property[ESH and hence the Co-semigroup (T(t))e>0 generated
by A is uniformly exponentially stable.

Proof. Let us show that the pair (2(, R) has property @ Since (A, R) clearly
has property [ASP| by Theorem and Remark [£.2.6] it only remains to verify
property [ATEP]

Let (@n, Bn)n>1 € D(2A) xR be a sequence with sup,,¢ ||| y < 00 and |8, = +00
as n — —+o0o such that

n—oo

iBntn — Ax, —22 0 in Ly(0,1;F9) (4.18)

n—oo

and Rx,, —— 0. Then

(Han)(0), (Hzn) (0), (Ha,) (1) 222 0. (4.19)

Br
is bounded. Choosing n € (£,2) and using Lemma [2.1.19| we obtain

Further by equation (4.18)) and Lemma|3.2.3|the sequence (H’”") C H?(0,1;F9)
n>1

Hxn Hwn n/2 1-n/2
2 ~ [HanllL, ™"
|ﬂn| o1 Bn H?

Hax

In particular, (since |5,| — o) it follows that

and so does (Hﬁ#)/ in Ly(0,1;F%). Now we establish z,, ——— 0 in Ly (0, 1; F%) using

a multiplier technique similar to the first alternative proof of Theorem For
this end, let ¢ € C?([0,1];R) be any function with ¢(1) = 0. Then integrating by

5 'n converges to zero in C1([0, 1]; F?),
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parts and employing the assumptions on the matrices P;, P» and equation (4.19)
we conclude — also using Lemma -

2Re (Py(Hxy)", EZQ( Y Hzn) )L,
L {(Han) (1P () Hn) V1w — = [a(O)((Hrn) (€, iPa(Harn) () pall

ﬁn Bn
Bln (M), (iP)d () (Han)) 1, + 0(1)

n—oo

since ¢(1) = 0 and (Hz,) (0) —— 0. Further

L ig()(Haa)' )1y = 0

Re (P (Hxy,), 5

since P = P, and

L ig()(Hrn)) 1y = 0(1)

Re (Py(Hzy), 3

due to (HBL”) 272 (0 in X. Similar we obtain

2Re (2, q(-)(Hen) )1,

— 2Re (20, q(-YH ()en) L, +2Re (20, a(YH()2)) 1,

— 2, g(H (V) s — (@ (@) 70) 1 + [0() (@0 () HQn ()l
= (ea, (@OVH ) — ¢ RO, + 0l1)

since ¢(1) =0 and z,(0) — 0.

Re (Py(Ha,)", ﬂim%-)mmn)m

n

ﬂinuq’o(%xn))'m
+ E Re [¢'(Q){(Hwn) (), (—iP2)(Han)(C))paly

= Re ((Hz,)',

= —Re (Py(Hz,),

E(ipz)ql(')(ﬂxn)'>Lz

+ Re (Han), B%iq”(.)(mn)m +o(1) (4.20)
L (iPy)q () (Ha) 1 + 0(1),

= ((Han)', 3,

n—roo

due to (Hz,)(0), (Hxy,)'(0), II(Hzy,) (1), (I —11) Py(Hzy,) (1) —— 0, where we also
used that II is orthogonal. Moreover, we have

Lid (Y a1, = o(1)

Re (P (Hxy,), 5
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(Hln)/ n—oo

since —— 0 in X and sup,,cy [|zn|| < 400, and

Re (Po(Han), g—nz‘q%-)(%xn)m = o(1),
Re (n, ' () (Hn)) £y = (s @' (VHan) 1.

This implies that for n — oo

0+ 2Re <P2(H.’En)// + P (H-’L’n>/ + PO(H-'ETL) - i/anna ﬂiiQ(')(Hxn)/>L2
- B—i«mn)z (iP)q' () (Hn) )1,

= (@n, (qOOH'() = ¢ (YH())zn) L, +0(1) (4.21)

and

0 + Re <P2(HIn)H + P (Hxn)/ + PO(HIn) — iBnTn, ﬂiiq/(')(HIn»Lz
1

= E«Hm"),’ (iP2)q () (Han) ) o — (@ns @' ()H()2n) L, +0(1). (4.22)
By subtracting equations and we arrive at
(@ns (@) () = 2¢'OYHO))zn) £ == 0.

If there is some ¢ such that ¢(-)H'(-) — 2¢'(-)H(-) > 0, this enables us to conclude
[znll;, — 0. Indeed, Lemma says that we can choose ¢ € C%([0,1];R) such
that

q(1) =0, ¢ <0 and ¢gM; —2¢'(-)m > 0

where H(¢) > mlI and H'(¢) < M;yI for almost all ¢ € [0,1] and some constants
m,M; > 0. More precisely let f be the function given by the lemma and set
q(¢) = —f(1 = ¢). From this we infer z,, =——— 0 in X. Property of the pair
(2, R) and by Proposition uniform exponential stability follow. O

Remark 4.3.16. From the proof we may also extract stability properties provided
H satisfies some additional properties. In fact we have the following. Let 2 be a
mazimal port-Hamiltonian operator with Lipschitz continuous H and Py. If there
is ¢ € C([0,1];R) such that q(0) = q(1) = 0 and still the matriz-valued function
2¢'H — qH’ is coercive as multiplication operator on X, then for

(I rr[[()?]-ix()’?'('?))'(o)
R:DQ) = F4 21— 1'[’(7—[23:)(1)
(I -1 P (Hz)' (1)

where ILIT" € F¥%4 are orthogonal projections, the pair (A, R) has property|AIEP,

We also give an alternative proof for the case N = 2 under the additional restriction
that #H is constant along ¢ € (0,1) and that P, = Py = 0. The proof is similar to
the second alternative proof (Lyapunov technique) for the case N =1 in Theorem

4.1.0l
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Alternative Proof. In the following we also apply the Lyapunov technique to
port-Hamiltonian operators of order N = 2. However, we have to restrict ourselves
to port-Hamiltonian systems for which P; = Py = 0 and the derivative H’ is small
compared to H.

Lemma 4.3.17. Let A be a port-Hamiltonian operator of order N = 2 and assume
that P, = Py = 0 and the Hamiltonian density matriz function H is Lipschitz
continuous and satisfies the condition

H(Q) — (1 =QH'(¢) =€'l, ae C€(0,1)
for some €’ > 0. Then there is a function q : X — R with |¢(x)| < é ||x||§( such that
for every solution v € WL (R, ; X) N Loo(Ry; D(A)) of @ = Ax one has

L a(w(t) <~ e + e (IO + () O)F + (M) DF), e 1> 0.

Proof. Let x € WL (R4;X) N Loo(Ry; D(A)) be an arbitrary mild solution of
& = Az and write z(t,() := x(¢)(¢). Further let n € C*°(]0,1];R) be a real-valued
function, which we specify at a later point, and define the continuous quadratic
functional

a(x) = 2Re (nP; 'z, / ede),

0

1 ¢
=2Re [ (P 12(0), [ #(de)sudc
Then we obtain

a(w(t)

=2Re( 77P xe(t xtEdE L, +2Re (nPy z()/.mt(t,ﬁ)dQLQ

0

— 9Re (n(H2)"(t), | w(t,€)de)r, — 2Re <m~(t),A'(Hx)"(t,g)dg>L2

Nc\

= —2Re (1 (Hz)'(1), x(t €)dS) L, — 2Re (n(Hx)'(t), 2(1)) L,

S~

1
+ 2Re

¢
U(C)<(Hl’)’(t,é),/o l’(t,f)dOw]

0

— 2Re (na(t), (Ha) ()1, + 2Re / na(t, €)d€, (M) (1, 0))pa

— 9Re (if" (Har) (), / (6, €)dE) 1, + 20 Hr(t), 2(t))

¢ 1
~2Re |5 (O){(Ha)(t,C), / x(t,@dgm]

0 0

~4Re (y(Ha).2)p, + 2Re [n(l)«%x)'(t,l), / x(t,@dsm}
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+2Re( / n(E)x(t, €)de, (Ha)'(t,0))ea
et /0 (1 €)de, /0 (. €)dE) 1,

¢ ¢ !
+ o /) £(t,€)dE, H A z(t7£)d€>w]

¢ 0

— 4z, x), + (M) 2, 2) 1, — 2 [0(O) (@(C), H(Ox(O))rel

1
20 Her(t). 2(1)) 1, — 2Re [n’m«m)(t,l), / x(t@)dgm]

0

1
+2Re [o)((Ha) (0.1), [ a(t.€)de)e]
1

+2Re( / n(E)(t, €)de, (Ha (£,0))gs
< (" Hy / a(t, €)de, / (6, €)dE)

(1) / o(t,€)de, H / £t €)d€) g + 2((n/H — ! )a(t), 2(t))1,

£ 20(0)] (2(0), (Ha)(0)) s+ 2 n(V)] (a(1), (Hr) (1) + — [/ (1) ()1, 1)
/ o(t,€)de

0

/ e(t,€)de

2
+ My 1,002

+a L (1) () 1,1)

2 1
2
O d
+a +06/0 (¢, &) d§

Now we may choose 1(¢) = 1 — ¢ and conclude that since

=1 (QH(C) = n(QOH'(C) = H(() — (1 = QH'(C) > "I, ae. (€(0,1)
that for some ¢ > 0 one has

d 2
Za(w(t) < = e + - (M) O)F + (M) O +|(HDDI), ae.t 20
Then the result follows with ¢ replaced by %q. O

In this case uniform exponential stability can be derived from the following general
observation.

Lemma 4.3.18. Let & = (2,B, €) be a port-Hamiltonian system in boundary con-
trol and observation form and assume that for A := Ulxer 3+ K¢ and some orthogonal
projection I1 € FN? — FN? gnd o constant k > 0 the estimate

Re (Az,z)x < —& <|%x|2 + \H@:F) . z€D(A)

holds good. Further assume that there are ¢ > 0 and q¢ : X — R with |g(x)| <
é||ac\|§( (z € X) such that for every solution x € WL (Ry;X) X Loo(Ry; D()) of
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@ = Az one has q(x) € WL (R,) with

d
Za(a(t) < — 2@k +e (|%x|2 + |H€x\2> , ae t>0.

Then A generates a contractive and uniformly exponentially stable Cy-semigroup on
X.

Proof. Let z9 € D(A) and T(-)z € CY(Ry; X) N C(Ry; D(A)) be the classical
solution of the Cauchy problem for this initial value. As in the case of N = 1 one
sees that for some ¢y > 0 (independent of zo € D(A)) one has for

S(a(t) = a(t)llx + alx(t), t=0

that J

5 2((®) < (c - 26t) (|‘Bx\2 + \He:x|2) <0, >t
where the time ¢y := 5~ > 0 does not depend on the initial value z € D(A). Then
uniform exponential stability follows just as in the case N = 1. O

4.3.3 Euler-Bernoulli Beam Equations

For the special class of port-Hamiltonian systems of Euler-Bernoulli type which
have some anti-diagonal structure we prove the following result which allows weaker
assumptions on the boundary dissipation.

Proposition 4.3.19. Let d € 2N be even and assume that & = (UA,B,C) is a
port-Hamiltonian operator of the following form. Assume that H = diag (H1, Hz)
for Lipschitz continuous matriz-valued functions Hi,Ha € WL (0, 1;Fd/2><d/2) and
P, has the form
_ 0 M,
= g 0
for an invertible matriz Moy € F4/?2%4/2 and Py € WL (0,1;F4*4) is Lipschitz con-

tinuous. Let A = Ulyer(xe) e its restriction to some dissipative boundary con-
ditions. Assume that there is some k > 0 such that, for all x = (z1,22) € D(A)

(H1z1)'(0)|?
Re <AI,ZE>X < —K <|(H.I)(O)|2 —+ { | or | }

|(Ha2)'(0) ]
+{ |(Haz) ()2 }+{|(H1z32'(1)|2 })
|(Haaa)' (1) |(Haz) D J )
where we write T4 3 x(¢) = (21(¢), 22(¢)) € F¥2 x F¥2, and assume that A has

no eigenvalue on the imaginary axis. Then the contractive Co-semigroup (T'(t))i>o0
generated by A is uniformly exponentially stable. More precisely, for

(Hz)(0)
(H121)'(0) + (I — H)M2(H2$2)( )
' (Hyz1)(1) + (I — ') My (Haw2)' (1)
" (Hyz1)'(1) + (I = TI") My (Haw2)(1)

R:D@®) = F* 2+ R :=

where TL T, T : F4/2%4/2 qre orthogonal projections, the pair (A, R) has property
[AIED
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Proof. Let ((zn,1,%n,2); Bn)n>1 € D(A) x R be a sequence with finite supremum
n—+4o0o

SUPpeN HgCnHL2 < 400 and |3,| —— +oo such that
ALy, — iBnTn —— 0. (4.23)

It then follows from Lemma [2.1.10] that

};‘f” 2% 0 in C1([0, 1); FY)

so that for every function ¢ € C%([0,1];F?) with ¢(1) = 0 we have

iq
| B
= Re (P (Hzn), ;—i(’l-{xn)’)h +o(1)

= o(1) (4.24)

Re (P (Hzy)' + Po(Hey), - (Han) ) L,

since iqPs is skew-adjoint. Moreover, we deduce from Lemma the equality

Re <Zﬂnxn7 ;ﬁ (H‘T")I>L2

= Re <xna Q(ngn)/>L2

= 2w M — M), + 5 [ Q). (@) Qral Oy

Using that (é—i(’}-{xn)’ ) - is a bounded sequence in X and employing equation
n

(4.24) we then find that

1
— §<In7 (@M —qH)zn) L,

= Re (i (Hn), - (n) )2 = 5 [(@n(O). aH(C)n (O
= Re @y, £ (Ha)') 1 = 5 [0 a1 (C)re]s + o)
— Re (My(Han )", ;%(Hlxm)'m + Re (—M; (Hazn 1), %(ngm)’m

— 5 [ Q). AH(Oa( O]y + 0(1)
=~ Re (Ma(Ha ), 2o (Mo )1,

R [0 (©). L G ]|

— 5 (O, aHQzal el + 0(1) (4.25)

On the other hand we also find
Re (Py(Hzyn) + Po(Hzy), Lq/(?—lxn»LQ =o(1) (4.26)

P
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and

iq
B
so that we also obtain — this time using that the sequence (iq’B,'(Hzp))n>1 is
bounded, in fact a null sequence, in X — and equation that also

Re <'Lﬂnxn; (Hxn)>L2 = Re <xn7 quxn>L2

Re (zn, ¢ Hrn) 1,
i /
%Hl’n>[/2
iq’
= Re AUz, B—Ha:n>L2 +o(1)

= Re <M2(/H2xn)2)//,

= Re <Zﬁ’ﬂxn7

iq
Bn
+ Re (=M (Hizn1)",

(H1%n,1)) L,

%(Hzxn,z»h +o(1)

= —2Re (My(Haw,2)"(C), %(Hlxn,l)/>L2

* {Re (M (Han 2 (C), L)

Bn
iq'(¢)
Bn

To eliminate the integral terms with M in equations (4.25)) and (4.27) we subtract
two times equation (4.25) from equation (4.27) and obtain

Re({xn,2¢H — qH'x,) 1,
= <xna (qu - qu)xn>Lg + Re <xn7 q,Hxn>L2

i4(¢) (%wn,l)’(c»m]

mm(c»mh

(Hlxn,n'(cm] fol)  (427)

0

+ {Re (M (Hawn,2)(C),

1

= —2Re |:<M2(H2«Tn,2)/<<)’ 5

+ [(2a (), a1 (Q)n(C)elg
iq'(¢)
B
iq' ()
Bn
We are now in the position to determine some functions R such that the pair

(A, R) has property |AIEP| For this recall that % 22F0 0 in C1([0,1]; F?),

so that using the Cauchy-Schwarz inequality we mgy estimate one factor in each

boundary component by (the square of) a term which thanks to the factor Bi

0

1

i [Re (M (Han 2)' (0), Hlxm(c»@

0
1

(%wn,l)’(om] o) @

+ {Re (Ma(Hawn,2)(C),

convergences to zero and another (square of a term) which (without a factor Bi)

converges to zero, whenever Rz, 272, 0. On the other hand the matrix-valued

function 2¢'H — qH' € Lo (0, 1;F4*4) should be a coercive operator on X, so that
we can conclude that z, === 0 in X if the right-hand side converges to zero. Note
that in general it is not possible to choose ¢ € C*°([0, 1]; R) such that 2¢'H — ¢H’ is
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coercive, i.e. 2¢'H — qH' > eI for a.e. { € (0,1) for some € > 0, and both ¢(0) =0
and ¢(1) = 0 at the same time. (Note, however, that if H € W..([0,1];F¢*9) has
a special form this is possible, indeed, and then the conditions on R for (2, R)
having property |[AIEP| are less restrictive.) Here we use Lemma [4.3.3| and choose
g € C*([0,1];R) such that ¢(1) = 0 and then conclude that R has property [ATEP)
if it contains each of the following terms.

1. H(’Hlxl)’(O) + (I — H)Mg(?‘lgiﬂz)/(O)

2. (Hz)(0)

3. I (Hyz)(1) + (I — IT") My (Hoxs)' (1)

4 T (Hazy) (1) + (1 — 1) My (Haws)(1).

We therefore conclude that the assertions of the theorem hold. O

Remark 4.3.20. In Proposition the following results hold if we assume we
demand particular conditions on H.

1. If there is ¢ € C*°([0,1];R) with q(0) = ¢(1) = 0 and such that 2¢'H — qH’
is a coercive multiplication operator on X, then for the following choices of R

the pair (A, R) has property|AIEP,

o TI(Hiz1)'(0) 4+ (I — II)Ma(Haz2)'(0)
R = (o) + - T e ) <F°

where II and II' € F#/2%4/2 qre orthogonal projections.

2. If there is ¢ € C>(]0,1];R) with ¢'(0) = q(1) = 0 and such that 2¢'H — qH’
(in particular qH'(¢) > €I for some ¢ > 0 and a.e. ¢ € (0,1)) is a coercive
multiplication operator on X, then for the following choices of R the pair

(A, R) has property|AIEP,

= (Hz)(0)
e ( M(Haz1)'(0) + (I = ) Mo (Hax5)'(0) ) er

where II € F4/2%4/2 s an orthogonal projection.

We also apply the Lyapunov method proof technique for exponential stability to
the Euler-Bernoulli beam model and restrict ourselves in the following exposition
to the case of a single Euler-Bernoulli beam equation, i.e. we consider the port-
Hamiltonian system of the special form

X1 _ 0 1 82 Hl 0 T
Q‘(:c2>_[1 o}a@ 0 Hy |\ 2 (4.29)
where Hq,Ho are two positive Lipschitz continuous functions. We then define on
the energy state space X = (L2(0,1;F?); (-, -)%) the quadratic functional

q(z) = Re <I17n/0. x2d€)r,, v€X (4.30)

where n € C*°([0,1];R) is a suitable smooth function which we chose at a later
point.
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Remark 4.3.21. If q is linear this is exactly the choice of q in the article [Ch+87),
where actually a chain of Fuler-Bernoulli beams had been considered.

We then have for every solution € WL (Ry; X) N Loo(Ry; D(2A)) of & = Az that

%Q(l‘)

= Re <$1,t777/ x2d€) 1, + Re <9€1777/ TodE) 1,
0 0

— Re ((Ham)" 1 / r9d€) 1, — Re {na, / (Hyra)"d€),

= —Re <(H2$2)/, 77/ / .T2d§>L2 — Re <(7‘[2$2)/, ’I]l‘2>L2
0

4 Re ((Haira) (1), (1) / 2(Q)dC)s
—Re (nz1, (Haz1)') 1, + Re (ney, (Hi21)'(0)) 1,

= Re <H29€2,77”/ T2d€) 1, + Re (Hoxa,n'x2) 1,
0

—Re <(H2x2)(1)a77l(1)/0 z2(C)dC)r + %(7‘[2%2» (anl)/H2x2>L2

1
— 5 e ((Ha2)(Q), Q) O)ely + Re {(Haa) (1) m(1) / £2(Q)dC)s

+ S {0H) s, M), — 5 [Re (n(Qa(0), () (),
+ Re (na1, (H121)"(0)) L,
1

L[ nag v [ L "
= 5[ wade o) [ w20+ 5[ (@ H) [ a(Oc)e

+ Re (Mo, 1f22) 1, — Re (Haw2)(1), 7/ (1) / £2()dC)

5 (Mo, (7 ) Mo, — 5 [Re {(H2) (0, 1(O)2(O) )y
+Re {(Har) (1,1(1) [ Qi)

S {H ) s, Ha) 5 [Re (1(Q(0), () (),
+Re (nz1, (H121)'(0)) L,
1

1
= () Hwr, Hawn) , + 5 (7R ) + 20Hy ) Haws, Hows) 1,

1

T LU B G

1

45w ) [ a(a)ens

1

(1) (a2 1), [ 22(Q)dCheurs — 3 a(0). (Ha) 1

0
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45 e, M) 1) [ radOna =l () Re (o)1), [ s
1

= 1(0)5(x(0), (Hz)(0))gs + Re (g1, (H121)'(0)) 1,

Now let us for a moment discuss the case that H; and Hsy are constant along the
line [0, 1]. Then the problem of finding ¢ such that %q(z) + |#(t)||* is bounded by
appropriate boundary terms reduces to finding n € C*°([0, 1];R) such that n’ < 0
on [0, 1] and by choice of 7 and the boundary terms we should control the following
terms.

— [{(Ha22)(C), n(C)a2(O))slo
2.+ [((Haz1)(0), U(C)$1(C)>IF](1)
3. —Re((Hax2)(1 fo x2(C

4. Re<(7-t2x2)’(1)777(1)f0 z2(Q)dC)w
5. Re (nx1, (H121)'(0)) L,

Since the choice n = 0 is not admissible, from the last term we see that for this
approach to work, we necessarily need dissipation in the term (H;z1)’(0), i.e. we
can only hope for an estimate of the form

d , 9
Sal@) + 2] < el () (1,0, act20.

Moreover, as we demanded that 7" < 0, in general also the third term cannot be
handled by demanding n’(1) = 0, so that only a estimate of the form
d
dat?

might possi old. e then may choose = 1—(, so that all terms includin,
ight possibly hold. We th y choose 1(¢) = 1 — ¢, so that all including

7" or n’"" are zero. These considerations lead to the following conclusion.

a(@) + =@ < e (|(Haz) (10 + [(Haw) 1. DF) . ae 120

Lemma 4.3.22. Let 2 be a port-Hamiltonian operator of order N = 2 with Py =
[,01(1)] Py = P, = 0 and assume that H = diag(Hi,Hs) is constant. Then
there is q(x) = Re (x1,n [, ©2d€) 1, such that for every solution x € WL (Ry; X) N
Loo(Ry; D(U)) the estimate

L o) + a0 < e (1) (100 + () (1, 0) + [(Ha) (1, 1))

holds for a.e. t > 0, where ¢ > 0 is independent of x.

We investigate this example a little bit further for the case that 7 is not constant. In
that case we cannot necessarily choose n € C*°([0, 1];R) to be linear and therefore
have to to handle the term

Re <H2$2777”/ rod) L, < H|77 \1/2 TodE
0

| /

Uk ( Hy (f))”d5
Vil \Jo e

1/2 H2

< Hln\
Ho
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Here for the choice
n(Q) =e " —e, ¢e€[0,1]

where a > 0 is a fixed constant and under the assumption that

mol < Ha(() < Mz, ae. ¢€(0,1)

we find that
1 cay—1 1/2 2 1 ¢
M.
n ( HQ/ (g) df) df < 72\/ a367o¢(/ aileo‘gd{dC
V |771| 0 |77 (5)‘ X ma Jo 0
2
M 1
=& 2/ e~ (e — 1)d¢
mo 0
M-
=2 (a+1—e®)
mao
and then

GO0 < 1= 22 (1= )] (a b, + 5 o, [0 + Pz

+ cea (IH2) (& 0) +[(Ha21) (O + [(Hawo) (1, 1) )

for every € > 0 and a constant ¢, o > 0 which depends on ¢ and a, but not on z.
Moreover, we have that if we have

NHTY Q)+ HTHC) = (7% —e ) (HT)(¢) —ae”HTH() < —¢

for some € > 0 and a.e. ¢ € (0,1) and at the same time 22 (o + 1 — e~) < 1, then

ma

d
14(@) < cea (IR0 + (a1 (O + [(Hawa) (D). (431)
We therefore conclude

Proposition 4.3.23. Let 2 be a port-Hamiltonian operator of order N = 2 with
P, = [,01 é] , Py = Py =0 and assume that H = diag (H1, Ha) € WL (0,1;F>*?) is
Lipschitz continuous. Assume that there are €, > 0 such that

maXeeo,1] H2(C)

- at+tl—e9)<1 4.32
mMineero,1] Ha(¢) ( ) ( )

and at the same time

NHT) Q)+ HTHC) = (7% —e ) (HT)(¢) —ae”HTH() < —¢

for a.e. ¢ € (0,1). Then there is q(x) = Re (x1,n [ 22d€) 1, (forn(¢) = e * —e™)
such that for every solution x € WL (Ry; X)NLy(Ry; D(2A)) of i = Az the estimate

L gta) + 120 < e (1) (1,00 + (Raa) (1, 0) + |(Ha) (1, 1))

holds for a.e. t > 0, where ¢ > 0 is independent of x.
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4.3.4 Arbitrary N € N — The Full Dissipative Case

In the subsections before we saw how two alternative methods may be used to prove
exponential stability in Theorem [4.1.5| and to which extend they generalise to the
case N = 2. Now we continue with these two methods and drop the restriction that
N =1or N = 2. On the other hand we try to keep the computations as simple
as possible and therefore start with the full dissipative case, i.e. strict dissipation
at both ends of the line (0,1). Clearly this is the most restrictive dissipation as-
sumption we may think of, however, we therefore establish the quite intuitive result
that with strict dissipation at both ends we can always ensure uniform exponential
stability of the Cp-semigroup (T'(t)):>0 and luckily so since if this were not true
there were even less possible boundary conditions leading to uniform exponential
stabilisation. Note that before we had already seen that in general it is enough to
have strictly dissipative boundary conditions at one end and conservative bound-
ary conditions at the other end for asymptotic stability, so we only have to ensure
boundedness of the resolvents on the imaginary axis which by Gearhart’s Theorem
implies exponential stability of the semigroup (T'(t)):>0-

Theorem 4.3.24. Let Az = ZQZ:O P.(Hz)*) be a port-Hamiltonian operator of
arbitrary order N € N with suitable boundary conditions such that

N1
Re(Ar,z)x < —k Z Z ‘(Hiﬂ)(k)(or

k=0 ¢=0,1

, x € D(A)

for some k > 0. Further assume that H € WL (0, 1;F¥*4) N WE (0, 1; F*4) where
N =2K+1 or N = 2K. Then A generates a uniformly exponentially stable
contraction Co-semigroup (T'(t))i>0 on X.

In proof the statement is again established via the Gearhart-Greiner-Priiss Theorem
where we show the following two statements based on the notion of the

property for a pair (B, R).

Lemma 4.3.25. Let A be a maximal port-Hamiltonian operator of order N € N
with H € WL (0, ;F>)nWE(0,1;F4*?) where N = 2K +1 or N = 2K. Further
let H=TF*N and R € B(D(A); H) be given by the trace map Rx = 7(Hx). Then
the pair (A, R) has property .

Clearly the combination of Proposition and Lemma implies Theorem
4.0.24
Proof. We already know that the pair (2, R) has property thanks to Theorem

and Remark We therefore proceed by checking that also property [ATEP]
is satisfied. Let (2, Bn)n>1 € D(2A) x R be any sequence with

sup ||z, || < 400, |Bn] —— +o00 and Az, — iBpr, —— 0 (4.33)
neN

and assume that

n—-+oo

Rz, = 1(Hx,) —— 0

so that all the terms (Hx,)®* () converge to zero as n — oo (k = 0,1,...,N — 1
and ¢ = 0,1). From there it follows that whenever we integrate by parts these terms
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vanish as n — co. Moreover, equation (4.33)) gives that

2 n—o0
;" B N (4.34)
and since |||y and || #]| ;~ are equivalent we conclude from (£.33) and (4.34) that
(,H$n)(N)
sup ||——— < +00.
neN Bn Lo
From there it follows with equation (4.33), Lemma [2.1.10| and Lemma [2.1.19| that
1 n oo
7. (Hzxy, ;0 (k,m >0st. k+m < N).

We distinguish the two cases N even and N odd, starting with the odd case N =
2K + 1. Then for every ¢ € C°°([0,1]; R) we deduce that

= — Re Az, — iBnxn,iq (Hxy)) L, + o(1)

ﬁn
2K+1
= —Re (zn, ¢ (Han)) L, + 7 Z Re (Pp(Hz)®) ig'(Han)) 1, + o(1)
— Re (e, ¢ (Han))p, + ﬂi Re (Pascsr (Ha) 2K ig! (Han)) 1, + of1)
_1\K
“Re (e, (M) + 51) Re (M) 5D i Py (q' (Harn)) 5 1,

K- 1 1
+Z B Re [{(Haa) *¥79(Q).iParcr1 (4 () P ()| + (1)

=0

1)K
= —Re (zn, ¢ (Hzpn))p, + ( 5) Re (Han) BV ig' P 1 (Hx,) ) 1, + 0(1)

and also

ﬁ— Re Az, — iBn2n, iq(Hzy) ) L, + o(1)

2K+1

= —Re(zn, q(Hz,) )L, Z Re (P (Han) ™ ig(Han) ), + o(1)

ﬁn
= —Re <$n7 Q(Hx”)/>L2

1
+ ﬂ— Re <P2K+1(Hxn)(2K+l) + PQK(Hxn)(2K), iq(Hxyn) ), + o(1)
1)K

— Re (e, q(Han) )1 + (_T Re (Han) D, Pare 1i(a(Han)) ).,

LY () #KD(C), Parcaia(Han) )V (0))
k=0 Bn n y 12K +119 n Frd

1

0

* (_ﬁl)K Re ((Han) " HY, Pygci(g(Han))* 1) L,
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1

K—2, .y
+ <51> Re [(Ha) D (Q), Parcila(Ha,)) O (Q))a | +0(1)
k=0 "

= —Re (zn, ¢(Hz,) )1,
(-nX
Bn
(-
Bn

K
= —Re (2, ¢(Han) )1, + K(-1)

T
(—pF-! (K) g (K)
+ T(('Hl'n) ,iq' Pore (Han )™ ) Ly

(DX
2ﬂ’ﬂ
q/rH _ qu/
2

Re ((Han) Y iPyge 1 (q(Hay ) BV + K¢/ (Han) ) 1,

+ Re ((Han) "+ igPogc (Han) ™)) L, + o(1)

Re <(Hxn)(K+1)v iq/P2K+1 (’Hxn)(K)>L2

((Hz) 5 Q) g Parc (M) (s +0(1)

(=D*
B

Subtracting 2K times the first (asymptotic) equality from two times the second, we
then find

+

= (2, o), + K Re (Han) KTV ig' Poge 1 (Ha, ) 5 1, + 0(1)

(T, (N¢H — qH)20) 1, —— 0.

For suitable ¢ € C°([0,1]; R) from Lemma [4.3.3] the expression N¢'H — qH’ defines
a coercive multiplication operator on Lo (0, 1;F?) and thus =, 27 0in X. The
pair (2, R) therefore has property

Secondly, we consider the case that N = 2K is even. In fact, the reasoning is very
similar to the one for the odd case, apart from that the matrix Py = P, for the
fundamental part is skew-Hermitian instead of Hermitian, so the reasoning needs
to be adapted to this new situation. Let again ¢ € C*°([0, 1];R), then

0 = ﬂi Re <Q‘$n - iﬁnxna Z.ql(,}{x’ﬂ)>L2 + 0(1)

n

2K
= —(xn,q (Hzn)) L, 5n ZRe Pi(Hz,)® i (Han)) L, + o(1)
nnd (Han)) 1y + ﬁi Re (Parc (Ha) ), ig! (M) 1y + 0(1)
= g ()i + (;jK Re (Pase () ), (g () 5 1,
+ Z S Re [(Pac () Qi (M) Q)] -+ 001
(_1)K+1
—(@n, ¢ (Han)) L, + o Re (Hz)5) ig Pogc (Han) ")) L, + 0(1)

and secondly

Bf Re <Q[{L‘n iﬁnxru iQ(H'Tn)/>L2 + 0(1)
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2K

= —Re (zp,q(Hx,) )1, ZRe Po(Hz,)®) ig(He,) ), + o(1)

5n

= —Re <(£n, q(Hxn)l>L2
1
+ F Re <P2K(H$n)(2K) + PQK—I(,Hxn)@K_l)a iq(Ha:n)’>L2 + 0(1)

(_1 K+1

Bn
K— 1

> ﬂ Re | (Parc () =1 79(C), ia(Harn) )™ (C)a|
k=0 "

—Re (@n, q(Han) )1, + Re ((Han) "), Py (q(Han) ) X)) 1,

1

0

+ 2 Re ((Han) ™), iPax 1 (a(Han) ) * ) L,

1

Re |(Pasc1 (Ha,) 2K =279(C), i(a(Maa) )P (O] +0(1)

= Bn
= —Re <$nv Q(Hxn)l>L2

GREY

+ <(H$n) ZPQK( (,Hxn)(K—H) + Kq/(Hxn)(K)»LQ

n

(=nFt () (K)
+ TRe((Hxn) vigPag—1(Han)' ™)1, + o(1)

= —Re <xn7 q(H‘Tn)I>L2 +

Sl
(=D* ) (¢), i ()
E (1) 500 iaPase () O (€

K(-DF
T,
= —Re(xy,

(K
<(H$Tl)(K)7 iq/P2K (,Hxn)(K)>L2

1

+
0

(Han) ) i Py (M) 5 1, + o(1)

q’?—[ _ q/H/

2

2K —1(—1)K
2 Br

This time adding (2K — 1)-times the first equality to two times the second we get

xn>L2

(M) iq' Pogc(Haen) ") 1, + 0(1)

<$n7 (NQ/H - qu)xn>L2 7H—°°> 0

and for suitable choice of ¢ € C*°([0, 1]; R) from Lemma we obtain , —— 0
and again the pair (2, R) has property O
To summarise, for the full dissipation case with strict dissipation at both ends, uni-
form exponential stability can be proved via the Gearhart-Greiner-Priiss Theorem.

Remark 4.3.26. It would be desirable also to get the same result via the Lyapunov
technique of proof. For this one would need a function g : X — R such that |¢(z)| <
¢ ||x\|§( (z € X) and that for every mild solution x € WL (Ry; X) N Lo (Ry; D(2A))
the estimate

%Q(ff(t)) < - ||CU(t)H§( + C|T(H£U)|2 , aet>0
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holds true. A natural candidate for such a functional ¢ would be

rzeX

o) = {(IK_lx,nPﬁllK@LQ, if N =2K even,

(Ix_12,nPN"Ix_12)1,, if N=2K +1 odd,

for a suitable function n € C*([0,1];R), where
(I f)(¢ / / / f(sp)dsy...dsy, keN, feLi(0,1;F%.

N
Unless H € WOLOQJ(O, 1;F9¥d) s sufficiently smooth with derivatives up to order
L%J sufficiently small compared to H it is, however, not clear whether this approach
actually works, even if one adds additional correction terms.

Steps Towards Less Restrictive Boundary Conditions. Whenever we used
integration by parts in the first proof of Theorem [4.3.24) on exponential stability for
strict dissipation at both ends of a port-Hamiltonian system of arbitrary order N €
N we used that under the assumption the proposition above the terms (H,, )(¢)*)
for k =0,1,...,N — 1 and ¢ = 0,1 vanish as n — oo. However, in fact those
terms most of the time appear with an additional factor 3, ! in front, so it might
be useful to search for exponents v > 0 such that terms (3,7 |(Hzn)(k)(C)| already
vanish thanks to the boundedness of (z,,)n>1 C L2(0,1;F%) and (8, (Hxp))n>1 C
HN(0,1;F?) and the generalisation of the Sobolev-Morrey Embedding Theorems to
fractional Sobolev spaces. Namely, we have thanks to Lemma that
)

H(H:c (I)H noteo ),
0] [0,1]

Then, repeating the proof of Lemmal4.3.25| but this time without having any further
decay of the boundary terms to zero at hand, except for the equality above resulting
from interpolation, we find for N = 2K + 1 odd that

o(1) = B—Re Az, — iBpan,iq(Hry) Y, — ﬂ—Re Az, — iBrxn,iq (Hrn)) L,
- <1'n, (qhH - (JH/)I'n>L2 + 2K<xnv q/Hxn>L2
Z Re [ (Hzy) )7iPQK-i—l(Q(Hxn)/)(k)(C)>Fd:|;
2 Ik{ 2 1
+ 5 20 (S Re [((Har) <0, iPare (a(Harn)) O ()]
" k=0
_1)K 1
+ 2 Re [0O(Ha) . Paac () ) O]
ofc K=1 )
B Z (=1)*Re {«Hxn)(ZK_k)(C)aiP2K+1(q/(Hxn))(k)(C»Fd}0
" k=0

+ EE a0 () 9, ok () O |
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K—1 L
+ ﬂi (—=1)*Re {((Hl”n)(zK_k)(C)aiP2K+1Q(C)(H33n)(k+1)(C)>Fd}0

" k=0

K—1 1

+ ﬁi (~1)F Re [((Ha) Q). iPascn (k = K)q'(€) (Hara) ™ (C))a |

, Ko 1
+ g D0 (GO Re [((Ha) Q). iParcq Q) (Han) V(e

" k=0

g K2 .
+ 50 2 (D Re [((H) ¥ (Q), 1P (O () D ()]

>
Il
o

Choosing ¢(¢) = 1 —e®¢, ¢ € [0,1], for a > 0 large enough, as before, we then
conclude the following result.

Theorem 4.3.27. Let 2 be a port-Hamiltonian operator of odd order N = 2K + 1.
If R e D, H) such that

(—1)5{(Hx) ) (1), iPagc (Ha) F))ga < 0
V¢ e{0,1}, k=0,...,K —1:
Re ((Ha)N=178(0),i(Pn (k — K) + kPy_1)(Hz)® (¢))ga = 0
Vek=1,..., K —1:
Re (Hz) N (1),i(Py + Py—1)(Ha)®)pe =0

for all x € ker R, then the pair (2, R) has property|AIEP,

We give some examples: First, let K =0, i.e. N =1, then the only condition to be
satisfied is that (Hz,)(1) — 0. This is

Proposition 4.3.28. Let N =1 and H Lipschitz continuous. Then, if 0,(A) C Cy
and

Re (Az, )y < —k|(Hz)(1)[>, =z € D(A)

for some k > 0, then A generates a uniformly exponentially stable contraction Coy-
semigroup on X.

Secondly we consider the case K = 1, so N = 3, then the first condition is that
both (Hx,)(1) and (Hx,)'(1) — 0 and from the other terms we get the additional
condition that (Hz,)(0) or (Hz,)"(0) — 0. This is

Corollary 4.3.29. Let N = 3 and H Lipschitz continuous. Then, if 0,(A) C Cy
and

Re (Az,2)n < —& ((Hw><1>2 + () (DI + \(Hm@”(mf)

where K > 0 and | = 0 or 1, then A generates an exponentially stable contraction
Cy-semigroup on X.
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Now we will do the same investigation for N = 2K even. We then obtain

of1) = %2 Re (B, (W) + - Re (%o, — B 1,
= (2K - 1)<xna q/Hxn>L2 - <5L’na (q/H - qH/)xn>L2

2K -1 =y k (2K —1—k) . (k) 1
5 2 () Re [(Paxc(Han) (©)-i( (Hza ) ()]
) ol k=0 1

t o Re |(Pasc (Hara) K5 (0),i(g(Ha)) () |

2 Ik{ 01 1

+ B, Z(‘l)k Re [(Pszl(HSUn)@K_k_Q)(Ovi(‘](’Hxn)l)(k)(C»w}o

" k=0
1)K 1

2D [(00) 010 Pac () ]

= —(xn, (N¢H — qH )zn) 1,

—_1K !
4260 |0 ((Ha) 9 (€), iPorc (Haen) e

e 1
2.3 (4() Re (Parc(Har) KD i(Harn) S ()|

k=0 "
s (_gl)k [4(Q) Re <P2K_1(mn><”‘—’“—2><<),z’(Hxn)(’““’@»FdK

k=0 "

K-1 _1\k o !
LN D (212 1+2k) o ¢ (O)(Parc (M) K (0),i(Harn) D]

k=0 "

Hence, we have the following.

Theorem 4.3.30. Let 2 be a port-Hamiltonian operator of even order N = 2K.
If R € B(D(), H) such that

(=) ((Hn) Q) i Paxc (Han) ") (¢))ps > 0
Re (Py (Ha) N FD(C) + Pr—1(Ha) N F72(Q), i(Ha) * D (())pe = 0
Re (Pygc (Ha) V=D (€), i(Ha) ™ ())pa = 0
for ¢ =0,1 and k = 0,1,...,K — 1, for all x € ker R, then the pair (2, R) has
property [ATED,

From this we deduce for the special case N =2, i.e. K =1,

Corollary 4.3.31. Let A be a port-Hamiltonian operator of order N = 2 and
assume that H and Py are Lipschitz continuous and o,(A) C Cy . If

Re (Az,2)x < —+ (I(Ha) (O + |(Ha) (V)
+(H2)O) + (T = ) Pa(Ha) (0)])

for some k > 0 and all z € D(A), then A generates a uniformly exponentially stable
Cy-semigroup on X.
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For the case N =4, i.e. K = 2, we obtain

Corollary 4.3.32. Let A be a port-Hamiltonian operator of order N = 4 and
assume that H and Py are Lipschitz-continuous and op(A) C Cy . If op(A)NiR =0
and

Re (dz,)x < = (I(H) (1) + |(Ha)" ()]
( 2

Ha) () + (I — D) Py(Ha)" (0)|
Ha)'(0)° + (I = M Py(Ha)"(0)°) , @ € D(4)

+ [TI(
+ [TI(
for some k> 0 and an orthogonal projection II : F7F?, then A generates a uni-
formly exponentially stable Cy-semigroup on X .

4.4 On the H-dependence of stability properties

In Section we saw that for a port-Hamiltonian operator A = |er s+ K¢ the
property of generating a contractive Cy-semigroup does not depend on the coercive
multiplication operator H € Ly (0, 1;F4*4) C B(Ly(0,1;F¢)). We also saw in the
previous sections sufficient conditions for exponential stability of the corresponding
Cy-semigroups which did not depend on the Hamiltonian density matrix because
the operator A (with H = I) satisfies an estimate

Re (Az,z)1, < —r|z(0)]*, =€ D(A)
for some k > 0 if and only if the operator AH satisfies the estimate
Re (AHz, z)y < —k|(Hz)(0)]*, 2 € D(A).
Therefore, one might ask whether this property holds generally.

Problem 4.4.1. Let A be a port-Hamiltonian operator with Hamiltonian den-
sity matriz function I and generating a contraction Co-semigroup (Tr(t))i>0 on
X1 = (La(0,1;FY), (-,)1,) and let H € Loo(0,1;F4¥*4) be coercive as multiplica-
tion operator on Ls(0, 1;Fd>‘d), so that AH generates a contractive Cy-semigroup
(T ())i>0 on Xoy = (L2(0,1;F9); (-, V3). Is (Tr(t))i>0 asymptotically or uniformly
exponentially stable if and only if (Tx(t))i>0 is asymptotically or uniformly expo-
nentially stable, respectively? Does this property at least hold if H € C*([0, 1];F4*9),
where k € Ng U {00}, is regular enough?

Unfortunately — or luckily, depending on the point of view — the answer to this
questions is negative and a counter-example is provided by Example 5.1 in [En13].
From a practical point of view this is bad news since the concrete Hamiltonian has
to be considered to ensure exponential stability. Also the counter-example shows
that a generalisation from constant parameter to distributed parameter systems is
nontrivial (though very often intuitive). It may also well be that for some structure
of dissipation exponential stability is independent from H, indeed. However, with
the following counter example in mind we will not pursue this question in detail
any more. We present it here since clearly any regularity assumption on H would
not make any sense if the contrary was true and also stability were independent of
H € Loo(0,1;F¥4) Tee. a positive result with regularity assumptions would have
allowed us to restrict ourselves to the much easier case H = I.
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Example 4.4.2 (A Counterexample). In [Enl3] the author gives a nice counterez-
ample to the hypothesis that exponential stability is independent of H. In fact, the
author considers the following operator corresponding to the transport equation

Agx = iw, D(Ag) = {z € H'(0,1;C?) : (1) =Bf(0)}

ds
where B := 1 [ Y ]. In fact, the corresponding semigroup (To(t))i>o is nilpotent,
sowp(Tp) = —oo. On the other hand the author shows that the semigroups generated

by Ag = AoHe for Hy = {(He)_l J (6 € (=1,00)) are not exponentially stable for

all @ of the form 0, = (2k + 1)~ (k € N). Note that even Hy, — Ho = I (k — o0)
and all Hg are constant along the line ¢ € (0,1).

We elaborate even more on this example to put more emphasise on the differences
to those systems we usually consider here.

In fact, even for the case § = 0 the corresponding operator Ay does not satisfy any
dissipation inequality of the form

Re (Aoz, 2)2, < —k |(Hox)i(Co)*, @ € D(Ay)

for some constant x > 0 and some (y, = 0 or 1. In fact, for any § > —1 and
x € D(Ay) we compute (using the boundary condition Hex(1) = BHgz(0))

Re (Agz, @), = (1+0)72 (lz (D = 21(0)) + la2(1) = |22(0)

-2
= wf“ |21(0) + 22(0)* — (1 +6) 7 21 (0) — [22(0) "

For the special case 6 = 0 this inequality reads
1
Re (Aoz, 2}, = 5 |21(0) + 22(0)]* — [(0)|”

and choosing z € H'(0,1) with z(0) = (1,1) and x(1) = (1,—1) (and hence x €
D(Ay)) shows that for this special choice the right hand equals zero which proves
the assertion. In fact, for every choice of § > —1 the vector x € D(Aj) defined
above also lies in D(Ap) and Re (Agz,x)3, = 0 for all # > —1. Since for every
6 > —1 the candidates for eigenfunctions f) to a eigenvalue have the form fy({) =

™o '€ £,(0) (¢ €[0,1]) and thus to have an eigenvalue A € iR we should have

B A(146) 1
1 e
i Y Ry

where from the second component it follows that A € (2Z + 1)mi and from the first
component A\( + 1) € (2Z 4 1)iw. From here we get all the possible combinations

as
20+1

= (2l 4+ 1)im, O = ——
A= (21 + 1)im, Ok, TR

k,l € Z such that 6; > —1.

4.5 Examples

We return to the examples from Section [3.1] and give some sufficient boundary
conditions leading to asymptotic or uniform exponential energy decay. The first of
these is the prototype of a port-Hamiltonian operator of order N = 1, namely the
transport equation.
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Example 4.5.1 (Transport Equation). In Example we considered the nonuni-
form transport equation

0 0

(60 = &(C(C)x(t, Q) =: (Az(t))(C)

for which we have for all x € D(A) = {x € L3(0,1) : cx € H'(0,1)} that

Re 2z, 2}, = Re {ez, (c2) )1, = 5 [[(ex) (D ~ |(ex) (0)1F]

From here it is clear that any dissipative boundary condition takes the form

(cx)(1) = A(ex)(0)

where A € F with |A| < 1. Moreover, we observe that for the corresponding operators
Ax =Upa,y with D(Ax) = {z € D(A) : (cx)(1) = A(cx)(0)} we have that

=0, Al =1
Re (Axz, ) { < —o (|(cx)(1)|2+\(cx)(0)|2), N €(0,1), zeD(Ay) (4.35)
<~ () V)P, A=0

where oy > 0 for every A € F with |\| < 1. As a result, the Cy-semigroups (Tx(t))>0
generated by Ay are isometric for |\ = 1 and uniformly exponentially stable for

|A| <1, thanks to Theorem[{.1.5

Next we turn our attention to the wave equation and then to the Timoshenko beam
equation.

Example 4.5.2 (Wave Equation). For the wave equation

pOwnlt. ) = g (TO gl ), OV 120 (430
and the corresponding port-Hamiltonian operator
0 1] 9 [ (Him)
=V o]z (G ) 437

for diag (H1,Ho) = diag (p™,T) and x = (pwy,we), see E:vample we find that
Re <Ql£L‘7 .’17>7.£ = Re <(H2$2)/, (H1$1)>L2 + Re <(7‘[11‘1)l, (HQJ?Q))LZ
= Re [((H121)(C), (Haw2)(¢))ely
which translates to the energy decay relation

%H(t) = Re (wi(t, 1), Twe(t,1))r — Re (wi(t,0), Twe (t,0))w.

A natural way to choose dissipative boundary conditions is therefore the following

aowi(t,0) + Bo(—(Twe)(t,0)) =0
arwi(t,1) + B1(Twe)(t, 1) =0
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where a;, B; > 0 (i = 0,1) are non-negative constants such that a;+6; > 0 (i =0, 1).
Clearly if a;8; = 0 (i = 0, 1) then we have conservative boundary conditions at both

ends, so that
Re(Az,z)x =0, x€ D(A)

for the resulting operator A and thus it generates an isometric Cy-semigroup on X .
Secondly, if a; > 0 and B; > 0 are both strictly positive for some i € {0,1}, say
i =0, then

Re (Az,z)x < —o |(Hz)(0)]*, € D(A)

for the operator A with these boundary conditions and Theorem[{.1.5 says that the
resulting Co-semigroup (T'(t))i>0 on X is uniformly exponentially stable.

Remark 4.5.3. Let us note that from the consideration above the following choices
for the input and output maps B and € make the port-Hamiltonian system & =
(A, B, €), where A is the port-Hamiltonian operator associated to the nonuniform
wave equation, an impedance passive, in fact even impedance energy preserving,
port-Hamiltonian system in boundary control and observation form.

N
x 121 N we (¢,
( Cx >_ —(H2w2)(0) | | —(Twe)(t,0)
(Haw2)(1) (Twe)(t,1)
—(Ha22)(0) —(Twe)(t,0)
or ( Bax > _ (Hlxl)(l) - wt(t71)
Cx (H121)(0) wy(t,0)
(Haz2)(1) (Twe)(t,1)
(H121)(0) we(t,0)
or ( B ) | (Hazo)(1) | .| (Twe)(t,1)
Cx —(Ha22)(0) —(Twe)(t,0)
(Haz1)(1) we(t, 1)
—(Ha22)(0) —(Twe)(t,0)
or ( Br ) _ (Hiz1)(1) - (Twe)(t,1)
Cx (H121)(0) wi(t,0)
(Hiz1)(1) wi(t, 1)

Note that this list is not conclusive, but clearly these are the most natural choices
for B and €.

Example 4.5.4 (Feedback Stabilisation of the Timoshenko Beam Equation). We
start by determining the energy change of a Timoshenko beam, i.e.

p(Qwe(t, C) = (K(¢)(we — )(t,C))¢
IP(C)¢tt<t’ C) = (EI<C)¢C(ta C))C - K(C)(WC - ¢)(t7 C)) Ce (07 1), t>0.

The corresponding port-Hamiltonian operator is

0100 000 -1
11000 1o oo o
e=149 00 1 |H) 1o 00 o |*D

0010 100 0
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where & = (x1, %2, T3, 24) =(we — @, pwi, ¢¢, I,¢r) and H = diag (K, pfl,EI,Ip’l),
see Example[3.1.3 We then compute
Re (z, )1 = Re [(H121)(C), (Haw2)(¢))r + (Haws) (), (Haza) (O))ely
= Re [(K (we — 0)(t,€),wil(t, Q) + (Blwe)(t,€), 64, C))sly (4.38)
so that natural choices for the input and output maps B and €x such that the port-

Hamiltonian system & = (2,8, €) is impedance passive, in fact impedance energy
preserving, are the following.

{B1z, Cro} = {(Hi21)(1), (Hawa) (1)} ={(K (we — ¢))(t, 1), wi(t, 1)}
{Box, Cox} = {(Haws)(1), (Haza) (1)} ={(EI¢)(t, 1), d4(t, 1)}

{Baz, Ca} = {(H121)(0), —(Haw2)(0)} (K (we — ¢))(t,0), —wi(t,0)}
{Baz, Caz}t = {(Hs23)(0), —(Hawa)(0)} ={(ELc)(t, 1), d(t, 1)}

Then for every K € F4*4 such that K = K* > 0 is positive semidefinite the operator

Ax = Ulker(B+K€)

is dissipative and therefore generates a contractive Co-semigroup (T (t))i>0 on X.
Moreover, if there is o > 0 such that

(Kz,z)pa > 0 (|21|2 + |2’2|2) , z2=(21,292,23,24) € F
then
Re (Agz,z)x < —o|(Hz)(0)]>, =€ D(Axk)

and by Theorem [[.1.5 the Cy-semigroup is uniformly exponentially stable. For the
original problem this means that whenever we impose strictly dissipative boundary
conditions at one end of the beam and conservative or dissipative boundary condi-
tions at the other, the energy of the system decays uniformly exponentially to zero
ast — oo.

Next we come to the Euler-Bernoulli beam equation as an example for a port-
Hamiltonian operator of order N = 2.

Example 4.5.5 (Euler-Bernoulli Beam Equation). We have already investigated
the port-Hamiltonian operators 2 associated to the Fuler-Bernoulli beam equation,

see Example
PwWit + [EIWCC]CC =0, ¢€(0,1), t>0.
For the corresponding maximal port-Hamiltonian operator 2 we find

Re (Az, z)3 = Re ([9 '] (diag (K1, Ha)x)", diag (H1, H2)x) L,
= Re <(H1$1) ,,H2$2>L2 — Re <H1$17 (Hg$2)”>L2
1

= Re [(H121)"(C), (Haw2)(O)r — (H121)(C), (Haw2) (O))Fly

for every x € D(A). Hence, in the following way we may choose the input and
output maps B and € in such a way that & = (A,B, ) is an impedance energy
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preserving system.

{Br2, Crat = {(H121)(0), (Haw2)'(0)} ={(we(t, 0), (Elwee)c(t,0)}
{Brz, o} = {(H121)(0), —(H2w2)(0)} ={wic (¢, 0), = (Elwec)(£,0)}
{Brz,Cra} = {(Hiz1) (1), —(Hawz) (1)} ={wi(t, 1), —(Elwee)(t, 1)}
{%11'7 ¢1$} = {(lel l(1)7 (ngg)(l)} = {wtC(t7 1)7 (EIWCC)(tﬂ 1)}

Then boundary conditions of the following form are natural to obtain dissipativity
of the operator A, which is U restricted to the boundary conditions

arwic(t, 1) + Br(Elwee)(t
aswi(t, 1) + fo(—Elwee )¢ (t,
Q3Wic (t, 0) + ﬁ3(—EIwgc)(t

a4wt(t, 0) + 64(EIWCC)C(t7
where «;,B; > 0 (i = 1,2,3,4) are non negative constants such that o; + B; >
0 fori = 1,2,3,4. Note that whenever both o; > 0 and ; > 0 for some i €
{1,2,3,4} this leads to dissipation in the corresponding boundary condition, i.e.
the boundary condition is not conservative. Let us now translate the conditions of
Proposition[].3.19 to these boundary conditions. We conclude for the relevant terms
the following.

1. (Hx)(t,0) represents (w(t,0), Elwec(t,0)), so that we should have

ag >0 and [3>0.

2. (Hiz) (¢

,0) or (Haz2)'(t,0) should be included, so that the terms wyc(t,0) or
(Elwee)e(t

,0) should obey some boundary condition, i.e.

as >0 or f(4>0.

3. Similarly (Hix1)(t,1) or (Haxe)'(t,1) translates to we(t, 1) or (Elwee)c(t, 1),
1.€.
as >0 or (1 >0.

4. Finally (H121)'(t,1) or (Haz2)(t, 1) stand for wic(t,1) or (Elwee)(t, 1), ie

a1 >0 or [ >0.

The interpretation is as follows. On the one hand at 0 we should have dissipa-
tive boundary conditions in equation or and there is a restriction on the
conservative boundary condition, e.g. if ag, B4 > 0 are both strictly positive, the
boundary condition wy(t,0) = 0 is not admissible for the application of Proposi-
tion [{.53.19. At the right end several boundary conditions are possible, e.g. if one
of the boundary conditions and 18 dissipative, the other may be arbitrarily
conservative or dissipative. However, the admissible (for application of Proposition
conservative boundary conditions are the following ones.

1. clamped right end, i.e. we(t,1) = wee(t,1) =0,
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2. free right end (or shear hinge right end), i.e. (Elw¢c)(t,1) = (Elwee)c(t,1) =
0.

We remark that this does not cover all the possible boundary conditions that have
been mentioned in Discussion 4.1 of [Ch+87], but we only cover the boundary condi-
tions (ii)-(iv) mentioned there plus the boundary conditions used in the main part of
|Ch+87], but not the boundary conditions (i), (v) and (vi). Also note that we did not
actually show exponential stability, but only under the condition that these boundary
conditions already imply asymptotic stability. Also in the port-Hamiltonian formu-
lation the boundary conditions (ii) and (iii), (i) and (v) are the same. Moreover,
in contrast to [Ch+87] we allow for a non uniform Euler-Bernoulli beam whereas
in [Ch+87] the authors considered a chain of uniformly distributed Euler-Bernoulli
beams. Also the above boundary conditions cover the case considered in Theorem
4 of |Ch+87d] which corresponds to the situation that aq, e, B3, a4, B4 > 0 are all
strictly positive.

Example 4.5.6 (Asymptotic Stabilisation of the Nonuniform Euler-Bernoulli Beam
by Shear Force Feedback). In [Ch+87d] the authors considered the following (uni-
form) Euler-Bernoulli beam model as model for a space shuttle attached to some
flexible mast (the latter modelled as Euler-Bernoulli Beam,).

pwit + [Elweclee =0
w(t,0) = we(t,0) =0
—[Elwecle(t, 1) = =k (t, 1)
—[Elwec](t,1) = —kawic(t, 1)

and given initial datum (w(0,-),w:(0,)) = (wo,w1) € L2(0,1;F?). Here ky,ky > 0
are non-negative constants, so that the closed loop system becomes dissipative. The
focus of the article [Ch+87d] lies on proving exponential stability for the case that
k1 > 0 and ke > 0, whereas uniform exponential stability for the case ki > 0
and ke > 0 had been investigated in [Ch+87]. In both [Ch+87d] and [Ch+87]
the authors restricted to the uniform case, i.e. p, EI > 0 being constant along the
beam. By Corollary the system is asymptotically stable for either of the
cases k1 > 0,ka > 0 or ki > 0, ko > 0, whenever H; (i = 1,2) are Lipschitz
continuous and uniformly uniformly positive. For uniform exponential stability we
apply Proposition and deduce that in the case that k; > 0 and ky > 0 we
have uniform exponential stability of the corresponding Cy-semigroup, i.e. uniform
exponential energy decay for the original problem. Unfortunately our theoretical
results do not cover the case a; = 0 and ag > 0. Although we may prove asymptotic
stability in a similar way as before, for the corresponding operator Ay, o, we only
have the estimate

Re (Aay sty @) < —k([H121(0)]” + [(Haz1) (0) + [(Haa2) () + [(Hiz1) (1))

In fact, in the constant parameter case H = const. for this situation exponential
energy decay can be observed as is proved (in a quite tedious way) in [Ch+87dJ.



Chapter 5

Passivity Based Dynamic
Linear Feedback Stabilisation

In applications, we often encounter situations where the energy of a system splits
into two (or more) parts. In that case we may interpret the total system as an
interconnection of two (or more) subsystems which interact with each other in a
specific way (in our case by boundary control and observation). If all the systems are
infinite dimensional and port-Hamiltonian, very often the whole system is an infinite
dimensional port-Hamiltonian system again. However, sometimes we encounter
situations where the system has both subsystems of infinite dimensional type and
of finite dimensional type. That is, some subsystems are modelled by a (port-
Hamiltonian) Partial Differential Equation, whereas others are described by an
ordinary differential equation. The interconnection of such systems is sometimes
called a hybrid system. Our aim in this section is to depict how the theory for the
pure infinite dimensional case naturally carries over to these hybrid systems.

Let us first build up the setting for this situation. The assumptions on the infinite
dimensional part of the interconnected system are essentially the same as before,
except for that we use the input map % and the output map € for interconnection
of the two (finite and infinite) subsystems. In fact, all the results in this section
are generalisations of the one component system (i.e. pure infinite dimensional)
case. Let & = (2,9, ) be a port-Hamiltonian system of order N € N, just as in

Definition [3.2.10}

d N g
(t, Q) = ZPkaTk(H(C)x(t,C)) =: (™Ax(1))(¢), t>0, (€(0,1)
k=0

aﬂ?
ult) = Wi < Zz;‘f > (t) = Ba(t),
y(t) = We ( Jora ) (t) = €a(t), £>0

where as before 2/ is defined on its maximal domain
D) ={z € X : Hx € HY(0,1;F)}

127



128 CHAPTER 5. DYNAMIC LINEAR FEEDBACK

and D(B) = D(€) = D(2(). Additionally we consider a finite dimensional Hilbert
space X, = F" (the state space of the dynamic controller) equipped with some inner
product (-, -)x,.. (Since all norms on F™ are equivalent, see e.g. Satz V.1.8 in [We06],
the corresponding norm ||-|| x is equivalent to the usual Euclidean norm.) To keep
everything as general as possible we assume that the finite dimensional part takes
the standard form

0

o belt) = Acze(t) + Beue(t),

Ye(t) = Cexe(t) + Doue(t), t>0

for some matrices A, € F**" B, € F**Nd C. ¢ FN4X" and D, € FNdxNd,

Remark 5.0.7. We may and will also allow n = 0 in the sense that we interpret
FO := {0} to be the null space and FO*" = B(F",{0}) = {M : F" > z — 0}
as well as F™*° := B({0},F") = {M : 0 — 0 € F"}. In that case the following
feedback interconnection can be interpreted as a fancy way of writing down static
boundary conditions. Moreover, the choice U, = Y, = FN? for the controller input
and controller output space, respectively, is not restrictive. In fact, if Uc,ffc are
any finite dimensional Hilbert spaces with dimensions less or equal Nd these can be
embedded into FN¢ and using that embedding any operator in B(U., X..) or B(X.,Y.)
can be interpreted as matriz in FP*Ne o FNIXT - respectively.

We are interested in situations without external input signal and interconnect the
two subsystems by standard feedback interconnection, i.e.

Uc =Y, U= —Ye-

Remark 5.0.8. Note that also for n > 1 this feedback interconnection may in-
clude static boundary conditions, namely if ran [C. D.] # FN?, then always y. €
ran [C. D.] lies in a proper subspace of FN?.

We obtain an operator on the product space X x X, which we equip with the
canonical inner product

((m,xe), (2, 2e)) xxx. = (X, 2)x + (Te, 26) x5 (Ty2e), (2, 20) € X X X

Our plan is as follows. First, we state the generation result for the dynamic feedback
operator, then we generalise the stability results from the static case to the dynamic
situation.

5.1 The Generation Theorem — Dynamic Case

We generalise the Generation Theorem for port-Hamiltonian systems with
dissipative, static linear feedback to the dynamic feedback situation, also see The-
orem 5.8 in [Vi07] for a very similar treatment, but with slightly more restrictive
conditions on the dynamic controller. Afterwards we look at the example of a
energy-preserving interconnection of impedance passive systems and also note that
for appropriate external input and output functions the interconnected (hybrid)
system becomes a Boundary Control and Observation System.
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Theorem 5.1.1. Let & = (A,B,¢) be a port-Hamiltonian system and ¥, =
(Ae, Be, Cey D) be a linear control system on a finite dimensional space X. and
with input and output space U, = Y, = FN?. On X x X, define the hybrid operator
A: DA CX xX.— X x X, by

fo, 1z

D(A) = {(z,2.) € D) x X, : (aﬁ) € ker W),
={(z,2.) e DA) x X.: (B+ D.C)x=—-Cex.}

aer=[ 2 2](2)

where the matriz W is given by

S
S

Wy = [ W+ DWe C. ] .
If the operator A is dissipative,
<A(Z‘,1‘C), (xa'rc»XXXc <0, ($,$C) € D(-A)r (51)

then it generates a contractive Cy-semigroup on X X X.. Moreover, in this case the
operator A has compact resolvent.

Remark 5.1.2. Similar to the static feedback Generation Theorem [3.3.6] one sees
that the condition
1 *
Sym Fo(¢) = 5 (Fo(¢) + o(€)") <0, ae. ¢ (0,1)

is necessary for A to generate a contraction Co-semigroup (T (t))i>0. In fact, for
every dissipative hybrid operator one necessarily has

Re (A(z, z.), (,2:)) xxx, < Re (PoHz, Hx)r,, x € D(A).

Proof of Theorem [5.1.1 The Lumer-Phillips Theorem [2.2.7] says that for the
dissipative operator A to generate a contractive Cp-semigroup, we only need to check
that ran (Al — A) = X x X, for some A > 0. Fix any A > max{0, s(A.)}, so that
the resolvent (A — A.)~! exists. Further let an arbitrary element (f, f.) € X x X,
be given. We need to find (z,x.) € D(A) such that

)\(CC,CCC) — A(x,xc) = (f7 fC)7

i.e.
f=Mx —Az, fe=( — Az, — B.Cx (5.2)

and for (z,z.) € D() x X, to lie in D(A) we must also have
B+ D)z + Cex.=0. (5.3)

When solving (5.2)) for 2. and and substituting z. in (5.3]) we arrive at the following
problem

(B + D.C)z + Co(M — A,) 'B.Cx = —Co(M — A) " . =: fo.



130 CHAPTER 5. DYNAMIC LINEAR FEEDBACK

Corollary shows that there is a right inverse B, € B(FN4, D(21)) of
B =B+ (De+ Ce(A— A)'B)E
so that we may set Tne = — By fc and get the equivalent problem
M = W)apew = f = (M = 20)Bafe,
BuTnew = Bt — By Bafe = 0. (5.4)
Next we show — using Theorem —that the operator Ay = A|p(a,,) with domain
D(Aq) = ker B

generates a contractive Cy-semigroup on X by proving that A, is dissipative. For
every € D(Ay) we take z, = (A — A.) "' B.€x € X, and then obtain

(B+D.C)x+Cox. =Bz =0
and hence (z,z.) € D(A) and we conclude
Re (Agz,z)x = Az, x)x

= Re (A(z,zc), (z,2:)) xxx. — Re (Acx. + B.Cx, x.) x,

< —Re(A.x.+ B.Cx,x.)x,

= —Re(A.(\— A.) " 'B.Cx + B.€x,(\ — A.) ' B.Cx)x,

= —Re A|(A— Ao) ' B€al} <0
for every * € D(Ay) and z, := (A — A.)"!B.€z. Then the port-Hamiltonian
operator A, is dissipative and consequently generates a contractive Cy-semigroup
on X by Theorem Now the resolvent operator (A — A.)~t € B(X) exists
and the unique solution of ([5.4) is given by

Tnew = ()\ - Acl)_l(f - (/\ - 2[)-éclfc)a .
Finally the choice
X :xnew_‘_Bclfca Te = ()\_Ac)_l(fc'i_BcQ:x)a

defines an element (z,z.) € D(A) such that (Al — A)(x,z.) = (f, fc). Therefore,
the range condition ran (A — A) = X is satisfied and from the Lumer-Phillips
Theorem [2.2.7] we conclude that A is the generator of a contractive Cy-semigroup
on X x X.. Compactness of the resolvent follows similar to the static case in
Generation Theorem from the fact that D(A) x X, — X x X, is compactly
embedded. The latter holds since D(2) < X is compactly embedded (Lemma[3.2.6)
and X, — X, is compactly embedded into itself as finite dimensional space. ]

Remark 5.1.3. If the hybrid operator is not dissipative, but merely the condition
Re (A(x,x.), (x,2.)) xxx, < Re (PoHz, x)x

holds for allx € D), i.e. Py(¢) may be non dissipative on a set of positive measure,
then the same result holds except for that the Cy-semigroup (T (t))i>0 generated by
A is not contractive in that case, but only quasi-contractive, i.e.

1T < e,
where w € R is such that Py(¢) — wl is dissipative for a.e. ¢ € (0,1).
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Remark 5.1.4. One particular case where the standard feedback interconnection
of a port-Hamiltonian system & = (A, B, €) with a finite dimensional linear control
system Y. = (A¢, Be, Ce, D..) is dissipative is the interconnection of two impedance
passive subsystems, i.e.

Re (Az, z) x < Re (Bz, Cx)pna, x € D)
Re (Acze + Bete, o) x, < Re(Cete + Detie, te)pna, z. € X,, u, € FN9,

In that case the operator A. is dissipative (take u. = 0). However, in general for
equation to hold not necessarily the operator A. itself has to be dissipative,
i.e. there may be . € X, such that

Re (Acxe,xe)x, > 0.
We give an example for such a system below.

Example 5.1.5 (Dissipative Interconnected System). We start with an impedance
passive port-Hamiltonian system & = (A, B, €) such that

Re (Az, ) x < (B, Cx)pna — o |Bz|>, z € D).
Note that such a choice of B and € is possible, e.g. take Py(() to be dissipative for
a.e. ¢ €(0,1) and Bx = fons, €& = esns + 0fo s, then
Re %z, z) x < Re(eq ;s fo,4u)pNa
= Re (Bz, €x)pnva — o |Bz>, z € D).

Now we choose the system %, in the following special way.

A= \/ECéCC,

oSym D.> D!.D,

B, =(1+20D.)C,

where M’ denotes the Hilbert space adjoint of an operator M. The simplest case

here is the choice D, = 0 and B, = i.e. collocated input and output and no
feedthrough term. Then

Re (A(z,x.), (z,2c)) xx X,
< Re(/z,z)x + Re (Acze + B.Cx, ) x,
< Re (Bz, €x)pnva — o | Bz
+ 0| Cee||? + Re (Blire, €2)pna
= —Re(Cex.+ D.Cx,Cx)pna — 0 |Cox. + Dc¢:1c|2
+ 0 ||Ceze||* + Re (Blae, €x)pna
= —Re((cI + D.)D.Cx,Cx)pna
—Re((B. - C.—20D.C.)¢x,x.)x,
<0, (z,z:) € D(A).

/
c’

As for the pure infinite-dimensional port-Hamiltonian system & = (2,9, €), the
interconnected system plus a suitable external input map define a Boundary Control
system, if the operator A generates a Cy-semigroup on the product Hilbert space
X x X..
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Proposition 5.1.6. Let & = (A,B,¢) be a port-Hamiltonian system and ¥, =
(Ae, B, Cey D) be a finite dimensional linear control system with state space X, =
F" and input and output space U, = Y, = FNY.  Consider the system S, =
(e, B, C.) given by

and

%e<§c)[%+Dcc cc](xxc)

( N ) € D(%B.) = D(2L.)

Le

and €, € B(D(2.);Y.) any closed operator on X x X. mapping into a Hilbert space
Ye. Then G, = (A, B, €.) is a Boundary Control and Observation system if and
only if A =Ae|kers, generates a Cy-semigroup.

Proof. We only need to show that there is a right-inverse B, € B(FV9; D(2,.)) of
B.. For this we may simply take B, = [ 5] where B is the right-inverse of B + D.€
which exists by Theorem [3.2.21 O

In particular, we have

Proposition 5.1.7. Let & = (2,8, €) be an impedance passive port-Hamiltonian
system and X. = (A¢, Be, Ce, D) be a finite dimensional impedance passive control
system with X, = F" and U, =Y, = FN9. Then (A, B.) with

(2 )= me 0 ](2)

< ;” ) € D(A) = D(A) x X,

C

and

(1) toene (1)

( v )eD(Qle):D(QL)xXC

Ze

is a Boundary Control system on the extended state space X x X, and the associated
Co-semigroup generator A = Ue|ker s, defined by

T A 0 x
() =1pe 2 )(2)
on the domain

D(A) = {( v ) € D) x X, : Wy, (é’Z:Zii) :o}

Te Te

{(j >€D(Ql)xXc:%xCCchc€x}
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with Wy, given by
Wy, =[ Wg+DWe C. |

generates a contraction Cy-semigroup on X x X..

Proof. Theorem says that in this case A = A, |ker s, generates a contraction
Co-semigroup. Therefore, the result can be derived from Proposition [5.1.6] O

5.2 Asymptotic Behaviour

We are now in a similar situation as after the generation theorem for the static
case and may investigate stability properties next. To obtain asymptotic stability
we first of all have to exclude the case where the controller itself has undesirable
spectral properties, i.e. there should be no eigenmode of the finite dimensional part
when connected to an infinite-dimensional port-Hamiltonian system at rest. Namely
observe the following

Example 5.2.1. If the matriz A, has an eigenvalue X € iR with eigenvector x. x #
0 such that x. x € ker C,, then the interconnected system cannot be asymptotically
stable since

(x,2.)(t) := eAt(O,xc,A)

defines a periodic classical solution of the interconnected problem

Br(t) = u(t) = —ye(t) = =Ceze(t) — Deue(t), ¢>0.

Better spectral properties can be ensured taking A, to be a Hurwitz matrix, i.e. its
eigenvalues lie in the open left half plane. However, as it turns out, for asymptotic
stability of the total system it is not only necessary that ker(i3 — A.) Nker C. = {0},
but even enough for asymptotic stability, provided the system dissipates enough
energy. This is the statement of the following result.

Proposition 5.2.2. Let A be a linear dissipative hybrid operator resulting from
standard feedback interconnection of a port-Hamiltonian system & = (A, B, €) and
a finite dimensional linear control system %, = (A, Be, Ce, D) as in Theorem
and assume that

ker(if — A.) Nker C. = {0}, B e€R.

If there is R € B(D(2(); H) (for some Hilbert space H) such that the pair (A, R)
has property[ASH and such that for all (z,z.) € D(A)

Re (A(z, ), (z, 7)) x xx, < | Rzl
then the Co-semigroup (T (t))i>0 generated by A is asymptotically stable.

Proof. We already know by Theorem that A generates a contractive Cp-
semigroup, A has compact resolvent and therefore o(A) = 0,(A). We would like
to use Corollary [2.2.16] to the Arendt-Batty-Lyubich-Vu Stability Theorem
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and thus have to prove that iR No,(A) = 0. Let f € R and (29, xc0) € D(A) be
such that

iB(xo, xe0) = Ao, Tey0)-
The finite dimensional component then reads as
iﬂxc,o = BCQ:IO =+ Acxcvo.
Further for the infinite dimensional part we have that the estimate
0=Re <iﬁl‘07 370>X
= Re <Q[1’0, £C0>X
= Re (Ao, 7o) x + Re (iBrc0,Tc0) x.
= Re <Q[l‘0, x0>X + Re <Acxc,O + B.Cx, xc,0>Xc
= Re (A(z0,%c,0), (20, Tc,0)) x x X,
2
< —[[Rzolly

holds, i.e. Rzy = 0, and by property of the pair (2, R) it follows that xg = 0
is zero and then also

Ye,0 = chc,O + D.Cxg = CC'IC,O = —Bxg =0, (55)

so that
Tep € ker(iff — Ac) Nker C, = {0}, (5.6)
ie. i & ogp(A). As a result, o(A) = 0,(A) C C; and the semigroup is asymptoti-
cally stable due to Corollary [2:2.16] O

Corollary 5.2.3. Let G = (2,B,¢) be a port-Hamiltonian system of order N €
N with Lipschitz continuous Py and H and let . = (A, Be, Ce, D.) be a finite
dimensional controller such that

ker(if — A.) Nker C. = {0}, B eER.
If there is k > 0 such that for all (z,z.) € D(A) in the domain of the corresponding
hybrid operator A the estimate

N —

Re (A(z, z.), (z,2:)) xxx, < —K Z )(Hm)(k)(o)

k=0

Ju

‘ 2

holds, then the contractive Cy-semigroup (T (t))i>0 generated by A is asymptotically
(strongly) stable.

Proof. By Theorem and Corollary for R : D() — FN9,
(H)(0)

Rz =1o(Hzx) = :
(Ha)N=1(0)

the pair (%, R) has property see Theorem Then the result follows from
Proposition [5.2.2 O

Similarly we obtain uniform exponential stability if the pair (2, R) also has property

[ATEP!
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Theorem 5.2.4. Assume that & = (2,8, €) is a port-Hamiltonian system which
is interconnected with a finite dimensional linear system ¥, = (Ae, Be,C., D..).
Assume that the resulting hybrid operator A generates an asymptotically stable Cy-
semigroup. Further assume that there is R € B(D(21); H) such that (2, R) has

property [ATEH and such that
Re (A(z, z0), (7, 7)) xxx, < — [|Rz]; . (2,2) € D(A).

Then the Co-semigroup (T (t))i>0 generated by A is uniformly exponentially stable.

Proof. Since A generates an asymptotically stable Cp-semigroup (7 (¢))¢>0 and
has compact resolvent, the spectrum

o(A) = 0, (A) C Cy

lies in the open left half-plane. For the application of the Gearhart-Greiner-Priiss
Theorem 2.2.17 we need to show that

sup ||R(, A)|| < +o0.
iR

As in the static feedback case we use the equivalent sequence criterion instead. Let
((@n, Tens Bn))ysy € D(A) X R be any sequence with sup, ey [[(Zn, Te,n)ll xw x, <

+00 and |8, == 400 such that
iﬁn(xwu xc,n) - A(Jﬁn, xc,n) TH—OO> 0. (57)
Then it follows that

”Rxn”il < —Re <-A<-75m xc,n)a (xna xc,n)>X><Xu
n—oo

= Re <Zﬁn(l‘n7 xc,n) - A(x'm mc,n)a (mna xc,n)>X><Xc — 0,

so we deduce
n—oo

Rz, —— 0.

Since
n—0o0

Axy, — ibpxy, — 0,
property |[AIEP| of the pair (2, R) implies that

n—oo

Ty — 0.

Let us now investigate the asymptotic behaviour of the sequence (z¢n)n>1 C Xe.
By choice of the sequence it holds

n—oo

iﬁnxc,n - Bcezxn - Acxc,n —_— Oa
and dividing by ,, which is nonzero for sufficiently large n, we get

B.Cx .
¢ n +iTem 27200 0.

n

From equation 1' we deduce that H W is bounded and further

‘X><XC

a2 a1 v x,
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by Lemma m Hence, (%)nzl is a bounded sequence in HY(0,1;F9) and a
null sequence in Ly (0, 1;]Fd). By Lemma [2.1.19 it is therefore a null sequence in
CN=1(]0,1]; F4). Since B.€z,, continuously depends on Hx,, € CN=1([0, 1]; F4) this
implies x, — 0, so that

n—oo

(@, Ten) — 0, in X x X..

Thus, the sequence criterion Corollary [2.2.19|says that the resolvents are uniformly
bounded on iR and the Cy-semigroup (7 (t))¢>0 is uniformly exponentially stable.
O

Using the results of Chapter [4] we may now give sufficient conditions for exponential
stability for the special cases N =1 or N = 2.

Corollary 5.2.5. Let A be a dissipative hybrid operator resulting from the standard
feedback interconnection of a port-Hamiltonian system & = (A, B, €) of order N =
1, where Py, H are Lipschitz continuous, with a finite dimensional linear controller
Y. = (A, B, Ce, D) such that

ker(if — A.) Nker C. = {0}, B e€R.

If there is some k > 0 such that for all (z,z.) € D(A)

Re (A(@, z.), (¢, 20)) xxx. < = |(Hz)(0)]*,

then the semigroup (T (t))i>0 generated by A is uniformly exponentially stable.

Proof. By the proof of Theorem the pair (2, 7o o) has property hence
the result follows from Proposition and Theorem O

Corollary 5.2.6. Let A be a dissipative hybrid operator resulting from the standard
feedback interconnection of a port-Hamiltonian system & = (A, B, €) of order N =
2, where Py, H are Lipschitz continuous, with a finite dimensional linear control

system ¥, = (A¢, Be, Ce, D..) such that
ker(if — Ac) NkerC. = {0}, B eR.
If there exists some k > 0 such that for all (z,z.) € D(A)

Re (A(z, z.), (2, xc))XxXC

< = |[(H2) O) + (M) (0)* + T(H2) (D] + (1 — T Po(Ha) (1)

)

where I1 : F* — F¢ is an orthogonal projection, then the semigroup generated by A
is uniformly exponentially stable.

Proof. We have already seen in Theorem that for the choice
. Ad Hx)' (0
R:D®) - TF*, zw— T(Ha)(1)
(I — I Py(Hx)'(1)

the pair (2, R) has property Then the result follows from Proposition m
and Theorem [5.2.41 O
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As a conclusion we may summarise the results of this subsection in the following
way. For a fixed impedance passive port-Hamiltonian system & = (2,98,¢) the
stability properties of the system with generator A = |y (s+xe) for some matrix
K = K* > 0 are more or less the same as the stability properties of the system
with generator 2 resulting from standard feedback interconnection of & with a finite

dimensional, impedance passive linear control system X, = (4., B., C¢, D,.) if one
takes D, = K.

5.3 Strictly Input Passive Controllers

In the previous section we have seen that dissipativity conditions like
Re <A($7 IC)7 (Ia IC)>X><XC < —kK ‘(ng)(o)‘Q ) (:Ca xc) S D(A)

for the case N = 1 plus some reasonably weak conditions on the control system
and regularity of the matrix-valued functions Py and H lead to uniform exponential
stabilisation of the Cp-semigroup (7 (t)):>0 generated by the hybrid operator A.
The drawback, however, of these results is that we actually need strict dissipation
in every component of (Hx)(0) here, or, for the case that N = 2, even in every
component of (Hz)(0), (Hz)' (0) and II(Hz)(1) + (I — II)Py(Hx)'(1). In practise
this seems too restrictive and we therefore show in this section how using impedance
passivity of the two systems & = (2,B,€) and ¥. = (4., B.,C., D.) (which we
demand from now on) may help to weaken the dissipation conditions, still obtaining
stability of the interconnected system. The investigation of the systems done in
this subsection has been heavily influenced by the conference paper [RaZwLel3]| for
which we re-obtain and even generalise the main result using the frequency domain
method by combining part of the proof of Theorem 14 therein [RaZwLel3|] with
our proof for first order port-Hamiltonian systems with static boundary feedback.
Using the notions of pairs having properties [ASP|and [ATEP] the results there extend
to second (or higher) order port-Hamiltonian systems with SIP controllers.

Within this subsection we assume that both the port-Hamiltonian system & =
(2,9, €) and the finite dimensional linear control system X, = (A, B, C., D..) are
impedance passive, i.e.

Re (Qx,z)x < Re (Bx,Cx)pna, x € D)
Re (Acxe + Bete, o) x, < Re (Cexe + Dete, ue)pna, ze € X,, u, € FNY,

As a result the interconnected system represented by the operator A associated to
the standard feedback interconnection

Br=—y.,, u.==¢Cxr

is dissipative and thanks to Theorem generates a contractive Cy-semigroup on
the product Hilbert space X x X.. We decompose the full rank matrices Wy, W¢ €

Fx2d o
WB:{S//BJ ]’ WC:|:VYC,1 }
B2
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where Wp 1,We1 € F™>*22 for some 1 < m < d, and accordingly also the input
and the output maps split into two parts

Bix Wg.1 fomz >
% = = ’ ’ s
* < Box > [ Wh,2 } < €, Ha
er— [ G\ ._| Wea fouz '\
&z We 2 €9, Ha
Identifying F™ with the m-dimensional subspace F™™ x {0} of we may and will
assume that U, = Y, = F™ =2 F™ x {0} C FV9 by assuming that {0} x FN9=™ Jies
in ker B. Nker D, and ran C. Uran D, lies in F™ x {0}. Then we assume that the

finite dimensional linear control system X. = (A., Be, C., D,.) is strictly impedance
passive.

IFNd

Definition 5.3.1. A linear control system ¥ = (/L B,C, D) is called strictly input
passive (SIP) if U =Y and there is o > 0 that for all x € D(A) and u € U the
inequality

Re (Az + Bu,z) ¢ — Re (Cz + Du,u)g < —0 ||u||%

holds.

Remark 5.3.2 (Typical example for a SIP controller). Let us have a look on which
systems 3 = (A, B,C, D) are SIP. First let us note that the SIP condition may be
rewritten as

A B

SYml s pygr

<0

being dissipative, so that necessarily A and D—q] (for some o > 0) are dissipative.
In fact, under the additional assumption that C' = B, i.e. input and output are
collocated, this is in fact equivalent to saying that X is SIP. Note that in any case
the matriz D, is invertible and its symmetric part is positive definite.

Remark 5.3.3. To rewrite the interconnected system in the way we have seen in the
preceding subsection we should replace B, € F"*™ by [B. 0] where 0 € Frx(Nd—m)
C. € Fm>" py [COC] where 0 € FNd=—m)xn gnd D e Fmxm by [DC 0] € FNdxNd,

Theorem 5.3.4. Let & = (A, B,€) be an impedance passive port-Hamiltonian
system, interconnected as in Theorem [5.1.7] with an impedance passive linear SIP
controller 3. = (Ac, Be, Ce, D.), i.e.

Bir = —y., u. = 1z and Box = 0.
Assume that A. is a Hurwitz matriz, i.e. 0(A;) C Cy, and let the inequality
[Bal® +|€al” > |[Refy, € D)

hold for some r > 0 which is independent of x € D() and R € B(D(); H) (for
some Hilbert space H ).

1. If the pair (A, R) has property then the finite dimensional controller
asymptotically stabilises the port-Hamiltonian system, i.e. the Cy-semigroup
(T (£))e>0 is asymptotically stable.
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2. If the Cy-semigroup is asymptotically stable and the pair (2(, R) has property
[ATEP, then the finite dimensional controller uniformly exponentially stabilises
the port-Hamiltonian system, i.e. the Co-semigroup (T (t))i>0 is uniformly
exponentially stable.

Proof. We already know that 4 generates a contractive Cy-semigroup. By the
compact embedding D(A) — X x X, we have o(A) = 0,(A). Let us first prove
that A has no eigenvalues on the imaginary axis, provided that the pair (2, R) has
property Before note that for every (z,z.) € D(A) we get

Re <A($, xC)v (‘Ta wc)>X><XC =Re <Q‘l‘, x>’H + Re <Acxc + Bcglx; xc>Xc
< Re (B2, €12)pm + Re (€12, —B12)pm — 0 |€12]?

=—0 |€1x|2 .
Let 8 € R and (x,z.) € D(A) with
Az, z.) =i8(x, x.)
be arbitrary. Then
0 =Re(if(x,x.), (x,z.)) xxx, = Re (A(x, z.), (z,2:)) xxx. < —0 |€1:c\2
and hence €;z = 0. From the equation
B.Cix + A.x. = ifx,

and the Hurwitz property of A, we then deduce that z. = R(i83, A.)B.€12 = 0 and
this also implies B,z = 0, so that (since Box = 0 from the boundary conditions)
Bx = 0. Therefore,

|Rz|® < |Bz|* + €1z = 0

and z solves the eigenvalue value problem
Ar = ifx.

Since the pair (2, R) has property this can only be true if x = 0, so that
(@, 2.) = 0 must be the zero element in X x X, and i & 0,(A) = o(A).

Next we assume that the pair (2, R) has property |AIEP| and take an arbitrary
sequence ((Zn, Ten), Bn)n>1 € D(A) X R with sup,,en [[(@n, Zen )| x» x, < +00 and
|Br| — oo such that

n—oo

AT, Zen) — 1n(Tn, Ten) —— 0 in X x X
We then especially have
0+ ((A—iBy) (@ns Te)s (Tn, Ten)) xxx, < —0 |Cra, |
thus ¢z, noEe converges to zero. Also we have

n— oo

B.Cixy, + Ao — 10nTen = 2y —— 0
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and since sup;p | R(+, Ac)|| < +oo (which in this case is mainly due to the fact that
A, acts on a finite dimensional space) we obtain

n—oo

Ten = R(iBn, Ac)(Bc€12y — 25) —— 0

and then also
n— o0

— Bz, = Ceeyp, + DGz, —— 0.

From our assumption and the boundary condition Bz, = 0 we thus obtain that
|Rzy|| — 0 and since the pair (A, R) has property [AIEP|and 2(x,, —i 8,2, n2ER0
converges to zero we obtain that also ||z, ||y ——— 0 converges to zero which means
that

n—oo

H(xnvxc,n)HXxXc —0.

From the sequence criterion Corollary [2.2.19| the Cy-semigroup (7 (¢))i>0 is uni-
formly exponentially stable, if it is asymptotically stable. O

In particular, we hereby proved Theorem 14 of [RaZwLel3|.

Theorem 5.3.5. Let A be a hybrid operator operator resulting from the stan-
dard feedback interconnection of an impedance passive port-Hamiltonian system
S = (AU,B,¢) of order N =1 with a SIP finite dimensional linear control system
Y. = (Ae, Be, Ce, D). Further assume that A, is Hurwitz, H and Py are Lipschitz
continuous and there is k > 0 such that for all x € D()

1Bz|> + |€12*> > & |(Ha)(0)]*, € D).

Then the Cy-semigroup (T (t))i>0 generated by A is uniformly exponentially sta-
ble, i.e. the finite dimensional controller uniformly exponentially stabilises the port-
Hamiltonian system.

Proof. Note that the pair (2, R) has properties and [ATEP| by (the proof of)
Theorem 3.9l Then the assertion follows from Theorem [5.3.41 O

Of course similar results hold for second (or higher) order systems. In fact, one
only has to take care that the additional assumption guarantees the right boundary
values of Hx and its derivatives to converge to zero (resp. be zero for the eigenvalue
problem on iR), e.g. in the second order case.

Corollary 5.3.6. Let A be a hybrid operator operator resulting from the stan-
dard feedback interconnection of an impedance passive port-Hamiltonian system
S = (A,8B,¢) of order N = 2 with a SIP finite dimensional linear control system
Y. = (A, B.,Ce, D.). Further assume that A, is Hurwitz, H and Py are Lipschitz
continuous and there is k> 0 such that for all x € D(A)

B+ €l > w ([(H)OF + [(Ha) (0)
+ M) (1) + (1 = ) P (M) (1))
where T1 : F4 — F? is an orthogonal projection. Then the Co-semigroup (T (t))i>o

generated by A is uniformly exponentially stable, i.e. the finite dimensional con-
troller uniformly exponentially stabilises the port-Hamiltonian system.
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So any time the frequency domain method works for the pure infinite-dimensional
port-Hamiltonian system one also gets a result for the correspondent interconnected
system. One particular case is the following exponential stability result on Euler-
Bernoulli beam-like equations.

Corollary 5.3.7. Letd € 2N and (2, ‘B, €) be an impedance passive port-Hamiltonian
system of order N = 2 where Py € F¥*? has anti-block diagonal structure, i.e.

0 M
Pz:[M* 0]

Also H = [Hl H2] is assumed to be a block diagonal (uniformly positive defi-
nite) matriz-valued function with Lipschitz continuous Hy, Ha and Py. If the sys-
tem 1is interconnected with a finite dimensional linear SIP control system X, =

(A., B, Ce, D) and there is k > 0 such that

[Baf? + €l >k (|(H)O) + |(Ha) O

(M) (L) (7~ M (Haan) (1))

for some orthogonal projection I : F4/2 — F4/2 gnd all x € D), then the inter-
connected system is uniformly exponentially stable, i.e. the Cy-semigroup (T (t))i>0
generated by the hybrid operator A is uniformly exponentially stable.

For the case N =1 it is also possible to use the controllability inequality

()l < c / () (e 1) 2 de

to deduce exponential stability of a impedance passive port-Hamiltonian system
connected with an impedance passive and internally exponentially stable linear
system, namely using the following result.

Proposition 5.3.8. Let & = (2,8, €) be an impedance passive port-Hamiltonian
system and X. = (A, Be, Ce, D) be a finite dimensional strictly input passive con-
trol system which is internally exponentially stable, i.e. 0(A.) C Cqy, and let them
be interconnected via the interconnection law

Bz =—y., u.=Cx, Boxr=0.

If for every ¢ > 0 there is T > 0 such that for every solution (x,x.) = T (-)(zo, Tc,0) €
CH(Ry; X x Xo) NCy(Ry; D(A)) of & (z,2.) = Az, z.) the estimate

lz(r)]* < C/OT B ()] + [€ra(t) dt (5.8)

holds, then A generates a uniformly exponentially stable contraction semigroup

(T())t>0 on X x X,.

Proof. Let (zo,2.0) € D(A) be arbitrary and @ = T (-)(z0, Zc0) € Cf (R4; X x
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X:)NCp(Ry; D(A) x X.) be the classical solution of

ax(t) = Ax(t)

%xc(t) = A.x(t) + B.C1z(t)
Bix(t) = —(Cex(t) + D.C1x(t))
Boz(t) =0, >0

(x,2c)(0) = (z0, xc,0)-
Then for every fixed ¢ > 0 and admissible 7 > 0 from equation (5.8]) we have

1 2 2
5 (1@ 2O cx, — 0, 200 % cx. )

= /OT Re (A(x,2.)(8), (z,2:)(8)) xx x.ds

S—a/\&ﬂ@ﬁ@
0
:*01/ |€1m(s)|2+|‘3x(s)|2ds—02/ €1(s)[2 ds
0 0
—|—01/ |Bx(s)|* — §|€1x(s)|2ds—o4/ € 2(s))* ds (5.9)
0 1 0

where o > 0 denotes the SIP-constant in the inequality
Re (Ace + Botie, 20) x, < Re (Cote + Dot ue)pna — o |ue|®

and o; > 0 (i = 1,...,4) are positive constants which sum up to ¢ and which we
chose suitable at a later point. We then have the following estimates.

“or [ 1@l + [Ba(s)ds < -2 ol
0

where we used inequality ((5.8)),

T M2 Bc 2 T
702/ €12(s)|* ds =: —QM/ € 12(s))* ds
0

2 - T
OéM ||B || |:e2w T— s):| 0/ |UC(S)|2 ds
5= 0

]

S—QO&/ (Mew(T S‘)ds |B || / |’U,c | ds
< —2a/ e as 15| / e (5)]? dis
< -2« (‘/ elT=94 *Beue(s)ds )
0

TA 2

= 2a ||xc(7-) —e Cxc,0||Xc
- 2

< —a (e, — 2 [l ezl )

< 2aM2e* ||zeoly, — allzc(n)IIk,
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where we assumed that B, # 0 for the moment, chose (M,w) € [1,00) x (—00,0)
such that HetAU < Me*t (t > 0) and used Duhamel’s formula. Using that

(a+b+c)? <3(a*+b*+c?), a,bc>0

we also find that

/()T|%x(s)|2ds:/0T

<3 [ [lcd® a2e oo
0

s 2
CCGSACxc,O"‘/ CCG(S_T)ACBcclx(T)dT+DCQ:1$(S) ds
0

2
5

2 02 [l s—r A
G 18P [ el

1Dl €12 (s)[* ] ds

2 4 )
dr/ |C1z(r)|” dr
0

DL
< 27 Well
= 2|w‘ HJUC,OHXC
TM? 2 2 2\ [ 2
w3 (G 1B 10 ) [ e as
|| 0

We therefore find with equation (5.9) that
1 2 2
5 (1@ 2O e, = 1@0s2e0) 3k, )
g1 2 wT 2 2
< = Mk + 20077 |lzelx, — a ()],

3M” |IC||”

2
+ 03 2wl ch,OHXC
TM? T
w30 (G 1B I + 10017 [ fesa(o)as
|| 0

—04/ € 2(s) | ds.
0

Now we chose ¢ > 0 (small enough), 7 > 0 (large enough) and the constants o; > 0
such that
TM?

Be|? IC? + |1 D
2l | Be|l” [|Cel|” + (| De |l

0430’3(

3M2||C.|?
20M?2e?¥T 4 03M < min{a, g} .
2 |w| c

Note that for any fixed ¢ > 0 the constant 7 > 0 may be chosen larger if we we
wish. Also all the chosen constants do not depend on (zg, c,0) € D(A). Then there
is € > 0 such that

1 2 2 2
5 (1@ 2B, = 1@0,2e0) 3k, ) < =€ @) (Olcx,

and therefore

1
||T(T)(x07‘rc70)”X><Xc S \/ﬁ H(x(th,O)HXXXC =p H(x()axc,o)HXXXC
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and since this estimate holds for all (zg,z.,0) in the dense subset D(A) of X x X,
we find
IT@N < pe(0,1)

and uniform exponential stability follows from Remark [2.2.12] The case B, = 0
can be handled quite similar and is actually easier. We leave the details to the
interested reader. O

In the original Lemma there is a contractivity condition on the solution z €
WL (Ry; X) x Loo(Ry; D(2A), however one may overcome this obstacle using the
following lemma.

Lemma 5.3.9. Let & = (A, B, €) be an impedance passive port-Hamiltonian system

with
_ Bz i Cix
%x—<%2x), Cx_(Q:Qx)'
Assume that there are constants T > 0 and ¢ > 0 such that for every solution
z € WL(Ry; X) N Loo(Ry; D(A)) the estimate

| 1201 de < (1820010000 + 100201 00))

then for the constant ¢ = 26;;1 > 0 such that for every solution x € WL (R, ; X) N

Loo(Ry; D)) of & = Az with Box(t) = 0 for a.e. t > 0 the following holds
eIk < ¢ (1B, 0r0) + 1€ O 0,01 ) -

Proof. Take any solution z € WL (Ry; X) N Loo(Ry; D(2A)) of & = Az such that
Boxr = 0. Then

H$||ig(o,7;x) Z/O ()% - (HJU(T)Hg( - ||33(t)||§() dt
> 7lla(r)|% — (B2, €2) 0,70
> 7lla(n)|% — (B12,€12) 10,70

2 1 2 2
> 2(0)lx — 5 (1Bl 0.0 + 1€12113, 0,0 )

and hence the assertion follows. O
It is also possible to obtain uniformly exponential stability through the Lyapunov
method for the Lyapunov function ®(t) = ¢ ||«(t)]| + q(z(t)) + a [T |lzc(s)|]” ds
where ¢ comes from the exponential stability proof of the static stability theorem
and a,ty > 0 are suitable constants.

Proposition 5.3.10. Let an impedance passive port-Hamiltonian system & =
(A, B, €) be interconnected with an impedance passive and internally exponentially
stable linear control system ¥, = (A¢, Be, Ce, D..) and assume that

Re (A(z, 7o), (2, 20)) xxx. < —0 |Czl, >0

Further assume that there is ¢ : X — R such that |g(x)] < ¢ ||x||§( and for every
solution x € C}(Ry; X) N Cy(Ry; D(RA)) one has g(x) € WL (R4; X) with

%q(w(t)) < —% le@I + ¢ (1Ba(O)F +1&®)F), aet>o0.
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Then there are constants M > 1 and w < 0 such that for every (xo,zc0) € X x X,
and the corresponding solution (z,z.) = T (-)(0, Tc0) € CH(R4; X)NC(R4; D(A))
the following uniform exponential energy decay holds true.

(@, 2e) ()l x s x, < Me“" [|(z0, 7o)l i, t =0

For the proof we employ the following lemma on internally stable linear systems.

Lemma 5.3.11. Let Y = (A, B) be a linear system with bounded input operator Be
B(ﬁ,f() and A be the generator of a uniformly exponentially stable Cy-semigroup
(T(t))¢>0 on X. Then there are constants ty,d,c > 0 such that for every initial
value Ty € X and input function u € LQJOC(RJ,_;U) and the corresponding mild

solution T € C(Ry4; X) given by Duhamel’s formula
t
E(t) = T(t)io + / T(t — s)Ba(s)ds, t>0
0

the estimate

d t+to N ) t+to )
G e ds < sl e [ s, ¢20

is valid.

Proof. Since (T'(t)):>0 is uniformly exponentially stable there are constants M > 1
and w < 0 such that ~
HT(t)H < Me¥t, t>0.

We then calculate for every such solution as in the lemma that

d [ttto
dt J,

2
%

1Z(s)1% ds = 12t + to)l% — |12(0)]

= lz@l%
X

- Hf(to)fc(t) + /t " Bt 4 to — ) Bit(s)ds

< (2| -1) Ietwli

2

t+to ~
42 / T(t + to — s)Bia(s)ds
t

X

2 [ttto
< @2 — 1) fa(o)| + 200022 [B]| [ falo)l ds
t
and the result follows by choosing ty > 0 such that
112
§i=1—2M2%2% >0, ¢:= 26oM? HBH > 0.

O

Proof of the Proposition. Take any arbitrary (xo,z.0) € D(A) and for some
a > 0 define the continuously differentiable functional ® : R — R by

2 o 2
() :=t|(@,2e) () I x, + alx(t)) + oz/t [ze(s)llx, ds, t=0
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where (z,2.)(-) := T(-)(x0,2c0) € C*(R4; X x X.) NC(Ry; D(A)) is the classical
solution of the interconnected system for the initial value (zg,zc0). We use the
following estimates

d
Za(e(t) < — 2% +er (1B2(0) + [MEx@)?)
d t+to 9 5 t+to 9
G e s < 0l ex [ nea(s)Pas

t t

c

< =0k, = Re (A, o), (2, 7)) Laraoix x4

Co
= =0 llze®)lik, + 52 (lze®)l, — Izt + o),
B (t)[* < 2(|Ce|* [we (@)%, + 2| Dell* (€ (1)
2 2

= cs[lze(t)lly, + cal€2(t)]

and find that for every ¢t > 0 the following estimates are valid.

d (1) < || (@, 2e) (1) |5 wx, + 2 Re (Al ze) (1), (2, 20) (1) x xx.

a
@Il + 1 (IBa(t)* + [nea (o))
—adze®l%, + 5= (2O, = @zt + o), )
< (1+ cres — ad) |z ()|, + (crea — 2to) |TT€(t) |

+52 (I, - N+ to)lFecx, )

and then choosing
o 1+ C1C3

]

Cc1C
>0, T=—-2>0
20

«

we find for t > 1

B(t) — d(r) < / (creq — 250) |H€z(s)|* ds

+ 50 (2O x, = @z 0+ )l cx, )

%”

2
S 2% (x()?nyO)HXxXC'

Therefore,
2 2
(@, ze) Ok x, —cll@ z) (Ol xxx, < ()

P
acy 2
< ®(1) + - =20 (|0, 7e0)llxx,

aco 2
- (T+C+ g) (20, Ze.0)x x x.

so that for ¢ > max{r, ¢} one has from the density of D(A) in X x X, that

T+ce+ 50 o400
t—c

and uniform exponential stability follows with Remark [2.2.12 O

IT O < 0
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5.4 Strictly Output Passive Controllers

In this section we consider the standard interconnection of a infinite-dimensional
port-Hamiltonian system with a strictly output-passive controller. Again, we as-
sume that the port-Hamiltonian system (2, B, €) is impedance passive,

Re (/z,z)x < Re (Bzx,Cx)pna, x € D).

In the following definition we introduce the terminology of an SOP controller.

Definition 5.4.1. A linear control system > = (A, B,C, D)

&= Az + Bu

Yy = Cx + Du
for Hz’lbertﬁpacesf( gndﬁ = Yz a semigroup generator A on X and bounded linear
operators B € B(U,X),C € B(U, X) and D € B(U) is called strictly output passive
(SOP) if there exists a constant o > 0 such that for all v € D(A) and v € U one

has the estimate ~ .
Re (Az + Bu,x) ¢ < Re (u,9)5 — o [lyl7

where y = Cx + Du.
Assumption 5.4.2. The finite dimensional controller (A., B, C¢, D) is strictly
output-passive with state space X. =TF" for some inner product (-,)x., €.g.

<.'lfc, ZC>XC = z:Qcmc; Te,y e € Xc (510)

for some symmetric and positive definite matrix Q. € F**", and input and output
space U, =Y, = F™ with standard inner product for some m € N with 1 < m < Nd.

Theorem 5.4.3. Let A be the operator resulting from the feedback interconnec-
tion Brx = —Y¢, u. = €1z, Box = 0 of an impedance passive port-Hamiltonian
system & = (A,B, €) with a finite dimensional linear SOP control system . =
(A¢, B.,Ce, D.). Let R € D(; H) for some Hilbert space H.

1. 1f
ker(if — A.) NkerC. = {0}, B€R
and
|Rallyy < |Bal*, @€ DY)
and the pair (A, R) has property then (T (t))i>o0 is asymptotically stable.
2. If (T(t))e>o0 is asymptotically stable, D. is invertible,
|IRz|7; < |Baf* +|€12]*, =€ D@

and the pair (2, R) has property then (T (t))i>0 s uniformly exponen-
tially stable.

Remark 5.4.4. The first condition (for asymptotic stability) is far from being weak
and any weaker condition would be desirable. For example, for the one-dimensional
wave equation as first order port-Hamiltonian systems (N = 1) one would like to
take, say Elwc (1), EIw:(0) as input, however for the property we only know
that HRxH?{ > |we(1)] + |EIwC(1)|2 would be sufficient. Therefore, one probably
has to check by hand that 0,(A) NiR for suitable boundary conditions.
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Proof of Theorem In the following we write v, = €z and y. = Cex. +
D € z. First note that for every (x,z.) € D(A)

Re <A({E, 1'0)7 (.’E, xc)>X><X(: =Re <Q[:L'7 x>X + Re <Acxc + Bcuca xc)XC

<Re <%‘T7 Qtx>]FN'i + Re <uc> yc>]F”" -0 |yc|2 =-0 |yc|2 .

1.) If A(z,z.) = ifB(x,x.) for some 5 € R then Re (A(z,z.), (z,z.)) xxx, = 0, so
Bx = —y. = 0. Since the pair (2, R) has property this implies x = 0 and then
also u, = €1z = 0. Thus, A.z. = ifz. and from ker(i8 — A.) Nker C. = {0} it
follows that z. = 0. Hence, A has no eigenvalue on the imaginary axis, so (7 (¢)):>o0

is asymptotically stable by Corollary [2:2.16]
2.) Let ((zn, Zen)s Bn)n>1 € D(A) xR be a sequence with sup, ey [|(2n, Zen) HXXxC <

+00, |Bn| = +oo and such that A(zy,Zcn) — i6n(Tn, Ten) 27 converges to
zero in X x X.. Then

g |yc,n‘2 S - Re <A(xna xc,n)7 (xna xc,n)>X><Xc — Ou

i.e. Yo, 2 0. Since D, is invertible it follows that also

n—oo

Dc_lCcmc’n + Ueyy —— 0

and hence the sequence (ucn)n>1 € F™ is bounded. Then from

Acxc,n + Bcuc,n - Zﬂnxc,n =My — 0

and the fact that (i3, — A.)~! Z7%% 0 we obtain that
Len = (Zﬁn - Ac)_1<Bcuc,n - nn) =0

and in particular this also implies u. 27%% 0. Now

2 n—oo

1Rzall < |Banl® + €120l = [yenl® + luenl* == 0

and since the pair (2, R) has property |AIFP|it follows that z, 270, By the
sequence criterion Corollary [2.2.19] this implies that (7 (¢));>0 is uniformly expo-
nentially stable. O

Remark 5.4.5 (Example for an SOP controller). We ask ourselves the question:
What is a typical example for an SOP controller? Thus, given a system X, =
(A, B, Ce, D) we look for (easy) conditions whether the system is SOP. First of
all note that the SOP property may be expressed as the matrix

LA+ A) +oCC. L(B.—-C)+0oC'D,
% / / 21 / / S 0
5(B.—C.)+0D.C. —35(Dc.+ D;)+oD_.D.
being negative semi-definite for some o > 0. We then have that
Re(Acze + Beue, ue) < Re(Cexe + Detie,y te) — 0(Cete + Dette, Cere + Deue)

in particular for u. = 0 we must have that A. + oC.C. is dissipative, thus a
state/output-matriz C. # 0 requires some strict dissipation from A.. On the other
hand for x. =0 we obtain that

Re (Detie, te) > 0(Detie, Dotie)
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so that one needs to have 0 < Sym D, < %I, which is not a big issue since in
principle we may choose o > 0 as small as we wish. We then write

0 <Re{(C.x.+ D.uc,u.) — Re {Acxe + Betie, ¢e) — 0 |Cote + Dcuc|2
=Re((4A. — CiC)xe,xe) —Re (I — 0D¢)ue, Deue)
+Re((B.+ (20D} — INC¢)xe,ue)

Therefore, a quite natural choice of ¥, ensuring SOP is the following where the first
two are necessary for SOP with given o > 0:

1. (Ac, C.) such that A, + oC.C. is dissipative,

D.+D:

2. D, such that 0 < Sym D. = ==

< %I and
3. B. such that B, = (I —20D})C..

For example, if o = 1 and A, + C.C,. dissipative are given a possible choice were
D. = I and then C. = —B.. Note that for SIP controllers the choice C. = B
(collocated input/output) makes more sense then the choice made here.

Example 5.4.6. In contrast to SIP controllers, for SOP controllers the feed-through
operator D. does not necessarily be invertible, in fact take any A. € F"*" C. €
Fm*" and o > 0 such that A. + 0C.C,. is dissipative. Then for B. := C! and
D. =0 the system ¥, = (A¢, Be, Ce, D..) is SOP, namely

Re (Acwe + Clue, o )pn < Re (Cotte, Ue)pr — 0 \chcﬁm .

5.5 More General Impedance Passive Controllers

In the two preceding sections on SIP and SOP controllers for stabilisation of impe-
dance passive port-Hamiltonian systems we did not cover some cases which might
also be interesting for applications. On the one end we excluded large multi-
component systems where not only one, but several finite dimensional controllers
are used for stabilisation. In total these controllers form a single finite-dimensional
system, of course, but if some of the control parts are SIP and others are SOP in
general the total control system will be neither SIP nor SOP. Still it is quite reason-
able for the controllers to still be stabilising. Secondly, setting some components of
Bz to be zero, for SIP or SOP control systems we could not use the corresponding
components of €x for our dynamic feedback law which might also be an unneces-
sary restriction on the control law. Therefore, we present a slight generalisation
of the stabilisation theorems above which does not have these drawback, i.e. does
overcome these two presented problems. Again we start with a result on asymptotic
stabilisation.

Theorem 5.5.1. Let & = (A,B,€) be an impedance passive port-Hamiltonian
system and assume that the control system X, = (A¢, Be, Ce, D) has the following
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block diagonal form

A
(M)
B. = < Bea B.s )
C. = ( Cea Con )
D, = ( Den Des )

(5.11)

where Ag; € FX™i B.; € Fmixmi Cp; € FM*™i gnd Dg; € F™>™ forq=1,2
and n1 +ne = n, my +me = Nd. Assume that the control system is impedance
passive with

Re (Acze + Bee, zc) x,

2
< Re <chc + Dcua uc>]FNd —0 (|uc,1 + ‘00,25(50,2 + Dc,2uc,2

’)
for some o > 0 and all u, € FN¢ and x, € F*. If the matriz A, is Hurwitz, i.e.
op(A:) CCy, and

1. D. = D} > 0 is symmetric and positive semi-definite

2. for all x € D(A)
Ba|® + [|€ra|F, > [|Rz]F

where R € B(D(); H) for some Hilbert space H such that the pair (2, R) has
property[ASD, then the controller X, asymptotically stabilises the system & for the
standard feedback interconnection u., = €x and Br = —y,., i.e. the Cy-semigroup
(T(£))t>0 generated by the interconnection operator A is asymptotically stable.

Proof. Let (z,z.) € D(A) be such that A(z, z.) = i8(x, z.) for some § € R. Then

0= Re (A(x,zc), (@,2.)) xxx. < =0 (|€1a]* + [Baal)

so that €;2 = 0 and Bsx = 0 are zero. Then also

Te1 = (Zﬁ — Acwl)iqulQ:liL’ =0
and on the other hand

Bix = _(Oc,l'rc,l 4+ DC71@:11‘) =0.

Since the pair (2(, R) has property it follows that x = 0, in particular also
€ox = 0 and hence x. = (if — A.) "' B.€x = 0. As a result, i3 € iR can never be
an eigenvalue of A, i.e. 0,(A) NiR = (). Asymptotic stability follows from Corollary
2.2.16 O

Now assume that it is already known that (7 (¢)):>0 is asymptotically stable. Then
the following theorem provides sufficient conditions for (7 (t)):>0 also being expo-
nentially stable.
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Theorem 5.5.2. Let & = (A, B, &) be an impedance passive port-Hamiltonian
Boundary Control System interconnected with a finite dimensional control system
Y. = (4., Be, Ce, D.) of diagonal structure as in Theorem which is impedance
passive with

Re (Acxe + Betie, we) x, < Re(Cee + Deotte, Ue)pna — |u5’1|2

and D. = D} is symmetric. Assume that (T (t))i>0 is asymptotically stable, i.e.
op(A) CCq . If there is R € B(D(); H) for some Hilbert space H such that

82| + |DoCa|* + € raf® > ||Rzll};, x € D)

and the pair (2, R) has property then the Co-semigroup (T (t))i>0 generated
by A is uniformly exponentially stable.

Remark 5.5.3. Note that we do not explicitly assume that iR No(A.) = (0 here
since the asymptotic stability of (T (t))t>o0 already implies that o(A) = o,(A) C Cy .
Also since X, is finite dimensional the spectrum o(A;) of A. is bounded, so that
i € p(A.) for sufficiently large |B]. To check asymptotic stability for systems where
c(A:) NiR # (0 one needs another proof since Theorem only works under the
assumption that A. is Hurwitz.

Proof of Theorem We employ the sequence criterion for the Gearhart-
Greiner-Priiss-Huang Theorem again. Let (2, Zcn, On)n>1 € D(A) X R be a se-
quence such that

n—-+4oo

Sug ||(33n7xc,n)”)(xxC < 00, |ﬁn| — +00
ne

and
n—oo

-A(l'rn xc,n) - Zﬁn(xna wc,n) g 0

It is immediate from the passivity condition on the port-Hamiltonian system and
n—oo

the finite dimensional controller that then €;x,, ——— 0. We want to show that
(@, Ten) — 0 and for this purpose proceed in three steps.

n— oo

1. Show that z., —— 0.

n—oo

2. Show that Bz,, D.Cx, —— 0.
3. Use property [AIEP|to conclude that also x,, 27%%0.

1.) Let us first focus on the infinite dimensional part where

n—oo

Ax,, —iBpx, — 0.
First of all this implies that

[ Han|| g~ [P
sup ————— =~ su
n>1 ‘/Bn| n>1 ‘Bn|

< +00

n—oo

and by Lemma [2.1.19| we have that ﬁi |Hxy||ov-—1 — 0 which leads to

Cx,

— = 0.
Bn
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For the finite dimensional part we write
Ao + BoCy — ifn2cn =t fon — 0
and obtain that
Tegn = R(iBn, Ac)(Be€ry — fen)

_ (ZI _ 140>_1 Bc€$n - fc,n n—-+oo
a Bn

where the resolvent R(i3,, A.) exists for all n > ng sufficiently large and we used
the fact that from A, € F"*™ and |3, — 400 we have

AN !
(i—c) DR, T
Bn
B.Cx, femn
Bu

B — 0 tend to zero as n — 4o0.

0

and the terms

2.) We proceed by showing that ker D, C ker(B, — C?) where C’. € B(FN4; X,) is
the Hilbert space adjoint of C, € B(X.;FN?) w.r.t. the inner product (-,-)x, on X..
This is

Lemma 5.5.4. Let > = (;1, B, C, [)) be a linear control system on Hilbert spaces
X and U =Y. If ¥ is impedance passive, then

ker D C ker(B — C")

n

Proof. Let u € ker D. Then for all z € X and A € R the impedance passivity of
¥ = (A, B,C, D) implies that
0 > Re (Az + B(\u),z) ¢ — Re (Cx + D(\u), Au)
=Re (Az,z) ¢ + ARe (B — C")u, ) 5.

Since this inequality holds for all A € R we deduce

Re((B—Cu,z)3 =0, z€X

and hence u € ker(B — C"), i.e. ker D C ker(B — C"). O
Proof of Theorem (continued). Let II be the orthogonal projection on
(ker D.)*. Since D, = D} > 0 is positive definite and D¢|er p,)- : (ker Do)= —
(ker D.)* is injective, the operator DC|(kc}r D)+ > 0 is strictly positive definite on
ran IT = (ker D)%, so to show that D.€x — 0 it suffices to show that II€z — 0.
Assume the contrary and w.l.o.g. assume that

[TI¢z, | =22 limsup [I€z| > 0.
k—o0

Then observe that

0 +— Re (A(xn, Ten) — 180 (Xn, Ten),s (Tn, Ten)) X x X,
=Re (Uzp,xn)x + Re (Acten + BeCp, Ten) x.
< Re (Bz,,Cxp)prva + Re (BoCxy, T )
=Re (—Cex¢n — De€xy, Cxp)pva + Re (Be€xy, Ten)
=Re((B. — CLCxy, Tcn)x, — (DJICx,,, ICT,, )pna

c
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and dividing by |II€x,,| # 0 (for large n) and since z., — 0 this leads to

ez, 22+ o

in contradiction to the assumption that limsupy,_, ., |€12x| > 0. As a result, II€x,,
tends to zero and so does D.&€x,. Then also

n—-+oo

Bz, = —Cexcrpn — DeCxyy ———— 0.

This finishes the second step.
3.) From the first to steps we have z. , 2729 0 and

Rz % S |Bxn|* + | De€an|? + €1, > 225250

and property |AIEP|for the pair (2(, R) implies that also z, 27 0. Hence, uniform
exponential stability follows from Corollary [2.2.19 O
Remark 5.5.5. One may drop the condition D. = D7, but then the terms ‘Bx and
D.Cx have to be replaced by Bx := B — %Cx and D€z := (Sym D.)€x,
respectively. To see this note that

<= D.— D}
Re (Bz, Cx)pnva = Re (Br — ————Cx, Cx)pna
= Re <%x, ¢$>]FN¢1

and
D(A) = {(z,z.) € D(A) x X, : Bz = —C,x, — D.Cx}.

5.6 The Static and the Dynamic Case

Before we consider the nonlinear case let us mention some implications of Lemma
[3:2:24] for the resolvents of the port-Hamiltonian operators with static or dynamic
linear feedback. First, we reformulate Lemma [3:2.24] as

Lemma 5.6.1. Let (A, B, &) be an impedance passive port-Hamiltonian Boundary
Control system. Then for all Re A > 0, v € FN9 and f € Ly(0,1;F?) the problem

R&A—-A)zx=f
Br=u
Cr=y

has a unique solution (x,y) € D(A) x FN? which is given by
=N f+T(Nu
y=FNf+GMu
for some holomorphic functions
& € H(CS; B(Y, D)), ¥ € H(CE; BFEYE D(R)),
F e H®(CJ; B(X;FNY), G € H(CZ; B(FNY))

where
Sym G(A) >0, ReA>0.
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Remark 5.6.2. Here we used the following notation for open subsets 2 C C of the
complex plane and Hilbert spaces H .

H(Q; H) :={f:Q— H: [ is holomorphic }
H>(Q; H) :={f e H(; H) : f is bounded } .

With this notation we may easily express the resolvent of the generator resulting
from the feedback u = —Ky.

Corollary 5.6.3. Let K = K* >0 be an Nd x Nd-matriz and Ak = Wlxer(+K¢)-
Then for all Re A > 0 the resolvent of Ak is given by

R\ Ak) = —VWK(K + G\ DTG TTFO) + @())
= —UA)K(KG\) + 1) F(X) + &(N).
Likewise we may express the resolvent for the operator including dynamic feedback
for the case of collocated input/output of the control system.

Corollary 5.6.4. Let (A., B.,C., D.) be an impedance passive, exponentially stable
(finite-dimensional) controller with o(A.) C Cy, U. = Y. = FN? and collocated
input/output B, = C. (w.r.t. {-,-)x,) and Sym D, > 0 positive semidefinite. Then
for

2
A= [ B.¢ AC}

D(A) :={(z,z.) e D) x X.: (B+ D.C)x=—-Cex.}
one has C3 C p(A) with
R(X, A)

R(\AD)+AN) 7\IJ()\)(I+DC(G(>\)_1+DC)_1)CCR()\,Aﬁ)]
ROMAMNB.(I+D.G(\) " F()) R(\,AD)

where
A} = A, — B.(GI\) "'+ D,)"'C..
AN = =N+ De(GA) " + Do) CR(N, A2)Be(I + DG(X) T F(A)
Note: A2 also has spectrum in C, , so generates a uniformly exponentially stable
semigroup.

Proof. The passivity of (4., Be, C., D.) implies that A, is dissipative and since
B! = C, also A is dissipative. Moreover, for i3z, = A}z, we obtain

0= Re (Al z., z.)x,
= Re (Aete — Bo(G\) ™ + Do) 1 Cotte, 2) x
< —Re((G\) ™' + D) ' Cere, Come)pna
and since (G(A)~! + D.)~! > 0 this implies (G(A)~! + D,)~!1C.z. = 0, thus

c

ifre = Adx. = Ac,

and it follows z. = 0, so exponential stability. O
Finally, this gives the following corollary
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Corollary 5.6.5.
R(-,Ap,) e H®(C{; B(X)) <+= R(,A) € H®(C{; B(X x X,)),

i.e. Ap, generates a uniformly exponentially stable Cy-semigroup (T(t))i>0 on X
if and only if A generates a uniformly exponentially stable Cy-semigroup (T (t))i>o0
on X x X.

5.7 Examples

Within this section we return to some of the examples considered in the introduc-
tory examples section and show how some results for particular dynamic boundary
conditions can be re-obtained using the abstract results we derived in the sections
before. Sometimes we are even able to generalise the previously known results or
to impose less restrictive regularity conditions, at least.

Example 5.7.1 (Dynamic Feedback Stabilisation of the Timoshenko Beam Equa-
tion). We consider the nonuniform Timoshenko beam, see Examples and
with the following stabilisation scheme as in [ZhO7].

(K (¢ = we))(t,0) =0
—(ElI¢c)(t,0) =0

(K(¢ —we))(t1) = kywy (8, 1) + kow(t, 1)
—(EIpe)(t,1) = ksde(t, 1) + kaop(t,1)

where a attached mass at the tip (¢ = 1) adds additional components to the the total
energy which now s

Hial®) = 5 [ KQ) (e = 6)(6. 0 + BIQ) 10c(t. O

+ () lwe (t, )P + I,(C) e (£, O d¢
+ Ky [w(t, 0)* + k3 |o(t,0))?

and the latter two terms w(t,0) and $(t,0) are not represented in the standard port-
Hamiltonian formulation x = (we — @, pde, d¢, Ip¢t) in the sense that they cannot be
computed from knowing only the value of x. On the other hand these term contribute
in a discrete way to the total energy, so that it makes sense to consider them as
additional variable z.=(w(t,0),¢(t,0)) € F? = X. and the latter two boundary
conditions as evolutionary laws for these control state space variables.

= (78 e (2 ) (M)

We therefore rewrite these boundary conditions as a dynamic feedback control for
the state space X. = F? with the weighted inner product

<$C, zc>Xc = <.’IJC, chc>]F2; Ty Ze € Xca Qc = dlag (kla kS)
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the control input and output space U, = Y, = F? with the Euclidean inner product
and for the matrices

A, = -C, = —diag ky ks , B.=-D,= —diag L
2 ko kg

which is interconnected with the port-Hamiltonian system & = (A, B, €) for the
impedance energy preserving choice

o) [ e

_ 4T4 _ 33

BE= A (2)0) | T —(Ham)(0)
(H33)(0) —(Hax4)(0)

cf. Example[].5.7, and the feedback interconnection

—Ug (1 0 0
%x—( 0 ), uc—(o 0 O)Cx.

Then the linear control system is impedance passive, even strictly output passive,
since for every x. € X.,u. € U. and y. = Cexe + Doue we obtain, using that
Qc_l = diag (k‘g, k4)Cc and —I = diag (k‘g, k4)D

= O

Re (Acxe + Betie, te) x. — Re (Cee + Detie, ue)p2
= —Re <chc + Dcu07 Qc_lxc - uc>Xc
= —Re (y., diag (k1, k3)yc)pz = —k2 |yc,1|2 —ky |yc,2|2-

Therefore, the hybrid operator A generates a contractive Cy-semigroup on the prod-
uct Hilbert space X x X. and o := min{ky, ks4} > 0

Re (A(z,z.), (2, 2.)) xxx. < —0 |Bz|*, (z,2.) € D(A).

In the next step we prove that the Cy-semigroup is even uniformly exponentially
stable. We begin by showing asymptotic stability. Here we cannot use Theorem
[£:2-3 and [54-3 since the term Bz does not include the value of all components of
Hax at the side ( =0 or { =1, so that we prove that i & o,(A) for every B € R.
In fact, for the case that 8 = 0 we obtain that if A(x,z.) =0, then (Hz)' =0 and
from the dissipation inequality that also Bx = 0, so that Hx = 0. Then also €x =0
and then A.x. = 0 so that (z,z.) = 0 and 8 = 0 cannot be an eigenvalue of A.
Moreover, for the case 8 # 0 we find for every solution A(x,x.) = iB(x,z.) that
liBzc]| = ||Bz| = 0 and since B. € B(U,; X.) is invertible then also the first two
components of €x equal zero and x € D(R) solves the problem

ifr =Ax, (Hxz)(1) =0,

so that also * = 0 and we conclude that iR N o,(A) = 0. By Corollary [2.2.16
the Cy-semigroup is asymptotically stable and then by Theorem [5.4.5 we also get
uniform exponential stability since the pair (A, R) for Rz = (Hxz)(1) has property
[ATED and

B2[? + Mgz g0y €2|” > |(Ha)(1)[*, = € D).
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Example 5.7.2 (Euler-Bernoulli Beam with Both Ends Free). In this example
we consider the nonuniform FEuler-Bernoulli Beam with both ends free where at
the tip (here: the left end) a mass is attached to damp the beam. Originally this
problem had been considered in the article [GuHuOJ] where the authors assumed
that EI € C%([0,1]; R) is continuously differentiable twice and p € C*([0,1]; R) is
continuously differentiable. The assertions below have already been stated, but only
partly proved, in Example 4.3 of [AuJal] under the slightly less restrictive regularity
assumptions EI,p € WL (0,1;R). (Both functions should still be uniformly positive,
of course.) Here we will present a treatment including the missing parts of the proof
in [AuJalf|]. The beam model under consideration is the following. We consider the
usual Euler-Bernoulli beam equation subject to the dynamic boundary conditions

0? 0 02
BI(Q) gt Ol = 8C(Emoacgwa,o) o1 =0

02 0
EI (C)a<2 w(t,()|¢=0 = 8C w(t, ()= 0+k28ta§ w(t, ¢)l¢=o
9 (EI(g)azwu <>) — ool Ol + ks So(t, )
ac a2t ¢=0 sw(t, C)lc=0 + kazow(t, O)le=0

where k; > 0 (i = 1,...,4) are positive constants. Obviously the terms w(t,0)
and we(t,0) appearing in the boundary conditions may not be represented by the
variables p(Q)w(t,¢) and wee(t, () of the formulation as port-Hamiltonian system
of second order N = 2. In fact, they also contribute to the total energy of the
beam-mass-system which is given by

Eron(t / EI(C) lwee (t: O + pl(€) lwr(t, O d
+5 = (e O + ks (1, 0) ).

Therefore, the energy decomposes into two parts. On the one hand we have an
continuous part corresponding to the energy of the beam itself and on the other
hand we also have a discrete part as weighted sum of the squared Euclidean norms
of w(t, O)- anq %w(t, 0). We already saw in Example that its port-Hamiltonian
formulation is

2

ac?

na(1,€) = (1),

21(t,€) i= 55 w(t; ),

plus the additional controller state space variables

xea(t) == %w(t 0),

Ze2(t) == w(t,0).

The latter two boundary conditions may then also be interpreted as evolution law
for the new variable z.(t). We next show that the total system may be represented
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by passive dynamic boundary control of an impedance energy preserving system.
Recall that for the Euler-Bernoulli beam its energy change is determined by

d

SLH(E) = Re [(Bluce(Q),wic () — (Blucc)e(€), ()l
)

= Re ((Elw¢e) (1), wic(1)) — Re ((Elwee)¢ (1), we (1)
— Re ((Elwc)(0), wic(0)) + Re ((Elwee)(0), we (0))

so that the choice

(0 s
1(E1 t7 N Wt t,
PEO=1 ) t) || (BlaetD)
—(Ham2)' (L, 1) —(Elwee)c(t,1)
(H2x2)(t70) _(EIWCC)(tvO)
Ca(t) = (Haw2)'(t,0) 2 (Elwee)c(t,1)
(Hix1)'(¢,1) wi¢(t, 1)
(7‘[11‘1)(t, ) wt(t, 1)

leads to an impedance energy preserving port-Hamiltonian system & = (2,95, ),
where 24 had been defined in Example We choose m = 2 and B,z and
€12 to be the vector in F? consisting of the first two components of Bz and ¢z,
respectively. The two-dimensional controller state space X, = F? is equipped with
the weighted norm

vt am[ ]

and then the finite dimensional control system is given as 3. = (A, B¢, Ce, D)

where
_k
AC == _CC = k2 _kid
k4
_1
Bch|: k2 _1:|.
kg

We check that the control system is strictly output passive. In fact, we have for
every z. € X, and u, € U, = F? that
Re (Acxe + Betie, o) x, — Re (Cetie + Detie, uchy,
= Re <_yca chc>IF2 —Re <yca uc>]F2
= —Re <y67 Qe+ uc>]F2

= — Re (diag (k2, ka)Ye, Cote + Dotie)pz = —ko — ks Yool

so that the system is strictly output passive, indeed. We therefore conclude that the
hybrid operator A resulting from the interconnection B2 = —y., u. = €12 and the
static boundary condition Boz = 0 (corresponding to the first two boundary condi-
tions and the latter two components of Bx) generates a contractive Cp-semigroup
on the product Hilbert space X x X.. In fact, it is dissipative with energy dissipation

Re <A($7xc)7 (-Tyxc»XXXc = _k2 |yc71|2 - k4 s 2a HAS D<Q[)7 Ye = _%lx-
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We investigate the asymptotic properties of the corresponding contractive Cp-semi-
group (7 (t))t>0 next. We start with the asymptotic stability property where we
first remark that the pair (2,8) in general does not have property so that
Theorem [5.4.3] is not applicable in this step. Since the hybrid operator A has
compact resolvent and is dissipative, we need to prove that it has no eigenvalues
on the imaginary axis. First we show that 0 is no eigenvalue of A. Namely, let
(z,z.) € D(A) such that A(z,z.) = 0. Then, in particular

0= Ac.z. + Beue = —(Cex. + Doue) = B
and x € D(2l) solves the eigenvalue problem
Ar =0, Bxr=0
ie.

(Hiz1)" =0, (Hi21)(0) = (H121)'(0) =0
(Hawa)” =0, (Haxa)(1) = (Haxa)' (1) =0

The unique solution of this problem is Hx = 0 and then also €x = 0, so that
. = —A;'B.€z = 0 and 0 € 0,(A). Next we take any 3 € R and show that
if ¢ 0,(A) also does not lie in the point spectrum of A. Let (z,z.) € D(A) such
that A(z, z.) = i8(z, z.) and in particular Re (A(z, x.), (z,x.)) xxx, = 0, so that
612 = 0 and then
1 A 1
T = B (Acxze + Beue) = %%w =0.

Since B, is invertible it also follows that u. = €z = 0, so that Az = iSx and
Bxr =0, €z = 0. For R = (*B,€;) we have already seen that the pair (2, R) has
property so that again z = 0 and we conclude iRNo,(A) = () and asymptotic
stability follows from Corollary For uniform exponential stability we may

then employ Theorem since R = (*B,€;) as above has property [AIEP| and
therefore (7(¢));>0 is uniformly exponentially stable. O

Remark 5.7.3. Let us return to the previous example on the Euler-Bernoulli Beam
with a mass at the tip. The damping by dynamic boundary feedback took place at
the left end of the beam, whereas at the right end we imposed the free end boundary
conditions

(Elwee)(t,1) = =(Elwee)c(t,1) =0

or, in the port-Hamiltonian language,
(HQiEQ)(].) = —(Hgirz)l(l) =0.

Clearly any of these conservative boundary conditions may be replaced by a dissipa-
tive boundary condition, e.g.

(Haw2)(1) = —a(Hi21)'(1)

for some o > 0 and the contraction and uniform exponential stability property of
the corresponding semigroup persist. On the other hand, if instead the conservative
boundary condition

(Haz1)'(1) =0
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is imposed, the system is not asymptotically stable any more since 0 is an eigenvalue
for the following choice of (z,z.) € D(A)\ {0}.

z(¢) = (0,7—[2‘1(01), Te = ngchQflx = ( % ) .

Similarly, if the other conservative boundary condition (Haxz2) (1) = 0 is replaced
by the conservative boundary condition

(Hiz1)(1) =1
we obtain an eigenfunction (x,x.) € D(A) for the eigenvalue 8 =0 by setting
_ _ 0
5O = OH O -0 no= -4 B = 1),
k3

Example 5.7.4 (Dynamic boundary control of a flexible rotating beam). Next
we consider the example of beam, modelled by an Fuler-Bernoulli beam equation,
which should be controlled via the following control equation, which for the constant
parameter case, i.e. a uniform beam, may be found in Section 5.3 of [LuGuM099).

0%z 1 02 0%z
@(t,é) + 2(0) 2¢ (E 8§2> (t, Q) = —(Ou(t), ¢e(0,1)
2(t,0) = gz (t,0) = 0
0 0%z
5 (B155 ) 0 =50

(B152) @1 = 2o

ett(t) = (EIZCc)(t, 0) + T(t), t Z 0
As a first step we get rid of the Ou-term in the first equation by considering the

evolution of the new variable w(t, () := z(¢,{)+CO(t) (¢ € [0,1], t > 0). We obtain
the new system

pwir + (Elwee)ee =0, ¢e€(0,1)
w(t,0)=0
we(t,0) = O(t)
—(Elwee)c(t,1) = fi(t)
(Elwee)(t,1) = fa(t)
O4u(t) = (Elwee)(t,0) + 7(1), t>0

This new system may be seen as a port-Hamiltonian system (of Euler-Bernoulli
type) with some boundary control at the right hand side (¢ = 1) through the input
functions f1 and fo and with some dynamic control at the left hand side through the
additional variable ©, which may also be influenced by an additional input function
7. The mazximal port-Hamiltonian operator 2 is given by

T = (z1,72) 1= (pwi, Wee)s
1

1 -1
HZ=|:p EI:|, P1=PQ:O, P2:|:1 :|
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and for the choice

[ AWETE
. Hx)s (1 N Elwee) (1
Br=| Guyo |~ wec (£,0)
(Hz)1(0) wy (,0)
—((7'19;)1(;) —wt((t,1))
_ Hz)i (1 ~ wie (8,1
=1 (o) | =| Erocowo
()5 (0) (Blwc)c (£0)

the system & = (2, B, €) becomes an impedance passive port-Hamiltonian Boundary
Control and Observation System. We consider two stabilisation problems, which
actually require different choices of the functions f1(t), f2(t) and 7(t), which should
be determined by the state of the system at time t > 0, but for which we also choose
different controller state spaces.

1) The stabilisation problem. Our first stabilisation aim is to bring the system
at rest, i.e. “Yg,ycc, Ot 129007, Since we do not mind the asymptotic value of ©,
but only © is relevant, we choose the state space X. = F, identifying x. = ©, and
controller input and output space U, = Y, = F*. Then i.(t) = —Bsz(t) +7(t). We
also chose the control functions f1, fa and T similar to [LuGuMo99] and let

filt) = —a12:(t, 1) = —an €1 2(t) — aga.(t)

fa(t) = —aozic(t, 1) = —aaCox(t) — asz.(t)
7(t) = =(fi(t) + fa(t) + azze) =: f3(t) — (fr(t) + f2(2))

where a; > 0 are non-negative constants for j = 1,...,3. Then the controller has
the form
T =—(a1 + ag + az)z. + [ ar az —1 0 ]uc
=: A.x. + B.u,
Qp a1
yc:<gzl>xc+|: ago :|’U/c
0 0
=: Cox. + D.u,
which is impedance passive and interconnected via u. = €x and Bx = —y. with the

infinite dimensional Fuler-Bernoulli port-Hamiltonian system. We then have that

Bz[* + [De€zl® 2 [(Ha) (D + [(Ha)2 (1) + |(Ha)i (0)

+|(Ha)1 (0) + an [(Ha) (1] + az |(Ha)y (1))

and wee see that if both ay,as > 0 by Proposition and Proposition
the pair (A, R) for the function

Re = ((Hz)(1), (Hx)' (1), (Hx)1 (0, (H2)' (1))

has property [ESH and also the controller is internally stable, so that the mized
dynamic and static feedback law uniformly exponentially stabilises the system, i.e.
solves the “stabilisation problem.” The control functions retranslate into the original
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problem as

0%z 1 02 0%z
2 (tO+ 5C (Efa@) (t,0) = —COu(t), ¢€(0,1)

2(t,0) = gig’(t,()) =0

) 0?
-3¢ (Elagz) (t,1) = —a12(t, 1)

<EI§<§) (t,1) = —aoze(t, 1)
Ou(t) = (Elzcc)(t,0) + arz(t, 1)
+ oz (t,1) — a3O(t)

for all t > 0. Howewver, by this we did not control for which ©¢ € F we have con-
vergence O(t) — Ou as t — +00.

2) The orientation problem. Now we try not only to ensure stability “z(t) and
t—o00 t—o0

zee and O4(t) —— 07, but also to push © to a given target O, i.e. O(t)

O. We therefore now choose X. = F? as controller state space with controller
state space variables T, = (Te1,7c2) =(0 — O, O;) and U, = Y. = F*. Moreover,
we choose the control functions f1, fo and 7 as

f1 (t) = —alzt(t, 1) = —Oé1¢137 — 01 T¢,2
f2(t) = —CKQZtC(t, 1) = —CKQQ:QI' — 02T 2

7(t) = —(fi(t) + f2(t) + a3z 2 + uze ) = f3(t) — (f1(t) + f2(2))

where oy >0 for j =1,...,3 and oy > 0. We equip X. with the norm

2 2 2
10, z)l, = aa |0 + ||

In this case the controller has the form

=: A.x. + Beu,
[0 o
Yo = 8221 xc+r°‘200]uc
10 0
=: C.xe + Doue.

Note that by our choice of |-||x. this controller is impedance passive and again
its interconnection with the infinite dimensional system is given by u. = Cx and
Br = —y.. Also in this case we obtain for oy, s > 0 that

B2[* + |D.Cx|* 2 |(He) (1)) + |(Ha)2(1)]* + [(Ha)y (0)] + |(Ha): (0)
+(Ha) (D + [(Ha)i (1)
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and for the controller to be uniformly exponentially stable (and thus uniformly ex-
ponentially stabilising the infinite dimensional port-Hamiltonian system) we need to
ensure that 0(A.) CCy. For & := o1 + as + a3 >0 and ag > 0 one easily obtains

the eigenvalues
a [ a2 _
)\172:—§:|: Z—Q4GCO.

Thus, this feedback law exponentially stabilises the system and solves the orientation
problem. In the original formulation this means that

0%z 1 92 0%z
0+ (ma@) (£,C) = —COu(®), C€(0,1)

2(t,0) = %Z(t,@) =0

9 0?
-3¢ (Elacz> (t,1) = —aq2(t,1)

2
(EIZ@:;) (t,1) = —azc(t, 1)

Ou(t) = (BElzec)(t,0) + a1z (8, 1) + cozee (£, 1)
— a30(t) — au(O(t) — Ou)

for all t > 0, uniformly exponentially converges in energy norm to the desired state

w(() =wse(¢) =0 and © = O. O



164 CHAPTER 5. DYNAMIC LINEAR FEEDBACK



Chapter 6

Nonlinear Boundary
Feedback: the Static Case

We continue with the investigation of infinite-dimensional linear port-Hamiltonian
systems with dissipative boundary conditions and generalise the results of Chapter [3]
and Chapterto the case where the static boundary feedback operator K € FNdxNd
is replaced by an m-monotone map ¢ : FN¢ = FN?_ Since in Chapterand the cor-
responding original article [AuJal4] the Arendt-Batty-Lyubich-Va Theorem and the
Gearhart-Greiner-Priiss Theorem, which both only hold for the case of linear evolu-
tion equations, have been used as main tools we need to find alternative methods to
tackle the nonlinear feedback situation. We stress that the infinite-dimensional sys-
tem in principle remains linear, i.e. we do not consider nonlinear port-Hamiltonian
systems for which the Hamiltonian energy functional is non quadratic. However,
since the feedback in the new situation is nonlinear we consider the equations in
the framework of nonlinear contraction semigroups (see, e.g. [Mi92] and [Sh97]) in-
stead of the easier framework of linear semigroups, following ideas similar to those
in [Tr14] for the generation theorem and then exploiting ideas which had actually
been used in [Ch+87] and in the linear situation for stability properties. We also
point out that the approach of [Vi07] and [Vi409], where N = 1 and linear feed-
back had been considered, may be used as well to obtain stability results for both
the static and dynamic scenario to be investigated in Chapter E], also see [Leld].
Its drawback is that this method is most likely restricted to the case N = 1 and
therefore for higher order port-Hamiltonian systems with IV > 2 another approach
is needed.

One possible motivation to consider linear port-Hamiltonian systems with nonlinear
boundary feedback is the following. We may think of ¢ : FN¢ = FN? as being an
almost linear feedback control operator, for which its perturbation from the linear
case is quite small. Then one would expect that for stabilising purposes this feed-
back should stabilise in about the same way as a perfectly linear controller would do.
Therefore, the following results show that to some extend nonlinear perturbations
from the linear case do not harm the stabilisation properties. A word of caution. In
some cases the (usually finite dimensional) control systems considered here actually
include both a finite dimensional controller and a finite dimensional control target
which are connected mechanically via a beam modelled by a infinite-dimensional

165
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port-Hamiltonian system, e.g. a wave equation, a Timoshenko beam model or a
Euler-Bernoulli beam equation, see e.g. [Leld]. Therefore, the terminology control
system should not be taken too literally when it comes to applications.

6.1 The Generation Theorem — Static, Nonlinear
Case

First we generalise the generation theorem for port-Hamiltonian systems with linear
dissipative boundary conditions to linear port-Hamiltonian systems with nonlinear
dissipative boundary conditions. The strategy is very similar to the linear case, the
main differences being the following. On the one hand the Lumer-Phillips Theorem
is restricted to the linear case, so we need an adequate replacement. Here the
Komura-Kato Theorem does the job, so that again we only need to show that
the operator A, which now inherits nonlinear boundary conditions, is m-dissipative
and in fact, as we will see, similar to the linear case, an m-dissipative boundary
feedback will lead to an m-dissipative operator. For this, in the linear case we
reduced the case of the generation theorem to the special case where H = I is
uniformly the identity matrix, i.e. the identity on X as multiplication operator. To
do this also in the nonlinear case, the relevant Lemma has to be formulated
in a nonlinear version. This is established by the following result.

Lemma 6.1.1. Let X be a Hilbert space and A : D(A) C X = X be a dissipative,
possibly nonlinear and/or multivalued, map. Further assume that P € B(X) is
coercive. If A—1I is surjective, so is AP —1I and therefore the map is AP : D(AP) C
Xp = Xp is m-dissipative on the space Xp = X equipped with the inner product

<'7 '>XP = <7P>

Remark 6.1.2. Note that this a very special and simple case of Theorem 2 in
|CaGu72]. Since the proof of Lemma is quite elementary we give it neverthe-
less.

Proof of Lemma [6.1.1] First we show that the map AP is dissipative on Xp.
Take any = and o’ € D(AP), y € AP(x) and ' € AP(z'). Then Pz, Pz’ € D(A),
y € A(Pz) and y' € A(Px'), so that

Re(z —2',y —y')p = Re (Pz — Pz',y —¢/) <0.

This establishes the dissipativity of AP. For the moment let us assume that

|P—1I|| < 3. Then from Neumann’s series we conclude that the inverse of P €

B(X) exists and that its norm respects the inequality HP‘lH < ﬁ < 17% =2
2
so that
|P—1I||||P~]=:pe€(0,1).

We show that for any given f € X there is 2 € D(AP) such that
(AP —I)(z) > f
which is equivalent to the problem

(AP—-P)(z)> f+ (I — P)x,
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or, since (A — I)~! exists,
r=0;(x) =P A=) (f+ (- P)).

We show that the map ®; : X — X is a strict contraction and therefore admits a
unique fixed point z; =: (AP —I)~! f. In fact, we have for every  and 2’ € X that

1@ (x) = @ ()]

<[P IA=D7Hf+ I = P)a) = (A-D)7(f + I - P))|

<[P + (I = P)z) — (f + (I = P)z’)|

<[P = Pllllz — 2’| = pllz — o'
where we used Remark 2.2.22)in the second step. Therefore, ® is a strict contrac-
tion and the Strict Contraction Principle Proposition [2.1.12] gives a unique solution
xy =: (AP — I)~'f. In the second step we remove the restriction on P. Namely
thanks to Proposition [2.1.13| there are a number n € N and a coercive operator

Q = PY/" € B(X) such that ||[I — Q|| < & and P = Q". Note that for all the norms
induced by the inner products

<.,.>k = <.,Qk.>7 E=0,1,...,n.
we have that

(I - Q)z|l; (I - Q)z, QI — Q)z)

2 = ————————————
1=l = sup == = sup (z, Q)
o (- QUM (1 - Q@)
. (Q 2z, Q*/2z)
=|I-QlP

where Q*/? may be given by Proposition [2.1.13| (if k is odd). Writing
AP —T=(AQ" ™ HQ -1

the general case follows by induction using the spaces X}, := (X, [|-||,), K =0,1,...,n.
Above we have seen that that since || — Q||, < % whenever AQ" is m-dissipative
on Xj, that AQ¥*! is m-dissipative on Xj41 (k = 0,1,...,n — 1) and therefore
AP = AQ™ is m-~dissipative on Xp = X,,. O
In our particular situation P = H is the Hamiltonian density multiplication opera-
tor, just as in the linear situation.

Theorem 6.1.3. Let & = (2,B,&) be an impedance passive port-Hamiltonian
system. Assume that ¢ : FN® = FN? js a (possibly multi-valued, nonlinear) m-
monotone map. Then the (single-valued) operator

A =U|pa
D(A)={z e D@A): Bz e —¢(Cx)}
is m-dissipative and therefore it generates a strongly continuous contraction semi-

group (S(t))i>0 on X = Lo(0,1;F?) which is equipped with the inner product
<'a >X = <'7H'>L2'
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Remark 6.1.4. Note that for the case N = 1 a characterisation of m-dissipative
boundary conditions yielding an m-dissipative operator A has been given in Theorem
5.4 of [Tr1j)]. Also note the more general result Theorem 3.1 therein.

Proof. From Lemma we know that it suffices to consider the case where
H = I equals the identity. Also note that there is xg € D(A) # 0 which can
be constructed by taking any (u,y) € FN? such that u € —¢(y) and then taking
z9 € H'(0,1;F%) such that (F2) = (§), cf. Lemma This implies that
xg + C(0,1;F%) C D(A) is a dense subset of X = Ly(0,1;F?). Clearly A is
dissipative since for every x and & € D(A) we have

Re (Azx — AZ,x — %), M —2),x — )L,

= Re
< Re(Bx — Bz, Cx — €T)pna <0

using that Bx € —¢(Cx), BT € —¢(€x) and ¢ is monotone. It remains to show
that ran (I — A) = X, i.e. for every f € X we have to find z € D(2) such that

(I -z =f
Br € —p(Cx).

From Lemma [3.2.:24) we know that all solutions of the first of these equations have
the form

z=2o(1)f + ¥ (1)Bzx
Cx=F(Q)f +G(1)Bx

and the problem thus reduces to finding v = Bx and y = €z such that
u=G1) "y -G TIF)f € —o(y),

ie. (G)™t+¢)(y) > G1)"1F(1)f. Since ¢ is m-monotone and Sym G(1)~! is
coercive by Lemma also ¢ + G(1)~! — eI is m-monotone by Lemma
for some small € > 0. We conclude that there is a (unique) y € FV? such that
for u:= G(1)"'y — G(1)"'F(1) f one has u € —¢(y) and hence there is a (unique)
x € D(A) with f € (I — A)(x). We have shown that A is m-dissipative and the
assertion therefore follows from the Komura-Kato Theorem O

6.2 Exponential Stability: the Case N =1

In the preceding section we established the generation theorem for nonlinear dis-
sipative boundary feedback. Next, we generalise the stabilisation results from the
linear case to the situation of nonlinear boundary feedback. We start with the case
N =1,ie 2 =P (H) +Py(H) on D) = {x € Ly(0,1;F?) : Hx € H'(0,1;F)}.
Also we always assume that H and Py are Lipschitz continuous, which also have
been assumptions for the stabilisation theorems via linear feedback.

We aim to prove the following uniform exponential stability result.

Theorem 6.2.1. Let & = (A, B,€) be an impedance passive port-Hamiltonian
system and ¢ : F* = F? be an m-monotone map with 0 € ¢(0). For the nonlinear
operator

A:=Upay, D(A):={xecD®):Brc —p(Cx)}
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assume that there is k > 0 such that
Re(Az,x)x < —k(z"Hz)(1), x € D(A).

Then A generates a strongly continuous contraction semigroup (S(t))i>0 with glob-
ally exponentially stable equilibrium 0, t.e. there are constants M > 1 and w < 0
such that

[S(t)z|lx < Me“!|z||y, z€X,t>0.

Remark 6.2.2. If ¢ € B(U) = F¥*? s linear this is exactly Theorem |4.1.5. We
actually give two proofs of this result. The first one is based on the idea of proof
for the linear version of this result in [Vi+09] and the Ph.D. thesis [Vi07], here
we refer to the same proof in [JaZwl2. That sideways energy estimate (or, final
observability estimate) already originates back to [RaTa7j] and had also been used
in [CoZu93], both times in the linear scenario. Afterwards we give a proof which is
based on the Lyapunov technique proof of Theorem [{.1.5

“Sideways energy estimate”-based proof of Theorem [6.2.1L The proof of
Lemma 9.1.2 in [JaZw12] extends straight-forward to the situation with nonlinear
boundary feedback, see Lemma

Lemma 6.2.3. (See Lemmalj.1.1.) Assume that H € WL (0,1;F4*?). Then there
are constants ¢, > 0 such that for every solution v € WL , (R,;Ly(0,1;F4)) N

oo,loc

Lo ioc(Ry; D(A)) of @ = Ax with non-increasing ||z(t)| y we have

lz(7)]I7, < c/OT |(Hx)(t, 1) dt.

Thus, there are constants ¢ > 0 and 7 > 0 such that for every zyp € D(A) and
x:=8()wg € WL(R,; X)N Loo(Ry; D(A)) the estimate

o) < e [ ot 1), ()t s
0
holds true. Then
o)l ol = | Re (o). a(t)) xdt
0
<= [ ot 1), ()t 1)t

R 2
~ ek

IN

and hence |[S(7)zollx < \/f5 [[7ollx, and since D(A) is dense in X this implies

that this inequality actually holds for all xyp € X. From time invariance of the
problem and the semigroup property it follows, with R 3 s +— |s]| := max{n € Z:
n < s} € Z denoting the floor function,

IS@olly = | S8~ vt/

< c LﬁJH [
- c+k Tollx

c+k
c

o~ 2 In(55%) lzollx, t>0, z9€ X.

<
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As a result, 0 is a globally uniformly exponentially stable equilibrium of (S(¢))¢>o.
O

Lyapunov technique proof of Theorem [6.2.1 We use Proposition |4.3.8 and
proceed just as in the corresponding proof of the linear version of the theorem. This
proposition provides us with a function ¢ : X — R such that for every bounded
Lipschitz-continuous function x the function g(x) is bounded and Lipschitz contin-
uous and satisfies the estimate

(@) + Sa(a(®) < el(Ha)(tO)P, ae. t >0,

aq
Then we use the following general result.

Proposition 6.2.4. Let & = (2,8, €) be an impedance passive port-Hamiltonian
system and A be the m-dissipative operator, resulting from the dissipative feedback

Br € —¢(€x) for some m-monotone map ¢ : D(¢) C FN4 = FN with 0 € ¢(0).
Further assume that

Re (Az,z)x < —k (|%x|2 + \H€x|2) , x € DA

for some orthogonal projection II € FNIXNd_ [If there is ¢ : X — R such that
qlz)| < ¢z T € and for all solutions x € +3 N Lo (R4; 0

|z )|% X) and for all soluti WL (R X) N Loo (Ry; D(A)) of
@ = Az one has q(x) € WL(R,) and

d
rala(t) < c (|%x(t)\2 + \HCx(t)\Q)  aet>0,
then 0 is a globally uniformly exponentially stable equilibrium of (S(t))i>0, i.e. there
are constants M > 1 and w < 0 such that

e (®)]% +

IS(t)xol x < Me+t lzollx, x0€X, t>0.

Proof. Take any zg € D(A) and let z = S(-)zg € WL (R4; X) N Lo (Ry; D(2A)) be
the solution of the nonlinear abstract Cauchy problem, so that ¢(z) € WL (R;R)
is Lipschitz continuous. Define the functional

(1) = tlo(t)]|% + q(2(r). >0,

We conclude that ® € W;o
t > 0 we have

1oe(R4;R) is locally Lipschitz continuous and for a.e.

d d
(1) = llz(®)x +2tRe (Ax(t), 2(t))x + S-a(x(1))
< (¢ — 2xt) (|9sx(t)|2 + |H€x(t)|2)
and therefore ® does not increase on [tg,00) where ¢y := 5= > 0 is independent

of the initial value xy € D(A). Using that ¢(z) < é ||x||§( and that the semigroup
(S(t))i>0 is contractive with S(-)0 = 0, we then obtain the estimate
tlle@)x = () — a(@(t) < (to) + &l (1)
= to | (to) % + a(x(to)) + & (D)%
< (to +8) Jaollx +ellz(®)l% . ¢=0
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so that for ¢ > max{to, ¢} we obtain the estimate

to+ ¢
t—¢

1S@)xoll x < [lzoll x -

As a consequence there is 7 > 0 such that

1S(r)zollx < pllzollx

for some p € (0,1) and all 29 € D(A). Since D(A) C X is dense and S(7) €
C(X; X) we deduce that the same estimate holds even for all 9 € X which by time
invariance implies that 0 is a globally uniformly exponentially stable equilibrium,
cf. the conclusion of the first proof of Theorem [.1.5] O

6.3 Stabilisation: the Case N > 1

The idea of this section is to obtain stability results similar to those for the static
case, this time in the dynamic controller setup. We start with the generalisation of
Theorem 2.2 to the case of nonlinear static feedback stabilisation.

Theorem 6.3.1. Assume that & = (2, B, €) is an impedance passive port-Hamiltonian
system of order N € N and let ¢ : D(¢) C FN? = FN? be m-monotone and such
that 0 € ¢(0). For the operator

A=92, D(Ay)={xeDQ): — Bz c ¢(Cx)}

assume that there is R : D() — H (for some Hilbert space X ) such that the pair
(A, R) has pmperty and such that

Re (Az,z)x < —p(|Rx| y), x € D(A)

for some p: Ry — Ry with p > 0 on (0,00). Then A generates a strongly contin-
uous (nonlinear) contraction semigroup (S(t))i>0 on X and 0 is a globally asymp-
totically stable equilibrium for (S(t))i>o-

Proof. In view of Theorem [2.2.32| we remark that D(A) = X is convex and since
(I-A)~!': X — X is a contractive mapping from X into the domain D(A4) C D(A)
which is compactly embedded into X, it maps bounded sets to precompact sets.
Since 0 € ¢(0), clearly 0 € D(A) and A(0) = {0}. Let 9 € D(A) be arbitrary,
so that by Theorem the solution S(-)zg € WL (R1;X) N Loo(Ry; D(A))
converges to a compact, S(-)-invariant set C' which is included in D(A) and for
which (S(¢)|¢)i>0 extends to an isometric group on lin C' and such that C' C {z €
X :||z|]| = r} for some r > 0. In particular, for every zgp € C C D(A) we have

0 =Re (Azp, z0) x < —p(||Rz20ll )

and it follows that Rzy = 0 for every zg € C, so that for every zg € C, the function
z=5(-)z0 = Tc(+)zp is a solution of the problem

d
%z(t) =Az(t)

Rz=0, t>0
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and hence also Rzy = 0 for every zp € Ac, the infinitesimal generator of the
isometric group (T¢(t))t>0 on C. It follows that for every 8 € R and zg € ker(A¢ —
i) one also has Rzp = 0, but then ker(Ac — i) = {0} for every 8 € R, so that
iRNo,(Ac) = 0. Then (Tc(t))i>o0 is both isometric and asymptotically stable
thanks to Corollary so that C' = {0} must be the null space, and hence the
semigroup (S(¢))¢>0 has a globally asymptotically stable equilibrium at 0 € X. O

Remark 6.3.2. The idea to use Theorem for asymptotic stability has been
taken from the proof of Lemma 2.1 in [FeShZh98], although it probably had been
already applied for similar problems before.

Next we investigate uniform exponentially stability. Unfortunately there is no non-
linear generalisation of the Gearhart-Greiner-Priiss-Huang Theorem [2.2.17| avail-
able, so that we have to employ other methods. Our results are based on the idea
which we used for the (Lyapunov technique) proof of Theorem where we took
2o € D(A) and for x = S(-)z¢ and some suitable n € C*(]0, 1]; R) defined

®(t) = t ()% + (@), nPra(t)) L,

Stabilisation of Second Order Systems. We aim for a generalisation of Theo-
rem to the case where

Az = Py(Hz)" + P (Hz) + Po(Hx)

is a port-Hamiltonian operator of second order (N = 2). Again we assume that
H and P, are Lipschitz continuous. For the case of (static and dynamic) linear
feedback stabilisation of Chapter [4] and Chapter [5] also see [AuJal4], we proved
uniform exponential stability under the assumption that

|(Ha) ()] + [(Ha) (0)* + [T1(Ha) (1) + (I = T Po(Ha) ()] < [Baf* + |TTCa]”

for all z € D(A) and some orthogonal projection IT : F¢ — F¢ and sufficient stability
and passivity conditions on the linear control system, e.g. internally stable and
SIP. Of course, the proof there used the Gearhart-Greiner-Priiss Theorem, so lacks
any possible generalisation to the nonlinear scenario. However, for the Lyapunov
technique Proposition amounts to finding a suitable ¢ € C*(X;R) satisfying
the assumptions of Proposition This had already been done in Section
under the additional assumption that H is constant and Py, P, = 0 equal the zero
matrix. Here we extend that result to the case that Py, P, # 0 may not vanish, but
are sufficiently small compared to P, at least.

We will use the following notation. For a symmetric matrix M = M™* we denote by
Pos (M) and Neg (M) its positive and negative semi-definite part, defined via the
LDL-decomposition (a variant of the Cholesky decomposition) of M as

M =LDL*

where L is a unitriangular matrix and D = D4 + D_ is a diagonal matrix and
D, are the diagonal matrices with positive and negative diagonal entries of D,
respectively. Then we set Pos (M) := LD, L* and Neg (M) := LD_L*. More
general, for arbitrary quadratic matrices M we set Pos (M) := Pos (Sym M) and
Neg (Sym M).
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Lemma 6.3.3. Let S = (A, B, €) be an impedance passive port-Hamiltonian system
of order N = 2. Further assume that

1. H is constant and Py, Py are small compared to Ps, i.e.

2> ||Neg (P, ' Py)|| + Pyl + Py Py~ PPy PPy

\f HPO
+ % |(P5 " Po)* Py Py | (6.1)
or
2. H', Py and Py satisfy the following smallness condition,
2> ||[(HH ' + Neg (Py " PIH)H ) (¢ — 0] P
" % |(Ps B 4 Py Py — PPy PPy )(C = Dl gy
5 H Pyt Py) Pyt Py) (¢ — 1)HLN(0’1;F¢M) (6.2)
or, more general,
3. there is a scalar function n € C2%([0,1];R) with n(1) = 0 and such that
20 > e+ [[H'H ™+ Neg (P "PIH)H |, g1 o
\fH_ (PsPy '+ Py 'Py— PPy PPy 1, 01w
+ B H(PJIPO)*PglponHLOO(0,1;Fdxd)

for some € > 0.

Then there is q : X — Ry such that |q(z)| < ¢ ||ac||§( (x € X) and for all solutions
r € WL(R4; X)NLoo(Ry; D(RA)) of & = Ax the function q(x) lies in WL (Ry) with

(@)1 + Sate(t)) < e (1)t O + () (1, 0) + | () 1, 1))
for a.e. t > 0.

Proof. Define

a(z) == Re (z,nP;! /O £(€)de) 1,

- iBt [ e@deappt [ 2@, cex  (63)

where nn € C*([0,1];R) is a scalar function to be chosen suitable later on. Then
for every x € WL (Ry; X) N Loo(Ry; D(2A)) with & = 2z we obtain (omitting the
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parameter ¢ for brevity and employing Lemma [4.3.2)) that

d
Z4(@)

— Re (Py(Hx)", nP; / €)d€) 1, + Re (2,7 / (Ha)"(€)de)
- Re (Py(Hx) + Po(Ha), nP; /0 2(€)de) 1,
 Re(a,nP; " / Py(Ha) () + Po(Ha)(€)d€) 1,
~Re( / (Ha)"(€)de PPy / 2(€)de) 1,
—Re / P1 HJZ -I-Po Ha:)(f)d{ 77P1P / L
— 9Re {(Ha),nz) 1, + Re (Ha) 1 / £()de) 1,
0
~ Re n(1){(Ha)' (1), / £(€)d€)5a — Re (Ha) (0), 7)1,
+ Re (Py(Ha)',nP; ! / 2(€)d€) L, + Re (.1 / Py Pi(Ha) (€)dE)r,
~Re( / £(€)d€, Py Po(Ha)) 1, + Re (2, 1Py Py / (Ha) (€)de) 1,
~ Re (Py(Ha),nP; " / (€)d€) 1, + Re (Py(Hx)'(0),nP5 ! / (€)de)
0 ' 0
~Re (P Pi(Ha)nPi Pyt [ w(€)a)s,
0

+ Re (P; Py (M) (0), nP, Py ! / 2(€)de) 1,

~Re( / PPy (M) (€). Py Py / (€)de)

= (o H — 2 M), z) 1, + [(2(C), (H)(Q)x(C)) )
~ Re (M, " / £(€)dE) 1, +1(1) Re (Ha) (1), / £(6)dE)pa

0
— (1) Re {(Ha)' (1), / £(€)d€)pa — Re {r,n(Ha) (0)) 1
+Re (x,nPy ' P/(Hx)) 1, — Re (x,nPy ' P (Hx)(0)) 1,

~Re( / o(€)d€, NP5 Po(Ha)) 1, + Re (z, 1Py Py / (Ha)(€)d€) 1,
1 Re (Py(Ha)'(0),nP; " / (€)de)
0

~ Re (P;\Py(Hz), nP Py / £(€)de) 1,
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-+ReazJPmexmnﬂaR;{/!m@doLz
0
—mqﬁﬁ%mm&muﬁ/m@wh
0 0
< ((eH +nH —20'H +nRe (Py ' PIH))x, )1,
+Re (Hx, (—n" + P{ Py 'n+ Py 'Pon — PPy ' P Py ') /O z(€)d¢) L,
—MG?%A%mmam%}@@M
Feey (4 MOP) [(HDOF + [(H2) ()

P ) ) + o (O | (Ha) (1)) (6.4)

for every € > 0 and a constant c., > 0 which may depend on € > 0 and 7, but
which is independent of . We now estimate in the following ways. On the one
hand

Re (Hz, (—n" + P{ Py 'n+ Py ' Pon + Py ' Pon — PLPy ' PLPOy ') / z(€)dé) L,
0

M@@%

1 1
)WHLOC(O’LWM) E H‘r”Lg

< HHIHLZ H_T// + (PJP271 + P51P0 - P1P271P1P271)77HL(X)(O’l;]ydxd)

Lo

<|[Ha|p, ||-n" + (PsPy ' + Py ' Py — PPy ' PPy
and on the other hand

fmgﬁ%/ﬁmmwm?%/ﬁwmh

0 0

< |[(PyPo)* Py Ponl,_ g g

\Amm@%

JREGL

Lg L2

1

<[P Po) Py Ponll,_ g 1 panay 5 |

Mg, Iz, -

Therefore,

<([e—20 +nH'H " +2Re (P 'PIH)H )] Ha, 2) 1,
|-n"+ (PsPy' + Pyt — PPy ' PPy
V2

I H(P2_1P0)*P2_1P077‘|LOO(071;]Fd><d,)
2

1)””[/00(071;Fd><d)

Hzllz, ],

We write Neg M for the negative semi-definite part of a matrix M and with this
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notation need to show that

20 > e+ HH/H_l + Neg (Pz_lpqul)?'f_lHLm 0,1;Fdxd)

H_ POP2 +P2 1‘P()_—PI‘P2 P1P2 77HLOO(0,1;WM)

+ 5 H(P271P0)*P271P0nHLOO(O,l;]Fdxd)

for a suitable choice of the scalar function 7). In particular, for the choice n(¢) = 1—¢
we obtain the condition

||(H/H71 + Neg (P2_1P17'[)’H71)(C - 1)||LOC(O,I;]FdXd)

1
+ 7 [(Po Pyt + Py Po = PLPy ' PLP ) (C = D)oy
9 H 1P0 1P0(C HLOO(O,l;]FdXd)
<2
The assertion follows. O

Remark 6.3.4. As we have seen in Subsection [{.3.9 at least for the linear case
such conditions on H are not needed and therefore one would expect that the same
stability result should also hold for the case of nonlinear static feedback without any
restrictions on Py, Py and H. Therefore, the previous result is not fully satisfactory
and it might be possible to find a reasoning which does not depend on smallness
conditions on Py, P; and H'.

6.4 Stabilisation of the Euler-Bernoulli Beam

We investigate how the general result Proposition [6.2.4) may be used to design uni-
formly exponentially stabilising controllers for the Euler-Bernoulli Beam equation,
i.e. the dynamical system governed by the PDE

p(Qwie(t, Q) + (Blwee)ee(t:¢) =0, ¢ €(0,1), t>0. (6.5)
The energy of the system is given by

1

1
1) =5 [ Qb OF + BIQ) locc(t. O e, ¢ 0

and we have seen in Example that for the choice

)=z () )
(7))

and Py = P; = 0 equation (6.5 takes the port-Hamiltonian form

2

57(t:0) = Prgs Halt,0) = (@) (@), C€ (0.1), ¢20.
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Note that
Re (Az,z)x = Re [(H121)'(C), (Haa2)(C))s — (H121)(C), (Haw2)'(C))sl;
=Re [(wic(C), (ETwee) () — (wi(C), (BIwee )¢ ()l

for all x = (47f) € D(2). From here, several choices of B and € are possible to
make & = (2,%B,¢) an impedance passive port-Hamiltonian Boundary Control
and Observation System. In that case (and provided that p=!, EI € L, (0,1) are
uniformly positive) for any m-monotone ¢ : D(¢) C F? = F? the operator A =
A peay, D(A) = {z € D(A) : Bx € —¢(Cx)} generates a s.c. contraction semigroup
on X = Ly(0,1;F?) (which is a Cp-semigroup if ¢ € F?*? is linear). Lemma
gives some conditions under which the system can be uniformly exponentially
stabilised, however these conditions are rather strong and the proof of Lemma
does not take into account the additional structure of the Euler-Bernoulli beam, in
particular those of the matrices P;. We therefore give a result analogous to Lemma
6.3.3| making use of the Euler-Bernoulli beam structure.

Lemma 6.4.1. Assume that & = (,B, €) is an impedance passive second order
port-Hamiltonian system of the form

_ (M _ —Pr _
(%) me(p ) e

Further assume that H; € WL (0,1;F%/2x4/2) (j = 1,2) where d € 2N is even, and
satisfies one of the following additional conditions.

1. There is n € C?([0,1];R) with (1) = 0 such that
I, +oven], <)

wg—(WWMHHMM+W¢&WL*”)

for some € > 0 (then: alle > 0), or

#S—(MW%H?Mm+\

2. the estimate
mpﬁpﬁﬂgﬂhwJH&H;WLW}+HVQRMLM<1
holds good.
Then there is ¢ : X — R with |q(x)] < é ||x||§( (x € X) such that for all solutions
T € W 10e(Ri; X) N Log toc(Ry; D(A)) of & = Az one has q(x) € WL, 1,.(Ry) and

d
o)l + 5
Remark 6.4.2. By symmetry, one also gets the following estimates (for properly
adjusted q : X — R) in Lemma[6.4.1]

d

@)1 + ale(®) < e ()P +[(az) (O +](Haw2) O0)F)
d

@)1 + ale(®) < e (1He)O)F +[(Haz) O +](Ha) (V)

l(6) B + (e (1)) < e (1)) + (o) O + [Faz) O )

(2(t) < e (I(H2)(O)F + |(Har Y O + [(Haz2) P ), ace. t > 0.
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Proof of Lemma This proof is based on the technique used in [Ch+-87] for
a chain of Euler-Bernoulli beams with the particular boundary condition w;(0) =
we(0) = 0 at the left end. There both functions p and EI are constant on each
chain link, so that n(¢) =1 — ¢ can be used in what follows.

For the general case let € C2([0, 1]; R) which we choose at a later point and define

q(z) := Re (zy,nP~* /0. x2(8)dE), x = (x1,22) € X.

First consider the case Py = 0. Note that for Py # 0 additional terms have to be
taken into consideration, so that the conditions in the lemma have to be adjusted
accordingly. Then for every solution x € WL (Ry; X) N Loo(Ry; D(A)) of & = Ax
we have (using Lemma again)

— Re (P~*w141 / e2(€)d€) 1, + Re (21,1 / P (€)dE),
0 0

— Re((Haz2)" 1 / (€))L, + Re (1,7 / ()" (€)dE) 1,

0

— Re {(Howa)',102) 1y + Re (Ha)' 1/ / 22(€)dE) 1,

— Re (5(1)(Ha2)' (1), / £2(6)dE )y
+ Re (x1,n(H121)" )L, — Re (nx1, (H121)'(0)) 1,

- f%@cz, ((nHz2)" — 2nHY)x2) L, + % [(22(C), (7H2) ()22 (C))pare]y

—Re <H2$2,77”/ x2(£)d€) 1, — Re (Haowa, n'x2) 1,
0

T Re (1f (1)(Ha2)(1), / £2(E)dE)garz — Re (7(1)(Has) (1), / £2(E)dE gy

= 5o, () = 20H) 1)z, + 5 [@(0), (rH)(Qr (O))rel

— Re (nz1, (H121)"(0)) L,

1
§<(_77/ - n’H’sz’l + e)Hoxo, 22) 1,

IN

+ = ((—=n + nH HT + e)Hax1,71) 1, — Re <"H2$2777”/ r2(8)d€) L,

1

2 0

e (In(1)(Haw2) (1) =0/ (1) (Haw2) V) + [l [(Hazr) (0)f
+ [n(O) [(Haz) O)F + [n(D)]|(Haz1) (1)) -

In case that Py # 0 we need to handle the additional terms

Re ((PoHa)1, nP~! /0 2(€)dE) 1, + Re (a1, nP! /0 (PyMa)2(6)de) 1,

<|pverta| iz,
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< |nvers| Il e,

We therefore need to find 7 such that n(1) = 0 and the following conditions hold
true.

e, oven,_+<)

o <~ (I, + v, _+e).

W < - (Inl [H5H5 |, + ‘

This gives the assertion of the lemma under the first condition on H. Under the
second condition simply choose n(¢) =1 — . O

Theorem 6.4.3. Let G = (A, B,€) be an impedance passive port-Hamiltonian
system of order N = 2 of Fuler-Bernoulli type as in Lemma and M, : D(M,) C
X xFNd = X xFN? g5 in Assumption . Further assume that for some ¢’ > 0
and all (zc,uc) € D(M.), (2e,we) € Mc(ze,uc)

Ze
e ()

|((Ha) (0) + |(Haz1) (0) + |(Hawo)(1)[* S [Baf” + [T€af*, = € D).

2
ek, + Mucl* < ¢

and

Then the interconnected map A from Theorem generates a s.c. contraction
semigroup (S(t))i>0 on X x X with globally exponential stable equilibrium 0.

Proof. Combine Lemma [6.4.1] with Proposition [7.3.4] O

6.5 Examples

We apply the abstract results for port-Hamiltonian systems to some particular
stabilisation examples.

Example 6.5.1 (Wave Equation). Consider the one-dimensional wave equation

pwit(t,¢) — (Elwe)e(t,() =0, ¢€(0,1), t>0

where EI,p € Loo(0,1) are uniformly positive, in particular also EI7 p~! €
Loo(0,1). At the left end we assume conservative or dissipative boundary condi-
tions of the form

we(t,0) =0 or (Elwe)(t,0)€ f(we(t,0)), t>0

where f : F = F is mazimal monotone and f(0) 3 0, e.g. f could be single-
valued, continuous and non decreasing with f(0) = 0, in particular the case f =0
(Neumann-boundary condition) is allowed. We further assume that on the right end
a (monotone) damper is atlached to the system, so that the boundary condition is
given by

(Elwe)(t,1) € —g(wi(t, 1))
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where again g : F = F is mazimal monotone with g(0) > 0. Of course, the choice
f =9 =0 would lead to Neumann-boundary conditions on both sides for which the
system is known to be energy-preserving, in particular not strongly stable. Here as
usual the energy is given by

Hu>:3A o0 Lt Q)2 + EI(C) lwe (1, ) dC.

As we have seen in Example this model fits into our port-Hamiltonian setting
when we choose © = (pw,w,), H = diag (p~', EI) and P, = (; ') and Py = 0. If
we additionally define the input and output map as

o= (L) - ()

- (219) -3

then the system & = (A,B,€) is impedance passive, since for the maximal port-
Hamiltonian operator 2 one has

Re (Az, z)x = Re (((Hz)1(1), (Hz)2(1))r — (H2)1(0)(Hz)2(0)p) -

(Note that for the Dirichlet case wi(t,0) = 0 one has to exchange the first com-
ponents of B and € and then choose f =0.) The corresponding port-Hamiltonian
operator A = A|p(ay (with nonlinear boundary conditions) is dissipative then, where

D(A) = {z € L2(0,;F?) : Ha € H'(0,1;F%), (Hz)2(1) € —g((Hz)1(1)),

{('Hx)l(()) =0, (Dirichlet b.c.), or }
(Hxz)2(0) € f((Hz)1(0)) (nonlinear Robin b.c.)

and we have at least
Re (Az,z)x < —Re((Hx)1(1),¢°((Hz)1(1)))r, 2z € D(A).

Theorem assures that A generates a monlinear s.c. contraction semigroup on
X = Ly(0,1;F?) with inner product {-,-Yx = {(-,-)3;. To have stability results we
need stronger assumptions on the damper, i.e. on the map g. First assume that
0 ¢ g(x) for all x € F\ {0}. Then there is p: Ry — Ry with p > 0 on (0,00) such
that

RM%M@MS—p<Iﬂ%H¢@Mﬁ, e R=D(g)

so that
Re (Az,2)x < —p(|(Hx)(1)[*), x € D(A)

and asymptotic stability follows from Theorem [6.5.1. Secondly (additionally to g
being m-monotone) assume that there even is k > 0 such that k' |z| < |2 < k |z]
for all z € F and z € g(x) (i.e. in particular g(0) = {0}). Then we obtain the
dissipativity condition

Re (Az,z)x < —&|(Hz)(1)], € D(A)

where k 1= %min{n, k1) and so Theorem ensures uniform exponential stabil-
ity of the corresponding nonlinear semigroup. We refer to Ezample 3.3 in [CoLaMa90]
for sufficient conditions leading to asymptotic stability of the n-dimensional wave

equation on a smooth, bounded domain  C R".
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Example 6.5.2 (Boundary Stabilisation of the Timoshenko Beam Equation). Next
we consider the example of boundary feedback stabilisation of the Timoshenko beam
equation, see Fxample for its port-Hamiltonian formulation. In the article
|FeShZh98] the authors considered the following nonlinear boundary stabilisation
approach.

( ) ) ¢(t70) =0
K(o(t,1) —we)(t,1) € fwe(t,1))
—(El¢c(t,1)) € g(e(t,1))

where f,g : F — F are two m-monotone maps describing the nonlinear boundary
feedback. As we have seen in Ezample the choice

(7‘[21‘2)(0) wt(t, O)

B = (,H4$4)(0) ~ ¢t(t7 0)
(Hiz1)(1) (K (¢t —we)(t, 1)
(Haxsz)(1) (Elgc)(t,1)
—(H121)(0) —(K(we —¢))(¢,0)

er— | —(Haz3)(0) | . —(El¢c)(t,0)

(Hawa)(1) wy(t, 1)
(Haws)(1) o(t,1)

leads to an impedance passive port-Hamiltonian system & = (2, B, €) in boundary
control and observation form. Hence, for the nonlinear boundary feedback

Br € —(Cx) := — ({O}2 x f(€3x)) x g(€4x)) —(0,0, f(we(t, 1), g(d:(t,1)))

the corresponding port-Hamiltonian operator Ay with nonlinear boundary conditions
is m-dissipative and therefore generates a nonlinear strongly continuous contmction
semigroup on X thanks to Theorem [6.1.3. Also we find from Theorem [6.2.1] that
whenever 0 € £(0) N g(0) and

Re (u,y) > clul®, uw€eF, ye f(u) org(u)
for some ¢ > 0 that
Re (Ay2,2) < —o [(Ha)(), @ € D(Ay)

and hence the s.c. contraction semigroup has 0 as globally uniformly exponentially
stable equilibrium, i.e.

H(t) < Me*"H(0), t>0
for constants M > 1 and w < 0 which do not depend on the initial value ro € X.

Example 6.5.3 (Dynamic Feedback Stabilisation of an Euler-Bernoulli Beam Equa-
tion). We consider the stabilisation procedure for the Euler-Bernoulli beam equation
as considered in the article [CoMo98]. There the authors investigated the following
two boundary feedback designs to stabilise the Fuler-Bernoulli beam with clamped
end at one side and a damper at the other side where also a mass m > 0 may be
attached.

pwtt(t,C) + (EIWCC)CC(t7 C) =0, t>0, (e (0, 1)
w(t,0) = we(t,0) =0, t>0
(EIch)(t, 1) =0
(Elwee)e(t, 1) +muwy(t,1) = f(t)
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with the following choice for the control function f
f(t) = —aw(t, 1) + B(EIWCC)tC(tJ 1)7 t>0 (66)

where the constants a, 8 > 0 are chosen in such a way that o > 0 and B > 0 if
m >0 and =0 if m = 0. Previously, for the case m > 0 and 5 = 0 it had been
already seen in [LiMa88] that this stabilisation design leads to asymptotic stability,
but is not enough for uniform exponential stability. Note that in [CoMo98] as well
as in [LiMa88] the authors only considered the uniform case, i.e. p = EI = 1,
whereas below will not impose that restriction and will assume that p, EI > 0 are two
uniformly positive and Lipschitz continuous functions on the interval [0,1]. To begin
with we formulate the system for the cases m > 0 and m = 0 as port-Hamiltonian
systems with linear dynamic or static dissipative boundary feedback, respectively.
Using the representation (z1,z2) =(pwt,wee) and setting H = diag (p~*, EI) as in
Ezample[3.1.6 we find that the dynamics are equivalently described by

0 52 _
50 = ) =55 | | o | e
(Hlxl)(t,O) = (Hll'l)/(t,()) = (7‘[21‘2)(t,0) = 0
—(Hzxg)/(t, 1) + m(?—[lxl)t(t, 1) = —a(’Hlxl)(t, 1) + B(’ngg)t((t, 1)

Using the following boundary control and boundary observation maps

Bz = (Hiz1)(t, 1) =wi(t, 1)

Q:l.’ﬂ = *(Hg%g)l(t, 1) = 7(Efwgc)<(t, 1)
(H121)(0) wy(t, 0)

Box = [ (Hiz1)'(0) | = wee(t,0)
(Haw2)(1) (Elwee)(t,1)
(H212)'(0) (Elwee)¢(t,0)

Cox = | —(Haz2)(0) | =| —(Elwe)(t,0)
(Hiz1)'(1) wi¢(t,1)

the system & = (A, B, €) becomes an impedance passive port-Hamiltonian system in
boundary control and observation form, see Example[{.5.5 Depending on whether
m =0 orm > 0 the system may be formulated as port-Hamiltonian system
with static (m = 0) or dynamic boundary feedback (m > 0).
1.) the case m = B = 0. This situation had been considered in Subsection
3.1 [CoMo98]. In our port-Hamiltonian language the feedback boundary condition
amounts to

Bz =—alz, Box =0T =z D(A) (6.7)

where a > 0, so that the corresponding operator
A=A pwy, D(A)={xeD®A): (6.7) holds}

is dissipative and therefore generates a contractive Cy-semigroup (T (t))¢>0 on X.
Moreover,

(Bl + €l > |(Ha) (1) + [(Haws) (D] + [(Haz1) (0) + [(Har)' (0)°

and then Corollary says that the pair (A, R) for R = (B, €1) has property
[ASH Moreover, Proposition (with 0 and 1 interchanged) states that the same
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pair (A, R) also has property|AIEP, Hence, we deduce from Proposz'tion that
for linear feedback the resulting operator A generates a uniformly exponentially

stable Cy-semigroup on X, for arbitrary uniformly strictly positive and Lipschitz
continuous p and EI. On the other hand, for a constant Hamiltonian density matrix
function H Lemma implies that there is ¢ : X — R with |g(z)| < ¢ Hx||§{ (x €
X) such that

(o)l + ate)

<o (IO + (R O)F + (M) (V). wet>0 (68
for every mild solution x € W_ ;,.(R1; X) N Log 10c(Ry; D(2)) of 4 =Ax. There-
fore, replacing the constant o > 0 by a a nonlinear m-monotone map ¢ : D(¢) C
F =T, by Theorem the corresponding map

Ax = Ql|D(A)
D(A)={z e D) : Bz € —¢(C12), €z =0}

generates a s.c. contraction semigroup (S(t))i>0 on X.

For asymptotic stability it is enough to demand that 0 € ¢(z) exactly for z = 0. If we
additionally assume that k=" |z] |¢°(2)| > K |z| for some k> 0 and every z € D(¢),
then we deduce from Proposition|6.2.7] that 0 is even a uniformly exponentially stable
equilibrium.

2.) the case m > 0 and 8 = 0. This situation had been considered (for the
constant parameter case) in the article [LiMa88]. In this situation the boundary
feedback is of dynamic form

Bra(t) +m(Brz)(t) = —aCiz(t), Box(t)=0€F> >0 (6.9)

and therefore we extend the state space by a controller state space variable. We in-
troduce x.=B1x on the controller state space X, = F with inner product (¢, zc) :=
MTeze (T, 2c € Xe). Additionally we choose u. = €z and y. = —B12 and obtain
from equation that the control system should have the form

d o 1
T e(t) = = —ao(t) = —ue(t)

yc(t) = *xc(t)v t>0.

Note that then X, = {__% _O%L:| and input and output are collocated (w.r.t. the norm

[l x, on Xc and the usual Euclidean norm |-| on U. =Y. =) and the system also
is impedance passive
Re (Acze + Beue, o) x, — Re (Cee + Detie, ue)u,
= Re(—awe — Ue, Te)r — Re (=, ue)F
= —afoof* = == ||}
m .
In particular, for the corresponding hybrid operator A on X x X. we have

o (6.10)

Re (A(z,z.), (2, 2c)) xx x. = —% [
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The hybrid operator therefore generates a contractive Cy-semigroup on the product
Hilbert space X x X.. Additionally we assume that p and EI are Lipschitz contin-
uous. Since the control system is not SIP we might only hope to employ our results
on SOP controllers. (Remark that u. = —x., so that the control system is SOP,
indeed.) However, we do not know whether the pair

(2, R) = (A, (Hx)(1), (H121)(0), (H121)'(0)))

has property [ASH and consequently have to take the special structure into account
to find that op(A) NiR = 0. Namely let B € R and (z,z.) € D(A) such that
if(x,x.) = A(x,z:). Then by (6.10) we obtain x. =0 and hence also

Bix=—y.=2x.=0
¢ =u. = —(az. +mifz.) =0

so that Rz = (Bx,&x) = 0. Thanks to Corollary [{.2.10 (with 0 and 1 in-
terchanged) the pair (A, R) has property and it follows that also x = 0, so
(z,z.) = 0 and i € iR cannot be an eigenvalue. Since A has compact resolvent
and this holds for every 8 € R asymptotic stability follows from Corollary[2.2.16,
Since it had already been shown in [LiMa88] that (for the uniform, i.e constant
parameter, case) uniform exponential stability cannot hold true, we do not pursue
this topic for the non-uniform scenario with p, EI € W1 (0,1), but only remark that
we have extended the asymptotic stability result of [LiMa88] to the situation of a
non-uniform beam. For a possible nonlinear dynamic generalisation we refer to the
next chapter.

3.) the case m > 0 and > 0. If also § > 0 the controller state space has to be
adjusted by identifying

Te="Bix + m(‘llx

g
and equipping X. = F with the equivalent inner product
62
e = K{(-,)r, here K = >0 6.11
(b = KJe. where K =~ (611)
so that we obtain the controller dynamics as
d 1 laB—m
—ao(t) = —=z.(t) — = ot
Grelt) = =g elt) = 5 e
Ye(t) = —ao(t) + %uc(t), t>0
_1 _aB-m
i.e. Yo = _f 2 ] and the feedback interconnection is again given by u, = €1z
B

and y. = —B1x. We then calculate for X.:

Re (Acxe + Bete, zc) x, — Re (Cewe + Detie, ue)u,

c

=Re <_%(%uc - yc) - %(a - %)u07K(%uc - yc)>F — Re <yauc>]F

k(L Y = B
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+ (M+K(a_m)+m
g B g B2
_Kam s K

2
7|Uc| - 3 |Ycl

- 1) Re (uc, ye)

for every (ze,ue) € Xe X Ue and y. = Cexe + Deoue, so that

Kam

Re <A(l’,$c)a (JT,IL’c)>X><Xc < *? ‘€1$|2 - % |£B:c|2

for every (xz,x.) € X x X., and since the control system is internally stable (ob-
viously op(Ac) = {—%} C Cy ) and the pair (2, (B, ¢&41)) has properties and
ATER it follows uniform exponential stability from Proposition[5.2.9 and Theorem
5.2.4), which extends the stability results of [CoMo98] to the case of a non-uniform
Euler-Bernoully beam equation.
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Chapter 7

Passivity Based Nonlinear
Dynamic Feedback
Stabilisation

The following chapter may be seen as the nonlinear version of Chapter [5| and at
the same time the dynamic feedback version of the preceding Chapter [6] In par-
ticular, we combine the ideas of these two chapters to also cover the combined
case: impedance passive port-Hamiltonian systems with dynamic nonlinear bound-
ary feedback. In contrast to the situation in Chapter [5] where the port-Hamiltonian
system & is interconnected by standard feedback interconnection Bz = —y. and
u. = €z with the linear control system X, = (A, B, C., D.) with the dynamics

Sz N _[ A Be z(t) 150

—y.(t) —-C. —D. u(t) )’ =
we replace the linear system Y. by a nonlinear controller %!, There are at least
two possible approaches to ensure well-posedness in the sense of existence of unique
solutions then. On the one hand we may try to employ the Contraction Principle

and find solutions as fix points of the corresponding system of integral equations,
i.e.

z(t) =T (t)xo + /0 T_1(t — s)Bu(s)ds,
%xc(t) z.(t)
(20 )= (0)
u(t) = —ye(t)
u(t) = y(t) = CT(t)zo + C’/ T_1(t — s)Bu(s)ds + Du(t), t>0
0

(see Section where we considered the standard formulation (A, B, C, D), i.e.

d
ﬁx(t) Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t), t>0

187
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of the port-Hamiltonian system, in contrast to the boundary control and observation
form we have used throughout this thesis so far. Instead we first continue in similar
fashion as in the preceding Chapter [6] and look for conditions where the operator
arising from the feedback interconnection of the port-Hamiltonian system & =
(21,8, €) with a nonlinear controller £7 forms an m-dissipative operator on X x X..
In this sense we look for solutions which do not only have non-increasing energy,
but for which also the difference between two solutions is non-increasing, so that
the solutions naturally form a nonlinear strongly continuous contraction semigroup.
After that we are in the position to state some results on asymptotic and uniform
exponential stabilisation via dynamic nonlinear boundary feedback, see Section [7.3]

7.1 m-Dissipative Dynamic Control Systems

Let & = (2,8, ) be a port-Hamiltonian system of arbitrary order N € N which
is assumed to be impedance passive throughout this section. In this section we
replace the static boundary feedback Bz € —¢(€x) from Chapter |§| by the feedback

interconnection Bx = —y. and u, = €x with a nonlinear control system . of the
form
9
arve(?) ) e M, < ze(t) > £>0 NLC
( —ye(t) ¢ UC(t) ’ o ( )

where M, : D(M.) C FV4 x X, = FN4 x X is a possibly multi-valued nonlinear
map on the product Hilbert space of the controller state space X. and the input and
output space U, = Y, = FN¢. In order to motivate the assumptions on the map M,
we will impose below, for the moment we consider the case of a finite dimensional
linear control system X. = (A., B¢, C¢, D) which is given by

D ro(t) = Avao(t) + Boua(t)

dt
yc(t) = chc(t) + Dcuc(t)a t>0. (LC)

This system is impedance passive if and only if the matrix

A.  Be
MC = ( *Cc *Dc )

is dissipative (and then m-dissipative since X, x FV? is finite dimensional and the

map is linear). Similar conditions make sense also for the nonlinear controller,
represented by the nonlinear map M.. For the moment, let X, be an arbitrary
Hilbert space which is equipped with some inner product (-, -) x,. From the map M, :
X.xFNd = X, x FN9 we demand that it is a (possibly multi-valued and nonlinear)
m-~dissipative map, so that it, or, more precisely, its minimal section, generates a
nonlinear s.c. contraction semigroup on the product Hilbert space X, x FN¢. We
give a first example.

Example 7.1.1. Assume that the nonlinear controller has the block form M, =
(‘& 5s.) where A, : D(Ac) € X = X, and —D, : D(—D.) = FN4 = FN? qre
m-dissipative on X, and FN?, respectively, and the operators B, : FN® — X, and
C.: X, — FN? gre assumed to be linear, bounded and adjoint to each other, i.e.
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input and output B, = C. are collocated. Then M, : D(M.) = D(A.) x FN4 C
X x FNd = X, x IFNd is m-dissipative. In fact, for all (zc,wc) € M.(xc,uc) and
(e, W) € Mc(%¢, 1) we have that z. — Beue € Ac(xe), Zc — Belic € Ac(Ze) and

we + Bla. € —Dc(uc), We + BLi. € —D.(t.) with

Re <<Zc - 20; We — ’lZ)c), (xc - i‘ca Ue — ac)>Xc><]FNd
=Re <(ZC - BCuC) - (26 - BCﬂC)a Te — fi.c>Xc

+ Re <(wc + B:.Ip) — (lz}c + Béi’c), Ue — ’l~l,c>]FNd
<0

and for every given (z.,w.) € X xFN9 and A\ > 0 the map v, — BL(A.—\) "1 (z. —
Bev,) is dissipative and Lipschitz continuous since the map (A.— )~ is contractive
and dissipative. Then the problem

o () (& )emon () -( G20

has the (unique) solution

zo = (Ac — N) (2 — Beue)
= (=De— BL(Ae — N) " M(ze — Ber) = N) " lwe
where we used that the map —D, — BL(A. — \) 7Y (2. — Be) is m-dissipative thanks
to 2223
Note that choosing B. = 0 leads to static feedback as investigated in Chapter[6], be-

cause the dynamics of the control state space variable x.(t) are completely decoupled
from the dynamics of the infinite-dimensional port-Hamiltonian system.

To define the hybrid operator on the product Hilbert space X x X., we introduce
the following notation.

Definition 7.1.2. Let Hy and Hs be two Hilbert spaces. Then we denote by
Og, (v1,22) =21, Hg,(x1,22) =22, (21,22) € Hy X Hy
the canonical projections Iy, : Hy x Hy — Hj (j = 1,2).

In particular, Ty, : X, x FN4 — X and Hg~a : X, x FV4 — FN? are the canonical
projections on X, and FN?, respectively. Then we are able to define the nonlinear
hybrid operator A: D(A) C X x X, = X x X, as follows.

Definition 7.1.3. Let & = (A,B,&) be a port-Hamiltonian system and M, :
D(M,) C X. x FNd = X, x FN? be a possibly multi-valued and nonlinear map
on X. x FN?. We then define the possibly multi-valued (in the component corre-
sponding to X.) and nonlinear map A: D(A) C X x X, = X x X, as

z ) Az
4(2) = Cncartonen)
D(A) = {(z,z.) € D) x lIx, D(M,) : Bx € UpnaM.(z¢,Cx)}

Using the notation X, := IIx, D(M,.) we then find the following.
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Theorem 7.1.4. Assume that & = (2,B,€) is an impedance passive port-Ham-
iltonian system and M, : D(M.) C X. x FN? = X_. x FN? js an m-dissipative
map. Then the map A: D(A) C X x X, = X x X, is m-dissipative on the product
Hilbert space X x X, thus its minimal section generates a nonlinear s.c. contraction
semigroup (S(t))i>0 on X x X .

Proof. Thanks to Lemma [6.1.1] we may and will as in the generation theorems
before assume that H = I. We start with the statement that D(A) = X x X_.
For this take any (z,z.) € X x X . As a first step, let us additionally assume that
z. € Ilx,D(M.). Then there are u. and y. € F¥? such that (x.,u.) € D(M.) and
—ye € HpnaM (zc,u.). We need to find a sequence (z,)n>1 € D(2A) converging
to x (in X) and such that Bz, = u, and €z, = —y.. We take an arbitrary
zo € D(2) such that Brg = —y. and €zg = u.. Since C(0,1;F4) C D(2) is
dense in X there is a sequence (2,)n,>1 € C°(0,1;F4) C D(2A) which converges
to x — zo (in X). Then z, := 2o + 2z, — = converges to € X and also Bz, =
Bxg € My, , M. (xc, Cxo) = HpnvaMo(2, Cxp) as wished. Next we allow that (x, x.)
merely lies in X x X_. Then we find a sequence (z¢n)n>1 C IIx,D(M.) such
1

that [[zen —zcllx, < 5. We know from the first step that there are sequences

(ks Tenok)k>1 © D(A) such that |[(xnk, Tenk) — (Tn, xc7n)||XxXC < % and hence
the diagonal sequence (Zp n, Tenn)n>1 C D(A) converges to (z,z.) in X x X.. This
shows that D(A) is dense in X x X .

We show m-dissipativity of the map A. For all (z,z.), (Z,Z.) € D(A), (z,z.) €
Az, x.), (AT, Z.) € A(Z,Z.) we have the estimate

Re <(9’lx725) - (Q['%7EC)7 (1’,.’[}@) - (jai'c»XXXC
=Re(U(z —Z),z — T)x + Re(zc — Zc, 2. — Te) x,
<Re(B(x —z),C(x — Z))pna + Re (zc — Zc, e — Te)x,
=Re((5%) = (a3): (e5) = (&) x.xpva <0

since (g5) € M (¢5) and (g5) € M. (Z2) for the m-dissipative map M. As a
result, A: D(A) C X x X, = X x X, is dissipative. It remains to show the range
condition ran (I — A) = X x X.. We take an arbitrary (f, f.) € X x X, and look

for (z,z.) € D(A) such that

(@,2c) = (f, fe) € Alz, zc).
This problem is equivalent to finding (x,z.) € D() x I x, D(M.) such that

(- = f
T
Te 7fc S HXCMC ( er >

Zc
Br € Ipna M, ( e >

where from the first equality and Lemma |3.2.24| we obtain z = ®(1) f+ ¥ (1)Bz and
¢r = F(1)f + G(1)®Bz. Since the matrix G(1) € FN9*Nd is invertible it suffices to
solve the problem

(QSL%>‘<ij}mf>GM(§;) (7.1)



7.2. AN ALTERNATIVE APPROACH 191

Since for some & > 0, which should be small enough, the matrix eI — Sym G(1)~!
is still dissipative, clearly also

A= ( ' el — G(1)™ )

is dissipative and linear from X, x FVd to X, x FN4, We now exploit that M, :
D(M,) C X xFNd = X xFN? is m-dissipative, so that also A+ M, is m-dissipative
by Lemma and then there is a unique solution (z.,€z) of equation .
We found a unique (z,z.) € D(A) such that (f, f.) + (z,z.) € A(z, z.). O
To summarise this section: We have seen that the boundary feedback interconnec-
tion of an impedance passive port-Hamiltonian system with a nonlinear dynamic
control system which is governed by an m-dissipative map, leads to an m-dissipative
hybrid map on the product Hilbert space.

7.2 An Alternative Approach

Within this section we consider an alternative approach to dynamic nonlinear feed-
back stabilisation of port-Hamiltonian systems, or, more general, abstract linear
control systems of the form

d
%x(t) Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t), t>0

where A is the generator of a Cyp-semigroup on a Hilbert space X, D € B(U,Y) is a
bounded linear operator from the input space U to the output space Y, which both
are assumed to be Hilbert spaces. The operators B € B(U; X4,) and C € B(X{';Y)
are assumed to be admissible control and observation operators, cf. Section [2:3] In
fact, we immediately leave this differential level for the dynamics of the linear con-
trol system and assume that the dynamics of the linear control system is given by
a well-posed linear system (T, ®, U, F'), see Section We discuss the local well-
posedness of a well-posed linear system interconnected with a dynamic nonlinear
controller in Subsection [7.2.2} For impedance passive control systems connected
with impedance passive port-Hamiltonian systems we draw conclusion on the ex-
istence of global solutions and non-increasing energy. Before we encounter an ex-
istence and uniqueness result for the pure nonlinear control system in Subsection
and use techniques which are applied also to the interconnected system.

7.2.1 The Nonlinear Control System

In this subsection we discuss a nonlinear system of the form

*-/L’c(t) = Ac(wc(t»xc(t) + Bc<xc(t))uc(t)
Ce(@e(t))ze(t) + Del@e(t))uc(t) (NLS)

<
S
—
~
=
I

where A, : X, = B(X.), B.: X. = B(U., X.), Cc : X. = B(X.,Y.) and D, : X, —
B(U.,Y.) are locally Lipschitz continuous operator-valued functions, i.e for every
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bounded subset Xy C X, there is a constant L = L(Xy) > 0 such that
[Ac(zc) — AC(jEC)HB(XC) SLllze—Zellx,, @ Tc € Xe

and accordingly for the other maps.

We start by giving an example for these nonlinear control systems, as it has been
proposed by Le Gorrec, Ramirez and Zwart [Lel4].

Example 7.2.1. Le Gorrec, Ramirez and Zwart [Lel|] proposed the following non-
linear ODE as a model for a nonlinear controller of a pieco-elastic beam.

bo = (o — Re(w) 22 (2) + Bulwo)ue

0z,
OH,
Ye = BZ (mc) 8Ic (xc) + Sc(xc)uc

where %H° (ze) = (’“(w;i);“ 1) and

Rc(mc) = [0 R, U] + a<xC)R2 where R2 = [é BBB:*]

B.(z.) = a(x:)Beo where By = [Bl*]

Se(ze) = alz.)S
with J. = —=J;, Ry = R > 0, S = 5* > 0 and B are matrices, o : R" —

[a1, as] C Ry a bounded positive function and k : R™ — (0,00) positive. Here the
energy functional H, on X, = R2 is given by

Tec,1 1
Ho((ren,zea)) = [ sh(s)ds + 5 lecal® (en.ea) € B2
0

We then have the following local existence result for solutions of the nonlinear
system (NLSJ).

Proposition 7.2.2. Assume that A, B.,C. and D. are locally Lipschitz in x..
Then for every input function u. € Ly j0c(Ry;Ue) and x.0 € X, the problem (NLS)
has a unique mild solution x. = x.(-; Tc,0,uc) € C([0,7]; X.) on some interval [0, 7],
i.e.

2o(t) = o0 + /0 (A8 B (e (s), ue(s))ds.

Proof. Let an initial value z.¢ € X, and an input function u. € L1 joc(Ry;Ue)
be given. For the moment fix any p,7 > 0 which we will choose suitable later on.
Denote by B,(xc,) the closed ball in X, with radius p and centre at z. ¢ and define
@ : C([0,7]; Bp(zc,0)) = C([0,7]; X) by

(P(xe))(t) == xc0 —I—/O [Ac&Bc](zc(8), uc(s))ds.

We aim for the Strict Contraction Principle Proposition [2.1.12] and first compute
for z. € C([0,7]; By(xc,0)) that for every t € [0, 7]

[(@(2e))(t) — Te0

x. = H /O t[Ac&Bc](scc(s),uc(s))ds

Xe
STl Aelow, @eon Izellep.n

T 1Belle(s, (w0.0)) 1tell £, (0,7r%) (7.2)
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and then for z., . € C([0,7]; B,(xc,0)) that for every ¢ € [0, 7]
[(@(ze))(t) = (P(Ze)) ()]l x,
| 1cteeo) (els) = o), ds

I
<

+ / N(Ae(ze(s)) — AeEe())] ze(s)]] . ds
+ / 1Be(e(s)) — Be(Fe(s))Juels) . ds

STl Ao, oo 12 = Zellego,m:x.)
71 AellLip(s, (20,0 12 = Zellogo,mx.)
+ ||Bc||Lip(Bp(xC,0)) ||UcHL1(o,T;UC) |ze — fc”c[o,f];xc) :

Thus, for suitable small p,7 > 0 (which may be chosen in such a way that they
only depend on [|zcollx and [ucll,, o0,)) the map @ is a strictly contractive
mapping C([0,7]; By(xc0)) = C([0,7]; By(2c,0)), so it admits a unique fixed point
Ze(+5 @c,0, Ue) which is a mild solution of on some time interval [0, 7]. Unique-
ness of the solution follows by standard procedure based on the fact that from con-
tinuity any two solutions stay in B,(z,0) for some time (0,7) where 7 > 0 depends
on the solution.

Remark 7.2.3. Note that if 2 C X, and Q C L1(0,T;U.) (for some T > 0)
are bounded sets, in the constants p, T > 0 in the preceding proof may be chosen
globally for all z.o € Z and u. € Q. More precisely, the solution x. = x(-; Tc,0, Uc)
depends continuously on the initial datum x., € X. and the input function u. €
L11o0c(Ry;Ue). To see this, fix any (zc0,uc) € Xe X L1 10c(Ry;Ue) and let = x Q2
be a closed and bounded neighbourhood of (%0, uc) with p, 7 > 0 chosen globally for
= x Q as sketched before. Without loss of generality assume that

HBCHLip(E) HUCHLl(O,T;Uc) <L

Then for every (Zco,U.) € E x £ and t € [0,7] one has
[ze(t) = Ze(t)| x,

X, +/0 ||[AC&BC]($C(5)7UC(S)) - [AC&BC](£C(S)70'0(5))” ds

S ||-Tc70 - jc,0|

< lweo = Zeolly, +/0 [Ac(@e(s))]l lze(s) — Ze(s)llx,

+ [ Ac(ze(s)) — Ac(@e()I] [[Ze(8)lx,
+ [ Be(we(s)) = Be(@e(s))l Nue(s)lly, + [[Be(Ze(s))[l ue(s) — ucls)| ds

S ||-Tc,0 - jc,0|

X, + TP ||AC||Lip(Bp(O)) ch - j50||LOO(O"’—§AXC)
+ 7l Aclles, o 17 = Ell L 0,7 x.)

+ 1BellLip(a, 0)) 1ell L, 0,m00) 12 = Ell L 0,mx.) T 1Bellees, o)) ue = el 0,7

< lweo = Zeollx, + T2 1 AcllLipes, o)) T 7 1 Acllcs, 0

+1BellLips, o)) el o, o, 1e = Zell L o,7) + 1 Bellogs, o)) e = tell £, (0,7
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and consequently for

1= BellLipcc(s, 0y) Itell Ly 0,

T<
p ”AC”Lip(C(Bp(O))) + ||Ac||c(3p(xc,0))

one sees that ||x. —5cc||Loo — 0 as (Z¢0,Uc) — (Te0,Uc), i-e. the solution de-
pends continuously on the initial datum x. € X, and the input function u, €
Ll,loc(R+; Uc)

Remark 7.2.4. It is a standard procedure to show that for any given z.o € X,
and uc € Ly 1oc(Ry;U.) the problem has a mazimal solution x.(-; xc,0,Uc) €
C([0, Tmaz ); Xc) which cannot be extended to a continuous solution on a larger time
interval. Also it can be seen from the proof of Proposition[7.2.3, that if Tyas < 00,
then

e (; .0, ue) || 222255 4o,

i.e. the system has the blow-up property (or, unique continuation property ).

In particular, if the energy does not increase, all solutions are global.

Corollary 7.2.5. Let u. = 0 and assume that
Ho(x:(s)) < He(ze(t)), s>t>0

for every mild solution (x,z.) € C(Ry;X x X.) of (NLS) and H. is radially
unbounded, i.e.
lim H(z.) = +oo,

llzell—o0

so that the pre-image of every bounded set is bounded. Then the system has
a bounded global solution, for every given initial value x. € X. and no input.

Proof. Since we already observed that (NLS|) has the blow-up property, the as-
sertion follows from the fact that H(z.(t)) < H(zc0) and H; ([0, He(20)]) being
bounded. O

7.2.2 Local Existence of Solutions

Next we consider the feedback interconnection of well-posed linear systems with
nonlinear control systems as investigated in the previous subsection. I.e. we want
to stabilise a L,-well-posed linear system (7', ®, ¥, F') by feedback interconnection
with a nonlinear control system of the form

& = Ac(xe)Te + Be(xc)ue
=: [A&B.](xc, uc)
Ye = Cette + De(we)ue
=: [Ce&D.)(zc,ue), >0 (NLC)

where all the operator-valued functions A, € Lip;,.(X¢; B(X,)) (determining the
inner dynamics of the controller state space variable) B, € Lip,,.(X¢; B(Ue, X¢))
(input map), C. € Lip,,.(X¢; B(Ce; U.)) (output map) and D, € Lip;,.(X¢; B(U.))
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(feedthrough) are locally Lipschitz continuous on X, in the sense that for every
bounded subset Xy of X, there is a constant L = L(X() > 0 such that

[Ac(ze) — AC(fC)HXC < Lz.— chXC y TeyTe € Xo

and accordingly for the other functions, cf. the previous subsection. In particular,
this does imply that the functions A., B., C. and D, are bounded on every bounded
subset of X(. In general the finite dimensional case X, = F" (equipped with some
inner product (-,-)x,) and U, = Y, = F* for F being the field of real or of complex
numbers is most practicable, since for infinite dimensional spaces local Lipschitz-
continuity very often is not easy to ensure. At the moment we will not impose
any passivity conditions on the finite dimensional controller or the linear well-posed
system, but we will use properties like these later on to establish existence of global
solutions, whereas in the first step (local existence) we do not make use of them,
anyway.

Assumption 7.2.6. We assume that one of the following conditions holds for the
L, -well-posed linear system ¥ = (T, 0, ¥, F).

lim [[F(@)|] = inf |F(£)[| = 0.
or
sup D.(z.) %Eg [F(@)] < 1.

r.€Xe

Now, for any initial value (x¢,z.0) € X x X, we consider the following intercon-
nected system

x(t) = T(t)zo + P(t)u

t
ze(t) = e "‘/ [Ac&eBe](ze(s), ue(s))ds, t=0
0
U= —Yc = _[CC&DC](xC’ UC)
Ue = y = \Ilwo + Fu (7.3)

where we denote by ¥ € B(X; Ly j0c(R1;Y)) and F' € B(Lp joc(R+;U), Lp 10c(R4;Y))
those operators such that (Vx)(t) = (¥(T)x)(¢) and (Fu)(t) = (F(T)u)(t) for every
fixed T'> 0 and a.e. ¢t € [0, 7).

Theorem 7.2.7. Let p € (1,00). Then for every given (zg,xc0) € X x X, there is
7 > 0 such that the system has a unique solution (x,x.) = (x,xc)(*; To, Teo) €
C([0,7]; X x X.) with u € L,(0,7;U) and y € L,(0,7;Y).

Proof. Let an arbitrary initial value (x,z.0) € X x X, be given. Let p > 0 and
o > 0 be two positive constants and take 75 > 0 such that

p>2 H‘IIZ‘O”LP((),TO;U) :

In the following we denote by | f \Lip( M) the optimal Lipschitz constant of a function
defined on a closed set M. Moreover, by BPZ (z) we denote the closed ball with
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radius p > 0 and centre z € Z for any Banach space Z. For 7 € [0, 79] define the
map ¢ : C([0,7); BX*(0,0)) x By "7(0) = C([0,7); X.)) x Ly(0,7;U) by

_ ( oo+ [1[A&B(ze(5), (Tao + Fu)(s))ds )

We then have for every (z.,u) and (Z., @) € C([0, 7]; Bp(zc,0)) X ng(O’T;U)(O) that

H(bl('rca U) - ¢1 (5767 ﬂ)”C[O,T]

/0 [AC&BC](xc(S)v (\I/l‘O + FU)(S)) - [AC&BC] (jc(s)’ (‘I’xo + F,&)(s))dS

= sup
tel0,7]

< /OT [Ac(we(s))ze(s) — AC(»%C(S))Q%C(S)”XC
+ [ Be(we(s)) (Wwo + Fu)(s) — Be(Ze(s))(Wxo + Fu)(s)]| ds
< /0 [Ac(ze(s))H[ze(s) = Ze(s)llx, + 1Ac(ze(s)) — Ac(Ze(s))]] |Ze(s)]

+ 1Be(2e(s)) (Fu)(s) — (Fa)(s))]l
+Be(xe(s)) = Be(Ze(s))[| [|(Wao + Fa)(s)| ds

< [ 1Adcqs, oy ocls) =5,

1 Acliap(s oo ll2e(s) = Ee()I] 2e(5) .
1Bl o, oy 1(Fw— @) (3)]ly
+ 1Beliapis, o oy 120 + Fi)(8)] le(s) = &o(s) | ds

<7 (”AC”C(B,J(Q:C,O)) F1Aeltin(s, (r.0)) ||5fc||c[0,ﬂ) lee = Zellpo.n
+ HBCHC(B,,(mC,O)) 5w =) 1, 0,7
+Beluips, o)) I120ll, 0.0 + 1F Ly 0,m) e = Zellopo
<7 (“AC“C(BP(%O)) + | AcltinB, (20.0)) ||35"c||c[o,f}) e = Zellopo,7
+7 7Y Bellogs, oo IF s, 0.0 18 = @l 0.
+ 7 VP | Belnip s, (0. 0)) (182011, 0,1y + IF (Dl 5(2,,0,7)) 1] 2,,0.7))
Nze = Zell oo,
<7 (14clom, ooy * 1Aeliip, ey (Iellx, +0) e = Zellop.
+ 7 P Bellos, oo IFOlsew, 0,0 1t = @l 0,1

+ 7 VP Beliin s, o0y (1920111, 0,0 + IF (M52, 0,0y ) 12e = Zell oo, -

Note that since p > 1 the terms 7 and 717% can be made as small as we wish, if we
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choose 7 > 0 sufficiently small. We also have

[p2(xe, u) = da(Ze, Wl L, (0,7

= ||[Ce&eDy)(xe, ¥xg + Fu) — [Ced&eDe](Ze, Vo + Fﬂ)HLp(o,r)

= [Ce(zc)xe + De(xe) (Vwo + Fu) — Co(Ee)Te — De(e) (Yo + FU) 1 o0

< Celze) e = Fe)ll g, 0.0y + I(Colre) = Cale)elly, 0.0
+ [1De(@e) F(u = a)ll, 0,y + [[(De(e) = De(Ee)) Fall o r)
+ [(De(e) = Del@e))Pollp, 0.0

< ||Cc||c(Bp(zc,o)) |z — chLP(o,T) + |CC|Lip(Bp(Ic,0)) (lzcoll + p) [|ze = i"c||Lp(0,r)
+1Dellen, x.on (s, 0,0 v =l 0.
+ [DelLip(B, 200y IM¥T0ll L, 0,7y + 1FU 1, 0,1)) e = Zellopo,r

< Tl_l/p(||cc||c(30(zcyo)) + (lzeoll + P) [CelLips, (00.0)) 1T = Zell o7
+1Dellcs, weon IF (s, 0. 1v =2l 0,

H1DelLip(s, (@000 (||‘I’5”0HLP<0,T> HIE sz, 0,m) “) lze = Zellogo,n

thus for 7 > 0 and ¢ > 0 sufficiently small the map ¢ is strictly contractive.
We show that for an appropriate choice of 7,p and ¢ > 0 the function ¢ maps
C([0,7); By(2e0)) x BE*OTY)(0) into itself. In fact, we find

H(Z)l((EC,’LL) — Zec,0

— sup / (A& B (2e(s), (Wao + Fu)(s))ds
0

te[0,7]

< / ezl DI () 1.

T |Bule(s) | | (0 + Fu)(s)y, ds
ST Aclles, (@e.0)) (lTeollx, +0) + Bellos, @..0)) %20 + Full, 0.5
< 7_1_1/,,(7_1/;9 ||Ac||c(Bp(zC,0)) (lzc,0 |Xc +p)

+ ||Bch(Bp(mC,0)) (I¥zolly, (0. + IF (T, 0,7)) 7))

and

||¢2(xc7u)||Lp(0,‘r)
= [[[Ce&eDe) (e, Yo + Fu)ll, 0.0
< ||Oc||c(B,J(mc,o)) ”xC”C[O,T]
+1Dellcs, (2o Y20 + Full, 0.
< Tl_l/p(||0c||c(3p(xc,o)) Izell oo,
T 1Delle(s, 200y (¥Toll L, 0,0y + IE ()1, 0,7 7))

so that for 7 > 0 sufficiently small, in particular such that

(1920ll, 0.1y + IE @ sz, 0.0 ) 1Pelles, ooy < (7.4)



198 CHAPTER 7. DYNAMIC NONLINEAR FEEDBACK

the nonlinear map ¢ not only is Strictly contractive, but also maps the complete
metric space C([0,7]; BX¢(z00)) X B » (07 U)(O) into itself, so by the Strict Con-
traction Prmaple ‘hab a unique ﬁxed point

(Teyu) =t (T, u)(5 70, Tc0) € C([0,7]; B, Xe(200)) % B,EP(O’T;U)(O).

Then (z,xc)(; To, Te0) = (2, 2¢) = (Txo + Pu, z.) € C([0,7]; X x X,) solves (7.3)
on the interval [0, 7]. O

Corollary 7.2.8. For every (zo,xc0) € X x X, the interconnection problem
has a unique maximal solution (z,z.) = (z,2.)(*; %0, Tc,0) € C([0, tmaz); X X X¢)
with (4, y) € Lp 10c([0, tmaz); U X Y') which cannot be extended beyond the maximal
existence time t,q. € (0,00]. Whenever tmq, < oo it holds

timsup (2. 2) () L, =, lim 1@, 20) (0, = +o0

i.e. the problem ([7.3)) has the blow-up-property (or, unique continuation property ):
For every T > 0 and every bounded solution (x,z.) € C([0,7); X xX.) of (7.3), there
ise > 0 and the solution uniquely extends to a solution (x,z.) € C([0, T+e]; X x X..).
In particular, all bounded solutions (z,z.) € C([0,tmaz); X X X.) are global, i.e.
tmaz = OO.

Proof. The maximal solution can be constructed using Zorn’s lemma and this
procedure is standard. Uniqueness follows from the following observation. Assume
that (z,2.) € C([0, tmaz); X x X.) and (%, %) € C([0, tmaz); X x X.) are two maximal
solutions for the same initial value (zo;¢). Let

to := sup{7 € [0, min{tmaz, tmaz}) : (¥, 2c) = (%, %) on [0, 7]}

From the Local Existence Theorem [7.2.7] we deduce that 5 > 0. Assume that
to < min{t,az, tmaz - Hence, both solutions are continuous on [0, %] and coincide
on [0, to]. By the Local Existence Theorem [7.2.7] there is a unique solution (£, &.) €
C([0,€]; X x X,) of for the initial value (x, z.)(to) = (Z,%¢)(tp). On the other
hand, also the shifted solutions (z,z.)(- + to) and (Z,%.)(- + to) are solutions of
on the intervals [0, taz — to) and [0, £mas — to), Tespectively. In particular

(#,2:)(8) = (z,2e) (s + o) = (Z,%)(s + o), s € [0, min{tmaz — to, tmaz — to,€})

in contradiction to the choice of to. As a result, to > min{taz, tmas}, but then
to = min{t,maz; tmaz }- Since both solutions (z,x.) and (&, #.) are maximal, neither
of them can be a proper extension of the other, so we conclude that t,,,, = tmaz = to
and the first statement follows.

Next, take any bounded solution (z,z.) € C([0, tmaz); X X X¢). From the proof of
Theorem [7.2.7] we extract that the guaranteed existence time 7 > 0 therein depends
on the following parameters:

P > 07 o> Oa ||(AC7307 CC’DC)HC(B;)(JJC,O)) 9 |(ACa B(:7 C(:7 DC)|Lip(Bp($c,D)) '

For the additional parameter r := sup,c(oy,...) [[(, 2c)(t)]] < +oo, the existence
time 7 > 0 can be chosen depending on the following parameters instead

p>0,0>0, ||(AC,BcvcchC)”C(Berr(O)) ) |(AC?BcvCC?‘DC)|Lip(Bp+T(O)) .

Then the construction from the proof of Theorem [7.2.7] says that for every ¢t €
[0, tynaz) the solution (z,z.) € C([0,tmaz]; X X X.) is defined on [0, + 7). Clearly
this can only be true, if ¢4, = +00. O
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7.2.3 Interconnection of Impedance Passive Systems

In this subsection we impose additional constraints on the well-posed linear system
and the nonlinear control system by demanding that they both are impedance
passive, where for the latter we begin by defining this terminology in a way adequate
for nonlinear systems.

Assumption 7.2.9. On the space X. consider a continuous map H. : X, — R
and such that it is radially unbounded, i.e.

liminf H.(z.) = +o0. (7.5)

|‘$c‘|xc—>00

Remark 7.2.10. The function H. may be seen as a (in general non-quadratic)
energy functional, e.g. it might be the quadratic functional H.(x.) = % ||$C||§(C which
were the appropriate choice if the system were linear or dissipative is the sense of
Definition indeed. Also note that from the accretivity of H. it follows that
for every ¢ > 0 there is p > 0 such that H.(x.) > ¢ for every x. € X. with norm
greater or equal p. In other words, preimages of bounded sets under H. are bounded:

H;Y([0,p]) € X. is bounded for every p > 0.

We may then define impedance passivity with respect to this functional H,.

Definition 7.2.11. The nonlinear control system is called impedance passive (with
respect to a functional H. : X, — Ry ) if for every given initial value z.o € X. and
an input function u. € Lo(0,7;U,) for the mild solution z. € C([0,7]; X,), i.e.

2et) = 2e0)+ [ Acae(o)mels) + Bolucls)ucls)ds. ¢20
0
one has that
H.(z.(t)) < H.(z:(0)) —|—/O Re (uc(s), ye(s))uv.ds, te0,7]

where y. = Ce(xe)xe + De(x)ue € La(0,7;U).

Example 7.2.12. Consider the nonlinear control system from [Lel]|] of Example

[72]) i.e.

Te = (Jc - RC(Z‘C))ZTI{:(xC) + BC(xC)uc
Yo = Bc(xc)*‘gf: (220) + Se (1) te. (7.6)

Then the energy functional

Ten 1
HC(JZC) = / Sk(S)dS + 5 |$c,2|2
0

is radially unbounded if and only if

oo 0
/ |sk(s)|ds = 400, and / |sk(s)|ds = 4o0.
0 —00
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Now, for impedance passivity we compute that for every Lipschitz continuous (in
the x. component) solution of (7.6) we have that

c

= Re /0 <g{j§ (.Z'C(S)), (Jc - RC(Z‘C(S))%(-’IIC(S)) + BC(xC(S))uC(S»deS

0H,
0x,

SRG/O (Be(we(s))" 5= (c(5)), uc(s))rds

t
<Re / (ue(8), ye(8))rds.
0
By density, the same result holds for every mild solution (z., uc,y.) € C([0,7]; X)X
Lo([0,7]; Ue x Ye).

Under these assumptions the global existence of solutions follows easily from the
local existence result and the blow-up property.

Theorem 7.2.13. Let (T,®,V, F) be an impedance passive Lo-well-posed linear
system and let the nonlinear control system be impedance passive with respect to a
radially unbounded functional H. : X. — R4 and with locally Lipschitz-continuous
A¢yBe,Ce and D.. Then for every initial value (zg,xc0) € X x X, the inter-
connected system has a unique global and bounded mild solution (x,x.) €
Cy([0,00); X x X.) with (u,y) € Lajoc(R4;U X Y) for which the functional

1
Hiot((2,2)) := H(z) + He(w) = ) ||=T||§( + He(zc)
does not increase.

Proof. Let any arbitrary initial value (zg,z.0) € X x X, be given and let
(x,2¢) € C([0,timaz); X X X¢) be the corresponding maximal solution with (u,y) €
L2.10c([0, tmaz); U x Y). Since u. = y and u = —y,. we obtain

Hiou(,20) (1)) ~ Huo(0, 7e0) = 3 ()5 — 3 12(0) [ + He(re(t) — Hele(0))

- / Re (u(s), y(s))ds + / Re (ue(s), ye(s)) v, ds
0

and therefore Hyot(x, x.) is non increasing on [0, tqz). Since H and H, are radially
unbounded it follows that sup,coy,...) (%, 7c) ()| x « x, < +0oc and then the blow-
up property implies that the solution is global, i.e. t,,4, = 00. O

The results so far are all based on the annoying Assumption [7.2.6] which is unprac-
tical if the feedthrough term D.(z.) does not vanish. To overcome this obstacle we
remark the following perturbation result which will help up to remove this restric-
tion for the interconnection of impedance passive systems.
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Remark 7.2.14. Assume that (T,®, ¥, F) is an impedance passive Lo-well-posed
linear system and K € B(Y;U) = B(U) such that for some o > 0 the following
estimate holds true

Re (Kw,w)y < —UHK’U)H%], we U

By replacing the input u by u — Ky we again get an impedance passive well-posed
linear system

oy [ @) ()
0=\ 30 20
_ [ T(t) - () K1y + FOK) ') @(t) (1 + KF(t) ' KF(t)
(Lo, + F(t)K) =1 (t) (Lo + F(t)K) " F(t)

Here we identify operators in B(L,(0,t;U)) with its zero-extensions to B(La(Ry; U)),
i.e.

Lf:=L(flpy), L €B(La(0,1;1)), f € Ly(Ry;U)

and the inverses appearing are considered as inverses in B(L,(0,t;U)).

Proof. Since the system (7', ®, ¥, F') is impedance passive, we obtain that for every
u € Lo joc(Ry;U) and zg =0
Re (F(7)u, u) 1, (0,v) = Re (4, Y) L0707
1
> el >0, >0
so that that the operators F'(7) € B(L2(0,7;U)) are accretive for all 7 > 0. Then

the operator I + F(17)K € B(L2(0,7;U)) is boundedly invertible for every 7 > 0
since F(7)K is accretive on Ls(0,7;U) for U equipped with the equivalent inner

product <<K+TK/ + Myer K) -, yu, where Iye,  denotes the orthogonal projection

onto ker K = kerKJrTK, (by assumption). Therefore, for every zg € X and u €
Lo 10c(R4; U) the problem

(oo ) =[50 701 (a5 ) o0
has a unique solution

< ;T[(oti] )

_ {T(t)*‘P(t)K(l[o,t]JrF(t)K)_1‘1’(75) ‘I’(t)(l[o,z]*K(l[o,t]JrF(t)K)_lF(t))} o
(Lpo,q+F () K) " u(t) (1, +F () K) " F(t)

t>0.

_ |:T(t)7<I>(t)K(1[0.t]+F(t)K)71\I/(t) (t)(Lpo, +EF(t)) " KF(t) } Lo
(Lfo,n+F () K) "1 ¥(t) (Ljo,n+F@®)K) "' F(t) U ’

Obviously 7'(0) = I, ¥(0) = 0 and F(0) = 0. Moreover, T'(t) is strongly continuous
since T' and ® are strongly continuous and (1o 4 +F(¢)K)~! and ¥() are uniformly
bounded on every bounded interval. To show that T is a Cy-semigroup it therefore
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suffices to show that T'(2t) = T(t)? for every t > 0. We find — using that ¥ =
(T,®,V, F) is a linear system —

T(2t)x0
= (T(2t) — (2)K (1 + F(2t)K) "' W (2t)) g
=T(t)*xo — ®(2t)K(1 + F(2t)K) "1 (W (t) 2o & V()T (t)0)

= T(t)%*zo
— ®(2t)K[(1j, + F(t)K) " U(t)g
<t>(1[0,t] +F)K) - (U(OT(t)ag — U)K (L + F(£)K) ™ (1))
= T(t)*xo — T(t)®(t)K (1 t] + F(t)K) ™" (t)zo
— B(t)K (1j + F(H)K) ™ (W) T () — W(H)P(4) K (11,4 + F(1)K) " W(t)0)
=(T(t) - () K (L + F(O)K)™ 1\I/(t))
=T(t)*xe, t>0, 29 € X.

Hence, T is a Co-semigroup. Here we used the fact that for every s,t > 0 and
functions u,v € Lg 1o.(R4;U) we have

(Lpo,t45) — F(t + s)K) " (u <t> v)

= (i — F(t)K)_1u<t> (10,9 — F(s)K) (v =V (s)2(t) K (19 — F()K) ') .

We continue with the properties of P, W and F.
Ot + 5)(u )
t

= ®(t+5)(Lg,145 + KF(t+ ) " KF(t+ s)(uv)

O(t+ 5) (10,045 + KF(t +5))” 'K <F(t)u<t>(\1'(s)¢>(t)u—|—F(s)u))
(L +5)[(L10, +KF(t))71KF(t)U<>((1[os + KF(s))™*

(U(s)@(H)u + F(s)u— W (s)®(t)K (L4 + KF(t)) " KF(t)u)]
( )@(s)(1j0, + KF(t) ' KF(t)u

D(t) ((Ljo,e) + KF(5)) 'K (U(s)®(t)u + F(s)u

—U(s)®(t)K (Lo + KF(t)) ' KF(t)u)

T(t)®(s)u + S(t)v
and

U(t+ 8)zo = (Ljg,s1q) + F(s + 1) K) T ®(t + s)zg

Lo, + F()K) ™ ¥ (t)zo

= (
QL. + F(s)K)™ [W(s)T(t)wo — W(s)P(t)K (Lpo,q + F(t)K) " U(t)zo]

= W(t)xo <t> (s)T'(t)zo
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as well as
F(t+s)(udv)
t

= (Lot + Fs + E) T (s +8)(uOv)

t

= (Ljo,s44) + F(s + t)K)™? <F(t)u S(U(s)P(t)u + F(s)v)>
=1+ F)K) ' F(t)u
?(1[0’5] + F(s)K) 1 (U(s)@(t)u+ F(s)v — U (s)P(t) K (g, + F(¢)K) " F(t)u)

= PO (F()o + (L. + F(s)K) 0 (s) (9() = $OK (10,0 + FOK) T F(1) u)

= F(t)ug (ﬁ(s)v ¥ @(s)é(s)u) .

Therefore, it only remains to check that S is well-posed. For this end, it is enough
to show the inequality

2 2 ~ 2 2
o)1 + 1910wy < & (2ol + e = Kyl 0000

for every solution (x(t),yp0,q) = X(t)(zo,u) (v0 € X, u € Lajoc(Ry;U)) of the
original linear system. In fact, for every fixed ¢ > 0 we find that

2 2
lz(®)x < llzoll” + 2 Re (u, ) L, 0,60
< [lzoll* + 2 Re (u + Ky, y) Lo0.60) = 20 1KY[I7, 0.0,

2 2 - 2 2
< llaoll® + e lyllz, 0,00y + € 1w = Kyllz, 0,000 — 20 1KY, 0,000 (T-7)
for every € > 0. Moreover,
2 2 2
||u||L2(0,t;U) < 2fju— Ky||L2(0,t;U) + 2| Ky (7.8)

Combined with the well-posedness of the system ¥ = (T, ®, ¥, F),

2 2 2 2
1917 0.0y + 2O < 0 (2ol + Nl 0.0 (79)

we therefore find by adding ¢; times equation ([7.7)) to so times equation (7.9)) and
using inequality (7.8) that

2 2
(0 —ece) 1yl 0,4y + (0 + o) l2(@) I
N _ 2
< (o + Ve ||lzollx + (20 +e ey flu — Kyll7, 0,60

and well-posedness of the system 3 = (’f’, P, 0, 13') follows by choosing ¢ € (0, C%)
In

From here we may easily remove Assumption [7.2.6] for impedance passive systems.

Corollary 7.2.15. Assume that D. : X, — B(U.) is such that for every z. € X,
there is o(x.) > 0 such that

Re (Dy(x0)ze, ze) > 0(xe) |2e|*,  ze € UL.
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Further assume that the well-posed linear system (T, ®, ¥, F) is impedance passive.
Then for every initial value (xo,Tc0) € X x X, problem has a unique max-
imal solution (x,z.) € C([0,tmaz(T0,%c0)); X x X.). Moreover, if additionally
also the nonlinear control system is impedance passive with respect to some radially
unbounded and continuous functional H. : X. — Ry, then all these solutions are
global, i.e. tpaz (20, Tc0) = +00 for all (zo, zc0) € X x X, and have non-increasing
total energy

Hm«%xd@>=H®UD+HJ%&D=%Wﬁmi+ﬂdaﬁﬁ t>0.

Proof. Fix any initial value (zg, z.0) € X x X.. Then the perturbed linear system
Y resulting from the adjusted input @ = u — D¢(x.0)y is well-posed by Remark

7.2.14) and problem ([7.3) may be equivalently re-written as
z(t) = T(t)xo + d(t)a

Since sup, ¢ p, (z..0) [De(zc) = De(ze,0)|infiso HF‘(t)H < 1 for sufficiently small p >

0, the proof of Theorem [7.2.7]shows that this problem admits a unique mild solution
(x,2.) € C(]0,7]; X x X..) on some interval [0, 7]. Using Zorn’s Lemma this solution
may be extended in a unique way to a maximal solution (x,z.) € C([0, timaez); X X
X.). Now assume that both systems are impedance passive, then

Htot((xa ‘rc)(t)) S Htot(x07xc,0)7 te [Oatmam)

(cf. Corollary and a procedure similar to that in Corollary shows that
then t,,4: = +00. O
Also the term D.(z.) may even help to remove the well-posedness assumption on
the impedance passive port-Hamiltonian system.

Corollary 7.2.16. Let & = (A,B,€) be an impedance passive port-Hamiltonian
system and X" be an impedance passive (w.r.t. some radially unbounded continuous
functional H,. : X, — Ry ) control system (with U, = Y, = F¥ for some 1 < k < Nd)
as above. Further assume that

Re(Deo(xe)ze, 2e) = o(xe) |2e|, 2. € Ue

for constants o(x.) > 0 depending on z. € X.. Then for every initial value
(0, Tc0) € X x X, the problem

<y
dt
¢
zo(t) = Ze +/ Ac(xe(s))ze(s) + Be(xe(s))ue(s)ds, t>0
0
B12 = —ye = —Ce(2c)Te — De(c)tte, Baz =0

u. = 1z

(t) = Ax(t),
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where the input map B is decomposed as Bx = (Bx,B,x) € FF x FNI=k and also
the output map € accordingly, has a unique mild solution (x,z.) € C(R4; X x X.)
for which (u,y) € L2 10c(R4+; U x Y') and the total energy

1
Hior((2,2)(t) = 5 lz(D)1% + He(xe(t), >0
1S NON-INCcreasing.
Proof. Let an initial value (zg,z.0) € X x X, be given. Analogously to the
previous corollary we consider the following equivalent problem
d
ax(t) = Ax(t),

z(t) = e +/0 Ac(xe(s))xe(s) + Be(xe(s))uc(s)ds, t>0

B1z + De(20,0)€12 = De(zc0)ue — Yo = —Co(®e)Te — Ue, Box =0
U, = €1
Then the Boundary Control System (201 := Alker 8,, B1 + De(2c,0)€1, 1) not only
is impedance passive, but
Re (2, 2) x < Re(Bix, C1a)px
=Re (B1x + Dc(2c,0)C1, C12)pr — Re (K€ 1z, €12)px
<Re(Biz+ D.(2.,0)€1,C12)pr — 0|12, =z € D(A)
so that
2 2 2 2
o ||€1||L2(0,t;y) +llz)lx <o ||¢1||L2(O,t;Y) + [[zollx +2Re (Brz, &12) 1,040
2 2 2
<o ||¢1||L2(0,t;Y) + llzollx — 20 ||Q:133||L2(0,t;U)
+2Re (B1x + Dc(xcyo)ﬁx, €1$>L2(0,t;U)
< lzollx + [B12 + De(we.0)€12] 7, 0 107,
for every classical solution x € C*(R4; X) N C(Ry; D(A)) of the Boundary Control
System (21, B1+D.(x,0)C1, €1) and therefore the system (21, B1+D.(2c,0)€1,€1)
is well-posed as Boundary Control and Observation System and so it is equivalent to
a well-posed linear system ¥p_(,. ). As before we first obtain a uniquely determined

local solution which can be extended to a maximal solution and impedance passivity
of the two subsystems leads to global existence and non-increasing energy. O

Definition 7.2.17. If & = (A,B, €) is an impedance passive port-Hamiltonian sys-
tem and is interconnected with an impedance passive(w.r.t. some radially unbounded
functional H. on X.) nonlinear controller (NLC|), we denote by

T \ Az
A( Te ) o ( Ac(xe)xe + Be(z:)Cx )
D(A) ={(z,z.) e D) x X.: Bax=—(Ce(xc)xe + De(2:)C2)}

the corresponding nonlinear hybrid operator on X x X, := X x X.. Since the solution
depends continuously on the initial value (zo, Zc,0), the maps S(t) : X x X, - X x X,
defined by

S(t)(xo, Tc0) = 2(t; 20, Tc0), >0, (2o, 7c0) € X X X
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where z(t; 2o, Tc0) € X X X, denotes the solution at time t > 0 for the initial value
(xo,c0) € X x X¢, defines a s.c. (in general not contractive) semigroup (S(t))i>o0
on X x X,.

Example 7.2.18. In the model proposed in [Lelj|] and considered in Example
and Example[7.2.13 the condition on D, in Corollary[7.2.15 is satisfied if the func-
tion k has range in the interval [oq, o] where a; > 0 (i = 1,2). Hence, if the
control system is impedance passive, the standard feedback interconnection with an
impedance passive well-posed system is globally well-posed, i.e. there is a unique
global mild solution of the interconnected system.

7.3 Exponential Stability

We proceed by investigating the stability properties of the solutions of hybrid sys-
tems consisting of an impedance passive port-Hamiltonian system & = (2, B, €)
which is coupled with an impedance passive nonlinear controller, may it be given
by the strongly continuous contraction semigroup (S(t))¢>0 generated by the m-
dissipative map A of Theorem [7.1.4] or be the solution of an impedance passive
port-Hamiltonian system interconnected with an impedance passive nonlinear con-
troller as in Subsection [.2.3]

We start with an asymptotic stability result for the solutions of the nonlinear Cauchy
problem governed by an m-dissipative hybrid map A as in Theorem

Proposition 7.3.1. Assume that A is the m-dissipative map resulting from the
standard feedback interconnection of an impedance passive port-Hamiltonian system
with an m-dissipative map M.. Further assume the following.

1. IIx, ran M. — X, is compactly embedded and convex
2. There is an orthogonal projection I1 : FN® — FN? sych that
M.(0,u.) € X, x {0}, wu.€kerll

and for some function p : Ry — Ry with p(z) > 0 for all z >0
Re<(zcawc>7 (-’I;cauc»XCXUc S —-p (|Huc|2) ) (anwc) S Mc(-rcauc)

3. 0 € M.(0) and if (ifxe, w.) € Mc(xe,ue) for some f € R and u. € ker 11, then
already z. = 0.

If the pair (A, (B,11C)) has p'roperty then

S(t)(!L‘o, (Ec,O) t—>—oo> 0, ({I?(), wc’o) c X x &
i.e. 0 is a globally asymptotically stable equilibrium of the nonlinear s.c. contraction
semigroup (S(t))i>o0 generated by A.

Proof. First of all note that D(A) C D(2) x IIx_ran M, — X x X, is compactly
embedded and convex. Therefore, by Theorem [2.2.32| for every (z¢,z.0) € D(A)
the trajectory S(t)(zo,xc,0) converges to some compact subset €2, . , of a sphere
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Sr-(0) around 0 of radius r > 0, where we understand the sphere of radius 0 to be
{0}, and which also is a subset of D(A). Moreover,

St)la =T(t)a t>0

T0,Tc,0 ©0,%c,0”

for some isometric Cy-group (72(25)),520 on lin Q4 .., with generator A. Let us

investigate the stability properties of (7 (¢));>0 and consider the problem

iB(z, &) = Az, &)
where w.l.o.g. we may assume that (Z,2.) € Qz,4,,, S0 that
iB(E, ) = A, Ze).

Then
0 = Re (A(&, &), (&, %)) xxx, < —p (\Hm?)

ie. II€x = 0. From (if., —BT) € M (¢, Cx) with €x € kerIl, we conclude from
the assumptions of the theorem that Z. = 0. Since (0,—Bz) € M.(0,€z) and
Cx € ker IT we may also employ the second assumption and obtain that Bz = 0, so
that

and since the pair (2, (8, 1I€)) has property we find that £ = 0. Since 5 € R
had been arbitrary this proves that iR N o,(A) = 0. However, this implies that
(T(t))i>0 is asymptotically stable and isometric at the same time which can only
hold true if Qu, ., = {0}, i.e. (S(t))¢>0 is asymptotically stable. O
We continue with the investigation of stability properties of the s.c semigroup gen-
erated by the m-dissipative hybrid map A of Theorem and aim for uniform
exponential stability next. The first approach is to impose the following dissipativity
constraints on the controller.

Assumption 7.3.2. Assume that A is an m-dissipative operator as in Theorem
and further assume that 0 € M.(0) and there is p > 0 and an orthogonal
projection I1 : TN — TN on some subspace of FN? such that

2 2
Re [(ze, ), (e )], poa < = (el + 17

for all (xc,u.) € D(M.) and (z¢,yc) € Me(xe, ue) and some equivalent inner product
[ ) x, xwnva on Xe X FNC Purther we assume that for some ¢/ > 0 and all (x.,u.) €
D(M.), w, € Ugna M. (x¢,u.) one has

Jwe| < d (chHXu + |Hu0‘> .

Example 7.3.3 (Collocated case). One particular case which is covered by the
preceding assumption is the following. Let . = (A., Be, Ce, D.) be an impedance
passive system with C. = B!, € B(X.;FN9) (the Hilbert space adjoint operator of B,
with respect to the inner products (-,-)x. and (-,-Yp~a on X. and FN?, respectively),
i.e. collocated input and output, and A.,—D. be m-dissipative, possibly multi-valued
and nonlinear maps. Further we assume that
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1. A:(0) = {0} and there is an equivalent inner product [,y (inducing the
norm ||x_) on X such that for some p >0 and all z. € D(Ac), 2. € Ac(zc)
one has

Re [z, o]y, < —pllecll. (7.10)

2.0 € D.(0), I : FN? — FN4 js an orthogonal projection such that |w.| <
Hue| (ue € D(D.), we € De(ue)) and there is ¢ > 0 such that for all
T. € Xe, 20 € Ac(ze), ue € FN? and w, € D.(u.) one has

Re <Zc + Bcuca mc>XC S Re <chc + We, uc>IFNd -0 |u)C|2 . (711)

Then M, = (f‘cﬁc 7356) satisfies Assumption .

Proof. To see that Assumption [7.3.2]is actually satisfied make the ansatz

[(2e, ue), (ijﬁC)]ch]FNd = [$C>3~36]X + (e, uc), (i'mﬂc»ch]FN%

c

We then have for every (z.,u.) € D(M.) and z. € A.(z.) and w. € D.(u.) that

[(Zc + Beue, —Ce — we), (z, UC)]XCx]FNd
= a[z. + Beug, xc]Xc + ((2e + Betie, Coxe + we), (Te, Ue)) x, xFNd
—-p HﬂCcH%(( + a[Bete,xc] — 0 |w6‘2

<
2 2
< (ac® = p) lacllx, + (ac® [ Bell — o) [lwel]

where || < c||||x, and for a € (0, min{ %, W}) sufficiently small this equiva-
lent inner product on X, x FN? does the job. O
Under this Assumption we can show the following.

Proposition 7.3.4. Let & = (A,B, ) be an impedance passive Boundary Control
and Observation system and M. : D(M.) C X, x FN4 = X. x FN? be as in
Assumption [7.3.3. Denote by (S(t))i>o0 the nonlinear s.c. contraction semigroup
associated to A as in Theorem [7.1.4) If there is ¢ : X — R such that |q(z)| <
é||x\|_2x (x € X) and for all mild solutions x € WL (Ry;X) N Loo(Ry; D(A)) of
@ = Az one has q(x) € WL (R,) and

le(6)lx + Sa(e(n) < e (1Ba() + M€ t)?), ae 120,

then 0 is a globally uniformly exponentially stable equilibrium of (S(t))i>0-

Remark 7.3.5. In the collocated input/output case (see Example the first
condition means that there is ¢ > 0 such that for all u. € FN? w, € D.(u,)

lwe| < €[[Beuel|x, (7.12)

i.e. the control state is only directly influenced by those components in which the
nonlinear controller is strictly input passive, which means that for the input Iu,
the controller is SIP, and the last condition may be replaced by

()% + %q@c(t» < c(1Ba()f + [Dler®)’),  ae.t>0,
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where DY denotes the minimal section of D.. To see this let I : FN9 — FN? pe the
projection on (ker B.)*, then for u. € D(D..)

‘Dguc’ S HBCUCHXC S Muel .

Remark 7.3.6. We give some interpretation for the preceding conditions in the
collated input/output case. The Lyapunov condition says that 0 is a glob-
ally uniformly exponentially stable equilibrium for the s.c. contraction semigroup
(Sc(t))i>0 associated to A.. If one has a globally exponentially stable minimum at
some other point x} € X. one may simply introduce x°V = x. — x} as new vari-
able to get to the situation as above. (Similar, one may choose a nonzero desired
equilibrium x.) Conditions and together may be seen as a strict in-
put passivity condition on the controller system (after getting rid of the redundant
parts of the input which only constitute static boundary conditions on the system
S = (A,B,0)). In particular, if D. = D% were linear and symmetric the second
condition would read as

Re (z. + Boue,z:) x, < Re(Cexe + Dotie, ) — 6 |1'IDCuC|2
for some & > 0 and Ilp, the projection on ker Dt
Proof of Proposition Let § > 0 which we choose suitable later on. Let
(20, 2c,0) € D(A) be arbitrary and set (z,z.)(t) == S(t)(zo, Z¢,0) (t > 0). Define
2 2
o(t) =t (Jle@ +lee(t)fx, ) +al@®), =0
and note that %(z,xc)(t) = (Az(t), z.(t)) == A%((z,2)(t)) (ae. t > 0) and @ €
W 7loc(]RJr) with

o0

d
L0(0) < lrelt)[k, + 26 Re (QAa(r), (1) x
+ 2t Re [2(t), ze(t)] . + (|%x(t)\2 + \H@x(t)\Q)
< o), + ¢ (1Ba(0) + mea(t)”) - 20t (o), +0€())
< lee(®l, + (1B + nea(t))
1
= ot (Jloel0), + o) + 5 Ba(o))
- 2 pt 2 2
< (@ pt) eIk, + (e~ 2) B2 () + (e~ pt) INEa(t), ae. t >0,
Choosing ty := max{%, & %} > 0 (independent of the initial value xo) we have
that @ is decreasing on (tg,00). Since @ behaves as ||(z,z.)(t)||* as t — oo, we

easily deduce uniform exponential stability from this. In fact, for t > ¢ty we have

@,z ) (D)% x. = o)  qz@®) +[ze(t)lx,

t t
220, sl
1 ¢ 2
< ;@(to) + 7 ||(xax0)(t)“XxXc
to R R 9 ¢ 2
< max{1 46148} ||z, 2) 0]y, + 7 (@7 (O[5 x.
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so that || (2, 20) ()5 x, < B (2, 20)(0)||5 xx, (¢ > max{to, é}) from
where exponential stability with constants M > 1 and w < 0 independent of xg €
D(A) follows. From density of D(A) in X x X. and continuity of S(¢) (¢t > 0) we
conclude

IS®) (@0, 2e0)ll x o x, < Me“" [[(wo, 2c0)ll xux. s (X0, Ze0) € X x Xe, t>0.

This means that 0 is a globally uniformly exponentially stable equilibrium. O
Thus, Proposition [7.3.4] and Proposition [.3.8| together say the following.

Theorem 7.3.7. Let & = (2,B,&) be an impedance passive port-Hamiltonian
system of order N =1 and M, : D(M,) C X.xFN? = X xFN? g5 in Assumption
[7.5.9  Further assume that for some ¢ > 0 and all (zc,u.) € D(M.), (ze,w.) €
MC(ICa uc)
fwel* < ¢ flaell, + [Muc|?
and
|(Hz)(1)]? < |Bz|? + [Iez?, 2 € D).

Then the interconnected map A from Theorem generates a S.c. contraction
semigroup (S(t))i>0 on X x X, with globally uniformly exponentially stable equilib-
rium 0.

The interplay of Lemma [6.3.3] with Proposition [7:3.4] then implies the following.

Theorem 7.3.8. Let & = (,B,&) be an impedance passive port-Hamiltonian
system of order N = 2 and M, : D(M,) C X, xFN? = X, xFN? gs in Assumption
[7.3.3 Further assume that 2 satisfies the reqularity assumptions of Lemma [6.3.3
and that for some ¢’ >0 and all (xc,uc) € D(M.), (zc,we) € Me(xc, ue)

|wc‘2 <! (H‘TCH?XC + |Hu0‘2> .
and
(H2) () + |(Ha) (D) +|(Ha) (0)* £ [Bal® + [€z)*, 2 € D).

Then the interconnected map A from Theorem generates a s.c. contraction
semigroup (S(t))i>0 on X x X, with globally uniformly exponentially stable equilib-
rium 0.

Unfortunately the conditions of Assumptions are quite restrictive since even
for linear systems the dissipation condition

Re [(Ac'rc + Beue, —Cexe — Dcuc)7 (xac , UC)]XCX]FN”

2 2
< —p (lleellk, + IMucllfre )

for every z. € X, and u. € U,, is usually not satisfied since for this also A.+ <l had
to be dissipative for some € > 0, which in general does not hold, even for dissipative
and uniformly exponentially stable k x k-matrices for k > 2. We therefore weaken
the assumptions in the following way:.
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Assumption 7.3.9. In the following we assume that either A is the m-dissipative
operator as in Theorem generating the s.c. contraction semigroup (S(t))i>0 on
X x X. and 0 € M.(0) in that case, or that A is the operator resulting from the the
interconnection of an impedance passive port-Hamiltonian systems & = (2, B, )
with an impedance passive (w.r.t. a radially unbounded functional H. on X.) non-

linear control system (NLC) of Theorem or Corollary generating the

strongly continuous, but not necessarily contractive semigroup (S(t))t>o.
Moreover, we assume the following, for some orthogonal projection II : FNd — FNd,

1. There are constants to,d, cs > 0 such that for every mild solution (z., uc,y.) €
C(Ry; X)X Lo joc(Ry; Up) X Lo 1oc(Ry; Ye) of the nonlinear control system (M,
or (NLS)), respectively)

d [ttt
i ; He(wc(s))ds < —6Hc(zc(t)) + ¢ HH“0<3>||iz(t,t+t0) , 20

where He(x.) = % H%”?XL or H. is the radially unbounded functional on X,
respectively,

2. there is o > 0 such that for all such mild solutions

Hyor(t +5) < Huor(t) = o e 7, 1 14
where Hio(z,20) = 3 ||x\|§( + H.(z.) is the total energy, and
3. there is a constant ¢ > 0 such that
yel? < ¢ (Helwo) + uc )
where Y. € Upna Mo (ze,ue) or yo = Co(xe)xe + De(xc)ue, respectively.

Remark 7.3.10. Note that Assumption (for m-dissipative A) is actually
weaker then Assumption[7.3.2

Proof. Assume that Assumption [7.3.2] holds good. Then Conditions 2.) and
3.) are satisfied by Assumption [7.3.2l We only need to show that condition 1.)
holds true. By Assumption we have that for every solution (z,uc,y.) €
C(Ry; Xe) X Ly 1oc(Ry; Ue x Ye)

< / "Re (do(s), 2(5)) x, — Re (4e(5), ue(s))prads

1 s 1 )
= 5 llzeo)llx, = 5 lzc(0)llx, — Re{uc, ye) 12 (0.10)-

Moreover, since
()2 < ¢ <||xc(t)\\§c + |Huc(t)|2) , ae.t>0
we find that

1 2 2
2Re <UC7yC>L2(0,t0) < (E + 50/) HHUCHLz(o,tO) +ec HIC||L2(0¢0) , Ve>0
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and then in particular that for all € > 0 and ¢ € [0, ¢o]

2 2
e, 2 llzelto)l, — Re {tes5e)atory
2 1 2
> foaltol, — ( 3+ &) Il 00

’ 2
—&c ||=’ECHL2(0,t0)

which again leads to

2 2 ! ;
||£CcHL2(0,to) > 1o ||33c(to)HXc —to <5 +ed ||H“CHL2(0¢0)
2
—ecto |zell7,(0.t0)
i.e.

2 ]. 2 1 / 2
el z,00,t0) = T+ edty to [[ze(to)llx, —to - Tec (M7, (0,0

and then putting everything together, choosing € € (0, %),

2 2 1 2
el < Vo1, + (2 +2¢ ) 1Mol 00
2 2
+ed ”xCHLz(o,tO) - P HxC(tO)HXC

2 1 / 2 (EC/ - p)tU 2
<|lze(0)|lx, + (a +ec ) Mucl7,0,0) + Tt ety lze(to)ll,
(ed = p)to(L +ec)
1+ ecty

2
) HHUC”LQ(O,to)

or, equivalently,

(o= | o
(1+ L0 ol 0

2 1 (e — p)to(L +ec) 9
<ol + (3 +e¢+ E 20D Il
Time-invariance of the problem implies that condition 1.) holds true. O

Remark 7.3.11. Assumption [7.3.9 may be interpreted as follows. The first as-
sumption says that 0 € X, is a globally uniformly exponentially stable equilibrium
point of the nonlinear controller without input, i.e. u. = 0, and that for input
Ue € Lo joc(Ry;Ue) the state variable at time t > 0 depends continuously on the
input uljo4 € L2(0,t;Uc). In this sense the nonlinear controller is internally uni-
formly exponentially stable and is state/input-state stable. The last assumption says
that the output continuously depends on the state and the input variable, so that in
total the system is state/input-state/output stable. Together assumptions 2.) and
3.) roughly say that the control system is strictly impedance passive if one considers
Tu. as input function, which makes sense as the output variable y. can be bounded
by the state space variable x. and Iu,.
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Theorem 7.3.12. Let A be as in Assumption|[7.3.9. Further assume that there is
q: X — R with |¢(z)| <c ||x||§( such that for every mild solution x € WL (Ri; X)N
Loo(Ry; D)) of & = Ax one has

La(r) < —3 I + e (1Ba) + MEa(t)?) .+ 0.

Then the nonlinear semigroup (S(t))i>0 s uniformly exponentially stable, i.e. there
are constants M > 1 and w < 0 such that

Hyot(S(t) (20, 2c0)) < Me“ Hiot (w0, Tey0)),  (T0,Ze0) € X X Xey t 2> 0.

Proof. We start with an observation on the choice of ¢y in Assumption Using
the first condition iteratively, we obtain that

n 2
Holwo(t + nto) < (1= ) Ho(we(®)) + ¢ [Tl e minion
2
< (1 —=0)H(xc(t)) +c HHUCHLz(t;tJ,_mO;UC) , t>0,neN.
so that w.l.o.g. we may always assume that ¢y > 0 is as large as we wish. Moreover,
the inequality then w.l.0.g. may also hold for any ¢y > ty. We will make use of that
observation in the conclusion of this proof. Since all maps S(t) : X x X, - X x X,

are continuous, it suffices to consider (g, 2.0) € D(A). So let (g, zc0) € D(A) be
arbitrary. The condition on the map ¢ : X — R implies that

o(el0) = aw(r)) < [ Halods +e (Il Tl ) o 02720

For t > 0 and the constants tg,d,c,c¢’ > 0 from Assumption we define the
function

1+ccd
)

t+to
B(t) = q(x(t)) + tHyor((z, 20) (1)) + / Ho(xo(s))ds, 1> 0.

Then for a.e. t > 7 > 0 we conclude that for every ¢ > 2t5 > 0

®(t) — @(to)
= to (Heot((z,2c)(t)) — Heot((w, ) (t0))) + (¢ — o) Hiot (2, zc) (1))
+q(z(t)) — q(z(to)) + 1 —;CC /0 ’ (He(ze(s+1)) — He(ze(s +tg))) ds
< —oato HHQ:IHiZ(tO’t) + (t = to) Hiot (2, 2c) (1)) — ) H(x(s))ds

t
+ c/ Ba(s)|? + |TCa(s)|? ds
to

1+ cc

to t—to
3 / <6Hc(xc(s+t0)) +c/ ITICz(to +s+r)||2dr> ds
0

< O'to HHQ:IHLZ(tO t) + (t — tO)Htot X .IC / Htot Z, ZZ?C ))dS

n (I+ced)1+96)

2
§ HHQ::EHI@(??OJ) <0
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if ¢y > 0 (independent of the initial value (zo,zc0) € X x X.) is large enough.
Therefore, for that fixed to > 0 we have ®(¢) < ®(t9) (t > 2ty), from where we
easily deduce uniform exponential stability. Namely, we may estimate for ¢t > 2t

(1+ ed )ty

thot((x,mc)(t)) — CHtot((xwxc)(O)) - 5

< ©(t) < D(to)

Htot((xa xC)(O))

(1+ed )ty

< toHior((2,2¢)(0) + cHeor((2, 2c)(0)) + —

Hior((, 7)(0))

leading to

Hoor((2,2) (1)) < % (to +oet Hor(2,2)(0)), £ > 2.

and by time-invariance of the problem we conclude uniform exponential stability,
i.e.
Hiot (2, 2)(t)) < Me“ Hyot((x0,2c0)), >0

for some constants M > 1 and w < 0, cf. the proof of Remark [2.2.12 O

It is also possible to employ the final observability result Lemma to ob-
tain uniform exponential stability, if & = (2,9, ) is an impedance passive port-
Hamiltonian system of order N = 1, interconnected with an input/state-input/state
stable nonlinear control system. To show that result we first need the following aux-
iliary lemma.

Lemma 7.3.13. Assume that A is as in Assumption[7.5.9 Then for every T >0
there is a constant ¢’ > 0 such that

2 2
96l 0m < € (Helireo) + el 0.1
for every mild solution of the control system M. or (NLC)), respectively.
Proof. From the impedance passivity and the fact that due to assumption 1.) in

Assumption the part (I — IT)u, of the input does not influence the controller
state space variable z., we find that

| Holel,, 0 < / Ho(1re0) + Re (Tug, Tlye) 1o o,
0

S TH(%c0) +7 ||Huc||L2(0,7—) ||yc||L2(o,T)

T 2 TE 2
<THco+ % ||HUcHL2(o,T) + o ||yc||L2(o,T)

for every € > 0 and then condition 3.) implies that

9 2
I9elza0.) < & (1@, 0.0y + Tl 0,)
T 5 TE 2
< (THeo(weo) + (14 o) IMucl Fy 0,0y + 5 lelZag0m))

and the estimate follows for € > 0 suitable small, e.g. € =

Tc'*
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Proposition 7.3.14. Let an A be as in Assumption [7.3.9 Further assume that
the following final observability estimate holds good.

1 7o
e m>0: ()% < CT/ ez (s)|” + |Bz(s)|” ds. (7.13)
0

Then there are constants M > 1 and w < 0 such that for every (zo,zc0) € X x X,
and the corresponding mild solution (x,x.) the following exponential energy decay
holds true.

Hyor((m,2:) (1)) < Me“ Hypt((20,Tc0)), t>0.

Proof. First remark that inequality also holds if 7 is replaced by an arbitrary
larger 7 > 7. Take any (9, xc0) € X x X, such that for the corresponding solution
(x,zc)(t) = S(t)(z0,xc0) (t > 0) the functions (uc,ye) € Lo joc(Ry; Ue x Ye) are
locally square-integrable. From the the second assumption in Assumption we
find that

Hyor((2,26) (1) < Hyor (w0, 7e0)) — 0 [ Tte 7,0 1 (7.14)
We now employ the final observability estimate and Assumption to obtain
that
2
¢ [Muellz, 0.y = H(z(7))
2
¢ HHUC||L2(0,7-) > He(zo(7)) — (1 = 6)He(c,0)
2 2
' HHUC||L2(0,T) > ||yc||L2(0,T) — ¢"He(zc,0)

where in the second inequality we assumed that w.l.o.g. 7 = t¢ since t; can be
replaced by k7 (k € N) in the first inequality of Assumption and in the last
line used the auxiliary Lemma Summing up with factors 1, a > 0 (arbitrary)
and ¢, we arrive at the inequality

(cr 4+ c+erd”) (Hiot((z,2:) (7)) — Hiot (0, Tc0)))
<=0 (e + e+ eed”) |7, 0.y

/!

< ~o(H(a(r)) + aH.(zc(r)) + ((1 — o)+ ) oaH.(ze)

and then

(cr + ¢+ crd”) Hiot((z, ) (7)) + o (H(2(7)) + aHc(z:(7)))

< (¢r +c+erd”) Hipt((z0,200)) + ((1 —6)+ CT; > oaH.(zc0)

/!

< (1) (r + 4 erd”) Hion((20, 7e0)) + ((1 o ) o0, (z.0)

~v(er + ¢+ erd”)
o

—+ UH(I'())
where v € (O, min {1, ﬁ}) Finally choosing a > 0 large enough such that

CTTCH < 9, we find p € (0,1) (independent of the chosen initial value (zg, z.)) such
that

HtOt,OL7U((x7 xc)(T» S thot,a,U((an xc,O))
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for
Hiot.oo (@, 20) = (cr + ¢+ e Hyot (2, 20) + 0(H(x0) + aHe(2,)).

From the time-invariance of the problem we deduce that
Htot,a,o'((xaxc)(t)) S Methtot,a,a(((Enyc,O))a t 2 0

cf. the technique used for the proof of Remark 2.2.31] and the result follows since
Hiot oo and Hyy are equivalent, i.e. there are ¢q,ca > 0 such that

Htot(xvxc) < ClHtot,a,o(mvxc) < CZHtot(x7xc)~

O

We return to the example of dynamic feedback stabilisation of a linear Euler-
Bernoulli beam with dissipative boundary feedback and apply our abstract theory
to it.

Example 7.3.15. We consider the dynamic feedback stabilisation of an Fuler-
Bernoulli beam equation with damped left end a mass and dynamic feedback at the
right hand side, modelling the tip of the beam.

P(Quwre(t, C) + (EI(Quee(t,€))ec =0, =0, (€(0,1)
w(t,0) = wee(t,0) =0
(Elwee)(t,1) =0
—(ElTwee)c(t, 1) + mwg(t, 1) = —aw(t, 1) + B(ETwee)ec(t, 1)

where a > 0 and we investigated the cases m = =0 and m > 0, f = 0 and
m, 3 > 0, leading to asymptotic stabilisation, at least, see Example [6.5.3 There
we considered all three cases in the linear scenario, but left the monlinear version
of the second case open. We therefore now consider the case where § = 0, but the
mass at the tip m > 0 does not vanish. From its physical interpretation we leave

the latter to be a constant, but only replace a > 0 by a nonlinear feedback map
¢:D(p) CF=F, ie.

mwy(t,1) € —p(wi(t, 1)) + (Elwee)c(t, 1)

from where the nonlinear control system takes the form

d 1

—x.(t)

1
Zaelt) € ——(zc(t) + —ult)

Ye(t) = —x.(2), t > 0.
As long as ¢ : F = T is m-monotone this gives a nonlinear m-dissipative map Ag

A 0
iﬁiv —i¢(‘)
D(As) = {(z,zc) e D) xF: Bz =2z., Bjz=0 (j>2)}

Ay =

on the product Hilbert space X x X. = X X T, so that it generates a nonlinear s.c.
contraction semigroup (S(t))i>0 on X x X.. Moreover, if |z¢| > 0 for all z. € ¢(x.)
for x. #0 and 0 € ¢(0), then

Re (AU, zc), (z,2)) xxx. <0, (Azx,z2.) € Ay(x, x:) with Bz =0
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and from Corollary[{.2.10 and Proposition we conclude that
Sy(t) (@, we) 2250, (w,2.) € X x X

i.e. 0 is a globally asymptotic stable equilibrium. On the other hand, if actually
|ze| > € |xc| for some e > 0 and all z. € ¢(x.) and p and EI are constant along the
spatial variable, then we find that

186 (#) (@, )| x w x, < M ||(@,20) | xux,» 20

for some constants M > 1 and w < 0 by Lemma|[6.4.1] and Proposition[7.3.4
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Chapter 8

Further Results

Within this last chapter we collect some further results which are closely related
to the questions investigated in the previous chapters, but with a slightly different
point of view. First we investigate infinite-dimensional systems which in this case
are not interconnected with a finite dimensional control system, but with other
infinite-dimensional port-Hamiltonian systems, possibly of different order, instead.
Then we consider non-autonomous equations, i.e. where the structural properties
may depend on the time variable t € Ry and on the one hand show how uniform
exponential stability for non-autonomous problems may be investigated using sim-
ilar techniques as for the autonomous, i.e. time-invariant, case. Within the last
section this approach is combined with the investigation of L,-maximal regularity
for a class of port-Hamiltonian systems which are not damped at the boundary, but
structurally damped including higher order derivatives of the state space variable

x(t).

8.1 Interconnection of Infinite Dimensional Port-
Hamiltonian Systems

We consider the interconnection of L € N port-Hamiltonian systems of (possibly
distinct) orders N; e N (I=1,...,L), i.e.

S 1,0) ZPZ T 1,¢) = @)@, Ce 0.1)

Biw(t) == WB,m(lez)(t)
Q:ll‘l(t) = WCJTl(/lel)(t), t>0

where the Hamiltonian density matrix functions H; € Lo (0, 1; F%*) are uniformly
positive definite, the matrices [VVKCB; ;} € (F4N lXleNl)2 are invertible and as usual

Pry = (=P, € Fixd g > 1, with Py, invertible. Also the trace maps

219
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7 HN(0,1;F4) — FN4 (] =1,..., L) are again given by

(1)
z' (1)

no) = (700 ) = |0

() #(0)

x(Nz*:l)(o)
The closed operators 2I; are defined on their maximal domains
D() = {f € Xi = L2(0, ,FY), (Hify) € HM (0, 1;F")}

and on the product Hilbert space X = Lo(0,1;F?) = IIE  L5(0,1;F%) (where
d= Zlel d;) we have the block diagonal operator

Ar = diag (A4,...,2A), DE)=D®y) x -+ x D(AL).

Similar to the case of a single infinite-dimensional port-Hamiltonian system, we
equip the product space X with the energy norm ||-||y = [|-||,, inherited from the
inner product (-,-)x = (-, )3 given by
L L 1
@ i= D (o = Y [ (@€ H(Ou () de
1=170

=1

Note that for # = diag (H1, ..., Hr) this definition coincides with the usual one for
port-Hamiltonian systems.

8.1.1 Directed Acyclic Graphs of Port-Hamiltonian Systems

In this subsection we consider a family {(;,®B;,€;)} i=1,...,r of port-Hamiltonian
systems which are interconnected in a very specific way. Namely we assume that
the interconnection structure takes the form of a directed acyclic graph, see the
following definition from graph theory.

Definition 8.1.1. Let V be any nonempty set and E CV x V. Then G = (V, E)
is called a (directed) graph with vertices v € V and edges e € E. The graph
G = (V,E) is called acyclic, if for every (y,x) € E and all n € N and vy =
ZTyV1y .. nyUn—1,Up =y €V there is at least one i € {1,...,n} such that (v;—1,v;) &
E, i.e. the graph has no directed cycles.

Remark 8.1.2. Assume that G = (V, E) is an acyclic graph and V = {v1,...,v,}
is finite, i.e. G = (V, E) is a finite graph. Then, possibly after renaming the vertices,
we may w.l.o.g. assume that (v;,v;) ¢ E whenever i > j.

To identify an interconnection structure of port-Hamiltonian systems with a graph
we also introduce the following definition.

Definition 8.1.3. Let G = (V, E) be any directed graph. Then for every edge
e = (z,y) € E we call x the tail and y the head of the edge e.
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Let us transfer this concept to an interconnection of port-Hamiltonian systems. For
this end, consider the interconnection given by

L
Bz :ZKilQ:ixi7 l=1,...,L
i=1

where K;; € F4NixdiNi are matrices of proper dimension. With this interconnection
structure we may associate the following graph G = (V| E).

V.=A{1,...,L},
E::{(Z’,j)GVXVZKij%O}

The interpretation for this choice is that we say that (i,j) € E if and only if the
output from the system ¢ influences the input of the system j through the matrix
K;; # 0. Hence, whenever K;; = 0, i.e. (i,j) ¢ E, the output of the system i
does not directly influence the input of the system j. From here it is clear what we
should understand to be an acyclic graph of port-Hamiltonian systems.

Definition 8.1.4. Let {(;, B, &) }i=1,...,1 be a family of port-Hamiltonian systems
and K;j € FGNixdiNi (5 = 1. . L) be matrices defining its interconnection
structure

L
B :ZKilQ:il‘ia l=1,...,L.
i=1

If the corresponding graph G = (V, E) (defined above) is acyclic, then the system

aLL'l (t)
ot

= Q(l:rl(t)

L
%lxl(t) :ZKHCZ‘{IJZ'(t), = 1,...,L, tZO
=1

is called acyclic interconnection of port-Hamiltonian systems. We denote by A :
D(A) C X — X the corresponding operator which is given by

A =diag (™Ay,...,2AL)

L
D(A)={xeD®): Bz =Y Ky, I=1,...,L}.
i=1

Remark 8.1.5. Note that whenever (V, E) is acyclic and the vertices are ordered
accordingly, i.e. (i,5) & E for alli > j, then for all x € D(A) with z; =0 (VI < lp)
one also has B, x;, = 0.

As in the case of a single port-Hamiltonian system (or interconnection with a finite
dimensional controller) we do not have to worry about the range condition in the
Lumer-Phillips Theorem, namely we have the following generation result.

Proposition 8.1.6. If A is dissipative, then it generates a contractive Cy-semigroup
(T(t))e>0 on X. Moreover, in that case A has compact resolvent.



222 CHAPTER 8. FURTHER RESULTS

Proof. First of all, let us mention that H := diag (H1,...,H) is a strictly co-
ercive (matrix-valued) multiplication operator on X and thus due to Lemma m
it suffices to consider the case H = I. Since C°(0,1;F?) = C°(0,1;F%) x ... x
C2°(0,1;F4r) lies dense in X, the operator A is densely defined. Due to the Lumer-
Phillips Theorem it remains to check the range condition ran (I — A) = X.
For z = (z1,...,21) € D) and f = (f1,...,fr) € X we write h = (h1,...,hL)
and g = (¢1,...,91) where

hi = (l'lvx;v : :L'I(Nl 1))7
q = (0,...,0,]31,le[).
Then
RA-Dz=f

N;
& 3" P () —m(¢) = £iC), ae Ce(0,1),i=1,...,L
k=0

N;—1
a2 M () = P, (x Z Py +fz(§)>

ae. Ce(0,1),l=1,...,L
& () = Bi(Q) + ), ae (€(0,1),1=1,...,L

¢
< h(C) :eCB’hl(O)—I—/ el6=)Big (s)ds, ae. (e (0,1), l=1,...,L (81)
0

where
0 1
B — : 8.2
! ) (8.2)
P = PiwPio —PgPa oo —PyPune
In that case we have x € D(A) if and only if
eb [ e(=9B1g, (s)ds
0= WB,I I hl(o) + WBJ 0 ¢ 0

and

We conclude the following: If Wg, [¢]'] is invertible for all { = 1,...,L, then for
all f € X the equation Az — 2z = f has a (unique) solution « € D(A). Assume that
there was Iy € {1,..., L} with

By,
Ny =terwi, () £ (0)



8.1. INTERCONNECTION OF PHS 223

(w.l.o.g. let Iy be maximal under these [). Choose f = 0 (hence g = 0) and h;(0) =0
for I < ly, hi,(0) € M, \ {0} and inductively for I > Iy

OB —11-1
hl(o) = - (WB,Z ( I )) ZKil€i$i
k=1

where h; = (h;)j=1,..q4, € H(0, 1;F4). Then 1) defines a solution x € D(A) of
Az —x = 0 with  # 0, so 1 € 0,(A), contradicting the dissipativity of A. Hence,
ran (I — A) = X and A generates a contractive Cy-semigroup. Compactness of the
resolvent follows from the compact embedding D() = I, D(2;) — IIF, X; =
X. O

Example 8.1.7. Within the framework of hybrid systems we have seen that for
feedback systems with finite dimensional controllers a useful structure for the in-
finite dimensional port-Hamiltonian system & = (A, B, €) and the control system
Y. = (Ae, B., C., D.) is impedance passivity. However, these are systems with loops,
in contrast to the acyclic systems considered here. Therefore, to find suitable classes
of systems {&; = (U;, By, €;) }iz=1,.... L which can easily be composed to obtain a dis-
sipative acyclic system, we introduce the notion of scattering passivity.

We say that a Boundary Control and Observation System (e.g. a port-Hamiltonian
system in boundary control and observation form) & = (2A,B, €) is scattering pas-
sive if for all x € D(RL) the inequality

2 2
Re (Az,x)x < |[Bazlly; — [[Cxlly
holds. Using this notion we can easily give an abstract example of an acyclic and
dissipative port-Hamiltonian system. Let {&;, = (A;,B;,&;)} =1, be a finite
family of scattering passive port-Hamiltonian systems and consider operators K;; €
B(U;,U;) such that K;j =0 fori < j and

L
) 2 1 2
Vi=1,....L, vy €Y; D Kyl < 5 sl
i=j+1

A

Then for the interconnection B,x; = Z;;ll K;;Cix; (i =1,...,L) we obtain for
x € D(A) (the corresponding domain including the interconnection structure)

L
Re Az, x)y <Y Bz — &l
=1
2
L |i-1
=D 1D K| — (&)
i=1 |j=1

L
2 2
<D D 20Kt — (gl ) <o

j=1 \i=j+1

8.1.2 Stability Properties

We have seen before that the generation theorem for acyclic graphs of port-Hamiltonian
systems takes the same easy form as the one for a single port-Hamiltonian system.
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Now we take the next step and investigate how the results concerning stability carry
over from a one-component system to a multi-component system. First, let us re-
call the properties and Let B: D(B) C X - X and R: D(B) — H,
where H is any Hilbert space, be given. We say that the pair (2, R) has property
[ASP] for B if for all eigenvectors z to eigenvalues A € 4R, the function Rzy # 0
does not vanish. On the other hand, we say that that the pair (2, R) has property
if for all sequences (2, )n>1 € D(B) which are bounded in X and such that
both Rz, =22 0 and i, — Bz, -2 0 for some sequence (B )n>1 such that
|8n 272 0, it follows that @, ——» 0. Then the first — namely asymptotic —
stability result reads as follows.

Proposition 8.1.8. Let (;,8,,&;),_, , with interconnection matrices K;j (i,j =
L,... , L) form an acyclic graph of port-Hamiltonian systems. Let R} : D(;) —
H} (j =1,2) be given and assume that

L
Re (Az,z)x < —Z HRllle;l ,
1=1
|Bl$l|2 > HR?.%‘[HZZQ, l=1,...,L, x € D(A).

Set By = (R}, R?) : D(,) — H, := H} x H}. If all pairs (A;,R;) (Il =1,...,L)
have property [ASD, then A generates an asymptotically stable and contractive Cy-
semigroup (T(t))¢>o0-

Proof. The dissipativity implies the generator property. Let z € D(A) and 8 € R
such that
Ax =ifx.

Then Rllxl =0foralll=1,...,L. Further since Bz, = 0, also R?z; = 0, so that
Ryz1 = 0. Since the pair (24, R1) has property and Ayx; = i8x; it follows
that x1 = 0 is the zero function and thus also 8.z = 0. Repeating the argument
iteratively we deduce z; = 0 foralll =1,...,L,i.e. xz = 0. Asaresult iRNo,(A4) =0
and since A has compact resolvent and generates a contraction semigroup, it follows
from Corollary that (T'(t))¢>0 is asymptotically stable. O

For uniform exponential stability we have to sharpen the previous condition [ATEP]
in the following way which also takes into account that for an acyclic graph of
port-Hamiltonian systems the information z,,; — 0 does not necessarily imply that
Cxp, — 0, ie. with the propertyl@ alone we would possibly lose information on
the behaviour of (&€;x,, ;)n>1 which could be helpful to deduce asymptotic behaviour
of (xn,l+1)n21-

Definition 8.1.9. Let a Hilbert space X and a linear operator B : D(B) C X — X
be given. Further let D : (D(B),|-||g) = F™ be continuous and linear. For a linear
function R : D(B) — H we say that the triple (2(, R, D) has property AIEP if

(znaﬂn) - D(B) x R,
lznll < e, |Bn| — o0 :>{ zn — 0,
Bz, —ifBpx, — 0, Dz, — 0.
Rz, — 0
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Example 8.1.10. Consider a port-Hamiltonian operator A of order N = 1 with
Lipschitz continuous H and Py, i.e. Az = P1(Hx) + Po(Hz), and the linear maps
Rz = (Hx)(0) € F¢ and Dx = ((Hx)(0), (Hz)(1)) € F2¢. Then the triple (%, R, D)
has property AIEP.

Proof. Take any sequence (2, 3y )n>1 with sup,, ||, || < +oo and such that |5, —
00, Az, —iBpty, — 0 and f(z,) — 0 as n — oco. Since we already know that the
iAIEP

pair (2, R) has property we conclude that z, ———» 0. Then we also get

|(Hay)(1)]* = 2Re (Hay)', Han) 1, + | (Han)(0)
=2Re (<P1_1@ann7Hxn>L2 - <P1_1(7/ann - %xn)szn>L2
— (PoHxn, Han)L,) + |(Hwn)(0)‘2
< 2P| iBnwn — Al x Nzallx + 2 [ Poll 1Han 7, + [(Han)(0)]
— 0, asn—o00

i.e. also (Hz,)(1) =2 0 converges to zero. O

Using this refined notion we can formulate our exponential stability result.

Theorem 8.1.11. Let (Dy, R}, R?) : D(24;) — H; be given with

L 2
=Bl
=1

|Dy(z1)] > |€ 1],

|Bi2| > ||Ria|, 1=1,...,L.

Re (Az,x) x

IN

If (T(t))>0 is asymptotically stable and for Ry = (R}, R?), the triples (2, Ry, D;)
have property AIEP for | = 1,...,L, then (T(t))i>0 is uniformly exponentially
stable.

Proof. Let (z,8,) € D(A) x R be any sequence with sup,,cy ||zn| x < oo and
|Br| = oo such that

Az, — BT, Iz, 0,
in particular 2;z,; — i8pxn; — 0 for I =1,..., L. From Re (Az,,z,)x D700 it

follows R} 27 0forl =1,...,L. Further B12,,1 = 0 since z,, € D(A), thus

Rixpa 2720 converges to zero. By property AIEP this implies that 2, 1 270

n—oo n— oo

and Dizy 1 2% 0. Now assume that Zpn,; — 0 and Dyz,; —— 0 hold for
some 1 <y < L and all [ < ly. This implies that

lo
n—oo
SBlo+1,1éﬂn,l+1 = E Klo,jefj,lxn,j — 0, %lg+1,2xn,lo+l =0,
Jj=1

so also By 11T 141 272 0 and then Riy+1%n, 1941 2729 0 and thanks to property

AIEP we deduce from Ajj+1%n,10+1 — ©8n%n,ig+1 2% 0 that also the sequences
n— oo n— 00 .

ZTn,lo+1 — 0 converges to zero and Djy11%y ,+1 —— 0. Inductively we fi-

nally arrive at z,, —— 0 and by Corollary [2.2.19| the Co-semigroup (7 ());>0 is
uniformly exponentially stable. O
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Example 8.1.12. Consider a chain of coupled vibrating strings as in [LiHuCh89]

2w
n©) 5 0.0 = o (10

where in contrast to the original article [LiHuCh89] we do not demand that p;, T,
are positive constants, but allow 0 < & < p;, T} € WL (0,1) to be uniformly positive
Lipschitz continuous functions instead. At the left end of the chain we impose the
dissipative boundary condition

<T1 %"21> (t,0) = 8(;;1 (t,0)

for some kg > 0. Moreover, the strings are linked in a conservative or dissipative
way, namely either

Ow ow,
(Tl 8;) (t,1) — <Tl+1 (;C“> (t,0) =0
Owy Owi 11

Owy
G = 25,0 = - (152 ) (1)

0 0 0
(152) 00 - (1a 2520 ) (.0) = =t 1),
8wl

5wl+1
1 .
(1) = =5 (£,0) =0

Finally, at the right end we impose a conservative boundary condition

C( C)) l=1,...,L, (€(0,1), t>0

or

80.)[, 8&1[,
—(t,1) =0 or T, t,1) =0.
L 1,1) (1%2) @)
To reformulate this as interconnection of infinite dimensional port-Hamiltonian sys-
tems we set

8wl 3(.;)[

at ' T T

1
- 1
Hli{pl Tz}’ Pl,15{1 ], Po:=0

Ty1 = Pl

and the input and output maps as

%1’11'1 = ( 3w1> (0) —+ KO%(O),

¢ ot
B 21 1= (Tl (?;Zl> (0),
Croxy = %(1) +kK (TZ 6521) (1)
32 = %UU
B ax) = (Tz 85?) (1) + Iil%(l)

aw—L(l) or
o ot
Brirr = { (TL 8§JCL) (1)
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where kg > 0 and for each | > 1 the constants ki, k] > 0 are non-negative. From
a physical point of view it makes sense to choose the constants such that for all |
at least one of the constants k; and k| equals zero and in that case one obtains the
energy balance

Re (Az,z)x < —ro |[(H121)(0)[°

ow  |? 1
0 =3 (no

Moreover, forl=2,...,L we have

1By 021 |” + | € 320]” = [(Haa) (0)].

ESE

Thus, we obtain asymptotic and then exponential stability from Proposition |8.1.8
and Theorem |8.1.11|, using also Example|8.1.10.

8.2 Non-autonomous Systems: The Case N =1

In the following we see that the stability results from Chapter 9 in [JaZw12] also
hold for non-autonomous port-Hamiltonian systemns provided existence of solutions.
The latter is a standing hypothesis in this section, and we do not touch the subject
of well-posedness for non-autonomous port-Hamiltonian systems here since due to
its hyperbolic nature and possibly time-varying domains very little abstract results
are known which could provide a good existence theory. We consider systems of the
form

ax(att’ 9 _ Pla(H(t’g)Cx(t’O) + Po(QO)H(t, Q)x(t,¢), ¢e€(0,1), t>0. (8.3)
Thus, from now on the Hamiltonian density matrix function H may also depend
on time, but at least we assume that H € C(Ry; Loo(0, 1;F4*?)) which may be
considered as a subset of (R ;B(L2(0,1;F?))) is continuous in the time-variable
t € Ry and that H is uniformly positive in space and time, i.e. there exist constants
0 < m < M such that

mI < H(t, () =H(E O < MI, ae. €(0,1), t>0.

Again P; € F¥*? is a self-adjoint and invertible matrix, wheres Py € Lo (0, 1; F4* %),
In the book [JaZwl12] the main ingredient for the exponential stability result is
Lemma 9.1.2 on a finite observability estimate for first order port-Hamiltonian sys-
tems which admits the following generalisation to non-autonomous problems.

Lemma 8.2.1. Assume that H € WL (Ry; WL (0,1;F¥*4)) d.e. H is Lipschitz
continuous on Ry x [0,1]. Then for any locally Lipschitz continuous solution x €
W toc(Bo5 La(0, 1,F) N Loc toe (R HY(0,1;F4)) of (8.3) with

ot + )l L, < K llz®)llp,, t=0,5€(0¢) (8.4)
for some K > 0 and some € > 0, there are constants ¢, > 0 which only depend on
m, M, Py, Py, %,E and K such that

2 T 2
le(m)I2, < e / (Mt 1)e(t, D) .
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Proof. We apply the same strategy as in Lemma 9.1.2 of [JaZw12]. Choose v > 0
and k > 0 such that

+P 4 yH (L, ¢) >0,
oM

2Sym( 1P0(C)H(ta C)) + T(t C) (t7C)a a.e. g S (0’ 1)7 t Z 0

and finally 7 > 2vy. W.l.o.g. we may assume that 7 < . Then defining

T—y(1-¢)
F(O) = / (2(t, )y (L O(t, Obpadt, € € (0,1)
¥(1-¢)

we see that F € W1

o0,loc

(0,1; R) is locally Lipschitz continuous with

T—y(1=¢)
TO= [ @0 Mt Ot O + (a(t, ). (Wl o
(1-0)

+y(z(r —v(1 = (), 0), H(T —v(1 = {), Q)z(T = v(1 = (), ())pa
+y(z(y(1 =€), O), H(v(1 =€), Oz (v(1 =€), ())pe

T—=y(1=¢)
= / <P171xt(tv<)’1’(tvg)>ﬁ<‘d

¥(1-¢)
T—=v(1=¢)
+/(1 ., (x(t,¢), P{ " (we(t, ¢) — Po(Q)H(t, Q) (t, Q)))padt + b(C)

T=(1-0) ¢4
:/ 2 (@, Q), P (t, €))padt + b(C)
¥(1-¢)

- / T <25ym(P_1P0(C)H(t o+, o) 2(t,))gadt
(1 C) ) 9 1 9 6< )
— (a1 = 0,0 (P 4+ AH( = A(1L =€), O)elr — 71— €, )
T—y(1— C) OH
/ (2Sym<P o) + e, o) 2(t,))gadt
Y(1-¢) ¢
T—y(1— C)
>k / H(t, )(t,O))padt = —rF(C).
v(1-¢)

This implies
F(Q) <e"F(1), ¢el0,1]

and thus
T K2 [T
2 2 2
-2 e}, < K2 [ el de < T [ Ol e
v

2 pr—y gl
25/ /<x(t’<)7H(tvox(t,C)>wd<dt

- / / Ja(t, ) ot
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1
_ Kz/ FOye < 2 err)ac
0 m

m

K2€H T 2
<K /0 At Dalt, DI dt
so we find that
K?2er T
2 2
< t, Da(t,1)]" dt
o), < rozrgey | (e 1)t 1)
which is the desired final observability estimate. O

Remark 8.2.2. Note that choosing T close to 2y we can make ¢ > 0 arbitrary
small.

Remark 8.2.3. Condition is satisfied if %{ € Loo(Ry x (0,1); F¥*?) and
Re (z4(t,C), (¢, ()2, < 0.

Proof. In that case we have

d 1
pn Hx(t)H?—L(t) = 2Re (z(t,Q), (L, O))ne, ) +/0 ((t, Q) He(t, Qz(t, C))padt
< cllz®) I3y
and thus

2 cs 2
[+ $)301s) < € Ne@3yy 5820

The result follows since all norms |[[-[|5,, ., are uniformly equivalent to the standard
Lo-norm. O

Now we are able to prove the non-autonomous counterpart to Theorem 9.1.3 in
[JaZw12].

Proposition 8.2.4. Assume that the port-Hamiltonian density matrixz function H
lies in Loo(Ry; WL (0,1;F>9)) N WL (Ry; Loo(0, 1;FX9)). Then for any solution
2 € WL 1,o(Ry; L2(0, 1;F) N Log toc(Ry; HY(0,1;F7)) of with

Re (2, C), 2(t, O))nr) < —k|(Ha)(t, D>, ae >0
for some k > 0 we have
@), < Me™" 2(0)],,, t=0

where M > 1 and w > 0 depend on H, Py, Py and k, but not on x.

Proof. From Lemma |[8.2.1) and the preceding remark on dissipative systems there
are constants ¢, 7 > 0 with

le()l,, < [ ")t 1P e
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where ¢ > 0 may be chosen arbitrary small for 7 close to 2y. We then have
2 2 2 2
m|[z(T)|z, = M [[z(0)I[, < [l=()ll3y,.) = 2050,

T d 9
= [ 5 (a0 )

=/OT2Re<$t(t)vx(t)>7-t(t,.)dt

i /OT/o (at,©), %(t’g)x(t7<)>ﬂrdd§dt
= “”“/0 |(Ha) (8, 1)) dt

o TR

2K 2 aH
< i
<-= ||x<T>L2+H g

2
K27 )| 2(0)], -
Lo

Rearranging the terms we deduce that

M+ HHt”Lm K2T
er%”

2 2 2
(), < lz(0)lIz, = p* [2(0)]IZ,

thus choosing ¢ > 0 sufficiently small we have p < 1 and then using the time-
invariance of the problem we obtain iteratively for all t = nT + s, s € [0,7), that

@), = lz(nT + 5L, < Kllz(n)ll, < Kp" |z(0)] L,
K 1080 —w
e (0l = Me* [J2(0)]l, -

This finishes the proof of the asserted statement. O

8.3 Systems with Structural Damping

By allowing Py(¢) to be dissipative for ¢ € (0, 1), the port-Hamiltonian systems con-
sidered in this thesis may be damped through this term, e.g. for the one-dimensional
wave equation

p(C)wtt(tv g) = (T(Q)WC(t C))C - a(g)wt(ta C)a C € (0’ 1)7 t 2 0

where « : [0,1] — R is a bounded measurable and non-negative function. With this
type of damping the system may be asymptotically, or even uniformly exponentially,
stabilised. However, within this section we consider systems with another type
of damping. Namely we consider structural damping, e.g. for the wave equation
systems of the form

p(Quwie(t, C) = (T(Qwe (t, )¢ + (k(Qwic)e, ¢ =0, C€(0,1).

If we naively reformulate this system as a port-Hamiltonian system by setting x =
(@1, x2) =(pwe, wee) we arrive at the following partial differential equation which is
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of first order in time

8;c(t,§)£< p(Qwir(t, C) )

ot wic(t,C)
ST ][ na)(259)
el T o ] (7S]
0

for ¢ € (0,1) and ¢t > 0. In particular, two conditions of Definition for
the port-Hamiltonian operator 2 are not satisfied. On the one hand P»({) =
diag (—k(¢),0) € F?*2 is not invertible, on the other hand it does depend on the
space variable ¢ € (0,1). Therefore, these systems only fall into the more general
class of PDE of the form

0a(6,0) = (7~ G5G°) (Ha)(1,0). C€(0.1), £20.

Here J,G and G* are differential operators of the form

N

Yok N ok ppr OF

k=0

so that G* is the formal adjoint of G. Here P, = (—1)**1P; € F¥*4 (k. =0,1,...,N)
are quadratic matrices, while the matrices G, € F*™ (k = 0,1,...,N), map
from the (in general smaller) space F™, where 1 < m < d, to F%. Similar to
H € Loo(0,1;F%4) also the matrix-valued function S € Lo, (0, 1;F™*™) is assumed
to be a coercive multiplication operator on Ly (0, 1;F™). These systems have been
considered, e.g. in [Vi07] and [AuJaLalb], but with emphasis on different aspects of
the equation. In Chapter 6 of [Vi07] the author considered conditions under which
the corresponding operator A%** (with suitable boundary conditions)

Ay = THx — GSG Ha
D(A“") = {z € X = Ly(0,1;F%) : Hx € HY(0,1;F?),
SG*Hz € HN (0, ,F™), (f5%0s €575,) € ker W'}

generates a contractive Cp-semigroup (7¢**(t));>0, where the extended boundary
flow and boundary effort variables fg’%fm and egfqt_[x, respectively, may not only
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depend on 7(Hz), but also on 7(—SG*Hzx), or more precisely

(Ha)(1)
—(SG*Ha)(1)

(M) ¥ -1(1)
—(SG*H) N1 (1)
(Ha)(0)
—(SG*H=x)(0)

ext
( fgé’i{x ) — RemtT(Hx’_Sg*Hx) _ Remt
66,7{1

(Ha)N-D)(0)
~(8G* Ha) N1 (0)

for the matrix R*! = [Q;” *QIPM} € F2N(d+m)x2N(d+m) and

B Plemtt PQe.rtt .. - t P](\}Tt
—Pge —Pgrt ... Pt
Qezt — ) )
L (-pNTtpgt 0 -0 0
[ P G
ext __ k k _
Pk - | (71)k+1GZ 0 ] ) k—o, 1,...,N

and it is additionally assumed that Pg"* is invertible, if Gi # 0 for at least one
ke {1,...,N}, or Py is invertible, if Gy = 0 for all £ > 1. Since the latter case
is already covered by our standard port-Hamiltonian setting, we assume without
loss of generality that Gy, # 0 for at least one k > 1 and Pgrt € F(d+m)x(d+m) jg
invertible. Then one obtains the following generation result.

Theorem 8.3.1. Let Weet ¢ FN(d+m)x2N(d+m) pe o full-rank matriz and be such
that Wen XWE,, > 0 is positive semidefinite. Then the operator A“** generates a
contractive Cy-semigroup on X = (LQ(O, L;FY), (-, >H)

Proof. See Theorem 6.11 in [Vi07]. O

Fore a more detailed analysis, including Boundary Control and Observation Sys-
tems connected to above problem, we refer to Chapter 6 in [Vi07] and consider the
situation in [AuJaLal5] next. There the authors had a different aim and were inter-
ested in L,-maximal regularity of the time-invariant as well as of the corresponding
non-autonomous problem for the case that N = 1. (In fact, this was done within
a more abstract framework, considering more general right-multiplicative pertur-
bations of holomorphic semigroup generators.) As we encounter the concepts of
a holomorphic (or, analytic) Cy-semigroup and of L,-maximal regularity, we first
recall these concepts (in the autonomous setting).

Definition 8.3.2. Let for the moment X be any Banach space. A family of linear
bounded operators (T(z)).ex;u0y on the sector X5 U {0} := {z € C: |argz| <
0} U{0} is called holomorphic Cy-semigroup (or, analytic Cy-semigroup) (of angle
5 e (0,7/2) if

1. T(0) =T and T(z1 + 22) = T(21)T(22) for all z1,25 € 5.
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2. The map z — T(z) is analytic in 5.
3. limy,, 5.0 T(2)x =z for allz € X and 0’ € (0,9).

See e.g. Definition 11.4.5 in [EnNaO0]. For a more abstract definition, including
non-autonomous problems, see Subsection III.1.5 in [Am95].

Definition 8.3.3. Let X be any Banach space. A closed, linear and densely defined
operator A : D(A) C X — X is said to have L,-maximal regularity if for each
feLy,0,7;X), 7>0 the (autonomous) problem

d
Z 20+ Ax(t) = f(1), t =0, x(0) =0

has a unique solution x € W, (0,7; X) N Ly,(0,7; D(A)).

See, e.g. Definition 1.1 in [Pr02].

In the following do not give any proofs here, but only give some results closely
connected to above generalised port-Hamiltonian operator, leaving details out and
only referring to [AuJaLalj].

Assumption 8.3.4. Let 7 > 0 be fized. Let S : [0,7] x [0,1] — F™*™ and H :
[0,1] — F¥*4 be measurable matriz-valued functions with the following properties.
We assume that S(t,() = S(t,()* and H(t,¢) = H(t,{)* are pointwise symmetric
for a.e. (t,¢) € [0,7] x [0,1], uniformly bounded and considered as matriz-valued
multiplication operators on L (0, 1; F™*™) and Lo (0, 1;F*4), respectively, the maps
S(t, ) and H(t,-) are uniformly coercive. Furthermore we assume that S and H are
Lipschitz-continuous in the time variable t € [0,7]. In order words, we assume that
there are constants 0 < m; < M; (i =1,2) such that

mil <H(t, () < MI
mQI S S(t,C) S MQI
1S(t,¢) — S(s,O)|| < Lals —t|, s,t€][0,7], a.e. ¢ €][0,1].
Moreover, we assume that Py € Lo (0,1;F?*%) is essentially bounded, P, bounded

and Lipschitz continuous and the matriz G € F¥™ has full rank such that GG* €
Faxd is an orthogonal projection with

ker(I — GG*)P1(¢) CkerGG*, a.e. (€ (0,1).

Further let F € F2™X" | for some r € {0,1,...,2m}, have full rank and be such that
FF* ¢ F¥*4 s q projection. Finally let Wg : [0,7] — F™" be Lipschitz continuous
with Wgr(t) = Wr(t)* > 0 positive semidefinite for all t € [0, 7].

Then we consider the operator family {A(t)}.co,-) for the operators
0
T
D(A(t)) = {z € Ly(0,1;F¥™>4) . G*z € H'(0,1;F™),
GS(t)G* € H*(0,1;F%),
F*B(t)x = -Wg(t)F*€x, (I - FF*)Cz =0}

A(t) (GS(t)G + P1) + Py
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where the boundary operators

are defined on the domains

D(B(t)) = {x € Ly(0,1;F) . G*z € H'(0,1;F™),
G*(GS(t)(G*x) + Pyx) € H(0,1;F™)}
D(€) = {z € Ly(0,1;F%) : G*z € H'(0,1; K™)}.

For fixed ¢t € [0, 7] the operator A(t) generates a holomorphic semigroup and also
the right-multiplicative perturbed operator A(t)H(t).

Proposition 8.3.5. For every fized t € [0,7] the operators A(t) and A(t)H(t)
generate holomorphic Cy-semigroups on X = Ly(0,1;F4).

Proof. See Proposition 4.4 and Proposition 4.5 in [AuJaLal5]. O
Corollary 8.3.6. If additionally the following conditions are satisfied

G P (1)@ 0

Wa(t) + F { 0 —G*P(0)G

X
L
Sym (P0(~) +GGTP() + QGG*Pl(-)GG*) <0
Pi(c)=Pi()"

then the Co-semigroup (Taymt)(s))s>0 generated by A(t)H(t) is contractive with
respect to the inner product (-, -)3t)-

Proof. See Proposition 4.6 in [AuJalLal5]. O

For the non-autonomous problem one then obtains the following (non-autonomous)
Ly-mazimal regularity results under Assumption [8.3.4]

Theorem 8.3.7. Let p € (1,00) and additionally to Assumption assume that
S(t,-) =8(-) and Wg(t,-) = Wg(-) do not depends ont € [0, 7], so that the domain
D(A(t)) = D of the operator A(t) is the same for all t € [0,7]. Then for every
2o € (X, D)1-1/pp and f € Ly(0,7; X) there is a unique solution u € M Ry (p, X),
i.e. u € W, (0,75 X) such that u(t) € D(A(t)H(t)) for a.e. t € [0,7] and A(-)u €
L,(0,7;X), of the problem

Proof. See Theorem 4.7 in [AuJaLal5|. O
Similar for the case p = 2 one may also allow t-dependence of Wgr(t) and S(t).
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Theorem 8.3.8. Let p = 2 and assume that Assumption [8.3.4 is satisfied. Then
for every 29 € V = {v € Ly(0,1;F%) : (I — GG*)Prv € HY(0,1;F)} and f €
Ls(0,7; X) the non-autonomous system

ue(t) — A()H(E)u(t) = f(t)
H(0)u(0) = xq
F*B (M ()u(t) = —Wr(t) F*CH()u(t)
(I — FF*)CH(t)u(t) =0, te]0,T7]

has a unique solution u € MRy (2,X), i.e. w € H'(0,7;X) such that u(t) €
D(A()H(t)) for a.e. t € [0,7] and A(-)H(-)u € L2(0,7; X).

Proof. See Theorem 4.8 in [AuJaLal5). O

These results can be applied to the particular example of a one-dimensional wave
equation with structural damping. To reformulate the one-dimensional wave equa-
tion with structural damping in the framework considered above, we assume that
0<e<keLyx(0,1;R) for some € > 0 and we may set

and have d = 2 and m = 1. In particular
(I - GG*)P, = PGG*

so that Assumption is satisfied for every F € F2X" such that FF* € F2*2 is a
projection. Writing

HL(0,1) = {v € HY(0,1): (I — FF") < Zg(l); > = 0}

and
Drpwpr={ue H#(0,1) x Ly(0,1) : ku) +uy € H'(0,1),
(kui +u2)(1) | _ u(1)
(et ) =we (o) )
we then find

Proposition 8.3.9. Let p € (1,00) and assume that p,T : [0,7] x [0,1] — R
and k : [0,1] — R are bounded, measurable and uniformly positive with p and T
Lipschitz continuous in t € [0,7]. Further let F € F**" for some r € {0,1,2}
such that FF* € F?*2 is a projection and Wr = W3 > 0 be an v x r-matriz.

Then for every (x1,x2) € (LQ(O,1;F2),DF7WR,k)171/pp and f € Ly(0,7;L2(0,1))
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the problem

has a solution w such that

(wi, Twe) € W,y (0,75 La(0, 1;F?))
kw: + Twe € Lyp(0, 73 H*(0,1;F?))
which is unique up to an additive constant A € F.
If p = 2 the same result also holds true if Wg : [0,7] — F">" is merely Lipschitz
continuous, and then (x1,x2) should lie in (L2(0,1;F?), DF,WRJc)l/Q , = Hp(0,1)x
L»(0,1).

Proof. See Proposition 4.9 and Proposition 4.10 in [AuJaLal5]. O
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