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Deutschsprachige Kurzfassung

In Dissertation werden die Ergodizitäts Eigenschaften der affinen Zinsstrukturmodelle
sowie deren praktische Anwendung untersucht. Erstens betrachten wir die affine Zinsstruk-
turen des Cox-Ingersoll-Ross Modells (CIR-Modell genannt). Dieses Modell (1985) wurde
von John C. Cox, Jonathan E. Ingersoll und Stephen A. Ross als ein alternatives Modell
eingeführt, um den Nachteil des Vasicek-Modells, in dem der Zinssatz negativ werden
kann zu überwinden. Wir zeigen die Harris’s positiv-Rekurrenz des CIR-Prozesses, Da-
raus folgen Ergodizitätseigenschaften für einen Transformation der CIR Prozess. Dies
wird in der Kalibrierung der Parameter eines Kredit Migration Modelles angewendet.

Ferner konzentrieren wir uns auf eine Verallgemeinerung des CIR-Modell, das durch
Zugabe von Sprüngen erhalten wird, nämlich der Grund affine jump-Diffusion Modell
(BAJD). Dieses Modell wurde von Duffie und Gârleanu als Erweiterung des CIR-Modell
mit Sprüngen eingeführt. Wir leiten eine Formel für die Übergangsdichten des Prozesses.
Beachten Sie, dass diese Tatsache bereits in einem speziellen Fall von Filipović entdeckt
wurde [13]. Außerdem beweisen wir die Harris’s positiv-Rekurrenz und die exponentielle
Ergodizität des BAJD, und Kalibrieren einen Transformation davon.

Eine andere Erweiterung des klassischen CIR-Modelles mit lich Sprüngen sind die Sprung-
Diffusion CIR-Verfahren (JCIR). Sie werden mit Hilfe eines reinen Sprung Lévy Prozess
eingeführt . Wir finden eine untere Schranke für die Übergangsdichten und zeigen wir
die Existenz eines Foster-Ljapunovfunktion, aus denen wir die exponentielle Ergodizität
ableiten.

Schließlich untersuchen wir einige Eigenschaften von nicht affinen Zinsstrukturmodelle .
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Abstract

The aim of this thesis is to study the ergodicity properties of affine term structure models
as well as the practical applications. First, we consider the affine term structure model
called the Cox- Ingersoll-Ross model (abbreviated CIR). This model was introduced in
1985 by John C. Cox, Jonathan E. Ingersoll and Stephen A. Ross as an alternative model
to overcome the disadvantage of Vasicek model, in which the interest rate can become
negative. We show the positive Harris recurrence of the CIR process, from which we
get an ergodicity results for a transformation of the CIR process. This is applied in the
calibration of the parameters of a credit migration model.

Later we focus on an extension of the CIR model that is obtained by adding jumps, namely
the basic affine jump-diffusion (BAJD). This model has been introduced by Duffie and
Gârleanu as an extension of the CIR model with jumps. We derive a closed formula for
the transition densities of the BAJD. Note that this fact has already been discovered in a
special case by Filipović [13]. Further, we prove the positive Harris recurrence and the
exponential ergodicity of the BAJD, and calibrate the transformation of it.

Another extension of the classical CIR model including jumps is the jump-diffusion CIR
process (shorted as JCIR). This is introduced with the help of a pure-jump Lévy process.
We find a lower bound on the transition densities and we show the existence of a Foster-
Lyapunov function from which we derive the exponential ergodicity.

Finally, we investigate some properties of non affine term structure models.
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Introduction

This thesis is devoted to study the Harris recurrence and the ergodicity of affine term
structure models. The term structure models have been the focus of many studies over a
century now. They can mainly be put in three categories: short rate models, forward rate
models and market models. In this thesis we consider only the short rate models. In the
literature of financial mathematics, the short rate models were the first studied dynamic
term structure models. These mathematical models describe the future evolution of in-
terest rates by describing the future evolution of short rates. Interest rate modeling has
gained special attention during the last few decades which has resulted in reliable models.
In order to understand better the evolution of interest rates, researchers have attempted
to identify processes and rational investor’s behaviors. The short rates are typically de-
scribed as a diffusion process. The diffusion models have become one of the core areas in
statistical sciences and financial modeling.

An often referenced short rate model is the celebrated Cox-Ingersoll-Ross model (CIR).
It was introduced in 1985 by John C. Cox, Jonathan E. Ingersoll and Stephen A. Ross
(see [7]) and is one of an interesting process which became quite popular in finance.
This model was done to illustrate the workings of a general equilibrium model and was
proposed as an extension of the Vasicek model (see [51]). The bad property of possible
negativity in the Vasicek model is removed in the Cox-Ingersoll-Ross model under the so-
called Feller condition and hence ensuring that the origin is inaccessible to the process.
The nice mean reversion property in the Vasicek model is preserved in the Cox-Ingersoll-
Ross model. Mean reversion means that prices and returns eventually move back towards
the mean or the average. In finance, mean reversion is the assumption that a stock’s price
will tend to move to the average price over time. After that Cox et al. proposed the CIR
process for modeling short term interest rates, it is also used in the valuation of interest rate
derivatives and for modeling stochastic volatility in the Heston model [21]. The popularity
of the CIR process in all main branches of financial modeling stems from its desirable
property of positivity, its richness of behaviour and its mathematical properties. In the
literature the CIR is also known as the square root diffusion or Feller process.

The financial crisis of 2008 − 2009 has once again made it clear that the extreme be-
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havior of financial assets cannot be described using only the traditional models based on
Gaussian processes but also we have to consider the Lévy processes. Therefore we are
interested by another type of short term interest rate model which is an extension of the
CIR model including positive jumps. The instantaneous interest rate is modeled as a mix-
ture of CIR process and a compound Poisson process. This model is called basic affine
jump diffusion process (BAJD) and in which the Lévy process takes the form of a com-
pound Poisson process with exponentially distributed jumps. The BAJD was introduced
by Duffie and Gârleanu [10] to describe the dynamics of default intensity. It was also used
by Filipović and Keller-Ressel et al. as a short rate model. Motivated by some applications
in finance, the long-time behavior of the BAJD has been well studied. Keller-Ressel et al.
proved that the BAJD possesses a unique invariant probability measure. The existence
and the approximations of the transition densities of the BAJD can be found in [14].

A more general extension of the CIR model including jumps is the so-called Jump-
diffusion CIR process (abbreviated as JCIR). In this model the jumps are introduced with
the help of a pure-jump Lévy process. The BAJD and JCIR models belong to the class of
affine processes. A complete characterization of the class of regular affine processes was
given in [9]. During the last decades affine processes have became very popular due to
their tractability and their flexibility, since often there are explicit solution for bond prices.

Many other aspects of affine term structure models are still under current investigation,
mainly their long-term behavior and ergodicity properties. Initially, the ergodic theory was
introduced in statistical mechanics by Boltzmann. The word ergodic is a mixture of two
Greek words: "ergon" (work) and "odos" (path). It is not easy to give a simple definition
of ergodic theory because it uses techniques from many fields, mainly is the study of the
long-term average behavior of systems evolving in time.

Our main focus is to study the ergodicity properties of affine term structure models
such as CIR, BAJD and JCIR processes, as well as the positive Harris recurrence for the
CIR and BAJD . We investigate some properties of non-affine term structure models in
this work.

To attain our major objective, we give a brief outline of how we intend to proceed and
what each chapter contains:

The first chapter covers the basic definitions and properties of short term interest rate
models: CIR model and its extensions, which are the BAJD and JCIR models.

In the second Chapter, we managed to show that the CIR process is positive Harris recur-
rent. Harris recurrence was first introduced by Harris [20] for discrete Markov chains and
then was extended in [1] to a general continuous time Markov process. The applications
of Harris recurrence have been found in queueing theory and stochastic control. A recent
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application for interest rate models was given in [2], where Harris recurrence was used
as a principal assumption to enable the authors to prove consistency of some estimators
of jump-diffusion models for interest rate. In the first Section 2.1, we give the affine and
regularity properties of the CIR process. The main results are stated in Section 2.2, we
show that the CIR process is positive Harris recurrent. Then in Section 2.3, we establish
the ergodicity results on the transformation of the CIR process. In the last Section 2.4, we
take advantage of this study to apply the ergodicity results in the calibration of one credit
migration model. We should remark that the results presented in the last section have been
derived in [39] with a different method. Most of the results of Section 2.2-2.4 are taken
from our paper [26]. This paper is coauthored with Peng Jin, Vidyadhar Mandrekar and
Barbara Rüdiger.

Recently, the long-term behavior of affine processes with the state space R+ has been
studied by in [38] (see also [35]), motivated by some financial applications in affine term
structure models of interest rates. In particular, they have found some sufficient conditions
such that the affine process converges weakly to a limit distribution. This limit distribution
was later shown by Keller-Ressel in [32] as the unique invariant probability measure of the
process. Under further sharper assumptions it was even shown in [42] that the convergence
of the law of the process to its invariant probability measure under the total variation
norm is exponentially fast, which is called the exponential ergodicity in the literature.
The method used in [42] to show the exponential ergodicity is based on some coupling
techniques.

In the third Chapter, we investigate the long-time behavior of the BAJD model. More pre-
cisely, we show that the BAJD process is also positive Harris recurrent. As a well-known
fact, Harris recurrence implies the existence of (up to the multiplication by a positive con-
stant) unique invariant measure. Therefore, our result on the positive Harris recurrence
of the BAJD provides another way of proving the existence and uniqueness of invariant
measures for the BAJD. Another consequence of the positive Harris recurrence is the limit
theorem for additive functional (see e.g. [29, Theorem20.21]). Some applications of Har-
ris recurrence in statistics and calibrations of some financial models can be found in [2]
and [26].

We give some preliminaries on the BAJD process in the Section 3.1. Next, we introduce
the so-called Bessel distributions and some mixtures of Bessel-distributions in Section
3.2. In Section 3.3, we derive the transition densities of the BAJD. This formula indicates
that the law of the BAJD process at any time is a convolution of a mixture of Gamma-
distributions with a noncentral chi-square distribution. We should point out that this fact
has already been discovered by Filipović [13] for a special case. In the main results of
Section 3.4, we were successful in showing that the BAJD is positive Harris recurrent.

The second main result is described in Section 3.5, namely we show the exponential er-
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godicity of the BAJD. We should indicate that the BAJD does not satisfy the assumptions
required in [42] in order to get the exponential ergodicity. Our method is different and
is based on the existence of a Foster-Lyapunov function. In the last Section 3.6, we ap-
ply these results to show another consequence of Harris recurrence in the calibration of
the BAJD. This calibration result motivated by one discussion with the member of the
research group in DeBeKa insurance company in Koblenz (19 July 2012).

Most of the results of Section 3.2-3.5 are taken from the joint paper with Peng Jin and
Barbara Rüdiger [27].

In the fourth Chapter, we compute explicitly the characteristic function of the JCIR in
Section 4.1. Moreover, this enables us to represent the distribution of the JCIR as the
convolution of two distributions. The first distribution coincides with the distribution of
the CIR model. However, the second distribution is more complicated. We give a sufficient
condition such that the second distribution is singular at zero. In this way we derive a
lower bound estimate of the transition densities of the JCIR in Section 4.2. The problem
that we consider in Section 4.3, is the exponential ergodicity of the JCIR. Namely, we
show the existence of a Foster-Lyapunov function and then apply the general framework
of Meyn and Tweedie. Most of the results of Section 4.2 and 4.3 are taken from the
proceeding [28]. This proceeding is coauthored with Peng Jin and Barbara Rüdiger.

In the last Chapter, we show that CIR model driven by Lévy noise is equal to the square of
Ornstein-Uhlenbeck process with jumps and a positive drift in Section 5.1.Unfortunally
this model is non-affine term structures models, we will give some investigations on the
non-affine term structure models in the last Section 5.2.
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Chapter 1

Short term Interest rate models

Interest rates are of fundamental importance in the economy in general and in financial
markets in particular. The movements of interest rate plays an important role in decision
of investment and risk management in financial markets. One-factor models are a popular
class of interest rate models which are used for these purposes, especially in the pricing of
interest rate derivatives. In the literature one can find several references. The well known
Birgo and Mercurio [6] and Lamberton and Lapeyre [41] are the most complete references
about interest rate models for both theoretical and practical aspects. Interest rate modeling
has gained special attention during the last few decades which has resulted in reliable
models. An empirical observations suggest that the dynamics of the interest rate should
be modelled by a stochastic process, since they are heavily varying over time.

First, we postulate the following general process for the short-term interest rate. Short
rate models use the instantaneous spot rate X(t) as the basic state variable. The stochastic
differential equation describing the dynamics of X(t) is usually stated under the spot
measure. We further assume that the interest rate process is Markovian and its dynamic is
described by the following first-order stochastic differential equation:

(1.1) dX(t) = µ(t,X(t))dt+ σ(t,X(t))dWt

where µ and σ are suitably chosen drift and diffusion coefficients respectively, and W
is the standard Brownian motion driving the process. These models are referred as one-
factor models, as there is only one stochastic drivers. The models with multiple stochastic
drivers are called multi-factor models. The drift and diffusion coefficients need to satisfy
some regularity requirements to guarantee the existence of unique solution of the SDE
(1.1). The regularity requirements make sure that the solution does not explode (growth
conditions) and its unique (Lipschitz conditions). These solutions are called strong so-
lutions, which means that any other Itô process that solves (1.1) is equal to X almost
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1.1. COX-INGERSOLL-ROSS MODEL

everywhere. Various choices of the coefficients µ and σ lead to different dynamics of the
instantaneous rate. We shall focus on the Cox-Ingersoll-Ross model and its extension in-
cluding jumps. Throughout this thesis, we assume that (Ω,F , (Ft)t∈R+ , P ) will always be
a filtered probability space satisfying the usual conditions, i.e.,

1. (Ω,Ft, P ) is complete for all t ∈ R+, F0 contains all the P-null sets in F for all
t ∈ R+.

2. Ft = Ft+ where Ft+ = ∩s>tFs, for all t ≥ 0, i.e. the filtration is right-continuous.

In this section, we will focus on the celebrated Cox-Ingersoll-Ross short rate model.

1.1 Cox-Ingersoll-Ross model
We consider the well-known Cox, Ingersoll and Ross model (shorted as CIR model), this
model is a diffusion process suitable for modeling the term structure of interest rates.
It was introduced in 1985 by John C. Cox, Jonathan A. Ingersoll and Stephen A. Ross
[7] as an extension of the Vasicek model [51]. They suggest modelling the behavior of
instantaneous interest rate by the following stochastic differential equation

(1.2) dXt = a(θ −Xt)dt+ σ
√
|Xt|dWt, X0 ≥ 0,

where a, σ > 0 and θ ≥ 0 are constants and Wt is a one-dimensional standard Brownian
motion. The CIR model is one of the standard "short rate" model in financial mathematics.

Now, we recall some well-known properties of the solution of the CIR model. Note that we
can not apply the theorem of existence and uniqueness for the SDE because the volatility
term σ

√
x does not satisfy the Lipschitz condition. However, from the Hölder property of

the square root function, by a theorem due to Yamade and Watanabe (see [30, Proposition
5.2.13]), the strong uniqueness holds for the above SDE (1.2). Ikeda and Watanabe prove
that there is a (pathwise) unique non-negative strong solution (Xt, t ≥ 0) of (1.2) with
only positive initial value X0 (see [23, Example 8.2], [25, Theorem 1.5.5.1]).

If θ = 0 and X0 = 0, the solution of the SDE (1.2) is Xt ≡ 0, and from the comparison
theorem for one-dimensional diffusion processes ([25, Theorem 1.5.5.9]), it follows that
Xt ≥ 0 if X0 ≥ 0. In that case, we omit the absolute value and we consider the positive
solution of the following SDE

(1.3)

{
dXt = a(θ −Xt)dt+ σ

√
XtdWt, t ≥ 0

X0 = x ≥ 0,

16



1.1. COX-INGERSOLL-ROSS MODEL

This solution is often called a Cox-Ingersoll-Ross (CIR) process or a square-root process
see [11].
By applying Itô formula for the process (Xt, t ≥ 0) one can get for all t ≥ 0

d(eatXt) = aeatXtdt+ eatdXt

= aθeatdt+ σeat
√
|Xt|dWt.

Then we have

Xt = e−at
(
x+ aθ

∫ t

0

easds+ σ

∫ t

0

eas
√
|Xs|dWs

)
by taking expectation on both sides

E(Xt) = e−atE(x) + aθ

∫ t

0

e−a(t−s)ds

Hence
lim
t→+∞

E(Xt) = E(X∞) = θ,

then θ is called the long-term value.

1.1.1 Mean reversion of the CIR model
The most important feature which this model exhibits is the mean reversion properties,
which means that if the interest rate is bigger than the long-term mean (X > θ), then the
coefficient a > 0 makes the drift become negative so that the rate will be pulled down in
the direction of θ. Similarly, if the interest rate is smaller than the long-term mean X < θ,
then the coefficient a > 0 makes the drift term become positive so that the rate will be
pulled up in the direction of θ. Therefore the parameter a is called the speed of mean
reversion, it gives the speed of adjustment and has to be positive in order to maintain
stability around the long-term value θ. The parameter σ is the volatility coefficient.
Now, we give some properties of the CIR process. We denote (Xx

t , t ≥ 0) the CIR process
started from an initial point x and τx0 the stopping time, is the first time when the process
hit 0, and defined by

τx0 = inf{t ≥ 0;Xx
t = 0}

with, as usual, inf ∅ =∞.

Proposition 1.
1. If 2aθ ≥ σ2, we have P (τx0 =∞) = 1, for all x > 0.
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1.1. COX-INGERSOLL-ROSS MODEL

2. If 2aθ < σ2, we have P (τx0 <∞) = 1, for all x > 0.

For the proof of this proposition we refer to (Exercise 34 page 137, [41]). The above
proposition give us that an examination of the boundary classification criteria shows that
the rate can reach zero if σ2 > 2aθ. In this case zero is accessible but is not absorbing as
explained intuitively below see proof ([41, Exercice 34]). If 2aθ ≥ σ2, the upward drift is
sufficiently large to make the origin inaccessible, this condition is called the Feller condi-
tion [11]. In other words, the condition 2aθ ≥ σ2 makes sure that zero is never reached,
so that we can grant that X(t) remains always positive. In either case, the singularity of
the diffusion coefficient at the origin implies that an initially non-negative interest rate
can never subsequently become negative.

Intuitively, when the interest rate is at a low level (approaches zero), the volatility term
σ
√
x also becomes close to zero (cancelling the effect of the randomness). Consequently,

when the rate gets close to zero, its evolution becomes dominated by the drift factor,
which pushes the rate upwards (towards equilibrium). When the interest rate is high then
the volatility is high and this is a desired property.

1.1.2 Transition density function of the CIR process
The SDE (1.3) has no general, explicit solution, although its transition density function
can be characterized. The transition density of the CIR process is first found in [11] by
Laplace transform methods. Duffie et al [9] exploited the affine structure of the CIR pro-
cess to identify the Fourier transform of the law of the (Xt, t ≥ 0). A more probabilistic
method to get the transition density was mentioned in Yor et al [17].
In this section we briefly explain how to compute the transition density function of the
CIR process via squared Bessel processes this method used in [17, 25]. For full details the
readers are referred to [17, 25, 49].

Definition 1. For every δ ≥ 0 and x ≥ 0 the unique strong solution to the equation

(1.4) Rt = x+ δt+ 2

∫ t

0

√
RsdBs

is called the square of a δ-dimensional Bessel process started at x and is denoted by
BESQδ

x.

Remark 1. The number δ is called the dimension of BESQδ, since a BESQδ process
Rt can be represented by the square of the Euclidean norm of δ-dimensional Brownian
motion Bt if δ ∈ N: Rt = |Bt|2.

Definition 2. The square root of BESQδ, δ ≥ 0, y =
√
x ≥ 0 is called the Bessel process

of dimension δ started at y and is denoted by BESδ.

18



1.1. COX-INGERSOLL-ROSS MODEL

The CIR process (1.3) can be represented as a time-changed squared Bessel process

Xt = e−atR

(
σ2

4a

(
eat − 1

))
,

where R is a squared Bessel process with dimension δ = 4aθ
σ2 started at x. This relation

is used by Delbaen and Shirakawa [8] and Szatzschneider [50]. For δ > 0, the transition
density for BESQδ is equal to

qδt (x, y) =
1

2t

(y
x

) ν
2
exp
{
− x+ y

2t

}
Iν

(√
xy

t

)
,

where t > 0, x > 0, ν ≡ δ
2
− 1 and Iν is the modified Bessel function of the first kind

of index ν, see e.g. [49]. Using the transition density of the squared Bessel, it is easy to
obtain the transition density of CIR process

(1.5) p(t, x, y) = ρe−u−v
(v
u

) q
2
Iq
(
2(uv)

1
2

)
for t > 0, x > 0 and y ≥ 0, where

ρ ≡ 2a

σ2
(

1− e−at
) , u ≡ ρxe−at,

v ≡ρy, q ≡ 2aθ

σ2
− 1,

and Iq(·) is the first-order modified Bessel function with index q, defined by:

Iq(x) =
(x

2

)q ∞∑
k=0

(
x
2

)2k

k!Γ(q + k + 1)

We should remark that for x = 0 the formula of the density function p(t, x, y) given in
(1.5) is no more valid. In this case the density function is given by

(1.6) p(t, 0, y) =
ρ

Γ(q + 1)
vqe−v

for t > 0 and y ≥ 0.
The distribution density is the non-central chi-square, χ2[2v; 2q + 2, 2u], with 2q + 2
degrees of freedom, and non-centrality parameter 2u.
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1.2. BASIC AFFINE JUMP DIFFUSION PROCESS

The conditional expectation and conditional variance of the short rate (Xt, t ≥ 0) can be
calculated explicitly which can be useful for calibrating the parameters, for s > t we get

E[Xs|Xt] = Xte
−a(s−t) + θ

(
1− e−a(s−t))

V ar[Xs|Xt] = Xt(
σ2

a
)
(
e−a(s−t) − e−2a(s−t))+ θ

(σ2

a
)(1− e−a(s−t))2

The properties of the distribution of the future interest rates are those expected values. As
a approaches infinity, the mean goes to θ and the variance to zero, and when a approaches
zero, the conditional mean goes to the current interest rate and the variance to σ2X(t)(s−
t). Another important issue concerning the CIR process is its long-term behavior. In the
original paper [7] by John C. Cox, Jonathan E. Ingersoll and Stephen A. Ross, the steady
state of the CIR model is shown to be a Gamma distribution. In other words, as t →
∞, Xt → X∞ where X∞ follows a Gamma distribution with shape parameter 2aθ

σ2 and
scale parameter σ2

2a
. The steady state mean and variance are θ and σ2θ

2a
, respectively. The

corresponding Gamma distribution is an invariant measure for the CIR process. It is also
well known that this invariant measure is ergodic (see [3]). [4] investigated the recurrent

properties of the CIR process and proved that
[
0,

√
(2σ2+4aθ)(3aθ+σ2)

2a
+ 1
]

is a recurrent
region for the CIR process. As well known, the CIR process is an affine process in R+,
the laplace transform of the value of the process at time t is the exponential of an affine
function of its initial value. General affine processes and their applications in finance have
been investigated in great detail in [9]. Among other things, it is proved in [9] that any
stochastically continuous affine process is a Feller process. In particular, the CIR process
is a Feller process in R+.

1.2 Basic affine jump diffusion process
The CIR model captures many features of the real world interest rates. In particular, the
interest rate in the CIR model is non-negative and mean-reverting. Because of its vast
applications in mathematical finance, some extensions of the CIR model have been intro-
duced and studied, see e.g. [10, 13, 42].

Here, we propose to analyze a stochastic process, which is a basic affine jump diffusion
(shorted as BAJD). It can be seen as a generalization of the classical Cox-Ingersoll-Ross
process including jumps. The BAJD process is given as the unique strong solution X :=
(Xt)t≥0 to the following stochastic differential equation

(1.7) dXt = a(θ −Xt)dt+ σ
√
XtdWt + dJt, X0 ≥ 0,
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1.2. BASIC AFFINE JUMP DIFFUSION PROCESS

where a, θ, σ are positive constants, (Wt)t≥0 is a one-dimensional Brownian motion and
(Jt)t≥0 is a compound Poisson process, i.e.

J(t) =

N(t)∑
i=1

Yi,

where Nt is a Poisson process with constant jump intensity c, the (Yi)i∈N are independent
and exponentially distributed with parameter d, which are also independent of (Nt)t≥0.

• In this model only positive jumps are allowed.

• The jump size and inter-arrival times are exponentially distributed with parameter
d and c.

• (Jt)t≥0 is a pure-jump Lévy process with Lévy measure

ν(dy) =

{
cde−dydy, y ≥ 0,

0, y < 0,

for some constants c > 0 and d > 0.

We assume that all the above processes are defined on some filtered probability space
(Ω,F , (Ft)t≥0, P ).

The BAJD process X = (Xt)t≥0 given by (1.7), has been introduced in 2001 by Duffie
and Gârleanu [10] and is attractive for modelling default times τ in credit risk applications,
i.e.

P(τ > t+ s|Ft) = E
[

exp
( ∫ t+s

t

−Xudu
)
|Ft
]
,

since both the moment generating function and the characteristic function are known in
closed form. Notice that the BAJD process can be seen as a special case of CBI-process
(Continuous-state Branching process with Immigration), if we choose the parameters ac-
cording to [13, Thm. 5.3], as follows

α =
1

2
σ2, b = aθ, β = −a,

m(dy) := ν(dy) = cde−dydy, µ = 0,

for some constants c > 0 and d > 0. A special case is the no-jump, i.e. c = 0, just yields
the classical CIR model.

It was also used in [13] and [38] as a short-rate model. Due to its simple structure, it is
later referred as the basic affine jump-diffusion. The existence and uniqueness of strong
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1.3. JUMP-DIFFUSION CIR PROCESS

solutions to the SDE (1.7) follow from the main results of [15]. At the same time, the
BAJD process X = (Xt)t≥0 in (1.7) stays non-negative due to vanishing volatility and
positive drift near the origin. This fact can be shown rigorously with the help of compari-
son theorems for SDEs, for more details we refer the reader to [15].
If the coefficient of the linear term in the drift is negative, and the constant term is positive,
then BAJD process is mean-reverting, which is an important empirical feature observed
in credit markets.

As its name implies, the BAJD belongs to the class of affine processes. Roughly speak-
ing, affine processes are Markov processes for which the logarithm of the characteristic
function of the process is affine with respect to the initial state. Affine processes on the
canonical state space Rm

+ × Rn have been thoroughly investigated by Duffie et al [9], as
well as in [36]. In particular, it was shown in [9] (see also [36]) that any stochastic contin-
uous affine process on Rm

+ ×Rn is a Feller process and a complete characterization of its
generator has been derived. Results on affine processes with the state space R+ can also
be found in [13]. Affine processes have found vast applications in mathematical finance,
because of their complexity and computational tractability. As mentioned in [9], these
applications include the affine term structure models of interest rates, affine stochastic
volatility models, and many others.

1.3 Jump-diffusion CIR process
A more general extension of the classical CIR model including jumps is the so-called
jump-diffusion CIR process (shorted as JCIR). The jumps of the JCIR are introduced
with the help of a pure-jump Lévy process. The JCIR process is defined as the unique
strong solution X := (Xt, t ≥ 0) to the following stochastic differential equation

(1.8) dXt = a(θ −Xt)dt+ σ
√
XtdWt + dJt, X0 ≥ 0,

where a, σ > 0, θ ≥ 0 are constants, (Wt, t ≥ 0) is a one-dimensional Brownian motion
and (Jt, t ≥ 0) is a pure-jump Lévy process with its Lévy measure ν concentrated on
(0,∞) and satisfying

(1.9)
∫

(0,∞)

(ξ ∧ 1)ν(dξ) <∞,

independent of the Brownian motion (Wt, t ≥ 0).

The initial value X0 is assumed to be independent of (Wt, t ≥ 0) and (Jt, t ≥ 0).
We assume that all the above processes are defined on some filtered probability space
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1.3. JUMP-DIFFUSION CIR PROCESS

(Ω,F , (F)t≥0, P ). We remark that if we choose the parameters according to [13, Thm.
5.3], as follows

α =
1

2
σ2, b = aθ, β = −a,

m(dy) := ν(dξ), µ = 0,

then we get the JCIR process as a special case of CBI-process (see [13]).

The existence and uniqueness of strong solutions to (1.8) are guaranteed by [15, Thm.
5.1].

The JCIR process preserves the mean-reverting and non-negative properties of the classi-
cal CIR process (1.3), more precisely the term a(θ−Xt) in (1.8) defines a mean reverting
drift pulling the process towards its long-term value θ with a speed of adjustment equal to
a. Since the diffusion coefficient in the SDE (1.8) degenerate at 0 and only positive jumps
are allowed, the JCIR process (Xt, t ≥ 0) stays non-negative if X0 ≥ 0. This fact can
be shown rigorously with the help of comparison theorems for SDEs, for more details we
refer the readers to [15].

Clearly,the JCIR defined in (1.8) includes the classical CIR as well as the basic affine
jump-diffusion (or BAJD) as a special case, in which the Lévy process (Jt, t ≥ 0) takes
the form of a compound Poisson process with exponentially distributed jumps. The BAJD
was introduced by Duffie and Gârleanu [10] to describe the dynamics of default intensity.
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Chapter 2

Ergodic results on transformation of the
CIR and application

As a main result of this chapter, we will prove the positive Harris recurrence of the
classical CIR process. Ergodic results on transformations of the CIR process will be given.
We will also show that if g : R+ → R is continuous, f : R → R+ is measurable and
(Xt, t ≥ 0) is the CIR process, then 1

N

∑N−1
j=0 f

( ∫ j+1

j
g
(
Xs

)
ds
)

converges almost surely
to a constant. An application of the ergodic results in one credit migration model will be
presented too.

2.1 Affine and regularity properties
Recall that the CIR process (Xt, t ≥ 0) is given as the unique strong solution of the
following stochastic differential equation

(2.1) dXt = a(θ −Xt)dt+ σ
√
XtdWt, X0 = x ≥ 0,

where a, θ, σ > 0 are constants and (Wt, t ≥ 0) is a one-dimensional Brownian motion
defined on some filtered probability space (Ω,F , (Ft)t≥0, P ) with (Ft)t≥0 satisfying the
usual conditions.

In this section we give the affine and regularity properties of CIR model.

2.1.1 Affine property
The process X given by (2.1) is a special affine process. The set of affine processes con-
tains a large class of important Markov processes such as continuous state branching
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2.1. AFFINE AND REGULARITY PROPERTIES

processes and Ornstein-Uhlenbeck processes. Further, a lot of models in financial math-
ematics are affine such as the Vasicek, CIR and Heston model, but also extensions of
these models that are obtained by adding jumps. A precise mathematical formulation and
a complete characterization of regular affine processes are due to Duffie et al. in 2003
[9]. Later several authors have contributed to the theory of general affine processes as
Filipović, Mayerhofer and Keller-Ressel.

The class of affine processes introduced by Duffie et al. consists of all continuous-time
Markov processes taking values in Rm

+ × Rn for integers m ≥ 0 and n ≥ 0 , whose log-
characteristic function depends in an affine way on the initial state vector of the process.
Stochastic processes of this type have been studied also where D = R+ or R, they have
been obtained as continuous-time limits of classic Galton-Watson branching processes
with and without immigration. First let us recall the definition of affine process.

Definition 3. (One-dimensional affine process) A time-homogenous Markov process (Xt)t≥0

taking values in D = R≥0 or R is called affine if the characteristic function is exponen-
tially affine in x. More precisely, this means that there exist C-valued functions φ(t, u)
and ψ(t, u) defined on D × U , where

U :=

{
{u ∈ C : <u ≤ 0}, if D = R≥0

{u ∈ C : <u = 0} if D = R.

and <u denotes the real part of u, such that

(2.2) Ex
[
euXt

]
= exp

(
φ(t, u) + xψ(t, u)

)
,

for all x ∈ D and (t, u) ∈ R+ × U .

Duffie, Filipović and Schachermayer [9] introduce the following regularity conditions:

Definition 4. An affine process is said to be regular, if the derivatives

F (u) = ∂tφ(t, u)|t=0 and R(u) = ∂tψ(t, u)|t=0

exist, and are continuous at u = 0.

Under this regularity assumptions, the functions F and R completely characterize
the process (Xt)t≥0. Moreover, the functions φ(t, u) and ψ(t, u) defined in (2.2) are the
solutions of the following generalized Riccati equations

(2.3)

{
∂tφ(t, u) = F

(
ψ(t, u)

)
, φ(0, u) = 0,

∂tψ(t, u) = R
(
ψ(t, u)

)
, ψ(0, u) = u,
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For the readers we refer to, Duffie et al. [9, Theorem 2.7].

It is well-known that the CIR process belongs to the class of affine process in R+. More
precisely, if we can find functions φ(t, u) and ψ(t, u) with the initial conditions φ(0, u) =
0 and ψ(0, u) = u, such that (2.2). For T > 0 and u ∈ U := {u ∈ C : <u ≤ 0} define
the complex-valued Itô process

M(t) := f(t,Xt) = exp
(
φ(T − t, u) +Xtψ(T − t, u)

)
Now, we assume that the functions φ and ψ are sufficiently differentiable then we can
apply Itô formula and obtain

df(t,Xt)

f(t,Xt)
= −

(
∂tφ(T − t, u) + ∂tψ(T − t, u)Xt

)
dt+ ψ(T − t, u)dXt +

1

2
σ2ψ(T − t, u)2Xtdt

= −
(
∂tφ(T − t, u) + ∂tψ(T − t, u)Xt − ψ(T − t, u)a(θ −Xt)−

1

2
σ2ψ(T − t, u)2Xt

)
dt

+ σψ(T − t, u)
√
XtdWt, t ≤ T.

We denote

I(t) := ∂tφ(T − t, u) + ∂tψ(T − t, u)Xt − ψ(T − t, u)a(θ−Xt)−
1

2
σ2ψ(T − t, u)2Xt,

we can write

(2.4)
dM(t)

M(t)
= −I(t)dt+ σψ(T − t, u)

√
XtdWt.

Since M is a martingale, we have

I(t) = 0, for all t ≤ T a.s.

Letting t→ 0 by continuity of the parameters, we thus obtain

∂tφ(T, u) + ∂tψ(T, u)x = ψ(T, u)a(θ − x) +
1

2
σ2ψ(T, u)2x

for all x ∈ R+, T > 0 and u ∈ U .
Note that both sides are affine in x therefore we can collect the coefficients and we get

∂tφ(t, u) = aθψ(t, u),

∂tψ(t, u) = −aψ(t, u) +
1

2
σ2ψ2(t, u).
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We also know the initial conditions

φ(0, u) = 0 and ψ(0, u) = u.

We derived that the functions φ(t, u) and ψ(t, u) satisfy ordinary differential equations of
the form

(2.5)

{
∂tφ(t, u) = F

(
ψ(t, u)

)
, φ(0, u) = 0,

∂tψ(t, u) = R
(
ψ(t, u)

)
, ψ(0, u) = u,

with F and R satisfies

F (u) =aθu(2.6)

R(u) =
σ2u2

2
− au.(2.7)

The ordinary differential equations (2.5) are called the generalized Riccati equations.
Solving the system 2.5 gave φ(t, u) and ψ(t, u) in explicit form. One can remark that
the ordinary differential equation for ψ, the second equation of the generalized Riccati
equations, is a Bernoulli differential equation with parameter 2 and it can be represented
as follows

ψ(t, u) = ψ(0, u)e−
∫ t
0 ads

(
1− u

∫ t

0

σ2

2
e−asds

)−1

=
ue−at

1− σ2

2a
u(1− e−at)

.(2.8)

Note that the first Riccati equation is just an integral, and φ may be written explicitly
as:

φ(t, u)− φ(0, u) = aθ

∫ t

0

ψ(s, u)ds

= aθ

∫ t

0

ue−as

1− σ2

2a
u(1− e−as)

ds, let y = 1− σ2

2a
u(1− e−as)

= aθ

∫ y(t)

1

− 2

σ2

dy

y

(2.9) φ(t, u) = −2aθ

σ2
log
(
1− σ2

2a
u(1− e−at)

)
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According to (2.8) and (2.9) the characteristic function of Xt is given by

Ex[e
uXt ] =

∫
R+

p(t, x, y)euydy

=
(
1− σ2

2a
u(1− e−at)

)− 2aθ
σ2 · exp

( xue−at

1− σ2

2a
u(1− e−at)

)
2.1.2 Regularity property
So far the CIR process is defined as a solution of a stochastic differential equation. This
setting is broadly used in the literature, especially in the area of financial mathematics.
Another somewhat different setting, initiated by Duffie et al [9], is to construct the CIR
process as a Markov process on the canonical path space. This approach has some advan-
tage when we have to deal with the laws of CIR process from different starting points and
it is also applicable for other affine models.

Since later we need to apply the ergodic theory of Feller processes, we adopt the
approach of Duffie et al [9] in this section. To be precise, we first establish the connection
between these two settings.

Let R+ := [0,∞). Consider the CIR process (Xt, t ≥ 0) starting from x ∈ R+,
namely (Xt, t ≥ 0) is the unique strong solution to (2.1).

We denote Ex(·) and Px(·) as the expectation and probability respectively given the
initial condition X0 = x, with x ≥ 0 being a constant. The semigroup (Tt) associated
with the CIR process is defined as

(2.10) Ttf(x) := Ex[f(Xt)] =

∫
R+

p(t, x, y)f(y)dy,

where f : R+ → R is bounded and continuous and we recall that p(t, x, y) is the transition
density function of the CIR process started at x and is given by

(2.11) p(t, x, y) = ρe−u−v
(v
u

) q
2
Iq
(
2(uv)

1
2

)
for t > 0, x > 0 and y ≥ 0, where

ρ ≡ 2a

σ2
(

1− e−at
) , u ≡ ρxe−at,

v ≡ρy, q ≡ 2aθ

σ2
− 1,
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and Iq(·) is the first-order modified Bessel function with index q, defined by:

Iq(x) =
(x

2

)q ∞∑
k=0

(
x
2

)2k

k!Γ(q + k + 1)
.

For x = 0 the density function is given by

(2.12) p(t, 0, y) =
ρ

Γ(q + 1)
vqe−v

for t > 0 and y ≥ 0.

We write C0 = C0(R+) for the class of continuous functions which vanish at infinity.
It is well-known that CIR process is an affine process (see [9]). It is already shown

in [9, Section 8] (see also [36]) that the semigroup of every stochastic continuous affine
process is a Feller semigroup. Since CIR process is a diffusion process, it is obviously
stochastic continuous. Thus we know that (Tt)t≥0 defined in (2.10) is a Feller semigroup.

We denote the canonical path space by Ω̂, namely Ω̂ = C
(
[0,∞);R+

)
, and let

(X̂t, t ≥ 0) be the canonical process on Ω̂. Let (F̂t)t≥0 be the filtration generated by the
canonical process (X̂t, t ≥ 0), namely F̂t := σ(X̂s, 0 ≤ s ≤ t) and F̂ := σ(X̂s, s ≥ 0).
The map

X : (Ω,F)→ (Ω̂, F̂)

induces a measure P̂x on (Ω̂, F̂), which is the law of the CIR process starting from
x on the canonical path space. Since (Tt)t≥0 is Feller semigroup, the Markov process
(Ω̂, F̂ , P̂x, x ∈ R+) is a Feller process.

Following [29, Chapter 20] we give the definition of a regular Markov process on R+.

Definition 5. Consider a continuous-time Markov processZ with state space
(
R+,B(R+)

)
and distributions Px. The process is said to be regular if there exist a locally finite mea-
sure µ on R+ and a continuous function (t, x, y) 7→ p(t, x, y) > 0 on (0,∞) × R2

+ such
that

Px{Zt ∈ B} =

∫
B

p(t, x, y)µ(dy), x ∈ R+, B ∈ B(R+), t > 0.

The measure µ is called the “supporting measure" of the process. It is unique up to an
equivalence (see [29, page 399]).

Proposition 2. The CIR process is a regular Feller process on R+.

We will explain in the proof that the supporting measure can not be a Lebesgue mea-
sure.
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Proof. As we have mentioned it before, the Feller property is already proved in [9, Section
8]. We only need to prove the regularity property.

The modified Bessel functions of the first kind can be expanded as

Iq(r) =
(r

2

)q ∞∑
k=0

(
1
4
r2
)k

k!Γ(q + k + 1)

thus has the following asymptotic forms

(2.13) Iq(r) =
1

Γ(q + 1)

(r
2

)q
+O(rq+2)

for small arguments 0 < r �
√
q + 1. If 2aθ

σ2 < 1, it follows that

p(t, x, 0) := lim
y→0

p(t, x, y) =∞, ∀x ∈ R+.

Thus (t, x, y) 7→ p(t, x, y) is not continuous on (0,∞)×R2
+. On the other hand, if 2aθ

σ2 > 1,
then we have

p(t, x, 0) := lim
y→0

p(t, x, y) = 0

Therefore in both cases the behavior of p(t, x, y) at point y = 0 violates the regularity
condition. To overcome this difficulty, we define a measure η on

(
R+,B(R+)

)
as

(2.14) η(dx) := h(x)dx,

where

h(x) =

{
x

2aθ
σ2
−1, 0 ≤ x ≤ 1,

1, x > 1.

Then the transition density of the CIR process with respect to the new measure η is given
by

(2.15) p̃(t, x, y) =
p(t, x, y)

h(y)
, t > 0, x ≥ 0, y > 0.

Recall that

ρ ≡ 2a

σ2
(

1− e−at
) , u ≡ ρxe−at,

v ≡ρy, q ≡ 2aθ

σ2
− 1.
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At the point y = 0 we define

(2.16) p̃(t, x, 0) := lim
y→0

p̃(t, x, y) =
1

Γ(q + 1)
ρq+1e−u ∈ (0,∞)

From (2.15) we get

(2.17) 0 < p̃(t, x, y) <∞, t > 0, x ≥ 0, y > 0,

since h(y) and p(t, x, y) are positive and finite if y > 0. It follows from (2.16) and (2.17)
that 0 < p̃(t, x, y) <∞ for all (t, x, y) ∈ (0,∞)× R2

+.
Moreover, the function p̃(t, x, y) is continuous on (0,∞) × (0,∞) × (0,∞), which

follows from the continuity and positivity of the functions h(y) and p(t, x, y) with y > 0.
Next we prove the continuity of p̃(t, x, y) at the point (0, 0, t0).

Let δ > 0 be sufficiently small. Then for |t− t0| ≤ δ and 0 ≤ x, y ≤ δ we have

|p̃(t, x, y)− p̃(t0, 0, 0)|
≤|p̃(t, x, y)− p̃(t, 0, y)|+ |p̃(t, 0, y)− p̃(t, 0, 0)|+ |p̃(t, 0, 0)− p̃(t0, 0, 0)|

≤
∣∣∣∣p(t, x, y)− p(t, 0, y)

h(y)

∣∣∣∣+

∣∣∣∣p(t, 0, y)

h(y)
− p̃(t, 0, 0)

∣∣∣∣+ |p̃(t, 0, 0)− p̃(t0, 0, 0)|.(2.18)

By (2.11) and (2.13) we get∣∣∣∣p(t, x, y)− p(t, 0, y)

h(y)

∣∣∣∣
=

1

|yq|

∣∣∣∣ρe−u−v(vu)
q
2
( 1

Γ(q + 1)
(uv)

q
2 +O

(
(uv)

q
2

+1
))
− ρ

Γ(q + 1)
vqe−v

∣∣∣∣
=

1

|yq|

∣∣∣∣ ρ

Γ(q + 1)
e−v
(
e−u − 1

)
vq +O

(
uvq+1

)∣∣∣∣
≤
∣∣∣∣ ρq+1

Γ(q + 1)
e−v
(
e−u − 1

)∣∣∣∣+O(uv
)
.(2.19)

By (2.12) and (2.16) we have∣∣∣∣p(t, 0, y)

h(y)
− p̃(t, 0, 0)

∣∣∣∣
=

∣∣∣∣ ρvqe−v

Γ(q + 1)yq
− 1

Γ(q + 1)
ρq+1

∣∣∣∣ =

∣∣∣∣ ρq+1

Γ(q + 1)

(
e−v − 1

)∣∣∣∣ .(2.20)

Since ρ is a continuous function with respect to the variable t, it follows from (2.16) that

(2.21) lim
t→t0
|p̃(t, 0, 0)− p̃(t0, 0, 0)| = 0.
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It follows from (2.18), (2.19), (2.20) and (2.21) that

lim
(t,x,y)→(t0,0,0)

|p̃(t, x, y)− p̃(t0, 0, 0)| = 0.

The continuity at other remaining points can be proved with a similar argument. Thus
(t, x, y) 7→ p̃(t, x, y) is a positive continuous function on (0,∞)×R2

+. Therefore the CIR
process is regular with respect to the measure η.

2.2 Positive Harris recurrence
In this section we prove the main result of this chapter, namely we show that the CIR
process, as a Feller process on R+, is positive Harris recurrent. Recall that (Ω̂, F̂ , P̂x, x ∈
R+) is the CIR process realized on the canonical path space. By (2.11) we know that

P̂x(X̂t ∈ A) =

∫
A

p(t, x, y)dy, ∀ A ∈ B(R+).

According to Proposition (2), we know that (Ω̂, F̂t, P̂x, x ∈ R+) is a regular Feller process
with respect to the measure η defined in (2.14).

The stability and ergodic theory of continuous-time Markov processes has a large
literature which includes many different approaches. For the readers we refer to [44, 45,
46]. Recurrence theory permits us to establish stability even for models for which the
stationary equations can not be explicitly solved (like the CIR process).

Let us first recall some basic definitions

Definition 6. A continuous-time Markov process Y on the state space
(
R+,B(R+)

)
is

said to be Harris recurrent if for some σ-finite measure µ

(2.22) Px
( ∫ ∞

0

1A(Ys)ds =∞
)

= 1,

for any x ∈ R+ and A ∈ B(R+) with µ(A) > 0.

Definition 7. A continuous-time Markov process Y with state space
(
R+,B(R+)

)
is said

to be uniformly transient if

(2.23) sup
x
Ex

[ ∫ ∞
0

1K(Ys)ds
]
<∞

for every compact K ⊂ R+.
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2.2. POSITIVE HARRIS RECURRENCE

Harris recurrence means that the Markov process (Yt, t ≥ 0) visit the Borel set A with
µ(A) > 0 infinitely often. It was shown in [29, Theorem 20.17] that any Feller process
is either Harris recurrent or uniformly transient. We are now ready to prove the positive
recurrence in the sense of Harris for the CIR process (Ω̂, F̂ , P̂x, x ∈ R+).

Lemma 1. The CIR process (Ω̂, F̂ , P̂x, x ∈ R+) is not uniformly transient.

Proof. We take K = [0,M ] with M > 0. Then for any fixed x ∈ (0,∞)

Êx

[ ∫ ∞
0

1[0,M ](X̂t)dt
]

=

∫ ∞
0

Êx
[
1[0,M ](X̂t)

]
dt

=

∫ ∞
0

∫ M

0

p(t, x, y)dydt

=

∫ M

0

dy

∫ ∞
0

p(t, x, y)dt.

The modified Bessel functions of the first kind have the following asymptotic forms, for
small arguments 0 < r �

√
q + 1, one obtains

Iq(r) ≈
1

Γ(q + 1)
(
r

2
)q

where Γ denotes the Gamma function. Let ε > 0 be small enough. For any y ∈ [ε,M ] and
large enough t we have

p(t, x, y) ≈ ρ

Γ(q + 1)
e−ρy(ρy)q

and thus for y ∈ [ε,M ] ∫ ∞
0

p(t, x, y)dt =∞.

It follows that

Êx

[ ∫ ∞
0

1[0,M ](X̂t)dt
]

=

∫ M

0

dy

∫ ∞
0

p(t, x, y)dt =∞.

This proves that the CIR process (Ω̂, F̂ , P̂x, x ∈ R+) is not uniformly transient.

Harris recurrence guarantees the existence of a unique (up to multiplication by a con-
stant) invariant measure for the Markov process (see e.g. [31]), but not necessarily finite.
If this invariant measure is finite, then the process is called positive Harris recurrent.

Theorem 2. The CIR process (Ω̂, F̂ , P̂x, x ∈ R+) is positive Harris recurrent.
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2.3. ERGODICITY RESULTS

Proof. In Proposition (2) we have shown that the CIR process is a regular Feller process
with respect to the measure ρ defined in (2.14). It follows from Lemma 1 and [29, The-
orem 20.17] that the CIR process is Harris recurrent and ρ can be taken as a possible
reference measure in place of µ in the Definition 6. Due to [29, Theorem 20.18] (see also
[40, Theorem 1.3.5]) it is possible to construct a locally finite invariant measure µ for the
CIR process. Furthermore µ is equivalent to ρ and every σ-finite, invariant measure for the
CIR process agrees with µ up to a normalization. It was shown in [7] that µ is a Gamma
distribution and has the form

(2.24) µ(dy) :=
ων

Γ(ν)
yν−1e−ωydy, y ≥ 0,

where ω ≡ 2a
σ2 and ν ≡ 2aθ

σ2 . Thus the CIR process is positive Harris recurrent.

2.3 Ergodicity results
As a consequence of positive Harris recurrence we are able to prove the strong ergodicity
of the CIR process. Based on Birkhoff’s ergodic theorem and the strong ergodicity we
give the ergodic results on transformation of the CIR.

Definition 8. (i) The tail σ-field on Ω̂ is defined as T̂ = ∩t≥0T̂t, where T̂t = σ{X̂s : s ≥
t}.
(ii) A σ-field G ⊂ F̂ on Ω̂ is said to be P̂ν-trivial if P̂ν(A) = 0 or P̂ν(A) = 1 for every
A ∈ G, where P̂ν(·) :=

∫
R+
P̂x(·)ν(dx) denotes the distribution of the CIR process with

initial distribution ν.

From the positive Harris recurrence of the CIR process we reproduce the following
well-known fact.

Corollary 1. The CIR process (Ω̂, F̂ , P̂x, x ∈ R+) is strongly ergodic, meaning that the
tail σ-field T̂ of the CIR process is P̂µ-trivial for every µ.

Proof. According to [29, Theorem 20.12] any Harris recurrent Feller process is strongly
ergodic. From Theorem 2 we know that the CIR process (Ω̂, F̂ , P̂x, x ∈ R+) is a strongly
ergodic Markov process which means the tail σ-field T̂ of the CIR process is P̂µ-trivial
for every µ, see [29, Theorem 20.10].
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2.3. ERGODICITY RESULTS

Now we can summarize our results with the following diagram

Not uniformly transient

[29,Thm20.17]
��

Strong ergodicity Harris recurrent
[29,Thm20.12]oo

OO

[29,Thm20.18]// Existence of a unique invariant measure
[29,page408]

rr
Positive Harris recurrent

Based on Corollary 1, we now apply the key result of stationarity theory which is
Birkhoff’s ergodic theorem to get an ergodicity result for a transformation of the CIR
process, which will be applied the next section to calibrate parameters of a credit migra-
tion model.

Let (S,S) be an arbitrary measurable space. Given a measure µ and a measurable
transformation T on S, we say that T be a µ-preserving map on S if µ ◦ T−1 = µ. Thus,
if ξ be a random element in S with distribution µ, then T is µ-preserving if and only if
Tξ

d
= ξ.
Now we recall Birkhoff’s ergodic Theorem (see e.g. [29, Theorem 10.6]). Let (S,S)

be a measurable space and ξ be a random element in S with distribution µ, and let T be
a µ-preserving map on S with invariant σ-field I := {A ∈ S : T−1A = A} and let
Iξ := {ξ−1A : A ∈ I}. Then for any measurable function f ≥ 0 on S,

lim
n→∞

1

n

n−1∑
k=0

f(T kξ)→ E[f(ξ)|Iξ] a.s.

The same convergence holds in Lp for some p ≥ 1 when f ∈ Lp(µ).
We now consider the canonical CIR process (Ω̂, F̂ , P̂x, x ∈ R+) which is previous

constructed in this section. Recall that the measure µ defined in (2.24) is the unique in-
variant probability measure for the CIR process. Suppose that g : R+ → R is a continuous
function. We define a random sequence

ξ : (Ω̂, F̂ , P̂µ)→ R∞

by

ξ(ω̂) :=

(∫ 1

0

g
(
X̂s

)
(ω̂)ds,

∫ 2

1

g
(
X̂s

)
(ω̂)ds, · · ·

)
The shift operator θ : R∞ → R∞ is defined as

θ(x0, x1, x2, x3, · · · ) := (x1, x2, x3, · · · )
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for x = (x0, x1, x2, · · · ) and the invariant σ-field I on R∞ generated by the shift operator
θ is given by

I := {A ∈ B(R∞) : θ−1A = A}.

Lemma 2. Suppose that g : R+ → R is continuous and f : R→ R+ is measurable. Then
we have

lim
N→∞

1

N

N−1∑
j=0

f
(∫ j+1

j

g
(
X̂s

)
(ω̂)ds

)
= Êµ

[
f
(∫ 1

0

g
(
X̂s

)
ds
)∣∣∣Iξ]

for P̂µ-almost all ω̂ ∈ Ω̂, where Iξ := {ξ−1A : A ∈ I}.

Proof. Since the initial distribution µ is an invariant measure for the CIR process

X̂1 ∼ µ.

It follows now from homogeneous Markov property that the random sequence ξ is sta-
tionary, i.e.

θξ
d
= ξ.

According to Birkhoff’s ergodic Theorem, for any measurable function h ≥ 0 on
(
R∞,B(R∞)

)
,

1

N

N−1∑
i=0

h(θiξ)→ Êµ[h(ξ)|Iξ] a.s.

where Iξ := ξ−1I and I is the invariant σ-field on R∞ generated by the shift operator θ.
Especially, if we take

h(x) := f
(
x0

)
for x = (x0, x1, x2, · · · ) ∈ R∞, then we get

lim
N→∞

1

N

N−1∑
j=0

f
(∫ j+1

j

g
(
X̂s

)
(ω̂)ds

)
= Êµ

[
f
(∫ 1

0

g
(
X̂s

)
ds
)∣∣∣Iξ]

for P̂µ-almost all ω̂ ∈ Ω̂.

Lemma 3. The invariant σ-field Iξ of ξ is P̂µ-trivial, namely

P̂µ(A) = 0 or P̂µ(A) = 1 for every A ∈ Iξ.
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Proof. Since X̂t is continuous and g : R+ → R is continuous, thus

σ(ξj) = σ

(∫ j+1

j

g
(
X̂s

)
ds

)
⊂ σ{X̂(s) : j ≤ s ≤ j + 1}.

Thus the tail σ-field of the random sequence ξ is contained in the tail σ-field T of the CIR
process X̂t, where T = ∩t≥0Tt and Tt = σ{X̂s : s ≥ t}. Because the invariant σ-field of
the random sequence ξ is contained in the tail σ-field of ξ, we get Iξ ⊂ T . According to
Corollary 1, the tail σ-field T of the CIR process X̂t is P̂µ-trivial, it follows that Iξ is also
P̂µ-trivial.

Theorem 3. Suppose that g : R+ → R is continuous and f : R → R+ is measurable.
Then for any x ∈ R+ we have

lim
N→∞

1

N

N−1∑
j=0

f
(∫ j+1

j

g
(
X̂s

)
(ω̂)ds

)
= Êµ

[
f
(∫ 1

0

g
(
X̂s

)
(ω̂)ds

)]

for P̂x-almost all ω̂ ∈ Ω̂, where µ is given (2.24)and is the unique invariant probability
measure for the CIR process.

Proof. Since Iξ is P̂µ-trivial, the conditional expectation

Êµ

[
f
(∫ 1

0

g
(
X̂s

)
ds
)∣∣∣Iξ]

is a constant and equals

Êµ

[
f
(∫ 1

0

g
(
X̂s

)
ds
)]
.

From Lemma 2 we get

(2.25) lim
N→∞

1

N

N−1∑
j=0

f
(∫ j+1

j

g
(
X̂s

)
(ω̂)ds

)
= Êµ

[
f
(∫ 1

0

g
(
X̂s

)
ds
)]

where the convergence in (2.25) holds for P̂µ-almost all ω̂ ∈ Ω̂. If we set

N :=
{
ω̂ ∈ Ω̂ : the convergence in (2.25) fails for ω̂

}
,

then
P̂µ(N) =

∫
R+

P̂x(N)µ(dx) = 0,
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which implies P̂x(N) = 0 for µ-almost all x ∈ R+. For any x ∈ R+, by the Markov
property, it holds

P̂x(N) =Êx[1N ] = Êx
[
Êx[1N |F̂1]

]
=Êx

[
P̂X̂1

[θ−1
1 (N)]

]
=

∫ ∞
0

P̂y(N)p(1, x, y)dy

=0,

where p(t, x, y) denotes the transition density function of the CIR process. In the above
calculation we have used the fact that θ−1

1 (N) = N , namely the pre-image of N under the
shift operator θ is still N . Thus we have proved that the convergence in (2.25) holds for
P̂x-almost all ω̂ ∈ Ω̂.

2.4 Application in one credit migration model
In this section we show a simple application of Theorem 3 in calibration of the parameters
in one credit migration model. We should remark that the results presented in this section
have been derived in [39] with a different method. Their method is very analytical and
relies very much on the affine structure of the CIR process. In contrast to [39] our method
is more probabilistic and can be extended to more general models.

The idea of Hurd and Kuznetsov [22] was to generalize the 0 − 1 process to a finite
state Markov chain on {1, 2, · · · , k} where each state represents credit rating or distance
to default of the firm. Here we consider a simpler version of the credit migration model
of Hurd and Kuznetsov where k = 8. Consider the finite state space {1, 2, · · · , 8}, which
can be identified with Moody’s rating classes via the mapping:

{1, 2, · · · , 8} ↔ {AAA, AA, A, BBB, BB, B, CCC, default}.

The credit migration matrix P (s, t), 0 ≤ s ≤ t, is a stochastic 8× 8 matrix and describes
all possible transition probabilities between rating classes from time s to time t, namely

(2.26) P (s, t) =
(
pij(s, t)

)
1≤i,j≤8

where each pij(s, t) in (2.26) represents the transition probability from state i to state
j from time s to time t. The last column of the migration matrix P (s, t) represents the
absorbing state of default, i.e. the probability of leaving the default state equals zero. It
was assumed in [22] that the migration matrix P (s, t) is given by

(2.27) P (s, t) = exp

((∫ t

s

Xrdr
)
· P̂
)
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2.4. APPLICATION IN ONE CREDIT MIGRATION MODEL

where P̂ is a 8× 8 constant matrix and Xt is a CIR process with long-term average 1,
namely Xt satisfies

Xt = X0 +

∫ t

0

a(1−Xs)ds+

∫ t

0

σ
√
XsdWs, t ≥ 0

The matrix P̂ is called the generator matrix. Thus the dynamics of the migration matrix
is determined by two factors: the generator P̂ and the CIR process Xt.

A natural question is how to calibrate the parameters of the above credit migration
model. More precisely, how can one determine the generator matrix P̂ and the parameters
a, θ, σ of the CIR process?

Among many other things, this problem was considered by [39] and they presented the
following way to calibrate the parameters of the above model, with extra assumptions on
the generator matrix P̂ . The starting point is the Moody-matrix PMoody, which is derived
by Moody as the historical average of one year migration matrix, based on the historical
data from 1920 to 1996. The logarithm matrix of PMoody is given by

(2.28) P̂Moody := log(PMoody) = log(id− (id− PMoody)) = −
∞∑
j=1

1

j
(id− PMoody)

j

According to [24, Theorem 2.2], the right-hand side in (2.28) converges and thus P̂Moody

is well-defined and
exp(P̂Moody) = PMoody

It was indicated by [39] that P̂Moody is diagonalizable and thus can be written as

(2.29) P̂Moody = G · (−D̂Moody,ii) ·G−1

where D̂Moody,ii is a diagonal matrix and G = (gik)1≤j,k≤8 is a matrix whose columns are
the corresponding eigenvectors of P̂Moody. Thus we get

PMoody = G · (e−D̂Moody,ii) ·G−1

Instead of finding a full 8 × 8 generator matrix, it was proposed in [39] to seek the
generator matrix in the form

P̂ = G · (−D̂) ·G−1

where D̂ = (D̂ii) is a diagonal matrix with diagonal elements D̂ii ≥ 0 and G is given in
(2.29).
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According to (2.27) the migration matrix from time j to j+ 1, j = 0, 1, 2, · · · is given
by

P (j, j + 1) = exp

((∫ j+1

j

Xsds
)
· P̂
)

= G ·
(
e−D̂ii

∫ j+1
j Xsds

)
·G−1

= G ·



e−D̂11

∫ j+1
j Xsds 0 · · · 0

0
. . . ...

... . . . 0

0 · · · e−D̂88

∫ j+1
j Xsds


·G−1

Thus the Cesàro average 1
N

∑N−1
j=0 P (j, j + 1) equals

(2.30) G ·



1
N

∑N−1
j=0 e−D̂11

∫ j+1
j Xsds 0 · · · 0

0
. . . ...

... . . . 0

0 · · · 1
N

∑N−1
j=0 e−D̂88

∫ j+1
j Xsds


·G−1

For each 1 ≤ i ≤ 8 by taking g(x) = D̂iix and f(x) = e−x in Theorem 3 of last
section we get

(2.31) lim
N→∞

1

N

N−1∑
j=0

e−D̂ii
∫ j+1
j Xsds = Eµ

[
e−D̂ii

∫ 1
0 Xsds

]
and the convergence in (2.31) holds almost surely. Since each term under the limit sign on
the left hand side of (2.31) is bounded, by dominated convergence theorem, the conver-
gence in (2.31) holds also in Lp for any p ≥ 1. We should remark that the L2 convergence
in (2.31) was obtained in [39] with a different method. Our method used here is more
probabilistic and provides us with a stronger convergence in (2.31).

Since the Laplace transform of
∫ 1

0
Xsds is well-known (for example, see [3, Lemma

2]), we get
Ex

[
e−D̂ii

∫ 1
0 Xsds

]
= eaA(0,D̂ii,1)+x·B(0,D̂ii,1)
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with deterministic functions

B(λ, u, t) := −λ(h− a+ (h+ a)e−ht) + 2u(1− e−ht)
σ2λ(1− e−ht) + h+ a+ (h− a)e−ht

A(λ, u, t) :=
2

σ2
log

(
2he

1
2

(a−h)t

σ2λ(1− e−ht) + h+ a+ (h− a)e−ht

)
and h :=

√
a2 + 2uσ2. Therefore

Eµ

[
e−D̂ii

∫ 1
0 Xsds

]
=

∫ ∞
0

Ex

[
e−D̂ii

∫ 1
0 Xsds

]
µ(dx)

=

∫ ∞
0

eaA(0,D̂ii,1)+x·B(0,D̂ii,1) ω
ν

Γ(ν)
xν−1e−ωxdx

=eaD̂iiA(0,D̂ii,1)
( 2a

2a− σ2D̂iiB(0, D̂ii, 1)

) 2a
σ2

.(2.32)

On the other hand PMoody is the historical average of one year migration matrix and
thus it is reasonable to assume that

(2.33) PMoody = lim
N→∞

1

N

N−1∑
j=0

P (j, j + 1),

if the limit on the right-hand side exists.
It now follows from (2.30), (2.31), (2.32) and (2.33) that

(2.34) − D̂Moody,ii = aD̂iiA(0, D̂ii, 1) +
2a

σ2
log

(
2a

2a− σ2D̂iiB(0, D̂ii, 1)

)
.

for each 1 ≤ i ≤ 8.
To get more equations for the unknown parameters, we consider the probability of

rating downgrade from level A to the level BBB within time j und j + 1, which is given
by:

(2.35) p3,4(j, j + 1) :=
8∑

k=1

g3k · e−D̂kk
∫ j+1
j Xsds · gk4

where (gik)1≤i,k≤8 is the inverse of the matrix G. Similar to (2.31) we know that as N →
∞

1

N

N−1∑
j=0

p3,4(j, j + 1)
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converges almost surely to a constant, denoted by E3,4,∞, and we have

E3,4,∞ =
8∑

k=1

g3ke
aD̂kkA(0,D̂kk,1)

(
2a

2a− σ2D̂kkB(0, D̂kk, 1)

) 2a
σ2

gk4

Define the ergodic variation

V3,4,∞ := lim
N→∞

1

N

N−1∑
j=0

(
p3,4(j, j + 1)− E3,4,∞

)2(2.36)

= lim
N→∞

1

N

N−1∑
j=0

p2
3,4(j, j + 1)− E2

3,4,∞

Since

p2
3,4(j, j + 1) =

8∑
i,k=1

g3ig3ke
−(D̂ii+D̂kk)

∫ j+1
j Xsds · gi4gk4

it follows again from Theorem 3 that

lim
N→∞

1

N

N−1∑
j=0

p2
3,4(j, j + 1) =

∑8
i,k=1 g3ig3ke

(D̂ii+D̂kk)aA(0,D̂ii+D̂kk,1) ·

(
2a

2a−σ2(D̂ii+D̂kk)B(0,D̂ii+D̂kk,1)

) 2a
σ2

gi4gk4

Thus we get

VP,3,4,∞ =
8∑

i,k=1

g3ig3ke
(D̂ii+D̂kk)aθA(0,D̂ii+D̂kk,1)·

(
2a

2a− σ2(D̂ii + D̂kk)B(0, D̂ii + D̂kk, 1)

) 2b
σ2

gi4gk4−

8∑
i,k=1

g3ig3ke
D̂iiaθA(0,D̂ii,1)+D̂kkaθA(0,D̂kk,1)·

(
2a

2a− σ2D̂iiB(0, D̂ii, 1)

) 2b
σ2
(

2a

2a− σ2D̂kkB(0, D̂kk, 1)

) 2b
σ2

gi4gk4(2.37)
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Based on the historical data from 1920 to 1996 Moody also gave the standard varia-
tion of one year transition probabilities between different rating classes. For example the
standard variation of the one year transition probability from rating class A to BBB is
0.053. We could approximately assume that this value coincides with the square of the
ergodic variation defined in (2.36), namely

(2.38) V3,4,∞ = (0.053)2.

Summarizing (2.34), (2.37) and (2.38) we get 9 equations for 10 unknown parameters.
By fitting Moody’s standard variation of one year transition probability of another rat-
ing transition we will get an extra equation. Thus all parameters of this migration matrix
model can be uniquely determined by solving the 10 equations we have derived.
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Chapter 3

Positive Harris recurrence, exponential
ergodicity and calibration of the BAJD

In this chapter, we find the transition densities of the basic affine jump-diffusion (BAJD),
which has been introduced by Duffie and Gârleanu as an extension of the classical CIR
model with jumps. We prove the positive Harris recurrence and exponential ergodicity of
the BAJD. Furthermore, we prove that the unique invariant probability measure π of the
BAJD is absolutely continuous with respect to the Lebesgue measure and we also derive
a closed form formula for the density function of π.

3.1 Characteristic function of the BAJD
We may now recall some preliminaries on the BAJD process. As defined in (1.7), it is the
unique strong solution X = (Xt)t≥0 to the following stochastic differential equation

(3.1) dXt = a(θ −Xt)dt+ σ
√
XtdWt + dJt, X0 ≥ 0.

where a, θ, σ are positive constants, (Wt)t≥0 is a one-dimensional Brownian motion and
(Jt)t≥0 is a one-dimensional non-decreasing pure jump Lévy process with identical inde-
pendent increments, characterized by its jump measure ν which is supported on (0,∞).
The Lévy measure ν is given by

ν(dy) =

{
cde−dydy, y ≥ 0,

0, y < 0,

for some constants c > 0 and d > 0. Throughout this chapter we denote Px(·) and Ex(·)
as the probability and expectation respectively given the initial condition X0 = x, with
x ≥ 0 being a constant.
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3.1. CHARACTERISTIC FUNCTION OF THE BAJD

By the affine structure of the BAJD processX , the characteristic function ofXt (given
that X0 = x) is of the form

(3.2) Ex
[
euXt

]
= exp

(
φ(t, u) + xψ(t, u)

)
, u ∈ U := {u ∈ C : <u ≤ 0},

where the functions φ(t, u) and ψ(t, u) solve the generalized Riccati equations

(3.3)

{
∂tφ(t, u) = F

(
ψ(t, u)

)
, φ(0, u) = 0,

∂tψ(t, u) = R
(
ψ(t, u)

)
, ψ(0, u) = u ∈ U ,

with

F (u) = aθu+
cu

d− u
, u ∈ C \ {d},

R(u) =
σ2u2

2
− au, u ∈ C.

Remark that, it is not difficult to find the explicit form of the functions ∂tφ and ∂tψ. We
have to proceed as in the Section (2.1). More precisely, we can find the functions ∂tφ and
∂tψ under the initial conditions such that

Mt := f(t,Xt) = exp
(
φ(T − t, u) +Xtψ(T − t, u)

)
is a martingale.

By applying Itô formula, one can get

(3.4)
dM(t)

M(t)
= −I(t)dt+ σψ(T − t, u)

√
XtdWt +

∫
(0,∞)

(
eyψ(T−t,u) − 1

)
ν(dy),

We can derive the generalized Riccati equation by collecting the coefficients.
One can remark that the function R does not depend on the parameters of the jumps c and
d. For this reason, the solution of the second equation of the system (3.3), ψ is the same
as in the case of classical CIR (2.8).

(3.5) ψ(t, u) =
ue−at

1− σ2

2a
u(1− e−at)

Note that the first equation in the generalized Riccati equation is just an integral, and
φ may be written explicitly as:

(3.6) φ(t, u) =


−2aθ

σ2 log
(
1− σ2

2a
u(1− e−at)

)
+ c

a−σ2d
2

log
(
d−σ

2du
2a

+
(
σ2d
2a
−1
)
ue−at

d−u

)
, if ∆ 6= 0,

−2aθ
σ2 log

(
1− σ2

2a
u(1− e−at)

)
+ cu(1−e−at)

a(d−u)
, if ∆ = 0,
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3.1. CHARACTERISTIC FUNCTION OF THE BAJD

where ∆ = a − σ2d/2. Here the complex-valued logarithmic function log(·) is to be
understood as its main branch defined on C− {0}.

According to (3.2), (3.5) and (3.6), the characteristic function of Xt is given by

(3.7) Ex[e
uXt ] =



(
1− σ2

2a
u(1− e−at)

)− 2aθ
σ2 ·

(
d−σ

2du
2a

+
(
σ2d
2a
−1
)
ue−at

d−u

) c

a−σ2d
2

· exp
(

xue−at

1−σ2
2a
u(1−e−at)

)
, if ∆ 6= 0,(

1− σ2

2a
u(1− e−at)

)− 2aθ
σ2 · exp

(
cu(1−e−at)
a(d−u)

+ xue−at

1−σ2
2a
u(1−e−at)

)
,

if ∆ = 0.

Here the complex-valued power functions z−2aθ/σ2
:= exp(−(2aθ/σ2) log z) and zc/(a−σ2d/2) :=

exp((c log z)/(a−σ2d/2)) are to be understood as their main branches defined on C−{0}.
ObviouslyEx

[
exp(uXt)

]
is continuous in t ≥ 0 and thus the BAJD processX is stochas-

tically continuous.
We should point out that if we allow the parameter c to be 0, then the stochastic

differential equation (3.1) turns into

(3.8) dZt = a(θ − Zt)dt+ σ
√
ZtdWt, Z0 = x ≥ 0.

To avoid confusions we have usedZt instead ofXt here. The unique solutionZ := (Zt)t≥0

to (3.8) is the well-known Cox-Ingersoll-Ross (CIR) process and it holds

(3.9) Ex[e
uZt ] =

(
1− σ2

2a
u(1− e−at)

)− 2aθ
σ2 · exp

( xue−at

1− σ2

2a
u(1− e−at)

)
.

Later we will find a distribution νt on R+ such that

(3.10)
∫
R+

euyνt(dy) =


(
d−σ

2du
2a

+
(
σ2d
2a
−1
)
ue−at

d−u

) c

a−σ2d
2 , if ∆ 6= 0,

exp
(
cu(1−e−at)
a(d−u)

)
, if ∆ = 0.

Then it follows from (3.7), (3.9) and (3.10) that the distribution of the BAJD is the con-
volution of the distribution of the CIR process and νt. In light of this observation we can
thus identify the transition probabilities p(t, x, y) of the BAJD with

(3.11) p(t, x, y) =

∫
R+

f(t, x, y − z)νt(dz), x, y ≥ 0, t > 0,

to avoid confusion we have used f instead of p, where f(t, x, y) denotes the transition
densities of the CIR process.
Remark 4. For a different way of representing the distribution of Xt as a convolution we
refer the reader to [13]. In fact it was indicated in [13, Remark 4.8] that the distribution
of any affine process on R+ can be represented as the convolution of two distributions on
R+.
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3.2. MIXTURES OF BESSEL DISTRIBUTIONS

3.2 Mixtures of Bessel distributions
To find a distribution νt with the characteristic function of the form (3.10) and study the
distributional properties of the BAJD, it is inevitable to encounter the Bessel distributions
and mixtures of Bessel distributions.

We start with a slight variant of the Bessel distribution defined in [19, p.15]. Suppose
that α and β are positive constants. A probability measure µα,β on

(
R+,B(R+)

)
is called

a Bessel distribution with parameters α and β if

(3.12) µα,β(dx) = e−αδ0(dx) + βe−α−βx
√

α

βx
· I1(2

√
αβx)dx,

where δ0 is the Dirac measure at the origin and I1 is the modified Bessel function of the
first kind, namely,

I1(r) =
r

2

∞∑
k=0

(
1
4
r2
)k

k!(k + 1)!
, r ∈ R.

Now we consider mixtures of Bessel distributions. Let γ > 0 be a constant and define
a probability measure mα,β,γ on R+ as follows:

mα,β,γ(dx) :=

∫ ∞
0

µαt,β(dx)
tγ−1

Γ(γ)
e−tdt.

Similar to [19], we can easily calculate the characteristic function of µα,β and mα,β,γ .

Lemma 4. For u ∈ U we have:

(i)
∫ ∞

0

euxµα,β(dx) = e
αu
β−u .

(ii)
∫ ∞

0

euxmα,β,γ(dx) =
( 1

α + 1
+

α

α + 1
· 1

1− α+1
β
· u

)γ
.
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3.2. MIXTURES OF BESSEL DISTRIBUTIONS

Proof. (i) If u ∈ U , then∫ ∞
0

euxµα,β(dx) =

∫ ∞
0

euxe−αδ0(dx) +

∫ ∞
0

βeuxe−α−βx
√

α

βx
· I1(2

√
αβx)dx

=e−α + e−α
∫ ∞

0

βe−βx · eux
√

α

βx

(√
αβx

)
·
∞∑
k=0

(αβx)k

k!(k + 1)!
dx

=e−α + e−α
∫ ∞

0

αβe(u−β)x ·
∞∑
k=0

(αβx)k

k!(k + 1)!
dx

=e−α + αβe−α
∞∑
k=0

∫ ∞
0

e(u−β)x (αβx)k

k!(k + 1)!
dx

=e−α + e−α
∞∑
k=0

( αβ

β − u

)k+1

· 1

(k + 1)!

=e−α
∞∑
k=0

( αβ

β − u

)k
· 1

k!
= e−α · e

αβ
β−u = e

αu
β−u .

(ii) For u ∈ U , we get∫ ∞
0

euxmα,β,γ(dx) =

∫ ∞
0

(

∫ ∞
0

euxµαt,β(dx))
tγ−1

Γ(γ)
e−tdt

=

∫ ∞
0

eαt·
u

β−u · t
γ−1

Γ(γ)
e−tdt =

(
1 + α · u

u− β

)−γ
=

(−β + (α + 1)u

−β + u

)−γ
=
( −β + u

−β + (α + 1)u

)γ
=

( 1
α+1

((α + 1)u− β) + β
α+1
− β

−β + (α + 1)u

)−γ
=

( 1

α + 1
+

α

α + 1
· 1

1− α+1
β
· u

)γ
.(3.13)

Lemma 5. (i) The measure mα,β,γ can be represented as follows:

(3.14) mα,β,γ(dx) =
( 1

1 + α

)γ
δ0 + gα,β,γ(x)dx, x ≥ 0,

where

(3.15) gα,β,γ(x) :=
∞∑
k=1

αkΓ(k + γ)

(α + 1)k+γΓ(γ)k!
Γ(x; k, β), x ≥ 0,
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3.2. MIXTURES OF BESSEL DISTRIBUTIONS

and Γ(x; k, β) denotes the density function of the Gamma distribution with parameters k
and β.
(ii) The function gα,β,γ(x) defined in (3.15) is a continuous function with variables (α, β, γ, x) ∈
D := (0,∞)× (0,∞)× (0,∞)× [0,∞).

Proof. (i) We can write

mα,β,γ(dx) =

∫ ∞
0

µαt,β(dx)
tγ−1

Γ(γ)
e−tdt

=

∫ ∞
0

(
e−αtδ0(dx) + βe−αt−βx

√
αt

βx
· I1(2

√
αtβx)dx

) tγ−1

Γ(γ)
e−tdt

=
( 1

1 + α

)γ
δ0(dx) +

∫ ∞
0

αβe−αt−βx
∞∑
k=0

(αtβx)k

k!(k + 1)!
· tγ

Γ(γ)
e−tdtdx

=
( 1

1 + α

)γ
δ0(dx) + αβe−βx ·

∞∑
k=0

(∫ ∞
0

(αβx)k
e−(α+1)ttγ+k

Γ(γ)k!(k + 1)!
dt
)
dx

=
( 1

1 + α

)γ
δ0(dx) +

∞∑
k=0

αk+1Γ(k + γ + 1)

(α + 1)k+γ+1Γ(γ)(k + 1)!
Γ(x; k + 1, β)dx

=
( 1

1 + α

)γ
δ0(dx) +

∞∑
k=1

αkΓ(k + γ)

(α + 1)k+γΓ(γ)k!
Γ(x; k, β)dx.

(ii) By the definition of gα,β,γ(x) we have

gα,β,γ(x) =

∫ ∞
0

βe−αt−βx
√
αt

βx
· I1(2

√
αtβx)

tγ−1

Γ(γ)
e−tdt

=

∫ ∞
0

αβe−αt−βx
( ∞∑
k=0

(αtβx)k

k!(k + 1)!

) tγ

Γ(γ)
e−tdt

=

∫ ∞
0

αβtγ

Γ(γ)
e−(α+1)t−βx( ∞∑

k=0

(αtβx)k

k!(k + 1)!

)
dt

Suppose that (α0, β0, γ0, x0) ∈ D and δ > 0 is small enough such that γ0 − δ > 0,
α0 − δ > 0 and β0 − δ > 0. Then for (α, β, γ, x) ∈ Kδ with

Kδ := {(α, β, γ, x) ∈ D : max{|α− α0|, |β − β0|, |γ − γ0|, |x− x0|} ≤ δ}
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3.3. TRANSITION DENSITY OF THE BAJD

we get

αβtγ

Γ(γ)
e−(α+1)t−βx( ∞∑

k=0

(αtβx)k

k!(k + 1)!

)
≤αβt

γ

Γ(γ)
e−(α+1)t−βx( ∞∑

k=0

(αt)k(βx)k

(k!)2

)
≤αβt

γ

Γ(γ)
e−(α+1)t−βx · eαteβx ≤ αβtγ

Γ(γ)
e−t

≤cδ
(
tγ0−δ1[0,1](t) + tγ0+δe−t1(1,∞)(t)

)
(3.16)

for some constant cδ > 0, since αβ
Γ(γ)

is continuous and thus bounded for
(α, β, γ, x) ∈ Kδ. If (αn, βn, γn, xn) → (α0, β0, γ0, x0) as n → ∞, then by dominated
convergence we get

lim
n→∞

gαn,βn,γn(xn) = gα0,β0,γ0(x0),

namely gα,β,γ(x) is a continuous function on D.

Remark 5. If we write δ0 = Γ(0, β), namely considering the Dirac measure δ0 as a de-
generated Gamma distribution, then the representation in (3.14) shows that the measure
mα,β,γ is a mixture of Gamma distributions Γ(k, β), k ∈ Z+, namely

mα,β,γ =
( 1

1 + α

)γ
Γ(0, β) +

∞∑
k=1

αkΓ(k + γ)

(α + 1)k+γΓ(γ)k!
Γ(k, β).

3.3 Transition density of the BAJD
In this section we shall derive a closed form expression for the transition density of the
BAJD. We should mention that in [13, Chapter 7] the density functions of the pricing
semigroup associated to the BAJD was derived for some special cases. Essentially, the
method used in [13] could be used to derive the density functions of the BAJD in the
case where c/(a − σ2d/2) ∈ Z. Here we proceed like [13] but deal with more general
parameters. In order to do this, we first find, by using the results of the previous section,
a probability measure νt on R+ whose characteristic function satisfies (3.10).

We recall that the BAJD process X = (Xt)t≥0 is given by (3.1). We distinguish be-
tween three cases according to the sign of ∆ := a− σ2d/2.

50
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3.3.1 Case i): ∆ > 0

From (3.7) we know that

Ex[e
uXt ] =

(
1− σ2

2a
u(1− e−at)

)− 2aθ
σ2 · exp

( xue−at

1− σ2

2a
u(1− e−at)

)
·
(d− σ2du

2a
+
(
σ2d
2a
− 1
)
ue−at

d− u

) c

a−σ2d
2(3.17)

The product of the first two terms on the right-hand side of (3.17) coincides with the
characteristic function of the CIR process Z = (Zt)t≥0 defined in (1.3). It is well-known
that the transition density function of the CIR process is given by

(3.18) f(t, x, y) = ρe−u−v
(v
u

) q
2
Iq
(
2(uv)

1
2

)
for t > 0, x > 0 and y ≥ 0, where

ρ ≡ 2a

σ2
(

1− e−at
) , u ≡ ρxe−at,

v ≡ρy, q ≡ 2aθ

σ2
− 1,

and Iq(·) is the modified Bessel function of the first kind of order q, namely

Iq(r) =
(r

2

)q ∞∑
k=0

(
1
4
r2
)k

k!Γ(q + k + 1)
, r > 0.

We should remark that for x = 0 the formula of the density function f(t, x, y) given in
(3.18) is not valid any more. In this case we have

(3.19) f(t, 0, y) =
ρ

Γ(q + 1)
vqe−v

for t > 0 and y ≥ 0.
Thus∫

R+

f(t, x, y)euydy =
(
1− σ2

2a
u(1− e−at)

)− 2aθ
σ2 · exp

( xue−at

1− σ2

2a
u(1− e−at)

)
.
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Now we want to find a probability measure νt with∫
R+

euyνt(dy) =
(d− σ2du

2a
+
(
σ2d
2a
− 1
)
ue−at

d− u

) c

a−σ2d
2

=
(d− uL1(t)

d− u

) c

a−σ2d
2

=
(
L1(t) +

(
1− L1(t)

) 1

1− u
d

) c

a−σ2d
2 ,(3.20)

where L1(t) := exp(−at) + σ2d
(
1 − exp(−at)

)
/(2a). If such a measure νt exists, then

the law of Xt can be written as the convolution of the law of Zt and νt.
Comparing the characteristic functions (3.13) and (3.20), it is easy to see that we can

seek the measure νt as a mixture of Bessel distributions. More precisely, we define

(3.21) νt := mα1(t),β1(t),γ1

with

(3.22)


α1(t) := 1

L1(t)
− 1

β1(t) := d
L1(t)

γ1 := c

a−σ2d
2

.

Then the characteristic function of νt coincides with (3.20). Since the probability measure
mα1(t),β1(t),γ1 is of the form (3.14), it follows now from (3.9), (3.17) and (3.20) that the
law of Xt is absolutely continuous with respect to the Lesbegue measure and its density
function p(t, x, y) is given by

(3.23) p(t, x, y) =
( 1

1 + α1(t)

)γ1
f(t, x, y) +

∫ y

0

f(t, x, y − z)gα1(t),β1(t),γ1(z)dz

for t > 0, x ≥ 0 and y ≥ 0, where the function g is defined in (3.15).
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3.3.2 Case ii): ∆ < 0

Similar to the case (i), it suffices to find a probability measure νt with∫
R+

euyνt(dy) =
(d− σ2du

2a
+
(
σ2d
2a
− 1
)
ue−at

d− u

) c

a−σ2d
2

=
( d− u
d− σ2du

2a
+
(
σ2d
2a
− 1
)
ue−at

) −c
a−σ2d

2

=
( d− u
d− L1(t)u

) −c
a−σ2d

2

=

(
1

L1(t)
+ (1− 1

L1(t)
) · 1

1− L1(t)u
d

) −c
a−σ2d

2 .(3.24)

Since ∆ = a− σ2d/2 < 0, therefore σ2d/2a > 1 and

L1(t) = e−at +
σ2d

2a
·
(
1− e−at

)
> 1.

According to the formula (3.12), we can choose

νt = mα2(t),β2(t),γ2

with the parameters α2, β2 and γ2 defined by

(3.25)


α2(t) := L1(t)− 1

β2 := d

γ2 := −c
a−σ2d

2

.

Similar to the case (i), the transition densities p(t, x, y) of X is given by

(3.26) p(t, x, y) =
( 1

1 + α2(t)

)γ2
f(t, x, y) +

∫ y

0

f(t, x, y − z)gα2(t),β2,γ2(z)dz

for t > 0, x ≥ 0 and y ≥ 0, where the function g is defined in (3.15).

3.3.3 Case iii): ∆ = 0

In this case we need to find a probability measure νt with∫
R+

euyνt(dy) = exp
(cu(1− e−at)

a(d− u)

)
.
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According to the formula (3.14) we can take νt as a Bessel distribution µα3(t),β3 with the
parameters α3(t) and β3 defined by

(3.27)

{
α3(t) := c

a
(1− e−at)

β3 := d.

Thus in this case the transition densities p(t, x, y) of X is given by

p(t, x, y) =

∫ y

0

f(t, x,y − z)β3e
−α3(t)−β3z

√
α3(t)

β3z
I1(2

√
α3(t)β3z)dz

+e−α3(t)f(t, x, y)(3.28)

for t > 0, x ≥ 0 and y ≥ 0.
Summarizing the above three cases we get the following theorem.

Theorem 6. Let X = (Xt)t≥0 be the BAJD defined in (3.1). Then the law of Xt given
that X0 = x ≥ 0 is absolutely continuous with respect to the Lesbegue measure and thus
possesses a density function p(t, x, y), namely

Px(Xt ∈ A) =

∫
A

p(t, x, y)dy, t ≥ 0, A ∈ B(R+)

According to the sign of ∆ = a − σ2d/2, the density p(t, x, y) is given by (3.23), (3.26)
and (3.28) respectively.

Although the density functions in (3.23), (3.26) and (3.28) are essentially different,
they do share some similarities. In the following corollary we give a unified representation
of p(t, x, y).

Corollary 2. Irrelevant of the the sign of ∆ = a−σ2d/2, the transition densities p(t, x, y)
of X can be expressed in a unified form as

(3.29) p(t, x, y) = L(t)f(t, x, y) +

∫ y

0

f(t, x, y − z)h(t, z)dz,

where L(t) is continuous function in t > 0 which satisfies 0 < L(t) < 1 for t > 0, the
function h(t, z) is non-negative and continuous in (t, z) ∈ (0,∞) × [0,∞) and satisfies∫
R+
h(t, z)dz = 1− L(t).
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3.4 Positive Harris recurrence of the BAJD
It was shown in [9] (see also [36]) that the semigroup of any stochastically continuous
affine process on the canonical state space Rm

+ × Rn is a Feller semigroup. Define the
semigroup of the BAJD by

(3.30) Ttf(x) :=

∫
R+

p(t, x, y)f(y)dy,

where f : R+ → R is bounded. Since the BAJD process X is stochastically continuous
and affine, thus (Tt)t≥0 is a Feller semigroup.

To show the positive Harris recurrence, we need first to prove the regularity property
of BAJD. To this aim, we first analyse the continuity properties of the integral which
appears on the right hand side of (3.29).

Lemma 6. Let f(t, x, y) be the transition density of the CIR process given in (3.18) and
h(t, z) be the same as in (3.29). Then the function F (t, x, y) defined by

(3.31) F (t, x, y) :=

∫ y

0

f(t, x, y − z)h(t, z)dz

is continuous with variables (t, x, y) ∈ (0,∞)× [0,∞)× [0,∞). Moreover if M > 1 is
a constant, then

(3.32) |F (t, x, y)| ≤ Cy
2aθ
σ2

for all

(t, x, y) ∈ KM := {(t, x, y) :
1

M
≤ t ≤M, 0 ≤ x ≤M, 0 ≤ y ≤ 1

M
},

where C > 0 is a constant which depends on M .

Proof. For simplicity we set q := 2aθ/σ2 − 1 as in (3.18). Since h(t, z) is continuous in
(t, z) ∈ (0,∞)× [0,∞), thus there exists a constant c1 > 0 depending on M such that

(3.33) |h(t, z)| ≤ c1 for
1

M
≤ t ≤M, 0 ≤ z ≤ 1

M
.

Therefore if (t, x, y) ∈ KM , we have

(3.34) |F (t, x, y)| ≤ c1

∫ y

0

f(t, x, y − z)dz.
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According to (3.18) and (3.19) we have

(3.35) |f(t, x, y − z)| ≤ c2|y − z|q if (t, x, y − z) ∈ KM and y 6= z,

where c2 > 0 is a constant depending on M .
It follows from (3.34) and (3.35) that

(3.36) |F (t, x, y)| ≤ c1c2

∫ y

0

|y − z|qdz =
c1c2

q + 1
yq+1 ≤ c3y

q+1

for (t, x, y) ∈ KM , if we set c3 := c1c2/(q + 1). Thus (3.32) is proved. Noting that
F (t, x, 0) = 0 for t > 0 and x ≥ 0, the continuity of the function F at points (t, x, 0) is
an immediate consequence of the estimate (3.36).
We now proceed to prove the continuity of F at other points. Suppose that t0 > 0, x0 ≥ 0
and y0 > 0 are fixed. Let ε > 0 be arbitrary. We choose δ1 > 0 small enough such that
y0 − 2δ1 > 0 and t0 − δ1 > 0. As in (3.33) and (3.35) there exist constants c4, c5 > 0,
which depend on δ1, such that

(3.37) |h(t, z)| ≤ c4 for t ∈ [t0 − δ1, t0 + δ1], z ∈ [0, y0 + δ1]

and

(3.38) |f(t, x, y − z)| ≤ c5|y − z|q

for t ∈ [t0 − δ1, t0 + δ1], x ∈ [0, x0 + δ1] and 0 < y − z ≤ y0 + δ1. Set

Kδ2 := [t0 − δ2, t0 + δ2]× [0, x0 + δ2]× [y0 − δ2, y0 + δ2].

We choose δ2 > 0 small enough such that δ2 < δ1 and c4c5(3δ2)q+1/(q + 1) < ε/3. If
(t, x, y) ∈ Kδ2 then it holds∣∣∣ ∫ y

y0−2δ2

f(t, x, y − z)h(t, z)dz
∣∣∣ ≤ c4c5

∫ y

y0−2δ2

(y − z)qdz

=
c4c5

q + 1
(y − y0 + 2δ2)q+1

≤ c4c5

q + 1
(3δ2)q+1 <

ε

3
.(3.39)

If (t, x, y) ∈ Kδ2 and 0 ≤ z ≤ y0 − 2δ2, then δ2 ≤ y − z ≤ y0 + δ2 and by (3.37) and
(3.38) we have

|f(t, x, y − z)h(t, z)| ≤ c4c5|y − z|q

≤ c4c5(|δ2|q + |y0 + δ2|q).(3.40)
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Since for fixed z ∈ [0, y0−2δ2] the function f(t, x, y−z)h(t, z) is continuous in (t, x, y) ∈
Kδ2 , it follows from (3.40) and dominated convergence theorem that

F2(t, x, y) :=

∫ y0−2δ2

0

f(t, x, y − z)h(t, z)dz

is a continuous function in (t, x, y) ∈ Kδ2 . This implies the existence of a constant δ with
0 < δ < δ2 such that

(3.41) |F2(t, x, y)− F2(t0, x0, y0)| < ε

3
,

if (t, x, y) ∈ Kδ := [t0 − δ, t0 + δ] × [0 ∨ (x0 − δ), x0 + δ] × [y0 − δ, y0 + δ]. Thus it
follows from (3.39) and (3.41) that

|F (t, x, y)− F (t0, x0, y0)| < ε

for (t, x, y) ∈ Kδ. The continuity of the function F at (t0, x0, y0) is proved.

According to (3.29) and Lemma 6, the boundary behavior of the transition densities
p(t, x, y) of X at y = 0 depends very much on the behavior of f(t, x, y) at y = 0. As
shown in the proof of proposition 2 of chapter 2, if 2aθ/σ2 < 1, then

f(t, x, 0) := lim
y→0

f(t, x, y) =∞, ∀x ∈ R+,

which means that (t, x, y) 7→ f(t, x, y) is not continuous on (0,∞)×R2
+; if 2aθ/σ2 > 1,

then
f(t, x, 0) := lim

y→0
f(t, x, y) = 0.

Therefore, in both cases the behavior of f(t, x, y) at the boundary y = 0 violates the
regularity condition; as a consequence, the transition densities p(t, x, y) of X are also not
regular. To overcome this difficulty, we proceed as in the proof of proposition 2 of chapter
2 and define a new measure η on

(
R+,B(R+)

)
as

(3.42) η(dx) := κ(x)dx,

where

κ(x) =

{
x

2aθ
σ2
−1, 0 ≤ x ≤ 1,

1, x > 1.

Then the transition densities of the BAJD process with respect to the new measure η is
given by

(3.43) p̃(t, x, y) =
p(t, x, y)

κ(y)
, t > 0, x ≥ 0, y > 0.
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Theorem 7. The transition densities p̃(t, x, y) of the BAJD process with respect to the
measure η satisfies

0 < p̃(t, x, y) <∞, t > 0, x ≥ 0, y ≥ 0

and is continuous in (t, x, y) ∈ (0,∞) × [0,∞) × [0,∞). Thus the BAJD is a regular
Feller process on the state space R+.

For the definition of regular continuous-time Markov process we refer to the definition
(5) of Chapter 2.

Proof. From (3.29) we can write the transition density of the BAJD process with respect
to the measure η as

p̃(t, x, y) = L(t)
f(t, x, y)

κ(y)
+
F (t, x, y)

κ(y)

= L(t)f̃(t, x, y) +
F (t, x, y)

κ(y)
(3.44)

where f̃(t, x, y) is the transition density of CIR with respect the new measure η and F is
defined in (3.31). We have already shown in Proposition 2 of Chapter 2 that

(3.45) 0 < f̃(t, x, y) <∞, t > 0, x ≥ 0, y ≥ 0,

and (t, x, y) 7→ f̃(t, x, y) is a continuous function on (0,∞)× R2
+.

From Lemma 6, we know that the function F (t, x, y) appearing in the second summand
in (3.44) is continuous on (0,∞)× R2

+ and

|F (t, x, y)| ≤ Cy
2aθ
σ2 , if (t, x, y) ∈ KM ,

where C > 0 is a constant depending on M . Now it is clear that

0 ≤ lim
y→0

F (t, x, y)

κ(y)
≤ lim

y→0
C|y| = 0.

Since F (t, x, 0) = 0 and L(t) is continuous in t > 0, it follows that the function p̃(t, x, y)
is continuous at points (t0, x0, 0), if t0 > 0 and x0 ≥ 0. The continuity of the function
p̃(t, x, y) at other points is also clear, because all the functions appearing in (3.44) are
continuous and 0 < κ(y) <∞ for y > 0. Noting that 0 < L(t) < 1 for t > 0, we get

0 < p̃(t, x, y) <∞ for all (t, x, y) ∈ (0,∞)× R2
+.

Therefore the BAJD process is a regular Feller process with η as the supporting measure.
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Let us recall the following definitions from Chapter 2, we refer to [45, p.490] and [29,
p.405].

Definition 9. Consider a time-homogeneous Markov process Y = (Yt)t≥0 with the state
space R+ and distributions Px, x ∈ R+.
(i) Y is said to be Harris recurrent if for some σ-finite measure µ

(3.46) Px
( ∫ ∞

0

1A(Ys)ds =∞
)

= 1,

for any x ∈ R+ and A ∈ B(R+) with µ(A) > 0. It was shown in [16] that if Y is Harris
recurrent then it possesses a unique (up to a renormalization) invariant measure. If the
invariant measure is finite, then the process Y is called positive Harris recurrent.
(ii) Y is said to be uniformly transient if

(3.47) sup
x
Ex

[ ∫ ∞
0

1K(Ys)ds
]
<∞

for every compact K ⊂ R+.

Lemma 7. The BAJD is not uniformly transient.

Proof. Let m > 0, K := [0,m] and x ∈ (0,∞) be fixed. Then

Ex

[ ∫ ∞
0

1[0,m](Xt)dt
]

=

∫ ∞
0

Ex
[
1[0,m](Xt)

]
dt

=

∫ ∞
0

∫ m

0

p(t, x, y)dydt

=

∫ m

0

dy

∫ ∞
0

p(t, x, y)dt.

From (3.29) and (3.31) we know that

p(t, x, y) = L(t)f(t, x, y) + F (t, x, y).

It follows from (3.23), (3.26) and (3.28) that

(3.48) 0 < lim
t→∞

L(t) =

{(
σ2d
2a

) c

a−σ2d
2 , if ∆ 6= 0,

e−
c
a , if ∆ = 0.

Since F (t, x, y) is non-negative, thus there exists large enough T > 0 such that

p(t, x, y) ≥ λf(t, x, y) for t ≥ T,
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where λ > 0 is a constant. Let ε > 0 be small enough. According to Lemma 1 of Chapter
2 we know that for any x > 0 and y ∈ [ε,m] it holds∫ ∞

0

f(t, x, y)dt =∞.

Therefore

Ex

[ ∫ ∞
0

1[0,m](Xt)dt
]

=

∫ m

0

dy

∫ ∞
0

p(t, x, y)dt

≥
∫ m

ε

dy

∫ ∞
R

λf(t, x, y)dt =∞.

This proves that the BAJD is not uniformly transient.

Theorem 8. The BAJD is Harris recurrent.

Proof. We have shown that the BAJD is a regular Feller process with the measure η,
which is defined in (3.42), as a supporting measure. It follows from Lemma 7 and [29,
Theorem 20.17] that the BAJD is Harris recurrent and the measure η satisfies (3.46).

Remark 9. Since the BAJD is a Harris recurrent Feller process, it follows from [29, The-
orem 20.18] that the BAJD has a locally finite invariant measure π which is equivalent to
the supporting measure η. Moreover every σ -finite invariant measure of the BAJD agrees
with π up to a renormalization. The existence and uniqueness of an invariant probability
measure for the BAJD has already been proved in [32] (see also [38]). Thus we can as-
sume π to be a probability measure. The characteristic function of π was given in [38]
and has the form

(3.49)
∫
R+

euzπ(dz) =


(
1− σ2

2a
u
)− 2aθ

σ2 ·
(
d−σ

2du
2a

d−u

) c

a−σ2d
2 , if ∆ 6= 0,(

1− σ2

2a
u
)− 2aθ

σ2 · exp
(

cu
a(d−u)

)
, if ∆ = 0.

Corollary 3. The BAJD is positive Harris recurrent. Its unique invariant probability mea-
sure π is absolute continuous with respect to the Lebesgue measure and thus has a density
function l(·), namely π(dy) = l(y)dy, y ∈ R+. If ∆ 6= 0, then we have

l(y) =
(σ2d

2a

) c

a−σ2d
2 Γ
(
y;

2aθ

σ2
,
σ2

2a

)
+

∫ y

0

Γ
(
y − z;

2aθ

σ2
,
σ2

2a

)
h(z)dz, y ≥ 0,

where Γ
(
y; 2aθ/σ2, σ2/(2a)

)
denotes the density function of the Gamma distribution with

parameters 2aθ/σ2 and σ2/(2a), and

h(z) =


g 2a
σ2d
−1, 2a

σ2
, c

a−σ2d
2

(z), if ∆ > 0,

gσ2d
2a
−1,d,− c

a−σ2d
2

(z), if ∆ < 0,

60
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with g defined in (3.15). If ∆ = 0, then we have

l(y) = e−
c
aΓ
(
y;

2aθ

σ2
,
σ2

2a

)
+

∫ y

0

Γ
(
y − z;

2aθ

σ2
,
σ2

2a

)
de−

c
a
−dz
√

c

adz
· I1

(
2

√
cdz

a

)
dz

for y ≥ 0.

Proof. We apply the same method which we used in Section 3.3 to find the transition
densities of the BAJD. Since the characteristic function of π is given by (3.49) and noting
that the first term on the right hand side of (3.49) corresponds to the characteristic function
of a Gamma distribution, we can represent the measure π as a convolution of a Gamma
distribution with a probability measure ν. If ∆ = 0 the measure ν is a Bessel distribution,
otherwise it is a mixture of Bessel distributions. By identifying the parameters of the
Gamma distribution and the Bessel or mixture of Bessel distributions, we get an explicit
formula of the density function of π.

Corollary 4. Let X = (Xt)t≥0 be the BAJD defined by (3.1). Then for any f ∈ Bb(R+)
we have

1

t

∫ t

0

f(Xs)ds →
∫
R+

f(x)π(dx) a.s.

as t→∞, where π is the unique invariant probability measure of the BAJD.

Proof. The above convergence follows from Corollary 3 and [29, Theorem 20.21].

3.5 Exponential ergodicity of the BAJD
Let ‖ · ‖TV denote the total-variation norm for signed measures on R+, namely

‖µ‖TV = sup
A∈B(R+)

{|µ(A)|}.

The total variation norm for signed measures on R+ is a special case of the norm ‖·‖h,
which is defined by

‖µ‖h = sup
|g|≤h

∣∣∣ ∫
R+

gdµ
∣∣∣

for a function h on R+ with h ≥ 1. Obviously it holds ‖µ‖TV ≤ ‖µ‖h, given that h ≥ 1.
Let P t(x, ·) := Px(Xt ∈ ·) be the distribution of the BAJD process X at time t given

that X0 = x with x ≥ 0.
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Definition 10. A continuous-time Markov processX is said to be h-exponentially ergodic
if there exist a constant β ∈ (0, 1) and a finite-valued function B(·) such that

‖P t(x, ·)− π‖h ≤ B(x)βt, ∀t > 0, x ∈ R+,

where π is the unique invariant probability measure of X .

In this section we will find a function h ≥ 1 such that the BAJD is h-exponentially
ergodic, where π is the unique invariant probability measure of the BAJD.

We first show the existence of a Foster-Lyapunov function, which is essential for the
exponential ergodicity to hold.

Let A denote the extended generator of the BAJD and D(A) the domain of A. For
the definitions of extended generator of Markov processes and its domain, the reader
is referred to [46, p.521]. For λ > 0 define a function fλ : R+ → R by fλ(x) :=
exp(−λx), x ∈ R+. Let Λ := {fλ : λ > 0} and denote the linear hull of Λ by L(Λ).
Then we know from [13, Theorem 4.3] and [13, Section 7] (see also [14, Section 6]) that
L(Λ) ⊂ D(A) and

Ag(x) =
1

2
σ2xg′′(x) + (aθ − ax)g′(x) + cd

∫
R+

(
g(x+ y)− g(x)

)
e−dydy

for g ∈ L(Λ).

Definition 11. A function V belongs to D(A) is called Foster-Lyapunov function if there
exist constants k,M ∈ (0,∞) such that

AV (x) ≤ −kV (x) +M, ∀x ∈ R+.

Lemma 8. The function V (x) := exp(γx), x ∈ R+, with small enough γ > 0 belongs to
D(A). Moreover, V is a Foster-Lyapunov function for the BAJD, with k = 1 and

M := eγx0 + γeγx0 ·
(
aθ +

c

d− γ
)
<∞.

Proof. Firstly, it is easy to see that ψ and φ defined in (3.5) and (3.6), respectively, are
still solutions of (3.3) if we let u = γ in (3.3), (3.5) and (3.6) with a small enough γ > 0.
It follows from [34, Theorem 2.14] that (3.7) holds also for u = γ. In particular,

(3.50) Ex[exp(γXt)] = exp
(
φ(t, γ) + xψ(t, γ)

)
<∞, ∀x ∈ R+, t ≥ 0.

By Itô’s formula and using (3.50), we can easily verify that

V (Xt)− V (x)−
∫ t

0

(
AV (Xs)

)
ds, t ≥ 0,
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is a Px-square-integrable martingale, where

AV (x) =
1

2
σ2γ2xeγx + (aθ − ax)γeγx + cd

∫
R+

(
eγ(x+y) − eγx

)
e−dydy

=
1

2
σ2γ2xeγx + (aθ − ax)γeγx +

cγ

d− γ
eγx

=γeγx ·
((1

2
σ2γ − a

)
x+ aθ +

c

d− γ

)
.

Hence

Ex[V (Xt)]− V (x) = Ex

[ ∫ t

0

(
AV (Xs)

)
ds
]
, t ≥ 0.

We can find C > 0 and small ε > 0 such that∣∣∣(1

2
σ2γ − a

)
x+ aθ +

c

d− γ

∣∣∣ ≤ Ceεx, x ∈ R+.

By (3.3) with u = γ + ε, we obtain∫ t

0

Ex[|AV (Xs)|]ds ≤Cγ
∫ t

0

Ex
[

exp
(
(γ + ε)Xs

)]
ds

=Cγ

∫ t

0

exp
(
φ(s, γ + ε) + xψ(s, γ + ε)

)
ds <∞.

This verifies V ∈ D(A).
If γ > 0 is small enough, then σ2γ/2− a < 0 and there exists x0 > 0 with(1

2
σ2γ − a

)
x0 + aθ +

c

d− γ
= −1

γ
.

Thus we have for x ∈ [x0,∞)

AV (x) = γeγx ·
((1

2
σ2γ − a

)
x+ aθ +

c

d− γ

)
≤ −eγx

and for x ∈ [0, x0]

AV (x) = γeγx ·
((1

2
σ2γ − a

)
x+ aθ +

c

d− γ

)
≤ γeγx0 · (aθ +

c

d− γ
).

It follows for all x ∈ R+

AV (x) ≤ −eγx + eγx0 + γeγx0 · (aθ +
c

d− γ
) ≤ −V (x) +M

with
M := eγx0 + γeγx0 ·

(
aθ +

c

d− γ
)
<∞.
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Lemma 9. Let the constants γ, k and M , as well as V (x) = exp(γx) be the same as in
Lemma 8. Then the BAJD satisfies

Ex[V (Xt)] ≤ e−ktV (x) +
M

k
,

or equivalently ∫
R+

V (y)p(t, x, y)dy ≤ e−ktV (x) +
M

k

for all x ∈ R+, t > 0.

Proof. Let V (x) = exp(γx) and g(x, t) := V (x) · exp(kt) = exp(γx + kt), where
the constants γ and k are the same as in Lemma 8. Then gx = γ exp(γx + kt), gxx =
γ2 exp(γx+ kt) and gt = k exp(γx+ kt). By applying Itô’s formula and then taking the
expectation, we get for all x ∈ R+, t > 0,

ektEx[V (Xt)]− V (x)

=Ex[g(Xt, t)]− Ex[g(X0, 0)]

=Ex

[ ∫ t

0

(
eks · AV (Xs) + keks · V (Xs)

)
ds
]

≤Ex
[ ∫ t

0

(
eks ·

(
− kV (Xs) +M

)
+ keks · V (Xs)

)
ds
]

=Ex
[ ∫ t

0

Meksds
]

=
M

k
ekt − M

k
≤ M

k
ekt.

Thus for x ∈ R+, t > 0,

Ex[V (Xt)] ≤ e−ktV (x) +
M

k
.

Applying the main results of [46] and Lemma 9, we get the following theorem.

Theorem 10. Let h(x) := 1 + exp(γx) with the constant γ > 0 small enough. Then the
BAJD is h-exponentially ergodic, namely there exist constants β ∈ (0, 1) and C ∈ (0,∞)
such that

(3.51) ‖P t(x, ·)− π‖h ≤ C
(
eγx + 1

)
βt, t > 0, x ∈ R+.
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Proof. Basically, we follow the proof of [46, Theorem 6.1]. Since the details of the proof
may obscure the idea, we now outline the reasoning behind our analysis. Instead of show-
ing (3.51) for all t > 0, we first show (3.51) for some specially chosen tn > 0. More
precisely, we find constants β ∈ (0, 1) and C ∈ (0,∞) such that

(3.52) ‖P δn(x, ·)− π‖h ≤ C
(
eγx + 1

)
βn, n ∈ Z+, x ∈ R+,

where δ > 0 is a constant and h := V + 1 = exp(γx) + 1. Then there is a simple trick
in [46] to conclude (3.51) from (3.52). Thus, it suffices to show (3.52), or equivalently,
to show the exponential ergodicity for the δ-skeleton chain of the BAJD. The exponential
ergodicity of Markov chains has been studied in [44]. In particular, to show that a Markov
chain is exponentially ergodic, [44, Theorem 6.3] provides some sufficient conditions: the
chain admits a Foster-Lyapunov function and is irreducible and aperiodic, and all compact
subsets are petite. If we can show that these conditions are satisfied for the δ-skeleton
chain of the BAJD, then we are done.

Now we proceed to show that the conditions of [44, Theorem 6.3] are satisfied for the
δ-skeleton chain of X . For any δ > 0 we consider the δ-skeleton chain Y δ

n := Xnδ, n ∈
Z+. Then (Y δ

n )n∈Z+ is a Markov chain with transition kernel p(δ, x, y) on the state space
R+ and the law of the Yn (started from Y0 = x) is given by P δn(x, ·). It is easy to see
that invariant measures for the BAJD process (Xt)t≥0 are also invariant measures for
(Y δ

n )n∈Z+ . Thus the probability measure π in Corollary 3 is also an invariant probability
measure for the chain (Y δ

n )n∈Z+ .
Let V (x) = exp(γx) be the same as in Lemma 9. It follows from the Markov property

and Lemma 9 that

Ex[V (Yn+1)|Y0, Y1, · · · , Yn] =

∫
R+

V (y)p(δ, Yn, y)dy ≤ e−δkV (Yn) +
M

k
,

where k and M are positive constants. If we set V0 := V and Vn := V (Yn), n ∈ N, then

Ex[V1] ≤ e−δkV0(x) +
M

k

and
Ex[Vn+1|Y0, Y1, · · · , Yn] ≤ e−δkVn +

M

k
, n ∈ N.

Now we proceed to show that the chain (Y δ
n )n∈Z+ is λ-irreducible, strong aperiodic,

and all compact subsets of R+ are petite for the chain (Y δ
n )n∈Z+ .

“λ-irreducibility": We show that the Lebesgue measure λ on R+ is an irreducibility
measure for (Y δ

n )n∈Z+ . Let A ∈ B(R+) and λ(A) > 0, then

P [Y1 ∈ A|Y0 = x] = Px[Xδ ∈ A] =

∫
A

p(δ, x, y)dy > 0,
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since p(δ, x, y) > 0 for any x ∈ R+ and y > 0. This shows that the chain (Y δ
n )n∈Z+ is

irreducible with λ being an irreducibility measure.
“Strong aperiodicity" (see [44, p.561] for a definition): To show the strong aperiodicity

of (Yn)n∈N0 , we need to find a set C ∈ B(R+), a probability measure ν with ν(C) = 1,
and ε > 0 such that

(3.53) L(x,C) > 0, x ∈ R+

and

(3.54) Px(Y1 ∈ A) ≥ ε · ν(A), x ∈ C, A ∈ B(R+),

where L(x,C) := Px(Ym ∈ C for some m ∈ N). To this end set C := [0, 1] and g(y) :=
infx∈[0,1] p(δ, x, y), y > 0. Since for fixed y > 0 the function p(δ, x, y) is strictly positive
and continuous in x ∈ [0, 1], thus we have g(y) > 0 and 0 <

∫
(0,1]

g(y)dy ≤ 1. Define

ν(A) :=
1∫

(0,1]
g(y)dy

∫
A∩(0,1]

g(y)dy, A ∈ B(R+).

Then for any x ∈ [0, 1] and A ∈ B(R+) we get

Px(Y1 ∈ A) =

∫
A

p(δ, x, y)dy ≥
∫
A∩(0,1]

g(y)dy = ν(A)

∫
(0,1]

g(y)dy,

so (3.54) holds with ε :=
∫

(0,1]
g(y)dy.

Obviously

L(x, [0, 1]) ≥ Px(Y1 ∈ [0, 1]) = Px(Xδ ∈ [0, 1]) =

∫
[0,1]

p(δ, x, y)dy > 0

for all x ∈ R+, which verifies (3.53).
“Compact subsets are petite": We have shown that λ is an irreducibility measure for

(Y δ
n )n∈Z+ . According to [44, Theorem 3.4(ii)], to show that all compact sets are petite,

it suffices to prove the Feller property of (Y δ
n )n∈Z+ , but this follows from the fact that

(Y δ
n )n∈Z+ is a skeleton chain of the BAJD process (Xt)t≥0, which possesses the Feller

property.
According to [44, Theorem 6.3] (see also the proof of [44, Theorem 6.1]), the proba-

bility measure π is the only invariant probability measure of the chain (Y δ
n )n∈Z+ and there

exist constants β ∈ (0, 1) and C ∈ (0,∞) such that

‖P δn(x, ·)− π‖h ≤ C
(
eγx + 1

)
βn, n ∈ Z+, x ∈ R+,

where h := V + 1 = exp(γx) + 1.
Then we can proceed as in [46, p.536] and get the inequality (3.51).
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Since ‖µ‖TV ≤ ‖µ‖h, it follows immediately the following corollary.

Corollary 5. The BAJD is exponentially ergodic, namely there exist constants β ∈ (0,∞)
and C ∈ (0,∞) such that

(3.55) ‖P t(x, ·)− π‖TV ≤ C
(
eγx + 1

)
βt, ∀t > 0, x ∈ R+.

Remark 11. In Chapter 2 we proved that the CIR process is positive Harris recurrent. If we
allow the parameter c = 0, then all results of this section still hold and thus are also true
for the CIR process. In particular Theorem 10 is also true for the CIR process. In this case
the unique invariant probability measure of the CIR process is the Gamma distribution
Γ
(
2aθ/σ2, σ2/(2a)

)
and has the characteristic function

(
1− σ2u/(2a)

)−2aθ/σ2

.

3.6 Calibration for the BAJD-process
Now, we will use the results of this chapter to provide another consequence of Harris

recurrence property for the BAJD process. We have already shown in section (3.4) that
our result on the positive Harris recurrence of the BAJD provides another way of proving
the existence and uniqueness of an invariant probability measure for the BAJD. We denote
it by π, this measure is the convolution of a Gamma distribution with Bessel or mixture
of Bessel distributions.

From the ergodicity point of view, we also show in corollary (4) that another con-
sequence of the positive Harris recurrence is the limit theorem for additive function-
als, namely we show that for all f ∈ B(R+), 1

t

∫ t
0
f(Xs)ds converges almost surely to∫

R+
f(x)π(dx). Obviously the BAJD process is strongly ergodic. In fact, it follow from

the exponential ergodicity result of the BAJD, which was proved in the last section. Note
that, the exponential ergodicity implies strong ergodicity but not vice-versa. Also, strong
ergodicity of the BAJD follow from [29, Theorem 20.12], which say that any Harris re-
current Feller process is strongly ergodic.

Let us first recall the definition of affine term structure (see e.g. [13, Definition 3.1]).

Definition 12. An R+−valued homogeneous Markov process X with

(3.56) Ex
[
e−

∫ t
0 Xsds

]
= ep(t)+xq(t)

for some functions p and q, is said to provide an affine term structure (ATS).

We want the term e−
∫ t
0 Xsds to be well-defined R+−valued adapted process, for each

Px. This is equivalent to assume that the process X is progressively measurable and∫ t

0

Xsds <∞, Px − a.s. ∀t, x ∈ R+.
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3.6. CALIBRATION FOR THE BAJD-PROCESS

This implies that X is conservative. Also X is a special Feller process and the function p
and q satisfy a system of generalized Riccati equations. The functions p(t) and q(t) are
nonnegative and non-decreasing functions with initial conditions p(0) = q(0) = 0.

Now we apply Theorem (3) and by taking g(x) = x and f(x) = e−x we get

(3.57) lim
N→∞

1

N

N−1∑
j=0

e−
∫ j+1
j Xsds = Eπ

[
e−

∫ 1
0 Xsds

]
and this convergence holds almost surely. Now, we will calibrate this limit

Eπ
[
e−

∫ 1
0 Xsds

]
=?

Since the BAJD process belongs to the class of affine term structure, by the definition we
know that

(3.58) Ex
[
e−

∫ t
0 Xsds

]
= ep(t)+xq(t)

where the functions p and q appearing in the term structure solve the following generalized
Riccati equations

(3.59)

{
∂tp(t) = F1

(
q(t)

)
, p(0) = 0,

∂tq(t) = R1

(
q(t)

)
, q(0) = 0,

and

F1(u) = aθu+
cu

d− u
, u ∈ C \ {d},(3.60)

R1(u) =
σ2u2

2
− au− 1, u ∈ C.(3.61)

(see [38, Proposition 3.4]).
The second equation in the above system (3.59) is well-known particular case of the

Riccati equations because the coefficients considered are constants. In this case this equa-
tion can be reduced to a separable differential equation.

dq(t)

dt
=
σ2

2
q2(t)− aq(t)− 1, q(0) = 0.

The solution is described by the integral of rational function with quadratic function
in the denominator.
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3.6. CALIBRATION FOR THE BAJD-PROCESS

∫ t

0

dq(s)
σ2

2
q2(s)− aq(s)− 1

=

∫ t

0

ds = t.

Now∫ t

0

dq(s)
σ2

2
q2(s)− aq(s)− 1

=

∫ t

0

( 1

q(s)− a−
√
a2+2σ2

σ2

+
−1

q(s)− a+
√
a2+2σ2

σ2

)
dq(s)

= −
√
a2 + 2σ2t.

Finally one can get

q(t) =
1− eb1t

c1 + d1eb1t

where c1 = −a+
√
a2+2σ2

2
, d1 = a−

√
a2+2σ2

2
and b1 = −

√
a2 + 2σ2. Now for the first

equation of the system (3.59), we denote

I1 := aθ

∫ t

0

q(s)ds = aθ

∫ t

0

1− eb1s

c1 + d1eb1s
ds

and

I2 := c

∫ t

0

q(s)

d− q(s)
ds = c

∫ t

0

1− eb1s

(dd1 + 1)eb1s + (dc1 − 1)
ds

By change of variable r = eb1s in I10it follow that

I1 =
2aθ

σ2
log
( b1e

d1t

c1 + d1eb1t
)

=
2aθ

σ2
log
(b1e

(a+b1)t/2

c1 + d1eb1t
)

For the second integral I2, we distinguish between two cases. If d 6= d1 then by change of
variable is easy to get

I2 =
ct

c1d− 1
− cd

1
2
σ2d2 − ad− 1

log
((1 + dd1)eb1t + c1d− 1

b1d

)
.

If d = d1 then we get

I2 =
ct

c1d− 1
− cd

1
2
σ2d2 − ad− 1

+
d1

b2
1

(
eb1t − 1

)
Therefore the solution p can be represented explicitly in the following way:

p(t) =


2aθ
σ2 log

(
b1e(a+b1)t/2

c1+d1eb1t

)
+ ct

c1d−1

− cd
1
2
σ2d2−ad−1

log
(

(1+dd1)eb1t+c1d−1
b1d

)
, if d 6= d1,

2aθ
σ2 log

(
b1e(a+b1)t/2

c1+d1eb1t

)
+ ct

c1d−1
+ d1

b21

(
eb1t − 1

)
,

if d = d1.
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Since the BAJD has an explicit form of invariant measure hence we calibrate this limit in
the explicit form

Eπ
[
e−

∫ 1
0 Xsds

]
=

∫ ∞
0

Ex
[
e−

∫ 1
0 Xsds

]
π(dx)

=

∫ ∞
0

ep(1)+xq(1)π(dx)

= ep(1)

∫ ∞
0

exq(1)π(dx)

=

ep(1)
(
1− σ2

2a
q(1)

)− 2aθ
σ2 ·

(
d−σ

2dq(1)
2a

d−q(1)

) c

a−σ2d
2 , if ∆ 6= 0,

ep(1)
(
1− σ2

2a
q(1)

)− 2aθ
σ2 · exp

(
cq(1)

a(d−q(1))

)
, if ∆ = 0.

where ∆ = a− σ2d
2

.
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Chapter 4

Exponential Ergodicity of the
Jump-Diffusion CIR Process

Over the last few years, Lévy processes and other processes including jumps became
quite popular in finance. Jumps processes have been playing increasingly important roles
in various applications, for example in short term interest rate. A naturel generalization of
the classical Cox-Ingersoll-Ross process takes into account the jumps have been studied
by Duffie and Gârleanu in [10], Filipović in [13] and Li and Ma in [42].

In this chapter, we study the jump-diffusion CIR process (abbreviated as JCIR), which
is an extension of the classical CIR model. The jumps of the JCIR are introduced with the
help of a pure-jump Lévy process (Jt, t ≥ 0). The JCIR process is defined as the unique
strong solution X := (Xt, t ≥ 0) to the following stochastic differential equation

(4.1) dXt = a(θ −Xt)dt+ σ
√
XtdWt + dJt, X0 ≥ 0,

where a, σ > 0, θ ≥ 0 are constants, (Wt, t ≥ 0) is a one-dimensional Brownian motion
and (Jt, t ≥ 0) is a pure-jump Lévy process with its Lévy measure ν concentrated on
(0,∞) and satisfying

(4.2)
∫

(0,∞)

(ξ ∧ 1)ν(dξ) <∞,

independent of the Brownian motion (Wt, t ≥ 0). The initial value X0 is assumed to be
independent of (Wt, t ≥ 0) and (Jt, t ≥ 0). We assume that all the above processes are
defined on some filtered probability space (Ω,F , (F)t≥0, P ). We should remark that the
existence and uniqueness of strong solutions to the SDE (4.1) are guaranteed by [15, Thm.
5.1].

The drift factor a(θ − Xt) in (4.1) is exactly the same as in the BAJD process (3.1),
defines a mean reverting drift pulling the process towards its long-term value θ with a
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4.1. CHARACTERISTIC FUNCTION OF THE JCIR

speed of adjustment equal to a. Since the diffusion coefficient σ
√
Xt in the SDE (4.1) is

degenerate at 0 and only positive jumps are allowed, the JCIR process (Xt, t ≥ 0) stays
non-negative if X0 ≥ 0. This fact can be shown rigorously with the help of comparison
theorems for SDEs, for more details we refer the readers to [15].

In this chapter we are interested in two problems concerning the JCIR defined in
(4.1). The first one is to study the transition density estimates of the JCIR, namely we
find a lower bound on the transition densities of the JCIR. Our idea to establish the lower
bound of the transition densities is as follows. It well known that the JCIR is also an
affine processes in R+. Based on the exponential-affine structure of the JCIR, we are able
to compute its characteristic function explicitly. Moreover, this enables us to represent
the distribution of the JCIR as the convolution of two distributions. The first distribution
coincides with the distribution of the CIR model. However, the second distribution is
more complicated. We will give a sufficient condition such that the second distribution
is singular at the point 0. In this way we derive a lower bound estimate of the transition
densities of the JCIR.

4.1 Characteristic function of the JCIR
In this section we use the exponential-affine structure of the JCIR process to derive its
characteristic functions.

We recall that the JCIR process (Xt, t ≥ 0) is defined to be the solution to (4.1) and
it depends obviously on its initial value X0. From now on we denote by (Xx

t , t ≥ 0) the
JCIR process started from an initial point x ≥ 0, namely

(4.3) dXx
t = a(θ −Xx

t )dt+ σ
√
Xx
t dWt + dJt, Xx

0 = x.

Since the JCIR process is an affine jump diffusion, the corresponding characteristic
functions of (Xx

t , t ≥ 0) is of an exponential-affine form, i.e. there exist functions φ(t, u)
and ψ(t, u) such that

(4.4) E
[
euX

x
t
]

= eφ(t,u)+xψ(t,u), for all t ≥ 0, u ∈ U , x ≥ 0,

where U := {u ∈ C : <u ≤ 0}, <u denotes the real part of u. Moreover, the functions
φ(t, u) and ψ(t, u) are the unique solutions of the generalized Riccati equations

(4.5)

{
∂tφ(t, u) = F

(
ψ(t, u)

)
, φ(0, u) = 0,

∂tψ(t, u) = R
(
ψ(t, u)

)
ψ(0, u) = u ∈ U ,
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with the functions F and R are of Lévy-Khitchine form

F (u) = aθu+

∫
(0,∞)

(euξ − 1)ν(dξ),(4.6)

R(u) =
σ2u2

2
− au.(4.7)

For general case see [[13], Theorem 4.3].
Note that, it is not difficult to find the explicit form of the functions ∂tφ and ∂tψ. We

have to proceed as in the Section (2.1). More precisely, we can find the functions ∂tφ and
∂tψ under the initial conditions such that

Mt := exp
(
φ(T − t, u) +Xtψ(T − t, u)

)
is a martingale. We can derive the generalized Riccati equation by applying Itô formula
for the jumps diffusion and then we collect the coefficients.

Solving the system (4.5) gives φ(t, u) and ψ(t, u) in their explicit forms. One can
remark that the second equation of the generalized Riccati equations is a Bernoulli differ-
ential equation with n = 2. Therefore the solution ψ can be represented explicitly in the
following way:

ψ(t, u) = ψ(0, u)e−
∫ t
0 ads

(
1− u

∫ t

0

σ2

2
e−asds

)−1

=
ue−at

1− σ2

2a
u(1− e−at)

.(4.8)

Note that the first Riccati equation is just an integral, and φ may be written explicitly as:

φ(t, u) =
−2aθ

σ2

∫ t

0

σ2

2
ue−as

1− σ2

2a
u(1− e−as)

ds+

∫ t

0

∫
(0,∞)

(
eξψ(s,u) − 1

)
ν(dξ)ds

(4.9) = −2aθ

σ2
log
(
1− σ2

2a
u(1− e−at)

)
+

∫ t

0

∫
(0,∞)

(
eξψ(s,u) − 1

)
ν(dξ)ds.

Here the complex-valued logarithmic function log(·) is understood to be its main branch
defined on C \ {0}.
It follows from (4.4), (4.8) and (4.9) that the characteristic functions of (Xx

t , t ≥ 0) is
given by

(4.10) E[euX
x
t ] = ϕ1(t, u, x)ϕ2(t, u), u ∈ U ,
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where ϕ1(t, u, x) and ϕ2(t, u) are defined as follows, for t ≥ 0 and u ∈ U

ϕ1(t, u, x) : =
(
1− σ2

2a
u(1− e−at)

)− 2aθ
σ2 exp

( xue−at

1− σ2

2a
u(1− e−at)

)
,

ϕ2(t, u) : = exp
(∫ t

0

∫ ∞
0

(
eξψ(s,u) − 1

)
ν(dξ)ds

)
,(4.11)

where the complex-valued power function z−2aθ/σ2
:= exp

(
− (2aθ/σ2) log z

)
is also

understood to be its main branch defined on C \ {0}.
According to the parameters of the JCIR process we look at two special cases:

4.1.1 Special Case i): ν = 0, No Jumps
Notice that the case ν = 0 corresponds to the classical CIR model (Yt, t ≥ 0) satisfying
the following stochastic differential equation

(4.12) dY x
t = a(θ − Y x

t )dt+ σ
√
Y x
t dWt, Y x

0 = x ≥ 0.

It follows from (4.10) that the characteristic function of (Y x
t , t ≥ 0) coincides with

ϕ1(t, u, x), namely, for u ∈ U

E[euY
x
t ] = ϕ1(t, u, x).

It is well known that the classical CIR model (Y x
t , t ≥ 0) has transition density functions

f(t, x, y) given by

(4.13) f(t, x, y) = κe−u−v
(v
u

) q
2
Iq
(
2(uv)

1
2

)
for t > 0, x > 0 and y ≥ 0, where

κ ≡ 2a

σ2
(

1− e−at
) , u ≡ κxe−at,

v ≡ κy, q ≡ 2aθ

σ2
− 1,

and Iq(·) is the modified Bessel function of the first kind of order q. For x = 0 the formula
of the density function f(t, x, y) is given by

(4.14) f(t, 0, y) =
c

Γ(q + 1)
vqe−v

for t > 0 and y ≥ 0.
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4.2. LOWER BOUND FOR THE TRANSITION DENSITIES OF JCIR

4.1.2 Special Case ii): θ = 0 and x = 0

We denote by (Zt, t ≥ 0) the JCIR process given by

(4.15) dZt = −aZtdt+ σ
√
ZtdWt + dJt, Z0 = 0.

In this particular case the characteristic functions of (Zt, t ≥ 0) is equal to ϕ2(t, u),
namely, for u ∈ U

(4.16) E[euZt ] = ϕ2(t, u).

One can notice that ϕ2(t, u) resembles the characteristic function of a compound Poisson
distribution.

4.2 Lower bound for the transition densities of JCIR
In this section we will find some conditions on the Lévy measure ν of (Jt, t ≥ 0) such
that an explicit lower bound for the transition densities of the JCIR process given in (4.3)
can be derived. As a first step we show that the law of Xx

t , t > 0, in (4.3) is absolutely
continuous with respect to the Lebesgue measure and thus possesses a density function.

Lemma 10. Consider the JCIR process (Xx
t , t ≥ 0) (started from x ≥ 0) that is defined

in (4.3). Then for any t > 0 and x ≥ 0 the law ofXx
t is absolutely continuous with respect

to the Lebesgue measure and thus possesses a density function p(t, x, y), y ≥ 0.

Proof. As shown in the previous section, it holds

E[euX
x
t ] = ϕ1(t, u, x)ϕ2(t, u) = E[euY

x
t ]E[euZt ],

therefore the law of Xx
t , denoted by µXx

t
, is the convolution of the laws of µY xt and µZt .

Where µY xt and µZt are the laws of Y x
t and Zt respectively. Since (Y x

t , t ≥ 0) is the well-
known classical CIR process and has transition density function f(t, x, y), t > 0, x, y ≥ 0
with respect to the Lebesgue measure, thus µXx

t
is also absolutely continuous with respect

to the Lebesgue measure and possesses a density function.

In order to get a lower bound for the transition densities of the JCIR process we need
the following lemma.

Lemma 11. Suppose that
∫

(0,1)
ξ ln(1/ξ)ν(dξ) < ∞. Then ϕ2 defined by (4.11) is the

characteristic function of a compound Poisson distribution. In particular, P (Zt = 0) > 0
for all t > 0, where (Zt, t ≥ 0) is defined by (4.15).
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Proof. It follows from (4.8), (4.11) and (4.16) that

E[euZt ] = ϕ2(t, u) = exp

(∫ t

0

∫
(0,∞)

(
exp

(
ξue−as

1−(σ2/2a)(1−e−as)u

)
− 1
)
ν(dξ)ds

)
,

where u ∈ U . Define

∆ :=

∫ t

0

∫
(0,∞)

(
exp

( ξue−as

1− (σ2/2a)(1− e−as)u

)
− 1
)
ν(dξ)ds.

If we rewrite

(4.17) exp
( ξe−asu

1− (σ2/2a)(1− e−as)u

)
= exp

( αu

β − u

)
,

where

(4.18)


α :=

2aξ

σ2(eas − 1)
> 0,

β :=
2aeas

σ2(eas − 1)
> 0,

then we recognize that the right-hand side of (4.17) is the characteristic function of
a Bessel distribution with parameters α and β. Recall that a probability measure µα,β on(
R+,B(R+)

)
is called a Bessel distribution with parameters α and β if

(4.19) µα,β(dx) = e−αδ0(dx) + βe−α−βx
√

α

βx
I1(2

√
αβx)dx,

where δ0 is the Dirac measure at the origin and I1 is the modified Bessel function of the
first kind, namely,

I1(r) =
r

2

∞∑
k=0

(
1
4
r2
)k

k!(k + 1)!
, r ∈ R.

For more properties of Bessel distributions we refer the readers to [19, Sect. 3] (see also
[12, p.438] and [27, Sect. 3]). Let µ̂α,β denote the characteristic function of the Bessel
distribution µα,β with parameters α and β which are defined in (4.18). It follows from
[27, Lemma 3.1] that

µ̂α,β(u) = exp
( αu

β − u

)
= exp

( ξe−asu

1− (σ2/2a)(1− e−as)u

)
.
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Therefore

∆ =

∫ t

0

∫
(0,∞)

(
µ̂α,β(u)− 1

)
ν(dξ)ds

=

∫ t

0

∫
(0,∞)

(
e
αu
β−u − e−α + e−α − 1

)
ν(dξ)ds.

Set

λ :=

∫ t

0

∫
(0,∞)

(
1− e−α

)
ν(dξ)ds

=

∫ t

0

∫
(0,∞)

(
1− e−

2aξ

σ2(eas−1)

)
ν(dξ)ds.(4.20)

If λ <∞, then

∆ =

∫ t

0

∫
(0,∞)

(
e
αu
β−u − e−α

)
ν(dξ)ds− λ

= λ
(1

λ

∫ t

0

∫
(0,∞)

(
e
αu
β−u − e−α

)
ν(dξ)ds− 1

)
.

The fact that λ <∞ will be shown later in this proof.
Next we show that the term (1/λ)

∫ t
0

∫
(0,∞)

(
exp

(
αu/(β − u)

)
− exp(−α)

)
ν(dξ)ds can

be viewed as the characteristic function of a probability measure ρ. To define ρ, we first
construct the following measures

mα,β(dx) := βe−α−βx
√

α

βx
I1(2

√
αβx)dx, x ≥ 0,

where I1 is the modified Bessel function of the first kind. Noticing that the measure mα,β

is the absolute continuous component of the measure µα,β in (4.19), we easily get

m̂α,β(u) = µ̂α,β(u)− e−α = e
αu
β−u − e−α,

where m̂α,β(u) :=
∫∞

0
euxmα,β(dx) for u ∈ U . Recall that the parameters α and β defined

by (4.18) depend on the variables ξ and s. We can define a measure ρ on R+ as follows:

ρ :=
1

λ

∫ t

0

∫
(0,∞)

mα,β ν(dξ)ds.
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By the definition of the constant λ in (4.20) we get

ρ(R+) =
1

λ

∫ t

0

∫
(0,∞)

mα,β(R+)ν(dξ)ds

=
1

λ

∫ t

0

∫
(0,∞)

(1− e−α)ν(dξ)ds

= 1,

i.e. ρ is a probability measure on R+, and for u ∈ U

ρ̂(u) =

∫
(0,∞)

euxρ(dx)

=
1

λ

∫ t

0

∫
(0,∞)

(e
αu
β−u − e−α)ν(dξ)ds.

Thus ∆ = λ(ρ̂(u)− 1) and E[euZt ] = ϕ2(t, u) = eλ(ρ̂(u)−1) is the characteristic function
of a compound Poisson distribution.
Now we verify that λ <∞. Noticing that

λ =

∫ t

0

∫
(0,∞)

(
1− e−α

)
ν(dξ)ds

=

∫ t

0

∫
(0,∞)

(
1− e−

2aξ

σ2(eas−1)

)
ν(dξ)ds

=

∫
(0,∞)

∫ t

0

(
1− e−

2aξ

σ2(eas−1)

)
dsν(dξ),

we introduce the change of variables
2aξ

σ2(eas − 1)
:= y and then get

dy = − 2aξ

σ2(eas − 1)2
aeasds

= −y2σ
2

2ξ

(2aξ

σ2y
+ 1
)
ds.

Therefore

λ =

∫
(0,∞)

ν(dξ)

∫ 2aξ

σ2(eat−1)

∞
(1− e−y) −2ξ

2aξy + σ2y2
dy

=

∫
(0,∞)

ν(dξ)

∫ ∞
2aξ

σ2(eat−1)

(1− e−y) 2ξ

2aξy + σ2y2
dy

=

∫
(0,∞)

ν(dξ)

∫ ∞
ξ
δ

(1− e−y) 2ξ

2aξy + σ2y2
dy,
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where δ :=
σ2(eat − 1)

2a
. Define

M(ξ) :=

∫ ∞
ξ
δ

(1− e−y) 2ξ

2aξy + σ2y2
dy.

Then M(ξ) is continuous on (0,∞). As ξ → 0 we get

M(ξ) =

∫ 1

ξ
δ

(1− e−y) 2ξ

2aξy + σ2y2
dy + 2ξ

∫ ∞
1

(1− e−y) dy

2aξy + σ2y2

≤ 2ξ

∫ 1

ξ
δ

y

2aξy + σ2y2
dy + 2ξ

∫ ∞
1

1

2aξy + σ2y2
dy

≤ 2ξ

∫ 1

ξ
δ

1

2aξ + σ2y
dy + 2ξ

∫ ∞
1

1

σ2y2
dy.

Since

2ξ

∫ 1

ξ
δ

1

2aξ + σ2y
dy =

2ξ

σ2

[
ln(2aξ + σ2y)

]1

ξ
δ

=
2ξ

σ2
ln(2aξ + σ2)− 2ξ

σ2
ln(2aξ +

σ2ξ

δ
)

≤ c1ξ + c2ξ ln(
1

ξ
) ≤ c3ξ ln(

1

ξ
)

for sufficiently small ξ, we conclude that

M(ξ) ≤ c4ξ ln(
1

ξ
), as ξ → 0.

If ξ →∞, then

M(ξ) ≤
∫ ∞
ξ
δ

(1− e−y) 2ξ

2aξy + σ2y2
dy

≤
∫ ∞
ξ
δ

2ξ

2aξy + σ2y2
dy ≤ 2ξ

∫ ∞
ξ
δ

1

σ2y2
dy

=
2ξ

σ2

∫ ∞
ξ
δ

d(−1

y
) =

2ξ

σ2

[
− 1

y

]∞
ξ
δ

=
2ξ

σ2

δ

ξ
=

2δ

σ2
:= c5 <∞.
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Therefore,

λ ≤ c4

∫ 1

0

ξ ln(
1

ξ
)ν(dξ) + c5

∫ ∞
1

1ν(dξ) <∞.

With the help of the above Lemma 11 we can easily prove the following proposition.

Proposition 3. Let p(t, x, y), t > 0, x, y ≥ 0 denote the transition density of the JCIR
process (Xx

t , t ≥ 0) defined in (4.3). Suppose that
∫

(0,1)
ξ ln(1

ξ
)ν(dξ) < ∞. Then for all

t > 0, x, y ≥ 0 we have

p(t, x, y) ≥ P (Zt = 0)f(t, x, y),

where P (Zt = 0) > 0 for all t > 0 and f(t, x, y) are transition densities of the classical
CIR process.

Proof. According to Lemma 11, we have P (Zt = 0) > 0 for all t > 0. Since

E[euX
x
t ] = ϕ1(t, u, x)ϕ2(t, u) = E[euY

x
t ]E[euZt ],

the law of Xx
t , denoted by µXx

t
, is the convolution of the laws of µY xt and µZt . Where µY xt

and µZt are the laws of Y x
t and Zt respectively. Thus for all A ∈ B(R+)

µXx
t
(A) =

∫
R+

µY xt (A− y)µZt(dy)

≥
∫
{0}
µY xt (A− y)µZt(dy)

≥ µY xt (A)µZt({0})
≥ P (Zt = 0)µY xt (A)

≥ P (Zt = 0)

∫
A

f(t, x, y)dy,

where A − y = {z − y, z ∈ A} and f(t, x, y) are the transition densities of the classical
CIR process given in (4.13). Since A ∈ B(R+) is arbitrary, we get

p(t, x, y) ≥ P (Zt = 0)f(t, x, y)

for all t > 0, x, y ≥ 0.
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4.3. EXPONENTIAL ERGODICITY OF JCIR

4.3 Exponential ergodicity of JCIR
Now we consider the second problem of this chapter which is the exponential ergodic-
ity of the JCIR. According to the main results of [32] (see also [38]), the JCIR has a
unique invariant probability measure π, given that some integrability condition on the
Lévy measure of (Jt, t ≥ 0) is satisfied. Under some sharper assumptions we show that
the convergence of the law of the JCIR process to its invariant probability measure under
the total variation norm is exponentially fast, which is called the exponential ergodicity.
Our method is the same as in Chapter 3 Section (3.5), namely we show the existence of a
Foster-Lyapunov function and then apply the general framework of [44, 45, 46] to get the
exponential ergodicity.

In this section we find some sufficient conditions such that the JCIR process is expo-
nentially ergodic. We have derived a lower bound for the transition densities of the JCIR
process in the previous section. Next we show that the function V (x) = x, x ≥ 0, is a
Foster-Lyapunov function for the JCIR process.

Lemma 12. Suppose that
∫

(1,∞)
ξν(dξ) < ∞. Then the function V (x) = x, x ≥ 0, is a

Foster-Lyapunov function for the JCIR process defined in (4.3), in the sense that for all
t > 0, x ≥ 0,

E[V (Xx
t )] ≤ e−atV (x) +M,

where 0 < M <∞ is a constant.

Proof. We know that µXx
t

= µY xt ∗ µZt , therefore

E[Xx
t ] = E[Y x

t ] + E[Zt].

Since (Y x
t , t ≥ 0) is the classical CIR process starting from x, it is known that µY xt is a

non-central Chi-squared distribution and thus E[Y x
t ] < ∞. Next we show that E[Zt] <

∞.
Let u ∈ (−∞, 0). By using Fatou’s Lemma we get

E[Zt] = E
[
lim
u→0

euZt − 1

u

]
≤ lim inf

u→0
E
[euZt − 1

u

]
= lim inf

u→0

E[euZt ]− 1

u
.

Recall that

E[euZt ] = ϕ2(t, u) = exp
(∫ t

0

∫
(0,∞)

(
e

ξue−as

1−(σ2/2a)(1−e−as)u − 1
)
ν(dξ)ds

)
= e∆(u).
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Then we have for all u ≤ 0

∂

∂u

(
exp

( ξue−as

1− (σ2/2a)(1− e−as)u

)
− 1

)
=

ξe−as(
1− (σ2/2a)(1− e−as)u

)2 exp
( ξue−as

1− (σ2/2a)(1− e−as)u

)
≤ ξe−as(

1− (σ2/2a)(1− e−as)u
)2 ≤ ξe−as

and further ∫ t

0

∫
(0,∞)

ξe−asν(dξ)ds <∞.

Thus ∆(u) is differentiable in u and

∆′(0) =

∫ t

0

∫
(0,∞)

ξe−asν(dξ)ds =
1− e−at

a

∫
(0,∞)

ξν(dξ).

It follows that

E[Zt] ≤ lim inf
u→0

ϕ2(t, u)− ϕ2(t, 0)

u

=
∂ϕ2(t, u)

∂u

∣∣∣
u=0

= e∆(0)∆′(0)

=
1− e−at

a

∫
(0,∞)

ξν(dξ).

Therefore under the assumption
∫

(0,∞)

ξν(dξ) <∞ we have proved that E[Zt] < ∞.

Furthermore,

E[Zt] =
∂

∂u

(
E[euZt ]

)∣∣∣
u=0

=
1− e−at

a

∫
(0,∞)

ξν(dξ).

On the other hand,

E[euY
x
t ] =

(
1− (σ2/2a)u(1− e−at)

)−2aθ/σ2

exp
( xue−at

1− (σ2/2a)u(1− e−at)

)
.

With a similar argument as above we get

E[Y x
t ] =

∂

∂u

(
E[euY

x
t ]
)∣∣∣

u=0
= θ(1− e−at) + xe−at.
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Altogether we get

E[Xx
t ] = E[Y x

t ] + E[Zt]

= (1− e−at)
(
θ +

1− e−at

a

)
+ xe−at

≤ θ +
1

a
+ xe−at,

namely

E[V (Xx
t )] ≤ θ +

1

a
+ e−atV (x).

If
∫

(1,∞)
ξν(dξ) <∞, then there exists a unique invariant probability measure for the

JCIR process. This fact follows from [38, Thm. 3.16] and [32, Prop. 3.1]. Let ‖ · ‖TV
denote the total-variation norm for signed measures on R+, namely

‖µ‖TV = sup
A∈B(R+)

{|µ(A)|}.

Let P t(x, ·) := P (Xx
t ∈ ·) be the distribution of the JCIR process at time t started

from the initial point x ≥ 0. Now we prove the main result of this chapter.

Theorem 12. Assume that∫
(1,∞)

ξ ν(dξ) <∞ and
∫

(0,1)

ξ ln(
1

ξ
)ν(dξ) <∞.

Let π be the unique invariant probability measure for the JCIR process. Then the JCIR
process is exponentially ergodic, namely there exist constants 0 < β < 1 and 0 < B <∞
such that

(4.21) ‖P t(x, ·)− π‖TV ≤ B
(
x+ 1

)
βt, t ≥ 0, x ∈ R+.

Proof. Basically, we follow the proof of [46, Thm. 6.1]. For any δ > 0 we consider the δ-
skeleton chain ηxn := Xx

nδ, n ∈ Z+, where Z+ denotes the set of all non-negative integers.
Then (ηxn)n∈Z+ is a Markov chain on the state space R+ with transition kernel P δ(x, ·) and
starting point ηx0 = x. It is easy to see that the measure π is also an invariant probability
measure for the chain (ηxn)n∈Z+ , x ≥ 0.

Let V (x) = x, x ≥ 0. It follows from the Markov property and Lemma 12 that

E[V (ηxn+1)|ηx0 , ηx1 , · · · , ηxn] =

∫
R+

V (y)P δ(ηxn, dy) ≤ e−aδV (ηxn) +M,
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where M is a positive constant. If we set V0 := V and Vn := V (ηxn), n ∈ N, then

E[V1] ≤ e−aδV0(x) +M

and
E[Vn+1|ηx0 , ηx1 , · · · , ηxn] ≤ e−aδVn +M, n ∈ N.

Now we proceed to show that the chain (ηxn)n∈Z+ , x ≥ 0, is λ-irreducible, strong
aperiodic, and all compact subsets of R+ are petite for the chain (ηxn)n∈Z+ .

“λ-irreducibility": We show that the Lebesgue measure λ on R+ is an irreducibility
measure for (ηxn)n∈Z+ . Let A ∈ B(R+) and λ(A) > 0. Then it follows from Prop. 3 that

P [ηx1 ∈ A|ηx0 = x] = P (Xx
δ ∈ A) ≥ P (Zδ = 0)

∫
A

f(δ, x, y)dy > 0,

since f(δ, x, y) > 0 for any x ∈ R+ and y > 0. This shows that the chain (ηxn)n∈Z+ is
irreducible with λ being an irreducibility measure.

“Strong aperiodicity" (see [44, p.561] for a definition): To show the strong aperiodicity
of (ηxn)n∈Z0 , we need to find a set B ∈ B(R+), a probability measure m with m(B) = 1,
and ε > 0 such that

(4.22) L(x,B) > 0, x ∈ R+,

and

(4.23) P (ηx1 ∈ A) ≥ εm(A), x ∈ C, A ∈ B(R+),

where L(x,B) := P (ηxn ∈ B for some n ∈ N). To this end set B := [0, 1] and g(y) :=
infx∈[0,1] f(δ, x, y), y > 0. Since for fixed y > 0 the function f(δ, x, y) strictly positive
and continuous in x ∈ [0, 1], thus we have g(y) > 0 and 0 <

∫
(0,1]

g(y)dy ≤ 1. Define

m(A) :=
1∫

(0,1]
g(y)dy

∫
A∩(0,1]

g(y)dy, A ∈ B(R+).

Then for any x ∈ [0, 1] and A ∈ B(R+) we get

P (ηx1 ∈ A) = P (Xx
δ ∈ A)

≥ P (Zδ = 0)

∫
A

f(δ, x, y)dy

≥ P (Zδ = 0)

∫
A∩(0,1]

g(y)dy

≥ P (Zδ = 0)m(A)

∫
(0,1]

g(y)dy,
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4.3. EXPONENTIAL ERGODICITY OF JCIR

so (4.23) holds with ε := P (Zδ = 0)
∫

(0,1]
g(y)dy.

Obviously

L(x, [0, 1]) ≥ P (ηx1 ∈ [0, 1]) = P (Xx
δ ∈ [0, 1]) ≥ P (Zδ = 0)

∫
[0,1]

f(δ, x, y)dy > 0

for all x ∈ R+, which verifies (4.22).
“Compact subsets are petite": We have shown that λ is an irreducibility measure for

(ηxn)n∈Z+ . According to [44, Thm. 3.4(ii)], to show that all compact sets are petite, it
suffices to prove the Feller property of (ηxn)n∈Z+ , x ≥ 0. But this follows from the fact
that (ηxn)n∈Z+ is a skeleton chain of the JCIR process, which is an affine process and
possess the Feller property.

According to [44, Thm. 6.3] (see also the proof of [44, Thm. 6.1]), the probability
measure π is the only invariant probability measure of the chain (ηxn)n∈Z+ , x ≥ 0, and
there exist constants β ∈ (0, 1) and C ∈ (0,∞) such that

‖P δn(x, ·)− π‖TV ≤ C
(
x+ 1

)
βn, n ∈ Z+, x ∈ R+.

Then for the rest of the proof we can proceed as in [46, p.536] and get the inequality
(4.21).
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Chapter 5

Non affine term structure models

Our purpose in this Chapter is to study the ergodicity properties of interest rate models
driven by the Lévy process. These processes are more realistic models for the term struc-
ture. The insurance company DeBeKa are interested to use this model to describe the
movement of interest rate during financial crisis.

5.1 Connection between OU-process and CIR-process in
the jumps case

The model described in this section is also an extension of the CIR model, is extended to
include Lévy noise. Let (Ω,F , (Ft)t∈R+ , P ) be a filtered probability space satisfying the
usual conditions. Let (Xt)t≥0 satisfy the following stochastic differential equation

(5.1) dXt = (b− aXt)dt+ σ
√
XtdLt

with starting point x0, where a, b and σ are positive constants and (Lt)t≥0 is one dimen-
sional Lévy process denotes the jumps in the process and is given by

(5.2) dLt = dWt +

∫
0<|u|<1

uq(dt, du)

where {Wt, t ≥ 0} is a standard Brownian motion and q(dt, du) be the compensated
Poisson random measure (cPrm for short) of {N(dt, du)}, given by

q(dt, du) = N(dt, du)− dtν(du),
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where {N(dt, du)} is a Poisson random measure with intensity dtν(du) where ν(du) is a
σ-finite measure on (0,∞) satisfying∫ ∞

0

(1 ∧ u2)ν(du) <∞.

We suppose also that {Wt, t ≥ 0} and {N(dt, du)} are independent.
Let us first recall the assumptions which can guarantee the existence and uniqueness of

the solutions to the non-Lipschitz stochastic differential equations driven by Lévy noise,
for more details we refer to [52].

Xu and Pei only focus on the study of an equation driven by continuous noise interspersed
with small jumps, the non-Lipschitz SDE driven by Lévy noise has the following form

(5.3) dXt = b(t,Xt)dt+ σ(t,Xt)dBt +

∫
|u|<c

F (t,Xt, u)q(dt, du), X0 = ξ.

The mapping b, σ and F are all assumed to be measurable and ξ a random variable and
E|ξ2| <∞.

Now, we consider the following assumptions on the coefficients of SDE (5.3) :

• For each fixed t ∈ [0, T ], let b(t, x), σ(t, x) and F (t, x, u) be continuous in x and
for all x, y ∈ R,

|b(t, x)− b(t, y)|2 + |σ(t, x)− σ(t, y)|2 +

∫
|u|<c
|F (t, x, u)− F (t, y, u)|2ν(du)

≤ λ(t)K
(
|x− y|2

)
,

where λ : [0,∞) → R+ is an integrable function and K(q) or K(q)2

q
is concave

function , K(0) = 0 and
∫

1
K(q)

dq =∞

• b(t, 0), σ(t, 0) and F (t, 0, u) are integrable.

Under these assumptions Xu and Pei prove that the SDE (5.3) has a unique solution. The
existence and uniqueness of solution to the SDE (5.1) follow from the main results of Xu
and Pei [52, Thm 1,2].

Remark 13. The singularity of the noise term
√
XtdLt at the origin does not guarantee

that the solution of the above SDE 5.1 will always be non negative, since the process
(Xt)t≥0 can simply jump over the origin and to the negative part of the real line.
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To overcome this disadvantage we establish the connection between this model and the
square of Ornstein-Uhlenbeck process with jumps. Let (Yt)t≥0 be an Ornstein-Uhlenbeck
process satisfying the following stochastic differential equation

(5.4) dYt = −a
2
Ytdt+

σ

2
dLt

where a and σ are positive constants and (Lt)t≥0 is a Lévy process of the form 5.2. This
process is the classical Ornstein-Uhlenbeck SDE with the Browian motion replaced by a
Lévy process. This is exist because of growth and Lipschitz conditions.

Lemma 13. Now, we set Zt = Y 2
t , the process (Zt)t≥0 is a solution to the following SDE

dZt = (
σ2

4
− aZt)dt+ σ

√
ZtdL̃t

+

∫
0<|u|<1

σ2

4
u2ν(du) +

∫
0<|u|<1

σ2

4
u2q(dt, du).

where

L̃t :=

∫ t

0

sign(Ys)dLs =

∫ t

0

sign(Ys)dWs +

∫ t

0

∫
0<|u|<1

sign(Ys)uq(ds, du)

and sign(x) :=

{
+1, for x ≥ 0,

−1, for x < 0.

To prove this Lemma, let us first recall the Itô formula with respect to the cPrm. Let
(Xt)t≥0 be a one-dimensional Lévy process given by:

dXt = G(Xt)dt+ F (Xt)dWt +

∫
0<|u|<1

H(t, u)q(dt, du), X0 = x.

For f ∈ C2(R) we have

df(Xt) = ∂xf(Xt)G(Xt)dt+ ∂xf(Xt)F (Xt)dWt +
1

2
∂xxf(Xt)F

2(Xt)dt

+

∫
0<|u|<1

(
f(Xt +H(t, u))− f(Xt)−H(t, u)∂xf(Xt)

)
ν(du)dt

+

∫
0<|u|<1

(
f(Xt +H(t, u))− f(Xt)

)
q(dt, du),

we refer to ( [43, Section 3.7]).
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Proof. We denote f(Yt) = Y 2
t by applying the previous Itô formula one can get

df(Yt) = −aY 2
t dt+ +σYtdWt +

σ2

4
dt

+

∫
0<|u|<1

(
(Yt +

σ

2
u)2 − Y 2

t − 2Yt
σ

2
u
)
dtν(du)

+

∫
0<|u|<1

(
(Yt +

σ

2
u)2 − Y 2

t

)
q(dt, du)

= (
σ2

4
− aY 2

t )dt+ σYtdWt +

∫
0<|u|<1

σYtuq(dt, du)

+

∫
0<|u|<1

σ2

4
u2dtν(du) +

∫
0<|u|<1

σ2

4
u2q(dt, du)

then we get

dZt = (
σ2

4
− aZt)dt+ σ

√
ZtdL̃t

+

∫
0<|u|<1

1

4
σ2u2dtν(du) +

∫
0<|u|<1

1

4
σ2u2q(dt, du)

where

L̃t :=

∫ t

0

sign(Ys)dLs =

∫ t

0

sign(Ys)dWs +

∫ t

0

∫
0<|u|<1

sign(Ys)uq(ds, du)

One can remark that L̃t and
∫

0<|u|<1
u2q(dt, du) are independent. The only difficulty is

how to show that {L̃t, t ≥ 0} is a Lévy process.

First, we will show that W̃t =
∫ t

0
sign(Ys)dWs is a Brownian motion. Our idea is to use

the time change for the Brownian motion.

Let us first recall time change of Brownian motion. Let c(t, ω) ≥ 0 be an Ft-adapted
process. Define

(5.5) βt = β(t, ω) :=

∫ t

0

c(s, ω)ds.

Note that βt is also an Ft-adapted process and for each ω the map t → βt(ω) is non-
decreasing. Define

(5.6) αt = α(t, ω) := inf{s : βs > t}

Following [48, Chapter 8] we recall the Theorem 8.5.2:
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Theorem 14. Let dB̃t = v(t, ω)dBt , v ∈ Rn×m, Bt ∈ Rn be an Itô integral in Rn,
Y (0) = 0 and assume that

vvT (t, ω) = c(t, ω)In,

for some process c(t, ω). Let αt and βt as in (5.6) and (5.5) respectively then

B̃αt is an n-dimensional Brownian motion.

By using time change we will prove that W̃t we define

W̃t :=

∫ t

0

sign(Ys)dWs.

In this case, we have v(t, ω) = sign(Y (t, ω)), c(t, ω) = sign(Y (t, ω))2 = 1 and βt :=∫ t
0

(
sign(Ys)

)2
ds = t.

Let
αt := inf{s : βs > t} = t.

After the time change, we know from theorem (14) that W̃αt is a Brownian motion. Since
αt = t, we conclude that W̃t is also a Brownian motion. For full details for the time
change the readers are referred to [48, Section 8.5].

Next step, is how to show that∫ t

0

∫
0<|u|<1

sign(Ys)uq(ds, du)

is still a Lévy process?

Note that this term is in terms of stochastic integral. If we assume that N(dt,du) is
symmetric. The driving process of OU process is independent increment symmetric pro-
cess.

If we succeed to prove this fact then we can write the CIR process with jumps 5.1 as a sum
of the square of Ornstein-Uhlenbeck driven by jumps 5.4 and a positive drifts as follows

Xt = Y 2
t + (b− σ2

4
)t =

∫ t

0

∫
0<|u|<1

1

4
σ2u2ν(du)ds+

∫ t

0

∫
0<|u|<1

1

4
σ2u2q(ds, du).
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5.2. SOME INVESTIGATIONS

5.2 Some investigations
For term structure models driven by a Gaussian noise, Bhan and Mandrekar introduced
a simple method for testing the stability of various important financial models like CIR
and Vasicek by explicitly calculating their moments. They investigated the recurrence
properties and ultimate boundedness of these models and hence the existence of invari-
ant measure (see [4]). Motivated by the work of Govidan and Abreu [18], Bhan et al.
in [5] proved the weak positive recurrence of the interest rate models driven by Lévy
process and the existence of the invariant measure which follows from the exponential
ultimate boundedness. We already derived in the last section, the equation for the square
of Ornstein-Uhlenbeck process driven by jump process which is a special case of the pro-
cesses considered in [5]. Hence, we have the weak recurrence and the existence of the
invariant measure of this process.

Unfortunately these models are non affine term structure models, so we need a new math-
ematical tools to analyze Harris recurrence and exponential ergodicity.

First of all, we will consider the case when the Lévy process (Lt)t≥0 is α-stable. Then we
check in the literature how to analyse the Harris recurrence and the ergodicity for this type
of process. Hence, we generalize the application in one credit migration model shown in
the Chapter 2. More precisely, how one can calibrate the parameters of the non affine term
structure model based on the ergodicity results.
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[13] Filipović, D.: A general characterization of one factor affine term structure models,
Finance Stoch., 5(3) (2001), 389–412.
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