Entwicklung eines Rechenverfahrens für keilgezinkte Rahmenecken und Biegeträger ohne oder mit Zwischenstück aus Brettschichtholz oder Holzwerkstoffplatten

Dissertation zur Erlangung des Grades Doktor-Ingenieur des Fachbereichs Bauingenieurwesen der Bergischen Universität Wuppertal

> von Dipl.-Ing. Tobias Wiegand Wuppertal

.07.2002
.01.2003
ivProf. DrIng. H. Brüninghoff ivProf. DrIng. P. Glos

Wuppertal 2003

Vorwort

Die vorliegende Arbeit entstand während meiner Tätigkeit als wissenschaftlicher Mitarbeiter im Lehr- und Forschungsgebiet Ingenieurholzbau der Bergischen Universität Wuppertal und in der Zeit danach.

Mein ganz besonderer Dank gilt Herrn Univ.-Prof. Dr.-Ing. H. Brüninghoff für die Förderung und Unterstützung dieser Arbeit.

Herrn Univ.-Prof. Dr.-Ing. Glos danke ich für die Übernahme des Korreferats.

Weiterhin möchte ich mich bei meinen Kollegen, im Zusammenhang mit dieser Arbeit besonders bei Herrn Dipl.-Ing. Martin Ruß und Herrn Dipl.-Ing. Holger Klapp, für die erfolgreiche Zusammenarbeit bedanken.

Großen Dank schulde ich auch meiner Frau für die Geduld und das Verständnis, das sie mir während der ganzen Zeit entgegengebracht hat.

Zusammenfassung

Keilgezinkte Rahmenecken und Biegeträger mit und ohne Zwischenstücken werden aus Brettschichtholz- und Holzwerkstoffabschnitten hergestellt, die mittels Universalkeilzinkenverbindungen gestoßen werden. In Universalkeilzinkenverbindungen werden die zu verbindenden Abschnitte in einer quer zur Systemachse verlaufenden, über die gesamte Querschnittshöhe gefrästen Keilzinkung miteinander verklebt. Die biegesteife Verbindung erlaubt "Knicke" der Systemlinien und somit vielfältige Bauteilformen.

Traglastversuche mit keilgezinkten Rahmenecken und Biegeträgern sind sehr aufwändig, umfangreicherere Testreihen sind wirtschaftlich nicht zu vertreten. Es wurde daher ein Rechenmodell zur Abschätzung der Tragfähigkeit unter Berücksichtigung streuender Werkstoffeigenschaften entwickelt. Das Rechenmodell setzte sich aus einem Simulations- und einem Finite-Elemente-Programm zusammen.

Im Simulationsprogramm wurde der Aufbau der Brettschichtholzteile nachvollzogen. Mit den statistischen Verteilungen der Holzeigenschaften sowie der wuchsspezifischen und produktionsabhängigen Regelmäßigkeiten konnten mittels Monte-Carlo-Simulationen beliebig viele Träger mit unterschiedlich verteilten Eigenschaften simuliert werden. Aus diesen simulierten Eigenschaften wurden abschnittsweise mittels Regressionsgleichungen die Festigkeits- und Steifigkeitswerte für das gewählte orthotrope Materialgesetz bestimmt. Anders als bei früheren Simulationsprogrammen für gerade Biegeträger musste im vorliegenden Programm ein Bruchkriterium gewählt werden, dass die auftretenden mehrachsigen Spannungszustände berücksichtigt. Die bislang nicht bekannten Eingangsdaten für die Simulation der Universalkeilzinkenverbindungen wurden aus Versuchen ermittelt oder durch Anpassung der Simulationsergebnisse an ältere Traglastversuche abgeschätzt.

Im Finite-Elemente-Programm wurde eine stufenweise Belastung auf das Modell aufgebracht. Die Lasthöhe wurde so gesteuert, dass am Ende jeder Laststufe ein Element im Druck- oder Zugbereich ausfiel. Mit der stufenweisen Lastaufbringung konnte u.a. das nichtlineare Verformungsverhalten im Druckbereich der Verbindung berücksichtigt werden. Fiel ein Element des Zugbereiches aus, wurde anhand empirischer Versagenskriterien überprüft, ob die Traglast des Gesamtsystems erreicht war.

Zur Kontrolle der Güte des Simulationsprogramms wurden Traglastversuche mit Rahmenecken unterschiedlicher Geometrie durchgeführt. Es ergab sich eine durchweg gute Übereinstimmung der Simulationen mit den Ergebnissen der Traglastversuche.

Mit Hilfe durchgeführter Simulationen wurde dann ein Bemessungsvorschlag für die Berechnung von keilgezinkten Biegeträgern und Rahmenecken mit oder ohne Zwischenstück aus visuell sortiertem Brettschichtholz oder Baufurniersperrholz aus Buche auf der Basis der sogenannten Hankinson-Gleichung abgeleitet. Mit dem Bemessungsvorschlag können Kurzzeitfestigkeiten in der Nutzungsklasse 1 ermittelt werden.

Andere hölzerne Werkstoffe sowie die Einflüsse abweichender Holzfeuchte, Temperatur oder Lastdauer können ebenfalls mit dem Programm simuliert werden, sofern entsprechende Eingangsdaten für das Simulationsprogramm zur Verfügung stehen.

Abstract

Portal-frame-corners and beams can be made of wooden components jointed with large-finger-joints (LFJs). LFJs are finger joints through the full cross-sectional area at the end of wooden components bonded together at any angle. The wooden components are usually made of glued-laminated-timber (glulam). In order to strengthen the member, glued blocks of wood-based-panels having the same width can be inserted as corner pieces between two glulam-components.

The testing of finger-jointed portal-frame-corners or beams is very costly; the testing of a larger number of specimen would lead to an unreasonable high expend. Therefore a simulation model has been developed in order to calculate the ultimate loads of simulated frame-corners and beams taking into account the variability of the relevant material properties. The simulation-model consists of a simulation-module in which the material properties are simulated or calculated and of a calculation-module which is based on the method of finite-elements.

The simulation-module reproduces the steps of glulam-production. The wooden members are divided into elements or "cells". For each cell random values for material properties such as density and knots and production-dependend random values such as distances between small-finger-joints in the lamellas are taken from the known statistical distributions. Strength- and stiffness-properties of each cell are calculated from those simulated properties. Different to former simulation models for straight glulam beams, the simulation model in hand has to take into consideration the influence of combined stresses. Therefore an orthotropic failure criteria has been chosen. The formerly unknown parameters for the orthotropic failure criteria of the LFJs have partly been taken from testing and partly from adjustments of simulated loads to ultimate loads of previous large scale tests done by other research-institutes.

After all properties have been simulated or calculated the simulation-module hands over the data to the calculation-module. The simulated portal-frame-corner or beam is subjected to a stepwise load. The load in each loadstep is calculated in a way, that at the end of each loadstep one cell fails. The loads of all loadsteps are sumed up to the ultimate load of the system. The ultimate load is reached when a cell in the tensionstressed area of the members fails and the load can not be raised any longer.

In order to control the simulation-model, some large scale testing with portal-framecorners of different geometry have been done. For all of those tests a good fit of the experimental results with the simulated results could be found.

Based on a large number of simulations, equations for the calculation of portal-framecorners and beams with or without corner pieces, made of glulam or beech-plywood, are proposed. The short-term-strength calculated with the proposed equations are applicable in service-class 1. Glulam made of machine-graded timber or wood-basedpanels other than beech-plywood could also easily taken into account, unless the relevant data for the simulation-program is available. This is also true for the influence of different moisture-content, temperature or duration of load.

Inhaltsverzeichnis

Vorwo	ort	I
Zusan	nmenfassung	III
Inhalt	sverzeichnis	V
Bezei	chnungen	IX
1 Gr	undgedanken, Zielsetzung	1
2 Lit	eraturstudie	5
2.1	Experimentelle Untersuchungen an Rahmenecken und Biegeträgern	5
2.1.1	Kolb (1966), (1968b), (1968c)	5
2.1.2	Kolb (1968a)	8
2.1.3	Kolb (1970)	9
2.1.4	Kolb/Gruber (1978)	. 10
2.1.5	Kolb/Radovic (1980)	. 13
2.1.6	Kolb/Radovic (1984)	. 14
2.1.7	Möhler/Siebert (1983)	. 15
2.1.8	Scappozza (1996)	. 16
2.1.9	Scappozza (1998)	. 19
2.1.10	Komatsu et. al. (2001)	. 21
2.2	Spannungstheoretische Untersuchungen und Bemessungsvorschläge	. 22
2.2.1	Heimeshoff (1976)	. 22
2.2.2	Krabbe/Tersluisen (1978)	. 23
2.2.3	Heimeshoff/Seuß (1982)	. 23
2.2.4	Steck (1988)	. 25
2.2.5	Eurocode 5/NAD (1995)	. 26
2.2.6	Scapozza (1998)	. 26
2.3	Schlussfolgerungen	. 27
2.3.1	Rahmenecken und Biegeträger mit Druckspannungen in der Innen-	
	ecke der Universalkeilzinkenverbindung	. 27
2.3.2	Rahmenecken und Biegeträger mit Zugspannungen in der Innen-	
	ecke der Universalkeilzinkenverbindung	. 28
3 Die	e Simulation von Brettschichtholz	. 30
3.1	Vorgehensweise	. 30
3.2	Frühere Arbeiten mit Simulationsmodellen für Brettschichtholz	. 31
3.3	Die Simulation der einzelnen Parameter	. 32
3.3.1	Zellenaröße	. 32
3.3.2	Keilzinkenabstände	. 33
3.3.3	Rohdichte	. 34

3.3.4	Holzfeuchte	35		
3.3.5	Ästigkeit			
3.3.6	Bestimmung von Festigkeitswerten und Elastizitätskonstanten aus			
	anderen festigkeitsrelevanten Einflussgrößen	39		
3.3.7	Elastizitätsmoduln parallel zur Faser	39		
3.3.7.1	Nicht keilgezinkte Brettabschnitte	39		
3.3.7.2	Keilgezinkte Brettabschnitte	41		
3.3.8	Schubmodul	42		
3.3.9	Elastizitätsmodul senkrecht zur Faser	44		
3.3.10	Querdehnungszahl	46		
3.3.11	Festigkeiten parallel zur Faser	47		
3.3.11.	.1 Nicht keilgezinkte Brettabschnitte	47		
3.3.11.	2 Keilgezinkte Brettabschnitte	48		
3.3.12	Scherfestigkeit	49		
3.3.13	Querzugfestigkeit	50		
3.3.14	Querdruckfestigkeit	51		
3.3.15	Spannungskombination	52		
3.3.16	Kontrolle der Simulationsgüte	56		
3.3.16.	.1 Simulierte Lamelleneigenschaften	56		
3.3.16.	2 Simulierte Brettschichtholzfestigkeiten	60		
3.3.17	Zusammenstellung der getroffenen Annahmen	61		
	Simulation von Holzwarkstoffen	62		
4 Die		02		
4.1	Allgemeines	62		
4.1 4.2	Allgemeines	62 62		
4.1 4.2 4.3	Allgemeines Zellengröße Simulation der Elastizitätskonstanten	62 62 62 63		
4.1 4.2 4.3 4.3.1	Allgemeines Zellengröße Simulation der Elastizitätskonstanten Allgemeines	62 62 63 63		
4.1 4.2 4.3 4.3.1 4.3.2	Allgemeines Zellengröße Simulation der Elastizitätskonstanten Allgemeines Ermittlung der Elastizitätskonstanten	62 62 63 63 64		
4.1 4.2 4.3 4.3.1 4.3.2 4.3.3	Allgemeines Zellengröße Simulation der Elastizitätskonstanten Allgemeines Ermittlung der Elastizitätskonstanten Elastizitätskonstanten von BFU-BU	62 62 63 63 64 64		
4.1 4.2 4.3 4.3.1 4.3.2 4.3.2 4.3.3 4.3.4	Allgemeines Zellengröße Simulation der Elastizitätskonstanten Allgemeines Ermittlung der Elastizitätskonstanten Elastizitätskonstanten von BFU-BU Elastizitätskonstanten von FSH-Q	62 62 63 63 63 64 67 68		
4.1 4.2 4.3 4.3.1 4.3.2 4.3.2 4.3.3 4.3.4 4.4	Allgemeines Zellengröße Simulation der Elastizitätskonstanten Allgemeines Ermittlung der Elastizitätskonstanten Elastizitätskonstanten von BFU-BU Elastizitätskonstanten von FSH-Q Simulation der Festigkeiten	62 62 63 63 64 67 68 70		
4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.4 4.4.1	Allgemeines Zellengröße Simulation der Elastizitätskonstanten Allgemeines Ermittlung der Elastizitätskonstanten Elastizitätskonstanten von BFU-BU Elastizitätskonstanten von FSH-Q Simulation der Festigkeiten Allgemeines	62 62 63 63 63 63 64 67 68 70 70		
4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.4 4.4.1 4.4.2	Allgemeines Zellengröße Simulation der Elastizitätskonstanten Allgemeines Ermittlung der Elastizitätskonstanten Elastizitätskonstanten von BFU-BU Elastizitätskonstanten von FSH-Q Simulation der Festigkeiten Allgemeines Festigkeitshypothesen für Holzwerkstoffe	62 62 63 63 63 63 63 67 68 70 70 70		
4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.4 4.4.1 4.4.2 4.4.3	Allgemeines Zellengröße Simulation der Elastizitätskonstanten Allgemeines Ermittlung der Elastizitätskonstanten Elastizitätskonstanten von BFU-BU Elastizitätskonstanten von FSH-Q Simulation der Festigkeiten Allgemeines Festigkeitshypothesen für Holzwerkstoffe Festigkeiten von BFU-BU	62 63 63 64 67 67 68 70 70 70 71		
4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.4 4.4.1 4.4.2 4.4.3 4.4.3 4.4.4	Allgemeines Zellengröße Simulation der Elastizitätskonstanten Allgemeines Ermittlung der Elastizitätskonstanten Elastizitätskonstanten von BFU-BU Elastizitätskonstanten von FSH-Q Simulation der Festigkeiten Allgemeines Festigkeitshypothesen für Holzwerkstoffe Festigkeiten von BFU-BU Festigkeiten von FSH-Q	62 63 63 64 67 67 68 70 70 70 71 71		
4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.4 4.4.1 4.4.2 4.4.3 4.4.3 4.4.4 4.5	Allgemeines Zellengröße Simulation der Elastizitätskonstanten Allgemeines Ermittlung der Elastizitätskonstanten Elastizitätskonstanten von BFU-BU Elastizitätskonstanten von FSH-Q Simulation der Festigkeiten Allgemeines Festigkeitshypothesen für Holzwerkstoffe Festigkeiten von BFU-BU Festigkeiten von FSH-Q	62 62 63 63 63 64 67 68 70 70 70 71 71 73		
4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.4.1 4.4.2 4.4.3 4.4.4 4.4.3 4.4.4 4.5	Allgemeines	62 63 63 64 67 68 70 70 70 71 71 73		
4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.4 4.4.1 4.4.2 4.4.3 4.4.4 4.5 5 Die	Allgemeines	62 63 63 64 67 67 70 70 71 71 71 73		
4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.4 4.4.1 4.4.2 4.4.3 4.4.4 4.5 5 Die 5.1	Allgemeines Zellengröße Simulation der Elastizitätskonstanten Allgemeines Ermittlung der Elastizitätskonstanten Elastizitätskonstanten von BFU-BU Elastizitätskonstanten von FSH-Q Simulation der Festigkeiten Allgemeines Festigkeitshypothesen für Holzwerkstoffe Festigkeiten von BFU-BU Festigkeiten von BFU-BU Festigkeiten von FSH-Q Zusammenfassung der getroffenen Annahmen	62 63 63 64 67 67 70 70 71 71 71 73 74		
4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.4.1 4.4.2 4.4.3 4.4.4 4.5 5 Die 5.1 5.2	Allgemeines	62 62 63 63 64 67 67 70 70 70 71 71 71 73 74 74		
4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.4.1 4.4.2 4.4.3 4.4.4 4.5 5 Die 5.1 5.2 5.2 5.2.1 5.2	Allgemeines Zellengröße Simulation der Elastizitätskonstanten Allgemeines Ermittlung der Elastizitätskonstanten Elastizitätskonstanten von BFU-BU Elastizitätskonstanten von FSH-Q Simulation der Festigkeiten Allgemeines Festigkeitshypothesen für Holzwerkstoffe Festigkeiten von BFU-BU Festigkeiten von BFU-BU Festigkeiten von FSH-Q Zusammenfassung der getroffenen Annahmen Simulation von Universalkeilzinkenverbindungen Allgemeines Verbindungen BS-Holz/BS-Holz Derzeitiger Kenntnisstand	62 62 63 63 64 67 68 70 70 70 71 71 73 74 74 76 76		
4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.4.1 4.4.2 4.4.3 4.4.4 4.5 5.1 5.2 5.2.1 5.2.1 5.2.2 5.2.1	Allgemeines	62 62 63 63 64 67 68 70 70 70 71 71 71 73 74 76 78		
4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.4.1 4.4.2 4.4.3 4.4.4 4.5 5.1 5.2 5.2.1 5.2.2 5.2.1 5.2.2 5.2.3 5.2.4	Allgemeines Zellengröße Simulation der Elastizitätskonstanten Allgemeines Ermittlung der Elastizitätskonstanten Elastizitätskonstanten von BFU-BU Elastizitätskonstanten von FSH-Q Simulation der Festigkeiten Allgemeines Festigkeitshypothesen für Holzwerkstoffe Festigkeiten von BFU-BU Festigkeiten von BFU-BU Festigkeiten von FSH-Q Zusammenfassung der getroffenen Annahmen Simulation von Universalkeilzinkenverbindungen Allgemeines Verbindungen BS-Holz/BS-Holz Derzeitiger Kenntnisstand Prüfkörper und Versuchsaufbau Auswahl des Probenmaterials	62 63 63 64 67 68 70 70 71 71 71 71 71 71 71 71 71 71 73 74 74 76 78 78		

5.2.5	Darstellung und Diskussion der Ergebnisse	83
5.2.5.1	Nicht in die Auswertung aufgenommene Versuche	. 83
5.2.5.2	In die Auswertung aufgenommene Versuche	. 83
5.2.6	Auswahl eines geeigneten Bruchkriteriums	. 86
5.2.7	Simulation der Festigkeit im Simulationsprogramm	. 87
5.3	Verbindungen BS-Holz/BFU-BU	. 90
5.3.1	Derzeitiger Kenntnisstand	90
5.3.2	Prüfkörper und Versuchsaufbau	. 90
5.3.3	Auswahl des Probenmaterials und Versuchsdurchführung	. 91
5.3.4	Darstellung und Diskussion der Ergebnisse	. 92
5.3.4.1	Nicht in die Auswertung aufgenommene Versuche	. 92
5.3.4.2	In die Auswertung aufgenommene Versuche	. 92
5.3.5	Simulation der Festigkeit im Simulationsprogramm	. 93
5.4	Verbindungen BS-Holz/FSH-Q	94
5.4.1	Derzeitiger Kenntnisstand	94
5.4.2	Prüfkörper und Versuchsaufbau	. 95
5.4.3	Auswahl des Probenmaterials und Versuchsdurchführung	. 95
5.4.4	Darstellung und Diskussion der Ergebnisse	. 95
5.4.4.1	Nicht in die Auswertung aufgenommene Versuche	. 95
5.4.4.2	In die Auswertung aufgenommene Versuche	. 96
5.4.5	Simulation der Festigkeit im Simulationsprogram	. 97
55	Zusammenfassung der getroffenen Annahmen	98
0.0		
0.0		
6 Das	s FE-Modell	99
6.1	s FE-Modell	99 99
6 Das 6.1 6.2	s FE-Modell Modellaufbau Wahl des Elementtyps	99 99 100
6.1 6.2 6.3	s FE-Modell Modellaufbau Wahl des Elementtyps Berechnungsablauf	99 99 100 100
6.1 6.2 6.3 6.4	s FE-Modell Modellaufbau Wahl des Elementtyps Berechnungsablauf Spannungsberechnung	99 99 100 100 102
6.1 6.2 6.3 6.4 6.5	s FE-Modell Modellaufbau Wahl des Elementtyps Berechnungsablauf Spannungsberechnung Nichtlineares Tragverhalten	99 100 100 102 103
6.1 6.2 6.3 6.4 6.5 6.5.1	s FE-Modell Modellaufbau Wahl des Elementtyps Berechnungsablauf Spannungsberechnung Nichtlineares Tragverhalten Bei Druck parallel zu Faser	99 100 100 102 103 103
6.1 6.2 6.3 6.4 6.5 6.5.1 6.5.2	s FE-Modell Modellaufbau Wahl des Elementtyps Berechnungsablauf Spannungsberechnung Nichtlineares Tragverhalten Bei Druck parallel zu Faser Im Druckbereich der Universalkeilzinkenverbindung	99 100 100 102 103 103 104
6.1 6.2 6.3 6.4 6.5 6.5.1 6.5.2 6.6	s FE-Modell	99 100 100 102 103 103 104 105
6.1 6.2 6.3 6.4 6.5 6.5.1 6.5.2 6.6 6.7	s FE-Modell Modellaufbau Wahl des Elementtyps Berechnungsablauf Spannungsberechnung Nichtlineares Tragverhalten Bei Druck parallel zu Faser Im Druckbereich der Universalkeilzinkenverbindung Versagenskriterien Zusammenfassung der getroffenen Annahmen	99 100 100 102 103 103 104 105
6 Das 6.1 6.2 6.3 6.4 6.5 6.5.1 6.5.2 6.6 6.7	s FE-Modell Modellaufbau	99 100 100 102 103 103 104 105
 6 Das 6.1 6.2 6.3 6.4 6.5 6.5.1 6.5.2 6.6 6.7 7 Abs 	s FE-Modell	99 100 100 102 103 103 104 105 106
 6 Das 6.1 6.2 6.3 6.4 6.5 6.5.1 6.5.2 6.6 6.7 7 Abs pro 	s FE-Modell	99 100 100 102 103 103 104 105 106 107
 6 Das 6.1 6.2 6.3 6.4 6.5 6.5.1 6.5.2 6.6 6.7 7 Abs pro 7.1 	s FE-Modell	99 100 102 103 103 104 105 106 107
 6 Das 6.1 6.2 6.3 6.4 6.5 6.5.1 6.5.2 6.6 6.7 7 Abs pro 7.1 7.2 	s FE-Modell	99 100 102 103 103 104 105 106 107
6.1 6.2 6.3 6.4 6.5 6.5.1 6.5.2 6.6 6.7 7 Abs pro 7.1 7.2	s FE-Modell	99 100 102 103 103 104 105 106 107 107
 6 Das 6.1 6.2 6.3 6.4 6.5 6.5.1 6.5.2 6.6 6.7 7 Abs pro 7.1 7.2 7.3 	s FE-Modell	99 100 102 103 103 104 105 106 107 107 107
 6 Das 6.1 6.2 6.3 6.4 6.5 6.5.1 6.5.2 6.6 6.7 7 Abs pro 7.1 7.2 7.3 7.4 	s FE-Modell	99 100 102 103 103 104 105 106 107 107 107 111 115

8	Üb	erprüfung des Simulationsprogramms durch Traglastversuche	119
8.1		Allgemeines	119
8.2		Auswahl des Probenmaterials und Herstellung der Prüfkörper	119
8.3		Versuchsaufbau und Prüfkörpergeometrie	120
8.4		Versuchsdurchführung	121
8.5		Versuchsverläufe	122
8.5.	1	Rahmenecken ohne Zwischenstück	122
8.5.	1.1	Rahmenecke 1a mit φ = α =35°	122
8.5.	1.2	Rahmenecke 1b mit φ = α =35°	124
8.5.	2	Rahmenecken mit Zwischenstück	127
8.5.	2.1	Rahmenecke 2a mit φ =35°; α =17,5°	127
8.5.	2.2	Rahmenecke 2b mit φ =35°; α =17,5°	131
8.5.	2.3	Rahmenecke 3a mit φ =40°; α =20°	134
8.5.	2.4	Rahmenecke 3b mit φ =40°; α =20°	137
8.5.	2.5	Rahmenecke 4a mit φ =45°; α =22,5°	140
8.5.	2.6	Rahmenecke 4b mit φ =45°; α =22,5°	143
8.6		Vergleich der Versuchsergebnisse mit Simulationen	146
9	Bei	messungsvorschlag	150
9.1		Allgemeines	150
9.2		Gerade Biegeträger	150
9.3		Universalkeilzinkenstöße BS-Holz/BS-Holz mit $\alpha \neq 0^{\circ}$	151
9.3.	1	Schließendes Moment	151
9.3.	2	Öffnendes Moment	154
9.4		Universalkeilzinkenstöße BS-Holz/BFU-BU mit $\alpha \neq 0^{\circ}$	156
9.4.	1	Schließendes Moment	156
9.4.	2	Öffnendes Moment	157
10	Zus	sammenfassung und Ausblick	159
Lite	erat	urverzeichnis	161
Anl	age	en	
Anla	age	A: Tabellarische Darstellung früherer Versuche	A.1
Anla	age	B: Holz als orthotroper Werkstoff	B.1
Anla	age	C: Zugversuche an Universalkeilzinkenverbindung BS-Holz/BS-Holz	C.1
Anla	age	D: Zugversuche an Universalkeilzinkenverbindung BS-Holz/BFU-BU	D.1
Anla	age	E: Zugversuche an Universalkeilzinkenverbindung BS-Holz/FSH-Q	E.1
Anla	age	F: Eingangswerte für die Simulation von keilgezinkten Rahmenecken ohne	
		oder mit Zwischenstück aus BS-Holz	.F.1

Lebenslauf

Bezeichnungen

Hauptzeiger

Ā	=	maßgebende Querschnittsfläche in einem Schnitt senkrecht zur Stab-
		achse unterhalb der Keilzinkung bei Berücksichtigung einer 20-%igen Verschwächung über die gesamte Höhe
α	=	Winkel zwischen der Faserrichtung und der Normalen zur Keilzinken- verbindung
α	=	Kraft Faserrichtung gemäß DIN 1052 (1988-04)
λ	=	Anteil der Furniere in einer Richtung
Δ	=	Hauptastabstand
Δ	=	Differenz
δ	=	Anschnittswinkel angeschnittener Rand
3	=	Dehnung
γ	=	Winkel der verbundenen BS-Holzabschnitte zueinander
γ	=	Sicherheitsbeiwert
η	=	Reibungskoeffizient
η	=	Wirkungsgrad nach Scappozza (1996)
μ	=	Querdehnungszahl
φ	=	Winkel zwischen der Lotrechten und der Außenkante der Riegel
φ	=	Drehwinkel nach Scappozza (1996)
ρ	=	Rohdichte
σ	=	Spannung
υ	=	Anschnittswinkel nach Heimeshoff/Seuß (1982)
τ	=	Schubspannung
θ	=	Lagenwinkel
ω	=	Knickzahl
ĸ	=	Parameter der Häufigkeitsverteilung der Ästigkeit nach Görlacher (1990)
$\Phi(x)$	=	standardisierte Gauss-Verteilung
ρ₀	=	Darrrohdichte
A	=	Querschnittsfläche

Х

= Laminat-Steifigkeiten A_{ij} b = Breite des Zinkengrundes nach DIN 68140 (1971-10) = Querschnittsbreite b BFU = Baufurniersperrholz BFU-BU = Baufurniersperrholz aus Buche BFU-FI = Baufurniersperrholz aus Fichte BFU-TA = Baufurniersperrholz aus Tanne BSH = Brettschichtholz = Länge des Zwischenstückes an der Innenseite der Rahmenecke С С = Drehfedersteifigkeit = Parameter nach Stüssi (1945) C₁, C₂ = Steifigkeiten C_{ij} cKAR = charakteristischer KAR-Wert d = Schichtdicke d = Dicke Е = Elastizitätsmodul F = Kraft f = Festigkeit = Verteilungsfunktion F(x) = Beiwerte nach Heimeshoff/Seuß (1982) f_n, f_m G = Schubmodul = Verteilungsfunktion G(x) h = Höhe h = Querschnittshöhe h(x), H(x) = VerteilungsfunktionHWSt = Holzwerkstoff = Beiwert k = Vielfaches des cKAR-Wertes k KAR = Knot-Area-Ratio = Ästigkeit Т = Länge Т = Zinkenlänge nach DIN 68140 (1971-10) = Laststeigerungsfaktor m

М	=	Biegemoment bezogen auf die Mitte des Keilzinkenstoßes				
N	=	Längskraft in Richtung der Stabachse				
n	=	Anzahl				
Р	=	Einzellast				
р	=	Flächenlast				
q i′j′	=	transformierte, reduzierte Steifigkeiten				
q _{ij}	=	reduzierte Steifigkeiten				
R	=	Korrelationskoeffizient				
S	=	Zinkenspiel nach DIN 68140 (1971-10)				
S	=	Standardabweichung				
s _{ij} , S _{ij}	=	Nachgiebigkeitswerte				
t	=	Dauer				
t	=	Zinkenteilung nach DIN 68140 (1971-10)				
u	=	Holzfeuchte				
u	=	Verschiebung				
UKZV	=	Universalkeilzinkenverbindung				
V	=	querzugbeanspruchtes Volumen				
v	=	Verschwächungsgrad der Keilzinkung nach DIN 68140 (1971-10)				
V	=	Variationskoeffizient				
V ₀	=	Bezugsvolumen für die Querzugfestigkeit				
vorh σ	=	vorhandene Spannung				
W	=	Widerstandsmoment				
W	=	maßgebendes Widerstandsmoment in einem Schnitt senkrecht zur Stabachse unterhalb der Keilzinkung bei Berücksichtigung einer 20- %igen Verschwächung über die gesamte Höhe				
x , x	=	Mittelwert				
x, y, z	=	Achsenbezeichnungen				
zul σ	=	zulässige Spannung nach DIN 1052-1/A1 (1996-10)				

Kopf- und Fußzeiger

- \perp = senkrecht zur Faser
- α = Winkel zwischen der Faserrichtung und der Normalen zur Keilzinkenverbindung
- γ = Winkel der verbundenen BS-Holzabschnitte zueinander
- φ = Winkel zwischen der Lotrechten und der Außenkante der Riegel
- // = parallel zur Faser
- 0 = parallel zur Faser
- 05 = 5%-Quantile
- 50 = Mittelwert
- 90 = senkrecht zur Faser
- B = Brett
- b,B = Biegung
- c = Druck
- d = Differenz
- d = design
- D = Druck
- eff = effektiv
- g = BS-Holz
- ges = Gesamt
- ges = Gesamtheit
- i = zufälliger Wert einer Verteilung
- I-20 = für das Keilzinkenprofil I-20 nach DIN 68140 (1971-10)
- I-50 = für das Keilzinkenprofil I-50 nach DIN 68140 (1971-10)
- k = charakteristischer Wert
- KZV = Keilzinkeneigenschaft
- I = längs I = Lamelle
- m = Mittelwert
- m = Biegung
- max = maximaler Wert

mean	=	Mittelwert	
min	=	minimaler Wert	
R	=	zur Reststreuung gehörend	
Stoss	=	im Stoß	
t	=	Zug	
ult	=	Bruch	
v	=	Schub	
Z	=	Zug	

1 Grundgedanken, Zielsetzung

Keilgezinkte Rahmenecken und Biegeträger mit und ohne Zwischenstücken werden aus Brettschichtholz- und Holzwerkstoffabschnitten hergestellt, die mittels Universalkeilzinkenverbindungen gestoßen werden. In Universalkeilzinkenverbindungen werden die zu verbindenden Abschnitte in einer quer zur Systemachse verlaufenden, über die gesamte Querschnittshöhe gefrästen Keilzinkung miteinander verklebt. Die biegesteife Verbindung erlaubt "Knicke" der Systemlinien und somit vielfältige Bauteilformen.

Bild 1.1: Beispiele für Universalkeilzinkenverbindungen in Rahmenecken (rechts und unten) und Biegeträgern (links)

Die Verbindung ist stahlfrei und daher auch für chemische Beanspruchungen und für höhere Brandschutzanforderungen geeignet. Im Gegensatz zu anderen biegesteifen Verbindungen im Holzbau ist die Herstellung einer Universalkeilzinkenverbindung im Werk einfach und preisgünstig. Baustellenstöße erfordern allerdings einen erheblichen Mehraufwand - besonders für die Klimatisierung während des Klebens und der Aushärtung.

Neben dem schon heute üblichen Einsatz von Universalkeilzinkenverbindungen in keilgezinkten Rahmenecken (Bild 1.1 unten), meist unter Verwendung eines Zwischenstückes aus Brettschichtholz, ist ihr Einsatz in Rahmenecken und Biegeträgern mit Zwischenstücken aus Holzwerkstoffen als eine wirtschaftlich interessante Alternative zu Satteldachträgern mit gekrümmtem Untergurt denkbar.

Bei ungestoßenen Satteldachträgern mit gekrümmtem Untergurt sind die lastabhängigen und klimabedingten Querzugspannungen bemessungsmaßgebend. Zur Problematik der Satteldachträger existieren eine Reihe von Veröffentlichungen z.B. von Blumer (1972), Colling (1986a), (1986b), (1986c), Ranta-Maunus/Gowda (1993), (1994), Aicher/Dill-Langer/Ranta-Maunus (1998), Blaß/Ehlbeck/Schmid (1998).

Bei keilgezinkten Trägern kann dagegen ein aus Holzwerkstoffplatten gefertigtes Zwischenstück im Bereich von Querzugspannungen angeordnet werden. Holzwerkstoffplatten mit kreuzweise angeordneten Furnierlagen haben in Richtung der Querzugspannungen eine wesentlich größere Zugfestigkeit als Holzlamellen; das gesamte Zwischenstück ist querbewehrt. Die Festigkeiten, Elastizitäts- und Schubmoduln von Holzwerkstoffplatten streuen zudem weniger stark als die von Vollholz. Es lassen sich somit schlankere Biegeträger herstellen.

Durch das Fehlen eines genaueren Berechnungsverfahrens für Universalkeilzinkenverbindungen werden die vielen Einsatzmöglichkeiten bislang aber wenig genutzt. Ein vorhandenes Berechnungsverfahren für mit Universalkeilzinkenverbindungen hergestellten Rahmenecken ist in einigen Punkten unbefriedigend:

- Es werden die Schnittgrößen in der Gehrung der Rahmenecke mit den Verfahren der Stabstatik ermittelt. Die zugehörigen Querschnittswerte für den modifizierten Spannungsnachweis werden hingegen in einem Schnitt rechtwinklig zum Stiel bzw. Riegel berechnet. Dabei wird eine Querschnittsschwächung durch die Keilzinkenverbindung über die gesamte Querschnittshöhe angesetzt, obwohl diese tatsächlich in der Gehrung liegt.
- Das Rechenverfahren wurde bislang ausschließlich mit Versuchsergebnissen kalibriert, die an Bauteilen der Güteklassen I und II (entspricht den heutigen Festigkeitsklassen BS 11 und BS 14) gewonnen wurden.
- Tragfähigkeitssteigerungen können derzeit nur für Zwischenstücke aus Baufurniersperrholz aus Buche, nicht aber für die Zwischenstücke aus anderen Holzwerkstoffen berücksichtigt werden.
- Für die Berechnung keilgezinkter Rahmenecken mit öffnenden Biegemomenten (Zugspannungen an der Innenecke) wird ein modifizierter Biegespannungsnachweis geführt und die Beanspruchbarkeit mittels der abgeminderten zulässigen Druckspannung zul. σ_{c,α} abgeschätzt, obgleich das Versagen infolge Querzugspannungen eintritt. Dabei werden die zulässigen Spannungen sehr vorsichtig festgesetzt.

Aus wirtschaftlichen Gründen kommen zur Klärung der offenen Fragen umfangreiche Testreihen nicht in Betracht. Ziel des vorliegenden Forschungsvorhabens ist es daher, ein Simulationsmodell auf der Basis der Methode der Finiten-Elemente zu entwickeln, mit dessen Ergebnissen ein Bemessungsverfahren für keilgezinkte Bauteile aus Brettschichtholz und Holzwerkstoffen entwickelt werden kann.

Folgende Punkte sind in diesem Simulationsprogramm zu berücksichtigen:

- Die Bauteile müssen als orthotrope Scheiben berechnet werden, da sich bei gekrümmten oder geknickten Brettschichtholzbauteilen die Orthotropie des Werkstoffes Holz deutlich auf die Spannungsverteilung auswirkt.
- Es wird ein mehrachsiges Spannungskriterium als Bruchkriterium gewählt, da sowohl die Brettschichtholz- und die Holzwerkstoffabschnitte als auch die Universalkeilzinkenverbindungen unter deutlicher Beteiligung von Quer- und Schubspannungen versagen.
- Für die Bauteilabschnitte wie auch für die Universalkeilzinkenverbindung wird im Druckbereich ein nichtlinear-elastisches Werkstoffverhalten angenommen, da es infolge von Druckspannungen parallel zur Faser zu Faserstauchungen kommen kann, die die Größe des inneren Hebelarmes der Kräfte deutlich beeinflussen. Dies gilt besonders für die druckbeanspruchte einspringende Ecke von Universalkeilzinkenverbindungen.
- Das Simulationsprogramm muss die Eingabe streuender, abschnittsweise unterschiedlicher Materialeigenschaften zulassen. Holz weist aufgrund seines natürlichen Ursprunges starke Streuungen der Materialeigenschaften auf. Diese sind Ursache der großen Streuungen der Traglasten von Holzbauteilen gleicher Geometrie. Infolge des spröden Bruchverhaltens bei Zugbeanspruchung ergibt sich zudem eine Abhängigkeit der Festigkeit von der Größe des beanspruchten Volumens und der Form der Spannungsverteilung (sogenannter "Volumeneffekt"). Werden abschnittsweise streuende Materialeigenschaften eingeführt, können mit Monte-Carlo-Simulationen (s. z.B. Sobol (1971)) im Rechner beliebig viele Träger mit gleichen Außenabmessungen, aber unterschiedlichen Materialeigenschaften simuliert werden. Deren rechnerische Traglasten sind wiederum statistisch verteilt. Nach Definition eines gewünschten Sicherheitsniveaus kann aus der Verteilung der Traglasten die charakteristische Traglast ermittelt werden.
- Mit Universalkeilzinkenverbindungen lassen sich eine Vielzahl von Bauteilgeometrien herstellen, die sich mit dem Simulationsprogramm darstellen können lassen müssen.
 - 1. Es müssen sich Bauteile mit und ohne Zwischenstück darstellen lassen.
 - 2. Das Simulationsprogramm muss Vouten in den Riegeln und Stielen zulassen.

- 3. Im Simulationsprogramm muss sich sowohl ein homogener wie auch ein inhomogener Querschnittsaufbau des Brettschichtholzes darstellen lassen.
- Durch unterschiedliche Lastkombinationen und –stellungen müssen sich die üblichen Beanspruchungskombinationen sowohl für öffnende wie für schließende Momente darstellen lassen.
- 5. Das Simulationsprogramm muss verschiedene Lagerungsbedingungen zulassen.

Aus dem zuvor Gesagten ergibt sich Aufbau der vorliegenden Arbeit wie folgt:

Ein Überblick über die bisher durchgeführten Untersuchungen wird in Kapitel 2 gegeben.

Im Kapitel 3 ist die Simulation der Brettschichtholzabschnitte unter Berücksichtigung abschnittsweise variierender, stark streuender Materialeigenschaften dargestellt. Die Ergebnisse früherer Arbeiten werden ergänzt durch die in der vorliegenden Arbeit notwendigen Angaben zu den Festigkeiten und Elastizitätsmoduln quer zur Faser, der Schubfestigkeit und dem Schubmodul sowie dem Einfluss mehrachsiger Spannungszustände.

Im Kapitel 4 wird in gleicher Weise die Simulation von Zwischenstücken aus Baufurniersperrholz aus Buche oder Furnierschichtholz mit Querlagen dargestellt.

Im Kapitel 5 werden Untersuchungen an Universalkeilzinkenverbindungen zwischen Brettschichtholzabschnitten bzw. Universalkeilzinkenverbindungen zwischen Brettschichtholzabschnitten und Holzwerkstoffabschnitten beschrieben. Auf der Basis der Versuchsergebnisse wird ein Vorschlag für die Simulation der Universalkeilzinkenverbindung formuliert.

Der Modellaufbau, die Wahl der Elementtypen und andere für die Formulierung des Problems wesentlichen Aspekte sind im Kapitel 6 dieser Arbeit dargestellt.

Einige weder durch Versuche bestimmte noch der Literatur zu entnehmende Parameter für das Simulationsprogramm werden im Kapitel 7 durch Anpassung simulierter Bruchlasten an die in früheren Traglastversuchen tatsächlich ermittelten Bruchlasten ermittelt.

Kapitel 8 beschreibt die Durchführung von Traglastversuchen an Rahmenecken zwecks Überprüfung des Simulationsprogramms.

Im Kapitel 9 wird auf der Basis der Ergebnisse von Bauteilversuchen und des Simulationsprogramms ein erster Bemessungsvorschlag auf der Grundlage des Hankinsonkriteriums vorgestellt.

Das Kapitel 10 beschließt die Arbeit mit der Zusammenfassung und dem Ausblick.

2 Literaturstudie

2.1 Experimentelle Untersuchungen an Rahmenecken und Biegeträgern

2.1.1 Untersuchungen von Kolb (1966), (1968b), (1968c) an keilgezinkten Rahmenecken, ohne oder mit Zwischenstück aus Brettschichtholz, mit negativem Biegemoment

Erste Versuche mit keilgezinkten Rahmenecken wurden von Kolb (1966), (1968b), (1968c) in den Jahren 1963 - 1966 am Otto-Graf-Institut in Stuttgart durchgeführt. Dabei wurden sowohl Rahmenecken mit einem Keilzinkenstoß im Gehrungsschnitt, als auch Rahmenecken mit zwei Keilzinkenstößen und Zwischenstück untersucht. Bei den Rahmenecken mit einem Keilzinkenstoß verliefen die Lamellen parallel zur Außenkante; die Lamellen im Druckbereich waren angeschnitten. In dieser Ausführung wurden Bauteile mit zwei verschiedenen Breiten getestet. Bei der Bauweise mit zwei Keilzinkenstößen und Zwischenstück wurde zwischen Ausführungen mit durchlaufenden Lamellen in der Druck - bzw. Zugzone des Eckbereiches variiert. Die Bilder 2.1 und 2.2 zeigen die von Kolb verwendete Versuchsanordnung sowie die Maße der geprüften Bauteile.

Bild 2.1: Geometrie und Lastanordnung der geprüften Rahmenecken (aus Kolb (1966))

Die Lamellen aller Prüfkörper waren mit einem gefüllten Harnstoffharzklebstoff geklebt. Die Universalkeilzinkenverbindungen wurden mit dem Zinkenprofil I-50 nach DIN 68140 unter Verwendung eines Resorcinharzklebstoffs ausgeführt. Lediglich die Rahmenecke II 3 wurde mit einem gefüllten Harnstoffharzklebstoff verleimt. Die Lamellen entsprachen mindestens der Güteklasse II (entspricht S10), bei den Ecken mit zwei Keilzinkungen vermutlich der Güteklasse I (entspricht S13), bei einer Holzfeuchte von etwa 10 %.

Bild 2.2: Details der Rahmeneckenausbildung der Bauartgruppen II und III (aus Kolb (1966))

Bei den Rahmenecken mit einer Keilzinkung ergab sich folgender, für alle drei Versuche einheitlicher Versuchsverlauf: Mit größer werdender Belastung wuchsen die Stauchungen in der Innenecke überproportional an. Dadurch verlagerte sich die neutrale Faser im Bereich der Winkelhalbierenden in Richtung der Zugzone. Die maximalen Zugdehnungen traten in der Zinkung in einigem Abstand zur Außenecke auf. Geringere Zugdehnungen konnten an der Randfaser eines horizontalen Schnittes direkt unterhalb der Keilzinkung gemessen werden. Der Dehnungsverlauf in den beiden Schnitten deutete auf die Ausbildung eines "Zugbogens" in der Verbindung hin. Der äußere Bereich der Rahmenecke trug kaum mit. Das Versagen kündigte sich z.T. durch sichtbare Druckfalten in der Innenseite - ausgehend vom Zinkengrund der Universalkeilzinkenverbindung - an und trat durch Zugbruch in der Keilzinkung ein. Dabei war ein ausreichender Holzfaserbelag in den Zinkenflanken vorhanden. Die mit gefülltem Harnstoffharzklebstoff hergestellte Rahmenecke zeigte keine abweichenden Eigenschaften zu den mit Resorcinharzklebstoff hergestellten Prüfkörpern.

Bei den von Kolb geprüften Rahmenecken mit zwei Keilzinkungen und Zwischenstück fielen die senkrecht über die Zinkung gemessenen Stauchungen deutlich geringer als bei den einfach gezinkten Rahmenecken aus. Die senkrecht über die Zinkung gemessenen Zugdehnungen waren ebenfalls kleiner als bei den Rahmenecken mit einer Zin-

kung. Die Ecken mit durchlaufenden Lamellen in der Druckzone versagten durch Zugbruch in einer der Keilzinkungen. Eine Rahmenecke (Rahmenecke III-2) erlitt zuvor einen Zugbruch außerhalb der Keilzinkung am angeschnittenen Rand des Riegels.

Bei den Ecken mit durchlaufenden Lamellen in der Zugzone spaltete sich bei einem Versuch zunächst die äußere Ecke des Mittelstückes ab. Eine der Rahmenecken zeigte bereits weit vor dem Versagen durch Zugbruch in der Keilzinkung Druckfalten in der unteren Innenecke, während die andere diese erst unmittelbar vor dem Zugbruch des Mittelstückes aufwies.

In den Tabellen A.1-A.3 sind die Ergebnisse der Versuche aufgelistet.

Wie man aus den Tabellen A.1-A.3 ersehen kann, ergaben alle Prüfungen an Ecken mit zwei Keilzinkungen und Zwischenstück größere Bruchlasten als solche an einfach gezinkten Rahmenecken. Als Erklärung kann angeführt werden, dass bei Rahmenecken mit zwei Keilzinkungen der Gehrungswinkel bei gleicher Dachneigung nur halb so groß ist wie einfach gezinkter Rahmenecken. Die Faserstauchungen in der Innenecke und die damit einhergehende Verkleinerung des inneren Hebelarmes der Kräfte tritt daher erst bei höheren Laststufen ein. Die Keilzinkendruck- und -zugfestigkeit der Universalkeilzinkenverbindung nimmt zudem mit größer werdendem Stoßwinkel ab.

An angeschnittenen Zugrändern wirken neben Längszugspannungen auch Schub- und Querzugspannungen. Mit der niedrigen Querzugfestigkeit des Holzes können die kleineren Bruchlasten der Ecken mit zwei Keilzinkungen und angeschnittenen Zuglamellen gegenüber den Werten mit durchlaufenden Zuglamellen erklärt werden.

Kolb versuchte eine Abschätzung des Sicherheitsniveaus der Rahmenecken. Die Spannungsermittlung erfolgte nach den Regeln der Stabstatik - unter Annahme eines elastischen, homogenen und isotropen Körpers - in einem horizontalen Schnitt unterhalb der Zinkung. Es wurde eine 20%ige Keilzinkenverschwächung, aber keine Knickzahl berücksichtigt.

$$\sigma = \frac{N}{\overline{A}} + \frac{zul \,\sigma_{\text{D},//}}{zul \,\sigma_{\text{B}}} \cdot \frac{M}{\overline{W}} \le zul \,\sigma_{\text{D},\alpha}$$
(2.1)

- mit: N,M Längskraft (in Richtung der Stabachse) bzw. Biegemoment bezogen auf die Mitte des Keilzinkenstoßes
 - A,W maßgebende Querschnittsfläche bzw. Widerstandsmoment in einem Schnitt senkrecht zur Stabachse unterhalb der Keilzinkung bei Berücksichtigung einer 20 %igen Verschwächung über die gesamte Höhe
 - $zul \sigma_{D,\alpha}$ zulässige Druckspannung unter einem Winkel α zur Faser für NH S10 (entspricht der früheren Güteklasse GK II)
 - $zul \sigma_{D,II}$ zulässige Druckspannung parallel zur Faser für NH S10
 - $zul \sigma_{B}$ zulässige Biegespannung für NH S10

Kolb ermittelte für Rahmenecken mit einer Zinkung eine Sicherheit zwischen 3.8 und 4.2, für die beiden Rahmenecken mit zwei Zinkungen und durchlaufenden Zuglamellen eine Sicherheit von 3.3. Die zwei geprüften Rahmenecken mit zwei Zinkungen und angeschnittenem Zugrand wiesen dagegen nur Sicherheiten zwischen 2.6 und 2.9 auf.

2.1.2 Untersuchungen von Kolb (1968a) an keilgezinkten Rahmenecken und Biegeträgern, ohne oder mit Zwischenstück aus Brettschichtholz, mit negativem oder posivem Biegemoment

Im Jahr 1968 führte Kolb (1968a) erneut Untersuchungen an mit Universalkeilzinkenverbindungen gestoßenen Brettschichtholzträgern durch. Das Bild 2.3 zeigt die Geometrien. Die Keilzinkungen entsprachen der Keilzinkung I-50 DIN 68140 und wurden mit einem gefüllten Harnstoffharzklebstoff ausgeführt. Die Lamellen besaßen eine Dicke von 15 mm und waren nicht keilgezinkt.

Die Prüfung der geraden Biegebalken (Probekörper 1 und 2) ergab im gemessenen Bereich eine annähernd gleiche Dehnungsverteilung im Universalkeilzinkenstoß und im ungeschwächten Querschnitt daneben. Die Zugdehnungen wuchsen etwa linear an. Ein Probekörper versagte vorzeitig durch Scherbruch am Auflager, der zweite durch Bruch in der Universalkeilzinkenverbindung, wobei ein fast 100 %-iger Holzbelag vorhanden war. Sichtbare Druckdeformationen in der Zinkung wurden von Kolb nicht berichtet.

Die geknickten Biegebalken mit Druckbeanspruchung in der Innenecke (Probekörper 3-6 und 7-10) verhielten sich weitgehend wie die in Kolb (1966), (1968b), (1968c) beschriebenen Rahmenecken. Die Druckdehnungen nahmen mit wachsender Belastung überproportional zu. Mit größer werdendem Gehrungswinkel verliefen die Last-Verformungskurven zunehmend flacher. Die Probekörper 4-6 und 7-10 versagten durch Bruch in der Universalkeilzinkenverbindung. Bei Probekörper 3 verlief der Bruch durch die Universalkeilzinkenverbindung zur Zugzone des angrenzenden Riegelbereiches. Wo der Bruch ausgelöst wurde, ist nicht dokumentiert. Die Tabellen A.4 –A.8 zeigen die analog zu Kolb (1968c) ermittelten Spannungen in ausgewählten Schnitten.

Bei den geknickten Biegebalken mit Zugbeanspruchung in der Innenecke (Probekörper 11 und 12) ergab sich eine annähernd lineare Dehnungsverteilung neben der Zinkung. Die neutrale Faser verschob sich erst bei höheren Laststufen leicht zur Zugzone. Die Probekörper versagten infolge Querzug. Die Bruchfuge verlief beidseits der Universalkeilzinkenverbindung und lag etwas unterhalb der Systemachse. Eine Auswertung der Versuche ist in Tabelle A.9 enthalten.

Für gerade Träger schlug Kolb vor, die Universalkeilzinkenverbindung in der Biegebemessung lediglich mit der Keilzinkenverschwächung nach DIN 68140 zu berücksichtigen.

Bild 2.3: Geometrien und Lastanordnungen der Probekörper 1-12 nach Kolb (1968a), alle Maße in [mm]

Für die geknickten Träger mit Druckspannungen in der Innenecke empfahl er - im Hinblick auf die ermittelten großen Festigkeitsstreuungen - die Beschränkung auf die zulässigen Spannungen für BS - Holz der Güteklasse II (entspricht der Festigkeitsklasse BS11).

2.1.3 Untersuchungen von Kolb (1970) zum Stabilitätsverhalten von keilgezinkten Rahmenecken mit Zwischenstück aus Brettschichtholz, mit negativem Biegemoment

Kolb (1970) führte weitere Versuche zur Untersuchung der Kippgefahr von keilgezinkten Rahmen durch. Dabei prüfte er vier Rahmenecken mit zwei Keilzinkungen und Zwischenstück, die bis auf die Breite dieselben Abmessungen wie die Ecken früherer Untersuchungen (Kolb (1966), (1968b), (1968c)) hatten. Die äußeren Lamellen entsprachen der Güteklasse I für Nadelholz (entspricht S13). Die Ergebnisse der Versuche sind in Tabelle A.10 dargestellt Die Träger zeigten das schon zuvor beschriebene Verhalten, wonach sich zunächst die äußere Ecke des Zwischenstückes abspaltete und anschließend, nach dem Auftreten von Druckfalten, ein Zugversagen in einer der Keilzinkungen bzw. im Zwischenstück auftrat. Die Versuche zeigten, dass das seitliche Ausweichen der druckbeanspruchten Fasern in der Innenecke trotz der großen Schlankheit (Verhältnisse h/b bis zu h/b≈10) der Träger ausreichend durch die seitliche Stützung im Zugbereich behindert wurde. Eine Kippgefahr infolge der fehlenden Stützung im Druckbereich war nach Kolb demnach nicht gegeben.

2.1.4 Untersuchungen von Kolb/Gruber (1978) an keilgezinkten Rahmenecken und Biegeträgern mit Zwischenstücken aus BFU-BU oder BFU-Birke / Nadelholz, mit negativem oder positivem Biegemoment

Kolb/Gruber (1978) prüften keilgezinkte Rahmenecken und Biegeträger mit Zwischenstücken aus Holzwerkstoffplatten. Es sollte festgestellt werden, wie groß die Tragfähigkeitssteigerung bei Rahmenecken mit Druckspannungen in der Innenecke der Universalkeilzinkenverbindung ist und ob es einen Einfluss der Querschnittshöhe auf die Bruchspannung gibt.

Bild 2.4: Geometrien der geprüften Rahmenecken (nach Kolb/Gruber (1978))

Für die Satteldachträger mit Zugspannungen in der Innenecke der Universalkeilzinkenverbindung sollte die Aufnahme der Querzugkräfte durch die Platten und der Einfluss der Form des Zwischenstückes auf die Gesamttragfähigkeit geklärt werden.

Es wurden jeweils vier Rahmenecken und vier Biegeträger mit kreuzweise zusammen geklebten Baufurniersperrholzplatten aus Buche nach DIN 68705 und je eine Rahmenecke und ein Biegeträger mit Kombi-Sperrholzplatten (Birke/Nadelholz) geprüft. Die Dicke der Furniere betrug jeweils etwa 1,5 mm.

Die Brettschichtholzlamellen entsprachen der Güteklasse II (entspricht S10) mit einer Holzfeuchte von u = 8-12 %. Die Zinkungen wurden mit dem Profil I-50 DIN 68140 unter Verwendung von Resorcinharzklebstoff ausgeführt.

Die Rahmenecken wurden mit denselben Systemlängen und derselben Versuchsanordnung wie bei Kolb (1966), (1968b),(1968c) und (1970) geprüft. Es wurde zwischen zwei verschiedenen Eckgeometrien variiert (siehe Bild 2.4).

Drei getestete Rahmenecken versagten durch Zugbruch im Stiel, zwei durch Zugbrüche in der Universalkeilzinkenverbindung.

Die Dehnungen in der Innenecke waren deutlich kleiner als bei den früher untersuchten einfach gezinkten Ecken. Die neutrale Faser verschob sich nur unwesentlich zum Zugbereich. Längs- und Querdehnungen wuchsen im gemessenen Bereich annähernd linear an. Druckfalten waren im Gegensatz zu Kolb (1966), (1968b), (1968c) und (1970) nicht erkennbar.

Mit den BFU-BU Platten wurden deutliche Tragfähigkeitssteigerungen gegenüber Rahmenecken mit Zwischenstücken aus BS-Holz erreicht. Dies dürfte auf die geringer ausfallenden Druckdehnungen an den Innenecken und die günstigere Spannungsverteilung infolge der kreuzweise geklebten Furniere der Holzwerkstoffplatten zurückzuführen sein. Außerdem ist zu erwarten, dass Keilzinkenverbindungen zwischen BS-Holz und BFU-BU Platten höhere Tragfähigkeiten aufweisen als solche zwischen zwei BS-Holz-Abschnitten. Mit dem Kombi-Sperrholz wurde eine etwas geringere Tragfähigkeitssteigerung als mit den BFU-BU Platten erzielt.

Kolb/Gruber schlugen für Rahmenecken mit Zwischenstücken aus BFU-BU Platten unter negativem Moment folgende Berechnung vor:

$\frac{N}{\overline{A}} + \frac{M}{\overline{W}} \leq zul\sigma_{\text{D},\text{//}}$	für negative Momente	(2.2)
$\frac{N}{\overline{A}} + \frac{M}{\overline{W}} \le zul \sigma_{D,\alpha}$	für positive Momente	(2.3)

mit zul $\sigma_{D,//}$ und zul $\sigma_{D,\alpha}$ für NH S10 Bezeichnungen siehe Gleichung (2.1) Zudem legten die Versuchsergebnisse nahe, dass es auch für Universalkeilzinkenverbindungen einen Höheneffekt gibt. Die Ergebnisse für die Rahmenecken sind in Tabelle A.11 aufgelistet.

Die Geometrie und Lastanordnung der fünf geknickten Biegeträger ist in Bild 2.5 dargestellt. Alle fünf Träger versagten durch Biegezugbruch in einer der Universalkeilzinkenverbindungen. Bei den Trägern mit Zwischenstücken aus BFU-BU Platten stellte sich überwiegend ein Scherbruch längs der Zinkenflanken, bei dem Träger mit Zwischenstück aus Kombi-Sperrholzplatten überwiegend ein Zugbruch im Zinkengrund ein. Beide Trägerformen trugen deutlich höhere Lasten als die einfach gezinkten Träger aus Kolb (1968a). Die Träger 1 und 2 zeigten ein besseres Tragverhalten als die Träger 3 - 5, was auch hier auf den geringeren Neigungswinkel des Keilzinkenstoßes zurückzuführen sein dürfte.

Bild 2.5: Geometrien der geprüften Biegeträger (nach Kolb/Gruber (1978))

Ein signifikanter Unterschied zwischen BFU-BU Platten und Kombi-Sperrholzplatten zeigte sich bei den geknickten Trägern nicht. Dies kann darauf zurückgeführt werden, dass das Versagen in der Universalkeilzinkenverbindung deutlich vor Erreichen der Holzwerkstofffestigkeiten eintritt.

Die Versuchsergebnisse sind in Tabelle A.12 zusammengestellt.

2.1.5 Untersuchungen von Kolb/Radovic (1980) an keilgezinkten Biegeträgern die ohne Pressdruck verklebt wurden

Bild 2.6: Versuchsanordnung nach Kolb/Radovic (1980)

Tabelle 2.1:	Prüfergebnisse für ohne Pressdruck keilgezinkte Biegeträger nach
	Kolb/Radovic (1980)

Träger	Traglast [kN]	Biegefestigkeit [N/mm ²]	σ _B / zul. σ _B für BSH GK II [-]	Bruchbeschreibung
A1	56,0	34,3	3,1	Biegebruch im Bereich der UKZV, ca. 10% Scherbruch in den Zinkenflanken, ca. 90% Zugbruch im Zinkengrund, Holzfaserbelag ca. 90%
A2	55,5	34,0	3,1	Wie A1
A3	72,0	44,2	4,0	Biegebruch im Bereich der UKZV, ca. 50% Scherbruch in den Zinkenflanken, ca. 50% Zugbruch im Zinkengrund, Holzfaserbelag ca. 90%
Mittelwert				
A1-A3	61,2	37,5	3,4	-
A4	71,4	43,8	4,0	Biegebruch im Bereich der Keilzin- kung, dabei Zugbruch im Zinkengrund
В1	44,0	27,0	2,5	Biegebruch im Bereich der UKZV, ca. 50% Scherbruch in den Zinkenflanken, ca. 50% Zugbruch im Zinkengrund, Holzfaserbelag ca. 80%
В2	50,8	31,2	2,8	Biegebruch im Bereich der UKZV, ca. 80% Scherbruch in den Zinkenflanken, ca. 20% Zugbruch im Zinkengrund, Holzfaserbelag ca. 70%
В3	44,8	27,5	2,5	Biegebruch im Bereich der UKZV, ca. 60% Scherbruch in den Zinkenflanken, ca. 40% Zugbruch im Zinkengrund, Holzfaserbelag ca. 80%
Mittelwert				
B1-B3	46,5	28,5	2,6	-
B4	56,0	34,3	3,1	Wie B1

In einem Forschungsvorhaben zur Ermittlung der Tragfähigkeiten verschiedener Baustellenstöße von großen Bauteilen aus Brettschichtholz überprüften Kolb/Radovic (1980) u.a. das Tragverhalten keilgezinkter Stöße. Die Universalkeilzinkenstöße waren ohne Pressdruck hergestellt worden; das verwendete Keilzinkenprofil entsprach in etwa dem Vorzugsprofil I-50 DIN 68140. Es wurden insgesamt acht gerade Träger mit einer Länge von I=2450 mm und dem Querschnitt b·h = 107·200 mm² in einer Biegeprüfung untersucht. Die Versuchsanordnung ist in Bild 2.6 dargestellt.

Vier der Träger wurden mit einem Epoxidharzklebstoff geklebt (Träger A1-A4), die anderen vier Träger mit Resorcinharzklebstoff (Träger B1-B4). Aus den zwei Trägergruppen wiesen jeweils drei der untersuchten Träger eine Fuge von etwa 1 mm entlang der Zinken auf (Träger A1-A3 sowie B1-B3), die Träger A4 und B4 wurden mit einem satten Stoß hergestellt. Die durchschnittliche Holzfeuchte der Probekörper lag bei etwa u=12,2%.

Die Ergebnisse der Biegeversuche sind in Tabelle 2.1 und in der Tabelle A.13 zusammengestellt. Die Prüfung ergab Durchbiegungen, die nahezu linear mit der Belastung anwuchsen. Zudem zeigten sich zwischen den Klebstoffarten und den Stoßausbildungen mit oder ohne Fuge keine Unterschiede in den gemessenen Durchbiegungen. Alle untersuchten Träger versagten durch einen Biegezugbruch in der Keilzinkenverbindung. Sofern ein Scherbruch auftrat, war stets ein hoher Holzfaserbelag in der Keilzinkenverbindung zu finden.

Kolb/Radovic gaben zusätzlich den Quotienten zwischen der im Versuch erreichten Bruchspannung (auf den Bruttoquerschnitt bezogen) und der nach DIN 1052 (1988-04) zulässigen Spannung an und erhielten zum einen das Ergebnis, dass Träger, die mit Epoxidharz geklebt wurden, höhere Tragfähigkeiten erreichten als die mit Resorcinharzklebstoff geklebten. Zudem waren die Träger mit dünner Fuge stets tragfähiger als diejenigen mit einer 1 mm starken Fuge zwischen den Zinkenflanken.

2.1.6 Untersuchungen von Kolb/Radovic (1984) an keilgezinkten Biegeträgern die ohne Pressdruck verklebt und anschließend im Wechselklima gelagert wurden

Kolb/Radovic (1984) untersuchten erneut ohne Pressdruck hergestellte Keilzinkenstöße. Die Prüfkörper wurden im Wechselklima gelagert. Prüfkörpergeometrien und herstellung waren ansonsten mit denen aus Kolb/Radovic (1980) identisch. Die Probekörper verhielten sich im Versuch wie die in Kolb/Radovic (1980) geprüften. Es ergab sich für die Prüfkörper mit Epoxidharzklebstoff und 1 mm dicker Fuge jedoch eine etwa 10% höhere, für die Probekörper mit Resorcinharzklebstoff und Fuge um 20% niedrigere Tragfähigkeit. Die Unterschiede können mit der unterschiedlichen Nachhärtung der Klebstoffe erklärt werden. Eine Zusammenstellung der Ergebnisse enthalten die Tabelle 2.2 und Tabelle A.14.

Träger	Traglast [kN]	Biegefestigkeit [N/mm ²]	σ _B / zul. σ _B für BSH GK II [-]	Bruchbeschreibung
A5	71,2	43,7	4,0	Biegebruch im Bereich der UKZV, ca. 30% Scherbruch in den Zinkenflanken, ca. 70% Zugbruch im Zinkengrund, Holzfaserbelag ca. 90%
A6	64,7	39,7	3,6	Wie A5
A7	67,3	41,3	3,8	Biegebruch im Bereich der UKZV, ca. 50% Scherbruch in den Zinkenflanken, ca. 50% Zugbruch im Zinkengrund, Holzfaserbelag ca. 95%
Mittelwert A5-A7	67,7	41,2	3,8	-
A8	72,6	44,5	4,0	Biegebruch im Bereich der Keilzin- kung, dabei 60% Zugbruch im Zinken- grund, Rest außerhalb der Zinkung
В5	33,6	20,6	1,9	Biegebruch im Bereich der UKZV, ca. 50% Scherbruch in den Zinkenflanken, ca. 50% Zugbruch im Zinkengrund, Holzfaserbelag ca. 80%
В6	42,0	25,7	2,3	Biegebruch im Bereich der UKZV, ca. 70% Scherbruch in den Zinkenflanken, ca. 30% Zugbruch im Zinkengrund, Holzfaserbelag ca. 80%
В7	36,5	22,4	2,0	Biegebruch im Bereich der UKZV, ca. 50% Scherbruch in den Zinkenflanken, ca. 50% Zugbruch im Zinkengrund, Holzfaserbelag ca. 75%
Mittelwert B5-B7	37,4	22,9	2,1	-
B8	56,4	34,6	3,1	Wie B6, jedoch Holzfaserbelag ca. 90%

Tabelle 2.2:Prüfergebnisse für ohne Pressdruck keilgezinkte Biegeträger nach La-
gerung im Wechselklima (nach Kolb/Radovic (1984))

2.1.7 Untersuchungen von Möhler/Siebert (1983) zu keilgezinkten geknickten Biegeträgern mit positivem Biegemoment

Möhler/Siebert (1983) berichteten über die Möglichkeiten zur Erhöhung der Querzugfestigkeit verschiedener gefährdeter Bauteile. Hierbei wurden u.a. Brettschichtholzträger mit geknickter Längsachse untersucht, die mittels einer Keilzinkung mit der Zinkenlänge 50 mm in Längsmitte gestoßen waren. Bild 2.7 zeigt die untersuchte Geometrie. Es wurden insgesamt drei unverstärkte Träger aus Brettware der Güteklasse II (entspricht S10) untersucht.

Die unverstärkten Träger (Träger I-III) versagten alle durch Querzugbruch beiderseits der Keilzinkenverbindung. Die Querzugrisse bildeten sich in etwa auf einem Drittel der

Trägerhöhe aus. Die Versuchsergebnisse sind in Tabelle 2.3 und Tabelle A.15 dargestellt.

- Bild 2.7: Geometrie und Lastanordnung der geknickten Träger (nach Möhler/Siebert (1983))
- Tabelle 2.3:Versuchsergebnisse unverstärkter keilgezinkter Träger (nach Möh-
ler/Siebert (1983))

Probe- körper	Ausführung des Trägers	Querschnitt	Zulässige Kraft zul. F	Bruchlast	Bruch- sicherheit γ	Bruchbild
		[mm/mm]	[kN]	[kN]	[-]	
I	unverstärkt	180/700	14,5	76,0	5,24	Querzugrisse
II	unverstärkt	200/700	16,1	76,4	4,75	Querzugrisse
III	unverstärkt	200/700	16,1	71,5	4,44	Querzugrisse

2.1.8 Untersuchungen von Scapozza (1996) an keilgezinkten Bauteilen verschiedener Bauarten mit positivem oder negativem Biegemoment

Scapozza (1996) berichtete über allgemeine Ausführungsregeln für keilgezinkte Rahmenecken und beschrieb das Tragverhalten solcher Bauteile. Er beschrieb Versuche aus den Jahren 1987/1988 und 1996 (s.a. Colombo/Bernasconi (1990) und Bernasconi (1993a), (1993b)). Die verwendete Versuchseinrichtung erlaubte die Belastung der Versuchskörper mit beliebigen Kombinationen aus Biegemoment, Druck- und Zugkraft. Die Versuchseinrichtung ist in Bild 2.8 dargestellt. Die untersuchten Bauteilgeometrien (außer die des geraden Träger A) sind in Bild 2.9 dargestellt.

Bild 2.8: Versuchseinrichtung zur Prüfung von Rahmenecken (nach Scapozza (1996))

Bild 2.9: Geometrien der geprüften Rahmenecken (nach Scapozza (1996))

Alle Träger und Rahmenecken hatten einen Querschnitt 120/600 mm, die Keilzinkenprofile der Universalkeilzinkenverbindungen entsprachen etwa dem Profil I-50 nach DIN 68140. Das verwendete Brettschichtholz entsprach etwa der Festigkeitsklasse GL24 (entspricht BS 11). Die einfach keilgezinkten Rahmenecken werden hier als Rahmenecken B und F, die Rahmenecken mit Zwischenstück aus Brettschichtholz als Rahmenecke C und G bezeichnet. Die Rahmenecke D wies ein Zwischenstück aus Baufurniersperrholz aus Weißtanne mit einer Dicke der Einzelfurniere von etwa 3mm, Rahmenecken E und H ein Zwischenstück aus Baufurniersperrholz aus Buche mit einer Dicke der Einzelfurniere von ebenfalls etwa 3 mm auf.

Die Ergebnisse der Versuche sind in den Tabellen 2.4 und 2.5 und noch einmal ausführlicher in den Tabellen A.16 und A.17 zusammengefasst. Die ermittelte Federsteifigkeit ist dabei als der Quotient aus aufgebrachtem Moment und Winkeländerung definiert. Die Winkeländerung wurde gemäß Bild 2.10 mit Hilfe von zwei Inklinometern gemessen. Der Wirkungsgrad η berechnet sich als Quotient aus dem Bruchmoment des betrachteten keilgezinkten Bauteils und dem Bruchmoment eines geraden ungestoßenen Trägers. Das Bruchverhalten der von Scappozza geprüften Träger entsprach dem vergleichbarer Bauteile aus anderen Arbeiten.

Bild 2.10: Zur Berechnung der Winkeländerung (nach Scapozza (1996))

Tabelle 2.4:	Traglastversuche an verschiedenen Bauteilen, negatives Eckmoment mit
	gleichzeitig wirkender Druckkraft (aus Scapozza (1996))

Probekörper	Bruch- moment M	Federsteifig- keit Cφ	Wirkungs- grad η	Bruchmechanismus
	[kNm]	[kNm ²]	[%]	
Gerader ungestoßener Träger	224	-	100	-
Gerader gestoßener Träger A	184	-	82	-
Unverstärkte Rahmenecke (Rahmenecke B)	129	165	57	Stauchung infolge Querdruck, Bruch auf der Zugseite im Stoßbereich
Rahmenecke mit Zwischenstück aus Brettschichtholz (Rahmenecke C)	139	160	62	Stauchung infolge Querdruck, Bruch auf der Zugseite im Stoßbereich
Rahmenecke mit Zwischenstück aus Tannensperrholz (Rahmenecke D)	118	160	53	Zugbruch im Zinkengrund BFU
Rahmenecke mit Zwischenstück aus Buchensperrholz (Rahmenecke E)	172	560	77	Zugbruch im Zinkengrund BFU

Probekörper	Bruchmoment M	Federsteifig- keit Cφ	Wirkungsgrad η	Bruchmechanismus
	[kNm]	[kNm ²]	[%]	
Gerader ungestoßener Träger	224	-	100	-
Gerader gestoßener Träger A	184	-	82	-
Unverstärkte Rahmen- ecke (Rahmenecke F)	49	175	22	Bruch im Eckenbereich infolge Querzug
Rahmenecke mit Zwi- schenstück aus Brett- schichtholz	43	210	20	Querzugversagen ausge- hend von der UKZV
(Rahmenecke G)				
Rahmenecke mit Zwi- schenstück aus Buchen- sperrholz (Rahmenecke H)	130	590	60	Zugbruch Zinkengrund BSH

Tabelle 2.5:	Ergebnisse von Traglastversuchen an verschiedenen Bauteilen, positives
	Eckmoment mit gleichzeitig wirkender Zugkraft (Scapozza (1996))

Scappozza wies darauf hin, dass bei Universalkeilzinkenverbindungen mit Baufurniersperrholzplatten die Längsspannungen durch die Längsfurniere übertragen werden. Bei großen Furnierdicken können im Flankenbereich der Universalkeilzinkenverbindung aber überwiegend Querfurniere liegen. Es muss nach Scappozza daher bei Einsatz von Baufurniersperrholz mit dicken Furnieren auf die Lage der Querfurniere bezüglich der Keilzinkenflanken geachtet werden. Alternativ bietet sich der Einsatz von Sperrholz mit dünneren Furnieren (1,0 - 1,5 mm) an. Es sei angemerkt, dass es für Spannungskombinationen aus Längs-, Quer- und Schubspannungen durchaus positiv ist, wenn auch Querfurniere in den Zinkenflanken enden.

2.1.9 Untersuchungen von Scappozza (1998) an keilgezinkten Zugprüfkörpern

Scappozza (1998) stellte u.a. Traglastversuche an kleinen Zugprobekörpern vor. Mit den Zugprobekörpern wurden Universalkeilzinkenverbindungen zwischen Brettschichtholz aus Fichte und verschiedenen Baufurniersperrhölzern getestet. Abmessungen und Materialkombinationen der Probekörper können der Tabelle 2.6 und der Tabelle A.18 entnommen werden. Das Profil der Universalkeilzinkenverbindung entsprach etwa dem Profil I-50 nach DIN 68140, das Brettschichtholz etwa der Festigkeitsklasse BS 18. Die Baufurniersperrholzplatten aus Buche bzw. aus Fichte wurden abwechselnd senkrecht zueinander zu Blöcken verklebt.

Scappozza weist auf den deutlichen Einfluss der Lage der Längs- und Querfurniere der Sperrhölzer in der Keilzinkung bei größeren Furnierdicken (etwa 3mm) hin: Laufen die

Längsfurniere überwiegend im Zinkengrund der Universalkeilzinkenverbindung aus, so ergeben sich deutlich niedrigere Traglasten als wenn die Längsfurniere überwiegend in den Zinkenflanken auslaufen. Bei dicken Furnieren kann es bei Übereinstimmung der Zinkenteilung mit dem Furnieraufbau der Sperrholzplatte aber passieren, dass alle Längsfurniere im Zinkengrund auslaufen. Da die Lage der Sperrholzfurniere bei der Herstellung der Universalkeilzinkenverbindung nur schwer zu kontrollieren ist, empfiehlt Scappozza die Verwendung von Sperrholz mit dünneren Furnieren (etwa 1,2 mm-1,5 mm Furnierdicke). Bei diesen ist gewährleistet, dass immer eine ausreichende Zahl von Längsfurnieren in der Flanken der Universalkeilzinkenverbindung auslaufen.

Probekörper	Anzahl der Probekörper	char. Zugfes- tigkeit f _{t.i.k}	mittl. Zugfes- tigkeit fti.mean	Wirkungs- grad ղ	Bruchmechanismus
	[-]	[N/mm ²]	[N/mm ²]	[%]	
Brettschichtholz, ungestoßen 100 x 150 mm ²	6	35,5	41,5	100	Versagen des Brett- schichtholzes
Brettschichtholz / Buchensperrholz, Furnierdicke 3,0mm, 100 x 60 mm ²	12	28,5	33,1	80	Versagen in den Zinkenflanken
Brettschichtholz / Buchensperrholz, Furnierdicke 1,2mm, 119 x 60 mm ²	14	25,3	30,6	72	Mischbrüche: Ver- sagen entlang der Zinkenflanken / Versagen der Mate- rialien im Ver- bindungsbereich
Brettschichtholz / Fichtensperrholz, Furnierdicke 3,0mm, 119 x 60 mm ²	18	18,5	21,7	52	Versagen des Fich- tensperrholzes im Verbindungsbereich

 Tabelle 2.6:
 Ergebnisse von Tragfähigkeitsversuchen an Universalkeilzinkenverbindungen zwischen verschiedenen Materialien (nach Scappozza (1998))

Auch Gehri (2001) berichtete über die Versuche von Scappozza und die dabei festgestellten Effekte.

Es sei darauf hingewiesen, dass sich die Aussagen von Scapozza und Gehri auf Universalkeilzinkenverbindungen gerader Zugstäbe ($\alpha = 0^{\circ}$) beziehen. Bei geknickten Biegeträgern mit den dabei auftretenden Schub- und Querspannungen im Bereich der Universalkeilzinkenverbindung ist ein gewisser Anteil von Querfurnieren im Bereich der Zinkenflanken durchaus von Vorteil.
2.1.10 Untersuchungen von Komatsu et. al. (2001) an Keilzinkungen ohne oder mit Zwischenstück aus Brettschichtholz, mit negativem oder positivem Biegemoment

Komatsu et. al. (2001) berichteten über Traglastversuche mit keilgezinkten Rahmenecken. Bild 2.11 zeigt die Geometrie der Prüfkörper und die Lasteinleitung. Das verwendete Brettschichtholz wurde aus japanischer Lärche mit einem in Europa nicht gebräuchlichen Phenol-Resorcinharzkleber gefertigt; die Universalkeilzinkenverbindungen entsprachen dem Vorzugsprofil I-50 nach DIN 68140. Von den mit Breiten von 150 mm und Höhen von 300 bzw. 325 mm eher kleinformatigen Bauteilen sollen hier nur die dargestellt werden, die nicht zusätzlich mit Bolzen verstärkt wurden.

Bild 2.11: Geometrie und Lasteinleitung (nach Komatsu et. al. (2001))

	Bez. [-]	h [mm]	b [mm]	c [m]	M [kNm]
\frown	T-01	300	150	-	20
	T-02	300	150	-	21
\land	C-01	300	150	-	44
	C-02	300	150	-	43
	TB-01	325	150	124	20
M M	TB-02	325	150	124	22
	CB-01	325	150	124	47
	TB-02	325	150	124	44

Tabelle 2.7: Ergebnisse der Tragfähigkeitsversuchen (nach Komatsu et. al. (2001))

Die von Komatsu et. al. (2001) gezeigten Bruchbilder entsprechen denen früherer Untersuchungen. Abweichend von diesen Arbeiten ergaben sich bei Komatsu et. al. durchweg gleich große Bruchmomente für einfach gezinkte Rahmenecken und Rahmenecken mit Zwischenstück bei ansonsten gleicher Geometrie (s.a. Tabelle 2.7).

Diese Abweichungen von früheren Untersuchungen, bei denen die Traglasten einfach gezinkter Träger tendenziell kleiner waren, konnte nicht geklärt werden. Da zudem durch die Verwendung einer in Deutschland nicht gebräuchlichen Holzart und eines ebenfalls nicht gebräuchlichen Klebers das Simulationsprogramm auf diese Versuche nicht anwendbar ist, wird hier auf weitere Betrachtungen verzichtet.

2.2 Spannungstheoretische Untersuchungen und Bemessungsvorschläge

2.2.1 Bemessungsvorschlag von Heimeshoff (1976)

Heimeshoff (1976) stellte einen Bemessungsvorschlag vor, der sich auf die experimentellen Untersuchungen von Kolb stützt. Er unterscheidet sich von Gleichung (2.1) durch die Berücksichtigung der Knickzahl bei den Längsspannungen infolge Normalkraft.

$$\sigma = \omega \cdot \frac{N}{\overline{A}} + \frac{zul \,\sigma_{D''}}{zul \,\sigma_{B}} \cdot \frac{M}{\overline{W}} \le zul \,\sigma_{D\alpha}$$
(2.4)

mit:	N,M	Längskraft (in Richtung der Stabachse) bzw. Biegemoment bezogen auf die Mitte des Keilzinkenstoßes
	Ā,W	maßgebende Querschnittsfläche bzw. Widerstandsmoment in einem Schnitt senkrecht zur Stabachse unterhalb der Keilzinkung bei Berücksichtigung einer 20 %igen Verschwächung über die gesamte Höhe
	$\text{zul}\sigma_{\text{D},\alpha}$	zulässige Druckspannung unter einem Winkel α zur Faser für NH S10 (entspricht der früheren Güteklasse GK II)
	zul σ _{D,//} zul σ _B ω	zulässige Druckspannung parallel zur Faser für NH S10 zulässige Biegespannung für NH S10 Knickzahl

Für positive Momente, bei denen Querzugbeanspruchungen im Eckbereich auftreten, wurde mangels genauerer Untersuchungen die Begrenzung der rechnerischen Druckspannungen auf $0.2 \cdot zul \sigma_{D,\alpha}$ vorgeschlagen.

2.2.2 Finite-Elemente-Berechnungen von Krabbe/Tersluisen (1978)

Krabbe/Tersluisen (1978) untersuchten die Spannungsverteilung einer unter einem Winkel von 90° keilgezinkten Rahmenecke mit Druckspannungen in der Innenecke der Universalkeilzinkenverbindung mit Hilfe der Finiten-Element-Methode. Sie stellten einen Vergleich zwischen einem aus elastisch isotropen und einem aus elastisch anisotropen Scheibenelementen zusammengesetzten System an. Bei dem aus anisotropen Scheibenelementen modelliertem System wurde die Keilzinkenverschwächung mit um 18 % in der Dicke geschwächten Elementen berücksichtigt. Dies steht im Widerspruch zu neueren Erkenntnissen denen zufolge Keilzinkenverbindungen annähernd die gleichen Steifigkeiten besitzen wie die anschließenden ungezinkten Bereiche. Es wurden konstante Materialeigenschaften im gesamten Eckbereich angenommen.

Krabbe/Tersluisen fanden sowohl bei der isotropen als auch bei der anisotropen Berechnung Spannungskonzentrationen in den Bereichen, in denen auch bei Versuchen Brüche auftraten. Für die von ihnen gewählte Netzfeinheit und für den untersuchten Winkel von 90° ergab sich für die Zugspannungen außerhalb der Keilzinkung eine Differenz von maximal 8,7% zwischen beiden Berechnungen. Für die Druckspannungen fanden Krabbe/Tersluisen unter Berücksichtigung der Verschwächung durch die Keilzinkung fast identische Werte.

Bei der Berechnung unter Annahme orthotroper Materialeigenschaften waren dagegen die Schubspannungen im Bereich der Universalkeilzinkenverbindung um bis zu 70% höher als bei Annahme isotroper Materialeigenschaften.

2.2.3 Finite-Elemente-Berechnungen von Spannungsverläufen in keilgezinkten Rahmenecken von Heimeshoff/Seuß (1982)

Heimeshoff/Seuß (1982) führten umfangreiche Finite – Elemente - Berechnungen an Rahmenecken durch. Variiert wurde zwischen Rahmenecken mit einer Keilzinkenverbindung und Rahmenecken mit zwei Keilzinkenverbindungen sowie Zwischenstück aus Brettschichtholz oder Buchensperrholz. Anschnitte der Stiele konnten ebenfalls berücksichtigt werden. Untersucht wurden die Winkel 0°, 30°, 60° und 90°. Abbildung 2.12 zeigt die von Heimeshoff/Seuß untersuchten Rahmeneckengeometrien Die Struktur wurde mit ebenen Scheibenelementen diskretisiert, wobei hier ein linearelastisches, orthotropes Materialgesetz verwendet wurde. Zum Vergleich wurden auch nichtlinear-elastische und isotrope Materialeigenschaften angesetzt.

Heimeshoff / Seuß verwendeten ihre Berechnungsergebnisse zur Ableitung von Näherungsgleichungen der Form

$$\sigma = f_n \cdot \frac{N}{A} + f_m \cdot \frac{M}{W}$$
(2.5)

mit denen die Maximalwerte der Längs-, Quer- und Schubspannungen für die verschiedenen generierten Geometrien näherungsweise berechnet werden konnten. Im Falle von linear-elastischen Berechnungen konnten dann aus verschiedenen Lastfällen die Maximalwerte der Spannungskomponenten berechnet werden, wobei hier die Lage der jeweiligen Maxima zu beachten war. Bei diesen Berechnungen fanden sich starke Abhängigkeiten sowohl der Form der Spannungsverläufe als auch der Beträge der Maxima vom Kraft-Faser-Winkel, wohingegen der Anschnitt von Stiel und Riegel hier kaum einen Einfluss auf die Spannungsverteilungen in der Rahmenecke zeigte.

Da im Rahmen der Berechnungen mit Hilfe der Finite – Elemente - Methode geometrische Nichtlinearitäten berücksichtigt werden, ist nach Heimeshoff/Seuß die Berücksichtigung einer Knickzahl im Eckenbereich nicht notwendig. Es sei aber darauf hingewiesen, dass die Modellbildung die angenommene Rahmensymmetrie nutzt und somit die ungünstigere unsymmetrische Knickfigur nicht möglich ist.

Bild 2.12: Geometrien der betrachteten Rahmenecken (nach Heimeshoff/Seuß (1982))

In einem Vergleich wurden von Heimeshoff/Seuß die Bruchspannungen in den Keilzinkungen für die Versuchsanordnungen nach Kolb (1968a) und Möhler / Siebert (1983) berechnet. Hierbei wurde ein linear-elastisches Materialverhalten angenommen. Die so berechneten Spannungen wurden mit einem Sicherheitsbeiwert von γ =3,0 versehen und den zulässigen Spannungen nach DIN 1052 gegenübergestellt. Die Ergebnisse sind in den Tabellen 2.8 und 2.9 dargestellt Tabelle 2.8:Rechenwerte der Spannungen [N/mm²] nach Kolb (1968a) und Möhler/
Siebert (1983) für keilgezinkte Bauteile mit positiven Eckmomenten
(nach Heimeshoff/Seuß (1982))

	nach Kolb (1	l968a), γ=15°	nach Kolb (1	zul σ für	
	vorh σ	vorh. σ/γ = 3	vorh σ	vorh. σ/γ = 3	BSH GK I
σl,innen	-10,5	-0,35	-3,90	-0,13	{+10,5 {−11,0
σ I,Rand	+21,0	+0,70	+13,8	+0,46	±14,0
σ _{quer}	+8,60	+0,29	+9,50	+0,32	+0,25
τ	±4,20	±0,14	±4,60	±0,15	±1,20

Tabelle 2.9:Rechenwerte der Spannungen [N/mm²] nach Kolb (1968a) und Möhler/
Siebert (1983) für keilgezinkte Bauteile mit negativen Eckmomenten
(nach Heimeshoff/Seuß (1982))

	nach Kolb (1968a), γ=0°		nach Kolb (1968a), γ=11,25°		nach Möhler /Siebert (1983), γ=15°		zul σ für BSH GK
	vorh σ	vorh. σ/γ = 3	vorh σ	vorh. σ/γ = 3	vorh σ	vorh. σ/γ = 3	
σ _{l,innen}	±43,4	±1,45	+31,9	+1,06	+26,8	+0,89	{+10,5 {−11,0
σ I,Rand	±43,4	±1,45	-54,3	-1,81	-53,6	-1,79	±14,0
σ_{quer}	0	0	-18,0	-0,60	-21,9	-0,73	+0,25
τ	0	0	±8,90	±0,30	±10,8	±0,36	±1,20

Die Ergebnisse der Tabelle 2.8 für keilgezinkte Bauteile unter positiven Momenten lassen erkennen, dass in den hier betrachteten Fällen die theoretisch auftretenden Querzugspannungen deutlich über den nach DIN 1052 zulässigen liegen und ursächlich für den Bruch sind. Hingegen haben nach Tabelle 2.9 bei Bauteilen mit negativen Biegemomenten alle auftretenden Spannungskomponenten einen signifikanten Anteil am Versagen.

2.2.4 Bemessungsvorschlag von Steck (1988)

Steck (1988) stellte ein auf Untersuchungen von Kolb/Gruber (1978) und Möhler/Siebert (1983) basierendes Berechnungsverfahren für mit BFU-BU Platten verstärkte Rahmenecken bzw. für Träger mit Zwischenstücken vor. Aufgrund der in Plattenebene annähernden Isotropie und der daher günstigeren Spannungsverteilung sowie aufgrund der hohen Materialfestigkeiten schlug Steck deutlich höhere zulässige Spannungen als bei Zwischenstücken aus Brettschichtholz vor. In Abwandlung des von Heimeshoff (1976) beschriebenen Rechenverfahrens lauten die Formeln:

$$\frac{N}{\overline{A}} + \frac{M}{\overline{W}} \le zul \,\sigma_{D,ll} \qquad \qquad \text{für negative Momente}$$
(2.6)
$$\frac{N}{\overline{A}} + \frac{M}{\overline{W}} \le zul \,\sigma_{D,\alpha} \qquad \qquad \qquad \text{für positive Momente}$$
(2.7)

mit zul $\sigma_{D,//}$ und zul $\sigma_{D,\alpha}$ für NH S10 Bezeichnungen siehe Gleichung (2.1)

Bei positivem Moment muss zusätzlich ein Querzugnachweis für die BFU-BU Platte erfolgen.

2.2.5 Berechnungsverfahren nach Eurocode 5/NAD (1995)

Im nationalen Anwendungsdokument NAD zu Eurocode 5 (1995) findet sich ein Berechnungsvorschlag, der sich an die Untersuchungen nach Heimeshoff (1976) anlehnt. Demnach sind Querschnittsschwächungen im Stoßbereich durch eine Abminderung der charakteristischen Festigkeitswerte um 20% zu berücksichtigen. Für die Brettschichtholzfestigkeitsklassen BS14, BS16 und BS18 sollen zur Berücksichtigung unvermeidlicher Äste in den Universalkeilzinkenverbindungen die Festigkeitswerte der jeweils nächst niedrigeren Festigkeitsklasse angesetzt werden.

2.2.6 Bemessungsvorschlag von Scapozza (1998)

Scappozza (1998) formuliert folgenden Bemessungsvorschlag für Rahmenecken mit Zwischenstücken aus Baufurniersperrholz. Unter der Annahme, dass die Stöße mit α = 0° ausgeführt werden und dass kein Bruch im Zwischenstück auftritt, sehen die Gleichungen wie folgt aus:

Für negative Eckmomente:

$\frac{M_{\text{Stoss,eff}}}{\overline{M}_{\text{Stoss}}} \leq 1$	Reine Biegung	(2.8)				
$\frac{M_{Stoss,eff}}{\overline{M}_{Stoss}} + \frac{N_{St}}{\overline{N}_{Z}}$	$\frac{\text{Doss,eff}}{\text{Stoss}} \leq 1$ Reine Biegung mit Zug	(2.9)				
$\frac{M_{Stoss,eff}}{\overline{M}_{Stoss}} - \frac{N_{St}}{\overline{N}_{D}}$	$\frac{258, eff}{1} \le 1$ Reine Biegung mit Druck	(2.10)				
$\overline{N}_{D,Stoss}$ =	$\overline{N}_{D,Träger}$ ungestossen					
$\overline{N}_{Z,Stoss}$ =	$\eta_{Zlpha}\cdot\overline{N}_{D,Tr"ager}$ ungestossen					
\overline{M}_{Stoss} =	$\eta_{blpha}\cdot\overline{M}_{Träger\ ungestossen}$					
$M_{Stoss,eff}$	= vorhandenes Biegemoment im Stoss					
\overline{M}_{Stoss}	= zulässiges Biegemoment im Stoss					
N _{Stoss,eff}	= vorhandene Normalkraft im Stoss					
$\overline{N}_{D,Stoss}$	= zulässige Druckkraft im Stoss					
$\overline{N}_{Z,Stoss}$	= zulässige Zugkraft im Stoss					
$\eta_{b\alpha}$	= Wirkungsgrad des Stosses bei Biegung					
$\eta_{b\alpha}$	= 0,7 für Buchensperrholz ($\alpha = 0^{\circ}$)					
	= 0,7 für Tannensperrholz ($\alpha = 0^{\circ}$) bei einer char. Biegefestigke	it des				
	BS - Holz < 20 N/mm ² ;Für Tannensperrholz (α = 0°) bei einer Bie	ge -				
	festigkeit des BS - Holz ≥ 20 N/mm ² darf eine Biegefestigkeit des					
	Stosses von $\sigma_{b,Stoss}$ = 18 N/mm ² angesetzt werden.					
$\eta_{Z\alpha}$	= Wirkungsgrad des Stosses bei Zug					

2.3 Schlussfolgerungen

2.3.1 Rahmenecken und Biegeträger mit Druckspannungen in der Innenecke der Universalkeilzinkenverbindung

- a) Bei negativer Momentenbeanspruchung führen Spannungskonzentrationen in den Innenecken zu Faserstauchungen oder "Plastifizierungen", die bei hohen Beanspruchungen in Form von "Druckfalten" sichtbar werden können. Die Größe der Druckdehnungen nimmt mit größer werdendem Gehrungswinkel überlinear zu.
- b) Bei höheren Laststufen verschiebt sich die neutrale Faser infolge der "Plastifizierungen" der Innenecke in Richtung der Zugzone. Es kommt zu einer Verkleinerung des inneren Hebelarms der Kräfte Der Effekt ist um so

ausgeprägter, je kleiner der Innenwinkel der Ecke ist. Dies kann zusammen mit der Festigkeitsabnahme der Keilzinkung als Ursache für die abnehmenden Tragfähigkeiten der Rahmenecken bei größer werdendem Gehrungswinkel angesehen werden. Beim Sonderfall eines durch eine Keilzinkung gestoßenen geraden Trägers scheint die Tragfähigkeit nur in der Größenordnung der Keilzinkenverschwächung beeinträchtigt zu sein.

- c) Die geprüften Rahmenecken versagten durch Zugbruch im Keilzinkenstoß, im Zwischenstück oder im Riegel. Rahmenecken mit angeschnittenem Zugrand versagten durch Zug-/Schubbruch oder Zugbruch im Riegel ausgehend vom angeschnittenen Rand (Spannungskombination). Sie trugen etwas geringere Lasten als solche mit durchlaufenden Zuglamellen.
- Rahmenecken mit doppeltem Keilzinkenstoß werden in jeder Zinkung nur unter dem halben Öffnungswinkel gestoßen. Sie tragen aus den unter b) genannten Gründen höhere Lasten.
- e) Bei vielen Rahmenecken mit doppeltem Keilzinkenstoß und Zwischenstück aus Brettschichtholz platzt die äußere Ecke deutlich vor Erreichen der Höchstlast ab. Der Verlauf der Dehnungen im Zwischenstück legt nahe, dass die Außenecke kaum an der Lastaufnahme beteiligt ist.
- f) Rahmenecken mit doppeltem Keilzinkenstoß und Zwischenstück aus BFU-BU-Platten weisen deutlich geringere Druckdehnungen und größere Tragfähigkeiten auf als solche mit Zwischenstücken aus Brettschichtholz. Zwischenstücke aus BFU-Platten aus Birke/Nadelholz verbessern die Tragfähigkeit in etwas geringerem Umfang. Die Steifigkeit des Zwischenstückes beeinflusst offenbar das Tragverhalten. Die kreuzweise verklebten Furniere führen zu einer gleichförmigeren Spannungsverteilung im Bereich der Universalkeilzinkenverbindung. Zudem sind bei Verbindungen von Brettschichtholz mit BFU-BU Platten oder BFU-Platten aus Birke/Nadelholz höhere Keilzinkenfestigkeiten zu erwarten.
- g) Auch bei hohen, schlanken Rahmenecken besteht keine Kippgefahr; das Problem kann näherungsweise als eben betrachtet werden.

2.3.2 Rahmenecken und Biegeträger mit Zugspannungen in der Innenecke der Universalkeilzinkenverbindung

- a) Bei einfach gezinkten Rahmenecken tritt ein "schlagartiges", sprödes Querzugversagen auf. Die Zugspannungen in der Innenecke wachsen bis zum Bruch annähernd linear an.
- b) Bei Trägern mit Zwischenstücken aus BFU-BU Platten oder Kombi-Sperrholz wird eine deutliche Tragfähigkeitssteigerung erreicht. Die Quer-

zugspannungen werden durch die Zwischenstücke aufgenommen, die Träger versagen durch Zugbrüche in der Keilzinkung.

- c) Trotz unterschiedlicher Festigkeiten der Zwischenstücke erreichen alle Träger annähernd gleiche Tragfähigkeiten. Dies deutet darauf hin, das die Festigkeiten der Keilzinkenverbindungen von Brettschichtholz mit beiden Materialien in gleicher Größenordnung liegen und das Keilzinkenversagen deutlich vor Erreichen der Querzugfestigkeiten der Zwischenstücke eintritt.
- d) Die Tragfähigkeit der Träger mit Baufurniersperrhölzern steigt wiederum mit kleiner werdendem Gehrungswinkel in der Keilzinkung.

3 Die Simulation von BS-Holz

3.1 Vorgehensweise

Verlässliche Aussagen zum Tragverhalten von Holzbauteilen können wegen der großen Streuungen der Materialeigenschaften auf empirischem Wege nur mit einer ausreichend großen Anzahl von Versuchen gewonnen werden. Bei größeren oder komplizierter aufgebauten Bauteilen stößt dies schnell an wirtschaftliche Grenzen.

Grundgedanke der Simulation von Brettschichtholzbauteilen ist es, ein Rechenmodell zu finden, mit dem von den streuenden Größen der Materialeigenschaften der Lamellen auf die streuende Traglast des gesamten Bauteiles geschlossen werden kann. Die statistischen Verteilungen der Materialeigenschaften von Brettschichtholzlamellen sind mit vergleichsweise geringem Aufwand zu ermitteln und - einmal gefunden - auch für andere Problemstellungen verwendbar.

Das Rechenmodell setzt sich üblicherweise aus einem Simulationsprogramm und einem Finite-Elemente-Programm zusammen:

Das Simulationsprogramm soll eine möglichst realistische Wiedergabe des Aufbaues des Brettschichtholzbauteiles, der wesentlichen Materialeigenschaften und ihrer Verteilung über das Modell ermöglichen. Das Programm vollzieht dabei die Produktionsschritte der Brettschichtholzfertigung nach (siehe Bild 3.1).

Bild 3.1: Simulation eines Brettschichtholzbauteiles

Zunächst werden Bretter unterschiedlicher Länge zu einer Endloslamelle zusammengefügt. Die Längen der Bretter werden mit einem Zufallsgenerator aus der bekannten statistischen Verteilung der Brettlängen gewonnen.

Jedem Brett wird aus den ebenfalls bekannten Verteilungen für die Brett-Rohdichte und die charakteristische Ästigkeit ein zufällig gewählter Satz von Bretteigenschaften zugeordnet. Dabei wird von der Holzart Fichte ausgegangen. Die wuchsspezifischen Regelmäßigkeiten der Bretteigenschaften, z.B. größter und kleinster Hauptastabstand oder größter Ast innerhalb eines Brettes, werden in gleicher Weise als Parameter bestimmt.

Nach Festlegung der äußeren Modellgeometrie werden die erforderlichen Lamellenlängen für das Modell aus der Endloslamelle herausgeschnitten. Damit ist die Lage von Keilzinkenverbindungen im Modell bestimmt.

Die Lamellen werden in Längsrichtung in gleich lange Abschnitte, auch "Zellen" genannt, unterteilt. Mit den Bretteigenschaften und den Parametern ihrer wuchsspezifischen Regelmäßigkeiten kann für jede Zelle ein Satz von Zelleneigenschaften (Zellenrohdichte, Zellen - Ästigkeit und ggf. Holzfeuchte) ermittelt werden. Diese Zelleneigenschaften stellen die wesentlichen, festigkeitsbestimmenden Holzeigenschaften dar. Mit ihrer Kenntnis kann mittels Regressionsgleichungen auf die Zellenfestigkeiten und Zellenelastizitätsmoduln geschlossen werden. Es verbleibt immer eine Reststreuung, die durch die in die Regressionsgleichung eingehenden Holzeigenschaften nicht erklärt werden kann. Diese Reststreuung weist ebenfalls wuchsspezifische Regelmäßigkeiten auf und wird im Simulationsprogramm berücksichtigt. Die Verteilungen der mit dem Simulationsprogramm gefundenen Zelleneigenschaften können zur Kontrolle der Güte der Simulation mit empirischen Verteilungen verglichen werden.

Das Finite – Elemente - Programm übernimmt die äußere Modellgeometrie und die Zelleneigenschaften vom Simulationsprogramm. Im Finite – Elemente - Programm kann zwischen verschiedenen Lastarten gewählt werden. Die Belastung wird stufenweise aufgebracht. Die Lasthöhe wird so gesteuert, dass in jeder Laststufe ein Element des Druck- oder Zugbereiches ausfällt. Am Ende jeder Laststufe wird überprüft, ob die Belastung des Gesamtsystems noch gesteigert werden kann oder ob der rechnerische Bruchzustand erreicht ist. Das Finite – Elemente - Programm liefert als Ergebnis eines Rechenlaufes die Bruchlast, die Versagensursache und den -ort, die Zelleneigenschaften der ausgefallenen Zellen und die Summe aller Spannungen und Verformungen.

3.2 Frühere Arbeiten mit Simulationsmodellen für Brettschichtholz

Die nachfolgend aufgeführten Arbeiten stellen lediglich eine Auswahl dar.

Foschi/Barrett (1980) veröffentlichten ein Simulationsmodell für gerade Biegeträger aus Brettschichtholz auf der Basis der Finiten Elemente. Sie gingen in ihrem Modell davon aus, dass die Tragfähigkeit der Träger bei Überschreiten der Zugfestigkeit einer Zelle erreicht war (reines Sprödbruchkriterium). Tragreserven durch mögliche Lastumlagerungen nach Ausfall einer Zelle wurden nicht berücksichtigt. Faserstauchungen in der Druckzone und die sich daraus ergebenden Spannungsumlagerungen wurden nicht angesetzt. Foschi/Barrett hatten zudem keine Keilzinkenverbindungen in ihrem Modell simuliert.

Ehlbeck/Colling/Görlacher (1985a), (1985b), (1985c) entwickelten ein Rechenmodell (das sogenannte "Karlsruher Rechenmodell"), das um die oben genannten Punkte erweitert war und führten umfangreiche Untersuchungen zu den statistischen Verteilungen der Eingangsgrößen durch. Die Überprüfung der Zuverlässigkeit des Modells mit insgesamt 24 Trägern von 30 cm Höhe und mit definierten charakteristischen Merkmalen ergab gute Übereinstimmung sowohl für die Bruchlast als auch für die Durchbiegung der Träger.

Ehlbeck/Colling (1987) verfeinerten das Rechenmodell durch eine genauere Darstellung der Verteilung der Holzeigenschaften in Brettlängsrichtung. In der Untersuchung sollten die Auswirkung verschiedener Sortierkriterien und der Trägerhöhe auf die Bruchlast untersucht werden. Die Überprüfung der Zuverlässigkeit erfolgte mit Hilfe von 42 Biegeträgerversuchen unterschiedlicher Trägerhöhe. Der in den Versuchen gefundene Einfluss der Trägerhöhe und der Materialeigenschaften konnte mit dem Modell ebenfalls dargestellt werden.

Blaß (1987) ermittelte mit einem anderen Rechenmodell Traglastkurven für Druckstäbe aus Brettschichtholz unter Berücksichtigung physikalischer und geometrischer Nichtlinearitäten.

Colling (1990) stellte mit einem weiter verbesserten Rechenmodell für Biegeträger den Einfluß der Holzeigenschaften und der Keilzinkengüte auf die Tragfähigkeit von Brettschichtholz dar und entwickelte Vorschläge für die Bemessung.

Weitere Untersuchungen an geraden Biegebalken wurden z.B. von Gopu/Yeary (1991) und Hernandez/Bender (1991) präsentiert.

Von Aasheim/Colling/Ehlbeck/Falk/Görlacher/Solli (1993) wurden umfangreiche norwegische Testreihen mit Ergebnissen des "Karlsruher Rechenmodells" verglichen. Es ergab sich eine sehr gute Übereinstimmung der Prüfergebnisse mit den Simulationen.

3.3 Die Simulation der einzelnen Parameter

3.3.1 Zellengröße

Als Zelle wird ein Lamellenabschnitt verstanden, dessen Materialeigenschaften in guter Näherung als konstant angesehen werden können.

Als Zellendicke wurde in den Arbeiten von Foschi/Barrett (1980), Ehlbeck/Colling/Görlacher (1985a), (1985b), (1985c), Ehlbeck/Colling (1987) und Colling (1990) die Lamellendicke, als Zellenlänge 150 mm gewählt. Diese Abmessungen entsprechen nach Glos (1978) einer Größe, bei der die Zellen einerseits bezogen auf die Bauteilgröße klein genug sind, um die korrekte Wiedergabe der Streuungen der Materialeigenschaften im Bauteil zu ermöglichen, andererseits so groß sind, dass der Einfluss von Inhomogenitäten in ihnen dargestellt werden kann.

Die Zellenlänge entspricht zudem der Länge, über die in DIN 4074 bzw. in den ECE Regeln zur Bestimmung der Ästigkeit (1982) die Ästigkeit bestimmt wird.

Die oben genannten Zellenabmessungen sollen auch in der vorliegenden Arbeit Verwendung finden.

In den Zwischenstücken kann geometriebedingt keine konstante Zellenlänge für alle Lamellen eingehalten werden. Daher werden die Zellenlängen der Zellen, die unmittelbar an die Universalkeilzinkenverbindung grenzen, in allen Lamellen zu 150 mm festgelegt. Die zwischen den beiden Endzellen einer Lamelle liegende Länge wird in eine gleiche Anzahl von Zellenlängen unterteilt (siehe Bild 3.2). Somit entstehen in einigen Lamellen Zellenlängen, die deutlich von 150 mm Länge abweichen. Da Brüche im wesentlichen im Bereich der Universalkeilzinkenverbindung zu erwarten sind, ist diese Einteilung aber vertretbar.

Die Riegelabschnitte und Zwischenstücke sind im allgemeinen trapezförmig. Dies gilt bei einer regelmäßigen Einteilung auch für die Zellen.

Bild 3.2: Zelleneinteilung für eine Rahmenecke mit Zwischenstück ohne Vouten in den Riegeln

3.3.2 Keilzinkenabstände

Die Kenntnis der bei den Brettschichtholzherstellern verwendeten Brettlängen ist zur Ermittlung der Keilzinkenabstände im Bauteil erforderlich. Larsen (1980) gibt eine sta-

tistische Verteilung von Brettlängen für unterschiedliche Brettbreiten auf der Basis von Untersuchungen bei dänischen Holzbetrieben an. Er weist darauf hin, dass Brettlängen unter 2,40 m und über 6,40 m kaum vorkommen (siehe Tabelle 3.1).

Ehlbeck/Colling (1987) führten stichprobenartig eine Untersuchung der tatsächlich vorhandenen Keilzinkenabstände in Bauteilen zweier deutscher Brettschichtholzhersteller durch. Sie zeigten auf, dass die in einem Träger auftretenden Brettlängen sich in zwei Gruppen einteilen lassen. Die erste Gruppe bilden die Bretter, die ungekürzt verarbeitet werden, die zweite die Bretter, bei denen Fehlstellen herausgetrennt werden müssen. Damit sind die tatsächlich vorhandenen Keilzinkenabstände im Brettschichtholz sehr stark abhängig von der Sortierpraxis des jeweiligen Herstellbetriebes. Werden die Brettlamellen eher ungekürzt in eine niedrigere Festigkeitsklasse eingestuft, so ergeben sich im Mittel größere Keilzinkenabstände; wird versucht, eine größere Ausbeute höherwertigerer Bretter durch Herausschneiden von Fehlstellen zu erzielen, so werden die Keilzinkenabstände im Mittel kleiner. Die Häufigkeitsverteilung der Brettlängen der beiden Gruppen ist in Tabelle 3.1 dargestellt. Für die ungekürzten Bretter wurde die Verteilung für eine Brettbreite von b=100 mm nach Larsen beibehalten.

Ehlbeck/Colling trafen die Annahme, dass 50% aller Bretter ungekürzt in den Träger eingebaut werden. Dies wird auch in der vorliegenden Arbeit angenommen.

	Brettgruppe		Mittelwert [m]	Standard- abweichung [m]	Variations- koeffizient [%]
Larsen (1980)	Ungekürzte Bretter	b=100mm b=150mm	4,30 4,62	0,71 0,67	17 15
Ehlbeck/ Colling (1987)	Gekürzte Bretter		2,15	0,50	23

Tabelle 3.1:	Mittelwerte der Brettlängen
--------------	-----------------------------

3.3.3 Rohdichte

Glos (1978) ermittelte eine repräsentative Verteilung der Rohdichte für das in deutschen Holzleimbaubetrieben verwendete Fichten-Schnittholz. Als untere Schranke gab er 0,33 g/cm³, als obere etwa 0,60 g/cm³ an. Die Verteilung wurde von Colling/Görlacher (1989) bestätigt (s. Tabelle 3.2).

Tabelle 3.2:	Statistische Parameter der Rohdichteverteilungen für Fichtenholz
--------------	--

	Kenn- größe	Mittelwert [g/cm ³]	Standardabweichung [g/cm ³]	Variationskoeffizient [%]
Glos (1978)	ρ	0,43	0,05	12
Colling/Görlacher (1989)	ρ	0,456	0,045	10

Ehlbeck/Colling/Görlacher (1985a), (1985b), (1985c) wiesen darauf hin, dass bei 80% der Bretter die Rohdichtedifferenz zwischen Brettanfang und Brettende kleiner als 0,04 g/cm³ ist. Wegen dieser i.a. relativ geringen Schwankung der Rohdichte über die Brettlänge wird sie im Rechenmodell als konstant angenommen.

Colling/Ehlbeck/Kurzweil (1995) machen Angaben zu den Verteilungsparametern der Rohdichte (für u=12%) in Abhängigkeit der Sortierklassen. Diese Verteilungen werden in der vorliegenden Arbeit verwendet.

Tabelle 3.3:Statistische Parameter der Rohdichteverteilungen (in [g/cm³] für ver-
schiedene Sortierklassen (aus Colling/Ehlbeck/Kurzweil (1995))

	S7	MS7	S10	MS10	S13	MS13	MS17
Mittelwert	0,45	0,42	0,45	0,43	0,46	0,46	0,50
5%-Fraktil	0,38	0,36	0,39	0,38	0,38	0,41	0,44

Bei Bedarf wird die Rohdichte auf eine Holzfeuchte von 12% mit der folgenden Gleichung aus DIN 52183 umgerechnet:

$$\rho_{u} = \rho_{0} \frac{100 + u}{100 + 0.85 \cdot \rho_{0} \cdot u}$$
mit:
$$\rho_{0} = \text{Darr-Rohdichte in [g/cm^{3}]}$$

$$\rho_{u} = \text{Rohdichte bei der Holzfeuchte u in [g/cm^{3}]}$$
(3.1)

u = Holzfeuchte in [%]

3.3.4 Holzfeuchte

Neuhaus (1994) und Wommelsdorff (1966) wiesen einen ausgeprägten Einfluss der Holzfeuchte auf die Elastizitätskonstanten s_{ij} an kleinen fehlerfreien Holzproben nach.

Kufner (1978) untersuchte für verschiedene Holzarten die Abhängigkeiten des Zugund Biege-Elastizitätsmoduls sowie der Zug- und Biegefestigkeit von der Rohdichte und der Holzfeuchte. Für die untersuchten kleinen fehlerfreien Proben fand Kufner sowohl für $E_{t,0}$ und E_m als auch für f_t und f_m eine ausgeprägte Abhängigkeit von der Rohdichte und von der Holzfeuchte.

Demgegenüber fanden Heimeshoff/Glos (1980) bei Untersuchungen an Abschnitten aus Fichtenholzlamellen keine Abhängigkeit des Zug- und Biege-Elastizitätsmoduls oder der Zug- und Biegefestigkeit von der Holzfeuchte. Glos (1978) untersuchte den besonders ausgeprägten Einfluss der Holzfeuchte auf den Druck- Elastizitätsmodul und die Druckfestigkeit parallel zur Faser.

Da nicht für alle Eingangsdaten des Simulationsprogramms die Feuchteabhängigkeit bekannt ist, wird in der vorliegenden Arbeit von einer mittleren Holzfeuchte von u = 12% ausgegangen, für die durchgehend die Eingangswerte bekannt sind. Wesentlich abweichende Holzfeuchten beeinflussen sowohl die Festigkeiten wie auch die Elastizitäts- und Schubmoduln deutlich und bedürfen einer gesonderten Untersuchung, die im Rahmen dieser Arbeit nicht durchgeführt wird.

3.3.5 Ästigkeit

Glos (1981) gab den mittleren Astabstand für Äste mit einem Durchmesser größer als 5 mm zu x = 450 mm mit einer Standardabweichung von s = 200 mm an.

Ehlbeck/Colling/Görlacher (1985b) ermittelten die Häufigkeitsverteilung der Ästigkeit von 90 in die verschiedenen Güteklassen sortierten Bretter. Dabei wurde die Ästigkeit in Form des KAR-Wertes bestimmt. In allen drei untersuchten Güteklassen waren etwa 2/3 aller Zellen astfrei oder hatten nur sehr kleine KAR-Werte (KAR<0,05). Die Verteilung der übrigen KAR-Werte wies dagegen deutliche Unterschiede zwischen den verschiedenen Güteklassen auf.

In einer weitergehenden Untersuchung ermittelten Colling/Dinort (1987) die wuchsspezifischen Regelmäßigkeiten der Astgröße und der Astabstände. Sie stellten fest, dass in fast allen Brettern ein Astdurchmesser in regelmäßigen Abständen auftrat. Diese Abstände wurden von ihnen Hauptastabstände, die zugehörigen KAR-Werte charakteristische KAR-Werte genannt. Die KAR-Werte aller Brettabschnitte wurden als Vielfache des charakteristischen KAR-Wertes ausgewertet. Analog dazu wurden alle Astabstände als Vielfaches des Hauptastabstandes ausgedrückt. Bei der Häufigkeitsverteilung des charakteristischen KAR-Wertes ergaben sich deutliche Unterschiede zwischen den Güteklassen (Mittelwert GK I KAR \approx 0,10; GK II KAR \approx 0,125). Die Häufigkeitsverteilung für das Vielfache des charakteristischen KAR-Wertes war dagegen von der Güteklasse unabhängig. Gleiches galt für die Hauptastabstände. Ein statistisch gesicherter Einfluss der Brettbreite oder des Wuchsgebietes auf die Hauptastabstände oder die KAR-Werte konnte nicht festgestellt werden.

Ehlbeck/Colling (1987) ermittelten die Häufigkeitsverteilungen für die größten und kleinsten Hauptastabstände Δ_{min} , Δ_{max} , sowie für die Differenz der beiden Werte $\Delta_{i,ges}$ für die Gesamtheit aller Bretter (siehe Tabelle 3.4). Mit diesen Log-Normalverteilungen konnte der Verlauf der Ästigkeit längs eines beliebigen Brettes wie folgt dargestellt werden:

- Es wurde zunächst ein zufälliger Wert f
 ür den kleinsten Hauptastabstand Δ_{min} aus der zugehörigen Verteilung bestimmt.
- 2. Es wurde dann ein zufälliger Wert für die Differenz zwischen kleinstem und größtem Hauptastabstand Δ_d aus der zugehörigen Verteilung gewählt.
- 3. Der größte Hauptastabstand innerhalb eines Brettes ergab sich zu $\Delta_{max} = \Delta_{min} + \Delta_{d}$. Mit dieser Vorgehensweise wurde verhindert, dass der zufällig ermittelte Wert für Δ_{max} kleiner werden konnte als der zufällig ermittelte Wert für Δ_{min} .
- 4. Es wurde nun davon ausgegangen, dass die Verteilung aller Hauptastabstände Δ_i des einzelnen Brettes (in den Grenzen Δ_{min} bis Δ_{max}) affin zur Verteilung der Hauptastabstände aller Bretter (in den Grenzen 15 cm bis 150 cm) ist.
- 5. Mit einem zufälligen Wert $\Delta_{i,ges}$ aus der zugehörigen Verteilung ergab sich der Astabstand Δ_i zu:

$$\Delta_{\max} = \Delta_{\min} + \Delta_{d} \tag{3.2}$$

$$\Delta_{i} = \Delta_{\min} + \left(\Delta_{i,\text{ges}} - 15\right) \cdot \frac{\Delta_{\max} - \Delta_{\min}}{150 - 15} \qquad \text{alle Werte in [cm]} \qquad (3.3)$$

Die Ermittlung der Astgröße erfolgt in gleicher Weise:

- Zunächst wird ein zufälliger charakteristischer KAR-Wert cKAR_k für das jeweilige Brett gewählt.
- 1. Dann wird der Wert k_i, analog zu den Astabständen wie folgt bestimmt:

$$\mathbf{k}_{\max} = \mathbf{k}_{\min} + \mathbf{k}_{d} \tag{3.4}$$

$$k_{i} = k_{min} + (k_{i,ges} - 0.25) \cdot \frac{k_{max} - k_{min}}{3.00 - 0.25}$$
(3.5)

$$KAR_{i} = k_{i} \cdot cKAR_{k}$$
(3.6)

Beschreibung		Einheit	Mittelwert	Standard- abweichung	Minimal- wert	Maximal- wert
Charakteristischer KAR-Wert						
GK I ≅ S13	cKAR	[-]	-2,489	0,355	-	0,35
GK II ≅ S10			-1,840	0,315	-	0,46
GK III ≅ S7			-2,016	0,378	-	0,64
kleinstes Vielfaches des char. KAR-Wertes	k _{min}	[-]	-0,347	0,378	0,25	3,00
größtes Vielfaches des char. KAR- Wertes	k _{max}	[-]	0,877	0,298	-	-
Differenz zwischen kleinstem und größtem Vielfachen des char. KAR-Wertes	k _d	[-]	0,485	0,431	0,25	4,5
Verteilung aller Vielfachen	k _{i,ges}	[-]	0,298	0,501	0,25	4,5
kleinster Hauptastabstand	Δ_{min}	[cm]	3,476	0,359	15	105
größter Hauptastabstand	Δ_{max}	[cm]	4,246	0,250		
Differenz zwischen kleinstem und größtem Hauptastabstand	Δ_{d}	[cm]	3,503	0,520	0	135
Verteilung aller Hauptastabstände	$\Delta_{i,ges}$	[cm]	3,808	0,372	15	150

Tabelle 3.4:	Verteilungsparameter (für log-normal Verteilungen) zur Simulation der
	Ästigkeit nach Ehlbeck/Colling (1987)

Einen anderen Weg zur Ermittlung der Ästigkeitsverteilung stellte Görlacher (1990) dar. Es ergeben sich die folgenden Schritte:

- 1. Aus der gegebenen Verteilung der maximalen KAR-Werte wird ein Wert ermittelt.
- 2. Die übrigen KAR-Werte werden aus dem ausgewählten Wert gemäß Gl. (3.7) berechnet

$$KAR_{i+1} = K_i \cdot KAR_i \tag{3.7}$$

3. Hierin wird K_i aus der folgenden Exponentialverteilung zufällig ermittelt:

$$h(K_i) = \xi \cdot e^{-\xi(1-K_i)}$$
 (3.8)
mit ξ =7,57.

- 4. Dieser Vorgang wird so oft wiederholt, bis KAR<0,05 ist. Außerdem berücksichtigt Görlacher, dass nur ein Drittel aller Brettabschnitte Äste aufweist.
- 5. Die Werte KAR_i werden zufällig über die Brettlänge verteilt.

	S7	MS7	S10	MS10	S13	MS13	MS17
Mittelwert	0,38	0,33	0,29	0,29	0,20	0,25	0,21
5%-Fraktile	0,52	0,50	0,41	0,44	0,30	0,40	0,36

Tabelle 3.5:	Statistische Parameter der maximalen Ästigkeit max KAR für verschie-
	dene Sortierklassen nach Colling/Ehlbeck/Kurzweil (1995))

Colling/Ehlbeck/Kurzweil (1995) gaben die maximalen KAR-Werte für alle Sortierklassen an (s. Tabelle 3.5).

In der vorliegenden Arbeit wird für die Bestimmung der Astabstände nach Colling/Ehlbeck (1987), für die Bestimmung der Astgrößen nach Görlacher (1990) verfahren, da mit dem Verfahren von Görlacher und den Angaben für die maximalen KAR-Werte von Colling/Ehlbeck/Kurzweil Ästigkeiten für alle Sortierklassen bestimmt werden können. Für das Verfahren von Colling/Ehlbeck sind hingegen die Parameter bis jetzt nur für die Klassen S 7, S10 und S 13 ermittelt worden.

3.3.6 Bestimmung von Festigkeitswerten und Elastizitätskonstanten aus anderen festigkeitsrelevanten Einflussgrößen

Die Festigkeits- und Steifigkeitseigenschaften von Brettabschnitten oder Brettern können aus anderen Materialeigenschaften mittels Regressionsgleichungen ermittelt werden. Innerhalb einer Holzart sind die festigkeitsbestimmenden Holzeigenschaften vor allem die Elastizitätsmoduln, die Ästigkeit, die Rohdichte, der Jahrringverlauf, die Holzfeuchte, die Faserabweichungen und der Druckholzanteil. Bei keilgezinkten Brettabschnitten kommen als Faktoren der Anteil markhaltigen oder marknahen Holzes, die Keilzinkengeometrie, die technischen Produktionsbedingungen (z.B. Schärfe der Keilzinkenfräser, Klebstoffzusammensetzung etc.) und die Fachkenntnis des Personals hinzu. Die Güte der Vorhersage der Festigkeitseigenschaften lässt sich steigern, wenn mehrere Faktoren berücksichtigt werden. Es verbleibt aber immer eine Reststreuung, die durch die in die Regressionsgleichung eingehenden Materialeigenschaften nicht erklärt wird.

3.3.7 Elastizitätsmoduln parallel zur Faser

3.3.7.1 Nicht keilgezinkte Brettabschnitte

Untersuchungen von Glos (1978), (1981), Heimeshoff/Glos (1980), Colling/Scherberger (1987) und Colling/Görlacher (1989) haben gezeigt, dass in ungezinkten Brettern die Rohdichte und die Ästigkeit den größten Einfluss auf den Zugelastizitätsmodul parallel zur Faser haben, während beim Druckelastizitätsmodul zusätzlich die Holzfeuchte berücksichtigt werden muss. Die Berücksichtigung weiterer Parameter ergab nur unwesentliche Verbesserungen der Vorhersage.

Glos (zitiert bei Ehlbeck/Colling/Görlacher (1985b) und Ehlbeck/Colling (1987)) hat die folgenden Regressionsgeraden für Druck- und Zugelastizitätsmoduln-Moduln ungezinkter Brettabschnitte ermittelt.

$$ln(E_{t,0}) = 8,20 + 3,13 \cdot \rho_0 - 1,17 \cdot KAR; R=0,77, s_R=0,180$$
(3.9)

$$In(E_{c,0}) = 8,22 + 3,19 \cdot \rho_0 - 0,602 \cdot KAR - 13,6 \cdot \rho_0 u^2 - 11,0 \cdot KAR \cdot u^2$$
(3.10)
R=0,80, s_R=0,142

Für eine Holzfeuchte u=12% ergibt sich für den Druckelastizitätsmodul:

$\ln(E_{c,0}) = 8,22 + 2,994 \cdot \rho_0 - 0,760 \cdot KAR$	(3.11)
--	--------

E _{t,0} ; E _{c,0}	= Zug- bzw. Druckelastizitätsmodul in [N/mm ²]
ρο	= Darrohdichte in [g/cm ³]
KAR	= KAR-Wert in [1]
R	= Korrelationskoeffizient
S _R	= Standardabweichung des Residuums
	E _{t,0} ; E _{c,0} ρ _o KAR R S _R

Colling/Scherberger wiesen in (1987) nach, dass die Streuung des Elastizitätsmoduls innerhalb eines Brettes deutlich geringer als die der Gesamtheit der Bretter ist.

Unter der Annahme, dass die Regressionsgerade für die Zellenelastizitätsmoduln jedes Brettes parallel zur Regressionsgeraden aller Bretter verläuft, kann der Elastizitätsmodul jeder Zelle wie folgt bestimmt werden:

- Mit bekannten Werten f
 ür die Rohdichte und KAR wird ein mittlerer Zellen-Elastizit
 ätsmodul E_{m,c,0,i} f
 ür jede Zelle mit Hilfe der bekannten Regressionsgleichungen berechnet.
- Mit einer von Ehlbeck/Colling (1987) angegebenen Häufigkeitsverteilung für den mittleren Abstand ∆_m der Regressionsgeraden der einzelnen Bretter zur Regressionsgeraden der Gesamtheit der Bretter wird ein für das ganze Brett konstanter, zufälliger Wert ermittelt.
- Aus einer ebenfalls von Ehlbeck/Colling angegebenen Häufigkeitsverteilung für die Standardabweichung s_∆ der einzelnen Bretter wird ein zufälliger, für das ganze Brett konstanter Wert bestimmt.
- Für jede Zelle wird ein Wert X aus einer angenommenen Normalverteilung mit dem Mittelwert 0 und der Standardabweichung s_∆ gewählt.

5. Damit ergibt sich der Zellenelastizitätsmodul jeder Zelle zu:

$$ln(E_{c,0,i}) = ln(E_{c,0,m,i}) + \Delta_m + X(0;s_{\Delta}), \qquad (3.12)$$

$$\ln(\mathsf{E}_{t,0,i}) = \ln(\mathsf{E}_{t,0,m,i}) + \Delta_{m} + X(0; \mathbf{s}_{\Delta}).$$
(3.13)

Tabelle 3.6: Verteilungsparameter den Elastizitätsmodul in nicht gezinkten Brettabschnitten

Mittlerer Abstand der Elastizitätsmoduln eines Brettes von der allgemeinen Regressionsgeraden	Δ_{m}	$\overline{\mathbf{x}} = 0$	s=0,16
Standardabweichung der Elastizitätsmoduln eines Brettes	${\bf S}_{\Delta}$	x = 0,079	s=0,027

3.3.7.2 Keilgezinkte Brettabschnitte

Abhängigkeiten des Elastizitätsmoduls parallel zur Faser von der Rohdichte und der Holzfeuchte fanden Heimeshoff/Glos (1980) und Ehlbeck/Colling/Görlacher (1985b) auch für keilgezinkte Brettabschnitte. Es entfiel gegenüber ungezinkten Abschnitten allerdings der Einfluss der Ästigkeit, da die Keilzinkenbereiche nach DIN 68140 frei von Ästen sein müssen. Es sei bereits hier angemerkt, dass dies bei der Universalkeilzinkenverbindung produktionsbedingt nicht der Fall ist. Viele der in der Universalkeilzinkenverbindung liegenden Äste werden zudem durch das Fräsen gelockert oder fallen sogar aus der Lamelle heraus.

Die Vorhersage der Festigkeit von keilgezinkten Brettabschnitten ist mit einer größeren Unsicherheit als bei ungezinkten Bretter behaftet, da eine Vielzahl festigkeitsrelevanter Faktoren bei der Keilzinkenproduktion zahlenmäßig nicht oder nur schwer erfassbar ist.

Glos (1978) gibt eine Regressionsgleichung für den Druckelastizitätsmodul keilgezinkter Brettabschnitte an. Colling beschreibt in (1990) eine Gleichung für den Zugelastizitätsmodul.

$$ln(E_{t,0}^{KZV}) = 8,407 + 2,630 \cdot \rho_{0,min}; \qquad R=0,64, s_R=0,135$$
(3.14)

$$ln(E_{c,0}^{KZV}) = 8,430 + 2,530 \cdot \rho_{0,min} - 10,3 \cdot u^{2}; \quad R=0,56, s_{R}=0,231$$
(3.15)

Für eine Holzfeuchte von u=12% ergibt sich für den Druckelastizitätsmodul:

$$ln(E_{c,0}^{KZV}) = 8,28 + 2,530 \cdot \rho_{0,min}$$
(3.16)

mit:	$E_{t,0}^{KZV};E_{c,0}^{KZV}$	= Zug- bzw. Druckelastizitätsmodul in [N/mm ²]
	$ ho_{o,min}$	= kleinerer Wert der Darrrohdichten beider Stoßhälften in [g/cm ³]
	R	= Korrelationskoeffizient
	S _R	= Standardabweichung des Residuums

Ähnliche Regressionsgleichungen werden von Colling/Scherberger (1987) angegeben. Diese werden hier aber nicht benutzt.

Die Elastizitätsmoduln für gezinkte Brettabschnitte werden mit einem zufällig gewählten Wert aus der Normalverteilung der gesamten Reststreuung der Regressionsgleichung wie folgt berechnet:

$$ln(E_{c,0,i}^{KZV}) = ln(E_{c,0,m,i}^{KZV}) + X(0;s_{R}), \qquad (3.17)$$

$$\ln(\mathsf{E}_{t,0,i}^{KZV}) = \ln(\mathsf{E}_{t,0,m,i}^{KZV}) + X(0;\mathsf{s}_{\mathsf{R}}).$$
(3.18)

3.3.8 Schubmodul

Tabelle 3.7 Verhältnis E₀/G aus verschiedenen Publikationen

	u	ρ	E ₀	G	G/E ₀
	[%]	[g/cm ³]	[N/mm ²]	[N/mm ²]	[1]
Becker (1976)	-	-	12.240	870	19,6
Hörig (1931)	12	0,41	17.036	870	14,1
Keylwerth (1951)	9,8	0,44	16.234	775	15,0
Neuhaus (1981)	7	0,42	12.531	834	15,2
	8	0,42	12.438	819	15,4
	9	0,42	12.346	802	15,6
	10	0,42	12.225	783	15,9
	11	0,42	12.121	764	16,1
	12	0,42	11.990	743	16,4
	13	0,42	11.876	722	20,9
Neuhaus (1994)	12	0,47	10.000	649	15,4

In zahlreichen Untersuchungen z.B. von (Becker (1976), Hörig (1931), Keylwerth (1951), Neuhaus (1981) und (1994)) wurden sowohl Schub- wie auch Elastizitätsmoduln kleiner fehlerfreier Proben angegeben. Tabelle 3.7 zeigt Auszüge aus den Ergebnissen dieser Arbeiten. Es ergeben sich für das Verhältnis G/E₀ Werte zwischen 14,1 und 20,9. Görlacher/Kürth (1994) untersuchten für verschiedene europäische Festigkeitsklassen den Zusammenhang zwischen dem dynamischen Schubmodul und dem dynamischen Elastizitätsmodul parallel zur Faser bzw. der Rohdichte. Untersucht wurden Brettabschnitte mit für die Brettschichtholzproduktion typischen Querschnitten. Görlacher/Kürth gaben folgende gleichwertige Regressionsgleichungen an:

$$\frac{\mathsf{E}_{0}}{\mathsf{G}} = 0,00112 \cdot \mathsf{E}_{0} + 5,43; \quad \mathsf{R}=0,66 \tag{3.19}$$

$$G = 1780 \cdot \rho_{12} - 146$$
; R=0,66 (3.20)

Bild 3.3 Verhältnis E₀/G nach Görlacher/Kürth (1994) und DIN EN 338

Die obige, in dieser Arbeit verwendeten Regressionsgleichungen von Görlacher/Kürth führen zu deutlich anderen E_0/G – Verhältnissen als sie z.B. in der DIN EN 338 angenommen werden (s.a. Bild 3.3).

Larsson/Ohlsson/Pertoper/Brundin (1998) untersuchten 1998 ebenfalls den dynamischen Elastizitätsmodul parallel zur Faser und den dynamischen Schubmodul. Die Tabelle 3.8 enthält eine Zusammenstellung der hier relevanten Ergebnisse. Wertet man die Ergebnisse von Larsson/Ohlsson/Pertoper/Brundin mit der Gleichung von Görlacher/Kürth aus, so ergibt sich eine gute Übereinstimmung.

Breite/Höhe	Zahl der Prüfkörper	u	ρ _u	ρ ₁₂	G gemessen ¹⁾	G berechnet ²⁾	Differenz
[mm/mm]	[1]	[%]	[g/cm ³]	[g/cm ³]	[N/mm ²]	[N/mm ²]	[%]
38/89	122	15	480	474	677	698	3,1
38/140	127	15	472	466	692	684	-1,2
38/184	274	17	466	456	648	666	2,8
¹⁾ nach Larsson/Ohlsson/Pertoper/Brundin (1998)							
²⁾ nach Görlacher/Kürth (1994)							

Tabelle 3.8 Verhältnis E_0/G nach Larsson/Ohlsson/Pertoper/Brundin und Görlacher/Kürth

3.3.9 Elastizitätsmodul senkrecht zur Faser

In Untersuchungen z.B. von Hörig (1931), Keylwerth (1951), Krabbe (1960), Neuhaus (1981), (1994) und Wommelsdorf (1966) wurden für kleine fehlerfreie Proben Elastizitätsmoduln längs und quer zur Faser angegeben. Tabelle 3.9 zeigt die Ergebnisse.

	u	ρ	E _{c,0}	E ₉₀	E _{c,0} /E ₉₀
	[%]	[g/cm ³]	[N/mm ²]	[N/mm ²]	[1]
Hörig (1931)	12	0,41	17.036	645	26,4
Keylwerth (1951)	9,8	0,44	16.234	400	40,6
Krabbe (1960)	-	-	11.364	442	25,7
Neuhaus (1981)	7	0,42	12.531	490	25,6
	8	0,42	12.438	478	26,0
	9	0,42	12.346	465	26,6
	10	0,42	12.225	450	27,2
	11	0,42	12.121	435	27,9
	12	0,42	11.990	420	28,6
	13	0,42	11.876	404	29,4
Neuhaus (1994)	12	0,47	10.000	455	22,0
Wommelsdorf (1966)	8,5	-	12.706	442	28,7
	13,7	-	11.287	429	26,3

Tabelle 3.9 Verhältnis E_{c.0}/E₉₀ aus verschiedenen Publikationen

Hoffmeyer/Damkilde/Pedersen (2000) führten Querdruckversuche an Vollholz und Brettschichtholzabschnitten durch. Die Vollholzabschnitte aus nordischer Fichte üblicher Qualität hatten Querschnitte 50/100 mm bzw. 20/250 mm und wurden hinsichtlich des Jahrringverlaufes in fünf Gruppen eingeteilt. Die Abschnitte wurden im Normalklima 20° /65% rLF bis zum Erreichen der Ausgleichsfeuchte gelagert. Sie hatten eine

mittlere Rohdichte von ρ_{12} = 450 kg/m³. Die Querschnitte wurden hochkant geprüft. Es ergab sich erwartungsgemäß eine deutliche Abhängigkeit des Elastizitätsmoduls quer zur Faser von der Jahrringlage. Für die Probekörper mit liegenden Jahrringen ergab sich der höchste Wert. Einen ebenfalls ausgeprägten Einfluss hatte die Messlänge: in Abhängigkeit von der Jahrringlage wurden bei einer Messlänge von 90 mm 30-35% kleinere Werte gemessen als bei einer Messlänge von 50 mm. Als Mittelwert über alle Jahrringlagen wurde für eine Messlänge von 50 mm ein mittlerer Elastizitätsmodul von E_{c.90.50} = 320 N/mm² gemessen.

Bei den untersuchten Brettschichtholzabschnitten aus nordischer Fichte mit einer mittleren Rohdichte von ρ_{12} = 478 kg/m³ ergaben sich ebenfalls von der Messlänge abhängige Elastizitätsmoduln. Demgegenüber war der Einfluss der Jahrringlage erwartungsgemäß gering. Für eine Messlänge von 100 mm konnte $E_{c,90,50}$ = 367 N/mm² ermittelt werden. Der Einfluss der Messlänge, der bei den Probekörpern aus Brettschichtholz auf Verformungen im Lasteinleitungsbereich zurückgeführt werden kann, lässt bezogen auf die Lamellendicke einen höheren Elastizitätsmodul erwarten.

Setzt man die Werte für $E_{c,90,50}$, die Hoffmeyer/Damkilde/Pedersen für Brettschichtholzabschnitte angeben, mit den Werten für $E_{c,0,50}$, z.B. nach Abschnitt 3.3.7.1, in das Verhältnis, so kann man feststellen, dass eine Abschätzung des Elastizitätsmoduls senkrecht zur Faser nach GI. (3.21) gerechtfertigt ist.

$$E_{c,90i} = 0,035 \cdot E_{c,0i}$$

onen				
	Beanspruchtes Volumen V ₀	Festigkeitsklas- se	Zahl der Probe- körper	E _{t,90,50}
	[m ³]	[-]	[1]	[N/mm ²]
Aicher/Dill-Langer (1996)	0,01	BS 16	10	442
	0,01	BS 18	25	432
Aicher/Dill-Langer (1997)	0,01	BS 16 / BS 18	44	446
	0,03	BS 16 / BS 18	44	441
Blaß/Ehlbeck/Schmid (1999)	0,01	BS 11 / BS 14	79	329
	0,01	BS 16	38	354
	0,01	BS 18	36	370

 Tabelle 3.10
 E_{t,90,50} für verschiedene Festigkeitsklassen aus verschiedenen Publikationen

Aicher/Dill-Langer (1996) untersuchten das Verhalten von Brettschichtholzabschnitten der Festigkeitsklassen GL 32 (entspricht BS 16) und GL 36 (entspricht BS 18) unter Querzugbeanspruchung. An Probekörpern nach prEN 1193 ermittelten sie im Kurzzeitversuch die in Tabelle 3.9 angegebenen Elastizitätsmoduln.

(3.21)

Aicher/Dill-Langer (1997) untersuchten Langzeiteffekte des Querzugverhaltens in Abhängigkeit der klimatischen Beanspruchung und des querzugbeanspruchten Volumens. Das Brettschichtholz entsprach den Festigkeitsklassen BS 16 und BS 18. Die Prüfungen erfolgten nach DIN EN 1193. Geprüft wurde das Langzeitverhalten in den Nutzungsklassen 1 und 2. Die nach der Größe des querzugbeanspruchten Volumen differenzierten Ergebnisse können ebenfalls der Tabelle 3.9 entnommen werden. Diese Werte entsprechen etwa den Angaben der DIN 1052-1/A1.

Blaß/Ehlbeck/Schmid (1999) ermittelten die Querzugfestigkeit von Vollholz und Brettschichtholz im Kurzzeitversuch.

Bei den Vollholzabschnitten aus Fichte wurde wie in Hoffmeyer/Damkilde/Pedersen (2000) zwischen verschiedenen Jahrringlagen differenziert. Die stehend geprüften Vollholzprobekörper hatten einen Querschnitt von 45/180 mm. Die mittlere Rohdichte betrug ρ_{12} = 440 kg/m³. Bei einer Messlänge von 100 mm ergaben sich in Abhängigkeit von der Jahrringlage Elastizitätsmoduln zwischen 164 N/mm² $\leq E_{t,90,50} \leq 726$ N/mm².

Beim Brettschichtholz wurden zum Nachweis des Volumeneffektes Prüfkörper mit unterschiedlicher Lamellenzahl untersucht. Aufgrund der geringen Messlängen konnte aber nur bei den höheren Brettschichtholzabschnitten, die den geometrischen Vorgaben der DIN EN 1193 entsprachen, Elastizitätsmoduln quer zur Faser gemessen werden. Es ergaben sich die in Tabelle 3.10 aufgeführten Werte. Bezogen auf die in DIN 1052-1/A1 angegebenen Elastizitätsmoduln sind diese zwischen 6%-18% kleiner.

Die oben zitierten Arbeiten zeigen, dass der Elastizitätsmodul senkrecht zur Faser für Zug- und Druckbeanspruchung etwa die gleiche Größe annimmt. Für das Simulationsprogramm wird daher auch für Querzugbeanspruchung der Elastizitätsmodul $E_{t,90,i}$ mit der folgenden Gleichung abgeschätzt:

$$\mathsf{E}_{t,90,i} = 0,035 \cdot \mathsf{E}_{t,0,i} \tag{3.22}$$

3.3.10 Querdehnungszahl

In zahlreichen Untersuchungen (z.B Becker (1976), Hörig (1931), Keylwerth (1951), Krabbe (1960), Neuhaus (1994), Stamer (1935), Wommelsdorff (1966) an kleinen, fehlerfreien Proben wurden Querdehnungszahlen $0.02 \le \mu_{yx}; \mu_{yz} \le 0.06$ gemessen. Bei einer Auswertung von Untersuchungen an kleinen, fehlerfreien Proben verschiedener

amerikanischer Weich- und Harthölzer fanden Bodig/Goodman (1973) keine signifikante Abhängigkeit der Querdehnungszahl von der Rohdichte.

Wegen des nur geringen Einflusses auf die Spannungsverteilung wird auch für die großformatigeren Brettabschnitte mit Wuchsfehlern die Querdehnungszahl zu μ = 0,04 festgesetzt.

3.3.11 Festigkeiten parallel zur Faser

3.3.11.1 Nicht keilgezinkte Brettabschnitte

Glos (zitiert bei Ehlbeck/Colling/Görlacher (1985b) und Ehlbeck/Colling (1987)) ermittelte folgende Regressionsgleichungen für die Druck- und Zugfestigkeit ungezinkter Brettabschnitte.

$$\ln(f_{t,0}) = -4,22 + 0,876 \cdot \ln(E_{t,0}) - 0,093 \cdot \text{KAR} \cdot \ln(E_{t,0}); \text{ R=}0,86, \text{ s}_{\text{R}}=0,187$$
(3.23)

$$ln(f_{c,0}) = 3,23 + 2,8 \cdot \rho_0 - 0,825 \cdot KAR - 5,37 \cdot u ; R=0,94, s_R=0,088$$
(3.24)

Für eine Holzfeuchte u=12% ergibt sich für den Druckelastizitätsmodul:

$$ln(f_{c,0}) = 2,59 + 2,8 \cdot \rho_0 - 0,825 \cdot KAR; R=0,94, s_R=0,088$$
(3.25)

mit:	E _{t,0} , E _{c,0}	= Zug- bzw. Druckelastizitätsmodul in [N/mm ²]
	f _{t,0} , f _{c,0}	= Zug- bzw. Druck-Festigkeit in [N/mm ²]
	ρο	= Darrrohdichte in [g/cm ³]
	KAR	= KAR-Wert in [1]
	R	= Korrelationskoeffizient
	S R	= Standardabweichung des Residuums

Colling (1990) stellte fest, dass auch die Reststreuung der Zugfestigkeit eines ungezinkten Brettes kleiner als die Reststreuung der Gesamtheit der Bretter ist. In Analogie zum Zugelastizitätsmodul ungezinkter Zellen ergibt sich die Zugfestigkeit in der folgenden Weise:

- 1. Mit bekannter Rohdichte und bekanntem KAR-Wert wird eine mittlere Zugfestigkeit f_{t,0,m,i} für jede Zelle mit Hilfe der Regressionsgleichung ermittelt.
- Aus einer von Colling ermittelten Häufigkeitsverteilung (s. nachfolgende Tabelle) für den mittleren Abstand Δ_B der Regressionsgeraden der einzelnen Bretter zur Regressionsgeraden der Gesamtheit der Bretter wurde ein für das ganze Brett konstanter, zufälliger Wert ermittelt.
- Aus einer ebenfalls von Colling ermittelten Häufigkeitsverteilung (s. die nachfolgende Tabelle 3.11) für die Standardabweichung s_{R,B} der einzelnen Bretter wird ein zufälliger, für das Brett konstanter Wert bestimmt.
- 4. Für jede Zelle wird ein Wert X aus einer angenommenen Normalverteilung mit dem Mittelwert 0 und der Standardabweichung s_{R,B} gewählt.
- 5. Die Zellenzugfestigkeit $f_{t,0,m,i}$ ergibt sich damit zu:

$$\ln(f_{t,0,i}) = \ln(f_{t,0,m,i}) + \Delta_{B} + X(0; s_{R,B})$$
(3.26)

Die Zellendruckfestigkeit wird wegen der geringeren Streuungen mit der Verteilung der gesamten Reststreuung der Regressionsgleichung ermittelt:

$$\ln(f_{c,0,i}) = \ln(f_{c,0,m,i}) + X(0;s_R)$$
(3.27)

Tabelle 3.11: Parameter für die Reststreuung der Zugfestigkeit nicht keilgezinkter Brettabschnitte

Mittlerer Abstand der Zugfestigkeit eines Brettes von der allge- meinen Regressionsgeraden	Δ_{B}	$\overline{\mathbf{x}} = 0$	s=0,13
Standardabweichung der Zugfestigkeit eines Brettes	$S_{R,B}$	$\overline{\mathbf{x}} = 0$	s=0,13

3.3.11.2 keilgezinkte Brettabschnitte

Glos (zitiert bei Ehlbeck/Colling/Görlacher (1985b) und Ehlbeck/Colling (1987)) gibt eine Regressionsgleichung für die Druckfestigkeit eines keilgezinkten Brettabschnittes an, Colling (1990) nennt eine Regressionsgleichung für die Zugfestigkeit.

$$\ln(f_{t,0}^{KZV}) = 2,72 + 6,14 \cdot 10^{-5} \cdot E_{t,0}^{KZV}; \quad R=0,58, \ s_R=0,195$$
(3.28)

$$ln(f_{c,0}^{KZV}) = -3,05 + 0,816 \cdot ln(E_{c,0}^{KZV}) + 68,4 \cdot \rho_{0,min} \cdot u - 1,3 \cdot u^2 \cdot ln(E_{c,0}^{KZV})$$
(3.29)

R=0,92, s_R=0,116

Für eine Holzfeuchte u=12% ergibt sich für den Druckelastizitätsmodul:

$$\ln(f_{c,0}^{KZV}) = -3,05 + 0,797 \cdot \ln(E_{c,0}^{KZV}) + 8,208 \cdot \rho_{0,min}$$
(3.30)

mit:	$E_{t,0}^{KZV};E_{c,0}^{KZV}$	= Zug- bzw. Druckelastizitätsmodul in [N/mm ²]
	$\boldsymbol{f}_{t,0}^{\text{KZV}};\boldsymbol{f}_{c,0}^{\text{KZV}}$	= Zug- bzw. Druck-Festigkeit in [N/mm ²]
	$ ho_{0,min}$	= kleinerer Wert der Darrrohdichten beider Stoßhälften in [g/cm ³]
	KAR	= KAR-Wert in [1]
	R	= Korrelationskoeffizient
	S _R	= Standardabweichung des Residuums

Auf eine Differenzierung der Keilzinkenfestigkeit für verschiedene Keilzinkengeometrien, wie sie z.B. von Colling/Ehlbeck/Kurzweil (1995) angegeben wird, wird verzichtet.

Die Zellenfestigkeiten lauten hiermit:

$$\ln(f_{t,0,i}^{KZV}) = \ln(f_{t,0,m,i}^{KZV}) + X(0;s_{R}), \qquad (3.31)$$

$$\ln(f_{c,0,i}^{KZV}) = \ln(f_{c,0,m,i}^{KZV}) + X(0;s_{R}).$$
(3.32)

3.3.12 Scherfestigkeit

Nach DIN EN 1194 darf die Scherfestigkeit mit der Gleichung

$$f_{v,i} \approx 0.32 \cdot f_{t,0,i}^{0.8}$$
 (3.33)

bestimmt werden. Das bedeutet, dass von einer mit der Zugfestigkeit parallel zur Faser ansteigenden Scherfestigkeit ausgegangen wird.

Schickhofer (2001) wies mit von der DIN EN 1194 abweichenden Prüfkörpern nach, dass die Scherfestigkeit von Brettschichtholz bei höheren Sortierklassen tendenziell eher etwas geringer ist als bei niedrigeren Sortierklassen. Dieser Effekt ist nach Schickhofer auf die stärkere "Verdübelung" der Scherflächen bei höherer Ästigkeit zurückzuführen. Schickhofer schlug einen konstanten Wert der Scherfestigkeit von $f_{v,g,k}$ =3,50 N/mm² für alle Brettschichtholz-Festigkeitsklassen vor. Dieser bedeutet gegenüber den Festlegungen der DIN EN 1194 eine Verbesserung von 22,9% für BS 11 bzw. von 8,6% für BS 14 und eine Verschlechterung von 22,9% für BS 18 bzw. von 8,6% für BS 16.

Für das Simulationsprogramm wird für alle Lamellensortierklassen die von Schickhofer vorgeschlagene charakteristische mittlere Scherfestigkeit angenommen. Schickhofer hat für Brettschichtholz aus visuell sortierter Brettware je nach Festigkeitsklasse Variationskoeffizienten zwischen 8,61% und 10,73% ermittelt. Für das vorliegende Simulationsprogramm wird einheitlich ein Variationskoeffizient von 10% angesetzt.

3.3.13 Querzugfestigkeit

In Anlehnung an DIN EN 1194 kann $f_{t,90}$ aus der Darr-Rohdichte der Lamelle ermittelt werden.

$$f_{t,90,i} \approx 0.2 + 0.015 f_{t,0,i}$$
 (3.34)

Für höhere Lamellensortierklassen mit höheren Rohdichten wäre demnach eine höhere Querzugfestigkeit zu erwarten.

Aicher/Dill-Langer (1996) gaben 1996 für Brettschichtholzprüfkörper der Festigkeitsklasse BS16 und BS18 die in Tabelle 3.12 angegebenen Mittelwerte der Querzugfestigkeit für Kurzzeitversuche an.

	Beanspruchtes Volumen V ₀	Anzahl der Lamellen	Festigkeits- klasse	Zahl der Pro- bekörper	f _{t,90,50}
	[m ³]	[1]	[-]	[1]	[N/mm ²]
Aicher/Dill-Langer	0,1	-	BS 16	10	0,82
(1996)	0,1	-	BS 18	25	0,87
Blaß/Ehlbeck/	-	1	BS11 / BS 14	31	1,93
Schmid (1998)	-	2	BS11 / BS 14	25	1,28
	-	2	BS 16	17	1,48
	-	2	BS 18	24	1,51
	-	3	BS 16	31	1,36
	-	3	BS 18	37	1,29
	0,01	-	BS11 / BS 14	79	0,73
	0,01	-	BS 16	38	0,83
	0,01	-	BS 18	36	0,78

Tabelle 3.12 $f_{t,90,50}$ für verschiedene Festigkeitsklassen aus verschiedenen Publikationen

Aicher/Dill-Langer (1997) gaben für Brettschichtholzprüfkörper der Festigkeitsklasse BS16 und BS18 Mittelwerte der Querzugfestigkeit an, die nur unwesentlich voneinander abwichen. Wie bereits in Kapitel 3.3.8 beschrieben, handelte es sich bei den Versuchen um Langzeitversuche in den Nutzungsklassen 1 und 2. Die Ergebnisse zeigten einen deutlichen Abfall mit größer werdendem querzugbeanspruchtem Volumen. Da im Simulationsprogramm zunächst keine Langzeit- oder Klimaeffekte betrachtet werden sollen, werden die Ergebnisse von Aicher/Dill-Langer hier nicht berücksichtigt.

Blaß/Ehlbeck/Schmid (1998) ermittelten Querzugfestigkeiten an Prüfkörpern mit unterschiedlicher Lamellenzahl bzw. unterschiedlichem querzugbeanspruchten Volumen (s. Tabelle 3.12) im Kurzzeitversuch (s. a. Kapitel 3.3.8). Auch hier zeigte sich ein deutlicher Einfluss des querzugbeanspruchten Volumens auf die ermittelte Querzugfestigkeit. Die im Kurzzeitversuch ermittelten Ergebnisse sind deutlich höher als die unter Berücksichtigung der Zeit- und Klimaeinflüsse ermittelten Werte von Aicher/Dill-Langer.

Für die Festigkeitsklassen BS 16 und BS 18 ergaben sich kaum Unterschiede für der Querzugfestigkeit. Blaß/Ehlbeck/Schmid konnten im Gegensatz zu DIN EN 1194 keine Korrelation zwischen Rohdichte und Querzugfestigkeit finden.

Die deutlich geringeren Querzugfestigkeiten der größeren Prüfkörper nach DIN EN 1194 (mit einem Volumen V₀=0,1 m³) erklären Blaß/Ehlbeck/Schmid mit der gleichmäßigeren Querzugverteilung in den Probekörpern mit weniger Lamellen.

Für das Simulationsprogramm wird für alle Lamellensortierklassen eine mittlere Querzugfestigkeit von $f_{t,90,50}$ =0,80 N/mm² mit einem Variationskoeffizienten von 30% angenommen. Dies führt etwa zu einer charakteristischen Querzugfestigkeit von $f_{t,90,05}$ =0,45 N/mm².

3.3.14 Querdruckfestigkeit

Eine Abschätzung der Querdruckfestigkeit wird in DIN EN 1194 gegeben:

$$\mathbf{f}_{\rm c,90,i} = \mathbf{0,7} \cdot \sqrt{\mathbf{f}_{\rm t,0,i}} \tag{3.35}$$

Eine gleichwertige Gleichung ist:

$$\mathbf{f}_{c,90,i} = \mathbf{0}, \mathbf{015} \cdot \boldsymbol{\rho}_0 \tag{3.36}$$

Bei den bereits oben beschriebenen Querdruckuntersuchungen von Hoffmeyer/ Damkilde /Pedersen (2000) wurden die in Tabelle 3.13 angegebenen Querdruckfestigkeiten für Voll- und Brettschichtholz ermittelt. Die Festlegung des Bruchkriteriums erfolgte dabei gemäß DIN EN 1193.

Es ergaben sich, im Gegensatz zu den Elastizitätsmoduln, keine Einflüsse der Messlänge oder der Lamellendicke des betrachteten Brettschichtholzes, wohl aber Einflüsse der Jahrringlage.

	ρ ₁₂	Messlänge	Zahl der Probekör- per	f _{c,90,50}	V
	[g/cm ³]	[mm]	[1]	[N/mm ²]	[%]
Brettschichtholz	478	200	12	3,0	6,5
	478	100	12	2,9	7,8
	466	200	120	2,9	9,3
Vollholz	450	90	74	3,0	-
	450	50	74	2,9	-

Tabelle 3.13ft,90,50 für Voll- und Brettschichtholz (nach Hoffmeyer/Damkilde/Pedersen
(2000))

Hoffmeyer/Damkilde/Pedersen geben die folgende Regressionsgleichung für Brettschichtholz an:

$$f_{c,90,i} = 0{,}0062 \cdot \rho_{12}$$

(3.37)

Diese Regressionsgleichung weicht deutlich von der weiter oben angegebenen Beziehung zwischen Rohdichte und Querdruckfestigkeit ab. Es sei aber darauf hingewiesen, dass das von Hoffmeyer/Damkilde/Pedersen verwendete Prüfverfahren an Proben ohne Überstand in Faserrichtung zu sehr niedrigen Prüfergebnissen führt. Bei schon geringen Überständen in Faserrichtung ergeben sich etwa doppelt so große Querdruckfestigkeiten. Für die querdruckbeanspruchten Bereiche der keilgezinkten Rahmenecken und Biegeträger ist immer ein "Überstand" gegeben, so dass für das Simulationsprogramm die Gleichung (3.36) verwendet wird.

3.3.15 Spannungskombination

In den hier betrachteten Rahmenecken und Biegeträgern ergeben sich mehrachsige Spannungszustände. Auch bei einer vereinfachten Betrachtung als ebenes System sind Längs-, Quer- und Schubspannungen zu berücksichtigen.

Die Auswirkungen dieser mehrachsigen Spannungszustände auf die Elastizitäts- und Schubmoduln werden in Ermangelung genauerer Untersuchungen hier nicht berücksichtigt.

Zu Bruchhypothesen für mehrachsige Spannungszustände sind hingegen eine Vielzahl von Veröffentlichungen erschienen. Einen Überblick über allgemeine Bruchhypothesen geben z.B. die Arbeiten von Nahas (1986) oder Sendeckyi (1972).

Hankinson (1921) stellte eine Gleichung für die Druckfestigkeit von Holz in Abhängigkeit des Kraft-Faser-Winkels α vor, die später auch für die Zugfestigkeit angesetzt wurde.

$$\mathbf{f}_{c,\alpha} = \frac{\mathbf{f}_{c,0} \cdot \mathbf{f}_{c,90}}{\mathbf{f}_{c,0} \cdot \sin^2 \alpha + \mathbf{f}_{c,90} \cdot \cos^2 \alpha}$$
(3.38)

Kollmann (1934) gab eine Gleichung für die Festigkeit in Abhängigkeit des Kraft-Faserwinkels α an, die in ihrer Form der Gleichung von Hankinson entspricht. Dabei wurden als Exponenten für Zugbeanspuchung Werte von n=1,5 bis 2, für Druckbeanspruchung n= 2,5 bis 3 angegeben.

$$f_{\alpha} = \frac{f_0 \cdot f_{90}}{f_{90} \cdot \sin^n \alpha + f_0 \cdot \cos^n \alpha}$$
(3.39)

Stüssi (1945) stellte ebenfalls einen Vorschlag für die Ermittlung der Festigkeit in Abhängigkeit des Kraft-Faserwinkels vor.

$$f_{\alpha} = f_0 \frac{\cos^2 \alpha}{\sqrt{1 + c_1 \cdot \sin^2 \alpha}} + f_{90} \frac{\sin^2 \alpha}{\sqrt{1 + c_2 \cdot \cos^2 \alpha}}$$
(3.40)

Dabei wurden für die Koeffizienten c_1 und c_2 folgende Werte angegeben:

 $c_1 = 7;$ $c_2 = 1,5$ für Druck $c_1 = 50;$ $c_2 = 10$ für Zug

Es sei darauf hingewiesen, dass sowohl in den Arbeiten von Hankinson wie auch in denen von Kollmann und Stüssi die Festigkeit in Abhängigkeit des Kraft-Faserwinkels unter Vernachlässigung ebenfalls auftretender Schubspannungen abgeleitet wurde.

Norris (1962) entwickelte aus der von Mises'schen Fließhypothese eine Festigkeitshypothese für orthotropes Material, indem er in einem ideal-isotropen Körper Hohlräume einführte und so Orthotropie erzwang. Im ebenen Spannungszustand lautete sein Versagenskriterium:

$$\left(\frac{\sigma_0}{f_0}\right)^2 - \frac{\sigma_0 \cdot \sigma_{90}}{f_0 \cdot f_{90}} + \left(\frac{\sigma_{90}}{f_{90}}\right)^2 + \left(\frac{\tau}{f_v}\right)^2 = 1$$

$$\land \qquad \left(\frac{\sigma_0}{f_0}\right)^2 \le 1$$

$$\land \qquad \left(\frac{\sigma_{90}}{f_{90}}\right)^2 \le 1$$
(3.41a-c)

Dabei stellen die σ_i die auftretenden Spannungen und die f_i die vorhandenen Festigkeiten in Richtung der Orthotropiehauptachsen dar. Für die verschiedenen möglichen Kombinationen von Zug- und Druckspannungen in Quer- und Längsrichtung konnten verschiedene f_i-Werte eingesetzt werden.

DIN 1052 (1969-10) enthielt für die Festigkeit unter einem Winkel α zu Faser die folgenden Gleichungen.

$$f_{c,\alpha} = f_{c,0} - (f_{c,0} - f_{c,90}) \cdot \sin \alpha$$
(3.42)

Meierhofen (1977) teilte für Druckbeanspruchungen unter einem Winkel zur Faser die folgenden Gleichungen für Nadelvollholz mit:

$$f_{\alpha} = \begin{cases} f_{0} & \text{für } 0^{\circ} \leq \alpha \leq 20^{\circ} \\ \frac{f_{90}}{\sin^{2} \alpha} & \text{für } 20^{\circ} \leq \alpha \leq 90^{\circ} \end{cases}$$
(3.43)

Sowohl die Gleichungen aus DIN 1052 wie auch die von Meierhofen berücksichtigten ebenfalls nicht die Schubfestigkeit.

Für das Zusammenwirken von Längs-, Quer- und Schubspannungen an angeschnittenen Rändern von Brettschichtholz und Vollholzbauteilen ermittelten Möhler/Hemmer (1978) Festigkeitswerte für die Bruchhypothese von Norris. Dabei konnten sie eine deutliche Abhängigkeit der Größe der Schubfestigkeit vom Vorzeichen und der Größe der Querspannungen beobachten.

Spengler (1982) untersuchte Fichtenholzabschnitte unter kombinierter Beanspruchung infolge Schub und Querspannungen. Er fand ebenfalls eine deutliche Abhängigkeit der Schubfestigkeit von den einwirkenden Querspannungen.

Bild 3.3: Festigkeit bei kombinierter Beanspruchung bei einer Holzfeuchte von etwa 12% (aus Spengler (1982))

Hemmer (1985) untersuchte mehrachsige Spannungszustände an fehlerfreien, dünnwandigen Zylindern aus Weißtannenholz. Bei der Betrachtung einer Vielzahl von Bruchhypothesen ergab sich die beste Anpassung mit einem Tensor achter Stufe. Das ebene Problem angeschnittener Ränder bei Brettschichtholzträgern führte Hemmer erneut auf das Nachweisformat von Norris zurück. Diese Gleichungen fanden später Eingang in die DIN 1052 (1988-04).

Obwohl das Bruchkriterium von Norris nicht die Abhängigkeit der Schubspannungen von den Querspannungen abbilden kann, soll es im Simulationsprogramm aus folgenden Gründen Verwendung finden:

 Im Kapitel 5 wird gezeigt, dass mit dem Kriterium von Norris die beste Anpassung der Versuchsergebnisse erzielt wird. Einschränkend muss gesagt werden, dass höherwertige Ansätze wie Tensorpolynome mit der geringen Zahl der zur Verfügung stehenden Versuchsergebnisse nicht angewendet werden konnten.

- 2. Zum anderen wird in Kapitel 6 gezeigt, dass sich für kreuzweise verklebte Holzwerkstoffe das Bruchverhalten in der Ebene sehr gut mit dem Kriterium von Norris anpassen lässt.
- 3. Letztlich versagen nur wenige Brettschichtholz-Zellen infolge Spannungskombinationen, da größere Schub- und Querspannungen vor allem im Bereich der UKZV auftreten. Dort versagt aber in fast allen Fällen zuerst die Universalkeilzinkenverbindung. Bei Zugbrüchen in den Randbereichen der Riegel sind die Schub- und Querspannungen hingegen i.d.R. sehr klein. Größere Schub- und Querspannungen sind ansonsten in der Umgebung bereits ausgefallener Zellen, also erst bei höheren Laststufen zu erwarten.

Es wird daher die folgende Bruchhypothese für die Brettschichtholzbereiche des Simulationsprogramms verwendet. Als Festigkeitswerte werden dabei die in den Abschnitten 3.3.11 bis 3.3.14 angegeben Festigkeiten verwendet.

$$\left(\frac{\sigma_{c,t,0,i}}{f_{c,t,0,i}}\right)^{2} - \frac{\sigma_{c,t,90,i} \cdot \sigma_{c,t,0,i}}{f_{c,t,90,i} \cdot f_{c,t,0,i}} + \left(\frac{\sigma_{c,t,90,i}}{f_{c,t,90,i}}\right)^{2} + \left(\frac{\tau_{i}}{f_{v,i}}\right)^{2} \le 1$$
(3.44)

3.3.16 Kontrolle der Simulationsgüte

3.3.16.1 Simulierte Lamelleneigenschaften

Um die Güte der bislang dargelegten Simulationstechnik zu überprüfen, werden die Parameter der Verteilungen der simulierten Festigkeiten und Steifigkeiten dargestellt und verschiedenen empirischen Verteilungen gegenübergestellt.

Es zeigt sich, dass die simulierten Werte für nicht keilgezinkte Brettabschnitte durchwegs größer sind als die von Ehlbeck/Colling/Görlacher (1985b) angegebenen. Dies kann dadurch erklärt werden, dass Ehlbeck/Colling/Görlacher auf Verteilungsparameter der Ästigkeit von Glos (1978) zurückgegriffen haben, bei den Simulationen aber die Ästigkeit nach Görlacher (1990) bestimmt wurde. Die von Glos untersuchten Brettabschnitte wiesen höhere Ästigkeiten als die später von Görlacher betrachteten Brettlamellenabschnitte auf. Görlacher führt dies auf das gewachsene Bemühen der Brettschichtholzhersteller zurück, Brettware mit möglichst geringer Ästigkeit einzukaufen.
	nicht keilgezinkte Brettabschnitte							
Holzeigenschaft		Quelle	Mittelwert	Standardabweichung	Umfang Stich- probe			
			[N/mm ²]	[N/mm ²]	[-]			
Zugelastizitätsmodul	E _{t,0}	Simuliert	13299	3263	10104			
		1)	12250	3150	-			
Druckelastizitätsmodul	E _{c,0}	Simuliert	13322	3006	10104			
		1)	12410	2840	-			
Zugfestigkeit	$\mathbf{f}_{t,0}$	Simuliert	58,0	14,1	10104			
		1)	50,2	16,4	-			
Druckfestigkeit	f _{c,0}	Simuliert	42,5	6,9	10104			
		1)	39,8	10,2	-			
		keilgezi	nkte Brettabschr	nitte				
Zugelastizitätsmodul	E ^{KZV}	Simuliert	13080	2247	1896			
	1,0	1)	13580	2350	-			
Druckelastizitätsmodul	EKZV	Simuliert	11264	2778	1896			
	0,0	1)	11680	2800	-			
Zugfestigkeit	f ^{KZV}	Simuliert	34,6	9,0	1896			
	-1,0	1)	34,8	8,4	-			
Druckfestigkeit	f ^{KZV}	Simuliert	33,3	6,9	1896			
	•c,0	1)	33,6	8,8	-			
¹⁾ Ehlbeck/Colling/Görlache	er (1985b)						

Tabelle 3.14Gegenüberstellung der Verteilungen simulierter Eigenschaften unsortier-
ten Materials mit Ergebnissen früherer Arbeiten

Demgegenüber ergeben sich bei einem nach Lamellen-Sortierklassen differenzierten Vergleich der Festigkeiten keilgezinkter Lamellen deutliche Unterschiede. Glos/Gaede (1994) geben sehr hohe Zugfestigkeiten für keilgezinkte Lamellen der Sortierklassen MS 13 und MS 17 an (s. Tabelle 3.15). Eine Auswertung von Keilzinkenbiegeproben aus der Fremdüberwachung von Brettschichtholz ergibt deutlich kleinere als die von Glos/Gaede ermittelten Werte. Die in Tabelle 3.15 angegebenen Zugfestigkeiten sind aus den Biegefestigkeiten errechnet worden.

Tabelle 3.15	Zugfestigkeit	maschinell sortierter,	keilgezinkter	Lamellen
--------------	---------------	------------------------	---------------	----------

Sortier- klasse	Sollwert nach DIN	nach Gl	os/Gaede	e (1994)	Auswertung von Ergebnissen von Keilzinkenbiegeprüfungen			simuliert	hier simu- liert ¹⁾
	EN 1194	f _{m,k}	$f_{t,0,k}/f_{m,k}$	$\mathbf{f}_{t,0,k}$	f _{m,k} f _{t,0,k} /f _{m,k} f _{t,0,k}			$\mathbf{f}_{t,0,k}$	f _{t,0,k}
		[N/mm ²]	[1]	[N/mm ²]	[N/mm ²]	[1]	[N/mm ²]	[N/mm ²]	[N/mm ²]
MS 13	26,0	50,8	0,65	29,0	40,8	0,65	26,5	24,1	27,0
MS 17	29,3	53,8	0,65	34,2	45,3 0,65 29,4			28,4	29,5
¹⁾ aus Eh	lbeck/Colling/	Kurzweil (1	995), f _{t,0,k}	verteilungs	frei durch Ab	zählen er	mittelt		

Das bei Glos/Gaede wie auch bei der Auswertung von Keilzinkenbiegefestigkeiten angesetzte Verhältnis für $f_{t,0,k}/f_{m,k}$ ist diskussionsbedürftig. Es gibt Hinweise, dass das Verhältnis für die verschiedenen Sortierklassen variiert und hier zu klein angesetzt ist. Damit wäre aber die augenblicklich in Tabelle 3.15 und den Bilder 3.5 bis 3.6 ablesbare gute Übereinstimmung der simulierten Festigkeiten mit den aus der Auswertung von Keilzinkenbiegefestigkeiten ermittelten Zugfestigkeiten nicht mehr gegeben. Zudem können mit den hier simulierten Zugfestigkeiten die charakteristischen Biegefestigkeiten für Brettschichtholz aus DIN EN 1194 nicht erreicht werden.

Auch Colling/Ehlbeck/Kurzweil (1995) ermitteln trotz umfangreicher, aber nicht dokumentierter Änderungen am Karlsruher Rechenmodell zu kleine Zugfestigkeiten im Vergleich zu Glos/Gaede (1994) und den Sollwerten aus DIN EN 1193.

Trägt man die aus der Auswertung von Keilzinkenbiegeprüfungen ermittelten Keilzinkenzugfestigkeiten gegen die minimalen Rohdichten der Verbindungen auf, so erhält man, wieder unter Annahme eines Verhältnisses $f_{t,0,k}/f_{m,k} = 0,65$, die in den Bild 3.4, 3.5 und 3.6 gezeigten Punktwolken. Es ergibt sich für die Sortierklassen MS13 und MS17 zwar eine gute Übereinstimmung der Prüfwerte und der ebenfalls eingetragenen simulierten Werte bezogen auf den Mittelwert; die simulierten Zugfestigkeiten weisen aber eine zu große Streuung auf.

Bild 3.4 Zugfestigkeit keilgezinkter Lamellen: S13

Bild 3.5 Zugfestigkeit keilgezinkter Lamellen: MS13

Die Ursachen sind bei der Simulation der Rohdichte oder bei der Regressionsgleichung für die Keilzinkenzugfestigkeit zu suchen. Besonders die Annahmen bezüglich der Reststreuungen bei der Ermittlung der Zugfestigkeit sind zu prüfen, da diese bei maschinell sortierten Brettern deutlich niedriger als bei visuell sortierten Brettern sein dürften.

Im Folgenden muss sich die Untersuchung auf Brettschichtholz aus visuell sortierter Brettware beschränken.

3.3.16.2 Simulierte Brettschichtholzfestigkeiten

Zur Kontrolle der Güte der Simulation wird die mit Programm berechenbare mittlere Biegefestigkeit von Brettschichtholz aus visuell sortierter Brettware mit Simulationsergebnissen anderer Untersuchungen (Colling/Ehlbeck/Kurzweil (1995) und Blaß/ Ehlbeck/Kurzweil (1998)) und mit den Festigkeitswerten der DIN EN 1194 verglichen (s. Tabelle 3.16).

Das betrachtete kombinierte Brettschichtholz hat einen symmetrischen Querschnittsaufbau mit höherfesteren Lamellen in den äußeren Sechsteln der Querschnittshöhe.

Bei den Untersuchungen aus Colling/Ehlbeck/Kurzweil (1995) und Blaß/Ehlbeck/ Kurzweil (1998) wird zwischen Keilzinkungen I-15 und I-20 in den Brettlamellen unterschieden; in dem hier erstellten Simulationsprogramm nicht. Mit dem etwas verbreiterteren Zinkenprofil I-15 ergeben sich etwas höhere und stärker zwischen den Festigkeitsklassen differenzierte Biegefestigkeiten als mit dem Zinkenprofil I-20.

Für die Festigkeitsklasse BS 11h zeigt sich eine gute Übereinstimmung der Simulationsergebnisse mit den Sollwerten der DIN EN 1194. Demgegenüber sind die simulierten Werte für BS 14h und für BS 14k durchgängig etwas zu klein.

Festigkeits- klasse	Sollwert nach DIN EN 1194	f _{m,k} nach	f _{m,k} simuliert	
	[N/mm ²]	für l-15 [N/mm ²]	für I-15/I-20 [N/mm ²]	
BS 11h	24	24,5	22,7	24,6
BS 14h	28	27,4	24,5	26,9
BS 14k	28	27,0	24,1	26,3

Tabelle 3.16: Gegenüberstellung der simulierter Biegefestigkeiten von Brettschichtholz unterschiedlicher Festigkeitsklassen.

3.4 Zusammenstellung der getroffenen Annahmen

Abschließend sollen noch einmal die bislang getroffenen Annahmen und Einschränkungen zusammengestellt werden.

- 1. Mit dem Simulationsprogramm können die elasto-mechanischen Eigenschaften visuell sortierter Fichte/Tanne bestimmt werden.
- Dabei wird von Bauteilen in der Nutzungsklasse 1, also mit einer Holzfeuchte von etwa 12% ausgegangen. Dies entspricht etwa einem Normalklima von 20°C und 65% rLF.
- Es wird das Kurzzeitverhalten der Bauteile simuliert. Einflüsse der Lastdauer, wie sie z.B. von Ranta-Maunus (1998), Aicher/Dill-Langer (1997) oder Kolb/ Goth/Epple (1984) für die Querzugfestigkeit, von Glos/Heimeshoff/Kelletshofer (1987) für die Zug-und Druckfestigkeit längs zur Faser oder von Möhler/Maier (1970) und Steck (1987) für die Querdruckfestigkeit untersucht wurden, werden hier nicht betrachtet.
- 4. Auch die Einflüsse aus abweichenden Temperaturen, wie sie z.B. bei Kollmann (1951) und Glos/Henrici (1990) (Letztere für hohe Temperaturen) beschrieben werden, sind nicht Bestandteil der hier vorgenommenen Betrachtungen.
- 5. Es wird davon ausgegangen, dass die Keilzinkungen in den Brettschichtholzlamellen mit Keilzinkenprofilen I-15 oder I-20 nach DIN 68140 ausgeführt werden.
- 6. Die verwendeten Regressionsgleichungen gelten für Brettlamellenabschnitte mit einer Höhe zwischen 33 und 45 mm und einer Länge von etwa 150mm.

4 Die Simulation von Holzwerkstoffen

4.1 Allgemeines

In keilgezinkten Rahmenecken und Biegeträgern können Zwischenstücke aus Holzwerkstoffen zur Erhöhung der Tragfähigkeit eingesetzt werden. Dazu werden Holzwerkstoffplatten miteinander zu einem Block von der Breite der anschließenden BS-Holz-Bauteile verklebt und abgebunden. Danach wird der Holzwerkstoffblock mittels Universalkeilzinkenverbindungen mit den BS-Holzbauteilen verbunden.

Bild 4.1 Holzwerkstoffblock als Zwischenstück einer Rahmenecke

Bisher wurde für diesen Verwendungszweck Baufurniersperrholz aus Buche (BFU-BU) verwendet (s. z.B. Kolb/Gruber (1978) oder Scappozza (1996)). Aufgrund des hohen Preises, des erheblichen Werkzeugverschleißes beim Bearbeiten und nicht zuletzt des deutlichen Farbunterschiedes zu BS-Holz aus Fichte hat sich die Verwendung aber nicht durchgesetzt. Deutlich interessanter wäre die Verwendung von Materialien aus Fichte, wie Furnierschichtholz mit Querlagen.

4.2 Zellengröße

Auch den Holzwerkstoffabschnitten der im Simulationsprogramm betrachteten Bauteile wird eine Zellenlänge von etwa 150 mm zugewiesen. Zu den geometriebedingten Längenabweichungen der Zellen in den Zwischenstücken siehe Kapitel 3.3.1. Die Zellenhöhe hängt von der Lamellendicke der angeschlossenen Brettschichtholzabschnitte ab.

4.3 Simulation der Elastizitätskonstanten

4.3.1 Allgemeines

Trägt man den Elastizitätsmodul E_{α} eines einzelnen Furniers über dem Kraft-Faser-Winkel α auf, so ergibt sich ein "keulenartiger" Verlauf. Beim kreuzweisen Verkleben zweier Furniere ergibt sich immer noch eine ausgeprägte Orthotropie. Erst bei einer sternförmigen Anordnung der Furniere (s. Bild 4.2), wie sie z.B. beim Sternholz vorgenommen wird, erreicht man annähernde Isotropie in der Plattenebene. Die hier betrachteten Holzwerkstoffe bestehen beide aus kreuzweise verklebten Furnieren.

Wesentlich für die Elastizitätskonstanten ist selbstverständlich auch das Verhältnis der Anzahl der Furniere in Längs- und Querrichtung.

Im Folgenden soll versucht werden, die Elastizitätskonstanten der Holzwerkstoffe aus denen der Einzelfurniere abzuleiten, so dass kreuzweise verklebte Platten mit einem beliebigen Verhältnis von Längs- und Querfurnieren simuliert werden können. Dabei soll die in der Realität sehr große Zahl der Furnierlagen der Holzwerkstoffblöcke zu einer geringeren Zahl von fiktiven Quer- und Längsfurnieren zusammengefasst werden. Dies ist hilfreich, da bei der hier durchgeführten ebenen Betrachtung keine Bauteilbreite gegeben ist. Damit ist nur das Verhältnis der Längs- und Querfurniere bekannt, nicht aber die tatsächliche Zahl der Furnierlagen. Zudem vereinfacht sich der Aufwand für die Eingabe der Materialparameter in dem verwendeten Finite-Element-Programm.

4.3.2 Ermittlung der Elastizitätskonstanten

Keylwerth (1951) stellte die folgenden Gleichungen zur Berechnung der Elastizitätsund Schubmoduln von Sperrholzplatten in Abhängigkeit der Eigenschaften der Einzelfurniere vor:

$$\frac{1}{\mathsf{E}_{x,\mathsf{BFU}}} = \mathsf{S}_{11} = \frac{\mathsf{S}_{11} \cdot \mathsf{S}_{22}}{\lambda_{//} \cdot \mathsf{S}_{22} + \lambda_{\perp} \cdot \mathsf{S}_{11}}$$
(4.1)

$$\frac{1}{\mathsf{E}_{y,\mathsf{BFU}}} = \mathsf{S}_{22} = \frac{\mathsf{s}_{11} \cdot \mathsf{s}_{22}}{\lambda_{//} \cdot \mathsf{s}_{11} + \lambda_{\perp} \cdot \mathsf{s}_{22}} \tag{4.2}$$

$$-\frac{\mu_{xy,BFU}}{E_{y,BFU}} = S_{12} = \frac{S_{11} \cdot S_{22} \cdot S_{12}}{\left(\lambda_{//} \cdot S_{11} + \lambda_{\perp} \cdot S_{22}\right) \cdot \left(\lambda_{//} \cdot S_{22} + \lambda_{\perp} \cdot S_{11}\right)}$$
(4.3)

$$\frac{1}{G_{xy,BFU}} = S_{66} = S_{66}$$
(4.4)
mit: $S_{0} = -\frac{1}{2} + \frac{1}{2} + \frac{1}{2$

mit : $s_{11} = \frac{1}{E_{x,Furnier}}; s_{22} = \frac{1}{E_{y,Furnier}}; s_{12} = \frac{-\mu_{xy,Furnier}}{E_{y,Furnier}}; s_{66} = \frac{1}{G_{xy,Furnier}}$ $\lambda_{//} + \lambda_{\perp} = 1$ $\lambda_{//} = Anteil der parallel zum Deckfurnier verlaufenden Furniere$ $\lambda_{\perp} = Anteil der senkrecht zum Deckfurnier verlaufenden Furniere$

Baufurniersperr- und Furnierschichthölzer mit Querlagen lassen sich auch mit der Laminattheorie beschreiben, die z.B. von Tsai/Hahn (1980) erläutert wird. Für das in Bild 4.3 dargestellte Laminat können die Steifigkeiten in Scheibenebene nach Mittelstedt (1999) wie folgt ermittelt werden:

Bild 4.3 Koordinatensystem eines Laminats

Ausgangspunkt sind die Nachgiebigkeitswerte s_{ij} der einzelnen Furnierlagen, aus denen die entsprechenden Steifigkeiten c_{ij} berechnet werden können:

$$\mathbf{c}_{11} = (\mathbf{s}_{23}^2 - \mathbf{s}_{22}\mathbf{s}_{33})\Delta^{-1} \tag{4.5}$$

$$\mathbf{C}_{22} = (\mathbf{S}_{13}^2 - \mathbf{S}_{11}\mathbf{S}_{33})\Delta^{-1}$$
(4.6)

$$\mathbf{c}_{33} = (\mathbf{s}_{12}^2 - \mathbf{s}_{11}\mathbf{s}_{22})\Delta^{-1}$$
(4.7)

$$\mathbf{c}_{12} = (\mathbf{s}_{12}\mathbf{s}_{33} - \mathbf{s}_{13}\mathbf{s}_{23})\Delta^{-1}$$
(4.8)

$$\mathbf{c}_{13} = (\mathbf{s}_{13}\mathbf{s}_{22} - \mathbf{s}_{12}\mathbf{s}_{23})\Delta^{-1}$$
(4.9)

$$\mathbf{c}_{23} = (\mathbf{s}_{11}\mathbf{s}_{23} - \mathbf{s}_{12}\mathbf{s}_{13})\Delta^{-1}$$
(4.10)

$$c_{44} = s_{44}^{-1}, c_{55} = s_{55}^{-1}, c_{66} = s_{66}^{-1}$$
 (4.11)

mit:
$$\Delta = \mathbf{s}_{11}\mathbf{s}_{23}^2 - \mathbf{s}_{11}\mathbf{s}_{22}\mathbf{s}_{33} - 2\mathbf{s}_{12}\mathbf{s}_{13}\mathbf{s}_{23} + \mathbf{s}_{22}\mathbf{s}_{13}^2 + \mathbf{s}_{33}\mathbf{s}_{12}^2$$
(4.12)

Die obigen Gleichungen gelten für den allgemeinen räumlichen Fall. Im ebenen Fall lassen sich reduzierte Steifigkeiten q_{ij} wie folgt ermitteln:

$$\mathbf{q}_{ij} = \mathbf{c}_{ij} - \mathbf{c}_{i3} \mathbf{c}_{j3} \mathbf{c}_{33}^{-1} \,. \tag{4.13}$$

Die Transformation der reduzierten Steifigkeiten entsprechend dem jeweiligen Lagenwinkel geschieht mit den folgenden Berechnungsgleichungen:

$$q_{11} = q_{11} \cos^4 \theta + 2q_{12} \cos^2 \theta \sin^2 \theta + q_{22} \sin^4 \theta + 4q_{66} \cos^2 \theta \sin^2 \theta$$
(4.14)

$$q_{1'2'} = q_{11}\cos^2\theta\sin^2\theta + q_{12}(\cos^4\theta + \sin^4\theta) + q_{22}\cos^2\theta\sin^2\theta - 4q_{66}\cos^2\theta\sin^2\theta$$
(4.15)

$$q_{1'6'} = q_{11} \cos^3 \theta \sin \theta - q_{12} (\cos^3 \theta \sin \theta - \cos \theta \sin^3 \theta) - q_{22} \cos \theta \sin^3 \theta - 2q_{66} \cos \theta \sin \theta (\cos^2 \theta - \sin^2 \theta)$$
(4.16)

$$q_{2'2'} = q_{11} \sin^4 \theta + 2q_{12} \cos^2 \theta \sin^2 \theta + q_{22} \cos^4 \theta + 4q_{66} \cos^2 \theta \sin^2 \theta$$
(4.17)

$$q_{2'6'} = q_{11} \cos\theta \sin^3\theta - q_{12} (\cos\theta \sin^3\theta - \cos^3\theta \sin\theta) - q_{22} \cos^3\theta \sin\theta + 2q_{66} \cos\theta \sin\theta (\cos^2\theta - \sin^2\theta)$$
(4.18)

 $q_{6'6'} = q_{11}\cos^2\theta\sin^2\theta - 2q_{12}\cos^2\theta\sin^2\theta + q_{22}\cos^2\theta\sin^2\theta + q_{66}(\cos^2\theta - \sin^2\theta)^2 \quad (4.19)$

Für den ebenen Spannungszustand bei konstanten Schichtdicken d^(k) über die Laminatbreite ist die Laminatsteifigkeit berechenbar zu:

$$A_{ij} = d^{(k)} \sum_{k=1}^{n} q_{i'j'}^{(k)} .$$
(4.20)

Da bei den hier betrachteten Holzwerkstoffen aus kreuzweise verklebten Lagen nur die Lagenwinkel θ =0° oder θ =90° in Frage kommen, kann man – bei n₀=Anzahl der Lagen mit θ =0°, n₉₀=Anzahl der Lagen mit θ =90° und n = Gesamtzahl der Lagen – die Berechnung vereinfachen zu:

$$A_{ij} = d^{(k)} (n_0 q_{ij}^{0^{\circ}} + n_{90} q_{ij}^{90^{\circ}}).$$
(4.21)

Eine ausführlichere Herleitung sowie Steifigkeitszahlen von Buchen- und Fichtenholz finden sich in Anlage B. Der oben dargestellte Rechengang wird bei Verwendung entsprechender Elementtypen, sogenannter Composite-Elemente, vom Finite-Element-Programm ausgeführt. Im verwendeten Finite-Element Programm Ansys[®] ist dies z.B. das Composite-Schalenelement shell99 mit 8 Knoten und bis zu 250 Lagen. Gehri (1993) stellte die Gleichungen von Keylwerth (1951) in einer Form dar, mit der aus den Platten-Elastizitätsmoduln bzw. Schubmoduln für 0°, 45° und 90° auf jeden anderen Winkel zwischen Kraft und Faserrichtung des Deckfurniers geschlossen werden kann:

$$\frac{1}{\mathsf{E}_{\alpha}} = \left(\frac{\cos^2 \alpha}{\mathsf{E}_0} - \frac{\sin^2 \alpha}{\mathsf{E}_{90}}\right) \cdot \cos(2 \cdot \alpha) + \frac{\sin^2(2 \cdot \alpha)}{\mathsf{E}_{45}}$$
(4.22)

$$\frac{1}{G_{\alpha}} = \frac{\cos^2(2 \cdot \alpha)}{G_{0,90}} + \frac{\sin^2(2 \cdot \alpha)}{G_{45}}$$
(4.23)

4.3.3 Elastizitätskonstanten von BFU-BU

Albers (1970) untersuchte u.a. die elastischen Konstanten von 17 mm dicken, neunlagigen, phenolharzverleimten Baufurniersperrholzplatten aus Buche (BFU-BU Platten nach DIN 68705-5). Den in der Tabelle 4.1 angegebenen Mittelwerten liegt ein relativ kleiner Probenumfang zugrunde. Ein Nachrechnen der Ergebnisse von Albers mit Elastizitätszahlen für Buchenvollholz von Neuhaus und den Gleichungen von Keylwerth ergibt eine gute Übereinstimmung.

Tabelle 4.1: Gemessene und nach Keylwerth (1951) berechnete Elastizitätszahlen von BFU-BU

Quelle	Ex	Ey	G _{xy}	λ//	ρ	u
	[N/mm ²]	[N/mm ²]	[N/mm ²]	[1]	[g/cm ³]	[%]
Buchenvollholz nach Neuhaus (1994)	14100	2280	1080	-	0,74	10,5
nach Keylwerth (1951) berechnet 9 lagige 17 mm BFU-BU Platte	10420	4780	1080	0,72	0,74	10,5
nach Albers (1970) gemessen 9 lagige 17 mm BFU-BU Platte	11400	4740	800	0,72	0,76	9,7

Ehlbeck/Colling (1983) ermittelten die Schubfestigkeit und den Schubmodul kleiner und großer Probekörper aus BFU-BU. Sie ermittelten einen von der Plattendicke unabhängigen mittleren Schubmodul von 760 N/mm² bei einem Variationskoeffizienten von 10,1%. Dies stimmt gut mit dem auch von Albers bestimmten Wert überein.

Bild 4.4 Simulation des Elastizitätsmoduls in Abhängigkeit vom Kraft-Faserwinkel für BFU-BU

Für das vorliegende Simulationsprogramm wird folgende Vorgehensweise gewählt: Es werden Furniere mit einem mittleren Elastizitätsmodul $E_{t,c,0,50} = 14000 \text{ N/mm}^2$ und einem angenommenen Variationskoeffizient von 15% simuliert. Es wird von einem festen Verhältnis $E_{t,c,90,50}/E_{t,c,0,50} = 1/6$ und $G_{50}/E_{t,c,0,50} = 1/16$ ausgegangen. Der Querdehnungskoeffizient wird zu μ_{xy} =0,05 gewählt. Bild 4.4 zeigt die Simulation des Verlaufes mit dem Winkel α unter Verwendung eines Composite-Schalen-Elementes.

4.3.4 Elastizitätskonstanten von FSH-Q

Tabelle 4.2: Zug-Elastizitätsmodul von Kerto-Q[®] in Abhängigkeit vom Winkel zwischen Kraft und Faserwinkel des Deckfurniers (aus Lehtinen/Saavalinen (1995))

α	u	ρ _u	$E_{t,\alpha,50}$	V
[^o]	[%]	[g/cm ³]	[N/mm ²]	[%]
0	7,4	517	10564	2,7
15	7,5	500	4723	8,3
30	7,5	506	1989	7,4
45	7,5	510	1399	8,8
60	7,3	523	1634	9,9
90	7,3	516	3881	20,1

Lehtinen/Saavalinen (1995) untersuchten Elastizititätsmoduln für Zug- und Biegebeanspruchung. Untersucht wurde 39 mm dickes Furnierschichtholz Kerto-Q[®] (s. KertoHandbuch (2000)) aus Fichte mit dreizehn 3 mm dicken Furnierlagen, von denen die 3., die 7. und die 11. quer angeordnet waren. Für jede Beanspruchungsart und jeden Winkel wurden je 6 Prüfkörper untersucht. Die Plattenfeuchten lagen zwischen 7,2 und 7,9%, die Rohdichten zwischen 483 und 548 kg/m³. Tabelle 4.2 zeigt einige Ergebnisse der Zugversuche.

Kanerva/Lehtinen (1995) gaben auf der Basis von Lehtinen/Saavalinen (1995) Empfehlungen für winkelabhängige Abminderungsfaktoren für Elastizitätsmoduln und Festigkeiten an.

Für das vorliegende Simulationsprogramm wird folgende Vorgehensweise gewählt: Es werden Furniere mit einem mittleren Elastizitätsmodul $E_{t,c,0,50} = 13000 \text{ N/mm}^2$ und einem angenommenen Variationskoeffizient von 15% simuliert. Es wird von einem festen Verhältnis $E_{t,c,90,50}/E_{t,c,0,50} = 1/10$ und $G_{50}/E_{t,c,0,50} = 1/30$ ausgegangen. Der Querdehnungskoeffizient wird zu μ_{xy} =0,02 gewählt. Die Simulation mit kreuzweise angeordneten orthotropen-Scheibenelementen ist in Bild 4.5 dargestellt. Es ergibt sich eine sehr gute Übereinstimmung mit den Ergebnissen von Lehtinen/Saavalinen.

Es wird angenommen, dass die sich so ergebenden Elastizitätszahlen unter Zugbeanspruchung in guter Näherung auch für Druckbeanspruchungen ohne Gefahr des Beulens gültig sind.

Bild 4.5 Simulation des Elastizitätsmoduls in Abhängigkeit vom Kraft-Faserwinkel für Kerto-Q[®]

4.4 Simulation der Festigkeiten

4.4.1 Allgemeines

Abweichend von der Simulation der Elastizitäts- und Schubmoduln wird die Festigkeit der Holzwerkstoffzellen nicht über die Festigkeit einzelner Furniere hergeleitet. Dies wäre denkbar, wenn in dem Simulationsprogramm die Spannungsverteilung über die Bauteildicke berücksichtigt würde. Mit der hier beabsichtigten ebenen Betrachtung ist dies nicht möglich.

4.4.2 Festigkeitshypothesen für Holzwerkstoffe

Gehri (2001) zitiert eine Arbeit von Albers (1969), bei der in Analogie zu den Gleichungen von Keylwerth für Elastizitäts- und Schubmoduln die Zug- und Schubfestigkeiten unter einem beliebigen Winkel aus den Zug- und Schubfestigkeiten unter 0° , 45° und 90° ermittelt werden können:

$$\frac{1}{f_{t,\alpha}} = \left(\frac{\cos^2 \alpha}{f_{t,0}} - \frac{\sin^2 \alpha}{f_{t,90}}\right) \cdot \cos(2 \cdot \alpha) + \frac{\sin^2(2 \cdot \alpha)}{f_{t,45}}$$
(4.24)

$$\frac{1}{f_{v,\alpha}} = \frac{\cos^2(2 \cdot \alpha)}{f_{v,0,90}} + \frac{\sin^2(2 \cdot \alpha)}{f_{v,45}}$$
(4.25)

Aicher/Klöck (2001) zeigten, dass für OSB-Platten mit Hilfe der von Mises`schen Bruchhypothese eine sehr gute Anpassung von Bruchwerten für verschiedene Winkel α erzielt werden kann. Im Zusammenhang mit der Überarbeitung der DIN 1052 erörterte Aicher zudem, dass sich auch für Baufurniersperrhölzer sehr gute Anpassungen ergäben.

Passt man Versuchsergebnisse für verschiedene Kraft-Faserwinkel an, ohne die Schubfestigkeit in Versuchen zu ermitteln, so ergeben das von Mises`sche Bruchkriterium und das Norriskriterium (mit dann allerdings unterschiedlichen Rechenwerten für die anzusetzenden Schubfestigkeiten) gleichwertige Ergebnisse.

Da das Kriterium von Norris auch für die Darstellung der Festigkeiten der Universalkeilzinkenverbindung geeignet ist (s. Kapitel 5) und sich zudem im Finite-Element-Programm sehr einfach implementieren lässt, wird es hier für die Darstellung der Holzwerkstofffestigkeit angewendet.

4.4.3 Festigkeit von BFU-BU

Gehri (2001) weist nach, dass bei keilgezinkten Rahmenecken mit Zwischenstück aus BFU-BU selbst bei einem ungünstigen Stoßwinkel von 90° die Schubbeanspruchungen so deutlich unterhalb der Schubfestigkeit liegen, dass kein Bruch zu erwarten ist. Dies korrespondiert mit allen bislang durchgeführten Untersuchungen an Rahmenecken und Biegeträgern mit Zwischenstück aus BFU-BU (s. Kolb/Gruber (1978), Scappozza (1996)).

Für die Berechung von Bauteilen mit Zwischenstücken aus BFU-BU-Platten soll daher im Folgenden angenommen werden, dass Brüche ausschließlich in den Brettschichtholzabschnitten oder in der Universalkeilzinkenverbindung auftreten.

4.4.4 Festigkeit von FSH-Q

Lehtinen/Saavalinen (1995) ermittelten an dem in Abschnitt 4.3.4 beschriebenem Material auch die winkelabhängige Zug- und Druckfestigkeit. Die Tabellen 4.3 und 4.4 zeigen die Ergebnisse der Zug- und Druckversuche.

α	u	ρ _u	$f_{t,\alpha,50}$	V
[°]	[%]	[g/cm ³]	[N/mm ²]	[%]
0	7,4	517	30,8	12,3
15	7,5	500	14,3	8,4
30	7,5	506	7,8	5,1
45	7,5	510	6,1	8,2
60	7,3	523	7,1	7,0
90	7,3	516	11,8	26,3

Tabelle 4.3:Zugfestigkeit Kerto-Q[®] in Abhängigkeit vom Winkel α zwischen Kraft
und Faserwinkel des Deckfurniers (aus Lehtinen/Saavalinen (1995))

Tabelle 4.4: Druckfestigkeit Kerto-Q[®] in Abhängigkeit vom Winkel α zwischen Kraft und Faserwinkel des Deckfurniers (aus Lehtinen/Saavalinen (1995))

α	u	ρ _u	$f_{t,\alpha,50}$	V
[°]	[%]	[g/cm ³]	[N/mm ²]	[%]
0	7,6	512	43,5	9,0
15	7,6	515	24,2	4,5
30	7,7	515	14,8	6,8
45	7,5	508	11,6	14,7
60	7,4	521	13,5	3,7
90	7,7	517	18,0	10,6

Die Bilder 4.6 und 4.7 zeigen, dass das Norris - Kriterium für die folgenden angenommenen Festigkeitswerte f_i eine gute Übereinstimmung liefert. Dabei wird für alle Festigkeitswerte ein Variationskoeffizient von 15% angenommen.

Bild 4.6 Simulation der Zugfestigkeit von Kerto-Q[®]

Bild 4.7 Simulation der Druckfestigkeit von Kerto-Q[®]

4.5 Zusammenfassung der getroffenen Annahmen

Abschließend sollen noch einmal die bislang getroffenen Annahmen und Einschränkungen zusammengestellt werden.

- 1. Es wird davon ausgegangen, dass keine Brüche in Zwischenstücken aus BFU-BU auftreten.
- Die Festigkeiten von FSH-Q werden mittels des Kriteriums von Norris (1962) aus älteren Versuchsergebnissen abgeleitet. Damit ist das Simulationsprogramm derzeit nur für Furnierschichtholzblöcke aus Kerto-Q[®] mit Furnierdicken von 3 mm und einem Verhältnis der Zahl der Längs- und Querfurniere von 10/3 anwendbar.
- 3. Die Elastizitäts- und Schubmoduln werden aus den Eigenschaften der Furniere gewonnen. Damit ist jeder Plattenaufbau darstellbar. Für FSH-Q gilt aber die Einschränkung aus Nr. 2.
- 4. Es wird davon ausgegangen, dass die Platten-Elastizitätsmoduln unter Zugund Druckbeanspruchung etwa gleiche Größe haben.
- 5. Für die Holzwerkstoffplatten- bzw. Furniereigenschaften werden mangels genauerer Kenntnis durchgehend Variationskoeffizienten von 15% angenommen.

5 Die Simulation von Universalkeilzinkenverbindungen

5.1 Allgemeines

In keilgezinkten Rahmenecken und Biegeträgern werden BS-Holzabschnitte untereinander oder mit Holzwerkstoffabschnitten unter einem Winkel γ gestoßen. Durch die Umlenkung der Kräfte in der Universalkeilzinkenverbindung stellen sich mehrachsige Spannungszustände ein. In der Innenecke liegt zudem eine Spannungssingularität vor.

Bild 5.1: Spannungsverlauf in einem Schnitt durch den Zinkengrund (aus Aicher/Klöck (1990))

Bild 5.2: Spannungsverlauf in einem Schnitt durch die Klebefuge der Zinkenflanken (aus Aicher/Klöck (1990))

Überlagert werden diese Effekte von den ohnehin komplexen Spannungsverteilungen in einer Keilzinkung, wie sie beispielsweise von Aicher/Klöck (1990) für ebene Keilzinkungen dargestellt wurden.

Es ergeben sich sowohl in einem Schnitt durch den Keilzinkengrund (s. Bild 5.1) wie auch in einem Schnitt durch die Klebefuge der Zinkenflanken (s. Bild 5.2) deutliche Spannungsspitzen. Bei den hier betrachteten Keilzinkenverbindungen in Rahmenecken und geknickten Biegeträgern gibt es zudem im Bereich der Zinkenflanken einen Absperreffekt durch die unter dem Winkel γ miteinander verklebten Zinkenflanken.

Eine genauere Betrachtung der Spannungsverhältnisse in den Universalkeilzinkenverbindungen von Rahmenecken und geknickten Biegeträgern würde eine räumliche Betrachtung unter Zuhilfenahme der Bruchmechanik erfordern. Zum einen fehlen hierfür eine Vielzahl von Materialparametern, zum anderen soll im vorliegenden Simulationsprogramm eine ebene Betrachtung des Problems vorgenommen werden.

Es wird daher ein anderer Weg beschritten: In dem Finite-Element-Programm werden die Spannungen wie für einen Stumpfstoß, also ohne Berücksichtigung der genauen Keilzinkengeometrie, berechnet. Mit den Ergebnissen von Zugprüfungen an kleinen Probekörpern wird eine geeignete Bruchhypothese ausgewählt und die zugehörigen Festigkeitswerte ermittelt. Die Bruchspannungen der Zugprüfkörper, mit denen die Festigkeitswerte ermittelt werden, werden ebenfalls unter Annahme eines Stumpfstoßes berechnet.

Bild 5.3: Überschneidung der Zinkenflanken in einer Universalkeilzinkenverbindung

Es sei darauf hingewiesen, dass man mit der Simulation eines Stumpfstoßes indirekt davon ausgeht, dass die Zinkenflanke einer Lamelle immer nur mit der Zinkenflanke der gegenüberliegenden Lamelle verbunden ist. Dass dies nicht so ist, zeigt Bild 5.3. Hier ist für den ungünstigsten in der Praxis vorkommenden Winkel γ =90° die Lamelle 2 zu 25% der Zinkenfläche an die Lamellen 4 und 6 und zu 50% der Zinkenfläche an die Lamelle 5 angeschlossen. Angesichts der Unwägbarkeit vieler anderer Effekte soll auf eine genauere Berücksichtigung hier verzichtet werden und vereinfachend von dem Anschluss einer Lamelle an eine andere ausgegangen werden.

5.2 Verbindungen BS-Holz/BS-Holz

5.2.1 Derzeitiger Kenntnisstand

Für Trigonit-Träger existierte eine bauaufsichtliche Zulassung (1994). Trigonitträger waren Einfach- oder Mehrfachgitterstegträger mit horizontalem Untergurt und horizontalem oder geneigtem Obergurt. Die Streben der Trigonitträger waren unter einem Winkel $\gamma = 90^{\circ}$ ($\alpha = 45^{\circ}$) mit einem Universalkeilzinkenprofil I-50 DIN 68140 verbunden (s. Bild 5.4). Die Streben entsprachen mindestens der Sortierklasse S10 und mussten an den Enden astfrei sein. Kolb (1974) untersuchte die Qualität der Keilzinkenverbindungen zwischen den Streben mittels Scherversuchen. Bild 5.4 zeigt die Versuchsanordnung. Zudem berichtete Kolb über Zugversuche an ebenen Keilzinkenverbindungen I-50 DIN 68140 ($\gamma = 180^{\circ}$, $\alpha = 0^{\circ}$).

Bild 5.4: Scherversuche an Trigonitträgern (nach Kolb (1974))

Die Zugversuche unter α =0° wurden an astfreien Proben mit dem Querschnitt 100·12 mm² durchgeführt, die Probenlänge betrug 1000 mm. Kolb untersuchte sowohl den Einfluss unterschiedlicher Klebstoffarten als auch den Einfluss unterschiedlicher

Fräsrichtungen (parallel zur Höhe oder zur Breite der Einzelquerschnitte). Für die hier interessierende Fräsung parallel zur Höhe der Einzelquerschnitte ergab sich für den verwendeten Phenol-Resorcinharz zwar eine geringfügig höhere Zugfestigkeit als für den verwendeten Harnstoffharz, Kolb stellte jedoch fest, dass diese nicht statistisch abgesichert seien. Da üblicherweise kein Harnstoffharz mehr für Universalkeilzinkenverbindungen verwendet wird, werden im Folgenden nur die Ergebnisse für Phenol-Resorcinharz betrachtet.

Für die Probekörper unter dem Winkel α =45° wurden insgesamt 255 Versuchskörper untersucht. Hier ergaben sich keine nennenswerten Unterschiede in der Tragfähigkeit für die beiden verwendeten Klebstoffe. Daher werden die Ergebnisse für beide Klebstoffarten zusammengefasst.

Die Ergebnisse beider Versuchsreihen sind in Tabelle 5.1 dargestellt. Hierbei wurde die Zugfestigkeit $f_{t,0,mean}$ für die Probekörper mit α =45° mit verschwächtem Querschnitt aus der Scherfestigkeit $f_{v,mean}$ berechnet mit (s. Egner (1952), die Neigung der Zinkenflanken wurde hier nicht berücksichtigt):

$$\frac{f_{t,0,\text{mean}}}{f_{v,\text{mean}}} = 2\frac{l-s}{t-b}$$
(5.1)

mit den Bezeichnungen aus DIN 68140:

I = Zinkenlänge s = Zinkenspiel b = Zinkenbreite t = Zinkenteilung

Tabelle 5.1:	Versuchsergebnisse a	n Proben	mit	Universalkeilzinkungen	I-50	DIN
	68140 (nach Kolb (197	4))				

α	Klebstoff	u	Probenanzahl	Bruchspannung	S	V
[°]		[%]	[-]	[N/mm ²]	[N/mm ²]	[%]
0	Phenol-Resorcinharz	12 ± 3	96	f _{t,0,mean} =39,0	9,46	24,0
45	Phenol-Resorcinharz / Harnstoffharz	12 ± 3	255	f _{v,mean} =1,16 f _{t,0,mean} =11,3	0,17 1,66	14,7 14,7

Die Ergebnisse zeigen eine deutliche Festigkeitsabnahme der Keilzinkenverbindung mit dem Winkel. Es liegen aber nur für zwei Neigungswinkel Ergebnisse vor. Zur Abschätzung der Zugfestigkeit von Keilzinkenverbindungen, deren Längsachsen einen von $\alpha = 0^{\circ}$ abweichenden Winkel miteinander einschließen, wurden daher die nachfolgend beschriebenen Zugversuche an der Bergischen Universität Wuppertal durchgeführt.

5.2.2 Prüfkörper und Versuchsaufbau

In einfach oder zweifach gezinkten Rahmenecken treten im Universalkeilzinkenbereich mehrachsige Spannungszustände auf. Um das Tragverhalten von Universalkeilzinkenverbindungen für verschiedene Spannungskombinationen untersuchen zu können, wurden aus einfach gezinkten Rahmenecken Probekörper nach Bild 5.5 entnommen und im Zugversuch geprüft. Für jeden betrachteten Winkel α =0°, α =7,5°, α =15° und α =22,5° wurde eine Rahmenecke hergestellt und mehrere Probekörper entnommen. Die Spannungen im in Bild 5.5 dargestellten Prüfkörper können unter Annahme eines stumpfen Stoßes in einem homogenen, fehlerfreien Werkstoff mittels einer Koordinatentransformation bestimmt werden:

$$\sigma_{t,\alpha,\text{mean}} = \frac{F}{A}$$
(5.2)

$$\sigma_{t,0} = \sigma_{t,\alpha,\text{mean}} \cos^2 \alpha, \tag{5.3}$$

$$\sigma_{t,90} = \sigma_{t,\alpha,\text{mean}} \sin^2 \alpha, \tag{5.4}$$

(5.5)

 $\tau = -\sigma_{t,\alpha,\text{mean}} \sin \alpha \cos \alpha.$

Bild 5.5: Entnahme von Zugprobekörpern aus einer einfach keilgezinkten Rahmenecke

Damit ergeben sich für die verschiedenen geprüften Winkel die in Tabelle 5.2 zusammengestellten Spannungsverhältnisse. Diese stellen häufige Spannungsverhältnisse in den kritischen Bereichen von Rahmenecken und Biegeträgern mit $\alpha \leq 22,5^{\circ}$ dar. Aller-

dings lassen sich mit der gewählten Versuchsanordnung nur Kombinationen von Querzug-, Längszug und Schubspannungen, nicht aber von Querdruck-, Längszug und Schubspannungen erzielen (hierzu s. Kapitel 7). Letztere Kombinationen können besonders in der Umgebung ausgefallener Zellen auftreten.

α	$\sigma_{t,90}/\sigma_{t,0}$	$\tau/\sigma_{t,0}$
[°]	[1]	[1]
0°	0	0
7,5°	0,02	-0,13
15°	0,07	-0,27
22,5°	0,17	-0,41

Tabelle 5.2: Theoretische Spannungsverhältnisse in den geprüften Prüfkörpern

Die zur Herstellung der Rahmenecken benötigten Fichtenholzbretter wurden zunächst bei einem BS-Holzhersteller gehobelt und dann visuell sortiert. Anschließend wurden die Holzfeuchte und die Rohdichte der Bretter gemessen. Die Bretter wurden in 150 mm lange Brettabschnitte unterteilt und der Verlauf der Ästigkeit über die Brettlänge protokolliert. Die Produktion der Rahmenecken und das Herausschneiden der Probekörper erfolgte in einer Weise, die es ermöglichte, die Lage der protokollierten Brettabschnitte im Probekörper nachzuvollziehen.

Bild 5.6: Zugprobekörper mit seitlich aufgeklebten Verstärkungen

Vor dem Herstellen der Universalkeilzinkenverbindung wurden zudem die Fräsungen auf beim Fräsen herausgefallene Äste untersucht und deren Lage gegebenenfalls festgehalten. Für alle Klebungen wurde Resorcinharz verwendet. Die Universalkeilzinkung wurde mit dem Zinkenprofil I-50 nach DIN 68140 ausgeführt. Die Zugprobekörper wurden so auf die endgültige Dicke gehobelt, dass über die gesamte Zinkenlänge nur zwei Lamellen miteinander verbunden waren. Die Probekörper hatten eine Länge von etwa 900 mm. Die Breite für Probekörper aus einem geraden Universalkeilzinkenstoß ($\alpha = 0^{\circ}$) betrug etwa 120 mm, für die übrigen Winkel wurden die Probekörper seitlich auf etwa 80 mm verschwächt. Um eine möglichst gleichförmige Verformung über die Brettbreite zu erhalten, wurden die Probekörper so auf die Endbreite gehobelt, dass eventuell vorhandene Fehlstellen möglichst symmetrisch um die Mittelachse verteilt waren. Die Probekörper wurden zudem zur Vermeidung von Brüchen im Lasteinleitungsbereich mit etwa 30 mm dicken, seitlich aufgeklebten Fichtenholzlaschen verstärkt. Diese Klebung erfolgte ebenfalls mit einem Resorcinharz (s. Bild 5.6).

Für die Zugprüfungen stand eine Universalprüfmaschine mit einer maximalen Zugkraft $F_{max} = 250$ kN zur Verfügung. Die freie Länge für den Prüfkörper und die Vorrichtungen zur Einleitung der Zugkraft war auf etwa 1,20 m beschränkt. Daher wurde eine kompakte Vorrichtung (s. Bild 5.7) zur Einleitung der Zugkräfte entworfen, die sich an eine Keilzinkenprüfvorrichtung der ETH Zürich anlehnt (sogenanntes "Zugprüfbaby" s. z.B. Grazer Holzbautage (1995)).

Bild 5.7 Prüfvorrichtung zur Zugprüfung von Keilzinkungen

Auf die Enden der Probekörper konnte über jeweils zwei profilierte Stahlplatten durch kontrolliertes Anziehen von 6-8 hochfesten Schrauben ein Querpressdruck von bis zu 4 N/mm² aufgebracht werden. Mit den gegebenen Abmessungen des Probekörpers und einem ungünstig angenommenen Reibungsbeiwert $\eta \approx 0,50$ konnte theoretisch eine maximale Zugkraft von etwa 140 kN eingeleitet werden. Nach dem Anziehen der

Schrauben wurden die Zugprüfkörper unverzüglich bis zum Bruch belastet, um zu vermeiden, dass ein größerer Teil des Querdruckes durch Relaxation abgebaut wurde.

Durch den Winkel zwischen den Orthotropiehauptachsen des Mittelstückes und der Längsachse des Prüfkörpers treten auch bei einer reinen Zugbeanspruchung in Richtung der Längsachse Verformungen senkrecht zur Keilzinkenebene auf (s. Bild 5.8). Die Verformungen sind sehr klein. Eine linear-elastische FE-Berechnung ergab für die oben angegebenen Prüfkörperabmessungen, die Belastung 10 kN (Tatsächlich lag die mittlere Bruchlast für diesen Winkel dann bei 7,08 kN.), den Winkel $\alpha = 22,5^{\circ}$, $E_0 = 12.000 \text{ N/mm}^2$, $E_{90} = 960 \text{ N/mm}^2$, $G = 750 \text{ N/mm}^2$, $\mu = 0.04$ eine Querverformung u_y = 0,20 mm. Es wird angenommen, dass ihr Einfluss gegenüber den durch Maßabweichungen der Versuchskörper und der Versuchseinrichtung resultierenden geometrischen Nichtlinearitäten sowie den im Holz auftretenden strukturellen Nichtlinearitäten gering ist.

Bild 5.8: Querverformungen an Zugprobekörpern mit $\alpha \neq 0^{\circ}$

5.2.3 Auswahl des Probenmaterials

Die zur Herstellung der Rahmenecken benötigten Lamellen der Sortierklasse S10 wurden mittels visueller Sortierung zwei verschiedenen Brettstapeln skandinavischer Fichte entnommen. Die ausgewählten Lamellen wiesen zum Zeitpunkt der Sortierung Holzfeuchten zwischen 7,3% und 12% auf. Nach der Lagerung in der Klimakammer hatten die Zugprobekörper Feuchten zwischen 9,8% und 11,3%. Der Mittelwert der Rohdichte lag bei ρ_{mean} =0,45 g/cm³, der 5%-Fraktilwert bei ρ_{k} =0,40 g/cm³ (s.a. Bild C.1 in der Anlage C).

Diese Werte stimmen gut mit den von Colling/Ehlbeck/Kurzweil (1995) angegebenen Verteilungsparametern für die Sortierklasse S10 überein ($\rho_{mean} = 0.45$ g/cm³; $\rho_{k} = 0.39$ g/cm³).

60% der später im Prüfbereich liegenden Brettabschnitte wiesen Ästigkeiten von KAR \leq 0,05 auf. Der Mittelwert für alle Brettabschnitte ergab sich zu KAR = 0,069 mit einer Standardabweichung s=0,074 (s.a. Bild C.2 in der Anlage C).

Die Verteilungsparameter der Ästigkeit stimmten recht gut mit den empirischen Verteilungen anderer Untersuchungen überein. Geometrieabhängig mussten die Zugprobekörper bei den Neigungswinkeln $\alpha = 15^{\circ}$ und 22,5° aus 40 mm dicken Lamellen hergestellt werden, während für $\alpha = 0^{\circ}$ und 7,5° 30 mm dicke Lamellen verwendet wurden. 37% der 40 mm-Lamellen wiesen eine Markröhre auf, während dies bei den 30 mm Lamellen lediglich bei 8,5% der Fall war. Dieser Unterschied ist auf Unterschiede in der Einschnitttechnik zurückzuführen.

Die Anlage C enthält neben den Versuchsergebnissen eine Zusammenstellung der Materialeigenschaften der Brettabschnitte beiderseits der Keilzinkung. Die Tabelle 5.3 zeigt eine Zusammenstellung einiger Materialeigenschaften.

α	ρ	$ ho_{min,mean}$	KAR ¹⁾	KAR _{max}	u	Δu	Markröhre
[°]	[g/cm ³]	[g/cm ³]	[1]	[1]	[%]	[%]	[%]
0	0,46	0,44	0,065	0,109	8,5	1,2	5,8
7,5	0.45	0,44	0,078	0,128	8,5	1,1	11,1
15	0,44	0,41	0,043	0,086	11,4	0,8	30,8
22,5	0,44	0,41	0,085	0,118	11,6	0,9	46,2
¹⁾ Mittelwert	für alle Brettat	oschnitte, also	inklusive der	astfreien			

Tabelle 5.3: Mittelwerte der Materialeigenschaften der Probekörper

5.2.4 Versuchsdurchführung

Die Prüfkörper wurden in die Prüfmaschine eingebaut und kontinuierlich bis zum Bruch belastet. Die Bruchlasten wurden in allen Versuchen innerhalb von t = 90 ± 30 s erreicht.

Bei keinem der insgesamt 98 durchgeführten Versuche verrutschten die Klemmbacken zur Einleitung der Zugkräfte. Ein in zwei Vorversuchen aufgebrachter Querpressdruck $\sigma_{c,90} \approx 4 \text{ N/mm}^2$ erwies sich als unnötig groß, zumal Längsrisse im Prüfbereich entstanden. Daher wurde der Querpressdruck auf etwa $\sigma_{c,90} \approx 2 \text{ N/mm}^2$ reduziert. Die Schrauben, Unterlegscheiben und Muttern zum Verspannen der Klemmbacken unterlagen einem starken Verschleiß und wurden mehrfach ausgetauscht. Mit zunehmender Abnutzung der Schrauben wurde deren kontrolliertes Anziehen erschwert. Es ist daher fraglich, ob in allen Versuchen ein gleich großer Querpressdruck aufgebracht wurde.

Die wenigen im Einspannbereich auftretenden Brüche konnten durchweg auf fehlerhafte Verklebungen der seitlichen Verstärkungen zurückgeführt werden.

5.2.5 Darstellung und Diskussion der Ergebnisse

5.2.5.1 Nicht in die Auswertung aufgenommene Versuche

25 der 98 durchgeführten Versuche wurden nicht in die Auswertung aufgenommen.

Bei α =0° versagten drei Prüfkörper durch einen reinen Holzbruch außerhalb des Keilzinkenbereiches. Bruchauslösend waren in allen Fällen größere Äste. Ein Versuchskörper zeigte bereits bei geringer Beanspruchung ungleichmäßige Verformungen über die Brettbreite infolge eines exzentrisch zur Symmetrieachse gelegenen, nicht verwachsenen größeren Astes. Ein fünfter Prüfkörper hatte eine deutlich exzentrische Lasteinleitung durch eine fehlerhaft aufgeklebten Lasche.

Bei α =7,5° zeigte ebenfalls ein Prüfkörper ungleichmäßige Verformungen über die Brettbreite infolge eines Einzelastes. Die Ergebnisse von sechs weiteren Prüfungen konnten wegen fehlerhafter Verklebung der Keilzinkung nicht in die Auswertung aufgenommen werden. Auf beiden Seiten der Verbindung fand sich ein ausreichender Klebstoffauftrag, z.T. jedoch ohne Besatz mit Holzfasern. (s. a. Bild C.3 in der Anlage C). Deutlich vor Erreichen der Bruchlasten ergaben sich bei diesen Prüfkörpern exzentrische Lasteinleitungen, so das die Ergebnisse hier nicht berücksichtigt werden sollen.

Bei α =15° versagten sieben Prüfkörper außerhalb des Keilzinkenbereiches.

Bei α =22,5° versagten ebenfalls fünf Prüfkörper außerhalb des Keilzinkenbereiches. Zusätzlich konnte ein Versuch wegen einer fehlerhaft aufgeklebten Lasche nicht berücksichtigt werden.

Tabelle 5.4 gibt Mittel-, Kleinst- und Größtwert der nicht in die Auswertung eingegangenen Versuche an.

α	n	$f_{t,\alpha,mean}$	$f_{t,\alpha,min}$	$f_{t,\alpha,\text{max}}$
[°]	[-]	[N/mm ²]	[N/mm ²]	[N/mm ²]
0	5	20,9	18,6	22,4
7,5	7	14,5	12,0	16,8
15	7	10,9	9,32	12,4
22,5	6	7,08	5,39	8,94

Tabelle 5.4:	Mittel-, Kleinst- und Größtwert der nicht in die Auswertung eingegange-
	nen Versuche

5.2.5.2 In die Auswertung aufgenommene Versuche

Der Versuchsverlauf gestaltete sich für alle untersuchten Winkel in gleicher Weise: Die Kraft-Verformungslinie verlief bei allen Versuchen annähernd linear. Nachdem bei

80%-90% der Höchstlast "Knistern" zu hören war, versagten die Probekörper in einem spröden Bruch.

Für den Winkel α =0° können die Bruchursachen analog zu Colling (1990) in Zinkenversagen (Bruch überwiegend längs der Zinkenflanken), Holzversagen (Bruch überwiegend durch den Zinkengrund) und Mischbrüche unterteilt werden. Von den 26 in die Auswertung einbezogenen Versuchen wiesen 10 Zinkenversagen, 7 Holzversagen und 9 Mischbrüche auf. In fast allen Versuchen verlief der Bruch nur dann durch Äste, wenn diese direkt im Flankenbereich oder Zinkengrund lagen. Für die Versuche mit Holzversagen erfolgte der Bruch fast durchgängig im Brettabschnitt mit der niedrigeren Rohdichte. Bei Zinkenversagen liefen die Brüche meist in dem Brettabschnitt mit der niedrigeren Kohdichte aus. Das Bild C.4 in der Anlage C zeigt typische Bruchbilder.

Bild 5.9: Bruchverläufe in den Prüfkörpern für $\alpha \neq 0^{\circ}$

Für die übrigen Winkel α zeigte sich bei einem Teil der Probekörper das folgende Bruchbild: Ausgehend von der Außenseite (s. Bild 5.9 oben und C.5b) des Prüfkörpers verlief der Bruch zunächst parallel zur Fräsrichtung der Keilzinkung bis er dem Faserverlauf des Brettabschnittes folgte. Es kann angenommen werden, dass der Bruch im Bereich des Zinkengrundes erfolgte, der in diesem Fall aufgrund der Querschnittsschwächung und der örtlichen Spannungsspitzen den Schwachpunkt der Verbindung darstellt. Da die Brettabschnitte über die Zinkenlänge unter einem Winkel miteinander verklebt und damit gegeneinander versperrt waren, entwickelte sich der Bruch in Richtung der Außenseite des Prüfkörpers parallel zur Fräsrichtung der Keilzinkung. In der Gegenrichtung riss der Brettabschnitt infolge örtlicher Spannungsspitzen senkrecht zur Faser auf. Grundsätzlich könnte der Bruch auch im faserparallelen Bereich des Bruchbildes begonnen haben. Dies ist aber nur bei Vorhandensein eines Holzfehlers denkbar, der den Querschnitt stärker als die bar, der den Querschnitt stärker als die Spannungsspitzen im Zinkengrund beeinträchtigt. Solche Holzfehler wurden längs der Bruchflächen nicht gefunden.

Der andere Teil der Probekörper zeigte ein Bruchbild wie in Bild 5.9 unten und C.5a dargestellt. Die Zinkenflanken zogen sich hier oberhalb einer faserparallelen Linie auseinander. Die Bruchauslösung erfolgt im Bereich der Zinkenflanken infolge von Spannungsspitzen. Bezüglich einer möglichen Bruchauslösung außerhalb des Keilzinkenbereiches gilt das oben Gesagte.

Das Bild 5.10 zeigt die Ergebnisse aller Versuche in Abhängigkeit des Kraft-Faserwinkels α .

α	n	$f_{t,\alpha,mean}$	V
[°]	[-]	[N/mm ²]	[%]
0	28	27,9	18,3
7,5	19	20,8	15,4
15	14	12,3	13,3
22,5	13	7,64	16,3

Tabelle 5.5: Versuchsergebnisse UKZV BS-Holz/BS-Holz

5.2.6 Auswahl einer geeigneten Versagenshypothese

Da nur für vier Winkel Untersuchungen durchgeführt wurden, können von den in Kapitel 3.3.15 dargestellten Bruchhypothesen nur solche an die Versuche angepasst werden, die nicht mehr als vier Freiheitsgrade haben. Es werden die Bruchhypothese von Hankinson, von Norris und eine Gleichung in Anlehnung an DIN 1052 in der folgenden Form betrachtet:

Bruchhypothese von Hankinson (1921)

$$f_{t,\alpha,\text{mean}} = \frac{f_{t,0} \cdot f_{t,90}}{f_{t,0} \cdot \sin^2(2\alpha) + f_{t,90} \cdot \cos^2(2\alpha)}$$
(5.6)

mit $2 \cdot \alpha$ = Winkel zwischen den Längsachsen der Hölzer $f_{t,\alpha,mean}$ = Bruchspannung aus den Versuchen.

Gleichung in Anlehnung an DIN 1052 (1969-09)

$$f_{t,\alpha} = f_{t,0} - (f_{t,0} - f_{t,90}) \sin(2\alpha)$$
(5.7)

Gleichung nach Norris (1962)

$$\left(\frac{\sigma_{0}}{f_{0}}\right)^{2} - \frac{\sigma_{0} \cdot \sigma_{90}}{f_{0} \cdot f_{90}} + \left(\frac{\sigma_{90}}{f_{90}}\right)^{2} + \left(\frac{\tau}{f_{v}}\right)^{2} = 1$$

$$\land \qquad \left(\frac{\sigma_{0}}{f_{0}}\right)^{2} \le 1$$

$$\land \qquad \left(\frac{\sigma_{90}}{f_{90}}\right)^{2} \le 1$$
(5.8a-c)

Im folgenden sollen diese Bruchhypothesen mittels Fehlerquadratverfahren an die Mittelwerte der Versuche angepasst werden. Es wird von gleichmäßig über die Querschnittshöhe verteilten Spannungen in einem homogenem Körper ausgegangen. Die am Besten an die Funktionswerte Y_{α_k} angepasste Näherungsfunktion $f(x_1, x_2, ..., x_n, \alpha_k)$ muss den n Bedingungen:

$$\frac{\partial}{\partial \mathbf{x}_{n}} \sum_{k=1}^{k} (\mathbf{Y}_{\alpha_{k}} - \mathbf{f}(\mathbf{x}_{1}; \mathbf{x}_{2}; \dots, \mathbf{x}_{n}; \alpha_{k}))^{2} \stackrel{!}{=} \mathbf{0}$$
(5.9)

genügen. Bei den so ermittelten Festigkeitswerten handelt es sich selbstverständlich nicht um echte Materialfestigkeiten, da hier Einflüsse aus der Geometrie der Universalkeilzinkenverbindung mit eingehen. Besonders die Spannungsspitzen in den Zinkengründen und der "Absperreffekt" im Bereich der Zinkenflanken bei Keilzinkungen mit einem Winkel $\phi \neq 0^{\circ}$ seien hier genannt.

Bruchhypothese	f _{t,0}	f _{t,90}	f _v	Fehlerquad- ratsumme
	[N/mm ²]	[N/mm ²]	[N/mm ²]	[(N/mm ²) ²]
Hankinson	27,9	4,33	-	0,47
DIN 1052	28,0	-1,45	-	1,45
Norris	27,9	1,55	3,49	0,03

 Tabelle 5.6:
 Anpassung der Bruchhypothesen an die Versuchswerte

Die Anpassung an die Gleichung in Anlehnung an die DIN 1052 liefert eine physikalisch sinnlose negative Querzugfestigkeit. Die beste Anpassung mit zudem sinnvollen Größen für die Festigkeiten liefert die Bruchgleichung von Norris. Sie wird daher im folgenden zur Simulation der Zugfestigkeiten im Universalkeilzinkenbereich zugrunde gelegt.

5.2.7 Simulation der Festigkeit im Simulationsprogramm

Die Zahl der in den vorangegangenen Abschnitten beschriebenen Versuche ist klein; die Probekörper für einen Winkel α wurden zudem jeweils nur einer keilgezinkten Rahmenecke entnommen. Eine Regressionsgleichung in Abhängigkeit der festigkeitsrelevanten Einflussgrößen kann daher nicht entwickelt werden.

Da als Ausgangsmaterial für die Prüfungen ungezinkte Lamellen gewählt wurden, gab es außerdem keine Versuchsergebnisse, bei denen ein Lamellenstoß im Bereich der Universalkeilzinkenverbindung lag. Um trotzdem zu einer Abschätzung der Zugfestigkeiten in Abhängigkeit der festigkeitsrelevanten Einflussgrößen zu kommen, wird folgendermaßen vorgegangen:

- 1.) Es wird die Zugfestigkeit eines Keilzinkenprofils I-15/I-20 (s. Kapitel 3.3.11.2) $f_{t,0,i}^{I-15/20}$ simuliert.
- Danach wird der Faktor k_{kzv} f
 ür das Verh
 ältnis der Festigkeit des Zinkenprofils I-15 zum Profil I-50 ermittelt. Der Faktor k_{kzv} wird
 über die Verschw
 ächungsgrade abgesch
 ätzt:

$$k_{KZV} = \frac{1 - v_{1-50}}{1 - v_{1-15}} = \frac{1 - 0.17}{1 - 0.11} = 0.93$$
(5.10)

mit v_{I-15/I-50} = Verschwächungsgrade nach DIN 68140

3.) Es wird der Faktor k_{α} bestimmt. Dieser Faktor beschreibt das Verhältnis der Festigkeit bei reinem Zug parallel zur Faser und der Festigkeit bei einer Spannungskombination aus Längs-, Quer- und Schubspannung. Der Faktor k_{α} wird mit Hilfe der Versuchsergebnisse aus Kapitel 5.2.6 bestimmt.

Aus

$$\left(\frac{\sigma_{t,0,i}}{f_{t,0,\text{mean}}^{I-50}}\right)^{2} - \frac{\sigma_{t,90,i} \cdot \sigma_{t,0,i}}{f_{t,90,\text{mean}}^{I-50} \cdot f_{t,0,\text{mean}}^{I-50}} + \left(\frac{\sigma_{t,90,i}}{f_{t,90,\text{mean}}}\right)^{2} + \left(\frac{\tau_{i}}{f_{v,\text{mean}}^{I-50}}\right)^{2} = 1$$
(5.11)

wird nach Umformen:

$$\sigma_{t,0,i} = f_{t,0,\text{mean}}^{1-50} \cdot \mathbf{k}_{\alpha}$$
(5.12)

$$k_{\alpha} = \frac{1}{\sqrt{1 - \frac{\sigma_{t,90,i} \cdot f_{t,0,mean}^{l-50}}{\sigma_{t,0,i} \cdot f_{t,90,mean}^{l-50}} + \left(\frac{\sigma_{t,90,i} \cdot f_{t,0,mean}^{l-50}}{\sigma_{t,0,i} \cdot f_{t,90,mean}^{l-50}}\right)^{2} + \left(\frac{\tau_{i} \cdot f_{t,0,mean}^{l-50}}{\sigma_{t,0,i} \cdot f_{v,mean}^{l-50}}\right)^{2}}$$

 $\sigma_{t,0i}; \sigma_{t,90i}; \tau_i$ = Elementspannungen infolge der äußeren Last

$$\begin{cases} f_{t,0,mean}^{I-50} &= 27,9N/mm^2 \\ f_{t,90,mean}^{I-50} &= 1,55N/mm^2 \\ f_{v,mean}^{I-50} &= 3,49N/mm^2 \end{cases} = mittlere Festigkeiten nach Kapitel 5.2.6$$

4.) Ein im Bereich der Universalkeilzinkenverbindung liegender Ast wird als Fehlstelle betrachtet.

$$A_{Brutto} = A_{Netto} \cdot (1 - KAR)$$
(5.13)

5.) Ein im Bereich der Universalkeilzinkenverbindung liegender Lamellenstoß wird ebenfalls als Fehlstelle betrachtet. Es wird eine Schwächung in der Größenordnung des Verschwächungsgrades des Keilzinkenprofils unterstelltⁱ

$$A_{Brutto} = A_{Netto} \cdot (1 - v_{I-15})$$
(5.14)

v = Verschwächungsgrad des Keilzinkenprofils nach DIN 68140

v_{I-15} = 0,11 für I-15 DIN 68140

5

- 6.) Da die Lamellenstöße astfrei sein müssen, braucht ein gleichzeitiges Auftreten eines Astes und eines Lamellenstoßes im Bereich der Universalkeilzinkenverbindung nicht berücksichtigt zu werden.
- 7.) Die Keilzinkenzugfestigkeit wird dann zu:

$$\begin{aligned} & f_{t,i}^{I-50} = f_{t,0,i}^{I-20} \cdot k_{kzv} \cdot k_{\alpha} \cdot (1 - v_{I-15}) & bzw. \\ & f_{t,i}^{I-50} = f_{t,0,i}^{I-20} \cdot k_{kzv} \cdot k_{\alpha} \cdot (1 - KAR) & ermittelt. \end{aligned}$$
 (5.15a,b)

 $f_{t,i}^{I-50}$ = Zugfestigkeit eines Keilzinkenprofils I-50 DIN 68140 in Abhängigkeit der wirkenden Spannungskombination und der festigkeitsrelevanten Materialeigenschaften

8.) Im Finite-Elemente-Programm werden die Bruchbedingungen nach Gleichung 5.15a bzw. 5.15b beiden in der Universalkeilzinkenverbindung miteinander verbundenen Zellen zugewiesen. Zum Einen wird sich bezogen auf die lokalen Koordinatensysteme in den beiden Zellen ein unterschiedliches Verhältnis der vorhandenen Längs-, Quer- und Schubspannungen ergeben, zum Anderen muss das Programm die Möglichkeit einer Bruchausbreitung in Richtung beider Zellen ermöglichen. Weist man aber beiden Zellen die Bruchbedingung zu, so ist die Wahrscheinlichkeit eines Bruches höher, als wenn man in nur einer Zelle einen Bruch zulässt. Es muss daher ein Korrekturfaktor eingeführt werden. Dieser lässt sich in Anlehnung an Colling (1990) wie folgt ermitteln:

Die Wahrscheinlichkeit eines Bruches der Verbindung der beiden Zellen ist ganz allgemein:

$$1 - H(\sigma) = (1 - F(\sigma)) \cdot (1 - G(\sigma))$$
(5.16)

 $H(\sigma)$ = Wahrscheinlichkeit, dass die Verbindung versagt $F(\sigma)$, $G(\sigma)$ = Wahrscheinlichkeit, dass eine der Zellen der Verbindung versagt

Mit der Annahme, dass $F(\sigma) = G(\sigma)$ ist und normalverteilt ist mit dem Mittelwert m₁ und dem Variationskoeffizient v₁ ergibt sich die folgende Beziehung:

$$H(\sigma) = \phi \left(\frac{\frac{\sigma}{m_{1}} - 1}{v_{1}}\right) + \phi \left(\frac{\frac{\sigma}{m_{1}} - 1}{v_{1}}\right) - \phi \left(\frac{\frac{\sigma}{m_{1}} - 1}{v_{1}}\right) \cdot \phi \left(\frac{\frac{\sigma}{m_{1}} - 1}{v_{1}}\right)$$
(5.17)

Darin ist ϕ die standardisierte Normalverteilung mit dem Mittelwert 0 und der Standardabweichung 1.

Die Gleichung lässt sich auflösen zu:

$$\phi\left(\frac{\frac{\sigma}{m_1}-1}{v_1}\right) = \pm\sqrt{1-H(\sigma)} + 1$$
(5.18)

Für den Mittelwert H(σ)=0,5 und einem Variationskoeffizienten der Keilzinkenzugfestigkeit von v₁=25% ergibt sich:

$$\phi \left(\frac{\frac{\sigma_{50}}{m_1} - 1}{0,25}\right) = \pm \sqrt{1 - 0,5} + 1 \Rightarrow 0,293$$

$$\Rightarrow \phi \left(-\frac{\frac{\sigma_{50}}{m_1} - 1}{0,25}\right) = 0,707$$

$$\Rightarrow -\frac{\frac{\sigma_{50}}{m_1} - 1}{0,25} = 0,554 \Leftrightarrow \frac{\sigma_{50}}{m_1} = 0,86$$

Es wird daher ein Korrekturfaktor von 1/0,86=1,16 berücksichtigt.

5.3 Verbindungen BS-Holz/BFU-BU

5.3.1 Derzeitiger Kenntnisstand

Scappozza (1998) prüfte mit den schon in Kapitel 2 beschriebenen Zugversuchen u.a. Universalkeilzinkenverbindungen zwischen Brettschichtholz und kreuzweise verklebten Baufurniersperrholzplatten aus Buche mit unterschiedlichen Furnierdicken und einem Winkel $\alpha = 0^{\circ}$. Die 12 Prüfungen mit 3 mm dicken Furnieren ergaben 5%-Quantil-Werte der Zugfestigkeiten, die über den Sollwerten der DIN EN 1194 für ungezinktes Brettschichtholz der Festigkeitsklasse BS 18 lagen. Der Mittelwert lag etwa 20% unter dem Mittelwert der Zugfestigkeit der 6 ebenfalls von Scappozza geprüften, ungestoßenen Zugprüfkörpern der Festigkeitsklasse BS 18. Für andere Winkel α sind keine Zugversuche bekannt.

5.3.2 Prüfkörper und Versuchsaufbau

Zur Ermittlung der Festigkeitsabnahme mit dem Winkel α wurden Versuche durchgeführt. Die Probenentnahme und Prüfkörperherstellung entsprach dem in Kapitel 5.2.2 beschriebenen Vorgehen. Abweichend wurde Brettschichtholz mit Blöcken aus Baufurniersperrholz aus Buche verbunden.

Im Unterschied zu den in Kapitel 5.2.2 beschriebenen Prüfkörpern wurden die seitlich aufgeklebten Laschen an den Enden nicht abgeschrägt. Der Abstand zwischen Laschenanfang und dem Zinkengrund des Baufurniersperrholzabschnittes betrug 55 mm; zwischen Laschenanfang und dem Zinkengrund des Brettschichtholzabschnittes hingegen 105 mm.

5.3.3 Auswahl des Probenmaterials und Versuchsdurchführung

Die verwendeten Baufurniersperrholzplatten aus Buche hatten einen symmetrischen Aufbau und eine mittlere Furnierdicke von 2,65 mm. Sie hatten bei Anlieferung eine mittlere Holzfeuchte von 8,9% und wurden mit einem Phenol-Resorcinharzkleber zu Blöcken verklebt.

Die für die Herstellung des Brettschichtholzes verwendeten Bretter der Sortierklasse S10 wurden verschiedenen Stapeln skandinavischer Fichte entnommen. Tabelle 5.7 zeigt die Eigenschaften der Brettabschnitte, die später im unmittelbaren Bereich der Universalkeilzinkenverbindung lagen (nur für die in die Auswertung aufgenommenen Rohdichte Versuche). Die mittlere lag etwas unterhalb der von Colling/Ehlbeck/Kurzweil (1995) angegebenen Rohdichte. Nur 48% anstatt der üblicherweise etwa 60-70% der Brettabschnitte hatte KAR-Werte KAR \leq 0,05. Der Mittelwert der Astigkeit aller Brettabschnitte stimmte hingegen wieder gut mit dem üblicherweise für S10 erwarteten überein. Das Holz war also eher kleinastig. Die Anlage D enthält neben den Versuchsergebnissen auch eine Zusammenstellung der Materialeigenschaften des Brettschichtholzabschnittes. Die Versuchsdurchführung entsprach der in Kapitel 5.2.4 beschriebenen.

	ρο	KAR ¹⁾	u	Markröhre
	[g/cm ³]	[1]	[%]	[%]
Mittelwert	0,43	0,07	13,2	17,5
Variationskoeffizient 8,0% - 6,4% -				-
¹⁾ Mittelwert für alle Brettabschnitte, also inklusive der astfreien				

Tabelle 5.7:	Mittelwerte der Materialeigenschaften der Probekörper

5.3.4 Darstellung und Diskussion der Ergebnisse

5.3.4.1 Nicht in die Auswertung aufgenommene Versuche

20 der 60 durchgeführten Versuche wurden nicht in die Auswertung aufgenommen.

Bei α =0° versagte ein Prüfkörper durch einen reinen Holzbruch außerhalb des Keilzinkenbereiches. Zwei Prüfkörper brachen im Lasteinleitungsbereich infolge fehlerhaft aufgeklebter Verstärkungslaschen.

Bei α =7,5° gab es ebenfalls einen Bruch infolge einer fehlerhaft aufgeklebten Verstärkung. Drei weitere Prüfkörper zeigten ungleichmäßige Verformungen über die Brettbreite deutlich vor Erreichen der Höchstlast und wurden daher nicht in die Auswertung aufgenommen.

Bei α =15° brach ein Prüfkörper im Verstärkungsbereich; sechs weitere versagten infolge Spannungskombination außerhalb der Universalkeilzinkenverbindung.

Bei α =22,5° versagten alle sechs geprüften Prüfkörper außerhalb des Keilzinkenbereiches; auf die Durchführung weiterer Versuche wurde daraufhin verzichtet.

Das Bild D.1 in der Anlage D zeigt typische Bruchbilder.

Tabelle 5.8 gibt Mittel-, Kleinst- und Größtwert der nicht in die Auswertung eingegangenen Versuche an.

α r ^o ı	n	f _{t,α,mean}	$f_{t,\alpha,min}$	$f_{t,\alpha,max}$
[]	[-]			
0	3	24,4	21,8	27,6
7,5	4	28,2	24,3	31,9
15	7	14,8	11,8	19,2
22,5	6	8,57	7,2	9,8

Tabelle 5.8:Mittel-, Kleinst- und Größtwert der nicht in die Auswertung eingegange-
nen Versuche

5.3.4.2 In die Auswertung aufgenommene Versuche

Der Versuchsverlauf gestaltete sich in der bereits im Kapitel 5.2.5.2 beschriebenen Weise. Das Bild D.2 zeigt typische Bruchbilder.

Bei α =0° zeigte sich in einigen Versuchen ein sehr ausgeprägtes Rollschubversagen der Querfurniere des BFU-BU im Flankenbereich der Verbindung.

Die Tabelle 5.8 zeigt die Versuchsergebnisse. Da für α =22,5° kein Prüfkörper im Zinkenbereich brach, stellen die Ergebnisse der nicht in die Auswertung aufgenommenen Versuche einen unteren Grenzwert dar. Es zeigte sich in den Versuchen, dass bei Winkeln bis 7,5° viele Brüche im Zinkengrund des BFU-BU auftraten; bei größeren
Winkeln versagte hingegen immer die Zinkenflanke oder der Zinkengrund des angeschlossenen Brettschichtholzes.

α	n	$\mathbf{f}_{t,\alpha,mean}$	V
[°]	[-]	[N/mm ²]	[%]
0	17	30,8	15,4
7,5	14	29,6	21,3
15	9	15,4	13,2
22,5	(6)	>8,6	_

Tabelle 5.9:	Versuchsergebnisse UKZV BS-Holz/BFU-BU
--------------	--

Bild 5.11: Keilzinkenfestigkeiten BS-Holz/BFU-BU

Mit den Mittelwerten der Zugprüfungen wurden Festigkeitswerte für das Bruchkriterium von Norris ermittelt. Die beste Anpassung ergab sich für

$$f_{t,0,50} = 31,4 \text{ N/mm}^2$$

$$f_{t,90,50} = 1,3 \text{ N/mm}^2$$

$$f_{v,50} = 6,0 \text{ N/mm}^2$$

Die niedrige Quer- und Schubfestigkeit kann damit begründet werden, dass für größere Winkel die Brüche auf der Brettschichtholzseite und nicht im "querbewehrten" Baufurniersperrholz aus Buche auftreten. Bild 5.11 zeigt den Kurvenverlauf im Vergleich zu den Versuchswerten.

Auch die oben beschriebenen Zugprüfkörper wurden nur jeweils einer Rahmenecke entnommen. Die Zahl der Prüfungen war zudem gering. Die Zugfestigkeit wird daher in Anlehnung an Kapitel 5.2.7 ermittelt. Dabei ergeben sich folgende Abweichungen:

- 1. Es werden die oben ermittelten Festigkeitswerte im Bruchkriterium nach Norris eingesetzt.
- Die Tragfähigkeit wird in Kapitel 5.2.7 aus der Tragfähigkeit einer Keilzinkung in einer Vollholzlamelle hergeleitet. Bei Verwendung des deutlich homogeneren Baufurniersperrholzes ergibt sich eine Tragfähigkeitssteigerung, die mit einem Faktor k_{BFU} berücksichtigt wird. Dieser wird aus dem Verhältnis der im Kapitel 5 ermittelten Zugfestigkeiten für I-50 Verbindungen zwischen BS-Holz/BFU-BU bzw. BS-Holz/BS-Holz abgeleitet.

k_{BFU} = 30,8/27,9 = 1,10

3. Die Keilzinkenzugfestigkeit wird dann zu:

$$\begin{split} f_{t,i}^{I-50} &= f_{t,0,i}^{I-20} \cdot k_{kzv} \cdot k_{BFU} \cdot k_{\alpha} \cdot (1 - v_{I-15}) & bzw. \\ f_{t,i}^{I-50} &= f_{t,0,i}^{I-20} \cdot k_{kzv} \cdot k_{BFU} \cdot k_{\alpha} \cdot (1 - KAR) & ermittelt. \end{split}$$
(5.20a, b)

4. Der Bruch entwickelt sich in der Rahmenecke oder dem keilgezinkten Biegeträger immer in Richtung des Brettschichtholzabschnittes weiter. Die Bruchbedingung wird im Finite-Element-Programm daher immer nur der Brettschichtholzzelle zugewiesen. Eine Anpassung nach Kapitel 5.2.7, Nr. 8 ist hier also nicht notwendig.

5.4 Verbindungen BS-Holz/FSH-Q

5.4.1 Derzeitiger Kenntnisstand

Scappozza (1998) prüfte mit den schon in Kapitel 2 beschriebenen Zugversuchen u.a. Universalkeilzinkenverbindungen zwischen Brettschichtholz und kreuzweise verklebten Baufurniersperrholzplatten aus Fichte mit einer Furnierdicke von 3 mm und einem Winkel $\alpha = 0^{\circ}$. Das Brettschichtholz entsprach der Festigkeitsklasse BS 18. Die Zugprüfkörper versagten im Bereich der Universalkeilzinkenverbindung im Baufurniersperrholz aus Fichte bei einer mittlerer Bruchspannung von 21,7 N/mm², was etwa in der Größenordnung der Zugfestigkeit eines Baufurniersperrholzes mit 50% Querfurnieren liegt.

Für andere Winkel α sind keine Zugversuche bekannt.

5.4.2 Prüfkörper und Versuchsaufbau

Zur Ermittlung der Festigkeitsabnahme mit dem Winkel α wurden Versuche durchgeführt. Die Probenentnahme und Prüfkörperherstellung entsprach dem in den Kapiteln 5.2.2 und 5.3.2 beschriebenen Vorgehen.

5.4.3 Auswahl des Probenmaterials und Versuchsdurchführung

Die verwendeten 39 mm dicken Furnierschichtholzplatten des Typs Kerto-Q[®] hatten einen symmetrischen Aufbau mit 13 Furnierlagen (davon die 3., die 7. und die 11. quer angeordnet) und eine mittlere Furnierdicke von 2,95 mm. Sie hatten bei Anlieferung eine mittlere Holzfeuchte von 7,6% wurden mit einem Phenol-Resorcinharzkleber zu Blöcken verklebt.

Die für die Herstellung des Brettschichtholzes verwendeten Bretter der Sortierklasse S10 wurden verschiedenen Stapeln skandinavischer Fichte entnommen. Tabelle 5.10 zeigt die Eigenschaften der Brettabschnitte, die später im unmittelbaren Bereich der Universalkeilzinkenverbindung lagen (nur für die in die Auswertung aufgenommenen Versuche). Die mittlere Rohdichte entsprach etwa der von Colling/Ehlbeck/Kurzweil (1995) angegebenen Rohdichte. 60% der Brettabschnitte hatten KAR-Werte KAR \leq 0,05. Der Mittelwert der Ästigkeit aller Brettabschnitte lag etwas unter dem üblicherweise für S10 erwarteten. Das Holz war also eher kleinastig.

Die Versuchsdurchführung entsprach der in Kapitel 5.2.4 beschriebenen. Die Anlage E enthält neben den Versuchsergebnissen auch eine Zusammenstellung der Materialeigenschaften des Brettschichtholzabschnittes.

	ρο	KAR ¹⁾	u	Markröhre			
Mittelwert	0,44 g/cm ³	0,05	13,2%	11,5%			
Variationskoeffizient 10,6% - 6,5% -							
¹⁾ Mittelwert für alle Brettabschnitte, also inklusive der astfreien							

 Tabelle 5.10:
 Mittelwerte der Materialeigenschaften der Probekörper

5.4.4 Darstellung und Diskussion der Ergebnisse

5.4.4.1 Nicht in die Auswertung aufgenommene Versuche

16 der 58 durchgeführten Versuche wurden nicht in die Auswertung aufgenommen.

Bei α =0° versagte ein Prüfkörper durch einen reinen Holzbruch außerhalb des Keilzinkenbereiches. Bei α =7,5° versagte ein Prüfkörper außerhalb des Keilzinkenbereiches, ein anderer durch einen Bruch im Verstärkungsbereich infolge einer fehlerhaft aufgeklebten Lasche. Ein weiterer Prüfkörper zeigte ungleichmäßige Verformungen über die Brettbreite deutlich vor Erreichen der Höchstlast.

Bei α =15° brach ein Prüfkörper im Verstärkungsbereich; sechs weitere versagten infolge Spannungskombination außerhalb der Universalkeilzinkenverbindung.

Bei α =22,5° versagten fünf von sieben der geprüften Prüfkörper außerhalb des Keilzinkenbereiches; auf die Durchführung weiterer Versuche wurde daraufhin verzichtet.

Tabelle 5.11 gibt Mittel-, Kleinst- und Größtwert der nicht in die Auswertung eingegangenen Versuche an.

α	n	$f_{t,\alpha,mean}$	$f_{t,\alpha,min}$	$f_{t,\alpha,max}$
[°]	[-]	[N/mm ²]	[N/mm ²]	[N/mm ²]
0	1	23,5	23,5	23,5
7,5	3	22,8	20,5	25,2
15	7	12,9	11,2	14,0
22,5	5	8,96	8,00	10,9

Tabelle 5.11:	Mittel-, Kleinst- und Größtwert der nicht in die Auswertung eingegange-
	nen Versuche

5.4.4.2 In die Auswertung aufgenommene Versuche

Der Versuchsverlauf gestaltete sich in der bereits im Kapitel 5.2.5.2 beschriebenen Weise. Das Bild E.1 in Anlage E zeigt typische Bruchbilder.

Die Tabelle 5.12 zeigt die Versuchsergebnisse. Brüche im Brettschichtholz und im Furnierschichtholz treten für die Winkel α =0°, 7,5° und 15° in etwa gleicher Häufigkeit auf. Für α =22,5° sind alle sieben durchgeführten Versuche, also auch die Versuche mit Brüchen außerhalb der Keilzinkung, zusammengefasst. Es wird angenommen, dass der angegebene Mittelwert einen unteren Grenzwert darstellt. 5

α	n	$f_{t,\alpha,mean}$	V
[°]	[-]	[N/mm ²]	[%]
0	19	19 29,8	
7,5	18	23,3	18,0
15	15	13,7	15,0
22,5	(7)	>8,7	-

Tabelle 5.12: Versuchsergebnisse UKZV BS-Holz/FSH-Q

Bild 5.12 Keilzinkenfestigkeiten BS-Holz/FSH-Q

Bild 5.12 zeigt den Kurvenverlauf im Vergleich zu den Versuchswerten.

Mit den Mittelwerten der Zugprüfungen wurden Festigkeitswerte für das Bruchkriterium von Norris ermittelt. Die beste Anpassung ergab sich für

$$\begin{array}{ll} f_{t,0,50} &= 30,0 \ \text{N/mm}^2 \\ f_{t,90,50} &= 1,72 \ \text{N/mm}^2 \\ f_{v,50} &= 4,00 \ \text{N/mm}^2. \end{array}$$

Auch die oben beschriebenen Zugprüfkörper wurden nur jeweils einer Rahmenecke entnommen. Die Zahl der Prüfungen war zudem gering. Die Zugfestigkeit wird daher in Anlehnung an Kapitel 5.2.7 ermittelt. Dabei ergeben sich folgende Abweichungen:

- 1. Es werden die oben ermittelten Festigkeitswerte im Bruchkriterium nach Norris eingesetzt.
- Die Tragfähigkeit wird in Kapitel 5.2.7 aus der Tragfähigkeit einer Keilzinkung in einer Vollholzlamelle hergeleitet. Bei Verwendung des deutlich homogeneren Baufurniersperrholzes ergibt sich eine Tragfähigkeitssteigerung, die mit einem Faktor k_{BFU} berücksichtigt wird. Dieser wird aus dem Verhältnis der im Kapitel 5 ermittelten Zugfestigkeiten für I-50 Verbindungen zwischen BS-Holz/FSH-Q bzw. BS-Holz/BS-Holz abgeleitet.

k_{FSH} = 30,0/27,9 = 1,08

3. Die Keilzinkenzugfestigkeit wird dann zu:

$$\begin{split} f_{t,i}^{I-50} &= f_{t,0,i}^{I-20} \cdot k_{kzv} \cdot k_{FSH} \cdot k_{\alpha} \cdot (1-v_{I-15}) \quad \text{bzw.} \\ f_{t,i}^{I-50} &= f_{t,0,i}^{I-20} \cdot k_{kzv} \cdot k_{FSH} \cdot k_{\alpha} \cdot (1-KAR) \quad \text{ermittelt.} \end{split}$$
(5.21a,b)

4. Im Finite-Elemente-Programm werden die Bruchbedingungen nach Gleichung 5.21a bzw. 5.21b wiederum beiden in der Universalkeilzinkenverbindung miteinander verbundenen Zellen zugewiesen, da sich Brüche sowohl im Brettschichtholz, als auch im Furnierschichtholz fortpflanzen können. Es wird daher ein Korrekturfaktor von 1/0,86=1,16 berücksichtigt.

5.5 Zusammenfassung der getroffenen Annahmen

- Die Universalkeilzinkenverbindung wird im Simulationsprogramm als Stumpfstoß benachbarter Lamellen dargestellt. Aus den im Gehrungsschnitt auftretenden Spannungen werden mit dem Kriterium von Norris die Bruchlasten f
 ür jeden Lamellenstoß berechnet.
- 2. Mit dem Faktor k_{α} wird implizit von einem konstanten Verhältnis der Längs-, Quer- und Schubfestigkeiten der Universalkeilzinkenverbindung ausgegangen.

6 Das FE-Modell

6.1 Modellaufbau

Die Darstellung der Geometrien erfolgt in parametrisierter Form, so dass Rahmenecken und Biegeträger unterschiedlicher Länge, Querschnittsabmessungen, Neigungen, Werkstoffkombinationen, Lagerungen und Belastungen mit wenigen Eingabewerten erzeugt werden können. Die FE-Modelle sind spiegelsymmetrisch und werden in ein Zwischenstück (falls vorhanden) und zwei angrenzende, Riegelabschnitte unterteilt (s. Bild 6.1). Zwischenstück und Riegelabschnitte sind regelmäßig mit i.d.R. 150 mm langen trapez- oder rechteckförmigen Elementen vernetzt. In der Spitze des Zwischenstückes und bei angevouteten Riegeln entstehen zudem flache Dreieckselemente. An die Riegelabschnitte schließen sich jeweils frei vernetzte Übergangs- und Auflagerbereiche an.

Bild 6.1: Finite-Element-Modelle

Den Elementen des Zwischenstückes und der Riegelabschnitte werden zufällig verteilte Materialeigenschaften für Holz oder Holzwerkstoffe zugewiesen. Die Festigkeitsklassen der Lamellen können abschnittsweise über die Höhe variiert werden. In den unmittelbar an das Auflager angrenzenden Auflagerbereichen des Finite-Element-Modells werden allen Elementen konstante Materialeigenschaften für Stahl zugewiesen, um größere, rechnerische Verformungen infolge der auftretenden Spannungssingularitäten zu vermeiden. Den Elementen der Übergangsbereiche zwischen Auflagerbereichen und Riegelabschnitten werden konstante Materialeigenschaften für Holz zugewiesen. Die Übergangsbereiche werden so groß gewählt, dass weder die Singularität am Auflager noch die Materialeigenschaften des Auflagerbereiches die Spannungsverteilung in den Riegelabschnitten signifikant beeinflussen. Die Modelle können gelenkig in den Mitten der Systemunter- und -oberkante aufgelagert oder längs der Systemunterkante eingespannt werden.

Um verschiedene Beanspruchungskombinationen für die Universalkeilzinkenverbindung darstellen zu können, kann zwischen drei Belastungsarten gewählt werden. Die Belastungen werden zur Vermeidung von Singularitäten flächig eingeleitet.

6.2 Wahl des Elementtypes

Die experimentellen Untersuchungen von Kolb (1970) haben gezeigt, dass bei Riegelhöhen mit einem Verhältnis von Querschnittshöhe zu Querschnittsbreite kleiner als 10 ein Kippen oder Ausknicken senkrecht zur Rahmenebene nicht zu befürchten ist, auch wenn der gedrückte Querschnittsbereich seitlich nicht gestützt ist. Daher wird das Problem näherungsweise als eben betrachtet und das Finite-Element-Modell mit Scheibenelementen vernetzt.

Das gesuchte Scheibenelement muss die Verwendung eines orthotropen Materialgesetzes erlauben.

In Zwischenstücken zweifach gezinkter Ecken und bei angevouteten Riegeln werden geometriebedingt dreiecksförmige Elemente zur Vernetzung von Bereichen mit großen Spannungsgradienten benötigt. Dreieckselemente in solchen Bereichen müssen gemäß Handbuch des Finite-Element-Programmes ANSYS[®] (1992a), (1992b), (1992c), (1992d) aus Rechteckelementen mit Seitenmittenknoten gebildet werden.

Es wird daher das 8-Knoten-Element PLANE82 mit je zwei Freiheitsgraden pro Knoten gewählt.

Für die Zellen von Zwischenstücken aus Holzwerkstoffplatten werden, wie bereits in Kapitel 4.3.2 beschrieben, Composite-Schalenelemente SHELL99 mit ebenfalls 8 Knoten verwendet.

6.3 Berechnungsablauf

Der simulierte Biegeträger oder die simulierte Rahmenecke wird schrittweise belastet. Die Belastung wird in jedem Lastschritt so gesteigert, dass die Bruchspannungen eines Elementes des Druck- oder Zugbereiches in der Universalkeilzinkenverbindung oder in den anschließenden Trägerabschnitten gerade erreicht wird. Zur Ermittlung der erforderlichen Größe der Belastung eines Lastschrittes wird zunächst eine sehr kleine Anfangsbelastung a₁ auf das Modell aufgebracht. Für alle n Elemente wird das Verhältnis $m_{1,n}$ der Spannungen infolge dieser Anfangsbelastung und den simulierten Zellenfestigkeiten gebildet:

$$m_{1,n} = \frac{\sigma_{1,n}(a_1)}{f_n}$$
(6.1)

Die Größe der Belastung p_1 für den ersten Lastschritt berechnet sich dann zu: $p_1 = m_{1,min} \cdot a_1$ (6.2)

Nur die Spannungen infolge p1, nicht aber die infolge a1 werden abgespeichert.

Für die Ermittlung der folgenden Lastschritte ermittelt sich das Verhältnis m_{i,n} aus der Summe der vorhandenen Spannungen aller bisherigen (i-1) Lastschritte zzgl. der Spannungen infolge der Anfangsbelastung a_i und den simulierten Zellenfestigkeiten:

$$m_{i,n} = \frac{\sum_{m=1}^{i-1} \sigma_{m,n}(p_m) + \sigma_{i,n}(a_i)}{f_n}$$
(6.3)

Die Größe der Belastung pi für den i-ten Lastschritt berechnet sich dann zu:

$$p_{i} = m_{i,min} \left(\sum_{m=1}^{i-1} p_{m} + a_{i} \right) - \sum_{m=1}^{i-1} p_{m}$$
(6.4)

In der Berechnung jeder Laststufe wird von der unverformten Geometrie der Bauteile ausgegangen. Die Verformungen der vorangegangenen Laststufen werden in der Berechnung nicht berücksichtigt. Dies erscheint gerechtfertigt, da die Verformungen der Bauteile gegenüber ihren Abmessungen sehr gering sind und die Effekte aus Theorie II. Ordnung gegenüber den berücksichtigten Streuungen der Materialeigenschaften ebenfalls klein sind.

Wird in einer Laststufe die Druckfestigkeit eines Elementes erreicht, so wird dessen Steifigkeit für alle weiteren Lastschritte zu Null gesetzt. Die bis dahin aufgenommenen Druckspannungen werden aber weiterhin vom Element aufgenommen. Dies entspricht einer bi-linearen Arbeitslinie des Druckbereiches (s.a. Kapitel 6.5.1).

Die Last wird so lange gesteigert, bis die Zugfestigkeit eines Elementes erreicht wird. Das betroffene Element wird aus dem Finite-Elemente-Modell gelöscht, so dass ein "Loch" in dem Modell entsteht. Die in den vorangegangenen Lastschritten vom ausgefallenen Element aufgenommenen Spannungen müssen auf die Nachbarelemente verteilt werden. Dies erfordert eine Neuberechnung des "Modells mit Loch" bis zu dem Lastniveau, bei dem das Element im Zugbereich versagte. Bei Ausfall eines Elementes infolge Zugbeanspruchung werden zudem die in Kapitel 6.5 dargestellten Versagenskriterien geprüft. Ist ein Kriterium erfüllt, wird die Berechnung beendet.

Neben der Versagensursache und der Traglast werden als Ergebnis einer Berechnung die Lage aller ausgefallenen Elemente, die Summe der bis zum Bruch aufgenommenen Spannungen und Dehnungen und die Element-Materialeigenschaften der ausgefallenen Elemente abgespeichert.

6.4 Spannungsermittlung

Die Regressionsgleichungen des Kapitel 3 und die Herleitung der Festigkeiten in Kapitel 5 beziehen sich auf die Schwerpunktspannungen von Lamellen. Für die Spannungsermittlung in den Riegeln und Zwischenstücken wird daher mit den jeweiligen Elementspannungen gerechnet.

Für die Spannungen in den Universalkeilzinkenverbindungen wird dagegen mit den über die Lamellenhöhe gemittelten Knotenspannungen gerechnet, da besonders die Schub- und Querspannungen aufgrund der steilen Spannungsgradienten bereits in geringem Abstand von der Gehrungslinie deutlich abklingen.

In der Innenecke geknickter Biegeträger oder Rahmenecken liegt eine Spannungssingularität vor. Rechnet man aber mit den über die Lamellenhöhe gemittelten Spannungen in der Gehrung, so ergeben sich nur geringe Unterschiede in Abhängigkeit der verwendeten Größe der Finiten-Elemente. Zudem werden die Bruchfestigkeiten für Druckbeanspruchungen in der Innenecke in Kapitel 7 mit der in Kapitel 3.3.1 gewählten Zellengröße und den Ergebnissen älterer Traglastversuche bestimmt. Somit ist für diese Zellengröße der Effekt der Singularität in den Festigkeitswerten berücksichtigt.

6.5 Nichtlineares Tragverhalten

6.5.1 Bei Druck parallel zur Faser

Glos (1978) gibt eine Funktion zur Beschreibung der Arbeitslinie für Druckbeanspruchung parallel zur Faser an (s. Bild 6.2).

Bild 6.2: Arbeitslinie für Druckbeanspruchung parallel zur Faser

Nach Erreichen der Grenzfestigkeit σ_{dB} (entspricht der Druckfestigkeit) sinkt die aufnehmbare Spannung bei weiterer Verformung auf die asymptotische Endfestigkeit σ_{dBA} . Die asymptotische Endfestigkeit σ_{dBA} nimmt Werte zwischen 50 % und 100 % der Grenzfestigkeit an. Mit den im Finite-Elemente-Programm ANSYS[®] implementierten Werkstoffgesetzen kann eine solche Arbeitslinie nicht dargestellt werden. Es wird daher eine bi-lineare Arbeitslinie verwendet (s. Bild 6.3). Der Druckbereich wird damit tendenziell zu steif dargestellt.

Bild 6.3: bi-lineare Arbeitslinie

Wenn im Zuge einer Laststufe die Bruchspannung eines Elementes im Zugbereich erreicht wird, muss geprüft werden, ob die angrenzenden Elemente die zusätzlichen Spannungen infolge der Spannungsumlagerung aufnehmen können. Dazu wird das

Zug-Element "gelöscht" und das "neue" Modell für die Summe der Lasten aller bis dahin aufgebrachten Laststufen berechnet. Sind vor der Berechnung der Spannungsumlagerung schon Elemente des Druckbereiches ausgefallen, müssen deren Steifigkeiten von Null auf die ursprünglichen Tangentenmodule zurückgesetzt werden. Die Belastung ist dann erneut schrittweise bis zu dem Lastniveau zu steigern, bei dem das Zug-Element ausfiel.

Eine weniger rechenintensive Alternative gibt Colling (1990) an.

Bild 6.4: Ersatzmodul für ausgefallene Elemente im Druckbereich bei der Berechnung von Spannungsumlagerungen

Aus der Druckfestigkeit $f_{c,0}$ und der Summe der Dehnungen aus allen Laststufen ϵ_c^{t} wird ein Ersatzmodul nach Gleichung (6.5) ermittelt. Die Summe aller Lasten wird dann in einem Lastschritt aufgebracht. Anschließend werden die Elastizitätsmoduln der zuvor ausgefallenen Druck-Elemente wieder zu Null gesetzt.

$$\mathsf{E}_{c,0}' = \frac{\mathsf{f}_{c,0}}{\varepsilon'_{c}}$$
(6.5)

Vergleichsrechnungen haben gezeigt, dass die verschiedenen Vorgehensweisen keinen nennenswerten Einfluss auf die Größe der Traglast haben. Das von Colling vorgeschlagene Vorgehen wird daher auch hier für das Versagen eines Elementes des Riegels oder des Zwischenstückes infolge Druckspannungen parallel zur Faser verwendet.

6.5.2 Im Druckbereich der Universalkeilzinkenverbindung

Auch im Druckbereich der Universalkeilzinkenverbindung kann ein ausgeprägtes nichtlineares Tragverhalten beobachtet werden (s.a. Kapitel 7.3). Es wird im Rahmen des Simulationsprogramms von einer bi-linearen Arbeitslinie für Druck parallel zur Faser ausgegangen. Bei der Berechnung von Spannungsumlagerungen nach Ausfall eines Elementes im Zugbereich werden für die bis dahin ausgefallenen Elemente des Druckbereiches ebenfalls Ersatzmoduln berechnet.

6.6 Versagenskriterien

Es werden die von Colling (1990) beschriebenen Bruchkriterien übernommen:

- 1. Zwei Elemente fallen innerhalb einer Laststufe aus. Es wird davon ausgegangen, dass sich der Bruch in diesem Fall schlagartig weiter ausbreitet.
- Es fällt ein Element des Umgebungsbereiches eines bereits ausgefallenen Elementes (s. Bild 6.5) aus. Liegen zwei ausgefallene Elemente dicht beieinander, so breitet sich der Bruch infolge der in diesem Bereich auftretenden Schubspannungsspitzen weiter aus.
- 3. Es sind mehr als fünf Elemente des Zugbereiches ausgefallen. Auch in diesem Fall kann davon ausgegangen werden, dass Schubspannungsspitzen zum Bruch des Trägers im nächsten Lastschritt führen.

Nachbarschaftsbereich des ausgefallenen Zugelements

Bild 6.5: Definition des Umgebungsbereiches eines Elementes

- 4. Ein Element der äußeren Lamellen des Zugbereiches der Riegel fällt aus und enthält eine Keilzinkenverbindung. Brüche in Keilzinkungen verlaufen fast immer über die gesamte Brettbreite. Beim Versagen einer Keilzinkung der äußeren Lamellen schälen sich diese ab und der Träger versagt.
- 5. Zusätzlich wird für den Universalkeilzinkenbereich das folgende Kriterium eingeführt: Fallen zwei Zellen längs derselben Universalkeilzinkenverbindung aus, wird ein anschließendes Zug-Schub-Versagen der gesamten Verbindung unterstellt. In vielen Fällen werden die beiden Zellen so dicht beieinander liegen, dass das 2. Kriterium ebenfalls greift. Wie bei dem 2. Bruchkriterium wird als bruchverursachende Zelle die erste an der Universalkeilzinkenverbindung ausgefallene Zelle angesehen.

6.7 Zusammenfassung der getroffenen Annahmen

- Es wird von Bauteilen ausgegangen, für die im Bereich der Universalkeilzinkenverbindung(en) keine Kippgefahr oder die Gefahr des Knickens aus der Rahmenebene besteht. Dies kann für ein Verhältnis der Querschnittshöhe zur Querschnittsbreite von h/b ≤ 10 ohne weiteren Nachweis angenommen werden.
- 2. Es wird von einer bi-linearen Arbeitslinie für die Druckfestigkeiten parallel zur Faser ausgegangen.

7 Abschätzung noch freier Parameter/Überprüfung des Simulationsprogramms

7.1 Allgemeines

In diesem Abschnitt sollen einige noch offene Parameter des Rechenmodells durch Anpassen von Simulationsergebnissen an Ergebnisse früherer Trägerversuche abgeschätzt werden. Die nachfolgende Abschätzung der Größe der freien Parameter erfolgt mit FE-Modellen, die Elementlängen von 150 mm an der Keilzinkung aufweisen, da nur für diese Elementlänge Regressionsgleichungen zur Ermittlung der Festigkeiten und Steifigkeiten existieren. Das bedeutet, dass die Ergebnisse dieser Anpassungen ausschließlich Gültigkeit für die vorgewählte Elementlänge haben. Für jede andere Elementlänge haben die Parameter eine andere Größe.

7.2 Querdruck- und Schubfestigkeiten für das Spannungskriterium im Zugbereich von Universalkeilzinkenverbindungen BS-Holz/BS-Holz

Mit dem in Kapitel 5 beschriebenem Versuchsaufbau und Probekörpern können nur Kombinationen von Längszug-, Querzug- und Schubspannungen untersucht werden. In Nachbarelementen bereits ausgefallener Elemente und im mittleren Bereich der Universalkeilzinkenverbindung treten aber Kombinationen von Längszug-, Querdruckund Schubspannungen auf. Diese Querdruckspannungen vergrößern die aufnehmbare Schubspannung durch Aktivieren innerer Reibung.

Es werden die Bruchlasten verschiedener von Kolb (1966), (1968b), (1968c), (1970), Kolb/Radovic (1980), (1984) und Scappozza (1996) geprüfter Rahmenecken und Biegeträger mit schließendem Moment bei Variation der Querdruck- und Schubfestigkeiten für das Bruchkriterium von Norris (1962) simuliert und mit den tatsächlichen Bruchlasten verglichen.

Die angesetzte Querdruckfestigkeit $f_{c,90,mean}^{I-50}$ und die Schubfestigkeit $f_{v,mean}^{I-50}$ wurden variiert zwischen:

$$\begin{split} & 4,\!00\,N/mm^2 \leq f_{c,90,mean}^{l-50} \leq 8,\!00\,N/mm^2 \\ & 8,\!00\,N/mm^2 \leq f_{v,mean}^{l-50} \leq 12,\!0\,N/mm^2 \end{split}$$

Die beste Anpassung an alle betrachteten Prüfergebnisse ergab sich für:

$$\begin{split} f_{c,90,mean}^{I-50} &= 6,50\,N\,/\,mm^2 \\ f_{v,mean}^{I-50} &= 10,0\,N\,/\,mm^2 \end{split}$$

Diese Werte werden im folgenden für die Simulation aller BS-Holz/BS-Holz - Verbindungen benutzt. Das Bild 7.1 zeigt Bruchlasten gerader keilgezinkter Biegeträger von Kolb (1968a), Kolb/Radovic (1980), (1984) und Scappozza (1996) im Vergleich zu den Simulationsergebnissen.

Für die 8 Biegeträger aus Kolb/Radovic (1980), (1984) ergibt sich eine sehr gute Übereinstimmung. Die Mittelwerte der Festigkeit der Universalkeilzinkenverbindung aus den Versuchen entsprachen, trotz druckloser Verklebung, etwa dem Mittelwert der Festigkeit für BS 11 ohne UKZV. Diese Festigkeiten werden auch im Simulationsprogramm erreicht.

Die Biegeträger von Kolb (1968a) hatten 15 mm dicke Lamellen. Sie werden einmal mit einer Lamellendicke von 15 mm, ein zweites Mal mit einer Dicke von 33 mm simuliert.

- 1) links: Kolb (1968a), Träger 1 und 2, vermutlich BS 14,ungezinkte 15 mm Lamellen, rechts: wie vor, aber mit 33 mm Lamellenstärke simuliert
- Kolb/Radovic (1980), Träger A1-A4, BS 11, 33 mm Lamellen, drucklos verklebte UKZV
- Kolb/Radovic (1984), Träger A5-A8, BS 11, 33 mm Lamellen, drucklos verklebte UKZV, Wechselklimalagerung
- 4) Scappozza (1996), Träger A, BS 11, 33 mm Lamellen

Bei der Simulation mit einer Lamellendicke von 15 mm ergeben sich für die beiden Biegeträger- wie auch für die Simulation der anderen von Kolb (1968a) geprüften Bauteile (s. z.B. auch Bild 7.3) - etwas zu kleine Traglasten. Die Schwerpunktsspannung der Randlamelle eines aus 15 mm aufgebauten Trägers ist größer als die eines gleich hohen aus 33 mm oder sogar 42 mm aufgebauten Trägers. Dieser Effekt ist umso größer, je kleiner die Bauteilhöhe ist. Simuliert man die Bauteile mit 33 mm dicken Lamellen ohne Keilzinkung, so liegen die simulierten Bruchlasten daher etwas höher. Die größere Homogenität eines aus 15 mm dicken Lamellen aufgebauten Bauteiles kann demgegenüber vom Simulationsprogramm nicht erfasst werden. Dies würde eine Anpassung der in Kapitel 6.6 beschriebenen empirischen Versagensbedingungen erfordern, für die nicht genügend Versuchsergebnisse zur Verfügung stehen.

Die Bruchspannung des einzelnen Biegeträgers von Scappozza (1996) liegt etwa im Bereich der 5%-Fraktile der simulierten Bruchspannungen.

In Bild 7.2 sind die Ergebnisse für die Rahmenecken mit angevouteten Riegeln und Stielen aus Kolb (1968c), (1970) dargestellt. Es ergibt sich sowohl für die Rahmenecken ohne, wie auch für die mit Zwischenstück aus BS-Holz eine sehr gute Übereinstimmung der in den Versuchen ermittelten mit den simulierten Bruchlasten.

Bild 7.2: Simulations- und Prüfergebnisse von Rahmenecken mit gevouteten Riegeln

- 1) Kolb (1968c), einfach gezinkte Rahmenecken II 1 und II 2, vermutlich BS 11, 33 mm Lamellen
- 2) Kolb (1968c), einfach gezinkte Rahmenecke II 3, vermutlich BS 11, 33mm Lamellen
- Kolb (1968c), Rahmenecken mit Zwischenstück aus BS-Holz III 3 und III 4, BS 11 oder BS 14 (simuliert: BS14), 33 mm Lamellen, b=150 mm
- Kolb (1970), Rahmenecken mit Zwischenstück aus BS-Holz III 5 und III 6, BS 11 oder BS 14 (simuliert: BS14), 33 mm Lamellen, b=100 mm
- 5) Kolb (1970), Rahmenecken mit Zwischenstück aus BS-Holz III 7 und III 8, BS 11 oder BS 14 (simuliert: BS14), 33 mm Lamellen, b=80 mm

Bild 7.3: Simulations- und Prüfergebnisse von Rahmenecken, Riegel ohne Vouten

- 1) Kolb (1968a), einfach gezinkte Biegeträger 3 und 4, BS 11 oder BS 14 (simuliert: BS 14), 15 mm Lamellen
- Kolb (1968a), einfach gezinkte Rahmenecken 7 und 8, BS 11 oder BS 14 (simuliert: BS 14), 15 mm Lamellen
- Kolb (1968a), Biegeträger 5 und 6 mit Zwischenstück aus BS-Holz, BS 11 oder BS 14 (simuliert: BS 14), 15 mm Lamellen
- Kolb (1968a)], Rahmenecken 9 und 10 mit Zwischenstück aus BS-Holz, BS 11 oder BS 14 (simuliert: BS14), 15 mm Lamellen
- 5) Scappozza (1996), einfach gezinkte Rahmenecke B, BS 11, 33 mm Lamellen
- 6) Scappozza (1996), Rahmenecke C mit Zwischenstück aus BS-Holz, BS 11, 33 mm Lamellen

Die in Bild 7.3 dargestellten Rahmenecken und Biegeträger haben keine Vouten.

Für die Biegeträger und Rahmenecken aus Kolb (1968a) ergeben sich aus den bereits oben genannten Gründen durchweg etwas zu niedrige simulierte Traglasten. Bei einer Simulation mit 33 mm dicken Lamellen werden wiederum höhere Traglasten erreicht (hier nicht dargestellt).

Die simulierten Traglasten für die Rahmenecken aus Scappozza (1996) liegen etwas unter den tatsächlichen, werden aber hinsichtlich des Verlaufes gut wiedergegeben. Es wird vermutet, dass alle Versuche aus Scappozza (1996) herstellbedingt niedrigere Tragfähigkeiten hatten. Dafür spricht z.B., dass der ungestoßene Referenzträger der Festigkeitsklasse GL 24 (etwa BS 11) eine Festigkeit von 31,1 N/mm² also etwa 15% unter dem Mittelwert besaß.

7.3 Universalkeilzinkenverbindungen BS-Holz/BS-Holz mit öffnendem Moment

Kolb (1968a), Möhler/Siebert (1983) und Scappozza (1996) untersuchten das Tragverhalten von Rahmenecken und Biegeträgern mit oder ohne Zwischenstücken aus Brettschichtholz unter öffnendem Moment. Mit den in den Kapiteln 3 bis 7 getroffenen Annahmen ergeben sich die in Bild 7.4 dargestellten simulierten Festigkeiten.

- 1) Kolb (1968a), einfach gezinkter Biegeträger 11 und 12, BS 11 oder BS 14 (simuliert BS 14), 15 mm Lamellen
- 2) Möhler/Siebert (1983), einfach gezinkte Rahmenecke I, BS 14, 33 mm Lamellen
- 3) Möhler/Siebert (1983), einfach gezinkte Rahmenecke II, III, BS 14, 33 mm Lamellen
- 4) Scappozza (1996), einfach gezinkte Rahmenecke F, BS 11, 33 mm Lamellen
- 5) Scappozza (1996), Rahmenecke G mit Zwischenstück aus BS-Holz, BS 11, 33 mm Lamellen

Nur die Bruchlasten für die Rahmenecke G von Scappozza stimmen gut mit den simulierten Bruchlasten überein. Die Bruchlast dürfte bezogen auf die Grundgesamtheit aller Rahmenecken dieser Geometrie am unteren Rand liegen, da die Rahmenecke G mit Zwischenstück aus BS-Holz etwa die gleiche Traglast wie die einfach gezinkte Rahmenecke F bei ansonsten gleicher Geometrie und Lasteinleitung hatte. Für die übrigen Bauteile liegen die Mittelwerte der simulierten Bruchlasten etwa 40% unter den tatsächlichen Bruchlasten.

Bei den Simulationen tritt Querzugversagen im Bereich der einspringenden Ecke auf, während in den Versuchen die Querzugbrüche etwas unterhalb der Trägerachse begannen.

Bild 7.5:a) Simulation der UKZV ohne "Flankenbereich", Vektorplotb) Simulation der UKZV mit "Flankenbereich", Vektorplot

- 1) Kolb (1968a) einfach gezinkter Biegeträger 11 und 12, BS 11 oder BS 14 (simuliert BS 14), 15 mm Lamellen
- 2) Möhler/Siebert (1983), einfach gezinkte Rahmenecke I, BS 14, 33 mm Lamellen
- 3) Möhler/Siebert (1983), einfach gezinkte Rahmenecke II, III, BS 14, 33 mm Lamellen
- 4) Scappozza (1996), einfach gezinkte Rahmenecke F, BS 11, 33 mm Lamellen

Ursächlich für die Abweichungen dürfte die Simulation der Universalkeilzinkenverbindung (s.a. Kapitel 5.1) sein. Bei Winkeln von $\alpha \neq 0^0$ können im Bereich der Zinkenflanken durch kreuzweise Verklebung parallel zur Gehrung wirkende Kräfte übertragen werden. Über diesen Flankenbereich gleicht sich ein Teil der Umlenkkräfte aus, der Bereich der einspringenden Ecke wird entlastet.

Bei der Simulation als einfacher Stumpfstoß ist dieser Kräfteausgleich nicht möglich, die Schub- und Querspannungen in den anschließenden Brettschichtholzabschnitten werden sehr groß; das Maximum der Querzugspannungen liegt im Bereich der einspringenden Ecke (s. Bild 7.5a). Durch Einfügen eines Flankenbereiches, dessen Steifigkeitseigenschaften aus den Eigenschaften der unter dem Winkel α gekreuzten Zinkenflanken ermittelt werden, ergeben sich realistischere, kleinere Quer- und Schubspannungen, mit einem höher liegendem Maximum (s. Bild 7.5b).

Das Bild 7.6 zeigt die mit dieser Annahme simulierten Traglasten für die Träger aus Kolb (1968a), Möhler/Siebert (1983) und Scappozza (1996). Es ergeben sich höhere simulierte Traglasten, die aber immer noch im Mittel etwa 25% unter den tatsächlichen Traglasten liegen. Für die Simulation von Universalkeilzinkenverbindungen zwischen Brettschichtholzbauteilen bei öffnendem Moment ist daher eine detailliertere Bild der Universalkeilzinkenverbindung notwendig. Die hierzu notwendigen umfangreichen Änderungen des Simulationsprogramms können im Rahmen dieser Arbeit nicht durchgeführt werden.

Der oben beschriebene Effekt ist selbstverständlich auch für schließende Momente gegeben.

Für den Fall einer einfach gezinkten Rahmenecke mit α = 30° werden die beiden Varianten der Keilzinkensimulation untersucht. Der Ort der Bruchauslösung liegt hier nicht im Bereich der einspringenden Ecke sondern im oberen Drittel der Gehrung. Größe und Verlauf der Spannungen sind sehr ähnlich; kleinere Abweichungen der Querdruckund Schubspannungen haben einen deutlich geringeren Einfluss auf die simulierten Traglasten als Änderungen der Querzugspannungen bei öffnenden Momenten. Eine Berechnung ohne Einführung des Absperreffektes im Flankenbereich ergibt eine ausreichende Genauigkeit.

Bild 7.7:Vergleich von Simulationsergebnissen mit und ohne Berücksichtigung
des Absperreffektes bei schließendem Moment

7.4 Spannungskriterium im Druckbereich der UKZV

Bei einigen wenigen früher durchgeführten Versuchen wurden Kraft-Verformungsdiagramme mitgeteilt. Die Tabelle 7.1 enthält die aus diesen Diagrammen abgegriffenen Lastniveaus, bei denen die Verformungen des Druckbereichs gegenüber denen des Zugbereichs stärker anwachsen. Bei diesem Lastniveau waren äußerlich noch keine Verformungen in Form von "Druckfalten" erkennbar. Für das Auftreten solcher Druckfalten müssen die Zinken bereits so weit ineinandergeschoben sein, dass die Zinkenspitzen im gegenüberliegenden Zinkengrund aufsitzen

Bild 7.8: Vergleich zwischen simuliertem und beobachtetem Lastniveau

- 1) Kolb (1968a)], einfach gezinkte Rahmenecke 7 und 8, BS 11 oder BS 14 (simuliert: BS 14), 15 mm Lamellen
- Kolb (1968a), Rahmenecke 9 und 10 mit Zwischenstück aus BS-Holz, BS 11 oder BS 14 (simuliert: BS14), 15 mm Lamellen
- 3) Kolb (1970), Rahmenecken mit Zwischenstück aus BS-Holz III 5 und III 6, BS 11 oder BS 14 (simuliert: BS14), 33 mm Lamellen, b=100 mm
- 4) Kolb (1970), Rahmenecken mit Zwischenstück aus BS-Holz III 7 und III 8, BS 11 oder BS 14 (simuliert: BS14), 33 mm Lamellen, b=80 mm
- 5) Scappozza (1996), einfach gezinkte Rahmenecke B, BS 11, 33 mm Lamellen
- 6) Scappozza (1996), Rahmenecke C mit Zwischenstück aus BS-Holz, BS 11, 33 mm Lamellen

Quelle	Versuchskörper	α [°]	Last [kN]
Kolb (1968a)	7 und 8	30	24
Kolb (1968a)	9 und 10	45	16
Kolb (1970)	III5 und III6	19,5	45
Kolb (1970)	III7 und III8	19,5	40
Scappozza (1996)	Träger B	45	33
Scappozza (1996)	Träger C	22,5	38

Tabelle 7.1: Beobachtetes Lastniveau (Kolb (1968a), (1970); Scappozza (1996))

Wie auch für den Zugbereich sollte das Bruchkriterium von Norris (1962) zur Anwendung kommen. Für die Längsdruckfestigkeit f_0 wird die Druckfestigkeit der Zellen nach Kapitel 3.3.11 eingesetzt. Für die Querdruckfestigkeit f_{90} und die Schubfestigkeit f_v wurden dieselben Werte wie in Kapitel 7.2 gewählt.

$$\left(\frac{\sigma_{c,0}}{f_{c,0}}\right)^2 - \frac{\sigma_{c,0} \cdot \sigma_{c,90}}{f_{c,0} \cdot f_{c,90}} + \left(\frac{\sigma_{c,90}}{f_{c,90}}\right)^2 + \left(\frac{\tau}{f_v}\right)^2 = 1,$$

$$\land \qquad \left(\frac{\sigma_{c,0}}{f_{c,0}}\right)^2 \le 1,$$

$$\land \qquad \left(\frac{\sigma_{c,90}}{f_{c,90}}\right)^2 \le 1.$$
(7.1 a-c)

Die Simulation der in Tabelle 7.1 angegebenen Versuche ergab die in Bild 7.8 dargestellte gute Übereinstimmung der beobachteten mit den simulierten Lastniveaus.

7.5 Universalkeilzinkenverbindungen BS-Holz/BFU-BU

Kolb/Gruber (1978) berichteten, dass sich in keinem der Versuche mit Biegeträgern bzw. Rahmenecken "Druckfalten" gezeigt hätten. Auch Scappozza (1996) erwähnt solche Effekte nicht. Dies dürfte vor allem auf das günstigere Spannungsverhältnis bei Zwischenstücken aus Holzwerkstoffen zurückzuführen sein, bei denen die Längsspannungen vor allem im Zwischenstück umgelenkt werden. Auch die durch die Querfurniere der Holzwerkstoffplatten gegebene Querverstärkung im unmittelbaren Bereich der Universalkeilzinkenverbindung dürfte sich günstig auswirken. Es wird daher im Folgenden davon ausgegangen, dass die Universalkeilzinkenverbindungen zwischen Brettschichtholz und Baufurniersperrholz aus Buche im Druckbereich nicht versagen. Das Programm lässt aber weiterhin ein "Plastifizieren" der an die Universalkeilzinkenverbindung angrenzenden Brettschichtholzzelle zu.

- Bild 7.9: Simulations- und Prüfergebnisse von Rahmenecken mit Zwischenstücken aus BFU-BU mit schließendem Moment
 - 1) Kolb/Gruber (1978), Rahmenecken 1 und 2 mit geradem Zwischenstück aus BFU-BU, BS 11, 33 mm Lamellen
 - Kolb/Gruber (1978), Rahmenecken 3 und 4 mit geradem Zwischenstück aus BFU-BU, BS 11, 33 mm Lamellen

Das Bild 7.9 zeigt die mit dieser Annahme simulierten Tragfähigkeiten von Rahmenecken mit schließendem Moment im Vergleich zu den bei Kolb/Gruber (1978) ermittelten Bruchlasten.

Bei den in Bild 7.10 dargestellten Biegeträgern mit öffnendem Moment ergibt sich eine gute Übereinstimmung der simulierten Lasten mit den Bruchlasten für die Träger 1 und 2. Bei den Trägern 3 und 4 liegen die Bruchlasten aus den Versuchen unter den simulierten Bruchlasten.

Der vom Simulationsprogramm dargestellte geringe Unterschied zwischen den beiden Trägergeometrien kann damit erklärt werden, dass die Längsspannungen erst im Zwischenstück umgelenkt werden und daher nur geringe Quer- und Schubspannungen im unmittelbaren Universalkeilzinkenbereich auftreten.

Aus demselben Grund kommt auch der in Kapitel 7.3 beschriebene Einfluss des Flankenbereiches auf die Spannungsverteilung hier nicht zum Tragen.

- Bild 7.10: Simulations- und Prüfergebnisse von Biegeträgern mit Zwischenstücken aus BFU-BU mit öffnendem Moment
 - 1) Kolb/Gruber (1978), Biegeträger 1 und 2 mit gevoutetem Zwischenstück aus BFU-BU, BS 11, 33 mm Lamellen
 - Kolb/Gruber (1978), Biegeträger 3 und 4 mit geradem Zwischenstück aus BFU-BU, BS 11, 33 mm Lamellen

8 Überprüfung des Simulationsprogramms durch Traglastversuche

8.1 Allgemeines

Zur Überprüfung der Zuverlässigkeit des Simulationsprogramms, wie es in den vorangegangenen Kapiteln beschrieben wurde, wurden an der Bergischen Universität Wuppertal Traglastversuche an keilgezinkten Rahmenecken unterschiedlicher Geometrie durchgeführt. Die Rahmenecken wurden aus Brettware gefertigt, deren festigkeitsrelevante Eigenschaften wie Rohdichte, Biegeelastizitätsmodul und Ästigkeit abschnittsweise ermittelt wurden. Die Herstellung erfolgte in einer Weise, die es erlaubte, die Lage der ursprünglichen Brettabschnitte in der fertigen Rahmenecke zu bestimmen.

Die Rahmenecken wurden stehend in einer Stützenpresse bis zum Bruch belastet. Neben der Traglast wurden die horizontale Auslenkung, Dehnungen im Bereich der Universalkeilzinkenverbindungen und bei einigen Versuchen auch die Auslenkung senkrecht zur Rahmenecke gemessen. Bruchort und Versagensursache wurden protokolliert.

Mit Hilfe des in den vorangegangenen Kapiteln beschriebenen Simulationsprogramms wurde dann die Traglast der geprüften Rahmenecken simuliert.

8.2 Auswahl des Probenmaterials und Herstellung der Prüfkörper

Es wurden Bretter aus einem Stapel nordischer Fichte entnommen und ihre Rohdichte und Holzfeuchte gemessen. Der Biegeelastizitätsmodul und die Ästigkeit wurden in 10 mm Abständen mittels maschineller Holzsortierung ermittelt. Danach wurde die Brettware zu einem anderen BS-Holz-Hersteller gebracht, visuell sortiert, keilgezinkt und die Lamellen auf eine Stärke von 33 mm gehobelt. Die Lamellen wurden mit Phenol-Resorcinharzleim verklebt. Die Universalkeilzinkenverbindungen wurden ebenfalls mit Phenol-Resorcinharzleim ausgeführt. Das Zinkenprofil entsprach etwa dem Profil I-50 nach DIN 68140.

Die Herstellung der Rahmenecken sollte in einer Weise erfolgen, die es erlaubt, die Lage der Brettabschnitte in der Rahmenecke genau nachzuvollziehen. Bei vier zunächst hergestellten Rahmenecken war dies infolge vorzeitigen Weghobelns von Markierungen nicht möglich. Es konnte nachträglich nur noch die Lage von Keilzinkenverbindungen in den Riegeln und Zwischenstücken ermittelt werden. Diese Rahmenecken entsprachen der Festigkeitsklasse BS 14k. Sie werden im folgenden als Reihe "a" bezeichnet.

Es wurden vier weitere Rahmenecken der Festigkeitsklasse BS 14k hergestellt, bei denen die Bestimmung der Lage der Brettabschnitte gelang. Sie werden im folgenden als Reihe "b" bezeichnet. Die Materialdaten dieser Reihe können der Anlage F entnommen werden.

8.3 Versuchsaufbau und Prüfkörpergeometrie

Die Rahmenecken wurden stehend in eine Stützenpresse eingebaut. Die Lasteinleitung erfolgte an Ober- und Unterkante des Probekörpers über stählerne Zentriervorrichtungen. Es wurden induktive Wegaufnehmer zur Messung der horizontalen Auslenkung der Spitze und der Auslenkung senkrecht zur Rahmenecke befestigt. Die Dehnungen im Bereich der Universalkeilzinkenverbindungen wurden an der Vorder- und Rückseite der Rahmenecken ebenfalls mittels induktiver Wegaufnehmer gemessen. Die Messdaten der Wegaufnehmer und der Stützenpresse wurden über eine Mehrstellenmessanlage erfasst. Die Abmessungen der Prüfkörper wie die Lage der Messstellen können der Tabelle 8.1 und dem Bild 8.1 entnommen werden.

Tabelle 8.2 zeigt den Lamellenaufbau der Querschnitte.

Bild 8.1: Prüfkörpergeometrie

	α	φ	h _{ges}	dı	h	b	с	I ₁	l ₂	Holzfeuchte
Probekörper	[grd]	[grd]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[mm]	[%]
1a	35	35	3600	33	660	120	-	50	550	11,9
1b	35	35	3600	33	660	140	-	50	550	12,3
2a	17,5	35	3600	33	660	120	330	50	550	12,0
2b	17,5	35	3600	33	660	140	330	50	550	11,8
За	20	40	3524	33	495	120	300	50	390	11,4
3b	20	40	3524	33	495	140	300	50	390	12,3
4a	22,5	45	3000	33	495	120	300	50	390	11,3
4b	22,5	45	3000	33	495	140	300	50	390	11,6

Tabelle 8.1: Prüfkörperabmessungen und weitere Daten

Tabelle 8.2: Querschnittsaufbau der Träger

Probekörper	Zugbereich	Mittelbereich	Druckbereich
1a und 1b	4 Lamellen S13	12 Lamellen S10	4 Lamellen S13
2a und 2b	4 Lamellen S13	12 Lamellen S10	4 Lamellen S13
3a und 3b	3 Lamellen S13	9 Lamellen S10	3 Lamellen S13
4a und 4b	3 Lamellen S13	3 Lamellen S10	3 Lamellen S13

8.4 Versuchsdurchführung

Um Schlupf in den Zentriereinrichtungen kompensieren zu können, wurde für die Belastung des Prüfkörpers eine Last-Zeitkurve analog DIN EN 26891 gewählt (s. Bild 8.2). Es sei jedoch bereits hier darauf hingewiesen, dass in keinem der acht durchgeführten Versuche ein nennenswerter Schlupf beobachtet werden konnte.

Bild 8.2: Gewählte Last-Zeitkurve

8.5 Versuchsverläufe

8.5.1 Rahmenecken ohne Zwischenstück

8.5.1.1 Rahmenecke 1a mit $\varphi = \alpha = 35^{\circ}$

Während des Versuches mit der Rahmenecke 1a konnte nur ein kleiner Teil der Daten mit der Mehrstellenmessanlage gesichert werden. Die Angaben zum Verlauf der Verformungen sind daher unvollständig.

Bild 8.3: Rahmenecke 1a: Verformungen im Bereich der UKZV

Die Maximallast betrug 141 kN. Die UKZV riss infolge eines Zug-Schubbruches auf etwa 40 cm Länge auf. In etwa 12 cm Abstand zur Spitze bildeten sich faserparallele Risse etwa 80 cm tief in beide Riegel hinein aus. Bei Versuchende waren die Zinken der UKZV im Druckbereich deutlich sichtbar ineinander geschoben und einzelne Faserbündel der Zinken waren ausgeknickt. Eine Darstellung des Bruchbildes findet sich in den Bilder 8.4, 8.5 und 8.6.

Bild 8.4: Rahmenecke 1a: Bruchbild

Bild 8.5: Rahmenecke 1a: Bruchbild

Bild 8.6: Rahmenecke 1a: Bruchbild

8.5.1.2 Rahmenecke 1b mit $\varphi = \alpha = 35^{\circ}$

Die Rahmenecke 1b zeigte ab 60 kN (\cong 0,42·F_{ult}) eine überproportionale horizontale Auslenkung und Druckverformungen an der UKZV. Bei etwa 130 kN (\cong 0,92·F_{ult}) waren die Zinken ineinandergeschoben, bei 141,5 kN versagte die Rahmenecke schlagartig. Es konnte nicht beobachtet werden, ob ein Zugbruch im oberen Riegel in etwa 50 cm Abstand zur UKZV oder ein Zug-Schubbruch in der UKZV das Versagen auslöste. In 25 cm Abstand von der Spitze riss die UKZV auf etwa 6 cm Länge auf. Im oberen Drittel der Riegelhöhe verlief ein faserparalleler Riss durch den unteren Riegel. Ausgehend von einem großen Ast in der äußersten Lamelle des oberen Riegel hatten sich Risse in Richtung des oberen Auflagers und der UKZV ausgebildet. Das Bild 8.7 zeigt das Last-Verformungs-Diagramm für die UKZV, die Bilder 8.8 und 8.9 das Bruchbild der Rahmenecke 1b.

Die horizontale Auslenkung der Spitze der Rahmenecke betrug beim Bruch etwa 17mm, die maximale Auslenkung senkrecht zur Rahmenebene etwa 3,4mm.

Bild 8.7: Rahmenecke 1b: Verformungen im Bereich der UKZV

Bild 8.8: Rahmenecke 1b: Bruchbild

Bild 8.9: Rahmenecke 1b: Bruchbild

Bild 8.10: Rahmenecke 1b: Horizontale Auslenkung der Spitze

Bild 8.11: Rahmenecke 1b: Verformungen senkrecht zur Rahmenebene

8.5.2 Rahmenecken mit Zwischenstück

8.5.2.1 Rahmenecke 2a mit ϕ = 35°; α =17,5°

Die horizontale Auslenkung der Rahmenecke 2a wie auch die längs der UKZV gemessenen Verformungen stiegen bis etwa 80 kN ($\cong 0,45 \cdot F_{ult}$) annähernd linear an. Danach nahmen die horizontale Auslenkung und die Verformungen im Druckbereich - besonders an der unteren UKZV - überproportional zu. Bei etwa 130 kN ($\cong 0,73 \cdot F_{ult}$) begann sich die äußere Ecke des Zwischenstückes von unten nach oben abzuspalten. Die weitere Laststeigerung wurde durch starkes Knistern begleitet. Bei etwa 155 kN ($\cong 0,87 \cdot F_{ult}$) waren die Zinken der unteren UKZV so ineinandergeschoben, dass kein Zinkenspiel mehr vorhanden war. Es begann sich eine Quetschfalte auszubilden (s. Bild 8.12).

Test.Profkorper 2

Bild 8.12: Quetschfalten an der unteren UKZV der Rahmenecke 2a

Der Bruch trat bei 178,7 kN schlagartig ein. Das Bruchbild zeigen die Bilder 8.13, 8.14 und 8.15. Vermutlich ausgehend von einem Zug-Schub-Bruch in der oberen UKZV spaltete sich der obere Riegel im oberen Drittel der Höhe bis zum oberen Auflager vollständig auf. In der anderen Richtung breitete sich der Riss durch das Zwischenstück bis in den unteren Riegel aus. Er verlief dabei durch eine der für das Zusammenpressen der Rahmenecken vorhandenen Bohrungen.

Das Bilder 8.16 und 8.17 zeigen den Verlauf der Verformungen im Druck- bzw. Zugbereich der UKZV.

Die maximale gemessene seitliche Auslenkung betrug etwa 1mm, die maximale horizontale Auslenkung ungefähr 21mm.

Bild 8.13: Bruchbild Rahmenecke 2a

Bild 8.14: Bruchbild Rahmenecke 2a

Bild 8.15: Rahmenecke 2a: Bruchbild

Bild 8.16: Rahmenecke 2a: Verformungen an der oberen UKZV

Bild 8.17: Rahmenecke 2a: Verformungen im Druckbereich der UKZV

Bild 8.18: Rahmenecke 2a: Horizontale Auslenkung der Spitze

Bild 8.19: Rahmenecke 2a: Verformungen senkrecht zur Rahmenebene

8.5.2.2 Rahmenecke 2b mit ϕ = 35°; α =17,5°

Auch bei der Rahmenecke 2b stellte sich bis 110 kN ($\cong 0,50 \cdot F_{ult}$) eine annähernd lineare horizontale Auslenkung der Rahmenspitze und annähernd lineare Verformungen längs der UKZV ein. Bei etwa 96kN ($\cong 0,43 \cdot F_{ult}$) machten sich Sprünge in den Kraft-Verformungslinien bemerkbar, die jedoch nicht auf das Abspalten der Außenecke zurückzuführen waren sondern vermutlich auf Rissbildungen im Inneren der Rahmenecke. Ab etwa 110 kN stiegen die Verformungen im Druckbereich - besonders an der oberen UKZV - überproportional an.

Die Last wurde bis zu einer Höhe von 220,9 kN gesteigert, bei der der Träger dann schlagartig infolge eines Zugbruches in der unteren UKZV versagte. Die Zinken der oberen UKZV waren bei Versuchsende deutlich sichtbar ineinander geschoben. Die untere UKZV war auf einer Länge von etwa 13 cm beginnend vom äußeren Rand der Rahmenecke aufgerissen. Vom Rissende aus war das Zwischenstück in Faserrichtung vollständig aufgespalten. Der sich daran anschließende, etwa 1 m lange faserparallele Riss im oberen Riegel verlief zum Teil durch eine Klebefuge die nur einen geringen Holzfaserbelag zeigte.

Das Bilder 8.20 und 8.21 zeigen die Verformungen im Druck- bzw. Zugbereich der UKZV. Die Bilder 8.22, 8.23 und 8.24 zeigen das Bruchbild des Versuches 2b.

Die maximale gemessene seitliche Auslenkung betrug etwa 1,2mm, die maximale horizontale Auslenkung ungefähr 21mm.

Bild 8.21: Rahmenecke 2b: Verformungen an der oberen UKZV

Bild 8.22: Rahmenecke 2b: Bruchbild

Bild 8.23: Rahmenecke 2b: Bruchbild

Bild 8.24: Rahmenecke 2b: Bruchbild

Bild 8.25: Rahmenecke 2b: Horizontale Auslenkung der Spitze

Bild 8.26: Rahmenecke 2b: Verformungen senkrecht zur Rahmenebene

8.5.2.3 Rahmenecke 3a mit $\varphi = 40^{\circ}$

Bei der Rahmenecke 3a nahmen die Druckverformungen an der oberen UKZV von Beginn des Versuches an überproportional zu. Erst bei 50 kN (\cong 0,54·F_{ult}) stiegen auch die Druckverformungen an der unteren UKZV und die horizontale Auslenkung nicht mehr linear an, wobei die Druckverformungen an der unteren UKZV dann rasch größer als die an der oberen UKZV waren. Bei 65 kN (\cong 0,70·F_{ult}) platzte die Außenecke oben ab. Bei 80 kN (\cong 0,87·F_{ult}) waren die Zinken der unteren UKZV vollständig ineinandergeschoben. Das Versagen trat bei 92,2 kN schlagartig durch einen Zugbruch in der unteren UKZV ein, die auf fast der ganzen Länge aufriss. Zwei sich anschließende Brüche spalteten das Zwischenstück vollständig auf. Bild 8.27 und Bild 8.28 zeigen den Verlauf der Verformungen im Druck- bzw. Zugbereich der UKZV. Die Bilder 8.29, 8.30 und 8.31 das Bruchbild.

Die maximale horizontale Auslenkung betrug 23 mm, die maximale seitliche Auslenkung 1,3 mm.

Bild 8.27: Rahmenecke 3a: Verformungen an der unteren UKZV

Bild 8.28: Rahmenecke 3a: Verformungen an der oberen UKZV

Bild 8.29: Rahmenecke 3a: Bruchbild

Bild 8.30: Rahmenecke 3a: Bruchbild

Bild 8.31: Rahmenecke 3a: Bruchbild

Bild 8.32: Rahmenecke 3a: Horizontale Auslenkung der Spitze

Bild 8.33: Rahmenecke 3a: Verformungen senkrecht zur Rahmenebene

8.5.2.4 Rahmenecke 3b mit $\varphi = 40^{\circ}$; $\alpha = 20^{\circ}$

Ab etwa 50 kN (\cong 0,43·F_{ult}) wuchsen die horizontale Auslenkung und die Druckverformungen an beiden UKZV der Rahmenecke 3b überproportional an. Die Druckverformungen behielten auch während des weiteren Versuchsverlaufes an beiden UKZV ungefähr die gleiche Größe. In den Kraft-Verformungs-Diagrammen sichtbare Sprünge bei 74 kN (\cong 0,55·F_{ult}) und 110 kN (\cong 0,94·F_{ult}) waren nicht auf das Abplatzen der Außenecke zurückzuführen. Auch an anderen Stellen der Rahmenecke 3b waren bei diesen Laststufen keine Risse erkennbar. Bei 116,7 kN versagte die Rahmenecke vermutlich infolge eines Zugbruches in der unteren UKZV. Diese riss etwa 11 cm weit auf.

Das Zwischenstück wurde komplett aufgespalten. Im oberen und unteren Riegel bildeten sich im oberen Drittel der Höhe kurze Risse aus. Bild 8.34 und Bild 8.35 zeigen den Verlauf der Verformungen im Druck- bzw. Zugbereich der UKZV, Bild 8.36 das Bruchbild.

Die maximale seitliche Auslenkung betrug 2,7 mm, die horizontale 48 mm.

Bild 8.34: Rahmenecke 3b: Verformungen an der unteren UKZV

Bild 8.35: Rahmenecke 3b: Verformungen an der oberen UKZV

Bild 8.36: Rahmenecke 3b: Bruchbild

Bild 8.37: Rahmenecke 3b: Horizontale Auslenkung der Spitze

Bild 8.38: Rahmenecke 3b: Verformungen senkrecht zur Rahmenebene

8.5.2.5 Rahmenecke 4a mit $\phi = 45^{\circ}$; $\alpha = 22,5^{\circ}$

Ab 40 kN (\cong 0,40·F_{ult}) wuchsen bei der Rahmenecke 4a die horizontale Auslenkung und die Druckverformungen im Bereich der UKZV überproportional an. Die Außenecke spaltete sich bei 58 kN (\cong 0,59·F_{ult}) ab. Bei 85 kN (\cong 0,86·F_{ult}) waren die Zinken der oberen UKZV ineinandergeschoben und es bildeten sich Druckfalten aus. Die Last wurde auf 98,3 kN gesteigert, dann versagte die Rahmenecke schlagartig.

Es war nicht festzustellen, ob das Versagen durch einen Zugbruch im oberen Riegel oder einen Zug-Schubbruch im oberen Drittel der oberen UKZV begann. Der Riss verlief im oberen Riegel im Abstand von etwa 25 cm zur UKZV zunächst senkrecht zum Rand durch vier Lamellen mit drei nahe übereinanderliegenden größeren Ästen. Von dieser Stelle verlief der Riss dann zur UKZV. Diese war in einem Abstand von 9 cm zur Außenkante auf 30 cm aufgerissen.

Die maximale gemessene horizontale Auslenkung betrug etwa 22 mm. Für die Messung der senkrechten Auslenkung stand kein Wegaufnehmer zur Verfügung.

Bild 8.39: Rahmenecke 4a: Verformungen an der unteren UKZV

Bild 8.40: Rahmenecke 4a: Verformungen an der oberen UKZV

Bild 8.41: Rahmenecke 4a: Bruchbild

Bild 8.42: Rahmenecke 4a: Horizontale Auslenkung der Spitze

8.5.2.6 Rahmenecke 4b mit ϕ = 45°; α = 22,5°

Der Versuch mit der Rahmenecke 4b verlief sehr ähnlich zu dem mit der Rahmenecke 4a. Bei $0,36 \cdot F_{ult}$ nahmen die horizontale Auslenkung und die Druckverformungen längs der UKZV überproportional zu, bei etwa $0,45 \cdot F_{ult}$ platzte die Außenecke unten ab. Danach konnte die Last bis 111 kN gesteigert werden. Die Rahmenecke versagte schlagartig durch Zugbruch im oberen Riegel in etwa 30 cm Abstand von der oberen UKZV. An dieser Stelle befand sich ein größerer Ast. Es bildete sich ein Riss bis zur oberen UKZV aus, die in der Folge weit aufriss. Das Zwischenstück wurde durch einen Sekundärriss zur Hälfte gespalten.

Die maximale seitliche Auslenkung betrug 3,8 mm, die horizontale 23 mm.

Bild 8.43: Rahmenecke 4b: Verformungen an der oberen UKZV

Bild 8.44: Rahmenecke 4b: Verformungen an der unteren UKZV

Bild 8.45: Rahmenecke 4b: Bruchbild

Bild 8.47: Rahmenecke 4b: Horizontale Auslenkung der Spitze

Bild 8.48: Rahmenecke 4b: Verformungen senkrecht zur Rahmenebene

8.6 Vergleich der Versuchsergebnisse mit Simulationen

Mit dem in den Kapiteln 3 bis 7 beschriebenem Simulationsprogramm wurden die im Kapitel 8.5 dargestellten Versuche simuliert.

In einem ersten Durchgang wurden Simulationen ohne Eingabe der gemessenen BS-Holz-Eigenschaften, also ohne Eingabe der Lage von Keilzinkenverbindungen in den Lamellen, der Rohdichte, des Elastizitätsmoduls parallel zur Faser oder der Ästigkeit, durchgeführt.

Das Bild 8.49 zeigt die Ergebnisse von je 200 Simulationen pro Versuch. Es ergab sich eine sehr zufriedenstellende Übereinstimmung für alle 8 Versuche.

Auch der in Bild 8.50 gezeigte Vergleich der Lastniveaus, bei denen erste Zellen im Druckbereich der Universalkeilzinkenverbindung ausfallen, zeigt eine sehr zufriedenstellende Übereinstimmung.

Bild 8.49: Vergleich der Simulationsergebnisse ohne Eingabe der Messdaten mit den Versuchsergebnissen, Bruchlasten

Bild 8.50: Vergleich der Simulationsergebnisse ohne Eingabe der Messdaten mit den Versuchsergebnissen: Versagen erster Zellen im Druckbereich der UKZV

In einem zweiten Durchgang wurden beide Reihen unter Eingabe der vorhandenen Messdaten simuliert. Es wurde erwartet, dass das Programm hierbei etwas bessere Ergebnisse liefern würde als bei der zuvor durchgeführten "allgemeineren" Simulation.

Für die Reihe b) wurde neben der Lage von Keilzinkungen und der Rohdichte auch der Elastizitätsmodul parallel zur Faser eingegeben. Die mit der Sortiermaschine Euro-Grecomat bestimmten Astabmessungen konnten nicht unmittelbar in das Simulationsprogramm übergeben werden. Diese Astabmessungen werden mittels Röntgendurchstrahlung gemessen; sie stellen also auf die Grundfläche projizierte Astgrößen dar. Es wurde daher für die Simulation der Ästigkeit der Rahmenecken der Reihe b) folgender Weg beschritten:

- Es wurde f
 ür alle Bretter die maximale Astgr
 ö
 ße aus der Messung des Euro-Grecomaten ermittelt. Die maximalen Astgr
 ö
 ßen wurden nach der Gr
 ö
 ße sortiert.
- 2. In gleicher Weise wurden die Äste jedes einzelnen Brettes sortiert.
- 3. Es wurden so viele maxKAR-Werte simuliert, wie das Bauteil Bretter hatte und dann in der unter Nr.1.) ermittelten Reihenfolge den Brettern zugewiesen.
- 4. Mit den Gleichungen von Görlacher (s. Kapitel 3.3.5) wurden dann Astgrößen für jedes Brett simuliert und dem Brett in der unter Nr. 2.) ermittelten Reihenfolge zugewiesen.

Alle übrigen Größen wurden entsprechend den Angaben der Kapitel 3, 4 und 7 bestimmt.

Versuche		"allgemeinere	e" Simulation	"genauere" Simulation			
Nr.	Bruchlast	Simulierte Bruch- last	Abweichung Δ_i	Simulierte Bruch- last	Abweichung Δ_i		
	[kN]	[kN]	[%]	[kN]	[%]		
1b	141,5	160,4	+13,4	150,6	+6,4		
2b	220,9	204,8	-5,8	199,5	-9,7		
3b	116,7	108,3	-7,2	123,2	+5,6		
4b	111,0	94,5	-14,8	105,3	-5,1		
Alle	-	-	-	-	-		

Tabelle 8 3 [.]	Veraleich der	Simulationsergebnisse	der Reihe b)	١
	vergieich dei	Simulationsergebrisse		,

Die Tabelle 8.3 zeigt, dass die Simulation mit Eingabe der gemessenen Materialeigenschaften etwas genauere Ergebnisse liefert. Dies kann auch dem Bild 8.51 entnommen werden, bei dem jeweils auf der linken Seite die Ergebnisse der "allgemeineren" und auf der rechten Seite die der "genaueren" Simulation dargestellt sind.

Bild 8.51: Vergleich der Simulationsergebnisse mit Eingabe der Messdaten mit den Versuchsergebnissen, Bruchlasten

Abschließend wurden noch die simulierten Bruchorte mit den tatsächlichen Bruchorten verglichen. Ein Vergleich des Bildes 8.52 mit Bild 8.6 (Ecke 1a), Bild 8.9 (Ecke 1b), Bild 8.15 (Ecke 2a), Bild 8.24 (Ecke 2b), Bild 8.31 (Ecke 3a), Bild 8.36 (Ecke 3b), Bild 8.41 (Ecke 4a), und Bild 8.46 (Rahmenecke 4b) zeigt die sehr gute Übereinstimmung.

Bild 8.52: Darstellung der Bruchorte von jeweils 50 Simulationsläufen pro Trägergeometrie

Es kann festgestellt werden, dass das entwickelte Simulationsprogramm die durchgeführten Versuche mit genügender Genauigkeit simulieren kann.

9 Bemessungsvorschlag

9.1 Allgemeines

Nachfolgend werden Bemessungsvorschläge für keilgezinkte Rahmenecken oder Biegeträger mit oder ohne Zwischenstück aus Brettschichtholz oder Baufurniersperrholz aus Buche vorgestellt, die sich im Wesentlichen an den Vorschlägen von Heimeshoff (1976) und Steck (1988) anlehnen. Die Vorschläge haben Gültigkeit für Brettschichtholz aus visuell sortiertem Fichtenholz in der Nutzungsklasse 1 unter Kurzzeitbelastung. Es wird davon ausgegangen, dass die Lamellenstöße mit Zinkenprofilen I-15 oder I-20 und die Universalkeilzinkenverbindungen mit einem Zinkenprofil I-50 nach DIN 68140 ausgeführt werden. Das Baufurniersperrholz aus Buche muss DIN 68705-5 entsprechen, einen symmetrischen Aufbau besitzen und kreuzweise zu Blöcken verklebt werden.

9.2 Gerade Biegeträger

 $k_{h} = \max \left\{ \left(\frac{600}{h} \right)^{0.14} \right\}$

In Anlehnung an E DIN 1052 (2000-05) wird folgendes Vorgehen vorgeschlagen:

Die Verschwächung durch die Universalkeilzinkenverbindung ist erst ab einer Querschnittshöhe oder –breite von mehr als 300 mm mit dem Verschwächungsgrad v nach DIN 68140 bzw. DIN EN 387 (2002-04) zu berücksichtigen.

Bei der Ermittlung der charakteristischen Biegefestigkeit des Brettschichtholzes wird der Höheneinfluss mit einem Höhenfaktor berücksichtigt.

$$f_{m,k}^{UKZV} = f_{m,k}^{BSH} \cdot k_h \cdot (1 - v) \qquad \text{für } h > 300 \text{mm}$$

$$(9.1)$$

(9.3)

mit:

Höhe h in [mm] Verschwächungsgrad nach DIN 68140-1 v = 0,17 Einen Vergleich der mit dem Simulationsprogramm ermittelten 5%-Fraktilen für die Biegeträger aus Kolb (1968a), Kolb/Radovic (1980), (1984) und Scappozza (1996) mit obigem Bemessungsvorschlag enthält die Tabelle 9.1.

				Simuliert	Berechnet					
Quelle	Bezeichn.	b/h		f _{m,05,sim.}	Berechnung nach	k _h	f _{m,05} UKZV	f _{m,05} UKZV / f _{m,05,sim.}		
[-]	[-]	[mm]	[-]	[N/mm ²]	[-]	[1]	[N/mm ²]	[1]		
Kolb (1968a)	Träger 1 und 2	120/500	BS 14	25,9 ¹⁾	Gl. (9.1)	1,03	23,9	0,93		
Kolb/Radovic (1980), (1984)	Träger A1 –A8	107/200	BS 11	27,0	Gl. (9.2)	1,17	28,1	1,04		
Scappozza (1996)	Träger A	120/600	BS 11	24,4	Gl. (9.1)	1,00	19,9	0,82		
¹⁾ Simuliert mit 33 mm Lamellen										

Tabelle 9.1: Gerade Biegeträger

9.3 Universalkeilzinkenstöße BS-Holz/BS-Holz mit $\alpha \neq 0^{\circ}$

9.3.1 Schließendes Moment

Die E DIN 1052 (2000-05) enthält eine Bemessungsgleichung in Anlehnung an Heimeshoff (1976). Im Folgenden wird zunächst die Übereinstimmung dieser Bemessungsgleichung mit den simulierten 5%-Fraktilen untersucht. Die Bemessungsgleichungen sind, dem Stand der Diskussionen zur E DIN 1052 folgend, in einigen, nachfolgend erläuterten Punkten abgeändert.

Es wird ein Spannungsnachweis mit Gleichung 9.4 in einem Schnitt geführt, der senkrecht zur Stabachse durch die Innenecke der Universalkeilzinkenverbindung geführt wird. Der Faktor $k_{c,\alpha}$ berücksichtigt die Abhängigkeit der Druckfestigkeit vom Kraft-Faserwinkel, k_c ist der Knickbeiwert nach E DIN 1052. Die Verschwächung durch die Universalkeilzinkenverbindung ist ab einer Querschnittshöhe oder –breite von mehr als 300 mm bei der Ermittlung der Spannungen mit dem Verschwächungsgrad v nach DIN 68140 bzw. DIN EN 387 (2002-04) zu berücksichtigen.

Abweichend zur E DIN 1052 (2000-05) wird bei der Ermittlung der charakteristischen Biegefestigkeit des Brettschichtholzes der Höheneinfluss mit dem Höhenfaktor nach Gleichung 9.3 berücksichtigt.

Abweichend zur E DIN 1052 (2000-05) wird ein Faktor $k_{c,90}$ zur Korrektur der in DIN EN 1194 um etwa 40% reduzierten Querdruckfestigkeiten in Gleichung 9.5 berücksichtigt.

Wiederum in Abweichung von E DIN 1052 (2000-05) wird für Bauteile der Festigkeitsklasse GL28 (BS14) und besser nicht mit den Festigkeitswerten der nächstniedrigeren Klasse gerechnet. Der bisher zur Begründung angeführte Einfluss von Ästen im Bereich der Universalkeilzinkenverbindung konnte in dieser Untersuchung nicht bestätigt werden.

$$\frac{1}{k_{c,\alpha}} \cdot \left(\frac{\sigma_{c,0,d}}{k_c \cdot f_{c,0,d}} + \frac{\sigma_{m,d}}{k_h \cdot f_{m,d}} \right) \le 1$$
(9.4)

$$\mathbf{k}_{\mathrm{c},\alpha} = \frac{\mathbf{f}_{\mathrm{c},0,\mathrm{k}}}{\mathbf{k}_{\mathrm{c},90} \cdot \mathbf{f}_{\mathrm{c},90,\mathrm{k}}} \cdot \sin^2 \alpha + \cos^2 \alpha}$$
(9.5)

mit: $k_{c,90} = 1,75$

1

Ein Vergleich der mit dem Simulationsprogramm ermittelten 5%-Fraktilen für die Biegeträger und Rahmenecken aus Kolb (1968a), (1968c), (1970) und Scappozza (1996) und den in Kapitel 8 beschriebenen Versuchen mit den nach obigem Bemessungsvorschlag aufnehmbaren charakteristischen Spannungen enthält die Tabelle 9.2. Dabei wurde aufgrund der in den Versuchen gemessenen geringen Verformungen auf die Berücksichtigung des Knickbeiwertes verzichtet.

Bild 9.1: Vergleich der simulierten 5%-Fraktilen mit dem modifizierten Bemessungsvorschlag nach E DIN 1052 (2000-05)

Quelle	Bez.	Festig-	b/h ¹⁾	α	Simulation	ı	Berechnung						Neuer Vorschlag	
		keits-			$f_{m,05,sim}^{2)}$	$f_{\rm c0,05}/f_{\rm m,05,sim}$	Ver-	$k_h^{4)}$	f _{m,k} ⁵⁾	f _{c,0,k} 5)	$k_{c,\alpha}$ nach	f _{m,05} nach	k _c , _α	f _{m,05}
		klasse					schw.3)				E DIN 1052	E DIN 1052		
	[-]	[-]	[mm]	[°]	[N/mm ²]	[1]	[-]	[1]	[N/mm ²]	[N/mm ²]		[N/mm ²]		[N/mm ²]
	Versuch 1	BS14k	140/660	35	18,6	0,000574	ја	1,00	28,0	24,0	0,43	12,0	0,50	14,0
	Versuch 2	BS14k	140/660	17,5	15,7	0,000765	ja	1,00	28,0	24,0	0,73	17,0	0,79	18,4
	Versuch 3	BS14k	140/495	20	18,6	0,000600	ja	1,03	28,0	24,0	0,68	15,8	0,74	17,2
	Versuch 4	BS14k	140/495	22,5	17,0	0,000567	ja	1,03	28,0	24,0	0,63	15,1	0,69	16,5
Kolb	Träger 3, 4	BS14h	120/500	15	23,2	0	ja	1,03	28,0	26,5	0,79	18,9	0,83	19,9
(1968a)	Träger 5, 6	BS14h	120/500	11,25	19,4	0	ja	1,03	28,0	26,5	0,87	20,8	0,90	21,5
	Träger 7, 8	BS14h	120/500	30	15,7	0,000577	ja	1,03	28,0	26,5	0,50	12,0	0,57	13,7
Scap-	Träger B	BS11h	120/600	45	15,6	0,000363	ja	1,00	24,0	21,0	0,33	6,6	0,40	7,96
pozza	Träger C	BS11h	120/600	22,5	16,1	0,000394	ja	1,00	24,0	21,0	0,63	12,5	0,69	13,7
(1996)							-							
Kolb	Rahmen-	BS11h	120/840	40	13,2	0,000484	ja	1,00	24,0	21,0	0,37	7,4	0,45	9,00
(1968c)	ecke II 1,2													
	Rahmen-	BS11h	150/ 840	40	10,7	0,000484	ja	1,00	24,0	21,0	0,37	7,4	0,45	9,00
	ecke II 3													
	Rahmen-	BS14k	150/820	20	16,1	0,000522	ja	1,00	28,0	24,0	0,68	15,8	0,74	17,2
	ecke III 3.4													

Tabelle 9.2: BS-Holz/BS-Holz mit schließendem Moment

¹⁾ Im Schnitt senkrecht zur Achse des Stiels

²⁾ hier muss mit Brutto-Querschnitten gerechnet werden

³⁾ dann wird mit (1-v)=0,83 abgemindert $(600)^{0.14}$

⁴⁾ Höhenfaktor
$$\left(\frac{600}{h}\right)$$

⁵⁾ Festigkeitswerte BS-Holz aus E DIN 1052

Die aus Versuchen zurückgerechneten $k_{c, \alpha}$ -Werte streuen aufgrund des im Bemessungsvorschlag nach E DIN 1052 (2000-05) nicht berücksichtigten Einflusses der Trägerhöhe, der Breite des Zwischenstückes und des Verhältnisses von Längskraft und Moment im betrachteten Schnitt.

Die Bild 9.1 zeigt, dass die Gleichung nach E DIN 1052 (2000-05) die Traglasten bei kleinen Winkeln eher über- und bei großen Winkeln deutlich unterschätzt. Sie führt zu einer deutlich größeren Abminderung als die derzeit verwendete Gleichung von Heimeshoff basierend auf den zulässigen Spannungen der DIN 1052 (1996-10).

Hier wird daher eine Anpassung der Hankinson-Gleichung aus E DIN 1052 (2000-05) in folgender Form vorgeschlagen:

$$k_{c,\alpha} = \frac{1}{\frac{f_{c,0,k}}{2,25 \cdot f_{c,90,k}} \cdot \sin^2 \alpha + \cos^2 \alpha}$$
(9.6)

Damit ergibt sich eine bessere Anpassung als nach dem bisherigen Vorschlag.

Bislang enthielt die E DIN 1052 für kombinierte Beanspruchungen durchgehend Nachweisformeln basierend auf der Hankinson-Gleichung, in der lediglich Rechenwerte der Längsund Querfestigkeit eingehen. Seit Neuestem sollen die Gleichungen auf das Norris-Kriterium umgestellt werden, in dem zusätzlich auch der Rechenwert der Schubfestigkeit Berücksichtigung findet. Dies wird sicherlich zu einer deutlich besseren Anpassung führen, erfordert aber eine detaillierte Auswertung der Spannungsverläufe, die bislang noch nicht erfolgt ist, mit dem Simulationsprogramm aber durchaus möglich ist. Eine entsprechende Auswertung ist für einen späteren Zeitpunkt beabsichtigt.

9.3.2 Öffnendes Moment

Auch für öffnende Momente wird eine Anpassung des Hankinson-Kriteriums vorgenommen. Eine lineare Abminderung auf 20% der Festigkeit für schließende Momente wird als zu ungünstig angesehen. Die Regelung führt zudem zu der unbefriedigenden Situation, dass schon bei sehr kleinen Winkeln α für öffnende Momente eine Abminderung um 80% vorzunehmen ist, während bei einem geraden Stoss gar keine Abminderung bei wechselnder Richtung des Momentes zu berücksichtigen ist.

Eine gute Anpassung ergibt sich für:

$$\mathbf{k}_{t,\alpha} = \frac{1}{\mathbf{60} \cdot \mathbf{f}_{t,90,k} \cdot \mathbf{sin}^2 \,\alpha + \mathbf{cos}^2 \,\alpha} \qquad \qquad \text{mit } \mathbf{f}_{t,90,k} \text{ in } [\text{N/mm}^2] \qquad (9.7)$$

$$\frac{1}{k_{t,\alpha}} \cdot \left(\frac{\sigma_{c,0,d}}{f_{t,0,d}} + \frac{\sigma_{m,d}}{k_h \cdot f_{m,d}} \right) \le 1$$
(9.8)

Auch hier wird mit den Festigkeitswerten für die Festigkeitsklasse des BS-Holz gerechnet und nicht mit denen der nächstniedrigeren Klasse.

Quelle	Träger/	Festig-	b/h ¹⁾	α	Sim	ulation	Berechnung mit neuem Vorschlag					
	Rah- menecke	keits- klasse			$f_{m,05,sim}^{\qquad 2)}$	Verschw. ³⁾	$k_{h}^{4)}$	f _{m,k} ⁵⁾	$f_{t,0,k}^{(5)}$	$k_{t,\alpha}$	f _{m,05}	
			[mm]	[°]	[N/mm ²]		[1]	[N/mm ²]	[N/mm ²]	[1]	[N/mm ²]	
Kolb (1968a)	11, 12	BS14h	120/500	15	6,82	ja	1,03	28,0	16,5	0,35	8,31	
Möhler/ Siebert (1983)	I, II, III	BS14h	180/700 bzw. 200/700	31,5	2,99	ја	1,00	28,0	16,5	0,12	2,70	
Scap- pozza (1996)	F	BS11h	120/600	45	2,76	ja	1,00	24,0	14,0	0,07	1,33	
Simu- liert	-	BS14h	120/500	7,5	16,35	ja	1,03	28,0	16,5	0,7	16,04	
 ¹⁾ Im Schnitt senkrecht zur Achse des Stiels ²⁾ hier muss mit Brutto-Querschnitten gerechnet werden 												

Tabelle 9.3: BS-Holz/BS-Holz mit öffnendem Moment

³⁾ dann wird mit (1-v)=0,83 abgemindert

⁴⁾ Höhenfaktor $\left(\frac{600}{h}\right)^{0.14}$

⁵⁾ Festigkeitswerte BS-Holz aus E DIN 1052

Bild 9.2: Vergleich mit Versuchsergebnissen

9.4 Universalkeilzinkenstöße BS-Holz/BFU-BU mit $\alpha \neq 0^{\circ}$

9.4.1 Schließendes Moment

Die Ergebnisse der Tabelle 9.4 zeigen, dass für Universalkeilzinkenstöße zwischen Brettschichtholz und Baufurniersperrholz aus Buche keine Abminderung der rechnerischen Festigkeiten vorgenommen werden muss. In Anlehnung an den Bemessungsvorschlag von Steck (1988) wird daher folgendes Berechnungsverfahren vorgeschlagen:

$$\left(\frac{\sigma_{c,0,d}}{k_c \cdot f_{c,0,d}} + \frac{\sigma_{m,d}}{k_h \cdot f_{m,d}}\right) \le 1$$
(9.8)

Die Verschwächung durch die Universalkeilzinkenverbindung und der Höhenfaktor nach Gleichung 9.3 sind gegebenenfalls zu berücksichtigen.

Es wird mit den Festigkeitswerten der Festigkeitsklasse des Brettschichtholzbauteils gerechnet.

Quelle	Bez.	Festig-	b/h ¹⁾ α		α Simulation		Berechnung mit neuem Vorschlag				
		keits- klasse			${f_{m,05,sim}}^{2)}$	Verschw. ³⁾	$k_h^{4)}$	$f_{m,k}{}^{5)} \\$	$f_{c,0,k}^{(5)}$	f _{m,05}	
			[mm]	[°]	[N/mm ²]			[N/mm ²]	[N/mm ²]	[N/mm ²]	
Kolb/ Gruber (1978)	Rahmenecke 1, 2	BS11h	150/1200	40	19,1	ja	1,00	24,0	21,0	19,9	
Kolb/ Gruber (1978)	Rahmenecke 3, 4	BS11h	150/820	40	20,1	ja	1,00	24,0	21,0	19,9	
 ¹⁾ Im Schnitt senkrecht zur Achse des Stiels ²⁾ hier muss mit Brutto-Querschnitten gerechnet werden ³⁾ dann wird mit (1-v)=0,83 abgemindert 											
⁴⁾ Höhent	faktor $\left(\frac{600}{h}\right)$	olz aus F	DIN 1052								

Tabelle 9.4: BS-Holz/BFU-BU mit schließendem Moment

9.4.2 Öffnendes Moment

Bild 9.3: Vergleich mit Simulationsergebnissen

Wie bereits in Kapitel 9.3.2 wird eine Anpassung der Hankinson-Gleichung in folgender Form vorgenommen. Im Übrigen wird wie in Kapitel 9.3.2 verfahren.

$$\mathbf{k}_{t,\alpha} = \frac{1}{11 \cdot \mathbf{f}_{t,0,k} \cdot \sin^2 \alpha + \cos^2 \alpha} \qquad \text{mit } \mathbf{f}_{t,0,k} \text{ in } [\text{N/mm}^2] \qquad (9.8)$$

Tabelle 9.5: BS-Holz/BFU-BU mit öffnendem Moment

Quelle	Bez.	Festig- keits-	b/h ¹⁾	α	Simulati- on	Berechnung mit neuem Vorschlag					
		klasse			$f_{m,05,sim}^{2)}$	Verschw. ³⁾	$k_{h}^{4)}$	${f_{m,k}}^{5)}$	k _t , _α	f _{m,05}	
	[-]	[-]	[mm]	[°]	[N/mm ²]	[-]	[1]	[N/mm ²]	[1]	[N/mm ²]	
Kolb/ Gruber	Träger 1 und 2	BS11h	140/700	0	18,4	ja	1,00	24,0	1	19,9	
(1978) Kolb/ Gruber (1978)	Träger 3 und 4	BS11h	140/700	15	17,3	ja	1,00	24,0	0,88	17,5	
simu- liert	-	BS11h	140/700	7,5	19,0	ja	1,00	24,0	0,94	18,7	
	-	BS11h	140/700	22,5	13,1	ja	1,00	24,0	0,63	12,5	
	-	BS11h	140/700	30	10,0	ја	1,00	24,0	0,5	10,0	
	-	BS11h	140/700	40	6,2	ja	1,00	24,0	0,38	7,56	
¹⁾ Im Schnitt senkrecht zur Achse des Stiels ²⁾ hier muss mit Brutto-Querschnitten gerechnet werden ³⁾ dann wird mit (1-v)=0,83 abgemindert ⁴⁾ Höhenfaktor $\left(\frac{600}{h}\right)^{0,14}$											

⁵⁾ Festigkeitswerte BS-Holz aus E DIN 1052

10 Zusammenfassung und Ausblick

Es wurde ein Rechenmodell zur Abschätzung der Tragfähigkeit von keilgezinkten Rahmenecken und Biegeträgern unter Berücksichtigung streuender Werkstoffeigenschaften entwickelt. Das Rechenmodell setzte sich aus einem Simulations- und einem Finite-Elemente-Programm zusammen.

Im Simulationsprogramm wurde der Aufbau der Brettschichtholzteile nachvollzogen. Mit den aus früheren Arbeiten bekannten statistischen Verteilungen der Holzeigenschaften Rohdichte und Ästigkeit sowie wuchsspezifischen und produktionsabhängigen Regelmäßigkeiten wie Ast- und Keilzinkenabständen konnten mittels Monte-Carlo-Simulationen beliebig viele Träger mit unterschiedlich verteilten Holzeigenschaften simuliert werden. Aus diesen simulierten Holzeigenschaften wurden für jedes Element eines simulierten Trägers mittels Regressionsgleichungen Festigkeits- und Steifigkeitswerte bestimmt. Die Eingangsdaten für die Simulation der Universalkeilzinkenverbindungen wurden aus Versuchen ermittelt oder durch Anpassung der Simulationsergebnisse an ältere Traglastversuche abgeschätzt.

Die simulierten Daten der Rahmenecken und Biegeträger wurden dann an das Finite-Elemente-Programm übergeben. Im Finite-Elemente-Programm wurde eine stufenweise Belastung auf das Modell aufgebracht. Die Lasthöhe wurde so gesteuert, dass am Ende jeder Laststufe ein Element des Trägers ausfiel. Fiel ein Element infolge Zugbeanspruchungen aus, wurde anhand empirischer Versagenskriterien überprüft, ob die Traglast des Gesamtsystems erreicht war.

Zur Kontrolle der Güte des Simulationsprogramms wurden Traglastversuche mit Rahmenecken unterschiedlicher Geometrie durchgeführt. Es ergab sich eine durchweg gute Übereinstimmung der Simulationen mit den Ergebnissen der Traglastversuche.

Mit Hilfe des Simulationsprogramms wurde dann ein Bemessungsvorschlag für die Berechnung von keilgezinkten Biegeträgern und Rahmenecken mit oder ohne Zwischenstück aus Brettschichtholz oder Baufurniersperrholz aus Buche abgeleitet.

Das Simulationsprogramm liefert Kurzzeitfestigkeiten in Nutzungsklasse 1. Die Einflüsse abweichender Holzfeuchte, Temperatur oder Lastdauer können grundsätzlich im Programm berücksichtigt werden, es fehlen aber derzeit noch eine Reihe von Eingangswerten, besonders für die Festigkeit der Universalkeilzinkenverbindung.

Brettschichtholz der Festigkeitsklassen BS 16 oder BS 18 kann bislang nicht simuliert werden, da, vermutlich durch eine Überschätzung der Reststreuung der Keilzinkenzugfestigkeit der Lamellen, die Festigkeit von Brettschichtholz aus maschinell sortierter Brettware unterschätzt wird. Hier wären weitergehende Untersuchungen zur Ermittlung der relevanten Parameter sowie Traglastversuche zur Kontrolle der gefundenen Parameter äußerst wünschenswert.

Eine Auswertung für Zwischenstücke aus Furnierschichtholz mit Querlagen fehlt bislang, da es für diese Bauteile noch keine Traglastversuche zur Überprüfung der Richtigkeit des Simulationsprogramms gibt. Wünschenswert wäre die Möglichkeit, die Festigkeit der Holzwerkstoffplatten aus den Festigkeiten der Einzelfurniere herzuleiten. Hierzu wären umfangreichere Untersuchungen der Furniereigenschaften nötig. Derzeit wird die Festigkeit der Furnierschichtholzplatten mit Querlagen aus Zugversuchen an Plattenstreifen hergeleitet. Solche Versuchswerte liegen aber nur für Furnierschichtholzplatten eines Herstellers vor.

Im vorgestellten Bemessungsvorschlag werden die rechnerischen Spannungen mit den mittels Hankinson-Gleichung abgeminderten Festigkeiten verglichen. Die Hankinson-Gleichung wurde gewählt, weil sie zum Zeitpunkt der Fertigstellung dieser Arbeit durchgängig Verwendung in der E DIN 1052 finden sollte. Zwischenzeitlich wurde im zuständigen Normenausschuss beschlossen, die Nachweise für die kombinierte Einwirkung von Längs-, Quer- und Schubspannungen auf das Norris-Kriterium umzustellen. Eine Umstellung des hier vorgestellten Bemessungsvorschlags auf das Norris-Kriterium erfordert eine völlig andere Auswertung der Simulationen. So muss z.B. der Spannungsverlauf im jeweils betrachteten Schnitt untersucht werden. Dazu muss die Datei zur Ausgabe der Ergebnisse sehr umfangreich geändert und die bisher durchgeführten Simulationen müssen wiederholt werden. Dies soll zu einem späteren Zeitpunkt geschehen.

Literaturverzeichnis

Aasheim, E./Colling, F./Ehlbeck, J./Falk, R./Görlacher, R./Solli, K. (1993): Norwegian Bending Tests with glued Laminated Beams – Comparative Calculations with the "Karlsruhe Calculation Model", Artikel in: CIB-W-18, Georgia, USA

Aicher, S./Dill-Langer, G./Ranta-Maunus, A. (1998): Duration of load effect in tension perpendicular to the grain of glulam in different climates, Artikel in: Holz als Roh- und Werkstoff, Heft 56, S. 295-305

Aicher, S.; Dill-Langer, G. (1996) Zugfestigkeit senkrecht zur Faserrichtung von qualitativ hochwertigem Brettschichtholz gemäß CEN Festigkeitsklassen GL 32und GL 36, In: Otto Graf Journal 8, Forschungs- und Materialprüfanstalt für das Bauwesen (FMPA) – Otto Graf Institut – Universität Stuttgart

Aicher, S.; Dill-Langer, G. (1997) DOL-effect in tension perpendicular to the grain of glulam depending on service class and volume, Artikel in CIB-W18, Vancouver, Canada

Aicher, S.; Klöck, W. (1990) Spannungsberechnung zur Optimierung von Keilzinkenprofilen für Brettschichtholz-Lamellen, Artikel in: Bauen mit Holz, Heft 5, S. 356-362

Aicher, S.; Klöck, W. (2001) Eine Gegenüberstellung linearer und quadratischer Versagenskriterien für scheibenbeanspruchte Holzwerkstoffplatten, In: Otto Graf Journal 12, Forschungs- und Materialprüfanstalt für das Bauwesen (FMPA) – Otto Graf Institut – Universität Stuttgart

Albers, K. (1969) Elastizität und Festigkeit von technischem Sperrholz, In: Holz-Zentral-Blatt, Nr. 141, S. 2164-2165

Albers, K. (1970) Querdehnungs- und Gleitzahlen sowie Schub- und Scherfestigkeiten von Holzwerkstoffen, Dissertation am Fachbereich Biologie der Universität Hamburg

Becker, K.J. (1976): Dehnungs-, Querdehnungs- und Gleitzahlen von zweilagigem Fichtenholz, Dissertation, Technische Universität Braunschweig

Bernasconi, A. (1993a): Keilzinkenverbindungen. Artikel in: SAH - Fortbildungskurs 1993, ETH Zürich, S. 87 – 105

Bernasconi, A. (1993b): Sperrholz im Brückenbau, In: SAH - Fortbildungskurs, Weinfelden

Blaß, H.J. (1987): Tragfähigkeit von Druckstäben aus Brettschichtholz unter Berücksichtigung streuender Einflussgrößen, Dissertation der Fakultät für Bauingenieur- und Vermessungswesen Universität Fridericiana zu Karlsruhe

Blaß, H.J./Ehlbeck J./Schmid, M. (1998): Ermittlung der Querzugfestigkeit von Vollund Brettschichtholz, Versuchsanstalt für Stahl, Holz und Steine der Universität Karlsruhe Blaß, H.J.; Ehlbeck, J.; Kurzweil, L. (1998) Untersuchungen zur Zugfestigkeit von Brettschichtholz im Hinblick auf Normungsvorschläge Forschungsbericht der Versuchsanstalt für Stahl, Holz und Steine, Abt. Ingenieurholzbau, Universität Karlsruhe

Blumer, H. (1979): Spannungsberechnungen an anisotropen Kreisbogenscheiben und Sattelträgern konstanter Dicke, Veröffentlichung des Lehrstuhls für Ingenieurholzbau und Baukonstruktionen der Universität Karlsruhe

Bodig, J./Goodman, J.R. (1973): Prediction of Elastic Parameters of Wood, Artikel in: Wood Science, Vol. 5, No. 4, S. 249-264

Colling, F. (1986a): Einfluss des Volumens und der Spannungsverteilung auf die Festigkeit eines Rechteckträgers, Herleitung einer allgemeinen Beziehung mit Hilfe der 2parametrigen Weibull - Verteilung, Artikel in: Holz als Roh- und Werkstoff, Heft 44, S. 121-125

Colling, F. (1986b): Einfluss des Volumens und der Spannungsverteilung auf die Festigkeit eines Rechteckträgers, Bestimmung der Völligkeitsbeiwerte, Anwendungsbeispiele, Artikel in: Holz als Roh- und Werkstoff, Heft 44, S. 179-183

Colling, F. (1986c): Influence of volume and stress distribution on the shear-strength and tensile-strength perpendicular to grain, Artikel in: CIB-W18 Paper 19-12-3, Florenz, Italien

Colling, F. (1990): Tragfähigkeit von Biegeträgern aus Brettschichtholz in Abhängigkeit von den festigkeitsrelevanten Einflussgrößen, Dissertation der Fakultät für Bauingenieur- und Vermessungswesen Universität Fridericiana zu Karlsruhe

Colling, F./Dinort, R. (1987): Die Ästigkeit des in den Leimbaubetrieben verwendeten Schnittholzes, Artikel in: Holz als Roh- und Werkstoff, Heft 45, S. 23-26

Colling, F./Ehlbeck, J./Kurzweil, L. (1995): Vergleichende Betrachtungen europäischer Bauproduktennormen mit nationalen Bestimmungen, Teilprojekt: Erstellung von Eigenschaftsprofilen von Brettschichtholz, Forschungsprojekt für das Deutsche Institut für Bautechnik, Berlin

Colling, F./Görlacher, R. (1989): Eigenschaften des in Leimbaubetrieben verarbeiteten Schnittholzes, Artikel in: Bauen mit Holz, Heft 5, S. 327-331

Colling, F./Scherberger, M. (1987): Die Streuung des Elastizitätsmoduls in Brettlängsrichtung, Artikel in: Holz als Roh- und Werkstoff, Heft 45, S. 95-99

Colombo, P.; Bernasconi, A. (1990): Gedanken zur Leistungsverbesserung von Holz-Rahmenecken, In: SAH-Fortbildungskurs, Weinfelden

Deutsches Institut für Bautechnik (Hrsg.) (1994): Zulassungsbescheid Nr. Z-9.1-269, Zulassungsgegenstand: Trigonit-Holzleimbauträger, Antragsteller: August Schleifenbaum KG, Siegen-Weidenau

DIN 1052-1: 1988-04; Holzbauwerke- Berechnung und Ausführung

DIN 1052-1/A1: 1996-10; Holzbauwerke - Teil 1: Berechnung und Ausführung; Änderung 1

DIN 4074-1: 1989-04; Sortierung von Nadelholz nach der Tragfähigkeit, Nadelschnittholz

DIN EN 338: 1996-07; Bauholz für tragende Zwecke - Festigkeitsklassen

DIN EN 1194: 1999-12; Holzbauwerke; Brettschichtholz; Festigkeitsklassen und Bestimmung charakteristischer Werte

Nationales Anwendungsdokument (NAD), Richtlinie zur Anwendung von DIN V ENV 1995-1-1: 1994-06; Eurocode 5 – Entwurf, Berechnung und Bemessung von Holzbauwerken; Teil 1-1: Allgemeine Bemessungsregeln, Bemessungsregeln für den Hochbau

DIN 52183: 1977-11; Prüfung von Holz; Bestimmung des Feuchtegehaltes

DIN 68140: 1971-10; Keilzinkenverbindungen von Holz

DIN 68140-1: 1998-02; Keilzinkenverbindungen von Holz – Teil 1: Keilzinkenverbindungen von Nadelholz für tragende Bauteile

DIN 68140-1 Ber 1: 1999-10; Berichtigungen zu DIN 68140-1: 1998-02

Egner, K. (1952): Einige technologische Fragen der Leimung tragender Holzbauteile, Artikel in: Holz-Zentralblatt, Nr. 102, Samstag 23.08.1952

Ehlbeck, J./Colling, F. (1983): Ermittlung fehlender Festigkeitswerte von Buchenfurnierplatten, Forschungsbericht der Versuchsanstalt für Stahl, Holz und Steine, Abt. Ingenieurholzbau, Universität Karlsruhe

Ehlbeck, J./Colling, F. (1987): Biegefestigkeit von Brettschichtholz in Abhängigkeit von Rohdichte, Elastizitätsmodul, Ästigkeit und Keilzinkungen der Lamellen, der Lage der Keilzinkungen sowie von der Trägerhöhe, Teil A: Karlsruher Untersuchungen, Forschungsbericht der Versuchsanstalt für Stahl, Holz und Steine, Abt. Ingenieurholzbau, Universität Karlsruhe

Ehlbeck, J./Colling, F./Görlacher, R. (1985a): Einfluss keilgezinkter Lamellen auf die Biegefestigkeit von Brettschichtholzträgern; Entwicklung eines Rechenmodells, Artikel in: Holz als Roh- und Werkstoff, Heft 43, S. 333-337

Ehlbeck, J./Colling, F./Görlacher, R. (1985b): Einfluss keilgezinkter Lamellen auf die Biegefestigkeit von Brettschichtholzträgern; Eingangsdaten für ein Rechenmodell, Artikel in: Holz als Roh- und Werkstoff, Heft 43, S. 369-373

Ehlbeck, J./Colling, F./Görlacher, R. (1985c): Einfluss keilgezinkter Lamellen auf die Biegefestigkeit von Brettschichtholzträgern; Überprüfung des Rechenmodells, Artikel in: Holz als Roh- und Werkstoff, Heft 43, S. 439-442

Finnforest GmbH (Hrsg.) (1999): KERTO - Handbuch 2000, 1. Auflage, im Eigenvertrieb der Finnforest GmbH Köln

Foschi, R.O./Barrett, J.D. (1980): Glued-Laminated Beam Strength: a Model, Artikel in: Journal of, the Structural Division, ST8, S. 1735-1754

Gehri, E (2001): Finger joints for connecting plywood and glulam, In: Proceedings of the International RILEM Symposium, Stuttgart, S. 512-519

Gehri, E. (1993) Mechanische Eigenschaften von Furnierwerkstoffen in Funktion von Aufbau, Holzart und Leim SAH - Fortbildungskurs 1993, ETH Zürich, S. 7 – 31

Glos, P. (1978): Zur Bestimmung des Festigkeitsverhaltens von Brettschichtholz bei Druckbeanspruchung aus Werkstoff- und Einwirkungskenngrößen, Forschungsbericht, Berichte zur Zuverlässigkeitstheorie der Bauwerke, Heft 35, SFB 96, Technische Universität München

Glos, P. (1981): Zur Modellierung des Festigkeitsverhaltens von Bauholz bei Druck-, Zug- und Biegebeanspruchung, Forschungsbericht, Berichte zur Zuverlässigkeitstheorie der Bauwerke, Heft 61, SFB 96, Technische Universität München

Glos, P.; Gaede, G. (1994): Vergleichende Betrachtungen europäischer Bauproduktennormen mit nationalen Bestimmungen, Teilprojekt: Zugfestigkeit keilgezinkter Brettlamellen der Sortierklassen MS 13 und MS 17. Forschungsbericht des Instituts für Holzforschung der Universität München

Glos, P.; Heimeshoff, B.; Kelletshofer, W. (1987) Einfluss der Belastungsdauer auf die Zug- und Druckfestigkeit von Fichten-Brettlamellen, Artikel in: Holz als Roh- und Werkstoff, S. 243-249

Glos, P.; Henrici, D. (1990) Festigkeit von Bauholz bei hohen Temperaturen, Forschungsbericht des Instituts für Holzforschung der Universität München

Gopu, V.K.A./Yeary, B.L. (1991): Evaluation of Flexural Strength of Glued Laminated Timber Beams, Proceedings of the 1991 International Timber Engineering Conference, Vol. II, S. 319-326, London, UK

Görlacher, R. (1990): Klassifizierung von Brettschichtholzlamellen durch Messung der Longitudinalschwingung, Dissertation der Fakultät für Bauingenieur- und Vermessungswesen Universität Fridericiana zu Karlsruhe

Görlacher, R./Kürth, J. (1994): Determination of Shear Modulus, Artikel in: International Council for Building Research Studies and Documentation, Working Commission W18 – Timber Structures, CIB W18/27-10-1

Hankinson , R.L. (1921) Investigation of crushing strength of spruce at varying angles of grain Air service Information Circular III, No. 259, US Air Service

Heimeshoff, B. (1976): Berechnung von Rahmenecken mit Keilzinkenverbindungen, Artikel in: Holzbau-Statik-Aktuell, Folge 1, S. 7-8

Heimeshoff, B./Glos, P. (1980): Zugfestigkeit und Biege-E-Modul von Fichten-Brettlamellen, Artikel in: Holz als Roh- und Werkstoff, Heft 38, S. 51-59

Heimeshoff, B./Seuß, R. (1982): Berechnung von Rahmenecken mit Keilzinkenverbindungen, Forschungsbericht, Universität München

Hemmer, K. (1985) Versagensarten des Holzes der Weißtanne (Abies alba) unter mehrachsiger Beanspruchung, Dissertation der Fakultät für Bauingenieur- und Vermessungswesen Universität Fridericiana zu Karlsruhe
Hernandez, R./Bender, D.A. (1991): Probabilistic Modelling of Glued Laminated Timber Beams, Proceedings of the 1991 International Timber Engineering Conference, Vol. II, S. 335-342, London, UK

Hoffmeyer, P.; Damkilde, L.; Pedersen, T.N. (2000) Structural timber and glulam in compression perpendicular to the grain, Artikel in: Holz als Roh- und Werkstoff, S. 73-80

Hörig, H (1931): Zur Elastizität des Fichtenholzes, Fachartikel in: Zeitschrift für technische Physik, Heft Nr. 8, S. 369-379

Kanerva, P.; Lehtinen, M. (1995) Reduction values of strength and stiffness for KERTO-Q-LVL in different loading angles, Prüfbericht PUU 080395 Helsinki University of Technology, Laboratory of Structural Engineering and Building Physics

Keylwerth, R. (1951): Die anisotrope Elastizität des Holzes und der Lagenhölzer, VDI-Forschungsheft 430, Beilage zu "Forschung auf dem Gebiete des Ingenieurwesens", Deutscher Ingenieur-Verlag Düsseldorf

Kolb, H. (1966): Versuche zur Ermittlung der Tragfähigkeit geleimter Rahmenecken, Artikel in: Bauen mit Holz, Heft 8, S. 363-369

Kolb, H. (1968a): Festigkeitsuntersuchungen an gestoßenen und gekrümmten Bauteilen aus Brettschichtholz, Artikel in: Holz als Roh- und Werkstoff, Heft 7, S. 244-253

Kolb, H. (1968b): Versuche an geleimten Rahmenecken und Montagestößen (1. Teil), Artikel in: Bauen mit Holz, Heft 6, S. 266-271

Kolb, H. (1968c): Versuche an geleimten Rahmenecken und Montagestößen (2. Teil), Artikel in: Bauen mit Holz, Heft 10, S. 462-470

Kolb, H. (1970): Festigkeitsverhalten an Rahmenecken, Artikel in: Bauen mit Holz, Heft 8, S. 387-392

Kolb, H. (1974): Versuche mit verleimten Holzbauteilen, Artikel in: Holz als Roh- und Werkstoff, Heft 32, S. 257-262

Kolb, H./Gruber (1978): Prüfung von keilgezinkten Bauteilen aus Brettschichtholz mit Zwischenstücken aus Furnierplatten, Forschungsbericht der Fraunhofer-Gesellschaft/IRB, Nr. T 360

Kolb, H./Radovic, B. (1980): Baustellenstöße bei großen Bauteilen aus Brettschichtholz, Forschungsbericht Nr. I.4-33251, FMPA Baden Württemberg, Otto-Graf-Institut Stuttgart

Kolb, H./Radovic, B. (1984): Untersuchungen zur Herstellung von Baustellenstößen bei großen Bauteilen aus Brettschichtholz, 2. Teil, Forschungsbericht Nr. I.4-33251/1, FMPA Baden Württemberg, Otto-Graf-Institut Stuttgart

Kolb, H.; Goth, H.; Epple, A. (1984) Untersuchungen zum Einfluss der Dauerbelastung, Temperatur- und Klimawechsellagerung auf die Querzugfestigkeit von Fichtenholz, Forschungsbericht I.4-33654 der Forschungs- und Materialprüfanstalt Baden-Württemberg – Otto-Graf-Institut – Referat 14 Holzbau, Stuttgart Kollmann , F. (1934) Die Abhängigkeit der Festigkeit und der Dehnungszahl der Hölzer vom Faserverlauf, Artikel in: Der Bauingenieur, S. 31-34

Kollmann, F. (1951) Technologie des Holzes und der Holzwerkstoffe Band I, Springer Verlag Berlin/Göttingen/Heidelberg

Komatsu, K. et. al (2001): Moment-resisting performance of glulam beam to column joints composed of various types of large finger joints, In: Proceedings of the International RILEM Symposium, Stuttgart, S. 520-530

Krabbe, E. (1960): Messungen von Gleit- und Dehnungszahlen an Holzstäbchen mit rechteckigem Querschnitt, Dissertation, Universität Hannover

Krabbe, E./Tersluisen, G. (1978): Spannungstheoretische Untersuchungen an keilgezinkten Rahmenecken bei Brettschichtträgern, Forschungsbericht, erschienen in der Schriftenreihe des Bundesministers für Raumordnung, Bauwesen und Städtebau, Nr. F 1476

Kufner, M. (1978):Elastizitätsmodul und Zugfestigkeit von Holz verschiedener Rohdichte in Abhängigkeit vom Feuchtigkeitsgehalt, Artikel in: Holz als Roh- und Werkstoff, Heft 36, S. 435-439

Larsen, H.J. (1980): Strength of Glued Laminated Beams, Part 2 (Properties of Glulam Laminations), Forschungsbericht, Report No. 8004, Institute of Buildung Technology and Structural Engineering, Aalborg University, Aalborg, Dänemark

Larson, D.; Ohlsson, S.; Perstoper, M.; Brundin, J. (1998) Mechanical properties of sawn timber from Norway spruce, Artikel in: Holz als Roh- und Werkstoff, S. 331-338

Lehtinen, M.; Saavalainen, I (1995) Mechanical properties of cross plied laminatedveneer-lumber in different loading angles, Forschungsbericht 3/95 Helsinki University of Technology, Laboratory of Structural Engineering and Building Physics

Meierhofen, A. (1977) Beanspruchung von Hholz schräg zur Faser, Artikel in: Schweizerische Bauzeitung, Nr. 38, S. 671-676

Mittelstedt, Chr. (1999) Untersuchung der Spannungen und Verschiebungen an kräftefreien Rändern von Laminaten aus unidirektionalen Einzelschichten am Beispiel von Holzwerkstoffen Unveröffentlichte Diplomarbeit, Lehr- und Forschungsgebiet für Baukonstruktionen und Holzbau der Bergischen Universität/ Gesamthochschule Wuppertal

Möhler, K./Siebert, W. (1983): Erhöhung der Querzugfestigkeit in gefährdeten Bereichen, Forschungsbericht, Lehrstuhl für Ingenieurholzbau und Baukonstruktionen, Universität Karlsruhe

Möhler, K.; Hemmer, K. (1978) Zusammenwirken von Längs-, Quer- und Schubspannungen (Torsionsspannungen) bei Brettschichtholz- und Vollholzbauteilen Forschungsbericht der Versuchsanstalt für Stahl, Holz und Steine, Abt. Ingenieurholzbau, Universität Karlsruhe

Möhler, K.; Maier, G. (1970) Kriech- und Relaxationsverhalten von lufttrockenem und nassem Fichtenholz bei Querdruckbeanspruchung Artikel in: Holz als Roh- und Werkstoff, S. 14-20 N.N. (1995): Holzbau Fachtagung 1995 – Sortierung und Festigkeit, Technische Universität Graz

Nahas, M.N. (1986): Survey of Failure and Post-Failure Theories of Laminated Fiber-Reinforced Composites, Artikel in: Journal of Composites Technology & Research, Vol. 8, No. 4, S. 138-153

Neuhaus, F.-H. (1981): Elastizitätszahlen von Fichtenholz in Abhängigkeit von der Holzfeuchte, Dissertation an der Ruhr-Universität Bochum, erschienen in den Technisch-wissenschaftlichen Mitteilungen des Institutes für konstruktiven Ingenieurbau der Ruhr-Universität Bochum, Mitteilung Nr. 81-8

Neuhaus, H. (1994): Lehrbuch des Ingenieurholzbaus, Fachbuch, 1. Auflage, B.G. Teubner Verlag, Stuttgart

Norris, C. B. (1962): Strength of orthotropic materials subjected to combined stresses, Veröffentlichung des Forest Products Laboratory, United States Department of Agriculture, Forest Service, Madison 5, Wisconsin

Ranta-Maunus, A. (1998) DOL-effect in tension perpendicular to the grain incurved glulam, Artikel in CIB-W18, Savonlinna, Finland

Ranta-Maunus, A./Gowda, S. (1993): Curved and cambered glulam beams, Part 1: Short term loading tests, Forschungsbericht, VTT Research Notes, Espoo, Finnland

Ranta-Maunus, A./Gowda, S. (1994): Curved and cambered glulam beams, Part 2: Long term loading tests under cyclically varying humidity, Forschungsbericht, VTT Research Notes, Espoo, Finnland

Scapozza, C. (1996): Keilzinkenstöße mit Brettschichtholz und Sperrholz, Artikel in: SAH-Fortbildungskurs 1996, ETH Zürich, S. 225-240

Scapozza, C. (1998): Application of Plywood in glued-laminated Portal Frames, Artikel in: Proceedings of the 5th World Conference on Timber Engineering, Montreux, Volume 1, S. 153-160

Schickhofer, G. (2001) Determination of shear strength values for GLT using visual and machine graded spruce laminations, Artikel in CIB-W18, Venice, Italy

Sendeckyj, G.P. (1972): A brief Survey of Empirical Multiaxial Strength Criteria for Composites, Artikel in: Composite Materials: Testing and Design (Second Conference), ASTM STP 497, American Society for Testing and Materials, S. 41-51

Sobol, I. M. (1971) Die Monte-Carlo-Methode VEB Deutscher Verlag der Wissenschaften, Berlin

Spengler, R. (1982) Festigkeitsverhalten von Brettschichtholz unter zweiachsiger Beanspruchung – Teil 1 Ermittlung des Festigkeitsverhaltens von Brettelementen aus Fichte durch Versuche Forschungsbericht, Berichte zur Zuverlässigkeitstheorie der Bauwerke, Heft 62, SFB 96, Technische Universität München

Stamer, J. (1935): Elastizitätsuntersuchungen an Hölzern, Artikel in: Ingenieurarchiv 6, S. 1-8

Steck, G. (1987) Relaxationsversuche mit Brettschichtholzproben unter Querdruckbeanspruchung infolge Feuchtezunahme, Artikel in: Holz als Roh- und Werkstoff, S. 137-140

Steck, G. (1988): Bau-Furniersperrholz aus Buche, Bericht der Entwicklungsgemeinschaft Holzbau (EGH) in der Deutschen Gesellschaft für Holzforschung e.V., erschienen in der Reihe Informationsdienst Holz

Stüssi, F. (1945) Zum Einfluss der Faserrichtung auf die Festigkeit und den Elastizitätsmodul von Holz, Artikel in: Schweizer Bauzeitung, Nr. 22, S. 247-248

Swanson Analysis Systems Inc. (Hrsg.) (1992a): ANSYS User's Manual, Revision 5.0, Volume I: Procedures

Swanson Analysis Systems Inc. (Hrsg.) (1992b): ANSYS User's Manual, Revision 5.0, Volume II: Commands

Swanson Analysis Systems Inc. (Hrsg.) (1992c): ANSYS User's Manual, Revision 5.0, Volume III: Elements

Swanson Analysis Systems Inc. (Hrsg.) (1992d): ANSYS User's Manual, Revision 5.0, Volume IV: Theory

Tsai, S.W./Hahn, H.T. (1980): Introduction to Composite Materials, Fachbuch, 1. Auflage, Technomic Publishing Co., Inc., Lancaster et. al.

United Nations/Economic Comission for Europe (1982): ECE Recommended Standard for Stress Grading of Coniferous Sawn Timber, Timber Bulletin for Europe Vol. XXIV, Supplement 16, S. 1-17, Genf, Schweiz

Wommelsdorff, O. (1966): Dehnungs- und Querdehnungszahlen von Hölzern, Dissertation an der Fakultät für Bauwesen der Technischen Hochschule Hannover

Anlage A Tabellarische Darstellung früherer Versuche

- Tabelle A.1: Einfach keilgezinkte Rahmenecken, Kolb (1968c)
- Tabelle A.2: Keilgezinkte Rahmenecken mit Zwischenstück aus BS-Holz und angeschnittenem Zugrand, Kolb (1968c)
- Tabelle A.3: Keilgezinkte Rahmenecken mit Zwischenstück aus BS-Holz und angeschnittenem Druckrand, Kolb (1968c)
- Tabelle A.4: Gerade, einfach keilgezinkte Träger, Kolb (1966)
- Tabelle A.5:Geknickte, einfach keilgezinkte Träger mit Druckspannungen in der In-
nenecke, Lasteinleitung in den Drittelpunkten der Trägerlänge, Kolb
(1966)
- Tabelle A.6: Geknickte, keilgezinkte Träger mit Zwischenstück aus BS-Holz und Druckspannungen in den Innenecken, Lasteinleitung in den Drittelpunkten der Trägerlänge, Kolb (1966)
- Tabelle A.7:Geknickte, einfach keilgezinkte Träger mit Druckspannungen in der In-
nenecke, Lasteinleitung an den Trägerenden, Kolb (1966)
- Tabelle A.8: Geknickte, keilgezinkte Träger mit Zwischenstück aus BS-Holz und Druckspannungen in den Innenecken, Lasteinleitung an den Trägerenden, Kolb (1966)
- Tabelle A.9: Geknickte, keilgezinkte Träger mit Zwischenstück aus BS-Holz und Zugspannungen in den Innenecken, Lasteinleitung in den Drittelpunkten der Trägerlänge, Kolb (1966)
- Tabelle A.10: Keilgezinkte Rahmenecken mit Zwischenstück aus BS-Holz und angeschnittenem Druckrand, verschiedene Trägerbreiten, Kolb (1970)
- Tabelle A.11: Keilgezinkte Rahmenecken mit Zwischenstück aus BFU-BU oder BFU-Birke und angeschnittenem Druckrand, Kolb/Gruber (1978)
- Tabelle A.12: Keilgezinkte Träger mit Zwischenstück aus BFU-BU oder BFU-Birke mit Zugspannungen in den Innenecken, Kolb/Gruber (1978)
- Tabelle A.13: Keilgezinkte Biegeträger ohne Pressdruck, Kolb/Radovic (1980)
- Tabelle A.14: Keilgezinkte Biegeträger ohne Pressdruck, Kolb/Radovic (1984)
- Tabelle A.15: Einfach keilgezinkte Rahmenecken mit Zugspannungen in der Innenecke, Möhler/Siebert (1983)
- Tabelle A.16: Rahmenecken verschiedener Geometrien mit Druckspannungen in denInnenecken, Scapozza (1996)
- Tabelle A.17Rahmenecken verschiedener Geometrien mit Zugspannungen in den
Innenecken, Scapozza (1996)
- Tabelle A.18
 Keilgezinkte Träger unter Zugbeanspruchung, Scapozza (1998)

 Tabelle A.1:
 Einfach keilgezinkte Rahmenecken, Kolb (1968c)

Tabelle A.2:Keilgezinkte Rahmenecken mit Zwischenstück aus BS-Holz und ange-
schnittenem Zugrand, Kolb (1968c)

Tabelle A.3:Keilgezinkte Rahmenecken mit Zwischenstück aus BS-Holz und ange-
schnittenem Druckrand, Kolb (1968c)

		$\begin{array}{c c} P \\ \hline 2 \\ \hline \end{array} \end{array} \begin{array}{c} 1 \\ \hline P \\ \hline 2 \\ \hline \end{array} \end{array} = \hline \end{array}$	
	$\frac{P}{2}$	1	$\frac{P}{2}$
Quelle		Kolb (1966)	Kolb (1966)
Träger Nr.		1	2
Schnitt Nr.		1	1
BSH-Güteklass	е	o. Angabe	o. Angabe
Quer- schnittsbrei- te	[mm]	120	120
A _{Netto}	[mm ²]	48000	48000
W _{Netto}	[10 ⁶ mm ³]	4	4
Ν	[10 ³ N]	0	0
М [10 ⁶ Nmm]	171,0	191,0
$\sigma_{B,Z}^{(1)}$	[N/mm ²]	42,8	47,8
$\sigma_{B,D}{}^{2)}$	[N/mm ²]	-42,8	-47,8
$\sigma_D{}^{3)}$	[N/mm ²]	-33,3	-37,2
Neigungswinke	lα [°]	0	0
$zul\sigma_{D,\alpha}{}^{4)}$	[N/mm ²]	8,5	8,5
$\sigma_{\rm D}/zul\sigma_{{\rm D},\alpha}$	[-]	3,92	4,38
Bruchursache		Scherbruch am Auflager	Zugbruch UKZV
$1) \sigma_{B,Z} = \frac{N}{\overline{A}} - \frac{M}{\overline{W}}$, ²⁾ $\sigma_{\rm B,D} =$	$\frac{N}{\overline{A}} + \frac{M}{\overline{W}}$	
$3) \sigma_{\rm D} = \frac{N}{\overline{A}} + \frac{zul}{zul}$	$\frac{\sigma_{\text{D,//}}}{\sigma_{\text{B}}} \frac{M}{\overline{W}}, 4$	$zul\sigma_{_{D,\alpha}}=zul\sigma_{_{D,\parallel}}-(zul\sigma_{_{D,\parallel}}-zul\sigma_{_{D,\parallel}})$	$\sigma_{D,\perp}$) sin α
Alle zulässigen	Spannung	en für BSH Güteklasse II (entsp	richt BS 11)

Tabelle A.4: Gerade, einfach keilgezinkte Träger, Kolb (1966)

Tabelle A.5: Geknickte, einfach keilgezinkte Träger mit Druckspannungen in der Innenecke, Lasteinleitung in den Drittelpunkten der Trägerlänge, Kolb (1966)

$\frac{P}{2}$		$\frac{15^{\circ}}{2}$	
Quelle	Kolb (1966)	Kolb (1966)	
Träger Nr.	3	4	
Schnitt Nr.	1	1	
BSH-Güteklasse	o. Angabe	o. Angabe	
Quer- [mr schnittsbrei- te	n] 120	120	
A _{Netto} [mm	²] 48000	48000	
W _{Netto} [10 ⁶ mm	³] 4	4	
N [10 ³]	0 [1	0	
M [10 ⁶ Nmr	n] 147,0	144,0	
$\sigma_{B,Z}^{(1)}$ [N/mm	²] 36,7	36,0	
$\sigma_{B,D}^{2)}$ [N/mm	2] -36,7	-36,0	
$\sigma_D^{(3)}$ [N/mm	²] -28,7	-28,1	
Neigungswinkel α	°] 15	15	
$zul\sigma_{D,\alpha}^{4)}$ [N/mm	²] 6,82	6,82	
$\sigma_{\rm D}/{\rm zul}\sigma_{{\rm D},\alpha}$	-] 4,20	4,12	
Bruchursache	Zugbruch Riegel	Zugbruch UKZV	
¹⁾ $\sigma_{B,Z} = \frac{N}{\overline{A}} - \frac{M}{\overline{W}}$, ²⁾ $\sigma_{B,D} = \frac{N}{\overline{A}} + \frac{M}{\overline{W}}$			
³⁾ $\sigma_{\rm D} = \frac{N}{\overline{A}} + \frac{zul \sigma_{\rm D,//}}{zul \sigma_{\rm B}} \frac{M}{\overline{W}}$, ⁴⁾ $zul \sigma_{\rm D,\alpha} = zul \sigma_{\rm D,\parallel} - (zul \sigma_{\rm D,\parallel} - zul \sigma_{\rm D,\perp}) \sin \alpha$			
Alle Zulassiyeli Spallilu	iyen iui Dori Gulekiasse II (ellis		

Tabelle A.6:Geknickte, keilgezinkte Träger mit Zwischenstück aus BS-Holz und
Druckspannungen in den Innenecken, Lasteinleitung in den Drittelpunk-
ten der Trägerlänge, Kolb (1966)

	P_2 P_2 P_2 P_2 P_2 P_2 P_2					
Quelle		Kolb (1966)	Kolb (1966)			
Träger Nr.		5	6			
Schnitt Nr.		1	1			
BSH-Gütekla	asse	o. Angabe	o. Angabe			
Quer- schnittsbrei- te	[mm]	120	120			
A _{Netto}	[mm ²]	48000	48000			
W _{Netto}	[10 ⁶ mm ³]	4	4			
Ν	[10 ³ N]	0	0			
М	[10 ⁶ Nmm]	147,0	170,0			
$\sigma_{B,Z}{}^{1)}$	[N/mm ²]	36,8	42,5			
$\sigma_{B,D}{}^{2)}$	[N/mm ²]	-36,8	-42,5			
$\sigma_D{}^{3)}$	[N/mm ²]	-28,7	-33,2			
Neigungswir	nkelα [°]	11,25	11,25			
$zul\sigma_{D,\alpha}^{4)}$	[N/mm ²]	7,23	7,23			
$\sigma_{\rm D}/{\rm zul}\sigma_{{\rm D},\alpha}$	[-]	3,96	4,59			
Bruchursache Zugbruch UKZV Zugbruc			Zugbruch UKZV			
$ \begin{array}{c} \begin{array}{c} 1 \end{array} & \sigma_{B,Z} = \frac{N}{\overline{A}} \\ \end{array} \\ \begin{array}{c} 3 \end{array} & \sigma_{D} = \frac{N}{\overline{A}} + \frac{Z}{\overline{A}} \end{array} \end{array} $	$\frac{\overline{M}}{\overline{W}}, \stackrel{2)}{}_{B,D} = \frac{1}{2} \frac{1}{2} \frac{\sigma_{B,D}}{\sigma_{D,H}} \frac{M}{\overline{W}}, \stackrel{4)}{}_{D}$	$\frac{\frac{N}{A} + \frac{M}{\overline{W}}}{zul\sigma_{D,\alpha}} = zul\sigma_{D,\parallel} - (zul\sigma_{D,\parallel} - zul\sigma_{D,\parallel})$	$l_{\sigma_{D,\perp}})\sin lpha$			
Alle zulässig	en Spannung	en für BSH Güteklasse II (ents	pricht BS 11)			

Quelle	Kolb (1966)	Kolb (1966)		
Träger Nr.	7	8		
Schnitt Nr.	1	1		
BSH-Güteklasse	o. Angabe	o. Angabe		
Querschnittsbrei- [mm] te	120	120		
A _{Netto} [mm ²]	48000	48000		
W _{Netto} [10 ⁶ mm ³]	4	4		
N [10 ³ N]	-64,0	-55,0		
M [10 ⁶ Nmm]	-111,0	-96,0		
$\sigma_{B,Z}^{1,5)}$ [N/mm ²]	26,4	22,9		
$\sigma_{B,D}^{2,5)}$ [N/mm ²]	-29,1	-25,1		
$\sigma_{\rm D}^{3,5)}$ [N/mm ²]	-23,0	-19,9		
Neigungswinkel α [°]	30	30		
$zul\sigma_{D,\alpha}^{4)}$ [N/mm ²]	5,25	5,25		
$\sigma_{\rm D}/{\rm zul}\sigma_{{\rm D},\alpha}$ [-]	4,38	3,78		
Bruchursache	Zugbruch Riegel	Zugbruch Riegel		
¹⁾ $\sigma_{B,Z} = \frac{N}{\overline{A}} - \frac{M}{\overline{W}}, ^{2)} \sigma_{B,D} = \frac{N}{\overline{A}} + \frac{M}{\overline{W}}$ ³⁾ $\sigma_{D} = \frac{N}{\overline{A}} + \frac{zul \sigma_{D,//}}{zul \sigma_{B}} \frac{M}{\overline{W}}, ^{4)} zul \sigma_{D,\alpha} = zul \sigma_{D, } - (zul \sigma_{D, } - zul \sigma_{D,\perp}) \sin \alpha$				
Alle zulässigen Spannung	jen für BSH Güteklasse II (ents	pricht BS 11)		

Tabelle A.7:Geknickte, einfach keilgezinkte Träger mit Druckspannungen in der In-
nenecke, Lasteinleitung an den Trägerenden, Kolb (1966)

Tabelle A.8: Geknickte, keilgezinkte Träger mit Zwischenstück aus BS-Holz und Druckspannungen in den Innenecken, Lasteinleitung an den Trägerenden, Kolb (1966)

Quelle	Kolb (1966)	Kolb (1966)		
Träger Nr.	9	10		
Schnitt Nr.	1	1		
BSH-Güteklasse	o. Angabe	o. Angabe		
Querschnitts- [mm] breite	120	120		
A _{Netto} [mm ²]	48000	48000		
W _{Netto} [10 ⁶ mm ³]	4	4		
N [10 ³ N]	-37,0	-39,0		
M [10 ⁶ Nmm]	-113,0	-120,0		
$\sigma_{B,Z}^{1,5)}$ [N/mm ²]	27,5	29,2		
$\sigma_{B,D}^{2,5)}$ [N/mm ²]	-29,0	-30,8		
$\sigma_{\rm D}^{3,5)}$ [N/mm ²]	-22,8	-24,2		
Neigungswinkel α [°]	22,5	22,5		
$zul\sigma_{D,\alpha}^{4)}$ [N/mm ²]	6,01	6,01		
σ _D /zulσ _{D,α} [-]	3,79	4,03		
Bruchursache	Zugbruch UKZV	Zugbruch UKZV		
¹⁾ $\sigma_{B,Z} = \frac{N}{\overline{A}} - \frac{M}{\overline{W}}$, ²⁾ $\sigma_{B,D} = \frac{N}{\overline{A}} + \frac{M}{\overline{W}}$ ³⁾ $\sigma_{D} = \frac{N}{\overline{A}} + \frac{zul \sigma_{D,//}}{zul \sigma_{B}} \frac{M}{\overline{W}}$, ⁴⁾ $zul \sigma_{D,\alpha} = zul \sigma_{D,\parallel} - (zul \sigma_{D,\parallel} - zul \sigma_{D,\perp}) \sin \alpha$ ⁵⁾ Ohne Berücksichtigung von ω Alle zulässigen Spannungen für BSH Güteklasse II (entspricht BS 11)				

Die Lamellen der Träger hatten eine Dicke von nur 15 mm und keine Keilzinkung.

Tabelle A.9:Geknickte, keilgezinkte Träger mit Zwischenstück aus BS-Holz und
Zugspannungen in den Innenecken, Lasteinleitung in den Drittelpunkten
der Trägerlänge, Kolb (1966)

$\frac{P}{2}$ $\frac{P}{2}$ $\frac{P}{2}$ $\frac{P}{2}$ $\frac{P}{2}$ $\frac{P}{2}$					
Quelle		Kolb (1966)	Kolb (1966)		
Träger Nr.		11	12		
Schnitt Nr.		1	1		
BSH-Güteklasse		o. Angabe	o. Angabe		
Querschnitts- [mm] breite		120	120		
W _{Netto}	[10 ⁶ mm ³]	4	4		
Ν	[10 ³ N]	0	0		
Μ	[10 ⁶ Nmm]	55,1	59,5		
$\sigma_{B,Z}^{1)}$ [N/mm ²]		13,8	14,9		
$\sigma_{B,D}^{(2)}$	[N/mm ²]	-13,8	-14,9		
$\sigma_Z^{(3)}$	[N/mm ²]	10,7	11,6		
Neigungswink	kelα [°]	15	15		
$zul\sigma_{D,\alpha}^{4)}$	[N/mm ²]	6,82	6,82		
0,2 ·σ _{D,α}	[N/mm ²]	1,36	1,36		
σ _Z /0,2·σ _{D,α}	[-]	7,88	8,51		
Bruchursache	9	Querzugbruch	Querzugbruch		
¹⁾ $\sigma_{B,Z} = \frac{N}{\overline{A}} - \frac{M}{\overline{W}}, ^{2)} \sigma_{B,D} = \frac{N}{\overline{A}} + \frac{M}{\overline{W}}$ ³⁾ $\sigma_{Z} = \frac{N}{\overline{A}} + \frac{zul \sigma_{D,//}}{zul \sigma_{B}} \frac{M}{\overline{W}}, ^{4)} zul\sigma_{D,\alpha} = zul\sigma_{D, } - (zul\sigma_{D, } - zul\sigma_{D,\perp}) \sin \alpha$					
Alle zulässigen Spannungen für BSH Güteklasse II (entspricht BS 11)					

Quelle	Kolb (1970)	Kolb (1970)		
Träger Nr.	1117		1118			
Schnitt Nr.	1	2	1	2		
BSH-Güteklasse	G	KI	GKI			
Querschnittsbrei- [mm] te	8	0	8	0		
A _{Netto} [mm ²]	52500	51200	52500	51200		
W _{Netto} [10 ⁶ mm ³]	7,17	6,83	7,17	6,83		
N [10 ³ N]	-99,0	-88,3	-91,8	-81,9		
M [10 ⁶ Nmm]	-190,0	-176,0	-176,0	-163,0		
$\sigma_{B,Z}^{1,5)}$ [N/mm ²]	24,6	24,0	22,9	22,3		
$\sigma_{\text{B},\text{D}}^{2,5)} \qquad [\text{N/mm}^2]$	-28,4	-27,5	-26,2	-25,5		
$\sigma_{D}^{3,5)}$ [N/mm ²]	-22,6	-21,8	-20,9	-20,2		
Neigungswinkel α [°]	2	0	2	0		
$zul\sigma_{D,\alpha}^{4)}$ [N/mm ²]	6,28	6,28	6,28	6,28		
$\sigma_{\rm D}/{\rm zul}\sigma_{{\rm D},\alpha}$ [-]	3,60	3,47	3,33	3,22		
Bruchursache Zugbruch UKZV Zugbruch UKZV			h UKZV			
¹⁾ $\sigma_{B,Z} = \frac{N}{\overline{A}} - \frac{M}{\overline{W}}, {}^{2)} \sigma_{B,D} = \frac{N}{\overline{A}} + \frac{M}{\overline{W}}$ ³⁾ $\sigma_{D} = \frac{N}{\overline{A}} + \frac{zul \sigma_{D,//}}{zul \sigma_{B}} \frac{M}{\overline{W}}, {}^{4)} zul \sigma_{D,\alpha} = zul \sigma_{D, } - (zul \sigma_{D, } - zul \sigma_{D,\perp}) \sin \alpha$ ⁵⁾ Ohne Berücksichtigung von ω Alle zulässigen Spannungen für BSH Güteklasse II (entspricht BS 11)						

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							
Quelle		Kolb/Grub	er Kolb/Gru	ber (1978)			
Träger Nr.	1	2	3	4	5		
Schnitt Nr.	1	1	1	1	1		
Zwischenstückmaterial	BFU-BU	BFU-BU	BFU-BU	BFU-BU	Kombi- BFU		
Zwischenstück- material	BFU-BU	BFU-BU	BFU-BU	BFU-BU	Kombi- Sperrholz		
BSH-Güteklasse	GKII	GKII	GKII	GKII	GKII		
Breite [mm]	140	140	140	140	140		
W _{Netto} [10 ⁶ mm ³]	9,147	9,147	9,147	9,147	9,147		
N [10 ³ N]	0	0	0	0	0		
M [10 ⁶ Nmm]	260,0	256,0	186,0	210,0	199,5		
$\sigma_{B,Z}^{(1)}$ [N/mm ²]	28,4	28,0	20,3	23,0	21,8		
$\sigma_{B,D}^{2)}$ [N/mm ²]	-28,4	-28,0	-20,3	-23,0	-21,8		
$\sigma_Z^{(3)}$ [N/mm ²]	22,2	21,8	15,9	17,9	17,0		
Neigungswinkel α [°]	0	0	≈15	≈15	≈15		
$zul\sigma_{D,\alpha}^{4)}$ [N/mm ²]	6,82	6,82	6,82	6,82	6,82		
$\sigma_{\rm Z}/\sigma_{\rm D,\alpha}$ [-]	3,25	3,20	2,33	2,63	2,49		
$\sigma_{Z}/(0,2\sigma_{D,\alpha})$ [-]	16,3	16,0	11,6	13,1	12,5		
Bruchursache	Zugbruch UKZV	Zugbruch UKZV	Zugbruch UKZV	Zugbruch UKZV	Zugbruch UKZV		
¹⁾ $\sigma_{B,Z} = \frac{N}{\overline{A}} - \frac{M}{\overline{W}}$, ²⁾ $\sigma_{B,D} = \frac{N}{\overline{A}} + \frac{M}{\overline{W}}$ ³⁾ $\sigma_{Z} = \frac{N}{\overline{A}} + \frac{zul \sigma_{D,//}}{zul \sigma_{B}} \frac{M}{\overline{W}}$, ⁴⁾ $zul\sigma_{D,\alpha} = zul\sigma_{D,\parallel} - (zul\sigma_{D,\parallel} - zul\sigma_{D,\perp}) \sin \alpha$ Alle zulässigen Spannungen für BSH Güteklasse II (entspricht BS 11)							

Tabelle A.12:Keilgezinkte Träger mit Zwischenstück aus BFU-BU oder BFU-Birke mit
Zugspannungen in den Innenecken, Kolb/Gruber (1978)

		$\frac{F}{2}$	$\frac{F}{2}$		- - *
		UK	ZV	500	200
,	<u>F</u> 2 , 150 875	200 200	875	<u>F</u> 2 150 102	
Quelle			Kolb/Rado	ovic (1980)	
Träger Nr.		A1	A2	A3	A4
BSH-Gütek	lasse	П	II	II	П
Breite	[mm]	107	107	107	107
W _{Netto}	[10 ⁵ mm ³]	7,13	7,13	7,13	7,13
М	[10 ⁶ Nmm]	24,5	24,3	31,5	31,2
$\sigma_{B,Z} = \sigma_{B,D}$	[N/mm ²]	34,3	34,0	44,2	43,8
Bruchursac	he		Biegezugb	ruch UKZV	

Tabelle A.13: Keilgezinkte Biegeträger ohne Pressdruck, Kolb/Radovic (1980)

Träger A1-A3 mit 1 mm Fugenspiel; Träger A4 mit sattem Stoß.

Tabelle A.14:	Keilgezinkte Biege	träger ohne Pressdruck,	Kolb/Radovic (1984)
---------------	--------------------	-------------------------	---------------------

Träger A5 bis A7 mit 1 mm Fugenspiel; Träger A8 mit sattem Stoß.

Quelle	1	Nöhler/Siebert (1983	5)			
Träger Nr.	I	II	III			
Schnitt Nr.	1	1	1			
BSH-Güteklasse	GKI	GKI	GKI			
Breite [mm]	180	200	200			
W _{Netto} [10 ⁶ mm ³]	11,76	13,07	13,07			
N [10 ³ N]	0	0	0			
M [10 ⁶ Nmm]	98,8	99,3	93,0			
$\sigma_{B,Z}^{1)}$ [N/mm ²]	8,40	7,60	7,12			
$\sigma_{B,D}^{2)}$ [N/mm ²]	-8,40	-7,60	-7,12			
$\sigma_Z^{3)}$ [N/mm ²]	6,6	5,9	5,6			
Neigungswinkel α [°]	31,5	31,5	31,5			
$zul\sigma_{D,\alpha}^{4)}$ [N/mm ²]	5,1	5,1	5,1			
0,2 zul $\sigma_{D,\alpha}$ [N/mm ²]	1,28	1,16	1,09			
$σ_Z/(0,2 zul σ_{D,\alpha})$ [-]	6,42	5,81	5,44			
Bruchursache	Bruchursache Querzugbruch					
¹⁾ $\sigma_{B,Z} = \frac{N}{\overline{A}} - \frac{M}{\overline{W}}, ^{2)} \sigma_{B,D} = \frac{N}{\overline{A}} + \frac{M}{\overline{W}}$ ³⁾ $\sigma_{Z} = \frac{N}{\overline{A}} + \frac{zul \sigma_{D,//}}{zul \sigma_{B}} \frac{M}{\overline{W}}, ^{4)} zul\sigma_{D,\alpha} = zul\sigma_{D, } - (zul\sigma_{D, } - zul\sigma_{D,\perp}) \sin \alpha$ Alle zulässigen Spannungen für BSH Güteklasse II (entspricht BS 11)						

Tabelle A.15: Einfach keilgezinkte Rahmenecken mit Zugspannungen in der Innen-
ecke, Möhler/Siebert (1983)

Tabelle A.16: Rahmenecken verschiedener Geometrien mit Druckspannungen in den
Innenecken, Scapozza (1996)

Tabelle A.17Rahmenecken verschiedener Geometrien mit Zugspannungen in den
Innenecken, Scapozza (1996)

ſ

Tabelle A.18	Keilgezinkte	Träger unter	Zugbeanspr	uchung,	Scapozza	(1998)
--------------	--------------	--------------	------------	---------	----------	--------

Quelle			Scapozza (1998)						
Trägerbez.		BS-Holz/BFU-BU	BS-Holz/BFU-BU	BS-Holz/BFU-FI					
BS-Holz- Festigkeitsklas se	S-	BS 18	BS 18	BS 18					
Querschnitts- breite	[mm]	60	60	60					
A _{Netto}	[mm ²]	6000	7140	7140					
$\sigma_{t,0,50}$	[N/mm ²]	33,1	30,6	21,7					
σ _{t,0,05}	[N/mm ²]	28,5	25,3	18,5					
σ _{t,0,95}	[N/mm ²]	37,7	35,9	24,9					
Bruchursache		Zugbruch UKZV							

Anlage B Holz als orthotroper Werkstoff

B.1 Lineare Elastizitätstheorie anisotroper Körper

Mit dem nachfolgenden überarbeiteten Auszug aus Mittelstedt (1999) sollen die Grundlagen der linearen Elastizitätstheorie anisotroper Körper kurz dargestellt werden (s. hierzu z.B. auch Tsai/Hahn (1980)).

Es wird ein ideal orthotropes, homogenes Material betrachtet und es werden folgende Annahmen getroffen:

- Geometrische und physikalische Linearität,
- Gültigkeit des Superpositionsprinzips,
- Freiheit der betrachteten Struktur von Eigenspannungen und von vor der Betrachtung aufgebrachten Einwirkungen,
- Stationäre Temperatur- und Feuchteverhältnisse
- Konstante Temperatur und Feuchte innerhalb einer einzelnen Schicht

Es wird eine Orthonormalbasis [e_i] aus drei Einheitsvektoren {e_i} eingeführt, die als Basisvektoren das Bezugsachsensystem x_i aufspannen. Jeder Punkt P im Raum kann damit durch den Ortsvektor {x}=x_i{e_i} eindeutig beschrieben werden. Die Achsen der Orthonormalbasis [e_i] orientieren sich an den materialabhängigen Hauptrichtungen: für Holz zeigt x₁ in longitudinaler Richtung, x₂ und x₃ stehen orthogonal zu x₁.

Bild B.1: Unidirektional orientierter Körper mit den Bezugsachsen x_1 , x_2 , x_3 und den so festgelegten Spannungskomponenten σ_{ij} (i,j=1,2,3)

Die x_1x_2 -Ebene bildet die Schichtenmittelebene. Die Schichtdicke d sei im Verhältnis zu den anderen beiden Längenabmessungen klein. Diese Festlegung spielt aber zunächst keine Rolle.

Es seien σ_{ij} und ϵ_{ij} die Spannungs- bzw. Verzerrungskomponenten entlang der Bezugsachsen. Die Ausdrücke σ_{ii} bezeichnen Normalspannungen, σ_{ij} Schubspannungen. Mit ϵ_{ii} werden Dehnungen, mit ϵ_{ij} Gleitungen bezeichnet. Die Indizes der Verzerrungen korrespondieren mit denjenigen der Spannungskomponenten. Die Formänderungen in Richtung der Hauptachsen werden durch die Verformungskomponenten u_i (i=1,2,3) des Vektors {u}=(u_1, u_2, u_3)^T beschrieben. Bild B.1 verdeutlicht diese Zusammenhänge.

Der Spannungszustand an jedem beliebigen Punkt kann in einer Matrix [T], dem sog. Spannungstensor, ausgedrückt werden. Analog zu [T] beschreibt der Verzerrungstensor [V] den Verzerrungszustand.

$$[T] = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & \sigma_{22} & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & \sigma_{33} \end{bmatrix}, \quad [V] = \begin{bmatrix} \varepsilon_{11} & \varepsilon_{12} & \varepsilon_{13} \\ \varepsilon_{21} & \varepsilon_{22} & \varepsilon_{23} \\ \varepsilon_{31} & \varepsilon_{32} & \varepsilon_{33} \end{bmatrix}$$
(B.1)

Sowohl [T] als auch [V] werden als diagonalsymmetrisch vorausgesetzt, es gilt daher für die Schubspannungen σ_{ij} in [T] und die Gleitungen ϵ_{ij} in [V] die Symmetriebedingung (Boltzmann'sches Axiom):

$$\sigma_{ij} = \sigma_{ji}, \qquad \epsilon_{ij} = \epsilon_{ji}.$$
 (B.2a-b)

Durch die Symmetriebedingungen für den Spannungs- und den Verzerrungstensor verbleiben zur Beschreibung des linear-elastischen Kontinuums 15 Zustandsgrößen. Dies sind 6 Spannungs-komponenten σ_{ij} , 6 Verzerrungskomponenten ϵ_{ij} sowie 3 Verformungskomponenten u_i . Dem müssen 15 Bestimmungsgleichungen gegenüberstehen.

Diese werden mit den drei differentiellen Gleichgewichtsbedingungen:

$$\sigma_{ij,i} + p_j = 0 \tag{B.3}$$

mit: p_j = Volumenkraft

(der durch ein Komma abgesetzte Index i in $\sigma_{ij,i}$ bezeichnet eine partielle Differentiation nach x_i)

und den kinematischen Bindungen zwischen der Verzerrungskomponenten ϵ_{ij} sowie den Verschiebungskomponenten u_i

$$\varepsilon_{ij} = \frac{1}{2} (\mathbf{u}_{i,j} + \mathbf{u}_{j,i}),$$
 (B.4)

bzw. ausgeschrieben mit der ingenieurmäßigen Bezeichnung $2\epsilon_{ij} = \gamma_{ij} (i \neq j)$ für die Gleitungen

$$\begin{aligned} \varepsilon_{11} &= u_{1,1}, & \varepsilon_{22} &= u_{2,2}, & \varepsilon_{33} &= u_{3,3}, \\ \gamma_{12} &= u_{1,2} + u_{2,1}, & \gamma_{23} &= u_{2,3} + u_{3,2}, & \gamma_{31} &= u_{3,1} + u_{1,3}, \end{aligned} \tag{B.5a-f}$$

und einem geeignetem Stoffgesetz in Form des verallgemeinerten Hooke'schen Gesetzes (hier in der Cauchy'schen Tensorform dargestellt) gefunden.

$$\sigma_{ij} = C_{ijkl} \varepsilon_{kl} \,. \tag{B.6}$$

Der Elastizitätstensor C_{ijkl} in GI. (B.6) ist ein Tensor vierter Stufe mit insgesamt 81 Komponenten. Durch die vorausgesetzte Diagonalsymmetrie der Tensoren [T] und [V] und der Annahme eines elastischen Potentials verringert sich die Anzahl der elastischen Konstanten auf insgesamt 36, wobei nur 21 voneinander unabhängig sind. Die 81 Komponenten des Elastizitätstensors C_{ijkl} werden zweckmäßig in einer Vektor-Matrix-Notation in der Matrix [C] zusammengefasst. Das Materialgesetz lautet dann:

$$\{\sigma\} = [C] \{\epsilon\} \qquad bzw. \qquad \begin{cases} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{31} \\ \sigma_{12} \end{cases} = \begin{bmatrix} c_{11} & c_{12} & c_{13} & c_{14} & c_{15} & c_{16} \\ c_{21} & c_{22} & c_{23} & c_{24} & c_{25} & c_{26} \\ c_{31} & c_{32} & c_{33} & c_{34} & c_{35} & c_{36} \\ c_{41} & c_{42} & c_{43} & c_{44} & c_{45} & c_{46} \\ c_{51} & c_{52} & c_{53} & c_{54} & c_{55} & c_{56} \\ c_{61} & c_{62} & c_{63} & c_{64} & c_{65} & c_{66} \end{bmatrix} \begin{bmatrix} \epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{33} \\ \gamma_{23} \\ \gamma_{31} \\ \gamma_{12} \end{bmatrix}$$
 (B.7)

mit $\{\sigma\}$ = Vektor der räumlichen Spannungskomponenten,

 $\{\epsilon\}$ = Vektor der räumlichen Verzerrungskomponenten,

[C] = Elastizitäts- oder Steifigkeitsmatrix mit der Symmetrieeigenschaft
 c_{ij} = c_{ji}.

Die Elastizitätsmatrix [C] transformiert den allgemeinen räumlichen Verzerrungszustand in den allgemeinen räumlichen Spannungszustand. Da jedoch in der praktischen Anwendung meist der Spannungszustand als bekannt gelten darf, ist die inverse Schreibweise häufiger anzutreffen:

$$\{ \varepsilon \} = [S] \{ \sigma \} \qquad bzw. \qquad \begin{cases} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \gamma_{23} \\ \gamma_{31} \\ \gamma_{12} \end{cases} = \begin{bmatrix} S_{11} & S_{12} & S_{13} & S_{14} & S_{15} & S_{16} \\ S_{21} & S_{22} & S_{23} & S_{24} & S_{25} & S_{26} \\ S_{31} & S_{32} & S_{33} & S_{34} & S_{35} & S_{36} \\ S_{41} & S_{42} & S_{43} & S_{44} & S_{45} & S_{46} \\ S_{51} & S_{52} & S_{53} & S_{54} & S_{55} & S_{56} \\ S_{61} & S_{62} & S_{63} & S_{64} & S_{65} & S_{66} \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{33} \\ \sigma_{31} \\ \sigma_{12} \end{bmatrix}.$$
 (B.8)

mit: [S] = Nachgiebigkeitsmatrix mit der Symmetrieeigenschaft $c_{ij} = c_{ji}$.

Die Nachgiebigkeitsmatrix [S] ist somit die inverse Matrix der Elastizitätsmatrix [C], d.h. es gilt [S]=[C]⁻¹. Das verallgemeinerte Hooke'sche Gesetz bildet ein lineares Gleichungssystem mit sechs Gleichungen für 6 unbekannte Spannungskomponenten und sechs unbekannte Verzerrungskomponenten.

Der oben beschriebene Fall der allgemeinen Anisotropie ist sehr komplex: Eine beliebige Verzerrungskomponente ruft alle sechs räumlichen Spannungskomponenten hervor. Entsprechend erzeugt eine beliebige Spannungskomponente einen vollständigen räumlichen Verzerrungszustand mit drei Dehnungen und drei Gleitungen.

Viele Werkstoffe weisen zwar ein stark richtungsabhängiges Verhalten auf, es sind jedoch zugleich Symmetrieeigenschaften vorhanden. Bei Wahl eines geeigneten Bezugskoordinatensystems vereinfachen sich die obigen Gleichungen erheblich. Ein Werkstoff, der drei orthogonal zueinander gelegene Symmetrieebenen aufweist (s. Bild B.2), wird als orthogonal anisotrop oder kurz orthotrop bezeichnet. Die Schnittgeraden der Symmetrieebenen seien hier durch die Basisvektoren von [ei] ausgezeichnet. Die Orthonormalbasis [ei] stellt also die Orthotropiehauptachsen dar und wird in diesem Falle auch "on-axis-System" genannt. Bildet die Orthonormalbasis nicht die Orthotropiehauptachsen, so wird [ei'] auch "off-axis-System" genannt.

Seien nun die x_1x_3 -Ebene, die x_2x_3 und die x_1x_2 -Ebene als Symmetrieebenen definiert, die jeweils orthogonal zueinander orientiert sind. Durch diese Symmetrieeigenschaften bedingt ergeben sich einige Vereinfachungen für die Formulierung des verallgemeinerten Hooke'schen Gesetzes im on-axis-System:

$$\{\sigma\} = [C] \{\varepsilon\} \quad \text{bzw.} \quad \begin{cases} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{31} \\ \sigma_{12} \end{cases} = \begin{bmatrix} c_{11} & c_{12} & c_{13} & 0 & 0 & 0 \\ c_{21} & c_{22} & c_{23} & 0 & 0 & 0 \\ c_{31} & c_{32} & c_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & c_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & c_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & c_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \gamma_{31} \\ \gamma_{12} \end{bmatrix}$$
 und
$$\{\varepsilon\} = [S] \{\sigma\} \quad \text{bzw.} \quad \begin{cases} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \gamma_{23} \\ \gamma_{31} \\ \gamma_{12} \end{bmatrix} = \begin{bmatrix} s_{11} & s_{12} & s_{13} & 0 & 0 & 0 \\ s_{11} & s_{22} & s_{23} & 0 & 0 & 0 \\ s_{31} & s_{32} & s_{33} & 0 & 0 & 0 \\ s_{31} & s_{32} & s_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & s_{44} & 0 & 0 \\ 0 & 0 & 0 & s_{55} & 0 \\ 0 & 0 & 0 & 0 & s_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & s_{66} \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{31} \\ \sigma_{23} \\ \sigma_{31} \\ \sigma_{31} \end{bmatrix} .$$
 (B.10)

Bild B.2: x_1x_2 -, x_2x_3 - und x_1x_3 -Ebene

Es genügen 9 unabhängige Steifigkeits- und Nachgiebigkeitswerte c_{ij} bzw. s_{ij}, um ein linear elastisches und orthotropes Materialverhalten zu beschreiben. Diese werden aus 9 unabhängigen Versuchsanordnungen ermittelt. Im Regelfall werden die Nachgiebigkeitswerte s_{ij} ermittelt. Diese werden oftmals als die Dehnungszahlen s₁₁, s₂₂, s₃₃, die Querdehnungszahlen s₁₂, s₂₃, s₃₁ und die Gleitzahlen s₄₄, s₅₅, s₆₆ bezeichnet. Die Interaktionen zwischen Spannungen und Verzerrungen vereinfachen sich im Falle der Materialorthotropie im Gegensatz zum allgemeinen Fall wesentlich: Normalspannungen erzeugen ausschließlich Dehnungen, während Schubspannungen nur Gleitungen verursachen. Hierbei ist eine Normalspannung mit allen Dehnungskomponenten gekoppelt, während die Schubspannungen nur mit den ihnen zugeordneten Gleitungskomponenten korrespondieren. Die Elastizitäts- oder Steifigkeitszahlen und die Nachgiebigkeitskonstanten werden auch häufig technologische Konstanten genannt. Mit dem linearen Hooke'schen Materialgesetz, den kinematischen Bindungen des Kontinuums und den differentiellen Gleichgewichtsbedingungen sind 15 Bestimmungsgleichungen für die 15 unbekannten Zustandsgrößen des linear-elastischen Kontinuums gefunden.

Zwischen den technologischen Konstanten c_{ij} bzw. s_{ij} und den oft gebräuchlichen Ingenieurkonstanten - verallgemeinerter Elastizitätsmodul E_{ii} , Schubmodul G_{ij} sowie Querkontraktionszahl μ_{ij} – bestehen im Falle der Orthotropie die folgenden Zusammenhänge:

$$\begin{split} \mathbf{s}_{11} &= \mathbf{E}_{11}^{-1}, \qquad \mathbf{s}_{22} &= \mathbf{E}_{22}^{-1}, \qquad \mathbf{s}_{33} &= \mathbf{E}_{33}^{-1}, \\ \mathbf{s}_{44} &= \mathbf{G}_{23}^{-1}, \qquad \mathbf{s}_{55} &= \mathbf{G}_{31}^{-1}, \qquad \mathbf{s}_{66} &= \mathbf{G}_{12}^{-1}, \\ \mathbf{s}_{12} &= -\mu_{12}\mathbf{E}_{11}^{-1} &= -\mu_{21}\mathbf{E}_{22}^{-1}, \qquad \mathbf{s}_{23} &= -\mu_{23}\mathbf{E}_{22}^{-1} &= -\mu_{32}\mathbf{E}_{33}^{-1}, \qquad \mathbf{s}_{31} &= -\mu_{31}\mathbf{E}_{33}^{-1} &= -\mu_{13}\mathbf{E}_{11}^{-1} \end{split}$$
(B.11a-i)

sowie mit
$$\Delta = 1 - \mu_{12}\mu_{21} - \mu_{23}\mu_{32} - \mu_{31}\mu_{13} - 2\mu_{21}\mu_{13}\mu_{32}$$

$$\begin{aligned} \mathbf{c}_{11} &= (1 - \mu_{23} \ \mu_{32} \) \mathbf{E}_{11} \ \Delta^{-1} \\ \mathbf{c}_{22} &= (1 - \mu_{31} \mu_{13} \) \mathbf{E}_{11} \Delta^{-1} \\ \mathbf{c}_{33} &= (1 - \mu_{21} \mu_{12} \) \mathbf{E}_{33} \Delta^{-1}, \\ \mathbf{c}_{44} &= \mathbf{G}_{23} \ , \qquad \mathbf{c}_{55} &= \mathbf{G}_{31} \ , \qquad \mathbf{c}_{66} &= \mathbf{G}_{12} \ , \\ \mathbf{c}_{12} &= (\mu_{12} + \mu_{32} \mu_{13} \) \mathbf{E}_{22} \Delta^{-1} &= (\mu_{21} + \mu_{31} \mu_{23} \) \mathbf{E}_{11} \Delta^{-1}, \\ \mathbf{c}_{13} &= (\mu_{13} + \mu_{12} \mu_{23} \) \mathbf{E}_{33} \Delta^{-1} &= (\mu_{31} + \mu_{21} \mu_{32} \) \mathbf{E}_{11} \Delta^{-1}, \\ \mathbf{c}_{23} &= (\mu_{23} + \mu_{21} \mu_{13} \) \mathbf{E}_{33} \Delta^{-1} &= (\mu_{32} + \mu_{12} \mu_{31} \) \mathbf{E}_{11} \Delta^{-1}. \end{aligned}$$

In den Ingenieurkonstanten lautet das Hooke'sche Gesetz { ϵ }=[S]{ σ } für linearelastisches und orthotropes Material in einer zeilennormierten Darstellung:

$$\begin{cases} \varepsilon_{11} \\ \varepsilon_{22} \\ \varepsilon_{33} \\ \gamma_{23} \\ \gamma_{31} \\ \gamma_{12} \end{cases} = \begin{bmatrix} E_{11}^{-1} & -\mu_{12}E_{11}^{-1} & -\mu_{13}E_{11}^{-1} & 0 & 0 & 0 \\ -\mu_{21}E_{22}^{-1} & E_{22}^{-1} & -\mu_{23}E_{22}^{-1} & 0 & 0 & 0 \\ -\mu_{31}E_{33}^{-1} & -\mu_{32}E_{33}^{-1} & E_{33}^{-1} & 0 & 0 & 0 \\ 0 & 0 & 0 & G_{23}^{-1} & 0 & 0 \\ 0 & 0 & 0 & 0 & G_{31}^{-1} & 0 \\ 0 & 0 & 0 & 0 & 0 & G_{12}^{-1} \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \sigma_{23} \\ \sigma_{31} \\ \sigma_{12} \end{bmatrix}$$
(B.13)

Aufgrund des Zusammenhanges zwischen Querdehnungszahlen und Elastizitätsmoduln, ergeben sich auch in der Schreibweise der Ingenieurkonstanten nur neun unabhängige Materialparameter:

 $\mu_{12}\mathsf{E}_{11}^{-1} = \mu_{21}\mathsf{E}_{22}^{-1}\,, \qquad \mu_{23}\mathsf{E}_{22}^{-1} = \mu_{32}\mathsf{E}_{33}^{-1}\,, \qquad \mu_{31}\mathsf{E}_{33}^{-1} = \mu_{13}\mathsf{E}_{11}^{-1}\,. \tag{B.14a-c}$

Es wird nun noch ein Zusammenhang zwischen den Steifigkeiten c_{ij} und den Nachgiebigkeiten s_{ij} benötigt, der sich aus einer einfachen Invertierung von [S] ergibt:

$$\begin{split} \mathbf{c}_{11} &= (\mathbf{s}_{23}^2 - \mathbf{s}_{22}\mathbf{s}_{33})\Delta^{-1}, & \mathbf{c}_{22} &= (\mathbf{s}_{13}^2 - \mathbf{s}_{11}\mathbf{s}_{33})\Delta^{-1}, \\ \mathbf{c}_{33} &= (\mathbf{s}_{12}^2 - \mathbf{s}_{11}\mathbf{s}_{22})\Delta^{-1}, & \mathbf{c}_{12} &= (\mathbf{s}_{12}\mathbf{s}_{33} - \mathbf{s}_{13}\mathbf{s}_{23})\Delta^{-1}, \\ \mathbf{c}_{13} &= (\mathbf{s}_{13}\mathbf{s}_{22} - \mathbf{s}_{12}\mathbf{s}_{23})\Delta^{-1}, & \mathbf{c}_{23} &= (\mathbf{s}_{11}\mathbf{s}_{23} - \mathbf{s}_{12}\mathbf{s}_{13})\Delta^{-1}, \\ \mathbf{c}_{44} &= \mathbf{s}_{44}^{-1}, \ \mathbf{c}_{55} &= \mathbf{s}_{55}^{-1}, \ \mathbf{c}_{66} &= \mathbf{s}_{66}^{-1}, \\ \text{mit} & \Delta &= \mathbf{s}_{11}\mathbf{s}_{23}^2 - \mathbf{s}_{11}\mathbf{s}_{22}\mathbf{s}_{33} - 2\mathbf{s}_{12}\mathbf{s}_{13}\mathbf{s}_{23} + \mathbf{s}_{22}\mathbf{s}_{13}^2 + \mathbf{s}_{33}\mathbf{s}_{12}^2. \end{split}$$
(B.15a-j)

B.2 Transformations Gleichungen

Die vorausgegangenen Betrachtungen setzen voraus, dass Spannungen, Verzerrungen und Materialparameter s_{ij} und c_{ij} auf die Achsen x_i bzw. deren Basisvektoren {e₁}, {e₂}, {e₃} bezogen sind. Gegeben sei nun die Orthonormalbasis [e_i] (i=1,2,3), die durch eine reine Vektordrehung in eine beliebige Basis [e_i'] (i'=1',2',3') umgewandelt wird (vgl. Bild B.3, links). Der Ursprung der Orthonormalbasis [e_i] und der Basis [e_i'] sei somit identisch. Die Basisvektoren {e_j} und {e_i'} schließen den Richtungswinkel \angle ({e_i'},{e_j}) ein. Der Kosinus dieses Winkels wird Richtungskosinus R_{ij} genannt (analog für R_{ji}). Der erste Index bezeichnet den betrachteten Basisvektor aus [e_i'], der zweite Index denjenigen aus [e_i]:

$$R_{ij} = \cos(\angle(\{e_i^{\prime}\}, \{e_j\}); R_{ji} = \cos(\angle(\{e_j^{\prime}\}, \{e_i\}).$$
(B.16a-b)

Der Richtungskosinus $R_{ij} = cos(\angle (\{e_i'\}, \{e_j\}))$ folgt aus dem Skalarprodukt zweier Vektoren:

$$\mathsf{R}_{ij} = \frac{\{\mathsf{e}_{i}'\}\{\mathsf{e}_{j}\}}{|\{\mathsf{e}_{i}'\}||\{\mathsf{e}_{j}\}|} \,. \tag{B.17}$$

Die Transformation der Spannungen von $[e_i]$ nach $[e_i']$ folgt aus dem Gleichgewicht am Tetraeder:

$$\{\sigma'\}=[\mathsf{T}_{\sigma}]\{\sigma\} \tag{B.18}$$

mit

$$\begin{bmatrix} R_{11}^2 & R_{12}^2 & R_{13}^2 & 2R_{12}R_{13} & 2R_{11}R_{13} & 2R_{11}R_{12} \\ R_{21}^2 & R_{22}^2 & R_{23}^2 & 2R_{22}R_{23} & 2R_{21}R_{23} & 2R_{21}R_{22} \\ R_{31}^2 & R_{32}^2 & R_{33}^2 & 2R_{32}R_{33} & 2R_{31}R_{33} & 2R_{31}R_{32} \\ R_{21}R_{31} & R_{22}R_{32} & R_{23}R_{33} & R_{22}R_{33} + R_{23}R_{32} & R_{21}R_{33} + R_{23}R_{31} & R_{21}R_{32} + R_{22}R_{31} \\ R_{11}R_{31} & R_{12}R_{32} & R_{13}R_{33} & R_{12}R_{33} + R_{13}R_{32} & R_{11}R_{33} + R_{13}R_{31} & R_{11}R_{32} + R_{12}R_{31} \\ R_{11}R_{21} & R_{12}R_{22} & R_{13}R_{23} & R_{12}R_{23} + R_{13}R_{22} & R_{11}R_{23} + R_{13}R_{21} & R_{11}R_{22} + R_{12}R_{21} \end{bmatrix}$$

Analog lässt sich die Transformation der Verzerrungen durchführen, wobei $2\epsilon_{ij} = \gamma_{ij}$ (i \neq j) gilt:

$$\{\varepsilon'\} = [\mathsf{T}_{\varepsilon}]\{\varepsilon\} \tag{B.19}$$

mit

$$\left[\mathsf{T}_{\varepsilon} \right] = \begin{bmatrix} \mathsf{R}_{11}^2 & \mathsf{R}_{12}^2 & \mathsf{R}_{13}^2 & \mathsf{R}_{12}\mathsf{R}_{13} & \mathsf{R}_{11}\mathsf{R}_{13} & \mathsf{R}_{11}\mathsf{R}_{12} \\ \mathsf{R}_{21}^2 & \mathsf{R}_{22}^2 & \mathsf{R}_{23}^2 & \mathsf{R}_{22}\mathsf{R}_{23} & \mathsf{R}_{21}\mathsf{R}_{23} & \mathsf{R}_{21}\mathsf{R}_{22} \\ \mathsf{R}_{31}^2 & \mathsf{R}_{32}^2 & \mathsf{R}_{33}^2 & \mathsf{R}_{32}\mathsf{R}_{33} & \mathsf{R}_{31}\mathsf{R}_{33} & \mathsf{R}_{31}\mathsf{R}_{32} \\ \mathsf{2}\mathsf{R}_{21}\mathsf{R}_{31} & \mathsf{2}\mathsf{R}_{22}\mathsf{R}_{32} & \mathsf{2}\mathsf{R}_{23}\mathsf{R}_{33} & \mathsf{R}_{22}\mathsf{R}_{33} & \mathsf{R}_{21}\mathsf{R}_{33} & \mathsf{R}_{31}\mathsf{R}_{32} \\ \mathsf{2}\mathsf{R}_{21}\mathsf{R}_{31} & \mathsf{2}\mathsf{R}_{22}\mathsf{R}_{32} & \mathsf{2}\mathsf{R}_{23}\mathsf{R}_{33} & \mathsf{R}_{22}\mathsf{R}_{33} + \mathsf{R}_{23}\mathsf{R}_{32} & \mathsf{R}_{21}\mathsf{R}_{33} + \mathsf{R}_{23}\mathsf{R}_{31} & \mathsf{R}_{21}\mathsf{R}_{32} + \mathsf{R}_{22}\mathsf{R}_{31} \\ \mathsf{2}\mathsf{R}_{11}\mathsf{R}_{31} & \mathsf{2}\mathsf{R}_{12}\mathsf{R}_{32} & \mathsf{2}\mathsf{R}_{13}\mathsf{R}_{33} & \mathsf{R}_{12}\mathsf{R}_{33} + \mathsf{R}_{13}\mathsf{R}_{32} & \mathsf{R}_{11}\mathsf{R}_{33} + \mathsf{R}_{13}\mathsf{R}_{31} & \mathsf{R}_{11}\mathsf{R}_{32} + \mathsf{R}_{12}\mathsf{R}_{31} \\ \mathsf{2}\mathsf{R}_{11}\mathsf{R}_{21} & \mathsf{2}\mathsf{R}_{12}\mathsf{R}_{22} & \mathsf{2}\mathsf{R}_{13}\mathsf{R}_{23} & \mathsf{R}_{12}\mathsf{R}_{23} + \mathsf{R}_{13}\mathsf{R}_{22} & \mathsf{R}_{11}\mathsf{R}_{33} + \mathsf{R}_{13}\mathsf{R}_{21} & \mathsf{R}_{11}\mathsf{R}_{22} + \mathsf{R}_{12}\mathsf{R}_{21} \\ \mathsf{2}\mathsf{R}_{11}\mathsf{R}_{21} & \mathsf{2}\mathsf{R}_{12}\mathsf{R}_{22} & \mathsf{2}\mathsf{R}_{13}\mathsf{R}_{23} & \mathsf{R}_{12}\mathsf{R}_{23} + \mathsf{R}_{13}\mathsf{R}_{22} & \mathsf{R}_{11}\mathsf{R}_{23} + \mathsf{R}_{13}\mathsf{R}_{21} & \mathsf{R}_{11}\mathsf{R}_{22} + \mathsf{R}_{12}\mathsf{R}_{21} \\ \mathsf{2}\mathsf{R}_{11}\mathsf{R}_{21} & \mathsf{2}\mathsf{R}_{12}\mathsf{R}_{22} & \mathsf{2}\mathsf{R}_{13}\mathsf{R}_{23} & \mathsf{R}_{12}\mathsf{R}_{23} + \mathsf{R}_{13}\mathsf{R}_{22} & \mathsf{R}_{11}\mathsf{R}_{23} + \mathsf{R}_{13}\mathsf{R}_{21} & \mathsf{R}_{11}\mathsf{R}_{22} + \mathsf{R}_{12}\mathsf{R}_{21} \\ \mathsf{2}\mathsf{R}_{11}\mathsf{R}_{21} & \mathsf{R}_{11}\mathsf{R}_{22} + \mathsf{R}_{12}\mathsf{R}_{21} \\ \mathsf{R}_{11}\mathsf{R}_{22} + \mathsf{R}_{12}\mathsf{R}_{2$$

Für die Transformationsmatrizen $[T_{\sigma}]$ und $[T_{\epsilon}]$ gelten die folgenden Beziehungen, die sich aufgrund der Drehinvarianz der spezifischen Formänderungsenergie ergibt:

$$[\mathsf{T}_{\sigma}]^{-1} = [\mathsf{T}_{\varepsilon}]^{\mathsf{T}}, \tag{B.20}$$

$$[\mathsf{T}_{\varepsilon}]^{-1} = [\mathsf{T}_{\sigma}]^{\mathsf{T}}. \tag{B.21}$$

Die Transformation der Nachgiebigkeitsmatrix [S] und der Steifigkeitsmatrix [C] aus der Orthonormalbasis [e_i] in die Basis [e_i'] kann dann abgeleitet werden zu:

$$[S'] = [T_{\varepsilon}][S][T_{\varepsilon}]^{\mathsf{T}}, \tag{B.22}$$

$$[C']=[T_{\sigma}][C][T_{\sigma}]^{\mathsf{T}}.$$
(B.23)

Für den Fall, dass [e_i'] eine Orthonormalbasis ist und die Rotation von [e_i] um die feste x_3 -Achse um den Winkel θ geschieht (s. Bild B.3, rechts), ergibt sich:

 $\{\sigma'\}=[T_{\sigma}]\{\sigma\}$ bzw. $\cos^2 \theta$ $sin^2 \theta$ 0 0 0 $2\cos\theta\sin\theta$ $\sigma_{1'1'}$ σ_{11} $\cos^2\theta$ $\sigma_{2^{'}2^{'}}$ $\sin^2 \theta$ 0 0 σ_{22} 0 $- 2\cos\theta\sin\theta$ 1 0 σ_{33} 0 0 0 0 $\sigma_{3^{\prime}3^{\prime}}$ 0 0 σ_{23} $0 \cos \theta - \sin \theta$ 0 $\sigma_{2^{\prime}3^{\prime}}$ 0 $\sigma_{_{31}}$ 0 0 0 ${{\rm sin}\,\theta}$ $\cos \theta$ $\sigma_{3^{\prime}1^{\prime}}$ $\frac{0}{\cos^2 \theta - \sin^2 \theta}$ 0 |σ₁₂ $\sigma_{1^{\prime}2^{\prime}}$ $-\cos\theta\sin\theta$ $\cos\theta\sin\theta$ 0 0

sowie $\{\epsilon'\}=[T_{\epsilon}]\{\epsilon\}$ bzw.

ε _{1'1'}]	cos² θ	$sin^2 \theta$	0	0	0	$\cos\theta\sin\theta$	$\left[\epsilon_{11} \right]$
ε2'2'		sin² θ	$\cos^2 \theta$	0	0	0	$-\cos\theta\sin\theta$	ε22
ε _{3'3'}		0	0	1	0	0	0	$\left \varepsilon_{33}\right $
$\gamma_{2'3'}$		0	0	0	$\cos \theta$	$-\sin\theta$	0	γ_{23}
γ _{3'1'}		0	0	0	${\pmb{sin}}\theta$	$\cos \theta$	0	γ ₃₁
γ _{1'2'}	J	$-2\cos\theta\sin\theta$	$2\cos\theta\sin\theta$	0	0	0	$\cos^2 \theta - \sin^2 \theta$	$\left[\gamma_{12}\right]$

Bild B.3:Drehung einer Orthonormalbasis [e_i] in eine beliebige Basis [e_i'] (links)
sowie Drehung einer Orthonormalbasis [e_i] in eine Orthonormalbasis [e_i']

(B.24)

(B.25)

Die Transformationsbeziehungen für orthotropes Material bei einer reinen Drehung um $\{e_3\}$ können explizit angegeben werden. Für die Nachgiebigkeiten $s_{i'j'}$ im ergibt sich:

$$\begin{split} s_{11} &= s_{11} \cos^4 \theta + s_{22} \sin^4 \theta + 2s_{12} \cos^2 \theta \sin^2 \theta + s_{66} \cos^2 \theta \sin^2 \theta, \\ s_{22'} &= s_{11} \sin^4 \theta + 2s_{12} \cos^2 \theta \sin^2 \theta + s_{22} \cos^4 \theta + s_{66} \cos^2 \theta \sin^2 \theta, \\ s_{12'} &= \cos^2 \theta \sin^2 \theta (s_{11} + s_{22}) + s_{12} (\cos^4 \theta + \sin^4 \theta) - s_{66} \cos^2 \theta \sin^2 \theta, \\ s_{6'6'} &= 4(s_{11} + s_{22}) \cos^2 \theta \sin^2 \theta - 8s_{12} \cos^2 \theta \sin^2 \theta + s_{66} (\cos^2 \theta - \sin^2 \theta)^2, \\ s_{16'} &= 2s_{11} \cos^3 \theta \sin \theta + 2s_{12} (\cos \theta \sin^3 \theta - \cos^3 \theta \sin \theta) \\ &\quad - 2s_{22} \cos \theta \sin^3 \theta + s_{66} (\cos \theta \sin^3 \theta - \cos^3 \theta \sin \theta), \\ s_{2'6'} &= 2s_{11} \cos \theta \sin^3 \theta + 2s_{12} (\cos^3 \theta \sin \theta - \cos \theta \sin^3 \theta) \\ &\quad - 2s_{22} \cos^3 \theta \sin \theta + s_{66} (\cos^3 \theta \sin \theta - \cos \theta \sin^3 \theta), \\ s_{13'} &= s_{13} \cos^2 \theta + s_{23} \sin^2 \theta, \\ s_{2'3'} &= s_{13} \sin^2 \theta + s_{23} \cos^2 \theta, \\ s_{3'6'} &= 2s_{13} \cos \theta \sin \theta - 2s_{23} \cos \theta \sin \theta, \\ s_{4'4'} &= s_{44} \cos^2 \theta + s_{55} \sin^2 \theta, \\ s_{4'5'} &= -s_{44} \cos \theta \sin \theta + s_{55} \cos \theta \sin \theta, \\ s_{5'5'} &= s_{44} \sin^2 \theta + s_{55} \cos^2 \theta. \end{split}$$
(B.26a-d)

Alle anderen $s_{i'j'}$ sind identisch null. Das verallgemeinerte Hookesche Gesetz für orthotropes Material kann damit angeschrieben werden als:

$$\{\epsilon'\} = \left[S'\right]\!\left\{\sigma'\right\}$$

$$bzw. \begin{cases} \epsilon_{11'} \\ \epsilon_{2'2'} \\ \epsilon_{3'3'} \\ \gamma_{2'3'} \\ \gamma_{3'1'} \\ \gamma_{12'} \end{cases} = \begin{bmatrix} s_{11'} & s_{1'2'} & s_{1'3'} & 0 & 0 & s_{1'6'} \\ s_{2'1'} & s_{2'2'} & s_{2'3'} & 0 & 0 & s_{2'6'} \\ s_{3'1'} & s_{3'2'} & s_{3'3'} & 0 & 0 & s_{3'6'} \\ 0 & 0 & 0 & s_{4'4'} & s_{4'5'} & 0 \\ 0 & 0 & 0 & s_{5'4'} & s_{5'5'} & 0 \\ s_{6'1'} & s_{6'2'} & s_{6'3'} & 0 & 0 & s_{6'6'} \end{bmatrix} \begin{bmatrix} \sigma_{1'1'} \\ \sigma_{2'2'} \\ \sigma_{3'3'} \\ \sigma_{2'3'} \\ \sigma_{3'1'} \\ \sigma_{1'2'} \end{bmatrix}, s_{i'j'} = s_{j'i'}.$$

$$(B.27)$$

Im gedrehten Koordinatensystem sind die 13 Materialparameter $s_{i'j'}$ nicht voneinander unabhängig Die Anzahl der unabhängigen Materialkennwerte beträgt für orthotropes

Material, wie bereits gezeigt, unabhängig oben stets neun, vom Bezugskoordinatensystem.

.

Für die Steifigkeiten c_{ii} ergibt sich:

. 1 .

$$\begin{aligned} c_{11'} &= c_{11} \cos^4 \theta + c_{22} \sin^4 \theta + 2c_{12} \cos^2 \theta \sin^2 \theta + 4c_{66} \cos^2 \theta \sin^2 \theta, \\ c_{2'2'} &= c_{11} \sin^4 \theta + c_{22} \cos^4 \theta + 2c_{12} \cos^2 \theta \sin^2 \theta + 4c_{66} \cos^2 \theta \sin^2 \theta, \\ c_{1'2'} &= \cos^2 \theta \sin^2 \theta (c_{11} + c_{22}) + c_{12} (\cos^4 \theta + \sin^4 \theta) - 4c_{66} \cos^2 \theta \sin^2 \theta, \\ c_{6'6'} &= \cos^2 \theta \sin^2 \theta (c_{11} + c_{22}) - 2c_{12} \cos^2 \theta \sin^2 \theta + c_{66} (\cos^2 \theta - \sin^2 \theta)^2, \\ c_{1'6'} &= c_{11} \cos^3 \theta \sin \theta + c_{12} (\cos \theta \sin^3 \theta - \cos^3 \theta \sin \theta) \\ &- c_{22} \cos \theta \sin^3 \theta + 2c_{66} (\cos \theta \sin^3 \theta - \cos^3 \theta \sin \theta), \\ c_{2'6'} &= c_{11} \cos \theta \sin^3 \theta + c_{12} (\cos^3 \theta \sin \theta - \cos \theta \sin^3 \theta) \\ &- c_{22} \cos^3 \theta \sin \theta + 2c_{66} (\cos^3 \theta \sin \theta - \cos \theta \sin^3 \theta), \end{aligned}$$
(B.28a-m)

$$\begin{aligned} c_{1'3'} &= c_{13} \cos^2 \theta + c_{23} \sin^2 \theta, \\ c_{2'3'} &= c_{13} \sin^2 \theta + c_{23} \cos^2 \theta, \\ c_{3'3'} &= c_{33}, \\ c_{3'6'} &= c_{13} \cos \theta \sin \theta - c_{23} \cos \theta \sin \theta, \\ c_{4'4'} &= c_{44} \cos^2 \theta + c_{55} \sin^2 \theta, \\ c_{4'5'} &= -c_{44} \cos \theta \sin \theta + c_{55} \cos \theta \sin \theta, \\ c_{5'5'} &= -c_{44} \sin^2 \theta + c_{55} \cos^2 \theta. \end{aligned}$$

Alle anderen cij sind identisch null. Das verallgemeinerte Hookesche Gesetz für orthotropes Material im off-axis-System folgt zu:

$$\{\sigma'\} = [C']\{\epsilon'\}$$

$$bzw. \begin{cases} \sigma_{1'1'} \\ \sigma_{2'2'} \\ \sigma_{3'3'} \\ \sigma_{2'3'} \\ \sigma_{3'1'} \\ \sigma_{1'2'} \end{cases} = \begin{bmatrix} c_{1'1'} & c_{1'2'} & c_{1'3'} & 0 & 0 & c_{1'6'} \\ c_{2'1'} & c_{2'2'} & c_{2'3'} & 0 & 0 & c_{2'6'} \\ c_{3'1'} & c_{3'2'} & c_{3'3'} & 0 & 0 & c_{3'6'} \\ 0 & 0 & 0 & c_{4'4'} & c_{4'5'} & 0 \\ 0 & 0 & 0 & c_{5'4'} & c_{5'5'} & 0 \\ c_{6'1'} & c_{6'2'} & c_{6'3'} & 0 & 0 & c_{6'6'} \end{bmatrix} \begin{bmatrix} \epsilon_{1'1'} \\ \epsilon_{2'2'} \\ \epsilon_{3'3'} \\ \gamma_{2'3'} \\ \gamma_{3'1'} \\ \gamma_{12'} \end{bmatrix}, c_{i'j'} = c_{j'j'}.$$

$$(B.29)$$

Für den ebenen Fall vereinfachen sich obige Gleichungen.

Es wird nachfolgend ein Körper betrachtet, dessen Abmessungen entlang der Bezugsachsen x1 und x2 groß sind gegenüber der Abmessung d entlang der x3-Achse. Die x1x2-Ebene sei eine Symmetrieebene und halbiere den betrachteten Körper an jeder Stelle. Die Voraussetzungen der vorangegangenen Abschnitte haben Gültigkeit. Es wird ein schubstarrer Körper angenommen, d.h. nur Schubverzerrungen in der Ebene werden zugelassen. Eine Normale zur unverformten Mittelebene ist demnach auch eine Normale zur verformten Mittelebene.

Für die nichtebenen Spannungskomponenten gilt dann:

$$\sigma_{33} = 0, \sigma_{23} = 0, \sigma_{31} = 0.$$
 (B.30a-c)

Das Materialgesetz reduziert sich dann auf die Form:

$$\{\epsilon\} = [S]\{\sigma\} \text{ bzw. } \begin{cases} \epsilon_{11} \\ \epsilon_{22} \\ \gamma_{12} \end{cases} = \begin{bmatrix} s_{11} & s_{12} & 0 \\ s_{21} & s_{22} & 0 \\ 0 & 0 & s_{66} \end{bmatrix} \begin{bmatrix} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{bmatrix}, \ s_{ij} = s_{ji}$$
(B.31)

und

$$\{\sigma\}=[Q]\{\varepsilon\} \text{ bzw. } \begin{cases} \sigma_{11} \\ \sigma_{22} \\ \sigma_{12} \end{cases} = \begin{bmatrix} q_{11} & q_{12} & 0 \\ q_{21} & q_{22} & 0 \\ 0 & 0 & q_{66} \end{bmatrix} \begin{cases} \varepsilon_{11} \\ \varepsilon_{22} \\ \gamma_{12} \end{cases}, \ q_{ij} = q_{ji}.$$
(B.32)

Hierin sind die q_{ij} die reduzierten Steifigkeiten, die sich mit der folgenden Berechnungsregel aus den räumlichen Steifigkeiten c_{ij} ermitteln lassen:

$$\mathbf{q}_{ij} = \mathbf{c}_{ij} - \mathbf{c}_{i3} \mathbf{c}_{j3} \mathbf{c}_{33}^{-1} \,. \tag{B.33}$$

Bei Benutzung von Ingenieurkonstanten ergeben sich die nachfolgenden Ausdrücke:

$$q_{11} = E_{11}(1 - \mu_{12}\mu_{21})^{-1}, q_{22} = E_{22}(1 - \mu_{12}\mu_{21})^{-1}, q_{12} = \mu_{12}E_{22}(1 - \mu_{12}\mu_{21})^{-1}, q_{66} = G_{12}.$$
 (B.34)

Für die spätere Berechnung des Laminats, zusammengefasst aus mehreren Einzelschichten, sind die reduzierten Steifigkeiten der Lagen auf das globale Achsensystem des Laminats zu transformieren. Die transformierten reduzierten Steifigkeiten im offaxis-System ergeben sich zu:
$$\begin{aligned} q_{1'1'} &= q_{11} \cos^4 \theta + 2q_{12} \cos^2 \theta \sin^2 \theta + q_{22} \sin^4 \theta + 4q_{66} \cos^2 \theta \sin^2 \theta \\ q_{1'2'} &= q_{11} \cos^2 \theta \sin^2 \theta + q_{12} (\cos^4 \theta + \sin^4 \theta) + q_{22} \cos^2 \theta \sin^2 \theta - 4q_{66} \cos^2 \theta \sin^2 \theta \\ q_{1'6'} &= q_{11} \cos^3 \theta \sin \theta - q_{12} (\cos^3 \theta \sin \theta - \cos \theta \sin^3 \theta) \\ &- q_{22} \cos \theta \sin^3 \theta - 2q_{66} \cos \theta \sin \theta (\cos^2 \theta - \sin^2 \theta), \end{aligned}$$
(B.35a-f)
$$q_{2'2'} &= q_{11} \sin^4 \theta + 2q_{12} \cos^2 \theta \sin^2 \theta + q_{22} \cos^4 \theta + 4q_{66} \cos^2 \theta \sin^2 \theta \\ q_{2'6'} &= q_{11} \cos \theta \sin^3 \theta - q_{12} (\cos \theta \sin^3 \theta - \cos^3 \theta \sin \theta) \\ &- q_{22} \cos^3 \theta \sin \theta + 2q_{66} \cos \theta \sin \theta (\cos^2 \theta - \sin^2 \theta), \end{aligned}$$

Das orthotrope Materialgesetz im ebenen Spannungszustand geht damit im off-axis-System über in:

$$\{\sigma'\}=[Q']\{\varepsilon'\} bzw. \begin{cases} \sigma_{1'1'} \\ \sigma_{2'2'} \\ \sigma_{1'2'} \end{cases} = \begin{bmatrix} q_{1'1'} & q_{1'2'} & q_{1'6'} \\ q_{2'1'} & q_{2'2'} & q_{2'6'} \\ q_{6'1'} & q_{6'2'} & q_{6'6'} \end{bmatrix} \begin{bmatrix} \varepsilon_{1'1'} \\ \varepsilon_{2'2'} \\ \gamma_{1'2'} \end{bmatrix}.$$
(B.36)

Normalspannungen erzeugen im off-axis-System zusätzlich zu den beiden ebenen Dehnungskomponenten eine Gleitung in der Schichtenebene, die ebene Schubspannung $\sigma_{1'2'}$ erzeugt hierbei neben der ihr zugeordneten Gleitung zudem beide ebenen Dehnungskomponenten.

B.3 Zusammenbau des Schichtverbundes, Klassische Laminattheorie

Es wird ein Verbundkörper aus mindestens n=2 unidirektionalen Einzelschichten betrachtet, der die Längenabmessungen I₁ und I₂ in Richtung von x₁ und x₂ sowie die Dicke d in x₃-Richtung aufweist. Die n Einzelschichten und alle hiermit verbundenen Größen werden nachfolgend mit einem hochgestellten $(...)^{(k)}$ indiziert (k=1,...,n). Die Lamina mögen jeweils unterschiedliche Eigenschaften besitzen und weisen eine konstante Schichtdicke d^(k) (k=1,2,...,n) in x₃-Richtung auf. Es herrscht ein starrer Verbund zwischen den Einzelschichten. Als ein globales Bezugssystem werden die orthogonal zueinander stehenden Achsen x₁, x₂, x₃ festgelegt, die x₁x₂-Ebene legt die Schwereebene des Verbundes fest.

Jeder Einzelschicht wird in deren Schwerpunkt ein lokales Bezugssystem [$e_i^{(k)}$] mit den Achsen $x_1^{(k)}$, $x_2^{(k)}$, $x_3^{(k)}$ zugrundegelegt. Zwischen x_1 , x_2 und $x_1^{(k)}$, $x_2^{(k)}$ kann somit ein Drehwinkel $\theta^{(k)}$ vorliegen. Die Richtung der Achse $x_3^{(k)}$ ist stets identisch mit derjenigen von x_3 . Es wird außerdem festgelegt, dass die $x_1^{(k)}$ -Achse die Materialhauptachse einer

Einzelschicht darstellt. Dies bedeutet, dass $x_1^{(k)}$ die Richtung der Fasern einer unidirektionalen Einzelschicht des Laminates festlegt, die verbleibenden Achsen $x_2^{(k)}$ und $x_3^{(k)}$ stehen hierzu rechtwinklig. Bild B.4 verdeutlicht die bisher getroffenen Festlegungen. Im übrigen gelten alle bisher getroffenen Festlegungen.

Die Dehnungskomponenten des aus n Einzelschichten zusammengesetzten Laminats ergeben sich aus der Superposition der Kinematen der Scheibenwirkung im ebenen Spannungszustand sowie aus der Plattenwirkung nach Kirchhoff, bezogen auf die Laminatmittelebene $x_3=0$. Aus der Scheibenwirkung ergeben sich konstante Verzerrungen über die Laminatdicke d, die Plattenwirkung erzeugt linear verteilte Verzerrungen über d, Querschubverzerrungen werden ausgeschlossen.

Die resultierenden Laminatverzerrungen können demnach in [e_i] dargestellt werden als:

$$\{\epsilon\} = \{\epsilon^{0}\} + x_{3}\{\kappa\} \text{ bzw. } \begin{cases} \epsilon_{11}(x_{1}, x_{2}, x_{3}) \\ \epsilon_{22}(x_{1}, x_{2}, x_{3}) \\ \gamma_{12}(x_{1}, x_{2}, x_{3}) \end{cases} = \begin{cases} \epsilon_{11}^{0}(x_{1}, x_{2}) \\ \epsilon_{22}^{0}(x_{1}, x_{2}) \\ \gamma_{12}^{0}(x_{1}, x_{2}) \end{cases} + x_{3} \begin{cases} \kappa_{11}(x_{1}, x_{2}) \\ \kappa_{22}(x_{1}, x_{2}) \\ \kappa_{12}(x_{1}, x_{2}) \end{cases}.$$
(B.37)

Bild B.4: Schnitt durch ein Laminat mit den Längen I_1 und I_2 sowie der Dicke d, bestehend aus sechs Einzelschichten

Hierin bedeuten die mit einer hochgestellten "0" versehenen Terme die Verzerrungskomponenten der Laminatschwerebene. Die Verzerrungen der Laminatmittelebene bzw. ihre linearisierten Verkrümmungen ergeben sich hierbei aus:

$$\begin{cases} \epsilon_{11}^{0} \\ \epsilon_{22}^{0} \\ \gamma_{12}^{0} \end{cases} = \begin{cases} u_{1,1} \\ u_{2,2} \\ u_{1,2} + u_{2,1} \end{cases}, \ \begin{cases} \kappa_{11} \\ \kappa_{22} \\ \kappa_{12} \end{cases} = - \begin{cases} u_{3,11} \\ u_{3,22} \\ 2u_{3,12} \end{cases}.$$
(B.38)

Aus den Laminatverzerrungen können die entsprechenden Spannungskomponenten berechnet werden. Die entsprechenden Kraft- und Momentenresultanten N_{ij} bzw. M_{ij} im globalen Bezugssystem [e_i] des Laminats ergeben sich hieraus aus der Integration über die Laminatdicke d, d.h. über alle Einzelschichten:

$$\{\mathbf{N}\} = \int_{d} \{\sigma'\} d\mathbf{x}_{3} \qquad \text{bzw.} \quad \begin{cases} \mathbf{N}_{11} \\ \mathbf{N}_{22} \\ \mathbf{N}_{12} \end{cases} = \int_{d} \begin{cases} \sigma_{1'1'} \\ \sigma_{2'2'} \\ \sigma_{1'2'} \end{cases} d\mathbf{x}_{3} , \qquad (B.39)$$

$$\{M\} = \int_{d} \{\sigma'\} x_3 dx_3 \qquad bzw. \quad \begin{cases} M_{11} \\ M_{22} \\ M_{12} \end{cases} = \int_{d} \begin{cases} \sigma_{1'1'} \\ \sigma_{2'2'} \\ \sigma_{1'2'} \end{cases} x_3 dx_3 .$$
(B.40)

In symbolischer Schreibweise bezogen auf die Koordinaten der globalen Orthonormalbasis [e_i]:

$$\{N\} = \int_{d} [Q'] \{\epsilon^0\} dx_3 + \int_{d} [Q'] \{\kappa\} x_3 dx_3 , \qquad (B.41)$$

$$\{M\} = \int_{d} [Q'] \{\epsilon^0\} x_3 dx_3 + \int_{d} [Q'] \{\kappa\} x_3^2 dx_3 .$$
 (B.42)

Durchführen der jeweiligen Integrationen führt auf das allgemeine konstitutive Materialgesetz für das Laminat aus k Einzelschichten (sog. "ABH"-Matrix):

$$\begin{cases} \mathsf{N} \\ \mathsf{M} \end{cases} = \begin{bmatrix} \mathsf{A} & \mathsf{B} \\ \mathsf{B} & \mathsf{H} \end{bmatrix} \begin{cases} \varepsilon^0 \\ \kappa \end{cases} \text{ bzw.}$$
 (B.43)

$$\begin{vmatrix} N_{11} \\ N_{22} \\ N_{12} \\ M_{11} \\ M_{22} \\ M_{12} \end{vmatrix} = \begin{vmatrix} A_{11} & A_{12} & A_{16} & B_{11} & B_{12} & B_{16} \\ A_{21} & A_{22} & A_{26} & B_{21} & B_{22} & B_{26} \\ A_{61} & A_{62} & A_{66} & B_{61} & B_{62} & B_{66} \\ B_{11} & B_{12} & B_{16} & H_{11} & H_{12} & H_{16} \\ B_{21} & B_{22} & B_{26} & H_{21} & H_{22} & H_{26} \\ B_{61} & B_{62} & B_{66} & H_{61} & H_{62} & H_{66} \end{vmatrix} \begin{vmatrix} \varepsilon_{11}^{0} \\ \varepsilon_{22}^{0} \\ \kappa_{11} \\ \kappa_{22} \\ \kappa_{12} \end{vmatrix}$$

$$A_{ij} = \int_{d} q_{i'j'} dx_3, B_{ij} = \int_{d} q_{i'j'} x_3 dx_3, H_{ij} = \int_{d} q_{i'j'} x_3^2 dx_3, \qquad (B.44a-c)$$

bzw. bei schichtweise über x3 konstanten reduzierten Steifigkeiten qij

$$A_{ij} = \sum_{k=1}^{n} q_{i'j'}^{(k)} (x_3^{(k)} - x_3^{(k-1)}), \qquad (B.45)$$

$$\mathsf{B}_{ij} = \frac{1}{2} \sum_{k=1}^{n} \mathsf{q}_{i'j'}^{(k)} ((\mathsf{x}_{3}^{(k)})^{2} - (\mathsf{x}_{3}^{(k-1)})^{2}), \tag{B.46}$$

$$H_{ij} = \frac{1}{3} \sum_{k=1}^{n} q_{i'j'}^{(k)} ((x_3^{(k)})^3 - (x_3^{(k-1)})^3), \qquad (B.47)$$

wobei jeweils über die Anzahl der Lamina zu summieren ist. Die Größen A_{ij} sind hierin die "Dehnsteifigkeiten" des Laminats, B_{ij} bezeichnen dessen Koppelsteifigkeiten. Die Einträge H_{ij} sind die "Biegesteifigkeiten" – inkl. der Drillsteifigkeit - des Laminats. Wird das Laminat einer reinen Scheibenbeanspruchung unterworfen, so vereinfacht sich das konstitutive Materialgesetz bei einem symmetrischen Lagenaufbau zu:

$$\begin{cases} \mathbf{N}_{11} \\ \mathbf{N}_{22} \\ \mathbf{N}_{12} \end{cases} = \begin{bmatrix} \mathbf{A}_{11} & \mathbf{A}_{12} & \mathbf{A}_{16} \\ \mathbf{A}_{21} & \mathbf{A}_{22} & \mathbf{A}_{26} \\ \mathbf{A}_{61} & \mathbf{A}_{62} & \mathbf{A}_{66} \end{bmatrix} \begin{cases} \boldsymbol{\varepsilon}_{11}^{0} \\ \boldsymbol{\varepsilon}_{22}^{0} \\ \boldsymbol{\gamma}_{12}^{0} \end{cases} .$$
 (B.48)

Die Resultanten der Laminatspannungen haben stets die Gleichgewichtsbedingungen für Scheiben- und für Plattenwirkung zu erfüllen:

$$N_{11,1} + N_{21,2} = 0$$
,
 $N_{22,2} + N_{12,1} = 0$, (B.49a-c)

Sind die Verzerrungen des Laminats gefunden, kann man dazu übergehen, die ebenen Schichtenspannungen zu berechnen. Da es sich bei einem Laminat um einen Schichtverbund handelt, dessen Einzelschichten unterschiedliche reduzierte Steifigkeiten q_{i'j'} aufweisen können, ergeben sich mit

$$\begin{cases} \sigma_{1'1}^{(k)} \\ \sigma_{2'2'}^{(k)} \\ \sigma_{1'2'}^{(k)} \end{cases} = \begin{bmatrix} q_{1'1'}^{(k)} & q_{1'1'}^{(k)} & q_{1'6'}^{(k)} \\ q_{2'1'}^{(k)} & q_{2'2'}^{(k)} & q_{2'6'}^{(k)} \\ q_{6'1'}^{(k)} & q_{6'2'}^{(k)} & q_{6'6'}^{(k)} \end{bmatrix} \begin{cases} \varepsilon_{11}^{0} \\ \varepsilon_{22}^{0} \\ \gamma_{12}^{0} \end{cases} + X_{3} \begin{cases} \kappa_{11} \\ \kappa_{22} \\ \kappa_{12} \end{cases} \end{cases}$$
(B.50)

zwar wiederum konstante bzw. lineare Spannungsanteile in der Einzelschicht k, allerdings treten an den Schichtübergängen wegen den schichtweise unterschiedlichen q_{ij} ^(k) Sprünge in den Spannungsverläufen auf. Bild B.5 zeigt diesen Zusammenhang. Die so zugänglichen ebenen Spannungskomponenten werden auch intralaminare Spannungen genannt.

Mit interlaminaren Spannungen werden die verbleibenden räumlichen Spannungskomponenten, also die beiden Querschubspannungen σ_{23} und σ_{31} sowie die Normalspannung σ_{33} (auch: "Schälspannung") angesprochen. Die klassische Laminattheorie geht von einem ebenen Spannungszustand im Laminat aus, dies insbesondere deswegen, um ein leicht handhabbares ebenes Materialgesetz () anwenden zu können. Insbesondere wird aber das Verschwinden der interlaminaren Normalspannung σ_{33} im Rahmen der Herleitung der Gleichungen vorausgesetzt. Das Verschwinden der interlaminaren Schubspannungen σ_{31} und σ_{23} wird in den Herleitungen jedoch nicht vorausgesetzt, diese sind auch nicht Bestandteil eines Materialgesetzes. Allerdings wurde das Ausbleiben von Querschubverzerrungen vorausgesetzt. Es können jedoch nachträglich Schubspannungen σ_{13} und σ_{23} durch Integration aus den räumlichen Gleichgewichtsbedingungen berechnet werden. Diese Querkraftschubspannungen gehorchen allerdings keinem Materialgesetz, entsprechen dann aber den Gleichgewichtsbedingungen. Hieran wird der Näherungscharakter der klassischen Laminattheorie deutlich: Werden Querschubspannungen zur Erfüllung des Gleichgewichts benötigt, so erweist sich das verwendete Materialgesetz als nicht widerspruchsfrei. Zumindest verfügt man aber mit dieser Vorgehensweise über eine näherungsweise Berechnungsmöglichkeit für die interlaminaren Schubspannungen σ_{31} und σ_{23} sowie über eine Kontrollmöglichkeit der Berechnungsgenauigkeiten: σ_{31} und σ_{23} müssen an den freien Oberflächen des Laminats verschwinden. Betrachten der räumlichen Gleichgewichtsbedingungen liefert die Gleichungen (B.51) bis (B.53).

Bild B.5: Qualitative Darstellung der Verläufe der intralaminaren Spannungen in den Einzelschichten eines Laminats. Dargestellt ist hier die Normalspannung σ_{11} , zur Vereinfachung wird die mögliche Abhängigkeit der Spannungen von x_2 in dieser Darstellung vernachlässigt.

$$\sigma_{31} = -\int (\sigma_{11,1} + \sigma_{12,2}) dx_3 , \qquad (B.51)$$

$$\sigma_{23} = -\int (\sigma_{12,1} + \sigma_{22,2}) dx_3 , \qquad (B.52)$$

$$\sigma_{33} = -\int (\sigma_{31,1} + \sigma_{23,2}) dx_3 . \tag{B.53}$$

Zumindest formal besteht nun auf diese Art und Weise auch die Möglichkeit einer nachträglichen Berechnung der interlaminaren Normalspannung σ_{33} , auch wenn deren Ausbleiben, wie schon erwähnt, in den Berechnungsvoraussetzungen der klassischen Laminattheorie gefordert wurde:

B.4 Dehnungs- und Gleitzahlen von Holz

Unter Annahme eines annähernd geraden Verlaufes der Jahrringe kann fehlerfreies Holz als orthotropes Material betrachtet werden (s. z.B. Hörig (1931)). Es können dann, dem wuchsbedingten Aufbau des Holzes folgend, die in Bild B.6 dargestellten drei orthogonale Symmetrieebenen gefunden werden. Deren Schnittgeraden zeichnen die anatomischen Hauptachsen des Holzes aus: Die x_1 -Achse verläuft in Faserrichtung, die x_2 -Achse in Tangentialrichtung, die x_3 -Achse in radialer Richtung. Die Hirnfläche wird durch die x_2x_3 -Ebene, die Markstrahlebene/Radialfläche durch die x_1x_3 -Ebene und

die Tangentialebene durch die x_1x_2 -Ebene beschrieben. Es kann näherungsweise von homogenem Material ausgegangen werden, wenn der Querschnitt eine ausreichend große Anzahl von Jahrringen beinhaltet.

Bild B.6: Holz als orthotropes Material

Für Fichten- und Buchenholz existieren eine Reihe von Versuchsergebnissen für s_{ij} -bzw. c_{ij} -Werte (z.B. Becker (1976), Hörig¹⁾ (1931), Keylwerth (1951), Krabbe (1960), Neuhaus (1981), (1994), Wommelsdorff (1966)). Es folgt eine Auswahl von Elastizi-tätskonstanten s_{ij} aus den oben vorgestellten Publikationen.

Holzfeuchte	[%]	12
Rohdichte	[g/cm ³]	0,41
S ₁₁	[10 ⁻⁵ mm ² /N]	5,87
S ₃₃	[10 ⁻⁵ mm ² /N]	155,00
S ₂₂	[10 ⁻⁵ mm ² /N]	121,00
-s ₁₂ /-s ₂₁	[1]	3,33
-s ₂₃ /-s ₃₂	[1]	51,70
- s ₃₁ /- s ₁₃	[1]	2,16
S ₄₄	[10 ⁻⁵ mm ² /N]	2790,00
S 55	[10 ⁻⁵ mm ² /N]	157,00
S ₆₆	[10 ⁻⁵ mm ² /N]	115,00

Tabelle B.1:	Mittelwerte der Dehnungs- und Gleitzahlen s _{ii} s _{ij} für Fichtenholz, nac	h
	Hörig (1931)	

¹⁾ Hörig übertrug die Elastizität der Kristalle auf den Baustoff Holz und verwendete daher anstelle des Begriffes der Orthotropie den Begriff der rhombischen Symmetrie bzw. Anisotropie. Diese Ausdrücke sind häufig in der Literatur anzutreffen. Die von HÖRIG verwendeten Achsenbezeichnungen stimmen nicht mit den hier benutzten überein.

Tabelle B.2:	Mittelwerte der Dehnungs- und Gleitzahlen s _{ii} , s _{ij} für Fichtenholz, n	nach
	Becker (1976)	

Holzfeuchte	[%]	-
Rohdichte	[g/cm ³]	-
S ₁₁	[10 ⁻⁵ mm ² /N]	8,17
S ₃₃	[10 ⁻⁵ mm ² /N]	90,65
\$ ₂₂	[10 ⁻⁵ mm ² /N]	-
-S ₁₂ /-S ₂₁	[1]	2,93
-\$ ₂₃ /-\$ ₃₂	[1]	65,99
-S ₃₁ /-S ₁₃	[1]	1,65
S44	[10 ⁻⁵ mm ² /N]	2291,0
S 55	[10 ⁻⁵ mm ² /N]	141,0
S ₆₆	[10 ⁻⁵ mm ² /N]	155,0

Tabelle B.3: Mittelwerte der Dehnungs- und Gleitzahlen s_{ii} , s_{ij} für Fichtenholz, nach Wommelsdorff (1966)

Holzfeuchte [%]	8,5		13,7	
Rohdichte [g/cm ³]	-		-	
	x	V	x	V
	[10 ⁻³ mm ² /N]	[%]	[10 ⁻³ mm ² /N]	[%]
S ₁₁	0,0787	5,78	0,0886	5,20
S ₃₃	1,70	3,68	2,33	3,74
\$ ₂₂	0,771	4,75	1,020	4,07
-\$ ₂₁	0,0557	17,73	0,0654	27,76
- S ₁₂	0,0439	7,13	0,0497	14,89
- S ₃₂	0,420	5,25	0,606	8,07
- S ₂₃	0,391	8,33	0,598	7,38
-S ₃₁	0,0357	15,18	0,0396	12,84
-S ₁₃	0,0501	16,41	0,0499	18,47

.

Holzfeuchte [%]	7	8	9	10	11	12	13
Rohdichte[g/cm ³]	0,42	0,42	0,42	0,42	0,42	0,42	0,42
	x	x	x	x	x	x	x
			[10 ⁻³ mm²/№	1]		
S ₁₁	0,0798	0,0804	0,0810	0,0818	0,0825	0,0834	0,0842
S ₃₃	2,0425	2,0921	2,1515	2,2202	2,2976	2,3829	2,4755
\$ ₂₂	1,0579	1,0831	1,1126	1,1459	1,1830	1,2234	1,2669
-\$ ₂₁	0,0674	0,0708	0,0741	0,0774	0,0807	0,0839	0,0871
-S ₁₂	0,0230	0,0264	0,0305	0,0352	0,0403	0,0458	0,0516
-\$ ₃₂	0,4845	0,5282	0,5763	0,6281	0,6830	0,7404	0,7998
-\$ ₂₃	0,4580	0,5029	0,5538	0,6097	0,6696	0,7327	0,7978
-S ₃₁	0,0226	0,0245	0,0267	0,0290	0,0315	0,0341	0,0368
-S ₁₃	0,0559	0,0580	0,0603	0,0626	0,0651	0,0677	0,0702
S ₄₄	19,3251	20,0280	20,8080	21,6640	22,5949	23,5995	24,6768
S ₅₅	1,3673	1,4032	1,4456	1,4936	1,5466	1,6038	1,6644
S ₆₆	1,1991	1,2216	1,2475	1,2768	1,3094	1,3453	1,3844

Tabelle B.4:	Mittelwerte der Dehnungs- und Gleitzahlen sii, sij für Fichtenholz, nach
	Neuhaus (1981)

Tabelle B.5:	Mittelwerte der Dehnungs- und Gleitzahlen s _{ii} s _{ij} für Fichtenholz, nac
	Keylwerth (1951)

Holzfeuchte	[%]	9,8
Rohdichte	[g/cm ³]	0,44
S ₁₁	[10 ⁻⁵ mm ² /N]	6,16
S ₃₃	[10 ⁻⁵ mm ² /N]	250
\$ ₂₂	[10 ⁻⁵ mm ² /N]	143
-s ₁₂ /-s ₂₁	[1]	3,3
-s ₂₃ /-s ₃₂	[1]	60
-s ₃₁ /-s ₁₃	[1]	2,7
S44	[10 ⁻⁵ mm ² /N]	2700
S 55	[10 ⁻⁵ mm ² /N]	159
S 66	[10 ⁻⁵ mm ² /N]	129

Tabelle B.6:	Mittelwerte der Dehnungs- und Gleitzahlen sii sij für Fichtenholz, nach
	Neuhaus (1994)

Holzfeuchte	[%]	12,0
Rohdichte	[g/cm ³]	0,47
S ₁₁	[10 ⁻⁵ mm ² /N]	10,00
S ₃₃	[10 ⁻⁵ mm ² /N]	220
S ₂₂	[10 ⁻⁵ mm ² /N]	125
-S ₁₂ /-S ₂₁	[1]	3,3
- s ₂₃ /- s ₃₂	[1]	60
- S ₃₁ /- S ₁₃	[1]	2,7
S44	[10 ⁻⁵ mm ² /N]	2500
S 55	[10 ⁻⁵ mm ² /N]	167
S ₆₆	[10 ⁻⁵ mm ² /N]	154

Tabelle B.7: Mittelwerte der Dehnungs- und Gleitzahlen s_{ii} , s_{ij} für Fichtenholz, nach Krabbe (1960)

Holzfeuchte [%]	-			
Rohdichte[g/cm ³]	-			
	x	V		
	[10 ⁻⁵ mm ² /N]	[%]		
S ₁₁	8,80	0,00		
S ₃₃	226,36	4,34		
S ₂₂	90,85	9,64		
-S ₂₃	2752,74	29,86		
-S ₃₁	134,66	10,07		
-S ₁₃	145,81	14,80		

Holzfeuchte [%]	1		:	3	e	6	11		
Rohdichte[g/cm ³]	0,4	2	0,4	42	0,	42	0,42		
	x	V	x	V	x	V	x	V	
S ₁₁	0,0778	18,01	0,0795	17,25	0,0792	17,29	0,0827	17,22	
S ₃₃	1,964	13,72	1,985	13,44	2,038	12,22	2,263	12,78	
\$ ₂₂	1,002	8,92	1,028	9,42	1,049	9,97	1,173	9,19	
-\$ ₂₁	0,0534	61,96	0,0555	40,47	0,0671	48,69	0,0688	41,09	
-\$ ₁₂	0,0220	29,78	0,0187	32,60	0,0216	35,93	0,0387	23,83	
-\$ ₃₂	0,349	44,01	0,362	45,10	0,458	30,67	0,629	30,05	
-\$ ₂₃	0,365	25,56	0,355	25,11	0,448	25,12	0,652	15,50	
-\$ ₃₁	0,0183	25,86	0,0186	28,31	0,0218	26,18	0,0324	22,72	
- S ₁₃	0,0489	33,04	0,0488	29,65	0,0522	38,88	0,0727	28,52	
S 44	16,077	32,87	18,976	32,64	18,929	29,67	22,012	21,41	
S 55	1,383	28,53	1,227	26,19	1,536	28,40	1,595	28,92	
S 66	1,097	35,27	1,222	27,82	1,177	35,74	1,259	30,35	

Tabelle B.8:	Mittelwerte	der	Dehnungs-	und	Gleitzahlen	S _{ii} ,	S _{ij}	für	Fichtenholz
	(in [10 ⁻⁵ mm	² /N],	Variationsko	effizie	nt in [%]) nac	h N	euh	aus	(1981)

Holzfeuchte [%]	14		1	7	2	2	27		
Rohdichte[g/cm ³]	0,4	2	0,	42	0,	42	0,	42	
	×	V	x	V	x	V	x	V	
S ₁₁	0,0855	17,37	0,0909	15,63	0,0977	15,10	0,0867	17,36	
S ₃₃	2,523	12,57	3,453	11,29	4,219	10,30	2,842	11,16	
S ₂₂	1,297	9,98	1,719	8,26	2,104	6,84	1,438	10,46	
-\$ ₂₁	0,0985	32,18	0,1113	41,18	0,1208	30,04	0,0944	39,97	
- S ₁₂	0,0522	22,58	0,0941	21,64	0,117	25,37	0,0724	19,36	
-\$ ₃₂	0,834	26,84	1,218	19,81	1,512	19,59	1,024	26,25	
-\$ ₂₃	0,806	12,71	1,244	11,08	1,401	22,11	1,021	15,75	
-\$ ₃₁	0,0360	19,83	0,0596	19,35	0,0518	17,14	0,0433	16,72	
- S ₁₃	0,0703	20,70	0,0966	32,44	0,0919	28,92	0,0806	20,38	
S ₄₄	26,22	18,37	38,331	7,76	46,223	5,33	30,628	11,65	
S 55	1,718	31,50	2,260	29,00	2,460	25,79	1,941	29,87	
S ₆₆	1,473	36,54	1,926	34,55	2,222	30,81	1,572	31,79	

Holzfeuchte	[%]	12,0
Rohdichte	[g/cm ³]	0,69
S ₁₁	[10 ⁻⁵ mm²/N]	7,14
S ₃₃	[10 ⁻⁵ mm²/N]	86,2
S ₂₂	[10 ⁻⁵ mm²/N]	43,9
-S ₁₂ /-S ₂₁	[1]	3,7
-S ₂₃ /-S ₃₂	[1]	31
- S ₃₁ /- S ₁₃	[1]	3,2
S44	[10 ⁻⁵ mm ² /N]	213
S 55	[10 ⁻⁵ mm ² /N]	61,0
S ₆₆	[10 ⁻⁵ mm ² /N]	92,6

Tabelle B.9: Mittelwerte der Dehnungs- und Gleitzahlen s_{ii} s_{ij} für Buchenholz, nach Neuhaus (1994)

Tabelle B.10: Mittelwerte der Dehnungs- und Gleitzahlen s_{ii} s_{ij} für Buchenholz, nach Krabbe (1960)

Holzfeuchte	[%]	-
Rohdichte	[g/cm ³]	-
S ₁₁	[10 ⁻⁵ mm ² /N]	8,60
S ₃₃	[10 ⁻⁵ mm ² /N]	130,0
S ₂₂	[10 ⁻⁵ mm ² /N]	62,2
S ₄₄	[10 ⁻⁵ mm ² /N]	364,3
S 55	[10 ⁻⁵ mm ² /N]	90,8
S ₆₆	[10 ⁻⁵ mm ² /N]	135,0

Holzfeuchte [%]	8,2		13,6	
Rohdichte [g/cm ³]	-		-	
	x	V	x	V
	[10 ⁻³ mm ² /N]	[%]	[10 ⁻³ mm ² /N]	[%]
S ₁₁	0,0901	6,35	0,104	5,60
S ₃₃	0,933	3,20	1,12	2,32
S ₂₂	0,484	2,87	0,595	6,71
-S ₂₁	0,0319	45,06	0,0490	11,78
-S ₁₂	0,0432	4,60	0,0581	4,53
-S ₃₂	0,308	3,62	0,437	4,74
-S ₂₃	0,312	3,98	0,429	3,05
-S ₃₁	0,0331	8,89	0,0367	6,76
-S ₁₃	0,0278	9,33	0,0404	7,94

Tabelle B.11: Mittelwerte der Dehnungs- und Gleitzahlen s_{ii} , s_{ij} für Buchenholz, nach Wommelsdorff (1966)

Anlage C Zugversuche an UKZV BS-Holz/BS-Holz

In den nachfolgenden Tabellen dunkel unterlegte Felder kennzeichnen Versuche, die nicht in die Auswertung aufgenommen worden sind.

Nr.	Lamellen	b	t	F _{ult}	ρ1	ρ2	Jhrv	v. in	Ма	ırk-	KAR in	Lamelle	u in L	amel-	t				Bemerkungen
							Lam	elle	röhr	e in			le						
									Lam	nelle				•		-			
							1	2	1	2	1	2	1	2		Zinken	Zinken	Flanken	
			_			3-	_	_	_	-	_	 		/ _	2-	I	2		
		[mn	ן	[kN]	[g/c	mč]	[m	m]	[·	-]	[1]	[%	6]	[N/mm ²]		[%]		
1	20a/14m	122.0	22.9	60.7	0.49	0.47	1.8	2.8	n	n	0	0.170	9.3	7.8	21,7	0	40	60	Aste auf beiden
																			Seiten, ausgefal-
																			lene Aste in 14m,
																			Kein Bruch durch
2	112/2/m	122.0	22	77.6	0.47	0.46	2.0	22	n	n	0	0 008	10 1	76	27.8	10	0	90	ASIE
2	110/2411	122.0	22.	11.0	0.47	0.40	2.0	2.2			0	0.030	10.1	7.0	27,0	10	U	30	Ouerdruck his in
																			den Zinkengrund.
																			dort iedoch kein
																			Bruch, ausgefal-
																			lene Äste in 24m,
																			dort kein Bruch
3	9a/30m	122.0	22.9	93.7	0.51	0.49	1.8	1.9	n	n	0.150	0	10.0	8.8	33,5	0	0	100	verklebter Längs-
																			riss/Aste in 9a,
		100.0													(0.0		-		dort kein Bruch
4	23a/12m	122.0	22.9	51.0	0.43	0.46	3.2	3.8	n	n	0.097	0.140	8.4	7.3	18,3	0	0	0	reiner Holzbruch
5	100/01-	100.0	22.0	00.5	0.40	0.40	2.2	2.0	-	-	0	0	0.1	0.4	25.0	0	40	<u> </u>	durch Ast in 12m
Э	108/2111	122.0	22.9	99.5	0.40	0.40	2.2	J.O	п	п	0	0	9.1	0.1	35,6	0	40	60	riss und Ästo in
																			den Zinken von
																			21m Bruchverlauf
																			durch die Äste
6	28a/10m	122.0	22.9	89.4	0.44	0.46	2.2	3.2	ja	n	0.227	0.140	8.0	8.7	32,0	60	20	20	verklebter Längs-
																			riss in 28a, Äste
																			auf beiden Seiten,
																			dort kein Bruch
7	19a/15m	122.0	22.9	60.6	0.41	0.46	3.9	3.2	n	n	0	0.219	7.8	8.6	21,7	0	30	70	großer Ast im
																			Zinkenbereich der
																			Lamelle 15m, dort
																			Bruchausl.

Tabelle C.1: Ergebnisse der Zugversuche an keilgezinkten Proben B	3SH-BSH mit α =0°
---	--------------------------

Nr.	Lamellen	b	t	F _{ult}	ρ1	ρ2	Jhrv	v. in	Ma	ırk-	KAR in	Lamelle	u in L	amel-	σ_{ult}	Bruchanteil		Bemerkungen	
							Lam	elle	röhr	e in			le	е					
									Lam	nelle				_					
							1	2	1	2	1	2	1	2		Zinken	Zinken	Flanken	
		l													0	1	2		
		[mn	ן [ו	[kN]	[g/c	m³]	[m	m]	[·	·]	[´	1]	[%	6]	[N/mm ²]		[%]		
8	24a/11m	122.0	22.9	72.2	0.46	0.47	2.2	2.0	n	n	0.038	0.023	7.6	10.1	25,8	10	0	90	verklebter Längs- riss, dort kein
																			Bruch
9	14a/20m	122.0	22.9	56.0	0.47	0.49	2.8	1.8	n	n	0	0.319	7.8	9.3	20,0	0	0	0	Zwei große Aste
																			III 2011, 0011 Bruch, roinor
																			Holzbruch
11	1a/34m	122.0	22.9	76.8	0.43	0.43	2.9	5.0	n	n	0.213	0.085	8.3	6.6	27,5	90	0	10	11012010011
12	2a/33m	122.0	22.9	57.2	0.45	0.50	3.1	2.0	n	n	0.139	0.348	9.1	9.8	20,5	20	0	80	Nach Rissöffnung
																			an einem Randast
																			exzentrische
																-	-		Lasteinleitung
13	3a/17m	122.0	22.9	76.8	0.46	0.45	2.5	3.9	n	n	0	0	9.1	8.4	27,5	0	0	100	
14	33a/2m	122.0	22.9	70.3	0.50	0.45	2.0	3.1	n	n	0	0.147	9.8	9.1	25,2	0	20	80	dicker Ast in 2m
15	25a/16m	122.0	22.9	86.0	0.45	0.45	2.6	2.4	n	n	0.095	0	7.2	9.1	30,8	20	60	20	
16	1/a/3m	122.0	22.9	/1.6	0.45	0.46	3.9	2.5	n	n	0.096	0	8.4	9.1	25,6	0	20	80	A 11 07
1/	/a/2/m	122.0	22.9	/5.0	0.46	0.48	2.7	2.4	n	n	0.088	0.061	8.1	9.4	26,8	100	0	0	Ast in 2/m
18	12a/23m	122.0	22.9	82.9	0.46	0.43	3.8	3.2	n	n	0.066	0	7.3	8.4	29,7	30	30	40	
19	6a/29m	122.0	22.9	73.5	0.35	0.46	2.4	2.7	n	n	0.086	0.077	8.0	8.3	26,3	90	0	10	
20	21a/18m	122.0	22.9	115	0.46	0.48	3.8	2.2	n	n	0	0.038	8.1	9.1	41,2	100	0	0	
21	27a/7m	122.0	22.9	11.1	0.48	0.46	2.4	2.7	n	n	0	0	9.4	8.1	27,8	0	100	0	
22	32a/5m	122.0	22.9	77.5	0.48	0.46	1.4	3.4	n	n	0.103	0.189	10.1	7.9	27,7	0	20	80	
23	22a/13m	122.0	22.9	71.9	0.45	0.40	1.8	4.1	n	n	U	0.132	8.3	7.8	25,7	U	U	100	nicht verklebter
24	120/22m	122.0	22.0	63 E	0.40	0.45	3.4	1 9	n	n	0 107	0	7 9	83	22.7	0	0	100	Ruchauel durch
24	130/22111	122.0	22.9	05.5	0.40	0.45	5.4	1.0			0.107	U	1.0	0.5	22,1	U	U	100	Schrädfaserigkeit
																			in Lamelle 22m

Noch Tabelle C.1: Ergebnisse der	Zugversuche an keilgezink	kten Proben BSH-BSH mit $lpha$ =0°
----------------------------------	---------------------------	------------------------------------

Nr.	Lamellen	b	t	F _{ult}	ρ1	ρ2	Jhrv	v. in	Ma	ark-	KAR in	Lamelle	u in L	amel-	σ_{ult}		Bruchant	eil	Bemerkungen
							Lam	elle	röhr	re in			ŀ	е					
									Lam	nelle						7.1			
							1	2	1	2	1	2	1	2		Zinken	Zinken	Flanken	
			_			3-	_	l _	_	I	_			 /-	2-	I			
		[mn	n]	[kN]	[g/c	sm~]	[m	m]	[·	-]	ĺ	1]	[%	6]	[N/mm ²]		[%]		
25	5a/32m	122.0	22.9	88.0	0.46	0.48	3.4	1.4	n	n	0.040	0.074	7.9	10.1	31,5	70	10	20	kleinere Äste im Zinkengrund von 5a
26	29a/6m	122.0	22.9	60.6	0.46	0.35	2.7	5.7	n	n	0	0.017	8.3	8.0	21.7	0	0	0	verklebter Riss in
		-	-					-			-				,	-	-	-	29a, reiner Holz-
																			bruch, Bruchaus-
																			lösung durch
																			Schrägfaserigkeit
20	21a/18m	122.0	22.9	115	0.46	0.48	3.8	2.2	n	n	0	0.038	8.1	9.1	41,2	100	0	0	
21	27a/7m	122.0	22.9	77.7	0.48	0.46	2.4	2.7	n	n	0	0	9.4	8.1	27,8	0	100	0	
22	32a/5m	122.0	22.9	77.5	0.48	0.46	1.4	3.4	n	n	0.103	0.189	10.1	7.9	27,7	0	20	80	
23	22a/13m	122.0	22.9	71.9	0.45	0.40	1.8	4.1	n	n	0	0.132	8.3	7.8	25,7	0	0	100	nicht verklebter
	40. /00	100.0		<u> </u>	0.40	0.15		1.0			0.407	•						100	Riss in 13m
24	13a/22m	122.0	22.9	63.5	0.40	0.45	3.4	1.8	n	n	0.107	0	7.8	8.3	22,7	0	0	100	Bruchausl. durch
																			Schragiaserigkeit
25	50/32m	122.0	22.0	99.0	0.46	0.49	3.4	11	n	n	0.040	0.074	7.0	10.1	31.5	70	10	20	kloiporo Ästo im
25	58/5211	122.0	22.9	00.0	0.40	0.40	3.4	1.4			0.040	0.074	1.9	10.1	51,5	70	10	20	Zinkengrund von
																			5a
26	29a/6m	122.0	22.9	60.6	0.46	0.35	2.7	5.7	n	n	0	0.017	8.3	8.0	21.7	0	0	0	verklebter Riss in
											-				, .	-	-	-	29a, reiner Holz-
																			bruch, Bruchausl.
																			durch Schrägfase-
																			rigkeit
27	30a/9m	122.0	22.9	88.2	0.49	0.51	1.9	1.8	n	n	0.101	0.028	9.5	10.0	31,6	0	20	80	Äste auf beiden
																			Seiten, Bruch
																			durch Ast im Zin-
																	1		kengrund von 9m

Noch Tabelle C.1: Ergebnisse der	Zugversuche an	keilgezinkten Proben	BSH-BSH mit α =0°
----------------------------------	----------------	----------------------	--------------------------

Nr.	Lamellen	b	t	F _{ult}	ρ1	ρ ₂	Jhrw Lam	v. in elle	Ma röhr Lam	rk- e in ielle	KAR in	Lamelle	u in L le	amel- e	σ_{ult}	I	Bruchante	eil	Bemerkungen
							1	2	1	2	1	2	1	2		Zinken 1	Zinken 2	Flanken	
		[mn	n]	[kN]	[g/c	m ³]	[mi	m]	[-]	[1]	[%	6]	[N/mm ²]		[%]		
28	16a/25m	122.0	22.9	54.1	0.45	0.45	2.4	2.6	n	n	0	0.129	9.1	7.2	19,4	0	60	40	dicker Ast in 16a, dort kein Bruch
29	34a/1m	122.0	22.9	61.6	0.43	0.43	5.0	2.9	n	n	0.135	0.192	6.6	8.3	22,0	0	0	0	Ast in 34a durch Ast, Bruch durch fehlerhaft verkleb- te Lasche
30	8a/ 26m	122.0	22.9	64.7	0.40	0.46	4.4	2.1	n	n	0.189	0	7.9	8.2	23,2	90	0	10	kleiner Ast in 8a, dort Bruch,
31	10a/28m	122.0	22.9	94.3	0.46	0.44	3.2	2.9	ja	ja	0.042	0	8.7	8.0	33,8	90	0	10	kleinere Äste in 28m, verklebter Riss in 8m, dort kein Bruch
32	15a/19m	122.0	22.9	61.7	0.46	0.41	3.2	3.9	n	n	0.146	0	8.6	7.8	22,1	60	10	30	dicker Ast in 15a, starke Schrägfa- serigkeit im Ast- bereich

Noch Tabelle C.1: Ergebnisse der Zugversuche an keilgezinkten Proben BSH-BSH mit α =0°

Nr.	Lamellen	b	t	F _{ult}	ρ1	ρ ₂	Jhrv Lam	v. in elle	Ma röhr Lam	rk- e in elle	KAR in	Lamelle	u in La le	amel- e	σ_{ult}	I	Bruchante	eil	Bemerkungen
							1	2	1	2	1	2	1	2		Zinken 1	Zinken 2	Flanken	
		[mn	n]	[kN]	[g/c	m³]	[m	m]	[-]	[1]	[%	6]	[N/mm ²]		[%]		
1	25m/16e	79,4	21.1	25.0	0.46	0.45	3.0	2.8	n	n	0.025	0.060	7.2	9.1	14,9	30	40	30	kleine Äste auf beiden Seiten, Bruchausl. ex- zentrisch
2	21m/18e	79,4	21.0	25.0	0.46	0.48	3.8	1.9	n	n	0.316	0.079	8.1	9.1	15,0	70	20	10	große Äste im Keilzinkenbereich von 21m, dort Bruch, Faserab- weichungen bis etwa 30 ⁰ in 21m
3	7m/27e	79,5	21.1	34.7	0.46	0.48	2.5	2.4	n	n	0	0.030	8.1	9.4	20,7	60	0	40	
4	34m/1e	79,4	21.0	35.2	0.43	0.43	5.0	3.9	n	n	0.040	0.180	6.6	8.3	21,1	0	60	40	großer Ast in 34m, Bruch durch 1e nach Rissöff- nung eines ver- klebten Risses
6	11m/24e	79,4	21.1	25.8	0.47	0.46	2.3	2.7	n	n	0.219	0.108	10.1	7.6	15,4	0	70	30	Äste in 11m
7	30m/9e	79,4	21.1	38.9	0.49	0.51	2.2	2.7	n	n	0	0.028	8.8	10.0	23,2	20	0	80	großer Ast im Keilzinkenbereich von 30m, Bruch durch den Ast
8	19m/15e	79,4	21.0	19.8	0.41	0.46	3.9	4.3	n	n	0	0.152	7.8	8.6	11,9	40	30	30	großer Ast in 15e, exz. Bruchausl. durch z.T. schlechte Keilzin- kenverklebung
9	om/20e	79,4	21.1	30.9	0.40	0.40	ე.კ	Z. I	11	n	0.157	0.038	1.9	ŏ.Z	10,4	100	U	U	

Tabelle C.2: Ergebnisse der Zugversuche an keilgezinkten Proben BSH-BSH mit α =7,5°

Nr.	Lamellen	b	t	F _{ult}	ρ1	ρ2	Jhrv	v. in	Ma	ırk-	KAR in	Lamelle	u in L	amel-	σ_{ult}		Bruchant	eil	Bemerkungen
							Lam	elle	röhr	e in			le	е					
									Lam	nelle		_					I		
							1	2	1	2	1	2	1	2		Zinken	Zinken	Flanken	
			I											l	0	1	2		
		[mn	n]	[kN]	[g/c	:m ³]	[m	m]	[·	·]	[1	1]	[%	6]	[N/mm ²]		[%]		
10	20m/14e	79,4	21.2	26.0	0.49	0.47	1.7	3.1	n	n	0.081	0.028	9.3	7.8	15,4	10	20	70	Verklebter Riss in
																			14e, exzentrische
																			Bruchausl. durch
																			z.T. schlechte
																			Keilzinkenverkle-
																	-	-	bung
11	12m/23e	79,5	21.0	31.0	0.46	0.43	4.4	2.7	n	n	0	0.117	7.3	8.4	18,6	100	0	0	kleine Aste in 12m
12	28m/10e	79,5	21.0	43.5	0.44	0.46	3.2	3.0	j	ja	0.030	0.091	8.0	8.7	26,0	0	80	20	verklebte Risse
																			und Aste auf
																			beiden Seiten
13	17m/3e	79,4	21.0	39.8	0.45	0.46	4.1	3.2	n	n	0.008	0	8.4	9.1	23,9	0	0	100	verklebte Risse
																			und Aste auf
																			beiden Seiten
14	9m/30e	79,4	21.1	39.4	0.51	0.49	2.7	2.2	j	n	0.089	0.086	10.0	8.8	23,5	30	0	70	große Aste in 9m,
																			Bruch nicht durch
																			die Aste
15	10m/28e	79,4	21.1	37.7	0.46	0.44	3.0	3.2	n	ja	0.023	0.093	8.7	8.0	22,5	10	0	90	verklebter Riss
																			durch beide La-
																			mellen
16	13m/22e	79,4	21.1	32.2	0.40	0.45	4.6	2.5	n	n	0.074	0	7.8	8.3	19,2	0	80	20	beim Fräsen der
																			Keilzinkenverbin-
																			dung gelöste Aste
						_													in 13m
17	3m/17e	79,4	21.1	42.7	0.46	0.45	3.2	4.1	n	n	0.120	0	9.1	8.4	25,5	70	0	30	verklebter Riss in
																			17e, Ast in 3m,
																			beim Fräsen der
																			UKZV gelöste
																			Aste in 3m, Bruch
																			nicht durch den
																			Ast,

Noch Tabelle C.2: Ergebnisse der Zugversuche an keilgezinkten Proben BSH-BSH mit α =7,5°

Nr.	Lamellen	b	t	F _{ult}	ρ ₁	ρ2	Jhrv	v. in	Ma	ırk-	KAR in	Lamelle	u in L	amel-	σ_{ult}		Bruchant	eil	Bemerkungen
							Lam	ielie	lam	e in Nelle			16	e					
							1	2	1	2	1	2	1	2		Zinken	Zinken	Flanken	
		_	_			3-	_							 /-	2-	1	2		
		[mn	n]	[kN]	[g/c	m~]	[m	m]	[-	·]	[1]	[%	6]	[N/mm ²]		[%]		
18	18m/21e	79,4	21.0	37.8	0.45	0.40	1.9	3.8	n	n	0	0.226	9.1	8.1	22,7	60	0	40	verklebte Risse
																			auf beiden Seiten,
																			giusei Asi ili zite, ausgefallene Äste
																			in 18m und 21e
19	22m/13e	79,5	21.1	27.8	0.45	0.41	2.5	4.6	n	n	0.061	0.038	8.3	7.8	16,6	50	0	50	exzentrische
																			Bruchausl. durch
																			z.T. schlechte
																			Keilzinkenverkle-
	40	70.4	04.0	00.0	0.45	0.45	0.0	0.0			0.400	0.005	0.1	7.0	40.4			00	bung
20	16m/25e	79,4	21.0	32.3	0.45	0.45	2.8	3.0	n	n	0.133	0.035	9.1	7.2	19,4	60	20	20	beidseitig kleine
21	32m/5e	79.2	20.0	24.3	0.48	0.46	19	2.5	n	n	0.048	0 240	10.1	79	15.3	20	40	40	exzentrische
21	0211//00	10,2	20.0	21.0	0.10	0.10	1.0	2.0			0.010	0.210	10.1	7.0	10,0	20	10	10	Bruchausl, durch
																			z.T. schlechte
																			Keilzinkenverkle-
																			bung
22	26m/8e	79,2	20.0	29.7	0.46	0.40	2.7	4.4	n	n	0.127	0.102	8.2	7.9	18,7	0	80	20	
23	24m/11e	79,2	20.0	32.3	0.46	0.47	2.7	2.3	n	n	0	0	7.6	10.1	20,4	70	0	30	kleine Aste in 11e,
																			ausgefallene Aste
24	20m/6e	70.2	20.0	20.7	0.46	0.35	23	57	n	n	0 135	0.030	83	8.0	13.1	0	60	40	In 24m, großer Ast in
24	2911/06	19,2	20.0	20.7	0.40	0.55	2.5	5.7	11		0.155	0.030	0.5	0.0	15,1	0	00	40	20m schlechte
																			Keilzinkenverkle-
																			bung
25	27m/7e	79,2	7e	31.9	0.48	0.46	2.4	2.5	n	n	0.293	0.028	9.4	8.1	20,1	0	80	20	
26	23m/12e	79,2	20.0	20.9	0.43	0.46	3.9	4.3	n	n	0.175	0	8.4	7.3	13,2	0	20	80	Ast in 23m,
																			schlechte Keilzin-
																			kenverklebung,
																			ausgefallene Äste
																			in 23m

Noch Tabelle C.2: Ergebnisse der Zugversuche an keilgezinkten Proben BSH-BSH mit α =7,5°

Nr.	Lamellen	b	t	Fult	ρ1	ρ2	Jhrw	v. in	Ma	ırk-	KAR in	Lamelle	u in L	amel-	σ_{ult}		Bruchante	eil	Bemerkungen
					•		Lam	elle	röhr	e in			le	е					
									Lam	lelle									
							1	2	1	2	1	2	1	2		Zinken	Zinken	Flanken	
																1	2		
		[mn	n]	[kN]	[g/c	m ³]	[mi	m]	[-	-]	[1]	[%	6]	[N/mm ²]		[%]		
1	109m/11 9e	120.0	28,6	41.6	0.50	0.40	1.2	1.7	n	n	0.072	0	12.1	12.0	12,1	70	0	30	
2	110m/12	120.0	28,6	47.7	0.47	0.48	1.6	1.4	ja	ja	0	0	11.4	12.5	13,9	40	40	20	Äste in 110m z.T.
	0e																		herausgefallen,
3	108m/11 5e	120.0	28,6	38.1	0.48	0.47	2.4	1.3	n	n	0	0.069	11.4	13.0	11,1	0	0	0	Bruch außerhalb UKZV
4	103m/11 6e	79.0	23,3	27.0	0.42	0.42	1.9	1.6	n	n	0	0	11.2	12.2	14,7	0	20	80	Längsriss durch die Keilzinkung
																			durch Querdruck
5	116m/10 3e	78.5	28,7	27.8	0.42	0.42	1.6	1.9	n	n	0.210	0	12.2	11.2	12,4	70	0	30	nicht verklebter Riss in 116m
6	115m/10 8e	78.5	28,7	22.0	0.47	0.48	1.3	2.4	n	n	0.066	0.270	13.0	11.4	9,8	0	0	0	verklebter Riss in 108e, ausgefalle- ne Äste in 108e, Bruch außerhalb UKZV
7	122m/10 2e	78.7	28,6	28.6	0.39	0.46	2.5	1.2	ja	ja	0.108	0	10.2	11.8	12,7	60	0	40	kleiner Äste auf beiden Seiten
8	104m/12 6e	78.7	28,6	32.2	0.38	0.48	2.2	1.6	n	n	0	0	10.9	11.2	14,3	40	60	0	Äste auf beiden Seiten, Bruch durch beide La- mellen
ŋ	121m/10 7e	78.5	28,7	23.8	0.42	0.49	2.1	1.2	ja	ja	0	0.200	12.5	12.1	10,6	0	0	0	Bruch außerhalb UKZV
10	102m/12 2e	78.5	28,6	23.5	0.46	0.39	1.2	2.5	ja	ja	0.120	0	11.8	10.2	10,5	40	60	0	ausgefallene Äste in 102m
11	112m/12 3e	78.5	28,6	20.5	0.46	0.45	1.1	1.7	ja	ја	0.221	0	12.0	11.0	9,1	0	0	0	Bruch außerhalb UKZV

Tabelle C.3: Ergebnisse der Zugversuche an keilgezinkten Proben BSH-BSH mit α =15°

Nr.	Lamellen	b	t	F _{ult}	ρ ₁	ρ2	Jhrv Lam	v. in Jelle	Ma röhr	irk- re in	KAR in	Lamelle	u in L	amel-	σ_{ult}		Bruchant	eil	Bemerkungen
							Lan		Lam	nelle			Ň	6					
							1	2	1	2	1	2	1	2		Zinken	Zinken	Flanken	
		Imn	nl	[kN]]	[a/c	m ³ 1	ſm	ml	r.	.1	[1	11	۲0,	61	[N/mm ²]		ے ا 1%1	I	
10	105 /10				[9/0		[III		Ľ	-]	1	.j	[/	0]			[/0]	40	
12	105m/12 5e	78.5	28,5	27.3	0.47	0.39	1.5	1.3	n	n	0.083	0	11.7	10.4	12,2	0	60	40	verkiebte Risse in 125e/Äste in 105m,
13	107m/12 1e	78.6	28,6	26.0	0.49	0.42	1.2	2.1	ja	ja	0.053	0.049	12.1	12.5	11,6	0	0	0	kleinere Äste auf beiden Seitem
	10																		verklebter Riss in
																			107m, Bruch außerhalb UKZV
14	114m/11	78.6	28,5	27.3	0.44	0.41	1.6	1.2	n	n	0.050	0.017	11.9	11.4	12,2	0	0	0	kleiner Ast in
	7e																		ßerhalb UKZV
16	117m/11 4e	78.3	28,6	23.8	0.41	0.44	1.2	1.6	n	n	0	0.054	11.4	11.9	10,6	20	0	80	ausgefallene Äste in 114e
17	124m/10 6e	78.5	28,6	27.2	0.48	0.39	1.2	2.1	n	n	0	0.130	11.2	10.7	12,1	10	0	90	verklebter Riss in 124m
18	120m/11	78.6	28,6	23.0	0.48	0.47	1.4	1.6	ja	ja	0.011	0.067	12.5	11.4	10,2	0	0	0	verklebter Riss in
	0e																		110e, ausgefalle- ne Äste in 120m
																			Bruch außerhalb
	100 110					0.10							10 -				-		der UKZV
19	106m/12 4e	78.4	28,6	26.6	0.39	0.48	2.1	1.2	n	n	0	0	10.7	11.2	11,9	70	0	30	kleinere As- te/verklebter Riss
																			in 124e
20	123m/11 2e	78.7	28,6	23.7	0.45	0.46	1.7	1.1	ja	ja	0	0.251	11.0	12.0	10,5	10	20	70	Äste auf beiden Seiten
21	101m/12	78.7	28,6	26.2	0.47	0.40	1.5	2.2	n	n	0.085	0	10.8	10.9	11,7	0	20	80	
	7e																		

Noch Tabelle C.3: Ergebnisse der Zugversuche an keilgezinkten Proben BSH-BSH mit α =15°

Nr.	Lamellen	b	t	F _{ult}	ρ1	ρ2	Jhrv	v. in	Ма	rk-	KAR in	Lamelle	u in L	amel-	σ_{ult}	l	Bruchante	eil	Bemerkungen
							Lam	elle	röhr	e in			le	e					
					1		1	2	Lam	elle	1	2	1	2		Zinkon	Zinkon	Elonkon	
							1	2	1	2	1	2	1	2			2	FIGHKEN	
		Imn	1		[a/a	m ³ 1	Im	ml	г	1	[1	11	гo	<u>/1</u>	[NI/mm ²]	•	<u>۔</u> ۲0/ ۱		
	407 404		ı <u>j</u>		[g/C		[111	· · ·]	L-	.]	1		[/	0]			[/0]	•	D
1	127a/101	120.0	28.0	18.1	0.40	0.47	1.4	1.7	n	n	0.034	0	10.9	10.8	5.39	0	0	0	Bruch außerhalb
2	115a/108	78.5	24.0	15.4	0.47	0.48	13	27	n	n	0.091	0 130	13.0	11 4	8 17	0	20	80	UNZV
-	m	10.0	21.0	10.1	0.17	0.10	1.0	2.7			0.001	0.100	10.0		0.17	Ũ	20	00	
3	126a/104	78.8	24.0	16.9	0.48	0.38	2.4	1.8	n	n	0	0	11.2	10.9	8.94	0	0	0	Bruch außerhalb
	m																		UKZV
4	124a/106	78.7	24.0	13.4	0.48	0.39	1.3	1.8	n	n	0.130	0.108	11.2	10.7	7.09	0	60	40	kleiner Ast in
	m																		124a
5	107a/121	78.9	24.0	15.1	0.49	0.42	1.2	1.9	ja	ja	0.130	0.026	12.1	12.5	7.97	0	0	0	Bruch außerhalb
_	m																		der UKZV
6	110a/120	78.6	24.0	13.4	0.47	0.48	1.5	1.4	ja	ja	0	0.044	11.4	12.5	7.10	0	0	0	Bruch außerhalb
7	m	70.0	04.0	40.7	0.44	0.44	47	47	-		0.400	0.474	11.0	44.4	7.00	<u> </u>	00	00	der UKZV
1	114a/117 m	78.0	24.0	13.7	0.44	0.41	1.7	1.7	n	n	0.130	0.174	11.9	11.4	7.20	60	20	20	
8	103a/116	78.6	24.0	12.2	0.42	0.42	15	22	n	n	0.071	0	11 2	12.2	6 4 7	0	20	80	
U	m	70.0	24.0	12.2	0.72	0.72	1.0	2.2			0.071	U	11.2	12.2	0.47	Ū	20	00	
9	116a/103	78.5	24.0	13.6	0.42	0.42	2.2	1.5	n	n	0.205	0.154	12.2	11.2	7.21	0	0	0	Bruch außerhalb
	m																		UKZV durch feh-
																			lerhaft aufgekleb-
																			te Verstärkungs-
																			lasche
10	123a/112	78.6	24.0	10.8	0.45	0.46	2.0	1.1	ja	ja	0.040	0.072	11.0	12.0	5.72	0	50	50	ausgefallene Aste
4.4	m	70.0	01.0	10.0	0.40	0.40	1.0	1.0	•	• •	0.400	0.450	40.5	40.4	7.07	0		40	in 112m
11	121a/107 m	18.6	24.0	13.9	0.42	0.49	1.9	1.2	ја	ja	0.182	0.150	12.5	12.1	1.31	U	60	40	
12	102a/122	78.6	24.0	13.3	0.46	0.39	1.3	2.8	ia	ia	0.068	0	11.8	10.2	7.05	0	0	100	
	m				0.10	0.00			2	,0	0.000	5				5			
13	122a/102	78.5	24.0	18.8	0.39	0.46	2.8	1.3	ja	ja	0.084	0.026	10.2	11.8	9.98	70	0	30	Äste in 122a
	m																		

Tabelle C.4: Ergebnisse der Zugversuche an keilgezinkten Proben BSH-BSH mit α =22,5°

Nr.	Lamellen	b	t	F _{ult}	ρ1	ρ2	Jhrv Lam	v. in ielle	Ma röhr Lam	rk- e in ielle	KAR in	Lamelle	u in L le	amel- e	σ_{ult}	I	Bruchante	eil	Bemerkungen
							1	2	1	2	1	2	1	2		Zinken 1	Zinken 2	Flanken	
		[mn	n]	[kN]	[g/c	m ³]	[m	m]	[-]	[´	1]	[%	6]	[N/mm ²]		[%]		
14	119a/109 m	78.6	24.0	16.2	0.40	0.50	1.9	2.2	n	n	0.027	0.064	12.0	12.1	8.59	60	0	40	Äste auf beiden Seiten
15	109a/119 m	78.6	24.0	13.4	0.50	0.40	2.2	1.9	n	n	0.167	0	12.1	12.0	7,10	20	60	20	Äste auf beiden Seiten
16	112a/123 m	78.6	24.0	13.5	0.46	0.45	1.1	2.0	ja	ja	0.080	0	12.0	11.0	7.16	60	0	40	Ast in 112a im Zinkenbereich, ausgefallene Äste in 112a, dort Bruch
17	125a/105 m	78.6	24.0	13.9	0.39	0.47	1.7	1.5	n	n	0.205	0	10.4	11.7	7.37	0	70	30	
18	120a/110 m	78.6	24.0	18.8	0.48	0.47	1.4	1.5	ja	ja	0.150	0.048	12.5	11.4	9.97	0	60	40	ausgefallene Äste in 110m
19	108a/115 m	78.6	24.0	14.8	0.48	0.47	2.3	1.3	n	n	0.094	0.066	11.4	13.0	7.85	0	0	0	ausgefallene Äste in 108a, Bruch außerhalb UKZV

Noch Tabelle C.4: Ergebnisse der Zugversuche an keilgezinkten Proben BSH-BSH mit α =22,5°

Bild C.1: Rohdichteverteilung der verwendeten Bretter

Bild C.2: Ästigkeitsverteilung der verwendeten Bretter

b) Flankenversagen

c) Bruch außerhalb der Zinkung

- b) Flankenversagen
- c) Bruch außerhalb der Zinkung

C.15

Anlage D Zugversuche an UKZV BS-Holz/BFU-BU

In den nachfolgenden Tabellen dunkel unterlegte Felder kennzeichnen Versuche, die nicht in die Auswertung aufgenommen worden sind.

Nr.	b	t	F _{ult}	ρ	Mark-	KAR	u	σ_{ult}	Bruchanteil Zinken Zinken Elan aus-				Bemerkungen
					röhre				Zinken	Zinken	Flan	aus-	
									BSH	BFO	-ke	ser- halh	
	ا ۲mm	1		$\left[\alpha/cm^{3}\right]$	[1]	[1]	[%]	[N/mm ²]		I [/0]		naib	
	(1)	י <u>ן</u>			[-]	[']	[/0]			[/0]			
1	120	20	85.0	0,45	J	0,06	12.1	35.4	30	30	0	40	Bruchausl. Zinkenbereich, Faserbesatz auf BS-Holzflanken
2	120	20	73.9	0,48	n	0,05	13.1	30.8	40	60	0	0	
3	120	20	59.2	0,44	j	0,13	14.3	24.7	0	10	80	10	Faserbesatz auf BS-Holzflanken
4	120	20	57.3	0,42	n	0,06	13.9	23.9	20	60	20	0	Faserbesatz auf BS-Holzflanken
5	120	20	79.5	0,48	n	0,00	13.7	33.1	0	70	30	0	Faserbesatz auf BS-Holzflanken
6	120	20	81.6	0,45	n	0,00	14.3	34.0	0	70	30	0	Faserbesatz auf BS-Holzflanken
7	120	20	85.4	0,44	n	0,22	13.8	35.6	0	70	20	10	Faserbesatz auf BS-Holzflanken
8	120	20	69.4	0,41	n	0,00	13.0	28.9	0	80	20	0	Faserbesatz auf BS-Holzflanken
10	120	20	56.3	0,38	j	0,03	12.7	23.5	30	70	0	0	
11	120	20	61.2	0,47	n	0,10	12.9	25.5	0	70	30	0	Faserbesatz auf BS-Holzflanken
12	120	20	68.9	0,41	n	0,00	12.1	28.7	0	50	50	0	Faserbesatz auf BS-Holzflanken
13	120	20	86.8	0,46	n	0,17	12.1	36.2	0	50	30	20	Faserbesatz auf BS-Holzflanken
14	120	20	64.2	0,36	j	0,10	11.9	26.8	60	40	0	0	Faserbesatz auf BS-Holzflanken, Ast im Zinkenbereich
16	120	20	66.2	0,42	n	0,37	12.4	27.6	20	0	0	80	Bruch durch größeren Ast ausserhalb der Zinkung
17	120	20	89.8	0,39	j	0,02	13.6	37.4	0	70	30	0	Faserbesatz auf BS-Holzflanken
18	120	20	57.0	0,38	n	0,00	14.0	23.8	0	0	0	100	Bruch im Bereich der Verstärkung
19	120	20	86.9	0,43	n	0,27	13.5	36.2	0	30	30	40	Bruchausl. Zinkenbereich
20	120	20	52.3	0,43	n	0,12	15.4	21.8	0	0	0	100	Bruch im Bereich der Verstärkung
21	120	20	80.7	0,39	n	0,00	13.9	33.6	40	40	20	0	Faserbesatz auf BS-Holzflanken
22	120	20	70.4	0,41	n	0,15	12.8	29.3	50	0	0	50	Bruchverlauf durch einen Ast außerhalb der Zinkung, Bruchausl. Zinkenbereich

Tabelle D.1: Ergebnisse der Zugversuche an keilgezinkten Proben BSH/BFU-BU mit α =0°

Nr.	b	t	F _{ult}	ρ	Mark-	KAR	u	σ_{ult}		Bruchar	nteil		Bemerkungen
					röhre				Zinken	Zinken	Flan-	aus-	
									BSH	BFO	ke	ser-	
	[-1	[LN]]	$\left[\alpha / \alpha m^{3} \right]$	r 1	[4]	F0/ 1	$[N]/mm^2$		r0/ 1		TIAID	
	[[[[[IJ	[KIN]	[g/cm]	[-]	[']	[70]	[w/mm]		[70]	[1	
1	120	20	96,8	0,50	n	0,00	13,0	40,3	20	20	40	20	Faserbesatz auf BS-Holzflanken, nach Bruchausl. in der UKZV verläuft der Bruch z,T. im BSH
2	120	20	83,2	0,48	n	0,00	13,1	34,7	0	40	20	0	Faserbesatz auf BS-Holzflanken
3	120	20	74,6	0,45	n	0,06	12,2	31,1	50	0	0	30	nach Bruchausl. in der UKZV verläuft der Bruch z,T. im BSH
4	120	20	68,0	0,48	n	0,03	12,2	28,3	0	0	100	0	
5	120	20	44,1	0,43	n	0,16	14,4	18,4	80	0	0	20	Größerer Ast im Zinkengrund, nach Bruchausl. in der UKZV verläuft der Bruch z,T. im BSH
7	120	20	68,8	0,42	n	0,00	12,5	28,7	20	0	60	20	Faserbesatz auf BS-Holzflanken, nach Bruchausl. in der UKZV verläuft der Bruch z,T. im BSH
8	120	20	72,1	0,42	n	0,0	11,8	30,0	0	20	80	0	Faserbesatz auf BS-Holzflanken
10	120	20	43,7	0,36	n	0,13	13,2	18,2	20	10	30	30	Größerer Ast im Zinkengrund, nach Bruchausl. in der UKZV verläuft der Bruch z,T. im BSH
11	120	20	61,4	0,42	n	0,15	13,0	25,6	60	0	0	40	nach Bruchausl. in der UKZV verläuft der Bruch z,T. im BSH
12	120	20	75,2	0,46	n	0,00	12,9	31,3	100	0	0	0	
13	120	20	76,3	0,42	j	0,05	13,4	31,8	0	20	40	40	Stark exzentrische Lasteinleitung vor Bruch
14	120	20	58,3	0,43	n	0,00	13,5	24,3	0	0	0	100	Bruch an der Verstärkung
16	120	20	75,4	0,41	j	0,09	12,2	31,4	10	40	20	30	nach Bruchausl. in der UKZV verläuft der Bruch z,T. im BSH
17	120	20	75,3	0,45	n	0,04	13,9	31,4	0	0	80	20	nach Bruchausl. in der UKZV verläuft der Bruch z,T. im BSH
18	120	20	91,3	0,46	n	0,00	14,8	38,0	20	40	40	0	
20	120	20	76,6	0,40	n	0,08	13,0	31,9	20	20	30	30	Stark exzentrische Lasteinleitung vor Bruch
21	120	20	64,9	0,46	n	0,09	13,3	27,0	30	0	30	40	nach Bruchausl. in der UKZV verläuft der Bruch z,T. im BSH
22	120	20	59,8	0,36	n	0,00	13,4	24,9	30	10	30	30	Stark exzentrische Lasteinleitung vor Bruch

Tabelle D.2: Ergebnisse der Zugversuche an keilgezinkten Proben BSH/BFU-BU mit α =7,5°

Nr.	b	t	F_{ult}	ρ	Mark-	KAR	u	σ_{ult}		Bruchar	nteil		Bemerkungen
					röhre				Zinken	Zinken	Flan-	aus-	
									BSH	BFU	ke	ser-	
	I	_		3-				2-				naib	
	[mm	ן]	[kN]	[g/cm [°]]	[-]	[1]	[%]	[N/mm ²]		[%]			
1	120	20	-	0,45	j	0,00	12,1	-	0	0	0	100	seitliche Verstärkung hat sich in der Leimfuge gelöst
2	120	20	39,6	0,48	n	0,00	13,1	16,5	30	0	20	50	nach Bruchausl. in der UKZV verläuft der Bruch z,T. im BSH
4	120	20	46,0	0,42	n	0,12	13,9	19,2	0	0	0	100	Bruch ausserhalb UKZV
5	120	20	30,3	0,48	n	0,08	13,7	12,6	0	0	0	100	Bruch ausserhalb UKZV
7	120	20	32,7	0,44	n	0,16	13,8	13,6	40	20	0	40	nach Bruchausl. in der UKZV verläuft der Bruch z,T. im BSH
8	120	20	40,8	0,41	n	0,10	13,0	17,0	20	0	0	80	Bruch ausserhalb UKZV
9	120	20	32,3	0,43	n	0,13	13,9	13,5	30	0	30	40	nach Bruchausl. in der UKZV verläuft der Bruch z,T. im BSH
10	120	20	28,4	0,38	j	0,00	12,7	11,8	30	0	0	70	Bruch ausserhalb UKZV
13	120	20	40,3	0,46	n	0,15	12,1	16,8	40	0	20	40	nach Bruchausl. in der UKZV verläuft der Bruch z,T. im BSH
14	120	20	33,7	0,36	j	0,13	11,9	14,0	0	0	0	100	Bruch ausserhalb Keilzinkung
15	120	20	36,9	0,43	n	0,08	13,2	15,4	50	0	0	50	nach Bruchausl. in der UKZV verläuft der Bruch z,T. im BSH
16	120	20	29,8	0,42	n	0,09	12,4	12,4	70	0	0	30	nach Bruchausl. in der UKZV verläuft der Bruch z,T. im BSH
17	120	20	41,0	0,39	j	0,00	13,6	17,1	50	0	0	50	nach Bruchausl. in der UKZV verläuft der Bruch z,T. im BSH
18	120	20	33,7	0,38	n	0,07	14,0	14,0	0	0	0	100	Bruch ausserhalb UKZV
19	120	20	33,0	0,43	n	0,17	13,5	13,8	50	0	0	50	nach Bruchausl. in der UKZV verläuft der Bruch z,T. im BSH
20	120	20	41,8	0,43	n	0,00	15,4	17,4	50	0	0	50	nach Bruchausl. in der UKZV verläuft der Bruch z,T. im BSH

Tabelle D.3: Ergebnisse der Zugversuche an keilgezinkten Proben BSH/BFU-BU mit $\alpha\text{=}15^\circ$

Nr.	b	t	F _{ult}	ρ	Mark-	KAR	u	σ_{ult}		Bruchante	eil		Bemerkungen
					röhre				Zinken BSH	Zinken BFU	Flan-	ausser-	
											ke	halb	
	[mn	n]	[kN]	[g/cm ³]	[-]	[1]	[%]	[N/mm ²]		[%]			
4	120	20	20,9	0,37	n	0,08	13,9	8,7	0	0	0	100	Versagen des BSH außerhalb der Keilzinkung
7	120	20	23,5	0,36	n	0,12	15,0	9,8	0	0	0	100	Versagen des BSH außerhalb der Keilzinkung
8	120	20	19,5	0,42	n	0,04	13,8	8,1	0	0	0	100	Versagen des BSH außerhalb der Keilzinkung
9	120	20	17,3	0,42	n	0,00	14,1	7,2	0	0	0	100	Versagen des BSH im Bereich der Verstärkung
10	120	20	22,1	0,46	j	0,00	14,3	9,2	0	0	0	100	Versagen des BSH außerhalb der Keilzinkung
20	120	20	20,1	0,44	n	0,07	12,9	8,4	0	0	0	100	Versagen des BSH außerhalb der Keilzinkung

Tabelle D.4: Ergebnisse der Zugversuche an keilgezinkten Proben BSH/BFU-BU mit α =22,5°

Bild D.1: a) Bruch im Bereich der Verstärkung; b) Bruch außerhalb der Universalkeilzinkenverbindung

Bild D.2: a) Bruch überwiegend im Zinkengrund des BFU-BU c) Rollschubversagen in der zweiten Zinkenflanke von unten b) Bruch überwiegend im Zinkengrund des BSH d) Überwiegend Flankenbruch e) Mischbruch
Anlage E Zugversuche an UKZV BS-Holz/FSH-Q

In den nachfolgenden Tabellen dunkel unterlegte Felder kennzeichnen Versuche, die nicht in die Auswertung aufgenommen worden sind.

Nr.	b	t	F _{ult}	ρ	Mark-	KAR	u	σ_{ult}	Bruchanteil Ber		Bemerkungen		
					röhre				Zinkenber.	Zinkenber.	Flanke	ausser-	
	l			0				0	BSH	BFU	n	halb	
	[mn	ן]	[kN]	[g/cm ³]	[-]	[1]	[%]	[N/mm ²]		[%]			
1	120	20	81,0	0,50	n	0,02	13,0	33,8	40	40	20	0	
2	120	20	86,1	0,48	n	0,00	13,1	35,9	50	10	30	10	
4	120	20	64,1	0,48	n	0,00	12,2	26,7	10	50	40	0	
5	120	20	54,4	0,43	n	0,00	14,4	22,7	0	50	50	0	
6	120	20	75,7	0,56	n	0,02	12,6	31,5	0	70	30	0	
7	120	20	65,5	0,42	n	0,05	12,5	27,3	0	20	40	40	Bruch im Zinkenbereich in das Brett auslaufend
8	120	20	70,0	0,42	n	0,08	11,8	29,2	10	60	30	0	Ast im Zinkenbereich
9	120	20	60,8	0,36	n	0,15	14,3	25,3	30	40	30	0	Ast im Zinkenbereich
10	120	20	44,8	0,36	n	0,17	13,2	18,7	60	10	30	0	
11	120	20	62,7	0,42	n	0,00	13,0	26,1	0	50	50	0	
12	120	20	74,6	0,46	n	0,06	12,9	31,1	70	10	10	10	
14	120	20	65,1	0,43	n	0,04	13,5	27,1	10	60	30	0	
15	120	20	76,5	0,48	n	0,02	13,5	31,9	0	40	40	0	
16	120	20	73,5	0,41	j	0,04	12,2	30,6	30	0	30	40	Bruch im Zinkenbereich in das Brett auslaufend
17	120	20	104, 4	0,45	n	0,00	13,9	43,5	0	80	20	0	
18	120	20	85,8	0,46	n	0,00	14,8	35,8	10	70	20	0	
19	120	20	86,5	0,48	n	0,06	13,0	36,0	0	70	20	0	
20	120	20	57,5	0,40	n	0,08	13,0	24,0	40	30	20	10	
21	120	20	68,9	0,46	n	0,09	13,3	28,7	60	0	20	20	Bruch im Zinkenbereich in das Brett auslaufend
22	120	20	56,3	0,36	n	0,00	13,4	23,5	0	0	0	100	Versagen des BSH außerhalb der Keilzinkung

Tabelle E.1: Ergebnisse der Zugversuche an keilgezinkten Proben BSH/FSH-Q mit α =0°

Nr.	b	t	F _{ult}	ρ	Mark-	KAR	u	σ_{ult}	Bruchanteil B		Bemerkungen		
					röhre				Zinkenber.	Zinkenber.	Flan-	ausser-	
	l Imr	-1 -1	[KNI]	[a/cm ³]	[_]	[1]	[%]	[N/mm ²]	БОП	DFU [%]	Kell	TIAID	
4	400	ין 20			[-]	0.00	[/0]		40	[/0]	20	20	Druch im Zinkenhensish in des Drett suslaufend
1	120	20	50,8	0,50	n	0,00	13,0	23,7	40	0	30	30	Bruch Im Zinkenbereich in das Breit auslaufend
2	120	20	63,3	0,48	n	0,00	13,1	26,4	0	50	0	50	Bruch im Zinkenbereich in das Brett auslaufend
3	120	20	47,9	0,45	n	0,00	12,2	20,0	30	10	30	30	Bruch im Zinkenbereich in das Brett auslaufend
4	120	20	47,6	0,48	n	0,00	12,2	19,8	20	0	80	0	
5	120	20	54,4	0,43	n	0,16	14,4	22,7	0	50	50	0	
6	120	20	65,8	0,56	n	0,09	12,6	27,4	10	20	70	0	
7	120	20	43,2	0,42	n	0,11	12,5	18,0	60	0	30	10	Bruch im Zinkenbereich in das Brett auslau- fend, Größerer Ast im Zinkenbereich
8	120	20	59,6	0,42	n	0,09	11,8	24,8	10	0	70	20	Bruch im Zinkenbereich in das Brett auslau- fend, größerer Ast im Zinkenbereich
9	120	20	45,5	0,36	n	0,05	14,3	19,0	70	0	10	20	Bruch im Zinkenbereich in das Brett auslaufend
10	120	20	54,9	0,36	n	0,00	13,2	22,9	60	0	40	0	
11	120	20	62,0	0,42	n	0,00	13,0	25,8	20	0	30	50	Bruch im Zinkenbereich in das Brett auslaufend
12	120	20	60,5	0,46	n	0,04	12,9	25,2	0	0	0	100	Bruch außerhalb Keilzinkung
13	120	20	59,3	0,42	j	0,00	13,4	24,7	0	10	90	0	
14	120	20	49,3	0,43	n	0,00	13,5	20,5	0	10	50	40	Starke Exzentrizität vor dem Bruch
15	120	20	65,3	0,48	n	0,07	13,5	27,2	0	90	10	0	
16	120	20	48,8	0,41	j	0,22	12,2	20,3	40	0	30	30	Bruch im Zinkenbereich in das Brett auslaufend
17	120	20	71,5	0,45	n	0,00	13,9	29,8	0	20	80	0	
18	120	20	59,5	0,46	n	0,08	14,8	24,8	0	0	100	0	
20	120	20	-	0,40	n	0,12	13,0	-	0	0	0	100	Bruch in der Verstärkung
21	120	20	55,0	0,46	n	0,11	13,3	22,9	50	50	0	0	
22	120	20	47,1	0,36	n	0,04	13,4	19,6	50	0	30	20	Bruch im Zinkenbereich in das Brett auslaufend

Tabelle E.2: Ergebnisse der Zugversuche an keilgezinkten Proben BSH/FSH-Q mit α =7,5°

Nr.	b	t	F _{ult}	ρ	Mark-	KAR	u	σ_{ult}	Bruchanteil Be		Bemerkungen		
					röhre				Zinkenber.	Zinkenber.	Flanke	ausser-	
]							BSH	BFU	n	halb	
	[mn	n]	[kN]	[g/cm ³]	[-]	[1]	[%]	[N/mm ²]		[%]			
1	120	20	32,6	0,45	j	0,00	12,1	13,6	0	0	0	100	Bruch außerhalb der Keilzinkung
2	120	20	36,9	0,48	n	0,06	13,1	15,4	0	60	0	40	Bruch im Zinkenbereich in das Brett auslaufend
3	120	20	31,0	0,44	j	0,16	14,3	12,9	50	0	0	50	Bruch im Zinkenbereich in das Brett auslaufend
4	120	20	29,5	0,42	n	0,05	13,9	12,3	70	0	0	30	Bruch im Zinkenbereich in das Brett auslaufend
5	120	20	30,7	0,48	n	0,05	13,7	12,8	0	0	0	100	Bruch außerhalb der Keilzinkung
6	120	20	37,6	0,45	n	0,00	14,3	15,7	0	60	0	40	Bruch im Zinkenbereich in das Brett auslaufend
7	120	20	26,8	0,44	n	0,06	13,8	11,2	0	0	0	100	Bruch außerhalb der Keilzinkung
9	120	20	33,2	0,43	n	0,04	13,9	13,8	20	0	0	80	Bruch außerhalb der Keilzinkung
10	120	20	35,4	0,38	j	0,08	12,7	14,8	0	100	0	0	
11	120	20	29,9	0,47	n	0,00	12,9	12,5	50	0	0	50	Bruch im Zinkenbereich in das Brett auslaufend
12	120	20	34,8	0,41	n	0,00	12,1	14,5	40	50	0	10	Bruch im Zinkenbereich in das Brett auslaufend
13	120	20	31,4	0,46	n	0,03	12,1	13,1	0	70	0	30	Bruch im Zinkenbereich in das Brett auslaufend
14	120	20	33,6	0,36	j	0,00	11,9	14,0	50	0	0	50	Bruch im Zinkenbereich in das Brett auslaufend
15	120	20	33,0	0,43	n	0,00	13,2	13,8	0	60	0	40	Bruch im Zinkenbereich in das Brett auslaufend
16	120	20	29,2	0,42	n	0,00	12,4	12,2	0	0	0	100	Bruch im Bereich der Verstärkung
17	120	20	30,9	0,39	j	0,08	13,6	12,9	30	0	0	70	Bruch außerhalb der Keilzinkung
18	120	20	33,7	0,38	n	0,06	14,0	14,0	0	0	0	100	Bruch außerhalb der Keilzinkung
19	120	20	37,1	0,43	n	0,03	13,5	15,5	0	60	0	40	Bruch im Zinkenbereich in das Brett auslaufend

Tabelle E.3: Ergebnisse der Zugversuche an keilgezinkten Proben BSH/FSH-Q mit α =15°

Nr.	b	t	F _{ult}	ρ	Mark-	KAR	u	σ_{ult}		Bruchant	eil		Bemerkungen
					röhre				Zinkenber.	Zinkenber.	Flan-	ausser-	
									BSH	BFO	ken	halb	
	[mn	ח]	[kN]	[g/cm ³]	[-]	[1]	[%]	[N/mm ²]		[%]			
20	120	20	33,6	0,43	n	0,03	15,4	14,0	0	60	0	40	Bruch im Zinkenbereich in das Brett auslaufend
21	120	20	29,0	0,39	n	0,06	13,9	12,1	0	70	0	30	Bruch im Zinkenbereich in das Brett auslaufend
22	120	20	31,6	0,41	n	0,00	12,8	13,2	20	0	60	20	Bruch im Zinkenbereich in das Brett auslaufend
23	120	20	20,5	0,42	n	0,28	14,8	8,5	0	0	60	40	Bruch im Zinkenbereich in das Brett auslau- fend, Zwei große Äste im Zinkenbereich

Noch Tabelle E.3: Ergebnisse der Zugversuche an keilgezinkten Proben BSH/FSH-Q mit α =15°

Tabelle E.4: Ergebnisse der Zugversuche an keilgezinkten Proben BSH/FSH-Q mit α =22,5°

Nr.	b	t	F _{ult}	ρ	Mark-	KAR	u	σ_{ult}		Bruchante	eil		Bemerkungen
					röhre				Zinkenber. BSH	Zinkenber. BFU	Flan- ken	ausser- halb	
	[mn	n]	[kN]	[g/cm ³]	[-]	[1]	[%]	[N/mm ²]		[%]			
2	120	20	17,6	0,39	n	0,10	13,4	7,3	30	60	10	0	
4	120	20	19,3	0,37	n	0,04	13,9	8,0	0	0	0	100	Bruch außerhalb der Keilzinkung
8	120	20	22,9	0,42	n	0,00	13,8	9,5	0	0	0	100	Bruch außerhalb der Keilzinkung
9	120	20	19,4	0,42	n	0,00	14,1	8,1	0	0	0	100	Bruch außerhalb der Keilzinkung
15	120	20	19,8	0,46	j	0,15	13,3	8,3	0	0	0	100	Bruch außerhalb der Keilzinkung
16	120	20	26,2	0,43	j	0,00	12,9	10,9	0	40	0	60	Bruch außerhalb der Keilzinkung
17	120	20	21,1	0,41	n	0,08	13,8	8,8	0	50	0	50	Bruch im Zinkenbereich in das Brett auslaufend

Bild E.1:a) Bruch überwiegend im Zinkengrund des FSH-Qb) Bruch überwiegend im Zinkengrund des BSH

b)

Anlage F Eingangswerte für die Simulation von keilgezinkten Rahmenecken ohne oder mit Zwischenstück aus Holz

Bild F.1: Elementnummerierung für Rahmenecke 1b

Zellen- nr.	Zellen- länge	Brett- nr.	ρ ₁₂	ρ12,min	Verbunden mit Zellennr.	ρ _{12,min} UKZV	E _{t,c,0}	Ast in der Zelle?
[-]	[mm]	[-]	[g/cm ³]	[g/cm ³]	[-]	[g/cm ³]	[N/mm ²]	[-]
1	150	1	0,4899				12299	
2	150						9989	
3	150						8809	х
4	150						12665	
5	150				101	0,4899	17329	
6	150	2	0,4525				11570	x
7	150						11570	х
8	150						11408	
9	150						11778	
10	150				106	0,4525	11081	х
11	150	3	0,5247				11131	х
12	150						11349	
13	150						12352	
14	150						12606	х
15	150				111	0,4299	12855	
16	150	4	0,3939				10067	
17	150						9154	
18	150						8881	x
19	150						10351	х
20	150				116	0,3939	10350	х
21	150	5	0,4626				11901	x
22	150						11749	
23	150						12869	x
24	150						10900	х
25	150				121	0,4624	10722	х
26	150	6	0,4696				7295	x
27	150						7295	х
28	150						8779	x
29	150						7580	х
30	150				126	0,4679	7442	х
31	150	7	0,5276				17458	x
32	150						15720	x
33	150						15844	
34	150						15541	
35	150				131	0,4532	17662	
36	150	8	0,4153				8143	x
37	150						9929	x
38	150						10478	
39	150						9559	x
40	150				136	0,4153	8966	x
41	150	9	0,4511				10168	x

 Tabelle F.1:
 Eingangswerte f
 ür die genauere Simulation der Rahmenecke 1b

Zellen- nr.	Zellen- länge	Brett- nr.	ρ ₁₂	ρ _{12,min}	Verbunden mit Zellennr.	ρ _{12,min} UKZV	E _{t,c,0}	Ast in der Zelle?
[-]	[mm]	[-]	[g/cm ³]	[g/cm ³]	[-]	[g/cm ³]	[N/mm ²]	[-]
42	150						10251	
43	150						10403	х
44	150						10338	
45	150				141	0,4381	10948	
46	150	10	0,3651				12131	х
47	150						13685	
48	150						13685	
49	150						13685	х
50	150	11	0,4088	0,3651	146	0,488	9664	
51	150	12	0,4712				13408	х
52	150						14513	х
53	150						14475	
54	150						14174	
55	150				151	0,488	13622	
56	150	13	0,4381				10841	
57	150						10969	
58	150						8614	х
59	150						9501	
60	150				156	0,4381	9841	х
61	150	14	0,4101	0,4104			13860	
62	150	15	0,4101				13860	х
63	150						13860	х
64	150						13860	х
65	150				161	0,4153	14234	х
66	150	16	0,4386				11380	х
67	150						11037	
68	150						11286	
69	150						11567	х
70	150				166	0,4386	12662	
71	150	17	0,467				14466	
72	150						13087	х
73	150						13250	
74	150						13302	
75	150				171	0,467	12874	
76	150	18	0,4785				13972	
77	150						11930	x
78	150						12393	x
79	150						13600	
80	150				176	0,3765	12791	х
81	150	19	0,4051				9900	x
82	150			0,3992			8250	

Noch Tabelle F.1: Eingangswerte für die genauere Simulation der Rahmenecke 1b

Zellen- nr.	Zellen- länge	Brett- nr.	ρ ₁₂	ρ12,min	Verbunden mit Zellennr.	ρ _{12,min} UKZV	E _{t,c,0}	Ast in der Zelle?
[-]	[mm]	[-]	[g/cm ³]	[g/cm ³]	[-]	[g/cm ³]	[N/mm ²]	[-]
83	150	20	0,3992				8250	х
84	150						8250	х
85	150				181	0,3939	8250	
86	150	21	0,4299				11882	
87	150						12170	
88	150						10976	х
89	150						11757	х
90	150				186	0,4299	12771	
91	150	22	0,4675				12016	х
92	150						12016	
93	150						12016	
94	150						12016	
95	150				191	0,4525	11455	
96	150	23	0,5003				15028	х
97	150						14304	
98	150						12881	х
99	150						12256	х
100	150				196	0,3938	12100	
101	150	24	0,5003		5	0,4899	12577	
102	150						12577	х
103	150						12285	
104	150						12980	х
105	150						12418	
106	150	25	0,4675		10	0,4525	11833	х
107	150						12074	
108	150						11856	
109	150						11463	
110	150						11310	
111	150	26	0,4299		15	0,4299	13936	
112	150						12706	
113	150						11001	х
114	150						11934	х
115	150						13831	
116	150	27	0,3992		20	0,3939	10038	х
117	150						10529	х
118	150						11754	
119	150						9840	
120	150						9217	x
121	150	28	0,4785		25	0,4624	13197	
122	150						11128	x
123	150						11761	x

Noch Tabelle F.1: Eingangswerte für die genauere Simulation der Rahmenecke 1b

Zellen- nr.	Zellen- länge	Brett- nr.	ρ12	ρ12,min	Verbunden mit Zellennr.	ρ _{12,min} UKZV	$E_{t,c,0}$	Ast in der Zelle?
[-]	[mm]	[-]	[g/cm ³]	[g/cm ³]	[-]	[g/cm ³]	[N/mm ²]	[-]
124	150						12524	
125	150						12047	х
126	150	29	0,4679	0,4670	30	0,4679	13968	
127	150	30	0,4679				13968	х
128	150						13968	
129	150						13968	
130	150						10764	х
131	150	31	0,4532		35	0,4532	10204	
132	150						10451	х
133	150						10451	
134	150	31	0,4532				10451	
135	150						10451	х
136	150	32	0,472		40	0,4153	13796	
137	150						13772	х
138	150						13789	х
139	150						13784	х
140	150						12478	х
141	150	33	0,4381		45	0,4381	9513	х
142	150						10674	х
143	150						10549	
144	150						10134	
145	150						9552	х
146	150	34	0,4712		50	0,488	14425	
147	150						14236	
148	150						13994	х
149	150						13928	х
150	150						14516	
151	150	35	0,4088		55	0,488	10761	
152	150						10595	
153	150						9902	х
154	150						9778	
155	150						9664	
156	150	36	0,4511		60	0,4381	10967	
157	150						11022	х
158	150						11666	x
159	150						11076	
160	150						10420	x
161	150	37	0,4153		65	0,4153	11169	x
162	150						13001	x
163	150						12569	
164	150						10237	x

Noch Tabelle F.1: Eingangswerte für die genauere Simulation der Rahmenecke 1b

Zellen- nr.	Zellen- länge	Brett- nr.	ρ ₁₂	ρ12,min	Verbunden mit Zellennr.	ρ _{12,min} UKZV	E _{t,c,0}	Ast in der Zelle?
[-]	[mm]	[-]	[g/cm ³]	[g/cm ³]	[-]	[g/cm ³]	[N/mm ²]	[-]
165	150						9293	х
166	150	38	0,5603		70	0,4386	16322	х
167	150						17722	х
168	150						17841	х
169	150						16750	х
170	150						14850	
171	150	39	0,4696		75	0,467	9456	
172	150						9191	х
173	150						8762	
174	150						9467	х
175	150						10075	
176	150	40	0,3765		80	0,3765	10659	х
177	150						10360	х
178	150						10360	
179	150						10360	
180	150						10360	х
181	150	41	0,3939		85	0,3939	10348	
182	150						9827	
183	150						9415	
184	150						8697	х
185	150						9404	
186	150	42	0,5247		90	0,4299	13984	
187	150						14169	
188	150						14167	
189	150						12885	х
190	150						12890	х
191	150	43	0,4525		95	0,4525	12459	
192	150						11124	х
193	150						10364	
194	150						9992	
195	150						10579	х
196	150	44	0,3938		100	0,3938	9323	
197	150						10364	x
198	150						11953	х
199	150	45	0,4765	0,3938			16500	
200	150						16500	

Noch Tabelle F.1: Eingangswerte für die genauere Simulation der Rahmenecke 1b

Zellen- nr.	Zellen- länge	Brett- nr.	ρ ₁₂	ρ _{12,min}	Verbunden mit Zellennr.	ρ _{12,min} UKZV	E _{t,c,0}	Ast in der Zelle?
[-]	[mm]	[-]	[g/cm ³]	[g/cm ³]	[-]	[g/cm ³]	[N/mm ²]	[-]
1	150	1	0,4043				9228	х
2	150						9250	х
3	150						9205	х
4	150						9576	
5	150				101	0,4043	9572	
6	150	2	0,45				8518	х
7	150						10009	
8	150						11361	
9	150						9446	х
10	150				105	0,4317	11425	х
11	150	3	0,4762				12558	х
12	150						13154	х
13	150						12403	х
14	150						13318	
15	150				109	0,4053	11993	
16	150	4	0,4699				12619	x
17	150						14186	

Tabelle F.2: Eingangswerte für die genauere Simulation der Rahmenecke 2b

Zellen- nr.	Zellen- länge	Brett- nr.	ρ ₁₂	ρ12,min	Verbunden mit Zellennr.	ρ _{12,min} UKZV	E _{t,c,0}	Ast in der Zelle?
[-]	[mm]	[-]	[g/cm ³]	[g/cm ³]	[-]	[g/cm ³]	[N/mm ²]	[-]
18	150						14320	
19	150						14508	х
20	150				113	0,4699	14880	
21	150	5	0,3972				8149	х
22	150						9594	
23	150						9771	х
24	150						9999	х
25	150				117	0,3972	10772	
26	150	6	0,3903				12185	
27	150						11619	
28	150						11279	х
29	150	6	0,3903				11316	х
30	150				121	0,3093	11479	х
31	150	7	0,5373				13200	
32	150						13200	х
33	150			0,5279			13200	
34	150	8	0,5279				15400	
35	150				125	0,5306	15400	х
36	150	9	0,3733				9203	х
37	150						8799	
38	150						8986	х
39	150						8620	х
40	150				129	0,3733	8226	
41	150	10	0,4436				9987	
42	150						10402	
43	150						10758	
44	150						10626	
45	150				133	0,4436	9730	х
46	150	11	0,3651				9610	х
47	150						9610	х
48	150						9610	
49	150						9298	х
50	150				137	0,3651	8884	х
51	150	12	0,4228				12073	х
52	150						12327	х
53	150						11443	х
54	150						11490	
55	150				141	0,4288	11094	x
56	150	13	0,4412				13621	
57	150						13944	
58	150						12687	х

Noch Tabelle F.2: Eingangswerte für die genauere Simulation der Rahmenecke 2b

Zellen- nr.	Zellen- länge	Brett- nr.	ρ ₁₂	$ ho_{12,min}$	Verbunden mit Zellennr.	ρ _{12,min} UKZV	E _{t,c,0}	Ast in der Zelle?
[-]	[mm]	[-]	[g/cm ³]	[g/cm ³]	[-]	[g/cm ³]	[N/mm ²]	[-]
59	150						14498	
60	150				145	0,4412	14807	х
61	150	14	0,4104				8907	х
62	150						10056	х
63	150						10249	х
64	150						10621	х
65	150				149	0,4053	10508	
66	150	15	0,4679				13200	
67	150						13200	
68	150	16	0,4386	0,4386			13200	
69	150						11000	х
70	150				153	0,4386	11000	
71	150	17	0,3972				11440	
72	150						8423	х
73	150						9592	х
74	150						13790	
75	150				157	0,3972	10170	
76	150	18	0,3735				7630	х
77	150						7855	
78	150						7447	х
79	150						8755	
80	150				161	0,3735	7708	
81	150	19	0,4051				11487	х
82	150						11487	
83	150						12806	х
84	150						12727	
85	150				165	0,4051	11354	х
86	150	20	0,4825				12616	х
87	150						11854	
88	150						11580	х
89	150						12491	х
90	150				169	0,4825	12163	
91	150	21	0,4395				10560	
92	150						9375	
93	150						9532	
94	150						11117	x
95	150				173	0,4352	11051	x
96	150	22	0,4284				15070	
97	150						15070	x
98	150	22	0,4284	0,4284			15070	
99	150						15070	

Noch Tabelle F.2: Eingangswerte für die genauere Simulation der Rahmenecke 2b

Zellen- nr.	Zellen- länge	Brett- nr.	ρ ₁₂	ρ12,min	Verbunden mit Zellennr.	ρ _{12,min} UKZV	E _{t,c,0}	Ast in der Zelle?
[-]	[mm]	[-]	[g/cm ³]	[g/cm ³]	[-]	[g/cm ³]	[N/mm ²]	[-]
100	150				177	0,4284	15070	
101	150	24	0,4724		5	0,4043	11550	
102	20,2						11550	
103	20,2						11550	
104	150	25	0,4724	0,4456 6	181	0,4284	11550	
105	150	26	0,4317		10	0,4317	10794	х
106	30,6						11650	
107	30,6						11694	
108	150				186	0,3938	12599	х
109	150	27	0,4053		15	0,4053	10228	х
110	41						9512	х
111	41						9781	х
112	150				191	0,4053	11361	
113	150	28	0,5365		20	0,4699	12836	х
114	51,4						14204	х
115	51,4						16708	
116	150				196	0,37	16449	
117	150	29	0,5101		25	0,3972	12543	х
118	61,8						12788	
119	61,8						13010	
120	150				201	0,3992	13262	
121	150	30	0,4538		30	0,3093	11673	х
122	72,2						12964	
123	72,2						12509	
124	150				206	0,4186	10812	
125	150	31	0,5306		35	0,5306	14703	х
126	82						14703	
127	82						14557	
128	150				211	0,4679	14368	х
129	150	32	0,4846		40	0,3733	13200	
130	92						13200	
131	92			0,4846			14300	
132	150	33	0,5367		216	0,4532	14300	
133	150	34	0,4652		45	0,4436	13077	х
134	103,4						12807	х
135	103,4						13078	
136	150				221	0,4652	13223	
137	150	35	0,5263		50	0,3651	14599	
138	113,8						15447	х
139	113,8						14817	х

Noch Tabelle F.2: Eingangswerte für die genauere Simulation der Rahmenecke 2b

Zellen- nr.	Zellen- länge	Brett- nr.	ρ ₁₂	ρ _{12,min}	Verbunden mit Zellennr.	ρ _{12,min} UKZV	E _{t,c,0}	Ast in der Zelle?
[-]	[mm]	[-]	[g/cm ³]	[g/cm ³]	[-]	[g/cm ³]	[N/mm ²]	[-]
140	150				226	0,4228	13889	
141	150	36	0,4724		55	0,4228	14262	
142	124						15349	
143	124						14275	
144	150				231	0,3739	13542	
145	150	37	0,469		60	0,4412	11545	х
146	134,7						11617	
147	134,7						11586	х
148	150				236	0,4088	12058	
149	150	38	0,4053	0,4053	65	0,4053	9900	
150	145,1	39	0,4053				9900	
151	145,1						9900	х
152	150				241	0,3733	9900	х
153	150	40	0,5365		70	0,4386	14400	
154	155,5						14686	х
155	155,5						14825	
156	150				246	0,5365	15626	х
157	150	41	0,4952		75	0,3972	14964	х
158	165,9						14209	
159	165,9						14124	х
160	150				251	0,4952	15269	
161	150	42	0,4899		80	0,3735	14010	х
162	176,3						12317	х
163	176,3	42	0,4899				11229	
164	150				256	0,3972	12042	
165	150	43	0,5367		85	0,4051	14300	
166	186,7			0,4899			11184	
167	186,7	44	0,4899				12706	x
168	150				261	0,4699	13088	х
169	150	45	0,4846		90	0,4825	13958	х
170	197,1						13122	х
171	197,1						13334	х
172	150				266	0,3765	13218	x
173	150	46	0,4352		95	0,4352	13611	
174	207,5						13629	х
175	207,5						12998	x
176	150				271	0,4352	11371	
177	150	47	0,5263		100	0,4284	16330	
178	217,9						16330	х
179	217,9						15101	х
180	150				276	0,4043	15278	х

Noch Tabelle F.2: Eingangswerte für die genauere Simulation der Rahmenecke 2b

Zellen- nr.	Zellen- länge	Brett- nr.	ρ ₁₂	ρ12,min	Verbunden mit Zellennr.	ρ _{12,min} UKZV	E _{t,c,0}	Ast in der Zelle?
[-]	[mm]	[-]	[g/cm ³]	[g/cm ³]	[-]	[g/cm ³]	[N/mm ²]	[-]
181	150	48	0,4284		104	0,4284	10562	
182	150						11052	
183	150						9672	x
184	150						9327	х
185	150						10286	
186	150	49	0,3938		108	0,3938	8946	х
187	150						9951	х
188	150						10208	
189	150						9424	х
190	150						8667	х
191	150	50	0,4675		112	0,4053	16569	х
192	150						16569	
193	150						12175	x
194	150						12605	
195	150						11538	х
196	150	51	0,37		116	0,37	10809	
197	150						10406	х
198	150						8861	
199	150						10310	x
200	150						11256	
201	150	52	0,3992		120	0,3992	11408	
202	150						8302	х
203	150						10314	x
204	150						11371	
205	150						11371	
206	150	53	0,4186		124	0,4186	11002	х
207	150						10231	х
208	150						9701	х
209	150						10590	
210	150						11319	
211	150	54	0,4676		128	0,4679	15434	
212	150						13140	х
213	150						12763	
214	150						14439	
215	150						14234	
216	150	55	0,4532		132	0,4532	10417	
217	150						10765	
218	150						11422	x
219	150						11607	x
220	150						11396	x
221	150	56	0,472		136	0,4632	16643	х

Noch Tabelle F.2: Eingangswerte für die genauere Simulation der Rahmenecke 2b

Zellen- nr.	Zellen- länge	Brett- nr.	ρ ₁₂	ρ _{12,min}	Verbunden mit Zellennr.	ρ _{12,min}	E _{t,c,0}	Ast in der Zelle?
[-]	[mm]	[-]	[a/cm ³]	[a/cm ³]	[-]	[a/cm ³]	[N/mm ²]	[-]
222	150		[3, 0]	[9, 0]		[9, 0]	14577	
223	150						17162	
224	150						12624	
225	150						11782	
226	150	57	0.4228		140	0.4228	9598	x
227	150						8842	x
228	150						8877	
229	150						8877	x
230	150	57	0.4228				8877	x
231	150	58	0.3739		144	0.3739	10365	
232	150		,				10372	x
233	150						10286	
234	150						10232	x
235	150						10339	x
236	150	59	0,4088		148	0,4088	10679	
237	150		,			,	13352	х
238	150						11543	
239	150						9453	x
240	150						10333	
241	150	60	0,3733		152	0,3733	8919	х
242	150						9631	x
243	150						10121	x
244	150						11933	x
245	150						11933	x
246	150	61	0,5365		156	0,5365	13973	x
247	150						14524	
248	150						13816	х
249	150						13996	х
250	150						14187	х
251	150	62	0,5603		160	0,4952	15720	х
252	150						13729	х
253	150						14458	х
254	150						16226	х
255	150						18209	х
256	150	63	0,3972		164	0,3972	9680	
257	150	64	0,4696	0,3972			9680	
258	150						11000	x
259	150						11000	
260	150						11000	x
261	150	65	0,4699		168	0,4699	13626	x
262	150						12482	x

Noch Tabelle F.2: Eingangswerte für die genauere Simulation der Rahmenecke 2b

Zellen- nr.	Zellen- länge	Brett- nr.	ρ ₁₂	ρ12,min	Verbunden mit Zellennr.	ρ _{12,min} UKZV	E _{t,c,0}	Ast in der Zelle?
[-]	[mm]	[-]	[g/cm ³]	[g/cm ³]	[-]	[g/cm ³]	[N/mm ²]	[-]
263	150						11494	
264	150						11151	х
265	150						12756	x
266	150	66	0,3765		172	0,3765	12818	
267	150						12066	х
268	150						11092	
269	150						11091	
270	150						11307	
271	150	67	0,45		176	0,4352	12211	
272	150						10046	х
273	150						10612	x
274	150						11578	
275	150						12113	x
276	150	68	0,4043		180	0,4043	10662	
277	150						10662	x
278	150						10662	х
279	150			0,4043			10662	
280	150	69	0,4525				10662	
281	139	70	0,4317				11271	
282	210						11604	х
283	210						11490	х
284	139						13357	х
285	117	71	0,469				11974	
286	179						13212	х
287	179						12280	х
288	117						11134	
289	94	72	0,4703				10948	
290	147						11994	х
291	147						10038	х
292	94						9558	х
293	72	73	0,5101				11925	х
294	116						12289	
295	116						11686	х
296	72						12733	х
297	50	74	0,4952				13627	х
298	84	74					13627	x
299	84	74					13627	x
300	50	74					13627	
301	28	75	0,5306				13802	
302	53	75					13829	

Noch Tabelle F.2: Eingangswerte für die genauere Simulation der Rahmenecke 2b

Zellen- nr.	Zellen- länge	Brett- nr.	ρ ₁₂	ρ _{12,min}	Verbunden mit Zellennr.	ρ _{12,min} UKZV	E _{t,c,0}	Ast in der Zelle?
[-]	[mm]	[-]	[g/cm ³]	[g/cm ³]	[-]	[g/cm ³]	[N/mm ²]	[-]
303	53	75					12805	х
304	28	75					14210	
305	5	76	0,5367				14178	
306	22	76					14293	
307	22	76					14544	х
308	5	76					14780	

Noch Tabelle F.2: Eingangswerte für die genauere Simulation der Rahmenecke 2b

Bild F.3:

Elementnummerierung für Rahmenecke 3b

Zellen- nr.	Zellen- länge	Brett- nr.	ρ ₁₂	$ ho_{12,min}$	Verbunden mit Zellennr.	ρ _{12,min} UKZV	E _{t,c,0}	Ast in der Zelle?
[-]	[mm]	[-]	[g/cm ³]	[g/cm ³]	[-]	[g/cm ³]	[N/mm ²]	[-]
1	150	1	0,4763				13301	x
2	150						13301	х
3	150						13472	х
4	150						13684	х
5	150				76	0,4724	13399	х
6	150	2	0,5131				14478	
7	150						13907	
8	150						12429	х
9	150						13065	
10	150				80	0,469	12783	
11	150	3	0,4131	0,4131			11000	
12	150	4	0,5384				16649	
13	150						16649	х
14	150						16649	х
15	150				84	0,4053	16649	х
16	150	5	0,5386				12777	х
17	150						13131	
18	150						11349	х
19	150						12755	
20	150				88	0,5365	13489	х
21	150	6	0,4637				13510	
22	150						13602	
23	150						12133	х
24	150						13690	
25	150				92	0,4637	14672	х
26	150	7	0,5009				12342	
27	150						12547	
28	150						12645	х
29	150	7	0,5009				12658	х
30	150				96	0,4538	12667	
31	150	8	0,4371				15248	
32	150						15248	
33	150			0,4371			15248	
34	150	9	0,5124				13200	
35	150				100	0,4371	13200	x
36	150	10	0,5079				13055	x
37	150						15140	x
38	150						13464	x
39	150						13630	x
40	150				104	0,4846	14434	
41	150	11	0,5443				12238	x

 Tabelle F.3:
 Eingangswerte f
 ür die genauere Simulation der Rahmenecke 3b

Zellen- nr.	Zellen- länge	Brett- nr.	ρ ₁₂	ρ12,min	Verbunden mit Zellennr.	ρ _{12,min} UKZV	E _{t,c,0}	Ast in der Zelle?
[-]	[mm]	[-]	[g/cm ³]	[g/cm ³]	[-]	[g/cm ³]	[N/mm ²]	[-]
42	150						13100	
43	150						14200	x
44	150						12550	
45	150				108	0,4652	12071	
46	150	12	0,509				11619	
47	150						11296	х
48	150						11201	х
49	150						11031	
50	150				112	0,509	10592	
51	150	13	0,4525				13107	
52	150						13107	
53	150						13107	
54	150	14	0,4494	0,4494			11495	
55	150				116	0,4494	11495	
56	150	15	0,5086				9169	x
57	150						9097	
58	150						10185	х
59	150						10505	
60	150				120	0,469	10162	х
61	150	16	0,4504				11426	х
62	150						11528	х
63	150						10570	х
64	150						12154	x
65	150				124	0,4504	11914	
66	150	17	0,4305				11239	x
67	150						10882	х
68	150						12014	
69	150						12429	x
70	150				128	0,4305	11754	x
71	150	18	0,4752				12462	
72	150						12590	x
73	150						11669	
74	150						14004	
75	150				132	0,4752	13481	
76	150	19	0,4724		5	0,4724	12775	
77	9						12225	
78	9						11922	
79	150				136	0,4724	11848	
80	150	20	0,469	0,4317	10	0,469	11000	
81	21						11000	
82	21						11000	

Noch Tabelle F.3: Eingangswerte für die genauere Simulation der Rahmenecke 3b

Zellen- nr.	Zellen- länge	Brett- nr.	ρ ₁₂	ρ12,min	Verbunden mit Zellennr.	ρ _{12,min} UKZV	E _{t,c,0}	Ast in der Zelle?
[-]	[mm]	[-]	[g/cm ³]	[g/cm ³]	[-]	[g/cm ³]	[N/mm ²]	[-]
83	150				141	0,4305	11000	
84	150	21	0,4053		15	0,4053	10672	
85	33						9306	
86	33						9373	
87	150				146	0,4053	9778	х
88	150	22	0,5365		20	0,5365	14093	х
89	45						13720	
90	45						14726	
91	150				151	0,4761	15804	х
92	150	23	0,5101		25	0,4637	15398	х
93	57						15398	х
94	57	23	0,5101	0,4952			13200	
95	150	24	0,4952		156	0,4525	13200	х
96	150	25	0,4538		30	0,4538	12482	
97	69						13104	
98	69						11935	
99	150				161	0,4538	12451	х
100	150	26	0,4899		35	0,4371	12150	х
101	81						14161	
102	81						14161	
103	150				166	0,4535	14161	х
104	150	27	0,4846		40	0,4846	13245	х
105	93						12207	
106	93						12564	
107	150				171	0,467	13245	х
108	150	28	0,4652		45	0,4652	14166	х
109	105						14474	
110	105						14636	х
111	150				176	0,4371	14463	х
112	150	29	0,5263		50	0,509	15850	x
113	117						14930	
114	117						15510	х
115	150				181	0,5009	14739	х
116	150	30	0,4724		55	0,4494	13823	х
117	129						13973	
118	129						13504	
119	150				186	0,4724	13081	х
120	150	31	0,469		60	0,469	13200	
121	141						13200	
122	141						13200	
123	150	32	0,469	0,469	191	0,469	13200	

Noch Tabelle F.3: Eingangswerte für die genauere Simulation der Rahmenecke 3b

Zellen- nr.	Zellen- länge	Brett- nr.	ρ ₁₂	ρ12,min	Verbunden mit Zellennr.	ρ _{12,min} UKZV	E _{t,c,0}	Ast in der Zelle?
[-]	[mm]	[-]	[g/cm ³]	[g/cm ³]	[-]	[g/cm ³]	[N/mm ²]	[-]
124	150	33	0,4703		65	0,4504	12702	
125	153						9512	
126	153						10497	
127	150				196	0,4131	12892	х
128	150	34	0,5365		70	0,51311	16909	
129	165						16909	
130	165						16909	х
131	150				201	0,4305	16133	
132	150	35	0,4952		75	0,4573	14623	
133	177						13288	х
134	177						13220	
135	150				206	0,4752	12366	х
136	150	36	0,5443		79	0,4724	12313	х
137	150						14024	
138	150						14169	
139	150						14721	
140	150						15250	
141	150	37	0,4305		83	0,4305	13308	х
142	150						13308	
143	150						10221	
144	150						9148	х
145	150						9513	
146	150	38	0,4549		87	0,4053	9178	х
147	150						11210	
148	150						12702	
149	150						12702	х
150	150	39	0,4504	0,4504			11000	
151	150	40	0,4761		91	0,4761	14777	
152	150						16961	
153	150						16216	
154	150						12063	х
155	150						10384	х
156	150	41	0,4525		95	0,4525	11782	х
157	150						12353	х
158	150						12650	
159	150						11818	x
160	150						11271	х
161	150	42	0,509		99	0,4538	11124	
162	150						11968	х
163	150	42	0,509				15382	
164	150						12068	

Noch Tabelle F.3: Eingangswerte für die genauere Simulation der Rahmenecke 3b

Zellen- nr.	Zellen- länge	Brett- nr.	ρ ₁₂	ρ12,min	Verbunden mit Zellennr.	ρ _{12,min} UKZV	E _{t,c,0}	Ast in der Zelle?
[-]	[mm]	[-]	[g/cm ³]	[g/cm ³]	[-]	[g/cm ³]	[N/mm ²]	[-]
165	150						10348	
166	150	43	0,4535		103	0,4535	11735	
167	150						12466	х
168	150						13417	
169	150						13417	х
170	150						13417	х
171	150	44	0,467		107	0,467	13504	х
172	150						13977	х
173	150						13083	
174	150						12934	х
175	150						11394	х
176	150	45	0,4371		111	0,4371	12504	х
177	150						12756	
178	150						13530	
179	150						12916	
180	150						12555	
181	150	46	0,5009		115	0,5009	11177	х
182	150						10978	х
183	150						11039	
184	150						10967	х
185	150						11638	
186	150	47	0,5249		119	0,4724	13296	
187	150						12392	x
188	150						14616	
189	150			0,4637			13756	
190	150	48	0,4637				13644	
191	150	49	0,5421		123	0,469	14533	х
192	150						13881	
193	150						13748	х
194	150						14182	
195	150						13657	
196	150	50	0,4131		127	0,4131	11548	х
197	150						10685	х
198	150						9132	х
199	150						10604	
200	150						11796	
201	150	51	0,5131		131	0,5131	15583	
202	150						13237	x
203	150						16339	
204	150						15573	x
205	150						14515	x

Noch Tabelle F.3: Eingangswerte für die genauere Simulation der Rahmenecke 3b

Zellen- nr.	Zellen- länge	Brett- nr.	ρ ₁₂	ρ12,min	Verbunden mit Zellennr.	ρ _{12,min} UKZV	$E_{t,c,0}$	Ast in der Zelle?
[-]	[mm]	[-]	[g/cm ³]	[g/cm ³]	[-]	[g/cm ³]	[N/mm ²]	[-]
206	150	52	0,4573		135	0,4573	12519	х
207	150						12519	
208	150						12519	х
209	150						12769	
210	150						11871	х
211	142	53	0,5306				16102	
212	245			0,4899			16102	
213	245	54	0,4899				13200	х
214	142						13200	х
215	125	55	0,5367				13470	
216	154						12839	
217	154						14367	х
218	125						13005	
219	108	56	0,4846				12962	
220	134						13449	х
221	134						13800	
222	108						14020	х
223	92	57	0,4352				14482	
224	112						15855	
225	112						15079	
226	92						13729	
227	75	58	0,4763				14300	
228	92						14300	
229	92						14300	
230	75	58	0,4763	0,4763			14850	
231	58	59	0,4317				14103	х
232	72						14081	
233	72						13767	
234	58						12406	х
235	42	60	0,4053				9984	
236	51						9984	
237	51						9984	х
238	42						9984	
239	25	61	0,4703				12364	
240	31						12988	
241	31						13130	
242	25						13440	
243	9	62	0,5101				13346	
244	10						12650	
245	10						12650	
246	9						13109	

Noch Tabelle F.3: Eingangswerte für die genauere Simulation der Rahmenecke 3b

Elementnummerierung für Rahmenecke 4b

Tabelle F.4:	Eingangswerte für die genauere Simulation der Rahmenecke 4b
--------------	---

Zellen- nr.	Zellen- länge	Brett- nr.	ρ ₁₂	$ ho_{12,min}$	Verbunden mit Zellennr.	ρ _{12,min} UKZV	E _{t,c,0}	Ast in der Zelle?
[-]	[mm]	[-]	[g/cm ³]	[g/cm ³]	[-]	[g/cm ³]	[N/mm ²]	[-]
1	150	1	0,5075				14968	
2	150						17890	х
3	150						13866	
4	150						13721	х
5	150				76	0,4352	19001	х
6	150	2	0,4549				11000	х
7	150	3	0,4305	0,4305			11000	
8	150						12485	х
9	150						12485	х
10	150				80	0,4305	12485	х
11	150	4	0,4504				11562	
12	150						10424	х
13	150						11109	
14	150						12679	

Zellen- nr.	Zellen- länge	Brett- nr.	ρ12	ρ12,min	Verbunden mit Zellennr.	ρ _{12,min} UKZV	E _{t,c,0}	Ast in der Zelle?
[-]	[mm]	[-]	[g/cm ³]	[g/cm ³]	[-]	[g/cm ³]	[N/mm ²]	[-]
15	150				84	0,4504	12481	
16	150	5	0,5086				12390	
17	150						11224	х
18	150						10812	
19	150						11122	
20	150				88	0,5086	13276	х
21	150	6	0,4494				14531	
22	150						13757	х
23	150						9923	х
24	150						10827	х
25	150				92	0,4494	11465	х
26	150	7	0,4535				12100	
27	150						12100	
28	150			0,4535			10454	
29	150	8	0,509				10948	
30	150				96	0,4538	11578	х
31	150	9	0,5443				12334	х
32	150						13531	
33	150						13775	х
34	150						14443	
35	150				100	0,5101	14050	
36	150	10	0,5079				13179	х
37	150						12505	
38	150						12687	х
39	150						14123	х
40	150				104	0,4703	13284	
41	150	11	0,5124				11501	х
42	150						12745	
43	150						14842	х
44	150						15374	х
45	150				108	0,4053	15404	
46	150	12	0,5009				17442	х
47	150						17442	х
48	150						17522	х
49	150						11342	х
50	150				112	0,4317	11891	
51	150	13	0,4637				13200	x
52	150						13200	
53	150						13200	
54	150						13200	x

Noch Tabelle F.4: Eingangswerte für die genauere Simulation der Rahmenecke 4b

Zellen- nr.	Zellen- länge	Brett- nr.	ρ ₁₂	ρ12,min	Verbunden mit Zellennr.	ρ _{12,min} UKZV	E _{t,c,0}	Ast in der Zelle?
[-]	[mm]	[-]	[g/cm ³]	[g/cm ³]	[-]	[g/cm ³]	[N/mm ²]	[-]
55	150				116	0,4637	13200	x
56	150	14	0,5386				14300	
57	150						14300	х
58	150						14300	
59	150						14300	х
60	150				120	0,4352	14300	
61	150	15	0,5384				14163	
62	150						13928	х
63	150						14229	х
64	150						14109	
65	150				124	0,4846	13826	х
66	150	16	0,5131				13200	
67	150						13200	
68	150						13200	х
69	150						13200	х
70	150				128	0,5131	13200	
71	150	17	0,4585				13200	
72	150						13200	х
73	150						13200	х
74	150						13200	х
75	150				132	0,4585	13200	
76	150	18	0,4352		5	0,4352	13795	х
77	8						13211	
78	8						11803	
79	150				136	0,4352	12067	
80	150	19	0,4763		10	0,4305	13143	х
81	22						12950	
82	22						12790	
83	150				141	0,4752	12509	
84	150	20	0,4652		15	0,4504	12137	х
85	35						12349	х
86	35						12243	
87	150				146	0,4652	13647	
88	150	21	0,5367		20	0,5086	14920	х
89	49						14357	
90	49						13741	
91	150				151	0,5367	14215	
92	150	22	0,5306		25	0,4494	14438	x
93	63						15183	
94	63						14851	x

Noch Tabelle F.4: Eingangswerte für die genauere Simulation der Rahmenecke 4b

Zellen- nr.	Zellen- länge	Brett- nr.	ρ12	ρ12,min	Verbunden mit Zellennr.	ρ _{12,min} UKZV	$E_{t,c,0}$	Ast in der Zelle?
[-]	[mm]	[-]	[g/cm ³]	[g/cm ³]	[-]	[g/cm ³]	[N/mm ²]	[-]
95	150				156	0,5306	14518	
96	150	23	0,4538		30	0,4538	12395	
97	76	23	0,4538				11710	
98	76						12920	
99	150				161	0,4538	12860	
100	150	24	0,5101		35	0,5101	13411	х
101	90						13202	х
102	90						13347	
103	150				166	0,5101	12838	х
104	150	25	0,4703		40	0,4703	11842	х
105	104						11634	х
106	104						11634	
107	150				171	0,4703	11634	
108	150	26	0,4053		45	0,4053	10845	
109	117						9086	х
110	117						10973	х
111	150				176	0,4053	9840	
112	150	27	0,4317		50	0,4317	10553	х
113	131						11441	х
114	131						12442	
115	150				181	0,4317	11778	
116	150	28	0,4763		55	0,4637	19199	х
117	145						18209	
118	145						14026	х
119	150				186	0,4535	14245	
120	150	29	0,4352		60	0,4352	13078	х
121	158						14312	
122	158						13525	
123	150				191	0,4352	12662	
124	150	30	0,4846		65	0,4846	12626	х
125	172						11781	
126	172						12157	х
127	150				196	0,4846	12663	
128	150	31	0,5367		70	0,5131	14102	x
129	186						13247	
130	186						13615	х
131	150				201	0,4549	14416	
132	150	32	0,5306		75	0,4585	16102	x
133	199						16102	х
134	199						12923	х

Noch Tabelle F.4: Eingangswerte für die genauere Simulation der Rahmenecke 4b

Zellen- nr.	Zellen- länge	Brett- nr.	ρ ₁₂	ρ12,min	Verbunden mit Zellennr.	ρ _{12,min} UKZV	E _{t,c,0}	Ast in der Zelle?
[-]	[mm]	[-]	[g/cm ³]	[g/cm ³]	[-]	[g/cm ³]	[N/mm ²]	[-]
135	150				206	0,5075	14828	
136	150	33	0,4573		79	0,4352	12381	
137	150						12685	
138	150						12179	x
139	150						12398	x
140	150						12583	х
141	150	34	0,4752		83	0,4752	11948	
142	150						11956	х
143	150						12067	
144	150						12360	
145	150						12723	
146	150	35	0,5384		87	0,4652	15274	х
147	150						15611	
148	150						15125	х
149	150						14979	
150	150						14270	х
151	150	36	0,5386		91	0,5367	15126	
152	150						14815	х
153	150						14171	х
154	150			0,4131			13200	
155	150	37	0,4131				10566	
156	150	38	0,5421		95	0,5306	14454	х
157	150						14454	
158	150						14534	
159	150						14863	х
160	150						16316	
161	150	39	0,5249		99	0,4538	15442	
162	150						14972	х
163	150						13652	
164	150						12992	х
165	150	39	0,5249				12969	
166	150	40	0,5124		103	0,5101	12225	х
167	150						15210	
168	150						14345	x
169	150						13356	x
170	150						14962	
171	150	41	0,5079		107	0,4703	12632	
172	150						13606	
173	150						13929	х
174	150						13853	x

Noch Tabelle F.4: Eingangswerte für die genauere Simulation der Rahmenecke 4b

Zellen- nr.	Zellen- länge	Brett- nr.	ρ12	ρ12,min	Verbunden mit Zellennr.	ρ _{12,min} UKZV	$E_{t,c,0}$	Ast in der Zelle?
[-]	[mm]	[-]	[g/cm ³]	[g/cm ³]	[-]	[g/cm ³]	[N/mm ²]	[-]
175	150						13528	х
176	150	42	0,467		111	0,4053	13922	
177	150						13922	х
178	150						13922	
179	150						13922	х
180	150						13540	
181	150	43	0,4535		115	0,4317	12646	
182	150						12199	х
183	150						12876	
184	150						12555	х
185	150						12096	х
186	150	44	0,4494		119	0,4352	9980	х
187	150						10003	х
188	150						10703	х
189	150						11779	х
190	150	45	0,4494	0,4494			13058	х
191	150	46	0,5086		123	0,4352	13141	
192	150						12547	х
193	150						12409	
194	150						13680	х
195	150						13042	
196	150	47	0,4761		127	0,4846	13519	
197	150						13519	х
198	150						13519	
199	150						12273	х
200	150						12298	
201	150	48	0,4549		131	0,4549	12100	
202	150						10793	х
203	150						10255	х
204	150						11606	
205	150						11688	
206	150	49	0,5075		135	0,5075	18550	
207	150						17515	х
208	150						17554	х
209	150						15474	х
210	150						15960	x
211	143	50	0,4952				14697	
212	197						13988	x
213	197						12965	x
214	143						13157	

Noch Tabelle F.4: Eingangswerte für die genauere Simulation der Rahmenecke 4b

Zellen- nr.	Zellen- länge	Brett- nr.	ρ ₁₂	ρ12,min	Verbunden mit Zellennr.	ρ _{12,min} UKZV	E _{t,c,0}	Ast in der Zelle?
[-]	[mm]	[-]	[g/cm ³]	[g/cm ³]	[-]	[g/cm ³]	[N/mm ²]	[-]
215	129	51	0,5365	-			12100	
216	178			0,5101			13200	
217	178	52	0,5101				13200	x
218	129	52	0,5101				13200	x
219	115	53	0,4703				14483	
220	159						13467	х
221	159						10969	x
222	115						10089	
223	101	54	0,469				14689	
224	140						12716	х
225	140						14312	
226	101						12590	
227	87	55	0,4724				14015	
228	121						13608	
229	121						12727	
230	87						12727	
231	73	56	0,5263				12100	x
232	102						12100	
233	102	56	0,5263				12100	
234	73						12100	x
235	59	57	0,4652				12100	
236	83						12100	x
237	83						12100	х
238	59						12100	
239	45	58	0,4846				14081	
240	64						14912	х
241	64						13910	х
242	45						13776	х
243	31	59	0,4899				11814	
244	45						11273	
245	45						11521	
246	31						11505	х
247	17	60	0,4538				10875	
248	26						11217	
249	26						11375	
250	17						11424	
251	4	61	0,4952				11550	
252	6						11550	
253	6						11550	
254	4						11550	

Noch Tabelle F.4: Eingangswerte für die genauere Simulation der Rahmenecke 4b