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Chapter 1

Introduction

Air quality and climate change are influenced by the fluxes of green house gases, reac-

tive gas emissions and aerosols in the atmosphere (Intergovernmental panel on climate

change, fifth assessment report). The temporal evolution of chemistry in the atmosphere

is usually modelled by atmospheric chemistry transport models. The ability to quan-

tify variables, yet hardly observable emission rates is a key problem to be solved for the

analysis of atmospheric systems, and typically addressed by elaborate and costly field

campaigns or permanently operational observation networks. Especially for chemistry

transport or greenhouse gas models with high dependence on the emissions in the tro-

posphere, the optimization of the initial state is no longer the only issue. This renders

initial-value-only optimization by traditional data assimilation methods as insufficient.

The observation of fluxes can be achieved by eddy covariance measurements, mounted

on special towers. By logistic and cost reasons, only a very sparse network is globally

available. The lack of ability to observe clearly surface emission fluxes directly with

necessary accuracy is a major roadblock, hampering the progress in predictive skills of

climate and atmospheric chemistry models.

In order to get the better estimates from the model with limited observations, ef-

forts of optimization have been made including the emission rates by spatio-temporal

data assimilation. A meanwhile classical task is greenhouse gas inversion, aiming at the

estimation of carbon dioxide, methane, and nitrous oxide, from which a rich set of lit-

erature emerged. For example, in case of CO2, Peters et al. [82] devised an ensemble

data assimilation approach, approximating the covariance matrix without need to use an

adjoint model version. Singular value decomposition (SVD) can help identifying the

priorities of observations by detecting the fastest growing uncertainties. Singular vector

analysis based on SVD was firstly introduced to numerical weather prediction by Lorenz

[67]. In [12], [13] and [15], the singular vector analysis for high-dimensional meteo-

rological models was shown to be feasible to determine the direction with the strong

influence of observations. Daescu [26] exploited the error covariance sensitivity analysis,

to finally assess the data impact on analysis and forecasts. Kang and Xu [57] applied a

four-dimensional variation (4D-Var) system to Burgers’ equation to optimize sensor de-

ployment by maximizing observability using a gradient projection approach. Sandu et al.

[86] determined the dominant model singular vectors to identify regions of maximal error

growth, which are then candidate locations for optimized sensor placement. With focus
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on efficiency, Daescu and Navon [27] presented a method, resting on only one additional

adjoint model integration for measurement network optimization. Cioaca and Sandu [18]

introduced a general framework to optimize a set of parameters controlling the 4D-Var

data assimilation system, which includes means to identify erroneous data, observation

accuracy and location. In a related paper Cioaca and Sandu [17] quantified the obser-

vation impact in terms of reduction of uncertainties of shallow water model state and

other parameters. The first full chemical implementation of the 4D-variational method

for reactive atmospheric chemistry initial values was introduced in [34]. Further, Elbern

et al. [36] introduced the strong constraint of the diurnal profile shape of emission rates

such that their amplitudes and initial values are the only uncertainty to be optimized, and

then implemented it by 4D-Var inversion. This strong constraint approach is reasonable

because the diurnal evolution sequence of emissions is typically much better known than

the absolute amount of daily emissions. Moreover, several data assimilation strategies

were designed to adjust ozone initial conditions and emission rates separately or jointly

in [93]. Bocquet et al. introduced a straightforward extension of the iterative ensemble

Kalman smoother in [10].

Furthermore, the choices of observation locations and control locations, which may

be mutually dual problems, are of great importance for improving the estimation and de-

signing control systems in various practical problems. Many researchers have focused

on the study of finding the optimal locations of control hardware and observation in-

struments and different criteria of optimizing control locations were established, such

as maximization of observability and controllability [53], [79], or minimizing the lin-

ear quadratic (LQ) regulator cost [77]. Geromel [42] successfully reformulated the LQ

cost function into a convex optimization problem by mapping the locations of controller

into zero-one vectors and expressed the solution of the classic LQ problem in terms of

a Riccati equation. Morris [75] optimized controller locations of time-invariant systems

on an infinite-time horizon in Hilbert spaces by solving an algebraic Riccati equation

and showed the convergence of optimal controller locations of a sequence of approxi-

mated finite-dimensional systems. Further, the H∞-optimal actuator location problem of

time-invariant systems on an infinite-time horizon was considered in [58]. Besides, an

algorithm [29] for the linear quadratic optimal problem of controller locations based on

the convexity shown in [42] are introduced. Bensoussan [7] studied the optimal problem

of n sensor locations with filtering on a finite-time interval for time-invariant systems.

However, in atmospheric chemistry, the better estimations of both the initial state

and emission rates are not always sustained, based on appropriate observational network

configurations. It may hamper the optimization by unbalanced weights between the ini-

tial state and emission rates, which can, in practice, even result in degraded simulations

beyond the time interval with available observations. The ability to evaluate the suitabil-

ity of an observational network to control chemical states and emission rates is a key

qualification, which needs to be addressed. At the same time, it is also important to

find the optimal locations of observation to improve the estimations of specified uncer-

tain variables. The objective of this work is therefore the development of a method for

a quantitative evaluation of the efficiency and sensitivity of observational networks and

to study the optimal problem of control and observation locations. This thesis is orga-
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nized as follows. In Chapter 2, we review the current popular data assimilation method,

four-dimensional variation method, Kalman filter and smoother and their ensemble im-

plementation. In Chapter 3 we present the current approach of the optimization of initial

values and emission rates by 4D-Var and establish the dynamic model for emission rates

with the constraint of their diurnal profiles and introduce the atmospheric transport model

extended by emission rates.

In Chapter 4 based on the Kalman smoother, a quantitative assessment method on the

efficiency of observation configurations is theoretically developed by the singular value

decomposition in order to evaluate and balance the potential improvements of initial val-

ues and emission rates associated within the entire data assimilation window. Further,

the ensemble based approach is derived to guarantee the feasibility of the approach. An

elementary example based on a 3D advection-diffusion equation is given to illustrate this

method. Here the sensitive parameters to specific observation networks can be identified

and targeted by determining the directions and strength of maximum perturbation within

a finite-time interval. Besides, we apply the singular vector analysis of observation net-

works to determine the apportionments of different emission sources.

In Chapter 5, starting with partial differential equations, we consider the optimal

problem of control locations for time-varying systems on a finite-time horizon in Hilbert

spaces. The existence of the optimal locations based on the linear-quadratic control for

both deterministic and stochastic systems on a finite-time horizon is studied. In order to

provide the feasibility to solve the optimal problems on infinite-dimensional systems in

practice, we develop the conditions to guarantee the convergence of the minimal costs

and optimal control location of a (sub)sequence of approximations in finite-dimensional

space of the original time-varying system. In Chapter 6 the optimal location of observa-

tions for improving the estimation of the state at the final time, based on the Kalman filter,

is considered as the dual problem to the LQ optimal problem of the control locations. In

addition, the existence and convergence of optimal locations of observations for improv-

ing the estimation of the initial state, based on the Kalman smoother is discussed. The

results obtained are applied to a linear advection-diffusion model extended by emission

rates.

In Chapter 7 we summarize the results and contributions developed and discussed in

this thesis and mention the outlooks of the future research on the uncertainties qualifica-

tion and optimal problem of control and observation locations.
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Chapter 2

Overview of Data Assimilation

Approaches

The temporal evolution of chemistry in the atmosphere is usually modelled by atmo-

spheric chemistry transport models. These model can be used to predict the future evo-

lution of atmospheric chemical compounds driven by initial values. Unfortunately, the

initial values always contain inaccuracies and uncertainties. In this case, a sequence of

observations can be incorporated into the model to “correct” the initial values. However,

in practice, the error-equipped observations have the insufficient spacial and temporal

density. They usually produce the ill-posed assimilation problem and fail to engender the

picture depicting the true chemical evolution of atmosphere. Data assimilation aims at

providing the most possibly accurate estimates of model states by incorporating the prior

information and observations. In this chapter, for the future convenience, we review the

most popular data assimilation approaches in current. A great amount of literature about

the approaches of data assimilation is available, we mainly refer to [37], [55], [56], [61],

[68] and [69] in this chapter.

2.1 Four-dimensional variational data assimilation

Four dimensional variational technique is an assimilation algorithm to estimate variables

by minimizing the difference between model states and observations over a given data

assimilation window [61]. The objective function of minimization is defined according

to the maximum likelihood criteria. It combines the model and observation information

to estimate the uncertain parameters and propagates the information both forward and

backward in time via the adjoint of models and discretization algorithms.

In order to describe the dynamic system, we first define transition matrices of dynamic

systems.

Definition 2.1.1. M(t, s) is called the transition matrix for any time pair (t, s) if it sat-

isfies

1. M(t, t) = I , I is the identity matrix,

2. M(t, r)M(r, s) = M(t, s), s 6 r 6 t,
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3. M(s, t) = M−1(t, s).

We now consider the discrete-time dynamic system within a discrete-time interval

[t0, · · · , tN ]
x(ti+1) = M(ti+1, ti)x(ti) + ε(ti)

with the observation system

y(ti) = H(ti)x(ti) + ν(ti),

where x(ti) ∈ R
n is the state variable at time ti, y(ti) ∈ R

m is the observation vector

at time ti, M(ti+1, ti), i ∈ [0, · · · , N − 1] is the transition matrix, ε(ti) and ν(ti) are

random variables of Gaussian distributions with zero mean and the following covariance

matrices

cov[ε(ti), ε(tj)] = Q(ti)δ(ti − tj),

cov[ν(ti), ν(tj)] = R(ti)δ(ti − tj),

where δ is the Dirac delta function. We denote ε(ti) ∼ N (0, Q(ti)) and ν ∼ N (0, R(ti)).
The prior estimate of the model state x(t) are usually assumed to be known and can

be obtained from previous analysis, denoted by xb(t). The covariance of error of prior

estimates is denoted by

P (t0) = E[(x(t0)− xb(t0))(x(t0)− xb(t0))
⊤].

In order to evaluate the inaccuracy of initial estimate, the model and observations, the

objective function is given by

J(x(t0)) =
1

2
(x(t0)− xb(t0))

⊤P−1(t0)(x(t0)− xb(t0))

+
1

2

N∑

i=0

(y(ti)−H(ti)x(ti))
⊤R−1(ti)(y(ti)−H(ti)x(ti))

+
1

2

N−1∑

i=0

(x(ti+1)−M(ti+1, ti)x(ti))
⊤Q−1(ti)(x(ti+1)−M(ti+1)x(t)). (2.1)

The minimization of (2.1) is termed as the weak constraint four-dimensional varia-

tional assimilation, see [89].

If we ignore the model error and consider the dynamic model

x(ti+1) = M(ti+1, ti)x(ti),

the corresponding cost function turns to be

J(x(t0)) =
1

2
(x(t0)− xb(t0))

⊤P−1(t0)(x(t0)− xb(t0))

+
1

2

N∑

i=0

(y(ti)−H(ti)x(ti))
⊤R−1(ti)(y(ti)−H(ti)x(ti)). (2.2)
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The minimization of (2.2) is termed as the strong constraint four-dimensional variational

assimilation [89]. In this thesis, we mainly focus on problems based on the perfect mod-

els. Thus, we abbreviate the strong constraint four-dimensional variational assimilation

by four-dimensional variational assimilation or 4D-Var.

In order to find out the minimal solution of (2.2), we calculate its gradient with respect

to x(t0) and obtain

∂J(x(t0))

∂x(t0)
= P−1(t0)(x(t0)− xb(t0))

+
N∑

i=0

H⊤(ti)M
⊤(ti, t0)R

−1(ti)(H(ti)x(ti)− y(ti)). (2.3)

The Hessian matrix of (2.2) is given by

∂2J(x(t0))

(∂x(t0))2
= P−1(t0) +

N∑

i=0

H⊤(ti)M
⊤(ti, t0)R

−1(ti)H(ti)M
⊤(ti, t0). (2.4)

It is clear that the Hessian matrix (2.4) is always positive-definite. It indicates that if there

exists x̂(t0) such that

∂J(x(t0))

∂x(t0)
= 0,

x̂(t0) is the minimum of (2.2).

The gradient (2.3) can be calculated firstly by propagating the model forward within

the time interval [t0, · · · , tN ] and then by the backward integration to the initial time via

the adjoint model. It gives an access to obtain an numerically accurate minimal solution

of the cost function.

2.2 Kalman filter and smoother in finite-dimensional spaces

Combining the information from the evolution of models with a sequence of observations

associated with models, the Kalman filter and smoother, refer to [55],[56], [68] and [69],

are recursive estimators to provide the best linear unbiased estimates (BLUE) of the un-

known variables of models and the statistical description of the uncertainties based on the

sequence of observations over time with inaccuracies. Here x̂, the best linear unbiased

estimate of a variable x, is of properties that

E(x̂) = E(x)

and cov(x − x̂) is minimized by the certain norm. In fact, since 1960’s, the Kalman

filter and smoother have been widely applied in many fields including in meteorology,

to produce optimal linear estimations of states and parameters. In the following, we

summarize the main expressions of the Kalman filter and smoother for both continuous-

time and discrete-time systems.
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2.2.1 KF and KS for continuous-time systems

In this section we consider the continuous-time system within the time interval [t0, tN ],

x(t) = M(t, t0)x(t0) + ε(t), t0 6 t 6 tN

y(t) = H(t)x(t) + ν(t),

where x(t) ∈ R
n is the state variable at time t, y(t) ∈ R

m is observation vector at time

t, M(t, t0) is the transition matrix, ε(t), ε(s), ν(t) and ν(s), t 6= s are independent and

ε(t) ∼ N (0, Q(t)) and ν(t) ∼ N (0, R(t)).

In the context of the continuous-time Kalman filter and smoother, we denote the esti-

mation of x(t) based on Y c
τ = {y(to), to ∈ [t0, τ ]} by x̂(t|τ), In addition, it can be found

in several references, for example, [16], [39] and [68], that for any time t, τ , the BLUEs

of x(t) based on Yτ can be generally written as the conditional expectation of x(t) based

on Y c
τ , which is denoted by

x̂(t|τ) = E[x(t)|Y c
τ ].

For the continuous-time system above, the Kalman filter, also called the Kalman-

Bucy filter was introduced by [56]. It aims at finding out the BLUE of x(t) based on

Y c
t = {y(to), to ∈ [t0, t]}, the observations until time t.

Concerning with the Kalman-Bucy filter, we term x̂(t|t) as the analysis estimate of

the state x(t) and x(t|τ), τ 6 t as the forecast estimate of the state. Correspondingly,

P (t|t) and P (t|τ) are the analysis and forecast covariance matrices of x̂(t|t) and x̂(t|τ)
respectively. According to [56], we summarize the main results of Kalman-Bucy filters

in the integral form as follows:

(1) Analysis step:

K(t) = P (t|t)H⊤(t)R−1(t),

x̂(t|t) = x̂(t|τ) +
∫ t

τ
M(t, s)K(s)(y(s)−H(s)x̂(s|s))ds,

P (t|t) = M(t, t0)P (t0|t−1)M
⊤(t, t0) (2.5)

+

∫ t

t0

M(t, s)[Q(s) − P (s|s)H⊤(s)R−1(s)H(s)P (s|s)]M⊤(t, s)ds.

(2) Forecasting step:

x̂(t|τ) = M(t, τ)x̂(τ |τ),
P (t|τ) = M(t, τ)P (τ |τ)M⊤(t, τ) +Q(t).

Differing from the filtering problem, the objective of the smoothing problem is to

obtain the BLUE of x(t) based on Y c
τ = {y(to), to ∈ [t0, τ ], τ > t}. It contains more

observation information such that the estimation of states can be further improved. Vari-

ous kinds of smoothers are exploited to solve the realistic problems, where three classes

of smoothers have been widely used.
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1. Fixed-interval smoother: With a fixed continuous-time interval [t0, tN ], it utilizes

the observations within the entire time interval to provide the BLUE of x(t), de-

noted by E[x(t)|Y c
tN
], t ∈ [t0, tN ]. There are several algorithms developed for

the fixed-interval smoother. For example, Mayne [70] derived the fixed-interval

smoother by combining the BLUE of the state by the Kalman filter with the optimal

estimates from the future observations. Rauch, Tung and Striebel (RTS) smoother

[83] is developed by combining the backward filter with the smoothing step into

one recursive process. In this thesis we consider the data assimilation window

as the fixed time interval and develop the approaches and theorems based on the

fixed-interval smoother.

2. Fixed-point smoother: It is usually applied to estimate the state at a specific time t̃
by the observations within a certain time interval [t0, tN ]. The estimator can be also

represented by E[x(t̃)|Y c
tN ]. Compared with the fixed-interval smoother, if t = t̃,

the estimates of both smoothers are equivalent to each other.

3. Fixed-lag smoother: This smoother is designed to seek the BLUE of the state at

time t through the observations from the initial time to the time t+ T . Here T is a

constant. Generally, the estimator of x(t) of the fixed-lag smoother can be denoted

by E[x(t)|Y c
t+T ].

2.2.2 KF and KS for discrete-time systems

In this section we consider the discrete-time system:

x(tk+1) = M(tk+1, tk)x(tk) + ε(tk),

y(tk) = H(tk)x(tk) + ν(tk),
(2.6)

where x(·) ∈ R
n is the state variable, y(tk) ∈ R

m(tk) is the observation vector, the model

error ε(tk) and the observation error ν(tk), k = 1, · · · , N follow Gaussian distributions

with zero mean and the covariance matrices Q(tk) and R(tk) respectively.

For the discrete-time Kalman filter, we term x(tk|tk) as the analysis estimate and

x(tk|tk−1) as the forecasting estimate. Besides, P (tk|tk) and P (tk|tk−1) are the corre-

sponding analysis and forecasting covariance matrices. For the future convenience, the

main results of the discrete-time Kalman filter are summarized as follows [55]:

(1) Analysis step:

K(tk) = P (tk|tk−1)H
⊤(tk)(H(tk)P (tk|tk−1)H

⊤(tk) +R(tk))
−1;

x̂(tk|tk) = x̂(tk|tk−1) +K(tk)(y(tk)−H(tk)x̂(tk|tk−1));

P (tk|tk) = (I −K(tk)H(tk))P (tk|tk−1); (2.7)

(2) Forecasting step:

x̂(tk+1|tk) = M(tk+1, tk)x̂(tk|tk);
P (tk+1|tk) = M(tk+1, tk)P (tk|tk)M⊤(tk+1, tk) +Q(tk). (2.8)
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Defining Yτ = {y(to), to ∈ [t0, · · · , τ ]} for all time τ , similar with the continuous-time

case, the widely used discrete-time smoothers are generally summarized as follows:

1. Fixed-interval smoother: With a fixed discrete-time interval [t0, t1, · · · , tN ], the

BLUE of x(ti) from the fixed-interval smoother is given by E[x(ti)|YtN ], ti ∈
[t0, · · · , tN ].

2. Fixed-point smoother: The optimal estimate of the state at a specific time t̃ using

the observations within a certain discrete-time interval [t0, · · · , tN ] is represented

by E[x(t̃)|YtN ].

3. Fixed-lag smoother: Assuming T is a positive integral, the estimator of x(ti) of the

fixed-lag smoother can be denoted by E[x(ti)|Yti+T
].

It is clear that as the 4D-Var approach, the Kalman filter and smoother calculate the

best linear unbiased estimate of the state vector by a series of observations over time. In

addition, the Kalman filter and smoother update the variance of the BLUE of the state

vector, which gives us an access to evaluate the error between the estimate and the true

value of the state.

2.2.3 Ensemble Kalman filter and smoother

In practice, the standard Kalman filter and smoother cannot be directly applied to trans-

port models due to their computational complexity. The ensemble Kalman filter (EnKF)

and smoother (EnKS), as the Monte Carlo implementations originating from the Kalman

filter and smoother, are designed for problems with a large number of control variables.

EnKF and EnKS have been important tools in the field of data assimilation [37]. In this

section we briefly introduce EnKF and EnKS according to [37].

For the discrete-time system (2.6) with ε(ti) = 0, we denote the ensemble samples

of x̂(ti|ti−1) and x̂(ti|ti) , i = 1, · · · , N respectively by

X(ti|ti−1) = (x̂1(ti|ti−1), x̂2(ti|ti−1), · · · , x̂q(ti|ti−1)),

X(ti|ti) = (x̂1(ti|ti), x̂2(ti|ti), · · · , x̂q(ti|ti)),
(2.9)

where q is the number of ensemble members.

Correspondingly, their ensemble means are

x̄(ti|ti−1) =
1

q

q∑

k=1

x̂k(ti|ti−1) =
1

q
X(ti|ti−1)1q×1,

x̄(ti|ti) =
1

q

q∑

k=1

x̂k(ti|ti) =
1

q
X(ti|ti)1q×1,

where 1i×j is a i× j matrix of which each element is equal to 1.
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Note the ensemble perturbation matrix consists of the perturbation of each sampling

by

X̃(ti|ti−1) = X(ti|ti−1)−
1

q
X(ti|ti−1)1q×q,

X̃(ti|ti) = X(ti|ti)−
1

q
X(ti|ti)1q×q.

Thus, the ensemble covariance matrices are given by

P̄ (ti|ti−1) =
1

q − 1
X̃(ti|ti−1)X̃

⊤(ti|ti−1),

P̄ (ti|ti) =
1

q − 1
X̃(ti|ti)X̃⊤(ti|ti).

(2.10)

In addition, we define the ensemble observations as

ŷk(ti) = y(ti) + νk(ti), k = 1, · · · , q, i = 1, · · · , N

where

ν̄(ti) =
1

q

q∑

k=1

νk(ti) = 0, R̄(ti) =
1

q − 1

q∑

k=1

νk(ti)ν
⊤
k (ti).

Further, we denote Yen(ti) = (ŷ1(ti), · · · , ŷq(ti)) and

R̄−1 =




R̄−1(t0)
R̄−1(t1)

. . .

R̄−1(tN )


 .

We denoting the ensemble Kalman gain matrix by

K̄(ti) = P̄ (ti|ti−1)H
⊤(ti)(H(ti)P̄ (ti|ti−1)H

⊤(ti) + R̄(ti))
−1. (2.11)

It is worth noting that the inverse of the matrix in (2.11) is not always guaranteed. How-

ever, we can use the pseudo inverse of matrix to replace it.

Then, the analysis scheme of the ensemble Kalman filter has the consistent form with

the standard Kalman filter as

x̂k(ti|ti) = x̂k(ti|ti−1)− K̄(ti)(ŷk(ti)−H(ti)x̂k(ti|ti−1)), k = 1, · · · , q.

It allows that

x̄k(ti|ti) = x̄k(ti|ti−1)− K̄(ti)(ȳk(ti)−H(ti)x̄k(ti|ti−1)), k = 1, · · · , q.

The ensemble analysis covariance is given by

P̄ (ti|ti) = (I − K̄(ti)H(ti))P̄ (ti|ti−1).
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The ensemble state evolves according to the model as

x̂(ti+1|ti) = M(ti+1, ti)x̂(ti|ti)

with the ensemble covariance matrix

P̄ (ti+1|ti) = M(ti+1, ti)P̄ (ti|ti)M⊤(ti+1, ti).

The ensemble Kalman smoother can be considered as the extension of the ensemble

Kalman filter with the information propagating backward in time. We define

Ỹf (ti) = H(ti)X̃(ti|ti−1), Sy(ti|ti−1) = Ỹf (ti)Ỹ
⊤
f (ti) + (q − 1)R̄−1(ti)

and

Fen(ti) = I + Ỹ ⊤
f (ti)S

−1
y (ti|ti−1)(Yen(ti)−H(ti)X(ti|ti−1)),

According to [37], for a fixed time interval [t0, · · · , tN ], the optimal estimate from en-

semble Kalman smoother using the ensemble Kalman filter as a prior is given by

X(ti|tN ) = X(ti|ti)Πm
j=i+1Fen(ti). (2.12)



Chapter 3

Approaches to Optimizing Initial

Values and Emission Rates

The evolution of chemical compounds in the troposphere is described by several phys-

ical processes and jointly effected by various chemical parameters. However, most of

chemical parameters are not known precisely and hardly to be observed. In predictive

geophysical model systems, uncertain initial values and emission rates jointly influence

the temporal evolution of the system and play the equally important roles in improving

the predictive skill.

In this chapter we firstly describe the original atmospheric transport model with emis-

sion rates and briefly review the current approach to optimize initial values and emission

rates by 4D-Var [36]. Then we establish the dynamic model for emission rates in a novel

way and extend the atmospheric transport with emission rates by reconstructing the state

vector such that the original states and emission rates are included dynamically. Finally

based on the novel atmospheric transport model extended with emission rates, we show

how the initial-value-only and emission-rate-only optimization work and prove the joint

optimization of initial values and emission rates can provide same or better estimates of

initial values and emission rates than the initial-value-only optimization and the emission-

rate-only optimization.

3.1 Current approach to optimizing initial values and emission

rates by 4D-Var

We usually describe the chemical tendency in the atmosphere, propagating forward in

time by the atmospheric transport model

dc

dt
= A(c) + e(t), (3.1)

where A is a nonlinear model operator, c(t) and e(t) are the state vector of chemical

constituents and emission rates at time t, respectively.

The prior estimate of the state vector of concentrations c(t) is given and denoted by

cb(t), termed as the background state. The prior estimate of emission rates, usually taken
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from emission inventories, is denoted by eb(t). The incremental forms of the state vector

and emission rates are given by

δc(t) = c(t)− cb(t), δe(t) = e(t)− eb(t). (3.2)

Let A be the tangent linear operator of A. The evolution of the perturbations of c(t)
and e(t) follows the tangent linear model with A as

dδc

dt
= Aδc+ δe(t). (3.3)

With the discretization of the tangent linear model in space, we denote the finite-

dimensional approximation of A by An and then obtain the transition matrix or resolvent

generated by An, denoted by Mc(·, ·), n is the dimension of the partial phase space of

concentration. In order to simplify the notation and without loss of generality, we still

denote the discretized state vector and emission rates as δc(t), δe(t) and assume they have

the same dimension, namely δc(t) ∈ R
n, δe(t) ∈ R

n. Obviously, Mc(·, ·) ∈ R
n×n. It is

straightforward to obtain the linear solution of (3.3) discretized in space and continuous

in time as

δc(t) = Mc(t, t0)δc(t0) +

∫ t

t0

Mc(t, s)δe(s)ds. (3.4)

In addition, let y(t) be the observation vector of c(t) and define

δy(t) = y(t)−H(t)(cb(t)), (3.5)

where H(t) is a nonlinear forward observation operator mapping the model space to the

observation space. We linearize and discretize the nonlinear operator H as H and then

obtain the observation system

δy(t) = H(t)δc(t) + ν(t), (3.6)

where δy(t) ∈ R
m(t), m(t) the dimension of the phase space of observation configura-

tions at time t. ν(t) is the observation error at time t following the Gaussian distribution

which has zero mean and covariance matrix R(t) ∈ R
m(t)×m(t).

In this chapter we work on the linear model (3.4) with the observation system (3.6).

As the initial value of the state vector and emission rates play the equally important

roles in improving the accuracy of estimations [36], the 4D-Var approach introduced in

Section 2.1 is only feasible to the initial-value-only optimization rather than the optimiza-

tion of both the initial state and emission rates. Elbern et al. [36] regulated the emission

rate by preserving their diurnal profiles such that the total amounts of emitted species can

be controlled by a emission factor f such that e(t) = feb(t). Here f is time invariant

and location dependent. Then the joint optimization is presented as follows. Firstly, the

constant emission factor is transformed by the logarithm as

δu = lne(t)− lneb(t) = lnf.
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We denote the variance of δu by P u and combine the initial value and the emission rate

into one vector, denoted by

δz = (δc⊤(t0), δu
⊤)⊤.

Denoting the covariance of δc(t0) by P c(t0), we assume that δc(t0) and δu are uncorre-

lated since, on one hand, it is already rather numerically costly to deal with P c(t0) itself.

On the other hand, the correlation between δc(t0) and δu varies in different scenarios and

is hard to be formulated uniformly. Then the objective function of 4D-Var is defined as

J(δz) =
1

2
(δc⊤(t0), δu

⊤)

(
P c(t0) 0

0 P u

)−1(
δc(t0)
δu

)

+
1

2

N∑

i=0

(y(ti)−H(ti)x(ti))
⊤R−1(ti)(y(ti)−H(ti)x(ti)).

(3.7)

In order to search for the minimal solution of (3.7), we calculate its equilibrium by its

gradient with respect to δz

∂J(δz)

∂δz
=(P c(t0))

−1δc(t0) + (P u)−1δu

+
N∑

i=0

H⊤(ti)M
⊤
c (ti, t0)R

−1(ti)(H(ti)δc(ti)− y(ti)).

Due to the uncorrelated assumption of δc(t0) and δu, if we only consider optimizing

the emission rates, by assuming δc(t0) = 0, the objective function (3.7) can be simply

rewritten as

J(δu) =
1

2
δu⊤(P u)−1δu

+
1

2

N∑

i=0

(y(ti)−H(ti)x(ti))
⊤R−1(ti)(y(ti)−H(ti)x(ti)).

3.2 Novel approach to optimizing initial values and emission

rates by KS

The 4D-Var approach summarized in the last section gives us an access to improve the

estimations of the initial value and emission factors. However, we hardly gain the statistic

information of the accuracy of the estimates by 4D-Var. Especially for emission rates, in

the previous method, we assume δu follows the Gaussian distribution or to say f is log-

normal distributed, rather than giving the Gaussian assumption directly on the perturbed

emission rates themselves.

Reviewing the main formulas of the discrete-time Kalman filter and smoother in

Section 2.2.2, we can easily find that it is only feasible to apply the Kalman filter and

smoother into the linear model (3.4) with observations (3.6) within a given time interval

to optimize the initial value of the concentration. As to the emission-rate optimization or
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the joint optimization of initial value and emission rates, the Kalman filter and smoother

is not feasible to the current model.

Hence, in this section we extend the atmospheric transport model with emission rates

in a novel way such that the Kalman filter and smoother can be directly applied into the

new model to optimize both the initial value and emission rates. At the same time we are

able to obtain the analysis covariance to evaluate the improvements of estimations, which

is a foundation of the work in the next chapters.

3.2.1 Atmospheric transport model extended by emission rates

Generally we still use the model (3.4) to formulate the evolution of chemical compounds

in atmosphere. As mentioned before, it has been shown in [36] that the diurnal profiles of

emission rates are better known than the amplitude of emission rates. Thus, the diurnal

profiles of emission rates can be taken as constraints such that the amplitudes of emis-

sion rates become the optimized parameters. Thus we firstly formulate the background

evolution of emission rates from time s to t into the dynamic form within a given data

assimilation window [t0, tN ]

eb(t) = Me(t, s)eb(s), t0 6 s 6 t 6 tN , (3.8)

where eb(·) is a n-dimensional vector of which the ith element is denoted by eib(·) and

Me(t, s) is the diagonal matrix defined as

Me(t, s) =




e1
b
(t)

e1
b
(s)

e2
b
(t)

e2
b
(s)

. . .
en
b
(t)

en
b
(s)




,

where
eib(t)

eib(s)
∈ R, i = 1, · · · , n.

We establish the dynamic model of emission rates by forcing emission rates to follow

the background evolution of emission rates as

δe(t) = Me(t, s)δe(s), t0 6 s 6 t 6 tN . (3.9)

We have stated in Section 2.2 that the estimate of the variable x via the fix-interval

Kalman smoother can be generally expressed as the conditional expectation based on

the observations in the whole time interval, denoted by E[x|{y(to), to ∈ [t0, tN ]}]. With

the dynamic model (3.9), the estimate of e(t) by Kalman smoother on [t0, tN ] follows the

linear property of the conditional expectation,

E[e(t)|{y(to), to ∈ [t0, tN ]}] = E[Me(t, s)e(s)|{y(to), to ∈ [t0, tN ]}]
=Me(t, s)E[e(s)|{y(to), to ∈ [t0, tN ]}]. (3.10)
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It implies that the BLUEs of emission rates with the dynamic model (3.9) by Kalman

smoother preserve the proportioned diurnal profiles of their backgrounds.

We rewrite (3.4) as

δc(t) = Mc(t, t0)δc(t0) +

∫ t

t0

Mc(t, s)Me(s, t0)δe(t0)ds. (3.11)

Combining (3.4) with (3.9), we obtain the transport model extended with emission rates

(
δc(t)
δe(t)

)
=

(
Mc(t, t0)

∫ t
t0
Mc(t, s)Me(s, t0)ds

0 Me(t, t0)

)(
δc(t0)
δe(t0)

)
. (3.12)

Typically, there is no direct observation for emissions, apart from the flux tower ob-

servations used for carbon dioxide, which are not considered here. Therefore, we refor-

mulate the observation mapping as

δy(t) = (H(t), 0n×n)

(
δc(t)
δe(t)

)
+ ν(t), (3.13)

where 0n×n is a n× n matrix with zero elements.

Now we see that both concentrations and emission rates are included into the state

vector of the homogeneous dynamic model (3.12). It allows us to apply the Kalman

smoother within a fixed time interval [t0, tN ] to optimize both parameters.

3.2.2 Joint optimization of initial values and emission rates

In order to study how the Kalman filter and smoother work on the atmospheric transport

model extended by emission rates in details and practice, in this section we consider

the discrete-time model extended by emission rate. Firstly, we rewrite the model (3.1)

discretized in time as

δc(tk+1) = Mc(tk+1, ck)δc(tk) +B(tk)δe(tk),

then we can formulate the extended model (3.12) discretized in time as

(
δc(tk+1)
δe(tk+1)

)
=

(
Mc(tk+1, tk) B(tk)

0 Me(tk+1, tk)

)(
δc(tk)
δe(tk)

)
. (3.14)

Correspondingly, we discretize the observations system (3.13) as

δy(tk) = (H(tk), 0)

(
δc(tk)
δe(tk)

)
+ ν(tk), νk ∼ N (0, Rk).

In the following, we formulate the transition matrix of (3.14) as

M(tk+1, tk) =

(
Mc(tk+1, tk) B(tk)

0 Me(tk+1, tk)

)
.
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and the initial state of the model (3.14) by

(
δĉ(t0|t−1)
δê(t0|t−1)

)
.

The initial covariance is given by

P (t0|t−1) =

(
P c(t0|t−1) 0

0 P e(t0|t−1)

)
.

For the extended model (3.14), the analysis and forecasting covariance matrices have the

following block forms

P (tk|tk) =
(

P c(tk|tk) P ce(tk|tk)
P ec(tk|tk) P e(tk|tk)

)
,

P (tk|tk−1) =

(
P c(tk|tk−1) P ce(tk|tk−1)
P ec(tk|tk−1) P e(tk|tk−1)

)
,

where P c(tk|·) and P e(tk|·) are the covariance matrices of δĉ(tk|·) and δê(tk|·). P ce(tk|·)
is the covariance matrix between δĉ(tk|·) and δê(tk|·). Besides, P ce(tk|·) = (P ec(tk|·))⊤.

According to Section 2.2, we summarize the main steps of Kalman filter and smoother as

follows.

Analysis step of KF for the joint optimization:

1. Gain matrix:

K(tk) =

(
Kc(tk)
Ke(tk)

)

= P (tk|tk−1)

(
H⊤(tk)

0

)
[(H(tk), 0)P (tk|tk−1)

(
H⊤(tk)

0

)
+R(tk)]

−1

=

(
P c(tk|tk−1)H

⊤(tk)[H(tk)P
c(tk|tk−1)H

⊤(tk) +R(tk)]
−1

P ec(tk|tk−1)H
⊤(tk)[H(tk)P

c(tk|tk−1)H
⊤(tk) +R(tk)]

−1

)
.

2. Estimate of the extended state vector:
(

δĉ(tk|tk)
δê(tk|tk)

)
=

(
δĉ(tk|tk−1) +Kc(tk)(y(tk)−H(tk)δĉ(tk|tk−1))
δê(tk|tk−1) +Ke(tk)(y(tk)−H(tk)δĉ(tk|tk−1))

)
.

3. Analysis covariance matrix:

P (tk|tk) =
[(

I 0
0 I

)
−
(

Kc(tk)
Ke(tk)

)
(H(tk), 0)

]
P (tk|tk−1). (3.15)

Forecasting step of KF for the joint optimization:

1. Estimate of the extended state vector:
(

δĉ(tk+1|tk)
δê(tk+1|tk)

)
=M(tk+1, tk)

(
δĉ(tk|tk)
δê(tk|tk)

)

=

(
Mc(tk+1, tk)δĉ(tk|tk) +B(tk)δê(tk|tk)

Me(tk+1, tk)δê(tk|tk)

)
.
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2. Forecasting covariance matrix:

P (tk+1|tk) = M(tk+1, tk)P (tk|tk)M⊤(tk+1, tk).

Estimate results by KS:

1. Estimate of the extended state vector at the initial time:

(
δĉ(t0|tN )
δê(t0|tN )

)
= M−1(tN , t0)

(
δĉ(tN |tN )
δê(tN |tN )

)
.

2. Covariance matrix of the initial extended state:

P (t0|tN ) = M−1(tN , t0)P (tN |tN )M−⊤(tN , t0),

where M(tN , t0) = ΠN−1
i=0 M(ti+1, ti).

3.2.3 Initial-value-only optimization

In this section we consider the initial value as the only parameter to be optimized. In

another word, emission rates are viewed as the input of the model. This indicates we only

need to apply Kalman filter and smoother into the original transport model (3.14) with

δe(tk) = 0. In order to distinguish the notations with the joint optimization, we denote

the state of (3.14) by cI(tk) in the case of initial-value-only optimization. For the given

initial priori estimate ĉI(t0|t−1), we have

δcI(tk+1) = Mc(tk+1, tk)δcI(tk), (3.16)

where δcI(tk) = cI(tk)− cb(tk). Correspondingly, the observation system can be rewrit-

ten as

δy(tk) = H(tk)δcI(tk) + ν(tk). (3.17)

The analysis and forecasting covariance matrices of concentrations of the initial-value-

only optimization are denoted by

P c
I (tk|tk) = E[(δĉI(tk|tk)− δcI(tk))(δĉI(tk|tk−1)− δcI(tk))

⊤],

P c
I
(tk|tk−1) = E[(δĉI(tk|tk−1)− δcI(tk))(δĉI(tk|tk−1)− δcI(tk))

⊤],
(3.18)

where δĉI(tk|tk) = cI(tk)− ĉI(tk|tk) and δĉI(tk|tk−1) = cI(tk)− ĉI(tk|tk−1).
We summarize the main steps of the Kalman filter and smoother for initial-value-only

optimization as

Analysis step of KF of only initial value optimization:

1. Gain matrix:

Kc
I
(tk) = P c

I
(tk|tk−1)H

⊤(tk)[H(tk)P
c
I
(tk|tk−1)H

⊤(tk) +R(tk)]
−1.

2. Estimate of the initial value:

δĉI(tk|tk) = δĉI(tk|tk−1) +Kc
I (tk)(δy(tk)−H(tk)δĉI(tk|tk−1)).
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3. Analysis covariance of the concentrations:

P c
I (tk|tk) = (I −Kc

I (tk)H(tk))P
c
I (tk|tk−1).

Forecasting step of KF of only initial value optimization:

1. Forecasting estimate of the concentration

δĉI(tk+1|tk) = Mc(tk+1, tk)δĉI(tk|tk).

2. Forecasting covariance of the concentrations:

P c
I (tk+1|tk) = Mc(tk+1, tk)P

c
I (tk|tk)M⊤

c (tk+1, tk).

Estimation results of KS for initial-value-only optimization:

1. Estimate of the initial state:

δĉI(t0|t−1) = M−1
c (tN , t0)δĉI(tN |tN ).

2. Covariance matrix of the initial estimate:

P c
I
(t0|tN ) = M−1

c (tN , t0)PI(tN |tN )M−⊤
c (tN , t0).

Preserving the diurnal profiles of emission rates, one of our objectives in this chapter

is to study how the extended model influences on the joint optimization and compare it

with the optimization of the initial state or emission rates. Hence, in order to formulate the

block form of the initial-value-only optimization extended by emission rates, we notate

eI(tk) as the state vector of emission rates at tk and δeI(tk+1) = eI(tk) − eb(tk). We

rewrite (3.16), (3.17) and the corresponding results from Kalman filter and smoother into

the following block form:

(
δcI(tk+1)
δeI(tk+1)

)
=

(
Mc(tk+1, tk) B(tk)

0 Me(tk+1, tk)

)(
δcI(tk)
δeI(tk)

)
, (3.19)

δy(tk) = (H(tk), 0)

(
δcI(tk)
δeI(tk)

)
+ ν(tk), ν(tk) ∼ N (0, R(tk)). (3.20)

The initial priori estimate of the extended state and its covariance are respectively given

by (
δĉI(t0|t−1)

0

)
and PI(t0|t−1) =

(
P c

I
(t0|t−1) 0
0 0

)
. (3.21)

With the initial condition (3.21), we denote the analysis and forecasting estimates of the

emission rate based on the model (3.19) with the observation system (3.20) by δêI(tk|tk)
and δêI(tk|tk−1). Correspondingly, the analysis and forecasting covariance matrices of

(δc⊤
I
(tk), δe

⊤
I
(tk))

⊤ are denoted by

PI(tk|tk) =
(

P c
I (tk|tk) P ce

I (tk|tk)
P ec

I (tk|tk) P e
I (tk|tk)

)
,

PI(tk|tk−1) =

(
P c

I (tk|tk−1) P ce
I (tk|tk−1)

P ec
I (tk|tk−1) P e

I (tk|tk−1)

)
.
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We rewrite the main results of Kalman filter and smoother for the initial-value-only opti-

mization in the following block form.

Equivalent analysis step of KF:

1. Gain Matrix:

KI(tk) =

(
Kc

I (tk)
Ke

I (tk)

)

=

(
P c

I (tk|tk−1)H
⊤(tk)[H(tk)P

c
I (tk|tk−1)H

⊤(tk) +R(tk)]
−1

0

)
.

2. Estimate of the state:

(
δĉI(tk|tk)
δêI(tk|tk)

)
=

(
δĉI(tk|tk−1) +Kc

I (tk)(δy(tk)−H(tk)δĉI(tk|tk−1))
0

)
.

3. Analysis covariance matrix:

PI(tk|tk) =
(

P c
I
(tk|tk) 0
0 0

)

=

[(
I 0
0 I

)
−
(

Kc
I
(tk)
0

)
(H(tk), 0)

](
P c

I
(tk|tk−1) 0

0 0

)

=

(
(I −Kc

I
(tk)H(tk))P

c
I
(tk|tk−1) 0

0 0

)
. (3.22)

Equivalent forecasting step of KF:

1. Forecasting estimate of the state:

(
δĉI(tk+1|tk)
δêI(tk+1|tk)

)
=

(
Mc(tk+1, tk)δĉI(tk|tk)

0

)
.

2. Forecasting covariance matrix:

PI(tk+1|tk) =
(

Mc(tk+1, tk)P
c
I
(tk|tk)M⊤

c (tk+1, tk) 0
0 0

)
.

Equivalent estimation results of KS:

1. Estimate of the initial state:

(
δĉI(t0|tN )
δêI(t0|tN )

)
=

(
Mc(tN , t0)

−1δĉI(tN |tN )
0

)
.

2. Covariance matrix of the initial estimate:

PI(t0|tN ) =

(
M−1

c (tN , t0)P
c
I (tN |tN )M−⊤

c (tN , t0) 0
0 0

)
.
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3.2.4 Emission-rate-only optimization

In this section we consider the emission rates as the only parameters to be optimized

and state the main results of Kalman filter and smoother for this emission-rate-only opti-

mization. Similar to the initial-value-only optimization case, we denote the concentration

and emission rate at tk of the emission-rate-only optimization case by cE(tk), eE(tk) and

define δcE(tk) = cE(tk) − cb(tk), δeE(tk) = eE(tk) − eb(tk). Then we consider the

following model

(
δcE(tk+1)
δeE(tk+1)

)
=

(
Mc(tk+1, tk) B(tk)

0 Me(tk+1, tk)

)(
δcE(tk)
δeE(tk)

)
, (3.23)

δy(tk) = (H(tk), 0)

(
δcE(tk)
δeE(tk)

)
+ ν(tk), ν(tk) ∼ N (0, R(tk)) (3.24)

with the initial prior estimate and covariance matrix

(
0

δêE(t0|t−1)

)
and PE(t0|t−1) =

(
0 0
0 P e

E(t0|t−1)

)
.

Further, we denote the analysis and forecasting estimates of concentrations and emis-

sion rates by δĉE(tk|tk), δĉE(tk|tk−1) and δêE(tk|tk), δêE(tk|tk−1). Similarly we as-

sume the analysis and forecasting covariance matrices of (δc⊤E (tk), δe
⊤
E (tk))

⊤ to be

PE(tk|tk) =
(

P c
E(tk|tk) P ce

E (tk|tk)
P ec

E (tk|tk) P e
E(tk|tk)

)
,

PE(tk|tk−1) =

(
P c

E(tk|tk−1) P ce
E (tk|tk−1)

P ec
E (tk|tk−1) P e

E(tk|tk−1)

)
.

Now we summarize the main steps of Kalman filter and smoother for the emission-rate-

only optimization as follows.

Analysis step of KF:

1. Gain matrix:

KE(tk) =

(
Kc

E(tk)
Ke

E(tk)

)

=

(
P c

E(tk|tk−1)H
⊤(tk)[H(tk)P

c
E(tk|tk−1)H

⊤(tk) +R(tk)]
−1

P ec
E (tk|tk−1)H

⊤(tk)[H(tk)P
c
E(tk|tk−1)H

⊤(tk) +R(tk)]
−1

)
.

2. Estimate of the state:
(

δĉE(tk|tk)
δêE(tk|tk)

)
=

(
δĉE(tk|tk−1) +Kc

E(tk)(y(tk)−H(tk)δĉ(tk|tk−1))
δêE(tk|tk−1) +Ke

E
(tk)(y(tk)−H(tk)δĉ(tk|tk−1))

)
.

3. Analysis covariance matrix:

PE(tk|tk)

=

[(
I 0
0 I

)
−
(

Kc
E(tk)

Ke
E(tk)

)
(H(tk), 0)

](
P c

E(tk|tk−1) P ce
E (tk|tk−1)

P ec
E (tk|tk−1) P e

E(tk|tk−1)

)
.
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Forecasting step by KF:

1. Forecasting estimates of states:

(
δĉE(tk+1|tk)
δêE(tk+1|tk)

)
= M(tN , t0)

(
δĉE(tk|tk)
δêE(tk|tk)

)

=

(
Mc(tk+1, tk)δĉE(tk|tk) +B(tk)δêE(tk|tk)

Me(tk+1, tk)δêE(tk|tk)

)
.

2. Forecasting covariance matrix:

PE(tk+1|tk) = M(tN , t0)PE(tk|tk)M⊤(tN , t0).

General solution of KS at initial time:

1. Estimate of the initial state:
(

δĉE(t0|tN )
δêE(t0|tN )

)
= M−1(tN , t0)

(
δĉE(tN |tN )
δêE(tN |tN )

)
.

2. Covariance matrix of the initial estimate:

PE(t0|tN ) = M−1(tN , t0)PE(tN |tN )M−⊤(tN , t0).

3.2.5 Comparison

In this section we compare the estimation results of the joint optimization with the estima-

tion results of the initial-value-only optimization and the emission-rate-only optimization

respectively. Taking the diurnal profiles of emission rates as constraints, it will be shown

that the estimates of the joint optimization based on our atmospheric transport model

extended with emissions are better or at least as good as the estimates of the initial-value-

only optimization and the emission-rate-only optimization in various situations.

Joint optimization versus only initial value optimization

In Section 3.2.3, we assume δeI(t) = 0 by ignoring the error of the background of emis-

sion rates. However, it is impossible that emission rates are perfectly known in practice.

There are more or less some inaccuracies of the background knowledge of emission rates.

This implies δe(t) 6= 0. Taking the diurnal profiles of emissions as constraints and the er-

ror of emission rates into account, there is a difference between δeI(tk) and δe(tk) given

by −δe(tk). Thus, the true analysis and forecasting covariances for the initial-value-only

optimization based on the model (3.19) can be uniformly represented as:

PTI(tk|·) =
(

P c
TI(tk|·) P ce

TI(tk|·)
P ec

TI
(tk|·) P e

TI
(tk|·)

)

=E

[(
δĉI(tk|·)− δc(tk)

−δe(tk)

)
((δĉI(tk|·)− δc(tk))

⊤,−δe⊤(tk))

]
,

where the dot “·” could be any time step ti, i = 0, · · ·N .
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In particular, we denote the true initial prior covariance as

PTI(t0|t−1) =

(
P c

TI
(t0|t−1) 0
0 P e

TI
(t0|t−1)

)
.

Since PTI(t0|t−1) is also the first guess from the previous knowledge, we can always

assume that

PTI(t0|t−1) = P (t0|t−1). (3.25)

Defining the covariance of the difference of the model (3.14) and (3.19) by

DI(tk) :=

(
Dc

I (tk) Dce
I (tk)

Dec
I (tk) De

I (tk)

)

=E

[(
δcI(tk)− δc(tk)

−δe(tk)

)
(δcI(tk)− δc(tk))

⊤,−δe⊤(tk))

]
,

we have

PTI(tk|·)

=E

[(
(δĉI(tk|·)− δcI(tk)) + (δcI(tk)− δc(tk))

−δe(tk)

)

·
(

(δĉI(tk|·)− δcI(tk)) + (δcI(tk)− δc(tk))
−δe(tk)

)⊤
]

=E

[(
(δĉI(tk|·)− δcI(tk))

0

)
((δĉI(tk|·)− δcI(tk))

⊤, 0⊤)

]

+ E

[(
δcI(tk)− δc(tk)

−δe(tk)

)
(δcI(tk)− δc(tk))

⊤,−δe⊤(tk))

]

=PI(tk|·) +DI(tk).

Before we compare the estimations of the joint optimization with the estimations of

the initial-value-only optimization, we introduce a notation and a lemma.

We assume that P1, P2 ∈ R
n×n are two (semi-) positive definite matrices. If for any

x 6= 0n×1 ∈ R
n, x⊤(P1 − P2)x < (6)0 holds, then we denote P1 ≺ (4)P2. Now we

have the following lemma.

Lemma 3.2.1. Let R ∈ R
m×m be positive-definite matrix. P1 and P2 ∈ R

n×n be semi-

positive definite matrices. H ∈ R
m×n is any matrix. If P1 < P2, then

P1H
⊤(HP1H

⊤ +R)−1HP1 < P2H
⊤(HP2H

⊤ +R)−1HP2. (3.26)

Proof. (1) We firstly consider the case that P1 ≻ P2 ≻ 0. According to the matrix

inversion lemma, also known as Woodbury formula [99], in order to prove

P1H
⊤(HP1H

⊤ +R)−1HP1 < P2H
⊤(HP2H

⊤ +R)−1HP2,
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it is equivalent to prove

P1 − (P−1
1 +H⊤R−1H)−1

< P2 − (P−1
2 +H⊤R−1H)−1.

Thus, for any semi-positive definite matrix A, if we define

fA(P ) = P − (P−1 +A)−1, (3.27)

we need to prove that fA(P ) is monotone increasing function with P in the sense of the

quadratic form. Defining

gA(P ) := fA(P
−1) = P−1 − (P +A)−1,

then we will equivalently prove that gA(P ) is monotone decreasing function with P in

the sense of quadratic form.

Since P1 ≻ P2 ≻ 0, we define

P1 = P2 + δP, δP ≻ 0.

If we assume that gδP (P ) is not monotone decreasing with P in the sense of quadratic

form, then for any n ∈ N, there exists at least one vector xn 6= 0n×1 ∈ R
n such that

x⊤n
‖xn‖

((nP1)
−1 − ((nP1) + δP )−1)

xn
‖xn‖

>
x⊤n
‖xn‖

(P−1
2 − (P2 + δP )−1)

xn
‖xn‖

, (3.28)

where ‖ · ‖ is the Euclidean norm of vectors.

On one hand, for any n ∈ N, according to (3.28), we have

x⊤n
‖xn‖

(P−1
2 − P−1

1 )
xn
‖xn‖

=
x⊤n
‖xn‖

(P−1
2 − (P2 + δP )−1)

xn
‖xn‖

<
x⊤n
‖xn‖

((nP1)
−1 − (nP1 + δP )−1)

xn
‖xn‖

<
x⊤n
‖xn‖

((nP1)
−1 − ((n + 1)P1)

−1)
xn

‖xn‖

=
x⊤n
‖xn‖

1

n(n+ 1)
P−1
1

xn
‖xn‖

.

Since { xn

‖xn‖n∈N
} is bounded, then there is subsequence { xnk

‖xnk
‖}k∈N converging to x

(‖x‖ 6= 0) when k → ∞. Therefore, we have

x⊤(P−1
2 − P−1

1 )x 6 0, n → ∞. (3.29)

On the other hand,

P−1
2 − P−1

1 = P−1
2 − (P2 + δP )−1 (3.30)

= P−1
2 δP

1

2 (I + δP
1

2P−1
2 δP

1

2 )−1δP
1

2P−1
2 ≻ 0,
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which is conflict with (3.29). Therefore, we can conclude that (3.26) holds for P1 ≻
P2 ≻ 0.

(2) Now we consider the case P1 < P2 < 0, which implies P1 and P2 are probably

not invertible. Thus, from (1) above, for any ε > 0 and the constant N > 1, we have

(P1 +NεI)H⊤(H(P1 +NεI)H⊤ +R)−1H(P1 +NεI)

<(P2 + εI)H⊤(H(P2 + εI)H⊤ +R)−1H(P2 + εI).

Since

(P1 +NεI)H⊤(H(P1 +NεI)H⊤ +R)−1H(P1 +NεI),

(P2 + εI)H⊤(H(P2 + εI)H⊤ +R)−1H(P2 + εI)

are continuous in ε, then let ε → 0, we can conclude that (3.26) still holds for the as-

sumption P1 < P2 < 0.

Then under the assumption P (t0|t−1) = PTI(t0|t−1), we have

Theorem 3.2.2. We assume that δc(t0) in (3.14) and δcI(t0) in (3.19) have the same

priori estimate δĉ(t0|t−1) , then

P (tk|tk) 4 PTI(tk|tk), P c(tk|tk) 4 P c
TI
(tk|tk)

P e(tk|tk) 4 P e
TI(tk|tk), k ∈ 0, · · · , N.

Further, P c(t0|tN ) 4 P c
TI(t0|tN ) and P e(t0|tN ) 4 P e

TI(t0|tN ).

Proof. We firstly assume

P (tk|tk−1) 4 PTI(tk|tk−1). (3.31)

According to (3.15) and the matrix inverse lemma [99],

P (tk|tk)

=

[
P−1(tk|tk−1) +

(
H⊤(tk)R

−1(tk)H(tk) 0
0 0

)]−1

4

[
P−1

TI (tk|tk−1) +

(
H⊤(tk)R

−1(tk)H(tk) 0
0 0

)]−1

=

(
P c

I
(tk|tk−1) +Dc

I
(tk) Dce

I
(tk)

Dec
I
(tk) De

I
(tk)

)

−
(

P c
I
(tk|tk−1) +Dc

I
(tk) Dce

I
(tk)

Dec
I
(tk) De

I
(tk)

)(
H⊤(tk)

0

)

·
[
(H(tk), 0)

(
P c

I (tk|tk−1) +Dc
I(tk) Dce

I (tk)
Dec

I (tk) De
I (tk)

)(
H⊤(tk)

0

)
+R(tk)

]−1

· (H(tk), 0)

(
P c

I (tk|tk−1) +Dc
I(tk) Dce

I (tk)
Dec

I (tk) De
I (tk)

)
.
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From Lemma 3.2.1, we have

P (tk|tk)

4

(
P c

I (tk|tk−1) +Dc
I(tk) Dce

I (tk)
Dec

I
(tk) De

I
(tk)

)
−
(

P c
I (tk|tk−1) 0

0 0

)(
H⊤(tk)

0

)

· [(H(tk), 0)

(
P c

I (tk|tk−1) 0
0 0

)(
H⊤(tk)

0

)
+R(tk)]

−1

· (H(tk), 0)

(
P c

I (tk|tk−1) 0
0 0

)

=PI(tk|tk) +DI(tk)

=PTI(tk|tk).

Since P (t0|t−1) = PTI(t0|t−1) satisfies (3.31), we obtain

P (tk|tk) 4 PTI(tk|tk), k ∈ N.

Moreover, since

P c(tk|tk) = (I, 0)P (tk |tk)
(

I
0

)
, P c

TI(tk|tk) = (I, 0)PTI (tk|tk)
(

I
0

)
,

we obtain P c(tk|tk) 4 P c
TI
(tk|tk). In the similar way, we get P e(tk|tk) 4 P e

TI
(tk|tk).

Further, since

DI(tk) = M(tk, t0)DI(t0),

then we have

P c(t0|tN ) =(I, 0)M−1(tN , t0)P (tN |tN )M−⊤(tN , t0)

(
I
0

)

4(I, 0)M−1(tN , t0)PTI(t0|tN )M−⊤(tN , t0)

(
I
0

)

=P c
TI(t0|tN ).

Similarly, we obtain P e(t0|tN ) 4 P e
TI(t0|tN ).

Joint optimization versus emission-rate-only optimization

In Section 3.2.4, as to the emission-rate-only optimization, we assumed δĉE(t0|t−1) = 0.

In order to compare the joint optimization and emission-rate-only optimization, the true

analysis and forecasting covariances for the case only emission rates can be uniformly

represented as:

PTE(tk|·) :=
(

P c
TE(tk|·) P ce

TE(tk|·)
P ec

TE(tk|·) P e
TE(tk|·)

)

=E

[(
δĉE(tk|·)− δc(tk)
δêE(tk|·)− δe(tk)

)
((δĉE(tk|·)− δc(tk))

⊤, (δêE(tk|·)− δe(tk))
⊤

]
.
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where the dot “·” could be any time step ti, i = 0, · · · , N .

In particular, we denote the initial prior covariance including the prior error of the

concentrations by

PTE(t0|t−1) =

(
P c

TE(t0|t−1) 0
0 P e

TE(t0|t−1)

)
.

Since PTE(t0|t−1) is also the first guess from the previous information, we can also as-

sume that

PTE(t0|t−1) = P (t0|t−1). (3.32)

Defining the covariance of the difference between the model (3.14) and (3.23)

DE(tk) :=

(
Dc

E(tk) Dce
E (tk)

Dec
E (tk) De

E(tk)

)

=E

[(
δcE(tk)− δc(tk)
δeE(tk)− δe(tk)

)
(δcE(tk)− δc(tk))

⊤, (δeE(tk)− δe(tk))
⊤

]
,

then

PTE(tk|·)

=E

[(
(δĉE(tk|·)− δcE(tk)) + (δcE(tk)− δc(tk))
(δêE(tk|·)− δeE(tk)) + (δeE(tk)− δe(tk))

)

·
(

(δĉE(tk|·)− δcE(tk)) + (δcE(tk)− δc(tk))
(δêE(tk|·)− δeE(tk)) + (δeE(tk)− δe(tk))

)⊤
]

=PE(tk|·) +DE(tk).

Under the initial assumption (3.32), similar to Theorem 3.2.2, we have

Theorem 3.2.3. We assume P e(t0|t−1) = P e
E(t0|t−1), then P c(tk|tk) 4 P c

TE(tk|tk),
P e(tk|tk) 4 P e

TE(tk|tk) and P (tk|tk) 4 PTE(tk|tk) hold for any k ∈ N. Further,

P c(t0|tN ) 4 P c
TE(t0|tN ) and P e(t0|tN ) 4 P e

TE(t0|tN ).

Proof. We firstly assume

P (tk|tk−1) 4 PTE(tk|tk−1). (3.33)

According to (3.15) and the matrix inverse lemma, we have

P (tk|tk)

=

[
P−1(tk|tk−1) +

(
H⊤(tk)R

−1(tk)H(tk) 0
0 0

)]−1

4

[
P−1

TE
(tk|tk−1) +

(
H⊤(tk)R

−1(tk)H(tk) 0
0 0

)]−1

=PTE(tk|tk−1)− PTE(tk|tk−1)

(
H⊤(tk)

0

)

· [(H(tk), 0)PTE(tk|tk−1)

(
H⊤(tk)

0

)
+R(tk)]

−1(H(tk), 0)PTE(tk|tk−1).
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By Lemma 3.2.1, we have

P (tk|tk)

4 (PE(tk|tk−1) +DE(tk))− PE(tk|tk−1)

(
H⊤(tk)

0

)

· [(H(tk), 0)PE(tk|tk−1)

(
H⊤(tk)

0

)
+R(tk)]

−1(H(tk), 0)PE(tk|tk−1)

=PE(tk|tk−1) +DE(tk)

=PTE(tk|tk−1).

Since P (t0|t−1) = PTE(t0|t−1), which satisfies (3.33), we can conclude that

P (tk|tk) 4 PTE(tk|tk), k ∈ N.

Further, similar with Theorem 3.2.2, we obtain

P c(tk|tk) 4 P c
TE(tk|tk), P e(tk|tk) 4 P e

TE(tk|tk),
P c(t0|tN ) 4 P c

TE
(t0|tN ), P e(t0|tN ) 4 P e

TE
(t0|tN ).

Now we can conclude that the joint optimization of the initial value and emission rates

based on the atmospheric transport model extended by emissions can provide the same

or better estimates for both the initial value and emission rates than the initial-value-only

optimization and emission-rate-only optimization.

3.2.6 Application to EnKF and EnKS

In this section we give a basic example by applying the ensemble Kalman filter and

smoother into a one-dimensional transport model extended by emission rates. It illustrates

that the daily profile of the emission rate can be preserved only by the ensemble Kalman

smoother rather than the ensemble Kalman filter.

We consider the following one-dimensional transport equation with the periodic bound-

ary condition on the domain [0, 14],

∂δc

∂t
+ v

∂δc

∂x
= e(t), (3.34)

where δc, δe are the perturbations of the concentration, emission rate respectively, v =
0.5 represents the wind speed. Within the spacial domain [0, 14] and data assimilation

window (DAW) [0, 23.5], applying the Lax-wendroff scheme, we discretize the transport

equation (3.34) in space with △x = 0.5 and in time with △t = 0.5. Thus, the dimension

of the state space is Nx = 30 and there are T = 48 time steps within the entire data

assimilation window.
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Figure 3.1: BLUEs of the initial value by EnKF and EnKS.
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Figure 3.2: BLUEs of the emission rate at x = 7 within the entire data assimilation

window by EnKF and EnKS.
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Figure 3.3: BLUEs of the emission rates at all grid points within the entire data assimi-

lation window by EnKF and EnKS. The dots are the diurnal profiles of the background

emission rates. The lines are BLUEs of the emission rates.
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With the same temporal and spacial discretization of c(t), we write the background

information of emission rate into a vector

eb(tn) = (e1b(tn), · · · , eNx

b (tn))
⊤, n = 1, · · · , T,

which is shown in Fig. 3.2 and Fig. 3.3. Then we extract the transition matrix of the

dynamic model of the emission rate from the background of the emission rate

Me(tn+1, tn) =




e1
b
(tn+1)

e1
b
(tn)

e2
b
(tn+1)

e2
b
(tn)

. . .
e15
b
(tn+1)

e15
b
(tn)




, n = 0, · · · , T − 1.

Further, we establish the discrete dynamic model of the perturbation of the emission rate

according to (4.36)

δe(tn+1) = Me(tn+1, tn)δe(tn), n = 1, · · · , T − 1.

Besides, we generate three observations of the concentration at x = 6.5, 7 and 7.5
at each time step. The observation errors follow the Gaussian distributions of zero mean

and diagonal covariance matrix with the diagonal 0.2cn(t), where cn(t) represents the

nature run of the concentrations. The plot convection of observations in Fig. 3.1 is given

by dots.

Fig. 3.1 shows that the optimal estimates of the initial values by the data assimilation

procedure based on the ensemble Kalman filter and smoother. Obviously, the BLUEs of

the initial values based on the EnKS are better than the BLUEs based on the EnKF since

the estimates from the EnKS are closer to the given nature run cn(t).
Fig. 3.2 shows that the diurnal profiles of the background, nature run and the estimates

of the emission rate at x = 7. Since in general

E(e(tn+1)|Ytn+1
) 6= M(tn+1, tn)E(e(tn)|Ytn),

the left panel of Fig. 3.2 indicates that the optimization of the emission rates from the

ensemble Kalman filter may not preserve the same diurnal profile as the background

emission rates. From the right panel of Fig. 3.2 we can find that the optimal estimates of

emission rates from EnKS follow the same evolution of the background emission rates,

which verifies (3.10). Similarly, Fig. 3.3 shows the BLUEs of the emission rates at all

grid points within the entire data assimilation window.



Chapter 4

Efficiency and Sensitivity Analysis

of Observational Networks

In previous sections, we have reviewed the current common-used data assimilation ap-

proaches and introduced our novel atmospheric transport model extended by emission

rates, aiming at obtaining the better estimation of the model state with limited observa-

tions. As mentioned before, the better estimations of both the initial state and emission

rates are probably not achieved by certain observational network configurations. It is

worth to address the qualification problem in order to evaluate the capacity of an obser-

vational network to control and effect chemical states and emission rates quantitatively in

advance of data assimilation procedure.

In fact, in atmospheric chemistry, studies about the importance of observations are

still sparse. Khattatov et al. [54] firstly analysed the uncertainty of a chemical composi-

tions. Liao et al. [65] focused on the optimal placement of observation locations of the

chemical transport model. Starting with a given sensor network, Singh et al. [90] intro-

duced theoretical metrics to quantify the value of measurements to reduce the analysis er-

ror in the frame of ensemble runs. For accidental releases, Abida and Bocquet [1] sought

to reconstruct the plume of emitted compounds by sequentially optimizing observation

locations for mobile monitor platforms. However, singular vector analysis and other

methods for atmospheric chemistry with emissions are different since emissions play a

similarly important role in forecast accuracy with initial values. Goris and Elbern [47] re-

cently used the singular vector decomposition to determine the sensitivity of the chemical

composition to emissions and initial values for a variety of chemical scenarios and inte-

gration length. This methodology has been generalized for the 3-dimensional EURAD-

IM (European Air pollution Dispersion-Inverse Model) and applied to a field campaign

with airship borne measurements in Goris and Elbern [48]. While that paper describes

an approach to optimize an atmospheric chemistry observation network, both in terms of

individual compounds to be observed with preference and their location, the assessment

of the information potential of an established and mainly fixed observation network, like

for example the AIRNow Air Quality Monitor Maps (http://www.airnow.gov/

index.cfm?action=airnow.pointmaps) in the United State or from the Eu-

ropean Environment Agency (http://www.eea.europa.eu/data-and-maps/

http://www.airnow.gov/index.cfm?action=airnow.pointmaps
http://www.airnow.gov/index.cfm?action=airnow.pointmaps
http://www.eea.europa.eu/data-and-maps/explore-interactive-maps#c5=&c0=5&b_start=0
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explore-interactive-maps#c5=&c0=5&b_start=0) needs a different algo-

rithmic approach. Most measurement devices monitor concentrations hourly or half-

hourly. In practice, the deployment of in situ observations follows manly legal require-

ments as manifested in official regulations to monitor concentration threshold violations

for public healthcare with emphasis on populated area. This is in stark contrast to ob-

servation network design principles of weathers services, which nearly exclusively aspire

to comply with data assimilation requirements to optimise initial values for predictions.

With the growing importance of earth system modelling and its combination with mea-

surements, existing observation networks need to be validated for forecasting purposes.

For this, attention should be paid to the fact that in atmospheric chemistry emission rates

are also candidate parameters for optimisation, as they are typically both, insufficiently

well known and of high impact on the simulation. Moreover, network assessment results

are dependent on meteorological conditions, most notably wind direction and vertical

exchange.

Using the Kalman smoother as the required data assimilation method we introduce

a novel approach to identify the efficiency and sensitivity of the observation networks

for controlling linear tangent diffusion models. This chapter is organized as follows. In

Section 4.1, based on the Kalman smoother, we derive the theoretical approach to deter-

mine the efficiency of observation networks for both discrete-time and continuous-time

systems. In Section 4.2, we develop the ensemble approach to evaluate the efficiency

of observation configurations. A 3D advection-diffusion equation is extended by the dy-

namic model of the emission rate and several elementary experiments are given to verify

the approaches. In Section 4.3, we present the approach to identify the sensitivity of ob-

servations by determining the directions of maximum perturbation growth to the initial

perturbation and focus on the relationship between the efficiency and sensitivity analysis

of observation networks. In Section 4.4, based on the atmospheric transport model ex-

tended by emission rates, we apply the sensitivity analysis of observation networks into

the emission source apportionment problem in order to distinguish the different emission

sources and determine their apportionments.

4.1 Efficiency analysis of observational networks

In the case that the estimation of both the initial state and emission rates can be improved

significantly, we say that the corresponding observation configurations are efficient for

both the initial state and emission rates. Otherwise, the observation configurations are

only efficient to initial state or emission rates, or even to none in case of undue sparseness

of measurements. However, it is usually difficult to foresee the efficiency of observation

configurations. The lack of the knowledge of the efficiency of observations may lead us

to give the poor initial guesses, imbalanced results and wasted computational resources.

In this section we will introduce the theoretical approach to determine the efficiency of

observations by the Kalman smoother within a finite-time interval.

http://www.eea.europa.eu/data-and-maps/explore-interactive-maps#c5=&c0=5&b_start=0
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4.1.1 Efficiency analysis for discrete-time systems

We generalize the atmospheric transport model extended by emission rates (3.12) and

the observation system (3.13) into the following discrete-time linear system on the time

interval [t0, t1, · · · , tN ]

x(tk+1) = M(tk+1, tk)x(tk) + ε(tk), (4.1)

y(tk) = H(tk)x(tk) + ν(tk), (4.2)

where x(·) ∈ R
n is the state variable, y(tk) ∈ R

m(tk) is the observation vector at time tk,

the model error ε(tk) and the observation error ν(tk), k = 1, · · · , N follow Gaussian dis-

tributions with zero means and the model error covariance matrix Q(tk) and observation

error R(tk), respectively.

We denote the first guess of initial variance by P (t0|t−1) and assume that P (t0|t−1)
and R(tk) to be symmetric and positive definite matrices. Then applying the matrix

inverse lemma [99] into (2.7), we have

P−1(tk|tk) = P−1(tk|tk−1) +H⊤(tk)R
−1(tk)H(tk). (4.3)

Assuming the model errors ε(ti), i = 1, · · · , N and consequently also the model error

covariance matrix Q(ti), are negligible, we obtain

P−1(tk+1|tk) = M−⊤(tk+1, tk)P
−1(tk|tk)M−1(tk+1, tk). (4.4)

Hence, by the deduction based on (4.3) and (4.4), we have

P−1(tk+1|tk)
= M−⊤(tk+1, tk)P

−1(tk|tk−1)M
−1(tk+1, tk)

+M−⊤(tk+1, tk)H
⊤(tk)R

−1(tk)H(tk)M
−1(tk+1, tk)

= M−⊤(tk+1, tk−1)P
−1(tk−1|tk−2)M

−1(tk+1, tk−1)

+M−⊤(tk+1, tk−1)H
⊤(tk−1)R

−1(tk−1)H(tk−1)M
−1(tk+1, tk−1)

+M−⊤(tk+1, tk)H
⊤(tk)R

−1(tk)H(tk)M
−1(tk+1, tk)

= M−⊤(tk+1, t0)P
−1(t0|t−1)M

−1(tk+1, t0)

+

k∑

i=0

M−⊤(tk+1, ti)H
⊤(ti)R

−1(ti)H(ti)M
−1(tk+1, ti).

Thus, the covariance of the estimate of the initial state by the fixed-interval Kalman

smoother [69] is given by

P−1(t0|tk)
= E[(x(t0)− x̂(t0|tk))(x(t0)− x̂(t0|tk))⊤]
= E[M−1(tk+1, t0)(x(tk+1)− x̂(tk+1|tk))(x(t0)− x̂(tk+1|tk))⊤M−⊤(tk+1, t0)]

−1

= M⊤(tk+1, t0)P
−1(tk+1|tk)M(tk+1, t0)

= P−1(t0|t−1) +
k∑

i=0

M⊤(ti, t0)H
⊤(ti)R

−1(ti)H(ti)M(ti, t0). (4.5)
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In particular, for the case k = N , which indicates to take the observations in the

entire time interval into account, we have

P−1(t0|tN ) = P−1(t0|t−1) +
N∑

i=0

M⊤(ti, t0)H
⊤(ti)R

−1(ti)H(ti)M(ti, t0), (4.6)

which is the inverse of the analysis error covariance matrix and the optimal Hessian of

the underlying cost function of 4D-Var (2.4). It implies the equivalence between Kalman

smoother and 4D-Var method for linear models and guarantees that the following ap-

proach in this paper is available for the data assimilation based on 4D-Var method.

It is clear that (4.6) comprises the information of the initial condition, model evolu-

tion, observation configurations and errors over the entire time interval [t0, · · · , tN ]. At

the same time, it is independent of any specific data and states unknown before fulfilling

the data assimilation procedure, apart from the reference model evolution M(·, ·) needed

for the linearisation, as well as the observation operator H(·). In fact, if we define

G =




H(t0)M(t0, t0)
H(t1)M(t1, t0)

...

H(tN )M(tN , t0)


, R−1=




R−1(t0)
R−1(t1)

. . .

R−1(tN )


, (4.7)

we can rewrite (4.6) as

P−1(t0|tN ) = P−1(t0|t−1) + G⊤R−1G, (4.8)

where G⊤R−1G is the observability Gramian with respect to R−1 in control theory [11],

[103]. It represents the observable capacity of a model.

Though (4.8) meets the demand to represent the estimate covariance by all available

information before starting the data assimilation procedure, it cannot be applied directly

to evaluate the potential improvement of the estimate by the Kalman smoother due to

the lack of clear statistical significance. Thus, aspiring a means to compare efficiencies

with respect to initial values and emission rates in a scaled way, we define the relative

improvement covariance as

P− 1

2 (t0|t−1)(P (t0|t−1)− P (t0|tN ))P− 1

2 (t0|t−1)

=I − P− 1

2 (t0|t−1)P (t0|tN )P− 1

2 (t0|t−1). (4.9)

The relative improvement covariance (4.9) is a normalized matrix of the difference

between the initial variance P (t0|t−1) and the covariance matrix P (t0|tN ) from the

Kalman smoother. Especially, P− 1

2 (t0|t−1)P (t0|tN )P− 1

2 (t0|t−1) can be understood as

the covariance matrix from the fixed-interval Kalman smoother normalized by the initial

variance. Thus, the symmetry of (4.9) guarantees the relative improvement covariance

matrix to be nonnegative-definite. In fact,

0 4 P− 1

2 (t0|t−1)(P (t0|t−1)− P (t0|tN ))P− 1

2 (t0|t−1) ≺ I, (4.10)
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where the left equality holds for the situation that there is no observation within the entire

time interval [t0, · · · , tN ]. Further, (4.10) implies that singular values of the relative

improvement covariance are bounded by n since their sum is less than n, the trace of I .

Since P (t0|tN ) is unknown prior to the data assimilation procedure, we use (4.8) to

rewrite the relative improvement covariance as

P̃ := P− 1

2 (t0|t−1)(P (t0|t−1)− P (t0|tN ))P− 1

2 (t0|t−1)

= P− 1

2 (t0|t−1)(P (t0|t−1)− (P−1(t0|t−1) + G⊤R−1G)−1)P− 1

2 (t0|t−1)

= I − P− 1

2 (t0|t−1)(P
−1(t0|t−1) + G⊤R−1G)−1P− 1

2 (t0|t−1)

= I − (I + P
1

2 (t0|t−1)G⊤R−1GP 1

2 (t0|t−1))
−1. (4.11)

It is worth noting that in (4.11),

I + P
1

2 (t0|t−1)G⊤R−1GP 1

2 (t0|t−1)

is always invertible even if the observation Gramian G⊤G is not full-rank. Thus, the

relative improvement covariance is well-defined for all models with invertible initial co-

variance and observation systems with invertible error covariances within [t0, · · · , tN ].
Due to the high computational cost of (4.11), we apply the singular value decomposition

to

P
1

2 (t0|t−1)G⊤R− 1

2 = V SU⊤,

where V and U are unitary matrices consisting of the left and right singular vectors, while

S is the rectangular diagonal matrix consisting of the singular values.

The normalized covariance P̃ can be simplified as

P̃ = I − (I + P
1

2 (t0|t−1)G⊤R−1GP 1

2 (t0|t−1))
−1

= I − (I + V SS⊤V ⊤)−1

= V V ⊤ − (V V ⊤ + V SS⊤V ⊤)−1

= V V ⊤ − (V (I + SS⊤)V ⊤)−1

= V (I − (I + SS⊤)−1)V ⊤

=

r∑

i=1

s2i
1 + s2i

viv
⊤
i , (4.12)

where r is the rank of (4.11) and vi is the ith left singular vector in V related to the

singular value si, which is the ith element on the diagonal of S.

The relative improvement of each element in the state vector x is given by the corre-

sponding value in the diagonal of the relative improvement covariance, and remains to be

specified. Denoting the relative improvement of jth element in x(t0) by P̃j , from (4.12)

we have

P̃j =
r∑

i=1

s2i
1 + s2i

(vij)
2,

where vij is the jth element of vi.



38 Efficiency and Sensitivity Analysis of Observational Networks

In order to get a deeper insight into the capacity of the observation networks to im-

prove the estimation of all model states, we consider the sum of the diagonal entries of

the relative improvement matrix as the evaluation of the total relative improvement of the

model. Thus the 1-norm, also named as the nuclear norm, is appropriately taken as the

metric, which is defined as

‖A‖1 = tr(
√
A⊤A),

where A is any matrix and tr(·) denotes the trace of the matrix.

From (4.12), we obtain

‖P̃‖1 = tr(P̃ ) =
r∑

i=1

s2i
1 + s2i

,

which is called the total improvement value. According to [85], it can be also considered

as the degree of signal freedom.

As mentioned before, ‖P̃‖1 < ‖I‖1 = n. Here n is considered as the total relative

improvement if the system is fully observed. Thus, if we consider the ratio

p̃ =
‖P̃‖1
‖I‖1

=
‖P̃‖1
n

∈ [0, 1), (4.13)

the percentage of the total improvement of the model is obtained, which is called the

relative improvement degree.

4.1.2 Efficiency analysis of the atmospheric transport model extended by

emission rates

For the atmospheric transport model extended with emissions, without loss of generality,

we simply assume the original state c ∈ R
n and emission rates e ∈ R

n. We divide (4.11)

into the following block matrix according to the dimension of c and e

P̃ =

(
P̃ c P̃ ce

P̃ ec P̃ e

)
=

r∑

i=1

s2i
1 + s2i

(
vci
vei

)
(vc

⊤

i , ve
⊤

i ) ∈ R
2n×2n,

where P c is the relative improvement covariance of the state c(t0), P̃
e is the relative

improvement covariance of the emission rates e(t0), P̃
ce = (P̃ ec)⊤ is the relative im-

provement covariance between c(t0) and e(t0) and (vc
⊤

i , ve
⊤

i )⊤ = vi.
It is easy to see that

P̃ c =

r∑

i=1

s2i
1 + s2i

vci v
c⊤
i , P̃ e =

r∑

i=1

s2i
1 + s2i

vei v
e⊤
i .

Further, the relative improvements of jth element in c(t0) and e(t0) are given by

P̃ c
j =

r∑

i=1

s2i
1 + s2i

(vcij)
2, P̃ e

j =
r∑

i=1

s2i
1 + s2i

(veij)
2,
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where vcij and veij are the jth elements of vci and vei respectively.

Moreover, the total improvement values of concentration and emission rates are

‖P̃ c‖1 =
r∑

i=1

s2i
1 + s2i

tr(vci v
c⊤

i ), ‖P̃ e‖1 =
r∑

i=1

s2i
1 + s2i

tr(vei v
e⊤

i ).

It is worth noticing that

P̃ c = (P c(t0|t−1))
− 1

2 (P c(t0|t−1)− P c(t0|tN ))(P c(t0|t−1))
− 1

2 ,

P̃ e = (P e(t0|t−1))
− 1

2 (P e(t0|t−1)− P e(t0|tN ))(P e(t0|t−1))
− 1

2

if and only if there is no prior correlation between the initial concentration and emission

rates. In this case P ce(t0|t−1) = 0n×n, the corresponding relative improvement degrees

of concentration and emission rates are defined as

p̃c =
‖P̃ c‖1

n
, p̃e =

‖P̃ e‖1
n

.

From (4.13), it is obvious that p̃c ∈ [0, 1) and p̃e ∈ [0, 1) show the percentages of

the relative improvements of concentration and emission rates, respectively. However,

efficient observation networks probably lead both of them to be close to 1 such that

‖P̃ c‖1
n

+
‖P̃ e‖1

n
> 1.

It indicates the normalization of P̃ is only with respect to the extended covariance matrix

rather than specified to the state c and emission rates e. The relative improvement degree

cannot serve our objective to distinguish the observability of concentration and emission

rates and balance them quantitatively. However, by observing the block form of P̃ , we

have

‖P̃ c‖1 + ‖P̃ e‖1 = ‖P̃‖1.
Thus, in order to compare the improvements of the concentration and emission rates, we

define relative improvement ratios for concentrations or emission rates as

p̃c =
‖P̃ c‖1
‖P̃‖1

, p̃e =
‖P̃ e‖1
‖P̃‖1

, p̃e + p̃c ≡ 1.

If the total improvement value or relative improvement degree of the model is al-

most zero, an improvement cannot be expected. In contrast, {P̃ c
j }nj=1 and {P̃ e

j }nj=1,

which show the improvement of each parameter j of concentrations and emission rates

respectively, can help us determining which parameters can be optimized by the existing

observation configurations. Furthermore, comparing p̃c with p̃e, we can conclude that

the estimate of that one with the larger relative improvement ratio can be improved more

efficiently by the existing observation configurations than the other. In other words, if

p̃c > p̃e, the existing observation configurations are more efficient to the initial values of
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concentrations. Conversely, if p̃c < p̃e, the observation configurations can help improv-

ing the estimate of emission rates more. According to p̃c and p̃e, the “weights” between

the concentrations and emission rates can be quantitatively identified. In a data assimila-

tion context, where observations are in a weighted relation to the background, the BLUE

favours those parameters with higher observation efficiency.

The special case that p̃e is very close to zero implies that observation network is

nearly “blind” for emission rate optimization.

4.1.3 Efficiency analysis for continuous-time systems

In this section we generalize the efficiency analysis of discrete-time systems into continuous-

time systems in order to provide the possibility of wider applications of this approach. We

consider the continuous-time system

x(t) = M(t, t0)x(t0) + ε(t), (4.14)

y(t) = H(t)x(t) + ν(t), (4.15)

where x(t) ∈ R
n is the state variable, y(t) ∈ R

m(t) is observation vector, the model error

ε(t) and the observation error ν(t), t ∈ [t0, tN ] follow Gaussian distributions with zero

mean, while Q(t) and R(t) are their covariance matrices respectively.

As in Section 4.1.1, we ignore the model error. We assume

MK(t, t0) := M(t, t0)−
∫ t

t0

M(t, s)K(s)H(s)MK(s, t0)ds,

where K(t) = P (t|t)H(t)R−1(t). According to (2.5), we calculate that

P (t|t) =MK(t, t0)P (t0|t−1)M
⊤
K(t, t0) +

∫ t

t0

MK(t, s)K(s)R(s)K⊤(s)M⊤
K(t, s)ds.

On one hand,

MK(t, t0)P (t0|t−1)M
⊤
K(t, t0)

= M(t, t0)P (t0|t−1)M
⊤
K(t, t0)

−
∫ t

t0

M(t, s)K(s)H(s)MK(s, t0)P (t0|t−1)M
⊤
K(t, t0)ds

= M(t, t0)P (t0|t−1)M
⊤
K(t, t0)−

∫ t

t0

M(t, s)K(s)H(s)P (s|s)M⊤
K (t, s)ds

+

∫ t

t0

∫ s

t0

M(t, s)K(s)H(s)MK(s, η)K(η)R(η)K⊤(η)M⊤
K(t, η)dηds.
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On the other hand,

∫ t

t0

MK(t, s)K(s)R(s)K⊤(s)M⊤
K(t, s)ds

=

∫ t

t0

[M(t, s)−
∫ t

s
M(t, η)K(η)H(η)MK (η, s)dη]K(s)R(s)K⊤(s)M⊤

K(t, s)ds

=

∫ t

t0

M(t, s)K(s)R(s)K⊤(s)M⊤
K(t, s)ds

−
∫ t

t0

∫ η

t0

M(t, η)K(η)H(η)MK (η, s)K(s)R(s)K⊤(s)M⊤
K(t, s)dsdη

=

∫ t

t0

M(t, s)K(s)R(s)K⊤(s)M⊤
K(t, s)ds

−
∫ t

t0

∫ s

t0

M(t, s)K(s)H(s)MK(s, η)K(η)R(η)K⊤(η)M⊤
K(t, η)dηds.

Therefore, P (t|t) = M(t, t0)P (t0|t−1)M
⊤
K(t, t0).

Since

M−1(t, t0) = M−1
K (t, t0)MK(t, t0)M

−1(t, t0)

= M−1
K (t, t0)[M(t, t0)−

∫ t

t0

MK(t, s)K(s)H(s)M(s, t0)ds]M
−1(t, t0)

= M−1
K (t, t0)−

∫ t

t0

M−1
K (s, t0)L(s)H(s)M(t, s)ds,

we obtain

M−1
K (t, t0) = M−1(t, t0) +

∫ t

t0

M−1
K (s, t0)K(s)H(s)M−1(t, s)ds.

Hence,

P−1(t0|t)
=[M−1(t, t0)P (t|t)M−⊤(t, t0)]

−1

=[P (t0|t−1)M
⊤
K(t, t0)M

−⊤(t, t0)]
−1

=M⊤(t, t0)[M
−⊤(t, t0) +

∫ t

t0

M−⊤(t, s)H⊤(s)K⊤(s)M−⊤
K (s, t0)ds]P

−1(t0|t−1)

=P−1(t0|t−1) +

∫ t

t0

M⊤(s, t0)H
⊤(s)R−1(s)H(s)M(s, t0)ds.

Let t = tN and define the observability mapping G : Rn → L2([t0, tN ];Rm) as

Gf := H(·)M(·, t0)f, f ∈ R
n,
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its adjoint operator G∗ is

G∗f = −
∫ t0

tN

M⊤(s, t0)H
⊤(s)f(s)ds, f ∈ L2([t0, tN ];Rm).

Further, we define R−1 : L2([t0, tN ];Rm) → L2([t0, tN ];Rm),

R−1f := R−1(·)f(·), f ∈ L2([t0, tN ];Rm).

Thus,

P−1(t0|tN ) = P−1(t0|t−1) + G∗R−1G, (4.16)

where G∗R−1G is the observability Gramian of continuous-time systems, see [11] and

[103]. By the singular value decomposition,

P
1

2 (t0|t−1)G∗R− 1

2 = V SU⊤,

we obtain

P− 1

2 (t0|t−1)(P (t0|t−1)− P (t0|tN ))P− 1

2 (t0|t−1)

= I − (I + P
1

2 (t0|t−1)G∗R−1GP 1

2 (t0|t−1))
−1

= V (I − (I + SS⊤)−1)V ⊤, (4.17)

where V and U are unitary matrices consisting of the left and right singular vectors, S is

the rectangular diagonal matrix consisting of the singular values.

It is clear now that (4.16) and (4.17) has the same pattern with (4.6) and (4.12). Thus,

following the similar steps as in Section 4.1, we also choose the 1-norm as the metric. If

we denote

P̃ = P− 1

2 (t0|t−1)(P (t0|t−1)− P (t0|tN ))P− 1

2 (t0|t−1), (4.18)

then P̃j , the relative improvement of jth element in x(t0) of the continuous system (4.14)

is also given by

P̃j =

r∑

i=1

s2i
1 + s2i

(vij)
2,

where vij is the jth element of vi.
Correspondingly, the total improvement value and the relative improvement degree

of the continuous system are respectively given by

‖P̃‖1 = tr(P̃ ) =
r∑

i=1

s2i
1 + s2i

, p̃ =
‖P̃‖1
‖I‖1

=
‖P̃‖1
n

∈ [0, 1).

4.2 The ensemble approach for the efficiency analysis

In this section we develop the ensemble approach to analyse the efficiency of observa-

tional networks. It provides the feasibility to apply this approach for high dimensional

problems in practice.
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4.2.1 The ensemble approach for discrete-time systems

Based on the ensemble Kalman filter and smoother introduced in Section 2.2.3, we further

introduce some notations. For the discrete-time system (4.1), we define the ensemble

observation configurations in the entire time interval as

yfk = Gx̂k(t0|t−1), k = 1, · · · , q.

And the ensemble mean and the forecast error covariance matrix of the ensemble obser-

vation configurations are given by

ȳf =
1

q

q∑

k=1

yfk , P̄ f
yy =

1

q − 1

q∑

k=1

(ŷfk − ȳf )(ŷfk − ȳf )⊤ = GP̄ (t0|t−1)G⊤.

Similarly, we denote the ensemble covariance between the initial states and the forecast-

ing observations by

P̄ f
xy =

1

q − 1

q∑

k=1

(x̂k(t0|t−1)− x̄(t0|t−1))(ŷ
f
k − ȳf )⊤ = P̄ (t0|t−1)G⊤.

It is shown by Evensen [37] that the ensemble forecasting and analysis covariances

have the same form as the covariances in the standard Kalman filter. It indicates that

(2.7) and (2.8) are also true for P̄ (ti|ti) and P̄ (ti|ti−1). However, the ensemble size q
is usually less than the dimension of the model n in the real world. It causes (4.3), (4.4)

and further (4.9) to be infeasible since the initial ensemble covariance P̄ (t0|t−1) is not

invertible. In this case, the pseudo inverse is a widely used alternative of the inverse of a

matrix, due to its best fitness and uniqueness. We denote the pseudo inverse of a matrix

A by A†. Then concerning about the initial ensemble covariance

P̄ (t0|t−1) =
1

q − 1
X̃(t0|t−1)X̃

⊤(t0|t−1),

we apply the singular value decomposition to

1√
q − 1

X̃(t0|t−1) = V0S0U
⊤
0 ,

where V0 ∈ R
n×n and U0 ∈ R

q×q consist of the left and right singular vectors respec-

tively, and S0 ∈ R
n×q is a rectangular diagonal matrix with singular values {s0i|s0i >

0}qi=1 on its diagonal. Thus,

P̄ (t0|t−1) = V0S0U
⊤
0 U0S

⊤
0 V

⊤
0 = V0S0S

⊤
0 V

⊤
0 = V0Ŝ

2
0V

⊤
0 ,

where Ŝ2
0 = S0S

⊤
0 ∈ R

n×n is a block diagonal matrix with the diagonal

(s201, · · · , s20r0 , 01×(n−r0)),
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where r0 is the rank of S0. Hence,

P̄ † 1

2 (t0|t−1) = V0Ŝ
†
0V

⊤
0 ,

where Ŝ†
0 is the pseudo inverse of Ŝ0 with the diagonal

(
1

s01
, · · · , 1

s0r0
, 01×(n−r0)).

Analogy to (4.9), we define the ensemble relative improvement covariance as

P̃ = P̄ † 1

2 (t0|t−1)(P̄ (t0|t−1)− P̄ (t0|tN ))P̄ † 1

2 (t0|t−1).

Likewise, corresponding to (4.2), we present the observation system in the entire time

interval as

y = Gx(t0) + ν,

where y = (y⊤(t0), · · · , y⊤(tN ))⊤, ν = (ν⊤(t0), · · · , ν⊤(tN ))⊤ and G as the observa-

tion configuration for x(t0). As an analogy to the ensemble case of (2.7), we obtain

P̄ (t0|tN )

= P̄ (t0|t−1)− P̄ (t0|t−1)G⊤(GP̄ (t0|t−1)G⊤ +R)−1GP̄ (t0|t−1)

= P̄ (t0|t−1)− P̄ (t0|t−1)G⊤R− 1

2 (I +R− 1

2GP̄ (t0|t−1)G⊤R− 1

2 )−1R− 1

2GP̄ (t0|t−1)

= P̄ (t0|t−1)− P̄ f
xyR− 1

2 (I +R− 1

2 P̄ f
yyR− 1

2 )−1R− 1

2 (P̄ f
xy)

⊤. (4.19)

Further,

P̄ † 1

2 (t0|t−1)(P̄ (t0|t−1)− P̄ (t0|tN ))P̄ † 1

2 (t0|t−1)

=P̄ † 1

2 (t0|t−1)P̄
f
xyR− 1

2 (I +R− 1

2 P̄ f
yyR− 1

2 )−1R− 1

2 (P̄ f
xy)

⊤P̄ † 1

2 (t0|t−1). (4.20)

Let
∑N

i=0 m(ti) = m be the number of observations. To proceed with (4.20), we

apply again the singular value decomposition into,

P̄ † 1

2 (t0|t−1)P̄
f
xyR− 1

2 = V SU⊤ ∈ R
n×m, (4.21)

where U ∈ R
m×m consists of the eigenvectors of R− 1

2GP̄ (t0|t−1)G⊤R− 1

2 , V ∈ R
n×n

consists of the eigenvectors of P̄
1

2 (t0|t−1)G⊤R−1GP̄ 1

2 (t0|t−1), S ∈ R
n×m consists of

the singular values on its diagonal.

We denote the rank of (4.21) by r. The ensemble relative improvement covariance

can be rewritten as

P̄ † 1

2 (t0|t−1)(P̄ (t0|t−1)− P̄ (t0|tN ))P̄ † 1

2 (t0|t−1)

= V S⊤U⊤(UU⊤ + U(SS⊤)U⊤)−1USV ⊤

= V S⊤(I + S⊤S)−1SV ⊤

=
r∑

i=1

s2i
1 + s2i

viv
⊤
i (4.22)
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and its diagonal elements show ensemble relative improvements of the corresponding

states.

We observe that (4.22) and (4.12) have a similar form. By virtue of

P̄ † 1

2 (t0|t−1)P̄
f
xyR̄− 1

2 = P̄
1

2 (t0|t−1)G⊤R̄− 1

2 , (4.23)

the final results of (4.12) and (4.22) are equivalent. However, compared with

P
1

2 (t0|t−1)G⊤R− 1

2 ,

the ensemble expression P̄ † 1

2 (t0|t−1)P̄
f
xyR̄− 1

2 processes the absolute benefit, since in the

calculation of P̄ f
xy , we do not need the explicit form of G. It allows us to code it line by

line such that our approach is much more computationally efficient.

Since P̄ (t0|t−1) is not full rank for most cases,

P̄ † 1

2 (t0|t−1)(P̄ (t0|t−1)− P̄ (t0|tN ))P̄ † 1

2 (t0|t−1)

= P̄ † 1

2 (t0|t−1)P̄ (t0|t−1)P̄
† 1

2 (t0|t−1)− P̄ † 1

2 (t0|t−1)P̄ (t0|tN )P̄ † 1

2 (t0|t−1)

= V0Ŝ
†
0V

⊤
0 (V0Ŝ

2
0V

⊤
0 )V0Ŝ

†
0V

⊤
0 − P̄ † 1

2 (t0|t−1)P̄ (t0|tN )P̄ † 1

2 (t0|t−1)

= V0Ir0V
⊤
0 − P̄ † 1

2 (t0|t−1)P̄ (t0|tN )P̄ † 1

2 (t0|t−1),

where Ir0 is the diagonal matrix with the diagonal (11×r0 , 01×(n−r0)).

It is clear from (4.19) that P̄ † 1

2 (t0|t−1)P̄ (t0|tN )P̄ † 1

2 (t0|t−1) is still nonnegative def-

inite and 0n×n 4 P̃ ≺ Ir0 . Thus, the ensemble relative improvement degree is defined

by

p̃ =
‖P̃‖1
‖Ir0‖1

=
‖P̃‖1
r0

∈ [0, 1). (4.24)

For the distinction of the improvements for concentrations and emission rates, the

ensemble relative ratios remain

p̃c =
‖P̃ c‖1
‖P̃‖1

, p̃e =
‖P̃ e‖1
‖P̃‖1

.

If we further consider the nonlinear dynamic model, we can renew the definition of

the forecasting observation configurations as

yfk = G(x̂k(t0|t−1)), k = 1, · · · , q,

such that it can follow the nonlinear model, where G is a nonlinear operator.

Correspondingly, its ensemble mean and covariance are given by

ȳf =
1

q

q∑

k=1

yfk , P̄ f
yy =

1

q − 1

q∑

k=1

(ŷfk − ȳf )(ŷfk − ȳf )⊤. (4.25)

In addition,

P̄ f
xy =

1

q − 1

q∑

k=1

(x̂k(t0|t−1)− x̄(t0|t−1))(ŷ
f
k − ȳf )⊤. (4.26)
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It easily found that (4.25) and (4.26) can be substituted into (4.19) in order to determine

the efficiency of observational networks of nonlinear models by solving the singular value

decomposition of (4.21).

4.2.2 Example for the efficiency analysis

Consider a linear advection-diffusion model with Dirichlet horizontal boundary condition

and Neumann boundary condition in the vertical direction on the domain [0, 14]×[0, 14]×
[0, 4],

∂δc

∂t
= −vx

∂δc

∂x
− vy

∂δc

∂y
+

∂

∂z
(K(z)

∂δc

∂z
) + δe− δd, (4.27)

where δc, δe and δd are the perturbations of the concentration, the emission rate and

deposition rate of a species respectively. For vertical diffusion, K(z) is a differentiable

function of height z.

Assume △t = 0.5, the numerical solution is based on the symmetric operator split-

ting technique [102] with the following operator sequence

δc(t +△t) = TxTyDzADzTyTxδc(t), (4.28)

where Tx and Ty are transport operators in horizontal directions x and y, Dz is the dif-

fusion operator in vertical direction z. The parameters of emission and deposition rates

are included in A. The Lax-Wendroff algorithm is chosen as the discretization method

for horizontal advection with △x = △y = 1. The vertical diffusion is discretized with

△z = 1 by Crank-Nicolson scheme with the Thomas algorithm [50] as the solver. The

number of the grid points is Ng = 1125.

With the same temporal and spacial discretization of the concentration, the back-

ground knowledge of the emission rate is given by eb(tn, i, j, l), where n = 1, · · · , N
and {(i, j, l), i, j ∈ {0, · · · , 14}, l ∈ {0, · · · , 4}}. We rearrange eb(tn, i, j, l) into one

vector eb(tn) = (e1b(tn), · · · , e
Ng

b (tn))
⊤ and establish the discrete dynamic model of the

emission rate according to (4.36)

δe(tn+1) = Me(tn+1, tn)δe(tn), n = 1, · · · , N,

where Me(tn+1, tn) is a diagonal matrix of which ith element on the diagonal is given by
ei
b
(tn+1)

ei
b
(tn)

.

For expository reasons we assume δd be a constant over time and the only one fixed

observation configuration is time-invariant. It indicates that the observation operator map-

ping the state space to the observation space is a 1× 2Ng time-invariant matrix.

In addition, we produce q = 500 (the ensemble numbers) samplings for the initial

concentration and emission rate respectively by pseudo independent random numbers and

make the states correlated by the moving average technique. In the following, we present

three different tests, aiming to demonstrate the roles of variable winds, emissions, and

vertical diffusion.
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Figure 4.1: Advection test with 10△t DAW and southwesterly wind. Isopleths of ensem-

ble relative improvements of the concentration and emission rate are shown in the left

and right figure panels respectively. The point located at (12, 10, 0) named as‘Obs-cfg of

conc’ shows the invariant observation configuration. The point located at (2, 2, 0) named

as ‘Emss-source’ is the source of the emission rate.
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Figure 4.2: Advection test with 35△t DAW and southwesterly wind. Plotting conven-

tions are as in Fig. 4.1.
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Figure 4.3: Advection test with 48△t DAW and southwesterly wind. Plotting conven-

tions are as in Fig. 4.1.
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Figure 4.4: Advection test with 10△t DAW and northeasterly wind. Plotting conventions

are as in Fig. 4.1.
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Figure 4.5: Advection test with 35△t DAW and northeasterly wind. Plotting conventions

are as in Fig. 4.1.
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Figure 4.6: Advection test with 48△t DAW and northeasterly wind. Plotting conventions

are as in Fig. 4.1.
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Figure 4.7: Emission signal test (weak) with 48△t DAW and southwesterly wind (vx = 1
and vy = 1). Plotting conventions are as in Fig. 4.1.
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Figure 4.8: Emission signal test (strong) with 48△t DAW and southwesterly wind (vx =
1 and vy = 1). Plotting conventions are as in Fig. 4.1.
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Figure 4.9: Diffusion test (weak) with 35△t DAW and southwesterly wind. Plotting

conventions are as in Fig. 4.1.
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Figure 4.10: Diffusion test (strong) with 35△t DAW and southwesterly wind. Plotting

conventions are as in Fig. 4.1.
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Fig. 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10

p̃c 0.9920 0.4548 0.2848 0.9937 0.9939 0.9939 0.2248 0.1808 0.9928 0.1905

p̃e 0.0080 0.5452 0.7152 0.0063 0.0061 0.0061 0.7752 0.8192 0.0072 0.8095

Table 4.1: Ensemble relative ratios of the initial value and emission rate at the lowest

layer.

P̃ c
low P̃ e

low

Fig. 4.3 0.2767 0.8851

Fig. 4.9 0.0102 0.0030

Fig. 4.10 0.0500 0.7892

Table 4.2: The total improvement values of the initial value and emission rate at the

lowest layer.

Advection test: The objective of the elementary advection test (Fig. 4.1 to Fig. 4.6)

is to identify the most improvable parameters with different wind direction and data as-

similation window (DAW) in advance of data assimilation procedure. Focusing on the

advection effects, we assume the model with a weak diffusion process (K(z) = 0.5e−z2).

In Fig. 4.1 to Fig. 4.3 we assume southwesterly winds and the potential data assimi-

lation windows are 10△t, 35△t and 48△t respectively. The ensemble relative improve-

ments of the initial concentration are shown in the left panels of Fig. 4.1 to Fig. 4.3.

We can find that the horizontal fields at lowest layer (z = 0) where the estimates of

the concentration probably improved are enlarged with the extension of data assimilation

windows since more and more grid points of the concentration are correlated with longer

data assimilation windows.

The right panels of Fig. 4.1 to Fig. 4.3 show the ensemble relative improvements of

the emission rate at each grid point with z = 0. From Fig. 4.1, we can observe that the

ensemble relative improvements of the emission rate are smaller than the case of initial

value in the influenced area. It indicates that the observations cannot detect the emission

rate within 10△t data assimilation window. Thus, in this case initial values alone can

be optimized. It is shown in the right panels of Fig. 4.2 and Fig. 4.3 that the emission

rate plays a more and more important role on the influence of observations. In this two

cases, we consider both the concentration and emission rate as optimized parameters. At

the same time, the quantitative balances between the concentration and emission rate are

provided in Table 4.1.

Fig. 4.4 to Fig. 4.6 also show the ensemble relative improvements of the concentration

and emission rate under the same assumptions as Fig. 4.1 to Fig. 4.3 respectively, except

that the northeasterly wind is assumed. Clearly, with the northeasterly wind, whatever the

duration of the assimilation window is, the emission is not detectable and improvable by

that particular observation configuration. This hypothesis is demonstrated by our method.

The quantitative balances are exposed in Table 4.1.

Emission signal test: The purpose of emission signal test (Fig. 4.7 and Fig. 4.8) is
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to assess the efficiency of observation configurations to the emission rates evolved with

different diurnal profiles. We have the same assumptions as Fig. 4.3 except the wind

speed in Fig. 4.7 and Fig. 4.8 is accelerated such that the profiles of the emission rate

is better detectable as to observations. The only distinction between the situations in

Fig. 4.7 and Fig. 4.8 is the pronounced diurnal cycle background profile of the emission

rate during the assimilation window 48△t, schematically simulating a rush hour induced

source. Since the profiles of emission rates are correlated with the emitted amount of

that species during the data assimilation window, it is clearly shown in Table 4.1 that the

distinct variation of the emission rate during the data assimilation window acts to level p̃c

and p̃e, and thus helps to improve the estimates of source.

Diffusion test: The diffusion test (Fig. 4.9 and Fig. 4.10) aims to test the approach via

comparing the ensemble relative improvements of the concentration and the emission rate

at the layer z = 0, imposing both a weak diffusion process and a strong diffusion process.

We assume the observation configuration at each time step is located at (12, 10, 4) in the

diffusion test. The diffusion coefficients are K(z) = 0.5e−z2 in Fig. 4.9 and K(z) =
0.5e−z2 + 1 in Fig. 4.10. Besides, Fig. 4.9 and Fig. 4.10 preserve the same assumptions

with Fig. 4.3.

It is obviously seen from Fig. 4.3 and Fig. 4.9 that the different observation locations

strongly influence on the distribution of the relative improvements of the concentration.

Table 1 shows that with the same diffusion coefficient the total improvement value of the

concentration in the lowest layer in Fig. 4.3 is definitely larger than the one in Fig. 4.9.

Moreover, it can be seen from Table 1 that the observation configuration at the top layer is

not efficient to the emission rate with such weak diffusion within 48△t data assimilation

window .

Comparing Fig. 4.9 with Fig. 4.10, we can find that the ensemble relative improve-

ments of concentration and emission rate increase with the stronger diffusion process.

The increasing efficiency of the observation configuration with the stronger diffusion is

also verified by the total improvement values of the concentration and emission rate for

Fig. 4.9 and Fig. 4.10 in Table 4.2. The balances for Fig. 4.9 and Fig. 4.10 are shown in

Table 4.1. The significant difference of the “weight” of emission rate in Table 4.1 implies

that the observation configuration cannot detect the emission at the lowest layer with such

a weak diffusion in Fig. 4.9. At the same time, with the stronger in Fig. 4.10 both the

concentration and emission rate should be considered as optimized parameters with the

corresponding “weights”.

4.3 Sensitivity analysis of observational networks

The discussions about the observation efficiency above aim to evaluate and balance the

probable estimating improvements of initial values and emission rates in advance of the

execution of data assimilations. In this section, we will introduce the singular vector ap-

proach to identify the sensitive directions of observation networks to initial values and

emission rates and show the association between the efficiency and sensitivity of obser-

vation networks.
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4.3.1 Sensitivity analysis for discrete-time systems

Denoting

δx(t0) = x(t0)− x̂(t0) ∈ R
n×1,

where x̂(t0) is any estimate of x(t0) and consider the discrete-time linear system in

[t0, · · · , tN ], we consider

δx(tk+1) = M(tk+1, tk)δx(tk)

with the observation configuration

δyc(tk) = H(tk)δx(tk), δyc(tk) ∈ R
m(t)×1, (4.29)

where M(tk+1, tk) is the transition matrix and H(tk) is a matrix mapping model states

into the observation space. Then we define the magnitude of the perturbation of the initial

state by the norm in the state space with respect to a positive definite matrix W0

‖δx(t0)‖2W0
= 〈δx(t0),W0δx(t0)〉.

Similarly, we define the magnitude of the related observations perturbation in the time

interval [t0, · · · , tN ] by the norm with respect to a sequence of positive definite matrices

{W (tk)}Nk=1

‖δyc‖2{W (tk)}
=

N∑

k=0

〈δyc(tk),W (tk)δyc(tk)〉,

where

δyc =




δyc(t0)
δyc(t1)

...

δyc(tN )


 .

In order to find the direction of observation configuration which can minimize the

perturbation of the initial state, the ratio

‖δx(t0)‖2W0

‖δyc‖2{W (tk)}

, δy 6= 0m×1.

should be minimized. It is equivalent to maximize the ratio between the magnitude of

observation perturbation and the initial perturbation

‖δyc‖2{W (tk)}

‖δx(t0)‖2W0

, δx(t0) 6= 0n×1.
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Thus, we define the measure the perturbation growth as

g2 =
‖δyc‖2{W (tk)}

‖δx(t0)‖2W0

=

N∑

k=0

〈δyc(tk),W (tk)δyc(tk)〉
〈δx(t0),W0δx(t0)〉

=

N∑

k=0

〈H(tk)δx(tk),W (tk)H(tk)δx(tk)〉
〈δx(t0),W0δx(t0)〉

=
N∑

k=0

〈δx(tk),H⊤(tk)W (tk)H(tk)δx(tk)〉
〈δx(t0),W0δx(t0)〉

=

N∑

k=0

〈δx(t0),M⊤(tk, t0)H
⊤(tk)W (tk)H(tk)M(tk, t0)δx(t0)〉

〈δx(t0),W0δx(t0)〉

=
〈δx(t0),

∑N
k=0M

⊤(tk, t0)H
⊤(tk)W (tk)H(tk)M(tk, t0)δx(t0)〉

〈δx(t0),W0δx(t0)〉

=
〈δx(t0),G⊤WGδx(t0)〉
〈δx(t0),W0δx(t0)〉

, δx(t0) 6= 0, (4.30)

where G has the same definition with (4.7) and

W =




W (t0)
. . .

W (tN )


 .

According to Liao and Sandu [65], singular vectors refer to the directions of the error

growth in a descend sequence with respect to the decreasing singular values. Hence, in

order to search the maximal directions of g2, we need to find out the solutions of the

singular value problem:

W
− 1

2

0 G⊤WGW− 1

2

0 vk = s2kvk,

W
1

2GW−1
0 G⊤W

1

2uk = s2kuk,

where s1 > s2 > · · · > sn > 0 are singular values, {vk}ni=1 and {uk}ni=1 are the

corresponding orthogonal singular vectors. Then,

max
δx(t0)6=0

g2 = s21.

Especially, if the perturbation norms are provided by the choice W0 = P−1(t0|t−1)
and W = R−1,

g2 =
〈δx(t0),G⊤R−1Gδx(t0)〉

〈δx(t0), P−1(t0|t−1)δx(t0)〉
, δx(t0) 6= 0.
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We need to search the directions of

P
1

2 (t0|t−1)G⊤R−1GP 1

2 (t0|t−1)vk = s2kvk;

R− 1

2GP (t0|t−1)G⊤R− 1

2uk = s2kuk, k = 1, · · · , n.
(4.31)

The singular value sk shows the amplification of the impact of the initial state to the

observation configurations during the entire time interval. The associated singular vector

in the state space vk is the direction of kth-fast growth of the perturbation of observa-

tions evolved from the initial perturbation. We compare the sensitivity analysis with the

efficiency analysis in Section 4.1. Since

s2k
1 + s2k

are decreasing with the decrease of sk, k = 1, · · · , n, it is clear that vk is also the kth

direction which maximizes the relative improvement of estimates based on the Kalman

smoother. It indicates that most efficient directions of observation networks are the same

with the most sensitive directions of the observation networks to the initial perturbations.

Besides, the leading singular value s1 is related to the operator norm of P̃

‖P̃‖ = max
‖x‖=1

‖P̃ x‖ =
s21

1 + s21
,

which implies the upper boundedness of the relative improvement covariance.

From the analysis above we can find that the sensitivity analysis does not provide us

the information of covariances of estimates directly. However, it gives us an access to

approximate and target the sensitive parameters or areas with the certain metric of the

leading singular vectors weighted by the corresponding singular values.

4.3.2 Sensitivity analysis of the atmospheric transport model extended by

emission rates

Due to the homogeneity of the atmospheric transport model extended by emissions, the

sensitivity analysis can be easily applied into the extended atmospheric transport model

by dividing singular vectors into the block form according to the dimensions of the initial

state and emissions. The corresponding block parts of different singular vectors indicate

the different sensitive directions of the initial state and emissions.

We consider the same example in Section 4.2.2. Fig. 4.11 exhibits in its upper row

panels the singular values of Fig. 4.1 to Fig. 4.3. We approximate the sensitivities of the

initial concentrations by the first five leading singular vectors weighted by the associated

singular values in the nuclear norm and show the results in the three panels in the second

row. It is clearly visible that the sensitive area can be well targeted by only few singular

vectors, although the sensitivity analysis cannot provide the quantitative solutions with a

clear statistical significance as the efficiency analysis of observation networks.

Finally, similar to Fig. 4.11, the singular values of Fig. 4.9 and Fig. 4.10 and the

approximating targeting results of sensitive parameters are shown in Fig. 4.12.
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Figure 4.11: Singular values of Fig. 4.1 to Fig. 4.3 and sensitivities of initial states ap-

proximated by 5 leading singular values.

Figure 4.12: Singular values of Fig. 4.9 and Fig. 4.10 and sensitivities of initial states

approximated by 5 leading singular values.
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4.3.3 Sensitivity analysis for continuous-time systems

We generalize the sensitivity analysis in Section 4.3.1 into the following continuous-time

system

δx(t) = M(t, t0)δx(t0),

with the corresponding forecast perturbation of observations evolving from δx(t0)

δy(t) = H(t)δx(t).

To be brief, we assume W0 = P−1(t0|t−1) and W(t) = R−1(t) and define the

magnitude of the perturbation of the initial state and observations respectively by

‖δx(t0)‖2P−1(t0|t−1)
= 〈δx(t0), P−1(t0|t−1)δx(t0)〉,

‖δy‖2{R−1(t)} =

∫ tN

t0

〈δy(t), R−1(t)δy(t)〉dt.

Thus, the perturbation growth for continuous-time system can be measured by

g2 =
‖δy‖2{R−1(t))}

‖δx(t0)‖2P−1(t0|t−1)

=

∫ tN
t0

〈H(t)δx(t), R−1(t)H(t)δx(t)〉dt
〈δx(t0), P−1(t0|t−1)δx(t0)〉

=

∫ tN
t0

〈H(t)M(t, t0)δx(t0), R
−1(t)H(t)M(t, t0)δx(t0)〉dt

〈δx(t0), P−1(t0|t−1)δx(t0)〉

=
〈δx(t0),

∫ tN
t0

M⊤(t, t0)H
⊤(t)R−1(t)H(t)M(t, t0)δx(t0)dt〉

〈δx(t0), P−1(t0|t−1)δx(t0)〉

=
〈δx(t0),G∗R−1Gδx(t0)〉

〈δx(t0), P−1(t0|t−1)δx(t0)〉
, δx(t0) 6= 0, (4.32)

where G and R−1 are defined in (4.7).

To find the directions maximizing the ratio, we need to find the solutions of the sin-

gular value problem:

P
1

2 (t0|t−1)G∗R−1GP 1

2 (t0|t−1)vk = s2kvk,

R− 1

2GP (t0|t−1)G∗R− 1

2uk = s2kuk,
(4.33)

where s1 > s2 > · · · > sn > 0 are singular values, {vk}ni=1 and {uk}ni=1 are orthogonal

singular vectors.

Compared (4.33) with (4.17), similar analysis and conclusions as Section 4.3 can be

extended to continuous-time systems.

Until now, approaches to determining the efficiency and sensitivity of observation

configurations for discrete-time and continuous-time systems have been established. It
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can be found that some special operators are usually applied in order to deal with the spe-

cific questions in atmospheric chemistry. For example, in order to consider the efficiency

and sensitivity of observations in some certain locations, the local projection operator in-

troduced by Buizza et al. [13] can be applied into approaches in Section 4.2 and Section

4.3.

Let L be a 0− 1 diagonal matrix defined as

Lii = { 1, li ∈ La,
0, otherwise.

where La is a fixed area and li is the coordinate of ith grid point.

To test the efficiency and sensitivity of observation configurations in a special area,

by rearranging the observations y according to the locations, G in (4.7) should be defined

as

G =




LH(t0)M(t0, t0)
LH(t1)M(t1, t0)

...

LH(tN )M(tN , t0)


 .

If LH(·) is considered as the observation mapping, it is straightforward to apply the ap-

proaches stated above to analyse the efficiency and sensitivity of specialized observational

networks.

4.4 Emission source apportionments to observation networks

by singular vector analysis

In this section we apply the sensitivity analysis in Section 4.3 to solve the emission rate

apportionment problem. As mentioned before, emission rates are almost unobservable

in practice and we can extract the regular diurnal profiles of different-type emissions

for atmospheric models but have poor knowledge about their amplitude. Take CO2 for

example, the two peaked rush hour emission profile over the day is applicable for traffic

emissions. Base load operated power plants emit continuously. Biogenic sources and

sinks also have different profiles: CO2 from photosynthesis during daylight the sinking

peaks at noon. CO2 source from plant and soil respiration fairly continuous over 24 hours.

Hence, it is highly desired in practice to investigate, to what extend these different

diurnal source and sink shapes of one certain emitted species can be taken for source

apportionments. By author’s knowledge, the most existing papers concerning the source

apportionment problem, such as [25] and [64], usually identify the emission source by the

application of principal component analysis and multiple linear regression based on the

observation data. Independent with the observation data, we study the emission source

apportionment problem with the aid of the dynamic model extended by emission rates,

which has been introduced in Section 3.2.1. It benefits us that the concentration and emis-

sion rates can be jointly considered with the time evolution in the entire time interval. By

means of singular vector analysis, we can determine the emission source apportionments
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of one species under different observation configurations. If we take the data into ac-

count, the above emission source apportionments can be considered as the result to the

expectation of observations, in the statistical sense.

We establish the atmospheric transport models extended by emissions from different

sources in Section 4.4.1 and review the theoretical foundation based on singular value

decomposition for both the original model and its ensemble case in Section 4.4.2. By in-

vestigating the covariance between the normalized initial perturbation and coefficients of

the observation perturbation under the basis of observation space, we develop a sequence

of indexes in order to quantitatively study the contributions or namely sensitivities of con-

centrations and emissions. In Section 4.4.3, we give an elementary example to verify the

analysis above and study how the different profiles, locations of emissions and bound-

ary conditions effect the apportionments of the concentration and emissions. Finally,

in Section 4.4.4 we discuss the relationship of contributions of different states between

observation configurations to highly dimensional observation space and observation con-

figurations to one dimensional observation space.

4.4.1 Model description

We describe the chemical tendency equation including various emission rates, propagat-

ing forward in time, by the following atmospheric transport model

dc

dt
= A(c) +Be(t),

where A is a nonlinear model operator, B is a linear operator, c(t) is the state vector of

chemical constituents and e(t) is the emission rate for one species from different sources

at time t.
A prior estimate of the state vector of concentrations c(t) and the emission rate e(t)

are still denoted by cb(t) and eb(t), respectively.

Let A be the tangent linear operator of A, the evolution of the perturbation of states

c(t) and ei(t) follows the tangent linear model with A as

dδc

dt
= Aδc+Bδe(t), (4.34)

where δc(t) is the perturbation evolving from the perturbation of initial state of chemical

state δc(t0) = c(t0)− cb(t0) and emission rates δe(t) = e(t)− eb(t).
After discretizing the tangent linear model in space, let Mc(·, ·) be the evolution op-

erator or resolvent generated by An, the approximation of A in n−dimensional space. It

is straightforward to obtain the linear solution of (4.34) with continuous time as

δc(t) = Mc(t, t0)δc(t0) +

∫ t

t0

Mc(t, s)Bδe(s)ds, (4.35)

where δc(t) ∈ R
n. Mc(·, ·) ∈ R

n×n and B ∈ R
n×ne is the approximation of B on R

n.

Different types of emission sources, for example, the emissions from traffic and pho-

tosynthesis, have different diurnal profiles. We categorize the emission rates according
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the distinction of profiles of emissions and assume that there are ke different kinds of

emissions. here δe(t) = (δe⊤1 (t), · · · , δe⊤k (t))⊤ ∈ R
ne , where ne = ke × n is the di-

mension of the partial phase space of ke different kinds of emission rates from different

sources for one species.

In addition, let y(t) be the observation vector of c(t) and define

δy(t) = y(t)−H(t)cb(t),

where H(t) is a nonlinear forward observation operator mapping the model space to

the observation space. Then by linearizing the nonlinear operator H as H and define

δyc(t) = H(t)δc(t), the linearized model equivalents of observation configurations can

thus be presented as

δy(t) = δyc(t) + ν(t),

where δy(t) ∈ R
m(t), m(t) the dimension of the phase space of observation configura-

tions at time t. ν(t) is the observation error at time t following the Gaussian distribution

with zero mean and covariance R(t) ∈ R
m(t)×m(t) .

Under the constraint of diurnal profiles of emission rates and based on the background

knowledge of emission rates and only optimizing the amplitude of emission rates, with

the same idea in (3.8), we establish the dynamic model of each type of emission rates as

δei(t) = Mei(t, s)δei(s), i = 1, · · · , k, (4.36)

where Mei(t, s) is the diagonal matrix defined as

Mei(t, s) =




e1
bi
(t)

e1
bi
(s)

e2
bi
(t)

e2
bi
(s)

. . .
en
bi
(t)

en
bi
(s)




and ebi(·) ∈ R
n is the background vector of ith type of emissions, of which the jth

element is denoted by ejbi(·).
If we rewrite B as the block form B = (B1, · · · , Bke), where Bi ∈ R

n×n, i =
1, · · · , ke, (4.35) can be written as

δc(t) = Mc(t, t0)δc(t0) +

ke∑

i=1

∫ t

t0

Mc(t, s)BiMei(s, t0)δei(t0)ds. (4.37)

Hence, we obtain the model extended by emission rates




δc(t)
δe1(t)

...

δeke(t)


 = M(t, t0)




δc(t0)
δe1(t0)

...

δeke(t0)


 , (4.38)
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where

M(t, t0) :=


Mc(t, t0)
∫ t
t0
Mc(t, s)B1Me1(s, t0)ds · · ·

∫ t
t0
Mc(t, s)BkMek(s, t0)ds

Me1(t, t0) 0
. . .

0 Meke(t, t0)


 .

Typically, there is no direct observation for emissions. Therefore, we reconstruct the

observation mapping as

δyc(t) = (H(t), 0n×ne)

(
δc(t)
δe(t)

)
.

4.4.2 Singular vector analysis for emission source apportionments

If we denote

δx(t) = (δc⊤(t), δe⊤1 (t), · · · , δe⊤ke(t))⊤,
by observing (4.38), we only need to consider the generalized discrete-time linear system:

δx(tk+1) = M(tk+1, tk)δx(tk) (4.39)

and the covariance of δx(t0) is denoted by P (t0).
Correspondingly, we have the observation mapping of (4.39) with the normalized

observation error,

R− 1

2 (tk)δy(tk) = R− 1

2 (tk)δyc(tk) +R− 1

2 (tk)ν(tk), ν(tk) ∼ N (0, R(tk)). (4.40)

If we attempt to determine the emission source apportionments based on the model

(4.38), it is adequate to consider the influence between the initial perturbation including

the emission rates and the normalized observation perturbation {R− 1

2 (tk)δyc(tk)}Nk=1

instead of δy(tk), since the characteristic of the observation error, or equivalently, obser-

vations are statistically captured by {R(tk)}Nk=1. It indicates that the problem is already

independent with the real observation data now. Therefore, we define

δyc =




δyc(t0)
δyc(t1)

...

δyc(tk)


 , R =




R(t0)
R(t1)

. . .

R(tN )


 .

To find a sequence of orthogonal directions to investigate how the initial perturbation

influence on the observations, we consider the ratio to measure the perturbation growth

g2 =
‖R− 1

2 δyc‖2

‖P− 1

2 (t0)δx(t0)‖2
. (4.41)
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According to Section 4.3, we have

g2 =
〈δx(t0),

∑N
k=0M

⊤(tk, t0)H
⊤(tk)R

−1(tk)H(tk)M(tk, t0)δx(t0)〉
〈δx(t0), P−1(t0)δx(t0)〉

(4.42)

and the singular vectors referring to the following singular value decomposition shows

that the directions of the error growth in a descend sequence with respect to the descent

singular values. Hence, in order to search the maximal directions of

P
1

2 (t0)G⊤R−1GP 1

2 (t0)vk = s2kvk;

R− 1

2GP (t0)G⊤R− 1

2uk = s2kuk, k = 1, · · · , r,
(4.43)

where vk and uk are singular vectors in the state space and the observation space related

to the singular value sk, r is number of the positive singular values and G is defined as

(4.7).

The singular values si associated with the evolution of the corresponding singular

vectors in state space vi to the observation space ui, are the amplification of the impact of

the initial state to the observation configurations during the entire time interval. However,

in the real world, the initial perturbation is unlikely to be one of the singular vectors

exactly but usually a linear combination of the basis consisted by the singular vectors.

We know that it is not theoretically sufficient to determine the portion of each emission

source in the potential observations if we only consider few dominant singular values and

vectors, although the final result might be numerically approximated by few dominant

singular values and vectors. Besides, independent of the real observation data, it becomes

essential to interpret this problem with the clear statistical significance. Thus, we now

start with an arbitrary initial perturbation δx(t0). On one hand, we have shown in (4.42)

that the corresponding observation perturbation in the entire time interval [t0, · · · , tN ]
given by

R− 1

2 δy = R− 1

2Gδx(t0),
where δy = (δy⊤(t0), · · · , δy⊤(tN ))⊤. On the other hand,

R− 1

2 δyc = UC,

where C = U⊤R− 1

2 δyc is the coordinate vector of R− 1

2 δyc with the basis in U . Thus,

by the singular value decomposition in (4.43), we have

UC = USV ⊤P− 1

2 (t0)δx(t0),

and

C = SV ⊤P− 1

2 (t0)δx(t0). (4.44)

It is obvious from (4.44) that C is able to completely reflect the initial perturbation

δx(t0). Therefore, we consider the covariance between C and δx(t0)

cov(C,P− 1

2 (t0)δx(t0)) = cov(SV ⊤P− 1

2 (t0)δx(t0), P
− 1

2 (t0)δx(t0))

= SV ⊤P− 1

2 (t0)P (t0)P
− 1

2 (t0)

= SV ⊤. (4.45)
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If we denote

P = cov(C,P− 1

2 (t0)δx(t0))
⊤cov(C,P− 1

2 (t0)δx(t0)) = V S⊤SV ⊤,

in order to investigate to what extend, each entry in δx(t0) contributes to, or namely

is sensitive to the observation perturbations in the whole time interval, we consider the

square root matrix of P , which is given by

P
1

2 = V SV ⊤.

Then we denote the sensitivity of each entry by SST(δxi(t0)) and define as the ith ele-

ment of the diagonal of P , given by

SST(δxi(t0)) =

r∑

j=1

sjv
2
ji.

where vji is the ith element of the singular vector vj related to sj .
Furthermore, in order to determine the total sensitivity or contribution of the concen-

tration and each category of emission rates in δx(t0), we divide V and P
1

2 into the block

form, according to the dimensions of δc⊤(t0) and δe⊤i (t0), i = 1, · · · , ke, as

V =




V c

V e1

...

V eke


 , P

1

2 =




P
1

2
c P

1

2
ce1 · · · P

1

2
ceke

P
1

2
e1c P

1

2
e1 · · · P

1

2
e1eke

...
...

. . .
...

P
1

2
ekec · · · P

1

2
eke−1eke P

1

2
eke




.

Denoting the normalized block initial vector by

δx̃(t) := P− 1

2 (t0)δx(t) = (δc̃⊤(t), δẽ⊤1 (t), · · · , δẽ⊤ke(t))⊤,
we define the total sensitivity (TSST) or contribution by

TSST(δc(t0)) = ‖P
1

2
c ‖1 = ‖V cS(V c)⊤‖1 =

r∑

j=1

sj‖vcj‖2,

TSST(δei(t0)) = ‖P
1

2
ei‖1 = ‖V eiS(V ei)⊤‖1 =

r∑

j=1

sj‖veij ‖2, i = 1, · · · , ke.

where the jth singular vector vj with the block form vj = ((vcj)
⊤, (ve1j )⊤, · · · , (vekej )⊤)⊤

and here ‖ · ‖ is the Euclidean norm of vector.

Further, since V is an unitary matrix, we can normalize the total sensitivity as the

total sensitivity degree (TSST%) by

TSST%(δc(t0)) =
‖P

1

2
c ‖1

‖P 1

2‖1
=

∑r
j=1 sj‖vcj‖2∑r

j=1 sj
,

TSST%(δei(t0)) =
‖P

1

2
ei‖1

‖P 1

2‖1
=

∑r
j=1 sj‖veij ‖2
∑r

j=1 sj
, i = 1, · · · , ke.
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Obviously, it is more intuitive and straightforward to consider

cov(R− 1

2 δyc, P
− 1

2 (t0)δx(t0))

rather than cov(C,P− 1

2 (t0)δx(t0)) in (4.45). In fact,

P = cov(C,P− 1

2 (t0)δx(t0))
⊤cov(C,P− 1

2 (t0)δx(t0))

= V S2V ⊤

= V SU⊤USV ⊤

= cov(R− 1

2 δyc, P
− 1

2 (t0)δx(t0))
⊤cov(R− 1

2 δyc, P
− 1

2 (t0)δx(t0)).

Due to the uniqueness of singular value decomposition and C is uniquely determined by

U , it is equivalent to define SST, TSST and TSST% based on

cov(R− 1

2 δyc, P
− 1

2 (t0)δx(t0))

The various indices can meet our objective from different aspects. On one hand,

compared with SSTs or TSSTs, which are absolute values of contributions, the relative

index TSST%s can be more directly applied to compare the concentration and emission

source apportionments. On the other hand, the relativity of TSST%s causes the loss of

information about the amplitude of the impact of concentration and emission rates to the

potential observations, which is indicated by singular values and implicitly included in

SSTs and TSSTs.

Let us take the real data into account now. Because of the noises of observations

{ν(tk)}Nk=1, it could occur that some components of observation configurations δyc may

trap in the observation noises and be not effective to observations. Thus, our present

obstacle is how to judge the amplitudes of singular values and further decide which inde-

pendent directions included in SSTs are reliable and beyond observation noises.

As mentioned before, the observation error in (4.40) has been normalized to take the

identity matrix as the covariance. If we define

δỹ = ((R− 1

2 (t0)δy(t0))
⊤, · · · , (R− 1

2 (tN )δy(tN ))⊤)⊤,

then we have

cov(δỹ, δỹ) = R− 1

2GP (t0)GR− 1

2 + I.

According to the similar way to determine the degree of freedom of observation in [85,

Section 2.4.1], the effective independent components of the initial perturbation to the ob-

servations are the singular vectors of which the relative singular values are larger than the

unity. It not only provides a criteria to judge the amplitude of singular values and relia-

bility of each direction of the initial perturbation, but also gives an access to reasonably

approximate SSTs by the singular values larger than one and their corresponding singular

vectors.

In order to reduce the computation cost of solving the singular vector problem (4.31),

we project the original state space to a lower-rank sampling space. Thus, we assume that

there are q samplings of the initial perturbation, denoted by

X(t0) = (δx1(t0), δx2(t0), · · · , δxq(t0)),
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then its sampling covariance is given by

P̄ (t0) =
1

q − 1
X̃(t0)X̃

⊤(t0),

where

X̃(t0) = X(t0)−
1

q
X(t0)1q×q.

As shown in (4.46)

P̄
1

2 (t0)G⊤R− 1

2 = P̄ † 1

2 (t0)P̄
f
xyR− 1

2 , (4.46)

where P̄ † 1

2 (t0) is the pseudo inverse of P̄
1

2 (t0), P̄
f
xy = P̄ (t0)G⊤ is the sampling covari-

ance between initial perturbation δx(t0) and the corresponding forecasting observation

perturbations δy in the entire time interval. Hence, we only need to find out the singular

values and singular vectors of P̄ † 1

2 (t0)P̄
f
xyR− 1

2 , which can be easily computed since the

explicit pattern of G⊤ can be avoided and its rank must be less than the ensemble number.

4.4.3 Example

Consider a linear advection-diffusion model with periodic horizontal boundary condition

and Neumann boundary condition in the vertical direction on the domain [0, 14]×[0, 14]×
[0, 4],

∂δc

∂t
= −vx

∂δc

∂x
− vy

∂δc

∂y
+

∂

∂z
(K(z)

∂δc

∂z
) +

3∑

i=1

δei − δd, (4.47)

where δc, δei and δd are the perturbations of the concentration, emission rate and depo-

sition rate of a species respectively. vx and vy are constants and K(z) is a differentiable

function of height z.

Assume △t = 0.5, the numerical solution is based on the symmetric operator split-

ting technique [102] with the following operator sequence

δc(t +△t) = TxTyDzADzTyTxδc(t),

where Tx and Ty are transport operators in horizontal directions (x, y), Dz is the diffusion

operator in vertical direction z. The parameters of emission and deposition rates are

included in A. The Lax-Wendroff algorithm is chosen as the discretization method for

horizontal advection with △x = △y = 1. The vertical diffusion is discretized by Crank-

Nicolson discretization with the Thomas algorithm as the solver. The horizontal domain

is [0, 14] × [0, 14] with the horizontal space discretization interval, while the vertical

domain is [0, 4] with △z = 1. The number of the grid points is Ng = 1125.

In addition, we assume that ei, i = 1, 2, 3 in (4.47) are three different sorts of emis-

sions for one species with distinct profiles. Their background estimates are denoted by

ebi(t) respectively. They generate their corresponding evolution operator Mei(t, t0) such
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that with the same assumptions of △t and grid points in the 3D domain for δc(t), the

discrete dynamic model of emission rates is given by

δei(t+△t) = Mei(t+△t, t)δei(t), i = 1, 2, 3,

where the jth element on the diagonal of the diagonal matrix Mei(t +△t, t) is given by

ebi(t+△t)/ebi(t).
Here we consider the deposition rate as the input of model and then assume δd(t) = 0.

According to the discretization of the phase space, we assume the only one obser-

vation configuration is time-invariant in this example. It indicates that the observation

operator mapping the state space to the observation space is a 1×4Ng time-invariant ma-

trix. Meanwhile, it shows that our objective in this example is to investigate the portions

of emissions e1, e2 and e3 in the location with observations.

The background phenomenon of the concentration and emission rates at the initial

time by cb(t0), eb1(t0), eb2(t0), eb3(t0). Then we set 800 (the ensemble number q) sam-

plings respectively for the initial concentration and emission rates.

We produce the samplings by pseudo independent random numbers following the

multivariate Gaussian distribution with zero mean and diagonal initial covariance of

which the diagonal is given by

0.1(cb(t0), eb1(t0), eb2(t0), eb3(t0)),

which is 10% of the background phenomenon of the concentration and emission rates at

the initial time, and further make the states correlated with their adjacent states by the

moving average technique.

TSST
Fig.

4.13

Fig.

4.14

Fig.

4.15

Fig.

4.16

Fig.

4.17

Fig.

4.18

Fig. 4.19

Nonperiodic

Fig. 4.19

Periodic

δc 0.6687 0.6668 0.6750 0.6658 0.7240 1.0708 0.5300 1.0802

δe1 0.5147 0.5157 0.5157 0.4895 0.0284 0.1386 0.0020 0.3414

δe2 0.4758 0.4745 0.4794 0.4548 0.6094 0.1637 0.0019 0.2974

δe3 0.3520 0.3575 0.3504 0.4496 0.6042 0.1369 0.0016 0.3308

Table 4.3: TSST of Fig. 4.13 to Fig. 4.19.

TSST%
Fig.

4.13

Fig.

4.14

Fig.

4.15

Fig.

4.16

Fig.

4.17

Fig.

4.18

Fig. 4.19

Nonperiodic

Fig. 4.19

Periodic

δc 0.3324 0.3310 0.3342 0.3232 0.3682 0.7091 0.9897 0.5270

δe1 0.2560 0.2560 0.2550 0.2377 0.0145 0.0918 0.0038 0.1665

δe2 0.2366 0.2355 0.2373 0.2208 0.3100 0.1084 0.0036 0.1451

δe3 0.1750 0.1775 0.1735 0.2183 0.3073 0.0907 0.0029 0.1614

Table 4.4: TSST% of Fig. 4.13 to Fig. 4.19.
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Figure 4.13: Contour lines: SST at z = 0. Wind direction: southwest. Dot at (12, 10, 0):
The single observation configuration. Dot at (7, 5, 0): Emission source obtained from

{ebi(t0)}3i=1.
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Figure 4.14: Contour lines: SST at z = 0. Wind direction: southwest. Dot at (12, 10, 0):
The single observation configuration. Dot at (7, 5, 0): Emission source obtained from

{ebi(t0)}3i=1.
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Figure 4.15: Contour lines: SST at z = 0. Wind direction: southwest. Dot at (12, 10, 0):
The single observation configuration. Dot at (7, 5, 0): Emission source obtained from

{ebi(t0)}3i=1.
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Figure 4.16: Contour lines: SST at z = 0. Wind direction: southwest. Dot at (12, 10, 0):
The single observation configuration. Dot at (7, 5, 0): Emission source obtained from

{ebi(t0)}3i=1.
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Figure 4.17: Contour lines: SST at z = 0. Wind direction: southwest. Dot at (12, 10, 0):
The single observation configuration. Dot at (2, 5, 0) and (7, 5, 0): Emission source ob-

tained from {ebi(t0)}3i=1.
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Figure 4.18: Contour lines: SST at z = 0. Wind direction: southwest. Dot at (12, 10, 0):
The single observation configuration. Dot at (2, 5, 0): Emission source obtained from

{ebi(t0)}3i=1.
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Figure 4.19: SST at z = 0 of different boundary conditions Wind direction: northeast.

Dot at (12, 10, 0): The single observation configuration. Dot at (7, 5, 0): Emission source

obtained from {ebi(t0)}3i=1.
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Figure 4.20: Singular values of Fig. 4.16, Fig. 4.17 and Fig. 4.18.
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Fig. 4.16 Fig. 4.17 Fig. 4.18

T̃SST T̃SST% T̃SST T̃SST% T̃SST T̃SST%

δc 0.0707 0. 0533 0.0554 0.0466 0 0

δe1 0.4511 0.3397 0.0142 0.0119 0 0

δe2 0.3878 0.2921 0.5562 0.4680 0 0

δe3 0.4183 0.3150 0.5626 0.4734 0 0

Table 4.5: T̃SST and T̃SST% of Fig. 4.16 to Fig. 4.18.

From Fig. 4.13 to Fig. 4.16, we clarify how the profiles and amount of emissions are

related and contribute to the potential observations, or namely observation configurations.

The only difference between the assumptions in Fig. 4.13 to Fig. 4.16 is the profile of e3,

which is described by a sine function. It can be seen from Table 4.3 and 4.4 that either

the amplitude (Fig. 4.13) or frequency (Fig. 4.15) of the profile of e3 is enlarged, TSST

and TSST% of e3 almost keep the same, which further make TSST and TSST% among

e1, e2 and e3 invariant. In fact, if we denote the profiles of e3 in Fig. 4.13 to Fig. 4.15

by M1
e3(t, t0), M

2
e3(t, t0), M

3
e3(t, t0), respectively. With the same initial perturbation

δe3(t0), we have

∫ t

t0

M1
e3(s, t0)δe3(t0)ds ≈

∫ t

t0

M2
e3(s, t0)δe3(t0)ds ≈

∫ t

t0

M3
e3(s, t0)δe3(t0)ds.

(4.48)

We can see from (4.48) that the variations of the profile of e3 do not lead to the change

of the total amount of e3 during the data assimilation window, and further the change of

TSSTs and TSST%s of δe1(t0), δe2(t0), δe3(t0). In addition, compared to Fig. 4.13, we

can find that the emission e3 contributes more in Fig. 4.16. Denoting the profile of e3 in

Fig. 4.16 by M4
e3(t, t0), it is obvious that

∫ t

t0

M4
e3(s, t0)δe3(t0)ds >

∫ t

t0

M i
e3(s, t0)δe3(t0)ds, i = 1, 2, 3. (4.49)

(4.49) shows that the total amount of e3 during the data assimilation window in Fig. 4.15

increases though the amplitude and frequency of the profile of e3 are same to the pro-

file in Fig. 4.13. Thus, it is clear that the profiles of emissions are closely related to the

amount of emissions under the same initial perturbation of emissions. Therefore, we can

conclude that the variations of profiles of emissions which bring changes of the emis-

sion amounts can effect SST, TSST and TSST% significantly, equivalently, change the

emission apportionments.

It can be found in Fig. 4.13 to Fig. 4.16, the apportionment of e1 is always dominant.

Following the same assumptions in Fig. 4.16 except for giving a distinct information

about the location of emission source of e1(t0) from eb1(t0), it is shown in Fig. 4.17 that

the apportionment of e1 decreases significantly. Actually, due to the southwesterly wind,

we can foresee that the apportionment of e1 will decrease, which is verified in Fig. 4.17.

In Fig. 4.18, we consider a more extreme case that all emissions are not well-detectable

by setting the emission sources of e2 and e3 at the same locations as e1 in Fig. 4.17. We
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can clearly see from TSST% in Table 4.4 that all of emissions totally contribute only

around 29% to the observations in Fig. 4.18. In other word, the concentration take around

70% of the observations in the location shown in Fig. 4.18. This property completely ben-

efits from our extended model which both emissions and concentrations are included in

the state vector of the model.

Distinct with Fig. 4.13 to Fig. 4.18, we assume there is a northeasterly wind in the

case of Fig. 4.19 and show the influence of the boundary condition on the emission ap-

portionments. It is easy to analyze that with the northeasterly wind, it is hard for the

single observation at each time step in Fig. 4.19 to detect the three-type of emissions if

the advection boundary condition is nonperiodic Dirichlet boundary condition. However,

if the advection boundary condition is periodic and the wind speed is high enough, the

emissions have the opportunity to be detected. This conclusion is perfectly shown in

Fig. 4.19. The quantitative results are shown in Table 4.3 and Table 4.4.

In Fig. 4.20 we show the singular values in a decreasing sequence of the cases in

Fig. 4.16, 4.17 and 4.18. It is obvious that there is only one leading singular value larger

than 1 in the cases of Fig. 4.16 and 4.17, and no singular value larger than 1 in the

situation of Fig. 4.18. If we only consider the contribution to TSST and TSST% of

those directions dominant the normalized observation error, which are denoted by T̃SST

and T̃SST%, respectively, we obtain the comparison among TSST, TSST% , T̃SST and

T̃SST% in Table 4.3 to Table 4.5 for Fig. 4.16 to Fig. 4.18.

It is worth noticing that T̃SST%s of the emissions are usually larger than the corre-

sponding TSST%s since in those directions in which the variability of states are weaker

than the variability of the observation error and within the first several time steps the

emissions are hardly detected while the concentration is dominant. This leads us to “un-

derestimate” T̃SST of the concentration since those directions, which are weak for emis-

sion but contain more information for the concentration, are not considered. This can

be verified by observing the results in Table 4.5. Compared with TSST in Table 4.3 and

TSST%s in Table 4.4, T̃SSTs of the concentration decrease more than emissions. Be-

sides, we show in Table 4.5 that T̃SSTs and T̃SST%s are zeros for the reason that there

is no singular value larger than 1 in the case of Fig. 4.18. This extreme case indicates,

though we can gain the potential contributions of the concentration and emissions, it is

probably unreliable if we apply the result into the real observation data, since the influ-

ence of observation errors during the data assimilation window on the data is stronger

than the influence of the effective observations of the state.

4.4.4 Joint influence of observation configurations

We now assume that there is a sequence of observation operators Hn(tk), n = 1, · · · ,m,

at each time step tk, k = 1, · · · , N . Each row of Hn(tk), n = 1, · · · ,m represents

a observation at different locations or of different species. Rearranging all the rows of

{Hn(tk)}mn=1 according to the state vector, we gain a new observation operator H(tk)
including all the rows of {Hn(tk)}mn=1. Thus, the sensitivities or contributions of different

emission rates under the observation operator {H(tk)}Nk=1 can be viewed as ones the
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jointly influenced by Hn(tk), n = 1, · · · ,m. In this section we study how the jointly

sensitivities are related with the sensitivities under Hn(tk), n = 1, · · · , h, respectively.

As an analogy to the notations in the last section, we denote the observation mapping

related with Hn(·) as

R
− 1

2
n (tk)δyn(tk) = R

− 1

2
n (tk)δyc,n(tk) +R

− 1

2
n (tk)ν(tk), νn(tk) ∼ N (0, Rn(tk)).

Correspondingly, with above Hn(·) and Rn(·), Gn and Rn are similarly defined as G and

R. By singular value decomposition, we have

R− 1

2
n GnP

1

2
n (t0) = UnSnV

⊤
n ,

where Un and Vn are orthogonal matrices consisted by singular vectors and Sn is rectan-

gular matrix of which the diagonal consists of singular values. If we assume

Ū =




U1

. . .

Um


 ,

then there exists an invertible matrix L such that U = ŪL, since Ū is also an unitary

matrix. Denoting the coefficients of observation perturbations under the basis Un and U
by Cn and C respectively, we obtain

R− 1

2
n δyn = UnCn, R− 1

2 δy = UC.

Then by denoting

C̄ =




C1
...

Cm


 ,

we have C̄ = LC . Thus, on one hand, similar with (4.45)

cov(C̄, P− 1

2 (t0)δx(t0)) =




S1V
⊤
1

...

SmV ⊤
m


 .

On the other hand,

cov(C̄, P− 1

2 (t0)δx(t0)) = cov(LC,P− 1

2 (t0)δx(t0))

= L · cov(C,P− 1

2 (t0)δx(t0)) = LSV ⊤.

Since Ū and U are unitary matrices, by L⊤L = U⊤Ū Ū⊤U = I , then L is an unitary

matrix as well. Hence,

cov(C,P− 1

2 (t0)δx(t0))
⊤cov(C,P− 1

2 (t0)δx(t0))

= V S⊤SV ⊤

= V S⊤L⊤LSV ⊤

= cov(C̄, P− 1

2 (t0)δx(t0))
⊤cov(C̄, P− 1

2 (t0)δx(t0)).
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We can find that the joint SST, TSST and further TSST% from multiple observation

configuration H can be calculated by the singular values and singular vectors based on

{Hn}. It means that through the singular value decomposition based on a sequence of

low-rank observation configurations, we can obtain their SSTs, TSST%s but also SST

of the high-rank observation without additional high computational costs. It makes the

selection of observation configurations more flexible.



Chapter 5

Optimal Control Locations for

Time-Varying Systems in Hilbert

Spaces on a Finite-Time Horizon

The choice of the locations of control hardware, such as actuators, plays an impor-

tant role in the designs of control systems for many physical and engineering problems.

Proper locations of actuators are essential to improve the performance of the controlled

system.

In this chapter, we will start from the infinite-dimensional state space to consider the

optimal location problem of controllers for time-varying systems on a finite-time horizon.

In Section 5.2 we study the linear-quadratic optimal location control problem for both de-

terministic and stochastic systems and develop conditions guaranteeing the existence of

optimal locations of linear quadratic control problems. Associated with practical appli-

cations, since optimal control problems cannot be solved directly in infinite-dimensional

spaces, a sequence of approximations of the original time-varying system have to be con-

sidered. Thus, in Section 5.3, as an analogy to the approximation theory of time-invariant

systems, we introduce the similar approximation conditions of evolution operators in or-

der to ensure that the approximated control problems converge to the optimal control

problem of the original infinite-dimensional time-varying system. Further, we show the

convergence of the sequence of minimal costs and a subsequence of optimal locations of

approximations.

5.1 Linear-quadratic optimal control problem

Throughout this chapter, we will always assume that the state space of the time-varying

system is a real separable Hilbert space X, and the input and output space are Hilbert

spaces denoted by U and Y , respectively. We firstly introduce the notion of mild evolution

operators for the time-varying system.

Definition 5.1.1. Denote Γb
a : {(t, s)| − ∞ < a 6 s 6 t 6 b < ∞}. We call T (·, ·) :

Γb
a → L(X) a mild evolution operator if
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1. T (t, t) = I,

2. T (t, r)T (r, s) = T (t, s), a 6 s 6 r 6 t 6 b,

3. T (·, s) : [s, b] → L(X) and T (t, ·) : [a, t] → L(X) are strongly continuous,

4. λ := sup
(t,s)∈Γb

a

‖T (t, s)‖ < ∞.

In the following we assume that T (·, ·) : Γb
a → L(X) is a mild evolution operator

and B ∈ L∞
s (a, b;U,X) with B∗ ∈ L∞

s (a, b;X,U). Here

L∞
s (a, b;X,Y ) := {F : [a, b] → L(X,Y ) | F is strongly measurable and

‖F‖∞ := esssup
t∈[a,b]

‖F (t)‖ < ∞}.

For the uniformly bounded mild evolution operator, the following perturbation theo-

rem will be very helpful.

Theorem 5.1.2. [43, Theorem 2.1] Let T (·, ·) be a mild evolution operator with uni-

formly bounded λ, B ∈ Ls,∞(τ, t;X,X) and (t, τ) ∈ Γb
a. Then there exists an uniquely

determined mild evolution operator TB(·, ·) : Γb
a → L(X) satisfying the integral equa-

tion

TB(t, τ)x = T (t, τ)x+

∫ t

τ
T (t, s)B(s)TB(s, τ)xds, x ∈ X

TB(·, ·) is called the perturbed evolution operator corresponding to the perturbation of

T (·, ·) by B and

‖TB(·, ·)‖ 6 λeλ‖B‖∞(t−τ).

Moreover, TB(t, τ) is also the unique solution of

TB(t, τ)x = T (t, τ)x+

∫ t

τ
TB(t, s)B(s)T (s, τ)xds, x ∈ X.

For an initial time t0 ∈ [a, b], we consider the time-varying system described by

x(t) = T (t, t0)x0 +

∫ t

t0

T (t, s)B(s)u(s)ds, t ∈ [t0, b], (5.1)

where x0 ∈ X and u ∈ L2(t0, b;U). We are interested in the following linear-quadratic

optimal control problem.

Linear-Quadratic Optimal Control Problem: Find for x0 ∈ X a control u0 ∈ L2(t0, b;U)
which minimizes the cost functional

J(t0, x0, u)

= 〈x(b), Gx(b)〉 +
∫ b

t0

〈C(s)x(s), C(s)x(s)〉+ 〈u(s), F (s)u(s)〉ds, (5.2)
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where the function x is given by (5.1). Here C ∈ L∞
s (a, b;X,Y ), G ∈ L(X) and F ∈

L∞
s (a, b;U,U) are self-adjoint and nonnegative for fixed t, and F−1 ∈ L∞

s (a, b;U,U).

It is well known [43], that the linear-quadratic optimal control problem possesses for

x0 ∈ X a unique solution u0, which is given by

u0(t) = −L(t)x(t), t ∈ [t0, b],

where L(t) = F−1(t)B∗(t)Π(t), such that the minimum of the cost functional is given

by

min
u∈L2(t0,b;U)

J(t0, x0, u) = J(t0, x0, u0) = 〈x0,Π(t0)x0〉,

where the self-adjoint nonnegative operator Π(t) is the unique solution of the first integral

Riccati equation (IRE)

Π(t)x = T ∗(b, t)GT (b, t)x

+

∫ b

t
T ∗(s, t)[C∗(s)C(s)−Π(s)B(s)F−1(s)B∗(s)Π(s)]T (s, t)xds (5.3)

and the second IRE

Π(t)x = T ∗
L(b, t)GTL(b, t)x

+

∫ b

t
T ∗
L(s, t)[C

∗(s)C(s) + Π(s)B(s)F−1(s)B∗(s)Π(s)]TL(s, t)xds, (5.4)

where according to Theorem 5.1.2, we simply denote

TL(t, τ)x := T−BL(t, τ)

= T (t, τ)x−
∫ t

τ
T (t, s)B(s)F−1(s)B∗(s)Π(s)TL(s, τ)xds, (t, τ) ∈ Γb

a.

5.2 Existence of optimal control locations

In this section we consider the situation having the opportunity to choose m locations

to control and each location varies over a compact set Ω ⊂ R
l. We indicate these m

locations by the parameter r ∈ Ωm, and denote the location-dependent input operator

B(·) by Br(·). Throughout this chapter, for the location-dependent control problem, we

consider the time-varying system

x(t) = T (t, t0)x(t0) +

∫ t

t0

T (t, s)Br(s)u(s)ds, t ∈ [t0, b], r ∈ Ωm (5.5)

with the corresponding cost functional

J(t0, x0, u)

= 〈x(b), Gx(b)〉 +
∫ b

t0

〈C(s)x(s), C(s)x(s)〉+ 〈u(s), F (s)u(s)〉ds. (5.6)
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The unique feedback control such that

min
u∈L2(t0,b;U)

J(t0, x0, u) = J(t0, x0, u0) = 〈x0,Πr(t0)x0〉,

is given by

u(t) = −Lr(t)x(t),

where Lr(t) = F−1(t)B∗
r (t)Πr(t) and Πr(t) is the unique solution of

Πr(t)x = T ∗(b, t)GT (b, t)x

+

∫ b

t
T ∗(s, t)[C∗(s)C(s)− L∗

r(s)F (s)L∗
r(s)]T (s, t)xds (5.7)

and

Πr(t)x = T ∗
L,r(b, t)GTL,r(b, t)x

+

∫ b

t
T ∗
L,r(s, t)[C

∗(s)C(s) + L∗
r(s)F (s)L∗

r(s)]TL,r(s, t)xds, (5.8)

where

TL,r(t, τ)x := T−BrLr(t, τ)

= T (t, τ)x−
∫ t

τ
T (t, s)Br(s)Lr(s)TL,r(s, τ)xds, (t, τ) ∈ Γb

a.

In most cases, the initial state x0 is not fixed. This indicates several different ways

to define the optimal actuator location problem. We take two possible ways into account

here. The first one is to minimize the cost with the worst choice of initial value, which is

max
‖x0‖=1

min
u∈L2(t0,b;U)

Jr(x0, u) = max
‖x0‖=1

〈x0,Πr(t0)x0〉 = ‖Πr(t0)‖.

Let ℓr(t0) := ‖Πr(t0)‖, the optimal performance of r, if it exists, is defined as

ℓ̂(t0) = inf
r∈Ωm

‖Πr(t0)‖.

The second one is to assume that the system is stochastic. Thus, we need to consider

the trace of Πr(t0) instead, since the trace indicates the sum of the deviation of the state

vector in each coordinate. Thus the evaluation of the particular performance of r is given

by the nuclear norm of Πr(t0), which is denoted by ℓr1(t0) := ‖Πr(t0)‖1. Further, the

optimal performance, if it exists, is defined as

ℓ̂1(t0) = inf
r∈Ωm

‖Πr(t0)‖1.

It is worth noting that the optimal location r for Π(t) in both norms relies on the time t.
We simplify the notation r(t) as r in the rest of this thesis.

For time-invariant systems on an infinite time horizon this optimal location problem

is studied in [75]. In this section we prove the existence of optimal control locations for

deterministic as well as stochastic time-varying systems on a finite-time horizon. For

these proofs, the following theorem in [43, Theorem 5.1] is needed.
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Theorem 5.2.1. [43, Theorem 5.1] For Hilbert spaces X, U , Y with the operators Bi, C ,

G, F satisfying the same assumptions in Section 5.1, we consider a sequence of optimal

control problem with the initial states xi(t0) and let xi(t0) → x(t0), the optimal controls

ui(·), the optimal trajectories xi(·) have the corresponding cost function

J(t0, xi(t0), u) = 〈x(b), Gx(b)〉+
∫ b

t0

〈C(t)x(t), C(t)x(t)〉+〈u(t), F (t)u(t)〉dt, (5.9)

where

x(t) = Ti(t, t0)x(t0) +

∫ t

t0

Ti(t, s)Bi(s)u(s)ds.

For the sequence of optimal problems, assume there exists a optimal control problem with

the cost functional (5.9) governed by

x(t) = Ti(t, t0)x(t0) +

∫ t

t0

Ti(t, s)Bi(s)u(s)ds,

where T (·, ·) the uniformly bounded mild evolution operator and input operator B ∈
Ls,∞(t0, b;X,U), such that

(1) for each x ∈ X,

(i) Ti(t, s)x → T (t, s)x; (ii) T ∗
i (t, s)x → T ∗(t, s)x, t0 6 s 6 t 6 b,

(2) for each u ∈ U , x ∈ X

(i) Bi(t)u → B(t)u; (ii) B∗
i (t)x → B∗(t)x, a.e. t ∈ [t0, b],

(3) for each x ∈ X,

(i) Ci(t)x → C(t)x; (ii) C∗
i (t)y → C∗(t)y, a.e. t ∈ [t0, b],

(4) for each x ∈ X,

Gix → Gx,

(5) for each u ∈ U ,

Fi(t)u → F (t)u; a.e.

and ‖Ti(·, ·)‖, ‖Bi‖∞, ‖Ci‖∞, ‖Gi‖, ‖Fi‖∞ are uniformly bounded, then we have

ui(t) → u(t),

xi(t) → x(t),

Πi(t)x → Π(t)x,

where Πi(·) are the solutions of the sequence of the integral Riccati equations and Π(·)
is the solution of the Riccati equation of the original optimal problem.
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Theorem 5.2.2. Let {Br}r∈Ωm be a family of compact operators valued functions with

the property that limr→r0 ‖Br − Br0‖∞ = 0 for any r0 ∈ Ωm. Then the solution of the

corresponding integral Riccati equation Πr satisfies

lim
r→r0

‖Πr(t)−Πr0(t)‖ = 0, t ∈ [a, b]

and for any initial time t0 ∈ [a, b], there exists an optimal location r̂ such that

ℓ̂(t0) = ‖Πr̂(t0)‖ = inf
r∈Ωm

‖Πr(t0)‖.

Proof. Due to the assumptions on Br, there exists δ > 0 such that

λB := sup{‖Br(t)‖ | t ∈ [a, b], ‖r − r0‖ 6 δ} < ∞.

We denote

B(r0, δ) := {r ∈ Ωm : ‖r − r0‖ 6 δ}.
Theorem 5.2.1 implies for every x ∈ X

Πr(t)x → Πr0(t)x, r → r0.

For any feedback control ũ(t) = L̃(t)x(t), L̃ ∈ L∞
s (a, b;X,U),

〈x(t),Πr(t)x(t)〉 = min
u∈L2([t0,b];U)

J(t, x(t), u) 6 J(t, x(t), ũ)

= 〈x(b), Gx(b)〉 +
∫ b

t
‖C(s)x(s)‖2 + 〈L̃(s)x(s), F (s)L̃(s)x(s)〉ds

= ‖G 1

2TL̃,r(b, t)x(t)‖2

+

∫ b

t
‖C(s)TL̃,r(s, t)x(t)‖2 + ‖F 1

2 (s)L̃(s)TL̃,r(s, t)x(t)‖2ds, (5.10)

where

TL̃,r(t, τ)x := T (t, τ)x+

∫ t

τ
T (t, s)Br(s)L̃(s)TL̃,r(s, τ)xds, (t, τ) ∈ Γb

a.

Since the family {Br} is uniformly bounded by λB on B(r0, δ), Theorem 5.1.2 im-

plies for all r ∈ B(r0, δ), (t, τ) ∈ Γb
a,

‖TL̃,r(t, τ)‖ ≤ λe(λλB‖L̃‖∞(t−τ)).

Further, because C ∈ L∞
s (a, b;X,Y ), F ∈ L∞

s (a, b;U,U), there exists a constant λΠ,

independent of t and r ∈ B(r0, δ), such that ‖Πr‖∞ 6 λΠ.
For Sr = C∗C − L∗

rFLr, where Lr = F−1B∗
rΠr, we obtain

Πr(t)x−Πr0(t)x =

∫ b

t
T ∗(s, t) (Sr(s)− Sr0(s))T (s, t)xds, x ∈ X.



5.2 Existence of optimal control locations 81

Since F−1 ∈ L∞
s (a, b;U,U) and the operator Br0(t) is compact for any t ∈ [a, b], we

have

‖L∗
r(t)− L∗

r0(t)‖ = ‖L∗
r0(t)F (t)Lr0(t)− L∗

r(t)F (t)Lr(t)‖
6 ‖F−1‖∞(‖Πr(t)‖‖Br(t)−Br0(t)‖

+‖(Πr(t)−Πr0(t))Br0(t)‖) −→ 0, r → r0,

which shows

‖Sr(t)− Sr0(t)‖ 6 ‖L∗
r0(t)− L∗

r(t)‖‖F (t)Lr0(t)‖
+‖L∗

r(t)F (t)‖‖Lr0(t)− Lr(t)‖ → 0, r → r0.

From the uniform boundedness of F , Br and Πr on B(r0, δ), Lr and further Sr are uni-

formly bounded for all t ∈ [a, b] and B(r0, δ). According to the dominated convergence

theorem, we obtain

‖Πr(t)−Πr0(t)‖ → 0, r → r0.

Additionally, since r ∈ Ωm, Ωm is a compact set, there exists an optimal location r̂
depending on t0 such that

‖Πr̂(t0)‖ = inf
r∈Ωm

‖Πr(t0)‖.

Theorem 5.2.2 shows the continuity of optimal actuator locations and existence of the

optimal location in the operator norm. For stochastic systems, the above problem leads

to the nuclear norm. Thus, first we develop conditions which guarantee that the Riccati

operator is a nuclear operator. Similar to [23, Theorem 3.1], we have

Theorem 5.2.3. Let T (·, ·) be a mild evolution operator on X, B ∈ L∞
s (a, b;Cp,X),

and C ∈ L∞
s (a, b;X,Cq). Then for any t0 ∈ [a, b] we have:

(1) The observability operator Ct0 : X → L2(t0, b;C
q) defined by

(Ct0x0)(·) = C(·)T (·, t0)x0, x0 ∈ X

is a Hilbert-Schmidt operator.

(2) The controllability operator Bt0 : L2(t0, b;C
p) → X defined by

Bt0u =

∫ b

t0

T (b, s)B(s)u(s)ds

is a Hilbert-Schmidt operator.

(3) C∗
t0Ct0 and Bt0B∗

t0 are nuclear operators.

Proof. (1) Defining Ct0,i : X → L2(t0, b), i ∈ {1, . . . , q}

(Ct0,ix0)(s) = 〈C(s)T (s, t0)x0, ei〉, s > t0,
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where {ei} is the standard orthogonal basis of Cq. We have

|(Ct0,ix0)(s)| = |〈C(s)T (s, t0)x0, ei〉| 6 ‖C(s)T (s, t0)x0‖‖ei‖
6 ‖C(s)‖‖T (s, t0)‖‖x0‖ < ∞.

The uniform boundedness of C , T (·, ·) and [98, Theorem 6.12] imply that Ct0,i is Hilbert-

Schmidt, that is, for any orthogonal basis {ēi} of X, we have

q∑

i=1

∞∑

j=1

‖Ct0,iēj‖2L2(t0,b)
< ∞.

Since ‖Ct0 ēj‖2L2(t0,b)
=
∑q

i=1 ‖Ct0,iēj‖2L2(t0,b)
, we have

∞∑

j=1

‖Ct0 ēj‖2L2(t0,b;Cq) =

q∑

i=1

∞∑

j=1

‖Ct0,iēj‖2L2(t0,b)
< ∞,

which shows that Ct0 is a Hilbert-Schmidt operator.

(2) According to [98, Theorem 6.9], Bt0 is a Hilbert-Schmidt operator if and only if

B∗
t0 is a Hilbert-Schmidt operator. An easy calculation shows B∗

t0 : X → L2(t0, b;U),

(B∗
t0x)(·) = B∗

t0(·)T ∗(b, ·)x.

From (1), B∗
t0 is Hilbert-Schmidt, and so is Bt0 .

(3) Since

‖C∗
t0Ct0‖1 6 ‖C∗

t0‖HS‖Ct0‖HS < ∞,

‖Bt0B∗
t0‖1 6 ‖B∗

t0‖HS‖Bt0‖HS < ∞,

C∗
t0Ct0 and Bt0B∗

t0 are nuclear operators.

Corollary 5.2.4. Assume that the input space U and the output space Y are finite-

dimensional spaces and G is a nuclear operator, then the unique nonnegative self-adjoint

solution Π(t0) of the integral Riccati equation is a nuclear operator.

Proof. Defining the bounded operator Ct0 : X → L2(t0, b;U × Y ) by

(Ct0x0)(·) =
(

C(·)
F

1

2 (·)L(·)

)
TL(·, t0)x0, L = F−1B∗Π.

Ct0 is Hilbert-Schmidt by Theorem 5.2.3 (1) The second IRE (5.4) can be rewritten as

Π(t0)x = T ∗
L(b, t0)GTL(b, t0)x+ C∗

t0Ct0x, x ∈ X.

From Theorem 5.2.3 (3) and the nuclearity of G, Π(t) is a nuclear operator.
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Lemma 5.2.5. Assume T (·, ·) and Ti(·, ·), i ∈ N, are mild evolution operators which are

uniformly bounded by λT , Di,D ∈ L∞
s (a, b;X,X) satisfy

‖Di(t)x−D(t)x‖ → 0, i → ∞.

for every x ∈ X and supi{‖Di‖∞, ‖D‖∞} 6 λD. TDi
(·, ·), TD(·, ·) denote the per-

turbed evolution operators corresponding to the perturbation of Ti(·, ·) by Di and T (·, ·)
by D. If ‖Ti(t, τ)x − T (t, τ)x‖ → 0 as i → ∞ for x ∈ X, then for any (t, τ) ∈ Γb

a and

x ∈ X,

‖TDi
(t, τ)x − TD(t, τ)x‖ → 0, i → ∞.

Proof. As in [20], we construct TDi
(t, τ) as TDi

(t, τ) =
∑∞

n=0 TDi,n(t, τ), where

TDi,0(t, τ) = Ti(t, τ), TDi,n(t, τ)x =

∫ t

τ
Ti(t, s)Di(s)TDi,n−1(s, τ)xds, x ∈ X.

By induction we obtain

‖TDi,n(t, τ)‖ 6 λT (λTλD)
n (t− τ)n

n!
.

TD(t, τ) can be constructed in a similar manner with the same upper bound.

Defining di,n(t, τ) = TDi,n(t, τ)− TD,n(t, τ), we have

di,0(t, τ) =Ti(t, τ)− T (t, τ),

di,n(t, τ) =

∫ t

τ
Ti(t, s)Di(s)di,n−1(s, τ)ds

+

∫ t

τ
Ti(t, s)[Di(s)−D(s)]TD,n−1(s, τ)ds

+

∫ t

τ
[Ti(t, s)− T (t, s)]D(s)TD,n−1(s, τ)ds.

The uniform boundedness of {TDi
(t, τ)}i∈N and TD(t, τ) implies

‖
∞∑

n=0

di,n(t, τ)‖ = ‖
∞∑

n=0

(TDi,n(t, τ) − TD,n(t, τ)) ‖

6 ‖TDi
(t, τ)‖ + ‖TD(t, τ)‖ < ∞.

Due to supi{‖Di‖∞, ‖D‖∞} 6 λD and T (·, ·), Ti(·, ·) are uniformly bounded, the mild

evolution operators TD(·, ·), TDi
(·, ·) are uniformly bounded. Further for any n ∈ N,

sup
i

sup
(t,τ)∈Γb

t0

‖di,n(t, τ)‖ < ∞.

Meanwhile, since ‖Di(t)x−D(t)x‖ → 0, we gain

‖di,0(t, τ)x‖ = ‖Ti(t, τ)x − T (t, τ)x‖ → 0, i → ∞.
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Hence,

‖di,n(t, τ)x‖ 6

∫ t

τ
‖Ti(t, s)‖‖Di(s)‖‖di,n−1(t, τ)x‖ds

+

∫ t

τ
‖Ti(t, s)‖‖[Di(s)−D(s)]TD,n−1(s, τ)x‖ds (5.11)

+

∫ t

τ
‖(Ti(t, s)− T (t, s))(s)TD,n−1(s, τ)x‖ds −→ 0, i → ∞.

By the dominated convergence theorem, we have

‖TDi
(t, τ)x− TD(t, τ)x‖ =

∞∑

n=0

‖TDi,n(t, τ)x− TD,n(t, τ)x‖

6

∞∑

n=0

‖di,n(t, τ)x‖ → 0, i → ∞.

Corollary 5.2.6. For any mild evolution operator T (·, ·) with uniform bound λT and

Di,D ∈ L∞
s (t0, b;X,X) with supi{‖Di‖∞, ‖D‖∞} 6 λD, if ‖Di(t) − D(t)‖ → 0.

TD(·, ·) and TDi
(·, ·) are the perturbations of T (·, ·) by D and Di, then we have

‖TDi
(t, τ) − TD(t, τ)‖ → 0, i → ∞.

Proof. We let Ti = T in Lemma 5.2.5 and replace (5.11) by

‖di,n(t, τ)‖ 6

∫ t

τ
‖T (t, s)‖‖Di(s)‖‖di,n−1(t, τ)‖ds

+

∫ t

τ
‖T (t, s)‖‖Di(s)−D(s)‖‖TD,n(s, τ)‖ds → 0, i → ∞.

Then, we can prove the uniform convergence of TDi
(t, τ) by the dominated conver-

gence theorem in the similar way with Lemma 5.2.5.

Theorem 5.2.7. We consider the time-varying system (5.5) with the location-dependent

input operators and the cost functional (5.6). Assume Br, r ∈ Ωm satisfies

lim
r→r0

‖Br −Br0‖∞ = 0, r0 ∈ Ωm,

U and Y are finite-dimensional spaces and G is a nuclear operator, then

lim
r→r0

‖Πr(t)−Πr0(t)‖1 = 0, t ∈ [t0, b]

and there exists an optimal location r̂ depending on t such that

ℓ̂1(t) = ‖Πr̂(t0)‖1 = inf
r∈Ωm

‖Πr(t0)‖1.
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Proof. Similar to Theorem 5.2.2, there exists δ > 0 such that supr∈B(r0,δ) ‖Br‖ < ∞,

r0 ∈ Ωm and for every x ∈ X and t ∈ [t0, b],

Πr(t)x → Πr0(t)x, r → r0.

From (5.10), we know that Πr are uniformly bounded with λΠ for any t ∈ [t0, b] and

r ∈ B(r0, δ).

Defining the operator Ct,r : X → L2(t, b;U × Y ), t ∈ [t0, b],

(Ct,rx(t))(·) =
(

C(·)
F− 1

2 (·)B∗
r (·)Πr(·)

)
TL,r(·, t)x(t). (5.12)

Corollary 5.2.4 has shown that Ct,r is a Hilbert-Schmidt operator and

Πr(t) = T ∗
L,r(b, t)GTL,r(b, t) + C∗

t,rCt,r.

is nuclear if G is nuclear.

Next we show that Ct,r uniformly converges to Ct,r0 in the Hilbert-Schmidt norm. Let

{ei}p+q
i=1 and {ēi}∞i=1 be the orthogonal basis of U × Y and X respectively, then

‖Ct,r − Ct,r0‖HS

=
∞∑

i=1

∫ b

t

p+q∑

j=1

〈(Ct,rēi)(s)− (Ct,r0 ēi)(s), ej〉U×Y ds

=
∞∑

i=1

∫ b

t

p+q∑

j=1

|〈ēi, T ∗
L,r(s, t)[C

∗(s), L∗
r(s)F

1

2 (s)]ej

− T ∗
L,r0(s, t)[C

∗(s), L∗
r0(s)F

1

2 (s)]ej〉X |2ds

=

∫ b

t

∞∑

i=1

p+q∑

j=1

|〈ēi, T ∗
L,r(s, t)[C

∗(s), L∗
r(s)F

1

2 (s)]ej

− T ∗
L,r0(s, t)[C

∗(s), L∗
r0(s)F

1

2 (s)]ej〉X |2ds

=

p+q∑

j=1

∫ b

t
‖T ∗

L,r(s, t)[C
∗(s), L∗

r(s)F
1

2 (s)]ej

− T ∗
L,r0(s, t)[C

∗(s), L∗
r0(s)F

1

2 (s)]ej‖2Xds,

where Lr = F−1B∗
rΠr.

From Theorem 5.2.2, we have limr→r0 ‖Lr(t) − Lr0(t)‖ = 0 and ‖Lr‖∞ < ∞.

Then,

‖Br(t)Lr(t)−Br0(t)Lr0(t)‖
6‖Br(t)‖‖Lr(t)− Lr0(t)‖+ ‖Br(t)−Br0(t)‖‖Lr0(t)‖ → 0, r → r0 (5.13)
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and ‖BrLr‖∞ < ∞. Hence, from Corollary 5.2.6, for any (s, t) ∈ Γb
t0 , TL,r(s, t) uni-

formly converges to TL,r0(s, t). Therefore,

‖T ∗
L,r(s, t)[C

∗(s), L∗
r(s)F

1

2 (s)]ej − T ∗
L,r0(s, t)[C

∗(s), L∗
r0(s)F

1

2 (s)]ej‖X
6 ‖(T ∗

L,r(s, t)− TL,r0(s, t)
∗)[C∗(s), L∗

r(s)F
1

2 (s)]ej ]‖
+‖T ∗

L,r0(s, t)[0, (L
∗
r(s)− L∗

r0(s))F
1

2 (s)]ej‖ → 0, r → r0. (5.14)

By the dominated convergence theorem, we obtain

‖Ct,r − Ct,r0‖HS → 0, r → r0.

Further, if G is a nuclear operator,

‖Πr(t)−Πr0(t)‖1
6‖T ∗

L,r(b, t)− T ∗
L,r0(b, t)‖‖GTL,r(b, t)‖1

+ ‖T ∗
L,r0(b, t)G‖1‖TL,r(b, t) − TL,r0(b, t)‖

+ ‖C∗
t,r − C∗

t,r0‖HS‖Ct,r‖HS + ‖C∗
t,r0‖HS‖Ct,r − Ct,r0‖HS → 0, r → r0.

By the compactness of Ωm, the optimal location r̂ exists in the nuclear norm.

5.3 Convergence of optimal control locations

In practice, the integral Riccati equation in an infinite-dimensional space cannot be solved

directly. Usually, one approximates and solves it in finite-dimensional spaces by a se-

quence of approximations from various numerical methods with the convergence in dif-

ferent norms, such as [40], [41], [43] and [81]. Without loss of generality, we let Xn be a

family of finite-dimensional subspaces of X and Pn be the corresponding orthogonal pro-

jection of X onto Xn. The finite-dimensional spaces {Xn} inherit the norm from X. For

every n ∈ N, let Tn(·, ·) be a mild evolution operator on Xn, Bn(t) ∈ L∞
s (t0, b;U,Xn)

and Cn(t) = C(t)Pn, Gn ∈ L(Xn). We thus define a sequence of approximations

x(t) = Tn(t, t0)x(t0) +

∫ t

t0

Tn(t, s)Bn(s)u(s)ds, t ∈ [t0, b]

with the cost functional

Jn(t, x, u) = 〈x(b), Gnx(b)〉+
∫ b

t
〈Cn(s)x(s), Cn(s)x(s)〉+ 〈u(s), F (s)u(s)〉ds,

where Gn ∈ L(Xn,Xn).
From Section 5.1, there exists the unique optimal control trajectory u(t) = −Ln(t)x(t),

where Ln(t) = F (t)−1B∗
n(t)Πn(t), t ∈ [t0, b], such that the minimum of the cost func-

tional is

min
u∈L2([t,b];U)

Jn(t, x(t), u) = J(t, x(t),−Ln(·)x(·))

= 〈x(t),PnΠn(t)Pnx(t)〉, t ∈ [t0, b]
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and the self-adjoint nonnegative operator Π(t) is the unique solution of the integral Ric-

cati equation (IRE)

Πn(t)x = T ∗
Ln

(b, t)GTLn(b, t)x

+

∫ b

t
T ∗
Ln

(s, t)[C∗
n(s)Cn(s) + Πn(s)Bn(s)F

−1(s)B∗
n(s)Πn(s)]TLn(s, t)xds,

where

TLn(t, τ)Pnx := T−BnLn(t, τ)Pnx

= Tn(t, τ)Pnx−
∫ t

τ
TLn(t, s)Bn(s)Ln(s)Tn(s, τ)Pnxds,

such that

x(t) = TLn(t, t0)Pnx(t0).

In order to guarantee that Πn(t) converges to Π(t), the following assumptions are

needed in the approximations of the control problem for partial differential equations

[43].

(a1) For each x ∈ X,

(i) Tn(t, s)Pnx → T (t, s)x; (ii) T ∗
n(t, s)Pnx → T ∗(t, s)x, t0 6 s 6 t 6 b

and supn ‖Tn(t, s)‖ < ∞, for any (t, s) ∈ Γb
t0 .

(a2) For each u ∈ U , x ∈ X

(i) Bn(t)u → B(t)u; (ii) B∗
n(t)Pnx → B∗(t)x, a.e. t ∈ [t0, b].

(a3) For each x ∈ X, y ∈ Y

(i) Cn(t)Pnx → C(t)x; (ii) C∗
n(t)y → C∗(t)y, a.e. t ∈ [t0, b].

(a4) For each x ∈ X,

GnPnx → Gx.

These assumptions are rather standard and typical for the approximations of partial differ-

ential equations. For instance, (a1)(i) and the uniform boundedness in (a1) are analogue

to the condition of Trotter-Kato theorem for the approximations of time-invariant sys-

tems. The strong convergence of the projection operator Pn indicates that (a2)(i) and

(a3)(i) can be easily satisfied. (a2)(ii) and (a3)(ii) are necessary for the dual problem to

consider the optimal observation locations. By the uniform boundedness principle, (a4)

implies that supn ‖Gn‖ < ∞.

Before we study the uniform convergence from Πn(t) to Π(t), we study under which

condition the compactness of Π(t) can be guaranteed.

Lemma 5.3.1. We consider the time-varying system (5.1) with the cost functional (5.2).

If B(t), C(t), t ∈ [t0, b] and G are compact operators, then the unique solution Π(t) of

the integral Riccati equation (5.4) is compact.
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Proof. We denote S = C∗C +ΠBF−1B∗Π,

Π(t) = T ∗
L(b, t)GTL(b, t) +

∫ b

t
T ∗
L(s, t)S(s)TL(s, t)ds.

Since B(t), C(t) and G are compact, T ∗
L(b, t)GTL(b, t) and T ∗

L(s, t)S(s)TL(s, t),
(s, t) ∈ Γb

t0 are compact. First, let us only consider the integral part of Π(t). It is clear

that there exists a set of orthogonal projections {Pn} to some finite-dimensional spaces

Xn, n ∈ N such that

lim
n→∞

‖PnT
∗
L(s, t)S(s)TL(s, t)− T ∗

L(s, t)S(s)TL(s, t)‖ = 0.

Then, since TL(·, ·) and S(·) are uniformly bounded, it is easy to obtain PnT
∗
LSTL is

also uniformly bounded in any time and n. By the dominated convergence theorem,

lim
n→∞

‖
∫ b

t
PnT

∗
L(s, t)S(s)TL(s, t)ds−

∫ b

t
T ∗
L(s, t)S(s)TL(s, t)ds‖ = 0.

Obviously, ∫ b

t
PnT

∗
L(s, t)S(s)TL(s, t)ds

is still finite-rank operator and bounded, so it is compact.

Therefore, ∫ b

t
T ∗
L(s, t)S(s)TL(s, t)ds

is compact. Further, Π(t) is compact.

The following theorem shows the uniform convergence of Πn(t).

Theorem 5.3.2. For the sequence of approximations under the assumptions (a1)− (a4),
if B(t), C(t), t ∈ [t0, b] and G are compact operators and limn→∞ ‖Bn−PnB‖∞ = 0,

then

lim
n→∞

‖Πn(t)Pn −Π(t)‖ = 0, t ∈ [t0, b].

Proof. From limn→∞ ‖Bn −PnB‖∞ = 0 and supt∈[t0,b] ‖B(t)‖ < ∞, we have

sup
n∈N,t∈[t0,b]

‖Bn(t)‖ < ∞.

Moreover, because B(t) is compact and Pn is strongly convergent to the identity operator

I ,

lim
n→∞

‖PnB(t)−B(t)‖ = 0, t ∈ [t0, b].

Further,

‖Bn(t)−B(t)‖
6‖Bn(t)−PnB(t)‖+ ‖PnB(t)−B(t)‖ → 0, t ∈ [t0, b], n → ∞.
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By the uniform boundedness of ‖Tn(·, ·)‖, ‖Cn‖∞ and ‖Gn‖ and Theorem 5.2.1, for any

x ∈ X, we have

lim
n→∞

‖Πn(t)x−Π(t)x‖ = 0, t ∈ [t0, b].

Similar to the proof of the uniform boundedness of Πr in Theorem 5.2.2, for the

approximations with arbitrary feedback control

ũn(t) = L̃n(t)x(t) = L̃(t)Pnx(t), L̃ ∈ L∞
s (t0, b;X,U),

there exists λΠ > 0 such that supn ‖Πn‖∞ < λΠ.

To prove the uniform convergence of Πn(t), we define Sn = C∗
nCn+ΠnBnF

−1B∗
nΠn

and S with the similar way, then

‖Πn(t)Pn −Π(t)‖
6 ‖T ∗

Ln
(b, t)GnTLn(b, t)Pn − T ∗

L(b, t)GTL(b, t)‖

+‖
∫ b

t
T ∗
Ln

(s, t)Sn(s)TLn(s, t)Pn − T ∗
L(s, t)S(s)TL(s, t)ds‖

6 ‖(T ∗
Ln

(b, t)− T ∗
L(b, t))GnPn‖‖TLn(b, t)Pn‖

+‖T ∗
L(b, t)‖‖(GnPn −G)TLn(b, t)Pn‖

+‖T ∗
L(b, t)‖‖G(TLn (b, t)Pn − TL(b, t))‖

+

∫ b

t
‖(T ∗

Ln
(s, t)− T ∗

L(s, t))Sn(s)Pn‖‖TLn(s, t)Pn‖ds

+

∫ b

t
‖T ∗

L(s, t)‖‖Sn(s)Pn − S(s)‖‖TLn(s, t)Pn‖ds

+

∫ b

t
‖TL(s, t)‖‖S(s)(TLn (s, t)Pn − TL(s, t))‖ds.

As a result of the uniform boundedness of ‖Tn(·, ·)‖, ‖Πn‖∞ and ‖Bn‖∞ in n,

‖Ln‖∞ is uniform bounded and

‖L∗
n(t)−PnL

∗(t)‖ 6 ‖F−1‖∞(‖Πn(t)‖‖Bn(t)−PnB(t)‖
+‖Πn(t)−PnΠ(t)‖‖B(t)‖ → 0, r → r0,

so limn→∞ ‖Ln(t)Pn − L(t)‖ = 0 and further

lim
n→∞

‖Bn(t)Ln(t)Pn −B(t)L(t)‖ = 0.

According to Lemma 5.2.5 and assumption (a1),

lim
n→∞

‖TLn(t, s)Pnx− TL(t, s)x‖ = 0,

lim
n→∞

‖T ∗
Ln

(t, s)Pnx− T ∗
L(t, s)x‖ = 0, x ∈ X.
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Because of the compactness of the self-adjoint operator Gn and G, we have

lim
n→∞

‖(TLn(t, s)− TL(t, s))GnPn‖ = 0,

lim
n→∞

‖G(TLn(t, s)Pn − TL(t, s))‖ = 0.

Meanwhile,

‖Sn‖∞ 6 ‖C∗
nCn‖∞ + ‖ΠnBnF

−1B∗
nΠn‖∞ < ∞, n ∈ N.

Since Cn = CPn is compact,

‖Sn(t)Pn − S(t)‖
6 ‖C∗

n(t)Cn(t)− C∗(t)C(t)‖+ ‖L∗
n(t)F (t)Ln(t)Pn − L(t)F (t)L(t)‖

6 ‖C∗(t)Pn − C∗(t)‖‖Cn‖∞ + ‖C∗‖∞‖C(t)Pn − C(t)‖
+ ‖L∗

n(t)− L∗(t)‖‖F‖∞‖Ln‖∞
+ ‖L∗‖∞‖F‖∞‖Ln(t)Pn − L(t)‖ → 0, n → ∞.

By the dominated convergence theorem, we obtain ‖Πn(t)Pn−Π(t)‖ → 0, n → ∞.

Next we show that the optimal control locations of approximations converge to the

optimal control location of the original system.

Theorem 5.3.3. Under the assumptions (a1) − (a4) and further assume Br,n = PnBr,

r ∈ Ωm, if Br(t), C(t) and G, t ∈ [t0, b] are compact operators and limr→r0 ‖Br −
Br0‖ = 0, then

ℓ̂n(t) → ℓ̂(t), n → ∞
and there exists a subsequence of the optimal locations r̂nk

depending on ℓ̂nk
(t) such that

r̂nk
→ r̂, k → ∞.

Proof. From Theorem 5.3.2, we have

lim
n→∞

‖Πr,n(t)Pn −Πr(t)‖ = 0, r ∈ Ωm.

Since limr→r0 ‖Br −Br0‖∞ = 0,

‖Br,n −Br0,n‖∞ 6 ‖Pn‖‖Br −Br0‖∞ → 0, r → r0.

From Theorem 5.2.2, for any n ∈ N, there exists ℓ̂n(t) = infr∈Ωm ‖Πr,n(t)‖.

On one hand,

ℓ̂n(t) = inf
r∈Ωm

‖Πr,n(t)‖ 6 ‖Πr̂,n(t)‖ 6 ‖Πr̂,n(t)−Πr̂(t)‖+ ‖Πr̂(t)‖

→ ‖Πr̂(t)‖ = ℓ̂(t), n → ∞,

so limn→∞ supn l̂n(t) 6 l̂.
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On the other hand, there exists a subsequence {ℓ̂nk
(t)} such that

lim
k→∞

ℓ̂nk
(t) = lim

n→∞
inf
n

ℓ̂n(t),

where

ℓ̂nk
(t) = inf

r∈Ωm
‖Πr,nk

(t)‖ = ‖Πrnk
,nk

(t)‖.

Due to the compactness of Ωm, without loss of the generality, we assume

lim
k→∞

r̂nk
= r̄,

then we have

‖Br̂nk
,nk

−Br̄‖∞ 6 ‖Pnk
‖‖Br̂nk

−Br̄‖∞ + ‖Pnk
Br̄ −Br̄‖∞ → 0, k → ∞

and

‖Πr̂nk
,nk

(t)−Πr̄(t)‖
6‖Πr̂nk

,nk
(t)−Πrnk

(t)‖+ ‖Πrnk
(t)−Πr̄(t)‖ −→ 0, k → ∞. (5.15)

Hence,

lim
n→∞

inf
n

ℓ̂n(t) = lim
k→∞

ℓ̂nk
(t) = lim

k→∞
‖Πr̂nk

,nk
(t)‖ = ‖Πr̄(t)‖ > ‖Πr̂(t)‖ = ℓ̂r(t),

which implies that we obtain

lim
n→∞

ℓ̂n(t) = ℓ̂(t). (5.16)

Further, limn→∞ ℓ̂n(t) = limn→∞ infn ℓ̂n(t) = ℓ̂(t) implies

lim
k→∞

‖Πr̂nk
,nk

(t)‖ = ‖Πr̄(t)‖ = ‖Πr̂(t)‖.

Without loss of the generality, we simply denote r̄ by r̂. It is clear now that there exists a

subsequence r̂nk
of r̂n converges to the optimal location r̂ of the original control problem

when k → ∞.

Associated with Corollary 5.2.4, the following theorem guarantees the uniform con-

vergence of the Riccati operators of approximations to the Riccati operator of the original

system in the nuclear norm. We firstly see a lemma about the uniform convergence in the

nuclear norm.

Lemma 5.3.4. G is a nuclear operator in Hilbert space X, Tn strongly converges to T ,

Tn, T ∈ L(X) and are uniformly bounded by λT , then

lim
n→∞

‖(Tn − T )G‖1 = 0.
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Proof. Assume {ei} is the orthogonal basis in X and there exist a partial isometry V
such that

G = V |G|,

where |G| = (G∗G)
1

2 , then,

‖(Tn − T )V |G| 12 ei‖ 6 ‖Tn − T‖‖V |G| 12 ei‖ 6 2λT ‖V |G| 12 ei‖

and because of the strong convergence of Tn to T ,

lim
n→∞

‖(Tn − T )V |G| 12 ei‖ = 0.

Since G is a nuclear operator, then |G| 12 is a Hilbert-Schmidt operator, so

∞∑

i=1

‖(Tn − T )V |G| 12 ei‖ = 2MT

∞∑

i=1

‖V |G| 12 ei‖ < ∞.

By the dominated convergence theorem,

lim
n→∞

‖(Tn − T )V |G| 12‖HS = lim
n→∞

∞∑

i=1

‖(Tn − T )V |G| 12 ei‖

=

∞∑

i=1

lim
n→∞

‖(Tn − T )V |G| 12 ei‖

= 0.

Then we obtain

‖(Tn − T )G‖1 6 ‖(Tn − T )V |G| 12‖HS‖|G| 12 ‖HS → 0, n → ∞.

With the different proof, from [46, Chapter III, Theorem 6.3], we can obtain the same

conclusion as Lemma 5.3.4.

Theorem 5.3.5. For the sequence of approximations under the assumptions (a1)− (a4),
if U and Y are finite dimensional, limn→∞ ‖Bn − PnB‖∞ = 0, G is nuclear operator

and limn→∞ ‖GnPn −G‖1 = 0, then

lim
n→∞

‖Πn(t)Pn −Π(t)‖1 = 0.

Proof. We define Ct in the same way with Corollary 5.2.4 and similarly define Ct,n :
Xn → L2([t, b];U × Y ) satisfying

(Ct,nx(t))(·) =
(

Cn(·)
F

1

2 (·)Ln(·)

)
TLn(·, t)x(t),
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where Ln = F−1B∗
nΠn. then, from Theorem 5.2.3 (1), Ct,n is Hilbert-Schmidt and

Πn(t) = T ∗
Ln

(b, t)GnTLn(b, t) + C∗
t,nCt,n.

From Theorem 5.2.3 (1), Ct,n is Hilbert-Schmidt and further

Πn(t) = T ∗
Ln

(b, t)GnTLn(b, t) + C∗
t,nCt,n

is nuclear. The same with Theorem 5.3.2, we also have the uniform boundedness of

‖Tn(·, ·)‖, ‖Πn‖∞ ‖Bn‖∞, ‖Ln‖∞ in n and

lim
n→∞

‖Ln(t)Pn − L(t)‖ = 0,

lim
n→∞

‖TLn(t, s)Pnx− TL(t, s)x‖ = 0.

Hence, similar to Theorem 5.2.7, for any (s, t) ∈ Γb
t0 , we have

‖Ct,n − Ct‖HS

6

p+q∑

j=1

∫ b

t
‖(T ∗

Ln
(s, t)− TL(s, t)

∗)[C∗
n(s), L

∗
n(s)F

1

2 (s)]ej‖

+ ‖T ∗
L(s, t)[Cn(s)− C(s), (L∗

n(s)− L∗(s))F
1

2 (s)]ej‖ds → 0, r → r0.

Then, since G is nuclear operator with limn→∞ ‖GnPn−G‖1 = 0, by Lemma 5.3.4, we

obtain

‖Πn(t)Pn −Π(t)‖1
6 ‖T ∗

Ln
(b, t)‖‖Gn(TLn(b, t)Pn −PnTL(b, t))‖1

+ ‖T ∗
Ln

(b, t)‖‖GnPn −G‖1‖TL(b, t)‖
+ ‖(T ∗

Ln
(b, t)− T ∗

L(b, t))G‖1‖TL(b, t)‖+ ‖C∗
t,n − C∗

t ‖HS‖Ct,n‖HS

+ ‖C∗
t ‖HS‖Ct,n − Ct‖HS → 0, n → ∞.

Theorem 5.3.6. Under the assumptions (a1) − (a4) and further assume Br,n = PnBr,

r ∈ Ωm, if the input space U and the output space Y are finite dimensional, limr→r0 ‖Br−
Br0‖ = 0, G is nuclear operator and limn→∞ ‖GnPn −G‖1 = 0, then

ℓ̂1,n(t) → ℓ̂1(t), n → ∞

and there exists a subsequence of the optimal locations r̂nk
depending on ℓ̂1,nk

(t) such

that

r̂nk
→ r̂, k → ∞.
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Proof. From Theorem 5.2.7 and Theorem 5.3.5, we have

lim
r→r0

‖Πr(t)−Πr0(t)‖1 = 0,

lim
n→∞

‖Πr,n(t)Pn −Πr(t)‖1 = 0.

The same with Theorem 5.3.3, we have ℓ̂1,n(t) 6 ‖Πr̂(t)‖1 = ℓ̂1(t), n → ∞. Besides,

there exists a subsequence {ℓ̂1,nk
(t)} such that

lim
n→∞

inf
n

ℓ̂1,n(t) = lim
k→∞

ℓ̂1,nk
(t) = lim

k→∞
‖Πr̂nk

,nk
(t)‖1 = ‖Πr̄(t)‖1

> ‖Πr̂(t)‖1 = ℓ̂1(t).

Therefore,

lim
n→∞

ℓ̂1,n(t) = ℓ̂1(t).

Since limn→∞ ℓ̂1,n(t) = limn→∞ infn ℓ̂1,n(t) = ℓ̂(t) and we denote r̄ by r̂, there exists

limk→∞ r̂nk
= r̂ such that limk→∞ ‖Πr̂nk

,nk
(t)‖1 = ‖Πr̂(t)‖1.



Chapter 6

Optimal Observation Locations for

Time-Varying Systems in Hilbert

Spaces on a Finite-Time Horizon

In this chapter we develop the optimal problems of observation locations based on the

Kalman filter and smoother in Hilbert spaces. The issue of observations is also of great

importance of many estimation problems for stochastic systems, such as weather fore-

casting and data assimilation problems in meteorology. For this kind of problems, ob-

servations always have low temporal and spatial density. The lack of observations is a

major barrier of preventing the improvement of estimations and leading to the inaccuracy

of predictions. On one hand, based on the insufficient observations, many works make

efforts to improve approaches of estimations in recent years. On the other hand, one pos-

sibility to improve the predictive or estimation skill for specific problems is to target the

locations of observations which can potentially result in the largest forecast improvement

in order to make observations more efficient. The better choice of locations of observa-

tions can help making more progress of the predictive or estimation skills. In contrast,

improper observations probably make no sense to the accuracy of predictions and lead to

the waste of resources by optimizing the improper parameters. Motivated by problems of

data assimilation in meteorology, we estimate unknown random variables by the Kalman

filter and smoother, which has been theoretical foundation of one of the most popular data

assimilation approaches in last decades. It provides us an opportunity to define and search

for optimal locations of observations by minimizing the proper norm of the covariance.

We firstly state the main results of the Kalman filter and smoother of time-varying

systems in the integral form in Hilbert spaces. By the duality between the Kalman filter

and linear-quadratic optimal control problem, under certain conditions, the nuclearity of

the covariances from the Kalman filter and further from the Kalman smoother can be

guaranteed. At the same time, the existence of the minimal cost and optimal observation

locations of the estimation of the model state for stochastic systems will be shown. By

a sequence of approximations of the original system, we obtain the convergence of the

sequence of minimal costs and a subsequence of optimal observation locations based

on the Kalman filter and smoother. Finally, we apply the obtained results to a three-
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dimensional advection-diffusion model extended by emission rates in Section 6.4. In

this example, the operator splitting technique with spatial and temporal discretization is

applied to simulate the practical application in meteorology.

6.1 Kalman filter in Hilbert spaces

There are several works, for instance [16], [19], [20], [38], [55], focusing on filtering and

smoothing problems in Hilbert spaces from different perspectives. In this section without

the differentiability of evolution operators, we study the Kalman filter of time-varying

systems in real separable Hilbert spaces driven by white noises.

We always let X , E and Y be real separable Hilbert spaces. Assuming µ is a Borel

measure in X , we firstly give some basic concepts of probability theory in Hilbert spaces.

Definition 6.1.1. µ is a totally finite measure on X if for any x,
∫
Ω ‖x‖dµ < ∞. Further,

if there exists x̄ ∈ X such that

〈x̄, h〉 = E〈x, h〉 =
∫

X
〈x, h〉µ(dx), ∀h ∈ X ,

then x̄ is called the mean or expectation of x and denoted by Ex.

Definition 6.1.2. The covariance operator P of x in X , also denoted by cov(x), if it exists,

is given by

〈Ph1, h2〉 = 〈h1, Ph2〉 =
∫

X
〈x− Ex, h1〉〈x−Ex, h2〉µ(dx), ∀h1, h2 ∈ X .

Definition 6.1.3. The random variables x, y whose expectations exist are independent if

E(〈x, y〉) = 〈E(x),E(y)〉.

Definition 6.1.4. If for any x ∈ X , the random variable 〈x, ·〉 has a Gaussian distribu-

tion, then µ is called a Gaussian measure. Further, we denote x of the Gaussian measure

with mean x̄ and covariance P by x ∼ N (x̄, P ).

It can be concluded that the covariances of Gaussian measures must be nuclear oper-

ator. In order to deal with the case that the covariances of Gaussian random variables are

not of nuclearity, we need the following definitions, see [2] and [3].

Definition 6.1.5. Let B be a Borel set of the subspace Xn of X generated by xi ∈ X , i =
1, · · · , n and Bn be a Borel set of Rn isomorphic to B. A cylinder set of X with the base

B means

{x|([x, x1], · · · , [x, xn]) ∈ Bn}.

Definition 6.1.6. Let C be a cylinder set with base B in Xn. The cylinder measure µ is

defined by

µ(C) = νn(B), (6.1)

where νn is a countably additive probability measure on the σ− algebra of Xn.
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Definition 6.1.7. The cylinder measure µ on X is called Gauss measure if its character-

istic function is given by

∫
ei〈x,f〉dµ = e−

1

2
‖f‖, x, f ∈ X .

Definition 6.1.8. Let µ denote the Gauss measure on L2([0, T ], E). The process ω(t),
ω ∈ L2([0, T ], E) is called white noise.

It is worth noting that, for any f ∈ L2([0, T ], E), ω has the obvious properties [2]:

1. E〈ω, f〉 = 0,

2.
∫ T
0 〈f(t), w(t)〉dt defines a Gaussian random variable with the variance ‖f‖2,

3. cov(ω) = I .

We consider the integral form of time-varying systems in Hilbert spaces given by

x(t) = M(t, t0)x(t0) +

∫ t

t0

M(t, s)[B(s)u(s) +D(s)ω(s)]ds, (t, t0) ∈ Γb
t0 , (6.2)

where M(·, ·) is a mild evolution operator on X . x(t) and ω(t) are random variables

with values in X and E , respectively and ω(t) is the white noise with Definition 6.1.8.

Further, we assume u ∈ L2(t0, b;U), B ∈ L∞
s (t0, b;U,X ), B∗ ∈ L∞

s (t0, b;X , U),
D ∈ L∞

s (t0, b; E ,X ).
The observation system of the time-varying system above is given by

y(t) = H(t)x(t) + E(t)ν(t), t ∈ [t0, b], (6.3)

where H ∈ L∞
s (t0, b;X ,Y), E ∈ L∞

s (t0, b; E ,Y), y(t) and ν(t) are random variables

with values in Y and E , respectively. Besides, ν(t) is the white noise with Definition

6.1.8 and R(t) := E(t)E∗(t) is coercive.

We still assume x̂(t0|t−1) = E(x(t0)), P (t0|t−1) = cov(x(t0)−x̂(t0|t−1)), x̃(t|t) =
x(t)− x̂(t|t), P (t|t) = cov(x̃(t)) and Yt = {y(s), t0 6 s 6 t 6 b}.

The filter problem is to find the best linear unbiased estimate of the state x(t) based

on the observations Yt, given by x̂(t|t) = E(x(t)|Yt), which has the form

x̂(t|t) = M(t, t0)x̂(t0|t−1)

+

∫ t

t0

M(t, s)B(s)u(s)ds +

∫ t

t0

Kf (t, s)[y(s)−H(s)x̂(s|s)]ds

and minimizes the nuclear norm of P (t|t) if it exists. Here Kf (·, ·) is unknown.

Theorem 6.1.9. For the time-varying system (6.2) with the observation system (6.3), the

linear unbiased estimation of the filter problem x̂(t|t) of x(t) is optimal if the linear gain

operator is given by

Kf (t, τ) = M(t, τ)P (τ |τ)H∗(τ)R−1(τ), τ 6 t. (6.4)
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Proof. By the Wiener-Hopf equation [38], [56], x̂(t|t) is the optimal linear unbiased

estimation if and only if E〈x̃(t|t), h1〉〈y(τ), h2〉 = 0, τ 6 t, h1, h2 ∈ X . Further,

according to [20, Corollary 6.3], E〈x̂(t|t), h1〉〈x̃(t|t), h2〉 = 0. Hence,

E〈x̃(t|t), h1〉〈y(τ), h2〉

=E〈M(t, τ)x̃(τ |τ) −
∫ t

τ
Kf (t, s)[H(s)x̃(s|s) + E(s)ν(s)]ds, h1〉〈y(τ), h2〉

=E〈M(t, τ)x̃(τ |τ), h1〉〈H(τ)x(τ), h2〉

− E〈
∫ t

τ
Kf (t, s)[H(s)x̃(s|s) + E(s)ν(s)]ds, h1〉〈y(τ), h2〉

=E〈M(t, τ)x̃(τ |τ), h1〉〈H(τ)x̃(τ |τ), h2〉 − E〈
∫ t

τ
Kf (t, s)E(s)ν(s)ds, h1〉〈y(τ), h2〉

=〈h1,M(t, τ)P (τ |τ)H∗(τ)h2〉 − E〈
∫ t

τ
Kf (t, s)E(s)ν(s)ds, h1〉〈E(τ)ν(τ), h2〉

=〈h1,M(t, τ)P (τ |τ)H∗(τ)h2〉

− E〈
∫ t

τ
Kf (t, s)E(s)ν(s)ds, h1〉〈

∫ t

τ
E(s)ν(s)δ(s − τ)ds, h2〉

=〈h1,M(t, τ)P (τ |τ)H∗(τ)h2〉 − 〈h1,Kf (t, τ)R(τ)h2〉.

Therefore, Kf (t, τ)R(τ) = M(t, τ)P (τ |τ)H∗(τ). Since R(t) is coercive, we obtain

Kf (t, τ) = M(t, τ)P (τ |τ)H∗(τ)R−1(τ), τ < t.

If t = τ , by the strong continuity of Kf (t, ·), Kf (t, t) = P (t|t)H∗(t)R−1(t).

We define

K(t) := Kf (t, t) = P (t|t)H∗(t)R−1(t),

Theorem 6.1.9 implies that

x̃(t|t) = M(t, t0)x̃(t0|t−1)−
∫ t

t0

M(t, s)K(s)H(s)x̃(s|s)ds

+

∫ t

t0

M(t, s)[D(s)ω(s) −K(s)E(s)ν(s)]ds. (6.5)

Theorem 6.1.10. Equation (6.5) is equivalent to

x̃(t|t) = MK(t, t0)x̃(t0|t−1) +

∫ t

t0

MK(t, s) (D(s)ω(s)−K(s)E(s)ν(s)) ds, (6.6)

where MK(t, τ)x = M(t, τ)x−
∫ t
τ MK(t, s)K(s)H(s)M(s, τ)xds, (t, τ) ∈ Γb

t0
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Proof. From (6.5), we have

x̃(t|t)

=MK(t, t0)x̃(t0|t−1) +

∫ t

t0

MK(t, s)K(s)H(s)M(s, t0)x̃(t0|t−1)ds

−
∫ t

t0

MK(t, s)K(s)H(s)x̃(s|s)ds +
∫ t

t0

MK(t, s)[D(s)ω(s)−K(s)E(s)ν(s)]ds

−
∫ t

t0

∫ t

s
MK(t, η)K(η)H(η)M(η, s)K(s)H(s)x̃(s|s)dηds

+

∫ t

t0

∫ t

s
MK(t, η)K(η)H(η)M(η, s) (D(s)ω(s)−K(s)E(s)ν(s)) dηds

=MK(t, t0)x̃(t0|t−1) +

∫ t

t0

MK(t, s) (D(s)ω(s)−K(s)E(s)ν(s)) ds

−
∫ t

t0

MK(t, s)K(s)H(s)x̃(s|s)ds +
∫ t

t0

MK(t, s)K(s)H(s)M(s, t0)x̃(t0|t−1)ds

−
∫ t

t0

MK(t, s)K(s)H(s)

∫ s

t0

M(s, η)K(η)H(η)x̃(η|η)dηds

+

∫ t

t0

MK(t, s)K(s)H(s)

∫ s

t0

M(s, η) (D(η)ω(η) −K(η)E(η)ν(η)) dηds

=MK(t, t0)x̃(t0|t−1) +

∫ t

t0

MK(t, s) (D(s)ω(s)−K(s)E(s)ν(s)) ds

For finite-dimensional systems, the trace of the covariance of x̃(t|t) is considered as

an evaluation of the estimation errors. For time-varying systems in Hilbert spaces, we

also consider the nuclear norm of the covariance of x̃(t|t). Defining Q(t) := D(t)D∗(t),
we obtain the following theorem.

Theorem 6.1.11. The covariance (if exists) of x̃(t|t) satisfies the IRE

P (t|t) =MK(t, t0)P (t0|t−1)M
∗
K(t, t0)

+

∫ t

t0

MK(t, s)
[
Q(s) + P (s|s)H∗(s)R−1(s)H(s)P (s|s)

]
M∗

K(t, s)ds. (6.7)

Proof. For x̃(t|t) in (6.6), we assume its covariance P (t|t) exists and define Qt: L
2(t0, t; E×

E) → X by

Qt

(
ω
ν

)
=

∫ t

t0

[MK(t, s)D(s),−MK(t, s)K(s)E(s)]

(
ω(s)
ν(s)

)
ds.

Its adjoint operator Q∗
t : X → L2(t0, t; E × E) is given by

Q∗
tx =

(
D∗(·)M∗

K(t, ·)
−E∗(·)K∗(·)M∗

K(t, ·)

)
x, x ∈ X .
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We obtain

E〈x̃(t|t), h1〉〈x̃(t|t), h2〉
= E〈MK(t, t0)x̃(t0|t−1), h1〉〈MK(t, t0)x̃(t0|t−1), h2〉

+E〈Qt

(
ω
ν

)
, h1〉〈Qt

(
ω
ν

)
, h2〉

= 〈MK(t, t0)P (t0|t−1)M
∗
K(t, t0)h1, h2〉+ 〈Qtcov

((
ω
ν

))
Q∗

th1, h2〉

= 〈MK(t, t0)P (t0|t−1)M
∗
K(t, t0)h1, h2〉

+〈
∫ t

t0

MK(t, s) [Q(s) +K(s)R(s)K∗(s)]M∗
K(t, s)h1ds, h2〉.

Hence, for any x ∈ X ,

P (t|t)x = MK(t, t0)P (t0|t−1)M
∗
K(t, t0)x

+

∫ t

t0

MK(t, s) [Q(s) +K(s)R(s)K∗(s)]M∗
K(t, s)xds

= MK(t, t0)P (t0|t−1)M
∗
K(t, t0)x

+

∫ t

t0

MK(t, s)
[
Q(s) + P (s|s)H∗(s)R−1(s)H(s)P (s|s)

]
M∗

K(t, s)xds.

A comparison to the main results of the linear-quadratic optimal control problem in

Section 5.2 yields: The covariance of x̃(t|t) of the time-varying system (6.2) with the

observations (6.3) equals to the Riccati operator Π(b − t) in (5.4) corresponding to the

time-varying system

x(t) = T (t, t0)x(t0) +

∫ t

t0

T (t, s)B(s)u(s)ds

with the cost functional

J(t, x, u) = 〈x(b), Gx(b)〉 +
∫ b

t
〈C(s)x(s), C(s)x(s)〉+ 〈u(s), F (s)u(s)〉ds,

where T (t, s) = M∗(b−s, b−t), B(s) = H∗(b−s), G = P (t0|t−1), C(s) = D∗(b−s),
F (s) = R(b− s), (t, s) ∈ Γb

t0 .

By the duality between the linear quadratic control problem and the Kalman filter,

Corollary 5.2.4 implies the following condition to guarantee the existence and nuclearity

of P (t|t).

Theorem 6.1.12. For the time-varying system (6.2) with the observation system (6.3), if

E and Y are finite dimensional and P (t0|t−1) is a nuclear operator, then the covariance

of x̃(t|t) based on Yt satisfying (6.7) exists and is a nuclear operator.
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6.2 Kalman smoother in Hilbert spaces

We study the optimal linear unbiased estimation of x(τ) based on Yt given by x̂(τ |t) =
E(x(τ)|Yt), τ 6 t. We still constrain the linear estimation of x(τ |t) has the form

x̂(τ |t) =
∫ t

t0

Ks(s, τ)[y(s)−H(s)x̂(s|s)]ds, τ 6 t, (6.8)

where Ks(·, ·) is an unknown linear operator.

Since in the case of τ = t, (6.8) with the minimal covariance in the nuclear norm is

equivalent to the optimal linear unbiased estimation based on the Kalman filter, in order

to determine the optimal estimation of x̂(τ |t), τ 6 t, we can rewrite (6.8) as

x̂(τ |t) = x̂(τ |τ) +
∫ t

τ
Ks(s, τ)[y(s) −H(s)x̂(s|s)]ds. (6.9)

Theorem 6.2.1. For the time-varying system (6.2) with the observation system (6.3), the

linear unbiased estimation of the filter problem x̂(τ |t) of x(τ) is optimal if Ks(·, ·) in

(6.9) is given by

Ks(η, τ) = P (τ |τ)M∗
K(η, τ)H∗(η)R−1(η), τ 6 η 6 t.

Proof. By the Wiener-Hopf equation [56], [38], E〈x̃(τ |t), h1〉〈y(η), h2〉 = 0, h1 ∈
X , h2 ∈ Y , for any η < t. In order to derive of Kalman smoother, we only need to

consider E〈x̃(τ |t), h1〉〈y(η), h2〉 = 0, τ 6 η < t. Then we have

E〈x̃(τ |t), h1〉〈y(η), h2〉

= E〈x̃(τ |η) −
∫ t

η
Ks(s, η)[y(s) −H(s)x̂(s|s)]ds, h1〉〈y(η), h2〉

= E〈x̃(τ |η), h1〉〈H(η)x̃(η|η), h2〉

−E〈
∫ t

η
Ks(s, η)[H(s)x̂(s|s) + E(s)ν(s)]ds, h1〉〈y(η), h2〉

= E〈x̃(τ |τ)−
∫ η

τ
Ks(τ, s)[y(s) −H(s)x̂(s|s)]ds, h1〉〈H(η)x̃(η|η), h2〉

−E〈
∫ t

η
Ks(s, η)E(s)ν(s)ds, h1〉〈E(η)ν(η), h2〉

= E〈x̃(τ |τ), h1〉〈H(η)MK (η, τ)H∗(η)x̃(τ |τ), h2〉

−E〈
∫ t

η
Ks(s, η)E(s)ν(s)ds, h1〉〈

∫ t

η
E(s)ν(s)δ(s − η)ds, h2〉

= 〈h1, P (τ |τ)M∗
K(η, τ)H∗(η)h2〉 − 〈h1,Ks(τ, η)R(η)h2〉.

By the coercivity of R(t), we obtain Ks(τ, η) = P (τ |τ)M∗
K(η, τ)H∗(η)R−1(η).

We define x̃(τ |t) = x(τ)− x̂(τ |t), Theorem 6.2.1 implies

x̃(τ |t) = x̃(τ |τ) − P (τ |τ)
∫ t

τ
M∗

K(s, τ)H∗(s)R−1(s)[y(s)−H(s)x̂(s|s)]ds.
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Thus, its covariance can be derived.

Theorem 6.2.2. The covariance (if exists) of x̃(τ |t), (t, τ) ∈ Γb
t0 is

P (τ |t)x = P (τ |τ)x

− P (τ |τ)
∫ t

τ
M∗

K(s, τ)H∗(s)R−1(s)H(s)MK(s, τ)P (τ |τ)xds, x ∈ X . (6.10)

Proof. Denoting the covariance of x̃(τ |t) by P (τ |t), we obtain

〈h1, P (τ |t)h2〉
=E〈x̃(τ |t), h1〉〈x̃(τ |t), h2〉

=E〈x̃(τ |τ)− P (τ |τ)
∫ t

τ
M∗

K(s, τ)H∗(s)R−1(s)[y(s)−H(s)x̂(s)]ds, h1〉〈x̃(τ |t), h2〉

=E〈x̃(τ |τ), h1〉〈x̃(τ |τ)

− P (τ |τ)
∫ t

τ
M∗

K(s, τ)H∗(s)R−1(s)[y(s)−H(s)x̂(s|s)]ds, h2〉

=E〈x̃(τ |τ), h1〉〈x̃(τ |τ), h2〉

− E〈x̃(τ |τ), h1〉〈P (τ |τ)
∫ t

τ
M∗

K(s, τ)H∗(s)R−1(s)H(s)x̃(s|s)ds, h2〉

=〈h1, P (τ |τ)h2〉 −E〈x̃(τ |τ), h1〉〈P (τ |τ)
∫ t

τ
M∗

K(s, τ)H∗(s)R−1(s)H(s)

·
(
MK(s, τ)x̃(τ |τ) +

∫ s

τ
MK(s, η) (D(η)ω(η) −K(η)E(η)ν(η)) dη

)
ds, h2〉

=〈h1, P (τ |τ)h2〉

− E〈x̃(τ |τ), h1〉〈P (τ |τ)
∫ t

τ
M∗

K(s, τ)H∗(s)R−1(s)H(s)MK(s, τ)x̃(τ |τ)ds, h2〉

=〈h1, P (τ |τ)h2〉

− 〈h1, P (τ |τ)
∫ t

τ
M∗

K(s, τ)H∗(s)R−1(s)H(s)MK(s, τ)P (τ |τ)h2ds〉.

Hence, for any x ∈ X , (t, τ) ∈ Γb
t0 , we have

P (τ |t)x = P (τ |τ)x− P (τ |τ)
∫ t

τ
M∗

K(s, τ)H∗(s)R−1(s)H(s)MK(s, τ)P (τ |τ)xds.

Theorem 6.2.3. For the time-varying system (6.2) with the observation system (6.3), if E
and Y are finite dimensional and P (t0|t−1) is a nuclear operator, then P (τ |t), (t, τ) ∈
Γb
t0 satisfying (6.10) exists and is a nuclear operator.
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Proof. By Theorem 6.1.12 and the uniform boundedness of MK , H and R−1 in [t0, b],

‖P (τ |t)‖1

6‖P (τ |τ)‖1 + ‖P (τ |τ)‖21
∫ t

τ
‖MK(s, τ)‖2‖R−1(s)‖‖H(s)‖2ds < ∞,

so P (τ |t) is a nuclear operator for any (t, τ) ∈ Γb
t0 .

It is worth noting that the nuclearity of P (t0|t−1) can be guaranteed when the series

of the singular values of P (t0|t−1) is summable.

The derivations above of the Kalman filter and smoother in Hilbert spaces are based

on the integral linear model (6.2) driven by white noises. In fact, for the linear model

driven by the independent finite-dimensional Wiener processes w1 and w2,

x(t) = M(t, t0)x(t0) +

∫ t

t0

M(t, s)B(s)u(s)ds +

∫ t

t0

M(t, s)D(s)dw1(s) (6.11)

with the corresponding observation system

z(t) =

∫ t

t0

H(s)x(s) + E(s)dw2(s), (6.12)

it can be easily found in [19] and [20] that the covariances from the Kalman filter and

smoother based on (6.11) and (6.12) still satisfy (6.7) and (6.10).

6.3 Optimal locations of observations based on KF and KS

We now take the observation location problem into account. The location parameter r
is defined as in Section 5.2. The following theorems show the continuity of Pr(t|t) and

Pr(τ |t), (t, τ) ∈ Γb
t0 in the nuclear norm. For the filter problem, due to the duality and

Theorem 5.2.7, we obtain the following theorem.

Theorem 6.3.1. Consider the filter problem of the time-varying system (6.2) with location-

dependent output operators and the observation system (6.3). If Hr has the property that

limr→r0 ‖Hr − Hr0‖∞ = 0, E and Y are finite-dimensional, and P (t0|t−1) is nuclear,

then

lim
r→r0

‖Pr(t|t)− Pr0(t|t)‖1 = 0, t ∈ [t0, b]

and there exists an optimal location r̂f such that

ℓ̂f1(t) = ‖Pr̂f (t|t)‖1 = inf
r∈Ωm

‖Pr(t|t)‖1.

Theorem 6.3.2. Consider the smoother problem of the time-varying system (6.2) with the

location-dependent output operators and the observation system (6.3). Hr has the prop-

erty that limr→r0 ‖Hr −Hr0‖∞ = 0. If E and Y are finite-dimensional, and P (t0|t−1)
is nuclear, then,

lim
r→r0

‖Pr(τ |t)− Pr0(τ |t)‖1 = 0, (t, τ) ∈ Γb
t0 ,
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and there exists an optimal location r̂s depending on the initial time τ such that

ℓ̂s1(τ |t) = ‖Pr̂s(τ |t)‖1 = inf
r∈Ωm

‖Pr(τ |t)‖1.

Proof. From Lemma 6.2.3, Pr(τ |t), r ∈ Ωm are nuclear operators. Hence,

‖Pr(τ |t)− Pr0(τ |t)‖1 6 ‖Pr(τ |τ) − Pr0(τ |τ)‖1

+

∫ t

t0

‖Pr0(τ |τ)M∗
K,r0(s, τ)H

∗
r0(s)− Pr(τ |τ)M∗

K,r(s, τ)H
∗
r (s)‖

· ‖R−1(s)Hr0(s)MK,r0(s, τ)Pr0(τ |τ)‖1ds+
∫ t

t0

‖Pr(τ |τ)M∗
K,r(s, τ)H

∗
r (s)R

−1(s)‖1

· ‖Hr0(s)MK,r0(s, τ)Pr0(τ |τ)−Hr(s)MK,r(s, τ)Pr(τ |τ)‖ds,

Since Pr(t|t), r ∈ Ωm are nuclear operators and R−1(t),Hr(t),MK,r0(t, τ) are uni-

formly bounded for (t, τ) ∈ Γb
t0 , then

‖R−1(s)Hr0(s)MK,r0(s, τ)Pr0(τ |τ)‖1 < ∞ (6.13)

and so is its adjoint.

From Theorem 6.3.1 and dominated convergence theorem, we obtain

‖Pr(τ |t) − Pr0(τ |t)‖1 → 0, r → r0.

Because of the compactness of Ωm, there exists the optimal location of observations such

that

ℓ̂s1(τ |t) = ‖Pr̂s(τ |t)‖1 = inf
r∈Ωm

‖Pr(τ |t)‖1.

Next we consider a sequence of approximations of time-varying systems in order

to study the convergence of optimal observation locations based on the Kalman filter

and smoother. Let Xn be a family of finite-dimensional subspaces of X and Pn be the

corresponding orthogonal projection of X onto Xn. The finite spaces {Xn} inherit the

norm from X . For n ∈ N, let Mn(·, ·) be a mild evolution operator on Xn, Dn(t) =
PnD(t) and Hn(t) = H(t)Pn, t ∈ [t0, b]. In order to guarantee that Pn(t|t) converges to

P (t|t), the following assumptions are needed in the approximation of optimal observation

location problems for partial differential equations.

(A1) For each x ∈ X ,

(i) Mn(t, s)Pnx → M(t, s)x; (ii) M∗
n(t, s)Pnx → M∗(t, s)x.

and supn ‖Mn(t, s)‖ < ∞, for any (t, s) ∈ Γb
t0 .

(A2) For each ω ∈ E ,

(i) Dn(t)ω → D(t)ω; (ii) D∗
n(t)Pnx → D∗(t)x, a.e. t ∈ [t0, b].
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(A3) For each x ∈ X , y ∈ Y ,

(i) Hn(t)Pnx → H(t)x; (ii) H∗
n(t)y → H∗(t)y, a.e. t ∈ [t0, b].

(A4) For each x ∈ X ,

Pn(t0|t−1)Pnx → P (t0|t−1)x.

The next theorem shows the uniform convergence of the approximations of covari-

ances of the Kalman filter and smoother in nuclear norm.

Theorem 6.3.3. Assume that the assumptions (A1) − (A4) are satisfied. If E and Y are

finite-dimensional spaces, limn→∞ ‖Pn(t0|t−1)Pn − P (t0|t−1)‖1 = 0 and P (t0|t−1) is

nuclear, then

lim
n→∞

‖Pn(t|t)Pn − P (t|t)‖1 = 0,

lim
n→∞

‖Pn(τ |t)Pn − P (τ |t)‖1 = 0, (t, τ) ∈ Γb
t0 .

Proof. Due to the duality between the Kalman filter and LQ optimal control problem,

according to Theorem 5.3.5, we have

lim
n→∞

‖Pn(t|t)Pn − P (t|t)‖1 = 0, (t, τ) ∈ Γb
t0 . (6.14)

Then, we obtain

‖Pn(τ |t)Pn − P (τ |t)‖1 6 ‖Pn(τ |τ)Pn − P (τ |τ)‖1

+

∫ t

τ
‖P (τ |τ)M∗

K(s, τ)H∗(s)−PnPn(τ |τ)M∗
K,n(s, τ)H

∗
n(s)‖

· ‖R−1(s)H(s)MK(s, τ)P (τ |τ)‖1ds+
∫ t

τ
‖PnPn(τ |τ)M∗

K,n(s, τ)H
∗
n(s)R

−1(s)‖1

· ‖H(s)MK(s, τ)P (τ |τ) −Hn(s)MK,n(s, τ)Pn(τ |τ)Pn‖ds,

where, according to Lemma 5.2.5 and (6.14),

‖H(s)MK(s, τ)P (τ |τ) −Hn(s)MK,n(s, τ)Pn(τ |τ)Pn‖
6‖H(s)MK(s, τ)‖‖P (τ |τ) − Pn(τ |τ)Pn‖

+ ‖H(s)−Hn(s)‖‖MK(s, τ)Pn(τ |τ)Pn‖
+ ‖Hn(s)‖‖(MK(s, τ)−MK,n(s, τ))Pn(τ |τ)Pn‖ → 0, n → ∞. (6.15)

So is its adjoint operator.

By the uniform boundedness of P (t|t), MK(t, s), Hn(t) for t ∈ [t0, b], we have

‖Pn(τ |t)Pn − P (τ |t)‖1 → 0, n → ∞.
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Now let us take the location of observations into account and show the convergence of

optimal observation locations of approximated covariance of Kalman filter and smoother.

Theorem 6.3.4. Assume that the assumptions (A1) − (A4) holds and Hr,n = HrPn

with limr→r0 ‖Hr −Hr0‖∞ = 0. If E and Y are finite-dimensional spaces, P (t0|t−1) is

nuclear and limn→∞ ‖Pn(t0|t−1)Pn − P (t0|t−1)‖1 = 0, then

ℓ̂f1,n(t) → ℓ̂f1(t), ℓ̂s1,n(τ |t) → ℓ̂s1(τ |t), (t, τ) ∈ Γb
t0 , n → ∞.

and there exists a subsequence of the optimal locations r̂fnk
depending on ℓ̂f1,nk

(t) and a

subsequence r̂snk
depending on ℓ̂s1,nk

(t) such that

r̂fnk
→ r̂f , r̂snk

→ r̂s, k → ∞.

Proof. Follows by duality and Theorem 5.3.6.

6.4 Application

As a popular data assimilation method, the ensemble Kalman filter and smoother have

been widely applied in meteorology. In this section, we consider a linear advection-

diffusion model with Ω := (0, 5)× (0, 5)× (0, 1) on a fixed time interval [0, 3] based on

the Kalman filter and smoother, the theoretical foundation of the ensemble Kalman filter

and smoother, as an example:

∂δc

∂t
= −vx

∂δc

∂x
− vy

∂δc

∂y
+

∂

∂z
(K(z)

∂δc

∂z
) + δe− δd,

δc(t0) = δc0, δe(t0) = δe0, δd(t0) = δd0,

(6.16)

where δc, δe and δd are the perturbations of the concentration, the emission rate and de-

position rate of a species, respectively. vx and vy are constants and K(z) is a continuous

differentiable function of z.

Defining Ax := −vx
∂
∂x , Ay := −vy

∂
∂y and Dz :=

∂

∂z
(K(z)

∂

∂z
) with domains

D(Ax) = {f ∈ L2(Ω) | Axf ∈ L2(Ω), f(0, y, z) = f(5, y, z)},
D(Ay) = {f ∈ L2(Ω) | Ayf ∈ L2(Ω), f(x, 0, z) = f(x, 5, z)},
D(Dz) = {f ∈ L2(Ω) | Dzf ∈ L2(Ω), fz(x, y, 0) = fz(x, y, 1) = 0}

and denote by Sx, Sy and Sz the semigroups generated by Ax, Ay and Dz . S is the

semigroup generated by Ax+Ay +Dz with the domain D = D(Ax)∩D(Ay)∩D(Dz).

In particular, in order to include the emission rate into the state vector as optimized

parameter, the dynamic model for emission rates is established as in Section 3.2.1

δe(t) = Me(t, s)δe(s), (6.17)
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where Me(t, s) =
eb(t)
eb(s)

∈ L(L2(Ω)), eb(·) ∈ L2(Ω) is termed as the background knowl-

edge of the emission rate, which is continuous in time and

sup
(t,s)∈Γ3

0

‖ eb(t)
eb(s)

‖ < ∞.

According to Definition 5.1.1, Me(·, ·) is a self-adjoint mild evolution operator.

Ignoring the model error, the model extended with emission rate is given by

(
δc(t+△t)
δe(t +△t)

)
(6.18)

= M(t+△t, t)

(
δc(t)
δe(t)

)
−
( ∫ t+△t

t S(t+△t− s)δd(s)ds
0

)
,

where

M(t+△t, t) =

(
S(△t)

∫ t+△t
t S(t+△t− s)Me(s, t)ds

0 Me(t+△t, t)

)
(6.19)

also satisfies Definition 5.1.1.

The numerical solution is based on the symmetric operator splitting technique [5],

[102] with space discretization via finite difference method with discretized intervals △x,

△y and △z in three dimensions. We assume that the grid points {ri}ni=1 have the coor-

dinates {(xri , yri , zri)} and define the projection Pn : L2(Ω) → R
n

(Pnf)i :=
1

Vi

∫

Ωi

f(ω)dω, i = 1, · · · , n, (6.20)

where

Ωi = [xri −
△x

2
, xri +

△x

2
]× [yri −

△y

2
, yri +

△y

2
]× [zri −

△z

2
, zri +

△z

2
]

and Vi is the volume of Ωi. Defining

Sn(△t) := Sx,n(
△t

2
)Sy,n(

△t

2
)Sz,n(△t)Sy,n(

△t

2
)Sx,n(

△t

2
),

according to [4, Theorem 3.17], we obtain

lim
n→∞,△t→0

‖(Sn(△t))
t

△tPnf −PnS(t)f‖ = 0, f ∈ L2(Ω). (6.21)

With the same space discretization for δc, the approximation of the emission rate is given

by

Pnδe(t) = Me,n(t, s)Pnδe(s),

where Me,n(t, s) is a diagonal matrix with the diagonal given by

diag(Me,n(t, s)) = (

∫
Ω1

eb(t, ω)dω∫
Ω1

eb(s, ω)dω
, · · · ,

∫
Ωn

eb(t, ω)dω∫
Ωn

eb(s, ω)dω
).
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Then, we can easily get
∥∥∥∥∥

∫
Ωi

eb(t, ω)dω∫
Ωi

eb(s, ω)dω
(Pnf)i − (PnMe(t, s)f)i

∥∥∥∥∥

6

∥∥∥∥∥

1
Vi

∫
Ωi

eb(t, ω)dω
1
Vi

∫
Ωi

eb(s, ω)dω
− eb(t, ri)

eb(s, ri)

∥∥∥∥∥

∥∥∥∥
1

Vi

∫

Ωi

f(ω)dω

∥∥∥∥

+

∥∥∥∥
eb(t, ri)

eb(s, ri)

1

Vi

∫

Ωi

f(ω)dω − eb(t, ri)

eb(s, ri)
f(ri)

∥∥∥∥

+

∥∥∥∥
eb(t, ri)

eb(s, ri)
f(ri)−

1

Vi

∫

Ωi

eb(t, ω)

eb(s, ω)
f(ω)dω

∥∥∥∥→ 0, n → ∞, f ∈ L2(Ω),

so is the adjoint of Me(t, s). The extended model with operator splitting discretized in

space can be written as
(

δcn(t+△t)
δen(t+△t)

)
= Mn(t+△t, t)

(
δcn(t)
δen(t)

)

−
(

Sx,n(
△t
2 )Sy,n(

△t
2 )
∫ t+△t
t Sz,n(t+△t− s)δdn(s)ds

0

)
,

where δcn(t) = Pnδc(t), δen(t) = Pnδe(t), δdn(t) = Pnδd(t) and

Mn(t+△t, t)

=

(
Sn(△t) Sx,n(

△t
2 )Sy,n(

△t
2 )
∫ t+△t
t Sz,n(t+△t− s)Me,n(s, t)ds

0 Me,n(t+△t, t)

)
.

For any pair of time (t, s) ∈ Γ3
0, assuming m = t−s

△t ∈ N, we have

m∏

i=1

Mn(s+ i△t, s+ (i− 1)△t)

=

(
(Sn(△t))m

∑m
i=1

∫ s+i△t
s+(i−1)△t S

i
ce,n(t− h)Me,n(h, s)dh

0 Me,n(t, s)

)
,

where for h ∈ [s+ (i− 1)△t, s+ i△t],

Si
ce,n(t− h) = (Sn(△t))m−iSx,n(

△t

2
)Sy,n(

△t

2
)Sz,n(s+ i△t− h).

In order to show that
∏m

i=1 Mn(s + i△t, s + (i − 1)△t)Pn is strongly convergent to

PnM(t, s), we only need to show

‖Si
ce,n(t− h)Me,n(h, s)Pnf −PnS(t− h)Me(h, s)f‖ → 0, m, n → ∞.

In fact,

‖Si
ce,n(t− h)Me,n(h, s)Pnf −PnS(t− h)Me(h, s)f‖

6 ‖Si
ce,n(t− h)Me,n(h, s)Pnf − Si

ce,n(t− h)PnMe(h, s)f‖
+ ‖Si

ce,n(t− h)PnMe(h, s)f −PnS(t− h)Me(h, s)f‖,
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where, clearly,

‖Si
ce,n(t− h)Me,n(h, s)Pnf − Si

ce,n(t− h)PnMe(h, s)f‖ → 0, m, n → ∞.

Moreover, we have

‖Si
ce,n(t− h)PnMe(h, s)f −PnS(t− h)Me(h, s)f‖

6‖((Sn(△t))m−i − S(t− s− i△t))Sx,n(
△t

2
)Sy,n(

△t

2
)

· Sz,n(s+ i△t− h)PnMe(h, s)f‖

+‖S(t− s− i△t)(Sx,n(
△t

2
)Sy,n(

△t

2
)Sz,n(s+ i△t− h)Pn

−PnS(s+ i△t− h))Me(h, s)f‖.

where, according to (6.21),

‖((Sn(△t))m−i −PnS(t− s− i△t))

· Sx,n(
△t

2
)Sy,n(

△t

2
)Sz,n(s+ i△t− h)PnMe(h, s)f‖ → 0, t → 0, n → ∞

and

‖(Sx,n(
△t

2
)Sy,n(

△t

2
)Sz,n(s+ i△t− h)Pn −PnS(s+ i△t− h))Me(h, s)f‖

6 ‖Sx,n(
△t

2
)Sy,n(

△t

2
)Sz,n(s+ i△t− h)‖

·‖(I − Sz,n(h− s− (i− 1)△t))PnMe(h, s)f‖

+ ‖(Sx,n(
△t

2
)Sy,n(

△t

2
)Sz,n(△t)− Sn(△t))PnMe(h, s)f‖

+ ‖(S(h− s− (i− 1)△t)− I)S(s+ i△t− h)Me(h, s)f‖
+ ‖(Sn(△t)Pn −PnS(△t))Me(h, s)f‖ → 0, △t → 0, n → ∞. (6.22)

Further, we discretize the model in time by the Lax-Wendroff scheme for advection

equations in horizontal directions and Crank-Nicolson scheme for the diffusion equation

in the vertical direction, such that Sx/y/z,n are approximated by

S̃x/y,n(
△t

2
) = I +

△t

2
Ax/y,n +

△t2

8
A2

x/y,n,

S̃z,n(△t) = (I − △t

2
Dz,n)

−1(I +
△t

2
Dz,n),

B̃e
z,n(t, s)f = (I − △t

2
Dz,n)

−1(
△t

2
(Me,n(t, s) + I)f),

where Ax/y,n and Dz,n is the approximated generators to n-dimensional state space based

on finite difference methods.

It is well known [30] that the Lax-Wendroff scheme is consistent and conditional

stable for Ax and Ay and the Crank-Nicolson scheme is consistent and stable for Dz ,
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(I − △t
2 Dz,n)

−1 is the consistent and conditional stable implicit Euler scheme, by Lax

equivalence theorem, that is

lim
△t→0

‖(S̃x/y/z,n(△t))
t

△t f − Sx/y/z,n(t)f‖ = 0, f ∈ L2(Ω),

lim
△t→0

‖((I − △t

2
Dz,n)

−1)
2t
△t f − Sz,n(t)f‖ = 0, f ∈ L2(Ω).

Similarly defining S̃n := S̃x,nS̃y,nS̃z,nS̃y,nS̃x,n,

lim
n→∞,△t→0

‖(S̃n(△t))
t

△tPnf −PnS(t)f‖ = 0, f ∈ L2(Ω). (6.23)

Since Ax and Ay are skew-adjoint, which generate unitary groups, and Dz is self-adjoint,

(S̃∗
n(△t))

t
△t is also strongly convergent to S∗(t).

Thus, (6.18) is approximated by

(
δc̃n(t+△t)
δẽn(t+△t)

)

=

(
S̃n(△t) S̃x,n(

△t
2 )S̃y,n(

△t
2 )B̃e

z,n(t+△t, t)

0 Me,n(t+△t, t)

)(
δc̃n(t)
δẽn(t)

)

−
(

S̃x,n(
△t
2 )S̃y,n(

△t
2 )(I − △t

2 Dz,n)
−1[△t

2 (δdn(t+△t) + δdn(t))]
0

)
.

Defining the block evolution operator above as M̃n(t, s), (t, s) ∈ Γ3
0, we have

m∏

i=1

M̃n(s+ i△t, s+ (i− 1)△t)

=

(
(S̃n(△t))m

∑m
i=1(S̃n(△t))m−iS̃x,n(

△t
2 )S̃y,n(

△t
2 )B̃e

z,n(s+ i△t, s)

0 Me,n(t, s)

)
.

We define

Be
z,n(s+ i△t, s+ (i− 1)△t, s)f

:=

∫ s+i△t

s+(i−1)△t
Sz,n(s+ i△t− h)Me,n(h, s)fdh, f ∈ L2(Ω).



6.4 Application 111

By the trapezoidal rule and convergence of the implicit Euler scheme, we have

‖B̃e
z,n(s+ i△t, s)f −Be

z,n(s+ i△t, s)f‖

6 ‖((I − △t

2
Dz,n)

−1 − Sz,n(△t))(
△t

2
(Me,n(s+ i△t, s) + I)f)‖

+ ‖△t

2
Sz,n(△t)Me,n(s+ (i− 1)△t, s)f

+
△t

2
Me,n(s+ i△t, s)f −Be

z,n(s+ i△t, s)f‖

+ ‖△t

2
Sz,n(△t)(Me,n(s+ i△t, s)f −Me,n(s+ (i− 1)△t, s)f)‖

+ ‖△t

2
(Me,n(s+ i△t, s) + Sz,n(△t))f‖ → 0, △t → 0.

According to (6.23) and dominated convergence theorem, we obtain that

m∑

i=1

(S̃n(△t))m−iS̃x,n(
△t

2
)S̃y,n(

△t

2
)B̃e

z,n(s+ i△t, s)

is strongly convergent to

m∑

i=1

(Sn(△t))m−iSx,n(
△t

2
)Sy,n(

△t

2
)Be

z,n(s + i△t, s).

Further,
m∏

i=1

M̃n(s+ i△t, s+ (i− 1)△t)

is strongly convergent to

m∏

i=1

Mn(s+ i△t, s+ (i− 1)△t).

For the observation system, we assume there is only a single observation during the

entire time interval and define the observation mapping Hr : L
2(Ω) → R by

Hrf :=
1

Vr

∫

Ωr

f(ω)dω, r = (xr, yr, zr), f ∈ L2(Ω),

where Ωr and Vr are similarly defined as (6.20). Then, the observation system extended

by the emission rate is given by

δy(t) = (Hr, 0)

(
δc(t)
δe(t)

)
+ ν(t),

where δy(t) ∈ R and ν(t) is the white noise with the distribution N (0, 1).
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Figure 6.1: Minimal cost ℓ̂f1,n(3) (left) and the corresponding optimal location r̂fn at t = 3

(right) with P (t0|t−1) = e−8In. Points at z = 0 in the right figure: Possible observation

locations. Stars in the right figure: Optimal locations.
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Figure 6.2: Minimal cost ℓ̂f1,n(3) (left) and the corresponding optimal location r̂fn at t = 3

(right) with P (t0|t−1) =
∑∞

i=1 e
−i2〈·, ei〉ei. Points at z = 0 in the right figure: Possible

observation locations. Stars in the right figure: Optimal locations.
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Figure 6.3: Minimal cost ℓ̂s1,n(0) (left) and the corresponding optimal location r̂sn at

t = 0 (right) with P (t0|t−1) =
∑∞

i=1 e
−i2〈·, ei〉ei. Points at z = 0 in the right figure:

Possible observation locations. Stars in the right figure: Optimal locations.

According to the spatial discretization of the model, in the vertical direction, [0, 1] is

discretized into three layers {0, 0.5, 1}. Since the diffusion coefficient K(z) is small, we

assume that possible locations of the single observation are around the grid points in the

first layer z = 0, which are shown as the points at z = 0 in the right plots in Figure 6.1,

6.2 and 6.3. Besides, we only choose one observation location and display the optimal

locations with the increasing number of modes of approximations as stars in the right

plots in Figure 6.1, 6.2 and 6.3. Fixing the dimensions of the approximated systems in y
and z directions, the z−axis in Figure 6.1, 6.2 and 6.3 shows the increasing dimensions

of the approximates systems in x direction.

We have already shown that the assumptions (A1) − (A3) in Section 6.3 and the

compactness of the possible area of observation locations are satisfied.

In addition, according to the spatial discretization, we assume that the initial covari-

ance is given by Pn(t0|t−1) = e−8In, where In is the n × n identity matrix. It implies

that Pn(t0|t−1) does not converge to a nuclear operator. It is shown in Figure 6.1 that the

optimal locations and minimal costs of a sequence of approximations based on Kalman

filter do not converge in this situation.

Next we define the initial covariance as

P (t0|t−1)f =

∞∑

i=1

e−i2〈f, ei〉ei, f ∈ L2(Ω),

where {ei} is an orthogonal basis of L2(Ω). The n-dimensional approximation of P (t0|t−1)
is given by

Pn(t0|t−1)Pnf =

n∑

i=1

e−i2〈Pnf, ei〉ei, f ∈ L2(Ω).

With this choice, P (t0|t−1) is nuclear and the assumption (A4) in Section 6.3 is satis-

fied. From Theorem 6.3.4, the optimal locations of observations and the corresponding
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minimal costs of a sequence of approximations are convergent to the optimal location of

the observations and the minimal cost of the original model (6.16) extended with (6.17)

by the Kalman filter and smoother. They are shown in Figure 6.2 for the filter and Figure

6.3 for the smoother, respectively.



Chapter 7

Conclusion

In this thesis, the observational analysis, including the efficiency analysis, sensitivity

analysis and the optimal problem of observation locations, was discussed.

The main contributions of this thesis are as follows. Firstly, we established the tangent

linear form of the atmospheric transport model extended by emission rates under the

assumption that emissions preserve the invariant diurnal profiles. The initial value and

emission rates play the equivalent roles in the extended model since the homogeneity

of the extended model is such that emission rates are available to be optimized by the

Kalman smoother as model variables.

Secondly, in the context of Kalman smoother, the relative improvement covariance

is derived as the criterion to evaluate the potential improvement of each grid point in

the state vector and calculated by singular value decomposition. With a statistical inter-

pretation, we can apply it to determine in advance, which parameters can be optimized

by the data assimilation procedure. A number of metrics associated with the relative

improvement covariance provides us with the quantitative solutions to measure to what

extend the parameters can be optimized. Due to its relativity of the normalization, it

is uniformly available for any prior initial values of invertible background covariances.

Further, the proposal of the ensemble relative improvement covariance, based on EnKS,

gives us a computationally feasible access to assess the efficiency of observation net-

works. An elementary advection-diffusion example illustrated the significance of relative

improvements covariances and their various metrics in different situations

Thirdly, the sensitivity of observational networks was formulated by seeking the

fastest directions of the perturbation ratio between initial states and observation config-

urations during the entire time interval. The consistency of efficient and sensitive direc-

tions of observation networks complements the two approaches mutually and guarantees

the feasibility to target the sensitive states by the weighted leading singular vectors. Fur-

ther, we applied the sensitivity analysis of observation networks into the emission source

apportionment problem.

Fourthly, we studied the optimal problems of control locations for time-varying sys-

tems on a finite-time horizon in Hilbert spaces. In the context of linear quadratic control,

the minimal costs caused by the worst initial condition in the operator norm and the

random initial condition were evaluated in the nuclear norm, respectively. By the com-

pactness of input and output operators, the well-posedness of the optimal control location
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problem with the worst initial condition is proved. By restricting input spaces and output

spaces into finite-dimensional spaces, the well-posedness of optimal problems of control

locations are also guaranteed for random initial conditions. The theorems concerning

the convergence of minimal costs and optimal locations of a sequence of approximating

systems to the original system allow us to apply the results in practice.

Finally, by the duality between Kalman filters and LQ control problems, the optimal

problem of observation locations based on Kalman filters (and further smoothers) has

been similarly studied in the nuclear norm. The application to a particular advection-

diffusion equation extended with emissions shows the necessity to study the mild integral

form of the time-varying system.

In the future, on one hand, we plan to apply the efficiency analysis into the real

atmospheric transport model to solve practical problems. On the other hand, we will

consider the optimal problems of control and observation locations with unbounded input

operators and output operators in order to deal with the boundary control problems and

point observation systems.
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[25] M. CUSACK, N. PÉREZ, J. PEY, A. ALASTUEY AND X. QUEROL, Source appor-

tionment of fine PM and sub-micron particle number concentrations at a regional

background site in the western Mediterranean: a 2.5 year study, Atmos. Chem.

Phys., Vol. 13, pp. 5173–5187, 2013.



Bibliography 119

[26] D. DAESCU, On the sensitivity equations of four-dimensional variational (4D-Var)

data assimilation, Mon. Wea. Rev., Vol. 136, pp. 3050–3065, 2008.

[27] D. DAESCU AND I. M. NAVON, Adaptive observations in the context of 4D-Var

data assimilation, Meteorol. Atmos. Phys., Vol. 55, pp. 205–236, 2004.

[28] R. DALEY, Atmospheric data analysis, Cambridge University Press, 1991.

[29] N. DARIVANDI, K. MORRIS AND A. KHAJEPOUR, An algorithm for LQ optimal

actuator location, Smart Mater. Struct., Vol. 22, Jan. 28, 2013.

[30] R. DAUTRAY AND J. L. LIONS, Mathematical analysis and numerical methods

for science and technoligy: Volume 6 Evolution Problem 2, Springer, 1999.

[31] M. C. DELFOUR, The linear quadratic optimal control problem for hereditary

differential systems: theory and numerical solution, Appl. Math. and Opt., Vol. 3,

pp. 101–162, 1977.

[32] KJ. ENGEL AND R. NAGEL, One-parameter semigroup for linear evolution equa-

tions, Springer, 2000.

[33] H. ELBERN, H. SCHMIDT AND A. EBEL, Variational data assimilation for tropo-

spheric chemistry modeling, J. Geophys. Res., Vol. 102, (D13), pp. 15967–15985,

1997.

[34] H. ELBERN AND H. SCHMIDT, A four-dimensional variational chemistry data

assimilation scheme for Eulerian chemistry transport modeling, J. Geophys. Res.,

Vol. 104, pp. 18583–18598, 1999.

[35] H. ELBERN, H. SCHMIDT, O. TALAGRAND AND A. EBEL, 4D-variational data

assimilation with an adjoint air quality model for emission analysis, Environ mod-

ell softw, Vol. 15, pp. 539–548, 2000.

[36] H. ELBERN, A. STRUNK, H. SCHMIDT AND O. TALAGRAND, Emission rate

and chemical state estimation by 4-dimension variational inversion, Atmos. Chem.

Phys., Vol. 7, pp. 3749–3769, 2007.

[37] G. EVENSEN, Data assimilation: The ensemble Kalman filter, 2th Edition,

Springer, 2009.

[38] P. L. FALB, Infinite-dimensional filtering: The Kalman-Bucy filter in Hilbert

space, Info. and Control, Vol. 11, pp. 102–137, 1967.

[39] A. GELB (ED.), Applied optimal estimation, Cambridge, Mass.: M.I.T. Press,

1974.

[40] A. GERMANI, L. JETTO AND M. PICCIONI, Galerkin approximation for optimal

linear filtering of infinite-dimensional linear systems, SIAM J. Control Optim.,

Vol. 26, No. 6, pp. 1287–1305, 1988.



120 Bibliography

[41] A. GERMANI, C. MANES AND P. PEPE, A twofold spline approximation for fi-

nite horizon LQG control of hereditary systems, SIAM J. Control Optim., Vol. 39,

No. 4, pp. 1233–1295, 2000.

[42] J. C. GEROMEL, Convex analysis and global optimization of joint actuator loca-

tion and control problems, IEEE Trans. Autom. Control, Vol. 34, No. 7, pp. 711–

720, 1989.

[43] J. GIBSON, The Riccati integral equations for optimal control problems on Hilbert

spaces, SIAM J. Control Optim., Vol. 17, No. 4, pp. 637–665, 1979.

[44] J. GIBSON, An analysis of optimal model regulation: convergence and stability,

SIAM J. Control Optim., Vol. 19, No. 5, pp. 686–707, 1981.

[45] J. GIBSON, Linear-quadratic optimal control of hereditary differential systems:

Infinite dimensional Riccati equations and numerical approximations, SIAM J.

Control Optim., Vol. 21, No. 1, pp. 95–139, 1983.
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