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Chapter 1

Introduction

The main results of this thesis have already been published in the papers [24,47–49].
The physical background and the motivation for our research has been described
in these papers as well, and this introduction is largely based on the introductory
sections of [24,49].

Lattice QCD simulations are among the world’s most demanding computa-
tional problems, and a significant part of today’s supercomputer resources is
spent in these simulations [12, 58]. The focus of this thesis lies in the develop-
ment and implementation of an adaptive aggregation-based multigrid method for
the Wilson-Dirac operator from lattice QCD. We analyze the behavior of the
method and its production code quality implementation with up-to-date physical
data and show thorough comparisons with other existing successful approaches
in this field. In addition we show results from a non-standard application where
we apply our multigrid method as a preconditioner to the overlap Dirac operator,
another discretization from lattice QCD.

The computational challenge in lattice QCD computations consists of repeat-
edly solving very large sparse linear systems

Dz = b ,

where D = D(U,m) is a discretization, typically the Wilson discretization, of
the Dirac operator on a four-dimensional space-time lattice. The Wilson-Dirac
operator depends on a gauge field U and a mass parameter m. In recent compu-
tations lattices with up to 144× 643 lattice points have been used, involving the
solution of linear systems with 452,984,832 unknowns [2,6,8,39,44]. Usually these
linear systems are solved by standard Krylov subspace methods. Their iteration
count increases tremendously when approaching the physically relevant parameter
values (i.e., physical mass constants and lattice spacing a→ 0), a phenomenon re-
ferred to as “critical slowing down” in the physics literature. Thus it is of utmost
importance to develop preconditioners for said methods which overcome these
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scaling issues. The most commonly used preconditioners in lattice QCD compu-
tations nowadays are odd-even preconditioning [33, 74], deflation techniques [79]
and domain decomposition approaches [50,78]. While these approaches yield sig-
nificant speed-ups over the unpreconditioned versions, their scaling behavior is
unchanged and critical slowing down still occurs.

Multigrid methods have been considered in the lattice QCD community as
well, motivated by their potential (e.g., for elliptic PDEs) of convergence inde-
pendent of the lattice spacing. However, due to the random nature of the gauge
fields involved, the treatment of the lattice Dirac equation by geometric multigrid
methods, i.e., methods based solely on the underlying PDE, has been elusive for
the last twenty years [11,27,68,113]. With the advent of adaptive algebraic multi-
grid methods, effective preconditioners for QCD calculations could be constructed
in recent years. The pioneering work from [5, 23, 92] showed very promising re-
sults. There, an adaptive non-smoothed aggregation approach based on [25] has
been proposed for the solution of the Wilson-Dirac system. An implementation
is available within the QOPQDP library [91].

Within the physics community, another hierarchical technique, a domain de-
composition type solver named inexact deflation developed in [79], is widely used.
A well-optimized code for this solver is publicly available [75,76]. Inexact deflation
can be regarded as an adaptive method as well. It performs a setup phase which
allows the construction of a smaller system, the little Dirac operator, which is then
used as part of an efficient preconditioner. Although there is an intimate connec-
tion with the aggregation-based multigrid approach from [25], inexact deflation
seems to have been developed completely independently. As a consequence, the
inexact deflation method does not resemble a typical multigrid method in the
way its ingredients are arranged. In particular, it requires the little Dirac system
to be solved to high accuracy in each iteration.

In this thesis we present a multigrid method that combines aspects from [79],
namely a domain decomposition smoother, and from non-smoothed γ5-respecting
aggregation as in [5, 92]. Our approach elaborates on the multigrid methods
from [5, 92] in that we use a domain decomposition method as the smoother in-
stead of the previously used Krylov subspace smoother. This allows for a natural
and efficient parallelization, also on hybrid architectures. Moreover, we substan-
tially improve the adaptive setup from [5,92] and [79] in the sense that less time
is required to compute the operator hierarchy needed for an efficient multigrid
method. Our approach can also be regarded as turning the domain decomposition
technique from [79] into a true multigrid method. The “little Dirac” system now
needs to be solved only to low accuracy. This allows, in particular, to apply the
method recursively. One simply uses another two-level ansatz for the solution of
the linear system on the coarse grid and applies this construction principle recur-
sively, possibly up to a level where a direct, “exact” solution of the coarse-level
system is feasible. With the inexact deflation approach, an efficient recursive
application is not possible.
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Furthermore, we apply our multigrid method to the overlap discretization
from lattice QCD in terms of an auxiliary space preconditioning technique [85],
i.e., using the Wilson-Dirac operator as a preconditioner to the overlap opera-
tor. The overlap operator is particularly attractive from a theoretical point of
view since it respects an important physical property, chiral symmetry, which
is violated by the Wilson discretization. However, it has the disadvantage that
its computational cost can be two orders of magnitude larger than when using
the Wilson discretization. We demonstrate that the technique we develop is able
to reduce the computational cost for solving systems with the overlap operator
substantially, reaching speed-ups of a factor of 10 or more in realistic settings.
The preconditioning technique thus contributes to making the overlap operator
more tractable in lattice QCD calculations.

This thesis is organized as follows. In Chapter 2 we review the Wilson dis-
cretization and its clover improved variant as a discretization of the contin-
uum Dirac operator, and we discuss properties of the Wilson-Dirac operator.
Thereafter we introduce smearing techniques and explore the connection between
smearing and normality. A variety of Schwarz domain decomposition methods are
introduced in Chapter 3. We also give implementation details for the latter and
for the matrix-vector multiplication with the Wilson-Dirac operator followed by
numerical experiments. Chapter 4 gives an introduction into aggregation-based
algebraic multigrid for lattice QCD. The construction of transfer and coarse grid
operators are discussed from the theoretical and implementational point of view.

In Chapter 5 we introduce the inexact deflation method from [79] and its
setup procedure implemented in [75,76] and discuss the properties of its ingredi-
ents. We also point out the differences to algebraic multigrid and why a recursive
extension of the inexact deflation approach is not advisable. Chapter 6 intro-
duces the algebraic multigrid method with Krylov subspace smoothing proposed
in [4,5,23,92] and implemented in [91], also including its setup procedure. There-
after, in Chapter 7 we introduce our two-level approach and its setup procedure,
followed by a thorough experimental analysis and comparisons with the meth-
ods from Chapters 5 and 6. The recursive extension of the two-level approach
is introduced in Chapter 8. We explain the different multilevel cycling strategies
and extend the two-level setup to a multilevel setup. Implementation details for
the realization of a parallel multilevel implementation are given, followed by a
thorough experimental study and several comparisons.

Finally, in Chapter 9 we develop an auxiliary space type preconditioning tech-
nique using the Wilson operator to precondition the overlap operator. A rigorous
theory is developed for the hypothetical case where the Wilson operator is normal.
This theory is then numerically justified for physically relevant cases.
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Chapter 2

Quantum Chromodynamics

Quantum Chromodynamics (QCD) is a quantum field theory in four-dimensional
space-time. It is the theory of the strong interaction of quarks (particles) and
gluons (counterparts/interaction particles). In the continuum theory, this inter-
action is given by the Dirac operator D which can be written as

D =
3∑

µ=0

γµ ⊗ (∂µ + Aµ) ,

where ∂µ = ∂/∂xµ and Aµ(x) is the gauge field (at a point x in space-time). The
anti-hermitian traceless matrices Aµ(x) are elements of su(3), the Lie algebra of
the special unitary group SU(3). The γ-matrices γ0, γ1, γ2, γ3 ∈ C4×4 (also known
as Dirac matrices) are hermitian and unitary matrices which generate the Clifford
algebra C0,4(R), cf. [73].

QCD has a high predictive power, i.e., a small number of free parameters.
Predictions that can be deduced from this theory are amongst others the masses of
hadrons, composite particles bound by the strong interaction (e.g., nucleon, pion;
cf. [38]). The masses of hadrons and many other predictions have to be obtained
non-perturbatively, i.e., via numerical simulations requiring the discretization and
numerical evaluation of the theory.

In this chapter we introduce the reader to important concepts and the notation
necessary to understand the Wilson discretization of the Dirac operator. We also
discuss properties of the Wilson discretization with special emphasis on its non-
normality and draw the connection to smearing techniques. For a more detailed
introduction to QCD and lattice QCD we refer the interested reader to [32,51,82].
This chapter is largely based on the QCD related theory sections in [24,49].
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2.1 Continuum QCD

In this section we rather focus on the mathematical construction of the continuum
Dirac operator than on the physical background. In these terms quarks and gluons
can be seen as differentiable maps defined on R4.

Definition 2.1
Let C := {1, 2, 3} be the set of color indices, S := {0, 1, 2, 3} the spin indices and

ψ : R4 → C12 ∼= CC×S
x 7→ (ψ10(x), ψ20(x), ψ30(x), ψ11(x), . . . , ψ33(x))T

a differentiable function. Then ψ defines a quark field or matter field. Let
M = {ψ : ψ matter field}. The twelve component vector ψ(x) is called spinor.
Furthermore, for µ = 0, 1, 2, 3

Aµ : R4 → su(3)

x 7→ Aµ(x) ,

the set {Aµ : µ = 0, 1, 2, 3} defines a gauge field, i.e., a gluonic counterpart of a
quark field.

A component of the spinor ψ(x) is typically denoted by ψcσ(x) where c ∈ C
determines the color and σ ∈ S the spin index. The connection between the
gauge matrices Aµ(x) ∈ su(3) and the matter fields ψ(x) ∈ C12 is established by
tensorizing the gauge matrices with certain 4-by-4 matrices.

Definition 2.2
A set of hermitian, unitary matrices {γµ ∈ C4×4 : µ = 0, 1, 2, 3} is called a set
of generators of the Clifford algebra C0,4(R), iff

γµγν + γνγµ =

{
2 · I4 µ = ν

0 µ 6= ν
for µ, ν = 0, 1, 2, 3 . (2.1)

The matrices γµ are called γ-matrices or Dirac-matrices.

The meaning behind the naming convention C0,4(R) as well as details about
the role of Clifford algebras in physics can be found in [73].

Unlike the gauge fields Aµ and the matter fields ψ and η, the γ-matrices
do not depend on x. The multiplication of a γ-matrix with ψ is defined by
(γµψ)(x) := (γµ ⊗ I3)ψ(x). In case operations act unambiguously on the color
but differently on the spin degrees of freedom we use the notation ψσ to denote
those components of the quark field belonging to the fixed spin index σ. For
a given point x, ψσ(x) is thus represented by a three component column vector
ψσ(x) = (ψ1σ(x), ψ2σ(x), ψ3σ(x))T . The value of the gauge field Aµ at point x
acts non-trivially on the color and trivially on the spin degrees of freedom in the
sense that (Aµψ)(x) := (I4 ⊗ Aµ(x))ψ(x).
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Definition 2.3
Let M be the space of matter fields. The continuum Dirac operator is the map

D : M → M

defined by

D :=
3∑

µ=0

γµ ⊗ (∂µ + Aµ) (2.2)

where ∂µ = ∂/∂xµ denotes the partial derivative in direction µ. Evaluating Dψ
at x ∈ R4, we have

(Dψ)(x) =
3∑

µ=0

γµ ((∂µ + Aµ)ψ) (x) .

The covariant derivative ∂µ + Aµ is a “minimal coupling extension” of the
derivative ∂µ, ensuring that ((∂µ +Aµ)ψ)(x) transforms in the same way as ψ(x)
under local gauge transformations, i.e., a local change of the coordinate system
in color space. As part of the covariant derivative the Aµ’s can be seen as con-
necting different (but infinitesimally close) space-time points. The combination
of covariant derivatives and the γ-matrices ensures that Dψ(x) transforms un-
der the space-time transformations of special relativity in the same way as ψ(x).
Local gauge invariance and special relativity are fundamental principles of the
standard model of elementary particle physics, see, e.g., [95].

2.2 Lattice QCD and the Wilson Discretization

In order to compute predictions in QCD from first principles and non-perturba-
tively, the theory of QCD has to be discretized and simulated on a computer.
The discretization error is then accounted for by extrapolation to the “contin-
uum limit” based on simulations at different lattice spacings. One of the most
expensive tasks in these computations is the solution of the discretized Dirac
equation for a given right hand side. In this section we give a brief introduction
into the principles of this discretization and discuss some properties of the arising
linear operators. Since the discretization is typically formulated on an equispaced
lattice, this treatment of QCD is also referred to as lattice QCD.

Definition 2.4
Consider a four-dimensional torus T . Then a lattice L with lattice spacing a is
a subset of T such that for any x, y ∈ L there exists p ∈ Z4 fulfilling

y = x+ a · p, i.e., yµ = xµ + a · pµ for µ = 0, 1, 2, 3 .
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For shift operations on the lattice, let µ̂ ∈ R4 denote shift vectors defined by

µ̂ν :=

{
a µ = ν

0 else.

For a quark field ψ on the lattice, it is sufficient to be defined at each lattice
point only, i.e., it is a function

ψ : L → C12

x 7→ ψ(x)

which apparently does not require differentiability anymore. As in continuum
QCD, the spinor ψ(x) again has color and spin indices ψcσ, c ∈ C, σ ∈ S
(cf. Definition 2.1).

The gauge fields Aµ(x) connecting infinitesimally close space-time points in
continuum QCD have to be replaced by objects that connect points at finite
distances. To this purpose variables Uµ(x) are introduced. The translation from
Aµ to Uµ can be defined as follows.

Definition 2.5
Given a gauge field Aµ, the corresponding discretized gauge field Uµ at a point x
is defined by the path ordered integral along the link (x, x+ µ̂)

Uµ(x) := e−P
∫ x+µ̂
x Aµ(s)ds ≈ e−aAµ(x+ 1

2
µ̂) .

The discretized gauge field U = {Uµ(x) : x ∈ L, µ = 0, 1, 2, 3} is called (gauge)
configuration.

In lattice QCD calculations, the initial point is always a discrete gauge con-
figuration U , the translation from Aµ to Uµ is “only” of theoretical interest and
never performed in practice. Since Uµ(x) connects x and x+ µ̂, we regard Uµ(x)
as being associated with the link between x and x+µ̂. The link between x+µ̂ and
x, pointing in the opposite direction, is then given by Uµ(x)−1 (cf. Definition 2.5).
The matrices Uµ(x) satisfy

Uµ(x) ∈ SU(3), in particular Uµ(x)−1 = Uµ(x)H .

Figure 2.1 illustrates the naming conventions on the lattice. Uµ(x) is also called
a gauge link.

The covariant derivative of the continuum theory can be discretized in many
ways. Here we restrict ourselves to the widely used Wilson discretization (cf. [115]).

Definition 2.6
Let Aµ be a gauge field and Uµ the corresponding gauge configuration. Defining
forward covariant finite differences

(∆µψσ) (x) :=
Uµ(x)ψσ(x+ µ̂)− ψσ(x)

a
·

= (∂µ + Aµ)ψσ(x)
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Uµ(x+ ν̂)

Uν(x+ µ̂)

Uµ(x− µ̂) Uµ(x) Uµ(x+ µ̂)

Uν(x− ν̂) Uν(x+ µ̂− ν̂)

x+ ν̂ x+ µ̂+ ν̂

Uν(x+ µ̂) Uν(x+ µ̂+ ν̂)

Uν(x)

x+ µ̂x

Uµ(x− µ̂+ ν̂) Uµ(x+ µ̂+ ν̂)

Figure 2.1: Naming conventions on
the lattice.

ν̂

µ̂

Figure 2.2: The clover term.

and backward covariant finite differences

(∆µψσ) (x) :=
ψσ(x)− UH

µ (x− µ̂)ψσ(x− µ̂)

a
,

the centralized covariant finite difference discretization of the Dirac operator D is
given by

DN :=
3∑

µ=0

γµ ⊗ (∆µ + ∆µ) /2 . (2.3)

Lemma 2.7
The forward and backward covariant finite differences satisfy

(∆µ)H = −∆µ .

Proof. For arbitrary quark fields χ and ψ we have

〈χσ,∆µψσ〉 = 1
a

∑
x∈L〈χσ(x),∆µψσ(x)〉

= 1
a

∑
x∈L〈χσ(x), Uµ(x)ψσ(x+ µ̂)〉 − 1

a

∑
x∈L〈χσ(x), ψσ(x)〉

= (∗) .

Since L is periodic, we can use the index transformation x 7→ x + µ̂ in the first
sum to obtain

(∗) = 1
a

∑
x∈L〈χσ(x− µ̂), Uµ(x− µ̂)ψσ(x)〉 − 1

a

∑
x∈L〈χσ(x), ψσ(x)〉

= − 1
a

∑
x∈L〈χσ(x)− UH

µ (x− µ̂)χσ(x− µ̂), ψσ(x)〉
= −〈∆µχσ, ψσ〉 .
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Consequently, the centralized covariant finite differences (∆µ+∆µ)/2 are anti-
hermitian. The hermiticity of the γµ (see Definition 2.2) then implies the following
statement.

Corollary 2.8
The naive discretization DN from (2.3) is anti-hermitian, i.e.,

DH
N = −DN .

The naive discretization generates unphysical eigenvectors, a standard phe-
nomenon when discretizing first order derivatives using central finite differences,
cf. [105], also known as the “species doubling effect” (see [107,115]) or “red-black
instability”. The eigenspace for each eigenvalue of DN has dimension 16, but
only a one-dimensional subspace corresponds to an eigenfunction of the contin-
uum operator. Wilson introduced the stabilization term a∆µ∆µ, a centralized
second order covariant finite difference, to circumvent this problem.

Definition 2.9
Given a gauge configuration U on lattice L with nL lattice sites, lattice spacing a
and a mass parameter m0, the Wilson discretization of the Dirac operator (also
Wilson-Dirac operator) is defined by

DW :=
m0

a
I12nL +

1

2

3∑
µ=0

(
γµ ⊗ (∆µ + ∆µ)− aI4 ⊗∆µ∆µ

)
, (2.4)

where the mass parameter m0 sets the quark mass.

For further details regarding quark masses and m0, see [82]. The commuta-
tivity relations (2.1) of the γ-matrices imply a non-trivial symmetry of DW .

Lemma 2.10
Defining γ5 := γ0γ1γ2γ3 we have γ5γµ = −γµγ5 for µ = 0, 1, 2, 3 (see (2.1)) and
with Γ5 := InL ⊗ γ5 ⊗ I3 the Wilson-Dirac operator DW is Γ5-symmetric, i.e.,

(Γ5DW )H = Γ5DW . (2.5)

Proof. Since γµ and γ5 are hermitian we see that γ5γµ is anti-hermitian. Thus
the operator (γ5γµ) ⊗ (∆µ + ∆µ), as product of two anti-hermitian operators, is
hermitian. From Lemma 2.7 we obtain

(∆µ∆µ)H = (∆µ)H(∆µ)H = (−∆µ)(−∆µ) = ∆µ∆µ .

Hence, I4 ⊗ ∆µ∆µ is hermitian and, trivially, commutes with Γ5. This implies
the Γ5-symmetry (2.5).
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Remark 2.11 Defining the projectors

π+
µ :=

I4 + γµ
2

and π−µ :=
I4 − γµ

2

we obtain an equivalent formulation for DW as

DWψ(x) =
4 +m0

a
ψ(x)−1

a

3∑
µ=0

(
π−µ ⊗ Uµ(x)ψ(x+ µ̂) + π+

µ ⊗ UH
µ (x− µ̂)ψ(x− µ̂)

)
.

From this formulation it is again easy to see that DW respects Γ5-symmetry
but also that DW is not hermitian since (π+

µ )H 6= π−µ .
To reduce the order of the discretization error as a function of a, the Sheik-

holeslami-Wohlert or “clover” term (cf. [102] and Figure 2.2), depending on a
parameter csw, is added to the lattice Wilson-Dirac operator. For the definition
of the clover term we first define the plaquettes.

Definition 2.12
Given a configuration of gauge links {Uµ(x)}, the plaquette Qµ,ν

x at lattice point
x is defined as

Qµ,ν
x := Uν(x)Uµ(x+ ν̂)UH

ν (x+ µ̂)UH
µ (x) . (2.6)

A plaquette thus is the product of all coupling matrices along a cycle of length
4 on the torus, such cycles being squares in a (µ, ν)-plane

Qµ,ν
x =̂ .

Similarly, the plaquettes in the other quadrants are defined as

Qµ,−ν
x =̂ , Q−µ,νx =̂ , Q−µ,−νx =̂ . (2.7)

Note that on each cycle of length 4 there are four plaquettes which are conjugates
of each other. They are defined as the products of the gauge links along that cycle
with different starting sites, so that we have, e.g., Q−µ,νx+µ̂ = UH

µ (x)Qµ,ν
x Uµ(x), etc.

Definition 2.13
Defining

Qµν(x) := Qµ,ν
x +Qµ,−ν

x +Q−µ,νx +Q−µ,−νx ,

the clover term C is defined as

C(x) :=
csw
32a

3∑
µ,ν=0

(γµγν)⊗ (Qµν(x)−Qνµ(x))

where csw ∈ R (for illustration see Figure 2.2). For an arbitrary quark field ψ
and any lattice site x, the clover improved Wilson-Dirac operator D is defined as

Dψ(x) := DWψ(x) − C(x)ψ(x) . (2.8)
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The clover term is diagonal on the lattice L. It removes O(a)-discretization
effects from the covariant finite difference discretization of the covariant derivative
(for appropriately tuned csw ; see [102] and references therein). The resulting
discretized Dirac operator D thus has local discretization errors of order O(a2).
Clearly, putting csw = 0 we retrieve the “non-improved” Wilson discretization.

Lemma 2.14 (i) The clover Wilson-Dirac operator D is Γ5-symmetric, i.e.,

(Γ5D)H = Γ5D . (2.9)

(ii) Every right eigenvector ψλ to an eigenvalue λ of D corresponds to a left
eigenvector

ψ̂λ̄ = Γ5ψλ

to the eigenvalue λ̄ of D and vice versa. In particular, the spectrum of D
is symmetric with respect to the real axis.

(iii) The spectrum of DW is symmetric with respect to the vertical line Re(z) =
4+m0

a
, i.e.,

λ ∈ spec
(
DW

)
⇒ 2m0+4

a
− λ ∈ spec

(
DW

)
.

Proof. (i) We recall Definition 2.2: For any µ, γµ is hermitian and we have

γνγµ = −γµγν for µ 6= ν .

Thus, γνγµ is anti-hermitian. Further, we have

(Qµ,ν
x )H = Uµ(x)Uν(x+ µ̂)UH

µ (x+ ν̂)UH
ν (x) = Qν,µ

x ,

and thus QH
µν(x) = Qνµ(x), i.e., Qµν(x) − Qνµ(x) is anti-hermitian as well.

Thus, the products (γµγν)⊗ (Qµν(x)−Qνµ(x)) are hermitian and therefore
the whole clover term C is hermitian.

Furthermore, C commutes with Γ5 since for all ν, µ

γ5(γνγµ) = (γνγµ)γ5 .

Thus, C is Γ5-symmetric. From Lemma 2.10 we know that the Wilson-Dirac
operator DW is Γ5-symmetric, and hence D, the difference of DW and C,
is Γ5-symmetric as well.

(ii) Due to DH = Γ5DΓ5 we have

Dψλ = λψλ ⇔ ψHλ D
H = λ̄ψHλ ⇔ (Γ5ψλ)

HD = λ̄(Γ5ψλ)
H .
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Wilson-Dirac operator with m0 = 0
and csw = 0.
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“clover improved” Wilson-Dirac oper-
ator with m0 = 0 and csw = 1.

(iii) Consider a red-black ordering of the lattice sites, where all red sites appear
before black sites. Then the matrix DW − 4+m0

a
I12nL has the block structure

DW −
4 +m0

a
I12nL =

(
0 Drb

Dbr 0

)
.

Thus, if x = (xr, xb) is an eigenvector of DW − 4+m0

a
I12nL with eigenvalue

µ, then x′ = (xr,−xb) is an eigenvector of DW − 4+m0

a
I12nL with eigenvalue

−µ. Applying this result to DW gives the assertion.

Summarizing, D ∈ Cn×n is a sparse matrix which represents a nearest neighbor
coupling on a periodic 4D lattice. The lattice has nL = NtN

3
s sites, each holding

12 variables, so that n = 12nL. D has the symmetry property (2.9), depends on a
mass parameter m0, the Sheikholeslami-Wohlert constant csw, and a configuration
{Uµ(x) : x ∈ L, µ = 0, 1, 2, 3}. In practice m0 is negative, and for physically
relevant mass parameters, the spectrum of D is contained in the right half plane,
cf. Figures 2.3 and 2.4.

To explicitly formulate D in matrix terms we fix a representation for the
γ-matrices as

γ0 =


i

i

−i
−i

, γ1 =


−1

1

1

−1

, γ2 =


i

−i
−i

i

, γ3 =


1

1

1

1

,
resulting in

γ5 = γ0γ1γ2γ3 =


1

1

-1

-1

 .
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Thus γ5 acts as the identity on spins 0 and 1 and as the negative identity on spins
2 and 3. D is then given via

(Dψ)(x) =
1

a

(
(m0 + 4)I12 −

csw
32

3∑
µ,ν=0

(γµγν)⊗
(
Qµν(x)−Qνµ(x)

))
ψ(x)

− 1

2a

3∑
µ=0

((I4 − γµ)⊗ Uµ(x))ψ(x+ µ̂)

− 1

2a

3∑
µ=0

(
(I4 + γµ)⊗ UH

µ (x− µ̂)
)
ψ(x− µ̂).

2.3 Smearing and Normality

Definition 2.15
A linear operator A acting on a finite dimensional vector space is normal if

AHA = AAH .

Equivalently, A is normal if and only if A is unitarily similar to a diagonal
matrix ([100]). Extending Definition 2.16, a continuous linear operator acting on
an infinite dimensional Hilbert space is normal if it commutes with its adjoint.
The continuum Dirac operator D is anti-self-adjoint if one restricts the matter
field to an appropriate Hilbert space and thus normal which we do not discuss in
detail here.

Definition 2.16
For a linear operator A acting on a finite dimensional vector space V , the field
of values of A is given by

F(A) = {ψHAψ : ψHψ = 1, ψ ∈ V } .

For normal operators the field of values is the convex hull of the spectrum (see,
e.g., [100]). The Wilson-Dirac operator D is not normal, but it approaches nor-
mality when discretization effects become smaller. Thus, for small lattice spacing,
large lattice sizes and physically relevant mass parameters we can expect that the
whole field of values F(D) of D is in the right half plane. This has numeri-
cal advantages as, e.g., if the field of values excludes the origin, the restarted
Generalized Minimal Residual (GMRES(m)) method is known to converge, see,
e.g., [100].

In order to improve normality and reduce fluctuation of the spectrum, smear-
ing techniques as, e.g., “stout” [83], APE [1], HYP [61] and HEX [28] smearing
were introduced to lattice QCD simulations. Typically, a smearing is an iterative
process modifying the gauge links by averaging them with neighboring links.
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To measure the deviation from normality of DW , the Wilson-Dirac operator
without clover term, we now look at the Frobenius norm of DH

WDW−DWD
H
W . We

show that this measure can be fully expressed in terms of the pure gauge action,
defined as a sum of the plaquettes (Definition 2.12). Based on this connection
we then explain that “stout” smearing [83] has the effect of reducing the non-
normality of DW , among its other physical benefits. Another algorithmic benefit
is discussed in Chapter 9. We published this part of the thesis (for the non-
improved Wilson-Dirac operator) in [24].

For ease of notation we from now on drop the lattice spacing a, i.e., a = 1, so
that the lattice L is given as

L = {x = (x0, x1, x2, x3) : 1 ≤ x0 ≤ Nt, 1 ≤ x1, x2, x3 ≤ Ns} .

The deviation of the plaquettes from the identity is a measure for the non-
normality of D as determined by the following proposition.

Proposition 2.17
The Frobenius norm of DH

WDW −DWD
H
W fulfills

‖DH
WDW −DWD

H
W‖2

F = 16
∑
x

∑
µ<ν

Re(tr (I −Qµ,ν
x )) (2.10)

where the first sum is to be taken over all lattice sites x and
∑

µ<ν is a shorthand

for
∑3

µ=0

∑3
ν=µ+1.

Proof. In order to prove the proposition we inspect the entries of DH
WDW −

DWD
H
W . As in Remark 2.11 we use the notation π±µ for the matrices

π±µ = 1
2
(I4 ± γµ), µ = 0, . . . , 3 .

The relations (2.1) between the γ-matrices show that each π±µ is a projection
and that, in addition,

π+
µ π
−
µ = π−µ π

+
µ = 0, µ = 0, . . . , 3 . (2.11)

Table 2.1 gives the nonzero entries of a (block) row in DW and DH
W in terms

of the 12× 12 matrices which couple lattice site x with the sites x and x± µ̂. We
use m to denote m0 + 4 with m0 from (2.4).

The productDH
WDW represents a coupling between nearest and next-to-nearest

lattice sites; the coupling 12× 12 matrices are obtained as the sum over all paths
of length 2 on the torus of the product of the respective coupling matrices in DH

W

and DW . A similar observation holds for DWD
H
W . Table 2.2 reports all the entries

of DH
WDW , and we now shortly discuss all the paths of length 2 which contribute

to these entries of DH
WDW .
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DW DH
W

(x, x) mI12 mI12

(x, x+ µ̂) −π−µ ⊗ Uµ(x) −π+
µ ⊗ Uµ(x)

(x, x− µ̂) −π+
µ ⊗ UH

µ (x− µ̂) −π−µ ⊗ UH
µ (x− µ̂)

Table 2.1: Coupling terms in DW and DH
W .

DWD
H
W

(x, x) m2I12 + 1
2

∑3
µ=0(π+

µ + π−µ )⊗ I3

(x, x+ µ̂) −m(π+
µ + π−µ )⊗ Uµ(x)

(x, x− µ̂) −m(π+
µ + π−µ )⊗ Uµ(x− µ̂)

(x, x± 2µ̂) 0

ν 6= µ:

(x, x+ µ̂+ ν̂) π−µ π
+
ν ⊗ Uµ(x)Uν(x+ µ̂)

+π−ν π
+
µ ⊗ Uν(x)Uµ(x+ ν̂)

(x, x+ µ̂− ν̂) π−µ π
−
ν ⊗ Uµ(x)UH

ν (x+ µ̂− ν̂)

+π+
ν π

+
µ ⊗ UH

ν (x− ν̂)Uµ(x− ν̂)

(x, x− µ̂− ν̂) π+
µ π
−
ν ⊗ UH

µ (x− µ̂)UH
ν (x− µ̂− ν̂)

+π+
ν π
−
µ ⊗ UH

ν (x− ν̂)UH
µ (x− ν̂ − µ̂)

Table 2.2: Coupling terms inDH
WDW . The coupling terms inDWD

H
W are obtained

by interchanging all π+
µ and π−µ as well as all π+

ν and π−ν .

For the diagonal position (x, x) we have 9 paths of length 2, (x, x)→ (x, x)→
(x, x) and (x, x) → (x, x ± µ̂) → (x, x), µ = 0, . . . , 3. For a nearest neighbor
(x, x + µ̂) we have the two paths (x, x) → (x, x) → (x, x + µ̂) and (x, x) →
(x, x + µ̂) → (x, x + µ̂), and similarly in the negative directions. For a position
(x, x±2µ̂) there is only one path (x, x)→ (x, x±µ̂)→ (x, x±2µ̂), with the product
of the couplings being 0 due to (2.11). Finally, for the other next-to-nearest
neighbors we always have two paths, for example (x, x)→ (x, x+µ̂)→ (x+µ̂− ν̂)
and (x, x)→ (x, x− ν̂)→ (x+ µ̂− ν̂).

The coupling terms in DWD
H
W are identical to those for DH

WDW except that
we have to interchange all π+

µ and π−µ as well as all π+
ν and π−ν .

This shows that in DH
WDW −DWD

H
W the only non-vanishing coupling terms

are those at positions (x, x+ µ̂+ ν̂), (x, x+ µ̂− ν̂) and (x, x− µ̂− ν̂) for µ 6= ν.
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µ 6= ν: DH
WDW −DWD

H
W

(x, x+ µ̂+ ν̂) 1
2
(−γµ + γν)⊗ (I3 −Qµ,ν

x )Uµ(x)Uν(x+ µ̂)

(x, x+ µ̂− ν̂) 1
2
(−γµ − γν)⊗ (I3 −Qµ,−ν

x )Uµ(x)UH
ν (x+ µ̂− ν̂)

(x, x− µ̂− ν̂) 1
2
(γµ − γν)⊗ (I3 −Q−µ,−νx )UH

µ (x− µ̂)UH
ν (x− µ̂− ν̂)

Table 2.3: Coupling terms in DH
WDW −DWD

H
W .

They are given in Table 2.3, where we used the identities

π−µ π
−
ν − π+

µ π
+
ν = 1

2
(−γµ − γν) ,

π+
µ π
−
ν − π−µ π+

ν = 1
2

(γµ − γν) ,

π−µ π
+
ν − π+

µ π
−
ν = 1

2
(−γµ + γν) ,

π+
µ π

+
ν − π−µ π−ν = 1

2
(γµ + γν) .

By rearranging the terms we obtain the plaquettes from (2.6) and (2.7). We
exemplify this for position (x, x+ µ̂+ ν̂)

π−µ π
+
ν ⊗ Uµ(x)Uν(x+ µ̂) + π−ν π

+
µ ⊗ Uν(x)Uµ(x+ ν̂)

−
(
π+
µ π
−
ν ⊗ Uµ(x)Uν(x+ µ̂) + π+

ν π
−
µ ⊗ Uν(x)Uµ(x+ ν̂)

)
= 1

2
(−γµ + γν)⊗ Uµ(x)Uν(x+ µ̂) + 1

2
(γµ − γν)⊗ Uν(x)Uµ(x+ ν̂)

= 1
2
(−γµ + γν)⊗ (I3 −Qµ,ν

x )Uµ(x)Uν(x+ µ̂) .

Using the fact that for the Frobenius norm we have

‖AQ‖F = ‖A‖F whenever Q is unitary (and AQ is defined),

‖A⊗B‖F = ‖A‖F · ‖B‖F for all A,B,

we obtain the following for the squares of the Frobenius norms of all the coupling
matrices from Table 2.3:

2‖I −Qµ,ν
x ‖2

F for position (x, x+ µ̂+ ν̂) ,

2‖I −Qµ,−ν
x ‖2

F for position (x, x+ µ̂− ν̂) ,

2‖I −Q−µ,−νx ‖2
F for position (x, x− µ̂− ν̂) .

Finally, for any unitary matrix Q we have

‖I −Q‖2
F = tr

(
(I −QH)(I −Q)

)
= 2 · Re(tr (I −Q)) .

Now we obtain ‖DH
WDW−DWD

H
W‖2

F by summing the squares of the Frobenius
norms of all coupling matrices. This is a sum over 24n coupling matrices, n being
the number of lattice sites. As discussed before, groups of four of these coupling
matrices refer to the same plaquette Qµ,ν

x up to conjugation in SU(3), so tr (I −Q)
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is the same for these four plaquettes Q. We can thus “normalize” to only consider
all possible “first quadrant” plaquettes Qµ,ν

x and obtain

‖DH
WDW −DWD

H
W‖2

F = 4
∑
x

∑
µ<ν

2 · 2 · Re(tr (I −Qµ,ν
x )) .

As a consequence of Proposition 2.17 we conclude that DW is normal in the
case of the free theory, i.e., when all links Uµ(x) are equal to the identity or when
Uµ(x) = U(x)UH(x + µ̂) for a collection of SU(3)-matrices U(x) on the lattice
sites x. For physically relevant configurations, however, DW is non-normal.

For the deviation from normality of the clover improved Wilson-Dirac operator
D = DW + C we have

‖DHD −DDH‖F = ‖DH
WDW −DWD

H
W + (DH

W −DW )C − C(DH
W −DW )‖F

≤ ‖DH
WDW −DWD

H
W‖F + 2‖C‖F‖DH

W −DW‖F .

From Proposition 2.17 we know that ‖DH
WDW −DWD

H
W‖F → 0 implies Qµ,ν

x → I
for all x. From the clover term Definition 2.13 we see that then also Qµν(x) −
Qνµ(x)→ 0 for all x and µ, ν, i.e., ‖C‖F → 0. Thus,

‖DH
WDW −DWD

H
W‖F → 0 implies ‖DHD −DDH‖F → 0 .

Definition 2.18
For a given configuration U = {Uµ(x)}, the quantity

SW (U) =
∑
x

∑
µ<ν

Re(tr (I −Qµ,ν
x ))

is known as the Wilson gauge action1.

Smearing techniques for averaging neighboring gauge links have been studied
extensively in lattice QCD simulations. Their use in physics is motivated by
the goal to reduce “cut-off effects” related to localized eigenvectors with near
zero eigenvalues. We now explain why “stout” smearing [83] reduces the Wilson
gauge action and thus drives the Wilson-Dirac operator towards normality. Other
smearing techniques like APE [1], HYP [61] and HEX [28] have similar effects.

Given a configuration U , stout smearing modifies the gauge links according
to

Uµ(x)→ Ũµ(x) = eεZ
U
µ (x)Uµ(x) , (2.12)

1To represent a physically meaningful quantity, the Wilson gauge action is usually scaled
with a scalar factor. This is not relevant in the present context.
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where the parameter ε is a small positive number and

ZUµ (x) = −1

2
(Mµ(x)−MH

µ (x)) +
1

6
tr
(
Mµ(x)−MH

µ (x)
)
, (2.13)

where

Mµ(x) =
3∑

ν=0,ν 6=µ

Qµ,ν
x +Qµ,−ν

x .

Note the dependence of ZUµ (x) on local plaquettes associated with x.
The following result from [80, 81] relates the Wilson flow V(τ) = {Vµ(x, τ) :

x ∈ L, µ = 0, . . . , 3} defined as the solution of the initial value problem

∂

∂τ
Vµ(x, τ) = −{∂x,µSW(V(τ))}Vµ(x, τ) , Vµ(x, 0) = Uµ(x) , (2.14)

to stout smearing. Here Vµ(x, τ) ∈ SU(3), and ∂x,µ is the canonical differential
operator with respect to the link variable Vµ(x, τ) which takes values in su(3).

Theorem 2.19
Let V(τ) be the solution of (2.14). Then

(i) V(τ) is unique for all V(0) and all τ ∈ (−∞,∞) and differentiable with
respect to τ and V(0).

(ii) SW (V(τ)) is monotonically decreasing as a function of τ .

(iii) One step of Lie-Euler integration with step size ε for (2.14), starting at

τ = 0, gives the approximation Ṽ(ε) = {Ṽµ(x, ε)} for V(ε) with

Ṽµ(x, ε) = eεZ
U
µ (x)Uµ(x) ,

with ZUµ (x) from (2.13).

We refer to [80, 81] and also [16] for details of the proof for (i) and (ii). It
is noted in [16] that the solution of (2.14) moves the gauge configuration along
the steepest descent direction in configuration space and thus actually minimizes
the action locally. Part (iii) follows directly by applying the Lie-Euler scheme;
cf. [60].

The theorem implies that one Lie-Euler step is equivalent to a step of stout
smearing, with the exception that in stout smearing links are updated sequentially
instead of in parallel. And since the Wilson action decreases along the exact so-
lution of (2.14), we can expect it to also decrease for its Lie-Euler approximation,
at least when ε is sufficiently small.
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Figure 2.5: Illustration of the effect of stout smearing on the average plaquette
value (2.15).

In Figure 2.5 we illustrate the relation between iterations of stout smearing
and the average plaquette value Qavg for a 324 lattice. The average plaquette
value is defined by

Qavg = N−1
Q

∑
x

∑
µ<ν

Re(tr (Qµ,ν
x )) , (2.15)

where NQ denotes the total number of plaquettes. In terms of Qavg (2.10) sim-
plifies to

‖DH
WDW −DWD

H
W‖F = 16NQ(3−Qavg) .

Figure 2.5 shows that the Wilson action decreases rapidly in the first iterations
of stout smearing.

To conclude this section we note that there are several works relating the
spectral structure and the distribution of plaquette values. For example, it has
been shown in [87] that the size of the spectral gap around 0 of Γ5DW is related
to Re(tr (I −Qµ,ν

x )) being larger than a certain threshold for all plaquettes Qµ,ν
x .

Other studies consider the connection between fluctuations of the plaquette value
and spacially localized near zero modes (eigenvectors with near zero eigenvalues),
see [13, 84,88], and the influence of smearing on these modes [62].



Chapter 3

Domain Decomposition Methods

Let us reserve the terminology block decomposition for a tensor type decomposi-
tion of L into lattice-blocks. The precise definition is as follows.

Definition 3.1
Assume that {T 0

1 , . . . , T 0
`0
} is a partitioning of {1, . . . , Nt} into `0 blocks of con-

secutive time points,

T 0
j = {tj−1 + 1, . . . , tj}, j = 1, . . . , `0, 0 = t0 < t1 . . . < t`0 = Nt ,

and similarly for the spatial dimensions with partitionings {T µ1 , . . . , T
µ
`µ
}, µ =

1, 2, 3.
A block decomposition of L is a partitioning of L into ` = `0`1`2`3 lattice-

blocks Li, where each lattice-block is of the form

Li = T 0
j0(i) × T 1

j1(i) × T 2
j2(i) × T 3

j3(i) .

Accordingly we define a block decomposition of all 12nL variables in V = L×C×S
into ` blocks Vi by grouping all spin and color components corresponding to the
lattice-block Li, i.e.,

Vi = Li × C × S . (3.1)

Another block decomposition {L′i : i = 1, . . . , t′} is called refinement of {Li : i =
1, . . . , t}, if for each L′i there exists a Lj such that

L′i ⊆ Lj .

The computational challenge in lattice QCD computations consists of repeat-
edly solving linear systems involving the discretized Wilson-Dirac operator

Dψ = η. (3.2)
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Since the systems arising in lattice QCD calculations tend to have hundreds of
millions of unknowns they require the use of parallel computers. Therefore, block
decompositions are used for parallelization. Each process obtains a block of lattice
sites from a block decomposition, administrates the corresponding variables and
performs the calculations associated with these lattice sites. Figure 3.1 shows two
processes from a parallel environment, reduced to two dimensions. Each process
owns a lattice-block Pi of a block decomposition and ghost cells on the boundaries
which contain the recent values from neighboring processes. Therefore, ghost cells
have to be updated whenever a computation demands information from nearest
neighbor lattice sites, e.g., when evaluating the Wilson-Dirac operator D on a
vector ψ. Here, this updating process is represented by the arrows pointing to
the ghost cells.

P1 P2

Figure 3.1: 2D example for the communication of two neighboring processes from
a parallel setting.

This parallelization scheme is in a natural way compatible with domain de-
composition methods as preconditioners for (3.2). These methods consist of re-
peatedly solving smaller block restricted linear systems. In a parallel environ-
ment they are able to improve the ratio of computation and communication if
the block decomposition of the domain decomposition method is a refinement of
the block decomposition {Pi} underlying the parallelization. Furthermore, due
to the smaller linear system solves, the work to be done tends to be more local,
hence reducing the access to local memory.

3.1 Additive and Multiplicative Schwarz

We now define the instruments needed for domain decomposition methods.

Definition 3.2
Let Vi ⊂ V be a lattice-block. We define the corresponding trivial embedding

IVi : Vi → V

as the restriction of the identity on V to Vi, i.e.,

IVi := (idV)|Vi .
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The corresponding block inverse is defined as

Bi := IViD−1
i IHVi where Di := IHViDIVi .

Lemma 3.3
Consider the iteration

ψk+1 = Hψk + Lη with H,L ∈ Cn×n and ψi, η ∈ Cn .

(i) If ψ∗ is a fixed point of the iteration, i.e., ψ∗ satisfies ψ∗ = Hψ∗+Lη, then
the errors ek := ψ∗ − ψk satisfy

ek+1 = Hek .

The matrix H is called error propagator.

(ii) If we have the initial guess ψ0 = 0, then the k-th iterate is given by

ψk =
k−1∑
i=0

H iLη .

Proof. (i) We have

ek+1 = ψ∗ − ψk+1 = Hψ∗ + Lη︸ ︷︷ ︸
=ψ∗

− (Hψk + Lη)︸ ︷︷ ︸
=ψk+1

= H(ψ∗ − ψk) = Hek .

(ii) We have ψ1 = Hψ0 + Lη = H0Lη and inductively

ψk+1 = H(
k−1∑
i=0

H iLη) + Lη =
k∑
i=1

H iLη +H0Lη =
k∑
i=0

H iLη .

For a given block decomposition {Vi : i = 1, . . . , k} of V , one iteration of a
domain decomposition method to solve the linear system (3.2) consists of solving
each of the block systems

Diei = IHVir (3.3)

and applying the corrections

ψ ← ψ +Bir where Bir = IViei for i = 1, . . . , k , (3.4)

possibly performing a certain number of in-between residual updates

r ← η −Dψ . (3.5)
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In case the residual update (3.5) is done only once before solving all block
systems, all the corrections (3.4) are performed for the same residual r. Using
the shorthand

M =
k∑
i=1

Bi ,

one iteration of the domain decomposition method is then given by

ψ ← ψ +M(η −Dψ) = (I −MD)ψ +Mη

yielding the error propagator

H = I −MD = I −
k∑
i=1

BiD

via Lemma 3.3.

Similarly, if the residual update (3.5) is performed after each solution of a
block system (3.3), we obtain the error propagator

H =
k∏
i=1

(I −BiD) .

These simplest instances of domain decomposition methods were already used in
the context of a theoretical analysis of PDEs by Schwarz in 1870 [101]. They are
now known as the additive and the multiplicative Schwarz method (Algorithm 1
and 2), see, e.g., [104].

Algorithm 1: Additive Schwarz (one iteration)

input: ψ, η
output: ψ

1 r ← η −Dψ
2 for i = 1 to k
3 ψ ← ψ +Bir

Since in Algorithm 1 the residual r does not change within the whole for-
loop, the block systems can be solved simultaneously, which lends itself to an
easy parallelization.

On the other hand, in Algorithm 2, the residual changes in each cycle of the
for-loop depending on the solution of the previous cycle. Thus, the information
spreads faster than in Algorithm 1, but Algorithm 2 is inherently sequential.
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Algorithm 2: Multiplicative Schwarz (one iteration)

input: ψ, η
output: ψ

1 for i = 1 to k
2 r ← η −Dψ
3 ψ ← ψ +Bir

3.2 Red-Black Multiplicative Schwarz

This section is largely based on [49]. The red-black Schwarz method has been
introduced to lattice QCD in [78] and has been used ever since in several lattice
QCD implementations as a preconditioner (cf. [3, 50, 79]). In this context red-
black Schwarz is also known as Schwarz Alternating Procedure (SAP). SAP is
a colored version of the multiplicative Schwarz method [101, 104] that allows for
parallelization. To this purpose we color the blocks such that blocks of the same
color are decoupled (Figure 3.2). After a residual update all block systems of
a given color can be solved (simultaneously) before computing the next residual
update. Additional residual updates in-between the block solves do not show
any effect. Since the Wilson-Dirac operator has only nearest neighbor couplings,
only two colors are needed to decouple. This red-black Schwarz method for the
solution of (3.2) is given in Algorithm 3 for a block decomposition of the lattice
and variable blocks Vi according to (3.1). Figure 3.2 illustrates a 2D example.

With the shorthand Bcolor =
∑

i∈color Bi and

K = Bblack(I −DBred) +Bred

we can summarize one iteration (ν = 1) of Algorithm 3 as (cf. [104])

ψ ← (I −KD)ψ +Kη . (3.6)
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Algorithm 3: Red-black multiplicative Schwarz

input: ψ, η, ν
output: ψ

1 for i = 1 to ν
2 r ← η −Dψ
3 for all red i do
4 ψ ← ψ +Bir

5 r ← η −Dψ
6 for all black i do
7 ψ ← ψ +Bir

According to Lemma 3.3 the error propagator is given by

ESAP = I −KD = (I −BblackD)(I −BredD) ,

and for the initial guess ψ = 0, we obtain after ν iterations

M
(ν)
SAPη =

ν−1∑
i=0

(I −KD)iK η .

We denote ESAP = I −MSAPD where MSAP = M
(1)
SAP .

Typically, the solution of the local systems (3.3), required when computing
Bir, is approximated by a few iterations of a Krylov subspace method (e.g.,
GMRES). When incorporating such an approximate solver, the SAP method
becomes a non-stationary iterative process. Hence it is necessary to use flexible
Krylov subspace methods such as FGMRES or GCR (cf. [100]) in case that SAP
is used as a preconditioner (cf. [50, 78,100]).

It turns out that SAP as a preconditioner is not able to remedy the unfavorable
scaling behavior of Krylov subspace methods with respect to system size, quark
mass and physical volume. When analyzing this behavior, one realizes that SAP
reduces error components belonging to a large part of the spectrum very well,
but a small part is almost unaffected by SAP. We illustrate this in Figure 3.3
where the horizontal axis represents the eigenvectors v of D in ascending order
of the absolute value of the corresponding eigenvalue. The vertical axis gives the
ratio ‖ESAPv‖/‖v‖, see Figure 3.3. The ratio is small for larger eigenvalues and
becomes significantly larger for the small eigenvalues. This behavior is typical for
a smoother in an algebraic multigrid method which motivated us to use SAP in
this context.
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3.3 Sixteen Color Multiplicative Schwarz

In this section we present the extension of a 2D four color approach [15] to the
4D case with nearest neighbor coupling. Instead of using standard two color
SAP (cf. Algorithm 3) we apply a coloring scheme with 16 colors which spreads
information on the lattice faster, yielding faster convergence. Furthermore, this
approach can allow for more overlap of communication and computation in certain
situations.

Figure 3.4 illustrates one iteration of the four color approach in 2D for nearest
neighbor coupling. Each sub-figure displays one and the same processor lattice-
block from a process decomposition Pi, containing a refining block decomposition
Bi (of 8 sub blocks) used for the Schwarz method. We call Pi local lattice or process
lattice and Bi a block. The thin blocks surrounding Pi represent the ghost cells
which contain values from the boundaries of neighboring process blocks Pj.

updating

1 2 1 2

4 3 4 3

waiting waiting

(a) Color 1

updating

1 2 1 2

4 3 4 3

waitingcalculating
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Figure 3.4: Example for one iteration of the four color approach in 2D, to be read
column wise.

In the very beginning, before starting the iteration, the left ghost cells have to
be updated as well, such that all ghost cells adjacent to color 1 contain the latest
information. For this particular example in Figure 3.4, each Schwarz block Bi is
adjacent to at least one ghost cell. This means, there are no inner blocks which
could be processed by two color SAP while the ghost cells are being updated.
However, while communicating, the four color approach is able to process all
blocks Bi which are inner blocks in the current communication direction as in
Figure 3.4 (c) and (g). Only one communication step per color is required to
supply the blocks Bi with the latest information of their neighbors. This is ensured
by building 2-by-2 block compounds and choosing for each compound the same
circle-shaped color alignment. In Figure 3.4, each sub figure consists of two such
compounds.
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Figure 3.5: 16 color block alignment in 4D for a single 2-by-2-by-2-by-2 com-
pound, each vertex represents a Schwarz block Bi.

Going from 2D to 4D, the 2-by-2 compounds turn into 2-by-2-by-2-by-2 com-
pounds of 16 blocks. Preserving the properties of the 2D approach thus requires
a loop that visits all 16 blocks exactly once. This ensures that each block has the
latest information with just one ghost cell update per color. One possible loop is
sketched in Figure 3.5, the corresponding order is given by the decimal numbers
and arrows. The number of ghost cell updates to be performed per iteration is
16 and thus the same as for two color SAP, but the 16 color approach spreads
information faster on the lattice. The resulting Algorithm 4 can be formulated
just by introducing 16 instead of two colors to Algorithm 3.

Algorithm 4: Sixteen color Schwarz

input: ψ, η, ν
output: ψ

1 for k = 1 to ν
2 for q = 1 to 16
3 r ← η −Dψ
4 for all i with color q do
5 ψ ← ψ +Bir

The binary numbers in Figure 3.5 number the vertices in canonical order.
Given a position on the loop, the binary number corresponding to the subsequent
position differs only by a single digit. This type of sequence of binary numbers
is called gray code (see [57, 114]), and when proceeding by one vertex on the
loop, the digit that flips gives the communication direction. In a four digit binary
number d = d3d2d1d0, d0 corresponds to the x-direction, d1 to y, d2 to z and d3 to
t. A flip from 0 to 1 in a digit indicates that an update for the positive boundary
in the corresponding direction is required, a flip from 1 to 0 requires the negative
boundary to be updated. Thus, any loop together with its communication scheme
corresponds to a 4 bit gray code.

It remains to validate the statement that any loop through the 16 blocks, that
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does not visit any of them more than once, is sufficient. This can be done by
understanding the following facts: Solving a block system for a block Bj provides
an update to four neighboring blocks, exactly one neighboring block either in
direction +µ or −µ. Without loss of generality, let the direction be +µ for all
µ. Before we can solve the block systems corresponding to these neighboring
blocks, a block, say Bj′ , having Bj as neighbor in direction −µ, needs a ghost cell
update in direction +µ. Figure 3.5 illustrates that this ghost cell update will be
performed when visiting a vertex pointing into direction +µ, but any path from
Bj to Bj′ , not visiting any block more than once, contains at least one vertex
pointing into direction +µ. Thus, the required ghost cell update is performed
before the block system corresponding to Bj′ is solved.

These facts validate the statement for 16 blocks. Clearly it then holds for
multiples of 16 blocks since all blocks of a given color are processed successively
and having neighboring blocks on the same processor with up-to-date information
is as good as having up-to-date ghost cells.

All of the introduced Schwarz methods solve each block system only once per
iteration k. In terms of complexity, the only difference is the number of residual
updates per iteration. If the lattice L is decomposed into s blocks B1, . . . ,Bs, the
sequential multiplicative Schwarz method can be seen as an s color multiplicative
method. Thus, the number of residual updates is given by the number of colors.
Though, from the implementational point of view, the complexity does not nec-
essarily depend on the number of colors. The residual update can be performed
block-wise right before solving the respective block system. Since each block sys-
tem is solved exactly once per iteration, the complexity of all block-wise residual
updates can be summed up to that of one global update, yielding the following
proposition.

Proposition 3.4
For a fixed block size, i.e., the number of blocks s being proportional to the sys-
tem size n, one iteration of any of the introduced Schwarz methods has linear
complexity

O(n) ,

and this cost is independent of the number of colors and corresponding residual
updates.

3.4 Implementation Details – The Wilson-Dirac Op-
erator

Most of the computational work for iteratively solving (2.8), e.g., with Krylov
subspace methods such as CG, GMRES or GCR (cf. [100]) is caused by matrix-
vector multiplications (MVMs) with the Wilson-Dirac operator. Therefore, the
lattice QCD community has spent large effort on optimizing the MVM with this
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operator for several supercomputing platforms. We decided to use the scheme
from [71] which focuses on the overlap of communication and computation. Im-
plementation details for low level optimization like SSE or AVX are not considered
in this thesis.

To explain the evaluation and communication scheme, we introduce the fol-
lowing definitions.

Definition 3.5
Let Pi be a process block decomposition. The corresponding set of all ghost cell
lattice sites is given by

∂Pi = {x ∈ L − Pi : ∃µ ∈ {0, 1, 2, 3} such that x+ µ̂ ∈ Pi or x− µ̂ ∈ Pi}

and can also be seen as the outer boundary of Pi. More precisely, we define the
particular ghost cells/ outer boundaries

∂±µ Pi := {x ∈ ∂Pi : x∓ µ̂ ∈ Pi} .

Similarly we define inner boundaries

d±µPi := {x ∈ Pi : x± µ̂ ∈ ∂±µ Pi} .

For a given quark field ψ we define the inner and outer boundaries of ψ by

∂±µ Pi(ψ) = {ψ(x) : x ∈ ∂±µ Pi} and d±µPi(ψ) = {ψ(x) : x ∈ d±µPi} .

If the index i of Pi is not of particular interest, we use the shorthands

∂±µ ψ and d±µψ .

d+ν

∂+ν

µ

ν

∂−µ d−µ Pi d+µ

∂−ν

∂+µ

d−ν

Figure 3.6: Illustration of outer and inner boundaries in Definition 3.5.

For an illustration of Definition 3.5, see Figure 3.6. If Pj is the neighbor of Pi
in positive µ direction, an update of ∂+

µ Pi(ψ) ensures

∂+
µ Pi(ψ) = d−µPj(ψ) ,
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Algorithm 5: Evaluation of the Wilson-Dirac operator DW

input: ψ, η
output: η = η +DWψ

1 for µ = 0 to 3
2 for all x ∈ Pi do
3 “λµ(x)← [(I4 − γµ)/2⊗ I3]ψ(x)”

4 for µ = 0 to 3
5 start communicating d−µλµ in negative µ direction

6 for µ = 0 to 3
7 for all x ∈ Pi do
8 “χµ(x+ µ̂)← [(I4 + γµ)/2⊗ UH

µ (x)]ψ(x)”

9 for µ = 0 to 3
10 start communicating ∂+

µ χµ in positive µ direction

11 for µ = 0 to 3
12 wait for receiving ∂+

µ λµ

13 for µ = 0 to 3
14 for all x ∈ Pi do
15 “ψ(x)← ψ(x) + [I4 ⊗ Uµ(x)]λµ(x+ µ̂)”

16 for µ = 0 to 3
17 wait for receiving d−µχµ

18 for µ = 0 to 3
19 for all x ∈ Pi do
20 “ψ(x)← ψ(x) + χµ(x)”

and similarly for the negative ghost cells of ψ.
Now, recalling the notation introduced in Section 2.2, we can formulate the

evaluation scheme for DW from [71] in Algorithm 5. Besides hiding communica-
tion, this approach avoids the need to store gauge links for the ghost cells. Hence,
the set of gauge links required on process Pi is given by

{Uµ(x) : x ∈ Pi, µ = 0, 1, 2, 3}

and is thus scaling with the process lattice size.
In a parallel environment, neighbor coupling causes the need of communica-

tion. For communicating in different directions and computing the couplings in
different directions at the same time, we introduce buffers λµ and χµ. On process
Pi, line 3 computes d−µλµ which is needed by the neighbor in negative µ direction,
say Pj, to compute

(I4 − γµ)/2⊗ Uµ(x)ψ(x+ µ̂) for x+ µ̂ ∈ ∂+
µ Pj
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in line 15. Hence, every process communicates d−µλµ in negative µ direction and
in return obtains the contributions to d+

µψ coming from ∂+
µ ψ. Afterwards, all

contributions from positive µ directions are available in all lattice sites x on any
process Pi, and the gauge matrices Uµ(x) can be multiplied with λµ(x) and added
to the result as shown in line 15. Since the matrices (I4 ± γµ)/2 are projections
on C4 with rank 2, we only need to perform two multiplications with Uµ(x). The
four component contribution to ψ(x) in terms of spin variables is then computed
as linear combinations of the two results from the multiplications with Uµ(x).
Therefore, the buffers λµ and χµ can be computed and stored in projected form,
only requiring 6 complex numbers per lattice site. This is why computations
involving λµ or χµ are displayed in quotation marks since they are carried out in
a compressed form and to be understood symbolically.

In the same manner, line 8 computes ∂+
µ χµ(x), but the contributions to d−µψ

coming from ∂−µ ψ are missing. Therefore, ∂+
µ χµ(x) is communicated in positive µ

direction. As the only difference, the gauge matrices UH
µ (x) are multiplied with

d+
µψ before communicating since Pi owns the gauge matrices pointing to the ghost

cells ∂+
µ Pi.

The procedures for both directions are independent from each other and
merged together in order to overlap communication and computation.

Since DW incorporates only the neighbor coupling, the clover term inducing
the self coupling can be treated separately. For the γ-matrix representation from
Section 2.2, the clover term consists of two hermitian 6-by-6 matrices per lattice
site which can be computed once in the very beginning. Due to hermiticity, only
the upper triangle of each matrix needs to be stored. The application of the clover
term then just consists of two multiplications with 6-by-6 matrices per lattice site.

3.4.1 Odd-even preconditioning

A commonly used technique in lattice QCD computations is odd-even precondi-
tioning. A lattice site x = (x1, x2, x3, x4) is called even if x1 +x2 +x3 +x4 is even,
else it is called odd. The Wilson-Dirac operator has the form

D =

(
Dee Deo

Doe Doo

)
,

if we order all even sites first. Due to the nearest neighbor coupling, Dee and Doo

are block diagonal with 6× 6 diagonal blocks, they only contain the clover term.
The inverse of D is then given by

D−1 =

(
I 0

−D−1
oo Doe I

)(
D−1
S 0

0 D−1
oo

)(
I −DeoD

−1
oo

0 I

)
(3.7)

with the Schur complement

DS = Dee −DeoD
−1
oo Doe .
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Instead of solving a system with D we can solve the corresponding system for
the even lattice sites given by the Schur complement DS and then retrieve the
solution at the odd lattice sites. This is done by applying D−1 in the form of (3.7)
to a (odd-even ordered) right hand side

η =

(
ηe
ηo

)
,

i.e., by computing
ψe = D−1

S (ηe −DeoD
−1
oo ηo)

with an iterative solver for DS and thereafter computing

ψo = D−1
oo ηo −D−1

oo Doeψe . (3.8)

Since Doo is 6× 6 block diagonal, the inverse D−1
oo is pre-computed once, and the

operator DS is applied in factorized form. A matrix-vector multiplication with
DS thus requires the same work as one with D while the condition of DS improves
over that of D. Typically, this results in a gain of 2–3 in the number of iterations
and execution time. Odd-even preconditioning is well-established in lattice QCD,
see, e.g., [78, 92].

We implemented odd-even preconditioning in all unpreconditioned Krylov
subspace methods and in the solver for the Schwarz blocks.

3.5 Implementation Details – Schwarz Methods

Based on the basic concepts of Schwarz methods and their parallelization intro-
duced in the previous sections we now discuss implementation details. Therein we
mostly focus on how to avoid redundant computations and, as a side aspect, how
to overlap communication and computation. Details of deeper matter as com-
putation of index arrays for block orders or data layouts are not discussed here.
Similar concepts for Schwarz methods have already been implemented in [75,76].

For the notation used in the following definition, recall Definition 3.1.

Definition 3.6
Consider a block decomposition Bi of the lattice L with corresponding variable
blocks Vi = Bi × C × S. For any vector v ∈ V = L × C × S, v|Vi denotes the
restriction of v to Vi. For a lattice-block Bi, the outer boundary ∂Bi ⊂ L−Bi is
the set of all lattice sites which are linked but not belonging to Bi, i.e.,

∂Bi := {x /∈ Bi : ∃y ∈ Bi,∃µ ∈ {0, 1, 2, 3} such that x = y + µ̂ or x = y − µ̂} .

Accordingly we define the outer boundary of a variable block

∂Vi := ∂Bi × C × S .
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The restriction of the clover improved Wilson-Dirac operator D to the links in-
terconnecting ∂Vi and Vi is denoted by DVi∂Vi, i.e., DVi∂Vi = IHViDI∂Vi with the
respective trivial embeddings IHVi , I∂Vi from Definition 3.2.

The restriction of D acting only within the block Vi, i.e., Di (from Defini-
tion 3.2), is a map from Vi to Vi itself while DVi∂Vi contains all contributions of D
from outside of Vi to Vi. Having these two operators, a local variant of a residual
update r ← r−Dφ, where φ denotes the increment for an update for the current
iterate (i.e., ψ ← ψ + φ), can be performed via

r|Vi ← r|Vi − (Diφ|Vi +DVi∂Viφ|∂Vi) . (3.9)

For Schwarz methods it is highly desirable to do all residual updates locally on
demand before solving a block system Diφ|Vi = r|Vi since D, r and φ are then
streamed through the cache only once per Schwarz iteration. On top of that,
when performing the residual update globally on V , c colors would cause c global
residual updates which from the block-based point of view means c−1 redundant
computation of all block residuals r|Vi .

As far as local residual updates are concerned, any of the previously introduced
multiplicative Schwarz methods can be formulated as follows: For all blocks, com-
pute the current block residual and solve the block system. The only difference
now lies in the order of the blocks in which the Schwarz iteration proceeds. E.g.,
for the red-black approach, the red blocks are ordered first and the black blocks
thereafter (or vice versa). Then computations on blocks of the same color do
not influence each other since D does not couple variables from different blocks.
Thus, for the outcome it makes no difference whether we compute the whole red
residual first or block-wise on demand.

Our numerical testing showed that the fastest way of approximating a block
system solution is the minimal residual (MR) iteration [100] which is mathemat-
ically equivalent to restarted GMRES with restart length 1. For a fast compu-
tation, a block-wise data layout, such that each block is coherent in storage, is
advisable. This applies to the vectors r, ψ, φ and also to the configuration U . The
ghost cells for the communication may be added, e.g., after all the blocks at the
rear end of the vectors. Algorithm 6 describes the MR iteration for the block
system case.

One Schwarz iteration calls the MR iteration for each block Vi with the current
residual r|Vi . On the block Vi, the residual part of the block restricted system
is kept up to date by line 6 during the whole MR iteration. Summarizing, it
provides an update φ|Vi for the current iterate ψ and performs a residual update

r|Vi ← r|Vi −Diφ|Vi . (3.10)

Hence, “half” of the residual update from (3.9) is already performed within the
MR iteration, and it is sufficient to compute just the contributions to the block
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Algorithm 6: Minimal residual iteration (MR) on an SAP block Vi
input: r|Vi
output: φ|Vi , r|Vi

1 φ|Vi ← 0
2 for k = 1 to maxiter
3 z ← Dir|Vi
4 α← zHr|Vi/(zHz)
5 φ|Vi ← φ|Vi + αr|Vi
6 r|Vi ← r|Vi − αz

residual r|Vi induced by the outer boundaries of the update φ via

r|Vi ← r|Vi −D
Vi
∂Viφ|∂Vi (3.11)

before starting the MR iteration on this block again. This is particularly interest-
ing when performing more than one Schwarz iteration consecutively, or when the
initial residual r is globally up to date, e.g., when the initial guess ψ is zero. A
description for the case of the initial guess being zero can be found in Algorithm 7.

In the first iteration k = 1 for the first color of Algorithm 7, the residual
update could be omitted completely, since the entire residual is already known.
For the subsequent colors within the first iteration k = 1, the residual contribu-
tions of the blocks themselves via Di are still up to date. Thus, a residual update
via (3.11) is sufficient. Using a few if-cascades and computations of (3.10), Al-
gorithm 7 can be generalized for the case of ψ 6= 0, still avoiding global residual
updates.

Algorithm 7: SAP in parallel (for one process holding several blocks Vi)
input: η
output: ψ

1 ψ ← 0, φ← 0, r ← η
2 for k = 1 to maxcycles
3 for color = 1 to numcolors
4 start update of ghost cells of φ {communication only}
5 for all blocks Vi of current color not adjacent to ghost cells do
6 update residual via (3.11)
7 [φ|Vi , r|Vi ]← MR(r|Vi)
8 ψ ← ψ + φ|Vi
9 wait for update of ghost cells of φ to be finished

10 for all blocks Vi of current color adjacent to ghost cells do
11 perform lines 6 to 8
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Algorithm 7 also describes an ansatz for implementing the parallelization. For
every color the ghost cells are updated once in the beginning (cf. Figure 3.1). Note
that the ghost update can be restricted to the contributions from the previous
color in order to reduce the amount of data to be communicated. While the
communication proceeds, the inner block systems of the current color which are
not adjacent to ghost cells on the lattice can be computed. After completion of
the communication, all block systems of the current color adjacent to ghost cells
can be computed.

This implementation of a communication scheme can also be used for the
additive approach. Therein, the recent block restricted residual updates coming
from the MR iteration have to be buffered until the current iteration is finished,
thus enforcing that all initial local residuals in line 6 of Algorithm 7 for the
MR iteration are computed from information of previous iterations. For the 16
color approach the algorithm is also valid, but in order to benefit from all its
advantages, one has to specify for every color which part of the ghost cells has to
be updated (cf. Figure 3.4 and Section 3.3). Then, lines 6 to 8 can be performed
for all blocks which are not adjacent to the ghost cells currently updated, i.e.,
some of the work from line 11 can already be done in lines 6 to 8 during the
communication.

When SAP is used as a right preconditioner for, e.g., flexible GMRES (FGM-
RES, cf. [100]), the corresponding Krylov subspace is built for

DMSAP .

In case that the multiplications with D and MSAP are performed either both in
single or both in double precision, the result of the multiplication with D can
be obtained at a lower computational cost. After the SAP iteration, the current
residual r can be computed by performing (3.11) for color = 1 to numcolors − 1.
For red-black SAP this corresponds to performing (3.11) only for half of the
blocks. Then, the multiplication of D with the solution ψ from the SAP iteration
can be obtained at a lower computational cost by using the relation

Dψ = η − r .

In Section 8.4.6 we make use of this feature within a mixed precision FGMRES
where the matrix-vector multiplications are performed in single precision except
when computing the residual for the restart which is performed in double pre-
cision. All inner products are performed in double precision without exception.
A similar mixed precision variant of (restarted) GCR is used in [75]. All other
results were computed with an implementation that performs the domain decom-
position method in single precision but the preconditioned FGMRES in double
precision. This means that we do not use mixed precision FGMRES outside of
Section 8.4.6.
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3.5.1 Odd-even preconditioning

When using Schwarz methods it is common to solve the block systems

η|Vi = Diψ|Vi

with an odd-even preconditioned (cf. Section 3.4.1) version of the MR iteration
(see Algorithm 6). Even though the odd-even preconditioned MR iteration only
provides a residual update of half length we are still able to retrieve an entire
residual update on the whole block from this information. Thus, all computational
advantages from combining Algorithms 6 and 7 are preserved.

For the sake of simplicity we drop the block subscript Vi in this section.
Considering a residual r on a whole block, i.e., for the even and the odd sites

r = η −Dψ =

(
ηe −Deeψe −Deoψo
ηo −Doeψe −Dooψo

)
we obtain ro = 0 if we take

ψo = D−1
oo (ηo −Doeψe)

as in (3.8). This is independent of the accuracy of ψe. Hence, the residual r
on the odd lattice sites never needs to be updated. On the even sites the MR
iteration approximates a solution ψe of

ηe −DeoD
−1
oo ηo = (Dee −DeoD

−1
oo Doe)ψe

with a corresponding residual r̃e. Therefore, using (3.7) we have

r̃e = ηe −DeoD
−1
oo ηo − (Dee −DeoD

−1
oo Doe)ψe

= ηe −Deeψe −DeoD
−1
oo (ηo −Doeψe)

= ηe −Deeψe −Deoψo
= re .

Thus, the residual update obtained by the MR iteration yields the correct residual
update for the whole Schwarz block.

3.6 Numerical Results

In this section we show numerical results for three types of parallel Schwarz
methods, the additive, the red-black and the 16 color Schwarz method previ-
ously discussed in the Sections 3.1, 3.2 and 3.3, respectively. Typically, Schwarz
methods are used as preconditioners to Krylov subspace methods [50,78].

Within our implementation, all Schwarz methods solve the block systems it-
eratively using an odd-even preconditioned MR iteration (see Section 3.5). This
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yields a non-stationary preconditioner and thus the preconditioned Krylov sub-
space method has to be flexible. We therefore employed the Schwarz methods as
preconditioners to FGMRES.

We implemented the Schwarz methods and Krylov subspace methods in the
programming language C using the parallelization interface of MPI. The MVM
with D is realized as in Section 3.4. Our code is optimized to a certain extent,
but certainly not to the extreme: As is customary in lattice QCD computa-
tions, we use a mixed precision approach where the preconditioning is done in
single precision. Low level optimization (e.g., making use of the SSE-registers on
Intel/AMD architectures) has not been considered in this section. All Krylov
subspace methods (FGMRES, BiCGStab, CG) have been implemented in a com-
mon framework with the same degree of optimization to allow for a standardized
comparison of compute times.

In each Schwarz method we used block size 44, solving each block system with
4 iterations of odd-even MR. The relative residual tolerance for FGMRES is 10−10

and we denote the number of Schwarz iterations in each FGMRES iteration with
ν.

ID lattice size pion mass CGNR shift clover provided by

Nt ×N3
s mπ [MeV] iterations m0 term csw

1 64× 323 300 11,370 −0.04630 1.00000 BMW-c [39,40]

Table 3.1: Configurations used together with their parameters. For details about
their generation we refer to the references. Pion mass rounded to steps of 5 MeV.

In our numerical experiments we observed that the ratios between the differ-
ent Schwarz methods and Krylov subspace methods are almost independent of
the configurations used. Thus, we decided that using a single configuration is
sufficient for the purpose of this section. This configuration and its parameters
are listed in Table 3.1. In principle, the pion mass mπ and the lattice spacing
(not listed) determine the condition of the respective operator, e.g., the smaller
mπ, the more ill-conditioned the respective operator is. The physical pion mass
is mπphys = 135 MeV.

All results were obtained on the Juropa machine at Jülich Supercomputing
Centre (JSC), a cluster with 2,208 compute nodes, each with two Intel Xeon
X5570 (Nehalem-EP) quad-core processors [65, 66]. This machine provides a
maximum of 8,192 cores for a single job. Unless stated otherwise, we used the
icc-compiler with the optimization flags -O3, -ipo, -axSSE4.2 and -m64.

3.6.1 Comparison of Schwarz Methods

First, we compare different Schwarz methods with different numbers of cycles ν
per FGMRES iteration and two different parallelizations on configuration ID 1,
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i.e., a rather well conditioned medium sized 64× 323 lattice.

FGMRES + Schwarz

additive red-black 16 colors

iteration counts

ν = 1 1,229 635 609

ν = 3 536 272 250

ν = 5 345 173 164

timings for 32 processes

ν = 1 523s 287s 293s

ν = 3 454s 242s 233s

ν = 5 438s 230s 226s

timings for 256 processes

ν = 1 67.3s 37.3s 38.4s

ν = 3 58.7s 31.9s 30.9s

ν = 5 56.8s 30.4s 30.0s

Table 3.2: Comparison of FGMRES preconditioned with additive, red-black and
16 color Schwarz for two different parallelizations on a 64× 323 lattice (Table 3.1:
ID 1).

Table 3.2 shows that the red-black approach requires almost a factor of two
less iterations per solve, independently of the number of cycles ν. This carries
over to the runtimes for both parallelizations. In terms of iteration counts, the
16 color approach yields a small advantage over the red black approach. Up
to minor losses this also carries over to the runtimes, except for ν = 1. For
both parallelizations the 16 color approach performs worse in this case since in
the first cycle of a Schwarz method, work can be saved for the first color if the
initial guess is zero. This is exactly the case since in every FGMRES iteration
k the respective Schwarz method is applied to the k-th Krylov subspace basis
vector vk as right hand side with initial guess zero. Therefore, in Algorithm 7 the
residual updates and the communication for the first color can be omitted. For
the two color approach this means that half of the communication and half of
the residual calculations can be skipped while for the 16 color approach skipping
communication and residual calculation for the first color saves 1/16 only. This
is reflected by the runtimes.

For the cases ν = 3 and ν = 5, the gain of the 16 color approach over SAP is
about 1–2% in runtime which does not necessarily justify the additional coding
effort. Thus, we do not consider using the 16 color approach in other numerical
tests.
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3.6.2 Comparison with Krylov Subspace Methods

We now compare the most effective red-black Schwarz methods of the previous
tests with different Krylov subspace methods, i.e., GMRES(20), CG on the nor-
mal equation with the residual r = η − Dψ (CNGR) and ultimately with an
odd-even preconditioned mixed precision approach of BiCGStab (cf. [100]) which
in the physics community is considered to perform best when no pre-computed in-
formation is used as in deflation or multigrid methods. In our experiments, larger
restart values for GMRES did not lead to significantly different solve times.

FGMRES+SAP(5) GMRES CGNR mp-oe-BiCGStab

iteration counts

173 4,175 11,370 1,074

timings for 32 processes

230s 882s 2,928s 189s

timings for 256 processes

30.4s 113s 392s 27.2s

Table 3.3: Comparison of FGMRES preconditioned with red-black Schwarz with
different Krylov subspace methods for two different parallelizations on a 64 × 323

lattice (Table 3.1: configuration ID 1).

The results reported in Table 3.3 show that preconditioning GMRES yields
a factor of more than 3 in runtime for both degrees of parallelizations. CGNR
performs worst of all stated methods and BiCGStab performs best although there
is only a small difference between BiCGStab and SAP-preconditioned FGM-
RES (FGMRES+SAP). Depending on architecture and parallelization, FGM-
RES+SAP performs better when all-to-all communication is expensive. FGM-
RES+SAP, GMRES and CGNR require two all-to-all communications (inner
products) and BiCGStab even requires 6 all-to-all communications per iteration.
We profiled the all-to-all communication and observed that for BiCGStab it con-
sumed already 5.3 out of 27.2 seconds when using 256 processes but only 1.9 out
of 189 seconds for 32 processes. Thus, the speed-up factor for 8 times more cores
is only 6.9 whereas we obtain a factor of 7.6 when using FGMRES+SAP. For
GMRES we observe even a factor of 7.8 which might due to cache effects as we
will see in the strong scaling plot Figure 3.8 in the next section.

3.6.3 Scaling Tests

Compared to Krylov subspace methods, Schwarz methods do not require all-to-all
communications and they have a higher arithmetic intensity, i.e., the flop count
per lattice site and iteration (and thus per communication step) is much higher.
While Krylov subspace methods are working with vector operations and matrix-
vector multiplications possibly streaming large vectors through the cache, Schwarz
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methods are dealing with small block systems and small vector operations. Thus,
we can expect that Schwarz methods perform better for large parallelizations
when in particular all-to-all communications are expensive, but also for small
parallelizations, i.e., large local lattices, when vectors and configurations do not
fit into cache anymore.
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Figure 3.7: Weak scaling of 100 iterations of SAP and of 100 iterations of GMRES
for a 8× 43 local lattice.
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Figure 3.8: Strong scaling of FGMRES preconditioned with 5 iterations of SAP
and of pure GMRES using a 64× 323 lattice (Table 3.1: configuration ID 1). The
thin, dashed, diagonal line displays optimal scaling.

For a comparison of the weak scaling of SAP and GMRES, we employed 100
iterations of either method for lattice sizes ranging from 84 to 642 × 322 with a
process lattice size of 8× 43. We used configurations where each gauge link was
taken as the QR factor of a 3-by-3 matrix with uniformly distributed random
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entries in
{a+ ib : −1 ≤ a, b ≤ 1} .

This may produce matrices with a negative determinant which is not an issue
here since we apply a fixed number of iterations instead of solving to any chosen
accuracy. Furthermore, we took the best timings out of 10 runs for every mea-
surement, respectively. Figure 3.7 displays the gain in runtime as a function of
the number of processes. Until 210 processes, both methods scale equally. Profil-
ing shows that beyond 210 processes the time spent in all-to-all communications
starts influencing the overall runtime in GMRES, so that SAP scales better. For
this weak scaling test our SAP implementation, in contrast to our GMRES im-
plementation, is not able to hide nearest neighbor communication since a process
owns only one 44 Schwarz block of each color. Even when we employ employ-
ing 4,096 processes on Juropa, nearest neighbor communication is not an issue,
neither for SAP nor for GMRES. Only when using 8,192 cores we see a slight
dependence on nearest neighbor communication.

Figure 3.8 shows the strong scaling of FGMRES+SAP(5) compared to the
strong scaling of GMRES, again taking the best timings out of 10 runs for every
measurement. The thin dotted diagonal line represents the desirable optimal
scaling. The number of processes ranges from 16 to 4,096. Both methods show
almost perfect scaling up to 512 processes. Beyond this number, the runtime of
GMRES decreases by a bit more than a factor of two when doubling the number of
processes. This indicates that GMRES is sensitive to cache effects, i.e., for smaller
parallelizations the large vectors cannot be streamed through the cache efficiently.
The increased communication cost (cf. Figure 3.7) are more than balanced by
these cache effects. For FGMRES+SAP(5) the runtime is decreased by a bit less
than a factor of two when doubling the number of processes. Cache effects do not
seem to be an issue as SAP benefits from its higher arithmetic intensity. We also
profiled the communication in this case and found that this minor slow down is
caused by all-to-all communication and nearest neighbor communication to the
same extent. For the range of processes on the Juropa machine, the difference
between both methods is only marginal and it cannot be said that one method
scales better than the other one. Additional and also more promising results for
SAP using a different implementation in combination with a different machine
can be found in [78].



Chapter 4

Algebraic Multigrid

Any multigrid method consists of two components, namely a smoother and a
coarse grid correction [25, 59, 98, 110]. Typically, the smoother can be chosen as
a simple iterative method. This can be a relaxation scheme like Jacobi, Gauss-
Seidel or their block variants (which are equivalent to additive and multiplicative
Schwarz, respectively) as well as Krylov subspace methods. Given the properties
of SAP presented in the previous chapter, we choose SAP as our smoothing
scheme in the QCD context.

Except for implementation details given in Section 4.4, this chapter is largely
based on [49].

Let us reserve the term near kernel for the space spanned by the eigenvectors
belonging to small (in modulus) eigenvalues of D. Since SAP is not able to
sufficiently remove error components belonging to the near kernel (cf. Figure 3.3),
the multigrid method treats these persistent error components separately in a
smaller subspace with nc variables. Thus, this subspace should approximate the
near kernel well. The typical algebraic multigrid setup is then as follows: We
have to find an operator Dc which resembles D on that subspace both in the
sense that it acts on the near kernel in a similar manner as D does, but also in
terms of the connection structure and sparsity. The latter allows to work on Dc

recursively using the same approach, thus going from two-grid to true multigrid.

Definition 4.1
Let n = 12nL and nc < n. Considering full rank linear restriction and prolonga-
tion/interpolation operators

R : Cn → Cnc ,

P : Cnc → Cn

we define a Petrov-Galerkin projection of D, i.e., the coarse grid operator

Dc := RDP



44 Algebraic Multigrid

and the corresponding coarse grid correction

ψ ← ψ + PD−1
c Rr

with r = η −Dψ.

The map R restricts information from the original space to the subspace and
P transports information back to the original space. The coarse grid correction
for a current iterate ψ restricts the current residual r via R to the subspace, there
solving

Dcec = Rr (4.1)

and transporting the coarse error ec via P back to the original space as a correction
for ψ. As in (3.6), one step of coarse grid correction can be summarized as

ψ ← (I − PD−1
c RD)ψ + PD−1

c Rη

and the corresponding error propagator is given by

I − PD−1
c RD

which is a projection onto range(RD)⊥ along range(P ). The action of the coarse
grid correction is thus complementary to that of the smoother if range(P ) ap-
proximately contains the near kernel and range(RD)⊥ approximately contains
the remaining complementary eigenvectors (which are then efficiently reduced by
the smoother). The latter condition is satisfied if range(R) = range(RD) approxi-
mately contains the left eigenvectors corresponding to the small eigenvalues. This
can be seen by looking at exact eigenvectors: Since left and right eigenvectors are
mutually orthogonal, if range(R) = range(RD) is spanned by left eigenvectors of
D, then range(R)⊥ is spanned by the complementary right eigenvectors of D.

Once Dc is found, a basic two-level algorithm consists of alternating the ap-
plication of the smoother and the coarse grid correction.

Algorithm 8: Two-grid method (two-level V-cycle with post-smoothing)

input: ψ, η, ν
output: ψ

1 r ← η −Dψ
2 ψ ← ψ + PD−1

c Rr
3 r ← η −Dψ
4 ψ ← ψ +M

(ν)
SAPr

Algorithm 8 represents one coarse grid correction with ν steps of post-smooth-
ing, also termed two-level V-cycle (cf. Figure 4.1) in the multigrid literature. Pre-
smoothing can also be considered but does not yield any advantage in a two-level
setting. This is due to

spec
(
(I −MSAPD)(I − PD−1

c RD)
)

= spec
(
(I − PD−1

c RD)(I −MSAPD)
)
.
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D−1
c

M
(ν)
SAP
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Figure 4.1: Illustration of a two-level V-cycle with post-smoothing only.

Typically, this method is applied as a preconditioner to a Krylov subspace method
in the same manner as SAP in the previous chapter.

The update provided to the current iterate ψ is a so-called multiplicative
update since coarse grid correction and smoother are applied sequentially to the
latest residual r = η − Dψ. Performing both steps for a common residual, i.e.,
omitting the second residual update in line 3, is called an additive update. The
current iterate ψ is then updated via

ψ ← ψ +
(
PD−1

c R +M
(ν)
SAP

)
(η −Dψ) .

This allows for applying both, smoother and coarse grid correction at the same
time, but it might harm the efficiency per iteration of the outer Krylov solver.
For a more detailed description, see, e.g., [104].

Algorithm 8 can be recursively extended to true multigrid by formulating a
two-level algorithm of this kind for the solution of (4.1) required in line 2 until
we obtain an operator which is small enough to solve (4.1) directly.

To be computationally beneficial, solving (4.1) has to be much cheaper than
solving the original equation Dψ = η. For this purpose Dc has to be very small
and/or sparse. As the number of eigenvectors that are not sufficiently reduced
by the SAP smoother grows with n, cf. [9], one should not aim at fixing nc (as
in deflation methods), but at finding sparse matrices R and P whose ranges
approximate the left and right near kernel of D well, respectively.

4.1 Aggregation-based Intergrid Transfer Operators

Consider a block decomposition Li of the lattice L. It has been observed in [79]
that eigenvectors belonging to small eigenvalues of D tend to (approximately)
coincide on a large number of lattice-blocks Li, a phenomenon which was termed
“local coherence”. Local coherence means in particular that we can represent
many eigenvectors belonging to small eigenvalues from just a few by decomposing
them into the parts belonging to each of the lattice-blocks. We refer to [79] for a
detailed qualitative analysis of this observation. Local coherence is the philosophy
behind the aggregation-based intergrid transfer operators introduced in a general
setting in [20,25] and applied to QCD problems in [5,23,92]. Similarly to a block
decomposition we define an aggregation.
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Definition 4.2
An aggregation {A1, . . . ,As} is a partitioning of the set V = L × C × S of all
variables (recall Definition 2.1). It is termed a lattice-block based aggregation if
each Ai is of the form

Ai := Lj(i) ×Wi,

where Lj are the lattice-blocks of a block decomposition of the lattice L and Wi ⊆
C × S.

Aggregates for the lattice Wilson-Dirac operator (3.2) will typically be realized
as lattice-block based aggregates. The difference to a block decomposition purely
based on a lattice decomposition is that an aggregate does not have to contain
all spin and color variables. Thus, a lattice block Li can be associated with more
than one aggregate. Note that, however, the SAP smoother on the one hand and
interpolation and restriction on the other hand do not have to be based on a
common block decomposition of L.

Definition 4.3
Consider a set {v1, . . . , vN} ⊆ Cn of so-called test vectors representing the near
kernel and a set of aggregates {A1, . . . ,As}. The interpolation operator P is then
defined by decomposing the test vectors over the aggregates

(v1 | . . . | vN) =




−→ P =

 . . .



A1

A2

...

As

. (4.2)

Formally, each aggregate Ai induces N variables (i−1)N+1, . . . , iN on the coarse
system, and we define

Pe(i−1)N+j := IAiIHAivj, for i = 1, . . . , s, j = 1, . . . , N. (4.3)

Herein, IHAi (recall Definition 3.2) represents the trivial restriction operator for
the aggregate Ai, i.e., IAiIHAivj leaves the components of vj from Ai unchanged
while zeroing all others, and e(i−1)N+j denotes the (i − 1)N + j-th unit vector.
For the sake of stability, the test vectors are orthonormalized locally, i.e., for each
i we replace IHAivj in (4.3) by the j-th basis vector of an orthonormal basis of
span(IHAiv1, . . . , IHAivN). This neither alters the range of P nor changes the coarse
grid correction operator I − P (RDP )−1RD, and it ensures PHP = I.

The restriction R is obtained in an analogous manner by using a set of test
vectors {v̂1, . . . , v̂N} and the same aggregates to build RH . Figure 4.2 illustrates
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a lattice-block based aggregation from a lattice point of view—reduced to two
dimensions—where in each aggregate Ai we take Wi as the whole set C × S.
Then, the aggregates can be viewed as forming a new, coarse lattice and the
sparsity and connection structure of Dc = RDP resembles the one of D, i.e., we
have again a nearest neighbor coupling. Each lattice point of the coarse grid, i.e.,
each aggregate, holds N variables.

A3

A1 A2

A4

DcD

P

R

Figure 4.2: Aggregation-based interpolation (geometrical point of view reduced
to 2D).

With respect to parallelization it is advisable to choose the aggregates Ai as
a refinement of the parallelization block decomposition Pi (see Chapter 3). This
allows one to perform interpolation and restriction without communication.

4.2 Petrov-Galerkin Approach in Lattice QCD

The structure and the spectral properties of the Wilson-Dirac operator D suggest
to explicitly tie the restriction R to the interpolation P . The following construc-
tion of P—and thus R—is similar to constructions found in [5, 23, 79, 92] in the
sense that the structure of all these interpolation operators is similar while the
test vectors vi upon which the interpolation is built—and therefore the action of
the operators—are different.

Due to Lemma 2.14 it is natural to choose

R = (Γ5P )H

in the aggregation-based intergrid operators: if P is built from vectors v1, . . . , vN
which approximate right eigenvectors with small eigenvalues of D, then R =
(Γ5P )H is built from vectors v̂i = Γ5vi which approximate left eigenvectors with
small eigenvalues.

As was pointed out in [5], it is furthermore possible to even have R = PH by
taking the special spin-structure of the Dirac operator into account when defining
the aggregates. To be specific, we introduce the following definition.
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Definition 4.4
The aggregation {Ai : i = 1, . . . , s} is termed Γ5-compatible if any given ag-
gregate Ai is composed exclusively of fine variables with spin 0 and 1 or of fine
variables with spin 2 and 3.

Assume that we have a Γ5-compatible aggregation and consider the interpo-
lation operator P from (4.2). Since Γ5 acts as the identity on spins 0 and 1 and
as the negative identity on spins 2 and 3, when going from P to Γ5P , each of the
nonzero blocks in P belonging to a specific aggregate is either multiplied by +1
or by −1. This gives

Γ5P = PΓc5 (4.4)

with Γc5 acting as the identity on the spin-0-1-aggregates and as the negative
identity on the spin-2-3-aggregates.

Lemma 4.5
Let the aggregation be Γ5-compatible and P a corresponding aggregation-based
prolongation as in (4.2) and R = (Γ5P )H . Consider the two coarse grid operators

DPG
c = RDP and Dc = PHDP.

Then

(i) Dc = Γc5D
PG
c .

(ii) I − PD−1
c PHD = I − P (DPG

c )−1RD.

(iii) DPG
c is hermitian, Dc is Γc5-symmetric.

(iv) For the field of values F(D) := {ψHDψ : ψHψ = 1}, we have F(Dc) ⊆
F(D).

Proof. We first observe that just as Γ5 the operator Γc5 is diagonal with diagonal
entries +1 or −1, so Γc5 = (Γc5)H = (Γc5)−1. Part (i) now follows from

DPG
c = RDP = (Γ5P )HDP = (PΓc5)HDP = Γc5P

HDP = Γc5Dc.

Consequently,

P (DPG
c )−1RD = PD−1

c Γc5P
HΓ5D = PD−1

c Γc5Γc5P
HD = PD−1

c PHD,

which gives (ii). For part (iii) we observe that

(DPG
c )H = PHDHRH = PHDHΓ5P = PHΓ5DP = RDP = DPG

c .

This shows that DPG
c is hermitian, which is equivalent to Dc = Γc5D

PG
c being

Γc5-symmetric. Finally, since PHP = I, we have

F(Dc) = {ψHc Dcψc : ψHc ψc = 1} = {(Pψc)HD(Pψc) : (Pψc)
H(Pψc) = 1}

⊆ {ψHDψ : ψHψ = 1} = F(D),

which gives (iv).
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Lemma 4.5 has some remarkable consequences. Part (ii) shows that we end
up with the same coarse grid correction, irrespectively of whether we pursue a
Petrov-Galerkin approach (operator DPG

c with R = Γ5P ) or a Galerkin approach
(operator Dc, restriction is the adjoint of the prolongation). The Petrov-Galerkin
operator DPG

c inherits the hermiticity of the operator Γ5D, whereas the Galerkin
operator Dc inherits the Γ5-symmetry (and thus the symmetry of the spectrum,
see Lemma 2.14) of D. Moreover, if F(D) lies in the right half plane, then so
does F(Dc) and thus the spectrum of Dc. It is known that the “symmetrized”
Wilson-Dirac operator Γ5D is close to maximally indefinite [55], i.e., the num-
ber of negative eigenvalues is about the same as the positive ones. Numerical
experiments indicate that this property seems to be inherited by Γc5Dc = DPG

c .

Γ5-symmetry implies an interesting connection between the eigensystem of
Γ5D and the singular values and vectors of D.

Corollary 4.6
Let

Γ5D = V ΛV H , Λ diagonal, V HV = I

be the eigendecomposition of the hermitian operator Γ5D, then

D = (Γ5V sign(Λ)) |Λ| V H = UΣV H (4.5)

is the singular value decomposition of D with U := Γ5V sign(Λ) unitary and Σ :=
|Λ|.

The theory of algebraic multigrid methods for non-hermitian problems re-
cently developed in [26] suggests to base interpolation and restriction on the right
and left singular vectors corresponding to small singular values rather than on
eigenvectors, so we could in principle use the relation (4.5). However, obtaining
good approximations for the singular vectors belonging to small singular values is
now much harder than obtaining good approximations to eigenvectors belonging
to small eigenvalues, since the small singular values lie right in the middle of the
spectrum of Γ5D, whereas the small eigenvalues of D lie at the “border” of its
spectrum (and in the right half plane C+ if F(D) ⊂ C+). Numerically we did
not find that going after the singular values payed off with respect to the solver
performance and it significantly increased the setup timing. These observations
led us to the eigenvector based adaptive multigrid approach presented here; it
also motivates that we consider Dc rather than DPG

c as the “correct” coarse grid
system to work with recursively in a true multigrid method.

In our computations, we take special Γ5-compatible, lattice-block based ag-
gregations.

Definition 4.7
Let {Lj : j = 1, . . . , nLc} be a block decomposition of the lattice L. Then the
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standard aggregation {Aj,τ : j = 1, . . . , nLc , τ = 0, 1} with respect to this block
decomposition is given by

Aj,0 := Lj × {0, 1} × C and Aj,1 := Lj × {2, 3} × C .

Aggregates of the standard aggregation always combine two spin degrees of
freedom in a Γ5-compatible manner and all three color degrees of freedom. For any
given j, the two aggregates Aj,0 and Aj,1 are the only two aggregates associated
with the lattice-block Lj. The standard aggregates thus induce a coarse lattice Lc
with nLc sites where each coarse lattice site corresponds to one lattice-block Lj
and holds 2N variables with N the number of test vectors. N variables correspond
to spin 0 and 1 (and aggregate Aj,0); another N variables to spin 2 and 3 (and
aggregate Aj,1). Thus, the overall system size of the coarse system is nc = 2NnLc .

With standard aggregation, in addition to the properties listed in Lemma 4.5,
the coarse system Dc = PHDP also preserves the property that coarse lattice
points can be arranged as a 4D periodic lattice such that the system represents
a nearest neighbor coupling on this torus. Each coarse lattice point now carries
2N variables.

4.3 Adaptive Test Vector Computation

If no a priori information about the near kernel is available, the test vectors
v1, . . . , vN to be used in an aggregation-based multigrid method have to be ob-
tained computationally during a setup phase.

4.3.1 Adaptivity in Aggregation-based AMG

We briefly review the setup concept of adaptive (smoothed) aggregation as de-
scribed in [25]. We do so in the Galerkin context, i.e., we take

R = PH .

The first fundamental idea of adaptivity in algebraic multigrid methods is to use
the smoother to find error components not effectively reduced by the smoother,
i.e., belonging to the near kernel. Starting with an initial random vector u, some
iterations with the smoothing scheme on the homogeneous equations

Du = 0

yield a vector ṽ rich in components that are not effectively reduced. The first set
of test vectors then is the singleton {v}, and one constructs the corresponding
aggregation-based interpolation P from (4.2). This construction guarantees that
v is in range(P ) and thus is treated on the coarse grid.
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Once a first two-grid or multigrid method is constructed in this way, one can
use it to generate an additional vector not effectively reduced by the current
method by again iterating on the homogeneous system. This newly found vector
is added to the set of test vectors upon which we build new interpolation and
coarse grid operators. Continuing in this manner we ultimately end up with a
multigrid method which converges rapidly, but possibly at a high computational
cost for the setup if many vectors need to be generated and incorporated in the
interpolation operator. To remedy this issue, already in [25], some sophisticated
ideas to filter the best information out of the produced vectors, are proposed which
have been partly used in the implementations of adaptive algebraic multigrid for
QCD described in [5, 23, 92].

The use of the homogeneous equation Du = 0 as the anvil to shape useful
information by working on it with the most advanced method at hand, is the core
idea of early adaptivity in algebraic multigrid methods.

4.3.2 Adaptivity in Bootstrap AMG

It is possible to use the current multigrid method in an adaptive setup in more
ways than just to test it for deficiencies by applying it to the homogeneous equa-
tion Du = 0. This is exploited in the bootstrap approach developed in [21, 22]
which we sketch now. Details will be discussed in connection with the inexact
deflation method in Section 5.3 and Chapter 8. The following observation is
crucial.

Lemma 4.8
Given an eigenpair (vc, λc) of the generalized eigenvalue problem on the coarse
grid

Dcvc = λcP
HPvc ,

(Pvc, λc) solves the constrained eigenvalue problem

find (v, λ) with v ∈ range(P ) s.t. PH (Dv − λv) = 0

on the fine grid.

Proof.
PH (DPvc − λcPvc) = Dcvc − λcPHPvc = 0.

This observation allows to use the coarse grid system as a source of information
about the eigenvectors with small eigenvalues of the fine grid system. Computing
eigenvectors with small λc on the coarse grid is cheaper than on the fine grid,
and applying a few iterations of the smoother to the lifted vectors Pvc yields
useful test vectors rich in components belonging to the near kernel of the fine
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grid system. As we will see, the setup process used in the “inexact deflation”
approach from [79], explained in the next chapter, can also be interpreted as a
bootstrap-type setup, where instead of using an exact solution to the coarse grid
eigenproblem only approximations are calculated.

4.4 Implementation Details

In this section we give implementation details for the Galerkin approach using the
Γ5-compatible standard aggregation from Definition 4.7, proposed in [5, 23, 92].
The prolongation P and restriction PH do not require any communication as
long as the aggregates Ai,τ are a refinement of the process decomposition Pk
introduced in Section 3.3. Besides the application of P and PH we also state the
properties and the construction of the coarse grid operator Dc in detail.

4.4.1 Prolongation and Restriction

Considering a standard aggregation {Ai,0,Ai,1 : i = 1, . . . , s} and N test vectors
v1, . . . , vN ∈ Cn, a coarse grid vector c ∈ Cnc consists of 2N variables per coarse
lattice site. On the i-th lattice site, the first N variables, i.e., c2N(i−1)+j for
j = 1, . . . , N , correspond to Ai,0, the second N variables, i.e., c2N(i−1)+j for
j = N + 1, . . . , 2N , correspond to Ai,1. The information from the variables
c2N(i−1)+j and c2N(i−1)+N+j is obtained from and transferred back to the fine grid
via the j-th test vector. The prolongation Pc of a coarse grid vector c to the fine
grid is realized as

Pc =
s∑
i=1

N∑
j=1

(
c2N(i−1)+j IAi,0IHAi,0vj + c2N(i−1)+N+j IAi,1IHAi,1vj

)
.

Herein, IHAi,τ restricts a vector to an aggregate and IAi,τ re-embeds it into the

whole fine grid space. Hence, the operation c2N(i−1)+j IAi,0IHAi,0vj is realized as
multiplying the components vj belonging to Ai,0 by c2N(i−1)+j. Thus, the outer
sum over i, the aggregates, is rather of symbolic character, it does not intro-
duce any additions. The total cost of a prolongation is equivalent to N AXPY
operations of size n and therefore dominated by the cost for memory access
rather than arithmetic cost. For a fast application of P , the prolongation has
to be coherent in memory. If the test vectors vj are stored one after the other,
we run N times through the result vector w = Pc, i.e., once for adding each
aggregate-wise scaled test vector vj. Together with the vj’s this means run-
ning through 2N vectors. This number can be reduced to N + 1 by glueing
the components vj,k for j = 1, . . . , N , i.e., storing the test vectors in the order
([(v1)1, . . . , (vN)1], . . . , [(v1)n, . . . , (vN)n]) or, in other words, storing P row wise.
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Then, every component wk is computed once, yielding the final result

wk =
N∑
j=1

cα(k)+j (vj)k with α(k) = 2N(i− 1) +Nτ for k ∈ Ai,τ .

In the literature this approach is also referred to as “GAXPY” (generalized
AXPY), see [37].

Considering a fine grid vector w ∈ Cn, the restriction PHw is computed via

(
PHw

)
2N(i−1)+j

=
(
IHAi,0vj

)H
IHAi,0w(

PHw
)

2N(i−1)+N+j
=

(
IHAi,1vj

)H
IHAi,1w

for i = 1, . . . , s and j = 1, . . . , N . The expression
(
IHAi,τvj

)H
IHAi,τw evaluates

that part of the inner product vHj w with degrees of freedom from the aggregate
Ai,τ . Hence, the total computational cost is equivalent to N inner products of
size n and therefore also dominated by the cost of memory access. The latter is
the same as for the prolongation for both options of storing the vectors. Thus, it
is advisable to use the component-wise glued data layout from the prolongation
for the restriction as well. To obtain c ← PHw ∈ Cnc being initially zero, every
component wk (k = 1, . . . , n) induces j = 1, . . . , N AXPY operations

cα(k)+j ← cα(k)+j + (vHj )k wk with α(k) = 2N(i− 1) +Nτ for k ∈ Ai,τ

while running through a data amount of N + 1 fine grid vectors of size n.

4.4.2 The Coarse Grid Operator

First, we study the structure of the coarse grid operator before we explain how to
construct it efficiently. As in the previous section, we have a standard aggregation
{Ai,0,Ai,1 : i = 1, . . . , s} and N test vectors v1, . . . , vN ∈ Cn. An entry of the
coarse grid operator

(Dc)2N(p−1)+Nτ+k,2N(q−1)+Nκ+j =
((
IAp,τIHAp,τ

)
vk

)H
D
(
IAq,κIHAq,κ

)
vj (4.6)

is nonzero if and only if Ap,τ = Aq,κ or Ap,τ is a neighbor of Aq,κ, i.e., their
corresponding lattice-blocks are adjacent. The first case with (p, τ) = (q, κ) yields
the self coupling part of the operator, the second yields the neighbor coupling part.
Let

DAp,τ ,Aq,κ := IAp,τIHAp,τD IAq,κI
H
Aq,κ .
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Due to the Γ5-compatibility of the aggregates we have

DH
Ap,τ ,Aq,κ =

(
IAp,τIHAp,τD IAq,κI

H
Aq,κ

)H
= IAq,κIHAq,κD

HIAp,τIHAp,τ
= IAq,κIHAq,κΓ5DΓ5IAp,τIHAp,τ
= (−1)τIAq,κIHAq,κD IAp,τI

H
Ap,τ (−1)κ

= (−1)τ+κDAq,κ,Ap,τ .

In particular, this implies

DH
Ap,τ ,Aq,τ = DAq,τ ,Ap,τ

and
DH
Ap,τ ,Aq,κ = −DAq,κ,Ap,τ for τ 6= κ .

Defining Ap := Ap,0 ∪ Ap,1 we observe for the lattice-site-wise neighbor coupling
matrices

DAp,Aq =

(
DAp,0,Aq,0 DAp,0,Aq,1
DAp,1,Aq,0 DAp,1,Aq,1

)
that the reversed coupling is given by

DAq ,Ap =

(
DH
Ap,0,Aq,0 −D

H
Ap,1,Aq,0

−DH
Ap,0,Aq,1 DH

Ap,1,Aq,1

)
.

Therefore, only the coupling matrices in, e.g., positive directions need to be stored.
Let DAp := DAp,Ap . The self coupling matrices

DAp =

(
DAp,0,Ap,0 DAp,0,Ap,1
DAp,1,Ap,0 DAp,1,Ap,1

)
fulfill DAp,τ ,Ap,τ = DH

Ap,τ ,Ap,τ and DAp,0,Ap,1 = −DH
Ap,1,Ap,0 such that only, say, the

upper triangle of each matrix DAp needs to be stored.
Now, knowing the structure of the coarse grid operator we can formulate

construction routines. Since the coarse grid operator is given by Dc = PHDP , the
simplest approach could be to calculate up,τ,j := DIAp,τIHAp,τvj for all aggregates

Ap,τ and all test vectors vj and then compute vHi IAq,κIHAq,κup,τ,j for all aggregates
Aq,κ that are neighbors of Ap,τ . This approach requires 2sN applications of D.
Since for a fixed aggregate size the number of aggregates s is of order O(n), the
complexity of this approach is O(N · n2).

However, it is possible to eliminate the factor s, i.e., the dependence on the
number of aggregates. First, we proceed with the computation of the self coupling
matrices. Algorithm 9 describes the computation of the columns j and N + j
for all self coupling matrices of Dc, restricted to the upper triangle. When using
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Algorithm 9: Compute columns j and N + j of all self coupling matrices

input: j
output: columns j and N + j for all self coupling matrices of Dc

1 u0
j =

∑s
p=1

(
DAp,0,Ap,0

)
vj

2 u1
j =

∑s
p=1

(
DAp,0,Ap,1 +DAp,1,Ap,1

)
vj

3 for p = 1 to s
4 for i = 1 to j {diagonal blocks}
5 for τ = 0 to 1

6 (Dc)2N(p−1)+Nτ+i,2N(p−1)+Nτ+j =
(
IHAp,τvi

)H
IHAp,τu

τ
j

7 for i = 1 to N {top right block}
8 (Dc)2N(p−1)+i,2N(p−1)+N+j =

(
IHAp,0vi

)H
IHAp,1u

1
j

aggregate restricted operators in lines 1 and 2 (as used in Section 3.5) both sums
together require the cost of 3/4 of all aggregate restricted operators. Performing
Algorithm 9 for j = 1, . . . , N we obtain the upper triangles of all self coupling
matrices.

For the neighbor coupling, let

fµ : {1, . . . , s} → {1, . . . , s}, µ = 0, 1, 2, 3

be functions with

Afµ(p) neighbor of Ap in positive direction µ .

For computing the neighbor couplings in positive µ direction, we have to compute
the products DAp,τ ,Afµ(p),κ

vj. The coupling between neighboring aggregates Ap,τ
andAfµ(p),κ involves only the boundaries d+

µAp,τ and d−µAfµ(p),κ = ∂+
µAp,κ (cf. Def-

inition 3.5). Therefore, it is sufficient to compute the products Dd+µAp,τ ,∂+µ Ap,κvj on
the boundaries only. Algorithm 10 shows how to compute the neighbor coupling
matrices.

Summing up the costs of Algorithms 9 and 10 for j = 1 . . . , N we end up with
O(N) applications of D and thus a complexity of

O(N · n) .

For computing the neighbor coupling in parallel we need the information of all
ghost cells in positive µ direction for all test vectors vj. During the communication
for each test vector vj we can compute the self coupling term corresponding to
vj. Hence, we can hide communication, and the entire computation of the coarse
grid operator can be performed as illustrated in Algorithm 11.



56 Algebraic Multigrid

Algorithm 10: Compute columns j and N + j of neighbor couplings (Dc)µ
input: j, µ
output: columns j and N + j for all neighbor coupling matrices of Dc for

positive µ direction

1 u0
j =

∑s
p=1

(
Dd+µAp,1,∂+µ Ap,0 +Dd+µAp,0,∂+µ Ap,0

)
vj

2 u1
j =

∑s
p=1

(
Dd+µAp,0,∂+µ Ap,1 +Dd+µAp,1,∂+µ Ap,1

)
vj

3 for p = 1 to s
4 for i = 1 to N
5 for τ = 0 to 1
6 for κ = 0 to 1

7 (Dc)2N(p−1)+Nτ+i,2N(fµ(p)−1)+Nκ+j =
(
IH
d+µAp,τ

vi

)H
IH
d+µAp,τ

uκj

Algorithm 11: Compute Dc

input: v1, . . . , vN
output: Dc

1 for j = 1 to N
2 for µ = 0 to 3
3 start updating ∂+

µ vj

4 perform Algorithm 9 for index j
5 for µ = 0 to 3
6 wait for update of ∂+

µ vj being finished

7 perform Algorithm 10 for j and µ

Once the coarse grid operator Dc has been constructed, the evaluation of a
product Dcψc works similarly to what we explained in Algorithm 5 in Section 3.4
with the only difference that the projections I4 ± γµ are omitted. On the coarse
grid equation we also use odd-even preconditioning which is implemented in a
fashion analogous to that described in Section 3.4.1.



Chapter 5

Inexact Deflation

A hierarchical approach for solving the Wilson-Dirac equation

Dψ = η , (5.1)

which lately received attention in the lattice QCD community, was proposed
in [79]. It is a combination of what is called “inexact deflation” with an SAP pre-
conditioned generalized conjugate residuals (GCR) method. The paper [79] does
not relate its approach to the existing multigrid literature. The purpose of this
chapter is to recast the formulations from [79] into established terminology from
algebraic multigrid theory and to explain the limitations of the overall method
from [79] which composes its multigrid ingredients in a non-optimal manner. We
also explain how the setup employed in [79] to construct the “inexact deflation
subspace” (i.e., the test vectors) can be viewed and used as a bootstrap setup in
the sense of Section 4.3.2. This chapter is largely based on [49].

5.1 Deflation Subspace

The inexact deflation subspace constructed in [79] is the range of a linear operator
P which resembles the definition of aggregation-based interpolation from (4.2). As
in the aggregation-based construction it uses a set of test vectors v1, . . . , vN which
are “chopped” up over aggregates Li ×Wi (called subdomains in [79]) to obtain
the locally supported columns of P . These aggregates are not Γ5-compatible
since [79] takes

Wi = C × S .

Hence, the Γ5-symmetry is not preserved on the coarse grid operator Dc which is
obtained as Dc = PHDP . Since the inexact deflation approach is not meant to be
recursively extended to a true multilevel method, preserving important properties
of the fine system on the coarse system is of lesser concern. However, within its
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two-level framework, the projected test vectors PHv1, . . . , P
HvN are used on the

coarse grid to deflate the coarse system solve in a sense that PHv1, . . . , P
HvN

are used to augment the Krylov subspace for the corresponding coarse grid solver
(see, e.g., [99]).

Two projections πL, πR are defined in [79] as follows.

Definition 5.1
Considering a lattice block decomposition Li and corresponding aggregates Ai =
Li × C × S and P the corresponding aggregation-based interpolation, we define a
left projection πL and a right projection πR via

πL = I −DPD−1
c PH and πR = I − PD−1

c PHD . (5.2)

Clearly, πR is the coarse grid correction introduced at the beginning of the
previous chapter; cf. Lemma 4.5(ii).

Lemma 5.2
The projections πL and πR fulfill the following properties:

(i) DπR = πLD

(ii) PHπL = πRP = 0 = πLDP = PHDπR

(iii) πL(I − PPH) = (I − PPH)πR = (I − PPH)

Proof. All three properties follow by direct computation.

(i) We have
DπR = D −DPD−1

c PHD = πLD .

(ii) Furthermore, we have

πRP = P − PD−1
c PHDP︸ ︷︷ ︸

=Dc

= 0 and PHπL = PH − PHDP︸ ︷︷ ︸
=Dc

D−1
c PH = 0 .

Using (i) we obtain

πLDP = DπRP︸︷︷︸
=0

= 0 and analogously PHDπR = PHπL︸ ︷︷ ︸
=0

D = 0 .

(iii) Finally, we have

πL(I − PPH) = I −DPD−1
c PH − PPH +DPD−1

c PHP︸ ︷︷ ︸
=I

PH = I − PPH

and

(I − PPH)πR = I − PD−1
c PHD − PPH + P PHP︸ ︷︷ ︸

=I

D−1
c PHD = I − PPH .
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Note that, while I − PPH is an orthogonal projection onto range(P )⊥, πL
is an oblique projection onto range(P )⊥ along range(DP ), and πR is an oblique
projection onto range(DHP⊥) along range(P ).

In the context of inexact deflation these projections and the relation from
Lemma 5.2(i) are used to decompose the linear system of equations

Dψ = η

as
DπRψ = πLη and D(I − πR)ψ = (I − πL)η .

The second equation can be simplified to (I − πR)ψ = PD−1
c PHη. Thus, the

solution ψ can be computed as

ψ = πRψ + (I − πR)ψ = χ+ χ′ ,

where
χ′ = PD−1

c PHη (5.3)

only requires the solution of the coarse grid system Dc and

Dχ = DπRψ = πLη (5.4)

is the “inexactly deflated” system which in [79] is solved by a right preconditioned
Krylov subspace method. To be specific, the Krylov subspace is built for the
operator

DπRM
(ν)
SAP

and the right hand side πLη. The Krylov subspace method is GCR (general
conjugate residuals, cf. [100]), a minimum residual approach which automatically

adapts itself to the fact that the preconditioner M
(ν)
SAP is non-stationary, see the

discussion in Section 3.2. We summarize all these steps in Algorithm 12.

Algorithm 12: Inexact deflation

input: η, ν
output: ψ

1 χ′ ← PD−1
c PHη

2 solve DπRM
(ν)
SAPz = πLη via GCR with χ = M

(ν)
SAPz

3 ψ ← χ+ χ′

The inexact deflation method can also be interpreted as a one step multigrid
method where (5.3) yields the coarse grid correction and the GCR solver for (5.4)
yields the complementary post-smoother (cf. [110]). This can be seen by rewriting
Algorithm 12 as shown in Algorithm 13. However, the post-smoother is not cheap
at all since the GCR solver requires multiplications with πR and M

(ν)
SAP in every

iteration.
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Algorithm 13: Inexact deflation as one step multigrid method

input: η, ν
output: ψ

1 ψ = 0
2 ψ ← PD−1

c PHη = ψ + PD−1
c PH(η −Dψ) {coarse grid correction}

3 r ← πLη = η −D(PDcP
Hη) = η −Dψ {residual update}

4 solve DπRz = r right preconditioned with M
(ν)
SAP {post-smoother}

5 ψ ← ψ + z

5.2 Comparison of Multigrid and Inexact Deflation

Although the ingredients of an aggregation-based algebraic multigrid method as
described in Chapter 4 and of “inexact deflation” as described in the previous
section are the same, their composition makes the difference. In the multigrid
context we combine the SAP smoothing iteration with the coarse grid correction
such that it gives rise to the error propagator of a V-cycle with ν post-smoothing
steps

E = (I −M (ν)
SAPD)(I − PD−1

c PHD) .

Hence, we obtain for one iteration of the V-cycle

ψ ← ψ + C(ν)r

where ψ denotes the current iterate and r the current residual η −Dψ, and

C(ν) = M
(ν)
SAP + PD−1

c PH −M (ν)
SAPDPD

−1
c PH . (5.5)

In terms of the projectors (5.2) this can be written as

C(ν) = M
(ν)
SAPπL + PD−1

c PH .

Using the multigrid method as a right preconditioner in the context of a Krylov
subspace method, the preconditioner is given by C(ν), and the subspace is built for
DC(ν). We again should use a flexible Krylov subspace method such as flexible
GMRES or GCR, since the smoother MSAP is non-stationary and, moreover,
we will solve the coarse system Dc only with low accuracy using some “inner
iteration” in every step. The important point is that a rough approximation of
the coarse grid correction in (5.5), i.e., the solution of systems with the matrix Dc

at only low accuracy, will typically have only a negligible effect on the quality of
the preconditioner, and it will certainly not hamper the convergence of the iterates
towards the solution of the system since multiplications with the matrix D are
done exactly. However, in the “inexact deflation” context the exact splitting of
the solution ψ = χ′ + χ with

χ′ = PD−1
c PHη and DπRχ = πLη
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requires the same final accuracy for both χ′ and χ. Therefore, when computing
χ′, the coarse grid system has to be solved with high accuracy. More importantly,
D−1
c also appears in πR which is part of the “deflated” matrix DπR in the system

for χ. In the inexact deflation context, this system is solved using SAP as a pre-
conditioner. While we can allow for a flexible and possibly inexact evaluation of
the preconditioner, the accuracy with which we evaluate the non-preconditioned
matrix DπR in every step will inevitably affect the accuracy attainable for χ. As
a consequence, in each iteration we have to solve the system with the matrix Dc

arising in πR with an accuracy comparable with the accuracy at which we want to
obtain χ (although the accuracy requirements could, in principle, be somewhat
relaxed as the iteration proceeds due to results from [103,112]).

The difference of the two approaches is now apparent. In the multigrid context
we are allowed to solve the coarse system with low accuracy, in inexact deflation
we are not. Since the coarse grid system is still a large system, the work to
solve it accurately will by far dominate the computational cost in each iteration
in inexact deflation. In the multigrid context we can solve at only low accuracy
without noticeably affecting the quality of the preconditioner, thus substantially
reducing the computational cost of each iteration. Moreover, such a low accuracy
solution can be obtained even more efficiently by a recursive application of the
two-grid approach, resulting in a true multigrid method.

For further reading we refer to [67,97,108].

5.3 Adaptivity in the Setup of Inexact Deflation

To set up the inexact deflation method we need a way to obtain test vectors
to construct the matrix P used to define the inexact deflation operators πL and
πR. Once these vectors are found the method is completely defined (see Sec-
tion 5.1). In analogy to the discussion of adaptive algebraic multigrid methods
in Sections 4.3.1 and 4.3.2, these test vectors should contain information about
the eigenvectors corresponding to small eigenvalues of the operator DM

(ν)
SAP , the

preconditioned system.

Though the setup proposed in [79] is similar in nature to the one described in
Section 4.3.1, it differs in one important way. Instead of working on the homo-
geneous equation Dψ = 0 with a random initial guess to obtain the test vectors,
it starts with a set of random test vectors vj and approximately computes D−1vj
using SAP. The (approximate) multiplication with D−1 will amplify the compo-
nents of the vj’s belonging to the near kernel. These new vectors are now used to
define P (and Dc), yielding an inexact deflation method which can again be used
to approximately compute D−1vj giving new vectors for P . The whole process is
repeated several times; see Algorithm 14 for a detailed description where a total
of ninv of these cycles is performed.

The update vj ← (M
(ν)
SAPπL + PD−1

c PH)vj in line 8 of the algorithm is equiv-



62 Inexact Deflation

Algorithm 14: Inexact deflation setup – IDsetup(ninv ,ν) as used in [79]

input: ninv , ν
output: v1, . . . , vN , P , Dc

1 Choose v1, . . . , vN ∈ Cn as random test vectors
2 for τ = 1 to 3
3 for j = 1 to N

4 vj ←M
(τ)
SAPvj

5 for τ = 1 to ninv

6 (re-)construct P and Dc from current v1, . . . , vN
7 for j = 1 to N

8 vj ← (M
(ν)
SAPπL + PD−1

c PH)vj
9 vj ← vj

||vj ||

alent to the application of the V-cycle iteration matrix C(ν) (cf. (5.5)). It can be
interpreted as one step of an iteration to solve Dv = vj with initial guess 0 and
iteration matrix C(ν).

The update of the test vectors in line 8 can also be viewed in terms of the boot-
strap AMG setup outlined in Section 4.3.2. While the first part of the update,
M

(ν)
SAPπLvj, is the application of a coarse grid correction followed by smoothing,

i.e., a test to gauge the effectiveness of the method (cf. Section 4.3.1), the sec-
ond part of the update, PD−1

c PHvj is in range(P ). In contrast to the bootstrap
methodology where an update in range(P ) is obtained by interpolating eigenvec-
tors with small eigenvalues of Dc, in the inexact deflation variant these “optimal”
vectors are only approximated.



Chapter 6

GMRES-smoothed AMG

The general applicability of algebraic multigrid methods to lattice QCD systems
was first shown in [4,5,23,92] where the resulting method is simply called “AMG”,
a terminology that we keep for this section and also for later discussion. A multi-
level implementation of AMG for the clover improved Wilson-Dirac operator (2.8)
is publicly available as part of the QOPQDP library [91]. In this chapter we spec-
ify the components which compose the AMG method and we describe its setup
procedure that we found in the implementation within the QOPQDP library.
This chapter is mainly based on [49].

In the AMG method the smoother consists of a few iterations, ν, of the gen-
eralized conjugate residual (GCR) method (cf. [100]). GCR is a Krylov subspace
method which is mathematically equivalent to the GMRES method. It mini-
mizes the residual within the Krylov subspace span{Dkr : k = 0, . . . , ν} and its
restarted version converges as long as the field of values of D resides in the right
half plane, see [100]. For ν iterations of GCR and a given residual r, we denote
the smoother iteration matrix with M (ν) which is a polynomial of degree ν in D,
i.e., M (ν) = Pν(D, r). The corresponding error propagator is then given by

I −M (ν)D .

The coarse operator is given by Dc = PHDP , where P is an aggregation-
based prolongation obtained during a setup phase which produces the test vectors
v1, . . . , vN . The setup will be described in detail in Section 6.1. The aggregates
are from a standard aggregation according to Definition 4.7, implying that it is, in
particular, lattice-block based and Γ5-compatible. Parameters of the aggregation
are the underlying block decomposition of L. The coarse grid matrix Dc inherits
many important properties of D, cf. Lemma 4.5.

For the two-level setting, smoother and coarse grid correction are combined
into a standard V -cycle with no pre- and ν steps of post-smoothing. Therefore,
the error propagator is simply given by

(I −M (ν)D)(I − PD−1
c PHD) .
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The V-cycle is used as a preconditioner for an outer right preconditioned GCR
iteration. In the multilevel case, a K-Cycle is used. This rather sophisticated
cycling strategy will be explained in Section 8.1.2.

The set of ingredients for AMG is summarized in Table 6.1.

pre-smoother none

post-smoother ν iterations of GCR

coarse grid correction Γ5-compatible aggregation, Galerkin type

(cf. Section 4.2)

cycling strategy K-cycle (cf. Section 8.1.2)

Krylov subspace wrapper right-preconditioned GCR

setup procedure Algorithm 15

Table 6.1: Ingredients for the AMG method.

6.1 Setup Procedure

It remains to specify the setup phase yielding the test vectors v1, . . . , vN for the
prolongation operator P . In [23] the authors use the original adaptive setup of
[25], sketched in Section 4.3.1. The numerical study in [23] was done only for the
normal equations of the 2d Schwinger model. In [5], the setup was improved to
one which—instead of having to consider one test vector a time—now works with
20 test vectors simultaneously on which 10 “relaxations” are performed as in the
first loop of Algorithm 14 (with SAP replaced by GMRES and η = 1, . . . , 10). In a
second phase, groups of five test vectors each are then refined by iterating with the
multigrid method in which prolongation is defined using only the complementary
15 test vectors. In the follow-up paper [92], the setup procedure was apparently
changed. It is sketched without giving details, saying that the smoother is applied
to random vectors and the interpolation is built from the resulting vectors.

The AMG implementation within the QOPQDP library [91] in spirit contains
the setup from [92] combined with the idea of using inverse iteration from [79]
(also cf. Section 5.3), but without making use of the bootstrap aspect. The code
uses an inverse iteration scheme which computes test vectors using the BiCGStab
method [100]. The test vectors are computed successively instead of simultane-

ously. More precisely, the i-th test vector v
(1)
i is initialized as a random vector.

Then, v
(2)
i = D−1v

(1)
i is approximated by a fixed number bsi of BiCGStab it-

erations. This is repeated as long as the quotient of two consecutive Rayleigh
quotients for DHD is below a certain change level cl < 1, i.e.,

||Dv(k)
i ||2

||v(k)
i ||2

< cl · ||Dv
(k−1)
i ||2

||v(k−1)
i ||2

, (6.1)
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Algorithm 15: AMG-setup(bsi , cl ,mi)

input: bsi , cl , mi
output: v1, . . . , vN , P , Dc

1 for i = 1 to N

2 choose v
(1)
i as a random test vector

3 for k = 1 to mi(i)

4 orthonormalize v
(k)
i against v1, . . . , vi−1.

5 calculate v
(k+1)
i via bsi BiCGStab iterations for Dv

(k+1)
i = v

(k)
i and

initial guess zero
6 if inequality (6.1) is not satisfied then
7 break {stop the k loop}

8 vi = v
(k+1)
i

9 construct P and Dc

or a maximum of mi(i) repeats is exceeded. This particular bound depends on
the index i of the test vector. For each test vector vi the code implicitly assumes
that the Rayleigh quotients monotonically decrease during the setup. For the
computation of v1 the code allows more iterations than for the subsequent ones.
During this process, the test vector vi is kept orthonormal to all previous vj, j < i.
Algorithm 15 gives the precise formulation of the entire process.
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Chapter 7

Two-Level DD-αAMG

Chapters 3, 4 and 5 made all the ingredients available to describe our domain de-
composition aggregation-based adaptive algebraic multigrid (DD-αAMG) method
for the (clover improved) Wilson-Dirac operator (2.8). We now do so, mainly
elaborating on our publication [49].

As the smoother we take M
(ν)
SAP , i.e., we perform ν iterations of red-black

Schwarz as formulated in Algorithm 3. Like ν, the underlying block decomposi-
tion of the lattice L is a parameter to the method which we will specify in the
experiments.

The coarse system Dc is obtained as Dc = PHDP , where P is an aggregation-
based prolongation obtained during a setup phase. In contrast to the setup em-
ployed in AMG (see Chapter 6) we use an adaptive setup that makes use of the
currently available coarse grid correction which is improved in each iteration of
the setup. The aggregates are from a Γ5-compatible standard aggregation (Defi-
nition 4.7, Lemma 4.5) and thus identical to those used in AMG.

We combine the smoothing iteration and the coarse grid correction into a
standard V-cycle (cf. Chapter 4) with no pre- and ν steps of post-smoothing so
that the iteration matrix of one V-cycle is given by C(ν) from (5.5). Instead of
using the V-cycle as a stand-alone solver, we run FGMRES, the flexible GMRES
method (cf. [100]) as a wrapper for the V-cycle, i.e., the V-cycle is used as a
(right) preconditioner for FGMRES.

The set of ingredients is summarized in Table 7.1.

7.1 Adaptive Two-Level Setup Procedure

It remains to specify how we perform the adaptive setup yielding the test vectors
v1, . . . , vN . Extensive testing showed that a modification of the inexact deflation
setup (Algorithm 14) is most efficient. The modification is a change in the update
of the vectors vj in the second half of the algorithm. Instead of doing one iteration
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pre-smoother none

post-smoother M
(ν)
SAP (cf. Section 3.2)

coarse grid correction Γ5-compatible aggregation, Galerkin type

(cf. Section 4.2)

Krylov subspace wrapper right-preconditioned flexible GMRES

setup procedure Algorithm 16

Table 7.1: Ingredients for the DD-αAMG two-level method.

with C(ν) and initial guess 0 to approximately solve Dv = vj, we use the currently
available vector vj as our initial guess, see Algorithm 16.

Algorithm 16: DD-αAMG-setup(ninv , ν)

input: ninv , ν
output: v1, . . . , vN , P , Dc

1 perform Algorithm 14 with line 8 replaced by vj ← vj + C(ν)(vj −Dvj)
{= C(ν)vj + (I − C(ν)D)vj}

7.2 Numerical Two-Level Results

In this section we exclusively show two-level results. This includes an elaborate
study of the two-level case as well as comparisons with other existing two-level
approaches. Studying and understanding the two-level case is essential for devel-
oping a multilevel approach.

We implemented the DD-αAMG method in the programming language C us-
ing the parallelization interface of MPI. Within BiCGStab we use odd-even pre-
conditioning for D. In all multigrid approaches we use odd-even preconditioned
restarted GMRES with a restart length of 30 when we solve the coarse system in-
volving Dc. We implemented all odd-even preconditioned operators as explained
in Sections 3.4 and 3.5, and the coarse grid correction is realized as in Section 4.4.

We use a mixed precision approach where we perform the V-cycle of the pre-
conditioner in single precision. Low level optimization (e.g., making use of the
SSE-registers on Intel/AMD architectures) was not implemented when the results
for this section were produced and published. Results from an SSE-optimized
version of this code are given in Section 8.4.6. All Krylov subspace methods
(FGMRES, BiCGStab, GCR, CG) have been implemented in a common frame-
work with the same degree of optimization to allow for a standardized comparison
of computing times. This is particularly relevant when we compare timings with
BiCGStab. We also include comparisons with the inexact deflation approach
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(cf. Chapter 5) and AMG (cf. Chapter 6), where we used the efficient implemen-
tations which are publicly available [75, 91].

parameter default

setup number of iterations ninv 6

number of test vectors N 20

size of lattice-blocks for aggregates 44

coarse system relative residual tolerance 5 · 10−2

(stopping criterion for the coarse system)(∗)

solver restart length of FGMRES nkv 25

relative residual tolerance (stopping criterion) tol 10−10

smoother number of post-smoothing steps(∗) ν 2

size of lattice-blocks in SAP(∗) 44

number of minimal residual (MR) iterations to

solve the local systems (3.3) in SAP(∗) 4

Table 7.2: Parameters for the DD-αAMG two-level method. (∗) : same in solver
and setup.

Table 7.2 summarizes the default parameters used for DD-αAMG in our ex-
periments. Besides those discussed previously in this chapter, the table also gives
parameter values for the stopping criterion used for the solves with the coarse
system Dc (the initial residual is to be decreased by a factor of 20) and the stop-
ping criterion for the entire FGMRES iteration (residual to be decreased by a
factor of 1010). In each SAP iteration we have to (approximately) solve the local
systems (3.3). Instead of requiring a given decrease in the residual we here fix
the number of iterative steps (to 4). The iterative method we use here is the
odd-even preconditioned MR method (cf. Section 3.5). In our numerical exper-
iments we found that ν = 2 yields a good default parameter for the number of
smoother iterations. In Section 3.6 we saw that FGMRES+SAP was performing
even better for ν = 5 since the SAP smoother reduces the number of all-to-all
communications and improves data locality. Now, however, the optimal value for
ν is rather a matter of balancing between coarse grid correction and smoother
than of reducing communication.

For the various configurations and respective operators we found that this
default set of parameters yields a well performing solver, with only little room for
further tuning. The size of the lattice-blocks (44) fits well with all lattice sizes
occurring in practice, where Nt and Ns are multiples of 4. The number of setup
iterations, ninv , is the only one of these parameters which should be adapted
depending on the given situation. It will depend on how many systems we have
to solve, i.e., how many right hand sides we have to treat. When ninv is increased,
the setup becomes more costly, while, at the same time, the solver becomes faster.
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ID lattice size pion mass CGNR shift clover provided by

Nt ×N3
s mπ [MeV] iterations m0 term csw

2 48× 163 250 7,055 −0.095300 1.00000 BMW-c [39,40]

3 48× 243 250 11,664 −0.095300 1.00000 BMW-c [39,40]

4 48× 323 250 15,872 −0.095300 1.00000 BMW-c [39,40]

5 48× 483 135 53,932 −0.099330 1.00000 BMW-c [39,40]

6 64× 643 135 84,207 −0.052940 1.00000 BMW-c [39,40]

7 128× 643 270 45,804 −0.342623 1.75150 CLS [29,44]

Table 7.3: Configurations used together with their parameters. For details about
their generation we refer to the references. Pion masses rounded to steps of 5 MeV.
All BMW configurations were smeared with 3 steps of HEX [28] smearing, the CLS
configuration was not smeared.

Thus, the time spent in the setup has to be balanced with the number of right
hand sides, and we will discuss this in some detail in Section 7.2.2. The default
ninv = 6 given in Table 7.2 should be regarded as a good compromise.

We ran DD-αAMG on the various configurations, smeared and non-smeared
ones, listed in Table 7.3, analyzed the behavior of the setup routine and performed
different scaling tests. As in Section 3.6 all results were obtained on Juropa [66]
at JSC.

7.2.1 Comparison with BiCGStab

First we compare a mixed precision2, odd-even preconditioned implementation of
BiCGStab with the DD-αAMG method using the standard parameter set for a
644 configuration at physical pion mass which represents an ill-conditioned linear
system with n = 201,326,592.

BiCGStab DD-αAMG speed-up factor coarse grid

setup time 22.9s

solve iter 13,450 21 3,716(∗)

solve time 91.2s 3.15s 29.0 2.43s

total time 91.2s 26.1s 3.50

Table 7.4: BiCGStab vs. DD-αAMG with default parameters (Table 7.2) on an
ill-conditioned 644 lattice (Table 7.3, configuration ID 6), 8,192 cores, (∗) : coarse
grid iterations summed up over all iterations on the fine grid.

The results reported in Table 7.4 show that we obtain a speed-up factor of
3.5 over BiCGStab with respect to the total timing. Excluding the setup time,

2The mixed precision implementation uses double precision flexible GMRES(25), precondi-
tioned by 50 steps of single precision, odd-even preconditioned BiCGStab.
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we gain a factor of 29. The right most column of Table 7.4 shows that in this
ill-conditioned case about 77% of the solve time of DD-αAMG goes into compu-
tations on the coarse grid.

7.2.2 Setup Evaluation

Lattice QCD computations are dominated by two major tasks: generating con-
figurations within the Hybrid Monte-Carlo (HMC) algorithm [70] and evaluating
these configurations, i.e., calculating observables. Both tasks require solutions of
the lattice Dirac equation.

The HMC generates a sequence of stochastically independent configurations.
The configuration is changed in every step, and the Wilson-Dirac equation has
to be solved only twice per configuration. Thus, HMC requires a new setup—or
at least an update—for the interpolation and coarse grid operator in every step.
Therefore, the costs of setup/update and solve have to be well-balanced.

The calculation of observables requires several, typically 12 or more, solves for
a single configuration. Therefore, one would be willing to invest more time into
the setup in order to obtain a better solver.

number of average average lowest highest average average

setup setup iteration iteration iteration solver total

steps ninv timing count count count timing timing

1 2.08 149 144 154 6.42 8.50

2 3.06 59.5 58 61 3.42 6.48

3 4.69 34.5 33 36 2.37 7.06

4 7.39 27.2 27 28 1.95 9.34

5 10.8 24.1 24 25 1.82 12.6

6 14.1 23.0 23 23 1.89 16.0

7 16.8 22.0 22 22 1.88 18.7

8 19.5 22.0 22 22 2.02 21.5

9 21.8 22.0 22 22 2.15 24.0

10 24.3 22.5 22 23 2.31 26.6

11 26.6 23.0 23 23 2.38 29.0

Table 7.5: Evaluation of DD-αAMG-setup(ninv , 2) cf. Algorithm 16, 484 lattice,
ill-conditioned configuration (Table 7.3, configuration ID 5), 2,592 cores, averaged
over 20 runs. The bold numbers display the minima of the respective columns.

Table 7.5 illustrates how the ratio between setup and solve can be balanced
depending on the amount of right hand sides. In this particular case, two steps
in the setup might be the best choice if only a single solution of the system is
needed (minimal time for setup + 1 solve). For many right hand sides, where the
time spent in the solver dominates, 5 steps in the setup might be the best choice.
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Doing up to 7 steps can lower the iteration count of the solver even further, but
the better the test vectors approximate the near kernel, the more ill-conditioned
the coarse system becomes, i.e., lowering the iteration count of the solver means
increasing the iteration count on the coarse system. The iteration counts for
ninv = 10, 11 indicate that it might be possible to overdo the setup.

The numbers shown have been averaged over 20 runs, because the measure-
ments vary due to the choice of random initial test vectors. The fourth and the
fifth column of Table 7.5 show that the fluctuations in the iteration count of the
solver are modest. For ninv ≥ 4 the fluctuations almost vanish completely.

BiCGStab iteration counts

conf 1 conf 2 conf 3 conf 4 conf 5 conf 6

7,950 8,350 9,550 8,600 8,100 9,950

DD-αAMG iteration counts

ninv conf 1 conf 2 conf 3 conf 4 conf 5 conf 6

1 161 208 175 183 181 272

2 62 75 67 67 64 85

3 34 37 36 37 35 39

4 27 28 28 29 27 29

5 24 25 25 25 24 25

6 23 23 23 24 23 23

Table 7.6: Configuration dependence study of BiCGStab and DD-αAMG with
DD-αAMG-setup(ninv , 2) for 6 different, ill-conditioned configurations on 484 lat-
tices, (Table 7.3, configuration ID 5), 2,592 cores.

Table 7.6 gives the iteration count of BiCGStab and DD-αAMG for a set of
6 stochastically independent configurations from a single HMC simulation. The
BiCGStab iteration count shows a clear dependence on the gauge fields just as
DD-αAMG for small values of ninv . However, for ninv ≥ 4 the iteration count
varies only marginally.

7.2.3 Scaling Tests

We now study the scaling behavior of the solver as a function of the mass param-
eter and the system size. While the former determines the condition number of
the Wilson-Dirac operator, the latter has an effect on the density of the eigen-
values. In particular, increasing the volume leads to a higher density of small
eigenvalues [9]. In a weak parallel scaling test we also analyze the performance
as a function of the number of processors used.
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Mass Scaling

For this study we used a 484 lattice configuration. We ran the setup once for
the mass parameter m0 = −0.09933 in the clover improved Wilson-Dirac opera-
tor (2.8). This represents an ill-conditioned system where the pion mass with 135
MeV is at its physical value. We then used the interpolation operator obtained
for this system for a variety of other mass parameters, where we then ran the
DD-αAMG solver without any further setup.

BiCGStab DD-αAMG coarse system

m0 iteration solver iteration solver �iteration timing

count timing count timing count (% solve time)

−0.03933 350 2.27s 17 0.58s 9.94 0.12s (20.7)

−0.04933 400 2.60s 17 0.59s 11.2 0.13s (22.0)

−0.05933 450 2.97s 18 0.64s 12.7 0.16s (25.0)

−0.06933 600 4.10s 19 0.72s 15.4 0.20s (27.8)

−0.07933 850 5.45s 19 0.76s 19.4 0.25s (32.9)

−0.08933 1,550 9.82s 20 0.92s 28.6 0.37s (40.2)

−0.09033 1,700 10.3s 21 1.00s 30.8 0.43s (43.0)

−0.09133 1,700 10.6s 21 1.04s 33.4 0.47s (45.2)

−0.09233 1,800 11.7s 21 1.08s 36.4 0.51s (47.2)

−0.09333 2,250 13.7s 21 1.13s 39.7 0.55s (48.7)

−0.09433 2,650 16.7s 22 1.23s 43.2 0.62s (50.4)

−0.09533 2,850 17.4s 22 1.28s 46.9 0.68s (53.1)

−0.09633 3,450 21.8s 22 1.36s 51.3 0.75s (55.1)

−0.09733 3,750 23.7s 23 1.48s 56.5 0.84s (56.8)

−0.09833 4,700 28.5s 23 1.63s 65.9 0.99s (60.7)

−0.09933 6,250 42.0s 24 1.89s 79.3 1.22s (64.5)

Table 7.7: Mass scaling behavior of DD-αAMG for ninv = 5, 484 lattice (Table 7.3,
configuration ID 5), 2,592 cores.

In Table 7.7 we compare BiCGStab and DD-αAMG with respect to the effort
for one right hand side and the scaling with the mass parameter m0. For the
smallest m0, DD-αAMG is 22 times faster than BiCGStab and even for the largest
value of m0 there remains a factor of 3.9. We also see that the two methods scale
in a completely different manner. The BiCGStab solve for the smallest m0 is
about 18 times more expensive (in terms of solve time and iteration count) than
the solve for the largest one. On the other hand, the DD-αAMG timings just
increase by a factor of 3.2, the iteration count even only by a factor of 1.4. The
coarse grid iteration count, however, increases by a factor of 8.0 which explains
the difference between the increase in iteration count and the increase in solver
timing.
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System Size Scaling

In Table 7.8 we report tests on the scaling with the system size for constant mass
parameter and (physical) lattice spacing. We again compare DD-αAMG with
BiCGStab. The iteration count of BiCGStab for Nt × N3

s lattices appears to
scale with Ns and thus almost doubles from Ns = 16 to Ns = 32 whereas for
DD-αAMG we observe an almost constant iteration count and time to solution.

BiCGStab DD-αAMG

lattice size iteration solver setup iteration solver

Nt ×N3
s count timing timing count timing

48× 163 1,550 7.03s 6.59s 20 0.89s

48× 243 2,150 10.7s 7.29s 20 0.83s

48× 323 2,600 13.1s 7.15s 21 0.92s

Table 7.8: Lattice size scaling of DD-αAMG, ninv = 6 setup iterations, lattices
generated with the same mass parameter and lattice spacing (Table 7.3, configura-
tion ID 2, 3 and 4), local lattice size 4× 83.

Weak Scaling

For a weak scaling test we ran 100 iterations of DD-αAMG with ninv = 5 in the
setup on lattices ranging from size 164 on a single node (8 cores/node) to 1282×642

on 1,024 nodes with 16× 83 local lattice size on each core, cf. Figure 7.1.
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Figure 7.1: Weak scaling test of DD-αAMG. The lattice size is increased with
the number of processes, keeping the local lattice size per process fixed to 16× 83.

For the scaling study we fixed the number of iterations on the coarse grid to be
exactly 50 steps of odd-even preconditioned GMRES so that we always have the
same number of 100 MPI Allreduce operations. In Figure 7.1 we see the usual
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log(p) dependence, p the number of processes, caused by global communication,
together with an exceptional increase when going from 512 to 1,024 processes. Ad-
ditional measurements show that this is due to the fact that the MPI Allreduce

operations take substantially longer for 1,024 processors, a machine-specific fea-
ture of Juropa. Apart from this, our method scales well up to 8,192 processes.

7.2.4 Comparison with the Inexact Deflation Method

The inexact deflation code of [79] is publicly available [75]. We now compare
its performance with DD-αAMG. Based on a preprint of [49], one of the papers
containing results of this thesis, the inexact deflation method has been upgraded
in the spirit of DD-αAMG (cf. [76]). The new version is termed “with inaccurate
projection”. We here compare with the older, “exact projection” version.

We have chosen the parameters of both methods equally except for the number
of post-smoothing steps ν. For the inexact deflation method ν = 5 and for DD-
αAMG ν = 2 turned out to provide the fastest solver, respectively. We used
the gcc compiler with the -O3 flag and hand coded low-level SSE-optimization
for the inexact deflation method and the icc compiler with the optimization
flags -O3 -ipo -axSSE4.2 -m64 for the DD-αAMG method. These compiler
options provide the optimal choices for the respective codes. Since our focus
is on algorithmic improvements we did not employ customized SSE-optimization
in this section. Results for DD-αAMG with SSE-optimization will be given in
Section 8.4.6.

The following results were produced on the same 484 lattice as in Sections 7.2.2
and 7.2.3 and on a 128× 643 lattice (Table 7.3, configurations ID 5 and 7).

Table 7.9 compares inexact deflation and DD-αAMG for a whole range for
ninv . We see that ninv = 5 provides the fastest DD-αAMG solver which is two
times faster than the fastest inexact deflation solver which requires ninv = 10.
Note that in this case the setup cost for both methods are about the same. For
the calculation of observables where the same system has to be solved for several
right hand sides, this factor of two directly carries over to the total computation
time since the setup cost then is negligible.

When looking at combined times for setup and solve for one right hand side,
ninv = 2 is best for DD-αAMG, where it takes 6.48 seconds. The best choice for
inexact deflation is ninv = 6 requiring 10.89 seconds.

We also see that except for very small values for ninv , the number of itera-
tions required in DD-αAMG is less than half of that in inexact deflation. The
numbers in parenthesis denote the average number of coarse solver iterations in
each iteration of the respective method. For DD-αAMG the number of iterations
on the coarse grid increases with the work spent in the setup. Hence, the low-
est DD-αAMG-iteration count does not necessarily provide the fastest solver in
the two grid setting. In inexact deflation the number of iterations on the coarse
grid is not that clearly tied to ninv . Since in inexact deflation the coarse system
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Inexact deflation DD-αAMG

setup setup iteration solver setup iteration solver

steps ninv timing count (coarse) timing timing count (coarse) timing

1 1.01s 233 (82) 10.1s 2.08s 149 (24) 6.42s

2 1.87s 155 (145) 10.2s 3.06s 59 (46) 3.42s

3 2.69s 108 (224) 9.96s 4.69s 35 (63) 2.37s

4 3.43s 84 (301) 9.25s 7.39s 27 (68) 1.95s

5 6.14s 70 (320) 7.50s 10.8s 24 (75) 1.82s

6 5.68s 63 (282) 5.21s 14.1s 23 (84) 1.89s

7 6.93s 58 (277) 4.67s 16.8s 22 (90) 1.88s

8 7.71s 54 (267) 4.12s 19.5s 22 (99) 2.02s

9 8.74s 51 (263) 3.89s 21.8s 22 (109) 2.15s

10 10.1s 49 (265) 3.62s 24.3s 22 (116) 2.31s

11 11.3s 50 (266) 3.77s 26.6s 23 (119) 2.38s

Table 7.9: Comparison of DD-αAMG and inexact deflation, coarse system solver
tolerance 10−12 and ν = 5 in inexact deflation, ill-conditioned system on a 484

lattice (Table 7.3, configuration ID 5), 2,592 cores. The bold numbers display the
minima of the respective columns.

has to be solved very accurately, the number of iterations needed to solve the
coarse grid system is higher than in DD-αAMG. However, it is only moderately
(a factor of 2 to 4) higher, though, because the projected test vectors are de-
flated on the coarse grid within the coarse system GCR solves (cf. Chapter 5).
Additionally, for the same number of test vectors, DD-αAMG produces a coarse
system which is twice as large (and contains four times as many nonzeros in the
coarse grid operator) as that of inexact deflation with the benefit of preserving
the Γ5-structure on the coarse grid. The DD-αAMG coarse grid system seems
to be more ill-conditioned—an indication that the important aspects of the fine
grid system are represented on the coarse grid—and the resulting coarse grid cor-
rection clearly lowers the total iteration count more efficiently and thus speeds
up the whole method. Both methods, DD-αAMG and inexact deflation, perform
best when using 20 test vectors.

Finalizing our discussion of the two methods, we compare in Table 7.10 inexact
deflation and DD-αAMG for an unsmeared configuration (configuration ID 7,
Table 7.3), typical for many recent lattice QCD computations. Again we took
the default parameter set, but now with relatively cheap setup phases. For inexact
deflation we used 5 setup iterations and for DD-αAMG we used three. This yields
the minimal total time for both methods and results in a speed-up factor of more
than 1.4 for setup and solve in DD-αAMG against inexact deflation which shows
that a rougher configuration does not harm the efficiency of DD-αAMG. Still 55%
of the execution time is spent in solves of the coarse system in DD-αAMG.
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Inexact deflation DD-αAMG speed-up factor

smooth iter 5 2

setup iter 5 3

setup time 10.9s 7.85s 1.39

solve iter 31 45

solve time 8.63s 5.81s 1.49

total time 19.5s 13.6s 1.43

Table 7.10: Comparison of DD-αAMG with inexact deflation on an ill-conditioned
system on a 128× 643 lattice (Table 7.3, configuration ID 7), same parameters as
in Table 7.9, 8,192 cores.

7.2.5 GMRES/GCR Smoothing and “AMG”

As explained in Sections 4.2, 4.3.1 and 4.3.2, the AMG method (see Chapter 6)
motivated many of the choices in DD-αAMG, particularly preservation of Γ5-
symmetry and aggregation-based interpolation. An important difference of the
two methods is the choice of the smoothing iteration. While DD-αAMG uses some
steps of SAP, which can be regarded as a “block smoothing”, AMG uses “point
smoothing”, namely some steps of standard (odd-even preconditioned) GCR.
Another difference is the setup which was introduced in Section 6.1 and compared
with the setup from [79] introduced in Section 5.3. The latter is basically the setup
used by DD-αAMG (cf. Section 7.1).

To study the influence of the different smoothers on the multigrid method, we
implemented a GMRES smoother in our framework as well. In numerical tests
with state-of-the-art lattices we found that GMRES and GCR always needed
the same number of iterations to converge, i.e., we did not observe any stability
issues. The difference in runtime was negligible as well. Hence, a comparison of
GMRES and SAP as smoother iterations amounts to a comparison of “emulated”
AMG and DD-αAMG. Using the same framework enables us to compare these
approaches with the same degree of optimization and almost independently of
the setup procedure being used.

Scanning the parameter range we found that 5 or 6 iterations of odd-even pre-
conditioned GMRES smoothing gave the best results for AMG in our framework.
In Table 7.11 we compare AMG with DD-αAMG and see a moderate speed-up
of DD-αAMG over AMG in the setup and the solve phase. If we look just at the
time spent in smoothing on the fine grid, we see a clear advantage of SAP over
GMRES by a factor of 1.5. The impact of this factor on the overall runtime of the
solver is expected to grow when employing additional levels due to the smoother
being applied on coarser levels as well.

Note that moving from GMRES to SAP improves the arithmetic intensity in
a parallel environment, i.e., the computation-to-communication and the compu-
tation-to-bandwidth ratio.
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AMG DD-αAMG speed-up factor

smoother iter 6 2

setup iter 5 5

setup time 19.7s 17.7s 1.11

smoother time 0.60s 0.40s 1.50

solve iter 23 23

solve time 3.76s 3.07s 1.22

total time 23.5s 20.8s 1.13

Table 7.11: Comparison of DD-αAMG with AMG on an ill-conditioned system
on a 64 × 643 lattice (Table 7.3, configuration ID 6), parameters from Table 7.2,
8,192 cores.

The AMG method has been implemented as part of the QOPQDP library
which is publicly available, see [91]. Table 7.12 reports a comparison of DD-
αAMG with AMG in QOPQDP for two of our configurations. We compared
different choices of parameters with our standard parameter settings for DD-
αAMG. We stopped the iterations when the initial residual was decreased by
a factor of 10−5 (instead of 10−10), the reason for this being that in QOPQDP
configurations are represented in single precision by default. For the default choice
of parameters in AMG we see that the setup is substantially more costly (factors
between 2 and 4 in time), while the number of iterations for each system solve is
slightly higher than for DD-αAMG. We can make the effort in the AMG setup
comparable to that of DD-αAMG by reducing the limit on the maximum number
of BiCGStab iterations to be performed in each inverse iteration step on each test

ID 6, 128 cores ID 7, 256 cores

AMG-d AMG-20 DD-αAMG AMG-d AMG-10 DD-αAMG

setup time 2424s 826s 896s 2464s 607s 656s

solve iter 14 22 10 13 21 11

solve time 45.4s 66.0s 57.1s 36.5s 50.4s 37.3s

ID 6, 8192 cores ID 7, 8192 cores

AMG-d AMG-40 DD-αAMG AMG-d AMG-20 DD-αAMG

setup time 52.3s 24.6s 27.7s 89.9s 29.1s 32.3s

solve iter 14 16 10 13 16 11

solve time 4.75s 5.51s 1.82s 3.49s 3.43s 1.86s

Table 7.12: Comparison of DD-αAMG and AMG as available from [91]. AMG-
d uses default parameter settings, AMG-k sets msi = k so that setup time is
comparable to DD-αAMG. SSE-optimization switched off in AMG.
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vector (msi), but then the number of iterations for each solve increases in AMG
and solve times become always larger than with DD-αAMG. For large numbers
of cores the solve times are 2 to 3 times smaller than in AMG. We believe that
this is due to the different implementations.
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Chapter 8

Multilevel DD-αAMG

Except for implementation details given in Section 8.3, this chapter is largely
based on [48,49]. Our multilevel extension of the two-level approach from the pre-
vious chapter, to be presented here, combines the two same components, namely
SAP as the smoother and a Γ5-preserving aggregation-based interpolation, on
every level. This means that the smoother as well as the interpolation together
with the associated coarse-level correction are of the same type on all levels of
the hierarchy. As in the two-level case, and for the same reasons, the multilevel
method is used as a preconditioner to FGMRES.

To be more specific, we introduce the following definitions.

Definition 8.1
Let L be the number of levels employed and denote D1 := D. Furthermore, let
n`, ` = 1, . . . , L be the dimension of the underlying vector space on each level `.
In the same manner as in Chapter 4 we define interpolation operators

P` : Cn`+1 → Cn` , ` = 1, . . . , L− 1

which transfer information from level ` + 1 to `. Accordingly, the operators PH
`

transfer information from ` to `+ 1. Using these operators we recursively define
coarse-level operators

D` : Cn` → Cn` , D` := PH
`−1D`−1P`−1

for ` = 2, . . . , L. The complementary smoothers on each level are denoted by

M`, ` = 1, . . . , L− 1 .

Having all these ingredients, we call

{(P`, D`+1,M`) : ` = 1, . . . , L− 1}

a multigrid hierarchy.
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8.1 Multilevel Cycling Strategies

Considering a multigrid hierarchy with more than two levels, several different
cycling strategies, i.e., recursive schemes for multigrid algorithms can be thought
of. In Chapter 4 we introduced the two-level V-cycle which is extended to a
multilevel V-cycle by recursive application to D−1

c . For the sake of completeness
we now introduce the multilevel V-cycle and also the W-cycle since they are the
most common cycling strategies, and we introduce the K-cycle since it shows the
best convergence behavior of all tested variants.

8.1.1 V-Cycles and W-Cycles

The simplest multilevel cycling strategy is the V-cycle illustrated in Algorithm 17.
In a V-cycle, on each level only one recursive call is used in-between the pre- and
post-smoothing iterations.

Algorithm 17: ψ` = V-Cycle(`, η`)

input: `, η`
output: ψ`

1 if ` = L then
2 ψ` ← D−1

` η`
3 else
4 ψ` = 0
5 for i = 1 to µ
6 ψ` ← ψ` +M`(η` −D`ψ`)

7 η`+1 ← PH
` (η` −D`ψ`)

8 ψ`+1 ← V-Cycle(`+ 1, η`+1)
9 ψ` ← ψ` + P`ψ`+1

10 for i = 1 to ν
11 ψ` ← ψ` +M`(η` −D`ψ`)

Oftentimes, an ordinary V-cycle does not provide a satisfactory convergence
rate. As a typical phenomenon, the approximate solutions ψ`+1 for D−1

`+1η`+1 on
the intermediate levels are not accurate enough to provide an efficient coarse grid
correction P`ψ`+1 on the next finer level. Considering more than just one recursion
yields a possible remedy, the W-cycling strategy, see Algorithm 18. Obviously, for
k = 1 the W-cycle turns into the ordinary V-cycle. It is also possible to consider
different values of k on each level or even choose k adaptively, e.g., according to
some residual tolerance. Both algorithms, the V- and the W-cycle are named
after the shape of their respective recursion schemes as illustrated in Figure 8.1.
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Algorithm 18: ψ` = W-Cycle(`, η`)

input: `, η`
output: ψ`

1 if ` = L then
2 ψ` ← D−1

` η`
3 else
4 ψ` = 0
5 for j = 1 to k
6 for i = 1 to µ
7 ψ` ← ψ` +M`(η` −D`ψ`)

8 η`+1 ← PH
` (η` −D`ψ`)

9 ψ`+1 ←W-Cycle(`+ 1, η`+1)
10 ψ` ← ψ` + P`ψ`+1

11 for i = 1 to ν
12 ψ` ← ψ` +M`(η` −D`ψ`)
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Figure 8.1: Illustration of a three-level V-cycle (left) and a three-level W-cycle of
length k = 2 (right), both with post-smoothing only.

8.1.2 K-Cycles

Numerical tests with very large configurations and small quark masses have shown
that simple V- or W-cycles are often not the ideal choice in terms of solver per-
formance. We thus use a more elaborate cycling strategy, the K-cycle suggested
in [90], in the multi-level method: A K-cycle optimally recombines several coarse-
level solves, again in a recursive manner. More precisely, on every level ` we obtain
an approximate solution of the coarse-level system by a few iterations of a flexible
Krylov subspace method, preconditioned by the K-cycle multilevel method from
level ` + 1 to L. We deviate from the original approach in [90] in that we use
a stopping criterion based on the reduction of the residual rather than a fixed
number of iterations. We will give the specific choice for the stopping criterion
used in our implementation in Section 8.4.

The K-cycle is stated in Algorithm 19. For a fixed number of iterations it can



84 Multilevel DD-αAMG

Algorithm 19: ψ` = K-Cycle(`, η`)

input: `, η`
output: ψ`

1 if ` = L then
2 ψ` ← D−1

` η`
3 else
4 ψ` = 0
5 for i = 1 to µ
6 ψ` ← ψ` +M`(η` −D`ψ`)

7 η`+1 ← PH
` (η` −D`ψ`)

8 ψ`+1 ← FGMRES(D`+1, η`+1) + K-Cycle(`+ 1, ·) {FGMRES for

matrix D`+1 and r.h.s. η`+1,

preconditioned in each iteration

with K-Cycle(`+ 1, ·)}
9 ψ` ← ψ` + P`ψ`+1

10 for i = 1 to ν
11 ψ` ← ψ` +M`(η` −D`ψ`)

be regarded as a standard W-cycle with adaptive re-combination of the approxi-
mate solutions after each recursion.

8.2 Adaptive Multilevel Setup Procedure

For the construction of the aggregation-based Γ5-preserving interpolation opera-
tors P`, and with them the coarse-level operators D`+1 = PH

` D`P`, the two-level
setup from Section 7.1 has to be extended to a multilevel setup. In order to
preserve the Γ5-symmetry on all levels, we use a block-spin structure for the in-
terpolation operators on all levels. The number N` of test vectors used on each
level is allowed to vary, and typically N` ≤ N`+1 for all levels `. The setup process
that we found to work best in practice is divided into two phases:

1. An initial phase given as Algorithm 20 which constructs an initial multilevel
hierarchy solely based on the smoothing iteration starting with random test
vectors.

2. An iterative phase which imitates inverse iteration, illustrated in Fig. 8.2. In
each step, we improve the test vectors by approximately applying D−1 using
the current multilevel method and then update the multilevel hierarchy
using the improved test vectors. This means that we perform ninv calls to
Algorithm 21 with k1 = 1.
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Algorithm 20: initial setup phase(`), we assume N`−1 ≤ N`

input: `, Nj for j = `, . . . , L− 1

output: v
(1)
j , . . . , v

(N`)
j , Pj, Dj+1 for j = `, . . . , L− 1

1 if ` = 1 then

2 choose N` random test vectors v
(1)
` , . . . , v

(N`)
`

3 else
4 for j = 1 to N`−1

5 v
(j)
` ← PH

`−1v
(j)
`−1 {restricted test vectors

from previous level}
6 for j = N`−1 + 1 to N`

7 choose v
(j)
` as a random test vector

8 for η = 1 to 3
9 for j = 1 to N`

10 x = 0
11 for i = 1 to η

12 x← x+M`(v
(j)
` −D`x) {M` smoother for system

with matrix D`}
13 v(j) = x

14 construct P` and set D`+1 = PH
` D`P`

15 if ` < L− 1 then
16 initial setup phase(`+ 1) {perform Algorithm 20

on next level}

During the development of our multilevel setup, we also tried simpler setup
strategies like Algorithm 21 without the recursive call in line 9, i.e., just re-
placing the test vectors by the results from the K-cycles on each level. For
this approach we observed that the interpolation operators P` on the interme-
diate levels ` < L − 1 were not of satisfactory quality, in a sense that D`+1 was
not ill-conditioned enough since spec(D`+1) did not resemble the crucial part of
spec(D`). However, when using additional setup iterations on these levels, we
obtain efficient interpolation operators P` on each level.

Again we will give our specific choices for the various parameters in the setup
in Section 8.4 which contains the numerical results.

8.3 Implementation Details – Idling Processes

In Sections 3.5 and 4.4 we discussed implementation details for the construction
of the coarse grid correction and the smoother, respectively. These ingredients
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Algorithm 21: iterative setup phase(`)

input: `, Nj, kj, v
(1)
j , . . . , v

(N`)
j , Pj, Dj+1 for j = `, . . . , L− 1

output: v
(1)
j , . . . , v

(N`)
j , Pj, Dj+1 for j = `, . . . , L− 1

1 if ` < L then
2 for i = 1 to k`
3 for j = 1 to N`

4 {ψm, m = `, . . . , L− 1} ← K-Cycle(`, v
(j)
`−1) {results ψm of

the last recursive call

on all levels m}
5 for m = ` to L− 1

6 v
(j)
m = ψm/||ψm|| {update test vectors with

the iterates of each level}

7 for m = ` to L− 1
8 construct Pm and Dm+1

9 iterative setup phase(`+ 1) {perform Algorithm 21

on next level}
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Figure 8.2: Illustration of Algorithm 21 as one setup iteration on level 1 with
L = 4, k2 = 3, k3 = 2 and K-cycle length 1, i.e., a V-cycle.

forming the whole two-grid hierarchy can be implemented on coarser levels ` > 1
requiring only minor adjustments. The Γ5-preserving standard aggregation on
the coarser levels again provides pairs of aggregates such that each pair shares a
common lattice block and Γ5 is constant on each aggregate.

As a new feature of the implementation and the only significant difference to
the two-level approach, processes are now allowed to idle on the coarser levels.
This is necessary for a parallel multigrid method since a high degree of paralleliza-
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tion can cause a lack of lattice sites on the coarser levels. In our implementation
we assume that sites which belong to a common aggregate always share the same
process. This allows to perform the computational part of interpolation and re-
striction without communication, similarly to what was done in the two-level
approach. Furthermore, we assume to have on each process at least one block of
each color from the SAP block decomposition on the finest level (cf. Section 3.2).
This ensures that no idle times occur when applying the smoother. As soon as on
the coarser levels the processes do not own at least one SAP block of each color,
or not an entire aggregate, dedicated processes (master processes) obtain the data
belonging to neighboring processes (assistant processes), such that the previous
assumptions hold for all master processes (illustrated in Figure 8.3). This en-
sures that the smoother, the restriction and the interpolation can be applied in
the same manner as on the finer levels. During computations done by the master
processes on the current level or on coarser ones, the assistant processes idle. In
summary, we have a set of dedicated master processes, each of them owning a
set of assistant processes. Each set of assistants belonging to a common master
process is geometrically connected, and together with the master the union of
their lattice blocks forms again a lattice block on the current level. The set of all
masters joined with their assistants yields a coarser block decomposition of the
current level lattice.

gather/distribute

mirror assistant 1

master

assistant 1

assistant 2assistant 3

mirror assistant 2

mirror assistant 3

Figure 8.3: Illustration of a master and his assistants reduced to 2D.

After each application of the restriction the master processes gather the re-
cently restricted information from their assistants and the assistants idle until
the next application of the interpolation. Therein, the information computed on
the current level master processes is distributed back to the respective assistants;
afterwards the interpolation is performed. This principle is applied in a recursive
fashion to the set of master processes on the consecutive coarser levels until the
coarsest level is reached.

Figure 8.3 illustrates this master-assistant relation in a 2D setting, the master
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parameter default

setup number of iterations for ` = 1 ninv 6

number of iterations for ` > 1 k` 2

number of test vectors for ` = 1 N1 20

number of test vectors for ` > 1 N` 30

size of lattice-blocks for aggregates and SAP on level 1 44

size of lattice-blocks for aggregates and SAP on level ` > 1 24

coarse system relative residual tolerance

(stopping criterion for the coarse system)(∗) ε 5 · 10−2

solver restart length of FGMRES nkv 10

relative residual tolerance (stopping criterion) tol 10−10

smoother number of pre-smoothing steps(∗) µ 0

number of post-smoothing steps(∗) on level 1 ν 1

number of post-smoothing steps(∗) on level ` > 1 3

number of Minimal Residual (MR) iterations to

solve the local systems in SAP(∗) 4

K-cycle maximal length(∗) 5

maximal restarts(∗) 2

relative residual tolerance (stopping criterion)(∗) 10−1

Table 8.1: Parameters for multi-level DD-αAMG. (∗) : same in solver and setup.

process owning his original lattice sub-block and mirrored lattice sub-blocks of all
his assistants. Since a master process also needs to be able to apply the operator
on all sites belonging to his gathered lattice block, the local part of the operator
D` on the current level also has to be made available for these sites and therefore
gathered from the set of assistants right after its construction.

8.4 Numerical Multilevel Results

We now report results of extensive numerical experiments for multilevel DD-
αAMG with particular emphasis on the three- and four-level setting. As its two-
level predecessor, the method is implemented as a parallel program in C using MPI,
and we compute and apply the DD-αAMG preconditioner in single precision only.
The outer FGMRES iteration remains in double precision. The system on the
coarsest level is solved via odd-even preconditioned GMRES by requiring that
the norm of the residual be reduced to ε times the norm of the initial residual.

Table 8.1 summarizes the default parameters used in our experiments. Note
that these parameters are the same as those used for the two-level results in
Section 7.2 except that we had to reduce the restart length of the outer FGMRES
routine to nkv from 25 to 10 due to memory limitations when using a small
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ID lattice size pion mass CGNR shift clover provided by

Nt ×N3
s mπ [MeV] iterations m0 term csw

3 48× 243 250 11,664 −0.09530 1.00000 BMW-c [39,40]

5 48× 483 136 53,932 −0.09933 1.00000 BMW-c [39,40]

6 64× 643 135 84,207 −0.05294 1.00000 BMW-c [39,40]

7 128× 643 270 45,804 −0.34262 1.75150 CLS [29,44]

8 128× 643 190 88,479 −0.33485 1.90952 CLS [29,44]

Table 8.2: Configurations used together with their parameters. For details about
their generation we refer to the references. Except for configuration ID 5, the pion
masses are determined up to an accuracy of 5 MeV only. All BMW configurations
were smeared with 3 steps of HEX [28] smearing, the CLS configurations were not
smeared.

number of cores. This reduction of the cycle length has very little effect on the
total number of iterations, and we never observed that passing from nkv = 25 to
nkv = 10 augmented the total iteration count by more than 1. For consistency we
therefore use nkv = 10 in all numerical experiments. In our numerical experiments
we saw that for SAP and the aggregates on the coarser levels ` > 1 a lattice-block
size of 24 is the best choice in terms of runtime performance, and larger block-
sizes would hamper the use of higher degrees of parallelism. A lattice-block of
size 44 on level ` = 2 on a single process would either require a fine grid process
lattice-block size of at least 164, or it would cause that processes are idle already
on the second finest level.

In Table 8.2 we give an overview of the configurations used in our tests. After
the production of the numerical results of the previous chapter, we obtained
another non-smeared configuration from CLS termed configuration ID 8, for which
it is particularly challenging to solve the Wilson-Dirac equation. The iteration
count of CGNR, i.e., CG applied to the system DHDz = DHb, can be used as
an indicator for the conditioning of the respective operator. The configurations
yield truly challenging linear systems encountered in state-of-the-art lattice QCD
calculations. Note that, as in Section 7.2, we always used the clover improvement
with the Sheikoleslami-Wohlert parameter csw given in Table 8.2.

In what follows, we explore the potential benefits of additional levels in the
DD-αAMG method. Special focus is put on the consequences of additional levels
in terms of the degree of parallelization, i.e., the size of the local lattice kept
on each node. We test the performance of the DD-αAMG method for different
numbers of levels using a variety of cost measures and we analyze the scaling
behavior as a function of the bare mass m0. Finally, we compare the DD-αAMG
approach to the recently improved version of the inexact deflation approach which
now allows for inaccurate projection [76,79].

If not stated otherwise all results were obtained on Juropa [66] at JSC.
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8.4.1 Parallel Multilevel Methods

Our first tests analyze the influence of the degree of parallelization on the perfor-
mance of the two- and three-level method. This is an important issue since using
many processes causes idle times on the coarser levels.

We tracked the performance of the solve phase of two- and three-level DD-
αAMG method for the configurations with IDs 3, 5 and 6 using different degrees
of parallelization, reported as the size of the local lattice on each core. Our goal
is to find the sweet spot with respect to consumed core minutes.
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Figure 8.4: Estimation of the sweet spot (Table 8.2, configuration ID 3).

Figure 8.4 plots the dependence of the solver performance in terms of core
minutes on the degree of parallelization for the rather small configuration with
ID 3 and lattice size 48×243. Due to memory restrictions the minimal number of
processors that can be used is 6 corresponding to 110,592 = 8× 243 lattice sites
per processor. On the other end of the horizontal axis we are limited to 1,296
processors which corresponds to 29 = 8× 43 lattice sites per process on level one.
This is the minimum number of lattice sites which is required for processes not
to idle in red-black SAP with a block size of 44 on the finest level, since then each
process holds exactly one red and one black block.

Figure 8.4 shows that as soon as we use 84 = 212 or fewer lattice sites per
process on level one, the three-level method performs worse than the two-level
method. This is not surprising, since for a local lattice size of 84 on level one we
obtain a local lattice size of 24 on level two. Although in the three-level method,
smoothing on level two is performed with SAP with blocks of size 24 only, each
process now holds just one block, and thus half of the processes will idle during
the SAP iteration. This phenomenon carries over to the third level, where (we
there take aggregates of size 24, see Table 8.1) we then have just one lattice
site per process, resulting in idle times when performing odd-even preconditioned
GMRES as the solver on this last level. Similarly, for a local lattice size of 211
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on level one, 3 out of 4 processes are idling on levels two and three. For a local
lattice size of 210 and 29 this increases to 7 out of 8 and 15 out of 16 processes,
respectively. We conclude that for the relatively small configuration ID 3 the
additional third level is advisable only if a relatively small degree of parallelism
is used.

On level three we end up with a global lattice size of 6×33 for which odd-even
preconditioning is not possible. For a fair comparison we therefore switched off
odd-even preconditioning everywhere for all tests involving configuration ID 3.

40

60

80

140

100

210 211 212 213 214 215 216

5184 2592 1296 648 324 162 81

co
st

in
co

re
m

in
u
te

s

number of lattice sites per process

number of processes

two-level DD-αAMG
three-level DD-αAMG
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Figure 8.6: Performance of two-, three- and four-level DD-αAMG for estimation
of the sweet spot (Table 8.2, configuration ID 6).

The picture changes when we investigate the same dependence for larger con-
figurations. In Figures 8.5 and 8.6 we see that using three levels improves over two
levels on the whole range for the number of processes. For both configurations
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with IDs 5 and 6 we see that for two and three levels the cost in core minutes
remains almost constant for roughly up to 1,000 processes, and that in this range
the three-level method gains a factor of 1.6 and 2.3, respectively, over the two-level
method. Using more than 1,000 processors degrades the performance in terms
of core minutes for both methods, and the advantage of the three-level method
becomes less apparent. For the four-level method we report results only for the
larger configuration ID 6, and even there the method starts to degrade as soon as
we use more than 128 processes, since then idling processes cannot be avoided on
the last level. Only for the minimum number of processes the four-level method
performs (slightly) better than the three-level method. On a different architec-
ture, with more memory per core, which would allow to use fewer processes, the
four-level method might achieve a more distinct speed-up over three levels.

8.4.2 Two, Three and Four Levels

Now we compare the time to solution (wall clock time) of the DD-αAMG method
with two, three and four levels for the configurations with IDs 5 to 8 using only
small numbers of processes, i.e., working with large local lattices.

configuration ID 5 6 7 8

lattice size 48× 483 64× 643 128× 643 128× 643

pion mass mπ 136 MeV 135 MeV 270 MeV 190 MeV

two levels setup time 272s 666s 535s 545s

solve time 38.3s 101s 88.8s 108s

solve iter 33 32 35 43

three levels setup time 279s 562s 526s 548s

solve time 23.3s 44.7s 46.4s 55.8s

solve iter 30 27 33 36

four levels setup time – 594s 530s 548s

solve time – 42.2s 43.9s 52.5s

solve iter – 27 33 36

processes 81 128 256 256

local lattice level 1 16× 163 32× 163 32× 163 32× 163

level 2 4× 43 8× 43 8× 43 8× 43

level 3 2× 23 4× 23 4× 23 4× 23

level 4 – 2× 13 2× 13 2× 13

Table 8.3: Comparison of DD-αAMG with two, three and four levels for a small
number of processes, parameters from Tables 8.1 and 8.2.

Table 8.3 shows that the three-level method outperforms the two-level method
in terms of wall clock time in all tests by factors between 1.6 and 2.3 as far as the
solver time is concerned. The time required to set up the multigrid hierarchy does
not depend significantly on the number of levels used because in the multilevel
case we use the emerging multigrid hierarchy to solve on the coarser levels more
efficiently. For configuration ID 6 we even observe a slight reduction of the setup
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time when going from 2 to 3 levels. The performance gain in solve time of
the multi-level methods compared to the two-level method is a factor of more
than two for all the larger lattices (configurations with IDs 6 to 8), and the
four-level method performs best in all these cases. We expect the gain of the
four-level method to grow further for even larger lattices. We also note that,
for all configurations, the quality of multilevel DD-αAMG as a preconditioner—
measured in terms of the number of iterations to reach the stopping criterion—
improves when going from two to three levels but remains unchanged when going
to four levels. This indicates that a multigrid solver, either using two or three
levels, employed on the second level with a relative residual tolerance of 10−1

provides a better approximation to the solution on the second level than odd-
even preconditioned GMRES with a tolerance of 5 · 10−2. This observation will
be numerically confirmed in Section 8.4.4.

configuration ID 5 6 7 8

lattice size 48× 483 64× 643 128× 643 128× 643

pion mass mπ 135 MeV 135 MeV 270 MeV 190 MeV

levels 2 3 2 3 2 3 2 3

setup time 12.3s 32.6s 20.6s 38.1s 22.2s 37.7s 24.1s 39.6s

solve time 2.09s 1.74s 3.65s 2.83s 4.50s 3.04s 5.40s 3.90s

solve iter 33 31 31 27 36 33 43 36

level 1 consumed time 0.34s 0.33s 0.59s 0.51s 1.46s 1.42s 1.79s 1.47s

wait time(∗) 0.031s 0.022s 0.042s 0.038s 0.092s 0.095s 0.10s 0.075s

allreduce time 0.065s 0.077s 0.072s 0.054s 0.22s 0.18s 0.26s 0.11s

level 2 consumed time 1.75s 0.40s 3.06s 0.53s 3.04s 0.56s 3.61s 0.67s

wait time(∗) 0.19s 0.027s 0.20s 0.063s 0.077s 0.052s 0.066s 0.039s

allreduce time 1.26s 0.088s 1.86s 0.132s 1.49s 0.20s 1.83s 0.12s

level 3 consumed time – 1.01s – 1.79s – 1.06s – 1.76s

wait time(∗) – 0.056s – 0.10s – 0.035s – 0.061s

allreduce time – 0.42s – 1.10s – 0.72s – 1.13s

summarized total wait time(∗) 0.22s 0.11s 0.24s 0.20s 0.17s 0.18s 0.17s 0.18s

total allreduce time 1.33s 0.59s 1.93s 1.29s 1.71s 1.10s 2.09s 1.36s

processes 5,184 5,184 8,192 8,192 8,192 8,192 8,192 8,192

local lattice level 1 42 × 82 42 × 82 4× 83 4× 83 8× 83 8× 83 8× 83 8× 83

level 2 12 × 22 4× 23 1× 23 4× 23 2× 23 4× 23 2× 23 4× 23

level 3 – 2× 13 – 2× 13 – 2× 13 – 2× 13

Table 8.4: Comparison of DD-αAMG with two and three levels for large numbers
of processes, parameters as in Tables 8.1 and 8.2. (∗) : Wait time for point-to-point
communication.

As a complement to the results from Table 8.3, Table 8.4 gives timings for large
numbers of processes. Here, idle times on the coarser levels occur. For example,
for the number of processes chosen for the tests with the configurations with
IDs 7 and 8 every second process idles on the second and third level within the
three-level method. For configuration ID 6, three out of four and for configuration
ID 5 even 7 out of 8 processes idle on the second and third level. For all four
configurations there are no idle times for the two-level method. Though, using a
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third level in all cases still leads to decreased solve times (see also Figures 8.5 and
8.6). The larger degree of parallelization reduces the speed-up factors of the three-
level method over the two-level method, which are now down to approximately
1.3.

In addition, the setup for the three-level method becomes more expensive and
now takes 2 to 3 times longer than for two levels. However, in situations where
the increased setup time can be compensated for by solving many systems with
several right hand sides, the three-level method will still pay off.

Table 8.4 also shows, for each level, the time of a non-idling process spent in
working on that level including wait times due to nearest neighbor communication
and global reduction operations. The wait times for the three-level methods
appear to be reasonably small, showing that point-to-point communication even
for next to nearest neighbor cores (on coarser grids when every other process
idles) is negligible. The overall performance loss is mostly dominated by all-to-
all communications which makes up a significant part of the time spent on the
coarsest level in all cases. Looking at the three-level method for configuration
ID 5—which represents the worst case in terms of processes idling—the time
spent in computations on the levels two and three (to be derived from the table
as the sum of consumed times minus the time spent in communication on these
levels) amounts to 0.82 seconds. Due to 7 out of 8 processes idling on these levels,
we see a significant performance loss of 0.72 seconds, i.e., 40% of the solve time.
For the three-level method on configuration ID 6 the analogous calculation results
in a comparatively smaller but still significant performance loss of 25%.

8.4.3 Comparison with BiCGStab

We now compare the two- and three-level method with a mixed precision im-
plementation of odd-even preconditioned BiCGStab (as in Section 7.2.1), the
standard Krylov subspace method for solving the Wilson-Dirac system. In ad-
dition to wall clock times, we also give the flop count for each method together
with the performance (in terms of Gflop/s per process) achieved by our imple-
mentations. Table 8.5 shows the result for the configuration IDs 6 and 8. We
first note that compared to BiCGStab the solve time for the three-level method
is almost two orders of magnitude smaller. The flop count per lattice site as well
as the overall core minute count are accordingly reduced. As far as the setup
cost is concerned, even in the worst case where the setup is followed by just one
solve, the total times of the two-level and three-level methods are still 5 to 8 times
smaller than the time for one BiCGStab solve. It is noteworthy that three-level
DD-αAMG performs with up to 2.59 Gflop/s per core, corresponding to 9.3%
peak performance, on Juropa with a pure C-code, i.e., without any machine spe-
cific optimization. Our implementation of BiCGStab, which is based on the same
degree of optimization, is somewhat less efficient and achieves only 1.90 to 1.95
Gflop/s. But even if we were to increase this by a factor of two, BiCGStab would
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still be significantly slower than any of the DD-αAMG methods.

configuration ID 6 configuration ID 8

three-level two-level three-level two-level

DD-αAMG DD-αAMG BiCGStab DD-αAMG DD-αAMG BiCGStab

processes 128 128 128 256 256 256

setup time 562s 666s – 548s 545s –

solve time 44.7s 101s 3,859s 55.8s 108s 4,846s

consumed core minutes 95.4 216 8,230 235 460 20,700

consumed Mflop per site 0.89 2.17 57.4 1.00 2.21 70.3

Gflop/s per core 2.59 2.81 1.95 2.39 2.68 1.90

Table 8.5: Comparison of two- and three-level DD-αAMG with BiCGStab, pa-
rameters from Tables 8.1 and 8.2.

Combined with the results reported in Section 8.4.2, Table 8.5 suggests that in
situations where run-time is less important than the consumed core minutes and
where several Dirac systems with different right hand sides must be solved, e.g.,
in configuration analysis, it is best to run a multi-level method with a low degree
of parallelization. This gives the largest number of system solves per core minute.
On the other hand, in a situation, where run-time is of utmost importance, e.g.,
in the generation of configurations within the HMC process, it might be advisable
to use only a two-level method and a high degree of parallelization.

8.4.4 Scaling Tests

An important motivation for the development of multilevel preconditioners for the
Wilson-Dirac system is the removal of “critical slowing down”, i.e., the observed
dramatic increase in iterations for standard iterative methods when the mass
parameter approaches its critical value. In the next set of tests we report solve
times of the two-, three- and four-level DD-αAMG method with respect to the
bare mass m0 for configuration ID 6. These tests use 128 cores, i.e., a low degree
of parallelization. They represent the continuation of the mass scaling tests in
Section 7.2.3.

We see in Figure 8.7 that the time to solution of BiCGStab increases much
more rapidly than the time to solution for the two-level method when approaching
the critical bare mass mcrit. Using a third level additionally yields a significant
improvement in the scaling behavior. Furthermore, we see that in the regime of
mud the four-level method starts to outperform the three-level method. Note that
for the computation of observables in lattice QCD it might actually be necessary
to solve the Dirac equation for mass parameters beyond mud, e.g, to account for
the up-down quark mass difference [18, 43]. For configuration ID 6 this requires
a mass parameter mu = −0.05347.

Approaching the critical mass parameter makes the Wilson-Dirac operator
more ill-conditioned which explains why the number of iterations in BiCGStab
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Figure 8.7: Scaling of BiCGStab and DD-αAMG with the bare mass m0. In here,
mud = −0.05294 denotes the physical mass parameter for which the configuration
was thermalized, and mcrit = −0.05419 [39,40] is the critical mass.

grows so tremendously. For multilevel DD-αAMG, the number of iterations grows
relatively mildly as m0 decreases. The observed increase in time to solution is
mainly due to the fact that we have to invest more work on the coarsest level,
where we solve the coarsest system DL using odd-even preconditioned GMRES.
Just as D, the matrix DL becomes more ill-conditioned as m0 decreases.
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Figure 8.8: Scaling of the final error obtained from DD-αAMG and BiCGStab.

From the fundamental relation De = r between the error e and the resid-
ual r of a solution of a linear system with matrix D, we have the relation
‖e‖ ≤ ‖D−1‖ ‖r‖. For ill-conditioned matrices, ‖D−1‖ is large, so it may well
be that the error is still large while the residual is already small. We therefore
performed numerical experiments where we tracked the norm of the relative error
‖e‖/‖ψ∗‖ = ‖ψ∗−ψ‖/‖ψ∗‖ with ψ the computed approximate solution as a func-
tion of m0 for a pre-determined solution ψ∗. In the same fashion as in [92], ψ∗ is
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chosen as the inverse of a point source to a relative accuracy of 10−10 such that
the right hand side η = Dψ∗ is approximately a point source again. This should
result in linear systems with comparable degrees of difficulty for all methods. As
always, the iterations were stopped once the initial residual was decreased by a
factor of tol = 10−10. Figure 8.8 shows that the error is usually significantly
smaller than ‖D−1‖ ‖r‖ for all quark masses and for all methods. We calculated
‖D−1‖2 = λmin(Γ5D)−1 = 1,776 for configuration ID 6 at m0 = mud. This shows
that the error e can be up to three orders of magnitude less accurate than the
residual r and this is what we observe for BiCGStab at m0 = mud. However, in
the range of the physical masses there is a gain in accuracy of about one order
of magnitude when going from BiCGStab to the two-level method and almost
another order of magnitude when going to the three- or four-level method. This
can be explained as follows:

The low mode components of the error fulfill ‖e‖ ≈ ‖D−1‖ ‖r‖. By construc-
tion, the error of DD-αAMG has only small contributions of the low modes, as
they are removed by the coarse grid correction, whereas the error of BiCGStab is
dominated by low modes after the first few iterations. Thus, we can expect that
‖e‖ � ‖D−1‖ ‖r‖ for the error of DD-αAMG.

Combining the observations of Figures 8.7 and 8.8 results in an even more
pronounced gap between DD-αAMG and BiCGStab as already observed when
considering convergence to relative error instead of relative residual norm.

8.4.5 Reducing the Impact of Communication in Coarse Grid
Solvers

Depending on the size of the configurations, the system the algorithm is run on
and the number of levels used in the method, communication becomes a bottle-
neck. In here the main problem can be global communication (cf. Table 8.4 in
Section 8.4.2) for inner products as well as local communication in matrix-vector
multiplications (to be shown in this section). In this section we present measures
that we implemented in order to dampen the impact of communication on the
performance of the algorithm.

Global Communication

As already indicated by Table 8.4 in Section 8.4.2, situations might arise where
the time spent in communication on the coarsest grid starts to dominate the solve
time. For instance, when using a two-level method on configuration ID 5 the all-
to-all communication time already amounts to 64% of the solve time. Thus,
we expect the situation to become worse when doing computations with larger
configurations on larger machines. The source of allreduce operations on the
coarsest grid is found at the heart of the Krylov subspace method used to solve this
system. The Arnoldi process (cf. Algorithm 22) calculates an orthonormal basis
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Vm of the Krylov subspace. In every iteration i, the current iterate vi+1 = Dcvi
is orthogonalized against the previous ones v1, . . . , vi and then normalized, here
this is done by classical Gram-Schmidt (GS; see, e.g., [14,109]). For larger Krylov
subspace dimensions m, classical GS tends to be numerically unstable in the sense
that a loss of orthogonality can occur. In order to avoid this, modifications like
modified GS (see, e.g., [14, 109]), re-orthogonalization (see, e.g., [14]) and many
other variants were introduced. In modified GS the non-orthogonal component of
each vector vj is subtracted from vi+1 before one orthogonalizes against the next
vector vj−1, i.e., one computes

vi+1 ← vi+1 − (v†jvi+1)vj for j = 1, . . . , i .

This procedure introduces smaller round off errors than classical GS, and, as
opposed to classical GS, the method is backward stable (see, e.g., [64]). In parallel
computations, however, all i inner products would have to be calculated one after
the other which leads to a cost ofO(m2) global communications for computing Vm.
In classical GS, which we employ in Algorithm 22, the contributions of vj, j =
1, . . . , i are subtracted from vi+1 at once (cf. line 4). Thus, the communication of
i inner products can be bundled to one global communication leading to m global
communications for inner products and another m for vector norms, i.e., Vm is
computed at the cost of O(m). Note that the computational costs are equal for
both approaches.

When numerical instabilities in parallel computations occur, it can be more
beneficial to employ one step of re-orthogonalization instead of modified GS.
This means that each computed vector vi is again orthogonalized against all
vectors v1, . . . , vi−1 via classical GS. In other words, the orthogonalization process
is applied twice, and for moderately conditioned problems it has been shown that
“twice is enough”, see [14, 94]. The orthonormalization costs are doubled (for
communication and for computation), but it gives us a better complexity of global
communications which remains at O(m).

For Krylov subspace dimensions like m = 30 in our coarse grid solves, we

Algorithm 22: (Vm, H) = Arnoldi(v1,m)

1 v1 ← v1/||v1||
2 for i = 1 to m− 1
3 z ← Dcvi
4 hj,i ← v†jz for j = 1, . . . , i

5 vi+1 ← z −
∑i

j=1 hj,ivj
6 hi+1,i ← ||vi+1||
7 vi+1 ← vi+1/hi+1,i

8 return Vm = (v1, . . . , vm) and H = (hj,i)
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did not observe any significant numerical instabilities. Thus, we employ classi-
cal GS in the Arnoldi procedure as displayed in Algorithm 22 with two global
communications per iteration, one in line 4, and one in 6.

A simple modification found in [52] cuts the number of global communications
down to one by computing the norm in line 6 as

hi+1,i =

√√√√z†z −
i∑

j=0

v†jz , (8.1)

thus making it possible to calculate it together with the block inner products in
one allreduce operation. Even with this simple trick, the problem remains that
every iteration of GMRES requires at least one global communication. There are
two general approaches to attack this remaining problem.

First, one can reduce the amount of global communication by equipping the
Krylov subspace solver on the coarsest grid with a polynomial preconditioner at
the cost of additional matrix-vector multiplications, cf. [100]. The simplest idea
to construct such a polynomial preconditioner is to run GMRES the first time
the coarsest grid is visited and then, using the Arnoldi relation

AVm = Vm+1H ,

to extract the information required to build the polynomial which interpolates
f(t) = 1/t in the harmonic Ritz-values λk, k = 1, . . . ,m obtained from H (see,
e.g., [36]) This polynomial is then used every time the coarsest grid is visited
again; cf. [100]. Note that the degree m of the polynomial can be any value
smaller than the maximum dimension of the Krylov subspace used in the first
solve.

After the computation of the harmonic Ritz-values λk, k = 1, . . . ,m, the
corresponding residual polynomial is given by

p(t) =
m−1∏
j=0

(1− t

λk
) . (8.2)

We choose the initial guess x(0) = 0 and the residual r(0) equal to current iterate vi
from the Arnoldi process. After the application of the polynomial preconditioner
the residual is given by

r(m) =
m−1∏
k=0

(I − 1

λk
Dc)r

(0) = p(Dc)r
(0) .

Thus, the residual update in each “intermediate” iteration k of the polynomial
preconditioner satisfies

r(k+1) = r(k) − 1

λk
Dcr

(k) ,
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and the corresponding approximate solution is computed via

x(k+1) = x(k) +
1

λk
r(k) = x(k) +

1

λk
(r(0) −Dcx

(k)) .

As state-of-the-art approach to protract the occurrence of numerical instabilities
in (8.2), we apply a Leja point ordering to the Ritz values λk, cf. [96].

The second approach to deal with global communication is the use of so-called
pipelined Krylov subspace methods as proposed in [52]. These algorithms are
mathematically equivalent to their original non-pipelined counterparts, the dif-
ferences rather being of algorithmic and thus numerical kind. It is only possible
to use them if the system software allows for non-blocking global communication,
which is not always the case. In this approach, the current allreduce and subse-
quent matrix-vector multiplications are computed at the same time in a pipelined
fashion.

polynomial #coarse operator #coarse

degree applications allreduces

− 3698 (100%) 3698 (100%)

9 5179 (140%) 611 (17%)

19 5180 (140%) 320 (9%)

29 5179 (140%) 286 (8%)

39 4710 (127%) 188 (5%)

49 4636 (125%) 172 (5%)

59 6048 (164%) 249 (7%)

Table 8.6: Comparison of coarse operator applications and the number of allre-
duces on the coarse grid for a range of polynomial degrees in a two-level method on
configuration ID 6. The numbers in brackets denote the gain/reduction in percent
compared to the numbers for the unpreconditioned coarse grid solver, parameters
from Tables 8.1 and 8.2.

Table 8.6 gives results from a two-level method equipped with polynomial
preconditioners with different polynomial degrees. We study the effect of the
respective polynomial preconditioners on the number of coarse grid operator ap-
plications and the number of allreduces on the coarse grid where the norm of the
relative residual was to be decreased by a factor of 5 · 10−2. We observe that
polynomials of degree 39 and 49 as preconditioners lower the number of allre-
duces on the coarse grid by a factor of 20, conceding a factor of less than 1.3
in coarse operator applications. Higher polynomial degrees do not have to yield
additional benefit since the stopping criterion for the coarse grid solver can be
already reached while the preconditioner is still evaluated to its full polynomial
degree, thus causing unnecessary coarse operator applications. In addition to
that, the polynomial still can become ill-conditioned for higher degrees. This
seems to be the case for the degree 59 as the number of allreduces increases sig-
nificantly. We measured the orthogonality of the Krylov subspace basis Vm when
setting up the polynomial and did not observe any instabilities.
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In order to give meaning to these numbers, let us consider an example how
the reductions reported in Table 8.6 would translate to savings in the overall
solve time. Unfortunately, we can at this point of time only give a theoretical
calculation instead of actual measurements due to the fact that Juropa was shut
down in the meantime, and using its successor Jureca we do not observe large
communication times. This is also due to the computational part of the code not
being optimized for this machine, yet.

In Table 8.4, the two-level method for configuration ID 5 required 2.09 sec-
onds to converge, of which 1.75 seconds were spent on the coarse grid, split into
1.26 seconds for allreduces and 0.49 seconds for all other operations. The results
shown in Table 8.4 were produced without making use of (8.1), thus the number
of coarse allreduces is twice the number of coarse operator applications. Theo-
retically, making use of (8.1) we would obtain 0.63 seconds for coarse allreduces,
1.12 seconds coarse grid time and 1.46 seconds solve time. Assuming that the
remaining 0.49 seconds on the coarse grid are mainly spent on coarse operator
applications, a polynomial of degree 49 would result in 0.03 seconds for coarse
allreduces and 0.61 seconds for other operations on the coarse grid, together 0.64
seconds which is a reduction of 43% on the coarse grid and 33% for the total
solve.

In a hypothetical extreme case where the time spent in a solve is composed
of 80% for coarse allreduces, 10% for the coarse operator and 10% for other
operations, i.e.,

τ = τcip + τcop + τother = 80% + 10% + 10% ,

applying a polynomial preconditioner of the same quality as we achieved for the
degree 49 would reduce the solve time to

τprec =
τcip
20

+
5τcop

4
+ τother = 26.5% .

Local Communication

Our collaborators from BMW-c [72] implemented a two-level method with GM-
RES as a smoother and optimized it for Juqueen at JSC, an IBM BlueGene/Q
system with a 5D torus network and 28,672 nodes, each node contains an IBM
PowerPC A2 processor with 16 1.6 GHz cores, i.e., a total of 458,752 cores. Up to
now, the BMW-c implementation is only used for the calculation of observables
where the same system is solved for many right hand sides, and setup time is
no bottleneck. Consequently, the interpolation is built using eigenvector approx-
imations. The communication bottleneck on this machine is the latency of the
nearest neighbor communication on the coarse grid when using a large number of
cores rather than the global communication on this grid. This is due to the fact
that the number of coarse lattice sites approaches the minimal number supported.
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To overcome this in observable calculation, the solver has been implemented as
a block solver for many right hand sides. A chosen amount of right hand sides,
typically 12, is solved at the same time and instead of communicating ghost cells
for each vector one after the other in a matrix-vector multiplication, ghost cells
for the same directions are bundled and communicated together. Naturally the
all-to-all communications are blocked in a similar fashion.

1 right hand side 12 right hand sides

coarse operator coarse nearest coarse operator coarse nearest

cores solve time time neighbor comm solve time time neighbor

32,768 0.317s 0.0458s 0.141s 1.35s 0.446s 0.136s

16,384 0.401s 0.0515s 0.145s 2.33s 0.629s 0.212s

8,192 0.647s 0.103s 0.150s 4.35s 1.08s 0.247s

4,196 1.42s 0.335s 0.180s 9.04s 2.53s 0.367s

Table 8.7: Comparison of the BMW-c implementation for 1 and 12 right hand
sides on configuration ID 6, 5 iterations of GMRES as a smoother, 24 iterations of
GMRES as a coarse grid solver, 10−7 relative residual decrease for the outer solver,
other parameters from Tables 8.1 and 8.2. Note that these numbers were obtained
from single runs and thus timings may be inaccurate, especially for larger numbers
of cores. We acknowledge [72] for the computation of these results.

Table 8.7 displays the strong scaling behavior of solve time, time spent in
applications of the coarse operator and time spent in nearest neighbor communi-
cation for 1 right hand side and for treating 12 right hand sides at once.

On the one hand, when doubling the number of cores in the 1 right hand
side case, the speed-up in solve time and coarse operator time almost stagnates.
The nearest neighbor communication remains almost constant, indicating that
it is dominated by the latency on the coarse grid. It dominates the time spent
on the coarsest grid when using 8,192 cores or more, and in fact it represents a
significant part of the solve time as well.

On the other hand, the 12 right hand sides case shows almost perfect strong
scaling for solve time and coarse operator time, and the time spent in nearest
neighbor communication is not significant anymore. We also note that solving
for 12 right hand sides in the shown cases always required less than 7 times the
solve time for 1 right hand side. This is due to the bundled communication but
also due to the fact that the code is vectorized over the right hand sides, i.e., low
level optimized for the case when using several right hand sides.

8.4.6 Low Level Optimization

In the lattice QCD community a lot of effort is put into porting code to different
platforms and its optimization. Based on our DD-αAMG implementation, an
optimized version has been developed for the Intel Xeon-Phi processor, it is pub-
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licly available [63]. In order to demonstrate the effects of low-level optimization
we re-integrated the vectorized modules from [63] into our code and established
a low effort SSE-optimization that already shows a decent improvement.

DD-αAMG SSE-optimized DD-αAMG

two levels setup time 666s 453s

solve time 101s 81.1s

solve iter 32 31

three levels setup time 562s 337s

solve time 44.7s 30.7s

solve iter 27 28

four levels setup time 594s 341s

solve time 42.2s 29.5s

solve iter 27 29

Table 8.8: Comparison of DD-αAMG and SSE-optimized DD-αAMG with two,
three and four levels on configuration ID 6 using 128 processes, parameters from
Tables 8.1 and 8.2.

In Table 8.8 we give numbers for the SSE-optimized version of our DD-αAMG
implementation. We did not spend much effort on optimizing the SAP smoother
on the fine grid, its optimization is rather difficult since the small 3-by-3 gauge
link matrices Uµ(x) on the fine grid are not suitable for the SSE-register length
(4 single precision values). However, the number of test vectors N` on each
level can be chosen such that the coupling matrices of size 2N` × 2N` as well as
the interpolation and restriction operators fit well to the register length. Thus,
optimization on the coarser levels is comparatively simple. The different degrees
of optimization are displayed in the results. For two levels we only observe a
reduction of 20% in solve time and 32% in setup time, whereas for three and
four levels we see a more substantial reduction of 30% in solve time and 40%
in setup time. The solver iterations of the optimized DD-αAMG code slightly
deviate from the non-optimized code due to two changes. First, we employed a
mixed precision FGMRES as the outer solver so that we could restrain ourselves
to SSE-optimize the double precision part. Second, the SSE-optimization requires
different data layouts. The different operation execution orderings ultimately
result in different round-off effects. Besides that we make use of the cheaper
matrix-vector multiplication described in Section 3.5 which results in different
execution orderings as well. The latter in combination with a mixed precision
Krylov solver is used in [75] as well.
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8.4.7 Comparison with Inexact Deflation with Inaccurate Pro-
jection

Recently the implementation of inexact deflation was upgraded within the open-
QCD code [76]. The new version of inexact deflation, termed “inexact deflation
with inaccurate projection” was inspired by our work published in [49] and is now
similar in spirit to algebraic multigrid. It differs from (two-level) DD-αAMG in
its construction of the interpolation and the coarse-level operator. In the inexact
deflation approach Γ5-symmetry is not preserved on the coarse level. Moreover,
in inexact deflation the multigrid principle is not applied recursively. Rather,
the coarse system is solved using an explicitly deflated GCR variant, where the
projected test vectors PHv1, . . . , P

HvN are used to deflate the coarse system,
cf. Section 5.1. We also implemented this for DD-αAMG but in terms of runtime
performance it did not pay off.

In order to account for this recent upgrade of the openQCD code, we compare
it with multilevel DD-αAMG. As the openQCD code3 uses open boundary condi-
tions in time direction we cannot directly use our set of configurations with this
code. Thus, we integrated the new modules containing the inexact deflation with
inaccurate projection method into the DD-HMC-code [75] and then compared
both methods.

three-level two-level inexact deflation inexact deflation

DD-αAMG DD-αAMG (DD-HMC-1.2.2) [75] with inaccurate projection [76]

test vectors N 20 20 20 32

setup iter 6 6 10 6

post-smoothing iter ν 1 1 5 5

setup time 562s 666s 681s 897s

solve iter 27 32 48 18

solve time 44.7s 101s 223s 96.6s

Table 8.9: Comparison using 128 processes (Table 8.2, configuration ID 6), pa-
rameters from Tables 8.1 and 8.2.

Table 8.9 shows that the solve times for inexact deflation with inaccurate pro-
jection for configuration ID 6 is 2.3 times less than without inaccurate projection,
and also slightly faster than two-level DD-αAMG. Due to the different approaches
in constructing prolongation operators, inexact deflation ends up with only half
as many variables and consequently a coarse-grid operator with four times fewer
nonzero entries (in a matrix-representation) if the same number of test vectors is
used. We found that the inexact deflation with inaccurate projection approach

3Version 1.2 of the openQCD code [76] supports only open boundary conditions but the later
version 1.4, that was published after the publication of these results, supports several types of
boundary conditions.
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works best if we use more test vectors than in the DD-αAMG setup, rather 30
instead of 20.

Even with the larger number of test vectors, the cost of one iteration on the
second level is smaller in inexact deflation with inaccurate projection. However,
in DD-αAMG the third level substantially lowers the overall amount of work
needed to solve the second level system which explains the superiority of three-
level DD-αAMG over all two-level methods.

Inexact deflation with inaccurate projection needs the largest setup time of
all approaches, while it is minimal for three-level DD-αAMG. The results for
the Γ5-preserving interpolation show that the recursive extension of DD-αAMG
works and, in particular, that the SAP smoother still works on coarse levels. It is
unclear whether this is also the case when Γ5-symmetry is not preserved on the
coarse level, so that a recursive extension of the inexact deflation with inaccurate
projection approach might not benefit as much from additional levels.
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Figure 8.9: Scaling with the bare mass m0 of inexact deflation and DD-αAMG
(Table 8.2, configuration ID 6) using 128 processes.

As the behavior of solvers approaching the critical mass is an important bench-
mark, we also compare the mass scaling of the inexact deflation with inaccurate
projection method with multilevel DD-αAMG. Figure 8.9 shows the scaling be-
havior for all the methods considered in Table 8.1 as a function of the bare mass
m0. Inexact deflation with inaccurate projection and two-level DD-αAMG show a
similar scaling behavior until mud. Beyond this mass, two-level DD-αAMG tends
to scale similarly to the ordinary inexact deflation approach. The upgrade of the
inexact deflation method to use inaccurate projection leads to a better scaling
behavior, which is similar to that of three-level DD-αAMG. Thus, the ability to
solve the coarse system inexactly and the ability to use more test vectors and still
having a cheap coarse-level operator can lead to a significantly different scaling
behavior. The overall best performance and scaling behavior is achieved by three-
level DD-αAMG, where the third level already pays off for heavier masses than
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md and is expected to pay off even more in the future when even larger lattices
will be used.

4 level 4 level

AMG DD-αAMG speed-up factor

smoother iter 6 1

setup iter 6 6

setup time 815s 541s 1.51

solve iter 23 27

solve time 60.6s 41.4s 1.46

total time 876s 582s 1.51

Table 8.10: Comparison of four-level DD-αAMG with four-level AMG (Table 8.2,
configuration ID 6), parameters from Table 7.2, 128 cores.

8.4.8 GMRES/GCR Smoothing and “AMG”

In Section 7.2.5 we compared AMG (cf. Chapter 6) and DD-αAMG for the
two-level case. The “emulated” tests in a common framework showed the SAP
smoother being 1.5 times faster than GMRES for an identical outer iteration
count for both methods. Due to a costly coarse grid correction, this resulted in
an overall speed-up of just 1.2 for a DD-αAMG solve over an AMG solve.

However, when we move to more than two levels, the algorithm spends a larger
percentage of its time smoothing on the various levels so that the advantage of
SAP over GMRES should become more visible. Table 8.10 confirms this. In this
setting, employing a low degree of parallelism, the four-level method performed
best with respect to solve time for both smoothers, SAP and GMRES. We achieve
the target speed-up factor of 1.5 (cf. smoother time in Table 7.11 in Section 7.2.5)
in setup and solve.



Chapter 9

Preconditioning the Overlap Dirac
Operator

When discretizing the continuum Dirac equation

(D +m)ψ = η (9.1)

it is desirable to preserve four properties of D: local coupling, invariance un-
der global gauge transformations, chiral symmetry [10, 82], and no species dou-
bling [107, 115]. It was proven in [89] that a discretization of D cannot fulfill all
four properties at the same time. This result is known as the “Nielsen-Ninomiya
no-go theorem”. Consequently, there exists a variety of different discretizations
preserving different properties.

The overlap operator is a discretization of D that respects chiral symmetry,
an important property of the continuum operator which is violated by the Wilson
discretization. Chiral symmetry is of vital importance for some physical observ-
ables like hadron spectra in the presence of magnetic fields, for example. From a
practical point of view, the overlap operator has the disadvantage that its com-
putational cost can be two orders of magnitude larger than when using standard
discretizations, the reason being that the operator contains a matrix function
which has to be evaluated iteratively when applying the operator to a vector.

In this chapter we use DD-αAMG to solve systems with the overlap opera-
tor. Surely, DD-αAMG cannot be transferred and applied directly. The basic
idea is to use a standard Wilson discretization of the Dirac equation to form a
preconditioner for the overlap operator. This may be regarded as a variant of
the fictitious (or auxiliary) space preconditioning technique [85] that has been
used for developing and analyzing multilevel preconditioners for various noncon-
forming finite element approximations of PDEs; cf. [93, 116]. In this context,
one works with a mapping from the original space to a fictitious space, yielding
an equivalent problem that is easier to solve. Preconditioning is then done by
(approximately) solving this equivalent problem. The convergence properties of
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auxiliary space preconditioning depend on the choice of the fictitious space, and
its computational efficiency depends, in addition, on the efficiency of the solver
used in that space; cf. [85].

For the overlap operator in lattice QCD, choosing its kernel—the Wilson-
Dirac operator—as the auxiliary space preconditioner is facilitated by the fact
that both operators are defined on the same Hilbert space. In this way, the pre-
conditioner for the former can be constructed using DD-αAMG for the latter on
the same finite dimensional lattice. We note that similar approaches are possible
for other QCD discretizations. For example, the direct and strong coupling of
the Wilson blocks used in the 5d domain wall operator [69] suggest that a similar
Wilson auxiliary-space preconditioner (with a more general mapping) may also
be effective.

We demonstrate that the technique we develop in this chapter is able to re-
duce the computational cost for solving systems with the overlap operator sub-
stantially, reaching speed-ups of a factor of 10 or more in realistic settings. The
preconditioning technique thus contributes to making the overlap operator more
tractable in lattice QCD calculations. The results of this chapter were published
in [24].

9.1 The Overlap Discretization

Definition 9.1
For two quark fields ϕ and ψ the Dirac fermion action of mass m in the continuum
is given as

S =
∫
R4 ϕ

H(x) (D +m)ψ(x) dx

=
∫
R4 ϕ

H(x)
(∑3

µ=0 γµ ⊗ (∂µ + Aµ(x)) +m
)
ψ(x) dx

where D denotes the continuum Dirac operator from (2.2). For the massless case
m = 0, chiral symmetry is the invariance of S under transformations

ϕc(x)H → ϕc(x)He−iαγ5 and ψc(x)→ e−iαγ5ψc(x) (9.2)

where α ∈ R and ψc(x) denotes the spin degrees of freedom of ψ(x) for a fixed
color index c (cf. Section 2.1).

Note that form = 0 the invariance of S holds due to γ5γµ = −γµγ5 (cf. Lemma 2.10)
and

ϕc(x)He−iαγ5γµe
−iαγ5ψc(x)

= ϕc(x)He−iαγ5γµ

(∑∞
k=0

(−iαγ5)k

k!

)
ψc(x)

= ϕc(x)He−iαγ5
(∑∞

k=0
(−iαγ5)k(−1)k

k!

)
γµψc(x)

= ϕc(x)He−iαγ5eiαγ5γµψc(x)

= ϕc(x)Hγµψc(x) .
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This also implies that (9.2) is equivalent to that D anti-commutes with γ5⊗I3,
i.e.,

(γ5 ⊗ I3)D +D(γ5 ⊗ I3) = 0

in a sense that
(γ5 ⊗ I3)Dψ(x) +D(γ5 ⊗ I3)ψ(x) = 0

for all matter fields ψ and space-time points x. For further details about chiral
symmetry, we refer to [10,82]. As was pointed out in [77], a lattice discretization
D of D which obeys the Ginsparg-Wilson relation [53]

Γ5D +DΓ5 = aDΓ5D (9.3)

satisfies an appropriate lattice variant of chiral symmetry. It has long been un-
known whether such a discretization exists until Neuberger constructed it in [86].
For convenience, the essentials of the arguments in [86] are summarized in the
following proposition and its proof. As a shorthand we define

DW (m) := DW +mI .

Proposition 9.2
Neuberger’s overlap operator

DN =
1

a

(
ρI +DW (mker

0 )
(
DW (mker

0 )H(DW (mker
0 )
)− 1

2

)
fulfills (9.3) for ρ = 1, has local discretization error O(a), and is a stable dis-
cretization provided −2 < mker

0 < 0.

Proof. We write DL for the restriction of the continuum Dirac operator D to the
lattice L, i.e., DL is the finite dimensional operator which takes the same values
as D at the points from L. The fact that the Wilson-Dirac operator has first
order discretization error can then be expressed as4

DL = DW (0) +O(a),

implying

DL +
m0

a
I = DW (m0) +O(a) (9.4)

for any mass parameter m0.
To construct DN we first note that any operator D̂ that is Γ5-symmetric and

fulfills (9.3) can be parametrized by

aD̂ = I + Γ5S, (9.5)

4For simplicity, we consider here the “naive” limit a → 0. In the full quantum theory one
has DL = DW (m0(a)) +O(a) with the mass m0(a) of order 1/ log(a); see [82].
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with SH = S and S2 = I. Both conditions are fulfilled for

S = Γ5DW (mker
0 )
(
DW (mker

0 )H(DW (mker
0 )
)− 1

2
, −mker

0 ∈ R \ spec(DW (0)).

Using (9.4) we obtain

S = Γ5

(
DL +

mker
0

a
I +O(a)

)((
DL +

mker
0

a
I +O(a)

)H(DL +
mker

0

a
I +O(a)

))− 1
2
.

Since D is anti-self-adjoint, we have DHL = −DL and thus((
DL +

mker
0

a
I +O(a)

)H(DL +
mker

0

a
I +O(a)

))− 1
2

= a
|mker

0 |

((
a

mker
0
DL + I +O(a2)

)H( a
mker

0
DL + I +O(a2)

))− 1
2

= a
|mker

0 |
I +O(a3),

which in turn yields

S = Γ5

( a

|mker
0 |
DL + sign(mker

0 )I +O(a2)
)
. (9.6)

Combining (9.6) with (9.5) we find

aD̂ = I +
a

|mker
0 |
DL + sign(mker

0 )I +O(a2) ,

so that for mker
0 < 0 we have

D̂ =
1

|mker
0 |
DL +O(a).

This shows that D̂ is a first order discretization of D. For it to be stable one has
to choose −2 < mker

0 < 0, a result for which we do not reproduce a proof here,
referring to [86] instead.

Note that DN = D̂ + ρ−1
a
I, so ρ − 1 sets the quark mass (see (9.1)) up to a

re-normalization factor.
Using the Wilson-Dirac operator as the kernel in the overlap operator is the

most popular choice, even though other kernel operators have been investigated
as well [31]. Neuberger’s overlap operator has emerged as a popular scheme in
lattice QCD over the years. In the literature one often writes

DN = ρI + Γ5sign
(
Γ5DW (mker

0 )
)

(9.7)

with sign denoting the matrix extension of the sign function

sign(z) =

{
+1 if Re(z) > 0

−1 if Re(z) < 0
.
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We note that sign(z) is undefined if Re(z) = 0. Since Γ5DW (m0) is hermitian,
see Section 2.2, the matrix sign(Γ5DW (mker

0 )) is hermitian as well. Since Γ2
5 = I,

we also see that the overlap operator satisfies the same Γ5-symmetry as its kernel
DW , (

Γ5DN

)H
= Γ5DN . (9.8)

We end this section with a characterization of the spectrum of the overlap
operator.

Lemma 9.3
The overlap operator DN is normal. Its spectrum is symmetric to the real axis
and part of the circle with midpoint ρ and radius 1, i.e.,

λ ∈ spec
(
DN

)
⇒ λ ∈ spec

(
DN

)
and |λ− ρ| = 1.

Proof. We first remark that the sign function is its own inverse and that the oper-
ator Γ5DW (m0) is hermitian (cf. Lemma 2.10). This implies that sign(Γ5DW (m0))
is its own inverse and hermitian, thus unitary. Its product with the unitary ma-
trix Γ5 is unitary as well, implying that all its eigenvalues have modulus one. As
a unitary matrix, this product is also normal. The term ρI in (9.7) preserves
normality and shifts the eigenvalues by ρ.

It remains to show that spec(DN) is symmetric with respect to the real axis,
which follows from the Γ5-symmetry (9.8) of the overlap operator in the same
manner as in Lemma 2.14.

For the purposes of illustration, Figure 9.1 gives the spectra of the Wilson-
Dirac operator and the overlap operator for a 44 lattice. There, as everywhere
else from now on, we set a = 1 which is no restriction since a−1 enters DW simply
as a linear scaling. For this small configuration all 3,072 eigenvalues and the sign
function can be computed with standard methods for full matrices.

In the previous chapters m0 was chosen as a negative number such that the
spectrum of DW lies in the right half plane with some eigenvalues being close to
the imaginary axis. The choice for m0 when DW (m0) appears in the kernel of the
sign function is different (namely smaller, see Proposition 9.2).

9.2 A Preconditioner Based on the Wilson-Dirac
Operator

The spectral gaps to be observed as four disks with relatively few eigenvalues in
the left part of Figure 9.1 are typical for the spectrum of the Wilson-Dirac oper-
ator and become even more pronounced as lattice sizes are increased or smearing
(cf. Section 2.3) is applied. In practice, the mass parameter m0 that appears



112 Preconditioning the Overlap Dirac Operator

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 1 2 3 4 5 6 7

im
ag

in
ar

y
ax

is

real axis

spec(DW )

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0 1 2

real axis

spec(DN)

Figure 9.1: Typical spectra of the Wilson-Dirac and the overlap operator for a
44 lattice.

in the definition of the kernel DW (mker
0 ) of the overlap operator is chosen such

that the origin lies in the middle of the leftmost of these disks. For this choice of
mker

0 we now motivate why the Wilson-Dirac operator DW (mprec
0 ) with adequately

chosen mass mprec
0 provides a good preconditioner for the overlap operator.

To do so we investigate the connection of the spectrum of the overlap operator
and the Wilson-Dirac operator in the special case that DW (0) is normal. This
means that DW (0) is unitarily diagonalizable with possibly complex eigenvalues,
i.e.,

DW (0) = XΛXH , with Λ diagonal and X unitary. (9.9)

Trivially, then, DW (m0) is normal for all mass parameters m0 and

DW (m0) = X(Λ +m0I)XH . (9.10)

To formulate the resulting non-trivial relation between the eigenvalues of DN

and its kernel DW (mker
0 ) in the theorem below we use the notation csign(z) for a

complex number z to denote its “complex” sign, i.e.,

csign(z) = z/|z| for z 6= 0.

The theorem works with the singular value decomposition A = UΣV H of a ma-
trix A in which U and V are orthonormal, containing the left and right singular
vectors as their columns, respectively, and Σ is diagonal with non-negative diag-
onal elements, the singular values. The singular value decomposition is unique
up to choices for the orthonormal basis of singular vectors belonging to the same
singular value, i.e., up to transformations U → UQ, V → V Q with Q a unitary
matrix commuting with Σ; cf. [56].

Theorem 9.4
Assume that DW (0) is normal, so that DW (m) is normal as well for all m ∈ C,
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and let X and Λ be from (9.9). Then we have

DN = X
(
ρI + csign(Λ +m0I)

)
XH . (9.11)

Proof. Let

Γ5DW (m) = Wm∆mW
H
m with ∆m diagonal,Wm unitary, (9.12)

be the eigendecomposition of the hermitian matrix Γ5DW (m). We have two
different representations for the singular value decomposition of Γ5DW (m),

Γ5DW (m) =
(
Γ5Xcsign(Λ +mI)

)
· |Λ +mI| ·XH (from (9.10)) ,

Γ5DW (m) =
(
Wmsign(∆m)

)
· |∆m| ·WH

m (from (9.12)) .

Thus, there exists a unitary matrix Q such that

Wm = XQ and Wmsign(∆m) = Γ5Xcsign(Λ +mI)Q. (9.13)

Using the definition of DN in (9.7), the relations (9.13) give

DN = ρI + Γ5sign(Γ5Dm)

= ρI + Γ5Wmsign(∆m)WH
m

= ρI + Γ5Γ5Xcsign(Λ +mI)Q(V Q)X

= X(ρI + csign(Λ +mI)XH .

We remark that as an implicit consequence of the proof above the eigenvectors
of Γ5DW (m) = Γ5DW (0) +mΓ5 do not depend on m. Thus, if DW is normal, Γ5

and Γ5DW admit a basis of common eigenvectors.
The result in (9.11) implies that DN = ρI + Γ5sign(Γ5DW (mker

0 )) and DW (0)
share the same eigenvectors and that

spec(DN) = {ρ+ csign(λ+mker
0 ), λ ∈ spec(DW (0))}.

Taking DW (mprec
0 ) as a preconditioner for DN , we would like eigenvalues of DN

which are small in modulus to be mapped to eigenvalues close to 1 in the pre-
conditioned matrix DNDW (mprec

0 )−1. Since DW (mprec
0 ) and DN share the same

eigenvectors, the spectrum of the preconditioned matrix is

spec
(
DNDW (mprec

0 )−1
)

=
{ρ+ csign(λ+mker

0 )

λ+mprec
0

, λ ∈ spec(DW (0)
}
.

For ω > 0 and mprec
0 = ωρ+mker

0 , the mapping

g : C→ C, z 7→ ρ+ csign(z +mker
0 )

z +mprec
0
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Figure 9.2: Spectra for a configuration of size 44.

sends C(−mker
0 , ω), the circle with center −mker

0 and radius ω, to one single value
1
ω

. We thus expect DW (mprec
0 ) to be a good preconditioner if we choose mprec

0 in
such a manner that the small eigenvalues of DW (mprec

0 ) lie close to C(−mker
0 , ω).

Let σmin > 0 denote the smallest real part of all eigenvalues of DW (0). Assuming
for the moment that σmin is actually an eigenvalue, this eigenvalue will lie exactly
on C(−mker

0 , ω) if we have

ω = ωdef := −mker
0 − σmin and thus mprec

0 = mdef
0 := ωdef ρ+mker

0 . (9.14)

For physically relevant parameters, ωdef is close to 1. We will take mdef
0 from

(9.14) as our default choice for the mass parameter when preconditioning with
the Wilson-Dirac operator, although a slightly larger value for ω might appear
adequate in situations where the eigenvalues with smallest real part come as a
complex conjugate pair with nonzero imaginary part.

Although DW (0) is non-normal in physically relevant situations, we expect
the above reasoning to also lead to an effective Wilson-Dirac preconditioner in
these settings, and particularly so when the deviation of DW (0) from normality
becomes small. Figure 9.2 shows the spectrum for the preconditioned matrix
with the choice (9.14) for mprec

0 for the same 44 configuration as in Figure 9.1.
The matrices in these tests are not normal, nonetheless the spectrum of the
preconditioned matrix tends to concentrate around 0.7.

In the normal case, the singular values are the absolute values of the eigen-
values, and the singular vectors are intimately related to the eigenvectors. This
relation was crucial to the proof of Theorem 9.4. In the non-normal case, the
relation (9.11), which uses the eigenvectors of DW (0), does not hold. For the sake
of completeness we give, for the general, non-normal case, the following result
which links the overlap operator to the singular value decomposition of its kernel
DW (m).
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Lemma 9.5
Let Γ5DW (m) = Wm∆mW

H
m denote an eigendecomposition of the hermitian ma-

trix Γ5DW (m), where ∆m is real and diagonal and Wm is unitary. Then

(i) A singular value decomposition of DW (m) is given as

DW (m) = UmΣmV
H
m with Vm = Wm,Σm = |∆m|, Um = Γ5Wmsign(∆m).

(ii) The overlap operator with kernel DW (m) is given as

DN = ρI + Γ5sign
(
Γ5DW (m)

)
= ρI + UmV

H
m .

Proof. Since Γ−1
5 = Γ5, we have the factorization DW (m) = Γ5Wm∆mW

H
m =

Γ5Wmsign(∆m)|∆m|WH
m , in which Γ5Wmsign(∆m) and Wm are unitary and |∆m|

is diagonal and non-negative. This proves (i). To show (ii), just observe that for
the hermitian matrix Γ5DW (m) we have sign(Γ5DW (m)) = Wmsign(∆m)WH

m and
use (i).

9.3 Numerical Results

In this section we report numerical results obtained on relatively large config-
urations used in current simulations involving the overlap operator, detailed in
Table 9.1. For studying the influence of the deviation of normality, we use config-
uration ID 9 which is available for different numbers s = 0, . . . , 6 of stout smearing
steps to the gauge field (see Section 2.3 and [83]). Note that s influences σmin,
the smallest real part of all eigenvalues of DW (0). The given choice for mker

0 as a
function of σmin, used in DN = ρI+Γ5sign(Γ5DW (mker

0 )) places the middle of the
first ‘hole’ in the spectrum of DW (mker

0 ) to be at the origin. The configuration
with ID 10 was obtained using 3 steps of HEX smearing, its results were published
in [19]. The value mker

0 = −1.3 is the one used in the simulation. The middle of
the first ‘hole’ in DW (mker

0 ) is thus close to but not exactly at the origin. To be

ID lattice size kernel mass default smearing provided by

Nt ×N3
s mker

0 overlap mass µ s

9 32× 323 −1− 3
4
σmin 0.0150000 {0, . . . , 6}-stout [83] generated from [34,35]

10 32× 323 −1.3 0.0135778 3HEX [28] BMW-c [19]

Table 9.1: Configurations used together with their parameters. See the references
for details about their generation.
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in line with the conventions from [17], e.g., we express the parameter ρ ≥ 1 used
in the overlap operator DN as

ρ =
−µ/2 +mker

0

µ/2 +mker
0

,

where µ > 0 is yet another, “overlap” mass parameter. In our experiments, we
will frequently consider a whole range for µ rather than just the default value from
Table 9.1. The default value for µ is chosen such that it fits to other physically
interpretable properties of the respective configurations like, e.g., the pion mass
mπ. For both sets of configurations used, mπ is approximately twice as large as
the value observed in nature, and the ultimate goal is to drive mπ to its physical
value, which very substantially increases the cost for generating the respective
configurations. We would then use smaller values for µ, and the results of our
experiments for such smaller µ hint at how the preconditioning will perform in
future simulations at physical parameter values. Note that smaller values for µ
make ρ become closer to 1, so DN becomes more ill-conditioned.

All results were obtained on Juropa [66] at JSC. In the following experiments
we always use 1,024 cores. In all tests, our code ran with roughly 2 Gflop/s per
core which accounts to 8 − 9% peak performance. The multigrid solver used to
precondition with DW (mprec

0 ) (see below) performs at roughly 10% peak, i.e., 2.4
Gflop/s per core.

9.3.1 Accuracy of the Preconditioner and Influence of mprec
0

In a first series of experiments we solve the system

DNψ = η (9.15)

on the one hand without any preconditioning, using GMRES(100), i.e., restarted
GMRES with a cycle length of 100. On the other hand, we solve the same system
with GMRES(100) using D−1

W as a (right) preconditioner. To solve the respective
linear systems with DW we use DD-αAMG. Any other efficient solver for Wilson-
Dirac equations as, e.g., the “AMG” solver developed in [5, 23, 92] and discussed
in Chapter 6, could be used as well. In our approach, preconditioning is done by
iterating with DD-αAMG until the relative residual is below a prescribed bound
εprec. The DD-αAMG setup has to be done only once for a given Wilson-Dirac
operator DW , so its cost becomes negligible when using DD-αAMG as a precon-
ditioner in a significant number of FGMRES iterations. In all our experiments,
the setup never exceeded 2% of the total execution time, so we do not report
timings for the setup. The restart length for FGMRES is again 100.

Figure 9.3 presents results for configuration ID 9 with s = 3 stout smearing
steps and the default overlap mass µ from Table 9.1. We scanned the values for
mprec

0 in steps of 0.01 and report the number of iterations necessary to reduce the
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Figure 9.3: Preconditioner efficiency as a function of mprec
0 for two accuracies

for the DD-αAMG solver (configuration ID 9, s = 3). Top: number of iterations,
bottom: execution times.

initial residual by a factor of 10−8 for each of these values. We chose two different
values εprec for the residual reduction required in the DD-αAMG iteration in the
preconditioning. The choice εprec = 10−8 asks for a relatively accurate solution
of the systems with DW (mprec

0 ), whereas the choice εprec = 10−1 requires an only
quite low accuracy and thus only a few iterations of DD-αAMG. The upper
part of Figure 9.3 shows that there is a dependence of the number of FGMRES
iterations on mprec

0 , while at the same time there is a fairly large interval around
the optimal value for mprec

0 in which the number of iterations required is not more
than 20% larger than the minimum. These observations hold for both accuracy
requirements for the DD-αAMG solver, εprec = 10−8 and εprec = 10−1. The
number of iterations needed without preconditioning was 973.

The lower part of Figure 9.3 shows that similar observations hold for the
execution times. However, the smaller iteration numbers obtained with εprec =
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10−8 do not translate into smaller execution times, since the time for each DD-
αAMG solve in the preconditioning is substantially higher as for εprec = 10−1.
This turned out to hold in all our experiments, so from now on we invariably
report results for εprec = 10−1. We also observe that the value of mdef

0 from (9.14)
lies within an interval in which iteration numbers and execution times (for both
values for εprec) are quite close to the optimum. The execution time without
preconditioning was 294 seconds.

Figure 9.4 reports results which show that the default value mdef
0 is a fairly

good choice in general. For two different configurations (no smearing and 3 steps
of stout smearing) and a whole range of overlap masses µ, the plots at the top
give the relative difference δm0 = (mopt

0 −mdef
0 )/mdef

0 of the optimal value mopt
0

for mprec
0 and its default value from (9.14) as well as the similarly defined relative

difference δiter of the corresponding iteration numbers. These results show that
the iteration count for the default value mdef

0 is never more than 15% off the
best possible iteration count. The plot at the bottom backs these findings. We
further scanned a whole range of smearing steps s at the default value for µ from
Table 9.1, and the number of iterations with mdef

0 is never more than 5% off the
optimal value. The large values for δm0 in the top right plot for µ = 2−3 are to
be attributed to the fact that the denominator in the definition of δm0, i.e., mdef

0

is almost zero in this case.
These results suggest that (9.14) is indeed a good choice for mprec

0 . However,
σmin needed to compute mdef

0 from (9.14) is not necessarily known a priori, and
it may be more efficient to approximate the optimal value for m0 “on the fly” by
changing its value from one preconditioned FGMRES iteration to the next.

In order to minimize the influence of the choice of mprec
0 on the aspects dis-

cussed in the following sections we will always use the optimal mprec
0 , computed

to a precision of .01 by scanning the range [−σ̃min, 0], where σ̃min is a rough guess
at σmin which fulfills σ̃min > σmin. This guess can be easily obtained by a fixed
number of power iterations to get an approximation for the largest real part σ̃max

of an eigenvalue of D and then using the symmetry of the spectrum to obtain
σ̃min by rounding 8− σ̃max to the first digit.
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9.3.2 Quality and Cost of the Preconditioner

We proceed to compare in more detail preconditioned FGMRES(100) with un-
preconditioned GMRES(100) in terms of the iteration count. As before, the
iterations were stopped when the initial residual was reduced by a factor of at
least 10−8.
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Figure 9.5: Comparison of preconditioned FGMRES(100) with unpreconditioned
GMRES(100) (configuration ID 9). Left: dependence on the number of stout
smearing steps s for default value for µ, cf. Table 9.1. Right: dependence on the
overlap mass µ for s = 3.

Figure 9.5 gives this comparison, once as a function of the non-normality of
the configuration, i.e., the number s of stout smearing steps applied, and once
as a function of the overlap mass µ. We see that for the default value of µ from
Table 9.1, the quality of the preconditioner increases with the number s of stout
smearing steps, ranging from a factor of approximately 5 for s = 0 over 12 for
s = 3 up to 25 for s = 6. We also see that the quality of the preconditioner
increases as µ becomes smaller, i.e., when DN becomes more ill-conditioned.

From the practical side, a comparison of the execution times is more important
than comparing iteration numbers. Before giving timings, we have to discuss
relevant aspects of the implementation in some detail.

Each iteration in GMRES or preconditioned FGMRES for (9.15) requires one
matrix-vector multiplication with DN = ρI + Γ5sign(Γ5DW ). The matrix DN is
not given explicitly as it would be a full, very large matrix despite Γ5DW being
sparse. Therefore, a matrix-vector multiplication DNχ is obtained via an addi-
tional “sign function iteration” which approximates sign(Γ5DW )χ as part of the
computation of DNχ. For this sign function iteration we use the restarted Krylov
subspace method proposed recently in [45, 46] which allows for thick restarts of
the Arnoldi process and has proven to be among the most efficient methods to
approximate sign(Γ5DW )χ. The sign function iteration then still represents the
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by far most expensive part of the overall computation.
A first approach to reduce this cost, see [30], is to use relaxation in the sense

that one lowers the (relative) accuracy εsign of the approximation as the outer
(F)GMRES iteration proceeds. The theoretical analysis of inexact Krylov sub-
space methods in [103,112] shows that the relative accuracy of the approximation
to the matrix-vector product at iteration k should be in the order of εouter/‖rk‖
(with rk the (F)GMRES residual at iteration k) to achieve that at the end of
the (F)GMRES iteration the initial residual be decreased by a factor of εouter .
We used this relaxation strategy in our experiments with an additional factor of
10−2, i.e., we assert εsign < εouter ·10−2/‖rk‖ in order to prevent the iteration from
stagnating when rk approaches εouter .

A second commonly used approach, see e.g. [42, 54, 111], to reduce the cost
of the sign function iteration is deflation. In this approach the k smallest in
modulus eigenvalues λ1, . . . , λk and their normalized eigenvectors ξ1, . . . , ξk are
precomputed once. With Ξ = [ξ1| . . . |ξk] and Π = I − ΞΞH the orthogonal
projector on the complement of these eigenvectors, sign(Γ5DW )χ is given as

sign(Γ5DW )χ =
k∑
i=1

sign(λi)(ξ
H
i χ)ξi + sign(Γ5DW )Πχ.

The first term on the right side can be computed explicitly and the second term is
now easier to approximate with the sign function iteration, since the k eigenvalues
closest to the singularity of sign(·) are effectively eliminated via Π.

parameter notation default

(F)GMRESdp required reduction of initial residual εouter 10−8

relaxation strategy εsign
εouter
‖rk‖
· 10−2

restart length for (F)GMRES mrestart 100

DD-αAMGsp required reduction of initial residual εprec 10−1

number of levels 2

Table 9.2: Parameters for the overlap solver. Here, dp denotes double precision
and sp single precision.

Table 9.2 summarizes the default settings used for the results reported in
Figure 9.6. The superscripts dp and sp indicate that we perform the precon-
ditioning in single precision arithmetic, while the multiplication with DN within
the (F)GMRES iteration is done in double precision arithmetic, similarly to what
has been done in the Chapters 7 and 8.

For the results reported in Figure 9.6 we tried to keep the cost for a matrix-
vector multiplication with DN independent of the number of smoothing steps
which were applied to the configuration. To do so, we used the 100th smallest
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Figure 9.6: Comparison of execution times for preconditioned FGMRES and
GMRES. Left: for 0 to 4 steps of stout smearing (configuration ID 9, default value
for µ from Table 9.1), right: different overlap masses µ for configuration ID 9 and
3-step stout smearing.

eigenvalue of Γ5DW for s = 0 as a threshold, and deflated all eigenpairs with
eigenvalues below this threshold for the configurations with s > 0. To be specific,
for s = 1, 2 and 3 we deflated the smallest 17, 5 and 1 eigenpairs, respectively.
For s = 4 none of the eigenvalues were below the threshold. In [41] it was already
observed that smearing lowers the condition number of the kernel operator and
thus cheapens the matrix-vector multiplication with DN .

The left plot in Figure 9.6 shows that, at fixed default overlap mass µ, we
gain a factor of 4 to 10 in execution time using the preconditioner. The quality
of the preconditioning improves with the number of smearing steps. The right
part of Figure 9.6 shows that for smaller values of µ we can expect an even larger
reduction of the execution time. For the smallest value considered, µ = 2−8, which
is realistic for future lattice simulations, the improvement due to preconditioning
is a factor of about 25.

9.3.3 Comparison of Optimized Solvers

Physics production codes for simulations with the overlap operator use recursive
preconditioning as an additional technique to further reduce the cost for the
matrix-vector multiplication (MVM) with DN ; cf. [30]. This means that the
FGMRES iteration is preconditioned by using an additional “inner” iteration to
approximately invert DN , this inner iteration being itself again FGMRES. The
point is that we may require only low accuracy for this inner iteration, implying
that all MVMs with sign(Γ5DW ) in the inner iteration may be approximated to
low accuracy and computed in single precision, only.

In this framework, we can apply the DD-αAMG preconditioner, too, but this
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parameter notation default

inner FGMRESsp required reduction of initial residual εprecinner 10−2

(with preconditioning)

required reduction of initial residual εinner 10−1

(without preconditioning)

relaxation strategy
εinner ,ε

prec
inner

‖rk‖
· 10−2

restart length minner
restart 100

Table 9.3: Parameters for the inner iteration.

time as a preconditioner for the inner FGMRES iteration. In this manner we
keep the advantage of needing only a low accuracy approximation to the MVM
with sign(Γ5DW ), while at the same time reducing the number of inner iterations
and thus the (low accuracy) evaluations of MVMs with sign(Γ5DW ).

We denote εinner the residual reduction we ask for in the unpreconditioned
inner iteration and εprecinner the corresponding accuracy required when using the
DD-αAMG iteration as a preconditioner. The inner iteration converges much
faster when we use preconditioning. More accurate solutions in the inner itera-
tion reduce the number of outer iterations and thus the number of costly high
precision MVMs with sign(Γ5DW ). When preconditioning is used for the inner
iteration, requiring a higher accuracy in the inner iteration comes at relatively
low additional cost. It is therefore advantageous to choose εprecinner smaller than
εinner . As an addition to Table 9.2, Table 9.3 lists the default values we used
for the inner iteration and which were found to be fairly optimal via numerical
testing.

Figure 9.7 shows results for the solvers optimized in this way. We consider
different sizes for the deflation subspace, i.e., the number of smallest eigen-

10

100

1000

Conf ID 20 1 2 3 4 5 6

so
lv

e
ti

m
e

(i
n

se
co

n
d
s)

number of stout smearing iterations

GMRESR with 100 deflated eigenpairs
GMRESR with 20 deflated eigenpairs

GMRESR
FGMRESR with 100 deflated eigenpairs
FGMRESR with 20 deflated eigenpairs

FGMRESR

10

100

1000

2−82−72−62−52−42−32−2

so
lv

e
ti

m
e

(i
n

se
co

n
d
s)

overlap mass µ

GMRESR
FGMRESR+DD-αAMG

Figure 9.7: Comparison of GMRESR with FGMRESR with different deflation
spaces (configuration IDs 9 and 10 with 1,024 processes).



124 Preconditioning the Overlap Dirac Operator

values which we deflate explicitly. The computation of these eigenvalues (via
PARPACK [106]) is costly, so that deflating a larger number of eigenvalues is
efficient only if several system solves with the same overlap operator are to be
performed. The figure shows that, irrespectively from the number of deflated
eigenvalues, the preconditioned recursive method outperforms the unprecondi-
tioned method in a similar way it did in the non-recursive case considered before.
When more smearing steps are applied, the improvement grows; improvement
factors reach 10 or more. The figure also shows that in the case that we have
to solve only one or two linear systems with the same matrix, it is not advisable
to use deflation at all, the cost for the computation of the eigenvalues being too
large. We attribute this finding at least partly to the fact that the thick restart
method used to approximate the sign function from [46] is particularly efficient,
here. While all other data in Figure 9.7 was obtained for configuration ID 9, the
rightmost data on the left plot refers to configuration ID 10. We see a similar high
efficiency of our preconditioner as we did for configuration ID 9 with 3 smearing
steps, an observation consistent with the fact that configuration ID 10 was also
obtained using 3 steps of (HEX) smearing, see Table 9.1.



Conclusion & Outlook

The developed DD-αAMG method, combining domain decomposition techniques
and algebraic multigrid, shows great potential to speed-up calculations in lattice
QCD. For small quark masses and large lattice sizes our method outperforms
conventional Krylov subspace methods like odd-even preconditioned mixed preci-
sion BiCGStab. It also outperforms the inexact deflation method for many right
hand sides as well as for a single right hand side. This result is mainly due to
the introduction of the highly parallel domain decomposition smoother, which
improves upon the point smoother (GCR) used in the AMG method (Chapter 6)
and the efficient setup procedure in our algebraic multigrid method. Based on
the results for two-level DD-αAMG published in a preprint of [49], the inexact
deflation method has been upgraded in the spirit of DD-αAMG.

Additional improvements can be achieved by a recursive extension of the two-
grid method to a true multigrid method. We were able to reduce the time spent
in the coarse grid solves. While it made up approximately 75% of the total
time in the two-grid method, it is reduced to about 31% by using additional
levels, yielding a speed-up factor of up to 2.5, particularly when using a moderate
number of processors. Another factor of 1.5 can be obtained by machine specific
SSE optimization; for longer registers and other architectures, the gain might be
even bigger.

Furthermore, the fast DD-αAMG solvers for the Wilson-Dirac operator DW

now allow to efficiently use this operator as a preconditioner for the overlap
operator. We presented a thorough analysis of this auxiliary space preconditioner
in the case that DW is normal. This is not the case in practice, but the trend in
current simulations in lattice QCD is to reduce the non-normality of DW as one
approaches the continuum limit and smearing techniques are applied. For a state-
of-the-art parallel implementation and for physically relevant configurations and
parameters we showed that the improvements in time to solution gained through
the preconditioning are at least a factor of 4 and, typically, more than 10.

Besides from working on the integration of our algorithm into the production
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codes of our collaborators within the SFB/TRR55 “Hadron Physics from Lat-
tice QCD”, we plan to incorporate AVX optimization for recent machines. Our
collaborators from Regensburg already released an optimized DD-αAMG solver
for Intel KNC technology in [63], that is supplied with an optimized version of
the implementation of our coarse grid correction. We plan to publish the code
and to analyze the behavior of γ5-preserving adaptive algebraic multigrid in the
HMC. Additionally, we are working on a multigrid based eigensolver for the her-
mitian indefinite Wilson-Dirac operator Γ5DW and its applications. Due to the
Γ5 preservation, our coarse grid correction can be used for Γ5DW as well. Pre-
liminary results from a Rayleigh quotient iteration with multigrid have already
been published in [7].



List of Algorithms

1 Additive Schwarz (one iteration) . . . . . . . . . . . . . . . . . . . 24
2 Multiplicative Schwarz (one iteration) . . . . . . . . . . . . . . . . 25
3 Red-black multiplicative Schwarz . . . . . . . . . . . . . . . . . . . 26
4 Sixteen color Schwarz . . . . . . . . . . . . . . . . . . . . . . . . . 28
5 Evaluation of the Wilson-Dirac operator DW . . . . . . . . . . . . 31
6 Minimal residual iteration (MR) on an SAP block Vi . . . . . . . . 35
7 SAP in parallel (for one process holding several blocks Vi) . . . . . 35

8 Two-grid method (two-level V-cycle with post-smoothing) . . . . . 44
9 Compute columns j and N + j of all self coupling matrices . . . . 55
10 Compute columns j and N + j of neighbor couplings (Dc)µ . . . . 56
11 Compute Dc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

12 Inexact deflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
13 Inexact deflation as one step multigrid method . . . . . . . . . . . 60
14 Inexact deflation setup – IDsetup(ninv ,ν) as used in [79] . . . . . . 62

15 AMG-setup(bsi , cl ,mi) . . . . . . . . . . . . . . . . . . . . . . . . 65

16 DD-αAMG-setup(ninv , ν) . . . . . . . . . . . . . . . . . . . . . . . 68

17 ψ` = V-Cycle(`, η`) . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
18 ψ` = W-Cycle(`, η`) . . . . . . . . . . . . . . . . . . . . . . . . . . 83
19 ψ` = K-Cycle(`, η`) . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
20 initial setup phase(`), we assume N`−1 ≤ N` . . . . . . . . . . . . . 85
21 iterative setup phase(`) . . . . . . . . . . . . . . . . . . . . . . . . 86
22 (Vm, H) = Arnoldi(v1,m) . . . . . . . . . . . . . . . . . . . . . . . 98



128 LIST OF ALGORITHMS



List of Figures

2.1 Naming conventions on the lattice. . . . . . . . . . . . . . . . . . 9

2.2 The clover term. . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 Spectrum of a 44 Wilson-Dirac operator with m0 = 0 and csw = 0. 13

2.4 Spectrum of a 44 “clover improved” Wilson-Dirac operator with
m0 = 0 and csw = 1. . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Illustration of the effect of stout smearing on the average plaquette
value (2.15). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 2D example for the communication of two neighboring processes
from a parallel setting. . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Block decomposed lattice (reduced to 2D) with 2 colors. . . . . . 25

3.3 Error component reduction on a 44 lattice with block size 24. . . . 25

3.4 Example for one iteration of the four color approach in 2D, to be
read column wise. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 16 color block alignment in 4D for a single 2-by-2-by-2-by-2 com-
pound, each vertex represents a Schwarz block Bi. . . . . . . . . . 28

3.6 Illustration of outer and inner boundaries in Definition 3.5. . . . . 30

3.7 Weak scaling of 100 iterations of SAP and of 100 iterations of
GMRES for a 8× 43 local lattice. . . . . . . . . . . . . . . . . . . 41

3.8 Strong scaling of FGMRES preconditioned with 5 iterations of SAP
and of pure GMRES using a 64 × 323 lattice (Table 3.1: config-
uration ID 1). The thin, dashed, diagonal line displays optimal
scaling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Illustration of a two-level V-cycle with post-smoothing only. . . . 45

4.2 Aggregation-based interpolation (geometrical point of view reduced
to 2D). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



130 LIST OF FIGURES

7.1 Weak scaling test of DD-αAMG. The lattice size is increased with
the number of processes, keeping the local lattice size per process
fixed to 16× 83. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.1 Illustration of a three-level V-cycle (left) and a three-level W-cycle
of length k = 2 (right), both with post-smoothing only. . . . . . . 83

8.2 Illustration of Algorithm 21 as one setup iteration on level 1 with
L = 4, k2 = 3, k3 = 2 and K-cycle length 1, i.e., a V-cycle. . . . 86

8.3 Illustration of a master and his assistants reduced to 2D. . . . . . 87
8.4 Estimation of the sweet spot (Table 8.2, configuration ID 3). . . . 90
8.5 Performance of two- and three-level DD-αAMG (Table 8.2, config-

uration ID 5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
8.6 Performance of two-, three- and four-level DD-αAMG for estima-

tion of the sweet spot (Table 8.2, configuration ID 6). . . . . . . . 91
8.7 Scaling of BiCGStab and DD-αAMG with the bare mass m0. In

here, mud = −0.05294 denotes the physical mass parameter for
which the configuration was thermalized, andmcrit = −0.05419 [39,40]
is the critical mass. . . . . . . . . . . . . . . . . . . . . . . . . . . 96

8.8 Scaling of the final error obtained from DD-αAMG and BiCGStab. 96
8.9 Scaling with the bare mass m0 of inexact deflation and DD-αAMG

(Table 8.2, configuration ID 6) using 128 processes. . . . . . . . . 105

9.1 Typical spectra of the Wilson-Dirac and the overlap operator for
a 44 lattice. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

9.2 Spectra for a configuration of size 44. . . . . . . . . . . . . . . . . 114
9.3 Preconditioner efficiency as a function of mprec

0 for two accuracies
for the DD-αAMG solver (configuration ID 9, s = 3). Top: number
of iterations, bottom: execution times. . . . . . . . . . . . . . . . 117

9.4 Quality of mdef
0 without smearing (top left), with s = 3 steps of

stout smearing (top right), and for s = 0, . . . , 6 steps of stout
smearing at fixed µ (bottom), configuration ID 9. . . . . . . . . . 119

9.5 Comparison of preconditioned FGMRES(100) with unprecondi-
tioned GMRES(100) (configuration ID 9). Left: dependence on
the number of stout smearing steps s for default value for µ, cf. Ta-
ble 9.1. Right: dependence on the overlap mass µ for s = 3. . . . 120

9.6 Comparison of execution times for preconditioned FGMRES and
GMRES. Left: for 0 to 4 steps of stout smearing (configuration
ID 9, default value for µ from Table 9.1), right: different overlap
masses µ for configuration ID 9 and 3-step stout smearing. . . . . 122

9.7 Comparison of GMRESR with FGMRESR with different deflation
spaces (configuration IDs 9 and 10 with 1,024 processes). . . . . . 123



List of Tables

2.1 Coupling terms in DW and DH
W . . . . . . . . . . . . . . . . . . . . 16

2.2 Coupling terms in DH
WDW . The coupling terms in DWD

H
W are

obtained by interchanging all π+
µ and π−µ as well as all π+

ν and π−ν . 16
2.3 Coupling terms in DH

WDW −DWD
H
W . . . . . . . . . . . . . . . . 17

3.1 Configurations used together with their parameters. For details
about their generation we refer to the references. Pion mass rounded
to steps of 5 MeV. . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2 Comparison of FGMRES preconditioned with additive, red-black
and 16 color Schwarz for two different parallelizations on a 64×323

lattice (Table 3.1: ID 1). . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Comparison of FGMRES preconditioned with red-black Schwarz

with different Krylov subspace methods for two different paral-
lelizations on a 64× 323 lattice (Table 3.1: configuration ID 1). . 40

6.1 Ingredients for the AMG method. . . . . . . . . . . . . . . . . . . 64

7.1 Ingredients for the DD-αAMG two-level method. . . . . . . . . . 68
7.2 Parameters for the DD-αAMG two-level method. (∗) : same in

solver and setup. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.3 Configurations used together with their parameters. For details

about their generation we refer to the references. Pion masses
rounded to steps of 5 MeV. All BMW configurations were smeared
with 3 steps of HEX [28] smearing, the CLS configuration was not
smeared. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.4 BiCGStab vs. DD-αAMG with default parameters (Table 7.2) on
an ill-conditioned 644 lattice (Table 7.3, configuration ID 6), 8,192
cores, (∗) : coarse grid iterations summed up over all iterations on
the fine grid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



132 LIST OF TABLES

7.5 Evaluation of DD-αAMG-setup(ninv , 2) cf. Algorithm 16, 484 lat-
tice, ill-conditioned configuration (Table 7.3, configuration ID 5),
2,592 cores, averaged over 20 runs. The bold numbers display the
minima of the respective columns. . . . . . . . . . . . . . . . . . . 71

7.6 Configuration dependence study of BiCGStab and DD-αAMG with
DD-αAMG-setup(ninv , 2) for 6 different, ill-conditioned configura-
tions on 484 lattices, (Table 7.3, configuration ID 5), 2,592 cores. . 72

7.7 Mass scaling behavior of DD-αAMG for ninv = 5, 484 lattice (Ta-
ble 7.3, configuration ID 5), 2,592 cores. . . . . . . . . . . . . . . 73

7.8 Lattice size scaling of DD-αAMG, ninv = 6 setup iterations, lat-
tices generated with the same mass parameter and lattice spacing
(Table 7.3, configuration ID 2, 3 and 4), local lattice size 4× 83. . 74

7.9 Comparison of DD-αAMG and inexact deflation, coarse system
solver tolerance 10−12 and ν = 5 in inexact deflation, ill-conditioned
system on a 484 lattice (Table 7.3, configuration ID 5), 2,592 cores.
The bold numbers display the minima of the respective columns. . 76

7.10 Comparison of DD-αAMG with inexact deflation on an ill-conditioned
system on a 128× 643 lattice (Table 7.3, configuration ID 7), same
parameters as in Table 7.9, 8,192 cores. . . . . . . . . . . . . . . . 77

7.11 Comparison of DD-αAMG with AMG on an ill-conditioned system
on a 64 × 643 lattice (Table 7.3, configuration ID 6), parameters
from Table 7.2, 8,192 cores. . . . . . . . . . . . . . . . . . . . . . 78

7.12 Comparison of DD-αAMG and AMG as available from [91]. AMG-
d uses default parameter settings, AMG-k sets msi = k so that
setup time is comparable to DD-αAMG. SSE-optimization switched
off in AMG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

8.1 Parameters for multi-level DD-αAMG. (∗) : same in solver and setup. 88

8.2 Configurations used together with their parameters. For details
about their generation we refer to the references. Except for con-
figuration ID 5, the pion masses are determined up to an accuracy
of 5 MeV only. All BMW configurations were smeared with 3 steps
of HEX [28] smearing, the CLS configurations were not smeared. . 89

8.3 Comparison of DD-αAMG with two, three and four levels for a
small number of processes, parameters from Tables 8.1 and 8.2. . 92

8.4 Comparison of DD-αAMG with two and three levels for large num-
bers of processes, parameters as in Tables 8.1 and 8.2. (∗) : Wait
time for point-to-point communication. . . . . . . . . . . . . . . . 93

8.5 Comparison of two- and three-level DD-αAMG with BiCGStab,
parameters from Tables 8.1 and 8.2. . . . . . . . . . . . . . . . . . 95



LIST OF TABLES 133

8.6 Comparison of coarse operator applications and the number of
allreduces on the coarse grid for a range of polynomial degrees in
a two-level method on configuration ID 6. The numbers in brack-
ets denote the gain/reduction in percent compared to the numbers
for the unpreconditioned coarse grid solver, parameters from Ta-
bles 8.1 and 8.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.7 Comparison of the BMW-c implementation for 1 and 12 right hand
sides on configuration ID 6, 5 iterations of GMRES as a smoother,
24 iterations of GMRES as a coarse grid solver, 10−7 relative resid-
ual decrease for the outer solver, other parameters from Tables 8.1
and 8.2. Note that these numbers were obtained from single runs
and thus timings may be inaccurate, especially for larger numbers
of cores. We acknowledge [72] for the computation of these results. 102

8.8 Comparison of DD-αAMG and SSE-optimized DD-αAMG with
two, three and four levels on configuration ID 6 using 128 pro-
cesses, parameters from Tables 8.1 and 8.2. . . . . . . . . . . . . . 103

8.9 Comparison using 128 processes (Table 8.2, configuration ID 6),
parameters from Tables 8.1 and 8.2. . . . . . . . . . . . . . . . . . 104

8.10 Comparison of four-level DD-αAMG with four-level AMG (Ta-
ble 8.2, configuration ID 6), parameters from Table 7.2, 128 cores. 106

9.1 Configurations used together with their parameters. See the refer-
ences for details about their generation. . . . . . . . . . . . . . . . 115

9.2 Parameters for the overlap solver. Here, dp denotes double preci-
sion and sp single precision. . . . . . . . . . . . . . . . . . . . . . 121

9.3 Parameters for the inner iteration. . . . . . . . . . . . . . . . . . . 123



134 LIST OF TABLES



Bibliography

[1] M. Albanese, F. Costantini, G. Fiorentini, F. Flore, M. P. Lombardo, P. Ba-
cilieri R. Tripiccione, L. Fonti, E. Remiddi, M. Bernaschi, N. Cabibbo, L. A.
Fernandez, E. Marinari, G. Parisi, G. Salina, S. Cabasino, F. Marzano,
P. Paolucci, S. Petrarca, F. Rapuano, P. Marchesini, P. Giacomelli, and
R. Rusack. Glueball masses and string tension in lattice QCD. Phys. Lett.,
B192:163–169, 1987.

[2] C. Alexandrou, M. Brinet, J. Carbonell, M. Constantinou, P. A. Harraud,
P. Guichon, K. Jansen, T. Korzec, and M. Papinutto. Nucleon electromag-
netic form factors in twisted mass lattice QCD. Phys. Rev., D83:094502,
2011.

[3] S. Aoki, K.-I. Ishikawa, N. Ishizuka, T. Izubuchi, D. Kadoh, K. Kanaya,
Y. Kuramashi, Y. Namekawa, M. Okawa, Y. Taniguchi, A. Ukawa, N. Ukita,
and T. Yoshie. 2+1 flavor lattice QCD toward the physical point. Phys.
Rev., D79:034503, 2009.

[4] R. Babich, J. Brannick, R. C. Brower, M. A. Clark, S. D. Cohen, J. C.
Osborn, and C. Rebbi. The role of multigrid algorithms for LQCD. PoS,
LATTICE2009:031, 2009.

[5] R. Babich, J. Brannick, R. C. Brower, M. A. Clark, T. A. Manteuffel, S. F.
McCormick, J. C. Osborn, and C. Rebbi. Adaptive multigrid algorithm for
the lattice Wilson-Dirac operator. Phys. Rev. Lett., 105:201602, 2010.

[6] T. Bae, Y.-C. Jang, C. Jung, H.-J. Kim, J. Kim, K. Kim, W. Lee, S. R.
Sharpe, and B. Yoon. Kaon B-parameter from improved staggered fermions
in nf = 2 + 1 QCD. Phys. Rev. Lett., 109:041601, 2012.



136 BIBLIOGRAPHY

[7] G. Bali, S. Collins, A. Frommer, K. Kahl, I. Kanamori, B. Müller,
M. Rottmann, and J. Simeth. (Approximate) low-mode averaging with
a new multigrid eigensolver. PoS, LATTICE2015:350, 2015.

[8] G. S. Bali, P. C. Bruns, S. Collins, M. Deka, B. Gläßle, M. Göckeler, L. Greil,
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[77] M. Lüscher. Exact chiral symmetry on the lattice and the Ginsparg-Wilson
relation. Phys. Lett., B428:342–345, 1998.
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