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CHAPTER 1

INTRODUCTION

Given a matrix A ∈ C
n×n, a vector b ∈ C

n and a sufficiently smooth function
f defined on spec(A), an increasingly important task in many areas of numerical
linear algebra and scientific computing is the computation of

f(A)b, (1.1)

the action of the matrix function f(A) on the vector b. Important examples
of matrix functions include the matrix exponential f(A) = eA which is used,
e.g., in exponential integrators for the solution of differential equations [88–90]
and in network analysis [49], the matrix sign function f(A) = sign(A) which
has important applications in lattice quantum chromodynamics [18, 48], or the
(inverse) fractional powers f(A) = A±α for α ∈ (0, 1) which are, e.g., used in
fractional differential equations [23] and statistical sampling [93].

The presumably most widely known special case of the computation of a matrix
function times a vector is the solution of a linear system of equations, i.e., the
computation of x ∈ C

n such that

Ax = b, (1.2)

which corresponds to evaluating (1.1) with f(A) = A−1.

While both (1.1) and its special case (1.2) are often solved by the same or very
closely related iterative methods, specifically Krylov subspace methods [37,67,88,
98,114], the special structure of (1.2) and the simple nature of the function f(A) =
A−1 allow for many theoretical and algorithmic simplifications and advantages
which are not available in the more general case of an arbitrary function f .
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1 Introduction

The main goal of this thesis is to fill some of these gaps by transferring or gener-
alizing techniques and results which are well-known in the linear system case to
the case of more general matrix functions. Many of the results of this thesis deal
with the class of so-called Stieltjes functions [14, 15, 83] (but are in some cases
also applicable to broader classes of functions) which can be characterized by a
Riemann–Stieltjes integral representation of the form

f(z) =

∞∫

0

1

z + t
dµ(t), z ∈ C \ R−

0 , (1.3)

where µ is a nonnegative, monotonically increasing function defined on R
+
0 . Sub-

stituting the matrix A for z in (1.3) and applying this matrix function to a vector
b yields

f(A)b =

∞∫

0

(A+ tI)−1b dµ(t), (1.4)

which already reveals the intimate relation between Stieltjes matrix functions and
(shifted) linear systems. This connection is the main building block of most of
the ideas employed in this thesis.

There are two main concepts investigated in this thesis. On the one hand, we
consider restarting of Krylov subspace methods, a technique well-known in the
linear system context for methods such as GMRES [116] or FOM [113] for limiting
memory requirements of these methods. On the other hand, we deal with the
efficient computation of error bounds and estimates, which is of special importance
in case of the approximation of matrix functions, because in contrast to the linear
system case, no quantity like a residual is available to easily monitor the progress
of the method.

The remainder of this thesis is organized as follows. In Chapter 2, basic material
necessary for making this thesis self-contained is presented. We begin with the
precise definition and important properties of matrix functions in general and
Stieltjes functions in particular. This is followed by a review of Krylov subspace
methods, both for matrix functions and for the special case of linear systems, and
a short overview of numerical quadrature rules (Gauss quadrature, in particular)
which will be extensively used in the computational methods presented in this
thesis for evaluating integral representations of matrix functions such as (1.4). In
addition, we introduce a few model problems which will be used throughout the
thesis for illustrating the developed results by numerical experiments. In Chap-
ter 3, we derive an integral representation for the error f(A)b − fm of the iterate
fm produced by m steps of a Krylov subspace method. This representation con-
stitutes the common basis for the restart approach and the error estimates in the
later chapters of the thesis. In Chapter 4 we first give an overview of the restart
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approaches for Krylov subspace methods for f(A)b available in the literature
so far. Afterwards, we investigate the possibility of using the error representa-
tion from the previous chapter for a new implementation of the restart approach
and comment on the differences and advantages in comparison to existing meth-
ods. We already published the resulting method in [58]. Chapter 5 deals with
convergence of restarted Krylov subspace methods for the approximation of ma-
trix functions. After reviewing the few previously known convergence results, we
prove convergence of the restarted Arnoldi method for f a Stieltjes function and
A Hermitian positive definite (for all restart lengths). In addition, we propose
a variation of Arnoldi’s method based on interpolation in harmonic Ritz values
which allows to prove convergence for a larger class of matrices, the so-called pos-
itive real matrices. We published these results in [57]. We conclude the chapter
by investigating the linear system case and presenting results on the convergence
behavior of restarted FOM and restarted GMRES. We presented some of these re-
sults (partially in a weaker form) already in the technical report [119]. Chapter 6
deals with the estimation and bounding of the norm of the error ‖f(A)b−fm‖2 in
Krylov subspace methods by making use of the error representation from Chap-
ter 3 combined with techniques developed in [72–74] for error estimation in the
iterative solution of linear systems. As these error bounds rely on the relation
between the Lanczos process and Gauss quadrature, evaluating the integral rep-
resentation of the error in this context gives rise to a nested quadrature approach
with an inner and an outer quadrature rule. Special care is devoted to the task of
combining inner and outer quadrature rules in such a way that (in certain situa-
tions, e.g., for Hermitian positive definite matrices A and f a Stieltjes function)
the error estimates are guaranteed to be upper or lower bounds for the exact error
norm. In addition, we show how it is possible to compute these error bounds with
negligible computational cost, which is independent both of the matrix dimension
and the number of iterations performed in the Krylov subspace method, when A
is Hermitian positive definite, or at least independent of the matrix dimension
for non-Hermitian A. Most of the results from this chapter (those applying to
Stieltjes functions) can also be found in our preprint [63]. In Chapter 7, results
similar to the ones from Chapter 6 are presented in the context of extended Krylov
subspace methods [38, 99, 124, 125]. These subspaces are built not only by using
powers of the matrix A but also powers of A−1. Thus, they result in rational ap-
proximations to f(A)b instead of polynomial approximations, therefore making
the situation slightly more involved to analyze. We demonstrate how to transfer
the techniques from the previous chapter to this situation, comment on the pos-
sibility to also use rational Gauss quadrature rules for computing error estimates
and investigate in which situations one can still expect to obtain lower and upper
bounds for the error. In Chapter 8, the results of this thesis are summarized and
concluding remarks and topics for future research are given.
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CHAPTER 2

REVIEW OF BASIC MATERIAL

In this chapter, we introduce and review the basic terminology and classical results
on which the remainder of this thesis is based. We begin by presenting different
possible definitions for matrix functions f(A) and important properties which
directly follow from these definitions in Section 2.1. In Section 2.2 we review
the definition of the Riemann–Stieltjes integral and use it to define the class
of Stieltjes functions. These are the functions which we will mostly investigate
throughout the remainder of the thesis, as their special structure gives rise to
a lot of computational and theoretical advantages. We present some examples
of Stieltjes functions and give an overview of classical results from the literature
which will become useful in later chapters. Next, Krylov subspace methods for
approximating f(A)b are described in Section 2.3. We do not only cover the
case of approximating a general matrix function f but also present some of the
simplifications and theoretical results arising when f(z) = z−1 in Section 2.4,
i.e., when the solution of a linear system Ax = b is approximated. These results
will later become beneficial when we investigate the intimate relation between the
solution of shifted linear systems and approximating certain functions of matrices.
In Section 2.5, we give a short overview of numerical quadrature rules, with
a special emphasis on Gauss quadrature. Gauss quadrature will be important
in two ways in this thesis. First, we will often work with (Riemann–Stieltjes)
integral representations of functions for which no closed form is known, so that
the integrals have to be evaluated numerically, and second, we will use the strong
relation between Gauss quadrature and the Lanczos process for computing error
estimates and error bounds in (extended) Krylov subspace methods in Chapter 6
and Chapter 7. In the final section of this chapter, we introduce different model
problems which involve the approximation of a matrix function times a vector
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2 Review of basic material

and which will be used as benchmarks at various places throughout this thesis to
illustrate and evaluate the developed methods and results.

2.1 Functions of matrices

In this section, we review the definition of a matrix function f(A) and basic
properties of matrix functions which we will use throughout this thesis. Most
of our presentation, including the three classical (and, if applicable, equivalent)
definitions of a matrix function, mainly follows [85, Chapter 1], with additional
material and inspiration drawn from [64, 71, 91]. We focus solely on theory of
matrix functions in this section, deferring computational and algorithmic issues
to Section 2.3.

Each of the three definitions of a matrix function presented in the following has
different advantages in different situations and most notably provides different
angles of insight concerning the nature and behavior of matrix functions.

Throughout the remainder of this section, we use the following notation. We
denote the spectrum of A by spec(A) = {λ1, . . . , λs}, where λ1, . . . , λs are the
distinct eigenvalues of A. In addition, we denote by ni the index of the eigenvalue
λi, i.e., the size of the largest Jordan block Jk(λi) corresponding to λi in the Jordan
canonical form A = WJW−1, where J = diag(J1(λi1), . . . , Jp(λip)) with Jordan
blocks

Jk(λik) =




λik 1

λik
. . .
. . . 1

λik


 ∈ C

mk×mk .

Recall that one eigenvalue may correspond to more than one Jordan block of A.
We say that a function f is defined on the spectrum of A if the values

f (j)(λi), j = 0, . . . , ni − 1, i = 1, . . . , s (2.1)

all exist. If this requirement is fulfilled, the matrix function f(A) in the sense of
the following definition is well-defined.

Definition 2.1. Let A ∈ C
n×n with Jordan canonical form A = WJW−1 and

let f be defined on the spectrum of A. Then

f(A) := Wf(J)W−1 := W diag
(
f(J1(λi1)), . . . , f(Jp(λip))

)
W−1, (2.2)
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2.1 Functions of matrices

where the function f evaluated at the Jordan blocks Jk(λik) is defined by

f(Jk(λik)) :=




f(λik) f ′(λik) . . .
f (mk−1)(λik

)

(mk−1)!

f(λik)
. . .

...
. . . f ′(λik)

f(λik)



.

A particular special case, which is very important in practice, is given for diago-
nalizable A, i.e., when the Jordan canonical form of A reduces to A = WΛW−1

with a diagonal matrix Λ = diag(λ1, . . . , λn) (where this time, we count multiple
eigenvalues individually). In this case,

f(A) = Wf(Λ)W−1 where f(Λ) = diag(f(λ1), . . . , f(λn)), (2.3)

i.e., no derivatives of f are needed. This relation can indeed be used in practice
to compute f(A) for small matrices A, where it is feasible to compute a full
eigenvalue decomposition (like it is, e.g., the case for the Hessenberg matrices
Hm from Arnoldi’s method, cf. Section 2.3, after a moderate number m of steps).
However, for a general diagonalizable matrix A the eigenvector basis may be ill-
conditioned, making (2.3) unstable in the presence of round-off error. When A
is Hermitian, there exists an orthonormal eigenvector basis, so that W can be
chosen as a unitary matrix, i.e., W−1 = WH and (2.3) can be evaluated in a
numerically stable way. An immediate consequence of Definition 2.1 is that the
eigenvalues of f(A) are just f(λi), as f(A) is similar to f(J) from (2.2).

Another way of defining a function of a matrix is based on polynomial interpo-
lation and provides the main motivation for using Krylov subspace methods for
approximating the action of a matrix function on a vector. It again requires f to
be defined on spec(A) in the sense of (2.1).

Definition 2.2. Let A ∈ C
n×n, let f be defined on the spectrum of A and let

ψ be the minimal polynomial of A. Then f(A) := p(A), where p is the unique
polynomial of degree less than degψ that interpolates f on spec(A), i.e.,

p(j)(λi) = f (j)(λi), j = 0, . . . , ni − 1, i = 1, . . . , s, (2.4)

the so-called Hermite interpolating polynomial.

7



2 Review of basic material

Definition 2.2 sheds light on some interesting properties of matrix functions. Im-
mediate consequences are that every matrix function is a polynomial in A and
that a matrix function is already uniquely defined by its values on a discrete, finite
set, the spectrum of A. This in turn means that if two functions f and g coincide
on the spectrum of A, then f(A) = g(A), no matter which values f and g attain
outside of spec(A). It is important to note, however, that f(A) = p(A) for some
fixed polynomial p does not hold independently of A, but that the polynomial
p depends on A (or, to be precise, the Jordan structure of A) as well as on f ,
through the Hermite interpolation conditions (2.4).

The characterization of f as a polynomial in A is, in addition to the consequences
mentioned above, especially useful because it directly implies a lot of important
properties of matrix functions which are collected in the following lemma.

Lemma 2.3. Let A ∈ C
n×n and let f be defined on spec(A). Then the following

properties hold.

(i) f(A) commutes with A,

(ii) if X ∈ C
n×n commutes with A, then X commutes with f(A),

(iii) if X ∈ C
n×n is nonsingular, then f(XAX−1) = Xf(A)X−1.

Proof. All properties directly follow from the fact that f(A) = p(A) for some
polynomial p, see, e.g., [85, Theorem 1.13].

A third possible, and particularly elegant, way of defining a matrix function is
given by the Cauchy integral formula. While it requires f to be analytic (where
the other two definitions do not even require f to be continuous or defined outside
of a finite set as long as A has no multiple eigenvalues) it has the advantage of
allowing to generalize the notion of matrix functions to operator functions on
infinite dimensional vector spaces, cf., e.g., [80]. Although we will not further
pursue this approach in this thesis, the following definition (and variants thereof)
will nonetheless prove useful.

Definition 2.4. Let A ∈ C
n×n and let f be analytic on and inside a closed

contour Γ that winds around spec(A) exactly once. Then

f(A) =
1

2πi

∫

Γ

f(t)(tI − A)−1 dt. (2.5)

8



2.2 Stieltjes functions

This definition of a matrix function is not restricted to the case of Cauchy inte-
gral representations but can also be used for other integral representations of f ,
for example for Stieltjes integral representations which will be discussed in Sec-
tion 2.2 and will be the foundation of most of the results developed throughout
the remainder of this thesis.

Of course, using different definitions of functions of matrices for developing the
ideas of this thesis is only reasonable if all of these definitions agree (when appli-
cable). This is indeed the case.

Theorem 2.5. Let A ∈ C
n×n and let f be defined on spec(A) in the sense of (2.1).

Then Definition 2.1 and Definition 2.2 for f(A) are equivalent. If f is in addition
analytic in a region Ω ⊃ spec(A), then Definition 2.4 for f(A) is equivalent to
Definition 2.1 and Definition 2.2.

Proof. See, e.g., [85, Theorem 1.12] and [91, Theorem 6.2.28].

2.2 Stieltjes functions

In this section, we introduce the class of Stieltjes functions, which contains many
functions of practical interest, like inverse fractional powers or rational functions
of the logarithm. As this class of functions is defined by means of a Riemann–
Stieltjes integral representation in the classical literature, we first review the basics
of this integral concept. Afterwards, we define the class of Stieltjes functions,
give some examples of functions from this class and present some basic properties
which we will need for developing our results in later chapters of this thesis.

2.2.1 The Riemann–Stieltjes integral

The Riemann–Stieltjes integral can be seen as a generalization of the Riemann
integral, in which integration of a function g is performed with respect to some
other function µ (with the Riemann integral as special case when the function
µ is chosen as the identity function µ(t) = t) and was first introduced in [130].
To properly define the Riemann–Stieltjes integral, we first need the following
prerequisites.

9



2 Review of basic material

Definition 2.6. Let [a, b] ⊂ R be a finite interval. A subdivision of [a, b] is a
finite sequence (τi)i=0,...,m of real numbers that satisfy

a = τ0 < τ1 < · · · < τm = b.

The norm of (τi)i=1,...,m is defined as

|(τi)i=0,...,m| := max
1≤i≤m

{τi − τi−1}.

A sequence (σi)i=1,...,m of real numbers is called sequence of pivotal points
consistent with (τi)i=0,...,m if it satisfies

τi−1 ≤ σi ≤ τi for i = 1, . . . ,m.

The Riemann–Stieltjes integral of g with respect to µ can now be defined analo-
gously to the Riemann integral.

Definition 2.7. Let [a, b] ⊂ R be a finite interval, let g be a complex-valued
function and let µ be a real-valued function, both defined on [a, b]. Further,
let (τi)i=0,...,m be a subdivision of [a, b] and let (σi)i=1,...,m be a sequence of
pivotal points consistent with (τi)i=0,...,m. Then the Riemann–Stieltjes sum of
g and µ corresponding to (τi)i=0,...,m and (σi)i=1,...,m is defined as

S
(
(τi)i=0,...,m, (σi)i=1,...,m

)
=

m∑

i=1

g(σi)
(
µ(τi)− µ(τi−1)

)
.

If there exists S ∈ C such that for any ε > 0 there exists δ > 0 satisfying

∣∣S
(
(τi)i=0,...,m, (σi)i=1,...,m

)
− S

∣∣ < ε

for all subdivisions (τi)i=0,...,m and consistent choices of (σi)i=1,...,m with
|(τi)i=0,...,m| < δ, then S is called the Riemann–Stieltjes integral of g with
respect to µ on [a, b] and is denoted by

S =:

∫ b

a

g(t) dµ(t). (2.6)

The function g is called the integrand and µ is called the integrator of the
Riemann–Stieltjes integral (2.6).

10



2.2 Stieltjes functions

Note that for µ(t) = t (or µ(t) = t + c for some constant c ∈ R), Definition 2.7
reduces to the definition of the ordinary Riemann integral. Another connection
between Riemann and Riemann–Stieltjes integrals is given by the following, clas-
sical result.

Lemma 2.8. Let [a, b] ⊂ R be a finite interval, let g be continuous on [a, b] and
let µ be continuously differentiable on [a, b]. Then

∫ b

a

g(t) dµ(t) =

∫ b

a

g(t)µ′(t) dt.

Proof. See [121, Theorem 9.55b].

For a continuously differentiable integrator µ, the Riemann–Stieltjes integral thus
reduces to an ordinary Riemann integral.

Example 2.9. A special case of a Riemann–Stieltjes integral corresponding
to a nondifferentiable integrator is given when µ is a step function with jumps
of size µ1, . . . , µℓ at the points t1, . . . , tℓ, i.e.,

µ(t) =





0 a ≤ t ≤ t1

µ1 t1 < t ≤ t2

µ1 + µ2 t2 < t ≤ t3
...

...

µ1 + · · ·+ µℓ tℓ < t ≤ b.

In this case, the Riemann–Stieltjes integral of a continuous function g reduces
to a finite sum, cf. [83, Section 12.9, Example 3],

∫ b

a

g(t) dµ(t) =
ℓ∑

i=1

g(ti)µi.

This observation will later prove useful for establishing a connection between
rational functions in partial fraction form and Stieltjes functions, cf. Exam-
ple 2.14.

We proceed by collecting some basic, easy to prove properties of the Riemann–
Stieltjes integral which mostly generalize well-known properties of the Riemann
integral.

11



2 Review of basic material

Proposition 2.10. Let [a, b] ⊂ R be a finite interval, let g, g1, g2 be complex-
valued functions on [a, b] and let µ, µ1, µ2 be real-valued functions on [a, b]. Then

(i) The Riemann–Stieltjes integral is linear in the integrand, i.e.,

∫ b

a

g1(t) + g2(t) dµ(t) =

∫ b

a

g1(t) dµ(t) +

∫ b

a

g2(t) dµ(t), (2.7)

and, for a constant c ∈ C,

∫ b

a

cg(t) dµ(t) = c

∫ b

a

g(t) dµ(t). (2.8)

(ii) The Riemann–Stieltjes integral is linear in the integrator, i.e.,

∫ b

a

g(t) d(µ1(t) + µ2(t)) =

∫ b

a

g(t) dµ1(t) +

∫ b

a

g(t) dµ2(t), (2.9)

and, for a constant c ∈ R,

∫ b

a

g(t) d(cµ(t)) = c

∫ b

a

g(t) dµ(t). (2.10)

(iii) For a < c < b it holds

∫ b

a

g(t) dµ(t) =

∫ c

a

g(t) dµ(t) +

∫ b

c

g(t) dµ(t) (2.11)

provided that all integrals in (2.11) exist.

(iv) If µ is monotonically increasing on [a, b], then

∫ b

a

dµ(t) :=

∫ b

a

1 dµ(t) = µ(b)− µ(a).

(v) If µ is monotonically increasing on [a, b] and g1, g2 are real-valued with
g1(t) ≤ g2(t) for all t ∈ [a, b], then

∫ b

a

g1(t) dµ(t) ≤
∫ b

a

g2(t) dµ(t).

Proof. See [26, Theorem 5.1.5], [108, Section VIII.6] and [121, Section 9.55c].
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2.2 Stieltjes functions

Note that in assertion (i) and (ii) of Proposition 2.10, the existence of the inte-
grals on the right-hand sides of equations (2.7), (2.8), (2.9) and (2.10) imply the
existence of the integrals on the left-hand sides.

Just as for Riemann integrals, improper Riemann–Stieltjes integrals may be de-
fined.

Definition 2.11. Let a ∈ R, let g be a continuous, complex-valued function
and let µ be a real-valued function on [a,∞). Then the improper Riemann–
Stieltjes integral of g with respect to µ on [a,∞) is defined as

∫ ∞

a

g(t) dµ(t) := lim
b→∞

∫ b

a

g(t) dµ(t),

provided that the limit exists.

There is a wide variety of results on assumptions necessary for the existence of
(proper and improper) Riemann–Stieltjes integrals; see, e.g., [108, 121]. We will
not go into detail on this in general rather important topic, as we are primarily
interested in Stieltjes integrals with integrand g(t) = 1

z+t
for z ∈ C \ R−

0 , for
which the question of existence is easier to analyze than in the general case;
cf. Section 2.2.2.

Before proceeding, we state one additional result which will prove useful for esti-
mating error norms when investigating the convergence behavior of Krylov sub-
space methods for Stieltjes matrix functions.

Lemma 2.12. Let a ∈ R, let g : [a,∞) −→ C
n be a vector-valued function, i.e.,

g(t) = [g1(t), g2(t), . . . , gn(t)]
T

with gi : [a,∞) −→ C. Further, let µ be real-valued and monotonically increasing
on [a,∞), such that all integrals

∫ ∞

a

gi(t) dµ(t)

exist and let || · ‖ be a norm on C
n. Then

∥∥∥∥
∫ ∞

a

g(t) dµ(t)

∥∥∥∥ ≤
∫ ∞

a

‖g(t)‖ dµ(t), (2.12)

where the integral on the left-hand side of (2.12) is understood component-wise.
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2 Review of basic material

Proof. Let b > a, let T (j) = (τ
(j)
i )i=0,...,mj

be a sequence of subdivisions of [a, b]

with |T (j)| → 0 for j → ∞ and let Σ(j) = (σ
(j)
i )i=1,...,mj

be a sequence of con-
sistent sequences of pivotal points. We define the vector-valued analogue to the
Riemann–Stieltjes sum from Definition 2.7 as

S(T (j),Σ(j)) =

mj∑

i=1

[
g1(σ

(j)
i ), . . . , gn(σ

(j)
i )
]T (

µ(τ
(j)
i )− µ(τ (j)i−1)

)
,

i.e., the pivotal points are inserted into each individual component gi of g. Then,
by applying Definition 2.7 to each component individually, we have

lim
j→∞

S(T (j),Σ(j)) =

∫ b

a

g(t) dµ(t), (2.13)

We further have for any j

‖S(T (j),Σ(j))‖ =

∥∥∥∥∥

mj∑

i=1

g(σ
(j)
i )
(
µ(τ

(j)
i )− µ(τ (j)i−1)

)∥∥∥∥∥

≤
mj∑

i=1

∥∥∥g(σ(j)
i )
(
µ(τ

(j)
i )− µ(τ (j)i−1)

)∥∥∥

=

mj∑

i=1

‖g(σ(j)
i )‖

(
µ(τ

(j)
i )− µ(τ (j)i−1)

)
, (2.14)

where the inequality holds due to the triangle inequality and the last equality
holds because µ is monotonically increasing on [a, b]. By taking the norm on both
sides of (2.13) and inserting (2.14), we obtain

∥∥∥∥
∫ b

a

g(t) dµ(t)

∥∥∥∥ =

∥∥∥∥ limj→∞
S(T (j),Σ(j))

∥∥∥∥ =

∫ b

a

‖g(t)‖ dµ(t). (2.15)

By taking the limit b → ∞ inside the norm on the left-hand side of (2.15) and
using the fact that ‖ · ‖ is continuous, we obtain the desired result.

We remark that we do not make any statement about the existence of the integral
on the right-hand side of (2.12), in the sense that if the integral is infinite, then
infinity is taken as (trivial) upper bound for the left-hand side. At all places where
we use the result of Lemma 2.12 in this thesis, we will individually investigate
whether this integral is finite, as we do not need any general result about the
finiteness of such integrals.

We will now turn our attention to the class of Stieltjes functions which are defined
by means of a Riemann–Stieltjes integral of the resolvent function g(t) = 1

z+t
.
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2.2 Stieltjes functions

2.2.2 The Stieltjes cone

We first define the class of Stieltjes functions.

Definition 2.13. Let µ be a monotonically increasing, real-valued function
on R

+
0 such that ∫ ∞

0

1

1 + t
dµ(t) <∞, (2.16)

and let a ≥ 0. Then the function f : C \ R−
0 −→ C defined via

f(z) = a+

∫ ∞

0

1

z + t
dµ(t) (2.17)

is called Stieltjes function corresponding to µ. The function µ is also called
generating function of f .

Note that the condition (2.16) imposed on µ is sufficient for f being defined (and
holomorphic) in all z ∈ C \ R−

0 . The set of all Stieltjes functions forms a convex
cone, i.e., it is closed under addition and under multiplication by nonnegative
scalars. For both properties, see, e.g., [14, Section 3]. From now on we will,
without loss of generality, always assume a = 0 in (2.17).

Before discussing useful properties of Stieltjes functions, we first list a few exam-
ples of important functions belonging to this class.

Example 2.14. The following functions are Stieltjes functions.

(i) The function f(z) = z−1, generated by the step function

µ(t) =

{
0 t = 0,

1 t > 0.

(ii) Rational functions in partial fraction form with poles on the negative
real axis,

f(z) =
ℓ∑

i=0

µi

z + ti
,

15
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generated by the step function

µ(t) =





0 0 ≤ t ≤ t1

µ1 t1 < t ≤ t2

µ1 + µ2 t2 < t ≤ t3
...

...

µ1 + · · ·+ µℓ tℓ < t

with ti ≥ 0, µi > 0, i = 1, . . . , ℓ.

(iii) The function f(z) = z−α for α ∈ (0, 1), because

z−α =
sin(απ)

π

∫ ∞

0

t−α

z + t
dt. (2.18)

(iv) The function f(z) = log(1 + z)/z, because

log(1 + z)

z
=

∫ ∞

1

t−1

z + t
dt. (2.19)

Note that the functions in Example 2.14(iii) and (iv) correspond to continuously
differentiable generating functions µ, so that they can be written as ordinary
Riemann integrals by Lemma 2.8. For further examples of Stieltjes functions
and proofs that the above functions indeed are Stieltjes functions in the sense of
Definition 2.13, see, e.g., [14, 15, 55,83,130].

The following lemma gives a representation of the derivative of Stieltjes functions
which will be useful for some results on error bounds in this thesis.

Lemma 2.15. Let f be a Stieltjes function with generating function µ. Then f
is infinitely many times continuously differentiable on C \ R−

0 and

f (k)(z) = (−1)kk!
∫ ∞

0

1

(z + t)k+1
dµ(t) for all k ∈ N0.

Proof. See, e.g., [14, Section 3].

The class of Stieltjes functions is very closely related to the class of completely
monotonic functions defined in the following.
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2.2 Stieltjes functions

Definition 2.16. A function f : R+ −→ R is called completely monotonic if
it is infinitely many times continuously differentiable and satisfies

(−1)kf (k)(z) ≥ 0 for k ∈ N0 and z ∈ R
+.

The following result establishes the connection between Stieltjes functions and
completely monotonic functions and gives another easy to prove but useful prop-
erty of completely monotonic functions, see, e.g., [5, 14].

Proposition 2.17.

(i) Every Stieltjes function (or more precisely, its restriction to the positive real
axis) is a completely monotonic function.

(ii) Let f1, f2 be completely monotonic functions. Then f1 · f2 is a completely
monotonic function.

Proof. Part (i) directly follows from Lemma 2.15 and Proposition 2.10(v) and
part (ii) is a direct consequence of the Leibniz rule for product differentiation.

We mention in passing that the set of Stieltjes functions is a proper subset of
the class of completely monotonic functions, i.e., not every completely mono-
tonic function is a Stieltjes function, as the following example, taken from [14],
illustrates.

Example 2.18. Consider the function f(z) = 1/(z(1 + z2)). One easily
verifies that f is completely monotonic, but it has poles at z = ±i, so that it
cannot be a Stieltjes function.

The class of Stieltjes functions is of particular interest in our setting as the integral
representation (2.17) directly transfers to the case of matrix functions, similar to
the Cauchy integral representation (2.5) of analytic functions. For f a Stieltjes
function with generating function µ and A ∈ C

n×n with spec(A) ⊆ C \ R−
0 , we

directly have

f(A) =

∫ ∞

0

(A+ tI)−1 dµ(t)

17



2 Review of basic material

and thus

f(A)b =

∫ ∞

0

(A+ tI)−1b dµ(t). (2.20)

According to (2.20), f(A)b for f a Stieltjes function can be interpreted as the
integral over the solutions x (t) of the shifted linear systems

(A+ tI)x (t) = b

for t ≥ 0. This relation between the action of Stieltjes matrix functions on a vector
and shifted linear systems with positive shifts is one of the building blocks of the
results developed in this thesis. In particular, it allows to also establish a relation
between Krylov subspace methods for approximating matrix functions and Krylov
subspace methods for the approximate solution of linear systems. This in turn
allows to transfer theoretical results from the latter (which are understood far
better) to the former and will be the basis of the convergence analysis presented
in Chapter 5. We continue by investigating Krylov subspace methods in detail in
the next section.

2.3 Krylov subspace methods for f (A)b

While Section 2.1 dealt with matrix functions f(A), for the remainder of this
thesis we will not focus on the computation of the matrix function f(A) itself,
but rather on the action of f(A) on some vector b ∈ C

n, i.e.,

f(A)b. (2.21)

For techniques and algorithms related to the computation of f(A) (for small and
possibly dense matrices A), we refer to, e.g., [32,85,86] and the references therein.

One of the main computational difficulties when numerically evaluating (2.21) is
that f(A) is in general a full matrix, even when A is sparse or structured, with
the one exception from this rule being that f(A) is (block-)diagonal when A is
(block-)diagonal. We just mention for the sake of completeness that when A is
block upper (or lower) triangular, f(A) will also inherit this property, but the
upper (or lower) triangle will in general be completely filled, resulting in a matrix
with O(n2) nonzero entries, so that we consider this as a dense matrix in our
setting. Therefore, even for moderate values of n, it may not even be possible to
store the matrix f(A), such that the naive approach of first computing f(A) and
then multiplying it to b is infeasible, notwithstanding the high computational
cost.

Therefore, one typically tries to approximate the vector f(A)b directly by some
iterative method. By far the most popular and most widely-used methods for
this task belong to the class of Krylov subspace methods (or related classes like
extended and general rational Krylov subspace methods).
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2.3.1 The Arnoldi/Lanczos approximation for f(A)b

We begin our exposition with the basic definition of a Krylov subspace corre-
sponding to a matrix A and a vector b, which is central to most of the results of
this thesis.

Definition 2.19. Let A ∈ C
n×n and let b ∈ C

n. The mth Krylov subspace
with respect to A and b is defined as

Km(A, b) = {pm−1(A)b : pm−1 ∈ Πm−1}, (2.22)

where Πm−1 denotes the set of all polynomials of degree at most m− 1.

The idea of searching for an approximation to f(A)b in a Krylov subspace
Km(A, b) is quite obvious in light of Definition 2.2, as each matrix function is
a polynomial (of degree at most n− 1) in A, so that f(A)b ∈ Kn(A, b). Approx-
imations from Krylov subspaces of dimension m < n can thus be interpreted as
replacing the polynomial p from Definition 2.2 by another polynomial of lower
degree. Before proceeding, we summarize some basic properties of Km(A, b).

Proposition 2.20. Let A ∈ C
n×n and let b ∈ C

n. In addition, let m∗ be the
smallest integer such that there exists a polynomial pm∗ ∈ Πm∗ which satisfies
pm∗(A)b = 0. Then

(i) Km(A, b) ⊆ Km+1(A, b) for all m ≥ 1,

(ii) Km∗(A, b) is invariant under A, and Km(A, b) = Km∗(A, b) for all m ≥ m∗,

(iii) dimKm(A, b) = min{m,m∗}.

Proof. Part (i) is directly obvious from (2.22). For part (ii), see, e.g., [115, Propo-
sition 6.1] and for part (iii), see, e.g., [115, Proposition 6.2].

Property (i) from Proposition 2.20 means that Krylov subspaces are nested, and
together with Property (iii) it follows that, as long as m < m∗, if v1, . . . , vm is
a basis of Km(A, b), then there exists vm+1 ∈ Km+1(A, b) \ Km(A, b) such that
v1, . . . , vm+1 is a basis of Km+1(A, b).

This observation allows to iteratively construct a basis of the Krylov subspace
Km(A, b) by starting with a basis of K1(A, b) = span{b} and adding one basis
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vector at a time. The most obvious choice for a basis of Km(A, b) is the Krylov
basis

b, Ab, A2b, . . . , Am−1b,

but this basis can become severely ill-conditioned (the sequence of basis vectors
converges to the dominant eigenvector of A which has a nonzero contribution to
b, such that the vectors will become almost linearly dependent for higher values
of m). To circumvent this problem, and because of general favorable properties
with respect to numerical stability, one seeks to construct an orthonormal basis of
Km(A, b). In Arnoldi’s method [6,115] this is done iteratively as described above.
In each iteration, a new basis vector is generated by multiplying the last basis
vector with A and orthogonalizing the resulting vector against all previous basis
vectors by a modified Gram–Schmidt procedure [115]. The overall procedure is
described in Algorithm 2.1.

Algorithm 2.1: Arnoldi’s method

Given: A, b, m
v1 ← 1

‖b‖2b1

for j = 1, . . . ,m do2

wj ← Avj3

for i = 1, . . . , j do4

hi,j ← vH
i wj5

wj ← wj − hi,jvi6

hj+1,j ← ‖wj‖27

if hj+1,j = 0 then8

Stop.9

vj+1 ← 1
hj+1,j

wj10

For practical computations there exist many variations of Arnoldi’s method, e.g.,
using Householder reflections for orthogonalization or applying some number of
reorthogonalization steps to account for the numerical loss of orthogonality in
later iterations. We will, however, not consider this further in this thesis and
instead refer to, e.g., [77, 115] for details.

The correctness of Arnoldi’s method is guaranteed by the following lemma which
is proven by showing that vj = qj−1(A)v1, where qj−1 is a polynomial of exact
degree j − 1.

Lemma 2.21. Assume that Algorithm 2.1 does not stop before the mth step.
Then the vectors v1, . . . , vm form an orthonormal basis of the Krylov subspace
Km(A, b).

Proof. See [115, Proposition 6.4].
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2.3 Krylov subspace methods for f(A)b

If the condition hj+1,j = 0 is fulfilled in line 8 of Algorithm 2.1, the algorithm
breaks down. The following lemma assures that in this case the Krylov subspace
Kj(A, b) has reached the maximum possible dimension and is invariant under A.

Lemma 2.22. Arnoldi’s method breaks down at step j if and only if j = m∗ (with
m∗ as defined in Proposition 2.20). In this case, Kj(A, b) is invariant under A.

Proof. See [115, Proposition 6.6].

Collecting the orthonormal basis vectors computed by Algorithm 2.1 in a matrix
Vm = [v1, . . . , vm] ∈ C

n×m and the orthogonalization coefficients in an unreduced
upper Hessenberg matrix Hm = [hi,j]i,j=1,...,m ∈ C

m×m yields the Arnoldi decom-
position

AVm = VmHm + hm+1,mvm+1ê
H
m (2.23)

where êm ∈ C
m denotes the mth canonical unit vector. The following result

guarantees that the Arnoldi decomposition (2.23) is essentially unique, which will
be useful in Chapter 6 and 7, where we compute decompositions of the form (2.23)
by other means than by applying Algorithm 2.1 and can still be sure to obtain
the same result.

Lemma 2.23. Let A ∈ C
n×n and let [V, v ] ∈ C

n×(m+1) have orthonormal columns.
If there exist an upper Hessenberg matrix H ∈ C

m×m and a scalar h ∈ C such
that

AV = V H + hvêH
m

is fulfilled, then V = VmD and H = DHHmD, where D ∈ C
m×m is a unitary

diagonal matrix and Hm and Vm are the matrices from the Arnoldi decomposi-
tion (2.23) corresponding to the Krylov subspace Km(A, v1), where v1 is the first
column of V . In particular, if all subdiagonal entries of H are real and positive,
then V = Vm and H = Hm.

Proof. See [129, Chapter 5, Theorem 1.3].

By multiplying both sides of the relation (2.23) by V H
m and exploiting the orthog-

onality of the vi, i = 1, . . . ,m+ 1, one finds

V H
m AVm = Hm, (2.24)

showing that Hm can be interpreted as the (orthogonal) projection of A onto
the Krylov subspace Km(A, b). The identity (2.24) also allows to easily prove
that substantial algorithmic and computational simplifications are possible in
Arnoldi’s method when the matrix A is Hermitian. By (2.24) it directly follows
that Hm is Hermitian whenever A is Hermitian, and because Hm is in addition
upper Hessenberg by construction, it must be tridiagonal in this case. This in turn
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means that it is known in advance that the orthogonalization coefficients hi,j for
i < j−1 are zero, or in other words, that Avj is already orthogonal to v1, . . . , vj−2.
This allows for a simplified version of Arnoldi’s method (which, in particular, has
constant computational cost across all iterations because the orthogonalization
process does not get more expensive from one iteration to the next), known as the
Lanczos method [102,115]. The resulting method is given as Algorithm 2.2 (note
that it is implicitly assumed that the assignment hj,j+1 ← hj+1,j is performed
if the tridiagonal matrix Hm is needed). Let us explicitly note that throughout
this thesis we will also denote the tridiagonal matrix resulting from the Lanczos
process as Hm, while in the literature it is typically denoted by Tm. As many—
but not all—of our results apply to Hermitian and non-Hermitian matrices alike,
we do not make this distinction in notation in order to not change notation from
one result to the next.

Algorithm 2.2: Lanczos method

Given: A, b, m
v1 ← 1

‖b‖2b1

h1,0 ← 02

for j = 1, . . . ,m do3

wj ← Avj − hj,j−1vj−14

hj,j ← vH
j wj5

wj ← wj − hj,jvj6

hj+1,j ← ‖wj‖27

if hj+1,j = 0 then8

Stop.9

vj+1 ← 1
hj+1,j

wj10

From the above considerations, it is clear that Algorithm 2.2 computes an or-
thonormal basis of Km(A, b) if A is Hermitian and that it is mathematically
equivalent to Arnoldi’s method (however, in practice one observes a severe loss of
orthogonality of the basis vectors after some iterations, such that in some appli-
cations, reorthogonalization strategies have to be applied, see, e.g., [79,105,122]).

By Algorithm 2.1 (or Algorithm 2.2 for Hermitian A), we can compute an or-
thonormal basis of Km(A, b). The next question we have to answer is, given such
a basis Vm, how to find an approximation

f(A)b ≈ fm ∈ Km(A, b)

by imposing some suitable condition on fm. To answer this question, consider the
following. The main motivation for using Krylov subspace methods is given by
Definition 2.2. In view of this definition, the idea of any Krylov subspace method

22



2.3 Krylov subspace methods for f(A)b

can be summarized as approximating the polynomial p from Definition 2.2 (which
may be of degree up to n−1) by a polynomial of smaller degreem−1. We can thus
rephrase the above question as how to choose a polynomial pm−1 ∈ Πm−1, such
that pm−1(A)b ≈ p(A)b. A straightforward approach, considering the fact that p
interpolates f at spec(A), is to choose pm−1 as a polynomial which interpolates
f at m suitably chosen points. One such choice are the eigenvalues of Hm, the
so-called Ritz values corresponding to Km(A, b). The following, classical result
relates the Ritz values to eigenvalues of A, thus giving a first motivation for why
one can consider them to be sensible interpolation points.

Proposition 2.24. Let Hm be the upper Hessenberg matrix from the Arnoldi
decomposition (2.23) corresponding to Km(A, b) and let spec(Hm) = {θ1, . . . , θm}.
Then

θi ∈ W(A) for i = 1, . . . ,m,

where

W(A) :=

{
vHAv

vHv
: v 6= 0

}

denotes the field of values of A. If, in addition, Km(A, b) is A-invariant, i.e.,
AKm(A, b) ⊆ Km(A, b), then

θi ∈ spec(A) for i = 1, . . . ,m.

Proof. The first part of the assertion follows directly from the relation Hm =
V H
m AVm and the fact that Vm has orthonormal columns. The second part of the

statement follows, e.g., directly from [129, Chapter 4, Theorem 4.1].

Proposition 2.24 guarantees that the Ritz values corresponding to Km(A, b) are
always related to some kind of spectral information of A as they lie in its field of
values (which reduces to the spectral interval [λmin, λmax] in the Hermitian case),
and that they even become exact eigenvalues of A once the Krylov subspace
reaches its maximum possible dimension. Of course, Km(A, b) will in general not
become A-invariant in practical computations, where one uses only small values
of m, but the result at least shows that there is a relation between Ritz values and
eigenvalues of A. In case that A is Hermitian, one can show further results on the
behavior of the Ritz values (which can be more or less arbitrary in the general,
non-Hermitian case) before Km(A, b) becomes A-invariant, e.g., that “outliers” at
the left or right end of the spectrum are well approximated first, cf., e.g., [101,134].

In addition to the reasoning stated above, choosing pm−1 as the polynomial which
interpolates f at the Ritz values corresponding to Km(A, b) has the additional
advantage that pm−1(A)b is readily available without needing to explicitly com-
pute pm−1 (the numerical computation of high-degree interpolating polynomials
can become highly unstable [131]). The precise result is stated in the following
lemma, first proven in [47] and [114].
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Lemma 2.25. Let A ∈ C
n×n and let b ∈ C

n. Let Vm, Hm fulfill the relation (2.23)
and let

fm = Vmf(V
H
m AVm)V

H
m b = ‖b‖2Vmf(Hm)ê1. (2.25)

Then

fm = p̃m−1(A)b,

where p̃m−1 ∈ Πm−1 is the unique polynomial interpolating f at the eigenvalues of
Hm in the Hermite sense, provided that f is defined on spec(Hm).

Proof. See, e.g., [85, Theorem 13.5].

The approximation defined by (2.25) is commonly referred to as Arnoldi (or
Lanczos) approximation to f(A)b and is the standard choice for an approxi-
mation from the Krylov subspace Km(A, b). Another possible motivation for
using (2.25), without even considering the interpolating polynomial characteriza-
tion, is that (2.25) is a projection of the original problem (2.21) onto the smaller
space Km(A, b). Of course, for (2.25) to be well-defined, f(Hm) must exist, i.e.,
f must be defined on spec(Hm). For this, it is not sufficient that f(A) is defined,
as the following example illustrates.

Example 2.26. Consider the symmetric indefinite matrix

A =

[
1 0
0 −1

]
,

the vector b = [1, 1]H and the function f(z) = z−1. As spec(A) = {−1, 1},
the matrix function f(A) = A−1 is well-defined and we have f(A)b =
A−1b = [1,−1]H . However, one step of the Lanczos method computes
v1 = [1/

√
2, 1/
√
2]H and w1 = Av1 = [1/

√
2,−1/

√
2]H , which is already

orthogonal to v1, so that h1,1 = vH
1 w1 = 0 and thus H1 = 0. Therefore,

f1 = ‖b‖2V1f(H1)ê1 is not defined.

Example 2.26 motivates, amongst other reasons we will come across in later parts
of this thesis, that it may under some circumstances be reasonable to extract
other approximations than the Arnoldi approximation (2.25) from a given Krylov
subspace. The following result from [48] is a generalization of Lemma 2.25 which
shows that the polynomial interpolation characterization also holds when Hm

in (2.25) is replaced by a suitable rank-one modification.

24



2.3 Krylov subspace methods for f(A)b

Lemma 2.27. Let A ∈ C
n×n and let b ∈ C

n. Let Vm, Hm fulfill the rela-
tion (2.23), let z ∈ C

n and let

f̂m = ‖b‖2Vmf(Hm + z êH
m )ê1. (2.26)

Then

f̂m = p̂m−1(A)b,

where p̂m−1 ∈ Πm−1 is the unique polynomial interpolating f at the eigenvalues of
Hm + z êH

m in the Hermite sense, provided that f is defined on spec(Hm + z êH
m ).

Proof. See [48, Lemma 3 and Corollary 4].

Before we proceed, we give some further comments on the advantages and disad-
vantages of the Arnoldi approximation (and the related approximations (2.26)).
An important advantageous feature of Arnoldi’s method for matrix functions is
that (at least in exact arithmetic), finite termination is guaranteed as long as
all approximations are defined. By Lemma 2.22, the method breaks down after
m steps if and only if Km(A, b) is invariant under A. This in turn means that
f(A)b = p(A)b is already contained in Km(A, b) and the projection (2.25) will
yield the exact value of f(A)b (therefore, such a breakdown is sometimes also
referred to as a lucky breakdown). However, using Arnoldi’s method for matrix
functions also has several disadvantages. As already illustrated by Example 2.26,
the Arnoldi approximations need not exist even when f(A)b is defined. Other dis-
advantages are mainly of practical, computational nature. For evaluating (2.25),
one needs to store the whole Arnoldi basis Vm. As the Arnoldi vectors will in
general be full vectors, this means storing a dense n ×m matrix. As A is often
very large and sparse in practical applications, n will frequently be large. In this
case, the number m of steps that can be performed is often limited by the avail-
able memory and may not be large enough to compute an approximation of the
desired accuracy. In addition, even if the available memory does not limit the
number of steps that can be performed, the evaluation of f(Hm)ê1, the action of
function of a matrix of size m ×m on a vector, becomes increasingly expensive
with growing number of iterations. If the number of iterations necessary to reach
a sufficiently accurate approximation lies in the order of magnitude of n, eval-
uating f(Hm)ê1 may be about as difficult as evaluating f(A)b itself, which can
make the method infeasible for some problems. There are different approaches
for overcoming these difficulties. On the one hand, restarting techniques are pro-
posed, in which a certain (small) number m of steps is performed, fm is computed
by (2.25) and then, in a new Arnoldi iteration, one tries to approximate the
remaining error f(A)b − fm. This technique is more often studied and better
understood in the context of linear systems, see, e.g., [56, 115, 116, 123] and we
will at this point not go into detail concerning this topic. Chapter 4 is devoted

25
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to restarting techniques, containing a review of existing approaches from the lit-
erature and new developments and extensions of these approaches. The other
established approach for overcoming the disadvantages of the Arnoldi approxima-
tion is using other subspaces than Krylov subspaces Km(A, b) which (hopefully)
have better approximation properties, in the sense that a smaller dimension m
is needed to reach an accurate enough approximation. Popular choices for these
richer subspaces are rational Krylov subspaces and, as a special case of the former,
extended Krylov subspaces. We discuss extended Krylov subspace methods and
their properties in Chapter 7, for further details and the treatment of general ra-
tional Krylov subspaces, we refer to, e.g., [38,80,81,94–96,99] and the references
therein.

2.4 The special case f (z) = z−1

Krylov subspace methods are frequently used for the solution of linear systems,
i.e., the special case of (2.21) with f(z) = z−1. As we will exploit the relation
between the approximation of Stieltjes matrix functions by the Arnoldi approxi-
mation (2.25) and the solution of linear systems at several points throughout this
thesis, we will briefly cover some of the basic terminology and results arising in
this setting in the following. We do not in any way strive for completeness, espe-
cially as there is a broad variety of Krylov subspace methods for linear systems
like, e.g., BiCGStab [128,138] or QMR [52], to name just two, which do not have
a direct connection to the Arnoldi approximation (2.25). They are therefore not
of relevance for the developments of this thesis, although some of them are widely
used in practical applications.

The method arising when the Arnoldi approximation (2.25) is applied to the linear
system

Ax = b ⇔ x = A−1b,

i.e, the computation of the approximation

xm = ‖b‖2VmH−1
m ê1, (2.27)

where Vm, Hm are the matrices resulting from Arnoldi’s method for A and b, is
known as the full orthogonalization method (FOM) [113, 115] for linear systems.
Note that when solving linear systems by a Krylov subspace method, it is common
practice to provide the method with an initial guess x0. In this case, one only
needs to approximate the remaining error x ∗ − x0 of the initial guess. The
following well-known result (which we state as a proposition despite its simple
nature, as it will be used extensively throughout this thesis) gives an easy way to
do so.
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Proposition 2.28. Let A ∈ C
n×n, let b ∈ C

n and let x ∗ be the solution of the
linear system Ax = b. Further, let x0 ∈ C

n and define the residual r0 = b−Ax0.
Then the error e0 = x ∗ − x0 satisfies the residual equation

Ae0 = r0. (2.28)

Proof. A direct computation yields A(x ∗−x0) = Ax ∗−Ax0 = b−Ax0 = r0.

According to Proposition 2.28, one can compute the residual r0 = b − Ax0 and
then find an Arnoldi approximation for A−1r0, the solution of the residual equa-
tion (2.28), i.e., one generates iterates in the affine Krylov subspace

x0 +Km(A, r0).

The following result gives an explicit expression for the residual generated by
applying m steps of FOM to the linear system Ax = b.

Proposition 2.29. Let A ∈ C
n×n, b,x0 ∈ C

n and let xm be the approximation
from m steps of FOM (with initial guess x0) applied to the linear system Ax = b.
Then the residual rm = b − Axm satisfies

rm = −hm+1,mê
H
mymvm+1, (2.29)

where ym = ‖r0‖2H−1
m ê1, with Hm, hm+1,m and vm+1 from the Arnoldi decompo-

sition (2.23). Thus, its Euclidean norm is given by

‖rm‖2 = hm+1,m|êH
mym|. (2.30)

Proof. See, e.g., [115, Proposition 6.7].

By recalling the definition of ym in (2.30), we see that the Euclidean norm of the
FOM residual can be found by computing the bottom left entry of the inverse of
Hm, a relation which we will (implicitly and explicitly) exploit in later chapters.
An important implication of Proposition 2.28, besides allowing to provide Krylov
subspace methods for linear systems with an initial guess, is the possibility to
restart them easily. After some number m of steps of FOM (or any other Krylov
subspace method for Ax = b), one computes the residual rm = b −Axm and can
then approximately solve the residual equation Aem = rm by m further steps of
the same method, obtaining an approximation ẽm for the error em = x ∗ − xm.
By an additive correction x

(2)
m = xm + ẽm one then (hopefully) obtains a better

approximation for x ∗. This procedure can then again be applied to the new
residual equation corresponding to x

(2)
m and so on, yielding after k restart cycles

x (k+1)
m = x (k)

m + ẽ (k)
m with ẽ (k)

m = ‖r (k−1)
m ‖2V (k)

m (H(k)
m )−1ê1, (2.31)

27



2 Review of basic material

where r
(k−1)
m = b − Ax

(k−1)
m is the residual of the iterate from the (k − 1)st

cycle. This way, all quantities computed in the previous cycles of the method
(in particular the matrices V

(i)
m and H

(i)
m for i = 1, . . . , k − 1) can be discarded,

thus avoiding the growing storage requirements and computational cost which is
associated with the unrestarted FOM approximation (2.27). We give a sketch of
the resulting method (without going into detail on possible stopping criteria) in
Algorithm 2.3, it is discussed in detail in [113, 115]. Another method for which
restarting is frequently used in practice is GMRES [116].

Algorithm 2.3: Restarted full orthogonalization method

Given: A, b, m, x0

r0 ← b − Ax01

β ← ‖r0‖22

v1 ← 1
β
r03

tol reached← 04

while tol reached = 0 do5

Compute Vm, Hm by Algorithm 2.1 applied to A, r0.6

ym ← βH−1
m ê17

xm ← x0 + Vmym8

if target accuracy reached then9

tol reached← 110

x0 ← xm11

r0 ← −hm+1,mê
H
mymvm+112

β ← ‖r0‖213

However, restarting may slow down or even destroy convergence of a Krylov sub-
space method. The convergence behavior of restarted Krylov subspace meth-
ods is until now not fully understood, for a discussion of this topic we refer to,
e.g., [39, 40, 97, 137] and also to Section 5.6 of this thesis. We demonstrate by an
example (which we also presented in [57]) that restarted FOM may exhibit a cyclic
behavior and may fail to converge even for the maximum restart length m = n−1
(the restart length m = n corresponds to FOM without restarting, as termination
after n steps is guaranteed by Lemma 2.22, at least in exact arithmetic).

Example 2.30. Consider the linear system Ax = b with the matrix

A =




1 0 · · · 0 1
1 1 0 · · · 0

0 1 1
. . .

...
...

. . . . . . . . . 0
0 · · · 0 1 1



∈ R

n×n

28



2.4 The special case f(z) = z−1

for odd n and the vector b = ê1. The exact solution of this linear system is
given by

x (i) =

{
1
2

if i is odd,

−1
2

if i is even.

If restarted FOM with restart length m = n− 1 and x0 = 0 is applied to the
linear system Ax = b, the first Arnoldi basis is V

(1)
m = [ê1, ê2, . . . , ên−1] and

the upper Hessenberg matrix H
(1)
m is given by

H(1)
m =




1 0 · · · 0

1 1
. . .

...
...

. . . . . . 0
0 · · · 1 1


 ∈ R

(n−1)×(n−1). (2.32)

Obviously, spec(H
(1)
m ) = {1} so that H

(1)
m is nonsingular and the Arnoldi

approximation x
(1)
m = V

(1)
m (H

(1)
m )−1ê1 is defined. One directly checks that

the corresponding residual r
(1)
m = b − Ax (1)

m satisfies r
(1)
m = ên. The second

restart cycle computes the Arnoldi basis V
(2)
m = [ên, ê1, . . . , ên−2], the same

Hessenberg matrix H
(2)
m = H

(1)
m and the residual r

(2)
m = ên−1. Continuing

in this manner, one sees that throughout all restart cycles, the Hessenberg
matrices are identical to the one from (2.32) and that in the kth cycle (k ≤ n),
the Arnoldi basis consists of all canonical unit vectors except ên+1−k, and

r
(k)
m = ên+1−k. Thus, after n restart cycles, r

(n)
m = ê1, so that from there on

every sequence of n cycles is identical to the sequence of the first n cycles and
no convergence is obtained. Similar cyclic behavior can also be observed for
any other restart length m < n, so that the method in fact stagnates for all
restart lengths.

If A is Hermitian positive definite (i.e., the Lanczos process may be used to
compute the orthonormal basis Vm), the short recurrence for the basis vectors vj
translates into a short recurrence for the iterates xj from (2.27). For a detailed
derivation of this short recurrence, we refer to [115, Chapter 6.7]. The resulting
method, given as Algorithm 2.4, is known as the conjugate gradient method (CG),
first introduced in [84], and is widely used for solving Hermitian positive definite
linear systems in practice.

In addition to the computational advantages of the conjugate gradient method
over FOM, the convergence behavior is also understood much better. Classical
results on the convergence of the conjugate gradient method bound the energy
norm of the error.
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2 Review of basic material

Algorithm 2.4: Conjugate gradient method

Given: A, b, m, x0

r0 ← b − Ax01

p0 ← r02

for j = 0, 1, . . . ,m do3

αj ← (rH
j rj)/(p

H
j Apj)4

xj+1 ← xj + αjpj5

rj+1 ← rj − αjApj6

βj ← (rH
j+1rj+1)/(r

H
j rj)7

pj+1 ← rj+1 + βjpj8

Definition 2.31. Let A ∈ C
n×n be Hermitian positive definite. Then the

energy norm of a vector v ∈ C
n with respect to A is defined as

‖v‖A =
√

(v , Av).

The fact that ‖ · ‖A is indeed a norm follows easily from the well-known property
that the bilinear form (x, y)A = (x,Ay) is an inner product for Hermitian positive
definite A.

The following classical result is derived by exploiting the approximation properties
of Chebyshev polynomials. We state it here, as it will later be useful to investigate
the convergence behavior of the restarted Arnoldi method for Stieltjes functions
of Hermitian positive definite matrices.

Theorem 2.32. Let A ∈ C
n×n be Hermitian positive definite and let x0, b ∈ C

n.
Further, let x ∗ denote the solution of the linear system Ax = b and let xm be
the mth iterate of the CG method with initial guess x0. Let κ = λmax

λmin
, where λmin

and λmax are the smallest and largest eigenvalue of A, respectively, denote the
condition number of A and define

c =

√
κ− 1√
κ+ 1

and αm =
1

cosh(m ln c)

(where we set αm = 0 if κ = 1). Then the error in the CG method satisfies

‖x ∗ − xm‖A ≤ αm‖x ∗ − x0‖A.

Proof. The result follows from [77, Theorem 3.1.1] by using cosh(m ln c) = (cm +
c−m)/2.
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2.4 The special case f(z) = z−1

Another important Krylov subspace method, which is typically the method of
choice for solving large, sparse, non-Hermitian linear systems in practical ap-
plications, is GMRES [116]. GMRES differs from FOM (or CG in the Hermi-
tian case) in the way the approximation is extracted from the affine Krylov sub-
space x0 + Km(A, r0). The GMRES iterate xG

m is chosen such that the residual
rG
m = b−AxG

m is minimal among all possible approximations from x0+Km(A, r0).
Defining the extended Hessenberg matrix

Hm =

[
Hm

hm+1,mê
H
m

]
∈ C

(m+1)×m,

every approximation of the form xm = x0 + Vmym fulfills

b − Axm = r0 − AVmym = Vm(‖r0‖2ê1 −Hmym)

so that

‖b − Axm‖2 =
∥∥‖r0‖2ê1 −Hmym

∥∥
2
.

This shows that the mth GMRES iterate, i.e., the vector which minimizes the
residual norm among all approximations from x0 + Km(A, r0), can be computed
as

xG
m = x0 + Vmy

G
m, (2.33)

where yG
m solves the linear least squares problem

∥∥‖r0‖2ê1 −Hmy
∥∥
2
→ min . (2.34)

Interestingly, one can show that the GMRES approximation (2.33) also has a
connection to polynomial interpolation, albeit in different interpolation nodes,
the so-called harmonic Ritz values.

Definition 2.33. The harmonic Ritz values of A ∈ C
n×n with respect to a

subspace U ⊆ C
n are those numbers ϑ ∈ C for which there exists x ∈ U , x 6=

0 such that
Ax − ϑx ⊥ AU .

Although Definition 2.33 allows to define harmonic Ritz values corresponding to
an arbitrary subspace U , we will in the following restrict ourselves to the case
U = Km(A, r0), as these are the harmonic Ritz values relevant in the context of
GMRES.
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Lemma 2.34. Let A ∈ C
n×n, let b ∈ C

n and let xG
m be the GMRES approximation

(with initial guess x0) defined by (2.33) and (2.34). Then

xG
m = x0 + p̂m−1(A)r0,

where p̂m−1 is the unique polynomial of degree at most m − 1 which interpolates
f(z) = z−1 in the harmonic Ritz values of A with respect to Km(A, r0).

Proof. See, e.g., [76, Theorem 5.1] and [111, Section 5].

Lemma 2.34 allows us to derive another characterization of the GMRES approx-
imation, based on the result of Lemma 2.27. To do so, we need the following
auxiliary result.

Proposition 2.35. Consider the Arnoldi decomposition (2.23). The harmonic
Ritz values of A with respect to Km(A, r0) are the eigenvalues of the matrix

H̃m = Hm +
(
hm+1,mH

−1
m êm

)
êH
m , (2.35)

provided that Hm is nonsingular.

Proof. See [111, Section 7.1].

Lemma 2.27 and 2.34 together with Proposition 2.35 now allow us to conclude
that the GMRES approximation can also be characterized as

xG
m = x0 + ‖r0‖2Vm

(
Hm +

(
hm+1,mH

−1
m êm

)
êH
m

)−1
ê1. (2.36)

It is not advisable to use this representation for practical computations due to
possible numerical instabilities, and in addition due to the fact that (2.36) is not
defined when Hm is singular, while the computation of xG

m via (2.33) and (2.34)
is always possible. Nonetheless, the relation (2.36) will later allow us to derive a
method for the approximation of Stieltjes matrix functions f(A) times a vector
b which reduces to GMRES in the case f(z) = z−1 and has some favorable
theoretical properties; cf. Section 5.4 and 5.5.

Next, we give a result from [42] on the reduction of the residual norm in the
GMRES method for the class of positive real matrices.

Theorem 2.36. Let A ∈ C
n×n be positive real, i.e., ℜ(vHAv) > 0 for all v ∈

C
n, v 6= 0 and let b ∈ C

n. Define the quantities

δ := min

{∣∣∣∣
vHAv

vHv

∣∣∣∣ : v ∈ C
n, v 6= 0

}
, (2.37)

δ′ := min

{∣∣∣∣
vHA−1v

vHv

∣∣∣∣ : v ∈ C
n, v 6= 0

}
. (2.38)
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Then the residual rG
m corresponding to the GMRES iterate xG

m defined by (2.33)
and (2.34) with initial guess x0 satisfies

‖rG
m‖2 ≤

(
1− δδ′

)m/2‖r0‖2. (2.39)

Proof. See, e.g., [42, Corollary 6.2].

Note that the quantities δ and δ′ from (2.37) and (2.38) are positive if A is
positive real (as in this case, A−1 is positive real as well, see [91, Chapter 1]) and
satisfy δδ′ ≤ 1, see, e.g., [42, Section 6]. In particular, one can directly conclude
from (2.39) that the restarted GMRES iteration for Ax = b always converges to
the solution x ∗ if A is positive real.

Corollary 2.37. Let the assumptions of Theorem 2.36 hold, let (xG
m)(k) denote

the iterate obtained by k cycles of restarted GMRES with restart length m and
initial guess x0 and let (rG

m)(k) be the corresponding residual. Then

‖(rG
m)(k)‖2 ≤

(
1− δδ′

)km/2‖r0‖2. (2.40)

In particular, the restarted GMRES method converges to the exact solution x ∗ of
Ax = b, because the right-hand side of (2.40) goes to zero for k →∞.

Proof. Equation (2.40) directly follows from Theorem 2.36 by noting that he kth
cycle of restarted GMRES can be interpreted as performing m steps of GMRES
with initial guess (xG

m)(k−1). As 0 < δδ′ ≤ 1, we have |1 − δδ′| ≤ 1, so that the
right-hand side of (2.40) goes to zero for k →∞.

2.4.1 Krylov subspace methods for shifted linear systems

Another important aspect central to many results of this thesis is the behavior of
Krylov subspace methods for shifted linear systems of the form

(A+ tI)x (t) = b, (2.41)

i.e., families of systems with the same right-hand side and with the system ma-
trices differing only by multiples of the identity matrix. By (2.20), these systems
have a strong relation to Stieltjes matrix functions. The following result concern-
ing Krylov subspaces for these systems holds.

Proposition 2.38. Let A ∈ C
n×n, let b ∈ C

n and let t ∈ C. Then

(i) Km(A, b) = Km(A+ tI, b) for all m > 0,
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(ii) Algorithm 2.1 applied to A+ tI and b computes the Arnoldi decomposition

(A+ tI)Vm = Vm(Hm + tI) + hm+1,mvm+1ê
H
m ,

where Vm and Hm are the matrices from the Arnoldi decomposition (2.23)
for A and b,

(iii) the mth FOM approximation xm(t) for the linear system (A + tI)x (t) = b

with initial guess x0(t) = 0 is given by

xm(t) = ‖b‖2Vm(Hm + tI)−1ê1.

Proof. Assertion (i) directly follows by investigating the structure of powers of
the shifted matrix A+ tI. Part (ii) can be concluded by inspecting the operations
in Arnoldi’s method, Algorithm 2.1. Part (iii) then follows directly from (ii).

The assertions of Proposition 2.38 have been observed several times and for dif-
ferent Krylov subspace methods, see, e.g., [54, 62, 123]. These observations are
typically used to implement methods which are capable of solving several shifted
linear systems at once, while only needing to compute a single approximation
subspace. This corresponds to only performing only a single matrix-vector multi-
plication per iteration, independent of the number of shifted systems to be solved,
cf., e.g., [54, 62, 123].

A topic to which special care has to be devoted when dealing with the simultane-
ous solution of shifted linear systems is restarting. In the first cycle of a Krylov
subspace method for a family of systems of the form (2.41), the same Krylov
subspace can be constructed for all shifted systems (at least if all methods are
started with initial guess x0(t) = 0) due to the fact that all systems have the
same right-hand side b. This need not be the case after restarting the method,
as then one attempts to approximately solve the shifted residual equations

(A+ tI)em(t) = rm(t),

where rm(t) = b − (A + tI)xm(t), to compute an approximation for the error
em(t) := x ∗(t)− xm(t) of the current iterate. Of course, it suffices that the right-
hand sides of the two systems be collinear (instead of equal) for Proposition 2.38
to hold. Therefore, it is again possible to use the same Krylov subspace for all
shifted systems if all residuals rm(t) are collinear. For the full orthogonalization
method, this is indeed the case, as by Proposition 2.29, the mth FOM residual is
collinear to the (m+ 1)st Arnoldi basis vector. Due to the shift invariance of the
Arnoldi method stated by Proposition 2.38(ii), this basis vector vm+1 is the same
for all systems, independent of the shift t. Thus, all shifted FOM residuals are
collinear to vm+1 and one can compute the restarted shifted FOM approximations
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of the second cycle (or later cycles) from one Krylov subspace for all systems again;
see [123] for an in-depth treatment of the resulting method.

The GMRES method, however, does in general not produce collinear residu-
als, so that one cannot just compute GMRES approximations for systems of the
form (2.41) with different shifts t and then use only one approximation space
again after restarting. In [56], a variant of restarted GMRES for shifted linear
systems has been proposed which overcomes these issues as follows: Only the
approximate solution for one of the systems (the so-called seed system) is com-
puted as a standard GMRES iterate as defined by (2.33) and (2.34), and then
the approximations for the other systems are computed in a way that enforces
collinearity to the residual of the seed system. This way, the iterates for the
other systems are no true GMRES iterates (and therefore, e.g., do not have the
residual norm minimization property) but restarting with one Krylov subspace
for all systems is again possible. We do not go into detail concerning this topic
here, as the precise construction is not of importance in our context. Theoretical
results concerning the “shifted” GMRES method from [56] will be addressed in
Chapter 5, where they are transferred to a method for approximating Stieltjes
matrix functions.

2.5 Numerical quadrature

When dealing with integrals of functions for which no antiderivative is known
or available in a numerical computation, one instead has to approximate the
integral numerically by what is typically called a quadrature rule. As integral
representations of functions for which no closed form is available will appear at
many places throughout this thesis, due to the integral representation of the error
in Arnoldi’s method to be introduced in Chapter 3, quadrature rules are of vital
importance for making the methods and results presented in this thesis feasible
for numerical computations. We therefore briefly review the basic concepts of
(mostly Gauss) quadrature, following the presentation in [33] and [74]. Other
references for a basic treatment of quadrature rules include [46, 100, 131] (albeit
sometimes in a slightly different setting than here).

We consider only quadrature rules on finite intervals in the following. For infinite
intervals of integration, one either applies a suitable variable transformation which
maps the interval of integration to a finite one or uses quadrature rules specifically
designed for infinite intervals; see, e.g., [33, Chapter 3] or [68]. As we will pursue
the first approach and comment on the choices of variable transformations in
depth in Section 4.3, where they are actually applied in our setting, we do not go
into detail concerning infinite intervals of integration here.
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Gauss quadrature rules are typically introduced with respect to a nonnegative
weight function w(t) ≥ 0 in the literature. We will use a slightly more general
approach in the following definition of quadrature rules, in the sense that we
introduce Gauss rules for Riemann–Stieltjes integrals corresponding to a mono-
tonically increasing function µ. By Lemma 2.8, if µ is differentiable, this can also
be interpreted as an integral corresponding to the nonnegative weight function
w = µ′. When dealing with quadrature rules other than Gauss rules in the fol-
lowing, we will tacitly assume that µ(t) = t, i.e, we are in the case of Riemann
integrals.

Definition 2.39. Let [a, b] be a finite interval, let µ : [a, b] −→ R be mono-
tonically increasing and let g : [a, b] −→ C be any function such that the
integral ∫ b

a

g(t) dµ(t) (2.42)

exists and has a finite value. An ℓ-point quadrature rule for µ on [a, b] is then
given by a set of weights ωi ∈ C, i = 1, . . . , ℓ and a set of nodes ti ∈ [a, b], i =
1, . . . , ℓ such that

ℓ∑

i=1

ωig(ti),

approximates (2.42).

Two of the simplest quadrature rules are the compound midpoint rule and the
compound trapezoidal rule. The compound midpoint rule is defined as

Mℓ(g) =
b− a
ℓ

ℓ∑

i=1

g

(
a+

(
i− 1

2

)
b− a
ℓ

)
, (2.43)

i.e., all weights are equal to b−a
ℓ

and the quadrature nodes are chosen as the
centers of a subdivision of [a, b] into ℓ intervals of equal length. The compound
trapezoidal rule is given by

Tℓ(g) =
b− a
2ℓ

(
g(a) + g(b)

)
+
b− a
ℓ

ℓ−1∑

i=1

g

(
a+ i

b− a
ℓ

)
, (2.44)

i.e., the nodes are chosen equispaced in [a, b], this time including the endpoints,
and the weights are chosen to be b−a

2ℓ
at the endpoints and b−a

ℓ
for the interior

nodes. An illustration of these simple rules (also called primitive rules) is given
in Figure 2.1.
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Figure 2.1: Illustration of the compound midpoint (left) and trapezoidal (right) rule for
integrating the function g(t) = 1 + sin((t2 − 1

2 t)π) on the interval [−1, 1] with ℓ = 6
quadrature points.

The following theorem gives an expression for the error of the primitive quadrature
rules (2.43) and (2.44).

Theorem 2.40. Let g : [a, b] → C be two times continuously differentiable on
(a, b) and let Mℓ(g) and Tℓ(g) be given by (2.43) and (2.44), respectively. Then

∫ b

a

g(t) dt−Mℓ(g) =
(b− a)3
24ℓ2

g′′(ξ) for some ξ ∈ (a, b)

and ∫ b

a

g(t) dt− Tℓ(g) = −
(b− a)3
12ℓ2

g′′(ξ) for some ξ ∈ (a, b).

Proof. See [33, Section 4.3].

Theorem 2.40 gives some interesting insight into the properties of the midpoint
and trapezoidal rule: Both rules are exact for linear functions (which is also
clear from geometric intuition; cf. Figure 2.1), and if the second derivative of g is
nonnegative on (a, b), we have

Mℓ(g) ≤
∫ b

a

g(t) dt ≤ Tℓ(g). (2.45)

Properties of the type (2.45), also known as bracketing properties, will prove useful
later in this thesis when using quadrature rules to compute bounds for the norm
of the error in Arnoldi’s method.
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The primitive quadrature rules introduced so far are in general only exact for
linear functions, i.e., polynomials of degree up to 1. As a quadrature rule, accord-
ing to Definition 2.39, is defined by 2ℓ parameters, ℓ weights and ℓ nodes, it is
a natural consideration to try to construct quadrature rules which are exact for
polynomials of degree up to 2ℓ−1. Quadrature rules of this type are called Gauss
quadrature rules.

Definition 2.41. Let [a, b] be a finite interval and let µ : [a, b] −→ R be
monotonically increasing. An ℓ-point quadrature rule for µ on [a, b] defined
by (ωi, ti), i = 1, . . . , ℓ is called Gauss quadrature rule if it satisfies

∫ b

a

p2ℓ−1(t) dµ(t) =
ℓ∑

i=1

ωip2ℓ−1(ti) for all p2ℓ−1 ∈ Π2ℓ−1. (2.46)

The existence of rules which satisfy (2.46) is closely related to orthonormal polyno-
mials. Note that a function µ which is nonnegative and monotonically increasing
on [a, b] induces a (not necessarily positive definite) inner product on polynomials
p, q ∈ Πk via

(p, q) =

∫ b

a

p(t)q(t) dµ(t). (2.47)

Sequences of polynomials which are orthonormal with respect to this inner prod-
uct play an important role in numerical quadrature.

Definition 2.42. A sequence of polynomials pi, i = 0, 1, . . . is called orthonor-
mal with respect to the inner product (2.47) if deg pi = i and

(pi, pj) =

{
1 if i = j,

0 otherwise.

One can show that for a nonnegative, monotonically increasing function µ there
exists a unique sequence of orthonormal polynomials if the inner product (2.47)
is positive definite, see, e.g., [69] (more precisely, if (2.47) fulfills (p, q) > 0 for
all 0 6= p, q ∈ Πk but not for p, q ∈ Πℓ for any ℓ > k, then there exists a finite
sequence of k + 1 orthonormal polynomials). We will in the following for ease of
presentation restrict ourselves to the case that (2.47) is positive definite, which is
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always fulfilled in the applications in this thesis. The following, central theorem
states that orthonormal polynomials always obey a three-term recurrence.

Theorem 2.43. Let µ be a nonnegative, monotonically increasing function on
[a, b] such that the inner product (2.47) is positive definite. Define

p−1 ≡ 0 and p0 ≡ 1/

(∫ b

a

dµ(t)

)1/2

.

Then there exist coefficients ai, bi, i = 0, 1, 2, . . . such that the sequence pi, i =
0, 1, . . . defined by

bipi(t) = (t− ai−1)pi−1(t)− bi−1pi−2(t), i = 1, 2, . . . (2.48)

is the unique sequence of orthonormal polynomials corresponding to the inner
product (2.47).

Proof. See [69, Theorem 1.27 and 1.29].

We just note at this point that the three-term recurrence (2.48) satisfied by
orthonormal polynomials is very similar to the three-term recurrence relation
satisfied by the Krylov basis vectors generated by the Lanczos process, Algo-
rithm 2.2, for Hermitian A. Together with the intimate relation between the
Lanczos/Arnoldi method and polynomials in A, this allows to also relate the
Lanczos process to orthonormal polynomials and thus Gauss quadrature. This
topic will be covered in depth in Section 6.1.

The relation between orthonormal polynomials and Gauss quadrature rules is
given by the following result.

Theorem 2.44. Let µ be a nonnegative, monotonically increasing function on
[a, b] such that the inner product (2.47) is positive definite and let pi, i = 0, 1, . . . ,
be the sequence of orthonormal polynomials corresponding to µ and [a, b]. Then

(i) The roots ti, i = 1, . . . , ℓ of pℓ(t) are real, simple and lie in (a, b) for all
ℓ ≥ 1.

(ii) The quadrature rule defined by the nodes ti, i = 1, . . . , ℓ and the weights

ωi = −
kℓ+1

kℓ

1

pℓ+1(ti)p′ℓ(ti)
, i = 1, . . . , ℓ (2.49)

where kℓ, kℓ+1 are the leading coefficients of pℓ and pℓ+1, respectively, is an
ℓ-point Gauss quadrature rule (which we denote by Gµ

ℓ (·) in the following).
In addition, the weights ωi from (2.49) are all positive.
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Proof. Part (i) is, e.g., shown in [74, Theorem 2.14]. For part (ii), see, e.g., [33,
Section 2.7]

Theorem 2.44 states that there always exists a Gauss quadrature rule for a given
interval [a, b] and nonnegative, monotonically increasing function µ if the inner
product (2.47) is positive definite. In [100] is is shown that there exist no ℓ-point
quadrature rules which integrate all polynomials of degree up to 2ℓ exactly, such
that Gauss quadrature rules are optimal in this sense.

The representation of the nodes and weights of a Gauss rule given by Theorem 2.44
is often not well-suited for numerical computations. In [75], based on [143], a
different approach was proposed, which we briefly mention here as it will be of
importance in Chapter 6 and 7 of this thesis. Assuming we know the coefficients
ai, bi in (2.48), we can rewrite the three-term recurrence in matrix notation as

tp(t) = Tℓp(t) + bℓpℓ(t)êℓ, (2.50)

where Tℓ is the tridiagonal matrix defined by

Tℓ =




a1 b1

b1 a2 b2
. . . . . . . . .

bℓ−1 aℓ−1 bℓ−1

bℓ aℓ




(2.51)

and
p(t) = [p0(t), p1(t), . . . , pℓ−1(t)]

T .

The nodes ti, i = 1, . . . , ℓ of the ℓ-point Gauss quadrature rule are the zeros of
pℓ(t), so that inserting one of these nodes as t in (2.50) yields

tip(ti) = Tℓp(ti),

showing that ti is an eigenvalue of Tℓ with corresponding eigenvector p(ti). Thus,
the nodes of Gauss quadrature rules can be computed by solving a symmetric
tridiagonal eigenvalue problem. One can further show that the corresponding
weights are the squares of the first entries of the eigenvectors p(ti) by using the
so-called Christoffel–Darboux identity [74, Theorem 2.11], as proven, e.g., in [143].
This approach gives a more stable way of computing the nodes and weights of
Gauss quadrature rules. We refer the reader to [74,75] for an in-depth treatment
of this approach and its implications for the structure and properties of Gauss
rules.

Next, we give two examples of practically relevant Gauss quadrature rules, which
we will also use in the computations presented in this thesis.
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2.5 Numerical quadrature

Example 2.45.

(i) The orthonormal polynomials corresponding to the function µ(t) = t on
the interval [−1, 1] are the Legendre polynomials given by the three-term
recurrence

p0 ≡ 1, p1(t) = t, (i+1)pi+1(t) = (2i+1)tpi(t)−ipi−1(t), i = 1, 2, . . . .

The resulting quadrature rules are called Gauss–Legendre rules.

(ii) The orthonormal polynomials corresponding to the Jacobi weight func-
tion w(t) = (1 − t)α(1 + t)β with α, β > −1 on the interval [−1, 1] are
the Jacobi polynomials

pi(t) =
1

2i

i∑

j=0

(
i+ α

j

)(
i+ β

i− j

)
(t− 1)i−j(t+ 1)j, i = 0, 1, . . . .

The associated quadrature rules are called Gauss–Jacobi rules. In the
special case α = β = −1

2
, the weight function simplifies to w(t) =

(1− t2)−1/2 and the resulting quadrature rule is called Gauss–Chebyshev
rule.

Note that we introduced Gauss–Jacobi quadrature with respect to a weight func-
tion in Example 2.45(ii) as this is the classical approach from the literature. Keep
in mind that the integral with respect to the weight function can also be inter-
preted as a Riemann–Stieltjes integral.

For a sufficiently smooth function g, the error of a Gauss quadrature rule can
again, similarly to the primitive quadrature rules, be expressed in terms of a
derivative of g evaluated at some point in (a, b).

Theorem 2.46. Let µ be a nonnegative, monotonically increasing function on
[a, b], let g be 2ℓ times continuously differentiable on (a, b) and let Gµ

ℓ (g) denote
the corresponding ℓ-point Gauss quadrature rule. Then there exists ξ ∈ (a, b) such
that ∫ b

a

g(t) dµ(t)−Gµ
ℓ (g) = cG

g(2ℓ)(ξ)

(2ℓ)!
,

with the constant

cG =

∫ b

a

pℓ(t)
2 dµ(t),

where pℓ is the ℓth orthonormal polynomial corresponding to µ and [a, b].
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Proof. See, e.g., [69, Corollary to Theorem 1.48].

By Theorem 2.46, if g(2ℓ) ≥ 0 on (a, b), an ℓ-point Gauss quadrature rule will
always give a lower bound for the exact value of the approximated integral. For
certain applications (cf. Chapter 6 and 7) it is of value to have a bracketing
property for Gauss rules, similar to the property (2.45) for the midpoint and
trapezoidal rule. This is possible by considering quadrature rules in which one
quadrature node is fixed a priori.

In principle, it is possible to fix any number of quadrature nodes at arbitrary
points in [a, b], but we will for brevity only consider the case in which one quadra-
ture node is fixed to be at a, the left endpoint of the integration interval, as
this is all that is needed in the remainder of this thesis. Rules of this kind with
ℓ+1 nodes, which are exact for polynomials of degree up to 2ℓ are called Gauss–
Radau rules. The nodes and weights of a Gauss–Radau quadrature rule can also
be computed by solving a symmetric tridiagonal matrix eigenvalue problem as for
ordinary Gauss rules, where the matrix Tℓ+1 is modified in such a way that one
of its eigenvalues is prescribed to be a. Without going into detail, we denote the
resulting quadrature rule by GRµ

ℓ+1(·). For its error, the following theorem holds.

Theorem 2.47. Let µ be a nonnegative, monotonically increasing function on
[a, b], let g be 2ℓ + 1 times continuously differentiable on (a, b) and let GRµ

ℓ+1(g)
denote the corresponding (ℓ+1)-point Gauss–Radau quadrature rule with one node
fixed at a. Then there exists ξ ∈ (a, b) such that

∫ b

a

g(t) dµ(t)−GRµ
ℓ+1(g) = cGR

g(2ℓ+1)(ξ)

(2ℓ+ 1)!
,

with the constant

cGR =

∫ b

a

pℓ(t)
2(t− a) dµ(t),

where pℓ is the ℓth orthonormal polynomial corresponding to µ̂ defined via

dµ̂(t) = (t− a) dµ(t)

on [a, b].

Proof. See, e.g., [69, Theorem 3.3].

According to Theorem 2.46 and 2.47, we have the following version of the brack-
eting property for functions g which are 2ℓ + 1 times continuously differentiable
and satisfy g(2ℓ) ≥ 0 and g(2ℓ+1) ≤ 0 on (a, b):

Gµ
ℓ (g) ≤

∫ b

a

g(t) dµ(t) ≤ GRµ
ℓ+1(g). (2.52)
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We end this section by pointing out that for the class of Stieltjes functions (or
more generally completely monotonic functions), the following important result
directly follows from (2.52).

Corollary 2.48. Let µ be a nonnegative, monotonically increasing function on
[a, b] and let g be a completely monotonic function, cf. Definition 2.16. Then for

all ℓ, ℓ̃ ≥ 1 we have

Gµ
ℓ (g) ≤

∫ b

a

g(t) dµ(t) ≤ GRµ

ℓ̃
(g), (2.53)

i.e., the Gauss and Gauss–Radau rules for
∫ b

a
g(t) dµ(t) always yield lower and

upper bounds for the exact value of the integral, respectively, independently of the
number of quadrature nodes.

2.6 Model problems

In this section we introduce various model problems from practical applications
which will be used to demonstrate and gauge the various features of the different
methods and results presented in this thesis in a realistic setting. All test cases
will be considered at various places throughout this thesis. Note that some will
be encountered more frequently than others, as not all methods and error bounds
are applicable to all of the model problems (depending, e.g., on Hermiticity or
definiteness of the resulting matrices).

2.6.1 Three-dimensional heat equation

The first model problem we consider is a standard test case which is frequently
used for testing Krylov subspace methods for the matrix exponential; see, e.g., [3,
43,67]. We consider the initial boundary value problem with homogeneous Dirich-
let boundary conditions (note that here and in the following, we use the nonstan-
dard notation θ instead of t for the time parameter to avoid confusion with the
integration variable in the integral representations of matrix functions or the shift
in families of shifted linear systems)

∂u

∂θ
−∆u = 0 on (0, 1)3 × (0, T ),

u(x, θ) = 0 on ∂(0, 1)3 for all θ ∈ [0, T ], (2.54)

u(x, 0) = u0(x) for all x ∈ (0, 1)3,
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2 Review of basic material

where u0(x) is a function describing the initial conditions and ∆ denotes the
Laplace operator defined by

∆u =
∂2u

∂x21
+
∂2u

∂x22
+
∂2u

∂x23
. (2.55)

The system (2.54) describes the evolution of a heat distribution in the unit cube
over a time interval (0, T ), starting from an initial distribution u0 at time 0.
Discretizing (2.55) by the standard seven-point finite difference stencil with N+2
equispaced grid points in each spatial direction, the system (2.54) reduces to a
linear initial value ODE problem

du(θ)

dθ
= Au(θ), for θ ∈ (0, T ) (2.56)

u(0) = u0,

where A ∈ R
N3×N3

is Hermitian negative definite and u0 contains the values of
the function u0(x) at the grid points. In our experiments, we choose N = 50,
resulting in a matrix of dimension 125,000 which can be written as

A = A1D ⊗ I ⊗ I + I ⊗ A1D ⊗ I + I ⊗ I ⊗ A1D,

where A1D is the tridiagonal matrix

A1D = (N + 1)2




−2 1

1 −2 . . .
. . . . . . 1

1 −2


 ∈ R

N×N .

The solution of the ODE system (2.56) is then given by

u(θ) = eθAu0, (2.57)

i.e., the evaluation of the solution u at some point in time amounts to evaluating
the action of a matrix exponential function on the vector of initial conditions. In
our experiments, we approximate u(θ) at θ = 0.1 starting with a homogeneous
initial heat distribution u0 = 1 .

2.6.2 Three-dimensional convection diffusion equation

Our next model problem, taken from [43, 107], again deals with a PDE initial
boundary value problem, which this time leads to a non-Hermitian matrix A. We
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investigate the system

∂u

∂θ
−∆u+ τ1

∂u

∂x1
+ τ2

∂u

∂x2
= 0 on (0, 1)3 × (0, T ),

u(x, θ) = 0 on ∂(0, 1)3 for all θ ∈ [0, T ], (2.58)

u(x, 0) = u0(x) for all x ∈ (0, 1)3.

Again discretizing the Laplace operator by seven-point finite differences on a grid
with N +2 points in each spatial direction and using centralized finite differences
(on the same grid) for the first-order derivatives, we find, as in Section 2.6.1, a
linear ODE system of the form (2.56), where this time the matrix A ∈ R

N3×N3
is

non-Hermitian and given by

A = A1D ⊗ I ⊗ I + I ⊗ C2 ⊗ I + I ⊗ I ⊗ C1 (2.59)

with N ×N matrices

Ci = (N + 1)2




−2 1− νi
1 + νi −2 . . .

. . . . . . 1− νi
1 + νi −2


 , i = 1, 2

where νi =
τi

2(N+1)
. Of course, the solution of the linear ODE system can again

be represented by a matrix exponential applied to the vector of initial conditions
as in (2.57) with the matrix A from (2.59). For our experiments we choose the
parameters N = 50 and θ = 2 · 10−3 and convection coefficients τ1 = 4080, τ2 =
2040, resulting in ν1 = 40, ν2 = 20, which leads to a highly non-Hermitian matrix
A. The (discretized) initial conditions are again given by u0 = 1 .

2.6.3 Three-dimensional wave equation

In this model problem, which is, e.g., considered in [38], we aim to approximate a
function different from the matrix exponential. We consider solving the following
initial boundary value problem for the three-dimensional wave equation on the
unit cube and an infinite time interval

−∆u− ∂2u

∂θ2
= 0 on (0, 1)3 × R

+

u(x, θ) = 0 on ∂(0, 1)3 for all θ ∈ R
+
0 , (2.60)

u(x, 0) = u0(x) for all x ∈ (0, 1)3.
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Discretizing the Laplace operator in the same way as in Section 2.6.1 and 2.6.2
leads to the system

d2u(θ)

dθ2
= Au(θ), for θ ∈ R

+

u(0) = u0,

where the matrix A is Hermitian positive definite in this case, as the sign of the
Laplace operator and the sign of the time derivative are the same in (2.60), as
opposed to (2.54) and (2.58). The solution of this system is given as

u(θ) = e−θ
√
Au0.

We rewrite this as

u(θ) = (Af(A) + I)u0, (2.61)

with the function

f(z) =
e−θ

√
z − 1

z
. (2.62)

The formulation (2.61) has the advantage that the function f from (2.62) has the
integral representation

f(z) = −
∫ ∞

0

1

z + t

sin(θ
√
t)

πt
dt, (2.63)

which makes many of the methods and results developed in the following appli-
cable in this situation. We stress, however, that the function f from (2.62) is not
a Stieltjes function as the corresponding generating function is not monotonically
increasing. As in Section 2.6.1, we choose N = 50, θ = 0.1 and initial conditions
u0 = 1 in our computations.

2.6.4 Neuberger overlap operator in lattice QCD

The next problem we consider is from quantum chromodynamics (QCD), an
area of Theoretical Physics which studies the strong interaction between quarks
and gluons. In lattice QCD, this theory is simulated on a four-dimensional
space-time lattice (where we, for ease of notation, denote the grid points by
x = (x0, x1, x2, x3), i.e., we do not distinguish space and time coordinates nota-
tionwise). For introducing the basics of this model problem, we follow the de-
scriptions in [20,117]. The most important relation for describing the interaction
of quarks and gluons is the Dirac equation [35]

(D +m)ψ(x) = η(x), (2.64)
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where m is a scalar parameter, ψ and η represent quark fields and D is the Dirac
operator defined by

D =
3∑

i=0

γi ⊗
(
∂

∂xi
+ Ai

)
(2.65)

where the matrices Ai(x) ∈ C
3×3 are elements of the Lie algebra su(3) of the

special unitary group SU(3) and the matrices γi ∈ C
4×4, i = 0, . . . , 3 are gener-

ators of the Clifford algebra Cℓ4(C). From the above description it is clear that
the quark field ψ(x) at a point x in space-time is a vector with 12 components
(corresponding to three colors and four spins). For computer simulations, the
Dirac equation (2.64) is discretized on an Nt × N3

s grid (called the lattice from
here on) with uniform lattice spacing a and Nt and Ns denoting the number of
lattice points in the time dimension and each of the three spatial dimensions,
respectively. We consider the Wilson discretization [144] with periodic bound-
ary conditions in the following, in which the covariant derivatives in (2.65) are
replaced by centralized covariant finite differences (and a stabilization term is
added), resulting in the discretized operator

(DWφ)(x) =
m0 + 4

a
φ(x)− 1

2a

3∑

i=0

(
(I4 − γi)⊗ Ui(x)

)
φ(x+ aêi)

− 1

2a

3∑

i=0

(
(I4 + γi)⊗ UH

i (x− aêi)
)
φ(x− aêi) (2.66)

where the mass parameter m0 determines the quark mass, and the matrices
Ui(x) ∈ C

3×3 (the so-called gauge links) are elements of the Lie group SU(3).
Consistent with the periodic boundary conditions, terms of the form x − aêi
are to be understood on a torus, i.e., the boundaries of the lattice are “glued
together”.

A set of gauge links Ui(x) for all grid points x is also referred to as a configuration.

The Wilson–Dirac operator (2.66) fulfills the so-called Γ5-symmetry

(Γ5DW )H = Γ5DW

with the Hermitian, unitary matrix

Γ5 = INtN3
s
⊗ γ0γ1γ2γ3 ⊗ I3; (2.67)

see, e.g., [60]. For the simulation of some physical observables it is important that
the discretized operator fulfills a (lattice variant of) the so-called chiral symmetry,
which amounts to fulfilling the Ginsparg–Wilson relation [70]

Γ5D +DΓ5 = aDΓ5D (2.68)
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with Γ5 from (2.67). Unfortunately, the Wilson–Dirac operator does not fulfill
this relation and is thus not suited for all simulations of interest. In [109], the
Neuberger overlap operator

DN = ρI + Γ5 sign(Γ5DW ), where ρ > 1, (2.69)

which fulfills the relation (2.68), was introduced. In simulations involving the Neu-
berger overlap operator (2.69), one has to solve linear systems with DN . As DN is
not explicitly available (it is not feasible to explicitly form sign(Γ5DW ) for realistic
grid sizes) one typically uses Krylov subspace methods which only need to apply
matrix vector products with DN . Still, in each iteration of a Krylov subspace
method, this amounts to approximating the action of the matrix sign function (of
a Hermitian matrix) on the latest Krylov basis vector, i.e., sign(Γ5DW )vi.

The matrix sign function can be represented by the identity

sign(A) = A(A2)−1/2, (2.70)

involving the Stieltjes function f(z) = z−1/2 (cf. Example 2.14), see, e.g., [31,
48], which is the representation typically used in computational practice. In
our experiments we approximate the action of the matrix sign function involved
in (2.69), using the formulation (2.70), on a vector for a discretization on an 8×83
lattice, thus yielding a matrix of dimension 12 · 84 = 49,152.

A further modification of the situation described above arises in the presence of
a nonzero chemical potential ν. In this case, the links in time direction in the
Wilson–Dirac operator change, and the discretization changes from (2.66) to

(Dν
Wφ)(x) =

m0 + 4

a
φ(x)− 1

2a

3∑

i=1

(
(I4 − γi)⊗ Ui(x)

)
φ(x+ aêi)

− 1

2a

3∑

i=1

(
(I4 + γi)⊗ UH

i (x− aêi)
)
φ(x− aêi)

− 1

2a
eν
(
(I4 − γi)⊗ Ui(x)

)
φ(x+ aêi)

− 1

2a
e−ν
(
(I4 + γi)⊗ UH

i (x− aêi)
)
φ(x− aêi), (2.71)

which agrees with (2.66) for chemical potential ν = 0. For ν 6= 0, the operator
Dν

W from (2.71) is not Γ5-symmetric, such that the solution of systems with the
overlap operator (2.69) now involves approximating the matrix sign function (or
inverse square root) of a non-Hermitian matrix. We also report experiments for
this case, using the same 8 × 83 configuration as before, but adding a chemical
potential ν = 1/20, which is a physically reasonable value, given the temperature
T (a quantity from statistical physics) used for generating the configuration.
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2.6.5 Sampling from Gaussian Markov random fields

The last model problem we consider is taken from [93, 126] and arises from the
statistical application of sampling from a Gaussian Markov random field. Given
a set of n points si ∈ R

d, i = 1, . . . , n, one defines a Gaussian random variable
xi, i = 1, . . . , n at each point. The vector x of these random variables is called a
Gaussian Markov random field. The so-called precision matrix A ∈ R

n×n of the
points si (with respect to two parameters δ, φ) is given by

aij =

{
1 + φ

∑n
k=1,k 6=i χ

δ
ij if i = j,

−φχδ
ij otherwise,

(2.72)

where χδ is given by

χδ
ij =

{
1 if ‖si − sj‖2 < δ,

0 otherwise.

The matrix A from (2.72) is obviously Hermitian and diagonally dominant. By
the Geršgorin disk theorem (see, e.g., [136]), all eigenvalues λ of A fulfill λ ≥ 1,
so that A is positive definite. In addition, as all row sums of A are 1, the vector
1 fulfills A1 = 1 , showing that A must have an eigenvalue λ = 1 (as 1 is an
eigenvector to this eigenvalue). A sample from the Gaussian Markov random field
x can be obtained by computing A−1/2z , where z is a vector of independently and
identically distributed standard normal random variables; see [92, 127]. For our
experiments, we simulate n = 50,000 points in the unit square (0, 1)× (0, 1) and
choose the parameters φ = 3, δ = 0.01, which results in a sparse, unstructured
matrix A ∈ R

50,000×50,000 with spec(A) ⊆ [1, 109.6] and 830,626 nonzero entries.
We are therefore, like for the Neuberger overlap operator at zero chemical poten-
tial, in the situation of approximating a Stieltjes function of a Hermitian positive
definite matrix. The vector z is generated by the Matlab function randn. For
applications of Gaussian Markov random fields, see, e.g., [28, 112].
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CHAPTER 3

AN INTEGRAL REPRESENTATION FOR THE

ERROR IN ARNOLDI’S METHOD

In this chapter we consider representations for the error of the iterate fm produced
by m steps of Arnoldi’s method for f(A)b. These error representations form the
basis for both the restarting approaches discussed in Chapter 4 and 5 as well
as the computation of error bounds (mostly in unrestarted methods) which are
investigated in Chapter 6 and 7. We begin by discussing previously known error
representations from the literature in Section 3.1. In Section 3.2 we proceed by
deriving new integral representations for the error for different classes of functions
representable by contour integrals over resolvent functions. Important classes
of functions to which our results apply are Stieltjes functions and holomorphic
functions represented by the Cauchy integral formula.

3.1 Error representation via divided differences

In the special case f(z) = z−1, i.e., when solving a linear system, a simple error
representation is given by the residual equation (2.28). This equation can be
rewritten as

e0 = A−1r0 = f(A)r0,

showing that the error is representable as the action of the matrix function f(A)
on the vector r0. For general matrix functions, a similar result does unfortunately
not hold. However, it is possible to represent the error of the restarted Arnoldi
approximation as the action of a matrix function different from f based on di-
vided differences (see, e.g., [34]), as the following result from [43] shows. It is
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3 An integral representation for the error in Arnoldi’s method

originally stated for Arnoldi-like decompositions, which are decompositions of the
form (2.23) without the requirement that the columns of Vm are orthonormal. As
we do not need this more general concept for the results of this thesis, we state
the result in terms of standard Arnoldi decompositions.

Theorem 3.1. Given A ∈ C
n×n, let b ∈ C

n, let Vm and Hm satisfy the Arnoldi
relation (2.23) corresponding to A and b and let wm(z) =

∏m
i=1(z − θi) be the

nodal polynomial associated with the Ritz values θ1, . . . , θm, i.e., the eigenvalues
of Hm. Then the error of the Arnoldi approximation fm from (2.25) is given by

f(A)b − fm = ‖b‖2γm[Dwm
f ](A)vm+1 =: em(A)vm+1, (3.1)

where [Dwm
f ] denotes the mth divided difference of f with respect to the interpo-

lation nodes θ1, . . . , θm, and γm =
∏m

i=1 hi+1,i.

Proof. See [43, Theorem 2.6].

We note that an error representation based on mth order divided differences was
independently found in [132].

From a theoretical point of view, Theorem 3.1 gives an answer to the question
how the error after m steps of Arnoldi’s method can be represented as the action
of a matrix function on a vector again. However, it is not feasible for practical
computations due to the well-known fact that the numerical evaluation of high-
order divided differences is prone to instabilities, especially when interpolation
nodes are close to each other, thereby causing subtractive cancellations and very
small denominators in the divided difference table. This fact especially leads to
problems when attempting to implement a restart approach based on this error
function, as for Hermitian A it is known that the Ritz values of all restart cycles
will asymptotically appear as a two-cyclic sequence [3], so that the interpolation
nodes will form 2m clusters and the evaluation of the error function using (3.1)
will necessarily become unstable.

Based on the results from [43], a different representation for the error in Arnoldi’s
method, which is also based on divided differences, was developed in [93] for
Hermitian A.

Theorem 3.2. Let the assumptions of Theorem 3.1 hold and let A ∈ C
n×n be

Hermitian. Let Wm be a unitary matrix whose columns are eigenvectors of Hm,
and define αi = êH

mWmêi and βi = êH
1 Wmêi, i = 1, . . . ,m. Then

f(A)b − fm = ‖b‖2hm+1,mg(A)vm+1

with

g(z) =
m∑

i=1

αiβi[Dw̃i
f ](z), where w̃i(z) = (z − θi).
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3.2 Integral representation of the error function

Proof. See [93, Theorem 2.1].

On first sight, one could expect the error representation given in Theorem 3.2
to be more stable in finite precision arithmetic than the one from Theorem 3.1
as it only involves first-order divided differences. However, as was stated in [93]
and is also confirmed by our numerical experiments presented in Chapter 4, the
representation is still unstable and therefore not usable in practice, especially in
cases where the requirements on accuracy and reliability are high.

3.2 Integral representation of the error function

As explained in the previous section, the error representations considered in the
literature so far are numerically infeasible (e.g., for implementing a restarted
Arnoldi method) due to the need of evaluating divided differences. In this section,
we derive integral representations for the error of the Arnoldi approximation for
different classes of functions. Our results presented in this chapter have been
published in [57–59]. We begin by investigating “Cauchy-type” integrals.

Due to the intimate relation between Arnoldi’s method and polynomial interpo-
lation, cf. Lemma 2.25 and Lemma 2.27, we first give an integral representation
for interpolating polynomials of functions of Cauchy-type.

Lemma 3.3. Let Ω ⊂ C be a region and let f : Ω→ C be analytic, with integral
representation

f(z) =

∫

Γ

g(t)

t− z dt, z ∈ Ω, (3.2)

with a path Γ ⊂ C \ Ω and a function g : Γ → C. The Hermite interpolating
polynomial pm−1 of f with interpolation nodes {θ1, . . . , θm} ⊂ Ω is given as

pm−1(z) =

∫

Γ

(
1− wm(z)

wm(t)

)
g(t)

t− z dt, (3.3)

where wm(z) =
∏m

i=1(z − θi), provided that the integral in (3.3) exists.

Proof. Observe that for fixed t, the function 1− wm(z)/wm(t) is a polynomial of
degree m in z with a root at t. Therefore it contains a linear factor t− z, showing
that (1 − wm(z)/wm(t))/(t − z) is a polynomial of degree m − 1 in z, and so is
the whole right-hand side of (3.3). By definition of wm we have

pm−1(θi) =

∫

Γ

(
1− wm(θi)

wm(t)

)
g(t)

t− θi
dt =

∫

Γ

g(t)

t− θi
dt = f(θi)
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3 An integral representation for the error in Arnoldi’s method

for i = 1, . . . ,m, showing that the interpolation conditions for f are satisfied. In
the case of coalescent interpolation nodes θi, we also demand that certain deriva-
tives of f are interpolated by pm−1. Assume that θi = θj for i < j, which then
amounts to the interpolation condition p′m−1(θi) = f ′(θi). For ε > 0, define the
sequence of interpolating polynomials pεm−1(z) corresponding to the interpolation
nodes θ1, . . . , θj−1, θi+ε, θj+1, . . . , θm, which are pairwise distinct for ε sufficiently
small (assuming for simplicity that no other interpolation nodes than θi and θj
coincide). Due to the fact that interpolating polynomials depend analytically on
the interpolation nodes and because f is analytic in Ω, we have that

f ′(θi) = lim
ε→0

f(θi + ε)− f(θi)
ε

= lim
ε→0

pεm−1(θi + ε)− pεm−1(θi)

ε
= p′(θi).

For more than two coincident interpolation nodes and higher derivatives, the
result follows analogously.

Lemma 3.3 does not assert the existence of the integral on the right-hand side
of (3.3). Since f(z) is assumed to be representable by the integral (3.2), the
integral in (3.3) exists if and only if the integral

∫

Γ

1

wm(t)

g(t)

t− z dt, (3.4)

exists. At this point we just caution the reader to be aware of this fact and
postpone a discussion of sufficient conditions guaranteeing the existence of (3.4)
to the end of this section. In the following we derive an integral representation
for the error of the Arnoldi approximation to f(A)b under the assumption that
all necessary integrals exists.

Theorem 3.4. Let Ω ⊂ C be a region, let f have an integral representation
as in Lemma 3.3 with Γ ⊂ C \ Ω, and let A ∈ C

n×n with spec(A) ⊂ Ω and
b ∈ C

n be given. Denote by fm the mth Arnoldi approximation (2.25) to f(A)b
with spec(Hm) = {θ1, . . . , θm} ⊂ Ω. Then, provided that the integral (3.4) with
wm(t) =

∏m
i=1(t− θi) exists,

f(A)b − fm = ‖b‖2γm
∫

Γ

g(t)

wm(t)
(tI − A)−1vm+1 dt =: em(A)vm+1, (3.5)

where γm =
∏m

i=1 hi+1,i.
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3.2 Integral representation of the error function

Proof. Let pm−1 denote the interpolating polynomial of f with respect to the
interpolation nodes θ1, . . . , θm. By subtracting pm−1 from f and using the repre-
sentations (3.2) and (3.3) we have

f(z)− pm−1(z) =

∫

Γ

wm(z)

wm(t)

g(t)

t− z dt. (3.6)

Substituting A for z in (3.6), post-multiplying by b, and noting that pm−1(A)b =
fm by Lemma 2.25 then leads to

f(A)b − fm =

∫

Γ

g(t)

wm(t)
(tI − A)−1wm(A)b dt.

The assertion follows from the fact that wm(A)b = ‖b‖2γmvm+1, see [111, Corol-
lary 2.1]. Note that in the result from [111] only symmetric matrices A are
considered, but the result and its proof also apply to non-Hermitian A in exactly
the same way.

The most prominent examples of functions with a representation of the form (3.2)
are holomorphic functions given by the Cauchy integral formula

f(z) =
1

2πi

∫

Γ

f(t)

t− z dt,

where Γ is a path that winds around z exactly once. In this case, g(t) = 1
2πi
f(t)

in (3.2). Our more general approach allows to also consider other classes of
functions, like, e.g., Stieltjes functions generated by a differentiable function µ,
where g(t) = µ′(t) (after performing a simple variable transformation t → −t);
cf. Lemma 2.8.

It is also possible to derive a result similar to the one of Theorem 3.4 for general
Stieltjes functions corresponding to a possibly nondifferentiable measure. We omit
a proof of this result, as it is almost identical to the one of Theorem 3.4.

Theorem 3.5. Let A ∈ C
n×n, let b ∈ C

n and let f be a Stieltjes function of the
form (3.15). Assume that spec(A) ⊂ C \ R−

0 and denote by fm the mth Arnoldi
approximation (2.25) to f(A)b. Assume that spec(Hm) = {θ1, . . . , θm} satisfies
spec(Hm) ⊂ C \ R−

0 and define

em(z) = (−1)m+1‖b‖2γm
∫ ∞

0

1

wm(t)

1

z + t
dµ(t), z ∈ C \ R−

0 , (3.7)

where wm(t) =
∏m

i=1(t+ θi) and γm =
∏m

i=1 hi+1,i. Then

f(A)b − fm = em(A)vm+1, (3.8)

where vm+1 is the (m+ 1)st Arnoldi vector.
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3 An integral representation for the error in Arnoldi’s method

Some functions of practical interest, like, e.g., f̃(z) = zα for α ∈ (0, 1), including

the square root as the most important special case, or f̃(z) = log(1 + z), do not

have an integral representation (3.2) but can be written as f̃(z) = zf(z), where
f is of the form (3.2). In this case, the result of Theorem 3.4 does not directly
apply. One could possibly overcome this problem by using the fact that

f̃(A)b = Af(A)b = f(A)b̃, where b̃ = Ab

and then apply Arnoldi’s method to A and b̃. However, this approach has the
disadvantage that ‖b̃‖2 may be significantly larger than ‖b‖2 (by a factor of up to
‖A‖2) which may result in larger absolute errors of the Arnoldi approximations.

Therefore, one should try to work with f̃ directly. Fortunately, it is possible to
modify the result from Theorem 3.4 to accommodate for such functions.

Corollary 3.6. Let the assumptions of Theorem 3.4 hold and let f̃(z) = zf(z).

Denote by f̃m the mth Arnoldi approximation (2.25) to f̃(A)b. Then

f̃(A)b − f̃m = ‖b‖2γmA
∫

Γ

g(t)

wm(t)
(tI −A)−1vm+1 dt−hm+1,m

(
êH
mf(Hm)ê1

)
vm+1,

(3.9)
provided that the integral in (3.9) exists.

Proof. By (2.25) we have

f̃m = Vmf̃(Hm)ê1 = VmHmf(Hm)ê1. (3.10)

Inserting the Arnoldi decomposition (2.23) into 3.10 gives

f̃m = AVmf(Hm)ê1 − hm+1,m

(
êH
mf(Hm)ê1

)
vm+1. (3.11)

By subtracting (3.11) from f̃(A)b we arrive at

f̃(A)b − f̃m = A (f(A)b − Vmf(Hm)ê1)− hm+1,m

(
êH
mf(Hm)ê1

)
vm+1. (3.12)

The assertion now follows by applying Theorem 3.4 to the first term on the right-
hand side of (3.12).

Corollary 3.6 can easily be generalized to functions of the form f̃(z) = zℓf(z) by
repeated application of (2.23). We just state the result only for zf(z) for the sake
of notational simplicity and because it appears to be the most important case in
practice. Ignoring for a moment the term

−hm+1,m

(
êH
mf(Hm)ê1

)
vm+1 (3.13)
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3.2 Integral representation of the error function

in (3.9), we observe that the error function on the right-hand side of (3.9) is of a

similar form as the original function f̃(z) = zf(z), in the sense that it is of the
form zem(z), where em(z) denotes the error function for f(z) from (3.5). The re-
maining term (3.13) in the error representation can be explicitly evaluated along

with f̃m from (3.10) at almost no cost because all necessary quantities are read-
ily available. Doing this corresponds to the “corrected” Arnoldi approximation
introduced in [114] in the context of approximating so-called ϕ-functions.

Of course, the above discussion and the result of Corollary 3.6 also apply to
general Stieltjes functions in light of Theorem 3.5, but we refrain from restating
it for this case, as the necessary modifications are obvious.

In the remainder of this section, we will investigate sufficient conditions for guar-
anteeing the existence of the integrals appearing in Theorem 3.4 and 3.5. As a
tool, we need a result from classical analysis, the Abel–Dirichlet test for improper
integrals.

Theorem 3.7. Let h1(t) be piecewise continuously differentiable on every interval
[t0, 0] ⊂ R

−
0 and suppose h1(t)→ 0 as t→ −∞, while h′1(t) is absolutely integrable

on R
−
0 . Moreover, let h2(t) be piecewise continuous on every interval [t0, 0] ⊂ R

−
0

and suppose

|H2(t)| ≤ C for t ∈ R
−
0 , where H2(t) =

∫ 0

t

h2(ζ) dζ (3.14)

with C independent of t ∈ R
−
0 . Then the integral

∫ 0

−∞ h1(t)h2(t) dt exists and is
finite.

Proof. See [121, Theorem 11.23a].

Using this result, we can prove the existence of the integral (3.4) for two important
classes of functions.

Proposition 3.8. Assume that f, g, Ω, and Γ in (3.2) satisfy one of the two
following conditions:

(i) f is holomorphic in a region Ω′ ⊃ Ω, and Γ ⊂ Ω′ is a closed contour winding
around each z ∈ Ω exactly once, such that by the Cauchy integral formula

f(z) =
1

2πi

∫

Γ

f(t)

t− z dt,

i.e., g(t) = 1
2πi
f(t) in (3.2).
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3 An integral representation for the error in Arnoldi’s method

(ii) Γ = R
−
0 , Ω = C \ R−

0 and f is of the form

f(z) =

0∫

−∞

g(t)

t− z dt, z ∈ C \ R−
0 (3.15)

where g(t) is a function which is piecewise continuous on every interval
[t0, 0] ⊂ R

−
0 .

Moreover, assume that wm(t) =
∏m

i=1(t− θi) with θi ∈ Ω, i = 1, . . . ,m. Then the
integral ∫

Γ

1

wm(t)

g(t)

t− z dt

exists for all z ∈ Ω.

Proof. Part (i) is trivial, since in this case the function 1
wm(t)

g(t)
t−z

is continuous
on the closed contour Γ for all z ∈ Ω. We note in passing that in this case
the integral representation (3.3) of the interpolating polynomial is a well-known
classical result, cf., e.g., [140]. The proof for part (ii) is a bit more involved. We
define the auxiliary functions

h1(t) =
1

wm(t)
, h2(t) =

g(t)

t− z .

For z ∈ C \ R−
0 the function h2(t) is piecewise continuous on every finite subinter-

val of R−
0 and the condition (3.14) from Theorem 3.7 is fulfilled with C = |f(z)|.

Since all roots of wm(t) lie outside of Γ = R
−
0 by assumption and the degree of

the denominator of h′1(t) exceeds the degree of the numerator by at least two, h′1
is absolutely integrable over Γ. All other conditions on h1 from Theorem 3.7 are
obviously fulfilled, so that the integral (3.4) exists. This concludes the proof of
the proposition.

Proposition 3.8 guarantees the existence of the error function for Stieltjes func-
tions generated by a differentiable function µ in a very general setting (i.e., as
long as no Ritz value lies on the negative real axis, a case in which f(Hm) is
not defined). For general Stieltjes functions (3.15), we can at least guarantee the
existence of the error function (3.7) if all Ritz values are real and positive, as it
is, e.g., the case when the matrix A is Hermitian positive definite. In this case,
the conditions spec(A) ⊂ C \ R−

0 and spec(Hm) ⊂ C \ R−
0 are always fulfilled. In

addition, the nodal polynomial
∏m

i=1wm(t) = (t + θi) is positive for t ≥ 0, and
thus is 1/wm(t), so that there exists a constant α > 0 such that 1/wm(t) ≤ α

1+t

for t ≥ 0. Using this fact together with the condition (2.16) imposed on µ we find

µ̃(t) :=

∫ t

0

1

wm(τ)
dµ(τ) ≤ α

∫ t

0

1

1 + τ
dµ(τ) <∞ (3.16)
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3.2 Integral representation of the error function

for all t ≥ 0. Since

dµ̃(t) =
1

wm(t)
dµ(t),

this yields the following proposition.

Proposition 3.9. Let A ∈ C
n×n be Hermitian positive definite, let b ∈ C

n and
let f be a Stieltjes function of the form (3.15). Then the error function em(z)
from (3.7) is a scalar multiple of another Stieltjes function,

em(z) = (−1)m+1‖b‖2γm
∫ ∞

0

1

z + t
dµ̃(t),

generated by the function µ̃ from (3.16). In particular, the integral on the right-
hand side of (3.7) exists and is finite.

We note that the conditions given here for the existence of the integrals in the
error function representation are sufficient, but not necessary and the integrals
may exist under much weaker conditions.
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CHAPTER 4

IMPLEMENTATION OF A QUADRATURE-BASED

RESTARTED ARNOLDI METHOD

This chapter deals with the development of an efficient and numerically stable
restarted Arnoldi method for functions with integral representation, based on the
error function representation from Chapter 3. We first recapitulate the previously
proposed restart procedures for Krylov subspace methods for matrix functions
from the literature in Section 4.1 before presenting our new method based on
adaptive quadrature in Section 4.2. Section 4.3 is devoted to specifics about
the choice of quadrature rule for some important functions. In addition, we
present results which reveal that these quadrature rules correspond to certain
Padé approximants in case of the Stieltjes functions f(z) = z−α and f(z) =
log(1+z)/z. Numerical experiments demonstrating the efficiency and stability of
the proposed restart procedure in comparison to other approaches for the model
problems from Section 2.6 are reported in Section 4.4.

4.1 Previously known restart approaches

Several approaches for restarting Arnoldi’s method have been proposed in the lit-
erature so far. The simplest and most straightforward ones are based on the error
function representations from Theorem 3.1 and Theorem 3.2, which directly allow
(at least in exact arithmetic) to perform restarts like in the linear system case,
with the only difference being that the function f is replaced by the error function
em after restarting; see [93, 132]. In Algorithm 4.1, we summarize a generic ver-
sion of such a restarted Arnoldi method (with constant restart length m) without

going into detail on how the error function e
(k−1)
m in line 4 is determined. This
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4 Implementation of a quadrature-based restarted Arnoldi method

Algorithm 4.1: Restarted Arnoldi method for f(A)b (generic version).

Given: A, b, f , m
Compute the Arnoldi decomposition AV

(1)
m = V

(1)
m H

(1)
m + h

(1)
m+1,mv

(1)
m+1ê

H
m1

with respect to A and b.
f
(1)
m ← ‖b‖2V (1)

m f(H
(1)
m )e1.2

for k = 2, 3, . . . until convergence do3

Determine the error function e
(k−1)
m .4

Compute the Arnoldi decomposition AV
(k)
m =V

(k)
m H

(k)
m +h

(k)
m+1,mv

(k)
m+1ê

H
m5

with respect to A and v
(k−1)
m+1 .

f
(k)
m ← f

(k−1)
m + V

(k)
m e

(k−1)
m (H

(k)
m )ê1.6

way, we can later also use this algorithm as a building block of our new restarted
method based on the error representations from Theorem 3.4 and 3.5.

As discussed in Chapter 3, when using the previously known error function repre-
sentations from Theorem 3.1 and 3.2, Algorithm 4.1 becomes unstable in floating
point arithmetic and the presence of round-off errors, especially in later restart
cycles (see [43, 93] and our experiments in Section 4.4).

As this instability was already recognized in [43], the authors proposed an alterna-
tive, mathematically equivalent restarted Arnoldi procedure, which is numerically
stable but has computational complexity growing with the number of restart cy-
cles (while Algorithm 4.1 requires constant work per cycle under the assumption

that the evaluation of the error functions e
(k−1)
m has the same cost for all values

of k). For achieving a stable method, one first needs to define the accumulated
Hessenberg matrices

Hkm =

[
H(k−1)m O

h
(k−1)
m+1,mê1ê

H
(k−1)m H

(k)
m

]
∈ C

km×km (4.1)

starting with Hm = H
(1)
m . One can then show that the iterates produced by

Algorithm 4.1 satisfy the update formula

f (k)
m = f (k−1)

m + ‖b‖2V (k)
m ykm((k − 1)m+ 1 : km), where ykm = f(Hkm)ê1 (4.2)

when k ≥ 2; see [43]. This way, one only ever needs to apply the original function

f and circumvents the need of evaluating the error function e
(k−1)
m for computing

f
(k)
m , so that the instability caused by the divided differences in the error func-
tion representation (3.1) is avoided. Therefore, computing the restarted Arnoldi
iterates by means of (4.2) results in a stable method but requires the evaluation
of f on the accumulated Hessenberg matrix Hkm which is of size km × km, i.e.,
growing from one restart cycle to the next. Thus, the resulting method solves
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4.1 Previously known restart approaches

the storage problems of Arnoldi’s method, as only the last Arnoldi basis V
(k)
m

is needed to evaluate (4.2), but its computational cost grows with k (often and
typically cubically, depending on the function to be approximated). In fact, in
a setting where not only storage requirements limit the applicability of Arnoldi’s
method, but also unacceptably high computational work is required to reach the
targeted accuracy, problems typically become more severe when using a method
based on (4.2). This is due to the fact that in most cases, a restarted method
will need more iterations to reach a prescribed accuracy than the corresponding
unrestarted method, so that the dimension of the matrix Hkm needed in (4.2) will
typically be larger than the dimension of the matrix Hm needed for computing a
standard Arnoldi approximation (2.25) which gives a comparable accuracy. We
note however, that while the preceding statements hold true for almost all practi-
cal problems, they may not be true in general, as there, e.g., also exist (academic)
examples of matrices for which restarted GMRES converges more slowly when the
restart length is increased; cf. [45].

To solve the problem of growing computational work in the method from [43]
based on (4.2), while keeping its advantageous stability properties, a modification
of the method was proposed in [3]. It requires that one wants to approximate the
action of a rational function in partial fraction form on a vector, i.e., r(A)b with

r(z) =
ℓ∑

i=1

αi

ti − z
, (4.3)

or, in a more general setting, that one is interested in a function f ≈ r, where
r is of the form (4.3), i.e., f must be well approximable by a rational function
(on the spectrum of A). In this case, one applies the algorithm to r instead of

f and computes an approximation f
(k)
m ≈ r(A)b ≈ f(A)b. One then obtains

constant computational work per restart cycle as follows: Evaluating the update
formula (4.2) with f replaced by r of the form (4.3) amounts to computing

r(Hkm)ê1 =
ℓ∑

i=1

αi(tiI −Hkm)
−1ê1, (4.4)

which requires solving ℓ shifted linear systems

(tiI −Hkm)r(ti) = ê1, i = 1, . . . , ℓ. (4.5)

Partitioning the solutions as

r(ti) =




r1(ti)
r2(ti)

...
rk(ti)



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4 Implementation of a quadrature-based restarted Arnoldi method

and exploiting the block structure (4.1) of Hkm together with the fact that all
right-hand sides of (4.5) are equal to ê1, one finds that each system in (4.5)
decouples into small linear systems of dimension m; cf. [3]. To be specific, one
has for i = 1, . . . , ℓ

(tiI −H(1)
m )r1(ti) = ê1, (4.6)

(tiI −H(j)
m )rj(ti) = h

(j−1)
m+1,m(ê

H
mrj−1(ti))ê1, j = 2, . . . , k. (4.7)

A further simplification arises from the fact that evaluating (4.2) requires only
the last m entries of (4.4), which are given by

ykm((k − 1)m+ 1 : km) =
ℓ∑

i=1

αirk(ti),

such that not all, but only ℓ of the small m×m systems in (4.7) have to be solved.
The resulting method is summarized in Algorithm 4.2.

Algorithm 4.2: Restarted Arnoldi method for f(A)b from [3].

Given: A, b, m, rational approximation r ≈ f of the form (4.3)

f
(0)
m ← 01

v
(0)
m+1 ← b2

for k = 1, 2, . . . until convergence do3

Compute the Arnoldi decomposition AV
(k)
m =V

(k)
m H

(k)
m +h

(k)
m+1,mv

(k)
m+1ê

H
m4

with respect to A and v
(k−1)
m+1 .

if k = 1 then5

for i = 1, . . . , ℓ do6

Solve (tiI −H(k)
m )r1(ti) = ê1.7

else8

for i = 1, . . . , ℓ do9

Solve (tiI −H(k)
m )rk(ti) = h

(k−1)
m+1,m(ê

H
mrk−1(ti))ê1.10

u
(k)
m ←∑ℓ

i=1 αirk(ti).11

Set f
(k)
m ← f

(k−1)
m + ‖b‖2V (k)

m u
(k)
m .12

Algorithm 4.2 allows to approximate f(A)b both storage and cost efficiently, but
it requires the knowledge of a suitable and accurate rational approximation of f
(which has to be known a priori and needs to stay fixed throughout all cycles
of the method). This requires information on the spectrum of A, so that r can
be constructed in such a way that it approximates f accurately enough in all
eigenvalues of A. In the Hermitian case, it therefore suffices to know λmin and
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4.2 Restarts based on numerical quadrature

λmax, the smallest and largest eigenvalue of A, respectively, and to construct r
as a good approximation on [λmin, λmax]. In the non-Hermitian case, however,
it is far more complicated to find a suitable region which contains spec(A) and
to construct an accurate rational approximation on such a general region, which
is no interval on the real line. In addition, Ritz values may appear anywhere
in the field of values W(A) of A, such that it may be necessary that f be well
approximated on an even larger set. Another limitation to the applicability of
the approach from [3] is that for certain functions, no simple to construct rational
approximations which give a certain accuracy may be known, even for “simple”
spectral regions.

Thus, while the method from [3] has very advantageous properties when applicable
(e.g., for approximating the exponential of a Hermitian negative definite matrix),
it is no black-box method in general, as it often requires spectral information on
A and it is only feasible for a rather narrow class of functions. Therefore, in the
next section, by combining the error representations from Chapter 3 with numer-
ical quadrature, we introduce another implementation of the restarted Arnoldi
method, which inherits the stability properties and constant computational cost
per cycle from Algorithm 4.2 and is applicable to a broad class of functions with-
out requiring spectral information.

To end this section, we mention that Algorithm 4.2 is mathematically equivalent
to restarted FOM for the shifted linear systems

(tiI − A)x (ti) = b, (4.8)

a method introduced in [123], with the only difference being that the approximate
solutions of the individual systems (4.8) do not need to be computed or stored
explicitly, as one is only interested in the approximation to r(A)b ≈ f(A)b. A
similar point of view was recently discussed in [17], where this approach was used
to save computational work when solving families of shifted (block) linear systems
having their origin in a partial fraction expansion (4.3) of a rational function.

4.2 Restarts based on numerical quadrature

In this section, we describe how to use the integral representation of the Arnoldi
error for deriving a numerically stable version of Algorithm 4.1. The key obser-
vation for achieving stability in this context is that the numerical evaluation of
integrals is much more stable than the numerical evaluation of difference quotients
(and thus, e.g., the computation of divided differences), see, e.g., [41], where this
is discussed in the context of the numerical solution of differential equations.
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4 Implementation of a quadrature-based restarted Arnoldi method

To be able to use the error function representations from Theorem 3.4 and 3.5
in Algorithm 4.1, we require not only an integral representation for the approx-
imation fm obtained by m steps of Arnoldi’s method, but also for the restarted
approximations f

(k)
m . Fortunately, recursively replacing f by e

(1)
m , e

(2)
m , . . . in the

statements of the theorems directly gives rise to such a representation. We sum-
marize this result in the following corollary.

Corollary 4.1. Let the assumptions of Theorem 3.4 hold and let f
(k)
m be the

restarted Arnoldi approximation to f(A)b after k restart cycles of Algorithm 4.1.

Denote by w
(j)
m the nodal polynomial of the jth restart cycle, i.e., the monic poly-

nomial of degree m with its roots given by the eigenvalues of H
(j)
m , and assume

that all these roots do not lie on Γ and let γ
(j)
m =

∏m
i=1 h

(j)
i+1,i. Then the error of

f
(k)
m satisfies

f(A)b − f (k)
m = ‖b‖2

(
k∏

j=1

γ(j)m

)∫

Γ

g(t)
∏k

j=1w
(j)
m (t)

(tI − A)−1v
(k)
m+1 dt (4.9)

=: e(k)m (A)v
(k)
m+1,

provided that the integral (3.4), with wm(t) =
∏k

j=1w
(j)
m (t), exists.

In the same way, if f is a Stieltjes function (3.15), we have a representation of
the form

f(A)b − f (k)
m = e(k)m (A)v

(k)
m+1, (4.10)

where

e(k)m (z) = (−1)k(m+1)‖b‖2
(

k∏

j=1

γ(j)m

)∫ ∞

0

1
∏k

j=1w
(j)
m (t)

1

z + t
dµ(t). (4.11)

Instead of recursively inserting the error functions into Theorem 3.4, one also
finds these results directly by using the fact that f

(k)
m = pkm−1(A)b, where pkm−1

is the polynomial of degree km − 1 that interpolates f on spec(Hkm), with Hkm

from (4.1), see [43], and reproducing the proof of Theorem 3.4 for this case. Note
that the existence of the integrals in (4.9) and (4.11) can of course be guaranteed
under the same assumptions as in Proposition 3.8 and 3.9, respectively.

With Corollary 4.1, we are in a position to formulate our new, quadrature-based
restarted Arnoldi method. It mainly consists of using the error function rep-
resentation (4.9) or (4.11) in Algorithm 4.1 and approximating e

(k−1)
m (A)b by a

(suitably chosen) quadrature rule, as it is in general not possible to evaluate (4.9)
or (4.11) exactly. As we do not know a priori how many quadrature nodes are
necessary to approximate the error functions with sufficient accuracy (as even the
error functions themselves are not known in advance) and as this number may
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4.2 Restarts based on numerical quadrature

vary from one cycle to the next, we use a simple form of adaptive quadrature.
Of course one can also use more sophisticated techniques than what is described
in the following, as in general all forms of adaptive quadrature are suitable, but
we found that this simple approach was sufficient in our setting, as the efficient
evaluation of quadrature rules is not the bottleneck of the method.

At each restart cycle, we choose two sets of ℓ̃ and ℓ := ⌊
√
2 · ℓ̃⌋ quadrature nodes

and weights, and approximate e
(k−1)
m (H

(k)
m )ê1 by quadrature of these two different

orders. If the norm of the difference between the two resulting approximations
ũ

(k)
m and u

(k)
m is smaller than a prescribed tolerance tol, the approximation u

(k)
m of

higher order is accepted, otherwise we increase the number of quadrature points by
another factor of

√
2 and continue this way until the desired accuracy is reached.

This approach has two advantages. First (and obviously), if the initially chosen
number of quadrature points is too small to reach the prescribed accuracy, it au-
tomatically increases the number as much as it is needed in the current cycle. On
the other hand, the approach does in the same way allow to decrease the num-
ber of quadrature points, if fewer points suffice to obtain the required tolerance.
Therefore, if in a restart cycle the number of quadrature points is not increased,
we decrease the number of quadrature points for the next cycle by a factor of√
2 and first test whether this lower number is already sufficient. This way, later

restart cycles may indeed be less expensive than earlier cycles in our method. We
go into more detail concerning this topic in the numerical experiments reported
in Section 4.4. The resulting method is given as Algorithm 4.3 and was first
introduced in [58], an implementation being provided in [59].

On first sight, one may assume that our approach may at one point be more prone
to numerical instability than the one from [3], as it requires the evaluation of the
nodal polynomial wm(t) which is of (possibly very high) degree m. However, note
that

γm
wm(t)

= hm+1,mê
H
m (tIm −Hm)

−1
ê1, (4.12)

see, e.g., [115], so that the necessary scalar quantities can be computed by solving
a shifted linear system of dimension m which can be done in a stable way. An-
other technique for reliably evaluating wm(t) in factored form is to use a suitable
reordering of its zeros while computing the product. These approaches together
with the numerical experiments reported in Section 4.4 suggest that our method
is indeed numerically stable.

We proceed by further commenting on the relation between Algorithm 4.3 and
Algorithm 4.2, the approach from [3], as this is the only other approach from
the literature which also guarantees constant work per cycle as well as numerical
stability. A further similarity of the two approaches is revealed by noting that
an arbitrary quadrature rule with nodes ti and weights ωi for approximating the
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4 Implementation of a quadrature-based restarted Arnoldi method

Algorithm 4.3: Quadrature-based restarted Arnoldi method for f(A)b.

Given: A, b, f , m, tol
Compute the Arnoldi decomposition AV

(1)
m = V

(1)
m H

(1)
m + h

(1)
m+1,mv

(1)
m+1ê

H
m1

with respect to A and b.
f
(1)
m ← ‖b‖2V (1)

m f(H
(1)
m )ê12

ℓ̃← 8, ℓ← round(
√
2 · ℓ̃)3

for k = 2, 3, . . . until convergence do4

Compute the Arnoldi decomposition AV
(k)
m =V

(k)
m H

(k)
m +h

(k)
m+1,mv

(k)
m+1ê

H
m5

with respect to A and v
(k−1)
m+1 .

Choose sets (t̃i, ω̃i)i=1,...,ℓ̃, (ti, ωi)i=1,...,ℓ of quadrature nodes/weights.6

accurate ← false7

refined ← false8

while accurate = false do9

Compute ũ
(k)
m ≈ e

(k−1)
m (H

(k)
m )ê1 by quadrature of order ℓ̃.10

Compute u
(k)
m ≈ e

(k−1)
m (H

(k)
m )ê1 by quadrature of order ℓ.11

if ‖u (k)
m − ũ

(k)
m ‖2 < tol then12

accurate ← true.13

else14

ℓ̃← ℓ15

ℓ← round(
√
2 · ℓ̃)16

refined ← true.17

f
(k)
m ← f

(k−1)
m + ‖b‖2V (k)

m u
(k)
m .18

if refined = false then19

ℓ← ℓ̃20

ℓ̃← round(ℓ/
√
2)21

error function em(z) from (3.5) gives rise to an approximation of the form

êm(z) = ‖b‖2γm
ℓ∑

i=1

ωi
g(ti)

wm(ti)

1

ti − z
(4.13)

which clearly is a rational approximation (of type (ℓ−1/ℓ)) for em(z). Therefore,
in a sense, both methods rely on using rational approximations for the error
functions. In fact, we can show that under a few assumptions, both approaches
are equivalent (at least assuming exact arithmetic). The precise result is given
in the following lemma, where we refer to Algorithm 4.1 (using quadrature to
evaluate the integral representation of the error) instead of Algorithm 4.3 to make
clear that a non-adaptive approach is applied, in which the quadrature nodes and
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4.2 Restarts based on numerical quadrature

weights are chosen a priori.

Lemma 4.2. Let the quadrature nodes ti and weights ωi in (4.13) be fixed through-
out all restart cycles in Algorithm 4.1. Let Algorithm 4.2 utilize a rational ap-
proximation in partial fraction form (4.3) with poles ti and weights αi = ωig(ti).
Assume that this quadrature formula is also used to evaluate f in the first restart
cycle of Algorithm 4.1. Then both algorithms produce the same approximations
f
(k)
m at each restart cycle k ≥ 1.

Proof. From (4.6) and (4.13) (with wm ≡ 1 in the first restart cycle) it immedi-
ately follows that both algorithms produce the same first Arnoldi approximation

f (1)
m = ‖b‖2V (1)

m

ℓ∑

i=1

ωig(ti)(tiI −H(1)
m )−1ê1.

In subsequent restart cycles k ≥ 2 of Algorithm 4.1, using the error function
representation (4.13), the approximations are computed as

f (k)
m = f (k−1)

m + ‖b‖2V (k)
m

ℓ∑

i=1

ωig(ti)
∏k−1

j=1 γ
(j)
m

∏k−1
j=1 w

(j)
m (ti)

(tiI −H(k)
m )−1ê1. (4.14)

From (4.7) we find rk(ti) = h
(k−1)
m+1,m(ê

H
mrk−1(ti))(tiI −H(k)

m )−1ê1. Repeated appli-
cation of (4.12) yields

h
(k−1)
m+1,m(ê

H
mrk−1(ti)) =

∏k−1
j=1 γ

(j)
m

∏k−1
j=1 w

(j)
m (ti)

,

so that (4.14) is equivalent to

f (k)
m = f (k−1)

m + ‖b‖2V (k)
m

ℓ∑

i=1

ωig(ti)rk(ti),

which is precisely the update formula of Algorithm 4.2 when αi = ωig(ti).

In light of Lemma 4.2, one may ask which advantages our new approach gives in
comparison to the one from [3]. To answer this question, we stress again that the
result of Lemma 4.2 only holds in the very specific case that the quadrature rule
is fixed once and for all before starting the method. While it is indeed necessary
to fix the rational approximation in the approach from [3] in the beginning, this
is not the case for our method. In addition, as long as the integration path
Γ does not depend on the spectrum of A (which is, e.g., the case for Stieltjes
functions), we need no additional information for the choice of quadrature rule,
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4 Implementation of a quadrature-based restarted Arnoldi method

in contrast to bounds for the spectral region necessary for constructing a rational
approximation. Even in cases where the path Γ depends on spec(A), like it is, e.g.,
the case when approximating the matrix exponential, one can in many cases easily
construct sufficiently accurate rational approximations by exploiting information
obtained from Ritz values. This is not possible in Algorithm 4.2, as the rational
approximation has to be chosen a priori and needs to stay fixed throughout all
cycles, so that the spectral information available from the matrices H

(j)
m cannot

be exploited in any way. We go into detail concerning this topic in Section 4.3.
Another advantage is the potential for adaptivity not only for guaranteeing that
the prescribed accuracy is reached, but also for not investing more computational
work than necessary in later restart cycles and therefore in some cases making
the method even more efficient.

We just briefly mention here that it is also possible to combine our quadrature-
based restart approach with the deflated restarting technique from [44] in a
straightforward way. This technique is also included in our implementation [59]
of the restarted Arnoldi method, but we do not give the details for this here and
refer to [58] for numerical experiments illustrating the behavior of the resulting
method.

An important point influencing the performance of our method which we have not
yet discussed in detail is the choice of quadrature rules for evaluating the error
function e

(k−1)
m . While in principle, we can use any convergent quadrature rule in

our adaptive algorithm, making it a black-box method, there are natural choices
of quadrature rules for certain functions which allow to improve the performance
of the method even further and also reveal interesting theoretical connections to
certain types of optimal rational approximants. This is the topic of the next
section.

4.3 Choice of quadrature rules and connection to

Padé approximation

In this section, we will exemplarily go into more detail concerning the choice
of quadrature rules for three different functions, namely the Stieltjes functions
f(z) = z−α, α ∈ (0, 1) and f(z) = log(1 + z)/z, and the exponential function
f(z) = ez. As stated at the end of the last section, if the path of integration is
known (as, e.g., for Stieltjes functions) using any of the convergent quadrature
rules presented in Section 2.5 is in principle possible, but there are often bet-
ter choices available when exploiting specific properties of the function at hand.
Concerning the exponential function, the path Γ is not known in advance if no
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4.3 Choice of quadrature rules and connection to Padé approximation

spectral information on A is available, as it is typically the case when A is non-
Hermitian (in the Hermitian negative definite case, Hankel contours that enclose
the negative real axis are suitable integration paths) and we will also comment
on how to adaptively construct a suitable contour in this case.

As it turns out that certain choices of quadrature rules for Stieltjes functions
correspond to certain (optimal) rational approximants of these functions, the so-
called Padé approximants [8–10, 53, 110], we review the basic definition of these
approximants before proceeding.

Definition 4.3. Let f be a function and let m ≥ 0, ℓ ≥ 1 be given. An (m/ℓ)
Padé approximant of f with expansion point a is a rational function

rm,ℓ(z) =
pm(z)

qℓ(z)
where deg pm ≤ m, deg qℓ ≤ ℓ,

such that

dj

dzj
f(z)

∣∣∣∣
z=a

=
dj

dzj
rm,ℓ(z)

∣∣∣∣
z=a

for j = 0, . . . ,m+ ℓ. (4.15)

We note that, by a classical result from [53,110], if an (m/ℓ) Padé approximant to
a function f exists, then it is unique, so that we will in the following refer to rm,ℓ as
the (m/ℓ) Padé approximant of f at a. We also note that there exist other (more
general) definitions of Padé approximants, cf. [8], which agree with Definition 4.3
when both are applicable, but use other matching conditions than (4.15). As this
is not of importance in our situation, we do not go into detail concerning this
topic.

We begin by considering quadrature rules for the integral representation (2.18)
of the inverse fractional powers f(z) = z−α, α ∈ (0, 1). In this Stieltjes represen-
tation, the integration interval Γ = R

+
0 is known a priori but infinite. Instead of

using a quadrature rule for infinite intervals, one can also apply a suitable variable
transformation.

Lemma 4.4. Let z ∈ C \ R−
0 and α ∈ (0, 1). Then for all β > 0

z−α =
2β1−α sin(απ)

π

∫ 1

−1

(1− x)α−1(1 + x)−α

β(1 + x) + z(1− x) dx. (4.16)
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Proof. We apply the variable transformation t = β 1+x
1−x

to (2.18). Noting that
dt
dx

= 2β
(1−x)2

and integrating by substitution, we find

z−α =
sin(απ)

π

∫ 1

−1

(
β 1+x

1−x

)−α

β 1+x
1−x

+ z
· 2β

(1− x)2 dx

=
2β1−α sin(απ)

π

∫ 1

−1

(1− x)α(1 + x)−α

β(1 + x)(1− x) + z(1− x)2 dx,

from which the assertion follows.

The integrand in (4.16) has singularities at both endpoints −1 and 1. However,
these singularities are contained only in the numerator, which exactly corresponds
to the (α−1,−α) Jacobi weight function; cf. Example 2.45. Therefore, we can use
Gauss–Jacobi quadrature to resolve it exactly. The remaining integrand has no
singularities as long as z ∈ C\R−

0 (for z ∈ R
−
0 , the original integral representation

also has a singularity). The following result reveals a connection between Gauss–
Jacobi quadrature for (4.16) and Padé approximants.

Lemma 4.5. Let β > 0 and let xi and ωi, i = 1, . . . , ℓ be the nodes and weights
of the ℓ-point (α− 1,−α) Gauss–Jacobi quadrature rule on [−1, 1]. Then

rℓ−1,ℓ(z) =
2β1−α sin(απ)

π

ℓ∑

i=1

ωi

β(1 + xi) + z(1− xi)
(4.17)

is the (ℓ− 1/ℓ) Padé approximant of z−α, α ∈ (0, 1), with expansion point β.

Proof. Note that (4.17) clearly is a rational function of type (ℓ − 1/ℓ) in partial
fraction form. Therefore we only have to verify the Padé matching conditions

dj

dzj
z−α

∣∣∣∣
z=β

=
dj

dzj
rℓ−1,ℓ(z)

∣∣∣∣
z=β

for j = 0, . . . , 2ℓ− 1.

The derivatives of rℓ−1,ℓ(z) are given by

dj

dzj
rℓ−1,ℓ(z) = −

2β1−α sin(απ)

π

ℓ∑

i=1

(−1)j j! · (1− xi)j · ωi

(β(1 + xi) + z(1− xi))j+1
. (4.18)

For z = β all denominators in (4.18) become independent of xi and we arrive at

dj

dzj
rℓ−1,ℓ(z)

∣∣∣∣
z=β

= −2β1−α sin(απ)

π

ℓ∑

i=1

(−1)j j! · (1− xi)
j · ωi

(2β)j+1
.
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As Gauss–Jacobi quadrature with ℓ nodes is exact for polynomials up to degree
2ℓ− 1, we have the relation

dj

dzj
rℓ−1,ℓ(z)

∣∣∣∣
z=β

=
2β1−αj! · sin(απ)

(2β)j+1π
(−1)j

∫ 1

−1

(1− x)j(1− x)α−1(1 + x)−α dx.

for j = 0, . . . , 2ℓ− 1. Differentiating the right-hand side of (4.16) and evaluating
at β gives the same result, which completes the proof.

We note that it is known that the rational functions generated by certain Gauss
quadrature rules coincide with certain Padé approximants, see, e.g., [4, 21], but
the precise result of Lemma 4.5 was not given in this explicit form before to the
best of our knowledge. As the approximation quality of Padé approximants is
typically highest close to the expansion point, it seems reasonable to choose the
transformation parameter β such that the eigenvalues of A are clustered around
it. A straightforward choice therefore is the arithmetic mean of the eigenvalues
of A, which is readily available as trace(A)/n. Other, more sophisticated choices
of β are of course possible in our setting due to the availability of Ritz value
information, but we observed in our experiments that this has no large influence
on the overall behavior of the method, especially as the cost of evaluating the
quadrature rules in Algorithm 4.3 is typically negligible compared to the cost of
matrix vector products and orthogonalization.

In Algorithm 4.3, the quadrature formula is of course not applied to evaluate f ,
but instead to evaluate the error functions e

(k−1)
m , for which the quadrature rule for

the transformed integral does not correspond to a Padé approximant, but can still
be expected to yield good approximations. Applying the same variable transfor-
mation as in Lemma 4.4 to the integral representation of the error function (3.7)
corresponding to z−α results in the transformed integral

(−1)m+12 sin(απ)β
1−α‖b‖2γm
π

∫ 1

−1

1

wm(β
1+x
1−x

)

(1− x)α−1(1 + x)−α

β(1 + x) + z(1− x) dx. (4.19)

The integrand again has singularities at both endpoints of the interval of integra-
tion which can be resolved exactly by Gauss–Jacobi quadrature, but the reciprocal
of the nodal polynomial introduces m additional singularities. Obviously, the sin-
gularities of the reciprocal of wm prior to the variable transformation are exactly
the Ritz values with switched sign. As the variable transformation bijectively
maps R+

0 to [−1, 1], the transformed integrand therefore has a singularity in the
integration interval if and only if there is a Ritz value on the negative real axis.
As all Ritz values lie in the field of valuesW(A) of A, a sufficient condition for the
integrand in (4.19) having no singularities in the interval of integration is that the
field of values of A is disjoint from the negative real axis. This is, e.g., the case,
when A is Hermitian positive definite, or, more generally, when A is positive real.
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4 Implementation of a quadrature-based restarted Arnoldi method

If these conditions on A are not fulfilled it may well happen that Algorithm 4.3
generates Ritz values on the negative real axis. This is, however, no shortcoming
of our method, but rather a general problem. None of the restart approaches will
work in this case, as the function z−α and therefore also the error functions are
not defined on the branch-cut along R

−
0 .

Another Stieltjes function for which a similar analysis as for z−α can be performed
is f(z) = log(1 + z)/z with the integral representation (2.19). We again begin by
transforming the infinite integration interval to a finite one.

Lemma 4.6. Let z ∈ C \ (−∞,−1]. Then

log(1 + z)

z
=

∫ 1

−1

1

z(1− x) + 2
dx. (4.20)

Proof. We apply the transformation t = 2/(1− x), which satisfies dt
dx

= 2
(1−x)2

, to

(2.19). Integrating by substitution gives

log(1 + z)

z
=

∫ 1

−1

1−x
2

2
1−x

+ z
· 2

(1− x)2 dx

=

∫ 1

−1

1
2

1−x
+ z
· 1

1− x dx,

which proves the lemma.

When using Gauss–Legendre quadrature for approximating the integral (4.20),
we again find a connection to Padé approximants.

Lemma 4.7. Let xi and ωi, i = 1, . . . , ℓ be the nodes and weights of the ℓ-point
Gauss–Legendre quadrature rule on [−1, 1]. Then

rℓ−1,ℓ(z) =
ℓ∑

i=1

ωi

z(1− xi) + 2

is the (ℓ− 1/ℓ) Padé approximant of log(1 + z)/z with expansion point 0.

Proof. The proof proceeds analogously to the proof of Lemma 4.5 by noting that
ℓ-point Gauss–Legendre quadrature is exact for polynomials of degree up to 2ℓ−1,
and using the formula

dj

dzj
rℓ−1,ℓ(z) =

ℓ∑

i=1

(−1)j j! · (1− xi)
j · ωi

(z(1− xi) + 2)j+1

for the derivatives of rℓ−1,ℓ(z).
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4.3 Choice of quadrature rules and connection to Padé approximation

In contrast to Lemma 4.5, the result of Lemma 4.7 does not allow to freely choose
the expansion point of the Padé approximant. Instead, it is always fixed at the
origin. As already mentioned in the discussion after Lemma 4.5, the method does
not behave very sensitively with respect to the expansion point anyway, so that
we can expect the method to work efficiently also in cases where the matrix A
has eigenvalues far away from the origin. Apart from this minor difference, most
of the discussion for z−α also applies in the case of log(1 + z)/z with obvious
modifications, so that we refrain from restating this here.

The last function we discuss in detail in this section is the exponential function,
f(z) = ez. We use the Cauchy integral representation

ez =
1

2πi

∫

Γ

et

t− z dt (4.21)

where Γ is a closed contour in the extended complex plane winding around z
exactly once, which directly translates into an integral representation for the
matrix exponential

eA =
1

2πi

∫

Γ

et (tI − A)−1 dt,

where Γ now has to wind around spec(A) exactly once; cf. Definition 2.4. An
important special case arises when A is Hermitian negative semi-definite, i.e., its
eigenvalues lie in R

−
0 . It was shown in [135, 141, 142] that the trapezoidal rule

on suitably chosen parabolic, hyperbolic or cotangent Hankel contours (so-called
Talbot contours, introduced in [133]) gives very good approximation results for
the exponential function on the negative real axis (and thus also for the matrix
exponential of Hermitian negative semi-definite matrices). Therefore, these con-
tours seem well suited to be used in Algorithm 4.3 in this case. In the following,
we only discuss parabolic contours, as the results are very similar for all three
types of contours in our setting.

The optimized parabolic contour proposed in [135] is given as

γ(ζ) = ℓ(0.1309− 0.1194ζ2 + 0.25iζ) (4.22)

and the ℓ-point trapezoidal rule applied to (4.21) on the contour (4.22) gives a
convergence rate of O(2.85−ℓ). The resulting contour for different values of ℓ is
given in Figure 4.1. While in the experiments reported in [135] at most ℓ = 32
quadrature nodes were necessary to approximate the exponential function on R

−
0

to machine precision, the situation is different in the context of our restarted
Arnoldi method. On the one hand, we are not interested in approximating the
exponential itself, but rather the error function (3.5) and on the other hand, we
are not only interested in achieving a high accuracy on R

−
0 , but, when A is non-

Hermitian with field of values in the left half-plane, in a larger region of the left
half-plane which contains all Ritz values. Because of these two reasons, higher
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Figure 4.1: Parabolic contour from [135] for ℓ = 32, 64 and 256. For larger values of
ℓ, the intersections of the contour and the imaginary axis move farther away from the

origin.

numbers of quadrature points were necessary in our experiments. In these cases,
the corresponding contour (4.22) intersected the imaginary axis far away from the
origin, and the integrand is highly oscillatory along the parts of the contour near
the imaginary axis, which resulted in numerical instabilities.

We therefore use a different (non-optimal) parabolic contour, which is fixed in
the sense that it does not depend on the number of quadrature points used.
Specifically, we use

γ(ζ) = a+ iζ − cζ2, ζ ∈ R, (4.23)

defined by two parameters a, c > 0. By varying the value of a one can shift
the contour from left to right while the parameter c controls the “width” of the
contour. Figure 4.2 shows the resulting contours for different values of the two
parameters. In Algorithm 4.3, we adaptively choose the parameters a and c in
such a way that all Ritz values are contained in the interior of the contour, i.e.,
the contour possibly changes after each restart. This is done as follows. Let Θ
denote the set of Ritz values accumulated throughout all restart cycles performed
thus far. Then, we choose

a = max
(
{ℜ(θ) + 1 | θ ∈ Θ} ∪ {1}

)
(4.24)

and
c = min

(
{(a−ℜ(θ)− 1)/ℑ(θ)2} | θ ∈ Θ} ∪ {0.25}

)
. (4.25)

Note that the addition of one to the real part of θ in (4.24) is a “safety measure”
to ensure that all Ritz values have a positive distance from the contour (and thus,
any other positive value different from one could be used in principle). In the

76



4.3 Choice of quadrature rules and connection to Padé approximation
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Figure 4.2: Parabolic contour used in our restarted Arnoldi method for the exponential
function. On the left, contours resulting for c = 0.25 and a = 1, 10 and 20 are shown.

On the right, contours resulting for a = 1 and c = 0.25, 0.15 and 0.05 are shown.

same way, the values one in (4.24) and 0.25 in (4.25) are chosen such that the
“right endpoint” of the contour does not come too close to the origin and that
the contour has a prescribed minimal width (and thus distance to the negative
real axis). With this choice of a and c, we can guarantee that all Ritz values lie
in the interior of the corresponding parabolic contour, from which it follows that
quadrature on this contour really approximates the error function in question.

Proposition 4.8. Let Θ ⊆ C be compact and let a and c be given by (4.24)
and (4.25), respectively. Then all θ ∈ Θ lie in the interior of the contour γ
from (4.23) defined by these parameters.

Proof. Let θ ∈ Θ. Then by the definition of γ in (4.23), we have ℜ(θ) = ℜ(γ(ζθ))
for

ζθ = ±
√

(a−ℜ(θ))/c. (4.26)

Note that (a−ℜ(θ))/c is positive due to the choice of a and the fact that c > 0.
On the other hand, by the choice of c, we have

c < (a−ℜ(θ))/(ℑ(θ)2)
⇔ ℑ(θ)2 < (a−ℜ(θ))/c
⇔ |ℑ(θ)| < |

√
(a−ℜ(θ)/c|. (4.27)

By (4.26) and the fact that ℑ(γ(ζθ)) = ζθ, the inequality in (4.27) is equivalent
to

|ℑ(γ(ζθ))| > |ℑ(θ)|,
which shows that θ lies inside the contour γ.
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4 Implementation of a quadrature-based restarted Arnoldi method

The contour (4.23) is infinite, so we have to truncate it for practical computations.
Given a prescribed tolerance tol, we compute a truncation parameter

ζtol =
√

(a− log(tol))/c. (4.28)

A straightforward calculation shows that for the parameter ζtol from (4.28) one
has |eγ(±ζtol)| = tol, so that the values of the integrand for |ζ| > ζtol are negligibly
small. Using the contour (4.23) as integration path Γ in (4.21) and truncating at
±ζtol, we have

ez =
1

2πi

∫ ∞

−∞

eγ(ζ)γ′(ζ)

γ(ζ)− z dζ ≈ 1

2πi

∫ ζtol

−ζtol

eγ(ζ)γ′(ζ)

γ(ζ)− z dζ. (4.29)

Applying the ℓ-point compound midpoint rule with equidistantly spaced quadra-
ture nodes ζj = ζtol ·

(
2j−1
ℓ
− 1
)
, j = 1, . . . , ℓ to (4.29) then gives the quadrature

approximation

2ζtol
ℓ

ℓ∑

j=1

eγ(ζj)γ′(ζj)

γ(ζj)− z
,

which we use in our restarted Arnoldi method (of course applied to the error

function e
(k−1)
m (z) instead of ez). Numerical experiments performed with this

approach are reported in the next section.

4.4 Numerical experiments

In this section, we illustrate the performance of the quadrature-based restarted
Arnoldi method when applied to the model problems from Section 2.6. We focus
on numerical efficiency (i.e., execution time) and stability when compared to the
other restarting approaches described in Section 4.1, and will not investigate the
dependency on parameters like, e.g., the restart length in detail. We refer to,
e.g., [3, 43] for a thorough treatment of these issues. All experiments are per-
formed in Matlab R2013a using our implementation FUNM QUAD of the restarted
Arnoldi method [59]. The methods from [3, 43] were tested using the FUNM KRYL

implementation [44] and the method from [93,126] was implemented based on the
same version of the Lanczos process. We stress thatMatlab codes are not always
best suited for comparing running times of algorithms (in large parts due to the
fact that part of the code is interpreted and not pre-compiled) but that in our set-
ting, where most of the time in all methods is spent in performing matrix vector
products (which are calls to precompiled Matlab routines) and all algorithms
rely on the same implementation of the Arnoldi/Lanczos process, significant dif-
ferences in running time can be trusted to be meaningful. In all tests, we use the
tolerance tol = 10−13 for the adaptive quadrature in Algorithm 4.3, which was
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Figure 4.3: Approximating eθAb: Convergence history (left) and running times (right)
of different restarting algorithms for the semi-discretization of a three-dimensional heat
equation. The numbers next to the curve for the quadrature-based method indicate the
number of quadrature nodes used for evaluating the error function in the corresponding

restart cycle. The restart length is m = 20 in all cases.

enough for the Arnoldi approximation to converge to sufficient accuracy for all
test cases. In addition to the running time of our algorithm, we also report the
number of quadrature nodes necessary to reach the prescribed accuracy tol in
each restart cycle. The initial number of quadrature nodes used was ℓ = 8. The
“exact solutions” used in the experiments in this chapter as well as at all other
places in this thesis (except for some small examples where they are easily com-
putable via a full eigenvalue decomposition of A) are in reality approximations
which have been precomputed to an accuracy of about 10−15 (with guaranteed er-
ror bounds when possible) by unrestarted Krylov subspace methods. This allows
us to consider model problems of large size (for which an explicit computation
of f(A)b is infeasible) while still being sure that the used solutions are accurate
enough to behave exactly as the exact solution in our experiments.

We begin by reporting the results for the three-dimensional heat equation, our
first model problem. We compare our quadrature-based restart approach, Algo-
rithm 4.3, to the method based on divided differences from [93], which is applicable
because A is Hermitian, and Algorithm 4.2 using the best uniform rational approx-
imation of degree 16 for the exponential function on the negative real axis [25,27],
which can be constructed without knowledge of the spectral interval of A. We use
restart length m = 20 in all three methods. On the left-hand side of Figure 4.3,
the convergence curves of the three methods are depicted, the corresponding ex-
ecution times are given on the right-hand side. In the first eight restart cycles,
all three methods behave exactly the same. From the ninth cycle on, the in-
stability of the divided difference based method becomes visible, such that the
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4 Implementation of a quadrature-based restarted Arnoldi method
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Figure 4.4: Approximating eθAb: Convergence history (left) and running times (right)
of different restarting algorithms for the semi-discretization of a three-dimensional con-
vection diffusion equation. The numbers next to the curve for the quadrature-based
method indicate the number of quadrature nodes used for evaluating the error function

in the corresponding restart cycle. The restart length is m = 20 in both cases.

method only reaches an absolute error norm of about 10−5 before diverging. The
other two methods continue to behave exactly the same, apart from the fact that
the final error norm reached in the quadrature-based method is about one order
of magnitude lower than when using the fixed rational approximation, which is
most probably due to the accuracy of the rational approximation. The running
time of the two converging methods is also about the same, with the rational
approximation method being slightly faster. This can be explained by the lower
degree of rational approximation used (16 in contrast to a degree between 46 and
94 for the quadrature-based method) and the additional overhead for the adap-
tive quadrature in our method. However, the difference in running time is almost
negligible and may as such have no real meaning at all (cf. the discussion of Mat-

lab timings at the beginning of this section). The running time for the divided
difference based method is slightly lower, but only 10 iterations were performed
until the instability was detected, meaning that the other two methods perform
slightly faster per iteration. However, the difference is again not large enough to
be significant. This example illustrates that our quadrature-based method works
and is stable in a case where the method based on divided differences becomes
unstable. However, it does not show any superiority in comparison to the rational
approximation method so far. Due to A being Hermitian negative definite and
the availability of a low-degree rational approximation for ez which does not de-
pend on spec(A), both are black-box methods in this case and have very similar
running times.

A first advantage of our restarted method can be demonstrated when considering
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Figure 4.5: Approximating f(z) = e−θ
√
z−1

z : Convergence history (left) and running
times (right) of different restarting algorithms for the semi-discretization of a three-
dimensional wave equation. The numbers next to the curves for the quadrature-based
method indicate the number of quadrature nodes used for evaluating the error function

in the corresponding restart cycle. The restart length is m = 20 in all cases.

the second model problem, the three-dimensional convection diffusion equation.
Here, the matrix A resulting from the semi-discretization is non-Hermitian, so that
no good rational approximation for ez on W(A) is available in a straightforward
way. Therefore, the approach using the accumulated Hessenberg matrix (4.1)
from [43] was the only restart method available for this test problem so far (the
method from [93] is not applicable as A is non-Hermitian). In the quadrature-
based method, we use adaptively constructed parabolic Hankel contours enclosing
all Ritz values as described in Section 4.3, and we again use the restart lengthm =
20 in both methods. The convergence curves are given on the left of Figure 4.4,
while the running times are reported on the right. Both methods behave the
same again, showing an initial phase in which almost no progress is made, before
rapid convergence takes place in the last few cycles. Algorithm 4.3 uses 1088
or 1540 quadrature nodes in all cycles for this problem, showing that the error
function is much more difficult to evaluate than in the previous example, where
at most 94 nodes were used. Still our method is about one third faster than the
method proposed in [43] due to the fact that we only work with m×m matrices
throughout all restart cycles, while the evaluation of eθHkm becomes increasingly
expensive in later restart cycles. Therefore, the more restart cycles are necessary,
the larger the benefit of using our new method will be (as long as one has no good
rational approximation at hand). This is illustrated in the next experiment.

When considering the semi-discretization of the three-dimensional wave equa-

tion (2.60), one has to deal with the function f(z) = e−θ
√

z−1
z

, which is neither an
entire function nor a Stieltjes function (albeit closely related, just generated by

81



4 Implementation of a quadrature-based restarted Arnoldi method

an oscillating, nonmonotonic function µ). Still, Proposition 3.8 applies to it and
guarantees the existence of the integral representation of the error function. For
this function, it is again not trivial to construct a good rational approximation
of sufficient accuracy, even though A is Hermitian positive definite. We therefore
compare our method to the method based on accumulated Hessenberg matrices
and to the method based on divided differences, which is applicable because A is
Hermitian. We again use restart length m = 20 and, as it is difficult to find a suit-
able quadrature rule for the integral (2.63) due to the oscillatory behavior of the
integrand (which in case one uses a variable transformation onto a finite interval,
leads to increasingly high-frequent oscillations when approaching one endpoint
of the integration interval), we simply use the Matlab routine quadgk [120]
to evaluate the integral representation of the error function. In contrast to the
other model problems, where we use the hand-tailored quadrature rules from Sec-
tion 4.3, this means that we are, e.g., not able to exploit update formulas for the
values of the reciprocal nodal polynomial 1/wm(ti) at the quadrature nodes, re-
sulting in many superfluous computations. In Figure 4.5, convergence curves are
again given on the left, while timings are reported on the right. Our method and
the method from [43] again behave exactly the same, while the method from [93]
again only reaches an accuracy of about 10−5 before it starts to diverge. The run-
ning times show a clear superiority of our method this time. Even though a more
efficient implementation would be possible by constructing a suitable quadrature
rule by hand, the method is still faster by a factor of about ten. The running time
of the divided difference based method is only reported for the sake of complete-
ness. Considering the number of restart cycles performed, one sees that one cycle
of this method has roughly the same cost as one cycle of the quadrature-based
method.

Next, we consider the model problems arising from lattice QCD computations.
We begin by computing the sign function of the Wilson–Dirac operator at zero
chemical potential, which corresponds to evaluating the inverse square root (i.e.,
a Stieltjes function) of a Hermitian positive definite matrix. We again compare
our method to the divided difference based approach and the method employing a
rational approximation. In the latter approach, we use the best relative Zolotarev
approximation of degree 32 on the spectral interval of A [145]. Constructing this
approximation requires knowledge of the largest and smallest eigenvalue of A,
such that the rational approximation method is not a black-box method in this
case, but requires spectral information on A. The time consumed for comput-
ing these eigenvalues and constructing the approximation is not included in the
reported timings. Our quadrature-based method uses Gauss–Jacobi quadrature
as explained in Section 4.3. As α = 1/2 in this model problem, we have that
−α = α − 1 = −1/2, so that the Gauss–Jacobi quadrature rule reduces to a
Gauss–Chebyshev rule (cf. also Example 2.45), for which there are closed formu-
las for the quadrature nodes and weights, see, e.g., [1, Chapter 22], so that they
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Figure 4.6: Approximating
(
(Γ5DW )2

)−1/2
Γ5DWb: Convergence history (left) and run-

ning times (right) of different restarting algorithms for computing the sign function of
the Wilson–Dirac operator at zero chemical potential. The numbers next to the curves
for the quadrature-based method indicate the number of quadrature nodes used for
evaluating the error function in the corresponding restart cycle (due to the large num-
ber of restart cycles, we only give numbers in those iterations where the number of
quadrature nodes has changed compared to the previous cycle). The restart length is

m = 20 in all cases.

can be computed essentially for free. We report convergence curves and execu-
tion times for all three algorithms in Figure 4.6. We again observe monotone
convergence of the quadrature and rational approximation based methods while
the method based on divided differences begins to diverge starting already from
the third restart cycle (so that the running time for this method is only given
for the sake of completeness and is not really meaningful). Concerning running
time, the two stable methods behave very similarly again, but one should keep
in mind that the construction of the Zolotarev rational approximation requires
the computation of the smallest and largest eigenvalue of A, which, using the
Matlab function eigs, takes about four and a half minutes in this experiment.
This is no problem in realistic lattice QCD computations, as the sign function
needs to be approximated many times in a single simulation, but it indicates that
the independence from spectral information of our method can be a big advan-
tage in situations in which the action of a matrix function on a single vector (or
only a few vectors) needs to be approximated and the computation of eigenvalue
information of A is costly. An interesting observation about the accuracy of the
quadrature rules to be made in this experiment is that the number of quadrature
nodes which is necessary for reaching the prescribed accuracy tol is (after a slight
increase in the first few cycles) monotonically decreasing from one cycle to the
next, making later restart cycles less computationally expensive than earlier cy-
cles. This behavior is typical when approximating Stieltjes functions of Hermitian
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Γ5DWb: Convergence history (left) and run-

ning times (right) of different restarting algorithms for computing the sign function of
the Wilson–Dirac operator at nonzero chemical potential. The numbers next to the
curves for the quadrature-based method indicate the number of quadrature nodes used
for evaluating the error function in the corresponding restart cycle (due to the large
number of restart cycles, we only give numbers in those iterations where the number of
quadrature nodes has changed compared to the previous cycle). The restart length is

m = 20 in both cases.

positive definite matrices (see also the Gaussian Markov random field experiment
later in this section and the discussion in [58]) and can be explained as follows.
The order of magnitude of the computed corrections becomes smaller and smaller
the longer the iteration goes on (see also the results on monotone convergence
presented in Chapter 5) so that the relative accuracy that is required to reach the
absolute accuracy tol is lower in later restart cycles. This is also in line with the
error function representation (3.7), where the integrand contains the reciprocal of∏k−1

j=1 w
(j)
m , a polynomial of degree (k − 1)m with roots in R

−
0 in the kth restart

cycle. The higher the degree of this polynomial gets, the closer the integrand is to
the zero function (which still holds true after applying a variable transformation

as in Section 4.3, as some term involving the reciprocal of
∏k−1

j=1 w
(j)
m is always

present).

Next, we turn our attention to the case of nonzero chemical potential, which
corresponds to approximating the action of the inverse square root of a non-
Hermitian matrix. Therefore, we cannot use the Zolotarev rational approximation
here (as it is not accurate enough for eigenvalues which do not lie close to the
real axis), and we thus compare our method to the approach of [43] again. The
results of this experiment are given in Figure 4.7. The convergence behavior is
very similar to the one observed for the Neuberger operator at zero chemical
potential, but the running times reported on the right-hand side of Figure 4.7
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4.4 Numerical experiments
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Figure 4.8: Approximating A−1/2z : Convergence history (left) and running times (right)
of different restarting algorithms for sampling from a Gaussian Markov random field.
The numbers next to the curves for the quadrature-based method indicate the number
of quadrature nodes used for evaluating the error function in the corresponding restart

cycle. The restart length is m = 20 in all cases.

show that in this case, as already observed in the wave equation model problem,
the constant work per cycle that our quadrature-based method requires gives a
very significant advantage over the approach from [43], which requires about 23
times as much time as our method.

To conclude the numerical experiments in this chapter, we investigate the problem
of sampling from a Gaussian Markov random field. As we are again interested in
approximating the action of the inverse square root of a Hermitian positive definite
matrix on a vector, we compare the same methods and use the same rational
approximation (but of degree 16, which is sufficient this time) and quadrature rule
as for the (Hermitian) lattice QCD model problem. Again, the time consumed
for computing the largest eigenvalue of A—the smallest one is explicitly known—
for the construction of the Zolotarev rational approximation (which is about one
second in this case) is not included in the timings reported on the right-hand side
of Figure 4.8. Convergence curves and the number of quadrature nodes used by
our algorithm are again shown on the left-hand side of the figure. All methods
perform about the same in terms of running time, and the quadrature-based
method and the method based on rational approximation again show the same
convergence behavior, while the divided difference based method fails to reach an
accuracy higher than 10−5. As before, we observe that the number of quadrature
nodes needed to reach the tolerance tol in our method decreases in later restart
cycles. This experiment once again demonstrates that our algorithm exhibits the
same stability and efficiency as the method of [3] with the advantage of being
completely black-box (at least for Stieltjes and related functions).
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CHAPTER 5

CONVERGENCE OF RESTARTED KRYLOV

SUBSPACE METHODS

In this chapter we investigate the convergence behavior of the restarted Arnoldi
method introduced in Chapter 4. We begin by shortly reviewing the few exist-
ing convergence results for restarted Krylov subspace methods for approximating
f(A)b in Section 5.1 before developing a new approach for the convergence anal-
ysis of the restarted Arnoldi method for Stieltjes functions of Hermitian positive
definite matrices in Section 5.2. In Section 5.3 we briefly comment on limitations
of the applicability of our theory in case of non-Hermitian matrices and use this
as a motivation for proposing a slight modification of Arnoldi’s method in Sec-
tion 5.4 for which we can extend our convergence analysis to the class of positive
real matrices in Section 5.5. In Section 5.6 we give some results on a related
topic, namely the arbitrary convergence behavior of Krylov subspace methods
for non-Hermitian linear systems. We conclude the chapter by presenting some
numerical experiments which illustrate the quality of the developed convergence
bounds in Section 5.7.

5.1 Known convergence results

We begin by presenting previously known convergence results for restarted Krylov
subspace methods for matrix functions. The one case in which convergence of the
restarted Arnoldi method is well understood is when f is an entire function of
order one; cf. [19].
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5 Convergence of restarted Krylov subspace methods

Definition 5.1. The function f is called entire of order one if it is analytic
in all z ∈ C and

lim sup
r→∞

log(log(M(r)))

log r
= 1,

where M(r) = max|z|=r |f(z)|.

The most prominent example of an entire function of order one is the exponential
f(z) = ez as clearly

log(log(M(r)))

log r
= 1 for all r > 0

in this case. A convergence analysis for the restarted Arnoldi method for entire
functions of order one was given in [43].

Theorem 5.2. Let A ∈ C
n×n, let b ∈ C

n, let f be an entire function of order
one and denote by f

(k)
m the approximation to f(A)b resulting from k cycles of the

restarted Arnoldi method with restart length m. Then there exist constants C and
γ independent of m and k such that

‖f(A)b − f (k)
m ‖2 ≤ C

γkm−1

(km− 1)!
‖b‖2 for all k ≥ 1.

Proof. See [43, Theorem 4.2 and Corollary 4.3].

In particular, Theorem 5.2 guarantees that the restarted Arnoldi method con-
verges superlinearly to f(A)b for all restart lengthsm when f is an entire function
of order one. The proof of this result relies on convergence results for polynomi-
als of best uniform approximation to entire functions of order one; see [50]. As
similar results from approximation theory are not available for larger classes of
functions (especially not for functions with singularities, such as Stieltjes func-
tions), it seems difficult to generalize or extend the result of Theorem 5.2 to other
functions.

There is one other known result from the literature, given in [2], which guarantees
linear convergence of the restarted Arnoldi method and is applicable to a class of
functions which contains the Stieltjes functions, but it is restricted to the case of
restart length m = 1. This can be interpreted as a generalization of the method
of steepest descent for matrix functions, but is seldom used in practice.
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5.2 Convergence of restarted Arnoldi for Stieltjes functions

Theorem 5.3. Let A ∈ C
n×n be Hermitian positive definite, let b ∈ C

n, and let
λmin and λmax denote the smallest and largest eigenvalue of A, respectively. Let f
be a function analytic in (C \ R)∪ [λmin, λmax]. Then the restarted Arnoldi method
with restart length m = 1 converges to f(A)b with asymptotic convergence factor
at least

λmax − λmin

|ζ − λmax|+ |ζ − λmin|
,

where ζ is a singularity of f which is closest to [λmin, λmax].

Proof. See [2, Corollary 5.5].

The technique of proof used to derive this result in [2] is different from the one
used to prove Theorem 5.2 in [43]. It relies on the fact, also proved in [2], that the
sequence of Ritz values generated by the restarted Arnoldi method with m = 1
asymptotically alternates between only two values θ1 and θ2, which allows to
asymptotically characterize the corresponding Arnoldi approximations as result-
ing from a simple interpolation process with only two nodes, a situation analyzed,
e.g., in [140]. While it holds true for larger restart lengths m that the sequence of
Ritz values generated by the restarted Arnoldi method asymptotically alternates
between two sets of m values, there are several other tools used in the proof of
Theorem 5.3 for which a generalization to m > 1 is currently unknown, so that at
least no straightforward generalization of the result of Theorem 5.3 is available.

In the next section, we therefore derive convergence results for Stieltjes matrix
functions and arbitrary restart length m ≥ 1 using a different technique which
exploits the intimate relation between the restarted Arnoldi method for f(A)b
and restarted FOM for shifted linear systems.

5.2 Convergence of restarted Arnoldi for Stieltjes

functions

In this section, we prove convergence of the restarted Arnoldi method for Stieltjes
functions of Hermitian positive definite matrices. We already published these
results in [57]. We begin by pointing out a different interpretation of the error
function representation (3.8) which is crucial for the following analysis. In the
following, let xm(t) denote the mth FOM iterate (2.27) for the shifted linear
system

(A+ tI)x (t) = b (5.1)

with initial guess x0(t) = 0. We assume from here on that t ≥ 0 and spec(A) ⊂
C \ R−

0 , so that each shifted matrix A + tI is nonsingular and therefore each
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5 Convergence of restarted Krylov subspace methods

system (5.1) has a unique solution x ∗(t). The residuals rm(t) = b− (A+ tI)xm(t)
corresponding to the FOM iterates xm(t) then satisfy

rm(t) =
(−1)m+1‖b‖2γm

wm(t)
vm+1. (5.2)

with wm(t) =
∏m

i=1(t+ θi) and γm =
∏m

i=1 hi+1,i, which is merely a rewritten and
shifted version of the representation (2.29) for the FOM residual.

Now consider the mth Arnoldi approximation fm for f a Stieltjes function (3.15),
which can be rewritten as

fm = ‖b‖2Vmf(Hm)ê1 =

∫ ∞

0

‖b‖2Vm(Hm + tI)−1ê1 dµ(t) =

∫ ∞

0

xm(t) dµ(t).

(5.3)
Combining the error representation (3.7) for f(A)b−fm with (5.2) similarly gives

f(A)b − fm = em(A)vm+1 =

∫ ∞

0

(A+ tI)−1rm(t) dµ(t) =

∫ ∞

0

em(t) dµ(t), (5.4)

where em(t) = x ∗(t)− xm(t) is the error of the mth FOM iterate for the system
(A + tI)x (t) = b. We note that a similar result is known for analytic functions
using the Cauchy integral representation and was observed, e.g., in [44, 88, 114].
Equations (5.3) and (5.4) allow to interprete performing Arnoldi’s method for
f(A)b as implicitly applying FOM to the shifted linear systems (5.1) for all values
t ≥ 0 and integrating the corresponding approximations when f is a Stieltjes
function. Consequently, the error of the Arnoldi approximation fm is the integral
over the errors for all these linear systems.

Although (5.4) already reveals the relation between approximating f(A)b by
Arnoldi’s method and the solution of shifted linear systems by FOM, we need
to generalize this representation to the case of the respective restarted methods
to be able to use it in our convergence analysis. To do so, we follow a simi-
lar analysis of the restarted Arnoldi approximation in case of analytic functions
represented by the Cauchy integral formula performed in [44]. Recalling the defi-
nition (2.31) of the restarted FOM approximation and applying this to the shifted
linear systems (5.1), we have

x (k+1)
m (t) = x (k)

m (t) + e (k)
m (t) with e (k)

m (t) = ‖b‖2V (k)
m (H(k)

m + tI)−1ê1. (5.5)

Inductively applying (5.2) to (5.5), we find that the residuals of the restarted
shifted FOM iterates satisfy

r (k)
m (t) = (−1)k(m+1)‖b‖2

∏k
j=1 γ

(j)
m

∏k
j=1w

(j)
m (t)

v
(k)
m+1. (5.6)

90



5.2 Convergence of restarted Arnoldi for Stieltjes functions

Using (4.10) and (4.11) together with (5.6) then gives the representation

e(k)m (A)v
(k)
m+1 =

∫ ∞

0

(A+ tI)−1r (k)
m (t) dµ(t) =

∫ ∞

0

e (k)
m (t) dµ(t). (5.7)

for the error of the restarted Arnoldi approximation. This representation will be
the basis of our convergence analysis, as it allows to transfer known results on the
linear system errors e

(k)
m (t) to the matrix function setting.

For the remainder of this section, we restrict ourselves to Hermitian positive
definite matrices A, as FOM reduces to the conjugate gradient method in this
case and we can use Theorem 2.32 for bounding the norm of the right-hand side
of (5.7). The following results are therefore based on convergence results for
restarted CG, a method which one would under normal circumstances not use
in practice, as the unrestarted CG method, Algorithm 2.4, only needs constant
storage and computational work per iteration and restarting therefore has no
benefit. It is nonetheless a convergent method and therefore suited for building
the basis of the analysis to come.

Before proceeding, we summarize a few obvious but important facts about the
shifted linear systems (5.1).

Proposition 5.4. Let A ∈ C
n×n be Hermitian positive definite and let λmin and

λmax denote its smallest and largest eigenvalue respectively. Then

1. the matrix A+ tI is Hermitian positive definite for all t ≥ 0,

2. the condition number of A+ tI is κ(t) = λmax+t
λmin+t

.

With these prerequisites we are now in a position to derive a first bound for the
(energy) norm of the error of f

(k)
m .

Lemma 5.5. Let A ∈ C
n×n be Hermitian positive definite, let b ∈ C

n, let f be a
Stieltjes function of the form (3.15) and let f

(k)
m be the approximation to f(A)b

from k cycles of the restarted Arnoldi method with restart length m. Let λmin and
λmax denote the smallest and largest eigenvalue of A, respectively, and define the
functions

κ(t) =
λmax + t

λmin + t
, c(t) =

√
κ(t)− 1√
κ(t) + 1

, and αm(t) =
1

cosh(m ln c(t))
. (5.8)

The energy norm of the error of f
(k)
m is then bounded by

‖f(A)b − f (k)
m ‖A ≤ ‖b‖2

√
λmax

∫ ∞

0

αm(t)
k

√
λmin + t ·

√
λmax + t

dµ(t). (5.9)
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5 Convergence of restarted Krylov subspace methods

Proof. We first note that at this stage we allow ∞ as a value for the integral on
the right-hand side of (5.9). Its finiteness and convergence to zero for k → ∞
will be discussed at a later point. By using (5.7), we can write

f(A)b − f (k)
m =

∫ ∞

0

e (k)
m (t) dµ(t), (5.10)

where e
(k)
m (t) denotes the error of the approximation x

(k)
m (t) from k cycles of

restarted CG with restart length m for the shifted linear system (A+tI)x (t) = b.
Taking the energy norm on both sides of (5.10) and using Lemma 2.12 gives

‖f(A)b − f (k)
m ‖A ≤

∫ ∞

0

‖e (k)
m (t)‖A dµ(t)

≤
∫ ∞

0

√
λmax√

λmax + t
‖e (k)

m (t)‖A+tI dµ(t),

where we used that ‖v‖A ≤
√
λmax/(λmax + t)‖v‖A+tI holds for all t ≥ 0 since

vH(A+tI)v = vHAv+tvHv and vHAv ≤ λmaxv
Hv . According to Proposition 5.4

we can now apply Theorem 2.32 for the shifted matrices A + tI, where αm(t)
from (5.8) is exactly the factor from the CG convergence bound for A+ tI. Using
the fact that the kth cycle of restarted CG can be interpreted as performing
m iterations of CG with the approximation x

(k−1)
m (t) from the previous cycle as

initial guess, we obtain

‖f(A)b − f (k)
m ‖A ≤

√
λmax

∫ ∞

0

αm(t)√
λmax + t

‖x ∗(t)− x (k−1)
m (t)‖A+tI dµ(t)

=
√
λmax

∫ ∞

0

αm(t)√
λmax + t

‖e (k−1)
m (t)‖A+tI dµ(t),

with αm(t) from (5.8). Repeatedly applying the CG estimate for all t throughout
all restart cycles and using the fact that the initial guess of the first restart cycle
is x0(t) = 0 for all t, we conclude that

‖f(A)b − f (k)
m ‖A ≤

√
λmax

∫ ∞

0

αm(t)
k

√
λmax + t

‖x ∗(t)‖A+tI dµ(t). (5.11)

As x ∗(t) = (A+ tI)−1b, a straightforward calculation shows that

‖x ∗(t)‖A+tI ≤
‖b‖2√
λmin + t

. (5.12)

Inserting (5.12) into (5.11) completes the proof.

As mentioned at the beginning of the proof of Lemma 5.5, it is not immediately
clear whether the integral on the right-hand side of (5.9) has a finite value. There-
fore, this upper bound by itself is of no great use. Using the following result on
the monotonicity of the function αm(t) from (5.8) will allow us to derive an upper
bound which is finite and goes to zero as k →∞.
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5.2 Convergence of restarted Arnoldi for Stieltjes functions

Proposition 5.6. The function αm(t) from (5.8) is monotonically decreasing on
R

+
0 .

Proof. As a function of t ∈ R
+
0 , κ from (5.8) decreases monotonically from κ(0) to

1, c increases monotonically from c(κ(0)) to 1 as a function of κ ∈ [κ(0),∞), and
αm increases monotonically as a function of c ∈ [c(κ(0)), 1). Altogether, thus, αm

decreases monotonically as a function of t.

We continue with the main result of this section.

Theorem 5.7. Let A ∈ C
n×n be Hermitian positive definite, let b ∈ C

n, let f be
a Stieltjes function of the form (3.15), and let f

(k)
m be the approximation from k

cycles of Arnoldi’s method with restart length m. Further, let αm(t) be defined as
in (5.8) and let t0 ≥ 0 be the left endpoint of the support of µ. The energy norm

of the error of f
(k)
m can then be bounded as

‖f(A)b − f (k)
m ‖A ≤ Cαm(t0)

k, (5.13)

where
C = ‖b‖2

√
λmax · f

(√
λminλmax

)
(5.14)

is a constant independent of m and k, and 0 ≤ αm(t0) < 1. In particular, the
restarted Arnoldi method converges for all restart lengths m ≥ 1.

Proof. We begin by using Lemma 5.5 and Proposition 5.6 to estimate

‖f(A)b − f (k)
m ‖A ≤ ‖b‖2

√
λmax

∫ ∞

0

αm(t)
k

√
λmin + t ·

√
λmax + t

dµ(t)

≤ ‖b‖2αm(t0)
k
√
λmax

∫ ∞

0

1√
λmin + t ·

√
λmax + t

dµ(t).(5.15)

Due to the inequality

√
λminλmax ≤

1

2
(λmin + λmax)

for the geometric and arithmetic mean, we have
√
λmin + t ·

√
λmax + t =

√
λminλmax + (λmin + λmax)t+ t2

≥
√
λminλmax + 2

√
λminλmaxt+ t2

=
√
λminλmax + t.

Therefore,
1√

λmin + t ·
√
λmax + t

≤ 1√
λminλmax + t

. (5.16)
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5 Convergence of restarted Krylov subspace methods

Inserting (5.16) into (5.15), we obtain

‖f(A)b − f (k)
m ‖A ≤ ‖b‖2αm(t0)

k
√
λmax

∫ ∞

0

1√
λminλmax + t

dµ(t). (5.17)

The integral on the right-hand side of (5.17) is f(
√
λminλmax), which completes

the proof.

Theorem 5.7 proves that the restarted Arnoldi method for Hermitian positive
definite A and f a Stieltjes function converges to f(A)b for all restart lengths
m ≥ 1. This qualitative statement does of course not depend on the norm in
which the error is measured, but as one is typically interested in the Euclidean
norm of the error when approximating matrix functions, we give another error
bound for this norm before proceeding.

Of course, as long as one only uses the equivalence of norms on C
n, only the

constant in front of the convergence factor αm(t0) changes when switching from
one norm to another.

Corollary 5.8. Let the assumptions of Theorem 5.7 hold. The Euclidean norm
of the error of f

(k)
m can then be bounded as

‖f(A)b − f (k)
m ‖2 ≤ C̃αm(t0)

k,

where
C̃ = ‖b‖2

√
κ(0)f(

√
λminλmax).

Proof. For all v ∈ C
n one has ‖v‖2 ≤ 1

λmin
‖v‖A. Inserting this into (5.13) and

noting that κ(0) = λmax/λmin concludes the proof.

It is interesting to investigate two special cases of the bound (5.13), namely the
“extremal” cases of restart length m = 1 and restart length m = n (i.e., the
unrestarted Arnoldi method). For the case m = 1, the convergence factor is given
by

α1(t0) =
1

cosh(ln c(t0))
. (5.18)

Using the definition of the hyperbolic cosine and the definition of c(t) from (5.8),
we find

cosh(ln c(t0)) =
1

2

(
eln c(t0) + e− ln c(t0)

)

=
1

2

(
c(t0) +

1

c(t0)

)

=
1

2
· 2κ(t0) + 2

κ(t0)− 1
. (5.19)
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5.2 Convergence of restarted Arnoldi for Stieltjes functions

Inserting (5.19) into (5.18) together with the definition of κ(t) then gives

α1(t0) =
λmax − λmin

λmax + λmin + 2t0
=

λmax − λmin

| − t0 − λmax|+ | − t0 − λmin|
.

For f a Stieltjes function and A Hermitian positive definite, the singularity of f
closest to [λmin, λmax] is clearly ζ = −t0, so that we exactly recover the asymptotic
convergence factor from Theorem 5.3. This is indeed interesting as two completely
different techniques of proof were used to derive these results.

The other special case of our bound which we study in more detail is the un-
restarted Arnoldi method. Of course, due to the finite termination property of
Arnoldi’s method (cf. Section 2.3), the method will (at least in exact arithmetic)
terminate after at most n steps. It is still interesting to have an estimate for the
energy norm of the error throughout the iterations of the method. The modifica-
tion necessary to obtain a bound for the Euclidean norm is obvious, so we forego
stating it here.

Corollary 5.9. Let the assumptions of Theorem 5.7 hold and let fm be the ap-
proximation to f(A)b after m iterations of the unrestarted Arnoldi method. The
energy norm of the error of fm can then be bounded as

‖f(A)b − fm‖A ≤ Cαm(t0), (5.20)

where C is the constant from (5.14).

Proof. The result directly follows by taking k = 1 in Theorem 5.7.

Ignoring the constant factor C, the bound (5.20) is the same bound as the stan-
dard bound for the energy norm of the error in the CG method for the shifted
system (A + t0I)x (t0) = b, cf. Theorem 2.32. This is not necessarily a surprise,
as the discussion so far already revealed that convergence of Arnoldi’s method
for Hermitian positive definite A is closely tied to convergence of CG for shifted
linear systems. As the shifted matrices become more and more well-conditioned
for growing t (cf. also the proof of Proposition 5.6), the system with smallest shift
t0 is the worst-conditioned of all systems and can therefore be expected to be the
one dominating the convergence behavior of the method.

We stress here that all bounds presented so far, in particular (5.20), do not take
into account superlinear convergence effects observed in later iterations of CG due
to spectral adaption; see [7,12,13]. For the restarted Arnoldi method, this is not
really relevant in practical situations, as these effects typically only take place
in the unrestarted method or if the restart length m is rather large compared
to the matrix size n, a fact which we will further comment on in the numerical
experiments reported in Section 5.7. Later in this chapter, in Theorem 5.21, we
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5 Convergence of restarted Krylov subspace methods

also present a result which accounts for superlinear convergence effects, but needs
techniques of proof which are different from the ones used so far.

In the numerical experiments reported in Section 4.4, we observed that the (Eu-
clidean) norm of the error was monotonically decreasing in cases where we approx-
imated a Stieltjes function of a Hermitian positive definite matrix. While The-
orem 5.7 guarantees that the norm of the error in the restarted Arnoldi method
converges to zero for all restart lengths, it does not make any statements about
monotonicity. The following result from [55] (see also [36]) guarantees mono-
tone convergence of the standard, unrestarted Arnoldi method for approximating
Stieltjes matrix functions.

Theorem 5.10. Let A ∈ C
n×n be Hermitian positive definite, let b ∈ C

n, let f
be a Stieltjes function, and let fm denote the approximation for f(A)b obtained
by m iterations of Arnoldi’s method. Then

‖f(A)b − fm+1‖2 ≤ ‖f(A)b − fm‖2 for all m ≥ 1,

i.e., the Euclidean norm of the error decreases monotonically.

We already have all tools at hand to easily transfer the result of Theorem 5.10 to
the restarted case.

Corollary 5.11. Under the assumptions of Theorem 5.10, the approximations
f
(k)
m obtained via the restarted Arnoldi method satisfy

‖f(A)b − f (k+1)
m ‖2 ≤ ‖f(A)b − f (k)

m ‖2 for all k ≥ 1.

Proof. The approximation f
(k+1)
m from the (k+ 1)st Arnoldi cycle can be written

as
f (k+1)
m = f (k)

m + d (k)
m ,

where d
(k)
m is the approximation obtained by applyingm steps of Arnoldi’s method

for approximating e
(k)
m (A)v

(k)
m+1. As the error function e

(k)
m (z) is again a (multiple

of a) Stieltjes function according to Proposition 3.9, we can apply Theorem 5.10
and find the desired result.

Another obvious extension of the results presented so far is the transfer to func-
tions of the type f̃(z) = zf(z) for f a Stieltjes function, as already considered in
Corollary 3.6. Using the error representation from Corollary 3.6, we can easily
derive an error bound similar to the one from Theorem 5.7 for the restarted cor-
rected Arnoldi approximation. Note that this bound is not sharp and does not
reflect the advantage of directly working with f̃ as mentioned in the discussion
preceding Corollary 3.6.
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5.3 Limitations for non-Hermitian matrices

Theorem 5.12. Let A ∈ C
n×n be Hermitian positive definite, let b ∈ C

n and let
f̃(z) = zf(z) where f is a Stieltjes function as in (3.15). Let f̂

(k)
m be the corrected

approximation from k cycles of the restarted Arnoldi method with restart length
m for f̃(A)b, i.e.,

f̂ (k)
m = f̃ (k)

m + h
(k)
m+1,m

(
êH
me

(k−1)
m (H(k)

m )ê1
)
v
(k)
m+1,

where f̃
(k)
m denotes the Arnoldi approximation for the error ẽ

(k−1)
m (A)v

(k−1)
m+1 =

Ae
(k−1)
m (A)v

(k−1)
m+1 = f̃(A)b − f̂

(k−1)
m (starting with f̂

(0)
m = 0, i.e., e

(0)
m (z) = f(z)).

Further, let αm(t) be defined as in (5.8), and let t0 ≥ 0 be the left endpoint of the
support of µ. Then

‖f̃(A)b − f̂ (k)
m ‖A ≤ λmaxCαm(t0)

k

and
‖f̃(A)b − f̂ (k)

m ‖2 ≤ λmaxC̃αm(t0)
k,

where C and C̃ are the constants from Theorem 5.7 and Corollary 5.8, respec-
tively. In particular, the restarted corrected Arnoldi method for f̃(z) = zf(z)
converges for all restart lengths m ≥ 1.

5.3 Limitations for non-Hermitian matrices

In the last section, we proved convergence of the restarted Arnoldi method for
Stieltjes functions of Hermitian matrices. A natural question is of course whether
these results are generalizable to larger classes of matrices. To this end, we first
note that it is sensible to require the field of values W(A) of A to lie in the right
half-plane (i.e., that A is positive real), as any convergence proof must guarantee
that W(A) ∩ R

−
0 = ∅, as otherwise it can happen that a Ritz value occurs on

R
−
0 and the restarted Arnoldi approximations are not even defined. Therefore,

a reasonable choice for the next larger class of matrices (containing the class of
Hermitian positive definite matrices), are normal matrices with field of values in
the right half-plane. One can, however, construct matrices which belong to this
class but for which the restarted Arnoldi method fails to converge, showing that
a generalization of Theorem 5.7 seems impossible for (meaningful) larger classes
of matrices. We illustrate this by investigating the matrix

A =




α 0 · · · 0 1
1 α 0 · · · 0

0 1 α
. . .

...
...

. . . . . . . . . 0
0 · · · 0 1 α



∈ R

n×n, (5.21)
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5 Convergence of restarted Krylov subspace methods

where n is odd and α ∈ R is a real parameter. Some properties of this matrix are
summarized in Proposition 5.13.

Proposition 5.13. Let A be the matrix from (5.21) where n is odd and α ∈ R is
arbitrary. Then

(i) A is normal and

(ii) the eigenvalues of A are λk = α + e2πik/n, k = 1, . . . , n.

Proof. A straightforward calculation shows that

AHA =




2α α 0 · · · 0 α

α 2α α
. . . · · · 0

0 α 2α
. . . . . .

...
...

. . . . . . . . . . . . 0

0
. . . . . . . . . 2α α

α 0 · · · 0 α 2α




= AAH

so that A is normal. For part (ii), we observe that the characteristic polynomial
of A is given by

χA(λ) = (λ− α)n − 1,

such that its roots λk must be nth roots of unity shifted by α. This proves the
result.

Example 5.14. Consider a matrix A of the form (5.21) where n = 21 and
α = 0.995. According to Proposition 5.13(i), A is normal, such that W(A) is
the convex hull of its eigenvalues, which by Proposition 5.13 are the nth roots
of unity shifted by α. The smallest real part among e2πik/21, k = 1, . . . , 21
is cos(22π/21) > −0.995, such that the real parts of all eigenvalues of A are
positive and W(A) lies in the right half-plane.

When approximating the action of the Stieltjes matrix function A−1/2 on the
first canonical unit vector ê1 with the restarted Arnoldi method with restart
length m = 10, we observe that the method diverges (after a short initial
phase in which the norm of the error is reduced), cf. Figure 5.1.

A thorough explanation of the behavior observed in Example 5.14 will be given in
Section 5.6, in which the possible convergence curves of restarted Krylov subspace
methods for linear systems with matrices with sparsity pattern as in (5.21) are
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Figure 5.1: Norms of the error of the iterates produced by the restarted Arnoldi method
with restart length m = 10 applied to the matrix A from (5.21) with n = 21 and

α = 0.995 for approximating A−1/2ê1.

investigated in detail. This will in turn allow to understand the behavior of
restarted Krylov subspace methods for approximating Stieltjes functions of such
matrices by studying the underlying shifted linear systems, cf. Remark 5.25. For
the time being, we will skip this analysis and just use Example 5.14 for showing
that there indeed exist normal, positive real matrices for which Arnoldi’s method
for approximating Stieltjes functions diverges. This motivates to consider a slight
modification of the method in the next section, for which convergence for this
class of matrices can be guaranteed (in fact, it can even be guaranteed without
requiring normality).

5.4 The restarted harmonic Arnoldi method

In the preceding section, we illustrated that one cannot expect the convergence
results proven for the restarted Arnoldi method for approximating Stieltjes matrix
functions to hold for larger classes of matrices than Hermitian positive definite
ones. Considering Corollary 2.37 which guarantees that the restarted GMRES
method for linear systems converges if A is positive real, it is a natural approach
to try to find a generalization of restarted GMRES for Stieltjes matrix functions,
hoping that convergence results transfer to the matrix function case. In the same
way, the restarted Arnoldi method for Hermitian positive definite A can be seen
as a matrix function analogue of restarted CG. In light of Lemma 2.34 a sensible
approach to reach this goal is to use a variant of Arnoldi’s method in which the
approximation is defined by the polynomial interpolating f at the harmonic Ritz
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5 Convergence of restarted Krylov subspace methods

values corresponding to the Krylov subspace Km(A, b) instead of the standard
Ritz values. The resulting approximation, which we will call (restarted) harmonic
Arnoldi approximation here and in the following, was already considered in the
context of approximating matrix functions (albeit in unrestarted methods only
and without presenting a convergence analysis) in [48, 87]. Our analysis of this
method in the restarted context presented in this and the subsequent section was
already published in [57].

By combining Lemma 2.27 and Proposition 2.35, it is immediately clear that the
harmonic Arnoldi approximation for f(A)b can be computed as

f̃m = ‖b‖2Vmf
(
Hm + (hm+1,mH

−1
m êm)ê

H
m

)
ê1 = ‖b‖2Vmf(H̃m)ê1, (5.22)

provided thatHm is nonsingular. When f is a Stieltjes function of the form (3.15),
the harmonic Arnoldi approximation (5.22) can be rewritten as

f̃m =

∫ ∞

0

‖b‖2Vm(H̃m + tI)−1ê1 dµ(t) =:

∫ ∞

0

x̃m(t) dµ(t). (5.23)

We note straightaway, to avoid confusion, that while x̃m(0) is the mth GMRES
iterate for the system Ax = b, the other vectors x̃m(t) for t > 0 are not the
GMRES iterates for (A+ tI)x (t) = b. This is due to the fact that the eigenvalues

of H̃m+ tI are not the harmonic Ritz values of A+ tI corresponding to Km(A, b).
We will in the following show that this does not hinder a convergence analysis
for the resulting method, and reveal connections to the shifted GMRES method
from [56]. The following result shows that the residuals corresponding to the
vectors x̃m(t) are collinear.

Lemma 5.15. Let A ∈ C
n×n, let b ∈ C

n and let Vm, Hm be the matrices from the
Arnoldi decomposition (2.23) for A and b and let H̃m be defined as in (2.35) and
x̃m(t) as in (5.23). For f(z) = z−1, let qH̃m,()−1 be the polynomial interpolating f

at spec(H̃m), and let pm(z) = 1− zqH̃m,()−1(z). Then

r̃m(t) := b − (A+ tI)x̃m(t) = ηm(t)r̃m(0),

where

ηm(t) =
1

pm(−t)
, r̃m(0) = pm(A)b. (5.24)

Proof. Let qH̃m+tI,()−1(z) interpolate f(z) = z−1 at spec(H̃m+ tI) = {ϑ1, . . . , ϑm}
in the Hermite sense. Then, by Lemma 2.27, we have x̃m(t) = qH̃m+tI,()−1(A+tI)b.
Define the polynomial

pm,t(z) = 1− zqH̃m+tI,()−1(z)
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5.5 Convergence of restarted harmonic Arnoldi for Stieltjes functions

of exact degree m, which satisfies pm,t(0) = 1. Then r̃m(t) = pm,t(A+ tI)b. Due
to

pm,t(ϑi + t) = 1− (ϑi + t) · 1

ϑi + t
= 0,

the polynomial pm,t interpolates the zero function at spec(H̃m+tI). In particular,
we have

pm,0(z) =
m∏

i=1

(
1− z

ϑi

)

and

pm,t(z) =
m∏

i=1

(
1− z

ϑi + t

)
=

1

pm,0(−t)
pm,0(z − t). (5.25)

The last equality in (5.25) holds because the polynomial on the right-hand side
has the same zeros as pm,t and attains the value 1 at z = 0. We thus find

r̃m(t) = pm,t(A+ tI)b =
1

pm,0(−t)
pm,0(A) = ηm(t)pm,0(A)b = ηm(t)r̃m(0),

which proves the assertion of the lemma.

The result of Lemma 5.15 shows that the residuals of the iterates x̃m(t) are
collinear to the residual produced by GMRES for the system Ax = b. This al-
ready suggests to conjecture that there is a connection between the iterates x̃m(t)
generated by the shifted GMRES method from [56], which was briefly described
in Section 2.4.1, as there the residuals of the shifted systems are also enforced
to be collinear to the GMRES residual of the seed system. By comparing the
collinearity factor ηm(t) given in (5.24) with the one from [56], one discovers that
they are indeed the same (if the seed system is chosen as the system with shift
t = 0), and that thus also the approximations x̃m(t) are the same (as long as A
is nonsingular, as then the residual uniquely determines the approximation due
to the residual equation). Besides being an interesting observation, this is also
useful because it allows to determine the approximations x̃m(t) in the way pro-

posed in [56] without needing to form the matrix H̃m, which could in some cases

lead to numerical instabilities. We keep this in mind while still using H̃m in the
following to avoid unnecessary notational overhead.

5.5 Convergence of restarted harmonic Arnoldi for

Stieltjes functions

In this section, we show how to transfer results on the convergence of restarted,
shifted GMRES for positive real matrices A to the restarted harmonic Arnoldi
approximation.
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5 Convergence of restarted Krylov subspace methods

Proceeding similarly to (5.4), this time for the error representation (5.23), and
using the result of Lemma 5.15, the error of the harmonic Arnoldi approximation
can be written as

f(A)b − f̃m =

∫ ∞

0

(A+ tI)−1r̃m(t) dµ(t) =

∫ ∞

0

ηm(t)(A+ tI)−1 dµ(t) · r̃m(0)

with ηm(t) from (5.24). We thus have f(A)b − f̃m = ẽm(A)r̃m(0) with the error
function

ẽm(z) =

∫ ∞

0

ηm(t)

z + t
dµ(t).

We will show that the residual collinearity factors ηm(t) are bounded from above
by 1. This is similar to the analysis performed in [56] for proving that the iterates
of the restarted shifted GMRES method are convergent for A positive real.

Lemma 5.16. Let A ∈ C
n×n be positive real and let ηm(t) be defined as in (5.24).

Then

|ηm(t)| ≤
(

1

1 + tρ

)m

≤ 1, (5.26)

where

ρ := min

{
ℜ
(
vHA−1v

vHv

)
: v ∈ C

n, v 6= 0

}
. (5.27)

Proof. From the definition of ηm(t) in Lemma 5.15 we have

ηm(t) =
1∏m

i=1(1 +
t
ϑi
)
,

with ϑi being the harmonic Ritz values of A with respect to Km(A, b). Since
the harmonic Ritz values of A are the inverses of the Ritz values of A−1 with
respect to AKm(A, b), see [111], we have ϑ−1

i = (wH
i A

−1wi)/(w
H
i wi) for some

vector wi ∈ C
n and thus ℜ(ϑ−1

i ) ≥ ρ. Therefore, for any t ≥ 0 we have, using
that ℜ(ϑi) ≥ 0, i = 1, . . . ,m,

|1 + tϑ−1
i | ≥ 1 + tℜ(ϑ−1

i ) ≥ 1 + tρ for i = 1, . . . ,m,

which gives (5.26).

The natural choice of norm for bounding the error of a Krylov subspace method
for non-Hermitian positive real A is the energy norm induced by the matrix AHA
(which is Hermitian positive definite when A is positive real), as most known
results bound the Euclidean norm of the residual (see, e.g., Theorem 2.36) and
we have

‖r‖2 =
√
rHr =

√
(Ae)H(Ae) = ‖e‖AHA.
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5.5 Convergence of restarted harmonic Arnoldi for Stieltjes functions

In the proof of Lemma 5.5, we used the relation between the energy norms induced
by the Hermitian positive definite matrices A and A+ tI, and in the following we
need a similar result for the norms induced by AHA and (A + tI)H(A + tI). As
the situation is a little bit more involved to analyze, we state the precise result
in a separate lemma.

Lemma 5.17. Let A ∈ C
n×n be positive real.

(i) For all v ∈ C
n and t ≥ 0 we have

‖v‖2AHA ≤
1

ν−1
maxt

2 + 2ρt+ 1
‖v‖2(A+tI)H(A+tI) , (5.28)

where ρ is defined in (5.27) and

νmax := max

{
(Av)H(Av)

vHv
: v ∈ C

n, v 6= 0

}
= ‖A‖22. (5.29)

(ii) For t ≥ 0 we have

1

ν−1
maxt

2 + 2ρt+ 1
≤ νmax

(t+ ρνmax)2
. (5.30)

Proof. For part (i) we expand

‖v‖2(A+tI)H(A+tI) = ‖v‖2AHA + 2tℜ(vHAHv) + t2‖v‖22 .

The inequality now follows from ‖v‖22 ≥ 1
νmax
‖v‖2AHA and

ℜ(vHAHv)/(vHAHAv) = ℜ(wHA−1w)/(wHw) ≥ ρ, where Av = w .

The inequality in part (ii) is equivalent to (t + ρνmax)
2 ≤ t2 + 2ρνmaxt + νmax,

i.e., to ρ2νmax ≤ 1, which can be established as follows. Let v be the normalized
eigenvector of (AAH)−1 corresponding to the smallest eigenvalue, which is 1/νmax.
Then, by the Cauchy–Schwarz inequality,

ρ ≤ |vHA−1v | ≤ ‖v‖2 · ‖A−1v‖2 =
√

vH(AAH)−1v =
1

ν
1/2
max

,

which concludes the proof of the lemma.

With these prerequisites, we are in a position to prove the following theorem
on the convergence of the restarted harmonic Arnoldi method for positive real
matrices.
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5 Convergence of restarted Krylov subspace methods

Theorem 5.18. Let A ∈ C
n×n be positive real, let b ∈ C

n, let f be a Stieltjes
function of the form (3.15), and let f̃

(k)
m be the approximation from k cycles of

the restarted harmonic Arnoldi method with restart length m. Further, let ρ be as
defined in (5.27) and let δ, δ′ be defined as in (2.37) and (2.38), respectively. For
t ≥ 0 define

α̃m(t) :=

(√
1− δδ′
1 + tρ

)m

.

Let t0 ≥ 0 be the left endpoint of the support of µ. Then the AHA-energy norm of
the error of f̃

(k)
m satisfies

‖f(A)b − f̃ (k)
m ‖AHA ≤ ‖r (k)

m (0)‖2
∫ ∞

0

(1 + tρ)−mk

√
ν−1
maxt

2 + 2ρt+ 1
dµ(t) (5.31)

≤ ‖b‖2
∫ ∞

0

α̃m(t)
k

√
ν−1
maxt

2 + 2ρt+ 1
dµ(t) (5.32)

≤ Cα̃m(t0)
k, (5.33)

where 0 ≤ α̃m(t0) < 1 and

C = ‖b‖2
√
νmaxf(ρνmax) (5.34)

with νmax defined as in (5.29). In particular, the restarted harmonic Arnoldi
method converges for all restart lengths m ≥ 1.

Proof. As the proof is very similar to that of Lemma 5.5 and Theorem 5.7 we
only give a sketch. Using an upper index, as before, to distinguish the quantities
belonging to different restart cycles we have

f(A)b − f̃ (k)
m =

∫ ∞

0

ẽ (k)
m (t) dµ(t) =

∫ ∞

0

(A+ tI)−1r̃ (k)
m (t) dµ(t).

Using Lemma 5.17(i) together with the equality ‖ẽ (k)
m (t)‖(A+tI)H(A+tI) = ‖r̃ (k)

m (t)‖2
and the collinearity of these residuals as stated in Lemma 5.15, one obtains

‖f(A)b − f̃ (k)
m ‖AHA ≤

∫ ∞

0

|η(1)m (t) · · · η(k)m (t)|√
ν−1
maxt

2 + 2ρt+ 1
‖r̃ (k)

m (0)‖2 dµ(t).

Inequality (5.31) now follows by bounding each factor |η(j)m (t)| via (5.26). The

second relation (5.32) is obtained by using the bound for ‖r̃ (k)
m (0)‖2 from Theo-

rem 2.36. To get (5.33) and (5.34) one then uses the fact that α̃m(t) is monoton-
ically decreasing as a function of t and the bound (5.30).
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5.5 Convergence of restarted harmonic Arnoldi for Stieltjes functions

We just note that it is of course again possible to replace the bound (5.33) for
the AHA-energy norm by a bound for the Euclidean norm of the error by suitably
modifying the constant C, similarly to what we have done for the convergence
bounds in the standard restarted Arnoldi method. We do not give the details
here, as this is completely analogous. Convergence for functions of the type
f̃(z) = zf(z) for f a Stieltjes function, i.e., an analogue to Theorem 5.12 for
the restarted harmonic Arnoldi method is also possible, again using exactly the
same tools as before, so that we omit it here and just state that the restarted
(corrected) harmonic Arnoldi method also converges for functions of this type
when A is positive real.

Theorem 5.18 guarantees the convergence of the restarted harmonic Arnoldi
method for all restart lengths m, but we give an additional result, which gives
a little more insight into the behavior of the method in comparison to restarted
GMRES, as it gives an in a sense more immediate relation.

Corollary 5.19. Let the assumptions of Theorem 5.18 hold. Then

‖f(A)b − f̃ (k)
m ‖AHA ≤ C1‖r (k)

m (0)‖2, (5.35)

where C1 =
√
νmaxf(ρνmax).

Proof. We insert the relation (1 + tρ) ≥ 1 for all t ≥ 0 into (5.31), which yields

‖f(A)b − f̃ (k)
m ‖AHA ≤ ‖r (k)

m (0)‖2
∫ ∞

0

1√
ν−1
maxt

2 + 2ρt+ 1
dµ(t).

The assertion of the corollary then follows by applying (5.30).

Corollary 5.19 is especially interesting in the context of superlinear convergence
of the GMRES method, see, e.g., [106, 139]. In this setting, the statement of
the corollary can be rephrased as: If (restarted) GMRES for the positive real
linear system Ax = b exhibits superlinear convergence behavior, then so does
the (restarted) harmonic Arnoldi method for approximating f(A)b when f is a
Stieltjes function.

We revisit Example 5.14, in which the standard restarted Arnoldi method failed
to converge for a (normal) positive real matrix A. In Figure 5.2, we give the con-
vergence curves of the restarted Arnoldi and restarted harmonic Arnoldi method
for the same problem (and with the same parameters) as considered in Exam-
ple 5.14. As predicted by Theorem 5.18, we observe that the restarted harmonic
Arnoldi method converges linearly to f(A)b.
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Figure 5.2: Norms of the error of the iterates produced by the restarted Arnoldi and
restarted harmonic Arnoldi method with restart length m = 10 applied to the matrix

A from (5.21) with n = 21 and α = 0.995 for approximating A−1/2ê1.

Remark 5.20. We only considered “standard” harmonic Ritz values in this sec-
tion, so that some of the results on the convergence of the restarted harmonic
Arnoldi method, in particular Corollary 5.19, involve quantities corresponding to
the underlying linear system with shift t = 0. It is also possible to define shifted
harmonic Ritz values ϑi with respect to a subspace U ⊆ C

n and a “target” t0
other than 0. These shifted harmonic Ritz values satisfy

(A+ t0I)xi − (ϑi + t0)xi ⊥ (A+ t0I)U

with 0 6= xi ∈ C
n, see, e.g., [87]. If the left endpoint t0 of the support of µ is

different from zero, then these shifted harmonic Ritz values allow to refine the
analysis such that this fact can be taken into account. All results presented in
this section can be modified accordingly, but we refrain from explicitly doing so
for the sake of brevity and notational simplicity.

We end this section by stating a further result on the standard restarted Arnoldi
method for A Hermitian positive definite. It can be derived in the same way
as (5.35) by using the fact that all (restarted) CG residuals are collinear according
to the shift invariance stated by Proposition 2.38 and replacing the harmonic Ritz
values by the standard Ritz values, which are known to all lie in [λmin, λmax]. This
way, one obtains the following result.

Theorem 5.21. Let A ∈ C
n×n be Hermitian positive definite, let b ∈ C

n, let f
be a Stieltjes function of the form (3.15), and let f

(k)
m be the approximation from

k cycles of the restarted Arnoldi method with restart length m. Further, let t0 ≥ 0
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be the left endpoint of the support of µ. The A2-energy norm of the error of f
(k)
m

can then be bounded as

‖f(A)b − f (k)
m ‖A2 ≤ C‖r (k)

m (t0)‖2, (5.36)

where ‖r (k)
m (t0)‖2 is the Euclidean norm of the residual of the (restarted) CG

iterate for the system (A+ t0I)x (t0) = b and

C = λmaxf
(√

λmax

)
.

Consequently,

‖f(A)b − f (k)
m ‖A ≤

C√
λmin

‖r (k)
m (t0)‖2. (5.37)

Again, this result essentially states that we can expect the restarted Arnoldi
method to exhibit superlinear convergence behavior whenever restarted CG for
the system (A+ t0I)x = b converges superlinearly [12,13]. Therefore, this result
is, just as Corollary 5.19, especially interesting in the unrestarted case (or for
restart lengths which are very large in relation to n, which are seldom used in
practice), as one typically observes superlinear convergence only in these cases;
cf. also the experiments reported in Section 5.7. We just briefly remark that, while
all other results stated in this chapter for Hermitian positive definite matrices use
the energy norm corresponding to A, it is natural to initially arrive at an estimate
in the energy norm corresponding to A2 in (5.36), as the proof relies on the relation

‖r (k)
m (t)‖2 = ‖e (k)

m (t)‖A2 .

5.6 Convergence of restarted FOM for linear

systems

In this section, we give a few results concerning the convergence behavior of
restarted FOM (and restarted GMRES) for the solution of non-Hermitian linear
systems. This topic is only remotely related to the other results presented in this
section (in the sense that f(z) = z−1 is also a special case of a Stieltjes function)
and can be regarded as a by-product of investigating matrices like the one from
Example 5.14. The results in this section are also presented in [119].

As already illustrated, e.g., by Example 2.30, the restarted full orthogonalization
method can stagnate at some point, without ever reaching the desired solution
A−1b, even in exact arithmetic. Approximately solving a linear system with the
matrix from Example 5.14 and the right-hand side ê1 with restarted FOM would
lead to a sequence of residual norms which exhibit a similar exponential growth
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5 Convergence of restarted Krylov subspace methods

as the one depicted for the error norms for approximating A−1/2b in Figure 5.1.
What kinds of behavior restarted FOM can exhibit under which circumstances is
an issue that is not fully understood by now apart from the Hermitian positive
definite case, when restarted FOM reduces to restarted CG, which is known to
converge to A−1b; cf. also Section 5.2. The asymptotic speed of convergence in
the Hermitian positive definite case is closely tied to spectral information of A,
e.g., the smallest and largest eigenvalue for estimates like in Theorem 2.32, or
information on clusters formed by the eigenvalues and outliers from the spectrum
for a more intricate analysis. This could lead one to believe that eigenvalue
information can also be used to gain insight into the behavior of FOM in the
non-Hermitian case. We will show that this is not true and that restarted FOM
can attain any behavior completely independent of the spectrum of A. Results
of this type are known for (restarted) GMRES, see, e.g., [39, 78, 137]. The result
from [78] essentially states that unrestarted GMRES can generate any prescribed,
monotonically decreasing sequence of residual norms for a matrix which has any
desired eigenvalues. In [39], a refined result of this type is presented, in which also
the Ritz values in each iteration can be freely prescribed. In [137], a similar result
is presented for restarted GMRES, where the residual norms at the end of each
restart cycle can be prescribed for the first ⌊ n

m
⌋ iterations (where m is the restart

length), again for a matrix with any desired eigenvalues. A more general result,
allowing to prescribe the residual norms also in the iterations within each cycle
(and with the possibility to additionally prescribe all Ritz values) was recently
given in [40].

We present similar results for restarted FOM, where the residual norm in each
iteration can be prescribed for the first n iterations (at most). Towards the end of
this section, we will further comment on the relation and differences of our results
for FOM in comparison to the ones for GMRES.

To make notation not overly complicated, we will, in contrast to most of the
other parts of this thesis, number the residuals consecutively, i.e., r1, . . . , rm are
the iterates from the first restart cycle, rm+1, . . . , r2m are the iterates from the
second restart cycle and so on.

Theorem 5.22. Let m,n, q ∈ N with m ≤ n − 1 and q ≤ n, let r1, . . . , rq ∈ R
+
0

be given with r1, . . . , rq−1 > 0 and rq ≥ 0 and let µ1, . . . , µn ∈ C\{0}. Then there
exist a matrix A ∈ C

n×n with spec(A) = {µ1, . . . µn} and vectors b,x0 ∈ C
n such

that the residuals r1, . . . , rq generated by q steps of restarted FOM with restart
length m for Ax = b with initial guess x0 satisfy

‖rj‖2 = rj for j = 1, . . . , q.

The proof of Theorem 5.22 is quite lengthy and will require a few auxiliary results
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which are given next. We investigate matrices of the form

A(d , s) =




d1 0 · · · 0 sn
s1 d2 0 · · · 0

0 s2
. . . . . .

...
...

. . . . . . dn−1 0
0 · · · 0 sn−1 dn




(5.38)

defined by two vectors d , s ∈ C
n in the following (note that the matrices from

Example 2.30 and 5.14 are both special cases of (5.38)).

For the sake of simplicity we assume that q = n and rn > 0 in Theorem 5.22.
This is no essential restriction, as we will point out at the end of the proof of
Theorem 5.22. We first examine the results of applying Arnoldi’s method to
A(d , s) and a (multiple of a) canonical unit vector.

Proposition 5.23. Let A(d , s) ∈ C
n×n be of the form (5.38), let m ≤ n − 1,

ξ0 ∈ C with |ξ0| = 1, and let c > 0. Let x0, b ∈ C
n be given such that the residual

r0 = b−Ax0 satisfies r0 = ξ0cêi. Then the basis Vj+1 generated by j ≤ m steps of
Arnoldi’s method, Algorithm 2.1, for A(d , s) and b with initial guess x0 is given
by

Vj+1 = [ξ0êi, ξ1êi+1, . . . , ξj êi+j] (5.39)

(where, like everywhere in the following, for ease of notation, the indices are to

be understood cyclically, i.e., ên+1 := ê1, ên+2 := ê2, . . . ) with ξk =
si+k−1ξk−1

|si+k−1| , k =

1, . . . , j. The corresponding upper Hessenberg matrix is given by

Hj =




di 0 · · · 0 0
|si| di+1 0 · · · 0

0 |si+1| . . . . . .
...

...
. . . . . . di+j−2 0

0 · · · 0 |si+j−2| di+j−1



, hj+1,j = |si+j−1|. (5.40)

Proof. One verifies by a direct computation that Vj+1 and Hj, hj+1,j from (5.39)
and (5.40), respectively, satisfy the Arnoldi relation (2.23) for A(d , s). The as-
sertion then follows from the essential uniqueness of the Arnoldi decomposition,
see Lemma 2.23, because all subdiagonal entries of Hj are real and positive.

Given the orthonormal basis and Hessenberg matrix resulting from Arnoldi’s
method, we can easily give an explicit expression for the residuals generated by
applying FOM to the linear system A(d , s)x = b. Using Proposition 5.23, one
obtains the following result.
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Proposition 5.24. Let the assumptions of Proposition 5.23 hold. Then the resid-
ual generated by j ≤ m steps of FOM is given by

rj = (−1)jξjc
|si · si+1 · · · si+j−1|
di · di+1 · · · di+j−1

êi+j.

In particular,

‖rj‖2 =
∣∣∣∣
si+j−1

di+j−1

∣∣∣∣ · ‖rj−1‖2.

Proof. The FOM residual satisfies rj = −hj+1,j‖r0‖2
(
êH
j H

−1
j ê1

)
vj+1 according

to Proposition 2.29. In our setting we have

‖r0‖2 = c, hj+1,j = |si+j−1|, vj+1 = ξj êi+j,

and the lower left entry êH
j H

−1
j ê1 of H

−1
j is (−1)j−1 |si+1|···|si+j−2|

di+1···di+j−1
due to the simple,

bidiagonal structure of Hj. Putting these quantities together proves the proposi-
tion.

When applying restarted FOM with restart length m to the linear system

A(d , s)x = ê1

with initial guess x0 = 0 it is now easy to use Proposition 5.24 to choose some
of the coefficients in d and s in such a way that the prescribed residual norms
r1, . . . , rm are generated. More precisely, one just needs to choose the first m
entries of the coefficient vectors d , s such that they satisfy

sj =
rj
rj−1

dj, j = 1, . . . ,m (5.41)

(where we set r0 = 1) to produce the desired residual norm sequence. Assuming
that d1, . . . , dm are already fixed to arbitrary nonzero values, it is always possible
to choose s1, . . . , sm in such a way that (5.41) is satisfied. After restarting, the
situation is very similar. After the first m steps of FOM, the residual is, according
to Proposition 5.24, given by

rm = (−1)mξm
|s1 · s2 · · · sm|
d1 · d2 · · · dm

êm+1.

Therefore, using the new initial guess xm after restarting, we are again in a situa-
tion in which the assumptions of Proposition 5.24 are fulfilled, with c = | s1···sm

d1···dm | =
rm. From this, it is immediately clear that choosing the next m values in d and
s (analogously to (5.41)) such that

sj =
rj
rj−1

dj, j = m+ 1, . . . ,min{2m,n}
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is fulfilled will produce the desired residual norms rm+1, . . . , rmin{2m,n} in the next
cycle of restarted FOM (or in the first n−m iterations of this cycle, if 2m > n).
By continuing this construction, one can prescribe residual norms for further
iterations until all values in s are fixed (i.e., for n iterations).

We assumed that the coefficients in d are already fixed to some arbitrary nonzero
values. We will now show how to fix them in such a way that the matrix A(d , s)
has any desired (nonzero) eigenvalues µ1, . . . , µn. One immediately sees that the
characteristic polynomial of A(d , s) is given by

χA(d ,s)(λ) = (λ− d1) · · · (λ− dn)− s1 · · · sn. (5.42)

Assuming that the matrix A(d , s) produces the desired sequence of residual
norms, we can eliminate the dependency of χA(d ,s) on the values s1, . . . , sn. Mul-
tiplying all equations in (5.41) (and its counterparts from later restart cycles), we
find the relation

s1 · · · sn = rn · d1 · · · dn. (5.43)

Inserting this into (5.42), we can rewrite the characteristic polynomial as

χA(d ,s)(λ) = (λ− d1) · · · (λ− dn)− rn · d1 · · · dn. (5.44)

There exist coefficients β0, . . . , βn−1 ∈ C such that the values µ1, . . . , µn are the
roots of the corresponding monic polynomial, i.e.,

(λ− µ1) · · · (λ− µn) = λn + βn−1λ
n−1 + · · ·+ β1λ+ β0. (5.45)

Note that the following construction breaks down if rn = (−1)n (which can of
course only happen for even n, as rn ≥ 0). However, we may assume that rn 6=
(−1)n without loss of generality. This can be seen as follows. If rn = (−1)n, we
can choose an arbitrary value α /∈ {0, 1}, replace all values ri by αri and start the
FOM iteration with right-hand side 1

α
ê1, which will produce the same sequence

of residual norms.

We now choose the values d1, . . . , dn such that they are the n roots of the poly-
nomial

λn + βn−1λ
n−1 + · · · β1λ+ β̃0 with β̃0 =

β0
1 + (−1)n+1rn

.

These exist due to the fundamental theorem of algebra. With this choice of the
roots di it obviously holds

(−1)nd1 · · · dn = β̃0. (5.46)

Inserting this into the characteristic polynomial (5.44), we find

χA(d ,s)(λ) = λn + βn−1λ
n−1 + · · ·+ β1λ+ β̃0 − rn · d1 · · · dn

= λn + βn−1λ
n−1 + · · ·+ β1λ+ β̃0 + (−1)n+1rnβ̃0

= λn + βn−1λ
n−1 + · · ·+ β1λ+ (1 + (−1)n+1rn)β̃0

= λn + βn−1λ
n−1 + · · ·+ β1λ+ β0,
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showing that A(d , s) has the desired eigenvalues according to (5.45). Equa-

tion (5.46) together with the fact that β̃0 6= 0 (because β0 = µ1 · · ·µn 6= 0)
implies that all entries of d are nonzero, such that all Hessenberg matrices (5.40)
are nonsingular and all restarted Arnoldi approximations are therefore defined.
This proves Theorem 5.22 in case that q = n and rn > 0. If q < n, we can use
the same construction as above and just fix the “unused” coefficients sq+1, . . . , sn
in such a way that (5.43) still holds (where rn is of course replaced by rq), so this
situation does not cause any difficulties. Now consider the case that rq = 0. This
implies sq = 0 and the characteristic polynomial (5.42) of A(d , s) is therefore
given by

χA(d ,s)(λ) = (λ− d1) · · · (λ− dn),
showing that the eigenvalues of A(d , s) are just the entries of d in this situation.
Therefore, the eigenvalues of A(d , s) can again freely be prescribed through the
choice of the coefficients in d . If q 6= n, the coefficients sq+1, . . . , sn can attain any
values (e.g., all zero) as FOM terminates after finding the exact solution in the
qth iteration in this case, and they are therefore of no importance. This concludes
the proof of Theorem 5.22.

An interesting observation concerning the construction from the proof of Theo-
rem 5.22 is the following. The result only allows to prescribe the residual norms
for the first n iterations of restarted FOM, but due to the simple nature of the
matrices A(d , s) we have full information on the residual norms in later itera-
tions (exceeding n). Consider using FOM with restart length m for the linear
system A(d , s)x = ê1 with initial guess x0 = 0 again (where we assume that
A(d , s) was constructed with q = n and rn > 0). As the residual generated after
n iterations is again a multiple of a canonical unit vector, Proposition 5.24 still
applies in this situation. One thus finds that the residuals in iterations exceeding
n satisfy

‖rn+j‖2 =
rj mod n

rj−1 mod n

‖rn+j−1‖2, (5.47)

i.e., the ratios of consecutive residuals are repeated cyclically. This full informa-
tion on the behavior of the method in “later” iterations is a feature that distin-
guishes our construction from the one in [40,137] for restarted GMRES, in which
no information at all is available on the behavior of the method after more than
n iterations (or more than ⌊ n

m
⌋ restart cycles).

Remark 5.25. The insight gained from the proof of Theorem 5.22 allows to
better explain the behavior observed when trying to approximate the inverse
square root in Example 5.14, cf. also Figure 5.1, which can be interpreted as
implicitly solving shifted linear systems with A. In the first few restart cycles,
the error norm actually decreases, as the (implicitly computed) iterates for the
underlying linear systems belonging to large shifts converge. Divergence only
takes place for systems belonging to some interval [0, t′] close to the origin, and
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once the systems belonging to larger shifts are converged, the divergence for the
other systems slowly becomes visible.

Another observation one can make about our construction is that it applies in
almost the same way to unrestarted FOM (in fact, the method behaves exactly
the same for all choices of restart length m ≤ n − 1), apart from the fact that
unrestarted FOM must terminate with the exact solution at the nth step. This
gives the following result.

Corollary 5.26. Let n ∈ N, 1 ≤ q ≤ n, r1, . . . , rq−1 ∈ R
+, rq = 0 and let

µ1, . . . , µn ∈ C \ {0}. Then there exist a matrix A ∈ C
n×n with spec(A) =

{µ1, . . . µn} and vectors b,x0 ∈ C
n such that the residuals rj generated by j steps

of FOM for Ax = b with initial guess x0 satisfy

‖rj‖2 = rj for j = 1, . . . , q.

The proof of Corollary 5.26 is almost identical to the one of Theorem 5.22 apart
from the fact that rn must be the zero vector due to the finite termination property
of unrestarted FOM.

We now discuss the relation between our results for (restarted) FOM and results
on (restarted) GMRES from [39, 40, 78, 137]. The FOM residual norm and the
GMRES residual norm are not independent of each other, but fulfill the following
relation (where rF

j and rG
j denote the residual generated by m steps of FOM and

GMRES, respectively)

‖rF
j ‖2 =

‖rG
j ‖2√

1− (‖rG
j ‖2/‖rG

j−1‖2)2
, (5.48)

see, e.g., [29, 30], or [22, 104] for other relations between FOM and GMRES. Re-
lation (5.48) allows to prove Corollary 5.26 directly as a corollary of the results
from [39, 78] by constructing a matrix A and a vector b such that GMRES gen-
erates the sequence

rGj :=
rFj√

1 + (rFj /r
G
j−1)

2
with rG0 = 1.

of residual norms, where rFj are the FOM residual norms to be prescribed. By
virtue of (5.48), A and b will then produce the desired FOM residual norms. The
result of Theorem 5.22, however, can not be derived in such a simple way from
the older GMRES result of [137], as this result does not allow the residual norm
at each iteration to be prescribed, but only from the more recent analysis of [40].
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The other way around, our result can be used to construct A and b in such a way
that they produce an arbitrary admissible convergence curve in restarted GMRES
where the norm after each iteration can be prescribed. The only limitation in
this case is that our construction does not allow for stagnation in GMRES, as
stagnation from step j to step j + 1 in GMRES corresponds to the (j + 1)st
FOM iterate not being defined; see [22]. This would require the value dj+1 to be
zero, which is not possible in our construction. Therefore, we can conclude that
one can construct a matrix A and a vector b with arbitrary nonzero eigenvalues
which produce any strictly monotonically decreasing sequence of residual norms
in restarted GMRES, which gives an alternative proof for a result slightly weaker
than what was recently presented in [40].

Another result concerning restarted GMRES is given in the following. It is related
to an open question from the conclusions section of [137], where the authors ask
whether it is possible to give bounds on the residual norms generated by restarted
GMRES based on eigenvalue information once the iteration number exceeds n.
As our approach provides information on the residual norms also in these later
iterations, cf. (5.47), we can negatively answer this question (for both FOM and
GMRES). For FOM, this is directly obvious from (5.47), for GMRES we give the
precise result (and its rather technical proof) in the following.

Simply put, the following theorem states that restarted GMRES can, indepen-
dently of the eigenvalues of A, converge arbitrarily slowly for any number k (pos-
sibly larger than n) of iterations, in the sense that the norm of the residual is
reduced only by a prescribed margin which can be chosen arbitrarily close to
zero.

Theorem 5.27. Let n,m, k ∈ N, m ≤ n − 1, let µ1, . . . , µn ∈ C \ {0} and let
0 ≤ δ < 1. Then there exist a matrix A ∈ C

n×n with spec(A) = {µ1, . . . µn}
and vectors x0, b ∈ C

n such that the residual rG
k = b − AxG

k generated by k
iterations of restarted GMRES with restart length m for Ax = b with initial
guess x0 satisfies

‖rG
k ‖2/‖rG

0 ‖2 ≥ δ.

Proof. According to Theorem 5.22 there exist a matrix A ∈ C
n×n with eigenvalues

µ1, . . . , µn and vectors b,x0 ∈ C
n such that the residuals rF

j produced by the first
n iterations of restarted FOM with restart length m fulfill

‖rF
j ‖2 = ρj with ρ =

δ1/k

(1− δ2/k)1/2 for j = 1, . . . , n. (5.49)

Due to (5.47), we then have that (5.49) also holds for j > n. We rephrase this
relation as

‖rF
j−1‖2 =

1

ρ
‖rF

j ‖2 for all j ∈ N. (5.50)
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By relation (5.48), we have that two consecutive residual norms generated by
restarted GMRES for A, b and x0 fulfill

‖rG
j ‖2

‖rG
j−1‖2

=
‖rF

j ‖2
‖rG

j−1‖2
√

1 + (‖rF
j ‖2/‖rG

j−1‖2)2

=
‖rF

j ‖2√
‖rG

j−1‖22 + ‖rF
j ‖22

=
‖rF

j ‖2√
‖rF

j−1‖22√
1+(‖rF

j−1‖2/‖rG
j−2‖2)2

+ ‖rF
j ‖22

≥ ‖rF
j ‖2√

‖rF
j−1‖22 + ‖rF

j ‖22
. (5.51)

Inserting (5.50) into the right-hand side of (5.51), we find

‖rG
j ‖2

‖rG
j−1‖2

≥ ‖rF
j ‖2√

1
ρ2
‖rF

j ‖22 + ‖rF
j ‖22

=
1√
1
ρ2

+ 1
. (5.52)

Repeated application of (5.52) for all j ≤ k yields

‖rG
k ‖2/‖rG

0 ‖2 =
(
‖rG

k ‖2/‖rG
k−1‖2

)
· · ·
(
‖rG

1 ‖2/‖rG
0 ‖2

)
≥ 1
(

1
ρ2

+ 1
)k/2 . (5.53)

The result follows from (5.53) by noting that ( 1
ρ2

+ 1)k/2 = 1
δ
.

5.7 Numerical experiments

In this section we report a few experiments which illustrate the convergence the-
ory developed in this chapter. As the results are more of theoretical importance
and the proven error bounds cannot be expected to be sharp, we mainly use sim-
ple, academic examples involving (block) diagonal matrices instead of the model
problems from Section 2.6, as these best allow to discuss the influence of, e.g., the
eigenvalue distribution of the matrix on the quality of the error bounds. Again, all
experiments are performed in Matlab using the implementation FUNM QUAD [59]
of the restarted Arnoldi method (and a modification thereof for the restarted
harmonic Arnoldi method). Most of the experiments in this section have already
been presented in the same or a similar form in [57].
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Figure 5.3: Comparison of the norm of the error and the error bounds from Lemma 5.5,
Theorem 5.7 and Theorem 5.21 for diagonal A with eigenvalues chosen as Chebyshev
points in [10−2, 102], f(z) = z−1/2, restart length m = 20 (left) and unrestarted Arnoldi

(right).

The first problem we consider is approximating A−1/2b, where A ∈ C
1,000×1,000

is a diagonal matrix with eigenvalues chosen as Chebyshev points (i.e., zeros
of the scaled Chebyshev polynomial of degree 1,000) in [10−2, 102] and b is the
normalized vector of all ones. Obviously, A is Hermitian positive definite, so
that the theory from Section 5.2 applies in this case. We report the convergence
bound (5.13) from Theorem 5.7 as well as the bound (5.9) (where the integral
is evaluated by adaptive Gauss–Kronrod quadrature, see, e.g., [74]) which can
be expected to be sharper. In Figure 5.3 we report the results for restart length
m = 20 and for the unrestarted Arnoldi method. In the second case, we also
report the bound (5.37) from Theorem 5.21, which is not of interest for m = 20,
as no superlinear convergence effects are expected to take place. We observe that
all bounds capture the rate of convergence very accurately, while the magnitude
of the error is overestimated by one (bound (5.9)) or two (bound (5.13)) orders of
magnitude. The bound (5.37) even overestimates the error norm by three orders
of magnitude, but is the only bound which can in a way capture the convergence to
(approximately) machine precision in the last iteration of the unrestarted Arnoldi
method. This can of course not be the case for the other two bounds which only
ever predict linear convergence.

The standard bound for the error in CG which we used to prove Theorem 5.7 is
obtained by bounding the CG polynomials by means of Chebyshev polynomials
(see, e.g., [115]). When the eigenvalues of A are Chebyshev points (or lie close
to these points), it is known that the speed of convergence of CG method is
close to its worst case behavior, see, e.g. [103], and αm(0) can thus be expected
to be a very close estimate for the actual convergence factor. As the system
Ax = b corresponding to the smallest shift t = 0 dominates the convergence of
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Figure 5.4: Comparison of the norm of the error and the error bounds from Lemma 5.5,
Theorem 5.7 and Theorem 5.21 for diagonal A with eigenvalues chosen equidistantly
spaced in [10−2, 102], f(z) = z−1/2, restart length m = 20 (left) and unrestarted Arnoldi

(right).

the restarted Arnoldi method, it is therefore expected that the overall convergence
rate is predicted accurately. Next, we therefore modify the diagonal matrix A in
such a way that the CG bound αm(0) is no longer close to optimal. We do so by
choosing the eigenvalues of A in the same interval [10−2, 102], but equidistantly
spaced this time. All other parameters and the quantities we report stay the
same as before. The resulting convergence curves and error bounds are depicted
in Figure 5.4. For the restarted method, the behavior is very similar to what was
observed for the matrix with Chebyshev eigenvalues, although the convergence
slope is a little bit steeper than predicted by our bounds this time, but only very
moderately so. For the unrestarted method however, we observe very different
behavior. In an initial phase (until after about 75 iterations), the convergence
rate is approximately as predicted by our bounds, but after that, the superlinear
convergence behavior of Arnoldi’s method starts to take place (see also [11]), and
the error bounds (except for the bound (5.37) based on the CG residual norm)
do not capture the actual behavior of the method anymore. This, together with
the fact that the error is again overestimated by several orders of magnitude
(and unfortunately the most by the bound which does capture the convergence
slope accurately), already suggests that the bounds developed in this chapter are
mainly of theoretical value and it is not advisable to use them as stopping criteria
in practical computations.

In the next experiment, we compare the behavior of the restarted Arnoldi and
restarted harmonic Arnoldi method for a positive real matrix. We do not report
the error bounds from Section 5.5 for the restarted harmonic Arnoldi method here,
as they are even worse than the bounds for the standard restarted Arnoldi method,
both severely overestimating the error and the convergence slope. This comes as
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Figure 5.5: Convergence curves of the restarted Arnoldi method and the restarted har-
monic Arnoldi method for a diagonal matrix A and f(z) = z−1/2. The eigenvalues of
A are chosen randomly in a disk of radius 1 centered at 1 + 10−1 (left) and 1 + 10−5

(right).

no surprise, as this phenomenon is also known for the bound for the convergence
of (restarted) GMRES it is based upon. We therefore cannot expect our bounds
to show better behavior (as we additionally overestimate the exact error norm,
e.g., when only considering the convergence of the dominating linear system with
t = 0). We again consider computing the inverse square root of a diagonal matrix
A ∈ C

1,000×1,000 applied to the normalized vector of all ones. This time, we choose
the diagonal entries of A of the form λj = α + rje

2πiθj , j = 1, . . . , 1,000, where
α > 1 and the parameters rj and θj are random variables chosen independently
and uniformly distributed in [0, 1]. Therefore, all eigenvalues of A lie in a disk
of radius one with center α. As α > 1, all eigenvalues are contained in the right
half-plane. As A is diagonal it is in particular normal, and therefore W(A) also
lies in the right half-plane when all eigenvalues do. Thus, A is positive real. We
test both methods for the two choices α = 1+10−1 and α = 1+10−5. The results
of our experiment are given in Figure 5.5. Note that both methods converge,
while our theory only guarantees this for the restarted harmonic Arnoldi method.
For α = 1 + 10−1, the matrix A is quite well-conditioned, as no eigenvalues
close to the origin can appear, and both methods converge very fast and behave
almost the same. For the choice α = 1 + 10−5, the spectrum of A moves closer
to the origin and the matrix is much worse conditioned than before. In this
case, convergence of the restarted Arnoldi method critically slows down, while
the restarted harmonic Arnoldi method still converges reasonably fast (albeit
slower than for the better conditioned matrix corresponding to α = 1 + 10−1,
as has to be expected). This example illustrates that in case of non-Hermitian
positive real matrices, the restarted harmonic Arnoldi method may indeed behave
substantially better than the standard restarted Arnoldi method, even when both
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Figure 5.6: Convergence curves of the restarted Arnoldi method and the restarted har-
monic Arnoldi method, where A is not diagonalizable with 2 × 2 Jordan blocks, and
f(z) = z−1/2. The details on the spectrum of A for the left and right plots are given in

the text.

converge to f(A)b. This shows that the advantage of this method is not only of
theoretical nature for some pathological examples.

All matrices considered so far have been normal and in particular diagonalizable
(even diagonal). We therefore compare the two methods in one last experiment
involving a matrix which is not diagonalizable. We choose A ∈ C

1,000×1,000 again,
this time block-diagonal with 2× 2 Jordan blocks

[
λ 0
1 λ

]

on the diagonal. One easily checks that such a block is positive real if ℜ(λ) > 0.5
(and thus A is positive real if this is fulfilled for all blocks). We again approxi-
mate the inverse square root of A applied to the normalized vector of all ones. We
again tested both methods for two different (randomly produced) matrices A. In
both cases, the imaginary parts of the values λ are chosen uniformly distributed
in [−10, 10]. The real parts are chosen uniformly distributed in [0.6, 0.8] and
[0.5001, 0.5099], respectively. The results of both experiments are given in Fig-
ure 5.6. We observe reasonably fast convergence for both methods, especially for
the first, better conditioned system. For the second system, the harmonic Arnoldi
method outperforms the standard method by a factor of about two, concerning
iteration numbers.
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CHAPTER 6

ERROR ESTIMATES IN KRYLOV METHODS

In Chapter 5 we have shown how to derive a priori error bounds for Arnoldi’s
method for Stieltjes matrix functions. However, as the numerical experiments
in Section 5.7 reveal (and as can be expected from similar experience with the
error bounds for linear systems our results are based upon), these bounds tend to
severely overestimate the order of magnitude of the error and (depending on the
eigenvalue distribution of the matrix A) may also wrongly predict the convergence
slope. Therefore, they are not feasible for use as stopping criteria for iterative
methods in most practical situations, as this would typically lead to a relatively
high number of unnecessary Arnoldi iterations which are performed in spite of
the error norm already being well below the desired tolerance. Therefore, we
now show how to compute error estimates during Arnoldi’s method which better
capture the actual behavior of the error (and can be shown to be lower and
upper bounds for the exact error norm in certain situations) and are therefore
better suited as stopping criteria. In [65,66], approaches for computing such error
estimates (or bounds) for matrix function computations have been presented, but
the results given there only apply to rational functions in partial fraction form
(another approach for rational functions, which we investigate in more detail
later in this chapter is presented in [61]). Therefore, it is of interest to construct
such error bounds for more general classes of matrix functions. The bounds
we present here for this purpose are largely based on the close relation between
Gauss quadrature and the Lanczos process, see [72–74], which we briefly review
in Section 6.1. In Section 6.2, we describe how this relation can be used to
compute error bounds for bilinear forms uHh(A)v defined by a matrix function
h(A). By rewriting the error norm in Arnoldi’s method for Stieltjes functions as
such a bilinear form, we show how these techniques can be used for bounding
the Arnoldi error norm in Section 6.3. As the naive application of this approach
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6 Error estimates in Krylov methods

leads to very high additional computational cost for the computation of the error
bounds (multiple additional matrix-vector products per Arnoldi iteration), we
describe how to compute the bounds with cost independent of the matrix size n
and iteration number m in Section 6.4. In Section 6.5 we briefly describe how
the techniques from the previous sections can be transferred to non-Hermitian
matrices (and functions which are not Stieltjes functions, like, e.g., the matrix
exponential) although in this case one obtains only estimates for the error (instead
of bounds) in general, and the cost for the computation of these bounds grows
with the number m of iterations in Arnoldi’s method (but is still independent
of the matrix size n). In Section 6.6, we apply the developed techniques to the
model problems from Section 2.6 to illustrate the quality of our error estimates
and investigate their dependence on certain parameters.

The results presented in this section related to Stieltjes functions are submitted
for publication; see [63].

6.1 Relation between Gauss quadrature and the

Lanczos process

In this section we briefly review the connection between Gauss quadrature and
the Lanczos process. For this, consider the sequence of Lanczos polynomials, i.e.,
the polynomials pk−1 with

pk−1(A)v1 = vk and deg pk−1 = k − 1. (6.1)

One can show that these polynomials form an orthonormal set with respect to an
inner product depending on spec(A). For ease of presentation, we assume that
all eigenvalues of A are distinct in the following. We will, however, briefly touch
on the necessary modifications in case that A has multiple eigenvalues right after
the statement of the central Theorem 6.1.

Theorem 6.1. Let A ∈ C
n×n be Hermitian with eigenvalue decomposition A =

QΛQH and let pk−1, k = 1, 2, . . . be the Lanczos polynomials (6.1). Define the
function

α(t) =





0, if t < λ1,∑i
j=1 |v̂(j)|2, if λi ≤ t < λi+1,∑n
j=1 |v̂(j)|2, if λn ≤ t,

(6.2)

where λmin = λ1 < λ2 < · · · < λn = λmax denote the (sorted) eigenvalues of A
and v̂ = QHv1. Then the polynomials pk−1 are orthonormal with respect to the
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6.1 Relation between Gauss quadrature and the Lanczos process

inner product

(p, q)α =

∫ b

a

p(t)q(t)dα(t)

= v̂Hp(A)Hq(A)v̂ , (6.3)

where a ≤ λmin and b ≥ λmax.

Proof. See [74, Theorem 4.2].

Remark 6.2. In case that the eigenvalues of A are not pairwise distinct, the
notation in Theorem 6.1 has to be adapted as follows. Denoting by λ̂1 < · · · < λ̂n̂
the distinct eigenvalues, there exist corresponding eigenvectors v̂j and coefficients
ηj, j = 1, . . . , n̂ such that

v1 =
n̂∑

j=1

ηj v̂j,

as A is Hermitian positive definite and thus, in particular, its eigenvectors form
a basis of Cn. The step function α from (6.2) is then changed to

α(t) =





0, if t < λ̂1,∑i
j=1 |ηj|2, if λ̂i ≤ t < λ̂i+1,∑n̂
j=1 |ηj|2, if λ̂n̂ < t,

and all results presented in the following apply in a straightforward way.

Theorem 6.1 states that the Lanczos process generates a (finite) sequence of or-
thonormal polynomials with respect to the inner product (6.3) defined via the
function α. In practical situations, α is not known explicitly, as it requires knowl-
edge of all eigenvalues and eigenvectors of A. Interestingly, by using the Lanczos
process, it is possible to find Gauss quadrature rules corresponding to [a, b] and
α without the explicit knowledge of α. The following theorem is derived by
exploiting the relationship between Gauss quadrature and the eigenvalues and
eigenvectors of tridiagonal matrices, see Section 2.5.

Theorem 6.3. Let A ∈ C
n×n be Hermitian positive definite with smallest and

largest eigenvalue λmin and λmax, respectively, let a ≤ λmin and b ≥ λmax, let
v1 ∈ C

n with ‖v1‖2 = 1, let h be a function defined on [a, b] and let α be defined
as in (6.2). Let tℓ, ωℓ, ℓ = 1, . . . , k be the nodes and weights of the k-point Gauss
quadrature rule for approximating

∫ b

a

h(t)dα(t). (6.4)
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6 Error estimates in Krylov methods

Then
k∑

ℓ=1

ωℓh(tℓ) = êH
1 h(Hk)ê1, (6.5)

where Hk is the tridiagonal matrix obtained by k steps of the Lanczos process,
Algorithm 2.2, applied to A and v1.

Proof. See [74, Theorem 6.6]

In the same way, the (k+ 1)-point Gauss–Radau quadrature rule (with one node

fixed at λmin) can be evaluated as êH
1 h(H̃k+1)ê1, with the modified tridiagonal

matrix

H̃k+1 =

[
Hk hk+1,kêk

hk+1,kê
H
k d(k)

]
, where d = h2k+1,k(Hk − λminI)

−1êk; (6.6)

see [74].

By Theorem 6.3, we can evaluate a Gauss quadrature rule for the function h
without even explicitly computing the nodes and weights of the corresponding
rule, by evaluating h on a tridiagonal matrix. In the next section we will show
why and how bilinear forms uHh(A)v can be interpreted as Riemann–Stieltjes
integrals of the form (6.4).

6.2 Bounds and estimates for bilinear forms

uHh(A)v

Let A ∈ C
n×n be Hermitian positive definite with smallest and largest eigenvalue

λmin and λmax, respectively, let [a, b] with a ≤ λmin and b ≥ λmax and let h be a
function defined on [a, b] as before. Given vectors u , v ∈ C

n, we are interested in
approximating the bilinear form uHh(A)v . To do so, we mainly follow the pre-
sentation in [74, Chapter 7]. With q1, . . . , qn denoting an orthonormal eigenbasis
of A, we decompose u and v as

u =
n∑

i=1

βiqi and v =
n∑

i=1

ηiqi.

Inserting this relation into uHh(A)v and using the eigendecomposition A =
QΛQH , we find

uHh(A)v = uHQh(Λ)QHv = βHh(Λ)η =
n∑

i=1

βiηih(λi). (6.7)
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6.3 Error bounds for Stieltjes functions of positive definite matrices

The sum on the right-hand side of (6.7) can be interpreted as a Riemann–Stieltjes
integral ∫ b

a

h(t) dα̃(t)

with respect to a piecewise constant step function α̃ (cf. also Example 2.9) given
by

α̃(t) =





0, if t < λ1,∑i
j=1 βjηj, if λi ≤ t < λi+1,∑n
j=1 βjηj, if λn ≤ t.

In case of a quadratic form vHh(A)v , i.e., u = v in (6.7), the function α̃ simplifies
to

α̃(t) =





0, if t < λ1,∑i
j=1 |ηj|2, if λi ≤ t < λi+1,∑n
j=1 |ηj|2, if λn ≤ t.

(6.8)

If we use v as starting vector for the Lanczos process (for notational simplicity
assuming that ‖v‖2 = 1), we have η = v̂ in Theorem 6.1, and the step function
α̃ from (6.8) coincides with α from (6.2). In other words, the quadratic form
vHh(A)v can be interpreted as a Riemann–Stieltjes integral with respect to the
function α for which the Lanczos polynomials form an orthonormal sequence.
Therefore, the corresponding Gauss quadrature rule (6.5) from Theorem 6.3 (or

the Gauss–Radau rule obtained from replacing Hk by H̃k+1) is a natural choice
for approximating it. A simple way of approximating quadratic forms vHh(A)v
is therefore as follows. First, normalize v if necessary, yielding v1. Perform
m steps of Algorithm 2.2 to obtain the tridiagonal matrix Hk (and modify this
matrix according to (6.6) if Gauss–Radau quadrature is to be used), and then
evaluate (6.5) to obtain an estimate corresponding to a k-point Gauss rule (or
(k+1)-point Gauss–Radau rule). In the next section, we will show that the norm
of the error in Arnoldi’s method can be expressed as a quadratic form, so that
the results from this and the preceding section apply in this case. Afterwards,
in Section 6.4, we will show how to modify the simple approach described above
so that it does not require k additional multiplications with A for performing a
secondary Lanczos process.

6.3 Error bounds for Stieltjes functions of positive

definite matrices

We begin this section by giving a straightforward characterization of the error
norm in Arnoldi’s method for Stieltjes matrix functions.
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6 Error estimates in Krylov methods

Lemma 6.4. Let A ∈ C
n×n be Hermitian positive definite, let b ∈ C

n, let f be
a Stieltjes function of the form (3.15) and let fm be the approximation for f(A)b
obtained from m steps of Arnoldi’s method. Then

‖f(A)b − fm‖22 = ‖b‖22γ2mvH
m+1ẽm(A)

2vm+1, (6.9)

where ẽm(z) is given by

ẽm(z) =

∫ ∞

0

1

z + t
dµ̃(t) with dµ̃(t) =

1

wm(t)
dµ(t) (6.10)

and γm, wm are as defined in Theorem 3.5.

Proof. By Theorem 3.5 and Proposition 3.9 we have the representation

f(A)b − fm = (−1)m+1‖b‖2γm
∫ ∞

0

(A+ tI)−1 dµ̃(t)vm+1 (6.11)

for the error in Arnoldi’s method. Taking (squared) norms in (6.11) gives

‖f(A)b − fm‖22 = (‖b‖2γmẽm(A)vm+1)
H (‖b‖2γmẽm(A)vm+1)

= ‖b‖22γ2mvH
m+1ẽm(A)

H ẽm(A)vm+1

= ‖b‖22γ2mvH
m+1ẽm(A)

2vm+1,

where the last equality holds because ẽm(A) is Hermitian if A is Hermitian.

The representation (6.9) of the Arnoldi error norm as a quadratic form allows
to use Gauss (and Gauss–Radau) quadrature in the sense of (6.5) to compute
approximations for it. In our situation, i.e., f a Stieltjes function and A Hermitian
positive definite, we can prove that the approximations obtained this way are lower
and upper bounds for the exact norm of the error.

Theorem 6.5. Let A ∈ C
n×n be Hermitian positive definite, let b ∈ C

n, let f
be a Stieltjes function of the form (3.15) and let fm be the mth Arnoldi approxi-

mation (2.25) to f(A)b. Denote by H
(2)
k the tridiagonal matrix resulting from k

steps of the Lanczos process applied to A and vm+1 and by H̃
(2)
k+1 the modification

of H
(2)
k according to (6.6). Then

‖b‖22γ2mêH
1 ẽm

(
H

(2)
k

)2
ê1 ≤ ‖f(A)b − fm‖22 ≤ ‖b‖22γ2mêH

1 ẽm

(
H̃

(2)
k+1

)2
ê1, (6.12)

where ẽm(z) is the error function given in (6.10) and γm is as defined in Theo-
rem 3.5.
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6.3 Error bounds for Stieltjes functions of positive definite matrices

Proof. By Theorem 6.3, the quantity êH
1 ẽm

(
H

(2)
k

)2
ê1 corresponds to a k-point

Gauss quadrature rule for the Riemann–Stieltjes integral
∫ b

a

ẽm(z)
2 dα(z),

where α is given by (6.2). In the same way êH
1 ẽm

(
H̃

(2)
k+1

)2
ê1 corresponds to a

(k + 1)-point Gauss–Radau rule. As ẽm(z) is a Stieltjes function by Proposi-
tion 3.9, and thus, according to Proposition 2.17(i), completely monotonic, ẽm(z)

2

is also completely monotonic by Proposition 2.17(ii), although it is not a Stielt-
jes function in general. The bracketing property (2.53) from Corollary 2.48 then
gives the desired result.

Theorem 6.5 suggests a simple way of computing error bounds for the Arnoldi
approximation to f(A)b, albeit one that is hardly feasible in practice. Directly
evaluating the leftmost and rightmost expression in (6.12) to bound the error in
themth step of Arnoldi’s method demands an additional k matrix vector products
for computing H

(2)
k . Therefore, the computation of the error bounds requires the

same amount of computational work as advancing the Arnoldi iteration from step
m to step m + k. This is an unacceptably high cost, especially if one wants to
compute error bounds in each iteration of Arnoldi’s method to monitor at what
point the desired accuracy is reached. How this can be circumvented will be the
topic of Section 6.4. Prior to that, we address another issue that arises when trying
to use (6.12) for computing error bounds. The function ẽm(z) is not available in an
explicit closed form, so that it has to be evaluated, e.g, by numerical quadrature,
just as in the implementation of the restarted Arnoldi method in Chapter 4. While
in Chapter 4 we were mainly interested in using a convergent quadrature rule
which gives an accurate enough representation of the error to be approximated,
this time it is also important to know whether these approximations give lower
or upper bounds for the exact value of the integral, because otherwise one cannot
be sure that the approximations computed for the quantities on the left and
right of (6.12) are still bounds (rather than only estimates) for the error. In the
following we show that it suffices to choose a quadrature rule that gives lower (or
upper) bounds for the value of ẽm(z) in the scalar case, because this property will
carry over to the matrix case. Note that this result is not as trivial as it may
appear at first sight, as it relies on the fact that A (and thus Hk) is Hermitian
positive definite and does in general not hold in the non-Hermitian case.

Proposition 6.6. Let the assumptions of Theorem 3.4 hold and let H ∈ C
m×m

be any Hermitian positive definite matrix. Further, let tℓ, ωℓ ∈ R, ℓ = 1, . . . , k be
the nodes and weights of a quadrature rule for which

k∑

ℓ=1

ωℓ

z + tℓ
≤ ẽm(z) for z ∈ R

+. (6.13)
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Then

êH
1

(
k∑

ℓ=1

ωℓ(H + tℓI)
−1

)2

ê1 ≤ êH
1 ẽm(H)2ê1.

The result holds analogously for quadrature rules which give upper bounds. In
particular, the result applies to the matrices H

(2)
k and H̃

(2)
k+1 from Theorem 6.5.

Proof. Using the spectral decomposition H = UDUH with unitary U and diago-
nal D and defining the shorthand notation u = UH ê1, we have

êH
1

(
k∑

ℓ=1

ωℓ(H + tℓI)
−1

)2

ê1 = uH

(
k∑

ℓ=1

ωℓ(D + tℓI)
−1

)2

u

=
m∑

i=1

|ui|2
(

k∑

ℓ=1

ωℓ

dii + tℓ

)2

. (6.14)

Using (6.13) we can bound the right-hand side of (6.14) by

m∑

i=1

|ui|2
(

k∑

ℓ=1

ωℓ

dii + tℓ

)2

≤
m∑

i=1

|ui|2ẽm(dii)2 = uH ẽm(D)2u = êH
1 ẽm(H)2ê1,

which concludes the proof for lower bounds. The modifications necessary for
proving the result for upper bounds are straightforward. The matrix H

(2)
k is

obviously Hermitian positive definite, as A is Hermitian positive definite and
H

(2)
k = V HAV for a matrix V of full (column) rank. For H̃

(2)
k+1, note that the

modification (6.6) again results in a Hermitian matrix. As its eigenvalues are the
nodes of a Gauss–Radau quadrature rule, they are known to lie in [λmin, λmax]
(when the fixed quadrature node a is chosen such that a ≤ λmin or a ≥ λmax,

which is the case in our setting), see, e.g., [69]. Therefore, H̃
(2)
k+1 is also a Hermitian

positive definite matrix and the result of the proposition applies.

We note that while the result of Proposition 6.6 is important in the sense that it
guarantees that it is possible to really compute lower and upper bounds for the
error in Arnoldi’s method by properly combining two rules that each give a lower
(or upper) bound in (6.12), the numerical experiments reported in Section 6.6
show that the error in the inner quadrature rule, i.e., the rule for approximating
ẽm(z), is typically negligible compared to the error of the outer Gauss quadrature
rule used to approximate the bilinear form (6.9) for reasonable choices of param-
eters, so that in most situations, the computed quantities can still be trusted to
be bounds for the error norm, even when no special care is devoted to choosing
the inner quadrature rule properly.
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6.4 Computing error bounds with low computational cost

We end this section by commenting on the relation of the results presented here
to the results from [61]. In [61], an approach very similar to what is presented
here is established for linear systems and, building on this, for rational functions
in partial fraction form (with poles on the negative real axis). These rational
functions belong to the class of Stieltjes functions, cf. also Example 2.14, and the
techniques presented in this thesis and in [61] in fact lead to exactly the same
results in this case. Instead of using the results from this chapter, one could
also apply the approach of [61] to other functions by first approximating f by
a suitable rational function r ≈ f and then working with r for computing error
estimates (similar to Algorithm 4.2 from [3], where one replaces f by a rational
function to allow restarting). Using our approach, however, has the advantage
that it circumvents the (potentially costly or complicated) a priori construction
of a rational approximation for f and just works with f directly. In addition,
when one is interested in computing guaranteed error bounds in the first place,
one typically wants these to bound the error corresponding to f(A)b. Using the
approach from [61] would only yield bounds for the error corresponding to r(A)b.
As long as one does not have information on the sign of the remainder term in the
rational approximation (and, in general, the remainder will change sign on the
interval [λmin, λmax]), one can therefore not relate these bounds to f(A)b directly.
Therefore, our approach, while similar in spirit to what was done in [61], has
additional advantages which warrant its closer investigation in this thesis.

6.4 Computing error bounds with low

computational cost

In this section, we show how to compute the quantities from (6.12) with com-
putational cost independent of the number m of iterations performed thus far in
Arnoldi’s method and the dimension n of the matrix A, thus making it feasible to
evaluate the resulting bounds in each iteration of Arnoldi’s method for monitoring
progress of the method. The main idea to reach this goal relies on the fact that
we only need to know the tridiagonal matrix H

(2)
k resulting from applying k steps

of Algorithm 2.2 to A and vm+1, but not the corresponding Arnoldi basis vectors.
The tridiagonal matrix can be computed efficiently, as stated by the following
theorem from [61]. We state the result in its original form here, as this is all we
need right now. We will present several more general versions of it in Section 6.5
and Chapter 7, but giving the lengthy proofs of the more general versions here
would deviate from the main topic of this section.

Theorem 6.7. Let A ∈ C
n×n be Hermitian positive definite, let v1 ∈ C

n and let
Hm+k+1 be the tridiagonal matrix resulting from m + k + 1 steps of the Lanczos
process for A and v1. Let k̂ = min{m, k} and denote by H̃ the lower right (k +
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k̂ + 1) × (k + k̂ + 1) sub-block of Hm+k+1. Further, let Ĥ denote the tridiagonal

matrix resulting from k steps of the Lanczos process applied to H̃ and êk̂+1. Then

Ĥ = H
(2)
k , where H

(2)
k denotes the matrix resulting from k iterations of the Lanczos

process for A and vm+1.

Proof. See [61, Theorem 4.1].

Theorem 6.7 states that the matrix H
(2)
k can be computed by performing k steps

of a secondary Lanczos process with a tridiagonal matrix of size at most (2k +
1)× (2k + 1), i.e., with computational cost O(k2), independent of the size of the
original matrix. The price one pays for this reduction in computational complexity
is that the error bounds for stepm are not available immediately when performing
this step, but only later at step m + k + 1 (if Gauss quadrature with k nodes is
used for computing the bounds). Therefore, there is a trade-off between accuracy
of the error bound (which implies a higher number k of quadrature nodes) and
timely availability of the bounds (which implies using as few nodes as possible).
We further comment on this trade-off when investigating the dependency of the
method on the number of quadrature nodes used in the numerical experiments
reported in Section 6.6.

Apart from H
(2)
k , the computation of the error bounds by (6.12) requires one to be

able to evaluate ẽm and thus the nodal polynomial wm(t), at least at the quadra-
ture nodes used for approximating ẽm. As wm(t) is a polynomial of degree m, a
naive approach of evaluating it at each of the ℓ quadrature nodes used in the inner
quadrature rule would require O(mℓ) arithmetic operations (notwithstanding the
fact that the explicit formula for wm(t) requires computing the eigenvalues of Hm

in the first place), so that the cost of evaluating ẽm would grow with the itera-
tion number m. In addition, this approach could potentially become numerically
unstable for larger values of m. We can circumvent this problem by choosing
the quadrature nodes ti, i = 1, . . . , ℓ in advance and fixing them throughout all
iterations, as 1/wm(ti) can be updated from 1/wm−1(ti) with computational cost
O(1) as follows. By exploiting the relation (4.12) (adapted to our situation, i.e.,
replacing tI −Hm by Hm + tI), one immediately sees that 1/wm(t) is a multiple
of the bottom left entry of the inverse of the shifted matrix Hm + tI. As Hm is
Hermitian and tridiagonal (and so are its shifted versions), one can easily give a
recurrence relation for this entry. When performing Gaussian elimination to solve

(Hm + tiI)zm(ti) = ê1, (6.15)

with Lm denoting the resulting lower triangular matrix and um the vector on
which the same elimination steps have been performed (starting from ê1), one
obviously has

Lm =

[
Lm−1 ∗
∗ ∗

]
and um =

[
um−1

∗

]
,
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with ∗ denoting unknown quantities. The quantities with lower index m − 1
result from the elimination for the system (6.15) from the previous Arnoldi step.
Therefore, the last entry of the solution of (6.15) can be constructed when the
two quantities ℓm−1,m−1 and um−1(m−1) are kept track of from the last iteration.
One then has

um(m) = um−1(m− 1) · hm+1,m

ℓm,m

where ℓm,m = (hm,m + ti)−
h2m+1,m

ℓm−1,m−1

,

so that all quantities necessary for computing 1/wm(ti) from (4.12) with cost
O(1) are available. We note that this approach in a way corresponds to what is
done in certain formulations of the (shifted) CG algorithm, see, e.g., [61,62,115],
with the difference that the necessary quantities do not arise naturally during the
computations in our case, as we are only implicitly working with shifted linear
systems. This approach only requires to store 2(k + 1) scalar values for each
quadrature point ti (as one needs to be able to retrieve the values from iterationm
in iteration m+k+1 for computing the retrospective error bound), thus resulting
in overall additional computational cost of order O(ℓ) and storage cost of order
O(kℓ), which is negligible in comparison to the computational cost and storage
requirements of Algorithm 2.2 for reasonable values of k and ℓ. The requirement
that the nodes for the inner quadrature rule have to be fixed in advance and
cannot be changed during the execution of the algorithm (otherwise, one needs
to recompute the values 1/wm(ti) from scratch for all new quadrature nodes,
resulting in a cost of O(mℓ)) is not a big disadvantage. One generally does not
need a very high number ℓ of inner quadrature nodes to obtain an approximation
error in the same order of magnitude as the one of the outer quadrature rule;
see also the results presented in Section 6.6. In addition, even the recomputation
of all values with cost O(mℓ) is in general affordable should it really become
necessary.

Algorithm 6.1 summarizes our approach of computing retrospective error bounds
in the Lanczos method for f(A)b. The iteration stops once the upper bound of
the error lies below the specified tolerance and the current iterate fm is formed
and returned (even though the error bound corresponds to the iterate m − k −
1, we know by Theorem 5.10 that the (Euclidean) error norm of the Arnoldi
approximations is monotonically decreasing for Hermitian positive definite A, so
that the error norm of fm will also lie below the specified tolerance and will in
general be smaller than the one of fm−k−1). In order to not make the notation
overly complicated we assume that the quantities di and ρi which keep track of the
values necessary to retrieve the values of 1/wm(ti) are stored as full size vectors,
although it suffices to keep the values from the last k + 1 iterations in an actual
implementation. Algorithm 6.1 is given in such a way that it only terminates
when the desired tolerance is reached. It is of course possible to also specify an
upper bound mmax for the number of iterations to be performed.

131
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Algorithm 6.1: Lanczos method for f(A)b with error bounds

Given: A, b, f , k, ℓ, tol, λmin

Choose quadrature nodes/weights (ti, ωi)i=1,...,ℓ for inner quadrature.1

di(0)← 1, ρi(0)← 1, i = 1, . . . , ℓ.2

h1,0 ← 0.3

v1 ← 1
‖b‖2b4

for m = 1, 2, . . . do5

wm ← Avm − hm,m−1vm−16

hm,m ← vH
mwm7

wm ← wm − hm,mvm8

hm+1,m ← ‖wm‖29

if hm+1,m = 0 then10

fm ← ‖b‖2Vmf(Hm)ê1.11

Stop.12

vm+1 ← 1
hm+1,m

wm13

for i = 1, . . . , ℓ do14

di(m)← (hm,m + ti)− h2
m+1,m

di(m−1)15

ρi(m)← ρi(m− 1) · hm+1,m

di(m)16

k̂ ← min{m+ 1, k + 1}.17

Let H̃ be the lower right (k + k̂)× (k + k̂) sub-block of H.18

Perform k steps of Algorithm 2.2 for H̃ and êk̂, yielding Ĥ.19

Modify Ĥ according to (6.6), yielding H̄.20

lower bound ← ‖b‖22êH
1

(∑ℓ
i=1 ωiρi(m− k − 1)(Ĥ + tiI)

−1
)2
ê121

upper bound ← ‖b‖22êH
1

(∑ℓ
i=1 ωiρi(m− k − 1)(H̄ + tiI)

−1
)2
ê122

if upper bound ≤ tol then23

fm ← ‖b‖2Vmf(Hm)ê1.24

Stop.25

The next result summarizes the additional computational cost of Algorithm 6.1
in comparison to Algorithm 2.2.

Lemma 6.8. Performing Algorithm 6.1 instead of Algorithm 2.2 (plus the com-
putation of fm) for A ∈ C

n×n and b ∈ C
n requires an additional computational

cost of the order O(k2 + kℓ) per iteration and thus an overall additional work of
O(mmaxk

2 +mmaxkℓ), if mmax iterations are necessary to reach the desired accu-
racy. In particular, the additional cost in the mth iteration is independent of both
m and n.
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6.4 Computing error bounds with low computational cost

Proof. The initializations in line 1 and 2 of Algorithm 6.1 have cost O(ℓ), assum-
ing that the nodes and weights of the quadrature rule are available and do not need
to be computed by a separate algorithm. Line 3–13 (ignoring the computation of
fm in line 11) exactly correspond to the Lanczos process given in Algorithm 2.2.
The for loop in line 14–16 has computational cost O(ℓ), as the update formulas
for di and ρi only require a fixed number of scalar operations. Line 17 has cost
O(1). Line 18 has cost O(k) and line 19 has cost O(k2), as H̃ is tridiagonal and
matrix vector products with it therefore have cost O(k). Line 20 again has cost

O(k) for solving the linear system with H̃. The computation of the lower and
upper bounds in line 21 and 22, respectively, requires O(kℓ) operations. Adding
up the cost of all individual lines and noting that O(ℓ),O(k) ⊂ O(kℓ) gives the
desired result.

Lemma 6.8 shows that the cost of computing error bounds for the Arnoldi ap-
proximation for Hermitian positive definite A by Algorithm 6.1 is independent
of n. If n is large and k and ℓ are small in comparison, the additional cost is
completely negligible. In the numerical experiments reported in Section 6.6 we
demonstrate that values of k between 5 and 20 and values of ℓ below 100 are typi-
cally sufficient to compute accurate error bounds, also for large matrix dimension
n. Although it is rather difficult to make any precise statement on the accuracy
of the computed error bounds, one can of course expect their quality to depend
on κ(A), the condition number of the matrix A. Therefore, for large κ(A), higher
values of k and ℓ might be necessary to obtain satisfactory results.

We conclude this section by briefly commenting on the situation when using a
restarted Arnoldi method (like, e.g., the one from Chapter 4) instead of the full
Arnoldi method. In this case, one cannot use the Lanczos restart recovery from
Theorem 6.7 to compute error bounds for all iterations of the method, but only
for those iterations for which the next k+1 iterations belong to the same restart
cycle, because the construction from Theorem 6.7 requires the tridiagonal matrix
resulting from k + 1 further steps of the Lanczos method and the result does not
hold any longer if one restarts the method in between. Therefore, ifm denotes the
restart length, we can only compute error bounds for the first m−k−1 iterations
of each cycle by the approach described before. However, in the restarted case,
one is not that reliant on error bounds as for the full Arnoldi method, as one
already computes error estimates in a natural way: In each restart cycle, one aims
to approximate the error of the iterate from the last restart cycle. Therefore,
assuming that the method computes sufficiently accurate approximations, the
norm of the additive correction computed in cycle j can be interpreted as an
estimate for the norm of the error of the iterate from cycle j − 1 and thus gives
a first hint at the progress of the method. However, if one just uses the approach
from Chapter 4 to compute a correction for f

(j−1)
m and then computes its norm,

one has no guarantee that the resulting value is an upper or lower bound for the
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6 Error estimates in Krylov methods

error norm or that it is a sufficiently accurate approximation at all. To obtain
bounds, at least for the iterate computed at the end of the last restart cycle,
we can use the result of Theorem 6.5 directly, without need for restart recovery.
When restarting the Arnoldi method, we perform the Lanczos process in the
next, jth restart cycle with the matrix A and the vector v

(j−1)
m+1 . This is exactly

what is needed for computing the tridiagonal matrix used in (6.12). While in the
full Arnoldi method, using Theorem 6.5 directly means many additional matrix
vector multiplications which do not advance the primary iteration, we are now in
a situation where the matrix vector multiplications performed by the next cycle
of the primary Lanczos process and those needed for the computation of the error
bounds are exactly the same. Therefore, if we compute the values on the left- and
right-hand side of (6.12) at the end of restart cycle j (with restart length m), this
corresponds to an approximation of the norm of the error after cycle j − 1 by an
m-point Gauss and (m+ 1)-point Gauss–Radau rule, respectively. This can also
be interpreted the other way around: One performs k iterations of a secondary
Lanczos process to bound the error of the current iterate. If the bound shows that
the iterate does not yet fulfill the accuracy requirement, the iterations performed
in the secondary method are not “lost”, but can be used to begin the next restart
cycle. We will also give some examples for the bounds obtained this way in the
numerical experiments reported in Section 6.6.

6.5 Extension to non-Hermitian matrices

In this section, we will briefly sketch how it is possibly to transfer the basic tech-
niques used in the previous sections also to the case of non-Hermitian matrices.
Most of the theoretical results concerning, e.g., the sign of the error in the in-
ner and outer quadrature rules, do not hold any longer in this case so that one
cannot obtain guaranteed lower or upper bounds for the error in general. The
basis for being able to also use a similar approach in the non-Hermitian case is
given in [24, 51], where it is shown that Arnoldi’s method can also be related to
quadrature rules, similar to what was done for the Lanczos process in Section 6.1.
In this context, one investigates bilinear forms

(h1, h2)A,v = vHh1(A)
Hh2(A)v (6.16)

induced by A and v for functions h1, h2 defined on spec(A). When the functions
h1 and h2 are both analytic in a neighborhood of spec(A), one can use the Cauchy
integral formula (as in Definition 2.4) to rewrite (6.16) as a double integral along
a path Γ that winds around spec(A) exactly once

(h1, h2)A,v =
1

4π2

∫

Γ

∫

Γ

h1(z1)h2(z2)v
H(z1I −AH)−1(z2I −A)−1v dz1 dz2. (6.17)
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6.5 Extension to non-Hermitian matrices

Using the quantities from the Arnoldi decomposition (2.23) to approximate (6.16),
i.e.,

vHh1(A)
Hh2(A)v ≈ ‖v‖22êH

1 h1(Hk)
Hh2(Hk)ê1 (6.18)

can then be interpreted as a k-point quadrature rule for (6.17). One can also
show that the polynomials pi defining the Arnoldi basis vectors are orthonormal
with respect to the bilinear form (6.16), i.e.,

(pi, pj)A,v =

{
1 if i = j,

0 otherwise.

From this, one can prove that the resulting k-point quadrature rules are exact for
(h1, h2) ∈Wk−1, where

Wk−1 = (Πk−1 ⊕ Πk) ∪ (Πk ⊕ Πk−1);

see [24]. We do not go into detail concerning the theoretical analysis of the re-
sulting quadrature rules, as most of this theory is not important or not applicable
for the developments presented in this section (one can, e.g., show that under
some conditions, these Arnoldi quadrature rules give upper or lower bounds for
the bilinear form (6.16), see [24], but these conditions are not fulfilled or cannot
easily be verified in our setting).

In this manner, one can use the upper Hessenberg matrix Hk resulting from k
steps of Arnoldi’s method applied to A and vm+1 to compute error estimates for
the mth Arnoldi approximation to f(A)b, where f is a Stieltjes function, just as
in the Hermitian case, by setting h1 = h2 = ẽm in (6.18). However, the key for
being able to do so with affordable additional computational cost in the Hermitian
case was given by Theorem 6.7, which allows to perform the secondary Lanczos
process on a (2k+1)× (2k+1) matrix instead of an n×n matrix. Unfortunately,
the result given in [61] holds only in the Hermitian case and has to be modified
accordingly in case of non-Hermitian A. Its proof, however, is almost the same
as for the original result from [61].

Theorem 6.9. Let A ∈ C
n×n be Hermitian positive definite, let v1 ∈ C

n and let
Hm+k+1 be the upper Hessenberg matrix resulting from m+k+1 steps of Arnoldi’s
method for A and v1. Further, let Ĥ denote the upper Hessenberg matrix resulting
from k steps of Arnoldi’s method applied to Hm+k+1 and êm+1. Then Ĥ = H

(2)
k ,

where H
(2)
k denotes the matrix resulting from k iterations of Arnoldi’s method for

A and vm+1.

Proof. Let the Arnoldi decomposition arising from k steps of Arnoldi’s method
for A and vm+1 be given as

AṼk = ṼkH
(2)
k + h

(2)
k+1,kṽk+1ê

H
k . (6.19)
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As vm+1 ∈ Km+1(A, v1), we obviously have that

Kk+1(A, vm+1) ⊆ Km+k+1(A, v1).

Therefore, the basis vectors ṽ1, . . . , ṽk+1 generated by Arnoldi’s method for A and
vm+1 all lie in Km+k+1(A, v1) and can thus be written as linear combinations of
the basis vectors v1, . . . , vm+k+1, i.e.,

[Ṽk, ṽk+1] = Vm+k+1[Qk, qk+1] (6.20)

for some matrix [Qk, qk+1] ∈ C
(m+k+1)×(k+1). As [Ṽk, ṽk+1] and Vm+k+1 both have

orthonormal columns, [Qk, qk+1] must have orthonormal columns as well. Insert-
ing (6.20) into the Arnoldi decomposition (6.19) gives

AVm+k+1Qk = Vm+k+1QkH
(2)
k + h

(2)
k+1,kVm+k+1qk+1ê

H
k . (6.21)

Left-multiplying both sides of (6.21) by the orthogonal projector Vm+k+1V
H
m+k+1

onto the space Km+k+1(A, v1) gives

Vm+k+1V
H
m+k+1AVm+k+1Qk = Vm+k+1QkH

(2)
k + h

(2)
k+1,kVm+k+1qk+1ê

H
k .

which by (2.24) simplifies to

Vm+k+1Hm+k+1Qk = Vm+k+1QkH
(2)
k + h

(2)
k+1,kVm+k+1qk+1ê

H
k .

Noting that Vm+k+1 has full (column) rank, this implies

Hm+k+1Qk = QkH
(2)
k + h

(2)
k+1,kqk+1ê

H
k . (6.22)

Due to Lemma 2.23 and the fact that all subdiagonal entries of H
(2)
k are positive

(as it was computed by Arnoldi’s method), it follows that (6.22) is the Arnoldi
decomposition corresponding to Hm+k+1 and q1. As ṽ1 = vm+1, we have that
q1 = êm+1, which proves the result.

Theorem 6.7 can directly be derived from Theorem 6.9 by noting that in the
Hermitian case, large parts of the coefficients in Qk from (6.20) are zero due to
the tridiagonal structure of Hm+k+1, thus allowing to only use a small part of
the tridiagonal matrix for the computations, see [61]. As this is not the case in
presence of a non-Hermitian matrix A, it is not possible to only use a small sub-
block of Hm+k+1 for retrieving the matrix H

(2)
k . This in turn means that, while we

can circumvent additional multiplications with A, we cannot avoid multiplications
with Hm+k+1, a matrix growing from one iteration to the next. Apart from
this fact, the approach of Algorithm 6.1 can be used in the same way as in
the Hermitian case (replacing the Lanczos process by Arnoldi’s method and the
computation of the bounds in line 21 and 22 by a quadrature-based approximation

136



6.5 Extension to non-Hermitian matrices

for (6.18)) and replacing the recurrence relations for the entries of the inverse of
shifted versions of Hm with the explicit computation of these values, as the simple
update formulas do not hold any longer, because Hm is not tridiagonal. We just
briefly mention here that it is still possible to obtain the necessary quantities in
a more efficient way by applying successive rotations, similar to what is done in
GMRES for cheaply computing the residual norm, see, e.g., [116]. This does not,
however, change the overall cost of the algorithm, at least in O-sense, cf. also the
proof of Lemma 6.10, so that we do not go into detail concerning this here. The
resulting method is given in Algorithm 6.2.

Algorithm 6.2: Arnoldi’s method for f(A)b with error estimate

Given: A, b, f , k, ℓ, tol
Choose quadrature nodes/weights (ti, ωi)i=1,...,ℓ for inner quadrature.1

v1 ← 1
‖b‖2b2

for m = 1, 2, . . . do3

wm ← Avm4

for i = 1, . . . ,m do5

hi,m ← vH
i wm6

wm ← wm − hi,mvi7

hm+1,m ← ‖wm‖28

if hm+1,m = 0 then9

fm ← ‖b‖2Vmf(Hm)ê1.10

Stop.11

vm+1 ← 1
hm+1,m

wm12

for i = 1, . . . , ℓ do13

ρi(m)← hm+1,mê
H
m (Hm + tI)−1ê114

if m ≥ k + 1 then15

Perform k steps of Algorithm 2.1 for H and êm−k, yielding Ĥ.16

estimate←‖b‖22êH
1

∑ℓ
i=1|ωiρi(m−k−1)|2(Ĥ+ tiI)

−H(Ĥ+ tiI)
−1ê117

if estimate ≤ tol then18

fm ← ‖b‖2Vmf(Hm)ê1.19

Stop.20

Note that, in contrast to Algorithm 6.1, Algorithm 6.2 does not guarantee that
the exact error norm of the iterate fm lies below the prescribed tolerance tol

upon termination. We note that the results of the numerical experiments in
Section 6.6 suggest that the error estimates are rather accurate and reliable in
many situations, at least for Stieltjes functions. It can, however, be useful to
include a “safety factor” ε < 1 in the computations and run Algorithm 6.2 with the
tolerance ε·tol instead of tol if it is important that the prescribed tolerance is not
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only approximately reached. The additional cost of Algorithm 6.2 in comparison
to the standard Arnoldi method without computation of error estimates is given
in the next lemma.

Lemma 6.10. Performing Algorithm 6.2 instead of Algorithm 2.1 (plus the com-
putation of fm) for A ∈ C

n×n and b ∈ C
n requires an additional computational

cost of the order O(m2(k+ℓ)+kℓ) in the mth iteration and thus O(m3
max(k+ℓ)+

mmaxkℓ), if mmax iterations are performed in total. In particular, the additional
cost per iteration is independent of n, but not of m.

Proof. The proof is very similar to the one of Lemma 6.8, with the following
differences. The secondary Arnoldi method for step m now has a cost of O(m2k),
as each multiplication with Hm+k+1 has cost O(m2) since the upper triangle of
this matrix is in general dense (and we assume k ∈ O(m)). The solution of each
linear system in line 14 has cost O(m2) due to the Hessenberg structure of Hm,
which results in O(m2ℓ) for all systems.

According to Lemma 6.10, the cost of computing error estimates in Algorithm 6.2
grows with the number of iterations performed. Therefore, if a large number m
of iterations is necessary, the cost of computing the estimates may become pro-
hibitively large. On the other hand, the cost of the orthogonalization in Arnoldi’s
method also grows from one iteration to the next and is in fact of order O(mn).
For k fixed (independently of m and n), we have that O(m2k) ⊂ O(mn), so
that the cost of Algorithm 6.2 (ignoring the matrix vector multiplication) is still
not dominated by the cost of computing the error estimates, at least in O-sense.
Nonetheless, computing the error estimates is more costly than in the Hermitian
case so that computing error estimates in the non-Hermitian case seems partic-
ularly attractive in situations where only a low number of very costly iterations
is necessary for reaching the desired accuracy, as it is, e.g., typically the case in
extended Krylov methods. Extending the results of this chapter to these related
iterative methods is the topic of Chapter 7.

In analogy to what was discussed at the end of Section 6.4, we again mention
that the possibility of restart recovery is not given for all iterations in case one
uses a restarted Arnoldi method. One can, however, again use the norm of the
approximation computed at the end of each cycle as an estimate of the error norm.
In contrast to the Hermitian positive definite case, there is no provable benefit
of specifically using estimates computed by quadrature rules instead of just using
‖e (k)

m ‖2, as for both alternatives, one does not have any information on the sign
of the remainder or the quality of the estimate. We therefore just mention this
here briefly, but will not further investigate it in the numerical experiments in
Section 6.6.
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Another obvious extension of the approaches presented in this chapter, as long
as one is not interested in computing guaranteed bounds, is to apply them to
Cauchy-type integral representations (3.2), so that it is also possible to compute
error estimates for functions like the matrix exponential. We provide numerical
results for this approach in the next section (along with the results for Stieltjes
functions) without presenting the (obvious) modifications to the algorithms in
detail here.

6.6 Numerical experiments

In this section, we compute error bounds and estimates for Arnoldi approxima-
tions for the model problems from Section 2.6, both for the full (based on restart
recovery) and the restarted (based directly on Theorem 6.5) Arnoldi method.
We begin by illustrating the results from Section 6.3 and 6.4, i.e., we consider
approximating Stieltjes matrix functions of Hermitian positive definite matrices.

The first model problem we consider is sampling from a Gaussian Markov random
field. As the matrix function under consideration is the inverse square root and A
is positive definite, Theorem 6.5 guarantees that we can compute lower and upper
bounds for the error norm in Algorithm 6.1. Note that the computation of upper
bounds requires knowledge of (a good lower bound a for) the smallest eigenvalue
of A. In this special application, the smallest eigenvalue of the precision matrix is
known to be 1. In other cases, one can either precompute an approximation for the
smallest eigenvalue, if this is feasible, or directly use the approximation obtained
from the Lanczos iteration (i.e., the smallest Ritz value, possibly multiplied by a
safety factor ε < 1, see [61]). In this case, as long as one does not know whether
the eigenvalue is represented accurately enough, one has again no guarantee that
the computed estimate is really an upper bound. We touch on this topic again
when discussing the Hermitian lattice QCD model problem, in which we use this
approach, as the computation of eigenvalues is very costly (cf. Section 4.4).

Figure 6.1 presents the bounds computed by Algorithm 6.1 for the Gaussian
Markov random field model problem for 150 Lanczos iterations and different val-
ues of k. We show the exact error norm as well as the lower and upper bounds
computed with k = 2, 5 and 10 quadrature nodes for the outer Gauss and Gauss–
Radau rule. For the inner quadrature rule used for evaluating the error function
we use ℓ = 20 nodes of a Gauss and Gauss–Radau rule, respectively, chosen such
that the sign of the error in the inner and outer quadrature rule is the same and
we compute guaranteed bounds, cf. also Proposition 6.6. Keep in mind that the
bounds are computed in retrospect, so that, e.g., when k = 10, the bounds for
the 140th to 150th iteration are not available when 150 iterations are performed
in total. For all values of k, we see that the qualitative behavior of the error is
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Figure 6.1: Exact error norm and bounds computed by Algorithm 6.1 for approximating
A−1/2z in the Gaussian Markov random field model problem. The inner quadrature
rule uses ℓ = 20 nodes, while the number of nodes in the outer quadrature rule is varied

between k = 2, 5 and 10.

captured accurately (in particular for k = 5 and k = 10) and that even for the
very small number of k = 2 quadrature nodes, the error is only overestimated
(respectively underestimated) by about one order of magnitude, which is already
an improvement over the asymptotic bounds from Chapter 5. For k = 5 and
k = 10, the error bounds lie very close to the exact value of the integral, however
they are only available three (respectively eight) iterations later than the bounds
for k = 2. An interesting question (for which there will be no single answer for all
possible cases) is the following. Assume we are given a prescribed accuracy tol

for the absolute error norm to be reached by the computed approximation and
we use the upper bounds from Section 6.3 as stopping criterion, as it is done in
Algorithm 6.1. Then, for which value of k do we require the smallest number of
iterations until convergence to the desired tolerance is detected (this is of course
what one typically wants to have in practical computations, assuming that the
cost for computing the error bounds is negligible for all considered values of k).
For small values of k the bounds are inaccurate but available early, and for large
values of k the bounds are accurate but available late. Therefore, it is not at all
clear which value of k in this trade-off between accuracy and early availability
is optimal. The answer depends on different factors, not only on the quality of
the bounds as a function of k, but also, e.g, on the steepness of the convergence
slope for the function, matrix and right-hand side at hand. We experimentally
determine the “optimal” value of k for the Gaussian Markov random field model
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ℓ ratio lower bound ratio upper bound

5 1.01 1.03
10 1.003 1.002
20 1.00004 1.00001

Table 6.1: Maximum ratio of the bounds computed by Algorithm 6.1 for the values
ℓ = 5, 10, 20 of inner quadratures nodes and the bounds computed for ℓ = 50 for the

Gaussian Markov random field model problem and k = 5.

problem, when trying to reach an accuracy of tol = 10−9. For k = 2, the it-
eration would have been terminated after 92 iterations, just as with k = 5. For
k = 10, one would require 96 iterations before detecting convergence to the de-
sired tolerance, so that this value, despite the very high accuracy of the computed
bounds, would result in four unnecessary Lanczos iterations in comparison to the
lower values of k (which may seem surprising because the bounds for k = 2 look
quite more inaccurate than those for the other values at first glance). Another
interesting question is how to choose the value ℓ of inner quadrature nodes, espe-
cially considering the fact that this number has to be set to a pre-chosen value if
one wants to avoid superfluous computations. Our experiments revealed that the
computed error bounds are not very sensitive with respect to the value of ℓ, to the
extent that the differences in the resulting bounds are not visible to the eye in the
respective convergence graphs. We therefore give the results of our experiments,
this time fixing k = 5 and varying ℓ = 5, 10, 20 and 50 in form of a table which
reports the maximal ratio between the bounds computed for ℓ = 5, 10, 20 and the
most accurate value computed for ℓ = 50. These ratios are given in Table 6.1 and
show that the resulting bounds are almost the same for all values, in particular
when considering that even a difference of a factor of two in the resulting bounds
would be acceptable in most cases. Therefore, and in addition keeping in mind
that the cost of Algorithm 6.1 depends only mildly on ℓ (cf. Lemma 6.8), one may
choose some not too low number, like, e.g., ℓ = 20 or 50 and will most probably
obtain satisfactory results. There exist cases, however, in which the error func-
tion is harder to approximate and the computed bounds are more sensitive with
respect to the number ℓ of inner quadrature nodes as well. It might therefore be
advisable to use a simple form of adaptive quadrature again as a safety measure.
This is similar to what is done in our quadrature-based restarted Arnoldi method,
Algorithm 4.3, albeit in a “relaxed form” (as one only wants to recompute the
values of the nodal polynomial at the quadrature points if it is really necessary,
to avoid computational cost depending on the iteration number m). A straight-
forward approach is to use two quadrature rules of different order again, but to
reject the result only if the two computed approximations differ by a factor of
more than two, e.g. This way, one can still detect whether the inner approxima-
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Figure 6.2: Exact error norm and bounds computed in Algorithm 4.3 for approximating
A−1/2z in the Gaussian Markov random field model problem. The inner quadrature
rule uses ℓ = 20 nodes, the number of outer quadrature nodes corresponds to the restart

length m = 20.

tion is good enough but avoid to recompute the values of the nodal polynomial
from scratch too frequently.

In Figure 6.2, we report the bounds resulting from using the Hessenberg matrix
from cycle j of the restarted Arnoldi method to compute bounds for the error after
cycle j−1, as described at the end of Section 6.4. We use the same parameters in
the restarted Arnoldi method as in the experiments from Section 4.4, in particular
restart length m = 20, so that the computed bounds correspond to 20-point
Gauss and 21-point Gauss–Radau rules, respectively. Both bounds are almost
indistinguishable from the exact error norm, which can be expected due to the
rather high number of quadrature nodes used. This example illustrates that it is
very attractive to use the developed error bounds also in the restarted Arnoldi
method, especially considering that the additional work which is necessary for
computing them is even less than for the unrestarted Arnoldi method, as no
secondary Lanczos process is necessary.

Next, we consider approximating the Neuberger overlap operator at zero chemical
potential, i.e., computing the inverse square root of a Hermitian positive definite
matrix again. We use the same parameters as in the previous experiment and
report the exact error norm and the computed bounds in Figure 6.3, this time also
for k = 20 outer quadrature nodes. For computing the upper bounds for the error,
it is necessary to have a good approximation of the smallest eigenvalue of Γ5DW at
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Figure 6.3: Exact error norm and bounds computed by Algorithm 6.1 for approximating(
(Γ5DW )2

)−1/2
Γ5DWb in the Hermitian QCD model problem. The highest number of

nodes used in the inner quadrature rule is ℓ = 100, while the number of nodes in the
outer quadrature rule is varied between k = 2, 5, 10 and 20.

hand. In contrast to the previous example, we do not know the smallest eigenvalue
explicitly. As it is very costly to approximate it before starting the Arnoldi
iteration (cf. Section 4.4) we use the smallest Ritz value as an approximation
to λmin. As soon as the smallest Ritz value does not change substantially any
longer from one iteration to the next, we assume that it has converged to λmin

to sufficient accuracy and use it (multiplied by the safety factor ε = 0.99) as
the fixed quadrature node at the left of the interval of integration for the Gauss–
Radau rule. This approach was suggested in [61]. The qualitative results obtained
in this experiment are similar to those for the Gaussian Markov random field
model problem, i.e., the bounds capture the behavior of the error norm very
well. This time, the bounds are not as close to the exact error norm as before,
especially the lower bounds underestimate the error norm by a quite large margin
for smaller values of k. For k = 2, the error norm is underestimated by about two
orders of magnitude, a value which drastically improves as k increases. The upper
bounds (which are typically more important for a stopping criterion) are closer
to the actual error norm also for small values of k and do not improve by such a
large margin if k is increased. We again determine the value of k for which the
iteration is terminated earliest when an accuracy of 10−9 is desired. For k = 2,
the stopping criterion is fulfilled in iteration 478, for k = 5 in iteration 472, for
k = 10 in iteration 470 and for k = 20 in iteration 471, so that this time, k = 10
is the optimal value (out of those that were tested). Still, we again see that the
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Figure 6.4: Iteration number at which the stopping criterion in Algorithm 6.1 is fulfilled
(with tol = 10−9) for the Hermitian QCD model problem and different values of k.

difference between the best and worst of the tested values is only eight iterations,
such that even a “non-optimal” choice of k does not result in too much wasted
computation time. The exception from this rule is that one should avoid a very
large number of quadrature points, as from some value on, a higher number k
of quadrature nodes will not make the bounds substantially more accurate. It
will, however, increase the number of additional iterations which are necessary
before convergence to the desired tolerance is detected. We illustrate this by
comparing the iteration number at which convergence to the accuracy 10−9 is
detected for all values of k between 1 and 35. The results are given in Figure 6.4.
The optimal values in this case are found to be k = 12 or 13. For smaller or
larger values, a higher number of iterations is necessary. For values of k larger
than 20, the increase in the number of necessary iterations is almost proportional
to the increase in k, thus confirming the intuitive conjecture that for too high
values of k, no additional accuracy in the bounds is obtained and the additional
quadrature nodes only delay the availability of the computed bound. Therefore,
it seems like a reasonable, albeit heuristic, guideline for practical computations
to choose not more than k = 20 nodes for the outer quadrature rule (for a more
precise guideline, one would also, e.g., need to take into account the speed of
convergence of the method for the problem at hand).

Another difference between this and the previous experiment which is worth men-
tioning is that larger numbers ℓ of inner quadrature nodes are necessary to obtain
satisfactory bounds. The results reported in Figure 6.3 were produced using an
adaptive approach as described in the discussion of the previous experiment. We
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Figure 6.5: Exact error norm and bounds computed by Algorithm 6.1 for approximating(
(Γ5DW )2

)−1/2
Γ5DWb in the Hermitian QCD model problem. The number of nodes

used in the inner quadrature rule is fixed to ℓ = 20, while the number of nodes in the
outer quadrature rule is varied between k = 2, 5, 10 and 20.

ℓ ratio lower bound ratio upper bound

10 5500 6.18
20 10.47 3.17
50 1.12 1.33

Table 6.2: Maximum ratio between the of the bounds computed by Algorithm 6.1 for the
values ℓ = 10, 20, 50 of inner quadratures nodes and the bounds computed for ℓ = 100
for the Hermitian lattice QCD model problem and k = 5 in the first 100 iterations.

illustrate the influence of the value of ℓ by also giving the results for ℓ = 20, a
value which was largely sufficient for the previous model problem, in Figure 6.5.
In addition, we again give a comparison of different values of ℓ in Table 6.2. The
ratios between the quadrature rules for ℓ = 10 and ℓ = 20 compared to the most
accurate tested rule for ℓ = 100 are very large, showing that the approximations
computed for these values are not accurate and one can expect the error in the
inner quadrature rule to make a non-negligible contribution to the quality of the
computed bounds. The ratio between ℓ = 50 and ℓ = 100 is still not as small
as what was observed in the previous model problem, but it will in general be
accurate enough so that the deviation of the bound from the exact error norm is
not dominated by the error of the inner quadrature rule.

145



6 Error estimates in Krylov methods

cycle
0 20 40 60 80

a
b
so

lu
te

E
u
cl

id
ea

n
n
o
rm

er
ro

r

10
-15

10
-10

10
-5

10
0

exact error norm

lower bound

upper bound

Figure 6.6: Exact error norm and bounds computed in Algorithm 4.3 for approximat-

ing
(
(Γ5DW )2

)−1/2
Γ5DWb in the Hermitian lattice QCD model problem. The inner

quadrature rule uses at most ℓ = 50 nodes, the number of outer quadrature nodes
corresponds to the restart length m = 20.

Before proceeding with model problems corresponding to functions other than
Stieltjes functions or non-Hermitian matrices, we present error bounds computed
in the restarted Arnoldi method for the Neuberger overlap operator at zero chem-
ical potential in Figure 6.6. The upper bound again almost completely agrees
with the exact error norm, the lower bound slightly underestimates it, but by less
than one order of magnitude, again demonstrating that this approach gives very
accurate estimates for the error norm in the restarted Arnoldi setting. We stress,
however, that one has to be cautious when using the approach for approximating
λmin described before in the restarted Arnoldi case. For small values of m, it may
well happen that no Ritz value approximates λmin accurately enough. Thus, we
advise to mainly use the described approach for computing error bounds in the
restarted Arnoldi method if λmin is explicitly known (like, e.g., for the Gaussian
Markov random field model problem). We therefore re-used the approximation
to λmin obtained from the experiment involving the unrestarted Arnoldi method
to obtain the results given in Figure 6.6.

Note that for the numerical experiments to come, we will not report results for the
restarted Arnoldi method, as in the model problems considered in the following,
one cannot compute guaranteed bounds for the error norm. The simple approach
of just using the norm of the update computed in cycle j as an estimate for the
error norm in cycle j − 1 can be used in these cases, as the more complicated
quadrature-based approach does not have any (provable) advantages over it.

146



6.6 Numerical experiments

iteration
0 20 40 60 80 100 120 140

a
b
so

lu
te

E
u
cl

id
ea

n
n
o
rm

er
ro

r

10
-15

10
-10

10
-5

10
0

exact error norm

k = 2, appr. lower bound

k = 2, appr. upper bound

k = 5, appr. lower bound

k = 5, appr. upper bound

k = 10, appr. lower bound

k = 10, appr. upper bound

Figure 6.7: Exact error norm and (approximate) bounds computed by Algorithm 6.1

for approximating (e−θ
√
A − I)A−1b for the semi-discretization of the wave equation.

The inner quadrature rule uses ℓ = 20 nodes, while the number of nodes in the outer
quadrature rule is varied between k = 2, 5 and 10.

In the semi-discretization of the wave equation, the matrix A is Hermitian pos-
itive definite, but the function f is not a Stieltjes function, as it is generated
by an oscillating function µ, so that we cannot guarantee the estimates to be
error bounds by our theory. Nonetheless, we provide results for both Gauss and
Gauss–Radau quadrature, which experimentally show that we still get bounds in
this case. For the Gauss–Radau rule, we use the fact that the smallest eigenvalue
of the three-dimensional Laplacian is explicitly known. Otherwise one could again
use the smallest Ritz value after some iterations as an approximation. The quality
of the estimates is again very similar to what was observed in the two previous
experiments, with the (approximate) lower bounds being slightly more accurate
than the (approximate) upper bounds in this example, especially in later itera-
tions. The (approximate) upper error bound decreases below 10−9 in iteration
108 for k = 2 and k = 5 and in iteration 109 for k = 10, so that again all values
lie closely together and are reasonable choices. We stress that one has to keep
in mind that in this situation, the error estimate decreasing below 10−9 is not a
guarantee that the exact error norm lies below the tolerance (although it is the
case in the example presented here).

When approximating the exponential function of a Hermitian negative definite
matrix for solving the heat equation, one is in another situation where one cannot
compute guaranteed error bounds although the system matrix is Hermitian and
definite, because the exponential is not a Stieltjes function. For approximating the
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Figure 6.8: Exact error norm and (approximate) bounds computed by Algorithm 6.1
for approximating eθAb for the semi-discretization of the heat equation. The inner
quadrature rule uses ℓ = 20 nodes on a parabolic Hankel contour, while the number of

nodes in the outer quadrature rule is varied between k = 2, 5, 10 and 20.

error function in the inner quadrature rule, we use a fixed number of quadrature
nodes on the parabolic Hankel contour (4.22). Although we found this approach
to lead to instabilities in the context of our restarted Arnoldi implementation in
Chapter 4, we could safely use it here. We only need a small number of quadrature
nodes for finding a rather rough estimate of the value of the error function, so that
the problems mentioned for higher numbers of quadrature nodes in Section 4.3
do not occur here, and in addition, the matrix A is Hermitian negative definite,
so that we know that all Ritz values lie on the negative real axis, where the
contour (4.22) gives very accurate approximations. The results of our experiment
are reported in Figure 6.8. While the behavior of the approximate bounds for
all values of k looks about the same as before after the first 25 iterations, there
is a significant difference in the first few iterations. For the smaller number of
quadrature nodes, the approximate lower bound severely underestimates the error
norm (even estimating it to only lie slightly above the order of magnitude of the
machine precision in the first iterations). For k = 10 this effect becomes less
severe, and for k = 20, estimates of sufficient accuracy are computed from the
first iteration on. Again we observe that also in this case, which is not covered by
our theory, we obtain bounds for the error. The optimal values of k for identifying
an error norm below 10−9 are again k = 2 and k = 5, for which 128 iterations
are necessary. For k = 10 one needs 129 iterations and k = 20 results in 135
iterations before termination, again showing the characteristic increase for large

148



6.6 Numerical experiments

iteration
0 50 100 150 200

a
b
so

lu
te

E
u
cl

id
ea

n
n
o
rm

er
ro

r

10
-10

10
-5

10
0 exact error norm

k = 2, error estimate

k = 5, error estimate

k = 10, error estimate

Figure 6.9: Exact error norm and estimates computed by Algorithm 6.2 for approxi-
mating eθAb for the semi-discretization of a convection diffusion equation. The inner
quadrature rule uses ℓ = 20 nodes on an adaptively constructed parabolic Hankel con-
tour, while the number of nodes in the outer quadrature rule is varied between k = 2, 5

and 10.

values of k observed in Figure 6.4 for the Hermitian lattice QCD model problem.

In the following, we turn our attention to the non-Hermitian model problems,
namely the semi-discretization of a convection diffusion equation and the Neu-
berger overlap operator at nonzero chemical potential. For these problems, we
use Algorithm 6.2, i.e., we only compute one error estimate, which will in general
neither be an upper nor a lower bound for the norm of the error. We test the same
parameters as for the Hermitian problems. For computing error estimates for the
convection diffusion equation, we need to approximate the error function arising
from the Cauchy integral representation of the exponential function. In contrast
to the semi-discretized heat equation, the matrix A is not Hermitian in this case,
so that the Ritz values can lie outside of the negative real axis. Therefore using
the parabolic contour (4.22) can lead to useless approximations, especially when
Ritz values lie on the outside of the contour, meaning that one not only has to
expect inaccuracies, but the approximated integral is just plain wrong and no rep-
resentation of the error function. We therefore use an approach similar to the one
employed in our restarting algorithm for approximating the exponential of a non-
Hermitian matrix. We again use an adaptively constructed Hankel contour (4.23),
which we construct for the default parameters a = 1, c = 0.25 in the beginning.
If a Ritz value outside the integration contour is detected, we adjust the contour
accordingly (which requires recomputation of the value of the nodal polynomial
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at all quadrature points, but as already reasoned earlier, the computational cost
for doing this is negligible compared to the other parts of the algorithm in most
cases). We note that this approach requires explicitly computing the Ritz values
in each iteration which increases the additional cost of Algorithm 6.2. This may
make this approach prohibitively expensive in cases where the required number
m of iterations is large (which is, however, a situation in which one typically
should avoid using the standard Arnoldi method and instead turn to restarted or
rational Krylov methods). The results of our experiment are given in Figure 6.9.
In this example, the convergence of the Arnoldi approximations to f(A)b is not
monotone and the error estimates inherit the oscillating behavior of the exact er-
ror. In the first about 50 iterations, the oscillations in the error norm are heavily
amplified in the error estimates, making them not reliable here. After the 50th it-
eration, the oscillations in the error estimates become less strong and lie in about
the same order of magnitude as the oscillations in the exact error norm. However,
the norm of the error is underestimated by about two to three orders of magnitude
between the 70th and 100th iteration. Interestingly, the error estimate computed
for k = 5 is more accurate for this model problem than the estimate for k = 10.
While the estimates give an idea on how the error behaves, especially in later it-
erations, this experiment also illustrates the danger of using the estimates as sole
stopping criteria in the non-Hermitian case (or more generally in any situation
in which one has no guarantee that the computed estimates are upper bounds).
When demanding an accuracy of, e.g., 10−9, a stopping criterion based on the
estimates produced by Algorithm 6.2 would already stop after a few iterations, or
even if one would ignore the largely oscillating error estimates computed in the
initial phase, after about 70 iterations, at a point where the exact error is far away
from reaching the demanded accuracy. We do therefore not recommend to use the
error estimates of Algorithm 6.2 as sole stopping criteria in practical situations.
Even using a safety factor so that one only stops the iteration when the estimate
lies several orders of magnitudes below the desired accuracy does not solve this
problem. On the one hand this may result in a large number of unnecessary iter-
ations, on the other hand, no matter how small the safety factor is chosen, there
can never be a guarantee that it suffices to reach the desired accuracy, as we have
no theoretical results at all on the quality of the computed error estimates. The
next experiment, however, will show that there also exist situations in which the
error estimates from Algorithm 6.2 are of much better quality and do not always
show the behavior observed for the “highly non-Hermitian” convection diffusion
problem (and the oscillating exponential function).

When approximating the action of the Neuberger operator at nonzero chemical
potential, the error norm decreases much more smoothly than for the exponential
function in the semi-discretization of the convection diffusion equation, as can be
seen from Figure 6.10. The error estimates behave in the same way as the exact
error norm, so that no oscillations like in the previous experiment are observed.
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Figure 6.10: Exact error norm and estimates computed by Algorithm 6.2 for approxi-

mating
(
(Γ5DW )2

)−1/2
Γ5DWb in the non-Hermitian QCD model problem. The highest

number of nodes used in the inner quadrature rule is ℓ = 100, while the number of nodes
in the outer quadrature rule is varied between k = 2, 5, 10, 20 and 30.

Nonetheless, the error is again severely underestimated for smaller values of k.
The estimate for k = 2 differs from the exact value by about two orders of mag-
nitude, for k = 10, the error is underestimated by about one order of magnitude.
After an initial phase of about 20 iterations, the relative difference between the
estimate and the exact value stays almost constant, which is different to the be-
havior for the exponential. Although we do not have theoretical results on the
behavior or quality of the error estimates in the non-Hermitian case, this exper-
iment at least illustrates that there are situations in which one can expect the
estimates to capture the convergence behavior of the method quite accurately.
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CHAPTER 7

ERROR ESTIMATES IN EXTENDED KRYLOV

METHODS

In this chapter, we show how to transfer some of the techniques developed so
far to extended Krylov subspaces. These subspaces are constructed by not only
applying positive, but also negative powers of A to the vector b. This amounts
to approximating f by a rational function (a Laurent polynomial, to be precise)
instead of a polynomial. Of course, constructing a basis for these subspaces is
much more costly than in the standard Krylov case and in return one hopes to
obtain accurate approximations for much smaller subspace dimension (as often
rational functions of rather small degree are much better suited for approximating
a given function than high-degree polynomials). Many of the properties of poly-
nomial Krylov subspaces carry over to extended Krylov subspaces and we begin
this chapter by providing some basic material on these spaces and highlighting
similarities and differences to the polynomial case in Section 7.1. Afterwards, in
Section 7.2, we show how to transfer the integral representation for the error de-
rived in Chapter 3 to approximations from extended Krylov spaces. This would
in principle allow to use a restarting method similar to the one from Chapter 4 for
extended Krylov subspace approximations. However, one typically uses extended
Krylov spaces only in situations where a low-dimensional approximation space
suffices for achieving the desired accuracy, so that memory constraints seldom
become an issue and we do not go into detail on this topic and only mention in
passing that it would of course be possible to implement such a method. Instead,
we focus on computing error estimates. To do so, we present a generalization
of Arnoldi/Lanczos restart recovery (Theorem 6.7 and 6.9) to extended Krylov
spaces in section 7.3. We can then use these tools to compute estimates for the
error in extended Krylov subspace methods. We illustrate the quality of these
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estimates by performing numerical experiments on some of our model problems
in Section 7.4.

7.1 Extended Krylov subspaces

In the following, we introduce extended Krylov subspaces, which, in the con-
text of approximating matrix functions, were first considered in [38] and further
investigated in, e.g., [94–96,99].

The main idea of extended Krylov subspace methods (or also general rational
Krylov subspace methods, which we do not cover here) is that oftentimes when
using rational functions for approximating a given function, the degree of the nu-
merator and denominator necessary to reach a certain accuracy is substantially
smaller than the degree of a polynomial exhibiting the same approximation qual-
ity, see, e.g., [80]. Therefore it seems reasonable to use approximations to f(A)b
which are characterized by an underlying rational approximant instead of a poly-
nomial, especially when the behavior of f is difficult to capture by low-degree
polynomials. Different variants of general rational Krylov subspace methods arise
through the choice of the poles of the rational functions, see, e.g., [80–82].

One simple, black-box choice of poles, which results in the so-called extended
Krylov subspaces, is to only choose the poles 0 and ∞ (often alternatingly), i.e.,
building a Krylov subspace with respect to powers of A and A−1.

Definition 7.1. Let A ∈ C
n×n be nonsingular and let b ∈ C

n. Then the
(k,m)th extended Krylov subspace with respect to A and b is

Ek,m(A, b) := A−kKk+m(A, b) = {ℓk,m−1(A)b : ℓk,m−1 ∈ Lk,m−1},

where
Lk,m−1 = span{t−k, . . . , t−1, 1, t, t2, . . . , tm−1}

denotes the space of Laurent polynomials of denominator degree at most k
and numerator degree at most m− 1.

We begin our exposition by collecting some evident and useful properties and
different characterizations of extended Krylov subspaces. Results of this type
have also been observed in, e.g., [38, 95, 124].

Proposition 7.2. Let A ∈ C
n×n be nonsingular and let b ∈ C

n. Then
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7.1 Extended Krylov subspaces

(i) Ek,m(A, b) ⊆ Ek+k0,m+m0(A, b) for all k0,m0 ≥ 0,

(ii) Ek,m(A, b) = Kk(A
−1, A−1b) +Km(A, b) = Kk+m(A,A

−kb).

Proof. Property (i) directly follows from the definition of extended Krylov sub-
spaces, similarly to the nestedness of polynomial Krylov subspaces. Both equali-
ties in (ii) can be derived by using the representation

Ek,m(A, b) = span{A−kb, . . . , A−1b, b, Ab, A2b, . . . , Am−1b}

and the definition of polynomial Krylov subspaces.

Property (i) from Proposition 7.2 is again a nestedness property, which holds for
every increase of the order of the subspace, be it an increase of the numerator
degree, the denominator degree, or both. Property (ii) relates extended Krylov
subspaces to polynomial Krylov spaces in two different ways. The first character-
ization allows to write Ek,m(A, b) as the sum of two polynomial Krylov subspaces,
one of them corresponding to A and one corresponding to A−1, while the second
one shows that Ek,m(A, b) is in fact a polynomial Krylov subspace corresponding
to A, albeit with a different starting vector.

In the following we restrict ourselves to the case of k = m, sometimes called
diagonal extended Krylov subspaces, to avoid unnecessary notational overhead.
All results apply to general extended Krylov subspaces with k 6= m with obvious
modifications. A nested orthonormal basis for Em,m(A, b) can be computed by
a method similar to Arnoldi’s method. There are, however, different ways to
generate the basis vectors. One way is to generate them sequentially, one-by-one,
by alternatingly applying A and A−1 to the respective last basis vector. Another
approach, first introduced in [124], is to compute the basis in a “block-wise”
fashion, two vectors at a time, by multiplying the last basis vector with A−1 and
the second to last basis vector with A. This way, odd-numbered basis vectors
advance the basis corresponding to powers of A and even-numbered basis vectors
advance the basis corresponding to powers of A−1. We will use the second, block-
wise approach in this chapter, given in Algorithm 7.1.

The simple choice of poles in an extended Krylov subspace method gives rise to
several theoretical and computational simplifications in contrast to general ratio-
nal Krylov subspace methods. If it is feasible to solve the linear systems with A by
a direct method, it is sufficient to compute an LU (or Cholesky) factorization [131]
of A once and reuse it in each iteration of the method, while for varying poles one
has to compute a factorization for each of the poles used. Another advantage is
that for extended Krylov subspaces corresponding to a Hermitian matrix A it is
again possible to derive an analogue to the short-recurrence Lanczos process, the
only difference to the polynomial Lanczos algorithm being that the three-term
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7 Error estimates in extended Krylov methods

Algorithm 7.1: Block-wise extended Arnoldi method

Input: m ∈ N, A ∈ C
n×n nonsingular, b ∈ C

n

Output: Orthonormal basis Vm,m = [v1, . . . , v2m] of Em,m(A, b)
v1 ← 1

‖b‖2b1

w2 ← A−1b2

w2 ← w2 − (vH
1 w2)v13

v2 ← 1
‖w2‖2w24

for j = 1, 2, . . . ,m do5

w2j+1 ← Av2j−16

for i = 1, . . . , 2j do7

hi,2j−1 ← vH
i w2j+18

w2j+1 ← w2j+1 − hi,2j−1vi9

h2j+1,2j−1 ← ‖w2j+1‖210

v2j+1 ← 1
h2j+1,2j−1

w2j+111

w2j+2 ← A−1v2j12

for i = 1, . . . , 2j + 1 do13

hi,2j ← vH
i w2j+214

w2j+2 ← w2j+2 − hi,2jvi15

h2j+2,2j ← ‖w2j+2‖216

v2j+2 ← 1
h2j+2,2j

w2j+217

recurrence turns into a five-term recurrence. The matrix of orthogonalization co-
efficients thus becomes pentadiagonal instead of tridiagonal, see, e.g., [94–96,124].
We do not present this method in a separate algorithm, as it suffices to modify
the two “for i” loops in Algorithm 7.1 to run from max{2j − 3, 1}, . . . , 2j and
max{2j − 2, 1}, . . . , 2j + 1, respectively.

The extended Arnoldi approximation is defined completely analogously to the
standard Arnoldi approximation for polynomial Krylov subspaces and can be
related to interpolation by Laurent polynomials.

Lemma 7.3. Let A ∈ C
n×n be nonsingular, let b ∈ C

n, let Vm,m be the ma-
trix computed by Algorithm 7.1 whose columns form an orthonormal basis of
Em,m(A, b), let Am,m = V H

m,mAVm,m, let f be a function defined on spec(Am,m)
and let

fm,m = Vm,mf(Am,m)V
H
m,mb = ‖b‖2Vm,mf(Am,m)ê1. (7.1)

Then
fm,m = ℓm,m−1(A)b,

where ℓm,m−1 ∈ Lm,m−1 interpolates f at the eigenvalues of Am,m.
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7.2 Integral representation of the error in extended Krylov methods

Proof. The result follows, e.g., from the more general result of [80, Theorem 4.8]
which gives a rational interpolation characterization for general rational Arnoldi
approximations, of which the extended Arnoldi approximation (7.1) is a special
case (with minor modifications to account for the block-wise generation of the
basis vectors, which is not considered in [80]).

The projected matrix Am,m which is needed to evaluate the extended Arnoldi
approximation (7.1), in contrast to the polynomial Krylov case, does not coin-
cide with the matrix of orthogonalization coefficients hi,j. However, when A is
Hermitian, one can show that it is pentadiagonal as well, and one can derive recur-
sion formulas for the entries of Am,m based on the orthogonalization coefficients
from the extended Arnoldi method [94–96,118,124], so that it is not necessary to
explicitly compute the matrix as Am,m = V H

m,mAVm,m.

To conclude this section, we mention that the orthonormal basis Vm,m and the
compressed matrix Am,m fulfill the following extended Arnoldi relation

AVm,m = Vm,mAm,m + [v2m+1, v2m+2]τm,m[ê2m−1, ê2m]
H , (7.2)

where τm,m = [v2m+1, v2m+2]
HA[v2m−1, v2m] ∈ C

2×2, which is a natural analogue
to the polynomial Arnoldi decomposition (2.23), see, e.g., [124].

7.2 Generalization of the integral representation of

the error to extended Krylov methods

In this section, we show how it is possible to generalize the error representation
from Chapter 3 to the case of extended Krylov subspaces. For the sake of brevity,
we restrict ourselves to the case of Stieltjes functions here and just mention in
passing that all results hold (with obvious modifications) for “Cauchy-type” in-
tegral representations (3.2). There are again, like for polynomial Krylov spaces,
two ways of deriving an integral representation for the error of extended Krylov
approximations of Stieltjes matrix functions. One approach is using the interpo-
lation characterization from Lemma 7.3 to derive a representation similar to the
one from Lemma 3.3 for the interpolating Laurent polynomials, the other one is
using the relation to shifted linear systems, as done in Chapter 5. We will cover
both approaches here for the following reasons. On the one hand, the integral
representation of the interpolating polynomial will allow to prove that it is again
possible to compute lower and upper bounds for the error in extended Krylov
subspace methods. On the other hand, working with extended Arnoldi approxi-
mations for shifted linear systems, similarly to what was done at the beginning of
Section 5.2, allows to gain additional insight into the behavior of these methods
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7 Error estimates in extended Krylov methods

for linear systems in general. At first sight, it may not seem reasonable at all to
use extended Krylov methods for the solution of linear systems, as each iteration
of such a method requires the application of A−1 to a vector, i.e., the solution of
a linear system. In fact, an extended Krylov subspace method for Ax = b would
yield the exact solution x ∗ after just one step. However, if one has to solve a large
number of shifted systems simultaneously, using an extended (or general rational)
Krylov subspace method may become attractive, see, e.g., [81, 118, 125]. Clearly,
if the total number of iterations in a rational Krylov subspace method needed for
all systems to converge is lower than the number of systems to be solved, one has
already gained something in terms of linear system solves. This gain can be even
larger if one uses an extended Krylov subspace method, as this allows to re-use
a single LU -decomposition in all iterations, making the subsequent linear sys-
tem solves even cheaper. Therefore, investigating properties of extended Krylov
methods for (shifted) linear systems is of interest in its own right and also allows
to identify similarities and differences between polynomial and extended methods
which are of interest for the applicability of our theory.

Lemma 3.3, which gave an integral representation for the interpolating polynomial
of “Cauchy-type” functions, can easily be transferred to Laurent polynomials and
Stieltjes functions. In fact, this is again a slight modification of a classical result
for analytic functions given in Cauchy integral representation, see, e.g., [140,
Theorem VIII.2]

Lemma 7.4. Let f be a Stieltjes function of the form (3.15). The interpolating
Laurent polynomial ℓm,m−1 ∈ Lm,m−1 of f with interpolation nodes {θ1, . . . , θ2m} ⊂
C \ R−

0 is given as

ℓm,m−1(z) =

∫ ∞

0

(
1− w2m(−z)tm

w2m(t)(−z)m
)

1

z + t
dµ(t), (7.3)

where w2m(z) =
∏2m

i=1(z + θi), provided that the integral in (7.3) exists.

Proof. The function 1 − w2m(−z)tm

w2m(t)(−z)m
is a rational function in z with numerator

degree 2m and denominator degreem. Moreover, it has a root at −t, which means
that its numerator must contain a linear factor z + t, showing that the integrand
in (7.3) is a rational function in z with numerator degree 2m−1 and denominator
degree m. As the denominator is given by a multiple of (−z)m, it directly follows
that the integrand is a Laurent polynomial from Lm,m−1. Integration with respect
to t does not change this, so that ℓm,m−1(z) from (7.3) is indeed a Laurent
polynomial of the required degrees. By definition of w2m(z) we have

ℓm,m−1(θi) =

∫ ∞

0

(
1− w2m(−θi)tm

w2m(t)(−θi)m
)

1

t+ θi
dµ(t) =

∫ ∞

0

1

t+ θi
dµ(t) = f(θi)
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7.2 Integral representation of the error in extended Krylov methods

for i = 1, . . . , 2m, showing that the interpolation conditions for f are satisfied.
The case of coinciding interpolation nodes θi can be treated in the same way as
in the proof of Lemma 3.3.

Lemma 7.4 allows to easily derive a variant of Theorem 3.5 for extended Krylov
subspaces. We omit the proof of the following result, as it is completely analogous
to the one of Theorem 3.5.

Theorem 7.5. Let A ∈ C
n×n be nonsingular, let b ∈ C

n and let f be a Stielt-
jes function of the form (3.15). Assume that spec(A) ⊂ C \ R−

0 and denote by
fm,m the (m,m)th extended Arnoldi approximation (7.1) to f(A)b. Assume that
spec(Am,m) = {θ1, . . . , θ2m} satisfies spec(Am,m) ⊂ C \ R−

0 and define

em,m(z) =

∫ ∞

0

tm

w2m(t)
· (−z)

−mw2m(−z)
z + t

dµ(t), z ∈ C \ R−
0 , (7.4)

where w2m(z) =
∏2m

i=1(z + θi). Then

f(A)b − fm,m = em,m(A)b. (7.5)

The result of Theorem 7.5 is stated in a slightly different way than the one of
Theorem 3.5 for polynomial Krylov spaces. While we could easily conclude that
wm(−A)b = (−1)m‖b‖2γmvm+1 in the polynomial case, such a relation is not
readily available for extended Krylov spaces, so that the term (−z)−mw2m(−z) is
still present in the error function representation given in (7.4). When investigating
extended Krylov subspace methods for shifted linear systems in the following, we
will show that a similar characterization of (−A)−mw2m(−A)b as for polynomial
Krylov spaces is possible, allowing us to give a representation in which the error
function is applied to the extended Arnoldi basis vector v2m+1 instead of b.

Consider the shifted linear system

(A+ tI)x (t) = b (7.6)

and denote by

xm,m(t) = ‖b‖2Vm,m(Am,m + tI)−1ê1 (7.7)

the extended Arnoldi approximation (7.1) for (7.6), computed from the extended
Krylov space Em,m(A, b). Note that extended Krylov subspaces are, in contrast
to polynomial Krylov spaces, not shift invariant. It is still justified to compute
approximations for different shifts t from the subspace built with A, as at least
the “polynomial part” is shift invariant and it still holds that

V H
m,m(A+ tI)Vm,m, = Am,m + tI,
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7 Error estimates in extended Krylov methods

as a straightforward calculation shows. The shifted extended Arnoldi approxima-
tions xm,m(t) from (7.7) are exactly the vectors implicitly generated for all t when
approximating the action of a Stieltjes matrix function on a vector, as

fm,m =

∫ ∞

0

‖b‖2Vm,m(Am,m + tI)−1ê1 dµ(t) =

∫ ∞

0

xm,m(t) dµ(t).

Representing f(A)b as the integral over the solutions x ∗(t) of (7.6) again, we
thus find the representation

f(A)b − fm,m =

∫ ∞

0

x ∗(t)− xm,m(t) dµ(t) =

∫ ∞

0

em,m(t) dµ(t) (7.8)

for the error of the extended Arnoldi approximation fm,m, where

em,m(t) = x ∗(t)− xm,m(t)

denotes the error of the approximation (7.7). Using the fact that the errors em,m(t)
fulfill (shifted versions) of the residual equation (2.28), we can rewrite (7.8) as

f(A)b − fm,m =

∫ ∞

0

(A+ tI)−1rm,m(t) dµ(t) (7.9)

where

rm,m(t) = b − (A+ tI)xm,m(t).

While it was obvious from Proposition 2.38(ii) in the polynomial Krylov case, it
is not straightforwardly clear whether all residuals rm,m(t) of the shifted extended
Arnoldi iterates are collinear, so that (7.9) can be interpreted as the action of a
matrix function on a single vector. To prove that this is indeed the case (which
will later allow us to relate the error representation (7.9) to (7.5)), we revisit the
extended Arnoldi decomposition (7.2).

Proposition 7.6. Let xm,m(t) be the extended Arnoldi approximation (7.7) for
the shifted linear system (7.6) and let rm,m(t) = b − (A + tI)xm,m(t) be the
corresponding residual. Then

rm,m(t) = −‖b‖2[v2m+1, v2m+2]τm,m[ê2m−1, ê2m]
H(Am,m + tI)−1ê1 (7.10)

where τm,m = [v2m+1, v2m+2]
HA[v2m−1, v2m].

Proof. By adding the term tVm,m on both sides of (7.2), we directly get

(A+ tI)Vm,m = Vm,m(Am,m + tI) + [v2m+1v2m+2]τm,m[ê2m−1, ê2m]
H . (7.11)
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7.2 Integral representation of the error in extended Krylov methods

Inserting (7.11) into the definition (7.7) of xm,m(t), we get

rm,m(t) = b − (A+ tI)(‖b‖2Vm,m(Am,m + tI)−1ê1)

= b − ‖b‖2Vm,m(Am,m + tI)(Am,m + tI)−1ê1

− ‖b‖2[v2m+1, v2m+2]τm,m[ê2m−1, ê2m]
H(Am,m + tI)−1ê1

= −‖b‖2[v2m+1, v2m+2]τm,m[ê2m−1, ê2m]
H(Am,m + tI)−1ê1,

where the last equality follows because ‖b‖2Vm,mê1 = b.

The representation (7.10) of the shifted residuals rm,m(t) shows that they are
linear combinations of the two basis vectors v2m+1 and v2m+2. Carefully inspecting
the coefficient matrix τm,m however shows that only the vector v2m+1 contributes
to the linear combination nontrivially.

Proposition 7.7. Let τm,m = [v2m+1, v2m+2]
HA[v2m−1, v2m]. Then

τm,m(2, 1) = τm,m(2, 2) = 0. (7.12)

In particular, the shifted residuals rm,m(t) = b − (A+ tI)xm,m(t) satisfy

rm,m(t) = −‖b‖2[τm,m(1, 1)v2m+1, τm,m(1, 2)v2m+1][ê2m−1, ê2m]
H(Am,m + tI)−1ê1

(7.13)
and are therefore collinear to the basis vector v2m+1.

Proof. From the definition of τm,m, we have τm,m(2, 1) = vH
2m+2Av2m−1. Now

Av2m−1 ∈ AEm,m(A, b) ⊆ Em+1,m(A, b). This is exactly the space against which
v2m+2 is orthogonalized, so that v

H
2m+2Av2m−1 = 0. Similarly, we have τm,m(2, 2) =

vH
2m+2Av2m and Av2m ∈ AEm,m(A, b) ⊆ Em+1,m(A, b), so that the same argument

as above can be applied to show that τm,m(2, 2) is zero as well. This proves (7.12).
Equation (7.13) then follows directly by inserting (7.12) into (7.10). Abbreviating
u := [ê2m−1, ê2m]

H(Am,m + tI)−1ê1, the representation (7.13) becomes

rm,m(t) = −‖b‖2 (u(1)τm,m(1, 1) + u(2)τm,m(1, 2)) v2m+1, (7.14)

proving that all rm,m(t) are collinear to v2m+1. Note that the collinearity factor
of course depends on t, which is not directly visible from (7.14), as u implicitly
depends on t.

The result of Proposition 7.7 shows that all shifted extended Arnoldi residuals are
again collinear to the next basis vector. Putting Proposition 7.6 and 7.7 in relation
to Proposition 2.29, one sees that while the norm of the FOM residual depends
only on the last entry of the first column of the inverse of the compressed matrix
Hm, the norm of the extended Arnoldi iterate depends on the last and second to
last entry of the first column of the inverse of Am,m (or shifted versions thereof).
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When A is Hermitian, Am,m + tI is pentadiagonal and it is again possible to
derive efficient update formulas for the lower left entries of its inverse and thus
the norms of the shifted residuals, similarly to what was done in Section 6.4
for the tridiagonal matrix from the Lanczos process, by thoroughly investigating
Gaussian elimination for pentadiagonal matrices. We do not give the details of
this rather technical matter here, but just mention that such recursion relations for
the residual norms in extended Krylov subspace methods which can be evaluated
with cost O(1) per iteration have been presented in [118, Satz 4.4 & Satz 4.8].

Denoting the collinearity factor from (7.14) by ψm,m(t), we can rewrite (7.9) as

f(A)b − fm,m =

∫ ∞

0

ψm,m(t)(A+ tI)−1 dµ(t)v2m+1. (7.15)

Remark 7.8. Applying both (7.14) and (7.4)–(7.5) to the Stieltjes function
f(A) = (A+ tI)−1, we find

ψm,m(t)(A+ tI)−1v2m+1 =
tm

w2m(t)
(A+ tI)−1(−A)−mw2m(−A)b,

which shows that

ψm,m(t)v2m+1 =
tm

w2m(t)
(−A)−mw2m(−A)b,

i.e., that the nodal Laurent polynomial w2m(−z)
(−z)m

evaluated in A maps b to a mul-
tiple of the next basis vector v2m+1, just as in the polynomial Krylov case. In
particular, we find

ψm,m(t) = c · tm

w2m(t)
, (7.16)

where c ∈ C is a constant independent of t, a relation which will be useful later
on.

With the representation (7.15) we made a first step towards being able to use
an algorithm similar to Algorithm 6.1 for computing error estimates for the ex-
tended Arnoldi approximation, as it gives rise to a natural analogue of Lemma 6.4,
expressing the squared error norm as a quadratic form.

Lemma 7.9. Let A ∈ C
n×n be nonsingular, let b ∈ C

n, let f be a Stieltjes
function of the form (3.15), and let fm,m be the extended Arnoldi approximation
for f(A)b. Then

‖f(A)b − fm,m‖22 = vH
2m+1ẽm,m(A)

H ẽm,m(A)v2m+1, (7.17)

where ẽm,m(z) is given by

ẽm,m(z) =

∫ ∞

0

ψm,m(t)

z + t
dµ(t). (7.18)
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Proof. The proof is completely analogous to that of Lemma 6.4, just using the
error representation (7.15) and not exploiting Hermiticity of A.

Using relation (7.16), we can prove the following result for the error function (7.18)
in the Hermitian positive definite case.

Theorem 7.10. Let the assumptions of Lemma 7.9 hold and let A be Hermitian
positive definite in addition. Then, the error function ẽm,m(z) from (7.18) is a
multiple of another Stieltjes function, i.e.,

ẽm,m(z) = c ·
∫ ∞

0

1

z + t
dµ̃(t)

for a nonnegative, monotonically increasing function µ̃ and a constant c ∈ C.

Proof. We proceed similarly to the polynomial Krylov case, where the error func-
tion also was a multiple of a Stieltjes function. We define the function

µ̃(t) =

∫ t

0

τm

w2m(τ)
dµ(τ), (7.19)

where w2m(τ) =
∏2m

i=1(τ + θi) is again the nodal polynomial corresponding to the
Ritz values θ1, . . . , θ2m. As all Ritz values are positive when A is Hermitian posi-
tive definite, the function τm/w2m(τ) is nonnegative on R

+
0 . As µ is nonnegative

and monotonically increasing, the integral on the right-hand side of (7.19), and
thus the function µ̃, is nonnegative for all t ≥ 0. Further, for t1 > t0 ≥ 0, we have

µ̃(t1) =

∫ t1

0

τm

w2m(τ)
dµ(τ)

=

∫ t0

0

τm

w2m(τ)
dµ(τ) +

∫ t1

t0

τm

w2m(τ)
dµ(τ)

= µ̃(t0) +

∫ t1

t0

τm

w2m(τ)
dµ(τ)

≥ µ̃(t0).

This shows that µ̃ is nonnegative and monotonically increasing. To show that µ̃
generates a Stieltjes function, we have to check the condition (2.16), i.e., whether

∫ ∞

0

1

1 + t
dµ̃(t) <∞.

For this, first note that (7.19) implies

dµ̃(t) =
tm

w2m(t)
dµ(t),
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and that the function tm/w2m(t) is bounded on R
+
0 by some constant d > 0, as

the degree of its denominator exceeds the degree of its numerator. Therefore, we
have
∫ ∞

0

1

1 + t
dµ̃(t) =

∫ ∞

0

1

1 + t

tm

w2m(t)
dµ(t) ≤ d ·

∫ ∞

0

1

1 + t
dµ(t) <∞, (7.20)

where the last inequality in (7.20) follows because µ satisfies the condition (2.16).
Summarizing, we have shown that the function

∫ ∞

0

1

z + t
dµ̃(t)

is a Stieltjes function. Inserting the relation (7.16) into the error function repre-
sentation (7.18), we have that

ẽm,m(z) = c ·
∫ ∞

0

1

z + t
dµ̃(t),

with the constant c from (7.16). This completes the proof of the theorem.

The result of Theorem 7.10 serves two purposes. On the one hand, it again
guarantees that the integral in the error function representation (7.18) is always
finite, and on the other hand, it shows that it is in principle also possible to
compute error bounds for extended Krylov subspace approximations by pairs of
Gauss and Gauss–Radau quadrature rules when A is Hermitian positive definite.
In this case, the error norm representation (7.17) becomes

‖f(A)b − fm,m‖22 = vH
2m+1ẽm,m(A)

2v2m+1,

and the function ẽm,m(z)
2 is completely monotonic, as it is the product of two

(multiples of) Stieltjes functions, just as in the polynomial Krylov case. We have
therefore just proven the following analogue to Theorem 6.5 for extended Krylov
subspace methods.

Theorem 7.11. Let A ∈ C
n×n be Hermitian positive definite, let b ∈ C

n, let f
be a Stieltjes function of the form (3.15), and let fm,m be the extended Arnoldi
approximation to f(A)b. Let v2m+1 be the (2m + 1)st extended Arnoldi basis

vector. Denote by H
(2)
k the tridiagonal matrix resulting from k steps of the Lanczos

process applied to A and v2m+1 and by H̃
(2)
k+1 the modification of H

(2)
k according

to (6.6). Then

êH
1 ẽm,m

(
H

(2)
k

)2
ê1 ≤ ‖f(A)b − fm,m‖22 ≤ êH

1 ẽm,m

(
H̃

(2)
k+1

)2
ê1, (7.21)

where ẽm,m(z) is the error function from (7.18).
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Just as in the polynomial Krylov case, we are of course again in the situation
that we are not able to exactly evaluate the error function ẽm,m(z) but have
to use numerical quadrature instead. For computing guaranteed bounds for the
extended Arnoldi error via (7.21), we thus also have to be careful about the sign
of the error in this inner quadrature rule. The result of Proposition 6.6 applies
in the extended case as well, so that it is sufficient to find a quadrature rule
which computes lower or upper bounds for the scalar function g(t) = tm

w2m(t)
1

z+t
.

However, the integrand in this case is less well-behaved than in the polynomial
Krylov case, where 1

wm(t)
1

z+t
is monotonically decreasing as a function of t on R

+
0 .

This is not true in the extended Krylov case in general. Instead, the function
tm

w2m(t)
has the value zero at t = 0, tends to zero for t → ∞, and has exactly

one local maximum in between. Noting that the value of the function is closely
related to the residual norms produced by the extended Krylov subspace method
for linear systems, cf. Remark 7.8, this behavior is indeed quite natural: The linear
system (7.6) corresponding to shift t = 0 is solved exactly in the very first step of
the extended Arnoldi method (as one applies a multiplication with A−1), being in
line with the function tm

w2m(t)
attaining the value zero at t = 0. When increasing

the shift, the solutions of the corresponding shifted systems increasingly differ
from the solution for shift t = 0, so that they are harder to find for the method
and the residual norms increase. At some point, however, the better conditioning
of the matrices A+ tI for large shifts t becomes noticeable and the method again
finds iterates with smaller residual norms as the systems become easier to solve
(the point at which this change happens is exactly the local maximum of tm

w2m(t)

on R
+
0 ). An illustration of the function tm

w2m(t)
1

z+t
which we need to approximate

by quadrature when computing error bounds in the extended Arnoldi method for
the Gaussian Markov random field model problem is given in Figure 7.1.

This structure of the integrand makes it much harder to find suitable integration
rules which provide lower and upper bounds, but as we already mentioned when
discussing the polynomial Krylov case, the error in the inner quadrature rule is
typically much smaller than the error in the outer quadrature rule, so that it
seldom dominates the overall error and does in general not prevent the computed
estimates from being bounds. This is also demonstrated in the numerical experi-
ments presented in Section 7.4, but we stress that one has no guarantee for this
to be true.

To be able to generalize Algorithm 6.1 to the extended Arnoldi approximation by
computing error norm estimates via Gauss quadrature for (7.17), we still need to

resolve one issue. We again need a way to find the matrix H
(2)
k from a secondary

Lanczos process without performing additional matrix vector multiplications with
A, i.e., a result similar to that of Theorem 6.7. As the proofs of Theorem 6.7
and 6.9 largely relied on the nestedness properties of Krylov subspaces, and the
extended Krylov space Em,m(A, b) contains Km(A, b), we can expect a similar
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Figure 7.1: Nonmonotonic integrand g(t) = tm

w2m(t)
1

z+t from the second step of the

extended Arnoldi method for approximating A−1/2z in the Gaussian Markov random
field model problem (for z = 2).

result to hold in this situation as well. This will be the topic of Section 7.3.

Another obvious idea arising in the context of approximating the quadratic form
on the right-hand side of (7.17) is to use rational Gauss quadrature rules [95,96],
i.e., quadrature rules which are exact for Laurent polynomials of a certain degree,
instead of standard Gauss rules. In [95, 96] it is shown that these rational Gauss
rules are intimately related to extended Krylov subspace methods for Hermitian
A. To be precise, it is shown that

êH
1 h(Ak,k)ê1 ≈ vHh(A)v , (7.22)

where Ak,k is the pentadiagonal matrix arising from k steps of the extended
Arnoldi method for A and v , can be interpreted as a rational Gauss quadrature
rule with 2k nodes (the eigenvalues of Ak,k) and that it provides lower bounds for
the right-hand side of (7.22) if h satisfies the condition

d4k

dz4k
(
z2(k−1)h(z)

)
≥ 0.

Unfortunately, this condition is in general not fulfilled for the error function
ẽm,m(z), so that we cannot expect to compute error bounds by rational Gauss
quadrature rules. On the other hand, one can hope that rational Gauss rules are
more accurate than standard Gauss rules in many situations. We will compare
both kinds of rules for estimating the error in extended Krylov subspace methods
in the experiments presented in Section 7.4. We just mention that in [96] also
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rational Gauss–Radau rules are constructed, but we will not go into detail con-
cerning this topic here, as the main use of these rules was to bracket vHh(A)v ,
which is not possible for h = ẽm,m as just explained.

Naively approximating (7.17) by a rational Gauss rule would not only require ad-
ditional multiplications with A but also additional linear system solves. To avoid
this, we will also consider the possibility of using restart recovery for cheaply con-
structing the matrix A

(2)
k,k corresponding to a secondary extended Arnoldi method

for A and v2m+1 in the next section.

7.3 Restart recovery in extended Krylov methods

In this section we investigate how to compute error estimates with low computa-
tional cost based on the representation (7.17) of the error norm in the extended
Arnoldi method. We begin by proving a direct generalization of Theorem 6.9 to
the case of extended Krylov methods, which makes use of the fact that polynomial
Krylov spaces are subspaces of (suitably chosen) extended Krylov spaces.

Theorem 7.12. Let the columns of Vm+k+1,m+k+1 be the orthonormal basis of
Em+k+1,m+k+1(A, v1) from m+k+1 steps of the extended Arnoldi method for A and

v1 and let Am+k+1,m+k+1 = V H
m+k+1,m+k+1AVm+k+1,m+k+1. Further, let Ĥ denote

the matrix resulting from k steps of Arnoldi’s method applied to Am+k+1,m+k+1 and

ê2m+1. Then Ĥ = H
(2)
k , where H

(2)
k denotes the matrix resulting from k iterations

of Arnoldi’s method for A and v2m+1.

Proof. The proof is completely analogous to the one of Theorem 6.9, using the
fact that Kk+1(A, v2m+1) ⊆ Em+k+1,m+1(A, v1) ⊆ Em+k+1,m+k+1(A, v1) because
v2m+1 ∈ Em+1,m+1(A, v1). Therefore it is again possible to represent the Arnoldi
basis vectors of Kk+1(A, v2m+1) in terms of the basis Vm+k+1,m+k+1 and proceed to
construct an Arnoldi relation involving the corresponding coefficient matrix Qk

and the matrix Am+k+1,m+k+1.

The result of Theorem 7.12 shows that restart recovery similar to the polynomial
Krylov case is possible in extended methods. The following proposition shows
that in the Hermitian case, it is again not necessary to perform the secondary
Lanczos process with the full matrix Am+k+1,m+k+1, but only with a sub-block of
constant size.

Proposition 7.13. Let the assumptions of Theorem 7.12 hold and let A be Her-
mitian positive definite in addition. Then, k iterations of the Lanczos process
applied to the lower right (4k + 1) × (4k + 1) sub-block of Am+k+1,m+k+1 and
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ê2k+1 produce the same matrix H
(2)
k as k iterations of the Lanczos process for

Am+k+1,m+k+1 and ê2m+1.

Proof. The result can be proven by carefully investigating the nonzero structure of
the matrix Am+k+1,m+k+1. The decomposition corresponding to k steps of Lanczos
for Am+k+1,m+k+1 and ê2m+1 is given by

Am+k+1,m+k+1Ṽk = ṼkH
(2)
k + h

(2)
k+1,kṽk+1ê

H
k . (7.23)

Given that Am+k+1,m+k+1 is pentadiagonal, H
(2)
k is tridiagonal and ṽ1 = ê2m+1 has

its only nonzero entry at position 2m + 1, by comparing nonzero structures, we
find that ṽj, j = 2, . . . , k has nonzero entries only in position 2m+1−2j, . . . , 2m+

1+2j. In particular, the rows 1, . . . , 2m−2k of Ṽk are all zero and do not make a
contribution to (7.23) and we can thus omit the corresponding rows and columns
of Am+k+1,m+k+1. Given that the matrix is of size 2(m + k + 1) × 2(m + k + 1),
the remaining lower right sub-block is thus of size (2(m+ k + 1)− (2m− 2k))×
(2(m+ k + 1)− (2m− 2k)) = (4k + 1)× (4k + 1). In addition, omitting the first
2m − 2k rows in ê2m+1 ∈ R

2(m+k+1) results in ê2k+1 ∈ R
4k+1, thus proving the

assertion of the proposition.

We now have all the tools available to be able to use an extended Krylov subspace
analogue to Algorithm 6.1. We do not give a detailed algorithm here, as it is just a
straightforward adaption of the techniques from Algorithm 6.1 to Algorithm 7.1.

It is also possible to use restart recovery to construct the matrix A
(2)
k,k correspond-

ing to k steps of the extended Arnoldi method for A and v2m+1, instead of the

matrix H
(2)
k corresponding to standard Arnoldi, which can then be used for com-

puting error estimates based on rational Gauss quadrature via (7.22). Before we
can prove this, we need a few auxiliary results. First, we need to show that the
matrix Bm,m = V H

m,mA
−1Vm,m fulfills a relation similar to (7.2). A similar result

was shown in [96] (where the authors refer to the matrix Bm,m as the inverse
projection matrix ), but exclusively for the Hermitian case, and for a non-block-
wise generation of the basis vectors, which leads to a slightly different nonzero
structure of Bm,m. We therefore give a sketch of the proof of the following result
which is adapted to our situation.

Lemma 7.14. Let A ∈ C
n×n be nonsingular, let b ∈ C

n and let the columns
of [Vm,m, v2m+1, v2m+2] be the orthonormal basis of Em,m(A, b) computed by Algo-
rithm 7.1. Then the matrix Bm,m = V H

m,mA
−1Vm,m satisfies

A−1Vm,m = Vm,mBm,m + [v2m+1, v2m+2]σm,m[ê2m−1, ê2m]
H , (7.24)

where σm,m = [v2m+1, v2m+2]A
−1[v2m−1, v2m].
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7.3 Restart recovery in extended Krylov methods

Proof. For j ≤ 2(m − 1), we have vj ∈ Em−1,m−1(A, b) and thus A−1vj ∈
Em,m(A, b). As v1, . . . , v2m form an orthonormal basis of Em,m(A, b), we can
thus express A−1vj as

A−1vj =
2m∑

i=1

(
vH
i A

−1vj
)
vi. (7.25)

Analogously, for 2m − 1 ≤ j ≤ 2m, we have that A−1vj ∈ Em+1,m+1(A, b) and
thus

A−1vj =
2m+2∑

i=1

(
vH
i A

−1vj
)
vi. (7.26)

Recasting (7.25) and (7.26) into matrix form proves the assertion.

Next, we investigate the nonzero structure of Am,m and Bm,m. This is again very
similar to results already known for the Hermitian case [96, 124], and we refrain
from giving a proof this time, as it is completely straightforward. One just needs
to carefully examine which values of the form vH

i Avj or vH
i A

−1vj are known to
be zero, because Avj or A−1vj lies in span{v1, . . . , vi−1}, similarly to what was
done in the proof of Proposition 7.7. By doing so, one finds that

Am,m =




α1,1 α1,2 α1,3 α1,4 α1,5 α1,6 α1,7 · · ·
α2,1 α2,2 α2,3 α2,4 α2,5 α2,6 α2,7 · · ·
α3,1 α3,2 α3,3 α3,4 α3,5 α3,6 α3,7 · · ·

α4,3 α4,4 α4,5 α4,6 α4,7 · · ·
α5,3 α5,4 α5,5 α5,6 α5,7 · · ·

α6,5 α6,6 α6,7 · · ·
α7,5 α7,6 α7,7 · · ·

...
. . .




(7.27)

and

Bm,m =




β1,1 β1,2 β1,3 β1,4 β1,5 β1,6 β1,7 · · ·
β2,1 β2,2 β2,3 β2,4 β2,5 β2,6 β2,7 · · ·

β3,2 β3,3 β3,4 β3,5 β3,6 β3,7 · · ·
β4,2 β4,3 β4,4 β4,5 β4,6 β4,7 · · ·

β5,4 β5,5 β5,6 β5,7 · · ·
β6,4 β6,5 β6,6 β6,7 · · ·

β7,6 β7,7 · · ·
...

...
. . .




. (7.28)

We are now in a position to prove a result which can be seen as an extended
Krylov analogue to Lemma 2.23. As Lemma 2.23 has a strong relation to the
implicit Q theorem, cf., e.g, [129, Chapter 2, Theorem 3.3], we can think of the
following result as an extended implicit Q theorem. We briefly mention here that
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7 Error estimates in extended Krylov methods

a version of the implicit Q theorem for general rational Krylov subspaces was
recently proven in [16]. However, the formulation of the theorem given in [16] is
not compatible with the block-wise generation of the extended Krylov subspace we
use. In addition, the notion of “essential uniqueness” used in [16] is weaker than
what we can use here, as extended Krylov subspaces allow for fewer additional
degrees of freedom than general rational Krylov subspaces. We can thus formulate
the result in a more concise way, which is more reminiscent of the situation faced
when dealing with polynomial Krylov spaces.

Theorem 7.15. Let A ∈ C
n×n be nonsingular. Assume there exist matrices

[Vm,m, v2m+1, v2m+2], [Ṽm,m, ṽ2m+1, ṽ2m+2] ∈ C
n×2(m+1) with orthonormal columns

and v1 = ṽ1 as well as matrices Am,m, Ãm,m and Bm,m, B̃m,m with nonzero struc-
ture (7.27) and (7.28), respectively, and τm,m, τ̃m,m, σm,m, σ̃m,m ∈ C

2×2 such that
the relations

AVm,m = Vm,mAm,m + [v2m+1, v2m+2]τm,m[ê2m−1, ê2m]
H , (7.29)

A−1Vm,m = Vm,mBm,m + [v2m+1, v2m+2]σm,m[ê2m−1, ê2m]
H , (7.30)

AṼm,m = Ṽm,mÃm,m + [ṽ2m+1, ṽ2m+2]τ̃m,m[ê2m−1, ê2m]
H , (7.31)

A−1Ṽm,m = Ṽm,mB̃m,m + [ṽ2m+1, ṽ2m+2]σ̃m,m[ê2m−1, ê2m]
H (7.32)

hold. Then Vm,m, Am,m, Bm,m are essentially equal to Ṽm,m, Ãm,m, B̃m,m in the
sense that there exists a unitary diagonal matrix Dm = diag(d1, . . . , dm) ∈ C

m×m

with d1 = 1 such that Ṽm,m = Vm,mDm, Ãm,m = DH
mAm,mDm and B̃m,m =

DH
mBm,mDm.

Proof. The proof of the theorem, which is constructive, proceeds column by col-
umn through the relations (7.29)–(7.32) and defines the values di according to
the assertion of the theorem. We begin by putting d1 = 1. We denote the entries
of Am,m, Ãm,m, Bm,m and B̃m,m by αi,j, α̃i,j, βi,j and β̃i,j, respectively.

The first column of (7.30) reads (taking the nonzero structure (7.28) into account)

A−1v1 = β1,1v1 + β2,1v2,

which directly implies that β1,1 = vH
1 A

−1v1 and β2,1 = vH
2 A

−1v1. In the same way,

the first column of (7.32) implies β̃1,1 = ṽH
1 A

−1ṽ1. As v1 = ṽ1 by assumption, we

thus have β1,1 = β̃1,1. Using this fact and rearranging the first columns of (7.30)
and (7.32) gives

v2 = (A−1v1 − β1,1v1)/β2,1 and ṽ2 = (A−1v1 − β1,1v1)/β̃2,1.

This directly shows that
ṽ2 = β2,1/β̃2,1v2. (7.33)
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7.3 Restart recovery in extended Krylov methods

Therefore, we set d2 = β2,1/β̃2,1. As ‖v2‖2 = ‖ṽ2‖2 = 1 we have that |d2| = 1 as

well. Further, β̃2,1 = β2,1/d2 = d2β2,1.

Next, consider the first column of (7.29) and (7.31), again taking into account its
nonzero structure given in (7.27), i.e.,

Av1 = α1,1v1 + α2,1v2 + α3,1v3 and Aṽ1 = α̃1,1ṽ1 + α̃2,1ṽ2 + α̃3,1ṽ3, (7.34)

which, similarly to the above gives α1,1 = α̃1,1 = vH
1 Av1 and α2,1 = vH

2 Av1.
Using (7.33) together with the definition of d2, we further find

α̃2,1 = ṽH
2 Av1 = d2α2,1.

Rearranging (7.34) gives

v3 = (Av1 − α1,1v1 − α2,1v2)/α3,1 and ṽ3 = (Aṽ1 − α̃1,1ṽ1 − α̃2,1ṽ2)/α̃3,1.

By inserting the relations α̃2,1 = d2α2,1, ṽ2 = d2v2 and d2d2 = 1, we find

ṽ3 = (Av1 − α1,1v1 − α2,1v2)/α̃3,1.

showing that ṽ3 = α3,1/α̃3,1v3, so that we put d3 = α3,1/α̃3,1. With the same
reasoning as for d2, we have |d3| = 1 and α̃3,1 = d3α3,1. Proceeding similarly with
the second column of (7.29) and (7.31), exploiting the fact that

ṽ1 = d1v1, ṽ2 = d2v2 and ṽ3 = d3v3, (7.35)

direct calculations show that

α̃1,2 = d1d2α1,2, α̃2,2 = d2d2α2,2 = α2,2 and α̃3,2 = d3d2α3,2.

We have thus shown that, with the choices made for di so far, the first two columns
of DH

mAm,mDm and Ãm,m agree. We proceed with the second columns of (7.30)

and (7.32), which give βi,2 = vH
i A

−1v2 and β̃i,2 = ṽH
i A

−1ṽ2 for i = 1, . . . , 4.
Inserting the relations (7.35), as before, yields

β̃1,2 = d1d2β1,2, β̃2,2 = d2d2β2,2 = β2,2 and β̃3,2 = d3d2β3,2. (7.36)

We rearrange the second columns of (7.30) and (7.32) to give

v4 = (A−1v2 − β1,2v1 − β2,2v2 − β3,2v3)/β4,2

and
ṽ4 = (A−1ṽ2 − β̃1,2ṽ1 − β̃2,2ṽ2 − β̃3,2ṽ3)/β̃4,2. (7.37)

Using (7.35) and (7.36), we can rewrite (7.37) as

ṽ4 = (d2A
−1v2 − β1,2d2v1 − β2,2d2v2 − β3,2d2v3)/β̃4,2.
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Thus, ṽ4 = d2β4,2/β̃4,2v4. Putting d4 = d2β4,2/β̃4,2, we have β4,2 = d4d2β4,2. We
have thus also proven the relations from the assertion of the theorem for the
first two columns of Bm,m and B̃m,m. One can now continue in the same way as
demonstrated until here as there is always either one column of (7.29) and (7.31)
or one column of (7.30) and (7.32) where the relation ṽi = divi has already been
shown for all but one of the pairs vi, ṽi appearing in the equation. This then
allows rearranging the equations such that they prove the assertion for the next
basis vector. We refrain from explicitly presenting the inductive step here, as it
is rather straightforward, but very technical and does not give any more insight
than what was presented up to this point.

With help of Theorem 7.15, we can now finally formulate the result needed for
performing extended restart recovery.

Theorem 7.16. Let A ∈ C
n×n and let the columns of Vm+k+2,m+k+2 be the or-

thonormal basis of Em+k+2,m+k+2(A, v1) from m + k + 2 steps of the extended
Arnoldi method for A and v1 and let Am+k+2,m+k+2=V

H
m+k+2,m+k+2AVm+k+2,m+k+2

be nonsingular. Further, let Âk,k denote the matrix resulting from k steps of

the extended Arnoldi method applied to Am+k+2,m+k+2 and ê2m+1. Then Âk,k =

DH
kA

(2)
k,kDk, where A

(2)
k,k denotes the matrix resulting from k iterations of the ex-

tended Arnoldi method for A and v2m+1 and Dk is a unitary diagonal matrix with
d1,1 = 1.

Proof. The proof proceeds similarly to the one of Theorem 6.9, with the difference
that we have to consider one additional “artificial” extended Arnoldi iteration in
order to find the relation for the inverse projection matrix at the end of the proof.
In the remainder of the proof, we use the shorthand notation m̃ = m+ k + 2.

Let the extended Arnoldi decomposition arising from k+ 1 steps of the extended
Arnoldi method for A and v2m+1 be given as

AṼk+1,k+1 = Ṽk+1,k+1A
(2)
k+1,k+1 + [ṽ2k+3, ṽ2k+4]τ̃k+1,k+1[ê2k+1, ê2k+2]

H . (7.38)

As v2m+1 ∈ Em+1,m+1(A, v1), we obviously have that

Ek+2,k+2(A, v2m+1) ⊆ Em̃,m̃(A, v1).

Therefore, the basis vectors ṽ1, . . . , ṽ2k+4 generated by the extended Arnoldi
method for A and v2m+1 all lie in Em̃,m̃(A, v1) and can thus be written as lin-
ear combinations of the basis vectors v1, . . . , v2m̃, i.e.,

[Ṽk+1,k+1, ṽ2k+3, ṽ2k+4] = Vm̃,m̃[Qk+1,k+1, q2k+3, q2k+4] (7.39)

for some matrix Qk+1,k+1 ∈ C
2m̃×2(k+1). As [Ṽk+1,k+1, ṽ2k+3, ṽ2k+4] and Vm̃,m̃

both have orthonormal columns, [Qk+1,k+1, q2k+3, q2k+4] must have orthonormal
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columns as well. Inserting (7.39) into the extended Arnoldi decomposition (7.38)
gives

AVm̃,m̃Qk+1,k+1=Vm̃,m̃Qk+1,k+1A
(2)
k+1,k+1+Vm̃,m̃[q2k+3, q2k+4]τ̃k+1,k+1[ê2k+1, ê2k+2]

H .

Left-multiplying both sides of this equation by Vm̃,m̃V
H
m̃,m̃, the orthogonal projector

onto the space Em̃,m̃(A, v1), and using

V H
m̃,m̃AVm̃,m̃ = Am̃,m̃

allows to rewrite Vm̃,m̃Am̃,m̃Qk+1,k+1 as

Vm̃,m̃Qk+1,k+1A
(2)
k+1,k+1 + Vm̃,m̃[q2k+3, q2k+4]τ̃k+1,k+1[ê2k+1, ê2k+2]

H .

Noting that Vm̃,m̃ has full (column) rank, this implies

Am̃,m̃Qk+1,k+1 = Qk+1,k+1A
(2)
k+1,k+1 + [q2k+3, q2k+4]τ̃k+1,k+1[ê2k+1, ê2k+2]

H . (7.40)

Repeating the same line of argument starting from the relation (7.24), i.e.,

A−1Ṽk+1,k+1 = Ṽk+1,k+1B
(2)
k+1,k+1 + [ṽ2k+3, ṽ2k+4]σ̃k+1,k+1[ê2k+1, ê2k+2]

H .

for the inverse projection matrix corresponding to Ek+1,k+1(A, v2m+1) shows that
we additionally have

Bm̃,m̃Qk+1,k+1 = Qk+1,k+1B
(2)
k+1,k+1 + [q2k+3, q2k+4]σ̃k+1,k+1[ê2k+1, ê2k+2]

H . (7.41)

We further note that we have the following relation involving Am̃,m̃ and Bm̃,m̃

(a similar statement is shown in [96]), found by left-multiplying (7.24) (with m
replaced by m̃) by V H

m̃,m̃A.

I = Am̃,m̃Bm̃,m̃ + V H
m̃,m̃A[v2m̃+1, v2m̃+2]σm̃,m̃[ê2m̃−1, ê2m̃]

H

which can be rearranged to

Bm̃,m̃ = A−1
m̃,m̃(I − V H

m̃,m̃A[v2m̃+1, v2m̃+2]σm̃,m̃[ê2m̃−1, ê2m̃]
H), (7.42)

because Am̃,m̃ is nonsingular by assumption. Inserting (7.42) into (7.41) and
discarding the last two columns now finally gives

A−1
m+k+1,m+k+1Qk,k = Qk,kB

(2)
k,k + [q2k+1, q2k+2]σ̃k,k[ê2k−1, ê2k]

H , (7.43)

where we use that, due to the nonzero structure of Qk+1,k+1, only the last two
columns of V H

m̃,m̃A[v2m̃+1, v2m̃+2]σm̃,m̃[ê2m̃−1, ê2m̃]
HQk+1,k+1 are nonzero. The re-

lations (7.40) (after also dropping the last two columns) and (7.43) now allow us
to use Theorem 7.15 and prove the assertion by noting that q1 = ê2m+1.
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Concerning the statement of Theorem 7.16, it is instructive to give some remarks.

Remark 7.17.

(i) While Theorem 7.16 does not guarantee that we exactly retrieve the matrix

A
(2)
k,k, but D

H
kA

(2)
k,kDk instead, this does not have an influence on estimates

computed for quadratic forms, as for any function h defined on spec(A
(2)
k,k)

we have

êH
1 h(D

H
k A

(2)
k,kDk)ê1 = êH

1 D
H
k h(A

(2)
k,k)Dkê1 = êH

1 h(A
(2)
k,k)ê1,

using the fact that Dkê1 = ê1 due to d1,1 = 1.

(ii) It is easily possible to derive a result analogous to Proposition 7.13 for
Theorem 7.16. The proof follows in exactly the same way, as it only relies
on properties of the basis vectors vi.

(iii) In the statement of Theorem 7.16, we assumed Am+k+2,m+k+2 to be non-
singular. Cases in which this condition is always fulfilled are when A is
Hermitian positive definite, or more general, when A is positive real. In
other cases, it may well happen that Am+k+2,m+k+2 is singular. If this hap-
pens, one can instead postpone the computation of error estimates to the
next step (if Am+k+3,m+k+3 happens to be nonsingular again) or just use
estimates based on Gauss quadrature, which do not require the inversion of
Am+k+2,m+k+2.

We briefly summarize the results presented in this chapter before we proceed
with numerical experiments illustrating them in the next section. We showed
that it is possible to perform restart recovery in extended Krylov subspace meth-
ods, with the possibility to generate either the Hessenberg matrix from a sec-
ondary Arnoldi method or the block Hessenberg matrix from a secondary ex-
tended Arnoldi method.

In the Hermitian positive definite case, we could further show that this restart
recovery can again be performed with matrices of constant size, so that the com-
putation of error estimates is possible with cost independent of the matrix size and
iteration number, and that the estimates from pairs of Gauss and Gauss–Radau
quadrature form upper and lower bounds for the exact error norm.

7.4 Numerical experiments

In this section, we perform experiments for two of the model problems from
Section 2.6 to illustrate the quality of the error estimates for the extended Arnoldi
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Figure 7.2: Exact error norm and error bounds computed by Gauss and Gauss–Radau
quadrature rules for approximating A−1/2z in the Gaussian Markov random field model
problem by the extended Arnoldi method. The inner quadrature rule uses ℓ = 20 nodes,
the number of nodes in the outer quadrature rule is varied between k = 1, 2 and 3.

iterates obtained by (rational) Gauss quadrature as described in Sections 7.2
and 7.3. We only consider those model problems in which we need to approximate
the action of a Stieltjes function of a Hermitian positive definite matrix on a
vector, i.e., sampling from a Gaussian Markov random field and the Hermitian
QCD model problem. Of course, all of the techniques developed in this chapter
could also be applied to the other model problems (cf. also Chapter 6, where this
is discussed for the polynomial Krylov case), but we refrain from doing so here, as
the considered problems are sufficient for illustrating the quality of the estimates
and allow to apply our theory concerning lower and upper bounds for the error.

We begin by investigating the model problem originating from sampling from
a Gaussian Markov random field. As the precision matrix A of the Gaussian
Markov random field can be reordered to have rather small bandwidth, the linear
systems occurring in the extended Arnoldi method can efficiently be solved by
Gaussian elimination after reordering. We begin by comparing the quality of the
bounds obtained by these rules for the different values k = 1, 2, 3 of quadrature
nodes. The results of this experiment are given in Figure 7.2. We again, as
in the experiment presented in Section 6.6, use an inner quadrature rule with
ℓ = 20 nodes, which we found to be sufficient again (which is not completely self-
evident, as the integrand in the inner quadrature has different properties here).
We observe that we indeed obtain bounds for the exact error norm, and that
already for k = 3, the computed bounds are essentially indistinguishable from
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Figure 7.3: Exact error norm and error estimate computed by a rational Gauss quadra-
ture rule for approximating A−1/2z in the Gaussian Markov random field model problem
by the extended Arnoldi method. The inner quadrature rule uses ℓ = 20 nodes, while

the number of nodes in the outer quadrature rule is fixed to 2 (i.e., k = 1).

the exact error norm to the eye. This is very important for making these error
bounds usable in practical computations, as the number of iterations one needs to
perform in extended Krylov methods is typically rather small, with each iteration
being very costly (compared to, e.g., iterations of a polynomial Krylov method).
Therefore it is even more crucial in extended Krylov methods to use a small
number of quadrature nodes for computing the error bounds to avoid performing
too many superfluous iterations.

Next, we investigate the error estimates computed by rational Gauss quadrature,
using the extended restart recovery from Theorem 7.16 to retrieve the matrix A

(2)
k,k.

We only present the estimate computed for k = 1 (keep in mind that k steps of
extended Arnoldi correspond to a quadrature rule with 2k nodes) in Figure 7.3,
as this is already very accurate, showing that rational Gauss rules can provide
even better estimates than standard Gauss rules. However, both provide very
good results for this rather well-conditioned model problem, so that it is hard to
really judge the advantages of either one based solely on this experiment.

Therefore, we next consider the Hermitian QCD model problem, which is less
well-conditioned and led to more varying quality of the bounds in the polynomial
Krylov case in Section 6.6. Due to the structure of Γ5DW and (Γ5DW )2, it is
difficult to solve the linear systems in the extended Arnoldi method by a direct
solver, and we instead use the conjugate gradient method to approximately solve
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Figure 7.4: Exact error norm and error bounds computed by Gauss and Gauss–Radau

quadrature rules for approximating
(
(Γ5DW )2

)−1/2
Γ5DWb in the Hermitian QCD

model problem by the extended Arnoldi method. The inner quadrature rule uses
ℓ = 20 nodes, while the number of nodes in the outer quadrature rule is varied be-

tween k = 1, 2, 3 and 4.

the systems. This is in a sense natural for this model problem, as for realistic lat-
tice sizes, Γ5DW is typically not available explicitly as a matrix, but only through
a routine which, given a vector v , returns the result of the matrix vector prod-
uct Γ5DWv . Figure 7.4 gives the results for error bounds computed via Gauss
and Gauss–Radau quadrature with k = 1, . . . , 4 quadrature nodes. The inner
quadrature rule uses ℓ = 20 quadrature nodes again, which this time is suffi-
cient in comparison to the experiments in Section 6.6, cf. in particular Figure 6.5.
Therefore, the integrand in the integral representation of the error function in
the extended Arnoldi case seems to be easier to handle numerically than in the
polynomial case, although it is more difficult to find quadrature rules which com-
pute bounds for the integral. Like before, we again use the smallest Ritz value
after a few iterations (multiplied by the safety factor 0.99) as an approximation
to λmin to be used as fixed node in the Gauss–Radau quadrature rule. We ob-
serve that also for this less well-conditioned problem, in which the bounds in the
polynomial Krylov case were much worse than for the GMRF model problem, we
obtain very accurate error estimates (and, as predicted by Theorem 7.11, they are
indeed upper and lower bounds again) for very small numbers of outer quadra-
ture nodes, with even the lower bound computed for k = 1 underestimating the
exact error norm by less than one order of magnitude. The upper bounds (which
are typically the more important ones, as they can be used as stopping criterion)
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Figure 7.5: Exact error norm and error estimate computed by a rational Gauss quadra-

ture rule for approximating
(
(Γ5DW )2

)−1/2
Γ5DWb in the Hermitian QCD model prob-

lem by the extended Arnoldi method. The inner quadrature rule uses ℓ = 20 nodes,
while the number of nodes in the outer quadrature rule is varied between 2 and 4 (i.e.,

k = 1, 2).

lie very closely together for all numbers of quadrature nodes, so that we do not
observe a real advantage in using more nodes (and thus having the bounds avail-
able later). As one can expect after observing the very high quality of the error
estimates computed by standard Gauss and Gauss–Radau rules, the estimates
computed by means of a rational Gauss rule are also very accurate again. We
provide results for k = 1 and k = 2 (i.e., quadrature rules with 2 and 4 nodes)
in Figure 7.5. While the results for k = 2 are slightly better than for k = 1, the
difference is negligible, so that the value k = 1 is sufficient again, even for this
much harder problem. While the estimates computed by rational Gauss rules are
again a bit more accurate than those from standard Gauss rules, the difference
is not that large, so that both methods seem equally valid for practical purposes
(the standard rules having the advantage of being guaranteed bounds).
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CHAPTER 8

CONCLUSIONS & OUTLOOK

In this thesis, we presented several new results arising from a new integral rep-
resentation of the error in Arnoldi’s method (and related methods such as the
extended and harmonic Arnoldi method). This error representation allows to
resolve some of the most prominent disadvantages from which Krylov subspace
methods for the approximation of matrix functions typically suffer.

In particular, we presented a quadrature-based restart approach for Arnoldi’s
method, which allows to overcome the memory constraints that often prevent a
sufficient number of iterations to be performed in the unrestarted case. The pre-
sented method is, to our knowledge, the only restarted Krylov subspace method
for f(A)b proposed so far which combines numerical stability and constant com-
putational work per cycle and at the same time acts as a black-box solver for a
large class of functions.

Besides algorithmic questions concerning stability and efficient implementation,
we presented a theoretical analysis of the convergence behavior of the restarted
Arnoldi method for the approximation of Stieltjes matrix functions using as tools
the intimate relation between Stieltjes functions and shifted linear systems, allow-
ing to generalize convergence results for the (shifted restarted) conjugate gradient
method to our setting. The main result of this analysis was that the restarted
Arnoldi method converges to f(A)b for every restart lengthm ≥ 1 when A is Her-
mitian positive definite. We also motivated that one cannot expect this result to
be generalizable to larger classes of matrices. As a by-product of this analysis, we
presented some results on the arbitrary convergence behavior of the restarted full
orthogonalization method and the restarted GMRES method for linear systems.
To overcome the limitations just mentioned, we proposed using a slight variation
of Arnoldi’s method, the restarted harmonic Arnoldi method (which reduces to
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8 Conclusions & Outlook

restarted GMRES in the linear system case) for which we could prove convergence
for every restart length m ≥ 1 for the larger class of (possibly non-Hermitian)
positive real matrices.

The other main application of our integral representation for the Arnoldi error was
the efficient computation of error bounds and estimates using Gauss quadrature.
In particular, we showed that it is possible to compute guaranteed error bounds
arising from nested quadrature rules when f is a Stieltjes function and A is Her-
mitian positive definite. These bounds can, e.g., be used as stopping criterion in
Arnoldi’s method. By making use of the so-called Lanczos restart recovery, we
demonstrated that the construction of these bounds can be incorporated into the
Lanczos method with computational cost independent of the dimension n of the
matrix A and the iteration number m, such that they are available essentially
for free in cases where n is large. We also briefly sketched that it is possible
to transfer the error estimation approach to the case of non-Hermitian matrices
and/or functions other than Stieltjes functions, although one has no guarantee
that one computes bounds in these cases and the cost of computing the estimates
increases proportionally to the iteration number in Arnoldi’s method.

In the final chapter of this thesis, we showed how to transfer some of our results
to extended Krylov subspace methods. For these methods, a similar integral
representation for the error as in the polynomial Krylov case exists and it is
therefore possible to transfer most of the results of this thesis to this related class
of methods. As restarting is not very relevant in the extended Krylov case (as
one typically only uses extended Krylov methods if they converge to the desired
accuracy in a small number of iterations), we mainly focused on the computation
of error estimates. We showed that it is again possible to compute lower and
upper bounds for the error norm in these methods by Gauss and Gauss–Radau
quadrature when A is Hermitian positive definite. We also investigated the pos-
sibility to use rational Gauss quadrature rules for error estimation, which led to
very accurate results but does not allow to compute guaranteed error bounds.

Topics for future research include a more thorough and in-depth treatment of
integral representations for the error for extended and especially general rational
Krylov methods and the possibilities they offer. Another topic that could be cov-
ered is a convergence analysis for (restarted or unrestarted) extended or rational
Krylov methods based on our error representation, which could maybe comple-
ment other analysis approaches available in the literature so far which typically
rely on other tools than the ones used in this thesis.

A further topic which seems very relevant and appealing, especially from a practi-
tioner’s point of view, is the comparison of the efficiency of our restart approach to
other techniques frequently used to overcome the memory limitations of Arnoldi’s
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method. These techniques include, e.g., the already mentioned extended and ra-
tional Krylov methods or the shifted conjugate gradient method applied to a
rational approximation of f in partial fraction form (when A is Hermitian pos-
itive definite). As these methods all have (at least partially) the same goal but
reach it in different ways, it is not at all clear whether one method is superior to
the others in general or whether this depends on some (and which) properties of
the problem at hand. A comparison of this kind should include meaningful nu-
merical experiments as well as theoretical evidence for the observed behavior and
give guidelines for deciding in which cases the presented methods should really
be used in practice.
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LIST OF NOTATIONS

Throughout this thesis, scalars are denoted by lower-case letters, matrices are
denoted by upper-case letters and vectors are denoted by lower-case, bold-face
letters. In addition, the following notations are used.

R the field of real numbers
R

+ the positive real axis (0,∞)
R

− the negative real axis (−∞, 0)
R

+/−
0 the positive/negative real axis including 0

C the field of complex numbers
α the complex conjugate of the scalar α ∈ C

K
n the n-dimensional Euclidean vector space over the field K

K
m×n the space of m× n matrices over the field K

vm a vector related to the mth iteration of an iterative method

v
(k)
m

a vector related to the mth iteration of the kth cycle of a
restarted iterative method

v(i) the ith entry of the vector v
v(i : j) the entries i, i+ 1, . . . , j of the vector v
‖v‖2 the Euclidean norm of the vector v
0 the vector of all zeros
1 the vector of all ones
I the identity matrix
AH the complex adjoint of the matrix A
A−1 the inverse of the nonsingular matrix A
aij the (i, j)th entry of the matrix A
W(A) the field of values of the matrix A
diag(α1, . . . , αn) The diagonal matrix with diagonal entries α1, . . . , αn

diag(A1, . . . , An) The block-diagonal matrix with diagonal blocks A1, . . . , An

∆ the Laplace differential operator
∂Ω the boundary of the domain Ω
A⊗ B the Kronecker product of the matrices A and B
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[56] A. Frommer and U. Glässner, Restarted GMRES for shifted linear
systems, SIAM J. Sci. Comput., 19 (1998), pp. 15–26.
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W. Krämer, W. Luther, and P. Markstein, eds., Springer, Berlin Heidelberg,
2009, pp. 203–216.

[67] E. Gallopoulos and Y. Saad, Efficient solution of parabolic equations
by Krylov approximation methods, SIAM J. Sci. Stat. Comput., 13 (1992),
pp. 1236–1264.

[68] W. Gautschi, Quadrature formulae on half-infinite intervals, BIT, 31
(1991), pp. 438–446.

[69] , Orthogonal Polynomials: Computation and Approximation, Oxford
University Press, Oxford, 2004.

[70] P. H. Ginsparg and K. G. Wilson, A remnant of chiral symmetry on
the lattice, Phys. Rev. D, 25 (1982), pp. 2649–2657.

[71] G. H. Golub and Ch. F. van Loan, Matrix Computations, 3rd edition,
Johns Hopkins University Press, Baltimore and London, 1996.

[72] G. H. Golub and G. Meurant, Matrices, moments and quadrature, in
Numerical Analysis 1993, D. F. Griffiths and G. A. Watson, eds., Essex,
1994, Longman Scientific & Technical, pp. 105–156.

[73] , Matrices, moments and quadrature II; How to compute the norm of
the error in iterative methods, BIT, 37 (1997), pp. 687–705.

[74] , Matrices, Moments and Quadrature with Applications, Princeton Uni-
versity Press, Princeton and Oxford, 2010.

[75] G. H. Golub and J. H. Welsch, Calculation of Gauss quadrature rules,
Math. Comput., 23 (1969), pp. 221–230+s1–s10.

[76] S. Goossens and D. Roose, Ritz and harmonic Ritz values and the
convergence of FOM and GMRES, Numer. Linear Algebra Appl., 6 (1999),
pp. 281–293.

[77] A. Greenbaum, Iterative Methods for Solving Linear Systems, SIAM,
Philadelphia, 1997.

193



BIBLIOGRAPHY

[78] A. Greenbaum, V. Pták, and Z. Strakoš, Any nonincreasing conver-
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[136] R. S. Varga, Geršgorin and His Circles, Springer, Berlin, 2004.

[137] E. Vecharynski and J. Langou, Any admissible cycle-convergence be-
havior is possible for restarted GMRES at its initial cycles, Numer. Linear
Algebra Appl., 18 (2011), pp. 499–511.

[138] H. A. van der Vorst, BI-CGSTAB: A fast and smoothly converging
variant of BI-CG for the solution of nonsymmetric linear systems, SIAM J.
Sci. Stat. Comput., 13 (1992), pp. 631–644.

[139] H. A. van der Vorst and C. Vuik, The superlinear convergence be-
haviour of GMRES, J. Comput. Appl. Math., 48 (1993), pp. 327–341.

[140] J. L. Walsh, Interpolation and Approximation by Rational Functions in
the Complex Domain, 5th edition, American Mathematical Society, Provi-
dence, 1969.

[141] J. A. C. Weideman, Optimizing Talbot’s contours for the inversion of the
Laplace transform, SIAM J. Numer. Anal., 44 (2006), pp. 2342–2362.

[142] J. A. C. Weideman and L. N. Trefethen, Parabolic and hyperbolic
contours for computing the Bromwich integral, Math. Comput., 76 (2007),
pp. 1341–1356.

[143] H. S. Wilf, Mathematics for the Physical Sciences, John Wiley & Sons,
New York, London, Sydney, 1962.

[144] K. G. Wilson, Quarks and strings on a lattice, in New Phenomena in
Subnuclear Physics. Part A., A. Zichichi, ed., Plenum Press, New York,
1977, pp. 69–125.

[145] G. Zolotarev, Application of elliptic functions to the problem of functions
which vary the least or the most from zero, Abh. St. Petersb., 30 (1877),
pp. 1–59.

198


