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1 Abstract 

To shed light on the disputed molecular phylogeny of Euglenozoa, SSU rDNA sequences of 

an uncultured Peranema sp. (wild) and cultured Ploeotia edaphica (CCAP 1265/2) were 

isolated and a database was created containing a great many euglenozoan SSU rDNA 

sequences. Additionally, new LSU rDNA sequences were isolated from diplonemid 

Rhynchopus euleeides (ATCC 50226) and Diplonema ambulator (ATCC 50223) as well as of 

phagotrophic euglenids Entosiphon sulcatum (CCAP 1220/1B), Notosolenus ostium (wild), 

Peranema trichophorum (CCAP 1260/1B), Petalomonas cantuscygni (CCAP 1259/1), 

Ploeotia costata (CCAP 1265/1), and primary osmotrophic euglenids Astasia curvata 

(SAG 1204-5b), Astasia torta (SAG 217.80) and Rhabdomonas costata (SAG 1271-1) by the 

application of specifically designed primers for primer walking through unknown parts of this 

understudied gene region. 

As a new approach, recently published SSU and LSU rRNA secondary structure data of 

Saccharomyces cerevisiae (Petrov et al. 2013 and 2014) was utilized as a blueprint for 

alignment of nucleotide sequences and deduction of secondary structure elements. Several 

datasets were formed to investigate phylogenetic inferences of SSU rDNA sequences with an 

equilibrated taxon sampling, separate marine and freshwater lineages and a combined set 

comprising more than 150 euglenozoan SSU rDNA sequences. Further examinations included 

two datasets derived from new LSU rDNA sequences as well as a concatenated dataset 

comprising genetic information of the ribosomal operon for the first time concerning 

euglenids, diplonemids and kinetoplastids. To address the adherent problem of weakness in 

statistical support regarding Euglenida found in prior studies, built datasets were additionally 

examined by phylogenetic network and spectral analyses. These analyses were also used to 

verify phylogenetic signals of identified monophyla and to test their tree compatibility. 

Finally, deduced secondary structures were utilized to pinpoint boundaries of coding and 

spacer regions as a precondition for examination of variable regions of SSU rDNA, SSU and 

LSU rDNA sequence lengths and corresponding base composition, identity matrices, ITS 

sequences and their insertion sites in LSU rDNA as well as unique nucleotide substitutions in 

the search for group specificities among Euglenozoa. 

As a result, important findings concerning the phylogeny of major euglenozoan groups have 

been found, i.e. (1) Euglenida were not monophyletic, for Petalomonadida represented the 

deepest branch of Euglenozoa and the taxon Euglenida possessed no phylogenetic signal, 
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(2) Diplonemida were not the sister group of Kinetoplastida, phylogenetic and secondary 

structure analyses strongly inferred a relation of Diplonemida with Petalomonadida and 

Ploeotiida rather than with Kinetoplastida, (3) the existence of a euglenid crown group was 

confirmed by phylogenetic as well as spectral analyses and according to the eponymous 

autapomorphy, a helically pellicle pattern, prior taxon denominations were converted into 

Helicales taxon nov. PAERSCHKE & PREISFELD 2015, (4) the denominations „phagotrophic 

euglenids‟ and „Heteronematina‟ sensu Adl et al. (2012) describe a polyphyletic assemblage 

of euglenids and should be discarded.  

The present work provides a basis for further examinations of euglenozoan LSU rDNA 

sequences and thus represents a precursor for future studies concerning the ribosomal operon 

of Euglenozoa. 
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2 Introduction 

Since the Euglenozoa are not recorded in an all-embracing nomenclature, this taxon has an 

ambiregnal status in phylogenetic systematics. Diverse nutritional modes of euglenozoans and 

especially of euglenids might be the main reason for controversial views concerning the 

phylogeny of this protist group. In zoological systematics most heterotrophic forms were 

recognized as protozoa (e.g. Wehner & Gehring 2013) and have been regulated in the 

International Zoological Code of Nomenclature (ICZN) while phototrophic euglenids were 

regarded as algae (e.g. Kadereit et al. 2014) and have been listed in the International Code of 

Nomenclature for algae, fungi and plants (ICN). As both zoological and botanical descriptions 

exist in classifying taxonomy, mostly zoological names of taxa have been used in the present 

work whenever possible for reasons of comprehension and clarity.  

 

2.1 Characteristics of Euglenozoa 

Euglenozoa represent a large group of microbial eukaryotes comprising probably far more 

than 1,000 described species of euglenids plus an unknown number of diplonemids and 

kinetoplastids (Leander et al. 2007). Protozoan species numbers vary largely: about 8,000 

species have been described and over 36,000 estimated according to Mora et al. (2011), 

earlier studies noted 30,000 described species and estimates even exceeded 250,000 (Fenchel 

1993, May 1988). Nonetheless, the diversity of Euglenozoa found in marine environments 

surpassed earlier expectations (López-García et al. 2006, Moreira & López-García 2002, 

Zuendorf et al. 2006). Most euglenozoans do not contain calcium carbonate or other body 

parts that could outlast longer periods of time, therefore no fossil record is available; 

nonetheless euglenid cells have been identified in Triassic amber which are at least 220 

million years old (Schönborn et al. 1999). 

Nutrition 

Most euglenozoans are free-living heterotrophic flagellates which play an important role in 

the food webs of Earth‟s watery environments (Fig. 1.1). Phagotrophic euglenozoans prey on 

bacteria and/or other eukaryotes (Boenigk & Arndt 2002, Lara et al. 2009), while some 

diplonemids and kinetoplastid bodonids are parasites of crustaceans and fishes, i.e. 

Rhynchopus and Ichthyobodo (von der Heyden et al. 2004). The kinetoplastid group of 
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trypanosomatids is of large medical importance, it includes human parasites which are 

transmitted by insects, e.g. Trypanosoma can cause the African sleeping sickness, Chagas‟ 

disease (T. brucei and T. cruzi) as well as animal diseases like Nagana, organisms of genus 

Leishmania provoke several forms of Leishmaniasis, some of which are lethal (Walker et al. 

2011). In 1907 the French physician Alphonse Laveran received the Nobel Prize in 

recognition for his work, for he identified protozoa as causative organisms of Malaria and 

Trypanosomiasis. The oldest record of Chagas‟ disease has been found in DNA samples of T. 

cruzi isolated from naturally desiccated human mummies, members of the Chonchurro 

culture, who lived in 7,000 B.C. (Aufderheide et al. 2004). 

Three different modes of nutrition are known in Euglenida: most colorless forms are 

heterotrophic, i.e. phagotrophic euglenids prey on small eukaryotes and/or bacteria utilizing 

specialized ingestion apparatus, osmotrophic euglenids ingest dissolved nutrients by 

pinocytosis, and phototrophic “green” euglenids contain chloroplasts which enable 

photosynthesis besides pinocytotic uptake of nutrients.  Chloroplasts of phototrophic 

euglenids incorporate chlorophyll a and b, are enfolded by three membranes and have been 

obtained by secondary endosymbiosis (Gibbs 1978). 

20 µm 

10 µm 25 µm 

20 µm   

A B 

C 

D E 

F G 

Fig. 1.1: Light-microscopic pictures of different euglenozoans. Numbers above 

yellow scale bars depict length in µm. Pictures A, B, C, E and F show 

phagotrophic euglenids. White arrowheads in B, C, E and F highlight the feeding 

apparatus. A: Anisonema acinus. B: Entosiphon sulcatum. C: two cells of 

Ploeotia corrugata visible in different focus depths, featuring longitudinally 

arranged pellicle strips (left) and feeding apparatus (right cell). D: cells of the 

diplonemid Rhynchopus euleeides (ATCC 50226). E: Peranema sp. (wild). 

F: Ploeotia edaphica (CCAP 1265/2). G: the primary osmotrophic euglenid 

Distigma sennii (SAG 222.80). Source of pictures A, B, C: micro*scope 

(http://www.pinkava.asu.edu/starcentral/microscope), © Angelika Preisfeld and 

David J. Patterson. 
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Apomorphies 

Traditionally, Euglenida have been characterized morphologically by ultrastructural features 

of their cells, e.g. pellicle, paraxonemal rods in flagella, and if present, paramylon or the 

feeding apparatus. The typical „euglenid‟ pellicle can be rigid or flexible, longitudinally or 

helically arranged (Fig. 1.2), and consists of plasma membrane, proteinaceous strips, 

subjacent microtubules and cisternae of the endoplasmatic reticulum (Sommer 1965). 

Euglenids with flexible pellicle are capable of metabolic movement that looks like squirming, 

compressing and stretching of the cell, and which is sometimes referred to as 'euglenid (or 

euglenoid) movement‟ though not all euglenids are capable of metaboly (Leander et al. 2001). 

However, diplonemids are also capable of metaboly, at least in a certain life stage (Roy et al. 

2007). Similarities of ultrastructural characteristics, i.e. in the flagellar apparatus, its 

paraxonemal rods, the ventral ingestion apparatus and a Golgi-associated contractile vacuole, 

early led to a postulated relationship of Euglenida and Kinetoplastida (Kivic & Walne 1984). 

The feeding apparatus of phagotrophic euglenids have been classified in four types 

constituted by complexity of presumably homologous morphological substructures (Belhadri 

et al. 1992, Triemer & Farmer 1991) and thus confirmed earlier findings. But a close relation 

of Diplonema ambulator to Kinetoplastida was hypothesized later by Montegut-Felkner & 

Triemer (1994 and 1996) based on similar morphological traits. A densely packed 

mitochondrial DNA which has been named kinetoplast (Meyer 1968), was made the 

eponymous apomorphy of kinetoplastids though a kinetoplast-like DNA inclusion had been 

20 µm 

Fig. 1.2: Light-microscopic picture of a green-colored phototrophic 

Euglena sp. illustrating the helical pellicle pattern with proteinaceous 

strips (in grey) and the red-colored stigma, a carotenoid containing 

organelle which enables light-perception in combination with a 

crystalline structure on the basis of the dorsal flagellum (not visible). 

The scale bar depicts 20 µm. This picture was available under the 

Creative Commons License (CC0 1.0 Universal Public Domain 

Dedication, © David Shykind, 2012). 
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found also in Petalomonas cantuscygni, a presumably primordial euglenid (Breglia et al. 

2007, Leander et al. 2001).  

It has been shown that morphological characteristics contain ambiguities and thus are not 

applicable beyond question to pinpoint phylogenetic relationships of euglenozoan groups. 

This also applies to many molecular studies concerning gene evolution among Euglenozoa 

(see 2.4). Paraxonemal rods (Cachon et al. 1988, Talke & Preisfeld 2002, Walker et al. 2011), 

„base J‟, i.e. β-D-glucosyl-hydroxymethyluracil (Dooijes et al. 2000, Gommers-Ampt et al. 

1993), and trans-splicing (Frantz et al. 2000, Sturm et al. 2001, Tessier et al. 1991) represent 

genuine apomorphic features of Euglenozoa. 

 

2.2 Biogeography of Euglenozoa 

Being ubiquitously dispersed on Earth, Euglenozoa 

can be found in almost every watery environment. 

Free-living forms have been isolated from manifold 

marine, freshwater and brackish habitats, from 

temperate, humid cold and hot, as well as from 

extreme environments, e.g. cold-seeps or anoxic 

sediments. In the past 14 years, many studies 

examined environmental dispersal of Euglenozoa or 

discovered new species, and thus tremendously 

amended available SSU rDNA sequences (Fig. 1.3 

and Tab. 1.1). Some Euglenozoa have been 

reported from rather extraordinary places: free-

living kinetoplastids were isolated from tables in 

meat-cutting plants and from butterhead lettuce 

(Vaerewijck et al. 2008 and 2011), phagotrophic 

euglenids were found on pack ice in the Antarctic 

(Garrison & Buck 1989) and in furs of Brazilian 

sloths of genus Bradypus (Suutari et al. 2010), 

which exemplifies that the development of 

ecosystems needs a certain amount of deceleration. 

Tab. 1.1: List of studies which have 

contributed most euglenozoan SSU rDNA 

sequences used in Fig. 1.3. Studies are sorted 

by publication year and alphabetically by first 

author's name. 

No. 
Year of 

publication 
Author(s) 

1 2001 López-García et al. 

2 2001 Stonik & Selina 

3 2003 López-García et al. 

4 2003 Stoeck & Epstein 

5 2003 Stoeck et al. 

6 2004 Rat'kova et al. 

7 2004 Von der Heyden et al. 

8 2005 Šlapeta et al. 

9 2006 Behnke et al. 

10 2006 López-García et al. 

11 2006 Scheckenbach et al. 

12 2006 Tikhonenkov et al. 

13 2006 Zuendorf et al. 

14 2007 Countway et al. 

15 2007 Stoeck et al. 

16 2008 Chen et al. 

17 2009 Lara et al. 

18 2009 Marande et al. 

19 2009 Saburova et al. 

20 2009 Yubuki et al. 

21 2010 Breglia et al. 

22 2010 Jebaraj et al. 

23 2010 Sauvadet et al. 

24 2010 Scheckenbach et al. 

25 2010 Suutari et al. 

26 2010 Takishita et al. 

27 2011 Lara et al. 

28 2011 Wylezich & Jürgens 

29 2012 Orsi et al. 

30 2012 Salani et al. 

31 2012 Thomas et al. 

32 2012 Yamaguchi et al. 

33 2013 Breglia et al. 

34 2013 Chan et al. 

35 2013 Lax & Simpson 

36 2014 Lee & Simpson (2) 

38 2014 Wang et al. 
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2.3 Euglenozoa in eukaryote systematics 

Within the super-group Excavata, the recently erected Discoba (SIMPSON in Hampl et al. 

2009) form a clade that is indeed well supported by molecular data, although no withstanding 

morphological synapomorphies have been identified (Hampl et al. 2009, Walker et al. 2011). 

The Discoba embrace the usually well supported Euglenozoa (CAVALIER-SMITH 1981) 

SIMPSON 1997, the Heterolobosea (PAGE & BLANTON 1985) and the Jakobida (CAVALIER-

SMITH 1993) ADL et al. 2005. 

As close relatives of Euglenozoa, the Heterolobosea are defined as protists with two life 

phases, one of which with eruptive pseudopodia, the other with flagella (Page and Blanton 

1985, Patterson 1999). Most heteroloboseans display discoidal mitochondrial cristae, 

therefore Discicristata CAVALIER-SMITH 1998 have been erected, comprising Euglenozoa and 

Heterolobosea with discoidal mitochondrial cristae as synapomorphy, although in some taxa 

these seem to be secondarily altered, e.g. some heterolobosean genera like Psalteriomonas 

own hydrogenosomes (de Graaf et al. 2009) and some diplonemids own longitudinally 

arranged, rather lamellar cristae (Marande et al. 2005, Roy et al. 2007). Discoidal 

mitochondrial cristae are also found outside of euglenozoans and heteroloboseans, in fact the 

excavate genus Malawimonas O‟KELLY & NERAD 1999 also presents discoidal cristae 

(O‟Kelly & Nerad 1999). The recently described excavate Tsukubamonas globosa YABUKI et 

al. 2011 possesses morphological characters which relate it to Heterolobosea, but molecular 

analysis often deviates (Brown et al. 2012, Harding et al. 2013, Park et al. 2012, Yabuki et al. 

2011). However, some recent phylogenies did not confirm the existence of Discicristata as a 

monophyletic group (Cavalier-Smith 2002, Simpson et al. 2006), whereas others did (Baldauf 

et al. 2000, Cavalier-Smith 2003, Lara et al. 2006). Close relatives of Discicristata are the 

Jakobida (CAVALIER-SMITH 1993) ADL et al. 2005, which differ widely in mitochondrial 

features. While the genus Jakoba PATTERSON 1990 owns flat cristae (Simpson & Patterson 

2001), the Histionidae FLAVIN & NERAD 1993 have tubular cristae, while affiliates of 

Andalucia LARA et al. 2006 bear tubular cristae or lack cristae at all (Lara et al. 2006).  

 

 

◄  Fig. 1.3: World map of euglenozoan diversity illustrating isolation sites of studies mentioned in Tab. 1.1, 

major euglenozoan groups and subordinate taxa are color-coded as depicted in the legend. 
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Following these findings, Adl et al. (2012) recognized the Discoba as a robustly supported 

clade composed of Euglenozoa, Heterolobosea, Jakobida, and Tsukubamonas. Since no 

synapomorphies have been identified so far, the Discoba are described as a clade that stems 

from the most recent common ancestor of Jakoba libera, Andalucia godoyi, Euglena gracilis, 

and Naegleria gruberi. A recently published study ranked Euglenozoa into synthetically 

erected orders, classes, subphyla, phyla and infrakingdoms (Ruggiero et al. 2015), but it 

included no natural clades nor reflected the evolution of higher taxa (e.g. Euglenozoa are 

simultaneously an infrakingdom as well as a phylum), therefore such an artificial 

classification was not considered in this work. 

 

2.4 Phylogenetic relationships of Euglenozoa 

Small subunit ribosomal DNA (SSU rDNA)-based phylogenies have been widely used to 

infer relationships even among eukaryotic super-groups. Although most of the identified 

major clades are well supported, backup for some major as well as subordinate clades depends 

heavily on outgroup choice and taxon sampling, besides choice of gene(s) or methodologies 

while tackling the difficulties arising in the history of gene evolution (Parfrey et al. 2006). 

This also applies to the usually well supported Euglenozoa (CAVALIER-SMITH 1981) 

SIMPSON 1997. Former studies considered the Euglenozoa to consist of Diplonemida 

(CAVALIER-SMITH 1993) SIMPSON 1997, Kinetoplastida HONIGBERG 1963, Euglenida 

(BÜTSCHLI 1884) SIMPSON 1997 and Postgaardi FENCHEL et al. 1995, assorted among other 

characteristics by paraxonemal rods in the flagella featuring different structures in protein 

complexity (Adl et al. 2005, Kivic and Walne 1984, Simpson 1997, Roy et al. 2007, Walne & 

Dawson 1993). However, phylogenetic positions of major groups and particularly 

phagotrophic euglenids could not be resolved properly (Fig. 1.4). Yubuki et al. (2009) erected 

a further clade of euglenozoans, when they formally described Calkinsia aureus, a euglenid-

like cell with rod-shaped epibiotic bacteria, and established the Symbiontida. In SSU rDNA 

phylogenies, Calkinsia aureus formed a clade together with other microbial eukaryotes 

isolated earlier from sub- and anoxic marine habitats (Behnke et al. 2006; Stoeck et al. 2003; 

Zuendorf et al. 2006). Adl et al. (2012) treated them as a major clade within the Euglenozoa, 

but also noted that symbiontids are probably derived phagotrophic euglenids, consisting of the 

genera Calkinsia, Bihospites and Postgaardi, which was recently confirmed by a 

morphological study (Yubuki et al. 2013).  
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Nowadays, Euglenozoa comprise the major clades Euglenida, Diplonemida and 

Kinetoplastida, with inner affiliations still controversial, and the limited taxon sampling 

especially of phagotrophic euglenids hinders molecular analysis (Adl et al. 2012; Triemer and 

Farmer 2007; Walker et al. 2011). Though recent discoveries of new euglenid species greatly 

amended available SSU rDNA sequence data (Tab. 1.1), phylogenetic studies still lead to 

incongruous tree topologies, probably due to differing methodological approaches or choice 

of diverse outgroups (Tab. 1.2). Furthermore, SSU rDNA based analyses of Euglenozoa 

almost traditionally suffered from weakness in statistical support regarding major group 

relationships (Busse and Preisfeld 2002a, 2003b, 2003c, Busse et al. 2003, Cavalier-Smith 

2004, Moreira et al. 2004, Preisfeld et al. 2001, von der Heyden et al. 2004), recent analyses 

recovered paraphyletic Euglenida (Breglia et al. 2010, Chan et al. 2013, Yubuki et al. 2009), 

and even when other major euglenozoan clades have been included into the outgroup, 

monophyly of Euglenida lacked support (Lax and Simpson 2013). 

Fig. 1.4: Schematic phylogeny of Euglenozoa demonstrating unclear positions 

of diplonemids and kinetoplastids as well as phagotrophic euglenids which 

branch in multiple furcations (modified from Busse 2003). 
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Studies which investigated protein-based phylogenies utilized inappropriately poor taxon 

samplings concerning the Euglenozoa, in most cases of which the highly derived phototroph 

Euglena gracilis was the only taxon representing Euglenida (e.g. Simpson & Roger 2004, 

Simpson et al. 2004). So-called multigene studies may have contained information from many 

gene sequences, but included barely more than five taxa of all major euglenozoan groups into 

data analysis (e.g. Burki et al. 2007, Derelle & Lang 2012, He et al. 2014, Simpson et al. 2002 

and 2008, Yoon et al. 2008). The sum of aforementioned circumstances would be a plausible 

reason for the tessellated status of euglenozoan molecular phylogeny (Tab. 1.2). 

Tab. 1.2: List of most SSU rDNA based phylogenetic studies of euglenozoans including phagotrophic euglenids 

and their implications for euglenozoan phylogeny. When known, relevant parameters of analyses are given, i.e. 

applied methods, models chosen and tested, number of taxa (K = kinetoplastids, D = diplonemids, E = euglenids, 

S= symbiontids), and outgroups selected. Studies are sorted chronologically by publication year, then 

alphabetically by first author's name.* = symbiontids therein mislabeled as diplonemids. Studies with reliable 

results concerning euglenozoan phylogeny are highlighted in green, for explanation see text. 

    
Model 
tested 

No. of 
positions 

No. of 
taxa      

euglenozoan 
phylogeny Study Year Method ML-Model K D E S outgroup 

Montegut-Felkner & 
Triemer  

1997 MP/NJ multiple 
 

964 8 2 - 4 - Eukaryota - 

Maslov et al. 1999 ML ? ? 1,349 17 9 2 4 - Eukaryota E (K+D) 

Preisfeld et al. 2000 ML/MP/NJ multiple 
 

? 13 2 - 9 - K - 

Moreira et al. 2001 ML/MP/NJ ? ? 1,236 13 3 3 3 - Eukaryota K (D+E) 

  
ML ? ? 1,023 40 3 3 34 - K + D - 

Müllner et al. 2001 NJ multiple 
 

1,036 35 2 - 33 - K - 

Preisfeld et al. 2001 ML/MP/NJ multiple 
 

984 44 5 2 29 - Eukaryota E (K+D) 

Busse & Preisfeld 2002 ML/MP GTR+G+I + 1,119 35 7 5 12 - Eukaryota D (K+E) 

Busse & Preisfeld 2003a ML SYM+G+I + 1,141 40 4 2 30 - Eukaryota E (K+D) 

Busse & Preisfeld 2003b ML/MP/NJ GTR+G+I + 1,117 74 5 5 52 - Eukaryota K (D+E) 

Busse et al. 2003 ML/BI/MP GTR+G+I + 1,137 36 5 5 20 - Eukaryota E (E+[K+D]) 

Cavalier-Smith 2003 ML K80+G+I ? 1,338 98 3 2 4 - Eukaryota E (K+[D+E]) 

Marin et al. 2003 ML/MP/NJ TrN+G+I + 1,454 64 11 2 51 - K - 

Moreira et al. 2004 ML/BI/MP/NJ GTR+G+I + 1,150 24 4 4 4 - Eukaryota E (K+D) 

Von der Heyden et al. 2004 NJ GTR+G+I no 1,233 145 47 12 68 - Excavata K (D+E) 

  
ME GTR+G+I no 1,233 80 - 12 68 - D - 

Stoeck et al. 2006 ME GTR+G+I + 670 27 9 1 5 4* Eukaryota E (K+[D+S]) 

Behnke et al. 2006 ME GTR+G+I + 924 ? ? ? ? 7 Eukaryota E (K+[D+S]) 

Zuendorf et al. 2006 ML TrN+G + 711 52 7 4 3 6 Archaea S (E*+[K+D]) 

Lara et al. 2009 ML GTR+G+I no 825 44 9 25 4 6 E - 

Yubuki et al. 2009 ML/BI GTR+G+I + 760 35 6 6 13 8 Andalucia E(D[E(K+S)]) 

Breglia et al. 2010 ML/BI GTR+G+I no 760 37 6 6 13 10 Andalucia E (E+S+D+K) 

Kim et al. 2010 ME/MP GTR+G+I no 1,068 33 6 3 20 2 Jakobida K (D+(S+E) 

Yamaguchi et al. 2012 ML/BI TIM1ef+G + 805 39 7 3 27 2 K + D - 

Breglia et al. 2013 ML/BI GTR+G+I + 636 39 7 3 27 2 K + D - 

Chan et al. 2013 ML/MP/NJ GTR+G + 1,950 49 6 7 31 2 Jakobida (+K?) K (S+[D+E]) 

Lax & Simpson 2013 ML/BI GTR+G no 1,161 80 9 6 49 5 Discoba (+K+D) K (D+E) 

Lee & Simpson 2014a ML/BI GTR+G no 1,216 52 - - 47 5 none (S?) - 

Lee & Simpson 2014b ML/BI GTR+G no 1,293 53 - - 48 5 none - 

this work 2015 ML/BI/network GTR+G+I + 1,194 85 8 8 33 8 Excavata see Results 

this work 2015 ML/BI/network GTR+G+I + 1,214 250 37 29 87 6 Eukaryota see Results 

this work 2015 ML/BI/network GTR+G+I + 1,158 199 33 22 30 19 Eukaryota see Results 

this work 2015 ML/BI/network GTR+G+I + 1,224 178 14 - 74 - Eukaryota see Results 
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2.5 Euglenozoan ribosomal DNA 

The typical eukaryotic ribosome comprises four nascent rRNA species, i.e. 18S, 5.8S, 28S 

and 5S, as well as more than 70 associated proteins (Torres-Machorro et al. 2010). In most 

species, equivalent 18S, 5.8S and 28S ribosomal DNA is present in chromosomes as multiple 

copies of tandemly organized repeats, so-called cistrons. These cistrons are intermitted by 

spacer regions between rDNA regions, the internal transcribed spacers (ITSs), and between 

cistrons by the intergenic spacer (IGS). It has been shown that at least kinetoplastids and 

euglenids differ from other protozoa in many aspects regarding nucleotide sequence length, 

gene copy number, localization and organization of ribosomal genes. Due to insertions, 

Fig. 1.5: Fragmentation of nuclear ribosomal genes in kinetoplastids and the 

phototrophic euglenid Euglena gracilis. A: Linear organized rDNA cistrons of 

Trypanosoma cruzi which 28S rDNA is fragmented into 6 elements, and Leishmania 

major, which 28S rDNA is fragmented into 7 components (modified after Torres-

Machorro et al. 2010). B: Circular organized extrachromosomal ribosomal RNA gene 

of Euglena gracilis (modified after Greenwood et al. 2001). 
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primary osmotrophic euglenids of genus Distigma exhibited the largest SSU rDNA size ever 

measured (Busse & Preisfeld 2002b). While trypanosomatids contain 56 to 166 chromosomal 

copy numbers of rDNA, the phototrophic euglenid Euglena gracilis comprises only four 

chromosomal, but 800-4000 extrachromosomal copies (El-Sayed et al. 2005, Ravel-Chapuis 

1988). 28S rDNA of trypanosomatids is fragmented into six or seven components (Fig. 1.5), 

but that of Euglena gracilis exhibits the highest fragmentation known today, it contains 13 

intermittent ITSs (Schnare & Gray 1990, Schnare et al. 1990, Spencer et al. 1987, Torres-

Machorro et al. 2010). As found in the rather derived heterolobosean Naegleria gruberi, 

extrachromosomal rDNA copies of Euglena gracilis are organized as a circular plasmid 

which contains 18S, 5.8S and 28S rDNAs that are separated by an additional intergenic spacer 

region (Clark & Cross 1987, Greenwood et al. 2001, Maruyama & Nozaki 2007).  

Nowadays, mostly SSU rDNA has been used to infer phylogenetic relationships of 

Euglenozoa, e.g. the Kinetoplastida represent a so-called ribogroup according to Adl et al. 

(2012), characterized by phylogenetic inferences of ribosomal genes. Partial LSU rDNA 

sequences have been employed exclusively to examine phylogenetic relationships of 

phototrophic euglenids (Brosnan et al. 2003, Ciugulea et al. 2008, Kim et al. 2013, Triemer et 

al. 2006). 

 

2.6 Scope of this thesis 

To shed light on the molecular phylogeny of phagotrophic euglenids, SSU rDNA sequences 

of uncultured Peranema sp. and cultured Ploeotia edaphica (CCAP 1265/2) have been 

isolated. At the time preparing this work, number of available SSU rDNA sequences was 

overwhelmingly high which allowed the creation of a database containing more than 200 

euglenozoan SSU rDNA sequences.  

As a new (renewed) approach, recently published secondary structure data of Saccharomyces 

cerevisiae (Petrov et al. 2014) was utilized as a blueprint for recognition of homologous 

positions and alignment of sequences. Furthermore, a double-strategy was applied to address 

well-known problems regarding the phylogeny of Euglenida. Firstly, marine and freshwater 

lineages of the Euglenozoa were investigated separately, to test their phylogenetic 

implications. Euglenida, like Kinetoplastida, include free-living flagellates, which occupy 

marine as well as freshwater habitats, unlike free-living Diplonemida, which have been 
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isolated exclusively from marine environment. This diversity is dispersed throughout all 

Euglenida, it is found in phagotrophic lineages, e.g. in Petalomonadida and in Euglenea 

(BÜTSCHLI 1884) BUSSE & PREISFELD 2002 (i.e. phototrophic euglenids incapable of 

phagotrophy), which comprise predominantly marine Eutreptiales (LEEDALE 1967) MARIN & 

MELKONIAN 2003, and mostly freshwater Euglenales (LEEDALE 1967) MARIN & MELKONIAN 

2003. Secondly, aforementioned datasets were combined to allow more thorough 

phylogenetic analyses with an even greater taxon sampling (Tab. 3.3). 

Additionally, new LSU rDNA sequences of diplonemids as well as phagotrophic, 

osmotrophic and phototrophic euglenids were obtained by application of specifically designed 

primers for primer walking through mostly unknown parts of this understudied gene region. 

Only LSU rDNA sequences of three trypanosomatids and a diplonemid were available at the 

time preparing this thesis, so the addition of two new diplonemids and ten new euglenid LSU 

rDNA sequences would allow tentative steps into LSU rDNA-based phylogenetic 

examinations of Euglenozoa (Tab. 3.4). SSU and LSU rDNA datasets were merged to a new 

dataset, which for the first time contained genetic information of the ribosomal operon 

concerning euglenids, diplonemids and kinetoplastids, and was ultimately utilized for a 

phylogenetic study of euglenozoan ribosomal operon data. 

To address the adherent problem of weakness in phylogenetic signal concerning the 

Euglenida, built datasets were examined by phylogenetic network analyses, which were used 

to investigate phylogenies in a tree-unlike manner, for networks graphically present 

compatible as well as incompatible and ambiguous phylogenetic signals hidden in SSU and 

LSU rDNA data. Additionally, phylogenetic tree and network topologies were tested by 

spectral analyses to verify phylogenetic signals and check for tree compatibility of identified 

monophyla. 

Finally, secondary structures were deduced from obtained SSU and LSU rDNA sequences to 

pinpoint genetic boundaries as a prerequisite for identification of potential clade specificities 

by comparison of coding and spacer sequence lengths, base composition, variable regions of 

SSU rDNA, identity matrices, ITS sequences and unique nucleotide substitutions. In the end, 

these data were used to hypothesize phylogenetic relationships among major euglenozoan 

groups inferred from evolutionary traits of their ribosomal gene sequences. 
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3 Material 

 

3.1 Organisms 

3.1.1 Strains of euglenid flagellates 

Astasia pertyi (CCAP 1204/3) 

Distigma sennii (CCAP 1216/4) 

Entosiphon sp (CCAP 1220/2) 

Entosiphon sulcatum (CCAP 1220/1B) 

Peranema sp (environmental isolate) 

Petalomonas cantuscygni (CCAP 1259/1) 

Ploeotia edaphica (CCAP 1265/2) 

Strains from the Culture Collection of Algae and Protozoa (CCAP, United Kingdom) were 

received via ASSEMBLE Grant Agreement No. 227799, which was provided to the author by 

the European Community. Peranema sp. was found by Marisa Bartling in a culture of 

Amoeba proteus, which had been ordered from Lebendkulturen.de for teaching purposes. It 

was identified and isolated by the author, then cultivated according to 3.2.1. 

 

3.1.2 Strains of diplonemids 

Diplonema ambulator (ATCC 50223) 

Rhynchopus euleeides (ATCC 50226) 

The two diplonemid strains were purchased from the American Type Culture Collection 

(ATCC, United States of America) including medium.  

 

3.1.3 Strains of Escherichia coli 

E. coli DH5α  obtained from Sabine Stratmann-Lettner 
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E. coli TOP10™ component of TOPO Cloning™ kit purchased from Life Technologies 

GmbH, Darmstadt, Germany 

 

3.2 Media 

3.2.1 Media for euglenid flagellates 

Primary osmotrophic euglenids were cultivated in sterilized Volvic™ mineral water. Strains 

of freshwater phagotrophic euglenids (Entosiphon, Peranema and Ploeotia) were cultivated in 

sterilized Volvic™ mineral water and fed with baker‟s yeast once a week. Petalomonas 

cantuscygni was shortly cultivated in artificial sea salt medium, which has been obtained from 

Nadja Dabbagh.  

 

3.2.2 Media for diplonemids 

After thawing, diplonemid strains were cultivated in the included sea salt medium (ATCC 

medium 1728, enriched Isonema medium) with provided bacteria as prey organisms.  

 

3.2.3 Media for E. coli 

LB medium 25 g/l lysogeny broth in diH2O 

LB agar plates 15 g/l agar added to LB medium 

SOB medium 26.64 g/l super optimal broth in diH2O 

SOC medium 20 mM glucose added to SOB medium 

 

3.3 DNA samples 

Samples of total DNA were obtained from Dr. Ingo Busse and Prof. Dr. Angelika Preisfeld, 

which have been isolated earlier from euglenid flagellates. Anisonema acinus and 

Notosolenus ostium were environmental samples and both collected by A. Preisfeld in 

Western Australia. Some DNA samples were extracted years ago from cultured strains which 
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have been obtained from CCAP, i.e. Peranema trichophorum (CCAP 1260/1B), Ploeotia 

costata (CCAP 1265/1), Menoidium sp (CCAP 1247/6), or from SAG, i.e. Astasia curvata 

(SAG 1204-5b), Astasia torta (SAG 217.80), Rhabdomonas costata (SAG 1271-1), Eutreptia 

viridis (SAG 1226-1c). DNA isolates from Eutreptiella braarudii (CCMP 1594) and 

Eutreptiella pomquetensis (CCMP 1491) were provided by Nadja Dabbagh. A culture of 

Euglena gracilis was allocated to the author by Dr. Renate Radek (Institute of Biology, 

Freie Universität Berlin). 

 

3.4 Buffers and solutions 

DNA loading dye (6x) 1 µl per 5 µl purified PCR product 

DNA Stain Clear G 3 µl in 100 ml agarose gel (applied after 

boiling) 

DreamTaq Green buffer (10x) 

TAE buffer (1x) 20 ml/l TAE stock solution in diH2O 

X-gal 40 µg/ml solubilized in Dimethylformamide 

 

3.5 Stock solutions 

Ampicillin stock solution 100 mg/ml in ddH2O  

working concentration: 100 µg/ml 

TAE buffer stock solution (50x) 2 M Tris 

5.71 % (v/v) acetic acid 

50 mM EDTA 

pH 8.3 - 8.5 
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3.6 Oligonucleotides 

Oligonucleotides for the amplification of ribosomal DNA sequences were purchased from 

Eurofins Genomics, Ebersberg, Germany. Lyophilized oligonucleotides were solubilized in 

deionized sterile water (dsH2O) to stock solutions with a concentration of 100 µmol according 

to manufacturer‟s manual.  

 

Tab. 3.1: Oligonucleotides used as primers in PCR experiments sorted by gene, then alphabetically. Names, 

orientation (Or.; F = forward; R = reverse), length in nucleotides, sequences and references/sources are shown. 

Name Or. Length Sequence Reference / Source 

     
SSU     

AP 2 F 20 nt 5' – AAT CTG GTT GAT CCT GCC AG – 3' Preisfeld et al. (2000) 

AP 5 F 20 nt 5' – CAA CTG GAG GGC AAG TCT GG – 3' Busse & Preisfeld (2002) 

AP 6 R 21 nt 5' – GTT GAG TCA AAT TAA GCC GCA – 3' Busse & Preisfeld (2002) 

AP 8 R 25 nt 5' – TCA CCT ACA GCW ACC TTG TTA CGA C – 3' Busse & Preisfeld (2002) 

AP 10 R 20 nt 5' – CCA GAC TTG CCC TCC AGT TG – 3' Dr. Busse 

ITS 1 F 21 nt 5' – TGC GGC TTA ATT TGA CTC AAC – 3' Dr. Busse 

LSU     

AP 40 R 24 nt 5' – GTT GAT CCT GCC AGT AGT CAT ATG – 3' this work 

ITS 2 R 20 nt 5' – TCC TCC ACT GAG TGA TAT GC – 3' Dr. Busse 

LSU 2 R 25 nt 5' – TCA CGC TAC TTG TTC GCT ATC GGT C – 3' Dr. Busse 

LSU 4 R 21 nt 5' – ACT CCT TGG TCC GTG TTT CAA – 3' Dr. Busse 

LSU 6 R 18 nt 5' – AGT GAT ATG CTT AAG TCC – 3' Dr. Busse 

LSU 8 R 21 nt 5' – CTT GAT GAA ATG CTT TAA TCC – 3' Dr. Busse 

LSU 10 R 22 nt 5' – AGC TAT CCT GAG GGA AAC TTC G – 3' Dr. Busse 

LSU 11 F 19 nt 5' – ACC CGC TGA ACT TAA GCA T – 3' Dr. Busse 

LSU 12 R 21 nt 5' – GCT ACT CCA ACC AAG ATC TGC – 3' Dr. Busse 

LSU 13 F 19 nt 5' – ACG CCC TGG ATT AAA GCA T – 3' Dr. Busse 

LSU 14 R 21 nt 5' – GTC ATA GTT ACT CCC GCC GTT – 3' this work 

LSU 15 F 21 nt 5' – TTG AAA CAC GGA CCA AGG AGT – 3' Dr. Busse 

LSU 16 R 21 nt 5' – GTC TAA ACC CAG CTC ACG TTC – 3' this work 

LSU 17 F 21 nt 5' – GTC GTA ACA AGG TTG CTG TAG – 3' this work 

LSU 19 F 21 nt 5' – ATC GAA CCA CCT AGT AGC TGG – 3' this work 

LSU 21 F 22 nt 5' – GAA TGT GTA ACA ACT CAC CTG C – 3' this work 

LSU 23 F 19 nt 5' – TGA CTT CTG CCC AGT GCT C – 3' this work 

LSU 25 F 21 nt 5' – ATC CTT CGA TGT CGG CTC TTC – 3' this work 

LSU 27 F 19 nt 5' – TTA TGG CCG GTT CCT ACG G – 3' this work 
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3.7 Suppliers of reagents 

α-D(+)-Glucose monohydrate Carl Roth GmbH, Karlsruhe, Germany 

Acetic acid p.a. Carl Roth GmbH, Karlsruhe, Germany 

Agar-agar AppliChem GmbH, Darmstadt, Germany 

Ampicillin Carl Roth GmbH, Karlsruhe, Germany 

Dimethylformamide Carl Roth GmbH, Karlsruhe, Germany 

DNA Stain Clear G Serva GmbH, Heidelberg, Germany 

dNTPs Fisher Scientific GmbH, Schwerte, Germany 

DreamTaq Green buffer (10x) Fisher Scientific GmbH, Schwerte, Germany 

EDTA Carl Roth GmbH, Karlsruhe, Germany 

Ethanol Carl Roth GmbH, Karlsruhe, Germany 

Fluid nitrogen kindly provided by Soner Öner-Sieben and 

Tim Kreutzer from the Institute of Botany and 

by Andreas Siebert from the Dept. of NMR 

spectroscopy 

Glycerol Carl Roth GmbH, Karlsruhe, Germany 

LB Broth Becton Dickinson, Heidelberg, Germany 

peqGold Universal agarose PeqLab, Erlangen, Germany 

SOB Broth Carl Roth GmbH, Karlsruhe, Germany 

Tris Carl Roth GmbH, Karlsruhe, Germany 

Ultrapure™ agarose Life Technologies GmbH, Darmstadt, 

Germany 

X-gal Carl Roth GmbH, Karlsruhe, Germany 
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3.8 Suppliers of enzymes 

DreamTaq DNA polymerase (5 U/µl) Fisher Scientific GmbH, Schwerte, Germany 

T4 DNA ligase (1 U/µl) Life Technologies GmbH, Darmstadt, 

Germany 

 

3.9 Suppliers of kits 

DNeasy
®

 Plant Mini kit Qiagen GmbH, Hilden, Germany 

E.Z.N.A.™ Plasmid Miniprep II kit Omega Bio-Tek Inc., Norcross, USA 

innuPrep Double Pure kit Analytik Jena AG, Jena, Germany 

My-budget DNA Mini kit Bio-Budget Technologies GmbH, Krefeld, 

Germany 

OneStep RT-PCR kit Qiagen GmbH, Hilden, Germany 

RNeasy
®
 Plant Mini kit Qiagen GmbH, Hilden, Germany 

TA Cloning™ kit (with pCR
®
2.1 vector) Life Technologies GmbH, Darmstadt, 

Germany 

TOPO Cloning™ kit (with pCR
®
2.1 vector) Life Technologies GmbH, Darmstadt, 

Germany 

 

3.10 Suppliers of standards 

GeneRuler™ DNA Ladder Mix Fisher Scientific GmbH, Schwerte, Germany  

GeneRuler™ Low Range DNA Ladder Fisher Scientific GmbH, Schwerte, Germany 
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3.11 Suppliers of consumables 

Biosphere
®
 filter tips Sarstedt GmbH, Nürnbrecht, Germany 

Microscope slides and cover slips Carl Roth GmbH, Karlsruhe, Germany 

Parafilm
®
 M Sigma-Aldrich Chemie GmbH, Steinheim, 

Germany 

Pipette tips Sarstedt GmbH, Nürnbrecht, Germany 

Reaction tubes (0.2 – 2 ml) Sarstedt GmbH, Nürnbrecht, Germany 

Other consumables not listed here have been purchased from Carl Roth GmbH, Karlsruhe, 

Germany and from Sarstedt GmbH, Nürnbrecht, Germany. 

 

3.12 Suppliers of laboratory equipment 

Autoclav Systec VX-120 Systec GmbH, Wettenberg, Germany 

Centrifuge 5424 (rotor F45-24-11) Eppendorf AG, Hamburg, Germany 

Centrifuge 5804 (swing-bucket-rotor A-4-44) Eppendorf AG, Hamburg, Germany 

Electrophoresis power supply EV 231 Consort n.v., Turnhout, Belgium 

Electrophoresis apparatus Consort n.v., Turnhout, Belgium 

Freezer HERA Ultra-low temperature Fisher Scientific GmbH, Schwerte, Germany 

Gel documentation UV-System Intas Science Imaging Instruments, Göttingen, 

Germany 

Magnetic stirrer MR Hei-Standard Heidolph Instruments GmbH, Schwabach, 

Germany  

Microliter pipettes VWR International GmbH, Langenfeld, 

Germany 

Microliter tray cell Label Guard™ Implen GmbH, München, Germany 
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Microscope BA300 Motic GmbH, Wetzlar, Germany 

Microscope Fluorescence Lifetime Imaging Keyence GmbH, Neu-Isenburg, Germany 

Mini centrifuge MCF-2360 Laboratory & Medical Supplies Inc., Tokyo, 

Japan 

PCR Mastercycler
®
 gradient Eppendorf AG, Hamburg, Germany 

PCR Mastercycler
®
 personal Eppendorf AG, Hamburg, Germany 

pH meter HI 223 Hanna Instruments GmbH, Kehl, Germany 

Photometer GeneSys 10 uv Fisher Scientific GmbH, Schwerte, Germany 

Rotator SB3 VWR International GmbH, Langenfeld, 

Germany 

Thermoblock TB2 Analytik Jena AG, Jena, Germany 

Thermomixer TS1 Analytik Jena AG, Jena, Germany 

Vortexer VV3 VWR International GmbH, Langenfeld, 

Germany 

 

3.13 Databases and online tools 

Nucleotide database (National Center for Biotechnology Information, USA): 

http://www.ncbi.nlm.nih.gov/nucleotide/ 

Nucleotide BLAST
®
 – Basic Local Alignment Search Tool (National Center for 

Biotechnology Information, USA): 

http://www.blast.ncbi.nlm.nih.gov/ 

SILVA ribosomal RNA database (Max Planck Institute for Marine Microbiology, Germany):  

http://www.arb-silva.de/ 

Ribosomal RNA secondary structure database (Center for Ribosomal Origins and Evolution, 

USA):  
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http://www.apollo.chemistry.gatech.edu/ribosomegallery/index.html 

Group I intron sequence and structure database (Wuhan University, China):  

http://www.rna.whu.edu.cn/gissd/ 

PubMed database (National Library of Medicine and National Institutes of Health, USA): 

http://www.ncbi.nlm.nih.gov/pubmed/ 

 

3.14 Computer software 

GeneDoc Multiple Sequence Alignment Editor and 

Shading Utility, Version 2.7.000 by 

K.B. Nicholas and H.B. Nicholas 

formerly http://www.psc.edu/biomed/genedoc 

[link outdated or moved elsewhere, author‟s comment] 

Geneious 7 Version 7.1.4 purchased from Biomatters Inc., 

New Zealand 

http://www.geneious.com 

MEGA 5 Molecular Evolution Genetics Analysis, 

Version 5.2.2 by K. Tamura, D. Peterson, 

N. Peterson, G. Stecher, M. Nei and S. Kumar 

http://www.megasoftware.net 

SAMS Splits Analysis Methods, Version 1.4.3 beta by 

C. Mayer, S. Meid and W. Wägele 

https://www.zfmk.de/en/research/research-

centres-and-groups/sams 

SplitsTree 4 Version 4.13.1 by D. Huson and D. Bryant 

with contributions from M. Franz, M. Jette, 

T. Kloepper and M. Schröder 

http://www.splitstree.org 
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4 Methods 

 

4.1 Isolation of DNA and RNA 

Prior to preparation of DNA or RNA, a 2 ml aliquot of a culture of flagellates was centrifuged 

(1 min at 14,000 rpm) and the supernatant removed carefully. 

 

4.1.1 Isolation of total DNA 

Total DNA was isolated from cultures of flagellates applying different methods: 

(1) Pelleted cells were quick-frozen in liquid nitrogen, broken up mechanically with a 

sterilized pestle, and then total DNA was isolated using the DNeasy
®

 Plant Mini kit 

(Qiagen) according to manufacturer‟s protocol.  

(2) Pelleted cells were broken up chemically with Proteinase K, thus following standard 

procedure for preparation of DNA from a cell culture using the My-budget DNA Mini 

kit (Bio-Budget). 

As a modification of both methods, elution buffers were pre-warmed to 65 °C and elution of 

total DNA utilized in two centrifugation steps, a first eluate was recovered using 50 µl of 

elution buffer, and then a separate eluate with 100 µl of elution buffer using the same column. 

Eluted DNA was quantified by agarose gel electrophoresis, then used as template for standard 

PCR experiments and/or stored at -20 °C. 

 

4.1.2 Isolation of plasmid DNA 

Preparation of plasmid DNA from pelleted flagellate cells was done with the E.Z.N.A.™ 

Plasmid Miniprep II kit corresponding to operation manual with slightly modified elution 

steps. The elution buffer was pre-warmed to 65 °C and elution was carried out in two steps 

with the same column to maximize DNA yields. Eluted plasmid DNA was quantified by 

agarose gel electrophoresis, then used as template for standard PCR experiments and/or stored 

at -20 °C. 



4 Methods 25 

4.1.3 Isolation of total RNA 

For the isolation of total RNA from flagellate cells the RNeasy
®

 Plant Mini kit (Qiagen) was 

used accordant to manufacturer‟s reference. Quantity of eluted RNA was measured by 

agarose gel electrophoresis, then directly inserted as template in RT-PCR experiments and/or 

stored at -20 °C. 

 

4.2 Polymerase chain reactions (PCRs) 

For successful cloning (4.5) and sequencing (4.8) methods, polymerase chain reaction-(PCR-) 

amplified ribosomal DNA fragments should not exceed a size of ~1,500 bp, therefore primer 

pairs were designed and chosen accordingly (Fig. 4.1).  

 

 

 

 

 

 

Prior to the amplification of ribosomal RNA gene fragments by standard PCR, gradient PCRs 

with the same components were performed in a gradient thermocycler (Eppendorf) to test for 

optimal annealing temperatures of specific primer pairs.  

 

Fig. 4.1: Primers used in this work and their corresponding positions within the linearized ribosomal 

RNA gene of Euglena gracilis (after Greenwood et al. 2001). Forward primers shown above, reverse 

primers below gene, both marked by black arrowheads; gene regions, e.g. ITS1 and 5.8 S regions are 

shown in grey. A: Small subunit rDNA specific primers. B: Large subunit rDNA specific primers. 

Structural regions of the LSU rRNA gene are depicted in grey, i.e. LSU rDNA species 1 to 14 sensu 

Schnare et al. (1990).  
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4.2.1 Standard PCR 

Standard PCR experiments for the amplification of ribosomal DNA fragments were executed 

in a thermocycler (Eppendorf) using DreamTaq Green buffer (Fisher Scientific), which 

contains a colorant component that made application of a loading dye in agarose gel 

electrophoresis obsolete. Annealing temperatures and duration of denaturation, annealing and 

elongation cycle steps varied depending on choice of primer pairs (Tab. 4.1). 

Tab. 4.1: Standard PCR components and cycler conditions 
        

 

      

  Component Amount 
 

Cycler conditions     

  DreamTaq Green buffer 10 x 2.5 µl 
 

Phase        T t 
 

 dNTPs 1.0 µl 
 

initial denaturation 94 °C 3 min 
 

 DreamTaq DNA polymerase 0.5 µl 
 

denaturation 94 °C 30-60 sec     

Primer forward 2.0 µl 
 

annealing 51-55 °C 30-90 sec 
 

30 x 

Primer reverse 2.0 µl 
 

elongation 72 °C 1-3 min     

template DNA 1 – 3 µl 
 

final elongation 72 °C 10 min 
 

 sterile deionized water ad 25 µl 

 

storage 4 °C ∞ 
 

  

 

4.2.2 Colony PCR 

Colony PCRs were used to test presence and size of insert in the vector of transformants in a 

bacterial clone culture. In colony PCR experiments, 1 µl of E. coli cell suspension was used 

directly as template for each PCR reaction. The M13-forward and -reverse regions, which 

flanked the insertion site within the pCR
®

2.1 vector, were used as primer locations for 

amplification of the inserted fragment (Tab. 4.2).  

Tab. 4.2: Colony PCR components and cycler conditions 
        

 

      

  Component Amount 
 

Cycler conditions     

  DreamTaq Green buffer 10 x 2.5 µl 
 

Phase   T t 
 

 dNTPs 1.0 µl 
 

initial denaturation 95 °C 3 min 
 

 DreamTaq DNA polymerase 0.5 µl 
 

denaturation 94 °C 30 sec     

Primer M13 forward 1.0 µl 
 

annealing 52 °C 30 sec 
 

25 x 

Primer M13 reverse 1.0 µl 
 

elongation 72 °C 1 min     

template DNA 1.0 µl 
 

final elongation 72 °C 10 min 
 

 sterile deionized water ad 20 µl 

 

storage 4 °C ∞ 
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4.2.3 Reverse-Transcription-PCR 

In Reverse-Transcription-PCR experiments (RT-PCR), RNA was reversely transcribed into 

cDNA and a primer-specific region of the ribosomal RNA was amplified with the OneStep 

RT-PCR kit (Qiagen) executing the manufacturer‟s protocol carefully. Pipetting was 

performed with sterile RNase-free Biosphere
®
 filter tips. RT-PCR products were examined in 

agarose gel electrophoresis and stored at -20 °C. 

 

4.3 Agarose gel electrophoresis 

Agarose gel electrophoresis is a standard method for the separation of negatively charged 

DNA fragments through an agarose gel matrix within an electric field. Migration speed 

depends on voltage of the electric field, agarose concentration and conformation of DNA. In a 

given concentration, longer DNA molecules move slower through the matrix than smaller 

ones, and higher agarose concentrations are preferred for separation of smaller DNA 

molecules. All experiments were performed in a horizontally arranged gel electrophoresis 

apparatus with 1x TAE buffer and a constant voltage of 100 V. Depending on expected 

fragment proportions, standards were used to determine DNA fragment size (3.10). Stain 

Clear G (3.4) was added to boiled agarose as a dyeing component for the visualization of 

DNA gel bands in UV light after electrophoresis. 

For analyses of standard PCR, colony PCR and RT-PCR products, gel electrophoresis was 

performed using 1.5 % agarose (w/v) in TAE buffer with Stain Clear G, without loading dye 

(see 4.2.1), and 5 µl of each sample were applied directly to the gel. When standard PCR 

amplified multiple products of different size in a sample, 2 % Ultrapure™ agarose (w/v) was 

used for a preparative gel, and then desired bands were carefully extracted after gel 

electrophoresis. For quantification of purified PCR products, 5 µl of each sample were mixed 

with 1 µl of (6x) loading dye (3.4) and then applied to the gel. Each gel run was documented 

photographically. 

 

4.4 Purification of PCR products 

Prior to ligation, standard PCR products were purified using the InnuPrep Double Pure kit 

(Analytik Jena) according to manufacturer‟s protocol to remove primers, dNTPs and other 
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possible contaminants. PCR products from preparative gels were purified following the “Mini 

elute” protocol. Purified samples were used for cloning or stored at -20 °C. 

 

4.5 Cloning 

Ligation of purified PCR products and pCR
®

2.1 vector was done with the TA Cloning™ kit 

(Invitrogen) following manufacturer‟s protocol. Purified samples, vector, buffer and T4 DNA 

ligase were mixed in diH2O and reaction tubes were stored overnight at 14 °C. 

Ligated vector samples were transferred into chemically competent E. coli cells (DH5α, see 

3.1.3) according to One Shot™ chemical transformation manual of the TA Cloning™ kit. 

After heat shock treatment, bacterial cells were regenerated in 500 µl SOC medium for 1 h. 

Transformants were plated on LB agar dishes containing Ampicillin and X-gal for blue-white 

screening and incubated at 37 °C for 10 to 12 hours. 

White transformants were picked from agar plates and cultivated in reaction vials containing 

4 ml LB medium with Ampicillin and stored in an incubator at 37 °C for 10 to 12 hours. After 

incubation, the reaction vials were stored in a refrigerator to stop bacterial growth. 1.5 ml of 

each transformant culture were mixed carefully with sterile glycerol in a screw cap ampoule 

and stored in a clone library at -80 °C. The clone library was documented according to the 

Gentechnikgesetz § 6 (GenTG).  

Unsuccessful cloning procedures were repeated once, in case of a second failure, cloning was 

performed with the TOPO Cloning™ kit (Invitrogen) according to manufacturer‟s protocol 

using TOP10™ E. coli cells of higher chemical competence. Products and ingredients from 

unsuccessful cloning experiment were discarded at last. 

 

4.6 Preparation of vector DNA 

Prior to isolation of vector DNA from transformant E. coli cells, a 2 ml aliquot of a bacterial 

transformant culture was centrifuged (14,000 rpm, 1 min) and the supernatant discarded. Then 

vector DNA was isolated using the E.Z.N.A.™ Plasmid Miniprep II kit (Omega) according to 

manufacturer‟s manual, elution was executed in two steps, each with 50 µl elution buffer, 



4 Methods 29 

which was pre-warmed to 65 °C. Extracted vector DNA was quantified photometrically (4.7) 

and then stored at -20 °C. 

 

4.7 Quantification of vector DNA 

Isolated vector DNA was quantified using a photometer with a Label Guard™ tray cell 

(Implen). The blank value was calibrated with 3 µl of pure elution buffer from the E.Z.N.A.™ 

Plasmid Miniprep II kit, then each DNA sample was measured three times. The arithmetic 

mean of measured values was taken for calculation of DNA quantity in ng/µl per sample. 

According to the sample submission guide of Eurofins Genomics, successful sequencing 

required a final DNA concentration of 50-100 ng/µl, therefore higher concentrations of vector 

DNA were diluted correspondingly. 

 

4.8 Sequencing 

Isolated vector DNA samples containing inserts were sequenced by Eurofins Genomics 

(Ebersberg, Germany), each sample twice, with standard M13 primers (forward and reverse) 

respectively.  

 

4.9 Assembly of ribosomal DNA sequences 

Obtained nucleotide sequence data was quality checked with sequencing reports, then 5‟- and 

3‟-end M13 primer sequences and vector nucleotides were discarded. Insert nucleotide 

sequences were identified as ribosomal DNA via BLAST search (Altschul et al. 1990). When 

the search result was positive, forward and reverse nucleotide sequences of each sample were 

manually assembled to larger rDNA fragments using the software MEGA5 (version 5.2.2, 

Tamura et al. 2011). Assembly of larger overlapping sequence fragments followed the same 

manner, until nearly complete and/or complete rDNA sequences were obtained. In case of a 

negative BLAST search result, PCR experiments were performed again using an alternative 

primer pair (see Fig. 4.1). 
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4.10 Alignments of sequence data 

4.10.1 SSU rDNA sequences 

A preliminary mask file was created using the multiple sequence alignment editor software 

GeneDoc (version 2.7, Nicholas et al. 1997) combining SSU rDNA secondary structure 

information of Euglena gracilis (Schnare and Gray 1990) and osmotrophic euglenids (Busse 

and Preisfeld 2002b), for these comprise the largest SSU rDNA sequences known to date, 

with a slightly modified helix numbering after Wuyts et al. (2001). Then SSU rDNA 

sequences with at least 1,500 bp length available from GenBank representing the Discoba 

were chosen carefully to build a consequently equilibrated dataset, containing Euglenozoa, i.e. 

diplonemids, kinetoplastids, symbiontids (eight taxa each), and euglenid groups of different 

modes of nutrition, i.e. phototrophic and primary osmotrophic euglenids (eight taxa each), 

Rapaza viridis plus all phagotrophic euglenids available (sixteen taxa in the year 2013), as 

well as Heterolobosea (eight taxa), Tsukubamonas globosa, Jakobida (seven taxa) and twelve 

excavate taxa representing Malawimonas, Fornicata and Preaxostyla as outgroup. Missing 

nucleotides which could be assigned to homologous positions due to outgroup/ingroup 

comparison were replaced by „N‟, other non-homologous (gapped) positions were omitted 

from the alignment and a preliminary, equilibrated dataset was generated (dataset 0 in 

Tab. 4.5).  

A final mask file was shaped using GeneDoc consistent with recently published SSU rRNA 

secondary structure information of Saccharomyces cerevisiae (Petrov et al. 2014) as a 

blueprint for the identification of homologous positions and as a backbone for the alignment 

of nucleotide sequences. Therefore, data from the preliminary alignment was modified to fit 

revised secondary structure domains including helix numbering, and obtained SSU rDNA 

sequences from Peranema sp. and Ploeotia edaphica were added to the final mask file. Then 

most available discoban and several eukaryote SSU rDNA sequences with a length of at least 

1,500 bp were downloaded from GenBank using Geneious software (version 7.1.4, 

Biomatters Inc.) to produce a SSU rDNA sequence database comprising over 300 nucleotide 

sequences (Tab. 3.3). These sequences were aligned to the secondary structure mask file by 

hand with GeneDoc for the identification of helices and homologous nucleotide positions. 

Based on this mask file, several SSU rDNA datasets of different taxon samplings were 

generated for phylogenetic analyses (see 4.11, Tab. 4.5).  
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Tab. 4.3: Sampling of euglenozoan and outgroup taxa used for the SSU rDNA alignment and related 

accession numbers, sorted into higher groups, then alphabetically. This work = accession pending. 

No. Name/Taxon Accession 
 

No. Name/Taxon Accession 

 
   EUGLENIDA (including symbiontids) 

 
62 Menoidium gibbum AF247599 

1 Anisonema acinus AF403160 
 

63 Menoidium intermedium AF295022 

2 Anisonema acinus KC990937 
 

64 Menoidium obtusum AF403155 

3 Anisonema sp. KC990936 
 

65 Menoidium pellucidum AF403156 

4 Anisonema sp. KC990935 
 

66 Menoidium sp. AY083243 

5 Anisonema/Dinema sp. KC990932 
 

67 Monomorphina aenigmatica AF190814 

6 Anisonema ("Peranema") sp. AY048919 
 

68 Monomorphina megalopsis JN603844 

7 Astasia curvata AJ532394 
 

69 Monomorphina pyrum JN603861 

8 Astasia curvata AY004245 
 

70 Neometanema cf. exaratum KC990931 

9 Astasia curvata AF403153 
 

71 Neometanema parovale KJ690254 

10 Astasia curvata AF403154 
 

72 Notosolenus ostium AF403159 

11 Astasia sp. AF283307 
 

73 Notosolenus ostium KC990930 

12 Astasia torta AF403152 
 

74 Notosolenus urceolatus KJ778682 

13 Bihospites bacati HM004354 
 

75 Parmidium circulare AF295018 

14 Bihospites bacati HM004353 
 

76 Parmidium scutulum AF309633 

15 Calkinsia aureus EU753419 
 

77 Peranema sp. this work 

16 Colacium mucronatum AF326232 
 

78 Peranema trichophorum AF386636 

17 Colacium sp. FJ719601 
 

79 Peranema trichophorum AH005452 

18 Colacium vesiculosum AF081592 
 

80 Petalomonas cantuscygni AF386635 

19 Cryptoglena pigra JQ356764 
 

81 Petalomonas cantuscygni U84731 

20 Cryptoglena skujae JQ356774 
 

82 Petalomonas sphagnophila GU477295 

21 Cryptoglena sp. JQ356779 
 

83 Petalomonas sphagnophila GU477296 

22 Cyclidiopsis acus JQ681752 
 

84 Petalomonas sphagnophila GU477297 

23 Dinema platysomum KC990934 
 

85 Phacus oscillans AF181968 

24 Dinema sulcatum AY061998 
 

86 Phacus pusillus AF190815 

25 Discoplastis sp. FJ719606 
 

87 Ploeotia cf. vitrea KC990933 

26 Discoplastis spathirhyncha AJ532454 
 

88 Ploeotia costata AF525486 

27 Distigma curvatum AF099081 
 

89 Ploeotia costata KF586332 

28 Distigma gracile AY061997 
 

90 Ploeotia costata KF586333 

29 Distigma gracilis AF386637 
 

91 Ploeotia edaphica this work 

30 Distigma pringsheimii AF386639 
 

92 Rapaza viridis AB679269 

31 Distigma proteus AF106036 
 

93 Rhabdomonas costata AF295021 

32 Distigma sennii AF386644 
 

94 Rhabdomonas incurva AF247601 

33 Entosiphon sp. AY425008 

 

95 Rhabdomonas intermedia AF295020 

34 Entosiphon sulcatum AF220826 

 

96 Rhabdomonas spiralis AF247600 

35 Entosiphon sulcatum AY061999 

 

97 Strombomonas acuminata FJ719639 

36 Euglena cf. Mutabilis AY082988 

 

98 Strombomonas verrucosa AF445461 

37 Euglena gracilis M12677 

 

99 Trachelomonas grandis this work 

38 Euglena gracilis var. bacillaris AY029409 

 

100 Trachelomonas hispida AF445462 

39 Euglena longa AF112871 

 

101 Trachelomonas volvocinopsis AY015004 

40 Euglena sp. AF112873 

 

102 uncultured clone Blacksea cl 50 HM749952 

41 Euglena stellata AF150936 

 

103 uncultured clone Blacksea cl 51 HM749953 

42 Euglena tripteris AF445459 

 

104 uncultured clone Blacksea cl 52 HM749954 

43 Eutreptia pertyi AF081589 

 

105 uncultured clone CH1 S1 57 AY821956 

44 Eutreptia sp. AJ532396 

 

106 uncultured clone CH1 S2 16 AY821957 

45 Eutreptia viridis AF157312 

 

107 uncultured clone CH1 S2 19 AY821958 

46 Eutreptia viridis AJ532395 

 

108 uncultured clone D2P04B10 EF100248 

47 Eutreptiella braarudii AJ532397 

 

109 uncultured clone D3P06F06 EF100316 

48 Eutreptiella eupharyngea AJ532399 

 

110 uncultured clone FV23 1E10 DQ310358 

49 Eutreptiella gymnastica FJ719618 

 

111 uncultured clone FV23 2D3C4 DQ310255 

50 Eutreptiella pomquetensis AJ532398 

 

112 uncultured clone FV36 2E04 DQ310359 

51 Eutreptiella sp. AF112875 

 

113 uncultured clone M4 18D10 DQ103806 

52 Eutreptiella sp. JQ337867 

 

114 uncultured clone M4 18E09 DQ103807 

53 Gyropaigne lefèvrei AF110418 

 

115 uncultured clone M4 18H08 DQ103809 

54 Heteronema scaphurum JN566139 

 

116 uncultured clone NA1 1G12 EF526883 

55 Hyalophacus ocellata AF445458 

 

117 uncultured clone NA1 3E11 EF526849 

56 Keelungia pulex HM044218 

 

118 uncultured clone NA1 4B5 EF526782 

57 Khawkinea quartana U84732 

 

119 uncultured clone NA1 4H11 EF526793 

58 Lepocinclis oxyuris HQ287920 

 

120 uncultured clone NA2 3B2 EF526848 

59 Lepocinclis spirogyroides FJ719619 

 

121 uncultured clone NA2 3D8 EF526846 

60 Menoidium bibacillatum AF247598 

 

122 uncultured clone NA2 3E9 EF526847 

61 Menoidium cultellus AF295019 

 

123 uncultured clone PR3 3E 63 GQ330643 
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Tab. 4.3: continued. 

No. Name/Taxon Accession 

 
No. Name/Taxon Accession 

124 uncultured clone SA2 3B11 EF526950 

 
185 Perkinsela-like sp. AK-2011 JN202437 

 
   DIPLONEMIDA 

 
 

186 Perkinsiella-like sp. AFSM3 AY163355 
125 Diplonema ambulator AY425009 

 

187 Perkinsiella-like sp. PLO-DE4A HQ132931 
126 Diplonema ambulator AF380996 

 

188 Phanerobia pelophila AY425020 
127 Diplonema ambulator this work 

 

189 Procryptobia sorokini AY425018 
128 Diplonema papillatum AF119811 

 

190 Rhynchomonas nasuta DQ465526 
129 Diplonema sp. AF119812 

 

191 Sergeia podlipaevi DQ394362 
130 Diplonema sp. AY425010 

 

192 Strigomonas culicis ATMH010127

68 
131 Diplonema sp. AY425011 

 

193 Strigomonas galati HM593010 
132 Diplonema sp. AY425012 

 

194 Trypanosoma brucei M12676 
133 Rhynchopus euleeides this work 

 

195 Trypanosoma rangeli  KJ742907 
134 Rhynchopus sp. AY425014 

 

196 uncultured clone AND31 AY965872 
135 Rhynchopus sp. AY490209 

 

197 uncultured clone AT1-3 AF530519 
136 Rhynchopus sp. AY490210 

 

198 uncultured clone AT4-103 AF530522 
137 Rhynchopus sp. AY490211 

 

199 uncultured clone AT4-56 AF530520 

138 uncultured clone CCW85 AY180037 

 

200 uncultured clone AT5-25 AF530518 
139 uncultured clone DH148-EKB1 AF290080 

 

201 uncultured clone AT5-48 AF530517 
140 uncultured clone LC22 5EP 17 DQ504321 

 

202 uncultured clone AT5-9 AF530516 
141 uncultured clone LC22 5EP 18 DQ504322 

 

203 uncultured clone Discovery 

IFRB 

JN542579 
142 uncultured clone LC22 5EP 19 DQ504323 

 

204 uncultured clone FV18-8TS AY963571 
143 uncultured clone LC22 5EP 32 DQ504349 

 

205 uncultured clone Kryos IF A3 JN542577 
144 uncultured clone LC23 5EP 5 DQ504350 

 

206 uncultured clone L7.7 AY753946 
145 uncultured clone Ma121 D1 12 EU635674 

 

207 uncultured clone LC103 5EP 19 DQ504351 
146 uncultured clone Ma131 1A46 FJ032684 

 

208 uncultured clone Urania B B5 JN542569 
147 uncultured clone PRTBE7274 HM799985 

 

209 uncultured clone ZJ2007 JQ928406 
148 uncultured clone PRTBE7330 HM800011 

 

210 Wallaceina sp. JN582045 
149 uncultured clone PRTBE7353 HM799846 

 
 

   OUTGROUP (DISCOBA) 
 

150 uncultured clone PRTBE7392 HM799859 

 

211 Acrasis helenhemmesae GU437219 
151 uncultured clone PRTBE7426 HM800050 

 

212 Acrasis rosea HM114342 
152 uncultured clone PRTBE7438 HM800057 

 

213 Allovahlkampfia spelaea EU696948 
153 uncultured clone PRTBE7445 HM800063 

 

214 Andalucia godoyi AY965865 
154 uncultured clone PRTBE7455 HM799887 

 

215 Andalucia godoyi AY965870 
155 uncultured clone PRTBE7509 HM799914 

 

216 Andalucia incarcerata AY117419 
156 uncultured clone PRTBE7517 HM800094 

 

217 Andalucia incarcerata EU334887 
157 uncultured clone PRTBE7533 HM799925 

 

218 Euplaesiobystra hypersalinica FJ222604 
158 uncultured clone RM2-SGM31 AB505539 

 

219 Harpagon descissus JN606337 
159 uncultured clone RM2-SGM32 AB505540 

 

220 Harpagon schusteri JN606339 
160 uncultured clone SCM15C6 AY665087 

 

221 Heteramoeba clara AF439350 

 
   KINETOPLASTIDA 

 
 

222 Heterolobosea sp. HQ898857 
161 Angomonas deanei HM593011 

 

223 Heterolobosea sp. JX509941 
162 Bodo edax AY028451 

 

224 Heterolobosea sp. JX441981 
163 Bodo rostratus AY425017 

 

225 Heterolobosea sp. JX509942 
164 Bodo saltans AF208889 

 

226 Heterolobosea sp. FN668558 
165 Crithidia dedva JN624299 

 

227 Heterolobosea sp. HQ898858 
166 Crithidia fasciculata Y00055 

 

228 Jakoba libera AF411288 
167 Cruzella marina AF208878 

 

229 Jakoba libera AY117418 
168 Cryptobia bullockii AF080224 

 

230 Macropharyngomonas halophila AF011465 

169 Cryptobia helicis AF208880 

 

231 Monopylocystis visvesvarai AF011463 
170 Cryptobia salmositica AF080225 

 

232 Naegleria clarki DQ768725 
171 Dimastigella mimosa DQ207576 

 

233 Naegleria gruberi NC_01018

9 172 Dimastigella trypaniformis AY028447 

 

234 Neovahlkampfia damariscottae AJ224891 
173 Endotrypanum sp. EU021240 

 

235 Paravahlkampfia sp. FJ169185 
174 Herpetomonas nabiculae JN624300 

 

236 Percolomonas cosmopolitus AF519443 
175 Herpetomonas sp. JQ359724 

 

237 Pharyngomonas sp. JX509943 
176 Ichthyobodo necator AY028448 

 

238 Plaesiobystra hypersalinica AF011459 
177 Ichthyobodo necator KC208028 

 

239 Pleurostomum flabellatum DQ979962 
178 Leishmania major FR796423 

 

240 Psalteriomonas lanterna X94430 
179 Leptomonas collosoma JN582046 

 

241 Psalteriomonas magna JN606351 
180 Leptomonas mirabilis JQ359729 

 

242 Pseudoharpagon pertyi JN606356 
181 Neobodo designis AY753616 

 

243 Reclinomonas americana AF053089 
182 Neobodo saliens DQ207589 

 

244 Reclinomonas americana AY117417 
183 Parabodo caudatus JF754435 

 

245 Sawyeria marylandensis AF439351 
184 Parabodo nitrophilus AF208886 

 

246 Seculamonas ecuadoriensis DQ190541 
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Tab. 4.3: continued. 

No. Name/Taxon Accession 
 

No. Name/Taxon Accession 
247 Selenaion koniopes JX025226 

 
296 Cyrtohymena shii JQ513386 

248 Stachyamoeba sp. AF011461 

 

297 Dictyostelium discoideum X00134 
249 Stephanopogon minuta AB365646 

 

298 Dinenympha exilis AB092924 
250 Stygamoeba regulata JF694285 

 

299 Dysnectes brevis AB263123 
251 Tetramitus thermacidophilus AJ621575 

 

300 Eimeria tenella AF026388 
252 Tetramitus thorntoni X93085 

 

301 Entamoeba histolytica AB426549 
253 Tsukubamonas globosa AB576851 

 

302 Ergobibamus cyprinoides GU827592 
254 Tulamoeba peronaphora FJ222603 

 

303 Galdieria sulphuraria KB454502 
255 uncultured clone Blacksea cl 54 HM749956 

 

304 Glomus mosseae NG_01717

8 256 uncultured clone Blacksea cl 55 HM749957 

 

305 Goniomonas avonlea JQ434475 
257 uncultured clone cLA12C05 EU446381 

 

306 Goniomonas sp. AY360454 
258 uncultured clone CN207St155 HM581638 

 

307 Guillardia theta X57162 
259 uncultured clone CN207St70 HM581633 

 

308 Gymnodinium sanguineum U41085 
260 uncultured clone 

EN351CTD039 

EU368037 

 

309 Heterosigma akashiwo DQ191681 
261 uncultured clone FV23 CilE10 DQ310279 

 

310 Hicanonectes teleskopos FJ628363 
262 uncultured clone M2 18G04 DQ103829 

 

311 Kipferlia bialata GU827604 
263 uncultured clone MA1 2H5L EF527199 

 

312 Levinella prolifera AM180956 
264 uncultured clone NKS105 JX296584 

 

313 Malawimonas jakobiformis AY117420 
265 uncultured clone NKS177 JX296588 

 

314 Malawimonas jakobiformis EF455761 
266 uncultured clone NKS188 JX296589 

 

315 Marchantia polymorpha X75521 
267 uncultured clone NKS82 JX296587 

 

316 Micractinium reisseri AB506070 
268 uncultured clone NKS96 JX296586 

 

317 Monosiga brevicollis AF100940 
269 uncultured clone NKS97 JX296585 

 

318 Monosiga ovata AF271999 
270 uncultured clone SA1 1D05 EF526978 

 

319 Nannochloropsis gaditana KF040086 
271 uncultured clone WIM43 AM114803 

 

320 Nephroselmis olivacea FN562436 
272 Vrihiamoeba italica AB513360 

 

321 Oxymonas sp. AB326383 

 
   OUTGROUP (DISTANT) 

 
 

322 Palmaria palmata X53500 
273 Acanthamoeba castellanii U07401 

 

323 Palpitomonas bilix AB508339 
274 Amoeba leningradensis AJ314605 

 

324 Paramecium tetraurelia X03772 
275 Amoeba proteus AJ314604 

 

325 Paramicrosporidium vannellae JQ796368 
276 Ancyromonas sigmoides AF174363 

 

326 Pessonella sp. EU273458 
277 Apusomonas sp. AY752987 

 

327 Physarum polycephalum X13160 
278 Besnoitia besnoiti AY833646 

 

328 Picomonas judraskeda JX988758 
279 Bigelowiella natans DQ158857 

 

329 Planomonas micra EF455780 
280 Blastocystis sp. KF447163 

 

330 Plasmodium falciparum AL844501 
281 Breviata anathema AF153206 

 

331 Plasmodium ovale KF018657 
282 Byssochlamys spectabilis AB023946 

 

332 Prorocentrum rhathymum HF565181 
283 Capsaspora owczarzaki AF436886 

 

333 Proteromonas lacertae U37108 
284 Carpediemonas membranifera AY117416 

 

334 Pterocystis tropica AY749603 
285 Carpediemonas-like sp. AF439347 

 

335 Pyramimonas tetrarhynchus FN562441 
286 Cercozoa sp. FJ824128 

 

336 Pyrsonympha grandis AB092942 
287 Chaos nobile AJ314606 

 

337 Salpingoeca infusionum AF100941 
288 Chilomonas paramecium L28811 

 

338 Sarcocystis alceslatrans KF831276 
289 Chlamydomonas pulsatilla DQ009748 

 

339 Tetraselmis cordiformis HE610130 
290 Chlorarachnion reptans U03275 

 

340 Theileria annulata KF429793 
291 Chrysowaernella hieroglyphica HQ710556 

 

341 Trichoplax sp. AY652578 
292 Chytriomyces hyalinus DQ536487 

 

342 Trimastix pyriformis AF244904 
293 Ciliophrys infusionum AB846665 

 

343 uncultured clone BBSR 323 U52356 
294 Cryptomonas paramecium NC_015331 

 

344 uncultured clone DH141 3A30N FJ032651 
295 Cyanidioschyzon merolae AB158483 

 

345 uncultured clone DH22 2A36 FJ032657 

 

 

4.10.2 LSU rDNA sequences 

Obtained partial and complete LSU rDNA sequences were integrated into a new mask file, 

which was built manually using GeneDoc based on recently published LSU rRNA secondary 

structure data of Saccharomyces cerevisiae, adopting domains and helix numbering from 
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Petrov et al. (2013). LSU rDNA sequences from some phototrophic euglenids and all 

available diplonemids and kinetoplastids were added to the alignment (Tab. 4.4). Hence no 

LSU rDNA sequences from jakobid or other excavates were available (in 2014), only one 

heterolobosean and many other sequences from various higher protozoan groups (and two 

metazoan taxa) were used as outgroups for alignment and formation of LSU rDNA datasets. 

 

Tab. 4.4: Sampling of euglenozoan and outgroup taxa used for LSU rDNA sequence alignment and 

corresponding accession numbers sorted by higher groups, then alphabetically. This work = accession pending. 

No. Name/Taxon Accession 

 
No. Name/Taxon Accession 

    EUGLENIDA 
 

 

39 Besnoitia besnoiti AY833646 

1 Astasia curvata this work 
 

40 Bigelowiella natans DQ158857 

2 Astasia torta this work 
 

41 Breviata anathema GU001164 

3 Colacium mucronatum EF999906 
 

42 Capsaspora owczarzaki AY724688 

4 Cryptoglena skujae this work 
 

43 Cercozoa sp. GQ144690 

5 Cyclidiopsis acus this work 
 

44 Chytriomyces hyalinus DQ536499 

6 Entosiphon sulcatum this work 
 

45 Ciliophrys infusionum AB846664 

7 Euglena gracilis X53361 
 

46 Codosiga gracilis EU011935 

8 Euglena longa AY130223 
 

47 Cryptomonas paramecium CP002174 

9 Eutreptia viridis DQ140108 
 

48 Cyanidioschyzon merolae AB158483 

10 Eutreptiella braarudii EU624026 
 

49 Eimeria tenella AF026388 

11 Eutreptiella pomquetensis EU624012 
 

50 Entamoeba histolytica X65163 

12 Lepocinclis oxyuris HQ287919 
 

51 Galdieria sulphuraria KB454502 

13 Monomorphina pyrum AY130238 
 

52 Glomus mossae NG_027652 

14 Notosolenus ostium this work 
 

53 Goniomonas avonlea JQ434476 

15 Peranema trichophorum this work 
 

54 Goniomonas sp. AY752989 

16 Petalomonas cantuscygni this work 
 

55 Guillardia theta AJ010592 

17 Phacus helikoides HQ287923 
 

56 Laminaria digitata AF331153 

18 Ploeotia costata this work 
 

57 Mallomonas asmundae AF409122 

19 Rhabdomonas costata this work 
 

58 Micractinium reisseri AB506070 

20 Trachelomonas lefèvrei AY359949 
 

59 Monosiga ovata AF271999 

    DIPLONEMIDA 
  

60 Monosiga sp. EU011940 

21 Diplonema ambulator this work 
 

61 Naegleria gruberi AB298288 

22 Rhynchopus euleeides this work 
 

62 Nannochloropsis gaditana AZIL01002195 

23 Diplonema papillatum KF633467 
 

63 Nephroselmis olivacea HE61046 

24 Uncultured clone Ma131 1A46 FJ032685 
 

64 Palpitomonas bilix AB508340 

    KINETOPLASTIDA 
  

65 Paramecium tetraurelia EU828456 

25 Bodo caudatus AY028450 
 

66 Picomonas judraskeda JX988758 

26 Bodo saltans AF208890 
 

67 Planomonas micra GU001169 

27 Bodo saltans AY028452 
 

68 Plasmodium falciparum AL844501 

28 Bodo saltans FJ176704 
 

69 Pyramimonas tetrarhynchus HE610152 

29 Crithidia fasciculata Y00055 
 

70 Saccharomyces cerevisiae NR_132218 

30 Dimastigella mimosa FJ176708 
 

71 Salpingoeca amphoridium EU011942 

31 Dimastigella trypaniformis AY028447 

 

72 Salpingoeca infusionum AY026380 

32 Leishmania major FR796423 

 

73 Tetrahymena pyriformis X54004 

33 Neobodo saliens FJ176711 

 

74 Tetrahymena thermophila JN547815 

34 Trypanosoma brucei NC_008409 

 

75 Tetraselmis cordiformis HE610130 

35 Trypanosoma rangeli KJ742907 

 

76 Uncultured clone DH141 3A30N FJ032652 

    OUTGROUP (PROTOZOA) 
 

 

77 Uncultured clone DH22 2A36 FJ032658 

36 Acanthamoeba castellani GU001160 

 
    OUTGROUP (METAZOA) 

 
37 Ancyromonas sigmoides AY752988 

 

78 Levinella prolifera JQ272292 

38 Apusomonas sp. AY752987 

 

79 Trichoplax sp. AY652583 

 



4 Methods 35 

4.11 Datasets 

Gapped nucleotide positions were discarded from the alignments, except for secondary 

structure relevant positions in which only some taxa showed missing nucleotides, those were 

replaced by „N‟, and then several SSU rDNA and LSU rDNA datasets were formed. Derived 

SSU rDNA and LSU rDNA datasets were concatenated to operon datasets for phylogenetic 

analyses (Tab. 4.5). Dataset 0 was built as a preliminary dataset with an equilibrated number 

of taxa representing subordinate groups, while datasets I to III comprised continuously 

increased taxon samplings. LSU rDNA-based broad dataset IV was built to contain as many 

nucleotides as possible; modified criteria for dataset formation were applied after Castresana 

(2000) and the strict LSU rDNA dataset V formed (see 5.3.2). Finally, dataset VI included 

concatenated SSU and LSU rDNA data. 

Tab. 4.5: Datasets built for phylogenetic analyses. Examined genes, size of each dataset and the number of taxa 

including euglenozoan subgroups therein are shown (S: symbiontids; D: diplonemids; K: kinetoplastids). 

Operon = concatenated SSU rDNA and LSU rDNA data. 

No. 
Gene(s) in 

dataset 

Size of 

dataset 

No. of taxa in 

dataset 
Euglenea Aphagea 

phagotrophic 

euglenids 
S D K 

0 SSU rDNA 1,194 85 / 82 8 8 17 / 14 8 8 8 

I SSU rDNA 1,158 199 10 - 20 19 22 33 

II SSU rDNA 1,224 178 / 175 30 26 18 / 15 - - 14 

III SSU rDNA 1,030 241 / 238 39 25 33 / 30 9 23 51 

IV LSU rDNA 2,406 44 / 43 4 3 5 / 4 - 4 4 

V LSU rDNA 862 25 / 24 4 - 5 / 4 - 4 6 

VI Operon 3,741 56 / 55 7 3 5 / 4 - 4 4 

 

 

4.12 Computer analyses 

4.12.1 Statistical tests 

Several statistical analyses were performed using different tests which are implemented in the 

software MEGA5. For instance, homogeneity of substitution patterns between sequences was 

measured with disparity index tests (Kumar and Gadagkar 2001), p-values were calculated 

using Monte Carlo computations with 500 replicates for dataset 0 and with 1,000 replicates 

for all other datasets. Evolutionary divergence estimates within and between groups were 

calculated employing the Maximum Composite Likelihood model (Tamura and Kumar 2002), 

initially with 500 bootstrap replicates for all datasets. 
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4.12.2 Model testing 

Prior to phylogenetic analyses all datasets were tested for the best-fit model of evolution. 

Preliminary dataset 0 was tested using the software jModelTest (version 0.1.1, Posada 2008) 

with default parameters. For practical reasons all other datasets were tested with the Modeltest 

program (Nei and Kumar 2000) implemented in MEGA5 using all sites in an automatic tree 

search and branch swap filter set to very strong. The best-fit model of evolution was selected 

for each dataset according to lowest scores of the three criteria Bayesian information criterion 

(BIC), the corrected Akaike information criterion (AICc) and the negative Maximum 

likelihood value (-lnL). In case of conflicting scores, i.e. when scores of one parameter were 

equal for two different models, then the model was chosen which complied with at least two 

out of three criteria. 

 

4.12.3 Maximum likelihood analyses 

All phylogenetic reconstructions inferring the Maximum likelihood method were performed 

with MEGA5 conducting 1,000 bootstrap replications using all sites of each dataset. The 

Nearest-Neighbor-Interchange heuristic method was applied with default initial tree options 

(automatic, BioNJ) and the branch swap filter was set to very strong. Maximum likelihood 

analyses of dataset 0 and datasets II to VIII were performed including long-branching 

Entosiphon sequences and then re-iterated without Entosiphon sequences. 

 

4.12.4 Bayesian inferences 

For the determination of posterior probabilities, Bayesian inferences were calculated for each 

dataset using the plug-in MrBayes (Huelsenbeck and Ronquist 2001) implemented in 

Geneious (Kearse et al. 2012), applying unheated Markov chain Monte Carlo sampling with 

unconstrained branch lengths, including 2,000,000 steps with a sub-sampling frequency of 

2,000 and a burn-in of 10 % for the preliminary dataset 0. Posterior probability estimation for 

all other datasets involved 5,000,000 computation steps, a sub-sampling frequency of 5,000 

steps and a 10 % burn-in, which means that 900 sample trees were selected out of 4,500,000 

computations. 
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4.12.5 Phylogenetic networks 

Network analyses were performed with the software SplitsTree (Huson 1998; version 4.13.1 

by Huson and Bryant 2013) using default parameters for calculations of neighbor-net (Bryant 

and Moulton 2004) phylogenetic networks. 

 

4.12.6 Spectral analyses 

Phylogenetic signal and spectral analyses were conducted with the software SAMS (version 

1.4.3 beta by Mayer, Meid and Wägele 2012) applying pairwise sequence comparisons using 

splits search mode, the maximum number of splits set to 100 and gap mode „missing‟. 

 

4.13 Secondary structure analyses 

Properties of the secondary structure were examined using the software GeneDoc. The 

alignment of SSU rDNA sequences included the defined helix numbering from Petrov et al. 

(2014) based on secondary structure information of Saccharomyces cerevisiae. This enabled 

an identification of the exact boundaries of SSU rDNA „coding‟ and variable regions and 

thereby a comparative examination of nucleotide composition, GC-values, length variation 

and other parameters.  

The alignment of LSU rDNA sequences based on secondary structure information of 

Saccharomyces cerevisiae and helix numbering which was adopted from Petrov et al. (2013). 

This permitted a determination of exact boundaries of the internal transcribed spacer (ITS) 

regions which allowed a comparative survey of nucleotide sequence composition, group 

specific length variation of ITSs and LSU rDNA domains as well as other parameters of this 

rather understudied gene region. 
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5 Results and Discussion 

In this chapter, results of phylogenetic and sequence analyses are presented and for a better 

understanding, evolutionary implications and other aspects are discussed as well as compared 

with results from other studies and the literature. For a final discussion of results and 

concluding remarks see chapter 6 Conclusion.  

 

5.1 Phylogenetic analyses of SSU rDNA sequences 

5.1.1 Preliminary dataset 

In Maximum likelihood (ML) and Bayesian inference (BI) analyses of dataset 0, the euglenid 

Entosiphon clade arose as deepest and longest branch of the Euglenozoa and thereby, together 

with the next branching clade, the very good supported monophyletic Petalomonadida, 

rendered the Euglenida paraphyletic (not shown). But the Entosiphon clade exhibited a 

disproportionate long branch, which made the position as the deepest branching euglenozoan 

questionable and raised the assumption, that Entosiphon caused a long-branch attraction 

artefact in the analyses. A disparity index test showed no clade specific homogeneities in 

substitution patterns between Entosiphon and other euglenozoan sequences (see xlsx-file 

„DItestSSU‟ in folder „Supplement‟ on the CD). In order to gain an understanding for the 

deep and long branching of the Entosiphon group, the evolutionary divergence between and 

within relevant euglenozoan groups were estimated. In comparison of divergence estimates 

between groups Entosiphon revealed the highest divergence estimates between all groups 

Tab. 5.1: Evolutionary divergence over sequence pairs between selected groups of dataset 0. 

Evolutionary divergence estimates are shown in the lower left, corresponding standard deviations to 

the upper right. Phagotrophs are phagotrophic euglenids excluding Petalomonadida and 

Entosiphon. Estimates for Entosiphon sequences in bold. 

 No.   Name of group 1 2 3 4 5 6 7 8 9 10 11 

1 Euglenea 
 

0.043 0.036 0.032 0.038 0.024 0.040 0.104 0.047 0.048 0.047 

2 Aphagea 0.502 
 

0.047 0.044 0.057 0.037 0.046 0.103 0.063 0.058 0.060 

3 Symbiontida 0.372 0.534 
 

0.029 0.039 0.031 0.038 0.094 0.045 0.044 0.046 

4 Diplonemida 0.339 0.487 0.293 
 

0.031 0.024 0.034 0.094 0.042 0.034 0.038 

5 Kinetoplastida 0.428 0.619 0.396 0.309 
 

0.034 0.046 0.104 0.050 0.042 0.044 

6 phagotrophs 0.310 0.486 0.368 0.298 0.415 
 

0.034 0.088 0.041 0.039 0.039 

7 Petalomonadida 0.446 0.556 0.386 0.340 0.468 0.408 
 

0.091 0.047 0.043 0.043 

8 Entosiphon 0.964 1.023 0.856 0.859 0.989 0.875 0.881 
 

0.109 0.108 0.106 

9 Heterolobosea 0.572 0.734 0.530 0.498 0.580 0.537 0.566 1.058 
 

0.030 0.034 

10 Jakobida 0.502 0.647 0.458 0.349 0.456 0.459 0.454 0.991 0.413 
 

0.025 

11 distant outgroup 0.575 0.730 0.538 0.476 0.538 0.526 0.529 1.033 0.494 0.334 
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(Tab. 5.1). Although Entosiphon displayed the lowest divergence estimates within groups, 

omission of Entosiphon sequences from selected phagotrophic clades resulted in a distinctive 

decrease of divergence estimates, regardless of complexity or taxonomic hierarchy of groups 

investigated (Tab. 5.2). These findings affirmed the presumption that Entosiphon caused a 

long-branch attraction artefact in the first analyses. As a consequence, the Entosiphon 

sequences were discarded from dataset 0 and phylogenetic analyses reiterated without them.  

 

 

 

 

 

 

 

 

 

 

 

 

As a result of reiterated ML and BI analyses without Entosiphon sequences, the monophyly of 

Euglenozoa received maximal support (Fig. 5.1). Monophyletic Petalomonadida recovered 

maximal support as the deepest branch of the Euglenozoa, thus confirming the paraphyly of 

Euglenida. Other taxa maintained their positions in the tree topology. Aphagea, Diplonemida, 

Euglenea, Kinetoplastida and Symbiontida formed very good supported monophyla within the 

Euglenozoa. Diplonemida and Kinetoplastida were resolved as poorly supported sister group, 

and the phagotrophic Keelungia pulex was found to be the sister taxon of Symbiontida, 

though weakly supported. Both of these putative sister clades situated between early 

branching Petalomonadida and Ploeotia costata, but received no statistical support, depicting 

Tab. 5.2: Evolutionary divergence over sequence pairs within groups 

of dataset 0. Divergence estimates (d) and corresponding standard 

deviations (Δ) are shown for euglenozoan subgroups and higher 

ranking taxa of the ingroup and outgroups.  

 Taxon d Δ 

Euglenea 0.1624 0.0145 

Aphagea 0.2803 0.0235 

Euglenid crown clade 0.3650 0.0266 

Symbiontida 0.0811 0.0073 

Kinetoplastida 0.1427 0.0145 

Diplonemida 0.0591 0.0068 

Euglenida 0.4848 0.0348 

Euglenida excl. Entosiphon 0.3941 0.0266 

phagotrophic Euglenida 0.5042 0.0390 

phagotrophs excl. Petalomonadida 0.5369 0.0461 

phagotrophs excl. Entosiphon 0.3355 0.0251 

phagotrophs excl. Petalomonadida and Entosiphon 0.3005 0.0222 

Petalomonadida 0.1442 0.0138 

Entosiphon clade 0.0394 0.0071 

Euglenozoa 0.4364 0.0299 

Euglenozoa excl. Entosiphon 0.3821 0.0260 

Heterolobosea 0.3690 0.0277 

Discicristata (Heterolobosea + Euglenozoa) 0.4713 0.0319 

Jakobida 0.1396 0.0133 

Discoba (Jakobida + Discicristata) 0.4744 0.0323 

distant outgroup 0.3532 0.0244 
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a rather weak „backbone‟ or „stem‟ for the Euglenozoa. Discrepancies between ML and BI 

trees were a result from a change of branching points of Ploeotia costata and the above-

mentioned sister clades. Peranema trichophorum sequences were found to be sister to all 
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53 
.88 

70 
1 

.87 
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19 
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15 
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37 
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euglenid 
crown 
group 

EUGLENEA 

APHAGEA 

SYMBIONTIDA 

KINETOPLASTIDA 

DIPLONEMIDA 
* 

PETALOMONADIDA 

Fig. 5.1: Consensus tree of reiterated Maximum likelihood (ML) and Bayesian inference (BI) analyses of 

preliminary dataset 0 comprising 82 taxa without long-branching Entosiphon sequences (initial Entosiphon 

branching point is marked by a grey asterisk). Congruent BI posterior probability estimates were mapped onto 

the ML tree (GTR+Γ+I, -lnL = 39422.78, gamma shape = 0.760, p-invar = 0.172) and are shown above, 

bootstrap values below relevant nodes. Black circles highlight congruent nodes with very high statistical 

support, i.e. bootstrap values of at least 98 and posterior probabilities of 1.00, respectively. Discrepancies to the 

Bayesian tree are hyphenated. Values for residual nodes within monophyletic subclades were ignored for 

reasons of clarity. The scale bar represents 10 % divergence. 
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remaining euglenids within a maximal supported euglenid crown group. A robustly supported 

clade consisting of Dinema sulcatum and Anisonema sequences appeared as sister group of 

the Aphagea. The phagotrophic euglenid Heteronema scaphurum recovered ambiguous 

support as sister taxon of a robustly supported clade containing Rapaza viridis and Euglenea. 

Monophyly of the Euglenozoa was strongly supported in all analyses, concurrent with earlier 

results based on SSU rDNA without Symbiontida (e.g. Busse et al. 2003, Maslov et al. 1999, 

Preisfeld et al. 2001) and recent studies including the Symbiontida (Behnke et al. 2006, 

Breglia et al. 2010). In addition, the recovered monophyly of major euglenozoan groups 

corroborated results from previous studies which discovered monophyly of Diplonemida 

(Busse & Preisfeld 2002a, Moreira et al. 2001), Kinetoplastida (Doležel et al. 2000, Simpson 

et al. 2002), Symbiontida (Yubuki et al. 2009, Zuendorf et al. 2006) and of major euglenid 

groups as Aphagea (Busse & Preisfeld 2002b, Marin et al. 2003), Euglenea (Busse & 

Preisfeld 2003b, Linton et al. 2000) and Petalomonadida (Šlapeta et al. 2005, von der Heyden 

et al. 2004). 

Contrasting juxtaposition 

The relationships between the major euglenozoan lineages and their positions within the 

Euglenozoa were not fully resolved, because the putative sister clades Kinetoplastida/ 

Diplonemida and Symbiontida/Keelungia pulex hampered the „backbone‟ of the tree by 

displaying weak node support. To test for perseverance in tree topology and further 

investigate the inter-relationships of these three monophyletic major groups within the 

Euglenozoa, additional analyses were performed to examine the branching effects of these 

lineages by contrasting juxtaposition. Therefore, ML and BI analyses were rerun after 

elimination of each group from the dataset (i.e. firstly without kinetoplastids, but with 

diplonemids and symbiontids included, then without diplonemids, but with kinetoplastids and 

symbiontids included, etc.) and after elimination of group pairs (i.e. only kinetoplastids, then 

only diplonemids, etc.), to observe the impact of each group and/or group pairs on the tree for 

reasons of comparison. All three groups were tested separately and in mixture of each other, 

which means that all possible combinations (2
3
) were calculated once, and then reiterated 

excluding Entosiphon to test for a long-branch attraction effect. Intriguingly, the exclusion of 

long-branching Entosiphon had no effect on the tree topologies or the positions of major 

euglenozoan groups and a persisting tree topology was observed throughout additional 

analyses: the basal position of Petalomonadida as deepest branch within the Euglenozoa was 

confirmed in all analyses with maximal support, and the strongly supported crown group, 
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embracing Peranema trichophorum, Dinema sulcatum, Anisonema acinus, Anisonema sp., 

Aphagea, Heteronema scaphurum, Rapaza viridis and Euglenea, maintained its position as 

euglenid crown clade uniting euglenid flagellates owning a helical pellicle (termed Helicales 

in Fig. 5.2, and see next paragraph). Statistical support for this clade was strengthened by the 

exclusion of Entosiphon in the results of rerun analyses. The phagotrophic euglenids Ploeotia 

costata and Keelungia pulex changed positions between juxtaposed euglenozoan lineages, in 

50 % as sister taxa, but with weak support. Comparison of the branching effects of major 

euglenozoan lineages revealed that segregated Kinetoplastida branched as unreliably 

supported sister group to the euglenid crown clade, that separated Diplonemida emerged 

between Petalomonadida and the Ploeotia costata/Keelungia pulex clade, although weakly 

supported, and that isolated Symbiontida appeared as poorly supported sister group to 

Keelungia pulex. Nonetheless, these results confirmed the paraphyly of the Euglenida. 

Helicales – a new name for a new taxon? 

The recurrently identified euglenid crown clade unites euglenid taxa which are 

morphologically characterized by a helical pellicle. In fact, this taxon is not new – it has been 

identified earlier, whether without being named (e.g. Busse & Preisfeld 2002a, Preisfeld et al. 

2001) or with different names: it was termed „clade G‟ in a study based on morphological 

Euglenea 

Aphagea 

Symbiontida 

Rapaza viridis 

Heteronema scaphurum 

Keelungia pulex 

Ploeotia costata 

Dinema + Anisonema 

Peranema trichophorum 

Kinetoplastida 

Diplonemida 

Petalomonadida 

outgroup 

Helicales 

Fig. 5.2: Schematic phylogeny of the Euglenozoa obtained from additional ML 

analyses of dataset 0 showing the branching effects of major euglenozoan lineages 

examined by contrasting juxtaposition. The perseverative tree topology is depicted in 

black, subsidiary lineages in grey and corresponding branching points with dashed 

arrowheads. The euglenid crown group was named Helicales, for explanation see text. 
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characters (Leander et al. 2001), as well as „clade H‟ (Busse et al. 2003) and „HP grouping‟ 

(Lee & Simpson 2014a) in studies based on SSU rDNA analyses. For reasons of clarity, a 

taxon should be termed properly, e.g. with a name describing the shared evolutionary 

characteristic (i.e. ideally the autapomorphy) of this certain group of organisms. Most 

descriptive terms corresponding to the denotation „helical‟ already existed in zoology and 

were applied to gastropod taxa of different hierarchic level, but the term „Helicales‟ was not 

found to be occupied. As a consequence, for reasons of intelligibility, the name „Helicales‟ 

was used within this work as a descriptive denomination for a well-known monophyletic 

euglenid crown clade comprising euglenid flagellates that are morphologically characterized 

by a helical pellicle, but without classifying a taxonomic rank necessarily. Taxonomic 

implications of the Helicales are discussed in Chapter 6.3. 

 

5.1.2 Marine versus freshwater Euglenozoa 

Although monophyly of major lineages within the Euglenozoa and Euglenida was confirmed 

by analyses of the preliminary dataset, the weakness of node support values for internal 

branches remained an impediment for euglenozoan SSU rDNA phylogeny. Another approach 

was used to address this problem, for the Euglenozoa are known to differentiate in regard to 

their aquatic habitat. Some available sequences have been extracted from organisms that 

represent groups which inhabit marine environments exclusively, e.g. SSU rDNA sequences 

of Diplonemida and Symbiontida, while the representatives of other groups populate as well 

marine as freshwater environments, e.g. the Kinetoplastida, Petalomonadida, Euglenea 

(marine Eutreptiales and freshwater Euglenales) and the phagotrophic euglenids. The primary 

osmotrophic Aphagea live in freshwater biotopes without exception. Therefore marine and 

freshwater Euglenozoa were examined separately, each with a greatly increased taxon 

sampling (Tab. 4.5). Dataset I comprised only marine euglenozoans including sequences from 

phagotrophic euglenids not available before 2013, e.g. Ploeotia cf vitrea, Neometanema cf 

exaratum, Dinema platysomum and some new anisonemid sequences. Dataset II contained 

only freshwater Euglenozoa including SSU rDNA sequences from Ploeotia edaphica (CCAP 

1265/2) and Peranema sp. which both have been isolated in the context of this work. 
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Marine euglenozoan trees 

The ML analysis of marine dataset I retrieved well supported monophyletic Euglenozoa with 

marine kinetoplastids as strongly supported monophyletic sister group to all remaining marine 

euglenozoans (Fig. 5.3A). Interestingly, marine Petalomonadida appeared as deepest-

branching euglenozoan lineage with maximum support in the BI tree. Diplonemida emerged 

as sister group to Kinetoplastida in the BI tree with maximum support, but branched between 

symbiontids and remaining euglenids in the ML tree. Keelungia pulex appeared as sister to 

Ploeotia cf vitrea with moderate support, but in the BI tree as very good supported sister to 

Fig. 5.3: Consensus trees of Maximum likelihood (ML) and Bayesian inference (BI) analyses of marine and 

freshwater datasets. Congruent posterior probabilities are mapped onto ML trees and shown above, bootstrap 

values below corresponding nodes; hyphens represent discrepant tree topologies. Scale bars depict 5 % 

sequence divergence. A: Consensus tree of dataset I comprising 104 taxa of marine Euglenozoa (GTR+Γ+I, -

lnL = 59748.54, gamma shape = 0.758, p-invar = 0.086). B: Consensus tree of reiterated analyses of dataset II 

containing 85 freshwater euglenozoans excluding Entosiphon sequences (GTR+Γ+I, -lnL = 63863.98, gamma 

shape = 0.784, p-invar = 0.102). New isolated sequences are boxed. The branching point of Entosiphon 

sequences in initial analyses of dataset II is marked by a grey asterisk. 
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the Symbiontida. The monophyly and backbone branches of marine euglenids recovered only 

poor statistical support, yet marine Petalomonadida, Symbiontida, Anisonemida and 

Eutreptiales formed very good supported monophyla within marine Euglenozoa. A crown 

clade representing marine euglenids with a helical pellicle, i.e. marine Helicales, emerged as 

strongly supported monophylum. Within this clade, Dinema sequences gained moderate 

support as sister group to very good supported monophyletic Anisonemida in the ML tree. In 

the BI tree Dinema platysomum was sister to a Dinema sulcatum/Anisonemida clade. The 

position of Neometanema cf exaratum as sister to a Rapaza viridis/Eutreptiales clade was 

weakly supported in the ML tree and thus remained doubtful within marine Helicales. The 

results from analyses of dataset I confirmed the monophyly of Euglenozoa, likewise the 

monophyly of marine Helicales and major lineages, but statistical support for internal 

branches remained weak and conflicts between the ML and BI tree topologies persisted even 

to the deepest branch of the Kinetoplastida.  

Freshwater euglenozoan trees 

Maximum likelihood analysis of dataset II recovered well-supported monophyletic freshwater 

Euglenozoa, Entosiphon branched basally as sister to all other euglenozoans, but as a result of 

reiterated analyses, freshwater Kinetoplastida represented the deepest-branching clade 

(Fig. 5.3B). Monophyly of euglenids gained moderate statistical support, and freshwater 

Petalomonadida, Aphagea, Anisonemida and Euglenales emerged as very good supported 

monophyla within the Euglenida. The new isolate Ploeotia edaphica and P. costata formed a 

clade though poorly supported, and both formed the sister to Petalomonadida. Peranema sp. 

appeared as sister to Peranema trichophorum sequences with very good support. A well-

supported monophylum consisting of freshwater euglenids with a helical pellicle, i.e. the 

freshwater Helicales, arose as crown group of freshwater Euglenida. Contrary to previous 

findings, results obtained from analyses of this dataset revealed even fewer discrepancies 

between ML and BI trees: Peranema represented the deepest branch within freshwater 

Helicales, Heteronema scaphurum emerged as sister taxon of Euglenales, and Ploeotia 

costata was sister to a Petalomonadida/Ploeotia edaphica clade in the BI tree. However, 

monophyly of Euglenida was most likely an artificial effect, because Kinetoplastida 

represented the only non-euglenid ingroup in the taxon sampling of dataset II. 

Although phylogenetic reconstruction of datasets I and II confirmed the monophyly of 

Euglenozoa, Helicales and phagotrophic euglenid clades, e.g. Petalomonadida or 

Anisonemida, the inter-relationships of most euglenozoan lineages remained unclear due to 

- 
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lack of statistical node support or persistent incongruences between ML and BI tree 

topologies. Since tree-like reconstruction methods like Bayesian inference or maximum 

likelihood force the data into a bifurcate form, the application of phylogenetic networks is 

0.01 

EUTREPTIALES 
KINETOPLASTIDA 

DIPLONEMIDA 
SYMBIONTIDA 

Petalo-
monadida 

A 

OUTGROUP 

B 

0.01 

Fig. 5.4: Neighbor-net graph of dataset I comprising marine Euglenozoa and outgroup taxa. 

Network splits supporting monophyletic clades are colored. Scale bars represent 1 % sequence 

divergence. A: Splits graph overview displaying terminal splits of marine Euglenozoa. 

B: Detailed center view on network after exclusion of the outgroup taxa. Splits supporting the 

monophyly of marine Helicales are marked by a grey arrow. 
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more suitable to analyze weaknesses in phylogenies (Huson and Bryant 2006). Moreover, 

neighbor-net graphs are capable of visualizing compatible as well as incompatible splits of a 

phylogenetic network (Bryant and Moulton 2004), and when combined with spectral analysis, 

enable to better examine ambiguity in a dataset or even identify different types of long-branch 

attraction artefacts (Wägele and Mayer 2007). Both datasets were examined in phylogenetic 

network and spectral analyses to further investigate the abiding weakness of node support and 

the impact of long-branching Entosiphon sequences. 

Marine euglenozoan networks 

Neighbor-net analysis of dataset I corroborated the monophyly of marine Euglenozoa and 

major euglenozoan groups, i.e. Kinetoplastida, Diplonemida, Symbiontida, Petalomonadida, 

Anisonemida and Eutreptiales (Fig. 5.4). Marine Euglenozoa displayed a remarkable radiation 

which was nearly as broad as that of all outgroup taxa together. Interestingly, no splits were 

found that supported a sister group relationship of any of the major euglenozoan groups. 

While Kinetoplastida represented the deepest branch in the ML tree, no ancestral euglenozoan 

lineage was identified in the network graph. Conflicting splits dominated between major 

euglenozoan taxa, and intriguingly, no splits supported the monophyly of marine Euglenida. 

Although closely related in the consensus tree, marine Petalomonadida and Symbiontida 

shared no common splits. Keelungia pulex branched near Ploeotia cf vitrea, but Ploeotia 

costata was positioned elsewhere. Monophyly of marine Anisonemida and the sister group 

Fig. 5.5: Split support spectrum of the 50 best splits for data used in Fig. 5.4 A. Columns display the 

number of sequence positions (y-axis) supporting each partition of a specified split (above and below 

the x-axis) sorted by height. Quality of splits is color coded and depicted in a box to the upper right. 

Grey columns represent splits that are incompatible with a binary constructed topology. Splits of 

euglenozoan taxa are assigned by black arrows above, and splits of one jakobid outgroup taxon below 

the x-axis. All other splits belonged to the outgroup taxon Heterolobosea. 
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relationship with Dinema sequences were confirmed by common splits and Rapaza viridis 

emerged as sister taxon of monophyletic Eutreptiales. Remarkably also the monophyly of 

marine Helicales was corroborated by supporting splits (grey arrow in Fig. 5.4 B). The 

spectral analysis of dataset I revealed that 37 of the 50 best splits belonged to the outgroup 

taxon Heterolobosea which was represented by 33 nucleotide sequences. The majority of 

these splits (20 out of 37) stood in conflict with a binary constructed (tree) topology, albeit 

good support for split partitions (Fig. 5.5). Apparently, the heterolobosean splits rather 

interfered with euglenozoan splits, i.e. conspicuous signals of one outgroup taxon largely 

overlapped the phylogenetic signals of the ingroup, so the taxon sampling of dataset I needed 

an adjustment. As a consequence, all outgroup taxa were discarded from the dataset except for 

a small jakobid group comprising Jakoba libera, Reclinomonas americana and Seculamonas 

ecuadoriensis, which contained most compatible binary splits. As expected, the split support 

spectrum of modified dataset I showed a similar distribution of splits regarding marine 

Euglenozoa, but a higher number of supporting positions (column height), and most major 

euglenozoan taxa gained substantial split support (Fig. 5.6). Compatible splits clearly 

affirmed monophyly of marine Petalomonadida and Anisonemida as well as monophyly of 

Diplonemida, Symbiontida and marine Kinetoplastida. Interestingly, six compatible splits that 

belonged to internal branches of Kinetoplastida gained better split support than monophyletic  

Fig. 5.6: Split support spectrum for modified dataset I illustrating the best 50 splits comprising marine 

Euglenozoa and the jakobid clade from Fig. 5.5 as outgroup. Euglenozoan taxa are marked by black 

arrows, compatible splits supporting monophyletic major groups and genera are depicted above 

columns, other internal splits below columns. Splits 1, 9, 14, 25 and 37 belonged to the outgroup. Grey 

columns represent incompatible or nonsense splits, e.g. Ploeotia costata + outgroup (split 37). 
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Fig. 5.7: Neighbor-net graph of dataset II comprising freshwater Euglenozoa and outgroup taxa. 

Network splits sustaining monophyletic clades are colored. Scale bars represent 1 % sequence 

divergence. A: Network overview including terminal splits. Entosiphon branched within the 

outgroup B: Detailed center view showing freshwater euglenozoans after exclusion of outgroup taxa. 

Splits separating marine Helicales from all other taxa are marked by a grey arrow. 

B 

0.01 



5 Results and Discussion 50 

 

Kinetoplastida, which endorsed the relatively high diversity of this group already shown in 

the network graph (Fig. 5.4). Split support also approved monophyly of several euglenid 

genera, i.e. Eutreptia, Petalomonas, Dinema and the kinetoplastid genus Ichthyobodo. 

Freshwater euglenozoan networks 

Monophyly of the Euglenozoa was not confirmed in the neighbor-net analysis of dataset II for 

Entosiphon diverged within the outgroup (Fig. 5.7). This was clearly due to its long-branch 

attraction effect, as observed in earlier results (Figs. 5.1 and 5.3 B), and in addition, 

Euglenozoa appeared to be monophyletic in reiterated network analysis after exclusion of 

Entosiphon sequences. Similar to findings from analysis of dataset I, no splits were found that 

supported a sister group relationship of any major euglenozoan groups in the network graph 

of the freshwater dataset. Interestingly, no splits supported the monophyly of freshwater 
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Euglenida. Kinetoplastida, Petalomonadida, Aphagea and Euglenales formed monophyletic 

major groups of freshwater euglenozoans. While Entosiphon appeared as the deepest branch 

in the initial ML tree and Kinetoplastida represented the deepest branch in the reiterated ML 

analysis, no ancestral euglenozoan lineage was identified in the network graph of dataset II. 

Nonetheless, freshwater kinetoplastids and non-helical phagotrophic euglenids (i.e. 

phagotrophic euglenids with longitudinally arranged pellicle strips) like Petalomonadida and 

Ploeotia were located at the basis of the network graph, whereas freshwater Helicales 

including Aphagea and Euglenales divided as a monophyletic crown clade (Fig. 5.7 A). 

Although plenty of potentially incompatible splits were determinant in the network graph 

even after exclusion of outgroup taxa, major groups of freshwater Euglenozoa remained 

monophyletic, and the monophyly of freshwater Helicales, i.e. Anisonemida, Aphagea, 

Heteronema scaphurum, Peranema and Euglenales, gained weak split support (grey arrow in 

Fig. 5.7 B). Entosiphon sequences were found in the vicinity of Kinetoplastida and Ploeotia 

sequences branched near Petalomonadida, but not as sister taxa. 

Spectral analysis of dataset II uncovered an extraordinary large number of sequence positions 

providing support for compatible splits regarding Entosiphon (Fig. 5.8), but since Entosiphon 

branched outside of Euglenozoa in the network graph, it must be considered an outgroup 

taxon. The split support spectrum also revealed that 32 of the 50 best splits belonged to the 

outgroup taxon Heterolobosea and that most of these splits (19 out of 32) stood in conflict 

with a binary tree topology. As observed before in spectral analysis of dataset I, phylogenetic 

signals of the freshwater ingroup have been overlapped by signals of the highly diverse 

heterolobosean outgroup, though four of the five best splits belonged to Euglenozoa. As a 

result, outgroup taxa including long-branching Entosiphon sequences were removed and 

spectral analysis rerun. The split support spectrum of modified dataset II showed an overall 

increase in sequence positions providing support for compatible splits (Fig. 5.9). Inner 

branches of the Aphagea received the best split support, i.e. the deep-branching Distigma 

proteus clade and the Distigma curvatum group, but also the osmotrophic genus Menoidium 

and more derived Aphagea were found among the 50 best splits. Split support for major 

euglenozoan groups confirmed monophyly of freshwater Kinetoplastida, Petalomonadida, 

Anisonemida and Euglenales. Compatible splits also supported monophyly of some 

phototrophic (Monomorphina, Strombomonas) and kinetoplastid genera (Parabodo, 

Dimastigella) as well as that of phagotrophic Peranema. Interestingly, a compatible split 

supported an affiliation of phagotrophic Heteronema scaphurum with the deep-branching 

Distigma proteus clade of the Aphagea (split 7) and another split grouped both together with 
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Peranema (split 28), whereas a split combining the Distigma proteus clade with Peranema 

appeared to be incompatible (14). Incompatible splits represented nonsense combinations of 

taxa: most incompatible splits affiliated Kinetoplastida with a single phagotrophic euglenid 

taxon (i.e. splits 8, 11, 15, 23, 24, 27, 31, 33, 37, 39, 43 and 46) and others united a single 

euglenid taxon of the Helicales with a single taxon or group of non-helical euglenids (e.g. 

Heteronema scaphurum with Petalomonadida, split 17). 

 

Phylogenetic analyses in which marine and freshwater Euglenozoa have been examined 

individually were performed for the first time in the context of this work. The results 

confirmed significant findings regarding the SSU rDNA genealogy of euglenids, for instance 

(1) the monophyly of phagotrophic groups like Petalomonadida and Anisonemida, (2) the 

monophyly of marine and freshwater Helicales, (3) the sister group relationship of the 

mixotroph Rapaza viridis with Eutreptiales, (4) the lack of phylogenetic signal for a sister 

group relationship of Diplonemida with Kinetoplastida, and (5) the lack of phylogenetic 

signal supporting monophyletic Euglenida. Importantly, the latter finding corroborated results 

Fig. 5.9: Split support spectrum for modified dataset II accordant with Fig. 5.7 B. Splits of relevant 

freshwater euglenozoan taxa are marked by black arrows. Conflicting splits are related to supposedly 

nonsense combinations of taxa, most of which were represented by Kinetoplastida branching with single 

phagotrophic euglenid taxa. 
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from an earlier study which included a spectral analysis of euglenozoan SSU rDNA sequences 

(Busse & Preisfeld 2003a). Albeit these results, sister group relationships of major 

euglenozoan groups still remained unclear, because of weak approval for alleged sister clades 

or undetermined positions of phagotrophic euglenids within possibly paraphyletic Euglenida. 

However, a paraphyly of Euglenida would have phylogenetic implications which affected the 

Euglenozoa as a whole and an examination of these implications would be vital to understand 

euglenozoan diversity.  

 

5.1.3 Combined dataset 

To address these problems and further investigate persisting incongruences, marine and 

freshwater datasets were combined, recently published SSU rDNA sequences added (e.g. 

Notosolenus urceolatus from Lee & Simpson, 2014b), and merged into a third dataset 

comprising a more extensive taxon sampling of Euglenozoa (dataset III, see Tab. 3.5). The 

ML tree of dataset III recovered strong monophyletic Euglenozoa, with Diplonemida and 

Kinetoplastida as poorly supported sister groups, but with strong support in the BI tree 

(Fig. 5.10 A). Newly obtained Ploeotia edaphica gained robust support as sister taxon of 

Keelungia pulex, and Peranema sp. retrieved maximum support as sister to Peranema 

trichophorum. Major and minor euglenozoan groups formed very good supported monophyla, 

i.e. Diplonemida, Kinetoplastida, Petalomonadida, Symbiontida, Aphagea, Anisonemida and 

Euglenea. However, the ML and BI analyses including long-branching Entosiphon sequences 

resulted in different tree topologies. In the ML tree, Entosiphon was found as deepest-

branching euglenozoan, being sister to a weakly supported Diplonemida/Kinetoplastida clade 

and all remaining euglenids including symbiontids with strong support, thereby rendering the 

Euglenida paraphyletic. In the BI tree, Entosiphon nested into the euglenid crown group and 

formed the sister group to the Peranema clade, though with low support. The Helicales 

appeared as strongly supported monophyletic clade, thus representing the euglenid crown 

group in the ML tree. Dinema sequences branched as sister group to Anisonemida with good 

support. Though Rapaza viridis appeared as strongly supported sister taxon of the Euglenea, 

positions of other phagotrophic euglenids within the Helicales were not resolved properly, for 

sister group relationships of Heteronema scaphurum with Peranema and Neometanema cf 

exaratum with the Anisonemida/Dinema clade were weakly supported. Petalomonadida and 

Symbiontida resolved as sister groups, but without statistical support. Although all Ploeotia 

sequences formed a clade including Keelungia pulex, the monophyly of this presumptive 
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Ploeotiida clade gained only mediocre support in the ML tree, but intriguingly, Keelungia 

pulex appeared as sister taxon of newly obtained Ploeotia edaphica with good to very good 

support in ML and BI trees, respectively. In results from reiterated analyses excluding long-
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Fig. 5.10: Consensus trees obtained from ML and BI analyses of dataset III comprising 241 taxa with new 

sequences boxed. Congruent posterior probability values > 0.50 were mapped onto the ML trees and are 

depicted above, ML bootstrap support values > 47 below corresponding nodes; discrepancies are hyphenated. 

Scale bars represent 5% sequence divergence. A: ML tree containing 180 euglenozoan taxa including long-

branching Entosiphon (half of the original branch length depicted; GTR+Γ+I, -lnL = 59395.03, gamma 

shape = 0.673, p-invar = 0.106). B: ML tree from reiterated analyses inclosing 177 euglenozoan taxa but 

excluding Entosiphon sequences (GTR+Γ+I model, -lnL = 58194.02, gamma shape = 0.663, p-invar = 0.107). 
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branching Entosiphon sequences, some discrepancies between ML and BI tree topologies 

were resolved, and the monophyly of Euglenozoa gained very strong support (Fig. 5.10 B). 

Removal of Entosiphon also slightly improved the very weak bootstrap support for a 

Diplonemida/Kinetoplastida clade, which represented the sister to monophyletic Euglenida. 

Nevertheless, statistical support regarding the monophyly of Euglenida and corresponding 

„backbone‟ branches remained poor, and although Petalomonadida and Symbiontida formed 

sister clades, this combination completely lacked statistical support as the deepest branch of 

putatively monophyletic Euglenida. Major euglenozoan groups appeared as monophyla, each 

with very good support. Monophyly of alleged Ploeotiida remained weakly supported, but 

support for a sister group relationship of Ploeotia edaphica and Keelungia pulex maintained 

to be robust. While the monophyly of Helicales gained very good support in both trees, 

positions of Aphagea and some phagotrophic taxa within the Helicales, i.e. Heteronema 

scaphurum and Neometanema cf exaratum lacked statistical support and thus remained 

unclear. The mixotroph Rapaza viridis obtained strong support as sister taxon of Euglenea. 

The neighbor-net graph of dataset III exhibited a rather high diversity of monophyletic 

Euglenozoa, which considerably exceeded that of the discoban outgroup taxa (Fig. 5.11 A). 

Entosiphon sequences branched within the ingroup, but as sister taxon of the outgroup, and 

thereby weakened splits that supported the monophyly of Euglenozoa: splits supporting 

Euglenozoa excluding Entosiphon were longer than those that supported monophyletic 

Euglenozoa including Entosiphon. Similar to earlier results, no splits were found that 

supported the monophyly of Euglenida, and intriguingly, no splits supported a sister group 

relationship of Diplonemida and Kinetoplastida either. Both findings contradicted the results 

obtained from phylogenetic tree reconstruction of dataset III (Fig. 5.10). Network analysis of 

the combined dataset also recovered major euglenozoan groups as monophyla, i.e. 

Kinetoplastida, Diplonemida, Petalomonadida, Symbiontida, Aphagea and Anisonemida 

(Fig. 5.11 B). But no splits supported the monophyly of Euglenea, for two sets of splits 

embraced this group: the basal splits set embraced all Euglenea but excluded Trachelomonas 

grandis, the other splits set combined all Euglenales to the exclusion of deep-branching 

Eutreptiales (bluish-green and yellowish-green in Fig. 5.11 B). Rapaza viridis branched in the 

proximity of Euglenea, but not as sister taxon, probably due to a lack of splits supporting the 

monophyly of Euglenea. Dinema sequences formed a clade with Anisonemida which was 

supported by common splits, and Neometanema cf exaratum branched between this clade and 

Aphagea. Peranema  and  Heteronema scaphurum  grouped together and shared common 
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Fig. 5.11: Neighbor-net graph obtained from network analysis of dataset III comprising Euglenozoa 

and Heterolobosea plus Jakobida as outgroup (i.e. subset A1, see Tab. 5.3). Network splits of 

monophyletic clades are colored. Scale bars represent 1 % sequence divergence. A: Network 

overview containing terminal splits. A box with dashed lines depicts the scale of the network center 

shown below. B: Detailed center view of the same network. Entosiphon branches near the outgroup. 

A grey arrow highlights splits supporting the monophyly of Helicales. 
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splits. The monophyly of Helicales was also confirmed by supporting splits (grey arrow in 

Fig. 5.11 B). Keelungia pulex and Ploeotia sequences were situated between Petalomonadida 

and Diplonemida, but no splits supported monophyly for this assemblage. While Ploeotia 

costata shared common splits with Ploeotia cf vitrea, Keelungia pulex grouped together with 

Ploeotia edaphica, the latter corroborated results from ML and BI analyses.  

To validate findings from network analysis of the combined dataset that could have been a 

result of the strong long-branch attraction effect of Entosiphon sequences, e.g. the distortion 

of splits that supported monophyletic Euglenea, the analysis had to be reiterated without them. 

However, additional network analyses of the combined dataset demanded a double strategy, 

as taxon sampling also revealed an extraordinary impact on network splits, which has been 

observed in earlier network results and corresponding spectral analyses; the influence of 

highly diverse heterolobosean SSU rDNA sequences decreasing split support for well-known 

major euglenozoan groups is a good example (Figs. 5.4 and 5.5). To follow this double 

strategy, the taxon sampling of dataset III was gradually reduced in three steps from outgroup 

to ingroup, thereby also decreasing phylogenetic complexity, and additionally, network 

analyses were reiterated without Entosiphon sequences for each of the four subsets, resulting 

in eight subsets overall (Tab. 5.3), thus enabled an examination of Entosiphon’s long-branch 

attraction effect on euglenozoan SSU rDNA based phylogenetic networks. 

 

Neighbor-net analyses of the subsets derived from stepwise reduction of taxa from dataset III 

confirmed several results from subsequent ML and BI analyses, the network graphs of subsets 

A1, A2, B1, C1 and C2 are depicted in Figs. 5.11 to 5.14 (for graphs of other subsets see 

Figs. 8.11 and 8.12 in the Appendix). Monophyly of the Euglenozoa was confirmed in 

Tab. 5.3: Subsets of dataset III derived from stepwise reduction of original taxon sampling. Number and 

name of subset, phylogenetic scope of each modified taxon sampling, number of taxa therein, and number 

of euglenozoan subgroups are given (S: symbiontids; K: kinetoplastids; D: diplonemids). 

No. Name 
phylogenetic scope of modified 

taxon sampling 

No. of 

taxa 

phagotrophic 

euglenids 
Euglenea Aphagea S K D 

1 A1 Discoba incl. Entosiphon 241 33 41 25 9 51 23 

2 A2 Discoba excl. Entosiphon 238 30 41 25 9 51 23 

3 B1 Discicristata incl. Entosiphon 217 33 41 25 9 51 23 

4 B2 Discicristata excl. Entosiphon 214 30 41 25 9 51 23 

5 C1 Euglenozoa incl. Entosiphon 182 33 41 25 9 51 23 

6 C2 Euglenozoa excl. Entosiphon 179 30 41 25 9 51 23 

7 D1 Euglenida incl. Entosiphon 108 33 41 25 9 - - 

8 D2 Euglenida excl. Entosiphon 105 30 41 25 9 - - 
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relevant subsets A and B, for both subset types contained taxon samplings including outgroup 

taxa. While subsets C embraced the Euglenozoa, subsets D constituted artificially 

monophyletic Euglenida, and both subset types were merely used to examine internal 

branches of the ingroup and the effects of Entosiphon sequences on them. As a result, 

monophyly of major groups was verified by common splits in all subset analyses, i.e. of 

Petalomonadida, Symbiontida, Aphagea, Anisonemida and Euglenea. The Symbiontida were 

positioned next to Petalomonadida in all network graphs, but no splits were found to support a 

sister group relationship. Sequences of Ploeotia and Keelungia pulex clustered together in 

pairs in most networks and even appeared as a group united by common splits in three out of 

eight subsets analysed (A1, A2, and C2). When clustered in pairs, mostly Ploeotia edaphica 

and Keelungia pulex shared common splits, as did sequences of Ploeotia cf vitrea and 

Ploeotia costata. As an exception, Ploeotia edaphica branched with Ploeotia costata in the 

neighbor-net graph of subset B1 (Fig. 5.13). Strikingly, the sequences of Ploeotia and 

Keelungia pulex shared common splits with the Diplonemida in the graph of subset B1, and in 

Fig. 5.12: Neighbor-net graph of dataset III comprising Euglenozoa and Heterolobosea plus Jakobida as 

outgroup, but excluding long-branching Entosiphon sequences (i.e. subset A2, see Tab. 5.3). Network splits 

supporting monophyletic clades are color coded. Splits supporting the monophyly of Helicales are marked by 

a grey arrow. The scale bar depicts 1 % sequence divergence. 
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network subset types A and C to the exclusion of Ploeotia costata. Monophyly of 

Diplonemida and Kinetoplastida was confirmed in all relevant subset analyses, but only one 

subset revealed a set of splits which supported a sister group relationship of Kinetoplastida 

and Diplonemida (subset C1, black arrow in Fig. 5.14 A), and this set of splits represented the 

only exception, in which Euglenida were found to be a monophylum. But after removal of 

Entosiphon sequences from this subset, no splits were recovered which supported a sister 

group relationship of Diplonemida and Kinetoplastida, nor splits which supported 

monophyletic Euglenida (Fig. 5.14 B). Additionally, none of the other results revealed splits 

supporting the monophyly of Euglenida, even at higher levels of diversity, i.e. within the 

Discoba and Discicristata networks (subsets A and B), where taxon sampling of the outgroup 

exceeded that of Euglenida by factors 2.01 and 2.18. Entosiphon branched as sister to 

outgroup taxa in subsets A1 and B1. Exceptionally, a joint set of splits amalgamated 

Entosiphon with Aphagea in the analysis of subset C1, thus distorting the monophyly of 

Aphagea (splits highlighted by a purple arrow in Fig. 5.14 A). The long-branching Entosiphon 

Fig. 5.13: Neighbor-net graph of subset B1 comprising Euglenozoa including long-branching Entosiphon 

sequences and Heterolobosea as outgroup. Network splits supporting monophyletic clades are colored. The 

scale bar represents 1 % sequence divergence. Splits supporting the monophyly of Helicales are marked by 

a grey arrow.  
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A 

Fig. 5.14: Neighbor-net graphs of reduced dataset III representing type C subsets comprising the 

Euglenozoa. Network splits of monophyletic clades are colored and splits supporting the monophyly 

of Helicales are marked by a grey arrow. Scale bars depict 1 % sequence divergence. A: Detailed 

center view on subset C1 including Entosiphon sequences. A purple arrow highlights common splits 

of Aphagea and Entosiphon. Splits falsely supporting a sister group relationship of Diplonemida and 

Kinetoplastida are depicted by a small black arrow. B: Detailed center view on subset C2 excluding 

Entosiphon sequences.  
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sequences were also situated near monophyletic Aphagea in the neighbor-net graph of subset 

D1, but without a distortion effect or sharing common splits. The monophyly of the Euglenea 

was sequestered by two internal splits in some networks investigated (in subsets D2, C2, A1 

and A2); however, Rapaza viridis branched independently from these splits, and always 

separated from Euglenea. Similar to subsequent ML and BI analyses, euglenids 

morphologically characterized by a helical pellicle were united by common splits in most 

network analyses. In the splits graph of subset B1, Entosiphon sequences integrated into 

Helicales combined by a joint split, but the result from subset B2 showed Helicales sharing a 

common split together with Ploeotia cf vitrea. If not for the effect of Entosiphon, this could 

have been caused by the diverse sequences of the Heterolobosea, for most network analyses 

corroborated common splits support for the monophyly of Helicales. Within the Helicales, 

monophyletic Anisonemida recovered mutual splits together with both Dinema sequences in 

all network graphs. The sequence of Neometanema cf exaratum branched between 

monophyletic Aphagea and the Dinema/Anisonemida clade in most results. Interestingly, 

Heteronema scaphurum and sequences of the Peranema group shared common splits in most 

subsets examined, the only exception was found in subset D1 (containing artificially 

monophyletic euglenids), wherein no uniting splits were present, but both grouped together 

nonetheless. 

Results from phylogenetic tree reconstruction and modified network analyses of combined 

dataset III which comprised the most extensive taxon sampling of euglenozoan SSU rDNA 

sequences confirmed important findings: (1) the monophyly of Euglenida completely lacked 

statistical support as well as a phylogenetic signal, (2) statistical support for a sister group 

relationship of Diplonemida and Kinetoplastida was poor in tree reconstructions and 

inexistent in network analyses, (3) the euglenid crown group Helicales was monophyletic, (4) 

SSU rDNA sequences of Entosiphon caused a long-branch attraction artefact with a strong 

influence on in- and outgroup taxa, (5) the phagotrophic euglenid lineages Petalomonadida 

and Anisonemida were monophyletic. These results imply serious consequences for the 

phylogeny of Euglenozoa. Paraphyly of the Euglenida would involve that diplonemids and 

kinetoplastids derived from a common euglenid ancestor. Furthermore, the lack of support for 

a sister group relationship of Diplonemida and Kinetoplastida could implicate that one of 

these major groups or even both derived from a phagotrophic euglenid lineage. For additional 

argumentation and discussion on these findings see chapter 6. 
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5.2 SSU rDNA nucleotide sequence analyses 

Unambiguously aligned, homologous nucleotide sequences were a prerequisite not only for 

dataset formation prior to phylogenetic analyses, but also for the study of more parameters 

involving SSU rDNA sequence data information content. Influence of nucleotide distribution 

and putative secondary structure of sequences on SSU rDNA phylogeny had been examined 

earlier (Moreira et al. 2001, Marin et al. 2003). In the scope of this work, further examinations 

of base composition, identity matrix and deduced secondary structures of nucleotide 

sequences were performed to substantiate or falsify findings from phylogenetic analyses.  

 

5.2.1 Base composition 

The composition of nucleotides adenine (A), guanine (G), cytosine (C) and thymine (T) in 

euglenozoan SSU rDNA sequences displayed only few differences between major groups 

when contemplated in tabular form. For instance, Euglenea and Aphagea exhibited the highest 

percentage values of guanine and cytosine, while the lowest guanine and cytosine values were 

found in outgroup taxa, but nucleotide percentage values of phagotrophic euglenids, 

diplonemids and kinetoplastid taxa were seemingly too similar to demonstrate differences 

properly (a table containing base composition data from taxon- rich combined dataset III is 

given in the Appendix, see Tab. 8.1). However, differences in base composition between 

phagotrophic euglenids and diplonemid taxa became more apparent when displayed in a base 

frequency graph, which simultaneously allowed a correlation of nucleotide percentage values 

(Fig. 5.15). Intriguingly, SSU rDNA sequences of phagotrophic euglenids Notosolenus 

ostium, Ploeotia edaphica and Keelungia pulex revealed a similar base frequency pattern as 

the diplonemids Diplonema ambulator and Rhynchopus euleeides, in which adenine and 

guanine displayed relatively high percentage values (≤ 28 %), while cytosine was the least 

frequent nucleotide (< 22 %), resulting in the pattern C < T < G < A. Frequency values for 

guanine and adenine were almost identical in sequences of Notosolenus ostium, Ploeotia 

edaphica and Diplonema ambulator. Interestingly, the enigmatic phagotrophic euglenid 

Entosiphon displayed the same pattern of base frequency, i.e. C < T < G < A (see Tab. 8.1). 

Both most primordial kinetoplastid clones AT4-103 and LC103 5EP 19 as well as the deep-

branching symbiontid Bihospites bacati exhibited a different base frequency pattern, in which 

guanine was the most frequent nucleotide (> 28 %) and thymine was the least frequent base 
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(< 22 %), as demonstrated by a shift in the frequency of cytosine and thymine (black arrow in 

Fig. 5.15), resulting in the pattern T < C < A < G.  

Likewise, the correlation of base frequencies was used to search for different patterns in SSU 

rDNA nucleotide composition of phagotrophic Helicales, primordial Distigma proteus as 

substitute of the Aphagea, and Rapaza viridis, the mixotrophic sister taxon of Euglenea 

(Fig. 5.16). The base frequencies of phagotrophic Peranema trichophorum, Neometanema cf 

exaratum, Anisonemida and Distigma proteus shared the same pattern, in which adenine and 

guanine exhibited the highest frequency values (≤ 28 %), while cytosine showed the lowest 

value (≤ 22 %). Despite this similarity, Peranema trichophorum and Distigma proteus 

displayed the pattern C < T < G < A, whereas Neometanema cf exaratum and Anisonemida 

showed the pattern C < T < A < G. However, a noticeable shift in T-C base frequency 

distinguished aforementioned sequences from the others. Dinema sulcatum, Heteronema 

scaphurum and the mixotroph Rapaza viridis differed clearly in base composition, guanine 

was the predominant nucleotide (> 28 %), the second frequent nucleotide was adenine which 
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Fig. 5.15: Octagonal base frequency graph visualizing differences in SSU rDNA base composition 

of primordial euglenids, diplonemids and kinetoplastids. Each base is color coded as shown in the 

legend to the lower right, and base frequency percentages are depicted by connected lines in a spider 

web-like arrangement along radials which represent different SSU rDNA sequences each. The scale 

along the radius of Ploeotia edaphica indicates a base frequency percentage of 20 % to 30 % (from 

inner to outer octagon). The black arrow highlights a distinct shift in T-C frequencies between 

diplonemid Rhynchopus euleeides and the primordial kinetoplastid clone AT4-103. 
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exhibited more than two percent points difference to guanine, and finally, thymine showed the 

lowest frequency (≤ 22 %), resulting in the pattern G < A < C < T.  

Although the pattern C < T < G < A was observed in SSU rDNA sequences of primordial, 

non-helical phagotrophic euglenids and diplonemids as well as phagotrophic Helicales and a 

primary osmotrophic representative of Aphagea, it does not unite major euglenozoan groups 

necessarily, for morphological characteristics would contradict such a coherence, e.g. 

possession of an ingestion apparatus would reject Distigma, or helical pellicle strips would 

exclude Notosolenus and Ploeotia. Nonetheless, if not for major groups, observed similarities 

and differences in base composition patterns at least constitute an argument for relatedness of 

taxa. Furthermore, in the case that these related taxa were primordial representatives of major 

groups, base composition pattern similarity would indeed be relevant for the phylogeny of 

major euglenozoan lineages. 
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Fig. 5.16: Heptagonal base frequency graph illustrating differences in SSU rDNA base 

composition of phagotrophic Helicales, primordial Distigma proteus representing Aphagea 

and the mixotroph Rapaza viridis. Each base is color coded and base frequency percentages 

are depicted as described in Fig. 5.15. Scale numbers near the spoke of Neometanema 

indicate base frequencies from 20 % to 32 % (from inner to outer heptagon).  
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5.2.2 Identity matrix 

Comparison of whole SSU rDNA sequences was performed using an identity matrix, which 

measured similarities of each pair of sequences within taxon-rich dataset III comprising 1,030 

nucleotide positions in numbers and percentages of identical nucleotides; a table containing 

the identity matrix for all taxa of dataset III is given in the supplementary data (see xlsx-file 

„IdSSU‟ in folder „Supplement‟ on the CD).  

The identity matrix was searched for the most similar SSU rDNA sequences which would 

connect primordial representatives of major euglenozoan lineages best, i.e. the sequence of 

primordial kinetoplastid clone AT4-103 was compared with each sequence in the dataset, then 

the sequence of primordial petalomonad Notosolenus ostium etc., and these sequences were 

combined in an identity matrix graph (Fig. 5.17). As expected, both diplonemid sequences 

displayed the highest value, i.e. 1,022 of 1,030 identical nucleotides which equated to 99.2 % 

similarity. Although the SSU rDNA of kinetoplastid clone AT4-103 shared 802 and 801 

Fig. 5.17: Comparative identity matrix graph illustrating SSU rDNA sequence 

similarity of Ploeotia edaphica, Ploeotia cf vitrea, Keelungia pulex, deepest-branching 

diplonemids, the petalomonad Notosolenus ostium, and the primordial kinetoplastid 

clone AT4-103 based on dataset III. Similarity values are given in percentage of 

identical nucleotides, and in numbers within the central pentagon. Petalomonadida and 

Prokinetoplastida are depicted for reasons of comparability. 
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identical nucleotides with diplonemid sequences, which corresponded to 77.8 % and 77.9 %, 

similarity values of the latter compared to sequences of Ploeotia and Keelungia pulex were 

higher. Intriguingly, the sequence of Ploeotia edaphica revealed the highest similarity to 

diplonemids, for it shared 833 and 831 identical nucleotides with both diplonemid sequences, 

which equated to 80.9 % and 80.7 %. Even similarity values combining sequences of 

phagotrophic Ploeotia cf vitrea, Keelungia pulex and Notosolenus ostium with diplonemid 

sequences (80.3 %, 79.8 % and 79.2 %) surpassed the values of primordial kinetoplastid clone 

AT4-103 considerably. Interestingly, these findings clearly contradicted a sister group 

relationship of Diplonemida and Kinetoplastida which had been observed previously, though 

weakly supported, in maximum likelihood tree reconstructions. Moreover, this outcome 

corroborated results obtained from phylogenetic network analyses, in which monophyletic 

Diplonemida shared common splits with Ploeotia edaphica, Ploeotia cf vitrea and Keelungia 

pulex. 

 

5.2.3 Secondary structure 

For this work, euglenozoan and outgroup SSU rDNA sequences have been aligned according 

to helix numbering and secondary structure information of Saccharomyces cerevisiae which 

was provided by Petrov et al. (2014). Generally, ribosomal DNA is transcripted into 

complementary ribosomal RNA in which the nucleotide uracil (U) is the complementary base 

of adenine instead of thymine. After posttranscriptional modifications the remaining coding 

regions (or more correctly: structural regions) of this rRNA build a secondary structure, 

which then interacts with proteins to become a part of the nascent ribosome. Formation of the 

secondary structure partly depends on base interactions, therefore base changes in ribosomal 

DNA, i.e. transitional or transversional nucleotide substitutions can have profound effects on 

the secondary structure of ribosomal RNAs. Consequently, SSU rDNA sequence differences 

between taxa can be reflected substantially by unique nucleotide substitutions in their 

corresponding secondary structure. A thorough examination of deduced secondary structure 

properties from euglenozoan SSU rDNA sequences confirmed differences and similarities 

which have been observed in the identity matrix analysis (5.2.2).  

A comparison of unique base changes in the putative secondary structure of helix 24 revealed 

that the primordial petalomonad Notosolenus ostium shared a unique substitution with 

Diplonemida, Symbiontida and Ploeotia edaphica, a transitional nucleotide change from 
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cytosine (C) to uracil, which resulted in an uracil/guanine (U/G) base pairing, that differed 

from the complementary cytosine/guanine (C/G) base pairing observed in the outgroup. 

Additional transitions were present in Keelungia pulex and Ploeotia cf vitrea, Keelungia pulex 

featured a base change from C to U in the apex of helix 24 and Ploeotia cf vitrea exhibits a 

base change from guanine (G) to adenine (A), which results in a complementary U/A base 

pairing. Intriguingly, representatives of the Kinetoplastida possess all three described 

transitions without exception. Kinetoplastida varied in two base changes from Diplonemida 

and in three transitional base changes from the outgroup, while Notosolenus ostium, Ploeotia 

edaphica, the Diplonemida and Symbiontida exclusively shared an identical secondary 

structure of helix 24 (Fig. 5.18; for more taxa see Fig. 8.5). Though occurrences of silent 

substitutions or back mutations are possible, other explanations of these findings would 

necessarily dispute the principle of parsimony.  

 

The analysis of deduced SSU rRNA secondary structure of helix 27 revealed that Notosolenus 

ostium and Petalomonas cantuscygni differed from the outgroup in a transversional (G to U) 

and a transitional (G to A) base change. While the primordial kinetoplastid clone AT4-103 

shared the same transversion, it exhibited a transitional base change in another position 

Fig. 5.18: Unique base substitutions specific to major euglenozoan groups and 

primordial phagotrophic euglenids in deduced SSU rRNA secondary structure 

of helix 24. Black arrows depict single base changes between corresponding 

taxa. Malawimonas jakobiformis, jakobid Andalucia incarcerata and deep-

branching Heterolobosea sp. BB2 exemplify outgroup taxa. 
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(U to C), but it also varied in two nucleotides from outgroup taxa. The transversion as well as 

both transitional base changes were present in the Diplonemida, Ploeotia edaphica, Keelungia 

pulex and derived Petalomonadida, which all shared an identical secondary structure of 

helix 27 that showed three nucleotide alterations compared to the outgroup. Other 

Prokinetoplastida and more derived kinetoplastids were distinguished from the primordial 

kinetoplastid clone AT4-103 by other transitional (G to A) and transversional (G to C) base 

changes in completely different positions on the 5‟- strand (Fig. 5.19). Indeed, silent or back 

mutations could have possibly occurred that would contradict the observed equality of 

Diplonemida, Ploeotia edaphica, Keelungia pulex and the derived Petalomonadida, but 

nonetheless, identical helix 27 corroborated results obtained from phylogenetic network 

analyses (5.1.3) and found in comparison of the SSU rDNA identity matrix (5.2.2). Similar 

results were observed in other helices, e.g. helix 13 and helix 33 (see Figs. 8.2 to 8.7). 

One analysis produced two results 

Comparative secondary structure analysis not only enabled to identify homologous positions, 

but also to pinpoint boundaries of variable regions within SSU rDNA sequences. For instance, 

Fig. 5.19: Nucleotide substitution differences between primordial representatives of 

major euglenozoan groups and outgroup taxa in the putative SSU rRNA secondary 

structure of helix 27. Substitution changes are colored and boxed numbers on black 

arrows depict the number of base changes between taxa. The outgroup consists of deep-

branching heteroloboseans and the Jakobida. 
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helix 20 embraces the next three helices and also variable region 4, therefore an analysis 

allowed for comparative examination of nucleotide substitutions and simultaneously for a 

measurement of variable region length variation between taxa (see 5.2.4). Similar to earlier 

results, analysis of helix 20 revealed that Notosolenus ostium, Diplonemida, Ploeotia 

edaphica and Keelungia pulex share an identical secondary structure which diverged from 

outgroup taxa by one substitution (most jakobids and primordial heteroloboseans, not shown). 

More derived Petalomonadida, Ploeotia costata and primordial kinetoplastid clone AT4-103 

each varied in two transitional base changes, all of which involved different nucleotide 

positions (Fig. 5.20). More derived prokinetoplastids deviated by two individual transitions 

from primordial kinetoplastid clone AT4-103. Interestingly, Ploeotia cf vitrea exhibited one 

transversion (A to C), which represented the only base change compared to Ploeotia 

edaphica, Keelungia pulex, the Diplonemida and Notosolenus ostium. The same transversion 

was also present in the assumed primordial symbiontid Bihospites bacati, which differed from 

Ploeotia cf vitrea by a secondary transversional base change (G to C). Similar to earlier 

Fig. 5.20: Nucleotide substitution differences between primordial representatives of 

major euglenozoan groups in deduced SSU rRNA secondary structure of helix 20 that 

constitutes the basis of variable region 4, which is illustrated by a simplified circular 

apex. Nucleotide changes are colored and boxed numbers in arrows depict number of 

base changes between corresponding taxa. 
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results, these findings contradicted a sister group relationship between Kinetoplastida and 

Diplonemida, but confirmed the affiliation of Diplonemida with Ploeotia edaphica and 

Keelungia pulex exemplified by another identical SSU rDNA secondary structure.  

An astonishing feature was discovered in the secondary structure of helix 44, both strands of 

which encompassed the SSU rDNA variable region 9. Distant and close outgroup taxa as well 

as Diplonemida, Symbiontida, primordial kinetoplastid clone AT4-103, and most primordial 

Fig. 5.21: Occurrence of individual nucleotides in outgroup taxa and primordial representatives of 

major euglenozoan groups in the putative secondary structure of helix 44, which embraces 

SSU rDNA variable region 9. Where present, individual nucleotides are colored, a number in the 

apex of each helix summarizes remaining nucleotides of helix 44 including variable region 9. 
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non-helical euglenids, i.e. deep-branching petalomonad Notosolenus ostium, representatives 

of genus Ploeotia and Keelungia pulex, possessed a unique nucleotide in the proximal region 

of the 3‟- strand, which seemed to lack any structural relevance for helix 44 (Fig. 5.21). No 

corresponding nucleotide was present on the complementary 5‟-strand of helix 44 that would 

have constituted an appropriate or reasonable binding partner. Within Euglenozoa, this 

individual nucleotide was neither present in the SSU rDNA sequence of Entosiphon sulcatum 

nor in that of Helicales, i.e. in sequences of Peranema, Neometanema, Dinema, Anisonemida, 

Aphagea and Euglena, respectively (for more taxa see Fig. 8.7 in the Appendix). It was absent 

in derived Petalomonadida and derived Kinetoplastida, but it was present in all Diplonemida 

and Symbiontida. It was found in SSU rDNA sequences of discoban outgroup lineages 

Jakobida and deep-branching Heterolobosea as well as in other excavates (e.g. Malawimonas 

jakobiformis) and in representatives of distant outgroup lineages, e.g. Amoebozoa (Amoeba 

proteus, Chaos nobile), Opisthokonta (e.g. Monosiga brevicollis, Saccharomyces cerevisiae), 

Alveolata (e.g. Paramecium tetraurelia, Tetrahymena thermophila), Rhizaria (e.g. 

Chlorarachnion reptans), Stramenopiles (e.g. Heterosigma akashiwo) and Cryptophyta (e.g. 

Chilomonas paramecium). 

As a phylogenetic implication, the deep-branching position of Entosiphon in Euglenozoa, as 

found in most phylogenetic tree reconstructions, would consequently demand a primary 

absence (in Entosiphon) and an apomorphic evolvement of this individual nucleotide in 

Diplonemida, Symbiontida, primordial Petalomonadida and Kinetoplastida, plus in both the 

latter a secondary absence, and additionally an absence in Helicales. Such a scenario would 

not only be imparsimonious, it would neglect the fact that the individual nucleotide was also 

present in the outgroup. If the occurrence of this individual nucleotide constituted a 

plesiomorphic feature, multiple losses exclusively within derived Petalomonadida, derived 

Kinetoplastida and Entosiphon sulcatum plus Helicales would have followed. Moreover, 

Helicales were the only monophyletic group that primarily lacked this character, and the 

absence of this presumably non-structural nucleotide in Entosiphon would imply relatedness 

to Helicales, which would be the most parsimonious explanation. Therefore, this finding 

indicates affiliation of Diplonemida, Symbiontida, primordial kinetoplastid clone AT4-103 

with non-helical phagotrophic euglenids to the exclusion of Entosiphon and all helical 

phagotrophic euglenids, Aphagea and Euglenea. 
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5.2.4 SSU rDNA variable regions 

As mentioned before, secondary structure analysis enabled to identify exact boundaries of 

SSU rDNA variable regions, which was a prerequisite for the measurement of variable region 

lengths between major groups of the Euglenozoa and outgroup taxa (5.2.3). Interestingly, an 

examination of euglenozoan variable regions has been done only once before, in the context 

of a study which investigated the unusually expanded SSU rDNA sequences of primary 

osmotrophic euglenids (Busse & Preisfeld 2002b). Since that time, the number of available 

euglenozoan SSU rDNA sequences had increased considerably, therefore it was worth to 

reexamine variable regions of SSU rDNA (i.e. V1, V2, V3, V4, V5, V7, V8 and V9) with a 

bigger taxon sampling, especially in respect to phagotrophic euglenids and including 

symbiontids for the first time.  

Initially, length values of taxa related to major euglenozoan groups overlapped in most 

variable regions, which made it problematic to clearly distinguish between these groups (see 

Tab. 8.2 in the Appendix). To circumvent this problem, the data was divided following a 

method of descriptive statistics. Measured variable region length values were sorted 

corresponding to group relatedness, then ranked according to their range and divided into 

quartiles and/or percentiles. For an even number of data points, the lower and upper quartiles 

were determined, thus separating the lowest and highest 25 % from a „centered‟ 50 % of 

group related measured values. For small and uneven numbers of values, an approximate 

calculation was applied to determine the outliers from a narrowed majority of up to 67 % of 

data values. This approach was not based on an exact mathematical framework, for the 

number of taxa differed considerably between subgroups, nonetheless application of this 

quartile (percentile) method facilitated to at least roughly distinct between majority and 

outlier values of group related taxa for reasons of comparability. 

Individual variable regions 

The outgroup taxon Heterolobosea exhibited an extraordinary internal variance in the 

comparative analysis of SSU rDNA variable region 1 (V1) length values, which resembled 

the high diversity of heterolobosean sequences observed in results from spectral analyses of 

SSU rDNA sequences excluding variable regions (see 5.1.2). Most heterolobosean V1 length 

values were > 17 nucleotides (12 out of 16), which noticeably exceeded measured values of 

most Euglenozoa, but significantly those of Petalomonadida, Kinetoplastida, Diplonemida 

and Symbiontida (Fig. 5.22). Though Entosiphon sequences showed the largest V1 length 
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values among non-helical euglenids (34 nucleotides), other non-helical groups revealed length 

variances limited to the range of lower outliers of the Heterolobosea (6 to 17 nucleotides). 

Upper outliers of Kinetoplastida presented V1 sequence lengths > 10 nucleotides, while the 

majority of Petalomonadida exhibited length values between 9 and 14 nucleotides (8 out of 11 

taxa). Interestingly, all Diplonemida as well as most representatives of Symbiontida and 

Ploeotiida displayed smaller V1 length values within a similarly limited range (8 and 9 

nucleotides). Single taxa and major groups of the Helicales exhibited much greater V1 length 

variations than most primordial euglenozoan groups. Within the Helicales, Aphagea showed 

the greatest V1 length variance which ranged from 12 to 40 nucleotides, though half of all 

representatives (6 out of 12) displayed length values of 15 and 16 nucleotides, which matched 

the V1 length variance of most Anisonemida. Peranema sequences displayed the smallest V1 

length value of phagotrophic Helicales, which matched the upper outliers of Ploeotiida and 

Fig. 5.22: Length variations of SSU rDNA variable region 1 among euglenozoan and outgroup taxa. 

Subgroups containing more than 3 sequences are represented by quartiles, i.e. rectangulars contain 

50 % of group related sequences, and upper and lower quartiles are shown as lines above and below 

rectangulars. Single and subgroup taxa are marked by symbol and color: outgroup taxa , 

kinetoplastids , diplonemids , euglenids ; phagotrophic euglenids in red, primary osmotrophic 

euglenids in dark blue, phototrophic euglenids in green, symbiontids in yellow. Abbreviations for 

group names and numbers of representatives are given below the x-axis: A: outgroup, Eukaryota (20 

sequences); B:  outgroup, Excavata; J:  outgroup, Jakobida; Tsu:  outgroup, Tsukubamonas globosa; 

H:  outgroup, Heterolobosea; Pt:  Petalomonadida; K:  Kinetoplastida; D:  Diplonemida; 

Pl:  Ploeotiida; S:  Symbiontida; En:  Entosiphon; Pe:  Peranema; Neo:  Neometanema cf exaratum; 

An:  Anisonemida; Dsu:  Dinema sulcatum; Ap:  Aphagea; Het:  Heteronema scaphurum; 

Rap:  Rapaza viridis; Eu:  Euglenea. Colored lines connecting rectangulars and dashed lines 

connecting single data points are used to better depict length differences between subgroups and taxa. 

 

 



5 Results and Discussion 74 

 

Symbiontida. While length values of Heteronema scaphurum and Dinema sulcatum clearly 

surpassed that of Anisonemida, interjacent V1 sequence of Neometanema cf exaratum was 

situated between that of Anisonemida and Peranema. The V1 length value of Rapaza viridis 

resided within range of upper outliers of the Euglenea. Some taxa could not be included into 

all variable region length analyses due to 5‟-truncated SSU rDNA sequences, e.g. Dinema 

platysomum (V2 to V9) and Neometanema parovale (V4 to V9). 

Examination of length variations in SSU rDNA variable region 3 sequences (V3) provided 

similar results as observed in V1 length analysis, for Heterolobosea displayed an 

extraordinary wide range of length values and by far the highest internal variability. The range 

of kinetoplastid length values exceeded that of all other euglenozoan groups, even that of 

Euglenea, which comprised more taxa than any other group (Fig. 5.23). The centered 50 % of 

Diplonemida and of Petalomonadida exhibited an identical distribution, and the majorities of 

measured length values of Diplonemida and of Petalomonadida matched those of lower 

Fig. 5.23: Length variations of euglenozoan SSU rDNA variable region 3 in contrast to different 

outgroup clades. For detailed description of graph and symbols, see Fig. 5.22. Note that the ordinate 

begins with value 50. A: outgroup, Eukaryota; B: outgroup, Excavata; J: outgroup, Jakobida; 

Tsu: outgroup, Tsukubamonas globosa; H: outgroup, Heterolobosea; K: Kinetoplastida; 

D: Diplonemida; Pt: Petalomonadida; S: Symbiontida; Pl: Ploeotiida; En: Entosiphon; Pe: Peranema; 

An: Anisonemida; Di: Dinema; Neo: Neometanema cf exaratum; Ap: Aphagea; Het: Heteronema 

scaphurum; Rap: Rapaza viridis; Eu: Euglenea. 
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outliers of the Kinetoplastida. An overall increase in V3 length of the lower outliers was 

observed in Heterolobosea (58 nucleotides) and among non-helical euglenozoan taxa, i.e. 

from 60 nucleotides in Kinetoplastida, 63 nucleotides in Diplonemida, 65 nucleotides in 

Petalomonadida, 67 nucleotides in Symbiontida, 68 nucleotides in Ploeotiida to 70 

nucleotides in Entosiphon. Only in variable region 3 the Helicales presented smaller 

variations of length values compared to other Euglenozoa. Among Helicales, Peranema 

displayed the shortest V3 length, and Anisonemida, Dinema, Neometanema cf exaratum, 

Heteronema scaphurum as well as Rapaza viridis showed length values within range of the 

upper outliers of Euglenea, the latter exhibited a higher V3 length variability than Aphagea. 

In length variation comparison of SSU rDNA variable region 9 (V9), Entosiphon and the 

majority of Prokinetoplastida showed smaller values than other non-helical Euglenozoa and 

most Helicales (Fig. 5.24). Moreover, the majority of Petalomonadida and Diplonemida 

shared a rather narrow distribution of similar V9 length values, and although Symbiontida and 

Ploeotiida exhibited a higher variability, length values of most Petalomonadida, Diplonemida 

and Ploeotiida clearly surpassed even those of the upper outliers of Prokinetoplastida. Within 

Fig. 5.24: SSU rDNA variable region 9 length variations of euglenozoan and outgroup taxa. For 

detailed description of graph and symbols, see Fig. 5.22. A: outgroup, Eukaryota; B: outgroup, 

Excavata; J: outgroup, Jakobida; Tsu: outgroup, Tsukubamonas globosa; H: outgroup, 

Heterolobosea; K: Prokinetoplastida; Pt: Petalomonadida; D: Diplonemida; S: Symbiontida; 

Pl: Ploeotiida; En: Entosiphon; Pe: Peranema; An: Anisonemida; Di: Dinema; Neo: Neometanema; 

Ap: Aphagea; Rap: Rapaza viridis; Eu: Euglenea. 
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Helicales, Euglenea showed the highest length variability, for corresponding lower and upper 

outliers displayed V9 length values of 27 and 99 nucleotides, respectively. Peranema, 

Neometanema cf exaratum and lower outliers of Anisonemida presented the smallest V9 

length values, while Dinema sulcatum showed the longest V9 sequence of phagotrophic 

Helicales. Unfortunately, length values of Heteronema scaphurum for variable regions V7, 

V8 and V9 could not be analysed due to its 3‟-truncated SSU rDNA sequence. 

Comparative examination of length variations in individual SSU rDNA variable regions 

revealed profound differences not only between outgroup and euglenozoan taxa, but also 

between major euglenozoan groups, for instance, the high diversity of Heterolobosea which 

had been observed in earlier phylogenetic network and spectral analyses (5.1.2) was also 

found in SSU rDNA variable regions. As a result, in most variable regions examined, length 

values of Kinetoplastida considerably differed in range and variability from length values of 

the Diplonemida. Furthermore, diplonemid variable region length values usually resembled 

those of most Petalomonadida, i.e. in V2, V3, V4 and V9, Symbiontida in V7 and V8, as well 

as Ploeotiida in V1 (for graphs of other variable regions see Figs. 8.8 to 8.10). While most 

taxa of the Helicales generally exhibited longer variable region sequences than other 

Euglenozoa, length variability of the Aphagea exceeded those of other examined groups in 

most, but not all variable regions, i.e. in V2, V4, V5, V7 and V8. Mostly, Heteronema 

scaphurum displayed the longest variable region sequences among phagotrophic Helicales, 

i.e. in V1, V2, V4 and V5. While variable region sequences of Peranema were the shortest 

among phagotrophic Helicales in V1, V2 and V3, lower outliers of Anisonemida showed 

smallest length values in V5 and V7, whereas Neometanema and Dinema sequences exhibited 

smallest length values in V4 and V8, respectively. However, even the smallest length values 

related to representatives of the Helicales were situated in range of non-helical taxa in all 

cases.  

Concatenated variable regions 

Group specific differences of variable region length became even more apparent when 

surveyed in summary. In the context of this work, variable region sequences of individual 

taxa were concatenated to gain insight into absolute length values of euglenozoan SSU rDNA 

variable regions and appendant phylogenetic implications.  

A comparison of absolute length values of Aphagea with those of other Helicales revealed 

that Heteronema scaphurum was the only phagotrophic taxon among Helicales which 
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possessed a variable region sequence of nearly similar length to those of primordial aphagean 

taxa Distigma sennii and Distigma proteus. Although the truncated SSU rDNA sequence of 

Heteronema scaphurum lacked nucleotides covering regions V7, V8 and V9, its sequences 

related to V1, V2, V3, V4 and V5 surpassed by far corresponding length values of any other 

phagotrophic taxon within the Helicales (Fig. 5.25). This finding was inconsistent with results 

obtained from identity matrix comparison, in which Neometanema cf exaratum exhibited a 

higher SSU rDNA sequence similarity to taxa from the Distigma proteus group (presumed 

primordial representatives of Aphagea) than Heteronema scaphurum (see Fig. 8.1). Though 

phylogenetic implications are not beyond question due to incompleteness of the Heteronema 

scaphurum SSU rDNA sequence, its extraordinary long variable regions put the 

aforementioned representative of phagotrophic Helicales closest to Aphagea. 

The survey of concatenated SSU rDNA variable regions also revealed a striking similarity 

between sequence length values of Diplonemida and Petalomonadida, in fact concerning 

absolute as well as standardized length values, which both differed clearly from those of 

Kinetoplastida. While summarized diplonemid variable region sequences shared very similar 

length values in a narrow distribution, kinetoplastid taxa showed wider distributed length 

values which varied from shorter sequences of Prokinetoplastida, i.e. primordial kinetoplastid 

clone AT4-103, to much longer variable regions of more derived Kinetoplastida, i.e. Crithidia 

Fig. 5.25: Concatenated SSU rDNA variable region graph illustrating absolute 

variable region sequence length values of Aphagea in comparison to 

phagotrophic taxa of the Helicales. Variable regions are displayed by 

equivalent segments (from dark to light-colored), taxa of the Aphagea in blue, 

phagotrophic Helicales in purple and Heteronema scaphurum in red. The 

arithmetic means of V7, V8 and V9 length values from other phagotrophic 

Helicales were used to hypothetically display missing values of Heteronema 

scaphurum (uncolored segments). 
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fasciculata and Trypanosoma brucei (Fig. 5.26). As a result, the Kinetoplastida displayed an 

overall increase in variable region length considering widely accepted hypotheses on the 

phylogeny of Kinetoplastida, namely that Prokinetoplastida are primordial to free-living taxa 

and human-parasitic genera like Trypanosoma and Leishmania (Deschamps et al. 2011, 

Doležel et al. 2000, Moreira et al. 2004, Simpson et al. 2002). Ploeotiida exhibited the highest 

variability, for variable region length of Ploeotia costata widely surpassed those of 

Trypanosoma brucei and Entosiphon sequences. Additionally, concatenated variable region 

sequences were standardized to investigate relative proportions of variable region length 

values. Likewise to absolute variable region length values, standardized variable regions also 

showed nearly identical proportions of individual variable region length in Diplonemida and 

Petalomonadida (Fig. 8.13). These findings corroborated results from phylogenetic network, 

identity matrix and secondary structure analyses of SSU rDNA sequences which contradicted 

a sister group relationship of Kinetoplastida and Diplonemida. 

Fig. 5.26: SSU rDNA variable regions graph demonstrating absolute variable region lengths of non-

helical phagotrophic euglenids compared to Diplonemida, Symbiontida and Kinetoplastida. Analogous 

variable regions V1 to V9 are displayed in greyish segments (from dark to light-colored). 
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5.3 Phylogenetic analyses of LSU rDNA sequences 

5.3.1 Broad dataset IV 

Results from Maximum likelihood and Bayesian inference analyses of LSU rDNA dataset IV 

showed strong discrepancies between ML and BI tree topologies. Most of the newly obtained 

sequences fitted adequately well into the trees, though some of which branched in positions 

that differed to those previously observed in results from SSU rDNA analyses (Fig. 5.27). 

Monophyly of Euglenozoa was firmly supported, Notosolenus ostium represented the deepest-

branching taxon in both trees, but Petalomonas cantuscygni formed the sister taxon of 

Diplonemida, thus rendering Petalomonadida paraphyletic. Kinetoplastida as well as 

Diplonemida appeared as monophyla with maximum statistical support, the latter including 

new LSU rDNA sequences of Rhynchopus euleeides (ATCC 50226) and Diplonema 

ambulator (ATCC 50223). As observed in SSU rDNA based trees, the LSU rDNA sequence 

of Entosiphon sulcatum exhibited the longest branch of all taxa, but interestingly it branched 

as strongly supported sister taxon of Ploeotia costata in the ML tree (Fig. 5.27 A). A 

tetrafurcation including Petalomonas cantuscygni, Entosiphon sulcatum, Diplonemida and 

Kinetoplastida represented the predominant deviation in the BI trees. Ploeotia costata 

appeared as very good supported sister taxon of robustly supported monophyletic Helicales. 

Within the Helicales, Aphagea and Euglenea both formed monophyla with maximum support 

while Peranema trichophorum appeared as firmly supported sister taxon of Euglenea. 

Exclusion of long-branching Entosiphon sulcatum had no effect on the ML tree topology, but 

as a result, statistical support for the position of Kinetoplastida as well as the 

Petalomonas/Diplonemida clade was considerably weakened in the reiterated ML tree and 

Ploeotia costata was confirmed as sister taxon of Helicales in the reiterated BI tree with 

average support (Fig. 5.27 B). Curiously, phylogenetic network analysis of unmodified 

dataset IV confirmed paraphyletic Petalomonadida and the corresponding split support 

spectrum showed nonsense groupings of euglenozoan taxa supported by compatible splits, 

e.g. Peranema trichophorum with Notosolenus ostium or outgroup taxa with Petalomonas 

cantuscygni (Figs. 8.14 and 8.15). These findings revealed that the rather broadly sampled 

outgroup taxa had a remarkably strong impact on the relatively few euglenozoan LSU rDNA 

sequences. For instance Naegleria gruberi, representing a relatively derived member of 

Heterolobosea, exemplified the only heterolobosean sequence in the dataset and therefore an 

inept outgroup taxon. To complicate matters, any other outgroup taxon represented 

evolutionary more distant clades without group-specific substitution patterns (see „DItestLSU‟ 
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Fig. 5.27: Consensus trees obtained from analyses of LSU rDNA dataset IV comprising 2,406 nucleotides 

with new sequences boxed. For taxon sampling see Tab. 4.5. Congruent posterior probabilities are mapped 

onto the Maximum likelihood trees and displayed above, ML bootstrap support values below 

corresponding nodes; discrepancies to Bayesian inference are hyphenated. Scale bars represent 20 % 

sequence divergence. A: Results involving 44 taxa including Entosiphon, half of the original branch length 

depicted (GTR+Γ+I, -lnL = 53487.22, gamma shape = 0.411, p-invar = 0.101). B: Results from reiterated 

analyses excluding Entosiphon (GTR+Γ+I, -lnL = 48439.24, gamma shape = 0.435, p-invar = 0.101). 
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 in folder „Supplement‟ on the CD). To avoid undesirable effects on ingroup taxa which may 

have been caused by unsuitably distant, i.e. evolutionary broadly sampled outgroup taxa, 

phylogenetic network and spectral analyses were reiterated with the most stable outgroup, i.e. 

the Opisthokonta, and without outgroup taxa. As a result, the splits support spectrum 

demonstrated coherent compatible splits referring to euglenozoan taxa and incompatible splits 

which exclusively represented nonsense correlations and stood in conflict with a binary tree 

(Fig. 5.28). Intriguingly, a combination of Kinetoplastida and Ploeotia costata recovered 

compatible splits. Reiterated phylogenetic network analysis of modified dataset IV produced 

monophyletic Diplonemida, Kinetoplastida, Aphagea and Euglenea (Fig. 5.29 A). 

Notosolenus ostium and Petalomonas cantuscygni shared common splits, thus resulting in 

monophyletic Petalomonadida. Interestingly, Petalomonadida and Diplonemida shared 

common splits as well in the spectral analysis (column 26 in Fig. 5.28). Ploeotia costata and 

Entosiphon sulcatum grouped together supported by mutual splits (red arrow in Fig. 5.29 B). 

This network topology was replicated when using Opisthokonta as a stable outgroup (not 

shown), for this outgroup branched between Petalomonadida and Kinetoplastida without any 

Fig. 5.28: Split support spectrum comprising the 50 best splits of modified dataset IV with 

Opisthokonta as outgroup. Compatible splits referring to euglenozoan groups and taxa are 

marked by black arrows above, those referring to derived euglenozoan groups below the 

graph. Conflicting splits represent nonsense correlations of outgroup or euglenozoan taxa, 

e.g. Peranema trichophorum and Notosolenus ostium (column 14). 
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Fig. 5.29: Neighbor-net graph of modified LSU rDNA dataset IV after exclusion of outgroup taxa. 

Network splits supporting major groups are colored. A: Network overview displaying terminal 

splits. The scale bar represents 2 % sequence divergence. B: Detailed center view. The red arrow 

marks common splits of Ploeotia costata and Entosiphon sulcatum, a grey arrow accentuates splits 

which unite Diplonemida with Petalomonadida, the white arrow highlights splits supporting 

monophyletic Helicales. The scale bar depicts 1 % divergence. 
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changes to network topology or splits support for monophyletic ingroup taxa, as demonstrated 

in the corresponding spectral analysis (Fig. 5.28).  

These findings revealed problems regarding choice of outgroup taxa, but of dissentient quality 

as observed in results from SSU rDNA analyses (see section 5.1.2). Similar to SSU rDNA 

results, analyses of LSU rDNA dataset IV confirmed the monophyly of major euglenozoan 

groups, i.e. Diplonemida, Kinetoplastida, Aphagea and Euglenea. Additionally, the 

monophyly of Helicales, representing a euglenid crown group, was confirmed in network and 

spectral analyses. More importantly, no splits were found which supported a sister group 

relationship of Diplonemida and Kinetoplastida, nor a monophyletic assemblage of 

Euglenida, for LSU rDNA sequences of Petalomonadida demonstrated a higher affinity to 

Diplonemida than to other Euglenida, which was affirmed by network analyses and splits 

support (Fig. 5.29 B). 

 

5.3.2 Strict dataset V 

To further investigate euglenozoan LSU rDNA genealogy, another possible taxon sampling 

was used which included more primordial representatives of Kinetoplastida than 

trypanosomes, i.e. Bodo saltans, Neobodo saliens and Dimastigella mimosa. Hence data was 

limited for these taxa, LSU rDNA regions had to be taken into consideration, which were not 

available for all euglenozoan subgroups. In particular, nucleotide sequences of Aphagea could 

not be included into the new dataset. Subsequent to formation of LSU rDNA dataset V, 

criteria regarding dataset construction which have been formulated by Castresana (2000) were 

modified and applied to aligned LSU rDNA sequences: firstly, alignment positions in which 

any sequence contains a gap, and secondly, alignment positions in which all sequences 

included identical nucleotides were strictly eliminated from the alignment. Though Castresana 

originally conceptualized much more restrictive criteria, the unmodified employment of those 

would have had too constrictive consequences, since dataset V covered merely a small region 

of LSU rDNA and included 862 nucleotides.  

Maximum likelihood and Bayesian inference analyses of dataset V resulted in maximal 

supported monophyletic Euglenozoa, but the basal euglenozoan radiation formed a tetra-

furcation which produced four separate branches of unassured position: (1) monophyletic 

Petalomonadida appeared as sister clade to monophyletic Diplonemida with average support, 
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(2) maximal supported monophyletic Kinetoplastida, (3) Entosiphon sulcatum, and (4) 

Ploeotia costata formed the sister taxon of a Peranema/Euglenea clade with good support 

(Fig. 5.30 A). As a result, initial tree topology from reiterated ML and BI analyses without 

Fig. 5.30: Consensus trees obtained from ML and BI analyses of dataset V comprising 862 nucleotide 

positions with new sequences boxed. Congruent posterior probabilities are mapped onto ML trees and 

displayed above, ML bootstrap support values below corresponding nodes; discrepancies to Bayesian 

inference are hyphenated. Scale bars represent 20 % sequence divergence. A: Results including 

Entosiphon sulcatum, half of the original branch length depicted (GTR+Γ+I, -lnL = 11016.92, gamma 

shape = 0.586, p-invar = 0.113). B: Results from reiterated analyses excluding Entosiphon sulcatum LSU 

rDNA sequence (GTR+Γ+I, -lnL = 10250.45, gamma shape = 0.599, p-invar = 0.131). 
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long-branching Entosiphon sulcatum was retained, while statistical support for the fourth 

clade increased substantially, i.e. Ploeotia costata was confirmed as sister taxon of the 

Peranema/Euglenea clade with a posterior probability (PP) of 0.98 and 95 bootstrap support 

(BS) instead of 0.97 PP and 71 BS (compare Fig. 5.30 A/B). Taxon sampling of dataset V 

included presumably primordial kinetoplastid taxa (sensu Deschamps et al. 2011 and Doležel 

et al. 2000), but those branched as derived kinetoplastids from paraphyletic trypanosomatids 

in ML and BI trees. Though the positions of major euglenozoan clades remained unclear due 

to a tetrafurcation in the original and a trifurcation in reiterated trees, the sister group 

relationship of Petalomonadida and Diplonemida received fair bootstrap support (66 and 64) 

and very good posterior probability values (0.93 and 0.94). Furthermore, evolutionary 

divergence estimates between groups revealed that Petalomonadida and Diplonemida are the 

nearest relatives among examined major groups of Euglenozoa. 

Tab. 5.4: Estimates of average evolutionary divergence over sequence pairs 

between euglenozoan taxa and the outgroup in dataset V. Divergence estimates are 

shown below, corresponding standard deviations above the diagonal. 

No. Taxon 1 2 3 4 5 6 7 8 9 

1 Euglenea - 0,044 0,078 0,044 0,049 0,041 0,058 0,058 0,045 

2 Peranema trichophorum 0,437 - 0,086 0,054 0,048 0,050 0,063 0,063 0,049 

3 Entosiphon sulcatum 0,673 0,676 - 0,072 0,070 0,058 0,084 0,083 0,064 

4 Ploeotia costata 0,430 0,492 0,574 - 0,045 0,040 0,058 0,057 0,044 

5 Petalomonadida 0,480 0,464 0,602 0,412 - 0,029 0,048 0,048 0,034 

6 Diplonemida 0,409 0,450 0,514 0,356 0,295 - 0,042 0,041 0,025 

7 bodonids 0,543 0,529 0,666 0,501 0,454 0,393 - 0,008 0,041 

8 trypanosomatids 0,535 0,529 0,659 0,498 0,460 0,389 0,050 - 0,040 

9 outgroup 0,453 0,462 0,561 0,406 0,347 0,257 0,389 0,375 - 

 

Neighbor-net analyses of strict LSU rDNA dataset V approved the monophyly of Euglenozoa 

and major euglenozoan clades, i.e. Diplonemida, Petalomonadida, Kinetoplastida and 

Euglenea (Fig. 5.31 A). Interestingly, Ploeotia costata and Entosiphon sulcatum shared 

common splits in the network graph, which emerged as the third best set of splits in the 

corresponding spectral analysis (split 3 in Fig. 5.32 A). Peranema trichophorum formed the 

sister taxon of Euglenea and this clade represents monophyletic Helicales in a light taxon 

sampling supported by common splits. Intriguingly, Diplonemida and Petalomonadida shared 

mutual splits (Fig. 5.31 B), which corroborated findings from ML as well as BI trees, 

phylogenetic network and spectral analyses of dataset IV. No splits were found that would 

have supported a sister group relationship of Kinetoplastida and Diplonemida. After exclusion 

of Entosiphon’s LSU rDNA sequence, Ploeotia costata solely shared common splits with the 

Peranema/Euglenea clade, in the network graph and splits support spectrum (Fig. 5.32 B, split  



5 Results and Discussion 86 

 

 

Fig. 5.31: Neighbor-net graph of dataset V comprising euglenozoan and outgroup taxa. 

Network splits supporting monophyletic clades are colored. The scale bar represents 2 % 

sequence divergence. A: Network overview displaying terminal splits. B: Detailed center 

view. Splits supporting monophyly of the Peranema/Euglenea clade (Helicales) are marked 

by a grey arrow, and a white arrow highlights common splits uniting Petalomonadida and 

Diplonemida. 
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21). Exclusion of the outgroup exhibited no changes to network topology, i.e. Diplonemida 

grouped together with Petalomonadida, supported by mutual splits (Fig. 8.16).  

Finally, these findings revealed a deforming impact of distant outgroup taxa on LSU rDNA-

based euglenozoan phylogeny, which was conditioned by an unsuitable outgroup taxon 

sampling, for only limited LSU rDNA sequences of Euglenozoa and inappropriately few, 

phylogenetically highly derived outgroup sequences were available at present time. 

Fig. 5.32: Split support spectrum of LSU rDNA dataset V. Compatible splits supporting 

monophyletic euglenozoan clades and outgroup taxa are marked by black arrows above, those 

referring to internal branches below the graph. All other splits are related to nonsense 

groupings of euglenozoan taxa with outgroup or euglenozoan taxa only. Helicales comprises 

the Peranema/Euglenea clade from Fig. 5.31. A: Spectrum of unmodified dataset V. B: Splits 

support spectrum of dataset V excluding long-branching Entosiphon sulcatum sequence. 
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Nonetheless, results from LSU rDNA analyses confirmed significant findings concerning the 

understudied LSU rDNA genealogy of Euglenozoa: (1) the monophyly of major euglenozoan 

groups, i.e. Diplonemida, Kinetoplastida, Petalomonadida, Aphagea and Euglenea, confirmed 

findings from prior SSU rDNA analyses; (2) monophyletic Helicales represented the euglenid 

crown group in LSU rDNA and in SSU rDNA genealogy; (3) the absence of phylogenetic 

signal in euglenozoan LSU rDNA sequences, which would have provided support for a sister 

group relationship of Diplonemida and Kinetoplastida; (4) Diplonemida and Petalomonadida 

formed a clade in phylogenetic tree and network analyses, validated by statistical and splits 

support; (5) the absence of a phylogenetic signal which would have supported the monophyly 

of Euglenida corroborated results from preliminary SSU rDNA analyses and those found by 

Busse & Preisfeld (2003a). Modified criteria after Castresana (2000) were used as prerequisite 

for formation of a strict LSU rDNA-based dataset including presumably primordial bodonids, 

the analysis of which confirmed aforementioned findings, but also created second thoughts 

about the position of bodonids and trypanosomatids within Kinetoplastida. Phylogenetic 

implications of these important results combined with results from SSU rDNA analyses affect 

the Euglenozoa as a whole and are concluded in chapter 6. 

 

5.4 LSU rDNA nucleotide sequence analyses 

5.4.1 Base composition 

Analysis of euglenozoan LSU rDNA nucleotide composition revealed striking similarities 

between Diplonemida and Petalomonadida: both groups exhibited congeneric nucleotide 

percentages as well as identical base frequency patterns, which considerably differed from 

that of other euglenozoans, e.g. Kinetoplastida and Eutreptiales. Outgroup LSU rDNA 

sequences displayed the highest percentages of adenine (A) and thymine (T) and reciprocally 

the lowest values of cytosine (C) and guanine (G), while the sequences of genus Eutreptiella , 

Euglena gracilis and Ploeotia costata showed obverse base percentages (Tab. 8.3). Base 

frequencies of Notosolenus ostium, Petalomonas cantuscygni, Diplonema ambulator, 

Diplonema papillatum and Rhynchopus euleeides were composed of the nucleotide pattern 

T < C < A < G. Nucleotide frequencies in LSU rDNA sequences of the supposedly primordial 

kinetoplastids Bodo saltans and Dimastigella mimosa featured a G-A shift and followed the 

pattern T < C < G < A, with a comparatively narrow distribution of T/C and G/A percentages, 

whereas Neobodo saliens exhibited the pattern C < T < G < A (Fig. 5.33). This finding 
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corroborated results obtained by phylogenetic analyses of LSU rDNA sequences, which 

proposed a close relationship of Petalomonadida and Diplonemida. 

Multiple nucleotide shifts were observed in base frequencies of other euglenozoan taxa, i.e. 

Ploeotia costata, Entosiphon sulcatum, Peranema trichophorum and Eutreptiales compared to 

Petalomonadida. Ploeotia costata revealed the highest cytosine percentage and Peranema 

trichophorum the highest thymine percentage of all LSU rDNA sequences examined 

(Tab. 8.3). Intriguingly, Peranema trichophorum and Eutreptia viridis exhibited an identical 

base pattern, i.e. C < T < A < G, which differed completely from those observed in LSU 

rDNA sequences of other Eutreptiales, for Eutreptiella braarudii and E. pomquetensis both 

constituted pattern T < A < C < G (Fig. 5.34). However, if Peranema trichophorum was a 

relative of Eutreptia viridis, this would contradict previous results from phylogenetic 

analyses. These findings demonstrate a comparatively high variability of base frequencies 

between primordial petalomonad and presumably more derived LSU rDNA sequences of 

phagotrophic Ploeotia costata, Entosiphon sulcatum, Peranema trichophorum and 

phototrophic Eutreptiales. 

30 28 26 24 22 20 

Fig. 5.33: Octagonal base frequency graph visualizing base composition differences in LSU 

rDNA of Petalomonadida, Diplonemida and Kinetoplastida. Each base is color coded as shown in 

the legend to the lower right, and base frequency percentages are depicted by connected lines in a 

spider web-like arrangement along radials which represent LSU rDNA sequences of different 

taxa. A scale along the radius of Rhynchopus euleeides indicates a base frequency percentage of 

20 % to 30 % (from inner to outer octagon). Black arrows highlight the distinct shift in G-A 

frequencies observed in presumably primordial kinetoplastid sequences sensu Deschamps et al. 

(2011) and Doležel et al. (2000). 
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5.4.2 LSU rDNA length comparison 

Nucleotide sequence alignment according to secondary structure features was a prerequisite 

for identification of LSU rDNA domain boundaries and thereby allowed for exact length 

measurement of homologous sequences. New LSU rDNA sequences of phagotrophic 

euglenids and diplonemids which were obtained in the scope of this work largely increased 

the number of available euglenozoan taxa. A comparative survey of partial euglenozoan and 

outgroup LSU rDNA sequences revealed group-specific lengths of deduced LSU rRNA 

domains II to V (Fig. 5.35). Diplonemida exhibited rather uniform LSU rDNA sequence 

lengths of about 2,250 nucleotides (nt), which represented the smallest value of all 

Euglenozoa examined. Kinetoplastids showed more variable length values of about 

> 2,700 nt, i.e. Crithidia fasciculata presented the smallest and Leishmania major the largest 

value of 3,000 nt. Sequence lengths of phagotrophic euglenids lay in between, Petalomonas 

cantuscygni unveiled the most similar LSU rDNA sequence length to that of diplonemids. 

Phototrophic euglenids overall exhibited larger LSU rDNA sequences and Eutreptiella 

braarudii showed the longest LSU rDNA of all examined taxa (> 3,400 nt).  
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Fig. 5.34: Octagonal base frequency graph displaying multiple shifts in LSU rDNA base frequencies 

of Ploeotia costata, Entosiphon sulcatum, Peranema trichophorum and Eutreptiales compared to 

Petalomonadida. A scale along the radius of Ploeotia costata indicates a base frequency percentage 

of 20 % to 40 % (from inner to outer octagon). Black arrows highlight individual shifts: 1: of A-C 

frequencies in Ploeotia costata; 2 and 3: of T-C frequencies in Peranema and Eutreptia sequences; 

4: of A-C frequencies in the genus Eutreptiella. 
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A comparison of LSU rDNA sequence proportions also disclosed group-specific length 

polymorphisms regarding the size of individual LSU rDNA domains, e.g. relative domain I 

and III length of kinetoplastids exceeded those of diplonemids and Petalomonas cantuscygni, 

while reciprocally, relative domain II and V lengths of Petalomonas cantuscygni and 

Diplonemida surpassed that of Kinetoplastida (Fig.8.17). 

Although these findings clearly constituted a major group-specific length polymorphism of 

euglenozoan LSU rDNA sequences, this matter must be treated with caution, for present 

taxon sampling cannot be regarded satisfying: the Kinetoplastida are solely represented by 

(presumably derived) trypanosomatids and more taxa from other euglenozoan groups, e.g. 

Aphagea, Anisonemida and Ploeotiida, should be investigated to validate or falsify this 

hypothesis. Albeit findings from LSU rDNA phylogenetic analyses could challenge widely 

accepted SSU rDNA based hypotheses on kinetoplastid evolution, results from sequence 

Fig. 5.35: Group-specific length polymorphism of euglenozoan LSU rDNA sequences compared to 

outgroup taxa. Taxa which LSU rDNA sequences were obtained in the scope of this work are 

marked by an asterisk. Sequences of deduced LSU rRNA domains II, III, IV and V were 

concatenated and are depicted in analogously colored bars, representatives of major groups are color-

coded: phototrophic euglenids green, phagotrophic euglenids light-grey, Diplonemida blue, 

Kinetoplastida red and outgroup taxa dark-grey.  
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length comparison nonetheless affirmed a close relationship of Petalomonadida and 

Diplonemida as observed in previous phylogenetic and nucleotide sequence analyses. 

 

5.4.3 Secondary structure 

Euglenozoan and outgroup LSU rDNA sequences have been aligned according to secondary 

structure information of Saccharomyces cerevisiae provided by Petrov et al. (2013). Like in 

SSU rDNA (5.2.3), differences in LSU rDNA sequences are substantially reflected by unique 

nucleotide substitutions in their corresponding secondary structure. Therefore, secondary 

structure properties of deduced euglenozoan LSU rDNA sequences were investigated in the 

search for unique features. But LSU rDNA sequences include more components than SSU 

rDNA, because two internal transcribed spacers separate 5.8S and 28S structural regions. 

Consequently, LSU rDNA sequences contain more measurable information than SSU rDNA 

sequences. An incisive anomaly was discovered in examination of deduced LSU rRNA 

helix 10, which embodies the downstream coalescence of 5.8S and 28S ribosomal DNAs. The 

5‟-strand of helix 10 represent the 3‟-end of 5.8S rDNA, whereas the 3‟-strand of helix 10 is 

formed by the 5‟-end of 28S rDNA and both rDNA strands encompass internal transcribed 

spacer 2. Discrepancies regarding the boundaries of this transition zone were found in 

annotations of some outgroup LSU rDNA sequences as well as in those of Euglena gracilis 

and Diplonema papillatum, which were available for download on NCBI‟s nucleotide 

database homepage. Since deduced LSU rRNA secondary structure of helix 10 includes 

complementary base pairs, nucleotides of ITS2 region usually do not form matching base 

pairs. For instance, following given annotation of Besnoitia besnoiti‟s LSU rDNA, the 3‟-

strand of its assigned ITS2 would prevent the existence of helix 10, although deduced 

secondary structure of that sequence revealed a stable pairing of at least 15 base pairs with the 

complementary 3‟-end of its 5.8S region (Fig. 5.36). Such discrepancies between annotated 

and deduced boundaries have been found in other taxa as well, and could arise when 

comparison of aligned sequences is used for annotation without regarding secondary structure 

information. But since the ITS2 sequence is not present in the nascent ribosomal RNA, this 

transition zone is posttranscriptionally processed in many steps. Therefore, when sequenced 

from RNA, such discrepancies could possibly represent different stages of ribosomal RNA 

maturation, which have been isolated in dissentient moments of posttranscriptional processing 

of the RNA molecule. This unsettling finding needs further examination to assure reliability 

of sequence data for molecular research. 
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While helix 10 encompassed ITS2, inferred LSU rRNA helix 2 represented the ribosomal 

transition zone involving ITS1 which separates 18S from 5.8S rDNA. Limitations of both 

transition zones allowed for length comparison of ITS sequences. Euglena gracilis displayed 

by far the longest ITS1 sequence of all taxa investigated, more than two times longer than 

those of Ploeotia costata or Peranema trichophorum, and the phagotrophic euglenid 

Notosolenus ostium possessed the shortest ITS1 of all examined taxa (Fig. 5.37 A). The ITS1 

length of Bodo saltans lay within length variance of diplonemids, while that of Notosolenus 

ostium was shorter and that of Petalomonas cantuscygni significantly longer. Like 

phagotrophic euglenids, kinetoplastid taxa exhibited a high variability of ITS lengths, e.g. 

trypanosomatids showed the longest ITS2 sequences of all taxa examined, while that of Bodo 

saltans was much shorter (Fig. 5.37 B). The shortest ITS2 sequence was found in Diplonema 

Fig. 5.36: Discrepancies between concluded secondary structure of LSU 

rRNA helix 10 (after Petrov et al. [2013]) and given annotations of the 

ribosomal 5.8S – ITS2 – 28S transition zone as observed in outgroup and 

euglenozoan taxa. Dashed red lines depict annotated boundaries of the 

transition zone. Numbers in apices represent individual length of ITS2 in 

nucleotides. 
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papillatum, but those of other diplonemids taxa were significantly larger. This conspicuous 

deviation from uniformity, which usually characterized Diplonemida, could be a result of 

aforementioned discrepancy conditioned by diverse stages of ribosomal RNA maturation and 

further sequencing of more taxa could rectify this ambiguity. Disregarding Diplonema 

papillatum, ITS2 lengths of Petalomonadida are more similar to that of residual Diplonemida 

than those of kinetoplastids. Concatenation of ITS sequences revealed, that Notosolenus 

Fig. 5.37: Internal transcribed spacer sequences graph illustrating different absolute ITS 

sequence length of euglenozoan taxa. Nucleotide sequences obtained in the scope of this work 

are marked by an asterisk. Representatives of major groups are color-coded: Euglena gracilis 

green, phagotrophic euglenids red, Aphagea dark-blue, Diplonemida light-blue and 

Kinetoplastida light-red. A: Length values of ITS1 sequences, note that the ITS1 sequence of 

Euglena gracilis was shortened. B: Absolute length values of ITS2 sequences. 

 

A 

B 
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ostium and Entosiphon sulcatum exhibited ITS length values which lay within length variance 

of Diplonemida (Fig. 8.18 A). While ITS lengths of trypanosomatids by far exceeded that of 

Bodo saltans, the latter was merely longer than that of diplonemids. Although proportions of 

ITS length values showed an unexpectedly high variability, no group-specificity could be 

found in proportion comparison (Fig. 8.18 B). 

Unique substitutions 

Conversion of euglenozoan LSU rDNA sequences into their putative secondary structures led 

to the discovery of group-specific unique nucleotide substitutions. For instance, a single 

thymine (uracil in RNA) was found in the LSU rDNA of Bodo saltans which had no 

complementary binding partner nucleotide in the deduced secondary structure of helix 10. 

Moreover, Crithidia fasciculata and Leishmania major both possessed each another and 

Trypanosoma brucei even two additional thymines which apparently had no binding partner 

Fig. 5.38: Deduced LSU rRNA secondary structure of helix 10. Group-specific unique 

substitutions of Kinetoplastida are marked by light-red arrows, those of Aphagea by blue 

arrows. Numbers in apices represent individual ITS2 sequence lengths. 
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nucleotides on the complementary 3‟-strand of helix 10 (Fig. 5.38). These unique nucleotide 

additions present in the 5‟-strand of helix 10 represented group-specific base substitutions 

within Kinetoplastida, which were inexistent at that homologous position in any other taxon 

examined. One more potentially unique substitution for Kinetoplastida was found in putative 

LSU rDNA helix 61 (Fig. 8.19). Another nucleotide addition was detected in Astasia curvata 

and Rhabdomonas costata both exhibited an additional thymine on the 3‟-strand of helix 10 

without a binding partner nucleotide on the complementary 5‟-strand (Fig. 5.38). As a result, 

this substitution can be regarded as potentially group-specific nucleotide addition for the 

Aphagea, but further sequencing of more taxa will be needed to validate this finding.  

LSU rDNA sequences of Helicales contained exclusive nucleotide substitutions in their 

inferred secondary structure as well. A thymine (uracil in RNA) was detected on the 5‟-strand 

of helix 91 of Peranema trichophorum, and in the very same position (homologous) cytosines 

were found in the LSU rDNA of Aphagea and Euglenea, all of which had no feasible binding 

Fig. 5.39: Group-specific nucleotide substitutions for the Helicales as discovered in concluded 

secondary structure of LSU rRNA helix 91. Unique substitutions are highlighted by purple arrows 

and were found in Peranema trichophorum, Aphagea, Eutreptiales and Euglena gracilis, which all 

together represent the Helicales. 
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partner nucleotides on the complementary 3‟-strand of helix 91 (Fig. 5.39). Although these 

exclusive nucleotide substitutions in helix 91 were group-specific for Helicales, more LSU 

rDNA sequences of Helicales, especially those of phagotrophic Helicales like Anisonemida or 

genera Dinema, Heteronema and Neometanema, need to be sequenced to validate this finding. 

Nonetheless, results obtained from secondary structure analysis of helix 91 revealed 

homologous additional nucleotide additions in taxa which all belong to diverse subgroups of 

the Helicales, i.e. Aphagea, Eutreptiales, Euglenales and Peranema trichophorum as 

individual phagotrophic representative, which corroborated previous findings from 

phylogenetic as well as spectral analyses and validated the identity of Helicales. 

Conserved positions 

Finally, secondary structure analysis was used to search for homologous positions in the 

bigger part of euglenozoan LSU rDNA. Therefore, highly conserved nucleotides in 

euglenozoan LSU rDNA were identified during the alignment process and then mapped onto 

a chart of the LSU rRNA secondary structure model of Saccharomyces cerevisiae, which was 

provided by Petrov et al. (2013). Thereby, ITS insertion points of kinetoplastid taxa were 

compared with those of Euglena gracilis in the bigger part of LSU rDNA, i.e. downstream 

sequence regions involving ITSs 13 and 14 of Euglena gracilis were not considered due to 

alignment ambiguities which were caused by an insufficient number of taxa. Kinetoplastid 

sequences included LSU rDNA sequences of Crithidia fasciculata, Trypanosoma brucei and 

Leishmania major, examined diplonemid LSU rDNA sequences were those of Diplonema 

ambulator, Diplonema papillatum and Rhynchopus euleeides. As a result, besides ITS1 and 

ITS2 regions, (1) no other ITSs were found in examined LSU rDNA sequences of 

diplonemids, (2) two exclusive ITS insertion points were existent in kinetoplastid sequences, 

i.e. ITSs 3 and 4 located in LSU rDNA domain III, (3) seven ITS insertion points were 

exclusively present in LSU rDNA of Euglena gracilis, i.e. ITS3, ITS4 and ITS5 in domain I, 

ITS6 in domain II, ITS7 and ITS8 in domain III and ITS9 in domain V, (4) three insertion 

points of Euglena gracilis‟ ITSs matched those of kinetoplastid LSU rDNA sequences, i.e. 

Euglena gracilis‟ ITS10, ITS11 and ITS12 inserted at the same points as kinetoplastid ITS5, 

ITS6 and ITS7, respectively. These findings showed that the dissimilar fragmentation present 

in LSU rDNA of kinetoplastids and Euglena gracilis might be the result of a continuous 

evolutionary process, for five out of seven kinetoplastid ITS regions share identical LSU 

rDNA insertion points with Euglena gracilis. Since Euglena gracilis represents a highly 

derived euglenid, LSU rDNA sequences of a lot more taxa settled between Euglenales and 
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Kinetoplastida should be investigated to validate or falsify this perception. Furthermore, the 

identification of conserved LSU rDNA regions can be used as a blueprint for primer design to 

start future investigations. 

Fig. 5.40: Modified LSU rRNA secondary structure model of Saccharomyces cerevisiae including domain 

and helix numbering after Petrov et al. (2013) illustrating conserved nucleotide positions of euglenozoan 

LSU rDNA sequences which were mapped onto the graph and are represented by black circles. Individual  

and common insertion points of internal transcribed spacer (ITS) sequences of Euglena gracilis and 

kinetoplastid sequences are highlighted by colored boxes and arrows: consecutively numbered ITSs of 

Euglena gracilis are green, those of derived Kinetoplastida are red and congruent ITSs variegated (ITS13 

and ITS14 of Euglena gracilis were not mapped). 
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5.5 Phylogenetic analyses of ribosomal operon sequences 

Results from ML and BI analyses of dataset VI which contained concatenated SSU and LSU 

rDNA sequences confirmed monophyly of Euglenozoa and of major euglenozoan groups, i.e. 

Kinetoplastida, Petalomonadida, Diplonemida, Aphagea, Euglenea (including monophyletic 

subgroups Eutreptiales and Euglenales) and Helicales with maximum or very good support 

(Fig. 5.41 A). As observed in results from SSU rDNA-based analyses of preliminary dataset 0 

as well as datasets II and III, Entosiphon sulcatum was the deepest-branching euglenozoan 

taxon and also produced the longest branch in the trees. This was expectedly due to its long-

branch attraction effect, therefore analyses had to be reiterated without it. In the ML tree, 

position of Petalomonadida recovered moderate support, they branched between 

Kinetoplastida and Diplonemida, the positions of which were weakly supported. Ploeotia 

costata appeared as sister taxon of the Helicales with very good support. Aphagea formed the 

very good supported deepest branch within Helicales and Peranema trichophorum appeared as 

good supported sister taxon of Euglenea. These findings affirmed results from previous 

phylogenetic analyses of separate ribosomal genes, but some considerable topological 

discrepancies were found in the BI tree (see colored arrows in Fig. 5.41): Peranema 

trichophorum formed the deepest-branching taxon of Helicales with maximum support and 

thus changed branching position with Aphagea (orange double arrow), Kinetoplastida 

appeared as very good supported sister taxon of Diplonemida, albeit no bootstrap support (red 

arrow), and lastly Petalomonadida moved towards the root of the tree to a position near 

Entosiphon sulcatum (green arrow). As a result from reiterated analyses, topologies of ML 

and BI trees as well as discrepancies between both trees remained unchanged (colored arrows 

in Fig. 5.41 B). Kinetoplastida formed the deepest-branching euglenozoan clade in the ML 

tree, while Petalomonadida took that position in the BI tree and each alternative received 

maximum support, respectively. Slightly increased statistical support confirmed Ploeotia 

costata as sister taxon of monophyletic Helicales. 

Additional analyses were performed to test whether ML or BI tree topology would be 

reflected in phylogenetic networks, but network graphs of unmodified dataset VI identified no 

support for Kinetoplastida neither for Petalomonadida as deepest-branching euglenozoan 

clade (Fig. 8.20). This resembled results from network analyses of separate SSU and LSU 

rDNA-based datasets, but as appertaining spectral analyses had shown, an unsuitable taxon 

sampling of outgroup representatives could have a distorting effect on euglenozoan sequences 

(see sections 5.1.2 and 5.3.1 for relevant split spectra). Since the comparatively small taxon  
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Fig. 5.41: Consensus trees obtained from analyses of operon dataset VI comprising 3,741 nucleotides with 

new sequences boxed. For taxon sampling see Tab. 4.5. Posterior probabilities are mapped onto ML trees 

and displayed above, bootstrap support values below corresponding nodes; topological differences to the 

Bayesian tree are highlighted by colored arrows, for explanation see text. Scale bars represent 20 % 

sequence divergence. A: Results involving 56 taxa including Entosiphon sulcatum, half of the original 

branch length depicted (GTR+Γ+I, -lnL = 91181.88, gamma shape = 0.465, p-invar = 0.119). B: Results 

from reiterated analyses excluding the sequence of Entosiphon sulcatum (GTR+Γ+I, -lnL = 87907.41, 

gamma shape = 0.467, p-invar = 0.126). 

 

A 

B 
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sampling of LSU rDNA sequences was the major limiting factor for composition of operon 

dataset VI, it seemed very likely that an inept sampling of outgroup taxa was the reason for 

this observation regarding the origin of Euglenozoa. However, results from a finally reiterated 

network analysis without outgroup taxa confirmed the monophyly of Euglenozoa and major 

subgroups, i.e. Petalomonadida, Diplonemida, Kinetoplastida, Aphagea, Euglenea and 

Helicales (Fig. 5.42). Interestingly, common splits united Petalomonadida and Diplonemida 

with Ploeotia costata, which reflected an amalgamation of results from SSU rDNA analyses 

(Diplonemida shared mutual splits with Ploeotiida) and LSU rDNA analyses (Diplonemida 

shared splits with Petalomonadida). These findings corroborated previous results from 

phylogenetic, spectral as well as statistical surveys of separate ribosomal genes, and were 

additionally confirmed by molecular apomorphies of major euglenozoan groups, which are 

finally discussed in the following chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 5.42: Neighbor-net graph of modified operon dataset VI after exclusion of presumably 

unsuitable outgroup taxa. Network splits supporting monophyletic clades are colored. The 

scale bar represents 2 % sequence divergence. Network splits supporting monophyly of 

Helicales are marked by a grey arrow, common splits uniting Petalomonadida, 

Diplonemida and Ploeotia costata are highlighted by a white arrow. 
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6 Conclusion 

In this chapter, the effects of obtained results on the phylogeny of euglenozoan taxa, groups 

and Euglenozoa as a whole, as well as their taxonomic implications are finally discussed and 

future prospects given. 

 

6.1 Methodological approach 

While most studies concerning the molecular phylogeny of Euglenida used SSU rDNA 

sequence data, only early published studies utilized secondary structure information as a 

requirement for alignment of homologous positions and dataset formation (Busse & Preisfeld 

2002b and 2003b, Linton et al. 1999, Montegut-Felkner & Triemer 1997, Müllner et al. 2001, 

Preisfeld et al. 2000 and 2001). Without such a blueprint, alignments and datasets become 

highly individual and recognition of homologous positions more and more subjective, e.g. 

a manually masked alignment with “well-aligned sites suitable for phylogenetic analysis” or 

“reasonably well-aligned positions” is rather idiosyncratic than objective in regard to 

homology of nucleotide sequence positions (Lax & Simpson 2013, Lee & Simpson 2014b). 

Of course, taxon sampling may be a limiting factor for dataset width (i.e. number of positions 

therein), but variation would still be restricted by sequence length. For instance, two recently 

published phylogenetic studies of the Euglenida have been conducted with datasets including 

39 and 49 taxa with similar euglenozoan taxon samplings, which consisted of 636 and 1,950 

aligned nucleotide positions of SSU rDNA sequences. The latter contained three times the 

information content from the same gene (Breglia et al. 2013 and Chan et al. 2013, see also 

Tab. 1.2). Such dissimilarities could have resulted from differing methodologies concerning 

the treatment of gaps or from individually arranged alignments and would produce conflicting 

tree topologies in the end (Lake 1991, Morrison & Ellis 1997). Wong et al. (2008) elegantly 

demonstrated that even computed alignments are prone to ambiguities and produce diverse 

datasets, which consequently lead to different tree topologies in the worst case. To minimize 

ambiguities that could arise already during alignment procedure, and to maximize the 

recognition of correct homologous positions, alignment of ribosomal DNA sequences was 

consequently performed according to secondary structure information and helix numbering of 

Saccharomyces cerevisiae provided by Petrov et al. (2013 and 2014) as a precondition for 

alignment, dataset formation and basis for phylogenetic analyses. Certainly, only molecular 
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datasets which contain veritable homologous nucleotides can produce reliable results from 

phylogenetic analyses. 

Of course, differing tree topologies that derived from the same gene must not be a result of 

different gap treatment or alignment size alone, for choice of ingroup and outgroup taxa 

reflect a methodological approach which is most crucial for phylogenetic analyses. In some 

cases regarding deeper phylogenies, certain groups could not have been recognized 

accurately, since a subordinate taxon was represented by solely one sequence or was not 

included into the alignment at all, which likely resulted in differing sister group relationships 

and consequently lead to incongruous tree topologies (see Parfrey et al. 2006 for a summary 

on Excavata). Whether intended or not, some recent SSU rDNA-based phylogenetic studies 

regarding euglenids utilized ingroup taxa as outgroup (e.g. Diplonemida or Kinetoplastida) 

and therefore contained no reliable information about the phylogeny of Euglenozoa 

(Tab. 1.2). To complicate matters, studies which investigated protein-based phylogenies as 

well as so-called multigene studies utilized poor taxon samplings regarding Euglenozoa, in 

most cases represented the very derived phototroph Euglena gracilis the only euglenid taxon 

(e.g. Simpson & Roger 2004); of course, such a phylogeny is of limited value, for it reflects 

only a distorted view on euglenozoan protein evolution, which might be another reason for the 

tessellated character of actual euglenozoan molecular phylogeny. Therefore, a taxon sampling 

as extensive as possible and as equilibrated as necessary was used for SSU rDNA-based 

contrasting juxtaposition analyses in this thesis. 

Another methodological problem that produces incongruent tree topologies is the treatment of 

acquired molecular data, for about half of recent studies concerning gene evolution of 

Euglenozoa have been conducted without model testing of datasets prior to phylogenetic 

analyses and therefore should be regarded as unreliable (Tab. 1.2). Since phylogenetic 

reconstructions can result in incorrect trees when performed under the wrong model (Johnson 

& Omland 2004, Posada & Crandall 1998), the best-fit model of evolution was calculated for 

all datasets prior to phylogenetic analyses in the present work. 

Most phylogenetic studies concerning the Euglenida have been conducted inferring gene 

evolution from tree-like reconstructions with different models of sequence evolution applied, 

though the reliability of reconstruction methods, e.g. Maximum likelihood and Bayesian 

inference, has not been undisputed for some time (Douady et al. 2003, Pol & Siddall 2001, 

Simmons et al. 2004, Steel & Penny 2000). Therefore, to circumvent biases that could 

possibly occur from a unidirectional methodological approach, both Maximum likelihood and 
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Bayesian inference were utilized for tree reconstructions in this work. In addition, 

phylogenetic network calculations were successfully combined with analyses of 

corresponding splits support spectra to test obtained tree topologies and to examine the 

phylogenetic signals within datasets which could not be pictured by a tree alone. 

 

6.2 Phylogenetic inferences 

6.2.1 Long-branching Entosiphon 

Ribosomal DNA sequences of Entosiphon exhibited in almost all results an extraordinary 

long-branch and emerged as deepest-branching euglenozoan or within the outgroup, except 

for the LSU rDNA sequence of Entosiphon sulcatum, which branched as sister taxon of 

Ploeotia costata in trees and phylogenetic networks, confirmed by results from spectral 

analysis (Figs. 5.27, 5.29B, 5.31 and 5.32A). Position of the Entosiphon clade as deepest-

branching euglenozoan was highly questionable, because of its long-branch effect which had 

been found in other SSU rDNA-based studies as well (Busse et al. 2003, Chan et al. 2013, 

Lax & Simpson 2013, von der Heyden et al. 2004, Yamaguchi et al. 2012), and due to its 

remarkable evolutionary divergence estimates (Tabs. 5.1, 5.2 and 5.4). Unfortunately, the 

class or type of Entosiphon‟s long-branch effect could not be specified any further, probably 

due to its extraordinary individual rDNA sequences which for the bigger part are not 

synapomorphic to any other euglenozoan representative examined in the present work. This 

divergence might reflect a relatively high degree of signal erosion which would represent a 

class II effect according to the classification of long-branch effects proposed by Wägele & 

Mayer (2007). Nonetheless, there are compelling morphological and physiological aspects 

confirming the notion that a deep-branching of Entosiphon within Euglenozoa is 

unacceptable. 

Euglenozoan feeding apparatus 

The first reason is revealed by Entosiphon‟s elaborate feeding apparatus, which consists of 

four vanes and two or three rods present in Entosiphon applanatum and E. sulcatum (Triemer 

& Farmer 1991): the assumption that the most complex ingestion device among euglenids 

could be primordial to a comparably simple cytopharynx like the MTR/pocket present in 

early-branching Petalomonadida (and Bodonids), or to a feeding apparatus structured by 

vanes and supportive rods which is present in most other phagotrophic euglenids, would 
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command imparsimonious multiple losses and reoccurrences of complex substructures. 

Results obtained by reiterated analyses without Entosiphon pointed to another possible 

evolutionary trend within Euglenozoa regarding their ingestion device: from a non-rod-

bearing MTR/pocket type present in Petalomonadida (Triemer & Farmer 1991, therein 

„Type I‟) to a rod-bearing type owned by Ploeotia costata (Leander et al. 2001), Keelungia 

pulex (Chan et al. 2013), Diplonemida (Roy et al. 2007, Triemer & Ott 1990), symbiontid 

Bihospites bacati (Breglia et al. 2010), Entosiphon applanatum (Triemer & Farmer 1991), 

Entosiphon sulcatum (Triemer & Fritz 1987), and phagotrophic Helicales like Peranema 

trichophorum (Nisbet 1974), Dinema sulcatum (Triemer & Farmer 1991), Heteronema 

scaphurum (Breglia et al. 2013), and probably Rapaza viridis (Yamaguchi et al. 2012, see 

6.2.4). This most parsimonious scenario would assume the unique occurrence of a 

MTR/pocket-like feeding apparatus and an evolutionary trend in increasing complexity of 

substructures, combined with a loss and a reduction: lost in the last common ancestor of 

Aphagea, i.e. primary osmotrophic euglenids, and reduced in the last common ancestor of 

Euglenea (i.e. phototrophic euglenids including secondary osmotrophic forms, not Rapaza 

viridis) which own ingestion apparatus that are reduced to the MTR/pocket type (Shin et al. 

2002, Surek & Melkonian 1986).   

Paramylon 

A rarely considered character is the possession of paramylon, a beta-1,3-glucan carbohydrate 

(Bäumer et al. 2001, Kiss et al. 1987), which is commonly shared by representatives of the 

euglenid crown group possessing helical pellicle striations (Leander et al. 2001, therein 

clade G). Although Entosiphon bears a longitudinal pellicle strip organization, which 

represents a plesiomorphic character state in euglenids according to Leander & Farmer 

(2001), it is known to possess paramylon (Vollmer and Preisfeld, unpublished data). Thus, an 

early branching of Entosiphon would demand convergent evolvement of paramylon in a 

presumably primordial Entosiphon lineage and additionally within derived Helicales, which 

would be most imparsimonious, for a physiological accouterment involves not only presence 

of a storage carbohydrate, but many more associated, specialized enzymes (Bäumer et al. 

2001). These considerations, together with findings from SSU and LSU rDNA analyses, 

render a primordial position of Entosiphon within the Euglenozoa invalid. The possession of 

paramylon, a rod-bearing ingestion device and a longitudinal pellicle strip organization 

indicate that Entosiphon is more realistically situated between Ploeotiida, which also own 

longitudinal pellicle strips, a rod-bearing feeding apparatus, but do not contain paramylon, 
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and the Helicales, which phagotrophic representatives also possess a rod-bearing feeding 

apparatus and contain paramylon. This derivation of compatible morphological characters is 

strongly confirmed by results obtained from phylogenetic analyses of LSU rDNA and the 

nucleotide reduction in deduced secondary structure of SSU rRNA helix 44, which 

Entosiphon exclusively shares with Helicales, as well as the presence of paramylon.  

 

6.2.2 Most recent common ancestor of Euglenozoa 

Recent phylogenetic studies considering representatives of all euglenozoan lineages mainly 

aimed to clarify the identity of newly described species, rather than investigating euglenozoan 

sister group relationships, they employed imbalanced taxon samplings, utilized subordinate 

euglenozoan taxa as improper outgroup or even included no outgroup at all (e.g. Lee & 

Simpson 2014a and see Tab. 1.2). In this study, monophyly of Euglenozoa was found strongly 

supported in results from SSU and LSU rDNA analyses, concurrent with findings from other 

studies based on SSU rDNA (e.g. Cavalier-Smith 2004 and all in Tab. 1.2).  

After exclusion of Entosiphon from datasets, the Petalomonadida emerged as recent 

representatives of a putative euglenozoan common ancestor with maximized support in 

contrasted juxtaposition of SSU rDNA and in results from LSU rDNA-based phylogenetic 

analyses. Only few studies based on SSU rDNA data recognized Ploeotia costata as deepest 

branching euglenozoan together with Petalomonas cantuscygni (Busse & Preisfeld 2003c, 

Fig. 2 in von der Heyden et al. 2004). But these studies employed imbalanced taxon 

samplings regarding Euglenozoa, where subsidiary lineages superimposed each other two- to 

threefold. In fact, far more studies based on SSU rDNA data already have identified a 

representative of the Petalomonadida, i.e. Notosolenus ostium, Petalomonas cantuscygni or 

both, respectively, as deepest-branching euglenozoan (Breglia et al. 2010, Cavalier-Smith and 

Nikolaev 2008, Lara et al. 2006, Moreira et al. 2004, Yubuki et al. 2009). Interestingly, this 

important finding was regarded with caution and suspected to be caused by imbalanced taxon 

sampling or interpreted as an effect of high nucleotide sequence divergence among euglenids 

or was sometimes not mentioned at all. Many other studies found a representative of 

Petalomonadida as deepest-branching taxon of monophyletic Euglenida, though this 

monophyly received weak to no statistical support, whether containing reliable (Busse & 

Preisfeld 2002a, 2002b and 2003b, Moreira et al. 2004) or rather unreliable results regarding 

euglenozoan SSU rDNA genealogy constituted by choice of ingroup taxa and applied 
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methodology (Breglia et al. 2013, Lax & Simpson 2013, Preisfeld et al. 2001, Fig. 1 in von 

der Heyden et al. 2004). 

Furthermore, thorough phylogenetic network and spectral analyses of SSU and LSU rDNA in 

this work revealed that the monophyly of Euglenida received neither splits support nor any 

phylogenetic signal, which firmly corroborates earlier findings (Busse & Preisfeld 2003a) and 

has dire consequences for ribosomal gene evolution of Euglenozoa (see 6.2.3). Another study 

which based on hsp90 gene sequences also identified Petalomonas cantuscygni as earliest 

branching euglenozoan (Breglia et al. 2007). In accordance to these findings, Euglenida 

appear to be polyphyletic, i.e. the allegedly monophyletic taxon Euglenida represents an 

assemblage of primordial and derived euglenozoan groups which have no common ancestor, 

and Petalomonadida are primordial to all other Euglenozoa in most SSU and LSU rDNA 

genealogies. As a consequence Diplonemida, Kinetoplastida as well as Symbiontida 

(presumably also Ploeotiida) and Helicales are monophyletic euglenozoan lineages that 

altogether derived from putatively phagotrophic euglenid ancestors, which are nowadays 

represented by the Petalomonadida. Similarities between Petalomonadida and Diplonemida 

found in deduced secondary structure elements (5.2.3) and variable regions of SSU rDNA 

(5.2.4) as well as in length comparison of ITS2 (5.4.3) and LSU rDNA sequences (5.4.2) 

corroborate this conclusion. Moreover, compelling results from other studies also support 

these findings, i.e. similarities in morphological characters like pellicle organization and 

structural composition of the feeding apparatus (Leander et al. 2001 and 2007) as well as 

occurrence of the elongation factor-like protein instead of EF-1α in Petalomonas and 

Diplonemida (Gile et al. 2009). 

 

6.2.3 Major group relationships of Euglenozoa 

The complex inter-relationships of euglenozoan lineages were disputed long before erection 

of the Symbiontida and all possible sister group variants have been produced in preceding 

studies by applying diverse methodologies and choosing various genetic markers and taxon 

samplings (Triemer and Farmer 2007). According to the classification sensu Adl et al. (2012), 

the Euglenozoa actually embrace four monophyletic major groups of equal rank: Euglenida, 

Kinetoplastida, Diplonemida and Symbiontida, but this grouping of Euglenozoa became 

outdated, since symbiontids have been classified as Euglenida in a study based on 

morphological data (Yubuki et al. 2013).  
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Diplonemida is not the sister taxon of Kinetoplastida 

Some authors found Diplonemida and Kinetoplastida to be sister groups to the exclusion of 

Euglenida, but this opinion was not undisputed (Marande et al. 2005). For instance, Simpson 

& Roger (2004) hypothesized a sister group relationship of diplonemids and kinetoplastids 

found in phylogenies of heat shock proteins, but the derived phototroph Euglena gracilis 

represented the only euglenid taxon in these analyses, which is an unacceptably poor taxon 

sampling for an inference of euglenozoan major group relationships. In the same study SSU 

rDNA-based phylogenies included two phototrophic and one derived phagotrophic euglenid, 

which involved the very same problem. A zoological example to elucidate this matter: when 

investigating phylogenetic relationships of tortoises and crocodiles, the addition of a bird to 

the dataset will be of no use (unless regarding dinosaurs and their fossil record). In another 

case Makiuchi et al. (2011) hypothesized the compartmentalization of a glycolytic enzyme as 

synapomorphic feature which united kinetoplastids and diplonemids, but again the derived 

phototrophic Euglena gracilis was the only representative of Euglenida, i.e. more primordial 

euglenid representatives need to be tested before conclusions concerning sister group 

relationships of major euglenozoan groups become reliable. Strikingly, a sister group 

relationship of Diplonemida and Kinetoplastida was clearly rejected in the summary of all 

results in the present work: it was at most weakly supported in SSU rDNA-based tree 

reconstructions, inexistent in all phylogenetic networks as well as corresponding split support 

spectra, and moreover it was neglected in results from analyses of base composition (5.2.1 

and 5.4.1), identity matrix (5.2.2), SSU rDNA variable region length (5.2.4), LSU rDNA 

sequence length (5.4.2), ITS2 sequence length (5.4.3) and deduced secondary structure 

analyses of ribosomal DNA sequences (5.2.3 and 5.4.3). 

Six major groups of Euglenozoa 

The existence of a sister group relationship of Diplonemida and Kinetoplastida could have 

made paraphyly of Euglenida imaginable, but since Petalomonadida (and probably also 

Ploeotiida) are close relatives of Diplonemida rather than Kinetoplastida, six monophyletic 

major groups constitute the Euglenozoa: Petalomonadida, Diplonemida, Kinetoplastida, 

Symbiontida, Ploeotiida and Helicales. Note that Ploeotiida presumably include Keelungia 

pulex and Entosiphon sulcatum here, which would be concordant with Adl et al. (2012). 

Cognition of the polyphyletic nature of phagotrophic euglenids plays a key role in 

understanding the complex phylogeny of Euglenozoa. 
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6.2.4 Phagotrophic euglenids are polyphyletic 

The assemblage „phagotrophic euglenids‟ comprises, as indicated by Adl et al. (2012), 

monophyletic lineages, i.e. Petalomonadida and Ploeotiida, but “many traditional genera are 

probably polyphyletic”. Anisonemida were also found to be monophyletic in SSU rDNA-

based tree reconstructions, phylogenetic networks and split support spectra (5.1.2). 

Nonetheless, aforementioned monophyla do not share a common ancestor, since 

Petalomonadida and Ploeotiida diverge separately prior to Helicales. In addition, Aphagea and 

Euglenea as well as representatives of several other phagotrophic genera branch within 

Helicales, e.g. Dinema, Heteronema, Neometanema and Peranema, not to mention the 

presumed mixotroph Rapaza viridis. The latter shares a common ancestor with Euglenea, 

while Aphagea branch amidst several phagotrophic Helicales, the exact positions of which are 

not secured yet.  

Notwithstanding, tree reconstructions and phylogenetic network analyses confirmed that 

Peranema is affiliated with Heteronema and that Dinema and Anisonemida share a common 

ancestor (5.1.1 and 5.1.3). Variable region length of Heteronema scaphurum strongly implies 

a relation to Aphagea (5.2.4), though results from base composition analyses favor Peranema 

to share a common ancestor with Aphagea (5.2.1). However, the common ancestor of the 

Rapaza viridis/Euglenea clade is not identical to the common ancestor of 

Aphagea/Heteronema (or even Aphagea/Peranema). Furthermore, as close relatives of 

Diplonemida, the Ploeotiida (including Keelungia and Entosiphon) are primordial to 

Helicales. Finally, Petalomonadida are primordial to all Euglenozoa, diverging in a stem line 

separate from that of Ploeotiida or Helicales (compare Figs. 5.2 and 5.42). Consequently, 

these findings constitute the polyphyly of the „phagotrophic euglenids‟ and implicate 

inferences for euglenozoan taxonomy.  

 

6.3 Taxonomic implications 

Leedale (1967) classified phagotrophic euglenids into two groups, the Heteronematina, which 

own a specialized ingestion apparatus, and the Sphenomonadina, with a simple ingestion 

apparatus. Heteronematina sensu Adl et al. (2012) included all phagotrophic genera, but it 

was noted that “there is no phylogenetic taxonomy for phagotrophic euglenids as a whole”. 

Since phagotrophic euglenids emerge prior to and in between non-euglenid monophyla like 
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Diplonemida and Kinetoplastida as well as non-phagotrophic euglenid monophyla diverging 

in a monophyletic crown group, i.e. Aphagea and Euglenea, the term „phagotrophic 

euglenids‟ describes a polyphylum. Consequently from a taxonomic point of view, the term 

„phagotrophic euglenids‟ is invalid as are the terms „Heteronematina‟ and „Sphenomonadina‟ 

(including related terms with other endings, e.g. -ida, -idea, -ales), for the latter would include 

Anisonema, which already has been shown to belong to the euglenid crown group (Busse et 

al. 2003, Leander et al. 2001). 

Ambiregnal Helicales 

This euglenid crown clade, which unites euglenid taxa that share the autapomorphy of a 

helical pellicle, appeared earlier in many molecular studies (Busse & Preisfeld 2002a and 

2002b, Müllner et al. 2001, Preisfeld et al. 2000 and 2001), whether without being named or 

with different names. It was termed „clade G‟ in a study based on morphological characters 

(Leander et al. 2001), in a molecular study based on SSU rDNA data it was named „clade H‟ 

(Busse et al. 2003) and recently recurred as ‟HP grouping‟ or „HP clan‟ (Lee & Simpson 

2014a and 2014b). In the present work, denomination of this clade as „Helicales‟ promotes a 

better understanding of euglenid phylogeny, for it provides a unique name for a naturally 

evolved clade comprising derived phagotrophic euglenids, primary osmotrophic euglenids 

and phototrophic euglenids (including secondary osmotrophic taxa) which all share the helical 

pellicle as a distinct morphological character, i.e. an autapomorphy, that is reflected by the 

name chosen. The rather inappropriate denominations „clade G‟, „clade H‟, „HP grouping‟ and 

„HP clan‟ are therefore converted into the clade name „Helicales‟ at least within this work. 

Phylogenetic (apomorphy-based) diagnosis 

Euglenozoa CAVALIER-SMITH 1981 

Helicales taxon nov. PAERSCHKE & PREISFELD 2015 

Natural clade comprising derived phagotrophic euglenids, primary osmotrophic Aphagea, 

mixotrophic Rapaza viridis, and primary phototrophic Euglenea including secondary 

osmotrophic euglenids, characterized by a euglenid-specific pellicle with primary helical 

organization (which can be secondarily altered, e.g. in phototrophic euglenids with lorica) as 

inferred from analyses of nuclear ribosomal gene sequences. 

Apomorphy 

Helical pellicle. 
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The Euglenozoa represent an ambiregnal group, partly present in the International Code of 

Zoological Nomenclature (ICZN) as well as in the International Code of Nomenclature for 

algae, fungi, and plants (ICN), and this ambiregnal status has been discussed critically for a 

long time (Lahr et al. 2012, Patterson & Larsen 1992). Helicales would also receive an 

ambiregnal status, for they include phagotrophic, osmotrophic and phototrophic euglenids, 

therefore it remains to be seen whether (or when) the Helicales will find acceptance. 

Alternatively the Helicales could constitute a ribogroup according to Adl et al. (2012). An 

interesting approach was presented with the PhyloCode (International Code of Phylogenetic 

Nomenclature), which current version is specifically designed to regulate the naming of 

clades rather than species. Since the term „Helicales‟ describes a natural clade representing 

the crown group of Euglenozoa as inferred from ribosomal gene evolution, it could be 

coherently nominated as nomen cladi conversum in terms of the PhyloCode (Article 9, 

Version 4c, 2010).  

Symbiontida 

The euglenid monophylum Symbiontida has been described as novel euglenozoan subclade 

consisting of uncharacterized cells living in low-oxygen environments (Yubuki et al. 2009). 

Hence rod-shaped epibiotic bacteria represent the corresponding apomorphy for this taxon, 

the name „Symbiontida‟ could provoke a connotation in the sense of symbiosis, which could 

be intended, but would be somewhat misleading, for phagotrophic and phototrophic euglenids 

are known to be also associated with bacteria, e.g. endobiotic bacteria in Petalomonas 

sphagnophila (Kim et al. 2010, Schnepf et al. 2002), rod-shaped bacteria on Euglena 

helicoideus (Leander & Farmer 2000) and ecto- and endobiotic bacteria on Eutreptiella sp. 

(Kuo & Lin 2013). Since those euglenids, which represent descendants from completely 

different clades than Symbiontida, exhibited also a not yet fully understood, but nonetheless 

close relationship with bacteria, the name „Symbiontida‟ would in a strict sense not describe a 

valid apomorphy for this clade, for it would also include the aforementioned phagotrophic and 

phototrophic euglenids. Originally the name „Anox clade‟ was used for this group in an early 

molecular study (Zuendorf et al. 2006) and as those organisms exclusively (for euglenids at 

least) live in anoxic or suboxic habitats, perhaps the denomination „Anoxida‟ would better 

reflect the more fitting apomorphy „anoxic‟. 
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6.4 Future prospects 

The present work sought to combine established approaches with new ideas to shed new light 

on the phylogeny of Euglenozoa, but a lot of work still needs to be done. For instance, 

analysis of euglenozoan LSU rDNA is still in its infancy because the present taxon sampling 

marks only the beginning of LSU rDNA genealogy of Euglenozoa. Novel LSU rDNA 

sequences especially of key taxa such as Keelungia pulex or Rapaza viridis and of genera 

Dinema, Entosiphon, Ploeotia, Heteronema and Neometanema would greatly amend the 

molecular phylogeny of Euglenozoa. Furthermore, representatives of some genera still await 

sequencing, for they have been examined only morphologically by now, e.g. Anehmia, 

Atraktomonas, Bordnamonas, Calycimonas, Dolium, Dylakosoma, Jenningsia, Peranemopsis, 

Scytomonas, Sphenomonas, Tropidoscyphus , Urceolopsis and Urceolus. Though secondary 

structure analysis seemed to be out of fashion, a recent study found that evolutionary rates 

vary among ribosomal RNA structural elements (Smit et al. 2007), which could be a stepping 

stone to liven up this field of research also beyond the Euglenozoa. 
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8 Appendix 

This appendix section contains figures and tables which bear reference to chapters 5 and 6. 

 

 

 

 

 

Fig. 8.1: Identity matrix graph based on SSU rDNA sequences from dataset III 

depicting highest and lowest similarity percentages between the Helicales, i.e. 

phagotrophic euglenid taxa Dinema, Peranema, Heteronema scaphurum, 

Neometanema cf exaratum and Anisonemida, as well as the Distigma proteus 

group (primordial Aphagea) and Rapaza viridis. For other taxa see Fig. 5.17. 
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Tab. 8.1: Nucleotide composition of SSU rDNA sequences in dataset III. 

Heated percentages for nucleotides and GC-summaries are given; lowest 

percentages of each nucleotide are colored green, highest values are red. 

Taxon T C A G GC 

EUGLENEA      
Euglena gracilis 22,14 23,59 25,34 28,93 52,52 

Euglena sp 22,06 23,62 25,36 28,96 52,58 

Euglena gracilis var bacillaris 22,14 23,59 25,34 28,93 52,52 

Astasia longa 22,04 24,08 25,34 28,54 52,62 

Khawkinea quartana 21,30 24,12 25,29 29,28 53,40 

Euglena cf mutabilis 20,87 23,50 25,63 30,00 53,50 

Cyclidiopsis acus 21,55 24,85 23,59 30,00 54,85 

Discoplastis spathirhyncha 22,23 24,08 25,15 28,54 52,62 

Monomorphina megalopsis 22,14 23,69 25,05 29,13 52,82 

Monomorphina rudicula 21,56 23,84 26,33 28,28 52,11 

Strombomonas verrucosa 21,75 23,88 25,53 28,83 52,72 

Trachelomonas grandis 22,91 23,11 25,92 28,06 51,17 

Euglena stellata 21,36 24,66 24,66 29,32 53,98 

Euglena tripteris 22,91 23,69 24,47 28,93 52,62 

Colacium vesiculosum 21,55 23,69 26,12 28,64 52,33 

Colacium mucronatum 21,94 23,59 26,21 28,25 51,84 

Colacium sp 21,65 23,50 26,31 28,54 52,04 

Cryptoglena pigra 22,33 24,17 25,83 27,67 51,84 

Cryptoglena skujae 22,33 24,08 25,83 27,77 51,84 

Cryptoglena sp 22,14 24,17 25,63 28,06 52,23 

Discoplastis sp 21,55 24,85 24,08 29,51 54,37 

Hyalophacus ocellata 24,17 23,39 24,37 28,07 51,46 

Lepocinclis oxyuris 21,65 24,85 23,50 30,00 54,85 

Lepocinclis spirogyroides 22,82 23,69 24,95 28,54 52,23 

Monomorphina aenigmatica 21,46 25,15 25,24 28,16 53,30 

Monomorphina pyrum 22,04 23,69 26,12 28,16 51,84 

Phacus oscillans 23,01 23,40 25,34 28,25 51,65 

Phacus pusillus 23,20 22,52 25,73 28,54 51,07 

Strombomonas acuminata 21,75 23,88 25,63 28,74 52,62 

Trachelomonas hispida 22,62 23,01 26,70 27,67 50,68 

Trachelomonas volvocinopsis 22,43 23,79 25,05 28,74 52,52 

Eutreptia pertyi 23,59 22,72 25,24 28,45 51,17 

Eutreptia viridis AF157312 23,79 22,82 25,63 27,77 50,58 

Eutreptia viridis AJ532395 23,69 22,82 25,53 27,96 50,78 

Eutreptia sp AJ532396 22,72 23,98 24,85 28,45 52,43 

Eutreptiella gymnastica 22,72 22,82 26,12 28,35 51,17 

Eutreptiella eupharyngea 22,62 23,50 25,53 28,35 51,84 

Eutreptiella sp AF112875 22,56 24,02 25,10 28,32 52,34 

Eutreptiella sp JQ337867 22,62 23,98 24,85 28,54 52,52 

Eutreptiella pomquetensis 22,91 23,50 25,34 28,25 51,75 

Eutreptiella braarudii 22,84 23,52 25,46 28,18 51,70 

Rapaza viridis 21,84 24,47 25,05 28,64 53,11 

APHAGEA      
Gyropaigne lefevrei 22,82 23,30 24,37 29,51 52,82 

Parmidium circulare 21,75 23,01 25,24 30,00 53,01 

Parmidium scutulum 22,40 22,98 25,22 29,41 52,39 

Menoidium pellucidum 21,84 23,59 24,47 30,10 53,69 

Rhabdomonas costata 22,14 23,88 24,66 29,32 53,20 

Rhabdomonas incurva 22,08 23,74 24,51 29,67 53,40 

Rhabdomonas spiralis 21,36 23,59 24,08 30,97 54,56 

Rhabdomonas intermedia 22,55 22,74 25,75 28,96 51,70 

Menoidium bibacillatum 21,60 23,74 24,81 29,86 53,60 

Menoidium cultellus 21,84 23,59 24,56 30,00 53,59 

Menoidium gibbum 21,36 23,59 24,08 30,97 54,56 
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Tab. 8.1: continued. 

Taxon T C A G GC 

Menoidium intermedium 21,84 23,30 24,56 30,29 53,59 

Menoidium obtusum 21,94 23,50 24,27 30,29 53,79 

Menoidium sp 21,94 23,40 24,37 30,29 53,69 

Astasia curvata AY004245 22,72 22,14 25,92 29,22 51,36 

Astasia curvata SAG1204-5b 22,82 22,23 25,92 29,03 51,26 

Astasia sp 23,11 22,72 25,53 28,64 51,36 

Astasia curvata AF403153 23,11 22,43 25,05 29,42 51,84 

Astasia torta 22,72 22,62 25,34 29,32 51,94 

Distigma curvatum 23,79 20,97 28,25 26,99 47,96 

Distigma gracile 23,88 20,87 28,25 26,99 47,86 

Distigma sennii 22,23 23,11 26,60 28,06 51,17 

Distigma pringsheimii 24,56 21,36 27,28 26,80 48,16 

Distigma gracilis 24,37 21,36 27,38 26,89 48,25 

Distigma proteus 24,56 21,36 27,38 26,70 48,06 

Peranema trichophorum AH005452 24,37 21,94 27,48 26,21 48,16 

Peranema trichophorum AF386636 24,37 21,94 27,38 26,31 48,25 

Peranema sp 24,42 21,89 27,53 26,17 48,05 

ANISONEMIDA      
Anisonema sp syn Peranema AY048919 23,40 21,75 26,89 27,96 49,71 

Anisonema acinus AF403160 22,43 22,33 25,83 29,42 51,75 

Anisonema acinus isolateB1 22,34 22,21 26,46 28,99 51,20 

Anisonema sp isolateW1 23,40 22,43 25,92 28,25 50,68 

Anisonema/Dinema sp isolateU3 22,52 23,01 25,34 29,13 52,14 

Dinema sulcatum 21,26 23,79 24,66 30,29 54,08 

Dinema platysomum 21,44 23,10 26,32 29,14 52,24 

Heteronema scaphurum 19,51 22,09 28,12 30,27 52,37 

Neometanema cf exaratum 22,82 22,04 27,28 27,86 49,90 

ANOXIDA/SYMBIONTIDA      
Uncultured marine eukaryote clone NA1 4H11 23,35 20,60 28,43 27,61 48,21 

Uncultured marine eukaryote clone NA1 4B5 23,35 20,60 28,57 27,47 48,08 

Uncultured marine eukaryote clone BLACKSEA 50 23,50 20,62 28,21 27,67 48,29 

Uncultured marine eukaryote clone BLACKSEA 52 23,69 20,69 28,72 26,90 47,59 

Uncultured marine eukaryote clone FV23 2D3C4 23,81 21,09 27,79 27,31 48,40 

Uncultured marine eukaryote clone NA1 1G12 24,17 20,78 27,67 27,38 48,16 

Calkinsia aureus 23,50 22,04 27,38 27,09 49,13 

Bihospites bacati isolate1 21,07 23,30 26,50 29,13 52,43 

Bihospites bacati isolate2 21,07 23,59 26,31 29,03 52,62 

PLOEOTIIDA      
Ploeotia cf vitrea 24,85 20,97 28,74 25,44 46,41 

Ploeotia costata 22,33 23,69 26,31 27,67 51,36 

Keelungia pulex 24,03 21,11 28,02 26,85 47,96 

Ploeotia edaphica 24,17 20,39 27,77 27,67 48,06 

Entosiphon sulcatum AF220826 23,01 22,23 27,18 27,57 49,81 

Entosiphon sulcatum AY061999 22,91 22,33 27,09 27,67 50,00 

Entosiphon sp 22,72 22,14 27,48 27,67 49,81 

PETALOMONADIDA      
Petalomonas cantuscygni U84731 24,20 21,28 26,72 27,79 49,08 

Petalomonas cantuscygni AF386635 23,98 21,36 26,70 27,96 49,32 

Petalomonas sphagnophila Liz 23,69 22,04 27,38 26,89 48,93 

Petalomonas sphagnophila Dunc 23,79 22,04 27,18 26,99 49,03 

Petalomonas sphagnophila HF 23,98 21,84 27,28 26,89 48,74 

Uncultured Sphenomonadales clone PR3 3E 63 23,48 21,88 28,29 26,35 48,22 

Uncultured marine eukaryote clone BLACKSEA 51 23,23 20,99 27,09 28,69 49,68 

Uncultured sphenomonad euglenozoan clone CH1 S2 16 23,59 20,97 28,16 27,28 48,25 

Uncultured sphenomonad euglenozoan clone CH1 S2 19 24,57 21,22 27,92 26,29 47,51 

Uncultured sphenomonad euglenozoan clone CH1 S1 57 24,63 20,47 28,68 26,21 46,69 

Uncultured eukaryote clone D3P06F06 22,39 20,49 28,63 28,49 48,98 
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Taxon T C A G GC 

Notosolenus ostium isolateU1 25,34 20,49 27,38 26,80 47,28 

Notosolenus ostium AF403159 25,34 20,49 27,18 26,99 47,48 

DIPLONEMIDA      
Diplonema ambulator ATCC50223 23,40 21,36 27,67 27,57 48,93 

Diplonema papillatum 22,52 21,84 27,57 28,06 49,90 

Diplonema sp ATCC50232 22,72 22,04 27,18 28,06 50,10 

Diplonema sp1 ATCC50224 23,40 21,75 27,57 27,28 49,03 

Diplonema sp2 ATCC50224 23,40 21,75 27,57 27,28 49,03 

Diplonema ambulator 23,40 21,36 27,67 27,57 48,93 

Diplonema sp ATCC50225 23,50 21,46 27,38 27,67 49,13 

Uncultured eukaryote clone RM2-SGM31 24,56 20,97 26,80 27,67 48,64 

Uncultured diplonemid clone LC22 5EP 32 23,82 20,78 28,24 27,16 47,94 

Uncultured marine diplonemid clone Ma131 1A46 23,55 21,59 27,67 27,18 48,77 

Uncultured euglenid clone CCW85 22,55 21,30 28,13 28,02 49,32 

Uncultured marine euglenozoan DH148-EKB1 24,44 21,23 28,24 26,10 47,32 

Uncultured diplonemid clone LC22 5EP 17 23,59 20,87 27,96 27,57 48,45 

Uncultured diplonemid clone LC22 5EP 18 23,88 20,97 28,16 26,99 47,96 

Uncultured diplonemid clone LC22 5EP 19 23,59 21,17 28,06 27,18 48,35 

Uncultured diplonemid clone LC23 5EP 5 23,98 20,97 27,28 27,77 48,74 

Uncultured eukaryote clone SCM15C6 23,69 20,97 28,35 26,99 47,96 

Uncultured eukaryote clone RM2-SGM32 23,79 21,55 27,28 27,38 48,93 

Rhynchopus sp SH-2004-IV 23,20 21,46 27,57 27,77 49,22 

Rhynchopus sp SH-2004-I 23,20 21,46 27,57 27,77 49,22 

Rhynchopus euleeides ATCC50226 23,40 21,65 27,28 27,67 49,32 

Rhynchopus sp SH-2004-II 23,88 21,36 26,70 28,06 49,42 

Rhynchopus sp ATCC50229 23,50 21,17 27,96 27,38 48,54 

KINETOPLASTIDA      
Uncultured kinetoplastid clone AT4-103 21,65 22,62 27,09 28,64 51,26 

Uncultured kinetoplastid clone LC103 5EP 19 23,79 21,07 27,67 27,48 48,54 

Perkinsiella-like sp AFSM3 23,40 21,94 27,48 27,18 49,13 

Perkinsiella-like sp PLO-DE4A 23,40 22,14 27,48 26,99 49,13 

Perkinsela-like organism AK-2011 24,25 21,52 27,75 26,48 48,00 

Ichthyobodo necator AY028448 23,50 20,39 28,35 27,77 48,16 

Ichthyobodo necator DK 23,01 20,68 28,64 27,67 48,35 

Uncultured eukaryote clone L7.7 23,59 21,26 27,57 27,57 48,83 

Angomonas deanei 23,98 20,58 28,64 26,80 47,38 

Azumiobodo hoyamushi 23,11 21,46 28,06 27,38 48,83 

Bodo edax 22,82 21,26 28,64 27,28 48,54 

Bodo rostratus 23,01 21,94 28,16 26,89 48,83 

Crithidia dedva 23,50 20,78 28,64 27,09 47,86 

Cruzella marina 22,91 22,04 28,06 26,99 49,03 

Cryptobia helicis 22,91 21,65 27,67 27,77 49,42 

Cryptobia salmositica 23,11 21,17 28,64 27,09 48,25 

Dimastigella mimosa 22,33 21,55 29,03 27,09 48,64 

Dimastigella trypaniformis 22,33 21,55 29,03 27,09 48,64 

Endotrypanum sp 889 23,59 20,87 28,54 26,99 47,86 

Herpetomonas sp TCC247 23,69 20,78 28,54 26,99 47,77 

Leishmania major 23,40 20,97 28,74 26,89 47,86 

Leptomonas mirabilis 23,88 20,78 28,35 26,99 47,77 

Neobodo designis 22,62 21,65 28,16 27,57 49,22 

Neobodo saliens 23,01 21,94 27,67 27,38 49,32 

Parabodo caudatus 22,91 20,87 28,64 27,57 48,45 

Parabodo nitrophilus 23,20 20,68 28,64 27,48 48,16 

Phanerobia pelophila 22,43 21,55 29,03 26,99 48,54 

Bodo sorokini 22,72 21,75 28,06 27,48 49,22 

Rhynchomonas nasuta 23,01 21,55 28,25 27,18 48,74 

Sergeia podlipaevi 23,91 20,51 28,38 27,21 47,72 
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Taxon T C A G GC 

Strigomonas culicis 22,62 21,55 28,06 27,77 49,32 

Strigomonas galati 22,72 21,46 28,06 27,77 49,22 

Trypanosoma cruzi 23,50 20,97 28,54 26,99 47,96 

Soil flagellate AND31 23,13 21,77 27,79 27,31 49,08 

Uncultured bodonid clone AT1-3 22,62 21,65 27,67 28,06 49,71 

Uncultured kinetoplastid clone AT4-56 23,69 21,17 27,38 27,77 48,93 

Uncultured bodonid clone AT5-9 23,11 21,65 27,77 27,48 49,13 

Uncultured bodonid clone AT5-25 23,01 22,04 27,28 27,67 49,71 

Uncultured bodonid clone AT5-48 23,11 21,46 27,96 27,48 48,93 

Uncultured kinetoplastid clone Discovery IF R B 22,52 21,65 28,25 27,57 49,22 

Kinetoplastida sp FV18-8TS 22,91 22,04 27,38 27,67 49,71 

Uncultured kinetoplastid clone Kryos IF A3 22,91 21,26 28,25 27,57 48,83 

Uncultured kinetoplastid clone Urania B B5 22,72 21,46 28,25 27,57 49,03 

Uncultured eukaryote clone ZJ2007 23,50 21,07 28,54 26,89 47,96 

Wallaceina sp 24,08 20,49 28,74 26,70 47,18 

Bodo saltans 22,72 21,46 28,45 27,38 48,83 

Cryptobia bullockii 23,01 21,26 28,54 27,18 48,45 

Herpetomonas nabiculae 23,88 20,68 28,45 26,99 47,67 

Leptomonas collosoma 24,17 20,68 28,45 26,70 47,38 

Crithidia fasciculata 23,50 20,78 28,74 26,99 47,77 

Trypanosoma brucei 23,01 21,84 28,06 27,09 48,93 

OUTGROUP, HETEROLOBOSEA      
Pharyngomonas kirbyi BB2 JX509941 21,94 22,82 26,02 29,22 52,04 

Heterolobosea sp strain SD1A 24,56 20,19 28,45 26,80 46,99 

Heterolobosea sp strain AS12B 24,56 20,19 28,45 26,80 46,99 

Macropharyngomonas halophila 24,68 20,21 28,38 26,72 46,94 

Acrasis rosea 25,53 19,42 30,58 24,47 43,88 

Allovahlkampfia spelaea 25,73 19,13 30,29 24,85 43,98 

Euplaesiobystra hypersalinica 22,62 22,43 30,10 24,85 47,28 

Harpagon descissus 28,99 15,86 34,05 21,11 36,96 

Harpagon schusteri 28,64 16,50 33,30 21,55 38,06 

Heteramoeba clara 22,23 22,62 29,71 25,44 48,06 

Heterolobosea sp BB2 21,84 22,23 26,80 29,13 51,36 

Heterolobosea sp HGG1 23,98 19,32 31,94 24,76 44,08 

Heterolobosea sp LO 24,85 20,00 28,25 26,89 46,89 

Pharyngomonas sp RL 25,73 20,00 28,35 25,92 45,92 

Heterolobosea sp SAN2 23,50 19,51 30,58 26,41 45,92 

Paravahlkampfia sp 24,56 20,00 30,29 25,15 45,15 

Pleurostomum flabellatum 25,44 18,35 30,87 25,34 43,69 

Psalteriomonas lanterna 29,51 15,92 35,73 18,83 34,76 

Psalteriomonas magna 30,00 15,92 35,73 18,35 34,27 

Pseudoharpagon pertyi 21,36 23,79 28,54 26,31 50,10 

Sawyeria marylandensis 29,32 16,41 35,63 18,64 35,05 

Stygamoeba regulata 26,72 18,46 28,86 25,95 44,41 

Tetramitus thermacidophilus 25,15 18,64 31,07 25,15 43,79 

Tetramitus thorntoni 25,15 18,45 31,17 25,24 43,69 

Uncultured heterolobosean clone WIM43 23,59 19,03 32,23 25,15 44,17 

Uncultured eukaryote clone CN207St155 8Be04F 24,95 20,10 28,25 26,70 46,80 

Uncultured eukaryote clone CN207St70 8BBe08M 24,95 20,10 27,96 26,99 47,09 

Uncultured marine eukaryote clone BLACKSEA 54 23,49 18,53 31,57 26,40 44,94 

Selenaion koniopes 20,87 23,20 28,35 27,57 50,78 

Plaesiobystra hypersalinica 22,45 21,87 30,52 25,17 47,04 

Naegleria clarki 23,50 21,84 28,54 26,12 47,96 

Naegleria gruberi 23,59 21,84 28,45 26,12 47,96 

Stachyamoeba sp 23,59 19,32 31,07 26,02 45,34 

Paravahlkampfia ustiana 24,56 19,90 30,29 25,24 45,15 

Tsukubamonas globosa 22,62 22,14 27,57 27,67 49,81 
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Taxon T C A G GC 

OUTGROUP, JAKOBIDA      
Uncultured marine eukaryote clone BLACKSEA 55 25,03 18,82 28,88 27,27 46,10 

Uncultured eukaryote clone EN351CTD039 30mN9 26,31 18,64 29,42 25,63 44,27 

Reclinomonas americana AF053089 22,82 23,20 27,57 26,41 49,61 

Andalucia incarcerata MB1 24,33 20,08 27,89 27,70 47,77 

Andalucia incarcerata AY117419 24,51 19,94 27,92 27,63 47,57 

Andalucia godoyi AND19 24,56 20,00 27,96 27,48 47,48 

Uncultured marine eukaryote clone cLA12C05 24,57 19,44 28,31 27,67 47,12 

Uncultured marine eukaryote clone FV23 CilE10 24,47 19,61 28,93 26,99 46,60 

Uncultured marine eukaryote clone M2 18G04 24,74 19,30 28,85 27,10 46,41 

Uncultured marine eukaryote clone SA1 1D05 24,76 19,61 28,16 27,48 47,09 

Uncultured Jakobida clone NKS105 23,79 20,78 27,48 27,96 48,74 

Uncultured Jakobida clone NKS177 24,08 20,19 27,48 28,25 48,45 

Jakoba libera AF411288 22,52 22,23 28,16 27,09 49,32 

Jakoba libera AY117418 22,52 22,33 27,57 27,57 49,90 

Reclinomonas americana AY117417 23,17 22,20 26,78 27,85 50,05 

Seculamonas ecuadoriensis 20,39 23,59 27,18 28,83 52,43 

OUTGROUP, DISTANT      
Malawimonas jakobiformis AY117420 25,56 18,95 28,77 26,72 45,68 

Retortamonas sp 22,72 21,36 25,92 30,00 51,36 

Carpediemonas membranifera 22,49 20,93 28,24 28,33 49,27 

Ergobibamus cyprinoides 22,62 22,43 27,48 27,48 49,90 

Dysnectes brevis 23,69 21,65 26,31 28,35 50,00 

Hicanonectes teleskopos 24,66 20,29 27,57 27,48 47,77 

Dinenympha exilis 24,66 19,51 28,54 27,28 46,80 

Pyrsonympha grandis 24,37 19,61 28,64 27,38 46,99 

Oxymonas sp 25,24 18,45 29,22 27,09 45,53 

Trimastix pyriformis 24,27 19,22 29,32 27,18 46,41 

Proteromonas lacertae 26,92 16,03 33,82 23,23 39,26 

Paramecium tetraurelia 25,05 18,64 29,42 26,89 45,53 

Gymnodinium sanguineum 26,41 18,93 28,35 26,31 45,24 

Chilomonas paramecium 25,34 19,51 29,03 26,12 45,63 

Dictyostelium discoideum 24,90 18,97 31,32 24,81 43,77 

Palmaria palmata 22,62 21,55 26,99 28,83 50,39 

Acanthamoeba castellanii 24,88 20,02 27,70 27,41 47,42 

Heterosigma akashiwo 25,73 19,03 29,13 26,12 45,15 

Chrysowaernella hieroglyphica 24,98 19,92 28,67 26,43 46,36 

Sarcocystis alceslatrans 25,63 19,22 29,13 26,02 45,24 

Symbiotic dinoflagellate BBSR 323 26,02 19,22 28,74 26,02 45,24 

Prorocentrum rhathymum 26,31 18,93 28,54 26,21 45,15 

Theileria annulata 26,50 18,54 28,35 26,60 45,15 

Cyrtohymena shii 26,02 18,45 28,83 26,70 45,15 

Salpingoeca infusionum 24,27 18,83 27,96 28,93 47,77 

Monosiga brevicollis 25,73 18,45 29,03 26,80 45,24 

Byssochlamys spectabilis 23,98 20,58 27,67 27,77 48,35 

Paramicrosporidium vannellae 25,34 17,96 28,54 28,16 46,12 

Blastocystis sp 26,99 17,09 29,81 26,12 43,20 

Tetrahymena thermophila 26,02 18,45 30,29 25,24 43,69 

Chaos nobile 24,17 19,51 28,83 27,48 46,99 

Amoeba leningradensis 23,11 20,10 28,54 28,25 48,35 

Amoeba proteus 22,43 21,65 27,48 28,45 50,10 

Plasmodium ovale 27,48 17,38 32,14 23,01 40,39 

Chlorarachnion reptans 23,03 21,87 26,53 28,57 50,44 

Pessonella sp 26,85 17,12 31,13 24,90 42,02 

Saccharomyces cerevisiae 25,73 18,54 28,64 27,09 45,63 

Average 23,53 21,40 27,65 27,42 48,82 
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Fig. 8.2: Deduced SSU rRNA secondary structures of helix 7 illustrating nucleotide substitution 

differences between selected euglenozoan and outgroup taxa. Numbers centered in the apex of 

each helix represent taxon specific nucleotides associated with helices 8, 9, 10 and variable region 

2, all of which are encompassed by helix 7. Small numbers indicate positions in the SSU rDNA 

nucleotide sequence of Saccharomyces cerevisiae. 
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Fig. 8.3: Inferred SSU rRNA secondary structures of helix 13 exemplifying nucleotide 

substitution differences between selected euglenozoan and outgroup taxa. Unique nucleotide 

changes compared to the outgroup are colored, a dashed line separates outgroup and non-

helical euglenozoan taxa from the Helicales. Small numbers indicate nucleotide coordinates in 

the SSU rDNA of Euglena gracilis (M12677). Helix 13 secondary structures of outgroup taxa, 

Diplonemida, primordial kinetoplastid clone AT4-103, Keelungia pulex, primordial symbiontid 

Bihospites bacati, Dinema sulcatum and Rapaza viridis are identical. 
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Fig. 8.4: Concluded secondary structures of SSU rRNA helix 20 illustrating differences in nucleotide 

substitution and variable region length between euglenozoan and outgroup taxa. A number in the apex of 

each helix represents residual nucleotides of helices 21, 22 and 23 including extended regions as well as 

variable region 4, for these are encompassed by helix 20.    This graph continues on the next page. 
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Fig. 8.4: Continued. Small numbers represent nucleotide coordinates in the SSU rDNA sequence of Euglena 

gracilis (to the lower left; referring to accession M12677). For a summary of primordial Euglenozoa see 

Fig. 5.20. 
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Fig. 8.5: Deduced SSU rRNA secondary structures of helix 24 showing nucleotide substitution 

differences between outgroup taxa and Euglenozoa. Small numbers represent nucleotide coordinates in 

the sequence of Euglena gracilis (lower right; accession M12677). For a summary see Fig. 5.18. 



8 Appendix 139 

 

 

 

 

Fig. 8.6: Inferred SSU rRNA secondary structures of helix 33 exemplifying nucleotide substitution 

differences between outgroup taxa and Euglenozoa. Small numbers represent nucleotide coordinates in the 

sequence of Euglena gracilis (lower right; accession M12677). 
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Fig. 8.7: Concluded secondary structures of SSU rRNA helix 44 illustrating nucleotide substitution 

differences between euglenozoan and outgroup taxa. A number in the apex of each helix represents 

remaining nucleotides of helix 44 and variable region 9. Small numbers represent nucleotide coordinates in 

the sequence of Euglena gracilis (lower right; referring to accession M12677). For a colored excerpt see 

Fig. 5.21. 
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Tab. 8.2: Table of SSU rDNA variable region length values of euglenozoan and outgroup taxa. 

* = V2 and V5 include additional helices, V2: h7-10 and V5: h26; see section 5.2.4. 

No. Taxon V1 V2* V3 V4 V5* V7 V8 V9 

 
EUGLENEA 

        
1 Khawkinea quartana 11 288 71 626 60 167 95 48 

2 Euglena longa 9 259 70 532 55 146 87 48 

3 Euglena gracilis 9 216 70 513 54 121 86 44 

4 Euglena stellata 9 202 70 503 53 131 87 34 

5 Euglena cf mutabilis 12 305 71 594 55 147 95 27 

6 Colacium mucronatum 9 195 70 425 53 107 84 29 

7 Colacium vesiculosum 9 195 70 422 53 106 84 29 

8 Cryptoglena pigra 10 199 71 493 52 145 83 28 

9 Cryptoglena skujae 10 197 71 499 52 124 83 28 

10 Cyclidiopsis acus 11 219 71 565 53 146 94 34 

11 Discoplastis spathirhyncha 11 197 71 465 52 116 82 27 

12 Discoplastis sp. 12 206 70 503 53 123 83 37 

13 Lepocinclis oxyuris 13 213 70 574 53 143 89 85 

14 Lepocinclis spirogyroides 10 200 70 470 54 115 88 31 

15 Monomorphina aenigmatica 9 212 70 482 54 121 83 31 

16 Monomorphina pyrum 9 224 78 494 61 164 91 33 

17 Phacus oscillans 9 202 70 478 54 116 86 31 

18 Phacus pusillus 9 202 71 473 54 116 83 31 

19 Strombomonas acuminata 9 193 69 476 53 121 81 28 

20 Strombomonas verrucosa 9 193 69 475 53 121 81 28 

21 Trachelomonas grandis 12 330 71 669 59 447 97 87 

22 Trachelomonas hispida 9 190 67 424 53 98 82 27 

23 Eutreptiella braarudii 9 186 72 451 57 132 82 34 

24 Eutreptiella eupharyngea 9 186 72 451 57 132 82 34 

25 Eutreptiella gymnastica 9 185 72 441 57 130 81 81 

26 Eutreptiella pomquetensis 9 186 72 449 57 132 82 35 

27 Eutreptia viridis 10 267 71 387 66 100 142 78 

28 Eutreptia pertyi 10 268 71 387 66 100 142 99 

 
APHAGEA 

        
29 Rhabdomonas costata 16 257 70 764 54 144 176 56 

30 Rhabdomonas incurva 16 301 69 713 54 124 160 41 

31 Parmidium circulare 14 312 69 713 54 114 169 60 

32 Parmidium scutulum 14 320 70 699 55 126 167 58 

33 Menoidium pellucidum 15 270 71 735 54 104 159 41 

34 Menoidium sp. 15 275 71 731 54 103 160 42 

35 Gyropaigne lefevrei 17 279 69 885 54 102 177 57 

36 Astasia curvata 12 228 69 703 56 135 129 47 

37 Astasia torta 16 329 70 835 54 153 163 76 

38 Distigma curvatum 16 582 71 746 60 210 196 42 

39 Distigma sennii 19 1258 70 1312 60 163 165 62 

40 Distigma proteus 40 628 73 748 211 459 195 50 

41 Rapaza viridis 12 191 72 432 74 108 89 41 

 
ANISONEMIDA 

        
42 Anisonema sp. "Peranema" 16 212 71 384 57 105 92 36 

43 Anisonema sp. W1 15 212 71 478 52 130 93 55 

44 Anisonema sp. U3 16 217 70 383 53 95 96 31 

45 Anisonema sp. G1 - - 71 384 58 105 92 37 

46 Anisonema acinus B1 15 212 70 407 57 - - - 

47 Anisonema acinus 14 208 70 712 58 112 91 39 

48 Dinema platysomum - 349 74 554 57 128 90 50 

49 Dinema sulcatum 27 228 74 634 63 141 100 63 

50 Neometanema parovale - - - 523 60 112 123 48 

51 Neometanema cf exaratum 13 232 71 382 57 107 113 31 

52 Heteronema scaphurum 39 479 73 1321 77 - - - 

53 Peranema sp. SP 10 180 67 457 55 101 98 31 

54 Peranema trichophorum 10 180 67 457 57 101 98 31 

55 Entosiphon sulcatum 34 216 70 479 49 107 64 28 

56 Entosiphon sulcatum 34 216 70 479 49 107 64 28 

57 Entosiphon sp. 34 215 72 479 49 107 64 28 

 
PLOEOTIIDA 

        
58 Keelungia pulex 10 167 68 390 59 95 80 32 

59 Ploeotia edaphica 9 173 68 426 54 108 81 41 

60 Ploeotia cf vitrea 8 180 69 395 54 100 81 37 

61 Ploeotia costata 10 346 70 512 55 116 87 49 

62 Ploeotia costata Pacific 10 515 70 644 55 125 87 49 

63 Ploeotia costata Brackish 10 515 70 644 55 125 87 49 
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Tab. 8.2: Continued. 

No. Taxon V1 V2* V3 V4 V5* V7 V8 V9 

 
PETALOMONADIDA 

        
76 Notosolenus urceolatus 7 168 69 367 52 102 75 35 

77 Petalomonas sphagnophila Liz 13 173 68 355 54 100 76 37 

78 Petalomonas sphagnophila HF 13 173 68 355 54 100 76 37 

79 Petalomonas sphagnophila Dunc 13 173 68 344 54 100 76 37 

80 Uncultured BLACKSEA cl 51 8 178 65 434 59 175 88 - 

81 Petalomonas cantuscygni 2 11 164 66 354 53 97 81 33 

82 Petalomonas cantuscygni 1 11 163 66 352 53 97 81 33 

83 Uncultured sphenomonad CH1 S2 16 13 165 55 352 54 101 81 37 

84 Uncultured sphenomonad CH1 S2 19 - 173 69 355 54 100 76 - 

85 Uncultured sphenomonad CH1 S1 57 - 169 69 371 54 99 76 35 

86 Uncultured eukaryote D2P04B10 - - 68 358 54 96 82 33 

87 Uncultured eukaryote D3P06F06 14 179 66 416 57 - - - 

88 Uncultured sphenomonad PR3 3E 63 - 173 68 355 54 100 76 - 

89 Notosolenus ostium U1 9 175 67 402 50 99 79 40 

90 Notosolenus ostium 9 174 67 403 49 101 78 40 

 
SYMBIONTIDA 

        
91 Uncultured eukaryote SA2 3B11 - - 68 360 61 88 80 32 

92 Uncultured eukaryote M4 18H08 - - 68 361 61 86 80 31 

93 Uncultured eukaryote NA1 3E11 - - 68 361 61 88 80 31 

94 Uncultured eukaryote NA1 4B5 9 - 68 361 61 - - - 

95 Uncultured eukaryote NA1 1G12 9 171 68 - 61 88 80 32 

96 Uncultured eukaryote NA1 4H11 9 - 68 361 61 - - - 

97 Uncultured eukaryote FV23 2D3C4 9 171 68 361 61 88 80 32 

98 Uncultured BLACKSEA cl 50 8 171 68 360 61 87 80 - 

99 Uncultured BLACKSEA cl 52 8 171 68 367 62 88 80 - 

100 Calkinsia aureus 9 174 67 368 63 85 84 48 

101 Bihospites bacati 2 8 170 70 360 59 89 80 41 

102 Bihospites bacati 1 10 170 70 360 59 89 80 41 

 
DIPLONEMIDA 

        
103 Diplonema ambulator 9 176 67 376 52 90 82 37 

104 Diplonema papillatum 9 174 63 371 45 90 82 36 

105 Diplonema sp. ATCC 50225 9 175 67 377 52 93 82 37 

106 Diplonema sp. ATCC 50232 9 174 66 369 51 83 82 37 

107 Uncultured euglenozoan DH148-EKB1 8 169 68 380 49 92 82 36 

108 Uncultured diplonemid LC22 5EP 17 8 169 68 382 50 93 82 36 

109 Uncultured diplonemid LC22 5EP 18 8 169 68 378 50 92 82 36 

110 Uncultured diplonemid LC22 5EP 19 8 169 68 385 50 92 82 37 

111 Uncultured diplonemid LC23 5EP 5 8 176 66 357 52 79 82 36 

112 Uncultured diplonemid PRTBE7438 8 169 68 - 50 92 82 36 

113 Uncultured diplonemid RM2-SGM32 9 176 68 373 50 84 82 36 

114 Uncultured eukaryote SCM15C6 8 169 68 380 50 91 82 36 

115 Rhynchopus sp. SH-2004-I 9 175 68 359 51 71 82 37 

116 Rhynchopus sp. SH-2004-II 8 174 67 363 50 88 82 37 

117 Rhynchopus sp. ATCC 50229 9 174 67 363 53 77 82 33 

118 Rhynchopus euleeides 9 176 66 373 50 82 82 37 

 
KINETOPLASTIDA 

        
119 Uncultured kinetoplastid AT4-103 16 173 60 345 48 85 81 27 

120 Perkinsiella-like sp. AFSM3 11 175 68 319 57 76 77 34 

121 Perkinsiella-like sp. PLO-DE4A 11 175 68 320 57 76 77 34 

122 Ichthyobodo necator 10 162 63 332 66 98 79 30 

123 Uncultured eukaryote L7.7 9 172 63 346 55 91 78 28 

124 Bodo edax 7 179 71 370 131 95 89 25 

125 Bodo saltans 7 182 70 367 134 94 89 25 

126 Crithidia fasciculata 8 172 68 419 148 96 86 25 

127 Cryptobia bullockii 7 161 65 340 139 93 84 26 

128 Dimastigella trypaniformis 7 161 70 357 155 96 88 26 

129 Herpetomonas nabiculae 7 174 68 422 158 96 87 26 

130 Neobodo designis 7 169 73 375 143 95 89 25 

131 Leishmania major 8 172 68 419 147 96 86 24 

132 Leptomonas collosoma 9 149 71 405 152 96 85 25 

133 Phanerobia pelophila 7 162 70 355 152 96 88 27 

134 Trypanosoma brucei 7 195 71 396 170 109 95 25 

 
HETEROLOBOSEA 

        
135 Heterolobosea sp. BB2 64 145 65 463 47 230 144 31 

136 Heterolobosea sp. RL 21 120 58 466 44 103 152 18 

137 Heterolobosea sp. LO 57 121 58 469 45 104 151 18 

138 Pharyngomonas kirbyi SD1A 31 123 58 458 45 103 149 21 

139 Acrasis helenhemmesae 27 206 76 291 43 108 92 19 
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Tab. 8.2: Continued. 

No. Taxon V1 V2* V3 V4 V5* V7 V8 V9 

140 Euplaesiobystra hypersalinica 9 144 84 257 41 75 124 46 

141 Harpagon descissus 21 90 83 314 43 76 84 23 

142 Heteramoeba clara 6 107 74 194 42 69 102 21 

143 Naegleria gruberi 25 196 82 300 45 104 82 20 

144 Pleurostomum flabellatum 23 189 99 397 52 100 107 61 

145 Psalteriomonas lanterna 8 115 88 327 44 84 92 16 

146 Stephanopogon minuta 17 252 82 320 44 199 107 30 

147 Stygamoeba regulata 11 139 67 357 45 123 70 45 

148 Tetramitus thermacidophilus 39 217 79 338 43 117 94 28 

149 Paravahlkampfia ustiana 20 114 81 270 45 94 96 16 

150 Vrihiamoeba italica 20 88 78 238 49 83 76 16 

151 Tsukubamonas globosa 12 152 70 294 43 112 75 45 

 
JAKOBIDA 

        
152 Andalucia godoyi 19 9 120 62 259 36 48 82 40 

153 Andalucia incarcerata 9 148 63 282 42 122 75 44 

154 Jakoba libera 10 128 63 254 45 59 69 46 

155 Uncultured eukaryote EN351CTD039 9 135 66 225 43 52 70 41 

156 Uncultured eukaryote FV23 CilE10 9 129 64 248 42 50 70 45 

157 Uncultured eukaryote MA1 2H5L 9 129 64 - 42 50 70 45 

158 Uncultured eukaryote SA1 1D05 9 126 64 233 43 57 67 44 

159 Seculamonas ecuadoriensis 11 141 63 238 50 62 70 34 

160 Reclinomonas americana 9 129 63 261 48 65 69 47 

 
OUTGROUP (Excavata) 

        
161 Malawimonas jakobiformis 9 147 65 227 42 109 69 39 

162 Pyrsonympha grandis 10 153 63 478 46 63 68 48 

163 Dinenympha exilis 10 149 63 452 46 63 68 50 

164 Oxymonas sp. 11 158 66 518 42 92 69 42 

165 Trimastix pyriformis 7 144 68 234 42 59 67 42 

166 Retortamonas sp. 9 157 70 366 53 94 71 51 

167 Dysnectes brevis 10 119 67 197 43 45 66 35 

168 Kipferlia bialata 10 112 64 210 37 50 67 40 

169 Ergobibamus cyprinoides 13 131 64 229 45 49 67 38 

170 Carpediemonas membranifera 9 123 63 222 41 49 67 29 

171 Hicanonectes teleskopos 9 122 60 201 36 46 64 31 

 
OUTGROUP (distant) 

        
172 Proteromonas lacertae 12 110 66 189 50 48 75 29 

173 Paramecium tetraurelia 8 112 66 209 43 47 72 29 

174 Gymnodinium sanguineum 9 136 65 223 44 51 69 37 

175 Chilomonas paramecium 7 121 63 208 43 49 69 36 

176 Dictyostelium discoideum 9 130 64 223 43 132 66 34 

177 Physarum polycephalum 13 173 63 290 40 76 78 44 

178 Palmaria palmata 10 110 67 221 42 53 64 39 

179 Acanthamoeba castellani 11 196 69 361 128 154 133 60 

180 Cyrtohymena shii 8 136 63 216 40 48 68 26 

181 Salpingoeca infusionum 10 127 64 268 46 111 144 46 

182 Monosiga brevicollis 10 122 66 220 43 49 67 37 

183 Byssoclamys spectabilis 10 133 67 222 44 48 70 40 

184 Paramicrosporidium vannellae 9 128 66 205 42 47 68 36 

185 Blastocystis sp. 9 132 64 230 42 58 65 42 

186 Tetrahymena thermophila 7 130 68 205 38 47 69 22 

187 Chaos nobile 10 240 67 347 44 152 73 18 
188 Amoeba proteus 10 221 68 143 44 38 74 62 
189 Plasmodium ovale 12 144 67 287 76 187 120 36 
190 Chlorarachnion reptans 4 201 67 230 45 64 67 32 
191 Pessonella sp. 11 186 68 279 96 160 141 76 
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Fig. 8.8: SSU rDNA variable region graphs displaying length variations specific for major groups of 

the Euglenozoa and outgroups. For explanation of abbreviations for groups and taxa see Fig. 5.22 and 

text in 5.2.4. A: Length variation graph of variable region 2; note that the x-axis begins with value 50. 

B: Graph of variable region 4; note that the ordinate begins with value 100. 

A 

B 
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Fig. 8.9: SSU rDNA variable region graphs illustrating group specific length variations between 

euglenozoan and outgroup taxa. For explanation of group related abbreviations see Fig. 5.22 and text in 

5.2.4. A: Length variation graph of variable region 5; note that the ordinate begins with value 30. B: 

Graph of variable region 7; note that the x-axis begins with value 25. 
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Fig. 8.10: SSU rDNA variable region graphs depicting length variations specific for major groups of 

the Euglenozoa and outgroup tax in variable region 8. For explanation of abbreviations for groups and 

taxa see Fig. 5.22 and text in 5.2.4. 

Fig. 8.11: Detailed center view on the neighbor-net graph obtained from analysis of modified dataset 

III comprising Euglenozoa and Heterolobosea as outgroup, but excluding Entosiphon sequences (i.e. 

subset B2, see Tab. 5.3). Network splits of monophyletic clades are colored, the scale bar represents 

1 % sequence divergence. A red arrow marks common splits of the Ploeotiida; a grey arrow 

highlights splits which falsely support monophyletic Helicales including Ploeotia cf vitrea. 
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A 
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Fig. 8.12: Neighbor-net graphs obtained from network analysis of modified dataset III 

comprising Euglenida. Scale bars represent 1 % sequence divergence and network splits 

of monophyletic clades are colored. Red arrows mark common splits of monophyletic 

Ploeotiida and grey arrows highlight splits which support monophyletic Helicales. A: 

Subset D1 including Entosiphon. B: Subset D2 without Entosiphon (see Tab. 5.3). 
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Fig. 8.13: Standardized variable regions graph illustrating relative proportions of SSU rDNA variable 

regions among major euglenozoan groups and excavate outgroup taxa. Nucleotide sequences of V1, 

V2, V3, V4, V5, V7, V8 and V9 were combined and normed to 100 % (each colored in analogous, 

varying grey tones from left to right). Taxa belonging to major groups differ in background colors: 

names of outgroup taxa are colored in light grey, Kinetoplastida in light red, Diplonemida in light blue, 

Aphagea in dark blue, Eutreptiales (i.e. primordial Euglenea) in green and phagotrophic euglenids in 

white. A black line divides outgroup from euglenozoan taxa, a dashed line separates Helicales from 

other Euglenozoa. For absolute variable region length values of primordial Euglenozoa see Fig. 5.26. 
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Fig. 8.14: Neighbor-net graph of LSU rDNA dataset IV comprising euglenozoan and 

outgroup taxa. Network splits supporting monophyletic euglenozoan clades are colored and 

the scale bar represents 5 % sequence divergence. Note paraphyly of Petalomonadida. 
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Fig. 8.15: Split support spectrum for LSU rDNA dataset IV displaying the 50 best splits 

accordant with neighbor-net graph in Fig. 8.14. Compatible splits referring to euglenozoan 

clades are marked by black arrows: well-known groups above, nonsense groupings below 

the splits graph. All conflicting splits show other nonsense correlations, e.g. outgroup with 

euglenozoan taxa. 

binary splits supporting tree 
noisy outgroup splits supporting tree 
noisy splits supporting tree 
splits in conflict with tree 

 

Kinetoplastida + 

Ploeotia costata 

Kinetoplastida 

Diplonemida 

Aphagea 

Euglenea 

Outgroup + 

Entosiphon 

sulcatum 

derived 

Aphagea 

derived 

Kinetoplastida 

Peranema 

trichophorum 
+ 

Notosolenus 

ostium 

Outgroup + 

Petalomonas 

cantuscygni 

derived 

Euglenea 

Euglenea + 
Peranema 

trichophorum + 

Notosolenus ostium 

0 

100 

200 

300 

400 

500 

-100 



8 Appendix 151 

 

Fig. 8.16: Neighbor-net graph of modified LSU rDNA dataset V comprising Euglenozoa after 

exclusion of outgroup taxa. Network splits supporting monophyletic clades are colored. Scale 

bars represent 2 % sequence divergence. A: Splits graph overview displaying terminal splits. 

B: Detailed center view. Common splits of Diplonemida and Petalomonadida are marked by a 

white arrow. Splits supporting monophyletic Helicales, which comprise a Peranema/Euglenea 

clade, are highlighted by a grey arrow. 
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Tab. 8.3: Nucleotide composition of LSU rDNA sequences in 

dataset V. Percentages for nucleotides and GC-summaries are 

heated: highest percentages of each nucleotide are colored red, 

lowest values are green. 

Taxon T C A G 

Euglena gracilis 20,40 23,66 24,36 31,59 

Eutreptia viridis 23,00 21,49 25,32 30,20 

Eutreptiella pomquetensis 18,91 24,13 21,46 35,50 

Eutreptiella braarudii 20,65 23,90 23,09 32,37 

Peranema trichophorum* 24,30 20,00 27,21 28,49 

Entosiphon sulcatum* 21,69 21,92 28,14 28,25 

Ploeotia costata* 19,14 25,06 24,83 30,97 

Petalomonas cantuscygni* 20,79 22,53 27,41 29,27 

Notosolenus ostium* 21,29 23,10 26,58 29,03 

Uncultured clone Ma131 1A46 21,26 22,70 27,30 28,74 

Diplonema ambulator* 21,11 22,16 27,15 29,58 

Rhynchopus euleeides* 20,81 22,56 26,74 29,88 

Diplonema papillatum 21,23 22,27 26,45 30,05 

Bodo saltans 21,47 21,70 28,47 28,35 

Dimastigella mimosa 22,02 22,54 27,92 27,52 

Neobodo saliens 22,52 21,12 28,95 27,41 

Trypanosoma brucei 21,58 22,62 26,68 29,12 

Crithidia fasciculata 21,58 21,58 28,31 28,54 

Leishmania major 21,46 21,81 28,19 28,54 

Chytriomyces hyalinus 22,61 19,46 29,60 28,32 

Saccharomyces cerevisiae 23,89 18,76 28,32 29,02 

Codosiga gracilis 21,93 18,79 30,97 28,31 

Capsaspora owczarzaki 21,35 20,77 29,93 27,96 

Nephroselmis olivacea 21,81 21,58 27,73 28,89 

Tetraselmis cordiformis 22,97 19,84 28,42 28,77 

Average 21,58 21,84 27,17 29,41 
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Fig. 8.17: Standardized LSU rDNA sequence length graph illustrating group specificity of LSU 

rDNA domain lengths among Euglenozoa compared to outgroup taxa. LSU rDNA domains I, II, 

III, IV and V are depicted as variegatingly colored bars, major groups are color-coded according 

to Fig. 5.37. Taxa which LSU rDNA sequence was obtained in the scope of this work are 

marked by an asterisk. 
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Fig. 8.18: A: Combined ITS sequences of euglenozoan taxa. Taxa which ITS sequences were 

obtained in this work are marked by an asterisk. ITS sequences were concatenated in taxon 

specific bars, ITS1 sequences are shown to the right in darker colors, corresponding ITS2 

sequences to the left in lighter colors. Representatives of major groups are colored as in Fig. 5.37. 

B: ITS sequence proportions of selected Euglenozoa. ITS1 sequences depicted as white and ITS2 

sequences as grey bars. 
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Fig. 8.19: Different nucleotide substitutions of euglenozoan and outgroup taxa in the inferred LSU 

rRNA secondary structure of helix 61. Unknown bases are depicted by question marks. A: Overview 

comprising all taxa examined. A group-specific unique substitution for Kinetoplastida, i.e. a single 

guanine, is marked by light-red arrows. Small numbers represent nucleotide coordinates in the 

LSU rDNA of Saccharomyces cerevisiae. B: Diagram illustrating nucleotide changes between 

derived Kinetoplastida, Diplonemida, Petalomonadida and Naegleria gruberi. Base changes between 

taxa are shown as numbers in boxed arrows. Group-specific unique substitution in derived 

kinetoplastids is highlighted by a yellow circle. 
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Fig. 8.20: Neighbor-net graphs of operon dataset VI comprising concatenated SSU and 

LSU rDNA sequences and displaying terminal splits. Network splits supporting monophyletic 

clades are colored. Scale bars represent 2 % sequence divergence. A: Network graph 

including the sequence of Entosiphon sulcatum. B:  Network graph from reiterated analysis 

excluding Entosiphon sulcatum. 

A 

B 
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List of Abbreviations 

A Adenine 

Amp Ampicillin 

BI Bayesian inference 

bp Base pair 

C Cytosine 

°C Degree Celsius 

cDNA Complementary DNA 

diH2O Purified (deionized) water 

dsH2O Highly purified (deionized and sterilized) water 

DMF Dimethylformamide 

DNA Deoxyribonucleic acid 

EDTA Ethylenediamine-tetraaceticacid 

emend. emended 

Fig. Figure 

g Gram 

G Guanine 

GTR General time reversible model 

h Hour 

IGS Intergenic spacer 

ITS Internal transcribed spacer 

l Litre 

LB Lysogeny broth 

LSU Large subunit 

min Minute 

ML Maximum likelihood 

µ Micro 

m Milli 

n nano 

nt Nucleotide 

PCR Polymerase chain reaction 

pH negative decadic logarithm of H
+
 concentration 

RNA Ribonucleic acid 

RNase Ribonuclease 

rpm Rounds per minute 

rDNA Ribosomal DNA 

rRNA Ribosomal RNA 

s Second 

S Svedberg unit (sedimentation coefficient) 

SOB Super optimal broth 

SOC Super optimal broth with catabolite repression 

SSU Small subunit 

T Thymine 
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Tab. Table 

TAE Tris-acetate-EDTA 

Taq DNA polymerase  

Tris Tris-(hydroxymethyl)-aminomethane 

U Unit 

UV Ultraviolet light 

V Volt 

v/v Volume per volume 

w/v Weight per volume 

X-gal 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside 
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