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Dedicated to my family

Gewidmet meiner Familie
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(Tool, Lateralus, 2001)



Foreword
The aim of my doctoral thesis is to give new statements on q-plurisubharmonic
functions, their subfamilies and the sets generated by them. These include
q-pseudoconvex and q-pseudoconcave sets, generalized holomorphically convex
hulls and the Shilov boundary for subfamilies of q-plurisubharmonic functions.
It was my motivation to generalize the classical results on complex analysis
and pluripotential theory such as Lelong’s results on the relation of convex
and plurisubharmonic functions, Bochner’s tube theorem, Hartogs’ theorem on
separate analyticity, Shcherbina’s theorem on foliation of continuous graphs, the
Cartan-Thullen theorem and the solution of the Levi problem, the concept of
the Bergman-Shilov boundary and Bychkov’s geometric characterization of the
Shilov boundary. I will summarize the new and most important results in the
introduction after giving a short historical overview on q-plurisubharmonicity
and q-pseudoconvexity.

Results on q-plurisubharmonic functions and q-pseudoconvex sets can al-
ready be found in a vast amount of articles. Therefore, I decided to collect their
fundamental properties, extend them by new ones and add them to my thesis.
Due to the survey character of some chapters and the concise and elementary
proofs of the statements, this thesis can be read by undergraduate students as
well.

I shall also mention that some of the achieved results have been already
published in form of a survey article [PZ13] by me and E. S. Zeron (from the
research institute Cinvestav in Mexico City) in the Journal of Mathematical
Analysis and Applications (Vol. 408, Issue I) in December 2013. The second
part [PZ15] of that article is also completed and ready for submission to an
appropriate journal. Moreover, the contents related to the Shilov boundary for
subfamilies of q-plurisubharmonic functions are collected in my article [Paw13]
which I placed so far only on arχiv, but which is also ready for submission to
a suitable journal. The part about q-pseudoconcave graphs is a joint work of
me and my advisor N. V. Shcherbina based on his notes on that topic, but it
requires further investigations and is therefore not finished yet. I also plan to
extend and release the part about real q-convex functions and find an interesting
application for these kinds of functions.

Thomas Patrick Pawlaschyk

(Wuppertal, Juni 2015)
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Historical overview

The classical pluripotential theory is one the most interesting topics in com-
plex analysis. It has its roots in the fundamental works of Kiyoshi Oka (*1901-
†1978) and Pierre Lelong (*1912-†2011), who examined independently domaines
pseudoconvexes and fonctions plurisousharmonique in the early 1940s (see, e.g.,
[Oka42] and [Lel42]). A C2-smooth plurisubharmonic function f is characterized
by demanding that its Levi matrix (or complex Hessian)

(
∂2f/∂zj∂zk

)n
j,k=1

has
no negative eigenvalues. It is then natural to examine functions with the prop-
erty that the number of negative eigenvalues of their Levi matrix is positive and
has a fixed upper bound. It seems that Hans Grauert (*1930-†2011) was one of
the first who investigated these type of functions on complex spaces in the 1950s.
He called them q-convex functions, where q is an integer number greater or equal
to one. In his convention, q-convex functions are those C2-smooth functions
whose Levi matrix have at most q−1 non-positive eigenvalues. They led to the
definition of q-convex sets and the Grauert-Andreotti theory, which investigates
certain ∂-cohomology classes of q-convex sets (see [Gra59] or the book [HL88]
of G. M. Henkin and J. Leiterer). In the late 1970s, Louis R. Hunt and John
J. Murray introduced upper semi-continuous q-plurisubharmonic functions on
domains in the complex Euclidean space Cn in their joint article [HM78]. In the
case of C2-smoothness, they showed that strictly q-plurisubharmonic functions
are exactly (q+1)-convex functions, so that q-plurisubharmonicity can be viewed
as a generalization of q-convexity in the sense of Grauert. Moreover, q-pluri-
subharmonic functions are strongly linked to q-holomorphic functions studied
by R. Basener earlier in the late 1970s (see [Bas76]). These functions fulfill the
non-linear differential equation ∂f ∧ (∂∂f)q = 0 and obviously generalize the
classical holomorphic functions which appear in the case q = 0. Similar to the
case of holomorphic and plurisubharmonic functions, Hunt and Murray showed
that the real part, imaginary part and the logarithm of the absolute value of
a q-holomorphic function are indeed q-plurisubharmonic. Further important
works, especially related to approximation techniques for q-plurisubharmonic
functions, are due to K. Diederich and J. E. Fornæess [DF85], Z. Słodkowski
[Sło84] and L. Bungart [Bun90].

The origin of q-pseudoconvexity lies in the works of W. Rothstein [Rot55] and
Grauert [Gra59] in the 1950s, both being students of Heinrich Behnke (*1898-
†1979). They were motivated by different reasons to introduce q-convex sets.
As explained before, Grauert used them to give results on the dimension of
certain ∂-cohomology classes, whereas Rothstein was interested in the extension
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of sliced analytic sets. Later, further studies of these sets were performed in
the 1960s by O. Fujita [Fuj64] and M. Tadokoro [Tad65]. They introduced
pseudoconvex sets of order n − q and showed that their notion and that of
Rothstein and Grauert coincide. In the following decades, the q-convex sets and
functions on complex spaces were studied by many different mathematicians
like K. Diederich, J. E. Fornæess, T. Peternell, A. Popa-Fischer, M. Colţoiu and
V. Vâjâitu, just to name a few. Z. Słodkowski in [Sło86] and O. Fujita [Fuj90]
characterized q-pseudoconvexity in terms of boundary distance functions. In
[Bas76], R. Basener introduced the q-holomorphically convex sets using q-holo-
morphic functions and compared them with (strictly) Levi q-pseudoconvex sets.
These are smoothly bounded sets admitting a (strictly) q-plurisubharmonic (or
(q + 1)-convex) defining function in some neighborhood of its boundary. In
[HM78], Hunt and Murray used strictly Levi q-pseudoconvex sets to solve the
Dirichlet problem for q-plurisubharmonic functions on Levi q-pseudoconvex sets.

The vast amount of different notions of q-pseudoconvexity and q-plurisub-
harmonicity with all the confusing changes of the index q motivated us to create
one single monograph collecting the knowledge about q-plurisubharmonic and
q-pseudoconvex functions and extending it by further properties which were
not known so far. The subjects of q-convexity have been already listed and
examined in various books (see, e.g., [HL88], [For11] or [Dem12]), surveys (see
for example [Col97]) and articles (see [Die06]). Together with E. S. Zeron, we
collected properties of q-plurisubharmonic and q-holomorphic functions and sets
generated by them, listed most of the different notions of q-pseudoconvexity
and gave a proof of their equivalence in a survey article [PZ13]. This article
was extended by the second part [PZ15] in which we investigated generalized
holomorphically convex hulls and the q-pseudoconvexity of their complements.
It is completed and shall be submitted to a journal soon.

Short historical overviews on the Bergman-Shilov boundary and the complex
foliation of continuous graphs can be found in the corresponding sections of this
thesis.

Chapter overview and new results
This thesis is divided into two parts. In the first one, we introduce upper
semi-continuous, real q-convex and q-plurisubharmonic functions and a large
amount of their subfamilies. We give their properties and compare them to
each other. The main outcome will be approximation techniques for real q-
convex, q-plurisubharmonic and q-holomorphic functions. The second part deals
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with sets generated by q-plurisubharmonic functions like q-pseudoconvex sets,
generalized convex hulls of compact sets, complements of q-pseudoconvex sets
(i.e., q-pseudoconcave sets) and the Shilov boundary for subfamilies of q-pluri-
subharmonic functions. In the following, we will describe the content of each
chapter and give the most important new results.

In Chapter 1, we recall the definition of upper semi-continuous functions
defined on a (compact) Hausdorff spaces with image in [−∞,+∞) and present
those properties which are relevant to our purposes. More precisely, we are inter-
ested in the upper semi-continuous regularization of a locally bounded function,
maximal values of upper semi-continuous functions on compact spaces and ap-
proximation of upper semi-continuous functions by continuous ones. Monotone
sequences of families A of upper semi-continuous functions lead to the notion
of the monotone closure A↓ of A. It consists of all limits of point-wise de-
creasing sequences (fn)n∈N in A and will play a useful role in the study of the
Shilov boundary in the last two chapters. The reason is that the maximal values
maxX fn of a decreasing sequence (fn)n∈N of upper semi-continuous functions
on a compact Hausdorff space X also decreases to the maximal value of its
limit function. We include detailed proofs of the statements for the sake of
completeness, even though most of them are well-known to experts in this field.

Chapter 2 begins with a very short survey about convex sets and functions.
They serve to introduce so-called real q-convex functions. These generalize
convex functions and share similar properties as their complex relatives, the
q-plurisubharmonic functions which we examine in Chapter 3. An upper semi-
continuous function on an open set ω in Rn is called real q-convex if for every
plane π of dimension q + 1, every ball B lying relatively compact in π ∩ ω and
each linear function ` satisfying u ≤ ` on the boundary of B, this inequality
already holds on the whole of B. It seems that these functions were not studied
yet from the viewpoint of complex analysis and pluripotential theory. In fact, all
these observations on real q-convex functions come from q-plurisubharmonicity,
but it seems that they have never been written down explicitly. For this rea-
son, we give a detailed list of properties of real q-convex functions and develop
approximation techniques. For instance, one of the approximation techniques
is motivated by Słodkowski’s approximation of q-plurisubharmonic functions by
continuous ones in [Sło84].

Theorem 2.6.3 Let ω1 b ω be two open sets in Rn. Then each real q-convex
function on ω can be approximated from above by a decreasing sequence of con-
tinuous real q-convex functions on ω1 which are additionally twice differentiable
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almost everywhere on ω1.
This enables to show that the sum of a real q-convex and a real r-convex

function is real (q+r)-convex (see Theorem 2.6.4). The latter fact is a key result
in order to show a Bungart-type approximation for real q-convex functions. In
fact, Bungart proved a similar result for continuous q-plurisubharmonic func-
tions in [Bun90] solving a certain Dirichlet problem.
Theorem 2.6.8 Any continuous real q-convex function defined on an open set
ω in Rn can be approximated from above by a decreasing sequence of piecewise
smooth real q-convex functions on ω.

In Chapter 3, we give the definition of q-plurisubharmonic functions in the
sense of Hunt and Murray [HM78]. An upper semi-continuous function ψ on an
open set Ω in Cn is q-plurisubharmonic if for every complex plane π of dimension
q + 1, every ball B lying relatively compact in π ∩ Ω and each pluriharmonic
function h satisfying ψ ≤ h on the boundary of B it also fulfills ψ ≤ h on the
whole of B. We give their properties, introduce relevant subfamilies of q-pluri-
subharmonic functions and study their relations to each other. Since they are
based on holomorphic, harmonic and plurisubharmonic functions, we devote a
very brief section to these classical functions.

We recall Fujita’s result [Fuj90] stating that the composition ψ ◦ f of a q-
plurisubharmonic function ψ on Ω in Cn and a holomorphic function f defined
on an open set G in Ck with image in Ω remains q-plurisubharmonic on G.
We also give a detailed proof which differs from that of Fujita and which is
similar to that of N. Dieu in [Die06] (see Theorem 3.7.1). It is also included
in our joint article [PZ13]. Dieu’s proof is based on Słodkowski’s and Bun-
gart’s approximation techniques for q-plurisubharmonic functions, whereas that
of Fujita uses boundary distance functions and q-pseudoconvex sets. Another
application of the approximation techniques are the following statements about
q-plurisubharmonic and real q-convex functions.
Theorem 3.6.1 A real q-convex function u defined on an open set Ω in Cn is
q-plurisubharmonic on Ω.

A converse result involving real q-convex and rigid q-plurisubharmonic func-
tions generalizes a classical result by P. Lelong [Lel52b].
Theorem 3.6.4 An upper semi-continuous function u defined on an open set
ω in Rn is real q-convex if and only if the rigid function ψ(z) := u(Re(z)) is
q-plurisubharmonic on Ω := ω + iRn.

Composing q-plurisubharmonic and real r-convex functions yields the sub-
sequent statement.



7

Theorem 3.5.6 Let (ψ`)`=1,...,k be a collection of functions which are q`-pluri-
subharmonic on an open set Ω in Cn such that the mapping ψ = (ψ1, . . . , ψk)
on Ω has its image in some open set ω in Rk. If u is real r-convex on ω, then
the composition u ◦ ψ is (q + r)-plurisubharmonic on Ω, where q =

∑k
`=1 q`.

The q-plurisubharmonic functions can be defined on analytic sets and, thus,
on leaves of a certain singular complex foliation by analytic sets.
Theorem 3.9.6 Let q ∈ {0, . . . , n − 1} and r ≥ 0 be integers and let Ω be an
open set in Cn. Given a holomorphic mapping h : Ω → Cq, every upper semi-
continuous function ψ on Ω, which is r-plurisubharmonic on the fiber h−1(c)
for every c ∈ h(Ω), is (q + r)-plurisubharmonic on Ω.

Moreover, it is possible to approximate q-plurisubharmonic functions on
singular foliations by a decreasing sequence of C∞-smooth ones (see Theo-
rem 3.9.11). We also recall the definition of q-holomorphic functions in the
sense of R. Basener [Bas76], extend it to functions defined on analytic sets and
list their main properties. We obtain a result similar to the previous theorem
in terms of holomorphic functions on a singular foliation.
Theorem 3.11.5 Let Ω be an open set in Cn and let q ∈ {0, . . . , n−1}. Given
a holomorphic mapping h : Ω→ Cq, every C2-smooth function f on Ω, which is
holomorphic on the analytic fiber h−1(c) for every c ∈ h(Ω), is q-holomorphic
on Ω. Moreover, every continuous function on Ω which is holomorphic on the
fiber h−1(c) for every c ∈ h(Ω) can be uniformly approximated on compact sets
by q-holomorphic functions on Ω.

The Chapter 3 ends with a Bremermann type approximation for plurisub-
harmonic functions on a singular foliation (see Theorem 3.11.8). Most of these
results will be included in our second joint article [PZ15].

In Chapter 4, we give a list of the different notions of q-pseudoconvexity
existing in the literature, extend it by further characterizations and show their
equivalence in Theorem 4.3.2. This list is included in the joint article [PZ13].
The study of plurisubharmonic functions on singular foliations enables us to give
a new characterization of q-pseudoconvex sets in terms of boundary distance
functions. This part can be found in [PZ15].
Theorem 4.3.2 Let Ω be an open set in Cn and let ‖ · ‖ be any complex norm
function on Cn. Define d‖·‖(z, bΩ) := inf{‖z − w‖ : w ∈ bΩ}. Then Ω is q-
pseudoconvex, i.e., it admits a q-plurisubharmonic exhaustion function if and
only if − log d‖·‖(z, bΩ) is q-plurisubharmonic on Ω. Moreover, the set Ω is q-
pseudoconvex if and only if it is Hartogs (n−q−1)-pseudoconvex in the sense of
Rothstein [Rot55].
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We generalize a classical result by P. Lelong [Lel52b] which goes back to
S. Bochner [Boc38] and is nowadays known as Bochner’s tube theorem.
Theorem 4.4.2 Given a number a > 0 and an open set ω in Rn, the tubular
set ω + i(−a, a)n is q-pseudoconvex if and only if its base ω is real q-convex,
i.e., it admits a real q-convex exhaustion function.

We study complements of q-pseudoconvex sets which leads to a duality the-
orem suggested by N.V. Shcherbina. Here, an open set G is called strictly Levi
k-pseudoconvex inside another open set V in Cn if G is the sublevel set of a
smooth strictly k-plurisubharmonic function ψ on V with non-vanishing gradi-
ent on the boundary of G in V .
Theorem 4.6.4 Let Ω be a domain in Cn which is not q-pseudoconvex. Then
there exist a point p ∈ bΩ, a neighborhood V of p and a strictly Levi (n−q−2)-
pseudoconvex set G in V such that V \G touches bG from the inside of G only
at p.

This important tool allows to analyze the complex structure of submanifolds
and continuous graphs in Cn whose complement is q-pseudoconvex.
Theorem 4.7.9 Let n, k, p be integers with n ≥ 1, p ≥ 0 and k ∈ {0, 1} such
that N = n+k+p ≥ 2. Let G be a domain in Cnz ×Rku and let f : G→ Rkv×C

p
ζ a

continuous function such that the complement of the graph Γ(f) in CNz,u+iv,ζ is
Hartogs n-pseudoconvex in the sense of Rothstein. Then Γ(f) is locally foliated
by n-dimensional complex submanifolds.

This statement generalizes one of the classical Hartogs’ theorems (case n ≥ 1,
k = 0 and p = 1) as well as results by N. V. Shcherbina [Shc93] (case n = 1, k = 1
and p = 0) and E. M. Chirka [Chi01] (case n ≥ 1, k = 1 and p = 0). Results on
the case of k ≥ 2 are not known to us yet and needs further investigations.

In Chapter 5, we investigate generalized convex hulls of the form

K̂A := {z ∈ Ω : ψ(z) ≤ max
K

ψ for every ψ ∈ A},

where A is some family of upper semi-continuous functions on Ω in Cn and
K is a compact subset of Ω. These hulls allow to characterize q-pseudoconvex
domains Ω in Cn by demanding that for every compact set K in Ω its hull
K̂PSHq(Ω) generated with respect to q-plurisubharmonic functions on Ω has to
be compactly contained inside Ω. It is then interesting to compare these hulls
to generalized polynomially and rationally convex hulls (studied by R. Basener
[Bas78], G. Lupacciolu and E. L. Stout [LS99]) and to the q-pseudoconvex hull
Hq(K) of a compact set K in Cn. The last one is defined as the intersection of
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all q-pseudoconvex sets surrounding K. Similar to the arguments of J. P. Rosay
[Ros06] in the case of q = 0, we show that the q-plurisubharmonic hull and
the q-pseudoconvex hull of K satisfy a generalized version of Rossi’s local maxi-
mum principle [Ros60] for q-plurisubharmonic functions (see Proposition 5.3.9).
Then the techniques developed by Słodkowski in [Sło86] lead to the following
statement on the complement of these hulls.

Theorem 5.3.11 Let Ω be a q-pseudoconvex open set in Cn and let K be a
compact set outside Ω. Then Ω \ K̂PSHn−q−2(Ω) and Ω \ Hn−q−2(K) are again
q-pseudoconvex.

The results on the generalized hulls and their complement is collected in the
joint article [PZ15].

In Chapter 6, we study the Bergman-Shilov boundary for upper semi-con-
tinuous functions defined on a compact Hausdorff space X. It is defined as
the smallest closed subset ŠA of X with the property that every function of a
given family A of upper semi-continuous functions attains its maximum on X
inside the set ŠA. For an additive family of upper semi-continuous functions
whose exponentials generate the topology of X, the existence and uniqueness
of the Bergman-Shilov boundary is guaranteed by the work of J. Siciak [Sic62].
A much more general result can be found in L. Aı̆zenberg’s book [Aiz93] in
the case of a compact set X in Cn and a family A of upper semi-continuous
functions which only fulfills the property that for every function f in A and
every complex number c the sum f + log |z − c| also belongs to A. In this case,
no assumption on convexity of the family of upper semi-continuous functions is
imposed. Therefore, Aı̆zenberg’s statement fits perfectly for q-plurisubharmonic
functions, since they do not form a convex cone and are stable under sums with
plurisubharmonic functions. Anyway, it is still not sufficient in the case of,
e.g., smooth q-plurisubharmonic functions. Therefore, we were motivated to
establish the following general result on the existence of the Bergman-Shilov
boundary.

Theorem 6.2.4 Let A be a family of upper semi-continuous functions on a
compact Hausdorff space X. If A contains a subset A0 which generates the
topology of X such that A+A0 ⊂ A, then the Shilov boundary ŠA exists and is
unique.

In the spirit of Bishop [Bis59] and the case of uniform function algebras, we
are also able to obtain generalized peak point theorems for a broader class of
continuous and upper semi-continuous functions: one involves unions of uni-
form subalgebras (see Corollary 6.4.3), and the other one uses families of func-
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tions which are stable under small pertubations by continuous ones (see Theo-
rem 6.4.7).

In the final Chapter 7, we apply the results of Chapter 6 to a large amount of
families of q-plurisubharmonic and q-holomorphic functions, show the existence
of the corresponding (Bergman-) Shilov boundaries and establish peak point
properties for these families of functions.

The approximation techniques of Słodkowski and Bungart imply that the
Shilov boundary for q-plurisubharmonic functions and that for C2-smooth q-
plurisubharmonic functions coincide (see Proposition 7.1.5). This permits us
to characterize the Shilov boundary of a C2-smoothly bounded relatively com-
pact open set for q-plurisubharmonic functions: it is precisely the closure of all
strictly q-pseudoconvex boundary points of that set (see Theorem 7.1.9). We
compare the Shilov boundary for subfamilies of r-plurisubharmonic and holo-
morphic functions on singular foliations to lower dimensional Shilov boundaries.

Proposition 7.3.1 Let Ω be an open set in Cn and K be a compact set in Ω.
Fix two integers r ∈ N0 and q ∈ {1, . . . , n− 1}. If h : Ω→ Cq is a holomorphic
mapping and A = h−1(c) for some c ∈ h(Ω), then

ŠPSHr(h,Ω)(K) ∩A = ŠPSHr(A)(K ∩A)

and

ŠPSHr(h,K)(K) ∩A = ŠPSHr(K∩A)(K ∩A).

A similar result is true if we replace r-plurisubharmonic functions on singular
foliations (PSHr(h,Ω) and PSHr(h,K)) by holomorphic functions on singular
foliations (O(h,Ω) and, respectively, O(h,K); see Proposition 7.3.2).

In Theorem 7.4.3, we show that the Shilov boundary for some special families
of q-holomorphic functions and the Shilov boundary of q-th order investigated
by R. Basener in [Bas78] are the same.

Finally, we mention the main goal is of this section, namely the generalization
of Bychkov’s result [Byč81], which gives a geometric characterization of the
Shilov boundary of convex bodies in Cn for functions holomorphic on the interior
of K and continuous up the boundary of K.

Theorem 7.6.7 Let q ∈ {0, . . . , n − 2} and D b Cn be a convex open set.
Then bD \ ŠPSHq(D) is exactly the set of all boundary points of D which have
a neighborhood U in bD such that U consists only of points each of which is
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contained in some open part of a (q+1)-dimensional complex plane lying in bD.

In fact, one can even replace the q-plurisubharmonic functions by contin-
uous ones which are holomorphic on a regular foliation by complex planes of
codimension q. We end the final chapter by giving an estimate on the Haus-
dorff dimension of the Shilov boundaries of convex bodies for q-plurisubharmonic
functions which partially generalizes a result by Bychkov in the two-dimensional
case (see Theorem 7.6.13). Most of the results of the Chapters 6 and 7 about the
Shilov boundary for subfamilies of upper semi-continuous functions are included
in the article [Paw13].

Basic notations
In order to improve the presentation, we fix the following notations and conven-
tions which are valid throughout the whole thesis.

The symbols N = {1, 2, 3, . . .} and N0 = {0, 1, 2, . . .} stand for the set of
all positive and, respectively, non-negative integers. Given two sets Y and X,
by Y b X we mean that Y is relatively compact in X, i.e., the closure Y
is a compact subset of X. Unless otherwise stated, a neighborhood U of a
point x in X is always assumed to be an open set U in X containing x. If
f : X → Y is a function defined on a set X with image in another set Y ,
then for a fixed value y ∈ Y we sometimes simply write {f = y}, {f > y} or
{f < y} instead of {x ∈ X : f(x) = y}, {x ∈ X : f(x) > y} or, respectively,
{x ∈ X : f(x) < y} whenever it is clear from the context how and where these
sets are defined. The supremum of a complex valued function f defined on a set
X is denoted by supX |f | or ‖f‖X . If f is not complex valued but has values in
[−∞,+∞) := R ∪ {−∞}, then we write supX f for the supremum of f on X.
If it has values in (−∞,+∞] := R ∪ {+∞}, we the symbol infX f stands for
the infimum of f on X. By convention, the supremum of the constant function
−∞ on X equals of course −∞, whereas the infimum of the constant function
+∞ is exactly +∞. We also define that ±∞ · 0 = 0. For k ∈ {1, . . . ,∞}, the
symbol Ck(X) stands for the family of complex valued Ck-smooth functions on
a normed space X over the complex numbers C. If the image of these functions
lies in the real numbers R, we will sometimes write Ck(X,R). If K ∈ {R,C}, by
planes in Kn we always mean affine linear subspaces which do not necessarily
pass through the origin, and linear functions always are considered to be affine
linear.

More conventions are set throughout this thesis where they will be needed.
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Chapter 1

Semi-continuity

Most of the functions which will be defined and studied in the forthcoming
chapters have one basic property in common: each of them is upper semi-
continuous. It is therefore important to us to recall the notion of upper semi-
continuous functions defined on a topological Hausdorff space X and to show
some of their properties and examples. We shall only mention those results and
examples which we will actually use in later chapters. Even though most of
the statements we will present below are already well-known and can be found
in the literature (see, e.g., [Bou98], §6.2), we shall present a detailed collection
of the statements and give most of their proofs. Especially, we are interested
in the upper semi-continuous regularization of an arbitrary function and the
approximation of upper semi-continuous functions by a decreasing sequence of
continuous ones. This property motivates the notion of the monotone closure
of a family of upper semi-continuous functions on a Hausdorff space X.

1.1 Upper semi-continuous functions
In the whole first Chapter, the symbol X will always denote a topological Haus-
dorff space. We give the formal definition of upper semi-continuous functions
defined on X.

Definition 1.1.1 Let X be a Hausdorff space.

(1) A function f : X → [−∞,+∞) is called upper semi-continuous on X if the
sublevel set {x ∈ X : f(x) < c} is open in X for every c ∈ R. The family of
all upper semi-continuous functions on X is denoted by USC(X).

15
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(2) We say that the function f : X → (−∞,+∞] is lower semi-continuous on
X if −f : X → [−∞,+∞) is upper semi-continuous on X.

(3) A real valued function f defined on X is continuous on X if f is upper semi-
continuous and lower semi-continuous on X. The set C(X,R) = C0(X,R)
denotes the family of all continuous functions on X.

(4) A complex valued function f on X is continuous on X if its real part and
imaginary part are both continuous on X. The family of all complex valued
continuous functions on X is given by the set C(X,C). We also use the
notations C0(X,C), C0(X) or C(X) for the set C(X,C).

We can create new upper semi-continuous functions out of subfamilies of
upper semi-continuous functions.

Proposition 1.1.2 Let again X be a Hausdorff space.

(1) The maximum f := max{fj : j = 1, . . . , n} of finitely many upper semi-
continuous functions f1, . . . , fn on X is again upper semi-continuous on X.

(2) Let {fj}j∈J be a family of upper semi-continuous functions on X. Then the
infimum function f := inf{fj : j ∈ J} is also upper semi-continuous on X.

(3) Every decreasing sequence f1 ≥ f2 ≥ f3 ≥ . . . of upper semi-continuous
functions on X converges pointwise to an upper semi-continuous function
on X.

(4) The family USC(X) forms a convex cone, i.e., for every f, g in USC(X) and
two numbers λ, µ ≥ 0 we have that λf + µg lies again in USC(X). Notice
that we use the convention −∞ · 0 = 0.

(5) The two families C(X,R) and log |C(X)| := {log |f | : f ∈ C(X,C)} lie in
USC(X).

We give our first example of an upper semi-continuous function which will
be important later.

Example 1.1.3 Let S be a subset of X. Then the characteristic functions χS
and χ̌S of S given by

χ
S(x) :=

{
1, x ∈ S
0, x ∈ X \ S and χ̌

S(x) :=

{
0, x ∈ S
−∞, x ∈ X \ S

are both upper semi-continuous on X if and only if S is closed.
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The following proposition gives two examples of continuous functions created
by the supremum.

Proposition 1.1.4 Let X and Y be two Hausdorff spaces and assume that Y
is compact. Let f1 6≡ −∞ be an upper semi-continuous function on X and f2

be a continuous function on X × Y . Then the function defined by

X 3 x 7→ g(x) = sup{f1(y) + f2(x, y) : y ∈ Y }

is continuous on X. If, in addition, f1 and f2 are non-negative, then

X 3 x 7→ h(x) = sup{f1(y)f2(x, y) : y ∈ Y }

is continuous on X as well.

Proof. Notice first that it will follow from Proposition 1.3.1 that g(x) < +∞
for every x in X, since Y is compact and y 7→ f1(y) + f2(x, y) is upper semi-
continuous on Y . We will use this fact already now, since its (simple) proof
does not require Proposition 1.1.4.

Let c be a real number such that Xc := {x ∈ X : g(x) < c} is not empty. Let
x0 be a point in Xc. Choose a number ε > 0 so small that it fulfills g(x0)+ε < c.
It follows from the definition of g that

f1(y0) + f2(x0, y0) ≤ g(x0) for every y0 ∈ Y.

By the upper semi-continuity of f1 and the continuity of f2 there are neighbor-
hoods Uy0

of x0 and Vy0
of y0 such that

f1(y) + f2(x, y) < f1(y0) + f2(x0, y0) + ε for every (x, y) ∈ Uy0
× Vy0

.

Since y0 is an arbitrary point in Y and Y is compact, we can find finitely many
neighborhoods Vy1 , . . . , Vyn from the covering {Vy0}y0∈Y such that {Vyj}j=1,...,n

covers Y . Then the set U :=
⋂n
j=1 Uyj is a non-empty neighborhood of x0.

Moreover, if (x, y) is an arbitrary point in U × Y , then (x, y) ∈ Uyj × Vyj for
some j ∈ {1, . . . , n} and, therefore,

f1(y) + f2(x, y) < f1(yj) + f2(x0, yj) + ε ≤ g(x0) + ε < c.

This implies g(x) < c for every x in U , so x0 is an inner point of Xc. We
conclude that Xc is open and, hence, that g is upper semi-continuous on X. On
the other hand, the function g is the supremum of a family {f1(y)+f2(·, y)}y∈Y
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of lower semi-continuous functions on X, so it is lower semi-continuous on X.
Altogether, we have shown that g is continuous on X.

Now assume that f1 and f2 are non-negative onX and onX×Y , respectively.
Define for a number δ > 0 the function

gδ(x) := sup{log(f1(y) + δ) + log(f2(x, y) + δ) : y ∈ Y }.

By the previous discussion, gδ is continuous on X. Therefore,

hδ := exp(gδ) = sup{(f1(y) + δ)(f2(x, y) + δ) : y ∈ Y }

is continuous on X. Since the family {hδ}δ>0 tends uniformly on X to h as δ
tends to zero, h is also continuous on X. �

1.2 Upper semi-continuous regularization
We recall the definition of the limes superior in terms of nets in X which serves
to characterize upper semi-continuity and produce new upper semi-continuous
functions.

Definition & Remark 1.2.1 Let X be a Hausdorff space.

(1) For a fixed point x in X we denote by U(x) the set of all open neighborhoods
of x in X. If f is defined on X \ {x}, we define

lim sup
y→x

f(x) := inf
{

sup{f(y) : y ∈ U \ {x}} : U ∈ U(x)
}
.

(2) Let Y be a subset of X with non-empty boundary bY containing some
point x. For a function f defined on Y we set

lim sup
y→x
y∈Y

f(x) := inf
{

sup{f(y) : y ∈ U ∩ Y } : U ∈ U(x)
}
.

(3) Given a function f defined on X, the upper semi-continuous regularization
f∗ of f on X is given by

X 3 x 7→ f∗(x) := lim sup
y→x

f(x).
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(4) If f is some locally bounded function on X, the upper semi-continuous
regularization is upper semi-continuous on X and can be rewritten as

f∗ = inf{g : g ∈ USC(X), f ≤ g}.

This identity follows immediately from the definitions of infimum, supre-
mum and the upper semi-continuity and from Proposition 1.1.2.

(5) Therefore, a locally bounded function f on X is upper semi-continuous if
and only if f = f∗.

We give an example of an upper semi-continuous regularization.

Example 1.2.2 Let q be a rational number in (0, 1). Then there are uniquely
determined integers k, n ∈ N such that the fraction q = k/n is represented in
lowest terms (see, e.g., §405, Theorem V in [Olm62]). In this case the upper
semi-continuous regularization f∗ of the following function f defined on the
interval [0, 1] by

f(x) :=

{
1− 1/n, x = k/n ∈ Q ∩ (0, 1)
0, x ∈ ((0, 1) \Q) ∪ {0, 1}

is constantly equal to 1, but f(x) < 1 for every x in [0, 1]. Thus, f fails to be
upper semi-continuous on [0, 1].

1.3 Maximal values

We continue by giving some properties related to maximal values of upper semi-
continuous functions. As before, X stands for a Hausdorff space.

Proposition 1.3.1 Let X be a compact Hausdorff space and let f be upper
semi-continuous on X. Then there exists a point x0 ∈ X with supX f = f(x0).

Proof. Assume that f does not attain its maximum onX and set a := sup{f(ξ) :
ξ ∈ X}. Then for every x ∈ X we have that f(x) < a, so we can find a small pos-
itive number εx > 0 such that f(x) + εx < a. On the other hand, by the upper
semi-continuity of f there is a neighborhood Ux of x such that f(y) < f(x) + εx
for every y ∈ Ux. Since X is compact, there are finitely many points x1, . . . , x`
such that Ux1 , . . . , Ux` cover X. Now set b := max{f(xj) + εxj : j = 1, . . . , `}.
Then we obtain the following contradiction, f(y) ≤ b < a for every y ∈ X. �
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The previous result motivates the following notations.

Definition & Remark 1.3.2 If a function f attains its maximum in X, we
write maxX f rather than supX f . Especially, if f is a complex valued function
on X, we simply write ‖f‖X := supX |f |. Now if X is a compact Hausdorff
space, ‖ · ‖X defines a Banach norm on C(X,C). Then it is easy to see that if
a sequence (fn)n∈N of functions fn ∈ C(X,C) converges uniformly on X (i.e.,
with respect to ‖ · ‖X) to a function f , then f is again in C(X,C) and ‖fn‖X
converges to ‖f‖X as n tends to +∞.

We are interested in the behavior of the maximal values of decreasing families
of upper semi-continuous functions.

Lemma 1.3.3 Let {fj}j∈J be a family of upper semi-continuous functions on
X. Let f := inf{fj : j ∈ J} and let g be a lower semi-continuous function on
X with f < g on X. Then for every compact set K in X there exists a finite
subset I of J such that

f ≤ min{fi : i ∈ I} < g on K.

Proof. Fix a point x ∈ K. Then there is an index j(x) ∈ J such that
f(x) ≤ fj(x)(x) < g(x). Since fj(x) − g is upper semi-continuous on X, we can
find an open neighborhood Ux of x such that fj(x)(y) < g(y) for every y ∈ Ux.
By the compactness of K there are finitely many points x1, . . . , x` in K such
that Ux1 , . . . , Ux` cover K. We set I := {j(x1), . . . , j(x`)}. Then we easily ob-
tain the desired inequalities f ≤ min{fi : i ∈ I} < g on K. �

This observation leads to the following property which is similar to the last
one mentioned in Remark 1.3.2.

Proposition 1.3.4 Let (fn)n∈N be a sequence of upper semi-continuous func-
tions on X decreasing to f on a compact set K in X. Then

lim
n→∞

max
K

fn = max
K

.

Proof. The limit a := limn→∞maxK fn exists because (maxK fn)n∈N is a
decreasing sequence which is bounded from below by maxK f . Assume that
a > maxK f . By the previous Lemma 1.3.3 we can find a large enough integer
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n0 such that a > fn0
(y) for every y ∈ K. This is a contradiction to the defini-

tion of a. �

1.4 Upper semi-continuity in normed spaces

The main purpose of this section is to fix some basic notations on normed spaces
and to give a lemma which will turn out to be one the most important tools in
the study of the families of functions we will define later.

Definition & Remark 1.4.1 Let K be one of the fields R or C.

(1) A normed space (X, ‖ · ‖) over the field K induces the metric

X ×X 3 (x, y) 7→ d‖·‖(x, y) := ‖x− y‖.

(2) Of course, each norm function x 7→ ‖x‖ is continuous with respect to the
topology induced by d‖·‖.

(3) Especially, if x = (x1, . . . , xn) ∈ Kn, we are interested in the Euclidean
norm ‖ · ‖2 and the maximum norm ‖ · ‖∞ defined by

‖x‖2 :=

√√√√ n∑
j=1

|xj |2 and ‖x‖∞ := max{|xj | : j = 1, . . . , n}.

(4) One can show that the sequence (‖xk1 , . . . , xkn‖
1/k
2 )k∈N decreases to to ‖x‖∞

if k tends to +∞.

(5) The ball Bnr (x0) in Kn with radius r > 0 centered at x0 is defined by

Bnr (x0) := {x ∈ Kn : ‖x− x0‖2 < r}.

We also sometimes write Br(x0) instead of Bnr (x0).

(6) The polydisc ∆n
r (x0) in Cn with radius r > 0 centered at x0 is given by

∆n
r (x0) := {x ∈ Cn : ‖x− x0‖∞ < r}.
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(7) We already have defined the uniform norm ‖f‖X := supX |f | for a complex
valued function f on X. If X is compact, the norm ‖ · ‖X endows C(X,C)
with a Banach space structure.

(8) A vector space X equipped with an inner product 〈·, ·〉 induces a norm ‖ · ‖
on X by ‖x‖ :=

√
〈x, x〉.

(9) Clearly, we have the following connection between the inner product and its
induced norm,

‖x+ y‖2 = ‖x‖2 + 2Re〈x, y〉+ ‖y‖2 for every x, y ∈ X.

Notice that, if K = R, then Re〈x, y〉 = 〈x, y〉 for every x, y ∈ X.

The following lemma is one of the most important tools for our purposes.
It is basically Lemma 4.5 in [Sło84], but we have to point out that a similar
technique has already been used in the proof of Lemma 2.7 in [HM78].

Lemma 1.4.2 (Striking lemma) Let X be a vector space over the field K ∈
{R,C} equipped with the inner product 〈·, ·〉. Let ‖ · ‖ denote its induced norm
and let u be an upper semi-continuous function on a compact set K in X.
Suppose that there is another compact set L in K with maxL u < maxK u.
Then there are a point p in K \L, a real number ε > 0 and an R-linear function
` : X → R such that

u(p) + `(p) = 0 and u(x) + `(x) < −ε‖x− p‖2 for every x ∈ K \ {p}.

Proof. For a positive number ε > 0 define uε(x) := u(x) + ε‖x‖2. Choose ε > 0
so small that maxL uε < M := maxK uε. Pick a point p in K with uε(p) = M .
Then p can not lie in L. We define `(x) := ε‖x‖2 − ε‖x− p‖2 −M . Since

‖x‖2 − ‖x− p‖2 = −2Re〈x, p〉 − ‖p‖2,

the function ` is indeed R-linear. Furthermore, we have that

u(p) + `(p) = uε(p)−M = 0.

Since M := maxK uε, we conclude that

u(x) + `(x) = uε(x)− ε‖x− p‖2 −M < −ε‖x− p‖2 for every x ∈ K \ {p}.

�
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1.5 Monotone closures

On a metric space X we have more interesting examples of continuous functions.

Example 1.5.1 (1) Let A be a closed subset of a metric space X = (X, d).
Then the distance function relative to A defined by

x 7→ d(x,A) := inf{d(x, y) : y ∈ A}

is continuous on X.

(2) If Y is an open subset of X = (X, d) with non-empty boundary, then the
boundary distance function of Y given by x 7→ d(x, bY ) is continuous on Y .

(3)Given a closed set S in X = (X, d) and a number ε > 0 we set

S(ε) := {x ∈ X : d(x, S) < ε} and χε
S(x) :=


1, x ∈ S
0, x ∈ X \ S(ε)

1− 1
εd(x, S), x ∈ S(ε) \ S

.

Then the function χεS is continuous on X, and the family {χεS}ε>0 decreases to
the characteristic function χS as ε tends to zero.

(4) For an open set U in X = (X, d) and ε > 0, we define

U(ε) := {x ∈ U : d(x, bU) > ε} and χ
U,ε(x) :=

 1, x ∈ Uε
0, x ∈ X \ U
1
εd(x, bU), x ∈ U \ Uε

.

The function χU,ε is continuous on X, and the family {χU,ε}ε>0 increases to the
characteristic function χU of U in X as ε tends to zero.

The last example yields a continuous partition of unity on a metric space
which serves to obtain a classical approximation theorem. Recall that a topo-
logical space X is called paracompact if every open cover of X has an open
refinement that is locally finite. Furthermore, X is locally compact if every
point in X has a compact neighborhood.

Theorem 1.5.2 Let (X, d) be a metric space which is paracompact and locally
compact. Then for every upper semi-continuous function f on X there exists
a sequence (fn)n∈N of continuous functions fn on X which decreases to f as n
tends to +∞.
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Proof. Since X is paracompact and locally compact, it is easy to see that we can
find a locally finite covering U = {Uj}j∈J of X by open relatively compact sets
Uj inX. For a fixed index j in J consider the set Uj,ε := {x ∈ Uj : d(x, bUj) > ε}
and the continuous function χUj ,ε from Example 1.5.1 (4). Then for every j in
J we can choose ε(j) > 0 so small that the collection V := {Vj := Uj,ε(j)}j∈J is
again a locally finite covering of X. It is easy to see that, in a neighborhood of
a given point x in X, the sum S :=

∑
j∈J

χ
Vj is positive, finite and, therefore,

continuous. Thus, the function Pj := 1
S
χ
Vj is continuous on X and fulfills

0 ≤ Pj ≤ 1 and
∑
j∈J Pj = 1, so it is a partition of unity on X.

Now fix a number n ∈ N. Since f is upper semi-continuous and the function
(x, y) 7→ d(x, y) is continuous on X ×X with respect to the product topology
induced by the metric on X, the function

fj,n(x) := sup{f(y)− nd(x, y) : y ∈ Vj}

is bounded from above and continuous on Vj according to Propositions 1.3.1
and 1.1.4.

We assert that the sequence (fj,n)n∈N decreases to f on Vj if n tends to +∞.
Indeed, it is clear that

f ≤ fj,n+1 ≤ fj,n on Vj for every n ∈ N.

Let x be an arbitrary point in Vj and let η be an arbitrary positive number. By
the upper semi-continuity of f , there is a number δ > 0 such that f(y) < f(x)+η
for every y with d(x, y) < δ. Now if n > M := sup{f(y)− f(x) : y ∈ Vj}/δ, for
every y in Vj it holds that

f(y)− nd(x, y) ≤
{
f(x) + η, x ∈ Vj , d(x, y) < δ
supVj f − δM = f(x), x ∈ Vj , d(x, y) ≥ δ .

Therefore, fj,n(x) < f(x) + η. This proves the assertion.
Now since V is a locally finite covering of X, the function fn :=

∑
j∈J Pjfj,n

is continuous on X. Moreover, the sequence (fn)n∈N decreases to f on X if n
tends to +∞. �

In the last theorem, we were able to give an approximation of an arbitrary up-
per semi-continuous function by a decreasing family of continuous functions. In
this sense, continuous functions are dense in the family of upper semi-continuous
functions. This motivates to define a notion themonotone closure of a subfamily
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of upper semi-continuous functions. This monotone closure will have a similar
meaning to us as the uniform closure in C(X), which we shall recall at first.

Definition & Remark 1.5.3 Let B be a subfamily of C(X) and Y be a subset
ofX. By BY we denote the uniform closure of B in Y , i.e., the set of all complex-
valued continuous functions g on Y such that there exists a sequence (gn)n∈N
of continuous functions gn in B which uniformly converges to g on Y .

In order to define the monotone closure, the main idea is to use decreasing
sequences of upper semi-continuous functions.

Definition 1.5.4 Let Y be a subset of X and let A be a family of upper semi-
continuous functions on a Hausdorff space X.

(1) The (monotone) closure A↓Y of A in Y is composed by all upper semi-
continuous functions f on Y such that there exists a sequence (fn)n∈N of
functions fn in A which decreases pointwise to f on Y , i.e., for every x ∈ Y
it holds that

fn(x) ≥ fn+1(x) for every n ∈ N and lim
n→∞

fn(x) = f(x).

(2) If Y = X, we also simply write A↓ := A↓X .

(3) We say that A is closed if A = A↓.

(4) Given an integer k ∈ N, we define iteratively the monotone closure of A of
order k by

Ak↓ := A(k−1)↓↓
.

Notice that we use the convention A0↓
:= A.

(5) The (monotone) closure of A of infinite order is the set

A∞↓ :=
∞⋃
k=0

Ak↓.

We give a list of simple observations which are easy to verify.

Proposition 1.5.5 (1) By Proposition 1.1.2 (3), for every k ∈ N0 ∪ {∞} the
closure Ak↓ of a family A of upper semi-continuous functions is in USC(X).
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(2) For two given families A1 and A2 of upper semi-continuous functions on X
with A1 ⊂ A2, it follows directly from the definition that

A1
↓Y ⊂ A2

↓Y
for every subset Y in X.

(3) If Y1 and Y2 are two subsets of X with Y1 ⊂ Y2, then A
↓Y2 ⊂ A↓Y1 .

(4) It follows from Proposition 1.1.2 (2) that that USC(X)
↓

= USC(X).

(5) If (X, d) is a paracompact and locally compact metric space, it follows from
Theorem 1.5.2 that

C(X)
↓X

= USC(X).

(6) Let B be a subfamily of C(X,R) and let Y be a compact subspace of X.
Then

C(Y ) ∩ B↓Y ⊂ BY .

More precisely, if (fn)n∈N is a sequence of continuous functions on Y which
decreases to a continuous limit f on X, then this convergence is already
uniform on Y .

(7) It is obvious that A`↓ lies in Ak↓ for every k, ` ∈ N0 with ` ≤ k.

(8) Therefore, A∞↓ =
⋃∞
k=`A

k↓
for every ` ∈ N0.

If X is compact and B is a subfamily of C(X), then one can show that

BX
X

= BX . In contrary to this, it is not true, in general, that the closure of
order k of A stays in the closure A↓ of A. In other words, the notion of montone
closure introduced above has not the same meaning as the usual closure in the
topological sense. It becomes then an interesting question whether there is a
better definition of the closure of A which yields a closed set in the classical and
in our sense at the same time. For instance, a natural candidate would be the
intersection of all closed supersets of A, but it is unclear if it is closed itself.

We proceed by giving some examples which underline the difference between
the monotone closure and the closure in the topological sense.

Example 1.5.6 (1) Consider the following upper semi-continuous functions
on the one-point (or Alexandroff [Ale24]) compactification K = [0,+∞] of the
interval [0,+∞). For an integer n ∈ N we set

fn := χ
[1− 1

n+1 ,1] and gn,k := 1/k · χ{1− 1
n+1}

+ fn.
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The functions fn decrease to f0 := χ{1}. Now if A is the set {gk,n : k, n ∈ N},
then A↓ = A ∪ {fn : n ∈ N} and A2↓

= A↓ ∪ {f0}, but it is easy to see that f0

can not be the limit of a decreasing sequence of functions from A.

(2)One can think that after closing A finitely many times we obtain a closed
set, but this turns out to be wrong. Given k ∈ N and n0, . . . , nk ∈ N consider
the following upper semi-continuous function

hn0,...,nk(x) :=

k−1∑
j=0

gnj ,nj+1
(x− j),

where x ∈ [0,+∞] and gnj ,nj+1
are the functions from the previous example.

We set A := {hn0,...,nk : k ∈ N, n0, . . . , nk ∈ N}. Then we conclude that A(k+1)↓

contains the function χ{1,...,k}, but not χ{1,...,k+1}.

(3) Even if we take the closure of infinite order it will not lead to a closed set.
Indeed, consider for given integers k ∈ N and n0, . . . , nk ∈ N the functions

Gk := χ{+∞} +

∞∑
j=k+1

(1 + 1/j)χ{j} and Hn0,...,nk := hn0,...,nk +Gk,

where hn0,...,nk are the functions from the previous example. Now consider the
family A := {Hn0,...,nk : k ∈ N, n0, . . . , nk ∈ N}. Then by the same argument as
before we can derive that A∞↓ contains χ{1,...,k}+gk for every k ∈ N, but it does
not contain χ{1,2,...,+∞}. Anyway, the sequence (χ{1,...,k} + gk)k∈N decreases to
χ{1,2,...,+∞} as k tends to +∞. Hence,

χ{1,2,...,+∞} ∈ A
∞↓↓

,

but χ{1,2,...,+∞} /∈ A
`↓

for every ` ∈ N.





Chapter 2

Real q-convexity

Convex sets and functions are simple to define and to visualize. They form the
basis for the convexity theory and have strong importance in linear optimiza-
tion. In the first section, we are mainly interested in upper semi-continuous
convex functions, their properties, approximation techniques and their relation
to convex sets. In particular, we recall the classical result of Busemann-Feller-
Alexandroff (see [BF36] and [Ale39]) which gives regularity properties of convex
functions. More precisely, it states that every real-valued convex function is in
fact twice differentiable almost everywhere. This fascinating statement serves to
develop approximation techniques in the subsequent sections which are based on
the supremum convolution (see, e.g, [Sło84]). This sort of convolution is more
adequate for the functions we will introduce later rather than the classical in-
tegral convolution. Since only a few properties of convex functions and sets are
relevant to us, we refer the interested reader to the books of R. T. Rockafellar
[Roc70] and H. Busemann [Bus58] for an introduction to convexity theory.

Having the tools of convexity in hand, we introduce the notion of real q-
convexity. Here, roughly speaking, q is a non-negative integer which measures in
how many directions a real q-convex function fails to be convex. More precisely,
if the function is smooth, it is real q-convex if and only if its real Hessian has
everywhere at most q negative eigenvalues. Thus, in the case of q = 0, the
real q-convex functions are exactly the locally convex ones. We shall examine
their properties, establish appropriate approximation techniques and compare
them later in Chapter 3 to their relatives in the complex setting: the q-plurisub-
harmonic functions. It seems that the real q-convex functions were not studied
yet from the viewpoint of complex analysis. Surprisingly, even though convexity

29
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theory is full of various generalizations of convex functions, the real q-convex
functions seem not to take a relevant place in its considerations. Nonetheless,
studying the signature of the real Hessian of a function is important to Morse
theory (to give information about the topology of certain sublevel sets) and to
general relativity (using pseudo-Riemannian metrics).

We have to point out that the real q-convex functions resemble in such a
strong way the q-plurisubharmonic ones that most of the proofs of their proper-
ties can be easily transfered with minor modifications from the existing articles
on q-plurisubharmonicity (see [Die06], [HM78], [Sło84] or [Bun90]). Especially,
Słodkowski’s [Sło84] and Bungart’s [Bun90] approximation techniques can be
easily adapted to real q-convex functions. For the sake of completeness, we
include their proofs in the forthcoming subsections.

2.1 Convex sets and functions
We recall the definition of convex sets in the Euclidean space Rn. We refer
to the books of Rockafellar [Roc70] and Busemann [Bus58] for more details on
convexity.

Definition & Remark 2.1.1 Let K be a set in Rn.

(1) The set K is called convex if for every two points x1, x2 contained in K the
segment [x1, x2] = {(1− t)x1 + tx2 : 0 ≤ t ≤ 1} also lies in K.

(2) The dimension of the smallest plane containing K is the dimension of K.

(3) If K is a compact convex set with non-empty interior, then it is called a
convex body.

(4) Let K be a convex body and let p be a boundary point of K. Every
hyperplane H in Rn splits the space Rn into two open half-spaces H+ and
H−. The hyperplane H is then said to be supporting for K at p if H
contains p and if K lies in one of the closed half-spaces H ∪H+ or H ∪H−.

We give the definition of convex functions.

Definition 2.1.2 Let K be a convex set and ω be an open set in Rn.

(1) The function u : K → [−∞,+∞) is convex on K if for every two points
p1, p2 in K and every pair of non-negative numbers λ1, λ2 with λ1 +λ2 = 1,
we have the inequality

f(λ1p1 + λ2p2) ≤ λ1f(p1) + λ2f(p2).
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(2) The function u : K → (−∞,+∞] is called concave if −u is convex.

(3) Given a function u : ω → [−∞,+∞), it said to be locally convex on ω if
for every point p in ω there is a ball B in ω around p such that u is convex
on B.

(4) The function u is called locally concave on ω if −u is locally convex on ω.

(5) The set of all locally convex functions on an open set ω in Rn is denoted by
CVX (ω).

It is also common to allow that convex functions attain the value +∞. The
main reason is that it is then possible to extend convex functions from a domain
by the value +∞ to the whole of Rn, which makes it easier to work with those
type of convex functions. Nevertheless, since we are mainly interested in upper
semi-continuous functions, we consider only those convex functions which omit
the value +∞.

We present standard examples of convex functions.

Example 2.1.3 Every norm function on Rn is convex. Especially, the function
u(x) := ‖x‖22 is convex on Rn. Notice also, that if θ is a C∞-smooth function
with compact support in Rn, then there is a small positive number ε > 0 such
that u+ εθ remains convex on Rn. Convex functions with such an property are
also called strongly convex.

We give another relation between convex functions and convex sets.

Proposition 2.1.4 Let K be a closed set in Rn+1
x,y = Rnx ×Ry with non-empty

interior. Denote by π the standard projection of Rn+1
x,y to Ry given by π(x, y) =

y. Then K is convex in Rn+1 if and only if π(K) is convex and there are convex
functions −f+ and f− on π(K) such that

K = {(x, y) : x ∈ π(K), f−(x) ≤ y ≤ f+(x)}. (2.1)

Proof. Assume first that K is convex. Then for a fixed point x in π(K) the slice
Sx = {x} × R is an interval, and we define the functions f± as follows,

f−(x) := inf Sx and f+(x) := supSx.

The convexity of K immediately implies that π(K) is convex and that the
functions f− and −f+ are convex on π(K).
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On the other hand, if K is given as in equation (2.1), it follows directly from
the definition of convex functions that K is a convex set. �

Simple examples, like x 7→ |x|, show that convex functions fail to be smooth
everywhere. Nonetheless, each locally convex function admits a smooth approx-
imation using the integral convolution.

Theorem 2.1.5 Let ω be an open set in Rn and fix k ∈ N ∪ {+∞}. Then

CVX (ω) ⊂ CVX (ω0) ∩ Ck(ω0)
↓ω0

for every ω0 b ω.

Proof. For a positive number ε > 0 we set ωε := {x ∈ U : d(x, bω) > ε}. If
ε0 > 0 is small enough, then ω0 lies relatively compact in ωε for every ε ≤ ε0.
Now let u be a real-valued locally convex function on ω and let θ be a Ck-smooth
non-negative function on Rn with compact support on the unit ball which also
fulfills θ(x) = θ(|x|) and

∫
Rn θ(t)dV (t) = 1. Define θε(x) := ε−nθ(x/ε). Then

the integral convolution of u and θε given by

uε(x) := (u ∗ θε)(x) :=

∫
Rn

u(x− t)θε(t)dV (t)

is Ck-smooth, locally convex on ωε, and the family {uε}ε≤ε0 decreases to u on
ω0 as ε tends to zero. �

2.2 Regularity of convex functions
It is a classical fact that convex functions admit a strong regularity: it is not
only possible to show that real-valued convex functions are continuous, but
also that they are twice differentiable almost everywhere. Especially, the latter
property is relevant to us in the forthcoming sections. It was examined by
H. Busemann and W. Feller in [BF36] and then proved by A. D. Alexandroff in
[Ale39]. Nowadays, it is known as the Busemann-Feller-Alexandroff theorem.
The non-trivial proof of this result will not be repeated here. Instead we refer
to the end of chapter 2 in [Bus58] or to the article [BCP96] which gives an
alternative proof to that of Alexandroff.
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Theorem 2.2.1 (Busemann-Feller-Alexandroff) Let u be a real-valued lo-
cally convex function on an open set ω in Rn. Then, almost everywhere on ω,
the function u is twice differentiable and its gradient ∇u is differentiable.

This important theorem motivates to introduce the following family of func-
tions.

Definition & Remark 2.2.2 Let ω be an open set in Rn and L ≥ 0.

(1) The symbol C1
L(ω) is the family of all real valued functions g on ω such that

u(x) := g(x) + 1
2L‖x‖

2
2 is locally convex on ω.

(2) Let g be a function in C1
L(ω). In view of the Busemann-Feller-Alexandroff

theorem, the real Hessian Hg(x) :=
(

∂g
∂xi∂xj

(x)
)n
i,j=1

of g exists at almost

every point x in ω. At these points, the smallest eigenvalue is bounded from
below by −L. It is therefore reasonable to say that functions in C1

L(ω) have
a lower bounded Hessian.

(3) The collection of all functions on ω with lower bounded Hessian is denoted
by C1

•(ω).

(4) It holds that C1
•(ω) =

⋃
L≥0

C1
L(ω) and C1

•(ω) ⊂ C(ω).

The integral convolution already offers an important method to approximate
convex functions, but it will not be appropriate for a certain family of functions
we will investigate later. An alternative is given by a convolution method based
on taking a supremum rather than an integral. The idea to use this convolution
comes directly from section 2 in Słodkowski’s article [Sło84], where the reader
also finds more properties of functions with lower bounded Hessian.

Definition 2.2.3 Let u, v be two non-negative functions defined on possibly
different subsets of Rn. Then for every x ∈ Rn the supremum convolution of u
and v is defined by

(u ∗s v)(x) := sup{û(y)v̂(x− y) : y ∈ Rn},

where û and v̂ denote the trivial extensions of u and v by zero into the whole
space Rn.

We apply the supremum convolution to functions with lower bounded Hes-
sian (see Proposition 2.6 in [Sło84]).
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Proposition 2.2.4 Let M > 0 be a positive number. Let u and g be two non-
negative bounded upper semi-continuous functions on Rn. If g ∈ C1

L(Rn), then
u ∗s g lies in C1

ML(Rn), where M := supRn u. In particular, u ∗s g is continuous
on Rn and twice differentiable almost everywhere on Rn.

Proof. We refer to Proposition 1.1.4 or the original proof of Proposition 2.6
in [Sło84]. �

2.3 Real q-convex functions
We will now generalize the notion of convexity and give the definition of upper
semi-continuous real q-convex functions.

Definition 2.3.1 Let ω be an open set in Rn and let q ∈ {0, . . . , n− 1}.

(1) We say that an upper semi-continuous function u on ω fulfills the local max-
imum property on ω with respect to linear functions on (q+ 1)-dimensional
planes if for every (q + 1)-dimensional plane π, every ball B b ω ∩ π and
every linear function ` on π with u ≤ ` on bB we already have that u ≤ `
on B.

(2) An upper semi-continuous function on ω admitting the precedent property
is called real q-convex on ω.

(3) If m ≥ n, each upper semi-continuous function is automatically real m-
convex by convention.

(4) We denote by CVX q(ω) the set of all real q-convex functions on ω.

The following properties of real q-convex functions follow directly from the
definition.

Proposition 2.3.2 Let all functions mentioned below be defined on an open
set ω in Rn with image in [−∞,+∞).

(1) If u is upper semi-continuous, then it is locally convex if and only if it is
real 0-convex.

(2) Every real q-convex function is real (q + 1)-convex.
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(3) If λ ≥ 0, c ∈ R and u is real q-convex, then λu+ c is also real q-convex.

(4) The limit of a decreasing sequence (uk)k∈N of real q-convex functions is
again real q-convex.

(5) If {ui : i ∈ I} is a family of locally bounded real q-convex functions, then the
upper semi-continuous regularization u∗ of u := supi∈I ui is real q-convex.

In particular, the maximum of finitely many real q-convex functions is again
real q-convex.

(6) A real q-convex function remains real q-convex after a linear change of
coordinates.

(7) An upper semi-continuous function u is real q-convex if and only if u+ ` is
real q-convex for every linear function ` on Rn.

In the definition of real q-convex functions we can replace linear by locally
concave functions.

Theorem 2.3.3 Let u be an upper semi-continuous function on an open set
ω in Rn. Then u is real q-convex if and only if it fulfills the local maximum
property with respect to locally concave functions on (q+1)-dimensional planes.

Proof. If u fulfills the local maximum property on ω with respect to locally
concave functions on (q + 1)-dimensional subspaces, then u is real q-convex
on ω, since every linear function is concave.

On the other hand, let u be real q-convex on ω. Fix a (q + 1)-dimensional
linear plane π, a ball B b ω ∩ π and a function f : ω → (−∞,+∞] which
is concave in a convex neighborhood of B in π such that u ≤ f on bB. Let
p0 = (x0, f(x0)) be a point on the graph Γ(f) = {(x, f(x)) : x ∈ B} of f
over B with f(x0) 6= +∞. Notice that if f(x0) = +∞, then we have au-
tomatically u(x0) ≤ f(x0). Since f is assumed to be concave, the subgraph
Γ−(f) := {(x, y) ∈ B × R : y ≤ f(x)} is convex in π × R in view of Proposi-
tion 2.1.4. Let H be a supporting hyperplane of Γ−(f) at p0 in π × R. Since
f(x0) 6= +∞, x0 is an interior point of B and f is continuous, the hyperplane
H is a graph of a linear function on π, i.e., there is a linear function ` on π
such that H = {(x, `(x)) : x ∈ π}. The convexity yields Γ−(f) ⊂ Γ−(`), so that
f ≤ ` on B. Moreover, we have that `(x0) = f(x0) and u ≤ f ≤ ` on bB. Since
u is real q-convex, it follows that u ≤ ` on B. Thus, u(x0) ≤ `(x0) = f(x0).
Since p0 was an arbitrary point lying on the graph of f over B, we obtain that
u ≤ f on B. This shows that u fulfills the local maximum property on ω with
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respect to concave functions on (q + 1)-dimensional planes. �

As an immediate consequence, the family of real q-convex functions is stable
under summation with locally convex functions.

Corollary 2.3.4 Let u be upper semi-continuous on an open set ω in Rn. Then
u is real q-convex on ω if and only if u + f is real q-convex for every locally
convex function f on ω.

It follows from the striking Lemma 1.4.2 that real q-convexity is a local
property.

Theorem 2.3.5 Let u be upper semi-continuous on an open set ω in Rn. Then
u is real q-convex on ω if and only if it is locally real q-convex on ω, i.e., for every
point p in ω there is a neighborhood V of p in ω such that u is real q-convex
on V .

Proof. It is obvious that a real q-convex function is locally real q-convex. In
order to show the converse, we assume that u is not real q-convex but locally real
q-convex on ω. Then there exist a real (q + 1)-dimensional plane π, a ball B in
π∩ω containing a point p0 and a linear function `1 on π such that u(x) ≤ `1(x)
for every x ∈ bB, but u(p0) > `1(p0). Lemma 1.4.2 asserts that there are a
point p1 in B, a positive number ε > 0 and a linear function `2 on π such that

u(p1)− `1(p1)− `2(p1) = 0 and u(x)− `1(x)− `2(x) < −ε‖x− p1‖2 < 0

for every x ∈ B \ {p1}. Then u cannot be real q-convex in a neighborhood of p1

according to Proposition 2.3.2 (7), which is a contradiction. �

Lemma 1.4.2 has another important consequence to real q-convex functions.

Theorem 2.3.6 (Local maximum principle) Let q ∈ {0, . . . , n−1} and let
ω be a relatively compact open set in Rn. If u is real q-convex on ω and upper
semi-continuous up to the closure of ω, then

max
ω

u = max
bω

u.

Proof. Suppose that the statement is false, so that there exists an upper semi-
continuous function u on ω which is real q-convex on ω and fulfills maxω u >
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maxbω u. Then it follows from Lemma 1.4.2 that there are a point p in ω, a
positive number ε > 0 and a linear function ` such that

u(p)− `(p) = 0 and u(x)− `(x) < −ε‖x− p‖22 for every x ∈ ω \ {p}.

In this case, u − ` fails to be real q-convex on ω, which contradicts Proposi-
tion 2.3.2 (7). �

Two real q-convex functions can be patched together to a new real q-convex
function.

Theorem 2.3.7 Let ω1 and ω be two open sets in Rn with ω1 ⊂ ω. Let u be a
real q-convex function on ω and u1 be a real q-convex function on ω1 such that

lim sup
y→x
y∈ω1

u1(y) ≤ u(x) for every x ∈ bω1 ∩ ω. (2.2)

Then the following function is real q-convex on Ω,

ψ(x) :=

{
max{u(x), u1(x)}, x ∈ ω1

u(x), x ∈ ω \ ω1
.

Proof. The function ψ is upper semi-continuous on ω due to (2.2). Let π be a
real (q+1)-dimensional plane in Rn, B be a ball lying relatively compact in π∩ω
and let ` be a linear function on π such that ψ ≤ ` on bB. Since ψ coincides with
u on ω \ ω1 and since it is a maximum of the two real q-convex functions u and
u1 on ω1, ψ is real q-convex on ω \ bω1. Thus, we can assume that B ∩ bω1 6= ∅.
Since u is real q-convex on ω and by the inequalities u ≤ ψ ≤ ` on bB, we
obtain that u ≤ ` on B. Therefore, we have that ψ = u ≤ ` on B ∩ (ω \ ω1).
In particular, we have that ψ = u ≤ ` on B ∩ bω1. This implies that ψ ≤ `
on b(B ∩ ω1). Since ψ is real q-convex on ω1, the local maximum principle (see
Theorem 2.3.6) yields ψ ≤ ` on B ∩ ω1. By the previous discussion, we have
that ψ ≤ ` on B. Finally, we can conclude that ψ is real q-convex on ω. �

2.4 Strictly and smooth real q-convex functions
We are interested in real q-convex functions which are stable under small pertur-
bations by certain smooth functions. We already mentioned relatives of those
functions in Example 2.1.3, namely, the strongly convex functions.
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Definition & Remark 2.4.1 Let ω be an open set in Rn.

(1) An upper semi-continuous function u on ω is called strongly real q-convex
on ω if for every C∞-smooth function θ with compact support in ω there
exists a positive number ε0 > 0 such that u + εθ is real q-convex for every
ε ∈ (−ε0, ε0).

(2) We say that an upper semi-continuous function u on ω is strictly real q-
convex if for every point p in ω there exist a neighborhood U of p and a
positive number ε0 > 0 such that x 7→ u(x) + ε‖x− p‖22 is real q-convex on
U for every ε ∈ (−ε0, ε0).

(3) In view of the identity in Remark 1.4.1 (9) and Proposition 2.3.2 (7), we
can replace u(x) + ε‖x− p‖22 by u(x) + ε‖x‖22 in the previous definition.

The two definitions of strict and strong real q-convexity are equivalent.
Therefore, we will always use only the notion strictly real q-convex.

Proposition 2.4.2 An upper semi-continuous function u on an open set ω
in Rn is strongly real q-convex if and only if it is strictly real q-convex.

Proof. We first show the necessity. Let p be an arbitrary point in ω and let
r and R be two positive numbers such that r < R and BR(p) lies relatively
compact in ω. Pick a C∞-smooth function θ0 with compact support in BR(p)
such that 0 ≤ θ ≤ 1 and θ0 ≡ 1 on Br(p). Define θ := θ0‖ · ‖22. Then there is a
positive number ε0 > 0 so that u + εθ is real q-convex for every ε ∈ (−ε0, ε0).
Since θ = ‖ · ‖22 on Br(p), we have shown the first part of the statement.

In order to verify the sufficiency, let θ be a C∞-smooth function with compact
support K in ω. Since K is compact, we may assume that there exist an open
neighborhood U of K and a positive number ε0 such that u + ε‖ · ‖22 is real
q-convex on U for every ε ∈ (−ε0, ε0). Since θ is C∞-smooth and has compact
support on Rn, we can find a number δ1 > 0 so large that δ1‖ · ‖22 + θ and
δ1‖ · ‖22 − θ both remain convex on Rn. Now let ε1 := ε0/δ1. Then for every
η ∈ [0, ε1) we have that ηδ1 lies in [0, ε0). Thus, the functions

u± ηθ = u− ηδ1‖ · ‖22 + η
(
δ1‖ · ‖22 ± θ

)
both are a sum of a real q-convex and a locally convex function on U . Accord-
ing to Corollary 2.3.4, we obtain that u + ηθ is real q-convex on U for every
η ∈ (−ε1, ε1). �
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In the case of C2-smooth functions, we have the following characterization of
(strict) real q-convexity. Notice that for v, w ∈ Rn we use the notation

Hu(p)(v, w) := vtHu(p)w =

n∑
k,`=1

∂2u

∂xk∂x`
(p)vkw`,

where vt is the transpose of the vector v.

Theorem 2.4.3 Let q ∈ {0, . . . , n−1} and ω be an open set in Rn. A C2-smooth
function u on ω is (strictly) real q-convex if and only if for every point p ∈ ω
the real Hessian Hu(p) of u has at most q negative (non-positive) eigenvalues.

Proof. By Theorem 2.3.5, real q-convexity is a local property, so all consider-
ations can be made in a small neighborhood of some fixed point p ∈ ω. Due
to Proposition 2.3.2 (3) and (6), we can assume without loss of generality that
p = 0, u(p) = 0 and that u has the following Taylor expansion in some neigh-
borhood of the origin,

u(x) = A(x) +
1

2
Hu(0)(x, x) + o(‖x‖22),

where A(x) = ∇u(0)x is considered as a linear function Rn → R. According to
Proposition 2.3.2 (7), by replacing u by u − A, we can assume without loss of
generality that u has the following form near the origin,

u(x) =
1

2
Hu(0)(x, x) + o(‖x‖22).

Now if the real Hessian of u has at least q+ 1 negative eigenvalues at the origin,
then we can find a real (q + 1)-dimensional plane π in Rn and a ball B inside
π ∩ ω such that u is strictly negative at every point on the boundary of B but
vanishes inside B at the origin. Thus, in view of Theorem 2.3.5, it cannot be
real q-convex on ω.

On the other hand, if u is not real q-convex, then there are a point p0 ∈ ω,
a real (q + 1)-dimensional plane π, a ball B in π ∩ ω containing p0 and a linear
function `1 on π such that u(x) ≤ `1(x) for every x ∈ bB, but u(p0) > `1(p0).
Then by Lemma 1.4.2 there are a point p1 inside B, a positive number ε > 0
and another linear function `2 on π such that

u(p1)− `1(p1)− `2(p1) = 0 and u(x)− `1(x)− `2(x) < −ε‖x− p1‖22.
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for every x ∈ B \ {p1}. Hence, the function u− `1− `2 attains a local maximum
at p1. Therefore, the real Hessian of u at p1, which corresponds to the real
Hessian of u− `1 − `2 at p1, has at least q + 1 negative eigenvalues. �

The previous condition on real q-convexity in the C2-smooth case allows us
easily to construct examples of real q-convex functions.

Example 2.4.4 Recall the characteristic functions χS and χ̌S of the set S =
{(x, 0) ∈ R2 : x ∈ R} on R2 in Example 1.1.3. They are real 1-convex but
obviously not convex. Indeed, they can be approximated from above by the
real 1-convex functions χn,S(x, y) := exp(−nx2) and χ̌

n,S(x, y) := −nx2, re-
spectively. This shows that, in general, real q-convex functions are neither
continuous nor locally integrable, if q ≥ 1, whereas every real-valued 0-convex
function is continuous (see Theorem 10.1 in [Roc70]).

The previous theorem has the following useful application.

Lemma 2.4.5 Let ω be an open set in Rn. Assume that u is not real q-convex
on ω. Then there is a ball B b ω, a point x1 ∈ B, a number ε > 0 and a
C∞-smooth real (n−q−1)-convex function v on Rn such that

(u+ v)(x1) = 0 and (u+ v)(x) < −ε‖x− x1‖22 for every x ∈ B \ {x1}.

Proof. Since u is not real q-convex on ω, there exist a ball B b ω, a point x0 in B,
a (q+1)-dimension plane π and a linear function ` : Rn → R such that u+` < 0
on bB∩π and u(x0)+`(x0) > 0. Let h : Rn → Rn−q−1 be a linear mapping such
that π = {h = 0} and fix a number c > 0. In view of Theorem 2.4.3, it is easy
to verify that the C∞-smooth function vc(x) := `(x)−c‖h(x)‖22 is real (n−q−1)-
convex on Rn. Moreover, it equals ` on π and tends to −∞ outside π when c
goes to +∞. Therefore, if we choose c large enough, then we can arrange that
u+vc < 0 on bB and u(x0)+vc(x0) > 0. Now it follows from Lemma 1.4.2 that
there is another linear function `1 : Rn → R, a point x1 ∈ B and ε > 0 such that
(u+vc+ `1)(x1) = 0, but (u+vc+ `1)(x) < −ε‖x−x1‖22 for every x ∈ B \{x1}.
Finally, v := vc+`1 is the demanded function in view of Proposition 2.3.2 (7). �
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2.5 Twice differentiable real q-convex functions
We establish a characterization of twice differentiable real q-convex functions
by studying a certain quantity which represents exactly the largest eigenvalue
of the real Hessian of a smooth function at a given point. The ideas are directly
derived from Chapter 3 in [Sło84], since they perfectly translate to real q-convex
functions.

Definition 2.5.1 Let u be a function on an open set ω in Rn such that its
gradient ∇u(x) exists at some point x ∈ ω. Then the maximal eigenvalue of
Hu at x is defined by

λu(x) := 2 lim sup
ε→0

(max{u(x+ εh)− u(x)− ε∇u(x)h : h ∈ Rn, ‖h‖2 = 1})/ε2

The following result is an important property of the maximal eigenvalue and
has been shown by Słodkowski (see Theorem 3.2 and Corollary 3.5 in [Sło84]).

Theorem 2.5.2 If u is a locally convex function on an open set ω in Rn such
that λu(x) ≥M for almost every x ∈ ω, then λu(x) ≥M for every x ∈ ω.

The precedent theorem allows to generalize Theorem 2.4.3 using twice differ-
entiable real q-convex functions rather than C2-smooth ones. It is Theorem 4.1
in [Sło84] adapted to real q-convex functions.

Theorem 2.5.3 Let q ∈ {0, . . . , n− 1} and let u be upper semi-continuous on
an open set ω in Rn.

(1) If u is real q-convex on ω and twice differentiable at a point p in ω, then
the real Hessian of u at p has at most q negative eigenvalues.

(2) If u ∈ C1
L(ω) and the real Hessian at almost every point in ω has at most q

negative eigenvalues, then u is real q-convex on ω.

Proof. (1) Pick a point p in ω such that Hu(p) exists. Let Br(p) b ω be a ball
centered in p with radius r > 0. Then for t ∈ (0, 1) the function ut given by

Br(0) 3 x 7→ ut(x) :=
(
u(p+ tx)− u(p)− t〈∇u(p), x〉

)
/t2

is real q-convex on Br(0) due to Proposition 2.3.2, properties (3) and (7). Since
u is twice differentiable at p, the family (ut)t∈(0,1) tends uniformly to u0(x) :=
Hu(p)(x, x) in a small neighborhood of the origin as t tends to zero. Therefore,



42 Chapter 2. Real q-convexity

the function u0 is real q-convex and C2-smooth on a neighborhood of the origin.
By Theorem 2.4.3 the real Hessian of u0 at the origin has at most q negative
eigenvalues. Since Hu0(0) = Hu(p), the proof of the first statement is finished.

(2) If u is not real q-convex on ω, then it follows from Lemma 2.4.5 and
Proposition 2.3.2 (7) that, without loss of generality, there exist a ball Br(0) b
ω, a number ε > 0 and a C∞-smooth real (n−q−1)-convex function v on Rn
which satisfies (u+ v)(0) = 0 and

(u+ v)(x) < −ε‖x‖22 for every x ∈ Br(0) \ {0}. (2.3)

Recall that u ∈ C1
L(ω) and define

f := u+ v, Mv := sup{λv(x) : x ∈ Br(0)} and M := L+Mv.

Then f is non-positive and belongs to C1
M (ω), so g(x) := f(x) + 1

2M‖x‖
2
2 is

convex on Br(0). Therefore, for every x ∈ Br(0) we have that

0 = 2g(0) ≤ g(x) + g(−x) = f(x) + f(−x) +M‖x‖22 ≤ f(x) +M‖x‖22.

Thus, −M‖x‖22 ≤ f(x). On the other hand, f(x) ≤ −ε‖x‖22, so the gradient of
f at 0 exists and vanishes there. Of course, the same is also true for the function
g. Thus, in view of property (2.3), we may estimate the maximal eigenvalue of
g at 0 as follows:

λg(0) = 2 lim sup
ε→0

(
max{g(εh) : h ∈ Rn, ‖h‖2 = 1}

)
/ε2 ≤M − 2ε. (2.4)

By the Busemann-Feller-Alexandroff theorem (see Theorem 2.2.1), the real Hes-
sian of f exists almost everywhere on ω. Moreover, since Hu has at most q neg-
ative and Hv has at most n−q−1 negative eigenvalues, the real Hessian of the
sum f = u + v has at least one non-negative eigenvalue almost everywhere on
ω. Therefore, since the the largest eigenvalue of the function 1

2M‖ ·‖
2
2 is exactly

M , we derive the estimate λg(x) ≥ M at almost every point in Br(0). Then it
follows from Theorem 2.5.2 that λg ≥ M everywhere on Br(0). In particular,
λg(0) ≥M , which is a contradiction to (2.4). �

2.6 Approximation of real q-convex functions
We show that any real q-convex function can be approximated from above by a
decreasing sequence of real q-convex functions being continuous everywhere and
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twice differentiable almost everywhere. The idea of this approximation and most
of the arguments of the proofs are directly derived from Section 2 in [Sło84].

Theorem 2.6.1 Let u be a non-negative bounded real q-convex function on an
open set ω in Rn. Let g ∈ C1

L(Rn) be a non-negative function with compact
support in some ball Br(0). Define ωr := {x ∈ ω : dist(x, bω) > r} and
Mr := supωr u. Then u ∗s g lies in C1

LMr
(Rn) and it is real q-convex on ωr.

Proof. Recall that û denotes the trivial extension of u by zero to the whole
of Rn. The supremum convolution of u and g at x ∈ ωr can be rewritten as
follows,

(u ∗s g)(x) = sup{û(y)g(x− y) : y ∈ Rn}
= sup{û(x− t)g(t) : t ∈ Rn}
= sup{u(x− t)g(t) : t ∈ Br(0)}.

It follows from Proposition 2.3.2 (3) and (6) that x 7→ g(t)u(x−t) is real q-convex
on ωr for every t ∈ Br(0). Since, in view of Remark 2.2.2 and Proposition 2.2.4,
the function u ∗s g is continuous, Proposition 2.3.2 (5) implies that u ∗s g is real
q-convex on ωr. Finally, it follows directly from Proposition 2.2.4 that u ∗s g
belongs to C1

LMr
(Rn). �

The previous theorem yields the following approximation technique.

Proposition 2.6.2 Let u be a real q-convex function on an open set ω in Rn
and let D be a relatively compact open set in ω. Assume that f is a continuous
function on ω and satisfies u < f on a neighborhood of D. Then there is a
positive number L > 0 and a continuous function ũ ∈ C1

L(Rn) which is real
q-convex in a neighborhood of D and which fulfills u < ũ < f on D.

Proof. Let r be a positive number so small that that D is contained in Dr :=
ωr ∩ B1/r(0), where ωr := {x ∈ ω : dist(x, bω) > r}. Given k ∈ N, we set
v := max{u,−k} + k + 1/k. Then u < v − k and v is positive. Since the
sequence (v − k)k∈N decreases to u, we can find a large enough integer k ∈ N
such that v − k < f on D. By upper semi-continuity of v and compactness of
D, we can choose another radius r′ ∈ (0, r) so small that D b ωr′ and

sup{v(y)− k : y ∈ Br′(x)} < f(x) for every x ∈ D.
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Now pick a C∞-smooth function g with compact support in the ball Br′(0) such
that 0 ≤ g ≤ 1 and g(0) = 1. We set ũ(x) := (v ∗s g)(x)− k for x ∈ ω. Then we
obtain for every x ∈ D that

u(x) < v(x)− k
= v(x)g(0)− k
≤ sup{v(y)g(x− y) : y ∈ Br′(x)} − k
= (v ∗s g)(x)− k
= ũ(x)

≤ sup{v(y) : y ∈ Br′(x)} − k
= sup{v(y)− k : y ∈ Br′(x)} < f(x).

The rest of the properties of ũ follow now from the previous Theorem 2.2.4. �

As an immediate consequence, we get the following approximation for real
q-convex functions.

Corollary 2.6.3 Let ω be an open set in Rn and let ε > 0. Then for every
compact set K in ωε = {z ∈ ω : d(z, bω) > ε, ‖z‖2 < 1/ε} it holds that

CVX q(ω) ⊂ CVX q(ωε) ∩ C1
•(Rn)

↓K
.

Proof. Let u be a real q-convex function on ω and k0 ∈ N so large that
ωε∩B1/ε(0) lies in ω1/k0

∩Bk0
(0). Then by Proposition 2.6.2 we can inductively

construct a sequence (Lk)k≥k0 of positive numbers Lk and a sequence (uk)k≥k0

of functions uk ∈ C1
Lk

(Rn) which are real q-convex on ω1/k ∩ Bk(0) and fulfill
u < uk+1 < uk on K for every k ≥ k0. Hence, we have shown the desired
inclusion of this statement. �

Notice that, in general, the sum of two real q-convex functions will not lead to
another real q-convex function. Consider for example the real 1-convex functions
u1(x, y) = −x2 and u2(x, y) = −y2 in R2. The real Hessian of their sum u1 +u2

has two negative eigenvalues at every point in R2, so it fails to be real 1-convex.
Nonetheless, as an application of Theorem 2.5.3 and Corollary 2.6.3 we obtain
the following result on sums of real q-convex functions. It has been proved by
Słodkowski [Sło84] in the q-plurisubharmonic case.
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Theorem 2.6.4 Given a real q-convex function u1 and a real r-convex function
u2 on an open set ω in Rn, their sum u1 + u2 is real (q + r)-convex on ω.

Proof. By the previous Theorem 2.6.3 and since real q-convexity is a local
property, we can assume that u1 and u2 have lower bounded Hessian and that
they are twice differentiable almost everywhere on ω. Then in view of the first
statement of Theorem 2.5.3, the real Hessian of u1 has at most q and the real
Hessian of u2 has at most r negative eigenvalues at almost every point in ω.
Now it is easy to verify that the sum of the Hessians of u1 and u2 have at most
q + r negative eigenvalues almost everywhere. Since the sum u1 + u2 certainly
also has lower bounded Hessian and is twice differentiable almost everywhere
on ω, it follows from the second statement in Theorem 2.5.3 that u1 +u2 is real
(q + r)-convex on ω. �

In what follows, we present another approximation of real q-convex functions
by piecewise smooth real q-convex functions. The methods are derived from
Bungart’s article [Bun90] and transfered to real q-convex functions.

Definition 2.6.5 Let u be a continuous function on an open set ω in Rn.

(1) The function u is real q-convex with corners on ω if for every point p in ω
there exists a neighborhood U of p in ω and finitely many C2-smooth real
q-convex functions u1, . . . , u` on U such that u = max{uj : j = 1, . . . , `}
on U .

(2) The symbol CVX cq(ω) stands for the family of all real q-convex functions
with corners on ω.

Bungart’s approximation technique in [Bun90] is based on the solution of
the Dirichlet problem for certain families of continuous functions. We show his
result for real q-convex functions and mainly use his arguments.

Theorem 2.6.6 Let B be a ball in Rn and let g be a continuous function on
B which is real q-convex on B. Then the upper-envelope function defined by

E(B, g) := sup{u : u ∈ CVX cq(B) ∩ C(B), u ≤ g} (2.5)

is equal to g on B. Moreover, for every continuous function f with g < f on B
there exists a continuous function g̃ on B which is real q-convex with corners
on B and fulfills g < g̃ < f on B.
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Proof. We verify the identity in (2.5) in five steps.

Step 1. The upper-envelope function E(B, g) coincides with g on bB. In-
deed, let δ > 0, k ∈ N and let p be a boundary point of B. Since B is
a ball, it is strictly convex. This implies that there exist a linear function
` : Rn → R such that `(p) = 0 and ` is negative on B. Then it is obvious that
up,δ,k(x) := g(p)− δ+ k`(x) is a C∞-smooth real q-convex function on B which
is continuous on B. Since up,δ,k < g on a small neighborhood of p in B, we
can find an integer k so large that up,δ,k < g on B. Hence, by the definition of
E(B, g), we obtain that

up,δ,k ≤ E(B, g) on B and up,δ,k(p) = g(p)− δ ≤ E(B, g)(p) ≤ g(p).

Since δ is an arbitrary positive number and p is an arbitrary boundary point of
B, we conclude that E(B, g) = g on bB.

Step 2. The continuity of the upper-envelope E(B, g) on B is shown exactly
by the same arguments as Walsh used in [Wal69]. It implies that E(B, g) is real
q-convex on B, since it is the supremum of a family of real q-convex functions
bounded from above by g.

Step 3. Let G := {x ∈ B : E(B, g)(x) < g(x)}. Assume in this step that G
is not empty. Then we claim that u := −E(B, g) is real (n−q−1)-convex on G.
Indeed, first observe that G is open and lies relatively compact in B, since G
does not meet bB in view of Step 1 and since u is continuous on B by Step 2.

Assume that u is not real (n−q−1)-convex on G. Then by Lemma 2.4.5 there
exist a point x0 ∈ G, a ball Br(x0) b G, a number ε > 0 and a C∞-smooth real
q-convex function v on Rn such that

v(x0) = E(B, g)(x0) and v(x) + ε‖x− x0‖22 < E(B, g)(x) (2.6)

for every x ∈ Br(x0) \ {x0}. We set v0(x) := v(x) + ε‖x − x0‖22. Recall that
E(B, g) < g on Br(x0) b G and choose a positive number δ so small that

v0 + δ < g on Br(x0) and v0 + δ < E(B, g) on bBr(x0). (2.7)

By the definition of E(B, g), by the compactness of B and according to (2.6)
and (2.7), we can find finitely many functions ϕ1, . . . , ϕ` ∈ CVX cq(B) ∩ C(B)

which are dominated by g on B and which satisfy for ϕ := max{ϕ1, . . . , ϕ`} the
inequalities

v0(x0) + δ = v(x0) + δ > ϕ(x0) and v0 + δ < ϕ on bBr(x0). (2.8)



2.6. Approximation of real q-convex functions 47

Since ϕ and v both belong to CVX cq(B) ∩ C(B) and in view of (2.8), Theo-
rem 2.3.7 implies that

ψ(x) :=

{
max{ϕ(x), v0(x) + δ}, x ∈ Br(x0)
ϕ(x), x ∈ B \Br(x0)

is also in CVX cq(B) ∩ C(B). Furthermore, due to the first inequality in (2.7)
and the choice of ϕ, we have that ψ ≤ g on B. Then it follows from the
definition of E(B, g) that ψ ≤ E(B, g) on B. In view of (2.8), we have that
ϕ(x0) < v0(x0) + δ, so ψ(x0) = v0(x0) + δ, but this contradicts to the first
identity in (2.6), since then

v(x0) = v0(x0) < v0(x0) + δ = ψ(x0) ≤ E(B, g)(x0) = v(x0).

This proves the claim we made in the beginning of this step, namely, that
−E(B, g) is real (n−q−1)-convex on G.

Step 4. Assume that G defined in Step 3 is not empty. Then the function
h := g − E(B, g) vanishes on the boundary of G. Since h is real (n−1)-convex
by Theorem 2.6.4 and the previous steps, it follows from the local maximum
principle (see Theorem 2.3.6) that h ≤ 0 on G, so g ≤ E(B, g) on G. This
contradicts to the definition of G, so it has to be empty. Therefore, g and
E(B, g) coincide on B.

Step 5. It remains to proof the last statement of this theorem. Let f be
a continuous function with g < f on B. Since g is continuous, we can find a
positive number λ > 0 and a point x0 /∈ B such that g < g + λ‖x − x0‖22 < f .
Let p be a point in B. Then according to the definition of E(B, g) and the
properties shown above, there are a neighborhood Up of p in B and a real q-
convex function gp with corners on B which is continuous on B and satisfies
g−λ‖x−x0‖22 < gp < g on Up and gp < g on the whole of B. Since B is compact,
there exist finitely many points p1, . . . , p` such that the open sets Up1

, . . . , Up`
cover B. Then the function

g̃ := max{gp1 , . . . , gp`}+ λ‖x− x0‖22

is continuous on B, real q-convex with corners on B and admits the desired
inequality

g < g̃ < g + λ‖x− x0‖22 < f on B.

�
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The above solution of the Dirichlet problem leads to the following approxi-
mation technique.

Theorem 2.6.7 Let u be a continuous strictly real q-convex function on an
open set ω in Rn. Then for every continuous function f on ω with u < f on ω
there exists a real q-convex function ũ with corners on ω such that u < ũ < f
on ω.

Proof. Fix collections (ri)i∈I , (si)i∈I , (ti)i∈I and (xi)i∈I of radii 0 < ri < si < ti
and points xi ∈ ω such that each collection of balls {Bri(xi)}i∈I , {Bsi(xi)}i∈I
and {Bti(xi)}i∈I forms a locally finite covering of the set ω. Now for each i ∈ I
choose a positive number εi such that u−εi‖x−xi‖22 is real q-convex on Bti(xi)
and

gi(x) := u(x) + εi(s
2
i − ‖x− xi‖22) < f(x) for every x ∈ Bti(xi).

Then it is obvious that gi is real q-convex on Bti(xi), continuous on Bti(xi) and
fulfills

gi < u on bBti(xi) and f > gi > u on Bri(xi).

By Theorem 2.6.6, we can find a real q-convex function ui with corners on
Bti(xi) which is continuous on Bti(xi) and satisfies

ui < u on bBti(xi) and f > ui > u on Bri(xi).

We define ũ := sup{ui : i ∈ I}. Since {Bri(xi)}i∈I is a locally finite covering,
the function ũ is locally a finite maximum of real q-convex functions with cor-
ners. Hence, it is itself real q-convex with corners on ω and, by the previous
inequalities, it satisfies u < ũ < f on ω. �

Since every real q-convex function u can be approximated from above by a
family (uε)ε>0 of strictly real q-convex functions uε := u + ε‖ · ‖22, we easily
obtain the following approximation for continuous real q-convex functions.

Corollary 2.6.8 Let ω be an open set in Rn. Then we have that

CVX q(ω) ∩ C(ω) ⊂ CVX cq(ω)
↓ω
.



Chapter 3

q-Plurisubharmonicity

We now turn to the investigation of q-plurisubharmonic functions defined on
open subsets in Cn and their subfamilies. These functions originate in the q-
convex functions in the sense of H. Grauert and generalize the plurisubharmonic
functions, which constitute one of the most important functions in complex
analysis in several variables. Moreover, they can be regarded as the complex
analogue to the real q-convex functions from Chapter 2. We introduce here
upper semi-continuous q-plurisubharmonic functions in the sense of H. M. Hunt
and J. J. Murray [HM78]. Therefor, we need to repeat the very basics about
holomorphic and harmonic functions, which allow to define pluriharmonic and
plurisubharmonic functions. In the same way as one usually defines subhar-
monic functions in terms of a local maximum property with respect to harmonic
functions, we define subpluriharmonicity by using pluriharmonic functions. In
between lie the q-plurisubharmonic functions, where 0-plurisubharmonic func-
tions are the classical plurisubharmonic functions and (n−1)-plurisubharmonic
functions are exactly the subpluriharmonic ones. We recall the properties of
q-plurisubharmonic functions, but omit some of their proofs and refer to the
existing literature like [HM78], Słodkowski’s articles [Sło84] and [Sło86] and
others (see [Fuj90], [Bun90] or [Die06]). Especially, we repeat approximation
techniques for plurisubharmonic and q-plurisubharmonic functions developed
by H. J. Bremermann [Bre59], R. Richberg [Ric68], Z. Słodkowski [Sło84] and
L. Bungart [Bun90]. As an application, we show the relation of real q-convex to
(rigid) q-plurisubharmonic functions and recall Fujita’s result [Fuj90] on the
equivalence of q-plurisubharmonic and weakly q-plurisubharmonic functions.
The fact that locally each sufficiently smooth strictly q-plurisubharmonic func-
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tion induces a foliation by complex submanifolds of codimension q, on which the
initial function is plurisubharmonic, motivates to introduce functions which are
r-plurisubharmonic on leaves of a given (singular) foliation by analytic subsets
of codimension q. Indeed, we show that these functions are (q + r)-plurisub-
harmonic. The last part of this chapter is devoted to q-holomorphic functions in
the sense of R. Basener [Bas76]. We derive that C2-smooth functions which are
holomorphic on leaves of a singular foliation by analytic subsets of codimension
q are indeed q-holomorphic. Finally, we obtain a Bremermann type approxi-
mation technique for functions which are plurisubharmonic on leaves of a given
singular foliation by logarithms of finitely many functions being holomorphic on
the leaves of this foliation. Most of the parts of this chapter are included in our
joint articles [PZ13] and [PZ15].

3.1 Holomorphic and pluriharmonic functions
We recall the definition of holomorphic functions and their properties in the
spirit of K. Weierstraß. We refer to the books of S. Krantz [Kra99] and B. V. Sha-
bat [Sha92] for the proofs and more details on holomorphic functions.

Definition 3.1.1 Let Ω be an open set in Cn.

(1) The function f : Ω→ C is holomorphic on Ω if for each point p in Ω there
exists a polydisc ∆n

r (p) = {z ∈ Cn : |zj − pj | < r, j = 1, . . . , n} in Ω such
that

f(z) =
∑
α∈Nn0

bα(z − p)α

is an absolutely convergent power series for every point z in ∆n
r (p).

(2) The set of all holomorphic functions on Ω is denoted by O(Ω).

(3) Given q ∈ N0, a mapping f : Ω→ Cq is holomorphic on Ω if each component
function fj : Ω → C is holomorphic on Ω. Here, we use the convention
C0 = {0}, so that the only holomorphic function f : Ω→ C0 is the constant
zero function.

(4) The set of all holomorphic mappings on Ω with image in some open set G
in Cq is represented by the symbol O(Ω, G).

We have to point out one outstanding result known as Hartogs’ theorem
of separate analyticity. Recall that each holomorphic function f is complex
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differentiable and has vanishing Wirtinger derivatives ∂f/∂zj , j = 1, . . . , n. On
the contrary, Osgood’s lemma states that each continuous holomorphic function
with vanishing Wirtinger derivatives is already holomorphic. It was improved
to the general case by F. Hartogs [Har06]. For a proof in modern terms we refer
to Chapter 2.4 of Krantz’s book [Kra99].

Theorem 3.1.2 (Hartogs, 1906) Let Ω be an open set in Cn and let f be a
complex valued function on Ω with vanishing Wirtinger derivative ∂f/∂zj for
each j = 1, . . . , n. Then f is continuous on Ω.

Real parts of holomorphic functions are related to the following families of
functions.

Definition 3.1.3 (1) A C2-smooth real valued function h defined on an open
set V in C is harmonic on V if ∂2h/∂z∂z vanishes identically on V .

(2) A real valued function h defined on an open set Ω in Cn is pluriharmonic
on Ω if h is harmonic on Ω∩L for each complex affine line L intersecting Ω.

(3) We write PH(Ω) for the set of all pluriharmonic functions on Ω.

We give the precise relation of harmonic and holomorphic functions. These
facts can be found in Chapter 2.2 in [Kra99]

Proposition 3.1.4 Let Ω be an open set in Cn.

(1) Let h be a real valued function on Ω. Then h is pluriharmonic on Ω if and
only if it is locally the real part of a holomorphic function. In particular, if
h is pluriharmonic on a ball B in Cn, then there is a holomorphic function
f on B such that Re(f) = h.

(2) Every pluriharmonic function u on Ω is real analytic and, hence, C∞-smooth.

(3) If u is C2-smooth on Ω, then it is pluriharmonic on Ω if and only if its Levi
matrix Lu(z) :=

(
∂2u

∂zk∂z`
(z)
)n
k,`=1

vanishes at every point z in Ω.

Using the third property of the previous proposition, we easily obtain the
following examples of harmonic and pluriharmonic functions.

Example 3.1.5 (1) The function f(z) = f(x+ iy) = ez is holomorphic on C,
so Ref(z) = ex cos(y) and Imf(z) = ex sin(y) are both harmonic on C.
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(2) If f is a holomorphic function, then ± log |f | are pluriharmonic outside the
zero level set of f .

(3) If ` : Rn → Rk is R-linear, then h(x + iy) := ‖`(x)‖22 − ‖`(y)‖22 is pluri-
harmonic on Cnx+iy = Rnx + iRny .

We now present the definitions of one of the most important families of
functions in complex analysis and pluripotential theory.

Definition 3.1.6 Let ψ be an upper semi-continuous function on an open set
Ω in Cn.

(1) The function ψ is called plurisubharmonic on Ω if it fulfills the local maxi-
mum property with respect to harmonic functions on complex lines, i.e., for
every complex line L in Cn, every relatively compact disc ∆ in Ω ∩ L and
every harmonic function h defined on a neighborhood of ∆ in L such that
ψ ≤ h on b∆ we already have that ψ ≤ h on ∆.

(2) The set of all plurisubharmonic functions on Ω is denoted by PSH(Ω).

(3) A lower semi-continuous function ϕ : Ω → (−∞,+∞] is called plurisuper-
harmonic on Ω if −ϕ is plurisubharmonic on Ω.

Properties of plurisubharmonic functions can be found in most of the books
about complex analysis in several variables like [Kra99], [Sha92] or [Hör90].
Since these functions are a special case of functions we will define in the next
sections, we do not be repeat their properties here. Nonetheless, we give the
most important approximation techniques for plurisubharmonic functions. The
first one uses integral convolution similar to the case of convex functions (see
Theorem 4.1.4 in [Hör07]).

Theorem 3.1.7 Let Ω be an open set in Cn. Fix a number ε > 0 and define
Ωε := {z ∈ Ω : d(z, bΩ) > ε}. Then for every k ∈ N ∪ {∞} we have that

PSH(Ω) ⊂ PSH(Ωε) ∩ Ck(Ωε)
↓Ωε

.

Proof. Let ψ be a plurisubharmonic function on Ω. Pick a Ck-smooth non-
negative function θ on Cn with compact support in the unit ball which fulfills
θ(z) = θ(|z|) for every z ∈ Cn and

∫
Cn θ(ζ)dV (ζ) = 1. Given a number δ ∈ (0, ε)

we set θδ(z) := δ−2nθ(z/δ). Then the convolution of ψ and θδ given by

ψδ(z) := (ψ ∗ θδ)(z) :=

∫
Cn

ψ(z − ζ)θδ(ζ)dV (ζ)
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is Ck-smooth on Cn and plurisubharmonic on Ωδ. Moreover, the family {ψδ}δ>0

decreases to ψ on Ωε as δ decreases to zero. �

R. Richberg showed in [Ric68] that a continuous plurisubharmonic function
on an open set Ω in Cn admits an approximation from above by smooth ones
defined on the whole of Ω. For a simple proof of this result, we refer to §5.E
of Demailly’s online book [Dem12]. In fact, Richberg’s method is more general
and works for strongly plurisubharmonic functions on complex spaces, but we
restrict here to the complex Euclidean space.

Theorem 3.1.8 (Richberg, 1968) Let Ω be an open set in Cn. Then we have
that

PSH(Ω) ∩ C(Ω) ⊂ PSH(Ω) ∩ C∞(Ω)
↓Ω
.

On domains of holomorphy, we have another approximation of continuous
plurisubharmonic functions by, roughly speaking, logarithms of the absolute
value of holomorphic functions. First, we recall some notions.

Definition 3.1.9 (1) Given an open set Ω in Cn, by the symbol H(Ω) we
denote the family of all Hartogs functions. These are upper semi-continuous
functions u on Ω which are of the form

u = max{1/nj log |fj | : j = 1, . . . , `},

where fj is a holomorphic function on Ω and nj > 0 is a positive integer for
every j = 1, . . . , `. Notice that the index ` depends on u.

(2) A domain Ω in Cn is called a domain of holomorphy if there exists a holo-
morphic function f on Ω such that for every boundary point p ∈ bΩ, neigh-
borhood U of p and connected component V of Ω∩U the function f |V does
not extend holomorphically to U .

The next approximation property is a classical result stated in [Bre58] by
H. J. Bremermann. For a concise proof we refer to Theorem 1.3.9 in Stout’s
book [Sto07].

Theorem 3.1.10 (Bremermann, 1951) For every compact set K situated
in a domain of holomorphy Ω in Cn we have that

PSH(Ω) ∩ C(Ω) ⊂ H(Ω)
↓K
.
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3.2 Subpluriharmonic functions

The pluriharmonic functions allow to define the following family of functions.

Definition 3.2.1 An upper semi-continuous function ψ on an open set Ω in Cn
is called subpluriharmonic on Ω if it admits the local maximum property with
respect to pluriharmonic functions on balls in Ω, i.e., if for every ball B b U and
every function h which is pluriharmonic on a neighborhood of B with ψ ≤ h on
bB we already have that ψ ≤ h on B.

The subpluriharmonicity is a local property.

Theorem 3.2.2 Let ψ be an upper semi-continuous function on an open set
Ω in Cn. Then ψ is subpluriharmonic on Ω if and only if ψ is locally subpluri-
harmonic on Ω, i.e., for every point p in Ω there is a neighborhood U of p in Ω
such that ψ is subpluriharmonic on U .

Proof. The proof follows exactly the lines of that of Theorem 2.3.5, but we have
to point out that use Lemma 1.4.2 in the complex version. �

The following statement asserts that, in the definition of subpluriharmonic
functions, we may replace balls by any collection τ of relatively compact sets in
Cn which forms a basis of the topology of Cn.

Proposition 3.2.3 An upper semi-continuous function ψ on an open set Ω
in Cn is subpluriharmonic if and only if ψ is τ -subpluriharmonic on Ω, i.e.,
if it satisfies the local maximum property on Ω with respect to pluriharmonic
functions on the sets in τ .

Proof. It is easy to verify that ψ is τ -subpluriharmonic on Ω if and only if ψ+h
is τ -subpluriharmonic on Ω for every pluriharmonic function h on Ω.

Let ψ be subpluriharmonic on Ω. Pick a relatively compact set D in τ and
a pluriharmonic function h defined on a neighborhood of D such that ψ ≤ h
on bD. If there exists a point p in D such that ψ(p) > h(p), then according to
Lemma 1.4.2 we can find an R-linear function ` on Cn and a point z0 in D such
that (ψ + `)(z0) = 0 but (ψ + `)(z) < 0 for every z in D \ {z0}. In this case,
the function ψ + ` and cannot be subpluriharmonic in a neighborhood of z0.
Since ` is pluriharmonic on Cn, the function ψ is not subpluriharmonic, which
is absurd. We conclude that ψ is τ -subpluriharmonic on Ω.
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On the other hand, if ψ is τ -subpluriharmonic on Ω, then it is locally sub-
pluriharmonic on Ω. In view of Theorem 3.2.2 it is already subpluriharmonic
on Ω. �

In the definition of subpluriharmonicity, we can replace pluriharmonic func-
tions by different subfamilies of plurisubharmonic functions (compare also Lemma
4.4 in [Sło86]).

Proposition 3.2.4 Let ψ be upper semi-continuous on an open set Ω in Cn.
Then the following statements are equivalent:

(1) ψ admits the local maximum property with respect to plurisuperharmonic
functions.

(2) ψ admits the local maximum property with respect to C2-smooth pluri-
superharmonic functions.

(3) ψ is subpluriharmonic on Ω.

(4) ψ admits the local maximum property with respect to real parts of holo-
morphic functions.

(5) ψ admits the local maximum property with respect to real parts of holo-
morphic polynomials.

Proof. The implications (1)⇒ (2)⇒ (3)⇒ (4)⇒ (5) follow from the inclusions

{Re(g) : g ∈ C[z]} ⊂ {Re(f) : f ∈ O(U)} ⊂ PH(U) . . .

. . . ⊂ −PSH(U) ∩ C2(U) ⊂ −PSH(U),

where U is some open set in Cn, C[z] stands for the set of all holomorphic
polynomials and −PSH(U) := {−ψ : ψ ∈ PSH(U)} is the set of all plurisuper-
harmonic functions on U .

The implication (5)⇒ (4) follows from the classical Oka-Weil theorem (see,
e.g., Theorem 1.5 of Chapter VI in [Ran86]).

Now it remains to show the implication (4)⇒ (1). Indeed, assume that this
implication is wrong so that ψ admits the local maximum property with respect
to real parts of holomorphic functions, but is not subpluriharmonic on Ω. The
latter means that there are a ball B in Cn, a point p in B and a plurisub-
harmonic function h defined on a neighborhood of B with ψ+ h < 0 on bB but
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(ψ + h)(p) > 0. In view of Theorem 3.1.7, we can assume that h is C∞-smooth
on a neighborhood of B. Then Theorem 3.1.10 yields the existence of a Hartogs
function u = max{n−1

j log |fj | : j = 1, . . . , `} which satisfies ψ + h < ψ + u < 0
on bB and (ψ + u)(p) > 0. We can find an index j0 ∈ {1, . . . , `} such that
u(p) = n−1

j0
log |fj0(p)|. Since fj0 is zero free in a neighborhood of the closure

of the ball B, it follows from Proposition 3.1.4 (1) that there exists a holomor-
phic function g defined on a neighborhood of B such that n−1

j0
log |fj0 | = Re(g).

Then we have that ψ + Re(g) < 0 on bB but (ψ + Re(g))(p) > 0. This is a
contradiction to the assumption made on ψ. �

3.3 q-Plurisubharmonic functions
In this section, we introduce the most important functions of this thesis: the q-
plurisubharmonic functions in the sense of L. R. Hunt and J. J. Murray [HM78].

Definition 3.3.1 Let q ∈ {0, . . . , n−1} and let ψ be an upper semi-continuous
function on an open set Ω in Cn.

(1) The function ψ is q-plurisubharmonic on Ω if ψ is subpluriharmonic on π∩Ω
for every complex affine plane π of dimension q + 1.

(2) The set of all q-plurisubharmonic functions on Ω is denoted by PSHq(Ω).

(3) If m ≥ n, every upper semi-continuous function on Ω is by convention
m-plurisubharmonic, i.e., PSHm(Ω) := USC(Ω).

We give a list of properties of q-plurisubharmonic functions.

Proposition 3.3.2 Every below mentioned function is defined on an open set
Ω in Cn unless otherwise stated.

(1) The 0-plurisubharmonic functions are exactly the plurisubharmonic func-
tions, and the (n−1)-plurisubharmonic functions are the subpluriharmonic
functions.

(2) Every q-plurisubharmonic function is (q + 1)-plurisubharmonic.

(3) If λ ≥ 0, c ∈ R and ψ is q-plurisubharmonic, then λψ+ c is also q-plurisub-
harmonic.
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(4) The limit of a decreasing sequence (ψk)k∈N of q-plurisubharmonic functions
is again q-plurisubharmonic.

(5) If {ψi : i ∈ I} is a family of locally bounded q-plurisubharmonic functions,
then the upper semi-continuous regularization ψ∗ of ψ := supi∈I ψi is q-
plurisubharmonic.

(6) The minimum min{ψ1, ψ2} of a q-plurisubharmonic and an r-plurisubharmonic
function is (q + r + 1)-plurisubharmonic.

(7) An upper semi-continuous function ψ is q-plurisubharmonic on Ω if and
only if it is locally q-plurisubharmonic on Ω, i.e., for each point p in Ω there
is a neighborhood U of p in Ω such that ψ is q-plurisubharmonic on U .

(8) Let ψ be a q-plurisubharmonic function on Ω and F : Cn → Cn a C-
linear isomorphism. Then the composition ψ ◦ F is q-plurisubharmonic
on Ω′ := F−1(Ω). Especially, if ψ is subpluriharmonic on Ω and F is
biholomorphic from an open set G in Cn onto Ω, then ψ ◦ F is subpluri-
harmonic on G.

(9) A function ψ is q-plurisubharmonic on Ω if and only if for every ball B b Ω
and for every plurisubharmonic function s on B in Ω the sum ψ + s is
q-plurisubharmonic on B.

(10) Let Ω1 be an open set in Ω, ψ be a q-plurisubharmonic function on Ω and
ψ1 be a q-plurisubharmonic function on Ω1 such that

lim sup
w→z
w∈Ω1

ψ1(w) ≤ ψ(z) for every z ∈ bΩ1 ∩ Ω.

Then the subsequent function is q-plurisubharmonic on Ω,

ϕ(z) :=

{
max{ψ(z), ψ1(z)}, z ∈ Ω1

ψ(z), z ∈ Ω \ Ω1
.

(11) (Local maximum principle) Let q ∈ {0, . . . , n − 1} and Ω be a rela-
tively compact open set in Cn. Then any function u which is upper semi-
continuous on Ω and q-plurisubharmonic on Ω fulfills

max
Ω

ψ = max
bΩ

ψ.
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Proof. The properties (1) to (5) can be derived directly from the definition.
The property (6) is Lemma 6.2 in [Sło86]. The statement in (7) follows from
Theorem 3.2.2 and the definition. The property (8) is an immediate conse-
quence of the definition together with the facts that F is a biholomorphism and
that the composition s◦F is plurisubharmonic whenever s is plurisubharmonic.
The property (9) follows from the results in Proposition 3.2.4 and from the
fact that the restriction of a plurisubharmonic function to a lower-dimensional
complex plane is again plurisubharmonic. The patching method (10) can be
found in Proposition 2.2 in [Die06] and can be verified with similar meth-
ods as for the proof of Theorem 2.3.7. The local maximum principle (11) is
Lemma 2.7 in [HM78]. It can be proved by the same arguments as in Theo-
rem 2.3.6 using Lemma 1.4.2 in the complex setting. �

3.4 Smooth and strictly q-plurisubharmonic func-
tions

In the following, we investigate twice differentiable and C2-smooth q-plurisub-
harmonic functions.

Definition 3.4.1 Let Ω be an open set in Cn .

(1) An upper semi-continuous function ψ on Ω is called strictly q-plurisub-
harmonic on Ω if for every point p in Ω there is a neighborhood U of p
and a number ε > 0 such that ψ − ‖z − p‖22 is q-plurisubharmonic on U .

(2) An upper semi-continuous function ψ on Ω is called strongly q-plurisub-
harmonic on Ω if for every C∞-smooth non-negative function θ with com-
pact support in Ω there is a positive number ε0 such that ψ + εθ remains
q-plurisubharmonic on Ω for every real number ε with |ε| ≤ ε0.

(3) We denote the family of all strictly q-plurisubharmonic functions on Ω by
SPSHq(Ω).

The next remark explains the relation between q-plurisubharmonic, strictly
and strongly q-plurisubharmonic functions.
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Remark 3.4.2 (1) By the same arguments as the proof of Proposition 2.4.2,
we can show that the two notions of strong and strict q-plurisubharmonicity are
equivalent.

(2) Every q-plurisubharmonic function ψ on Ω can be approximated from above
by the family (ψε)ε>0 of strictly q-plurisubharmonic functions ψε defined by
ψε(z) := ψ(z) + ε‖z‖22. Thus,

PSHq(Ω) ⊂ SPSHq(Ω)
↓Ω
.

A smooth (strictly) q-plurisubharmonic can be characterized by counting the
eigenvalues of its Levi matrix. This matrix is also known in the literature as
complex Hessian.

Definition 3.4.3 Let ψ be twice differentiable at a point p. For ζ, η ∈ Cn we
define the Levi form of ψ at p by

Lψ(p)(ζ, η) :=

n∑
k,`=1

∂2ψ

∂zk∂z`
(p)ζkη`.

It is an Hermitian form on Cn × Cn.
Similarly to Theorem 2.4.3 in the case of real q-convex functions, we have

a the following characterization of smooth q-plurisubharmonic functions (see
Lemma 2.6 in [HM78]).

Theorem 3.4.4 Let q ∈ {0, . . . , n − 1} and let ψ be a C2-smooth function on
an open subset Ω in Cn. Then ψ is (strictly) q-plurisubharmonic if and only if
the Levi matrix Lψ(p) has at most q negative (q non-positive) eigenvalues at
every point p in Ω.

Proof. First, we show that ψ is q-plurisubharmonic on Ω if and only if its Levi
matrix has at most q negative eigenvalues at each point in Ω. In order to do
so, we make some simplifications. By the definition of q-plurisubharmonicity
and since subpluriharmonicity is a local property, it suffices to show that ψ
is subpluriharmonic on a neighborhood U of some point p in Ω if and only
if its Levi matrix has at least one non-negative eigenvalue at every point of
U . It is clear that we can assume p = 0 and ψ(p) = 0. Moreover, since the
property of a function being subpluriharmonic is stable under summation with
pluriharmonic functions, by adding a suitable linear function to ψ, we may
suppose that the gradient of ψ does not vanish at the origin. Notice also that
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subpluriharmonic functions remain subpluriharmonic when composed with a
biholomorphic mapping (see Proposition 3.3.2 (8)). Following the arguments
in the proof of Lemma 3.2.3 in [Kra99], after a local biholomorphic change of
coordinates we achieve that the function ψ has the subsequent form on some
neighborhood of the point p = 0,

ψ(z) = Re(zn) + Lψ(p)(z, z) + o(‖z‖22).

Therefore, we can replace ψ by the function ψ − Re(zn), since Re(zn) is pluri-
harmonic. Since all these simplifications have neither an effect on the sub-
pluriharmonicity nor on the eigenvalues of the Levi matrix of ψ, the statement
reduces to consider the following function defined on some neighborhood of the
origin,

ψ(z) = Lψ(p)(z, z) + o(‖z‖22). (3.1)

Then we can follow exactly the arguments in the proof of Theorem 2.4.3. If the
Levi matrix of ψ is negative definite at the origin, the equation (3.1) yields the
existence of a ball B around the origin such that ψ vanishes at the origin and is
negative on the boundary of B. Thus, it cannot be subpluriharmonic according
to the definition. On the other hand, if ψ is not subpluriharmonic, then we can
use Lemma 1.4.2 in order to show that the Levi matrix of ψ has only negative
eigenvalues at some point near the origin.

Finally, it remains to show that a function is strictly q-plurisubharmonic if
and only if its Levi matrix has at most q non-positive eigenvalues. But this
follows immediately from the previous discussion using the C∞-smooth strictly
plurisubharmonic function z 7→ ‖z‖22 on Cn. �

The previous result was generalized by Z. Słodkowski in [Sło84] to twice
differentiable q-plurisubharmonic functions.

Theorem 3.4.5 Let q ∈ {0, . . . , n− 1} and let ψ be an upper semi-continuous
function on an open subset Ω in Cn.

(1) If ψ is q-plurisubharmonic on Ω and twice differentiable at a point p, then
the Levi matrix of u at p has at most q negative eigenvalues.

(2) If ψ has a lower bounded Hessian and the Levi matrix has at most q negative
eigenvalues at almost every point in Ω, then ψ is q-plurisubharmonic on Ω.
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Proof. We will not include the proof here because we already repeated it with
minor adaption for real q-convex functions in Theorem 2.5.3. For the interested
reader, we refer to Theorem 4.1 in [Sło84]. �

Theorem 3.4.4 allows us to easily construct examples of q-plurisubharmonic
functions.

Example 3.4.6 (1) The function (z, w) 7→ |zw|2 is strictly 1-plurisubharmonic
but fails to be strictly plurisubharmonic on C2. The eigenvalues of its Levi
matrix at a given point (z, w) are zero and |z|2 + |w|2. Anyway, it is plurisub-
harmonic.

(2) If f : Ω → Cm is a holomorphic mapping on an open set Ω in Cn, then
− log ‖f‖2 and 1/‖f‖2 are subpluriharmonic outside {f = 0}.

(3) For k ∈ N consider the 1-plurisubharmonic function fk(z, w) := −k|z|2 on
C2. Then the sequence (fk)k∈N decreases to the characteristic function χ̌{z=0}
of {z = 0} (recall Example 1.1.3). Since the latter function is equal to −∞
almost everywhere on C2, it fails to be locally integrable, whereas any plurisub-
harmonic function lies in L1

loc, except the constant function −∞ (see Theorem
4.17 in §4.C.2 of [Dem12]).

(4) Every entire plurisubharmonic function on Cn admits the Liouville prop-
erty, i.e., it is constant whenever it is bounded from above on Cn. But the
previous example (3) demonstrates that it is no longer true for q-plurisub-
harmonic functions, if q ≥ 1. Another example is given by the function ψ(z, w) =
−1/(1 + |z|2 + |w|2). It has an upper bound and is strictly 1-plurisubharmonic
function on C2, since its Levi matrix Lψ at a given point (z, w) has the eigen-
values

1

(1 + |z|2 + |w|2)2
and

1− |z|2 − |w|2

(1 + |z|2 + |w|2)3
.

3.5 Approximation of q-plurisubharmonic func-
tions
The idea of the approximation of real q-convex functions involving the supre-
mum convolution was shown in detail in Section 2.6 and was taken from Słod-
kowski’s approximation technique for q-plurisubharmonic functions presented in
Section 2 of his paper [Sło84].
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Theorem 3.5.1 (Słodkowski, 1984) Let Ω be an open set in Cn and let K
be a compact set in Ω. Let ε > 0 be a real number so small that the set
Ωε := {z ∈ Ω : d(z, bΩ) > ε, ‖z‖2 < 1/ε} contains K. Then we have that

PSHq(Ω) ⊂ PSHq(Ωε) ∩ C1
•(Cn)

↓K
.

Based on this approximation theorem, Słodkowski established the following
result on sums of q-plurisubharmonic functions. The proof of Theorem 2.6.4 is
based on his arguments verifying Theorem 5.1 in [Sło84].

Theorem 3.5.2 (Słodkowski, 1984) Let ψ1 be a q-plurisubharmonic and ψ2

be an r-plurisubharmonic function. Then their sum ψ1 +ψ2 is (q+ r)-plurisub-
harmonic.

Due to an example of K. Diederich and J. E. Fornæss (see Theorem 2 in
[DF85]), it is in general not possible to approximate q-plurisubharmonic func-
tions from above by a sequence of C2-smooth ones. Anyway, L. Bungart was
able to show in [Bun90] that continuous q-plurisubharmonic functions can be
approximated by piecewise smooth (strictly) q-plurisubharmonic functions.

Definition 3.5.3 Let ψ be a continuous function on an open set Ω in Cn.

(1) The function ψ is called q-plurisubharmonic with corners on Ω if for every
point p in Ω there is an open neighborhood U of p in Ω and finitely many
C2-smooth q-plurisubharmonic functions ψ1, . . . , ψ` on U such that ψ =
max{ψj : j = 1, . . . , `}.

(2) The family of all q-plurisubharmonic functions with corners on Ω is denoted
by PSHcq(Ω).

Bungart’s approximation method yields the following result (see Corollary
5.4 in [Bun90]).

Theorem 3.5.4 (Bungart, 1990) Let Ω be an open subset in Cn. Then we
have that

PSHq(Ω) ∩ C(Ω) ⊂ PSHcq(Ω)
↓Ω
.

As a consequence, we obtain another characterization of q-plurisubharmonic
functions.

Corollary 3.5.5 Let Ω be an open subset in Cn and q ∈ {0, . . . , n − 1}. An
upper semi-continuous function ψ on Ω is q-plurisubharmonic if and only if for
every open set U b Ω and every ϕ ∈ PSHcn−q−1(U) the sum ψ+ϕ is subpluri-
harmonic on U .
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The next result allows us to produce q-plurisubharmonic functions by com-
posing them with real r-convex functions (see Proposition 2.11 in [PZ13]).

Theorem 3.5.6 Let ω be an open set in R` and let u be a real r-convex function
on ω such that u is separately non-decreasing, i.e., tj 7→ u(t1, . . . , tj , . . . , t`) is
non-decreasing with respect to each fixed index j ∈ {1, . . . , `}. Let (qj)j=1,...,`

be finitely many integers qj ∈ {0, . . . , n} and let ψ := (ψj)j=1,...,` be a collection
of upper semi-continuous functions ψj on an open set Ω in Cn such that each ψj
is qj-plurisubharmonic on Ω. Furthermore, assume that ψ(Ω) lies in ω. Then
the composition u ◦ ψ is (q + r)-plurisubharmonic on Ω, where q :=

∑`
j=1 qj .

Proof. Step 1. Let us first consider the case when u is C2-smooth on ω and
all the components of ψ are twice differentiable at the point p in Ω. Then the
entries of the Levi matrix of u ◦ ψ at p are as follows,

∂(u ◦ ψ)

∂zj∂z̄k
(p) =

∑̀
λ=1

∂u

∂tλ
(a) · ∂

2ψλ

∂zj∂z̄k
(p) +

∑̀
λ,µ=1

∂ψλ

∂zj
(p) · ∂2u

∂tλ∂tµ
(a) · ∂ψ

µ

∂zk
(p),

where j, k = 1, . . . , n and a = ψ(p). The Levi matrix of u ◦ ψ at p is then given
by

Lu◦ψ(p) =
∑̀
λ=1

∂u

∂tλ
(a) ·Lψλ(p) + J h

ψ (p) ·Hu(a) ·Jψ(p), (3.2)

where Jψ =
(
∂ψj

∂zµ

)
j=1,...,`
µ=1,...,n

is the complex Jacobian of ψ and J h
ψ = Jψ

t

denotes the conjugate transpose of Jψ. Now observe that, if Hu(p) has at most
r negative eigenvalues, then J h

ψ (p) ·Hu(a) ·Jψ(p) has also at most r negative
eigenvalues. Since u is separately non-decreasing, the partial derivatives ∂u

∂tj
are

non-negative on ω. Hence, ∂u
∂tj

(a) ·Lψj (p) has at most qj negative eigenvalues
for each j = 1, . . . , `. But then the sum of all the matrices in (3.2) has at most∑`
j=1 qj + r = q + r negative eigenvalues.

Step 2. In the non-smooth case, we proceed as follows. By Theorem 3.5.1,
for each j = 1, . . . , ` we can approximate the component function ψj by a
decreasing sequence (ψjk)k∈N of continuous functions ψjk which are q-plurisub-
harmonic onD(k) := {z ∈ Ω : d(z, bΩ) > 1/k, ‖z‖2 < k} and twice differentiable
on a dense subset D̃(k) of D(k). We set ψk := (ψ1

k, . . . , ψ
`
k). By the choice of

(D(k))k∈N, we can find an integer k0 so large that ψk(D(k))∩ω is not empty for
every k ≥ k0.
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Step 3. We fix an index k ≥ k0 and define Wk := ψ−1
k (ω) ∩D(k). It is an

open set since ψk is continuous on D(k). In view of the approximation theo-
rems 2.6.3 and 2.6.8, there is a sequence (um)m∈N of real r-convex functions um
with corners on G(m) := {x ∈ ω : d(z, bω) > 1/m, ‖x‖2 < m} which decreases
to u on ω. Now if m0 is large enough, then Wk,m := ψ−1

k (G(m)) ∩D(k) is not
empty for every m ≥ m0. Fix an integer m ≥ m0 and pick a point z0 in Wk,m.
Then t0 := ψk(z0) lies in G(m), so there are a neighborhood U0 of t0 in G(m)

and finitely many C2-smooth real r-convex functions u1
m, . . . , u

µ
m on U0 such that

um = max{u1
m, . . . , u

µ
m}. It follows from the first step that the real Hessians of

the compositions u1
m ◦ψk, . . . , uµm ◦ψk have at most (q+ r) negative eigenvalues

at every point ψ−1
k (U0) ∩ D̃(k). Therefore, by Theorem 3.4.5 (2), the function

um ◦ ψk is (q + r)-plurisubharmonic on ψ−1
k (U0) ∩D(k). Since z0 was an arbi-

trary point in Wk,m, the function um ◦ ψk is (q + r)-plurisubharmonic on Wk,m

for each m ≥ m0. Since Wk =
⋃
m≥m0

Wk,m and the sequence (um ◦ ψk)m≥m0

decreases to u ◦ ψk on Wk, we conclude that the function u ◦ ψk is (q + r)-
plurisubharmonic on Wk. Finally, since Ω =

⋃
k≥k0

Wk and u is separately
non-decreasing, we deduce that (u ◦ ψk)k≥k0 decreases to u ◦ ψ on Ω. Hence,
u ◦ ψ is (q + r)-plurisubharmonic on Ω. �

The previous statement is especially important when ` = 0 and the function
u is real 0-convex, i.e., locally convex. As an application, we present a useful
regularization technique derived from Lemma (5.18) in Chapter 5 in [Dem12].

Definition 3.5.7 Let θ be a non-negative C∞-smooth function on R with com-
pact support in the unit interval (−1, 1) such that

∫
R θ(s)ds = 1 and θ(−t) = θ(t)

for every t ∈ R. Given real numbers ε1 > 0, . . . , ε` > 0 and t1, . . . , t` ∈ R, we
define the regularized maximum by

m̃ax(ε1,...,ε`)(t1, . . . , t`) :=

∫
R`

max{t1 + ε1s1, . . . , t` + ε`s`}θ(s)ds.

For a single positive number ε > 0 we set m̃axε := m̃ax(ε,...,ε).

The regularized maximum has the following properties.

Lemma 3.5.8 Let ε1, . . . , ε` be positive real numbers.

(1) The function (t1, . . . , t`) 7→ m̃ax(ε1,...,ε`)(t1, . . . , t`) is C∞-smooth and con-
vex on R` and separately non-decreasing in each variable t1, . . . , t`.
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(2) Given t1, . . . , t` ∈ R, it holds that

max{t1, . . . , t`} ≤ m̃ax(ε1,...,ε`)(t1, . . . , t`) ≤ max{t1 + ε1, . . . , t` + ε`}

(3) If tj + εj < maxi 6=j{ti − εi}, then we have that

m̃ax(ε1,...,ε`)(t1, . . . , t`) = m̃ax(ε1,...,εj−1,εj+1,...,ε`)(t1, . . . , tj−1, tj+1, . . . , t`).

We can apply the regularized maximum to q-plurisubharmonic functions.

Lemma 3.5.9 Let ψ1, . . . , ψ` be finitely many C2-smooth functions on an open
set Ω in Cn such that for each j ∈ {1, . . . , `} the function ψj is qj-plurisub-
harmonic on Ω. Then for every positive number ε the regularized maximum
ϕε := m̃axε{ψ1, . . . , ψ`} is C∞-smooth and (q1+ . . .+q`)-plurisubharmonic on Ω.
Moreover, the family (ϕε)ε>0 decreases to max{ψ1, . . . , ψ`} on Ω when ε > 0
goes to zero.

Proof. This is a consequence of Lemma 3.5.8 and Theorem 3.5.6. �

3.6 Real q-convex and q-plurisubharmonic func-
tions

The real q-convex functions have the same meaning for q-plurisubharmonic ones
like the convex functions have for plurisubharmonic ones. The latter relation
was already investigated by P. Lelong in [Lel52b] in the case of q = 0. We shall
give a generalization of his results to the case q ≥ 1. At first, we show that real
q-convex functions are indeed q-plurisubharmonic.

Theorem 3.6.1 Let Ω be an open subset in Cn = R2n. Then every real q-
convex function u on Ω is q-plurisubharmonic.

Proof. If q ≥ n, then the statement is trivial, since every upper semi-continuous
function on Ω is q-plurisubharmonic by convention. By Theorem 2.6.3, we can
locally approximate u by a sequence of real q-convex functions which are twice
differentiable almost everywhere. Thus, since q-plurisubharmonicity is a local
property, we can assume without loss of generality that u is twice differentiable
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almost everywhere on Ω. Since u is q-plurisubharmonic if and only if it is sub-
pluriharmonic on every complex affine plane of dimension q + 1, and since the
restriction of a real q-convex function to an affine plane remains real q-convex,
it is enough to prove the statement in the case of q = n− 1.

Thus, let us assume that q = n− 1 and that the real Hessian Hu(p) of u at
p exists for some point p in Ω. By Theorem 2.5.3 (1), the real Hessian Hu(p) of
u at p has at least 2n − (n − 1) = n + 1 non-negative eigenvalues. This means
that there is a real n+ 1 dimensional subspace V of Cn = R2n such that Hu(p)
is positive semi-definite on V . Since V is not totally real, there is a vector v
in V such that iv also lies in V . Therefore, since Hu(p)(v, v) and Hu(p)(iv, iv)
are both non-negative by assumption, it follows that the Levi form of u at p is
non-negative due to the following identity,

Lu(p)(v, v) =
1

4

(
Hu(p)(v, v) + Hu(p)(iv, iv)

)
.

Hence, the Levi matrix Lu(p) of u at p has at least one non-negative eigenvalue.
By the choice of p, we deduce that Lu has at least one non-negative eigenvalue
almost everywhere on Ω. Then Theorem 3.4.5 (2) implies that the function u is
(n− 1)-plurisubharmonic on Ω. �

The previous result cannot be improved because of the following examples.

Remark 3.6.2 (1) The converse of the statement in Theorem 3.6.1 is false
in general. Consider the function z 7→ Re(z)2 − Im(z)2 = Re(z2). It is
harmonic on C, but not convex.

(2) Since every real q-convex function is real (q + 1)-convex, we can generalize
Theorem 3.6.1 as follows: If r ≤ q, then every real r-convex function on Ω
is q-plurisubharmonic on Ω. But if r > q, the statement is false in general
due to the following example: the function

(z, w) 7→ Re(z)2 − 2Im(w)2 + Re(z)2 − 2Im(w)2

is real 2-convex, 2-plurisubharmonic but not 1-plurisubharmonic on C2.

Anyway, under some additional conditions we obtain a converse statement
of Theorem 3.6.1. Therefor, we need functions which are invariant in their
imaginary parts.



3.6. Real q-convex and q-plurisubharmonic functions 67

Definition & Remark 3.6.3 Let ω be an open set in Rn.

(1) A function ψ = ψ(z) on a tubular set ω + iRn in Cn is called rigid if
ψ(z) = ψ(Re(z)) for every z ∈ ω + iRn.

(2) By the definition, a rigid function ψ on a tubular set ω+iRn can be naturally
considered as a function x 7→ ψ(x) on ω. On the other hand, every function
u on ω induces a well defined rigid function on ω + iRn via z 7→ u(Re(z))
for every z ∈ ω + iRn.

(3) Therefore, it is justified to write PSHq(ω) for the subfamily of upper semi-
continuous functions on ω which induce rigid q-plurisubharmonic functions
on ω + iRn.

The following result is a generalization of Lelong’s observation in the case of
q = 0 stating that every rigid plurisubharmonic function is locally convex.

Theorem 3.6.4 Let ω be an open set in Rn. Then every rigid function on
ω + iRn is q-plurisubharmonic if and only if it is real q-convex on ω, i.e.,

PSHq(ω) = CVX q(ω).

Proof. Using the approximation theorems for real q-convex functions, we can
easily deduce that, if a function u is real q-convex on ω, then it is also real
q-convex on ω+ iRn. Then the inclusion CVX q(ω) ⊂ PSHq(ω) follows directly
from Theorem 3.6.1.

For the other inclusion, consider a rigid q-plurisubharmonic function ψ on
Ω := ω + iRn. Pick a real plane π in Rn of dimension q + 1, a ball B b π ∩ ω
and a linear function ` on π such that ψ ≤ ` on bB. After a linear change of
coordinates of the form z 7→ λz + p, where λ ∈ R and p ∈ Cn, we may assume
that π contains the origin and that B = Bn1 (0) ∩ π. Given a positive number
R > 0, which will be specified later, and another ball BR := BnR(0) ∩ π in π,
consider the set DR := B+ iBR. Since Ω is tubular, B b ω∩π and since 0 ∈ π,
the set DR contains B + i{0}n and lies relatively compact in Ω ∩ πC, where
πC := π + iπ. Moreover, the boundary of DR in πC splits into two parts,

A1 := bB + iBR and A2 := B + i(bBR).

Since ` is linear, ψ is q-plurisubharmonic on Ω and since z 7→ ‖x‖22 − ‖y‖22 =∑n
j=1 Re(z2

j ) is pluriharmonic on Cnz = Rnx + iRny , it follows from Proposi-
tion 3.3.2 (9) that for every integer k ∈ N the function

ψk(z) := ψ(x)− `(x) +
(
‖x‖22 − ‖y‖22

)
/k
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is q-plurisubharmonic on Ω. The assumption ψ ≤ ` on bB and the choice of DR

now yield the subsequent estimates for ψk on the boundary of DR,

ψk ≤ 1/k on A1 and ψk ≤ ψ − `+ (1−R2)/k on A2.

Thus, if we choose R > 0 to be large enough, then ψk becomes negative on
A2. Hence, the function ψk is bounded by 1/k on the boundary of DR. Since
ψk is q-plurisubharmonic, the local maximum principle (Proposition 3.3.2 (11))
implies that the function ψk is bounded from above by 1/k on the closure of
DR in πC. In particular, ψk ≤ 1/k on B + i{0}n. But the last inequality holds
for every integer k ∈ N. This yields ψ − ` ≤ 0 on B, and we can conclude that
ψ is real q-convex on ω. �

3.7 Weakly q-plurisubharmonic functions

We show that the composition of q-plurisubharmonic with holomorphic func-
tions remains q-plurisubharmonic. This would permit to introduce q-plurisub-
harmonicity on complex manifolds and spaces, but this topic deserves its own
treatise, so we restrict our considerations in this thesis to the complex Euclidean
space. A similar proof of the next result can be found in [Die06] (Proposition
2.2) or in [PZ13] (Proposition 2.9).

Theorem 3.7.1 Let ψ be a q-plurisubharmonic function on an open set Ω in
Cn and let f : D → Ω be a holomorphic mapping defined on some other open
set D in C`. Then the composition ψ ◦ f is q-plurisubharmonic on D.

Proof. If q ≥ `, then there is nothing to show, so we assume that q < `.
Suppose first that ψ is C2-smooth. Then the entries of the Levi matrix of

ψ ◦ f at a fixed point p in D are given by

∂2(ψ ◦ f)

∂zj∂zk
(p) =

n∑
λ,µ=1

∂fλ
∂zj

(p) · ∂2ψ

∂wλwµ
(a) · ∂fµ

∂zk
(p),

where a = f(p) and k, j = 1 . . . , `. Therefore, the Levi matrix of ψ ◦ f at p is of
the form

Lψ◦f (p) = J h
f (p) ·Lψ(a) ·Jf (p), (3.3)



3.7. Weakly q-plurisubharmonic functions 69

where Jf = (∂ψ/∂zµ)
n
µ=1 is the complex gradient of f and J h

f = Jf
t
denotes

its conjugate transpose. Since ψ is q-plurisubharmonic on Ω, its Levi matrix at
p has at most q negative eigenvalues. Then Corollary 4.5.11 in [HJ13] implies
that the Levi matrix of ψ ◦ f also has at most q negative eigenvalues. This
means that ψ ◦ f is q-plurisubharmonic on D.

If ψ is not necessarily C2-smooth, by Theorems 3.5.1 and 3.5.4 there exist a
collection (Gm)m∈N of open sets Gm = {z ∈ Ω : d(z, bΩ) > 1/m, ‖z‖2 < m} in
Ω and a family (ψm)m∈N of q-plurisubharmonic functions with corners on Gm
decreasing locally to ψ on Ω. Define Dm := f−1(Gm) and letm0 be so large that
Dm 6= ∅ for every m ≥ m0. Fix an integer m ≥ m0. Now if z0 is in Dm, then
w0 = ψ(z0) lies in Gm and there are a neighborhood Um of w0 in Gm and finitely
many functions ψ1

m, . . . , ψ
νm
m which are C2-smooth and q-plurisubharmonic on

Um and fulfill ψm = max{ψjm : j = 1, . . . , νm} on Um. In view of the previous
discussion, for each j = 1, . . . , νm the function ψjm ◦ f is q-plurisubharmonic
on f−1(Um). Hence, the function ψm ◦ f = max{ψjm ◦ f : j = 1, . . . , νm} is q-
plurisubharmonic on f−1(Um). Since p was an arbitrary point in Dm, we derive
that ψm ◦f is q-plurisubharmonic on Dm. Therefore, the sequence (ψm ◦f)m∈N
of q-plurisubharmonic functions ψm ◦ f locally decreases to ψ ◦ f on D. We
conclude that ψ ◦ f is q-plurisubharmonic on D. �

We shall give the following important example.

Example 3.7.2 Let Ω be an open set in Cn and let h : Ω→ Cq be a holomor-
phic mapping. Define A := {h = 0}. Then, in view of Theorem 3.7.1, for each
k ∈ N the function χ̌A,k := −k‖h‖22 is q-plurisubharmonic on Ω and decreases
to the characteristic function

χ̌
A(z) =

{
0, z ∈ A
−∞, z ∈ Ω \A .

Hence, it is q-plurisubharmonic on Ω.

The next definition is based on the following interpretation of q-plurisub-
harmonicity: an upper semi-continuous function ψ is q-plurisubharmonic on Ω
if and only if the composition ψ ◦L is subpluriharmonic for every complex affine
linear mapping L : Cq+1 → Cn restricted to L−1(Ω). It is then interesting to
ask whether one can replace linear mappings by another family of holomorphic
mappings with image in Ω.
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Definition 3.7.3 An upper semi-continuous function ψ on an open set Ω in
Cn is called weakly q-plurisubharmonic if ψ ◦ f is subpluriharmonic for every
holomorphic mapping f : D → Ω, where D is a domain in Cq+1.

In [Fuj92], O. Fujita showed that q-plurisubharmonicity and weak q-plurisub-
harmonicity is the same notion using properties of q-pseudoconvex sets, which
we will define later in Chapter 2. But in our situation, his result is an imme-
diate consequence of Theorem 3.7.1. Notice that in his notation pseudoconvex
functions of order k are exactly weakly (n−k−1)-plurisubharmonic functions in
our sense.

Theorem 3.7.4 (Fujita, 1992) A function ψ is q-plurisubharmonic on an open
set Ω in Cn if and only if it is weakly q-plurisubharmonic on Ω.

3.8 q-Plurisubharmonic functions on analytic sets
We recall the definition of analytic subsets in the complex Euclidean space.
For more details we refer to E. M. Chirka’s book [Chi89] or to the book by
H. Grauert and R. Remmert [GR04]. The content of this section will appear in
our joint article [PZ15].

Definition & Remark 3.8.1 Let Ω be an open set in Cn.

(1) A subset A of Ω is called analytic subset (of Ω) if for every point p in Ω
there exist an open neighborhood U of p in Ω, an integer k ≥ 1 and a
holomorphic mapping h : U → Ck such that A ∩ U = {h = 0}. Notice that
by this definition A is a closed set in Ω.

(2) Let A and A′ be two analytic subsets of Ω with A′ ⊂ A. Then we say that
A′ is an analytic subset of A.

(3) Let A be an analytic subset of Ω and let p ∈ A. If p has an open neigh-
borhood U in Ω such that A ∩ U is a complex submanifold, it is called a
regular point of A. The set of all regular points of A is denoted by Areg. It
is a dense subset of A.

(4) For each regular point z of A the dimension dimz A of A at z is the complex
dimension of the submanifold A ∩ U .

(5) The set of all singular points is defined by Asing := A \Areg. It is again an
analytic subset of A (see Chapter 6, §2.2 of [GR04]).
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(6) Given an arbitrary point p in A, the dimension of A at p is defined by

dimpA := lim sup
z→p
z∈Areg

dimz A.

(7) We are also interested in the minimal dimension of A given by

min dimA := inf{dimz A : z ∈ A}.

(8) The minimal dimension is motivated by the observation that, given an in-
teger q ∈ {0, . . . , n − 1} and a holomorphic mapping h : Ω → Cq, the rank
of the complex Jacobian of h does not exceed q. Therefore, {h = 0} is an
analytic subset of Ω with minimal dimension at least n− q. Such mappings
h will play an important role to us in the next Section 3.9.

Our next aim is to define q-plurisubharmonic functions on analytic subsets.
Due to Fujita’s result there are two possible ways of doing so, but which, a
priori, lead to different notions.

Definition 3.8.2 Let A be an analytic subset of an open set Ω in Cn. Let ψ
be an upper semi-continuous function on A.

(1) We say that ψ is (strictly) q-plurisubharmonic on A if for every point p in
A there are an open neighborhood U of p in Ω and a (strictly) q-plurisub-
harmonic function Ψ on U such that ψ = Ψ on A ∩ U .

(2) The function ψ is called (strictly) weakly q-plurisubharmonic on A if for
every holomorphic mapping f : D → A defined on a domain D in Cq+1 the
composition ψ ◦ f is (strictly) q-plurisubharmonic on D.

(3) The set of all q-plurisubharmonic and weakly q-plurisubharmonic functions
on A is denoted by PSHq(A) and, respectively, WPSHq(A).

J. E. Fornæss and R. Narasimhan showed in [FN80] that these two notions
are equivalent on analytic sets A if q = 0, i.e.,

PSH0(A) =WPSH0(A).

It was generalized by A. Popa-Fischer in [PF02] to the case of continuous func-
tions and q ≥ 1. It is still an open question whether each upper semi-continuous
weakly q-plurisubharmonic function on an analytic set is q-plurisubharmonic.
We have to admit that their results are also valid on reduced complex spaces,
but we are only interested in analytic subsets in the complex Euclidean space.
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Theorem 3.8.3 (Popa-Fischer, 2002) A continuous function on an analytic
subset A is weakly q-plurisubharmonic if and only if it is q-plurisubharmonic,
i.e.,

PSHq(A) ∩ C(A) =WPSHq(A) ∩ C(A).

We will show that each r-plurisubharmonic function on an analytic subset
extends trivially to the ambient space in the following sense.

Proposition 3.8.4 Fix numbers q ∈ {0, . . . , n − 1} and r ∈ N0. Let Ω be an
open set in Cn and let A be an analytic subset of Ω. We set q := n−min dimA.
If the function ψ is r-plurisubharmonic on A, then ψ extends to a (q+ r)-pluri-
subharmonic function ΨA on the whole of Ω via the trivial extension

ΨA(z) :=

{
ψ(z), z ∈ A
−∞, z ∈ Ω \A .

Proof. If q = n, then by convention ψ is (n + r)-plurisubharmonic since it is
upper semi-continuous on Ω. Thus, there is nothing to show and we can assume
that q < n, so that min dimA ≥ 1.

First, we show that ΨA is subpluriharmonic on Ω if min dimA = 1 and ψ ≡ 0
on A. In this case, assume that χ̌A := ΨA is not subpluriharmonic. Then it
follows from Lemma 1.4.2 and Proposition 3.2.4 that there exist a ball B b Ω
centered at a point p in Ω, a function g holomorphic on some neighborhood of
B and a number ε > 0 such that (χ̌A + Re(g))(p) = 0 and

(χ̌A + Re(g))(z) < −ε‖z − p‖22 for every z ∈ B \ {p}. (3.4)

Notice that, since χ̌A is identical to −∞ outside of A, the ball B intersects A
and p is contained in A. Hence, (3.4) reduces to

Re(g)(p) = 0 and Re(g)(z) < 0 for every z ∈ (A ∩B) \ {p}.

But this means that the holomorphic function exp(g) violates the local maxi-
mum modulus principle for holomorphic functions on analytic sets (see Chapter
5, §5.2 in [GR04]). Thus, χ̌A has to be subpluriharmonic on Ω.

Now consider the more general case of n − q = min dimA ≥ 1, but ψ still
vanishing on A. Fix a complex affine plane π of dimension q+ 1 intersecting A.
Then for each z ∈ A ∩ U we have that

dimz A ∩ L ≥ dimz A+ dimz L− n ≥ 1.
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The last inequality is derived from Proposition 2 in paragraph 3.5, Chapter 1
of [Chi89]. In view of the previous discussion, we obtain that χ̌A = χ̌

A∩L is
subpluriharmonic on L∩Ω. Since L is an arbitrary complex plane of dimension
q + 1, it follows from definition that χ̌ is q-plurisubharmonic on Ω.

We proceed by verifying the general case of ψ being an arbitrary r-plurisub-
harmonic function on A. By definition, for every point p in A there are an open
neighborhood Vp of p in Ω and an r-plurisubharmonic function ψ̂p on Vp such
that ψ̂p = ψ on Ap := A ∩ Vp. According to Theorem 3.5.2 and the preceding
discussion, the sum

ΨA(z) = (ψ̂p + χ̌
A)(z) =

{
ψ(z), z ∈ Ap
−∞, z ∈ Vp \Ap

is (q + r)-plurisubharmonic on Vp. Hence, the function ΨA is (q + r)-plurisub-
harmonic on the open neighborhood V :=

⋃
p∈A Vp of A in Ω and is identical to

−∞ on V \ A. Therefore, it can be easily extended by −∞ to a (q + r)-pluri-
subharmonic function into the whole of Ω. �

As a consequence of the previous proposition, we obtain a version of the
local maximum principle of q-plurisubharmonic functions on analytic set. It was
already shown by Słodkowski (see for example Proposition 5.2 and Corollary 5.3
in [Sło86]).

Proposition 3.8.5 (Local maximum principle) Fix an integer number q ∈
{0, . . . , n − 1}. Let A be an analytic subset of an open set Ω in Cn with
min dimA = q + 1 and let ψ be a q-plurisubharmonic function on A. Then
for every compact set K in A we have that

max
K

ψ = max
bAK

ψ.

Here, by bAK we mean the relative boundary of K in A.

Proof. Let L be a compact set in Ω such that A∩L = K and A∩bL = bAK. Since
min dimA = q+1, it follows from Proposition 3.8.4 that its trivial extension ΨA

from A to Ω by −∞ is (n−1)-plurisubharmonic on Ω. Then the local maximum
principle for q-plurisubharmonic functions on Ω (see Proposition 3.3.2 (11))
yields the desired identity,

max
K

ψ = max
A∩L

ψ = max
L

ΨA = max
bL

ΨA = max
A∩bL

ψ = max
bAK

ψ.



74 Chapter 3. q-Plurisubharmonicity

�

In the case of q = 0 (and even in complex spaces), a stronger extension
property is due to M. Colţoiu. We recall some notions related to Colţoiu’s
result.

Definition & Remark 3.8.6 Let Ω be an open set in Cn.

(1) A compact set K ⊂ Ω is called holomorphically convex in Ω if it coincides
with its holomorphically convex hull

K̂Ω
O(Ω) = {z ∈ Ω : |f(z)| ≤ ‖f‖K for every f ∈ O(Ω)}.

(2) The set Ω is a Stein open set or pseudoconvex set if it admits a continuous
plurisubharmonic function ϕ on Ω such that {ϕ < c} b Ω for every c ∈ R.

(3) Due to the classical result on the solution of the Levi problem (see, e.g.,
[Hör90]), we have that a set Ω in Cn is Stein open if and only if it is a domain
of holomorphy (recall Definition 3.1.9 (2)). We will investigate generalized
holomorphically convex hulls and Stein open sets later in Part III of this
thesis.

We shall repeat Colţoiu’s extension theorem (see Proposition 2 in [Col91]).
It is still an open question whether his result carries over to the case q ≥ 1.

Theorem 3.8.7 (Colţoiu, 1990) Let A be an analytic subset of a Stein open
set Ω in Cn. Then every plurisubharmonic function ψ on A extends to a pluri-
subharmonic function Ψ into the whole of Ω. Moreover, if K is a compact
holomorphically convex set in Ω and ψ < 0 on A ∩K, then Ψ < 0 on K.

Colţoiu’s result yields an approximation property of plurisubharmonic func-
tions on analytic subsets.

Proposition 3.8.8 Let A be an analytic subset of a Stein open set Ω in Cn.
Let ψ be a plurisubharmonic function on A. Then for every compact set K
in A and every continuous function f on K with ψ < f on K there exists a
C∞-smooth plurisubharmonic function Ψ̃ on Ω such that ψ < Ψ̃ < f on K.

Proof. Denote by Ψ0 the plurisubharmonic extension of ψ to the whole of
Ω derived from Theorem 3.8.7. Since Ω is Stein open, there is a continuous
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plurisubharmonic function ϕ on Ω which fulfills {ϕ < c} b Ω for every c ∈
R. Without loss of generality we can assume that ϕ < 0 on K. In view of
Theorem 3.1.7, there exists a C∞-smooth plurisubharmonic function Ψ1 defined
on an open neighborhood U b Ω of {ϕ < 0} which satisfies Ψ0 = ψ < Ψ1 < f
on K. Now if we choose a large enough constant c > 0, the function

Ψ :=

{
max{cϕ,Ψ1}, on {ϕ < 0}
cϕ, on Ω \ {ϕ < 0}

is plurisubharmonic and continuous on the whole of Ω and satisfies the inequal-
ities ψ < Ψ = Ψ1 < f on K. Then Richberg’s theorem 3.1.8 yields the desired
C∞-smooth plurisubharmonic function Ψ̃. �

3.9 r-Plurisubharmonic functions on foliations

In this section, we define a special subfamily of q-plurisubharmonic functions.
It is motivated by the fact that, locally, every C2-smooth strictly q-plurisub-
harmonic function is strictly plurisubharmonic on the leaves of a foliation by
complex submanifolds of codimension q. First, we recall the definition of a
complex foliation using local coordinate charts (compare the book [CLN85] by
C. Camacho and A. Lins Neto and their definition of real foliations). Another
good summary on holomorphic (singular) foliations induced by vector fields can
be found in the online article [RR11]. All the following considerations in this
sections are included in the joint article [PZ15].

Definition & Remark 3.9.1 Let q be an integer in {0, . . . , n − 1} and let Ω
be an open set in Cn. A (regular) complex foliation F on Ω of codimension q
(or dimension n− q) is a collection of local charts (Uj , ϕj)j∈J such that:

(1) The collection {Uj}j∈J is an open covering of Ω.

(2) For every index j ∈ J the function ϕj is a biholomorphism defined on Uj
onto an open set Vj = V ′j × V ′′j ⊂ Cq × Cn−q.

(3) For every pair of indexes j and k in J the composition ϕj ◦ ϕ−1
k has the

form
ϕj ◦ ϕ−1

k (z, w) =
(
gjk(z), hjk(z, w)

)
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for (z, w) ∈ Vk ∩ Vj ⊂ Cq × Cn−q and the holomorphic mappings

gjk : V ′k ∩ V ′j → Cq and hjk : Vk ∩ Vj → Cn−q.

We also recall the definition and properties of leaves of a foliation.

Definition & Remark 3.9.2 Let F = (Uj , ϕj)j∈J be a complex foliation on
an open set Ω in Cn.

(1) Let j ∈ J be fixed and let (z0, w0) = ϕj(p0) in Cq ×Cn−q for some point p0

in Uj . We have that the inverse image ϕ−1
j ({z0}×Cn−q) is a submanifold

of Uj of codimension q containing p0. This submanifold is called a slice or
local leaf of F in Uj .

(2) Every chart Uj is a disjoint union of slices of the same codimension q. If
S ⊂ Uj and T ⊂ Uk are two slices of codimension q, then the condition (3)
in the definition above implies that the intersection A∩B is either empty or
a submanifold of Uj ∩Uk of codimension q. Hence, the slices piece together
from chart to chart to form maximal connected subsets of Ω, which are
called leaves of F in Ω. Every leaf of Ω is the (possible infinite) union of
all intersecting slices, and it is naturally endowed with the structure of a
complex connected submanifold of Ω of codimension q.

A complex foliation can be defined differently using holomorphic mappings.

Remark 3.9.3 Let Ω be an open set in Cn and let πz : Cq × Cn−q → Cq be
the trivial projection into the first q entries defined by πz(z, w) = z. Given any
chart (Uj , ϕj) of a complex foliation F on Ω, the slices of F in Uj are the fibres
h−1
j (c) of the holomorphic mapping hj := πz ◦ ϕj : Uj → Cq. In particular, the

mappings hj are holomorphic submersions. Thus, every complex foliation F
of codimension q induces a family HF := {hj}j∈J of holomorphic submersions
such that {Uj}j∈J covers Ω.

In the literature, one encounters many different ways to define singular (com-
plex) foliations (see e.g. [RR11]). For instance, F is a singular foliation of an
open set Ω in Cn if there exists an analytic subset A of Ω such that A has at
least codimension 1 and F is a (regular) foliation of Ω\A. In this definition, the
connection of F to A is not really clear. In order to obtain more control on the
singular part A of the foliation, we will prefer the following definition which is
based on the idea to replace HF in the previous remark by an arbitrary family
of holomorphic mappings with image in Cq.
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Definition 3.9.4 Let q ∈ {0, . . . , n− 1} and Ω be an open set in Cn. By a web
of singular foliations on Ω (of codimension q) we mean a family H = {hj}j∈J
of holomorphic mappings hj : Uj → Cq, where {Uj}j∈J forms an open covering
of Ω by open sets Uj in Ω. Each mapping hj induces a singular foliation on Ωj
via its fibers {h−1

j (c)}c∈hj(Ωj).

Now we define r-plurisubharmonic functions on foliations. We accept by
convention that C0 = {0} and that every upper semi-continuous function is
plurisubharmonic on a discrete set. Also recall that, given a holomorphic map-
ping h : Ω→ Cq defined on an open set Ω in Cn, the fiber h−1(c) is an analytic
subset of Ω of minimal dimension at least n− q (see Remark 3.8.1 (8)).

Definition 3.9.5 Let q ∈ {0, . . . , n − 1}, r ∈ N0 and let Ω be an open set in
Cn.

(1) Let H = {hj : Uj → Cq}j∈J be a web of singular foliations on Ω. An upper
semi-continuous function ψ on Ω is r-plurisubharmonic on the foliations of
H if for every point p in Ω there is an index j ∈ J such that Uj contains p
and for every c ∈ hj(Uj) the function ψ is r-plurisubharmonic on the fiber
h−1
j (c).

(2) The symbol PSHr(H,Ω) stands for the family of all r-plurisubharmonic
functions on the foliations of H.

(3) If h : Ω → Cq is a single holomorphic mapping defined on Ω, then we
simply write PSHr(h,Ω) instead of PSHr({h},Ω) and say that functions in
PSHr(h,Ω) are r-plurisubharmonic on a singular foliation (induced by h).

(4) We set PSH(H,Ω) := PSH0(H,Ω).

(5) If q = 0, then PSHr(H,Ω) = PSHr(Ω).

We assert that each r-plurisubharmonic function on foliations of codimen-
sion q is (q + r)-plurisubharmonic.

Theorem 3.9.6 Fix integers q ∈ {0, . . . , n− 1} and r ∈ N0. Let Ω be an open
set in Cn and let H = {hj : Uj → Cq}j∈J be a web of singular foliations on Ω.
Then every function ψ ∈ PSHr(H,Ω) is (q + r)-plurisubharmonic on Ω.

Proof. Let p be a point in Ω. By the assumption made on H, there are an open
set U in {Uj}j∈J containing p and a holomorphic mapping h : U → Cq in H
such that for every c in h(U) the function ψ is r-plurisubharmonic on the fiber
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Ac := h−1(c). Since the rank of h does not exceed q, the fiber Ac is an analytic
subset of U of minimal dimension at least n − q. In view of Proposition 3.8.4
the function

ΨAc =

{
ψ(z), z ∈ Ac
−∞, z ∈ U \Ac

.

is (q + r)-plurisubharmonic on U . Now consider the function Φ defined by

U 3 z 7→ Φ(z) := sup{ΨAc(z) : c ∈ h(U)}.

Since all fibers in {Ac}c∈h(U) are pairwise disjoint and ΨAc = −∞ on U \Ac, it
follows that Φ = ψ on U . Hence, Φ is upper semi-continuous and, therefore, it
coincides with its upper semi-continuous regularization Φ∗. Since it is the regu-
larized supremum of a family {ΨAc}c∈h(U) of (q+r)-plurisubharmonic functions
on U , Proposition 3.3.2 (5) implies that the function Φ = ψ is (q + r)-plurisub-
harmonic on U . Since p is an arbitrary point in Ω and {Uj}j∈J forms a covering
of Ω, we conclude that the function ψ is (q+ r)-plurisubharmonic on the whole
of Ω. �

As a direct application, we derive the following interesting examples.

Example 3.9.7 (1) Let n, q ∈ N0 and let ψ be an upper semi-continuous func-
tion defined on an open subset U := V × W of the product Cn × Cq such
that for each fixed entry w in W the function z 7→ ψ(z, w) is plurisubharmonic
on V . Since for every w ∈ W the function ψ is plurisubharmonic on the q-
codimensional fiber V × {w}, we derive from Theorem 3.9.6 that ψ is q-pluri-
subharmonic on U .

(2) Let ψ be a C2-smooth function defined on an open subset U = V ×W of
the product Cn × Cq for some non-negative integers n and q. If for every fixed
entry w in W the function z 7→ ψ(z, w) is strictly plurisubharmonic on U , then
the Levi matrix of ψ is positive definite on the subspace Cn × {0} of Cn×Cq
according to Theorem 3.4.4. Therefore, the Levi matrix of ψ has at most q
strictly positive eigenvalues at every point (z, w) in U , and so ψ is strictly q-
plurisubharmonic on U .

(3)The above result fails to hold if we relax the C2-smooth condition on ψ.
Consider the upper semi-continuous function φ defined on C2 by

φ(z, w) =

{
|z|2, w = 0
|zw|2, w 6= 0

.
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We obviously have that z 7→ φ(z, w) is strictly subharmonic on C for every fixed
entry w in C, and so it is 1-plurisubharmonic on the whole space C2 due to the
first above example. Nevertheless, we assert that φ cannot be strictly 1-pluri-
subharmonic near the origin. Indeed, for any fixed constant ε > 0 consider the
following upper semi-continuous ε-perturbation of φ,

φε(z, w) := φ(z, w)− ε|z|2 − ε|w|2.

We have that φε(z, w) is equal to |zw|2−ε|z|2−ε|w|2 if w 6= 0, and so its Levi
matrix has the eigenvalues −ε and |z|2+|w|2−ε at the point (z, w). Hence, if
the sum |z|2 + |w|2 is small enough, then the Levi matrix of φε has two negative
eigenvalues. Thus, the function φε fails to be 1-plurisubharmonic near the origin.
This means that φ itself is not strictly 1-plurisubharmonic near the origin.

Returning to regular foliations, Theorem 3.9.6 and Remark 3.9.3 yield the
following observation.

Corollary 3.9.8 Let ψ be an upper semi-continuous function defined on an
open set Ω in Cn. Assume that Ω admits a regular foliation F of codimension
q ∈ {0, . . . , n − 1}. If ψ is r-plurisubharmonic on each leaf of F , then ψ is
(q + r)-plurisubharmonic on Ω.

We give an example of a classical foliation of Cn \{0} given by complex lines
passing through the origin. It has an important application to complex norms
on Cn.

Example 3.9.9 (1) The complex lines in Ω := Cn\{0} which pass through the
origin are the leaves of a complex foliation on Ω of codimension n−1. The local
charts (ϕk, Uk)k=1,...,n for Ω are defined in the classical way. Fixing k = 1, . . . , n
and Uk = {z ∈ Cn : zk 6= 0}, the holomorphic mappings ϕk from Uk into Cn
are given by

ϕk(z) :=
( z1

zk
, . . . ,

zk−1

zk
,
zk+1

zk
, . . . ,

zn
zk
, zk

)
∈ Cn−1 × C∗,

where C∗ = C \ {0}. The conditions (1) and (2) in Definition 3.9.1 easily hold.
To prove condition (3) we proceed as follows: Assume that j < k and (x, y) lies
in Cn−1 × C∗. Then the composition ϕj ◦ ϕ−1

k has the following form,

ϕj ◦ ϕ−1
k (x, y) =

(x1

xj
, . . . ,

xj−1

xj
,
xj+1

xj
, . . . ,

xk−1

xj
,

1

xj
,
xk
xj
, . . . ,

xn−1

xj
, yxj

)
.
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Finally, it is easy to verify that the leaves are the punctured complex lines
that pass through the origin. Indeed, fix an integer k ∈ {1, . . . , n} and a point
z = (z1, . . . , zn) with zk 6= 0. We set Zk := (z1, . . . , zk−1, 1, zk+1, . . . , zn) and
Z ′k := (z1, . . . , zk−1, zk+1, . . . , zn). Then for every λ in C∗ we have that ϕk(λ ·
Zk) = (Z ′k, λ). This means that the inverse image of ϕ−1

k ({Z ′k} × C∗) is the
punctured complex line in Cn that passes through the origin and the point Zk.

(2) Let ψ : Cn \ {0} → [−∞,+∞) be an upper semi-continuous function such
that the restriction s 7→ ψ(sv) is subharmonic with respect to the variable s
in C∗ and for every fixed vector v 6= 0 in Cn. In particular, the function ψ is
subharmonic on every complex line of Cn minus the origin which passes trough
the origin. According to Corollary 3.9.8 and the results presented in the previous
point (1) above, ψ is subpluriharmonic on Cn \ {0}.

(3) Let β ∈ R be fixed and ψ : Cn \ {0} → [0,+∞) be a continuous function
such that

ψ(sv) = |s|βψ(v) for every s ∈ C∗ and v ∈ Cn \ {0}.

Notice that s 7→ β log |s| is harmonic on C∗ for every real number β in R.
Moreover, Theorem 3.5.6 implies that s 7→ |s|β = exp(β log |s|) is subharmonic
on C∗. Thus, from the results presented in the point (2) we can deduce that
the functions ψ and logψ are both subpluriharmonic on Cn \ {0} and ψ−1 and
− logψ are subpluriharmonic on Cn \ {ψ = 0}.

As a consequence of the previous example, we obtain that every complex
norm function on Cn is subpluriharmonic.

Theorem 3.9.10 Let ‖ · ‖ : Cn → [0,+∞) be a complex norm function on Cn.
Then the functions ‖·‖ and log ‖·‖ are both plurisubharmonic on Cn. Moreover,
− log ‖ · ‖ and ‖ · ‖−1 are subpluriharmonic on Cn \ {0}.

Proof. Since all complex norms are equivalent on the finite dimensional space
Cn, there is a real number c > 0 such that ‖z‖ ≤ c‖z‖2 for every vector z ∈ Cn.
This means that ‖ · ‖ is continuous on Cn with respect the topology induced by
the Euclidean norm ‖ · ‖2.

We assert that ‖ · ‖ and log ‖ · ‖ are both plurisubharmonic on Cn. De-
note by HomC(Cn,C) the family of all C-linear functionals Λ : Cn → C. By
Theorem 4.3 (b) in [Rud91], the following identity holds for each z in Cn,

‖z‖ = sup{|Λ(z)| : Λ ∈ HomC(Cn,C) with ‖Λ‖∗ = 1}, (3.5)
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where ‖Λ‖∗ := sup{|Λ(z)| : z ∈ Cn, ‖z‖ = 1} is the dual norm on the space
HomC(Cn,C) induced by ‖·‖. Observe that each functional Λ in HomC(Cn,C) is
holomorphic on Cn, so that |Λ| and log |Λ| are plurisubharmonic on Cn. There-
fore, the complex norm ‖ · ‖ and its logarithm log ‖ · ‖ each are the supremum
of a family of plurisubharmonic functions. Since they both are upper semi-
continuous, they are plurisubharmonic on Cn as well.

Finally, since ‖λz‖ = |λ| · ‖z‖ for every λ in C and z ∈ Cn, the results pre-
sented in the Example 3.9.9 imply that the functions − log ‖ · ‖ and ‖ · ‖−1 are
both subpluriharmonic on Cn \ {0}. �

We can approximate plurisubharmonic functions on a singular foliation by
smooth ones. Eventually, in contrary to the general case q ≥ 1, it is possible to
approximate q-plurisubharmonic functions, whose q-plurisubharmonicity comes
from a singular foliation of codimension q, by smooth ones (see [DF85]).

Theorem 3.9.11 Fix an integer q ∈ {1, . . . , n − 1} and let h : Ω → Cq be
a holomorphic mapping defined on a Stein open set Ω in Cn. Then for every
compact set K in Ω we have that

PSH(h,Ω) ⊂ PSH(h,Ω) ∩ C∞(Ω)
↓K
.

Proof. We divide the proof into several steps, since we will use some arguments
later for another similar statement.

Step 1. If h is constant, then there is nothing to prove, since in this case
h−1(h(z)) = Ω for every z in Ω. Thus, we can assume that h is not constant.
Pick an arbitrary function ψ from the family PSH(h,Ω). Let K be a compact
set in Ω and f be a continuous function on K such that ψ < f on K. By Propo-
sition 3.8.8, for every c ∈ h(K) there exists a C∞-smooth plurisubharmonic
function Ψc on Ω satisfying

ψ < Ψc < f on K ∩ h−1(c). (3.6)

Then there exists an open neighborhood Uc of K ∩ h−1(c) in Ω such that the
inequalities from (3.6) still hold on Uc. Moreover, the collection {Uc}c∈h(K)

forms an open covering of the compact set K.
Consider the compact set Rc := K \ Uc in K. It does not intersect the fiber

h−1(c) and, therefore, h− c attains a positive minimum on Rc. More precisely,
there exist positive numbers ε(c) and ε′(c) such that

min
Rc
‖h− c‖2 > ε(c) > ε′(c) > 0.
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This implies that h−1(Bqε′(c)(c)) ∩K and h−1(Bqε(c)(c)) ∩K both lie in Uc.

Step 2. Since h(K) is compact and the collection of balls {Bqε′(c)(c)}c∈h(K)

forms an open covering of h(K), we can find finitely many points c1, . . . , c` in
h(K) such that {Bqε′(ci)(ci)}i=1,...,` covers K. For each i = 1, . . . , ` we define the
sets W ′i := Bqε′(ci)(ci) and Wi := Bqε(ci)(ci). Then we can pick a small enough
neighborhood Ω′ of K such that V ′i := h−1(W ′i ) ∩ Ω′ and Vi := h−1(Wi) ∩ Ω′

lie in Uci . Now let {χi}i=1,...,` be a family of C∞-smooth functions on Cq with
compact support which satisfy

0 ≤ χi ≤ 1 on Wi, 0 < χ
i ≤ 1 on W ′i , χ

i = 0 on Cq \Wi,

and
∑̀
i=1

χi = 1 on L.

We define ϕi := χ
i ◦ h for i = 1, . . . , `. Then

∑`
i=1 ϕi = 1 on K.

Step 3. We observe that the following function is C∞-smooth on Ω,

Ψ :=
∑̀
i=1

ϕiΨci ,

where the functions {Ψci}`i=1 come from Step 1 above. Let us investigate the
behavior of Ψ on K.

If z belongs to K ∩ Uci for some i = 1, . . . , `, we have that

(ϕiψ)(z) ≤ (ϕiΨci)(z) ≤ (ϕif)(z),

since 0 ≤ ϕi(z) ≤ 1 and by the inequalities (3.6). We even have strict inequal-
ities if z is in K ∩ V ′i . Notice that there is always an index i which guarantees
strictness, since {V ′i }i=1,...,` covers K.

If z ∈ K does not lie in Uci , then h(z) is not in Wi. Otherwise, if h(z) ∈Wi,
then we immediately obtain the contradiction

z ∈ h−1(h(z)) ∩K ⊂ h−1(Wi) ∩K ⊂ Uci .

Hence, ϕi(z) = 0 in this case. Altogether, we have the following estimates at a
point z in K,

ψ(z) =
∑̀
i=1

(ϕiψ)(z) <
∑̀
i=1

(ϕiΨci)(z) = Ψ(z) <
∑̀
i=1

(ϕif)(z) = f(z).
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Step 4. For every c in h(Ω), the function ϕi is constant on h−1(c), and so
the function

∑`
i=1

χ
i(c)Ψci is a plurisubharmonic extension of Ψ|h−1(c) to the

whole of Ω. Hence, we derive that Ψ belongs to the family PSH(h,Ω)∩C∞(Ω).
Moreover, by Step 3 it satisfies ψ < Ψ < f on K. Since f is an arbitrary
continuous function with ψ < f on K, we conclude that

PSH(h,Ω) ⊂ PSH(h,Ω) ∩ C∞(Ω)
↓K
.

�

3.10 q-Holomorphic functions

It is natural to ask whether there is a generalization of holomorphic functions
which are related to q-plurisubharmonic ones as plurisubharmonic functions are
linked to holomorphic ones. An answer was given by L. R. Hunt and J. J. Murray
in [HM78] who gave a relation of q-plurisubharmonic and so called q-holomorphic
functions. Earlier, it was R. Basener who examined these functions in [Bas76]
and [Bas78].

This section is part of the joint article [PZ15].

Definition 3.10.1 Let Ω be an open set in Cn, A be an analytic subset of Ω
and let q ∈ N0.

(1) We say that a complex-valued function f defined is q-holomorphic on A if
for every point p in A there are a neighborhood U of p in Ω and a C2-smooth
function F on U such that F = f on A ∩ U and

∂F ∧ (∂∂F )q = 0.

(2) We denote the family of all q-holomorphic functions on A by Oq(A).

(3) In the case q = 0, we simply write O(A) instead of O0(A).

We give a collection of properties of q-holomorphic functions.

Proposition 3.10.2 Let Ω be an open set in Cn, A be an analytic subset of Ω
and let q ∈ N0.
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(1) The family O0(A) is the collection of holomorphic functions on A, whereas
ON (A) is simply the family C2(A) whenever N ≥ n. Here, by C2(A) we
mean the family of all complex valued functions on A which locally have a
C2-smooth extension into the ambient space.

(2) We have that Oq(A) ⊂ Oq+1(A).

(3) Given a constant λ ∈ C and a q-holomorphic function f on A, both λf and
f2 lie in Oq(A).

(4) Let r ∈ N0. If f is q-holomorphic on A and g is r-holomorphic on A, then
the sum f + g and the product fg are (q + r)-holomorphic on A.

(5) Let f be a q-holomorphic function on Ω. If g : D → Ω is a holomorphic
mapping defined on another open set D in Ck, then the composition f ◦ g
is q-holomorphic on D.

(6) Given a q-holomorphic function f onA and a holomorphic function h defined
on a neighborhood of the image of f in C, then the composition h ◦ f is
q-holomorphic on A. In particular, the power fm is again q-holomorphic on
A for every m ∈ N0.

(7) The function f is q-holomorphic on Ω if and only if the rank of the extended
Levi matrix of f given by 

fz̄1 . . . fz̄n
fz1z̄1 . . . fz1z̄n
...

. . .
...

fznz̄1 . . . fznz̄n


is less or equal to q at each point in Ω.

(8) If f is q-holomorphic on A, then the real part Re(f), imaginary part Im(f)
and log |f | are q-plurisubharmonic on A.

Proof. The statements (1), (2) and (3) follow directly from the definition. The
proofs of (4), (5), (6) and (7) can be found in [Bas76]. The property (8) has
been proved in [HM78] (see Theorem 5.3 and Corollary 5.4). We have to point
out that the points (4) to (8) have been proved only in the case of A = Ω. But
it is easy to verify that these properties carry over directly to q-holomorphic
functions on analytic sets using our definition. �
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The following examples can be found in [Bas76].

Example 3.10.3 (1) If f is holomorphic, then the complex conjugate f and
the absolute value |f |2 are both 1-holomorphic.

(2) Let h : Ω→ Cq be a holomorphic mapping on an open set Ω in Cn. Let ψ be
a complex valued C2-smooth function defined on a neighborhood of the image
of h in Cq. Since ψ is q-holomorphic by the definition an the dimension of Cq,
Proposition 3.10.2 (5) implies that the composition ψ ◦ h is q-holomorphic on
Ω. For instance, the norm ‖h‖22 =

∑q
j=1 |hj |2 of h is q-holomorphic on Ω.

(3) If A is an analytic subset of an open set Ω in Cn, then the inclusion mapping
ι : A ↪→ Ω is holomorphic on Ω. Therefore, every q-holomorphic function f on
Ω can be regarded as a q-holomorphic function on A, since f ◦ι is q-holomorphic
on A due to Proposition 3.10.2 (5).

(4) If a C2-smooth function is locally holomorphic with respect to the first n− q
variables z1, . . . , zn−q of a local chart z1, . . . , zn, then it is q-holomorphic in view
of Proposition 3.10.2 (7).

(5) Fix a positive constant c > 0 and let Ω be an open set in Cn. According to
the previous examples (2) and (4), for a given holomorphic mapping h : Ω→ Cq,
the function

z 7→ ϕc(z) = 1/(1 + c‖h(z)‖22)

is q-holomorphic on Ω. Now if c tends to +∞, then {ϕc}c>0 decreases on Ω to
the characteristic function χA of A := {h = 0} given by

χ
A(z) =

{
1, z ∈ A
0, z ∈ Ω \A . (3.7)

The q-holomorphic functions admit the local maximum modulus principle.

Theorem 3.10.4 (Local maximum modulus principle) Let q be an inte-
ger in {0, . . . , n− 1} and A an analytic subset of an open set Ω in Cn. If f is a
q-holomorphic function on A, then for every compact set K in A we have that

‖f‖K = ‖f‖bAK ,

where ‖f‖K = max{f(z) : z ∈ K} and bAK is the boundary of K in A.
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Proof. If A = Ω, then this result is due to Theorem 2 in [Bas76]. In the case of an
arbitrary analytic set A in Ω, the statement follows from Proposition 3.10.2 (8)
and from the local maximum principle for q-plurisubharmonic functions on an-
alytic sets (see Theorem 3.8.5). �

3.11 Holomorphic functions on foliations
R. Basener showed in Theorem 1 in [Bas76] that a 1-holomorphic function de-
fined on some open set in C2, whose derivative ∂f never vanishes, is holomor-
phic on leaves of a local foliation by holomorphic curves. Later, E. Bedford and
M. Kalka generalized this result to q-holomorphic functions and other functions
satisfying certain non-linear Cauchy-Riemann equations. We only repeat their
result involving q-holomorphic functions (see Theorem 5.3 in [BK77]).

Theorem 3.11.1 Let q ∈ {1, . . . , n− 1}. Let f be a C3-smooth q-holomorphic
function on a domain Ω in Cn which fulfills

∂f ∧ ∂f ∧ (∂∂f)q−1 6= 0 and (∂∂f)q 6= 0.

Suppose that Re(f) is plurisubharmonic on Ω. Then f is holomorphic on a
foliation by complex submanifolds of Ω having codimension q.

We proceed by explaining what we mean by a holomorphic function on singu-
lar foliations in order to develop a converse result to that of Kalka and Bedford.
Notice that we accept by convention that C0 is equal to {0} and that every
continuous function is indeed holomorphic on a discrete set.

Definition 3.11.2 Let r be a non-negative integer and q ∈ {0, . . . , n− 1}. Let
Ω be an open set in Cn.

(1) Let H = {hj : Uj → Cq}j∈J be a web of singular foliations on Ω. A
continuous function f on Ω is holomorphic on the (singular) foliations of H
if for every point p in Ω there is an index j ∈ J such that Uj contains p and
for every c ∈ hj(Uj), the function f is holomorphic on the fiber h−1

j (c) in
the sense of Definition 3.10.1.

(2) The set O(H,Ω) stands for the family of all holomorphic functions on the
foliations of H.
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(3) If h : Ω→ Cq is a single holomorphic mapping, then we simply writeO(h,Ω)
rather than O({h},Ω) and say that functions from O(h,Ω) are holomorphic
on a (singular) foliation (induced by h).

Our next aim is to show that smooth functions which are holomorphic on a
singular foliation of codimension q are in fact q-holomorphic.

Theorem 3.11.3 Fix an integer q ∈ {1, . . . , n−1}. Let Ω be an open set in Cn
and let h : Ω→ Cq be a holomorphic mapping. Then each C2-smooth function
f in O(h,Ω) is q-holomorphic on Ω.

Proof. The (complex) rank of h at a given point z in Ω is the rank of the complex
Jacobian

(
∂hk/∂zj

)
k=1,...,q
j=1,...,n

of h at z. Let k ≤ q be the maximal rank of h on Ω

and denote by Ω′ the set of all points z in Ω such that the rank of h at z equals
the maximal rank k. Then S := Ω \ Ω′ is an analytic subset of Ω of dimension
strictly less than n. Hence, Ω′ is open and relatively dense in Ω. Now it suffices
to show that f is q-holomorphic on Ω′, since by the C2-smoothness of f the
equation ∂f ∧ (∂∂f)q = 0 on Ω′ extends trivially to the whole of Ω.

Let p be a point in Ω′. Without loss of generality we can assume that
p = 0 and h(p) = 0. Then it follows from the complex rank theorem (see
Theorem 2 in Appendix A2.2 of [Chi89]) that after a holomorphic change
of coordinates near p and h(p), we have that the mapping h is of the form
h(z) = (z1, . . . , zk, 0, . . . , 0) ∈ Ck ×Cq−k in some neighborhood U of the origin.
By assumption, for each c ∈ h(U) the function f is holomorphic on the fiber
h−1(c) = ({(c1, . . . , ck)} × Cn−k) ∩ U . According to Example 3.10.3 (4), the
function f is k-holomorphic on U . By properties (5) and (6) of Proposition
3.10.2, the q-holomorphicity is invariant under holomorphic changes of coor-
dinates, and of course, it is a local property by definition. Since k ≤ q, we
conclude that f is q-holomorphic on Ω′. Then the arguments in the first part
of this proof imply that f is q-holomorphic on the entire set Ω. �

We will need the following extension theorem for holomorphic functions de-
fined on analytic subsets (see Theorem 4 in paragraph 4.2 of chapter V in
[GR04]). Recall that, by definition, a Stein open set Ω in Cn admits a con-
tinuous plurisubharmonic function ϕ on Ω such that {ϕ < c} b Ω for every
c ∈ R.
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Theorem 3.11.4 Let Ω be a Stein open set in Cn and let A be an analytic
subset of Ω. Then any holomorphic function on A extends holomorphically to
the whole of Ω.

Recall that holomorphic functions on foliations are continuous in the first
place, whereas q-holomorphic functions are by definition C2-smooth. It is then
interesting to decide whether a continuous function which is holomorphic on the
fibers of a singular foliation of codimension q can be approximated by q-holo-
morphic functions. A positive answer gives the following result (together with
the previous Theorem 3.11.3).

Theorem 3.11.5 Fix an integer q ∈ {1, . . . , n− 1}. Let Ω be a Stein open set
in Cn and let h : Ω → Cq be a holomorphic mapping. Then for every compact
set K in Ω we have that

O(h,Ω) ⊂ O(h,Ω) ∩ C∞(Ω)
K
.

Proof. The proof is similar to that of Theorem 3.9.11 with some adaption to
holomorphic functions.

Step 1. As in Step 1 of the proof of Theorem 3.9.11, we can assume that h
is not constant.

Let K be a compact set in Ω, f a function from O(h,Ω) and ε > 0 a positive
number. Since Ω is a Stein open set, it follows from Theorem 3.11.4 that for
every c ∈ h(Ω) there exists a holomorphic extension Fc of fc := f |h−1(c) into
the whole of Ω. Then there exists an open neighborhood Uc of H ∩ h−1(c) in Ω
such that ‖Fc − f‖Uc < ε. Obviously, the collection {Uc}c∈h(Ω) forms an open
covering of K.

Step 2. For i ∈ {1, . . . , `} let W ′i b W ′i , V ′i ⊂ Vi ⊂ Uci , χi and ϕi = χi ◦ h
be the open sets and, respectively, the cutoff functions from Step 2 of the proof
of Theorem 3.9.11. We will use these objects in the following steps. Recall
that {Wi}i=1,...,` and {W ′i}i=1,...,` cover h(K) and {Vi}i=1,...,`, {V ′i }i=1,...,` and
{Uci}i=1,...,` cover K. Also remind that

∑`
i=1 ϕi = 1 on K, 0 ≤ ϕi ≤ 1 on Ω

and ϕi ≡ 0 on h−1(Cq \Wi) for each i = 1, . . . , `.

Step 3. The following function is C∞-smooth on Ω,

F :=
∑̀
i=1

Fciϕi.
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Then by the same arguments as in Step 3 of the proof of Theorem 3.9.11 we
can show the following properties: If z ∈ K ∩ Ui for some i = 1, . . . , `, then
ϕi(z)·|Fc−f |(z) ≤ ϕi(z)·ε. We even have a strict inequality if z ∈ K∩V ′i . Notice
that there exists at least one index i0 such that ϕi0(z) > 0, since {V ′i }i=1,...,`

covers K. Now if z ∈ K \ Ui, then ϕi(z) = 0. Therefore, since ϕi(z) is non-
negative and

∑`
i=1 ϕi(z) = 1 for a point z ∈ K, it holds that

|F − f |(z) =
∑̀
i=1

ϕi(z) · |Fci − f |(z) <
∑̀
i=1

εϕi(z) = ε.

Step 4. Given c ∈ h(Ω), the function ϕi is constant on the fiber h−1(c), and
therefore the function

∑`
i=1

χ
i(c)Fci is a holomorphic extension of F |h−1(c)

to the whole of Ω. By the definition, it means that F belongs to the family
O(h,Ω)∩C∞(Ω). The previous Step 4 yields ‖f−F‖K < ε. In view of Theorem
3.11.3 and since ε > 0 was arbitrarily chosen, we obtain that

O(h,Ω) ⊂ O(h,Ω) ∩ C∞(Ω)
K
.

�

The precedent result applies directly to regular foliations. In fact, this obser-
vation can be shown in a much easier way using the definition of a complex foli-
ation, the complex version of implicit function theorem and Example 3.10.3 (4).

Corollary 3.11.6 Let f be a C2-smooth function defined on an open set Ω in
Cn and let F be a regular foliation on Ω of codimension q. If f is holomorphic
on each leaf of F , then f is q-holomorphic on Ω.

Another consequence of Theorem 3.11.5 combined with Proposition 3.10.2 (8)
is the relation of holomorphic functions on foliations to q-plurisubharmonic func-
tions.

Corollary 3.11.7 Let q ∈ {1, . . . , n − 1}, Ω an open set in Cn and f a holo-
morphic function on singular foliations of a web H = {hj : Ω→ Cq}j∈J . Then
the real part, imaginary part and the logarithm of the absolute value of f is
q-plurisubharmonic on Ω.

The next statement is a Bremermann type approximation (compare Theo-
rem 3.1.10).
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Theorem 3.11.8 Let h : Ω→ Cq be a holomorphic mapping defined on a Stein
open set Ω and let ψ be a continuous function in PSH(h,Ω). Then for every
ε > 0 and every compact set K in Ω there exist positive integers α1, . . . , αk ∈ N
and functions f1, . . . , fk from O(h,Ω) such that

ψ < max{α−1
j log |fj | : j = 1, . . . , k} < ψ + ε on K.

Proof. Let c ∈ h(Ω) and define ψc := ψ|h−1(c). By Proposition 3.8.8 there exists
a continuous plurisubharmonic function ψ̂c on Ω which also satisfies ψ < ψ̂c <
ψ + ε/2 on K ∩ h−1(c). Since every Stein open set is a domain of holomorphy
(see later Remark 5.1.4), Bremermann’s theorem 3.1.10 implies that there exist
positive integers Nc,1, . . . , Nc,µ(c) and holomorphic functions gc,1, . . . , gc,µ(c) on
Ω which fulfill the subsequent inequalities on K,

ψ̂c < Ψc := max{N−1
c,ν log |gc,ν | : ν = 1, . . . , µ(c)} < ψ̂c + ε/2.

Therefore, we obtain that ψ < Ψc < ψ + ε on K ∩ h−1(c). For an integer
m ∈ N we set χc,m := 1/(1 + m‖h − c‖22) . Observe that χc,m lies in O(h,Ω),
since for every d ∈ h(Ω) it is constant on the fiber h−1(d). In view of Proposi-
tion 3.10.2 (4) and (6), the function fc,ν,m := gc,νχ

Nc,ν
c,m belongs to O(h,Ω) for

every c ∈ h(Ω), ν ∈ {1, . . . , µ(c)} and m ∈ N. Now consider the function %c,m
given by

%c,m := Ψc + log |χc,m| = max{N−1
c,ν log |fc,ν,m| : ν = 1, . . . , µ(c)}.

Since (χc,m)m∈N decreases to the characteristic function of {h = c} as m tends
to +∞ and since ψ < Ψc < ψ + ε on K ∩ h−1(c), we can choose a large enough
integer m(c) ∈ N such that %c,m(c) < ψ+ ε on K. Since %c,m(c) = Ψc on h−1(c),
there is an open neighborhood Vc of K ∩ h−1(c) with ψ < %c,m(c) on Vc. By the
compactness of K, we can pick finitely many sets Vc1 , . . . , Vc` which cover K.
Finally, we obtain the desired functions and inequalities on K, namely,

ψ < max{%cj ,m(cj) : j = 1 . . . , `}
= max{N−1

cj ,νj log |fcj ,νj ,m(cj)| : j = 1, . . . , `, νj = 1, . . . , µ(cj)}
< ψ + ε.

�
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Chapter 4

q-Pseudoconvexity

In the literature, one encounters many different ways to define q-pseudoconvex
sets. We collect a large list of equivalent characterizations of this type of sets
using q-plurisubharmonic exhaustion functions [Gra59], generalized Hartogs fig-
ures ([Rot55] and [Fuj90]), boundary distance functions ([Sło86] and [Fuj90]), a
generalized continuity principle (Kontinuitätssatz ) and generalized convex hulls
for q-plurisubharmonic functions (compare [Bas76]). It is needless to say that
for q = 0 (the pseudoconvex case) these characterizations are classical complex
analysis in several variables and can be found in most of the books about this
topic (see e.g. [Hör90], [Kra99] or [Sha92]). Interesting examples of q-pseudo-
convex sets are given by real q-convex sets (i.e., sets admitting a real q-convex
exhaustion function) and sublevel sets of q-plurisubharmonic functions. We es-
tablish a generalized version of Bochner’s tube theorem in the q-pseudoconvex
case and study smoothly bounded sets, which leads to the notion of Levi q-
pseudoconvex sets. They are used to describe a duality principle which, roughly
speaking, states that a set is not q-pseudoconvex near a boundary point if and
only if some part of its complement near this boundary point touches a strictly
Levi (n − q − 2)-pseudoconvex set from inside (see also [Bas76]). In the case
of q = 0, the 0-pseudoconvex sets are exactly the classical pseudoconvex sets.
Those are the most important sets for complex analysis of several variables
due to the solution of the so-called Levi problem (see [Hör90]). More precisely,
pseudoconvex sets are domains of holomorphy and vice versa.

Most of the contents of this chapter can be found in the joint articles [PZ13]
and [PZ15].
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4.1 q-Pseudoconvex sets
The q-pseudoconvex sets are defined similarly as Stein open sets in terms of
exhaustion functions (recall Definition 3.8.6 (2)). According to the definition
below, Stein open sets are exactly the 0-pseudoconvex sets and are usually
known as pseudoconvex sets.

Definition 4.1.1 We say that an open set Ω in Cn is q-pseudoconvex (in Cn) if
there exists a continuous q-plurisubharmonic exhaustion function Φ for Ω, i.e.,
for every c ∈ R the set {z ∈ Ω : Φ(z) < c} is relatively compact in Ω.

We immediately have the following properties of q-pseudoconvex sets.

Proposition 4.1.2 (1) Let Ω1 and Ω2 be two q-pseudoconvex sets in Cn. Then
the intersection Ω1 ∩ Ω2 is also q-pseudoconvex.

(2) If Ω1 is q-pseudoconvex in Cn and Ω2 is q-pseudoconvex in Cm, then Ω1×Ω2

is q-pseudoconvex in Cn+m.

Proof. For j = 1, 2 let Φj be a q-plurisubharmonic exhaustion function for Ωj .
(1) In this case, Φ := max{Φ1,Φ2} is a q-plurisubharmonic exhaustion function
for Ω1 ∩ Ω2.

(2) Since Φ1 and Φ2 can be considered as q-plurisubharmonic functions on
Ω1 ×Ω2, it is clear that Φ(z, w) := max{Φ1(z),Φ2(w)} is a q-plurisubharmonic
exhaustion function for the product Ω1 × Ω2. �

4.2 Boundary distance functions
We recall the definition of boundary distance functions and their relation to
each other.

Definition 4.2.1 Let Ω be an open set in Cn and let ‖ · ‖ be some complex
norm on Cn.

(1) The boundary distance (induced by ‖ · ‖) between a point z in Ω and its
boundary bΩ is defined by

d‖·‖(z, bΩ) := inf
{
‖z − w‖ : w ∈ bΩ

}
. (4.1)



4.2. Boundary distance functions 95

(2) We obviously define d‖·‖(z, bΩ) = +∞ whenever bΩ is the empty set.

(3) As before, we write d(z, bΩ) instead of d‖·‖(z, bΩ) whenever ‖ · ‖ is the
Euclidean norm ‖ · ‖2 and call it the Euclidean boundary distance.

(4) Let v be a fixed vector in Cn with ‖v‖2 = 1 and let z + Cv be the complex
line in Cn that passes through z and z + v. We define the (Euclidean)
boundary distance in the v-direction from z in Ω to bΩ by

RbΩ,v(z) := d
(
z, bΩ ∩ (z + Cv)

)
. (4.2)

The boundary distance functions have the subsequent properties and rela-
tions, which are all easy to verify.

Proposition 4.2.2 Let Ω be an open set in Cn and z be a point in Ω.

(1) The boundary distance induced by ‖ · ‖ can be described by the boundary
distances in all v-directions, namely,

d‖·‖(z, bΩ) = inf
{
‖v‖ ·RbΩ,v(z) : v ∈ Cn, ‖v‖2 = 1

}
. (4.3)

(2) Given a vector v in Cn with ‖v‖2 = 1, the boundary distance in v-direction
can be rewritten in two ways,

RbΩ,v(z) = sup{r > 0 : z + sv ∈ Ω for every s ∈ C with |s| < r}
= d‖·‖(z, bΩ ∩ (z + Cv))/‖v‖. (4.4)

(3) For any complex norm ‖ · ‖ on Cn, the boundary distance function z 7→
d‖·‖(z, bΩ) is continuous on Ω (with respect to the Euclidean topology),
whereas for every vector v ∈ Cn with ‖v‖2 = 1 the boundary distance
function in v-direction z 7→ RbΩ,v(z) is only lower semi-continuous on Ω.

We examine the q-plurisubharmonicity of the boundary distance functions.

Proposition 4.2.3 Let ‖ · ‖ be a complex norm on Cn and Ω be an open set
in Cn. Given any vector v in Cn with ‖v‖2 = 1, the following functions both
are subpluriharmonic on Ω,

z 7→ − log d‖·‖(z, bΩ) and z 7→ − logRbΩ,v(z). (4.5)

Furthermore, if z 7→ − logRbΩ,v(z) is q-plurisubharmonic on Ω for every
vector v ∈ Cn with ‖v‖2 = 1, then z 7→ − log d‖·‖(z, bΩ) is also q-plurisub-
harmonic on Ω.
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Proof. The results are trivial when Ω = Cn, because bΩ is empty and the
boundary distance functions are all identically equal to −∞, so we assume in
the following that bΩ is not empty.

In view of Theorem 3.9.10, − log ‖ · ‖ is subpluriharmonic on Cn \{0}. Thus,
by Proposition 3.3.2 (5), the function

z 7→ − log d‖·‖(z, bΩ) = sup{− log ‖z − w‖ : w ∈ bΩ}

is subpluriharmonic on Ω, so this proves the first part of (4.5).
In order to verify the second part of (4.5), suppose that z 7→ − logRbΩ,v(z) is

not subpluriharmonic on Ω, i.e., there is a vector v in Cn with ‖v‖2 = 1 such that
the function ψ(z) := − lnRbΩ,v(z) is not subpluriharmonic in a neighborhood
of a fixed point p0 ∈ Ω. We can assume without loss of generality that p0 is the
origin. Then according to Proposition 3.2.4 (4) there exist a ball B = Br(0)
compactly contained in Ω and a function g holomorphic on a neighborhood U
of B such that ψ < Re(g) on the boundary bB, but ψ(p1) > Re(g)(p1) for some
point p1 ∈ B. Thus,

e−Re(g)(p1) > RbΩ,v(p1) and e−Re(g)(z) < RbΩ,v(z) for every z ∈ bB.

Notice that the function Φ(z) := z + e−g(z)v is holomorphic on U . Since, if
z ∈ Ω, the point z+ sv lies in Ω for every complex number s with |s| ≤ r if and
only if 0 < r < RbΩ,v(z), the function Φ satisfies

Φ(p1) /∈ Ω and Φ(bB) ⊂ Ω.

Now it follows from the compactness of Φ(bB) that we can find a real number
C > 0 with d(Φ(z), bΩ) > C for every z ∈ bB. Since Φ(p1) is not in Ω, there
is a point p2 ∈ B ∩ Φ−1(Ω) fulfilling 0 < d(Φ(p2), bΩ) < C. This gives the
inequalities

− log d(Φ, bΩ) < − logC on bB and − log d(Φ(p2), bΩ) > − logC. (4.6)

Since Φ is holomorphic, we derive from the first part of (4.5) and from The-
orem 3.7.1 that the function z 7→ − log d(Φ(z), bΩ) is subpluriharmonic on U .
But then the inequalities in (4.6) contradict to the local maximum property in
Proposition 3.3.2 (11). Hence, z 7→ − logRbΩ,v(z) is subpluriharmonic on Ω as
proclaimed above.

Finally, assume that z 7→ − logRbΩ,v(z) is q-plurisubharmonic on Ω for every
v ∈ Cn with ‖v‖2 = 1. Then, by the identity in (4.3) and Proposition 3.3.2 (5),
we immediately obtain that z 7→ − log d‖·‖(z, bΩ) is q-plurisubharmonic on Ω. �
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As a direct consequence, we obtain a characterization of (n−1)-pseudoconvex
sets. This result can also be found in [Sło86], Proposition 4.6.

Corollary 4.2.4 Any open set Ω in Cn is (n− 1)-pseudoconvex.

Proof. If Ω = Cn, simply take ψ(z) := ‖z‖22 as an exhaustion function
for Cn. Otherwise, it follows from Proposition 4.2.3 and Proposition 3.3.2 (9)
that z 7→ − log d(z, bΩ) + ‖z‖22 is subpluriharmonic on Ω. It is easy to see that
it is an exhaustion function for Ω. �

4.3 Equivalent notions of q-pseudoconvexity

Several characterizations of q-pseudoconvexity in Cn can be found in the litera-
ture. We may refer, for example, to the works of O. Fujita [Fuj64], Z. Słodkowski
[Sło86] and K. Matsumoto [Mat96]. In particular, Matsumoto studied q-pseudo-
convexity in Kähler manifolds. First, we present a notion of q-pseudoconvexity
which is due W. Rothstein [Rot55].

Definition 4.3.1 (1) We write ∆n
r := ∆n

r (0) for the polydisc with radius r > 0
and Anr,R := ∆n

R \ ∆n
r for the open annulus with radii r > 0 and R > 0

centered at the origin in Cn.

(2) Let 1 ≤ k < n be fixed integers, and r and R be real numbers in the interval
(0, 1). An Euclidian (n−k, k) Hartogs figure He is the set

He :=
(
∆n−k

1 ×∆k
r

)
∪
(
An−kR,1 ×∆k

1

)
⊂ ∆n−k

1 ×∆k
1 = ∆n

1 .

(3) A pair (H,P ) of domains H and P in Cn with H ⊂ P is called a (general)
(n−k, k) Hartogs figure if there is an Euclidian (n−k, k) Hartogs figure He

and a biholomorphic mapping F defined from ∆n
1 onto P such that F (He) =

H.

(4) An open set Ω in Cn is called Hartogs k-pseudoconvex if it admits the
Kontinuitätssatz with respect to the (n − k)-dimensional polydiscs, i.e.,
given any (n − k, k) Hartogs figure (H,P ) such that H ⊂ Ω, we already
have that P ⊂ D.
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Now we give a list of equivalent characterizations of q-pseudoconvex sets (see
also Proposition 3.10 in [PZ13]).

Theorem 4.3.2 Let q ∈ {0 . . . , n− 2} and Ω be an open set in Cn. Then the
following statements are all equivalent.

(1) The set Ω is Hartogs (n−q−1)-pseudoconvex.

(2) For every vector v in Cn with ‖v‖2 = 1 the distance function in v-direction
z 7→ − logRbΩ,v(z) is q-plurisubharmonic on Ω.

(3) For every complex norm ‖ · ‖ the function z 7→ − log d‖·‖(z, bΩ) is q-pluri-
subharmonic on Ω.

(4) For some complex norm ‖ · ‖ the function z 7→ − log d‖·‖(z, bΩ) is q-pluri-
subharmonic on Ω.

(5) Ω is q-pseudoconvex.

(6) There exists a (not necessarily continuous) q-plurisubharmonic function ψ
on Ω such that lim sup

z→bΩ
ψ(z) = +∞.

(7) For every compact set K in Ω, its q-plurisubharmonic hull

K̂Ω
PSHq(Ω) =

{
z ∈ Ω : ψ(z) ≤ max

K
ψ for every ψ ∈ PSHq(Ω)

}
is compact in Ω, as well.

(8) Let {At}t∈[0,1] be a family of (q+1)-dimensional analytic subsets in some
open set U in Cn that continuously depend on t in the Hausdorff topology.
Assume that the closure of

⋃
t∈[0,1]At is compact. If Ω contains the bound-

ary bA1 and the closure At for each t ∈ [0, 1), then the closure A1 also lies
in Ω.

(9) For every point p in bΩ there is a ball B = Br(p) centered at p such that
Ω ∩B is q-pseudoconvex.

(10) There exist a neighborhood W of bΩ and a q-plurisubharmonic function ψ
on W ∩ Ω with lim sup

z→bΩ
ψ(z) = +∞.

(11) There is a collection {Ωj}j∈N of bounded q-pseudoconvex domains Ωj in Ω
such that Ωj b Ωj+1 b Ω for every j ∈ N and Ω =

⋃
j∈N Ωj .
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(12) The intersection Ω∩ π is q-pseudoconvex in π for every (q+ 2)-dimensional
complex affine plane π in Cn.

Proof. We shall follow the classical arguments as in case of pseudoconvex sets
and show the following implications,

(1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) (1)
⇓ ⇓ ⇑

(6) ⇒ (7) ⇒ (8)

(5)⇒ (9)⇒ (10)⇒ (11)⇒ (4) and (12) ⇐⇒ (4).

Notice that if Ω = Cn, then there is nothing to show. Hence, we assume from
now on that Ω ( Cn.

(1)⇒(2) Assume that the function ψ(z) := − logRbΩ,v(z) is not q-plurisub-
harmonic on Ω for some fixed vector v ∈ Cn with ‖v‖2 = 1. Then there exists a
(q+1)-dimensional complex affine plane π such that ψ is not subpluriharmonic
on a neighborhood of a point p in π∩Ω. By Proposition 3.3.2 (8), we can assume
without loss of generality that p is the origin and π is equal to Cq+1×{0}n−q−1.
Let Ω∗ be an open subset in π such that π ∩ Ω = Ω∗×{0}n−q−1. Consider the
function

Ω∗ 3 ζ 7→ ρ(ζ) := − logRbΩ,v(ζ, 0).

By assumption, it is not subpluriharmonic near the origin in Ω∗. According to
Proposition 3.2.3 there exist a polydisc ∆ := ∆q+1

r (0) b Ω∗ and a holomorphic
function f on a neighborhood of ∆ such that ρ < Re(f) =: h on the boundary
b∆, but ρ(ζ0) > h(ζ0) at some point ζ0 ∈ ∆. Then we have that

e−h(ζ0) > RbΩ,v(ζ0, 0) and e−h(ζ) < RbΩ,v(ζ, 0) for every ζ ∈ b∆. (4.7)

We claim that v /∈ π. Otherwise, the vector v can be written as (v′, 0) for some
v′ ∈ Cq+1, and so the function ρ has the form

ρ(ζ) = − logRbΩ∗,v′(ζ) for every ζ ∈ Ω∗ ⊂ Cq+1.

But then Proposition 4.2.3 implies that ρ is q-plurisubharmonic on Ω∗, which
contradicts to the assumptions made on ψ at the beginning of this step. Hence,
v /∈ π, and we can choose linearly independent vectors wq+3, . . . , wn in Cn\π
such that the space Cn is generated by the vectors v, wq+3, . . . , wn and by the
plane π.
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Define for ζ ∈ Cq+1, ξ ∈ C, η = (ηq+3, . . . , ηn) ∈ Cn−q−2 and ε > 0 the
mapping

Φ(ζ, ξ, η) = (ζ, 0, . . . , 0) + ξe−f(ζ)v + ε

n∑
j=q+3

ηjwj .

It is easy to calculate that Φ maps biholomorphically onto its image. Recall
that, if z ∈ Ω, then for every complex number s ∈ ∆t(0) the point z + sv lies
in Ω if and only if 0 < t < RbΩ,v(z). In particular, (ζ0, 0) + e−f(ζ0)v does not
belong to Ω. Then, in view of the inequalities in (4.7), we observe that

Φ(ζ, ξ, 0) ∈ Ω for every (ζ, ξ) ∈
(
b∆q+1

r ×∆1
1

)
∪
(
∆q+1
r × {0}

)
,

and (ζ0, 1) ∈ ∆q+1
r × b∆1

1. Thus, Φ(ζ0, 1, 0) does not lie in Ω. Now if ε > 0 is
small enough, we can arrange that

Φ
((
b∆q+1

r ×∆n−q−1
1

)
∪
(
∆q+1
r ×∆n−q−1

ε

))
⊂ Ω,

but still Φ(ζ0, 1, 0) /∈ Ω. Therefore, we can easily construct a (q+1, n−q−1)-
Hartogs figure (H,P ) such that H ⊂ Ω but P * Ω. This is a contradiction to
the assumption made on Ω. Finally, we have shown the implication (1)⇒(2).

(2)⇒(3) This is a consequence of the last statement in Proposition 4.2.3.

(3)⇒(4) Simply take the Euclidean norm ‖ · ‖ := ‖ · ‖2.

(4)⇒(5) The function ψ(z) = − log d‖·‖(z, bΩ) + ‖z‖22 is a continuous q-pluri-
subharmonic exhaustion function for Ω.

(4)⇒(6) The function ψ(z) = − log d‖·‖(z, bΩ) is q-plurisubharmonic on Ω
and admits the property that ψ(z) tends to +∞ whenever z tends to bΩ.

(5)⇒(7) Let ϕ be a q-plurisubharmonic exhaustion function for Ω and K be
a compact set in Ω. Then K is contained in Ωc := {ϕ(z)<c} for some constant
c ∈ R, so the hull K̂Ω

PSHq(Ω) obviously lies in Ωc. Since Ωc is relatively compact

in Ω and K̂Ω
PSHq(Ω) is closed in Ω, the hull is compact in Ω.
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(6)⇒(7) Clearly, K̂Ω
PSHq(Ω) is bounded and closed in Ω. Assume that there

is a sequence (pn)n∈N in K̂Ω
PSHq(Ω) which tends to some point p ∈ bΩ. By the

assumption made on ψ in (6) we derive that lim sup
n→+∞

ψ(pn) = +∞. But on the

other hand ψ(pn) ≤ maxK ψ by the definition of the hull K̂Ω
PSHq(Ω), which is

absurd. Hence, K̂Ω
PSHq(Ω) is a compact set.

(7)⇒(8) Let {At}[0,1] be the family as in the assumption of property (7).
We obviously have that bΩ has a positive distance to bAt for every t ∈ [0, 1].
Since the family {At}t∈[0,1] is continuously parameterized by t and the closure
of
⋃
t∈[0,1]At is compact, we can choose a compact set K b Ω that contains bAt

for every t ∈ [0, 1]. Then each At is contained in K̂Ω
PSHq(Ω) for t ∈ [0, 1) because

of the local maximum principle for q-plurisubharmonic functions on analytic
subsets (see Proposition 3.8.5). Finally, by the continuity of t 7→ At, we deduce
that A1 is also contained in K̂Ω

PSHq(Ω). By assumption, the q-plurisubharmonic

hull K̂Ω
PSHq(Ω) is entirely contained in Ω, so A1 also belongs to Ω.

(8)⇒(1) In order to get a contradiction, suppose that Ω is not (n−q−1)-
Hartogs pseudoconvex, so there is a (q+1, n−q−1)-Hartogs figure (H,P ) such
that H ⊂ Ω, but P * Ω. Hence, there exist two constants r,R ∈ (0, 1) and a
biholomorphism Φ defined from ∆n

1 (0) onto P such that Φ(He) = H, where

He =
(
∆q+1

1 ×∆n−q−1
r

)
∪
(
Aq+1
R,1 ×∆n−q−1

1

)
.

By shrinking r and R, if necessary, we can assume that Φ is defined on an open
neighborhood of the closure of ∆n

1 and has the same properties as before. Now
we can increase the radius r > 0 until Φ(He) touches the boundary of Ω for
the first time, say at a point p0 ∈ bΩ. Then we can find a point (z0, w0) ∈
∆q+1
R × b∆n−q−1

r with p0 = Φ(z0, w0). Now consider the family {At}t∈[0,1]

defined by
At := Φ

(
∆q+1

1 × {tw0}
)
.

Since Ψ is biholomorphic from some neighborhood of ∆1(0) onto its image, the
family {At}t∈[0,1] is continuously parameterized by t in the Hausdorff topology.
Moreover, we have that for every t ∈ [0, 1) the compact sets At and bA1 belong
to Ω, whereas A1 is not fully contained in Ω. This a contradiction to the
assumption made in (8).
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(5)⇒(9) This implication follows directly from Proposition 4.1.2 (1).

(9)⇒(10) Let p be a boundary point of Ω and B be a ball centered at p such
that Ω∩B is q-pseudoconvex. Then for a small enough neighborhood U of p in B
we have that d(z, bΩ) = d(z, b(Ω∩B)) for every z ∈ Ω∩U , and so − log d(z, bΩ) is
q-plurisubharmonic on Ω∩U . Since p is an arbitrary boundary point of Ω, there
is a neighborhoodW of bΩ such that − log d(z, bΩ) is q-plurisubharmonic onW .
It is clear that − log d(z, bΩ) tends to +∞ when z approaches the boundary of Ω.

(10)⇒(11) For k ∈ N let Ω′k be the intersection of Ω with a ball Bk(0) cen-
tered at the origin, so that {Ω′k}k∈N is an increasing collection of bounded open
sets whose union is Ω. We claim that each Ω′k is q-pseudoconvex. Indeed, fix
an integer k ∈ N and define the function ϕk(z) = log k − log d(z, bBk(0)). By
assumption, ψ is q-plurisubharmonic on some neighborhood W of the boundary
bΩ such that lim supz→bΩ ψ(z) = +∞. Notice that ψ is bounded on Ω′k∩bW and
that ϕk is non-negative and plurisubharmonic on the ball Bk(0). Then Propo-
sition 3.3.2 (10) implies that for a large enough constant ck>0 the following
function is continuous and q-plurisubharmonic on Ω′k,

ψk :=

{
ck+ϕk on Ω′k \W,

max{ψ, ck+ϕk} on Ω′k ∩W.

Observe that ψk(z) converges to +∞ when z approaches bΩ′k. Since we have
already shown the implication (6)⇒(4), the set Ω′k is q-pseudoconvex. Now it is
easy to verify that for each µ > 0 the function uk,µ := − log(µ− ψk) is q-pluri-
subharmonic on Ωk,µ := {z ∈ Ω′k : ψk(z) < µ} such that uk(z) tends to +∞
whenever z approaches the boundary of Ωk,µ. Observe that it follows from the
property of ψk that Ωk,µ is a relatively compact q-pseudoconvex subset of Ω′k.
Hence, we can find a sequence (µ(k))k∈N such that Ωk,µ(k) b Ωk+1,µ(k+1) b Ω
and Ω equals

⋃
k∈N Ωk,µ(k).

(11)⇒(4) For every j ∈ N the function fj(z) = − log d(z, bΩj) is q-pluri-
subharmonic on Ωj , since Ωj is q-pseudoconvex and we have just proved the
equivalence (4)⇐⇒(5). The implication follows from the fact that Ω is equal
to
⋃
k∈N Ωk and Ωj b Ωj+1 b Ω, so that for each fixed j0 ∈ N the sequence

(fj)j≥j0 decreases to − log d(z, bΩ) on Ωj0 . According to Proposition 3.3.2 (4),
we conclude that the function − log d(z, bΩ) is q-plurisubharmonic on Ω.
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(12)⇐⇒(4) The case q = 0 is due to P. Lelong in his fundamental work in
[Lel52a]. The generalization to q ≥ 1 has been shown by Z. Słodkowski (see
Corollary 4.8 in [Sło86]). We shall not repeat the proofs here, since we will
not need this property and included this characterization only for the sake of
completeness. �

As a direct application, we are able to extend Proposition 4.1.2.

Proposition 4.3.3

(1) If Ω1 is q-pseudoconvex and Ω2 is r-pseudoconvex in Cn, then the union
Ω1 ∪ Ω2 is (q + r + 1)-pseudoconvex.

(2) Let {Ωj}j∈J be a collection of q-pseudoconvex sets in Cn such that the set
Ω := int

(⋂
j∈J Ωj

)
is not empty. Then Ω is q-pseudoconvex.

(3) If {Ωn}n∈N is an increasing collection of q-pseudoconvex sets in Cn with
Ω1 ⊂ Ω2 ⊂ . . ., then the union Ω :=

⋃
n∈N Ωn is q-pseudoconvex.

Proof. (1) Let Φ1(z) := − log d(z, bΩ1) and Φ2(z) := − log d(z, bΩ2). Then Φ1

is q-plurisubharmonic on Ω1 and Φ2 is r-plurisubharmonic on Ω2 according to
Theorem 4.3.2 (4). In view of Proposition 3.3.2 (6) and (10) the function

Φ :=

 Φ1 on Ω1 \ Ω2

min{Φ1,Φ2} on Ω1 ∩ Ω2

Φ2 on Ω2 \ Ω1

is a continuous (q+r+1)-plurisubharmonic function on Ω1 ∪ Ω2 such that Φ(z)
tends to +∞ whenever z tends to bΩ. Then Theorem 4.3.2 (6) implies the
desired statement.

(2) It is easy to verify that d(z, bΩ) = infj∈J d(z, bΩj) for every z ∈ Ω. Hence,
z 7→ − log d(z, bΩ) is the supremum of a family of q-plurisubharmonic functions
on Ω in view of Theorem 4.3.2 (4). Since it is continuous on Ω, it is q-plurisub-
harmonic there. Hence, Theorem 4.3.2 (4) yields q-pseudoconvexity of Ω.

(3)This follows immediately from Theorem 4.3.2 (11).
�
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We can also improve the regularity of the exhaustion functions of a q-pseudo-
convex set (see Corollary 6.1. in [Bun90]).

Remark 4.3.4 By Bungart’s approximation technique (see Theorem 3.5.4) we
can show that an open set Ω in Cn is q-pseudoconvex if and only if it admits
an exhaustion function which is q-plurisubharmonic with corners on Ω. In the
case of q = 0, due to Richberg’s approximation method (see Theorem 3.1.8), we
can even obtain that a set Ω is pseudoconvex if and only if it has a C∞-smooth
plurisubharmonic exhaustion function. If q ≥ 1, it remains unclear whether a q-
pseudoconvex set admits a C2-smooth q-plurisubharmonic exhaustion function.

4.4 Real q-convex and q-pseudoconvex sets
We examine sets generated by real q-convex functions and give the relation to
q-pseudoconvex sets. The main result is a generalized version of P. Lelong’s
observation in [Lel52b] on pseudoconvexity of sets of the form ω + i(−a, a)n,
where ω is an open set in Rn and a > 0. Earlier results on tubular sets of the
form ω + iRn were achieved by S. Bochner [Boc38] and K. Stein [Ste37].

Definition 4.4.1 We say that an open set ω in Rn is real q-convex if the
boundary distance function x 7→ − log d(x, bω) is real q-convex on ω.

Certainly, we could establish a similar collection of different characteriza-
tions of real q-convexity like in Proposition 4.3.2 for q-pseudoconvex sets. But
this would deserve its own treatise and further research. Anyway, the above
definition is sufficient to our purpose to compare the real q-convex sets to q-
pseudoconvex sets.

Theorem 4.4.2

(1) Every open real q-convex set Ω in Cn = R2n is q-pseudoconvex.

(2) Let ω be an open set in Rn. Then ω is real q-convex if and only if the set
ω + i(−a, a)n is q-pseudoconvex for some a ∈ (0,+∞].

Proof. If q ≥ n − 1, there is nothing to show, since every open set in Cn is
(n − 1)-pseudoconvex according to Corollary 4.2.4. Hence, from now on we
assume that q < n− 1.
(1) By definition, the boundary distance function z 7→ − log d(z, bΩ) is real
q-convex on Ω. Thus, due to Theorem 3.6.1, it is q-plurisubharmonic on Ω. In
view of Proposition 4.3.2 (4), the set Ω is q-pseudoconvex.
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(2)Case a = +∞. In this case, we are in the setting of a tubular set of the form
Ω := ω+i(−a, a)n = ω+iRn. Since d(z, bΩ) = d(Re(z), bω) for every z ∈ Ω, the
function z 7→ d(z, bΩ) is rigid on Ω. Then it follows from Theorem 3.6.4 that the
function x 7→ − log d(x, bω) is real q-convex on ω if and only if z 7→ − log d(z, bΩ)
is q-plurisubharmonic on Ω. The result follows now from the Definition 4.4.1
and Proposition 4.3.2 (4).

Case a > 0. Assume that ω is real q-convex. Then, in view of the previous
case a = +∞, the set ω+ iRn is q-pseudoconvex. Since the set Rn+ i(−a, a)n =
(R + i(−a, a))

n is pseudoconvex as a product of pseudoconvex sets, it follows
from Proposition 4.1.2 (1), that the intersection

(Rn + i(−a, a)n) ∩ (ω + iRn) = ω + i(−a, a)n

is q-pseudoconvex. This proves the necessity of this statement.
In order to prove the sufficiency, assume first that ω is bounded and that

the set Ω := ω + i(−a, a)n is q-pseudoconvex for some a > 0. Then there are
a small positive number b < a and a neighborhood U of bω in ω such that for
every z ∈ U + i(−b, b)n we have that

d(z, bΩ) = d(z, bω + iRn) = d(x, bω). (4.8)

For λ ∈ Rn consider the mapping Tλ(z) := z − iλ and the set

Wλ := {z ∈ Cn : Re(z) ∈ ω ∩ U, Im(zj) ∈ (−b+ λj , b+ λj), j = 1, . . . , n}.

Then, in view of the equations in (4.8), for z ∈ Wλ we obviously have the
following identities,

d(z, bω + iRn) = d(z − iλ, bω + iRn) = d(Tλ(z), bΩ).

Since Ω is q-pseudoconvex, the function z 7→ − log d(z, bΩ) is q-plurisubharmonic
on Ω. In view of Proposition 3.3.2 (8), the function − log d(Tλ, bΩ) is q-pluri-
subharmonic on Wλ. Since

⋃
λ∈RnWλ = (ω ∩ U) + iRn and since q-plurisub-

harmonicity is a local property, the function z 7→ − log d(z, bω+iRn) is rigid and
q-plurisubharmonic on (ω ∩ U) + iRn. Therefore, according to Theorem 3.6.4,
x 7→ − log d(x, bω) is real q-convex on ω∩U . Since the last function is continuous
and ω is bounded, we can find an appropriate constant c ∈ R such that x 7→
max{− log d(x, bω), c} is real q-convex on ω due to Theorem 2.3.7. Now it
follows from Theorem 3.6.4 that the function z 7→ max{− log d(z, bω + iRn), c}
is q-plurisubharmonic on ω + iRn and tends to +∞ when z approaches the
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boundary of ω + iRn. Thus, by Proposition 4.3.2 (6), the tubular set ω + iRn
is q-pseudoconvex. Then the arguments in the case a = +∞ imply that the set
ω is real q-convex.

If ω is not bounded, consider the set ωk := ω ∩Bk(0), where Bk(0) denotes
the ball of radius k ∈ N around the origin. For a large enough integer k0 > 0,
we can assume that ωk is not empty for every k ≥ k0. Since Bk(0) + iRn is
pseudoconvex, it follows from Proposition 4.1.2 (1) that the intersection

(ω + i(−a, a)n) ∩ (Bk(0) + iRn) = ωk + i(−a, a)n =: Ωk

is q-pseudoconvex. Since ωk is bounded, we know from the previous discus-
sion that ωk is real q-convex, i.e., x 7→ − log d(x, ωk) is real q-convex on ωk.
But for every fixed integer ` ≥ k0 the sequence (vk)k≥` of real q-convex func-
tions vk(x) := − log d(x, bωk)|(B`(0)∩ ω) is decreasing to x 7→ − log d(x, bω) on
B`(0) ∩ ω. Since real q-convexity is a local property, x 7→ − log d(x, bω) is real
q-convex on ω. By the definition, the set ω is real q-convex. �

4.5 Smoothly bounded q-pseudoconvex sets
We recall the definition, the basic properties and some examples of relative q-
pseudoconvex sets, which were originally introduced by Z. Słodkowski in chap-
ter 4 of [Sło86]. They will mainly serve to simplify our notations.

Definition 4.5.1 Given two open sets U ⊂ V in Cn, the set U is said to be
q-pseudoconvex in (or relative to) V if there is a neighborhood W of bU ∩ V in
Cn such that the function z 7→ − log d(z, bU) is q-plurisubharmonic on U ∩W .

We mention some trivial settings related to relative q-pseudoconvex sets.

Remark 4.5.2 (1) Every open set U ⊂ Cn is q-pseudoconvex in itself, but U
may not be necessarily q-pseudoconvex in the absolute sense in Cn. For example,
C2 minus any point is pseudoconvex in itself, but not in C2.

(2) If U is an open subset of an open set V in Cn, then it is always (n − 1)-
pseudoconvex in V according to Proposition 4.2.3.

(3)We proved in Proposition 4.3.2 (9) that the definitions of relative q-pseudo-
convex and q-pseudoconvex sets collide in the case of V = Cn, i.e., an open set
U is q-pseudoconvex if and only if it is q-pseudoconvex relative to Cn.
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The following proposition is a part of Theorem 4.3 and Corollary 4.7 in
Słodkowski’s article [Sło86]. It gives more characterizations of relative q-pseudo-
convex sets also in terms of q-pseudoconvex sets in Cn. More equivalent char-
acterizations of relative q-pseudoconvexity can be found in Theorem 4.3 and
Corollary 4.7 of [Sło86].

Proposition 4.5.3 Let U ( V be open sets in Cn. Then the following state-
ments are equivalent.

(1) U is q-pseudoconvex in V .

(2) There exist a neighborhoodW of bU ∩V and a q-plurisubharmonic function
ψ on W such that ψ(z) tends to +∞ whenever z approaches the relative
boundary bU ∩ V .

(3) For every point p in V ∩ bU there exists an open ball Br(p) centered in p
such that the intersection U ∩Br(p) is q-pseudoconvex in Cn.

We continue by presenting some examples of relative q-pseudoconvex sets.

Example 4.5.4 (1) Let ϕ be q-plurisubharmonic on an open set V in Cn and
let c be a real number. Then the set U = {z ∈ V : ϕ(z) < c} is q-pseudoconvex
in V . If, moreover, the set V is q-pseudoconvex itself, then V is q-pseudoconvex
(in Cn).

Indeed, let p be a boundary point in bU ∩ V and let B = Br(p) b V be a
ball centered at p and with radius r > 0. Then Proposition 3.5.6 implies that
ϕ0 := − log(c−ϕ) is a q-plurisubharmonic function on U . Furthermore, ϕ0(z)
tends to +∞ as z tends to the boundary of U inside V . Thus, the function
z 7→ max{ϕ0,− log(r2−‖z‖22)} is q-plurisubharmonic on the set B∩U and fulfills
the assumptions of the property (6) in Proposition 4.3.2. This means that B∩U
is q-pseudoconvex. Since p is an arbitrary point in bU ∩ V , Proposition 4.5.3
implies that U is q-pseudoconvex in V .

Now, if V is additionally q-pseudoconvex, the boundary distance function
ψ(z) := − log d(z, bV ) is q-plurisubharmonic on V due to Proposition 4.3.2 (4).
Then the function max{ϕ0, ψ} is q-plurisubharmonic on U and satisfies the
property (6) in Proposition 4.3.2. Hence, U is q-pseudoconvex.

(2) Let Ω be an open set in Cn and let h be a q-holomorphic function on Ω.
Let Γ(h) := {(z, h(z)) ∈ Cn+1 : z ∈ Ω} be the graph of f over Ω. By Propo-
sition 3.10.2 (5) and (6), the function (z, w) 7→ 1/(h(z) − w) is q-holomorphic
on U := (Ω× C) \ Γ(h). Then Proposition 3.10.2 (8) implies that the function
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ψ(z, w) := − log |h(z)−w| is q-plurisubharmonic on U and has the property that
ψ(z, w) tends to +∞ whenever (z, w) approaches the graph Γ(h). Hence, the
open set U is q-pseudoconvex in V := Ω× C by Proposition 4.5.3 (2).

A converse statement is known in the case of q = 0 and is one of the classical
Hartogs’ theorems. We will mention the precise statement of Hartogs and study
the holomorphic structure of graphs of functions later in Section 4.7.

The smoothly bounded q-pseudoconvex sets can be characterized in terms of
q-plurisubharmonic defining functions.

Definition 4.5.5 Let U be an open set in Cn and k ∈ N ∪ {∞}.

(1) The set U has a Ck-smooth boundary at a boundary point p ∈ bU if there
is a Ck-smooth function % defined on a neighborhood W of p such that
∇%(p) 6= 0 and U ∩W = {z ∈W : %(z) < 0}. In this case, we also say that
U is Ck-smoothly bounded at p and that % is a defining function for U at p.

(2) If U is Ck-smoothly bounded at each of its boundary points, then it is
Ck-smoothly bounded or it has a Ck-smooth boundary.

(3) If there are another open set V in Cn with U ( V and a Ck-smooth function
% on V satisfying U = {z ∈ V : %(z) < 0} and ∇% 6= 0 on bU ∩ V , then % is
called a defining function for U (in V ).

(4) Let % be a defining function for U at p ∈ bU . The holomorphic tangent
space HpbU to bU at p is then given by

HpbU = {X ∈ Cn :

n∑
j=1

∂%

∂zj
(p)Xj = 0},

and the Levi form L̃%(p) of % at p is defined by

HpbU 3 X,Y 7→ L̃%(p)(X,Y ) :=

n∑
j,k=1

∂2%

∂zj∂z̄k
(p)XjY k.

In other words, it is the Hermitian form on Cn × Cn induced by the Levi
matrix L%(p) of % at p restricted to HpbU ×HpbU (recall Definition 3.4.3).
For an abbreviation, we also write L̃%(p,X) := L̃%(p)(X,X).

(5) The set U is called Levi q-pseudoconvex (resp. strictly Levi q-pseudoconvex )
at the point p ∈ bU if there exists a defining function % for U at p such that its
Levi form L̃% at p has at most q negative (resp. q non-positive) eigenvalues.
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(6) Let V be an open neighborhood of U with U ( V . Then U is called
(strictly) Levi q-pseudoconvex in V if it is (strictly) Levi q-pseudoconvex at
every point p ∈ bU ∩ V .

(7) A strictly Levi q-pseudoconvex set in Cn is also simply called strictly q-
pseudoconvex.

One interesting example is the following version of a Hartogs domain.

Example 4.5.6 (1) Let g be a C2-smooth (strictly) q-plurisubharmonic func-
tion defined on an open set Ω in Cn and let V := Ω× Ck. Then the set

U :=
{

(z, w) ∈ Ω× Ck : eg(z) < ‖w‖22
}

is (strictly) Levi (q+k)-pseudoconvex in V . More precisely, it is (strictly)
(q+k−1)-pseudoconvex at every point (z, w) in bU ∩ V with ∂g(z) 6= 0, where
∂g is the complex gradient (∂g/∂zj)

n
j=1 of g.

To see this, consider the following C2-smooth function ψ on V defined by,

ψ(z, w) := eg(z) − ‖w‖22.

Then we have that U = {(z, w) ∈ Ω × Ck : ψ(z, w) < 0}. Given a vector
Z = (X,Y ) ∈ Cn ×Ck, the Hermitian form induced by the Levi matrix of ψ at
p can be easily calculated,

Lψ(z, w)(Z,Z) = eg(z)Lg(z)(X,X) + eg(z)
∣∣∣ n∑
j=1

∂g

∂zj
(z)Xj

∣∣∣2 − ‖Y ‖22.
Now the vector (X,Y ) ∈ Cn×Ck lies in the holomorphic tangent space to bU∩V
at (z, w) if and only if

0 =

n∑
j=1

∂ψ

∂zj
(z, w)Xj +

k∑
j=1

∂ψ

∂wj
(z, w)Yj = eg(z)

n∑
j=1

∂g

∂zj
(z)Xj − whY,

where wh = wt is the transpose complex conjugate of w. Now if (z, w) is
contained in bU ∩ V , then ‖w‖22 = eg(z). According to the previous equations,
we obtain that

|whY |2

‖w‖22
= eg(z)

∣∣∣ n∑
j=1

∂g

∂zj
(z)Xj

∣∣∣2.
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Therefore, the Levi form of ψ at (z, w) is as below:

L̃ψ

(
(z, w), (X,Y )

)
= eg(z)L̃g(z,X)− ‖Y ‖22 (4.9)

+

{
|whY |2/‖w‖22, if ∂g(z) 6= 0
0, if ∂g(z) = 0

.

Since g is (strictly) q-plurisubharmonic on Ω, we have that the Levi matrix
of g has at most q negative (resp. non-positive) eigenvalues.

We first consider the case ∂g(z) = 0. Since Ck 3 Y 7→ −‖Y ‖22 is always
non-positive, the Levi form of ψ at (z, w) ∈ bU ∩ V has at most q + k negative
(non-positive) eigenvalues. Hence, U is (strictly) Levi (q + k)-pseudoconvex at
(z, w).

Now if ∂g(z) 6= 0, the Levi form of ψ at (z, w) reduces to

L̃ψ

(
(z, w), (X,Y )

)
= eg(z)L̃g(z,X)−

{
‖Y ‖22, if whY = 0
0, if Y = w

}
. (4.10)

Since there exist k−1 linearly independent vectors Y in Ck that satisfy whY = 0,
the Levi form of ψ at (z, w) ∈ bU ∩ V has at most q+k−1 negative (resp.
non-positive) eigenvalues, and so U is (strictly) Levi (q+k−1)-pseudoconvex at
(z, w).

(2)With the same function g as in (1), we can achieve similar results for the set

U := {(z, w) ∈ Ω× Ck : ‖w‖22 < e−g(z)}.

We put ψ(z, w) := ‖w‖22− e−g(z) and compute its Levi form at (z, w) ∈ bU ∩V ,
namely

L̃ψ

(
(z, w), (X,Y )

)
= e−g(z)L̃g(z,X)

+

{
‖Y ‖22 − |whY |2/‖w‖22, if ∂g(z) 6= 0
‖Y ‖22, if ∂g(z) = 0

.

Since g is assumed to be (strictly) q-plurisubharmonic on Ω, by the Cauchy-
Schwarz inequality we obtain that the Levi form of ψ at (z, w) ∈ bU ∩ V has at
most q negative (non-positive) eigenvalues. Hence, it is (strictly) Levi q-pseudo-
convex in V .

We present some facts about Levi q-pseudoconvex sets.
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Remark 4.5.7 (1) If an open set U ⊂ Cn is (strictly) Levi q-pseudoconvex at
a point p ∈ bU , then the Levi form of every defining function % for U near p has
at most q negative (resp. non-positive) eigenvalues on the holomorphic tangent
space at the point p. This means that the definition of Levi q-pseudoconvexity
does not depend on the choice of the defining function.

(2) If U ⊂ Cn is strictly q-pseudoconvex at a boundary point p and ψ is a
defining function for U at p, then for a large enough constant c > 0 the function
exp(cψ)−1 is strictly q-plurisubharmonic on some ball B centered at p and still
defines U at p. Therefore, in view of Example 4.5.4 (1), U∩B is q-pseudoconvex.

(3) Like in the classical case when q = 0 (see, e.g., Proposition 3.2.2 in [Kra99]),
one can verify that every strictly (Levi) q-pseudoconvex bounded open set U in
Cn admits a C2-smooth strictly q-plurisubharmonic global defining function, i.e.,
there is a C2-smooth function % defined on a neighborhood V of U such that
U = {z ∈ V : %(z) < 0}, ∇% 6= 0 on bU and % is strictly q-plurisubharmonic
on V . In view of Example 4.5.4 (1), this means that each bounded strictly
q-pseudoconvex set is q-pseudoconvex.

(4)The previous result on the global defining function is no longer true in general
for unbounded strictly pseudoconvex sets. The reason for this is that they may
contain copies of the complex plane on which no upper bounded strictly pluri-
subharmonic function can exist. This observation can be verified, for example,
by considering the set Ω = {(z, w) ∈ C2 : |w| < e−|z|

2}.
(5)Nevertheless, it can be proved that every strictly q-pseudoconvex (not nec-
essarily bounded) domain U has a C2-smooth q-plurisubharmonic global defin-
ing function % defined on some neighborhood of U which is strictly q-plurisub-
harmonic on some possibly smaller neighborhood of the boundary of U . This
and even more interesting results on unbounded q-pseudoconvex domains can be
found in the joint paper [HST14] by T. Harz, N. V. Shcherbina and G. Tomassini.

The next theorem is the main result in G. V. Suria’s paper [Sur84].

Theorem 4.5.8 Every Levi q-pseudoconvex set is q-pseudoconvex. More pre-
cisely, it admits a C2-smooth q-plurisubharmonic exhaustion function.

4.6 Duality principle of q-pseudoconvex sets
In this section, we are interested in the link between strictly q-pseudoconvex
sets and their complements. Their relation leads to two duality theorems. The
first one is due to R. Basener (see Proposition 6 in [Bas76]).
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Theorem 4.6.1 If an open set Ω in Cn is strictly q-pseudoconvex at some
point p ∈ bΩ, then for every neighborhood V of p the set V ∩ (Cn \ Ω) is
not (n−q−2)-pseudoconvex. More precisely, for each w in bΩ ∩ V and every
neighborhood U b V of w there is a family {At}t∈[0,1] of (n−q−1)-dimensional
complex submanifolds of U which is continuously parameterized by t and fulfills

1. At ⊂ (Cn \ Ω) for every t ∈ [0, 1),

2. w ∈ A1, but A1 \ {w} ⊂ (Cn \ Ω).

Proof. Fix the point p ∈ bΩ. By Proposition 6 in [Bas76] there exists a
neighborhood V of p in Cn such that for every point w in bΩ ∩ V the following
properties hold after an appropriate holomorphic change coordinates on V ,

w = 0 and Re(z1) < 0 for every z ∈ V ∩ (Ω \ {w}) ∩ (Cn−q×{0}q). (4.11)

Let U b V be any neighborhood of w. Then there are real numbers ε > 0 and
r > 0 such that for each t ∈ [0, 1] the submanifold

At = {(1− t)ε}×Bn−q−1
r (0)×{0}q

is contained in U . Finally, the properties (4.11) imply that the family {At}t∈[0,1]

has the desired properties. �

As an application we can improve Suria’s observation (see Theorem 4.5.8)
which fully clarifies the relation between Levi q-pseudoconvexity and q-pseudo-
convexity.

Corollary 4.6.2 Let Ω be an open set in Cn which is C2-smoothly bounded.
Then Ω is Levi q-pseudoconvex if and only if it is q-pseudoconvex.

Proof. Due to Suria’s Theorem 4.5.8, it only remains to prove that, if Ω is
q-pseudoconvex, then it is Levi q-pseudoconvex. Suppose that Ω is not Levi
q-pseudoconvex at some boundary point p of Ω. Then there are a neighbor-
hood W ⊂ U of p and a C2-smooth defining function % for Ω at p defined on
W such that its Levi form has at most n−q−2 non-negative eigenvalues on the
holomorphic tangent space to bΩ at p. Hence, −% is a defining function for
D := Cn \Ω at p whose Levi form has at most n−q−2 non-positive eigenvalues
on the holomorphic tangent space to bΩ at p. This means that D is strictly
(n−q−2)-pseudoconvex at p. But then Theorem 4.6.1 implies that Ω is not



4.6. Duality principle of q-pseudoconvex sets 113

q-pseudoconvex near p, which is absurd. Therefore, Ω has to be Levi q-pseudo-
convex at p. �

In order to establish a converse statement of that in Proposition 4.6.1, we
need the following lemma.

Lemma 4.6.3 Let q ∈ {0, . . . , n− 1} and let ψ be a C2-smooth strictly q-pluri-
subharmonic function on an open set U in Cn. Assume that U contains two
compact sets K and L which fulfill the following properties:

(1) K,L ⊂ {z ∈ U : ψ(z) ≤ 0}

(2) L ∩ {z ∈ U : ψ(z) = 0} = ∅

(3) K ∩ {z ∈ U : ψ(z) = 0} 6= ∅

Under these conditions, there exist a point z0 ∈ bK, a neighborhood V b U of
z0 and a C2-smooth strictly q-plurisubharmonic function ϕ on V satisfying:

(a) K,L ⊂ {z ∈ V : ϕ(z) ≤ 0}

(b) L ∩ {z ∈ V : ϕ(z) = 0} = ∅

(c) K ∩ {z ∈ V : ϕ(z) = 0} = {z0}

(d) ∇ϕ 6= 0 on {z ∈ V : ϕ(z) = 0}

In other words, the set G := {z ∈ V : ϕ(z) < 0} is strictly q-pseudoconvex in
V , contains L, and K touches bG from the inside of G only at the point z0.

Proof. We proceed similarly as in the proof of Proposition 3.2 in [HST14]. Let
δ > 0 and Uδ := B1/δ(0) ∩ {z ∈ U : d(z, bU) > δ}. We choose δ > 0 so small
that the preassumptions (1) to (3) of this lemma still hold if we replace U by
V := Uδ.

Let B := Bδ(0) and consider the function f : B → ψ(V ) defined by f(w) :=
maxz∈K ψ(z + w). Pick a point p ∈ K ∩ {z ∈ V : ψ(z) = 0}. Since ψ is
strictly q-plurisubharmonic, it follows from the local maximum principle (see
Proposition 3.3.2 (11)) that {ψ > 0} ∩W is not empty for any neighborhood
W of p. Hence, since p belongs to K and since f(0) = ψ(p) = 0, the image
f(B) contains a non-empty open interval I around 0. Since f(B) lies in ψ(V ),
Sard’s theorem implies that there exists a regular value f(w0) inside I which is
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so close to ψ(p) = 0 that the conditions (1) to (3) are still valid for the function
ψ0(z) := ψ(z + w0) − f(w0) instead of ψ. Notice that 0 is now a regular value
for ψ0.

Let z0 be a point in K with f(w0) = ψ(z0 + w0), so that ψ0(z0) = 0. For
ε > 0, we define ϕ(z) := ψ0(z) + ε‖z − z0‖22. Then it is easy to see that
K ∩ {z ∈ V : ϕ(z) = 0} only contains the point z0, so we obtain property (c).
Now if ε > 0 is small enough, then the preassumptions (1) and (2) still hold for
the function ϕ instead of ψ. Hence, the function ϕ fulfills also the properties
(a) and (b). Finally, by the choice of f(w0), zero is a regular value for ϕ, so we
also gain the property (d). �

We close this section by giving the second duality theorem which is a converse
statement to Theorem 4.6.1. It was suggested by N. V. Shcherbina.

Theorem 4.6.4 Let Ω be a domain in Cn which is not q-pseudoconvex. Then
there exist a point p ∈ bΩ, a neighborhood V of p and a strictly Levi (n−q−2)-
pseudoconvex set G in V such that the set V \ Ω is contained in G ∪ {p} and
{p} = bG ∩ bΩ ∩ V , i.e., V \G touches bG from the inside of G only at p.

Proof. Since Ω is not q-pseudoconvex, there exists a (q+1, n−q−1)-Hartogs
figure (H,P ) and a biholomorphic mapping F on ∆ := ∆n

1 (0) onto its image
such that H = F (He) lies in Ω, but P = F (∆n

1 (0)) is not contained entirely in
Ω for the Euclidean Hartogs figure

He =
(
∆q+1

1 ×∆n−q−1
r

)
∪
(
Aq+1
R,1 ×∆n−q−1

1

)
⊂ Cq+1

z × Cn−q−1
w .

By shrinking ∆ if necessary, we can assume that F is defined on a neighborhood
of the closure of ∆. We set M := F−1(Cn \ Ω) ∩∆. Since Φ(He) lies in Ω, we
can find appropriate numbers α, β ∈ (0, 1) with α < β such that

K0 :=
(
∆q+1

1 ×∆n−q−1
α

)
∩M and L0 :=

(
∆q+1

1 ×An−q−1
β,1

)
∩M

both are not empty. Recall that ‖w‖∞ = maxj=1,...,n−q−1 |wj | and consider the
function u(w) := − log ‖w‖∞. By the assumptions made on H and P , we can
find a large enough number c ∈ R such that

M ⊂ Dc(u) := {(z, w) ∈ ∆ : u(w) < c}. (4.12)

Let k ∈ N and define the function uk by

uk(w) := −1

k
log ‖(wk1 , . . . , wkn−q−1)‖2 +

1

k
‖w‖22.
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Then by Proposition 4.2.3 the function uk is C∞-smooth and strictly (n−q−2)-
plurisubharmonic on Cn−q−1

w \ {0}. Moreover, the sequence (uk)k∈N converges
to u uniformly on compact sets in Cn−q−1

w \ {0}. Therefore, and in view of
property (4.12), we can pick an integer k0 so large that M lies in Dc(uk) :=
{(z, w) ∈ ∆ : uk(w) < c} for every k ≥ k0. Define

ck := inf
{
a ∈ R : M ⊂ Da(uk)

}
.

Now we fix an even larger k ≥ k0 so that L0 ∩ Dck(uk) is empty. Then it is
easy to see that K0 intersects {(z, w) ∈ ∆ : uk(w) = ck} in a point ζ0 ∈ ∆.
Finally, we set U := F−1(∆), K := F−1(K0), L := F−1(L0) and ψ := uk ◦F−1

and verify that the conditions (1) to (3) in Lemma 4.6.3 all are satisfied. Thus,
it follows from this lemma that there are a point p in bΩ, a neighborhood V
of p and a strictly (n−q−2)-plurisubharmonic function on V such that the set
G := {z ∈ V : ϕ(z) < 0} is the desired strictly Levi (n−q−2)-pseudoconvex set
in V , whose boundary bG shares only a single point with bΩ in V . �

4.7 q-Pseudoconcave graphs
In this section, we will analyze whether a submanifold or the graph of a contin-
uous function admits a local regular complex foliation under the condition that
its complement is q-pseudoconvex. These considerations naturally generalize
one of the classical Hartogs’ theorems (see, e.g., Chapter III.42, Theorem 2 in
[Sha92]).

Theorem 4.7.1 (Hartogs, 1909) A continuous function f : G→ Cζ is holo-
morphic on a domain G ⊂ Cnz if and only if the complement of its graph
Γ(f) = {(z, f(z)) : z ∈ G} is pseudoconvex in G× Cζ .

In order to simplify our notation, we introduce a generalized version of con-
cavity.

Definition & Remark 4.7.2 Let q ∈ {0, . . . , N} and let S be a closed subset
of an open set Ω in CN .

(1) We say that S is (Hartogs) q-pseudoconcave in Ω if Ω′ := Ω\S is (Hartogs)
q-pseudoconvex in Ω, i.e., for every point p in bS there exists a ball B in Ω
such that B ∩ Ω′ is (Hartogs) q-pseudoconvex.
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(2) In view of Theorem 4.3.2 the set S is q-pseudoconcave in Ω if and only
if it is Hartogs (N−q−1)-pseudoconcave in Ω. For the sake of a better
presentation, we shall prefer only in this section the notion of Hartogs q-
pseudoconcavity rather than q-pseudoconcavity.

Using the duality theorems of the previous section, we obtain a first relation
of foliated sets and q-pseudoconcavity.

Proposition 4.7.3 Let q ∈ {1, . . . , N − 1} and let S be a closed subset of an
open set Ω in CN . Assume that the boundary bΩS of S in Ω is locally filled by
q-dimensional analytic sets, i.e., for every point p in bΩS there is a neighborhood
W of p in Ω such that for each point z in S ∩W there exists a q-dimensional
analytic subset Az of W with z ∈ Az ⊂ S. Then S is Hartogs q-pseudoconcave
in Ω.

Proof. Assume that the statement is false. Then according to Theorem 4.6.4,
there exist a boundary point p of S in Ω, a neighborhood V of p and a strictly
(q − 1)-pseudoconvex set G in V such that S ∩ V touches bG from the inside
of G exactly in p. In view of Remark 4.5.7 (2), we can construct a strictly
(q − 1)-plurisubharmonic function ψ defined on some neighborhood U of p in
V ∩W which is defining for G at p. By the assumption made on bΩS, there
are a neighborhood W of p and a q-dimensional analytic subset A of W with
p ∈ A ⊂ S. But then ψ(p) = 0 and ψ < 0 on A ∩ U , which contradicts the
local maximum principle (see Theorem 3.8.5). Therefore, S has to be Hartogs
q-pseudoconcave in Ω. �

We present a converse statement on the complex foliation of Hartogs q-
pseudoconcave CR-submanifolds and, therefor, need to extend Definition 4.5.5
as follows.

Definition 4.7.4 Let Γ = {ϕ1 = . . . = ϕr = 0} be a C2-smooth submanifold
in CN .

(1) The holomorphic tangent space HpΓ to Γ at some point p in Γ is given by

HpΓ :=

r⋂
j=1

{
X ∈ CN : (∂ϕj(p), X) =

N∑
`=1

∂ϕj
∂z`

(p)X` = 0
}
.

(2) If the complex dimension of HpΓ has the same value d at each point p in Γ,
then we say that Γ is a CR-submanifold and call d the CR-dimension of Γ.
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(3) The Levi null space of Γ at p is the set

Np :=

r⋂
j=1

{
X ∈ HpΓ : Lϕj (p)(X,Y ) = 0 for every Y ∈ HpΓ

}
.

Proposition 4.7.5 Let Γ = {ϕ1 = . . . = ϕr = 0} be a real C2-smooth CR-
submanifold of some open set Ω in CN of codimension r ∈ {1, . . . , 2N − 1}
and CR-dimension q ∈ {1, . . . , n − [n/2]}. Assume further that Γ is Hartogs
q-pseudoconcave in Ω. Then it is locally foliated by complex q-dimensional
submanifolds.

Proof. Since the Levi null space lies inside the holomorphic tangent space to Γ,
it is clear that its complex dimension does not exceed q. We claim that the
complex dimension of Np is equal to q for each point p ∈ Γ, so that Np coincides
with HpΓ.

In order to get a contradiction, suppose that there is a point p in Γ such
that Np is a proper subspace of HpΓ. This implies that there is an index j0 in
{1, . . . , r} and a vector X0 in HpΓ such that L̃ϕj0

(p,X0) 6= 0. Indeed, a priori,
if Np ( HpΓ, there exist two vectors X ′ and Y ′ in HpΓ such that

L̃ϕj0
(p)(X ′, Y ′) 6= 0.

If L̃ϕj0
(p,X ′) 6= 0 or L̃ϕj0

(p, Y ′) 6= 0, we are done and proceed by picking
X0 = X ′ or, respectively, X0 = Y ′. Otherwise, if L̃ϕj0

(p,X ′) and L̃ϕj0
(p, Y ′)

both vanish, we can choose an appropriate complex number ν which satisfies

L̃ϕj0
(p,X ′ + νY ′) = 2Re

(
νL̃ϕj0

(p)(X ′, Y ′)
)
6= 0.

Then we continue with X0 := X ′ + νY ′. Now without loss of generality we can
assume that j0 = 1 and L̃ϕ1

(p,X0) > 0. For a positive constant µ we define
another function

ϕ := ϕ1 + µ

r∑
j=1

ϕ2
j .

Since we can assume that the gradients ∇ϕ1, . . . ,∇ϕr do not vanish at p, there
is a neighborhood U of p such that the set S := {z ∈ U : ϕ(z) = 0} is a
real hypersurface containing Γ ∩ U , so that HpΓ becomes a subspace of HpS.
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Moreover, for X ∈ HpΓ we can easily compute the Levi form of ϕ at p,

L̃ϕ(p,X) = L̃ϕ1(p,X) + 2µ

r∑
j=1

|(∂ϕj(p), X)|2︸ ︷︷ ︸
=:R(p,X)

. (4.13)

We assert that HpS contains an (N − q)-dimensional subspace E on which
L̃ϕ(p, ·) is positive. To see this, consider the complex normal space NpΓ to HpΓ
in HpS,

NpΓ := {Y ∈ HpS :

N∑
`=1

Y`X` = 0 for every X ∈ HpΓ}.

Observe that NpΓ has dimension d := N −q−1 and choose a basis Y1, . . . , Yd of
NpΓ. Let E be the complex span of the vectors X0 from above and Y1, . . . , Yd.
Since X0 belongs to HpΓ, but Y1, . . . , Yd do not, the dimension of E equals
N − q.

We set E0 := {Z ∈ E : ‖Z‖2 = 1} and M := {Z ∈ E0 : L̃ϕ1
(p, Z) ≤ 0}.

If M is empty, then L̃ϕ(p, ·) is positive on E and we can put µ = 0.
If M is not empty, notice first that, if Z lies in M , then R(p, Z) > 0 (recall

the equation (4.13) for the definition of R(p, Z)). Otherwise Z belongs to HpΓ
and, therefore, it is a multiple of X0, i.e., Z = λX0 for some complex number λ.
But then L̃ϕ1

(p, Z) = |λ|2L̃ϕ1
(p,X0) > 0 and Z lies in M at the same time,

which is absurd. Hence, R(p, Z) > 0 for every vector Z in M . Since E0 is
compact and Γ is C2-smooth, we can find constants c0 > 0 and c1 > 0 such that
R(p, Z) ≥ c0 for every Z in M and L̃ϕ1

(p, Z) ≥ −c1 for every Z in E0. Now we
can choose µ so large that −c1 + µc0 > 0 in order to obtain that L̃ϕ(p, Z) > 0

for each Z in E0. Since L̃ϕ(p, λX) = |λ|2L̃ϕ(p,X) for every X in E and λ in
C, we have that L̃ϕ(p, ·) is positive on E \ {0}.

Therefore, in both cases, the Levi form L̃ϕ at p is positive definite on the
(N − q)-dimensional space E. Hence, {ϕ < 0} is strictly (q − 1)-pseudoconvex
at p. But then, in view of Theorem 4.6.1, the submanifold Γ cannot be Hartogs
q-pseudoconcave near p, which is a contradiction. Finally, we can conclude that
Np = HpΓ. By assumption, these two spaces have constant dimension q on Γ,
so Freeman’s Theorem 1.1 in [Fre74] implies that Γ admits a local foliation by
complex q-dimensional submanifolds. �
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The next statement is a generalization of Hartogs’ theorem to certain graphs
of continuous functions. This result is due to N. V. Shcherbina (see [Shc93])
and is based on the work of E. Bedford, B. Gaveau, W. Klingenberg and
N. G. Kruzhilin (see [BG83], [BK91] and [Kru91]). Further generalizations are
due to E. M. Chirka and Shcherbina (see [CS95] and [Chi01]). Notice that, in
contrast to Definition 3.9.1, by a complex foliation of a continuous graph we
simply mean a disjoint union of complex submanifolds filling locally this graph.

Theorem 4.7.6 (Shcherbina, 1993) Let G be a domain in Cz × Ru. Then
the graph of a continuous function f : G → Rv on a is locally foliated by
complex curves if and only if Γ(f) is Hartogs 1-pseudoconcave in G×Rv ( i.e.,
its complement is pseudoconvex). More precisely, a local foliation of Γ(f) is
given by a set of pairwise disjoint complex curves {γα}α∈I which are graphs
γα = Γ(gα) of holomorphic functions gα : Dα → Cw, where {Dα}α∈I is a
collection of simply connected domains Dα lying in the projection of G into Cz.
Moreover, there exists a disc ∆ in Cz which is contained in ∆α for each α ∈ I
and which does not depend on the indexes α ∈ I.

In what follows, we intend to generalize the theorems of Shcherbina and
Hartogs to the subsequent setting.

Setting 4.7.7 Fix integers n ≥ 1 and k, p ≥ 0 such that N = n + k + p ≥ 2.
Then CN splits into the product

CNz,w,ζ = Cnz × Ckw × Cpζ = Cnz × (Rku + iRkv)× Cpζ ,

where w = u + iv. Let G be an open set in Cnz × Rku and let f = (fv, fζ) be
continuous on G with image in Rkv × Cpζ . Then the graph of f is given by

Γ(f) = {(z, w, ζ) ∈ Cnz × Ckw × Cpζ : (z, u) ∈ G, (v, ζ) = f(z, u)}.

We are interested in the question whether Γ admits a local foliation by
complex submanifolds. In this context, we first have to study the q-pseudo-
concavity of the graph of f .

Lemma 4.7.8 Recall our Setting 4.7.7. Furthermore, pick another integers
m ∈ {1, . . . , n} and r ∈ {0, . . . , p} with k + r ≥ 1. For µ1, . . . , µr ∈ {1, . . . , p}
and µ1 < . . . < µr, we divide the coordinates of ζ into ζ ′ = (ζµ1

, . . . , ζµr ) and
into the remaining coordinates ζ ′′ = (ζµj : j ∈ {1, . . . p} \ {µ1, . . . , µr}) which
we assume to be ordered by their index µj , as well. Finally, let π be a complex
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m-dimensional plane in Cnz . We set M = m+ k + r and CM• := π × Ckw × Crζ′ ,
G• := G ∩ (π × Rku) and f• := (fv, fζ′)|G•.

If the graph Γ(f) is Hartogs n-pseudoconcave in G×Rkv×Cpζ , then the graph
Γ(f•) is Hartogs m-pseudoconcave in G• × Rkv × Crζ′ .

Proof. Since the generalized pseudoconcavity is a local property, after shrink-
ing G if necessary and after a biholomorphic change of coordinates we can
assume without loss of generality that π = {0}n−mz′ × Cmz′′ ⊂ Cnz , where z′ =
(z1, . . . , zn−m) and z′′ = (zn−m+1, . . . , zn), and that the ζ-coordinates are or-
dered in such a way that ζ ′ = (ζ1, . . . , ζr) and ζ ′′ = (ζr+1, . . . , ζp).

Assume that Γ(f•) is not Hartogsm-pseudoconvex in G•×Rkv×Crζ′ and recall
that M = m + k + r. Then in view of Theorem 4.5.3 (3) and Theorem 4.3.2,
there are a point p in Γ(f•) and a ball B = B%(p) in CM such that the set
(CM \ Γ(f•)) ∩ B is not (M −m − 1) = (k + r − 1)-pseudoconvex. Since B is
pseudoconvex, according to Theorem 4.3.2 (8) there is a family {At}t∈[0,1] of
(k+r)-dimensional analytic sets At in CM which depends continuously on t and
which fulfills the following properties:

• The closure of the union
⋃

t∈[0,1]

At is compact.

• For every t ∈ [0, 1) the intersection At ∩ Γ(f•) is empty.

• bA1 ∩ Γ(f•) is empty, as well.

• The set A1 touches Γ(f•) at a point p0 = (z0, w0, ζ
′
0), where z0 = (z′0, z

′′
0 ) =

(0, z′′0 ) and w0 = u0 + iv0.

Given some positive number ρ, consider the (k + p)-dimensional analytic sets

St := {0}n−m ×At ×∆p−r
ρ (fζ′′(z0, u0)) ⊂ CN .

It is easy to verify that the family {St}t∈[0,1] of (k+p)-dimensional analytic sets
violates the property (8) of Theorem 4.3.2. According to Theorem 4.3.2 (1),
Γ(f) cannot be Hartogs n-pseudoconcave, which is a contradiction to the as-
sumption on Γ(f). Hence, Γ(f•) has to be Hartogs m-pseudoconcave. �

We are now able to generalize the above presented theorems of Hartogs and
Shcherbina to lower dimensional continuous graphs. The idea of the proof of the
following theorem is based on notes of Shcherbina and uses results by Hartogs,
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Shcherbina and Chirka. In remains an open question whether the next statement
holds true in the case of k ≥ 3.

Theorem 4.7.9 Let n, k, p be integers with n ≥ 1, p ≥ 0 and k ∈ {0, 1} such
that N = n+k+p ≥ 2. Let G be a domain in Cnz ×Rku and let f : G→ Rkv×Cpζ
a continuous function such that Γ(f) is Hartogs n-pseudoconcave. Then Γ(f)
is locally the disjoint union of n-dimensional complex submanifolds.

Proof. The statement is of local type, so we can assume that B is an open
ball and that Γ(f) is bounded. We continue by separating the problem into the
subsequent cases.

Case n ≥ 1, k = 0, p = 1. This is the classical Hartogs’ theorem which we
already stated in Theorem 4.7.1 above. Its proof can be found in [Sha92] (see
Chapter III.42, Theorem 2).

Case n ≥ 1, k = 0, p ≥ 1. For each j ∈ {1, . . . , p} the set Γ(fζj ) is Hartogs
n-pseudoconcave by Lemma 4.7.8. Therefore, the function fj is holomorphic by
Hartogs theorem 4.7.1. Therefore, f = (f1, . . . , fp) is holomorphic, and so Γ(f)
is a complex hypersurface.

Case n = 1, k = 1, p = 0. The proof of this case is far away from being
obvious, so we do not repeat it here. For the interested reader,we refer to
Shcherbina’s original article [Shc93].

Case n ≥ 1, k = 1, p = 0. This case has been treated by Chirka in [Chi01].

Case n = 1, k = 1, p = 1. By Lemma 4.7.8 the graph Γ(fv) is Hartogs 1-
pseudoconcave. According to Theorem 4.7.6, it is foliated by a family of holo-
morphic curves {γα}α∈I which are graphs of holomorphic functions gα which
are all defined on a disc D in Cz which does not depend on the indexes α ∈ I.
Denote by πz the standard projection of points in C2

z,w into Cz. We define
another curves fαζ by the assignment

γα 3 t 7→ fαζ (t) := fζ
(
πz(t),Re(gα)(πz(t))

)
.

Since for each α ∈ I the curve γα is a graph Γ(gα), the function fαζ : γα → Cζ
is well-defined, and its graph is given by Γ(fαζ ) = Γ(f |πz,u(γα)). Here, πz,u
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means the standard projection of C2
z,w to Cz ×Ru. We claim that the curve fαζ

is holomorphic.
Suppose that there is a curve fα0

ζ which is not holomorphic in a neighborhood
of a point (z0, w0) ∈ γα0 . After a local holomorphic change of coordinates, we
can assume that γα0 = ∆r(z0) × {w = 0}, where ∆r(z0) b D is a disc in
Cz centered in z0. After a reparametrization we can arrange that α0 = 0
and (−1, 1) ⊂ I. Since the curve γ0 is of the form ∆r(z0) × {w = 0} near
z0, we can treat f0

ζ as a function f0
ζ : ∆r(z0) → Cζ . Since we assumed that

f0
ζ is not holomorphic, in view of Hartogs’ theorem 4.7.1 the set Γ(f0

ζ ) is not
Hartogs 1-pseudoconcave in C2

z,ζ . By Theorem 4.6.4, there exist a point p1 =

(z1, ζ1) ∈ Γ(f0
ζ ), a small enough open neighborhood V of p1 in C2

z,ζ , a C2-smooth
strictly plurisubharmonic function %1 = %1(z, ζ) on V with ∇%1 6= 0, and radii
σ, r′, r′′ > 0 with r′′ < r′ < r such that

∆r′ ×∆σ b V, Γ(f0
ζ |∆r′) ⊂ ∆r′ ×∆σ,

Γ(f0
ζ |∆r′) ⊂ {%1 ≤ 0}, Γ(f0

ζ |∆r′) ∩ {%1 = 0} = {(z1, ζ1)}, (4.14)

and Γ(f0
ζ |Ar′,r′′) ∩ {%1 = 0} = ∅, (4.15)

where each disc ∆s mentioned above is assumed to be centered in z0 and
Ar′,r′′ := ∆r′′\∆r′ . For α ∈ (−1, 1) we set γ′α := Γ(gα|∆r′) and Γ′α := Γ(fαζ |γ′α).
Since f is continuous and since the family {γα}α∈I depends continuously on α,
it follows from (4.15) that there is a number τ ∈ (0, 1) such that

K :=
⋃

α∈[−τ,τ ]

Γ′α ⊂ ∆r′ × Cw ×∆σ

and %1 < 0 on Γ′α ∩
(
Ar′,r′′ × C2

w,ζ

)
for every α ∈ [−τ, τ ], (4.16)

where %1 is now considered as a function defined on {(z, w, ζ) ∈ C3 : (z, ζ) ∈ V }.
Since the curves in {γα}α∈I are holomorphic, the set

A :=
(
γ−τ ∪ γα0

∪ γτ
)
∩ (∆r × Cw)

is a closed analytic subset of the pseudoconvex domain ∆r × Cw. Let h be a
holomorphic function on A defined by h ≡ 0 on γ±τ and h ≡ 1 on γα0 . In view
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of Theorem 3.11.4, there exists a holomorphic extension ĥ of h into the whole
of ∆r × Cw. Then the function %2(z, w) := log |ĥ(z, w)| is plurisubharmonic on
∆r × Cw and satisfies %2 ≡ −∞ on γ±τ . Now for ε > 0 we define

ψ0(z, w, ζ) := %1(z, ζ) + ε%2(z, w),

where %1 is the defining function from above. By the inequality (4.16) and the
properties of %2, for a sufficiently small ε > 0 we obtain that

ψ0 < 0 on L :=
⋃

α∈[−τ,τ ]

(
Γ′α ∩

(
Ar′,r′′ × C2

w,ζ

) )
∪ Γ′τ ∪ Γ′−τ . (4.17)

Recall the point (z1, ζ1) from (4.14). By the choice of (z1, ζ1) and since (z1, 0) ∈
γα0

, we have that %1(z1, ζ1) = 0, %2(z1, 0) = 0 and, therefore, ψ0(z1, 0, ζ1) = 0.
Since (z1, 0, ζ1) belongs toK, it follows from the inequality (4.17) that ψ0 attains
a non-negative maximal value on K outside L. Since ψ0 is plurisubharmonic
on a neighborhood of K, by using Theorem 3.1.7 and Remark 3.4.2 (3) we can
assume without loss of generality that ψ0 is C∞-smooth and strictly plurisub-
harmonic on a neighborhood of K, satisfies the property (4.17) and still attains
its maximum on K outside L.

Now it is easy to verify that K,L and ψ := ψ0 − maxK ψ0 fulfill all the
conditions (1) to (3) of Lemma 4.6.3. Thus, there exist a point p2 in K \ L,
a neighborhood U of p2 containing K and L and a C2-smooth strictly pluri-
subharmonic function ϕ on U so that G := {(z, w, ζ) ∈ U : ϕ(z, w, ζ) < 0} is
strictly pseudoconvex in U , ϕ < 0 on L, ϕ ≤ 0 on K and ϕ(z, w, ζ) vanishes on
K if and only if (z, w, ζ) = p2. Since G is strictly pseudoconvex at p2, we derive
from Theorem 4.6.1 that the graph Γ(f) can not be 1-pseudoconcave, which is
a contradiction to the assumption made on Γ(f). As a conclusion, the curves
in {Γ(fαζ )}α∈I have to be holomorphic. This leads to the desired local complex
foliation of Γ(f).

Case n ≥ 1, k = 1, p = 1. According to Lemma 4.7.8 the graph Γ(fv) is
Hartogs n-pseudoconcave in B × Rv, where B is a ball in Cnz × Ru. Hence by
Chirka’s result (see the case n ≥ 1, k = 1, p = 0), the graph Γ(fv) is foliated
by a family {Aα}α∈I of holomorphic hypersurfaces Aα. For α ∈ I define the
function

fαζ : Aα → Cζ by fαζ = fζ |πz,u(Aα)

and identify Γ(fαζ ) with Γ(f |πz,u(Aα)). Suppose that some function fα0

ζ is not
holomorphic. Then by Hartogs’ theorem of separate holomorphicity there is
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a complex one-dimensional curve σα0
in Aα0

on which fα0

ζ is not holomorphic
near a point p0 ∈ σα0

. After a change of coordinates we can assume that p0 = 0,
fα0

ζ (0) = 0 and σα0 = ∆ × {z2 = . . . = zn = w = 0} in a neighborhood of 0,
where ∆ is the unit disc in Cz1 . We set L := Cz1×{0}n−1. By Lemma 4.7.8 the
graph Γ(f•) of f• := f |(B ∩ (L × Ru)) is Hartogs 1-pseudoconcave in C3

z1,w,ζ
.

Thus, in view of the considered above case n = k = p = 1, the graph Γ(f•) is
foliated by complex curves of the form

(f•)
β
ζ : γβ → Cζ with (f•)

β
ζ = (f•)ζ |πz,u(γβ),

where {γβ}β∈I is a family of holomorphic curves of a foliation of πz1,w(Γ(f•)).
From the uniqueness of the foliation on πz,w(Γ(f•)) we deduce that πz1,w(σα0

)
must coincide at least locally with a curve γβ0

containing 0. Hence, in some
neighborhood of 0 we have that γβ0 = ∆× {0} and therefore

fα0

ζ |σ0 = fζ |(∆× {z2 = . . . = zn = 0} × {u = 0})

= (f•)ζ |(∆× {u = 0}) = (f•)ζ |πz,u(γβ0
) = (f•)

β0

ζ .

This means that fα0

ζ has to be holomorphic on a neighborhood of 0 in σα0
,

which is a contradiction to the choice of fα0

ζ and σα0
. Hence, {Γ(fαζ )}α∈I is the

desired foliation of Γ(f).

Case n = 1, k = 1, p ≥ 1. We derive from Lemma 4.7.8 that the graph Γ(fv)
is Hartogs 1-pseudoconcave. Then it follows from Shcherbina’s theorem that the
graph Γ(fv) is foliated by the family {γα}α∈I of holomorphic curves γα. Define
similarly to the previous cases for α ∈ I the mapping

fαζ = (fαζ1 , . . . , f
α
ζp) : γα → Cpζ by fαζ := fζ |πz,u(γα). (4.18)

Since Γ(fv, fj) are Hartogs 1-pseudoconcave due to Lemma 4.7.8, it follows by
the same arguments as in the case n = k = p = 1 that for each j ∈ {1, . . . , p} the
component fαζj : γα → Cζj is holomorphic. Hence, the curve fαζ is holomorphic,
as well, so that Γ(f) is foliated by the family {Γ(fαζ )}α∈I of holomorphic curves.

Case n ≥ 1, k = 1, p ≥ 1. The proof is nearly the same as in the previous
case n = k = 1, p ≥ 1. We only need to replace the curves {γα}α∈I in (4.18)
by complex hypersurfaces {Aα}α∈I obtained from Chirka’s result (case n ≥ 1,
k = 1, p = 0) and to apply the case n ≥ 1, k = 1, p = 1 to each j = 1, . . . , p in
order to show that fαζj : Aα → Cζj is holomorphic on Aα. Then {Γ(fαζ )}α∈I is
a complex foliation of Γ(f).
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The proof of the theorem is finally complete. �

We end this section with the following example which shows that it is not
always possible to foliate a 1-pseudoconcave real 4-dimensional submanifold in
C3 by complex submanifolds, but at least (in this example) by analytic subsets.

Example 4.7.10 For a fixed integer k ≥ 2 consider the function

f(z1, z2) :=

{
z1z2

2+k/z2, z2 6= 0
0, z2 = 0

.

It is Ck-smooth on C2 and holomorphic on complex lines passing through the
origin, since f(λv) = λ2+kf(v) for every λ ∈ C∗ := C\{0} and each vector v ∈ C.
Therefore, in view of Theorem 3.11.3, the function f is 1-holomorphic on C2, so
ψ(z1, z2, w) := − log |f(z1, z2)− w| is 1-plurisubharmonic outside {f = w}. By
Theorem 4.3.2, this means that the graph Γ(f) of f is a 1-pseudoconcave real
4-dimensional submanifold of C3 which does not admit a regular foliation near
the origin, but at least a singular one given by the family of holomorphic curves
{Γ(f |C∗v)}v∈C2 . Of course, the problem arises because the complex Jacobian
of f has non-constant rank near the origin.





Chapter 5

Generalized convex hulls

The classical Cartan-Thullen theorem states that a set Ω in Cn is a domain of
holomorphy if and only if it is holomorphically convex, i.e., for each compact
set K in Ω its convex hull with respect to holomorphic functions on Ω is still
contained in Ω (see Definition 3.8.6 (1)). In this context, we study the link be-
tween hulls generated by subfamilies of q-plurisubharmonic (or q-holomorphic)
functions and q-pseudoconvex sets (compare Theorem 4.3.2). In the case of
q-holomorphic functions, this relation was already analyzed by R. Basener in
[Bas78]. In this context, we will introduce several different hulls and study their
properties and relation to each other. One of them is the generalized polyno-
mially convex hull in the sense of Basener [Bas78], which was also examined by
G. Lupacciolu and E. L. Stout in [LS99]. We give a different characterization
of this hull in terms of plurisubharmonic functions on a foliation by algebraic
analytic sets. We are also interested in a generalized version of Basener’s ratio-
nally convex hull (see [Bas73]). It has been already investigated by G. Corach
and F. D. Suárez in [CS89]. We show that this hull has a description in terms
of smooth positive forms using the results of J. Duval and N. Sibony in [DS95].
Finally, we present the q-pseudoconvex hull of a compact set in Cn, which is
defined by the intersection of all q-pseudoconvex neighborhoods of K. It is also
sometimes called the Nebenhülle of K (see, for example, [DF77]).

At the end of this chapter, we recall the definition and the main properties of
q-maximal sets originally introduced by Z. Słodkowski in [Sło86]. They can be
characterized by the condition that every q-plurisubharmonic function admits
the local maximum principle on them. We show that these sets are linked
to generalized polynomially convex hulls. Moreover, we deduce that the hull
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generated by q-plurisubharmonic functions and the q-pseudoconvex hull both
are q-maximal. Due to a result by Słodkowski, this implies that these two hulls
are (n−q−2)-pseudoconcave.

The whole chapter on generalized convex hulls and q-maximal sets is essen-
tially contained in our article [PZ15]. Especially, the study of these sets was
initialized by E. S. Zeron in order to prove Theorem 5.3.11.

5.1 Hulls created by q-plurisubharmonic functions
We have seen in Theorem 4.3.2 (7) that we can characterize q-pseudoconvexity
by using hulls created by q-plurisubharmonic functions. A natural question
is whether it is possible to generate them by other subfamilies of q-plurisub-
harmonic functions or to use different generalized convex hulls discussed in the
literature.

Definition 5.1.1 Let Ω be an open set in Cn and let K be a compact set in Ω.

(1) Given a family A of upper semi-continuous functions on Ω, we define the
generalized convex hull of K in Ω with respect to A or, for short, the A-hull
of K in Ω by

K̂Ω
A :=

{
z ∈ Ω : ψ(z) ≤ max

K
ψ for every ψ ∈ A

}
.

(2) If Ω = Cn, we simply write K̂A instead of K̂Cn
A .

(3) For a subfamily B of continuous complex valued functions on Ω, the B-hull
of K in Ω is given by

K̂Ω
B :=

{
z ∈ Ω : |f(z)| ≤ ‖f‖K for every f ∈ B

}
.

(4) We say that an open set Ω in Cn is A-convex if for every compact set K its
A-hull K̂Ω

A is compactly contained in Ω.

The generalized convex hulls admit the subsequent properties.

Proposition 5.1.2 Let Ω be an open set in Cn containing a compact set K.

(1) For a family A of upper semi-continuous functions on Ω, we have that

K̂Ω

A↓K
= K̂Ω

A.
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(2) Let B be a family of complex valued continuous functions on Ω. Then

K̂Ω

BK
= K̂Ω

B .

(3) If A1 ⊂ A2 are two subfamilies of upper semi-continuous functions on Ω,
then K̂Ω

A2
lies in K̂Ω

A1
. This implies that, if Ω is A1-convex, then it is also

A2-convex.

(4) Let A1 ⊂ A2 be two families of upper semi-continuous functions on Ω

fulfilling A2
↓K ⊂ A1

↓K
. Then K̂Ω

A1
= K̂Ω

A2
.

(5) Given two families B1 ⊂ B2 of complex valued continuous functions on Ω

satisfying B2
K ⊂ B1

K
, we have that K̂Ω

B1
= K̂Ω

B2
.

Proof. The first statement follows from Proposition 1.3.4. The second one is
a direct consequence of the definition of the uniform closure BK . The third
one follows from the definition of A-convex sets. The last two properties are
immediate consequences of the preceding statements. �

In the next proposition, we examine whether we can characterize q-pseudo-
convexity in terms of hulls generated by different subfamilies of q-plurisub-
harmonic functions.

Proposition 5.1.3 Let Ω be an open set in Cn. Then we have the following
statements.

(1) Ω is q-pseudoconvex if and only if it is PSHcq(Ω)-convex.

(2) Assume that Ω has a C2-smooth boundary. Then Ω is q-pseudoconvex if
and only if it is PSH2

q(Ω)-convex, where PSH2
q(Ω) := PSHq(Ω) ∩ C2(Ω).

Proof. (1) If Ω is q-pseudoconvex in Cn, then in view of Theorem 4.3.2 (4) the
function z 7→ − log d(z, bΩ)+‖z‖22 is a continuous q-plurisubharmonic exhaustion
function for Ω. By Bungart’s approximation theorem 3.5.4, we can construct a
q-plurisubharmonic exhaustion function with corners on Ω. Then we can follow
the proof of the implications (4) ⇒ . . . ⇒ (7) in Theorem 4.3.2 in order to
conclude that Ω is PSHcq(Ω)-convex. On the other hand, since PSHcq(Ω) is a
subfamily of PSHq(Ω), Proposition 5.1.2 (3) and Theorem 4.3.2 (7) imply that
a PSHcq(Ω)-convex set is q-pseudoconvex.
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(2)According to Corollary 4.6.2 and Theorem 4.3.2 (9), the set Ω is q-pseudo-
convex if and only if it is Levi q-pseudoconvex. In view of Vigna Suria’s theo-
rem 4.5.8, we derive that Ω is q-pseudoconvex if and only if it admits a C2-smooth
q-plurisubharmonic exhaustion function. The statement follows now from the
same arguments as in the previous discussion (1). �

We take a closer look to the case q = 0 and recall some classical results in
that case.

Remark 5.1.4 (1) Let Ω be a pseudoconvex set in Cn. Then, in view of
Bremermann’s approximation theorem 3.1.10 and Proposition 5.1.2 (1), the hulls
K̂Ω
O(Ω) and K̂

Ω
PSH(Ω)∩C(Ω) coincide. Moreover, by Corollary 1.3.10 in [Sto07] the

previous hulls are also equal to K̂Ω
PSH(Ω). Then Proposition 5.1.2 (3) gives that

an open set Ω is pseudoconvex if and only if it is holomorphically convex , i.e.,
O(Ω)-convex.

(2) It is obvious that the hull K̂O(Cn) and the polynomially convex hull K̂C[z]

are the same. Here, C[z] is the set of all holomorphic polynomials. Therefore,
it follows from the previous discussion (2) that the hulls K̂PSH(Cn) and K̂C[z]

coincide (see also Corollary 1.3.11 in [Sto07]).

(3)The classical Cartan-Thullen theorem states that a domain Ω in Cn is a
domain of holomorphy if and only if it is holomorphically convex (see, e.g.,
Theorem 2.5.5 in [Hör90]). Furthermore, the solution of the Levi problem (see,
e.g., [Hör90]) gives that Ω is holomorphically convex if and only if it is pseudo-
convex.

The final statement in the previous remark motivates to introduce the fol-
lowing notion.

Definition 5.1.5 An open set Ω in Cn is called q-holomorphically convex if it
is Oq(Ω)-convex.

In general, it is not known so far whether the two notions of q-pseudoconvex
and q-holomorphically convex sets are equivalent if q ≥ 1. In the case of Levi
q-pseudoconvex sets, R. Basener derived a partial answer (see Theorem 3 in
[Bas76]).

Theorem 5.1.6 Let Ω be a bounded domain with C2-smooth boundary.
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1. If Ω is q-holomorphically convex, then it is Levi q-pseudoconvex.

2. If Ω is strictly q-pseudoconvex, then for each p ∈ bΩ there is a neighbor-
hood U of p such that Ω ∩ U is q-holomorphically convex.

There is another relation between q-pseudoconvex sets and the q-plurisub-
harmonic hulls which will serve as an important tool later. It is mainly Corollary
4.2 in [Die06].

Proposition 5.1.7 Let Ω be a q-pseudoconvex domain in Cn and K be a com-
pact subset of Ω. Given any neighborhood V of K̂Ω

PSHq(Ω) in Ω, there exists a
strictly q-plurisubharmonic function ψ with corners on Ω such that ψ < 0 on K
and ψ > 0 on Ω \ V . Moreover, ψ is an exhaustion function for Ω.

In the case of q = 0 and Ω = Cn, the function ψ can be assumed to be
C∞-smooth. Moreover, it is a classical tool to characterize polynomially convex
hulls.

5.2 More generalized convex q-hulls

In [Bas78], R. Basener introduced the following generalized polynomially convex
hull.

Definition 5.2.1 Given a compact set K in Cn and q ∈ {0, . . . , n − 1}, the
polynomially convex q-hull is given by

hq(K) =

{
z ∈ Cn :

z ∈ (K ∩ p−1(0))∧ for every polynomial
mapping p : Cn → Cq with p(z) = 0

}
. (5.1)

We obviously fix C0 = {0}. The notation K∧ = K̂ = K̂C[z] stands for the
classical polynomially convex hull of K (see also Remark 5.1.4 (2)).

The polynomially convex q-hull can be expressed in a purely topological way.

Definition 5.2.2 The topologically convex hull Top-hull(K) of a compact set
K ⊂ Cn is the union of K and all the bounded connected components of its
complement Cn \K.

Corollary 3.4 in [LS99] yields an alternative definition of the polynomially
convex q-hull.
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Theorem 5.2.3 Let K be a compact set in Cn. Then

hq(K) =

{
z ∈ Cn :

p(z) ∈ Top-hull(p(K)) for every
polynomial p : Cn → Cq+1

}
. (5.2)

We can express the polynomially convex q-hull by the hulls given in Defini-
tion 5.1.1, but we have to introduce a new subfamily of functions holomorphic on
complex foliations by algebraic subsets. In this context, recall Definition 3.11.2
and Theorem 3.11.3.

Definition 5.2.4 Given q ∈ {0, . . . , n− 1}, we denote by Opoly
q (Cn) the family

O(H,Cn), where H is the collection of all holomorphic polynomial mappings
p : Cn → Cq.

The relation between the different hulls defined above is given by the follow-
ing result.

Proposition 5.2.5 For every integer q ∈ {0, . . . , n− 1} and compact set K in
Cn the following inclusions hold,

K̂PSHq(Cn) ⊂ K̂Oq(Cn) ⊂ hq(K) = K̂Opoly
q (Cn).

Proof. We deduce from Remark 5.1.4 (2) and Definition 5.2.1 that K̂PSH(Cn),
K̂O(Cn), K̂Opoly

0 (Cn) and h0(K) are all equal to the polynomially convex hull K̂,
so we take from now on q ≥ 1.

We have already seen that K̂PSHq(Cn) is contained in K̂Oq(Cn), since log |f | is
q-plurisubharmonic on Cn for every function f in Oq(Cn) according to Proposi-
tion 3.10.2 (8). Furthermore, Theorem 3.11.5 and Proposition 5.1.2 imply that
K̂Oq(Cn) is contained in K̂Opoly

q (Cn). Hence, it remains to show that K̂Opoly
q (Cn) =

hq(K).
Assume that z0 does not belong to hq(K). Then there is a polynomial

mapping p0 : Cn → Cq such that p0(z0) = 0 and z0 does not lie in the poly-
nomially convex hull of p−1

0 (0)∩K. Therefore, there exists another polynomial
p1 : Cn → C such that p1(z0) = 1 and |p1(z)| < 1 for every point z ∈ K∩p−1

0 (0).
Let a > 0 be large enough such that |p1(z)| < 1 + a‖p0(z)‖22 for every z in K.
We define the following function on Cn,

f(z) :=
p1(z)

1 + a‖p0(z)‖22
.
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The function f lies in Opoly
q (Cn), since p1 is holomorphic and p0 is constant on

p−1
0 (c) for every c ∈ p0(Cn). Moreover, we have that ‖f‖K < 1 and f(z0) = 1,

so that z0 /∈ K̂Opoly
q (Cn). Hence, the hull K̂Opoly

q (Cn) is contained in hq(K).
On the other hand, take z1 ∈ hq(K) and f ∈ Opoly

q (Cn). Let p : Cn → Cq be
a polynomial mapping such that f is holomorphic on p−1(c) for every c ∈ p(Cn).
We may assume without loss of generality that p(z1) = 0, so that z1 lies in the
polynomially convex hull of K ∩ p−1(0) according to definition (5.1). Let F
be an entire holomorphic function on Cn whose restriction to p−1(0) coincides
with f (recall Theorem 3.11.4). Since the generalized convex hulls with respect
to polynomials and entire functions coincide (see Remark 5.1.4 (2)) and z1 ∈
(K ∩ p−1(0))∧, the following inequalities hold,

|f(z1)| = |F (z1)| ≤ ‖F‖K∩p−1(0) = ‖f‖K∩p−1(0) ≤ ‖f‖K .

These inequalities imply that z1 belongs to the hull K̂Opoly
q (Cn). Finally, we can

conclude that hq(K) is equal to K̂Opoly
q (Cn). �

In the literature, there is also Basener’s generalized version of the rationally
convex hull (see, e.g., [Bas73] and [CS89]).

Definition 5.2.6 Let K be a compact set in Cn and let q ∈ {0, . . . , n− 1} be
an integer.

(1) The rationally convex q-hull of K is given by

rq(K) =

{
z ∈ Cn :

p(z) ∈ p(K) for every
polynomial p : Cn → Cq+1

}
(5.3)

(2) We obviously have have that rn−1(K) = K after taking p(z) = z.

J. Duval and N. Sibony have shown that the positive forms are strongly
related to the classical rationally convex hull r0(K) (see Theorem 2.1 in [DS95]).
We prove below that a similar connection exists between the positive forms and
the rationally convex q-hulls. We assume that the reader is familiar with (p, q)-
forms, so that we only repeat the notion and the basic properties of positive
forms. For the proofs and more properties on differential forms and positive
currents we refer to Chapter III.1 in Demailly’s online book [Dem12].
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Definition & Remark 5.2.7 Let q ∈ {1, . . . , n} and let Ω be an open set in
Cn.

(1) A form u on Ω of bidegree (q, q) is positive if for every q-dimensional complex
plane π the restriction of u to π is a positive volume form on π.

(2) The support of u in Ω is defined by supp(u) := {z ∈ Ω : uz 6= 0}.

(3) If ψ is a C∞-smooth function on Ω, then ψ is plurisubharmonic if and only
if the (1,1)-form i∂∂ψ is positive.

(4) Given finitely many C∞-smooth plurisubharmonic functions ψ1, . . . , ψq on
Ω, the following (q, q)-form is positive on Ω,

q∧
j=1

i∂∂ψj := i∂∂ψ1 ∧ . . . ∧ i∂∂ψq.

We obtain the following characterization of rationally convex q-hulls.

Proposition 5.2.8 Let K be a compact set in Cn. Given an integer q in
{1, . . . , n}, the point z0 /∈ rq−1(K) if and only if there exists a closed positive
smooth form u of bidegree (q, q) such that z0 lies in supp(u), the set K does not
meet supp(u) and u =

∧q
j=1 i∂∂ψj for finitely many entire C∞-smooth pluri-

subharmonic functions ψ1, . . . , ψq.

Proof. We follow the arguments of J. Duval and N. Sibony in [DS95] in the
case q = 1.

We first prove the necessity. Given z0 /∈ rq−1(K), there exists a polynomial
mapping p = (p1, . . . , pq) : Cn → Cq such that p(z0) = 0, but 0 /∈ p(K). We can
choose n small perturbations pj,k of every function pj , j = 1, . . . , q, such that:

• For every j = 1, . . . , q and k = 1, . . . , n we have that pj,k(z0) = 0 .

• For every j = 1, . . . , q, the functions pj,1, . . . , pj,n give local coordinates at
z0.

• For every k = 1, . . . , n it holds that 0 /∈ (p1,k, . . . , pq,k)(K) .

Let % : Cn → R be a non-negative smooth function with compact support in
the unit ball B1(0). Assume that %(ζ) = %(|ζ|) on Cn and that

∫
Cn %(ζ)dV (ζ) =
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1. For ε > 0 we additionally define %ε(ζ) = ε−2n%(ζ/ε). Then the form uε below
has bidegree (q, q) and is closed and positive on Cn,

uε :=

q∧
j=1

(
n∑
k=1

i∂∂
(

log |pj,k| ∗ %ε
))

,

where ∗ denotes the classical integral convolution. Finally, for ε > 0 small
enough we achieve that (uε)z0 6= 0 and the set K does not meet supp(u).
Setting u := uε for this particular ε > 0 finishes the first part of this statement.

On the other hand, in order to prove the sufficiency, we define uj := i∂∂ψj
and Vj,δ := {z ∈ Cn : d(z, supp(uj)) < δ} for δ > 0 and the index j = 1, . . . , q.
Notice that supp(u) is equal to

⋂q
j=1 supp(uj). Thus, the given assumptions

imply that z0 lies in each supp(uj), j = 1, . . . , q and the set K does not in-
tersect

⋂q
j=1Vj,δ for δ > 0 small enough. Since the compact set K \ Vj,δ does

not meet supp(uj), we can proceed as in the proof of Theorem 2.1 in [DS95]
and deduce the existence of hypersurfaces H1, . . . ,Hq in Cn such that for every
j = 1, . . . , q the point z0 lies in Hj , but Hj does not meet K \Vj,δ. After a small
perturbations of the hypersurface Hj we can assume that each one of them is
algebraic and has the same properties as above. More precisely, for every index
j = 1, . . . , q there is a polynomial mapping p = (p1, . . . , pq) : Cn → Cq such
that Hj = p−1

j (0), pj(z0) = 0 and 0 /∈ pj(K \ Vj,δ). Whence, p(z0) = 0 and
0 /∈ p(K \ Vj,δ) for each index j = 1, . . . , q. Finally, since K does not meet⋂q
j=1Vj,δ, we can easily conclude that 0 /∈ p(K), and so z0 /∈ rq−1(K). �

Based on the results of Duval and Sibony, S. Nemirovski [Nem07] was able
to develop the following example related to rationally convex sets.

Example 5.2.9 Let K be the union of finitely many disjoint compact balls in
Cn. Then K = r0(K).

The next hull which we will introduce in this section is related to the Neben-
hülle of a compact set in the case for q = 0 (see, e.g., [DF77]). It is motivated
by the fact that a closed set K is convex in Rn if and only if it is the intersection
of all closed convex sets surrounding K.

Definition 5.2.10 Given an integer q ∈ {0, . . . , n − 1} and a compact set K
in Cn, the q-pseudoconvex hull Hq(K) denotes the intersection

⋂
j∈J Uj of all

q-pseudoconvex neighborhoods Uj of K.
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We give some properties of the q-pseudoconvex hull.

Proposition 5.2.11 Let K be a compact set Cn and q ∈ {0, . . . , n− 1}.

(1) The q-pseudoconvex hull Hq(K) is compact.

(2) For every neighborhood V of Hq(K) in Cn there exists another open neigh-
borhood U of Hq(K) such that U b V and U is q-pseudoconvex in Cn.

(3) The interior of Hq(K) is q-pseudoconvex, provided it is not empty.

(4) If K has a neighborhood system of q-pseudoconvex sets, then it coincides
with its q-pseudoconvex hull.

(5) We have that Hn−1(K) = K and that Hq(K̂A) = K̂A for any subfamily A
of q-plurisubharmonic functions on Cn.

Proof. (1) The hull Hq(K) ⊂ Cn is bounded, since we can always enclose K
by a pseudoconvex open ball Br(0) centered at the origin of Cn and of radius
r > 0 large enough. By definition, the hull Hq(K) is then contained in Br(0).

We show that the hull Hq(K) is closed as well. Assume that it is not the
case, so that Hq(K)\Hq(K) contains some point p. By the definition of the hull
there exists an open neighborhood W of K which is q-pseudoconvex but which
does not contain p. By the definition of q-pseudoconvexity, the set W admits a
continuous q-plurisubharmonic exhaustion function ψ. Consider the set

D :=
{
z ∈W : ψ(z) < 1 + max

K
ψ
}
. (5.4)

Since ψ is an exhaustion function for W , we have that K ⊂ D bW . Then Ex-
ample 4.5.4 (1) yields the q-pseudoconvexity of D in Cn, and so the hull Hq(K)

is contained in D. But this means that K ⊂ Hq(K) ⊂ D ⊂ W . Since we have
assumed that p /∈ W but p ∈ Hq(K), we immediately obtain a contradiction.
Thus, the hull Hq(K) is compact in view of the discussion before.

(2) Pick up an arbitrary neighborhood V of Hq(K) in Cn. Since the set Hq(K)
is compact, we may assume that V is bounded, so its boundary bV is also
compact. Let z be any point in bV . Since z does not lie in Hq(K), there is an
open neighborhood Wz of Hq(K) which is q-pseudoconvex in Cn, but z /∈ Wz.
We now proceed as in the discussion above by producing a q-plurisubharmonic
exhaustion function ψz for Wz and an open set Dz as in (5.4), such that Dz

is a relatively compact q-pseudoconvex set in Cn, the hull Hq(K) is contained
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in Dz, but Dz does not meet an open ball Bz := Br(z) centered in z ∈ bV
and of radius r = rz > 0 small enough. Then the collection {Bz}z∈bV is a
cover for the compact set bV , so we can pick a finite subcover {Bzk}`k=1 of bV .
Now Proposition 4.1.2 (1) implies that the finite intersection U :=

⋂`
k=1Dzk

is an open q-pseudoconvex set. Moreover, since each Dzk is an open relatively
compact set which contains Hq(K), the set U is an open relatively compact
neighborhood of Hq(K) lying in V .

(3)This fact follows directly from Proposition 4.3.3 and the definition of the
q-pseudoconvex hull.

(4)This observation is a direct consequence of the definition of Hq(K).

(5)These statements follow from the precedent one using Corollary 4.2.4, Ex-
ample 4.5.4 (1) and the definition of A-hulls. �

We may now present a more detailed relation between the q-hulls. For more
properties of generalized convex hulls, we refer to E. L. Stout’s book [Sto07].

Proposition 5.2.12 Let q ∈ {0, . . . , n− 1} and let K be a compact set in Cn.
Then we have the following contentions,

K̂PSHq+1(Cn) ⊂ Hq(K) ⊂ K̂PSHq(Cn)

∩ ∩ ∩
hq+1(K) ⊂ rq(K) ⊂ hq(K)

(5.5)

Proof. The inclusion K̂PSHq(Cn) ⊂ hq(K) has been already verified in Propo-
sition 5.2.5.

It is easy to see that rq(K) is contained in hq(K) according to equations
(5.2) and (5.3).

We also have that hq+1(K) is contained in rq(K). Indeed, given any point
z /∈ rq(K), there exists a polynomial mapping p : Cn → Cq+1 such that p(z) = 0
and the intersection of p−1(0) and K is empty, so that z does not lie in hq+1(K)
in view of equation (5.1).

We derive from Proposition 5.2.11 (5) that Hq(K) is contained in the hull
K̂PSHq(Cn).

Now we show that Hq(K) lies in rq(K). Indeed, if z0 /∈ rq(K), there exists
a polynomial mapping p : Cn → Cq+1 such that p(z0) = 0, but 0 /∈ p(K). We
know from Proposition 4.2.3 that − log ‖ · ‖2 is q-plurisubharmonic on the open
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set Cq+1 \ {0}. Thus, the function ψ := − log ‖p‖2 is q-plurisubharmonic on
Cn \ p−1(0) and fulfills ψ(z0) = +∞. Then the set U := {w ∈ Cn : ψ(w) <
1 + maxK ψ} is an open neighborhood of K which does not contain z0. Since in
view of Example 4.5.4 the set U is q-pseudoconvex, the hull Hq(K) is contained
in U , but z0 /∈ Hq(K).

It remains to verify that K̂PSHq+1(Cn) is a subset of Hq(K). To see this
inclusion, we pick a point z1 /∈ Hq(K). By Proposition 5.2.11 (2) there is a rela-
tively compact q-pseudoconvex neighborhood W of K in Cn such that z1 /∈W .
By Theorem 4.3.2 (4), the function %(z) := − log d(z, bW ) is q-plurisubharmonic
on W , and K lies in {% < c} for some c ∈ R. In view of Proposition 3.3.2 (6),
the function ϕ := min{%, c} is (q + 1)-plurisubharmonic on W . Moreover, since
%(z) tends to +∞ if z approaches the boundary of W , the function ϕ is upper
semi-continuous on W and satisfies ϕ(z) = 1 for every z ∈ bW . Therefore,
in view of Proposition 3.3.2 (10), we can extend ϕ by the constant c to an
(q + 1)-plurisubharmonic function defined on the whole of Cn. We denote this
extension again by ϕ. Since p 6∈ W and K ⊂ {% < c}, we have that ϕ(p) = c

but ϕ = % < c on K. Hence, p does not lie in the hull K̂PSHq+1(Cn). �

5.3 q-Maximal sets and q-hulls
We show that the polynomially convex q-hull and the q-pseudoconvex hull satisfy
a special version of the local maximal modulus principle for certain holomorphic
polynomials. We begin by recalling Słodkowski’s definition of 0-maximal sets
(see [Sło86]).

Definition 5.3.1 Let X be a non-empty locally closed set in Cn, so that X =
V ∩ X for some open set V in Cn. The set X is said to be 0-maximal (in V)
if it fulfills the local maximum modulus principle on X, i.e., for every compact
subset K of X and holomorphic polynomial p : Cn → C it holds that

‖p‖K ≤ ‖p‖bXK , (5.6)

where bXK denotes the relative boundary of K in X.

We give an important observation on the compactness of 0-maximal sets.

Remark 5.3.2 An interesting consequence of Definition 5.3.1 is that no com-
pact set X in Cn can be 0-maximal, since the relative boundary bXX is empty
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after taking K = X in equation (5.6). It can be proved in a similar way that
no 0-maximal set can have compact connected components.

The previous definition can be reformulated using the closures of a bounded
open sets instead of compact sets (compare also Proposition 2.3 in [Sło86]).

Lemma 5.3.3 Let V be an open set in Cn and let X be a locally closed set
with V ∩ X. The set X is 0-maximal if and only if for each open relatively
compact subset W of V and every holomorphic polynomial p : Cn → C we have
that

‖p‖X∩W ≤ ‖p‖X∩bW (5.7)

Proof. The inequality (5.6) immediately implies (5.7) after observing that the
following sets are all compact,

X ∩W = X ∩ V ∩W = X ∩W and bX(X ∩W ) = X ∩ bW.

On the other hand, given any compact set K ⊂ X, the interior of K in X
is equal to A ∩X for some open set A in Cn with compact closure A ⊂ V . We
have that X ∩ A is contained in K, so that X ∩ bA is contained in the relative
boundary bXK. Therefore, the inequality (5.7) implies (5.6) after observing
that at least one of the following equations holds,

‖p‖K = ‖p‖bXK or ‖p‖K = ‖p‖X∩A ≤ ‖p‖X∩bA ≤ ‖p‖bXK .

The first equation above holds when |p| takes its maximum at the relative bound-
ary bXK and the second one is fulfilled when the maximum is taken at the
relative interior of K in X. �

The polynomially convex hull and the 0-maximal sets are related as follows.

Theorem 5.3.4 Let X = V ∩ X be a 0-maximal set in some open set V
in Cn. If X is bounded, then X\V is compact and non-empty, and X lies in
the polynomially convex hull of X \ V .

Proof. The difference X\V is compact, since X is bounded and V is open. We
also have that X\V is not empty. Otherwise, the set X is completely contained
inside V . Hence, X = X is compact, and so in view of Remark 5.3.2, it cannot
be a 0-maximal.
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Now take a collection of open bounded subsets {Wk}k∈N in V such that
Wk bWk+1 and V =

⋃∞
k=1Wk. Let w ∈ X be a fixed point and p : Cn → C be

a holomorphic polynomial. We can suppose without loss of generality that w
lies in Wk for every index k ∈ N. Since for each k ∈ N the set W k is compact,
Lemma 5.3.3 implies that

|p(w)| ≤ ‖p‖X∩Wk
≤ ‖p‖X∩bWk

≤ ‖p‖X\Wk
for every k ∈ N.

Since V =
⋃∞
k=1Wk, we have that |p(w)| ≤ ‖p‖X\V . Since w is an arbitrary

point in X and p : Cn → C is an arbitrary holomorphic polynomial, we conclude
that X lies in the polynomially convex hull of X\V . �

The precedent result fails if we relax the conditions on X.

Remark 5.3.5 (1) Define V := Cn \ B1(0) and X := B2(0) \ B1(0). Then
X = V ∩ X, but X fails to be 0-maximal in V . Moreover, the polynomially
convex hull of X \ V = bB1(0) is the whole of B1(0) by the local maximum
modulus principle, so that X cannot lie in the polynomially convex hull of X\V .

(2) It is easy to see that the real axis X = R is closed and 0-maximal in the
complex plane C, but the difference X \ V is empty for every open set V that
contains X.

Now we recall the definition of q-maximal sets originally introduced by
Z. Słodkowski in [Sło86].

Definition 5.3.6 Given an integer q ∈ {0, . . . , n − 1}, a non-empty locally
closed setX = V ∩X is said to be q-maximal if for every complex q-codimensional
affine plane π the intersection X ∩ π is 0-maximal.

Słodkowski showed that the q-maximal sets can be characterized in various
different ways using q-plurisubharmonic functions and q-pseudoconvex sets. For
details we refer to Theorem 2.5, Corollary 2.6, Theorem 4.2 and Theorem 5.1
in [Sło86].

Theorem 5.3.7 (Słodkowski, 1986) Fix an integer q ∈ {0, . . . , n − 1} and
let X = V ∩X be a locally closed set in Cn. Then X is q-maximal if it admits
one of the following properties.

(1) The intersection X ∩p−1(0) is 0-maximal for every holomorphic polynomial
mapping p : Cn → Cq.
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(2) The following function χ is (n−q−1)-plurisubharmonic on V ,

χ(z) :=

{
0, z ∈ X
−∞, z ∈ V \X .

(3) The set X is (n−q−2)-pseudoconcave in V .

(4) For every open set U in Cn with U ∩X 6= ∅, every compact set K in X ∩U
and each q-plurisubharmonic function ψ on U we have that

max
K

ψ = sup{ψ(z) : z ∈ bX∩UK},

where bX∩UK is the relative boundary of K in X ∩ U .

Theorem 5.3.4 can be extended to polynomially convex q-hulls as follows.

Theorem 5.3.8 Let X = V ∩X be a bounded q-maximal set in an open subset
V of Cn. Then X is contained in the polynomially convex q-hull hq(X\V ).

Proof. The set X \ V is compact and non-empty according to Theorem 5.3.4.
Let z be any fixed point in X and let p : Cn → Cq be a holomorphic polynomial
mapping such that p(z) = 0. Then we derive from Theorem 5.3.7 (1) that
X∩p−1(0) is 0-maximal. Hence, Theorem 5.3.4 implies that the point z belongs
to the polynomially convex hull of the following compact set,(

X\V
)
∩ p−1(0) =

(
X ∩ p−1(0)

)
\ V.

Thus, we conclude that X lies inside the hull hq(X\V ). �

We show that certain generalized q-hulls are q-maximal.

Proposition 5.3.9 For any compact set K in Cn, we have that K̂PSHq(Cn) \K
and Hq(K) \K are q-maximal.

Proof. Denote by Π one of the hulls K̂PSHq(Cn) or Hq(K). Given a compact
set E ⊂ Π and a q-plurisubharmonic function ψ defined on a neighborhood U
of E in Cn, we assert that the following equality holds,

sup{ψ(z) : z ∈ E} = sup
{
ψ(z) : z ∈ (E ∩K) ∪ bΠE

}
, (5.8)
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where bΠE is the boundary of E relative to Π. The identity (5.8) obviously
holds when E \K has empty interior with respect to the topology of Π, since
in this case E = bΠE ∪ (E ∩K). Thus, we assume from now on that E \K has
non-empty interior. We follow the proof of Theorem 2.18 in [Sto07], which is
originally due to J. P. Rosay for the case of q = 0. In order to get a contradiction,
suppose that the result is false. Then there exist a constant C0 and a point p0

in the interior of E \K relative to Π such that

ψ(p0) > C0 > sup
{
ψ(z) : z ∈ (E ∩K) ∪ bΠE

}
. (5.9)

We can assume without loss of generality that ψ(p0) > C0 > 0. Choose a small
enough open neighborhood U0 of the compact set E, such that U0 b U and the
inequality ψ < C0 holds on U0 ∩K and Π ∩ bU0. Define the function

ψ0 :=

{
C0, on Cn \ U0

max{ψ,C0}, on U0
. (5.10)

Notice that ψ0(p0) = ψ(p0) > C0, but ψ0 ≤ C0 on K. Since ψ < C0 on the
compact set Π∩ bU0, we can find a relatively compact open neighborhood V of
Π such that ψ < C0 on V ∩bU0 and ψ0 patches to a q-plurisubharmonic function
on V in view of Proposition 3.3.2 (10).

Now if Π = Hq(K), by Proposition 5.2.11 (2) there is a q-pseudoconvex
neighborhood W of Hq(K) with W b V . Then Example 4.5.4 implies that
W0 := {z ∈W : ψ0(z) < ψ0(p0)} is a q-pseudoconvex neighborhood of K which
does not contain p0. Therefore, the hull Hq(K) lies in W0 but p0 /∈ Hq(K),
which contradicts the assumption p0 ∈ E ⊂ Hq(K). Hence, the identity (5.8)
holds if Π is the q-pseudoconvex hull of K.

In the case of Π = K̂PSHq(Cn), first recall that V is a neighborhood of Π
and C0 > 0. By Proposition 5.1.7, there is a continuous q-plurisubharmonic
function ϕ on Cn such that ϕ < 0 on K and ϕ > 0 on Cn \ V . We define for a
real number C2 > 0 the following function,

ψ1 :=

{
C2ϕ, on Cn \ V
max{ψ0, C2ϕ}, on V

.

Notice that ψ1(p0) ≥ ψ0(p0) > C0, but ψ1 ≤ C0 on K according to equa-
tions (5.9) and (5.10). The property (10) in Proposition 3.3.2 implies that,
if C2 is chosen large enough, then ψ1 is q-plurisubharmonic on Cn. There-
fore, p0 /∈ K̂PSHq(Cn). This is again a contradiction to the assumption that
p0 ∈ E ⊂ K̂PSHq(Cn). Finally, we can conclude that (5.8) is true also in the
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case of Π = K̂PSHq(Cn). �

We close this section by mentioning the initial motivation to study comple-
ments of generalized convex hulls.

Remark 5.3.10 Let D be a pseudoconvex domain in C2. It is known that if
a compact set K lies in the complement of D, then D\K̂O(C2) is again pseudo-
convex (see e.g., Theorem 5.2.8 in [Sto07]). This result is no longer true for
higher dimensions. Indeed, let B be the unit ball B1(0) in C3 and consider
the compact set K = {(z, 0, 0) ∈ C3 : |z| = 1}. Then the hull K̂O(C3) equals
∆ := {(z, 0, 0) ∈ C3 : |z| ≤ 1}, but B \ K̂O(C3) is not pseudoconvex, since every
holomorphic function on B \ ∆ extends holomorphically into the whole of the
ball B.

Anyway, in order to get a similar result in the case of higher dimensions we
have to use q-pseudoconvex or q-plurisubharmonic hulls.

Theorem 5.3.11 Fix q ∈ {0, . . . , n−1}. Let K be a compact set in Cn and let
Π be one of the hulls Hn−q−2(K) or K̂PSHn−q−2(Cn). Then Cn \Π is q-pseudo-
convex in Cn \K. Moreover, if D is a q-pseudoconvex domain in Cn such that
K lies in the complement of D, then the set D \Π is q-pseudoconvex.

Proof. In view of Proposition 5.3.9, the set X := Π \ K is (n−q−2)-maximal
in V := Cn \ K. Then Theorem 5.3.7 (3) implies that V \ X = Cn \ Π is q-
pseudoconvex in V = Cn \K. Now if D is a q-pseudoconvex domain in Cn and
K ⊂ Cn \D, then the intersection X ∩D = D \Π is q-pseudoconvex according
to Proposition 4.1.2 (1). �





Chapter 6

The Bergman-Shilov
boundary

Given a compact Hausdorff spaceX and a subfamilyA of upper semi-continuous
(or continuous complex valued) functions on X, the Shilov boundary for A is the
smallest closed subset of X on which all functions from A attain their maximum
(or, respectively, their absolute maximum). It is interesting to give conditions on
X and A to guarantee the existence and uniqueness of the Shilov boundary. The
concept of such a distinguished boundary of certain compact sets K in C2 for
holomorphic functions defined on a neighborhood of K was already introduced
by S. Bergman in [Ber31]. Later in the 1940s, it was G. Shilov who studied a
similar boundary for Banach algebras of continuous functions on compact sets.
This boundary is nowadays known as the Shilov boundary and is important for
complex analysis as well as for pluripotential theory. By historical reasons, it is
legitimated to call it Bergman-Shilov boundary, but for the sake of abbreviation
we keep using the classical notation.

H. J. Bremermann [Bre59] studied the Shilov boundary based on plurisub-
harmonic functions on compact sets K in Cn without showing its existence.
This gap was filled by, e.g., J. Siciak in [Sic62]. In particular, he showed that
the Shilov boundary exists and is unique if A has some simple structure, e.g.,
if A is additive and if sublevel sets of finitely many exponentials of functions
from A generate the topology of K. Unfortunately, Siciak’s result does not
apply to q-plurisubharmonic functions, since they are not additive. To overcome
this problem, we establish a more general result on the existence of the Shilov
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boundary under mild conditions on the Hausdorff space X and the family A
(compare also the existence theorems in [Aiz93] for compact sets in Cn).

E. Bishop proved in [Bis59] that, if the compact Hausdorff space X is ad-
ditionally metrizable, then the closure of the set of peak points and the Shilov
boundary for uniform subalgebras of continuous functions coincide (see also
[Dal71] and [Hon88]). Using upper semi-continuous functions, similar identi-
ties were obtained in [Sic62] and [Wit83b]. We apply these results to unions of
uniform algebras and establish additional Bishop-type peak point theorems for
special families of upper semi-continuous functions on Hausdorff spaces.

The study of the Shilov boundary for upper semi-continuous functions and
the development of generalized Bishop type peak point theorems is the content
of the article [Paw13].

6.1 Shilov boundary for upper semi-continuous
functions
We will define the Bergman-Shilov or, for short, the Shilov boundary for subfam-
ilies of upper semi-continuous functions and show some of their basic properties.

Definition 6.1.1 Let X be a compact Hausdorff space and A a family of upper
semi-continuous functions on X.

(1) For a given upper semi-continuous function f on X we set

S(f) = SX(f) := {x ∈ X : f(x) = max
X

f}.

(2) A subset S of X is called a boundary for A (or A-boundary) if the intersec-
tion S ∩ S(f) is not empty for every f ∈ A.

(3) We denote by bA = bA(X) the set of all closed boundaries for A (in X).

(4) The set ŠA = ŠA(X) :=
⋂
S∈bA S is called the Shilov boundary for A (in

X).

We give some simple examples.

Example 6.1.2 (1) Let X = [0, 2] and consider the upper semi-continuous
functions f1 = χ{0,1} and f2 = χ{1,2}. ForA = {f1, f2} we have that {0, 2}, {1} ∈
bA(X), ŠA(X) is empty and that SX(f1) ∩ SX(f2) = {1}.
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(2) Let X = [0, 1] and f1 = χ{0} and f2 = χ{1}. We take A = {f1, f2} and
observe that {0, 1} ∈ bA(X), SX(f1) ∩ SX(f2) = ∅ and ŠA(X) = {0, 1}.

(3)Consider the functions f1 = χ{−1,1} and f2 = χ{0} defined on X = [−1, 1]

and set A = {f1, f2}. Then {−1, 0}, {0, 1} ∈ bA(X), so ŠA(X) = {0}, but
ŠA(X) cannot be anA-boundary inX since the function f1 attains its maximum
outside of zero.

We have the following properties of Shilov boundaries.

Proposition 6.1.3 Let X be a compact Hausdorff space and let A be a family
of upper semi-continuous functions on X.

(1) The set ŠA(X) is closed and possibly empty, whereas bA(X) is never empty.

(2) SX(f) is a closed non-empty subset of X.

(3) If the set T :=
⋂
f∈A

SX(f) consists of more than two elements, then ŠA(X)

is empty.

(4) If the set T from (3) above consists of one single element x0 ∈ X and
ŠA(X) 6= ∅, then ŠA(X) = {x0}.

(5) The set S :=
⋃
f∈A SX(f) is an A-boundary.

(6) If A1 ⊂ A2 are two families of upper semi-continuous functions on X, then
we have the following inclusions,

bA2(X) ⊂ bA1(X) and ŠA1(X) ⊂ ŠA2(X).

(7) Let A =
⋃
j∈J Aj , where Aj are subsets of USC(X). If for every j ∈ J the

set ŠAj (X) is an Aj-boundary in X, then ŠA(X) is an A-boundary in X
and

ŠA(X) =
⋃
j∈J

ŠAj (X).

(8) The set of all A-boundaries in X coincides with the set of all A↓-boundaries
in X, i.e.,

bA(X) = bA↓(X) and ŠA(X) = ŠA↓(X).
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Proof. (1) The set ŠA(X) is closed, because it is an intersection of closed sets.
Example 6.1.2 (1) shows that ŠA(X) might be empty. The set bA(X) contains
at least the whole space X.

(2) Since f is upper semi-continuous on X, the set {x ∈ X : f(x) < maxX f} is
open in X, so the set SX(f) = X \ {x ∈ X : f(x) < maxX f} is a closed subset
of X. It is non-empty because every upper semi-continuous function attains a
maximal value on a compact Hausdorff space due to Proposition 1.3.1.

(3) Pick two distinct elements x0, x1 from T . By definition {x0} and {x1} are
A-boundaries in X and, thus, ŠA(X) ⊂ {x0} ∩ {x1} = ∅.
(4)Under these assumptions, {x0} is an A-boundary in X. Therefore, ∅ 6=
ŠA(X) ⊂ {x0} which yields ŠA(X) = {x0}.
(5)The set S is an A-boundary in X, since S ∩ SX(f) = SX(f) 6= ∅ for every
f ∈ A.
(6)This fact follows directly from the definition.

(7)The previous points (1) and (6) imply that S :=
⋃
j∈J ŠAj (X) is in bA(X).

By assumption, the set S and, therefore, the set ŠA are non-empty. Since
an arbitrary function f ∈ A is contained in Aj for some j ∈ J and by the
assumption that ŠAj (X) is an Aj-boundary in X, we obtain that

∅ 6= SX(f) ∩ ŠAj (X) ⊂ SX(f) ∩ S ⊂ SX(f) ∩ ŠA(X).

This means that S is an A-boundary in X and so ŠA(X) ⊂ S. Altogether we
have that S = ŠA(X) is an A-boundary in X.

(8)This statement is a direct consequence of the corresponding definitions and
Proposition 1.3.4.

�

We can easily bring our concept of the Shilov boundary into relation with
the classical Shilov boundary for uniform subalgebras of C(X).

Remark 6.1.4 Let B be a subset of C(X). The classical Shilov boundary
for B is the smallest closed subset S of X fulfilling maxS |f | = maxX |f | for
every f ∈ B. Clearly, it corresponds to the Shilov boundary for the family
log |B| := {log |f | : f ∈ B}. Therefore, it then makes sense to use the notation
bB(X) and ŠB(X) instead of blog |B|(X) and Šlog |B|(X). Moreover, it is obvious
that for the uniform closure B of B in C(X) we have that ŠB(X) = ŠB(X).
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6.2 Existence of the Shilov boundary
Now we recall the classical result named after Shilov who worked on the bound-
aries of Banach algebras in the 1940s.

Theorem 6.2.1 (Shilov, 1940s) Let X be a compact Hausdorff space and B
a Banach subalgebra of C(X). Then ŠB(X) is non-empty and, moreover, it is a
boundary for the family log |B| in X.

In this theorem the Banach algebra structure of B is heavily involved. We
will extract the essential properties from that structure in order to establish
similar results for Shilov boundaries for subfamilies of upper semi-continuous
functions.

Definition 6.2.2 Let A, A1 and A2 be subfamilies of upper semi-continuous
functions on a Hausdorff space X.

(1) We set A1 +A2 := {f + g : f ∈ A1, g ∈ A2}.

(2) The family A is a scalar cone if nf + b lies in A for every n ∈ N0 = N∪{0},
f ∈ A and b ∈ R. Here we use the convention −∞ · 0 = 0.

(3) The family A is a convex cone if af + bg is contained in A for every a, b in
[0,+∞) and f, g in A.

(4) An open set V in X is an A-polyhedron if there exist finitely many functions
f1, . . . , fn in A and real numbers C1, . . . , Cn such that

V = V (f1, . . . , fn) = {x ∈ X : f1(x) < C1, . . . , fn(x) < Cn}.

(5) The family A generates the topology of X if for every point x ∈ X and every
neighborhood U of x in X there is an A-polyhedron V such that x ∈ V ⊂ U .

Now we are able to show that the Shilov boundary for A is a non-empty
boundary for A if A possesses some simple structure. The following two state-
ments are based on standard arguments used in the case of Banach subalgebras
of continuous functions (see, e.g., Theorem 9.1 in [AW98]). First, we need the
following lemma.

Lemma 6.2.3 Let X be a compact Hausdorff space and A ⊂ USC(X) be
a scalar cone. Assume that there exist an A-boundary S ∈ bA(X) and an
A-polyhedron V=V (f1, . . . , fn) such that S ∩ V = ∅ and A + {fj} ⊂ A for
every j = 1, . . . , n. Given another A-boundary E ∈ bA(X), it follows that
E \ V ∈ bA(X).
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Proof. Since A is a scalar cone and A + {fj} ⊂ A for every j = 1, . . . , n, the
constant function 0 and so f1, . . . , fn lie in A. Hence, we can assume that V is
of the form V = {x ∈ X : f1(x) < 0, . . . , fn(x) < 0}.

Observe first that E \ V is non-empty. Otherwise, E ⊂ V , so maxE fj < 0
for every j = 1, . . . , n. Since S does not meet V , there has to be an index
j0 ∈ {1, . . . , n} such that maxS fj0 ≥ 0. We obtain the contradiction 0 ≤
maxS fj0 = maxE fj0 < 0.

Now suppose that the statement of this lemma is false, i.e., there are a point
y ∈ X and a function f ∈ A such that maxE\V f < maxX f = f(y). Since A is
a scalar cone and S ∈ bA(X), we can assume that f(y) = 0 and y ∈ S. Consider
for fixed m ∈ N and j=1, . . ., n the function gj := mf + fj ∈ A. If m is large
enough, then maxE\V gj < 0 for each j=1, . . . , n. Since maxX f = 0 and fj < 0
on V for every j=1, . . . , n, we have that gj(x) < 0 for every x ∈ V . Hence,
maxX gj = maxE gj < 0 for every j=1, . . . , n. Finally, we assert that y ∈ V .
If not, there is an index j1 ∈ {1, . . . , n} with fj1(y) ≥ 0 and, thus, gj1(y) ≥ 0,
which is impossible. Thus, y ∈ V ∩ S = ∅ which is a contradiction. This proves
that E \ V is an A-boundary. �

We show a version of Shilov’s theorem for a quite general family A of upper
semi-continuous functions onX. We have to point out that L. Aı̆zenberg already
showed this result in the setting where X is a compact subset of Cn and A is a
family of upper semi-continuous functions on X satisfying f + log ‖z − c‖2 ∈ A
for every f ∈ A and c ∈ Cn (see Chapter III, Theorem 14.1 and Corollary 14.2
in [Aiz93]). Anyway, our version extends L. Aı̆zenberg’s result to a more general
situation in which X is an arbitrary compact Hausdorff space.

Theorem 6.2.4 Let X be a compact Hausdorff space and A be a family of up-
per semi-continuous functions on X. If A contains a subset A0 which generates
the topology of X such that A + A0 ⊂ A, then the Shilov A-boundary is an
A-boundary in X, i.e.,

ŠA(X) ∈ bA(X).

Proof. If ŠA(X) = X, then there is nothing to show, so we can assume
that ŠA 6= X. We first treat the case of A being a scalar cone and ŠA being
not empty. In order to get a contradiction, suppose that ŠA(X) is not an
A-boundary in X. Then there is a function f ∈ A such that maxŠA(X) f <
maxX f . Since f is upper semi-continuous on X, there is an open neighborhood
U of ŠA(X) such that f(x) < maxX f for every x ∈ U . Then, due to the fact
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that A0 generates the topology of X, we conclude that for every y ∈ L := X \U
there are an A0-polyhedron Vy and an A-boundary Sy ∈ bA(X) such that y ∈ Vy
and Vy ∩ Sy = ∅. The family {Vy}y∈L covers L. Hence, by the compactness
of L, there are finitely many points y1, . . . , y` ∈ L such that the subfamily
{Vyj}j=1,...,` covers L. Since A+A0 ⊂ A, we can apply iteratively the previous
Lemma 6.2.3 in order to obtain that

E := (((X \ Vy1
) \ Vy2

) \ . . . \ Vy`) = X \
⋃̀
j=1

Vyj ∈ bA(X).

Notice that, by the construction, the set ŠA(X) lies in E and, therefore, E is
non-empty. Moreover, E ⊂ U and so maxE f < maxX f , but this contradicts
to the fact that E ∈ bA(X). Hence, ŠA(X) ∈ bA(X).

In the case of A being a scalar cone and ŠA(X) = ∅, we pick an arbitrary
point p ∈ X and a neighborhood U of p in X which is an A0-polyhedron of the
form U = {x ∈ X : f1(x) < 0, . . . , fk(x) < 0} and satisfies U 6= X. Observe
that for every y ∈ X \U there exists an A-boundary Sy in X with y /∈ Sy, since
otherwise y ∈ ŠA(X), which is absurd. Then we can choose an A0-polyhedron
Vy such that y ∈ Vy, p /∈ Vy and Sy ∩ Vy is empty. By the same arguments
as above we can construct an A-boundary E such that p ∈ E ⊂ U . Since
U 6= X, there exists a point x0 ∈ X \ U and an index k0 ∈ {1, . . . , k} such that
fk0

(x0) ≥ 0. This leads to the contradiction

0 ≤ fk0(x0) ≤ max
X

fk0 = max
E

fk0 < 0.

Thus, ŠA(X) cannot be empty.
If A is not necessarily a scalar cone, consider the scalar cone generated by

A,
A∗ := {nf + c : n ∈ N0, f ∈ A, c ∈ R}.

Since A lies in A∗, we have that bA∗(X) ⊂ bA(X) and ŠA(X) ⊂ ŠA∗(X). Pick
an arbitrary A-boundary S in X and a function nf + c ∈ A∗, where f ∈ A,
n ∈ N and c ∈ R. Since f and nf + c attain their maximum at the same points,
we have that

S ∩ SX(nf + c) = S ∩ SX(f) 6= ∅.

This means that S is also an A∗-boundary in X, so bA(X) = bA∗(X) and
ŠA(X) = ŠA∗(X). Now observe that the family A∗0 := {nf + c : n ∈ N0, f ∈
A0, c ∈ R} generates the topology of X, since it contains A0. Moreover, we
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have that A∗ + A∗0 ⊂ A∗ and that A∗ is a scalar cone. Thus, by the previous
discussions, we conclude that

ŠA(X) = ŠA∗(X) ∈ bA∗(X) = bA(X).

This finishes the proof. �

6.3 Minimal boundary and peak points
We recall the definition of a minimal boundary and peak points in the sense of
E. Bishop (see [Bis59]), which are closely related to the Shilov boundary.

Definition 6.3.1 Let A be a subfamily of upper semi-continuous functions on
a Hausdorff space X.

(1) We denote by BA(X) the set of all (possibly non-closed) boundaries for A
in X. By Definition 6.1.1 (1) the set BA(X) contains bA(X).

(2) If there exists a subset mA(X) in BA(X) such that mA(X) is contained in
every boundary for A, then this set will be called the minimal boundary for
A (in X).

(3) A point x ∈ X is called peak point for A if there is a (peak) function f ∈ A
such that S(f) = {x}. We say that f peaks at x. We denote by PA(X) the
set of all peak points for A.

(4) For B being a subset of C(X) we use the same simplification of notations as
in Remark 6.1.4. Namely, we write BB(X), mB(X) and PB(X) instead of
Blog |B|(X), mlog |B|(X) and Plog |B|(X), respectively.

All the sets mA(X), PA(X) and ŠA(X) are possibly empty. If mA(X) is
non-empty, it is not necessarily closed, while ŠA(X) is by definition always a
closed subset of X. The following examples show that the sets mA(X), ŠA(X)
and PA(X) may differ or might be empty.

Example 6.3.2 (1) We enumerate the subset L = [0, 1] ∩ Q of X = [0, 1] by
a sequence (xn)n∈N. For the subfamily A = {χ{xn} : n ∈ N} of upper semi-
continuous functions on X, we have that

PA(X) = mA(X) = L ( ŠA(X) = [0, 1].
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(2) In contrast to the previous example, by Example 6.1.2 (1) we can see that
there is a subfamily A of USC(X) such that ŠA(X), PA(X) and mA(X) are all
empty.

We give some properties of the Shilov boundary, the minimal boundary and
the peak points and their mutual relations.

Proposition 6.3.3 Let A be a subfamily of upper semi-continuous functions
on a compact Hausdorff space X.

(1) The set PA(X) lies in every A-boundary S from BA(X). If PA(X) is itself
an A-boundary, then it is exactly the minimal boundary mA(X).

(2) Each peak point x ∈ X for A belongs to each boundary for A. Moreover,
if mA(X) exists, then

PA(X) ⊂ mA(X) ⊂ ŠA(X).

(3) If mA(X) exists, then ŠA(X) = mA(X).

(4) Let A1 ⊂ A2 ⊂ USC(X). Then we have the following inclusions,

BA2
(X) ⊂ BA1

(X) and PA1
(X) ⊂ PA2

(X).

If mA1
(X) and mA2

(X) exist, then mA1
(X) ⊂ mA2

(X).

(5) Let A =
⋃
j∈J Aj , where Aj are subsets of USC(X). Then

PA(X) =
⋃
j∈J

PAj (X).

If mAj (X) exists for every j ∈ J , then mA(X) exists and

mA(X) =
⋃
j∈J

mAj (X).

Proof. (1) Let x ∈ PA(X) and f ∈ A such that f peaks at x. Given an A-
boundary S, it is clear that S ∩ S(f) = {x}. In particular, the point x lies in
S. This yields the inclusion PA(X) ⊂ S. Now if PA(X) lies in BA(X), then by
the previous discussion and by the definition of the minimal boundary for A,
we have that PA(X) = mA(X).
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(2) Since mA(X) ∈ BA(X), it follows from the property (1) and the definition
of mA(X) that PA(X) ⊂ mA(X) ⊂ S for every S ∈ bA(X) ⊂ BA(X). Hence,
mA(X) ⊂ ŠA(X).

(3) Since ŠA(X) is closed and mA(X) ⊂ ŠA(X) by the previous point (2),
mA(X) is a subset of ŠA(X). On the other hand, mA(X) is contained in
BA(X), and therefore mA(X) is a closed A-boundary. By the definition of the
Shilov boundary, this means that ŠA(X) ⊂ mA(X), and so mA(X) = ŠA(X).

(4)These inclusions follow immediately from the definitions of the corresponding
sets.

(5)The identity PA(X) =
⋃
j∈J PAj (X) is obvious.

In order to show that m :=
⋃
j∈J mAj (X) is a minimal A-boundary, pick an

arbitrary function f ∈ A. Then f ∈ Aj for some index j ∈ J . By assumption,
mAj (X) is a minimal boundary for Aj . Thus, we obtain that

∅ 6= S(f) ∩mAj (X) ⊂ S(f) ∩m,

implying that m ∈ BA(X). Now let S be an arbitrary A-boundary in X. By
point (4), we have that S ∈ BA(X) ⊂ BAj (X) for every j ∈ J . Therefore,
mAj (X) ⊂ S for every j ∈ J and, thus, m ⊂ S. This shows the minimality of
m, so mA(X) = m. �

6.4 Peak point theorems
We recall some necessary notions which build the setting of Bishop’s theorem.

Definition 6.4.1 Let X be a Hausdorff space.

(1) We say that X is metrizable if it has a metric which induces the given
topology. In this case, its topology admits a countable base.

(2) Let A be a subset of complex or real valued functions on X. Then we say
that A is separating or separating function of X if for every x, y ∈ X, x 6= y,
there exists a function f ∈ A such that f(x) 6= f(y).

We recall Bishop’s peak point theorem for uniform algebras of continuous
functions (see Theorem 1 in [Bis59]). Further generalizations were already ob-
tained by H. G. Dales to Banach function algebras (see [Dal71] and [Hon88])
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and by Z. Siciak to certain additive subfamilies of continuous functions (see
Theorem 3 in [Sic62]).

Theorem 6.4.2 (Bishop, 1959) Let X be a compact metrizable Hausdorff
space and B a separating uniform subalgebra of C(X). Then the minimal bound-
ary of B in X exists and is exactly the set of all peak points for B in X, i.e.,
mB(X) = PB(X).

Bishop’s theorem applies to unions of uniform subalgebras.

Corollary 6.4.3 Suppose B is a union of separating uniform subalgebras (Bj)j∈J
of C(X), where X is a metrizable compact Hausdorff space. Then mB(X) exists
and

mB(X) = PB(X) and ŠB(X) = PB(X).

Proof. By Bishop’s theorem mBj (X) exists and coincides with PAj (X) for
every j ∈ J . By Proposition 6.3.3 (5), we obtain that mB(X) is the minimal
boundary for B and

PB(X) =
⋃
j∈J

PBj (X) =
⋃
j∈J

mBj (X) = mB(X).

The identity ŠB(X) = PB(X) follows now from Proposition 6.3.3 (3). �

Bishop presented the following examples in [Bis59].

Example 6.4.4 (1) Bishop’s theorem fails in general if X is not necessarily
metrizable. To see this, consider the compact set

X :=
{
x = {xα}α∈R : xα ∈ [0, 1] for every α ∈ R

}
and the family A of continuous functions f on X which fulfill the subsequent:
if x, y ∈ X and xα = yα for countably many α ∈ R, then f(x) = f(y). By the
Stone-Weierstraß theorem, we have that A is exactly the set of all continuous
functions on X and forms a separating Banach algebra. For c ∈ R define the
set

Sc := {x ∈ X : xα = c for almost every α ∈ R}.

Then Sc is a boundary for C(X), but Sc ∩ Sd is empty for c 6= d. Therefore,
C(X) has no minimal boundary.



156 Chapter 6. The Bergman-Shilov boundary

(2) Let X be the boundary of the unit disc ∆ := ∆1(0) in C. Let B be the
family of all continuous functions f on X which have a holomorphic extension
F inside the unit disc ∆ and which satisfy F (0) = f(1). Then B is a separating
Banach subalgebra of C(∆) such that

mB(X) = X \ {1}, but ŠB(X) = X.

We will give another peak point theorem. But first, we introduce a useful
subfamily of upper semi-continuous functions.

Definition 6.4.5 Let A be a subfamily of upper semi-continuous functions on
a (not necessarily) Hausdorff space X and let Θ be a subset of non-negative
continuous functions on X with the following property: for each x ∈ X and
each closed subset S of X with x /∈ S there exists a function ϑ ∈ Θ such that
SX(ϑ) = {x} and ϑ vanishes on S. We say that a function f ∈ A is a strictly
A-function with respect to Θ if for every ϑ ∈ Θ there is a number ε0 > 0 such
that f + εϑ ∈ A for every ε ∈ (−ε0, ε0). The subfamily of A consisting of all
strictly A-functions with respect to Θ is denoted by A[Θ].

The main motivation for this definition is the following example.

Example 6.4.6 Let Ω be an open set in Cn and let Θ be the set of all C∞-
smooth functions on Cn with compact support in Ω. Then in view of Re-
mark 3.4.2 we easily derive that PSHq(Ω)[Θ] is exactly the set of all strictly
q-plurisubharmonic functions on Ω.

Involving strictlyA-functions, we can now present another version of Bishop’s
theorem which better incorporates the properties of subfamilies of q-plurisub-
harmonic functions.

Theorem 6.4.7 Let A be a subfamily of upper semi-continuous functions on
a compact Hausdorff space X. Suppose that there exist a subfamily Θ from
Definition 6.4.5 and a positive function ω ∈ A[Θ] such that A + {εω} ∈ A[Θ]
for every positive number ε > 0. Then

ŠA(X) = PA(X) ∈ bA(X).

Proof. First, observe that PA[Θ](X) is non-empty. Indeed, the function ω
attains its maximum on X, say at a point x0 ∈ X. Pick a function ϑ ∈ Θ with
SX(ϑ) = {x0}. Then there is a positive number δ > 0 such that ω+ δϑ belongs
to A. Therefore, 2ω + δϑ is in A[Θ] by the assumption made on ω. Moreover,
SX(2ω + δϑ) = {x0} and, thus, x0 ∈ PA[Θ](X).
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The non-empty set PA[Θ](X) is obviously a subset of ŠA[Θ](X). In order to
verify the converse inclusion, we show that S := PA[Θ](X) is a boundary for the
family A[Θ]. In order to get a contradiction, suppose that this is not the case.
Then there exists a function f ∈ A[Θ] such that maxX f > maxS f . If ε0 > 0
is small enough, the function g := f + ε0ω also fulfills maxX g > maxS g. Let
x1 be a point in X \ S such that g(x1) = maxX g and let θ be a function from
Θ such that SX(θ) = {x1} and θ vanishes on S. In particular, we have that
θ(x1) > 0. Then for a small enough number ε1 > 0 the function f + ε1θ is in
A. Hence, the function h := g + ε1θ = f + ε1θ + ε0ω lies in A[Θ] and fulfills
SX(h) = {x1}. Thus, x1 ∈ PA[Θ](X) ⊂ S, but this contradicts to

max
S

h = max
S

g < max
X

g = g(x1) < h(x1) ≤ max
S

h.

Therefore, S has to be a A[Θ]-boundary, implying that ŠA[Θ](X) is contained
in S. Hence, Proposition 6.3.3 (1) yields

PA[Θ](X) = ŠA[Θ](X) ∈ bA[Θ](X).

Now let f be an arbitrary function from A. It follows that the sequence (fn)n∈N
of functions fn := f + (1/n)ω in A[Θ] decreases to f . This implies that A lies
in the closure of A[Θ]. Since A[Θ] is a subset of A and, in view of Proposi-
tion 6.1.3 (8), we have that bA(X) = bA[Θ](X) and ŠA[Θ](X) = ŠA(X). Finally,
the proof is finished due to the following inclusions,

ŠA(X) = ŠA[Θ](X) = PA[Θ](X) ⊂ PA(X) ⊂ ŠA(X).

�





Chapter 7

The q-Shilov boundaries

The abbreviation q-Shilov boundary stands for the Shilov boundary created by
subfamilies of q-plurisubharmonic or q-holomorphic functions. We apply the
results in the precedent Chapter 6 in order to obtain existence theorems of q-
Shilov boundaries and the peak point theorems for a vast number of subfamilies
of q-plurisubharmonic and q-holomorphic functions. The monotone closure in-
troduced in Chapter 1 and the approximation techniques achieved in Chapter 3
allow us to restrict the considerations on the q-Shilov boundaries to a smaller
number of subfamilies of q-plurisubharmonic. For instance, the Shilov boundary
for q-plurisubharmonic functions and that for C2-smooth ones coincide. In the
case of a bounded domain with C2-smooth boundary, its Shilov boundary for q-
plurisubharmonic functions is exactly the closure of all strictly q-pseudoconvex
boundary points. The latter statement extends the observations by L. R. Hunt
and J. J. Murray [HM78] which are based on results of R. Basener [Bas78] in
the case of q-holomorphic functions. We give the relation of q-Shilov boundaries
to lower dimensional ones and also compare the q-Shilov boundaries to the q-th
order Shilov boundary introduced by R. Basener in [Bas78].

The main result of this chapter is the generalization of S. N. Bychkov’s
theorem [Byč81] which gives a geometric characterization of the Shilov boundary
of a convex body in Cn in terms of real and complex boundary points. The
latter ones are boundary points of a convex body lying in an open part of a
complex plane which is situated inside the boundary of that convex body. If
there exists such a plane which has complex dimension at least q, then this
boundary point is q-complex. Based on Bychkov’s result and our observations
on lower dimensional Shilov boundaries, we can verify that the complement of

159
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the Shilov boundary for q-plurisubharmonic functions is exactly the interior of
all (q + 1)-complex points. We also show that the Shilov boundary of convex
bodies for q-plurisubharmonic functions and that for continuous functions which
are holomorphic on leaves of a foliation by complex planes of codimension q are
identical.

A. G. Vitushkin conjectured that the Hausdorff dimension of the Shilov
boundary for holomorphic functions on convex bodies sets in Cn is greater or
equal to n. Bychkov [Byč81] was able to show that this is true for n = 2 using the
fact that, in the two-dimensional setting, the boundary part of the complement
of the Shilov boundary is foliated by parallel complex lines. This is false in
general for higher dimensions due to an example by N. Nikolov and P. J. Thomas
[NT12]. It seems that Vitushkin’s conjecture remains open. Anyway, using
Bychkov’s result, we give an estimate on the Hausdorff dimension of the q-Shilov
boundaries of convex bodies in Cn.

This chapter is mostly contained in the article [Paw13].

7.1 Shilov boundary and q-plurisubharmonicity
We will analyze the relation between the different Shilov boundaries for sub-
families of q-plurisubharmonic.

Definition 7.1.1 Fix k ∈ {∗, c, 0, 1, . . . ,∞} and q ∈ N0. Let A be an analytic
subset of an open set Ω in Cn.

(1) We set C∗(A) := USC(A). Furthermore, for k 6= c, the symbol Ck(A)
denotes the family of all real-valued functions f defined on A such that
for each point p ∈ A there exist a neighborhood U of p and a function
F ∈ Ck(U) with F = f on A ∩ U .

(2) We define PSHkq (A) := PSHq(A) ∩ Ck(A), if k 6= c.

(3) For a compact set K in A, the family PSHkq (K) stands for the family of all
upper semi-continuous functions f on K such that there are a neighborhood
U of K in A and F ∈ PSHkq (U) with F = f on K.

We also introduce new subfamilies of r-plurisubharmonic functions on sin-
gular foliations. In this context, recall Definition 3.9.5.

Definition 7.1.2 Let k ∈ {∗, 0, 1, . . . ,∞}, q ∈ {0, . . . , n − 1} and r ∈ N0.
Assume that H = {hj : Uj → Cq}j∈J is a web of singular foliations on an open
set Ω in Cn.
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(1) We define PSHkr (H,Ω) := PSHr(H,Ω) ∩ Ck(Ω).

(2) Let K be a compact set in Ω. An upper semi-continuous function ψ lies in
the family PSHkr (H,K) if there exist an open neighborhood V of K and
a function Ψ in PSHkr (H ′, V ∩ Ω), where H ′ := {hj |V ∩ Uj}j∈J , such that
Ψ = ψ on K.

(3) If r = 0, we sometimes skip the lower index r and simply write PSHk(H,Ω)
and PSHk(H,K) instead of PSHk0(H,Ω) and, respectively, PSHk0(H,K).

The Shilov boundaries for the new families defined above are related as
follows.

Remark 7.1.3 With the notations of the preceding two definitions and by
Theorem 3.9.6, we have the following scheme of inclusions:

ŠPSHkr (Ω)(K) ⊂ ŠPSHkr (H,Ω)(K) ⊂ ŠPSHkq+r(Ω)(K)

∪ ∪ ∪
ŠPSHkr (K)(K) ⊂ ŠPSHkr (H,K)(K) ⊂ ŠPSHkq+r(K)(K)

The same is true for the sets of peak points and the minimal boundaries for the
corresponding families.

We show the existence of the Shilov boundary for certain subfamilies of q-
plurisubharmonic functions and establish respective peak point properties.

Proposition 7.1.4 Let A be an analytic subset of an open set Ω in Cn and let
X be a compact subset of A. Given k ∈ {∗, c, 0, 1, . . . ,∞}, q ∈ {0, . . . , n − 1}
and r ∈ N0, we have that

PPSHkq (A)(X) = ŠPSHkq (A)(X) and PPSHkq (X)(X) = ŠPSHkq (X)(X).

If k 6= c and H = {hj : Uj → Cq}j∈J is a web of singular foliations on Ω and K
is a compact subset of Ω, then it holds that

PPSHkr (H,Ω)(K) = ŠPSHkr (H,Ω)(K) and PPSHkr (H,K)(K) = ŠPSHkr (H,K)(K).

Moreover, each of this sets is a boundary for the respective families.

Proof. Let Θ be the set of all C∞-smooth functions with compact support on Ω
and define ω(z) := ‖z‖22 + 1 for z ∈ Cn. Denote by A any of the families men-
tioned in this proposition. Since ω+εf belongs to A for every ε > 0 and f ∈ A,
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we can apply Theorem 6.4.7 to Θ, A and ω in order to get PA = ŠA ∈ bA. �

It is natural to ask whether the various q-Shilov boundaries coincide.

Proposition 7.1.5 Given a compact set K in Cn we have that

PPSH2
q(K)(K) = PPSHcq(K)(K)

and ŠPSH2
q(K)(K) = ŠPSHcq(K)(K) = ŠPSH0

q(K)(K) = ŠPSHq(K)(K).

Proof. Since PSH2
q(K) ⊂ PSHcq(K) ⊂ PSH0

q(K) ⊂ PSHq(K), we derive for
the set of peak points of these families that

PPSH2
q(K)(K) ⊂ PPSHcq(K)(K) ⊂ PPSH0

q(K)(K) ⊂ PPSHq(K)(K). (7.1)

Then it follows from the first part of Proposition 7.1.4 that

ŠPSH2
q(K)(K) ⊂ ŠPSHcq(K)(K) ⊂ ŠPSH0

q(K)(K) ⊂ ŠPSHq(K)(K).

Assume now that there is a function ψ ∈ PSHcq(K) which peaks at some
point p ∈ bK. Then there exist a bounded open neighborhood U of p and
finitely many C2-smooth q-plurisubharmonic functions ψ1, . . . , ψk on U such
that ψ = maxj=1,...,k ψj on U . By picking a slightly smaller neighborhood of p
and denoting it again by U , we can arrange that for every j ∈ {1, . . . , k} the
function ψj is defined on a neighborhood of U . Pick an index j0 ∈ {1, . . . , k}
such that ψ(p) = ψj0(p). Since ψ peaks at p, we have that

ψj0(p) = ψ(p) > ψ(z) ≥ ψj0(z) for every z ∈ (U ∩K) \ {p}.

Hence, ψj0 peaks at p in K ∩U . Since ψj0 is continuous on U , we can choose a
suitable constant c ∈ R such that

ψj0(p) > c > max
bU∩K

ψj0 .

By Lemma 3.5.9, for some positive number ε the function ϕ := m̃axε{ψj0 , c}
is C2-smooth and q-plurisubharmonic on a neighborhood of U ∩K. In view of
Lemma 3.5.8 (3), we can choose ε > 0 so small that the function ϕ peaks at p
in K ∩ U and fulfills ϕ ≡ c on a neighborhood of bU ∩K. Thus, we can extend
ϕ by the constant c into a neighborhood of K \U in order to obtain a function
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from PSH2
q(K) which peaks at p. Since p was an arbitrary peak point for the

family PSHcq(K), we obtain the inclusion PPSHcq(K)(K) ⊂ PPSH2
q(K)(K). Since

the converse inclusion is obviously true, we conclude that PPSHcq(K)(K) equals
PPSH2

q(K)(K), so Proposition 7.1.4 yields the identity

ŠPSH2
q(K)(K) = ŠPSHcq(K)(K).

Furthermore, Słodkowski’s approximation theorem 3.5.1 and Bungart’s approx-
imation theorem 3.5.4 imply the inclusions

PSHq(K) ⊂ PSH0
q(K)

↓K
and PSH0

q(K) ⊂ PSHcq(K)
↓K
.

Therefore, Proposition 6.1.3 (8) gives

ŠPSHq(K)(K) ⊂ Š
PSH0

q(K)
↓K (K) = ŠPSH0

q(K)(K)

⊂ ŠPSHcq(K)
↓K (K) = ŠPSHcq(K)(K)

⊂ ŠPSHq(K)(K).

Hence, we obtain the remaining identities

ŠPSHq(K)(K) = ŠPSH0
q(K)(K) = ŠPSHcq(K)(K).

�

We can derive the following local-to-global peak point property from the proof
of the previous result.

Proposition 7.1.6 Let p be a boundary point of a compact set K in Cn. If p
is a local peak point for q-plurisubharmonic functions with corners, i.e., there
is a neighborhood U of p and a q-plurisubharmonic function ψ with corners on
U such that ψ(p) > ψ(z) for every z ∈ (U ∩K) \ {p}, then p is a (global) peak
point for PSH2

q(K).

The following connection between Shilov boundaries for smooth and con-
tinuous plurisubharmonic functions on a singular foliation follows directly from
Theorem 3.9.11 and Proposition 6.1.3 (8).
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Proposition 7.1.7 Fix an integer q ∈ {0, . . . , n − 1}. Let h : Ω → Cq be a
holomorphic mapping on a Stein open set Ω in Cn and let K be a compact
subset of Ω. Then

ŠPSH(h,Ω)(K) = ŠPSH∞(h,Ω)(K).

If K has a neighborhood basis of Stein open sets, then

ŠPSH(h,K)(K) = ŠPSH∞(h,K)(K).

Before we give a precise characterization of the Shilov boundary for q-pluri-
subharmonic functions in terms of strictly q-pseudoconvex boundary points, we
fix the subsequent notation.

Definition 7.1.8 Let D be a bounded domain in Cn with C2-smooth boundary.
Given an integer q ∈ {0, . . . , n−1}, denote by Sq(D) the set of all points p ∈ bD
such that D is strictly q-pseudoconvex at p (recall Definition 4.5.5 for the notion
of strict q-pseudoconvexity).

We extend the observations by L. R. Hunt and J. J. Murray in [HM78] on
the link between the Shilov boundary for q-plurisubharmonic functions and the
set of all strict q-pseudoconvex points.

Theorem 7.1.9 Let q ∈ {0, . . . , n− 1} and let D be a bounded domain in Cn
with C2-smooth boundary. Then

ŠPSHq(D)(D) = Sq(D).

Proof. It follows from Theorem 5.6 in [HM78] that

PPSH2
q(D)∩C0(D)(D) ⊂ Sq(D) and Sq(D) ⊂ PPSHq(D)∩C0(D)(D).

Since PSH2
q(D) ⊂ PSH2

q(D) ∩ C0(D), we easily obtain the inclusion

PPSH2
q(D)(D) ⊂ Sq(D). (7.2)

Hence, according to Propositions 7.1.5 and 7.1.4, we have that

ŠPSH2
q(D)(D) = ŠPSHq(D)(D) = PPSH2

q(D)(D) ⊂ Sq(D). (7.3)

On the other hand, let p ∈ Sq(D). Then there is a neighborhood U of p and a
C2-smooth strictly q-plurisubharmonic function ρ on U such that ρ vanishes on
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bD∩U and ρ(z) < 0 if z ∈ U∩D. Since ρ is strictly q-plurisubharmonic, there is
a positive constant ε > 0 such that ϕ(z) := ρ(z)− ε‖z−p‖22 remains q-plurisub-
harmonic on U . Moreover, ϕ(p) = 0 and ϕ(z) < 0 for every z ∈ (U∩D)\{p}. In
view of Proposition 7.1.6, the point p is also a global peak point for the family
PSH2

q(D). Since p is an arbitrary point from Sq(D), it follows that Sq(D) lies
in PPSH2

q(D). Since by Proposition 7.1.4 the set ŠPSH2
q(D)(D) equals the closure

of PPSH2
q(D)(D), the statement follows now from the inclusions (7.3). �

Some parts of the Shilov boundary for q-plurisubharmonic functions on
smoothly bounded domains admit a complex foliation. For further results on
complex foliations of real submanifolds we refer to [Fre74].

Theorem 7.1.10 Let q ∈ {1, . . . , n−1} and let D be a bounded pseudoconvex
domain in Cn with C2-smooth boundary. Then the following relative open part
in bD of the Shilov boundary for PSHq(D),

Fq(D) := intbD

(
ŠPSHq(D)(D) \ ŠPSHq−1(D)(D)

)
,

locally admits a foliation by complex q-dimensional submanifolds, provided it
is not empty.

Proof. Since Sq(D) is relatively open in the boundary of D, Theorem 7.1.9
implies that

Fq(D) = intbD

(
Sq(D) \ Sq−1(D)

)
= Sq(D) \ Sq−1(D). (7.4)

Given a defining function % of D, we deduce from the definition of the set
Sq(D), from the pseudoconvexity of D and from the identities in (7.4) that for
each point p ∈ Fq(D) the Levi form L% of % at p has exactly n−q−1 positive
and q zero eigenvalues on the holomorphic tangent space HpbD to bD at p. In
particular, for each point p in Fq(D) the Levi null space Np is q-dimensional
(recall Definition 4.7.4). Then it follows from Theorem 1.1 in [Fre74] that the
set Fq(D) locally admits a foliation by complex q-dimensional submanifolds. �

We close this section by presenting a subfamily of q-plurisubharmonic func-
tions which arises naturally, but which has a trivial Shilov boundary.
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Remark 7.1.11 LetK be a convex body in Cn and letA be the family of upper
semi-continuous functions on K which are q-plurisubharmonic on the interior
of K. In view of Theorem 6.2.4, the Shilov boundary ŠA for A exists. By the
local maximum principle in Proposition 3.3.2 (11), the Shilov boundary for A
is contained in the boundary of K. On the other hand, pick a point x in the
boundary of K. Then the characteristic function χ{x} of the set {x} in K lies
in A and peaks at x. Hence, we have that the whole boundary of K coincides
with PA(K). Since the set of all peak points for A lies in the Shilov boundary
for A, we conclude that ŠA(K) = bK.

7.2 Shilov boundary and q-holomorphicity

We introduce new subfamilies of q-holomorphic functions. Most of the families
we will define are based on families which already appeared in the literature in
the study of the classical Shilov boundary.

Definition 7.2.1 Let q ∈ {0, . . . , n−1} and K be a compact set in Cn. Denote
by int(K) the interior of K.

(1) We set Aq(K) := Oq(int(K))∩ C(K). In the case of q = 0, we simply write
A(K) instead of A0(K).

(2) A continuous function f on K lies in Oq(K) if there exist an open neigh-
borhood U of K and a function F ∈ Oq(U) with F = f on K. If q = 0, it
is convenient to us that O(K) stands for O0(K).

(3) By historical reasons [Ber31], the Shilov boundary for the family O(K) is
also called the Bergman boundary of K.

We are also interested in the Shilov boundary for the following subfamilies
of functions holomorphic on singular foliations.

Definition 7.2.2 Fix q ∈ {0, . . . , n− 1} and let H := {hj : Uj → Cq}j∈J be a
web of singular foliations of an open set Ω in Cn.

(1) We set A(H,K) := O(H, int(K)) ∩ C(K).

(2) A function f belongs to the family O(H,K) if there are an open neighbor-
hood V of K and a function F ∈ O(H ′, V ∩Ω), where H ′ := {hj |V ∩Uj}j∈J ,
such that F = f on K.
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We have the following properties of the respective Shilov boundaries for this
new subfamilies of q-holomorphic functions.

Proposition 7.2.3 Let q ∈ {0, . . . , n − 1} and let K be a compact set in an
open set Ω in Cn. Let H := {hj : Uj → Cq}j∈J be a web of singular foliations
on Ω. If B is any of the families from Definitions 7.2.1 and 7.2.2 or even one of
the families Oq(Ω) or O(H,Ω), then the Shilov boundary for B exists and fulfills
ŠB(K) = PBK (K). Moreover, we have the following scheme of inclusions:

ŠOq(Ω)(K) ⊂ ŠOq(K)(K) ⊂ ŠAq(K)(K)
∪ ∪ ∪

ŠO(H,Ω)(K) ⊂ ŠO(H,K)(K) ⊂ ŠA(H,K)(K)

Proof. The scheme of inclusions follows directly from the definition of the cor-
responding families and from Theorem 3.11.5.

Let B be any of the families Oq(Ω), Oq(K), Aq(K), O(H,Ω), O(H,K) or
A(H,K). Pick a function f ∈ B and denote by Bf the uniform closure (in C(K))
of the algebra generated by f and and the family of holomorphic functions
O(Cn). Now we set B• :=

⋃
f∈B Bf . Then it follows from Proposition 3.10.2 (4)

that Bf ⊂ B
K

for every f ∈ B. Therefore,

B ⊂ B• ⊂ B
K

and bB(K) = bBK (K) ⊂ bB•(K) ⊂ bB. (7.5)

Therefore, all the Shilov boundaries for B, B• and B
K

are the same. Since we
can apply Bishop’s theorem 6.4.2 to each uniform algebra Bf , Proposition 6.4.3
and (7.5) yield

ŠB(K) = ŠB•(K) = PB•(K) ∈ bB•(K) = bB(K).

Finally, the subsequent chain of contentions gives the remaining peak point
property ŠB(K) = PBK (K),

ŠB(K) = ŠB•(K) = PB•(K) ⊂ PBK (K) ⊂ ŠBK (K) = ŠB(K).

�

The following remark gives a relation between Shilov boundaries generated
by subfamilies of q-holomorphic and q-plurisubharmonic functions.
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Remark 7.2.4 (1) Let Ω be an open set in Cn and fix k ∈ {0, 1, . . . ,∞} and
q ∈ {0, . . . , n − 1}. Pick a function f ∈ Okq (Ω) := Oq(Ω) ∩ Ck(Ω). Then
by Proposition 3.10.2 (8), the function log |f | is q-plurisubharmonic on Ω and
belongs to Ck(Ω \ {f = 0}). Now consider the ψm := m̃ax1/m{log |f |,−m} for
m ∈ N. In view of Lemma 3.5.9, it lies in Ck(Ω) and is q-plurisubharmonic on
the whole of Ω. Moreover, the sequence {ψm}m∈N decreases to log |f | on Ω.
Thus, for every compact set K in Ω it holds that

log |Okq (Ω)| ⊂ PSHkq (Ω)
↓K
, and therefore ŠOkq (Ω)(K) ⊂ ŠPSHkq (Ω)(K).

(2) Let Ω be a Stein open set and K be a compact subset of Ω. Assume that
h : Ω → Cq is a holomorphic mapping, where q ∈ {0, . . . , n − 1}. Then Theo-
rems 3.11.5 and 3.11.8 yield

ŠPSH0(h,Ω)(K) = ŠO(h,Ω)(K) ⊂ ŠOq(Ω)(K)

If, in addition, K has a neighborhood basis of Stein open sets, then

ŠPSH0(h,K)(K) = ŠO(h,K)(K) ⊂ ŠOq(K)(K).

The following example is due to L. Aı̆zenberg and can be found in his book
[Aiz93] or in Example 1 in §16.3 of Fuks’ book [Fuk65]. It shows that the Shilov
boundary for A(K) and the Bergman boundary of K may differ in general.

Example 7.2.5 Let D :=
{

(z, w) ∈ C2 : 0 < |w| < 1, |z| < |w|− log |w|}.
Observe that for m, k ∈ N the function fm,k(z, w) := w−mzk belongs to A(K).
Then the Shilov boundary for A(D) is the set {|w| ≤ 1, |z| = ϕ(w)}, where
ϕ(w) := |w|− log |w| for 0 < |w| < 1 and ϕ(0) := 0. On the other hand, by the
local modulus maximum principle for holomorphic functions, we derive that the
Bergman boundary of D is equal to {|z| = 1, |w| = 1}. Hence, ŠO(D) ( ŠA(D).
As a consequence, in general, it is impossible to approximate functions from
A(D) uniformly on D by functions from O(D).

In the case of smoothly bounded domains, it is interesting to describe the
Shilov and the Bergman boundaries for certain families of q-holomorphic func-
tions using strictly q-pseudoconvex boundary points of the given domain.

First studies in the case of q = 0 were performed by H. J. Bremermann
in [Bre59]. It was H. Rossi [Ros61] who proved the subsequent characterization
of the Bergman boundary.
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Theorem 7.2.6 Let D be a bounded domain in Cn which is C2-smoothly
bounded and has a Stein neighborhood basis. Then the Bergman boundary
ŠO(D)(D) coincides with the closure of the set of all strictly pseudoconvex
boundary points of D.

Remark 7.2.7 The previous theorem becomes false if we drop the assumption
on the domain to have a Stein neighborhood basis. A counterexample is given by
the so called worm domain which was created by K. Diederich and J. E. Fornaess
in [DF77]. More precisely, its topological boundary is exactly the closure of the
set of all strictly pseudoconvex boundary points, whereas the Bergman boundary
is only a proper subset. Initially, the worm domain was created to provide an
example of a bounded pseudoconvex domain in Cn with smooth boundary which
does not admit a Stein neighborhood basis. But it turned out that it has more
interesting properties. For more details, we refer to the original article [DF77].

Another result for a wider class of holomorphic functions is due to P. Pflug
[Pfl79] (see also a later article by R. Basener [Bas77]).

Theorem 7.2.8 Let D be a domain in Cn with C∞-smooth boundary and let
k be a non-negative integer. Then the Shilov boundary of D for O(D) ∩ Ck(D)
coincides with the closure of the set of all strictly pseudoconvex boundary points
of D.

R. Basener examined the relation of the Shilov boundary of a smoothly
bounded open set for the family Aq(D) (see Theorem 5 in [Bas78]).

Theorem 7.2.9 Let q ∈ {0, . . . , n− 1} and let D be a domain in Cn with C2-
smooth boundary. Then ŠAq(D)(D) is contained in the closure of Sq(D), i.e.,
the set of all strictly q-pseudoconvex boundary points of D.

The (n−1)-Shilov boundaries for compact sets are all trivial due to the fol-
lowing remark.

Remark 7.2.10 Consider the following function f derived from Example 5 in
[Bas76]. It is (n−1)-holomorphic on Cn\{0} and has an isolated non-removable
singularity at the origin,

f(z) =
z̄1 + . . .+ z̄n

|z1|2 + . . .+ |zn|2
.

To see this, notice that f is holomorphic in one variable after taking the holo-
morphic change of coordinates on {z ∈ Cn : zj 6= 0} given by wj = zj and
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wi = zi/zj , if j 6= i. Now let p be a boundary point of a compact set K in
Cn and let (pk)k∈N be a sequence of points pk /∈ K which converges to p out-
side K. For k ∈ N consider the function fk(z) := f(z − pk). Of course, it is
(n − 1)-holomorphic on Cn \ {pk}. Now if n tends to +∞, the absolute values
|fk(p)| tend to +∞. Hence, for every small enough neighborhood U of p there
is an index k ∈ N such that U contains pk and |fk| attains its maximum on
K only inside the set U ∩ K. By the definition of the Shilov boundary, the
set U intersects ŠOn−1(K)(K). Since U is an arbitrary small neighborhood of
p, the point p itself belongs to ŠOn−1(K)(K). Therefore, the whole boundary
bK of K is contained in ŠOn−1(K)(K). Finally, the local maximum modulus
principle 3.10.4 and Remark 7.2.4 (1) imply that

ŠOn−1(K)(K) = ŠPSHn−1(K)(K) = bK.

7.3 Lower dimensional q-Shilov boundaries
In the next two statements, we compare the Shilov boundary for subfamilies of
functions r-plurisubharmonic and holomorphic on singular foliations to lower
dimensional q-Shilov boundaries.

Proposition 7.3.1 Let Ω be an open set in Cn and K be a compact set in Ω.
Fix two integers r ∈ N0 and q ∈ {1, . . . , n− 1}. If h : Ω→ Cq is a holomorphic
mapping and A = h−1(c) for some c ∈ h(Ω), then

ŠPSHr(h,Ω)(K) ∩A = ŠPSHr(A)(K ∩A) (7.6)

and ŠPSHr(h,K)(K) ∩A = ŠPSHr(K∩A)(K ∩A). (7.7)

Proof. We show the first identity (7.6). Observe that K ∩ A is non-empty if
and only if ŠPSHr(h,Ω)(K)∩A is non-empty. Indeed, assume that K ∩A is not
empty, but A does not intersect S0 := ŠPSHr(h,Ω)(K). Define the function χ̌A
to be identically zero on A and −∞ on Ω \A. It is easy to see that χ̌A belongs
to PSHr(h,Ω). Since S0 is contained in Ω \ A, the function χ̌

A attains its
maximum inside K ∩A, but not in S0. This is a contradiction to the definition
of the Shilov boundary for the family PSHr(h,Ω) in K. The other direction is
obvious, since S0 is a non-empty subset of K due to Proposition 7.2.3.

We continue by proving the contention

ŠPSHr(A)(K ∩A) ⊂ ŠPSHr(h,Ω)(K) ∩A.



7.3. Lower dimensional q-Shilov boundaries 171

To see this, recall that S0 = ŠPSHr(h,Ω)(K). We have to show that

max
K∩A

ψ = max
S0∩A

ψ for every ψ ∈ PSHr(A).

Fix a function ψ ∈ PSHr(A) and extend it by −∞ into the whole of Ω. We
denote this extension by ΨA. Then ΨA belongs obviously to PSHr(h,Ω). More-
over, we have that

max
K∩A

ψ = max
K

ΨA = max
S0

ΨA = max
S0∩A

ψ.

By the definition it means that S0 ∩ A is a boundary for the family PSHr(A)
in K ∩A, so

ŠPSHr(A)(K ∩A) ⊂ ŠPSHr(h,Ω)(K) ∩A

In order to verify the other inclusion, take a point p ∈ PPSHr(h,Ω)(K) ∩ A. By
the definition, there is a peak function ψ in PSHr(h,Ω) with ψ(p) > ψ(z) for
every z ∈ K \ {p}. Since the restricted function ϕ := ψ|A lies in PSHr(A), we
obtain that p is also a peak point for PSHr(A). In view of Proposition 7.2.3
we deduce that

ŠPSHr(h,Ω)(K) ∩A = PPSHr(h,Ω)(K) ∩A
⊂ PPSHr(A)(K ∩A) = ŠPSHr(A)(K ∩A).

By the precedent discussion, we obtain the first identity (7.6).
It remains to show the second identity (7.7). But this is an immediate conse-

quence of the identity (7.6) and Proposition 6.1.3 (7), since PSHr(h,K) is the
union of all families PSHr(h, V ), where V varies among all open neighborhoods
V of K, and PSHr(K ∩ A) is the union of all sets PSHr(U) with U varying
among all open neighborhoods U of K ∩A in A. �

We obtain similar results for certain subfamilies of q-holomorphic functions.
Its proof is similar to the previous one.

Proposition 7.3.2 Fix an integer q ∈ {1, . . . , n − 1}. Let Ω be a Stein open
neighborhood of a compact set K in Cn and let h : Ω → Cq be a holomorphic
mapping. Set A := h−1(c) for some fixed c ∈ h(Ω). Then

ŠO(h,Ω)(K) ∩A = ŠO(A)(K ∩A). (7.8)
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If, moreover, the set K has a Stein neighborhood basis, then

ŠO(h,K)(K) ∩A = ŠO(K∩A)(K ∩A). (7.9)

Proof. We show the identity (7.8). Therefor, we set S0 := ŠO(h,Ω)(K). Given
n ∈ N and c ∈ h(Ω) from above, we also define χA,n := 1/(1 + n‖h− c‖22). It is
obvious that χA,n belongs to O(h,Ω) and that the sequence (χA,n)n∈N decreases
to the characteristic function χA of A in Ω as n tends to infinity.

Now observe that K ∩ A is non-empty if and only if S0 ∩ A is non-empty.
Indeed, assume that K ∩A is non-empty, but A does not intersect S0. Then for
large enough integer n ∈ N, we can arrange that

‖χA,n‖K ≥ ‖χA,n‖K∩A > ‖χA,n‖S0
.

This inequality contradicts the definition of the Shilov boundary for the family
O(h,Ω) in K. Hence, A meets S0. The other direction is obvious, because
ŠO(h,Ω)(K) is a non-empty subset of K due to Proposition 7.2.3.

We proceed by showing that ŠO(A)(K ∩ A) lies in ŠO(h,Ω)(K) ∩ A, so that
we need to verify that ‖f‖K∩A = ‖f‖S0∩A for every function f ∈ O(A). Pick
an arbitrary holomorphic function f on A and denote by F its holomorphic
extension to the whole of Ω (see Theorem 3.11.4). We set Fn := F ·χA,n. Then
it is easy to see that Fn belongs to O(h,Ω). Since S0 = ŠO(h,Ω)(K), we conclude
that

‖f‖K∩A = lim
n→∞

‖Fn‖K = lim
n→∞

‖Fn‖S0
= ‖f‖S0∩A.

Now we verify the other inclusion of (7.8). Observe that the uniform closure
O(h,Ω)

K
in C(K) forms a uniform subalgebras of C(K), so that we obtain by

Proposition 7.2.3 that

ŠO(h,Ω)(K) = ŠO(h,Ω)
K (K) = PO(h,Ω)

K (K).

Take a point p ∈ PO(h,Ω)
K (K)∩A. Then there is a peak function f in O(h,Ω)

K

such that S(f) = {z ∈ K : ‖f‖K = |f(z)|} = {p}. Since p ∈ A, it is easy to see
that f |A belongs to the family O(A)

K∩A
and peaks at p in K ∩A. Thus,

PO(h,Ω)
K (K) ∩A ⊂ PO(A)

K∩A(K ∩A).

Then Proposition 7.2.3 yields

ŠO(h,Ω)(K) ∩A ⊂ ŠO(A)
K∩A(K ∩A) = ŠO(A)(K ∩A).
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Hence, we obtain the identity (7.8).
The final identity (7.9) follows now from Proposition 6.1.3 (7) and the facts

that O(h,K) is the union of all families O(h, V ), where V varies among all
Stein open neighborhoods of K in Cn, and that O(K ∩ A) is the collection of
all functions from the families O(U) with U varying among all neighborhoods
U of K ∩A in A. �

7.4 Shilov boundary of q-th order
We recall the definition of q-th order Shilov boundary introduced by R. Basener.
We use the same terminology as him in [Bas78]. Our aim is to compare this
generalized Shilov boundary to the previously defined q-Shilov boundaries.

Definition 7.4.1 Let A be a uniform algebra of continuous functions on a
compact set K in Cn. Fix an integer q ∈ {0, . . . , n−1}.

(1) For a finite subset S of A denote by ]S the number of elements of S and
define the set

V (S) = VK(S) := {z ∈ K : f(z) = 0 for every f ∈ S}

and the family A|V (S) := {f |V (S) : f ∈ A}.

(2) A closed subset Γ of K is called a q-th order boundary for A if for every
finite subset S of A with ]S ≤ q and f ∈ A it holds that

‖f‖Γ∩V (S) = ‖f‖V (S).

(3) The q-th order Shilov boundary or Shilov boundary of q-th order for A is
given by

∂qA :=
⋃
S⊂A
]S≤q

ŠA|V (S)(V (S)).

Of course, ∂qA is the smallest q-th order boundary for A.

(4) Let S be a finite subset of A with ]S = k. For I = (i1, . . . , ik) and |I| =
i1 + . . .+ ik we also define the set

A(S) :=
{ ∑
|I|≤`

gIf
i1
1 · · · f

ik
k : gI ∈ A, f1, . . . , fk ∈ S, ` < +∞

}
.
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The family A(S) allows another interpretation of the q-th order boundaries
(see Theorem 3 in [Bas78]).

Theorem 7.4.2 A closed subset Γ of a compact set K in Cn is a q-th order
boundary for A if and only if for every S in A with ]S ≤ q the set Γ is an
A(S)-boundary in K in our sense, i.e., Γ ∈ bA(S)(K).

Basener already studied the relation between the q-th order Shilov boundary
and the q-Shilov boundaries. We extend his results by the following list.

Theorem 7.4.3 Let K be a compact set in Cn and q ∈ {0, . . . , n− 1}.

(1) We have that ∂qA(K) ⊂ ŠAq(K)(K).

(2) It also holds that ∂qO(K) ⊂ ŠOq(K)(K)

(3) Let Ω be a Stein neighborhood of K and set H := O(Ω,Cq). Then

∂qO(Ω)|K = ŠO(H,Ω)(K),

where O(Ω)|K := {f |K : f ∈ O(Ω)}.

(4) Assume that K has a Stein neighborhood basis. Let H = {hj}j∈J be
the family of all holomorphic mappings hj : Ωj → Cq, where Ωj is some
neighborhood of K. Then

∂qO(K) = ŠO(H,K)(K).

Proof. (1) This inclusion is Theorem 4 in [Bas78]. Anway, we present another
proof using our techniques. Let S = {f1, . . . , fk} be a subset of A(K) with
]S = k ≤ q and pick a function F ∈ A(K)(S). Then there are an integer ` ≥ 0
and a family g = (gI)|I|≤` of functions gI ∈ A(K) such that

F =
∑
|I|≤`

gIf
i1
1 · · · f

ik
k .

Now consider the function

h(ζ, w1, . . . , wk) :=
∑
|I|≤`

ζIw
i1
1 . . . wikk ,

where ζ = (ζI)|I|≤` are complex coordinates in an appropriate CN . According
to Example 3.10.3 (3), this function h is k-holomorphic on CN+k. Therefore,
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in view of Proposition 3.10.2 (5), the composed function F = h ◦ (g, f1, . . . , fk)
belongs to Ak(K). This shows that A(K)(S) is a subset of Ak(K). Thus,
Theorem 7.4.2 and Proposition 3.10.2 (2) yield

∂qA(K) =
⋂

S⊂A(K)
]S≤q

ŠA(K)(S) ⊂ ŠAq(K)(K)

(2)This inclusion can be shown in exactly the same way as the inclusion in (1)
by replacing Aq(K) by Oq(K) and A(K) by O(K).

(3)Given an integer k ∈ {0, . . . , q}, define Hk := O(Ω,Ck). Then we easily
verify that⋃

k≤q
h∈Hk

O(h,Ω) = O(H,Ω), hence
⋃
k≤q
h∈Hk

ŠO(h,Ω)(K) = ŠO(H,Ω)(K) (7.10)

due to Proposition 6.1.3 (7). For a subset S of C(Ω) define also the set

VΩ(S) := {z ∈ Ω : f(z) = 0 for every f ∈ S}.

and notice the identity

VK(S) = VΩ(S) ∩K. (7.11)

Now the equality in (3) follows from the subsequent chain of identities:

∂qO(Ω)|K Def. 7.4.1
=

⋃
S⊂O(Ω)|K
]S≤q

ŠO(Ω)|VK(S)(VK(S))

(7.11)
=

⋃
S⊂O(Ω)
]S≤q

ŠO(Ω)|VΩ(S)(K ∩ VΩ(S))

Thm. 3.11.4
=

⋃
S⊂O(Ω)
]S≤q

ŠO(VΩ(S))(K ∩ VΩ(S))

Prop. 7.3.2
=

⋃
k≤q

⋃
h∈Hk

⋃
c∈Ck

ŠO(h,Ω)(K) ∩ h−1(c)

=
⋃
k≤q

⋃
h∈Hk

ŠO(h,Ω)(K)
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(7.10)
= ŠO(H,Ω)(K).

(4)Notice that if K has a Stein neighborhood basis, we can assume without loss
of generality that for every j ∈ J the holomorphic mapping hj ∈ H is defined
on a Stein open neighborhood Ωj of K. Then the identity in (4) follows by the
same arguments as in the proof of (3). �

7.5 Real and q-complex points

In [Byč81], S. N. Bychkov gives a geometric characterization of the Shilov bound-
ary of bounded convex domains D in Cn. Our goal in this section is to generalize
his result to q-Shilov boundaries (see Theorem 7.6.7). First, we recall some def-
initions from convexity theory given in Bychkov’s article [Byč81] which extend
Definition 2.1.1. We also mainly use his notations.

Definition & Remark 7.5.1 Let K be a convex body in Cn, i.e., a compact
convex set with non-empty interior.

(1) A subset of the boundary bK which results from an intersection of K with
supporting hyperplanes is called a face of K. A face is again a lower di-
mensional convex set. The empty set and K itself are also considered to be
faces. A face of a face of K does not need to be a face of K. The intersection
of arbitrarily many faces of K is again a face of K.

(2) Given a convex body K, there is a unique minimal face F1 := Fmin(p,K) of
F0 := K in the boundary of K containing the point p. It can be defined as
the intersection of K and all supporting hyperplanes for K at p. Now there
are two options for p: either it is an inner point of the convex body F1 or it
lies in the boundary of F1. In the second case, the point p might again lie
either in the interior of the minimal face F2 := Fmin(p, F1) of F1 or in the
boundary of F2. Inductively, we obtain a finite sequence (Fj)j=0,...,j(p) of
convex bodies Fj in K of dimension mj such that Fj+1 := Fmin(p, Fj) ⊃ Fj
for each j ∈ {0, . . . , j(p)− 1} and such that either, if mj(p) > 0, the point p
is an interior point of Fj(p), or, if mj(p) = 0, the minimal face Fj(p) consists
only of the point p.
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(3) The convex body Fp(K) := Fj(p) will be called the face essentially con-
taining p. It is contained in a plane Ep(K) of dimension mj(p) satisfying
Ej(p) ∩K = Fj(p).

We will give a simple example of a sequence of minimal faces.

Example 7.5.2 Let ∆ := ∆1(0) be the unit disc in R2 and consider the set
K := ∆∪ ([−1, 1]× [−1, 0]). It is a convex body in R2. The plane π1 = {1}×R
is the only supporting hyperplane of K at p = (1, 0) in R2. Thus, the minimal
face of K containing p is the segment F1 = π1 ∩K = {1} × [−1, 0]. The point
p lies in the boundary of F1 in {1} × R. Then the set π2 = {1} is the only
supporting hyperplane of F1 at p in {1} × R. Hence, the minimal face of F1

having p inside is the set F2 = π2 ∩ K = {p}. Therefore, the face essentially
containing p is the set F2 = {1}.

In the following, let D be always a bounded convex domain in Cn.

Definition 7.5.3 Let p be a boundary point of D.

(1) Denote by EC
p (D) the largest complex plane in Ep(D) containing p.

(2) We define ν(p) := dimCE
C
p (D).

(3) If ν(p) = 0, then Ep(D) is totally real and we say that the boundary point
p is real.

(4) The symbol Πp(D) denotes the set of all complex planes π in Cn such that
there exists a domain G ⊂ Cn with p ∈ G ∩ π ⊂ bD.

(5) If Πp(D) 6= {p}, then p is called complex.

We restate Lemma 2.5 in [Byč81] and its important corollary.

Lemma 7.5.4 If I ⊂ bD is an open segment containing p ∈ bD, then I lies in
the face Fp(D) essentially containing p.

The previous lemma permits to classify the boundary points of D.

Corollary 7.5.5 A boundary point p ∈ bD is either real or complex.

From this we can derive further consequences.

Corollary 7.5.6 If p ∈ bD is complex, then EC
p (D) ∈ Πp(D).
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Proof. Since p is complex, it cannot be real due to the previous Corollary 7.5.5.
Thus, EC

p (D) is not empty and the face essentially containing p cannot be a
single point. Then p is an inner point of the convex body Fp(D) in Ep(D).
Hence, there is an open ball B′ with center p inside Fp(D), and we can find an
open ball B in Cn with center p such that B ∩ Ep(D) = B′. Then we obtain
that

p ∈ EC
p (D) ∩B ⊂ Ep(D) ∩B = B′ ⊂ Fp(D) ⊂ bD.

Thus, it follows from the definition that EC
p (D) lies in Πp(D). �

Another consequence of Lemma 7.5.4 is that EC
p (D) is maximal in Πp(D).

Corollary 7.5.7 If π ∈ Πp(D), then π lies in EC
p (D).

Proof. Let G be an open neighborhood of p in Cn such that p ∈ G ∩ π ⊂ bD.
It follows from Lemma 7.5.4 that G∩ π lies in Fp(D). Since G∩ π is open in π,
we have that π is contained in Ep(D). Since π is a complex plane containing p
and EC

p (D) is the largest complex plane inside Ep(D), we conclude that π lies
in EC

p (D). �

We specify complex points in the following way.

Definition & Remark 7.5.8 Let p be a complex boundary point of D and
q ∈ {1, . . . , n− 1}.

(1) The point p is called q-complex if ν(p) = dimCE
C
p (D) ≥ q.

(2) The Corollaries 7.5.6 and 7.5.7 yield the following characterization of q-
complex points: A boundary point p in bD is q-complex if and only if there
is a domain G in Cn and a complex plane of dimension at least q such that
p ∈ G ∩ π ⊂ bD.

The next lemma asserts that a complex point p is a lower dimensional real
point.

Lemma 7.5.9 Let p be a complex point in bD. Let π be a complex affine plane
of codimension ν(p) such that EC

p (D) ∩ π = {p}. Then p is a real boundary
point of D ∩ π.
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Proof. If ν(p) = n−1, the statement is obviously true, since every boundary
point of D ∩ π is real.

Suppose that ν(p) ≤ n−2 and that the statement is false. Then by Corol-
lary 7.5.5 the point p is a complex boundary point of D ∩ π. According to the
definition, there exist a domain G ⊂ Cn and a complex line L in π ∈ Πp(D)
such that p ∈ G ∩ L ⊂ bD. By Corollary 7.5.7 the line L lies in EC

p (D). But
since EC

p (D) ∩ π = {p} and L ⊂ π, it follows that L = {p}, which is absurd.
Hence, p has to be a real boundary point of D ∩ π. �

7.6 q-Shilov boundaries of convex sets
We recall one of the main results of Bychkov’s article [Byč81]. Unless otherwise
stated, each Shilov boundary considered in this section is a Shilov boundary
of the closure of a convex bounded domain D in Cn. Recall that A(D) is the
family of all holomorphic functions on D which extend to a continuous function
on D.

Theorem 7.6.1 (Bychkov, 1981) A boundary point p ∈ bD does not belong
to ŠA(D) if and only if there exists a neighborhood U of p in bD such that U
consists only of complex points.

We introduce the subfamily of holomorphic functions on a regular foliation
by complex planes.

Definition & Remark 7.6.2 Let q ∈ {0, . . . , n − 1} be an integer and let
H := HomC(Cn,Cq) be the family of all C-linear mappings from Cn to Cq.

(1) We set Ahom
q (D) := A(H,K) and Ohom

q (D) := O(H,K).

(2) For q = 0 we have that Ohom
0 (D) = O(D) and Ahom

0 (D) = A(D).

(3) Since D is bounded and convex, we easily derive that Aq(D) = Oq(D) and
Ahom
q (D) = Ohom

q (D).

We generalize the important Proposition 2.6 in [Byč81] which states that a
real boundary point always lies in the Shilov boundary for the family A(D).

Proposition 7.6.3 If p ∈ bD, then p ∈ ŠOhom
ν(p)

(D).
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Proof. By Corollary 7.5.5, the point p is either real or complex. If p is real,
then by Proposition 2.6 in [Byč81] and Remark 7.6.2 we have that

p ∈ ŠA(D) = ŠO(D) = ŠOhom
0 (D).

If p is complex, then there are a domain G and a ν(p)-dimensional complex plane
π such that p ∈ G ∩ π ⊂ bD. Let L be a complex affine plane of codimension
ν(p) such that π ∩ L = {p} and let h : Cn → Cν(p) be a C-linear mapping with
L = {h = 0}. In view of Lemma 7.5.9, the point p is a real boundary point
of the convex body D ∩ L. Then we conclude by Proposition 2.6 in [Byč81],
Remark 7.6.2 and Proposition 7.3.2 that

p ∈ ŠA(D∩L)(D ∩ L) = ŠO(D∩L)(D ∩ L) ⊂ ŠO(h,D) ⊂ ŠOhom
ν(p)

(D).

�

As a first consequence, we obtain a characterization of the (n − 1)-Shilov
boundaries.

Corollary 7.6.4 The Shilov boundaries for the families Ohom
n−1(D), On−1(D)

and PSHn−1(D) coincide with the topological boundary of D, i.e.,

ŠOhom
n−1(D) = ŠOn−1(D) = ŠPSHn−1(D) = bD.

Proof. If p ∈ bD, then p is real or complex and 0 ≤ ν(p) ≤ n − 1. Thus, the
Propositions 7.6.3, 7.2.3 and 3.3.2 (10) imply that

p ∈ ŠOhom
ν(p)

(D) ⊂ ŠOhom
n−1(D) ⊂ ŠOn−1(D) ⊂ ŠPSHn−1(D) ⊂ bD.

�

We will need the following lemma.

Lemma 7.6.5 Let p ∈ bD and q ∈ {0, . . . , n − 2}. If there exists an analytic
subset in bD which contains p and has minimal dimension at least q+1, then p
is not a peak point for the family PSHq(D). In particular, no (q + 1)-complex
point belongs to PPSHq(D).
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Proof. This follows immediately from the local maximum principle for q-pluri-
subharmonic functions on analytic sets (see Proposition 3.8.5) and the definition
of (q + 1)-complex points. �

We will need another specification of complex points.

Definition 7.6.6 For q ∈ {1, . . . , n−1} denote by Γq(D) the relative interior
of the set of all q-complex boundary points of D in bD.

We are now able to generalize Bychkov’s theorem.

Theorem 7.6.7 Let q ∈ {0, . . . , n− 2}. Then

ŠOhom
q (D) = ŠOq(D) = ŠPSHq(D) = bD \ Γq+1(D).

Proof. If p ∈ bD\ŠOhom
q (D), then there is a neighborhood U of p in bD such that

U ∩ ŠOhom
q (D) = ∅. Thus, if w ∈ U , then ν(w) ≥ q + 1 due to Proposition 7.6.3.

This means that U consists only of (q+1)-complex points. Hence, p ∈ Γq+1(D),
and therefore bD \ Γq+1(D) lies in ŠOhom

q (D).
On the other hand, if there is a neighborhood U of p in bD such that U

contains only (q + 1)-complex points, then we know by Lemma 7.6.5 that the
intersection U ∩PPSHq(D) is empty. This implies that p /∈ PPSHq(D). Since, by
Proposition 7.1.4, the latter set coincides with ŠPSHq(D), we obtain the inclusion

ŠPSHq(D) ⊂ bD \ Γq+1(D).

Finally, the statements of Proposition 7.2.3 (2) and Remark 7.2.4 complete the
proof. �

Now we give an interesting consequence of the previous theorem related to
analytic sets inside the boundary of D.

Remark 7.6.8 Given an integer q ∈ {1, . . . , n − 1}, let ΓAq (D) be the set of
all boundary points p of D such that there exists a neighborhood U of p in bD
with the following property: for each point z ∈ U there is an analytic subset of
U which contains z and has minimal dimension at least q. Then

ΓAq (D) = Γq(D).
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Indeed, the inclusion Γq(D) ⊂ ΓAq (D) follows directly from the definition of
these two sets and the definition of q-complex points. Now let p ∈ ΓAq (D).
Then Lemma 7.6.5 and Proposition 7.1.4 imply that p /∈ ŠPSHq−1(D). Thus, we
derive from Theorem 7.6.7 that p is contained in Γq(D). This shows the other
inclusion.

We study the analytic structure of the q-Shilov boundaries.

Proposition 7.6.9 Let D be a bounded convex domain in Cn. Fix an integer
q ∈ {1, . . . , n−1} and assume that {z ∈ bD : ν(z) ≥ q+ 1} is a non-empty open
subset of bD. Then the following open part

Fq(D) := intbD

(
ŠPSHq(D) \ ŠPSHq−1(D)

)
of the Shilov boundary for PSHq(D) in bD locally admits a foliation by complex
q-dimensional planes in the following sense: for every point p in Fq(D) there
exists a neighborhood U of p in bD such that for each z ∈ U there is a domain
Gz in Cn and a unique complex q-dimensional plane πz with z ∈ πz ∩Gz ⊂ U .
In the special case q = n−1, these complex (hyper-)planes are aligned parallelly.

Proof. We set Γn := ∅. By Theorem 7.6.7 and by Corollary 7.6.4 we have that
Fq(D) = Γq(D) \ Γq+1(D). Since the set {z ∈ bD : ν(z) ≥ q + 1} is open, it
coincides with Γq+1(D). Thus,

Fq(D) = Γq(D) \ {z ∈ bD : ν(z) ≥ q + 1}.

Now if p is an arbitrary point from Fq(D), then there is a neighborhood W
of p in Fq(D) such that ν(z) = q for every point z ∈ W . Hence, the open set
Fq(D) consists only of exactly q-complex points. Then Corollaries 7.5.6 and 7.5.7
imply existence and uniqueness of an open part of a complex q-dimensional plane
πz = EC

z (D) containing z and lying in U .
In the special case of q = n − 1, the set Fn−1(D) is a convex hypersurface

foliated by complex hyperplanes. By a result of V. K. Beloshapka and Bychkov
in [BB86], they have to be aligned parallelly. �

We give an example of a convex domain D in C3 such that the part F1(D)
does not admit a foliation in the sense of the previous theorem when we drop
the assumption on {z ∈ bD : ν(z) ≥ 2} to be open in bD.
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Example 7.6.10 Consider the domain G in C× R given by

G = {(x+ iy, u) ∈ C× R : x2 + (1− y2)u2 < (1− y2), |y| < 1}.

It is easy to compute that the function h(y, u) :=
√

(1− y2)(1− u2) is concave
on [−1, 1]2. Since G is the intersection of the sublevel set {x < h(y, u)} of the
concave function h and the superlevel set {x > −h(y, u)} of the convex function
−h over [−1, 1]2, it is convex in C× R due to Proposition 2.1.4. Moreover, the
boundary of G contains the flat parts {±i}× (−1, 1) and {0}× (−1, 1)×{±1},
whereas the rest of the boundary consists of strictly convex points. By putting
D := G× (−1, 1)3 we obtain a convex domain D in C3 such that

{z ∈ bD : ν(z) ≥ 2} = {±i} × (−1, 1)4.

and Γ1(D) is the whole boundary of D. In particular, Γ2(D) is empty. Thus,
the boundary points z in bD with ν(z) ≥ 2 lie in Γ1(D), but there is no unique
foliation by complex one-dimensional planes near these points.

We give some estimates on the Hausdorff dimension of the Shilov boundary
for q-plurisubharmonic functions on convex bodies. First, we recall the notion
of the Hausdorff dimension.

Definition 7.6.11 Let (X, d) be a metric space.

(1) For a subset U of X denote by diam(U) the diameter of U , i.e.,

diam(U) := sup{d(x, y) : x, y ∈ U}.

(2) Given a subset E of X and positive numbers s and ε we set

Hs
ε (E) := inf

{ ∞∑
i=1

diam(Ui)
s : E ⊂

∞⋃
i=1

Ui, diam(Ui) < ε ∀ i ∈ N

}
.

The s-dimensional Hausdorff measure is then defined by

Hs(E) := lim
ε→0

Hs
ε (E).

(3) For every subset E of X there is a number s0 ∈ [0,+∞] such that

Hs(E) =∞ for s ∈ (0, s0) and Hs(E) = 0 for s ∈ (s0,∞).

The number dimH E := s0 is called the Hausdorff (or metric) dimension
of E.
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The next statement can be found in, e.g., [Fal03], Corollary 7.12.

Proposition 7.6.12 Let I be an m-dimensional cube in Rm, J be an n-dimen-
sional cube in Rn and F be a subset of I×J . For a given point x ∈ I consider the
slice Fx := F ∩({x}×J). If dimH Fx ≥ α for every x ∈ I, then dimH F ≥ α+m.

Bychkov showed in [Byč81] that the Hausdorff dimension of the Shilov bound-
ary of a convex body in C2 is not less than 2. We partially generalize this result.

Theorem 7.6.13 Let D be a convex bounded domain in Cn and fix an integer
q ∈ {0, . . . , n − 2}. Suppose that there are a constant α ≥ 0 and a collection
{πj}j∈J of disjoint parallel complex affine planes in Cn satisfying the following
properties:

• The union
⋃
j∈J

πj is open and intersects D.

• For every j ∈ J it holds that dimH ŠO(D∩πj)(D ∩ πj) ≥ α.

Then we obtain the estimate

dimH ŠOq(D)(D) ≥ α+ 2q. (7.12)

In particular, dimH ŠOn−2(D)(D) ≥ 2n− 2.

Proof. By the assumptions made on {πj}j∈J , we can find a C-linear mapping
h : Cn → Cq and a collection {cj}j∈J of points cj in Cq with πj = {h = cj} for
every j ∈ J . Then by Propositions 7.3.2 and 7.2.3, we have that⋃

j∈J
ŠO(D∩πj)(D ∩ πj) ⊂ ŠO(h,D)(D) ⊂ ŠOhom

q (D)(D) ⊂ ŠOq(D)(D).

Hence, it follows from Proposition 7.6.12 that dimH ŠOq(D)(D) ≥ α+ 2q.
Now consider the case q = n − 2. It was shown in Theorem 3.1 in [Byč81]

that dimH ŠO(D∩π)(D ∩ π) ≥ 2 for every complex two dimensional affine plane
π such that π∩D 6= ∅. Hence, in view of the inequality (7.12) we conclude that

dimH ŠOn−2(D)(D) ≥ 2 + 2(n− 2) = 2n− 2.

�
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To show that the Hausdorff dimension of ŠA(D) is not less than two if D b
C2 is a convex domain, Bychkov used that Γ1(D) admits a local foliation by
complex lines which are aligned parallelly to each other. More general, if a
convex hypersurface (i.e., an open part of the boundary of a convex body) is
foliated by complex hyperplanes, then, due to a result of V. K. Beloshapka and
Bychkov in [BB86], they are always parallel to each other. Especially, this holds
for the open set Γn−1(D), provided it is not empty (compare Theorem 7.6.9).

The following example in [NT12] shows that, in general, this result fails for
lower dimensional complex foliations.

Example 7.6.14 Consider the function %(z) = (Rez2)2− (Rez1)(Rez3) for z ∈
C3. Then the set D := {z ∈ C3 : Re(z1) > 0, %(z) < 0} is convex, and an open
part of its boundary is foliated by a real 3-dimensional parameter family of open
parts of non-parallel complex lines of the form

{(a2ζ + ib, aζ + ic, ζ), ζ ∈ C}, a, b, c ∈ R.
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Hartogs, 115

q-Shilov boundary, 159
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Shilov boundary, 146

of q-th order, 173
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strictly
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