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Unterstützung gegeben haben und geben.

Acknowledgement:

The present dissertation was written during my employment at the Chair of Angewandte

Mathematik und Numerische Analysis of the Bergische Universität Wuppertal. Hence

foremost and special thanks goes to my supervisors Prof. Dr. Michael Günther and

Prof. Dr. Matthias Ehrhardt for their supervision and the opportunity to work at the

Chair of Applied Mathematics in Wuppertal. I want to thank them particularly for the

indefatigable commitment, the confidence in me and the freedom to choose my research

focus. They provided an optimal research environment for me and it was my pleasure

to work with them.

I would like to thank Prof. Carlos Vázquez Cendón for reviewing this thesis. Thanks

also goes to Prof. Dr. Hanno Gottschalk and Dr. Jörg Kienitz who agreed to be members

of my doctoral committee. I particularly thank Dr. Jörg Kienitz who always found the

time to answer my questions, I have strongly benefited from his extensive experience in

the financial industry.

I would also like to thank Kees De Graaf and Xueran Wu for proof reading this

thesis. In particular I want to thank Xueran Wu not only for all the intensive and

helpful discussions but also for giving me love and support.

I thank my colleagues in the working group “Applied Mathematics and Numerical

Analysis”, present and former, for mathematical discussions and also for being kind, I

had an enjoyable working environment. Ich would like to mention just a few names, Dr.

Andreas Bartel from Wuppertal, Dr. Christian Kahl from Commerzbank AG (London),

Dr. Cathrin van Emmerich from RWE Supply & Trading (Essen) and Patrick Deuß from

parcIT GmbH (Köln).
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Chapter 1

Introduction

The degree of a relationship between the changes of two or more financial quantities

in time can be measured by correlations, which play a key role in investing, trading,

risk management and regulation. Generally, correlation risk refers to unexpected losses

due to unpredictable changes of the correlation between financial variables. Contrast to

other types of risk, correlation had often been disregarded until the global financial crisis

between 2007 and 2009. Since correlation risk is an influential trigger of this financial

crisis, it has thus become the focus of attention in finance, see Section 2.3.

Hedging correlation risk is more difficult than hedging other financial risks for two

reasons indicated in [84]: (1) Hedging correlation risk involves two or more financial

variables, since the correlation is measured between at least two financial variables. (2)

There is principally no underlying instrument traded in the market as a hedge by buying

or selling. Nevertheless, in order to hedge correlation risk one firstly has to realistically

model the financial correlation. The one which is simplest and has been widely used

is the Pearson correlation coefficient (see B.1), although it has several limitations for

Finance. For more information on the limitations of Pearson correlation coefficient we

refer the interested reader to [83, 84, 105]. For the case of modelling financial quantities

as random variables, the Pearson correlation coefficients of these random variables are

1



used to represent the dependences among financial quantities within a time period. We

usually correlate Brownian motions (BMs) of stochastic differential equations (SDEs)

with a deterministic parameter that drive the financial quantities, in order to measure

how the financial quantities move jointly in time.

Mathematically, constant correlated BMs imply that the corresponding stochastic

processes are jointly covariance-stationary. Particularly, the instantaneous covariance of

the jointly covariance-stationary stochastic processes is deterministic over time, in other

words, they have stable correlation parameters. However, market observations indicate

that the financial quantities are correlated in a strongly and highly non-linear way.

Financial correlations behave even stochastically and unpredictably, thus, the financial

quantities in the real market are not likely to be jointly stationary. Obviously, if one

decides nevertheless to ignore this problem and insists on using the correlated BMs by

a constant, this may lead to correlation risk. A possible solution for this problem is to

find an appropriate non-linear function (time-dependent) or stochastic process to model

financial correlations, in terms of which we can construct dynamically or stochastically

correlated BMs. Employing the stochastic processes with dynamically or stochastically

correlated BMs for financial quantities will certainly be more realistic.

This thesis is divided into three parts. Chapter 2 is devoted to briefly introduce some

basic notions of counterparty credit risk (CCR), CVA and to study reduced form (inten-

sity) models to model default time and the ways how to impose the default dependence

between counterparties. This part focuses on understanding the impact of financial cor-

relation to credit risk modelling by computing credit valuation adjustment (CVA) and

analyzing wrong-way risk (WWR).

In Chapter 3 we investigate computing bilateral credit valuation adjustment (BVA)

on Credit Default Swap (CDS) which is one of the most common credit derivatives.

We investigate a computational problem of using the BVA-formula provided in [15]

(abridged version [16]) and show how to address this problem by employing tailored

2



numerical methods. Another important contribution of this chapter is a new BVA-

formula which allows simultaneous defaults among counterparties, where the default

intensity is modelled by applying a Markov copula model.

From the first part we realize that the correlation between counterparties in a CDS

contract plays a key role on their default risk management. Generally, the degree of

relationship between financial products and financial instituations always plays an es-

sential role on, e.g., pricing and hedging. However, intuitively, a time-dependent model

or a stochastic model could better replicate the phenomena in the real world. Indeed,

market observations clearly indicate that financial quantities are correlated in a strongly

nonlinear way, correlation could even behave stochastically and unpredictably. This mo-

tivates us to finish the next two parts for the present thesis: modelling and application

of local time-dependent and stochastic correlation.

In the second part of this thesis we provide a time-dependent correlation function and

its applications for pricing financial derivatives and related financial products. In Chap-

ter 4, we propose an appropriate and reasonable time-dependent correlation function

and present the concept of dynamically (time-dependent) correlated Brownian motions

(BMs) and its construction. As examples, we employ this new time-dependent corre-

lation function to price European options and Quanto options. We analyze the effect

(improvement) by using a time-dependent correlation instead of a constant correlation.

In the third part of this thesis we investigate how to model correlation as a stochastic

process and its applications in finance. In Chapter 5, a general stochastic correlation

model is provided, several stochastic correlation processes are discussed and analyzed. By

applying stochastic correlation to price Quanto options we quantify the correlation risk

caused by using a wrong (constant) correlation. Furthermore, we incorporate stochastic

correlation into the Heston model and find, that the Heston model extended by intro-

ducing stochastic correlation provide a better fit to the skew and smile in the volatility

3



surface that is visible in the market than the pure Heston model and the double Heston

model.

In Chapter 6, we summarise our findings developed and discussed throughout this

thesis and mention an outlook about further research opportunities in the direction

of modelling and application of stochastic correlation. Appendix A supplements some

fundamental conditions and theorems, e.g., the usual conditions which are assumed to

hold throughout this thesis, measure change based on Radon-Nikodym and Girsanov

theorem for pricing purpose. Appendix B is devoted to the chosen basic knowledge. The

proofs of propositions and theorems are provided in Appendix C.

4



Part I
Impact of Correlation to Credit Risk Modelling

This part is devoted to briefly introduce basic notions of counterparty credit risk (CCR),

credit value adjustment (CVA) and to study default dependence between counterparties

in a credit default swap (CDS) contract. To compute the highly accurate bilateral

CVA (BVA) on CDS, we employ tailored numerical methods to obtain the cumulative

distribution function (CDF) of the integrated Cox-Ingersoll-Ross (CIR) process, which is

demanded to to compute the survival probabilities of the counterparties. Furthermore,

we develop a new formula which allows simultaneous defaults among counterparties, the

simultaneous default risk can thus be regarded.

5



Chapter 2

Counterparty Risk Valuation

The aim of this chapter is to briefly introduce basic notions of counterparty credit risk

(CCR), credit valuation adjustment (CVA) and modelling the default time using reduced

form (intensity) models as a preparation for Chapter 3. The goal is to emphasize the

impact of correlation to credit risk modelling by computing CVA and analyzing wrong-

way risk (WWR), so we will not discuss about the other crucial issues of credit risk

modelling like collateral, re-hypothecation, netting, mitigating and so on. The interested

reader is referred to [20] and [55].

2.1 Counterparty Credit Risk (CCR)

For evaluating financial contracts that are traded over the counter (OTC), one has to

consider CCR, whereby the transactions are not backed by the guarantee of a clearing-

house or an exchange. Therefore, each counterparty is exposed to the default risk of the

other party. As its name implies, a default risk refers to the possibility that a counter-

party in a financial contract will be unable or unwilling to make the required payments

to meet the obligations stated in the contract. If this happens, instead of the agreed

payments, just a fraction of the value at the instant of default will be paid. This leads to

the concept of recovery rate (REC) which represents the percentage of the outstanding

6



claim recovered when a default event occurs. An accompanied variable to the recovery is

the loss given default (LGD) which is equal to 1−REC on a unit amount. The resulting

amount of potential loss due to the defaulting counterparty is considered as counterparty

credit exposure (hereafter known as exposure). It is worth to mention a characteristic

of the exposure: At a general level, if a company holds a financial instrument which

has a positive value on a defaulted counterparty, this can be only seen as a claim on

this defaulted counterparty. However, for a negative value of a financial instrument the

company is still obliged to honour his agreed payments. This is to say that the company

will incur a loss if it is owed money and its counterparty defaults, whilst in the case of

the company in debt it cannot profit from the default of its counterparty and has to

admit its liability. For a detailed description on CCR we refer to [55, 98].

To know how the recovery rules work we study the cash flow of a corporate coupon

bond, which is a simple defaultable contract. We consider a corporate coupon bond with

face value 1 issued by counterparty “C”, which matures at time T = Tn and promises

to pay coupons ci at times T1 < T2 < · · · < Tn. Let us assume, in case of the default

event by the counterparty before or at the T, only the recovery payments with REC will

be made at the maturity date. The cash flow of the bond is thus

n∑
i=1

ci1{τ>Ti} + 1{τ>T} +REC1{τ≤T}, (2.1)

where τ denotes the default time of the bond, and the discounted payoff at time t of this

bond is given by

n∑
i=1

ciB(t, Ti)1{τ>Ti} +B(t, T )1{τ>T} +RECB(t, T )1{τ≤T}. (2.2)

More detailed information about the corporate coupon bond can be found in [8, 19, 60].

Credit rating

The default probability of a counterparty depends on his credit quality which can be
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measured by an important indicator, the credit rating. Credit ratings are attributed by

major rating agencies such as Moody’s Investors Service, Standard & Poor’s Corporation

or Fitch IBCA. Besides, some financial institutions assign their own internal ratings. To

reflect the possibility of default, the financial institutions could either use the standard

credit rating (standardized approach) or use the internal ratings (internal-ratings-based

approach). An incentive for financial institutions to use internal ratings is that using the

standardized approach can lead to higher capital requirements than using the internal

ratings, because the standardized approach employe conservative measures of capital

requirements based on simple calculations. For more information on credit rating we

refer the interested reader to [7, 38, 81, 98].

Bilateral CCR

In the earlier years, the counterparty holding a higher rating, such as triple-A entities

and global investment banks, could be seen as default-free for risk assessment. However,

we have witnessed in recent years the increasing default events of these “default-free”

institutions, e.g.: On March 16, 2008, the Federal Reserve Bank of New York assisted JP

Morgan Chase to purchase Bear Stearns for just $2 a share which represented a shocking

loss as Bear Stearns’s stock had been traded at $93 only a month before; On September

14, 2008, Lehman Brothers announced it filed for bankruptcy protection; On the same

day as Lehman Brothers’s bankruptcy, Merrill Lynch agreed to be acquired by the Bank

of America. Thus, it is no longer realistic to regard any financial institutions as default-

free, no matter how prestigious or important it is. Considering a bilateral CCR has

become the standard, where “bilateral” means that each party takes CCR with respect

to the other party into account. For the arbitrage-free valuation of bilateral CCR for

several financial derivatives we refer the readers to [15, 16, 17, 21].
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2.2 Credit Valuation Adjustment (CVA)

Exposure can be computed by simulating many different scenarios of the price of the

transaction with the given counterparty at different points in future time. One chooses

statistics to characterise the generated price distributions, e.g., 99% quantile, called Po-

tential Future Exposure (PFE) or the mean of the positive part of the price distributions,

called Expected Positive Exposure (EPE). For more details on exposure, we refer to [28].

Another important index for CCR is the cost of its hedging, Credit Valuation Adjust-

ment (CVA) or sometimes called Counterparty Valuation Adjustment, or Counterparty

Value Adjustment which is defined as the difference between the risk-free value of a

derivative and its fair value when the counterparty default possibility is taken into ac-

count. This means that CVA is an adjustment to be subtracted from the default risk-free

price in order to account for the counterparty default risk. Obviously, everyone would

prefer to make a trade with a default risk-free party rather than with a risky one, so the

risk-free prices need to be decreased by subtracting a positive CVA. In other words, we

charge the default-risky one a supplementary amount besides the default-free cost of the

contract, CVA is thus the price of CCR.

Furthermore, if an investor thinks himself as being default-free and computes CVA

only by considering the default risk of his counterparty, this is called unilateral CVA

(UCVA). From the point of view of the counterparty this adjustment is also called Debit

Valuation Adjustment (DVA), more precisely unilateral DVA (UDVA) as the investor

has been considered as default-free. In this case we see that UCVA (investor) = UDVA

(counterparty) which will be subtracted by the investor and added by his counterparty,

and UDVA (investor) = UCVA (counterparty) are equal to zero because the investor is

default-free. We refer to [20] for more information about DVA.

Bilateral CVA

In the past, the investor with high credit quality had been often regarded as default-

free such that we only needed to deal with UCVA. However, due to the witnessed de-
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fault events by highly superior financial institutions, e.g., Lehman Brother’s bankruptcy,

counterparties (like corporate client) do not accept any financial institutions (such as the

bank) as default free, i.e. the both parties will not agree on the price. To achieve the

agreement on a price, the default probability of both parties must be considered. An

new concept bilateral CVA (BVA) is arising, where the default risk of each party should

be considered, no matter what kind of credit quality. Indeed, bilateral risk had been

mentioned in the credit risk by Basel II, “Unlike a firms exposure to credit risk through

loan, where the exposure to credit risk is unilateral and only the lending bank faces the

risk of loss, the counterparty credit risk creates a bilateral risk of loss: the market value

of the transaction can be positive or negative to either counterparty to the transaction.”

After the global financial crisis (2007-2009), the Basel III requirements “Basel III: A

global regulatory framework for more resilient banks and banking systems” had been

published which has a large portion of changes related to CCR and CVA and focuses

on improving CCR management. For the regulatory aspects of CCR and CVA in more

detail we refer to [22, 55].

The realistic calculation of CVA has thus become an urgent task. Calculating UVA

is relatively straightforward, one simply needs to discount the cash flows and add any

default payment taking account of the possible default events. However, in case of BVA,

the calculation is much more difficult due to the bilateral nature which means all the

cash flows and payments must be considered in both directions.

2.3 Impact of Correlation: Wrong-Way risk

To emphasize the impact of financial correlations to credit risk modelling one must keep

wrong-way risk in mind. As a feature of CCR Wrong-way risk is defined by the Interna-

tional Swaps and Derivatives Association (ISDA) as the risk that occurs when exposure

to a counterparty is adversely correlated with the credit quality of that counterparty.
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Since a high credit quality relates to a small default probability, wrong-way risk exists

when exposure to a counterparty is positively correlated with the default probability of

that counterparty. An example could be trading an oil swap with a oil producer where a

bank pays floating oil (spot price) and receives a fixed price. We may imagine a negative

correlation between the default of the oil producer and the price of oil, since lower prices

of oil will put business of the oil producer less profitable. When the correlation has a

large negative value, the oil price decrease would worsen the credit quality of the oil

producer, which causes that he will have a increased default probability. However, a

decrease in spot oil price will increase in the value of the oil swap to the bank. While the

oil price is decreasing, there will be a higher default probability from the oil producer

due to the correlation, the bank’s exposure is thus increasing. The bank faces a large

loss if the oil producer defaults now. For more information we refer to [34, 67, 94]

Correlation risk

As we all know, the financial volatility plays an important role, e.g., in pricing and hedg-

ing. However, another equally important factor for the financial market, correlation had

been disregarded until the global financial crisis between 2007 and 2009. Afterwards,

the Basel committee has recognized the importance of correlation risk: Since CVA is an

integral part of the Basel III as mentioned above, especially, its associated wrong-way

risk arises from the correlation between the credit quality of a counterparty and the

exposure. This is to say that correlation between counterparties plays a key role for

wrong-way risk and must be considered for computing CVA. We should recognize that

financial correlation is a critical factor in managing CCR. Moreover, correlation risk is

also a critical part of the other financial risks, as market risk, systemic risk and so on.

About correlation risk there exist many work, see e.g., [24, 25, 35, 59, 68, 88].

In connection with wrong-way risk, correlation risk is a form of risk, there is a strong

dependence between financial value and default event which will increases the loss, e.g.,

wrong-way risk increases with correlation between counterparties. That is why we must
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be able to handle this effect by the correlation for computing CVA, this is also one main

part of the Basel III accords. In Chapter 3, as an example we study how to compute BVA

for a CDS which is one of the most important credit derivatives. The effect of correlation

on CVA will be analyzed, the problem of computation of CVA will be pointed out and

its solution will be provided.

In a more general way, correlation risk refers to the risk of a financial loss due to

change in correlations between financial variables. This also means that the financial

loss can also arise using a constant correlation due to the fact that the actual correla-

tions between two financial variables are unstable and likely to change over a small time

interval. To hedge the correlation risk one has to model correlations properly which is

very important for risk assessment. In Chapter 4 and 5 we focus on modelling correlation

as a time-dependent functions, as suitable stochastic processes, and also provide their

applications for pricing different financial derivatives.

Simultaneous default

We have seen that a higher wrong-way risk comes down to a larger negative correlation.

One may ask whether it is possible that the correlation is so extremely high that coun-

terparties default simultaneously? Indeed, a simultaneous default can happen in the real

financial market. Mathematically we define simultaneous defaults among the counter-

parties as that the default times of them are exactly the same. However, in the real world

we can already say that they default simultaneously if they filed for bankruptcy protec-

tion on one day or within a few days, e.g., the collapses of Lehman Brothers and Merrill

Lynch were just within two days (September 13-14, 2008). Another example noticed in

[4], 24 railway firms defaulted simultaneously on the same day, June 21, 1970. In reality,

it is possible that the defaults among the counterparties do not occur simultaneously, but

if one’s default has triggered a jump in the default probability of the other one (e.g., if

they are very highly correlated), which might end up defaulting only within a short time

period. For example, the protection seller’s default could trigger a jump in the default
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probability of the reference credit so that the protection buyer has to suffer a loss. In

the sequel we refer to this later case also as a simultaneous default. The investigation

of computing BVA by allowing simultaneous defaults among counterparties for CDS is

provided in Section 3.4.

2.4 Modelling Default Time: Reduced-form (Inten-

sity) models

As mentioned before we will concentrate on computing BVA for CDS contracts in the

next chapter. The most important and also the first task is to model default probability

and default time, especially the first default time among the parties in a CDS contract.

To model the default time there are two methodologies: the structural approach and the

reduced-form approach.

The Structural approach

The structural models are based on the work by Merton [85] in which credit events

are triggered by movements of the obligor’s value relative to some barrier which can be

deterministic or stochastic. The default time can thus be considered as the first instant

where the firm value hits such barrier. In this work we will not present the structural

approach , the interested reader is referred to the comprehensive list of references to this

approach, e.g., [10, 51, 53, 13, 90, 32, 71, 76, 72] and a nice book [8].

The reduced-form (intensity) model

In this section, we focus on reduced-form (intensity) models which describe the default

by means of exogenous jump process, the Poisson process (see Appendix B). In contrast

to the structural approach, the value of obligor’s (firm’s) assests is not modelled at all

in the reduced-form models. The default is not triggered by market observables but an

exogenous component which is independent of all the default-free market information.

Applying the intensity model is devoted to model the random default time and evaluate
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conditional expectations under Q of functionals of the default time and corresponding

cash flows. What attracted the practitioners most to this approach is the easy calibration

to the market data (credit spreads). For this approach there exist a lot of work, see e.g.,

[14, 39, 40, 62, 69, 74, 80, 91, 92, 97] and the nice books [8] and [19].

So far we have already a rudimentary grasp of the reduced-form models in which the

default time τ is the first jump of a Poisson process. Furthermore, to include WWR

we should find a way how to impose the dependencies between default events, more

precisely, between default times.

2.4.1 Time homogeneous Poisson Processes

First we consider the time-homogeneous Poisson process:

Definition 2.4.1 A process Nt is called a (time-homogeneous) Poisson process with

intensity λ > 0 if the following conditions are satisfied [8]:

• N0 = 0,

• the increment Nt −Ns is independent of Fs for 0 ≤ s < t,

• the increment Nt − Ns is Poisson distributed with mean λ(t − s); especially, for

any k = 0, 1, . . . we have

P (Nt −Ns = k|Fs) = P (Nt −Ns = k) =
λk(t− s)k

k!
e−λ(t−s). (2.3)

Lemma 2.4.1 Useful properties of Poisson processes: Let Nt be a time homogeneous

Poisson process with intensity λ > 0. Then [19]

• P (Nt = 0) = e−λt,

• limt→0 P (Nt ≥ 2)/t = 0,

• limt→0 P (Nt = 1)/t = λ.
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In the sequel, we employ the fundamental properties of jumps of Poisson processes

to model default time. We begin with average arrival rate and variance per unit of time.

From (2.3) it is direct that Nt is a Poisson random variable with parameter λt for a fixed

t :

E[Nt] = V[Nt] = λt, (2.4)

where the expectation and variance are under Q which is a risk-neutral measure and

should be used for pricing purpose. More detailed information about Q can be found in

Appendix A. By rewriting (2.4) we have

λ =
E[Nt]

t
=

V[Nt]

t
, (2.5)

which can be interpreted as an average arrival rate or variance per unit of time and is

called as hazard rate . For the case of a time homogeneous Poisson process, the hazard

rate λ is assumed to be constant for all t.

We denote the jump times of the process Nt by τ 1, τ 2, · · · , and from (2.3) we easily

see

Q(Nt = 0) = Q(τ 1 > t) = e−λt, (2.6)

which is the probability of no jumps before or at t and is called survival probability.

As indicated in [19], (2.6) has the same structure as a discount factor, with the default

intensity playing the role of the interest rate. One more intuitive interpretation: We

are interested in the distribution of the jump times. The times between one jump and

the next one, τ 1, τ 2 − τ 1, τ 3 − τ 2, · · · are i.i.d. as an exponential random variable with

mean 1/λ. Therefore, λτ 1 is a standard exponential random variable (∼ Exp(1)), we

thus obtain

Q(τ 1 > t) = Q(λτ 1 > λt) = Q(X > λt) = e−λt, (2.7)

where X ∼ Exp(1).
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It is easy too see that the probability of defaulting between the time instances s and t

is thus given by

Q(s < τ 1 ≤ t) = Q(τ 1 > s)−Q(τ 1 > t) = e−λs − e−λt, (2.8)

which is approximately equal to λ(t− s) for t close to s. More generally, if we define the

default time τ as the first default time, namely τ := τ 1, for an arbitrarily small dt we

find:

Q (τ ∈ [t, t+ dt)|τ ≥ t) =
Q (τ ∈ [t, t+ dt) ∩ τ ≥ t)

Q(τ > t)
=

Q (τ ∈ [t, t+ dt))

Q(τ > t)

=
Q(τ > t)−Q(τ > t+ dt)

Q(τ > t)
=

e−λt − e−λ(t+dt)

e−λt

≈ λ dt, (2.9)

which can be interpreted as in [19]: The probability that a company defaults in (arbi-

trarily small) time period of dt years given that it has not defaulted so far is λ dt.

2.4.2 Time inhomogeneous Poisson Processes

In contrast to an assumed constant intensity for all t we consider in this section a

deterministic time-varying intensity λ(t), which is assumed to be a positive and piecewise

(right-) continuous function. We first define

Γ(t) :=

∫ t

0

λ(s) ds, (2.10)

the cumulated intensity, cumulated hazard rate, or Hazard function.

From the cumulated hazard rate, we can derive the survival probability structure for

a deterministic time-varying intensity [19]. If Mt is a standard Poisson process, we can
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define a time-inhomogeneous Poisson process N̂t with intensity λ̂ as

N̂t = MΓ(t), (2.11)

which indicates that a time inhomogeneous Poisson process is a time-changed standard

Poisson process. Obviously, the increments of N̂t are no longer i.i.d. due to the time

distortion, but they are still independent and increasing by jumps of size 1. Furthermore,

we can consider the event “N̂ has a first jump at τ” to be equivalent with the event “M

has the first jump at Γ(τ)”. From Section 2.4.1 we have seen that the first jump time

for the standard Poisson process Mt is a standard exponential random variable, say ξ

Γ(τ) := ξ ∼ Exp(1), (2.12)

and by inverting (2.12) we obtain

τ = Γ−1(ξ). (2.13)

Furthermore, we can easily calculate the survival probability as

Q(τ > t) = 1−Q(τ ≤ t) = 1− (1− e−Γ(t)) = e−
∫ t
0 λ(s) ds. (2.14)

When we compare this expression to B(0, t) = e−
∫ t
0 r(s) ds with the deterministic time-

varying short rate r(t) in an interest rate world we realize again that one can translate

many ideas of the interest rate into credit modelling, see [19]. As in the case of using

a time homogeneous Poisson process we calculate the probability of defaulting between

s and t :

Q (s < τ ≤ t) = Q (Γ(s) < Γ(τ) ≤ Γ(t)) = Q (Γ(s) < ξ ≤ Γ(t))

= Q (ξ > Γ(s))−Q (ξ > Γ(t)) = e−Γ(s) − e−Γ(t)
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= e−
∫ s
0 λ(u) du − e−

∫ t
0 λ(u) du ≈

∫ t

s

λ(u) du, (2.15)

where the approximation is satisfied for small exponents. Conditional on survival at

time t, as for (2.9), we calculate the probability of default in arbitrarily small dt

Q (τ ∈ [t, t+ dt)|τ ≥ t) ≈ λ(t) dt. (2.16)

Using the time-varying intensity we have the following limitations [19]: 1. ξ is imposed

externally so that it is independent of all default free market quantities; 2. Although the

time-varying intensity allows us to consider a possible term structure of credit spreads,

however, this formulation does not take into account credit spread volatility. For those

reasons we turn to a stochastic intensity in the next section.

2.4.3 Stochastic Default Intensity

Generally, an important feature of the default intensity is randomness. To include the

randomness, one can let λt to be a stochastic intensity process, which is Ft-adapted and

right continuous positive. The cumulated intensity or hazard process is thus defined by

Λ(t) =

∫ t

0

λs ds. (2.17)

It is worth mentioning: Ft represents all (default-free) observable market information

up to time t, this is to say that λt is known from 0 to t at time t; credit spread volatility

can be introduced due to the stochasticity of λt. The generalized Poisson process with

stochastic intensity is called Cox process and also known as doubly stochastic Poisson

process . Furthermore, conditional on λt all facts for the case with λ(t) will still hold for

the stochastic intensity λt. Especially, the default time can be defined by inverting the
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cumulated stochastic intensity as

τ := Λ−1(ξ). (2.18)

We see that ξ and λt are both random variables, but ξ is independent of λt, more

precisely, of by λt generated filtration Fλt = σ ({λs : s ≤ t}) .

For the survival probability we calculate:

Q (τ > t) = Q (Λ(τ) > Λ(t)) = Q
(
ξ >

∫ t

0

λu du

)
= E

[
Q
(
ξ >

∫ t

0

λu du|Fλt
)]

= E
[
e−

∫ t
0 λu du

]
. (2.19)

Again, we can compare with the zero bond price under a stochastic interest rate

D(0, t) = E
[
e−

∫ t
0 ru du

]
(2.20)

and recognize that the Cox process allows to use the technologies and methodologies for

stochastic short rate to model default. The default probability between s and t can be

calculated as

Q (s < τ ≤ t| Fs) = Q (Γ(s) < Γ(τ) ≤ Γ(t)|Fs)

= Q (ξ > Γ(s)|Fs)−Q (ξ > Γ(t)|Fs)

= e−
∫ s
0 λu du − e−(

∫ s
0 λu du+

∫ t
s λu du)

≈
∫ t

s

λu du, (2.21)

where the approximation is accurate for small exponents. Analogously, the default prob-

ability in dt years, given no default event so far and given default-free market information,
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can be immediately approximated by

Q (τ ∈ [t, t+ dt)|τ ≥ t,Ft) ≈ λt dt. (2.22)

For more information about survival probability we refer to [19, 75], for instant.

2.4.4 Impose Default Correlation

As explained before, in order to consider WWR we should introduce a dependence

between counterparties. For this aim one way is to impose a dependence between default

times of counterparties which will be discussed in this section. We consider the case of

using stochastic intensity. Let us assume that we have two counterparties “1” and ”2”

with the following default times (cf. (2.18)):

τ1 := Λ−1
1 (ξ1), τ2 := Λ−1

2 (ξ2). (2.23)

Intuitively, we can impose the dependence either on the stochastic intensities λ1,t and λ2,t

using two independent ξ1 and ξ2, or on the exponential distributed random variables

ξ1 and ξ2 assuming two independent stochastic intensities. Especially, one can even put

dependence together in both ways which will be complicated. For a review of these

strategies we refer to [19].

We assume that the stochastic intensities are given by

dλ1,t = a(t, λ1,t) dt+ b(t, λ1,t) dW1,t, (2.24)

dλ2,t = a(t, λ2,t) dt+ b(t, λ2,t) dW2,t. (2.25)

The dependence can thus be induced by the correlated BMs

dW1,tdW2,t = ρ12 dt. (2.26)
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On the other hand, we take only two independent BMs W1,t and W2,t, but put a depen-

dence between ξ1 and ξ2 : By the fact that

Ui = 1− e−ξi , i = 1, 2 (2.27)

are uniform random variables on [0, 1], we can employ a copula function with a correlation

matrix to indirectly introduce the dependence between ξ1 and ξ2,

CR(u1, u2) = Q (U1 < u1, U2 < u2) , (2.28)

with the correlation matrix

R =

 1 ρ12

ρ21 1

 . (2.29)

A large amount of literature about copulas and its application to the intensity models

is available, we refer to [19, 83, 89, 99]. More precisely, given the correlation matrix

(2.29) we generate the uniform distributed random numbers using (2.28), then use them

by (2.27) to get the correlated standard exponential distributed random numbers. As

mentioned, we can also select both ways, namely taking correlated BMs and correlated

exponential random variables, however, this will then be turn out to be complicated.

Furthermore, the mechanism for imposing correlations on top can also be generalized to

higher dimensions, i.e. for more counterparties.
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Chapter 3

Application to Credit Default Swaps

(CDS)

In this chapter we investigate computing BVA on CDS which is one of the most common

credit derivatives. We point out a computational problem of using the BVA-formula

provided in [15] (abridged version [16]) and show how to address this problem by em-

ploying particular numerical methods. Another important contribution of this chapter

is a new BVA-formula which allows simultaneous defaults among counterparties, where

the default intensity is modelled by applying a Markov copula model.

3.1 Bilateral Credit Valuation Adjustment on a

CDS

In this section, we briefly introduce CDS and review the general arbitrage-free valuation

framework for bilateral counterparty risk adjustments in [15] and [16] and its application

to a CDS.
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3.1.1 Credit Default Swap

A CDS is a financial swap agreement between two counterparties where the CDS buyer

is protected against the loss in the default event by the reference credit as he will be

compensated by the CDS seller. In turn, as long as there is no default event, the buyer

pays a rate at certain times until maturity to the seller. More precisely, if we label by

“C”, “I” and “R” the counterparty (as CDS buyer), the investor (as CDS seller) and the

underlying reference entity. With a CDS contract “C” and “I” will be in agreement as

follows:

CDS Seller I

◦◦◦◦◦◦◦◦◦◦◦◦◦◦ Reference credit R, Default?

- protection LR at default τR where 0 < τR ≤ T -

� Rate P at T1, · · · , Ti, · · · , Tb = T or until τR �
CDS Buyer C

◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦

If “R” defaults at time τR ∈ (0, T ), the investor pays the counterparty a certain cash

amount according to LGD of the underlying reference entity denoted by LR which is called

the protection leg. Conversely, the counterparty needs to pay the investor a premium

rate denoted by P at certain times, say (T0 = 0), T1, · · · , Ti, · · · , Tb = T, this is the

premium leg. Following this principle we can formally write the discounted payoff of a

CDS with a default-free counterparty at time t from the perspective of the investor as

the protection seller, given by the following definition.

Definition 3.1.1 We define the discounted payoff of a CDS with a default-free counter-

party at time t as [19]:

Π(t, T ) := D(t, τR)(τR − Tγ(τR)−1)P1{T0<τR<Tb}

+
b∑
i=1

D(t, Ti)αiP1{τR≥Ti} −D(t, τR)LR1{T0<τR≤Tb},
(3.1)
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where t ∈ [Tγ(t)−1, Tγ(t)), i.e. Tγ(t) is the first date among the T ′is that follows t, and

where αi is the year fraction between Ti−1 and Ti. We assume LR to be deterministic

and LR = 1−RR, where RR is also assumed to be deterministic and the notional is set

to one.

As we have seen in the introduction of CDS above, a single protection payment is made

exactly at the default time τR ∈ (0, T ), this CDS is called a running CDS. We remark

that the time and the type for protection payment can be agreed upon in different ways.

This leads to different definitions of a CDS, e.g., for the case of postponing the protection

payment to the first time Ti following τR one defines a postponed payoff running CDS.

In particular, in an upfront CDS there is an upfront payment made by the protection

buyer in addition to the premium rate to match the present value of protection payment.

In this work we consider only the running CDS (always called CDS for short) and the

values or cash flows always from the perspective of the investor as the protection seller.

General Set-Up

We consider a probability space (Ω,G,Gt,Q) and define the enlarged filtration Gt :=

Ft ∨ Ht, ∀t ∈ R+ to model the whole information in the market, where the right-

continuous and complete sub-filtration Ft represents all the observable market quantities

and

Ht = σ({τR ≤ u} ∨ {τC ≤ u} ∨ {τI ≤ u} : u ≤ t) (3.2)

denotes the right-continuous filtration generated by the default events of three names

under contract. In particular, the random times as non-negative random variables τj,

j = C, I,R are Gt stopping times (see B.5) for t ∈ R+, the stopped filtrations are thus

given by

Gτj = σ (Gt ∪ {t ≤ τj}, t ≥ 0) . (3.3)

This introduced setup will be used for analyzing CCR on CDS throughout this thesis.
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Counterparty risk-free CDS price

Definition 3.1.2 We denote by P CDS
t the price of a counterparty risk-free CDS contract

at time t and maturing at time T which is given by

P CDS

t (P ,LR) := E {Π(t, T )|Gt} , t ∈ [0, T ], (3.4)

where Π(t, T ) is defined in (3.1).

Proposition 3.1.1 Calculating the expectation (3.4) for t = 0 we obtain the CDS price

“today” as

P CDS

0 (P ,LR) = P
[
−
∫ Tb

0

D(0, t)(t− Tγ(t)−1) dQ(τR > t)

+
b∑
i=1

αiD(0, Ti)Q(τR > Ti)

]
+ LR

[∫ Tb

0

D(0, t) dQ(τR > t)

]
.

(3.5)

For the detailed calculation we refer the reader to [19]. Similarly, we can straightfor-

wardly update (3.5) to the price evaluated at time t, with 0 = T0 < t < Tb = T and

conditioning on the available information in the market at t, which is stated by the

following proposition.

Proposition 3.1.2

P CDS

t (P ,LR) = 1{τR>t}

{
P
[
−
∫ Tb

t

D(t, u)(u− Tγ(u)−1) dQ(τR > u|Gt)

+
b∑

i=γ(t)

αiD(t, Ti)Q(τR > Ti|Gt)
]

+ LR
[∫ Tb

t

D(t, u) dQ(τR > u|Gt)
]}

.

(3.6)
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3.1.2 Arbitrage-free Valuation of bilateral CCR for a CDS

In the last section, we have seen the payoff formula of CDS under the assumption that

the investor and the counterparty are both default-free. Indeed, in order to consider

bilateral CCR in a CDS contract we have to take the default risk of all the parties into

account. Following [15], in this section we evaluate bilateral CCR in a CDS contract in

this section.

Let us define a new stopping time

τIC := min{τI , τC}, (3.7)

which is the first default time between investor and his counterparty. According to τIC

one can distinguish the following three cases for a traded CDS contract between the

investor and his counterparty:

• τIC > Tb = T : there is no default event of the investor and his counterparty during

the life of the contract.

• τIC = τC : the counterparty defaults firstly. For this case, the residual value of

CDS at τIC (or τC) until T, namely P CDS
τIC

(P ,LR) (see (3.6)) will play a key role.

If P CDS
τIC

(P ,LR) is positive for the defaulted counterparty, he will then be paid

completely by the investor. Contrarily, if the residual value is negative for the de-

faulted counterparty, then he can only pay a recovery fraction RC of the exchanged

P CDS
τIC

(P ,LR) to the investor. We can formally write this as

RC(P CDS

τC
(P ,LR))+ − (−P CDS

τC
(P ,LR))+. (3.8)

• τIC = τI : the investor has a first default. Similar to the latter case, if P CDS
τI

is positive for the defaulted investor, the value will be completely paid by his

counterparty. If it is negative value for the defaulted investor, his counterparty
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can only receive a recovery fraction RI of that amount. Formally,

(P CDS

τI
(P ,LR))+ −RI(−P CDS

τI
(P ,LR))+. (3.9)

To write all terms in one formula we define the following events ordering the default

times which should be mutually exclusive and exhaustive,

A = {τI ≤ τC ≤ T}, B = {τI ≤ T ≤ τC}, C = {τC ≤ τI ≤ T},

D = {τC ≤ T ≤ τI}, E = {T ≤ τI ≤ τC}, F = {T ≤ τC ≤ τI}.
(3.10)

Obviously, in the events E or F which means no defaults between the counterparties, the

discounted value of the contract at time t is exactly the same to (3.1). For this we can

write

1E∪F Π(t, T ). (3.11)

If the counterparty defaults first, namely the events C or D, we need to consider the

value before the default Π(t, τC) and discount the residual value given by (3.8), formally

given by

1C∪D
{

Π(t, τC) +D(t, τC)[RC(P CDS

τC
(P ,LR))+ − (−P CDS

τC
(P ,LR))+]

}
. (3.12)

Similar in the case where the investor has a default for which we can obtain

1A∪B
{

Π(t, τI) +D(t, τI)[(P
CDS

τI
(P ,LR))+ −RI(−P CDS

τI
(P ,LR))+]

}
. (3.13)

All together this leads to the following definition:
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Definition 3.1.3 We denote the discounted payoff of a CDS with a defaultable counter-

party at time t and maturing at time T by Π(t, T ):

Π(t,T ) = 1E∪F Π(t, T )

+ 1C∪D
{

Π(t, τC) +D(t, τC)[RC(P CDS

τC
(P ,LR))+ − (−P CDS

τC
(P ,LR))+]

}
+ 1A∪B

{
Π(t, τI) +D(t, τI)[(P

CDS

τI
(P ,LR))+ −RI(−P CDS

τI
(P ,LR))+]

}
,

(3.14)

where Π(t, T ) is defined in (3.1).

Obviously, the expectation of (3.14) under Q is the price of the CDS contract traded by

defaultable counterparties.

Definition 3.1.4 We denote by P
CDS

t the price of a counterparty defaultable CDS con-

tract at time t and maturing at time T which is given by

P
CDS

t (P ,LR) := E
{

Π(t, T )|Gt
}
, t ∈ [0, T ], (3.15)

where Π(t, T ) is defined in (3.14).

Using the finding (general bilateral counterparty risk pricing formula) in [15], the price

P
CDS

t can be represented by P CDS
t with additional terms so that we can obtain BVA

formula for the CDS.

Proposition 3.1.3 The price of a counterparty defaultable CDS contract at time t and

maturing at time T is given by

E
[
Π(t, T )|Gt

]
=E [Π(t, T )|Gt]

+ E
[
1A∪B · LI ·D(t, τI) · (−P CDS

τI
(P ,LR))+|Gt

]
− E

[
1C∪D · LC ·D(t, τC) · (P CDS

τC
(P ,LR))+|Gt

]
.

(3.16)

The detailed proof is given in [15]. Observing (3.16) one can find that the value of a

CDS contract under defaultable counterparties is the value of the identical CDS contract
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under default-free counterparties plus a long position in a put-option (with zero strike)

on the residual value of CDS at the possible default time τI and plus a short position in a

call-option (with zero strike as well) on the residual value of CDS at the possible default

time τC . Furthermore, as introduced before, CVA is defined as the difference between

the value of a default-free credit derivative and the fair value of this derivative when the

counterparty default possibility is taken into account. In our case, we have considered

both default possibilities of the investor and his counterparty in a CDS contract. The

BVA expression can thus be directly given by the following proposition.

Proposition 3.1.4 The bilateral Credit Valuation Adjustment for a CDS contract at

time t and maturing at time T is given by

BV A(t, T,P ,L{C,I,R}) := LC · E
[
1C∪D ·D(t, τC) · (P CDS

τC
(P ,LR))+|Gt

]
− LI · E

[
1A∪B ·D(t, τI) · (−P CDS

τI
(P ,LR))+|Gt

]
.

(3.17)

Remark 3.1.1 The value of BV A(t, T,P ,L{C,I,R}) might be positive or negative de-

pending on whether the counterparty is more or less likely to default than the investor

and certainly also on the correlation among all the counterparties.

Remark 3.1.2 The above discussion shows that the BVA equals the sum of the value

of a long position in a zero-strike call option on the residual price of CDS and the value

of a short position in a zero-strike put option on the residual price of CDS. The option

only gives a contribution, if the corresponding party defaults earlier.

Remark 3.1.3 From (3.17) we realize that BVA (as seen from the investor) = CVA

Counterparty − CVA Investor. As explained in Section 2.2 we know CVA Counterparty

= DVA Investor, so BVA to Investor = DVA Investor − CVA Investor.
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3.2 Computing of Bilateral Credit Valuation Ad-

justment on a CDS

In order to compute (3.17) we use a stochastic intensity model introduced in Section 2.4.

Following [14, 15, 18] we assume that the intensities in a CDS contract are given by

λj,t = yj,t + ψj(t, βj), t ≥ 0, j ∈ {C, I,R}, (3.18)

where ψj is a deterministic function and each yj follows a Cox-Ingersoll-Ross (CIR)

process [33] given by

dyj,t = κj(µj − yj,t) dt+ σj
√
yj,t dWj,t. (3.19)

We remark: 1) The variable βj(y0,j, κj, µj, σj) of the function ψj is a vector whose compo-

nents are all deterministic constants and βj should be positive as well. 2) It is suggested

to relax the Feller condition 2κjµj > σj so that the CDS implied volatility will be not

limited, see, e.g., [14] and [15]. For this the argument is that the assumed positivity of ψj

does not allow λj to attain a zero value. 3) We assume that BMs under the risk neutral

measure are independent for j ∈ {C, I,R}, as we will impose the correlation through a

copula function.

We define the integrated quantities which will be used in the remainder of this section

as follows:

Λj(t) =

∫ t

0

λj,s ds, Yj(t) =

∫ t

0

yj,s ds, Ψj(t) =

∫ t

0

ψj,s ds. (3.20)

Then, the default times can be defined as

τj := Λ−1
j (ξj), j ∈ {C, I,R}, (3.21)
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where ξC , ξI and ξR are standard exponential random variables with associated uniforms

Uj := 1− e−ξj , (3.22)

they are correlated through a trivariate copula function

CR(uC , uI , uR) = Q (UC < uC , UI < uI , UR < uR) (3.23)

with the correlation matrix

R =


1 ρCI ρCR

ρIC 1 ρIR

ρRC ρRI 1

 . (3.24)

We can choose different kinds of copula functions, e.g., Gaussian copula, t-copula and so

on. Besides, we notice that a trivariate copula implies a bivariate marginal copula. Before

showing an example for computing (3.17) we firstly introduce how to imply survival

probabilities from the market CDS curve, which is an essential part in a reduced form

model. Secondly, we see how to calculate the conditional survival probabilities in (3.17)

and point out the computational challenges.

3.2.1 Implied Survival Probabilities from the Market CDS

Curve

In practice, the reduced form models have been most commonly used to imply the sur-

vival probabilities from market spreads. The idea is: we assume a time inhomogeneous

Poisson process, with time varying intensity λ(t) and hazard function Λ(t) =
∫ t

0
λ(u) du

which we have introduced in Section 2.4.2. One can take the CDS spread for Tb years

to be premium rate P and solve P CDS
0 (P ,LR) = 0 in (3.5) for the implied survival prob-
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abilities over the payment dates T1, T2, · · · , Tb iteratively. This process of iteratively

searching for the survival probabilities is known as bootstrapping procedure CDS curve

. We have to know that the bootstrapping is model independent, say we just imply

the market survival probabilities Q(τ > t)market from the market CDS curve. In Sec-

tion 21.3.5. and 22.3 in [19], Brigo and Mercurio have described this bootstrapping in

detail. Besides, there is also a matlab routine cdsbootstrap available in the financial

instruments toolbox. Therefore, we do not repeat it and skip to an example for the il-

lustrative purpose. We consider the market spread quotes for Lehman Brothers on May

1, 2008 which are presented in Table 3.1 below. For the calibration we may take the

Maturity 1y 2y 3y 4y 5y
Spread 203 188.5 166.75 152.25 145

Table 3.1: Market spread quotes in basis points for Lehman Brothers on May 1, 2008.

time varying λ(t) to be piecewise constant or linear. We calculate the discount factors

using the interest rates on the corresponding dates as spread quotes. One can choose

stochastic discount factor or deterministic discount factor, because the interest rates will

be anyway independent with the default time due to the deterministic intensity λ(t).

We set the deterministic recovery rate to be 40% and display the calibrated piecewise

constant intensity and survival probability in Figure 3.1, the piecewise linear intensity

and survival probability in Figure 3.2.
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Figure 3.1: Piecewise constant intensity λ(t) calibrated on spreads in 3.1 and corre-
sponding survival probability
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Figure 3.2: Piecewise linear intensity λ(t) calibrated on spreads in Table 3.1 and corre-
sponding survival probability

A comparison between using piecewise constant and linear intensity is provided in

[19].

3.2.2 Survival Probability and its Computational Challenges

From (3.17) and (3.6) we observe that the only terms we need to know for using a

Monte-Carlo evaluation to compute BVA are

1A∪B1τR>τIQ(τR > t|GτI ) (3.25)

and

1C∪D1τR>τCQ(τR > t|GτC ). (3.26)

The formulas in a closed form for survival probabilities (3.25) and (3.26) have been found

by Brigo and Capponi [15, 26], we adopt these formulas to a simpler one. We state our

results in the following propositions. We define firstly

U j,k := 1− e−Λj(τk), j, k ∈ {C, I,R} (3.27)

and denote the cumulative distribution function of the integrated CIR process Yj(t) by

FYj(t). We thus have
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Proposition 3.2.1

1A∪B1τR>τIQ(τR > t|GτI ) = 1τI≤T1τI≤τC
(
1{t<τI<τR}+

1τI≤t1τR>τI

∫ 1

UR,I

FYR(t)(− log(1− uR)−ΨR(t; βR))dCR|I(uR; UI)
)
,

(3.28)

with

CR|I(uR; UI) =

∂CI, R(uI ,uR)

∂uI
|uI=UI −

∂CI, R(uI ,UR, I)

∂uI
|uI=UI

1− ∂CI, R(uI , UR,I)

∂uI
|uI=UI

. (3.29)

The proof of the proposition can be found in Appendix C. And similarly,

Proposition 3.2.2

1C∪D1τR>τCQ(τR > t|GτC ) = 1τC≤T1τC≤τI
(
1{t<τC<τR}+

1τC≤t1τR>τC

∫ 1

UR,C

FYR(t)(− log(1− uR)−ΨR(t; βR))dCR|C(uR; UC)
)
,

(3.30)

with

CR|C(uR; UC) =

∂CR,C(uR, uC)

∂uC
|uC=UC −

∂CR,C(UR,C , uC)

∂uC
|uC=UC

1− ∂CR,C(UR,C , uC)

∂uC
|uC=UC

. (3.31)

We remark that the partial derivatives in (3.29) and (3.31) hold a formula in closed-form

for some copula functions, e.g., Gaussian copula. Otherwise, one also can approximate

the partial derivative numerically

∂C(u1, u2)

∂u2

= lim
∆→0+

C(u1, u2 + ∆)− C(u1, u2)

∆
. (3.32)

Intuitively, the CDF of the integrated CIR process can be transformed by the ap-

proach of Carr and Madan [27] for numerically determining the option values using the

Fast Fourier Transform (FFT) from the corresponding (analytically known) character-

istic function. Since the characteristic function is given, an analytic expression for the

Fourier transformed probability density can be developed and then solved numerically

using FFT techniques. Unfortunately, we must tolerate a restriction between the grid
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size for infinitesimal summands and the output grid size when applying the FFT. This

is not convenient for application, because the generated CDF will have somewhat a

restriction on the grids as well.

Chourdakis [30] adapted this methodology proposing the fractional Fast Fourier

Transform (FRFT) instead of the FFT for the purpose of removing the grid sizes restric-

tion. However, numerical tests for several CDFs showed that this advantage of the FRFT

did not outweigh the speed of the FFT in our application. This was also mentioned for

pricing options in [47]. Besides, jointly with the FRFT the so called control parameter

(dampening parameter) is also introduced as in the FFT to resolve the problem of the

divergence of the integrand at zero. For using the FFT to determine numerically the

option values, Lord and Kahl [78] have explained how to choose the optimal dampening

parameter. The choice of this parameter is essential and strongly depends on the model

parameters. However, for the case of using the FRFT to determine numerically the

CDF of the integrated CIR process, it is still unclear how to select an optimal dampen-

ing parameter. On the other hand, an integration of the characteristic function over the

infinite domain is numerically instable due to cancellation effects and the fast growth of

the characteristic function.

For this reason, we propose a new approach (see Section 3.3) to deal with such insta-

bility problems mentioned above. This new strategy allows to construct a very robust

routine to determine numerically a highly accurate CDF of the integrated CIR process

for almost any choices of parameters, so that highly accurate survival probabilities can

be evaluated.

3.2.3 An example of Computing BVA with Wrong-Way risk

This section is dedicated to the example of evaluating BVA defined in (3.17) in a CDS

contract. In particular, we present numerical results for some different default correla-

tions. By analyzing the numerical results we stress the role of default correlations on
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the WWR.

The Monte-Carlo approach

A Monte-Carlo approach is used to evaluate BVA, we introduce briefly the steps in

implementing the numerical algorithm below:

• Given initial parameters we simulate CIR processes defined in (3.19) for the three

names, namely j ∈ {C, I,R}. The parameters can be calibrated using market

spread quotes. The simulation can be done according to the fact that the dis-

tribution of yt given ys as defined (3.19), for some s < t follows, up to a scale

factor, a noncentral χ2-distribution. Alternatively, we can simulate sample paths

numerically, see e.g., [2, 46, 82, 87].

• From the break-even spreads (generated using initial parameters) or market spread

quotes we imply the market survival probabilities Qmarket(τj > t) for j ∈ {C, I,R}.

It has been introduced in Section 3.2.1 how to imply market survival probabilities

from the market spread quotes. By imposing

Qmarket(τj > t) = Qmodel(τj > t) (3.33)

we obtain the quantities Ψj(t) defined in (3.20) as

Ψj(t) = ln

(
Qmodel(τj > t)

Qmarket(τj > t)

)
, (3.34)

where Qmodel(τj > t) = E[e−Yj(t)] = DCIR(0, t, βj), and DCIR(0, t, βj) is the price

at time 0 of a zero coupon bond maturing at time t under a stochastic interest

rate given by the corresponding CIR processes initialized by βj(y0,j, κj, µj, σj) and

known analytically as

A(t, T ) · e−B(t,T )yt , (3.35)
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where

A(t, T ) : =

[
2h exp{(κ+ h)(T − t)/2}

2h+ (κ+ h)(exp{(T − h)h} − 1)

] 2κµ

σ2

,

B(t, T ) : =
2(exp{(T − t)h} − 1)

2h+ (κ+ h)(exp{(T − h)h} − 1)
,

h : =
√
κ2 + 2σ2,

for more information we refer the reader to, e.g., [19].

• We generate then the default times τj using equations (3.21)–(3.23), in our example

we choose a Gaussian copula. Depending on the default situation with respect to

the generated default times, we need to compute one survival probability of (3.28)

and (3.30), or none of them when no defaults occurs. A robust routine to determine

numerically a highly accurate CDF of the integrated CIR process, which is needed

for those survival probabilities, has been provided in Section 3.3.

• Finally, one can compute the BVA (3.17) by numerical integration.

Numerical result

We consider a five years CDS contract traded by an investor with a counterparty on a

reference name, the investor and the counterparty are both subject to the default risk.

We assume that the investor has low credit risk, the reference name has high credit

risk and the counterparty has middle credit risk. This is a common scenario in the

real market. We state the values of the parameter vectors βj(y0,j, κj, µj, σj) in Table

3.2. The parties agree that the loss given defaults of each credit risk level are set to

Credit risk level y(0) κ µ Volatility σ

βC middle 0.01 0.7 0.02 middle 0.02
βI low 0.0001 1.1 0.001 low 0.02
βR high 0.03 0.6 0.05 high 0.5

Table 3.2: The credit risk levels of each parties on the CDS contract
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LC = 0.65, LI = 0.6, LR = 0.7, respectively. And they will make the payments every

three months, which indicates that the year fraction is given by α = 1
4
.

Using these values in Table 3.2 one can generate the corresponding break-even spreads

by solving the equation (3.5) for P . We report the break-even spreads generated using

the parameter in Table 3.2 for T ∈ {1, · · · 10} years in Table 3.3, which will be used to

imply the market survival probabilities for our example. Since the aim of this example

Maturity βC βI βR

1y 90 3 239
2y 102 4 252
3y 111 5 258
4y 116 6 262
5y 120 6 264
6y 123 6 266
7y 125 6 267
8y 127 6 268
9y 128 6 269
10y 129 6 269

Table 3.3: The break-even spreads in basis points generated using the parameters of the
CIR processes in Table 3.2.

is to show the impact of correlation on BVA, thus, we compute the BVAs by varying the

correlation between the counterparty and the reference credit ρCR, together with varying

the volatility of the counterparty σC . We denote Monte-Carlo values of the BVA for the

CDS payer and seller respectively with BVAp and BVAs and take the five-year CDS

spread of the reference credit as the premium rate P which is 264 (basis points) in Table

3.3. Finally, we report our results in Table 3.4. We consider firstly the case of negative

correlations: Almost all the BVAps approach zero for the reason, at the reference credit’s

default, the counterparty has probably no default due to the negative relationship with

the reference credit, thus no adjustments will be required by the investor; furthermore,

the investor as a protection seller requires a certain adjustment, since the default prob-

ability of the counterparty increases when the default risk of the reference entity (the

investor as seller holds an option which is in the money) reduces. At the counterparty’s
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default, the investor can only get a value which can be recovered by the counterparty.

Then, it is easy to understand that BVAs increases for a lower negative value of ρCR.

On the contrary, for high and positive values of ρCR : It is obvious that the investor

as a CDS seller requires almost no adjustment. However, as a CDS purchaser he needs

much more adjustment, because the default probability of the counterparty increases

with the rising of the reference entity default risk due to the high positive correlation

between them (the investor as purchaser holds an option which is in the money). At

the counterparty’s default, he can only receives a value which can be recovered by the

counterparty. This is to say, one should expect that BVAp increases with ρCR. However,

we look at Table 3.4, this phenomenon can be only observed when ρCR increases from

0 to 0.9. For ρCR = 0.99, which is a relatively large value, BVAp decreases contrarily

instead. Especially, we look at the first column where σC = 0.02, BVAp even approaches

zero. This means that we observe a strong decreasing WWR with low volatility and high

correlation.

(ρCI , ρCR, ρIR) σR 0.02 0.1 0.2 0.3 0.4 0.5

(0,−0.99, 0)
BVAp 0.0 (0.0) 0.1 (0.0) 0.1 (0.0) 0.1 (0.0) 0.1 (0.0) 0.1 (0.0)
BVAs 33.7 (0.9) 33.6 (0.9) 33.8 (0.9) 33.0 (0.9) 35.4 (0.9) 34.3 (0.9)

(0,−0.9, 0)
BVAp 0.0 (0.0) 0.1 (0.0) 0.1 (0.0) 0.1 (0.0) 0.2 (0.0) 0.1 (0.0)
BVAs 33.5 (0.8) 33.6 (0.8) 33.8 (0.8) 32.7 (0.8) 33.8 (0.8) 31.7 (0.8)

(0,−0.5, 0)
BVAp 0.0 (0.0) 0.1 (0.0) 0.1 (0.0) 0.1 (0.0) 0.1 (0.0) 0.1 (0.0)
BVAs 29.4 (0.8) 28.3 (0.8) 29.1 (0.8) 27.3 (0.7) 25.8 (0.7) 25.2 (0.7)

(0,−0.2, 0)
BVAp 0.0 (0.0) 0.1 (0.0) 0.1 (0.0) 0.1 (0.0) 0.2 (0.0) 0.2 (0.0)
BVAs 11.7 (0.3) 12.9 (0.4) 12.9 (0.4) 12.3 (0.4) 11.5 (0.3) 12.1 (0.3)

(0, 0, 0)
BVAp 6.5 (0.2) 4.6 (0.2) 4.0 (0.1) 3.8 (0.1) 4.0 (0.1) 2.6 (0.1)
BVAs 0.4 (0.0) 1.4 (0.1) 2.1 (0.1) 2.3 (0.1) 2.0 (0.1) 2.7 (0.1)

(0, 0.2, 0)
BVAp 27.0 (0.8) 22.6 (0.8) 21.0 (0.7) 19.6 (0.7) 17.8 (0.6) 17.2 (0.6)
BVAs 0.3 (0.0) 0.7 (0.1) 0.8 (0.1) 1.0 (0.1) 1.1 (0.1) 1.1 (0.1)

(0, 0.5, 0)
BVAp 64.4 (2.1) 57.4 (2.0) 47.9 (1.7) 43.7 (1.6) 42.0 (1.5) 33.5 (1.3)
BVAs 0.2 (0.0) 0.4 (0.0) 0.4 (0.0) 0.4 (0.0) 0.4 (0.0) 0.4 (0.0)

(0, 0.9, 0)
BVAp 82.3 (3.6) 65.6 (3.0) 54.3 (2.5) 52.6 (2.3) 53.7 (2.3) 52.0 (2.5)
BVAs 0.3 (0.0) 0.2 (0.0) 0.2 (0.0) 0.2 (0.0) 0.2 (0.0) 0.1 (0.0)

(0, 0.99, 0)
BVAp 1.2 (0.0) 2.1 (0.4) 5.8 (0.5) 11.0 (0.7) 19.0 (1.0) 30.1 (1.4)
BVAs 0.3 (0.0) 0.2 (0.0) 0.1 (0.0) 0.2 (0.0) 0.2 (0.0) 0.1 (0.0)

Table 3.4: BVAs in basis points for the scenario parameterized using the parameters in
Table 3.2 while varying the values of ρCR and σR. The numbers in round brackets are
the Monte-Carlo standard errors.
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The reason for this decreasing WWR is explained as follows: when the counterparty

and the reference credit are correlated with ρCR = 0.99, then the exponential triggers

ξC and ξR (see (3.22)) will be almost identical. At the same time σC and σR have a small

value 0.02, both default intensity processes are not so random, such that the inequality

λR > λC can hold almost all the time. Thus, by a first approximation τR ≈ ξR
λR

<

τC ≈ ξC
λC
, we find the reference credit will default almost always before the counterparty,

therefore, no adjustments take place.

Now we can imagine, if we increase the value of σR such that the default intensity

process λR is more random. This should result in adjustments even for ρCR = 0.99. As

expected, we look at the last row in Table 3.4 and observe that BVAp increases with the

value of σR. From this example, we see that correlation plays a key role in credit risk

modelling.

3.3 The Cumulative Distribution Function of the in-

tegrated CIR Process

As introduced in Section 3.2, the CDF of the integrated CIR process must be exactly

known for computing the survival probability (3.28) and (3.30) which is one of the

substantial parts for computing the BVA in a CDS contract. In this section, we adapt

the approach by Kahl and Jäckel [63] for option pricing to evaluate the CDF of the

integrated CIR process. This will allow us to construct a very robust routine to determine

numerically a highly accurate CDF of the integrated CIR process for almost any choices

of parameters.
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3.3.1 The CDF of the integrated CIR

The characteristic function of the integrated CIR process (see (3.20)) under the risk-

neutral probability measure is defined as

φYt(u) = E[eiuYt ] (3.36)

and can be rewritten as [43, 73]

φYt(u) = eA(t,u)+B(t,u)y0 , (3.37)

with

A(t, u) :=
2κµ

σ2

ln(2) + ln

 b(u)
κ−b(u)

e
(κ+b(u))t

2

a(u)eb(u)t − 1

 , (3.38)

B(t, u) :=
2ui

κ− b(u)

(
eb(u)t − 1

a(u)eb(u)t − 1

)
, (3.39)

where i denotes the imaginary unit and with the auxiliary functions

a(u) :=
κ+ b(u)

κ− b(u)
, b(u) :=

+
√
κ2 − 2σ2ui. (3.40)

Here, +
√

denotes the branch of the square root with positive real part.

Using an inverse Fourier transform we obtain the probability density function of the

integrated CIR process as

f(ỹt) :=

∫ ∞
0

Re[e−iuỹtφYt(u)]

π
du. (3.41)

Many authors (e.g., Bakshi and Madan [5]) determined the corresponding CDF numer-

ically by

FYt(ỹt) :=
1

2
− 1

π

∫ ∞
0

g(u) du, (3.42)
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where the function g is defined as

g(u) := Re

[
e−iuỹtφYt(u)

iu

]
. (3.43)

Apparently, the fact that the integrand (3.43) diverges at u = 0 leads to a cumber-

some numerical integration. We further observe that the numerical integration is made

even more complicated by the fact that this integrand (3.43) can be highly oscillatory

depending on the choice of parameters. Besides, the fast growth of the characteristic

function (3.37) is hard to handle in general, because it depends strongly on the model

parameters. Therefore, a simple quadrature or a naive numerical integration is not ap-

propriate for the integration in (3.42). We show in the sequel how to apply the adaptive

Gauss-Lobatto quadrature [52].

However, in order to use the adaptive Gauss-Lobatto quadrature we need to solve

two problems. First, this Gauss-Lobatto algorithm is designed only to operate on finite

intervals. Secondly, another problem is the complication in the calculation of the embed-

ded complex logarithms in equation (3.38) when the function g is evaluated repeatedly

in this quadrature scheme. In the remainder of this section, we show in Section 3.3.2

how to solve the first problem and turn in Section 3.3.3 to the second problem.

3.3.2 The Transformation to a Finite Interval

In this section we show how to transform the original unbounded domain of integra-

tion [0,∞) in (3.42) to the finite interval [0, 1] for applying later the Gauss-Lobatto

quadrature. This transformation relies on the asymptotic behaviour of the integrand

for u → ∞, see Proposition 3.3.1. This transformation strategy leads to an improved

stability of the adaptive quadrature scheme, cf. [63]. Besides, this modified integration

scheme is significantly more efficient since less quadrature points for the evaluation are

needed.
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Proposition 3.3.1 For the CIR model parameters κ, µ, σ, t > 0 we obtain the following

asymptotics:

lim
u→∞

b(u)√
u

=
√

2σe
7π
4
i, (3.44)

lim
u→∞

a(u) = −1, (3.45)

lim
u→∞

A(u)√
u

= −
√

2κµt

σ
e

7π
4
i, (3.46)

lim
u→∞

B(u)√
u

=

√
2i

σ
e−

7π
4
i. (3.47)

The proof can be found in the Appendix C.

Proposition 3.3.2 For the CIR model parameters κ, µ, σ, t > 0 we obtain the asymp-

totics for the function g = g(u) defined in (3.43):

lim
u→∞

g(u) ≈ exp−
√
uA∞ ·Re

(
e−iuỹt+i

√
ut∞

iu

)
= e−

√
uA∞ · sin(

√
ut∞ − uỹt)
u

, (3.48)

with

A∞ = t∞ =
κµt+ y0

σ
. (3.49)

The proof follows immediately from Proposition 3.3.1.

Obviously A∞ is positive and from the equation (3.48) we can see that the integrand

g defined in (3.43) has at least exponential asymptotic decay for u → ∞. Hence, we

simply transform the integration interval in (3.42) as

∫ ∞
0

g(u) du = − 2

A2
∞

∫ 1

0

lnx

x
g(u(x)) dx, (3.50)

with the change of variable

u(x) :=

(
lnx

A∞

)2

. (3.51)
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Note that in earlier work of our research [104] u(x) := − lnx
A∞

was used in the transforma-

tion. However, we find applying (3.51) can provide more stable and accurate results for

extreme parameters.

Up to now we have achieved the desired transformation to a finite integration inter-

val. The second issue is the choice of the branch of the multivalued complex logarithm

embedded in A(t, u) in (3.38) for calculations based on the inverse Fourier transform

(3.42) of the function g. However, the restriction on the choice of the principal branch

leads to a discontinuous function (3.43), which would lead to incorrect results. In the

next section we will show how to guarantee the continuity of the function g in (3.50).

3.3.3 Numerical Evaluation of Complex Logarithms

First, let us recall that the function g(u) has discontinuities if we simply select the

principal branch of the complex logarithm in A(t, u). In Figure 3.3 we first present the

imaginary part of the function A(t, u) as defined in (3.38), the discontinuities appear

very clearly.

0 5 10 15 20 25 30 35 40 45 50
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

u

Im
(A

(t
,u
))

 

 

t=2
t=20

Figure 3.3: The function A(t, u) defined in (3.38) with κ = 0.5, µ = 0.05, σ = 0.5,
y0 = 0.03, implementation using the principal branch, blue curve: t = 2, red dashed
curve: t = 20.
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In particular, it is even worse for t = 20 and this observation explains why a simple

approach for the integration in (3.42) must fail, since the integrands strongly depend on

the chosen parameters. Figure 3.4 shows the function g(u) which is implemented using

its respective function A(t, u), see Figure 3.3. For t = 20, the discontinuous peaks of the

0 5 10 15 20 25 30 35 40 45 50
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

u

g
(u

)

 

 

t=2
t=20

Figure 3.4: The function g(u) defined in (3.43) with κ = 0.5, µ = 0.05, σ = 0.5, ỹt = 1,
y0 = 0.03, implementation using the principal branch, blue curve: t = 2, red dashed
curve: t = 20.

function g(u) are apparent, from its plot we can deduce that the integration of g(u) will

also be very cumbersome. Besides, we can also observe a discontinuity of the function g

for t = 2 when the variable u equals that value in the interval [40, 45] as shown in Figure

3.6.

In order to avoid the discontinuity of the function g we use the approach of Kahl and

Jäckel [63] that was originally designed for the Heston model. To do so, we rewrite the

characteristic function φYt(u) of the integrated CIR process defined in (3.37) as

φYt(u) = 2αC(t, u)αeB(t,u)y0 , (3.52)

where

α : =
2κµ

σ2
, (3.53)
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c(u) : =
b(u)

κ− b(u)
, (3.54)

C(t, u) : =
c(u)e

(κ+b(u))t
2

a(u)eb(u)t − 1
. (3.55)

Note that A(t, u) in (3.38) can thus be written as α ln 2 + α lnC(t, u), and B(t, u) in

(3.52) is already defined in (3.39).

From (3.52) we realize that we just shifted the problem from the complex logarithm

to the evaluation of C(t, u)α, i.e. the evaluation of a complex logarithm is not necessary

any more. Now it is easy to see that the function C(t, u)α is the exact part of the function

g as defined in (3.43) where the jump arises, because its argument arg(C) must have a

discontinuity for any branch we selected. In other words, the branch switching of the

complex logarithm is in fact not the main problem that gives rise to the jumps of the

function g. For further details we refer the interested reader to [63].

In the literature different authors [70, 96, 100] proposed the straight forward idea to

bookmark the number of jumps of C(t, u) between two neighbouring quadrature points.

However, in our case this may lead to a rather complicated routine since we prefer to

use an adaptive quadrature scheme.

Rotation count correction

In the following, we describe a relative simple procedure, originally proposed by Kahl and

Jäckel [63] for the Heston model, to guarantee the continuity of C(t, u) by ensuring that

the argument of C(t, u) is continuous, such that the discontinuity of the integrand g(u)

in (3.42) is avoided. First, we introduce the polar and the rectangular representation for

the complex valued coefficients a(u) and b(u) defined in (3.40):

a = rae
iθa , (3.56)

b = pb + iqb. (3.57)
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Then the denominator of C(t, u) in (3.55) can be written as

aebt − 1 = rae
iθa+pbt+iqbt − 1 (3.58)

= r∗ei(χ
∗+2πm), (3.59)

where

m : = int

[
θa + qbt+ π

2π

]
, (3.60)

χ∗ : = arg(aebt − 1), (3.61)

r∗ : = |aebt − 1|. (3.62)

Note that in (3.60) int[·] denotes the Gauss’s integer brackets.

Restricting the argument θa ∈ [−π, π) means that we cut the complex plane along

the negative real axis. When the function C(t, u) in (3.55) crosses the negative real axis

by varying u, the sign of the argument of C(t, u) changes from −π to π and therefore

the argument of C(t, u)α changes from −πα to πα. Then the function jumps if α is not

an integer, since

eiπ = e−iπ ⇒


eiαπ = e−iαπ if α ∈ Z

eiαπ 6= e−iαπ else.

(3.63)

In general, we can assume χ∗ and θa to be on the same argument interval [−π, π),

because the subtraction of 1 from aebt is simply a shift parallel to the real axis and cannot

possibly move the complex number across the negative real axis as long as aebt never

crosses the real axis in [0, 1]. This essential property is guaranteed due to the following

Proposition 3.3.3.

Proposition 3.3.3 The absolute value of the function aebt is strictly greater than 1.

The proof is given in the Appendix C.
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Now we perform the same calculation with the numerator of C(t, u). First we intro-

duce the polar representation for c(u) defined in (3.54):

c = rce
iθc . (3.64)

Using the representation of b(u) in (3.57) we have

ce
(κ+b)t

2 = rce
iθc+

t
2

(k+pb+iqb) (3.65)

= r∗∗ei(χ
∗∗+2πn), (3.66)

with

n : = int

[
θc + t

2
qb + π

2π

]
, (3.67)

χ∗∗ : = arg(ce
(κ+b)t

2 ), (3.68)

r∗∗ : = |ce (κ+b)t
2 |. (3.69)

This situation seems to be more intuitive; both χ∗∗ and θc can be assumed to be in the

same argument interval [−π, π).

So far we obtained the following representation of C(t, u) by combining the results

above:

C(t, u) =
c(u)e

(κ+b(u))t
2

a(u)eb(u)t − 1
=
r∗∗

r∗
ei(χ

∗∗−χ∗+2π(n−m)), (3.70)

and the rotation count correction

ln C(t, u) = ln (
r∗∗

r∗
) + i(χ∗∗ − χ∗ + 2π(n−m)). (3.71)

By comparing the results with and without the rotation count correction (3.71) in Fig-

ure 3.5 we observe that the jump discontinuities can be removed.
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Figure 3.5: The blue solid curve is the argument of C(t, u) as defined in (3.55) by using
just the principal branch of C(t, u) and the red dashed one is also the argument of C(t, u)
but with the rotation count correction (3.71) for κ = 0.5, µ = 0.05, σ = 0.5, y0 = 0.03,
t = 20.

Now, we will consider the function g(u) from Figure 3.4 and apply the rotation count

correction. First we look at the g(u) which is smoother (for t = 2), having only a

discontinuity in the interval [40, 45] as we have mentioned before, see Figure 3.6.

30 32 34 36 38 40 42 44 46 48 50
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−0.015
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−0.005

0
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0.01

0.015

0.02

Figure 3.6: The blue solid curve is exactly a zoomed region of g(u) (blue) shown in
Figure 3.4 for u ∈ [30, 50], the red dashed curve is obtained with the rotation count
correction (3.71).

In Figure 3.7 we compare the functions g(u) with and without the rotation count

correction which are initialized with a high level of the CIR model parameter for a high
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credit risk, in this case the function has stronger discontinuities. Let us note that high

levels refer to the situations when the maturity of the CIR process is large, here t = 20.

For the reason why the rotation count correction works we refer to [77].
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Figure 3.7: The blue solid curve is exactly the function g(u) (red) shown in Figure 3.4
for u ∈ [0, 15], the red dashed curve is obtained with the rotation count correction (3.71).

3.3.4 The Quadrature on the Finite Interval

We rewrite the CDF (3.42) using the transform (3.50) as

FYt(ỹt) =

∫ 1

0

f̃(x) dx, (3.72)

where

f̃(x) :=
1

2
+

2 lnx

x · π · A2
∞
· g
(

lnx

A∞

)2

. (3.73)

This means that for the implementation using the adaptive Gauss-Lobatto quadrature

we additionally need the limits of f̃(x) at the boundaries 0 and 1 of the integral. For

x→ 0 we observe that (3.48) and (3.51) imply

lim
x→0

f̃(x) =
1

2
. (3.74)
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In the following proposition we state the limit of the function g(u), defined in (3.43),

if u tends to zero.

Proposition 3.3.4 For the function g defined by (3.43) we obtain that

g(u) = Re

[
e−iuỹtφYt(u)

iu

]
(3.75)

has the following limit at zero:

lim
u→0

g(u) = −ỹt + Im(A(t, 0)′) + Im(B(t, 0)′) · y0, (3.76)

where

Im(A(t, 0)′) =
µκe−κt + µκ(tκ− 1)

κ2
, (3.77)

and

Im(B(t, 0)′) =
1− e−κt

κ
. (3.78)

The proof can be found in Appendix C. The existence of the limit of the function g(u)

for u tending to zero implies directly

lim
x→1

f̃(x) =
1

2
. (3.79)

Numerical results

Now we can implement the required Fourier inversion in (3.42) as a Gauss-Lobatto

integration over the finite interval [0, 1] instead of the infinite interval [0,∞) using the

transformation (3.49)–(3.51). We see the first example in Figure 3.8. The stability

of the Gauss-Lobatto integration over the finite interval [0, 1] grants that even extreme

probabilities can be also computed, like we choose a very long dated maturity t = 30 and

see the corresponding CDF in Figure 3.8. It is worth mentioning that the parameters

used in Figure 3.8 do not satisfy the Feller condition 2κµ > σ2. Therefore, we point out
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Figure 3.8: The CDF FYt(ỹt) of the integrated CIR process Yt with κ = 0.5, µ = 0.05,
σ = 0.5, y0 = 0.03 computed with the adaptive Gauss-Lobatto scheme for a prescribed
accuracy 10−12.

that the accuracy of our numerical results is not limited by the Feller condition which

guarantees the positivity of the value of the CIR process.

Besides, we show the CDFs of the integrated CIR processes which are computed for

a lower value of parameters in Figure 3.9.
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Figure 3.9: The CDF FYt(ỹt) of the integrated CIR process Yt with κ = 0.9, µ = 0.001,
σ = 0.01, y0 = 0.001 computed by the adaptive Gauss-Lobatto scheme for a prescribed
accuracy 10−16.

The method works surprisingly well for almost any model parameters. Only for some

very extreme unrealistic parameters the numerical evaluation of the CDF cannot be real

highly accurate, because the adaptive Gauss-Lobatto scheme may work for such extreme
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parameters only with a low accuracy. In all practical relevant cases, the calibrated model

parameters from real market data will not be that extreme.

3.4 Simultaneous Defaults risk (CDS)

As already briefly introduced in Section 2.3, we investigate to compute BVA by allowing

simultaneous defaults among counterparties for a CDS contract. This extension is mo-

tivated with the indeed simultaneous default events1 in real financial market: e.g., the

collapses of Lehman Brothers and Merrill Lynch were just within two days (September

13-14, 2008); Another example noticed in [4], 24 railway firms defaulted simultaneously

on the same day, June 21, 1970.

In reality, it is possible that the defaults among the counterparties do not occur

simultaneously, but if one’s default has triggered a jump in the default probability of the

other one (e.g., if they are highly correlated), which might end up defaulting only within

a short time period. For example, the protection seller’s default could trigger a jump in

the default probability of the reference credit so that the protection buyer has to suffer

a loss. In the sequel we will refer to this later case also as a simultaneous default.

In particular, the effect of the simultaneous default between the CDS seller and the

reference entity on the BVA is different to the corresponding effect, when the CDS buyer

and the reference entity default simultaneously. If the protection seller and the reference

entity default simultaneously, the buyer must suffer a loss, since the seller cannot honour

the contractual obligations any more. However, when the protection buyer and the

reference entity default simultaneously, the protection buyer can still be paid by the

seller as the case, if only the reference entity defaults. This is to say, the simultaneous

defaults between the CDS buyer and the reference entity have no substantial effects on

the BVA, unlike the simultaneous defaults between the CDS seller and the reference

1Mathematically we define simultaneous defaults among the counterparties as that the default times
of them are exactly the same. However, in the real world we can already say that they default simulta-
neously if they filed for bankruptcy protection on one day or within a few days.
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entity. Thus, the possibility of the simultaneous defaults should be considered to price

the counterparty risk.

3.4.1 Counterparty Risk of a CDS Contract with Simultaneous

Defaults

We remind that the introduction to CDS has been provided in Section 3.1.1, where a

general set-up including e.g., the definition of filtration can be found. Section 3.1.2 is

devoted to arbitrage-free valuation framework for the bilateral counterparty default risk

in a CDS contract, however, the simultaneous defaults among the counterparties are not

considered.

We define the following events ordering the default times2 of three names in the CDS

contract between valuation t and maturity T [103]:

A = {t < τ = τR ≤ T}, B = {t < τ = τC ≤ T}, C = {t < τ = τI ≤ T},

D = {t < τ = τC = τI ≤ T}, E = {t < τIC = τR ≤ T}.
(3.80)

Definition 3.4.1 The discounted payoff of a counterparty-risky (simultaneous default

included) CDS contract at time t can be written as:

Π̂(t, T ) := 1AD(t, τ)(−LR)

+ 1B

[
D(t, τ)

(
RC(P CDS

τ − 1{τ=τR}LR)+ − (P CDS

τ − 1{τ=τR}LR)−
)]

+ 1C

[
D(t, τ)

(
(P CDS

τ − 1{τ=τR}LR)+ −RI(P
CDS

τ − 1{τ=τR}LR)−
)]

+ 1D

[
D(t, τ)

(
−(P CDS

τ − 1{τ=τR}LR)
)]

+ 1E [D(t, τ)LR]

+D(t, τ)(τ − Tγ(τ)−1)P1{Ta<τ<Tb} +
b∑

i=a+1

D(t, Ti)αiP1{τ≥Ti},

(3.81)

2See Section 3.1.2 for the definition of default times.
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where the term 1{τ=τR}LR represents the exposure in case when the reference entity si-

multaneously defaults with any other counterparties. P CDS
τ (P ,LR) is the price of a coun-

terparty risk-free CDS contract at time τ defined in (3.6).

• B : When the counterparty defaults, at the default time τ , the value of the CDS

until maturity P CDS
τ −1{τ=τR}LR is computed. If this value is negative, the investor

closes out the position by paying the defaulting counterparty this price. If the value

is positive, the investor closes out the position and only receives a fraction RC of

this value from his counterparty. Therefore, in this case, we can define the close-out

payment as

RC(P CDS

τ − 1{τ=τR}LR)+ − (P CDS

τ − 1{τ=τR}LR)−. (3.82)

• C : In case of an investor default, if the value of CDS until maturity P CDS
τ −

1{τ=τR}LR is positive, the counterparty closes out the position by paying this price

in full. If this value is negative, the counterparty only receives a fraction RI of

this value to close out the position. Hence, the close-out payment is defined as

(P CDS

τ − 1{τ=τR}LR)+ −RI(P
CDS

τ − 1{τ=τR}LR)−. (3.83)

• D : If the investor and the counterparty default simultaneously, then compute the

value of CDS like in case B and C, that is P CDS
τ − 1{τ=τR}LR, and if it is negative,

the counterparty receives a fraction RI of this value; however, if it is positive,

the investor receives a fraction RC of this value. Together, we set the close-out

payment for this case as

−(P CDS

τ − 1{τ=τR}LR). (3.84)

• E : If the investor or the counterparty default simultaneously with the reference en-

tity, the investor receives a fractionRC of the remaining recovery amount, (−LR)+,

when the counterparty defaults. Similarly, if the investor defaults, the counterparty
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receives a portion RI of the remaining recovery amount, (−LR)−. The close-out

payment for a joint default including the reference entity has the form

LR. (3.85)

Definition 3.4.2 We denote by P̂ CDS
t (P ,LR) the price of a counterparty-risky CDS con-

tract maturing at time T , i.e.

P̂ CDS

t (P ,LR) = E{Π̂(t, T )|Gt}, t ∈ [0, T ]. (3.86)

Proposition 3.4.1 At the valuation time t, the BVA on a CDS contract maturing at

time T defined as B̂VA(t, T,P ,L{C,I,R}) = P CDS
t (P ,LR)− P̂ CDS

t (P ,LR), can be written as

B̂VA(t, T,P ,L{C,I,R}) = E
{
1B · LC ·D(t, τ) ·

(
P CDS

τ − 1{τ=τR}LR
)+ |Gt

}
− E

{
1C · LI ·D(t, τ) ·

(
P CDS

τ − 1{τ=τR}LR
)− |Gt} , (3.87)

for every t ∈ [0, T ].

The proof can be found in the Appendix C.

Remark 3.4.1 Similar to (3.17), the BVA considering simultaneously defaultable coun-

terparties also equals the sum of the values of a long position in a zero-strike call option

on the residual price of CDS and the value of a short position in a zero-strike put option

on the residual price of the CDS.

Remark 3.4.2 The formula (3.87) has the great advantage of being symmetric. This

property means that the BVA from the point of view of the the counterparty is exactly

opposite for the investor (−BVAt), this is to say that the parties agree on the value of the

BVA. Besides, from (3.87) we can conclude that the value of this BVA can be negative

and positive, the sign depends on which party is more risky to default.
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3.4.2 The Multivariate Markov Default Model

We propose an underlying stochastic model following [3, 9], based on which the BVA of

a CDS contract considering simultaneously defaultable counterparties can be evaluated.

We define a Markov Copula model of multivariate default times with factor processes

y = (yC , yI , yR) and the corresponding default indicator processes H = (HC , HI , HR) for

a CDS contract which have the following key features:

(i) The pair (y,H) is Markov in its natural filtration.

(ii) Each pair (yj, Hj) is a Markov process.

(iii) At every instant, either each name on CDS contracts defaults individually or si-

multaneously with other names.

Remark 3.4.3 The property (i) allows us to address in a dynamic and theoretically

consistent way the issues of pricing and hedging credit derivatives. Property (ii) grants

a quick valuation of single-name CDS contracts and independent calibration of each pair

(yj, Hj), whereas (iii) will allow us to account for a dependence between defaults of each

name.

Instead of (3.18) we define henceforth the default intensities

λj,t = yj,t + aj, t ≥ 0, j = C, I,R, (3.88)

where each aj is a constant and each yj is again a CIR process given in (3.19).

Remark 3.4.4 We assumed that the processes Wj in (3.19) are independent of each

other. Under this assumption the specification as defined in (3.88) has Markov consis-

tency, i.e. the intensities of surviving names would not be affected by past defaults and

the model dependence between defaults is only represented by the possibility of common

jumps.
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3.4.3 The Model Specification and Simulation

We define a certain number of groups Ml ⊆ {C, I,R} := MCDS, and set Ml = l for

l ∈ {{C, I}, {C,R}, {I, R}, {C, I,R}} := L . However, λMl
can not solely be interpreted

as the intensity of all parties in l defaulting simultaneously. For example, the reference

credit R will also default with Ml = {C,R} as long as he is still alive, if the investor I

is already defaulted. Then for the default intensity we have the following:

• the counterparty C defaults with intensity λ{C}+ λ{C,I}+ λ{C,R}+ λ{C,I,R} as long

as he is still alive,

• the investor I defaults with intensity λ{I} + λ{C,I} + λ{I,R} + λ{C,I,R} as long as he

is still alive,

• the reference credit R defaults with intensity λ{R} + λ{C,R} + λ{I,R} + λ{C,I,R} as

long as he is still alive,

• the counterparty C and the reference credit R default together with intensity

λ{C,R} + λ{C,I,R} as long as they are still alive,

• the counterparty C and the investor I default together with intensity λ{C,I} +

λ{C,I,R} as long as they are still alive,

• the investor I and the reference credit R default together with intensity λ{I,R} +

λ{C,I,R} as long as they are still alive,

• the counterparty C , the investor I and the reference credit R default together

with intensity λ{C,I,R} as long as they are still alive.

Using this specification we first set the non-negative bounded intensity functions ãj(t)

as

ãj,t =
∑

{l∈L;j∈l}

λl,t, (3.89)
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but the calibration scheme will be computationally costly. It is thus useful to devise

parsimonious model parameterizations. For instance, we use constant joint default in-

tensities, setting λl(t) = λl and thus for aj in (3.88) we have

aj =
∑

{l∈L;j∈l}

λl, j ∈MCDS. (3.90)

The default intensities for every j ∈MCDS as defined in (3.88) can be written as

λj,t = yj,t +
∑

{l∈L; j∈l}

λl, t ≥ 0. (3.91)

Analogous to the definition in (3.20) we define the following integrated quantities which

will be used in the remainder of this section

Λj(t1, t2) :=

∫ t2

t1

λj,sds, Yj(t1, t2) :=

∫ t2

t1

yj,sds, Λl(t1, t2) :=

∫ t2

t1

λl,sds,

and

Λj(t) :=

∫ t

0

λj,sds, Yj(t) :=

∫ t

0

yj,sds, Λl(t) :=

∫ t

0

λl,sds,

where j ∈MCDS and l ∈ L.

It is obvious from (3.87) that we need the following conditional survival probabilities

to compute the counterparty risk adjustment as defined in (3.6)

Q(τR > t|GτC ), (3.92)

and

Q(τR > t|GτI ). (3.93)

These two survival probabilities can be easily calculated by the following propositions.
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Proposition 3.4.2

Q(τR > t|GτC ) = E {exp (−ΛR(τR, t)) |GτC}

= E
{

exp(−YR(τR, t)−
∑

{l∈L; R∈l}

Λl(τR, t))|GτC
}
. (3.94)

Proposition 3.4.3

Q(τR > t|GτI ) = E{exp (−ΛR(τR, t)) |GτI}

= E
{

exp(−YR(τR, t)−
∑

{l∈L; R∈l}

Λl(τR, t))|GτI
}
. (3.95)

The two propositions follow directly from the Markov probabilities, cf. [9].

Model simulation

As described in [9] the above model allows for a common shock model such that the

simulation of a random time τ is computationally easy. However, the default time of

each counterparty indicates not only its own default, but also the common defaulting

among them. Therefore, we need to update the definition of default times. Given the

previously simulated trajectories of the CIR processes yj for j ∈ MCDS, one essentially

needs to simulate IID (Independent and identically) exponential random variables ξĵ, for

ĵ ∈ L ∪MCDS. Then one computes, for every l ∈ L,

τ̂l := inf{t > 0; Λl(t) ≥ ξl} (3.96)

and for every j ∈MCDS,

τ̂j := inf{t > 0; Yj(t) ≥ ξj}. (3.97)

Next, we set for every j ∈MCDS,

τj = τ̂j ∧
( ∧
{l∈L; j∈l}

τ̂l

)
. (3.98)
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3.4.4 Computing of BVA considering Simultaneous Defaults

Before computing BVA considering simultaneous defaults we firstly have to determine

the constant aj for j = C, I,R in the model (3.90). If we assume that the processes

yj, j ∈MCDS are always non-negative, then due to the definition (3.88) the constant aj

defined in (3.90) must be chosen as

aj =
∑

{l∈L;j∈l}

λl ≤ λj, ∀j ∈MCDS. (3.99)

For instance, we can set as in [3], for every l ∈ L,

λl = Cl inf
j∈l
λj (3.100)

for some non-negative model dependence parameters Cl such that
∑

l∈L Cl ≤ 1. The

value of Cl determines the possibility of simultaneous defaults between the parties in the

group l; a larger value refers to a higher possibility of simultaneous defaults. Conversely,

if we e.g., set C{C,R} = 0, then the simultaneous defaults between the counterparty and

the reference credit is not possible. In other words, the parameters Cl represent the

dependence between defaults of the parties in the group l.

It has been shown in Section 3.2.1 that the market implied intensity (hazard rate) for

name j with λ∗j can be bootstrapped from the individual CDS quotes. We remark that

the bootstrapping procedure is model independent. Now we can calibrate the constant

aj for every j ∈ MCDS by choosing appropriate model dependence parameters Cl and

setting

aj =
∑

{l∈L;j∈l}

λl ≤ λ∗j . (3.101)

From the CDS quotes of the higher risk the bootstrapped intensity λ∗j is larger; thus λl,

j ∈ l is larger due to (3.100). Besides, for the same reason as for the intensity λ∗j , a

larger dependence parameter Cl constructs the larger λl, j ∈ l. Hence, with the same
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exponentially distributed trigger variable the simultaneous default time of the group l

is smaller (earlier) through (3.96), if Cl is larger and consequently the possibility of the

simultaneous defaults between parties in the group l is higher.

The Monte-Carlo approach

Now we can compute the BVA on a CDS contract. We perform the following steps based

on Monte-Carlo simulations:

1. Produce default times τC , τI and τR using (3.96), (3.97) and (3.98).

2. In case of B (see (3.80)), i.e. the counterparty defaults first, we need to compute

the term inside the first expectation value which has positive sign. First, we check

at the default time of counterparty whether the reference credit also defaults. For

the case of a simultaneous default we just need the loss given default LR. Otherwise

we compute P CDS
τC

given in (3.6), the survival possibility in P CDS
τC

can be computed

by (3.94).

3. In the event of C (see (3.80)) we need the term inside the second expectation value

with negative sign, the computation is similar to the last step.

4. Finally, we produce the BVA by discounting and averaging.

3.4.5 An example with Wrong-Way risk

In this section we perform a numerical evaluation of the BVA as defined in (3.87) based on

Monte-Carlo simulations. We study again a five years CDS contract on a reference entity

traded by an investor and a counterparty, where both the investor and the counterparty

are defaultable. We assume the payment dates to be every three months α = 0.25 and

the LGD of the three names are taken from a market provider and are fixed to 60%.

Furthermore, we assume deterministic interest rates such that the default time τ and

the discount factor are independent.
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We set the three names having different levels of credit risk which are specified by

the collections of the parameters in Table 3.5. As already introduced in Section 3.2.3,

Credit Risk Level κ µ σ y0

Low 0.9 0.001 0.01 0.001
Medium 0.8 0.02 0.1 0.01

High 0.5 0.05 0.3 0.04

Table 3.5: Collection of parameters for initializing the CIR processes.

using the parameters in Table 3.5 we can compute break-even spreads which will be used

as the market quotes. We show in Table 3.6 the premium rate P in basis points using

the assumed deterministic LGD (LGDlow = 0.6, LGDmedium = 0.65 and LGDhigh = 0.7)

and collections of the parameters in Table 3.5.

Maturity Low Risk Medium Risk High Risk

1y 6 85 293
2y 6 97 298
3y 6 105 301
4y 6 110 302
5y 6 113 302
6y 6 115 303

Table 3.6: Break-even spreads in basis points generated using the collections of the
parameters of the CIR processes in Table 3.5.

We assume the following scenarios:

• Scenario 1. The investor has low credit risk, the reference entity has high credit risk

and the counterparty has medium credit risk. This situation is the most common

in the real market.

• Scenario 2. The investor has low credit risk, the reference entity has medium credit

risk and the counterparty has high credit risk. We are facing a risky counterparty

in this case.
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• Scenario 3. The investor has high credit risk, the reference entity has medium

credit risk and the counterparty has low credit risk. The investor is most risky

itself.

• Scenario 4. Both investor and counterparty have medium credit risk, while the

reference entity has high credit risk (Risky Reference I).

• Scenario 5. Both investor and counterparty have low credit risk, while the reference

entity has high credit risk (Risky Reference II).

As an example, we assume the parameters Cl, l 6= {C,R} to be the same and equal

with 0.01. and compute the BVAs for each following scenario by varying the parameter

C{C,R}. We report our results in Table 3.7. Table 3.7 clearly shows the effect of the

Scenario Base Scenario Risky Counterparty Risky Investor Risky Ref I Risky Ref II

C{C,R} BVAp BVAp BVAp BVAp BVAp

BVAs BVAs BVAs BVAs BVAs

0.01 7.0 (0.1) 6.5 (0.1) -0.6 (0.0) 2.9 (0.1) 0.2 (0.0)
4.1 (0.0) 0.7 (0.0) -6.3 (0.1) -2.9 (0.1) -0.1 (0.0)

0.03 12.5 (0.2) 12.5 (0.2) -0.4 (0.0) 8.3 (0.1) 0.4 (0.0)
4.0 (0.0) 0.5 (0.0) -6.3 (0.1) -3.1 (0.1) -0.1 (0.0)

0.05 18.4 (0.2) 19.1 (0.2) -0.0 (0.1) 14.1 (0.2) 0.8 (0.1)
3.9 (0.0) 0.3 (0.0) -6.3 (0.1) -3.1 (0.1) -0.1 (0.0)

0.1 32.6 (0.3) 35.1 (0.3) 0.8 (0.1) 28.0 (0.2) 1.5 (0.1)
3.6 (0.0) 0.0 (0.0) -6.5 (0.1) -3.6 (0.1) -0.1 (0.0)

0.15 46.0 (0.4) 50.8 (0.4) 1.6 (0.1) 41.5 (0.4) 2.3 (0.1)
3.2 (0.0) -0.1 (0.0) -6.5 (0.1) -4.2 (0.1) -0.1 (0.0)

0.2 59.7 (0.4) 66.4 (0.4) 2.2 (0.1) 54.8 (0.4) 2.8 (0.1)
2.9 (0.0) -0.3 (0.0) -6.4 (0.1) -4.6 (0.1) -0.1 (0.0)

0.25 74.4 (0.5) 83.1 (0.5) 3.3 (0.1) 69.3 (0.5) 4.0 (0.1)
2.6 (0.0) -0.3 (0.0) -6.5 (0.1) -5.1 (0.1) -0.1 (0.0)

Table 3.7: The values of the BVA in basis points for the different scenarios, the number
between parentheses represents the Monte-Carlo standard error.

wrong-way risk. For example, if one looks at the second column, one notices that as the

possibility of the simultaneous defaults between counterparty and reference credit gets

larger, the BVAp increases significantly due to the reasons: (1) the counterparty is the

riskiest name. (2) The higher represented positive correlation makes the spread of the

reference entity larger at the counterparty default, thus the option on the residual price
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of CDS for the investor as payer will be in the money and worth more. However, at the

counterparty default the investor only gets a fraction of it proportional to the recovery

value of the counterparty. (3) At the simultaneous default of the counterparty and the

reference credit, that option must be deep into the money, but the payer investor only

gets a fraction of it proportional to the recovery value of the counterparty, more BVAp

takes place.

The adjustments BVAp in Scenario 1 (Base Scenario) and Scenario 2 (Risky Counter-

party) are similar, since the possibility of simultaneous defaults between the counterparty

and the reference entity are the same if one has medium credit risk and the other one

has high risk. The adjustments BVAp in Scenario 2 are a little bit larger than the cor-

responding adjustments in Scenario 1, because the counterparty in Scenario 2 is riskier.

If one looks at the adjustments BVAs in Scenario 1 and Scenario 2, at the simultaneous

default between the counterparty and the reference entity, the option for the investor as

the receiver will be out of the money, thus slight adjustments are required. In particu-

lar, as the dependence parameter C{C,R} is larger, less adjustments take place, but the

changes are very small.

In Scenario 3, the values of the adjustments BVAp have only small changes. For the

small dependence parameter C{C,R} the adjustment is negative, because the investor is

riskier. However, as the dependence parameter C{C,R} gets larger, this is to say that the

possibility of the simultaneous defaults between the counterparty and the reference is

increasing, the investor as payer even requires the adjustments although he is risky, see

the last three rows at the third column.

An interesting pattern emerges from the fourth column (Risky Ref I). Contrary to

earlier works, e.g., [15, 16], by looking at BVAp at the fourth column, one finds that

as the possibility of the simultaneous defaults between counterparty and the reference

entity is increasing, the BVAp increases significantly. The reason is that the counterparty

has medium credit risk while the reference entity has high risk, thus they have higher
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possibility for larger C{C,R} to default simultaneously, then the investor needs adjustments

to hedge this risk. However, if the counterparty becomes safer while the reference entity

is still riskier, then the possibility of the simultaneous defaults between the counterparty

and the reference entity will be lower, thus less adjustments will take place as reported

in the last column (Risky Ref II).

3.5 Summary

Either from the correlation matrix R in Section 3.2 or the dependence factor Cl in

Section 3.4 we realize that the correlation between counterparties in a CDS contract

plays a key role on their default risk management. As already mentioned in Section

2.3, to introduce the default correlation among the counterparties one can use a copula

function, the correlated BMs in the SDE system, or both approaches jointly.

Generally, the degree of relationship between financial products and financial insti-

tuations always plays an essential role on, e.g., pricing and hedging, and thus must be

considered. The most common one is the correlated BMs in a SDE system by a determin-

istic constant. However, intuitively, a time-dependent model or a stochastic model could

better replicate the phenomena in the real world. Indeed, market observations clearly

indicate that financial quantities are correlated in a strongly nonlinear way, correlation

could even behave stochastically and unpredictably. This motivates us to finish the next

two parts for the present thesis: modelling and application of local time-dependent and

stochastic correlation.
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Part II
Modelling and Applications of Local Time-dependent

Correlation

In this part, we provide an appropriate and reasonable time-dependent correlation func-

tion and present the concept of dynamically (time-dependent) correlated Brownian mo-

tions (BMs) and its construction. As example, we apply this new time-dependent corre-

lation function to price European options and Quanto options. We analyze the improve-

ment by using a time-dependent correlation instead of a constant correlation.
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Chapter 4

Time-dependent Correlation Model

and its Application

We introduce an appropriate and reasonable time-dependent correlation function. The

concept of dynamically (time-dependent) correlated BMs and its construction are pre-

sented. For the applicability of time-dependent correlation, for examples, we price

Quanto options under time-dependent correlation and extend the Heston model [58]

by incorparating time-dependent correlation.

4.1 The Dynamic Correlation Function

The key issue of modelling correlation as a time-dependent function is to ensure that the

boundaries −1 and 1 of the correlation function are not attractive and unattainable for

any time. Besides, the correlation function must converge for increasing time. Actually,

it is demanding to find such a correlation function which satisfies these two properties.

In this section, we build up a reasonable and appropriate time-dependent correlation

function, so that one can reasonably choose additional parameters to increase the fitting

quality on the one hand but also add an economic concept on the other hand. Thus many
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problems of finance and economics can be treated under dynamic correlation which is

much more realistic than using a constant correlation to model real world phenomena.

4.1.1 Build-up Model

A correlation function must satisfy the correlation properties: It provides only the values

in the interval (−1, 1) for any time; it converges to a value for increasing time. We find

the following simple idea: We denote the dynamic correlation with ρ̄ and propose simply

using

ρ̄t := E [tanh(Xt)] , t > 0, (4.1)

for the dynamic correlation function, where Xt is any mean-reverting process with

positive and negative values. For a fixed parameter of Xt, the correlation function

ρ̄t : [0, t] → (−1, 1) depends only on t. We observe that the dynamic correlation model

(4.1) satisfies the desired properties: First, it is obvious that ρ̄t takes values only in

(−1, 1) for all t. Besides, it converges to a value for increasing time due to the mean

reversion of the used process Xt.

The time-dependent correlation function based on OU process

Xt in (4.1) could be any mean-reverting process which alows for positive and negative

outcomes. As an example, let Xt be the Ornstein-Uhlenbeck (OU) process [113]

dXt = κ(µ−Xt)dt+ σdWt, t ≥ 0. (4.2)

We are interested in computing E[ρt] as a function of given parameters in (4.2). We

compute ρ̄t = E[tanh(Xt)] as

ρ̄t = E[tanh(Xt)] = E

[
1− e−Xt · 2

e−Xt + eXt

]
= 1− E

[
e−Xt · 1

cosh(Xt)

]
. (4.3)
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We set g(Xt) = 1/ cosh(Xt), and apply the results by Chen and Joslin [29], the expecta-

tion in (4.3) can be found in closed-form expression (up to an integral) as

1

2π

∫ ∞
−∞

ĝ(u) · E[e−XteiuXt ] du, (4.4)

where i =
√
−1 denotes the imaginary unit and ĝ is the Fourier transform of g, in this

case is known analytically by ĝ(u) = π/ cosh(πu
2

). Denoting CF (t, u|X0, κ, µ, σ) as the

characteristic function of Xt, the expectation in (4.4) can be presented by CF (t, i +

u|X0, κ, µ, σ). Thus, we obtain the closed-form expression for ρ̄t :

ρ̄t = 1− 1

2

∫ ∞
−∞

1

cosh(πu
2

)
· CF (t, i+ u|X0, κ, µ, σ)du. (4.5)

The next step is to calculate the expression of CF (t, i+ u|X0, κ, µ, σ). Xt is the OU

process and its characteristic function CF (t, u|X0, κ, µ, σ) can be obtained analytically,

e.g., using the framework of the affine process, see [36]. Then, we only need to substitute

u+ i for u in the characteristic function of Xt to calculate CF (t, i+ u|X0, κ, µ, σ) which

is given by

CF (t, i+ u|X0, κ, µ, σ) = e−A(t)−B(t)
2

+iu(A(t)+B(t))+u2 B(t)
2 , (4.6)

with

A(t) = e−κtX0 + µ(1− e−κt), B(t) = −σ
2

2κ
(1− e−2κt). (4.7)

Finally, the dynamic correlation function ρ̄t can be computed by

ρ̄t = 1− e−A(t)−B(t)
2

2

∫ ∞
−∞

1

cosh(πu
2

)
· eiu(A(t)+B(t))+u2 B(t)

2︸ ︷︷ ︸
:=g(u)

du, (4.8)

where A(t) and B(t) are defined in (4.7). In fact, X0 in A(t) is equal to artanh(ρ̄0).
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We observe that the integrand g(u) is a symmetric function about u = 0 and vanishes

(approaches zero) for a sufficiently large absolute value of u, see Figure 4.1. For these

two reasons, the numerical integration in (4.8) is computationally fast.
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Figure 4.1: g(u) under ρ0 = 0.3, κρ = 2, µρ = −0.8, σρ = 0.1.

To illustrate the role of each parameter in (4.8), we plot ρ̄t for a couple of parameters.

First in Figure 4.2, we let κ = 2 and σ = 0.5 and display ρ̄t with different values of µ,

which is set to be 0.5, 0 and − 0.5, respectively. Obviously, µ determines the long
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Figure 4.2: Dynamic correlation ρ̄t for varying µ (κ = 2 and σ = 0.5).

term mean of ρ̄t. However, µ is not the exact limiting value. Considering Figure 4.2a

where the initial value of the correlation function is 0, we see that ρ̄t is increasing to a

value around µ = 0.5 and decreasing to a value around µ = −0.5 as t goes on, when
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µ = 0.5 and − 0.5, respectively. Besides, for µ = ρ̄0 = 0 we observe that the correlation

function ρ̄t always yields 0 which is the same as the constant correlation ρ = 0. Now, we

set ρ̄0 = 0.3 and keep the values of all other parameters to be unchanged, then display

the curves of ρ̄t in Figure 4.2b.

Next, we fix κ = 2 and µ = 0.5 and show ρ̄t for the varying σ = 0.5, 1 and 2 in Figure

4.3. Obviously, σ shows the magnitude of variation from the value around µ = 0.5. In
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Figure 4.3: Dynamic correlation ρ̄t for varying σ (κ = 2 and µ = 0.5).

Figure 4.3a we see, the larger the value of σ is, the stronger the deviations of ρ̄t is from

the value around µ = 0.5. More interesting is that ρ̄t first decreases until t ≈ 0.25, then

increases and converges to a value, see Figure 4.3b where ρ̄0 = 0.3 and σ = 2.

Again, in order to illustrate the role of κ, we set µ = 0.5, σ = 2 and vary the value

of κ, see Figure 4.4. From Figure 4.4a it is easy to observe that κ represents the speed

of ρ̄t tending to its limit. Especially, as we have seen in Figure 4.3b, the curve is more

unstable for κ = 2 and σ = 2 in Figure 4.4b. However, if σ remains constant while

the value of κ is increasing, we can see that curves of ρ̄t become more stable and tend

straightly to its limit. If one incorporates the dynamic correlation function (4.8) to a

financial model, the parameters ρ̄0, κ, µ, and σ could be estimated by fitting the model

to market data.
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Figure 4.4: Dynamic correlation ρ̄t for varying κ (µ = 0.5 and σ = 2).

4.1.2 Dynamically correlated BMs and its Construction

At a time t > 0, the correlation coefficient of two Brownian motions (BMs) Wt,1 and

Wt,2 is defined as (see B.1)

ρ1,2
t =

E [Wt,1Wt,2]

t
. (4.9)

If we assume that ρ1,2
t is constant, ρ1,2

t = ρ1,2 for all t > 0, then Wt,1 and Wt,2 are

correlated with the constant ρ1,2. In the following, we show how to define the dynamically

correlated Brownian motions, where the correlation is not the same for each time instant.

Let (∆n)n∈N := {0 = t0 < t1 < · · · < tn−1 < tn = t} be a partition of [0, t] with the mesh

‖(∆n)‖ := max
1≤i≤n

(ti − ti−1), we calculate

E [Wt,1Wt,2] = E
[(

(Wtn,1 −Wtn−1,1) + (Wtn−1,1 −Wtn−2,1) + · · ·+ (Wt1,1 −Wt0,1)
)

·
(
(Wtn,2 −Wtn−1,2) + (Wtn−1,2 −Wtn−2,2) + · · ·+ (Wt1,2 −Wt0,2)

)]
= E

[
n∑
i=1

(Wti,1 −Wti−1,1)(Wti,2 −Wti−1,2)

]

= E

[
n∑
i=1

ρ1,2
ti−ti−1

(ti − ti−1)

]
‖∆n‖→0
n→∞= E

[∫ t

0

ρ1,2
s ds

]
. (4.10)

Therefore, we give the definition of dynamically correlated BMs.
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Definition 4.1.1 Two Brownian motions Wt,1 and Wt,2 are called dynamically corre-

lated with correlation function ρ̄t, if they satisfy

E [Wt,1Wt,2] =

∫ t

0

ρ̄sds, (4.11)

where ρ̄t : R+ → (−1, 1). The average correlation of Wt,1 and Wt,2, ρAv, is given by

ρAv := 1
t

∫ t
0
ρ̄sds.

Construction

The construction of dynamically correlated BMs can be easily done. We consider first

the two-dimensional case. Let ρ̄t be a correlation function. For two independent BMs

Wt,1 and Wt,3 we define

Wt,2 =

∫ t

0

ρ̄sdWs,1 +

∫ t

0

√
1− ρ̄2

s dWs,3, (4.12)

with the symbolic expression

dWt,2 = ρ̄tdWt,1 +
√

1− ρ̄2
t dWt,3. (4.13)

It can be easily verified that Wt,2 is a BM and correlated with Wt,1 dynamically by ρt.

Besides, the covariance matrix and the average correlation matrix of Wt = (Wt,1,Wt,2)

can be determined, given by

 t
∫ t

0
ρ̄sds∫ t

0
ρ̄sds t

 and

 1 1
t

∫ t
0
ρ̄sds

1
t

∫ t
0
ρ̄sds 1


respectively.

The construction above can be also generalized to n-dimensions. We denote a stan-

dard n-dimensional Brownian motion by Zt = (Z1,t, ..., Zn,t) and the matrix of dy-

namic correlations Rt = (ρ̄i,jt )1<i,j<n which has the Cholesky decomposition for each
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time t, Rt = AtA>t with At = (ai,jt )1<i,j<n. We define a new n-dimensional process

Wt = (W1,t, ...,Wn,t) by

Wi,t =
n∑
j=1

aijt dZj,t, i = 1, · · · , n. (4.14)

We can easily verify that Wt satisfies the following properties:

• W0 = 0 and the paths are continuous with probability 1.

• The increments Wt1−Wt0 and Wt2−Wt1 are independent for 0 ≤ t0 < t1 < t2 < t.

• For 0 ≤ s < t, the increment Wt −Ws is multivariate normally distributed with

mean zero and covariance matrix Σ : Wt −Ws ∼ N(0,Σ) with

Σ =



t− s
∫ t
s
ρ̄1,2
u du · · ·

∫ t
s
ρ̄1,n
u du∫ t

s
ρ̄2,1
u du t− s · · ·

∫ t
s
ρ̄2,n
u du

...
...

. . .
...∫ t

s
ρ̄n,1u du

∫ t
s
ρ̄n,2u du · · · t− s


.

We call the process (Wt)t≥0 a n-dimensional dynamically correlated Brownian motion,

with the correlation matrix Rt.

4.2 The Applications to Quanto Options

The Quanto option is a cash-settled, cross-currency derivative in which the underlying

asset has a payoff in one currency, but the payoff is converted to another currency in

which the option is settled. Thus, the correlation between assets and currency exchange

rate must be considered. Instead of assuming a constant correlation, we develop a

strategy for pricing the Quanto option under time-dependent correlations in a closed

formula. An example of calibration to real market data is provided. We study the effect
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of dynamic correlation on the option pricing and hedging. The numerical results show

that the prices of Quanto option under dynamic correlation can be better fitted to the

market prices than simply using a constant correlation.

4.2.1 Quanto Options under Dynamic Correlation

We derive the pricing formula of Quanto options with incorporated dynamic correlation.

We define H as the exchange rate between domestic and foreign currency and S is the

level of an index traded in the foreign countries. We assume that they satisfy

 dSt = µSSt dt+ σSSt dW
S
t

dHt = µHHt dt+ σHHt dW
H
t ,

(4.15)

where W S
t and WH

t are correlated dynamically with the correlation function ρ̄t defined

in (4.8).

Following the methodologies in [116, 108] we construct a portfolio consisting of the

quanto in question, hedged with foreign currency and the asset S :

Π = V (H,S, ρ̄t, t)−∆HH −∆SHS. (4.16)

We remark that every term in this equation values in domestic currency. ∆H is the

number of foreign currency we hold short, so −∆HH is the value in domestic currency

of that foreign currency. It is similar to understand −∆SHS.

The change in the value of the portfolio due to the change in the value of its compo-

nents and the interest rate of foreign currency (rf ) can be obtained with the aid of the
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Itô lemma as

dΠ =
(∂V
∂t

+
1

2
σ2
HH

2 ∂
2V

∂H2
+ ρ̄tσHσSHS

∂2V

∂S∂H
+

1

2
σ2
SS

2∂
2V

∂S2

− ρ̄tσHσS∆SHS − rf∆HH
)
dt+

(∂V
∂H
−∆H −∆SS

)
dH

+
(∂V
∂S
−∆SH

)
dS.

(4.17)

We now choose

∆H =
∂V

∂H
− S

H

∂V

∂S
and ∆S =

1

H

∂V

∂S
(4.18)

to hedge the risk in the portfolio. Thus, the return on this risk-free portfolio must be

equal to the domestic currency risk-free rate (rd), which yields

∂V

∂t
+

1

2
σ2
HH

2 ∂
2V

∂H2
+ ρ̄tσHσSHS

∂2V

∂S∂H
+

1

2
σ2
SS

2∂
2V

∂S2

+H
∂V

∂H
(rd − rf ) + S

∂V

∂S
(rf − ρ̄tσHσS)− rdV = 0.

(4.19)

To fully specify a particular quanto we consider a Quanto Put-option with the payoff at

maturity

W (ST , T ) = H0 max(K − ST , 0), (4.20)

where H0 is the exchange rate at the time zero (today). This means, it is agreed upon at

the inception of the contract that the exchange rate at time-zero will be used at maturity.

So there is no currency risk appears. By substituting (4.20) into (4.19) we obtain

∂W

∂t
+

1

2
σ2
SS

2∂
2W

∂S2
+ S

∂W

∂S
(rf − ρ̄tσHσS)− rdW = 0, (4.21)

which is just the simple one factor Black-Scholes (BS) equation [11] with a time-

dependent dividend yield of

D(ρ̄t) = rd − rf + σHσS
1

t

∫ t

0

ρ̄sds. (4.22)
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Finally, the price of a Quanto Put-Option in the extended BS model incorporating time-

dependent dividend yield can be derived as

P = H0

(
K exp−rdT N (−d2)− S0 exp(rf−rd)T−σHσS

∫ T
0 ρ̄tdtN (−d1)

)
, (4.23)

with

d1 =
log(S0

K
) + (rf − σHσS

∫ T
0
ρ̄tdt+

σ2
S

2
)/T

σS
√
T

, d2 = d1 − σS
√
T , (4.24)

where the correlation function ρ̄t is defined in (4.8). The price of a Quanto Call-Option

can be derived easily from the put-call parity.

4.2.2 Dynamic Correlation vs. Constant Correlation

As an example, think of investing a Put-option on the Deutsche Bank stock traded in

Euro (foreign currency) and converted to USD (domestic currency) at maturity. We

assume that S0 = 36, H0 = 1.3, rd = 0.05, rf = 0.03, σH = 0.3 and σS = 0.2. For the

dynamic correlation function we set ρ̄0 = 0, κ = 2, µ = 0.25, σ = 0.5 and the value of the

constant correlation to be 0.2.

In Figure 4.5a we display the prices using constant and dynamic correlation for

different strikes and maturities. We see that prices under the dynamic correlation are

higher than the price using the constant correlation. To clarify the difference between

them we show the difference in Figure 4.5b.

We now keep all the value of parameters to be the same except for setting µ = 0.

From (4.8) we see that the dynamic correlation function takes value around zero, which

is the value of the constant correlation. This means that the price differences must be

less than the last case. To see this, we plot the price differences for this case in Figure

4.6a and compare it to Figure 4.5b. Furthermore, we can set κ = 8 so that the dynamic

correlation function reaches its limit (around zero) rapidly. For this case, the prices with
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Figure 4.5: Comparison of prices between using constant and dynamic correlation with
κ = 2, µ = 0.25, σ = 0.5 and ρ̄0 = 0 (correlation process parameters) and ρ = 0
(constant correlation).
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Figure 4.6: Differences of prices between using constant and dynamic correlation with
µ = 0, and ρ̄0 = 0 (correlation process parameters) and ρ = 0 (constant Correlation).

and without dynamic correlation must be closer to each other, see the price differences

in Figure 4.6b.

Effect on hedging

In the following, we discuss the effect of dynamic correlation on the hedging strategy.

We consider the delta hedging as an example. By using a dynamic correlation, the delta

is given by

∆d = Φ(d1)− 1, (4.25)
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where Φ is standard normal distribution function and d1 is defined in (4.24). Similarly,

the delta by using a constant correlation is given by

∆c = Φ(d1)− 1 (4.26)

where d1 is defined in (4.24) by setting ρ̄t = ρ. We take the same values for all BS

parameters as in Figure 4.5 and set ρ = ρ̄0 = 0, κ = 2, µ = 0.6 and σ = 0.5. Then, we

compare the delta of a Quanto Put-option (T = 1) for different spot prices under the

dynamic correlation to the corresponding delta with constant correlation in Figure 4.7.

We observe that the delta values using the constant correlation are larger than the delta
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Figure 4.7: Comparison of the delta hedging with and without dynamic correlation.

values under the dynamic correlation.

4.2.3 Calibration to the Market Data

Here we illustrate the existing advantage of using dynamic correlation for the calibration

to the market data. We take the Quanto puts on Deutsche Bank on July 30, 2013.

The spot price is S = 35.9 Euro, the strike Kj ranges in [32, 33, 34, 35.9, 37, 38]. In

the United States, if one invests these puts, the Euro-USD exchange rate is needed to

convert the payoff in USD, which is H0 = 1.35 on July 30, 2013. Furthermore, both
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σS σR ρ RMSE
0.32 0.20 −0.04 27× 10−4

Table 4.1: Estimated model parameters using constant correlation.

σS σR ρ0 κ µ σ RMSE
0.34 0.42 −0.57 2.07 0.49 0.3 9.3× 10−4

Table 4.2: Estimated model parameters using dynamic correlation.

interest rates rf and rd are 0.05 and the contract is considered for different maturities,

Ti ∈ [30, 90, 180, 240] days.

For each strike and maturity we denote the market price with PMkt(τi, Kj) and

the corresponding model price with PMod(τi, Kj). We obtain the model parameters by

minimizing, e.g., the relative mean square error (RMSE)

1

N

∑
i,j

wij
(PMkt(τi, Kj)− PMod(τi, Kj))

2

PMkt(τi, Kj)
, (4.27)

where N is the number of prices and wij is an optional weight. Several numerical methods

can be employed for this optimization, we choose a quasi-Newton approximation (e.g.,

matlab routine fmincon) in this example.

We estimate the parameters of the model using the constant and dynamic correlation,

and report the estimated parameters and the errors in Table 4.1 and 4.2. We observe

that the RMSE of the case using the constant correlation is almost three times larger

than the RMSE of the case using the dynamic correlation. Furthermore, we present

the plots of the market prices, the model prices with constant and dynamic correlation

in Figure 4.8a and 4.9a. And we display the corresponding error, which is defined as

|PMkt(τi, Kj)− PMod(τi, Kj)|, in 4.8b and 4.9b.

Either from the Table 4.1 and 4.2 or from the Figure 4.8 and 4.9, we directly conclude

that the model under the dynamic correlation can be better fitted to the market prices.

Furthermore, we can also expect better results using dynamic correlation for Quanto

Caplets/Floorlets due to their pricing formula similar to (4.23). Especially, for pricing
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Figure 4.8: Comparison of market prices to model prices using constant and dynamic
correlation for T = 30 and 60 days.
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Figure 4.9: Comparison of market prices to model prices using constant and dynamic
correlation for T = 180 and 240 days.

Quanto caps/floor the advantages of using dynamic correlation are more obvious, since

the instantaneous correlation for each time step is considered.

4.3 The Applications to the Heston Model

The Heston model [58] is one of the most widely used affine stochastic volatility models

for equity prices. However, as mentioned before, in many situations the pure Heston

model has a limitation on presenting a volatility smile, especially for a short maturity.
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For this problem, several time-dependent Heston models have been proposed for a good

fitting to implied volatilities, e.g., [6, 42, 86, 107], for a detailed explanation for those

extensions we refer readers to [95]. Due to the fact that correlation mainly affects the

slope of implied volatility smile, if the correlation is modelled with a time-dependent

dynamic function, more realistic skews or smiles will be provided in the implied volatility

surface by reasonably choosing additional parameters. In this section, we incorporate

our time-dependent correlation function (4.8) into the Heston model.

4.3.1 Incorporating Dynamic Correlations

Heston’s stochastic volatility model is specified as

dSt = µSStdt+
√
νt St dW

S
t , (4.28)

dνt = κν(µν − νt)dt+ σν
√
νt dW

ν
t , (4.29)

where (4.28) is assumed dynamics of the price of the spot asset, (4.29) is the volatility

(variance) and W S
t and W ν

t are correlated with a constant ρSν . To incorporate the time-

dependent correlation, we assume that dSt and dνt are correlated by the time-dependent

correlation function ρ̄t instead of the constant correlation ρSν . The extended Heston

model with a dynamic correlation ρ̄t is specified as

dSt = µSStdt+
√
νt St dW

1
t , (4.30)

dνt = κν(µν − νt)dt+ σν
√
νt(ρ̄t dW

1
t +

√
1− ρ̄2

t dW
2
t ), (4.31)
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where W 1
t and W 2

t are independent. Applying Itô’s lemma and no-arbitrage arguments

yields [58]

1

2
ν2S2∂

2U

∂S2
+ ρ̄tσννS

∂2U

∂S∂ν
+

1

2
σ2
νν
∂2U

∂ν2
+ rS

∂U

∂S

+ [κν(µν − ν)− λ̃(S, ν, ρ̄, t)ν]
∂U

∂ν
− rU +

∂U

∂t
= 0,

(4.32)

where ρ̄t is defined in (4.8) but with the parameters ρ̄0, κρ, µρ, and νρ. It is worth

mentioning that the market price of volatility risk also depends on the dynamic corre-

lation, which could be written as λ̃(S, ν, ρ̄t, t). This means, the price of correlation risk

embedding in the price of volatility risk has been considered.

We consider e.g., a European call option with strike K and maturity T in the Heston

model

C(S, ν, t, ρ̄t) = SP1 −KP (t, T )P2, τ = T − t, (4.33)

where P (t, T ) is the discount factor and both probabilities P1, P2 must satisfy the PDE

(4.32) as well as their characteristic functions, f1(S, ν, ρ̄t, φ, t) and f2(S, ν, ρ̄t, φ, t)

fj(S, ν, ρ̄t, φ, t) = eCj(τ,φ)+Dj(τ,φ)ν+iφ lnS, j = 1, 2. (4.34)

By substituting this functional form (4.34) into the PDE (4.32) we can obtain the fol-

lowing ordinary differential equations (ODEs) for the unknown functions C and D :

−1

2
φ2 + ρ̄tσνφiDj +

1

2
σ2
νD

2
j + ujφi− bjDj +

∂Dj

∂t
= 0, (4.35)

rφi+ κνµνDj +
∂Cj
∂t

= 0, (4.36)

with the initial conditions Cj(0, φ) = Dj(0, φ) = 0, and

u1 = 0.5, u2 = −0.5, b1 = κν + λ− ρ̄tσν and b2 = κν + λ, (4.37)
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where

ρ̄t = 1− e−A(t)−B(t)
2

2

∫ ∞
−∞

1

cosh(πu
2

)
· eiu(A(t)+B(t))+u2 B(t)

2 du, (4.38)

with A(t) = e−κρtartanh(ρ̄0) + µρ(1− e−κρt), B(t) = − σ2
ρ

2κρ
(1− e−2κρt).

Obviously, (4.35)-(4.36) cannot be solved analytically. Therefore, we need to find

an efficient way to compute the option price numerically. For this we use an explicit

Runge-Kutta method, the matlab routine ode45, to obtain C and D in (4.35)-(4.36) and

thus also the characteristic functions (4.34). Finally, we employ the COS method [47]

to obtain the option price C(S, ν, t, ρ̄) in (4.33). Thanks to the COS method, although

we solved that ODE system numerically, the time for obtaining European option prices

is less than 0.1 seconds such that a calibration can be performed quickly.

4.3.2 Calibration of the Heston Model under Dynamic Corre-

lation

We calibrate the Heston model extended by our time-dependent correlation function to

the real market data (Nikk300 index Call-options on July 16, 2012) and compare these

to the pure Heston model [58] and the time-dependent Heston model [86].

We consider a set of N maturities Ti, i = 1, . . . , N and a set of M strikes Kj, j =

1, . . . ,M. Then for each combination of maturity and strike we have a market price

V M(Ti, Kj) = V M
ij and a corresponding model price V (Ti, Kj; Θ) = V Θ

ij generated by

using (4.33). We choose the RMSE for the loss function 1
M×N

∑
i,j

(VMij −V Θ
ij )2

VMij
, which can

be minimized to obtain the parameter estimates

Θ̂ = arg min
1

M ×N
∑
i,j

(V M
ij − V Θ

ij )2

V M
ij

. (4.39)

For the optimization we restrict ρ̄0 to the interval (−1, 1) but not the value of µρ. Since it

is not the direct limit of the correlation function but the mean reversion of the Ornstein-
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Uhlenbeck process, thus, it could take any value in R. Our experiments showed, that it

is sufficient and appropriate to restrict µρ to the interval [−4, 4].

We state our estimated parameters and the estimation error for the pure Heston

model (abbr. PH), the Heston model under our time-dependent correlations (CH), the

time-dependent Heston model by Mikhailov and Nögel [86] (MN) in Table 4.3, 4.4 and

4.5, respectively.

The pure Heston model

ν̂0 κ̂ν µ̂ν σ̂ν ρ̂ Estimation Error
0.029 4.746 0.053 1.108 −0.355 1.10× 10−3

Table 4.3: The estimated parameters for the pure Heston model using Call-options on
the Nikk300 index on July 16, 2012.

The extended Heston model by using our time-dependent correlation function

ν̂0 κ̂ν µ̂ν σ̂ν ˆ̄ρ0 κ̂ρ µ̂ρ σ̂ρ Estimation Error
0.027 5.542 0.055 1.224 −0.165 5.333 −0.752 0.434 2.38× 10−4

Table 4.4: The estimated parameters for the Heston model under time-dependent cor-
relations using Call-options on the Nikk300 index on July 16, 2012.

The time-dependent Heston model by Mikhailov and Nögel

Maturity ν̂0 κ̂ν µ̂ν σ̂ν ρ̂ Estimation Error
1/12 0.025 2.749 0.095 1.172 −0.201 1.78× 10−4

1/4 0.012 2.936 0.076 0.524 −0.411 2.45× 10−5

1/2 0.011 2.890 0.058 0.592 −0.430 1.14× 10−5

1 0.001 2.911 0.051 0.558 −0.389 4.28× 10−6

Table 4.5: The estimated parameters for the time-dependent Heston model by Mikhailov
and Nögel using Call-options on the Nikk300 index on July 16, 2012.

We see that the estimation error using the CH model is significantly less than the error

using the PH model and almost the same as the error (sum of errors for each maturity)

under the MN model. To illustrate more clearly, for each maturity we compare the

implied volatilities for all the models to the market volatilities in Figure 4.10. We can

observe that the implied volatilities for the CH model are much closer to the market

volatilities than the implied volatilities for the PH model, especially has the better
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Figure 4.10: The comparison of implied volatilities for all the models to the market
volatilities of the Call-options on the Nikk300 index on July 16, 2012, where the spot
price is 150.9.

volatility smile for the short maturity T = 1/12. Comparing to the MN model, the

implied volatilities for our model are almost the same. However, our CH model has

an economic interpretation, namely the correlation is nonlinear and time-dependent as

market requires. We conclude that the Heston model extended by incorporating our

time-dependent correlations can provide a better volatility smile than the pure Heston

model. Another nice issue is that the time-dependent correlation function can be easily

and directly introduced into the financial models. The application of the time-dependent

correlation model in pricing option with stochastic interest rate can be found in [106].
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Part III
Modelling and Applications of Stochastic Correlation

As randomness features more generally, like moving from time-dependent interest rate

to stochastic interest rate, from time-dependent volatility to stochastic volatility, in this

part we investigate how to model correlation as a stochastic process and its applica-

tions in finance. We provide a general stochastic correlation model and discuss several

stochastic correlation processes. We apply stochastic correlation to price Quanto op-

tions and quantify the correlation risk caused by using a wrong (constant) correlation.

Furthermore, we incorporate stochastic correlation into the Heston model and find, that

the Heston model extended by introducing stochastic correlation provide a better fit to

the skew and smile in the volatility surface that is visible in the market.
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Chapter 5

Stochastic Correlation Models and

its Application

In Chapter 4 we have investigated a time-dependent correlation model and its application

to some financial models. We find, instead of using a deterministic constant correlation,

incorporating time-dependent correlations into a financial model can improve its per-

formance. However, only a time-dependent correlation model might be not enough to

model real phenomena in financial world due to the uncertainty associated with the fu-

ture development of relationship between, e.g., financial parties and products. This is to

say that applying stochasticity for correlation should better replicate correlation prop-

erties in reality. Like moving from time-dependent interest rate to stochastic interest

rate, from time-dependent volatility to stochastic volatility, we turn in this chapter to

stochastic correlation modelling and its application.

5.1 Stochastic Correlation Models

Firstly, we mention two concepts of stochastic correlation models which are widely ap-

plied in finance. The first one is dynamic conditional correlation by Engle [44, 45]. The

second one is based on the Wishart process introduced by [23] and extended by [54],
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and see [25, 49] for its application to the Heston model. In financial markets, the first

problem of using a correlation concept is the observability. Unlike price, exchange rate

and so on, the correlation cannot be observed directly in the market and can only be

measured in the context of a model. The easiest estimator of the correlation is the sam-

ple correlation coefficient which has been given in (B.2). Furthermore, using (B.3) one

can calculate a historical rolling correlation .

5.1.1 Historical Correlation

To find financial correlation properties in reality, we make an example of historical corre-

lations between S&P 500 index and Euro/US-Dollar exchange rate on a daily basis. We

take daily log-return series of S&P 500 and Euro/US-Dollar exchange rate and calculate

the 15-day, 30-day and 60-day historical correlations using (B.3) which are displayed in

Figure 5.1.
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Figure 5.1: Historical Correlation between S&P 500 and Euro/US-Dollar exchange rate
(Source of data: www.yahoo.com).

We observe that the longer a time window is, the less volatile a historical correlation

is. In Figure 5.1, the 15-day historical correlation is more variable than the 30-day histor-

ical correlation which is again more variable than the 60-day correlation. With a longer

averaging period a long-term correlation is calculated. If we choose the time window as
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10 or 15 days, the estimated correlation for each time t using (B.2), could be seen as a

short-term correlation of the current market phenomena whose immediate past returns

are used for the estimation. It is worthwhile noting that the events, especially, some

extreme events in a time window will affect the estimated correlation in the following

time windows, even has a delayed effect on the long-term correlation.

If one assumes that the phenomena in the past could be a reflection of the future,

one would like to use the historical correlation as a forecast for the future. It could be

a better way for correlation forecasting, if one describes the correlation using a mean-

reverting stochastic process. Besides, modelling correlation as a stochastic process, not

only the variation of the short-term correlation can be reflected, also the attributes of

long-term correlation is determined by the long-term parameter values, like long-term

mean value and mean reversion speed. For more detailed information about historical

correlation we refer to [1].

To see more properties, which a mean-reverting stochastic process should have to be a

stochastic correlation process (SCP), we plot its empirical density functions in Figure 5.2

using different bandwidths. We refer to [12] for details about the estimation of density

function from historical data.
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Figure 5.2: Empirical Density function of the historical correlation between S&P 500
and Euro/US-Dollar exchange rate.
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From the illustration of historical correlation above it seems like a good idea to model

correlation as a stochastic process which should satisfy the following properties [109, 114]:

(i) only takes values in the interval (−1, 1),

(ii) varies around a mean value,

(iii) the probability mass tends to zero at the boundaries −1, +1.

We remark that the first two properties are similar to those properties for a time-

dependent correlation function introduced in Section 4.1.1.

5.1.2 A General Stochastic Correlation Model

For the motivations and the properties (i)–(iii) in Section 5.1.1, we propose the hyperbolic

tangent function of a mean-reverting stochastic process Xt, like the OU process [113] or

other square root diffusion processes (with positive and negative values)

dXt = a(t,Xt)dt+ b(t,Xt) dWt, t ≥ 0, X0 = x0, (5.1)

to model the correlations as

ρt = tanh(Xt), ρ0 = tanh(x0) ∈ (−1, 1). (5.2)

Note that we used the expectation of tanh(Xt) to model correlation as a time-dependent

function in Section 4.1.1. Obviously, the properties (i)–(iii) are fulfilled due to the

range of values of the hyperbolic tangent and mean reversion of the process. Besides,

the function tanh is symmetric and measurable. Although the function tanh can not

really attain −1 and 1, which respectively presents perfect negative and perfect positive

dependence, one can still use it for modelling correlations, because the correlation equal

to −1 or 1 is indeed an extreme event which happens very rarely in the real market, see,

e.g., Figure 4.2. Besides, the function tanh tends to the boundaries −1 and 1 at infinity.
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Applying Itô’s Lemma [61] with (5.2)

dρt = d tanh(Xt) =
∂ tanh(Xt)

∂t
dt+

∂ tanh(Xt)

∂x
dXt +

1

2

∂2 tanh(Xt)

∂x2
(dXt)

2 , (5.3)

we obtain the stochastic correlation process (SCP)

dρt = (1− ρ2
t )
(

(ã− ρtb̃2)dt+ b̃dWt

)
, t ≥ 0, (5.4)

where ρ0 ∈ (−1, 1), ã = a(t, artanh(ρt)) and b̃ = b(t, artanh(ρt)). From (5.4) we see that

there is a suitable number of free parameters to calibrate the model to market data.

Besides, it is obvious, in this approach any mean-reverting process (with positive and

negative values) can be considered. The free parameters are hidden in the functions a

and b, which depend on the chosen underlying mean-reverting process.

Although we could intuitively observe that the function tanh(x) is eminently suitable

for correlation modelling, one can still ask whether other functions having values inside

the interval (−1, 1), like trigonometric functions or 2
π

arctan(π
2
x), x ∈ R can also be

applied for this purpose? In theory, such functions could be used for the SCP model

above. However, the trigonometric function is a periodic function, the arising complex

number will complicate further calculations. For the function 2
π

arctan(π
2
x), its Itô’s

formula for the process (5.1) is given by

dρt = d
2

π
arctan

(π
2
Xt

)
=

(
ã(

1 + tan2(ρtπ
2

)
) − πb̃2 tan(ρtπ

2
)

2
(
1 + tan2(ρtπ

2
)
)2

)
dt

+
b̃(

1 + tan2(ρtπ
2

)
) dWt ,

(5.5)

which is rather complicate such that the further computation will turn out to be te-

dious. Nevertheless, we will additionally consider the function 2
π

arctan(π
2
x) which is,

like tanh(x) close to the identity in the neighbourhood of x = 0, see Figure 5.3. How-

ever, compared with tanh(x), the function 2
π

arctan(π
2
x) grows much slower up to 1 and
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down to −1, the estimation of the correlation will thus be worsened, similar to the esti-

mation for the heavy tailed distributions.
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Figure 5.3: Comparison of tanh(x) and 2
π

arctan(π
2
x) : the later is less steep having

larger tails.

Calibration

We can estimate the free parameters of (5.4) using the density function. If we choose

for (5.1) a process which has the known density function, the density function of (5.2)

thus can be derived and used for the calibration purpose, e.g., for the case of using OU

process, see Section 5.1.3. Otherwise, we need to determine the transition density with

the aid of the Fokker-Planck equation [93].

Only for simplicity, we rewrite (5.4) with the redefined parameters â and b̂ as

dρt = (1− ρ2
t )(ã− ρtb̃2)︸ ︷︷ ︸

:=â(t,ρt)

dt+ (1− ρ2
t )b̃︸ ︷︷ ︸

:=b̂(t,ρt)

dWt, t ≥ 0, (5.6)

where ρ0 ∈ (−1, 1). We assume that it possesses a transition density p(t, ρ̃|ρ0) which

satisfies the Fokker-Planck equation

∂

∂t
p(t, ρ̃) +

∂

∂ρ̃
(â(t, ρ̃)p(t, ρ̃))− 1

2

∂2

∂ρ̃2
(b̂(t, ρ̃)2p(t, ρ̃)) = 0. (5.7)
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For the calibration purpose we consider the stationary density (for t→∞)

p(ρ̃) := lim
t→∞

p(t, ρ̃|ρ0). (5.8)

With the above construction (5.4) is also a mean-reverting process, thus one can show

that every two solutions of (5.7) are the same for t → ∞, this is to say that a unique

stationary solution p(ρ̃) exists, cf. [93]. Besides, the following two standard conditions

for a density function should be fulfilled by p(ρ̃),

∫ 1

−1

p(ρ̃)dρ̃ = 1, (5.9)

∫ 1

−1

ρ̃ · p(ρ̃)dρ̃ −−−→
t→∞

mean value. (5.10)

Up to now, we have just shown our structural idea of SCP. Several exact examples

by choosing different mean-reverting processes as underlying process for (5.1) with the

detailed stochastic calculus will be presented in the next sections, their calibration as

well.

5.1.3 Variant I: Stochastic Correlation with an OU Process

We specify our SCP model using the OU process. For the basis process (5.1) we choose

the OU process

dXt = κ(µ−Xt)dt+ σdWt, (5.11)

where κ, σ > 0 and X0, µ ∈ R.

Proposition 5.1.1 Applying Itô’s Lemma with ρt = tanh(Xt),

dρt =
∂ tanh(Xt)

∂x
dXt +

1

2

∂2 tanh(Xt)

∂x2
σ2dt (5.12)
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gives the SCP as

dρt = (1− ρ2
t )
(
κ(µ− artanh(ρt))− ρtσ2

)
dt+ (1− ρ2

t )σdWt, (5.13)

where t ≥ 0, ρ0 ∈ (−1, 1), κ, σ > 0 and µ ∈ R.

The Proof can be found in Appendix C.

Density function and calibration

As mentioned in Section 5.1.2, we do not really need the transition density of (5.13) in

this case, since the OU process Xt ∼ N (x0e−κt + µ(1 − e−κt), σ
2

2κ
(1 − e−2κt)) is normal

distributed, if the initial value x0 is given. As t → ∞, then Xt ∼ N (µ, σ
2

2κ
). Therefore,

one can derive the density function for (5.13) as t→∞ as

f(ρ̃) =
1

1− ρ̃2
·
√
κ

σ
√
π
· e−

κ(artanh(ρ̃)−µ)2

σ2 , (5.14)

which can be used to cablibrate the model.

In the following, we still derive the transition density of (5.13) to show how this

approach works. Besides, we want to compare the transition density of (5.13) to (5.14).

As pointed out in Section 5.1.2, we assume that (5.13) possesses a transition density

p(t, ρ̃|ρ0) which satisfies the following Fokker-Planck equation

∂

∂t
p(t, ρ̃) +

∂

∂ρ̃
(â(t, ρ̃)p(t, ρ̃))− 1

2

∂2

∂ρ̃2
(b̂(t, ρ̃)2p(t, ρ̃)) = 0 (5.15)

with

â(t, ρ̃) = (1− ρ̃2)
(
κ(µ− artanh(ρ̃))− ρ̃σ2

)
, (5.16)

b̂(t, ρ̃) = (1− ρ̃2)σ. (5.17)

96



For t→∞, the stationary density p(ρ̃) can be obtained by solving

∂

∂ρ̃
((1− ρ̃2)

(
κ(µ− artanh(ρ̃))− ρ̃σ2

)
p(ρ̃)) =

1

2

∂2

∂ρ̃2
(((1− ρ̃2)σ)2p(ρ̃)) (5.18)

with

p(ρ̃) =

(
m+ n erf

(√
−κ(artanh(ρ̃)−µ)

σ

))
e−

κartanh(ρ̃)

σ2 (artanh(ρ̃)−2µ)

ρ̃2 − 1
(5.19)

and constants m, n ∈ R.

Now we try to simplify (5.19). Firstly we can easily observe, n must be zero, so that

the condition (5.10) can be satisfied by (5.19). We can check this straightly by setting

µ = 0. Thus, (5.19) can be further written as

p(ρ̃) =
m

ρ̃2 − 1
· e−

κartanh(ρ̃)

σ2 (artanh(ρ̃)−2µ). (5.20)

In theory we can compute m by solving the condition (5.9) with (5.19), but the inte-

gration of (5.19) will be tedious. However, due to the uniqueness of the asymptotic

distribution, m can be specified by identifying (5.14) and (5.20) as

m = −
√
κ

σ
√
π

e
−µ2κ

σ2 . (5.21)

By substituting (5.21) for m in (5.20) we can obtain the transition density function which

is the same to (5.14).

As mentioned before, (5.14) can be used to estimate the parameters of (5.13). How-

ever, in this case of using the OU process, we can even calibrate the model considering

each time step. The OU process Xt ∼ N (x0e−κt + µ(1 − e−κt), σ
2

2κ
(1 − e−2κt)) has the

(conditional) probability density

fx(xs+∆t|xs, κ, µ, σ) =

√
κ

πσ2(1− e−2κ∆t)
· e
−κ(xs+∆t−xse−κ∆t−µ(1−e−κ∆t))2

σ2(1−e−2κ∆t) , (5.22)
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from which we derive the density of ρt = tanh(Xt) directly as

fρ(ρ̃s+∆t|ρ̃s, κ, µ, σ) =

√
a

b
· 1

1− ρ̃2
s+∆t

· e
−κ(artanh(ρ̃s+∆t)−artanh(ρ̃s)e−κ∆t−µc)2

σ2b (5.23)

with

a =
κ

πσ2
, b = (1− e−2κ∆t) and c = (1− e−κ∆t). (5.24)

Therefore, we prefer to employ the maximum-likelihood estimation for the historical

correlation, see [19, 50]. We use θ to denote the collection of the parameters κ, µ and σ,

for the n + 1 given observed correlations (ρ̃0, ρ̃1, · · · , ρ̃t). We derive its log-likelihood

function

L(θ|ρ̃0, ρ̃1, · · · , ρ̃t) =
n∑
i=1

log

(√
κ

πσ2(1− e−2κ(ti−ti−1))

)
+

n∑
i=1

log

(
1

1− ρ̃2
ti

)
+

n∑
i=1

−κ(artanh(ρ̃ti)− artanh(ρ̃ti−1
)e−κ(ti+1−ti) − µ(1− e−κ(ti+1−ti)))2

σ2(1− e−2κ(ti+1−ti))
.

(5.25)

Furthermore, the parameter estimators θ̂ = (κ̂, µ̂, σ̂) can be obtained by maximizing

(5.25). This can be done for example by various numerical optimization methods. Be-

sides, we remark that the derivatives of (5.25) with respect to µ and σ can be found

analytically and only tedious with respect to κ. The expressions for µ̂ and σ̂ can thus be

obtained by solving

∂L(θ|ρ̃0, ρ̃1, · · · , ρ̃t)
∂σ

= 0 and
∂L(θ|ρ̃0, ρ̃1, · · · , ρ̃t)

∂µ
= 0. (5.26)

We write the results as

µ̂ =
n∑
i=1

artanh(ρ̃ti)− artanh(ρ̃ti−1
)e−κ(ti−ti−1)

1 + e−κ(ti−ti−1)
/

n∑
i=1

1− e−κ(ti−ti−1)

1 + e−κ(ti−ti−1)
(5.27)
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and

σ̂ =

(
1

n

n∑
i=1

2κ(artanh(ρ̃ti)−artanh(ρ̃ti−1
)e−κ(ti−ti−1)−µ(1−e−κ(ti−ti−1)))2

1− e−2κ(ti−ti−1)

) 1
2

. (5.28)

We see that µ̂ has the expression only with respect to κ, as well as σ̂ by substituting

µ in (5.28) by (5.27). Hence, we substitute µ̂ and σ̂ in (5.25) to gain the log-likelihood

function only with the parameter κ, which can be computed by maximizing this function.

Finally, we can substitute the value of κ̂ back to (5.27) and (5.28) to get values of µ̂ and

σ̂.

As an example we estimated the SCP parameters using the historical correlation in

Figure 5.2b. Then, we compared (5.14) using the estimated parameters and the empirical

density function of historical correlation, see Figure 5.4. We remark that no additional
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Figure 5.4: The estimated parameters: κ̂ = 32.11, µ̂ = 0.012 and σ̂ = 2.96

parameter restrictions appear using this SCP, which simplifies the calibration procedure.
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5.1.4 Variant II: Stochastic Correlation with a Modified OU

Process

If one want to restrict the mean value µ in (5.11) to be only in (-1,1), it is reasonable to

modify first the OU process (5.11) as [110]

dXt = κ
(
µ− tanh(Xt)

)
dt+ σ dWt, (5.29)

where κ, σ > 0 and X0, µ ∈ (−1, 1).

Proposition 5.1.2 Applying Itô’s Lemma with ρt = tanh(Xt) yields the SCP

dρt = (1− ρ2
t )
(
κ(µ− ρt)− σ2ρt

)
dt+ (1− ρ2

t )σ dWt, (5.30)

where t ≥ 0, ρ0 ∈ (−1, 1), κ, σ > 0 and µ ∈ (−1, 1).

The proof is similar to Proposition 5.1.1, we leave this to the readers.

Next, we modify the notation and rewrite (5.30) as

κ∗ = κ+ σ2, µ∗ =
κµ

κ+ σ2
, σ∗ = σ, (5.31)

dρt
1− ρ2

t

= κ∗(µ∗ − ρt)dt+ σ∗ dWt, (5.32)

where t ≥ 0, ρ0 ∈ (−1, 1), κ∗, σ∗ > 0 and µ∗ ∈ (−1, 1). Then, we generalize the

correlation process (5.32) directly with the arbitrary parameter coefficients κ > 0, µ ∈

(−1, 1) and σ > 0, like

dρt
1− ρ2

t

= κ(µ− ρt)dt+ σ dWt. (5.33)

Proposition 5.1.3 The value of (5.33) is bounded in the interval (−1, 1), if the condi-

tion

κ >
σ2

1± µ (5.34)
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is fulfilled, and its stationary density function f(ρ̃) exists and can be analytically calcu-

lated as

f(ρ̃) =
(1 + ρ̃)aρ+bρ(1− ρ̃)aρ−bρ

M
, (5.35)

with

M :=
Γ(1 + aρ − bρ)F (1,−aρ − bρ, 2 + aρ − bρ,−1)

Γ(2 + aρ − bρ)

+
Γ(1 + aρ + bρ)F (1,−aρ + bρ, 2 + aρ + bρ,−1)

Γ(2 + aρ + bρ)
,

(5.36)

where aρ = κ−2σ2

σ2 , bρ = κµ
σ2 , F is the hypergeometric function (see B.6) and Γ is Gamma

function.

The proof is given in Appendix C.

Transition density function

The transition density function f(ρ̃) in (5.35) can be used for calibration purposes. To

further illustrate it we display in Figures 5.5, 5.6 and 5.7 the behavior of f(ρ̃) for different

values of each parameter used in [105]. In Figure 5.5, we let κ = 2 and µ = 0 and display

f(ρ̃) with different values of σ, which is equal to 0.3, 0.4 and 0.5, respectively. Obviously,

σ shows the magnitude of variation from the mean value µ = 0. Next, we fix κ = 2 and

σ = 0.3, the behavior of f(ρ̃) with different mean values µ = −0.5, µ = 0 and µ = 0.5

can be found in Figure 5.6. However, whilst µ = −0.5 and µ = 0.5 we can observe that

the peak of the corresponding f(ρ̃) does not locate exactly at the points ρ̃ = −0.5 and

ρ̃ = 0.5, respectively. The reason is that, the value of κ, which is mean reversion rate, is

not large enough. In order to illustrate the role of κ, we set µ = −0.5, σ = 0.5 and vary

the value of κ, see Figure 5.7. For κ = 3, the peak of the transition density function is

far away from the mean value −0.5. However, in contrast the peak reaches the point

ρ̃ = −0.5 when κ = 12.
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Figure 5.5: Comparison of f(ρ̃) for different values of σ (κ = 2 and µ = 0).
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Figure 5.6: Comparison of f(ρ̃) for different values of µ (κ = 2 and σ = 0.3).

5.1.5 Variant III: Stochastic Correlation with a Bounded Ja-

cobi Process

Ma [79] and van Emmerich [114] proposed to use the bounded Jacobi process to model

stochastic correlation. Indeed, the bounded Jacobi process is also in the class of our

general stochastic models, which means the bounded Jacobi process can be obtained by

transforming a special mean-reverting process.
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Figure 5.7: Comparison of f(ρ̃) for different values of κ (µ = −0.5 and σ = 0.5).

We define the following mean-reverting process

dXt =
κ
(
µ− tanh(Xt)

)
1− tanh2(Xt)

dt+
σ√

1− tanh2(Xt)
dWt, t ≥ 0, X0 = x0, (5.37)

where κ and σ are positive, µ ∈ (−1, 1). Then, we transform (5.37) with ρt = tanh(Xt),

with the aid of Itô’s Lemma we obtain

dρt =
[
(κ(µ− ρt))− σ2ρt

]
dt+ σ

√
1− ρ2

t dWt. (5.38)

The calculation is straightforward but tedious. Now, if we define

κ∗ = κ+ σ2, µ∗ =
κµ

κ+ σ2
, σ∗ = σ, (5.39)

the correlation process (5.38) can be rewritten as

dρt = κ∗(µ∗ − ρt)dt+ σ∗
√

1− ρ2
t dWt, (5.40)
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which is exactly the bounded Jacobi process used by van Emmerich in [114]. Due to

the transformation with the function tanh, the correlations provided by (5.40), with

coefficients (5.39), are obviously located in the interval (−1, 1).

However, if we redefine (5.40) with arbitrary parameters κ, µ and σ as

dρt = κ(µ− ρt)dt+ σ
√

1− ρ2
t dWt, (5.41)

the following condition

κ ≥ σ

1± µ (5.42)

must be satisfied to ensure that the boundaries −1 and 1 are unattainable. For the proof

and discussion about calibration we refer to [114].

5.1.6 Stochastically correlated BMs and its Construction

Following the way to define the dynamically correlated BMs, from (4.10) we give the

following definition.

Definition 5.1.1 Two Brownian motions Wt,1 and Wt,2 are called stochastically corre-

lated with the stochastic process ρt, if they satisfy

E [Wt,1Wt,2] = E

[∫ t

0

ρsds

]
, (5.43)

where ρt : Ω×R+ → (−1, 1) is a SCP. The average correlation of Wt,1 and Wt,2, ρAv, is

given by ρAv := 1
t
E[
∫ t

0
ρsds].

The construction of stochastically correlated BMs is also similar to the case of dy-

namically correlated BMs presented in 4.1.2. We consider first the two-dimensional case

and let ρt be a stochastic correlation process. For two independent BMs Wt,1 and Wt,3

we define

Wt,2 =

∫ t

0

ρsdWs,1 +

∫ t

0

√
1− ρ2

s dWs,3, (5.44)
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with the symbolic expression

dWt,2 = ρtdWt,1 +
√

1− ρ2
t dWt,3. (5.45)

It can be easily verified that Wt,2 is a BM and correlated with Wt,1 stochastically by ρt.

Besides, the covariance matrix and the average correlation matrix of Wt = (Wt,1,Wt,2)

can be determined, given by

 t E
[∫ t

0
ρsds

]
E
[∫ t

0
ρsds

]
t

 and

 1 1
t
E
[∫ t

0
ρsds

]
1
t
E
[∫ t

0
ρsds

]
1


respectively. The construction can be also straightforwardly generalized to n-

dimensions.

5.2 Pricing Quanto Options with Stochastic Corre-

lation

In Section 4.2 we have investigated the Quanto pricing under time-dependent corre-

lations. In this section we utilize the extended Black-Scholes formula by using our

stochastic correlation model to evaluate the fair price of the quanto options.

5.2.1 The Formula of Quanto Pricing

As an example we think of a Put-Option on the S&P 500 with payoff in USD

(Strike︸ ︷︷ ︸
:=K

− S&P500T︸ ︷︷ ︸
:=ST

)+, (5.46)
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then the payoff of a currency-protected Quanto Put-option in Euro can be written as

exchangeRate0︸ ︷︷ ︸
:=H0

·(Strike− S&P500T )+, (5.47)

where H0 is the Euro/USD (number of Euro per USD) exchange rate agreed upon at

the inception of the contract.

We recall that St and Rt are modelled by

 dSt = µSStdt+ σSStdW
S
t

dHt = µHHtdt+ σHHtdW
H
t .

(5.48)

Instead of using a time-dependent correlation, the W S
t and WR

t are stochastically corre-

lated by the SCP introduced in Section 5.1.3, namely,

dρt = (1− ρ2
t )
(
κ(µ− artanh(ρt))− ρtσ2

)
dt+ (1− ρ2

t )σdWt. (5.49)

Furthermore, we assume nonzero relationships between the SCP and the price, the ex-

change rate process, say

dWtdW
S
t = ρ1dt and dWtdW

H
t = ρ2dt. (5.50)

In fact, we are trying to incorporate the SCP (5.49) in the model (5.48) exogenously.

For this reason we could assume that ρ1 = 0 and ρ2 = 0.

We denote the risk-free interest rate of Euro and US-Dollar by re and rd, respectively.

To incorporate the stochasticity of the correlation exogenously in the BS model, we

consider the following strategy to obtain the no-arbitrage price: First we think that the

expected return of one unit of US-Dollar, exchanged to Euro, risk-free invested in the

Euro countries and re-exchanged to US-Dollar must be equal to the risk-free return on
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one unit of US-Dollar in US-Dollar countries, which reads

exp(reT )H0

E[HT ]
= exp(rdT ). (5.51)

The exchange rate Ht follows a geometric Brownian motion and thus E[HT ] =

H0 exp(µHT ), which can be substituted into (5.51) to get

µH = re − rd. (5.52)

Besides, the expected value of an investment of one Euro unit into the underlying with

price S must be equal to risk-free return on one unit of US-Dollar in US-Dollar countries,

which gives

1

H0

1

S0

E[STHT ] = exp(rdT ). (5.53)

For calculating E[STHT ], we apply firstly Itô’s lemma to the function u(t, St, Ht) =

ln(StHt)

du(t, St, Ht) = d ln(StHt) = (µS + µR −
1

2
(σ2

S + σ2
H))dt+ σSdW

S
t + σHdW

H
t . (5.54)

Furthermore, the last equation can be rewritten as

ln(STHT )− ln(S0H0) = (µS + µH −
1

2
(σ2

S + σ2
H))T + σSW

S
T + σHW

H
T (5.55)

which implies

E[STHT ] = S0H0 exp

(
(µS + µH −

1

2
(σ2

S + σ2
H))T

)
E[exp(σSW

S
T + σHW

H
T )]. (5.56)
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Now, we set dXS = σSdW
S
t and dXH = σHdW

H
t . A further application of Itô’s lemma

to the function f(t,XS, XH) = exp(XS +XH) leads to

E[exp(σSW
S
T + σHW

H
T )] = exp(

T

2
(σ2

S + σ2
H))E

[
exp(σSσH

∫ T

0

ρtdt)

]
. (5.57)

We substitute the last equation into (5.56) to obtain

E[STHT ] = S0H0 exp((µS + µH)T )E
[
exp(σSσH

∫ T

0

ρtdt)

]
. (5.58)

Thus, we can choose

µS = rd − µH −
1

T
lnE

[
exp(σSσH

∫ T

0

ρtdt)

]
, (5.59)

such that the no-arbitrage condition (5.53) can be fulfilled.

Remark 5.2.1 The expectation in (5.59) should be considered under a (unique) risk-

neutral measure. If we think the correlation between assets can also be traded directly,

e.g., with correlation swaps, so that correlation risk could completely be hedged. In such

complete market, there exists exactly one risk-neutral measure for the expectation in

(5.59). Otherwise, one need to choose a particular pricing measure in the case of unique-

ness, for example we can pick the one which is closest to the physical probability measure

in terms of relative entropy.

In the following, we assume that the market is complete for trading correlation. This

is to say that the correlation risk can be hedged by choosing µS with (5.59). Now, in the

framework of BS model, we interpret (5.59) as a return minus the continuous dividend,

the dividend can thus be obtained as

D(ρt) := µH +
1

T
lnE

[
exp(σSσH

∫ T

0

ρtdt)

]
. (5.60)
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Together with (5.52) we have

D(ρt) = re − rd +
1

T
lnE

[
exp(σSσH

∫ T

0

ρtdt)

]
. (5.61)

The integral of the stochastic correlation ρt can be computed numerically using, e.g., the

Milstein scheme. see, e.g., [66].

Finally, we adopt the price formular (4.23) of a Quanto Put-Option to the one under

stochastic correlation, which is denoted by PQuanto :

PQuanto(S0, K, re, rd, D(ρt), T ) = R0

(
Ke−reTN (−d2)− S0e−D(ρt)TN (−d1)

)
(5.62)

with

d1 =
log(S0

K
) + ((re −D(ρt)) +

σ2
S

2
)/T

σS
√
T

, d2 = d1 − σS
√
T . (5.63)

The price of a Quanto Call-Option can be easily derived from the put-call parity. If

we apply for example the Monte-Carlo approach to approximate the expectation under

risk-neutral measure in (5.61), the price PQuanto can thus be directly computed.

5.2.2 The Effect of Stochastic Correlation on Hedging

Based on the formula on (5.62) we derive the Delta as an example to discuss the effect

of stochastic correlation on the delta hedging strategy. For using a constant correlation,

the delta is given by

∆c = Φ(d1)− 1, (5.64)

where Φ is the standard normal distribution function and d1 is defined by

d1 =
log(S0

K
) + ((rd −D) +

σ2
S

2
)/T

σS
√
T

, (5.65)
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where D = re − rd + ρσSσH with a constant correlation ρ. Similarly, we have the Delta

under a stochastic correlation as

∆s = Φ(d1)− 1, (5.66)

where d1 is (5.63). One can use a Monte-Carlo approach to approximate (5.61) and

then compute D(ρt) in (5.63). Using the same parameters in Figure 5.9 and taking

the maturity T = 2 we display ∆c and ∆s in Figure 5.8a. Since the value of µ is
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Figure 5.8: BS parameters: K = 80, S0 = 100, H0 = 1, rd = 0.03, re = 0.05, σS =
0.2, σH = 0.4, Correlation process parameters: κ = 32.11, µ = 0.012, σ = 2.96 and ρ0 =
0.025.

close to the constant correlation, the difference between ∆c and ∆s is not apparent.

Therefore, in Figure 5.8b, we plot the difference ∆s−∆c in Figure 5.8a and observe that

delta values under the stochastic correlation are larger than the delta values using the

constant correlation.

5.2.3 Numerical Results of an Example

In Figure 5.9, 5.10 and 5.11, we show our numerical results for pricing a quanto Put-

Option and analyze the results centering around correlation risk.
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Figure 5.9: BS parameters: K = 80, S0 = 100, H0 = 1, rd = 0.03, re = 0.05, σS =
0.2, σH = 0.4, Correlation process parameters: κ = 31.11, µ = 0.012, σ = 2.96 and ρ0 =
0.025.
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Constant correlation with ρ = −0.025

Stochastic correlation with ρ0 = 0.025

Figure 5.10: BS parameters: K = 80, S0 = 100, H0 = 1, rd = 0.03, re = 0.05, σS =
0.2, σH = 0.4, Correlation process parameters: κ = 32.11, µ = 0.012, σ = 2.96 and ρ0 =
0.025.

First In Figure 5.9, we set the parameter for the BS model and use the estimated

parameter for the SCP model (see Figure 5.4). Besides, we use the whole historical

data (Jan 2003 - Mar 2013) of S&P 500 and Euro/US-Dollar exchange rate but only to

estimate the constant correlation which is 0.025. At the same time, we can let the SCP

ρt start from this value, ρ0 = 0.025. It is clearly to see, the prices of Put-Option with

the constant correlation are higher than the prices using the stochastic correlations. The
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Constant correlation with ρ = 0.1887

Stochastic correlation with ρ0 = 0

Figure 5.11: BS parameters: K = 80, S0 = 100, H0 = 1, rd = 0.03, re = 0.05, σS =
0.2, σH = 0.4, Correlation process parameters: κ = 10, µ = 0.2, σ = 1 and ρ0 = 0 ⇒
Mean value of the SCP model : 0.1887.

difference is even getting larger with the increasing maturity. We interpret this difference

as the correlation risk using the wrong (constant) correlation.

In Figure 5.10, we change the constant correlation to −0.025 and keep the other

parameter the same as in Figure 5.9. We observe that the prices with the constant

correlation could be also lower than the prices applying the stochastic correlation. The

sign of the price of correlation risk in this case is opposite of that sign in Figure 5.9.

It is very interesting to see the results in Figure 5.11, the prices using the constant

correlation and stochastic correlation are very close, even almost the same for the longer

time. We explain the reason for this phenomena as follows. In this case the parameters

of BS model remain unchanged as the last two examples, but we set here κ = 10, µ =

0.2 and σ = 1. Thus, we can compute numerically the mean value of (5.49) for these

assumed parameters which is 0.1887.We then price the Quanto Put-Option with constant

correlation ρ = 0.1887 and using the stochastic correlation with ρ0 = 0. Because the

value of the mean-reverting factor κ is large and the value of σ is small, such that the

stochastic correlation process concentrates strongly on its mean value, this is why there

is no obvious difference between the prices using the constant correlation and stochastic

correlation in this special case. Analyzing the numerical results we conclude that the
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correlation risk caused by a using wrong (constant) correlation can be priced through

applying our new SCP model, which can not always be neglected.

5.3 Stochastic Correlation in the Heston Model

In Section 4.3 we have investigated the extension of the Heston model by time-dependent

correlations. Our results have shown that performance of the Heston model regarding

the calibration to real market data can be improved only by allowing an appropriate

time-dependent correlations. Therefore, we believe that a significant improvement could

be expected by imposing a SCP into the Heston model. This is the motivation for

working on the Heston model in this section.

5.3.1 Stochastic Correlation in the Heston Model

Let us recall that the Heston’s stochastic volatility model [58] under the risk-neutral

measure is specified as

 dSt = rSt dt+
√
νtSt dW

S
t , S0 > 0,

dνt = κν(µν − νt) dt+ σν
√
νt dW

ν
t , ν0 > 0,

(5.67)

where BMs W S
t and W ν

t are correlated with a constant ρSν . Under the log-transform for

the asset, i.e. xt = log(St), the model is represented by

 dxt = (r − 1
2
νt) dt+

√
νt dW

x
t , x0 = log(S0),

dνt = κν(µν − νt) dt+ σν
√
νt dW

ν
t , ν0 > 0,

(5.68)

which is in the class of affine diffusion processes (AD), see B.7. The discounted CF has

been found by Heston [58]. We extend the model by imposing stochastic correlation
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between the asset price and the volatility given by an appropriate SDE system:


dxt = (r − 1

2
νt) dt+

√
νt dW

x
t , x0 = log(S0),

dνt = κν(µν − νt)dt+ σν
√
νt dW

ν
t , ν0 > 0,

dρt = a(t, ρt)dt+ b(t, ρt)dW
ρ
t , ρ0 ∈ [−1, 1],

(5.69)

where

dW x
t dW

ν
t = ρt dt, dW x

t dW
ρ
t = ρxρ dt, dW ν

t dW
ρ
t = ρνρ dt, (5.70)

i.e. the log price process and the volatility process are set to be correlated stochastically,

driven by the correlation process ρt which is by itself correlated with the log-price process

by ρxρ and with the volatility by ρνρ, respectively.

Affinity

To conveniently check the affinity, we reformulate the SDE system (5.69) with respect

to the independent BMs: We first rearrange the SDE system (5.69) as


dνt = κν(µν − νt)dt+ σν

√
νt dW

ν
t ,

dρt = a(t, ρt)dt+ b(t, ρt)dW
ρ
t ,

dxt = (r − 1
2
νt) dt+

√
νt dW

x
t ,

(5.71)

which has a family of correlation matrices

Ct =


1 ρνρ ρt

ρρν 1 ρρx

ρt ρxρ 1

 , t ≥ 0, (5.72)

which is symmetric, namely ρνρ = ρρν and ρxρ = ρρx. To simplify the notation we set

ρ1 := ρνρ(ρρν) and ρ2 := ρxρ(ρρx). Obviously, (5.72) is positive semi-definite if

1− ρ2
1 − ρ2

2 + 2ρ1ρ2ρt − ρ2
t ≥ 0 (5.73)
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which implies

ρ1ρ2 −
√

(1− ρ2
1)(1− ρ2

2) ≤ ρt ≤ ρ1ρ2 +
√

(1− ρ2
1)(1− ρ2

2). (5.74)

Under the condition (5.74), one can perform a Cholesky decomposition Ct = LtL>t , where

Lt is a family of lower triangular matrices given by

Lt =


1 0 0

ρ1

√
1− ρ2

1 0

ρt
ρ2−ρ1ρt√

1−ρ2
1

√
1− ρ2

t −
(
ρ2−ρ1ρt√

1−ρ2
1

)2

 , t ≥ 0, (5.75)

which can be employed to reformulate the SDE system (5.71) with respect to the inde-

pendent BMs W̃ ν
t , W̃

ρ
t and W̃ x

t as:



dνt = κν(µν − νt) dt+ σν
√
νt dW̃

ν
t ,

dρt = a(t, ρt) dt+ ρ1b(t, ρt) dW̃
ν
t +

√
1− ρ2

1b(t, ρt) dW̃
ρ
t ,

dxt = (r − 1

2
νt) dt+ ρt

√
νt dW̃

ν
t +

ρ2 − ρ1ρt√
1− ρ2

1

√
νt dW̃

ρ
t

+

√√√√1− ρ2
t −

(
ρ2 − ρ1ρt√

1− ρ2
1

)2
√
νt dW̃

x
t .

(5.76)

The family of symmetric instantaneous covariance matrices for Xt := [νt, ρt, xt]
> reads

σ(Xt)σ(Xt)
> =


νtσ

2
ν ρ1σν

√
νtb(t, ρt) σννtρt

∗ b2(t, ρt) ρ2b(t, ρt)
√
νt

∗ ∗ νt

 , t ≥ 0. (5.77)

Since our main aim is to impose a stochastic correlation between the asset process

and the stochastic volatility process, we first assume ρ1 = 0 so that the latter SDE
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system becomes


dνt = κν(µν − νt)dt+ σν

√
νtdW̃

ν
t ,

dρt = a(t, ρt)dt+ b(t, ρt)dW̃
ρ
t ,

dxt =

(
r − 1

2
νt

)
dt+ ρt

√
νtdW̃

ν
t + ρ2

√
νtdW̃

ρ
t +

√
1− ρ2

t − ρ2
2

√
νtdW̃

x
t ,

(5.78)

and the family of symmetric instantaneous covariance matrices reads

σ(Xt)σ(Xt)
> =


νtσ

2
ν 0 σννtρt

∗ b2(t, ρt) ρ2b(t, ρt)
√
νt

∗ ∗ νt

 , t ≥ 0. (5.79)

We define the discounted characteristic function φ (u,Xt, t, T ) = EQ
[
e−r(T−t)+iu

>XT |Ft
]
,

whose Kolmogorov’s backward equation is given by

∂φ

∂t
+(r − 1

2
ν)
∂φ

∂x
+ κν(µν − ν)

∂φ

∂ν
+ a(t, ρt)

∂φ

∂ρ
+

1

2
ν
∂2φ

∂x2
+

1

2
νσ2

ν

∂2φ

∂ν2

+
1

2
b2(t, ρ)

∂2φ

∂ρ2
+ σννtρt

∂2φ

∂ν∂x
+ ρ2b(t, ρt)

√
νt
∂2φ

∂ρ∂x
− rφ = 0

(5.80)

subject to the terminal condition φ (u,XT , T, T ) = eiuxt . Obviously, the system (5.78) is

not in an affine form. We can use appropriate approximations in order to generate an

affine form. We first consider σννtρt : Assuming independence between ρt and νt we can

straightforwardly take the following approximation

σννtρt ≈ E [σννtρt] = σνE [νt]E [ρt] . (5.81)

A better approximation could be

σννtρt ≈ σνE [νt] ρt, (5.82)
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which is justified by the assumption ρ1 = 0, because the stochasticity of the correlation

process is kept. We discuss the affinity of the terms including a(t, ρt) and b(t, ρt) in the

next section, as it will depend on the chosen stochastic correlation process.

5.3.2 Incorporating the OU Process into the Heston Model

If one uses the OU process to model stochastic correlation, the major drawback of using

an OU process for stochastic correlation is that the process is not bounded. This is

to say the generated correlations can be out of the correlation interval (−1, 1). This

specially occurs for a small value of κρ and a large value of σρ. However, due to its

analytical tractability, one would like to use it for modelling correlation; e.g., Düllmann

et al. [41] estimated asset correlations from stock prices or default rates by assuming

that correlation follows an OU process. In this section, we check the feasibility of using

an OU process [113] to be a SCP.

We recall that the OU process is given by

dρt = κρ(µρ − ρt) dt+ σρ dW̃
ρ
t . (5.83)

Therefore, the functions a(t, ρt) and b(t, ρt) defined in (5.78) and (5.79) are known as

κρ(µρ − ρt) and σρ, respectively.

We employ it for modelling stochastic correlations while we limit the mean value µρ

to be in (−1, 1) and choose a relative large value of κρ, a small value of σρ. We name

this extended Heston model as “HO” model. In the HO model, the remaining non-affine

term is only ρ2σρ
√
νt, see (5.79). For its approximation we use the following result [56]:

ρ2σρ
√
νt ≈ ρ2σρE [

√
νt] , (5.84)

where E
[√
νt
]

is given in the next proposition.
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Proposition 5.3.1 E
[√
νt
]

can be approximated by

E [
√
νt] ≈ m+ ne−lt, (5.85)

where

m :=

√
µν −

σ2
ν

8κν
, n :=

√
ν0 −m, l := − log

(
n−1

(
d̂−m

))
, (5.86)

d̂ :=

√(
ν0e−κν − σ2

ν(1− e−κν )

4κν

)
+µν(1− e−κν )+

σ2
νµν(1− e−κν )2

8κνµν + 8κνe−κν (ν0 − µν)
. (5.87)

The detailed derivation and the test of quality of the approximation can be found in

[56].

Characteristic Function

We start to derive the CF for the HO model, according to [37]. We first assume that the

discounted CF for the HO model is of the following form:

φHO (u,Xt, τ) = e−rτ+A(u,τ)+B(u,τ)xt+C(u,τ)ρt+D(u,τ)νt , (5.88)

with final conditions A(u, 0) = 0, B(u, 0) = iu, C(u, 0) = 0, D(u, 0) = 0 and τ := T − t.

By substituting (5.88) into (5.80) we obtain the ODEs related to the HO model given

in the following lemma.

Lemma 5.3.1 The functions in (5.88) A(u, τ), B(u, τ), C(u, τ) and D(u, τ) for the HO

model satisfy the following ODE system:

B′(u, τ) = 0, B(u, 0) = iu, (5.89)

C ′(u, τ) = σνE[νt]B(u, τ)D(u, τ)− κρC(u, τ), C(u, 0) = 0, (5.90)

D′(u, τ) =
1

2
B2(u, τ) +

1

2
σ2
νD(u, τ)− 1

2
B(u, τ)− κνD(u, τ), D(u, 0) = 0, (5.91)

A′(u, τ) = (B(u, τ)− 1)r + κνµνD(u, τ) + κρµρC(u, τ) (5.92)
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+
1

2
σ2
ρC

2(u, τ) + σρρ2E[
√
νt]B(u, τ)C(u, τ), A(u, 0) = 0.

Obviously, the discounted CF can be obtained as long as the closed-form solution of the

latter ODE system is available.

Lemma 5.3.2 The solution of the ODE system in Lemma 5.3.1 is given by

B(u, τ) = iu, (5.93)

D(u, τ) =
κν −D1

σ2
ν

· 1− e−D1τ

1−D2e−D1τ
, (5.94)

A(u, τ) = H1(u, τ) + αH2(u, τ) + βH3(u, τ) +
σ2
ρ

2
H4(u, τ), (5.95)

C(u, τ) =
C1(µν − ν0)

κν + κρ − l1
e(κν−l1)τ−κνT +

C1(ν0 − µν)
κν + κρ

eκν(τ−T )

+
C1µν
κρ
− C1µν
κρ − l1

e−l1 + C1C2e−κρτ ,

(5.96)

where m, n, and l defined in (5.86) - (5.87) and

D1 =
√
κ2
ν + σ2

ν(u
2 + iu), D2 =

κν −D1

κν +D1

, C1 = iu
κν −D1

σ2
ν

, (5.97)

l1 = − ln

(
e−D1 −D2e−D1

1−D2e−D1

)
, α = κρµρ +mσρρ2ui, β = nσρρ2ui, (5.98)

C2 =
µν − ν0

κν + κρ − l1
e−κνT +

ν0 − µν
κν + κρ

e−κνT − µν
κρ

+
1

κρ − l1
, (5.99)

H1(u, τ) = (iu− 1)rτ +
κνµν
σ2
ν

(
(κν −D1)τ − 2 ln

(
1−D2e−D1τ

1−D2

))
, (5.100)

H2(u, τ) =
C1(µν − ν0)eκν(τ−T )−l1τ

(κν + κρ − l1)(κν − l1)
+
C1(ν0 − µν)eκν(τ−T )

κν(κν + κρ)
+
µντC1

κρ

+
µνC1e−l1τ

(κρ − l1)l1
− C1C2e−κρτ

κρ
+H2c,

(5.101)
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H3(u, τ) =
C1(µν − ν0)eτ(κν+l−l1)−T (κν+l)

(κν + κρ − l1)(κν + l − l1)
+
C1(ν0 − µν)e(τ−T )(l+κν)

(l + κν)(κν + κρ)

+
µνC1el(τ−T )

κρl
− µνC1eτ(l−l1)−lT

(κρ − l1)(l − l1)
+
C1C2eτ(l−κρ)−lT

l − κρ
+H3c,

(5.102)

H2c =
C1(ν0 − µν)e−κνT

(κν + κρ − l1)(κν − l1)
− C1(ν0 − µν)e−κνT

κν(κν + κρ)
− µνC1

(κρ − l1)l1
+
C1C2

κρ
, (5.103)

H3c =
C1(µν − ν0)e−T (κν+l)

(κν + κρ − l1)(κν + l − l1)
+
C1(ν0 − µν)e−T (l+κν)

(l + κν)(κν + κρ)
+
µνC1e−lT

κρl

− µνC1e−lT

(κρ − l1)(l − l1)
+
C1C2e−lT

l − κρ
,

(5.104)

H4(u,τ) = H4c1e2κν(τ−T ) +H4c4e−τl1 +H4c5e(−l1−κρ)τ +H4c9eτ(κν−κρ)−κνT

+H4c2e2τ(κν−l1)−2κνT +H4c3eτ(2κν−l1)−2κνT +H4c11eτ(κν−κρ−l1)−κνT

+H4c12eτ(κν−l1)−κνT +H4c13eτ(κν−2l1)−κνT +H4c6eτ(−2κρτ +H4c7e−κρτ

+H4c8e−2l1τ +H4c10eτ(κν−l1)−κνT +H4c14eκρ(τ−T ) +
C2

1µ
3
ντ

κ2
ρ

+H4c,

(5.105)

H4c = (H4c1 +H4c2 +H4c3)e−2κνT +H4c4 +H4c5 +H4c6 +H4c7 +H4c8

+ (H4c9 +H4c10 +H4c11 +H4c12 +H4c13 +H4c14)e−κνT ,

(5.106)

with

H4c1 :=
C2

1(ν0 − µν)2

2κν(κν + κρ)2
, H4c2 :=

C2
1(ν0 − µν)2

2(2κν + κρ − l1)2(κν − l1)
, (5.107)

H4c3 :=
2C2

1(ν0 − µν)2

(κν + κρ − l1)(κν + κρ)(l1 − 2κν)
, H4c4 :=

2C2
1µ

2
ν

κνl1(κρ − l1)
, (5.108)

H4c5 :=
2µνC

2
1C2

κ2
ρ − l21

, H4c6 := −1

2

C2
1C

2
2

κρ
, H4c7 := −2µνC

2
1C2

κ2
ρ

, (5.109)

H4c8 := −1

2

µ2
νC

2
1

l1(κρ − l1)2
, H4c9 :=

2(ν0 − µν)C2
1C2

(κν + κρ)(κν − κρ)
, (5.110)

H4c10 :=
2C2

1(µ2
ν − ν0µν)

(κν + κρ)(κν − l1)(κρ − l1)
, H4c11 :=

2(µν − ν0)C2
1C2

(κν + κρ − l1)(κν − κρ − l1)
, (5.111)

H4c12 :=
2C2

1(µ2
ν − ν0µν)

κρ(κν − l1)(κν + κρ − l1)
, H4c13 :=

2C2
1(ν0µν − µ2

ν)

(κρ − l1)(κν − 2l)(κν + κρ − l1)
. (5.112)
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H4c14 :=
2C2

1(ν0µν − µ2
ν)

κνκρ(κν + κρ)2
, (5.113)

The proof can be found in Appendix C.

5.3.3 Incorporating the Bounded Jacobi Process into the Hes-

ton Model

In this section we investigate how to incorporate the variant of our general stochastic

correlation model, the bounded Jacobi process (see Section 5.1.4), into the Heston model.

Let us recall that

dρt = κρ(µρ − ρt) dt+ σρ
√

1− ρ2
t dW̃

ρ
t , (5.114)

where the functions a(t, ρt) and b(t, ρt) defined in (5.78) and (5.79) are κρ(µρ −

ρt) and σρ
√

1− ρ2
t , respectively. We call this extended Heston model as “HJ” model.

Similar to the HO model, from (5.79) we observe that the non-affine terms in the HJ

model are b2(t, ρt) and ρ2b(t, ρt)
√
νt, as

b2(t, ρt) = σ2
ρ(1− ρ2

t ), (5.115)

ρ2b(t, ρt)
√
νt = ρ2σρ

√
1− ρ2

t

√
νt. (5.116)

Approximation to affinity

We attempt to find appropriate approximations for (5.115) and (5.116) which are affine.

We consider first (5.115) which could be approximated by

σ2
ρ(1− E[ρ2

t ]), (5.117)
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where E[ρ2
t ]) is given by [115]

E[ρ2
t ] =

1

σ4
ρ + 3κρσ2

ρ + 2κ2
ρ

e−t(σ
3
ρ+2κρ)

(
(σ4

ρ + 3κρσ
2
ρ + 2κ2

ρ)ρ
2
0

+ 2µρκρρ0(σ2
ρ + 2κρ)(e

t(σ2
ρ+κρ) − 1) + σ2

ρ(σ
2
ρ + κρ)(e

t(σ2
ρ+2κρ) − 1)

− 2µ2
ρκρ
(
κρ(2et(σ

2
ρ+κρ) − et(σ

2
ρ+2κρ) − 1)− σ2

ρe
t(σ2

ρ+κρ)(etκρ − 1)
))
.

(5.118)

We see that the latter equation is rather complicated and not convenient for further

calculation. Therefore, we introduce the following approximation.

Proposition 5.3.2 E[ρ2
t ] can be approximated by

f2(t) := E[ρ2
t ] ≈ e−m2t + b2e−n2t + a2, (5.119)

where

a2 =
(σ2

ρ + κρ)(σ
2
ρ + 2κρµ

2
ρ)

σ4
ρ + 3κρσ2

ρ + 2κ2
ρ

, b2 = ρ2
0 − a2 − 1, (5.120)

m2 = −2 log
(
γ1 − b2e−

n2
2

)
, n2 = −2 log

(
b2γ1 −

√
b2

1γ
2
1 − γ2γ3

γ2

)
, (5.121)

with

γ1 := f2(0.5)− a2, γ2 := b2 + b2
1, γ3 := γ2

1 + a2 − f2(1). (5.122)

The proof and the test of quality of the approximation can be found in Appendix C.

Next, we investigate the approximation for the other non-affine term (5.116). Due

to ρ1 = 0 we propose to approximate (5.116) using its expectation

ρ2σρ
√
νt ≈ ρ2σρE[

√
1− ρ2

t ]E[
√
νt]. (5.123)

E[
√
νt] is already known, see Prop.5.3.1. The remaining task is to find a formula for

E[
√

1− ρ2
t ], for this we apply the delta method which has also been used to find the

approximation for E[
√
νt] in [56]. Say that ψ(X) is sufficiently smooth where the first
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two moments of X exist, then with the aid of a Taylor expansion we have

ψ(X) ≈ ψ(E[X]) + (X − E[X])
∂ψ

∂X
E[X], (5.124)

such that the variance of ψ(X) can be given by

V[ψ(X)] ≈ V
[
ψ(E[X]) + (X − E[X])

∂ψ

∂X
E[X]

]
=

(
∂ψ

∂X
E[X]

)2

V[X]. (5.125)

On one hand, setting ψ(ρt) =
√

1− ρ2
t we obtain

V
[√

1− ρ2
t

]
=

E[ρt]
2

1− E[ρt]2
V[ρt]. (5.126)

On the other hand, from the definition of the variance we also get

V
[√

1− ρ2
t

]
= E[1− ρ2

t ]− E
[√

1− ρ2
t

]2

. (5.127)

Directly from the last two equations we obtain finally

E
[√

1− ρ2
t

]
=

√
E[1− ρ2

t ]−
E[ρt]2

1− E[ρt]2
V[ρt] =

√
1− E[ρ2

t ]− E[ρt]4

1− E[ρt]2
, (5.128)

where E[ρ2
t ] is given in (5.118) and its approximation in (5.119). Besides, we know

E[ρt] = µρ + (ρ0 − µρ)e
−κρt for the correlation process ρt defined in (5.114). In the

same way as above we try to find a suitable approximation for (5.128) which has a more

convenient form.

Proposition 5.3.3 E[
√

1− ρ2
t ] can be approximated by

f3(t) := E[
√

1− ρ2
t ] ≈ e−m3t + b3e−n3t + a3, (5.129)
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where

a3 =

√
1− (σ2

ρ + κρ)(σ2
ρ + 2κρµ2

ρ)− µ4
ρ(σ

4
ρ + 3κρσ2

ρ + 2κ2
ρ)

(1− µ2
ρ)(σ

4
ρ + 3κρσ2

ρ + 2κ2
ρ)

, (5.130)

b3 =
√

1− ρ2
0 − a3 − 1, (5.131)

m3 = −2 log
(
η1 − b3e−

n3
2

)
, n3 = −2 log

(
b3η1 −

√
b2

3η
2
1 − η2η3

η2

)
, (5.132)

with

η1 := f3(0.5)− a3, η2 := b3 + b2
3, η3 := η2

1 + a3 − f3(1). (5.133)

We show the proof and measure the quality of the approximation in Appendix C.

Characteristic function

Again, we assume the discounted CF for the HJ model with the form:

φHJ (u,Xt, τ) = e−rτ+Ã(u,τ)+B̃(u,τ)xt+C̃(u,τ)ρt+D̃(u,τ)νt (5.134)

with final conditions Ã(u, 0) = 0, B̃(u, 0) = iu, C̃(u, 0) = 0, D̃(u, 0) = 0 and τ := T − t.

By substituting (5.134) into (5.80) we can obtain a similar ODE system as in Lemma

5.3.1.

Lemma 5.3.3 The functions in (5.134) Ã(u, τ), B̃(u, τ), C̃(u, τ) and D̃(u, τ) for the HJ

model satisfy the following ODE system:

B̃′(u, τ) = 0, B̃(u, 0) = iu, (5.135)

C̃ ′(u, τ) = σνE[νt]B̃(u, τ)D̃(u, τ)− κρC̃(u, τ), C̃(u, 0) = 0, (5.136)

D̃′(u, τ) =
1

2
B̃2(u, τ) +

1

2
σ2
νD̃(u, τ)− 1

2
B̃(u, τ)− κνD̃(u, τ), D̃(u, 0) = 0, (5.137)

Ã′(u, τ) = (B̃(u, τ)− 1)r + κνµνD̃(u, τ) +
1

2
σ2
ρE[1− ρ2

t ]C̃
2(u, τ) (5.138)

+ κρµρC̃(u, τ) + σρρ2E[
√
νt]E[

√
1− ρ2

t ]B̃(u, τ)C̃(u, τ), A(u, 0) = 0.
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We observe that there is only a difference between the ODEs in Lemma 5.3.1 and 5.3.3

in A(u, τ) because of the distinct correlation processes used. This also means that the

solutions of B̃(u, τ), C̃(u, τ) and D̃(u, τ) coincide with B(u, τ), C(u, τ) and D(u, τ) in

the HO model. Therefore we only need to calculate (5.138) to gain the discounted CF

for the HJ model (5.134). We state our result in the following lemma.

Lemma 5.3.4 The solutions of B̃(u, τ), C̃(u, τ), D̃(u, τ) are respectively equal to (5.93),

(5.96), (5.94), and

A(u, τ) = H̃1(u, τ) + (κρµρ + a3mζ)H̃2(u, τ) + a3nζH̃3(u, τ, l)

+ b3mζH̃3(u, τ, n3) +mζH̃3(u, τ,m3) + b3nζH̃3(u, τ, (l + n3))

+ nζH̃3(u, τ, (l +m3)) +
σ2
ρ

2
(1− a2)H̃4(u, τ)− σ2

ρ

2
H̃(u, τ,m2)

− b2σ
2
ρ

2
H̃(u, τ, n2),

(5.139)

where ζ = σρρ2ui, H̃1(u, τ) = H1(u, τ) (5.100), H̃2(u, τ) = H2(u, τ) (5.101), H̃4(u, τ) =

H4(u, τ) (5.105),

H̃3(u, τ, y) =
C1(µν − ν0)eτ(κν+y−l1)−T (κν+y)

(κν + κρ − l1)(κν + y − l1)
+
C1(ν0 − µν)e(τ−T )(y+κν)

(y + κν)(κν + κρ)

+
µνC1ey(τ−T )

κρy
− µνC1eτ(y−l1)−yT

(κρ − l1)(y − l1)
+
C1C2eτ(y−κρ)−yT

y − κρ
+H3c,

(5.140)

H̃3c =
C1(µν − ν0)e−T (κν+y)

(κν + κρ − l1)(κν + y − l1)
+
C1(ν0 − µν)e−T (y+κν)

(y + κν)(κν + κρ)
+
µνC1e−yT

κρy

− µνC1e−yT

(κρ − l1)(y − l1)
+
C1C2e−yT

y − κρ
,

(5.141)
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H̃(u, τ, y) =I1e(y+2κν−l1)τ−(y+2κν)T + I2e(y+κν−l1)τ−(y+κν)T

+ I3e(y+κν−2l1)τ−(y+κν)T + I4e(y+κν)(τ−T )

+ I5e(y+κν−l1)τ−(y+κν)T + I6e(y−2l1)τ−yT

+ I7e(y+2κν−2l1)τ−(y+2κν)T + I8e(y+2κν)(τ−T )

+ I9e(κν−κρ+y−l1)τ−(y+κν)T + I10e(κν−κρ+y)τ−(y+κν)T

+ I11e(y−2κρ)τ−yT + I12e(y−κρ)τ−yT + I13ey(τ−T )

+ I14e(y−l1)τ−yT + I15e(y−l1−κρ)τ−yT + H̃c,

(5.142)

H̃c = (I1 + I7 + I8)e−(y+2κν)T + (I2 + I3 + I4 + I5 + I9 + I10)e−(y+κν)T

+ (I6 + I11 + I12 + I13 + I14 + I15)e−yT ,

(5.143)

with

I1 =
−2C2

1(ν0 − µν)2

(κν + κρ − l1)(κν + κρ)(y + 2κν − l1)
, I2 =

2C2
1(µ2

ν − µνν0)

κρ(κν + κρ − l1)(y + κν − l1)
,

I3 =
2C2

1(µνν0 − µ2
ν)

(κρ − l1)(κν + κρ − l1)(y + κν − 2l1)
, I4 =

2C2
1(µνν0 − µ2

ν)

κρ(κρ + κν)(κν + y)
,

I5 =
2C2

1(µ2
ν − µνν0)

(κρ − l1)(κν + κρ)(y + κν − l1)
, I6 =

C2
1µ

2
ν

(κρ − l1)2(y − 2l1)
,

I7 =
C2

1(ν0 − µν)2

(κν + κρ − l1)2(y + 2κν − 2l1)
, I8 =

C2
1(ν0 + µν)

2

(κρ + κν)2(2κν + y)
,

I9 =
2C2

1C2(µν − ν0)

(κν + κρ − l1)(κν − κρ + y − l1)
, I10 =

2C2
1C2(ν0 − µν)

(κν + κρ)(κν − κρ + y)
,

I11 =
C2

1C
2
2

y − 2κρ
, I12 =

2C2
1C2µν

yκρ − κ2
ρ

, I13 =
C2

1µ
2
ν

yκ2
ρ

,

I14 =
−2C2

1µ
2
ν

κρ(yκρ − l1κρ − yl1 + l21)
, I15 =

−2C2
1C2µν

(κρ − l1)(y − κρ − l1)
.

C1, l1 and C2 are respectively located in (5.97), (5.98) and (5.99).

The proof can be found in Appendix C.
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5.3.4 Simulation of the Heston Model under Stochastic Corre-

lation

We have now obtained the explicit CFs for both models. One can thus do fast pricing

by inverting the CFs directly using numerical integration routines, e.g., see [27, 30]

for Fourier methods and [47] for COS method. We also refer the readers to [65] for a

detailed explanation for the both methods. However, in order to justify the proposed

approximations of non-affine terms we want to compare the implied volatilities for the

extended Heston model (HO and HJ) to the volatilities implied by performing a Monte-

Carlo simulation as the benchmark. In this section, we study how to simulate the paths

in these models.

Quadratic-exponential scheme

Basically, we will adopt the approach by Andersen [2] to simulate the HO and HJ model.

Firstly, to discretize the stochastic variance νt we just employ the quadratic-exponential

(QE) scheme. The concrete degrees of freedom and non-centrality parameter for the

variance process in (5.71) are given by the following proposition.

Proposition 5.3.4 For the variance process dνt in (5.71) we specify

d =
4κνµν
σ2
ν

, λ(t, T ) =
4κνe−κν(T−t)

σ2
ν(1− e−κν(T−t))

for t < T. (5.144)

Conditional on a value νt, νT is distributed as e−κν (T−t)

λ(t,T )
times a non-central chi-squared

distribution (see B.8) with d degrees of freedom and non-centrality parameter νtλ(t, T );

this means

P (νT < x|νt) = Fχ2

(
xλ(t, T )

e−κν(T−t) ; d, νtλ(t, T )

)
. (5.145)

From Proposition 5.3.4 we know that the non-centrality parameter is proportional to νt,

which means that large or small values of the parameter correspond to large or small

values of νt. Let ν̂t denote the discrete-time approximation to νt, for sufficiently large
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realized values of ν̂t, cf. [2]. Then one can approximate the non-central chi-square

random variable by the power function

ν̂t+∆ = ᾱ(β̄ + Zν)
2, (5.146)

where Zν is a standard Gaussian random variable, ᾱ and β̄ are certain constants which

can be determined by the moment-matching using the parameters of dνt in (5.71). We

only state the formulas for ᾱ and β̄ in the following Proposition 5.3.5; the detailed

calculations can be found in [2].

Proposition 5.3.5 The mean and the variance of the variance process in (5.71) read

m = E[νt+∆|νt] = µν + (νt − µν)e−κν(T−t),

s2 =
νtσ

2
νe−κν(T−t)

κν

(
1− e−κν(T−t))+

µνσ
2
ν

2κν

(
1− e−κν(T−t))2

.

If we set ψ := s2

m2 and choose

β̄2 = 2ψ−1 − 1 +
√

2ψ−1
√

2ψ−1 − 1 ≥ 0 (5.147)

and

ᾱ =
m

1 + β̄2
, (5.148)

then (5.146) has a mean equal to m and a variance equal to s2. Note that ψ ≤ 2.

However, the approximation (5.146) will not work properly for small values of ν̂t, cf. [2].

For small values of ν̂t, Andersen [2] suggested to use instead an approximated density

for ν̂t+∆ of the form:

P (ν̂t+∆ ∈ [x, x+ dx]) ≈ (pδ(0) + q(1− p)e−qx)dx, x ≥ 0, (5.149)
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where δ is a Dirac delta function, and p ∈ [0, 1] and q > 0 are constants which can be

determined by the moment-matching. Next, we integrate (5.149)

Ψ(x) = P (ν̂t+∆ < x) = p+ (1− p)(1− e−qx), x ≥ 0 (5.150)

and by inverting we obtain

Ψ−1(u) = Ψ−1(u; p, q) =

 0, 0 ≤ u ≤ p

q−1 ln( 1−p
1−u), p < u ≤ 1

. (5.151)

Thus, the sampling scheme for small values of ν̂t reads

ν̂t+∆ = Ψ−1(Uν ; p, q), (5.152)

where Uν is a uniform random variable. Again, we state the formulas for p and q in the

following proposition; for the detailed calculations we refer to [2].

Proposition 5.3.6 Let m, s2 and ψ be defined as in Proposition 5.3.5. For ψ ≥ 1 we

choose

p =
ψ − 1

ψ + 1
∈ [0, 1) (5.153)

and

q =
1− p
m

=
2

m(ψ + 1)
> 0, (5.154)

such that (5.152) has a mean equal to m and a variance equal to s2.

We only need to select an arbitrary level ψc ∈ [1, 2] and choose either (5.146) or (5.152)

according to ψ ≤ ψc or ψ > ψc to do the sampling for the variance process in (5.71).

Discretization for the log-price process

Next, we discuss the discretization for the log-price process. We remark: As indicated

by Andersen [2], a straight discretization of dxt in (5.71) may lead to the problem of
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“leaking correlation”. Suppose that we use an Euler scheme for simulating dxt in (5.71)

x̂t+∆ = x̂t + (r − 1

2
ν̂t)∆ +

√
ν̂tZx
√

∆. (5.155)

We know that the true correlation between x̂t+∆ and ν̂t+∆ is always close to ρt given

by dνt in (5.71). However, ν̂t+∆ and Zν in (5.146) have a strong nonlinear relationship

which will imply that the effective correlation between ν̂t+∆ and x̂t+∆ will be closer to

zero than ρt for the cases where P (β̄ + Zv < 0) is significant. The problem of “leaking

correlation” can be tackled by using dxt in (5.76) or in (5.78).

In the sequel, we try to follow the methodology suggested by Andersen [2] to discretize

the log-price process in (5.78): The integral form of the stochastic variance in (5.71) reads

νt+∆ = νt +

∫ t+∆

t

κν(µν − νu)du+ σν

∫ t+∆

t

√
νudW

ν
u , (5.156)

which can be rearranged as

∫ t+∆

t

√
νudW

ν
u = σ−1

ν

(
νt+∆ − νt − κνµν∆ + κν

∫ t+∆

t

νudu

)
. (5.157)

Using the Cholesky decomposition, dxt in (5.71) can be reformulated as

xt+∆ =xt + r∆− 1

2

∫ t+∆

t

νudu+ ρxν

∫ t+∆

t

√
νudW

ν
u +

√
1− ρ2

xν

∫ t+∆

t

√
νudW

x
u . (5.158)

Now we substitute (5.157) into (5.158) to obtain

xt+∆ = xt + r∆ +
ρxν
σν

(νt+∆ − νt − κνµν∆)

+

(
κνρxν
σν
− 1

2

)∫ t+∆

t

νudu+
√

1− ρ2
xν

∫ t+∆

t

√
νudW

x
u .

(5.159)
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Andersen [2] proposed to discretize the integral in (5.159) using the approximation

∫ t+∆

t

νudu ≈ ∆ (γ1νt + γ2νt+∆) , (5.160)

where γ1 and γ2 are given constants. For example, one could set γ1 = γ2 = 1
2

for a

trapezoidal quadrature. Thus, the other Itô integral can be approximated by

∫ t+∆

t

√
νudW

x
u ≈
√

∆
√
γ1νt + γ2νt+∆Zν , (5.161)

where Zν is a standard Gaussian random variable. However, using the approximations

and discretization above, (5.159) will not be a martingale, while it must be under the

risk-neutral measure. For this problem, on the one hand one can reduce the size of ∆, on

the other hand the “martingale correction” proposed by Andersen [2] can be employed.

Now we come back to consider the asset process in (5.78) in the extended Heston

model. In principle, one can also apply the discretization described above for dxt in

(5.78). However, due to the incorporated stochastic correlation and its more complicated

structure, the approximation would not be satisfying as in the original Heston model.

Besides, the corresponding martingale correction for dxt in (5.78) will be tedious. In

light of this problem, we suggest to use directly the Euler or Milstein scheme . The

reason is, firstly, in dxt in (5.78) all the correlation terms have been considered, such

terms will be kept by using the Euler ([42, 82]) or Milstein ([87]) scheme. Secondly,

the discretized process (5.162) by Euler or Milstein scheme will be a martingale. For

a detailed description on the analysis and application of Euler and Milstein scheme we

refer to [57, 101].

The discretization of dxt in (5.78) by applying the Euler scheme reads

x̂t+∆ = x̂t + (r − 1

2
ν̂t)∆ + ρ2

√
∆Zρ̂

√
ν̂t

+ ρ̂t
√

∆Zν̂
√
ν̂t +

√
1− ρ2

2 − ρ̂2
t

√
∆Zx̂

√
ν̂t,

(5.162)
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where Zρ̂, Zν̂ and Zx̂ are independent standard Gaussian random variables. The dis-

cretization of dxt in (5.78) by applying the Milstein scheme will be the same as (5.162),

since all the derivatives included in the coefficients of the double integral terms (with

respect to BMs) of the Milstein scheme are equal to zero.

Discretization for SCPs

We consider now the suitable discretization schemes for some SCPs. The OU process

(see (5.83)) can be simulated in several ways, e.g., using its exact solution

ρt+∆ = ρte
−κρ∆ + µρ(1− e−κρ∆) + σρ

√
1− e−2κρ∆

2κρ
Zρ. (5.163)

As mentioned before, the major drawback of using an OU process for stochastic corre-

lation is that the process is not bounded. Hence, for the simulation we limit the mean

value µρ to be in (−1, 1) and choose a relative large value of κρ, a small value of σρ.

To discretize other SCPs with unknown exact solution, one can either directly use

the Euler or the Milstein scheme. For the discretization of (5.114) we remark that the

implicit Milstein schemes should be preferred for a better convergence and preserving

the boundaries, cf. [115]. The implicit Milstein scheme for (5.114) reads

ρt+∆ = ρt + a (t+ ∆, ρt+∆) ∆ + b(t, ρt)
√

∆Zρ +
1

2
b(t, ρt)

∂

∂ρ
b(t, ρt)∆

(
Z2
ρ − 1

)
. (5.164)

A comparison of the numerical methods AM vs. EM

To verify the approaches introduced above to simulate the Heston model extended by

stochastic correlation, we conduct the following example: considering a European Call-

option whose numerically approximated price is

Ĉ = E
[
(ŜT −K)+

]
= E

[
(ex̂T −K)+

]
, (5.165)

132



which can be approximated by a Monte-Carlo method

Ĉ ≈ 1

M

M∑
i=1

(
ex̂

i
T −K

)+

. (5.166)

For x̂iT in the latter equation, on the one hand we simply discretize (5.158) by using the

Euler or Milstein scheme, denoted “EM”. On the other hand we choose the approach

by Andersen [2], namely using (5.158)-(5.161) with a martingale correction, denoted by

“AM”. We denote the exact option price in the original Heston model with C obtained

by computing the (semi-)analytical pricing formula in [58] and define the error of a

discretization scheme as

ε = |C − Ĉ|, (5.167)

which will be dependent on ∆. For all the numerical experiments we assume S = 120, r =

1% and three different levels of the strike K = [80, 120, 160].

To initialize the variance process, we choose ν0 = µν = 0.04, κν = 0.6, σν = 1, which

do not obey the Feller condition 2κνµν > σ2
ν , set the constant correlation ρxν to be −0.8,

maturity T = 10 years. Let γ1 = γ2 in (5.160) to be 0.5. We use M = 106 for the

Monte-Carlo method and report the errors in Table 5.1 by varying the values of ∆ from

1/32 year to 1 year. We find that the discretization scheme AM has an advantage over

EM when the Feller condition is not satisfied for the variance process. The advantage is

considerable for the out-of-money options with K = 160. Next, we initialize the variance

process using ν0 = µν = 0.04, κν = 2.6 and σν = 0.2 which obviously fulfill the Feller

condition, the other parameters are kept to be same as before. By analyzing the relative

errors displayed in Table 5.2, we realize that there is no obvious difference between using

AM and EM. From the results in Table 5.1 and 5.2 we conclude that the discretization

of the dxt process (with correlation terms) using the Euler or Milstein scheme is suffi-

ciently accurate. In particular, it can be simply applied to the case of using stochastic

correlation. In a word, for the extended Heston by imposing a stochastic correlation,
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∆ AM EM
K = 80

1 0.136 (0.035) 0.614 (0.061)
1/2 0.057 (0.035) 0.414 (0.049)
1/4 0.022 (0.036) 0.313 (0.043)
1/8 0.022 (0.036) 0.236 (0.039)
1/16 0.009 (0.036) 0.163 (0.038)
1/32 0.008 (0.035) 0.072 (0.037)

K = 120
1 0.290 (0.024) 0.385 (0.056)

1/2 0.163 (0.025) 0.159 (0.043)
1/4 0.055 (0.026) 0.050 (0.035)
1/8 0.012 (0.026) 0.049 (0.031)
1/16 0.019 (0.026) 0.063 (0.029)
1/32 0.015 (0.026) 0.045 (0.027)

K = 160
1 0.780 (0.014) 5.465 (0.049)

1/2 0.310 (0.014) 4.260 (0.034)
1/4 0.067 (0.015) 2.938 (0.026)
1/8 0.004 (0.015) 1.876 (0.021)
1/16 0.027 (0.015) 1.140 (0.018)
1/32 0.007 (0.014) 0.662 (0.017)

Table 5.1: A comparison of the relative errors using AM and EM when the parameters of
variance process do not fulfill the Feller condition, numbers in parentheses are standard
deviations.

we suggest to use the QE scheme for νt and the Euler (or Milstein) scheme for xt which

contains stochastic correlation ρt using a Cholesky decomposition.

The role of stochastic correlation

We start to analyze the effect of imposing stochastic correlation on the implied volatil-

ities. To illustrate clearly the role of using a correlation process in implied volatility,

namely to see how the values of parameters of the correlation process will drive the

implied volatilities, we display in Figure 5.12 the changes of the implied volatilities by

varying each parameter of the correlation process. For this experiment, we prefer to

use the SCP introduced in Section 5.1.3, namely transformed OU process for stochastic
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∆ AM EM
K = 80

1 0.031 (0.073) 0.047 (0.072)
1/2 0.042 (0.072) 0.117 (0.072)
1/4 0.065 (0.072) 0.011 (0.072)
1/8 0.044 (0.072) 0.044 (0.072)
1/16 0.021 (0.072) 0.057 (0.072)
1/32 0.088 (0.072) 0.023 (0.072)

K = 120
1 0.110 (0.063) 0.039 (0.062)

1/2 0.226 (0.062) 0.067 (0.062)
1/4 0.106 (0.062) 0.059 (0.062)
1/8 0.036 (0.063) 0.010 (0.062)
1/16 0.021 (0.063) 0.025 (0.063)
1/32 0.040 (0.063) 0.037 (0.063)

K = 160
1 0.281 (0.053) 0.178 (0.051)

1/2 0.143 (0.052) 0.038 (0.052)
1/4 0.121 (0.052) 0.075 (0.052)
1/8 0.038 (0.052) 0.027 (0.052)
1/16 0.028 (0.052) 0.032 (0.052)
1/32 0.028 (0.052) 0.020 (0.052)

Table 5.2: A comparison of the relative errors using AM and EM when the parameters of
variance process do not fulfill the Feller condition, numbers in parentheses are standard
deviations.

correlation. We will use the same parameters as above except for the one who is varying,

and choose T = 0.5 year. The examples of using other SCPs can be found in [111].

5.3.5 Approximation Error

In this section, we conduct some numerical experiments to justify the proposed approxi-

mations of non-affine terms. We compare the implied volatilities for the extended Heston

model (HO and HJ) to the volatilities implied by performing a Monte-Carlo simulation

as the benchmark. We define the approximation error as the absolute difference between

them. For a Monte-Carlo simulation of the extended Heston with stochastic correlation

we use the method introduced in Section 5.3.4. For the Monte-Carlo simulation using
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Figure 5.12: Comparison of implied volatilities for varying each parameter of stochastic
correlation processes separately.

the OU process, in order to ensure that the generated correlations lie in the interval

(−1, 1), as mentioned before, we choose values of µρ and ρ0 from (−1, 1) and a large

value of κρ, a small value of σρ. For using the bounded Jacobi process we only need to

take care of the condition (5.42).

We consider a Call-option (S0 = 100) for the maturity of 5 years and present our

results in Table 5.3 and 5.4, where 20T steps and 105 paths are used for the Monte-Carlo

simulation; the implied volatilities and errors are expressed in percentage. We consider

first Table 5.3 where σρ is set to be 0.1. From the values of the error we see that the

approximations in both models give highly accurate results. Besides, we observe that

the values of implied volatilities are the same for the HO and HJ model; there is no

significant difference by varying ρ2. This observation can be explained as follows: The
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Model HO HJ
ρ2 Strike MC Imp. vol. Approx Err. MC Imp. vol. Approx. Err.

40 19.45 (0.16) 19.12 0.33 19.38 (0.16) 19.12 0.26
80 17.26 (0.20) 17.46 0.20 17.22 (0.20) 17.46 0.24

−0.4 100 16.58 (0.23) 16.83 0.25 16.61 (0.23) 16.83 0.22
120 16.28 (0.25) 16.26 0.02 16.27 (0.25) 16.26 0.01
160 15.08 (0.30) 15.17 0.09 15.33 (0.30) 15.17 0.16

40 19.18 (0.16) 19.13 0.05 19.38 (0.16) 19.13 0.25
80 17.32 (0.20) 17.46 0.14 17.27 (0.20) 17.46 0.19

0 100 16.65 (0.23) 16.83 0.18 16.71 (0.23) 16.83 0.12
120 16.16 (0.25) 16.26 0.10 16.06 (0.25) 16.26 0.20
160 15.23 (0.30) 15.17 0.06 15.22 (0.30) 15.17 0.05

40 19.45 (0.16) 19.14 0.31 19.31 (0.16) 19.14 0.17
80 17.30 (0.20) 17.46 0.16 17.25 (0.20) 17.46 0.20

0.4 100 16.59 (0.23) 16.82 0.24 16.59 (0.23) 16.82 0.24
120 16.22 (0.25) 16.25 0.03 16.10 (0.25) 16.25 0.15
160 15.57 (0.30) 15.18 0.39 15.52 (0.30) 15.18 0.35

Table 5.3: The other parameters are assumed as: ν0 = 0.02, κν = 2.1, µν = 0.03, σν =
0.2, ρ0 = −0.4, κρ = 3.4, µρ = −0.6, σρ = 0.1, the numbers in round brackets represent
the standard deviations.

OU process and the bounded Jacobi process are both mean-reverting processes; more

exactly, they have the same structure for the drift. If the value of σρ is so small that the

random part in the correlation process will play a minor role, one obtains thus the same

implied volatilities for using the OU and the bounded Jacobi process. Similarly, a small

value σρ of the correlation process leads to a rather small effect of ρ2. In Table 5.4, we

increase the value of σρ to be 0.18, the mentioned differences between using the HO and

HJ model, or for varying ρ2 can be seen. The error values in this table showed again

that the approximations give a rather accurate result. For the Monte-Carlo simulation

we remark: While choosing the parameters one needs to pay attention to keep the values

inside of the square root to be positive, see (5.78).
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Model HO HJ
ρ2 Strike MC Imp. vol. Approx Err. MC Imp. vol. Approx. Err.

40 19.24 (0.16) 19.51 0.27 19.27 (0.16) 19.02 0.25
80 17.38 (0.20) 17.39 0.01 17.37 (0.20) 17.42 0.05

−0.4 100 16.82 (0.23) 16.86 0.04 16.75 (0.23) 16.84 0.08
120 16.05 (0.25) 16.27 0.22 16.18 (0.25) 16.31 0.13
160 15.31 (0.30) 15.35 0.04 15.16 (0.30) 15.35 0.19

40 19.29 (0.16) 19.72 0.43 19.25 (0.16) 19.03 0.22
80 17.34 (0.20) 17.38 0.04 17.24 (0.20) 17.42 0.18

0 100 16.70 (0.22) 16.86 0.16 16.71 (0.22) 16.83 0.12
120 16.26 (0.25) 16.25 0.01 16.14 (0.25) 16.30 0.16
160 15.22 (0.30) 15.37 0.15 15.41 (0.30) 15.36 0.05

40 19.36 (0.16) 20.00 0.64 19.33 (0.16) 19.04 0.29
80 17.35 (0.20) 17.37 0.02 17.31 (0.20) 17.42 0.11

0.4 100 16.61 (0.23) 16.86 0.25 16.79 (0.23) 16.82 0.03
120 16.36 (0.25) 16.22 0.14 16.07 (0.25) 16.30 0.22
160 15.63 (0.30) 15.39 0.24 15.46 (0.30) 15.36 0.10

Table 5.4: The other parameters are assumed as: ν0 = 0.02, κν = 2.1, µν = 0.03, σν =
0.2, ρ0 = −0.4, κρ = 3.5, µρ = −0.55, σρ = 0.18, the numbers in round brackets represent
the standard deviations.

5.3.6 Calibration to Market Data

In order to recognize the performance of our models in a calibration setting, we compare

the calibration using the Heston model extended with a stochastic correlation to the

calibrations using the pure Heston model and the double Heston model. For the market

data, we choose Put-options on the Nikk300 index on December 31, 2012, which is used

in [112] and representative for the skew and patterns observed. Since our aim is to

compare our models to the pure Heston model [58] and the double Heston model [31],

we thus just use the standard optimization methods: We fit the prices computed by

the different models to the market observed prices for several maturities Ti and strikes

Kj; one can obtain the parameter estimates by minimizing, e.g., the mean square error

(MSE)

1

N

∑
i,j

wij(P
Mkt(Ti, Kj)− PMod(Ti, Kj))

2, (5.168)
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with the market price PMkt(Ti, Kj) and the corresponding model price PMod(Ti, Kj); wij

is an optional weight.

We report our results in Table 5.5, where νk0 , κ
k
ν , µ

k
ν , σ

k
ν , σ

k
ν are the parameters for

the two stochastic volatilities in the double Heston model, k = 1, 2. We see that the

Pure ν̂0 κ̂ν µ̂ν σ̂ν ρ̂ MSE
Heston 0.05 4.13 0.05 0.39 −0.47 2.3× 10−2

Double ν̂10 κ̂1ν µ̂1
ν σ̂1

ν ρ̂1 ν̂20 κ̂2ν µ̂2
ν σ̂2

ν ρ̂2 MSE
Heston 0.05 6.36 0.02 0.49 −0.23 0.01 5.69 0.03 0.62 −0.44 13.0× 10−3

Heston ν̂0 κ̂ν µ̂ν σ̂ν ρ̂0 κ̂ρ µ̂ρ σ̂ρ ρ̂xρ MSE
OU 0.06 3.32 0.07 2.02 −0.01 2.12 −0.31 0.33 −0.88 6.7× 10−3

Heston ν̂0 κ̂ν µ̂ν σ̂ν ρ̂0 κ̂ρ µ̂ρ σ̂ρ ρ̂xρ MSE
Jacobi 0.05 0.75 0.07 0.50 −0 2.72 −0.17 0.02 −0.91 5.4× 10−3

Table 5.5: Estimated model parameters for the Nikk300 index on December 31, 2012.

MSE values for the Heston model with stochastic correlation are smaller than the pure

Heston model and the double Heston model.

To illustrate more clearly, we define the error as the absolute value of the difference

between the implied market volatilities and the model implied volatilities, namely

Error := |V olMkt(Ti, Kj)− V olMod(Ti, Kj)|. (5.169)

Then, we compare the errors for these models in Figure 5.13 for relatively short maturities

T = 30, 90, 180, 360 days and in Figure 5.14 for relative long maturities T = 2, 3, 4, 5

years. We observe for all maturities, that the Heston model extended by incorporating

the stochastic correlation (in the both cases HO and HJ) can be better fitted to real

market data not only than the pure Heston model but also than the double Heston model,

although the extended Heston model with stochastic correlation has one parameter less

than the double Heston model. This proves that introducing a stochastic correlation can

significantly improve the the calibration. About how each parameter of the stochastic

correlation process effect the implied volatilities, see Section 5.3.4.
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Figure 5.13: Using the Nikk300 index on December 31, 2012 where spot price is 174.3,
and for some short maturities T = 30, 90, 180, 360 days, the errors (defined as the
absolute value of the difference between the implied market volatilities and the implied
volatilities for the models) are compared for the pure Heston model (’PH’), the double
Heston model (’DH’), the HO model and the HJ model. ErrorSum denotes the sum of
errors for each maturity with different strikes.

For an further example we take the Call-options on the Nikk300 index on May 10,

2012, where spot price is 159.7. We consider several maturities T = 30, 90, 180, 360 days

and strike which ranges from 154 to 167. Instead of statistical error (MSE) we report the

error defined in (5.169) and estimates for all the models in Table 5.6. By comparing the

Pure ν̂0 κ̂ν µ̂ν σ̂ν ρ̂ Error
Heston 0.039 6.984 0.051 1.641 −0.313 4.16× 10−4

Double ν̂1
0 κ̂1

ν µ̂1
ν σ̂1

ν ρ̂1 ν̂2
0 κ̂2

ν µ̂2
ν σ̂2

ν ρ̂2 Error
Heston 0.001 3.520 0.050 0.585 −0.791 0.033 2.128 0.001 1.163 −0.068 1.21× 10−4

Heston ν̂0 κ̂ν µ̂ν σ̂ν ρ̂0 κ̂ρ µ̂ρ σ̂ρ ρ̂xρ Error
OU 0.029 3.996 0.046 0.591 0.052 4.036 −0.919 0.034 0.532 1.00× 10−4

Heston ν̂0 κ̂ν µ̂ν σ̂ν ρ̂0 κ̂ρ µ̂ρ σ̂ρ ρ̂xρ Error
Jacobi 0.043 5.489 0.049 1.461 0.259 5.487 −0.404 0.077 0.166 1.14× 10−4

Table 5.6: Estimated model parameters for the Nikk300 index on May 10, 2012.
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Figure 5.14: Using the Nikk300 index on December 31, 2012 where spot price is 174.3,
and for some long maturities T = 2, 3, 4, 5 years, the errors (defined as absolute value
of the difference between the implied market volatilities and the implied volatilities for
the models) are compared for the pure Heston model (’PH’), the double Heston model
(’DH’), the HO model and the HJ model. ErrorSum denotes the sum of errors for each
maturity with different strikes.

error values in Table (5.169) we again conclude that our models provide a more realistic

volatility smile than the pure Heston model and the double Heston model.

Furthermore, we display the implied volatilities for all the models in Figure 5.15 and

compare them to the market volatilities. Obviously, either the HO model or the HJ

model provides a better fit to the market volatilities, especially, the volatility smile as

market requires for the short maturity T = 30 days.

The experiments on the calibration to the real market data has shown that introduc-

ing a stochastic correlation can not only improve significantly the performance of the pure

Heston model, but also be better than the double Heston model. The great importance

of modelling financial correlation as a stochastic process has thus been validated.
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Figure 5.15: Using the Nikk300 index on 10 May, 2012 where spot price is 159.7, and for
the maturities T = 30, 90, 180, 360 days, the implied volatilities are compared for the
pure Heston model (’PH’), the double Heston model (’DH’), the HO model and the HJ
model.
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Chapter 6

Conclusion

In this thesis, Counterparty Credit risk with special regard to the correlation among

counterparties, modelling and application of time-dependent correlation, modelling and

application of stochastic correlation were introduced and analysed.

The main contributions of this thesis are fivefold. Firstly, from the investigation of

computing Bilateral Value Adjustment on a Credit Default Swap contract we presented

a problem of computing the cumulative distribution function of the integrated Cox-

Ingersoll-Ross process, which has been a benchmark in finance for many years. This

cumulative distribution function plays an important role not only in modelling of Credit

risk but also on many other issues in finance. We developed a new strategy that allows

to construct a very robust routine to numerically determine a highly accurate cumulative

distribution function of the integrated Cox-Ingersoll-Ross process.

Secondly, motivated with the indeed simultaneous default events in the real financial

market, e.g., the collapses of Lehman Brothers and Merrill Lynch were just within two

days (September 13-14, 2008) and 24 railways firms defaulted simultaneously on the same

day, June 21, 1970, a new formula for pricing Bilateral Value Adjustment on a Credit

Default Swap contract is developed. Applying our new formula, we were able not only to

fully capture the Wrong-Way risk on a Credit Default Swap contract, but also to confirm
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the role of considering simultaneous defaults on the valuation of the Counterparty risk

in Credit Default Swap contracts. Another important finding was that the effects of

the simultaneous defaults on the Bilateral Value Adjustment are not identical for the

contracting party as the Credit Default Swap seller and the Credit Default Swap payer.

Thirdly, we proposed a new time-dependent correlation function which firstly satisfies

the correlation properties and secondly can be easily incorporated into financial models

instead of using a constant correlation. The benefit of using our time-dependent corre-

lation model is that additional parameters can be chosen to increase the fitting quality

to the real market data. Compared to the way using time-dependent parameters our

model has an economic meaning, namely the correlation between, e.g., financial quanti-

ties and parties is not constant but time-varying as observed in the market. To confirm

our statement, as examples, we applied this time-dependent correlation to price Quanto

options and the Heston model.

Fourthly, due to the uncertainty associated with the future development of relation-

ship between, e.g., financial parties and products, modelling correlation stochastically

should better replicate the correlation in reality. We proposed a general stochastic cor-

relation model from which we could define many variants of stochastic correlation pro-

cesses. To the best of our knowledge, almost all stochastic correlation processes proposed

by other authors are within the class of our general stochastic correlation models.

The last important topic analysed in the framework of this thesis was the applica-

tion of stochastic correlation process to price Quanto options and the Heston model.

For pricing Quanto options we quantified the correlation risk caused by using a wrong

(constant) correlation. Introducing a stochastic correlation into the Heston model can

provide a better skew and smile in the volatility surface, not only than the pure Heston

model but also than some other extensions of the Heston for the same aim, e.g., the

double Heston model.
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This thesis contains a wide range of topics related to the impact of financial correla-

tion, its modellings and applications in finance. Of course, compared to other important

financial quantities, e.g., stochastic volatility processes and stochastic interest rate pro-

cesses, the modelling and application of financial correlations using a stochastic process

is still at an early stage. Therefore, there remain many open problems that need to be

solved for a wide application of stochastic correlation in finance. In particular, for credit

risk management, it is an urgent task to establish a general framework for considering

stochastically dependent default intensities among counterparties.

145



Appendix A

Preliminaries

Suppose a probability space (Ω,F , P )

Definition A.1 A filtered probability space (Ω,F , {Ft}t≥0, P ) is said to satisfy the usual

conditions if the following conditions hold [64]:

• F0 (so that all Ft) contains all P -negligible events in F ;

• {Ft}t≥0 is right-continuous for all t ≥ 0.

Definition A.2 A self-financing trading strategy is called an arbitrage opportunity of

its value process V satisfies [48]

V0 ≤ 0, VT ≥ 0 P-almost surely and P (VT ) > 0.

Definition A.3 Let P̃ a probability measure on (Ω,F) , P̃ is said to be absolutely con-

tinuous with respect to P on F , and we write P̃ � P, if for all A ∈ F [48],

P (A) = 0 ⇒ P̃ (A) = 0.

If both P̃ � P and P � P̃ hold, P̃ and Q are said to be equivalent by P̃ ≈ P.

146



Theorem A.1 P̃ is absolutely continuous with respect to P on F if and only if there

exists an F-measurable function ψ ≥ 0 so that [48]

∫
F dP̃ =

∫
Fψ dP for all F-measurable functions F ≥ 0,

we say that ψ is the density or Radon-Nikodym derivative of P̃ with respect to P and

write

ψ :=
d P̃

d P
,

which is uniquely determined.

Theorem A.2 We denote the set of risk-neutral measures which are equivalent to P by

Q := {Q | Q is a risk-neutral measure with Q ≈ P} .

A market model is arbitrage-free if and only if Q 6= ∅ and there exists a Q ∈ Q which

has a bounded density dQ/dP. The proof can be found in [48].

Definition A.4 A market model is complete if every derivative security can be hedged.

Theorem A.3 Consider a market model that has a risk-neutral probability measure,

say a arbitrage-free market model. The model is complete if and only if the risk-neutral

probability measure is unique, i.e. if |Q| = 1.

Theorem A.4 Girsanov theorem in one dimension: Let Wt, 0 ≤ t ≤ T, be a Brownian

motion (BM) on (Ω,F , P ) , and Ft is the filtration for this BM. Let Θt, 0 ≤ t ≤ T, be

an adapted process. Define

Zt = e−
∫ t
0 Θs dWs− 1

2

∫ t
0 Θ2

s ds,

W̃t = Wt +

∫ t

0

Θs ds
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and assume that

E
[∫ T

0

Θ2
sZ

2
s ds

]
<∞.

Set Z = ZT . Then E(Z) = 1 and under the probability measure Q given by

dQ = e−
∫ T
0 Θs dWs− 1

2

∫ T
0 Θ2

s ds dP,

the W̃t, 0 ≤ t ≤ T, is a BM. See [102] for the proof and Girsanov theorem in multidi-

mensional case.

An Example (Stock price under Q):

The stock price can be modelled by a geometric BM:

dSt = µSt dt+ σSt dWt. (A.1)

We define W̃t = Wt + µ−r
σ
t, namely choosing Θt = µ−r

σ
as constant. Theorem A.4 says

that W̃ is a BM under Q, by substituting dWt = dW̃t − µ−r
σ
dt into (A.1) we obtain

dSt = rSt dt+ σSt dW̃t, (A.2)

where r is the risk-free interest rate and µ−r
σ

is called market price of risk. By applying

Itô’s lemma to the discounted price e−rtSt we obtain d (e−rtSt) = σe−rtStdW̃t which

shows that the discounted price is obviously a martingale. The parameter µ, σ, r are

constant in this example, they are also allowed to be adapted processes. For more detailed

information see [43, 48, 102].
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Appendix B

Basic Definitions

Definition B.1 The Pearson correlation coefficient is defined for two random variables

X and Y as

ρX,Y :=
cov(X, Y )

σXσY
=
E [(X − µX)(Y − µY )]

σXσY
. (B.1)

Definition B.2 For the given realisations X̃1, . . . , X̃n and Ỹ1, . . . , Ỹn of X and Y, the

realised correlation can be estimated pairwise as

ρX,Y ≈ ρ̃X,Y :=

∑n
i=1

(
X̃i −

∑n
j=1 X̃j

)(
Ỹi −

∑n
j=1 Ỹj

)
√∑n

i=1

(
X̃i −

∑n
j=1 X̃j

)2∑n
i=1

(
Ỹi −

∑n
j=1 Ỹj

)2
. (B.2)

Definition B.3 Linked to the realised correlation, given n+ 1 data points at t0, · · · , tn,

the rolling correlation over a time window of length m < n reads

ρ̃(t0, . . . , tm−1), ρ̃(t1, · · · , tm), . . . , ρ̃(tn−m+1, . . . , tn). (B.3)

Definition B.4 A zero-coupon bond with one unit of currency principal and maturity

T is a contract that guarantees its holder the payment of one unit of currency at T, with

no intermediate coupons. The price of the bond at time t < T is denoted by B(t, T ) and

B(T, T ) = 1.
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Definition B.5 We consider a probability space (Ω,F , P ) equipped with a filtration

{Ft}. A random variable τ is a stopping time of the filtration, if the event {τ ≤ t} ∈ Ft,

for all t ≥ 0.

Definition B.6 A hypergeometric function F is defined as

F (a, b, c, x) =
∞∑
k=0

xk

k!

(a)k(b)k
(c)k

, |x| < 1, (B.4)

where (·)k denotes the Pochhammer symbol,

(a)k = a(a+ 1)(a+ 2) · · · (a+ k − 1), (a)0 = 1. (B.5)

Definition B.7 Suppose a system of SDEs given by

dXt = µ(Xt)dt+ σ(Xt)dWt, (B.6)

which is said to be of the affine form [36, 37], if

µ(Xt) = a0 + a1Xt, (a0, a1) ∈ Rn × Rn×n, (B.7)(
σ(Xt)σ(Xt)

>)
i,j

= (b0)i,j + (b1)>i,jXt, (b0, b1) ∈ Rn × Rn×n×n, (B.8)

for i, j = 1, ..., n. Then, the charateristic function under Q takes the form

φ (u,Xt, t, T ) = EQ
[
eiu
>XT |Ft1

]
= eA(u,τ)+B(u,τ)Xt . (B.9)
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By setting τ := T − t, the coefficients A(u, τ) and B(u, τ) in (B.9) must satisfy the

following complex-valued ordinary differential equations:

d

dτ
B(u, τ) = a>1 B(u, τ) +

1

2
B>(u, τ)b1B(u, τ), (B.10)

d

dτ
A(u, τ) = a0B(u, τ) +

1

2
B>(u, τ)b0B(u, τ), (B.11)

with boundary conditions A(u, 0) = 0 and B(u, 0) = iu.

Definition B.8 The cumulative distribution function for the non-central chi-squared

distribution, Fχ2(x; d, λ), with d degrees of freedom and non-centrality parameter λ is

defined as

Fχ2(x; d, λ) = e−λ/2
∞∑
j=0

(λ/2)j

j!

γ(d
2

+ j, x
2
)

Γ(d
2

+ j)
, (B.12)

where γ(d, x) =
∫ x

0
yd−1e−ydy is the lower incomplete Gamma function.

1Assume that (Ft) = {Ft : t ≥ 0} satisfies the usual conditions, and X is assumed to be Markov
relative to (Ft).
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Appendix C

Proofs

Proofs of propositions in Section 3.2

The proof of Proposition 3.2.1

Proof: We calculate firstly

1A∪B1τR>τIQ(τR > t|GτI ) = 1τI≤T1τI≤τC1τR>τIQ(τR > t|GτI )

= 1τI≤T1τI≤τC

1t<τI<τR + 1τI≤t1τR>τIQ(τR > t|GτI )︸ ︷︷ ︸
:=M

 , (C.1)

where M can be calculated as:

1τI≤t1τR>τIQ(ΛR(t) < ξR|GτI ) = 1τI≤t1τR>τIQ(UR < 1− e−YR(t)−ΨR(t;βR)|GτI ). (C.2)

Condition on ξR (or uR) we may rewrite the equation (C.2) as

M = 1τI≤t1τR>τIE
[
Q(uR < 1− e−YR(t)−ΨR(t;βR)|GτI , uR)|GτI , {τR > τI}

]
= 1τI≤t1τR>τIE [Q(YR(t) < − log(1− uR)−ΨR(t; βR)|GτI , uR)|GτI , {τR > τI}]

= E
[
FYR(t) (− log(1− uR)−ΨR(t; βR)) |GτI , {τR > τI}

]
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=

∫ 1

0

FYR(t) (− log(1− uR)−ΨR(t; βR)) dQ (UR < uR|GτI , {τR > τI}) . (C.3)

Next, we compute the conditional distribution as follows: Denote

CR|I(uR;UI) := Q (UR < uR|GτI , {τR > τI}) , (C.4)

which may be rewritten as

CR|I(uR;UI) = Q
(
UR < uR|UI , {UR > UR,I}

)
=

Q(UR < uR|UI)−Q(UR < UR,I |UI)
1−Q(UR < UR,I |UI)

=

∂CI, R(uI ,uR)

∂uI
|uI=UI −

∂CI, R(uI ,UR, I)

∂uI
|uI=UI

1− ∂CI, R(uI , UR,I)

∂uI
|uI=UI

.

The proof can be completed by substituting (C.4) into (C.3), and further (C.3) into

(C.1). �

Proofs of propositions in Section 3.3

The proof of Proposition 3.3.1

Proof:

lim
u→∞

b(u)√
u

= lim
u→∞

√
κ2

u
− 2iσ2 =

√
2σ
√
−i =

√
2σe

7π
4
i,

Regarding this result we have straightforward limu→∞ a(u) = −1.

Now we prove the equation (3.46)

lim
u→∞

A(u)√
u

= lim
u→∞

2κµ

σ2

(
ln(2) +

t

2
(κ− b(u)) + ln

( −etb(u)

a(u)etb(u) − 1

))
/
√
u
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= lim
u→∞

2κµ

σ2

(
− t

2

b(u)√
u

)
= −
√

2κµt

σ
e

7π
4
i.

Finally, we show the equation (3.47)

lim
u→∞

B(u)√
u

= lim
u→∞

2ui

κ− b(u)

(
1

a(u)

(
1 +

1− a(u)

a(u)etb(u) − 1

))
/
√
u

= lim
u→∞

−2
√
ui

κ− b(u)

= lim
u→∞

2i
b(u)√
u

=

√
2i

σ
e−

7π
4
i.

�

The proof of Proposition 3.3.3

Proof: Since the function b(u) and the parameter t are non-negative, we only need to

prove

|a(u)| =
∣∣∣∣κ+ b(u)

κ− b(u)

∣∣∣∣ > 1.

This is to say that we have to show

|κ+ b(u)|2 > |κ− b(u)|2. (C.5)

We split b(u) into a real and imaginary part as

b(u) = br + ibi, br, bi ∈ R,

then the left hand side of (C.5) satisfies

0 < |κ+ b(u)|2 = |κ+ br + ibi|2 = (κ+ br)
2 + b2

i = κ2 + 2κbr + |b(u)|2,
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and analogously the right hand side of (C.5) fullfills

0 < |κ− b(u)|2 = κ2 − 2κbr + |b(u)|2.

The fact that κ > 0 and br > 0 completes the proof. �

The proof of Proposition 3.3.4

Proof: Combining the function g(u) with the function φYt(u) as given in (3.37) we

have

lim
u→0

g(u) = lim
u→0

Im

[
e−iuỹt

eA(t,u)+B(t,u)y0

u

]
.

First we consider the limits of a(u) and b(u) as defined in (3.40)

lim
u→0

b(u) = |κ| = κ, lim
u→0

a(u) =∞, (C.6)

where the last step in the limit of b(u) follows the fact that the CIR model parameter κ

is always positive. From (C.6) we can directly deduce

lim
u→0

A(t, u) = lim
u→0

B(t, u) = 0, (C.7)

and thus

lim
u→0

e−iuỹt+A(t,u)+B(t,u)y0 = 1. (C.8)

Now we split the exponent in the last equation into a real and imaginary part as

H(u) + iJ(u) := −iuỹt + A(t, u) +B(t, u)y0, (C.9)

with functions H(u) and J(u) : R→ R. Furthermore, from (C.8) we also know that

lim
u→0

H(u) = 0, lim
u→0

J(u) = 0.
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Now we can calculate the value of g(u) at zero as follows

g(0) = lim
u→0

Im

[
eH(u)+iJ(u)

u

]
= lim

u→0
Im
[
eH(u)

cos(J(u))+i sin(J(u))
u

]
= lim

u→0
eH(u)

sin(J(u))
u

= lim
u→0

sin(J(u))

u
l’Hospital

= lim
u→0

J ′(u)
cos(J(u))

1

= lim
u→0

J ′(u).

Using the equation (C.9) we obtain

g(0) = lim
u→0

J ′(u) = J ′(0) = −ỹt + Im(A′(t, u)) + Im(B′(t, u)y0).

The computation of A′(t, u) and B′(t, u) is straightforward but tedious. We obtain finally

Im(A(t, 0)′) =
µκe−κt + µκ(tκ− 1)

κ2
,

Im(B(t, 0)′) =
1− e−κt

κ
.

�
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The proof of Proposition 3.4.1

Proof: We have

P̂ CDS

t (P ,LR)
(3.81)(3.86)

= E

{
1AD(t, τ)(−LR)

+ 1B

[
D(t, τ)

(
RC(P CDS

τ − 1{τ=τR}LR)+ − (P CDS

τ − 1{τ=τR}LR)−
)]

+ 1C

[
D(t, τ)

(
(P CDS

τ − 1{τ=τR}LR)+ −RI(P
CDS

τ − 1{τ=τR}LR)−
)]

+ 1D

[
D(t, τ)

(
−(P CDS

τ − 1{τ=τR}LR)
)]

+ 1E [D(t, τ) (LR)]

+D(t, τ)(τ − Tγ(τ)−1)P1{Ta<τ<Tb} +
b∑

i=a+1

D(t, Ti)αiP1{τ≥Ti}︸ ︷︷ ︸
:=M1

∣∣∣∣Gt
}

(C.10)

We first consider the expression regarding the event B inside the above conditional

expectation

1B

[
D(t, τ)

(
RC(P CDS

τ − 1{τ=τR}LR)+ − (P CDS

τ − 1{τ=τR}LR)−
)]
.

Since

RC(P CDS

τ − 1{τ=τR}LR)+ − (P CDS

τ − 1{τ=τR}LR)− =(RC − 1)(P CDS

τ − 1{τ=τR}LR)+

+ (P CDS

τ − 1{τ=τR}LR),

this expression equals

1B

[
−D(t, τ)(1−RC)(P CDS

τ − 1{τ=τR}LR)+
]

+ 1BD(t, τ)(P CDS

τ − 1{τ=τR}LR)︸ ︷︷ ︸
=:M2

.
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Similarly, the expression conditional on the event C in (C.10) can be rewritten as

1C

[
D(t, τ)(1−RI)(P

CDS

τ − 1{τ=τR}LR)−
]

+ 1CD(t, τ)(P CDS

τ − 1{τ=τR}LR)︸ ︷︷ ︸
=:M3

.

It is obvious that 1{τ=τR}P
CDS
τ = 0, and therefore we observe M2,M3 and the last two

expressions respectively regarding the event D and E in (C.10) together as follows,

D(t, τ)1{τ=τR}(−LR) (1B + 1C − 1D − 1E) +D(t, τ)1{τ 6=τR}P
CDS

τ (1B + 1C − 1D) .

Recalling that 1B + 1C − 1D − 1E = 0, we can rewrite the terms inside (C.10) as

Π̂(t, T ) = 1B

[
−D(t, τ)(1−RC)(P CDS

τ − 1{τ=τR}LR)+
]

+ 1C

[
D(t, τ)(1−RI)(P

CDS

τ − 1{τ=τR}LR)−
]

+ 1A (−D(t, τ)LR +M1) + 1{τ>T}M1

+ 1{τ 6=τR} (1B + 1C − 1D) (D(t, τ)P CDS

τ +M1) .

Next, by comparing M1 with (3.1) we get

P̂ CDS

t (P ,LR) = E
{
−1BD(t, τ)(1−RC)(P CDS

τ − 1{τ=τR}LR)+
∣∣Gt}

+ E
{
1CD(t, τ)(1−RI)(P

CDS

τ − 1{τ=τR}LR)−
∣∣Gt}

+ E
{(
1A + 1{τ>T}

)
Π(t, T )

∣∣Gt}
+ E

{
1{τ 6=τR} (1B + 1C − 1D) (D(t, τ)E{Π(τ, T )|Gτ}+ Π(t, τ))

∣∣Gt} .
(C.11)

Using E{E{·|Gτ}|Gt} = E{·|Gt} for t < τ, the last expression in (C.11) equals

E
{
1{τ 6=τR} (1B + 1C − 1D) Π(τ, T )

∣∣Gt} .
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We see that

1{τ≤t} + 1{τ>T} + 1A + 1{τ 6=τR} (1B + 1C − 1D) = 1

and the events in the terms of the sum are exclusive. We get finally

P̂ CDS

t (P ,LR) =P CDS

t (P ,LR)− E
{
1BD(t, τ)(1−RC)(P CDS

τ − 1{τ=τR}LR)+
∣∣Gt}

+ E
{
1CD(t, τ)(1−RI)(P

CDS

τ − 1{τ=τR}LR)−
∣∣Gt} (C.12)

�

Proofs of propositions in Section 5.1

The proof of Proposition 5.1.1

Proof: We calculate (5.12) as

sech2(Xt)κ(µ−Xt)dt− sech3(Xt) sinh(Xt)σ
2dt+ sech2(Xt)σdWt

= sech2(Xt)κ(µ−Xt)dt− sech2(Xt)
sinh(Xt)

cosh(Xt)
σdt+ sech2(Xt)σdWt

= (1− ρ2
t )κ(µ−Xt)dt− (1− ρ2

t )ρtσ
2dt+ (1− ρ2

t )σdWt.

�

The proof of Proposition 5.1.3

Proof: Following the methodology described in Section 5.1.2 based on the Fokker-

Planck equation, the stationary density function f(ρ̃) of the SCP (5.33) obviously satisfies

∂

∂ρ̃

(
(1− ρ̃2)

(
κ(µ− ρ̃)

)
f(ρ̃)

)
=

1

2

∂2

∂ρ̃2

(
(1− ρ̃2)σ

)2
f(ρ̃). (C.13)
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By solving the elliptic equation (C.13) we obtain the stationary density f(ρ̃) as

f(ρ̃) =
m

2
κ
σ

(1 + ρ̃)
κ−2σ2

σ2 +κµ

σ2 (1− ρ̃)
κ−2σ2

σ2 −κµ
σ2

+
n

ρ̃2 − 1

(
1

2

) 2σ2−κ
σ2

F

(
1,

2σ2 − 2κ

σ2
,
(−µ− 1)κ+ 2σ2

σ2
,
ρ̃

2
+

1

2

) (C.14)

with the constants m, n ∈ R and the hypergeometric function F (see B.6). Next we

need to fix the constants m and n in (C.14) to obtain the stationary density. Due to the

mean reversion the stationary density f(ρ̃) must satisfy

∫ 1

−1

ρ̃f(ρ̃) dρ̃ = µ.

If we choose µ = 0, we observe that the first term in (C.14) becomes

m

2
κ
σ2

(1 + ρ̃)
κ−2σ2

σ2 (1− ρ̃)
κ−2σ2

σ2 , (C.15)

which is obviously symmetric around ρ̃ = 0, i.e. the condition (C.15) will be fulfilled for

n = 0. In the sequel we assume that n ≡ 0 for all general µ ∈ (−1, 1) such that the

transition density function (C.14) can be rewritten as

f(ρ̃) =
m

2
κ
σ2

(1 + ρ̃)
κ−2σ2

σ2 +κµ

σ2 (1− ρ̃)
κ−2σ2

σ2 −κµ
σ2 . (C.16)

To determine the value of m we can employ the basic property of a density function

∫ 1

−1

f(ρ̃) dρ̃ = 1. (C.17)

The constant m in (C.16) must be chosen such that the normalization condition (C.17)

is always fulfilled. We set

aρ =
κ− 2σ2

σ2
, bρ =

κµ

σ2
, (C.18)
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and substitute it into (C.16) to obtain

f(ρ̃) =
m

2
κ
σ2

(1 + ρ̃)aρ+bρ(1− ρ̃)aρ−bρ . (C.19)

As long as

aρ ± bρ > −1, (C.20)

the integral ∫ 1

−1

(1 + ρ̃)aρ+bρ(1− ρ̃)aρ−bρ dρ̃

has the solution

M :=
Γ(1 + aρ − bρ)F (1,−aρ − bρ, 2 + aρ − bρ,−1)

Γ(2 + aρ − bρ)

+
Γ(1 + aρ + bρ)F (1,−aρ + bρ, 2 + aρ + bρ,−1)

Γ(2 + aρ + bρ)
,

(C.21)

with the hypergeometric function F defined in (B.6) and the Gamma function Γ.

We check the condition (C.20) as follows:

a+ b > −1⇐ κ−2σ2

σ2 + κµ
σ2 > −1⇐ κ(1 + µ) > σ2 ⇐ κ > σ2

1+µ
,

a− b > −1⇐ κ−2σ2

σ2 − κµ
σ2 > −1⇐ κ(1− µ) > σ2 ⇐ κ > σ2

1−µ .

This is to say that the condition (C.20) always holds as long as

κ >
σ2

1± µ. (C.22)

Under the condition (C.22), the constant m can be determined as

m =
2
κ
σ2

M
. (C.23)
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Finally, we obtain the transition density function in a closed form as

f(ρ̃) =
(1 + ρ̃)a+b(1− ρ̃)a−b

M
, (C.24)

with aρ, bρ defined in (C.18) and M in (C.21). �

Proofs and Approximations in Section 5.3

The proof of Lemma 5.3.2

Proof: Recall the ODE system in Lemma 5.3.1

B′(u, τ) = 0, B(u, 0) = iu, (C.25)

C ′(u, τ) = σνE[νt]B(u, τ)D(u, τ)− κρC(u, τ), C(u, 0) = 0, (C.26)

D′(u, τ) =
1

2
B2(u, τ) +

1

2
σ2
νD(u, τ)− 1

2
B(u, τ)− κνD(u, τ), D(u, 0) = 0, (C.27)

A′(u, τ) = (B(u, τ)− 1)r + κνµνD(u, τ) + κρµρC(u, τ) (C.28)

+
1

2
σ2
ρC

2(u, τ) + σρρ2E[
√
νt]B(u, τ)C(u, τ), A(u, 0) = 0.

Straightforwardly, due to the final condition B(u, 0) = iu we obtain B(u, τ) = iu. We

consider first the following Riccati-type equation:

∂D(u, τ)

∂τ
=

1

2
B2(u, τ) +

1

2
σ2
νD(u, τ)− 1

2
B(u, τ)− κνD(u, τ), D(u, 0) = 0,

H1(u, τ) = (iu− 1)rτ + κνµν

∫ τ

0

D(u, s) ds, H1(u, 0) = 0,

which has the same form as those in [58] so that we can gain the solution given by

D(u, τ) =
κν −D1

σ2
ν

· 1− e−D1τ

1−D2e−D1τ
, (C.29)

H1(u, τ) = (iu− 1)rτ +
κνµν
σ2
ν

(
(κν −D1)τ − 2 ln

(
1−D2e−D1τ

1−D2

))
, (C.30)
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where D1 =
√
κ2
ν + σ2

ν(u
2 + iu) and D2 = κν−D1

κν+D1
.

We turn to (C.26) where

E[νt] = (ν0 − µν)e−κν(T−τ) + µν . (C.31)

To find its analytical solution we use the approximation

1− e−l1τ ≈ 1− e−D1τ

1−D2e−D1τ
, (C.32)

where l1 is defined in (C.47). The detailed information and the measure of the quality

of this approximation can be found in Figure C.1. We can thus rewrite (C.29) as

D(u, τ) =
κν −D1

σ2
ν

· (1− e−l1τ ), (C.33)

and set

C1 := iu
κν −D1

σ2
ν

. (C.34)

Sequentially, (C.26) can be rewritten as

C ′(u, τ) = σνC1

(
(ν0 − µν)e−κν(T−τ) +µν

)
· (1− e−l1τ )− κρC(u, τ), C(u, 0) = 0, (C.35)

which has an analytical solution, although its calculation is a bit tedious but straight-

forward. We obtain

C(u, τ) =
C1(µν − ν0)

κν + κρ − l1
e(κν−l1)τ−κνT +

C1(ν0 − µν)
κν + κρ

eκν(τ−T ) +
C1µν
κρ

− C1µν
κρ − l1

e−l1 + C1C2e−κρτ ,

(C.36)
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where l1 is defined in (C.47), C1 is defined in (C.34) and C2 is given by

C2 :=
µν − ν0

κν + κρ − l1
e−κνT +

ν0 − µν
κν + κρ

e−κνT − µν
κρ

+
1

κρ − l1
. (C.37)

Finally, we rewrite (C.28) with approximations as

A(u, τ)=H1(u, τ)+(κρµρ +mσρρ2ui)︸ ︷︷ ︸
:=α

H2(u, τ)+nσρρ2ui︸ ︷︷ ︸
:=β

H3(u, τ)+
σ2
ρ

2
H4(u, τ), (C.38)

for solving which we only need to calculate the following integrals

H2(u, τ) =

∫ τ

0

C(u, s) ds, H2(u, 0) = 0, (C.39)

H3(u, τ) =

∫ τ

0

e−(T−τ)lC(u, s) ds, H3(u, 0) = 0, (C.40)

H4(u, τ) =

∫ τ

0

C2(u, s) ds, H4(u, 0) = 0, (C.41)

where the constants m, n, and l are defined in (5.86) - (5.87). The calculation of the

integrals above is straightforward but rather tedious. �

The proof of Lemma 5.3.4

Proof: As indicated before, the solutions of B̃(u, τ), C̃(u, τ) and D̃(u, τ) are the same

as B, C and D in the HO model. We consider now only

A′(u, τ) =(B̃(u, τ)− 1)r + κνµνD̃(u, τ) + κρµρC̃(u, τ) +
1

2
σ2
ρE[1− ρ2

t ]C̃
2(u, τ)

+ σρρ2E[
√
νt]E[

√
1− ρ2

t ]B̃(u, τ)C̃(u, τ), Ã(u, 0) = 0.

(C.42)
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By substituting the approximations of E[ρ2
t ], E[

√
1− ρ2

t ] and E[
√
νt] into (C.42) we ob-

tain

Ã′(u, τ) =(B̃(u, τ)− 1)r + κνµνD̃(u, τ) + κρµρC̃(u, τ)

+ σρρ2(m+ ne−l(T−τ))(e−m3(T−τ) + b3e−n3(T−τ) + a3)B̃(u, τ)C̃(u, τ)

+
1

2
σ2
ρC̃

2(u, τ)(1− e−m2(T−τ) − b2e−n2(T−τ) − a2), Ã(u, 0) = 0,

(C.43)

which can be reformulated as

Ã(u, τ) = H̃1(u, τ) + (κρµρ + a3mσρρ2ui)H̃2(u, τ) + a3nσρρ2uiH̃3(u, τ)

+
σ2
ρ

2
(1− a2)H̃4(u, τ) + b3mσρρ2uiH̃5(u, τ) +mσρρ2uiH̃6(u, τ)

+ b3nσρρ2uiH̃7(u, τ) + nσρρ2uiH̃8(u, τ)− σ2
ρ

2
H̃9(u, τ)− b2σ

2
ρ

2
H̃10(u, τ)

with the following integrals

H̃1(u, τ) = (iu− 1)rτ + κνµν

∫ τ

0

D̃(u, s) ds, H̃2(u, τ) =

∫ τ

0

C̃(u, s) ds,

H̃3(u, τ) =

∫ τ

0

e−(T−τ)lC̃(u, s) ds, H̃4(u, τ) =

∫ τ

0

C̃2(u, s) ds,

H̃5(u, τ) =

∫ τ

0

e−(T−τ)n3C̃(u, s) ds, H̃6(u, τ) =

∫ τ

0

e−(T−τ)m3C̃(u, s) ds,

H̃7(u, τ) =

∫ τ

0

e−(T−τ)(l+n3)C̃(u, s) ds, H̃8(u, τ) =

∫ τ

0

e−(T−τ)(l+m3)C̃(u, s) ds,

H̃9(u, τ) =

∫ τ

0

e−m2(T−τ)C̃2(u, s) ds, H̃10(u, τ) =

∫ τ

0

e−n2(T−τ)C̃2(u, s) ds,

H̃i(u, 0) = 0 for i = 1 · · · 10.

It is easy to see that H̃1, H̃2, H̃3 and H̃4 are respectively equal to H1, H2, H3 and H4

which have been given before. Besides, the solutions of H̃5, H̃6, H̃7, H̃8 can be directly

obtained by adopting the solution of H̃3, as they have only different constant coefficients

in the exponential function. For simplicity of notation, we let this coefficient to be

a variable of H̃3, namely H̃3(u, τ, l). The solutions of H̃5, H̃6, H̃7 and H̃8 can thus be
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immediately given by H̃3(u, τ, n3), H̃3(u, τ,m3), H̃3(u, τ, (l+n3)) and H̃3(u, τ, (l+m3)),

respectively. Now, only the integral in the following form

H̃(u, τ, y) =

∫ τ

0

e−y(T−τ)C2(u, s) ds, H̃(u, 0) = 0

need to be calculated. The calculation is straightforward, however, rather tedious. It

is obvious that H̃(u, τ,m2) = H̃9(u, τ) and H̃(u, τ, n2) = H̃10(u, τ). Finally, by defining

ζ := σρρ2ui, A(u, τ) can be rewritten as

A(u, τ) =H̃1(u, τ) + (κρµρ + a3mζ)H̃2(u, τ) + a3nζH̃3(u, τ, l) + b3mζH̃3(u, τ, n3)

+mζH̃3(u, τ,m3) + b3nζH̃3(u, τ, (l + n3)) + nζH̃3(u, τ, (l +m3))

+
σ2
ρ

2
(1− a2)H̃4(u, τ)− σ2

ρ

2
H̃(u, τ,m2)− b2σ

2
ρ

2
H̃(u, τ, n2).

�

Approximation I

We match f1(τ) := 1−e−D1τ

1−D2e−D1τ
≈ m1 + n1e−l1τ := f̃1(τ) for τ → 0, τ →∞, τ → 1 :

lim
τ→0

f1(τ) = 0 = m1 + n1 = lim
τ→0

f̃1(τ), (C.44)

lim
τ→∞

f1(τ) = 1 = m1 = lim
τ→∞

f̃1(τ), (C.45)

lim
τ→1

f1(τ) =
1− e−D1

1−D2e−D1
= 1− e−l1 = lim

τ→1
f̃1(τ), (C.46)

which give

m1 = 1, n1 = −1, l1 = − ln

(
e−D1 −D2e−D1

1−D2e−D1

)
. (C.47)

In order to measure the quality of this approximation we compare f1(τ) to f̃1(τ) for

different randomly chosen parameters in Figure C.1.
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Figure C.1: The quality of the approximation f̃1(τ) versus the original f1(τ) for randomly
chosen parameters.

Approximation II

We match f2(t) := E[ρ2
t ] ≈ e−m2t + b2e−n2t + a2 := f̃2(t) for t→ 0, t→ 1

2
, t→ 1, t→∞

as follows:

lim
t→∞

f2(t) =
(σ2

ρ + κρ)(σ
2
ρ + 2κρµ

2
ρ)

σ4
ρ + 3κρσ2

ρ + 2κ2
ρ

= a2 = lim
t→∞

f̃2(t), (C.48)

lim
t→0

f2(t) = ρ2
0 = 1 + b2 + a2 = lim

t→0
f̃2(t), (C.49)

lim
t→ 1

2

f2(t) = f2(0.5) = e−
m2
2 + b2e−

n2
2 + a2 = lim

t→ 1
2

f̃2(t), (C.50)

lim
t→1

f2(t) = f2(1) = e−m2 + b2e−n2 + a2 = lim
t→1

f̃2(t). (C.51)

From (C.48) and (C.49) one obtains directly a2 =
(σ2
ρ+κρ)(σ2

ρ+2κρµ2
ρ)

σ4
ρ+3κρσ2

ρ+2κ2
ρ

and b2 = ρ2
0 − a2 − 1.

Then one needs to solve the system of equations (C.50) and (C.51) to find m2 and n2

which has been given in (5.121). Like in the last section, we compare f2(τ) to f̃2(τ) for

different randomly chosen parameters to measure the quality of the proposed approxi-

mation.
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Figure C.2: The quality of the approximation f̃2(t) versus the original f2(t) for randomly
chosen parameters.

Approximation III

We match f3(t) := E[
√

1− ρ2
t ] ≈ e−m3t + b3e−n3t + a3 := f̃3(t) for t → 0, t → 1

2
, t →

1, t→∞ as follows:

lim
t→∞

f3(t) =

√
1− a2 − µ4

ρ

1− µ2
ρ

= a3 = lim
t→∞

f̃2(t), (C.52)

lim
t→0

f3(t) =
√

1− ρ2
0 = 1 + b3 + a3 = lim

t→0
f̃3(t), (C.53)

lim
t→ 1

2

f3(t) = f3(0.5) = e−
m3
2 + b3e−

n3
3 + a3 = lim

t→ 1
2

f̃3(t), (C.54)

lim
t→1

f3(t) = f3(1) = e−m3 + b3e−n3 + a3 = lim
t→1

f̃3(t). (C.55)

From (C.52) and (C.53) one obtains directly

a3 =

√
1− (σ2

ρ + κρ)(σ2
ρ + 2κρµ2

ρ)− µ4
ρ(σ

4
ρ + 3κρσ2

ρ + 2κ2
ρ)

(1− µ2
ρ)(σ

4
ρ + 3κρσ2

ρ + 2κ2
ρ)

and b3 =
√

1− ρ2
0−a3−1. Further, we solve the system of equations (C.54) and (C.55) to

find m3 and n3 which has been given in (5.132). The comparison of f3(τ) with f̃3(τ) and
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the measure of quality of the approximation for different randomly chosen parameters is

exhibited in Figure C.3.
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Figure C.3: The quality of the approximation f̃3(t) versus the original f3(t) for randomly
chosen parameters.
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[97] P. J. Schönbucher. Term structure modelling of defaultable bonds. Rev. Derivatives
Res., 2, pages 161–192, 1998.
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affine diffusion process, 150
arbitrage, 146
average arrivale rate, 15

bond
corporate coupon, 7
zero-coupon, 149

brownian motions
dynamically correlated, 74
stochastically correlated, 104
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bilateral, 8
unilateral, 7

CDS
counterparty risk-free price, 25
curve bootstrapping, 32
definition, 23
postponed payoffs running, 24
running, 24
upfront, 24

Cholesky decomposition, 74, 115
complete market, 147
copula function, 21
correlation

average, 74, 104
Pearson, 1, 149
realised, 149
rolling, 90, 149

Cox process, 18
Cox-Ingersoll-Ross process, 30
credit rating, 8
cumulated intensity, 16, 18
CVA

bilateral, 10, 29
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dynamic correlation function, 69

Euler scheme, 131
exposure

counterparty credit, 7
expected positive, 9
potential future, 9

Fokker-Planck equation, 94

general model stochastic correlation, 92
geometric Brownian motion, 107, 148
Girsanov theorem, 147

hazard
cumulated hazard rate, 16
hazard function, 16
hazard process, 18
hazard rate, 15

hypergeometric function, 101, 150

implied survival probability, 32
integrated Cox-Ingersoll-Ross process,
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premium leg, 23
protection leg, 23

log-likelihood function, 98
loss given default, 7

market price of risk, 148
Markov copula model, 57
maximum-likelihood, 98
mean square error, 138
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non-central chi-squared, 151

Pochhammer symbol, 150
poisson process

doubly stochastic, 18
time-homogeneous, 14
time-inhomogeneous, 17

quanto option, 75, 105

Radon-Nikodym derivative, 147
recovery rate, 6
reduced-form model, 13
relative mean square error, 81, 85
risk

correlation, 1, 11, 112
counterparty credit, 6

default, 6
wrong-way, 11

rotation count correction, 46

simultaneous defaults, 12
stochastic correlation process

bounded Jacobi process, 103
modified OU process, 100
OU process, 96
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structural approach, 13
survival probability, 15, 17
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