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Table 0.1.: Abbreviations used in the text

Abbreviation Explanation

2CLJ two-centre Lennard-Jones
CHD charged hard dumbbell
CSD charged soft dumbbell
DHS dipolar hard sphere
DSS dipolar soft sphere
FCC face-centered cubic
g-l gas-liquid
GEMC Gibbs ensemble Monte Carlo
LAMMPS large-scale atomic/molecular massively parallel simulator
LJ Lennard-Jones
MC Monte Carlo
MD molecular dynamics
PPPM particle-particle particle-mesh
RDF radial distribution function
RPM restricted primitive model
ST Stockmayer
TIP4P transferable intermolecular potential 4 point
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1. Introduction

What makes a liquid a liquid? This question can be answered by the van der Waals
theory, which states that attraction between molecular particles is necessary for a gas-
liquid phase transition [1]. So let us take an example, the well-known Lennard-Jones
potential [2], which has the form

uLJ(r) = 4

[(
1

r

)12

−
(

1

r

)6
]

, (1.0.1)

where uLJ is the potential energy and r the intermolecular separation in reduced units.
Due to the r−6 dispersion attraction, the Lennard-Jones model exhibits a gas-liquid phase
transition (e.g. Ref. [3, 4]) and can in the meantime be considered as a kind of warm-up
exercise for anyone getting started with computer simulations in the field of soft matter
physics.
But what about polar models, where the attractive interaction is not as apparent as in
the case of the Lennard-Jones model? Or, in the words of van Leeuwen and Smit What
makes a polar liquid a liquid [5]? The interaction of two point dipoles can be attractive or
repulsive, depending on their orientation to each other. For a gas of dipole moments µ it
can be shown that the thermal average at temperature T results in the overall attractive
dipole-dipole potential uDD(r) = −2

3
µ4

Tr6
[6]. This indicates the existence of gas-liquid

coexistence. But the aforementioned conclusion is not as clear as it looks. The existence of
gas-liquid coexistence in dipolar fluids with no other contribution to attractive interaction
than dipole-dipole interaction is a basic and open question in the theory of fluids and has
created significant interest. It is perhaps comparable to the freezing transition in the
hard sphere fluid discovered in early computer simulation work by Alder and Wainwright
in the late fifties [7]. In the studies of dipolar fluid systems, two simple and often used
representations are the dipolar soft sphere model, where the dispersion attraction in the
Lennard-Jones potential is replaced by the interaction energy of a point dipole, and the
dipolar hard sphere model, where the soft sphere repulsion in the dipolar soft sphere
model is replaced by a spherical hard core potential [8–11]. About twenty years ago,
a number of theoretical papers concluded the absence of a gas-liquid critical point for
those systems due to the formation of reversible chains, which essentially possess no
mutual interaction [12–15]. Those theoretical results are supported by different computer
simulations done for dipolar systems. Dipolar hard spheres were analyzed for a gas-liquid
phase separation by Calliol [16] using Monte Carlo simulations in the isothermal-isobaric

11



12 CHAPTER 1. INTRODUCTION

ensemble (NPT ensemble, constant particle number N , pressure P , and temperature T )
and in the Gibbs ensemble. He came to the conclusion that in the analyzed region of
the phase diagram no gas-liquid transition exists. This is in contradiction to an earlier
work of Ng et al. [17], who observed a gas-liquid transition for a system of 32 dipolar
hard spheres using Monte Carlo simulations. Van Leeuwen and Smit [5] introduced a
factor λ to allow an independent control of the dispersion attraction from the dipolar
interaction in the Stockmayer fluid (Lennard-Jones plus dipole-dipole potential). They
studied a range of λ with the focus on the limit λ → 0, where the system is equivalent
to dipolar soft spheres. For λ < 0.3 they could not detect gas-liquid criticality in their
simulations due to chain formation, which is not observed for higher λ. The pure dipolar
soft sphere fluid in an applied field was studied by Stevens and Grest [18] using Gibbs
ensemble Monte Carlo. They determined the critical parameters as a function of the
applied field and conclude in the zero field case that coexistence most likely does not occur.
Thermodynamics and structural properties of the dipolar Yukawa hard sphere fluid were
studied by Szalai et al. [19]. They found that at high dipole moments the gas-liquid phase
transition disappears, while chainlike structures appear in the low-density fluid phase.
More recent molecular dynamics simulations of the Stockmayer fluid performed by Bartke
and Hentschke [20, 21], which can be mapped onto the system studied by van Leeuwen
and Smit, show that the threshold found in Ref. [5] does not exist. The conclusion that
chain formation indeed leads to the disappearance of gas-liquid criticality in the dipolar
soft sphere limit still appears to be valid. Sindt and Camp used an effective many-body
isotropic interaction able to mimic the dipolar soft sphere model and clearly linked the
transition disappearance to chain formation [22]. Rovigatti et al. [23, 24] observes self-
assembly of dipolar hard spheres into closed rings and concludes that this excludes the
possibility of critical phenomena. In a further study on a model of particles with dissimilar
patches they support the conclusion that the absence of gas-liquid separation in DHS could
be a consequence of extensive ring formation [25]. To shed more light on the gas-liquid
transition debate they suggest further studies on the structural transition from chains to
branched network for the dipolar hard sphere model [26]. Again, ring formation suggests
a similar result from Rovigatti and Dussi et al. [27] where they investigated the charged
soft dumbbell model we also use in our work. The charged soft dumbbell model consists
of two oppositely charged soft sphere sites, displaced through an axis of length d, and
allows to approach the dipolar soft sphere limit d→ 0. In their Monte Carlo simulations
they were able to locate the gas-liquid critical point for dumbbells, but they were not able
to track it down to the smallest dumbbell length due to the formation of rings.
Despite the abundant evidence for the absence of a gas-liquid phase transition for purely
dipolar systems, there are also researchers who come to the opposite conclusion. First of
all, the already mentioned study by Ng et al. [17], who found gas-liquid coexistence for the
dipolar hard sphere system. More than twenty years later, McGrother and Jackson [28]
induced gas-liquid coexistence in a system of nonspherical hard-core dipolar molecules,
i.e. they consider hard spherocylinders with central longitudinal point dipole moments.
By using Monte Carlo simulations to calculate the equation of state and the free energy
of dipolar hard sphere fluids at low temperatures and densities, Camp et al. [29] obtained
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evidence in favor of an isotropic fluid-to-isotropic fluid phase transition. Pshenichnikov
and Mekhonoshin [30] utilized the Monte Carlo method to simulate dipolar hard sphere
with open boundaries. They applied an extra field which confines the particles to a
spherical region and observed a gas-like distribution within this region, or a pronounced
clustering, depending on the strength of dipolar interaction. They interpret this as an
indication for phase separation in the dipolar hard sphere bulk system. Ganzenmüller and
Camp [31] used a fluid of charged hard dumbbells, each made up of two oppositely charged
hard spheres, separated by the distance d, to track the gas-liquid coexistence towards the
dipolar hard sphere limit d→ 0. Via extrapolation of their grand-canonical Monte Carlo
results obtained for finite dumbbell length, they found a gas-liquid critical point in the
dipolar hard sphere limit. Almarza et al. [32] confirm the results of Ganzenmüller and
Camp [31] using Monte Carlo to analyze a mixture of hard spheres and dipolar hard sphere.
The critical parameters for the gas-liquid equilibrium, extrapolated based on their mixture
results to the limit of vanishing neutral hard sphere concentration, are in accord with the
extrapolation for the dumbbells approaching the dipolar hard sphere limit. Kalyuzhnyi et
al. [33] examine the phase behaviour of the dipolar Yukawa hard sphere fluid using Monte
Carlo simulations. Again the critical point may be tracked as the dipolar hard sphere
limit is approached by decreasing the strength of the attractive Yukawa potential. They
find a critical point for values of the Yukawa potential well depth which is used as control
parameter and representing the ”distance” from the dipolar hard sphere limit, which are
far lower than the limit set by the earlier study by Szalai et al. [19]. Continuation of this
work in Ref. [34], however, results in the conclusion that phase separation is not observable
beyond a critical value of the Yukawa energy parameter. Similar to the aforementioned
work by Stevens and Grest [18], our colleague Jia [35] tracked the critical point for the
dipolar soft sphere model as a parameter of the field strength and found critical values in
the limit of vanishing field. The results were also confirmed as part of this work at zero
field strength. A graphical representation to summarize the results on the localization of
the gas-liquid critical point on dipolar systems is shown in Figure 1.1.

Based on the above-mentioned results, the assembly of single dipolar particles into
reversible dipole chains or other aggregates like rings and branched structures, has a
significant effect on the gas-liquid coexistence of dipolar systems (an interesting study
of gas-liquid phase separation in systems composed of rings and chains was presented by
Pam et al. [36]). Therefore, different approaches, such as an external field or modifications
to the dipolar potential, were introduced in several aforementioned studies with the main
target to prevent or somehow control the assembly reversible aggregates. Also, those
long chains are difficult to equilibrate in computer simulations and also hard to handle
analytically. The original notion of gas-liquid phase separation of monomers is generalized
to include phase separation in systems of polydisperse reversible aggregates, or even other
types of transitions like the demixing of topological defects [37].
In this work, we present another attempt to track the gas-liquid critical point in a system
approaching the dipolar soft sphere limit. We study a system of charged soft dumbbells
using the molecular dynamics technique. The charge-to-charge separation on the dumbbell
d can be controlled and we start our simulations in an“easy regime”, where gas-liquid phase
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separation is readily observed and the assembly of chains is energetically unfavourable.
The charge-to-charge separation, d, is systematically decreased, keeping the dumbbell
dipole moment, respectively the dumbbell charges, constant. Using this procedure we can
approach the dipolar soft sphere limit in such a way that difficulties like the reversible
association of particles develop “slowly”, which allows the extrapolation to the desired
limit. Even at the smallest d (= 10−4), we do observe a transition terminating in a
critical point, which suggests a gas-liquid critical point in the dipolar soft sphere limit.
This result is in accordance with the previous simulation study by Ganzenmüller and
Camp [31] for dipolar hard spheres. To explain our simulation results, we apply different
simple models. However, neither the extension of Flory’s lattice theory to reversibly
aggregating polymers [38, 39], nor the defect model put forward by Tlusty and Safran [37],
yields a consistent description of the simulation results. Only the developed van der Waals
mean field theory provides a close to quantitative description of the critical parameters
obtained from the simulation. The theory combines the Onsager approach to dipolar
liquids [40] with the idea that the basic unit is not the single dipole, but rather a small
reversible aggregate. To support the results for charged soft dumbbell in the dipole limit,
i.e. d→ 0, we also conduct simulations for the dipolar soft sphere model in its pure form
and with an additional parameter which controls the soft sphere repulsion. We see that
the soft repulsive interaction can be used as an effective means for limiting the aggregation
in the dipole limit. The resulting short reversible chains, which are easy to equilibrate, do
exhibit gas-liquid phase separation. Subsequently to the investigation at the dipole limit
we study the gas-liquid phase transition in the dumbbell system for d � 1 and observe
critical parameters in the whole simulated range, i.e. up to d = 7. On the basis of the
aforementioned mean field theory, we construct a qualitative description of the critical
behavior in the range of 1 < d < 7. In this range it seems likely that the charged soft
dumbbell model behaves similar to an ionic system and therefore relates to the restricted
primitive model of ionic liquids. The restricted primitive model is also a model whose
gas-liquid transition has attracted interest both from the analytical (e.g., Refs. [41, 42]) as
well as from the simulation side (e.g., Refs. [43, 44]). In order to connect to the restricted
primitive model results, we simulate an ionic model, where we have eliminated the rigid
dumbbell bond. Thus the dumbbell model becomes equal to the restricted primitive
model, except that the hard core repulsion is replaced by soft sphere repulsion. We also
observe a gas-liquid critical point for this model and discuss the relation to the charged
soft dumbbell system, as well as to the numerical predictions of the Debye-Hückel theory.
In addition to the investigation of the phase transition, we have a look at the cation-anion
pairing in terms of Bjerrum association in our ionic model, which serves as an important
basic model in the interpretation of experimental data obtained from colloidal suspensions,
liquid salts, and salt solutions [45].
Finally, we make additional use of the expertise gained in the course of our work on the
phase behavior of charged and dipolar systems in the context of osmotic equilibria driven
by Coulomb interactions. Specifically, we extend previous Monte Carlo simulations of
osmotic equilibria in Lennard-Jones systems by Schreiber in our work group [46, 47]. We
employ the Monte Carlo algorithm developed by Schreiber and Hentschke and apply it
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to an ionic solute in a dipolar solvent. The algorithm allows us to perform Monte Carlo
simulations in the Tpπ ensemble, with the temperature T , the external pressure p, and
the osmotic pressure π across the membrane. Thus we can study the dependency of the
solute concentration on osmotic pressure and vice versa, which can then be compared
with experimental data. The detailed study of osmosis is also of special interest due to
the multitude of technical and biological problems connected with it.
The present work is structured as follows. An introduction to the simulation techniques
used here is given in chapter 2. Chapter 3 contains the description of the various model
systems studied using the aforementioned techniques. In the subsequent three chapters the
results of the charged soft sphere model (chapter 4), the dipolar soft sphere model (chapter
5), and the ionic soft sphere model (chapter 6) are presented and discussed. Chapter 7 is
an introduction to the topic of osmotic pressure followed by our numerical results. The
last chapter provides a summary of this work and is followed by the acknowledgement
and appendix.
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Figure 1.1.: Summarized illustration of attempts in the literature and by ourselves to locate the
gas-liquid critical point in dipolar soft and hard sphere like systems. All dipolar
soft sphere and dipolar soft sphere like results are mapped onto the dipolar hard
sphere system using the procedure explained in section 3.5.1 (red symbols).
The symbols refer to the following sources: red solid circle: [own result for dipolar
soft sphere]; red solid triangle: [own result for charged soft dumbbell]; black hollow
triangle left: [32]; black hollow diamond: [34]; black solid square: [31]; red hollow
square: [18]; black hollow triangle: [19]; black solid diamond: [17]; red hollow circle:
[5]; black horizontal lines [16]. Filled symbols are used for results where a gas-
liquid critical point is found or it is claimed to exist. Open symbols are critical
values obtained for systems close to the dipolar hard sphere or dipolar soft sphere
system where the dipolar limit can be modeled with a control parameter. The
horizontal lines represent isotherms along which the gas-liquid transition can be
precluded. The solid-diamond-result should be considered with caution due to
the small system size of 32 particles in the simulation. Camp et al. used two
different models to approach the dipolar hard sphere limit (black solid square and
black hollow diamond). For the charged hard dumbbell model (solid square) it was
possible to extrapolate to the dipolar hard sphere limit, but it failed for the second
system (hollow diamond) where the dipolar Yukawa hard sphere fluid was used. For
that, the symbol represents the simulation result for the gas-liquid critical point
closest to the dipolar hard sphere limit. The limiting values of the charged hard
dumbbell results have been confirmed by Almarza et al. (hollow triangle left), but
they conclude that their result does not necessarily mean that a gas-liquid equilibria
for pure dipolar systems exits.
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2. Methods

With the help of computer simulations or molecular simulations in particular it is possible
to get results, which are not measurable experimentally. Also the level of detail exceeds
that of any experiment. Computer simulations give the possibility to pursue totally new
physical questions or approach existing questions in an abstract way. This we do for
example with our dumbbell system, in order to analyze the phase behavior of dipolar
fluids. The two most common methods used for molecular modelling are the stochastic
Monte Carlo (MC) method and the deterministic molecular dynamics (MD) simulation
method. In this work we use the MD method mainly for the analysis of the phase transition
of the charged soft dumbbell (CSD), dipolar soft sphere (DSS) and ionic model. The MC
method is used for the research of the osmotic pressure, where specifically a modification of
the Gibbs ensemble Monte Carlo (GEMC) method is utilized. In the following section we
give an overview of those methods, and also of some techniques implemented to optimize
the results in respect of computational costs.

2.1. Molecular dynamics simulation

The development of the MD method dates back to the late 50s [1, 2]. The MD method
gives us the possibility to study a N particle system for a specific period of time, i.e we
can calculate the state functions of the system, and even monitor the physical trajectory
of each individual particle. The latter is not possible with MC simulations, due to its
stochastic approach of moving particles. This “unnatural” move of particles is also the
reason, why we prefer to use the MD method for most of our investigations. We mostly
deal with polar fluids, which tent to build long chain like aggregates, where the application
of MC methods would require complex bias-methods to support the reversible aggregation
with acceptable computational costs [3–5].
The underlying approach to the MD simulations are the equations of motion, i.e.

d

dt
~pi = ~Fi (2.1.1)

for the translation of the center of mass and

d

dt
~Li = ~Ni (2.1.2)
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for the rotation of the particle i ∈ N . In the equations of motion is ~pi the momentum of
particle i with the acting force ~Fi and ~Li is the angular momentum with the torque ~Ni.
By solving the equations of motion numerically we get the trajectories of the particles
and can gain a deep insight into the atomic processes of the simulated matter.
Most of the following sections are molecular modelling basics and thus can be found in a
similar fashion in other works like this or in more detail in standard text books dealing
with the topic like [6–10].

2.1.1. Integrating the equations of motion

To numerically solve the equations of motion (2.1.1) and (2.1.2) in MD simulations a
so called integrator is necessary. There is a big variety of different integrators available
and a good overview of them can be found in [6], [7] and [11]. In general the integrator
should retain the mathematical and physical characteristics of the exact solution of the
equations of motion. Therefore the integrator must be symplectic, time-reversible and
conserve energy and momentum. In our work we use the velocity Verlet algorithm [12]
for the translation and rotation of the particle. The velocity Verlet algoritm is a slightly
modified version of the original Verlet algorithm [13]. A big advantage of the velocity
Verlet algorithm is the computational cost, as it only requires the calculation of one force
per time step, the numerical stability and the errors, which are of order O(∆t4).

Integrator for translation The velocity Verlet algorithm can be derived using a Taylor
expansion of the positions ~ri(t) and the velocities ~̇ri(t). For the positions we get

~ri(t+ ∆t) = ~ri(t) + ∆t ~̇ri(t) +
1

2
∆t2 ~̈ri(t) +O(∆t3) . (2.1.3)

To determine the velocities at the same time as the position, i.e. t+ ∆t, we first need to
do an expansion of the velocities for t± ∆t/2, which yields

~̇ri(t+
∆t

2
) = ~̇ri(t) +

1

2
∆t ~̈ri(t) +O(∆t2) (2.1.4)

~̇ri(t−
∆t

2
) = ~̇ri(t)−

1

2
∆t ~̈ri(t) +O(∆t2) . (2.1.5)

With adding another time step ∆t to (2.1.5), we get the velocities at time t+ ∆t as

~̇ri(t+ ∆t) = ~̇ri(t+
∆t

2
) +

1

2
∆t ~̈ri(t+ ∆t) +O(∆t2) . (2.1.6)
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To implement the algorithm in the simulation program, and process one simulation step,
the equations must be solved in the following order

~ri(t+ ∆t) = ~ri(t) + ∆t ~̇ri(t) +
1

2
∆t2 ~̈ri(t) (2.1.7)

~̇ri(t+
∆t

2
) = ~̇ri(t) +

1

2
∆t ~̈ri(t) (2.1.8)

~̇ri(t+ ∆t) = ~̇ri(t+
∆t

2
) +

1

2
∆t ~̈ri(t+ ∆t) . (2.1.9)

The necessary acceleration ~̈ri(t) can be calculated from the forces, noted down in chapter
3, for the individual models used in this work.

Integrator for rotation We also use the velocity Verlet algorithm for the integration of
the rotation. We describe the rotation using the unit vector ~ni. Treating it analogously
to the translation, we get the following formulas for the implementation of the rotation

~ni(t+ ∆t) = ~ni(t) + ∆t ~̇ni(t) +
1

2
∆t2 ~̈ni(t) (2.1.10)

~̇ni(t+
∆t

2
) = ~̇ni(t) +

1

2
∆t ~̈ni(t) (2.1.11)

~̇ni(t+ ∆t) = ~̇ni(t+
∆t

2
) +

1

2
∆t ~̈ni(t+ ∆t) . (2.1.12)

As we have described the rotation solely as expression of the unit vector ~ni, we need to
link the commonly known torque

~Ni = −~ri ×
∂U

∂~ri
(2.1.13)

to the orientation ~ni. Therefore we mainly follow [14] and start with the equation of
motion (2.1.2), where we write for the torque

~Ni = ~̇Li = I ~̈φi (2.1.14)

using the angular acceleration ~̈φi and the moment of inertia I. In the next step we look
at the change of the potential energy of the particle i

δUi = −
∑
j,α

~fjα · δ~rjα = −
∑
j,α

~fjα ·
(
δ~φi × ~rjα

)
(2.1.15)

= −δ~φi ·
∑
j,α

~fjα × ~rjα = − ~Ni · δ~φi (2.1.16)

caused by a small rotation δ~φi, where the forces ~fjα act on the particle i at position ~rjα .

The magnitude of the angle of rotation is given by |δ~φi|, and δ~φi is perpendicularly to the
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plane of the rotation, i.e. parallel to the axis of rotation. We can also express the change
of the potential energy, caused by a small rotation of the orientation vector ~ni, as

δUi =
∂U

∂~ni
· δ~ni =

∂U

∂~ni
· (δφi × ~ni) =

(
~ni ×

∂U

∂~ni

)
· δφi . (2.1.17)

By comparing this with (2.1.16), we can write for the torque

~Ni = −~ni ×
∂U

∂~ni
= I ~̈φi (2.1.18)

and get it related to the orientation ~ni. Together with (2.1.18) and

~̇ni = ~̇φi × ~ni (2.1.19)

we have now two first-order differential equations for the rotation of the particle. For the

implementation in the MD program it is helpful to eliminate ~̇φi and describe the rotation
using a second-order differential equation, which is only dependent on the orientation
~ni. To gain the second-order differential equation, we take the derivate of (2.1.19) with
respect to time and get

~̈ni = ~̈φi × ~ni + ~̇φi × ~̇ni (2.1.20)

=
1

I
~Ni × ~ni + ~̇φi ×

(
~̇φi × ~ni

)
(2.1.21)

=
1

I

(
−~ni ×

∂U

∂~ni

)
× ~ni +

[
~̇φi

(
~̇φi · ~ni

)
− ~ni

(
~̇φi

)2
]

(2.1.22)

=
1

I

[
−∂U
∂~ni

+ ~ni

(
~ni ·

∂U

∂~ni

)]
− ~ni · ~̇n2

i (2.1.23)

for the acceleration of the orientation. In the last step we used ~̇φi · ~ni = 0, and together
with ~n2

i = 1 the relation

~̇n2
i =

(
~̇φi × ~ni

)2

= ~̇φ2
i ~n

2
i −

(
~̇φi · ~ni

)2

= ~̇φ2
i . (2.1.24)

Finally we introduce ~Gi = −I−1 (∂U/∂~ni) to write the acceleration of the orientation as

~̈ni = ~Gi −
(
~ni · ~Gi + ~̇n2

i

)
~ni , (2.1.25)

which directly can be used in the first two steps (2.1.10) and (2.1.11) of the velocity Verlet
algorithm. One hitch we have to overcome, is that ~̈ni(t+∆t) also depends on the unknown
velocity ~̇ni(t+ ∆t). Therefore we have to approximate the calculation of (2.1.12) via

~̇ni(t+ ∆t) = ~̇ni(t+
1

2
∆t) +

1

2
∆t ~̈ni(t) . (2.1.26)
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Herewith follows at time t+ ∆t the expression for the angular acceleration (2.1.25) as

~̈ni(t+ ∆t) = ~Gi(t+ ∆t)−
[
~ni(t+ ∆t) · ~Gi(t+ ∆t)

+

(
~̇ni(t+

1

2
∆t) +

1

2
∆t ~̈ni(t)

)]
~ni(t+ ∆t) .

(2.1.27)

This is the final form used in the velocity Verlet algorithm. This form of the integrator
produces numerically stable results. But it seems that also without the velocity term,
stable results are possible [7].
During the simulation the following two conditions have to be ensured

|~ni| = 1 and ~ni · ~̇ni = 0 . (2.1.28)

Hence we normalize ~ni and orthogonalize ~ni as well as ~̇ni after each time step ∆t.

2.2. Monte Carlo simulations

The Monte Carlo method is a stochastic method. In contrast to MD it cannot be used to
calculate dynamic properties like the phase space trajectories and only allows to compute
time average values. Nevertheless the MC is also heavily used in molecular simulations as
it easily allows to simulate various ensembles. A lot of quantities, we are interested in, can
be calculated without the knowledge of the dynamic properties. E.g. the internal energy
U or the force on an individual particle ~Fi are only dependent on the coordinates ~ri of
the particles. The coordinates {~r} of the particles in a system can be determined as in
the MD via an update step. But now this update step is stochastic and not deterministic
anymore. In the following we want to explain, how this update step can be produced. We
mainly follow the description given by Hentschke et al. in Ref. [6] and specifically for the
Tpπ ensemble in Ref. [15].

2.2.1. Metropolis Monte Carlo method

Let us consider a macroscopic quantity A, which is only dependent on the configurations
{~r} of the system in the NVT ensemble. I.e. a thermodynamic system with constant
number of particles N , constant volume V , and constant temperature T . For this the
ensemble average (see also section 2.3.1) is given by

〈A〉NV T =

∫
Γ

dΓA(Γ)fNV T (Γ) (2.2.1)
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where Γ is a single point in the phase space and fNV T is the probability density function,
which gives the probability to find a certain state in the phase space. One can show that
for quantity A only the probability function fNV T ({~r}) is necessary which is defined as

fNV T ({~r}) =
exp[−βU({~r})]∫

d{~r} exp[−βU({~r})]
(2.2.2)

with β = 1/kBT . Function (2.2.2) is also known as the phase space density. In general
it is not possible to solve the integral and we need a trick, which allows us to create the
configurations based on the distribution fNV T without explicitly calculating it. Therefore
we consider two different states {~r}new together with {~r}old and calculate the relative
probability as the quotient of the two states

fn
fo

=
fNV T ({~r}new)

fNV T ({~r}old)
= exp[−β (U({~r}new)− U({~r}old))] . (2.2.3)

Here the integral in equation (2.2.2) is the same for both states and drops out of equation
(2.2.3). So to calculate fn/fo we only need to know that the probability of a configuration
{~r} is proportional to its Boltzmann factor exp[−βU({~r})]. Thus we need a way to
generate points in the configuration space proportional to the Boltzmann factor. In other
words we have to find a suitable acceptance criteria βno, which tells us, when we accept the
new configuration n or when we reject it and proceed with the old one o. The solution to
this question is not unique. One popular and efficient method is the Metropolis algorithm,
introduced as early as 1953 by Nicholas Metropolis et al. [16]. The Metropolis algorithm
allows us to calculate the transition probability

πon = αnoβno (2.2.4)

to go from configuration o to n together with the acceptance criteria βno. To ensure that
the generated chain of configurations (Markov chain) converges to the demanded ensemble,
the algorithm must fulfill several properties. The first one is the detailed balance principle
and requests that the probability of the accepted transitions from state o to any other
state n is exactly the same as for the reverse transition, i.e.

foπon = fnπno . (2.2.5)

The second one demands that the algorithm is ergodic, i.e. all possible points in the
configuration space can be reached with a final number of MC steps. The Metropolis
algorithm satisfies those conditions and defines the acceptance criteria to perform an
update from configuration o to n as

βno = min(1,
fn
fo

) ≥ ξ , (2.2.6)

where ξ is a random number between 0 and 1. If the acceptance criteria (2.2.6) is not
fulfilled, the new configuration n is discarded and we continue with the old configuration o.
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2.2.2. The Tpπ ensemble

To perform the simulations in the Tpπ ensemble, we make use of the idea of the Gibbs
ensemble [17, 18], where we study two simulation boxes simultaneously. The box i (= 1, 2)
contains Nl,i solvent particles and Ns,i solute molecules, respectively. The two subsystems
are not isolated and particles can be exchanged between the two boxes. But as we com-
pute an osmotic cell, we need to construct a semi-permeable membrane between the two
compartments, i.e. only the particle interchange of the solvent is allowed and we force
Ns,1 = 0. This means the second box contains the mixture and hence also the pressure
in the box is p + π. The thermodynamic states of the two subsystems are defined by
the eight quantities T1, T2, p, p + π, Nl,i and Ns,i. The number of degrees of freedom
at equilibrium is reduced from 8 to 3 due to the following five conditions T = T1 = T2,
equality of the chemical potentials µl = µl,1 = µl,2 plus the constraints on the particle
numbers Nl,1 + Nl,2 = Nl = const., Ns,1 = 0 and Ns,2 = const. This leaves T , p and π as
the remaining degrees of freedom. Before noting down the partition function, we take a
look at the entropy changes, which for the two boxes are

T∆S1 = ∆E1 + p∆V1 − µl∆Nl,1 (2.2.7)

T∆S2 = ∆E2 + (p+ π)∆V2 − µl∆Nl,2 , (2.2.8)

where the Ei are the internal energies. In total we get

∆S =
∆E1 + ∆E2

T
+
p (∆V1 + ∆V2)

T
+
π∆V2

T
(2.2.9)

as ∆Nl,1 = −∆Nl,2. The partition function, considering also small rigid molecules like
water, is given by

Q =

∫
V
Nl,1

1 V
Nl,2+Ns,2

2 d3(Nl+Ns,2)pcmd3(Nl+Ns,2)scm
h3(Nl+Ns,2)Nl,1!Nl,2!Ns,2!

3∏
α=1

d(Nl+Ns,2)φαd(Nl+Ns,2)pα

h3(Nl+Ns,2)σNll σ
Ns,2
s

× exp [−β (E1 + E2 + pV1 + (p+ π)V2 + µlNl + µs,2Ns,2)]

(2.2.10)

with Planck’s constant h and β = 1/kBT . The integration is done over the center of mass
coordinates in reduced form ~rcm = V 1/3~s and their conjugate momenta pcm as well as the
Euler angles φα = (ϕ, θ, ψ) and their conjugate momenta pα. The σ’s are the symmetry
numbers of the solvent and solute molecules. After integration over all momenta using
the respective (kinetic) Boltzmann-weights, equation (2.2.10) becomes

Q =

∫
V
Nl,1

1 V
Nl,2+Ns,2

2

Λ3Nl
T,l Λ

3Ns,2
T,s Nl,1!Nl,2!Ns,2!

d3(Nl+Ns,2)scm

×
3∏

α=1

sinNl θl sin
Ns,2 θs

λNlT,lλ
Ns,2
T,s

d(Nl+Ns,2)φα exp [−β (U1 + U2

+ pV1 + (p+ π)V2 + µlNl + µs,2Ns,2)]

(2.2.11)
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where ΛT is the usual thermal wavelength and

λT =
σ(β~/(2π))3/2

I1I2I3

(2.2.12)

with the molecular principal moments of inertia Ij (j = 1, 2, 3). Due to the integration
over the momenta, we now only have to consider the potential energies Ui. With that, we
can write down the probability function for our Metropolis criteria as

f ∝ V
Nl,1

1 V
Nl,2+Ns,2

2

Λ3Nl
T,l Λ

3Ns,2
T,s Nl,1!Nl,2!Ns,2!

sinNl θl sin
Ns,2 θs

λNlT,lλ
Ns,2
T,s

exp [−β (U1 + U2 + pV1 + (p+ π)V2 + µlNl + µs,2Ns,2)] .

(2.2.13)

Now we can note down the different MC trial moves, we perform to simulate in the
Tpπ ensemble. We use the phase space density in equation (2.2.13) and calculate the
acceptance via (2.2.6) going from the state o to n. This yields the following four probability
ratios:

• Translation of a particle within box i
The translation of a particle leads to a change of the potential energy ∆Ui = Ui,n−
Ui,o of the box and hence the probability ratio for translation of a particle in box i
is

fn
fo

= exp [−β∆Ui] . (2.2.14)

• Rotation of a particle in box i
The center of mass rotation of a particle also results in a change of the potential
energy ∆Ui = Ui,n−Ui,o. But in addition to the translation we also have to consider
the ratio of the sines in (2.2.6) and get for the center of mass rotation of a particle
in compartment i

fn
fo

=
sin θi,n
sin θi,o

exp [−β∆Ui] . (2.2.15)

• Volume Change of box i
The volume of each box can change individually and the two volumes V1 and V2 are
not correlated. This is different to the normal Gibbs ensemble and the algorithm in
reference [19], where the total volume is kept constant, or as in reference [20], where
the volume of each box is constant. The volume change of a box is ∆Vi = Vi,n−Vi,o.
This also effects the potential energy ∆Ui. With the use of the Kronecker delta δi2,
which is 1 for i = 2 and zero otherwise, the ratio is

fn
fo

=

(
Vi,n
Vi,o

)Nl,i+Ns,i
exp [−β (∆Ui + (p+ δi2π)∆Vi)] . (2.2.16)
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• Solvent transfer between the compartments
As aforementioned we only allow the exchange of the solvent particles between the
boxes due to the semi-permeable membrane. For a particle transfer from subsystem
1 to 2 the probability ratio is given by

fn
fo

=
V2Nl,1

V1(Nl,2 + 1)
exp [−β (∆U1 + ∆U2)] , (2.2.17)

where ∆U1 = U1(Nl,1 − 1) − U1(Nl,1) and ∆U2 = U2(Nl,2 + 1) − U2(Nl,2). For the
opposite transfer from box 2 to 1 it is

fn
fo

=
V1Nl,2

V2(Nl,1 + 1)
exp [−β (∆U1 + ∆U2)] , (2.2.18)

where now ∆U1 = U1(Nl,1 + 1)− U1(Nl,1) and ∆U2 = U2(Nl,2 − 1)− U2(Nl,2).

In the implementation of our MC simulation we have to decide, how the different types
of trial moves are selected. In the original Gibbs ensemble implementation a fixed order
was used [17]. Nowadays mostly a stochastic approach is taken, where the decision which
type of trial move should be performed (particle transfer, rotation, volume change or sol-
vent transfer) is randomized. This type of implementation should be preferred and was
applied in our simulation routines, as it guarantees microscopic reversibility. Thus it does
not make a difference at which point in the program the measurement of the physical
property is performed, as all trial moves are on average equivalent [8].

2.3. Calculation of thermodynamic quantities

2.3.1. Ensemble and time average

In statistical mechanics we have learned to calculate the macroscopic quantity A of a
system of N particles as the ensemble average

〈A〉 =
∑
i

piAi (2.3.1)

of the microscopic states. Here pi is the probability of the so called microstate i, defined
by the probability distribution of the ensemble. Each single microstate is defined by a
set of generalized coordinates qi and their conjugate momentum pi, which build a single
point in the phase space Γ = (~q1, ..., ~qN , ~p1, ..., ~pN). In classical terms we can write the
ensemble average (2.3.1) as integral over the phase space

〈A〉 =

∫
Γ

dΓA(Γ)ρ(Γ)∫
Γ

dΓρ(Γ)
, (2.3.2)
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with dΓ being a phase space element and ρ(Γ) the phase space density. In an experiment
we usually take a different approach to calculate an average quantity and build the average
over multiple measurements taken over a certain period of time. This procedure is quite
similar to MD where we evolve the system in time, which results in a phase space trajectory
Γ(t) and a change of the quantity A(Γ(t)). The time average can be calculated as

Ā =
1

t

∫ t

0

A(Γ(t′))dt′ =
1

M

M∑
i=1

A(Γ(i∆t)) . (2.3.3)

The representation of the sum considers the fact that MD evolves only in single time steps
∆t. Ideally we would build the time average over an infinite period of time. In case of an
ergodic system, we then can set the time average equal to the ensemble average

Ā = lim
t→∞

1

t

∫ t

0

A(Γ(t′))dt′ = lim
M→∞

1

M

M∑
i=1

A(Γ(i∆t)) = 〈A〉 =
∑
i

piAi . (2.3.4)

The equation (2.3.4) is referred to as the “ergodic hypothesis”, which was originally stated
by Ludwig Boltzmann. A system can be considered as ergodic, if the trajectory can come
arbitrary close to any point Γ of the phase space in finite time. In computer simulations
it is a basic assumption to deal with an ergodic systems but in general, it is not possible
to show for a real system, if it is ergodic. It is even worse, because we have to be aware
that many real systems like glasses are not ergodic at all [8].

2.3.2. Internal energy

The internal energy of a system is given by

E = K + U (2.3.5)

where K stands for the kinetic energy of the particles and U for the potential energy,
caused by the interaction potential of the individual particles. Dependent on the particle
model (see chapter 3) the term of the potential energy varies. This is not the case for the
kinetic energy, where we only have to distinguish between two different types of models.
On the one hand there are models with a radial symmetric potential like ions. In this case
the model has three degrees of freedom with the kinetic energy caused by the translation
of the particles given by

K = Ktrans =
1

2
m

N∑
i=1

|~̇ri|2 =
1

2
m

N∑
i=1

(
ṙ2
xi

+ ṙ2
yi

+ ṙ2
zi

)
. (2.3.6)

On the other hand we deal with particles with a non-radial symmetric pair potential
respectively geometry. Here an additional contribution of the rotation needs to be added
to the kinetic energy

K = Ktrans +Krot (2.3.7)
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with

Krot =
1

2
I

N∑
i=1

|~̇ni|2 =
1

2
I

N∑
i=1

(
ṅ2
xi

+ ṅ2
yi

+ ṅ2
zi

)
=

1

2
I

N∑
i=1

(
θ̇i

2
+ ϕ̇i

2 sin2 θi

)
. (2.3.8)

We expressed the rotational energy by spherical coordinates. In this representation we
see that the rotation has only two degrees of freedom. This is for sure not true in general,
but fits for the models, we use in this work.
Finally we want to note down the Hamiltonian H, which can be derived from a Legendre
transformation of the Lagrangian L = K−U . Using spherical coordinates for the rotation
and Cartesian coordinates for the translation, the Hamilton is given by

H =
N∑
i=1

[
1

2m

(
p2
rxi

+ p2
ryi

+ p2
rzi

)
+
I

2

(
θ̇i

2
+ ϕ̇i

2 sin2 θi

)]
+ U (2.3.9)

and also shows that H = E.

2.3.3. Temperature

With knowing the Hamiltonian the temperature of the system can be calculated using the
equipartition theorem, which can be formulated as〈

xi
∂H
∂xj

〉
= δij kBT , (2.3.10)

where xi can express either the generalized coordinate qi or the conjugate momentum pi.
Using the Hamiltonian equation

q̇j =
∂H
∂pj

(2.3.11)

with xj = pj and i = j together with the equipartition theorem (2.3.10), we get for the
temperature

T =
2

5NkB
K (2.3.12)

because of〈
5N∑
j=1

pj
∂H
∂pj

〉
=

〈
5N∑
j=1

pj q̇j

〉
= 5NkBT (2.3.13)

=

〈
N∑
i=1

(
prxi ṙxi + pryi ṙyi + przi ṙzi + pθi θ̇i + pϕiϕ̇i

)〉
(2.3.14)

= 2 〈K〉 . (2.3.15)
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In (2.3.12) we have not distinguished between the translational and rotational contribu-
tion, but taking a look at (2.3.14) shows that we can separately note down the translational
temperature and rotational temperature as

Ttrans =
2

3NkB
Ktrans (2.3.16)

Trot =
1

NkB
Krot . (2.3.17)

Additionally we know that for an equilibrated system all the temperatures have to be the
same

T = Ttrans = Trot . (2.3.18)

2.3.4. Pressure

To calculate the pressure of the system, we can again make use of the equipartition
theorem and set j = i and xi = qi. Using the Hamiltonian equation

ṗj = −∂H
∂qj

(2.3.19)

the equipartition theorem (2.3.10) leads us to

V =

〈
3N∑
j=1

qj ṗj

〉
= −3NkBT . (2.3.20)

By using Cartesian coordinates, we get the virial as

V =

〈
N∑
i=1

~ri ~F
tot
i

〉
= −3NkBT . (2.3.21)

To link this to the pressure P , we note that the force ~F tot
i consists of two parts. The

first one is the sum of internal forces ~F int
i from the interaction between the N molecules

in volume V . The second force ~F ext
i acts through the surface of the volume V on the N

particles. Now we can split the virial into the internal and external parts

V = Vint + Vext (2.3.22)

=

〈
N∑
i=1

~ris ~F
int
i

〉
+

〈
N∑
i=1

~ris ~F
ext
i

〉
(2.3.23)

and additionally assume to deal with an isotropic fluid to convert the external virial into
an integral over the surface ∂V of the volume V . So we can write

Vext = −P
∫
∂V

dS (~n · ~r) , (2.3.24)
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where ~n is an unit vector perpendicular to the surface element dS and should not be
mixed up with ~ni. Using Gauss’s theorem we get

Vext = −P
∫
V

dV ~∇~r = −3PV (2.3.25)

and can write for the pressure

P =
NkBT

V
+

1

3V
Vint (2.3.26)

=
NkBT

V
+

1

3V

〈
N∑
i<j

~rij ~F
int
ij

〉
. (2.3.27)

In the last step we made use of the pairwise additivity of the forces. As we use different
models in this work, we keep it generic at this point and refer to chapter 3, where the
models are defined. The notation of the sum in equation (2.3.27) means

N∑
i<j

=
N−1∑
i=1

N∑
j=i+1

. (2.3.28)

Now we have linked the macroscopic quantity P to the microscopic coordinates of the
system, which are known during the simulation.

2.4. Temperature control with the Berendsen thermostat

In a MD simulation the kinetic energy of the system is defined by the initial configuration
and due to the correlation described in equation (2.3.12) this also defines the temperature.
In presence of long-range potentials like Coulomb and the usage of a cutoff rcut (see section
(2.5.1)) the energy conservation is not given for a MD simulation. This causes energy
fluctuations [21]. To enable simulations at constant temperature in the NVT ensemble,
and to get rid of those fluctuations, we need to control the temperature or rather the
energy. We can do this by embedding the system in an infinite heat bath [6, 22], which
allows to exchange the following heat flux

JQ =
∆Q

∆t
= NcV

∆T

∆t
. (2.4.1)

Hereby ∆Q stands for the heat amount exchanged in time ∆t and cV represents the heat
capacity for a single particle at constant volume. As the heat flux influences the energy
of the system, we can introduce the factor λ2 − 1 and couple the exchanged heat directly
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with the kinetic energy

∆Q = ∆K =
1

2

(
λ2 − 1

) N∑
i=1

(
m |~vi|2 + I|~̇ni|2

)
(2.4.2)

=
1

2

N∑
i=1

[
m |~vi|2

(
λ2
trans − 1

)
+ I|~̇ni|2

(
λ2
rot − 1

)]
(2.4.3)

=
3

2
N Ttrans

(
λ2
trans − 1

)
+N Trot

(
λ2
rot − 1

)
. (2.4.4)

To control the translational and rotational temperatures separately, we have introduced
two different factors λtrans and λrot. In general it is sufficient to control just one of the
temperatures as the other one is coupled and also reaches the same value. But to avoid
any side effects and to reach the equilibration phase faster, it is recommended to control
both temperatures individually. Nevertheless it is a good test of the simulation routines
to switch off the control of one of the temperatures and verify that in equilibrium both
are the same. Instead of directly scaling the velocities, it is a more physical approach
to introduce a dynamical friction term [23]. Therefore we define the friction coefficient
ζ = 1−λ

∆t
, which we use in the acceleration, as follows

~̈ri =
~Fi
m

+ ζ~̇ri . (2.4.5)

To apply this in the MD simulation, we need to further specify ζ or rather λ. We do this
by following the approach proposed by Berendsen et al. [24], where the system is coupled
to the heat bath via a linear heat flux

JQ = αT (TB − T ) . (2.4.6)

Here TB is the temperature of the heat bath respectively the to be temperature of the
system, T the current temperature and αT a constant. Using (2.4.1) we can define the
constant

τT =
NcV
αT

=
5N

2αT
, (2.4.7)

which represents also the relaxation time of the temperature. Using equation (2.4.1) and
(2.4.4) we now can write for λ

λ =

√
1 +

∆t

τT

(
TB
T
− 1

)
(2.4.8)

≈ 1 +
∆t

2τT

(
TB
T
− 1

)
= 1 +

∆t

2τT

(
5NTB

2K
− 1

)
. (2.4.9)

Further we need to distinguish again between the translational and rotational tempera-
tures. Therefore we note down the relaxation time according to the degrees of freedom
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as

τ transT =
3N

2αT
(2.4.10)

τ rotT =
N

αT
. (2.4.11)

With that we can write for the scaling factors of the velocities

λtrans ≈ 1 +
∆t

2τT

(
3NTB
2Ktrans

− 1

)
(2.4.12)

λrot ≈ 1 +
∆t

2τT

(
NTB
Krot

− 1

)
, (2.4.13)

and for the friction coefficients

ζtrans ≈
1

2τT

(
1− 3NTB

2Ktrans

)
(2.4.14)

ζrot ≈
1

2τT

(
1− NTB

Krot

)
, (2.4.15)

which can now be applied to the velocity Verlet algorithm. So we need to replace the
acceleration in the equations (2.1.7) - (2.1.9) with the new expression

~̈ri =
~Fi(t)

m
− ζtrans(t)~̇ri(t) . (2.4.16)

For the rotation we can proceed analogously and write for the acceleration together with
the friction

~̈ni = ~Gi −
(
~ni · ~Gi + ~̇n2

i

)
~ni + ζrot~̇ni . (2.4.17)

It can be shown that the temperature adjustment happens exponentially over time and
can be expressed as

T = TB − (TB − T0) exp [−t/τT ] (2.4.18)

where T0 is the starting temperature at time t = 0 and τT the relaxation time. In
the simulations, performed for this work, the relaxation time usually was in the range
τT ∈ [0.1, 1], where the bigger end means less coupling and should be preferred to keep
disturbance of the system at a minimum. One drawback of the Berendsen thermostat is
that it does not produce trajectories in the canonical ensemble [25]. Nevertheless the use
of it is sufficient for our investigation of the phase separation of polar liquids. If one wants
to generate a canonical ensemble the Nosé-Hoover [23, 26] thermostat is the right one to
choose.



36 CHAPTER 2. METHODS

2.5. Optimization techniques

2.5.1. Periodic boundary conditions, cutoff radius and minimum
image convention

Periodic boundary conditions

We usually want to limit our system to a simulation volume V similar to macroscopic
experiments, to prevent that the particles could diffuse into space. But simply placing
the particles between solid walls of a box would introduce surface effects, we want to avoid
in our simulation. To minimize those effects, the walls of the box have to be open and
surrounded by a bulk of the same matter. This can be achieved, using periodic boundary
conditions, which place an infinite number of identical copies of the simulation box in all
directions next to each other. I.e. if a particle escapes on one side of the box, directly a
periodic picture of the particle enters the box on the opposite site. With this procedure
we have avoided the surface effects by allowing a particle to escape the box while keeping
the density ρ of the box constant. For vapour or liquid systems the shape of the box does
not have any influence on the simulation results in the equilibrium [27]. This is not true
for crystalline simulation volumes, where the shape of the box can be important. In our
case we use a cubic box with edge length L. Mathematically we can express the periodic
boundary conditions for an arbitrary measurable quantity as

A(~r) = A(~r + ~sL) (2.5.1)

where ~s ∈ Z3. This means that for each particle i at place ~ri exists a set of so called
image particles at position

~ri + ~sL . (2.5.2)

As the periodic boundary conditions introduce translation symmetry with regard to the
boxes, we get, according to Noether, conservation of the total moment of inertia [6],
which reduces the degrees of freedom by three. This leads to a slight adjustment of the
temperature calculation in (2.3.16) to

Ttrans =
2

3(N − 1)kB
Ktrans . (2.5.3)

For large systems this effect is negligible and we would not produce wrong results sticking
to (2.3.16). As the rotational moment of inertia is not influenced by the periodic boundary
conditions, there is no impact on the calculation of the rotational temperature Trot.
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Cutoff radius and Minimum Image convention

The usage of the periodic boundary conditions generates some trouble, which we need to
fix. We have now a quasi infinitive system and the calculation of the potential energy U
has the form

U =
∑
i<j

u (|~ri − ~rj|) +
∑
~s∈Z3

0

∑
i<j

u (|~ri − ~rj + ~sL|) (2.5.4)

with an infinite sum as the second term. To get rid of this infinite calculation, we have to
introduce a cutoff radius rcut, which defines the maximum length up to which we consider
pair-interactions between two particles. In addition we need a mechanism, which allows
us to easily calculate the distance rij between the particle i and particle j, respectively
its closest image. Thus we make use of the so called minimum image convention which
can be expressed as

|~ri − ~rj| = rij = min
~s∈Z3

(|~ri − ~rj + ~sL|) . (2.5.5)

Together with the periodic boundary conditions the minimum image convention ensures
that a particle in the simulation box only interacts at maximum with the N − 1 other
particles or their images. To avoid that a particle interacts more than once with another
particle or even interacts with itself the cutoff distance has to be limited to

rcut <
L

2
. (2.5.6)

For the direct calculation of the minimum image distance rij the definition (2.5.5) is not
usable. Therefore we use

rl,ij =

∣∣∣∣rl,i − rl,j − L · ANINT

(
rl,i − rl,i

L

)∣∣∣∣ (2.5.7)

where l ∈ {x, y, z} and the function ANINT(x) rounds x to the next integer. With that
we have ensured that we can write the potential energy as

U =
∑
i<j

u (rij) . (2.5.8)

Finally we want to have a closer look at the cutoff radius rcut, which we introduced
above without any further comment. If we neglect the pair-interaction beyond the cutoff
distance, we make an error, which needs to be corrected using so called long range cor-
rections. In general we distinguish between short and long range interaction using the
following criteria ∫

V

1

rn
dV =

{
<∞ ⇐⇒ n > d : short range

∞ ⇐⇒ n ≤ d : long range
(2.5.9)

where d is defined by the dimension, i.e. d = 3 in our case. For short range interactions the
error is limited and we can apply the commonly used continuum correction as described
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in section 2.5.3 in detail. For long range interactions, like the Coulomb interaction, a
more sophisticated method must be used. The two most common methods are the Ewald
summation [28, 29], which is a procedure that allows to build the sum over all image
particles using Fourier transformation, and the reaction field method, which is going back
to Onsager [30] and was first applied in simulations by Barker and Watts [31].

Cutoff radius for dumbbells

For elongated molecules like the dumbbell model (see section 3.1) the cutoff radius is
applied to each particle of the molecule. Therefore the usage of a simple cutoff can
separate the molecule into two pieces, where one part is inside the cutoff radius and the
other one outside. For the CSD model we would then generate a single ion inside the
cutoff radius and completely ignore the other particle with opposite charge. Those ions
generate a bigger contribution to the interaction than considering the whole molecule.
Therefore we soften the cutoff radius and always consider the full dumbbell if

min
α,β

(
riαjβ

)
≤ rcut . (2.5.10)

But we only consider this type of cutoff for the Coulomb interaction of the dumbbells,
because for the soft sphere repulsion, it does not matter, if the molecule is divided and it
simplifies the long range correction. In figure 2.1 the cutoff for a dumbbell is illustrated.
It also shows that we have for each site of the dumbbell an own cutoff sphere. So the
particles within each cutoff sphere are not necessarily the same. If we want to express
this in a formula, we can write for the CSD pair-potential (3.1.10)

uCSDcutij =
2∑

α,β=1

{
4ε

(
σ

riαjβ

)12

Θ(rcut − riαjβ)

+
1

4πε0

qiαqjβ
riαjβ

Θ

(
rcut −min

α,β

[
riαjβ

])} (2.5.11)

where Θ(x) is

Θ(x) =

{
0 : x < 0

1 : x ≥ 0 .
(2.5.12)

For sure this is not the real pair-potential, it is just an expression of the cutoff procedure
applied in our simulation. The difference between (3.1.10) and (2.5.11) is eliminated by
the long-range corrections. Despite the deformations of the cutoff sphere, we will speak
in the following of a sphere with the volume VSp with corresponding surface Ω = ∂VSp. If
we want to describe the cutoff sphere for an individual molecule or site at location ~riα , we
will declare the cutoff sphere as VSp(~riα) and the number of particles within the sphere as
NSp(~riα).



2.5. OPTIMIZATION TECHNIQUES 39

rcutrcut

Figure 2.1.: Each interaction site of the dumbbell has its own cutoff sphere with radius rcut.
Therefore the particles in the two cutoff spheres are not necessarily the same. For
the LJ-interaction dumbbells are separated if they are not completely in the cutoff
sphere. For the Coulomb interaction the whole dumbbell is considered, indicated
by the dotted line.

2.5.2. The Linked-Cell-Verlet-List algorithm

With the above introduced cutoff radius we restrict the calculation of the force or the
potential energy only to those particles NSp(~ri) ≤ N , which are in the cutoff sphere of
particle i. But we still need to figure out in each simulation step, which are the particles
in the cutoff sphere NSp(~ri). Therefore the distance between particle i with all other N−1
particles in the box has to be calculated using the minimum image convention. Doing
this for all N particles ends up in N(N − 1)/2 calculations per simulation step. So the
complexity of this problem scales with N2 and makes simulations with a big number of
particles very inefficient.
To reduce the complexity of the distance determination, we can use the Linked-Cell-Verlet-
List algorithm, which is a combination of the later described linked-cell list and the Verlet
neighbour list. The linked-cell list divides the simulation box into multiple parts, and the
Verlet neighbour list makes use of the fact that at ordinary temperatures the neighbours
of a particle stay almost the same for a short time period. The two methods can also be
used independently and their combination to the Linked-Cell-Verlet-List algorithm was
described by Auerbach et al. [32]. The necessary book keeping for the lists requires some
more memory and computational effort. But that can be neglected as it simplifies the
complexity so that the simulation time scales now linear with the number of particles N .
A more detailed discussion on the performance impact and the optimal parameters to be
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chosen can be found in [33].

Verlet Neighbour list

As the fluctuations of surrounding interaction partners of a particle are usually very
limited, Loup Verlet introduced the idea of a neighbour list [13], which allows to calculate
only the distances between the particles, which are considered as neighbours. To do this
we have to extend our cutoff sphere by an additional shell of depth rskin, which leads
to a list cutoff rlist = rcut + rskin. After the neighbour list has been built up, only for
the particles within each others neighbourhood shell the distance calculation has to be
done, to determine if they are within the cutoff or not. To avoid any error, we have to
update the neighbour list in time. Therefore we have to find out, when a particle could
have crossed the neighbour shell of thickness rskin. We can do this, by identifying the
particle with the biggest displacement at a single simulation step and summing up those
maximum displacements rmax(tn) over all simulation steps until∑

n

rmax(tn) ≥ rskin
2

(2.5.13)

is reached. Afterwards a full refresh of the neighbour list must be done. For sure it
does not matter if the displacement of the particle is caused by forces acting on it as
in MD or by a stochastic move in MC simulations. The update has to be done as soon
as rskin/2 is reached because two particles could move towards each other. Considering
a mean number Nlist of neighbours for a single particle, we need to calculate NNlist/2
interactions per simulation step. But as the number of particles Nlist is not influenced by
the total number of particles N , the total simulation effort is of order N , except for those
simulation steps, where the neighbour list has to be refreshed. In this case the effort is
still of order N2, but can be optimized to order N as well using the linked-cell list, which
builds the second component of the Linked-Cell-Verlet-List algorithm.

Linked-Cell List

To reduce also the update of the neighbour list to order N , we make use of the Linked-
Cell list algorithm, which divides the simulation box into cubic cells [34] and assigns each
particle to its unique cell. For further calculations only those cells, which intersect with
the neighbour list sphere, have to be screened. In theory the size of the cells is arbitrary
and the smaller the chosen size is, the better the cutoff sphere can be approximated. But
having too much cells negatively impacts the performance and therefore a common edge
size Lc is given by

Lc ≥ rlist (2.5.14)
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respectively in most cases

Lc = rlist . (2.5.15)

This size has also the advantage that only the cell containing the particle and the 26 direct
neighbours have to be scanned. This is independent of the system size and therefore the
computational effort is proportional to N . But even with having set Lc = rlist, we can run
into the situation of high computational costs. This can happen for very thin systems,
like those used in section 6.2, where with Lc = rlist the numbers of cells is very high and
slows down the computation time. In such a case Lc � rlist must be chosen.
Obviously the Linked-Cell algorithm can only work if the condition L ≥ 4Lc is true.
Otherwise we will have no advantage as the whole system needs to be scanned anyway.

2.5.3. Long range corrections

Our limited computational power forces us to restrict the system size to a limited number
of particles, and we further reduce the computational effort through neglecting the direct
pair interaction by establishing the cutoff radius rcut. As we neglect all interactions
where rij > rcut an error is introduced in the calculation of certain quantities like the
pressure, and we need to minimize this error as much as possible, making use of the
long range corrections. Dependent on the type of particles, or better their interaction
potential, a different approach to correct the error can be taken. The procedures can
be distinguished into two categories, on the one hand are continuum methods, like the
reaction field method [30], which make use of the fact that the structure of the system
is smeared out beyond the cutoff and therefore the structure in the area rij > rcut is not
important anymore. On the other hand are methods, which explicitly calculate the particle
interaction like the Ewald summation [28]. It makes use of the periodicity of the matter
and was originally developed for periodic systems like polar or ionic crystals [7]. By a split
of the summation into real space and Fourier space a fast convergence of the infinite sum
is achieved. A drawback of the Ewald summation is the necessary computational effort
and the tendency to overestimate the periodicity of the system [35]. The reaction field
method works best for polar or ionic fluids, but one has to deal with the disadvantage of
the a priori unknown dielectric constant ε [7]. Despite those differences it is shown in the
literature [36–42] that both methods produce similar results. Especially the equivalence
of both methods at the gas-liquid (g-l) transition is highlighted by Garzon et al. [42].

Radial distribution function

To legitimate the continuum corrections, we want to have a look at the radial distribution
function (RDF) g2(~ri, ~rj) (also called pair correlation function), which is a measure of the
spatial order, describing the density variations as a function of particle distance. The
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RDF is defined using the ensemble average of a function h(rij) as

〈h(rij)〉 =

∫
d3rid

3rjd
3N−6{r}′d3N{p}h(rij)f({~r}′, ~ri, ~rj, {~p})∫

d3rid3rjd3N−6{r}′d3N{p} f({~r}′, ~ri, ~rj, {~p})
(2.5.16)

=
1

V 2

∫
d3rid

3rj h(rij)g2(~ri, ~rj) , (2.5.17)

using the notation {~r}′, which includes all particle locations except ~ri and ~rj. I.e. the
RDF bundles the integration over all momenta and locations. To make use of the RDF
in a quantity like the pressure P we have to make two assumptions. The first one is that
we deal with a fluid with indistinguishable particles, allowing us to write g2(~ri, ~rj) as a
function of distance

g2(~ri, ~rj) = g2(rij) . (2.5.18)

Using relative coordinates, we can execute one of the remaining integrations in (2.5.17)
and obtain for the ensemble average

〈h(rij)〉 =
1

V

∫
d3rij h(rij)g2(rij) . (2.5.19)

Secondly we act on the assumption that the particles are homogeneously distributed in a
fluid. So we can write for the function h(rij) = 1

1 =
1

V

∫
d3rij g2(rij) . (2.5.20)

It follows that g2(rij) = 1 must be true for most of the space, which can be expressed as

lim
r→∞

g2(r) = 1 . (2.5.21)

Now we can write for an arbitrary function h(rij)

〈h(rij)〉 =
1

V

∫
d3rij h(rij) . (2.5.22)

Additionally we can split up the calculation of the ensemble average into two parts

〈h(rij)〉 = 〈h(rij)〉≤rcut + 〈h(rij)〉>rcut (2.5.23)

= 〈h(rij)〉≤rcut +
1

V

∫
rij>rcut

d3rij h(rij) , (2.5.24)

to treat the calculation within the cutoff sphere explicitly, e.g. as sum over the forces,
and outside the cutoff sphere, we can integrate over the function. This procedure can
be applied in the calculation of quantities like the pressure or internal energy, where the
second term in (2.5.24) represents the continuum correction.



2.5. OPTIMIZATION TECHNIQUES 43

Lennard-Jones Corrections

In the following we want to derive the corrections for the Lennard-Jones (LJ) potential
defined in (3.3.1) with the additional parameter λ, which allows us to easily switch of the
contribution of the attractive r−6 term. Thus we can easily use the correction also for
any soft sphere model like the CSD model, where only the repulsion is used. The radial
symmetric nature of the LJ potential allows us to directly use the equation (2.5.19) to
calculate the correction for the internal energy U and the pressure P . We want to start
with the internal energy

ULJλ =

〈∑
i<j

uLJλ(rrij)

〉
=

1

V

N(N − 1)

2

∫
d3r uLJλ(r)g2(r) (2.5.25)

≈ 1

2

N2

V
d3r uLJλ(r)g2(r) (2.5.26)

= ULJλ
≤rcut +

1

2

N2

V

∫
r>rcut

d3r uLJλ(r)g2(r) , (2.5.27)

which we divided into two parts, inside and outside the cutoff according to (2.5.24).
Solving the integral we get

ULJλ
corr = −8

3
πNρεσ3

[
−1

3

(
σ

rcut

)9

+ λ

(
σ

rcut

)3
]

(2.5.28)

with the particle density ρ = N/V as correction to the internal energy ULJλ
≤rcut inside the

cutoff sphere. In the case of λ = 1 the contribution is negative, due to the attraction of
th particles and rcut � σ. Similar we can go ahead for the calculation of the pressure in
(2.3.27) where we have

PLJλ =
NkBT

V
+

1

3V

〈∑
i<j

~rijF
LJλ(rij)

〉
(2.5.29)

≈ NkBT

V
+

1

3V

〈∑
i<j

~rijF
LJλ(rij)

〉
rij≤rcut

− 1

6

(
N

V

)2 ∫
r>rcut

d3r r
∂uLJλ

∂r
g2(r) .

(2.5.30)

With that we get for the contribution outside the cutoff sphere the following correction
term to the pressure

PLJλ
corr = −16

3
πρ2εσ3

[
−2

3

(
σ

rcut

)9

+ λ

(
σ

rcut

)3
]
. (2.5.31)
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Again this is negative for λ = 1 as the attraction reduces the desire of the system to
expand and therefore reduces the pressure.
Finally we want to have a look at two special cases, we need to deal with. The first one
is the CSD system, where we have four site-site interactions per dumbbell interaction.
Therefore the correction terms are four times the ones for the LJ system using λ = 0, i.e.

UCSD
corr = 4ULJλ=0

corr (2.5.32)

PCSD
corr = 4PLJλ=0

corr . (2.5.33)

The second case we need to consider is for the osmotic pressure simulations, we carry
out in chapter 7. There we use two different kinds of particles, A and B, which interact
instead of ε as potential depth with the parameter εAB. The potential is given in (7.2.1)
and for this case the correction is defined as

ULJAB
corr = −8

3
πσ3

[
−1

3

(
σ

rcut

)9
N2

V
+

(
σ

rcut

)3
εAAN

2
A + εBBN

2
B + 2εABNANB

V

]
(2.5.34)

PLJAB
corr = −16

3
πσ3

[
−2

3

(
σ

rcut

)9
N2

V
+

(
σ

rcut

)3
εAAN

2
A + εBBN

2
B + 2εABNANB

V 2

]
.

(2.5.35)

It needs to be applied to the simulation box, which contains the mixture of NA and NB

particles. For the box which only consists of the solute particles the corrections reduce to
the equations (2.5.28) and (2.5.31) as there are no solvents and therefore NB = 0.

Reaction field method

Due to the long range character, which leads to the divergence of (2.5.9) and (2.5.19) for
the Coulomb and dipole interaction, the procedure we used for the LJ potential cannot be
applied. Also the dependency on the orientation for the dumbbell and dipolar interaction
does not allow to make use of (2.5.19). Therefore we want to outline in the following
section the reaction field method as long range correction for the affected models. The
reaction field method is based on the theory of dielectric continua and similar to earlier
we treat the space inside the cutoff sphere and outside differently. As illustrated in
figure 2.2 the electric field acting on particle iα is caused by two components. First the
surrounding particles inside the cutoff sphere, where the contribution is calculated exactly,
and secondly the electric field outside the cutoff sphere, which is generated by the particles
as well, but considered to form a dielectric continuum with dielectric constant εA.
The reaction field can be determined by an analytical solution of the linearized Poisson-

Boltzmann equation, which is described in detail by Tironi et al. [21] and shortly recapped
here. We will use the notation of the CSD model, but the approach for ions and dipoles
is quite similar. We start with the cutoff sphere of volume VSp(~riα) around the dumbbell
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r cut

g2(r )≈1,ϵA

 I

i

Figure 2.2.: Long range correction for charged dumbbell molecules using the reaction field
method. The interaction of site iα with the other dumbbells within the cutoff
sphere is computed exactly. Outside of the cutoff sphere we consider a homoge-
neous dielectric continuum with permittivity εA.

site iα. Within the cutoff sphere the interaction of the charge qiα with the other NSp(~riα)
dipoles or 2NSp(~riα) charges is calculated directly. For the total dipole moment of the
cutoff sphere we can write

~Miα =
∑

j∈VSp(~riα )

~µj = q d
∑

j∈VSp(~riα )

~nj =
∑

jβ∈VSp(~riα )

qjβ~rjβiα . (2.5.36)

The inner region of the sphere has the permittivity εI and can be expressed by the potential

φI(~r) = φC(~r) + φH(~r) (r < rcut) , (2.5.37)

where the first potential

~∇2φC(~r) = −
∑
jβ∈VSp

qjβ
εAεI

δ(~r − ~rjβ) (2.5.38)

is a solution to the Poisson equation. The second potential, the harmonic function φH(r),
corresponds to the reaction field potential of the dielectric continuum and complies with
the Laplace equation

~∇2φH(~r) = 0 . (2.5.39)
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Now it is clear that φI(~r) is as well a solution to the Poisson equation. For the outside
potential φA(~r) we assume that it fulfills the linearized Poisson-Boltzmann equation

~∇2φA(~r) = κ2φA(~r) (r > rcut) , (2.5.40)

where κ is the inverse Debye screening length

κ2 =
2IF 2

ε0εART
(2.5.41)

with Faradays constant F , the ionic strength I, the ideal gas constant R, and the tem-
perature T . Using the following three conditions at the surface Ω of the cutoff sphere, we
can calculate the potential φI(~r).

1. On the boundary the potential is continuous

φI(~r) = φA(~r) , ~r ∈ Ω . (2.5.42)

2. The normal of the dielectric displacement field on any charge free surface is contin-
uous

εI ~∇φI(~r) = εA~∇φA(~r) , ~r ∈ Ω . (2.5.43)

3. The potential outside the cutoff sphere vanishes at infinitey

lim
r→∞

φA(~r) = 0 . (2.5.44)

Using the moving boundary dielectric implementation [43], as done by Tironi, which means
that the cutoff sphere moves along with the charged particle, we get for the potential

φI(0) =
1

4πε0εI

∑
jβ∈VSp

qjβ

[
1

rjβ
+
εI − εA(1 + κrcut)

εA(1 + κrcut)

1

rcut

]
, (2.5.45)

and the corresponding electric field

−~∇~r φI(~r)
∣∣∣
~r=0

=
−1

4πε0εI

∑
jβ∈VSp

qjβ

[
~rjβ
r3
jβ

−2(εA − εI)(1 + κrcut) + εA(κrcut)
2

(εI + 2εA)(1 + κrcut) + εA(κrcut)2

~rjβ
r3
cut

]
.

(2.5.46)

For the force on site iα we can write

~f(~riαjβ) =
qiαqjβ
4πε0εI

[
1

r3
iαjβ

− 1

r3
cut

2(εA − εI)(1 + κrcut) + εA(κrcut)
2

(εI + 2εA)(1 + κrcut) + εA(κrcut)2

]
~riαjβ . (2.5.47)
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For the dumbbell system the reaction field becomes more simple, due to the non existing
ionic strength. Thus we get κ = 0 and therefore can write for the reaction field

~ERF (~riα) =
1

4πε0εI

2(εA − εI)
εI + 2εA

~Miα

r3
cut

(2.5.48)

=
1

4πε0

2(εA − 1)

2εA + 1

~Miα

r3
cut

(2.5.49)

with ~riα in the center of the cutoff sphere with total dipole moment ~Miα and εI = 1. This
is the reaction field as already derived by Onsager [30] or by Fröhlich [44] and is valid
for dipolar interactions like dipolar soft spheres or the Stockmayer model [22, 45]. As the
reaction field is homogenous, there is no contribution to the pressure and dipolar forces.

Impact of the reaction field for dumbbells Due to the special geometry of the dumbbell
system we need to determine, which quantities get a contribution from the reaction field.
We start with the potential energy, for which we can write based on the potential in
(2.5.45)

UC =
1

2

N∑
i=1

2∑
α=1

qiαφI(riα) (2.5.50)

=
1

4πε0εI

2∑
α,β=1

∑
i<j

j∈VSp(~riα )

qiαqjβ
riαjβ

+
1

4πε0εI

εI − εA
2εA rcut

q2

N∑
i=1

2∑
α,β=1

∑
j∈VSp(~riα )

(−1)α+β

(2.5.51)

=
1

4πε0εI

2∑
α,β=1

∑
i<j

qiαqjβ
riαjβ

Θ

(
rcut −min

α,β

[
riαjβ

])
. (2.5.52)

As we only consider neutral cutoff spheres the second term in (2.5.51) is zero. With this
we see that the reaction field has no contribution to the potential energy and we only
have to consider the direct Coulomb interaction.
Starting with (2.5.47) we can write for the total Coulomb force ~FC

i on the dumbbell i

~FC
i =

1

4πε0

2∑
α=1

qiα

 ∑
jβ∈VSp(~riα )

qjβ
~riαjβ
r3
iαjβ

+
2(εA − 1)

2εA + 1

~Miα

r3
cut

 . (2.5.53)
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We want to take a closer look at the second term caused by the reaction field

~FRF
i =

1

4πε0

2(εA − 1)

2εA + 1

1

r3
cut

[
qi1 ~Mi1 + qi2 ~Mi2

]
(2.5.54)

=
1

4πε0

2(εA − 1)

2εA + 1

1

r3
cut

qi1

[
~Mi1 − ~Mi2

]
(2.5.55)

= ~fRFi1 + ~fRFi2 . (2.5.56)

Due to the fact that the particles in the two cutoff spheres around the sites i1 and i2 are
not necessarily the same, i.e. ~Mi1 6= ~Mi2 , we have to consider an additional contribution
~FRF
i 6= 0 of the reaction field also in the integration of the translational motion. So we

get for the acceleration of the center of mass

~̈ri =
1

m
~Fi =

1

m

(
~FCSD
i + ~FRF

i

)
. (2.5.57)

Now let us have a look to the rotation where we start with (2.1.13) and can write for the
torque

~Ni =
2∑

α=1

~riα × ~Fiα (2.5.58)

=
2∑

α=1

~riα ×
(
~fCSDiα + ~fRFiα

)
(2.5.59)

= ~NCSD
i + ~NRF

i . (2.5.60)

The term ~NCSD
i is included in the equations of motion through (3.1.29). The reaction

field generates the additional torque ~NRF
i which is in detail

~NRF
i =

d

2
~ni × ~fRFi1 + (−d

2
~ni)× ~fRFi2 (2.5.61)

=
d

2
~ni ×

(
~fRFi1 − ~fRFi1

)
(2.5.62)

=
1

4πε0

2(εA − 1)

2εA + 1

1

r3
cut

qi1
d

2
~ni ×

[
~Mi1 + ~Mi2

]
. (2.5.63)

With that we get for ~Gi used in equation (2.1.25) the following expression

~Gi = ~GCSD
i + I−1d

2

(
~fRFi1 − ~fRFi1

)
, (2.5.64)

and we can see that the reaction field provides an additional term not only to the trans-
lation but also to the rotation.
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Finally we want to take a look at the virial respectively the pressure which is according
to equation (2.3.21)

V =

〈
N∑
i=1

~ris ~Fi

〉
=

〈
N∑
i=1

~ris

(
~FCSD
i + ~FRF

i

)〉
(2.5.65)

=

〈
N∑
i=1

~ris ~F
CSD
i

〉
+

〈
N∑
i=1

~ris ~F
RF
i

〉
. (2.5.66)

We split up again the expression for the reaction field and write for the ensemble average〈
N∑
i=1

~ris ~F
RF
i

〉
=

1

4πε0

2(εA − 1)

2εA + 1

1

r3
cut

qi1

〈
N∑
i=1

~ris

(
~Mi1 − ~Mi2

)〉
(2.5.67)

=
1

4πε0

2(εA − 1)

2εA + 1

1

r3
cut

qi1

(〈
N∑
i=1

~ris ~Mi1

〉
−

〈
N∑
i=1

~ris ~Mi2

〉)
. (2.5.68)

As our system consists of indistinguishable particles we can write〈
N∑
i=1

~ris ~Mi1

〉
=

〈
N∑
i=1

~ris ~Mi2

〉
(2.5.69)

and therefore 〈
N∑
i=1

~ris ~F
RF
i

〉
= 0 . (2.5.70)

So we do not have any effect of the reaction field on the calculation of the pressure P .

Calculation of the permittivity εA For the calculation of the reaction field (2.5.49) we
first need to determine the a priori unknown permittivity εA. In the following we want
to use the approach as proposed by Hentschke using a Ginzburg-Landau expansion [27]
of the free energy F . This procedure is more generalized than the calculation done by H.
Fröhlich [44]. We therefore consider an infinite dielectric with the permittivity εA with
local and spontaneous oscillations of the dipole moment ~p(~r). The free energy is defined
by

F =
1

V

∫
V

d3r f (~p(~r), T ) , (2.5.71)

with the local free energy f (~p(~r), T ). Using the Ginzburg-Landau expansion we get for
the local free energy

f (~p(~r), T ) = f0 (T ) + c1 (T ) ~p 2(~r) +
1

2
c2 (T ) ~p 4(~r) + c3 (T ) |∇~p(~r)|2 . (2.5.72)
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As the local free energy f is symmetric in ~p a change of the sign does not have any impact
on f and therefore we only get elements of equal order.
We now assume an external electric field E, which acts on the system. This disturbance
can be reflected in the Hamiltonian as

ĤE = −p̂E (2.5.73)

as an operator, which is linear in E and p. In the canonical ensemble the free energy is
given by

F = −β−1 lnQNV T , (2.5.74)

and therefore the effect of the external electric field on the free energy F or better the
local free energy is given by

∂f (~p(~r), T, E)

∂E
= −p̂ . (2.5.75)

To ensure that the Ginzburg-Landau expansion (2.5.72) holds true for equation (2.5.75)
as well, we need to add an additional term like −p̂E to it. With that we get for the local
free energy

f (~p(~r), T, E) = f0 (T ) + c1 (T ) ~p 2(~r) +
1

2
c2 (T ) ~p 4(~r)

+ c3 (T ) |~∇~p(~r)|2 − ~p(~r) ~E(~r) .
(2.5.76)

Now we want to assume a spherical volume V , where ~p(~r) = p� 1 so that c2 = 0. In the
equilibrium the free energy has a minimum and it holds

~∇~p · ~f = 0 . (2.5.77)

With that and under consideration of ~E = const. we can now obtain c1 (T ) as

0 = c1 (T ) ~∇~p ~p
2 − ~∇~p (~p · ~E) (2.5.78)

= 2 c1 (T ) ~p−
[
(~p · ~∇~p) ~E + ( ~E · ~∇~p)~p

+ ~p× (~∇~p × ~E) + ~E × (~∇~p × ~p)︸ ︷︷ ︸
=0

 (2.5.79)

= 2 c1 (T ) ~p− ~E (2.5.80)

and finally

c1 (T ) =
1

2

E

p
, (2.5.81)



2.5. OPTIMIZATION TECHNIQUES 51

because ~E and ~p are perpendicular. With the result

p =
εI − 1

εI + 2
r3
cutE (2.5.82)

for the polarisation of a sphere with radius rcut in a homogenous field [46], we can write
for the coefficient

c1 (T ) =
1

2

εI + 2

εI − 1

1

r3
cut

. (2.5.83)

With that we get for the free energy fI within the volumen V

fI ≡ f(p, T ) ' f0(T ) +
1

2

εI + 2

εI − 1

p2

r3
cut

. (2.5.84)

The term −~p · ~E is not part of (2.5.84), because we omitted the electrical field, which
was just introduced to get c1 (T ). For the whole description of the free energy we need to
get hold of the contribution fA from the outside of the volume V , which is caused by the
polarisation of the dielectric by the dipole moment ~p. To obtain fA, we follow [46] for an
imbedded spherical dielectric and calculate the following integral

fA = −1

2

∫
dV ~P · ~E(0)

A . (2.5.85)

Where

~E
(0)
A = −~∇pz

r3
(2.5.86)

describes the pure electrical field outside the sphere. For the polarisation ~P caused by ~p
outside the sphere we can write

~P =
εA − 1

4π
~EA . (2.5.87)

To determine the electrical field ~EA we use the potential

ϕA = −AA
r2

cos Θ (2.5.88)

whose constant AA follows from

ϕI =

(
p

εIr2
−BIr

)
cos Θ (2.5.89)

together with the condition

∂ϕI
∂Θ

∣∣∣
r=rcut

=
∂ϕA
∂Θ

∣∣∣
r=rcut

(2.5.90)
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and

−εI
∂ϕI
∂r

∣∣∣
r=rcut

= −εA
∂ϕA
∂r

∣∣∣
r=rcut

(2.5.91)

as

AA = − 3

2εA + 1
p . (2.5.92)

For the free energy fA outside the sphere we can calculate the integral (2.5.85) as

fA = −1

2

∫
dV

− 3(εA − 1)

4π(2εA + 1)
p ~∇cos Θ

r2︸ ︷︷ ︸
=~∇ z

r3

(−~∇pzr3

)
(2.5.93)

= − 3

8π

εA − 1

2εA + 1
p2

∫
dV
(
~∇ z

r3

)2

(2.5.94)

= − 3

8π

εA − 1

2εA + 1
p2 8π

3 r3
cut

(2.5.95)

= − εA − 1

2εA + 1

p2

r3
cut

. (2.5.96)

Together with the free energy fI inside the sphere we get for the total free energy F

F (~p, T ) = fI + fA (2.5.97)

= f0(T ) +
1

2

εI + 2

εI − 1

p2

r3
cut

− εA − 1

2εA + 1

p2

r3
cut

(2.5.98)

= f0(T ) +
1

2

(2εA + 1)(εI + 2)− 2(εA − 1)(εI − 1)

(εI − 1)(2εA + 1)

p2

r3
cut

(2.5.99)

= f0(T ) +
3(2εA + εI)

2(εI − 1)(2εA + 1)

1

r3
cut︸ ︷︷ ︸

≡κ

p2 . (2.5.100)

With this expression for the free energy we can calculate 〈p2〉 as well as the permittivity
εA by having a look on the ensemble average (2.3.2) for p2

〈
p2
〉

=

∫
Γ

dΓ p2 e−βH∫
Γ

dΓe−βH
(2.5.101)

and the expression for the free energy (2.5.74)

F = −β−1 lnQNV T (2.5.102)

= −β−1 ln

∫
Γ

dΓe−βH . (2.5.103)
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We take the average in (2.5.101) over a spherical volume, i.e. 〈p2〉 =
〈
M2

Sp

〉
, and can

write the partition function as a sum over the not normalized probabilities of all dipole
moments ~p as

Q =
∑
~p

Q(~p) (2.5.104)

=
∑
~p

e−βF (~p) . (2.5.105)

With that we get for the ensemble average〈
p2
〉

=

∑
~p p

2e−βF (~p)∑
~p e
−βF (~p)

(2.5.106)

=

∫
d3p p2e−βF (~p)∫
d3p e−βF (~p)

(2.5.107)

= ∂(−βκ) ln

∫
d3p e−βF (~p) (2.5.108)

= ∂(−βκ) ln(βκ)3/2 (2.5.109)

=
3

2
∂(βκ) ln(βκ) (2.5.110)

=
3

2

1

βκ
(2.5.111)

and finally 〈
p2
〉

= kBT
(εI − 1)(2εA + 1)

2εA + εI
r3
cut . (2.5.112)

Considering a homogenous fluid we can assume that the permittivity is the same inside
and outside the sphere εA = εI = ε and use

(ε− 1)(2ε+ 1)

3ε
=

1

kBT

〈p2〉
r3
cut

(2.5.113)

for the calculation of ε, and later usage in the reaction field (2.5.49). But within this
work we want to take a slightly different approach and use instead of

〈
M2

Sp

〉
the value of〈

~MSp
~MB

〉
as suggested by [47] and also done earlier by Bartke [22, 45]. Despite those

two methods also
〈
~MB

~MB

〉
would be possible and as shown by [48] the last two are

equivalent for big systems.
〈
~MSp

~MB

〉
can be calculated for dumbbells as follows

〈
~MSp

~MB

〉
=

1

2N

2∑
α=1

N∑
i=1

~Miα
~MB (2.5.114)

=
1

2N

2∑
α=1

N∑
i,k=1

∑
j∈VSp(~riα )

~µj~µk . (2.5.115)
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That means for each dumbbell site the dipole moment of the sphere VSp is calculated and
multiplied with the total dipole moment of the simulation box. The calculation for other
systems is quite similar and only the corresponding ~MSp has to be calculated. For ε which
is now given as

(ε− 1)(2ε+ 1)

3ε
=

1

kBT

〈
~MSp

~MB

〉
r3
cut

(2.5.116)

we calculate the cumulative average during the simulation, because of the big fluctuations.
With that we finally can compute the reaction field.

Ewald summation method

Another method to treat the long range character of the Coulomb interaction is the Ewald
summation method. It was introduced by Paul Peter Ewald for the computation of lat-
tices nearly hundred years ago [28]. Contrary to the reaction field method the Ewald
summation allows an explicit calculation of the particle interaction using the periodicity
of the matter. This explicit calculation is enabled by a split of the summation into real
space and Fourier space, which results in a fast convergence of the infinite sum. Fluids
we examine in this work are not periodic, but due to the periodic boundary conditions
used in our simulations we can apply the Ewald method to the periodic images of the
box. We have not implemented the Ewald summation in our own simulation routines,
but use it in the comparison of our ionic system results with the LAMMPS (large-scale
atomic/molecular massively parallel simulator) package [49]. Here an optimized imple-
mentation called PPPM (particle-particle particle-mesh) is used, which improves the order
of the calculations to N ln(N) instead of N2.
In the following we want to give a brief description of the method. We start with the
expression of the Coulomb energy with periodic boundary conditions

U =
1

2

N∑
i,j

qiqj
4πε0

∑
~s

(i 6=j for~s=~0)

1

|~rij + ~s|
. (2.5.117)

The convergence of this sum is very slow and additionally the sum is conditionally con-
vergent, hence the result depends on the order of the summation. Ewald rewrites the
formula of the potential energy into a sum of two fast convergent expressions

U ewald = U real + U rec , (2.5.118)

and introduces a Gaussian charge distribution ρi = −qiκ3 exp(−κ2r2)/
√
π to screen the

charges. A graphical illustration of the procedure is shown in figure 2.3. The first sum is
done in real space over the charges, as well as the Gaussian charge distribution to screen
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the charge. In the second term the screening charges, which form a smooth charge density,
are summed in reciprocal space. The two terms are given as

U real =
1

2

N∑
i,j

qiqj
4πε0

∑
~s

(i 6=j for~s=~0)

erfc [κ |~rij + ~s|]
|~rij + ~s|

−
N∑
i

q2
i

4πε0

κ√
π
r (2.5.119)

U rec =
1

2

N∑
i,j

qiqj
4πε0

4π

V

∑
~g 6=~0

g−2 exp

[
− g2

4κ2

]
exp [i~g · ~rij] (2.5.120)

with erfc(x) = 1− erf(x) = 1− (2/
√
π)

∫ x

0

e−u
2

du . (2.5.121)

For a detailed derivation of those formulas we want to refer to the book of Eastwood and
Hockney [34], who also introduced the PPPM method.
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Figure 2.3.: Graphical illustration of the Ewald summation method
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3. Models

A model chosen for molecular simulations is usually an approximation of a real world
molecule or at least represents a certain characteristic (e.g. polarity) of real molecules.
In the following we will describe the different models, used within this work, the CSD
model, the DSS model, the Stockmayer (ST) model, and simple ions. For the first two
models mainly the g-l phase transition was studied, whereas the latter two were used for
the analysis of the osmotic pressure. One component common to all the models is a soft
sphere repulsion, which is identical to the repulsion in the LJ (12,6) potential. Due to the
generality of the LJ [1] (12,6) potential, which is in addition often used for reference and
for the test of our simulation routines, we omit to detail it out here. We refer to section
7.2.1, where a modified version of it is shortly introduced. From a geometric point of view
the CSD system is the most complex one, as it consists of two different charges separated
by a fixed distance. Sweet and Steele [2] introduced such a dumbbell like system for the
first time using LJ interaction on the individual sites. The other systems are all centered
on a single point.
As we mainly concentrate on the g-l phase-transition of dipolar liquids, all our models,
except the later used ions, have a dipolar character. This could be a point dipole used for
DSS and ST or a dipole built of two spatially separated charges like in the CSD model.
Our basic simulation system consists of N particles boxed into a volume V . We will
also define characteristics like the dipole moment ~µ and the moment of inertia I for each
molecule.

3.1. Charged soft dumbbell model

The CSD particle is a rigid linear molecule. It consists of two oppositely charged sites i1
and i2 of the molecule i ∈ {1, 2, ..., N} separated by the fixed distance d. In addition to
the charges with magnitude q each site has a repulsive r−12 potential, which models the
short range Pauli repulsion, caused by overlapping electron orbitals. The r−12 form of the
repulsion is just an approximation quite often used for soft sphere models and established
by the use of the LJ [1] (12,6) potential. Historically this was motivated by minimizing
computational costs, as in the LJ model the r−12 term can be calculated as the square
of the attractive r−6 term. The orientation of the axis is defined by the unit vector ~ni,
which points from the negative to the positive charge. The total charge of the dumbbell
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qi1

qi2

d

~ni

~r i
s

~r i
1 ~r i 2

Figure 3.1.: Description of the dumbbell molecule used in this work, length d with charges
qi1 = −qi2 . Because of the masses being equal, we get for the center of mass

coordinates ~ris =
mi1~ri1+mi2~ri2

mi1+mi2
= 1

2(~ri1 + ~ri2).

is 0 so we can say 0 ≤ qi = qi1 = −qi2 . The dumbbell mass is defined as m and split for
each site into m/2. A schematic drawing of such a molecule is presented in figure 3.1.
With the direction of the unit vector ~ni and the use of the center of mass coordinate ~ris

the individual site coordinates ~riα , α ∈ {1, 2} can be written as

~ri1 = ~ris +
d

2
~ni (3.1.1)

~ri2 = ~ris −
d

2
~ni . (3.1.2)

Obviously the CSD particle has five degrees of freedom, three for translation and two for
rotation. The constraint

|~ri1 − ~ri2| = |d~ni| = d (3.1.3)

of a fixed axis length forbids any vibration. As the molecule can rotate around its center
of mass, we will note down the moment of inertia I as

I =
2∑

α=1

mi|~ris − ~riα|2 =
m

2

d2

4

2∑
α=1

|~ni|2 (3.1.4)

= m
d2

4
. (3.1.5)

Due to the strong d dependence of the moment of inertia, which goes along with a very
fast rotation for small dumbbells, we mainly keep it constant at I = 1.
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With having the two charges at ~riα , α ∈ {1, 2} we finally can calculate the total dipole
moment for the dumbbell

~µi = qi (~ri1 − ~ri2) = qi d~ni . (3.1.6)

Now we have introduced all the individual characteristics of the CSD molecule and we
want to take a look at the pair potential and the electric field of the dumbbell. Therefore
we consider first the Coulomb potential, caused by the two charges

ϕ(~ris , ~ni) =
1

4πε0

2∑
α=1

qiα
riα

. (3.1.7)

This directly gives us the Coulomb pair potential for two dumbbells as

uCoulij ((~ris , ~ni), (~rjs , ~nj)) =
1

4πε0

2∑
α=1

2∑
β=1

qiαqjβ
riαjβ

. (3.1.8)

For the electric field we obtain via the gradient the expression

~E(~ris , ~ni) = −~∇ϕ =
1

4πε0

2∑
α=1

qiα ~riα
r3
iα

. (3.1.9)

Together with the aforementioned r−12 repulsion the total pair potential is given by

uCSDij ((~ris , ~ni), (~rjs , ~nj)) =
2∑

α,β=1

[
4ε

(
σ

riαjβ

)12

+
1

4πε0

qiαqjβ
riαjβ

]
. (3.1.10)

For all the equations above the site-site distance vector ~riαjβ is given by

~riαjβ = ~riα − ~rjβ (3.1.11)

= ~rij −
d

2

[
(−1)α ~ni − (−1)β ~nj

]
(3.1.12)

with the corresponding distance riαjβ = |~riα − ~rjβ |. A typical arrangement of two inter-
acting particles is shown in figure 3.2. The site-site interaction causes four different terms
in the pair potential. This is important to keep in mind. Especially for comparison with
other models, where only one interaction center is present. In such cases the repulsive r−12

term of the CSD model is approximately four times the one of the single center particles.
To be able to use the model in the velocity Verlet integrator of the MD simulation, we
need to calculate the force respectively the acceleration for the translation of the particle
and the angular acceleration for the rotation. We can easily calculate the force as derivate
of the potential as

~FCSD
ij = −~∇is u

CSD
ij (3.1.13)

=
2∑

α,β=1

{
48

ε

σ2

(
σ

riαjβ

)14

+
1

4πε0

qiαqjβ
r3
iαjβ

}
~riαjβ . (3.1.14)
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Figure 3.2.: The single sites of the molecule are described by the coordinates ~riα . From these
you get the connection vector between two sites as ~riαjβ = ~riα − ~rjβ .

Considering a system of N particles and the pairwise additivity of the CSD model, we
can write for the total potential energy of the system

U =
∑
i<j

uCSDij ((~ris , ~ni), (~rjs , ~nj)) (3.1.15)

=
∑
i<j

2∑
α,β=1

{
4ε

(
σ

riαjβ

)12

+
1

4πε0

qiαqjβ
riαjβ

}
. (3.1.16)

Here we use the notation

∑
i<j

=
N−1∑
i=1

N∑
j=i+1

(3.1.17)
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which counts pairs only once and excludes self-interaction. We can calculate the total
force acting on one CSD particle caused by the remaining N − 1 particles as

~FCSD
i = m~̈ris = − ∂U

∂~ris
(3.1.18)

=
N∑
j=1
j 6=i

2∑
α,β=1

{
48

ε

σ2

(
σ

riαjβ

)14

+
1

4πε0

qiαqjβ
r3
iαjβ

}
~riαjβ (3.1.19)

=
N∑
j=1
j 6=i

2∑
α,β=1

~fiαjβ , (3.1.20)

which easily gives us the acceleration to be used in the integrator (2.1.7 - 2.1.9) of the
MD simulation.
We finally want to have a look at the angular acceleration, which is derived in paragraph
(2.1.1) as

~̈ni = ~Gi −
(
~ni · ~Gi + ~̇n2

i

)
~ni (3.1.21)

with ~Gi = −I−1 (∂U/∂~ni). For the CSD model we get for the derivative of the potential
with respect to ~ni

~GCSD
ij = −1

I

∂uCSDij

∂~ni
(3.1.22)

=
d

2 I

2∑
α,β=1

(−1)α+1

{
48

ε

σ2

(
σ

riαjβ

)14

+
1

4πε0

qiαqjβ
r3
iαjβ

}
~riαjβ (3.1.23)

=
d

2 I

2∑
α,β=1

(−1)α+1 ~fiαjβ (3.1.24)

but with respect to ~nj we get

~GCSD
ji =

d

2 I

2∑
α,β=1

(−1)β
{

48
ε

σ2

(
σ

riαjβ

)14

+
1

4πε0

qiαqjβ
r3
iαjβ

}
~riαjβ (3.1.25)

=
d

2 I

2∑
α,β=1

(−1)β ~fiαjβ (3.1.26)

and therefore obviously

~GCSD
ij 6= −~GCSD

ji . (3.1.27)
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Considering now the whole system, we get for our CSD model

~GCSD
i = −1

I

∂U

∂~ni
(3.1.28)

=
d

2 I

2∑
α,β=1

N∑
j=1
j 6=i

{
[−Θ(j − i)]α+1 + [−Θ(i− j)]β

}
~fiαjβ (3.1.29)

where Θ(n) again is

Θ(n) =

{
0 : n < 0

1 : n ≥ 0 .
(3.1.30)

Now we can calculate the acceleration (2.1.25) as needed in the velocity Verlet algorithm.

We use the dumbbell system mainly to track the g-l critical point from a regime, where we
can easily find g-l coexistence, due to the absence of long chains, to the limit of DSSs. This
can be done by reducing the charge-to-charge separation d step by step. Additionally we
also follow the critical point for long dumbbells up to d = 7. We apply different theoretical
approaches to our results and succeed with a description using a modified van der Waals
mean field theory.

3.2. Charged hard dumbbell model

A similar model to CSD is the charged hard dumbbell model (CHD), which was proposed
by Ganzenmüller and Camp [3] and allows us a comparison with our results for the CSD.
The geometry of the hard dumbbells is the same as for soft dumbbells. The only difference
is the repulsion, where each dumbbell site has the term

uHSij =

{
0 for riαjβ > σ
∞ for riαjβ < σ

(3.2.1)

to model the hard sphere characteristic. Together with the additional charges of magni-
tude q the final form of the pair potential is defined as

uCHDij =

{
1

4πε0

∑2
α,β=1

qiαqjβ
riαjβ

for minα,β
(
riαjβ

)
> σ

∞ for minα,β
(
riαjβ

)
< σ

(3.2.2)

where the parameters (riαjβ , qiα , ...) are the same as introduced for CSD.
We do not use the CHD model for any simulation in this work and therefore omit further
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details. A more sophisticated analysis of the CHD was done by Ganzenmüller and Camp
in the reference mentioned above. They observed the g-l phase transition in a range of
0.1 ≤ d ≤ 1.0 using MC simulations. Due to finite-size effects it was not possible for
Camp to observe the area for d < 0.1, but extrapolating the values gives evidence for a
phase transition also in this region.

3.3. Stockmayer model

A famous and in computer simulations commonly used dipolar model is the ST potential.
As a model for polar gas the ST potential is based on a work of Walter Hugo Stockmayer
in 1941 [4]. The ST model consists of the isotropic LJ (12,6) potential

uLJij (rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]

(3.3.1)

with an additional point dipole, whose pair interaction is given as

uDDij (~rij, ~µi, ~µj) =
1

4πε0

(
~µi · ~µj
r3
ij

− 3 (~rij · ~µi) (~rij · ~µj)
r5
ij

)
. (3.3.2)

Here ~rij = ~ri − ~rj is the displacement vector between the interacting particles i and j.
As already mentioned above the r−12 term is based on the Pauli exclusion for electron
shells. Long-range attractions like van der Waals forces between the particles are the
physical explanation of the attractive term in the LJ potential. In our final form of the
ST potential, we will add an additional factor λ, introduced by van Leeuwen and Smit [5],
to the attractive term. This allows to scale it or simply to turn the attraction off. So we
can write:

uvSTij (~rij, ~µi, ~µj) = 4ε

[(
σ

rij

)12

− λ
(
σ

rij

)6
]

+

1

4πε0

(
~µi · ~µj
r3
ij

− 3 (~rij · ~µi) (~rij · ~µj)
r5
ij

)
.

(3.3.3)

Finally we want to note down the force ~F for the ST model and ~G, which are needed
for the integrator of the MD simulation. For the total force on particle i caused by the
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remaining N − 1 particles we get

~F vST
i = − ~∇iU

vST (3.3.4)

=
N∑
j=1
j 6=i

{
48

ε

σ2

[(
σ

rij

)14

− λ

2

(
σ

rij

)8
]
~rij +

1

4πε0

[
(~µi · ~µj)
r5
ij

− 15(~µi · ~rij)(~µj · ~rij)
r7
ij

]
~rij +

3

4πε0

(~µj · ~rij)~µi + (~µi · ~rij)~µj
r5
ij

}
(3.3.5)

where U vST =
∑

i<j u
vST
ij . For the integration of the rotation we need

~GvST
i = −1

I

∂U vST

∂~ni
(3.3.6)

=
µ2

I

N∑
j=1
j 6=i

(
~nj
r3
ij

− 3~rij(~rij · ~nj)
r5
ij

)
(3.3.7)

with I = 1, to calculate the acceleration of the orientation vector. This means the rotation
is only dependent on the electric field

~EvST
i =

N∑
j=1
j 6=i

(
~µi
r3
ij

− 3~rij(~rij · ~µi)
r5
ij

)
(3.3.8)

and we can write ~GvST
i also as

~GvST
i =

µ

I
~EvST
i . (3.3.9)

The ST model is a thoroughly studied system in the literature including extensive studies
of the critical phenomena (e.g. [5–9]). It has also led to a controversy, if the results allow
to conclude that g-l coexistence exists in the limit of DSSs or not [5, 10–13]. Despite this
interesting discussion we use the ST model not for any phase coexistence analysis and
only make use of it for the osmotic pressure simulations. We use the ST system as solvent
due to its dipolar character, which is similar to water.

3.4. Dipolar soft sphere model

The DSS system is commonly used in computer simulations to study dipolar fluids. With
the aforementioned modified ST potential the DSS dipole-dipole interaction can be easily
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obtain by setting λ = 0 as

uDSSij (~rij, ~µi, ~µj) = 4ε

(
σ

rij

)12

+
1

4πε0

(
~µi · ~µj
r3
ij

− 3 (~rij · ~µi) (~rij · ~µj)
r5
ij

)
. (3.4.1)

With having the parameter λ = 0 and therefore also the attractive term of the LJ potential
eliminated, we want to introduce again another scaling parameter λ for the DSS system.
This new scaling parameter allows us to accommodate for the fact that we have in the
CSD system, due to the two dumbbell sites, in total four soft sphere interactions for each
particle-particle interaction. Therefore we introduce the new λ and write (3.4.1) as follows

uDSSij (~rij, ~µi, ~µj) = 4λε

(
σ

rij

)12

+
1

4πε0

(
~µi · ~µj
r3
ij

− 3 (~rij · ~µi) (~rij · ~µj)
r5
ij

)
. (3.4.2)

So with setting λ = 1 we deal with the ordinary DSS system as commonly used in the
literature. To model the limit d→ 0 of the CSD system, we need to introduce the 4-DSS
model with λ = 4 to represent the increased repulsion. Analogous to the potential we can
proceed for the force of the ST system in (3.3.5) and obtain

~FDSS
i = − ~∇iU

DSS (3.4.3)

=
N∑
j=1
j 6=i

{
48λ

ε

σ2

(
σ

rij

)14

~rij +

1

4πε0

[
(~µi · ~µj)
r5
ij

− 15(~µi · ~rij)(~µj · ~rij)
r7
ij

]
~rij +

3

4πε0

(~µj · ~rij)~µi + (~µi · ~rij)~µj
r5
ij

}
.

(3.4.4)

As we have seen for the ST particle, the rotation is only dependent on the electric field
caused by the point dipole of the particles. Therefore the rotation is exactly the same

~GDSS
i = ~GvST

i =
µ

I
~EvST
i (3.4.5)

as in (3.3.9) for the ST model.
The DSS model is used quite frequently in computer simulations including simulations to
study the phase behavior. Therefore either the DSS model is used directly or modifica-
tions were applied, which allow to reach out to the DSS limit and extrapolate the behavior
for the pure dipolar model. A more detailed discussion can be found in the introduction
of this work. Therefore we only want to refer to the references [5, 9, 14, 15] at this point.
In our work we have introduced the DSS system to study the phase transition of purely
dipolar systems and especially with the adjusted repulsion of λ = 4 to evaluate the CSD
limit d→ 0.
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3.5. Dipolar hard sphere model

The dipolar hard sphere system (DHS) is a well known model in the literature [16–19]
and quite similar to the DSS with the difference in the repulsion to reflect the hard sphere
of the particle. Therefore the DHS potential follows as

uDHSij (~rij, ~µi, ~µj) =

{
1

4πε0

(
~µi·~µj
r3ij
− 3(~rij ·~µi)(~rij ·~µj)

r5ij

)
for rij > σ

∞ for rij < σ
. (3.5.1)

Numerous studies have been done to settle the question, if g-l phase coexistence exists in
the dipolar limit or not, by using the DHS potential directly or similar potentials allowing
to extrapolate to the DHS limit [20–29]. In the present work the DHS model is not used for
any simulation. But its similarity to the soft sphere potential allows to do an interesting
comparison of the DHS model results with those of the soft sphere model. We therefore
convert the soft sphere results to the hard sphere system, using the approach introduced
previously in Ref. [14] and recapped below.

3.5.1. Conversion of soft sphere to hard sphere results

To connect our soft sphere model results to previous results for DHSs we compute an
effective hard-core diameter

σeff (T ) (3.5.2)

using

B2(T ) ≈ B2(HS) =
2πσ3

eff

3
. (3.5.3)

Here B2(HS) is the second virial coefficient of hard spheres and B2(T ) is the second virial
coefficient of soft spheres at temperature T . This results in

σeff (T ) =

[
Γ

(
3

4

)]1/3

·
(

4

T

)1/12

. (3.5.4)

Alternatively we could also make use of the Barker-Henderson formula [30] and get for
the effective hard-core diameter

σeff (T ) ≈ 1.0555

(
4

T

)1/12

(3.5.5)

which is quite similar to our approach as
[
Γ
(

3
4

)]1/3 ≈ 1.07011. So with that the effective
hard sphere critical temperature is given by

THSc = Tcσ
3
eff (Tc) (3.5.6)
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where Tc stands for the soft sphere temperature. In the same way we get for the effective
hard sphere critical density

ρHSc = ρcσ
3
eff (Tc) . (3.5.7)

This approach is quite beneficial and allows us to convert our soft sphere model results
to the results obtained in studies of hard-core models.

3.6. Ionic soft sphere model

The ionic system consists of single charged particles and a soft sphere repulsion. I.e. we
can consider the CSD model as ionic system with the special condition of rigidly bound
oppositely charged ions. To keep the total simulation system charge neutral, we consider
a fluid of charged soft spheres, where half of them carry charge −q and the other half
charge +q. The potential energy between two particles, i and j, of charges qi and qj
separated by distance rij is given by

uIonij (rij) = 4ε

(
σ

rij

)12

+
1

4πε0

qiqj
rij

. (3.6.1)

With that we get for the force

F Ion
i = −~∇iU

Ion =
N∑
j=1
j 6=i

{
48

ε

σ2

(
σ

rij

)14

+
1

4πε0

qiqj
r3
ij

}
~rij . (3.6.2)

As the ion is radial symmetric, we do not have any rotation for the ions.
The ionic system completes the investigation on the CSD model. We used the DSS model
for the limit d → 0 and on the other end of the spectrum the free ions can model the
behavior of big charge separation d, where the individual dumbbell sites act more and
more independently. Additionally the soft sphere ionic system is similar to the restricted
primitive model (RPM), where the soft sphere repulsion is replaced by a hard sphere
repulsion. The critical parameters we obtain from our simulations for the ionic system
can be compared with estimations based on the Debye-Hückel theory published nearly 90
years ago [31].
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4. Analysis of the gas-liquid transition
for charged soft dumbbells using
molecular dynamics simulation

4.1. Phase coexistence in fluids

Since the fundamental work of van der Waals [1] almost 150 years ago, the phase transition
from a dilute gas to a dense liquid is qualitatively described by a modification of the
ideal-gas equation of state P = NkBT/V . He modified the equation in two ways, first he
considered a reduced pressure P , which is caused by the attraction of the intermolecular
forces reflected by the parameter a. Secondly he took account of the fact that two particles
cannot occupy the same region due to their repulsion at short distances. Therefore the
volume V needs to be reduced by bN , where b is the excluded volume. With that he
formulated the well known van der Waals equation of state [2]

P =
NkBT

V −Nb
− a

V 2
. (4.1.1)

Despite the physical motivation, the van der Waals equation is a mean field theory, as
it only approximates the inter-particle forces and cannot reflect phase separation due to
its homogenous character. This has some unphysical effects, like the van der Waals loop
shown in figure 4.1, which violates the physical condition ∂P/∂V |T ≥ 0 and cannot be
observed in real life experiments. It also means that the Gibbs free energy is convex,
which corresponds to unstable states in this region. Despite the fact that the van der
Waals loop is unphysical and cannot be observed experimentally, it is a well known effect
in MD simulations. This is caused by the finite size of the simulated systems, which
is usually in the region of hundreds or thousands of particles and hence does not allow
density fluctuations as seen in real experiments. The occurence of the van der Waals
loop in the simulations gives us the possibility to make use of the Maxwell construction
method, described in the following section. It allows us to identify the phase coexistence
area of our systems.
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Figure 4.1.: The plot shows the Maxwell equal area construction for one simulated isotherm
(stars) of the CSD system with d = 10−3 and T = 0.047. An empirical equation
of state is used for a fit of the isotherm (dashed line) to apply the equal area
construction (shadded areas) and determine the corresponding coexistence densities
(red crosses). The coexistence densities for the remaining isotherms (red hollow
circles) are used to fit the envelope (red solid line) of the phase coexistence regime
and to calculate the critical point (red solid circle) via the scaling relations (4.1.11)
and (4.1.12).

4.1.1. The Maxwell construction method

The Maxwell construction method is a well established method to correct the unphysical
behavior of the van der Waals loop in the phase coexistence area. The usage of the method
was justified by Griffiths [3] and has been applied many times in various simulations [4–6].
Geometrically the Maxwell equal area construction method is illustrated in figure 4.1.
The two points Vg and Vl are chosen so that the shaped regions have equal area. The two
points describe the border of the g-l phase coexistence region. To legitimate this view, we
follow [7] and use the fact that the pressure and the chemical potential in the g-l phase
coexistence region must be identical. For the pure gas and the pure liquid at the border
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Figure 4.2.: Integrating the empirical equation of state (dashed line in figure 4.1) via P =
−∂F/∂V |T gives the reduced free energy (black solid line). The red solid line is
the common tangent on the coexistence densities.

of the phase coexistence region it holds

Pg = Pl (4.1.2)

µg = µl . (4.1.3)

We want to derive Vg and Vl from those two conditions. Therefore we use the equation
of state, which describes the isotherm, and insert it into (4.1.2). For our example we use
the van der Waals equation of state (4.1.1) and get

NT

Vg −Nb
− a

V 2
g

=
NT

Vl −Nb
− a

V 2
l

(4.1.4)

where we have set kB = 1. The values for a and b need to be determined from the
simulation data. For the second condition (4.1.3) we use the Gibbs free energy G = Nµ =
F + PV , where F stands for the free Helmholtz energy and write

0 = N (µl − µg) = Fl − Fg + P (Vl − Vg) . (4.1.5)

Together with P = −∂F/∂V |T we get

∂F

∂V

∣∣∣∣
T,Vl

=
∂F

∂V

∣∣∣∣
T,Vg

=
Fl − Fg
Vl − Vg

. (4.1.6)
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The geometrical interpretation of equation (4.1.6) is illustrated in figure 4.2 and means
that the line through the points (Vg, Fg) and (Vl, Fl) is also the common tangent of the
free energy at those two points. The difference between the Helmholtz free energies can
be obtained by integrating P = −∂F/∂V |T along the isotherms

F (Vl, T )− F (Vg, T ) = −
∫ Vl

Vg

P (V, T ) dV , (4.1.7)

where P (V, T ) stands for the equation of state used to interpret the isotherm. Replacing
the left side of (4.1.7) we can re-write it as

P (Vl − Vg) =

∫ Vg

Vl

P (V, T ) dV . (4.1.8)

This explains the equal area approach shown in the upper picture of figure 4.1. The
left side of (4.1.8) is the area in the rectangle between Vl and Vg with height P and the
right side is the area below the isotherm. It is clear that the two shaped areas are of the
same size and the two volumes Vl and Vg can be determined by a geometrical procedure.
Additionally we can interpret (4.1.6) geometrically as well, because the line through the
points (Vl, Fl) and (Vg, Fg) is the tangent of the Helmholtz free energy on those two points.
This is illustrated in the lower part of figure 4.1.
To apply the equal area construction to our simulation data, we use an equation of state
like (4.1.1) as fit function to describe the isotherms, together with a small Mathematica [8]
program to determine Vl and Vg respective ρl and ρg. It is not necessary for the fit function
to have a physical foundation. We just need a function, which describes our simulation
data in the coexistence regime best. We mostly made use of the following two functions,
which are derived from an equation of state for networks [9]:

P =
T

a0

(
−a3a0

V
− 1

2

a2a
2
0

T V
− ln

(
a1 −

a0

V

))
+ a4 (4.1.9)

P =
T

a0

(
−a3a5

V
− 1

2

a2a
2
6

T V
− ln

(
a1 −

a0

V

))
+ a4 . (4.1.10)

Here an are the fit parameters.

4.1.2. Scaling laws

The Maxwell construction gives us the possibility to identify the phase coexistence area
for simulated isotherms at different temperatures below the critical point. As we get
closer to the critical point, the simulation becomes more difficult due to large fluctuations
particularly in the pressure. Partly this could be compensated by extensive long simulation
runs. To be independent of simulations very close to the critical point, we can make use
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of the scaling laws, which allow to describe the system near the critical point [10, 11].
They also enable us to derive the critical parameters Tc, ρc and Pc from the coexistence
area, found with the Maxwell construction. The scaling laws are defined as

ρF − ρG ≈ A0 | t |β +A1 | t |β+∆ (4.1.11)

(ρF + ρG)/2 ≈ ρc +D0 | t |1−α +D1 | t | (4.1.12)

P − Pc ≈ P0 | t | +P1 | t |2−α +P2 | t |2 , (4.1.13)

with t = (T − Tc)/Tc and can be derived using the renormalization group theory [12, 13].
They are identical for all systems in the same universality class. For the models in this
work, we use the universality class of the three dimensional Ising model. The critical
exponents for the Ising model are given as α ≈ 0.110, β ≈ 0.326 and ∆ ≈ 0.5 [14]. One
might ask the admittedly difficult question, whether the universality class of our systems
is Ising. We cannot clearly answer this question in this work. But we can consult the
literature and find for the ionic system, precisely the RPM system, in the study of Fisher
and Levin a “conclusion” to the question, if long range Coulomb interaction cause mean
field exponents or not. They argue that a non-Ising-like universality class seems unlikely
and that the cross-over to Ising-like behavior occurs very close to Tc [15]. Almost ten
years later Panagiotopoulos performs a very sophisticated finite-size scaling analysis for
the RPM and states, while not conclusively, the good matching of the data to the limiting
Ising-class distribution is consistent with Ising-type criticality for this model [16]. We
expect that a conclusive answer to this question for our systems is likewise difficult. But
since evidence seems to indicate Ising behavior in the RPM, we would expect the same
for our systems. This is also in line with previous works on comparable models, aimed at
the critical parameters of CHDs [17] and point dipole systems [18, 19]. In the latter the
mapping on the ordering parameter distribution of the 3D Ising universality class is part
of the mixed-field finite size scaling employed. In general good matching of the data to the
limiting Ising-class distribution is taken as a consistency check for Ising-type criticality.
A comprehensive overview of phase transitions and critical phenomena can be found in
the book of the same title by Domb [6] and [20] or in [21, 22].

4.1.3. Parameters for the molecular dynamics simulation

Before we can use our simulation program, we first need to exercise some tests to verify
that there are no errors in the implementation, which lead to wrong simulation results.
Typically this is done by carrying out simulations for a simple system, where various data
for comparison exists in the literature. We have passed all those tests successfully, but
want to omit a lengthy discussion here and refer to [23] where this is documented for
the routines used in this work. Here we only want to focus on the determination of the
optimal parameters for the simulation of the isotherms.
To make use of the Maxwell construction and the scaling laws, we need to simulate several
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isotherms at different temperatures in the phase coexistence region. Usually the phase
coexistence region is a priori unknown and we need to narrow it down, by doing some
test simulations in the assumed region. Once we find an isotherm showing a van der
Waals loop, we can do more extensive simulations in that region. More extensive means
here that we try to optimize several parameters like the number of particles N , the total
simulation time ttot, the cutoff radius rcut, and the size of the time step ∆t to improve
computational effort and result accuracy. The effect of the different parameters on the
simulated isotherms of the CSD model are visualized in figure 4.3 for different numbers of
particles and in figure 4.4 to show the influence of the cutoff radius. It turns out that the
simulations with more than N = 500 particles and a cutoff of rcut = 9.0 produces stable
results.
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Figure 4.3.: The depicted isotherms show the influence of the system size N on the pressure
P plotted vs. the reciprocal of the density 1/ρ. Here the isotherms are plotted
for N = 108 (black circles), N = 500 (red squares), N = 800 (green diamonds),
N = 1200 (blue triangles) and N = 1600 (magenta stars) particles. It is apparent
that above N = 500 particles the pressure does not change significantly. The
isotherms are simulated at the temperature T = 0.0155, dipole moment µ2 = 1,
length d = 1 and a cutoff rcut = 10.0.
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Figure 4.4.: Multiple isotherms simulated to identify the effect of the cutoff rcut on the pressure
P plotted vs. the reciprocal of the density 1/ρ. Here the isotherms are plotted for
rcut = 5.0 (black circles), rcut = 7.0 (red squares), rcut = 9.0 (green diamonds),
rcut = 10.0 (blue triangles) and rcut = 12.5 (magenta stars). For cutoffs beyond
rcut = 9.0 there is no major effect on the pressure. All of the isotherm are simulated
at the temperature T = 0.0155, dipole moment µ2 = 1, length d = 1 and N = 800
particles.

In general most of our simulations are done with systems varying from N = 800 to
N = 3000 particles and a cutoff radius between rcut = 10 and rcut = 20. The time step
for the simulations was mostly chosen as ∆t = 0.001 except for very small dumbbells of
the CSD model with d ≤ 0.001, where we decreased the time step down to ∆t = 2 · 10−5.
To avoid any systematic errors and to get better results for the isotherms, we produce for
each temperature two independent isotherms. For each one a FCC (face-centered cubic)
lattice with random velocities is generated as start configuration, to simulate the first
state point. For all consecutive state points the previous final configuration is used as
start configuration, and the density is adjusted accordingly. In total we produce for each
isotherm about 30-45 individual state points. To generate one isotherm, we start at a
low density and enlarge the density for each data point, i.e. the system is compressed.
For the other isotherm the first data point is sampled at high density and the system is
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de-compressed for all following state points. To control the temperature of the simulation,
we make use of the weak coupling method of Berendsen et al. [24].

4.2. Gas-liquid transition of charged soft dumbbells

After we have verified the general correctness of our simulation program with models like
the two center Lennard-Jones model (2CLJ), for which comparable data in the literature
exists [23, 25], we started our investigation of the g-l transition of the CSD model. As
outlined earlier the CSD model allows us to start with a large charge-to-charge separation
d. Here we can expect a g-l phase transition due to the absence of chains, as they are
energetically unprivileged as can be seen in figure 4.6. From there we can track the critical
point to the limit dipolar soft sphere limit d→ 0. The only difference to the DSS model
is due to the two sites of a dumbbell. Thus we have in total four repulsive soft sphere
interactions contributing to the force, instead of a single one for the ordinary DSS model.
To eliminate this difference, we have introduced a 4-DSS model (see chapter 5) to be as
close as possible to the CSD model. We created a large set of simulations, which span
a range of dumbbell lengths from d = 0.0001 to d = 7.0. As the absolute value of the
dipole moment µ = qd depends on the dumbbell lengths the simulation series can be split
into two. For the first one we sampled at constant charge q = 1 and the other one with
constant dipolar moment µ2 = 1. To ease up the comparison with results created by other
groups like [17], we note down the reduced units where the ionic temperature is defined
as

τ i =
kBTDσ

q2
(4.2.1)

and the dipolar temperature as

τ d =
kBTDσ

3

µ2
=
τ iσ2

d2
(4.2.2)

using D = 4πε0. As usual in our simulations we set kB = 1, D = 1, and σ = 1, which
simplifies the ionic temperature for q = 1 = const. to

τ i = T (4.2.3)

and for the constant dipole moment µ2 = 1 = const. we get

τ d = T . (4.2.4)

In the following listings of critical temperatures, and in all the plots, we will always use
the reduced temperature τ d and denote it as T .
The critical parameters, we obtained from the isotherms using the Maxwell construction
and the scaling laws, can be found in table 4.1 for constant charges q = 1, and in table
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4.2 for constant dipole moment µ2 = 1. For the constant charge series it was not possible
to observe a van der Waals loop for small dumbbells d ≤ 0.1 even by lowering down the
temperature to τ i ≈ 10−6. Nevertheless this does not allow to conclude that there is no
critical point at all, because at such low temperatures it is difficult to reach equilibrium
and simulate for sufficient long time. It is also possible that the critical temperature is
in even lower regimes, where we are not able to simulate anymore due to the mentioned
difficulties. Luckily the series for constant dipole moment can be continued to smaller
dumbbells which we did until d = 10−4. But there is also a drawback with this series for
large dumbbells beyond d > 4 where it still was possible to see a van der Waals loop as
shown in figure 4.7. However it was not possible to apply the Maxwell construction as
only a too small regime of the phase coexistence area could be simulated. So it turns out
that each of the two series has some advantages for certain dumbbell lengths d.
The results for the critical parameters with µ2 = 1 are plotted in figure 4.5 and for d > 1
also for q = 1. The critical parameters are stable in the range of 10−4 < d < 0.1 except of
some minor scattering in the critical density. This shows that the higher electric moments
do not have any effect. The averages for the critical temperature, critical number density
and critical pressure in this d range are

Tc = 0.0513 (4.2.5)

ρc = 0.004 (4.2.6)

Pc = 6.6 · 10−5 . (4.2.7)

With that we can calculate the critical compressibility factor

Zc =
Pc
Tcρc

(4.2.8)

as

Zc = 0.33 . (4.2.9)

This is in very good agreement with the compressibility factor calculated using the van
der Waals equation (4.1.1). To do that we can calculate the critical parameters for the
van der Waals equation and get

Pc =
1

27

a

b2
(4.2.10)

kBTc =
8

27

a

b
(4.2.11)

ρc =
1

3b
(4.2.12)

which yields for the critical compressibility factor

Zc =
3

8

1

kB
. (4.2.13)
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As we can see Zc is independent of the parameters a and b, which means, in theory
the critical compressibility factor is the same for all kinds of fluids. In other words “all
substances obey the same equation of state in terms of reduced variables”. This is called
the principle of corresponding states [9]. Although the principle works very well for small
dumbbells, as shown in the bottom of figure 4.5, it is not absolutely true for the full
range of dumbbells we investigated. This is a known fact for dipolar fluids and was
observed before [19, 26]. It seems to be related to the formation of chains and networks in
polar fluids. Looking at the simulation snapshots for different dumbbell systems between
d = 1 and d = 0.1 (figures 4.9 - 4.13), indicates that for d = 1.0 no aggregate generation
exists. For the smaller dumbbells a network type structure respective chains are present.
This supports that the different type of aggregation is responsible for the deviation of
the principle of corresponding states. In addition, particularly the comparison between
figures 4.12 and 4.13, which show the simulation above ρc and below ρc respectively, points
out that there is a transformation from a network to chains. This allows us, to consider
theories like Tlusty and Safran [27], where the type of aggregation is responsible for the
phase transition.
As our system is quite similar to the CHD system studied by Ganzenmüller and Camp [17],
we also did a comparison to their data. For this we converted our results into the hard
sphere system using the conversion given in section 3.5.1. The comparison can be found
in figure 4.8, where our critical temperatures for q = 1 and µ2 = 1 are plotted along with
the reference data in the range 0.01 ≤ d ≤ 7.0. Especially the data for µ2 = 1 is, despite
some offset, in good agreement with the reference data for CHDs. The values for the
critical temperature for q = 1 are lower, as we have not converted them into the reduced
units introduced in equation (4.2.2) above.

Table 4.1.: Table with our own results for the critical parameters of the CSD system with
q = 1.

d Tc ρc Pc · 10−5 Zc TDHSc ρDHSc

0.1500 0.0104 0.0052 0.0168 0.0031 0.0563 0.0285
0.2000 0.0121 0.0046 0.0062 0.0011 0.0632 0.0238
0.2500 0.0109 0.0062 0.1390 0.0206 0.0585 0.0331
0.5000 0.0195 0.0113 1.5088 0.0685 0.0903 0.0526
0.7500 0.0207 0.0090 2.7619 0.1485 0.0944 0.0411
1.0000 0.0170 0.0048 1.5640 0.1908 0.0817 0.0231
2.0000 0.0103 0.0048 3.7690 0.1915 0.0562 0.0259
3.0000 0.0057 0.0065 1.3940 0.0415 0.0361 0.0410
4.0000 0.0033 0.0026 0.6078 0.0458 0.0236 0.0185
5.0000 0.0021 0.0009 0.5305 0.1146 0.0170 0.0071
6.0000 0.0016 0.0014 0.3263 0.0426 0.0136 0.0118
7.0000 0.0012 0.0019 0.3225 0.0301 0.0110 0.0174
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Table 4.2.: Table with our own results for the critical parameters of the CSD system with
µ2 = 1.

d Tc ρc Pc · 10−5 Zc TDHSc ρDHSc

0.0001 0.0515 0.0046 7.0288 0.2986 0.1874 0.0166
0.0005 0.0516 0.0031 6.2746 0.3939 0.1875 0.0112
0.0010 0.0513 0.0045 6.3231 0.2770 0.1868 0.0162
0.0015 0.0519 0.0039 7.0521 0.3479 0.1883 0.0142
0.0025 0.0516 0.0037 6.5794 0.3436 0.1877 0.0135
0.0050 0.0522 0.0045 7.4320 0.3172 0.1892 0.0163
0.0075 0.0518 0.0039 6.9135 0.3412 0.1882 0.0142
0.0100 0.0517 0.0035 6.8934 0.3789 0.1879 0.0128
0.0150 0.0511 0.0039 6.3611 0.3202 0.1862 0.0142
0.0200 0.0518 0.0036 6.6478 0.3587 0.1881 0.0130
0.0350 0.0518 0.0036 7.0124 0.3813 0.1882 0.0129
0.0500 0.0506 0.0036 6.0740 0.3319 0.1848 0.0132
0.0750 0.0502 0.0043 6.5605 0.3025 0.1838 0.0158
0.1000 0.0487 0.0052 5.6641 0.2232 0.1797 0.0192
0.1500 0.0472 0.0036 6.1719 0.3675 0.1754 0.0132
0.2000 0.0442 0.0041 5.4273 0.3031 0.1671 0.0153
0.2500 0.0407 0.0045 3.9301 0.2158 0.1569 0.0173
0.3000 0.0374 0.0055 5.4277 0.2636 0.1475 0.0217
0.4000 0.0308 0.0070 3.6511 0.1687 0.1274 0.0291
0.5000 0.0275 0.0078 3.1222 0.1460 0.1169 0.0332
0.6000 0.0235 0.0066 2.6537 0.1700 0.1041 0.0293
0.7000 0.0221 0.0077 2.4308 0.1422 0.0994 0.0347
0.7500 0.0213 0.0086 2.4258 0.1330 0.0967 0.0388
0.8000 0.0204 0.0096 2.5155 0.1286 0.0935 0.0440
0.9000 0.0186 0.0084 2.1275 0.1360 0.0873 0.0395
1.0000 0.0170 0.0048 1.5640 0.1908 0.0817 0.0231
1.1000 0.0147 0.0115 1.1000 0.0653 0.0732 0.0570
1.2000 0.0141 0.0098 1.4000 0.1012 0.0709 0.0493
1.2500 0.0137 0.0113 1.2200 0.0788 0.0694 0.0572
1.3000 0.0136 0.0110 1.1000 0.0734 0.0690 0.0559
1.4000 0.0121 0.0096 1.2500 0.1078 0.0632 0.0501
1.5000 0.0118 0.0125 1.4962 0.1015 0.0620 0.0658
1.6000 0.0105 0.0091 0.9000 0.0946 0.0568 0.0491
1.7000 0.0097 0.0072 0.7500 0.1071 0.0536 0.0399
1.7500 0.0098 0.0079 0.9994 0.1298 0.0539 0.0433
1.8000 0.0091 0.0083 0.6000 0.0794 0.0511 0.0466

Continued on next page
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Table 4.2 – continued from previous page
d Tc ρc Pc · 10−5 Zc TDHSc ρDHSc

1.9000 0.0084 0.0080 0.5800 0.0859 0.0481 0.0460
2.0000 0.0082 0.0089 0.8019 0.1097 0.0473 0.0512
2.1000 0.0075 0.0077 0.5800 0.1001 0.0442 0.0455
2.2000 0.0070 0.0070 0.4500 0.0925 0.0419 0.0417
2.3000 0.0068 0.0065 0.4000 0.0903 0.0410 0.0393
2.4000 0.0063 0.0062 0.4000 0.1023 0.0388 0.0382
2.5000 0.0059 0.0056 0.3800 0.1142 0.0369 0.0353
2.7500 0.0050 0.0052 0.2400 0.0929 0.0326 0.0337
3.0000 0.0041 0.0048 0.1159 0.0581 0.0282 0.0331
4.0000 0.0026 0.0018 0.0539 0.1125 0.0199 0.0142

Table 4.3.: Critical parameters for the CHD system produced by Ganzenmüller and Camp
[17]

d τ ic τ dc ρc Ref.

0.10 0.001401(3) 0.1401(3) 0.0933(8) [17]
0.15 0.003024(4) 0.1344(2) 0.0958(8) [17]
0.20 0.005114(6) 0.1279(1) 0.0960(9) [17]
0.25 0.007585(5) 0.12136(7) 0.0885(9) [17]
0.50 0.02157(4) 0.0863(2) 0.0749(5) [17]
0.75 0.03612(4) 0.06422(8) 0.0655(1) [17]
1.00 0.04900(7) 0.04900(7) 0.0556(2) [17]
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Figure 4.5.: Critical temperature, Tc (top), critical density, ρc (middle), and critical compress-
ibility factor, Zc (bottom), for soft sphere systems vs. d. The simulation data is
represented for CSDs and constant charge q = 1 via solid circles and fixed dipole
moment µ2 = 1 using open circles. The horizontal lines represent Tc for 4-DSS
(dotted) and ions (dashed) in reduced densities.



90 CHAPTER 4. ANALYSIS OF THE GAS-LIQUID TRANSITION WITH MD

0 0.2 0.4 0.6 0.8 1

d

-2

-1.5

-1

-0.5

0

0.5

u
/µ

2

Figure 4.6.: The plot shows the cross-over energy u/µ2 for two dumbbells arranged side-by-side
(black) or head to tail (red) vs. the dumbbell length d. We show the energy for the
CSD model (continuous lines) and for the CSD model without soft sphere repulsion,
i.e. two charges separated by the fixed distance d (dashed lines). The head to tail
formation is preferred for small d, i.e. the system prefers to build chains.
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Figure 4.7.: In isotherms for dumbbells with d = 7.0 and µ2 = 1 still a van der Waals loop is
visible, here shown for T = 0.0025 and N = 1600 particles (the drawn line just
connects the dots and has no physical meaning). Nevertheless it was not possible to
apply the Maxwell construction as only a too small regime of the phase coexistence
area could be simulated.
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Figure 4.8.: The critical temperature TDHSc as function of the dumbbell length d. The figure
depicts the values of the CSDs with µ2 = 1 (red) and q = 1 (green) as well
as the ones for the CHDs from Ganzenmüller et al. [17] (black) in the range of
0.01 ≤ d ≤ 7.0.
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Figure 4.9.: Snapshot of the simulation for d = 1.0 and µ2 = 1 with N = 2500 particles just
below the critical temperature at T = 0.0155 and at a density of ρ = 0.0011 close
to ρc. There is no chain like or network type aggregation visible.
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Figure 4.10.: Snapshot of the simulation for d = 0.75 and µ2 = 1 with N = 800 particles just
below the critical temperature at T = 0.0207 and at a density of ρ = 0.008. A
network like branching of the particles is visible.
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Figure 4.11.: Snapshot of the simulation for d = 0.25 and µ2 = 1 with N = 800 particles just
below the critical temperature at T = 0.04 and at a density of ρ = 0.0042 close
to ρc. The particles build chains, which are only rarely branched.
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Figure 4.12.: Snapshot of the simulation for d = 10−4 and µ2 = 1 with N = 800 particles just
below the critical temperature at T = 0.048 and at a density of ρ = 0.0194 above
ρc. A network like branching of the particles is visible.
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Figure 4.13.: Snapshot of the simulation of d = 10−4 and µ2 = 1 with N = 800 particles just
below the critical temperature at T = 0.048 and at a density of ρ = 0.0030 below
ρc. The network which was visible above ρc was replaced by chains. In addition
even ring formation is visible.
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4.2.1. Tlusty-Safran theory

With having obtained the critical parameters for a huge variety of dumbbells, we need
to find an adequate theory which can explain our simulation results. The observation of
chains and network like aggregates, as seen in the configuration snapshots, allows us to
conclude that we do not have an ordinary g-l transition in our system. Instead another
approach introduced by Tlusty and Safran in 2000 [27] could apply. In their theory they
describe a defect-induced phase separation of a dilute gas with chains having two free ends
and a dense liquid characterized by a branching network. The junctions as well as the
free ends are considered as defects to a perfect network. To each type of defect, energetic
costs are associated, ε1 for the free ends and ε3 for the threefold junctions. Independent of
the defect type every defect contributes −kBT to the free energy. We can derive the free
energy by applying the framework of self-consistent field approach to polymer systems [28]
and get

f = −ρ1 − ρ3 +
1

2
φ2 . (4.2.14)

Here the first two terms are densities for the free ends respective threefold junctions and
the last term describes the excluded volume repulsion between chains proportional to the
square of the monomer density φ. The defect densities ρ1 and ρ3 can be calculated from
the monomer density together with a Boltzmann factor, which accounts for the energetic
costs of the defects, as

ρ1 ∼ φ1/2e−ε1/T (4.2.15)

ρ3 ∼ φ3/2e−ε3/T . (4.2.16)

This finally gives us for the free energy

f = −(2φ)1/2e−ε1/T − 1

3
(2φ)3/2e−ε3/T +

1

2
φ2 . (4.2.17)

Further Tlusty and Safran discover the free ends as an additional repulsion and the junc-
tions as attraction in the equation of state. So we get for the critical parameters of the
Tlusty-Safran theory

T TSc =
ε1 − 3ε3

ln[27/4]
(4.2.18)

lnφTSc = −ε1 ln[9/2]− ε3 ln[2]

ε1 − 3ε3

(4.2.19)

lnP TS
c = −ε1 ln[81/2]− ε3 ln[32]

ε1 − 3ε3

. (4.2.20)

To check if the Tlusty-Safran theory is a sound description of the phase transition in
the CSD system, we need to determine ε1 and ε3 in dependence of d. Afterwards we can
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calculate the critical parameters and compare them with the simulation results. Therefore
we start with the pair potential (3.1.10) between two particles

uCSDij =
2∑

α,β=1

{
4ε

(
σ

riαjβ

)12

+
1

4πε0

qiαqjβ
riαjβ

}
, (4.2.21)

which we consider to be aligned head to tail along a chain. Using the distance between
two sites

riαjβ = |~rij −
d

2

[
(−1)α ~ni − (−1)β ~nj

]
| , (4.2.22)

we can write for the pair potential of two particles in a chain

u1
ij = 4ε

[(
2
σ

rij

)12

+

(
σ

rij − d

)12

+

(
σ

rij + d

)12
]

(4.2.23)

+
q2

4πε0

[
2

rij
− 1

rij − d
− 1

rij − d

]
. (4.2.24)

We need to determine the energy minimum of two particles in a chain. Hence we calculate
the distance rmin via

∂u1
ij

∂rij
= 0 (4.2.25)

for the corresponding dumbbell lengths d. With this we compute

u1
min = u1

ij(rmin) . (4.2.26)

For a chain with n + 1 particles, i.e. n bonds, we can write the approximate potential
energy as

u1
n = nu1

min . (4.2.27)

To calculate the energy ε1 of free ends, we split the chain into two parts, which reduces
the number of bonds by 1 and creates two additional free ends with the energy

2ε1 = (n− 1)u1
min − nu1

min = −u1
min . (4.2.28)

We can follow a similar approach to determine the energy ε3 of the threefold junctions. We
consider that the three particles of the junctions form an equilateral triangle whose angles
are continued by a chain. The orientation of the particles is for each along the bisecting
line and therefore are at an angle of 30◦ respective 150◦ to the sites of the triangle. For
this geometry we can note down the potential energy of the junction as

u3
ijk = 12ε

( σ

rijk − d
2

√
3

)12

+

(
σ

rijk
d
2

√
3

)12

+ 2

 σ√
r2
ijk + d2

4

12
+

q2

4πε0

 1

rijk − d
2

√
3
− 1

rijk + d
2

√
3
− 2√

r2
ijk + d2

4

 . (4.2.29)



100 CHAPTER 4. ANALYSIS OF THE GAS-LIQUID TRANSITION WITH MD

Here rijk is the distance of the center of mass between the particles which is obviously the
same for all the particles in the triangle. As earlier we get rmin from

∂u3
ijk

∂rijk
= 0 (4.2.30)

to finally calculate u3
min. To calculate ε3 we consider again a large chain with n bonds,

and split it up twice, to re-join the three parts afterwards, in order to form the threefold
junction. This yields

ε3 = (n− 2)u1
min − nu1

min + u3
min = u3

min − 2u1
min . (4.2.31)

The results for the values of ε1 and ε3, calculated via the potential minimum approach in
equation (4.2.28) and (4.2.31), are shown in figure 4.14 as red lines. The plot also shows
the results obtained from the simulation data using Tc and Pc as symbols. If we use ρc
instead of Pc the results for d > 1.0 stay almost the same. But for the smaller dumbbells
this increases the result quantitatively by 10 to 20% without changing it qualitatively.
Comparing the theoretical derived data with the results from the simulation, shows that
the general trend of the data seems to be similar, i.e. for smaller dumbbell lengths the
values for ε1 and ε3 decrease. For ε1 also the values are similar in the limit d → 0, but
there is a strong deviation between the data sets for ε3. Here the value at the limit d→ 0
deviates almost by a factor 9. This deviation is most likely caused by the difficulty to find
a good approximation for the junctions and their defect energies. Without having a good
estimate for ε3, the Tlusty-Safran theory cannot provide a sound description of the critical
parameters. Another way to check, if the Tlusty-Safran theory is a valid description of
our system, is to analyze the junction density ρ3. We can calculate it from the critical
parameters according to (4.2.16) as

ρ3 ∼ ρ3/2
c e−ε3/Tc , (4.2.32)

and do a comparison with the data from the simulation configurations close to the critical
point. For the anlysis of the configurations we define that a particle forms a junction,
as soon as it has more than two neighbours in a distance riαjβ ≤ 2. For this criteria we
ideally chose a distance in the first minimum of the pair correlation function (see figure
5.5 for CSD). Values, which deviate from our selected distance riαjβ ≤ 2, will only slightly
change the result quantitatively. The comparison of the junction density is shown in figure
4.15, where in the top panel the concentration of junctions is calculated from the critical
parameters ρc and Tc using equation (4.2.32). We see that the concentration increases for
decreasing dumbbell length d and finally forms a plateau. This is in contradiction to the
data we get from the simulated configurations shown in the bottom of figure 4.15, where
we see a large increase of the junction density for long dumbbells.
Overall it is not possible to bring the simulation results in accordance with the predicted
values of the Tlusty-Safran theory. So we have to conclude that the Tlusty-Safran theory
does not provide a good phase transition description of the CSD model. The underlying
partial free energy, which models a competition of free ends vs. junctions, oversimplifies
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the observed phase transition. Along with the sole description of a dipolar liquid in terms
of free chain ends and junctions another weak point is the neglect of higher correlations in
the Tlusty-Safran theory. So we have to look for another approach to explain the phase
transition of CSDs.
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Figure 4.14.: The symbols represent the defect energies ε1 (circle) and ε3 (squares) calculated
from the Tlusty-Safran model from our simulation results for CSD with constant
dipole moment µ2 = 1 using Tc and Pc vs. the dumbbell length d. The red lines
show the defect energies ε1 (continuous line) and ε3 (dashed line) as calculated
via the potential minimum approach in equation (4.2.28) and (4.2.31).
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Figure 4.15.: Top: The concentration of junctions ρ3 calculated via the critical parameters
using the equation (4.2.32) vs. d. Bottom: Average number of junctions per
configuration nj vs. d from simulations done at T ≈ Tc and ρ ≈ ρc.
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4.2.2. Flory lattice theory

As we can see in the simulation snapshot figures 4.10 - 4.13 the idea of describing the g-l
phase coexistence in a way, where the effect of reversible formation of chains or networks
contributes to the phase transition may be a good start for a further attempt. As this
kind of aggregation is very likely for dipolar fluids [29], and similar to common polymer
systems in a solute, we can start with Flory’s equation of state [30]

bP

T
= −

(
1− 1

n

)
φ− ln [1− φ]− qε0

2T
φ2 . (4.2.33)

This gives a theoretical description how chain formation may impact the critical behavior
of the CSD model. In the equation of state n represents the segments of linear chains, q
is the coordination number of the lattice and φ = bρ expresses the chain volume fraction
with the monomer or segment volume b. The above equation of state can be derived using
a Flory-Huggins mean-field lattice model. Among several other applications, mainly in
polymer physics, it is also commonly used to describe dipolar fluids [5, 31–33]. In this
work we will omit a detailed derivation of the Flory-Huggins theory and just mention the
results we need for the comparison of our simulation data with the theory. For a more
detailed elaboration one can read [19, 34].
Using the equation of state (4.2.33), we can obtain the resulting critical parameters as

ρc =
1

b

1

1 +
√
n

(4.2.34)

Tc = T∞c
n

(1 +
√
n)2

. (4.2.35)

With the Boyle temperature TBoyle for monomers, i.e. n = 1, we can write T∞c = TBoyle =
−qε0. For the monomer case the critical parameter ρc and Tc are very similar to those
we obtained earlier in (4.2.12) and (4.2.11) via the van der Waals equation. This is no
surprise as the consideration of an ideal gas, as done by van der Waals, also only takes
monomers into account. Interesting is the behavior of the critical density, which vanishes
for large chains, n → ∞ due to ρc ∼ n−1/2, whereas the critical temperature reaches
the constant value T∞c . Corrections to the disappearance of the critical density for large
chains are discussed for instance in ( [35, 36]).
As we do not deal with a real polymer, the chain formation in our system is a dynamic
process. The dumbbells aggregate reversibly into linear chains and therefore our chain
length n varies. Thus we find multiple chains of different length n in a single system
configuration. This fact is not considered in the above equation of state (4.2.33). But
luckily it still can be used, if we identify n as the average chain length in terms of monomer
numbers [33]. The junctions we observe in our system configuration will be ignored for
the moment. In the low concentration limit, i.e. chain-chain interaction is ignored, the
average chain length is given by

n =
1

2
+

1

2

√
1 + 4(q − 1)φe−εi , (4.2.36)



104 CHAPTER 4. ANALYSIS OF THE GAS-LIQUID TRANSITION WITH MD

where the quantity εi is an in-chain contact free energy characterizing the chain growth
together with the concentration φ. This formula is well known from the theory of micellar
systems (see for instance Ref. [37]). By replacing n in equation (4.2.33) with (4.2.36) we
get for the modified critical parameters

ρc =
1

b

(
1 +

√
m3

K

)−1

(4.2.37)

Tc = −1

2
qε0

(
n

m
+ (K − n(n− 1))

√
1

Km3

)−1

, (4.2.38)

where m = 2n − 1 and K = 6n(n − 1) + 1. These expressions are far more complex
than the earlier ones for constant n. But considering large n we see that the limiting
n-dependence retains, i.e.

ρc ≈
1

b

√
3

2

1

n
1/2
c

(4.2.39)

Tc ≈ −qε0 (4.2.40)

Pc ≈ −
qε0

b

5
√

3

16

1

n
3/2
c

, (4.2.41)

with nc = n(φc, εi(Tc)). As we can see in figure 4.6, the chain formation becomes more
and more favorable, when d approaches zero. Thus we can expect the critical density
to drop for d → 0 respectively to vanish in case of unlimited chain growth. The critical
temperature is controlled by the a priori unknown parameter ε0 which possibly depends
on d. As both ρc as well as Tc depend on parameters like b or ε0, which we do not know
exactly, it is hard to calculate predictions for the critical parameters. Nevertheless it
is still possible to calculate the critical compressibility factor, where all the adjustable
parameters vanish as

Pc/(ρcTc) =
5

8
n−1
c (4.2.42)

∼ n−1
c . (4.2.43)

At the bottom of figure 4.5 we find the critical compressibility factor plotted versus d. It
shows an increase for decreasing d until d > 0.1 from there Pc/(ρcTc) remains essentially
constant. This is not in total contradiction to the expected behavior if decreased d induces
progressively longer average chain lengths. But it means that the aggregation at small d is
not as strong as one would expect and limited to rather small aggregation numbers. This
fact is also supported by analyzing the number average size n of the reversible aggregates
from the simulation data as function of d, shown in figure 4.16. Here we have defined n via
a distance criterion, where two dumbbells are considered to belong to the same cluster or
aggregate if the separation riαjβ between any of their charge site to any of the charge sites
on another dumbbell is less than a certain distance. As shown in figure 4.16, we have used



4.2. GAS-LIQUID TRANSITION OF CHARGED SOFT DUMBBELLS 105

multiple distances in a range between 1.8 to 2.2 and each one produces to some extend a
different n (for the same d), but the basic dependence of n on d remains unaltered. We
observe that the aggregates become smaller as d is reduced, until a plateau value of n ≈ 5
in the range 10−4 < d < 10−1 is reached.
Another interesting aspect is the mean aggregation size s, which has been studied based
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Figure 4.16.: Average aggregation number n for CSDs vs. d for different distance criterias
riαjβ < 1.8 (circles), riαjβ < 2.0 (squares) and riαjβ < 2.2 (diamonds). The
simulations were done close to the critical temperature T ≈ Tc and with constant
density ρ = 0.006.

on an extended Flory-Huggins theory by [38]. It has also been analyzed in simulation
studies, where a continuous growth with increasing concentration of the solute [37] is
predicted. Therefore we want to have a closer look at the mean aggregate size of the
CSD model. We start by exploiting the effect of reversible aggregation to the chemical
potential at equilibrium, where we can write

µs = sµ1 . (4.2.44)

Here µs denotes the chemical potential of a s-aggregate or s-mer containing s molecules
with chemical potential µ1. In the low concentration limit of reversibly assembling molec-
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ular systems we can also write for the chemical potential

µs = µ̄s + kBT lnxs . (4.2.45)

Here xs describes the mole fraction of s-mers and the quantity µ̄s sums up the remaining
dependencies of the chemical potential. Following [37] we can further specify xs as

xs = (x1 expα)s (4.2.46)

with the mole fraction of free monomers x1. The exponent α is given as

α =
1

kBT

(
µ̄1 −

µ̄s
s

)
(4.2.47)

=
1

kBT
(µ̄1 − µ̄bulk)− δs−1/D (4.2.48)

using the space dimension D = 1 for chainlike aggregates and the surface free enthalpy
Tδ. Plotting now the aggregate size distribution h(s) fetched from the simulation data in
a logarithmic plot vs. s, as done in figure 4.17, we expect

s ∼ h(s) . (4.2.49)

For small dumbbells, as shown in the bottom of figure 4.17 for d = 0.0001, the simulation
shows a linear behavior over a wide s range in accordance with the above aggregation
model. As we can see in the top panel of figure 4.17 for d = 1, this is not true anymore
for larger CSDs, where the aggregate size distribution does not behave linear anymore.
In summary the above theory, which explains the shift of the critical parameters rather
well for the ST model [5, 33] and another dipolar fluid [32], where reversible aggregation
of long chains occurs, does not come to bear in the present case because n remains rather
small. For the CSD model we observe a broad aggregate size distribution, but the average
size is quite small with n ≈ 5 for dumbbells of length d < 0.1. The constant behavior
of the aggregate size for d < 0.1 can be understood by equation (4.2.36), which explains
the chain growth by concentration and the in-chain contact free energy εi. For the CSD
model the charges retreat into the center of the soft-repulsive core as d decreases. Thus if
d� 1 there is no obvious reason why εi should increase, and therefore the average size, n,
approaches a constant at constant particle density and constant magnitude of the dipole
moment.
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Figure 4.17.: Aggregation size distribution for CSD, frequency h(s) vs s, at ρ = 0.006 for T
close to the respective Tc. Top: d = 1; bottom d = 0.0001.
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4.2.3. Modified van der Waals mean field theory

Finally we want to take a third attempt to explain the simulation data, by constructing
a mean field theory, which combines the Onsager cavity theory [39] of dipolar fluids
with notions from polymer theory. We consider a modified van der Waals free energy
f = ∆F/(NT ) given by

f = ln
bρ

1− bρ
− 4π

3

ε− 1

2ε+ 1

µ2

bT
. (4.2.50)

The first term in equation (4.2.50) is the usual van der Waals repulsion. The second term
is the free energy of immersion of a point dipole µ in a spherical cavity with volume b
in a medium with dielectric constant ε [39]. Using the following equation the dielectric
constant can be written as

1

4π

(ε− 1)(2ε+ 1)

ε
=
ρµ2

T
. (4.2.51)

Because we observe the critical point in the simulation at low densities, we can expand ε in
terms of ρ. Keeping only the first-order terms allows us to simplify the critical parameters
as follows

Tc ≈
8
√

2π

27

µ2

b
(4.2.52)

ρc ≈
1

3b
(4.2.53)

Pc ≈
√

2π

27

µ2

b2
. (4.2.54)

From the critical parameters we can calculate the critical compressibility factor as

Pc/(ρcTc) ≈ 3/8 (4.2.55)

which is identical to the ordinary van der Waals criticality.
Now we want to have a closer look at the parameter b. Without consideration of any
aggregation we can estimate the value for b via the second virial coefficient given by

B2(T ) = b− 16π2µ4

27bT
(4.2.56)

which ends up for µ = 0 in B2 = b. Focusing now on small dumbbells where d < 0.1,
we can compute the second virial coefficient B2(T ) for the r−12-repulsive part of the
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dumbbell-dumbbell interaction by solving the well known integral for radial symmetric
pair-potentials

B2(T ) = −2π

∫ ∞
0

r2
(
e−u/T − 1

)
dr . (4.2.57)

As each dumbbell has two interaction sites, we get in total a fourfold soft sphere repulsion
and therefore have to use

u =
16

r12
(4.2.58)

to calculate (4.2.57). At the critical temperature Tc = 0.05, obtained from the simulation
data, we get for the second virial coefficient

B2(T = 0.05) ≈ 11 . (4.2.59)

Using this value for b together with µ = 1, we can calculate the critical parameters via
the formulas given above as

ρc ≈ 0.03 (4.2.60)

Tc ≈ 0.12 (4.2.61)

Pc ≈ 1.4 · 10−3 , (4.2.62)

which is not in-line with the simulation results. As of now we treated the particles as
monomers and did not take into account the earlier observation of linear aggregates or
s-mers. So by considering the linear aggregates in our expression for b, we can greatly
improve the comparison. In the case of (long) cylinders of diameter D and length L, we
can expect

b = b1n
2 (4.2.63)

because of B2 ∝ DL2. Again we can set b1 = 11 from the monomer calculation above.
We also have to take into account that the density ρc, which we can calculate from our
theory, is the critical aggregate number density ρaggc and not the critical monomer density
ρmonc , we can calculate from the simulation results. So using the equations (4.2.53) and
(4.2.63) we need to introduce the conversion

ρmonc = nρaggc =
1

3b1n
(4.2.64)

to link the two different kinds of densities. The value for n in this equation has to be
obtained from the simulation data. In figure 4.18 we see the average aggregation number
in the case that monomers are included in the calculation of n and in the case that
monomers are excluded. In the following we take n ≈ 6 which corresponds to the case
of excluded monomers. This makes equation (4.2.64) only an approximation, as it now
underestimates the critical density. Going ahead with the value of n ≈ 6 and b1 = 11 we
get for the critical density

ρc ≈ 0.005 . (4.2.65)

We have to apply the same mapping between the monomer and aggregate values to the
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Figure 4.18.: Average aggregation number, n vs. d for constant ρ = 0.004 and T ≈ Tc. Circles:
Monomers are included in the calculation of n; squares: monomers are excluded.
The open circles represent the results for constant dipole moment µ2 = 1 and the
open symbols stand for constant charge q = 1. The straight line corresponds to
n ∝ d.

critical temperature. Inserting (4.2.63) into (4.2.53) and replacing the monomer dipole
moment µ by the dipole moment of the n-mer µn, the aggregate theory based critical
temperature becomes

Tc =
8
√

2π

27

µ2
n

b1n2
. (4.2.66)

To calculate the temperature we need a way to determine the total dipole moment µ2
n of

the n-mer. We can consider the CSD chains as freely-rotating chains of dipole vectors and
adopt the well-known expression for the calculation of the characteristic ratio of polymer
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chains as discussed in [40] and write for the dipole moment

µ2
n =

n∑
i,j=1

〈~µi~µj〉 (4.2.67)

= nµ2

{
(1 + T)(1−T)−1 − 2

n
T(1−Tn)[(1−T)−1]2

}
1,1

(4.2.68)

= ncn . (4.2.69)

In the freely rotating chain approximation all entries in the matrix T are zero except the
two entries T1,1 = 〈cos θ〉 and T1,2 = 〈sin θ〉. To get the value for θ we can use the order
parameter

P2(θ) =

〈
3 cos2 θ − 1

2

〉
(4.2.70)

=
1

(N − 1)N

〈
N∑
i<j

(3 cos2 θij − 1)

〉
(4.2.71)

=
1

(N − 1)N

〈
N∑
i<j

[3(~ni · ~nj)2θij − 1]

〉
(4.2.72)

which is also known as the nematic order parameter. θij describes the angle between
the two particles i and j and their orientation ~ni and ~nj. The order parameter can
take a value between 1.0 and −0.5. A completely ordered system, i.e. all dipoles are
parallel reaches P2(θ) = 1.0 and a randomly disordered system has P2(θ) = 0. The
negative branch down to −0.5 is also possible, but has not been observed. To get insight
into the orientation of the particle chains in our system, the calculation of (4.2.72) is
slightly adjusted to restrict the calculation to adjacent particles in an aggregate only. To
identify those nearest neigbours we use the distance criteria minα,β

(
riαjβ

)
< 2.0. The

normalization factor 1/[(N − 1)N ] needs to be adapted accordingly. A plot of the order
parameter with the simulation data for adjacent dumbbells is shown in figure 4.19. Taking
the average of P2(θ) ≈ 0.3 for small dumbbells, we get an average angle of θ = 43 degrees
between adjacent dumbbells. With the value of θ we now get cn = 3.58 for n = 6 and
with that µ2

6 = 21.5. Together with the earlier calculated critical density these numbers
yield into the following theoretical critical parameters

T theoc ≈ 0.07 (4.2.73)

ρtheoc ≈ 0.005 (4.2.74)

P theo
c ≈ 2.3 · 10−5 . (4.2.75)

Comparing those values with the average simulation results for small dumbbells d < 0.1
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Figure 4.19.: Nearest neighbour dipole orientation coupling measured via P2(θ) vs d for CSDs
at ρ = 0.004 and T ≈ Tc. The open circles represent the results for constant
dipole moment µ2 = 1 and the open symbols stand for constant charge q = 1.

which are

T simc = 0.0513 (4.2.76)

ρsimc = 0.004 (4.2.77)

P sim
c = 6.6 · 10−5 (4.2.78)

we see the predicted values in reasonable agreement with our simulation results.
Having shown that the above approach works quite well for small dumbbells, we want
to apply it also for large dumbbells, where d > 0.1. As the equations (4.2.52) - (4.2.54)
are still the basis for our further discussion, we only can vary the volume b to get an
adequate description. In figure 4.18 we see a slight growth of the aggregate size starting
at d ≈ 0.1. It turns into a large growth beyond d = 1 with aggregates consisting of more
than 10 to 100 monomers. In the region 0.1 < d < 1.0 we observe a drop of the nearest
neighbour order parameter (see figure 4.19), which remains small for most of the cases for
d > 1.0. This indicates less order for the large aggregates and therefore we can consider
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the aggregates as random coils below the overlap threshold. Then the volume scales as
b ∼ d2n3/2 (note that the random coil radius scales as n1/2) [29]. But it turns out that
this form of b does not produce a n dependence of the critical parameters in agreement
with the simulation data. Thus it is more reasonable to model the aggregates as compact
clusters corresponding to b ∼ dn. Analyzing figure 4.18 we can infer d ∼ n and hence
write

ρmonc = nρaggc ∼ 1

n
(4.2.79)

for the critical density. Here the quantity µ2
n is the mean square fluctuation of the cluster

dipole moment. This leads to µ2
n ∼ n and hence

Tc ∼
1

n
. (4.2.80)

As the critical pressure scales with µ2
n/b

2 we have in total Pc ∼ n−3 which yields

Zc =
Pc

ρmonc Tc
∼ 1

n
(4.2.81)

for the critical compressibility factor.
As the three critical quantities Tc, ρc and Zc all scale with n−1, it is reasonable to compare

this n dependence in a double-logarithmic version of figure 4.5 in figure 4.20. Here we
convert d to n on the basis of figure 4.18. The scaling for the temperature is fairly good
and also for the critical density ρc the data, despite extensive scattering, is consistent
with the expected n−1 scaling. For the critical compressibility factor the scatter makes a
definite conclusion impossible.
In conclusion we found with the modified van der Waals mean field approach, expressed in
equations (4.2.50) and (4.2.51), a qualitatively valid description for d < 0.1 and d > 1, if b
and µn are interpreted properly. With having now a sound explanation for the simulation
data for small and large d, we lack an authoritative description of the d range of rising
critical density. The peak of the critical density indicates a change in the formation of the
particles, i.e. the increase of the critical density points to a restructuring of the short linear
aggregates into more compact clusters. This is supported by two observations. First the
increase of the number of junctions starting from d > 0.1 as shown in figure 4.16, which
one would suspect for more compact clusters. Secondly an inspection of the simulation
snapshots, showing that the preferred head-to-tail pairing of small dumbbells becomes
disfavored compared to a π/2 rotation into a side-by-side pairing, if d is close to or larger
than unity. We can gain further insight into the pair arrangement of dumbbells by a
comparison of the CSD-CSD pair energies for the head-to-tail and side-by-side pairing,
as illustrated in figure 4.6. It shows that the head-to-tail arrangement is energetically
favored for small dumbbells with d < 0.624 and becomes disfavored for d > 0.624. This
also supports the above observation of the more compact aggregates. In the terminology
of the van der Waals theory the compact clusters decrease b and lead to an increase of
the critical density. The further growth of the aggregates eventually leads to a renewed
increase of b and a corresponding decrease of the critical density.
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Figure 4.20.: Critical temperature, Tc (top), critical density, ρc (middle), and critical compress-
ibility factor, Zc (bottom), for soft sphere systems vs. n (converted from d on the
basis of figure 4.18). The simulation data is represented for CSDs and constant
charge q = 1 via diamonds and fixed dipole moment µ2 = 1 using circles. The
horizontal lines represents Tc for DSS (dotted) and ions (dashed) in reduced den-
sities. The continuous line shows the n−1 scaling as obtained from the mean field
approach.
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5. Gas-liquid transition of dipolar soft
spheres

We have tracked the critical point for CSDs from an elongated charge-to-charge separation
to very small dumbbells d→ 0, in order to approximate the limit of the DSS model. Now
we want to study in the following chapter a real dipolar system. Therefore we use the
DSS system as described in chapter 3. We re-express the pair potential (3.4.2) here once
again

uDSSij (~rij, ~µi, ~µj) = 4λε

(
σ

rij

)12

+
1

4πε0

(
~µi · ~µj
r3
ij

− 3 (~rij · ~µi) (~rij · ~µj)
r5
ij

)
. (5.0.1)

For the ordinary DSS system the parameter λ must be set to 1. We carry out the
simulation in the same way as described in section 4.1.3, i.e. we use the NVT ensemble
and simulate for each temperature two isotherms. For the dipole moment of the system
we use µ2 = 1. After testing several simulation parameters, it turns out that N = 1600
particles and a cutoff radius rcut = 10 with a time step of ∆T = 0.001 produces accurate
simulation results at acceptable simulation costs. In figure 5.1 we can see the comparison of
different cutoff radii and their influence on the van der Waals loop. The isotherms, shown
there, were simulated at temperature T = 0.059 with N = 1600 particles. For rcut > 8.0,
no significant difference in the van der Waals loop is apparent. This legitimates the usage
of rcut = 10.0 in our further simulations. To take care of the dipole-dipole interactions
beyond the cutoff radius, we again make use of the reaction field method. It contributes
to the potential energy of the particle i as follows [1]

uRFi = − 1

4πε0

2(ε− 1)

2ε+ 1

1

r3
cut

~µi
∑

j∈VSp(~ri)

~µj . (5.0.2)

This then finally results in the total energy

U = λ
∑
i<j

4

r12
ij

+
1

2

N∑
i=1

~µi

 ∑
j∈VSp(~ri)

j 6=i

(
~µj
r3
ij

− 3~rij (~rij · ~µj)
r5
ij

)
− 2(ε− 1)

2ε+ 1

1

r3
cut

∑
j∈VSp(~ri)

~µj


(5.0.3)

of the system. Here we have set 4πε0 = 1 and also ε = σ = 1.
Having tracked the critical point for the CSD system earlier to d→ 0, we got the starting
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Figure 5.1.: Influence of rcut on isotherms for the DSS system with N = 1600 particles and
temperature T = 0.059. The plot shows cutoffs from rcut = 5.0 to rcut = 15.0,
where the colors and symbols are as follows, rcut = 5.0 (brown triangle down),
rcut = 6.0 (blue triangle up), rcut = 8.0 (magenta diamonds), rcut = 10.0 (red
squares), rcut = 12.5 (cyan triangle left), and rcut = 15.0 (violet circles). The lines
are drawn with the fit function in equation (4.1.10).

region of temperature and density, which we have to analyze for the g-l phase transition
of the DSS system. This is an enormous advantage, because based on earlier simulations
done on DSS or comparable hard sphere systems [2–4], we would look at higher temper-
atures and densities. Definitely that would make the detection of the phase coexistence
area more difficult. Figure 5.2 exemplifies the van der Waals loops in the DSS system
for two different isotherms. Beside the clear evidence of the loop itself, we can also see
that the isotherm at T = 0.063 seems to be very close to the critical point. Therefore
the plotted line, which was constructed for all isotherms using the earlier defined fit func-
tion (4.1.10), shows almost an inflection point instead of a loop. The complete g-l phase
coexistence area is shown in figure 5.3 including the critical point, which we found at
temperature Tc = 0.0632 and critical density ρc = 0.0033. These values are in accordance
with another study of the DSS system, done within our group by Jia [5]. He followed a
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different approach similar to Steven and Grest [6] and tracked the critical point of the
DSS in an external field to the limit of zero field, which is identical to our study.

Finally we can calculate with the critical pressure Pc = 9.9 · 10−6, the critical com-
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Figure 5.2.: Two exemplary van der Waals loops for DSS system with N = 1600 particles at
temperature T = 0.058 (red squares) and T = 0.063 (black circles). The lines are
drawn with the fit function in equation (4.1.10).

pressibility factor, which results in Zc = 0.047 and is much lower than the one we have
calculated earlier for the CSD system. To understand this difference, we have to recap
the geometry of the CSD particle. It consists of two soft sphere sites, which end up in
four particle-particle soft sphere interactions, whereas we have only one interaction for
ordinary DSS particles. Therefore we do another study of the DSS system with λ = 4 and
call this the 4-DSS system. In figure 5.4 we can see the impact of the fourfold repulsion on
the structure of the system, by comparing two simulation snapshots, created at the same
conditions with T = 0.05, ρ = 0.003. The ordinary DSS system forms long reversible
chains including rings, whereas the additional repulsion of the 4-DSS system suppresses
aggregation. Thus only small chains are formed. Taking a look at the pair correlation
function in figure 5.5, shows that with the introduction of the fourfold repulsion, the
structure of the 4-DSS becomes almost identical to the one of the CSD model for small
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Figure 5.3.: Phase coexistence regime of the DSS system simulated for N = 1600 particles.

dumbbells.
Besides the fact that the fourfold repulsion allows a direct comparison to the CSD model,

it also opens a new aspect in the effort to analyze purely dipolar systems. Due to the
increased repulsion the 4-DSS system is much easier to equilibrate. Following the idea to
avoid excessive chain formation, numerous functional forms for the interaction potential
(e.g. [4, 7, 8]) have been proposed to study the g-l criticality. They are characterized by a
control parameter, allowing to approach the ordinary DSS (or DHS) interaction. Tuning
the potential towards the DSS (or DHS potential), one hopes to collect sufficient data,
permitting extrapolation to the critical parameters of the limiting systems, before exces-
sive aggregation renders equilibration prohibitively time consuming. However, to the best
of our knowledge, no such study has controlled aggregation via scaled repulsion. Increased
repulsion, however, appears to be the easiest approach to a model potential with purely
dipolar attraction and easy access to its g-l critical point [9].
The critical parameters for the 4-DSS, which we have determined via NVT MD simu-
lations in the same way as for the ordinary DSS system are ρc = 0.0037, Tc = 0.0501
and Pc = 4.9 · 10−5. The critical compressibility factor is Zc = 0.262, which is slightly
lower than the value Zc = 3/8 obtained from simple liquid mean field theories like van
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Figure 5.4.: Top: Ordinary DSS at T = 0.05, ρ = 0.003; bottom: 4-DSS with fourfold repulsive
interaction at the same conditions. Lines connecting particles indicate reversible
bonds based on a distance criteria.
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der Waals. All critical parameters can be found in table 5.1. Thus both DSS systems can
be compared with the average values for the CSD system for d < 0.1, where the influence
of d is very limited. The 4-DSS system is in very good agreement with the average values
for CSD below d < 0.1 and shows that the limit of d→ 0 of the dumbbell system indeed
can be considered for the g-l phase transition of the dipolar system.

Table 5.1.: Critical parameters for the DSS systems and the average CSD values for d <
0.1 noted as 〈CSD〉

System Tc ρc Pc Zc

DSS 0.0632 0.0033 9.88 · 10−6 0.047
4-DSS 0.0501 0.0037 4.85 · 10−5 0.262
〈CSD〉 0.0513 0.0040 6.74 · 10−5 0.330
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Figure 5.5.: Pair correlation functions for the CSD, DSS and 4-DSS model at T = 0.05, ρ =
0.003 and dumbbell length d = 0.0001. The black continuous line shows the pair
correlation function g2(r) for the dumbbells. The red line presents the same for the
4-DSS model and the blue line for the ordinary DSS model. It is obvious that the
structure of the CSD and 4-DSS model are almost identical.
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6. Simulation results for the ionic
system

In the previous chapters we studied the phase behavior of CSDs and their limit for d→ 0
to DSS [1, 2] using MD simulations. With extending the analysis of the CSD model to
d � 1 up to d = 7, we crossed the line, where one would expect that the CSD model
behaves similar to an ionic fluid. So with eliminating the rigid dumbbell bond of the CSD,
we get an ionic fluid. This soft sphere ionic fluid is similar to the commonly used RPM,
which has a hard core repulsion instead of a soft sphere repulsion. In the following chapter
we want to analyze the phase coexistence of the soft sphere ionic system and compare
it with the literature results of the RPM, as well as the theoretical predictions of the
Debye Hückel theory. In addition we want to compare the results with the CSD model,
because a detailed theoretical study of the g-l phase separation in the RPM [3, 4] shows
that its critical parameters are governed by the formation of (primarily) dimers. Our
dumbbells are akin to these dimers, at least for certain values of d. To substantiate our
results and investigate the impact of the long-range correction, we compare our simulation
with the results of the LAMMPS MD simulator [5], which makes use of the Ewald [6]
correction instead of the reaction-field method applied in our own MD simulation package.
In addition we also analyzed the structural information of the systems in the regime of
the critical point and for a broad range of densities from 10−10 to 10−1. A similar work
was done recently by Valeriani et al. [7] for the RPM. We also compare our results with
the theoretical approach for ion-pairing.

6.1. Gas-liquid transition of ionic soft spheres

In the following we want to analyze the g-l transition of an ionic system. This corresponds
to the earlier studied dumbbells in case the charge is not rigidly bound. We therefore
consider a fluid of charged soft spheres, i.e. a r−12 repulsion. Half of them carry charge
−q and the other half charge +q. We already defined the potential energy between two
particles in (3.6.1) by

uij(rij) =
4

r12
ij

+
1

4πε0

qiqj
rij

. (6.1.1)
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As we usually set the LJ parameters ε and σ to one, we omitted them in the equation
above. Whereas we keep 4πε0, which also equals one in our units, for easier comparison
with the formulas below. The interaction potential is applied to a system of N particles in
NVT MD simulation. As we use a cutoff radius rcut for the interaction potential, we apply
a long-range correction method for the Coulomb interaction. As for the other models we
rely on the reaction field method as introduced in section (2.5.3) and derived from Tironi
et al. [8]. In contrast to the dumbbells, for which the cutoff sphere is charge neutral,
we get for the ionic system the following contribution from the reaction field to the total
Coulomb energy

uRFi =
1

4πε0εI

εI − ε
ε rcut

∑
j∈VSp(~ri)

qiqj . (6.1.2)

This results in a total Coulomb energy of the system given by

UC =
1

2

N∑
i=1

qi
4πε0εI

φI(ri) (6.1.3)

=
1

4πε0εI

∑
i<j

j∈VSp(~ri)

qiqj
rij

+
1

4πε0εI

εI − ε
2ε rcut

N∑
i=1

∑
j∈VSp(~ri)

qiqj .

(6.1.4)

Here VSp(~ri) describes the cutoff sphere of the particle at position ri with radius rcut and
ε corresponds to the dielectric constant of the fluid. The dielectric constant of the inner
part of the cutoff sphere can be set to εI = 1.
The total Coulomb force on charge qi caused by another particle j including the reaction
field can be expressed via

~FC(~rij) =
qiqj
4πε0

(
1

r3
ij

− 2(ε− 1)

2ε+ 1

1

r3
cut

)
~rij . (6.1.5)

The last term in equation (6.1.5) is the force ~FRF (~rij) based on the reaction field. It
contributes also to the pressure as follows〈

N∑
i=1

~ri ~F
RF (~rij)

〉
=

1

4πε0

2(ε− 1)

2ε+ 1

1

r3
cut

〈
N∑
i<j

r2
ijqiqj

〉
. (6.1.6)

The unknown dielectric constant ε can be obtained via

(ε− 1)(2ε+ 1)

3ε
=

〈
~MSp · ~MB

〉
Tr3

cut

(6.1.7)
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with the dipole moment ~MSp of a cutoff sphere and the total dipole moment of the

simulation box ~MB. Equation (6.1.7) is evaluated in each simulation step. To calculate
the reaction field contribution to the force and torque the cumulative average of ε is used.
With our own software package we carry out MD simulations in the NVT ensemble. The
temperature is controlled via the weak coupling method of Berendsen et al. [9]. One
isotherm consists of 30-45 state points. The initial configuration for the first state point is
based on particles arranged on a fcc lattice with random velocities. Along a single isotherm
the final configuration of the preceding density is used for the new density. For each state
point we equilibrated the system for 1000 time units before collecting the results over 800
time units using a time step of 0.003. Depending on density these times are extended up
to 100-fold if necessary. The simulations to obtain the critical parameters were performed
for a system containing N = 1000 particles with a cutoff rcut = 10.0. Variation of the
cutoff up to rcut = 20.0 and the number of particles up to N = 3000 showed that the
chosen values are sufficient to calculate reliable results.
For comparison we used the LAMMPS package, which delivers several pair styles out
of the box. For our purpose we chose one standard pair style, which is based on a
LJ potential in combination with Coulomb interaction and the PPPM [10, 11] long range
correction. To be in accordance with the potential given by (6.1.1) the attractive r−6 term
in the LJ force was removed from the standard pair style. To reduce the computation
time, we used the final configuration of an individual state point of our own package as
initial configuration for the LAMMPS run to construct the corresponding state point. We
further equilibrated the start configuration for LAMMPS for 750 time units before we
took the results over further 800 time units. Similar to our own package those times were
extended if necessary. In our LAMMPS simulation the temperature is controlled using a
Nosé-Hoover thermostat [12]. To determine the critical parameter, we again make use of
the Maxwell construction (see 4.1.1) and the scaling laws introduced in section 4.1.2.
The critical parameters calculated with the isotherms of our own software package were
TC = 0.0163 and ρc = 0.006, this is in good agreement with the results produced via
LAMMPS, which are TC = 0.0152 and ρc = 0.007. All critical parameters can be found
in table 6.1. The phase coexistence area produced from both packages is shown in figure
6.1 in critical units. As expected there is a good agreement between the two results. This
accordance of the two software packages also shows that the different methods used for the
long-range correction of the Coulomb interaction produce similar results in the g-l phase
of the ionic system. This is also in concordance with [13–16], who studied dipolar systems
(ST fluid or water) to compare the two long-range correction methods. Even though the
closeness of the above results does already indicate that our reaction field method and the
Ewald summation do yield the same results, we do a further simple test of both methods
in section 6.3 below.
As our model is quite similar to the restrictive primitive model, we want to compare
simulation results from literature with ours. But before we can do this, we have to cover
the influence of the different repulsions on the critical parameters. We follow the same
approximation as done previously (see section 3.5.1) to convert the results between the
soft ions (si) and the hard sphere (hs) ions of the RPM. For the temperature conversion
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we use
T hseff
q2/σhs

=
T si

q2/σsi
, (6.1.8)

where T hseff is the temperature in the soft sphere ionic system converted to a hard sphere
system. Analogous we proceed for the density, i.e.,

(σhs)3ρhseff = (σsi)3ρsi . (6.1.9)

Here σsi follows via Bsi
2 (T sic ;σsi) = Bhs

2 (σhs = 1), where B2 refers to the second virial
coefficient of the respective model. With that we get

σsi(T ) = Γ(3/4)1/3(4/T )1/12 (6.1.10)

where Γ(3/4)1/3 ≈ 1.07011. With the critical temperature Tc = 0.0163, calculated by
our own package, and the above introduced conversion we arrive at T hsc = 0.028 and
ρhsc = 0.029. Historically the studies of the RPM system used mostly MC methods to
determine the critical parameters arriving at a wide range of results. Valleau calculated
Tc = 0.070 and ρc = 0.07 in 1991 [17] and an early work by Panagiotopoulos in 1992 [18]
found the critical point at Tc = 0.057 and ρc = 0.030. But latest simulations for the RPM
done by Panagiotopoulos [19] reveal Tc = 0.0489 and ρc = 0.076 for the critical parame-
ters, which is almost identical to the results of Caillol et al. [20], which are Tc = 0.049 and
ρc = 0.080. Those values differ approximately a factor of two from our converted results.
But without the conversion the critical temperature of the soft ions differs from the same
quantity in the RPM by a factor of about three. In the case of the critical density the
respective factor is about 12.

Table 6.1.: Critical parameters for the ionic system produced with our own software pack-
age and LAMMPS.

Package Tc ρc Pc Zc T hsc ρhsc
Own 0.0163 0.006 2.8 · 10−6 0.286 0.028 0.029

LAMMPS 0.0152 0.007 3.1 · 10−6 0.291 0.026 0.035

In addition to the comparison with simulation data, we can use the estimations for the
RPM system based on the Debye-Hückel theory published nearly 90 years ago [21]. The
Debye-Hückel theory predicts the critical parameters of the RPM at Tc = 1/16 and
ρc = 1/64π. A further improvement of the Debye-Hückel theory was done by Levin and
Fisher [3, 4], who encouraged the idea that the basic unit is not the ion but the neutral
ion pair. This leads to the Debye-Hückel Bjerrum plus Dipole Ionic coupling theory.
Therefore we get Tc = 0.0574 and ρc = 0.0277 for the critical parameters of the RPM,
which is again a factor of two away from our result for the critical temperature but does
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very good correspond to our critical density.
As our earlier studied CSD model can be considered as neutral ion pairs with infinite
coupling, we want to see how good the results of the ionic system fit into this. The figure
6.2 presents the recent results for the ionic system along with those obtained earlier for
CSDs and DSS. For Tc and ρc the results are in accord with the above idea; i.e., for Tc the
results intersect at d ≈ 1 and for ρc at d ≈ 2. Only in case of the critical compressibility
factor the intercept appears at a too small d. We note that Daub et al. [22] have studied
the critical behavior of the hard core variant of the dumbbell model and find rather good
agreement between their system, in which the dumbbell length is equal to the diameter of
the repulsive cores, and the RPM critical parameters. On the other hand a recent study
by Nikoubashman et al. [23] shows that the details of the ion-ion interaction have a strong
influence on the values of the critical parameters. In this analysis the point charges were
replaced by extended charge distributions. Additional information can be gained from
the pair correlation functions shown in figure 6.3. The first peak is very sharp for g+−

2 and
totally missing for g++,−−

2 . Indeed this is a very good indicator of having cation-anion
pairs in the system and therefore a valid explanation of the closeness of the ion critical
parameters to the dumbbells with length d ≈ 1 − 2 as they are similar to ion pairs. In
the following we want to do some further analysis of the pairing in ionic systems.

6.2. Ion pairing in the soft sphere ionic system

We want to continue our study with an analysis of the cation-anion pairing of ions in terms
of Bjerrum association in our system. A similar work was done recently by Valeriani et
al. [7] for the RPM at low concentrations and low temperatures, where a substantial ion
pairing is expected [24]. They did a detailed comparison between theory, simulations and
experimental data. We want to shortly recap the theoretical approach based on the ideal
Bjerrum dipoles [25], to derive an approximation for the ion degree of association α. More
details also can be found in Ref. [4, 26]. We start with the quasi-chemical equilibrium

cation− anion pair 
 cation+ anion , (6.2.1)

and go ahead with the number density for (reversible) cation-anion pairs, defined as
ρ± = αρ/2 and the density of cations and anions ρ+ = ρ− = (1− α)ρ/2. The association
α can be derived by considering chemical equilibrium µ± = µ+ + µ− of the three types of
components, cations, anions and neutral pairs. For an ideal gas of free charged particles
and neutral ion pairs the chemical potentials are

µ+ = kBT ln

[
(1− α)ρ

2
Λ3

+

]
= kBT ln(ρ+Λ3

+) (6.2.2)

µ− = kBT ln

[
(1− α)ρ

2
Λ3
−

]
= kBT ln(ρ+Λ3

+) (6.2.3)
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Figure 6.1.: Phase coexistence area of the ionic fluid based on the results produced with our
own software package (red) and LAMMPS (black) in critical units.

µ± = kBT ln(αρΛ3
+Λ3
−/2K) = kBT ln(ρ±Λ3

+Λ3
−/K) . (6.2.4)

Here we use the de Broglie thermal wavelengths Λ+ and Λ− of the corresponding particles.
With that we get

α

(1− α)2
=
αρ

2
. (6.2.5)

This we can solve for α, which is between 0 and 1, to arrive at

α = 1− 1

Kρ

(√
1 + 2Kρ− 1

)
. (6.2.6)

The quantity K is an “equilibrium constant” and named association constant. It is de-
scribed via the pair configuration integral

K(T ) = 4π

∫ R>

R<

drr2 exp

[
−u±
T

]
dr , (6.2.7)
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Figure 6.2.: Critical temperature, Tc (top), critical density, ρc (middle), and critical compress-
ibility factor, Zc (bottom), for soft sphere systems vs. d. The simulation data is 
represented for CSDs and constant charge q = 1 via diamonds and fixed dipole 
moment µ2 = 1 using circles. The horizontal lines represent Tc for DSS (dotted) 
and ions (dashed) in reduced densities.

where u± is the intrapair potential. As described in [4] there are also other expressions
available to calculate the association constant. But for very low temperatures the devia-
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Figure 6.3.: Pair correlation functions for the ionic systems. The black continuous line shows
the pair correlation function g2(r) ignoring the charge of the particles. The red
dashed line presents g++,−−

2 (r), the result for identical charged particles, and the
green doted g+−

2 (r) is the result for oppositely charged particles. The results are
taken from simulations close to the critical point at T = 0.0163 and ρ = 0.006.

tions are only minor. In the case of the RPM u± is a −r−1-Coulomb potential and R> is
given by the hard core repulsion. For the soft ions u± = 4r−12 − r−1 and R< = 0. As the
integral in eqn 6.2.7 does not converge for R> →∞ a suitable upper limit for the integral
needs to be identified. For the RPM we could approximate it as

K ≈ 4πσ3 exp (1/T )
[
T + 2(T )2 + 2(T )3

]
. (6.2.8)

Here we use the fact that the particle distance for cation-anion pairs at low temperatures
will be only slightly more than σ. We can use a similar approach for our soft sphere
ions. We set the upper limit of the integral with the same criteria, we used to define two
particles as paired. We can take a value close to the first minimum of the pair correlation
function in figure 6.3. In our case we consider two ions as paired, if their separation is less
than R< = 3.2 and use the same value as upper limit for the calculation of K in (6.2.7).
In general it turns out that there are multiple options for the upper limit of the integrand.
Using for instance the minimum of the integrand, i.e. R< ≈ (2T )−1 as originally proposed
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by Bjerrum, yields almost identical results. A discussion of the cutoff ambiguity can be
found in Ref. [26].
To compare the theoretical results with our simulation for the soft sphere ions, we created
several independent simulation runs for different temperatures and varied the density from
ρ = 10−10 – 10−1. All simulations were performed for N = 800 particles and t∗ = 5.25 ·104

LJ-time units for the high densities and up to t∗ = 5.25 · 107 for the very low densities.
We also used different cutoffs from rcut = 10.0 for high densities up to rcut = 200.0 for
the lowest ones. With the above mentioned distance criteria we considered two ions as
paired if their separation is less than r < 3.2. The herewith calculated association α
is plotted in figure 6.4 versus ion number density ρ for temperatures between 0.04 to
0.08. We also included the theoretical results. We use equations 6.2.6 and (6.2.7) for the
numerical computation of K(T ). Notice that α, following an S-shaped curve, increases
for increasing density. The threshold density, at which the steepest rise occurs, becomes
lower with decreasing temperature, as expected. The comparison is not as good as for
instance found in Ref. [7] for the RPM, following up on an earlier simulation study by
Shelley and Patey [27]. But overall it supports the basic idea of ion pairing as a central
ingredient for the understanding of this type of system.

6.3. Comparison between Ewald summation and the
reaction-field method

Even though our comparison between the Lammps package and our own simulations does
already indicate that the reaction field method and Ewald summation do yield the same
results, we briefly want to double check the equivalence of the two methods in our system.
The most common Coulomb long range methods used in computer simulations fall into
two principal categories, the direct particle-particle calculation based on the Ewald sum-
mation technique [6, 28] and the continuum description established via the reaction-field
method [8, 29–31]. The Ewald summation approach makes use of the periodicity of the
system, which is established via the periodic boundary conditions and works perfectly
on periodic systems. The reaction field method calculates the long-range interactions
by embedding the particles into a structureless dielectric continuum. This requires the
knowledge of the dielectric constant ε of the surrounding. The dielectric constant is a
priori unknown, but luckily it can be calculated directly from the system [32].
As noted above, the two different ways to treat the long-range character of the Coulomb
force had no big impact on the critical parameters of the ionic system. But for a detailed
investigation of those two methods, we lower the temperature of our ionic model to the
solid phase. Here the Ewald summation can be taken as reference, as this is the area for
which it was developed. We calculate the Coulomb energy including the long-range correc-
tion for a system of particles with unit charge ±1 placed on a perfect NaCl lattice with the
nearest neighbour spacing between ions equal to one. After a small random displacement,
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Figure 6.4.: Degree of association for the ionic fluid. The symbols show the simulation results
taken for different temperatures along with the continuous lines in the same color
calculated by the theoretical approach for K given by 6.2.8. The temperatures
correspond to T = 0.04 (circles), T = 0.05 (triangles), T = 0.06 (squares), T = 0.07
(crosses), T = 0.08 (diamonds).

r, of the individual particles we calculate the Coulomb energy per ion, uc, of the system
using both methods, i.e., reaction field and Ewald summation. In figure 6.5 the results of
the two methods are shown as function of r. As expected the two methods do not corre-
spond for small r when the system is close to a perfect grid, whereas agreement improves
for larger displacements, when the original lattice is completely randomized. Additionally
we get similar results, if we apply the different methods on arbitrary simulation snapshots
produced by our earlier simulation runs, which are not related to any lattice structure at
all. This shows that for our computer simulations both techniques can be used to treat
the long range contribution of the Coulomb force. This is also in compliance with other
comparisons found in literature. Especially Neumann et al. did several studies of the
reaction field method for dipolar systems using a lattice approach [31, 33] and also the
Ewald summation method [34]. He showed that both methods produce similar results.
The results of Benavides et al. [35], who extended the comparison of dipolar fluids to
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Figure 6.5.: Total Coulomb energy for a FCC lattice over the displacement of the particles r to
the lattice for the Ewald summation technique (circles) and reaction field method
(squares)

consider also the quadrupole interactions, and Nymand et al. [15], who used also charged
particles, strengthen the view, that both methods produce consistent results.
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7. Osmotic pressure of charged systems

In the first section of this chapter we explain osmosis and the osmotic pressure including a
derivation of the van’t Hoff equation following Ref. [1]. In the second section we document
the results of our simulations and compare them to the van’t Hoff equation as well as
experimental results.

7.1. Osmosis and osmotic pressure

We consider a system which consists of two subsystems containing two types of particles.
The first subsystem contains the solvent particles and the second one a mixture of the
solvent and solute. The two subsystems can exchange particles through a semi-permeable
membrane which confines the solute particles in the second subsystem but allows the
solvent to pass the membrane in both directions. If we now start to monitor this kind of
system as it is illustrated in figure 7.1, we observe that the solvent particles are exchanged
between the two subsystems until chemical equilibrium of the solvent between the two
subsystems is reached. Thus

µ∗l,1(T, p) = µl,2(T, p+ π, xl,2) (7.1.1)

where the left side is the chemical potential of the pure solvent in the beaker and the right
side is the chemical potential of the solvent in the mixture inside the tube. Here we use
the nominations that the index l denominates the solvent and s the solute. The beaker
containing the pure solvent represents the first subsystem using index 1 and the tube the
second one using index 2. In addition the asterisk ∗ indicates a pure substance. The
temperature T in both subsystems is identical, and xl,2 is the solvent mole fraction inside
the tube. The difference between the pressure p+π in the tube and the external pressure
p is called osmotic pressure π. It is caused by the semi-permeable membrane which only
allows the chemical equilibration of the solvent and not the solute. Comparing the setup
shown in figure 7.1 together with the initial setup when the two surfaces are on the same
level, and the tube only contains solute particles, the osmotic pressure π can be calculated
from the height of the liquid column inside the tube h at equilibrium. With that it seems
to be easy to measure the osmotic pressure. But as the effect is large, e.g. a one molar
solution of sucrose has an osmotic pressure of about 27 atm. at 25◦C [2], it is not as easy
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Figure 7.1.: A simple osmosis experiment is illustrated where a semi-permeable membrane sep-
arates the solution inside the tube from the solvent in the beaker. The solvent
flows through the membrane increasing the amount of liquid and thus the height of
the meniscus in the tube. This continues until the pressure generated by the liquid
column is equal to the osmotic pressure of the solute.

as it seems. A special difficulty is the manufacturing of appropriate membranes which are
truly semi-permeable.
In the following we want to derive the van’t Hoff equation which is an expression for the

osmotic pressure in an ideal solution. We start from the Gibbs-Duhem equation given by

− SdT + V dp+ ...−
K∑
i=1

nidµi = 0 (7.1.2)

where K gives the number of components in the mixture and ... stands for other intensive
variables in addition to T and p. As in our case only the pressure p and the chemical
potential µl vary we can simplify it to

V ∗(p)dp− n∗l dµ∗l = 0 . (7.1.3)

Assuming incompressibility of the liquid, i.e. V ∗(p) = const., the integration of equation
(7.1.3) yields

(7.1.4)

l

V ∗(p)(p + π − p) ≈ nl
∗ [µl

∗(T, p + π) − µl
∗(T, p)] . 
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lReplacing µ∗(T, p) via equation (7.1.1) in (7.1.4) yields

µ∗l (T, p+ π)− 1

n∗l
V ∗(p)π ≈ µl(T, p+ π, xl) (7.1.5)

with the chemical potential of the solvent in the mixture with the solute on the right side.
With xl � xs,2 the effect of the solute on the chemical potential is given in the following
equation [1, 3]

µl(T, p+ π, xl) = µl(T, p+ π) +RT lnxl (7.1.6)

and we can write

µ∗l (T, p+ π)− 1

n∗l
V ∗(p)π ≈ µl(T, p+ π) +RT lnxl . (7.1.7)

With this we can finally write down the expression for the osmotic pressure

π ≈ − RT

V ∗(p)/n∗l
lnxl (7.1.8)

π ≈ RT

Vl,mol

xs,2 (7.1.9)

where we have used the molar volume Vl,mol = V ∗(p)/n∗l of the solute at pressure p
and temperature T and the approximation lnxl = ln(1 − xs,2) ≈ −xs,2. This equation
is obviously proportional to xs,2. Here we already see some resemblance of the osmotic
pressure in equation (7.1.9) to the pressure of the ideal gas. It becomes even more apparent
with introducing another transformation

xs,2 =
Ns,2

Ns,2 +Nl,2

≈ Ns,2

Nl,2

(7.1.10)

which yields together with V2 ≈ Vl,molnl,2 the final van’t Hoff equation

π ≈ Ns,2kBT

V2

. (7.1.11)

This is no longer proportional to xs,2 as it depends on the molar concentration Ns,2/V2 =
xs,2 ·ρ2, where ρ2, the density of the mixture, will change with increasing osmotic pressure.
The equation is named after Jacobus van’t Hoff, who in 1901 received the first Nobel prize
in chemistry for his work on chemical dynamics and osmotic pressure in solutions. This
result shows also that the osmotic pressure is a colligative quantity under the approxi-
mations we have made in the derivation as it only depends on the molar concentration
Ns,2/V2 of the solute and the temperature T .
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7.2. Simulation results for osmotic pressure

In the following sections we first explain the details of the systems which we have studied.
Then we present the results of a LJ model which we used to confirm the correctness of our
simulation routines. Finally we discuss our results for the osmotic pressure in solutions of
ions in a dipolar solvent.

7.2.1. The modified simulation models

We analyze the osmotic pressure for a mixture between dipolar particles as solvent and
simple ions as solute. In addition we test our program routines using the LJ model. All
three models have been already introduced in chapter 3. However in the following we use
a slightly modified LJ pair potential given as

uLJab (rij) = 4

[(
σab
rij

)12

− εab
(
σab
rij

)6
]

(7.2.1)

which allows us to introduce different attractive interactions between the particles using
the parameter εab to model the solute and solvent particles for the LJ system. The
adjustments to the long range corrections of the potential energy and pressure are defined
in (2.5.34) and (2.5.35). Due to the importance of the potential energy for our MC
simulation we express the energy correction again

ULJAB
corr = −8

3
πσ3

[
−1

3

(
σ

rcut

)9
N2

V
+

(
σ

rcut

)3
εAAN

2
A + εBBN

2
B + 2εABNANs,2

V

]
.

(7.2.2)

Obviously we do not only have to deal with the parameter εab in the correction but also
need to consider the mixture of solute and solvent particles.
For the pure systems of ST particles and ions we already have noted down in chapter 3
the interactions between the same kind of particles. But for the mixture we still have
to treat the cross interactions between different kind of particles. For the non coulombic
part of the interaction we use the modified LJ pair potential defined in equation (7.2.1)
with the parameter

εSI = 0 (7.2.3)

for the cross interaction between the Stockmayer(S) particles and the ions (I). For the
interaction between the same particles we have

εSS = 1 (7.2.4)
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for the ST particles and

εII = 0 (7.2.5)

for the ions. The charge-dipole pair potential, which is a monopole-dipole potential,
between the particles i and j can be defined as [4]

uCDij (~rij, ~µj) =
qi
r3
ij

(~µj · ~rij) (7.2.6)

where qi is the charge on the ion and ~µj is the dipole moment vector of the ST particle.
For the simulation we need to apply a cutoff distance rcut and therefore we have to take
care of the contribution to the potential energy caused by the particles outside the cutoff
sphere. As done previously, for the case of pure fluids, we make use of the reaction field
method to describe the long range interaction of ions and dipolar ST particles beyond
the cutoff radius. In equation (5.0.2) and (6.1.2) we have already taken care of the long
range interaction for the dipole-dipole and the charge-charge interaction. Now we want to
note down the terms for the charge-dipole interaction, which have to be considered in the
calculation of the potential energy [5] for an ionic particle i and the surrounding dipolar
particles j

uC
RF

i = − 1

4πε0

2(ε− 1)

2ε+ 1

1

r3
cut

∑
jµ∈VSp(~ri)

qi ~µj · ~rij (7.2.7)

and

uD
RF

i = − 1

4πε0

2(ε− 1)

2ε+ 1

1

r3
cut

∑
jq∈VSp(~ri)

qj ~µi · ~rij (7.2.8)

for the energy of a dipolar particle i and an ionic particle j. The summation in the terms
above includes all particles in the cutoff sphere VSp(~ri) of particle i. However, only the
particles of different type to i are considered noted by jq for ions and jµ for dipoles. With
these additional terms we can write for the total energy for an ion i in the ion-dipole
mixture

uIoni = qi

 ∑
jq∈VSp(~ri)

j 6=i

(
qj
rij
− ε− 1

ε

qj
rcut

)
− 2(ε− 1)

2ε+ 1

1

r3
cut

∑
jµ∈VSp(~ri)

~µj · ~rij

 , (7.2.9)

and in the same system for the dipole

uDPi = ~µi

 ∑
jµ∈VSp(~ri)

j 6=i

(
~µj
r3
ij

− 3~rij (~rij · ~µj)
r5
ij

)

− 2(ε− 1)

2ε+ 1

1

r3
cut

 ∑
jµ∈VSp(~ri)

j 6=i

~µj +
∑

jq∈VSp(~ri)

qj~rij




(7.2.10)
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where we have used 4πε0 = 1. So with these two expressions we can consider the reaction
field in the calculation of the Metropolis criteria. From the existing literature we know
that the reaction field method generates results which are in accordance with the Ewald
summation technique. Amongst others the equivalence between the two methods was
shown by Neumann [6] for dipolar systems. Bandura et al. [7] studied for ion solutions
in dipolar solvent the thermodynamics and structure using the reaction field method and
concludes that the method works well for mixtures of ions and dipoles for moderate values
of dipole moments and charges.

7.2.2. Test of the simulation routines for a Lennard-Jones system

To verify that our simulation program produces reliable results we carried out simulations
which allow us to compare our data with those published in the literature. The first test
of our program routines continues the earlier discussion on g-l transition which we can
analyze using the GEMC technique. We therefore use the ST system as we will use this
model later on also for the analysis of the osmotic pressure in charged systems. In addition
we also determine the critical parameters for the LJ system, which is as a special case of
the ST system when µ2 = 0. Studying the LJ system is useful, because we will make use
of it in our second test where we try to reproduce previous osmotic pressure results in
the literature. Table 7.1 compiles our simulation results and compares them to data from
the literature. As it turns out, the agreement is very good. A visual representation of

Table 7.1.: Critical parameters for the LJ, i.e. µ2 = 0, and ST system in comparison with
results from the literature

µ2 Tc ρc T litc ρlitc Ref.

0 1.310 0.296 1.316 0.304 [8]
1 1.402 0.303 1.41 0.30 [9]
2 1.601 0.312 1.60 0.31 [9]
3 1.815 0.308 1.82 0.312 [10]

the g-l phase coexistence area in critical units produced with our program can be found
in figure 7.2. Corresponding coexistence curves can be found in Ref. [8–11]. Again, the
good overall agreement confirms the proper performance of our program routines. The
simulations for the LJ system were created using N = N1 + N2 = 1000 particles and
rcut = 5.0. In the case of the ST system we used N = N1 + N2 = 4096 with a cutoff
rcut = 7.5. In both cases the simulation was started at the density ρ = 0.3 in each box.

Having shown that our simulation program produces results in accordance with the
literature, we can continue with the second test. We now apply the modified MC algorithm
to the calculation of osmotic pressure. As done previously in our work group by Schreiber
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Figure 7.2.: Phase coexistence area in critical units for the LJ and ST model. The LJ model
is shown in blue and the other colors are for the ST system with µ2 = 1 (black),
µ2 = 2 (red) and µ2 = 3 (green). The black diamond shows the critical point.

[12, 13] we use the LJ model described in (7.2.1) which allows us a direct comparison to
his results. We perform our first simulations in a system where all components interact
with the same potential, i.e.

εab = εaa = εbb (7.2.11)

using Nl = 500 particles as solvent and either Ns,2 = 108 or Ns,2 = 32 (for T = 3.418)
particles as solute. We analyze the solute mole fraction xs,2 at fixed temperatures T = 2.0,
T = 3.418 and T = 6.0 with different values of π and a constant external pressure
p = 0.2. The result is plotted in figure 7.3 where we show the osmotic pressure π vs. the
solute mole fraction xs,2 for our simulations together with the data from Schreiber. In
addition to the comparison with Schreiber we also included in figure 7.4 the comparison
to the van’t Hoff equation (7.2.12). It turns out that our data is in very good agreement
with Schreiber as well as with the van’t Hoff equation for the considered temperatures.
Notice that the dependence of π on xs,2 is not strictly linear for the reason mentioned
following equation (7.1.11). Notice also that the compressibility of the system, at the
thermodynamic conditions used here, is much greater than that of a real liquid. We note
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Figure 7.3.: Osmotic pressure π of the LJ-fluid vs. the solute mole fraction xs,2 for different
temperatures and constant external pressure p = 0.2 in comparison to the results
from Schreiber and the van’t Hoff equation. The color coding represents the tem-
peratures T = 2.0 (black), T = 3.418 (blue) and T = 6.0 (red). The open circles
show our own data, filled circles the result from Schreiber and the open squares
the values from the van’t Hoff equation.

that we have not included in the plot the simulation results obtained for T = 1.0, which
is below the critical point of the LJ system, because the box containing the solvent often
runs empty and no stable state could be found. This also seemed to be a problem for
Schreiber and therefore we can still trust the correctness of our simulation program and
continue our further analysis without alterations.
Finally we want to study a mixture of different particles, i.e. with different interaction

parameters εab in the LJ potential (7.2.1). Analogous to [13] we study the dependence of
the solute mole fraction xs,2 to the external pressure p for different temperatures, osmotic
pressures and in our case the interaction parameters εss = 0.5 and εll = 1.0. The results of
our simulations which were performed with Nl = 500 and Ns,2 = 32 for the temperatures
T = 1.0 and T = 2.0 can be found in figure 7.4. As seen before our data is in very good
agreement with Schreiber for the considered temperatures and interaction parameters.
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Figure 7.4.: Top: Solute mole fraction xs,2 vs. the external pressure p. Middle: Total number
density ρ2 in box 2 containing the mixture vs. p. Bottom: Total number density
ρ1 in box 1 containing the solvent vs. p.
In all three panels the symbols represent T = 1.0, π = 0.1 (open squares); T = 1.0,
π = 0.5 (open circles); T = 2.0, π = 0.1 (solid squares) and T = 2.0, π = 0.5 (solid
circles). The black symbols show the data produced in this work and the red ones
the results from Schreiber.
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7.2.3. Results for charged systems

Now we extend our model of pure LJ molecules to consider also coulombic interactions
and use ions as the solute and ST particles as the solvent. In addition to the fact that
this type of mixture is more close to real compounds of salt and water it also allows us
to see if the osmotic pressure is a colligative property, i.e. the type of particles we use in
our simulation should not matter and the osmotic pressure only depends on the fraction
of solute and solvent particles in box 2. Therefore also the van’t Hoff equation

πvH =
Ns,2

V2

kBT (7.2.12)

should hold true to calculate the osmotic pressure for our mixture. To see if this is the
case we first study the dependency of the solute mole fraction and the osmotic pressure
for different temperatures T in the range from T = 2 to T = 6. In addition we consider
different combinations of ion charge q and dipole strength µ2. We performed all our
simulations with Nl = 2000 dipolar ST particles as the solvent together with Ns,2 = 108
ion particles, i.e. 64 ion pairs, as solute. The external pressure of the system is set to
p = 0.2 and the cutoff in our simulations is rcut = 10. The results of our simulations is
shown in figure 7.5 - 7.8, where we have plotted the osmotic pressure versus the solute
mole fraction xs,2. In addition to the simulation data the plots also show the osmotic
pressure calculated via the van’t Hoff equation (7.2.12) and another approximation of the
osmotic pressure used during the deviation of the van’t Hoff equation

π ≈ − kBT

vl(T, p)
lnxl,2(T, p) . (7.2.13)

Here vl(T, p) = 〈V1/Nl,1〉 is the solvent partial mole volume and the solvent mole fraction
is xl,2(T, p), both quantities are measured in V2. For all temperatures the van’t Hoff
equation is in agreement with the simulation results for small solute mole fractions but
the deviation to the simulation data increases with increasing solute mole fraction xs,2.
This increased deviation is no surprise as the approximations for the van’t Hoff equation
have been done under the assumption of a dilute system, i.e. small xs,2. For the higher
values of xs,2 the van’t Hoff equation is not linear anymore. Again this can be explained
by one of the assumptions made for the van’t Hoff equation which is the incompressibility
of the fluid. For the condition we used the system is not necessary in its liquid state and
therefore compressible. So the increased pressure affects the density ρ2 in box 2 which
leads to a change of the volume V2. The additional approximation given in equation
(7.2.13) does in general not provide a better estimate for the simulation data.
An interesting behavior can be seen due to the influence of the charge. In almost all
cases the van’t Hoff equation provides a too low value for the osmotic pressure except
for the ion strength q = 5.0 and dipole moment µ2 = 5.0 where the calculated pressures
are above the simulation data. This is caused by the strengthened tendency to form
ion pairs and will be discussed again in the next section (7.2.4) where we compare the
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data to experimental results. In addition to the increase for larger xs,2 there is also a
temperature dependence present for the deviation between the calculated values of the
van’t Hoff equation and our simulation results. This dependency is due to the fact that
the simulated system behaves more and more like an ideal solution for high temperatures
and therefore the deviations become smaller for bigger temperatures. To all this there
is one outlier for T = 2 and µ2 = 5 where few solvent particles join the solute in box 2
and therefore the solute mole fraction xs,2 reaches higher values with a larger gradient in
comparison to the other results.

Similar to the LJ system we study in the following the dependency of our model on
the external pressure p. Therefore we simulate different combinations of the osmotic
pressure, temperature, dipole strength and ionic charge to analyze for various situations
the influence of the external pressure on the solute mole fraction xs,2 and the total number
densities ρ1, ρ2 in the two simulation boxes. All the simulations are performed with
Ns,2 = 108 ionic solute particles and Nl = 500 ST particles as the solvent. For the sake
of illustration we have selected some of our results and plotted the solute mole fraction
xs,2, the total number densities ρ1 and ρ2 vs. the external pressure p in the figures 7.9 -
7.12. For the lowest temperature T = 1.0 there is no pressure dependence apparent for
the solute mole fraction and only a few solvent particles make it into box 2, i.e. xs,2 ≈ 1
over the examined pressure interval. The density ρ1 can be considered as rather constant
and for ρ2 we have an increase of the density at higher pressures. The gradient of the
pressure dependency is influenced by the strength of the solute-solute interaction. For
weak interaction q = 1 the increase is higher than for strong ion charges q = 5. This can
be seen comparing figures 7.9 and 7.10 or 7.11 and 7.12. All this is true for both osmotic
pressures applied, i.e. π = 0.1 and π = 0.5. Overall the densities at T = 1.0 are the
highest compared to the other temperatures. On increasing the temperature to T = 2.0
an effect of the pressure on the solute mole fraction is still not present in the case of high
solute-solute interaction, i.e. q = 5.0. But for the weaker interaction with q = 1.0 the
pressure dependence becomes obvious in combination with the dipoles of strength µ2 = 1.
For µ2 = 5 and the high osmotic pressure π = 0.5 it is again not observable. Whereas
for π = 0.1 the dependency is still apparent (see figure 7.11) but in contradiction to the
other results the solute mole fraction rises for higher external pressures p. Looking at the
highest temperature T = 3.0 we find a distinct relationship between the external pressure
and xs,2 for almost all results except for µ2 = 1, q = 5.0 and π = 0.5 where the solute
mole fraction is more or less constant. For all the cases where a pressure dependency is
apparent the higher osmotic pressure leads to a higher solute mole fraction as expected.
In general the influence of the solute-solute interaction strength is similar to the findings
from Schreiber [13] who has studied LJ fluid mixtures. There it was also observed that for
stronger solute-solute interactions higher temperatures were necessary to observe an effect
of the external pressure to the solute mole fraction xs,2. Again as for the LJ system in our
case the box containing the solvent is not influenced by the characteristics of the solute as
can be seen in figure 7.9 and 7.10 respectively 7.11 and 7.12, where the density ρ1 is almost
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identical for the same dipole strength. To evaluate finite size effects for our simulation
results we performed, at selected thermodynamic conditions, additional simulations with
Ns,2 = 256 ions and Nl = 1200 ST particles. The results are indicated by the crosses in
the figures 7.9 - 7.12. Overall they are very close to the values for the smaller system and
we can preclude the existence of finite size effects sufficiently pronounced to obscure the
present results..
As mentioned above the figures 7.9 - 7.12 are chosen exemplarily. The results of the
remaining simulations are added for the sake of completeness to the appendix and can be
found in the figures B.1 - B.8.
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Figure 7.5.: In all three panels the osmotic pressure π of the ion-dipole mixture vs. the solute
mole fraction xs,2 is plotted for the temperature T = 2.0 with constant external
pressure p = 0.2 in comparison to the approximations of the osmotic pressure. The
solid circles show our own data, the open squares the values from the van’t Hoff
equation (7.2.12) and the open diamonds the approximation in equation (7.2.13).
Top: Solvent µ2 = 1.0 with solute q = 1.0 (black) and q = 2.0 (red)
Middle: Solvent µ2 = 2.0 with solute q = 1.0 (black) and q = 2.0 (red)
Bottom: Solvent µ2 = 5.0 with solute q = 1.0 (black) and q = 5.0 (green)
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Figure 7.6.: In all three panels the osmotic pressure π of the ion-dipole mixture vs. the solute
mole fraction xs,2 is plotted for the temperature T = 3.0 with constant external
pressure p = 0.2 in comparison to the approximations of the osmotic pressure. The
solid circles show our own data, the open squares the values from the van’t Hoff
equation (7.2.12) and the open diamonds the approximation in equation (7.2.13).
Top: Solvent µ2 = 1.0 with solute q = 1.0 (black) and q = 2.0 (red)
Middle: Solvent µ2 = 2.0 with solute q = 1.0 (black) and q = 2.0 (red)
Bottom: Solvent µ2 = 5.0 with solute q = 1.0 (black) and q = 5.0 (green)
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Figure 7.7.: In all three panels the osmotic pressure π of the ion-dipole mixture vs. the solute
mole fraction xs,2 is plotted for the temperature T = 4.0 with constant external
pressure p = 0.2 in comparison to the approximations of the osmotic pressure. The
solid circles show our own data, the open squares the values from the van’t Hoff
equation (7.2.12) and the open diamonds the approximation in equation (7.2.13).
Top: Solvent µ2 = 1.0 with solute q = 1.0 (black) and q = 2.0 (red)
Middle: Solvent µ2 = 2.0 with solute q = 1.0 (black) and q = 2.0 (red)
Bottom: Solvent µ2 = 5.0 with solute q = 1.0 (black) and q = 5.0 (green)
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Figure 7.8.: In all three panels the osmotic pressure π of the ion-dipole mixture vs. the solute
mole fraction xs,2 is plotted for the temperature T = 6.0 with constant external
pressure p = 0.2 in comparison to the approximations of the osmotic pressure. The
solid circles show our own data, the open squares the values from the van’t Hoff
equation (7.2.12) and the open diamonds the approximation in equation (7.2.13).
Top: Solvent µ2 = 1.0 with solute q = 1.0 (black) and q = 2.0 (red)
Middle: Solvent µ2 = 2.0 with solute q = 1.0 (black) and q = 2.0 (red)
Bottom: Solvent µ2 = 5.0 with solute q = 1.0 (black) and q = 5.0 (green)
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Figure 7.9.: Pressure dependency of the coulombic mixture for dipole strength µ2 = 1 and ion
charge q = 1. Top: Solute mole fraction xs,2 vs. the external pressure p. Middle:
Total number density ρ2 in box 2 containing the mixture vs. p. Bottom: Total
number density ρ1 in box 1 containing the solvent vs. p. In all three panels the
colors represent T = 1.0 (black), T = 2.0 (red) and T = 3.0 (green). The shape of
the symbols stand for π = 0.1 (circles) and π = 0.5 (squares).
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Figure 7.10.: Pressure dependency of the coulombic mixture for dipole strength µ2 = 1 and ion
charge q = 5. Top: Solute mole fraction xs,2 vs. the external pressure p. Middle:
Total number density ρ2 in box 2 containing the mixture vs. p. Bottom: Total
number density ρ1 in box 1 containing the solvent vs. p. In all three panels the
colors represent T = 1.0 (black), T = 2.0 (red) and T = 3.0 (green). The shape
of the symbols stand for π = 0.1 (circles) and π = 0.5 (squares).
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Figure 7.11.: Pressure dependency of the coulombic mixture for dipole strength µ2 = 5 and ion
charge q = 1. Top: Solute mole fraction xs,2 vs. the external pressure p. Middle:
Total number density ρ2 in box 2 containing the mixture vs. p. Bottom: Total
number density ρ1 in box 1 containing the solvent vs. p. In all three panels the
colors represent T = 1.0 (black), T = 2.0 (red) and T = 3.0 (green). The shape
of the symbols stand for π = 0.1 (circles) and π = 0.5 (squares).
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Figure 7.12.: Pressure dependency of the coulombic mixture for dipole strength µ2 = 5 and ion
charge q = 5. Top: Solute mole fraction xs,2 vs. the external pressure p. Middle:
Total number density ρ2 in box 2 containing the mixture vs. p. Bottom: Total
number density ρ1 in box 1 containing the solvent vs. p. In all three panels the
colors represent T = 1.0 (black), T = 2.0 (red) and T = 3.0 (green). The shape
of the symbols stand for π = 0.1 (circles) and π = 0.5 (squares).
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7.2.4. Comparison with experimental results

We use the experimental data given in [14] to compare the simulation results with the
experiment. Here the osmotic coefficient φ of electrolytes in water is expressed in depen-
dence on the molality m, which is defined as the number of moles of solute per kilogram
of solvent. The osmotic coefficient describes the deviation of the osmotic pressure π from
the van’t Hoff approximation πvH in equation (7.2.12). It is a useful definition for the
purpose of the comparison, as it is unitless. To convert the molality into xs,2 we use the
following formulas

xs,2 =
Ns,2

Nl,2 +Ns,2

=

[
Nl,2

Ns,2

+ 1

]−1

=

[
1

m · ν ·MW

+ 1

]−1

=
m · ν ·MW

1 +m · ν ·MW

(7.2.14)

with the molar mass of water given by MW = 0.01801528 kg/mol and ν the number of
moles of ions formed from 1 mole of electrolytes, e.g. ν = 1 for ions, ν = 2 for NaCl.
The osmotic coefficient is related to the osmotic pressure π via the following expression [2]

π =
νRTMW

Vl,mol

· φ ·m =
Ns,2

nl,2
kBT

1

Vl,mol

φ ≈ Ns,2

V2

kBTφ = πvHφ (7.2.15)

φ =
π

πvH
. (7.2.16)

Here again the approximation V2 ≈ nl,2 · Vl,mol, which is valid for small concentrations,
is used. Experimentally three kinds of behavior can be recognized as described in [2].
Very high osmotic coefficients are taken as evidence for extensive hydration of the ions,
while low osmotic coefficients are explained by ion-pair formation. In case of complex ion
formation the osmotic coefficient can become very low.
As can be seen in figure 7.13 the simulated osmotic coefficient does not deviate from the
ideal behavior as much as some of the experimental curves. This may be due to the dif-
ferences between a simple ST fluid as solvent in comparison to the more complex water.
To compare the simulation results more thoroughly with the experimental data, we use
the LJ parameters of TIP4P/2005 (transferable intermolecular potential 4 point) water
(see appendix A) to compare temperatures, dipole moments and charges of our results
with those of [14]. We see in table 7.2 that the largest dipole moment used in our sim-
ulation is still smaller than the one of TIP4P/2005 water (µ = 2.305 Debye). Also the
ion charges used are quite small and only reaching 0.20987 e. While all experimental
data was measured at 25 ◦C, the simulations span the region of 6 to 286 ◦C. Looking at
experimental data from 0 to 100 ◦C presented in [2] the temperature dependence of the
osmotic coefficient is not very large. This can also be found looking into the simulation
results in figure 7.13. Here the osmotic coefficient is slowly approaching the ideal value of
1 with increasing temperature.

The experimental results all show a decreasing osmotic coefficient for small xs,2. Un-
fortunately we do not have any data for such small concentrations as the size of our
simulation systems was not large enough for this. KF, HNO3 and CsCl are then rising
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Figure 7.13.: Experimental [14] and simulated osmotic coefficient φ against xs,2: Experimental
values are for KF (blue open diamonds), HNO3 (green open triangles), CsCl (black
open circles), HF (red open squares) and NH4NO3 (mangenta open triangles).
Simulation results are for µ2 = 5 and ion charge q = 1 at T = 3 (blue filled
diamonds), T = 4 (mangenta filled circles), T = 6 (brown filled triangles) as well
as µ2 = 5 and charge q = 5 at T = 3 (green filled triangles), T = 4 (red filled
triangles), T = 6 (yellow filled triangles).

quickly to values of φ > 1, which points to a good hydration of these ions. We see the same
behaviour in our simulation results except for µ2 = 5 and q = 5. Here the general form of
the curves remain the same, but φ is shifted to much lower values below 1 similar to the
experimental data for HF and NH4NO3. As described in [2] this indicates the formation
of ion pairs. To verify this assumption we can look at the pair correlation functions for
T = 3, µ2 = 5 and π = 0.1 in figures 7.15 and 7.16. For q = 5 a strong ion-ion correlation
for ions with unequal charge can be observed while the correlation for ions with equal
charge is strongly suppressed in the first shell. For q = 1 only a very weak correlation
can be seen. To analyze the structural development with increasing osmotic pressure, we
also take a look at the pair correlation functions for π = 0.25 and π = 0.7 (figures 7.17 to
7.20). For small charges e.g. q = 1 the correlation does only slightly increase with growing
osmotic pressure. For higher charge values e.g. q = 5 the correlation extends to higher
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Figure 7.14.: Simulated osmotic coefficient φ against xs,2: Simulation results are shown for
T = 3 and ion charge q = 1 with µ2 = 1 (black filled circles), µ2 = 2 (green filled
diamonds), µ2 = 5 (mangenta filled triangles) as well as for T = 3 and charge
q = 2 with µ2 = 1 (red filled squares), µ2 = 2 (blue filled triangles) and finally
T = 3 with q = 5 and µ2 = 5 (brown filled triangles).

distances. For π = 0.7 longer chains of ion pairs develop, leading to a strong correlation
with maxima of equal and unequal charge pair correlations alternating with the distance
r. Looking at some sample configurations (figures 7.21 and 7.22) we see that the ions
form pairs and short chains for q = 5, while for smaller charges the ions are part of small
chains that consist of ions and ST particles in turn. In case of ion pair and ion chain
formation not the single ions but larger structures are hydrated by the solvent leading to
a lower osmotic pressure.
In summary we can note that in line with the experiments, we can distinguish between
an osmotic coefficient rising above 1, which occurs due to a good hydration of the ions,
and an osmotic coefficient below 1, which is related to ion pair formation. In our simula-
tions we observe that for µ2 = 5 and smaller ion charges, q = 1 and q = 2, the osmotic
coefficient rises above 1, corresponding to a weak correlation with the formation of chains
consisting of ions as well as ST particles. For µ2 = 5 and an ion charge of q = 5 the
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Table 7.2.: Table converting the used temperatures, dipole moments and charges into
physical units using the LJ parameters of the TIP4P/2005 water (see appendix
A).

T red. LJ units physical units
3 279.6 K
4 372.8 K
6 559.2 K

µ
1 0.6369 Debye
1.4142 0.9007 Debye
2.2361 1.4241 Debye

q
1 0.04197 e
2 0.08395 e
5 0.20987 e

picture changes significantly. Here the osmotic coefficient lies below 1, corresponding to
a strong correlation between the ions with the formation of chains of ion pairs.
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Figure 7.15.: Pair correlation functions for T = 3, π = 0.1, µ2 = 5 and q = 1. Ion-ST correlation
(black), ion-ion correlation for equal charged ions (red) and ion-ion correlation for
unequal charged ions (green).
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Figure 7.16.: Pair correlation functions for T = 3, π = 0.1, µ2 = 5 and q = 5. Ion-ST correlation
(black), ion-ion correlation for equal charged ions (red) and ion-ion correlation for
unequal charged ions (green).
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Figure 7.17.: Pair correlation functions for T = 3, π = 0.25, µ2 = 5 and q = 1. Ion-ST
correlation (black), ion-ion correlation for equal charged ions (red) and ion-ion
correlation for unequal charged ions (green).
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Figure 7.18.: Pair correlation functions for T = 3, π = 0.25, µ2 = 5 and q = 5. Ion-ST
correlation (black), ion-ion correlation for equal charged ions (red) and ion-ion
correlation for unequal charged ions (green).
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Figure 7.19.: Pair correlation functions for T = 3, π = 0.7, µ2 = 5 and q = 1. Ion-ST correlation
(black), ion-ion correlation for equal charged ions (red) and ion-ion correlation for
unequal charged ions (green).
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Figure 7.20.: Pair correlation functions for T = 3, π = 0.7, µ2 = 5 and q = 5. Ion-ST correlation
(black), ion-ion correlation for equal charged ions (red) and ion-ion correlation for
unequal charged ions (green).
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Figure 7.21.: Configuration snapshot for T = 3, π = 0.25, µ2 = 5 and q = 1. Blue balls denote
ST particles, black balls negatively charged ions and red balls positively charged
ions. Lines connecting particles indicate reversible bonds based on a distance
criteria.

Figure 7.22.: Configuration snapshot for T = 3, π = 0.25, µ2 = 5 and q = 5. Blue balls denote
ST particles, black balls negatively charged ions and red balls positively charged
ions. Lines connecting particles indicate reversible bonds based on a distance
criteria.





Bibliography

[1] R. Hentschke. Thermodynamics: For physicists, chemists and materials scientists.
Springer Science & Business Media, 2013.

[2] R. A. Robinson and R. H. Stokes. Electrolyte solutions. Courier Corporation, 2002.

[3] P. Atkins and J. De Paula. Elements of physical chemistry. Oxford University Press,
2013.

[4] M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University
Press, 1989.

[5] J. A. Barker. Reaction field, screening, and long-range interactions in simulations of
ionic and dipolar systems. Molecular Physics, 83(6):1057, 1994.

[6] M. Neumann. Dielectric properties and the convergence of multipolar lattice sums.
Molecular Physics, 60:225, 1987.

[7] A. V. Bandura, S. N. Lvov, and D. D. Macdonald. Thermodynamics of ion solvation
in dipolar solvent using Monte Carlo mean reaction field simulation. Journal of the
Chemical Society, Faraday Transactions, 94(8):1063, 1998.

[8] B. Smit. Phase diagrams of Lennard-Jones fluids. The Journal of Chemical Physics,
96(11):8639, 1992.

[9] B. Smit, C. P. Williams, E. M. Hendriks, and S. W. De Leeuw. Vapour-liquid equi-
libria for Stockmayer fluids. Molecular Physics, 68(3):765, 1989.

[10] M. E. Van Leeuwen, B. Smit, and E. M. Hendriks. Vapour-liquid equilibria of Stock-
mayer fluids: Computer simulations and perturbation theory. Molecular Physics,
78(2):271, 1993.

[11] J. Bartke and R. Hentschke. Phase behavior of the Stockmayer fluid via molecular
dynamics simulation. Physical Review E, 75:061503, 2007.

177



178 Bibliography

[12] S. Schreiber. Monte Carlo Simulationen zum osmotischen Druck. Master’s thesis,
Bergische Universität Wuppertal, 2011.

[13] S. Schreiber and R. Hentschke. Monte Carlo simulation of osmotic equilibria. The
Journal of Chemical Physics, 135(13):134106, 2011.

[14] W. J. Hamer and Y. Wu. Osmotic coefficients and mean activity coefficients of uni-
univalent electrolytes in water at 25 C. Journal of Physical and Chemical Reference
Data, 1(4):1047, 1972.



8. Conclusion

The original motivation for this work was the question whether or not dipole-dipole at-
traction is sufficient to cause g-l phase separation. Based on the work presented here, the
answer is yes - or at least a very probable yes. As an aside, the expertise needed to model
systems governed by long-range electrostatic forces was elaborated. It was thus both
possible and useful to include an application of this “technology” to the study of osmotic
pressure in electrolyte solutions. In the following we summarize the results obtained in
the two distinct but related parts of this thesis.
By performing NVT-MD simulations for the CSD model, we were able to locate the crit-
ical parameters in an area around d ≈ 1, where g-l phase separation is expected due to
energetically disfavored formation of chains. Based on this starting point, we were able to
track the critical point along the path of reduced charge-to-charge separation d and fixed
dipole moment µ2, down to the dumbbell length d = 10−4, which suggests a g-l critical
point in the DSS limit. Extrapolation of these results to the dipolar limit d → 0, yields
for the critical temperature Tc = 0.051 and the critical density ρc = 0.004. Qualitatively,
these results are in accord with the work on CHD by Ganzenmüller et al. [1], including
the extrapolation to the dipolar limit. Down to d = 0.6 they are also in line with Dussi
et al. [2], who also studied the CSD model. For still smaller dumbbell elongations, Dussi
et al. did not observe g-l phase separation in the analyzed temperature ranges. This
deviation from our results can be attributed to the different methods used, i.e. MD using
the reaction field method on our side, and MC simulations with the Ewald summation
on their end, or alternatively to finite size effects observed in the simulations performed
by Dussi. So to figure out the root cause of this deviation, some more analysis is needed,
especially in comparison of the simulation methods including the long range correction
for the Coulomb potential.
To interpret the d dependence of our simulation results, we apply three different simple
models. The first two fail to describe the observed behavior. The extension of Flory’s
lattice theory to reversibly aggregating polymers [3, 4], where the fixed chain length is
replaced by an average chain length of equilibrium polymeric chains, does not succeed
because the reversible aggregates remain rather small. Likewise, the attempt to correlate
the observed behavior with the defect model introduced by Tlusty and Safran [5] also fails,
because the number of network nodes, which should increase for d→ 0, decreases instead.
But finally, the developed van der Waals mean field theory, which combines the Onsager
cavity theory of dipolar fluids [6] with the idea that the basic unit is not the single dipole,
but rather a small reversible aggregate, gives us a suitable theory. In the range of small
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dumbbells, i.e. d < 0.1, where the reversible dipole-dipole aggregation produces predom-
inantly short aggregates, the theory demonstrates a rather good quantitative description
of our simulation results.
Now equipped with good evidence for the existence of g-l phase separation for dipolar
systems based on the CSD results, we considered the pure DSS model to see to which
extent it is possible to reproduce the extrapolation of the CSD model to the dipolar limit.
In order to enable a direct comparison with the CSD model, we introduced the 4-DSS
model which has a fourfold repulsion and therefore mimics the repulsion of the CSD model
caused by its geometry. This change of the repulsion opened a new aspect in the effort
to analyze purely dipolar systems. Besides the fact that the increased repulsion of the
4-DSS system is much easier to equilibrate, it also allowed us to overcome the obstacle of
excessive chain formation with a new approach. Usually a control parameter in the inter-
action potential is used (e.g. [1, 7, 8]) to approach the ordinary DSS (or DHS) interaction.
Tuning the potential towards the DSS (or DHS potential), one hopes to collect sufficient
data permitting extrapolation to the critical parameters of the limiting systems, before
excessive aggregation renders equilibration prohibitively time consuming. However, to
the best of our knowledge, no such study has controlled aggregation via scaled repulsion.
Increased repulsion, however, appears to be the easiest approach to a model potential
with purely dipolar attraction and easy access to its g-l critical point [9]. Our comparison
on the formation of reversible aggregates for the 4-DSS and DSS model showed that the
higher repulsion does indeed avoid the creation of long chains. We also found very good
agreement of the 4-DSS critical parameters compared to the average values for the CSD
model below d < 0.1. The critical parameters for the 4-DSS model are ρc = 0.0037,
Tc = 0.0501 and Pc = 4.9 · 10−5, and can be interpreted as g-l critical parameters as
we were able to track the g-l critical point from the dumbbells with large elongation to
the DSS limit. In subsequent work it may be interesting to explore in more detail the
influence of the repulsion on the formation of reversible chains and rings and their effect
on the critical parameters, and see to what extent this can be covered by theory.
In the continuation of the analysis of the dipolar limit, we extended the study on the
CSD model for charge-to-charge distances d � 1 up to d = 7. For d above one, the
aggregate lengths grow and the aggregates are more flexible. In this d range, the mean
field theory earlier applied for small dumbbells can again be used, and it yields a valid
qualitative description of our data. In the interpretation of the dumbbell data, there is
only an explanation of the peak in the density missing which we have not solved in this
work. By increasing the dumbbell length, we crossed the line where one can expect that
the CSD model behaves similar to an ionic fluid forming ion pairs. So with the elimination
of the rigid dumbbell bond of the CSD, we get an ionic fluid which is similar to the RPM
which has a hard core repulsion instead of a soft sphere repulsion, and is quite often used
in simulations and theoretical calculations. In our simulations of the soft sphere ions, we
were able to locate the critical point at Tc = 0.0163 and ρc = 0.006, which is close to
the results of the CSD for d values consistent with the ion-ion separations in the near
critical fluid. This supports the idea that the pairing of ions is a key ingredient to the
quantitative description of critical parameters in ionic liquids. The critical parameters
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we determined for the ionic system with our own simulation routines using the reaction
field method can be reproduced independently with the LAMMPS MD simulator [10],
which makes use of the Ewald summation. In contrast, the comparison of our results
with simulation data for the RPM from the literature and theoretical calculations using
the Debye-Hückel theory provides a mixed picture. Compared to the RPM simulation
data [11, 12], our critical temperature and density is approximately a factor 2 smaller and
the Debye-Hückel Bjerrum plus Dipole Ionic coupling theory [13, 14] confirms our critical
density, but is again a factor 2 higher for the critical temperature.
In the last section of this work, we left the field of phase coexistence analysis and turned
towards the study of the osmotic pressure for charged systems. A MC algorithm was
implemented, which permits simulations in the Tpπ ensemble, developed by Schreiber
and Hentschke [15, 16]. We successfully reproduced selected results obtained by these
authors with the LJ system to check the correctness of our simulation routines. For the
charged systems, the van’t Hoff equation provides a good approximation of our simula-
tion routines and our results do not vary very much if the charge or the dipole moment
is changed. Only for the highest charge q = 5.0 the situation changes, and the van’t Hoff
equation leads to an overestimation of the simulation data. This corresponds to a strong
correlation between the ions with the formation of ion pairs. Comparing the results to
experimental data, the van’t Hoff equation provides a good approximation for our results,
but not for the experimental data chosen. This holds true even for dilute concentrations
where the van’t Hoff equation is supposed to be valid. Quantitatively, the experimental
data does not comply with our data, but qualitatively some similarities in the behavior of
the osmotic pressure for different solute mole fractions can be seen. In particular, we see
agreement as far as the general relation between the osmotic coefficient and short range
structural ordering is concerned. To improve the comparison to the experimental data,
one could use a more realistic model like the TIP4P/2005 water for the solvent which can
cater for the more complex properties of real water.
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A. Reduced Lennard-Jones units

Simulation results are mostly presented in reduced LJ units, see e.g. [1]. These are given
by:

Length l∗ =
l

σ

Energy E∗ =
E

ε

Time t∗ =
t

τ

Temperature T ∗ = T · kB
ε

Pressure P ∗ = P · σ
3

ε

Dipole moment µ∗ = µ ·
√

1

4πε0
· 1

σ3ε

Charge q∗ = q ·
√

1

4πε0
· 1

σε

To compare the simulation results for the osmotic pressure with the experimental data of
water solutions, we use the LJ parameters of the TIP4P/2005 water model [2] as example
values.

σ = 3.1589 Å

ε = 93.2 · kB
qH = 0.5563 · e
qM = −2 · qH
µ = 2.305 Debye
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B. Additional figures for osmotic
pressure

In the following we have added the additional results for further dipole strengths and ionic
charges produced for the analysis of the influence of the external pressure on the solute
mole fraction xs,2 and the total number densities ρ1, ρ2 in the simulation boxes.
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Figure B.1.: Pressure dependency of the coulombic mixture for dipole strength µ2 = 0.5 and
ion charge q = 0.5. Top: Solute mole fraction xs,2 vs. the external pressure p.
Middle: Total number density ρ2 in box 2 containing the mixture vs. p. Bottom:
Total number density ρ1 in box 1 containing the solvent vs. p. In all three panels
the colors represent T = 1.0 (black), T = 2.0 (red) and T = 3.0 (green). The
shape of the symbols stand for π = 0.1 (circles) and π = 0.5 (squares).
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Figure B.2.: Pressure dependency of the coulombic mixture for dipole strength µ2 = 0.5 and ion
charge q = 1. Top: Solute mole fraction xs,2 vs. the external pressure p. Middle:
Total number density ρ2 in box 2 containing the mixture vs. p. Bottom: Total
number density ρ1 in box 1 containing the solvent vs. p. In all three panels the
colors represent T = 1.0 (black), T = 2.0 (red) and T = 3.0 (green). The shape of
the symbols stand for π = 0.1 (circles) and π = 0.5 (squares).
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Figure B.3.: Pressure dependency of the coulombic mixture for dipole strength µ2 = 0.5 and ion
charge q = 2. Top: Solute mole fraction xs,2 vs. the external pressure p. Middle:
Total number density ρ2 in box 2 containing the mixture vs. p. Bottom: Total
number density ρ1 in box 1 containing the solvent vs. p. In all three panels the
colors represent T = 1.0 (black), T = 2.0 (red) and T = 3.0 (green). The shape of
the symbols stand for π = 0.1 (circles) and π = 0.5 (squares).



193

0

0.2

0.4

0.6

0.8

1
x

s
,2

0

0.1

0.2

0.3

ρ
2

0 0.1 0.2 0.3 0.4 0.5

p

0

0.2

0.4

0.6

0.8

1

ρ
1

Figure B.4.: Pressure dependency of the coulombic mixture for dipole strength µ2 = 1 and ion
charge q = 0.5. Top: Solute mole fraction xs,2 vs. the external pressure p. Middle:
Total number density ρ2 in box 2 containing the mixture vs. p. Bottom: Total
number density ρ1 in box 1 containing the solvent vs. p. In all three panels the
colors represent T = 1.0 (black), T = 2.0 (red) and T = 3.0 (green). The shape of
the symbols stand for π = 0.1 (circles) and π = 0.5 (squares).
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Figure B.5.: Pressure dependency of the coulombic mixture for dipole strength µ2 = 1 and ion
charge q = 2. Top: Solute mole fraction xs,2 vs. the external pressure p. Middle:
Total number density ρ2 in box 2 containing the mixture vs. p. Bottom: Total
number density ρ1 in box 1 containing the solvent vs. p. In all three panels the
colors represent T = 1.0 (black), T = 2.0 (red) and T = 3.0 (green). The shape of
the symbols stand for π = 0.1 (circles) and π = 0.5 (squares).
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Figure B.6.: Pressure dependency of the coulombic mixture for dipole strength µ2 = 2 and ion
charge q = 0.5. Top: Solute mole fraction xs,2 vs. the external pressure p. Middle:
Total number density ρ2 in box 2 containing the mixture vs. p. Bottom: Total
number density ρ1 in box 1 containing the solvent vs. p. In all three panels the
colors represent T = 1.0 (black), T = 2.0 (red) and T = 3.0 (green). The shape of
the symbols stand for π = 0.1 (circles) and π = 0.5 (squares).
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Figure B.7.: Pressure dependency of the coulombic mixture for dipole strength µ2 = 2 and ion
charge q = 1. Top: Solute mole fraction xs,2 vs. the external pressure p. Middle:
Total number density ρ2 in box 2 containing the mixture vs. p. Bottom: Total
number density ρ1 in box 1 containing the solvent vs. p. In all three panels the
colors represent T = 1.0 (black), T = 2.0 (red) and T = 3.0 (green). The shape of
the symbols stand for π = 0.1 (circles) and π = 0.5 (squares).
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Figure B.8.: Pressure dependency of the coulombic mixture for dipole strength µ2 = 2 and ion
charge q = 2. Top: Solute mole fraction xs,2 vs. the external pressure p. Middle:
Total number density ρ2 in box 2 containing the mixture vs. p. Bottom: Total
number density ρ1 in box 1 containing the solvent vs. p. In all three panels the
colors represent T = 1.0 (black), T = 2.0 (red) and T = 3.0 (green). The shape of
the symbols stand for π = 0.1 (circles) and π = 0.5 (squares).
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