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Chapter 1

Introduction

Within the Born-Oppenheimer approximation, the electronic energy of a molecule in a
given electronic state can be determined by solving a Schrodinger equation obtained
by fixing the nuclei in space. The most commonly used approach to this type of cal-
culation is the so-called ab initio method. As a result of the continuous development
of computational methods and computational technology, ab initio calculations pro-
duce increasingly more accurate potential energy surfaces for molecules at lower and
lower cost. The rotation-vibration energies of the molecule are computed by solving
the rotation-vibration Schrodinger equation. Such calculations are based on the poten-
tial energy surfaces determined in the ab initio step. A molecule has infinitely many
electronic states whose energies we at least, in principle, could obtain by ab initio cal-
culations. In the Born-Oppenheimer approximation, we obtain the rovibronic energies
for one electronic state only. However, if two or more electronic states are close in
energy, the Born-Oppenheimer approximations fails, and these states must be consid-
ered together when the rovibronic energies are obtained.

One case in which the Born-Oppenheimer approximation invariably fails is the Ren-
ner effect in a triatomic molecule. In 1934 Renner [1] realized that if, for a triatomic

molecule, the electronic energy is doubly degenerate at linear geometries, it must nec-



essarily split into two separate components when the molecule bends. The two re-
sulting electronic states are close in energy and the Born-Oppenheimer approximation
fails for therein. 23 years after the paper by Renner, the first example of the Renner
effect was observed by Dressler and Ramsay [2, 3] and it was NH,. Renner suggested
in his paper the possibility of two electronic states, both with linear equilibrium geome-
try to be degenerate at the linear configuration, but by chance, NH, was of a type that
Renner did not consider. The two electronic surfaces which are degenerate at linear
geometries of NH, have bent equilibrium geometry, the lower electronic state X2B;,
has a bent equilibrium geometry and the upper state A%A; has a linear equilibrium ge-
ometry. Pople and Longuet-Higgins gave a theoretical discussion of this case [4, 5].
The first example to be observed following Renner’s ideas, i.e., two electronic states
both with linear equilibrium geometry and degenerate at the linear configuration, was
found in the ground electronic state of NCO [6].

We have carried on an extensive calculation for X 2% MgNC and the isomer X 2%
MgCN. We constructed one Born-Oppenheimer potential energy surface using ab ini-
tio method and calculated ro-vibrational energy levels with the program MORBID [7].
MORBID is a program calculating rovibrational energy levels by solving the rotation-
vibration Schrodinger equation for one potential minimum on one Born-Oppenheimer
surface. The electronic ground states X 2% MgNC and X 2% MgCN are well separated
from the first electronic excited states A 2I1 MgNC and Al MgCN, thus we could
calculate rotation-vibration energy levels for one Born-Oppenheimer surface, and we
obtained result in good agreement with experimental result. Details are in Appendix A.

The first electronic excited state of MgNC, A2lisa degenerate electronic state at
lineality, and its equilibrium geometry is at the linear configuration. This state exhibits
the Renner effect, and we have obtained two Born-Oppenheimer surfaces with ab ini-
tio methods, and have calculated ro-vibronic energy levels using perturbation theory.

The result are compared with the experiment results for the A2l — X 2% electronic



transition of MgNC obtained by R. R. Wright and T. A. Miller in 1999 [8]. In our study,
we proposed different assignments from the one made by Wright and Miller. Details
are in Appendix B.

To investigate the difference in assignment, we have extended our ab initio potential
energy surfaces and calculated Franck-Condon factors and effective rotational con-
stants using the RENNER [9] program system. This work confirmed the reassignment
of vibronic bands in the A 2IT — X 23 electronic transition as described in Appendix C.
In this work, we investigated the wavefunctions of individual rovibronic levels by plotting
probability density functions for the total wavefunction and for each Born-Oppenheimer
electronic state. This provided further insight into the nature of the Renner interaction
(Appendix D).

The isomer of A 211 MgNC, Al MQgCN, is also a degenerate electronic state and
exhibits the Renner effect. We determined ab initio potential energy surface for Al
MgCN, using the same ab initio method employed to obtain the potential energy sur-
faces of A 2II MgNC. We then calculated rovibronic energy levels of A 211 MgCN using
the RENNER program system. Transitions involving Al MgCN are not yet observed,
and this is the first theoretical prediction of A 211 MgCN. The details are in Appendix E.

RENNER is a program calculating rovibrational energy levels by solving the rotation-
vibration Schrodinger equation, in one potential minimum on each of the two Born-
Oppenheimer potential surfaces. Here we extend this idea to a case when two different
linear geometries (corresponding to doubly degenerate electronic state) are accessible
in a molecule. In other words, if a linear geometry of a molecule, which exhibits Renner
effect, is accessible from another linear geometry of the molecule, which also exhibits
Renner effect, we name this phenomenon ‘the double Renner effect.’ In this thesis, we
discuss the double Renner effect for a triatomic molecule.

For example, a double Renner effect will occur if the triatomic molecule ABC iso-

merizes between two linear minima ABC and BCA, and the electronic energy is doubly



degenerate at these minima. An example of this is afforded by the two isomers MgNC
and MgCN in the A 211 electronic state. Also ABB-type molecules can exhibit the dou-
ble Renner effect. In the X 24” and A 24’ electronic states of HO,, the proton orbits the
OO moiety with two equivalent minima on each potential surface at bent geometries.
At the two linear geometries HO, and OOH (which correspond to transition states on
the potential energy surface) the two electronic states are degenerate as a II state.
The two equivalent minima on each surface are separated by another transition state
corresponding to a T-shaped geometry.

We have developed a program for calculating the rovibronic energies for a triatomic
molecule in ‘double-Renner’-degenerate electronic states. Our program can treat both
ABC- and ABB-type molecules; the new program has been applied to
A 21T MgNC/MgCN, and to HO, in the X 24” and A 24’ states. We present detailed
analyses of rotation-bending-electronic wavefunctions aimed at providing further in-
sight into the nature of the double-Renner interaction.

The theory on double Renner effect is given in Chapter 2 and a description of on
the program "DR” is in Chapter 3. The application to ABC-type molecules (here the
Al MgNC/MgCN system) is in Chapter 4, and the application on ABB-type molecule
(X 24" and A 24’ HO, system) is the subject of Chapter 5.



Chapter 2

Theory

2.1 Hamiltonian

2.1.1 Construction of the Jacobi Hamiltonian

We use Jacobi coordinates to represent an atom (A) orbiting the other two atoms (B
and C) (See Fig. 2.1). The Jacobi angle is called 7, and the distances are called r and
R. R represents the distance between the nuclei B and C, and r is the distance from A
to the B-C center of mass. We write the masses of the nuclei A, B and C as my, mp
and m¢ respectively. ur and p, are the reduced masses corresponding to the R and r
"bonds”.

mpmc

= 2T 2.1
HR me + mo ( )

ma X (Mmp + mge
= (ms ) (2.2)
ma+mp+ Mg

The molecular fixed coordinate system has its origin at the center of mass of the
molecule. The z-axis of the molecule fixed coordinate system is set to be parallel to

the BC-bond. The y-axis is perpendicular to the z-axis and pointing towards nucleus



B | C
R

Figure 2.1: The Jacobi coordinate system. A, B and C represents the atoms in this coordinate system.

R and r are the bond lengths. 7 is the Jacobi angle.

A. The z-axis is perpendicular to both the y- and z-axis, and makes the xyz system
right-handed.

From Wilson-Decius-Cross [10] , we know that

3
27 = ~m; V7, (2.3)
=1

with 7" for the total kinetic energy, and V; for the velocity of nucleus i in the space
fixed coordinate system. Here we write the vector pointing to atom ¢ from the origin of
the molecule-fixed axis system as 73, the vector pointing to the origin of the molecular-
fixed coordinate system from the origin of the space-fixed coordinate system as Ry, the
vector pointing to nucleus i from the origin of the space-fixed coordinate system as R,

and we have
V; can be written in the space fixed coordinate system and in the molecule-fixed coor-

10



dinate system as follows:

V.= Ry +& X7, + 0 (2.5)
where & is the angular velocity in the space-fixed coordinate system, and v; is atom ’s
velocity in the molecule-fixed coordinate system. With equation (2.5), we can separate
the kinetic energy arising from the translation of the molecule-fixed coordinate system
with respect to the space fixed coordinate system, by extracting out the kinetic energy

term depending on R, from (2.3).

3 3 3
2T = “my(@ X 1)+ > ma} + 28y mir X 0 (2.6)
i=1 i=1 i=1
28 L O

=1 =1
The last two terms, the first are related to the translation of molecular fixed coordinate

system and the last is zero. Thus we neglect these term for constructing the Hamilto-

nian.

2Icy = Ro Zmi + QRO(@ X Zmiﬁ + Zmiﬁi)

M = ma+mp+me (2.9)

Thus the internal kinetic energy T is

2T = 2T — 2Ty = imi(u—} X 77)% + imivf + QQimiﬁ X U;. (2.10)
=1 =1 =1
The vector 7; can be written in R, r, 7 coordinate system as

7y = (0,rsint,rcost) — R* (2.11)
S m S
7z = (0,0, —WR) - R (2.12)
7o = (0,0, i ijR) — R (2.13)
R = %(0, rSinT, 7 CcosT) (2.14)

M

11



Thus the velocity in the molecule-fixed coordinate system is

—

U4 = (0,78in7+ r7cosT,cosT — risint) — R* (2.15)
. me . =

- (0,0, — %  R)— R* 2.16
B (0,0, mp + me ) (2.16)
. mpg . =
ve (0 "mp + mc ) (2.17)
= ma .. . . ..
R* = —(0,7sinT+ r7cosT,7cosST — r7sin7) (2.18)

The kinetic energy T is rewritten by inserting the expression for the 7; and v

2T = (urR?+ por?)wl + (rR® + p,r° cos® T)w))
—|—,ur7“2 sin? ng — ,u,nr2 sin? 2Twyw,
FurR? + 1,7+ e (r37? — 2w, 7r?) (2.19)
Here we introduce the "I-tensor”.

L. = upR*+ p,r? (2.20)
I, = prR*>+ p,r*cos’t (2.21)
I. = prisin®r (2.22)
I, = -3 e sin® 27 (2.23)
I, = I,,=0 (2.24)

With the I-tensor, we can rewrite the kinetic energy 7" as follows.
2T = I ,w’ + Iyyw§ + Lw? — 2L, wyw, + ,URR2 4 pp 72+ e (r3? = 2w,ir?)  (2.25)

To "clean up” the last term in equation (2.25), we introduce two additional elements of

the I-tensor.

L, = —pr? (2.26)
I, = pr? (2.27)

12



Thus the final I-tensor I and angular velocity vector w will be written as

( 3

I = (2.28)

Wy
Wy
w = : (2.29)
wﬂf,’
. Wr =T
and the kinetic energy 7' is
2T = Z I,pwowp + wrR? 4 72 (2.30)

a,B=x,y,2,T

The classical total angular momentum for the system is

J, = Z Ia5w5—5aquf2%wx (2.31)
B=x,y,z,T
with
Jo = (Iw)a, oa=2T,Y,2,T (2.32)

To change the classical kinetic energy term into a quantum mechanical Hamiltonian,
we must express the classical kinetic energy in terms of the coordinates and their
conjugate momenta, before using the quantum mechanical postulates. The momentum
P;, conjugate to the coordinate ¢; can be calculated as
oT—-Vv) or

I I
since the potential energy V' does not depend on the ¢. We calculate here the mo-

p = (2.33)

menta P,, Pg, P, conjugate to the 7, R, r, coordinates respectively.

or
OR

R = prR (2.34)

13



or

P = — = 2.35
or Hr? ( )

oT
PT = 3. = /‘LT’T27.— - Mrr2wx - I7'7'7.— + ]waac (236)

ot

Thus
P. = J. = (w), (2.37)
oT

Jo = Do aO=1x,Y,2,T (2.38)

Since w, is the angular velocity corresponding to the « axis, then J, is the total angular

momentum. Thus
w = I''J=ud (2.39)

The matrix p is the inverse of 1.

( )

Hyy Hyz O 0

z zZzZ 0 O
po= e (2.40)

0 0 pew far

L0 0 flar fer )

1
Hyy = Moz = Hor = m (2.41)
1 cot? T
a wer?sin®t - upR2 ( )
cot T
, = 2.43
Iuy ,URRQ ( )
1 1
= + 2.44
s MTT2 MRR2 ( )
Thus the kinetic operator 7" will be

T o= ) MJJ+L2+1P2 (2.45)

aBJadp 2/,6 R Q,UT r .

B. Podolsky [11] has shown that we can set up the classical Hamiltonian in terms

of general coordinates ¢; and conjugate momenta p; and replace the p; by —ihd/0g; to

14



obtain the Hamiltonian operator. This is called the "Podolsky trick”. We have the kinetic
operator 7' in terms of the coordinates and their conjugate momenta. Here, we can use
guantum mechanical postulates and obtain the quantum mechanical Hamiltonian. We

need the determinant of the matrix , p to use the Podolsky trick.
p = Det(u) = Det(I™") = (pi2pkr*R*sin® 1)~ (2.46)

With 1 and i, we can have derive the quantum mechanical Hamiltonian for the Jacobi
coordinate system,
. 1, . .
_ -, 1/4 -1/2 1/4
H = Sp ﬁz Jatt™ " pagJap
a,Pp=2,Y,2,T

1 un 1o e )
+2’u—R,u/1/4PR,LL l/QPRM1/4+2_ILL1/4PTILL 1/2PTM1/4+H67 (247)

where H, is the electronic Hamiltonian. Now, J,, P; and P, are quantum mechanical

operators, and are given above as

. d
— _inZ 2.4
o i (2.48)
Py = —inl (2.49)
e OR ‘
. 9
P = —ih— 2.
. m@r (2.50)

Let us simplify the Hamiltonian H. First, we know that z and [ap COMmute with J,,

Jy, J., and some of the terms in 3 are zero. Thus,

A 1 A A
H = 3 > tapdads (2.51)
o,B=x,y,2z
1 2 _ [a) 1 A _ A
_'_511/61/4(]‘%,u 1/2MerrM1/4 + 5,“1/4JT,U 1/2//LITJJ:M1/4 (252)
1 A ~
ST e e (2.53)
1 - ~ 1 - A .
+_M1/4PR//671/2PRM1/4+_u1/4prufl/2PTul/4+He' (254)
2,UR 2,U/T‘

The first term in  (Eq. (2.51)) can be re-written as
1 72
2u,r?sint ?

(2.55)

e {J? + jf, + cot?7.J% + cot 7(J, ], + J.J,)} +

15



The second and third terms in & (Eq. (2.52)) can be re-written as

1 “ “ “ “ “ “
5(#‘” Mg T (AT A [T )+ M (T A [T ) i )

A ihcot Tt/ 1/4

1 - - hcot T~ A
1 A PO
= o (Jedr + T ). (2.56)
KR

The fourth term in H (Eq. (2.53)) yields

1 . L
§(u77u1/4JTu R AR TR STaE S DA
1. . S
= §(MTTJ3+MTTMI/4[JT,M YT+ sl TP )
‘. _1athcotT

JT + jTILL T))

1 A ihcot T~
B §(MTTJ3 + UTTN1/4(_—

2
1 ., ik .
= Sl Z + %uwu” Tz, cot Tt

1 1 - h? 1
= J——|(1 : 2.57
(2uw2 * QMRRQ) { T8 ( N sin%’)} (2.57)

The fifth term in A (Eq. (2.54)) is obtained as
1/4

g—?Ru‘” 2(uM* Pg + [Pr, 1)
KR

/4 . . .
= 5 (Prp /" Pp + Ppu~ [ Pr, 1))

! —1/4 52 D —1/41 B —1/21p. . 1/41F S —1/2rp L 1/4
= —— (W "Pr+ [Pr,p "|Pr+ p PR, PR+ [Pr, = [Pry 7))

Z'i:L’ufl/élp ’Lh/,bl/4 N Z'h’ufl/ll

/
_ K ~1/4 p2 -1/2p P —
—(u w R r M r + [Pr, R D)

2/,LR R

= (2.58)

The sixth term in A (Eg. (2.54)) can be re-written analogously to equation (2.58). Thus
from Egs. (2.54)-(2.58) we can re-write [/ and we have the Jacobi quantum mechanical

Hamiltonian.
2

72 72 2 72 72 77 77 77 77
72/1RR2{J$ + J, +cot® 7S+ J7 + JoJr + JoJp 4 cot T(Jy S + o)}

H Jacobi —

16



h? 1 . - h
N

20,72 | sin® T

Iy I s
+ —P + P + H,

QILLR 2;”7“

2.1.2 Total Hamiltonian

1
sin® 7

Ly LUhy
:LLRR2 /‘LT’T2

(2.59)

The angular momentum operators, which are essential for describing our double Ren-

ner system are L, N, S, and J. L is the total electronic orbital angular momentum in

the molecule, NV is the rovibronic angular momentum in the molecule, and S is the total

electron spin angular moemntum in the molecule. .J is given by J = N + S, the sum of

rovibronic and electron spin angular momenta.

The Hamiltonian for Jacobi coordinate from last section will be re-written here, to

include the Renner effect and spin orbit coupling. Thus J, — N, , J, — N, , J. —

N, —L,, and J. — N, so that

EZ)Q + N2+ N,N, + N, N,

A

2)Ny)

2 h? G2 N2 2 _(x
Hpr= ST {N; + N; + cot” (N, —
cot 7(N, (N, — f/z)
h? 1 -
—— (N, —
20,72 | sin® T
Iy Iy
+ —P + Pr + He + HSO
QILLR 2;”7“

2 1 1
N2} — — 1
T } 8 {,uRRQ i ,MTTQ}{ * sin27}

(2.60)

L. is the projection of the angular momentum operator L on to the z-axis. N,, N,,

N, are the projections of the angular momentum operators N on to z-, y-, and z-axes

respectively.

17



2.2 The basis functions

In this section we describe how we define our basis functions. We choose the total

basis function for the variational calculation as

J+S N

\I/J,MJ,S,FWQ — E E E ijMJysyrrge
e n7N7K7U;7, VibvN’l‘vNR

N:|J_S‘ K=0 Frve:erNRvnzyg

[N, T) [Ny, T o, K, Ty s N, J, S, K, Moy, p). (2.61)

X

Here, the basis function |Ng, I'g) describes the R bond stretching motion with the vi-
brational symmetry I'z in molecular symmetry (MS) group (See Chapter 2.2.5 together
with Ref. [12]). and the principal quantum number Ng. The basis function |N,,I',) de-
scribes the r bond stretching motion with the vibrational symmetry I', in MS group and
the principal quantum number N,. The basis function |v], K, Fvg) describes the bending
motion of the molecule along the Jacobi coordinate 7, with K-type rotational angular
momentum K and the symmetry I,z in the MS group. The function [n; N, J, S, K, M;, p)
describes the electronic motion, the effects of electron spin, and the rotation of the
molecule. N, J, M;, and S are the quantum numbers which are associated with angu-
lar momentum operators. The spin quantum number S'is associated with the electronic
spin operator S2. The total quantum number .J is associated with the total angular mo-
mentum operator J2. The rovibronic quantum number N is associated with the rovi-
bronic angular momentum operator N2. M; defines the projection of the total angular

momentum .J on to a space fixed axis.

ijwaSyFrve H e . . .
DN Kol N N gy, 7€ the expansion coefficients for the basis set. In the final diag-
onalization, the superscript of the coefficient ¢/27:51rve which are J,M;,5. 1,

777N7K7v;]7NT7NR7FVib
make the final matrix in block-diagonalized form. Thus, these quantum numbers are

called good quantum numbers, and we can use these quantum number for character-
izing the rovibronic wavefunctions.

The T'y;, express the symmetry of the vibrational basis functions in the MS group.

18



TheTl'y,isgivenas 'y, =T'r @1, ® Ly The I',,. express the total symmetry of the
rovibronic basis functions in the MS group. The I, is given as I'yye = [yip @ Terse Ters
is the symmetry of the electronic-rotation-spin basis function |n; N, J, S, K, M, p) in the
MS group. We discuss the detail of the MS symmetry group of ABB- and ABC-type
molecule in Chapter 2.2.5. See Tables 2.1-2.6)

2.2.1 Rotation-spin basis functions

The electronic-rotation-spin basis function |n; N, J, S, K, M, p), is based on rotation-
spin basis functions. Here we explain the rotation-spin basis functions | N, J, S, K, M;, p).
The rotation-spin basis function |N, J, S, K, M, p) is defined in terms of Hund'’s case
(b) basis functions (See Refs. [12, 13]).

N S
NS K, Myy =y Y (=N SR
M=—N| Ms=-S8
N S J

X 1S, Mg)|N, k, M) (2.62)
M Mg —M;

The quantity in parentheses is a 3j-symbol (See Ref. [13]). |S, Ms) is an electronic spin
function quantized along the space fixed axis. |V, k, M) is an eigenfunction for the rigid
rotor. This function is a simultaneous eigenfunction for N2 (with eigenvalue BN (N +
1)), N. (with eigenvalue hk)), 5% (with eigenvalue #25(S + 1)), J? (with eigenvalue
R2J(J +1)), and J, (with eigenvalue 7M).

The Hund'’s case (b) basis function is a basis function for the case when the electron
spin functions are quantized along space fixed axes. We treat here the case when the
effects of the interactions of the electronic and nuclear spins are weak, (i.e. we are
neglecting the electronic fine structure and nuclear hyperfine structure.)

We introduce the angular momentum ladder operators as follows.
Ni= N, +iN, (2.63)
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We choose the phases of the basis functions | N, k, M) so that we have final matrix
elements as real number. Thus the angular momentum ladder operators N, and N_

are related to the rotational basis functions |N, k, M) as follows

Ni|N,k, M;) = +ihy/N(N +1) — k(k T 1)|N, kT 1, M). (2.64)

We can rewrite these relations as:

. N, + N_
NN, J, S, K, M,) = %IN, J, S, K, M) (2.65)
. N, — N_
N,|N, J, S, K, M) = +T\N, J, S, K, Mj). (2.66)
1

The rotation-spin basis function have to comply with the symmetry requirements.
Thus the parity of the rovibronic states are very important. The parity of the rovibronic
state is expressed using an integer p. The integer p is equal to 0 or 1. With the

symmetry operation, inversion operation E* it is defined as

E*’m],MJ,S,Frve) — (_1)p’mJ7MJys7FrVE> X (2.67)

rve rve

(We discuss the detail of the relation of parity and the symmetry in Chapter 2.2.5. See
Tables 2.1-2.6)

The rotation-spin basis functions which fulfill this symmetry operation are given by

’Na JaSaKaMJ7p>
{ - L{IN,J, 8, K, My) + (—D)NFE|N, S, K, M)} (K > 0)
_ IN,J, 5,0, M) (K =0).
(2.68)

Here we use the Kronecker symbol dy,. If p =0, then §,, = 1: if p =1, then &y, = 0.
With this notation, we can show the effect of angular momentum operator N, on the
rotation-spin basis function.

If K =0,

N.|N, J, 5,0, M;,p) =0 x K|N, J,S,0, M) = 0. (2.69)

20



and when K > 0,
Nz‘Na JasaKaMJ7p>
~ 1
— NZ%{\N, J, S, K, M;) + (~D)NTEAP|N IS, — K, M)}

1
= T{Kh‘N7 J, S7 K, MJ> - Kh(_l)N+K+p|N7 J, Su - K, MJ>}

= KhT{\N J, S, K, My) 4 (—=1)N K| N S — K M)}
= Kh|N,J,S, K, Mj,5,). (2.70)

The effect of angular momentum operator N., N, and Ny on the rotation-spin basis
function is as follows.
If K =0,

Ni|N, J,S,0,M;,p) = +ihn/N(N + 1)|N, J, S, F1, M,). (2.71)
With equation (2.66),

N,|N, J, 5,0, M)

= ih/N N+1{ (IN, J, S, 1,MJ>—\N,J,S,+1,MJ>)}

_ —Zﬁ\/\/iN—l- {\/_ (IN, J, S, +1, M) + (— 1)N+1+p|N, J,S,_l,MJ>)}
_ —iﬁ\/W’N’ J,8,1, My, p) (=1)Nt? = 1) (2.72)

N,|N, J,S,0, M)

= h/N N+1{ (IN, J, S, +1, M) + |N, J, S, 1,MJ>)}

h\/T {f(uv J, S, +1, My) + (=1)NTHP N S,—1,MJ>)}
= %\/P\N, J, 8,1, My, p) (—1)N*P = —1). (2.73)
When K > 0,

N:I:|N7 J7 Su K7 MJ7p>
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SR .
— T{Ni\]\f, J, S, K, M) + (=1D)NTEFPNLIN, J, S, — K, Mj)}

+
- \/Zf‘{\/NNH) K(K F1)|N, J,S, K F 1, M)

+H(=1)NHEP /N(N +1) — K(K £ 1)|N, J, S, —(K £1), M,)}.

(2.74)
Thus with equation (2.66),

N,|N,J, S, K, My, p)

- 2\/_[\/NN+1) KK 1)

X{’Na Ja SaK - 17MJ> + (_1)N+(K71)+p‘N7 ‘]7 S: _(K - 1)7MJ>}

— VN(N+1) - K(K +1)
X{’Na Ja Sa K + 17MJ> + (_1)N+(K+1)+p‘N7 ‘]7 S: _(K + 1)7 MJ>}
N,|N, J,S, K, My, p)

M[VN N+1) - K(K - 1)

X{’Na Ja SaK - 17MJ> + (_1)N+(K_1)+5OP‘N7 ‘]7 S: _(K - 1)7MJ>}

+ VNN +1) - K(K +1)
X{’Na Ja Sa K + 17MJ> + (_1)N+(K+1)+50p’N7 Ja Sa _(K + 1)7 MJ>}] .

Depending on whether K =1 or K > 1, this can be written in a simplified form.
If K > 1,

) ih
NN, J, S, K, My,p) = %{\/N(N T1)— K(K —1)|N,J,S, K — 1, My, p)

—V/N(N+1) - K(K +1)|N,J,S,K 4+ 1,M;,p)} (2.75)

. h
NN, TS, K, My,p) = Z{V/N(N +1) = K(K = 1)IN.J. 8. K — 1, My, boy)

+v/N(N +1) — K(K +1)|N, J,S, K + 1, My, §,) }(2.76)
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If K =1

. ik ( N+p_|_
NuIN,J,8,1,M;,p) = —{——=——+/N(N+1)|N,J,S,0,M,)

2
- (— 1)N+509+1
NN, J, 8,1, My, p) = —{—\/N(N+1)|N, J,S,0, My)
LN, J, 5,2, My, do,) ) (2.78)

2.2.2 Bending basis functions

To construct bending basis functions, we pre-diagonalize the 7-dependent part of the
total Hamiltonian Hpx. In other words, we simplify the Hamiltonian so that the Hamilto-
nian consists only of the bending-dependent part, then solve the Schrédinger equation
to obtain the wavefunction. We will use these wavefunctions as bending basis func-
tions.

Thus the potential energy function in this section is only required to depend on
the bending angle. We let the bond lengths relax along the minimum energy path
of isomerization. To make sure that the model Hamiltonian is Hermitian, we take the
original Hamiltonian in Hermitian form for  dependent part. The simplified Hamiltonian
is,

h?  cos’T , - . B2 1~ .

Nz - Lz 2 +
2urR(T)?% sin? 1 ( ) 2p,7(7)? sin® 7

h? h? -
+ N, + N;
(g * 707

K2 1 1 1 A
- — 1 H.,. 2.79
3 {MRR(T)2+M7°(T)2}{ +Sm2T}+ (2.79)

Hbend =

Here we define

h? cos® T N 1
sin® 7 \ prR(7)?  ppr(7)?

L[ 1 1
r®) = 8 (e + ) (281)
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o(r) = —i(1+— L ), (2.82)

sin® 7

and insertion of equations (2.80) - (2.82) to equation (2.79) shows that

Frena = gpen(P) (Ve = E 4 Syt (7)(RZ 4 () + 5180, o] 4 H,
= At i)+ 9(0) + 5[, e (P (2.83)
where
He = Hot Spua(r)(N. - L.y (2.89)
= Hot guaalr) (V2 + 12 2. L) (2:85)

The Hamiltonian H.. describes the electronic motion and the rotation around the
molecule-fixed z-axis (K -type rotation) for a molecule at fixed bond angle 7. This is the
essential part of the Renner interaction, which mixes the rotational angular momentum,
bending angular momentum and electronic angular momentum. Following the ideas
of Barrow, Dixon, and Duxbury [14] we find the basis functions of the Hamiltonian
H.., which have the Renner interaction incorporated in it. We diagonalize a matrix
H.. in the electronic basis function |77/)£_)> and |@Z)§+)>. (We denote by |¢£_)> the lower
potential energy surface electronic basis function and by |@Z)§+)> the upper potential

energy surface electronic basis function.) The 2 x 2 matrix representation of H., is

Vi (7) + (1) (K2 4 A2) Pp=s(T) KA (2.86)
B2p..(7) KA Vo D7) + e (1) (K2 4 A2) |

We can write the eigenfunctions of this matrix as
‘a'; N7 J7 Su K7 MJ7p> = COS(’YK(T))hZ)((a_)H]\C J7 S7 K7 MJ7p>
+ sin(yg (7))i[NN, T, S, K, My, 8op)
|b7 N7 J7 S? K7 MJ7p> = COS(’YK(T))Z'|w£+)>|N7 J7 Su K7 MJ7 50p>
)

— sin(yr (T[N, I, S, K, My, p). (2.87)
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In; N, J, S, K, My, p) is the electronic-rotation-spin basis function (n = a or b. See Chap-
ter 2.2.3.).

The corresponding eigenvalues are

2

Ve = 5 (0 + V) + a4 4

1

(80 @)+ amtraene (2.83)

T3

From the definition of Eq. (2.88), Eq. (2.83) can be rewritten as

Flyona = V) + 110 () (N2 + 9(7)) + 2 [N, pira (7))

2 T 2
= V) + pper)g(r) = 5 (s + e ) (259
We define the bending wavefunction &(r) as
D(7) = pirr ()" 26(7). (2.90)
The Hamiltonian and basis function satisfy
Hpona®(1) = EO(7) (2.91)
and so
[V + 3mrr) = 5 (e o + e 3 )
X pirr(T) 72 0(7) = Epirr(7) 72 6(7). (2.92)
Here,
(e () + g 5 ) ()20
= (D) (orlr)Eotr)) + 2D D (1 rytoe)

= il T g e (G ) 9 je
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With the equation (2.93), we can rewrite equation (2.92) as,
0? 2Vii(r)—E) 1 1 (1)
g7 = {Tm R AR o e
1 Op (1))
— . 2.94
(5 25 ) Jo. o
We use the Numerov-Cooley numerical integration method for solving Eq. (2.94) (See

Ref. [15] and references therein), and obtain £ and ¢(7) with this method. We deter-

mine numerical values of the bending wavefunction ¢(7) at N points for which

. = ih, i=1,2,...,N (2.95)
™
- 2.96
(N+1) (2.96)
where we know that «(0) = 0 and (7)) = 0; we let 7; run from h to 7 — h.

We define,

P = ¢(n) (2.97)
2
1 2V (1;) 1 9 (m) 1 Opr()\’
= )t st ey (G a) @99

By neglecting sixth and higher order terms in h (see details in Ref. [15]), the Y; follow

the relation,
Yig1 + Yo, — 2Y; = B*(U; — LE)P; (2.101)

By assuming the values for P, P, and, Py_1, Py, with the relation between Y;s in Eq.
(2.101), we can obtain numerical wavefunctions with a guessed energy value £, by
integrating outwards from = = 0 and inwards from 7 = 7.

When 7 — 0 and 7 — 7, the term U; diverges to infinity since the term sin~2 7 in the

equations (2.80) and (2.82) diverge to infinity

: . 1 1
lim 7; = lim U; = — ((K FA)? — —) : (2.102)

T—0,7 T—0,7 4

26



With this, we can obtain values for P, P, and, Py_1, Py, (Which we will need to solve
the relations between Y;s in Eq. (2.101),) by using a series solution around 7 — 0 and
T — T.

We fit the first and last M values of 7; defined by

T,=U —LE, i = 1,2,.,.M
i = N—-M+1,N—-M+2,...N (2.103)
to the equation
C_s ” 2i
t(r) = 7+;Czn (2.104)
C, = (KFA)? - i (2.105)

with standard least squares fitting methods. We then solve the differential equation

% (1) =t(1)p(1) (2.106)

for the first and the last M points of ¢(;). The first M points of ¢(7) are expressed as

Q
o(t) =71° Z agiT, (2.107)
1=0
and last M points of ¢(7) are expressed as
Q .
$(r) = (= 7)* > an(r —7)%, (2.108)
1=0
where,
1
a=|KFA+. (2.109)

With this fitted series, we obtain P, for ¢ = 1,2,..M,and i = N — M + 1,N —
M + 2,..N. With equation (2.101), we can then calculate F, for i = M + 1, M +

2,.,N,and i = 1,2,.... N — M with guessed energy E,. From these two numerical
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wavefunctions calculated one at each end, we obtain an error function (See details in
Ref. [15] and references therein). First, we normalize the wavefunction calculated from
the two ends. Then we find for each of the two wavefunctions the point which has the
biggest amplitude. We call these two points the meeting points. At the two meeting
points, we calculate the energy correction terms D(E,) as follows.

We call the two wavefunctions P*” and P\, for outward and inward calculated
wavefunctions, respectively. We have P\°? and P at the meeting point i = c. We

scale one of the two wavefunctions so that
pim = pl) = p, (2.110)

Cc Cc

Also, we calculate scaled Y;'s, Y,, Y°Y and Y™ . If the guessed energy E, were an

eigenvalue of the Schrédinger equation, the following equation
Y+ Y 2y, = hA(U. — L.E,)P. (2.111)
would be fulfilled. Thus we can define an error function for the guessed energy F, as,
F(E,) =Y v _ oy, — BX(U, — IE,)P, (2.112)

At each guessed energy E,, we have F'(£,) and we can correct the E, by the amount

_ F(E,)
D(E) =~ 555, /0F, (2.113)
and
o Y(m) Y(OUt) _9Y 2 —_ LE)PY
D(Eg> — { ( c+1 _'_ c—1 C)/h _'_ (UC c g) C} C' (2114)

Zi]\il ]iPiQ
We calculate energy correction term D(E,) for each meeting point, and choose the
smaller energy correction term D(E,) and correct the guessed energy E, by D(E,).
This iterative procedure continues until the |D(E,)| becomes smaller than the con-
vergence threshold, and finally we obtain £, and P,(i = 1,2,....N) as an eigenvalue

and eigenfunction of the Schrodinger equation. By counting the nodes of P, (i =
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1,2,....N) we know which vibrationally excited state we have formed. We multiply
L_ with Pi(i = 1,2,....N) from the definition in Eq. (2.90) and obtain the bend-

S © ) 4 ) g. ( )

ing basis function ®(7). We change the range of guessed energies E, until we have

located all the required vibrational excitation states, and thus we obtain the bending

basis set.

2.2.3 Electronic-rotation-spin basis functions

As mentioned in the last section, \wé’)> denotes the lower potential energy surface
electronic basis function and ]w§+)> denotes the upper potential energy surface elec-
tronic basis function. We choose the parity of these electronic basis function as — for
10¢7y and + for [¢{7).

The phase factor, and the 7 dependence of electronic angular momentum matrix

elements are defined as follows,

W) = B fre () (2.115)
W) = R fpe(7) (2.116)
@ONLJwD) = ihfa,(7) (2.117)
WLy = —ihfa_ (1) (2.118)

The n = a state is made up not only of the ]wé’)) state, but for 7 values when there
is little Renner effect, it consists almost only of ]wé’)) state. Similarly, the n = b state is
almost solely made up of \w§+)> state if there is little Renner interaction.

Let us see what kind of matrix elements the electronic-rotation-spin basis functions
produce. We denote the Hamiltonian relating to the electronic angular momentum as
H,;, and the Hamiltonian relating to rotational angular momentum as H,,;. We define a
simplified notation cg,, sk, and f5 (N, K;, K;, p;, p;) for the matrix elements that arise

from the electronic-rotation-spin basis functions as follows
fﬁrot(Nj7 Ki7 Kj7pl7pj) - <NZ7 J7 Su K’i? MJap’i|ﬁ7‘0t|Nj7 J7 Su Kj? MJ7pj> (2119)
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sk, = sin(vyk, (7)) (2.120)
ck, = cos(yk,(T)). (2.121)
From Eq. (2.87),
(a; Ny, J, S, Kiy, My, pil Hoy Hyola; Ny, J, S, K, My, p;)
= {ex, (N, 1, S, Koy My, pil = s il [(Ni, T, S, Ky My, by, |}
HoHyo{cr, | 0) Ny, 1, S, K5, My, pg) + s, il C) N, J, S, K, My, dop,) }
= e, (WO Ha W) f (NG, Ko, K pi, pj)
ter s, WO Hal ) fa,, (N, K, K, pidop,)
_SKiCKji<wé+)‘ﬁel‘wéiwfﬁ[mt(]\[j:Ki:Kj:(SOpi:pj)
+5K,SK; (D |ﬁez|¢£+)>fﬁmt (Nj, K, K, 0op,, Oop; )
(a5 Ny, J, S, Kiy My, pi| Ho Hyor|b; Ny, J, S, K, My, pj)
= CKicKjMwéi)’Hel‘wé+)>fﬁmt(Nj:KiaKj:pi(SOpj)
_CKiSKj<77Z)£_)|f{el|¢£_)>fﬁmt(Nj7KiaKjapiapj)
+SK,CK, Wf(f) ’Hel’wé+)>f]f[mt(Nja K;, Kj, 60p¢7 60pj)
s, i Halw ) f,,, (NG K, I dope 1)
(b Niy J, S, K3, My, pi| HaHyotlas Ny, J, S, K, My, p;)
= _CKiCKji<w(g+)‘ﬁel‘wéiwfﬁ[mt(]\[j:Ki:Kj:(SOpi:pj)
+ck, Sk, (D |ﬁez|¢£+)>fﬁmt (N;, K, Kj, 0op,, Oop, )
_SKiCKj<w§7)’Hel‘wéiwfﬁmt(]vj:KiaKj:piapj)
_SKiSKji<w£7)‘]:[el’wsr))fﬁmt(NjaKi:Kj:pi(SOpj)
(b Niy J, S, i, My, pi| Hoa Hyor|b; Ny, J, S, K, My, ;)
= CKZ'CK]'<wé+)‘ﬁel’wé+)>fﬁmt(]vjaK’i:Kﬁ&Opia&Opj)
e sw iU Halv!7) fa,,(Nj, K, K Gop,. ;)

_SKZ-CK]-Z.<¢(S_)|f{el|¢£+)>fljlmt (Nj7 Ki7 Kjvpiaopj)
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+5K,SK; <¢§_)|ﬁel|¢e(z—)>fﬁm(Nj, K, K, pi, pj)- (2.122)

2.2.4 Stretching basis functions

We use Morse-like stretching function (Ref. [16]) to represent the stretching motion of
the molecule. The eigenfunctions for a diatomic molecule with Morse potential function
are well known. We will take the Morse-like stretching function as a basis-set for the r
and R stretching coordinates. Details of Morse-like stretching functions can be found
in reference [16], and we give a small summary below.

If we have a diatomic molecule with bond length R, equilibrium geometry R., re-
duced mass pu, dissociation energy D,, and fundamental vibration energy w., the Morse

potential function V' (R) for this diatomic molecule is,
V(R) = Dc{1 — exp[—f(R — R.)]}* = D.. (2.123)

The eigenfunctions of this diatomic molecule are known as Morse-oscillator functions.

The form for the n-th vibrational excitation eigenfunction; the n-th Morse-oscillator func-

tion ¥, (y) is

Ualy) = V/BNuaexp(—y/2)y? L2(y) (2.124)
y = Aexp[—B(R— R.)]. (2.125)

The parameter A, b, § and the index « in equation (2.124) are defined as,

A = 2D (2.126)
We
_ T
B = wl5n (2.127)
— a (2.128)
a = A—(2n—1). (2.129)

The term N, is a normalization term. Since N,,L%(y) is the normalized associated
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Laguerre polynomial, we can easily apply Gauss-Laguerre integration for the numerical
integration involving these functions.

Here, we deal with triatomic molecules. Unfortunately, the potential energy function
is not a simple Morse potential. However, we can use the Morse stretching functions
as a basis set for the variational problem. We need a complete orthonormal set of
functions for the basis set. For this purpose, we choose « as constant integer value of
A, bas (a+ 1) (See details, in section Ill. of [16])

We choose suitable values for the dissociation energy D, and the fundamental vi-
brational energy w, for each of the coordinates R and r, and calculate constants A,
8, o and b. With these constants, we obtain the normalization factor N,,. The matrix
elements for the kinetic energy terms, Q%Rﬁ]% and ﬁﬁf in the Hamiltonian can be cal-
culated from analytical expressions in reference [16], equation (45). Hamiltonian matrix
elements of %2 and -, are obtained using Gauss-Laguerre integration.

R

2.2.5 Symmetry of the basis functions

As we can see from Eq. (2.87), the electronic-rotation-spin basis function
In; N, J, S, K, My, p) is based on the rotation-spin basis function (Eq. (2.68)). The sym-
metry of the electronic-rotation-spin basis function T, originates in the symmetry I';
of the rotation-spin basis function. The symmetry of the rotation-spin basis function I';
is defined from the parity of the rotation-spin basis function, p (Eq. (2.67)).

Within the Double-Renner theory we can treat ABC- and ABB-type of triatomic
molecule. ABC-type molecule belongs to the MS group C;(M) (See Table 2.1). The
symmetry of the rotation-spin basis function I, in the MS group Cs(M) are summarized
in Table 2.2. The symmetry of electronic function |1} and |:{") will always be A’ and
A”, respectively or A” and A’, respectively. Here we take A’ for ]¢£_)> state and A” for
|¢§+)), and from Eqg. (2.68), we can construct the relation between n = aand n = b

function and the parity p to the symmetry of electronic-rotation-spin basis function I',.
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Table 2.1: The character table of the MS group Cs(M).

C,M): E E*

1 1
Cs: E oy
A1 1 : Nm, L,
A 1 -1 Ny,NZ,IA/y,IA/Z

E is the identity operator. When E™ operator, the inversion operation, is applied to
a molecule, it inverts the spatial coordinates of all the nuclei and electrons through

the molecular center of mass.

Table 2.2: The symmetry I';s of the rotation-spin basis function in the MS group Cs(M).

K=0 K#0
p=0 A(N even) A
p=1 A'(Nodd) A

If K =0, we have sin(y) = 0 and cos(y) = 1 and so for N even, we only use the n = a
function in the total basis functions for I',,; = A’. These relations are summarized in Ta-
ble 2.3. All the bending and stretching basis functions in ABC-type molecule are totally
symmetric. Thus the total symmetry of the basis function depends on the symmetry of
the electronic-rotation-spin basis function, I',,. = ', and the relation summarized in
Table 2.3 produces I',..

An ABB-type molecule belongs to the MS group G, (M) (See Table 2.4). The sym-
metry of the rotation-spin basis function I';s in the MS group Cs,(M) are summarized
in Table 2.5. In an ABB-type molecule, the symmetry of electronic functions |¢§_)) and
|¢£+)) will be A, ¢ By, B ® A, A, ® By, or B, & A,. Here we take A; for |¢£_)> state
and B, for [¢{"), and from Eq. (2.68), we construct the relation between 5 = « and

n = b function and the parity p to the symmetry of electronic-rotation-spin basis function
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Table 2.3: The relation of the K, N quantum numbers and 7 states to the symmetry I'¢;s of the electronic-

rotation-spin basis function and the symmetry T’y of the total basis function in the MS group Cs(M).

FCers = rve K=0 K#0
N even N odd

A n=a,p=0 n=bp=0 p=0

A’ n=bp=1 n=a,p=1 p=1

Lo If K = 0, we have sin(y) = 0 and cos(y) = 1 so for case N even, we only use
n = a functions in the total basis function for I',,; = A;. These relations are summa-
rized in Table 2.6. The stretching basis functions along the » and R coordinates are
totally symmetric in the MS group C,, (M) while the bending basis functions are not.
The operation (12) exchange the atom 1 and 2. The atoms 1 and 2 are here the atoms

B. Thus the operation (12) on the 7 coordinate changes it as
(12)r =7 — 1. (2.130)

Some bending basis functions change their sign with the (12) symmetry operation.
Those bending basis functions which do not change sign with the (12) operation have
A; symmetry, and those which change the sign with the (12) operation have B, sym-
metry. Thus the total symmetry of the basis function becomes I, = I'yn ® I'ers . The
relations between the K, N quantum numbers and the Iz, the parity p and the n = a,

n = b functions are summarized in Table 2.7.

2.3 Construction of the matrix elements

To obtain the rovibronic energy levels of the molecule, we need to solve the eigenvalue

problem, from the well known physical principle, the Schrodinger equation.
HU = EV (2.131)
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Table 2.4: The character table of the MS group Ca,(M). Atom B corresponds to atom 1 and 2.

Cou(M): E (12) E* (12)*
1 1 1 1

Cov: E Cop 0y 0Ogy

Ay 1 1 1 1

Ay: 1 1 -1 A Ny, L,
Bi: 1 -1 - 1 . N, L,
By: 1 -1 1 -1 Ny, L,

F is the identity operator. Here atom 1 and 2 is the B atom in
the molecule ABB (12) operator exchanges atom 1 and 2. When
E™ operator, the inversion operation, is applied to a molecule,
it inverts the spatial coordinates of all the nuclei and electrons
through the molecular center of mass. (12)* operator is the

combination of (12) and E* operator.

Table 2.5: The symmetry I';s of the rotation-spin basis function in the MS group Cay (M).

K=0 K even K odd
p=0 Ai(N even) A B
p= 1 Bl(N Odd) Bl A2

35



Table 2.6: The relation of the K, N quantum numbers and 7 states to the symmetry I'¢;s of the electronic-

rotation-spin basis function in the MS group Ca,(M).
Ters K=0 K =even K = odd
N even N odd
A n=a,p=0 n=bp=0 p=0
A, p=1
By n=bp=1 n=a,p=1 p=1
B p=20

Table 2.7: The relation of the K, N quantum numbers and 7 states to the symmetry '}y in the total

basis function of the MS group Ca,(M).

Tive K=0 K=even K =odd
N even N odd

A1 n=a n=b TLw=A4 TIvib=D5
Lyip = A1, p=0 p=0

Ay n=b n=a Tuyw=DBy Tup=4;
Ivib =B, p=1 p=1

By n=>o n=a Typ=A41 Tup=DB
Pup=A4A1,p=1 p=1

By n=a n=b TLu=By Tup=4
Ivip = B2, p=10 p=0
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With integration of total wavefunction Eq. (2.61) working on the Hamiltonian expressed
in Eqg. (2.60),

A

(WS g w0 STe) = (ST | B 20 S
= BERST | lST - (2132)
we will obtain the Hamiltonian matrix H
HJ7MJ7S7FTV€ — <\I/It‘]{,éwjvsyrrve IA{DR|\II;-]\7153MJ757FWQ>‘ (2133)

The quantum numbers J, M;, S, I',,., are the "good quantum numbers”, which label
the eigenvalues of the Hamiltonian. The matrix representations of the Hamiltonian is
block diagonal in these quantum numbers. Therefore we can diagonalize separate
matrix blocks for each value of the good quantum numbers. We write elements of the

Hamiltonian matrix for each good quantum number value as

ij\/[JvSyFrve _
Hij - <NR1

<N7‘z‘<vgz7 Ki7 FZ;KU’M N’i? J7 S7 Ki7 MJ7pi‘
ﬁDR|NRJ>‘NTJ>|U;]j7K7 FZ;]HUJ’ Nj? ‘]7 S7 K]7 MJ7p]>
(2.134)

Subscripts 7 and j denote the "not good” quantum numbers (these quantum numbers
will not make the Hamiltonian matrix block diagonal) of the vibrational or angular mo-
mentum quantum numbers.

By using the relation N2 = N2 + N2 + N2, we can rewrite Eq. (2.60) as,

H = H,+ Hp.r+ Hy + Hyy + Hy, + Hyp + Ha, + Hso, (2.135)

Hpp = — P2+ Lﬁ; (2.136)
241y ) 2pR ) ) ,

i~ A 5 1 () )

Hyy = {2;5}%2 Cot2(7)} (N?+ L? —2N.L,) (2.138)
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N h2 1 . . N
Hy = {—— N2+ [2—-2N.L, 2.139
bb {QMTT2 Sil’lz(T)} ( z + z ) ( )

. h?

H, = ——(N*>-N? 2.140
. oo o« o« NN, 4NN, (N,L.+L.N,)

b, = {NxNT NN, 4 Zwte 7V 7 Uy e T B y} 9141
aw 2urR? * - tan(7) ( )

Starting with the next section, we will show how to combine the parts of the Hamiltonian

(egs. (2.137)-(2.189)) to construct the total Hamiltonian matrix HY»MS-Trve,

2.3.1 Matrix elements of H, (HAMILV)

This term is obtained by three-dimensional integration over products of basis function
pairs and the potential energy function. The potential energies are calculated by ab
initio methods, and fitted to an analytical function. The integration over the » and R
coordinates are made using Gauss-Laguerre quadrature, and the integration over the
7 coordinate is made with Gauss-Legendre quadrature.

As described in Chapter 2.2.2, we have numerical bending basis functions ¥(7) on
a regular grid. The number of integration points in the bending basis set are extremely
many, thus we choose to use the Gauss-Legendre integration method for computing
the integrals involving the potential energy function. Since Gauss-Legendre integration
requires a non-regular grid of integration points, we have re-constructed the numerical
bending basis functions in the interval required by Gauss-Legendre integration. Values
for the numerical bending basis function around 0 and 7 are obtained from Eg. (2.107)
and 2.108. Intermediate points are calculated by interpolation of a great number of
equally spaced numerical values of the bending basis functions in question.

We denote the lower potential energy function by V(r, R, 7)\~) and upper potential
energy function as V(r, R, 7)(~). We have by definition

WONH ) = V(r,R,7)) (2.142)

WONH ) = V(r,R)™ (2.143)
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WONH ) = @ |H YTy =0 (2.144)

and with Eq. (2.122), the Hamiltonian matrix of F, can be written as
i < <77i;Ni7J787Ki7MJapi’
He|Ng,) Ny, )og), K, T2 ngs Ny, J, S, K, My, pj)

N, | / VY s, (DX ¥ (P)ING) N, )(2.145)

FZ; )= \Ilnj (7).

KF

i . T
i <’U2i7 Kza FUZ,

{

= 6NiNj6Kin <NR1 <

Here, we write the bending basis function as |v”f
The term X, in the equation (2.145) is obtained as foIIows when =1

Xoa = &, V(r,R, 7)) + sk, V(r, R, 7)) (2.146)
X = &G,V R7)P +55 V(r,R7), (2.147)

but when n; # n;
Xap = Xoa = e85, (V(r, B,7)T = V(r, R, 7)) . (2.148)

2.3.2 Matrix elements of Hp,p (HBL1, HBL2)

The matrix elements for Hp, 5 are very simple to derive.
<NR1|<NT1‘</U2 Y th ‘</r]'l’N'L7 J? S? KZ? MJ7p’L|
1 - 1 -
( P2+—Pé) N ) [N o LT g Ny, . S, K, My )

21, " 2ugR
]52 P2

—|N, ) 2.149
IV >NTNT)< )

= 5NN 5K K; 57)17)]5 "71 773 <5NR1-NRJ- <NT1

2.3.3 Matrix elements of H, (HAMILB)

The matrix elements for i, are

<7]’L7 Ni7 J7 Su K’i? MJap’i|

(Nr, | (N, [ {03}, K3, T,
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h? h? 1 1
Moo (1
{QMRR2 QMTTQ} { 4 ( + sin2(7)) }

|NR]'>|N7’ >‘Um K FT] >‘nj7Nj7J757Kj7MJapj>

h? h?
() gl Vi OV, )+ (i N ) 5 1) )

- 1 1
<027K Fm <771;N17J:S:K17MJ7pz‘ Nz__ 14— P)
4 sin”(7)
o), KT DIng Ny, J, S, K, Moy, pj) (2.150)
Here, N? = —12.Z,. We rearrange the part of the Hamiltonian matrix involving —2, .}
2

N . T
</02i’ KZ’ F’U;Z

<77i;Ni7J7‘S:KiaMJ7pi‘ - ’,077] K Fn >’nj;Nj7J757Kj7MJ7pj>

a )
0 . .
- (<E <U;7;7K’L7FZ;Z) |<7]’L7NZ7J7 Su K’i7MJap’i|

i . T
+<’U2¢ ’ KZ’ F’U;Z

0
<§ (77u Ni7 Ja S: Kia MJapi) ’)

0
X (|a7' <U2 7KFT]] >>|(7]j)Nj7J757KJ7MJ7pj)>
0
| 77] K Fnj >‘E(n]7N]7J7S7K]7MJ7pj)>)
577i77j5NiNj5Kin5pipj/ann]dT (2'151)
The derivatives of |n; N, J, S, K, M, p) with respect to T are
. _ . 37K() (-)
|E(CL,N,J,S,K,MJ,]9)> - _Sln(/yK(T)) |77Z) >‘N7<]7S7K7MJ7p>
15}
+ cos(y(ri 2D X D)y 0) N, 1,5, K, My, )
— b N, .5, K, My, py 2T
or
0 . Oy (T
‘E(baNﬂ]aSaKaMJap» = _SIH(VK(T))Z%()IQASH)’N?JasaKaMJ750p>
0
— eos(omr) DI 0N 1,8, K M)
ISince, & (Yathy) = ZLogpy + a2 . So, [vaPldr = fg’f(wav,z)b)dr—f o pdr = — [ %ayydr. Thus,

J W s thp)dr = [ (o Za)dr = [ — (35& v )dr
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= _‘&ﬂ Na Ja Sa K: MJap>aIYK(T)

. 2.152

5 (2.152)

Rewriting the bending basis function as |v,), K;, T} ) = ¥" o (7), the term X,
U2j7 I 1)2],

in Eq. (2.151) can be written as follows: when n, = n,,

Xaa - Xbb -
i i
OV, ey (M OV e (7) o o i, (1))
or or + U2,L7Ki7FZ§Z, (T) U2j,Ki,FZ§j (T) or ’
whereas when 7, # 7,
Xab -
ovb T ope .
g (1) ey, ) _ ke, ") ol (1) S (r)
v, ,Ki,F%Qi 87_ (97' U2j ’K""FZQJ- 87_
Xba -
owb T ove o e (T
o (1) UQi’Ki’FgQi( ) T ( )\pb (1) Nk,i(T)
Ugj ’Ki’F%Qj 87_ (97' v2,; ,Ki,l“ij% 87- .

(2.153)
Thus Eq. (2.150) can be written as,

h? h?
— S v O i, | (Ng |——|Ng )6 5 N, |—IN..
NzNj KZKJ << Rz 2#RR2’ R]) N’riN'rj + NRZ-NR]-< 3 2/L7«7“2‘ ]>)

The quantity X, in equation (2.154) is as follows; when r; = n;

X, X, 72 8@22 KiToy, (7) a‘I’ZZj G T (7)
o or or
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and when n; # n;,

X = \szi,m,rggi (1) - i _ '787- i \plb)Qj’Ki,Fng (1)
V.
2 ngm (2.156)
T
aqugl KT, (1) a\]:lzgj,Kz,F%Q' (7) ,
Xba = \IIZQJ_ ,Ki,F%Q . (T) aT i _ 87— J \IIUQZ_ 7Ki71_‘22 (T)
x 12 Lgi (r) (2.157)
T

The first term, and the term sin 72 in second term of equation (2.155) can easily
produce numerical errors; these each terms quickly go to infinity when - — 0 and
T — w. The terms X,, and Xj, will not go to infinity since infinite values cancel, but
they are proved to produce numerical errors. The basis function \IJZ% KT, (1) in the term
X.. and Xy, is the normalized eigenfunction of the Hamiltonian H,.,4 in equation (2.91).
Where we write the bending vibrational energy obtained in the pre-diagonalisation step

as E}* and write the basis function in a simplified way as ¥’ (1) = @K (1), we

2, KT,
have following equation from equations (2.89) and (2.91).

OV + g (o)

h? 02 ) )
-5 (uTT(T)ﬁ + [E,MTT(T)]E) }cbz;f (1) = E;gf@gf (T)cpg;f (1)

HOTK (1) 0PI (1)
/ {n R L G
T T 2 J

sim- T

20K () [ oy () OB ()
— Y2, TT 2j n K n,K
/ e (T) { or or + (VK(T) E”%‘ > (I)”%' (7) g dr

(2.158)

Thus we use the relation in equation (2.158) for calculating the terms X,, and X, in
equation (2.154).
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2.3.4 Matrix elements of H,, and H,, (HAMILBA, HAMILBB)

For the part of Hamiltonian matrix elements arising from H,, and H,,, we first derive
how the electronic-rotation-spin basis function is affected by the angular momentum
operators in Hy, and H,.

From equation (2.70) we know

<Ni7J7‘S:Ki7MJapi‘NZQ‘Nia‘JaS:KiaMJapj> = 5N¢Nj5Kin5p¢iji2h2
<Ni7J7’S:Ki7MJapi‘Nz‘Nia‘]aS:KiaMJapj> = 5N¢Nj5Kin(1_5p¢pj>Kih (2159)

and from equations (2.118) and (2.87) we can obtain that

<77u Ni7 ‘]7 S: Kia MJapz’N,S’n]a Nj7 Ja Sa Kj7 MJapj> = 5ninj5NiNj5KiK'5piiji2h2 (2160)

J

<77i; Nia Ja Sa Kz',MJ’PiUisz; Nj7 J7 S: KjaMfapj> = 577i77j5NiNj5Kin5pipjh2 X Xnmj

Xaa = C%Q fAQ_ (7-) + S%(i fAﬁ_ (T)
{ Xip = Xiu= e, (fr2 (1)~ fue (7)) (2:16)
Xpp = ck, faz (1) + sk, faz (7)

<77i;Ni7JasaKiaMfapi’Nziz’nj;NjaJasaKjaMfapj>
:6NiNj5Kin6pipjh2KifA7,+(T) x XTh'TIj

— _ 2 2
Xab = Xba = Sk, — Ck;-

Thus the Hamiltonian matrix elements of H,, (EQ. (2.138)) are

<NR¢

(N,

<’Ug:’ Ki’ FZ; <7717 Ni7 Ja Sa Ki7 MJapi’
ﬁba’NRjHNer’Ugj, KJ,FZ;]H?]J, Nj, J, S, KngJ,pj>

ﬁ2
—|Np.
QNRR2‘ %)

= 5NiNj5Kin5NriNr]- <NR1

2
2 i n cos*(T)
xh / \1;% KTl (T)\Pvzj,Ki,FZ;j (7) Xy, sl (r) dr. (2.163)
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Further, the Hamiltonian matrix elements of H,, (Eq. (2.139)) are

<NR¢

(N,

<’ng’ Ki’ FZ; <7717 Ni7 Ja Sa Ki7 MJapi’
]:Ibb|NRj>|Nr]->|Ugj, Kj, Fzgj)mj; N;, J, S, K;, My, pj)
ﬁ2

= 5NiNj5Kin5NRiNR]- <NT1 W‘Nrg>
xh?* [ W (r)u™ (1) Lo dr (2.164)
V2, 7K17F2121 ’Ugj ,Ki,Fzgj SlIl2 (7—) ’ ’
The term X, in equations (2.163) and (2.164) is given as
Xoa = KP4k far (7) + sk faz (T) + dsgcx, Kifa_ (7) (2.165)
Xp = K2+ cg(ifAi () + s faz () — dsk,cx, Kifa_, (T) (2.166)

Xy = Xoo=2K,(c), — Sii)f/\,,+(7)- + CKk,Sk; (fAi (7) = faz (T)> - (2.167)

2.3.5 Matrix elements of H,, (HAMILNK)

This is the Hamiltonian matrix contribution involving the rotational angular momentum.
The matrix elements are non-zero only when AK = 0 and AN = 0. When we diagonal-
ize the Hamiltonian matrix, we first diagonalize the elements which have AK = 0 and
AN = 0, and we call this K-block diagonalization. (See details in Chapter 2.4) There-
for we do not include H,,, term in the K-block diagonalization. The term will be added
when we do the final diagonalization (/-block diagonalization, see also in Chapter 2.4).

The Hamiltonian matrix elements from Eq. (2.140) are

<NRZ‘<N7’1

<U;7j7 K’i? FZ; <TIZ7 Ni7 J7 Su K’i? MJapi|
ﬁnk‘NRjHNTjHUgj’ KJ7FZ;J>‘77J? Nj7 ‘]7 S: Kja MJ,?j)

h2
QNRRQ

= ONiN; O, Onim; Oy, N, O i 13 P{Ni(N; +1) — K2}(Npg, [NE;)-

(2.168)
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2.3.6 Matrix elements of H(HAMILDK)

This term produces nonvanishing matrix elements only when AK = 1 and AN = 0.
Thus we do not include it for the K-block diagonalization. It will be added when we do

the final diagonalization (/-block diagonalization).
The operators N, and N, commute and so do L. and N,. Thus we can write the

Hamiltonian matrix elements from equation (2.141) as

<NR¢ <77i;Ni7J787Ki7MJapi’

(N,
Hy| Ng,) [N, |0, K, 0 ) mgs N, J, S, K, My, pj)

ﬁ2
2 1% RR2

i T
<U2 Klarv;i

i)

<77u Ni7 ‘]7 S: Kia MJapi‘

= on,n, (N |Ng,){v3, K, T,

{mmﬁ(mm+mm_mﬁgﬁﬁq
sin(7)
o3, K, T )y Ny J, 8, K, My, pj). (2.169)

Here,

i T
<U2 KZ? Fv;l

i)

<7]’L7 Ni7 J7 Su K’iy MJapi|NacNT‘Ugja KJ7FZ;j>|7]ja Nj7 J7 S7 K]7 MJupj>
<77’“ Ni? ‘]7 S: Kia MJapz‘Nx

. . ni ,
- _Zh<’02;7 Kia FZ;Z

0 : .
X( E <’U;’;7K7 FZ;3>>‘77]7NJ7 ‘]7 S: KjaMJapj>

) ) 0
o} BT ) |5 (173 Ny, 0, S, K, My, ). (2.170)

Thus,
mm+mm_M@ﬂ
tan(7)

i

<U;h K'MFZ; <T]Z7NZ7J7 Su K’L7MJ7pz|{2Na:NT+

ot K3, T Mg Ny, J. 8, K, Mo, )

, ~ 0
< - 2’Lh<7h, N’i? J7 S7 Ki7 MJypz‘Nx|E (77]7 N]7 J7 S7 K]7 MJ7p])>
RN 4 NN, - 9N L
tan(7)

_ i T
- <fU2Z ? K’“ FU;Z

+ <7717Nza Ja Sa KiaMJapi‘ Z’nj;Nja Ja Sa KjaMJapj>)‘UgjaK7 FZ;J>
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. : . N 0 . ,
- 2lh<0337 K’MFZ;ZKHZ? Ni7 J7 S7 Ki7 MJypz|N:E|n]7 N]7 J7 S7 K]7 MJ7p]>|§ <U;7;7 K7 FZ;]))

(2.171)
With Eq. (2.122), we obtain

(a; N;, J, S, K;, My, p;|L.N,|a; N;, J, S, K, My, p;)
= Nhfa_ A—cxsx, 5, (Ni K, K, pi, bop,) — Sk, [, (Njs Koy K5, Gop,, ) }
(a; N;, J, S, K;, My, p;| L.N,|b; N;, J, S, K;, My, p;)
= hfa_ A—cxicr; fr, (Nj Kiy K, pi, Sop;) + SkiSie; [, (Njs Kiy K, dop,spj) }
(b; N;, J, S, Kiy My, ps| L.N,|a; N;, J, S, K, My, p;)
= hfa_A—cxicr; fr,(Nj Kiy Kj, 0op, ) + w8k, [, (NG, Ky K, piy bop,) }
(b; N, J, S, Kiy My, ps| L.N, |b; N;, J, S, K, My, p;)
= hfa_Aex,sk, fr,(Nj, Ko, K, dop,, p5) + Sk.ci, [, (Nj, Kis K5, pis dop,) }-
(2.172)

Similarly, we obtain the matrix elements for N,, N,N., and N, N, as

(a; Ni, J, S, Ky, My, pi| Hyotla; Ny, J, S, K, My, p;)
= CKiCKjfﬁ[mt(Njy K, K;,pi,pj) + SKiSKjfﬁ[mt(Nja K;, K;, 0op,, 50])]')
(a; Ni, J, S, Ky, My, pil Hyot|b; N, J, S, K, My, p;)
= —cr;8x,fp,,,(Nj, Kis K, pis pj) + s.cx; fa, (Nj, Kiy Kj, 0op,, Sop; )
(b; Ny, J, S, Ki, My, pi| Hootla; Ny, J, S, K, My, p;)
= cx.sK; i, (Nj, Kis Kj, Oop,, Oop;) — s,cx; [, (Nj, Kiy Ky, pi, py)
(b; N, J, S, K, My, ps| Hyor|b; N, J, S, K, My, ;)
= CKiCKjf]:[mt(Nj: K, Kj, oo, 5opj) + SKiSKjfﬁ[mt(Nj: Ki, K, pi, p;)-
(2.173)
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From Egs. (2.171) - (2.173) , Eq. (2.169) can be rewritten as

h2
= 0NN, 0 Ng,|=——=|Ng,
N.N; 0N, N (N, QMRRQ\ R;)
(VI ()% Ko,
15
oh My (7
+ = Kol (1) e X Y, | dr, (2.174)
where, X, in Eq. (2.174) is given as follows; when 7, = n; = a,
1
Koo = tanT{CKiCKijyNerNzNy(Nj’ K, K;, pi, ps)
+ SKiSKijyNZ+NZNy (Nja Ki7 Kja 50p¢7 5Opj)
+ 2th—+ <CKiSKijy(Nj7 Ki7 Kj7pi7 60pj) + SKiCKijy (N]7 Ki7 Kj7 50pi7pj)> }
2h 8’ij (7')
+ 7 7 < - CKisKijx(Nja K;, Kjapiapj) + SKicKijx(Nja K, Kja 50p¢7 5Opj>>

(2.175)

when n; =n; =0,

1
Xw = tanT{CKiCKJ'fNyNerNzNy(NJ”KiaKjaéopmfsopﬂ

+ SKiSKijyNz+NzNy(Nj’Ki’ Kjvpivpj)
— 2th,+ <CK¢5Kijy(Nja KZ', Kj, 50pi,pj) + SKiCKijy(Nja Ki7 Kjapia 50pj))}

% Ok, (1)
) or

< — cx;5k; fr, (Nj, K, K, Oop,, 0op,) + Sk.Ck; [, (N, K, Kj,pz‘ypj))
(2.176)

when 7; = a, n; = b,

1
Xap = taIlT{_CKiSKijyNz‘f‘NzNy(Nj’Ki?Kj7piap)

+ SKiCKijyNZ+NZNy(Nj’Ki’Kj750pi750pj>
+2nfay (e fo, (NG, K K pisGop,) — sicse Fsy (N, Koy K, 00505 ) |
- 637( )<CK¢CKjf]\7x(NjaKiaKjapiapj)+SKisKijx(NjaKiaKﬁ&Opm(SOpj))
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(2.177)

and when n; = b, n; = a,

1
Xba - tan T {CKiSKj fNyNz+NzNy (NJ7 Kiu KJ7 50]71’7 50]7]')

= Sk, i, 1w i, (NG Kiy Ko piyp)
+ 20 fas <CKiCKijy(NjaKz‘a K5, 0op,s p3) — sx5k, [, (N Ki7Kj7pi750pj))}

2h Ovk (T
+ 7% <CKiCKijx(Nja K, Kj, dop;, Oop;) + Sk 55, frr, (Ng, K, ijpi,pj)>
(2.178)
The term Y,,,,. in Eq. (2.174) are as follows; when »; = n;

Y;m = CKicKijx(NjaKiaKjapiapj) +SKisKijx(NjaKiaKjadopmepj) (2179)

Yo = crci;fr, (Nj, Ki, Kj, 0op;, 0p;) + Sk:5x; [, (Nj, Ko, K, pi, py), (2.180)
and When i 7£ 77],

Yab = _CKisKjf]\Afz(NjaKiaKjapiapj) +SKicKijz(Nj7Ki?Kj750pi750pj> (2181)

Yio = CKiSKijx(NjaKiaKja(SOpia(SOpj> - SKiCKijx(NjaKiaKjapiapj>' (2182)

The function f; (Nj, Ki, Kj,pi, p;) has the following values. When K; = 0, if K; = 1

and (—1)¥*?i = 1 then the function fx, (Nj, Ky, K, pi, pj) will have a non-zero value of

_p YN+ 1) (2.183)

fNI(Njalaoapiapj): \/5

When K; =1, K; = 0 and (-1)¥*? = —1, or K; = 1 and K; = 2 or K; > 2 and
K; = K; = 1then fy (N;, K;, Kj, pi, p;) will have a non-zero value of

th
Fre, (Nj, K, K, pis pj) = (Kj = Ki) -0, \/Nj(Nj +1) = K(KG£1). (2.184)

When K; = 0, K; = 1 and (—1)"*?: = —1 then the function fNy(Nj,Ki,Kj,pi,pj) can

have a non-zero value of

fNy(Njalaoapiapj> =h (2185)
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When K; =1, K; = 0 and (-1)¥*? = —1, or K; = 1 and K; = 2 or K; > 2 and
K, = K; £1then fNy(Nj, K;, K, pi, p;) has a non-zero value of

h
Fr, (NG, K, K pipg) = 5 (1= 5pz‘pj)\/Nj(Nj +1) - KG(K; £ 1). (2.186)

When K; = 0, K; = 1 and (=1)"*? = 1 then the function fy x ., 5.5, (N;, Ki, Kj, pi, p))
can have a non-zero value of

N;(N;+1
fNyNz+NzNy (NJ7 ]-7 Oap’upj) = hQ% (2187)

When K; > 1and K; > 1, K; = K; £ 1then fg g 5 g (N;, Ki, Kj, pi, p;) Will have a

non-zero value of

h2
I, e+, (Nis Ky Ky pis ) = = Opip, \/Nj(Nj +1) = Kj(K; £1)(2K; £1). (2.188)

2.3.7 Matrix elements from Hgo, (HAMILSO)

This term yields non-vanishing Hamiltonian matrix elements only when AK = 0 and
AN =0, 1. Thus, we we do not include this term in the K-block diagonalization.
For the Hamiltonian Hso, we use the expressions given by Hallin and Merer (Ref.

[17]). The Hamiltonian matrix elements of Hgo are
<NRi|<Nm‘<U;}:7KivrzgiKni;Ni7J7 S7 KiaMJypi|
ﬁSO’NRjHNTj)’v;];?Kj’Fggjﬂnj;NjaJa Sa KjaMJapj>

— 5Kin5pipj5NRiNR]- 5N’riN'rj 51);]11);7] th(J, S, Ni7 Nj, KJ)

X / \I/Z;?Ki’r;,; (7)u™ - (T)Aso(T) fae 4+ X Xy, dT. (2.189)

g
v2;,K; 7Fv2j

Where

f(J.S,N;,N;, K;) = (—1)Ni+Nf+S+J—K\/(2S +1)S(S+1)(2N; + 1)(2N; + 1)

N; 1 N N, S J
x . (2.190)
~K; 0 K, S N; 1
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The quantity in the parentheses is a 3j-symbol (Ref. [13]) and the quantity in curly
braces is a 6j-symbol (Ref. [13]). The function Ago(7) represents the spin-orbit inter-
action constant calculated with ab initio theory.

The term X, in the equation (2.189) is given as follows; when 7; = 7,
Xoo = —Xpp = —25sin(7) cos(7) = —sin 27 (2.191)
whereas 1, # 1,

Xup = Xpo = —cos?(7) +sin’(7) = — cos 27 (2.192)

2.4 Diagonalization of the Hamiltonian

From equations (2.132) and (2.61), we know that by diagonalizing Hamiltonian ma-

trix H?M3:S:.Irve jn equation (2.133), we obtain the energy levels £ with the associated
J,M 7,5 rve
N, Kol Vb N, N

nation of basis functions. We diagonalize the total Hamiltonian matrix in two steps.

eigenvector coefficients ¢ defining the wavefunction as a linear combi-
The first step is called K-block diagonalization, and the second step is called .J-block

diagonalization.

2.4.1 K-block diagonalization

For the K-block diagonalization we include the Hamiltonian matrix elements which
have non-zero values when AK = 0 and AN = 0. The term from H,,; has non-zero
elements when AK = 0 and AN = 0, but we do not include this term in the K-block
diagonalization since it changes its value with the quantum number N. Thus for the
K-block diagonalization, we collect the terms from H., Hp,r, H,, H,, and Hy, then

diagonalize the resulting matrix block using the LAPACK library [18].

HinQFVibm = <NRZ‘<NTZ’<U%7 Ki7 Fv1b‘<771a N7 Ja Sa K: MJap‘
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{ﬁe + ﬁPTR + IA{b + ﬁba + -be} ‘NR]'>|N7’]'>‘U£);7 K7 Fv1b>‘n]7 N7 J7 S7 K7 MJ7p>
(2.193)

For each K quantum number with T'y;;,, we prepare 1, 2 or 4 set of eigenvalues and
eigenfunctions depending on K = 0 or K # 0, and ABC- or ABB-type molecule.

In case of an ABC-type molecule, as we can see from Table 2.3, when K = 0, we
need the K-block just with n = a or n = b states depending on whether the N quantum
number is even or odd. Thus we need to prepare the K-block foreachn=aandn =1>
state separately when K = 0, but when K # 0 we do not need to separate this block
into two sub-blocks.

In case of an ABB-type molecule, as we can see from Table 2.7, when K # 0, we
need to separate the K-block into I'y;, = A; states and I'y;, = B, states. Further,
when K = 0, we need to separate the K-block into I'y;, = A; states with = a states,
', = A; states with n = b states, I',;, = B, states with n = a states, and 'y, = B»
states with = b states.

The dimension nmax of each K-block Hfj.(’rvib’” depends not only on whether K = 0
or K # 0 in the case of ABC- or ABB-type molecules, but also on the chosen size of
the bending and stretching basis sets. We denote the number of basis functions for
r-, R-, stretching basis set as nmaxr, nmaxR , respectively; the bending basis set for
n = a and n = b has the nmaxba and nmaxbb functions, respectively.

In case of an ABC-type molecule, when K # 0, nmax is calculated as
NMaz o) = nmaxr X nmarR x (nmaxba + nmazbb) . (2.194)
When K = 0, with n = a state we have
NMAT (K=o n—a) = NMaxr X nmazrR x nmazba. (2.195)
When K = 0, with n = b state:
NMAT (K=o n=b) = Nmaxrr X nmark X nmaxbb. (2.196)
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The numbers of A; and B, state bending basis functions in each n state, nmaxbnA;

and nmaxbnB,, respectively, are given by the following relation
nmaxbnA, = nmaxbnBy +n  (n = 0orl) (2.197)

For an ABB-type molecule, we have different expressions for nmaxz depending on
K, Ty, and n. For K # 0 and I'y;, = A; we obtain

NIMAT ([ £0, Ty =A,) = AT X nmaxR x (nmaxbaA; + nmaxbbA,) . (2.198)
K 7é 0 and I'vi, = Ba
WINAT (| £0,0 5 =B) = NMAxT X nmaxR x (nmaxbaBy + nmaxbbBsy) . (2.199)

K=0,p=aand 'y, = A

NMAT (K =0,y=a,Ty=A;) = MMaxr X nmarl X nmaxbaA;. (2.200)
K =0,withn=aand 'y, = B,

NMAT(K=0,n=a,Tyy=Bz) = MMaAxT X nmarl X nmazrbaBsy. (2.201)
K =0,withn=band I'y;, = 4,

NIMAT (K =0,y=b,Ty=A,) = NMaATT X nmarR X nmawbbA;. (2.202)
K =0,withn=band I'y;, = Bs

NIMAT (K —0,n=b, Ty, =Bs) = MMATT X nmaxrR X nmaxbbBs. (2.203)

We set a contraction energy limit before the J-block diagonalization. We select
those wavefunctions from the K-block diagonalization whose energies are lower than
the contraction energy limit. The number of eigenvalues selected for each K and I,
state is called nmaxk(K,I'yin,n); We save the corresponding eigenvectors as a matrix

C¥.Ivivn The dimension of the matrix C¥:Ivie is nmax x nmaxk(K, Ty, n)

52



2.4.2 J-block diagonalization

Now we move on to the J-block diagonalization. We collect the terms for the J-block
diagonalization in the Hamiltonian matrix H?-MsS.I've For the terms with AK = 0 and
AN = 0 we just need to add the Hamiltonian matrix elements from fISO and f]nk to the
K -block Hamiltonian matrix HX-IVi>7 which we have already prepared. We have terms
with AK = 0 and AN = 1; these terms only come from the Hamiltonian operator Hs.
We have terms with AK = 1 and AN = 0; these terms originate in the Hamiltonian
operator Hy;, only.

For each K;N; and K;N; block in H?Ms:S.Twve "yye multiply by the matrix C¥-Tvi» to

have the contracted final Hamiltonian matrix Hc?Ma-8 e gg

JMj,S,Trve __ Ki,Tvib:,mi\—1 J,Mj3,S,Trve Kj,rvib,,nj
HCKiNi,KjNJ- = (C™oivivh) HKiNi,KJ-NJ- C i, (2.204)

The dimension of the contracted final Hamiltonian matrix block Heg [ g i
nmaxk(K;, Ly, m:) X nmazk(K;, Ty, n;) thus we can reduce the memory use in the
J-block diagonalization.

We diagonalize the contracted .J-block Hamiltonian matrix Hc?Ms-ST e with LA-
PACK routines [18]. The calculated eigenvalues correspond to the energy levels E
of the total Hamiltonian, and the calculated eigencoefficients for an energy level E; cor-

] MaSTre  The relation between

respond to the :th column of the coefficient matrix
CK-Tvinn and ¢} M5 with the coefficients for the total basis set (Eq. (2.61)) on i th
energy level is as follows:

J+S N

\Ijjvj\/[JvS:Frve _ ijj\/[JvS:Frve
( o 2 : 2 : 2 : Lvip
777N7K7v2 7N7‘7NR

N=|J—5| K=0T\ve,Ny,Ng,n,vg
X|NR7 FR>|N7’7 Fr>‘vga K7 Fvg>7]a N7 J7 Su K7 MJ,]?)

N
o J,]\/[J,S,FI‘VG K7Fvibv77
== g E E Cfi,g : : Cqu

N K=0TIyin,m q

x| Na, D) [N, Do) o, K, Tog) s N, J, S, K, My, p) - (2.205)
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N
J,Mj,S,T" § : J,Mj,S,I" ;
c IPAZ 3 YR rIYe‘ — C~7 J R I'VBCK,FVlbvn (2206)
n,N,K,vg" VI* N, Ng Z Z i,9 9,4

K=0Tyipb,m ¢
Here ¢ represent the labels for K-block matrix n,vg’rvib, N, and Ng. g represent the
labels of the gth energy from the K-block matrix and comprises the lavels of K, I'\;,, 7
and N.

2.5 What do we do with the eigenvalues and eigenfunctions?

In spectroscopy, we assign quantum numbers to each vibronic energy level. We can
annotate a vibronic energy level with stretching and bending quantum numbers. From
these quantum numbers, we have some idea of the "origin” of the energy levels.
The resulting eigenvalues, which are the resulting energy levels, each has a corre-

sponding eigenfunction. To annotate an energy level, we find the biggest coefficient
CJ,MJ,S,Fwe

N, Kl vib N, Np
will relate to the notation for the vibration quantum numbers. With N and K, we can

of equation (2.61). The vy, N,, Ng, T'\;, derived from this coefficient

label rotational quantum numbers. The way we have different quantum numbers for lin-
ear molecules and bent molecules. We will explain the notation for the bent molecule
and then we detail that for the linear molecule.

The wavefunction can be used not only for annotating energy levels but to get further
insight into the nature of the double-Renner interaction. We compute probability density
functions for visualizing the wavefunctions and this will be explained in the last part of

this section.

2.5.1 Assignment and notation for bent molecules

The notation for stretching and bending vibrational quantum numbers is very straight-
forward in this case. N, corresponds to the principal » bond stretching motion quantum

number, Ny corresponds to the principal R bond stretching motion quantum number,
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Iy, corresponds to the symmetry of the bending basis functions, and ] is the quan-
tum number for bending motion. n shows the dominant electronic state for the energy
level. When the molecule is in the high energy region, or when the molecule has other
energy levels fairly close (resonance) it always becomes difficult to define a set of quan-
tum numbers for an energy state. The energy state has significant contribution from
two or more basis states. If one energy state has ca. 90% (or more) contribution from
one dominant coefficient, we can easily define the quantum number.

The quantum numbers for rotational state are not as straightforward as for the vibra-
tional state. The quantum number K corresponds to the rotational quantum number
K,. However, in the case of a bent molecule we also need K.. We have to consider
the asymmetric-top labels of rotational states.

We take as example an ABB-type bent molecule here. We say our ABB-type
molecule has the moments of inertia in the order ., < I,, < I,,. The a-, b-, and
c-axes of asymmetric molecule are defined so that 7,, < I, < I... In case of a sym-
metric top molecule a molecule with (1, <)Iy, = I.. is called a prolate type molecule
and a molecule with I, = I;(< I..) is called an oblate type molecule. We define that
a prolate type molecule has a " basis and an oblate type molecule has a /11" basis.
To assign rotational quantum number in an asymmetric top molecule, we first need to
think of two extreme cases, which are the oblate and the prolate type molecule’s rota-
tional quantum numbers. When the ABB-type molecule has I" basis, the z-, y-, z- axes
will correlate as xyz = bca when it has I11" basis, the z-, y-, z- axes will correlate as
xyz = abc.

We now derive the equivalent rotations (See section 12.1 of Ref. [12]) for the op-
erations in Cy, (M), the molecular symmetry group of the molecule ABB (See Table
2.4). When we carry of the operation (12), this corresponds to a 180° rotation of the
molecule-fixed axes about the b axis (See Fig. 2.2). We call this rotation R;. The

identity operation £ changes nothing; we call the corresponding rotation F,. Table 2.8
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i
| N — 2

Figure 2.2: The ABB molecule with molecular fixed coordinate system. Nuclei 1 and 2 correspond to
nucleus B of the ABB molecule, and nucleus 3 corresponds to the nucleus A. The a axes points from
nucleus 1 to nucleus 2. The b axes points from nucleus 1 and 2 to nucleus 3. The ¢ axis points out of the

plane of paper, so that it makes a right handed coordinate system.

summarizes all the identifications of Cy, (M) symmetry elements with respect to the
axes a, b and c in Fig. 2.2. As mentioned before, a prolate molecule has I" basis,
where the xyz axes correspond to the bca axes of an ABB-type molecule. An oblate
molecule has a /11" basis, where the zyz axes correspond to the abc axes of an ABB-
type molecule. Thus we can define the identification of the Cs, (M) symmetry elements
in terms of the axes x, y and z of the prolate and oblate molecules. These relations are
also summarized in Table 2.8.

We know that the rotational wavefunctions of the molecule ABB in a I" basis are

linear combinations of symmetric top rotational wavefunctions |N, K,, M), and in a
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Table 2.8: The identification of the symmetry elements of MS group Ca,(M).

Coy(M) : E (12) E* (12)*
a-, b-, c axis of molecule ABB : Ry R} R R]

Corresponding z-, y-, z axis of prolate

molecule in molecule ABB : Ry R} R} R 1" basis

Corresponding -, y-, 2- axis of oblate

molecule in molecule ABB : Ry Ry R} Ry  III" basis

111" basis they are linear combinations of symmetric top rotational wavefunctions
|N, K., M). The effect of the operation RT on a rotational wavefunction |N, K, M) is
well known.? We can calculate the representation generated by the function |N, K,, M)
for each K, and the result is summarized in Table 2.9. From Table 2.9, we know that
the symmetry of a rotational function is A; when K, and K. are both even, it will be A,
when K, and K. are both odd, it will be B; when K, is even and K., is odd, and it will
be B, when K, is odd and K. is even. (This is summarized in Table 2.10. )

We know that K, + K. = N or N + 1. Thus if one knows the symmetry label of a
rotational function, with quantum number N and K = K,, one can assign the quantum
number K, using the relation between K, and K. and the symmetry labelling ( Table
2.10).

The symmetry label of the energy level is I'.... I'.. has a contribution from the
electronic state symmetry, the symmetry of vibrational function, and the symmetry of
the rotational function. We have included the contribution from the electronic symmetry;,
and the symmetry of vibrational function to the relation summarized in Table 2.10,
and constructed Table 2.11. With Table 2.11, one can assign K. from N, K, and the

symmetry of electronic state I'., I'y;, and I'y..

2See Ref. [12], Section 12.2. These relations are summarized with explanation in equations (12-36) to (12-47)
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Table 2.9: Representation of the Co, (M) group for a molecule ABB generated by the basis functions
|N, Ky, M) and |N, K., M) .

K, ot K. ot

0 N even A; 0 N even A;

0 Nodd B 0 Nodd Bs
odd As + Bo odd As + By
even A+ B even A + By

Table 2.10: Symmetry species of rotational functions of a molecule ABB.

KaKc FTOt KaKc FTOt

ee Ay 00 As

eo B1 oe By

”ee” corresponds to K,K. being both even, and ”00” corresponds to K,K. being
both odd. ”eo” corresponds to K, even and K. odd. ”oe” corresponds to K. even

and K, odd.

Table 2.11: Symmetry species of I'}y. of a molecule ABB, with ' and T'yip.

Fe A1 Al Bl Bl
Fvin A4 Bs Ay By

| K,K. K,K. K,K. K.K.
Ay ee oe €o 00
As 00 €o oe ee
B1 eo 00 ee oe
B oe ee 00 €o

7ee” corresponds to K, K. being both even, and "00” corresponds to K,K. being
both odd. ”eo” corresponds to K, even and K. odd. ”oe” corresponds to K. even

and K, odd.
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2.5.2 Assignment and Notation for linear molecule

The notation for stretching vibrations and rotational quantum numbers is very straight-
forward in this case. N, corresponds to the r stretching and quantum number, Ny to the
R stretching quantum number and the quantum number N is the rotational quantum
number.

In a linear molecule, we have the angular momentum quantum number for bending
vibration /. The quantum number [ = K. v] is the quantum number for bending motion,
but this is in "bent” molecule notation (see also Eq. (13-177) of Ref. [12]). The definition
of the linear molecule’s bending quantum number J™" has to take into account the

angular momentum quantum number for bending vibration [, and it is defined as
vy = 2l + |K F Al (2.207)

We have the A term since we have Renner effect. The minus sign corresponds to the
lower electronic surface and the plus sign corresponds to the upper electronic surface.
The linear molecule’s each vibronic energy levels are labeled by labels X3, 11, A, ... each
corresponding to the K quantum value O, 1, 2, .... The projection of the electron spin
onto the molecule-fixed a axis is defined as quantum number P = |K + ¥|, where ¥ =
+1/2. Thus each vibronic state will have notations as ¥p, I1p,Ap ... There are some
states which have same notation as for example X, , with same vibrational quantum
number set. Here, a state with lower energy is called a p state, and a state with higher
energy is called a « state [19]. An example is the states (v}, vi", v3) with vJ» odd. Each
of these states has two sub-states of ¥p vibronic symmetry. The lower sub-state of the
Y p vibronic symmetry is called p>p state and the upper sub-state of the >p vibronic
symmetry is called the xXp state. Similarly, a state with an even value of v}® > 0 has
two sub-states of IIp vibronic symmetry. The lower sub-state is called ull» and the
upper sub-state is called xIlp.

For a molecule in a doublet state, each vibronic state can have very small splitting.
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We have the e and f labels for this splitting and it is defined so that an e state has the

parity +(—1)’~'/2 and an f state has the parity —(—1)/~1/2 [12, 20].

2.5.3 Probability density functions

It is very interesting to visualize the wavefunction in order to "understand” the molecule
by means of quantum mechanics. We can plot rotation-bending-electronic wavefunc-
tion squares in two dimensional view or three dimensional view, by integrating out some
coordinates in the wavefunction squares.

The normalized probability density function f(7) is defined so that the differential
probability dp of finding the molecule with the bending coordinate in the infinitesimal

interval between 7 and 7 + dp is given by

dp = f(7) dr, (2.208)

where the volume element used for normalizing the function in equation (2.61) is

/ dr / dR / AV x [W M5 e |2
rot,e,es

where dV is the volume element associated with integration over the coordinates de-

choosen so that

(2.209)

scribing rotation, electronic orbital motion, and electron spin. With equation (2.61) the

equation (2.209) can be written as follows.

J+S N
_ JM S, Lrve
CIEED DD DID SED Sl AN Y B .
N= \J S|K ONrNRﬁwavQ rot,e,es
X{|NR7FR>‘N7‘7Fr>|U37K7Fv;’>‘n;N7J757K7MJ7p>}2
J+S N

= 22 22 )

N=|J-S| K=0 Nr,Ng, U"’Fvib v'hfvib
i 25

J]V[J S, J]V[J S,
77 N K v rvilb N NR 77 N K vnrvilb N NR gbv;]i‘rrvib (T) gbv;’;FVil) (T) (2.210)
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The two-dimensional probability density function is defined analogously.

flr,r) = / dR/ AV x |75 e |2
rot,e,es

I

J+S N
N= ‘J SlK ONR, N'rz Nr v1b v1b
]
J]\/[J S Frve CJ,MJ,SJ—‘rve
777NKv2 Fib NT Nr n7N7K7U;7;FVil)7NTj7NR
XON,, (1) N, (1) D prain (T) D praan (7) (2.211)
i J

To provide further insight into the nature of the double-Renner interaction, we have
also calculated partial probability density functions. We project the total wavefunction

:MsS5 e onto each electronic surfaces.

=i [ ar [ avceois),

where ¢ = — or + and dV” is the volume element associated with integration over the

(2.212)

coordinates describing rotation end electronic spin. The subscript ‘€’ on the integrand
matrix element signifies that in this matrix element, integration is over the electronic
coordinates (describing electronic orbital motion) only. f,(7)dr, ¢ = — or +, is the
differential probability of finding the molecule in the Born-Oppenheimer electronic state
¥ with its bending coordinate between r and 7 + dr. f- (7) and f,(7) can measure
the extent of the mixing of the two electronic states w(ﬂ_) and wé*’ in the wavefunction

g/MsSTne gt a given value of 7, and we have

f(7) = f-(7) + f+(7). (2.213)
The over-all probability of finding the molecule with wavefunction W/:Ms:5Iwe in the
Born-Oppenheimer electronic state we"), o= —0r+,Is
P, :/ fo(T)dr (2.214)
0
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With equations (2.61), (2.87), (2.120) and (2.121), equation (2.212) can be rewritten

as follows.

f-(7)

fa(7)

J+S N

JM 7,5 T rve J,M7,S,Trve
PP DD I VD DD Dl avs <

755Uyt 15>0yir
N, Ko Y2, Nes NR 9,N,Kvy) " Y2 Ny Np
N=|J=S| K=O0Nr.Nr ni nj pitvib niLvib j
i 2;

J

X {C%(¢vg%a’rvib (T>¢,Ug.:a’rvib (7-) + CKSK(¢UQIV=G’FVib (T)¢U;7.:b’rvib (7-)
+¢U;z%b,Fvib (T)vag%a,Fvib (7)) + S?(Qbyg%“vib (T)va;i%bfvib (7)} (2.215)

J+S N

JM 7,5 T rve J,M 7,S,Trve
IID DD B DD DD Dl s ¢

15>0vi n5.Iyi
1N, K vy VI No N 9N, Kvy?" ¥ Ny Np
N=|J-S|K=0N,,Nr mi nj ,Ugi’rvib vnj,FVib J
i 25

J

X {SIQ(¢U;',ZG’FVib (T>¢v;]%a,Fvib (T) - CKSK(¢U3:“’FVib (T)¢U;],:b,FVib (T)

J

+¢U;’.:b!rvib (T)gbv;]':a’rvib (T)) _|'_ O%(gbv;’.:b!rvib (T)gbvg':b’rvib (T)} (2216)
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Chapter 3

The program DR

In this chapter we discuss the program DR. The program DR is written in Fortran 90.
The program first constructs basis set functions according to the parameters given
in the input file. Then it calculates the Hamiltonian matrix elements for each K-block
matrix and constructs the K-block matrix. The K-block matrices are diagonalized using
LAPACK routines [18], and after diagonalizing a sufficient number of the K-blocks, it
constructs the J-block matrix. The J-block matrix is also diagonalized using LAPACK
routines [18]. The eigenvalues obtained from the J-block matrix diagonalization will be

the solution of the Schrodinger equation for the Double Renner system.

3.1 Basic definition of the system

The input requires following definitions for the system.

e MASSES: The atomic massis for atoms B, C and A of the system in atomic mass

units.

e LAMBDA: The electronic angular momentum of the system. If the system has

IT electronic state at linear geometry, itis 1. A corresponds to \ = 2, etc.
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e MULTI: The spin multiplicity minus one. If doublet, it is 1.
e XSO: The spin-orbit interaction constant.

o ZNORENNER: Performs calculation with Renner effect or without Renner effect.
"T” (True) for the calculation with Renner effect, "F” (False) for the calculation

without Renner effect, with one Born-Oppenheimer surface.

e ZABB: Defines if the molecule is ABC-type or ABB-type. "T” for ABB-type

molecule, "F” for ABC-type molecule.

e MAXJ: The number of K-blocks to be produced. This also defines the number of
J-blocks we can calculate from the K-blocks. If MULTI is odd, the J-block starts
from J = 1/2 and ends at / = MAXJ — S/2, and if MULTI is even, the J-block
starts from J =0andendsat J = MAXJ — S.

3.2 Construction of the stretching basis functions

The input for constructing stretching basis function requires following parameters.
e RE1: The equilibrium distance for the BC moiety, in Bohr.
e DISS1: The dissociation energy for the BC moiety, in Hartree.
e WEI1: The harmonic frequency for the BC moiety, in Hartree.

e RE2: The equilibrium distance from the atom A to the BC moiety, in Bohr.

DISS2: The dissociation energy from the atom A to the BC moiety, in Hartree.

WE2: The harmonic frequency from the atom A to the BC moiety, in Hartree.

NPNT1: The number of integration points for the BC moiety.

NMAX1: The maximum quantum number for the basis set for the BC moiety.
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Figure 3.1: A symmetry matrix element (4, j) are saved in n th vector element.

e NPNT2: The number of integration points for the distance from the atom A to the
BC moiety.

e NMAX2: The maximum quantum number for the basis set for the A-(BC) stretch-
ing.

The stretching basis functions are constructed using these parameters, with the

P2

a-|Ng,) and

s N,.) are stored in vector HBL1 and HBL2 respectively. Elements (Ng, | | Nz,
2y J il R J

method described in Chapter 2.2. Kinetic energy elements (/Vg,
(Nr,
and (N,

7

%|N,,) are sorted in the vectors R1M2 and R2M2 respectively. We store
these elements not in a matrix but in a vector. These matrices are symmetric; thus
by saving these matrix elements in a vector saves memory space for computation. A
matrix element (z, j) is saved in a vector element as shown in Fig. 3.1.

Stretching basis functions and terms HBL1, HBL2, R1M2, and R2M2 are calcu-

lated using routines supplied by Prof. Jonathan Tennyson [16].
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Main

Input

BASST,HBL1,RTM2,
BASS2,HBL2,R2M2

Y

loop over K

I« BASSB

\j

loop overr,,
< HAMILB, HAMILBA,

> HAMILBB,HAMILSO
loop overn

~— HAMILV

<« Construction of
K-block Matrix

<« Diagonalization of
< K-block Mafrix

B S—
\

Construction of J-block Matrix

Figure 3.2: A schematic drawing for the program DR with K-block Hamiltonian matrix construction and
K-block diagonalization. BASS1, BASS2 and BASSB contain the stretching basis function for R and
r coordinate and the bending basis function respectively. HBL1, HBL2, R1M2, R2M2, HAMILB,
HAMILBA, HAMILBB, HAMILSO and HAMILV are the Hamiltonian matrix elements. See
details in the text.
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3.3 Starting the K loop

We have different bending basis functions for each K block. For each K block, we first
construct these basis functions. The input for constructing bending basis functions for

the n = a and n = b states requires the following parameters.
e MAXBA: The maximum quantum number value for the n = a bending basis set.
¢ MAXBB: The maximum quantum number value for the n = b bending basis set.

NSTINT: The number of integration points for Numerov-Cooley integration.

NSERIN: Defines the number of points M, used to fit in equation (2.103).

NSERP : Defines the variable P in equation (2.104).

NSERQ : Defines the variable @ in equations (2.107) and (2.108).

e VMIN: The starting energy for searching for the Numerov-Cooley wavefunction.

e VMAX: The maximum energy for searching for the Numerov-Cooley wavefunc-

tion.

The Numerov-Cooley bending basis functions are constructed using the method de-
scribed in Chapter 2.2.2, then turned into Laguerre integration bending basis functions.

The parameters required for this change of formations are:

e NPNTB: The number of integration point for Laguerre integration of the bending

basis functions.

e NSPB: The number of points produced by Numerov-Cooley integration to repro-

duce a integration point for Laguerre integration.

The subroutine for constructing bending basis functions is called "drbend”.
Then, the program DR starts by constructing Hamiltonian matrix elements required

by the K-block Hamiltonian matrix. The K-block matrix is constructed for each I'y;,
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state. (When K = 0 we have to distinguish n» = a and n = b states, thus the program
constructs each n state for each I'y;,.) As shown in Fig. 3.2, the program starts to
loop over I'y;, after constructing bending basis functions. For ABC-type molecules, the
program loops only once for I'y;,.

Now the program constructs bending basis function-related matrix elements of 4,
H,,, Hy, and Hso in the subroutine "hamilbend”. These matrix elements are stored
in the vectors HAMILB, HAMILBA, HAMILBB, and HAMILSO, respectively.
HAMILB corresponds to the term [ Xym;d7 in equation (2.154). HAMILBA cor-
responds to the term A2 f\If”Z Ko (r)¥™ ()X o (T ydr in equation (2.163))

n
vy, v2;,Ki T} J MiMj sin? (1)

and HAMILBB corresponds to the term 7? f o KT ( )\If”ﬂ Kur's ( )sm";{’j dr
equation (2.164). HAMILSO corresponds to the term
f\I/v2 e F,,Z )\I!"j o (7)Aso(T) fa—+ x Xy, d7 in equation (2.189). These four

terms are calculated Wlth Numerov Cooley bending basis functions. The terms are
constructed twice for each K-block, if we have an ABB-type molecule, but with an ABC-
type molecule they are constructed once for each K-block. HAMILSO will be saved
on hard disk at this point, since it will not be included in the K-block diagonalization,
but it is needed in the J-block diagonalization.

As shown in Fig. 3.2, the program starts to loop over n after the construction of
Hamiltonian matrix elements HAMILB, HAMILBA, HAMILBB, and HAMILSO.
Then the program constructs Hamiltonian matrix element HAMILV. The program col-
lects each Hamiltonian matrix which is constructed up to now (except HAMILSO) and
constructs the K-block Hamiltonian matrix.

The input data needed for performing K-block diagonalization is

e CONTMAX: The threshold limit for contraction of a K-block. The eigenvalues
which are bigger than the zero point energy in the K-block plus CONTMAX, will
not be used in J-block diagonalization.
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The program diagonalizes the K-block Hamiltonian matrix using LAPACK routines.
Since we have an nmax(K,n,yp) x nmaz(K,n,Typ) (See Egs. (2.194)-(2.203)) K-
block Hamiltonian matrix, we obtain nmax(K,n,I';,) eigenvalues, and eigenfunctions
but we only save up to the limit defined from the input CONTMAX to the hard disk.
Then the program calculates another K-block Hamiltonian matrix untill the program

finish making the required number of K-blocks.

3.4 J-block diagonalization

J-blocks are constructed as shown in Fig. 3.3. The quantum number J defines the
quantum number N in the J-block Hamiltonian matrix. The quantum number N is
defined as N = |J — S|,...|J + S|. The quantum number K is defined from N, as
K =0,1,...N. As shown in Fig. 3.4, the program loops over each J quantum number.
For each J state we have the good quantum number I';,.. Thus the program also loops
over each I',,. state.

As detailed in Chapter 2.2.5, we have to be careful which basis functions we use for
constructing final matrix so that it has the correct symmetry I',.. Thus for each K-block
in the J-block for specific I',. Sstate, we have to choose the symmetry of the bending
basis function I';;,, the electronic state n and the parity of the sytem p according to
Table 2.3 for ABC-type molecules and Table 2.6 for ABB-type molecules.

As shown in Fig. 3.3, the J-block consists of many K-blocks. The K-block Hamilto-
nian matrix with AKX = 0 and AN = 0 is called HAMILDIAG, the K-block Hamilto-
nian matrix with AKX =1 and AN = 0 is called HAMILDK, and the K-block Hamil-
tonian matrix with AKX = 0 and AN = 1 is called HAMILDN. Each has shorthand
notation DIAG, DK and DN, respectively in Fig. 3.3. Apart from HAMILDIAG,
HAMILDK and HAMILDN, all the other K-block Hamiltonian matrix elements in

the J-block Hamiltonian matrix are zero.
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K=0 K=1 K=0 K=1 K=2
k=0 |DIAG DK DN 0 0
N=1
k=1 | DK DIAG 0 DN 0
k=0 | DN 0 DIAG DK 0
N=2 K=1 0 DN DK DIAG DK
k=21 O 0 0 DK DIAG
N=1 N=2
K=0 K=1 K=0 K=1 K=2
K=0 J-block contraction
N=1 k=1
K=0
N=2 K=1
K=2

Figure 3.3: A schematic diagram showing how the program DR constructs the J-block Hamiltonian matrix
from the contracted K-block Hamiltonian matrix. HAMILDIAG, HAMILDK and HAMILDN have

the shorthand notations DIAG, DK and DN, respectively. See details in the text.
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J-block

loop overJ

loopoverT,,

& » HAMILDIAG
E » HAMILDK
< > HAMILDN

Construction of
J-block Matrix

 J

Diagonalization of
J-block Matrix

Y

A

-l
-

Y End of the calculation

Figure 3.4: A schematic representation of the program DR with J-block Hamiltonian matrix construc-

tion and J-block diagonalization. HAMILDIAG, HAMILDK and HAMILDN are the Hamiltonian

matrix elements. See details in the text.
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The program first constructs the Hamiltonian matrix HAMILDIAG(See Fig. 3.4).
It consist of K-blocks saved at the K-block diagonalization, HAMILSO, the vector
saved in the K-loop and terms from matrix elements of f,,, (see Chapter 2.3.5). Then
the program contracts the Hamiltonian matrix HAMILDIAG, as described in Chapter
2.4.2 (See equation (2.204)).

Then the program constructs the Hamiltonian matrix HAMILDK. (See Fig. 3.4) It
consist of matrix elements of H,; (see Chapter 2.3.6). The program also contracts the
Hamiltonian matrix HAMILDK, as described in Chapter 2.4.2.

Finally the program constructs the Hamiltonian matrix HAMILDN. (See Fig. 3.4)
It consists of HAMILSO, the vector saved in the K-loop. The program also contracts
the Hamiltonian matrix HAMILDK, as described in Chapter 2.4.2.

The program collects all of these contracted Hamiltonian matrices HAMILDIAG,
HAMILDK and HAMILDN. As shown in the bottom of the Fig. 3.3, with each con-
traction of each K-block, the final J-block Hamiltonian matrix becomes much smaller
and easier to diagonalize. The program diagonalizes the final J-block Hamiltonian ma-
trix with LAPACK routines, and we obtain the eigenvalues and eigenfunctions for the

double Renner system.
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Chapter 4

The double Renner effect in

ABC-type molecules

Now we move on to the application to ABC-type molecules. As an example of an ABC-
type molecule, we take the first electronic excited state of MgNC and MgCN (4 2I1)

system.

4.1 What is MgNC?

Unlike the HCN and H,O molecules, MgNC must sound very exotic for a person who
is not familiar with this molecule. In 1986 Guélin et al. [21] found, in radio-astronomical
observations, six transitions originating in the circumstellar envelope of the late-type
carbon star IRC+10216. On this first occasion when humans observed the molecule,
nobody thought about the possibility that these lines originate in MgNC, although there
had been a first theoretical calculation of the MgNC structure in 1985 by Bauschlicher
et al [22]. These authors studied a series of metal cyanides. They reported theoreti-
cal calculations of the ground 2 A’ state surface of MCN (M=Be, Mg, Ca and Ba) and

determined the lowest energy structures and dissociation energies.
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For seven years the six lines observed by Guélin et al. remained unassigned. They
were later identified as the rotational spectrum of the MgNC radical [23, 24], thus MgNC
became the first Mg containing molecule to be observed in interstellar space.

The identification was made in collaboration between laboratory experiment by
Kawaguchi et al. and computational theoretical chemistry by Hirano et al.. These
authors tried to imagine all possible molecules that could be responsible for the six
lines, and made theoretical calculations to determine the energy regions where these
molecule have transitions, so that they could be more easily found in rotational spec-
troscopic experiments. The identification has stimulated great interest in MgNC.

In 1994, Ishii et al. calculated the potential energy surface for the ground elec-
tronic state X 2%+ of MgNC by the single and double excitation configuration interac-
tion (SDCI) ab initio molecular orbital (MO) method, using a triple-zeta valence plus
two 3d-type polarization functions (TZ2P) basis set. From this potential energy sur-
face, Ishii et al. obtained the standard spectroscopic parameters, and the rotational
constant B, of the vibrational ground state, by perturbation methods [24, 25]. Other
reported theoretical calculations on X 2ot MgNC are Barrientos and Largo [26] with
MP2(full) / 6-31G* calculations in 1995, QCISD (full) / 6-311G** calculations by Petrie
[27] in 1996, UMP2 (full) / 6-311+G(3df) calculations and CISD (full) / 6-311G(2d) cal-
culations by Guélin et al. [28] in 1995, RCCSD(T) (valence) / cc-pVQZ calculations by
Woon [29] in 1996 and B3LYP / 6-311+G(3df) calculations by Kieninger et al. [30] in
1998.

The rotationally resolved spectroscopic data presently available for X 2nt MgNC
comprise the rotational spectrum by Anderson and Ziurys [31] in 1994, Kagi et al. [32]
in 1996, and Kagi and Kawaguchi in 2000 [33].

The isomer of X %X+ MgNC, X 25+ MgCN, has been identified as an interstellar
molecule by Ziurys et al. [34] in 1995. Only the rotational spectrum in the vibrational

ground state was observed by Anderson et al. [35]. Theoretical investigations on
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MgCN were carried out with MP2 (full) / 6-311G** calculations by Gardner et al. [36]
in 1993, MP2 (full) / 6-31G* calculations by Barrientos and Largo [26] in 1995 and by
Petrie [27] in 1996, RCCSD(T) (core-valence) / cc-pCVTZ calculations by Woon [29] in
1996 and B3LYP / 6-311+G(3df) calculations by Kieninger et al. [30] in 1998.

Further more we have reported potential energy surfaces calculated by the Aver-
aged Coupled-Pair Functional (ACPF) method with TZ3P+f (Mg), TZ2P+f(N,C) basis
sets including core-valence correlation due to the Mg 2s and 2p electrons. The ab initio
results are used for determining the standard spectroscopic constants of X 2%+ MgNC
and MgCN. Furthermore, we have reported variational calculations of the rotation-
vibration energies, and simulated spectra of the lowest rotation-vibration bands (Ap-
pendix A). The calculated ab initio points were later used to make a global potential
energy surface for X 2ot MgNC /MgCN, and we carried out rotation-vibration calcula-
tions taking into account of the isomerization between MgNC and MgCN [37].

The interest on X 22+ MgNC and X 2X+ MgCN stimulated interest in its electronic
excited state. Wright and Miller observed Laser Induced Fluorescence (LIF) spec-
trum of A 2I1 — X 2%+ MgNC [8]. Fukushima and Ishiwata [38] observed some vi-
brationally excited states of A 2II MgNC in the transition spectrum of A 2T «— X 2%+
MgNC. Steimle and Bousquet [39] observed dipole moments of A 211 MgNC.

We reported theoretical predictions of rovibronic energies for the first excited elec-
tronic state of MgNC using internally contracted multi-reference singles and doubles
configuration interaction (MR-SDCI) [40, 41, 42] level with Davidson’s correction [43]
for quadruple excitations (denoted as +Q). The basis set employed for Mg is TZ3P+f
(see Appendix B) and for N and C, aug-cc-pVQZ [44, 45]; the method of calculation
is denoted as MR-SDCI(+Q)/[TZ3P+f (Mg), aug-cc-pVQZ (C and N)]. We calculated
vibronic energy levels using the specroscopic constants obtained from the ab initio cal-
culations and made a reassignment in the LIF spectrum reported by Wright and Miller

[8]. Taketsugu and Carter calculated vibronic energy levels by variational method us-
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ing the potential energy surface reported in Appendix B, and confirmed our assignment
[46].

We have calculated ro-vibronic energy levels of A 211, together with transition wavenum-
bers and relative intensities for the A 2I1 «— X 2%+ electronic transition. The calcula-
tions are carried out with the program system RENNER [9]. The potential energy
surface are constructed from the ab initio potential energy data described in Appendix
B supplemented by ab initio points calculated at larger bending displacements from lin-
earity (see Appendix C and D). The result also confirmed the assignment in Appendix
A. The theoretical prediction on its isomer Al MgCN was carried out using the same
ab initio method described in Appendix E together with the program system RENNER
[9].

As we have carried out the series of studies on MgNC and it’'s isomer MgCN (Ap-
pendix A-E and Ref. [37]) we understood that X 25 MgNC/MgCN and A 2IT MgNC/MgCN
both have very low isomerization barrier. The observed A1 MgNC has bigger vertical
excitation energy than Al MgCN, and the possibility of isomerization in the Renner

state is also high. This led us to the idea of the double Renner system.

4.2 Applying DR to MgNC/MgCN

4.2.1 Global potential energy surfaces

We constructed global potential energy surfaces by grafting an intermediate Mg-(NC)
surface onto local MgNC and MgCN surfaces. As described in detail in Appendix C and
E, we computed high accuracy potential energy surfaces around the MgNC and MgCN
local minima. Thus to have global potential energy surfaces, we used the same ab
initio method as in Appendix B, MR-SDCI(+Q)/[TZ3P+f (Mg), aug-cc-pVQZ (C and N)]
and computed further 176 points, which consist of 92 points for the lower surface (12A”

electronic state) and 84 points for the upper surface (224’ electronic state). For the 7
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coordinate, we computed points at = = 60°, 80°, 90°, 100° and 120° (MgCN has lower
potential energy minimum than MgNC. We take MgNC as 7 = 0° and MgCN as 7 = 180°
here). For the r coordinate, the NC bond, we computed points at the distances 1.8,
2.0, 2.2, 2.4 and 2.6 Bohr and for the R coordinate, the distance between NC moiety
and Mg, we have computed points at the distances 3.0, 3.3, 3.5, 4.0, 4.3, 4.5 and 5.0

Bohr. We have fitted these ab initio points to the function

yr = 1—exp{—a77(r—r7")} (4.1)
yrn = 1—exp{—ay’(R—RI)} (4.2)
E(r,R)™ = Y F{ () (yr) (4.3)
i.j
at each 7 grid for the lower (¢ = —) and upper (¢ = +) surface. The parameters are

summarized in Tables 4.1 - 4.5. The averaged standard deviation for the lower and
upper electronic surfaces are 34.2 cm~! and 65.7 cm~! respectively.

The potential energies at the geometries with 7 < 40 are computed using the MgNC
local potential (See Appendix C). The potential energies at the geometries with 7 >
140 are computed using the MgCN local potential (See Appendix E). The potential
energies E(r, R, 7)° at the geometries (r,R,7) with 40° < 7 < 140° are computed using
an interpolation method; We have computed the potential energies E(r, R, 7;,4)7 at
Teria = 0°, 20°, 40°, 60°, 80°, 90°, 100°, 120°, 140°, 160° and 180° using the potential
energy surfaces from Eq. (4.3) and the local potential energy surfaces of Appendix C

and E. Then we have interpolated the potential energies between the 7 values.

4.2.2 Bending basis functions

To obtain bending basis functions, we first tried the minimum energy path for the iso-
merization in the Jacobi angle 7 as potential energy functions. We calculated the mini-

mum energy paths from the global potential energy surfaces described in the previous
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Table 4.1: Potential energy parameters for equation (4.3), with 7 = 60°.

VT /Hartree

Teo.r /Bohr
Reo.- /Bohr
aZ™ /Bohr 1
a%" /Bohr~!
Fyi" Jem™1
Fg5" Jem™1
F/7 Jem™1
Fgg Jem™!
Fgi™ Jem™1
FJ" Jem™!
FJ57 Jem™1
Fg" Jem™1
Fg;" Jem™1
Fg" Jem™!
F5" Jem™!
Fg3" Jem™1
dev®/cm™!

npd

T = 60°

g = —

—292.4444125(1622)°

2.2301(7)
3.9868(11)
2.00°

1.00
27532.4(248.3)
12044.2(384.4)
—3194.5(120.0)
5647.3(148.5)

—1822.4(453.0)
690.0(164.8)

13590.1(876.3)

—691.2(288.9)

49.9
15

o=+

—292.4446590(3098)

2.2181(13)
3.8585(18)

2.00

1.80
27556.4(377.0)
3457.6(384.5)
—12227.5(709.0)
5668.6(243.7)
—779.6(118.3)
—205.5(117.8)

5070.1(412.3)

16176.3(875.7)

77.1
15

“Quantities in parentheses are standard errors in units of the

last digit given. *Parameters for which no standard error is given

were held fixed in the least squares fit. “Standard deviations for

each fit are given in the line dev. “The number of points used

in each fit are given in the line np.
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Table 4.2: Potential energy parameters for equation (4.3), with 7 = 80°.

VT /Hartree
Teo.r /Bohr
Reo.- /Bohr
aZ™ /Bohr 1
a%" /Bohr~!
Fyi" Jem™1
Fg5" Jem™1
F/7 Jem™1
Fyg" Jem™!
Fgi™ Jem™1
Fi" Jem™!
FJ57 Jem™1
Fg" Jem™1
Fg;" Jem™1
Fg" Jem™!
F5" Jem™!
Fg3" Jem™1
dev®/cm™!

npd

T = 80°

g = —

—292.4451679(1434)°

2.2372(9)
3.8345(24)
2.00°

1.00
28597.1(120.5)
12763.0(260.5)
—695.2(52.7)
12664.6(396.1)
5737.9(149.0)
115.9(46.9)
—502.0(91.7)
4029.4(253.5)
5115.0(448.6)

43.7
21

o=+

—292.4516470(1196)

2.2690(12)
3.7595(20)
2.00

1.80
25074.3(215.0)
6435.5(48.2)
1907.8(79.0)
11094.3(661.5)
3343.9(37.6)
2230.7(232.3)
3399.8(318.1)
550.0
771.8(121.0)

43.9
17

“Quantities in parentheses are standard errors in units of the

last digit given. *Parameters for which no standard error is given

were held fixed in the least squares fit. “Standard deviations for

each fit are given in the line dev. “The number of points used

in each fit are given in the line np.
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Table 4.3: Potential energy parameters for equation (4.3), with 7 = 90°.

VT /Hartree

Teo.r /Bohr
R.o.- /Bohr
aZ™ /Bohr 1
a%" /Bohr~!
Fyi" Jem™1
Fg5" Jem™1
F/7 Jem™1
Fyg" Jem™!
Fgi™ Jem™1
Fi" Jem™!
FJ57 Jem™1
Fg" Jem™1
Fg;" Jem™1
Fgi" Jem™!
F5" Jem™!
Fg3" Jem™1
dev®/cm™!

npd

T =90°

g = —

—292.4451201(1326)°

2.2340(10)
3.8272(34)
2.00°

1.00
28563.2(127.0)
12301.8(209.2)
—269.2(109.5)
11559.1(607.9)
7353.3(367.5)
53.0(81.4)

3401.0(373.8)
3000.0

—853.2(249.0)

33.8
16

o=+

—292.4554197(4224)

2.2739(9)
3.6985(30)
2.00

1.80
25512.4(313.8
10952.3(580.7
2618.2(111.1
13379.3(678.4
—1198.6(570.8
2809.3(306.0

—_ N — ~— ~—

4464.3(296.1)

961.3(155.1)

324
14

“Quantities in parentheses are standard errors in units of the

last digit given. *Parameters for which no standard error is given

were held fixed in the least squares fit. “Standard deviations for

each fit are given in the line dev. “The number of points used

in each fit are given in the line np.
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Table 4.4: Potential energy parameters for equation (4.3), with 7 = 100°.

VT /Hartree

Teo.r /Bohr
Reo.- /Bohr
aZ™ /Bohr 1
a%" /Bohr~!
Fyi" Jem™1
Fg5" Jem™1
F/7 Jem™1
Fgg" Jem™!
Fgi™ Jem™1
FJi" Jem™!
FJ57 Jem™1
Fg" Jem™1
Fg;" Jem™1
Fg" Jem™!
F5" Jem™!
Fg3" Jem™1
dev®/cm™!

npd

T = 100°

g = —

—292.4458897(3268)“

2.2324(6)
3.8182(168)
2.00°

1.00
29341.1(90.7)
13213.3(932.7)
—316.1(90.9)
14347.9(221.4)
—7953.9(4729.5)

—1300.3(220.3)
5007.0(149.4)
19352.1(4507.0)
—122.2(50.8)

—769.7(181.4)
29.5
22

o=+

—292.4462359(4242)

2.2534(20)
3.8597(108)
2.00

1.80
25565.6(336.5)
4059.1(167.5)

10459.1(802.9)
3640.6(158.9)
1666.6(540.0)

3205.3(440.1)
2000.0
642.8(321.2)
2333.0(235.5)
—222.7(165.7)
93.9

20

“Quantities in parentheses are standard errors in units of the

last digit given. *Parameters for which no standard error is given

were held fixed in the least squares fit. “Standard deviations for

each fit are given in the line dev. “The number of points used

in each fit are given in the line np.
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Table 4.5: Potential energy parameters for equation (4.3), with 7 = 120°.

VT /Hartree

e /Bohr
Reo.- /Bohr
a%™ /Bohr~1
a%” /Bohr~!
Fyg" fem™!
F35T Jem™1
F[7 Jem™1
Fgg" Jem™!
FT Jem™1
Fy" fem™!
F757 Jem™1
Fig" fem™!
Foi" fem™!
Fgi" Jem™!
F57 Jem™!
Fy5" Jem™1
dev®/cm~!

npd

T = 120°

g = —

—292.4453866(454)°

2.2237(4)
4.2315(9)
2.00°

1.00
29826.3(59.1)
13930.1(32.3)
—1804.1(35.2)
14022.1(136.6)
4163.9(42.0)

52.4(50.9)
4883.5(98.8)
4000.0
229.9(22.6)

—205.8(45.6)
16.2
18

o=+

—292.4408203(2129)

2.2253(14)
4.2515(29)
2.00

1.80
29729.7(239.8)
5613.8(84.4)
—826.0(38.0)
13856.3(602.7)
2862.7(30.4)

4740.3(431.4)
500.0

45.3(13.6)
71.3
18

“Quantities in parentheses are standard errors in units of the

last digit given. *Parameters for which no standard error is given

were held fixed in the least squares fit. “Standard deviations for

each fit are given in the line dev. “The number of points used

in each fit are given in the line np.
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section, and fit them to cos 7 series,

Vo(r) = Z Gy, cos' T (4.4)
R7(1) =) Gy, cos't (4.5)
r?(r) = Z Gi,a cos' T (4.6)

V£(7) are the potential energies along the minimum energy paths, R*(7) and r*(7)
are R and r bond length changes along the minimum energy paths. The fitted potential
energy surface is shown in Fig. 4.1. As seen in the figure, the 2A’ potential energy
surface has a local minimum around 7 = 90°. We have tried to produce the bending
basis function along this potential energy surface, but some computers we used had
some numerical problem with the deep local minimum in the middle.

Thus to make life easy, we re-produced the potential energy surface used to gener-
ate the bending basis functions without the huge change in the middle. The parameters
used for re-producing the bending basis functions are summarized in Table 4.6. The
plotted potential energy surface is given in Fig. 4.2. To compensate for the fact that we
do not have exact bending basis functions for the minimum energy paths, we employed

more bending basis functions in the K-block diagonalization.

4.3 Results

4.3.1 Computational details

We calculated ro-vibronic energy levels of the A1 MgCN - A1 MgNC system using
the program DR described in the previous chapter. For the n = a and n = b bending
basis set we employed 19 and 25 bending basis functions, respectively. These wave-
functions are calculated from the minimum energy path parameters in Table 4.6. We

have 5999 integration points for Numerov-Cooley integration, and 80 integration points
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Figure 4.1: The minimum energy path of A2 MgNC/MgCN produced from the potential energy function
expanded in Eq. (4.3) together with the parameters in Tables 4.1 - 4.5. 7 is given in degrees and the
potential V is given in cm~!. The blue curve shows the lower potential energy surface and the red curve

shows the upper potential energy surface.
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Figure 4.2: The potential energy path used to produce bending basis functions for the A2T1 MgNC/MgCN.
The expressions for the functions are given in Eq. (4.4) and the parameter values are given in Table 4.6.

1

7 is given in degrees and the potential V' is given in cm™". The blue curve shows the lower potential

energy surface and the red curve shows the upper potential energy surface.
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Table 4.6: Minimum energy paths parameters in equation (4.6) for lower(c = —) and upper (o = +)
electronic surface
i Ve Gy, =Gy )° 2./ Bohr %4/ Bohr G _/Bohr G/ Bohr

© 00 N O Ut ke Ww NN = O

0.014382040
0.004730499
0.008743513
-0.029462306
-0.041755341
0.082067071
0.038792009
-0.082156929
-0.015481356
0.029502288

0.003974870
-0.015630810
0.003666078
0.048816400
-0.004108562
-0.067072613
-0.007597047
0.046754812
0.004064917
-0.012868103

3.805197247
-0.194491648
1.525880468
-0.002494302
-0.790221104
0.027323684
0.250214660
-0.017027922

3.635205540
0.157470176
1.933010986
-1.070477811
-0.966563912
1.014526537
0.187550205
-0.286786385

2.232506969
0.021490055
0.001541810
-0.005630305
-0.025363354
-0.009019280
0.012326126
0.005065069

2.233315838
0.033174605
0.018581112
-0.035469597
-0.072895254
0.014664757
0.042222786
-0.000396938

* Gy, — and Gy, _ are given in Hartree.

for Gauss-Laguerre integration.

For the stretching basis functions, we employed 6 and 16 functions for R and r
coordinates, respectively. The parameters used for constructing stretching basis func-
tions are as follows. The equilibrium distance RE1 and RE2 used for this calculation
are 2.2077984 and 4.5669501 Bohr, respectively. The dissociation energy parameter
DISS1 and DISS2 are 2.9 and 0.5 Hartree, respectively. The harmonic frequency pa-
rameter WE1 and WE2 are 0.0105 and 0.0025 Hartree, respectively. The number of
integration points for the R and r coordinates are 15 and 30, respectively.

The spin orbit interaction constant values at the equilibrium geometry for EQMgNC
and E2MgCN state are 34.85 and 39.11 cm~!, respectively (See Appendix B, C and
E). Thus we have used the spin-orbit interaction function fso(7) calculated from the

spin-orbit coupling constant for MgNC (34.85 cm™!) and MgCN (39.11 cm™1).

39.11 — 34.85
fso(T) = 34.85 + ( ) X

(1) (4.7)
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The threshold limit energy constant for K-block contraction, CONTMAX is taken to be
5000 cm™1.

4.3.2 Vibronic energy levels

Calculated eigenvalues are summarized in Tables 4.7 - 4.13. For Tables 4.7 - 4.13 and
4.15, the over-all probability P~ and P, are shown for each eigenvalue. The over-all
probability - and P, can be related to the ; and x notation. Normally, a state with
dominant contribution from the lower electronic state (P. > P.) is the . state, and
a state with dominant contribution from the upper electronic state (P, > P_) is the
r State. Some probability density functions corresponding to these eigenvalues are
shown in Figs. 4.3 - 4.21. The over-all probability (P. and P,) and the probability
density functions are calculated from the coefficient matrix elements CﬁéMJ’S’Frve (See
(2.206)) bigger than 0.05.

Fig. 4.3 shows a wavefunction localized around 7 = 180°. This is the A1 MgCN
zero point vibration state. Vibronic energy levels of A1 MgCN (0 cm~! to 2912 cm!
region) calculated with the program DR are compared with the result from Appendix
E in Tables 4.7 and 4.9 - 4.12. As seen in those tables the energies, calculated with
the program DR are in good agreement with the energies calculated with program
RENNER [9] and in perturbation method. The energies differ by up to 30 cm~!. In most
of the cases the program DR calculates lower energies than RENNER does. This is
because although we have used the part of potential we include the isomerization of
A1 MgCN/MgNC in DR, thus the energies are calculated from a shallower potential
energy surface than used in the previous studies.

The spin orbit splitting calculated with DR and RENNER for A2IT MgCN (0,0,0) and
(1,0,0) state are 38.25 and 38.8 cm™1, 38.18 and 38.6 cm™!, respectively. The spin
orbit splitting for A1 MgCN (0,0,0) and (1,0, 0) state are in very good agreement. But
the spin orbit splitting calculated with RENNER and DR for A1 MgCN (0,0, 1) and
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Table 4.7: Vibronic term values (in cm™!) of MgNC. Energy levels with P = J = 1/2,3/2 are listed here.

When an energy have e and f pairs, the lower component and the splitting are given.

State (v1,va, v3) notation e No.@ pb Py AL, DR? RENNER® pTf
MgCN, Fig. 4.3  (0,0,0) My f A 1 59.7 40.3 0.01 0.00 0.0 0.0
MgCN (0,0,0) My f A 2 60.0 40.0 0.00 38.25 38.8 39.1
MgCN (0,1,0) uXye f A 2 975 2.5 0.34 195.92 218.6 194.7
MgCN (0,1,0) Ny f A 4 646 353  0.00 234.45 253.1 237.6
MgCN (0,1,0) K%y e A 3 2.5 974 0.34 315.79 338.1 319.6
MgCN (0,2,0)  pllyy f A 4 652 348 0.00 398.47 407.9 387.3
MgCN (0,2,0) Iz f A 7 66.3 33.5 0.00 404.20 416.6 394.2
MgCN (0,0,1) My f A7 5 51.5 484  0.01 520.83 523.8 548.2
MgCN (0,0,1) My, f A 9 51.3 484  0.00 543.64 559.1 587.3
MgCN (0,2,0) kI f A 6 48.1 51.8 0.00 577.10 586.0 569.0
MgCN (0,3,0) uZip f A 7975 2.4 0.37 585.66 602.5 547.0
MgCN (0,2,0) KMz, e A” 11 50.3  49.5 0.04 586.45 580.9 562.1
MgCN (0,3,0) pAz;, f A 13 689 30.9 0.00 608.52 624.1 583.7
MgCN 0,1,1)  u%ye f A 8  96.8 3.1 0.34 730.19 761.8 770.8
MgCN (0,1,1) Ngpp  f A 15 54.1 45.7  0.00 757.14 782.5 813.7
MgCN (0,4,0) plly;n f A” 9 728 26.8 0.03 774.68 785.0 705.8
MgCN (0,4,0) pllz;n f A 17 75.6  24.1  0.00 779.17 789.7 709.9
MgCN (0,3,0) KXy e A 10 3.7  96.2 0.38 791.51 809.8 787.4
MgCN (0,3,0) KAz, f A 19 445 54.9 0.00 828.75 851.3 812.7
MgCN (0,1,1) K%y e A 11 1.7  98.2 0.35 870.42 902.6 895.7
MgCN (0,2,1)  pllyy e A 12 66.9 32.8 0.01 941.95
MgCN (0,2,1)  pllz;y f A 22 66.3 33.1 0.00 946.81
MgCN (0,5,0) uZipe f A 13 99.4 0.5 0.37 953.80
MgCN (0,5,0) plz,m f A 24  76.8 22.8 0.00 970.80
MgCN (0,4,0) kI3, e A” 25 309 687 0.01 1026.77 1040.7  1000.5
MgCN (0,4,0) kIl f A” 14 30.5 69.3 0.02 1033.09 1040.2  1004.6
MgCN kllyo f A7 15 49.9 50.0 0.01 1092.67
MgCN plls;e  f A 28 50.3 49.2 0.00 1114.30
MgCN pllye  f  A” 16 74.0 25.8 0.00 1133.74
MgCN w10 f A 17 94.6 51 0.29 1136.30
MgCN plls;e  f A 31  75.7 23.9 0.01 1137.42
MgCN pllie  f A 18 53.9 45.9 0.09 1142.51
MgCN pllz;e  f A 33 542 449 0.00 1154.22
MgCN uhz;e  f A 34 64.5 34.8 0.00 1158.07
MgCN kS12 e A 19 2.4 97.3  0.38 1258.39
MgCN KAz f A 36 29.3 70.1 0.00 1269.24
MgCN pSie  f AY 20 97.4 2.4 0.34 1289.44
MgCN pEi0 A 21 97.6 2.1 0.38  1306.22
MgCN phzpm  f A 39 741 25.3 0.00 1318.93
MgCN uhz;  f A 40  59.8 39.9 0.00 1322.56

“The numbering of the energies found in each P = 1/2,3/2, Teys state. YThe over-all probability given in %. See
Chapter 2.5.3. °The energy difference between the e and f states, give in cm™!. See Chapter 2.5.2 for e and
f notations. “Energy calculated with the program DR. ¢ See Appendix E. Energy calculated with the program
RENNER, using part of the potential energy surface used in this work. fRef. See Appendix E. Energy calculated

in perturbation method, using part of the potential energy surface used in this work.
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Table 4.8: Vibronic term values (in cm™!) of MgNC. Energy levels with P = J = 1/2,3/2 are listed here.

When an energy have e and f pairs, the lower component and the splitting are given.

State notation Tive No.* p? Pi Azf DR
MgCN pIly /o f A 22 742 255 0.02 1331.17
MgCN pullg /o f A 42 75.7 23.8 0.00 1335.23
MgCN k%12 e A 23 2.1 977 040 1367.58
MgCN KAg/2 f A 44  41.7  57.7 0.00 1398.59
MgCN KkX1/2 e A 24 1.5 98.4 0.38 1439.78
MgCN puIl3 ) f A 46 67.6 31.8 0.00 1468.61
MgCN puIly /o f A 25 62,5 373 0.01 1475.32
MgCN Ky /2 f A 26 429 56.8 0.02  1493.02
MgCN kg, f A 49 424 569 0.01 1498.48
MgCN puIly /o e A 27  66.7 328 0.01 1508.48
MgCN pullz /o e A” 50 67.2 31.8 0.02 1508.95
MgCN puIlz /o f A 51 65.8 33.4 0.00 1510.24
MgCN n31/2 f A 28 994 0.5 0.38 1514.72
MgCN 1Az /o f A 53 76.2 23.1 0.00 1530.15
MgCN kI3 /o f A 54 29.6 69.5 0.00 1607.96
MgCN Kl f A 29 288 70.7 0.0l 1612.64
MgCN 1312 f A 30 98.8 1.0 0.44 1637.42
MgCN nAz/o f A 57 75.1 24.2 0.00 1650.45
MgCN puIly /o f A” 31 67.3 324 0.02 1696.81
MgCN pullz /o f A 58 69.1 29.8 0.02 1697.30
MgCN puIlz /o f A 59 71.2 279 0.00 1698.32
MgCN kIl /o e A 32 488 509 0.01 1707.27
MgCN kI3 /2 f A 61 409 583 0.01 1709.19
MgCN k%12 e A 33 139 856 0.29 1711.81
MgCN 1312 f A” 34 75.8 23.7 0.20 1715.58
MgCN KA3/2 e A” 64 35.0 64.2 0.01 1722.11
MgCN nAz/o f A 65 63.7 355 0.00 1729.23
MgCN puIly /o f A” 35 649 350 0.01 1780.72
MgCN pIly /o f A 36 814 182 0.01 1805.24
MgCN puIl3 /o e A” 67 81.2 182 0.01 1805.55
MgCN puIl3 /9 f A 69 67.1 325 0.00 1818.02
MgCN k%12 e A 37 7.1 927 046  1847.04
MgCN KA3/2 e A” 71 29.6 69.8 0.09 1848.70
MgCN 1312 f A” 38 924 7.4 0.35 1869.86
MgCN 1Az /o f A 73 77.8 21.5  0.00 1884.00
MgCN puIly /o f A 39 746 251 0.01 1918.45
MgCN puIl3 /o f A 75 75.7 23.6 0.01 1921.71
MgCN n31/2 f A 40 98.3 1.5 0.36 1930.34
MgCN kI3 /2 f A 77 21.8 776  0.01 1937.50
MgCN kIl /o f A” 41 206 789 0.00 1939.33
See footnote for Table 4.7

89



Table 4.9: Vibronic term values (in cm™!) of MgNC. Energy levels with P = J = 1/2,3/2 are listed here.

When an energy have e and f pairs, the lower component and the splitting are given.

State (v1,va, v3) notation e No.@ Pt Py AL, DR? RENNER® pTf
MgCN KAg,0 f A 79 37.1 623 0.00 1953.87
MgCN w12 f A 42 99.1 0.7 0.51 1963.44
MgCN k12 e A 43 1.0 98.7 0.48 1973.05
MgCN plg, e A 82 820 17.0 0.02 1975.51
MgNC, Fig. 4.4  (0,0,0) My, f A 44 604 39.6 0.00 1983.99
MgCN ulzo  f A 84 62.0 37.4 0.00 1988.04
MgNC (0,0, 0) M3, e A 85 60.9 39.0 0.01 2018.20
MgCN plly/s e A” 86 77.6 21.7 0.05 2040.37
MgCN pllye  f A7 45 774 224  0.06 2041.25
MgCN k1 e A 46 1.7 98.1 0.35 2078.06
MgCN kIl e A 47 293 705 0.01 2088.52
MgCN kM35 f A 89 28.8 70.4 0.04 2088.74
MgCN w12 f A 48  99.3 0.5 0.41 2111.39
MgNC (0,1,0) uSyp f A7 49  96.5 3.4  0.34 2112.80
MgCN ulzo  f A 93 76.6 22.8 0.01 2123.11
MgCN pllyy  f A7 50 74.1 25.6 0.04 2124.33
MgCN g f A 95 751 24.0 0.02 2126.18
MgCN (1,0,0) My, f A 51 59.7 40.2 0.01 2126.37 2137.0 2134.6
MgCN pllyiye  f A7 52 77.9 21.8 0.04 2133.45
MgCN g f A 98 79.6 19.4 0.00 2135.50
MgNC (0,1,0) Ns;p  f A 99  66.0 33.8 0.00 2140.84
MgCN kY32 e A 53 1.5 98.2 0.67 2148.04
MgCN KAg,0 f A 101  21.6 77.6 0.00 2159.98
MgCN (1,0,0) My f A 102 60.0 40.0 0.00 2164.55 2175.6  2173.7
MgNC (0,1,0) K%y e A 54 3.6  96.4 0.36 2204.62
MgCN w12 f A 55  98.9 0.8 0.61 2207.10
MgCN ulzo  f A 105 75.8 23.2 0.01 2218.41
MgCN kllz; e A” 106 25.6 73.4 0.02 2223.66
MgCN kIl e A 56 252 745 0.01 2228.44
MgNC 0,2,0) Il f A7 57 68.2 31.8 0.10 2247.78
MgNC (0,2,0)  pllyy f A 109  69.9 30.0 0.04 2251.88
MgCN w12 f A 58 97.7 1.9 0.68 2287.15
MgCN plg,  f A 111 735 254  0.09 2299.95
MgCN pllye  f A7 59 77.9 21.6 0.05 2300.31
MgCN gy f A 113  78.4 20.0 0.03 2305.33
MgCN k10 e A 60 3.1 96.4 0.55 2312.14
MgCN (1,1,0)  pSi0 f A7 61 97.5 2.4  0.34 2318.26 2348.5  2326.9
MgCN kA3 e A” 115 37.3 61.9 0.01 2318.52
MgCN kMg, f A 117 35.6 63.3 0.00 2319.82
MgCN kIl f A” 62 39.8 59.9 0.06 2320.93

See footnote for Table 4.7
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Table 4.10: Vibronic term values (in cm™!) of MgNC. Energy levels with P = J = 1/2,3/2 are listed

here. When an energy have e and f pairs, the lower component and the splitting are given.

State (v1,va, v3) notation e No.® il Py AL DR? RENNER® pT/
MgCN uSi0  f A 63  92.2 7.5 0.37 2327.76
MgCN ulg,e  f A 120  69.8 29.3 0.00 2337.68
MgCN (1,1,0) Nz f A 121 64.4 35.4 0.00 2357.93 2383.9  2369.8
MgNC (0,3,0) p¥g0 f A” 64  95.9 4.0 0.28 2365.37
MgCN kMg, f A 123 23.0 76.3 0.01  2366.43
MgNC 0,2,0)  kKIlze f A 124 36.8 63.0 0.02 2369.54
MgCN Kl e A 65 29.0 70.4  0.07 2371.75
MgNC (0,2,0) kI, e A 66 39.5 60.5 0.15 2375.31
MgCN pllyye  f A7 67 72.6 27.0 0.19  2380.47
MgNC (0,3,0) plg f A 128  70.6 29.0 0.02 2383.71
MgCN gy f A 129 78.3 20.7 0.06 2385.53
MgCN (1,1,0) K%y e A 68 2.4 97.6  0.34  2441.19 2470.6  2451.8
MgCN pllye  f  A” 69 85.4 14.3  0.30  2455.86
MgCN plly/y e A” 131 85.7 13.7  1.11  2457.05
MgCN KA3p  f A 133 28.6 70.5 0.01 2462.44
MgCN k%12 e A 70 17.4 82.1 0.40 2465.98
BENT, Fig. 4.5  (0,0,0) &Il A” 71 0.0 100.0 2469.19
MgCN uSi0  fA” 73 80.0 19.6  0.39  2483.50
MgNC (0,4,0) pllys f A7 74 774 22,5 0.38  2487.86
MgNC (0,4,0) pllgy f A 141 79.4 20.3 0.10 2492.43
MgCN ulgzs  f A 142 75.2 24.2  0.01 2494.28
MgCN pllyy  f A7 75 65.2 34.6  0.00 2518.43
MgNC g f A 144  66.4 33.3  0.00 2524.19
MgCN pllyiye  f A7 76 76.4 23.3  0.05 2530.13
MgNC (0,3,0) KZyp e A 77 1.9 98.0 0.62 2532.71
MgNC (0,3,0) pllgy f A 146 77.1 22.1 0.03 2533.53
MgNC KAz e A” 148  29.9 69.7 0.02  2537.20
MgCN kllz;n  f A 149 20.6 785 0.00 2542.36
MgCN plly e f A7 78  50.3 48.9 0.29 2543.23
MgCN uSi0  fA” 79 65.0 34.5 0.61 2546.11
MgCN ulzp e A” 152 60.5 38.2 0.06 2557.20
MgCN kA3 e A” 153  45.4 53.7 0.02  2564.33
MgCN k10 e A 80 4.1 95.4 0.74 2567.66
MgNC (0,0,1) My f A 81  60.1 39.8 0.00 2571.69
MgCN kA3, f A 156  28.2 71.1  0.01  2583.01
MgCN k10 e A 82 0.8 99.0 0.50 2583.15
MgNC 0,5,0)  pSip f A7 83  98.8 1.1 0.52  2595.79
MgNC (0,0,1) M3, f A 159  60.6 39.3  0.00 2605.87
MgNC (0,5,0)  plg f A 160  80.5 19.1  0.07  2610.50
MgCN w30 f  A” 84  98.7 1.0 3.45 2614.48

See footnote for Table 4.7
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Table 4.11: Vibronic term values (in cm™!) of MgNC. Energy levels with P = J = 1/2,3/2 are listed

here. When an energy have e and f pairs, the lower component and the splitting are given.

State (v1,va, v3) notation e No.® Pt Py AL, DR? RENNER® pTf
MgCN phz;m  f A 162  83.3 16.1 2.72  2629.45
MgCN (1,0,1) My, f A7 85 58.8 41.0 0.01 2636.56 2659.8  2681.8
MgCN pllye  f  A” 86 63.2 36.5 0.01 2638.35
MgCN pllz ;e e A” 165 709 28.1 0.08 2658.32
MgCN pllye  f A7 87 74.0 25.7 0.25 2661.15
MgCN (1,0,1) My f A 167 55.6 44.0 0.01  2662.97 2693.8  2720.9
MgCN pllz;e A 168 70.6 28.7 0.01 2671.82
MgNC (0,4,0) kIl f A 169 24.2 754 0.11 2688.34
MgCN pSie  f A” 88  99.2 0.6 0.47 2691.32
MgNC (0,4,0)  kKIlyp e A 89 25.8 74.1 0.27 2694.11
MgCN pllye  f  A” 90 54.1 45.8 0.02  2699.58
MgCN wSie  f AY 91  90.3 9.6 0.35 2703.79
MgNC 0,1,1)  u%yn f A 92 96.5 3.4 0.35 2704.90
MgCN kMg, f A 175 46.2 53.6 0.01  2706.68
MgCN kIl f A” 93 321 67.0 0.23 2709.95
MgCN kg, f A 177 359 627 0.03 2713.60
MgNC (0,6,0) Il f A” 94 784 214 034 2715.79
MgCN pllz;e e A” 179  78.7 19.5 0.82  2719.93
MgCN plly, e A 95 785 20.7 1.14 2720.72
MgCN pllz;e  f A 180 71.8 26.3 0.33  2721.31
MgNC (0,6,0) pllz;m f A 181 80.5 18.8 0.44 2721.91
MgCN phze e A” 182 775 21.2  0.05 2725.19
MgCN phz;m A 183  69.6 29.9 0.00 2726.73
MgNC (0,1,1) Ngpp  f A 184 65.3 344 0.00 2733.29
BENT, Fig. 4.6 (0,1,0)  KIIy A” 96 0.0 99.9 2743.74
MgCN kS12 e A 98 0.9 987 0.78 2753.30
MgCN pSie  f AY 99  97.6 2.1 0.55 2755.65
MgCN KDz f A 191 205 782 0.04 2762.68
MgCN kg e A" 192 35.0 64.2 0.63 2778.25
MgCN kIl f A” 100 329 66.7 0.75 2786.17
MgCN uhz;  f A 193  70.8 28.1 0.01 2786.84
MgCN pllye  f A 101 65.4 34.0 247  2794.92
MgNC (0,1,1) K%y e A 101 3.6 96.3 0.34 2796.22
MgCN pllz;e e A” 196 66.6 327 5.23  2799.63
MgNC 0,7,0) uZipe f A 103 77.8  22.0 1.93  2820.05
MgCN(+MgNC), Fig. 4.7 pEi0  f AY 104 91.7 7.7 1.00 2834.59
MgNC KAzp e A” 199 354 637 0.84 2835.60
MgNC(+MgCN), Fig. 4.8 pSie e A 104  50.1 49.2 0.48 2835.71
MgCN kg e A7 200 39.3 59.1 0.64 2837.37
MgNC KDz f A 201 342 65.0 1.72 2837.67

See footnote for Table 4.7
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Table 4.12: Vibronic term values (in cm™!) of MgNC. Energy levels with P = J = 1/2,3/2 are listed

here. When an energy have e and f pairs, the lower component and the splitting are given.

State (v1,va, v3) notation I'we No.@ il PY AL, DR? RENNER® pT/
MgCN (1,1,1)  uSy, f A 106 97.1 2.8 0.35 2841.79 2891.0  2902.0
MgCN kIl e A 106 28.6 71.0 0.03 2841.91
MgCN(+MgNC) ulze  f A 205 65.1 33.6 0.62 2844.41
MgNC 0,2,1) ully,, f A 108 67.3 325 0.13  2844.59
MgNC(+MgCN) plze  f A 207 68.6 30.0 0.30 2845.44
MgNC plan  f A 208 69.1 30.6 0.06 2848.86
MgCN i f A 109 749 24.8 0.10 2854.70
MgCN plyo  f A 210 76.1 22.7 0.05 2861.49
MgCN (1,1,1)  plge  f A 211 56.7 43.0 0.00 2871.16 2012.7  2944.9
MgCN w12 f A7 110  98.8 0.8 1.53 2873.62
MgCN plge  f A 213 81.0 17.9 0.70 2885.70
MgCN pllie  f A7 111 73.3 26.4 0.02 2891.15
MgCN plyo  f A 215 754 242 0.00 2895.64
MgCN K1 e A 112 1.8 98.0 0.39 2898.80
MgCN (1,1,1) kS0 e A 113 3.0 96.9 0.38 2911.54 3033.5  3026.9
MgCN kY12 e A 114 0.9 987 0.67 2936.90
MgCN kDg;e e A” 219 275 71.3  0.24  2939.22
MgCN kDzs;e  f A 220 42.6 56.7 0.00 2949.74
MgCN ullie  f A7 115  76.0 23.6 0.12  2953.39
MgCN plyo  f A 222 76.0 225 0.16 2956.09
MgNC kil e A” 223  37.5 61.7 0.13 2957.06
MgCN uSi2  fA” 116  93.9 5.6 3.32  2961.49
MgNC w12 f A” 117 785 21.4 0.34 2964.74
MgNC plzn e A7 225 51.4 48.1 0.34  2966.69
MgNC ullio  f A7 118 51.2 48.6 0.20 2968.16
MgNC o  f A 119 56.4 435 1.10 2969.96
MgCN ulze  f A 228 55.9 42,5 1.35  2971.59
MgCN kil e A” 230 18.5 79.9 0.21 2975.74
MgCN K12 e A 120 6.9 925 0.29 2977.35
MgCN kil e A” 231 13.0 85.6 0.63 2978.71
MgCN ke f  A” 121 15.2 84.2 0.74 2979.91
MgNC plgo e A7 232  70.3 29.0 0.01 2984.70
MgNC kIl f A7 122 425 57.1 0.06 2987.41
MgCN kY12 e A 123 1.5  98.4 0.37 2988.13
MgNC kMg, f A 236 45.0 54.3  0.75  2994.74
MgCN KDz f A 237 46.3 523 0.37  3000.12
BENT, Fig. 4.9  (0,2,0) &Il 5 A” 124 0.0 99.9 3011.69
MgCN pllin e A 125 87.6 11.5 0.03 3014.74
MgCN pllyn  f A 240 86.0 122 0.24 3015.49
MgCN pllzs e A” 241 85.4 12.6 0.05 3017.10

See footnote for Table 4.7
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Table 4.13: Vibronic term values (in cm™!) of MgNC. Energy levels with P = J = 1/2,3/2 are listed

here. When an energy have e and f pairs, the lower component and the splitting are given.

State (v1,v2,vs) notation Tive No.* p? Pf; Azf DR4
MgCN b1 f A 126 99.3 0.6 1.41 3017.59
MgCN plly,,  f A 128 843 155 1.61 3030.45
MgCN ;1,H3/2 e A” 245 83.2 15.8 1.59 3030.98
MgCN phgs  f A 245 75.3 23.3 0.37 3031.50
MgCN plly,n  f A 247 804 17.8 595 3034.07
MgCN pllys e A 129 66.9 32.8 0.01 3052.01
MgCN pllyn  f A 249 66.4 33.1 0.00 3056.40
MgCN 112 f A” 130 99.4 0.5 0.38 3069.40
MgCN K)Ag/z f A’ 251 28.0 70.6 0.02 3086.12
MgCN phgs  f A 252 72.9 265 0.00 3086.51
MgCN KIl3 /2 f A’ 253 24.8 74.1 0.01 3088.28
MgNC HZI/Q f A” 131 47.0 52.6 1.73 3088.57
MgCN nHl/z e A’ 132 24.5 75.2 0.02 3091.09
MgCN K312 e A’ 133 2.6 97.0 0.63 3092.58
MgNC plly  f A7 134 76.6 22.9 0.69 3095.51
MgNC RAg/z e A” 258 39.9 59.7 1.59 3098.21
MgNC 112 f A” 135 56.8 42.9 4.29 3100.46
MgNC plgys  f A 259  77.8 21.4  0.34  3100.74
BENT, Fig. 4.10 (0,3,0)  &TI, s A” 154 0.0 90.8 3259.33
BENT+(MgCN), Fig. 4.11 412 A” 158  96.9 0.0 3294.02
BENT+(MgCN, MgNC), Fig. 412 (0,0,0)  pIly /5 A” 161 97.0 0.7 3317.86
BENT+(MgCN), Fig. 4.13 1) A” 162 99.2 0.0 3325.06
MgCN+(Delocalized), Fig. 4.14 112 A” 168  95.0 0.0 3369.54
MgNC+(Delocalized), Fig. 4.15 412 A” 171 983 0.0 3382.86
MgCN+(Delocalized), Fig. 4.16 wlly /o A” 178 89.4 7.0 3424.07
MgNC+(Delocalized), Fig. 4.17 uEi0 A” 180 52.4 39.7 3435.41
MgNC+(Delocalized), Fig. 4.18 uE1/2 A” 182  46.4  46.0 3441.50
MgNC+(Delocalized), Fig. 4.19 uEi0 A” 185 97.8 0.0 3493.14
Delocalized, Fig. 4.20 kIl /o A” 186 37.4 56.2 3512.87
Delocalized, Fig. 4.21 pEl/z A” 187 75.5 20.3 3514.34

See footnote for Table 4.7
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Figure 4.3: Probability density functions (See 2.5.3) for the A2II MgCN (0,0,0) state.

Here, the 7 and r coordinates are given in degrees and Bohr, respectively. Figure (a) shows one-dimensional probability density
functions. The blue curve is f_(7) (the lower electronic surface’s probability density function), the red curve is fy(7) (the upper
electronic surface’s probability density function) and the black curve is f(7) (the total probability density function). The gray
surface in Figure (b) shows the two-dimensional probability density function f(r,7). Coloured lines are the contour plot of the

two-dimensional probability density function f(r, 7). Contours are plotted for 0.1 separations.
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Figure 4.4: Probability density functions (See 2.5.3) for the A2IIMgNC (0,0, 0) state.

Here, the 7 and r coordinates are given in degrees and Bohr, respectively. Figure (a) shows one-dimensional probability density
functions. The blue curve is f_(7) (the lower electronic surface’s probability density function), the red curve is fy(7) (the upper
electronic surface’s probability density function) and the black curve is f(7) (the total probability density function). The gray
surface in Figure (b) shows the two-dimensional probability density function f(r,7). Coloured lines are the contour plot of the

two-dimensional probability density function f(r, 7). Contours are plotted for 0.1 separations.
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Figure 4.5: Probability density functions (See 2.5.3) for the bent 224'MgNC (0,0, 0) state.

Here, the 7 and r coordinates are given in degrees and Bohr, respectively. Figure (a) shows one-dimensional probability density
functions. The blue curve is f_(7) (the lower electronic surface’s probability density function), the red curve is fy(7) (the upper
electronic surface’s probability density function) and the black curve is f(7) (the total probability density function). The gray
surface in Figure (b) shows the two-dimensional probability density function f(r,7). Coloured lines are the contour plot of the

two-dimensional probability density function f(r, 7). Contours are plotted for 0.1 separations.
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Figure 4.6: Probability density functions (See 2.5.3) for the bent 224'MgNC (0, 1,0) state.

Here, the 7 and r coordinates are given in degrees and Bohr, respectively. Figure (a) shows one-dimensional probability density
functions. The blue curve is f_(7) (the lower electronic surface’s probability density function), the red curve is fy(7) (the upper
electronic surface’s probability density function) and the black curve is f(7) (the total probability density function). The gray
surface in Figure (b) shows the two-dimensional probability density function f(r,7). Coloured lines are the contour plot of the

two-dimensional probability density function f(r, 7). Contours are plotted for 0.1 separations.
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Figure 4.7: Probability density functions (See 2.5.3) for the J = 1/2, I'e;s = A” 104th state.

Here, the 7 and r coordinates are given in degrees and Bohr, respectively. Figure (a) shows one-dimensional probability density
functions. The blue curve is f_(7) (the lower electronic surface’s probability density function), the red curve is fy (7) (the upper
electronic surface’s probability density function) and the black curve is f(7) (the total probability density function). The gray
surface in Figure (b) shows the two-dimensional probability density function f(r,7). Coloured lines are the contour plot of the

two-dimensional probability density function f(r, 7). Contours are plotted for 0.1 separations.
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Figure 4.8: Probability density functions (See 2.5.3) for the J = 1/2, T'o;s = A’ 104th state.
Here, the 7 and r coordinates are given in degrees and Bohr, respectively. Figure (a) shows one-dimensional probability density
functions. The blue curve is f_(7) (the lower electronic surface’s probability density function), the red curve is fy (7) (the upper
electronic surface’s probability density function) and the black curve is f(7) (the total probability density function). The gray
surface in Figure (b) shows the two-dimensional probability density function f(r,7). Coloured lines are the contour plot of the

two-dimensional probability density function f(r, 7). Contours are plotted for 0.1 separations.
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Figure 4.9: Probability density functions (See 2.5.3) for the bent 224'MgNC (0, 2,0) state.

Here, the 7 and r coordinates are given in degrees and Bohr, respectively. Figure (a) shows one-dimensional probability density
functions. The blue curve is f_(7) (the lower electronic surface’s probability density function), the red curve is fy(7) (the upper
electronic surface’s probability density function) and the black curve is f(7) (the total probability density function). The gray
surface in Figure (b) shows the two-dimensional probability density function f(r,7). Coloured lines are the contour plot of the

two-dimensional probability density function f(r, 7). Contours are plotted for 0.1 separations.
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Figure 4.10: Probability density functions (See 2.5.3) for the bent 224’MgNC (0, 3,0) state.

Here, the 7 and r coordinates are given in degrees and Bohr, respectively. Figure (a) shows one-dimensional probability density
functions. The blue curve is f_(7) (the lower electronic surface’s probability density function), the red curve is fy(7) (the upper
electronic surface’s probability density function) and the black curve is f(7) (the total probability density function). The gray
surface in Figure (b) shows the two-dimensional probability density function f(r,7). Coloured lines are the contour plot of the

two-dimensional probability density function f(r, 7). Contours are plotted for 0.1 separations.
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Figure 4.11: Probability density functions (See 2.5.3) for the J = 1/2, 'e;s = A” 158th state.

Here, the 7 and r coordinates are given in degrees and Bohr, respectively. Figure (a) shows one-dimensional probability density
functions. The blue curve is f_(7) (the lower electronic surface’s probability density function), the red curve is fy (7) (the upper
electronic surface’s probability density function) and the black curve is f(7) (the total probability density function). The gray
surface in Figure (b) shows the two-dimensional probability density function f(r,7). Coloured lines are the contour plot of the

two-dimensional probability density function f(r, 7). Contours are plotted for 0.1 separations.
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(1,0,1) state are 35.3 and 22.81 cm~!, 34.0 and 26.41cm~!, respectively. The spin
orbit splitting for A2IT MgCN (0,0,1) and (1,0, 1) state are not in good agreement. This
is because in the DR calculation, the calculated A2IT MgCN (0,0,1) J = 3/2and (1,0, 1)
J = 3/2 states have a Fermi interaction with a nearby J = 3/2 state.

From 1092 cm~!, the wavefunction localized on AII MgCN side starts to have too
high bending excitation and becomes complicated to analyze, thus we do not always
give the assignment (See Tables 4.7 - 4.13).

Fig. 4.4 shows a wavefunction localised around 7 = (°. This is the A2II MgNC zero
point vibration state. MgNC zero point vibration state is at 1984 cm~! higher energy
than the MgCN vibrational ground state (See Table 4.9).

We have summarized the vibronic energy levels of A? MgNC calculated with DR
together with experimental result by Wright and Miller [8] and Fukushima and Ishiwata
[38] in Table 4.14. As shown in in the table, the spin orbit splitting for the (0,0, 0)
and (0,0, 1) state agrees with experiment. Our calculated energies with the program
DR differ less than 10 cm~! to the observed values from Wright and Miller [8]. The
experimental result by Fukushima et al presented at HRMS2003 [47] does not agree
very well with our theoretical calculation on the ;. states. For « states, it agrees better
than for the ;. states.

Our calculated value for (0,1,0)u state does not agree well with the calculated
value with RENNER but agrees with other theoretical calculations.

For states with bending quantum number higher than four, the calculated result with
the program DR is more than 10 cm~! higher than the energy calculated result the
program RVIB3; these states have more contribution from bent geometry and these ab
initio points are not included for the potential energy surface used with the program
RVIB3.

In Table 4.11, A%IT we have MgNC and A2I1 MgCN localized vibrations, and at 2469

cm~!, we see the (0,0, 0) state of "bent” 224’ MgNC. The wavefunction for this state is
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shown in Fig. 4.5, and one can clearly see that the wavefunction is localized around
7 = 90°. As shown in Fig. 4.5 (a), the wavefunction has its dominant contribution from
the upper potential energy surface. As seen in Fig. 4.1 the upper electronic surface
22 A’ state has a local minimum around 7 = 90°, and this state originates in this lake
in the potential energy surface. At 275 cm~! above this state, we see the next bent
state 224’ MgNC (0, 1, 0) (See Fig. 4.6), and 268 cm~! further above this state, we see
the next bent state 224’ MgNC (0, 2,0) (See Fig. 4.9). The 224’ MgNC (0, 3,0) state is
shown in Fig. 4.10 and is 248 cm~! above the 224’ MgNC (0, 2, 0) state.

The 224’ MgNC (0,0,0), (0,1,0) and (0, 2,0) state has 12 rotational levels with J =
1/2,3/2 and I'ys = A, A”; these are summarized in Table 4.15. For each vibronic
state, the J = 1/2 state consists of N = 0 and N = 1 states. The N = 0 state has one
K = 0 substate and the V = 1 state has one K = 0 and two K = 1 substates. Thus the
J = 1/2 state has four substates. Each vibronic state with J = 3/2 consists of N =1
and N = 2 states. The N = 1 state has one K = 0 and two K = 1 substates. The
N =1 state has one K = 0, two K = 1 and two K = 2 substates. Thus the J = 3/2
state has eight substates. This explains why each vibronic state has 12 rotational
levels. Since the equilibrium geometry of the molecule is bent, the z-axis (B-C bond as
shown in 2.1) is no longer the molecular axis corresponding to the quantum number
K. Thus the quantum number K in Table 4.15 is no longer a useful quantum number.

We see the first tunneling wavefunction at 2835 cm~! as shown in Fig. 4.7. It
is mostly localized at A2I1 MgCN and has small amplitude at A1 MgNC. At 1 cm™!
above this state, we see another tunneling wavefunction mostly localized around AT
MgNC and with small amplitude at A2 MgCN. (See Fig. 4.8)

At 3294 cm~! we see a MgCN to bent localized state, as shown in Fig. 4.11. This
state originates in the lower electronic state 124”. As seen in the Fig. 4.1 the lower
electronic surface 1'A” state has a very shallow local minimum around = = 90°, and

this state originates to this shallow shoulder on the potential energy surface towards
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MgCN local minima. The states shown in Fig. 4.12 (3318 cm™!) and in Fig. 4.13 (3325
cm~1) also originate in the shallow shoulder on the lower electronic surface (The 124"
state).

Above 3370 cm~! we see delocalized states. Figure 4.14 (3370 cm™!) has some
amplitude at MgNC to bent geometry with large amplitude around MgCN. This state
originates in the lower electronic state 124”. The next delocalized state is shown in
Fig. 4.15. This state lies at 3383 cm™!; it has large amplitude around MgNC, and some
amplitude around MgCN. These two states originate in the lower electronic surface
(1247 state).

As shown in Fig. 4.16 (3424 cm~!), we see another delocalized state which has
some amplitude at MgNC and more amplitude on the MgCN side. This state originates
in the lower electronic state at bent geometries, but in both the linear geometries MgNC
and MgCN, it originates in both the 124” and the 224’ electronic states. At 3435 cm~!
(Fig. 4.17), at 3441 cm~* (Fig. 4.18) and at 3493 cm~ (Fig. 4.19) we have a delocal-
ized state with more amplitude on the MgNC side. All of these three states have some
amplitude on the MgCN side. The states shown in Fig. 4.17 and Fig. 4.18 have am-
plitude for bent geometries and this part originates in the lower electronic surface. The
wavefunction around the MgNC linear geometry originates in both electronic surfaces.
The state shown in Fig. 4.19 does not have large amplitude in bent geometries. This
state originates in 12A4”, the lower electronic state.

At 3513 cm~! (Fig. 4.20) and at 3514 cm~! (Fig. 4.21) we have states well mixed
from both electronic surfaces. The state shown in Fig. 4.20 has large amplitude at bent
geometries but the state shown in Fig. 4.21 is delocalized.

As reported in our recent study of X2nt MgNC/MgCN [37], we can examine the
possibility of isomerization from X2yt MgNC to X2yt MgCN through these delocalized
A1 MgNC/MgCN state by calculating the transition intensity.
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Figure 4.12: Probability density functions (See 2.5.3) for the J =1/2, T'e;s = A” 161st state.

Here, the 7 and r coordinates are given in degrees and Bohr, respectively. Figure (a) shows one-dimensional probability density
functions. The blue curve is f_(7) (the lower electronic surface’s probability density function), the red curve is fy (7) (the upper
electronic surface’s probability density function) and the black curve is f(7) (the total probability density function). The gray
surface in Figure (b) shows the two-dimensional probability density function f(r,7). Coloured lines are the contour plot of the

two-dimensional probability density function f(r, 7). Contours are plotted for 0.1 separations.
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Figure 4.13: Probability density functions (See 2.5.3) for the J =1/2, T'e,s = A” 162nd state.

Here, the 7 and r coordinates are given in degrees and Bohr, respectively. Figure (a) shows one-dimensional probability density
functions. The blue curve is f_(7) (the lower electronic surface’s probability density function), the red curve is fy (7) (the upper
electronic surface’s probability density function) and the black curve is f(7) (the total probability density function). The gray
surface in Figure (b) shows the two-dimensional probability density function f(r,7). Coloured lines are the contour plot of the

two-dimensional probability density function f(r, 7). Contours are plotted for 0.1 separations.
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Figure 4.14: Probability density functions (See 2.5.3) for the J =1/2, I'e;s = A” 168th state.

Here, the 7 and r coordinates are given in degrees and Bohr, respectively. Figure (a) shows one-dimensional probability density
functions. The blue curve is f_(7) (the lower electronic surface’s probability density function), the red curve is fy (7) (the upper
electronic surface’s probability density function) and the black curve is f(7) (the total probability density function). The gray
surface in Figure (b) shows the two-dimensional probability density function f(r,7). Coloured lines are the contour plot of the

two-dimensional probability density function f(r, 7). Contours are plotted for 0.1 separations.
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Figure 4.15: Probability density functions (See 2.5.3) for the J = 1/2, I'e;s = A” 171th state.

Here, the 7 and r coordinates are given in degrees and Bohr, respectively. Figure (a) shows one-dimensional probability density
functions. The blue curve is f_(7) (the lower electronic surface’s probability density function), the red curve is fy (7) (the upper
electronic surface’s probability density function) and the black curve is f(7) (the total probability density function). The gray
surface in Figure (b) shows the two-dimensional probability density function f(r,7). Coloured lines are the contour plot of the

two-dimensional probability density function f(r, 7). Contours are plotted for 0.1 separations.
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Figure 4.16: Probability density functions (See 2.5.3) for the J = 1/2, T'e;s = A” 178th state.

Here, the 7 and r coordinates are given in degrees and Bohr, respectively. Figure (a) shows one-dimensional probability density
functions. The blue curve is f_(7) (the lower electronic surface’s probability density function), the red curve is fy (7) (the upper
electronic surface’s probability density function) and the black curve is f(7) (the total probability density function). The gray
surface in Figure (b) shows the two-dimensional probability density function f(r,7). Coloured lines are the contour plot of the

7). Contours are plotted for 0.1 separations.
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Figure 4.17: Probability density functions (See 2.5.3) for the J = 1/2, I'e;s = A” 180th state.
Here, the 7 and r coordinates are given in degrees and Bohr, respectively. Figure (a) shows one-dimensional probability density
functions. The blue curve is f_(7) (the lower electronic surface’s probability density function), the red curve is fy (7) (the upper
electronic surface’s probability density function) and the black curve is f(7) (the total probability density function). The gray
surface in Figure (b) shows the two-dimensional probability density function f(r,7). Coloured lines are the contour plot of the

two-dimensional probability density function f(r, 7). Contours are plotted for 0.1 separations.
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Figure 4.18: Probability density functions (See 2.5.3) for the J = 1/2, I'e;s = A” 182th state.

Here, the 7 and r coordinates are given in degrees and Bohr, respectively. Figure (a) shows one-dimensional probability density
functions. The blue curve is f_(7) (the lower electronic surface’s probability density function), the red curve is fy (7) (the upper
electronic surface’s probability density function) and the black curve is f(7) (the total probability density function). The gray
surface in Figure (b) shows the two-dimensional probability density function f(r,7). Coloured lines are the contour plot of the

two-dimensional probability density function f(r, 7). Contours are plotted for 0.1 separations.
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Figure 4.19: Probability density functions (See 2.5.3) for the J = 1/2, I'e;s = A” 185th state.

Here, the 7 and r coordinates are given in degrees and Bohr, respectively. Figure (a) shows one-dimensional probability density
functions. The blue curve is f_(7) (the lower electronic surface’s probability density function), the red curve is fy (7) (the upper
electronic surface’s probability density function) and the black curve is f(7) (the total probability density function). The gray
surface in Figure (b) shows the two-dimensional probability density function f(r,7). Coloured lines are the contour plot of the

two-dimensional probability density function f(r, 7). Contours are plotted for 0.1 separations.
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Figure 4.20: Probability density functions (See 2.5.3) for the J =1/2, I'e;s = A” 186th state.

Here, the 7 and r coordinates are given in degrees and Bohr, respectively. Figure (a) shows one-dimensional probability density
functions. The blue curve is f_(7) (the lower electronic surface’s probability density function), the red curve is fy (7) (the upper
electronic surface’s probability density function) and the black curve is f(7) (the total probability density function). The gray
surface in Figure (b) shows the two-dimensional probability density function f(r,7). Coloured lines are the contour plot of the

two-dimensional probability density function f(r, 7). Contours are plotted for 0.1 separations.
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Figure 4.21: Probability density functions (See 2.5.3) for the J =1/2, I'e;s = A” 187th state.
Here, the 7 and r coordinates are given in degrees and Bohr, respectively. Figure (a) shows one-dimensional probability density
functions. The blue curve is f_(7) (the lower electronic surface’s probability density function), the red curve is fy (7) (the upper
electronic surface’s probability density function) and the black curve is f(7) (the total probability density function). The gray
surface in Figure (b) shows the two-dimensional probability density function f(r,7). Coloured lines are the contour plot of the

two-dimensional probability density function f(r, 7). Contours are plotted for 0.1 separations.
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Table 4.14: Vibronic term values (in cm~!) of MgNC.

DR® Obs. Ref. [8] Obs.b RENNER® RVIB3¢ PT*®
State (v1,v2,vs3) v vso v vso v v vso v vso v vso
(0,0,0) jui 0.00 3421  0.00  36.926 0 0.0  34.47 0.0 34.39 0.0 348
(0,1,0) us 111.71 122.5 111.8 111.9
(0,1,0) kS 203.53 211.80 206 209.2 202.4 203.4
(0,2,0) ull 248.74  4.10 214 251.1 6.25 2454  4.60 246.6 2.4
(0,2,0) KIT 371.33  5.77 372.60  8.138 367 372.4  6.50 367.9  5.28 3717 25
(0,3,0) s 364.28 361.5 363.6
(0,3,0) kS 531.62 528.9 536.5
(0,4,0) ull 489.05  4.57 434 480.7  4.13 4838 1.4
(0,4,0) KIT 690.13  5.77 678 679.1 10.48 694.4 1.5
(0,5,0) s 594.70 584.9
(0,6,0) M 71776 6.12 692.6  9.89
(0,0,1) I 587.69 34.18 581.73  37.193 583.6 34.36 584.8 34.43  585.1
0,1,1) us 703.81 702.2
0,1,1) > 795.13 794 789.8
(0,2,1) Il 843.50  4.27 816 840.3  4.62

@Energy calculated with the program DR. ®Observed by Fukushima et al, Poster presentation in HRMS2003 [47]. ¢ See
Appendix C. Energy calculated with the program RENNER, using part of the potential energy surface used in this work. d
Ref. [46]. Energy calculated with the program RENNER, using part of the slightly different potential energy surface used
in this work. © See Appendix B. Energy calculated in perturbation method, using part of the slightly different potential

energy surface used in this work.
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Table 4.15: Vibronic term values (in cm™!) of bent MgNC. All energy levels with J = 1/2,3/2 for

v = 0,1, 2 states are listed here.

State (v1,v2,v3) J I'we No.* N° Kb Pp© P DR?
%(0,0,0) 1/2  A” 71 1 1 0.0 100.0 2469.19
%(0,0,0) 3/2  A” 135 1 1 0.0 100.0 2469.19
%(0,0,0) 1/2 A’ 71 0 0 0.0 100.0 2470.60
%(0,0,0) 3/2 A 135 2 2 0.0 99.8  2470.63
%(0,0,0) 1/2 A’ 72 1 1 0.0 100.0 2470.67
%(0,0,0) 3/2 A 136 1 1 0.0 99.9  2470.68
%(0,0,0) 3/2  A” 136 2 2 0.0 99.9  2471.74
%(0,0,0) 3/2 A 137 2 1 0.0 99.9  2472.09
%(0,0,0) 1/2  A” 72 1 0 0.0 100.0 2472.75
%(0,0,0) 3/2  A” 137 1 0 0.0 100.0 2472.75
%(0,0,0) 3/2  A” 138 2 1 0.0 100.0 2476.52
%(0,0,0) 3/2 A 138 2 0 0.0 100.0 2478.15
%(0,1,0) 3/2  A” 185 1 1 0.0 99.9  2743.61
%(0,1,0) 1/2  A” 96 1 1 0.0 99.9  2743.74
%(0,1,0) 3/2 A 185 2 2 0.0 99.7  2744.46
%(0,1,0) 3/2 A 186 1 1 0.0 99.9  2744.81
%(0,1,0) 3/2  A” 186 2 2 0.0 99.9  2744.88
%(0,1,0) 1/2 A’ 96 1 1 0.0 100.0 2744.95
%(0,1,0) 3/2 A 187 2 1 0.0 99.9  2747.63
%(0,1,0) 1/2 A’ 97 0 0 0.0 100.0 2748.40
%(0,1,0) 1/2  A” 97 1 0 0.0 100.0 2750.95
%(0,1,0) 3/2  A” 187 1 0 0.0 100.0 2750.95
%(0,1,0) 3/2  A” 188 2 1 0.0 99.9  2751.22
%(0,1,0) 3/2 A 190 2 0 0.0 99.8  2756.48
%(0,2,0) 3/2 A 238 2 2 0.0 99.7  3006.79
%(0,2,0) 3/2  A” 238 2 2 0.0 99.8  3006.98
%(0,2,0) 3/2  A” 239 1 1 0.0 99.8  3011.45
%(0,2,0) 1/2  A” 124 1 1 0.0 99.9  3011.69
%(0,2,0) 3/2 A 239 1 1 0.0 99.8  3012.47
x(0,2,0) 1/2 A 124 1 1 0.0 99.9  3012.73
%(0,2,0) 3/2 A 241 2 1 0.0 99.7  3016.47
%(0,2,0) 3/2  A” 242 2 1 0.0 99.8  3019.55
%(0,2,0) 1/2 A’ 127 0 0 0.0 99.9  3019.62
%(0,2,0) 3/2  A” 244 1 0 0.2 99.4  3022.48
%(0,2,0) 1/2  A” 127 1 0 0.0 99.9  3022.49
%(0,2,0) 3/2 A 244 2 0 0.0 99.7  3028.41

“The numbering of the energies found in each P = 1/2,3/2, T'e;s state.
*Dominant contributed basis function’s N and K values. °The over-all
probability given in %. See Chapter 2.5.3. dEnergy calculated with the
program DR.
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Chapter 5

The double Renner effect in

ABB-type molecules

As an example of an ABB-type molecule, we take the electronic ground state X "

and the first excited electronic state A 24’ of HO.,.

5.1 HO,

The very simple chemical reaction

H+ Oy — HO+O (5.1)
and the reverse reaction

HO +0 — H+ O, (5.2)

are very important gas phase reactions in combustion chemistry [48, 49, 50]. These
reactions also play very important roles in atmospheric chemistry and interstellar chem-

istry [51]. The recombination reaction

119



is thought to be an intermediate reaction of the reactions of (5.1) and (5.2). Thus
HO,, the hydroperoxyl radical, has been attracting huge interest from a large group of
scientists.

The first prediction of the properties of this molecule was by Walsh [52] in 1952.
He predicted HO, to have a ground electronic state with bent equilibrium geometry
and a first excited electronic state almost as low in energy. The prediction was later
confirmed by theoretical calculations [53, 54]; linear HO, has a 2II electronic state as
ground electronic state, and this state splits into X 24” and A 24’ states, with strongly
bent equilibrium geometries. The X 24” and A 24’ states enjoy the Renner effect.

For spectroscopy HO, is a well known light and unsymmetrical triatomic molecule.
The A—X electronic band system of HO, in the gas phase was studied in 1974, both
in emission and in absorption [55, 56], and it was realized that forbidden AK, = 0
transitions are present; Tuckett et al. [57] suggested that these transitions result from
Renner interaction. A large number of spectroscopic studies followed (See Refs. [57]
- [63] and references therein). Fink and Ramsay have carried out a high-resolution re-
cent reinvestigation of the E(O, 0,0) — )~((0, 0,0) band [63]. Magnetic dipole transitions
are usually too weak to be observed among electric dipole transitions. However Fink
and Ramsay found that in the case of HO,, the electric dipole transition moment for
the electronic transition is very small and the forbidden AK, = 0 transitions that they
observed are magnetic dipole transitions.

To confirm the analysis of Fink and Ramsay, Osmann et al. [64] have calculated
the ab initio potential energy, transition electronic dipole and transition magnetic dipole
surfaces of the X 24” — A 24’ system and simulated the A 24’ — X 2A4” emission
spectrum using the program RENNER. Later, Jensen et al. [65] calculated more points
on the potential surfaces, using the same ab initio method used in Ref. [64], to cover
a wider range of bending geometries. They adjusted the shapes of the surfaces in a

least squares refinement to the energies of rovibronic states involving both electronic

120



states. Their results provided an accurate representation of the surfaces in this energy
region.

Jensen et al. [65] have calculated the barrier to linearity of the X 24" state as
21358.3 cm~!. The electronic energies of T-shaped geometries with C,, symmetry
have recently been calculated by Lieberman [66] and the X 24" has a barrier to H-OO
«—— OO-H "isomerization” of 14100 cm~*.

Both the Renner effect and the possibility of isomerization play an important role in

the X 24" — A 24’ HO, system but we have not seen any work on this system which

includes these effects simultaneously. Thus we apply the program DR to HO..

5.2 Applying DR to HO,

5.2.1 Global potential energy surfaces

We first tried to calculate the rovibronic energy levels using the refined potential energy
surfaces in Ref. [65]. Unfortunately, however, these potential surfaces are only realistic
close to their respective equilibrium geometries; at large displacements they have spu-
rious minima ("holes”) and this makes it impossible to calculate the rovibronic energies
with the program DR.

Thus we have asked Prof. Buenker’s group at Wuppertal to calculate HO, data with
the ab initio method they used in Ref. [64]. They employed the cc-pVTZ basis sets of
Dunning [44] for hydrogen atoms. The effective core potential (ECP) [67] describing
the 1s orbital, which is needed for taking spin-orbit effects into account, was used to-
gether with the cc-pVTZ basis set for the oxygen atom. All the ab initio energies were
calculated by the multireference single- and double-excitation (MRD-CI) configuration
interaction method [68]-[74], with configuration selection and energy extrapolation us-
ing the Table-Cl algorithm [75]. The final full ClI energy was corrected by the formula of

Davidson [76]. In these calculations, the two highest molecular orbitals were discarded
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and a selection threshold of 7.2 x 1078 Hartree was used. All the calculations were
carried out in C; symmetry.

We have fitted 709 ab initio points (350 for the lower electronic surface X 24" and
359 for the upper electronic surface A 24") to global potential energy surfaces. We fol-
lowed the idea of Bowman et al. [77] for fitting the global potential energy surface of
HO,. We first prepared the ab initio points in a grid of the » and 7 coordinates. We
have 5 r-coordinate values (2.0000, 2.3244, 2.5133, 2.7968, and 3.0236 Bohr) and 13
T-coordinate values (2.5°, 5°, 10°, 15°, 20°, 25°, 30°, 40°, 50°, 60°, 70°, 80° and 90°). At
each grid point, we have chosen 5 to 8 R values among the distances 0.9000, 1.1000,
1.3000, 1.5496, 1.6441, 1.8332, 2.0785, 2.0786, 2.0787, 2.3244, 2.5000, 2.7200,
2.7500, 3.0000, 3.3000, 3.5000 and 3.8000 Bohr so that region of minimum energy
is covered. We have fitted these energies as functions of the R-coordinate to a Morse

potential function,
B(R)” = Dy {1 — exp[—af (R — Reg )]}* = V7. (5.4)

and obtained the dissociation energy parameter 1°

r,7T!

minimum energy V.7, equilibrium
geometry R., and Morse parameter oy for both lower and upper electronic state
o = +. The averaged standard deviation for the lower and upper potential energy
surfaces are 60.0 cm™!, and 76.9 cm™!, respectively. The equilibrium geometry for the
lower and upper electronic surfaces are » = 2.5144 Bohr, R = 2.4668 Bohr, 7 = 45.1°
and r = 2.6906 Bohr, R = 2.4846 Bohr, 7 = 45.4°, respectively.

The calculated vibronic energy levels with these potential energy surfaces deviated
more than hundred cm~! from the experimental values. To improve the surface we
need much smaller grid intervals for both the = and r coordinates. The number of ab
initio points required for that is enormous, and it is not possible to calculate them at
the monent.

Finally we have tried to use the potential energy surfaces in Ref. [64]. The expres-

sions used to expand the potential energy surfaces as functions of the bond lengths
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and bond angle are given in Eqgs. (1)-(4) of Appendix C, and the values of the parame-

ters are summarized in Table 5.1

5.2.2 Bending basis functions

We have computed the minimum energy paths from the potential energy surfaces given

in the previous section. The minimum energy paths are expressed in sin 7 series,

Vo(r) =) G, sin'T (5.5)
R (1) = Z Gl sin'T (5.6)
r’(r) =) G, sin' 7. (5.7)

V() are the potential energies along the minimum energy paths, R*(7) and r*(7) are
R and r bond length changes along these paths. The parameters for equations (5.5) -

(5.7) are summarized in Table 5.2. The minimum energy paths are shown in Fig. 5.1.

5.3 Results

5.3.1 Computational details

We have calculated ro-vibronic energy levels of the X 24" and A 24’ HO, states by
using the program DR. For the n = a and n = b bending basis set we employed 23 and
15 bending basis functions, respectively, calculated from the minimum energy path
parameters in Table 5.2. We have 4000 integration points for the Numerov-Cooley
integration, and 80 integration points for the Gauss-Laguerre integration.

For the stretching basis functions, we employed 15 and 7 functions for R and r
coordinates, respectively. The parameters used for constructing the stretching basis

functions are as follows. The equilibrium distance RE1 and RE2 are 2.5390409 and
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Table 5.1: The potential surface parameters for the X 24” and A 24’ states of HO, from Ref. [65].%

riy? /A
al/A_l
fiy) Jem™!
11 fem ™
A fem ™
() /em ™
fl((ljil/cm71

0 _
fl(lz)ss/cm !

£§57) Jem ™!
£ Jem ™!
£ Jem™!
£557) fem ™
£ fem™?
£ Jem ™!
£ Jem ™!
A2 fem™
A2 fem™?
£ Jem ™!
£77) Jem ™!
A7) Jem™!
AP fem™

{57 fem™
£37) Jem ™!
A3 Jem ™!
A1) fem™!
AR fem™

1137 fem™!
A3 fem™

1,0 —
]01(111)/Cm !

0.95079(10)®

1.34000(20)

2.75¢ 2.75
24640(27) 18689(36)
—7570(126)
2544(74) 3515(23)
8970(148) —1119(44)
2666(18) 1025(12)
—742(43)
X2A" (0 = —) A2A (o = +)
—77219(83) —41743(99)
131699(279) 56008(447)
—161158(428) —58989(1001)
135418(304) 49829(1180)
—58357(81) —20427(697)
10000 3373(162)
—16336(90) 10437(94) —4830(48) —12356(125)
27603(215) ~13922(26) 0 11179(273)
—14367(231) —849(58) 6733(85)  —13050(284)
684(88) —5482(54) 3675(106)
4016(90) 4075(68) 13137(144)  —2073(117)
—758(61) —750(44) —13864(227) 9900(194)
3093(117)  —6362(103)
40283(520) 24902(524)
—55426(686) —26344(700)
24156(296) 11011(305)
0 1155(25) 4039(71) —1646(63)
—2358(146) 2206(53)
—12799(415) —1929(57) —21815(426) —3873(146)
5414(279) 13445(291) 3348(124)
648(17)

*When two values are given for a parameter the second value is that of the parameter with the

indices 1 and 3 interchanged in the subscript; this does not occur for fé), f% or f1()133< The

parameters fj(g) are common to both electronic states; they specify the stretching potential at

linearity. A subscript 1 refers to the HO bond, whereas a subscript 3 refers to the OO bond.

YQuantities in parentheses are standard errors in units of the last digit given.

“Parameters for which no standard error is given were held fixed in the least squares fit.

124



20000

15000

10000

5000

0 30 60 90 120 150 180

Figure 5.1: The potential energy path used to produce bending basis function for the X 247 — A 24
surface. See equations (5.5) - (5.7) together with the parameters in Table 5.2. 7 is given in degrees and
the potential V is given in cm~!. The blue curve shows the lower potential energy surface and the red

curve shows the upper potential energy surface.
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Table 5.2: Minimum energy paths parameters in equations (5.5) - (5.7) for lower(c = —) and upper

(0 = +) electronic surface

i _/ Hartree GY,,/ Hartree »._/ Bohr G,/ Bohr G _/ Bohr Gi ./ Bohr
0 0.096350511 3.0595598 2.5325190

1 -0.046249097 -0.041650143 -0.045823397 -0.031118964 0.49107083 0.42041901
2 0.59401929 0.69481429 1.2350086 1.2479451 -12.944801 -10.637389
3 -9.9529236 -8.6415838 -9.4737738 -5.9379531 106.85489 86.860113
4 44.764315 37.995362 39.502983 25.059007 -470.63994 -379.17433

5 -101.98301 -87.742544 -97.200550 -61.707483 1120.7241 893.31598

6 127.90016 111.98051 136.14852 82.432632 -1473.7307 -1164.9741

7 -83.463523 -74.215460 -99.198315 -56.728167 1006.1328 789.98250

8 22.160796 19.965687 29.232391 15.887036 -278.38945 -217.18247

2.4840281 Bohr, respectively. The dissociation energy DISS1 and DISS2 are 0.175
and 15 Hartree, respectively. The harmonic frequency WE1 and WE2 are 0.004 and
0.0125 Hartree, respectively. Integration points for R and r coordinate are 15 and 35,
respectively.

We have employed the spin-orbit interaction constant for HO,, —160.1 cm~! as in
Ref. [65]. The threshold limit energy constant for K-block contraction, CONTMAX, is
taken to be 18000cm !,

5.3.2 Vibronic energy levels

Calculated vibronic energy levels for X 24” and A 24/ HO, with N, . = 0go are listed in
Tables 5.3 - 5.9. The probability density of the lower and the upper electronic surfaces
P_ and P, respectively, are shown for each vibronic energy level. When an energy
level is split by tunneling, the splittings are also given in the tables. When we find the
vibronic energy levels from the previous theoretical studies [64, 65] with the program

RENNER [9] , we listed the energy levels in the tables. Selected wavefunctions are
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Table 5.3: Vibronic term values (in cm’l) of HO3. Energy levels with Ngx_ x, = 0o are listed here.

When an energy level is split by tunneling, the lower component and the splitting are given.

State Ieve No® PY%  PY/%  Af DR?Y RENNER® RENNER/
X(0,0,0), Fig. 5.2 Ay 1 100.0 0.0 0.00 0.00 0.00 0.0
)}(0, 0,1) Ay 3 100.0 0.0 0.00 1082.59 1080.00 1097.2
)}(0, 1,0) Ay 5 100.0 0.0 0.00 1390.64 1381.55 1391.5
)N('(O7 0,2) Ay 7 100.0 0.0 0.00 2144.97 2140.47 2178.9
)}(0, 1,1) Ay 9 100.0 0.0 0.00 2460.31 2446.37 2472.6
)}(0, 2,0) Ay 11 100.0 0.0 0.00 2758.34 2733.52 2747.1
)N('(O7 0,3) Ay 13 100.0 0.0 0.00 3186.71 3245.8
)N('(l7 0,0) Ay 15 100.0 0.0 0.00 3467.28 3462.93 3435.8
)}(0, 1,2) Ay 17 100.0 0.0 0.00 3510.58 3538.4
)N('(O,Q7 1) Ay 19 100.0 0.0 0.00 3814.41 3812.1
)?(07370) B 21 100.0 0.0 0.01 4104.06 4071.0
)}(0, 0,4) Ay 23 100.0 0.0 0.00 4207.40 4298.4
)N('(O7 1,3) Ay 25 100.0 0.0 0.00 4533.54 4589.6
X(1,0,1) Ay 26 100.0 0.0 0.00 4552.74 4529.2
)}(1, 1,0) Ay 29 100.0 0.0 0.00 4832.32 4823.77 4793.7
)N('(O7 2,2) Ay 30 100.0 0.0 0.00 4854.35 4803.82 4862.4
)N('(O,37 1) Ay 33 100.0 0.0 0.00 5146.08 5119.4
)}(0, 0,5) Ay 35 100.0 0.0 0.00 5206.67 5338.0
)N('(O7 4,0) Ay 37 100.0 0.0 0.00 5428.76 5366.4
)N('(O7 1,4) Ay 39 100.0 0.0 0.00 5544.97 5630.1
)}(1,0, 2) Ay 41 100.0 0.0 0.00 5608.93 5605.2
)N('(O7 2,3) B 43 100.0 0.0 0.01 5862.49 5900.6
)N('(l7 1,1) Ay 45 100.0 0.0 0.00 5905.58 5864.1
)}(0,3,2) B 47 100.0 0.0 0.01 6163.43 6155.4
)}(0, 0,6) Ay 48 100.0 0.0 0.00 6184.14 6365.9
)?(1,2,0) B 50 100.0 0.0 0.01 6187.87 6113.2
)}(0, 4,1) B 53 100.0 0.0 0.03 6456.66 6397.9
)}(0, 1,5) Ay 55 100.0 0.0 0.00 6532.14 6641.5
)N('(l,O7 3) Ay 57 100.0 0.0 0.00 6647.53 6682.7
X(2,0,0),+, Fig. 5.3 A 59  99.9 0.0 0.00 6732.21 6648.3
X(0,5,0),+, Fig. 5.4 Bs 60  99.9 0.0 0.07 6734.15 6635.7
)?(072,4) B 63 100.0 0.0 0.01 6859.16 6904.8
)}(1, 1,2) Ay 65 100.0 0.0 0.00 6950.08 6939.7
A(0,0,0), Fig. 5.5 As 67 0.0 100.0 0.00 7018.40 7014.57 7030.0
)N('(O7 0,7) Ay 69 100.0 0.0 0.00 7139.97 7381.7
)}(0,3,3) B 71 100.0 0.0 0.01 7168.66

)}(1,2, 1) B 73 100.0 0.0 0.02 7236.30 7154.5
)N('(O7 4,2) B 75 100.0 0.0 0.05 7464.17 7649.8
)N('(O7 1,6) Ay T 100.0 0.0 0.00 7497.36 7653.7
)}(1,3,0) B 78 100.0 0.0 0.08 7512.29 7396.8

“The numbering of the energies found in each J = 1/2, Deys state. ®The over-all probability

given in %. See Chapter 2.5.3 “Tunnel splitting energy, give in E/hc c"Energy calculated with the
program DR. ¢ Ref. [64] Energy calculated with the program RENNER, using the same potential
energy surface as this work. fRef. [65] Energy calculated with the program RENNER, with a

potential energy surface fitted to experimental data.
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Table 5.4: Vibronic term values (in cm’l) of HO3. Energy levels with Ng_ x, = 0o are listed here.

When an energy level is split by tunneling, the lower component and the splitting are given.

State Trve No® P'%  PY/%  Af DR?Y RENNER® RENNER/
X(1,0,4) A 81  100.0 0.0 0.00 7665.45 7730.9
X(0,5,1) Bs 83  100.0 0.0 0.05 7748.81

X(2,0,1) A 85  100.0 0.0 0.00 7808.08 7746.8
X(0,2,5) A 87  100.0 0.0 0.00 7834.41 7915.7
A(0,0,1) A 89 0.0 100.0 0.01 7916.40 7913.78 7958.3
X(1,1,3) A 91  100.0 0.0 0.00 7974.89

X(0,6,0) Ba 93  100.0 0.0 0.26 8022.24 7881.2
X(0,0,8) A 95  100.0 0.0 0.00 8080.63

X(2,1,0) Bs 97  100.0 0.0 0.04 8109.51 7978.5
X(0,3,4) Bs 99  100.0 0.0 0.0l 8153.34

A(0,1,0)  As 101 0.0 100.0 0.01 8234.73 8215.88

X(1,2,2) Bs 103 100.0 0.0 0.03 8266.81

X(0,1,7) A 105  100.0 0.0 0.00 8442.20

X(0,4,3) Bs 106 100.0 0.0 0.06 8457.01 8167.8
X(1,3,1) Bs 109 100.0 0.0 0.12 8547.07

X(1,0,5) A 111 100.0 0.0 0.00 8661.88

X(0,5,2) Bs 113 100.0 0.0 0.07 8748.04

X(0,2,6) A 115 99.9 0.0 0.00 8788.34

A(0,0,2) Ag 116 0.2 99.7 0.00 8792.02 8799.91

X Ba 119 100.0 0.0 0.39 8827.53

X Bs 121 100.0 0.0 0.01 8864.33

X By 123 100.0 0.0 0.0l 8978.66

X Bs 125  100.0 0.0 0.38 9027.83

X Ay 127 100.0 0.0 0.00 9077.21

X Bs 129 99.9 0.0 0.01 9118.19

A(0,1,1) Ay 130 0.4 99.6 0.00 9121.91

X Ba 133 100.0 0.0 0.07 9168.99

X By 135  100.0 0.0 0.03 9277.42

X By 136 100.0 0.0 0.20 9298.89

X Ay 139 100.0 0.0 0.00 9384.80

X Bs 141 99.9 0.0 0.07 9433.12

A(0,2,0) As 141 0.3 99.7 0.02 9433.86 9400.87

X Ba 145  100.0 0.0 0.30 9470.16

X Bs 147 100.0 0.0 0.13 9563.53

X Ay 149  99.8 0.2 0.00 9636.86

A(0,0,3)  As 150 0.5 99.5 0.00 9645.17

X By 153 100.0 0.0 0.0l 9726.38

X By 154  100.0 0.0 0.13 9735.01

X Bs 157 100.0 0.0 0.31 9845.55

X By 158  100.0 0.0 0.15 9853.05

“, b <, d, ¢ and f; See footnote for Table 5.3
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Table 5.5: Vibronic term values (in cm’l) of HO3. Energy levels with Ng_ x, = 0o are listed here.

When an energy level is split by tunneling, the lower component and the splitting are given.

State Ieve No® P°%  PY/%  Af DR?Y RENNER®
X By 161  100.0 0.0 0.01 9898.39
X Bs 163 99.9 0.0 0.01 9961.61
A(0,1,2) A, 165 0.0 99.9  0.01 9987.33
X By 167  100.0 0.0 0.49 10023.85
X By 169  100.0 0.0 0.01 10066.52
X By 171 100.0 0.0 1.04 10138.30
X By 173 100.0 0.0 0.08 10204.93
X By 175  100.0 0.0 0.04 10269.41
X By 177 100.0 0.0 1.06 10300.93
A(0,2,1) A, 178 0.0 99.9 0.02 10309.89
X By 179 100.0 0.0 0.00 10330.00
X Bs 183 100.0 0.0 0.08 10394.05
A(0,0,4) A, 185 0.0 99.9 0.00 10483.17
X Ay 186 99.8 0.1 0.00 10499.44
X By 188  100.0 0.0 0.34 10509.54
X By 191 100.0 0.0 0.26 10564.92
X By 192 100.0 0.0 3.16 10568.97
A(1,0,0) A, 194 0.0 100.0 0.00 10591.52 10585.10
X Ay 196  100.0 0.0 0.00 10604.81
A Ao 198 0.0 100.0 0.07 10618.43
X Ay 201 100.0 0.0 0.00 10683.47
X By 203  100.0 0.0 0.20 10708.46
A Ao 205 0.0 99.9 0.01  10831.72
X By 206 71.0 28.9 0.78 10833.67
X By 209  100.0 0.0 0.95 10863.59
X By 211 100.0 0.0 0.02 10898.57
X By 213 100.0 0.0 0.11 10927.42
X Bs 214 100.0 0.0 0.04 10939.22
X By 217  100.0 0.0 0.09 11005.33
X By 218  100.0 0.0 053 11010.85
X By 221 100.0 0.0 1.13 11141.69
A A, 222 0.0 99.9  0.03  11165.02
X By 225 99.9 0.0 0.07 11203.72
X By 227  100.0 0.0 0.07 11256.00
X Bs 229  100.0 0.0 1.37 11299.31
X By 231  100.0 0.0 0.09 11342.27
A A 232 0.0 100.0 0.00 11355.86
X Bs 234 100.0 0.0 0.92 11368.11
X By 237 100.0 0.0 281 11452.52
A Ay 239 0.1 99.8 0.10 11483.14

2

s b, i 4 and ©; See footnote for Table 5.3
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Table 5.6: Vibronic term values (in cm™!) of HO2. Energy levels with Ng, g, = 0Og are listed here.

When an energy level is split by tunneling, the lower component and the splitting are given.

Iive  No.® p? Pb AY DR Iive  No.® p? Pt Af DR
A Ay 240 0.0 100.0 0.00 11486.96 X A 321  100.0 0.0  0.80 12756.80
X By 243 99.7 0.2 015 11509.01 X B> 323  100.0 0.0 0.01 1278433
X A 244 1000 0.0 0.00 1152614 X By 324 99.9 0.0  0.50 12788.80
X By 247 1000 0.0 020 11566.17 X By 325 99.9 0.0 266 12794.15
X Ay 248 1000 0.0 046 1158094 A Ay 329 0.0 100.0  0.04 12835.39
X A 250 1000 0.0 000 11611.25 X By  331° 1000 0.0 11.09  12863.91
A Ay 253 0.0 1000 0.01 11666.60 X B> 332  100.0 0.0 0.04 1287853
X By 254 99.7 0.2 026 11669.07 X By 333 99.9 0.0 253  12895.58
A Ay 257 0.0 1000 0.03 11784.27 X B> 335  100.0 0.0 0.55 12905.01
A Ay 258 0.0 999 027 11793.73 X B» 339 99.9 0.0  1.05 12947.19
X B 261 99.7 0.2 009 1181839 A Ay 340 0.1 998  0.09 12964.75
X By 262 99.9 0.0 007 1182305 A Ay 343 0.0 999 046 12987.40
X A 264 1000 0.0 3.66 1184457 X B» 345  100.0 0.0  0.24 13019.89
X By 267 1000 0.0 175 11887.54 X B» 347  100.0 0.0 0.07 13085.43
X By 268 1000 0.0 005 1190524 X B> 349  100.0 0.0 021 13112.37
X By 271 1000 0.0 002 11934.84 X B» 350  100.0 0.0  3.67 13124.40
X By 273 1000 0.0 070 11984.36 X B> 352  100.0 0.0 1594  13142.09
X By 274 1000 0.0 026 1198570 A A, 354 0.0 999 378 13157.92
A Ay 275 0.2 997 003 12001.27 X By 357 99.9 0.0 010 1320179
X By 277 99.0 1.0 0.02 1200688 A Ay 358 0.1 998 002 13211.34
X Ay 281 1000 0.0 021 1213151 X By 361 99.9 0.0 016 13241.05
X By 283 1000 0.0 005 12170.05 X B» 362  100.0 0.0 236 1325193
X By 285 1000 0.0 421 1223129 X B» 364  100.0 0.0  3.39 1327147
X By 286 1000 0.0 015 1224737 X Bx 367  100.0 0.0 011 13351.40
X By 289 1000 0.0 082 1228717 X Bx 369  100.0 0.0  1.78  13436.70
X B» 290 1000 0.0 123 12280.68 X Bx 370 99.9 0.0  1.30 13448.82
A Ay 293 0.0 999 010 1232851 X B» 372 100.0 0.0 1.95 13466.84
A Ay 295 0.0 100.0 0.01 12360.17 A A, 374 0.0 998 024 13485.79
A Ay 296 0.0 1000 0.00 12363.81 A Ax 375 0.0 999  0.02 13490.26
X B» 299 1000 0.0 044 1241969 A Ay 379 0.0 999  0.08 13536.25
X Ay 301 1000 0.0 079 12450.36 X B» 380 99.8 0.0 0.07 1355251
X By 302 1000 0.0 006 1247335 X A 382 99.9 0.0 018 13575.22
X Ay 303 1000 0.0 000 12477.00 X B» 384 99.9 0.0  1.20 13582.31
A Ay 307 0.0 999 001 12551.89 X B» 387  100.0 0.0  5.06 13643.55
X B 308 1000 0.0 0.0 12564.57 A Ay 388 0.0 1000  0.01 13670.96
X By 310 1000 0.0 009 12586.00 X B> 391  100.0 0.0 0.01 13720.77
X By 313 1000 0.0 0.34 1262017 X By 393 99.9 0.0 053 13749.14
X By 314 1000 0.0 001 1263471 A Ay 394 0.0 999  0.03 13755.38
A Ay 316 0.0 999 025 1264851 X Bx 3957  100.0 0.0 19.16  13765.20
A A, 318 0.0 1000 0.07 12671.15 X B» 399  100.0 0.0  0.03 13811.69

a b c

, 7, ¢ and d; See footnote for Table 5.3 ¢; Probability density function is shown in Fig. 5.6. £ Probability density function

is shown in Fig. 5.7.
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Table 5.7: Vibronic term values (in cm™!) of HO2. Energy levels with Ng, g, = 0Og are listed here.

When an energy level is split by tunneling, the lower component and the splitting are given.

Irve  No.® p? Pt Af DR Iive  No.® Pt pb Af DR
A A 400 0.2 99.6  0.35 13819.68 X DBs 479 100.0 0.0 0.05  14780.41
X B 402 99.7 0.2 5.02 13841.24 A A, 483 0.0  99.9 0.08  14831.47
A A, 404 0.1 99.8  0.43 13858.11 X B, 485 99.8 0.1 3.24  14863.89
X B 406 99.7 0.2 369 13869.20 A B 485 55  94.5 0.03  14868.27
X B 408 100.0 0.0 10.66 13884.80 X Bs 487 99.9 0.0 5.16  14875.90
X B 409 100.0 0.0 002 1389264 X By 489 99.9 0.0 5.42  14887.94
X B, 411 99.9 0.0 3.11 1391285 X B» 491 100.0 0.0 7.96  14898.40
A A, 415 0.0 100.0 0.03 13974.14 A A, 494 0.0 100.0 0.02  14921.28
A Ay 417 0.0 99.9 0.13 13995.07 A A, 497 0.0  99.9 0.07  14961.11
X B, 418 100.0 0.0 011 1401354 X By 498 99.9 0.0 0.09  14979.53
X B 420 99.9 0.0 027 1403747 A A, 500 0.0  99.8 1.00  14999.86
A A, 422 0.1 99.8  0.01 14048.07 X B, 503 99.9 0.0 0.43  15028.40
X B 425 100.0 0.0 025 14083.60 X B, 505 99.9 0.0 0.79  15053.11
X B 427 100.0 0.0 245 1411224 X Bs 506 99.3 0.6 17.82 15066.88
X B, 428 100.0 0.0 18.74 1411463 A A, 508 1.0 98.8 15.61 15083.72
A Ay 430 26.9 73.0  0.18 1414856 X A 509 94.5 5.4  4.25 15093.47
A B 431 9.5 90.2 7.75 1414997 X Bs 511 100.0 0.0 0.10 15111.81
X B 433 100.0 0.0 009 14168.57 X A, 514 99.9 0.0 8.47 15126.23
X A 436 99.9 0.1 3.90 14189.96 A A, 517 0.8  99.1 0.27  15157.57
A A 438 0.1 99.8 1.60 14212.00 A A, 518 1.4 985 0.21 15172.18
X B 439 99.9 0.0 1.37 1422027 X Bs 519 98.7 1.2 3.93  15175.80
X B, 441 100.0 0.0 047 1422790 X B, 521 97.0 2.9 1.62  15182.89
X B 445 100.0 0.0 5.96  14276.54 X A 523 99.9 0.0 1.36  15201.85
A A 447 0.0 99.9 027 1431148 A A, 526 0.2 997 011 15216.92
X B 449 99.9 0.0 888 1433787 X B, 529 99.5 0.5 0.19  15239.65
X B 450 99.9 0.0 024 1434738 X B, 531 100.0 0.0 3.59  15278.39
A A 453 0.0 99.9 009 14381.14 A B 531 0.0 100.0 0.00  15281.70
X B 455 100.0 0.0 3.86 14423.00 X B, 533 100.0 0.0 0.21  15294.37
X B 457 100.0 0.0 2,22  14464.64 A A, 537 0.0  99.8 1.02  15369.94
X B 458 100.0 0.0 13.87 14468.05 X Bs 539 99.9 0.0 2.70  15394.84
X B, 460 100.0 0.0 1.44 1449442 X Bs 540 99.9 0.0 3.52  15405.27
X A 463 100.0 0.0 028 14541.56 X Bs 541 99.9 0.1 11.37 15412.40
X B 464 99.9 0.0 2.66 14558.44 X Bs 545 99.7 0.2 1.50  15459.51
A Ay 467 0.0 99.9 004 14602.71 A A, 546 0.5  99.3 0.71  15477.52
A Ay 469 0.2 99.6  0.59 1465244 X B, 549 100.0 0.0 0.33  15510.72
X B 470 99.7 0.3 1.52  14661.72 X A 550 98.8 1.1 10.30  15515.47
X B, 471 99.6 0.4 7.44 14663.12 X B, 550 99.5 0.5 5.86  15521.06
A Ay 475 0.0 99.9 042 14716.43 X By 552¢ 99.9 0.0 61.29 15532.62
X B 477 100.0 0.0 937 14761.68 A A, 553 35.9  63.9 1.79  15534.76
X B, 478 99.9 0.0 4.8 1477120 A A, 558 0.0  99.8 0.46  15558.58

@ b ¢ and ¢; See footnote for Table 5.3 ©; Probability density function is shown in Fig. 5.8. The probability density
function of the tunneling pair state, 560th X Ay, is shown in Fig. 5.9.
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Table 5.8: Vibronic term values (in cm™!) of HO2. Energy levels with Nx g, = 0Og are listed here.

When an energy level is split by tunneling, the lower component and the splitting are given.

Iive  No.® Y pY Af DR Trve  No® Pt P} Af DR
X B 560 99.9 0.0 072 15623.47 A A, 632 0.0 99.9  0.63 16334.84
X B 563 99.9 0.0 038 15655.83 X Bs 635 99.7 0.3  3.32  16376.10
X B 564 100.0 0.0 1.07 1566833 X B, 636 99.7 0.2 492 16386.05
A A, 567 0.2  99.7  0.14 15698.64 A A, 637 1.1 988 052 16401.97
X B 568 99.5 0.5  0.02 15706.46 A A, 641 0.2 99.7 331 16425.84
A A, 571 0.0 100.0  0.06 15740.73 A A, 642 1.0 98.9  1.45 16445.77
X B 572 99.9 0.0 262 1575561 A B 642 89.1 104 13.70  16446.75
X B 574 100.0 0.0 010 15760.94 X Bs 646 99.9 0.0 235 16473.41
X B 575 100.0 0.0 7.61 1577224 X B, 648 99.9 0.0 2.70 16492.66
X B 576 99.9 0.0 244 15779.44 A A, 650 0.1 99.8  0.02 16499.48
X B 581 99.3 0.7 3.82 15839.30 X Bs 653 99.9 0.0 16527.58
A A 582¢ 447  55.0  0.56 1584187 X Bs 654 100.0 0.0  1.08 16546.92
X B 585 99.3 0.6 13.91 15873.01 X A 655 100.0 0.0 16564.75
X B 586 100.0 0.0 15900.39 X B, 656 100.0 0.0 16578.36
X B 587 99.8 0.1 1.02  15917.85 A A, 658 0.1 99.8  0.05 16591.32
A A, 589 1.6 984  0.02 15927.83 X A 657 98.7 1.3 16592.13
X B 590 93.0 6.9 0.06 15933.66 X Bs 660 100.0 0.0  1.35 16615.71
A A, 592 0.1  99.6 1.32 15946.34 X B, 662 99.9 0.0 21.49 16624.84
X B 596 99.8 0.1 057 1597429 X B, 665 83.5 16.3 34.16 16675.84
X A 596 99.8 0.1 013 15974.95 A A, 665 6.3 91.9  1.19 16675.91
X B 598 99.9 0.0 029 15998.41 X A 666 100.0 0.0  3.41  16692.04
X A 601f  100.0 0.0 16009.16 X Bs 671 99.7 0.2 4.95 16744.38
X B 603 99.9 0.0 10.81 16048.80 A A, 673 0.2 99.6  0.54 16780.63
A A, 604 0.0 99.9  0.28 1606320 A A, 674 1.1 98.8 029 16798.48
X B 605 99.9 0.0 1.20 16078.52 X B, 675 93.0 7.0 3.09 16804.38
X B 607 99.9 0.0 1.76 16082.50 A A, 677 8.9 90.8  1.65 16809.67
A A, 609 59  94.0  0.00 16101.88 X Bs 680 99.9 0.0 13.15 16832.20
X B 612 100.0 0.0 16114.83 X B, 682 99.9 0.0 18.11 16844.55
X A 613 100.0 0.0 16123.01 X A 685 99.9 0.0  0.07 16909.44
X B 614 99.9 0.0 16141.15 X Bs 686 99.9 0.0 026 16922.99
A A 616 0.0 99.8  0.20 1615447 A A, 688 0.0 99.9  0.28 16933.04
X B 618 100.0 0.0 16184.53 X B, 689 99.9 0.0  1.07 16943.33
X A 618 99.9 0.0 16.09 16189.53 X Bs 692 99.9 0.0 072 16953.50
X A 619 99.9 0.0 16197.14 A A, 6939 1.1 98.7 10.92 16964.59
X A 621 99.9 0.0 046 1621435 X A 696 99.9 0.0 16985.22
X A 623 99.7 0.2 16236.10 X  Ba 696 98.7 1.3 16991.14
X B 623 100.0 0.0 091 16239.97 X A 698 99.9 0.0  4.85 17019.79
A A, 625 04 994 131 16251.00 X A 700 99.8 0.1  4.96 17027.71
X B 629 99.6 0.3 509 16276.05 A A, 701 0.2 99.7  0.11 17037.60
X B 630 99.7 0.2 1854 16299.35 X B, 704 99.9 0.0 17055.26

a b ¢ and % See footnote for Table 5.3 ©; Probability density function is shown in Fig. 5.10. ¢; Probability density

function is shown in Fig. 5.11. 9; Probability density function is shown in Fig. 5.12.
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Figure 5.2: Probability density functions (See 2.5.3) for the X2 HO, (0,0, 0) state.

Here, the 7 and r coordinates are given in degrees and Bohr, respectively. Figure (a) shows one-dimensional probability density
functions. The blue curve is f_(7) (the lower electronic surface’s probability density function), the red curve is fy(7) (the upper
electronic surface’s probability density function) and the black curve is f(7) (the total probability density function). The gray
surface in Figure (b) shows the two-dimensional probability density function f(r,7). Coloured lines are the contour plot of the

two-dimensional probability density function f(r, 7). Contours are plotted for 0.1 separations.
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Figure 5.3: Probability density functions (See 2.5.3) for the Fermi-resonance X2 HO, (2,0,0) state.

Here, the 7 and r coordinates are given in degrees and Bohr, respectively. Figure (a) shows one-dimensional probability density
functions. The blue curve is f_(7) (the lower electronic surface’s probability density function), the red curve is fy(7) (the upper
electronic surface’s probability density function) and the black curve is f(7) (the total probability density function). The gray

surface in Figure (b) shows the two-dimensional probability density function f(r,7). Coloured lines are the contour plot of the
two-dimensional probability density function f(r, 7). Contours are plotted for 0.1 separations.
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Figure 5.4: Probability density functions (See 2.5.3) for the Fermi-resonance X2 HO, (0,5,0) state.

Here, the 7 and r coordinates are given in degrees and Bohr, respectively. Figure (a) shows one-dimensional probability density
functions. The blue curve is f_(7) (the lower electronic surface’s probability density function), the red curve is fy(7) (the upper
electronic surface’s probability density function) and the black curve is f(7) (the total probability density function). The gray
surface in Figure (b) shows the two-dimensional probability density function f(r,7). Coloured lines are the contour plot of the

two-dimensional probability density function f(r, 7). Contours are plotted for 0.1 separations.
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Figure 5.5: Probability density functions (See 2.5.3) for the A2 HO (0,0,0) state.
Here, the 7 and r coordinates are given in degrees and Bohr, respectively. Figure (a) shows one-dimensional probability density
functions. The blue curve is f_(7) (the lower electronic surface’s probability density function), the red curve is fy(7) (the upper
electronic surface’s probability density function) and the black curve is f(7) (the total probability density function). The gray
surface in Figure (b) shows the two-dimensional probability density function f(r,7). Coloured lines are the contour plot of the

two-dimensional probability density function f(r, 7). Contours are plotted for 0.1 separations.
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Table 5.9: Vibronic term values (in cm’l) of HO3. Energy levels with Ngx_ x, = 0o are listed here.

When an energy level is split by tunneling, the lower component and the splitting are given.

I No P° PP AC DR¢ Twe No® P°  pb Af DR?
X A, 706 998 0.0 17084.31 X Ba 727 992 0.6  4.00 17271.60
X B, 706 998 00 037 1709643 A A, 728 25 974 038 17278.96
A A, 707 0.6 99.3 178 17103.00 A A, 730  11.5 882  4.95 1729555
A A T10 41 95.6 050 17124.93 X Bo 730 842 156  1.03  17295.63
X B, T2 724 273 073 1712985 X Bs 734 80.0 19.7 25.49  17301.40
X A, T4 993 06 080 1715021 X A, 734 774  22.3 17306.21
X By, TI6 999 00 17160.96 X Ba 737  99.6 0.3 17327.95
X B, 71T 999 00 1278 17165.94 X A, 739 871 12.6 17338.06
A A, 79 0.0 99.9 015 1718519 A As 739 00 998 012 17338.45
X A, 721 997 0.2 1405 17193.96 A A, 740 01  99.7 17339.79
A A, 723 0.0 99.9 007 1721631 A B,  7T40° 20.8 788 17339.89
X B, 726 998 01 21.30 1724031 A A, 744 05 994  0.79 17362.81

@ b ¢ and %; See footnote for Table 5.3 ¢; Probability density function is shown in Fig. 5.13.

shown in Figs. 5.2 - 5.13. The over-all probability (P_ and P,) and the probability
density functions are calculated from the coefficient matrix elements C;]’;@,MJ’S’Hve (See
(2.206)) bigger than 0.05. Some rovibronic energy levels with J = 1/2, 3/2 are sum-
marized together with some experimental results in Table 5.10.

The wavefunction of the )?(0,0,0) state is shown in Fig. 5.2. The zero point vibra-
tional energy is calculated as 3063 cm~!. As shown in Table 5.3, the total probability of
the lower electronic surface P_ is 100%, so that the total probability of the upper elec-
tronic surface P, is 0%. The )?(O, 0,0) state originates in the lower electronic surface
(the X 24" state). At 6732 and 6734 cm~' we see Fermi-resonance states originating
in the lower electronic surface. These states are shown in Figs. 5.3 and 5.4. We cal-
culate a very small tunneling splitting (0.07 cm~1) for the )~((0, 5,0) state (Fig. 5.4). The
zero point vibrational state of the upper electronic surface, AV(O, 0,0), is at 7018 cm™!
(See Fig. 5.5).

As described in the previous section, we have used the same potential energy sur-
face as the previous study by Osmann et al. [64]. As shown in Tables 5.3 - 5.5, the

agreement between the calculated energy levels is very good (1 to 7 cm1) in case of
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Table 5.10: Calculated rovibronic state with the program DR for the X 24” and A 24’ states of HO, (in

cm™!) in comparision with experiments.

J N K, K. DR* Obs® J N K, K. DR* Obs®
X(0,0,00> 1/2 0 0 0 0 0 X(0,0,1)% 1/2 0 0 0 108259 1097.011
1/2 1 0 1 2.13 2.182 1/2 1 0 1 2.11 2.1494
1/2 1 1 1 22.09 22.2504 1/2 1 1 1 22.07 22.1896
1/2 1 1 0 22.15 22.3241 1/2 1 1 0 22.13 22.2647
3/2 1 0 1 2.13 2.1672 3/2 1 0 1 2.11 2.134
3/2 1 1 0 20.73 20.9178 3/2 1 1 0 20.65 20.8144
3/2 1 1 1 20.68 20.8628 3/2 1 1 1 20.59 20.7588
3/2 2 0 2 6.39 6.5312 3/2 2 0 2 6.32 6.4328
3/2 2 1 1 26.14 26.4128 3/2 2 1 1 26.06 26.2833
3/2 2 1 2 25.97 26.21 3/2 2 1 2 25.89 26.0771
3/2 2 2 0 84.56 85.1161 3/2 2 2 0 84.42 84.739
3/2 2 2 1 84.56 85.1159 3/2 2 2 1 84.42 84.7389
X(1,0,00¢ 1/2 0 0 0 3467.28 3436.006 A(0,0,0)° 1/2 0 0 0  7018.4  7029.003
1/2 1 0 1 2.14 2.1896 1/2 1 0 1 1.93 2.0098
1/2 1 1 1 21.28 21.5024 1/2 1 1 1 20.02 20.5161
1/2 1 1 0 21.34 21.5804 1/2 1 1 0 20.07 20.5634
3/2 1 0 1 2.14 2.1724 3/2 1 0 1 1.93 1.9864
3/2 1 1 0 19.99 20.2993 3/2 1 1 0 21.36 21.7694
3/2 1 1 1 19.94 20.2429 3/2 1 1 1 21.32 21.7288
3/2 2 0 2 6.4 6.5513 3/2 2 0 2 5.79 6.0061
3/2 2 1 1 25.34 25.7068 3/2 2 1 1 24.75 25.298
3/2 2 1 2 25.17 25.4942 3/2 2 1 2 24.62 25.1623
3/2 2 2 0 81.36 82.3433 3/2 2 2 0 80.27 81.9908
3/2 2 2 1 81.36 82.3431 3/2 2 2 1 80.27 81.9907
X(0,1,004 1/2 0 0 0 1390.64 1391.01  A(0,0,1)f 1/2 0 0 0 7916.4  7958.012
1/2 1 0 1 2.12 2.1759 1/2 1 0 1 1.91 1.9885
1/2 1 1 1 22.76 22.9007 1/2 1 1 1 19.97 20.6179
1/2 1 1 0 22.83 22.9813 1/2 1 1 0 20.02 20.5995
3/2 1 0 1 2.12 2.1576 3/2 1 0 1 1.91 1.9576
3/2 1 1 0 21.3 21.4681 3/2 1 1 0 21.36 21.7996
3/2 1 1 1 21.25 21.4098 3/2 1 1 1 21.32 21.7599
3/2 2 0 2 6.37 6.5093 3/2 2 0 2 5.71 5.9349
3/2 2 1 1 26.79 27.0434 3/2 2 1 1 24.71 25.2918
3/2 2 1 2 26.61 26.8238 3/2 2 1 2 24.58 25.1505
3/2 2 2 0 87.13 87.6772 3/2 2 2 0 80.2 82.2372
3/2 2 2 1 87.13 87.677 3/2 2 2 1 80.2 82.2371
“For each excited vibronic state, the energy of the (J; Nk, x.) = (1/2;000) level is measured relative to the (1/2;000) level of the

)N(‘(O7 0,0) state. All other term values are measured relative to the (1/2;000) level of the vibronic state in question. bed e and
f Observed values are generated from Table.2 of [65]. ® Effective parameter values used for calculating term values are from [62].
¢ Effective parameter values used for calculating term values are from [59]. 4 Effective parameter values used for calculating term
values are from [60]. ¢ Effective parameter values used for calculating term values are from [63]. f Effective parameter values used

for calculating term values are from [78].
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zero bending quanta states. Those states with more than 1 bending quantum differ by
9 to 50 cm~! from the previous study. Except for the Z(O, 0,2) state, we have obtained
higher energies than with RENNER. In Tables 5.3 - 5.4, we have compared our result
with the previous study by Jensen et al. [65]. The fundamental vibrational states differ
up to 32 cm~!, and other states do not agree so well. The 1, and v, states are cal-
culated at higher energies than in the previous study, and 15 bands are calculated at
lower energies.

The potential energy surface by Osmann et al. [64] are fitted by constraining féﬁ”)
= 10000 cm~! in order to ensure that the bending potential energy of the X state
increases monotonically with increasing bending coordinate p. Their studies does not
cover large bending amplitude, but with the program DR we include all the bending
amplitudes. The discrepancy between the calculated energy with the program DR and
the previous study [64] can be explained by this, but it can also suggest that we should
use larger basis set in order to have high accuracy, although we used the biggest basis
sets allowed by our computer resources in the calculation with the program DR.

The comparision with experiment is shown in Table 5.10. The rotational states differ
less than 1 cm~! from the experimental values, except Av(o, 0,1) J =3/2 Nk, k. = 220
and Nk, k., = 29; State.

As the energies increases, we start to see larger tunneling splittings. Vibronic states
with energies under 10000 cm~!, the state with the biggest tunneling splitting in the
J = 1/2 state is the 119th I',,, = B, state with 100% contribution from the lower
electronic state (P = 100%). This state has a 0.39 cm~! tunneling splitting. In the
energy range 10000 to 11000 cm~!, we have a state with a 3.16 cm~! tunneling splitting
(the 192nd T',,. = B, state, P_ = 100%). In this energy range, the states originating
solely in the upper electronic state at most have 0.07 cm™! tunneling splitting. The
206th T',,, = B, state has mixed origin (P- = 71% and P, = 29%). This state have

0.78cm~! tunneling splitting. We can see that the contribution from the upper elctronic
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state can make the tunneling splitting bigger.

In the energy range 11000 to 12000 cm~! we have a state with a 3.66 cm~! tunneling
splitting, it originates in the lower electronic state (the 264th I',,, = A, state, P. =
100%). The 258th I',,. = A, state, P, = 100% had the biggest tunneling splitting, 0.27
cm~!, among the states which originate solely in the upper electronic state.

In the energy range 12000 to 13000 cm~!, the state with the biggest tunneling split-
ting is the 331st I',,, = B, state with P_ = 100%. The tunneling splitting of this state
is 11.09 cm~! and the probability density function is shown in Fig. 5.6. The states
originate solely in the upper electronic surface and have at most 0.46 cm~! tunneling
splitting (the 343rd I',,. = A, state, P, = 100%).

In the energy range 13000 to 14000 cm!, the states originating in the upper elec-
tronic surface have at most 3.78 cm~! tunneling splitting (the 354th I, = A, state,
P, =100%). In contrast, the states originating in lower electronic surface have at most
19.16 cm~! tunneling splitting. This is the 395th I, = B, state and the probability
density function is shown in Fig. 5.7.

In the energy range 14000 to 15000 cm~!, more than half of the states have tunnel-
ing splittings bigger than 1 cm~!. At 15532 cm~!, we have the 552nd I',,. = B, state
with P_ = 100%, with the tunneling splitting as 61.29 cm~!. The probability density
function is shown in Fig. 5.8 and the probability density function of the tunneling pair is
shown in Fig. 5.9.

At 15842 cm~!, we have a well-mixed state with contributions from the lower and
upper electronic surface. It is the 582nd I'.,, = A, state and the contribution from
the lower electronic surface P_ is 45% and the contribution from the upper electronic
surface P, is 55% (Fig. 5.10).

At 15900 cm~*!, we have the 586th I',,. = B, state with P_ = 100%, which could not
be assigned to a tunneling pair. Above this state, more vibronic states start to have

larger tunneling splittings, and some states are delocalized and cannot be assigned
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Figure 5.6: Probability density functions (See 2.5.3) for the X2H0, J =1 /2, Tors = Ba 331st state.

Here, the 7 and r coordinates are given in degrees and Bohr, respectively. Figure (a) shows one-dimensional probability density
functions. The blue curve is f_(7) (the lower electronic surface’s probability density function), the red curve is fy(7) (the upper
electronic surface’s probability density function) and the black curve is f(7) (the total probability density function). The gray

surface in Figure (b) shows the two-dimensional probability density function f(r,7). Coloured lines are the contour plot of the
two-dimensional probability density function f(r, 7). Contours are plotted for 0.1 separations.
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Figure 5.7: Probability density functions (See 2.5.3) for the X2HO, J =1 /2, Ters = Ba 395th state.

Here, the 7 and r coordinates are given in degrees and Bohr, respectively. Figure (a) shows one-dimensional probability density
functions. The blue curve is f_(7) (the lower electronic surface’s probability density function), the red curve is fy(7) (the upper
electronic surface’s probability density function) and the black curve is f(7) (the total probability density function). The gray
surface in Figure (b) shows the two-dimensional probability density function f(r,7). Coloured lines are the contour plot of the

two-dimensional probability density function f(r, 7). Contours are plotted for 0.1 separations.
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Figure 5.8: Probability density functions (See 2.5.3) for the X2HO, J =1 /2, Ters = Ba 552nd state.

Here, the 7 and r coordinates are given in degrees and Bohr, respectively. Figure (a) shows one-dimensional probability density
functions. The blue curve is f_(7) (the lower electronic surface’s probability density function), the red curve is fy(7) (the upper
electronic surface’s probability density function) and the black curve is f(7) (the total probability density function). The gray
surface in Figure (b) shows the two-dimensional probability density function f(r,7). Coloured lines are the contour plot of the

two-dimensional probability density function f(r, 7). Contours are plotted for 0.1 separations.
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Figure 5.9: Probability density functions (See 2.5.3) for the X2 HO, J = 1/2, Ters = A1 560th state.

Here, the 7 and r coordinates are given in degrees and Bohr, respectively. Figure (a) shows one-dimensional probability density
functions. The blue curve is f_(7) (the lower electronic surface’s probability density function), the red curve is fy(7) (the upper
electronic surface’s probability density function) and the black curve is f(7) (the total probability density function). The gray

surface in Figure (b) shows the two-dimensional probability density function f(r,7). Coloured lines are the contour plot of the
two-dimensional probability density function f(r, 7). Contours are plotted for 0.1 separations.
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Figure 5.10: Probability density functions (See 2.5.3) for the A2 HOy J = 1/2, Ters = A2 582nd state.

Here, the 7 and r coordinates are given in degrees and Bohr, respectively. Figure (a) shows one-dimensional probability density
functions. The blue curve is f_(7) (the lower electronic surface’s probability density function), the red curve is fy(7) (the upper
electronic surface’s probability density function) and the black curve is f(7) (the total probability density function). The gray

surface in Figure (b) shows the two-dimensional probability density function f(r,7). Coloured lines are the contour plot of the
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two-dimensional probability density function f(r, 7). Contours are plotted for 0.1 separations.
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Figure 5.11: Probability density functions (See 2.5.3) for the X2 HO, J = 1/2, Ters = A1 601st state.

Here, the 7 and r coordinates are given in degrees and Bohr, respectively. Figure (a) shows one-dimensional probability density
functions. The blue curve is f_(7) (the lower electronic surface’s probability density function), the red curve is fy(7) (the upper
electronic surface’s probability density function) and the black curve is f(7) (the total probability density function). The gray
surface in Figure (b) shows the two-dimensional probability density function f(r,7). Coloured lines are the contour plot of the

two-dimensional probability density function f(r, 7). Contours are plotted for 0.1 separations.
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Figure 5.12: Probability density functions (See 2.5.3) for the A2 HO, J =1 /2, Ters = Az 693rd state.

Here, the 7 and r coordinates are given in degrees and Bohr, respectively. Figure (a) shows one-dimensional probability density
functions. The blue curve is f_(7) (the lower electronic surface’s probability density function), the red curve is fy(7) (the upper
electronic surface’s probability density function) and the black curve is f(7) (the total probability density function). The gray
surface in Figure (b) shows the two-dimensional probability density function f(r,7). Coloured lines are the contour plot of the

two-dimensional probability density function f(r, 7). Contours are plotted for 0.1 separations.
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Figure 5.13: Probability density functions (See 2.5.3) for the X2 HO, J = 1/2, T'ers = By 740th state.

Here, the 7 and r coordinates are given in degrees and Bohr, respectively. Figure (a) shows one-dimensional probability density
functions. The blue curve is f_(7) (the lower electronic surface’s probability density function), the red curve is fy(7) (the upper
electronic surface’s probability density function) and the black curve is f(7) (the total probability density function). The gray
surface in Figure (b) shows the two-dimensional probability density function f(r,7). Coloured lines are the contour plot of the

two-dimensional probability density function f(r, 7). Contours are plotted for 0.1 separations.
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as tunneling pair states. As an example of this kind, we show the probability density
function of the 601st I',,, = A; state with P_ = 100% in Fig. 5.11. This state is
solely originates in the lower electronic state. We have tried to find the delocalized
states which originate in the upper electonic state. Unfortunately, in the energy range
we could calculate with our computer resources, we did not find any states as well-
delocalized state, as much as delocalized as in Fig. 5.11. We have 693rd I,,. = A,
state with P_ = 1% and P, = 99%, as shown in Fig. 5.12. This state has the biggest
tunneling splittings among the states which originate in the upper electronic surface
(10.92 cm™1). Also we have a some what delocalized state the 740th I',,. = B; state
with P_ = 21% and P, = 79%, shown in Fig. 5.13.
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Chapter 6

Conclusion

In previous theoretical descriptions of the Renner effect, starting with Renner’s 1934
paper [1], only one linear geometry with a double degenerate electronic energy is con-
sidered. In this thesis, a hitherto unstudied phenomenon, the double Renner effect is
described; we consider two linear geometries of a triatomic molecule with the Renner
effect simultaneously. The rotation-vibration Hamiltonian of the double Renner effect
for a triatomic molecule has been constructed in terms of Jacobi coordinates. A pro-
gram to calculate rotation-vibration energies of a triatomic molecule with the double
Renner effect has been constructed. The program, DR, can treat both ABC- and ABB-
type of molecules; isomerization of a molecule (ABC to BCA or ABB to BBA) can be
studied together with the Renner effect, the spin-orbit interaction and all the rotational
and vibrational motion within a triatomic molecule.

The Numerov-Cooley numerical integration method has been used to construct the
bending basis functions, and Morse-like stretching functions were used to construct the
r- and R- stretching basis functions. Rotational-spin basis functions were constructed
from rigid rotor functions.

The resulting Hamiltonian matrix mainly consists of nine components. In order to

have a smaller matrix size for the diagonalization, the Hamiltonian matrix was diago-
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nalized in two steps. The first step is the K-block diagonalization. In this step, six of
the resulting Hamiltonian matrix components, HAMILV, HBL1, HBL2, HAMILBA
and HAMILBB, were combined and diagonalized. The next step is the J-block di-
agonalization. Three of the resulting Hamiltonian matrix components, HAMILNK,
HAMILDK and HAMILSO were combined together with the diagonalized K-block
matrices and diagonalized.

All the theory behind the double Renner effect rovibronic energy calculations is de-
scribed in Chapter 2. The methods to understand the nature of each rovibronic energy
level are also shown in Chapter 2. For example, in order to understand the nature
of the double Renner effect, we used the probability density function to analyze the
eigenfunctions. The description of the program DR was summarized in Chapter 3.

As examples of ABC- and ABB-type molecules, the program was applied to Al
MgNC/MgCN states and to HO, in the X 24” and A 24’ states. In Chapter 4, the appli-
cation to ABC-type molecules was shown and the application to ABB-type molecules
was shown in Chapter 5.

In both cases, calculated fundamental vibration energies with the program DR agreed
well with the previous studies. In case of A 211 MgNC/MgCN, a "triangle” local minimum
was found in both Renner-component electronic surfaces (the lower 12A” electronic
state and the upper 224’ electronic state). The 22 A’ state has a much bigger "lake” in
the potential energy surface around 7 = 90° than the 124” state. The calculation with
the program DR found several rovibronic energies originating in the bent 22 A’ state, but
not in the 124" state. The minimum around 7 = 90° in the 12A4” electronic surface was
too shallow and too small, and it could not produce well bent 124” MgNC vibrational
states.

Many delocalized states were observed in the Al MgNC/MgCN system and HO,
(X 24" and A 24') systems. The probability density functions showed that some de-

localized states were composed of both of the lower and the upper electronic states,
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and some belonged to only one of the electronic surfaces. Each delocalized state
was different from the others, showing the nature of the Renner effect; it is chaotic
and beautiful! In the calculation of the X 24” HO, and A2 HO, electronic states, the
tunneling splitting energies were affected by the Renner effect. This is the first theo-
retical calculation to prove the importance of treating the Renner effect together with
the isomerization (in other words, the double Renner effect) in the HO, X 24" and A 24/
electronic states.

The accuracies of the bent 224’ MgNC rovibronic states found in the calculation
with the program DR depend on the accuracy of the ab initio potential energy surfaces
and the size of the basis set we employed for the calculation with DR. The largest
basis set allowed by the restrictions of the computational resources is used in the
calculation with the program DR. The ab initio program took three days to calculate
just one ab initio point. Extensive ab initio calculations, which represent the potential
energy very well around Al MgNC equilibrium geometry were carried out, but this
does not prove that it will reproduce bent MgNC as well as it does its linear geometry.
Unfortunately the methods used for constructing the potential energy surfaces from the
ab initio points were not the ideal ones. The fitting to an analytical surface which covers
the complete 7 coordinate region (7 = 0° to 180°), was very difficult. We could not find
suitable analytical global potential energy functions. Thus interpolated numerical global
potential energy functions were used. Interpolated numerical functions tend to have
less smoothness in reproducing potential energy surfaces than analytical functions.

In case of X 24” HO, and A 24’ HO,, we have used an analytical potential energy
surface. However, the potential energy surface did not result from fitting ab initio points
with full 7 region. Fitting all the ab inito points we have in the MgNC/MgCN system or
in the HO, system to an analytical expression together with more ab initio points will
help us having more "real” potential energy surfaces.

At this point, we did everything we could to apply the program DR for these two
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molecules, but in future, | believe with the progress of computational methods, we
will have much more accurate global potential energy surfaces, and be able to extend
the calculations. In collaboration with the Institute of Applied Mathematics, University
of Wuppertal, new diagonalization methods for the program DR are being developed
and part of the program are planned to be parallelized. This will allow the program to
perform much bigger calculations with much bigger basis sets, and the results will be
much more accurate. The program DR can be used to study new phenomena with
the two degenerate surfaces including isomerization, and | believe this will open a new

area in computational molecular spectroscopy.
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