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KURZFASSUNG

In dieser Arbeit stellen wir Störungsrechnungen vor, die zu einem besseren

Verständnis des Standardmodells führen. Nur mit solchen Rechnungen kann

das Ziel erreicht werden, unerforschte und unerklärte Physik zu verstehen und

zu �nden.

Elektroschwache Symmetriebrechung geschieht durch einen Higgs-artigen Me-

chanismus und erreicht die Phase von Präzisionsmessungen. Im Rahmen dieser

Arbeit verbessern wir die Zuverlässigkeit von Vorhersagen für di�erentielle und

exklusive Wirkungsquerschnitte für den größten Higgs-Produktionskanal am

Large Hadron Collider (LHC), Gluon-Fusion. Dies geschieht durch Abschätzung

und Vorhersage von endlichen Topmassen-E�ekten zum häu�g benutzten Li-

mes eines unendlichen schweren Top-Quarks. Weiterhin untersuchen wir die

Higgs-Gluon-Kopplung in einer e�ektiven�eorie mit Dimension-5 und -7

Higgs-Gluon koppelnden Operatoren. Dies ermöglicht eine systematische Suche

nach neuer Physik im Higgs Sektor, sowie Quanti�zierung dieser.

Man glaubt, dass die Quantenchomodynamik (QCD), welche von höchsterWich-

tigkeit für Vorhersagen am LHC ist, die starke Wechselwirkung über alle Län-

genskalen beschreibt. Im QCD Gradient�ow-Formalismus haben wir die erste

Drei-Loop-Rechnung durchgeführt. Die betrachtete Observable ermöglicht es

beispielsweise die Niederenergie-Region der QCD, welche sich auf die Gitter-

Formulierung stützt, mit dem störungstheoretischen Hochenergie-Bereich zu

verbinden. Insbesondere ist eine De�nition einer laufenden Kopplung möglich,

die es erlaubt αs(mZ) aus Niederenergie-Observablen, wie z. B. Hadron-Massen,
zu gewinnen. Die Bestimmung von αs(mZ), für die wir die störungsrechneri-
sche, mit Drei-Loop erreichbare Unsicherheit angeben, wird möglich, sobald

entsprechende Daten aus einer Gitter-QCD-Rechnung verfügbar sind.
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ABSTRACT

In this thesis we present perturbative calculations, leading toward a more thor-

ough understanding of the Standard Model. Only with such calculations, the

endeavor of unexplained and unexplored physics can be approached.

Electroweak symmetry breaking proceeds through a Higgs-like mechanism

and enters the phase of precision measurements. In this thesis we improve the

reliability of di�erential and exclusive cross section predictions for the largest

Higgs production channel at the LargeHadronCollider (LHC), gluon fusion.�is

is achieved by estimating and predicting �nite top-mass e�ects to the commonly

used heavy top limit. Furthermore, we study the Higgs-gluon coupling in an

e�ective �eld theory of dimension-5 and -7 Higgs-gluon coupling operators,

allowing for a systematic search and quanti�cation of new physics in the Higgs

sector.

Quantum chromodynamics (QCD) is believed to describe the strong interactions

over all length scales, and is of utmost importance for predictions at the LHC.

In the framework of the QCD gradient �ow, we present the �rst perturbative

three loop calculation.�e speci�c considered observable allows, for example,

to bridge the low energy region of QCD, relying on the lattice formulation, to the

perturbative high energy regime. In particular, a de�nition of a running coupling

is possible, allowing an extraction of αs(mZ) from low energy observables such
as hadron masses.�is extraction, for which we estimate the perturbative three

loop uncertainty, will be possible, once the data from lattice QCD is available.
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Part I

INTRODUCTORY PART

�is �rst part establishes the greater context in which this thesis

�lls a tiny gap: Standard Model phenomenology and high-energy

particle physics. We begin with the features and limitations of

the Standard Model and specialize to the sectors of electroweak

symmetry breaking and quantum chromodynamics, which are two

central topics here.





1
ELEMENTS OF THE STANDARD MODEL

Since its completion in the 60s, the unifying theory of electroweak interactions

[1–3] has proven to be of extraordinary success.�is relativistic quantum �eld

theory is guided by principles of local gauge invariance and renormalizibility

[4, 5]. Together with quantum chromodynamics (QCD) [6–11]1 it forms the

Standard Model (SM) of elementary particle physics.2

Experimentally, the Standard Model found its internal completion with the

discovery of the Higgs boson [17, 18]. It is the quantum excitation of the Higgs

�eld that leads through a non-vanishing vacuum expectation value (vev) to

spontaneous breaking of the electroweak (EW) symmetry and gives masses to

theW± and Z gauge bosons. With over 20 free parameters, the Standard Model
leaves us with the question of their origin. Not only do these parameters, but also

clear evidence of new physics from astrophysical and cosmological observations,

motivate us to search for extending it in a unifying way.

Among the things that the Standard Model does not at all, or not su�ciently

explain are:

• Neutrino masses, observed from �avor oscillations.

• Gravity. Why is it so weak compared to the other forces? We expect that at

least at energies near the Planck mass ofmP =
⌈︂
ħc⇑G ≃ 1019 GeV, where

G is the gravitational constant, gravity must be quantized.

• Dark matter, which is, up to now, only indirectly observed, for example in

galaxy rotation curves.

1 See for example ref. [12] for a comprehensive review ofQCD, when it counted as the established

theory of strong interactions; so ref. [13] for a review of the gluon discovery from a personal

perspective. Ref. [14] focuses on recent progress and the current status.

2 A recommended read on the experimental veri�cation of the SM can be found in ref. [15]. See

also the PDG-review in ref. [16].
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4 1 Elements of the Standard Model

• Insu�cient CP violation to account for the matter-antimatter asymmetry

since baryogenesis.

• Cosmic in�ation, to explain among other things the homogeneity of the

observed universe and cosmic microwave background.

• . . . (See for example ref. [15, 19].)

Other questions, that are more fundamental though, can be asked about the

number of particle generations, the speci�c choice of gauge group and their

representations for �elds, or why electroweak symmetry is broken. Is it possible

to derive the Standard Model with its immediate parameters and choices from

simpler or more natural principles? What is ‘more natural’ then? Naturalness, by

’t Hoo� [20], claims that at any energy scale µ, a physical parameter, or a set of
physical parameters ai(µ) are allowed to be very small only if the replacement
ai(µ) = 0 enhances the symmetry of the system.

Is the Standard Model then rather natural or unnatural? Can the introduction of

a Higgs doublet, with its non-vanishing vev to spontaneously break electroweak

symmetry, be considered an ad-hoc approach [21] to give masses to fundamental

particles? What about the strong CP problem, or the ultraviolet (UV)-sensitivity

of theHiggsmass to the Planck scale?�ese questions could be considered rather

arti�cial, yet we look for physics beyond the Standard Model (BSM) guided by

naturalness.

For example, it is strongly believed that the sector of electroweak symmetry

breaking (EWSB) will us give clues about an extension or UV-completion of

the Standard Model. Because of the unnatural Higgs mass UV-sensitivity (�ne-

tuning, hierarchy problem) [22–25], we conclude that it must be �xed by new

physics. To solve this problem, an additional symmetry is imposed on the Higgs

�eld that makes a mass term natural by ’t Hoo�’s de�nition. Because, unlike for

gauge bosons, which are protected by gauge symmetries, and fermions, which

are protected by chiral symmetries, the removal of a scalar mass term does

not enhance the theory’s symmetry. Introducing a protecting symmetry then

forbids the Higgs mass term, and subsequently a natural one is generated by

so�ly breaking this symmetry. Multiple choices for protecting symmetries have

been introduced through1:

1 Listing based on a presentation in the ‘Fourth Annual Visiting Lectureship Series, 2014; Prof.

Michael E. Peskin’; see also ref. [26].
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• Supersymmetry, extending the Poincaré space-time symmetry group by

transformations between fermionic and bosonic �elds. �is relates the

Higgs �eld to a fermion partner �eld, whose mass is forbidden by a chiral

symmetry [27, 28].

• Extra space dimensions, that relate the Higgs �eld to a vector �eld, whose

mass is forbidden by a gauge invariance [29–31].

• Treating the Higgs boson as a (pseudo) Goldstone boson, whose mass is

protected by a shi� symmetry [32, 33].

• Assuming a �xed point for all couplings; scale invariance then protects

the Higgs mass [34, and references therein].

Early simple models of strongly interacting electroweak sectors like Technicolor

[35] have been disfavored meanwhile. New approaches treat the Higgs boson as

an e�ective �eld, arising from new dynamics which become strong at some scale

[36–38]. Recently, a novel idea has been proposed to solve the issue of Higgs

mass naturalness:�e e�ective Higgs mass dynamically evolves from its natural

UV cuto� value in the in�ationary phase of the universe to a now small value

[39, 40].�is is achieved through a coupling to an axion �eld, whose potential

serves for the Higgs mass term to cross zero, and, thus, subsequently leads to

a non-vanishing Higgs vev. Naturalness is given, since the crossing of zero is

the special point where electroweak symmetry enters the broken phase.�is is

exactly where the mass evolution stops due to barriers in the axion potential,

leading to a light Higgs mass.

All approaches lessen the �ne-tuning problem, but the realistic ones also increase

the number of additional parameters and particles considerably. Generally,

they provide explanations for problems considered above. For example, the

minimal supersymmetric Standard Model (MSSM) can provide gauge coupling

uni�cation, dark matter, sources of additional CP violation, and is itself an

appealing extension of the space-time symmetry. Of course, cherishing hopes

and following the anthropic principle is also a possibility to ‘explain’ �ne-tuning,

but could endanger the scienti�c method [41, 42].

Speaking on a high level, in this thesis we performed perturbative calculations

motivated by the following questions:

1. Is the newly found scalar particle really the SM Higgs boson? Is it com-

pletely and solely responsible for electroweak symmetry breaking? How
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do we quantify the search for deviations and exclude other theories?

2. How do the detailed Higgs kinematics look like in the SM? How large

are the errors of current calculations? Are we prepared to compete with

increasing experimental precision at the LHC, especially at high energies,

where higher order perturbative calculations face the approximation of

an in�nitely heavy top-quark?

3. Is QCD the right theory to describe low energy hadronic physics and high

energy jet physics simultaneously? What is the size of the SU(3) coupling?

More speci�cally, this thesis aims to further test the Standard Model in two spe-

ci�c sectors.�e �rst sector is the Higgs one.�e Higgs boson is predominantly

produced through gluon fusion at the LHC.1 Perturbative calculations of this

production mode have a very speci�c uncertainty: since the coupling of the

Higgs boson to gluons, being prevalent in proton-proton collisions, is induced

by a heavy quark loop, the Feynman diagrams at LO demand already a massive

one-loop calculation. �is would not be a problem by itself, if higher orders

were small. Instead, the perturbative corrections at higher orders turned out

to be signi�cant.�ey are usually performed in the limit of an in�nitely heavy

top-quark mass, the heavy-top limit (HTL). It is thus essential to justify the HTL

approximation.

A comprehensive review of gluon fusion and the associated top-mass uncertainty

is given in part II chapter 2. Up to our study [43], top-mass e�ects were only

considered in inclusive Higgs production or at LO for di�erential quantities.

In part II of this thesis we extend our previous analysis [43], which examines

�nite top-mass e�ects at NLO in di�erential observables through an asymptotic

expansion in 1⇑mt , to the jet-veto at NNLO and semi-inclusive quantities. We

also improve our previous results by increasing the order of the asymptotic

expansion.

High energies are required to probe new physics. So estimating the HTL error or

predicting the size of �nite mass e�ects are important for a precise comparison

with experimental data to constrain or detect new physics. In part III we study

an e�ective theory description of the Higgs-gluon coupling. We show that

di�erential distributions in Higgs+1- and 2-jet production from dimension-5

and -7 Higgs-gluon coupling operators can give signi�cant deviations from the

1 See �g. 1.2 in the next section for its LO Feynman diagram.
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SM behavior.�is allows one to quantify and constrain new physics speci�c to

the Higgs-gluon coupling.

�e second sector we focus on in this thesis is QCD. QCD has been well tested in

the 70s and 80s through jet-physics and deep inelastic scattering, relying on the

factorization theorem and asymptotic freedom/perturbativity at high energies.

However, at low energies the fundamental degrees of freedom are not quarks and

gluons, but, through con�nement, strongly bound hadrons. E�ective theories

like chiral perturbation theory have been established to describe this low energy

region.�rough the increasing computational power, a direct integration of the

discretized path integral can be performed on a space-time lattice. Of course,

QCD on the lattice is not without numerical and computational problems, such

that lattice QCD comprises a complete �eld by itself.

A di�cult and thus, up to now, rather underdeveloped aspect of QCD is the

connection of the low-energy sector with the high-energy sector. Recently, a

new approach named gradient �ow, to be introduced in part IV, was developed.

It opens a new way for calculations on the lattice that reach into the perturbative

regime. Additionally, perturbative calculations of observables in the gradient

�ow are possible and allow bridging bothwell tested parts ofQCD. We performed

the �rst NNLO calculation in gradient �ow, corresponding to three loops.�e

calculational details and results are given in part IV.�e observable we consider

allows for a de�nition of the strong coupling on the lattice. By combining the

lattice result with our perturbative NNLO result, αs(mZ) can be extracted with
high precision. We estimate the uncertainty on αs(mZ) that can be achieved
through our calculation and lattice data given at a speci�c gradient �ow induced

scale.

�e three following parts of this thesis ask for some more details: Regarding

Higgs physics, gluon fusion is brought into a larger context in section 1.1. In

section 1.2 we cover aspects of SM e�ective �eld theory (EFT) with speci�cs to the

Higgs sector. Section 1.3 reviews features of QCD. Some essentials on techniques

in perturbative calculations used in this thesis are reviewed in section 1.4.
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1.1 electroweak and higgs physics

A good candidate for the beginning of Higgs physics is the direct discovery of the

W± [44, 45] and Z bosons [46–48]1, whose longitudinal components constitute
three of four degrees of freedom in the complex SU(2) Higgs doublet. �e
direct discovery of the fourth component, the Higgs boson, has been achieved

recently by the observation of a resonance with Higgs-like properties [17, 18].2

�e most signi�cant Higgs decay channels for its discovery were H → γγ and
H → ZZ → 2l+2l−.�us, missing are direct determinations of the Higgs self
coupling, implying a non-vanishing vev, and the Yukawa coupling to fermions.3

Of course, these are indirectly determined and constrained by the observed

SM-like signals [58–62].

Figure 1.1 considers the precision of coupling measurements that can be achieved

at the LHCwith 300 fb−1 of data, and at theHL-LHCwith 3000 fb−1. Bymodifying

SM couplings by a multiplicative factor κ j, estimates can be done on how much

data is required to limit κ j below a certain value. �e lines S1 and S2 (conservative

(csv.) and optimistic (opt.)) follow from di�erent scenarios, where S1 assumes

no improvement in theory predictions, while the S2 scenarios assume a halved

uncertainty for parton distribution functions (PDFs) and involved partonic cross

sections.�e upper part of �g. 1.1 considers limits on invisible Higgs decays. For

further details we refer to ref. [57].

An important coupling is the loop induced Higgs-gluon coupling, since the

predominant Higgs production mechanism at the LHC in the Standard Model

is gluon fusion. Gluon fusion at LO is depicted in �g. 1.2, next to other Higgs

production modes, and is mediated by a quark loop. With its large Yukawa

coupling, the top-quark provides the biggest contribution to the loop, and, as

such, to the Higgs-gluon coupling. Although a challenge for higher order per-

turbative calculations, the coupling provides a good sensitivity to additional

massive particles circulating in the loop. Any simple heavy fourth generation

would considerably increase the coupling. Figure 1.1 shows that this Higgs-gluon

coupling is experimentally challenging and a precision of better than ≃ 10% can
be reached only at the HL-LHC with improved predictions.

1 W±
and Z bosons were constrained earlier, see e.g. a review in ref. [49].

2 Earlier, a Higgs boson mass of 81
+52
−33 GeV has been indirectly obtained from precision mea-

surements of electroweak parameters at LEP [50].

3 For analyses on Higgs couplings see, for example, refs. [51–57].
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Figure 1.1: Projected future precision for the determination of multiplicative Higgs
coupling scale factors κ j at the LHC with integrated luminosities of 300 fb

−1 and
3000 fb−1 (HL-LHC). As in ref. [57, �g. 17].

A comparison of the Higgs production cross section predictions for the channels

shown in �g. 1.2 is given in �g. 1.3. An overview of the magnitude of the decay

channels can be found in ref. [63, �g. 4].

From the Higgs signal strengths in its di�erent decay channels, the couplings to

fermions and electroweak gauge bosons can be extracted [64]. Parameterizing

the couplings to fermions λ f and to massive bosons gV as

λ f (M ,ε) =
⌋︂
2(

m f

M
)
1+ε
, gV(M ,ε) = 2

m2(1+ε)
V

M1+2ε , (1.1)

a �t as shown in �g. 1.4 can be obtained.�e fermion masses are denoted as m f ,

the gauge boson masses as mV .�e Standard Model corresponds to ε = 0 and
M = v = 246GeV, where v is the Higgs vev.

Note that, for example, even though the coupling to the top-quark is very much

as in the SM, it is only indirectly constrained. A direct measurement through a

Higgs discovery in association with t t̄ is expected for LHC Run-2, giving �rst
direct evidence for non-zero Yukawa couplings.
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(a) gluon fusion (b) vector boson fusion

(c) with t̄t/bb̄-pair (d)Higgs strahlung

Figure 1.2: Leading Feynman diagrams for the largest Higgs boson production
channels at the LHC.
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Figure 1.3: Standard model inclusive Higgs production cross sections for mH =
125GeV in dependence of the center of mass energy

⌋︂
s. As in ref. [63, �g. 2].

higgs off-shell effects . While the zero-width approximation works

well to describe the Higgs production and decay chain, o�-shell e�ects can

become sizable in certain kinematical regions and must be cut o� in such di�er-

ential analyses [65–69].�ey can also turn relevant if BSM physics modi�es the

Higgs width, and can invalidate Higgs coupling studies, which rely on the zero-

width approximation. But these o�-shell e�ects can also be used to constrain

the Higgs width and couplings, as has been recently observed [70–77].
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Figure 1.4: Measured Higgs boson couplings to di�erent fermion �avors and
massive bosons �tted to the form in eq. (1.1).�e red line is the SM prediction, the

black dashed line the best �t with �t parameters shown on top. As in ref. [54, �g. 6];

see same place for details.

vacuum stability. Assuming that the Standard Model is valid up to the

Planck scale, one can calculate bounds on SM parameters, that, when evolved

up to the Planck scale, lead to a Higgs potential with a minimum that lies lower

than the current electroweak vacuum.�is signi�es an unstable or false vacuum.

Close to these parameters, metastable regions exist that generate an unstable but

long-lived universe.�e calculation of the stability bounds depends essentially

on the running of the Higgs quartic coupling λ(µ). For current values ofmt and

mH , upon which the running of λ(µ)mainly depends, λ(µ) runs down close to
zero around the Planck scale.�is also opens up scenarios where the Higgs �eld

plays a role during cosmic in�ation [78–80].

Absolute SM electroweak vacuum stability is excluded at about 2.8σ [80], where
the largest uncertainty comes from mt . It is believed that the remarkable near-

criticality of the measured SM parameters, displayed in the SM phase diagram in

�g. 1.5, encodes information about a more fundamental theory.
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the allowed region at 1, 2, and 3σ con�dence levels of the parameters. Taken from
ref. [80, �g. 3]; see same place for details.

1.2 effective field theories

We have seen that the Higgs sector is already strongly constrained by direct

and indirect coupling measurements at the LHC. Assuming that no new fun-

damental particles will be found soon, an era of precision measurements will

begin. With precisely measured parameters, we can improve our understanding

of considerations like vacuum stability, and further constrain models beyond

the SM.

�e constraining and quanti�cation of physics beyond the Standard Model can

be either performed in simpli�ed ways, like �tting rescaled SM couplings to

measurements [81], or by using e�ective �eld theories1 (EFT). Since the scalar

particle discovered in 2012 is SM-like, we can assume approximate validity of

the SM, and augment it with higher dimensional operators𝒪, composed of SM

1 For an introduction to e�ective �eld theories see ref. [82], which also covers precision elec-

troweak measurements.
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�elds:

ℒ = ℒSM +∑
d>4
∑
i

Ci ,d

Λd−4𝒪i ,d , (1.2)

where d is the operator mass dimension, Ci are Wilson coe�cients, and Λ is a

scale of new physics, where the e�ective �eld theory description breaks down.

�e set of operators is usually chosen by enforcing gauge invariance, validity of

electroweak precision measurements, baryon or lepton-number conservation,

and additional symmetries like the custodial symmetry.

Normally, EFT calculations are performed for operators of dimension-5 and -6

only: higher mass dimensions are suppressed by additional scales of Λ. Unless

a mechanism renders the Wilson coe�cients large, possibly proportional to Λ,

the operators of larger dimension should be negligible. Under mild assumptions,

the number of operators of dimension-5 and -6 for SM �elds is about 60 [83,

84]. Recently, also a classi�cation of dimension-7 operators has been done

[85], adding just about 20. Also, the renormalization of all one-loop dimension-

5/6 operators has been performed [86–88] lately, and was applied in one-loop

analyses for Higgs couplings [89–92].1

Likewise, in the context of the SM itself, e�ective �eld theories turned out to

be useful. For example, for energies below mW and mZ , theW and Z bosons
can be integrated out, resulting in the Fermi theory.�is allows focusing on the

relevant degrees of freedom for a given problem, makes the calculation o�en

easier, and, additionally, resums large logarithmic corrections that could spoil

a perturbative calculation in the full theory.�e distinct N f -�avor schemes in

QCD, with N f di�erent quark �avors, are also a prominent example. For the

modi�ed minimal subtraction (MS) renormalization scheme, heavy degrees of

freedom do not decouple by the renormalization group [104], and a ladder of N f -

�avor theories must be constructed and matched when one theory is switched at

a quark threshold to the next. For low energy hadronic physics, e�ective theories

of QCD, such as so�-collinear e�ective theory (SCET) or chiral perturbation

theory, were constructed.

We are mainly interested in e�ective theories involving the Higgs boson in

QCD here. Our study of the Higgs-gluon coupling in part III covers speci�cally

dimension-5 and -7 Higgs-gluon coupling operators that can augment, modify,

1 A vast amount of tree-level studies covering Higgs couplings through e�ective theories have

been published, of which some can be found in refs. [55, 93–103].



14 1 Elements of the Standard Model

or replace the mainly top-quark loop induced coupling in the SM. Deviations of

kinematical distributions from the SM shape show up if we perform scattering

processes at high enough energies. We showhow these operators can signi�cantly

deform, for example, the shape of the Higgs pT spectrum toward high pT. In
contrast to that, our study on top-mass e�ects in di�erential gluon fusion in

part II also covers those operators, but only implicitly through an asymptotic

expansion in 1⇑mt . We do not perform thematching of the asymptotic expansion

up to 1⇑m4t to the operators of dimension-5, -7 and -9 there, since we are only
interested in the validity of the leading dimension-5 operator at low energies.

In this context, it is su�cient for us to consider the e�ect of the SM matched

dimension-7 and dimension-9 operators altogether, and not distinctly for each

one.

Following our EFT study, a number of publications engaged in studies on higher

dimensional operators in H+jet production. A general problem for inclusive
quantities is that the Yukawa coupling term −κt

mt
v H(t̄R tL + h.c.) is degenerate

with κgC1 Hv G
a
µνGa,µν , where C1 is obtained by integrating out the SM top-quark.

Inclusive gluon fusion cross sections including both operators are functions

of the sum κg + κt . In other words, the limit of an in�nitely heavy top-quark

works very well: instead of κg = 0, κt = 1 we can use the approximation κg = 1,
κg = 0. Only through di�erential observables at high energies, the speci�cs of
the Higgs-gluon coupling can be resolved to disentangle κg and κt .

High pT jets can be used to probe for fermionic top-partners [105], or to li�
the mentioned κg + κt degeneracy in the SM [106]; emphasis on composite

Higgs and supersymmetric models has been given in ref. [107]. Analyses taking

into account decay, background and detector were presented in refs. [108, 109].

�e impact of renormalization group running and mixing on such analyses is

discussed in ref. [110]. Speci�cs to an additional second jet can be found in

ref. [111]. Additionally, impact of the triple gluon operator on measurements

of the Higgs-gluon coupling has been inspected [112]. Finally, our study of

dimension-5 and -7 operators has been extended toNLO forH+1-jet production
[113]. Matching of dimension-5 and -7 operators to models with heavy colored

scalars and heavy fermions has been done recently [114]. Of course, a reliable SM

prediction, including quark-mass e�ects at higher orders in the high pT regime,
is a necessary condition for precision studies [43, 115–118]; see also part II.
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1.3 quantum chromodynamics

Quantum chromodynamics gives rise to most of the visible mass of the universe.

�rough dimensional transmutation, the con�ning scale ΛQCD, setting the mass

scale of the observed hadron spectrum, is generated from a classically conformal

theory (in case of massless quarks). It is under active investigation if QCD is the

correct theory to describe the phase diagram of nuclear matter, and, as such,

allows for an explanation of cosmological phenomena. How does the transition

going from the hadronic con�ned phase to higher densities, as in neutron stars,

look like? Going toward the highest temperatures, as in the beginning of the

universe, we expect QCD to describe the phase of quark gluon plasma [119].

Lastly, QCD also serves as a prototype for other strongly coupled theories that

provide alternatives to the SMHiggs mechanism.

At hadron colliders, quantum chromodynamics is of paramount importance

for perturbative calculations.�ere, o�en QCD dominates the dynamics, while

electroweak e�ects are suppressed by an order of magnitude. Only through

the separation into long ranged physics, modeled though parton distribution

functions, and short ranged physics, modeled as hard scattering cross sections

of partons, are perturbative calculations possible [120, 121].�is property, called

factorization, is intuitively understood in Feynman’s partonmodel. Subsequently,

a�er the hard scattering, models for hadronization must be employed.

low energies . �e con�ning low energy regime of QCD, with hadrons as

the degrees of freedom, is traditionally described by e�ective �eld theories. A

discretization of Feynman’s path integral leads to the lattice formulation of QCD.

Using it became feasible through Moore’s law of computing power and com-

pelling algorithmic advances [122]. For example, the recent ab initio calculation

of the neutron-proton mass di�erence [123] and the prediction of the hadron

mass spectrum [122] point out the progress that has recently been made [14].

Also in the context of �avor physics, latticeQCD turns out to be an indispensable

formulation [124].

�rough QCD on the lattice, we can learn how mass is generated as binding

energy from the con�ning properties of quark and gluon �elds: QCD with N
massless quark �avors has an SU(N)L × SU(N)R ×U(1)V ×U(1)A symmetry.
�e chiral symmetry SU(N)L×SU(N)R is spontaneously broken to the diagonal
isospin subgroup SU(N)V through the quark/chiral-condensate ∐︀Ψ̄Ψ̃︀. If one
assumes that the three Goldstone bosons of this spontaneous symmetry breaking
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are the pions, they should be massless. It can be shown that

m2π ∐︀Ψ̄Ψ̃︀ = 0 (1.3)

holds formassless quarks, wheremπ is the pionmass [122, 125, 126]. Recent lattice

calculations found a non-vanishing value of ∐︀Ψ̄Ψ̃︀ [127–129], con�rming through
eq. (1.3) the pion as the Goldstone boson of the spontaneously broken chiral

symmetry. Adding small up- and down-quark masses, breaks the symmetry

explicitly and explains the small observed pion mass.

strong coupling αs. Determining the strong coupling αs at di�erent

scales, and evolving them to a common point for comparison, is an important

test that establishesQCD as the correct fundamental theory of strong interactions

on all scales. For example, an extraction of αs from low energy inputs, such as

hadron masses, provides a unique connection of the non-perturbative sector

with the high-energy perturbative regime. It answers questions such as: is

con�nement related to the increase of αs at low energy?

�e current world average of αs(mZ) = 0.1185(6) [130] has an error of about
half a percent. It limits the accuracy of all calculations involving QCD. Especially

the process of Higgs production through gluon fusion, which starts at𝒪(α2s )
at leading order and proceeds with large perturbative corrections at order α3s
and α4s , is sensitive to αs . Small errors on αs amplify and constitute a substantial

uncertainty of a few percent [131–133].

But the sensitivity of observables to αs can also be useful for its extraction

from measurements. One tries to �nd observables that, on the one hand, can

be measured with high precision, and, on the other hand, allow for precise

theoretical predictions that are sensitive to QCD corrections. For example, while

the hadronic decay width of the Z boson in e+e− collisions provides a clean
experimental signal, the αs corrections constitute only about 4% [134]. Other

used observables include the hadronic branching fraction of the τ lepton, and
jet rates and event shapes in e+ e− collisions [14, 134, 135]. For proton-proton
collisions, the ratio of the hadronic to leptonic branching ratios of bottomonium

decays [14, 134, 135], being proportional to α3s , or inclusive top-pair production
[136, 137] are used. In the context of PDFs, αs used to be determined together

with the parton spectrum in a global �t [133].

�e most precise determinations of αs involve calculations in lattice QCD [14,

124, 138–141]. Unlike for perturbative calculations, where an expansion in the
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renormalized coupling αs = g2⇑(4π) is done, on the lattice, the bare coupling g20
is an input. It is not a suitable expansion parameter, and a perturbative conversion

to the MS scheme is an obstacle. If we want to extract αs in the MS scheme at

the reference scale µ = mZ , we must compute a short distance quantity on the

lattice, and then build a bridge to the perturbativeMS scheme. For example, this

bridge can be constructed through lattice perturbation theory [142–145], where

g20 is replaced in favor of a renormalized g
2. Another way is to use a framework

where the computed short distance quantities on the lattice in the continuum

limit can be compared directly to continuum perturbation theory. A powerful

framework in that category provides the Schrödinger functional [144, 146–150].

Usually the Schrödinger functional is used with a step scaling scheme [151–153],

which is basically a non-perturbative �nite volume renormalization, where the

renormalized quantities and the gauge coupling run with the scale µ = 1⇑L,
where L is the spatial lattice size. �is allows one to use modest lattice sizes,
while reaching into the perturbative high energy regime.

A relatively new framework is the Yang-Mills gradient �ow [154–156], to be

introduced in depth in part IV.�e gradient �ow is described by a di�usion

equation of the gauge �elds that smooths the �elds for an increasing auxiliary

�owtime t.�e smoothing property makes it attractive for lattice calculations:
a high precision evaluation of quantities is possible. In fact, observables are

�nite for t > 0 due to the smearing, and only the normal UV renormalization is
required at the boundary t = 0.�e �owtime t sets a natural scale µ = 1⇑

⌋︂
8t.

Because the gradient �ow has a perturbative expansion in the continuum, it is an

ideal candidate to make contact between low-energy and high-energy QCD.

Among the wealth of applications discovered so far, gradient �ow allows for pre-

cise lattice scale setting [154, 157, 158], a de�nition of the renormalized coupling

[154, 159–162], and, more generally, renormalization of composite operators on

the lattice [154–156, 163, 164]1. In part IV we calculate the perturbative expansion

of a speci�c observable, the QCD action density, in the gradient �ow framework

to three loops (NNLO). One interesting application is then to extract αs(mZ),
using the observable as a running coupling de�nition and making contact with

the lattice result.2

1 See for example refs. [165–169] for speci�c applications: the small �owtime expansion is used

to relate local products of gradient �ow operators to the continuum energy-momentum tensor.

2 For a sneak preview, see �g. 12.4 at the end of part IV.



18 1 Elements of the Standard Model

1.4 perturbative calculations in qcd

For perturbative calculations of higher order, mainly all complications arise

through the appearance of in�nities that require a regularization scheme, such

as the commonly used dimensional regularization [170]. Accompanying it, the

preferred renormalization scheme isMS [171, 172]. Although four-dimensional

formulations were developed [173, 174], so far none showed a signi�cant decrease

in the required computational, algebraic or analytic e�ort.

In�nities are categorized by their UV or infrared (IR) origin. UV divergences

are absorbed into a rede�nition of the parameters by renormalization. IR di-

vergences, on the other hand, are due to a semantic problem.�e de�nition of

the scattering matrix assumes the existence of well de�ned asymptotic particle

states. In the presence of massless particles, the energy gap between one particle

states and the multi particle continuum vanishes, leading to collinear and in-

frared/so� divergences, commonly both referred to as IR divergences. For QCD,

the asymptotic states are, additionally, bound states of quarks and gluons.

A mechanism to handle the IR divergences consistently and well-de�ned must

be provided, leading to infrared safe observables. In practice, the cross section
method of Kinoshita, Lee and Nauenberg [175–178] is employed. IR divergences

from virtual corrections cancel against those from degenerate initial and �nal

states (real emission) from the phase-space integration. To regularize them in

calculations, usually also the dimensional regularization is chosen [179]. In

principle εIR and εUV should be chosen di�erently, since they require di�erent
signs to lead to convergent integrals: D = 4 ∓ 2εUV,IR. More conveniently, εIR =
εUV ≡ ε is chosen, which, for example, leads to the famous vanishing scaleless
integrals, where IR and UV poles are exactly equal and opposite to each other.

�e IR divergences in virtual corrections and real emission contributions stem

from di�erent phase spaces, which poses a problem for higher order perturbative

calculations. On the one hand, we have the regularized infrared poles from the

loop integrals of the virtual corrections. On the other hand, the regularized

counter-poles from the real emission only emerge a�er the integration over the

�nal state phase space. By construction of a counter-term that mimics, say, the

divergent behavior of the real contribution singularity, we can subtract it from

the real contribution to make it �nite. �en we integrate it over the singular

phase space region, and add it back to the virtual contribution. Cancellations

between real emission and virtual corrections lead to large logarithms of the

involved scales.�ey must be resummed to all orders for reliable predictions.
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A common approach for NLO calculations is the process independent Catani-

Seymour dipole subtraction [180, 181].1 �is algorithm has been used for our

NLO calculation of di�erential top-mass e�ects in gluon fusion in refs. [43, 115,

185, 186], see part II. Among other methods are phase-space slicing [187–190]

and Frixione-Kunszt-Signer (FKS) subtraction [191, 192]. For NNLO cross sec-

tions, many approaches have been developed meanwhile [193–199]2, accounting

for the newly occurring doubly unresolved singularities. Many of these meth-

ods were speci�cally developed toward di�erential NNLOHiggs cross sections,

see chapter 2. Considering that, neglecting PDFs, exclusive observables with

complicated jet functions and algorithms require a numerical evaluation, fully

numerical methods [193–195, 198], where no analytic cancellation of IR poles

is necessary, are particularly attractive. In the simplest case, one can use sector

decomposition [209, 210], a well known approach for loop integrations, to extract

the singularities from the phase-space integrals [193, 195, 210]. By combining

this approach with ideas from FKS subtraction, a general subtraction method

has been constructed [198].

Collinear singularities, caused by on-shell massless initial states, are handled

by a renormalization of the bare PDFs.3 Similarly to the scale µ ≡ µR in UV-
renormalization, this renormalization is performed at a scale µF , and the evo-
lution is governed by the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP)

equations [212–215].

Let us �nish this excursion on the calculation of hadronic cross sections by

emphasizing that the separation of hard, high energy, and so�, con�ned QCD

is guaranteed by factorization theorems [120, 121, 211]: For scattered hadrons A
and B, the hadronic cross section can be written in terms of a convolution of
parton distribution functions f and the partonic cross section σ̂i j as follows:

dσ H =∑
i , j

1

∫
0

dξi
1

∫
0

dξ j dσ̂i j (ξi ξ js, µR , µF) fi ,A(ξi ,µF) f j,B(ξ j ,µF)+p.s.c. ,

where the sum is over all parton �avors i , j, and ξi and ξ j represent hadron
momentum fractions, constituting the center of mass energy

⌋︂
s. ‘p.s.c.’ denotes

corrections that are suppressed by a power of
⌋︂
s, when

⌋︂
s is large enough.

1 See also refs. [182–184], where this approach has been used before, for speci�c processes.

2 Work toward a completely general and process independent formulation can be found in

refs. [200–208].

3 See section ‘�e IR point-of-view’ of ref. [211] why in the actual theory only UV divergences

occur that are related by scaleless integrals to collinear IR divergences.



20 1 Elements of the Standard Model

Loop integrations

Loop integrations form the other big part in higher order perturbative calcu-

lations, next to the aforementioned necessity for subtraction schemes in cross

section due to IR divergences.�ey are required to calculate virtual corrections

for the hard partonic cross section σ̂ . Modern techniques are summarized and
reviewed in ref. [216]. Some of them are referred to in the following parts.�e

ultimate goal is to derive a Laurent expansion in the dimensional regulator ε.
Before that, one usually tries to minimize the number of integrals, by solving a

linear system of equations generated by integration by parts (IBP) and Lorentz

invariance equations [217–219]. Among the most powerful methods to solve

the integrals are Mellin-Barnes (MB) representations, di�erential equations and

dimensional recurrence relations.�e latter two rely on the IBP reduction to a set

of master integrals. Of special importance in this thesis is sector decomposition

[209, 210]. It is an algorithm to construct the Laurent expansion of Feynman

integrals with arbitrary kinematics, and is, in its core, again a subtractionmethod.

An implementation in a computer program is straightforward. Since we use sec-

tor decomposition (SD) implemented in FIESTA [220] for our 3-loop calculation
in part IV, we shortly review this method here.

Sector decomposition decomposes a D = 4 − 2ε → 4 divergent integral into
sectors, such that each of them only contains singularities in a factorized form,

to be explained below. Without loss of generality, we assume that the integration

domain is over a hypercube, and singularities can only occur for integration

variables approaching zero. Otherwise, we can apply simple transformations

to ful�ll this requirement. A factorized singularity in the variable x exists, if,
�rstly, the integrand factors into x, raised to a power depending linearly on ε,
times a remainder f (x). Secondly, the Taylor expansion of f about zero in x,
when subtracted from f (x), must render the integral �nite. In this case the
subtraction is done, and the expanded term with the isolated singularity in x is
added back as a new integral.�e latter integration over x is trivial and delivers



1.4 Perturbative calculations in QCD 21

poles in ε.�is is illustrated in the following example:

I =
1

∫
0

dx x−1+ε f (x)

=
1

∫
0

dx x−1+ε( f (x) − f (0)) +
1

∫
0

dx x−1+ε f (0)

=
1

∫
0

dx x−1+ε( f (x) − f (0)) + 1
ε
f (0) .

Note that additional integrations are una�ected and understood to be included

in f . In case of multiple factorized singularities, they are resolved one by one.
Both parts, the remaining integral and f (0), are now �nite by construction and
can be expanded in ε.

In contrast to that, a simple overlapping singularity might look like

1

∬
0

dx dy (x + y)−2+ε ≡
1

∬
0

dx dy P−D⇑2 .

Generally, the integrand consists of a complicated polynomial P, raised to the
power of a linear function in D.�rough a subset of variables approaching zero,
P itself can vanish and singularities occur for D → 4.

Recursive strategies to decompose overlapping singularities step in at this point.1

�ey choose a subset M = {i1, . . . ,ik} ⊂ {1, . . . ,n} of the integration vari-
ables x1, . . . ,xn, for which the integral diverges when the simultaneous limit
xi1 , . . . xik → 0 is performed.�e unit hypercube 0 ≤ xi ≤ 1 is then decomposed
into k sectors Sl , l = 1, . . . ,k, where

Sl = {(x1, . . . ,xn) ⋃︀ xi ≤ xi l∀i ∈ M} ,

and the new variables are introduced as follows:

xi = x′i∀i ∉ M ,
xi l = x′i l ,

xir = x′i l x
′
ir∀ir ∈ M , r ≠ l .

1 We follow ref. [216], where further details and subtleties are discussed.



22 1 Elements of the Standard Model

�e integration domain in the new variables x′i is again a hypercube for each
sector, and, by construction, xi l factorizes, such that the subtraction method
above can be applied. For each of the sectors, the method is applied recursively

until no more subset can be chosen, that is, until a constant term (kinematic

invariants) in the polynomial P appears.�e le�over integrals are expanded in
ε, and the coe�cients in ε can be integrated numerically a�er setting numeric
values for the kinematic invariants.�e numerical evaluation of these integrals

turns out to be challenging, because, through the subtractions, they contain

integrable singularities, which require high precision arithmetics and/or special

handling.

From the algorithm of SD we see that, in principle, arbitrarily high loop integra-

tions can be performed. Since it can lead to plenty sectors for a single integral,

non-linear transformations have been developed [221]. �ey transform over-

lapping singularities into factorized singularities – without a decomposition

into di�erent sectors.�is method has not been shown to be fully algorithmic

though, and instead relies on some heuristics and manual testing.�erefore, it

is also unclear if with this method any Feynman integral can be transformed to

a single one with only factorized singularities.



Part II

TOP MASS EFFECTS IN DIFFERENTIAL AND EXCLUSIVE

HIGGS PRODUCTION THROUGH GLUON FUSION

�is part is based on our publication ‘Finite top-mass e�ects in

gluon-induced Higgs production with a jet-veto at NNLO’ [115],

an extension of our preceding study ‘Top-mass e�ects in di�eren-

tial Higgs production through gluon fusion at order α4s ’ [43]. We
estimate and predict �nite top mass e�ects through an asymptotic

expansion in 1⇑mn
t up to n = 4 for jet di�erential and inclusive

Higgs+jet cross sections at NLO and the jet-vetoed cross section at

NNLO. We �nd e�ects of at most a few percent for H + jet produc-
tion as long as the jet pT stays belowmt , and sub-percent e�ects for

the jet-veto.





2
INTRODUCTION TO GLUON FUSION

Since July 2012 no publication, no summary and no introduction about the

Higgs boson1 may miss the citation of its discovery publications [17, 18]. �e

publications themselves are reluctant calling it the Higgs boson in the title,

and prefer calling it ‘a new boson of mass 125GeV’, even though the reported

signi�cances for a SMHiggs boson are about six standard deviations. Meanwhile,

three years later, at the time of writing, the name Higgs boson predominates

publications.

�e second run of the LHC is starting, and all data available from ‘Run 1’ suggest

no deviations from a SMHiggs behavior [58–62].�e Higgs mass mH has been

obtained to a precision of two per mill to mH = 125.09(24)GeV [228]. In the
following, we will talk about the Higgs boson, even if all the work also applies to

a Higgs-like particle, which it is in any case. Deviations can be quanti�ed model
independently by e�ective theories.2

Of course, all the experimental success would not have been possible without

the necessary Standard Model Higgs predictions, while, likewise, most theorists

need experiments and their accompanying analyses to justify their work.�e

basis of all these predictions at the LHC are cross sections. For example, the total

Higgs production cross section is an important test of electroweak symmetry

breaking in the Standard Model. But in order to improve the signal signi�cance

in analyses and identify detailed Higgs kinematics, Higgs candidate events are

categorized for example in di�erent pT (transverse momentum), y (rapidity) or
jet bins depending on the search channel, that is, depending onHiggs production

and decay mode and background processes.

Since the Higgs boson discovery, three years have passed, and analyses have

1 �e Higgs boson is also, more precisely, called the Brout-Englert- [222] Higgs- [223, 224]

Guralnik-Hagen-Kibble [225] -boson; see also Anderson, Nambu [226, 227].

2 In the next part we will introduce an e�ective theory analysis of the important Higgs-gluon

coupling.

25
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fully accounted for the complete LHC Run 1 data. Su�cient signi�cance has

been reached to claim an observation alone in the channels H → γγ [229, 230],
H → ZZ → 4l [229, 231] and H →W+W− → l+νl−ν̄ [232, 233]. To disentangle
signal and background processes, phase space cuts are applied that enhance the

signal regions. For example, in the searchmodeH →W+W− → l+νl−ν̄ the huge
QCD background due to pp → t t̄ and pp →W+W− is reduced using a veto cut

(pjet
T
< pjet

T,veto
≃ 20–30GeV) on jets [234, 235]. A good understanding of Higgs

di�erential distributions at low pT is therefore important.�ree handbooks on
inclusive and di�erential Higgs cross sections have been published [236–238],

summarizing all theory e�ort.

�e following two sections give a detailed historic overview to single Higgs

production through gluon fusion in the SM from the beginning LO calculations

to the latest results at the time of writing. �ey will point out one speci�c

uncertainty for gluon fusion: the common use of an e�ective theory where

the top-quark is integrated out, helping to calculate necessary higher order

perturbative corrections. In this work, based on ref. [115] and extending ref. [43],

we estimate �nite top-mass e�ects through an asymptotic expansion in 1⇑m2t
for di�erential H + jet cross sections at NLO and the jet-veto at NNLO. We also
consider the inclusive jet cross section. For the inclusive jet cross section and jet

pT distributions we not just give estimates, but present improved predictions,
accounting for a �nite top-mass. In the next chapter we will elaborate on the

calculation itself. In chapter 4 we present our results and discuss them.

2.1 gluon fusion from the beginning

In the Standard Model, for proton-proton colliders, the main production mecha-

nism for the Higgs boson is gluon fusion. It is already at leading order a one-loop

process, where two gluons couple through a quark loop to the Higgs boson, see

�g. 2.1. Although all quark �avors contribute to the quark loop, the top-quark

with its large Yukawa coupling is dominant. Naively, the bottom quark contri-

bution is suppressed with respect to the top quark by a factor of mb⇑mt , a few

percent. Other production channels of the Higgs boson are suppressed by at

least an order of magnitude, but allow for di�erent analyses when considering

the whole scattering �nal state con�guration. �ey can also be enhanced in

extended models. For example, the highly PDF-suppressed tree level production

of the Higgs boson via b-quarks can grow in models with two Higgs doublets,
depending on the ratio of the two uncharged scalar Higgs vacuum expectation



2.1 Gluon fusion from the beginning 27

values. We will only consider gluon fusion with a top-quark loop here.

�e �rst studies on gluon fusion, calculating the total cross section by the one

loop diagram(s) in �g. 2.1, and acknowledging it as the largest Higgs production

process for pp collisions, have been performed in the seventies [239, 240] (also
[241, 242]). A remarkable fact of this process is that in the limit of a very heavy

quark (mt → ∞), the one-loop diagram can be approximated by an e�ective
vertex described by HGa

µνGµν,a, where H is the scalar Higgs �eld and Gµν,a is

the gluon �eld strength tensor. In particular, this vertex is independent of the

heavy quark mass, and one is then able to count the number of heavy quarks

in the loop through a measurement of this process [239, 240], since each heavy

quark will contribute the same amount to the total cross section. Kinematic

one-jet distributions at LO were studied approximately ten years later [243, 244].

For those, as well as for the inclusive NLO cross section, initial states with quarks

open up.�e quark-gluon initiated channel is usually suppressed by a factor of

∼ 10, while the purely quark initiated channel is at the percent level.

Radiative corrections to the total cross section were �rst performed in the heavy

top limit [245, 246], being valid for Higgs masses and energy scales roughly less

than two times the top-quark mass.�e heavy top limit (HTL) e�ective theory is

obtained from the SM by integrating out the top quark, resulting in an e�ective

theory described by Higgs-gluon vertices [247–249]:

ℒYuk. = −
H
v
mtΨtΨt ↝ ℒe�. = −

H
v
C1Ga

µνG
µν,a
,

where v is the Higgs vacuum expectation value, mt is the top-quark mass and

Ψt the top-quark Dirac-�eld. �e Wilson coe�cient C1 can be obtained per-
turbatively through a matching procedure, and currently known to four loop

precision [250–254].

�e large size of the corrections (of order 100%, depending on the back then

Figure 2.1: Feynman diagram for gluon fusion at LO.



28 2 Introduction to gluon fusion

unknown Higgs mass and collider energy) was emphasized, as well as the sizable

renormalization scale dependence. With the numerical calculation of the NLO

cross section, including a �nite top quark mass [255]1, the results in the HTL

were veri�ed, con�rming that the HTL works su�ciently well even for Higgs

masses above the top-quark threshold: At this point in time the gluon luminosity

contributed the largest uncertainty, such that even top-mass e�ects of less than

15% for mH ≲ 700GeV were considered excellent. It also became apparent that
the full NLO cross section is very well approximated by factoring out the LO one

from the NLO HTL one, which means that the mass dependence of the cross

section stays the same for higher order corrections:

σNLO(mt) ≃
σLO(mt)

σLO(mt →∞)σNLO(mt →∞) . (2.1)

Additionally to one-jet distributions, two-jet distributions were studied at LO,

�rst in the HTL [261, 262], then with a �nite top-mass [263, 264]. It was found

that the limit works well even for partonic center of mass energies
⌋︂
ŝ > 2mt ,

provided that mH ≤ mt and transverse momenta pt ≲ mt .

�e reason that the HTL works so well, especially for the total cross section,

is due to the large gluon luminosity at small proton momentum fractions. To

leading order, the Higgs is produced without any transverse momentum through

recoiling partons/jets2, where the partonic cross section is proportional to δ(ŝ −
m2H). Only at higher orders the Higgs boson can recoil against emitted QCD
radiation, which is then, due to the PDFs, predominantly so�. Higher energies are

PDF suppressed, and all scales remain su�ciently below the top-quark threshold

2mt .

Gluon fusion has two important thresholds [243]:�e �rst one occurs for mH =
2mt , when the top-quarks, coupling to the Higgs, can become real.�is is, of

course, only relevant if we consider the cross section as a function of mH .�e

second threshold being of relevancy, occurs for partonic center of mass energies

of
⌋︂
ŝ = 2mt , when in the NLO box graph the top-quarks can become real.�is

threshold can be translated into a threshold in the pT distribution, depending

1 See also refs. [256, 257]; and ref. [258] for subleading terms in the HTL. Later an analytic form

of the NLO cross section has been obtained [259, 260].

2 Neglecting the small intrinsic transverse momentums the partons have.
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on rapidity; for y = 0 it is [265]:

pth.T = 4m
2
t −m2H
4mt

.

Note that this threshold does not exist in the heavy top limit. We can therefore

expect the heavy top limit to break down in pT distributions for pT ≳ mt .

A peculiarity for transverse momentum spectra, including the Higgs transverse

momentum distribution dσ ⇑dp2T , is a 1⇑p2T divergence for pT → 0 for the gluon-
gluon and quark-gluon initiated channels.1 At small pT, initial-state radiation
diagrams contribute so� and collinear singularities. For the pT-integrated total
inclusive cross section this is canceled by the virtual corrections at pT = 0, which
do not a�ect the pT distribution, though.

Furthermore, for pT → 0, the di�erential cross section dσ ⇑dp2T contains large
logarithms log(m2H⇑p2T).�e convergence of the perturbative series in this re-
gion is not just determined by αs alone, but by factors αs log

2(m2H⇑p2T) close to or
beyond a numerical value of one, meaning that higher order perturbative contri-

butions are not suppressed. For these facts, it is necessary to take multiple parton

emission over all orders into account, called resummation, most importantly for

pT ≪ mH .
2 Resummation was originally worked out for the Drell-Yan process,

and can be performed in Fourier transformed pT space (b-space) [268–271] or
directly in pT space [272, 273]. It can also be done in the framework of SCET
[274–276]3, recently applied to Higgs production [279–285]. In general, terms

of the following order are generated, with m ≤ 2n − 3 [286]:

1

p2
T

αn
s log

m(m2H⇑p2T) .

Taking into account only the term with m = 2n − 3 constitutes the leading
logarithmic (LL) approximation. Taking into account lower powers of logarithms

to all orders in αs constitutes next-to-LL (NLL), and so on. �e �xed order

part is additionally identi�ed by the usual LO, NLO labels. For the Higgs pT
distribution, �rst resummations have been performed in the HTL [286–288] and

1 �e quark-antiquark initiated channel for H + g production proceeds only through an s-
channel gluon, and is thus not singular at LO for pT → 0.

2 Parton showers [266] provide an alternative semi-classical approach, o�en used in Monte-

Carlo event generators, but are problematic to combine with higher �xed order perturbative

results. For Higgs production, a comparison with resummation has been given in ref. [267].

3 For a recent introductions to resummation and SCET see ref. [277] and ref. [278].
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with a �nite top-mass [265] in an approximation where only the �rst leading

logarithms have been accounted for in the LO cross section. Along that, also

subleading logarithms [289, 290] and resummation for logarithms in the NLO

pT distribution have been considered [291–298]. Resummation of so� gluon
radiation in the HTL was also used to estimate the NNLO corrections to the total

cross section [251].

A�er the calculation of the one loop HTL real emission [299] and the two loop

HTL virtual amplitude [300], having known the double real emission for some

time [261], there is still a lot of work to end up with a hadronic cross section: all

these terms in di�erent phase spaces need to be combined, requiring for example

higher order parton splitting functions. So�-virtual approximations to theNNLO

HTL cross section have been obtained [301, 302] to estimateNNLO contributions.

Finally, the NNLO HTL cross section has been calculated [303–305], showing

that the perturbative corrections add another 20− 30%1.�e dependence on the
renormalization and factorization scales is with 15−20% still large. Additionally,
these ingredients allowed the calculation of H+jet di�erential distributions to
NLO in the HTL, for example pT and y distributions [308–310].2 �e Higgs+jet
pT distribution has NLO corrections of order 50–60%, with a remaining scale
uncertainty of about 20%. Two-jet observables show the same magnitudes of

corrections and scale uncertainties [315, 316].

Note that in ref. [303] the NNLO HTL total inclusive cross section has been

obtained by expanding the partonic cross section σ̂ in powers of (1 − z) around
the so� limit, where z = m2H⇑ŝ. A�er a few terms (𝒪(10)) the series can be
truncated, being very close to the exact result. Taking just the �rst or second

terms does not provide a satisfactory approximation.

W
e have reached the early beginning of the 21st century in our review. Tech-

niques to solve integration by parts (IBP) [217] equation systems algorith-

mically [218, 219], Mellin-Barnes representations [317–319], di�erential equations

[219, 320, 321] and sector decomposition [209, 210] have since then been estab-

lished, and allow tackling multi-loop integrations.3

�e gluon fusion cross section had, and still has, uncertainties of various sources,

which have been surmounted and discussed in the last decade: PDF + αs [131,

1 Reasoning for the large corrections has later been given in refs. [306, 307].

2 See also ref. [311] for an approx. beyond the HTL. Additional resummation e�ects have been

considered in refs. [284, 312–314].

3 See for example ref. [216] for a recent and comprehensive overview.
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132], perturbative truncation a�er NNLO, HTL (see below), electroweak e�ects

[322–328] and (bottom-) quark mass e�ects [116, 257, 328–333]. So� gluon

emission can be resummed to all orders in the HTL up to next-to-NNLL (N3LL)

accuracy [334–340]. Additionally, resummation is required in certain regions of

kinematic distributions. For example, the resummation of logarithmic terms for

small pT has been performed up to NNLL [279–283, 285, 341–346], also relying
on the heavy top limit. Resummation becomes especially important for the

jet-vetoed cross section [347–354], which has been obtained through NNLO

so far [355]. Besides this, other contributions for various regions have been

considered, like for example contributions away from threshold z ≪ 1 in the

HTL [356]. Paying special attention to �nite top-mass e�ects, we can say that

this uncertainty needs updated estimates to match the latest perturbative level.

Speci�cally, the NNLO inclusive Higgs cross section needs such an estimate, as

well as exclusive quantities like di�erential kinematic distributions in H + jet
production at NLO and the jet-vetoed cross section at NNLO.

A calculation of theNNLO total cross sectionwith a �nite top-quarkmass, being a

three loop calculation, is even by todays means a tough project. Instead, the total

cross section has been obtained [357–360] in an asymptotic expansion [361, 362]

in 1⇑m2t . Although high partonic energy ŝ contributions to the cross section are
PDF suppressed, the 1⇑m2t expansion breaks down at some point:�e increasing
negative mass-dimension in 1⇑mk

t , k = 0,2,4, . . ., must be compensated with
a positive mass-dimension in the numerator, among it terms like

⌋︂
ŝ
k
. �is

problem has been solved by matching with the exact (in mt) large ŝ limit of the
NNLO cross section [357, 363–366].�e size of these �nite mass e�ects, when

one factors out the LOmass dependence, is then less than a percent for a wide

range of Higgs masses.�is means that a very good approximation to higher

order cross sections is obtained by taking the LO cross section, and multiplying

it by K-factors in the HTL; the mass dependence is well described at LO.

Let us emphasize again that a crucial ingredient in this �nite mass e�ects esti-

mation was a matching to the high energy limit, since otherwise the asymptotic

expansion in 1⇑mk
t diverges quickly. We would also like to estimate mass e�ects

in less inclusive observables. What happens if we compute these cross sections

where speci�c kinematic regions are pronounced? As a rule of thumb, such

an asymptotic expansion will only work reliably if all scales remain su�ciently

below the top-quark mass mt . Up to our publication in 2012 [43], analyses for

di�erential quantities inH+n− jet+X production, with n = 0,1,2, going beyond
qualitative statements, have been performed only at LO [243, 244, 263, 264, 330,

331, 366], where an analytic treatment of the full top-quark mass dependence is
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possible. Also, all non-inclusive NLO calculations, as well as the resummation of

logarithmic terms for small pT , the jet-vetoed cross section, and, �nally, fully
exclusive NNLO partonic Monte Carlo programs for Higgs production in gluon

fusion [194, 197, 367, 368] rely strongly on the heavy top limit.

2.2 recent advancements

In a previous study [43, 185, 186] we have estimated top-mass e�ects in di�erential

Higgs plus jet production at NLO through asymptotic expansions in 1⇑m2t . We
�nd that for the di�erential K-factor for Higgs pT and y distributions, the heavy-
top limit is valid at the 2 − 3% level for the rapidity distribution, and for the pT
distribution as long as the transverse momentum of the Higgs remains below

about 150GeV. In the next section we will recapitulate some of these results. Our

present work [115], to be presented in chapters 3 and 4, is an extension, where we

additionally consider top-mass e�ects of the NNLO jet-veto, NLO pT and y jet
distributions, and the inclusive NLO jet cross section. By not only considering

the �rst subleading terms of order 1⇑m2t , as done previously [43], but also taking
the 1⇑m4t terms into account, we can check the convergence of the asymptotic
expansion more reliably.

For the jet-vetoed cross section, we �nd that �nite top-quark e�ects, for real-

istic experimental values of the jet-veto cut pjet
Tveto

∼ 30GeV, are numerically
negligible at the few per mill level. Even for jet-veto cuts up to 600GeV they

remain below two percent.�e use of the e�ective theory for jet-vetoed cross

sections is thus fully justi�ed. For the inclusive jet cross section and kinematic jet

distributions we �nd similar mass e�ects of a few percent, as previously found for

the Higgs distributions [43]. Additionally, for pT ≲ 2mt in the jet pT distribution
and for a minimum jet pT of less than ∼ 100GeV in the inclusive jet production,
we can predict the exact top-mass e�ects, giving corrections of a few percent.

L
astly, to �nish this overview of gluon fusion in the Standard Model, we

shall mention the latest important �xed order1 results that appeared over

the last few years up to just the time of writing.�e N3LO HTL cross section has

been calculated [369] using a so� series expansion around Higgs production

threshold, as previously also used for the NNLO HTL cross section calculation

1 Recent resummation results up to NNLL+NNLO HTL for the Higgs pT distribution, and
N3LL+NNLO HTL for the total inclusive cross section have been cited in the previous section.
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[357, 365]. Corrections of order 2% are much smaller than anticipated through

earlier approximations, and the residual scale uncertainty is also at the few

percent level. Finally, the perturbative expansion of gluon fusion in its core

is under control, such that previously subleading uncertainties stand now on

equal footing, among it theHTL. Accompanying, theNNLOHTLHiggs+jet cross

section has been published [314, 370–373] with corrections of ∼ 20%with respect
to the NLO result and a remaining scale uncertainty of about 9%, being close to

the remaining PDF uncertainty of order 5%.

Just as along the path toward the total NNLO cross section, many approxima-

tions beyond NNLO were performed, where the use of the heavy top limit is

understood. For example, through the universality of radiative corrections due

to so� emissions, higher-order logarithmic so� terms can be resummed [334,

335, 374, 375] using three loop splitting functions [376, 377]. For a full calcula-

tion of the N3LO cross section, all contributions, from triple real radiation [378,

379] along two loop single real radiation [380–384] over one loop double real

[385–388] to three loop virtual corrections [389–391] are required. Ultraviolet

[392, 393] [394–397] and infrared counterterms [334, 335, 398] have also been

computed to complete the calculation.�ese contributions are partly available

only in threshold limit, or just beyond, and have been combined to provide the

�rst two terms of the N3LO cross section in the threshold expansion [399, 400].

Of course, further approximations have been made [401] until the ‘full’ result

was published. As in the case for the NNLO threshold expansion, taking just the

leading terms is not enough for a reasonable approximation. By taking𝒪(10)
terms, a close to exact result can be reproduced [357, 365, 369].

Finally, for NLO cross sections, common approaches to extract singularities

from real emission contributions are phase space slicing [187, 188] and dipole

subtraction [180, 182–184].Extended methods for NNLO cross sections had to be

developed to account for the newly occurring doubly unresolved singularities

[193, 195–199].1 �ese new methods found their application in fully di�erential

NNLOHiggs+jet production, for example.

1 See also the introductory section 1.4 for more details.
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2.3 mass effects in H + jet + X at (n)lo

In this section we give some initial considerations for �nite top-mass e�ects

at LO in Higgs+jet production, and recapitulate important NLO results of our

previous study [43]. We remind the reader that we only consider the dominant

Higgs production channel of gluon fusion, and that here, and in the following, all

Yukawa-couplings, except for the top-quark, are set to zero. As for perturbative

corrections, we only considerQCD corrections. At LO, the exact top-mass depen-

dencies of the cross sections are known and can be compared to the asymptotic

expansion in 1⇑m2t .

For the following �gure (2.2) we de�ne the inclusive Higgs+jet cross section

by integrating the Higgs pT-di�erential cross section from a lower value of
pcutT,H = 30GeV:

σ(pT,H > pcutT,H) = ∫
pT,H>pcutT,H

dpT,H
dσ
dpT,H

. (2.2)

Figure 2.2 shows this inclusive Higgs+jet cross section at LO in dependence

of the Higgs mass mH , for the initial-state partonic channels g g, gq and qq̄.
To see in how far we can expect the asymptotic expansion to work, the exact

mass dependence as well as the cross sections from the expansion truncated

at 1⇑m0t (HTL) and 1⇑m2t are displayed. �e kink at mH ≃ 2mt is due to the

top-quark threshold in the scattering amplitude, and the expansion is clearly not

able to reproduce this threshold e�ect. Up tomH ≲ mt the asymptotic expansion

provides a good approximation for the g g and gq channels.

�e 1⇑m2t expansion does not provide a convergent series for the purely quark
induced channels, as was already observed for the total inclusive cross section [43,

365, 402], particularly when no matching to the exact result in the high-energy

limit is applied. A reason, responsible for this, is that at LO the qq̄ channel consists
only of a single s-channel gluon diagram, while for the other partonic channels
also t-type diagrams contribute.1 Note though that the qq̄ channel is suppressed
by two orders of magnitude with respect to the g g and gq channels. For our
following analyses we neglect the purely quark induced channels. Kinematical

cuts could, in principle, enhance these channels and render theHTL unreliable.

1 See �g. 3.2 for examples of Feynman diagrams.



2.3 Mass effects in H + jet + X at (N)LO 35

mH/mt

σ L
O
(p

T
>

30
 G

eV
) 

[p
b]

10−5

10−4

10−3

10−2

10−1

100

101

pp @ 14 TeV
gg

gq

qq

1 2 3 4 5 6

Top−Expansion

O(1 mt
0)

+ O(1 mt
2)

exact mt dep.

Figure 2.2: Leading order inclusive Higgs+jet cross section as de�ned in eq. (2.2),
with pcutT,H = 30GeV, in dependence of mH , split by partonic initial-state channels

g g, gq, qq̄. Shown is the exact mt dependence and the asymptotic expansion up to

1⇑m2t . As in ref. [43, �g. 3].

We next consider the pT,H-di�erential distribution in �g. 2.3. Displayed are the
dominating partonic channels g g, gq and their sum g g + gq separately. Again
the exact top-mass dependence and the asymptotic expansion up to 1⇑m6t are
shown.

For the g g channel we now see the remarkable reproduction of the exact mt
dependence by the asymptotic expansion in more detail. Already the leading

term (HTL) is almost indistinguishable by eye from the exact mt curve. At some

expansion order though, 1⇑m6t for the g g channel, it breaks down.�is is due
to the fact that the expansion generates expressions of higher power in ŝ⇑m2t ,
p2T,H⇑m2t , etc. At some point, they become too large for their contribution at high
energy to be suppressed by the PDFs. In the gq channel this divergent behavior
is already visible a�er fewer expansion terms. Due to the dominance of the g g
channel, the overall result provides satisfactory estimates of the top-mass e�ects

below mt ≳ pT,H.

Stepping up from these quantitative considerations, we shall have a look at �g. 2.4:

It shows the K-factor, de�ned as the ratio of the NLO cross section to the LO
cross section, for the Higgs pT distribution, again split by initial-state partonic
channels. Any common normalizations will drop out in the K-factor; it is a
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Figure 2.3: Di�erential cross section dσ ⇑dpT,H at LO, split by partonic initial-state
channels g g, gq and in the sum, with exact mt dependence and truncations of the

asymptotic expansion at order 1⇑mk
t , k ∈ {0,2,4,6}. As in ref. [43, �g. 5].

measure for the perturbative corrections.�en, since we display the K-factor
in the asymptotic expansion for di�erent orders, from the HTL up to 1⇑m4t ,
we can evaluate how well the asymptotic expansion describes the perturbative

corrections.

If the higher terms in the asymptotic expansion of the K-factor do not deviate
much from the leading HTL, we can claim that the di�erential NLO cross section

is well described by taking the LO cross section with full top-mass dependence,

and reweighting it by the HTL K-factor – just as for the total cross section in
eq. (2.1). Finite top-mass e�ects can then be estimated by looking at the spread

of terms beyond the HTL. If it, additionally, turns out to be well-convergent, say,

1⇑m2t and 1⇑m4t match for some region, we can claim a prediction of the mass
e�ects.

Indeed, we observe that for pT ≲ mt , in all channels the asymptotic expansion is

well-convergent and deviates from theHTL atmost a few percent.�e conclusion

we draw [43] is therefore that the NLO HTL corrections provide an excellent
approximation to the ones in full theory. �e complete result is obtained by

taking the full LO prediction, and reweighting it by the NLO K-factor in theHTL.
We �nd validity at the 2 − 3% level for pT ≲ 150GeV by comparing the 1⇑m2t
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Figure 2.4: K-factor for the transverse momentum distribution of the Higgs, split
by partonic initial-state channels g g, gq and in the sum, with exactmt dependence

and truncations of the asymptotic expansion at order 1⇑mk
t , k ∈ {0,2,4}. As in

ref. [115, �g. 15], see also ref. [115, �g. 10].

and 1⇑m0t curves at 150GeV.1 Beyond pT ≳ mt , the curves clearly diverge, as

already expected from naive estimates of the expansion range validity, and we

cannot give quantitative or even qualitative estimates.

Note that there is a small region pT ≲ 120GeV for which the expansion con-
verges well. In principle, this allows us to predict the exact mass e�ects, and

not just set an upper error bound. We consider this region too small for further

consideration, since it would just give negligible sub-percent additions to the

HTL. In section 4.4 we will again consider a pT distribution, but instead of the
Higgs, of the hardest jet. It will turn out that the 1⇑m2t and 1⇑m4t curves match
very well, and allow us to predict mass e�ect additions of a few percent.

We close this section of LO considerations and previous results for Higgs dif-

1 For pT integrated quantities, for example for the rapidity distribution, estimates of similar
error size hold, see ref. [43].
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ferential quantities. In the next chapter the setup/program for our extended

study is summarized, stating the ingredients and methods to obtain the results.

In chapter 4 we present our results of top-mass e�ects in the NNLO jet-veto,

jet-inclusive cross sections and hardest jet di�erential distributions.�e chapter

starts with a list of all input parameters and notations. Finally, in chapter 5 we

summarize.



3
CALCULATION AND SETUP

Our setup consists, �rstly, of a program for H + jet production through gluon
fusion at NLO QCD in an asymptotic expansion in 1⇑m2t . It is based on our
program already used in ref. [43] but with added 1⇑m4t terms and the anti-
kT jet-algorithm1 [403]. Secondly, by combining it with ggh@nnlo2 [303, 357,
365], which can calculate the NNLO total inclusive cross section in an 1⇑m2t
expansion, we are able to compute the NNLO jet-vetoed (or 0-jet) cross section

by subtraction:

σNNLOveto ≡ σNNLO0-jet = σNNLOtot − σNLO’≥1jet , (3.1)

where the prime mark on the NLO jet cross section σNLO’≥1jet denotes a calculation

with NNLO PDFs, just as for the total inclusive NNLO cross section σNNLOtot . To

compute theNLO jet-veto with exact top-mass dependence, we used SusHi [404]
for the NLO total inclusive cross section.

(a)Gluon fusion at lead-
ing order.

(b) An NLO virtual cor-
rection.

(c) An NNLO virtual
correction.

Figure 3.1: Sample Feynman diagrams of virtual corrections for gluon fusion.

1 Since at most two jets can occur in our calculation, the anti-kT algorithm leads to the same
results as the kT and the Cambridge-Aachen algorithm.

2 http://particle.uni-wuppertal.de/harlander/software/ggh@nnlo/
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partonic contributions . At leading order, the jet-vetoed cross section

is identical to the total cross section, where only the partonic process g g → H
with no �nal state partons contributes, as depicted in �g. 3.1a. At next-to-leading

order, virtual corrections as in �g. 3.1b, as well as real emissions as in �gs. 3.2a

to 3.2c contribute. Additionally, for the NNLO cross section, two-loop real

emission diagrams like in �gs. 3.2d and 3.2e, and one-loop double emission

diagrams as in �g. 3.3 are necessary. A list of all partonic subprocesses required

at various loop orders for the totalNNLO cross section is given below. Remember

that already the LO process is loop-induced. q denotes a quark, q̄ the same �avor
anti-quark, and q′ a quark with a di�erent �avor from q.�e inclusion of the
charge conjugated processes goes without saying:

• g g → H to three loops (purely virtual), see �g. 3.1c,

• g g → gH, gq → qH, qq → gH to two loops (real-virtual), see �g. 3.2,

• g g → g gH, g g → qq̄H, gq → gqH, qq̄ → qq̄H, as well as qq̄ → g gH,
qq → qqH, qq′ → qq′H, q̄q′ → q̄q′H to one loop (double real), see
�g. 3.3 .

�e 1⇑mt expansion does not provide a convergent series for the purely quark

induced channels [43, 365, 402], particularly when no matching to the exact

result in the high-energy limit is applied. Since additionally their contribution is

numerically negligible for our observables considered, we disregard them from

our calculation and further considerations.

Integrals stemming from two-loop box-type diagrams, see �g. 3.2d, and three-

loop triangle type, see �g. 3.1c, with massless and massive (mass mt) internal

and one massive external line (mass mH) currently cannot be calculated with

enough numerical e�ciency to be combined in a complete NNLO calculation.

Instead, theHTL is commonly used to reduce the loop order for all contributions

by one. For a complete NLO calculation of Higgs+jet production, the purely

virtual contributions to three loops are not required.

To estimate the e�ects of a �nite top-quark mass, we use the amplitudes calcu-

lated in refs. [357, 365]. �ey were obtained from the full NNLO amplitudes

by automatic asymptotic expansions [361, 362, 405–407], assuming that mt is

larger than all other scales in the process.�is reduces occurring integrals to

convolutions of simpler integrals of fewer scales and/or lower number of loops;

see ref. [365, �g. 1] for an actual diagrammatic example. We combined these

contributions to a numerical program for fully di�erential NLO H+jet cross
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(a) (b)
(c)

(d) (e)

Figure 3.2: Sample real emission diagrams (a,b,c) and real-virtual corrections (d,e)
for gluon fusion.

(a) (b)

(c) (d)

Figure 3.3: Sample double real emission diagrams for gluon fusion.
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sections using Catani-Seymour dipole subtraction terms [180]. It includes the

subleading terms 1⇑m2t and 1⇑m4t to the leading HTL terms. Renormalization
has been performed in theMS scheme for αs , and in the on-shell scheme for the

top-quark mass and the gluon �eld.

To validate the correctness of our setup and results, we have performed a number

of checks:

• �e amplitudes for the 1⇑mn
t terms have been checked previously by the

agreement of the inclusive cross section between ref. [357] and ref. [358].

• �e Higgs pT distribution in the HTL agrees [43] with the non-resummed
part of the program HqT [342, 343, 346].

• We found agreement at the sub-percent level for theNNLOHTL jet-vetoed

cross section by comparing with the program HNNLO [116, 197, 408].

• We veri�ed the independence of our cross sections on the α-parameter
[409, 410], which restricts the phase space of the Catani-Seymour dipoles.
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RESULTS AND DISCUSSION

4.1 input parameters and notation

We study �nite top-mass e�ects on Higgs+jet and jet-vetoed cross sections in

gluon fusion at the LHC with a center of mass energy of 13 TeV.�e renorma-

lization scale µR and factorization scale µF are set to mH = 125.6GeV, unless
indicated otherwise. �e convolution of the partonic parts with PDFs is per-

formed with the set MSTW2008 68%CL at required orders [411]. It implies values
for the strong coupling of αs(mZ) = 0.139 at LO, αs(mZ) = 0.120 at NLO and
αs(mZ) = 0.117 at NNLO. �e top-quark mass is set to its on-shell value of
173.5 GeV [130].

Jets are de�ned using the anti-kT algorithm [403] with jet radius R = 0.5. Our
default choice of theminimum jet transversemomentum pjet

T,min
is 30GeV, unless

stated otherwise. We checked that with these choices our results generalize to

experimentally applied jet de�nitions, which usually imply pjet
T,min

≳ 25–30GeV
and a rapidity cut [233, 412].

notation �e cross sections at {LO,NLO,NNLO} ∋ X perturbative accuracy
in the asymptotic expansion, truncated at 1⇑mk

t , are denoted as

(︀σX⌋︀
1⇑mk

t
, k ∈ {0,2,4, . . .} ,

where k = 0 equals theHTL. If the square brackets are absent, the cross section is
not truncated in the 1⇑m2t -expansion, but is exact in the top-mass dependence.

All our results are reweighted by the exact top-mass dependence at LO, unless

stated otherwise:

(︀σX⌋︀
1⇑mk

t
≡ (︀σ̄X⌋︀

1⇑mk
t
⋅ σLO

(︀σ̄LO⌋︀
1⇑mk

t

, (4.1)

43
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where σ̄ refers to the unweighted cross section.

�e K-factor is de�ned by

KX
k (b) =

(︀σX(b)⌋︀
1⇑mk

t

(︀σLO(b)⌋︀
1⇑mk

t

, (4.2)

where the argument b is introduced to denote the kinematic variable over which
no integration is performed in distributions. We consider b = pjet

T,1
for the hardest

jet transverse momentum, and b = yjet1 for the hardest jet rapidity here. For
example,KNLO0 (pjet

T,1
) is theNLOK-factor in theHTL of the transversemomentum

distribution of the hardest jet.

4.2 jet-veto at nnlo

We �rst consider the NLO jet-veto, where the exact top-mass dependence is

available and can be compared to the asymptotic expansion. Despite having

found the Higgs boson with a mass of ≃ 125GeV, it can be instructive to look at
the veto in dependence of the Higgs mass: Firstly, it introduces another scale

that can be large with respect to the top-mass.�us, we can see if and in how far

this degrades the asymptotic expansion. Secondly, BSM theories usually require

additional heavier Higgs particles, extending our results to heavy BSMHiggs-like

scalars.

A main goal of our study for the di�erent jet quantities is to justify the use of the

HTL in calculations of similar or higher order, and give reliable error estimates

of the mass e�ects in the HTL. �e normalization of results to the HTL then

allows us to perform these estimations if the asymptotic expansion behaves

convergently and does not deviate much from theHTL result.�eHTL error can

then be estimated, by looking at the spread between the curves of the expansion,

or predicted for a well-convergent series.

Since we do not expect the asymptotic expansion to converge beyond scales≫
mt , we can, indeed, usually only assess validity of the HTL for the low and

intermediate range of scales, comparable in size to mt .

In �g. 4.1 we show the NLO jet-veto in dependence of the Higgs mass without

normalization (�g. 4.1a) and with normalization to the HTL (�g. 4.1b). For small
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values of mH , the mass e�ects are at the percent level. While the 1⇑m2t curve
remains close to the full result over the whole mass range, the 1⇑m4t corrections
reduce the cross section signi�cantly toward larger mH . Assuming that the

full result was unknown, as in the forthcoming NNLO results, we could give

a reasonable estimate of mass e�ects at most up to mH ≃ 200GeV, where the
expansion clearly starts to diverge.�e mass e�ects would then be conservatively

estimated by the spread between the curves to ≃ 5%. Fortunately, all orders of
the 1⇑mt expansion agree very well at mH ≃ 125GeV.

We now have a closer look at the jet-veto for a Higgs boson mass of mH =
125.6GeV in �g. 4.2, in dependence of the jet-veto cut pjet

T,veto
. Again the absolute

results, see �g. 4.2a, and the normalization to the HTL, see �g. 4.2b, are shown.

�e horizontal lines denote the total cross sections in the asymptotic expansion,

corresponding to pjet
T,veto

→∞. For cuts of order 30GeV we would estimate mass
e�ects to at most half a percent. For large cuts of up to 600GeV, the worst case

estimate of top-mass e�ects from the asymptotic expansion is still just ≃ 2.5%.
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Figure 4.1: Higgs+0-jet cross section at NLO including terms up to 1⇑m4t as a
function of mH for p

jet

T,veto
= 30GeV. As in ref. [115, �g. 4].
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Figure 4.2: Higgs+0-jet cross section at NLO including terms up to 1⇑m4t as a
function of pjet

T,veto
. As in ref. [115, �g. 5].

�e success of the HTL for the jet-vetoed cross section is, �rstly, set by the fact

that only low energy contributions remain, analogously as for the NNLO case in

eq. (3.1):

σNLOveto ≡ σNLO0-jet = σNLOtot − σLO’≥1 jet ,

where LO’ denotes the convolution with NLO PDFs. �e high pT/energy tail
included in the total inclusive cross section is subtracted accurately. Secondly,

for larger veto scales, the high pT jets are suppressed by the PDFs. However, the
latter PDF suppression cannot �x the breakdown of the asymptotic expansion for

higher orders and large scales: the expansion up to 1⇑m4t is not a good description
of the full result at large pjet

T,veto
. Note that the total inclusive cross section in the

expansion up to 1⇑m4t also di�ers a lot from the lower order terms (horizontal
lines in �g. 4.2a) due to just this breakdown.

F
or the NNLO jet-vetoed cross section we can apply the same reasoning to

estimate mass e�ects. Consider �g. 4.3, where the vetoed cross section is

displayed in dependence of pjet
T,veto

, absolutely (�g. 4.3a) and normalized to the

HTL (�g. 4.3b). At �rst sight, these plot looks remarkably similar to theNLO ones

in �g. 4.2, just without the full result curve. One could be tempted to draw the

red full result line similarly in this plot. For small values of pjet
T,veto

≲ 200GeV the
spread between the curves is at most 0.5%. For pjet

T,veto
≲ 600GeV the deviation

between the curves stays below 2%.

�e mass dependence for the jet-vetoed cross section at NNLO is displayed in

�g. 4.4.�e asymptotic expansion shows nearly identical behavior as at NLO,
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Figure 4.3: Higgs+0-jet cross section at NNLO including terms up to 1⇑m4t as a
function of pjet

T,veto
. For reference, the horizontal lines indisplay the corresponding

total cross sections in the asymptotic expansion. As in ref. [115, �g. 8].

and one could be tempted to claim that the 1⇑m2t result matches the full result
up tomH ≃ 250GeV, see �g. 4.1b. Overcoming this temptation, we can only give
conservative estimates of ≃ 6–20% top-mass e�ects for mH = 200–300GeV.

In summary, for the SMHiggs boson with a mass of ≃ 125GeV, it is fully justi�ed
to trust the e�ective �eld theory approach to determine radiative corrections

to the jet-vetoed cross section at NNLO. Remember that in all cases our cross

sections were obtained by reweighting with the full LO result. Higher order

perturbative corrections to the full LO result are taken into account as a K-factor,
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Figure 4.4: Higgs+0-jet cross section at NNLO including terms up to 1⇑m4t as a
function of mH normalized to heavy-top limit (k = 0) for pjetT,veto = 30GeV. As in
ref. [115, �g. 9].
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which is either determined in the HTL or in higher orders of the asymptotic

expansion, see eq. (4.1).

We expect our results to directly generalize to resummed jet-vetoed cross sections

evaluated in the HTL, since the resummation of logarithms from so�-gluon

emission is predominantly described by process independent QCD e�ects.1

4.2.1 Other approximations

Reweighting the results obtained in the asymptotic expansion by the full LO one,

as in eq. (4.1), is not a unique approximation of the full result at NLO or NNLO.

Since we know the full top-mass dependence even at NLO, we can, for example,

reweight by using the full NLO result.2

For this, we consider the following approximations of the jet-vetoed cross section

at NNLO:

σNNLOveto,k (κi) ≡ σNLO’veto + κi ((︀σNNLOveto,k ⌋︀1⇑mk
t
− (︀σNLO’veto ⌋︀1⇑mk

t
) , (4.3)

where

κ0 = 1 , κ1 = σLOveto⇑(︀σLOveto⌋︀1⇑mk
t
= σLO⇑(︀σLO⌋︀

1⇑mk
t
,

κ2 = σNLO’veto ⇑(︀σNLO
′

veto ⌋︀
1⇑mk

t
,

and the primed quantities are calculated with NNLO PDFs. With this scheme

we always take into account the full NLO result and add the NNLO perturbative

corrections from the asymptotic expansion, reweighted by κ0,κ1 or κ2. Using κ2
corresponds to calculating the K-factor from NLO to NNLO in the asymptotic
expansion and multiplying it with the NLO cross section in the full theory.

In �g. 4.5 we use these approximations to study the mass e�ects on the jet-vetoed

cross section. For each approximation we normalize to the respective HTL result

k = 0. Compare this to �g. 4.3b, where the result was obtained by reweighting
the full LO result. For the approximations κ1 and κ2 the mass e�ects are even
smaller, at a few per mill level for the whole range up to cuts of 600GeV.�is,

1 See chapter 2 for references to such resummation studies, for example ref. [350].

2 We thank the referee of ref. [115] for this suggestion.
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and the observation that the mass e�ects for κ0 = 1 are larger, about 1.5–2%,
con�rm that the HTL works well to describe perturbative corrections as in a
K-factor, and not absolute cross sections.

4.3 inclusive higgs+jet at nlo

�e semi-inclusive Higgs+jet cross section is de�ned by the integral of dσ ⇑dpjet
T
,

where the integration is performed from a lower limit of pjet
T,min

to the maximum

kinematically possible value. Since in this case, compared to the jet-vetoed

cross section, the full high pT jet tail is explicitly included, we cannot expect the
asymptotic expansion to reliably estimate mass e�ects beyond some pjet

T,min
or

for higher orders in the asymptotic expansion.

Figure 4.6a compares the 1⇑m2t -expansion for the H+jet rate at LO to the exact
result. If we were to estimate the mass e�ects by looking at the spread between

the curves, including 1⇑m4t , we would already be forced to give an upper limit
on the mass e�ects of ≃ 27% for pjet

T,min
= 30GeV.
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�e same problem of the quickly diverging asymptotic expansion exists for the

total inclusive cross section (see horizontal lines in �g. 4.3a). In that case, a

matching to the high energy limit of the full theory was performed to control

the region
⌋︂
ŝ ≳ 2mt [357, 363–365]. �is matching was performed by the

construction of interpolation functions1 between the full result in the high energy

limit and the low energy result.�e latter is given in the 1⇑m2t -expansion and
simultaneously in a so� expansion in (1 − x) to a high order, where x = m2H⇑ŝ.
�e interpolation functions are constructed to smoothly and correctly interpolate

between the limits x → 0 and x → 1. Additionally, the expressions of the high
energy limit work as a higher order term in the so� expansion. It has been shown

that the error induced by the so� expansion and the interpolation procedure

are small. Similarly, a matching to the high pT limit would temper the power
e�ects of (p2T⇑m2t )k , k ∈ 0,2,4 contributions that are not damped su�ciently by
PDF suppression.

We will assume that the contribution of large ŝ to the cross section corresponds
also to large jet pT. �en, a construction of a matched H+jet cross section is
possible by subtracting the di�erence between the unmatched and the matched

total inclusive cross section. More precisely, we remove the di�erence between

the asymptotic expansion in each order and the matching to the full high energy

limit beyond large
⌋︂
ŝ ≳ 2mt .

As long as pjet
T,min

, the minimum jet transverse momentum, stays su�ciently

below the region where the interpolated result begins to deviate from the non

interpolated result in the asymptotic expansion, we expect that our procedure

works.�e high energy region gets ‘�xed’ as for the total inclusive cross section,

and the result is largely independent of the interpolation speci�cs due to PDF

suppression.

As a formula, this procedure is described at LO by

[︀σLO≥1-jet, matched⌉︀
1⇑mk

t
≡ [︀σLO≥1-jet, unmatched⌉︀

1⇑mk
t

− ([︀σNLO∗tot, unmatched⌉︀
1⇑mk

t
− [︀σNLO∗tot, matched⌉︀

1⇑mk
t
) , (4.4)

where the starred cross sections are calculated with LO PDFs. �e result is

shown in �g. 4.6b. Up to pjet
T,min

≃ 150GeV the asymptotic expansion is hardly

1 �e NLO and NNLO coe�cients in the perturbative expansion in αs are each interpolated by

a di�erent function due to the di�erent form of the high energy limits.
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Figure 4.6: Inclusive Higgs+jet cross section at LO including terms up to 1⇑mk
t as

a function of pjet
T,min

. As in ref. [115, �g. 6].

distinguishable from the full theory result. Beyond that, our assumptions seem

to become invalid, and the expansion diverges. For a closer look, we modi�ed

�g. 4.6b by normalizing all curves to the HTL of the unmatched result.�is is
shown in �g. 4.7.

�e overall agreement of the exact result with increasingly higher orders of the

1⇑m2t -expansion is remarkable. For p
jet

T,min
≲ 150GeV the spread between the

matched curves is less than 5%. An important observation has to be made with

respect to the unmatched HTL result:�e di�erence to the exact result varies

between 3–10% for pjet
T,veto

between 30–100GeV and can be read o� as the exact
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error that will be made by using the HTL. Using the matched HTL result, already

improves the error to 2–3% in that range. But, since the asymptotic expansion

converges so well in that region, we can use the 1⇑m2t or 1⇑m4t matched result to
predict the exact result with negligible uncertainty.

If the asymptotic expansion shows the same convergence behavior at NLO, the

same reasoning can be applied. For values of pjet
T,min

≃ 30GeV, as used in analyses,
one can then avoid the error due to an in�nite top-mass by using this matching

procedure and taking into account the subleading 1⇑m2t and 1⇑m4t terms.

At NLO the matching is described as

[︀σNLO≥1-jet, matched⌉︀
1⇑mk

t
≡ [︀σNLO≥1-jet, unmatched⌉︀

1⇑mk
t

− ([︀σNNLO∗tot, unmatched⌉︀
1⇑mk

t
− [︀σNNLO∗tot, matched⌉︀

1⇑mk
t
) , (4.5)

where the starred cross sections are calculated with NLO PDFs. �e result is

displayed in �g. 4.8a. For comparison, the unmatched result is shown in �g. 4.8b.

�e matching allows us, again, to make quantitative estimates, and not just give

qualitative upper limits from the spread of the quickly diverging asymptotic

expansion. Normalization of the matched result to the unmatched HTL results

are shown in �g. 4.9. Since the asymptotic expansion works so well for jets

with pjet
T,min

≲ 100GeV, we predict the exact result to be the 1⇑m2t or 1⇑m4t result
with negligible error. It is interesting to note that the unmatched HTL is closer

to our predicted exact result than to the matched HTL.
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Figure 4.8: Inclusive Higgs+jet cross section at NLO including terms up to 1⇑mk
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Figure 4.9: Same as �g. 4.8a, but normalized to the unmatched 1⇑m0t cross section
(dotted curve of �g. 4.8b). As in ref. [115, �g. 11].

Conclusively, we can justify the commonly used unmatched NLO HTL H+jet
cross sections at the level of 1–2% for pjet

T,min
≲ 100GeV.

4.4 distributions of the hardest jet at nlo

Lastly, we consider kinematical distributions of the hardest jet, namely the trans-

verse momentum and the rapidity spectra.1

Figure 4.10 shows the pT-dependent K-factors KNLOk (pjet
T,1
) of the cross sections

up to 1⇑mk=4
t , as de�ned in eq. (4.2), with variable scales

µR = µF =
⌉︂

m2H + (p
jet

T,1
)2 .

In the g g-channel, the K-factors di�er little in the asymptotic expansion.�us,
theQCD corrections are well described by theHTL.�is is di�erent for the quark-

gluon channel:�e QCD corrections are sensitive to the resolved Higgs-gluon

coupling once pjet
T,1
≳ 100GeV.�e expansion for this channel begins to diverge

at pjet
T,1

≃ 225GeV. Since the qg channel is only subleading with respect to g g,
we can estimate the mass e�ects to remain below 1.5% for pjet

T,1
≲ 150GeV.�ey

1 Distributions of the Higgs were considered in ref. [43].
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reach 6% at pjet
T,1
= 300GeV.

Comparing this result to the Higgs pT distribution in �g. 2.4, we notice that the
e�ects are of similar size, yet the asymptotic expansion works much better here.

It allows us to predict the mass e�ects, as shown in �g. 4.10, with sub-percent

error for pjet
T,1
by using the higher order 1⇑mt terms.

For the K-factor KNLOk (yjet1 ) of the rapidity distribution of the hardest jet, con-
sider �g. 4.11.�e bottom right plot shows how the asymptotic expansion evolves

when no further cuts, except for the jet algorithm itself, are used. In the central

region, the contributions of high energy jets spoil the convergence. Unfortu-

nately, it is not possible to determine a matched cross section by means of a

subtraction, similar as for the inclusive H+jet cross section in the previous sec-
tion 4.3. Instead, we introduce a cut pjet

T
< pjet

T,max
which removes the problematic

high-pT jets.�is cut is arbitrary, but, of course, modi�es the distribution. When
this cut is large enough, it should not a�ect the result noticeably, because due to

PDF/phase-space suppression, the main contribution comes from low pT jets.
Our reasoning is as follows: Since we know that the HTL is insensitive toward

power terms ∼ (ŝ⇑m2t )k=0 that can spoil the asymptotic expansion (k > 0) at
higher energies, we increase the pjet

T,max
cut until theHTL result no longer changes

visibly.�en we can estimate the �nite top-mass e�ects by looking at the higher
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order asymptotic expansion terms. For this purpose we choose three di�erent

values of pjet
T,max

: 200GeV, 400GeV and 600GeV, as in the top-le�, top-right

and bottom-le� plots in �g. 4.11. For pjet
T,max

= 600GeV we consider the cut large
enough to be, �rstly, representative for the uncut result, and, secondly, to give

a reasonable estimate of top-mass e�ects. In the central region (yjet1 < 2.5) the
e�ect is less than two percent, while in the forward region the e�ects are below

one percent.

In conclusion, the behavior of K-factors of the hardest jet distributions suggest
that QCD corrections can safely be calculated in the HTL. Finite top-mass e�ects

stay below 1.5% (6%) for pjet
T,1
≤ 150GeV (pjet

T,1
≤ 300GeV), and for the rapidity,

as a representative pT integrated quantity, at the percent level.
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Figure 4.11: K-factors as de�ned in eq. (4.2), for the rapidity distribution of the
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5
SUMMARY

We extended our previous study of top-mass e�ects in di�erential Higgs produc-

tion through gluon fusion [43, 185, 186] to the jet-vetoed cross section at NNLO,

to inclusive jet production, and to kinematical distributions of the hardest jet.

To determine these mass e�ects, we used the NLO H+jet matrix elements in a
1⇑m2t asymptotic expansion, and implemented them up to 1⇑m4t in a program,
allowing the calculation of fully di�erential cross sections. By combination with

the NNLO total inclusive cross section, also given in the 1⇑m2t -expansion, the
jet-vetoed rate was constructed. Our method to estimate mass e�ects was then

to look how well the expansion converges, and examine the spread between

di�erent orders:

• For the NNLO jet-vetoed rate we found mass e�ects to be negligible. Even

at large values of the jet-veto cut, the use of the HTL is fully justi�ed.

• In case of the inclusive H+jet cross section, the high pT region is pro-
nounced, and the asymptotic expansion diverges quickly for higher orders.

We introduced a matching procedure, utilizing the �nite top-quark mass

high energy limit of the total cross section, that allowed us to estimate

and predict mass e�ects at the 1–2% level for pjet
T,min

< 100GeV, relative
to the unmatched HTL. Beyond 100GeV, the 1⇑m2t -expansion runs out of
control and does not allow for a useful estimation.

• �e pT distribution of the hardest jet shows mass e�ects less than 1.5% for
pjet
T,1
≲ 150GeV and less than 6% for pjet

T,1
≲ 600GeV.�e 1⇑m2t -expansion

converges well, such that mass e�ects are predicted with less than one

percent error. For the rapidity distribution, e�ects of one to two percent

are estimated.

We have checked that our results also hold for di�erent center of mass energies

at the LHC. By choosing a center of mass energy of 13 TeV, we considered what

could be called the worst case. For smaller energies the HTL always works

better, since, on the one hand, �nite mass corrections to the HTL become only

57
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signi�cant at energies comparable to the top-quark mass, and, on the other hand,

for the dominating g g channel, the bulk contribution comes from PDF enhanced
low energies1. Still today, the accuracy of the HTL approach is better than the

uncertainty on the cross section induced by PDFs. Just recently it became closer

to missing higher order QCD corrections, due to the completion of the N3LO

Higgs inclusive and NNLO H+jet cross section calculations.

1 For a plot of partonic contributions to the total cross section, di�erentiated between g g, qg
and qq̄ channels, below and above the top-quark threshold

⌋︂
ŝ = 2mt , see ref. [365, �g. 2].



Part III

PROBING THE HIGGS-GLUON COUPLING

�is part is based on our publication ‘Probing the nature of the

Higgs-gluon coupling’ [413]. We study one- and two-jet observables

of dimension-7 Higgs-gluon coupling operators as a probe of possi-

ble deviations from the top-loop induced gluon-Higgs coupling. We

focus on shape deviations in the Higgs pT distribution, and show
that some operators provide a much harder pT spectrum than in the
SM.�is allows one to constrain corresponding Wilson coe�cients,

or give upper limits on the scale of new physics.





6
INTRODUCTION TO THE HIGGS-GLUON COUPLING

We started the last part with the observation that currently there is no reason,

motivated by raw experimental results, to believe that the found Higgs-like

particle is not the SM Higgs boson. Signal signi�cances match the predicted

SM values [59–62], even measured kinematical distributions match increasingly

more the SM predictions [58].

Is it still possible that EWSB is not realized in the minimal form as in the SM?

EWSB in the SMhas the problemof naturalness. Only additional symmetries from

extended models can, more or less elegantly, solve this problem. Simultaneously,

these models o�en solve a number of other questions in particle physics, such as

dark matter, gauge coupling uni�cation, missing CP violation or cosmic in�ation.

Whatever the speci�c model is, it must have an e�ective description in terms of

the SM �elds, since we observe a SM-like Higgs boson.

For example, only with data from LHC Run II will we be able to begin the deter-

mination of the direct top-Yukawa coupling in t t̄ associated H production [414–
417]. Up to now, only indirect measurements (through gluon fusion) were done.

Possibly, we fell for a SMHiggs imposter, so far? Is gluon fusion, constituting the

largest H production cross section in the SM at the LHC, and mediated through
a top-quark loop, possibly not at all induced by a top-quark loop? A�er all, the

Higgs boson could have a reduced – or even vanishing – top-quark Yukawa

coupling.�en, since current signals are already found to be SM-like, this would

mean that BSM contributions must mimic the SM top-Yukawa coupling for the

correct total gluon fusion cross section. It is, a�er the Higgs discovery, now one

of the prior goals to determine the precise nature of the Higgs-gluon coupling.

In this work we consider an e�ective �eld theory consisting of Higgs-gluon

coupling operators of dimension-5 and -7, and calculate kinematical distributions

of Higgs+n-jet production, where n = 1,2.�is allows us to quantify deviations
from the SM Higgs-gluon coupling model-independently. Additionally, it allows

constraining speci�c models and the mass scale of new physics.
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To leading order, the e�ective �eld theory description of the Higgs-gluon cou-

pling is given by the dimension 5 operator HFa
µνFµν,a. Put next to the SM, it is

suppressed by a scale of new physics Λ. In general, operators of arbitrarily high

dimension contribute, but they are increasingly more suppressed by Λ (see also

section 1.2).

�e operators of dimension-7 are suppressed by Λ3, so in principle not relevant

for the near future. Nevertheless, as mentioned, an ‘imposter’ Higgs could have

a reduced top-quark Yukawa coupling, forcing these contributions to become

relevant. Note that for the SM, when integrating out the top-quark, the Wilson

coe�cients are itself proportional to Λ = mt due to the top-Yukawa coupling.

�is leads to a reduced suppression, where, indeed, the operator of dimension 5

is not suppressed at all. Such a mechanism could make dimension 7 operators

relevant for BSM physics.

In any case, we will show that the operators of dimension-7 lead to kinematical

distributions with shapes well distinguished from the SM, allowing constraints

on new physics. We consider the Higgs pT distribution in one-jet production
and ∆Φ j j and ∆η j j

1 jet distributions in two-jet production, all in LO QCD. Our

analysis covers both scalar and pseudo-scalar Higgs bosons separately. Both will

be denoted as H in what follows.

Since we assume that gluon fusion is the dominant Higgs productionmechanism

at the LHC, we do not need to take into account the full set of SM-EFT operators

[83–85].�ese other operators, constructed from electroweak �elds, typically

a�ect the branching ratios of the Higgs boson. A comprehensive list of references

for studies in this direction can be found in refs. [81, 238].

In the following chapter we introduce the SM-EFT basis of dimension-5 and -7

operators to couple either a scalar or a pseudo-scalar particle to gluons. We

describe the implementation of these operators for obtaining kinematical dis-

tributions in Higgs+n-jet production, where n = 1,2. In chapter 8 we present
these distributions, normalized to compare their shapes, and discuss them. Ad-

ditionally, we show distributions with SM top-quark inducedWilson coe�cients.

Finally, in chapter 9 we conclude.

1 ∆Φ j j is the modulus of the azimuthal angle di�erence between the two jets, and ∆η j j the

modulus of the rapidity di�erence between the two jets.



7
BASIS OF DIMENSION-7 OPERATORS AND THEIR

IMPLEMENTATION

In this chapter we describe the operator basis used in our study, and its imple-

mentation for kinematical distributions in Higgs production with one and two

jets.

�e e�ective Lagrangian involving operators through mass dimension-7 that

couple a scalar Higgs boson H to gluons can be written as [418, 419] (see also
ref. [420])

ℒ = C1
Λ
𝒪1 +

5

∑
n=2

Cn

Λ3
𝒪n , (7.1)

𝒪1 = HFa
µνF

a µν
, 𝒪2 = HDαFa

µνD
αFa µν

, 𝒪3 = HFa µ
ν Fb ν

σ Fc σ
µ f abc ,

𝒪4 = HDαFa
ανDβFa βν

, 𝒪5 = HFa
ανD

νDβFa α
β ,

(7.2)

where

Fa
µν = ∂µAa

ν − ∂νAa
µ − g f abcAb

µA
c
ν ,

DµAa
ν = ∂µAa

ν − g f abcAb
µA

c
ν ,

(7.3)

and Aa
µ is the gluon �eld.�e strong coupling is denoted by g, and f abc are the

SU(3) structure constants. We remark that, for an on-shell Higgs boson, the
operators in eq. (7.2) are not linearly independent. Instead, one �nds m2H𝒪1 =
4𝒪5 − 2𝒪2 + 4g𝒪3.�us, one of the operators𝒪1,𝒪2,𝒪3 or𝒪5 could be elim-
inated from our analysis. Nevertheless, we �nd the generating set in eq. (7.2)

convenient and stick to this redundancy.

Nominally, contributions of𝒪1 are suppressed by 1⇑Λ2 in physical quantities,
and mixed terms of𝒪1 with𝒪2 to𝒪5 are suppressed by 1⇑Λ4. As discussed in
the introductory chapter 6, the suppression could be li�ed when Ci ∝ Λ, as in
the SM (see following eq. (7.5)). Since we want to keep the discussion as general
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64 7 Basis of dimension-7 operators and their implementation

as possible, we will mostly ignore the suppression of the higher dimensional

operators by normalizing all distributions to their integrated total cross section.

Only the shapes of the distributions, generated from the individual operators,

are relevant for us.

Note that the operators𝒪4 and𝒪5 can be rewritten as operators containing two
and one quark bilinears, respectively, through the QCD equations of motion

[421–423]:

DµFa
µν(x) = gΨ̄(x)γν taΨ(x) , (7.4)

where Ψ(x) are quark �elds with the sum over all �avors implied, and ta are
SU(3) color matrices in the fundamental representation.�ey only contribute
when their corresponding quark representation can occur in the Feynman dia-

grams for considered processes. In the case of gluodynamics these two operators

then, of course, vanish [418].

standard model matching . For the SM, when the top-quark is inte-

grated out and a matching to the set of operators in eq. (7.2) is performed, the

mass parameter Λ equals the top-quark mass mt . Taking the operator𝒪1 with
Wilson coe�cient C1 corresponds to using theHTL, thus is well known in higher
order perturbative Higgs calculations. C1 has been obtained through 𝒪(α4s )
[253, 254]. �e other Wilson coe�cients of dimension-7 are known through

𝒪(α2s ) [419]. We will give the LO expressions, for an illustration of their size, as
follows:

CSM1 = g2λt

48π2
+𝒪(g4) ≃ 2.2 ⋅ 10−3 ,

CSM2 = −7g2λt

2880π2
+𝒪(g4) ≃ −2.6 ⋅ 10−4 ,

CSM3 = − g3λt

240π2
+𝒪(g5) ≃ −5.3 ⋅ 10−4 ,

CSM4 = g2λt

1440π2
+𝒪(g4) ≃ 7.3 ⋅ 10−5 ,

CSM5 = g2λt

80π2
+𝒪(g4) ≃ 1.3 ⋅ 10−3 ,

(7.5)

where λt = mt⇑v is the top-quark Yukawa coupling, and the valuesmt = 172GeV,
v = 246GeV and g2 = 4παs with αs = 0.118 have been inserted to obtain the
numerical values.
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pseudoscalar operators . We also consider the pseudoscalar analogue,

where the operators are obtained from the previous scalar case by replacing one

of the �eld strength tensors by its dual F̃a
µν = 1

2
εµνρσFa,ρσ , where εµνρσ is the

Levi-Civita symbol. Our generating system for dimension-5 and dimension-7

pseudoscalar Higgs-gluon coupling operators is then given by

ℒ = C̃1
Λ
�̃�1 +

5

∑
n=2

C̃n

Λ3
�̃�n , (7.6)

where

�̃�1 = HF̃a
µνF

a µν
, �̃�2 = HDα F̃a

µνD
αFa µν

, �̃�3 = HF̃a µ
ν Fb ν

σ Fc σ
µ f abc ,

�̃�4 = HDα F̃a
ανDβFa βν

, �̃�5 = HF̃a
ανD

νDβFa α
β .

(7.7)

implementation . We generated the Feynman rules for the operators𝒪n
and �̃�n, n = 1, . . . ,5, using LanHEP [424] and con�rmed their validity with
FeynRules [425]. A nonzero contribution of the operator �̃�4 involves at least
six gluons; therefore, it does not appear in our numerical analysis below. Similarly

to the scalar case, the remaining operators are not linearly independent for an

on-shell Higgs boson, but for convenience we will include all of them.

Using the obtained vertices, we generated the LO Feynman graphs for H + 1-jet
and H + 2-jet amplitudes with Diana [426] and qgraf [427] as FORM [428] code.
�e matrix elements were calculated in Feynman gauge with Faddeev-Popov

ghosts and in an axial gauge for cross-checking. Integration was performed with

a standard VEGAS integrator [429–431].





8
KINEMATICAL DISTRIBUTIONS

We consider kinematical distributions for the Higgs transverse momentum pT in
Higgs+jet production, and two-jet distributions in their azimuthal angle di�er-

ence ∆Φ j j and their rapidity di�erence ∆η j j. Latter observables are motivated by

studies in gluon fusion and weak boson fusion with two jets [263, 264, 366], for

example to examine the charge parity (CP) nature of the Higgs-gluon coupling

[432–439].�e observables can also be used to distinguish between gluon fusion

and weak boson fusion in H + 2-jet production [264]. By considering the higher
dimensional operators, we see how their kinematics may a�ect the conclusions

drawn from previous studies.

In the following sections 8.1 and 8.2, the leading and subleading terms in 1⇑Λ
for the scalar operators in eq. (7.2) and pseudo-scalar operators in eq. (7.7) are

taken into account. �is means that cross sections will receive contributions

with Wilson coe�cients proportional to C21 , C1C2, . . ., up to C1C5.�us, they
are truncated at 1⇑Λ4. In the later section 8.3 we also consider terms suppressed
by 1⇑Λ6 withWilson coe�cients C jCk , j,k ∈ {2, . . . ,5}.�ey are only relevant if
the Higgs-gluon coupling is predominantly mediated by one of the dimension-7

operators, and we can then, additionally, neglect interference terms of𝒪1 and
dimension-9 operators.

We write the di�erential cross sections based on the Lagrangian of eq. (7.1)

(eq. (7.6)) as

dσ =
5

∑
i , j=1
dσi j , (8.1)

where dσi j is due to terms of the form 𝒪i𝒪†j (�̃�i�̃�†j ). As mentioned, to be
independent of the actual size of the Wilson coe�cients, we normalize the

kinematical distributions to their respective contribution to the inclusive cross

section σi j, i.e., we display dσi j ⇑σi j. Absolute e�ects on the distribution within
a given model, that is for concrete values of the Wilson coe�cients Ci and the

mass scale Λ, can be derived by combining these normalized distributions with
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68 8 Kinematical Distributions

their numerical values for the total cross sections σi j provided in appendix C.

�e shown distributions are calculated for LHC proton-proton collisions, split

into the partonic gluon-gluon (g g), gluon-quark (gq) and quark-quark (qq)
initial states, where qq includes quark-antiquark as well as di�erent-�avor initial
states. Furthermore, we chose a Higgs mass of mH = 125GeV and a center
of mass energy of

⌋︂
s = 13TeV. �e renormalization and factorization scales

are set to the common value of µ =
⌈︂
m2H + p2

T
, and in the case of the H + 2-

jet cross sections to the jet-pT geometric mean µ =
⌋︂pT,j1pT,j2. Because of our

normalization, the results are largely independent by variations ofmH and
⌋︂
s.

Let us remark that for the H + 1-jet cross sections the operator 𝒪4 does not
contribute, because it can be rewritten in terms of two quark bilinears according

to the equation of motion in eq. (7.4).�e operator𝒪5 only contributes to the
gq and qq channels, having a representation with one quark bilinear. Operator
𝒪3 only contributes to the g g channel, as it involves at least three gluons. For the
H + 2-jet cross sections𝒪3 does, for the same reason, not contribute in the qq
channel and𝒪4 contributes only in the qq channel. Similar observations hold
for the distributions in the pseudoscalar case.

8.1 higgs+1-jet cross sections

We consider the normalized Higgs transverse momentum distributions in H + 1-
jet production for scalar and pseudoscalar Higgs bosons in �gs. 8.1 and 8.2,

respectively.�e panel named ‘sum’ shows the sum over the partonic channels

for �xed i , j. In both cases, scalar and pseudoscalar, one observes large di�erences
in the distribution shapes of the individual terms, pronounced toward higher

pT.�e operator𝒪5, which contributes at LO only in the gq and qq channels,
also leads to a visible deviation at small transverse momenta.

For comparison, we show the result that corresponds to SMHiggs production

through a top-loop, obtained from the program SusHi [404]. It is denoted as
‘SM’ for the scalar and ‘top-loop’ for the pseudoscalar case. Note that these distri-

butions would receive an additional pT dependence through its proportionality
to α2s (µ), with µ =

⌈︂
m2H + p2

T
; to properly compare them to the predictions

from our e�ective theory, we have divided the SM and top-loop distributions by

this factor.
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Figure 8.1: Normalized Higgs transverse momentum distribution for scalar cou-
pling operators.�e normalization factors σi j are given in table C.1.
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Figure 8.2: Normalized Higgs transverse momentum distributions for pseu-
doscalar coupling operators. Note that the g g channel is identical to the scalar case.
σi j are given in table C.2.
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For �g. 8.3 we performed the calculation of the distributions in �g. 8.1 with SM

Wilson coe�cients, given in eq. (7.5), where the top-quark has been integrated

out. �e expansion scale Λ is set to the top-quark mass mt in this case. �is

reproduces the �rst two non-vanishing terms, that is, terms up to 1⇑m2t , in the
asymptotic 1⇑m2t -expansion for the Higgs pT distribution1, and serves as an
additional check.

Having the asymptotic expansion partitioned through the distinct operator con-

tributions, we gain some deeper insight into the observations made earlier in

part II and refs. [43, 115]: In case of the g g channel, which is the predominating
and well-converging partonic channel in the asymptotic expansion, the inter-

ference terms of𝒪1 with the higher order operators have a very similar shape
as the leading 𝒪1𝒪†1 contribution, which itself is much like the full SM shape.
For the partonic subleading gq and qq channels the various contributions di�er
rather strongly among each other. �e contribution 𝒪1𝒪†5 in the gq channel
is even negative, and, since its magnitude hardly decreases toward larger pT, it
drives this channel to negative values.

Higgs rapidity distributions do not show signi�cant di�erences between the

di�erent operator contributions. We thus do not display them here.
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Figure 8.3: Higgs transverse momentum distributions with SMmatching coe�-
cients resulting in a total 1⇑m2t suppression with respect to C21 . Note that in the
case of the gq and summed channel the cross term𝒪1𝒪5 has been multiplied with
−1. For the qq channel the cross term𝒪1𝒪2 has been multiplied with −1.

1 See �g. 2.3 for the asymptotic expansion up to 1⇑m6t .
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8.2 higgs+2-jet cross sections

Rapidity separation ∆η j j and azimuthal angle di�erence ∆Φ j j between two

jets are well known observables in H + 2-jet production through gluon fusion
and weak boson fusion.�ey can be used to distinguish these two production

channels and peruse the Higgs CP nature; see the beginning of chapter 8.

In the following we will use ‘inclusive’ cuts for the ∆η j j distribution:

pT,j > 20GeV , ⋃︀η j⋃︀ < 5 , R j j > 0.6 , (8.2)

where R j j =
⌈︂
(∆η j j)2 + (∆Φ j j)2, and additional ‘WBF cuts’

∆η j j = ⋃︀η j1 − η j2⋃︀ > 4.2 , η j1 ⋅ η j2 < 0 , m j j > 600GeV (8.3)

for the ∆Φ j j distribution, where m j j is the invariant mass of the two jets.

�e ∆Φ j j distributions for scalar and pseudoscalar Higgs are shown in �g. 8.4

and �g. 8.5, respectively. �e red curves, corresponding to the contributions

from𝒪1𝒪†1 and �̃�1�̃�†1 , respectively, reproduce the results of ref. [433], where the
CP nature of the Higgs boson is studied in ∆Φ j j distributions. We calculated the

distributions for a top-loop with VBFNLO [440–442] and found that they hardly
di�er from the results of𝒪1𝒪†1 and �̃�1�̃�†1 , respectively.�erefore, we skip their
inclusion in our �gures.
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Figure 8.4: Normalized distributions for azimuthal angle di�erence of the two
�nal state jets for scalar operators. σi j are given in table C.3.
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Figure 8.5: Normalized distributions for azimuthal angle di�erence of the two
�nal state jets for pseudoscalar operators. σi j are given in table C.4.

�e CP property of the Higgs boson can be distinguished by its ∆Φ j j distribution

curvature, being either positive or negative. �e distribution for the scalar

Higgs exhibits a negative curvature, with maximums for planar events (∆Φ j j ≃
0° or ∆Φ j j ≃ 180°). For the CP-odd coupling, planar events are suppressed,
because, in that case, the occurring epsilon-tensor is contracted with (four)

linearly dependent momentum vectors of the incoming and outgoing partons

[433].

Only few operators di�er from the leading (top-loop-like induced) behavior:�e

term generated by the operator𝒪3 (�̃�3) has a much stronger curvature than the
other terms. In the scalar case the ‘4-quark-operator’𝒪4 leads to a remarkable
deviation from the other terms.

In �gs. 8.6 and 8.7 we show the jet rapidity separation distributions for scalar

and pseudoscalar operators, respectively. One can compare these with the SM

case [264, �g. 8], in which ∆η j j is used to distinguish H + 2-jet gluon fusion and
weak boson fusion production modes. While gluon fusion exhibits a peak at

small ∆η j j due to the jet radius constraint R j j > 0.6, for weak boson fusion the
peak is at a rapidity separation ∆η j j ≃ 5 and considerably smaller. Again, we
compared our results to the top-loop induced case with VBFNLO, and found that
they are almost identical to the curves for 𝒪1𝒪†1 and �̃�1�̃�†1 , respectively. We
thus refrain from including them in our plots.

While there are quantitative di�erences among the various contributions for
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Figure 8.6: Normalized distributions for rapidity separation of the two �nal state
jets for scalar operators. σi j are given in table C.5.
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Figure 8.7: Normalized distributions for rapidity separation of the two �nal state
jets for pseudoscalar operators. σi j are given in table C.6.

the scalar and pseudoscalar operators considered here, we conclude that the

qualitative di�erences are probably too small to be used in an experimental

analysis in order to classify the Higgs-gluon coupling.�en, since we observed

in �gs. 8.1 and 8.2 that di�erences between the individual operators increase

with the Higgs’ transverse momentum, it is suggestive to consider the ∆Φ j j
and ∆η j j distributions for these high-pT events only. Figures 8.8 and 8.9 show
these distributions in the scalar case, when the Higgs’ transverse momentum

is restricted to pT > 200GeV. Compared to �gs. 8.4 and 8.6, some features are
enhanced, but, since such a cut will signi�cantly decrease the data sample, it
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remains to be seen whether it would lead to an improvement of an experimental

analysis.
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Figure 8.8: Normalized azimuthal angle di�erence distributions for scalar opera-
tors as in �g. 8.4, but restricted to events with pT,H > 200GeV, where pT,H is the
transverse momentum of the Higgs boson. σi j are given in table C.7.

gg gq qq sum

pT,H > 200 GeV

0.0

0.2

0.4

0.6

0 2 4 6 8 0 2 4 6 8 0 2 4 6 8 0 2 4 6 8

∆ηjj = |ηj1 − ηj2|

1
σ

i,
j
⋅
d

σ
i,
j

d
∆

η
jj

Operator O1
2

O1O2 O1O3 O1O4 O1O5

.

Figure 8.9: Normalized rapidity separation distributions for scalar operators as in
�g. 8.6, but restricted to events with pT,H > 200GeV, where pT,H is the transverse
momentum of the Higgs boson. σi j are given in table C.8.
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8.3 higher order suppressed terms

Up to this point, we only considered contributions due to the e�ective theory

Lagrangian in eqs. (7.1) and (7.6) up to order 1⇑Λ4, originating from squares of
𝒪1 and interferences of𝒪1 with𝒪2 to𝒪5, and equivalents for pseudoscalar oper-
ators. Terms arising from squares of𝒪2 (�̃�2) to𝒪5 (�̃�5) and their interferences
are suppressed by 1⇑Λ6 and in principle negligible. Only can they become impor-
tant when the Higgs-gluon coupling is predominantly mediated by dimension-7

operators, meaning that C1 ⋘ 1.�en we can neglect interferences of𝒪1 with
dimension-9 operators, which are also of order 1⇑Λ6.

We begin, as before, with the Higgs pT distributions in association with one jet,
displayed in �gs. 8.10 and 8.11. For comparison, the leading contributions due to

𝒪1𝒪†1 and �̃�1�̃�†1 , respectively, are also included. It is remarkable that, on the
one hand, the spectrum is drastically di�erent from the leading term; it shows

a maximum at high pT and falls o� only very slowly. On the other hand, the
higher order terms themselves are all very close to each other.�e scalar and

pseudoscalar cases are virtually indistinguishable.

�e H + 2-jet distributions with respect to ∆Φ j j are shown in �gs. 8.12 and 8.13,
and for ∆η j j in �gs. 8.14 and 8.15, where again the leading contributions𝒪1𝒪†1
and �̃�1�̃�†1 , resp., are included. Quite large qualitative di�erences are visible in
the ∆Φ j j distributions, while they are far less prominent in the ∆η j j shapes.
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by 1⇑Λ6, for scalar coupling operators. σi j are given in table C.9.
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Figure 8.11: Normalized Higgs transverse momentum distributions suppressed by
1⇑Λ6 for pseudoscalar coupling operators. σi j are given in table C.10.
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Figure 8.12: Normalized azimuthal angle di�erence distributions suppressed by
1⇑Λ6 for scalar coupling operators. σi j are given in table C.11.
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Figure 8.13: Normalized azimuthal angle di�erence distributions suppressed by
1⇑Λ6 for pseudoscalar coupling operators. σi j are given in table C.12.
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Figure 8.14: Normalized rapidity separation distributions suppressed by 1⇑Λ6 for
scalar coupling operators. σi j are given in table C.13.
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Figure 8.15: Normalized rapidity separation distributions suppressed by 1⇑Λ6 for
scalar coupling operators. σi j are given in table C.14.



9
CONCLUSIONS

We have studied the e�ects of dimension-5 and -7 Higgs-gluon coupling SM-EFT

operators on kinematical distributions in H + 1-jet and H + 2-jet production.
While in the SM the Higgs-gluon coupling is predominantly mediated by a top-

quark loop, new physics could augment or even replace this coupling. Our

analysis allows searching for, constraining and quantifying such coupling mod-

i�cations. We found that dimension-7 operators can signi�cantly deform the

Higgs pT distribution toward a harder spectrum than in the SM. Additionally,
we have shown that for two-jet observables certain operators can be sensitive to

e�ects of new physics.

closing remarks . Meanwhile, two years have passed since this study has

been published, and several studies based on it and extending it have been done.

For an overview of such studies see section 1.2 in part I. For example ref. [114]

covers the matching to two generic models with heavy colored scalars and heavy

top partners, and concludes that dimension-7 operators are unlikely to produce

relevant information about UV physics, at LHC energies, beyond the leading

dimension-5 operator.

A speci�c analysis of the Higgs-gluon coupling in the H → γγ channel with the
ATLAS experiment was performed using the Higgs transverse momentum as

discriminating variable [443]. Instead of considering the kinematical distribu-

tions shown in this work, interference terms between the Standard Model and

𝒪1, . . . ,𝒪5 were considered. �ese terms were provided by us in a collabora-
tion and show a less emphasized behavior of the𝒪1𝒪i , i = 2 . . . 5 interference
contributions as considered above.�ey rather have more SM-like shapes. Fur-

thermore, the operators are considered one by one in addition to the SM and not

altogether in a combined analysis with the SM.

From this ATLAS analysis no limit on C1 could be derived, since the pT spectrum
using𝒪1 is too similar to the SM shape at low pT. Here, once again, we point out
the importance of top-mass e�ects, which distinguish𝒪1 from the SM top-loop
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induced coupling. It will be very important to calculate the Higgs pT distribution
at higher perturbative orders with an exact quark-loop induced Higgs-gluon

coupling. Only through such a calculation the exact SM shape can be predicted

at high pT. For the Wilson coe�cients C2,C3 and C5, divided by Λ3, limits
of 𝒪(10−11GeV−3) were derived [443]. For example, new physics from 𝒪2 in
addition to the SM, and assuming C2 = 1, are limited to Λ ≳ 7–8 TeV. 𝒪3 and
𝒪5 are even stronger constrained.



Part IV

THE PERTURBATIVE QCD GRADIENT FLOW TO THREE

LOOPS

�is part is based on our upcoming publication ‘�e perturbative

QCD gradient �ow to three loops’ [444]. �e gradient �ow en-

codes physical properties of QCD through a di�usion equation of

the gauge �elds. Di�erent scales can be probed, determined by the

�owtime t.�rough its smoothing properties, gradient �ow corre-
lation functions are calculable in lattice QCD to high precisions. A

perturbative expansion is possible and allows connecting QCD in

the perturbative and non-perturbative regimes. In particular, an

extraction of the strong coupling constant αs is possible.





10
INTRODUCTION TO PERTURBATIVE GRADIENT FLOW

A huge amount of work is put into the development of algorithms to extract

non-perturbative properties of QCD from calculations on a �nite space time

lattice. At �rst sight, it is straightforward to perform the continuum and in�nite

volume limits, necessary to compare results with experiments. When working

in detail on such calculations, many problems connected to multiple scales and

for example fermions turn up. Generally, the lattice size must be large compared

to the hadron size ≃ ΛQCD−1; but the spacing a must also be su�ciently small to
make contact with the perturbative regime: 1⇑a ≫ µR.

Lüscher �rstly introduced the Yang-Mills gradient �ow1 in the context of im-

proving the e�ciency of lattice QCD calculations [445, 446].�e gradient �ow

evolves the gauge �elds as a function of the so called �ow time t, which allows for
an interpretation as a smearing range, and sets a physical scale for observables

within this framework. Later, Lüscher and Weisz showed that correlation func-

tions of the �owtime dependent �elds can be expanded in perturbation theory

and that the obtained Feynman rules correspond to those of a renormalizable

�eld theory on R4 × (︀0,∞⌋︀ [154, 155].�e extra dimension corresponds to the
introduced �owtime. Moreover, due to the smoothing property of the gradient

�ow, correlation functions do not require additional renormalization, once the

underlying theory (QCD) is renormalized as usual.�e gauge �elds evaluated at

�owtime t probe the theory at length scales of the order
⌋︂
t.

�e gradient �ow can be calculated to a very high precision on the lattice, and,

from a pure lattice point of view, can serve to de�ne a high precision scale setting

reference variable [154, 157]. It can be extended into a regime of t that is also
perturbatively accessible.�is opens a new way to connect the non-perturbative

part of QCD with the perturbative part. One speci�c observable, the action

density ∐︀Ẽ︀ (to be introduced below), is especially useful here. It allows an easy
de�nition of a running coupling on the lattice at a scale given by t [159, 162, 447],

1 In lattice gauge theory, the gradient �ow is commonly referred to as the Wilson �ow. We will

usually stick to gradient �ow as in the mathematical literature.
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and can be compared to the perturbative expansion at the renormalization scale

µ = 1⇑
⌋︂
8t.�us, this gives us a way to extract the perturbative QCD running

coupling αs(µ) from hadronic observables.�is will be elaborated in the �nal
chapter of this part.

In the following section we will recapitulate the general gradient �ow formalism

and the perturbative calculation of correlation functions of �ow�elds, based on

refs. [154, 155].

�e action density ∐︀Ẽ︀ has been obtained to NLO analytically [154].1 For calcula-
tions beyond NLO, we will argue that an analytical integration of the occurring

integrals is not feasible with current methods.�is, and our approach to calcu-

late ∐︀Ẽ︀ numerically to NNLO by sector decomposition [210] will be shown in
chapter 11. We present checks that serve to validate our calculation.

�e whole setup for the perturbative expansion of the observable and generation

of the integrals is done in Mathematica. �e numerical integration itself is
done in C++ with gluing code in Haskell. A description of the setup with

implementation details is given in appendix A.

In the �nal chapter of this part, chapter 12, we estimate the uncertainty, intro-

duced by the �nite perturbative expansion, through a variation of the renorma-

lization scale. Further error sources are also discussed. �e most interesting

application of our result might indeed be an extraction of the strong coupling

α(5)s (mZ) in theMS-scheme through a combination with lattice QCD results.
Such high precision lattice data is not accessible to us at the time of writing.

Nevertheless, we can use our perturbative result to check what precision in the

extraction of αs can be achieved at NNLO.

1 Except for the NLO calculation of ∐︀Ẽ︀, up to now, no other perturbative gradient �ow calcula-
tions in the continuum have been performed.
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10.1 formalism

�is section largely recapitulates the introductory parts of refs. [154, 155].�e

�ow Bµ(t,x) of Euclidean SU(N) gauge �elds is de�ned by the equations

Ḃµ = DνGνµ , Bµ ⋃︀t=0= g0Aµ ,

Gµν = ∂µBν − ∂νBµ + (︀Bµ ,Bν⌋︀, Dµ = ∂µ + (︀Bµ ,⋅⌋︀ ,
(10.1)

where Aµ is the fundamental SU(N) gauge �eld and g0 is the bare gauge cou-
pling.�e dot denotes di�erentiation with respect to the �owtime t. Since the
�ow equation 10.1 is invariant under gauge transformations [154], it allows the

introduction of a gauge parameter α0:

Ḃµ = DνGνµ + α0Dµ∂νBν . (10.2)

Taking gauge invariant observables then allows us to choose α0 = 1, whichmakes
the resulting expressions simpler. Additionally, by checking independence of α0,
this gives us another possibility to check the correctness of the calculation.

Gradient �ow is formulated for general SU(N) gauge theory. In the following we
will restrict our presentations to SU(3) gauge theory, and also take into account
N f massless fermions in the fundamental representation; that is, we use massless

N f -�avor QCD as the underlying theory. We will thus refer to the fundamental

gauge �eld also as gluon �eld.�e fermions (quarks) are taken into account in

the perturbative expansion of correlation functions of fundamental gauge �elds,

as elaborated later. An extension where the fermions itself are taken into account

in the �ow equations has been developed in ref. [156], but will not be considered

here.

Let us remark that the �ow eq. (10.2) has the form of a di�usion equation

∂Φ(x ,t)
∂t

= ∇ (𝒟(Φ,x) ⋅ ∇Φ(x ,t)) ,

where Φ(x ,t) is the density of the di�using material and𝒟(Φ,x) is a di�usion
coe�cient. If𝒟 is independent of Φ, the equation is linear and reduces to the
heat equation. Similar to the smoothing e�ect of the di�usion equation on a

density �eld, the gradient �ow smooths the gauge �eld over a range determined

by the �owtime t.�e linear part of the �ow eq. (10.2), which equals

Ḃµ = ∂ν∂νBµ + (α0 − 1)∂µ∂νBν ,
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can be solved by a Fourier transformation. With the heat kernel

Kt(x)µν = ∫
p

e ipx

p2
{(δµνp2 − pµpν) e−tp

2 +pµpν e
−α0 tp2} ,

where ∫
p

= ∫
dDp
(2π)D ,

and D is the space-time dimension in dimensional regularization, the solution
to the linearized equation is then

Bµ,1(t,x) = ∫ d
D y Kt(x − y)Aµ(y) . (10.3)

�is is also perturbatively the lowest order approximation in the series

Bµ =
∞

∑
k=1

gk0Bµ,k (10.4)

for the full non-linearized solution.

For α0 = 1 the heat kernel Kt(x)µν reduces to the simple form

Kt(x)µν = δµν ∫
p

e
ipx
e
−tp2 = δµν

e−x
2⇑(4t)

(4πt)(D⇑2)
,

and thus shows (see eq. (10.3)) that the �ow equation Gauss smooths the gauge

potential over a spherical range with mean-square radius
⌋︂
2t ⋅ D, that is, in

D = 4 dimensions over
⌋︂
8t.�is is therefore the scale of the involved physics and

sets a natural choice of the renormalization scale in dimensional regularization

to µ = 1⇑
⌋︂
8t.

�e solution to the complete �ow equation can be written down in momentum

space in terms of an integral equation as follows [154, 155]:

B̃µ(t,p) = g0K̃t(p)µνÃν(p) +
t

∫
0

ds K̃t−s(p)µνR̃ν(s,p) ,

R̃a
µ(t,p) =

3

∑
n=2

1

n! ∫
q1

⋯∫
qn

(2π)Dδ(p + q1 +⋯ + qn)

× X(n,0)(p,q1, . . . ,qn)ab1 ...bnµν1 ...νn B̃
b1
ν1(t, − q1)⋯ B̃bn

νn (t, − qn) ,

(10.5)
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where the �owtime vertices X(2,0) and X(3,0) read

X(2,0)(p,q,r)abcµνρ = i f abc{(r − q)µδνρ + 2qρδµν

− 2rνδµρ + (α0 − 1)(qνδµρ − rρδµν)} ,
(10.6)

X(3,0)(p,q,r,s)abcdµνρσ = f abe f cde(δµσ δνρ − δµρδσν)
+ f ade f bce(δµρδνσ − δµνδρσ)
+ f ace f dbe(δµνδρσ − δµσ δνρ) ,

(10.7)

and the heat kernel K̃t(p) in momentum space is

K̃t(p)µν =
1

p2
{(δµνp2 − pµpν) e−tp

2 +pµpν e
−α0 tp2} . (10.8)

Note that when we set the gauge parameter α0 to one, a minimal number of
terms is obtained.

�e solution in terms of the fundamental gauge �eld A is thus obtained iteratively
through eq. (10.5), leading to the solution series (10.4).

To illustrate the form of the solution series, we print the �rst two terms for

α0 = 1:

Ba
µ,1(t,x) = ∫

p

e
ipx
e
−tp2 Ãa

µ(p) ,

Ba
µ,2(t,x) = i f abc

t

∫
0

ds ∫
q,r

e
i(q+r)x

e
−s(q2+r2)−(t−s)(q+r)2

× {δµλrσ − δµσqλ +
1

2
δσλ(q − r)µ Ãb

σ(q)Ãc
λ(r) .

Correlation functions in the �ow�elds B can then be calculated perturbatively
in g0, by �rstly expanding Bµ as above, and secondly expanding the correlators

in A as usual. More details for this step are given later.

For a diagrammatic approach [155], the Feynman rules can be derived from

a �eld theory in D + 1 dimensions, where the additional dimension in the
half-space (︀0,∞⌋︀ is the �owtime. One has to introduce an auxiliary Lagrange-
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multiplier �eld L to describe the propagation of �owtime. In the end, one obtains,
additionally to the gauge �eld (A) propagators and B �eld propagators, mixed
propagators between A and B, and B and L.�e auxiliary �eld only propagates
through its mixing with other �elds.�e two earlier introduced vertices X(2,0)

and X(3,0) correspond to vertices with interactions LB2 and LB3. Other vertices
of SU(N) gauge theory are unmodi�ed.

If one wants to calculate a correlation function (including vacuum expecta-

tion values) in perturbation theory, one can generate all possible contributing

Feynman diagrams and insert the Feynman rules. With regard to our speci�c

observable ∐︀Ẽ︀, which is a vacuum expectation value, we are not aware of any
publicly available program that supports the generation of vacuum diagrams

with mixed propagators, thus, it would have to be written from scratch. Alter-

natively, we can perform Wick contractions of the fundamental gauge �elds

in the perturbatively expanded correlation functions.�is approach does not

require a Feynman diagram generator but creates a huge amount of duplicate and

equivalent expressions, and also includes vacuum bubbles and scaleless integrals

that vanish in dimensional regularization. Care has to be taken for these instead.

In this work, we took the Wick-contraction approach.

In the next chapter our speci�c observable ∐︀Ẽ︀ is introduced, as well as the setup
to perform its calculation to NNLO. Finally, in chapter 12 the result with an

application to extract αs(mZ) is discussed.
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CALCULATION OF THE ACTION DENSITY

In this thesis we will compute the vacuum expectation value of the observable

𝒪 ∶= E(t,x) = 1
4
Ga

µνG
a
µν

to NNLO perturbative accuracy, corresponding to a three-loop calculation.�e

calculation is done in Euclidean space-time and dimensional regularization with

MS renormalization.�e result at NLO accuracy is known analytically.1 [154]

To perform the calculation of ∐︀Ẽ︀, one �rstly inserts the solution series for
Bµ(t,x) (eq. (10.4)) into

∐︀Ẽ︀ = 1
2
∐︀∂µBa

ν∂µB
a
ν − ∂µBa

ν∂νBa
µ̃︀+ f abc ∐︀∂µBa

νB
b
µB

c
ν̃︀+
1

4
f abe f cde ∐︀Ba

µB
b
νB

c
µB

d
ν ̃︀ .
(11.1)

Secondly, higher orders of the fundamental perturbative (QCD) vacuum are

taken into account as follows:

∐︀𝒪̃︀ = ∐︀0⋃︀𝒪 exp(−SQCD(g0))⋃︀0̃︀
∐︀0⋃︀ exp(−SQCD(g0))⋃︀0̃︀

, (11.2)

where SQCD is the interaction part of the fundamental QCD action, which
depends on the fundamental gauge �elds Aa

µ and quark �elds.

Since ∐︀Ẽ︀ includes at least two B �elds, it follows from the expansion of Bµ in

eq. (10.4) that to leading order ∐︀Ẽ︀ is proportional to g20 .�e next non-vanishing
term in the perturbative series is of order g40 , since odd powers in g0 vanish due
to an odd number of �elds in the matrix elements. At order g40 now also the
other terms in eq. (11.1) contribute.

1 We wish to thankMartin Lüscher for providing us his personal notes on the complete NLO cal-

culation, which helped us to li� a misunderstanding in the calculation of vacuum expectation

values.
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Generally, higher orders in the �ow�eld expansion (eq. (10.4)), lead to a larger

number of �owtime integrations, while the perturbative expansion (eq. (11.2))

leads to the well known corrections due to fundamental QCD. To be precise,

the B �eld, perturbatively expanded to order gn0 , Bµ,n, contains terms with n
fundamental gauge �elds and terms with a number of �owtime integrations

between [︂n⇑2⌉︂ and n − 1.

We symbolize the general form of a matrix element to be evaluated at order gn0
by

Mn(k,m) ∶= ∐︀0⋃︀(Bm1⋯Bmk) × (SQCD)
n−m⋃︀0̃︀ , m =

k
∑
i=1

mi , (11.3)

where Bm i is the m
th
i coe�cient of the asymptotic series in eq. (10.4). We choose

this classi�cation because our subsequent simpli�cations are applied for each

class of integrals Mn(k,m) separately.�is is advisable from a computational
point of view, since there is no overlap of equivalent integrals among those

classes, saving time for algorithms that do not scale linearly with the number of

integrals.

To get a feeling for these classes, let us recap: For our observable ∐︀E(t,x)̃︀,
k ∈ {2,3,4} thus denotes the second, third and fourth term in eq. (11.1). �e
number m tells us how many �owtime integrations will be involved, while n
denotes an expansion order in fundamental QCD.1

At LO, M2(2,2) is the only class that contributes, corresponding to just the
�rst term in eq. (11.1), with �ow�elds B expanded to the lowest order (being
proportional to A), and no additional QCD corrections. At NLO, there are six
classes with at most two �owtime integrations, and at NNLO twelve classes with

at most four �owtime integrations.

�is classi�cation inMn(k,m) also allows us to highlightMn(2,2), which is fully
and analytically determined by the expression for the (n − 2)-loop self-energy
of the fundamental gauge �eld. Since the gluon self-energy has been computed

before analytically, we can compare it to the result of our setup as a check of

correctness.

1 �e maximum number of �owtime integrations for integrals inMn(k,m) is m − k, and since
m ≤ n, the maximum number of �owtime integrations at order gn0 is n − 2. For a k-point
function, the maximum number of �owtime integrations is n − k.
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11.1 analytical calculation of flowtime integrals

In the end, the complete calculation has been performed numerically through

sector decomposition. Before coming to that, we would like to emphasize that

we have studied the feasibility of an analytical integration. Some reasons why

an analytical integration is not feasible with currently available methods for

usual Feynman integrals are given in this section. We will use dimensional

regularization with space-time dimension D = 4 − 2ε.

Stepping ahead a bit of the next section, where our setup for the perturbative

expansion is described, one �nally ends up with integrals of the following form

at order g60 :

I(t,ν,a,D) =
⎛
⎜⎜
⎝

N
∏
f=0

tupf

∫
0

dt f
⎞
⎟⎟
⎠
∫

p1 ,p2 ,p3

exp(∑k,i , j aki jtkpi p j)
p2ν11 p2ν22 p2ν33 p2ν44 p2ν55 p2ν66

(11.4)

where

ν = {ν1,ν2,ν3,ν4,ν5,ν6} , νi ≤ 3 ,
a = {aki j ∶ k = 1, . . . ,N , i = 1,2,3 , j = 1,2,3} ,

are sets of integers, N ≤ 4, t0 ≡ t, and the upper limits for the �owtime in-
tegrations are linear combinations of the other �owtime observables, tupf =
tupf (t0, . . . ,t f−1).�e momenta p4,p5,p6 are linear combinations of the integra-
tion momenta p1,p2,p3.

�e only mass scale in the problem (quark masses are neglected) is the �ow time

t, such that this scale completely factorizes as

I(t,ν,a,D) = tdc(ν,a,D) , d = 3D − 2N − 2
6

∑
i=1

νi , (11.5)

where c(ν,a,D) is dimensionless.

At this point it already becomes clear that direct Feynman parametrization of

the propagators through a formula like

1

Aα1
1 ⋯Aαn

n
= Γ(α1 + . . . + αn)
Γ(α1)⋯Γ(αn)

1

∫
0

du1⋯
1

∫
0

dun
δ(∑n

k=1 uk − 1)u
α1−1
1 ⋯uαn−1

n

(︀u1A1 +⋯ + unAn⌋︀∑
n
k=1 αk
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is not possible due to the additional exponential factor with momenta. �e

latter exponential factor prevents the subsequent integration over the momenta.

Instead, we have to use the Schwinger parametrization

1

An = 1

Γ(n)

∞

∫
0

dα αn−1
e
−αA

.

Applying it to each propagator, and handling numerator factors as in

1

p2n
= 1

Γ(n)

∞

∫
0

dα αn−1
e
−αp2

, p2n = d
n

dsn
e
sp2

∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀∫︀s=1
,

where n ∈ N, the momentum integration reduces to a Gaussian integral:

∫
p1 ,p2 ,p3

exp(︀−pTA(α,t)p⌋︀ = (detA(α,t))−D⇑2 (4π)−3D⇑2 ,

where p = (p1,p2,p3), and A(α,t) is a coe�cient matrix which is linear in
the Schwinger parameters α = {α1, . . . ,α6} and the �owtime variables t =
{t0, . . . ,tN}.

�rough a simple rescaling of the �owtime variables and the Schwinger parame-

ters to the unit interval,

tn →
tn
tupn
, αn →

αn

αn − 1
,

making them also dimensionless, one ends up with integrals of the form

J(t,D) =
1

∫
0

dx1⋯
1

∫
0

dxM ∏
i
Pa i
i (t,x1, . . . ,xM) , (11.6)

whereM > 0, the Pi are polynomials in x1, . . . , xM , and the exponents ai can be
D-dependent. In the limit 4 − D = 2ε → 0, the integrals develop divergences.

It is important to remark that divergences are not just introduced through the in-

tegrals over Schwinger parameters, but also through the �owtime integrations.

If one then performs all the simpli�cation steps, and steps to eliminate equivalent

integrals as described in the next section, the number of integrals involving f
�owtime integrals at NLO (NNLO) are given in table 11.2 (table 11.1). For now let
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us summarize that over 80% of the total number of integrals have three or four

�owtime integrations. Half of the total number have four.

What does that mean for our goal to calculate ∐︀Ẽ︀ analytically at three-loop
precision? We should at least be able to compute ‘most’ (also corresponding to

the most di�cult) integrals analytically. If only some small amount of simpler

integrals can be solved analytically, we could just solve all of them numerically.

Under this premise, we will have a look at various techniques, present them for

the two-loop case and discuss the feasibility for three loops. If one technique

does not apply to the integrals with three or four �owtime integrations, but

is barely applicable to one or two �owtime integrations, we do not consider it

further.

Let us �rst observe how two-loop integrals, where at most two �owtime in-

tegrations occur, can be solved analytically: just in the most simple way, by

performing Schwinger parametrization and subsequently doing the integration

in D dimensions in terms of hypergeometric functions. All integrals can then
be written down analytically in a 1⇑ε expansion.�e result is a sum of rational
numbers and logarithms of 2 and 3 for the �nite parts.

We can simplify the computation in few cases further by replacing numerator

momentum factors with a derivative with respect to a �owtime integration

variable:

t

∫
0

ds esX X =
t

∫
0

ds
d

ds
e
sX = esX ⨄︀

t

0
, (11.7)

where X contains momenta and possibly other �owtime integration variables;
the momentum integrations are not important for this example.

Let us de�ne ‘nested’ �owtime integrations for the following discussion: Higher

order expansions of the �ow�eld B are constructed iteratively from lower order
B �elds, such that the �owtime integration structure to a contribution to a fourth
order expansion B4 looks like

t

∫
0

ds1
s1

∫
0

ds2
s2

∫
0

ds3
s3

∫
0

ds4 f (s1,s2,s3,s4)

= t4
1

⨌
0

ds1 ds2 ds3 ds4 s31s
2
2s3 f (s1t, s1s2t, s1s2s3t, s1s2s3s4t) ,
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when scaled to unit intervals.�e integration intervals are interlinked by the

other integration variables, such that we call this a nested integration.

With more �owtime integrations, the exponential factor is considerably more

complicated in addition to the numerator �owtime factors for nested integrals.

In general, trying to use the trick in eq. (11.7) for one or even multiple derivatives

is not possible anymore for the three-loop integrals.

direct integration over flowtimes . What comes to our mind next

is a direct integration over �owtimes:

t

∫
0

ds esX = 1
X
e
sX ⨄︀

t

0
= e

tX −1
X

.

By doing this, we introduce new denominators1, thus providing no net bene�t

in the number of resulting parametric integrals a�er Schwinger parametrization.

In case of nested �owtime integrations, even higher propagator powers are

introduced in addition to a large increase of numerator terms.

two-loop example . For completeness, let us look at a two-loop example.

For the following example we perform the direct integration of the �owtime,

resulting in two terms:

t

∫
0

ds∫
p,q

e−s(p
2+q2)−(2t−s)(p+q)2

p2

= ∫
p,q

e−2t(p+q)
2

p2(p2 + q2 − (p + q)2) − ∫
p,q

e−t(p
2+q2+(p+q)2)

p2(p2 + q2 − (p + q)2) .

1 �e denominators, interpreted as propagators, correspond to linear propagators, like those

appearing in asymptotic expansions by regions



11.1 Analytical calculation of flowtime integrals 95

A�er Schwinger parametrization, this equation has the form

t

∫
0

ds
∞

∫
0

dα (4 ts − s2 + 2 tα)−D⇑2 =
∞

∫
0

dα
∞

∫
0

dβ (4 tβ − β2 + 2 tα)−D⇑2

−
∞

∫
0

dα
∞

∫
0

dβ (3 t2 + 2 tβ − β2 + 2 tα)−D⇑2 .

Doing the substitution β = s− t on the rightmost integral, we see that the original
integral has been restored:

t

∫
0

ds
∞

∫
0

dα (4 ts − s2 + 2 tα)−D⇑2

=
⎛
⎜
⎝

∞

∫
0

ds −
∞

∫
t

ds
⎞
⎟
⎠

∞

∫
0

dα (4 ts − s2 + 2 tα)−D⇑2 .

Our procedure of integration over the �owtime corresponds to extending the

�owtime integration interval up to in�nity, and subtracting the just added inter-

val again in terms of a new integral. It should be clear that in general we have

introduced new divergences that must cancel between both integrals.

Indeed, now trying to perform the integration for both parts shows divergences

that require additional regularization for a direct integration. Other integration

techniques introduce imaginary parts that cancel between both parts.

In fact, this is the general behavior when one integrates over the �owtime �rst:

�e momenta in the exponential function, pre�xed with �owtime integration

variable s, get pushed into the denominator as a new propagator by integration
over s.�ese momenta are then pushed back into the exponential function by
Schwinger-parametrization, this time integrated from 0 to∞.

integration by parts . One important technique, and essential require-

ment for approaches like dimensional recurrence relations or di�erential equa-

tions, but useful by itself, is integration by parts [217].

Clearly, integration by parts reduction can only be applied with respect to the

momentum integrations and not to the �owtime integrations. �e �owtime

integration variables have to be treated as external scales for the IBP reduction.
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What does this mean? Including t itself, the IBP reduction will at most include
�ve scales for three-loop integrals. �e sizes of the reduced expressions are

just too huge to be of any use. �e coe�cients, as rational functions of the

�ve scales, still have to be integrated over. Remembering that the �owtime

integrations themselves can lead to 1⇑ε poles, this makes it completely infeasible
for an analytical treatment.

Another caveat is that, even in the simplest cases with just one �owtime integra-

tion

t

∫
0

ds f (t,s) ,

where f (t,s) refers to the remaining (momentum) integrations, a�er an IBP
reduction of f (t,s), new unregularized poles in the �owtime integration are
introduced as in

t

∫
0

ds
f̃1(t,s)
t − s

+⋯ .

�ese new poles only cancel in the sum of all contributing reduced integrals f̃i
with complicated coe�cient functions in s.�is could be somewhat manageable,
but not for many (> 1) �owtime integrations, where even more complicated pole
structures are introduced.�e construction of a basis f̃i with �nite coe�cients for
D → 4 (like in ref. [448]) and no singularities introduced through the �owtime
integrations could be possible. But this does not help further the problem of

huge �ve scale coe�cients.

In principle one could try to do the integration over �owtimes, and do a subse-

quent IBP reduction of the integrals with high propagator and numerator powers.

�is reductionwould have to be done for a very large number of integrals, namely

for each integral with di�erent �owtime integrations and di�erent exponential

factors, leading to di�erent new linear propagators, for which the reduction has

to be performed. We did not follow this approach.

All techniques so far are withmore or less e�ort feasible to solve the two-loop case

with at most two �owtime integrations.�ese two-loop integrals are not even

a problem by direct integration of �owtime and Schwinger parameters. Going

to higher orders, the increased number of �owtime integrations makes them

unusable. Particularly, methods that rely on an IBP reduction are invalidated.
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mellin-barnes integration . By using the Mellin-Barnes representa-

tion of a propagator as in

1

(m2 − k2)λ = 1

Γ(λ)
1

2πi

+i∞

∫
−i∞

dz Γ(λ + z)Γ(−z) (m2)z
(−k2)λ+z ,

where the contour of integration is chosen such that the poles with a Γ(. . . + z)
dependence are separated from those with a Γ(. . . − z) dependence [216], we
can factorize a massive propagator in exchange for a general propagator power

λ + z.

Given our integral structure, we can only make use of the Mellin-Barnes rep-

resentation a�er Schwinger parametrization to transform a sum of integration

variables in the denominator into a product:

1

(x1 + . . . + xn)λ = 1

Γ(λ)
1

(2πi)n−1
+i∞

∫
−i∞

dz2 . . . dzn Γ(λ + z2 + . . . + zn)

× Γ(−z2) . . . Γ(−zn)xz22 . . . x
zn
n x−λ−z2−⋯−zn

1 , (11.8)

where xi can be Schwinger or �owtime integration parameters. A�er Schwinger
and �owtime integrations, all parameters 2ε = 4 − D, etc. are chosen in such a
way that for straight integration contours of theMB variables zi the arguments of
all gamma functions in the numerator are positive when crossing the real axis.1

One then tends ε → 0 and picks up crossed poles with their residues.

But �rst, theMB parametrization leads us to integrals of the form

∫ dz
∞

∫
0

dα αz+...
. . . ,

where the Schwinger parameter integration over αmust be performed. Obviously
the integral is divergent. We are required to introduce an arti�cial regularization.

�is can be a cuto� Λ for the α integration that is sent to∞ in the end. It seems
to work, as was checked for simple cases, but is not very elegant and leads to

more complicated series of residues for theMB integrals.

1 �is simple strategy of choosing the integration contour for the resolution of poles in ε is
known as ‘Strategy B’ [216]. See also ref. [216] for other strategies and detailed examples.
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Another idea is to regularize these integrals in the following way:

∞

∫
0

dx xa =
∞

∫
0

dx lim
δ→0

xa+δ(1 + x)δ

→ lim
δ→0

∞

∫
0

dx xa+δ(1 + x)δ = lim
δ→0

Γ(−2δ − 1 − a)Γ(1 + a + δ)
Γ(−δ) (11.9)

�e step ‘→’ is, of course, not allowed in general, but should be acceptable in our
case, as we know that the composite overall result is �nite / analytical in the δ
parameter. We can then use this regularization to integrate over the Schwinger

parameters and perform theMB pole resolution: the limits δ → 0 and ε → 0 are
taken, and all residues that are crossed are taken into account. In the results, δ
can be set to zero and we can expand in ε.

�is way of regularization was tested in simple two-loop cases with the help of

MB.m [449] and MBresolve.m [450]. We give one example as follows. Starting
with the Schwinger parametrized integral

F ∶=
t

∫
0

ds ∫
p,q

e−s(p
2+q2)−(2t−s)(p+q)2

(p + q)2 =
t

∫
0

ds
∞

∫
0

dα (2tα − 4ts − s2)−D⇑2 ,

we use eq. (11.8) to derive

F = 1

Γ(D⇑2)
1

(2πi)2
t

∫
0

ds
∞

∫
0

dα
i∞

∫
−i∞

dz2
i∞

∫
−i∞

dz3
(4ts)z2(−s2)z3
(2tα)D⇑2+z2+z3

× Γ(D⇑2 + z2 + z3)Γ(−z2)Γ(−z3) .

Performing the integration over �owtime and Schwinger parameters, while using

the regularization in eq. (11.9), we obtain

F →= lim
δ→0

1

Γ(D⇑2)
1

(2πi)2
i∞

∫
−i∞

dz2
i∞

∫
−i∞

dz3
(4t)z2(−1)z3(2t)−D⇑2−z2−z3

z2 + 2z3 + 1

× Γ(D⇑2 + z2 + z3)Γ(−z2)Γ(−z3)

× Γ(D⇑2 + z2 + z3 − 1 − 2δ)Γ(−D⇑2 − z2 − z3 + 1 + δ)
Γ(−δ) .



11.2 Numerical evaluation of the perturbative series 99

Using MB.m we found the following choices for straight contour lines: ε = 7⇑8,
δ = −3⇑8, Re(z2) = −1⇑2, Re(z3) = −1⇑8. Performing the continuations to zero
by taking crossed residues into account, taking the limit δ → 0, expanding in
ε, and subsequently performing theMB integrals by summing up residues, we
obtain the correct result:

F = 1
8

1

t2ε
− 1
8

−2 log (t) − 1 + log (3) − 4 log (2)
t2

.

More complicated cases require the evaluation of many-fold nested sums. A

numerical evaluation of the MB integrals is also possible. What prevents the

adaption to three-loop integrals is the number of terms x1, . . . ,xn in eq. (11.8).
�ey can easily grow beyond n = 20 for many propagators and �owtimes, thus
leading to ∼ 20+ fold Mellin-Barnes integrals. Even the construction of contours
for this amount of integrations and the introduction of regularizations for the

Schwinger integrations are not practical anymore.

11.2 numerical evaluation of the perturbative series

What will be sketched in this section, is our setup to perturbatively calculate the

observable ∐︀Ẽ︀ in eq. (11.1) to three-loop order (NNLO).�e perturbative order is
just one parameter of the setup, such that, in principle, even higher orders could

be calculated. Due to the already large number of di�cult integrals at NNLO, to

be evaluated numerically to a high precision, this would require a signi�cant

increase in computing resources.1 Also, the speci�c observable ∐︀Ẽ︀ is a simple
‘parameter’ which could be replaced by other vacuum expectation values. For

implementation details we refer to appendix A.

Except for the �nal numerical integration, all stages of the calculation are imple-

mented as a Mathematica [451] code. As already mentioned, we did not follow
a diagrammatic approach but directly implemented the Wick contractions of

gauge and quark �elds.�is step is performed a�er the iterative expansion of

the �ow�elds (eqs. (10.4) and (10.5)), the perturbative expansion of exp(−SQCD)
(eq. (11.2)), and the insertion of QCD Feynman rules.�e Dirac algebra is per-

formed with the package FeynCalc [452]. Color factors are calculated using

1 �e real limitation in the current implementation are the Wick contractions though, which

scale factorially with the number of involved �elds.
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ColorMath [453]. Vacuum bubble contributions are discarded as required by
the normalization factor in eq. (11.2).

A�er these algebraic and symbolic manipulations, we obtain the momentum

space integrals in the form of eq. (11.4). Since we did Wick contractions, we

now have many integrals that are equivalent under either renaming and/or

permutation of integration variable names, or linear transformations of the loop

momenta. We account for these possibilities using the Schwinger parametrized

form (eq. (11.6)), which is invariant under shi�s of loopmomenta, and comparing

term by term all permutations of integration variable names. Additionally, we

cancel numerator factors with denominators (propagators) as far as possible and

discard scaleless integrals, which vanish in dimensional regularization, using

the technique in ref. [454].

�ese simpli�cations (reductions) lead to a certain number of integrals, which

are given in table 11.2 for the NLO case and in table 11.1 for the NNLO case.�ey

are split according to the classi�cation de�ned in eq. (11.3) and according to

the number of �owtime integrations. Due to our exhaustive reduction steps, a

diagrammatic approach would lead to a similar amount of integrals.

To extract the terms that become singular for ε → 0, we use the sector decom-
position [210] implementation in the Mathematica package FIESTA [220]. It
provides us with the result in the form

J(t,D) = 1
ε2
J2 +

1

ε
J1 + J0 + . . . ,

Table 11.1: Number of integrals at NNLO (a) in classM6(k,m), and (b) involving
f �owtime integrations.�e numbers may not strictly be minimal; they are to be
understood as a reference, in particular in comparison to the NLO numbers given

in table 11.2.

k 2 3 4
Σm 2 3 4 5 6 3 4 5 6 4 5 6

# 24 45 219 683 2244 13 43 110 244 5 7 14 3651

(a)

f 0 1 2 3 4 Σ

# 42 117 412 1229 1851 3651

(b)
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Table 11.2: Number of integrals at NLO (a) in classM4(k,m), and (b) involving f
�owtime integrations.�e numbers may not strictly be minimal; they are to be

understood as a reference, in particular in comparison to the NNLO numbers given

in table 11.1.

k 2 3 4
Σm 2 3 4 3 4 4

# 1 4 11 1 2 1 20

f 0 1 2 Σ

# 3 7 10 20

(a) (b)

where the ellipsis denotes higher order terms in ε. Ji(t) are convergent integrals
over rational functions times logarithms of the integration parameters x1, . . . ,xM ,
as in eq. (11.6). We prevented FIESTA from performing this integration, and
rather used our own implementation of the fully symmetric Genz-Malik rule

of order 13 [455] in a global adaptive bi-sectioning [456].�e implementation

uses high precision arithmetics using the C++ MPFR wrapper MPFR C++ [457,
458].

non-linear transformations . An attractive alternative or comple-

mentary approach to sector decomposition for the subtraction of singularities

are non-linear transformations [221]. �ese have, in principle, the advantage

that no iterative decomposition into more and more sub sectors is necessary to

get a form of the integrands suitable for a subtraction.

One problem with these transformations is that an algorithmic automatization

has not been achieved yet. We could only handle a subset of integrals with

this approach in an automatized way. It also turned out that for our integrals

the numerical integration did not improve signi�cantly over plain sector de-

composition. We thus abandoned this idea and completely switched to sector

decomposition.

remarks on numerical integration . �e sector decomposition

implementation FIESTA with option SeperateTerms=False will return one
integrand expression for each obtained sector by default. One can then integrate

these integrands and compare the integration result and errorwith the case of split

up integrands, where the splitting is such that terms with di�erent denominator

pole structures and di�erent logarithmic numerator structures are separated.
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It turned out that a splitting is not ultimately necessary to get a high precision

result, but the estimate for the numerical integration error can be severely overes-

timated in the case of combined terms.�e errors for the split terms, as used for

our �nal result, are usually overestimated by a factor of one to ten.�ey can dri�

to an underestimation for single cases if the integration runs for too long.�en,

the global adaptive bi-sectioning algorithm reaches too far into the singular (but

integrable) border regions. It is clear that at some point an integration based on

polynomial interpolation is ine�cient in these regions. Ways to li� this singular

behavior like Iri-Moriguti-Takasawa (IMT) transformations [459, 460] did not

show improvements.

For our �nal result of ∐︀E(t)̃︀, a huge number of integrals has been evaluated,
some for which the error is underestimated, and many for which the error is

overestimated. We checked that our error estimation is conservative, as elab-

orated in the next section, where we give validating checks of our setup and

result.

Let us give the explicit result for one particular non-trivial momentum integral of

the type in eq. (11.4) which occurs in the calculation of ∐︀Ẽ︀. It has four �owtime
integrations and thus belongs to the class M6(2,6). Furthermore, from the
�owtime integration limits, we see that it originates from the iterated insertion

of four three-point �owtime vertices X(2,0):

∫
k,q,r

t

∫
0

ds0
s0

∫
0

ds1
s1

∫
0

ds2
s2

∫
0

ds3
(k + q)2(k + r)2
(k − q)2(q − r)2×

exp )︀2r(r−q)(s0+s3)+2kr(s0−s1)+2kq(s1−s2−2t)+2k2t+2q2(s2+t)⌈︀

= t−2+3ε

(4π)3D⇑2
(−0.858906438(2) + 0.0078125

ε2
− 0.0037791975(3)

ε
) .

(11.10)

�e numerical result in the last line is obtained by following the evaluation

procedure described above.�e numbers in brackets indicate the integration

error; for the 1⇑ε2 terms we were able to perform the integrals analytically, for
which we simply quote the �rst few digits of its numerical value.�e precision

of order 10−9 as quoted in eq. (11.10) for the 1⇑ε0-term corresponds to about 250
CPU minutes on an 3 GHz AMD A8 processor; a precision of 10−6(10−4) could
be achieved within about ten (two) minutes.�e CPU time for the 1⇑ε term is
typically several orders of magnitude smaller.
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11.3 validation of the calculation

We successfully completed the following checks for the validity of our calcula-

tion.�ey also provide proof that our numerical integration error estimation is

conservative.

lower order results . It is important to note that our calculation does

not rely on any of the results of refs. [154, 155]. �e fact that we reproduced

the NLO results evaluated in these papers is therefore an important check of the

setup in general. Since the NLO result is known analytically, we can use it also to

cross check the numerical accuracy claimed by our integration routine. We �nd

rather conservative estimates, and our numerical result agrees with the analytical

expression through 10−15.

renormalization : subtraction of uv-poles . �e terms of order

1⇑ε2 and 1⇑ε obtained in our three-loop calculation need to be canceled by the
corresponding terms due to the renormalization of the strong coupling at lower

orders. We verify this cancellation by analytical integration for the 1⇑ε2 terms,
and numerically through one part in 1010 for the 1⇑ε terms.

�e cancellation of poles is equivalent to the renormalization group (RG) invari-

ance of the �nal result:

µ2
d

dµ2
∐︀E(t)̃︀ = 0 ,

where µ is the renormalization scale. ∐︀E(t)̃︀ depends on µ implicitly through
αs(µ), and explicitly through terms of the form log(µ2t), since t is the only
physical scale for our quantity. Knowing the logarithmic dependence in µ is
then equivalent to knowing the one in t. �e latter is directly obtained from
expanding eq. (11.5) for ε → 0, while the former follows from RG-invariance and
can be derived from lower order terms through the perturbative solution of the

QCD renormalization group equation:

µ2
d

dµ2
αs(µ) = αs(µ)β(αs) , β(αs) = −∑

n≥0
βn (

αs

π
)
n+1
,
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leading to

αs(q) = αs(µ)
⎨⎝⎝⎝⎝⎪
1 + αs(µ)

π
β0 ln

µ2

q2
+ (αs(µ)

π
)
2

⌊︀β1 ln
µ2

q2
+ β20 ln

2 µ2

q2
}︀ + . . .

⎬⎠⎠⎠⎠⎮
,

with the �rst two coe�cients of the β function given by

β0 =
11

4
− 1
6
N f , β1 =

51

8
− 19
24

N f ,

where N f is the number of active quark �avors. If we then quote our result for

the physical choice µ = 1⇑
⌋︂
8t, the full dependence on µ and t can be easily

reconstructed.

two-loop gluon propagator . As already pointed out above (see the

discussion a�er eq. (11.3)), one class of integrals, namely Mn(2,2), stemming
from the �rst two terms in eq. (11.1), with �ow�elds of the lowest order Ba

µ,1
inserted, is fully determined by the fundamental gluon self energy D(p)µν.

Adopting the notation of ref. [154], we may write for SU(N)

ℰ0 ≡
g20
2
∐︀∂µBa

1,ν∂µB
a
1,ν − ∂νBa

1,µ∂νBa
1,µ̃︀

= 1
2
g20(N2 − 1)∫

p

e
−2tp2(p2δµν − pµpν)D(p)µν , (11.11)

where D(p)µν denotes the unrenormalized full gluon propagator and reads

D(p)µν =
1

(p2)2 {
p2δµν − pµpν

1 − ω(p) + pµpν(︀ ,

ω(p) =
∞

∑
k=1

g2k0 (p2)−kε ω̃k e
−kεγE

(4π)kD⇑2
.

�e perturbative expansion of eq. (11.11) can be calculated analytically. �e
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coe�cients ω̃i can be taken from literature.
1 In Feynman gauge, they read

ω̃1 = CA (
5

3ε
+ 31
9
) − N f TR (

4

3ε
+ 20
9
) +𝒪(ε) ,

ω̃2 = −C2A (
25

12ε2
+ 583
72ε

+ 14311
432

− ζ(3) − 25
12

ζ(2))

+ 2N fCFTR (
1

ε
+ 55
6
− 8ζ(3))

+ 2N fCATR (
5

6ε2
+ 101
36ε

+ 1961
216

+ 4ζ(3) − 5
6

ζ(2)) +𝒪(ε) ,

whereCA andCF are the SU(N)Casimir operators, TR is the trace normalization
(in QCD CA = 3, CF = 4⇑3, and TR = 1⇑2 as commonly used). ζ(z) is Riemann’s
zeta function.

Comparing the result ℰ0 obtained analytically in this way with our numerical
result, we �nd agreement at the level of one part in 108, and observe that the

error for the �nite part is overestimated by a factor of �ve.

derivatives in the flowtime . For an integral of the form I(t,a,ν,D),
as in eq. (11.4), we can compute the derivative with respect to t in two ways: either
by applying it to the integrand on the l.h.s. of eq. (11.4) and then calculating the

resulting integrals with our setup, or by using eq. (11.5), which implies

t
d

dt
I(t,a,ν,D) = d ⋅ I(t,a,ν,D) ,

with d given in eq. (11.5). We have con�rmed the equivalence of both approaches
in our setup for some of the most complicated integrals at the level of one part

in 1010.

gauge parameter independence . Our setup allows us in principle

to perform the calculation for arbitrary gauge parameter α0 ≠ 1 (see eq. (10.2)).
We have con�rmed general α0-independence at NLO, where the number of
terms to be evaluated increases by about a factor of ten compared to the case

α0 = 1. At NNLO, however, with a choice of α0 ≠ 1 the number of terms makes it
impractical to e�ciently generate, reduce and integrate the resulting integrals

1 Two-loop calculations of the gluon propagator were �rst reported in [461–464]; we use the

result quoted in [465] here.
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with meaningful precision in reasonable time. A much more practical way,

though still powerful, is to perform an expansion around α0 = 1 and consider
only the term of �rst order c1δα0 as in:

∐︀Ẽ︀ = ∐︀Ẽ︀ ⋃︀α0=1 +c1δα0 + . . . + cn(δα0)n , δα0 = (α0 − 1).

Since α0 appears in a non-polynomial way in eq. (10.8), in�nitely many terms
contribute.

In this way, the number of integrals contributing to c1 increases again only by a
factor of ∼ 10 with respect to ∐︀Ẽ︀ ⋃︀α0=1. We �nd gauge parameter independence
of the NNLO result for ∐︀Ẽ︀ at𝒪(δα0) through 10−3 for the �nite term and 10−10
for the 1⇑ε pole terms.�e reported integration error for the �nite terms is two
times larger than the result. Assuming that gauge invariance indeed holds we

can conclude for a conservative error estimate by this fact.
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Having calculated the integrals at order 1⇑ε2, 1⇑ε and 1⇑ε0 we renormalize the
bare coupling g0 in theMS scheme with an associated renormalization scale µ
according to [397, 466]

g20 = g2µ2ε(4π e−γE )−ε {1 + b0
g2

(4π)2 + b1
g4

(4π)4 +𝒪(g
6)(︀ , (12.1)

b0 =
−11
3

+ 2
3

N f

ε
, b1 =

121

ε2
− 51

ε
− 44
3

N f

ε2
+ 19
3

N f

ε
+ 4
9

N2f
ε2
. (12.2)

We write our result for the vacuum expectation value of the action density as

ℰ ∶= t2 ∐︀E(t)̃︀ = 3αs

4π
(1 + αsk1 + α2s k2) , (12.3)

where αs ≡ α(N f )
s (µ) is the strong coupling renormalized at the scale µ with

N f active quark �avors, which are assumed massless. We also set µ = 1⇑
⌋︂
8t to

obtain the perturbative coe�cients k1 and k2 as in eq. (12.4). With respect to
the interpretation of

⌋︂
8t as the gauge �eld smoothing range, q8 ≡ 1⇑

⌋︂
8t is a

natural choice for the central value of µ. We �nd

k1 = 1.097787 + 0.0075552N f ,

k2 = −0.98224(5) − 0.069913(2)N f + 0.00187223N2f .
(12.4)

�e NLO coe�cient k1 has been obtained analytically in ref. [154], the NNLO
coe�cient k2 is our main result here. �e numbers in brackets denote the
numerical uncertainty. For the N2f -term in k2 the analytical result is known
through the NNLO gluon propagator.�us, for k1 and the k2 N2f -term we simply
quote the �rst few digits of their numerical values.
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�e result for a general simple Lie-algebra reads

t2 ∐︀E(t)̃︀ = 3αs

4π
NA

8
(1 + αsk1 + α2s k2) ,

k1 = 8 ⋅ (0.045741114CA + 0.001888798TRN f ) ,
k2 = 8 ⋅ ( − 0.0136423(7)C2A

+ TRN f (0.006440134(5)CF − 0.0086884(2)CA)
+ T2RN

2
f 0.000936117) ,

where, as aforementioned, CA and CF are the Casimir operators of the adjoint

and fundemental representations, respectively, TR is the trace normalization,
and NA is the dimension of the adjoint representation. For SU(N) the identities
CA = 2TRN , CF = TR(N2 − 1)⇑N and NA = N2 − 1 hold.

Since this is a one-scale problem, one can reconstruct the full logarithmic de-

pendence of µ and t through the QCD renormalization group equation (see
paragraph about renormalization in section 11.3).

12.1 perturbative uncertainty of t2 ∐︀E(t)̃︀

In �g. 12.1 we show the e�ect of a µ variation for di�erent values of the �owtime
t. Since t has the unit of inverse energy squared (1⇑GeV2), we rather use q8 =
1⇑
⌋︂
8t as a representative for t, which has the unit GeV. �e value of α(N f )

s (µ)
is derived from the reference input value α(5)s (mZ) = 0.118 [130] as follows. We
perform a four-loop running [396, 397] down to α(3)s (µc), where µc = 2mc =
2 × 1.67GeV, while the bottom and charm quark thresholds µb = 4.78GeV
and µc , respectively, are crossed with three-loop on-shell decouplings1, 2 [250].
Additionally, we evolve to µ = q8 with four loops.�is value is our input starting
value for αs at the physical scale q8 for the observable. For the variation of µ
around q8, we run up and down with (one, two and three) loops for the (LO,
NLO and NNLO) perturbative expansions of t2 ∐︀E(t)̃︀ to obtain the curves.�is
procedure is also depicted in �g. 12.2.

1 Public codes for running and decoupling are available through refs. [467, 468], for example.

2 Consistency for n loop running only requires n − 1 loop decoupling relations. Four-loop
decoupling relations are available in refs. [253, 254].
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Figure 12.1: t2 ∐︀E(t)̃︀ forN f = 3 as a function of µ⇑q8 for various values of q8 at LO
(black dotted), NLO (orange dashes), NNLO (red solid). All curves are normalized

to the NNLO result at µ = 3q8. Note the di�erent scales for each plot.
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α(5)s (mZ) = 0.1180

α(5)s (100GeV) = 0.1164

α(5)s (5GeV) = 0.2131

α(5)s (mb) = 0.2159

α(4)s (mb) = 0.2153α(4)s (4GeV) = 0.2284

α(4)s (2mc) = 0.2436

α(3)s (2mc) = 0.2360

α(3)s ( 1
1.6
GeV) = 1.415α(3)s (1GeV) = 0.4866
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GeV) = 0.6886 α(3)s ( 1

1.5
GeV) = 0.9848

α(3)s (10GeV) = 0.1662

α(3)s (100GeV) = 0.1043

Figure 12.2: Evolution of αs from the input value α(5)s (mZ) as in ref. [444]. Solid
arrows denote four-loop RG evolution, dashed arrows three-loop decoupling of

heavy quarks.

As expected, as long as the energy scale q8 is not too small, the dependence
on µ decreases signi�cantly with increasing loop order. Going toward values
below q8 = 1GeV, we see the breakdown of the perturbative expansion, where
αs approaches a numerical value of one.�e minimum energy allowing still a

quantitative prediction is around q8 ∼ 0.7GeV, corresponding to a distance of
about 0.3 fm. For lower energies the uncertainty at NNLO becomes of the order

of 100%.

Let us remark that in any case the NNLO result exhibits a maximum for about

µ = 1.15q8, which is especially pronounced at small energies. Because of this and
the fact that varying µ below q8 for small q8 will reach into the non-perturbative
regime, we estimate the perturbative uncertainty through µ variation between
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1.15q8 and 3q8. We de�ne the relative uncertainty of ℰ = t2 ∐︀E(t)̃︀ as

∆ℰ
ℰ = ℰ(µ = 1.15q8) − ℰ(µ = 3q8)ℰ(µ = 1.15q8) + ℰ(µ = 3q8)

. (12.5)

With this de�nition we get uncertainties for q8 = 1 GeV, 3GeV and 100GeV as
written in table 12.1. Clearly there is a large improvement going from LO to NLO

and then to NNLO, allowing for quantitative predictions even at lower energies.

Plotting t2 ∐︀E(t)̃︀ as a function of 1⇑q8 =
⌋︂
8t at LO, NLO and NNLO with bands

displaying the variation of µ between 1.15q8 and 3q8, we obtain �g. 12.3.�e
input value is derived as above, that is, we start with α(5)s (mZ) = 0.118 from
which we derive α(3)s (q8) by four-loop running and three-loop matching (see
�g. 12.2). One observes that the NLO and NNLO bands nicely overlap, which

gives con�dence in using these bands to measure the theoretical uncertainty. At

LO though there is hardly any overlap with the other bands. At q8 = 1⇑1.7GeV
the four-loop evolution of αs from mZ to q8 breaks down.

Table 12.1: Uncertainties for t2 ∐︀E(t)̃︀ obtained by a µ variation between 1.15q8
and 3q8 following eq. (12.5) for di�erent values of q8 = 1⇑

⌋︂
8t.

loops q8 = 1GeV q8 = 4GeV q8 = 100GeV
one 23.3 12.7 6.6

two 22.8 8.2 2.5

three 10.9 2.6 0.4
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Figure 12.3: t2 ∐︀E(t)̃︀ for N f = 3 as a function of
⌋︂
8t (in GeV−1) for µ = 3q8

(lower) and µ = 1.15q8 (upper) at LO (gray), NLO (orange), and NNLO (red).

12.2 extraction of αs

To our knowledge, one of the most interesting applications of our result could

be the determination of αs(mZ) using lattice data as input. t2 ∐︀E(t)̃︀ can be
computed in latticeQCD relatively easily to a high precision and can also be used

for a running coupling de�nition. By means of a technique called step scaling

[151] it can even be calculated in principle to high energies, reaching into the

perturbative regime accessible from our result [159, 162, 447].
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�e idea is to solve the following equation for αs(µ):

e(t) != t2 ∐︀E(t)̃︀ = 3αs

4π
(1 + αsk1 + α2s k2) , (12.6)

where e(t) is assumed to be t2 ∐︀E(t)̃︀ obtained non-perturbatively (latticeQCD)
with a high precision, while the right hand side is our perturbative NNLO result.

By solving this equation for α(N f )
s (µ), we can extract αs at the renormalization

scale µ in the N f -�avor scheme. Evolving it perturbatively up to mZ , we extract

the reference value α(5)s (mZ). For our NNLO result and N f = 3, the evolution
is performed with three-loops, and matching is performed at the charm and

bottom thresholds, speci�ed as above, with two-loops. For lower order results of

t2 ∐︀E(t)̃︀ the running and matching is performed with correspondingly fewer
loops.�e uncertainty can be estimated by varying the extraction scale.�at

means that we �rst solve the equation for our central value of µ = q8 and evolve
α(3)s (µ = q8) to µ = mZ .�en, for the error estimation we additionally solve it

for values of 1.15q8 and 3q8 and again evolve the coupling to µ = mZ . In each

case we take into account the matching at the charm and bottom thresholds, of

course.

Since we do not have a lattice QCD result at hand, we assume a value for e(t).
We choose it to be our perturbative NNLO expression for t2 ∐︀E(t)̃︀ at µ = q8
and N f = 3, where the numerical value for α(3)s (q8) is derived by three-loop
running and two-loop matching (µb = mb, µc = 2mc) from the input value

α(5)s (mZ) = 0.118.

�e result of this procedure is shown in �g. 12.4. By construction, the red NNLO

band always includes the value 0.118. �e uncertainty value is calculated by

taking the relative width of the bands of the plot:

∆αs

αs
= αmaxs (mZ) − αmins (mZ)

αmaxs (mZ) + αmins (mZ)
. (12.7)

Similarly to t2 ∐︀E(t)̃︀ in �g. 12.3, the width of the bands decreases remarkably
toward higher orders of perturbation theory, and the NNLO band lies completely

within the NLO band, while LO has no overlap with NLO. If e(t) was given at
q8 = 10GeV, the NNLO uncertainty on αs(mZ) would be about one percent.
Trying to reachworld average accuracy of 0.5% on αs(mZ) requires an extraction
at about q8 = mZ .

Once one reaches sub percent accuracy of this leading uncertainty source, that
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Figure 12.4: Upper plot: numerical value for α(5)s (mZ) derived at LO (gray), NLO
(orange), and NNLO (red) from a hypothetical exact value of t2 ∐︀E(t)̃︀. Lower plot:
corresponding theoretical uncertainty (see eq. (12.7)).
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is the perturbative truncation of t2 ∐︀E(t)̃︀, one also has to consider sub-leading
uncertainties like the decoupling scheme dependence. While we decoupled

and coupled the heavy quarks with on-shell masses in the on-shell scheme, we

checked that changing the scheme toMS withMSmasses has an impact of only

a few per mill.�is only becomes relevant if the extraction takes place at values

q8 ∼ mZ . Also the variation of the charm and bottom decoupling scales has to

be accounted for then. Lastly, non-perturbative e�ects for αs ≃ 1 could become
important for energies reaching as low as the charm quark mass.

�e uncertainty for e(t) obtained from lattice QCD is expected to be small, but
will also have to be considered.

12.3 summary and outlook

We calculated the action density ∐︀Ẽ︀ for the QCD gradient �ow at three-loop
(NNLO) level. We used Wick contractions to derive the integrals in the pertur-

bative expansion.�e integrals were regularized in dimensional regularization,

and pole terms for D → 4 were separated by sector decomposition. A�erwards,
the resulting �nite integrals were evaluated with a high precision integration

routine. A validation of the result through a number of strong checks has been

performed.

�e expansion of ∐︀Ẽ︀ up to NNLO shows a well converging perturbative series
down to scales of about q8 ∼ 0.7GeV. We showed that an extraction of αs
is possible at percent or sub-percent accuracy when lattice QCD results for a

comparison reach energy scales q8 of a few GeV.�is seems well within reach
of current means.

Inclusion of quark mass e�ects, induced by quark loops from fundamental

QCD, could become important for smaller energies q8 or in the vicinity of quark
thresholds. �is could become one of the next tasks. �e application of the

�ow equation to quark �elds [156] itself might also be interesting to consider

perturbatively.

�ough in principle our setup has no limitation to three loops, for a higher
number of loops, �rstly, the Wick contraction approach becomes impractical,

which could be overcome by a diagrammatic generation of integrals. Secondly,

the number of integrals increases considerably, and a reduction to a small number
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of master integrals does not seem feasible. With a diagrammatic approach the

N
3
LO calculation via sector decomposition is not out of reach though.



A
DOCUMENTATION OF THE GRADIENT FLOW SETUP

�is appendix serves as a documentation of the perturbative gradient �ow setup,

developed for the calculation of t2 ∐︀E(t)̃︀ at NNLO using Wick contractions and
sector decomposition. �e aim is, �rstly, to give an overview of the setup to

someone who would want to use it to reproduce the results and, secondly, to

give a general impression of methodologies and implementation details.

�e �rst part of the setup, the generation of the momentum integral expressions,

up to obtaining the sector decomposed parameter integrals, is implemented in

Mathematica 7 [451].�e second part, consisting of the numerical integration
of such obtained integrals, is performed by a C++ integration routine and a light

wrapper, written in Haskell, to manage the huge amount of integrals and �les.

Since each integrand is compiled as a simple function in a library, the wrapper

allows for choosing di�erent integration routines and precision goals.

a.1 generation of momentum integrals

�e code for the perturbative expansion step is completely contained in the

�les FlowfieldExpansion.m, FlowUtilities.m, Reduction.m and FInte-
grate.m. Usually all �les should be included in a notebook to work with the
setup. A global variable $FlowBaseDir speci�es the output directory for inter-
mediate and result �les.

We have discussed in section 11.1 that IBP reduction does not help in the gradient

�ow calculation since integral coe�cients develop new unregularized singu-

larities in the �owtime integrations. Nevertheless, with the help of FIRE4 and
functions in IBP.m, an IBP reduction can be performed.
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a.1.1 Expansion in fundamental gauge �elds

In the �rst step, the perturbative expansion of ∐︀Ẽ︀ in terms of vertex functions
and fundamental �elds is performed in the function

IntegralsA[numA_,order:6,numB_:{2,3,4}],

where numB is a set of di�erent k in the categorization Mn(k,m) in eq. (11.3),
order denotes the expansion order n in the gauge coupling gn0 , and numA corre-
sponds to m – it speci�es how many fundamental gauge �elds A, obtained from
the expansion of the �ow�elds B in terms of A’s, should be kept.

�e observable ∐︀E(t)̃︀ in IntegralsA is expressed as

1 1/2*Diff[Bn[nu, a, p], mu] * Diff[Bn[nu, a, q], mu] * MomInt[p, q]
2 - 1/2*Diff[Bn[nu, a, p], mu] * Diff[Bn[mu, a, q], nu] * MomInt[p, q]
3 + ColorMath`f[a, b, c] * Diff[Bn[nu, a, p], mu] * Bn[mu, b, q] *
4 Bn[nu, c, r] * MomInt[p, q, r]
5 + 1/4*ColorMath`f[a, b, e]*ColorMath`f[c, d, e] *
6 Bn[mu, a, p] * Bn[nu, b, q] * Bn[mu, c, l] * Bn[nu, d, m]*
7 MomInt[p, q, l, m],

where themeaning of the individual expressions should be clear from the general

context. If numB contains only 2, then only the �rst two terms with two Bn �eld
expressions are taken, otherwise if numB contains 3 (4), also the third (fourth)

terms are taken. In principle any other observable can be implemented here.

�e �ow�elds Bn[mu,a,p] are replaced by a sum g0^i Bexp[i,mu,a,p] for
i = 1, . . . ,order − 1 as the �rst terms in the recursive B-�eld expansion. �e
derivatives are taken into account as in

Diff[Bexp[n_,mu_,a_,p_],nu_] -> I*FVD[p,nu]*Bexp[n,mu,a,p],

where FVD[p,nu] speci�es the four-vector pν. Subsequently, the perturbative

expansion in the fundamental QCD vacuum is performed bymultiplying with

Exp[g0*3GluonVertex + g0*QuarkGluonVertex +
g0*GhostGluonVertex + g0^2*Gluon4Vertex],

and expanding the whole expression up to the order speci�ed as argument to

IntegralsA.�e vertex factors are expressed in terms of the fundamental �elds,



A.1 Generation of momentum integrals 119

Dirac delta functions, metric tensors (MTD) and color factors as follows:

1 Gluon4Vertex := -1/4*
2 Module[{mu, mup, nu, nup, a, ap, b, bp, c, cp, p1, p2, p3, p4},
3 DiracDelta[p1 + p2 + p3 + p4]*MTD[mu, mup]*MTD[nu, nup]*
4 ColorMath`\[Delta\][a,ap] * MomInt[p1, p2, p3, p4] *
5 ColorMath`f[a,b,c] * ColorMath`f[ap,bp,cp]*
6 A[mu, b, p1] * A[nu, c, p2] *
7 A[mup, bp, p3] * A[nup, cp, p4]];
8

9 Gluon3Vertex := -I*
10 Module[{p1, p2, p3, a1, a2, a3, mu1, mu2, mu3},
11 MomInt[p1, p2, p3]*DiracDelta[p1 + p2 + p3]*
12 ColorMath`f[a1, a2, a3]*
13 FVD[p1, mu2]*MTD[mu1, mu3]*
14 A[mu1, a1, p1] * A[mu2, a2, p2] * A[mu3, a3, p3]];
15

16 GhostGluonVertex := -I*
17 Module[{p1,p2,p3, a,b,c, mu3},
18 MomInt[p1,p2,p3]*DiracDelta[p1+p2+p3]*
19 ColorMath`f[a,b,c]*(FVD[p2,mu3]+FVD[p3,mu3])*
20 A[mu3, b, p3] * NC[AntiGhost[a,p1], Ghost[c,p2]]];
21

22 QuarkGluonVertex :=
23 Module[{p,a,mu, ci,cj, i,j, q,r},
24 A[mu,a,p]*NC[AntiQuark[i,ci,q],Quark[j,cj,r]]*
25 DiracGammaC[mu,i,j]*ColorMath`t[{a},ci,cj]*
26 MomInt[p,q,r]*DiracDelta[p+q+r]];

In the end of the function, only terms that contain numA fundamental gauge
�elds from the B-expansion are returned by counting the n’s from the multiple
Bexp[n,mu,a,p] expressions for all terms. �e placeholder B-�eld expres-
sions Bexp[n,mu,a,p], to be evaluated up to order n, are then replaced by
B[n,mu,a,t,p].�e latter are implemented as the recursive expansion of the
�ow�eld up to order n in terms of expressions like MomInt[p,q,..], repre-

senting momentum integrations, Dirac delta functions DiracDelta[p+q,...],

�ow�eld vertices X20[p,q,r,a,b,c,mu,nu,rho] and X30[...] (eq. (10.6)),
K[mu,nu,t,p] (eq. (10.8)), gauge �elds A[nu,a,p], as well as factors represent-
ing �owtime integrations FInt[s,0,t].

Remark:�e uniqueness of integration variables and indices is ensured by using

initially module scoped variables in the returned expressions, as in the de�nition

of the vertices above, for example.
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a.1.2 Simpli�cations and reductions

�e next steps are performed in ProcessInts[expr_, file_,loops_:3],
where expr denotes the expressions obtained from IntegralsA, file is an
output �lename to which the �nal results will be written with the Mathematica
function Export, and loops is the number of loops, a parameter which helps to
eliminate vacuum bubble terms a�er evaluation of the delta functions.

ProcessInts calls step by step NewFullExpand, LightCanonicalizeTerms,
CancelPropagators, CanonicalizeTerms, then ZeroScalelessIntegral,
and �nally PermutationDuplicates on the sum of integrals. In the following
subsections these functions are explained.

Wick and other contractions

�e function NewFullExpand[expr_,loops_:3] applies the following actions
on the integrals:

• PerformWick contractions of gauge and fermionic �elds (quarks, ghosts)

with the functions MultiWick and FermiWick (implemented for any
number of �elds, giving (2n − 1)!! terms for n involved �elds). For ex-
ample, gauge �eld Wick contractions lead to expressions of the form

MTD[mu,nu]*DiracDelta[p+q]*Prop[p] times a color factor, where
MTD[mu,nu] corresponds to the metric tensor gµν ≡ δµν and Prop[p] to
a propagator term 1⇑p2.

• Combine multiple MomInt, Prop, DiracDelta factors in each summand
with ContractLabels to sequence arguments, for example as in
Prop[a_]*Prop[b_] -> Prop[a,b].

• Evaluate expressions like DiracDelta[k1,..,kn] * MomInt[p,q,..]
with the function EnforceDelta by trying to solve the system {k1 =
0, . . . ,kn = 0} for all appearing momentum variables in MomInt. Subse-
quently, the momentum replacements are done in the integral expression.

• Filter trivial vacuumbubbles by removing remaining termswith the wrong

number (≠ loops) of momentum integrations.
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• Calculate gamma matrix traces (with FeynCalc [452]) and insert factors
of N f for each trace.

• Insert the vertex expressions for K, X20, X30 in terms of metric tensors
MTD[mu,nu], four vectors FVD[p,rho], color factors and exponential
factors Exp[-t*p^2].

Remark: If we want to calculate the �rst term in the expansion of the gauge

parameter α0 around 1, we insert additional factors for K and X20 here.

• Calculate color factors in OnlyColorSimplify with ColorMath [453]
wrapped in a memoization function that stores previously computed color

factors.

• Contract metric tensors and four vector expressions. Scalar products p ⋅
q are represented as Pair[Momentum[p,D],Momentum[q,D]] to match
FeynCalc syntax, although the contractions are performed independently
for performance reasons.

At this point the momentum integral expressions are in a syntactic form that

can be directly used to generate the Schwinger parameter representation. But

before we do this, we apply a series of further reductions that will completely

eliminate duplicate integrals which are equivalent under renaming of dummy

names and under linear shi�s inmomenta. Furthermore, wewill remove scaleless

integrals.

Cancellation of numerators with propagators

�e �rst large step in the simpli�cations is to cancel numerator terms with

propagators. Before that, we apply a ‘light’ reduction of integrals as follows.

Firstly, LightCanonicalizeTerms, called with the integrals as argument, re-
names all dummy names (like p$4320, a$921, etc. frommodule scope) with the
functions SimplifyNames and SimplifyMomNames to well de�ned sets: all �ow-
time integration variables are taken from the set {s,u,s2,s3}, Schwinger parame-
ters (to be introduced later) from {α,β,γ,δ,ε, . . .}, and momentum names from
k,q,r. Secondly, it factors expressions like Exp[..], FInt[..], Prop[..] into
an argument of a new functionIntegral[Exp[..] FInt[..] Prop[..] ..],



122 A Documentation of the gradient flow setup

such that only prefactors independent of the integration remain outside.�rough

the function ReduceCanonical, integrals are reduced as in the replacement

a_*Integral[x_] + b_*Integral[x_] :> Simplify[a+b]*Integral[x],

but considerably faster.

Finally, CancelPropagators is used to cancel numerator factors with propa-
gators. It relies on a few auxiliary functions, explained in what follows. First

o�, CancelPropagators acts as expected: it takes a momentum integral and
cancels all numerator scalar products against a constructed propagator basis

as far as possible. It uses the function ToPropagatorBasis[lmom,lprop],
where lmom is a list of integration momenta and lprop is a list of propagators
in the same form as in the Prop[p,q,p+q,..] expressions. We will call this
form of denoting propagators ‘linear’, and ‘squared’ when they are squared, i.e.

(p + q)2 = p2 + 2pq + q2. ToPropagatorBasis returns a tuple (list) of:

1. the replacement rules necessary to replace all numerator scalar products

to PropIncr[i] and PropDecr[j] expressions, denoting operators to
increase or decrease a speci�c propagator power of the propagator basis.

2. the complete basis (a possible extension of the list of given propagators),

which i and j refer to.�e basis is given in ‘linear’ form.

ToPropagatorBasis itself uses CompletePropBasis[lmom,lprop], which
returns a triple (list) of:

1. a basis transformation matrix from propagator to trivial basis.

2. the propagator basis (extended from given list lprop) in linear form.

3. the trivial basis in squared form.

By trivial basis we mean the set of all scalar products between the integration

momenta, including themselves. For example in case of momenta p,q the trivial
basis is the set {p2,q2,r2,pq,pr,qr}.�e propagator basis denotes the elements
in lprop extended by additional elements of the trivial basis.

�e provided list of propagators must not contain any duplicates, except for

those that can be removed by DeleteDuplicates. Also, linearly dependent
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propagators will pose a problem. �at is, if enough elements in lprop are
provided, which do not form a basis, just these will be returned.

�e propagator elements are augmented to a basis by additional elements from

the trivial basis as follows. We know that a basismust have n+(n
2
) elements, where

n is the number of integration momenta. Assuming that propagators in lprop
are linearly independent, we thus know how many propagators x are missing for
a basis. We take x-subsets of the trivial basis and check if the combined basis
of lprop and the x-subset provides a transformation from the trivial basis to
the newly constructed set.�e transformation from the propagator basis to the

trivial basis is trivially obtained by just expanding all scalar products. We can

just construct this transformation matrix and check if the inverse exists. If this is

the case, we will keep the new set as the propagator basis in a slightly modi�ed

way: Instead of using scalar products p ⋅ q, we will use in these cases (p + q)2.
For new elements of the simple form k2 we just keep them.

Canonicalization and scaleless integrals

�e next step in ProcessInts, a�er the cancellation of numerator factors with
propagators, is to feed the integrals to CanonicalizeTerms. It is a heavier ver-
sion of the previously introduced LightCanonicalizeTerms, and again factors
o� prefactors by putting all ingredients which are relevant for the integration

in a Integral[..] expression and combines identical integrals with di�erent
prefactors. Additionally, it then derives the Schwinger parametrization (with

PrepareShift as elaborated in appendix A.2 on page 125) for all integrals and
compares these naively, that is, permutations of variable names are not taken

into account.

ProcessInts then calls ZeroScalelessIntegral for all remaining integrals.
Again through the Schwinger parametrization, with PrepareShift, and a pro-
cedure described in ref. [454, see eq. (16)], we nullify scaleless integrals.�e idea

is to check, algebraically, if a subset of Schwinger parameters exists, that, when

scaled by a parameter, can be completely factorized o� as a single factor in the

integrand; that is, to check if the integrand is homogeneous with respect to such

a subset [216, ch. 9.4].
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Checking variable name permutations

�e last step in ProcessInts is the �nal elimination of equivalent integrals by
checking all integration variable name permutations: PermutationDuplicates
checks in the Schwinger parameter representation of all integrals, which only con-

tain the integrations over Schwinger and �owtime parameters, all permutations

of said parameters and compare them with all other integrals one by one. It is

clear that integrals with di�erent numbers of �owtime and Schwinger parameter

integrations need no comparison.�e cases of di�erent number of integrations

are all treated separately. It is a very hard task to check the equivalence of two

symbolic expressions e�ciently, such that we use a numerical solution here.

�is is done in the function IntegralHash. Firstly, for a given list of (random)
numbers we set the �owtime and Schwinger parameters one by one to the values

in the list and also take a value for the space-time dimension. �en we take

all other permutations of parameters and also set them to the values in the list.

�is results in a list with numbers, where each number stems from a di�erent

permutation. We sort and apply a mathematical hash function, resulting in a

�nal ‘integral hash’, representing the integral irrespective of integration variable

name permutations.

If the integral hashes of two integrals do not match, nothing speci�c happens. If

they match, we make sure they match analytically to a high con�dence level by

comparing the hashes with 10 other sets of numbers.

A�er this step we can be certain to have a nearly minimal set1 of integrals a�er

the in�ation by performing Wick contractions.

a.1.3 Integration by parts

During the development of the setup the following functions were created to

help performing an IBP reduction, though at some point it became clear that IBP

reduction is not viable:

1 In principle there are some ambiguities. For example, a di�erent way to extend the propagators

to a basis could lead to a di�erent number of integrals.
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CreateIBP takes an integral in momentum representation and returns a list
of IBP equations with symbols Nu[j], corresponding to propagator powers ν j,

and PropIncr[i], PropDecr[k] functions, representing increase and decrease
operators for propagator powers. Additionally, the propagator basis itself is

printed.

With FIREForm the list of IBP equations returned by CreateIBP is brought into
a form that can be directly read by FIRE4 as the ‘startinglist’, essentially replacing
Nu[i_]->a[i], PropIncr[j_]->Y[j], PropDecr[k_]->Ym[k].

PropToIBpForm is an auxiliary function that takes a momentum integral, aug-
mented by an expression PropBasis[p,q,..], representing the propagator
basis (which can be added by AppendPropBasis), and extends it by a topology
identi�er Topology[nu1,..].

a.2 schwinger parameter representation and sector decom-

position

�e �le written by ProcessInts a�er all steps, contains the sum of all integrals.
One example term is given as follows:

1 ((-30 + 11*D)*Nc^2*(-1 + Nc^2)*TR^2)/8 *
2 Integral[ (FInt[s, 0, t]*FInt[s2, 0, u]*
3 FInt[s3, 0, s2]*FInt[u, 0, s]*IntMom[k, q, r]*
4 Pair[Momentum[k + q, D], Momentum[k + q, D]]*
5 Pair[Momentum[k + r, D], Momentum[k + r, D]]*
6 Prop[k - q, q - r]) /
7 E^(2*(-(q*r*(s + s3)) + r^2*(s + s3)
8 + k^2*t + q^2*(s2 + t) +
9 k*(r*(s - u) + q*(-s2 - 2*t + u))))
10 ]

�e next step is to derive the Schwinger representation and feed the resulting

expression to the sector decomposition code FIESTA.

�e Schwinger parametrization of an integral written in momentum representa-

tion is obtained by calling PrepareShift. It performs the following steps on
the integral with small auxiliary functions:

1. Write scalar products p⋅q as Diff[xi]*Exp[xi*p*q], as a representation
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for the identity

pq = d
dξ
exp(ξ ⋅ pq)⨄︀

ξ=0
.

2. Propagators in Prop[p1,p2,...] are Schwinger parametrized like
SInt[a]*Exp[-a*p1^2]. Higher propagator powers are accounted for
with 1/Factorial[N-1]*a^(N-1)*Exp[-a*p^2], where N denotes how
o�en p appears in Prop[...].

3. Having all momentum dependence in the form exp(−pTAp), the integra-
tion is performed by taking the determinant of A:

∫ d
Dp1 ⋯dDpn exp(−pTAp) = (4π)−nD⇑2(detA)−D⇑2 .

4. Derivatives with respect to xi in Diff[xi] factors are evaluated, and xi
is set to zero a�erwards.

5. All �owtime integrations FInt[si,0,sj] are scaled to unit intervals. All
Schwinger parameter integrations SInt[a] are scaled by the �owtime
t to make them dimensionless. In principle we know the one scale t
dependence beforehand, but such a scaling allows us to factorize t as an
additional consistency check:

6. All t dependence is factored out to a global prefactor.

Having obtained the Schwinger representation, we are ready to perform the sector

decomposition. �e function WriteIntegralSD takes an integral and trans-
forms it into a suitable way for the FIESTA [220] function SDEvaluateDirect,
which does the decomposition. Di�erent parameters, specifying if FIESTA
should combine expressions from di�erent sectors, etc., can be set. For our

integrals the best numerical integration results are obtained by not combining

any expressions.

Subsequently, WriteIntegralSD writes C, C++ and Mathematica �les of the
sector decomposed integrals to $FlowBaseDir<>"/src/". By applying a hash-
function to the integral expressions, unique �lenames are obtained, which are

then returned by WriteIntegralSD and must be saved with a reference to the
originating momentum integral. �e generated C �le contains the following
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functions, where f speci�es the integrand:

1 int f (unsigned dim, const double *xx, void *params,
2 unsigned fdim, double *retval);
3 int f_dim();
4 char* f_prefac();
5 int f_pole_order();
6 double f_scale();

�e C++ �le uses an MPFR [457, 458] based high-precision arithmetics integrand
mpreal f (unsigned dim, std::vector<mpreal> xx) instead.

f_dim returns the integrand dimensionality, f_prefac a string of an additional
integral prefactor, f_pole_order the power of ε for the integral, and f_scale a
scale factor that should be accounted for with a given integration precision goal.

For example, a large color factor of the integral could make it important relative

to other integrals. When altogether for the sum of all integrals a �xed absolute

precision is demanded, each integral’s absolute precision goal is multiplied by

f_scale.

Finally, the C and C++ �les can be compiled into dynamically linked libraries.

�en, the wrapper program calcHashgroup loads a speci�ed library with an in-
tegrand and calls an integration routine for it.�e result is saved to the directory

$FlowBaseDir<>"/out/". A small Mathematica script (collect.m) can be
used to go through all momentum integrals and load the integration results of

the associated sector decomposed expressions.�e integrals, which can reach

dimensions up to seven for our three-loop calculation, require evaluations with

absolute and relative precisions up to 10−10 due to, �rstly, the large amount of

integrals, and, secondly, integrals with large color/dimension prefactors.�is

precision cannot be reached with Monte-Carlo integrations, and, due to the high

required precision, plain double integration will lead to problems in singular
regions. For these reasons we have implemented our own cubature routine with

high-precision arithmetics and based on a high order rule.�is is elaborated in

appendix B.

a.3 global structure of the setup

�is �nal section serves as an explicit guide to reproduce the results for an
arbitrary integral class. To be de�nite, wework out the steps for the classM6(2,2),
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denoted as ‘B2A2’ in what follows. In �g. A.1 the steps are visualized in a �ow-

diagram.

1. Set $FlowBaseDir and generate its subdirectories in, out, src and tmp
(with mkDir.hs).

/in/ will contain one �le for each momentum integral. It will also hold
�les referring to the sector decomposed representation.

/out/ is where the result �les and possible error �les from the numerical
integration will reside.

/src/ will contain the C, C++, Mathematica integral source �les.

/tmp/ is the directory for the compiled source �les. Progress dumps
of the numerical integration, allowing a resumption of an aborted

integration, will also be saved here.

2. Use ints=IntegralsA[2,6,{2}] to generate raw expression from the
B-�eld and QCD vacuum expansion in terms of the fundamental gauge
�elds. Of course, integrals from other classes could be added to ints here.

3. Perform simpli�cations with ProcessInts[ints,"B2A2_3loop.m",3].
�is saves the integrals to $FlowBaseDir<>"/B2A2_3loop.m".

4. Write each integral from B2A2_3loop.m with WriteIn to a distinct �le
B2A2_3loop_i.m in $FlowBaseDir<>"/in/", where i is a counter.�is
is done in the script generate.m.

5. Use generateSingle.hs to perform the following steps: Schwinger
parametrize each integral in /in/ with PrepareShift, then perform the
sector decomposition with WriteIntegralSD, which writes the resulting
integrals to /src/:

Note that each momentum integral can result in multiple Schwinger

parametrized integrals due to the numerator structures. And each Schwinger

parametrized integral results in multiple integrals from sector decomposi-

tion. Additionally, bubble type integrals with higher propagator powers

require a splitting of the Schwinger integration intervals to be convergent

a�er sector decomposition: (0,∞) is split into (0,1) + (1,∞) with subse-
quent scaling to the unit interval.�is is handled in generateSingle.hs
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by using the function ExpandAllSInts in FIntegrate.m.

WriteIntegralSD returns a list of group hashes that each refer to a
Schwinger parametrized source integral. �e group hashes are written

to in/B2A2_3loop_i.m.hashes, with the counter i running as above
over all momentum space integrals. �e group hashes refer to the �le

/src/<gp>/group_<gh>.m, where <gp> are the �rst three characters of
the group hash <gh>.�ese �les contain the hashes for the distinct sector
decomposed integrals, each saved in/src/<prefix>/<hash>.{m,c,c++},
where <prefix> speci�es the �rst three characters of the integral hash
<hash>.

6. Run calcHashgroup, specifying the precision goal and one integral hash.
Do this for all integrals generated. Temporary �les, like the compiled

integrand functions and dumps of the integration progress are saved in

/tmp/<prefix>/<hash>.{so,heap}.�e results are written to the �les
/out/<prefix>/<hash>.m.

7. Go through all hash groups stored in the �les /in/*.hashes. Lookup all
integral hashes in the group_<gh>.m �les, where <gh> denotes the group
hash. Subsequently, add all results for these referenced integrals with the

prefactors in the /in/*.m �les.�is is done in the collect.m script.
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Figure A.1: Schematic overview of the perturbative gradient �ow setup.�e pre�x
subdirectories are not shown.
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NUMERICAL INTEGRATION

�e integrals obtained by sector decomposition for our three-loop perturbative

gradient �ow setup require high absolute and relative numerical precisions.�is

is, �rstly, due to the high number of𝒪(106) integrals, and, secondly, because of
single integrals with large prefactors that require a comparatively higher precision.

�e dimension of the integrals is large, namely seven, but not intractable by non-

probabilistic methods [469]. Monte-Carlo approaches, even with importance

sampling and subdivision techniques, are not suitable for such high-precision

needs.

For moderate precision goals we have had good experience with the double-

precision h-adaptive1 cubature integration in ref. [470]. For our high precision
goals of ∼ 10−10, the error can either become severely mis-estimated, or the
integration breaks down in a singular region. In many cases the precision simply

cannot be reached.�e h-adaptive integration is based on the integration rules
of order 5/7 by Genz and Malik [456], and, since it works quite well, we use the

same integration rule, but of higher order.

Our multivariate integration routine is based on the embedded family of fully

symmetric [471] integration rules in ref. [455] of order 11/13.�is means that

all multivariate polynomials up to order 11/13, are integrated exactly.�e rule

of order 13 is used to estimate the error by subtraction from the embedded rule

of order 11. Even though the error is estimated for the order 11 rule, we keep the

order 13 approximation as the �nal result, thus, in principle overestimating the

error.�e error is reduced, up to a certain speci�ed precision goal, by recursively

subdividing the region with the largest estimated error.�e region is bisected

along the coordinate axis where the integrand has the largest local absolute

fourth di�erence [456].

All weights and evaluation points are pre-generated with 300 decimal digits

1 Recursively partitioning the integration domain into smaller subdomains, applying the same

integration rule to each, until convergence is achieved.
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precision via Mathematica. Our routine uses the library MPFR C++ [457, 458]
to perform all parts of the integration with a default precision of 256 bits, cor-

responding to ∼ 77 decimal digits. �e precision can be adjusted by setting a
variable.

We also implemented the IMT-transformation [460], which can be used to regu-

larize endpoint singularities.�e transformation can be activated by specifying

the minimum number of bisections from which on the transformation is applied

to the subdivisioned interval. Subsequently, the IMT-transformed interval will be

adaptively subdivided, and the rules of order 11/13 are applied. For our integrals

this lead to no noticeable improvements.

�e routine is able to save and load snapshots of the integration progress to

a �le. �e snapshot includes the total integral estimate and error, as well as

all subdivisions with their estimates and errors. To limit the number of saved

subdivisions, one can specify an error cuto�, below which regions with a smaller

error are no longer subdivided nor saved, and just accounted for in the total

value and error.

To test the integration, we checked that it successfully integrates multivariate

polynomials of seven andmore variables and total order 13 to the full 300 decimal

digits precision. Additionally, we reproduced the two-loop result of t2 ∐︀E(t)̃︀ in
chapter 10 to a high precision and checked that the results for single integrals

are compatible with the result of the h-adaptive cubature routine.

Finally, we note that the integration is largely independent from the rest of the

perturbative gradient �ow setup, and we plan to release the integration routine

for general use in precision critical applications.
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NORMALIZATION FACTORS FOR KINEMATICAL

DISTRIBUTIONS IN CHAPTER 8

�is appendix contains all normalization factors σi j used in the kinematical
distributions in chapter 8. �ey are obtained by integrating corresponding

distributions over the whole kinematical range considered, and allow the recon-

struction of the distributions absolute values for Wilson coe�cients Ci set to

one and scales Λ to 1GeV.

Speci�cally, the absolute cross sections dσi j in picobarns are obtained by multi-
plying the numbers for dσi j ⇑σi j, read o� from the �gures, by the normalization
factors σi j, given below, times Re(C†i C j)⇑(Λ⇑GeV)n i+n j , where n1 = 1 and
nk = 3 for k ≠ 1.�is factor is not required for the cross sections labeled "SM" or
"top-loop", of course.

Table C.1: Normalization factors for pT distributions in H+1-jet production for a
scalar Higgs.�ey are obtained by integrating the distributions of �g. 8.1 over the

complete pT interval of 30–800GeV.

σ i j/pb for H+1-jet (scalar)
i j g g gq qq

SM⇑α2s 4.79 ⋅ 102 1.78 ⋅ 102 3.13

11 3.88 ⋅ 1010 1.59 ⋅ 1010 1.03 ⋅ 108
12 −5.55 ⋅ 1014 −6.59 ⋅ 1014 3.05 ⋅ 1013
13 −2.00 ⋅ 1013 – –

15 – −2.05 ⋅ 1014 1.60 ⋅ 1013
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Table C.2: Same as table C.1, but for a pseudo-scalar Higgs (see �g. 8.2).

σ i j/pb for H+1-jet (pseudo-scalar)
i j g g gq qq

top-loop⇑α2s 1.11 ⋅ 103 4.16 ⋅ 102 6.67

11 3.88 ⋅ 1010 5.06 ⋅ 109 3.13 ⋅ 108
12 −5.56 ⋅ 1014 −3.22 ⋅ 1014 8.87 ⋅ 1013
13 −2.00 ⋅ 1013 – –

15 – −1.21 ⋅ 1014 4.68 ⋅ 1013

Table C.3: Normalization factors for ∆Φ j j distributions in H+2-jets production
for a scalar Higgs.�ey are obtained by integrating the distributions of �g. 8.4 over

the interval ∆Φ j j ∈ (︀0,π⌋︀, with the cuts described in eq. (8.2) and (eq. (8.3)).

σ i j/pb for H+2-jet (scalar), WBF cuts
i j g g gq qq
11 1.43 ⋅ 109 2.27 ⋅ 109 8.42 ⋅ 108
12 −2.14 ⋅ 1013 −6.54 ⋅ 1013 −4.47 ⋅ 1013
13 −7.13 ⋅ 1011 −7.59 ⋅ 1011 –

14 – – −1.19 ⋅ 1012
15 −4.65 ⋅ 1011 −1.60 ⋅ 1013 −1.58 ⋅ 1013

Table C.4: Same as table C.3, but for a pseudo-scalar Higgs (see �g. 8.5).

σ i j/pb for H+2-jet (pseudo-scalar), WBF cuts
i j g g gq qq
11 1.42 ⋅ 109 2.24 ⋅ 109 8.29 ⋅ 108
12 −2.11 ⋅ 1013 −6.66 ⋅ 1013 −4.41 ⋅ 1013
13 −7.12 ⋅ 1011 −7.57 ⋅ 1011 –

14 – – –

15 −4.43 ⋅ 1011 −1.68 ⋅ 1013 −1.55 ⋅ 1013

Table C.5: Normalization factors for ∆η j j distributions in H+2-jets production for
a scalar Higgs.�ey are obtained by integrating the distributions of �g. 8.6 over

the interval ∆η j j ∈ (︀0,10⌋︀, with the cuts described in eq. (8.2).

σ i j/pb for H+2-jet (scalar), incl. cuts
i j g g gq qq
11 5.00 ⋅ 1010 2.67 ⋅ 1010 2.50 ⋅ 109
12 −6.41 ⋅ 1014 −1.05 ⋅ 1015 −1.48 ⋅ 1014
13 −6.11 ⋅ 1013 −3.11 ⋅ 1013 –

14 – – −1.71 ⋅ 1013
15 −1.42 ⋅ 1013 −3.59 ⋅ 1014 −5.51 ⋅ 1013
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Table C.6: Same as table C.5, but for a pseudo-scalar Higgs (see �g. 8.7).

σ i j/pb for H+2-jet (pseudo-scalar), incl. cuts
i j g g gq qq
11 4.94 ⋅ 1010 2.62 ⋅ 1010 2.39 ⋅ 109
12 −6.32 ⋅ 1014 −1.07 ⋅ 1015 −1.31 ⋅ 1014
13 −6.11 ⋅ 1013 −3.11 ⋅ 1013 –

14 – – –

15 −1.36 ⋅ 1013 −3.70 ⋅ 1014 −4.74 ⋅ 1013

Table C.7: Normalization factors for ∆Φ j j distributions in H+2-jets production
for a scalar Higgs with pT,H > 200GeV. �ey are obtained by integrating the
distributions of �g. 8.8 over the interval ∆Φ j j ∈ (︀0,π⌋︀, with the cuts described in
eq. (8.2) and eq. (8.3).

σ i j/pb for H+2-jet (scalar), WBF cuts
pT,H > 200GeV

i j g g gq qq
11 1.14 ⋅ 108 2.36 ⋅ 108 1.23 ⋅ 108
12 −1.91 ⋅ 1012 −2.32 ⋅ 1013 −2.25 ⋅ 1013
13 −1.28 ⋅ 1011 −1.93 ⋅ 1011 –

14 – – 3.82 ⋅ 1011
15 −2.34 ⋅ 1011 −1.00 ⋅ 1013 −1.03 ⋅ 1013

Table C.8: Normalization factors for ∆η j j distributions in H+2-jets production
for a scalar Higgs with pT,H > 200GeV. �ey are obtained by integrating the
distributions of �g. 8.9 over the interval ∆η j j ∈ (︀0,10⌋︀, with the cuts described in
eq. (8.2).

σ i j/pb for H+2-jet (scalar), incl. cuts
pT,H > 200GeV

i j g g gq qq
11 3.58 ⋅ 109 2.95 ⋅ 109 3.84 ⋅ 108
12 −3.83 ⋅ 1013 −5.05 ⋅ 1014 −7.00 ⋅ 1013
13 −1.21 ⋅ 1013 −1.30 ⋅ 1013 –

14 – – −6.14 ⋅ 1012
15 −6.57 ⋅ 1012 −2.46 ⋅ 1014 −3.23 ⋅ 1013
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Table C.9: Normalization factors for pT distributions suppressed by 1⇑Λ6 in H+1-
jet production for a scalar Higgs.�ey are obtained by integrating the distributions

of �g. 8.10 over the complete pT interval of 30–800GeV.

σ i j/pb for H+1-jet (scalar)
i j g g gq qq
22 1.35 ⋅ 1020 3.60 ⋅ 1019 1.00 ⋅ 1019
23 −1.12 ⋅ 1020 – –

25 – 3.35 ⋅ 1019 1.01 ⋅ 1019
33 2.38 ⋅ 1019 – –

55 – 7.97 ⋅ 1018 2.57 ⋅ 1018

Table C.10: Same as table C.9, but for a pseudoscalar Higgs (see �g. 8.11).

σ i j/pb for H+1-jet (pseudo-scalar)
i j g g gq qq
22 1.35 ⋅ 1020 3.61 ⋅ 1019 2.67 ⋅ 1019
23 −1.12 ⋅ 1020 – –

25 – 3.48 ⋅ 1019 2.71 ⋅ 1019
33 2.38 ⋅ 1019 – –

55 – 8.47 ⋅ 1018 6.87 ⋅ 1018

Table C.11: Normalization factors for ∆Φ j j distributions suppressed by 1⇑Λ6 in
H+2-jets production for a scalar Higgs. �ey are obtained by integrating the
distributions of �g. 8.12 over the interval ∆Φ j j ∈ (︀0,π⌋︀, with the cuts described in
eq. (8.2) and eq. (8.3).

σ i j/pb for H+2-jet (scalar), WBF cuts
i j g g gq qq
22 1.40 ⋅ 1019 2.01 ⋅ 1019 5.14 ⋅ 1018
23 −1.07 ⋅ 1019 −1.24 ⋅ 1019 –

24 – – 3.09 ⋅ 1017
25 2.28 ⋅ 1017 4.17 ⋅ 1018 4.96 ⋅ 1018
33 2.08 ⋅ 1018 2.45 ⋅ 1018 –

34 – – –

35 −2.06 ⋅ 1015 9.60 ⋅ 1015 –

44 – – 1.20 ⋅ 1017
45 – – 1.49 ⋅ 1017
55 5.48 ⋅ 1016 1.02 ⋅ 1018 1.21 ⋅ 1018
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Table C.12: Same as table C.11, but for a pseudoscalar Higgs (see �g. 8.13).

σ i j/pb for H+2-jet (pseudo-scalar), WBF cuts
i j g g gq qq
22 1.40 ⋅ 1019 2.01 ⋅ 1019 4.88 ⋅ 1018
23 −1.07 ⋅ 1019 −1.24 ⋅ 1019 –

24 – – –

25 2.28 ⋅ 1017 4.12 ⋅ 1018 4.71 ⋅ 1018
33 2.26 ⋅ 1015 2.45 ⋅ 1018 –

34 – – –

35 −2.06 ⋅ 1015 9.62 ⋅ 1015 –

44 – – –

45 – – –

55 5.49 ⋅ 1016 1.01 ⋅ 1018 1.15 ⋅ 1018

Table C.13: Normalization factors for ∆η j j distributions suppressed by 1⇑Λ6 in
H+2-jets production for a scalar Higgs. �ey are obtained by integrating the
distributions of �g. 8.14 over the interval ∆η j j ∈ (︀0,10⌋︀, with the cuts described in
eq. (8.2).

σ i j/pb for H+2-jet (scalar), incl. cuts
i j g g gq qq
22 7.10 ⋅ 1020 3.10 ⋅ 1020 9.56 ⋅ 1019
23 −5.62 ⋅ 1020 −1.36 ⋅ 1020 –

24 – – 1.69 ⋅ 1019
25 4.21 ⋅ 1018 1.38 ⋅ 1020 9.38 ⋅ 1019
33 1.12 ⋅ 1020 2.86 ⋅ 1019 –

34 – – –

35 −4.94 ⋅ 1017 1.65 ⋅ 1018 –

44 – – 4.26 ⋅ 1018
45 – – 8.37 ⋅ 1018
55 7.18 ⋅ 1017 3.49 ⋅ 1019 2.32 ⋅ 1019
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Table C.14: Same as table C.13, but for a pseudo-scalar Higgs (see �g. 8.15).

σ i j/pb for H+2-jet (pseudo-scalar), incl. cuts
i j g g gq qq
22 7.11 ⋅ 1020 3.10 ⋅ 1020 8.33 ⋅ 1019
23 −5.62 ⋅ 1020 −1.37 ⋅ 1020 –

24 – – –

25 4.19 ⋅ 1018 1.39 ⋅ 1020 8.15 ⋅ 1019
33 5.12 ⋅ 1018 2.86 ⋅ 1019 –

34 – – –

35 −4.94 ⋅ 1017 1.65 ⋅ 1018 –

44 – – –

45 – – –

55 7.15 ⋅ 1017 3.50 ⋅ 1019 2.01 ⋅ 1019
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