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Abstract 

 

Conjugated, semiconducting polymers are widely used as active compounds of optoelectronic 

devices. Usually, they are applied as thin films or layers. However, most “conventional” 

luminogens show an aggregation-caused quenching (ACQ), which is detrimental for their 

application. In 2001, Tang et al. reported a novel aggregation-induced emission (AIE) 

phenomenon: Such luminogens weakly emit in dilute solution but intensely in the aggregated 

state. Restriction of intramolecular motions has been demonstrated to be the main mechanism 

for occurrence of the AIE effect by theoretical and experimental studies. Till now, plenty of 

AIE-active molecules have been synthesized, for the applications in organic light emitting 

devices (OLEDs), chemo/biosensors, cell imaging, and so on. However, most of them are low 

molecular weight compounds. Based on superior film forming and mechanical properties, 

also the design of high molecular weight, polymeric luminogens is promising, e.g. for the use 

in large-area or flexible devices. 

In this thesis, we introduce a new class of AIE polymers with AIE- or crystallization-induced 

emission (CIE)-active tri-/tetraphenylethylene and 2,3,3-triphenylacrylonitrile (TPAN) side 

chains. This strategy guarantees the occurrence of AIE properties without greatly affecting 

the electronic properties of the polymers’ backbones. The obtained AIE-active polymers were 

applied in the detection of nitroaromatic explosives with two main benefits: a) their high 

fluorescence quantum yields in the aggregated state; b) their twisted and loose structure, 

which accelerates the diffusion of analyte molecules, thus enhancing the quenching 

efficiency. This thesis is comprised of four parts. 

1. Carbazole is a typical electron-rich building block, which is beneficial for the interaction 

with electron-deficient nitroaromatic explosives based on the fluorescence changes. Hence, a 

series of polycarbazoles (PCz3PEs, PCzTPEs) with AIE-active tri-/tetraphenylethylene side 

groups have been designed and synthesized. Among them, PCzTPEs showed distinct AIE 

effect and possess high fluorescence quantum yields in solid film. For the application in the 

detection of 1,3,5-trinitrobenzene (TNB) as prototypical nitroaromatic analyte, a sensitive 
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and amplified quenching effect was observed with a maximum quenching constant of 

1.26×10
6
 M

-1
 based on PCzTPE0.5 aggregates in 1/9 THF/water. Solid-state paper strips 

experiments based on PCzTPE and PCzTPE0.5 also showed sensitive PL quenching. 

2. Similar to carbazole, triphenylamine (TPA) buiding blocks also exhibit electron-rich 

characteristics and can serve as electron-donor moiety. Polytriphenylamines (P1 and P2) with 

tetraphenylethylene (TPE) side chains have been synthesized. P1 and P2 showed distinct AIE 

behavior and have been used as films for the detection of TNB vapour, with excellent 

fluorescence response. 89% PL quenching within 10 min and outstanding repeatability have 

been observed. One disadvantage of P1 and P2 is their poor solubility. To solve this problem, 

bis(tert-butyl)-TPE groups were introduced to the backbone of the copolymers. The obtained 

copolymers showed improved solubility in common organic solvents and reasonable AIE 

properties leading to high solid state fluorescence quantum yields. 

3. Two polymers PCzTPAN and PTPATPAN have been developed with electron-rich 

carbazole- or TPA-based backbones and 2,3,3-triphenylacrylonitrile (TPAN) side chains. As 

a congener of TPE, TPAN is crystallization-induced emission (CIE)-active. Our polymers 

containing TPAN side groups showed distinct AIE properties. Moreover, the introduction of 

the electron-deficient TPAN units led to the occurrence of intramolecular charge transfer 

(ICT) effects. For TNB detection, both polymers showed sensitive PL responses with a 

maximum PL quenching constant of 5.5×10
5
 M

-1
. Furthermore, PTPATPAN was used as 

dopant for detecting the glass transition temperature of polymers, with polystyrene as the 

example. The method is a straightforward, simple and sensitive way for the detection of the 

glass transition temperature, especially of thin films. 

4. In the last part, we designed conjugated polymers with electron-rich phenothiazine (PTz)- 

and thiophene-based backbones and TPE or TPAN as side chains. The obtained PTz 

polymers showed the expected AIE phenomenon. The polythiophenes, however, displayed 

ACQ effects, also in the presence of the AIE-active side chains, thus demonstrating a 

competition between intermolecular π-stacking and restriction of intramolecular motion. The 

photophysical properties of the polymers were studied in detail.  
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Chapter 1 

1. Introduction 

 

Organic, π-conjugated and luminescent materials are of many fundamental and technological 

implications and represent a rapidly developing field. They have attracted huge academic and 

industrial interest
[1-7]

. Due to their attractive optoelectronic characteristics, they are today 

used as active material in real or prospective applications, such as organic field effect 

transistors
[8-10]

 (OFETs), organic light emitting devices (OLEDs)
[11-13]

, organic 

photovoltaics
[14-16]

 (OPVs), chemo/biosensors
[17-21]

, bio-imaging
[22-25]

, organic solid 

lasers
[26-28]

, and many others. 

1.1 Aggregation-Caused Quenching (ACQ) 

For their practical application in optoelectronic devices, the organic, luminescent materials 

are commonly used as solid-state materials, e.g. as thin films in the fabrication of OLEDs and 

OPV devices. Therefore, it is obviously of high importance that the chromophores can 

strongly emit in their aggregated state. However, most “conventional” organic luminophores 

exhibit high photoluminescence (PL) efficiency in (dilute) solution but are weakly or even 

non-emissive in concentrated solution or in the solid state. The effect is known as 

aggregation-caused quenching (ACQ)
[29-31]

. In the aggregated state, strong intermolecular 

interactions including electron transfer, Förster resonance energy transfer and 

excimer/exciplex occur and cause PL quenching of the materials.  

Traditional, fluorescent molecules, which are usually flat, often disk-like aromatic molecules, 

often experience strong intermolecular interactions in concentrated solutions or in solid-state 

aggregates, such as pyrene, perylene or fluorescein. They are typical ACQ luminophores and 

the existence of this ACQ phenomenon is often detrimental for practical applications. To 

solve this problem, several chemical, physical or engineering approaches
[32-37]

 have been 

developed. For example, the synthesis of compounds with spiro-kinks or bulky substituents 

covalently attached to the luminophores
[39,40]

 or an adjustment of the aggregation type
[41-43]

 

(e.g. J-aggregation). However, it is an often difficult approach with limited success, because 

one has to fight against an intrinsic and very natural process – the energetically favored 
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formation of chromophore aggregates in the solid state. So, it would make life much easier if 

aggregation could be beneficial, not detrimental, to the occurrence of fluorescence. 

1.2 Aggregation-Induced Emission (AIE) 

In 2001, Tang et al. first described a novel phenomenon, called aggregation-induced 

emission
[44,45]

 (AIE) which is opposite to the ACQ effect: The propeller-shaped molecule 

hexaphenylsilole (HPS) emits strongly in its solid state with a PL quantum yield (PLQY) of 

78% but is nearly non-emissive in solution (PLQY of 0.22%). This unusual phenomenon was 

further investigated in different solvent/non-solvent mixtures (acetonitrile/water): The 

emission intensity increased for high water fractions. Since HPS is very soluble in acetonitrile 

but insoluble in water, it aggregates for high water contents. The formation of aggregates was 

verified by absorption spectroscopy and particle size analysis
[46,47]

 (see Figure 1.1). In the 

absorption spectra, the solutions of high water fraction show absorption level-off tails into the 

long wavelength region, which is well known for the Mie effect of nanoaggregates. The 

particle size analysis revealed the existence of particles with average sizes of 190 nm or 

130 nm in solvent mixtures with 80% or 90% water, respectively, confirming that the HPS 

molecules are indeed aggregated into nanoaggregates. In contrast, absorption spectra and 

particle size analysis did not show any characteristics of nanoaggregate formation for low 

water contents, thus demonstrating that HPS is AIE-active. Occurrence of AIE effects has 

opened a new platform for the development of solid-state luminescence applications. 

 

Figure 1.1. (A) Absorption spectra of HPS in acetonitrile-water mixtures. Size distributions 

of nanoparticles of HPS in acetonitrile-water mixtures containing (B) 80% and (C) 90% 

water, image taken from Ref. [47] with permission. 

 

 



1. Introduction 

3 
 

1.3   The Mechanism of AIE 

 

Figure 1.2. Examples of AIE luminophores reported in the literature. 

The AIE phenomenon was first observed in the silole family, another class of AIE-active 

compounds is tetraphenylethylene (TPE) derivatives. Some structures are depicted in 

Figure 1.2. Next, understanding of the AIE mechanism was very important, in addition to the 

design of new families of more efficient and functionalized AIE molecules. As we know, any 

kind of motion, no matter microscopic or macroscopic, consumes energy. As for molecules, 

main types of motion are rotations and vibrations. In dilute solution, the modes of 

intramolecular motion (rotation and vibration) are thermally activated due to the high 

freedom of space, but can be restricted in the aggregated state (Figure 1.3). These activated 

motions can serve as relaxation channels for the excited state decay. However, if motions are 

blocked in the aggregated state, non-radiative deactivation paths may be closed thus leading 

to an increased radiative decay. So, the restriction of intramolecular motions (RIM)
[48]

 in the 

aggregated state is the main source of AIE effects, as concluded from both experimental and 

theoretical studies. 

 

Figure 1.3. AIE-active propeller-shaped luminogen TPE showing restriction of 

intramolecular rotation (RIR), and mussel shell-like luminogen 10,10′,11,11′-tetrahydro-5,5′-

bidibenzo[a,d][7]annulenylidene (THBA) showing restriction of intramolecular vibrations 

(RIV), image taken from Ref. [48] with permission. 
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1.3.1 Restriction of Intramolecular Rotation (RIR) 

In HPS, as an example, the six peripheral phenyl rings work as propeller, which can rotate 

freely against the silole core in dilute solution, but the rotation is restricted in aggregates due 

to the physical constraints, leading to the AIE behavior. This mechanism has been proved in a 

series of tests by Tang’s Group
[46,49]

. 

1.3.1.1 Viscosity Effect
[46]

 

 

Figure 1.4. PL peak intensity of HPS vs. composition of glycerol/methanol mixtures, image 

taken from Ref. [46] with permission. 

In viscous media, the intramolecular rotations are supposed to be slowed down thus 

enhancing PL emission. Glycerol and methanol were chosen for such viscosity experiment, 

since glycerol is a very viscous liquid (934 cP) with a viscosity ~1720 times higher than that 

of methanol (0.544 cP) at room temperature. Mixing of these two solvents is used to generate 

solutions of different viscosity. Figure 1.4 shows PL intensities vs. glycerol fraction of 

glycerol/methanol mixtures. As expected, the PL emission increases with higher viscosity 

due to the RIR process. 

1.3.1.2 Temperature Effect
[46]

 

 

Figure 1.5. (A) Effect of temperature on PL intensity of HPS in THF. (B) 
1
H NMR spectra of 

HPS in dichloromethane-d2 at different temperatures, image taken from Ref. [47] with 

permission.  



1. Introduction 

5 
 

Experiments with a variation of the temperature have been also carried out, since cooling can 

also restrict intramolecular rotations to some extent. THF was chosen as the solvent because 

of its high solvating power, low melting point (-108 °C) and its low viscosity (0.456 cP at 

25 °C) with a small temperature coefficient (~0.008 cP/K) thus ensuring that the PL 

enhancement is not caused by increasing/decreasing viscosity. In such an experiment, the PL 

of HPS strongly increases with decreasing temperature (Figure 1.5A). The occurring RIR 

process was also verified by dynamic NMR experiments (Figure 1.5B). Active 

conformational exchange (intramolecular rotation) leads to sharp NMR peaks, and they are 

broadened by cooling, thus indicating that intramolecular rotation is restricted at low 

temperatures. 

1.3.1.3 Pressure Effect
[49]

 

Increasing the pressure to a HPS film can bring the molecules much closer, thus further 

enhancing the RIR process. Figure 1.6 shows pressure tests with AIE-active HPS and AlQ3 as 

a typical ACQ compound. For the HPS film, the PL increases with increasing pressure up to 

104 atm but slightly decreases with further pressurization, probably caused by excimer 

formation due to increased intermolecular interaction. However, the PL intensity at 450 atm 

is still higher than that of the original film. On the other hand, the emission intensity of a 

AlQ3 film decreases in the whole pressure region. The pressure experiments further confirm 

the RIR mechanism for AIE luminogens. 

 

Figure 1.6. Pressure effect on the PL intensity of HPS and AlQ3 films, image taken from 

Ref. [49] with permission. 

1.3.1.4 Other Effects 

Aldred et al.
[50]

 reported investigations with two ortho-methyl substituted TPE compounds, 

DMTPE and TMTPE, the structures are shown in Figure 1.7. Among these TPE derivatives, 
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TMTPE showed a high PLQY (64.3%) in THF solution and low AIE-activity, very different 

from the behavior of TPE and DMTPE (Figure 1.7). This is caused by an enhanced steric 

hindrance between germinal phenyl rings in TMTPE, thus restricting intramolecular motions. 

 

Figure 1.7. Chemical structures and AIE effects of TPE, DMTPE and TMTPE, image taken 

from Ref. [50] with permission. 

Zhao et al.
[51]

 synthesized a series of folded and linear TPE derivatives. The folded TPE 

derivatives (such as (Z)-o-BBPTPE, Figure 1.8) show higher PL emission efficiency if 

compared to linear counterparts, due to the partial suppression of intramolecular rotation of 

the phenyl rotors. This finding also indicates that RIR is responsible for the observed AIE 

phenonmenon. 

 

Figure 1.8. Chemical structure and PL spectra of (Z)-o-BBPTPE in THF/water mixtures with 

different water content, image taken from Ref. [51] with permission. 

1.3.2 Restriction of Intramolecular Vibration (RIV) 

Other AIE-active molecules, e.g. THBDBA in Figure 1.9, do not bear rotatory elements. So, 

the RIR mechanism cannot explain the occurrence of the AIE phenomenon. Tang et al. 

proposed a novel mechanism by using a computational QM/MM (quantum mechanics and 

molecular mechanics) model, which involves the restriction of intramolecular vibrations
[52]

 

(RIV). In the crystal structure of THBDBA, couples of phenyl rings are locked by ethyl 
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bridges thus adopting a “boat” conformation. By activation THBDBA can switch into a 

“chair” conformation as well as into “mixed” conformations between chair and boat form. 

Conformational motions (low frequency vibrational motions) in solution facilitate 

non-radiative decay of the excited-state. A larger reorganization energy was obtained from 

the QM/MM mode calculations for single molecules if compared to clusters, which means, 

that more excited state energy is consumed by these vibrational motions for a single molecule. 

Between a single molecule and a molecule as part of a cluster the authors obtained an energy 

difference of 1663.6 cm
-1

 (significant normal mode frequencies with reorganization energy 

above 200 cm
-1

) corresponding to 30% of the total excited state energy. Therefore, a 

combination of restriction of vibrational channels and a reduction of the total reorganization 

energy in the cluster state likely causes the AIE phenomenon of THBDBA. Due to the 

modeling, the majority of the motions are in-plane/out-of-plane bending vibrations of phenyl 

ring carbon atoms. These vibrations consume much of the excited state energy in solution. 

The intense emission of aggregates originates from the RIV effect. Overall, RIR and RIV 

processes together (as RIM) well explain the occurrence of AIE phenomenons. 

 

Figure 1.9. Chemical structure of THBDBA and calculated conformations (Left: “chair”; 

right: “boat”. Top: view along the axis of an ethane bridge; bottom: top view on ethane 

bridges), image taken from Ref. [52] with permission. 

1.4 Applications of AIE Materials 

Due to the high fluorescence quantum yield of AIE materials in the aggregated state, such as 

nanoaggregates in dispersion or thin films, they are promising candidates for optoelectronic 

applications since technological applications of luminescent materials are mainly realized in 

the aggregated state. Many scientists have devoted their research towards the development of 

efficient AIE emitters and their application in devices. Till now, AIE materials have found a 

wide variety of prospective high-tech applications in OLEDs
[53-64]

, chemical sensors
[65-75]

, 
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bioimaging
[76-82]

 and others
[83-89]

. In the following sections, some progresses in these areas 

will be briefly discussed. 

1.4.1 OLEDs 

 

Figure 1.10. Examples of AIE luminogens used in OLED with blue or green light emission. 
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OLEDs have attracted great interests among researchers, due to their potential in display and 

lighting applications. “Conventional” luminogens show a severe ACQ effect which often 

causes a poor performance in devices. Since the AIE phenomenon was discovered, many 

OLEDs have been fabricated based on AIE luminogens. 

Figure 1.10 shows some examples of AIE luminogens which were used in OLEDs through 

smart design and facile synthesis. In 3TPETPA and 4TPEDTPA
[53]

, multiple TPE 

substituents were attached to TPA and DTPA cores, leading to PLQYs in films of up to 

100%. Thanks to AIE effect and the hole-transport ability of TPA and DTPA, devices based 

on these two molecules without any hole transport layer (HTL) showed an even better 

performance than ones with a HTL, with a low turn-on voltage (Von) of 4.5 V, a maximum 

luminance (Lmax) of 6935 cd cm
-2

 and a current efficiency (CEmax) of 4.0 cd A
-1

 for 3TPETPA, 

and Von of 4.1 V, Lmax of 10723 cd m
-2

 and CEmax of 8.0 cd A
-1

 for 4TPEDTPA, respectively. 

A carbazole-containing tetrasubstituted ethene (DCDPE)
[54]

 and a TPE-modified NPB 

(TPE-NPB)
[55]

 were also synthesized for use in OLEDs. OLED devices using these molecules 

without HTL emitted bluish-green light with Von of 4.5 V, Lmax of 5060 cd m
-2

 and CEmax of 

5.7 cd A
-1

 for DCDPE, and Von of 3.9 V, Lmax of 12607 cd m
-2

 and CEmax of 13.1 cd A
-1

 for 

TPE-NPB, respectively, values which are again better than the ones by using additional HTLs 

due to the hole transport capabilities of the carbazole and NPB unites. Three 

dimethyltetraphenylsiloles (DMTPSs)
[56]

 symmetrically substituted with aldehyde (ALD), 

dicyanovinyl (DCV) and diphenylamine (DPA) moieties were also reported. Due to their 

acceptor (A) or donor (D) substituents, DMTPS-ALD exhibits almost no response to the 

solvent polarity, DMTPS-DCV and DMTPS-DPA, however, exhibit significant 

intramolecular charge transfer (ICT) effects. The best device performance for multilayer 

devices fabricated with DMTPS-type materials as emitter was reported for DMTPS-DPA, 

which showed Von, Lmax, CEmax and maximum power efficiency (PEmax) of 3.1 V, 

13405 cd m
-1

, 8.28 cd A
-1

, and 7.88 lm W
-1

, respectively. Other D-A molecules (TPE-NB and 

TPE-PNPB)
[57]

 were also synthesized and showed high PLQY up to 94%. Hereby, especially 

TPE-PNPB displayed promising EL properties. Generally, strong D-A interactions, e.g. in 

TPE-NB, decrease PL and EL efficiencies. An excellent OLED device performance without 

HTL was obtained for TPE-PNPB: Von of 3.2 V, Lmax of 13678 cd m
-2

 and CEmax of 

16.2 cd A
-1

. Five hole transport-dominated blue AIE luminogens (TPA-TPEs)
[58]

 were 

reported by Li et al. by changing the linkage mode and intramolecular torsion angles. Among 

them, MethylTPA-3pTPE demonstrated the best EL performance with CEmax of 8.03 cd A
-1
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and PEmax of 7.04 lm W
-1

. This design provides a promising approach to construct deep blue 

AIE emitters. 

 

Figure 1.11. Examples of AIE luminogens used in efficient OLED devices with (a) deep blue 

and (b) NIR light emission. 

The availability of deep blue emitters is a crucial need for realizing full color displays and 

white lighting. Since the intrinsic wide bandgap of blue emitters makes it difficult to inject 

charges and due to the occurrence of ACQ effects many researchers have tried to generate 

deep blue AIE emitters whose π-conjugation length is adjusted by different linking positions, 

by substituents of different size or by using AIE cores connected to deep blue emitting 
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building blocks, as depicted in Figure 1.11a. Four TPE-2TPA derivatives
[59]

 with different 

linking positions were synthesized and utilized for OLEDs by Li et al. Their π-conjugation 

length has been reduced via meta-linkages between the building blocks thus exhibiting blue 

to almost deep-blue emission color. Another example of varing linkage mode was reported 

for BTPE derivatives
[60]

. They showed deep-blue emission peaking at 435 to 459 nm with 

CEmax of up to 2.8 cd A
-1

. The behavior is completely different from a BTPE derivative 

linked in para-position (488 nm). Modification of para-linked BTPE with tunable dihedral 

angle within the biphenyl core was also reported
[61]

. The introduction of methyl, isopropyl, 

phenyl and carbazyl substituents in ortho-position of the biphenyl core allows for tuning of 

the central aryl-aryl dihedral angle and results in blue to deep blue light emission. The deep 

blue emitting AIE luminogen BTPE-PI
[62]

 consisting with two AIE-active triphenylethene 

substituents at a deep blue emitting building block phenanthro[9,10-d]imidazole shows 

improved charge transport properties. An OLED device with BTPE-PI as active material 

exhibited performance parameters Lmax, CEmax and PEmax of 20300 cd m
-1

, 5.9 cd A
-1

 and 

5.3 lm W
-1

, respectively, one of the best parameter set for deep blue AIE emitters so far. In 

addition, also efficient white OLEDs have been made with the AIE-active BTPE-PI as deep 

blue emitter and bis[2-(2’-benzothienyl)pyridinato-N,C3’](acetylacetonato)-iridium(III) 

Ir(btp)2(acac) and tris[2-phenylpyridinato-C2,N]-iridium(III) Ir(ppy)3 as dopants with 

4,4’-bis(9H-carbazol-9-yl)biphenyl (CBP) as host, with CIE color coordinates of (0.33, 0.33).  

Extension of the spectral range of OLEDs from visible to far-red and near-infrared (NIR) has 

become a new and challenging research target, especially for potential applications in 

chemosensors, night-vision devices and high-information-security displays. Examples of AIE 

materials used for NIR OLEDs are shown in Figure 1.11b. A family of D-A-D type NIR 

luminogens (1a, 1b, 2a and 2b)
[63]

 was synthesized consisting of AIE-active TPE moieties 

attached to [1,2,5]thiadiazole[3,4-g]quinoxaline or benzo[1,2-c;4,5-c’]bis[1,2,5]thiadiazole 

acceptor cores. The introduction of TPE units into a low bandgap chromophore allows for the 

realization of the AIE effects in the NIR region from 600-1100 nm. Non-doped OLED 

devices gave NIR emissions above 700 nm in moderate efficiency with a maximum external 

quantum efficiency (EQEmax) of up to 0.89%. Another NIR-emitting A-D-A compound 

PTZ-BZP
[64]

 with a twisted bowl-shaped phenothiazine unit was reported, that showed AIE 

behaviour and an EQEmax of the undoped NIR OLED of 1.54%. Moreover, a high radiative 

electron/photon ratio of 48% was observed, more as the usual 25% in “conventional” 

fluorescent OLED devices. 
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1.4.2 Chemical Sensors 

AIE molecules have been applied in various chemical sensors towards external inputs as the 

pH value, temperature and presence of analytes like ions, water or nitroaromatic compounds, 

due to a fast, amplified response with high sensitivity. Figure 1.12 depicts examples of AIE 

luminogens used as (chemo)sensors.  

 

Figure 1.12. Examples of AIE luminogens used as chemosensor materials. 

Explosive detection is of great importance and received much research interest driven by 

homeland security and anti-terrorism implications. AIE-active aryl-substituted carbazole 

derivatives
[65]

 3 and 4 (Figure 1.12) have been tested as explosive sensor for the selective 

detection of 2,4,6-trinitrotoluene (TNT) vapors or TNT in condensed phase e.g. as aqueous 

dispersion. Hereby, the electron-rich carbazole units improve the interaction with 

electron-poor nitroaromatic analytes. A high sensitivity towards TNT on the picogram level 

was detected. Stern-Volmer plots of 3 and 4 aggregates in aqueous dispersion 

(8/2 water/THF) give quenching constants (Ksv) of 13.3×10
5
 M

-1
 and 10.0×10

5
 M

-1
, 

respectively, which are among the highest values from literature. Hb-P1/2
[66]

 is a 

hyperbranched polymer and nanoaggregates of Hb-P1/2 in aqueous dispersion 

(9/1 water/THF) were used to detect picric acid (PA) as another nitroaromatic analyte. The 

quenching efficiency is nonlinearly enhanced with increasing quencher concentration, in line 

with a superamplification effect, that means the Stern-Volmer plots are upward bended thus 
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indicating more efficient PL quenching with increasing nitroaromatic explosive 

concentration. A similar behaviour was observed for other polymers, PI and PII
[67]

, which 

were synthesized via thiol-bromo click polymerization, as well as polymer P1
[68]

. Two 

metal-containing binuclear rhenium (I) complexes (1 and 2)
[69]

 with AIE behaviour were also 

reported. Nanoaggregates of 2 in 1/9 DCM/CH3CN were used to detect PA and showed 

superamplified PL quenching with a Ksv of 1.0×10
5
 M

-1
 for low PA concentration. The reason 

of the observed superamplification effects maybe that the three-dimensional interaction of the 

sensor molecules within the nanoaggregates allows for an efficient exciton diffusion, thus 

increasing the quenching radius in the condensed state. 

The pH value is a very important parameter for all kinds of life, because small changes can 

cause distinct responses. So, a series of AIE luminogens has been developed for pH sensing. 

For example, a pyridinyl-containing molecule CP3E
[70]

 was used as pH sensor both in 

solution and in the solid state, as well as chemosensor for acidic and basic organic vapors 

through reversible protonation and deprotonation of the pyridinyl moiety. The intracellular 

pH (pHi) is an important factor under “normal” and pathological conditions. A biocompatible 

and cell-permeable pHi sensor was prepared based on the AIE-active TPE-Cy
[71]

 containing 

zwitterionic and hydrophilic cyanine units. TPE-Cy shows different emission colors from red 

to blue when going from an extracellular pH 10 to an intracellular physiological pH range of 

pHi 4.7 – 8.0. So, the emission color can serve as a reliable indicator for the local proton 

concentration. Metal ion detection with AIE probes was also demonstrated. Terpyridine-

functionalized TPE (TPE2TPy)
[72]

 was utilized as a “turn-off” PL sensor for metal ions due to 

the strong and directed metal-coordination capacity of terpyridine. Among different ions, 

especially Zn(II) and Fe(II) gave significant responses: A ~50 nm bathochromic shift was 

observed after addition of Zn(II), which allows discrimination against other metal ions. In 

contrast, addition of Fe(II) causes an obvious color change from colorless to magenta for a 

fast identification of Fe(II) in aqueous solution, also by the naked eye. In another publication, 

the detection of Al(III) ion in living cells based on an AIE luminogen called TPE-COOH
[73]

 

was reported. TPE-COOH functions as “turn-on” sensor due to the interaction between 

carboxyl group of TPE-COOH and Al(III) under activation of the fluorescence of the 

molecule with a high sensitivity detection limit of 21.6 nM. The effect is coupled with a high 

selectivity towards other metal ions. Furthermore, an imaging detection and real-time 

monitoring of Al(III) in living Hela cells was realized thanks to the PL acceleration through 

the AIE effect. TPE derivatives (TPEM and TPEBM)
[74]

 containing terminal dicyanovinyl 
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moieties showing distinct AIE and ICT effects were also reported. Due to strong 

solvatochromic effects TPEM and TPEBM are also sensitive water indicators, both 

qualitatively and harf-quantitatively, with low detection limits of 63 ppm and 109 ppm for 

water in THF, respectively. Moreover, the presence of dicyanovinyl groups also allows for a 

nucleophilic interaction with cyanide. Under assistance of cetyltrimethylammonium bromide 

as surfactant a sensitive and selective sensing for cyanide in water with a low detection limit 

of 0.2 µM and a short detection time of 100 s was possible. The last example for AIE-active 

molecules as chemical sensors concerns the TPE derivatives (M(EO)n-TPE)
[75]

 which were 

utilized as temperature sensor based on the temperature-dependent hydration of the 

hydrophilic peripheral oligo(ethylene glycol) chains of M(EO)n-TPE. Upon heating an 

aqueous solution over a certain cloud point the solution became turbid due to aggregation. 

Simultaneously, the PL of the solutions abruptly increase driven by the aggregation of 

individual M(EO)n-TPE molecules. These thermoresponsive properties favour M(EO)n-TPE 

as potential optical temperature sensors. 

1.4.3 Bioimaging 

 

Figure 1.13. Chemical structures of AIE luminogens used for cell imaging applications. 
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Bioimaging is a very promising and challenging research area in bio-pharmaceutical science. 

Compared with other bioimaging techniques, fluorescence imaging (PL imaging) shows 

certain advantages such as high sensitivity, simple operation and potentially low costs. 

Inorganic quantum dots (QDs) and organic nanoparticles have been widely studied for 

bioimaging. Nevertheless, QDs often show a potential cytotoxicity (e.g. Se-based or 

Cd-based systems). Organic nanoparticles often suffer from the ACQ effect. Therefore, 

organic, AIE-based nanoparticles may be a reasonable alternative thanks to their good 

biocompatibility, sufficient photostability, and promising AIE properties. Some examples of 

AIE luminogens used for cell imaging applications are depicted in Figure 1.13.  

An AIE fluorescent probe (TPE-TPP)
[76]

 consisting two triphenylphosphonium (TPP) 

substituents coupled to an AIE-active TPE core was designed for mitochondrial imaging. The 

TPP groups bring in the mitochondrial-targeting ability due to their lipophilicity and 

electrophoretic force.  TPE-TPP also exhibits excellent photostability (the condensed state of 

the nanoaggregates reduces photobleaching and photooxidation) and tolerance to 

microenvironmental changes. Together with the distinct AIE effect TPE-TPP represents a 

promising probe for cell tracking and imaging. TPE-CS
[77]

 bioconjugates also show typical 

AIE behavior and pH sensitivity (caused by its poor solubility at high pH), as a potentially 

promising fluorescence turn-on (light-up) probe for intracellular imaging. Long retention 

times of TPE-CS particles within cells allow for a tracing of stained cells up to 15 passages. 

Temperature-sensitive nanoparticles composed of two PNIPAM chains attached to a TPE 

core (TPE-PNIPAM)
[78]

 show a good biocompatibility and no cytotoxicity. The size of the 

particles can be tuned by changing the temperature due to the occurrence of a lower critical 

solution temperature (LCST). These nanoparticles were readily internalized by HeLa cells 

and used for long-term cellular tracing. The AIE luminogen TPECM-2GFLGD3-cRGD
[79]

 

was used for the cell-specific turn-on (light-up) imaging. Hereby, the response signal for 

MDA-MB-231 cells was much stronger than that for MCF7 and 293T cells. Moreover, it can 

be also used as semiquanlitative AIE probe inside cells since the PL response in the cells after 

incubation is concentration-dependent. In living systems, far-red and near-infrared (FR/NIR) 

emission (>650 nm) can overcome interference problems coupled to the optical absorption, 

light scattering and autofluorescence of biological media. The AIE luminogen 

TPE-TPA-DCM loaded onto BSA NPs
[80]

 (668 nm) were used for in vitro and in vivo 

FR/NIR bioimaging with low cytotoxicity for MCF-7 breast-cancer cells and murine 

hepatoma-22(H22)-tumor-bearing mice models, respectively. Compared to bare 
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TPE-TPA-DCM NPs, TPE-TPA-DCM-loaded BSA NPs showed an enhanced cancer cell 

uptake and a clear differentiation of tumor cells against other tissues due to the enhanced 

permeability and retention effects. Red-emissive TTF-doped-silica NPs
[81]

 were studied for 

multimodal, non-linear optical microscopic imaging of tumor cells and in vivo imaging of 

mouse brains, with strong photobleaching and photoblinking resistance and excellent 

biocompatibility. First shape-specific tumor targeting experiments using bare AIE-active NIR 

NPs were reported based on quinolone-malononitrile (QM) derivatives
[82]

. QM-5 

nanoaggregates with spherical shape exhibited much higher tumor-targeting capacity than 

rod-like QM-2 nanoaggregates, a behavior, that was ascribed to a so-called “passive” 

tumor-targeting by enhanced permeability and retention.  

In summary, AIE-active organic materials have been studied for many optical and electronic 

applications based on their distinctive AIE activity (they are highly emissive in the 

aggregated/solid state). They show remarkable advantages in the aforementioned application 

fields. Although a lot of work has been already done till now, there are still more possibilities 

to be explored. Through further molecules design and testing, a deeper understanding of the 

underlying effects will be extracted. Furthermore, also novel applications in medicine, life 

science, optoelectronic devices may be explored in the near future. 
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Chapter 2 

2. Polycarbazoles with AIE-active Triphenylethylene and 

Tetraphenylethylene Side Groups
[1]

 

 

Novel conjugated polymers based on 3,6-carbazole repeat units were synthesized by 

nickel-catalyzed Yamamoto coupling under microwave heating. The resulting 

poly(3,6-carbazole)s contain tetraphenylethylene (TPE) units in their side chains. The 

resultant polymers show aggregation induced emission (AIE) behavior. Hereby, the 

photoluminescence (PL) intensity of PCzTPE0.5 in 90% water/THF is 35 times higher than 

that in pure THF, connected to the introduction of TPE side chains. The ability of polymer 

PCzTPE0.5 for explosive sensing was also studied. A maximum Stern-Volmer quenching 

constant of 1.26×10
6
 M

-1
 was observed for PL quenching of PCzTPE0.5 aggregates by 

trinitrobenzene (TNB). A solid state paper strip test based on PCzTPE0.5 and PCzTPE also 

demonstrates effective PL quenching towards both TNB vapor and solution. 

2.1 Introduction 

As outlined in the introduction, numerous AIE materials have been designed and tested for 

optoelectronic applications. However, most of them developed so far are low molecular 

weight molecules. Therefore, it is challenging to extend the synthetic approaches to AIE 

polymers. Polymers should be suitable for fabricating large-area, thin films, also with simple 

processes such as spin coating, film casting, doctor blading, or inkjet printing. 

Tri- and tetraphenylethylene luminogens are widely used AIE chromophores
[2-4]

, showing 

distinct AIE effects. They are accessible in simple synthetic schemes. Symmetrical 

tetraphenylethylene (TPE) derivatives can be synthesized through McMurry-type couplings 

(e.g. with TiCl3 or TiCl4 in THF)
[5]

. Asymmetrically substituted ones are obtained by treating 

benzophenone derivatives with diphenylmethyl lithium derivatives followed by 

acid-catalyzed dehydration
[6]

. Synthesis of TPE derivitives is much easier than that of 

silole-based AIE luminogens. As mentioned, TPE is an excellent and prototypical AIE 

chromophore
[7]

: The fluorescence quantum yield in THF solution is only 0.24%, but it 
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increases in the solid state (film) to 49.2%, with a large AIE coefficient αAIE of 205. Several 

π-conjugated TPE derivatives have been reported in the literature, most of them with distinct 

AIE effects. They have been used for applications in OLEDs, chemosensors, as bioprobes, 

etc.  

In this chapter, we prepared novel conjugated carbazole-based polymers with AIE-active 

tri/tetraphenylethylene side chains (as shown in Chart 2.1). For comparision, 

n-octyl-substituted polycarbazole (PCz) was investigated, which shows typical ACQ 

properties. The 3,6-carbazole repeat units
[8-10]

 were chosen for constructing the polycarbazole 

backbone since their electron-donor character which should be beneficial for the interaction 

with electron-poor trinitroaromatics. The incorporation of tri/tetraphenylethylene unit into the 

side chains could adjust their AIE activity, without strongly affecting the electronic properties 

of the polycarbazole backbone. Based on this design principle we expect a high sensitivity for 

the detection of nitroaromatic compounds. Among them, PCzTPE and PCzTPE0.5 are the 

first AIE polyaromatics with the AIE-active groups in the side chain. 

 

Chart 2.1. Chemical structures of polycarbazoles. 

2.2 Results and Discussion 

2.2.1 Synthesis and Characterization 

The synthetic routes to the monomers and polymers are depicted in Scheme 2.1. Treatment of 

diethyl (4-iodobenzyl)phosphonate with t-BuOK followed by adding benzophenone afforded 

2-(4-iodophenyl)-1,1-diphenylethylene via a Witting-Horner olefination. The N-carbazolyl-

triphenylethylene derivative 1 was obtained by Ullmann coupling between 2-(4-iodophenyl)-

1,1-diphenylethylene and 3,6-dibromocarbazole. Monofluoro-TPE was synthesized by 

treating 4-fluorobenzophenone with diphenylmethyl lithium followed by acid-catalyzed 

dehydration
[6]

. The N-carbazolyl-TPE derivative 2 was obtained by catalyst-free N-arylation 

in a direct nucleophilic substitution of monofluoro-TPE as nonactivated fluorobenzene with 
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3,6-dibromocarbazole
[11]

. 3,6-Dibromo-9-octylcarbazole 3 was synthesized according to a 

reported procedure
[12]

. Homopolymer PCz, PCz3PE and PCzTPE and random copolymer 

PCz3PE0.5 and PCzTPE0.5 were synthesized from monomers 1 or 2 and 3 by 

Yamamoto-type coupling using bis(1,5-cyclooctadiene)nickel(0) (Ni(COD)2) as coupling 

reagent in a mixture of THF, 1,5-cyclooctadiene (COD) and 2,2’-bipyridine (BPy) under 

microwave (MW) heating
[13]

. Following these protocol we could obtain the target conjugated 

polymers in short reaction times. The structure elucidation of the monomers was performed 

by NMR spectroscopy, mass spectrometry and elemental analysis. The chemical structure of 

the obtained polymers was confirmed by NMR spectroscopy, GPC, thermal analysis and 

optical spectroscopy. 

 

Scheme 2.1. Synthetic procedures for monomer and polymer synthesis. 
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2.2.2 Photophysical Properties 

In the following paragraphs, we will discuss the photophysical properties of our novel 

polymers in two parts; since the polymers with triphenylethylene side groups and 

tetraphenylethylene groups show rather different behavior in nanoaggregate dispersions. 

2.2.2.1 Triphenylethylene-substituted Polymers PCz3PE0.5 and PCz3PE 

Table 2.1. Optical data of of PCz3PE and PCz3PE0.5. 

 λUV/nm 

in THF 

λPL/nm 

in THF 

λUV/nm 

in film 

λPL/nm 

in film 

ƞPL (%) 

in THF 

ƞPL (%) 

in film 

PCz3PE0.5 319, 347 (sh) 476 320, 346 (sh) 467 38 14 

PCz3PE 310, 353 475 315, 355 469 38 10 

 

Figure 2.1. Absorption and PL spectra (excitation wavelength: 320 nm) of (a) PCz3PE0.5 and 

(b) PCz3PE in dilute THF solution (10
-5

 M) and as spin-coated films, measured at room 

temperature. 

Figure 2.1 shows the absorption and PL spectra of PCz3PE0.5 and PCz3PE in THF solution 

and in the solid state (films). The absorption spectra of PCz3PE0.5 and PCz3PE are quite 

similar, their solid state absorption maxima appear at 320 and 315 nm, respectively. Both 

polymers show blue fluorescence with the PL maxima peaking around 470 nm. Note worthy 

the PL maxima of PCz3PE0.5 and PCz3PE in solution both show a minor red shift of 9 and 

6 nm, respectively, compared to those of the films. Table 2.1 summarizes the optical data of 

PCz3PE0.5 and PCz3PE. The photoluminescence quantum yields (PLQYs) of PCz3PE and 

PCz3PE0.5 in dilute THF solution have been determined as 38% for both polymers, by using 

quinine sulfate as standard. The PLQYs of the films are 14% and 10% for PCz3PE0.5 and 

PCz3PE, respectively. As conclusion, the triphenylethylene-substituted polycarbazoles 
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PCz3PE0.5 and PCz3PE do not exhibit any AIE properties. Contrary, they show typical 

aggregation-caused quenching (ACQ) behavior. 

 

Figure 2.2. PL spectra of (a) PCz3PE0.5 and (c) PCz3PE in THF/water mixtures with 

different water content; PL intensity with increasing water fraction for (b) PCz3PE0.5 and 

(d) PCz3PE, respectively (polymer concentration: 10
-5

 M; excitation wavelength: 320 nm). 

To further investigate the possible occurrence of AIE properties, we also recorded a series of 

PL spectra in THF/water solvent mixtures (see Figure 2.2). Hereby, THF is a good and water 

a non-solvent for both polymers. Therefore, the polymers are supposed to aggregate for a 

certain water fraction of the solvent mixtures. For PCz3PE0.5, the PL intensity first decreases 

with increasing water content up to 40%. After that, the PL intensity increases up to 

80% water with an overall PL increase of ca. 1.5 times. For PCz3PE, the PL intensity first 

decreases up to 10% water, followed by a PL increase for 10% – 60% water, with a PL 

increase of ca. 1.3. These results again demonstrate that PCz3PE and PCz3PE0.5 do not show 

distinct AIE effects. That means, triphenylethylene-substitution of polycarbazoles does not 

result in good AIE luminogens. 
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2.2.2.2 Tetraphenylethylene-substituted Polymers PCzTPE and PCzTPE0.5 

Table 2.2. Optical and electrochemical data of PCzTPE and PCzTPE0.5. 

 λUV/nm 

in THF 

λPL/nm 

in THF 

λUV/nm 

in film 

λPL/nm 

in film 

ƞPL(%) 

in THF  

ƞPL(%) 

in film  

HOMO 

(eV) 

LUMO 

(eV) 

PCzTPE 307 314 495 495 1.1 20 -5.1 -2.0 

PCzTPE0.5 305 310 490 493 0.8 21 -5.1 -1.9 

 

Figure 2.3. Absorption and PL spectra (excitation wavelength: 320 nm) of (a) PCzTPE and 

(b) PCzTPE0.5 in dilute THF solution (10
-5

 M) and as spin-coated films measured at room 

temperature. 

According to the last paragraph, polycarbazoles with triphenylethylene substituents did not 

show obvious AIE phenomenons. Next, the triphenylethylene substituents were replaced by 

tetraphenylethlene (TPE) ones resulting in the polymers PCzTPE and PCzTPE0.5. With the 

exchange of a hydrogen by a phenyl ring (leading to the TPE structure) a more twisted 

conformation should result, what will be beneficial for the occurrence of AIE effects. 

Figure 2.3 shows the absorption and PL spectra of PCzTPE and PCzTPE0.5 in dilute THF 

solution and solid state films. The absorption spectra of PCzTPE and PCzTPE0.5 are very 

similar, with solid state peak maxima at 314 and 310 nm, respectively. In the PL spectra both 

polymers exhibit bluish-green emission peaking around 495 nm, both in solution and as thin 

films. This behavior is attributed to the incorporation of the TPE units – they effectively 

suppress π-π stacking in the condensed phase due to the presence of the propeller-shaped TPE 

side chain. The PLQYs of PCzTPE and PCzTPE0.5 in dilute THF solution, estimated by 

using quinine sulfate as standard, have been determined as 1.1% and 0.8%, respectively. The 

PLQYs distinctly increase to 20% and 21%, respectively, in solid state films, 18- and 26-fold 

higher if compared to THF solutions (see Table 2.2). Evidently, the transition into the 
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condensed state dramatically enhances the PL of the polymers. The AIE properties will be 

discussed in detail within the following paragraph. 

 

Figure 2.4. PL spectra of (a) PCzTPE and (c) PCzTPE0.5 in THF/water mixtures with 

different water content; increase of PL intensity with increasing water fraction for (b) 

PCzTPE and (d) PCzTPE0.5, respectively (polymer concentration: 10
-5

 M; excitation 

wavelength: 320 nm); (e) fluorescence images of PCzTPE0.5 in THF/water mixtures with 

different water content. 

To further investigate the AIE effect with PCzTPE and PCzTPE0.5 a series of PL spectra in 

THF/water mixtures with increasing water fraction were recorded. Figure 2.4a/c show PL 

spectra of the polymers in such water/THF mixtures. The PL intensity increases progressively 

with increasing water fraction for both polymers. Hereby, polymer PCzTPE0.5 showed a 

more pronounced AIE effect if compared to the PCzTPE copolymer. For PCzTPE the PL 

intensity is 11 times higher for a water content of 80% if compared to pure THF 

(Figure 2.4b), and for PCzTPE0.5 35 times higher for a water content of 90% (Figure 2.4d). 

As water is a non-solvent for PCzTPE and PCzTPE0.5, both polymers are assumed to form 

solid-state aggregates in the THF/water mixtures with high water content, thus exhibiting 

aggregation-induced PL enhancement: they are AIE-active. The fluorescence images in 
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Figure 2.4e clearly show AIE effect with water addition. Caused by the high rotational 

freedom of the TPE side-chain moieties in solution, a high internal conversion rate results in 

weak emission. Within the aggregated (solid) state, however, the rotation of phenyl rings of 

the TPE units is strongly restricted, thus blocking non-radiative deactivation channels and 

leading to the AIE effect. A poly(N-octyl-3,6-carbazole) without TPE side groups that was 

generated as reference did not show any AIE activity (Figure 2.5). 

 

Figure 2.5. (a) PL spectra of PCz in THF/water mixtures with different water content; (b) PL 

intensity with increasing water fraction for PCz (polymer concentration: 10
-5

 M; excitation 

wavelength: 320 nm). 

2.2.3 Thermal Properties 

The thermal properties of PCzTPE0.5 and PCzTPE were investigated by TGA and DSC. 

Both polymers exhibit high thermal stability with 5% weight loss occurring at 490 and 

430 °C, respectively. In DSC analysis we could not record glass transitions (Tg) up to 300 °C. 

High thermal stability is important for practical application in solid state sensors. 

2.2.4 Explosive Detection 

The detection of explosives, such as nitroaromatic compounds or peroxides becomes 

increasingly important in modern society, due to the concerns on global security and 

environmental protection
[14-16]

. Many methods have been developed for explosive detection, 

such as gas chromatography
[17]

, mass spectrometry
[18]

, surface enhanced Raman 

spectroscopy
[19]

, ion mobility spectrometry
[20]

, electrochemical sensing
[21,22]

, PL 

spectroscopy
[23,24]

, and others. Among them, PL sensors based on conjugated polymers
[25]

 

have been widely tested because of their simplicity and high sensitivity. Trinitroaromatic 

compounds containing three electron-withdrawing nitro groups are potent electron acceptors. 

The working principle of PL sensors for nitroaromatic compounds is based on a 
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photo-induced electron transfer from donor (conjugated polymer) to acceptor (nitroaromatic 

compound) thus resulting in PL quenching. Recently, AIE luminogens have been used in PL 

sensors for the detection of nitroaromatics
[26-28]

, and there are two main benefits by using AIE 

luminogens for PL sensors: one is their high solid state fluorescence quantum yields; the 

other is their twisted, loosely packed structure, that accelerates diffusion of analyte 

molecules, thus enhancing the quenching efficiency. 

2.2.4.1 Explosive Detection based on Aggregated PCzTPE0.5 Solutions 

 

Figure 2.6. (a) PL spectra of PCzTPE0.5 in THF/water 1:9 containing different amounts of 

TNB (Polymer concentration: 10
-5

 M; λex: 320 nm). (b) Stern-Volmer plots of PL intensity 

I0/I-1 of PCzTPE0.5 vs. TNB concentration (I = PL intensity, I0 = PL intensity at TNB 

concentration of 0 M). 

PCzTPE and PCzTPE0.5 should show good electron-donor ability due to their electron-rich 

polycarbazole backbones. Moreover, their twisted 3D-structure should create effective 

pathways for interchain exciton diffusion leading to amplified PL quenching properties. 

Based on the above presented results we started our investigations with aggregated 

PCzTPE0.5 in THF/water 1:9 (polymer concentration: 10 µM). 1,3,5-trinitrobenzene (TNB) 

was chosen as prototypical nitroaromatic analyte. As shown in Figure 2.6a, the PL intensity 

of PCzTPE0.5 in THF/water 1:9 decreases progressively during addition of TNB, without 

changing the PL peak position, suggesting that different emissive species have not formed. 

The onset of PL quenching is found for addition of 50 nM TNB, low enough for the detection 

of submillimolar TNB concentrations. For a TNB concentration of 58 µM, the PL of the 

dispersed polymer nanoaggregates is fully quenched. The quenching response was analyzed 

by fitting the data with the Stern-Volmer equation, as depicted in Figure 2.6b. For TNB 

concentration below 21 µM, the Stern-Volmer plot is linear with a quenching constant of 



PhD Thesis from University of Wuppertal 

32 
 

2.14×10
5
 M

-1
. For higher analyte concentration, the curve bends upward, thus demonstrating 

an amplified quenching
[29]

. The quenching constant reaches ca. 1.26×10
6
 M

-1
 between TNB 

concentration of 43 µM and 58 µM. This amplified quenching is attributed to the twisted 3D 

topology of the polymer chains in the nanoaggregates, leading to the formation of an 

increased number of quenching sites that can interact with TNB molecules and/or to an 

improved exciton diffusion to quenching sites
[30]

.  

2.2.4.2 Fluorescence Quenching Mechanism during Interaction with Nitroaromatic 

Compounds 

Figure 2.7a shows that there is no spectral overlap between the absorption spectrum of TNB 

and the PL spectrum of PCzTPE0.5 (as prerequisite for Förster-type energy transfer) thus 

indicating that the main quenching mechanism for TNB addition should be an excited state 

charge transfer between the excited state of the host and the ground state of the TNB 

quencher, as depicted in Figure 2.8. The occurrence of charge transfer was further confirmed 

by cyclic voltammetry (Figure 2.7b). The HOMO (highest occupied molecular orbital) level 

of PCzTPE0.5 was estimated to ca. -5.1 eV, and the LUMO (lowest unoccupied molecular 

orbital) level of TNB to ca. -3.1 eV. Considering an optical bandgap (Eg) of 3.2 eV for 

PCzTPE0.5 from the onset of its UV/vis absorption band, the LUMO level of PCzTPE0.5 is 

calculated to be ca. -1.9 eV (Table 2.2). Therefore, the LUMO energy (-1.9 eV) of 

PCzTPE0.5 allows for an excited state electron transfer to the lower-lying LUMO level of 

TNB with a LUMO/LUMO offset of ca. 1.2 eV. 

 

Figure 2.7. (a) Normalized absorption spectrum of TNB and PL spectrum of PCzTPE0.5 

nanoaggregates in THF/water 1:9. (b) Cyclic voltammetry plots of PCzTPE0.5 in 

dichloromethane (oxidative scan) and TNB in acetonitrile (reductive scan), for the 

experimental conditions please see Experimental part. 
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Figure 2.8. Schematic representation of the excited state electron-transfer process that causes 

PL quenching. 

2.2.4.3 Explosive Detection based on PCzTPE and PCzTPE0.5 Paper Strips 

 

Figure 2.9. Paper strip tests. (A) Vapor-mode detection of TNB: test strips before (a,b) and 

after (c,d) placing the strips on top of a glass vial containing solid TNB for 5 min; for 

PCzTPE (a,c) or PCzTPE0.5 (b,d), respectively. (B) Solution-mode detection of TNB: test 

strips before (a,b) and after dipping the strips into pure THF (c,d) and into a 10
-4

 M TNB 

solution in THF (e,f); for PCzTPE (a,c,e) or PCzTPE0.5 (b,d,f), respectively. 

For practical explosive detection, the availability of solid state sensor devices is of primary 

importance. Towards this goal, we prepared test strips by dip-coating Whatman filter paper 

into solutions of PCzTPE and PCzTPE0.5 in THF (10
-4

 M) followed by drying the strips in 

an air stream. First, for vapor-mode tests, we placed the fluorescent paper strips on top of a 

glass vial containing solid TNB for 5 min at room temperature. In this way, a circular area of 

the strip was exposed to TNB vapor. Within the exposed area the PL of the polymers was 

obviously distinctly quenched (Figure 2.9A). Second, for solution tests, the test strips 

containing both polymers were dipped into pure THF (as reference) and a solution of TNB in 

THF (10
-4

 M). As shown in Figure 2.9B, the fluorescences of the strips were quenched 
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completely after contact with the TNB solution for both polymers. The reference strips 

dipped into pure THF do not show significant PL quenching thus demonstrating that the 

majority of the polymers remain adsorbed at the test strips. These first promising results 

demonstrate the potential of our new polycarbazole-type polymers PCzTPE0.5 and PCzTPE 

for the fabrication of solid state sensors for nitroaromatic explosives with sufficient 

sensitivity. 

2.3 Conclusions 

In summary, two kinds of N-substituted poly(3,6-carbazole)s with triphenylethylene and 

tetraphenylethylene (TPE) side chains have been successfully synthesized. However, the 

polymers with triphenylethylene side chains PCz3PE and PCz3PE0.5 did not show distinct 

AIE effects. The polymers with TPE side chains PCzTPE and PCzTPE0.5 combine the 

electron-rich character of the polycarbazole backbone and the AIE behavior of the TPE 

containing side chains and both polymers PCzTPE and PCzTPE0.5 show distinct AIE 

properties. For sensing of nitroaromatic explosives PL quenching experiments were carried 

out. Aggregated PCzTPE0.5 shows amplified PL quenching during 1,3,5-trinitrobenzene 

(TNB) addition in THF/water mixtures (1:9, v/v) with a maximum Stern-Volmer quenching 

constant of 1.26×10
6
 M

-1
, which is among the best results from the literatures. Solid-state 

paper strips with deposits of both polymers show obvious TNB-induced PL quenching, both 

towards TNB vapor or TNB solution thus demonstrating promising practical application 

potential in solid state sensors for nitroaromatic explosives.  

2.4 Experimental 

2.4.1 Materials 

All reagents were obtained from commercial suppliers and were used without further 

purification. All reactions were carried out under argon atmosphere by standard and Schlenk 

techniques. The solvents were used as commercial p.a. quality. 

2-(4-iodophenyl)-1,1-diphenylethylene 

Diethyl (4-iodobenzyl)phosphonate (10 mL, 43.2 mmol) and t-BuOK (5.29 g, 47.1 mmol) 

was dissolved in dry THF (85 mL) under an argon atmosphere and stirred for 10 min. 

Benzophenone (7.16 g, 39.3 mmol) in dry THF (60 mL) was added into the above solution 

and stirred under room temperature overnight. The reaction was quenched by water and 
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extracted with dichloromethane. The organic phases were collected and dried over anhydrous 

MgSO4. After filtration, the solvent was removed under vacuum. The product was purified by 

silica gel chromatography (eluent: dichloromethane/hexane = 1/1) to give the desired product 

as white powder in 89% yield (13.4 g). 
1
H NMR (400 MHz, C2D2Cl4) δ (ppm) 7.50 (d, J = 

8.5 Hz, 2H), 7.46 - 7.29 (m, 8H), 7.28 - 7.19 (m, 2H), 6.92 (s, 1H), 6.79 (d, J = 8.4 Hz, 2H). 

13
C NMR (100 MHz, C2D2Cl4) δ (ppm) 143.78, 143.13, 140.02, 137.38, 137.15, 131.60, 

130.42, 129.14, 128.62, 128.11, 128.01, 127.86, 127.10, 92.61. 

3,6-dibromo-9-(4-(2,2-diphenylvinyl)phenyl)-9H-carbazole (1) 

A mixture of 3,6-dibromo-9H-carbazole (3.54 g, 10.9 mmol), 2-(4-iodophenyl)-

1,1-diphenylethylene (5 g, 13.1 mmol), copper powder (0.70 g, 11.0 mmol), K2CO3 (2.26 g, 

16.4 mmol) and 18-crown-6 (0.29 g, 1.10 mmol)  in dry DMF (110 mL) was stirred at 170 °C 

for 24 h under an argon atmosphere. The reaction was cooled down to room temperature, and 

diluted with dichloromethane. The copper powder was removed by filtration. The solution 

was washed with water and extracted with dichloromethane. The organic phase was dried 

over anhydrous MgSO4 and concentrated under vacuum, the product was purified by silica 

gel chromatography (eluent: dichloromethane/hexane = 1/2) to give pure product as white 

powder in 51% yield (3.2 g). 
1
H NMR (400 MHz, C2D2Cl4) δ (ppm) 8.19 (d, J = 1.8 Hz, 2H), 

7.51 (dd, J = 8.7, 1.9 Hz, 2H), 7.46 - 7.33 (m, 8H), 7.33 - 7.21 (m, 8H), 7.07 (s, 1H). 

13
C NMR (100 MHz, C2D2Cl4) δ (ppm) 144.01, 143.18, 140.11, 139.88, 137.40, 134.97, 

131.36, 130.51, 129.68, 129.20, 128.68, 128.19, 128.13, 127.92, 127.10, 126.34, 124.11, 

123.44, 113.33, 112.01. MS (Maldi-Tof): m/z calcd 579.32; found 579.00. Elemental Anal. 

Calcd for 1: C, 66.34%; H, 3.65%; N, 2.42%. Found: C, 65.28%; H, 3.59%; N, 2.41%. 

1-(4-fluorophenyl)-1,2,2-triphenylethylene 

To a solution of diphenylmethane (8.08 g, 48 mmol) in dry THF (80 mL) 2.8 M solution of 

n-butyllithium (n-BuLi) in hexane (48 mmol) were added at 0 °C under an argon atmosphere. 

The resulting orange-red solution was stirred for 1 h at that temperature. To this solution 

4-fluorobenzophenone (8.00 g, 40 mmol) was added, and the reaction mixture was allowed to 

warm up to room temperature overnight. The reaction was quenched with the addition of an 

aqueous solution of ammonium chloride. The organic layer was extracted with chloroform, 

and the combined organic layers were washed with a saturated brine solution and dried over 

anhydrous MgSO4. The solvent was evaporated, and the resulting crude alcohol (containing 

excess diphenylmethane) was subjected to acid-catalyzed dehydration as follows. 
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The crude alcohol was dissolved in about 250 mL of toluene containing p-toluenesulphonic 

acid (PTSA) (2.0 g, 10.5 mmol) in a 500 mL flask, and the mixture was refluxed overnight. 

The toluene layer was washed with 10% aqueous NaHCO3 solution and dried over MgSO4 

and evaporated to afford the crude tetraphenylethylene derivative. The crude product was 

purified by recrystallization from the mixture of dichloromethane and methanol to give the 

target compound as a white solid in 71% yield (10.0 g). 
1
H NMR (400 MHz, C2D2Cl4) δ 

(ppm) 7.15 - 7.07 (m, 9H), 7.06 - 6.95 (m, 8H), 6.80 (t, J = 8.8 Hz, 2H). 
13

C NMR (100 MHz, 

C2D2Cl4) δ (ppm) 160.24, 143.73. 143.69, 143.62, 141.41, 140.01, 139.97, 139.94, 133.23, 

133.15, 131.51, 128.06, 128.00, 127.95, 126.76, 126.69, 114.94, 114.73. 

1-[4-(3,6-dibromocarbazole-9-yl)phenyl]-1,2,2-triphenylethylene (2) 

A solution of compound 1-(4-fluorophenyl)-1,2,2-triphenylethylene (3.00 g, 8.56 mmol), 

3,6-dibromocarbazole (3.06 g, 9.42 mmol) and K3PO4 (9.08 g, 42.8 mmol) in DMF (120 mL) 

was stirred at 150 °C for 24 h under argon atmosphere. The reaction mixture was quenched 

with water and extracted with chloroform. The organic phases were collected, dried over 

MgSO4, and concentrated in vacuum. The product was purified by silica gel chromatography 

(eluent: hexane/dichloromethane = 4/1) to give the desired compound as a white solid in 25% 

yield (1.4 g). 
1
H NMR (400 MHz, C2D2Cl4) δ (ppm) 8.19 (d, J = 1.9 Hz, 2H), 7.53 (dd, J = 

8.7, 1.9 Hz, 2H), 7.26 (d, J = 8.6 Hz, 2H), 7.24 - 7.12 (m, 15H), 7.12 - 7.06 (m, 4H). 

13
C NMR (100 MHz, C2D2Cl4) δ (ppm) 143.94, 143.66, 143.42, 143.20, 142.42, 140.13, 

139.99, 134.69, 133.20, 131.66, 131.60, 131.52, 129.69, 128.19, 128.05. 128.03, 127.04. 

126.99, 126.10, 124.06, 123.44, 113.26, 111.94. MS (APLI): m/z calcd 655.03; found 655.03. 

Elemental Anal. Calcd for 2: C, 69.64%; H, 3.84%; N, 2.14%. Found: C, 69.17%; H, 3.84%; 

N, 2.16%. 

3,6-dibromo-9-octylcarbazole (3) 

3,6-Dibromocarbazole (5.0 g, 1.55 mmol) and tetrabutylammonium bromide (TBABr) 

(500 mg, 1.55 mmol) were dissolved in DMSO (100 mL) under argon. Aqueous NaOH 

solution (1 g/mL, 8 mL) was added to the mixture, and the mixture stirred at 60 °C for 5 min. 

Then, 1-bromooctane (4 mL, 0.023 mol) and DMSO (10 mL) were added and the reaction 

mixture was heated to 90 °C overnight. The reaction mixture was quenched with water and 

extracted with chloroform. The organic phases were collected, dried over MgSO4 and 

concentrated in vacuum. The product was purified by silica gel chromatography (eluent: 

hexane/dichloromethane = 3/1) to give the desired compound as a white solid in 81% yield 
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(5.4 g). 
1
H NMR (400 MHz, C2D2Cl4) δ (ppm) 8.15 (s, 2H), 7.58 (dd, J = 8.7, 1.9 Hz, 2H), 

7.30 (d, J = 8.7 Hz, 2H), 4.23 (t, J = 7.0 Hz, 2H), 1.88 - 1.74 (m, 2H), 1.38 - 1.15 (m, 10H), 

0.87 (t, J = 6.8 Hz, 3H). 
13

C NMR (100 MHz, C2D2Cl4) δ (ppm) 139.57, 129.37, 123.58, 

123.49, 112.16, 110.88, 43.69, 32.03, 29.58, 29.40, 29.15, 27.49, 22.91, 14.48. MS (APLI): 

m/z calcd 437.02; found 437.06. Elemental Anal. Calcd for 3: C, 54.94%; H, 5.30%; N, 

3.20%. Found: C, 54.91%; H, 5.58%; N, 3.20%. 

Polymer PCz3PE 

A solution of compound 1 (493 mg, 0.851 mmol), Ni(COD)2 (655 mg, 2.383 mmol), BPy 

(346 mg, 2.213 mmol) and COD (239 mg, 2.213  mmol) in THF (7 mL) was reacted under 

microwave heating at 120 °C for 12 min. The reaction mixture was quenched with water and 

extracted with chloroform. The collected organic phases were washed with aqueous 2 M HCl 

solution, aqueous NaHCO3 solution, saturated, aqueous EDTA solution, and brine, and 

finally dried over MgSO4. Afterwards, the solvents were removed under vacuum. The 

resulting solid was dissolved in a small amount of chloroform and precipitated into methanol 

(500 mL) to afford the target polymer as a light-green solid. Subsequent Soxhlet extractions 

were carried out with methanol, acetone, ethyl acetate and chloroform, respectively. After 

re-precipitation of the chloroform-soluble fraction into methanol, the light-green polymer was 

obtained with 77% yield (295 mg). 
1
H NMR (400 MHz, C2D2Cl4) δ (ppm) 8.68 - 8.36 (m, 

2H), 7.92 - 7.69 (m, 2H), 7.69 - 7.18 (m, 18H), 7.16 - 7.05 (m, 1H). 
13

C NMR (100 MHz, 

C2D2Cl4) δ (ppm) 143.66, 143.37, 141.58, 140.53, 140.33, 136.67, 136.31, 134.62, 131.14, 

130.54, 129.07, 128.58, 127.96, 127.86, 127.40, 126.22, 124.50, 119.07, 117.91, 110.65. 

Mn 8100, Mw 14000, Mw/Mn 1.73(GPC, PS calibration). 

Polymer PCz3PE0.5 

A solution of compound 1 (265 mg, 0.457 mmol), compound 3 (200 mg, 0.457 mmol), 

Ni(COD)2 (629 mg, 2.287 mmol), BPy (357 mg, 2.287 mmol) and COD (247 mg, 

2.287 mmol) in THF (7 mL) was reacted under microwave heating at 120 °C for 12 min. The 

workup procedure was similar to that described for the preparation of PCz3PE. The 

light-green polymer was obtained with 38% yield (120 mg).
 1
H NMR (600 MHz, C2D2Cl4) δ 

(ppm) 8.41 (d, J = 94.4 Hz, 7H), 7.82 (d, J = 37.5 Hz, 8H), 7.60 - 7.11 (m, 38H), 7.04 (s, 2H), 

5.09 - 3.43 (m, 2H), 1.95 (d, J = 94.1 Hz, 4H), 1.49 - 0.99 (m, 23H), 0.84 (dd, J = 30.4, 

6.4 Hz, 7H). Mn 10100, Mw 32300, Mw/Mn 3.19 (GPC, PS calibration). 



PhD Thesis from University of Wuppertal 

38 
 

Polymer PCzTPE 

A solution of compound 2 (400 mg, 0.610 mmol), Ni(COD)2 (436 mg, 1.587 mmol), BPy 

(110 mg, 0.701 mmol) and COD (172 mg, 1.587 mmol) in THF (7 mL) was reacted under 

microwave heating at 120 °C for 12 min. The workup procedure was similar to that described 

for the preparation of PCz3PE. The light-green polymer was obtained with 70% yield 

(211 mg). 
1
H NMR (600 MHz, C2D2Cl4, 60 °C) δ (ppm) 8.60 - 8.41 (m, 2H), 7.86 - 7.62 (m, 

2H), 7.48 - 6.87 (m, 21H). 
13

C NMR (150 MHz, C2D2Cl4, 60 °C) δ (ppm) 143.76, 143.59, 

143.43, 143.15, 142.26, 140.72, 140.51, 136.04, 134.62, 132.91, 131.55, 131.53, 131.47, 

128.09, 128.01, 127.94, 126.93, 126.86, 126.78, 126.09, 124.46, 119.10, 110.54. Mn 6800, 

Mw 14300, Mw/Mn 2.10 (GPC, PS calibration). 

Polymer PCzTPE0.5 

A solution of compound 2 (300 mg, 0.457 mmol), compound 3 (200 mg, 0.457 mmol), 

Ni(COD)2 (629 mg, 2.287 mmol), BPy (357 mg, 2.287 mmol) and COD (247 mg, 

2.287 mmol) in THF (7 mL) was reacted under microwave heating at 120 °C for 12 min. 

The workup procedure was similar to that described for the preparation of PCz3PE. The 

light-green polymer was obtained with 54% yield (192 mg). 
1
H NMR (600 MHz, C2D2Cl4, 

60 °C) δ (ppm) 8.49 (s, 4H), 8.01 - 7.66 (m, 4H), 7.58 - 6.94 (m, 23H), 4.26 (s, 2H), 1.88 (s, 

2H), 1.29 (dd, J = 78.1, 27.6 Hz, 10H), 0.92 - 0.73 (m, 3H). Mn 9200, Mw 23400, Mw/Mn 2.54 

(GPC, PS calibration). 

Polymer PCz 

A solution of compound 3 (400 mg, 0.915 mmol), Ni(COD)2 (654 mg, 2.379 mmol), BPy 

(372 mg, 2.379 mmol) and COD (257 mg, 2.379 mmol) in THF (6 mL) was reacted under 

microwave heating at 120 °C for 12 min. The workup procedure was similar to that described 

for the preparation of PCz3PE. The grey polymer was obtained with 32% yield (90 mg). 

1
H NMR (600 MHz, C2D2Cl4, 60 °C) δ (ppm) 8.52 (s, J = 28.4 Hz, 2H), 7.90 (d, J = 8.5 Hz, 

2H), 7.50 (d, J = 8.6 Hz, 2H), 4.31 (bs, 2H), 2.06 - 1.80 (m, 2H), 1.57 - 1.13 (m, 10H), 0.89 

(t, J = 6.9 Hz, 3H). Mn 10100, Mw 34500, Mw/Mn 3.42 (GPC, PS calibration). 

Preparation of nanoaggregates 

First stock polymer solutions in THF with a concentration of 10
-4

 M were prepared. After 

adding proper volume of THF, water was added under vigorous stirring to furnish a 10
-5

 M 
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nanoaggregates solution. The solution was further used for measurements immediately after 

obtained. 

2.4.2 Instrumentation 

NMR spectra were recorded on a Bruker AVANCE 400 or AVANCE III 600. 
1
H and 

13
C NMR spectra were measured with tetramethylsilane (TMS) as internal standard. Gel 

permeation chromatography (GPC) measurements were carried out on a PSS/Agilent 

SECurity GPC System equipped with polystyrene gel columns using chloroform as eluent. 

APLI (Atmospheric Pressure Laser Ionization) measurements were carried out on Bruker 

Daltronik Bremen with micrOTOF. Maldi-Tof mass spectra were recorded on a Bruker 

Reflex TOF. UV-visible absorption spectra were recorded on a Jasco V-670 spectrometer, 

and PL spectra on a Varian CARY Eclipse F2500 or HORIBA Scientific FluroMax-4. 

Elemental analyses were performed on a Vario EL II (CHNS) instrument. Thermal 

gravimetric analysis (TGA) was undertaken on a TGA/DSC1 STAR System (Mettler Toledo) 

at a heating rate of 10 °C/min and an argon flow rate of 50 mL/min. Differential scanning 

calorimetry (DSC) was performed on a DSC1 STAR System (Mettler Toledo) at a heating 

rate of 10 °C/min under argon. The PL quantum efficiencies of polymer films were measured 

with an integrating sphere. Cyclic voltammetry (CV) measurements of the polymer films 

were performed on a standard three-electrode electrochemical cell attached to a VersaSTAT 4 

electrochemical workstation in dichloromethane for polymers and acetonitrile for 

trinitrobenzene (TNB) with 0.1 M tetrabutylammonium perchlorate as supporting electrolyte 

at a scan rate of 0.1 V/s for polymers and 0.2 V/s for TNB. The potentials were measured 

against an Ag/AgNO3 reference electrode (0.1 M AgNO3 in acetonitrile, 0.6 V vs. NHE). The 

onset potentials were determined from the intersection of two tangents drawn at the rising 

current and background current of the cyclic voltammogram. 
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Chapter 3 

3. Polytriphenylamines with AIE-active Tetraphenylethylene Side 

Groups
[1]

 

 

Two polytriphenylamines (PTPAs) (P1 and P2) with AIE-active tetraphenylethylene side 

groups have been designed and successfully synthesized. Both polymers only faintly emit in 

dilute solution but show strong emission in aggregated state, meaning that they are 

AIE-active. The detection of 1,3,5-trinitrobenzene (TNB) vapors has been investigated by 

photoluminescence (PL) quenching in polymer films. High solid state quantum yields and 

donor-acceptor interactions of the electron-rich PTPA chains with the TNB analyte, hereby, 

induce a high sensing sensitivity, both for P1 and P2 films towards TNB vapor. Contacting 

thin P1 and P2 films with saturated TNB vapor, the PL intensity was quenched by 85% for P1 

and 89% for P2 within 600 s, respectively. The sensing process is reversible, >90% of the PL 

is recovered, also after repeated cycling. 

3.1 Introduction 

In Chaper 2, tri- and tetraphenylethylene side groups have been introduced into 

polycarbazoles.  The obtained polycarbazoles (PCzs) showed a quite different behavior: 

Triphenylethylene-substituted PCzs are not AIE-active, corresponding tetraphenylethylene 

(TPE)-substituted PCzs showed the occurrence of significant AIE effects, with a maximum 

AIE coefficient αAIE of up to 26. Therefore, within this chapter, we concentrated on TPE side 

chains as substituents of polytriphenylamines. 

Similar to PCzs, polytriphenylamines (PTPAs) also exhibit pronounced electron-donor 

character which should be beneficial for the interaction with electron-poor nitroaromatic 

compounds. However, there are only a few reports on PTPAs for PL-based explosive 

detection
[2,3]

. In this study, we prepared two novel PTPAs (P1 and P2, Chart 3.1) with TPE 

side groups and investigated their ability for the sensing of nitroaromatic analytes. The 

incorporation of TPE side groups induces AIE activity, instead of ACQ properties generally 

observed for PTPAs, under conservation of the electronic properties of the PTPA backbone. 

Moreover, the twisted, loosely packed structure should generate efficient diffusion pathways 
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for the explosive molecules. Based on this design principle we could expect a high sensitivity 

for detection of nitroaromatic compounds in the solid state. 

 

Chart 3.1. The chemical structures of polymer P1 and P2. 

3.2 Results and Discussion 

3.2.1 Synthesis and Characterization 

 

Scheme 3.1. Synthesis scheme for monomers 4 and 5 as well as the corresponding polymers 

P1 and P2, respectively. 
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The synthetic route for monomers 4/5 and the corresponding polymers P1/P2 is depicted in 

Scheme 3.1. Treatment of 1-bromo-1,2,2-triphenylethylene with an excess of n-butyllithium 

(n-BuLi) followed by addition of 2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane 

afforded the boronic ester 1. Monobromo-TPE 2 was obtained by treating 

4-bromobenzophenone with diphenylmethyl lithium followed by acid-catalyzed dehydration. 

The TPE boronic ester 3 was synthesized by Suzuki-Miyaura-type coupling of 

monobromo-TPE 2 and bis(pinacolato)diboron. The TPE-substituted dibromotriphenylamine 

monomers 4 and 5 were generated in a Suzuki-type coupling of tribromotriphenylamine and 

TPE derivatives 1 or 3. Polymers P1 and P2 were synthesized from monomers 4 and 5, 

respectively, in Yamamoto-type couplings using Ni(COD)2 as coupling reagent in a mixture 

of THF, COD and Bpy under microwave (MW) heating. Applying the MW method we could 

obtain the targeted conjugated polymers in short reaction times (12 min). The structure 

elucidation of the monomer was performed by NMR spectroscopy, mass spectrometry and 

elemental analysis. The chemical structure of the obtained polymers was finally confirmed by 

NMR spectroscopy, GPC and optical spectroscopy. 

3.2.2 Photophysical Properties 

Table 3.1. Optical data and HOMO/LUMO energy levels of P1 and P2. 

 λUV/nm 

in CHCl3 

λPL/nm 

in CHCl3 

λUV/nm 

in film 

λPL/nm 

in film 

ƞPL (%) 

in CHCl3 

ƞPL (%) 

in film 

HOMO 

(eV) 

LUMO 

(eV) 

P1 384 511 386 511 0.8 16.9 -5.27 -2.37 

P2 382 493 380 495 2.5 34.3 -5.31 -2.41 

 

Figure 3.1. Absorption and PL spectra of (a) P1 and (b) P2 in dilute chloroform solution 

(10
-5

 M) and as spin-coated films (measured at room temperature). 
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Figure 3.1 shows absorption and PL spectra of P1 and P2 in dilute chloroform solution and as 

solid state films. The absorption spectra of both polymers are quite similar because of their 

identical backbone structures. The absorption maxima of the thin films are observed at 386 

and 380 nm for P1 and P2, respectively. In the PL spectra, the emission maxima peak at 

511 nm for P1, and 495 nm for P2. The hypsochromic shift from a bluish green emission 

(511 nm) for P1 to a sky-blue emission (495 nm) for P2 is attributed to the presence of 

biphenyl linkers in P2 that decrease the conjugative interaction between PTPA backbone and 

TPE side groups. It is worthy to note that, for both absorption and PL spectra, there is nearly 

no shift for the maxima peak between dilute solution and film. This should be caused by the 

incorporation of the bulky TPE side groups: they effectively suppress any π-π stacking in the 

condensed phase due to their propeller-shaped structure. The PLQYs of P1 and P2 in dilute 

chloroform solution, using quinine sulfate as standard, have been determined as 0.8% and 

2.5%, respectively. The PLQYs distinctly increase to 16.9% and 34.3%, respectively, for 

solid powders, a 21 and 14 fold increase if compared to the chloroform solutions (see 

Table 3.1). Evidently, the transition into the condensed state dramatically enhances the PL 

intensity of P1 and P2.  

 

Figure 3.2. PL spectra of (a) P1 and (b) P2 in chloroform/ethanol mixtures with different 

ethanol content; PL intensity with increasing ethanol fraction for (c) P1 and (d) P2, 

respectively (polymer concentration: 10
-5

 M). The insets of Figs. 3.2c/d show fluorescent 

images of P1 and P2 in pure chloroform and in chloroform/ethanol 1/9, respectively. 
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To further investigate the AIE properties of the polymers, their PL behavior in 

solvent/non-solvent mixtures was investigated, as shown in Figure 3.2. Chloroform and 

ethanol were chosen as solvent couple due to their full miscibility. Both P1 and P2 are 

weakly emissive in dilute chloroform solution, but their PL progressively increases during 

increasing the ethanol content. The insets of Figure 3.2c/d show PL images (UV excitation) 

of the polymers in chloroform and chloroform/ethanol 1/9. In the chloroform/ethanol mixture 

with 90% ethanol, the PL intensity is ca. 22 times increased if compared to pure chloroform 

for P1, and ca. 8 times for P2. As ethanol is non-solvent for P1 and P2, both polymers are 

assumed to form solid state nano-aggregates at high ethanol contents. We could investigate 

the aggregation process by dynamic light scattering only for the initial step of ethanol 

addition (10%) for polymer P1. In chloroform/ethanol (9:1) the hydrodynamic radius of the 

aggregates was estimated to be ca. 317 nm. Apparently, the emission of both polymers is 

induced by aggregation; in other words, they are AIE-active. This is connected to the 

presence of the AIE-active TPE side groups: in dilute chloroform solution, a high internal 

conversion rate results in weak emission mainly caused by rotations of phenyl rings of the 

olefinic TPE units; in aggregates, however, these rotations are strongly suppressed, thus 

increasing the PL intensity due to the basic principles of the AIE effect
[4]

.  

3.2.3 Explosive Detection 

The highly electron-rich nature of polytriphenylamine (PTPA) backbones is a promising 

sensing target for the interaction with electron-deficient nitroaromatic compounds. However, 

there are only a few reports on the use of PTPAs for explosive detection. Our TPA-based 

polymers P1 and P2 with their high solid state PLQYs caused by the AIE effect represent 

promising lead structures for the PL-based detection of nitroaromatic compounds. 

3.2.3.1 TNB Detection based on P1 and P2 Films 

To explore the potential for an application of P1 and P2 as solid state sensory materials for 

the detection of nitroaromatic compounds, thin films of both polymers were fabricated by 

spin-coating on glass substrates at a rate of 1500 rpm with a concentration of the stock 

solutions in chloroform of 0.5 mg/mL (thickness ca. 3-5 nm). The films were subsequently 

annealed at 50 °C for 2 h to remove remaining solvents. TNB was chosen as a prototypical 

nitroaromatic analyte. Figure 3.3a/b show time-dependent fluorescence quenching plots of P1 

and P2 thin films during exposure to saturated TNB vapor. The fluorescence intensity 

gradually decreases as a function of exposure time with 40% PL quenching after 30 s and 
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50% PL quenching after 60 s for P1, or 53% after 30 s and 63% after 60 s for P2, 

respectively. For 600 s exposure to saturated TNB vapor, the fluorescence intensity is 

decreased by 85% and 89% for P1 and P2, respectively. Figure 3.3c plots the relative PL 

quenching with respect to the exposure time for both polymers. With further increase in the 

exposure time above 600 s, the PL quenching saturates and the PL intensity does not change 

further. For comparison, some literature data for the detection of nitroaromatic explosives are 

summarized in Table 3.2. Our fluorescence quenching data demonstrate that 

polytriphenylamines with TPE side chains are among the best performing materials for this 

purpose. Figure 3.3d shows the reversibility of the PL response of a P2 film towards TNB 

vapor. First, the film was exposed to saturated TNB vapor for 60 s at room temperature, 

followed by the PL measurement. Then the film was rinsed with methanol for 5 min, 

followed by a next PL measurement. Afterwards, the whole process was repeated. The results 

show that the initial PL characteristic was mainly conserved after 6 exposure/washing cycles, 

thus indicating good reversibility of the sensing scheme. As shown in Figure 3.3d, even after 

6  cycles, the P2 film still shows 62% PL quenching after exposure to TNB vapor for 60 s, 

please compare to the value of 63% for the first cycle.  

 

Figure 3.3. Time-dependent fluorescence intensity of (a) P1 and (b) P2 films when exposed 

to saturated TNB vapor. (c) The fluorescence response towards TNB vapor for P1 and P2 

thin films as a function of the exposure time. (d) PL recovery cycles of a P2 film. During 

each cycle, the films were first exposed to saturated TNB vapor for 60 s and, for PL recovery, 

subsequently rinsed with methanol (6 cycles are depicted). 
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Table 3.2. Fluorescence quenching data for nitroaromatic compounds from the literature. 

(PA: picric acid; TNT: 2,4,6-trinitrotoluene; DNT: 2,4-dinitrotoluene; TNB: 

1,3,5-trinitrobenzene.) 

Solid state sensing material  
(type of nitroaromatic explosive) 

Fluorescence quenching effect Reference 

after 60 s In the equilibrium 

P1 (TNB) 50% 85% (10 min) this work 

P2 (TNB) 63% 89% (10 min) this work 

S1 (PA) 21% (120 s) 80% (10 min) [5] 

S3 (PA) 33% 92% (7 min) [6] 

PCZ (TNT) 73% -- [7] 

DMF-L (TNT) -- ~60% (60 min) [8] 

TAPB (TNT) -- 60% (20 min) [9] 

3 (DNT) -- 67% (10 min) [10] 

P1-porous film (TNT) 64% 82% (5 min) [11] 

P1-dense film (TNT) 10% 24% (5 min) [11] 

FTPA-HBCPN (TNT) 16% 60% (10 min) [12] 

H2-BCz-xerogel film (TNT) -- 77% (30 min) [13] 

H2-BCz-amorphous film (TNT) -- 51% (30 min) [13] 

P2 (TNT) 75% -- [14] 

TCAC-EP film (TNT) 39% 66% (10 min) [15] 

ACTC (TNT) 83% -- [16] 

9-xerogel film (TNT) -- 62% (5 min) [17] 

 

Figure 3.4. The fluorescence response towards TNB vapor for P2 thin films as a function of 

the exposure time. 
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Also a thicker film of P2 (thickness ca. 8-10 nm) has also been prepared by spin-coating from 

a 2 mg/mL polymer solution in chloroform for comparison. The thicker film exhibits only 

slightly decreased fluorescence quenching (see Figure 3.4 and Table 3.3) with 53% PL 

quenching after 60 s and 79% after 600 s. 

Table 3.3. PL quenching behaviour of P1 and P2 films against TNB vapor. 

      Quenching efficiency 

Polymer 
30 s 60 s 600 s Reversibility (60 s) after     

6 cycles 

P1 (3-5 nm) 40% 50% 85% -- 

P2 (3-5 nm) 53% 63% 89% 62% 

P2 (8-10 nm) 44% 53% 79% -- 

3.2.3.2 Detection of Other Nitroaromatic Compounds based on P1 and P2 Films 

The response of P1 and P2 thin films to two other nitroaromatic compounds DNB 

(1,3-dinitrobenzene) and NB (nitrobenzene) is depicted in Figure 3.5. Both DNB and NB also 

cause the PL quenching of P1 and P2. Hereby, the response to DNB vapor is increased if 

compared to TNB, most probably due to its higher vapor pressure. 

 

Figure 3.5. Fluorescence quenching (%) of P1 and P2 films exposed to TNB, DNB and NB 

(exposure time: 60 s). 

3.2.3.3 Fluorescence Quenching Mechanism during Interaction with Nitroaromatic 

Compounds 

Figure 3.6 illustrates that there is no overlap between the absorption spectrum of TNB and the 

PL spectra of P1 and P2, respectively, as prerequisite for Förster-type excitation energy 

transfer, thus indicating that the main quenching mechanism for TNB exposure should be 
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electron transfer between the excited state of the host (P1 or P2) and TNB. This process is 

driven by the LUMO-LUMO offset between TNB and P1/P2. The HOMO levels of P1 and 

P2 (shown in Table 3.1) were estimated to be ca. -5.27 and -5.31 eV, respectively (AC-2 

method). Considering an optical bandgap (Eg) of ca. 2.90 eV both for P1 and P2 from the 

onsets of the UV/vis absorption bands, the LUMO levels of P1 and P2 are calculated to be 

ca. -2.37 eV and -2.41 eV, respectively. The LUMO level of TNB is located at ca. -3.1 eV, as 

estimated by cyclic voltammetry. So, these LUMO levels of P1 and P2 (-2.37 eV 

and -2.41 eV, respectively) allow for an excited state electron transfer to the energetically 

lower-lying LUMO level of TNB with a LUMO-LUMO offset of ca. 0.7 eV.  

 

Figure 3.6. Normalized absorption spectrum of TNB and PL spectra of P1 and P2 in thin 

films.  

3.2.4 Theoretical Calculations 

For better understanding the optical and sensory properties of P1 and P2, theoretical 

calculations were performed by density functional theory (DFT) level using the B3LYP 

functional and the 6-31g* basic set, as implemented in the Gaussian 09 program. The 

optimized structures and orbital distributions of the HOMOs and LUMOs of P1 and P2 are 

depicted in Figure 3.7, in both cases two repeat units are shown. The TPE side groups both in 

P1 and P2 adopt twisted conformations with a torsional angle ca. 133.0º between the planes 

of phenyl rings and olefinic bond. This assembly does not allow strong intermolecular 

interactions, thus preventing solid state PL quenching that is caused by π-π stacking. 

Moreover, the twisted TPE side chains of P1 and P2 may create three-dimensional exciton 

diffusion channels, which, during local interaction with TNB analytes, cause improved 

exciton diffusion to these quenching sites. The torsional angles between adjacent TPA units 

of the PTPA backbones of both polymers are very similar with 145.9º for P1 and 145.6º for 
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P2, respectively. That indicates the bulky TPE side chains do not strongly affect the 

conjugative interaction within the PTPA backbones. This maintained on-chain π-conjugation 

ensures an efficient exciton transfer along the polymer backbone of sensory material. The 

HOMOs of both polymers are mainly located at the PTPA backbone, thus confirming the 

electron-donor character of the PTPA backbone, a property that will be beneficial for the 

interaction with electron-poor TNB analyte. Therefore, high solid state quantum yields 

caused by the AIE effect, the electron-donor character of the PTPA backbone, and the bulky, 

twisted structure of the TPE side groups together guarantee excellent sensing properties 

towards electron-deficient analytes, as nitroaromatic explosives. 

 

Figure 3.7. Calculated molecular orbital amplitude plots of the HOMO and LUMO energy 

levels of P1 and P2. 

3.3 Structural Modification of the Polytriphenylamines and Polycarbazoles 

According to the above presented results, our polytriphenylamines P1 and P2 with their 

distinct AIE effects are promising materials for a sensitive detection of nitroaromatic analytes 

as TNB also in the solid state (as thin films). However, both polymers are characterized by an 

unpleasant solubility behaviour: They are only slightly soluble in THF or toluene, a bit better 

in chloroform or chlorobenzene. In order to overcome these solubility limitations, we 

incorporated additional bis(tert-butyl)-substituted TPE units into the polymer backbones thus 

obtaining polytriphenylamine-based copolymers PTPA1-TPE, PTPA2-TPE as well as the 

corresponding polycarbazole-based copolymer PCz-TPE. There are two advantages of 

introducing bis(tert-butyl)-TPE main chain units: (1) the presence of the tert-butyl 
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substituents will improve the solubility of the polymers; and (2) the bis(tert-butyl)-TPE unit 

should be more effective in suppressing unwanted π-π stacking in the aggregated state due to 

its bulky structure. Please note, that PTPA1-TPE, PTPA2-TPE and PCz-TPE are random 

copolymers that contain bis(tert-butyl)-TPE units as main-chain and additional TPE units as 

side chains. 

3.3.1 Synthesis 

 

Scheme 3.2. Synthesis scheme towards monomer 6 and copolymers PCz-TPE, PTPA1-TPE 

and PTPA2-TPE. 

The synthetic routes for monomer 6 and the polymers PCz-TPE, PTPA1-TPE and 

PTPA2-TPE are depicted in Scheme 3.2. The dibromo-TPE monomer 6 was obtained by 

treating 4-bromobenzophenone with bis(4-(tert-butyl)phenyl)methyl lithium followed by an 

acid-catalyzed dehydration. The random copolymers PCz-TPE, PTPA1-TPE and 

PTPA2-TPE were synthesized via Yamamoto-type couplings of 1:1 mixtures of monomer 6 

and TPE-substituted dibromocarbazole (see Chapter 2.2), 4 or 5 (Scheme 3.1), respectively, 
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with Ni(COD)2 as coupling reagent in a mixture of THF, COD and Bpy under microwave 

(MW) heating for 12 min. The obtained copolymers all showed good solubility in common 

solvents, such as chloroform, THF or toluene. The structure of the monomer was confirmed 

by NMR spectroscopy, mass spectrometry and elemental analysis. The chemical structure of 

the obtained polymers was finally confirmed by NMR spectroscopy, GPC, and optical 

spectroscopy. 

3.3.2 Photophysical Properties 

Table 3.4. Optical data of PCz-TPE, PTPA1-TPE and PTPA2-TPE. 

 λUV/nm 

in THF 

λPL/nm 

in THF 

λUV/nm 

in film 

λPL/nm 

in film 

ƞPL (%) 

in THF 

ƞPL (%) 

in powder 

PCz-TPE 326 504 321 515 1.2 28 

PTPA1-TPE 372 507 372 516 0.4 20 

PTPA2-TPE 373 502 372 512 1.4 37 

 

Figure 3.8. Normalized absorption and PL spectra of (a) PCz-TPE, (b) PTPA1-TPE and 

(c) PTPA2-TPE in dilute THF solution (10
-5

 M) and as spin-coated films (measured at room 

temperature). 

Figure 3.8 shows the absorption and PL spectra of the three copolymers in dilute THF 

solution and as thin films. For polymer PCz-TPE, the absorption maximum appears at 

321 nm and the PL maximum is observed at 515 nm, corresponding to a bathochromical shift 

of 20 nm if compared to PCzTPE (Figure 2.3, Chapter 2). This is attributed to the 

introduction of bis(tert-butyl)-TPE units into the copolymer backbone, thus increasing the 

effective conjugation length. The optical data are summarized in Table 3.4. The shapes of 

absorption and PL spectra of PTPA1-TPE and PTPA2-TPE are quite similar to the 

corresponding homopolytriphenylamines P1 and P2 (Figure 3.1), with absorption maxima at 

372 nm and PL maxima at 516 nm and 512 nm, respectively. Both PTPA1-TPE and 
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PTPA2-TPE show green emissions. The PLQYs of PCz-TPE, PTPA1-TPE and PTPA2-TPE 

in dilute THF solution have been determined to be 1.2%, 0.4% and 1.4%, respectively, using 

quinine sulfate as reference. All of them emit faintly in dilute solution, however, they show a 

much stronger emission in the solid state. The PLQYs of solid powders are 28%, 20% and 

37% for PCz-TPE, PTPA1-TPE and PTPA2-TPE, respectively, corresponding to 23, 50 and 

26 times PL increase, respectively, if compared to the PLQYs in solution. These results again 

demonstrate the occurrence of distinct AIE effects. The increased AIE effects are attributed to 

the introduction of TPE units both in the backbone and side chain of the copolymers.  

 

Figure 3.9. PL spectra of (a) PCz-TPE, (b) PTPA1-TPE and (c) PTPA2-TPE in THF/water 

mixtures with different water content; PL intensity with increasing water fraction for 

(d) PCz-TPE, (e) PTPA1-TPE and (f) PTPA2-TPE, respectively (polymer concentration: 

10
-5

 M).  

To further investigate the AIE phemomenons of the copolymers, a series of PL spectra was 

recorded in the solvent mixture THF/water (Figure 3.9). Since water is non-solvent for the 

copolymers, they are supposed to aggregate starting from a certain water content. The PL 

intensity of all copolymers increases with increasing water fraction, again confirming the 

occurrence of AIE effects. The maximum increase of PL intensity is 36, 42 and 30 times; in 

90% water/THF for PCz-TPE and PTPA1-TPE or 80% water/THF for PTPA2-TPE, 

respectively, if compared to non-aggregated THF solutions. The introduction of 

bis(tert-butyl)-TPE units into the backbone of the copolymers leads to an enhancement of the 
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AIE effects coupled to an improved solubility of the copolymers, thus simplifying their 

solution processing. 

3.4 Conclusions 

Firstly, two homopolytriphenylamines (PTPAs) P1 and P2 with AIE-active 

tetraphenylethylene (TPE) side groups have been successfully synthesized. Both polymers 

show distinct AIE behavior in solvent/non-solvent mixtures and in the solid state, 

accompanied by high solid state quantum yields. Both P1 and P2 possess electron-rich PTPA 

backbones that are substituted by bulky and twisted TPE side groups, a structure that is 

beneficial for the interaction with electron-poor nitroaromatic analytes. P1 and P2 have been 

used as solid state sensing materials for electron-deficient nitroaromatic molecules. Hereby, 

the polymers exhibited high sensitivity and excellent reversibility in their interaction with 

1,3,5-trinitrobenzene (TNB). Our results provide a promising molecular design strategy for 

sensitive, multi-use sensing materials for nitroaromatic analytes. 

Moreover, the limited solubility of P1 and P2 is overcome by the introduction of 

bis(tert-butyl)-TPE groups into the backbone of the resulting copolymers. This strategy leads 

to a simultaneous improvement of AIE effects and copolymer solubility. 

3.5 Experimental 

3.5.1 Materials 

All reagents were obtained from commercial suppliers and were used without further 

purification. All reactions were carried out under argon atmosphere by standard and Schlenk 

techniques. The solvents were used as commercial p.a. quality. 

4,4,5,5-tetramethyl-2-(1,2,2-triphenylvinyl)-1,3,2-dioxaborolane (1) 

To a solution of 1-bromo-1,2,2-triphenylethylene (10.0 g, 29.8 mmol) in dry THF (120 mL) a 

2.8 M solution of n-BuLi in hexane (44.7 mmol) was added at -78 °C under argon 

atmosphere. The resulting solution was stirred for 2 h at -78 °C. To this solution 

2-isopropoxy-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (12.2 mL, 59.7 mmol) was added, and 

the reaction mixture was warmed up slowly to room temperature. After 48 h, the reaction was 

stopped by adding aqueous NH4Cl solution. The organic layer was extracted with chloroform, 

and the combined organic layers were washed with a saturated brine solution and dried over 

MgSO4. The solvent was evaporated, and the product was purified by silica gel 
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chromatography (eluent: hexane/ethylacetate = 9/1) to give the desired compound as white 

solid in 36% yield (4.1 g). 
1
H NMR (600 MHz, C2D2Cl4) δ (ppm) 7.28 (s, 5H), 7.16 - 7.03 

(m, 6H), 7.00 (d, J = 3.4 Hz, 2H), 6.93 (d, J = 1.9 Hz, 2H), 1.09 (s, 12H). 
13

C NMR 

(150 MHz, C2D2Cl4) δ (ppm) 151.59, 144.84, 142.11, 141.89, 131.20, 129.96, 129.94, 

128.27, 128.22, 127.99, 127.92, 127.10, 126.13, 83.98, 24.83. 

1-(4-bromophenyl)-1,2,2-triphenylethylene (2) 

To a solution of diphenylmethane (11.1 g, 65.7 mmol) in dry THF (100 mL) a 2.8 M solution 

of n-BuLi in hexane (65.7 mmol) was added at 0 °C under argon atmosphere. The resulting 

orange-red solution was stirred for 1 h at 0 °C. To this solution 4-bromobenzophenone 

(14.3 g, 54.8 mmol) was added, and the reaction mixture was allowed to warm up to room 

temperature overnight. The reaction was stopped by adding aqueous NH4Cl solution. The 

organic layer was extracted with chloroform, and the combined organic layers were washed 

with a saturated brine solution and dried over anhydrous MgSO4. The solvent was 

evaporated, and the resulting crude alcohol (containing excess diphenylmethane) was 

subjected to acid-catalyzed dehydration as follows. The crude alcohol was dissolved in 

toluene (200 mL) containing p-toluenesulphonic acid (2.7 g, 14.2 mmol) using a 500 mL 

flask, and the mixture was refluxed overnight. The toluene layer was washed with 10% 

aqueous NaHCO3 solution, dried over MgSO4 and evaporated to afford the crude 

tetraphenylethylene derivative. The crude product was purified by silica gel chromatography 

(eluent: hexane/dichloromethane = 3/1) to give the target compound as white solid in 64% 

yield (14.5 g). 
1
H NMR (600 MHz, CDCl3) δ (ppm) 7.25 (d, J = 8.6 Hz, 2H), 7.18 - 7.10 (m, 

9H), 7.07 - 7.01 (m, 6H), 6.92 (d, J = 8.6 Hz, 2H). 

4,4,5,5-tetramethyl-2-(4-(1,2,2-triphenylvinyl)phenyl)-1,3,2-dioxaborolane (3) 

A mixture of 2 (10.0 g, 24.3 mmol), 4,4,4',4',5,5,5',5'-octamethyl-2,2'-bis(1,3,2-

dioxaborolane) (8.64 g, 34.0 mmol), [1,1'-bis(diphenylphosphino)ferrocene]palladium(II) 

chloride as complex with dichloromethane (Pd(dppf)Cl2) (596 mg, 0.73 mmol), and KOAc 

(7.2 g, 73.4 mmol) in degassed 1,4-dioxane (40 mL) was stirred at 90 °C for 24 h. The 

reaction was stopped by adding water, and the mixture was extracted with dichloromethane. 

The organic phase was collected, dried over MgSO4, and concentrated in vacuum. The crude 

product was then purified by silica gel chromatography (eluent: hexane/dichloromethane = 

2/1) to give the target compound as white solid in 75% yield (8.4 g). 
1
H NMR (600 MHz, 

C2D2Cl4) δ (ppm) 7.48 (d, J = 7.9 Hz, 2H), 7.13 - 7.05 (m, 9H), 7.05 - 6.95 (m, 8H), 1.29 (d, 
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J = 11.3 Hz, 12H). 
13

C NMR (150 MHz, C2D2Cl4) δ (ppm) 147.00, 143.75, 143.73, 143.71, 

141.65, 141.00, 134.23, 131.54, 130.90, 128.00, 127.96, 127.92, 126.81, 126.69, 84.06, 

25.25. 

4-bromo-N-(4-bromophenyl)-N-(4-(1,2,2-triphenylvinyl)phenyl)aniline (4) 

A mixture of tris(4-bromophenyl)amine (4.1 g, 8.5 mmol), 1 (3.0 g, 7.8 mmol), K2CO3 (1.1 g, 

7.9 mmol), TBABr (0.3 g, 0.9 mmol) and Pd(PPh3)4 (272 mg, 0.24 mmol) was carefully 

degassed. Then, water (4 mL) and toluene (60 mL) were added. The resulting mixture was 

stirred at 95 °C for 24 h under argon atmosphere. After cooling down to room temperature, 

the reaction was stopped by adding water and the mixture was extracted with chloroform. 

The organic phases were collected, dried over MgSO4 and concentrated in vacuum. The 

product was purified by silica gel chromatography (eluent: hexane/dichloromethane = 5/1) to 

give the desired compound as light green solid in 28% yield (1.45 g). 
1
H NMR (600 MHz, 

C2D2Cl4) δ (ppm) 7.30 (d, J = 8.9 Hz, 4H), 7.14 - 7.04 (m, 11H), 7.04 - 6.98 (m, 4H), 6.91-

6.83 (m, 6H), 6.74 (d, J = 8.6 Hz, 2H). 
13

C NMR (150 MHz, C2D2Cl4) δ (ppm) 146.55, 

145.01, 144.09, 143.69, 143.45, 141.24, 140.67, 139.53, 132.73, 132.55, 131.59, 131.56, 

131.54, 127.97, 127.92, 127.84, 126.73, 126.69, 126.63, 125.53, 123.84, 115.46. MS (APLI): 

m/z calcd 657.05; found 657.04. Elemental anal. calcd: C, 69.42%; H, 4.14%; N, 2.13%. 

Found: C, 69.06%; H, 4.14%; N, 2.14%. 

N,N-bis(4-bromophenyl)-4'-(1,2,2-triphenylvinyl)-[1,1'-biphenyl]-4-amine (5) 

A mixture of tris(4-bromophenyl)amine (3.4 g, 7.0 mmol), 3 (2.9 g, 6.4 mmol), K2CO3 (0.9 g, 

6.5 mmol), TBABr (0.2 g, 0.62 mmol) and Pd(PPh3)4 (222 mg, 0.19 mmol) was carefully 

degassed. Then, water (3 mL) and toluene (35 mL) were added. The resulting mixture was 

stirred at 95 °C for 24 h under an argon atmosphere. After cooling down to room temperature, 

the reaction was stopped by adding water and the mixture was extracted with chloroform. 

The organic phases were collected, dried over MgSO4 and concentrated in vacuum. The 

product was purified by silica gel chromatography (eluent: hexane/dichloromethane = 5/1) to 

give the desired compound as light green solid in 33% yield (1.55 g). 
1
H NMR (600 MHz, 

C2D2Cl4) δ (ppm) 7.46 (d, J = 8.7 Hz, 2H), 7.36 - 7.30 (m, 6H), 7.13 - 6.99 (m, 19H), 6.95 (d, 

J = 8.9 Hz, 4H). 
13

C NMR (150 MHz, C2D2Cl4) δ (ppm) 146.55, 146.27, 143.93, 143.91, 

143.87, 142.94, 141.33, 140.72, 137.69, 135.67, 132.69, 132.16, 131.66, 131.59, 128.05, 

127.95, 127.92, 126.72, 126.69, 126.64, 125.82, 125.79, 124.88, 115.79. MS (APLI): m/z 
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calcd 733.08; found 733.07. Elemental anal. calcd: C, 72.04%; H, 4.26%; N, 1.91%. Found: 

C, 71.92%; H, 4.27%; N, 1.91%. 

P1: 

A solution of monomer 4 (600 mg, 0.91 mmol), Ni(COD)2 (653 mg, 2.37 mmol), BPy 

(371 mg, 2.37 mmol) and COD (257 mg, 2.37 mmol) in THF (7 mL) was reacted under 

microwave (MW) heating at 120 °C for 12 min. The reaction was stopped by adding water 

and the mixture was extracted with chloroform. The collected organic phases were washed 

with aqueous 2 M HCl, aqueous NaHCO3 solution, saturated, aqueous EDTA solution and 

brine, and finally dried over MgSO4. Afterwards, the solvents were removed in vacuum. The 

resulting solid was dissolved in a small amount of chloroform and precipitated into methanol 

(500 mL) to afford the target polymer as light-green solid. Subsequent Soxhlet extractions 

were carried out with methanol, acetone, ethyl acetate and chloroform, respectively. After 

re-precipitation of the chloroform-soluble fraction into methanol, the light green polymer was 

obtained in 61% yield (275 mg). 
1
H NMR (400 MHz, C2D2Cl4, 60 °C) δ (ppm) 7.61 - 7.46 

(m, 5H), 7.41 - 7.31 (m, 2H), 7.25 - 7.00 (m, 20H). Mn 11500, Mw 26800, and Mw/Mn 2.32 

(GPC, PS calibration). 

P2: 

A solution of monomer 5 (600 mg, 0.82 mmol), Ni(COD)2 (585 mg, 2.13 mmol), BPy 

(332 mg, 2.13 mmol) and COD (230 mg, 2.13 mmol) in THF (6 mL) was reacted under MW 

heating at 120 °C for 12 min. The workup procedure was similar to that described for the 

preparation of P1. The light-green polymer was obtained in 88% yield (413 mg). 
1
H NMR 

(400 MHz, C2D2Cl4, 60 °C) δ (ppm) 7.63 - 7.42 (m, 5H), 7.38 - 7.00 (m, 22H), 6.99 - 6.52 

(m, 4H). Mn 25100, Mw 83700, and Mw/Mn 3.33 (GPC, PS calibration). 

4,4'-(2,2-bis(4-(tert-butyl)phenyl)ethene-1,1-diyl)bis(bromobenzene) (6) 

To a solution of bis[4-(tert-butyl)phenyl]methane (3.03 g, 10.82 mmol) in dry THF (20 mL) a 

2.8 M solution of n-BuLi in hexane (3.86 mL, 10.82 mmol) was added at 0 °C under an argon 

atmosphere. The resulting orange-red solution was stirred for 1 h at that temperature. To this 

solution, 4,4’-dibromobenzophenone (3.07 g, 9.02 mmol) in THF (25 mL) was added. Next, 

the reaction mixture was allowed to warm up to room temperature overnight. The reaction 

was stopped by addition of saturated aqueous NH4Cl solution. The aqueous layer was 

extracted with chloroform, and the combined organic layers were washed with a saturated 
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brine solution and dried over anhydrous MgSO4. The solvents were removed by evaperation 

and the resulting crude alcohol (containing excess diphenylmethane) was subjected to 

acid-catalyzed dehydration as follows: The crude product was dissolved in toluene (50 mL) 

containing p-toluenesulphonic acid (0.45 g, 2.34 mmol) in a 100 mL flask, and the mixture 

was refluxed at 110°C overnight. The toluene layer was washed with aqueous NaHCO3 

solution and dried over MgSO4 and evaporated to afford the crude tetraphenylethylene 

derivative. The product was purified by silica gel chromatography (eluent: 

dichloromethane/hexane = 1/9) to give desired compound as a white solid in 30% yield 

(1.63 g). 
1
H NMR (600 MHz, CDCl3) δ (ppm) 7.23 (d, J = 8.6 Hz, 4H), 7.15 (d, J = 8.5 Hz, 

4H), 6.93 (d, J = 8.5 Hz, 4H), 6.88 (d, J = 8.6 Hz, 4H), 1.29 (s, 18H). 
13

C NMR (150 MHz, 

CDCl3) δ (ppm) 149.80, 142.70, 142.24, 140.03, 137.35, 133.01, 130.83, 130.80, 124.63, 

120.35, 34.47, 31.28. MS (APLI): m/z calcd 602.10; found 602.08. Elemental anal. calcd: C, 

67.78%; H, 5.69%. Found: C, 68.14%; H, 5.66%. 

PCz-TPE 

A solution of monomer 6 (200 mg, 0.33 mmol), TPE-substituted dibromocarbazole (see 

Chapter 2, 218 mg, 0.33 mmol), Ni(COD)2 (457 mg, 1.66 mmol), BPy (259 mg, 1.66 mmol) 

and COD (180 mg, 1.66 mmol) in THF (5 mL) was reacted under MW heating at 120 °C for 

12 min. The workup procedure was similar to that described for the preparation of P1. The 

light-green polymer was obtained in 76% yield (236 mg). 
1
H NMR (400 MHz, C2D2Cl4, 

60 °C) δ (ppm) 8.43 (dd, J = 53.4, 26.6 Hz, 2H), 7.74 (d, J = 67.3 Hz, 2H), 7.58 - 7.26 (m, 

10H), 7.26 - 6.90 (m, 27H), 1.28 (s, 18H). Mn 19000, Mw 40300, and Mw/Mn 2.12 (GPC, PS 

calibration). 

PTPA1-TPE 

A solution of monomer 6 (200 mg, 0.33 mmol), monomer 4 (218 mg, 0.33 mmol), Ni(COD)2 

(457 mg, 1.66 mmol), BPy (259 mg, 1.66 mmol) and COD (180 mg, 1.66 mmol) in THF 

(5 mL) was reacted under MW heating at 120 °C for 12 min. The workup procedure was 

similar to that described for the preparation of P1. The light-green polymer was obtained in 

80% yield (248 mg). 
1
H NMR (400 MHz, C2D2Cl4, 60 °C) δ (ppm) 7.58 - 7.30 (m, 8H), 7.27 

- 6.99 (m, 31H), 6.99 - 6.82 (m, 4H), 1.42 - 1.19 (m, 18H). Mn 56700, Mw 189000, and 

Mw/Mn 3.34 (GPC, PS calibration). 
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PTPA1-TPE 

A solution of monomer 6 (200 mg, 0.33 mmol), monomer 5 (244 mg, 0.33 mmol), Ni(COD)2 

(457 mg, 1.66 mmol), BPy (259 mg, 1.66 mmol) and COD (180 mg, 1.66 mmol) in THF 

(5 mL) was reacted under MW heating at 120 °C for 12 min. The workup procedure was 

similar to that described for the preparation of P1. The light-green polymer was obtained in 

87% yield (293 mg). 
1
H NMR (400 MHz, C2D2Cl4, 60 °C) δ (ppm) 7.62 - 7.44 (m, 6H), 7.44 

- 7.28 (m, 6H), 7.28 - 6.89 (m, 35H), 1.28 (s, 18H). Mn 32700, Mw 165000, and Mw/Mn 5.03 

(GPC, PS calibration). 

3.5.2 Instrumentation 

NMR spectra were recorded on a Bruker AVANCE 400 or AVANCE III 600. 
1
H and 

13
C NMR spectra were measured with tetramethylsilane (TMS) as internal standard. Gel 

permeation chromatography (GPC) measurements were carried out on a PSS/Agilent 

SECurity GPC System equipped with polystyrene gel columns using chloroform as eluent. 

APLI (Atmospheric Pressure Laser Ionization) measurements were carried out on Bruker 

Daltronik Bremen with micrOTOF. UV-visible absorption spectra were recorded on a Jasco 

V-670 spectrometer, and PL spectra on a Varian CARY Eclipse F2500. Elemental analyses 

were performed on a Vario EL II (CHNS) instrument. The PL quantum efficiencies of 

polymer solid powder were measured with an integrating sphere.The HOMO (highest 

occupied molecular orbital) levels were estimated on a Surface Analyzer MODEL AC-2 on 

RIKEN, given as the threshold where photoelectron emission first occurs. 
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Chapter 4 

4. Polycarbazole and Polytriphenylamine with 

2,3,3-Triphenylacrylonitrile Side Groups
[1]

 

 

Acceptor-substituted polycarbazole (PCzTPAN) and polytriphenylamine (PTPATPAN) 

bearing electron-deficient 2,3,3-triphenylacrylonitrile (TPAN) side groups have been 

successfully synthesized. Both of them are aggregation-induced emission (AIE)-active and 

show intramolecular charge transfer (ICT) behavior. PCzTPAN and PTPATPAN aggregates 

in 90% water/THF were used for the detection of 1,3,5-trinitrobenzene (TNB) as prototypical 

nitroaromatic compound. They show amplified PL quenching upon addition of TNB with a 

maximum quenching constant of 5.5×10
5
 M

-1
. As additional application example, the 

detection of the glass transition temperature of polystyrene (PS) was accomplished for 

PTPATPAN blended into PS at doping concentrations of 0.1-1.0 wt%. 

4.1 Introduction 

In the last two chapters, tetraphenylethylene (TPE) side groups were successfully 

incorporated into polycarbazole or polytriphenylamine backbones. The resulting polymers 

and copolymers both showed pronounced AIE effects as well as a high sensitivity in PL 

quenching experiments towards nitroaromatic compounds. As known from literature, not 

only TPE itself but also triphenylethylene derivatives, for example, 

2,3,3-triphenylacrylonitrile (TPAN) can be utilized for designing AIE luminogens. TPAN is 

related to TPE by replacing one phenyl ring by a cyano group. For TPAN, a so-called 

crystallization-induced emission (CIE) effect was reported
[2]

. TPAN is weakly emissive in 

solution (PLQY of 1.1% in THF) and as amorphous powdery solid, but highly emissive in its 

crystalline state (PLQY of 43.4%), with a CIE coefficient αCIE of 40.2. Many luminogens 

containing TPAN units were synthesized, showing AIE-activity, high contrast 

mechanochromism
[3-6]

 and application potential in efficient OLEDs
[7]

. 

TPAN is an electron-deficient building block caused by the cyano group. Thus, TPAN can 

serve as an electron-acceptor moiety in the construction of donor-acceptor (D-A) dyads in 

combination with suited electron-rich moieties. D-A molecules
[8-11]

 have attracted much 
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interest because of their unique optical and electronical properties, including intramolecular 

charge transfer (ICT), with potential applications in OLEDs, OPV devices, 

microenvironmental detectors, mechano-, chemo- and biosensors, etc. In this chapter, 

AIE-active polycarbazole (PCzTPAN) and polytriphenylamine (PTPATPAN) with 

electron-acceptor TPAN substituents have been successfully synthesized (depicted in 

Chart 4.1). TPAN as electron-deficient moiety was now attached to the backbone of 

electron-rich polycarbazole and polytriphenylamine thus designing donor-acceptor-type 

polymers. Here, the aggregation-induced emission (AIE) and the intramolecular charge 

transfer (ICT) properties of PCzTPAN and PTPATPAN have been investigated. Furthermore, 

the novel polymers were used for the detection of 1,3,5-trinitrobenzene (TNB) as prototypical 

nitroaromatic explosive. In addition, one polymer (PTPATPAN) was used as fluorescent 

probe in the detection of the glass transition temperature of polystyrene (PS). 

 

Chart 4.1. The chemical structures of polymer PCzTPAN and PTPATPAN. 

4.2 Results and Discussion 

4.2.1 Synthesis and Characterization 

The synthetic route towards the monomers 1/2 and polymers PCzTPAN/PTPATPAN is 

depicted in Scheme 4.1. Monobromo-TPAN (2-(4-bromophenyl)-3,3-diphenylacrylonitrile) 

was obtained by treating a mixture of benzophenone and 2-(4-bromophenyl)acetonitrile with 

sodium hydride (NaH)
[5]

.  Treatment of monobromo-TPAN with carbazole or diphenylamine 

under Buchwald-Hartwig coupling conditions afforded TPAN-substituted carbazole or 

triphenylamine in good yields. Dibromo-monomers 1 and 2 were obtained via bromination of 

TPAN-substituted carbazole or triphenylamine with NBS. Polymer PCzTPAN was 

synthesized by Yamamoto-type homocoupling with Ni(COD)2, COD and Bpy in a solvent 

mixture of toluene and DMF under conventional heating at 80 ºC. Polymer PTPATPAN was 

also synthesized by Yamamoto-type homocoupling, but in this case under microwave heating 
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to 120 ºC. The structure elucidation of the monomers was performed by NMR spectroscopy, 

mass spectrometry and elemental analysis. The chemical structure of the obtained polymers 

was finally confirmed by GPC as well as NMR spectroscopy and optical spectroscopy. 

For successful polymerization, increased catalyst and ligand (COD and Bpy) amounts as well 

as increased reaction times were applied, since the cyano groups of the TPAN units seem to 

cause a reduced activity of the catalytic Ni(0) complex.   

 

Scheme 4.1. The synthetic route to monomers 1/2 and polymer PCzTPAN and PTPATPAN, 

respectively. 

4.2.2 Photophysical Properties 

Table 4.1. Optical data and HOMO/LUMO energy levels of PCzTPAN and PTPATPAN. 

 λUV/nm 

in THF 

λPL/nm 

in THF 

λUV/nm 

in film 

λPL/nm 

in film 

ƞPL (%) 

in THF 

ƞPL (%) 

in film 

HOMO 

eV 

LUMO 

eV 

PCzTPAN 307, 342(sh) 507 312, 348(sh) 546 4 10 -5.41 -2.53 

PTPATPAN 381 637 378 595 4 19 -5.35 -2.58 

Figure 4.1 shows the UV-vis and PL spectra of polymers PCzTPAN and PTPATPAN in 

dilute THF solution and as thin films. The absorption spectra in solution and solid state are 

quite similar since the twisted structure of the polymers does not allow significant 

intermolecular π-π stacking interactions in the solid state. As thin film, PCzTPAN shows an 
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absorption maximum at 312 nm with a shoulder at 348 nm; PTPATPAN an absorption 

maximum at 378 nm, attributed to the π-π transitions of the polymer backbones. In their PL 

spectra, the films of PCzTPAN and PTPATPAN show emission maxima at 546 nm and 

595 nm, giving rise to a green or orange color of the emitted light, respectively. The 

corresponding solutions emitted at 507 nm and 637 nm, with a ~40 nm hypsochromic shift 

for PCzTPAN and bathochromic shift in the same order for PTPATPAN, respectively. The 

shifts are probably caused by different electronic properties of the electron-rich backbones 

thus resulting in different intramolecular charge-transfer (ICT) properties. 

 

Figure 4.1. Normalized absorption and PL spectra of (a) PCzTPAN and (b) PTPATPAN in 

dilute THF solution (polymer concentration: 10
-5

 M) and as spin-coated films (measured at 

room temperature). 

4.2.2.1 Intramolecular Charge Transfer Properties 

The presence of electron-donating TPA or carbazole in combination with the 

electron-accepting cyano groups of the TPAN units should allow the occurrence of ICT 

processes. To investigate this topic, absorption and emission spectra of both polymers in 

varying solvents were recorded. Since the photophysical properties of such D-A conjugates 

are strongly dependent on the solvent polarity, solvatochromic effects of the PL spectra are 

expected for both polymers (Figure 4.2). The spectral profiles for both absorption spectra 

remain very similar (Figure 4.2a/c), suggesting a solvent polarity-independent electronic 

structure of the ground state. However, the emission maxima of both polymers are gradually 

bathochromically shifted with increasing solvent polarity, with a 68 or 64 nm red-shift for 

PCzTPAN and PTPATPAN (shown in Figure 4.2b/d), respectively, when going from toluene 

to DMF. Such a behavior may reflect an increased dipole moment of the excited state, 
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indicating that the lowest energy excited state S1 of both polymers involves a strong CT 

component.  

 

Figure 4.2. Normalized absorption and PL spectra of (a/b) PCzTPAN and (c/d) PTPATPAN, 

respectively, in toluene, THF, DCM and DMF solution (polymer concentration: 10
-5

 M).  

The solvatochromic effect can be quantified through the slope of a plot of Stokes shift (Δν) 

vs. the orientation polarizability Δƒ of the solvents, according to the Lippert-Mataga equation
 

[12,13]
: 

𝛥𝑣 = 𝑣𝑎 − 𝑣𝑒 =  
2∆𝑓

ℎ𝑐𝑎3  (𝜇𝐸 − 𝜇𝐺)2 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡  

where Δƒ is the orientational polarizability of the solvent, νa – νe corresponds to the Stokes 

shifts, μE and μG are the excited state and ground-state dipole moment, respectively, h and c 

are the Planck constant and the speed of light, respectively, a is the Onsager solvent cavity 

radius. 

Orientational polarizability Δƒ can be calculated as follow: 

∆𝑓(ɛ, 𝑛) =  
ɛ−1

2ɛ+1
−

𝑛2−1

2𝑛2+1
  

where ε and n are the static dielectric and optical refractive index of the solvent, respectively. 
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Table 4.2. Absorption and emission maxima of PCzTPAN and PTPATPAN, as well as 

Stokes shifts (Δν), dielectric constant of the solvents (ε), refractive index of the solvents (n) 

and orientation polarizability (Δƒ) of the solvents. 

 solvent λUV (nm) λPL (nm) Δν (cm
-1
) ε n Δƒ 

PCzTPAN toluene 302 479 12236 2.38 1.4969 0.013 

DCM 308 525 13420 8.93 1.4241 0.217 

THF 307 507 12849 7.58 1.4072 0.210 

DMF 308 547 14186 36.7 1.4305 0.274 

chlorobenzene 308 502 12547 5.62 1.5248 0.143 

chloroform 307 502 12653 4.81 1.4458 0.148 

o-dichlorobenzene 309 515 12945 9.93 1.5514 0.186 

1,4-dioxane 306 482 11933 2.25 1.4224 0.025 

PTPATPAN toluene 383 595 9303 2.38 1.4969 0.013 

DCM 382 659 11004 8.93 1.4241 0.217 

THF 381 637 10548 7.58 1.4072 0.210 

DMF 383 655 11842 36.7 1.4305 0.274 

chlorobenzene 387 637 10141 5.62 1.5248 0.143 

chloroform 384 640 10417 4.81 1.4458 0.148 

o-dichlorobenzene 387 644 10312 9.93 1.5514 0.186 

1,4-dioxane 383 604 9553 2.25 1.4224 0.025 

 

Figure 4.3. Stokes shift (Δν) vs. solvent polarity parameter (Δƒ) plots for PCzTPAN and 

PTPATPAN, for 8 solvents (toluene, 1,4-dioxane, chlorobenzene, chloroform, 

o-dichlorobenzene, THF, DCM, DMF). 
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In a linear fit of the experimental data (Δν vs. Δƒ, Table 4.2), as shown in Figure 4.3, both 

polymers exhibit large slopes of 6904 cm
-1

 for PCzTPAN and 6095 cm
-1

 for PTPATPAN, 

respectively. The results confirm a substantial charge redistribution during excitation. 

4.2.2.2 Aggregation-Induced Emission 

The PL quantum yields of PCzTPAN and PTPATPAN in dilute THF solution, estimated by 

using quinine sulfate as standard, have been determined as ca. 4% for both of them. Thin 

films of the polymers exhibited much higher PLQYs of 10% and 19% for PCzTPAN and 

PTPATPAN, respectively (Table 4.1). Evidently, the transition into the condensed state 

enhances the PL of the polymers due to the presence of the TPAN side chains. The AIE 

phenomenon of PCzTPAN and PTPATPAN was further investigated in THF/water solvent 

mixtures. THF is a good solvent for both polymers; water serves as non-solvent. Figure 4.4 

shows PL spectra as well as plots of relative PL intensities and the position of the PL maxima 

for different THF/water mixtures for both polymers. For PCzTPAN (Figure 4.4a/b), the 

relative PL intensity first decreases with increasing water content till 50%, accompanied by a 

bathochromic shift of the PL maximum, from 505 nm for pure THF to 555 nm for 50% 

water. The PL quenching as well as the bathochromic shift may result from an increased 

solvent polarity as typical ICT-related behavior. From 50% to 90% water, the PL intensity of 

PCzTPAN gradually increases without significant PL shift, a behavior that is characteristic 

for AIE chromophores that form nanoaggregates at high non-solvent contents, thus activating 

the RIR process. For PTPATPAN (Figure 4c/d), up to a water fraction of 10%, the PL 

intensity decreases; from 10% to 90% water, ongoing aggregation causes a 7-fold increase of 

the PL intensity. PTPATPAN displays, in contrast to PCzTPAN, a slight blue-shift during 

water addition. The blue-shift maybe caused by an introduction of geometrical disorder 

(increasing distortion) during aggregation. In comparison, the PCz backbone of PCzTPAN is 

more rigid and should be more resilient against torsional disorder. PL decay experiments 

support the discussion of our steady state PL data (Table 4.3): The mean PL lifetime of 

PCzTPAN decreases from 563 ps in THF to 392 ps in 50% water/THF and increases to 

644 ps in 90% water/THF. For PTPATPAN, it decreases from 487 ps in THF to 295 ps in 

10% water/THF and increases to 1174 ps in 90% water/THF. Generally, PL quenching is 

accompanied by a decrease of PL lifetimes. Oppositely, increased PL lifetimes indicate an 

increase of radiative excited state deactivation processes, thus leading to enhanced PL 

intensity. The observed changes of PL maxima, PL intensity and PL lifetimes in different 

solvent mixtures illustrate the competition between ICT and AIE behavior, occurring in our 
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polymers. 

Table 4.3. Photoluminescence lifetime data of PCzTPAN and PTPATPAN in different 

THF/water mixtures, including decay times (), their percentage values (a) as well as the 

mean PL lifetimes (). 

polymer solvent 1 (ps) 2(ps) 3 (ps) a1 a2 a3 ps 

PCzTPAN THF 70 430 1740 0.453 0.321 0.226 563 

50%water 50 350 2190 0.595 0.285 0.12 392 

90%water 50 400 2710 0.517 0.299 0.184 644 

PTPATPAN THF 40 420 940 0.308 0.339 0.353 487 

10%water 50 270 1520 0.408 0.499 0.092 295 

90%water 140 630 2520 0.287 0.351 0.362 1174 

 

 

Figure 4.4. PL spectra of (a) PCzTPAN and (c) PTPATPAN in THF/water mixtures with 

different water content; PL intensity and PL maxima with increasing water content for 

(b) PCzTPAN and (d) PTPATPAN, respectively (polymer concentration: 10
-6

 M). 

4.2.3 Theoretical Calculations 

Theoretical calculations were carried out for further understanding of the electronic 

properties of both polymers by density functional theory (DFT) using B3LYP functional and 

6-31g* basic sets, as implemented in the Gaussian 09 program. The optimized structures and 
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orbital distributions of the highest occupied molecular orbitals (HOMOs) and lowest 

unoccupied molecular orbitals (LUMOs) of PCzTPAN and PTPATPAN are depicted in 

Figure 4.5, in both cases two repeat units are shown. The TPAN side chains in both polymers 

adopt a highly twisted conformation, which is a prerequisite for the occurrence of AIE 

effects. In this way π-π stacking causing PL quenching in the aggregated state can be 

prevented. It is worthy to note that the HOMOs of both polymers are predominantly located 

at the electron-rich polycarbazole and polytriphenylamine backbones. In contrast, the 

LUMOs are mainly located at electron-poor TPAN side groups. Generally, this type of 

electron distribution allows for the occurrence of ICT effects what is consistent with our 

experimental results. 

 

Figure 4.5. Calculated molecular orbital amplitude plots for HOMO and LUMO of 

PCzTPAN and PTPATPAN. 

4.2.4 Explosive Detection 

4.2.4.1 TNB Detection based on PCzTPAN and PTPATPAN Aggregates in 

90% Water/THF 

Presence of the electron-rich polycarbazole and polytriphenylamine backbones in 

combination with the AIE-based high solid state PL efficiencies, our polymers seem 

well-suited for the detection of electron-deficient nitroaromatic compounds. To explore the 

potential, we selected 1,3,5-trinitrobenzene (TNB) as prototypical nitroaromatic compound. 

The tests were carried out with dispersions of nanoaggregates of both polymers in 90% 

water/THF mixtures (polymer concentration: 1 μM). Figure 4.6a/c show the PL spectra of 
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those PCzTPAN and PTPATPAN dispersions treated with different amounts of TNB. 

Hereby, the PL intensity decreases progressively with increased concentration of TNB for 

both polymers, without any significant spectral change. For the PCzTPAN dispersion, 95% of 

the PL emission are quenched at a TNB concentration of 57 μM; for PTPATPAN 85% of the 

PL are quenched for a concentration of 143 μM. Stern-Volmer plots of relative PL intensity 

(I0/I-1) vs. TNB concentration reflect the very promising sensing performance. The plots 

display upward-bent curves for both polymers (Figure 4.6b/d), indicating a more efficient 

quenching process, that means so-called amplified quenching, for higher quencher 

concentrations. Here, we split each curve into 3 subparts, each of them was linearly fitted. 

For PCzTPAN the obtained quenching constants are: 1.2×10
5
 M

-1
 for a TNB concentration 

<19 μM, 3.4×10
5
 M

-1
 for TNB concentrations between 19 μM and 40 μM, and 5.5×10

5
 M

-1
 

for TNB concentrations between 42 μM and 57 μM. For PTPATPAN somewhat lower 

quenching constants: 2.5×10
4
 M

-1
 for a TNB concentration <46 μM, 4.0×10

4
 M

-1
 for TNB 

concentrations between 48 μM and 83 μM, and 5.2×10
4
 M

-1
 for TNB concentrations between 

85 μM and 143 μM. These quenching constants belong to the top values within the published 

PL quenching schemes for the detection of nitroaromatic analytes
[14]

. 

 

Figure 4.6. PL spectra of (a) PCzTPAN and (c) PTPATPAN, respectively, in THF/water 1/9 

containing different amounts of TNB (polymer concentration: 10
-6

 M). (b) Stern-Volmer 

plots of relative PL intensity I0/I-1 of (b) PCzTPAN and (d) PTPATPAN, respectively, vs. 

TNB concentration (I = PL intensity, I0 = PL intensity at a TNB concentration of 0 M). 



4. Polycarbazole and Polytriphenylamine with 2,3,3-Triphenylacrylonitrile Side Groups 

73 
 

4.2.4.2 Fluorescence Quenching Mechanism during Interaction with Nitroaromatic 

Compounds 

The quenching mechanism is based on an electron transfer between the excited state of the 

host (PCzTPAN or PTPATPAN) and TNB
[15]

. Please notice that there is no spectral overlap 

between absorption of TNB and PL of PCzTPAN and PTPATPAN (Figure 4.7), as 

prerequisite for Förster-type excitation energy transfer. This process is driven by the 

LUMO-LUMO offset between TNB and PCzTPAN/PTPATPAN. The HOMO levels of 

PCzTPAN and PTPATPAN (shown in Table 4.1) were estimated to be ca. -5.41 

and -5.35 eV, respectively (AC-2 method). Considering an optical bandgap (Eg) of 

ca. 2.88 and 2.77 eV for PCzTPAN and PTPATPAN, respectively, from the onsets of the 

UV/vis absorption bands, the LUMO levels of PCzTPAN and PTPATPAN are calculated to 

be ca. 2.53 eV and -2.58 eV, respectively. So, these LUMO levels of PCzTPAN and 

PTPATPAN (-2.53 eV and -2.58 eV, respectively) allow for this excited state charge transfer 

to the energetically lower-lying LUMO level (-3.1 eV) of TNB with a LUMO-LUMO offset 

of ca. 0.57 and 0.52 eV, respectively.  

 

Figure 4.7. Normalized absorption spectrum of TNB and PL spectra of PCzTPAN and 

PTPATPAN dispersions in THF/water 1:9, respectively. 

4.2.5 Detection of the Glass Transition Temperature of Polystyrene by Doping with an 

AIE-active Fluorescent Probe (PTPATPAN) 

The glass transition is a characteristic and reversible thermal transition of amorphous 

materials (or the amorphous domains within semicrystalline materials). The correct detection 

of the glass transition temperature (Tg) is very important because pronounced changes of 
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thermal, electric and mechanical properties are observed when passing Tg. The fluorescence 

probe technique
 
was introduced as a promising approach for detecting Tg, especially of thin 

films
[16-19]

, as often used in optoelectronic devices. Several fluorescent probe molecules have 

been tested for this purpose, often with limited sensitivity, since the ACQ effect occurs. This 

problem was recently solved by Tang
[20]

 et al. They utilized AIE-active TPE and TPE 

derivatives for the reliable detection of Tg. Hereby, the sensitivity could be improved by 

increasing the probe loading, without occurrence of ACQ effects. 

 

Figure 4.8. DSC measurement of the used PS sample (heating rate: 10 K/min). 

Based on the initial report of the Tang group
[20]

 on the use of AIE-active probes for the 

determination of the glass transition temperature (Tg) of polymers, we tested the use of our 

AIE polymer PTPATPAN as fluorescent probe. For Tg detection, an AIE-active probe is 

needed that does not electronically interact with the host polymer. For this purpose, a 

polystyrene (PS) sample with a narrow molecular weight distribution (Mn = 8010, Mw = 

8210, PDI = 1.03) was selected as model polymer. First, the glass transition of the sample 

was independently measured by differential scanning calorimetry (DSC) to be ca. 89 ºC 

(Figure 4.8). Next, PTPATPAN was used as fluorescence probe in a concentration of 1 wt% 

PTPATPAN. Increasing the temperature decreases the PL intensity of the sample, a plot of 

PL intensity vs. temperature (Figure 4.9) shows a clear kink of the curve at Tg (88 ºC). 

Reason for this is a stronger restriction of intramolecular motions of the probe in the frozen, 

glassy state. After reaching Tg the free volume increases thus allowing segmental movements 

of the PS chains and increased intramolecular motions within the AIE-active probe. 
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Figure 4.9. Integrated PL intensity of a PS sample doped with 1 wt% PTPATPAN as a 

function of temperature. 

We also tested lower PTPATPAN doping (0.1 wt%). Also for the lowered dopant loading the 

Tg is detectable at 88 ºC, with a decreased contrast of the slopes above and below Tg 

(Figure 4.10a). The repeatability of the measurement was checked for a probe loading of 

0.1 wt%, as shown in Figure 4.10b, for the PL intensity at 50 ºC (glassy state) and 110 ºC 

(softened state). The method seems especially suited for Tg measurements of thin polymer 

films, e.g. by following correlations between film thickness and Tg. 

 

Figure 4.10. (a) PL intensity of PS doped with 0.1 wt% PTPATPAN as a function of 

temperature, and (b) repeatability of the measurements shown for the PL intensities at 50 °C 

and 110 °C. 

4.3 Conclusions 

Polycarbazole and polytriphenylamine derivatives with 2,3,3-triphenylacrylonitrile (TPAN) 

as side groups have been successfully synthesized via Yamamoto-type coupling procedures. 

The polymers exhibit both AIE as well as ICT properties, the latter caused by the interplay of 
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electron-poor TPAN substituents and electron-rich polycarbazole/polytriphenylamine 

backbones. The strategy of combining an electron-rich, conjugated backbone with AIE-active 

side groups is unique and introduces a couple of advantages, as mentioned in the 

introduction, related to e.g.: (1) the good processing properties of polymers, (2) the 

occurrence of strong interactions of the electron-rich backbone and electron-poor analytes, 

and (3) high exciton diffusion ability provided by the conjugated polymer backbone thus 

leading to an amplification in sensitivity towards suited analytes. The occurring ICT effects 

cause a distinct solvatochromism. PCzTPAN or PTPATPAN dispersions in 90% water/THF 

mixtures were used for the optical detection of nitroaromatic analytes (TNB). Both 

dispersions show high sensitivity, amplified PL quenching upon TNB addition. The 

maximum quenching constant was determined to be 5.5×10
5
 M

-1
. PTPATPAN was also used 

as PL probe for the optical detection of the glass transition temperature (Tg) of polystyrene 

(PS). Doping PS with our AIE probe allows for a reliable Tg measurement. The method is 

especially promising for Tg determination of thin films. 

4.4 Experimental 

4.4.1 Materials 

All reagents were obtained from commercial suppliers and were used without further 

purification. All reactions were carried out under argon atmosphere by standard and Schlenk 

techniques. The solvents were used as commercial p.a. quality. 

2-(4-Bromophenyl)-3,3-diphenylacrylonitrile 

Into a 250 mL three-necked round bottom flask equipped with a condenser, benzophenone 

(4.65 g, 25.5 mmol), sodium hydride (60% NaH) (5 g, 128 mmol) and toluene (150 mL) were 

placed under argon. The mixture was stirred at 110 °C for 10 min. A solution of 

4-bromobenzylnitrile (5 g, 25.5 mmol) in toluene (150 mL) was dropwise added into the 

above mentioned mixture over a period of ~60 min while maintaining reflux. After 20 h the 

mixture was cooled to room temperature, and water (100 mL) was added. The organic layer 

was collected and washed three times with brine solution. The organic phase was dried over 

anhydrous MgSO4 and concentrated under vacuum. The residue was purified by silica gel 

chromatography (eluent: dichloromethane/hexane = 3/7) followed by recrystallization from 

ethanol to give the desired product as a light yellow solid in 37% yield (3.4 g). 
1
H NMR 

(400 MHz, CDCl3) δ (ppm) 7.61 - 7.42 (m, 5H), 7.42 - 7.36 (m, 2H), 7.36 - 7.30 (m, 1H), 
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7.28 - 7.23 (m, 2H), 7.23 - 7.15 (m, 2H), 7.06 (dd, J = 8.4, 1.0 Hz, 2H). 
13

C NMR (100 MHz, 

CDCl3) δ (ppm) 158.18, 139.96, 138.53, 133.66, 131.52, 131.10, 130.49, 129.92, 129.71, 

129.11, 128.32, 128.28, 122.39, 119.50, 110.22. MS (GCMS): m/z calcd 360.2; found 361.0. 

2-[4-(9H-Carbazol-9-yl)phenyl]-3,3-diphenylacrylonitrile 

Tris(dibenzylideneacetone)dipalladium(0) (Pd2(dba)3) (48 mg, 0.052 mmol) and 

tri-tert-butylphosphane (P(t-Bu)3) (11 mg, 0.052 mmol) were dissolved in dry toluene 

(12 mL) under argon and stirred for 10 min at room temperature (preformation of the 

catalyst). The catalyst solution was then added to a mixture of 9H-carbazole (700 mg, 

4.19 mmol), 2-(4-bromophenyl)-3,3-diphenylacrylonitrile (1.81 g, 5.02 mmol) and 

sodium-tert-butylate (t-BuONa) (603 mg, 6.28 mmol) in dry toluene (26 mL). The reaction 

mixture was stirred at 90 °C overnight. The mixture was cooled down to room temperature, 

treated with water, and extracted three times with chloroform. The organic phase was 

collected, dried over MgSO4 and concentrated under vacuum. The residue was purified by 

silica gel chromatography (eluent: dichloromethane/hexane = 1/1) to give the desired product 

as a light green solid in 86% yield (1.6 g). 
1
H NMR (400 MHz, C2D2Cl4) δ (ppm) 8.15 (d, J = 

7.7 Hz, 2H), 7.57 - 7.39 (m, 13H), 7.39 - 7.24 (m, 5H), 7.16 - 7.08 (m, 2H). 
13

C NMR 

(100 MHz, C2D2Cl4) δ (ppm) 159.02, 140.60, 140.39, 138.88, 137.68, 133.89, 131.54, 

131.06, 130.47, 130.26, 129.77, 128.89, 128.74, 126.89, 126.50, 123.65, 120.67, 120.51, 

110.72, 110.08.  

2-[4-(Diphenylamino)phenyl]-3,3-diphenylacrylonitrile 

The synthetic procedure used was similar to that described for preparation of 

2-[4-(9H-carbazol-9-yl)phenyl]-3,3-diphenylacrylonitrile: reactants are Pd2(dba)3 (53 mg, 

0.058 mmol), P(t-Bu)3 (12 mg, 0.058 mmol), diphenylamine (783 mg, 4.63 mmol), 

2-(4-bromophenyl)-3,3-diphenyl-acrylonitrile (2 g, 5.55 mmol) and t-BuONa (667 mg, 

6.94 mmol) in toluene (40 mL). The product was purified by silica gel chromatography 

(eluent: dichloromethane/hexane = 1/1) to give a yellow crystalline solid in 96% yield (2 g). 

1
H NMR (600 MHz, C2D2Cl4) δ (ppm) 7.47 - 7.37 (m, 5H), 7.29 - 7.18 (m, 7H), 7.10 - 7.00 

(m, 10H), 6.84 (d, J = 8.8 Hz, 2H). 
13

C NMR (150 MHz, C2D2Cl4) δ (ppm) 156.47, 148.01, 

147.19, 140.85, 139.47, 130.92, 130.75, 130.19, 129.99, 129.70, 129.24, 128.74, 128.56, 

127.86, 125.25, 123.91, 122.11, 120.74, 111.44. 
13

C NMR (DEPT, 150 MHz, C2D2Cl4) δ 

(ppm) 130.93, 130.75, 130.20, 129.99, 129.70, 129.25, 128.75, 128.56, 125.25, 123.92, 

122.11. 
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2-[4-(3,6-Dibromo-9H-carbazol-9-yl)phenyl]-3,3-diphenylacrylonitrile (1) 

2-[4-(9H-Carbazol-9-yl)phenyl]-3,3-diphenylacrylonitrile (1.2 g, 2.69 mmol) was dissolved 

in dichloromethane (30 mL) under argon and cooled in an ice bath. The solution was stirred 

under protection of light. N-Bromosuccinimide (NBS) (1.0 g, 5.64 mmol) was slowly added 

in three portions. The reaction mixture was brought to room temperature and stirred overnight. 

Afterwards, the mixture was treated with water and extracted three times with chloroform. 

The organic phase was collected, washed with brine solution and dried over MgSO4. The 

solution was concentrated under vacuum and the resulting product was purified by silica gel 

chromatography (eluent: dichloromethane/hexane = 1/1) to give the desired compound as a 

green solid in 87% yield (1.42 g). 
1
H NMR (400 MHz, C2D2Cl4) δ (ppm) 8.19 (d, J = 1.7 Hz, 

2H), 7.60 - 7.45 (m, 9H), 7.37 (dd, J = 14.3, 7.9 Hz, 3H), 7.29 (t, J = 7.4 Hz, 2H), 7.24 (d, J = 

8.7 Hz, 2H), 7.11 (d, J = 7.1 Hz, 2H). 
13

C NMR (100 MHz, C2D2Cl4) δ (ppm) 159.41, 140.24, 

139.68, 138.78, 136.66, 134.70, 131.77, 131.06, 130.58, 130.24, 129.87, 128.90, 128.77, 

126.84, 124.29, 123.57, 120.39, 113.64, 111.80, 110.43. 
13

C NMR (DEPT, 100 MHz, 

C2D2Cl4) δ (ppm) 131.77, 131.06, 130.58, 130.25, 129.87, 128.91, 128.77, 126.84, 123.57, 

111.80. MS (Maldi-Tof): m/z calcd 604.33; found 604.22. Elemental anal. calcd: C, 65.59%; 

H, 3.34%; N, 4.64%. Found: C, 65.87%; H, 3.37%; N, 4.44%. 

2-(4-[Bis(4-bromophenyl)amino]phenyl)-3,3-diphenylacrylonitrile (2) 

The synthesis procedure used was similar to that described for preparation of 

2-[4-(3,6-dibromo-9H-carbazol-9-yl)phenyl]-3,3-diphenylacrylonitrile (1): reactants are 

2-[4-(diphenylamino)-phenyl]-3,3-diphenylacrylonitrile (1.22 g, 2.72 mmol) and NBS (1.02 

g, 5.71 mmol) in dichloromethane (30 mL). The product was purified by silica gel 

chromatography (eluent: dichloromethane/hexane = 1/1) to give desired compound as a 

yellow solid in 76% yield (1.26 g). 
1
H NMR (600 MHz, C2D2Cl4) δ (ppm) 7.46 - 7.38 (m, 

5H), 7.35 (d, J = 8.8 Hz, 4H), 7.26 (t, J = 7.4 Hz, 1H), 7.20 (t, J = 7.5 Hz, 2H), 7.08 (d, J = 

8.7 Hz, 2H), 7.02 (d, J = 7.1 Hz, 2H), 6.90 (d, J = 8.8 Hz, 4H), 6.83 (d, J = 8.7 Hz, 2H). 

13
C NMR (150 MHz, C2D2Cl4) δ (ppm) 157.24, 146.98, 146.03, 140.64, 139.28, 132.84, 

131.08, 130.90, 130.18, 130.14, 129.39, 129.27, 128.78, 128.58, 126.39, 122.95, 120.59, 

116.58, 111.10.
 13

C NMR (DEPT, 150 MHz, C2D2Cl4) δ (ppm) 132.84, 131.08, 130.91, 

130.18, 130.15, 129.40, 128.78, 128.58, 126.39, 122.95. MS (Maldi-Tof): m/z calcd 606.35; 

found 606.17. Elemental anal. calcd: C, 65.37%; H, 3.66%; N, 4.62%. Found: C, 65.02%; H, 

3.54%; N, 4.64%. 
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Polymer PCzTPAN 

Bis(1,5-cyclooctadiene)nickel(0) (Ni(COD)2) (564 mg, 2.052 mmol) and 2,2’-bipyridine 

(BPy) (320 mg, 2.052 mmol) were added inside a glove box into a 25 mL Schlenk tube 

containing monomer 1 (310 mg, 0.513 mmol). 1,5-Cyclooctadiene (COD) (222 mg, 

2.052 mmol), toluene (7 mL) and DMF (1.4 mL) were next added to the mixture with 

syringes under argon. Polymerization was allowed to proceed for 5 days at 80 °C. The 

reaction mixture was treated with an aqueous 2 M HCl solution and extracted with 

chloroform. The collected organic phase was washed with aqueous NaHCO3 solution, 

saturated, aqueous EDTA solution, and brine, and finally dried over MgSO4. Afterwards, the 

solvents were removed under vacuum. The resulting solid was dissolved in a small amount of 

chloroform and precipitated into methanol (500 mL) to afford the target polymer as a yellow 

powder. Subsequent Soxhlet extractions were carried out with methanol, acetone, ethyl 

acetate and chloroform, respectively. After re-precipitation of the chloroform-soluble fraction 

into methanol, the yellow polymer was obtained with 29% yield (65 mg). 
1
H NMR 

(600 MHz, C2D2Cl4, 60 °C) δ (ppm) 8.52 (bs, 2H), 7.82 (bs, 2H), 7.70 - 6.95 (m, 16H). 

Mn 4700, Mw 6170, Mw/Mn 1.31 (GPC, PS calibration). 

Polymer PTPATPAN 

A solution of monomer 2 (300 mg, 0.495 mmol), Ni(COD)2 (544 mg, 1.979 mmol), BPy 

(309 mg, 1.979 mmol) and COD (214 mg, 1.979  mmol) in THF (8 mL) was reacted under 

microwave heating at 120 °C for 60 min. The workup procedure was similar to that described 

for the preparation of polymer PCzTPAN. The yellow polymer was obtained with 36% yield 

(80 mg). 
1
H NMR (600 MHz, C2D2Cl4, 60 °C) δ (ppm) 7.60 - 7.48 (m, 4H), 7.48 - 7.36 (m, 

5H), 7.36 - 7.19 (m, 4H), 7.19 - 7.10 (m, 5H), 7.10 - 7.03 (m, 2H), 7.01 - 6.91 (m, 2H). 

Mn 8460, Mw 12800, Mw/Mn 1.51 (GPC, PS calibration). 

4.4.2 Instrumentation 

NMR spectra were recorded on a Bruker AVANCE 400 or AVANCE III 600. 
1
H and 

13
C NMR spectra were measured with tetramethylsilane (TMS) as internal standard. Gel 

permeation chromatography (GPC) measurements were carried out on a PSS/Agilent 

SECurity GPC System equipped with polystyrene gel columns using chloroform as eluent. 

GCMS measurements were obtained on a Shimadzu GC-17a with a Shimadzu GCMS-QP 

5050 mass spectrometer (column: FS-OV1-CB-0.25) under helium. Maldi-TOF mass spectra 
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were recorded on a Bruker Reflex TOF. Elemental analyses were performed on a Vario EL 

(CHN) instrument. UV-visible absorption spectra were recorded on a Jasco V-670 

spectrometer, and PL spectra on a HORIBA Scientific FluroMax-4. Fluorescence decays 

were measured using a picosecond time-correlated single-photon counting (TCSPC) 

apparatus. The PL quantum efficiencies of polymer films were measured with an integrating 

sphere. HOMO energy levels were estimated on a Surface Analyzer MODEL AC-2 from 

RIKEN, given as the threshold where photoelectron emission first occurs. DSC was 

performed on a DSC1 STAR System (Mettler Toledo) at a heating rate of 10 °C min
-1

 under 

argon. 
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Chapter 5 

5. Polyphenothiazines and Polythiophenes with Tetraphenylethylene 

or 2,2,3-Triphenylacrylonitrile Side Chains 

 

Four heteroaromatic polymers with tetraphenylethylene (TPE) or 2,2,3-triphenylacrylonitrile 

(TPAN) side chains have been synthesized, containing polyphenothiazine (PTzTPE and 

PTzTPAN) or polythiophene (homoPT and coPT) backbones. Notably, PTzTPE and 

PTzTPAN showed the occurrence of clear AIE phenomena with high photoluminescence 

quantum yields in the solid state if compared to corresponding solutions. However, homoPT 

and coPT both exhibit typical ACQ effects, what is unexpected in the presence of TPE side 

chains. The observed different behavior should result from a competition between interchain 

π-π stacking and restriction of intramolecular motion. 

5.1 Introduction 

Phenothiazine
[1-5]

 and thiophene
[6-10]

 are widely used building blocks for the construction of 

semiconducting oligomers and polymers for OLEDs, OPV devices, chemosensors and others. 

Recently, phenothiazine has been utilized as core unit of AIE-active luminogens, thus 

extending the family of AIE luminogens as siloles and TPE-based compounds. The AIE 

effect observed for phenothiazine-based luminogens might be attributed to the nonplanar 

conformation of the phenothiazine moiety, which hinders close molecular packing and 

diminishes intermolecular quenching effects
[11]

. AIE-active, phenothiazine-based 

oligo-/polymers have been designed for use in red/NIR-emitting OLEDs
[12]

, and because of 

their delayed fluorescence
[13]

, solvatochromic
[11,14]

 and mechanoluminescence
[15]

 properties. 

Thiophene-based oligo-/polymers are frequently used in OPV devices, because of their high 

hole mobility, good environmental stability, etc. 

In this chapter, polyphenothiazine and polythiophene backbones were chosen for constructing 

electron-rich polymers that are decorated with AIE-active TPE or CIE-active TPAN side 

chains. The polymers were synthesized via Yamamoto- or Stille-type aryl-aryl couplings 
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under microwave heating. The structures of the four polymers are depicted in Chart 5.1. The 

occurrence of AIE phenomena is expected. The photophysics of the polymers will be also 

discussed in this chapter. 

 

Chart 5.1. The chemical structures of polyphenothiazines and polythiophenes with 

TPE/TPAN substituents. 

5.2 Polyphenothiazines 

5.2.1 Synthesis and Characterization 

 

Scheme 5.1. Synthesis scheme for monomers 1 and 2 as well as the corresponding polymers 

PTzTPE and PTzTPAN, respectively. 
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The synthesis route to monomers and polymers is depicted in Scheme 5.1. Monobromo-TPE 

and monobromo-TPAN were synthesized as described in Chapters 3 and 4, respectively. The 

attachment of monobromo-TPE or monobromo-TPAN to phenothiazine was accomplished by 

Buchwald-Hartwig coupling and afforded TPE/TPAN-substituted phenothiazine monomers. 

Next, the corresponding dibromophenothiazine derivatives 1 and 2 were synthesized by 

bromination with N-bromosuccinimide (NBS) at 0 °C. The polymers PTzTPE and PCzTPAN 

were generated starting from the monomers 1 and 2, respectively, in Yamamoto-type 

aryl-aryl couplings, using Ni(COD)2 as coupling reagent in a mixture of THF, COD and Bpy 

under microwave (MW) heating for 12 min. The structure analysis of the monomers was 

performed by NMR spectroscopy, mass spectrometry and elemental analysis. The chemical 

structure of the obtained polymers was finally confirmed by NMR spectroscopy, GPC and 

optical spectroscopy. 

5.2.2 Photophysical Properties 

Table 5.1. Optical data for PTzTPE and PTzTPAN. 

 λUV/nm 

in THF 

λPL/nm 

in THF 

λUV/nm 

in film 

λPL/nm 

in film 

ƞPL (%) 

in THF 

ƞPL (%) 

in film 

PTzTPE 294, 385(sh) 473, 498(sh) 294, 380(sh) 483, 508(sh) 2.3 15 

PTzTPAN 293, 380(sh) 630  293, 382 (sh) 643 0 0.3 

Figure 5.1 shows absorption and PL spectra of polymers PTzTPE and PTzTPAN in dilute 

THF solution and as thin films. In the absorption spectra, due to their similar chemical 

structure, both polymers show similar spectral profiles with peak maxima at 294 nm with a 

shoulder at 380 nm for PTzTPE, and 293 nm with a shoulder at 382 nm for PTzTPAN, 

respectively. For the skyblue emissive PTzTPE, the PL spectrum in solution peaks at 473 nm, 

with a shoulder at 498 nm and an additional, broad tail-off band peaking at 620 nm. As film, 

the PL spectrum of PTzTPE peaks at 483 nm with a shoulder at 508 nm, ca. 10 nm 

red-shifted if compared to the dilute solution. For PTzTPAN, the PL maximum in solution 

and in the solid state is ca. 160 nm bathochromically shifted if compared to PTzTPE. This 

significant red-shift is attributed to the introduction of the dipolar cyano groups, leading to an 

intramolecular charge transfer (ICT) effect between donor and acceptor units. PL spectra for 

solvatochromism studies in different polar solvents could not be recorded for PTzTPAN due 

to its weak emission especially in polar solvents. The solution PL quantum yields for 
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PTzTPE and PTzTPAN are 2.3% and ~0, respectively. In solid state, they increase to 15% 

and 0.3%, respectively (Table 5.1). 

 

Figure 5.1. Absorption and PL spectra of (a) PTzTPE and (b) PTzTPAN in dilute THF 

solution (10
-5

 M) and as spin-coated films (measured at room temperature). 

To further investigate possible AIE properties of PTzTPE, PL spectra in solvent mixtures 

(THF/water) were recorded (Figure 5.2). As shown, the PL intensity of PTzTPE increases 

gradually with increasing water content, indicating the occurrence of AIE properties for 

PTzTPE. For 90% water/THF, the PL intensity reaches its highest value, which is 3 times 

higher if compared to the value of a THF solution. For PTzTPAN the PL in the water/THF 

solvent mixtures is too weak for recording suitable PL spectra. 

 

Figure 5.2. (a) PL spectra of PTzTPE in THF/water mixtures with different water content; (b) 

PL intensity with increasing water fraction for PTzTPE (polymer concentration: 10
-5

 M). 

5.3 Polythiophenes 

5.3.1 Synthesis and Characterization 

The synthesis route to monomer 3 and the corresponding polymers homoPT and coPT is 

depicted in Scheme 5.2. The synthesis of TPE boronic ester was already described in 
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Scheme 3.1 (Chapter 3). TPE-substituted thiophene was obtained in a Suzuki-type aryl-aryl 

crosscoupling between 3-bromothiophene and TPE boronic ester. The TPE-substituted 

dibromothiophene monomer 3 was synthesized by bromination with NBS at 0 °C. 

2,5-Bis(trimethylstannyl)thiophene was purchased from Sigma-Aldrich without further 

purification. Polymer homoPT was generated in a Yamamoto-type homocoupling with the 

mixture of Ni(COD)2, COD, Bpy and THF under microwave (MW) heating at 120 °C for 

12 min. Polymer coPT was made in a Stille-type crosscoupling with the mixture of Pd(PPh3)4 

and DMF under MW heating at 140 °C for 20 min. The structure elucidation of monomer 3 

was performed by NMR spectroscopy, mass spectrometry and elemental analysis. The 

chemical structure of the obtained polymers was finally confirmed by NMR spectroscopy, 

GPC and optical spectroscopy. 

 

Scheme 5.2. The synthesis route to monomer 3 and the corresponding polymers homoPT and 

coPT. 

5.3.2 Photophysical Properties 

Table 5.2. Optical data and HOMO/LUMO energy levels of homoPT and coPT. 

 λUV/nm 

in THF 

λPL/nm 

in THF 

λUV/nm 

in film 

λPL/nm 

in film 

ƞPL (%) 

in toluene 

ƞPL (%) 

in film 

HOMO 

eV 

LUMO 

eV 

homoPT 328, 450 585 333, 445 585 12 8 -5.40 -2.27 

coPT 323, 495 591, 620 (sh) 330, 520 612, 645 (sh) 19 8 -5.26 -2.07 
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Figure 5.3. Normalized absorption and PL spectra of (a) homoPT and (b) coPT in dilute THF 

solution (polymer concentration: 10
-5

 M) and as spin-coated films; the insets in (a) and (b) are 

photographs of solid homoPT and coPT samples, respectively, under sunlight. 

Figure 5.3 shows normalized absorption and PL spectra of homoPT and coPT in dilute THF 

solution and as thin films. HomoPT in dilute solution shows two absorption peaks, at 328 nm 

(TPE side chains) and 450 nm (polythiophene backbone). As thin film, the first absorption 

maxima shows a 5 nm red-shift if compared to the solution data. The second band is observed 

at 445 nm. In the PL spectra, an orange emission peaking at 585 nm is observed both for the 

solution and the film, which is indicative for weak intermolecular interaction between 

polymer strands due to the bulky TPE side groups. Also for coPT, two absorption peaks for 

backbone and side groups are observed. In dilute solution, the absorption peaks are at 323 nm 

and 495 nm, attributed to TPE side chains and polythiophene backbone, respectively. In the 

film state, the backbone-related absorption peak at 495 nm shifts to 520 nm corresponding to 

a red-shift of 25 nm. In the PL spectra, red emission is observed, peaking at 591 nm with a 

shoulder at 620 nm in dilute solution and at 612 nm with a shoulder at 645 nm in the film. 

The ~20 nm red-shift in absorption and PL spectra between film and solution might be 

caused by some intermolecular stacking of polymer chains. Moreover, the viaible colors of 

polymers homoPT and coPT are quite different (insets of Figure 5.3). For homoPT, the 

polythiophene backbone should adopt a more twisted conformation due to the high 

substitution density with TPE side groups at each thiophene unit. On the other hand, for coPT, 

only each second thiophene unit carries a TPE side chain, resulting in a more planar 

polythiophene backbone thus allowing intermolecular interactions and red-shifts of the 

optical spectra. The HOMO levels of homoPT and coPT were estimated to be ca. -5.40 

and -5.26 eV, respectively (AC-2 method). The corresponding LUMO levels were calculated 

to be -2.27 and -2.07 eV, respectively, from the UV/vis absorption onsets (optical bandgap 

energies) of the polymers. The detailed optical data are summarized in Table 5.2. The PLQYs 
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in toluene solution for homoPT and coPT were measured to be 12% and 19%, respectively, 

with quinquethiophene (α5) as reference. Linear α5 shows a PLQY of 36% in 1,4-dioxane
[16]

. 

In the solid state film, the PLQY was estimated with an integrating sphere to be ca. 8% for 

both polymers. Therefore, both polymers show no AIE effect, only a weak ACQ effect.  

To further investigate the PL behavior for both polythiophenes, a series of PL measurements 

in THF/water mixtures were carried out. PL spectra of homoPT and coPT in THF/water 

mixtures are shown in Figure 5.4a/c. With increasing water content, the PL intensity 

progressively decreases for both polymers, with a maximum decrease of 1.7 times for 

homoPT and a maximum decrease of 7.7 times for coPT, respectively (pure THF to 90% 

water/THF). It is worthy to note that the PL intensity drops along with red-shift of the 

emission maximum, the plots of emission maxima vs. water content are also shown in Figure 

5.4b/d. For homoPT, the red shift is ca. 12 nm from pure THF solution to 90% water/THF, 

and ca. 26 nm for coPT, respectively. Increasing the water fraction should cause aggregation 

which may cause some intermolecular stacking or suppress the intramolecular rotation within 

the TPE units. While the former may weaken and red shift the emission the latter would 

increase the PL intensity (AIE effect). The observed PL properties result from a competition 

between both effects. For homoPT and coPT, the first effect wins and both of them did not 

show AIE behavior.  

 

Figure 5.4. PL spectra of (a) homoPT and (c) coPT in THF/water mixtures with different 

water content; PL intensity and maximum emission wavelength with increasing water 

fraction for (b) homoPT and (d) coPT, respectively (polymer concentration: 10
-5

 M). 
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5.4 Conclusions 

Polyphenothiazines PTzTPE and PTzTPAN with AIE-active TPE or CIE-active TPAN side 

groups were successfully synthesized in Yamamoto-type aryl-aryl homocouplings. Both 

polymers show AIE effects. PTzTPAN combines electron-rich polyphenothiazine backbones 

with electron-poor cyano-containing TPAN side chains allowing intramolecular charge 

transfer (ICT). However, a detailed photophysical characterization of the ICT properties was 

not possible because of the weak PL. 

HomoPT and coPT with AIE-active TPE side group have been successfully synthesized in 

Yamamoto-type and Stille-type aryl-aryl couplings, respectively. Both polymers show 

different colors, orange for homoPT to dark red for coPT, which might be explained by the 

more planar polymer backbone of coPT with its lower substitution density. Unlike the 

polymers with polycarbazole, polytriphenylamine, and polyphenothiazine backbones, both 

homoPT and coPT show ACQ effects. Hereby, intermolecular stacking may dominate the 

emission properties. 

5.5 Experimental 

5.5.1 Materials 

All reagents were obtained from commercial suppliers and were used without further 

purification. All reactions were carried out under argon atmosphere by standard and Schlenk 

techniques. The solvents were used as commercial p.a. quality. 

10-[4-(1,2,2-triphenylvinyl)phenyl]-10H-phenothiazine 

Tris(dibenzylideneacetone)dipalladium(0) (Pd2(dba)3) (87 mg, 0.095 mmol) and 

tri-tert-butylphosphane (P(t-Bu)3) (0.02 mL, 0.095 mmol) were dissolved in dry toluene 

(20 mL) under argon and stirred for 10 min at room temperature (preformation of the 

catalyst). The catalyst was then added to a mixture of 10H-phenothiazine (1.526 g, 

7.66 mmol), bromo-TPE (3 g, 7.29 mmol) and sodium-tert-butylate (t-BuONa) (1.051 g, 

10.94 mmol) in dry toluene (90 mL). The reaction mixture was stirred at 90 °C overnight. 

The reaction was cooled down to room temperature and treated with water. The mixture was 

extracted with chloroform for three times. The organic phases were collected, dried over 

MgSO4 and concentrated under vacuum. The residue was purified by silica gel 

chromatography (eluent: dichloromethane/hexane = 3/7) to give desired compound as a light 
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green solid in 91% yield (3.5 g). 
1
H NMR (400 MHz, CDCl3) δ (ppm) 7.28 (d, J = 8.4 Hz, 

2H), 7.23 - 7.05 (m, 17H), 7.02 (dd, J = 7.4, 1.7 Hz, 2H), 6.89 (td, J = 7.8, 1.6 Hz, 2H), 6.83 

(t, J = 7.0 Hz, 2H), 6.17 (dd, J = 8.1, 1.0 Hz, 2H). MS (APLI): m/z calcd 529.19; found 

529.16. 

3,7-dibromo-10-[4-(1,2,2-triphenylvinyl)phenyl]-10H-phenothiazine (1) 

10-[4-(1,2,2-Triphenylvinyl)phenyl]-10H-phenothiazine (2.50 g, 4.72 mmol) was dissolved 

in dichloromethane (30 mL) under argon and cooled by an ice bath. The solution was stirred 

under protection of light and NBS (1.68 g, 9.44 mmol) was slowly added in three portions. 

The reaction mixture was slowly warmed to room temperature and stirred overnight. The 

reaction mixture was treated with water and extracted with chloroform three times. The 

organic layer was collected, washed with brine solution and dried over MgSO4. The solution 

was concentrated under vacuum and the product was purified by silica gel chromatography 

(eluent: dichloromethane/hexane = 1/4) to give desired compound as a light green solid in 77% 

yield (2.5 g). 
1
H NMR (400 MHz, CDCl3) δ (ppm) 7.30 (d, J = 8.5 Hz, 2H), 7.25 - 7.14 (m, 

11H), 7.14 - 7.02 (m, 8H), 6.96 (dd, J = 8.8, 2.3 Hz, 2H), 5.96 (d, J = 8.8 Hz, 2H). 
13

C NMR 

(100 MHz, CDCl3) δ (ppm) 144.68, 143.48, 142.96, 142.89, 142.68, 142.39, 139.94, 137.97, 

133.89, 131.36, 131.18, 131.15, 129.78, 129.63, 128.72, 127.93, 127.76, 127.60, 126.83, 

126.80, 121.17, 116.97, 114.64. MS (APLI): m/z calcd 687.01; found 687.00. Elemental anal. 

calcd: C, 66.39%; H, 3.67%; N, 2.04%; S, 4.66. Found: C, 66.64%; H, 3.63%; N, 1.94%; S, 

4.84%. 

2-[4-(10H-phenothiazin-10-yl)phenyl]-3,3-diphenylacrylonitrile 

The synthesis procedure was similar to that described for the preparation of 

10-[4-(1,2,2-triphenylvinyl)phenyl]-10H-phenothiazine, with Pd2(dba)3 (50 mg, 0.054 mmol), 

P(t-Bu)3 (11 mg, 0.054 mmol), 10H-phenothiazine (871 mg, 4.37 mmol), 2-(4-bromophenyl)-

3,3-diphenylacrylonitrile (1.5 g, 4.16 mmol), t-BuONa (0.6 g, 6.25 mmol) and toluene 

(55 mL) as components. The product was purified by silica gel chromatography (eluent: 

dichloromethane/hexane = 3/7) to give yellow powder in 85% yield (1.7 g). 
1
H NMR 

(400 MHz, CDCl3) δ (ppm) 7.57 - 7.41 (m, 7H), 7.35 - 7.29 (m, 1H), 7.28 - 7.18 (m, 4H), 

7.14 - 7.06 (m, 4H), 6.96 (td, J = 7.8, 1.7 Hz, 2H), 6.90 (td, J = 7.4, 1.2 Hz, 2H), 6.35 (dd, J = 

8.1, 1.2 Hz, 2H).  
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2-[4-(3,7-dibromo-10H-phenothiazin-10-yl)phenyl]-3,3-diphenylacrylonitrile (2) 

The synthesis procedure was similar to that described for preparation of 3,7-dibromo-10-[4-

(1,2,2-triphenylvinyl)phenyl]-10H-phenothiazine (1) with 2-(4-(10H-phenothiazin-10-

yl)phenyl)-3,3-diphenylacrylonitrile (1.41 g, 2.95 mmol), NBS (1.05 g, 5.90 mmol) and 

dichloromethane (20 mL) as components. The product was purified by silica gel 

chromatography (eluent: dichloromethane/hexane = 2/3) to give desired compound as a 

yellow solid in 85% yield (1.6 g). 
1
H NMR (400 MHz, CDCl3) δ (ppm) 7.56 - 7.44 (m, 7H), 

7.33 (t, J = 7.4 Hz, 1H), 7.25 (t, J = 7.5 Hz, 2H), 7.19 (d, J = 8.6 Hz, 2H), 7.15 (d, J = 2.3 Hz, 

2H), 7.11 - 7.03 (m, 2H), 7.00 (dd, J = 8.8, 2.3 Hz, 2H), 6.05 (d, J = 8.8 Hz, 2H). 
13

C NMR 

(100 MHz, CDCl3) δ (ppm) 159.11, 142.57, 140.25, 139.79, 138.78, 135.24, 132.41, 130.79, 

130.27, 129.92, 129.78, 129.41, 129.09, 128.56, 128.27, 122.51, 119.74, 117.70, 115.26, 

110.28. MS (APLI): m/z calcd 635.97; found 636.98. Elemental anal. calcd: C, 62.28; H, 

3.17; N, 4.40; S, 5.04. Found: C, 62.51%; H, 3.09%; N, 4.30%; S, 5.19%. 

Polymer PTzTPE 

A mixture of monomer 1 (600 mg, 0.873 mmol), Ni(COD)2 (624 mg, 2.269 mmol), BPy 

(354 mg, 2.269 mmol) and COD (245 mg, 2.269  mmol) in THF (6 mL) was treated under 

microwave heating at 120 °C for 12 min. The reaction mixture was treated with water and 

extracted with chloroform. The collected organic phases were washed with aqueous 2 M HCl, 

aqueous NaHCO3 solution, saturated, aqueous EDTA solution, and brine, and finally dried 

over MgSO4. Afterwards, the solvents were removed under vacuum. The resulting solid was 

dissolved in a small amount of chloroform and precipitated into methanol (500 mL) to afford 

the target polymer as a green solid. Subsequent Soxhlet extractions were carried out with 

methanol, acetone, ethyl acetate and chloroform, respectively. After re-precipitation of the 

chloroform-soluble fraction into methanol, a green polymer was obtained with 52% yield 

(251 mg). 
1
H NMR (600 MHz, CDCl3, 40 °C) δ (ppm) 7.31 (bs, J = 40.9 Hz, 2H), 7.27 - 7.05 

(m, 19H), 7.05 - 6.80 (m, 2H), 6.15 (bs, 2H). Mn 17800, Mw 110000, Mw/Mn 6.15 (GPC, PS 

calibration). 

Polymer PTzTPAN 

A mixture of monomer 2 (600 mg, 0.943 mmol), Ni(COD)2 (674 mg, 2.451 mmol), BPy 

(383 mg, 2.451 mmol) and COD (265 mg, 2.451 mmol) in THF (6 mL) was reacted under 

microwave heating at 120 °C for 12 min. The workup procedure was similar to that described 
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for the preparation of PTzTPE. The dark yellow polymer was obtained with 12% yield 

(55 mg). 
1
H NMR (600 MHz, CDCl3, 40 °C) δ (ppm) 7.62 - 7.41 (m, 7H), 7.39 - 7.16 (m, 

7H), 7.14 - 6.96 (m, 4H), 6.35 - 6.17 (m, 2H). Mn 5300, Mw 7100, Mw/Mn 1.34 (GPC, PS 

calibration). 

3-[4-(1,2,2-triphenylvinyl)phenyl]thiophene 

A mixture of 3-bromothiophene (1.17 g, 7.2 mmol), 4,4,5,5-tetramethyl-2-[4-(1,2,2-

triphenylvinyl)phenyl]-1,3,2-dioxaborolane (3.0 g, 6.54 mmol), K2CO3 (0.905 g, 6.54 mmol), 

TBABr (0.211 g, 0.654 mmol) and Pd(PPh3)4 (227 mg, 0.196 mmol) was carefully degassed. 

Then, water (3.3 mL) and toluene (45 mL) were added. The resulting mixture was stirred at 

95 °C for 24 h under argon atmosphere. After cooling to room temperature, the mixture was 

treated with water and extracted with chloroform. The organic phases were collected, dried 

over MgSO4 and concentrated under vacuum. The product was purified by silica gel 

chromatography (eluent: hexane/dichloromethane = 7/3) to give the desired compound as 

white solid in 96% yield (2.6 g). 
1
H NMR (400 MHz, C2D2Cl4) δ (ppm) 6.13 (t, J = 2.1 Hz, 

1H), 6.11 - 6.06 (m, 4H), 5.90 - 5.75 (m, 17H). 

2,5-dibromo-3-[4-(1,2,2-triphenylvinyl)phenyl]thiophene (3) 

Under exclusion of light, a solution of NBS (2.16 g, 12.16 mmol) in DMF (8 mL) was added 

dropwise to a solution of 3-[4-(1,2,2-triphenylvinyl)phenyl]thiophene (2.4 g, 5.79 mmol) in 

DMF (12 mL) at 0 °C. The resulting mixture was kept for 1 h at 0 °C and then allowed to 

warm up to room temperature. Afterwards the product was poured into water and the mixture 

extracted with dichloromethane. The organic phase was washed with saturated, aqueous 

NaHCO3 solution and water and dried over MgSO4. After evaporation of the solvent, the 

crude product was purified by silica gel chromatography (eluent: hexane/dichloromethane = 

7/3) to give the desired compound as white solid in 45% yield (1.5 g). 
1
H NMR (600 MHz, 

C2D2Cl4) δ (ppm) 7.23 (d, J = 8.4 Hz, 2H), 7.13 - 7.06 (m, 9H), 7.06 - 7.00 (m, 8H), 6.99 (s, 

1H). 
13

C NMR (150 MHz, C2D2Cl4) δ (ppm) 143.75, 143.72, 143.70, 143.60, 141.91, 141.79, 

140.56, 132.04, 131.87, 131.64, 131.57, 131.56, 128.02, 128.00, 127.94, 127.85, 126.82, 

126.75, 126.71, 111.43, 107.64. MS (APLI): m/z calcd 571.96; found 571.94. Elemental anal. 

calcd: C, 62.95%; H, 3.52%; S, 5.60%. Found: C, 62.96%; H, 3.08%; S, 6.13%. 
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Polymer homoPT 

A mixture of monomer 3 (400 mg, 0.699 mmol), Ni(COD)2 (500 mg, 1.817 mmol), BPy 

(284 mg, 1.817 mmol) and COD (197 mg, 1.817 mmol) in THF (6 mL) was reacted under 

microwave heating at 120 °C for 12 min. The workup procedure was similar to that described 

for the preparation of PTzTPE. The orange polymer was obtained with 52% yield (150 mg). 

1
H NMR (600 MHz, C2D2Cl4, 60 °C) δ (ppm) 7.26 - 6.60 (m, 20H). Mn 14600, Mw 57800, 

Mw/Mn 3.96 (GPC, PS calibration).  

Polymer coPT 

Monomer 3 (400 mg, 0.699 mmol), 2,5-bis(trimethylstannyl)thiophene (286 mg, 0.699 mmol) 

and Pd(PPh3)4 (40.4 mg, 0.035 mmol) were added into a 20 mL microwave-tube. The mixture 

was carefully degassed under vacuum for 15 min. Next, dry DMF (10 mL) was added into the 

tube under argon and the resulting mixture was heated to 140 °C under microwave conditions 

for 20 min. After that, 2-(tributylstannyl)thiophene (5.2 mg, 0.014 mmol) was added as 

end-capping agent and the mixture reacted for another 5 min. The mixture was cooled down 

to room temperature, treated with aqueous 2M HCl solution and extracted with chloroform 

three times. The organic phases were collected and dried over MgSO4. Afterwards, the 

solvents were removed under vacuum. The resulting solid was dissolved in a small amount of 

chloroform and precipitated into methanol (500 mL) to afford the target polymer as a dark 

red solid. Subsequent Soxhlet extractions were carried out with methanol, acetone, ethyl 

acetate and chloroform, respectively. After re-precipitation of the chloroform-soluble fraction 

into methanol, the dark red polymer was obtained with 69% yield (240 mg). 
1
H NMR 

(600 MHz, C2D2Cl4, 60 °C) δ (ppm) 7.49 - 6.59 (m, 22H). Mn 14500, Mw 76600, Mw/Mn 5.28 

(GPC, PS calibration). 

5.5.2 Instrumentation 

NMR spectra were recorded on a Bruker AVANCE 400 or AVANCE III 600. 
1
H and 

13
C 

NMR spectra were measured with tetramethylsilane (TMS) as internal standard. Gel 

permeation chromatography (GPC) measurements at high temperature (135 °C) were carried 

out on Waters Alliance 2000 System equipped with PLgel-Guard, PLgel-MIXED-B-column 

(both from Agilent Technologies) using 1,3,5-trichlorobenzene as eluent, with RI-detector 

and measured against polystyrene. APLI (Atmospheric Pressure Laser Ionization) 

measurements were carried out on Bruker Daltronik Bremen with micrOTOF. UV-visible 
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absorption spectra were recorded on a Jasco V-670 spectrometer, and PL spectra on a 

HORIBA Scientific FluroMax-4. Elemental analyses were performed on a Vario EL II 

(CHNS) instrument. The PL quantum efficiencies of polymer films were measured with an 

integrating sphere. 
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Chapter 6 

6. Outlook 

 

6.1 Summary of Chapters 2-5 

A series of linear polymers, with polycarbazole, polytriphenylamine, polyphenothiazine and 

polythiophene backbones, many of them with AIE activity have been successfully 

synthesized. Electron-rich carbazole, triphenylamine, phenothiazine and thiophene units were 

chosen as repeat units of the polymer backbone and AIE(CIE)-active TPE or TPAN moieties 

as side chains in order to induce AIE activity without strongly affecting the electronic 

properties of the backbones. Many of the obtained polymers showed high fluorescence 

quantum yields in the solid state, thanks to the occurrence of distinct AIE effects. 

The photophysical properties of the polymers in solution, and in the aggregated (solid) state 

have been studied, as well as potential applications in the detection of nitroaromatic 

explosives (in dispersion and in the film). Moreover, one AIE-active polymer was used as 

photoluminescent dopant in the detection of the glass transition temperature of polystyrene 

films. Notably, a highly sensitive detection of TNB as prototypical nitroaromatic compound 

was possible, with a maximum quenching constant of up to 1.26×10
6
 M

-1
 in dispersion and 

89% fluorescence quenching for 600 s contact time for a thin film. In the detection of the 

glass transition of polymer (in our case for polystyrene), the use of AIE-active dopants is a 

new sensitive, reliable and straightforward approach, especially for Tg-detection of films. 

6.2 Outlook 

Click chemistry
[1]

 first described by Sharpless et al. in 2001, is a useful synthetic tool for 

connecting building blocks
[2,3]

, with high yield and stereospecificity, under simple and mild 

reaction conditions in a fast reaction that is non-sensitive to oxygen or water. Several AIE 

oligomers and polymers have been synthesized via click reactions and used for the 

applications in chemosensors
[4-9]

, mechanochromic sensors
[10]

, in cell imaging
[11,12]

 and other 

applications
[13-17]

. 

Thiol-ene click reactions
[18,19]

 can be performed without solvent under thermal or 

photochemical initiation. Solvent-free thiol-ene click reactions allow for the fabrication of 
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thin films of polymer networks despite the common insolubility of polymer networks. Such 

network often possesses a high chemical and thermal stability. They can adopt a microporous 

structure if the synthesis uses rigid building blocks (tectors), what makes them promising for 

applications in optoelectronic devices and chemosensors, etc.  

Therefore, further experiments could be carried out to generate thin-film of polymer networks 

that contain AIE-active TPE units, e.g. via thiol-ene click chemistry with e.g. 

1,1,2,2-tetrakis(4-vinylphenyl)ethene and multifunctional thiol monomers in a photochemical 

crosslinking procedure (Scheme 6.1). The obtained films could be tested in sensors or 

optoelectronic devices. 

 

Scheme 6.1. The synthetic route to polymer network containg TPE units. 
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