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Introduction

Group VI is the last main group which contains an element which is metallic,

polonium. Oxygen and sulphur are insulators whereas selenium and tellurium be-

have as semiconductors. From top to bottom of the group, atomic sizes increase and

electronegativity decreases. The ionization energies fall steadily down the group. All

elements have the electronic structure s2p4. Whereas oxygen and sulphur have only s

and p electrons, others have d electrons as well.

Oxygen is the most important element in the group. Besides being the most

abundant of all the elements, making up about 49.4 % of the earth’s crust and 23 % (by

weight) of the atmosphere, oxygen reacts with almost all other elements. Sulphur, se-

lenium and tellurium are moderately active whereas polonium is strongly radioactive.

Also, oxygen differs from the rest of the group in that it is more electronegative and

therefore more ionic in its compounds.

In comparison to their corresponding IV A elements, the group VI elements are

more easily volatilized. Also in forming compounds with the halogens, elements of the

group VI show valencies of 2, 4 and 6. In addition, all elements readily form covalent

hydrides. All these combined with other experimental intricacies make observation of

clean spectra of diatomic halides of these elements more cumbersome. As a matter
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of fact, present knowledge about the spectroscopic properties of the group VI mono-

halides is quite limited.

A thorough survey of literature and search through the Huber-Herzberg com-

pendium [1] and database for diatomic molecules [2] reveal that although oxygen mono-

halides because of their importance in atmospheric processes are most studied, infor-

mation on other group VI monohalides is rather meagre. Among sulphur monohalides,

only the lightest SF radical is mentioned in the Huber-Herzberg compendium [1], and

even in this case the spectroscopic data reported are far from complete and the assign-

ment of the only known excited state as A2Π is not reliable. In the case of selenium

monohalides, spectroscopic constants are available for three systems, SeF, SeCl, and

SeBr [1,3], but this information is also limited and tentative. No other data for the above

systems have come to our attention so far.

Remarkably, more is known about the spectroscopy of tellurium monohalides [4-

12]. Oldershaw et al. [4-6] observed the UV absoption spectra of TeCl, TeBr and TeI.

They assigned most of the observed bands to B → X1
2Π3/2 and B → X2

2Π1/2 tran-

sitions. Assuming that there is no fine-structure splitting in the B state, Huber and

Herzberg [1] report the doublet splittings of the ground states to be 1674 (TeCl), 1719

(TeBr), and 1815 (TeI) cm−1. In 1979, Newlin et al. [7] observed the chemiluminescence

emission spectrum of TeF from a mixture of H2Te/D2Te with fluorine in the region of

3900− 5200 Å and assigned it to A (2Πi) → X (2Πi)(i = 1/2 or 3/2) transitions based on

analogy with the SF radical [13]. They reported the difference in spin-orbit constants

for the ground and excited states to be 394 cm−1. In the following investigations of

the lower-lying states of TeF, Newlin et al. [8] observed the corresponding transitions

in the 5000 − 8000 Å region and reassigned the previously observed spectrum [7] to

B2Σ+ → X(2Πi) transitions. They also estimated the spin-orbit constants for the ground
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X (2Πi) and A (2Πi) states as X (2Π) = −531 cm−1, and A (2Π) = −909 cm−1. Thorpe et

al. [9] in 1985 observed the same band systems from the chemiluminiscence reactions

produced by heating metallic tellurium in the presence of fluorine. They assigned the

bands to the transitions B2Σ+ → X1
2Π3/2 and B2Σ+ → X2

2Π1/2 (in the region extend-

ing from approximately 3800− 5400 Å) and A 2Π3/2 → X1
2Π3/2 and A 2Π1/2 → X2

2Π1/2

(in the region extending from above 5300 Å). They reported the spin-orbit coupling of

the X (2Πi) state to be −497 cm−1, as determined from the 2Σ+ − 2Πi transition. Fink

and coworkers [10-12] reported high-resolution Fourier transform emission spectra for

all four tellurium monohalides in the near-infrared spectral region. They analysed the

0 − 0 bands of the transitions X2
2Π1/2 → X1

2Π3/2 in TeF, TeCl, TeBr, and TeI and de-

termined the fine-structure splittings of the X (2Πi) ground states to be 4187 ± 1 cm−1

for TeF, 4022.5± 1 cm−1 for TeCl, 4067± 3 cm−1 for TeBr, and 4130± 10 cm−1 for TeI.

It is always useful to analyse the results reported for less studied systems with

those for previously more extensively investigated similar systems. Since TeF is isova-

lent with OF, it was natural to expect a σ2π4π∗3 electronic configuration for its ground

state and that its lowest excited state would result from a π → π∗ transition. Relativistic

configuration interaction (CI) calculations for another halogen monoxide, IO [14], have

shown , however, that in this case the lowest excited state is 4Σ−, which results from a

π∗ → σ∗ excitation relative to its σ2π4π∗3 ground state. Spin-orbit effects cause the 4Σ−

state to have a regular multiplet ordering (1/2 < 3/2) as opposed to the inverted order

expected and observed for the 2Π state. This is an interesting result because in many

ways IO and TeF are complementary systems. They both are group VIA halides with

one atom from each of the first and fourth rows of the periodic table, but they differ in

the way this selection is made. This distinction can be expected to produce significant

differences in the bonding and antibonding character of their respective molecular or-

bitals (MOs) because of the contrasting electronegativity relationships between these
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two pairs of constituent atoms. In TeF the electronic charge distribution is expected to

be far more polar than is the case in IO, for which the electronegativity difference of its

constituents is much smaller. Experience with group VA halides [15-19] has demon-

strated that the degree of antibonding in the π∗ and σ∗ MOs markedly decreases with

the increased polarity of the system and this in turn produces qualitative differences

in the shapes of potential curves for states with equivalent electronic configurations.

The relative strengths of electronic transitions can also be greatly affected by such

considerations. They also can have a significant impact on the magnitude of spin-orbit

splittings, particularly in the present case where the two atoms come from widely differ-

ing rows of the periodic table. In this case the key question is what is the composition

of the open-shell MO most responsible for the splitting, particularly what portion of it is

derived from the heavier atom. In IO the X2Π zero-field splitting is only 2091 cm−1 [20],

which is a little more than one-quarter of the corresponding value for atomic iodine, a

clear indication of the high proportion of oxygen character in this system’s π∗ MO. One

expects the corresponding MO in TeF to be heavily localized on the tellurium atom,

causing significantly larger spin-orbit splitting for this system. One also expects the π∗

and σ∗ orbitals to be far less antibonding in TeF for the same reason. These distinc-

tions should also play a key role in determining whether π → π∗ or π∗ → σ∗ transitions

produce the lowest excited state in this system. Also, based on their interpretation

of spin-orbit constants, Fink et al. [10] emphasized the need of re-investigaion of the

A → X and B → X systems of the tellurim halides including quantum-mechanical

calculations of the corresponding energy levels and transitions moments.

For other monohalides of tellurium, TeCl, TeBr, and TeI, knowledge about the

spectroscopic properties is still more obscure than for TeF. Although spectroscopic con-

stants for the X1 and X2 states of TeCl have been determined experimentally [11], for

TeBr and TeI no observed results except for the ground state splittings can be found in
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the literature. Over all, the accuracy of experimental determination of relative quantities

such as radiative lifetimes and whether the transitions are electric or magnetic dipole

in nature are always rather limited. Under these circumstances, quantum mechanical

ab initio calculations often provide the best means of obtaining reliable estimates and

aid experimentalists in developing new techniques to increase the accuracy of their

measurements.

In order to study the points discussed above, a series of ab initio spin-orbit con-

figuration interaction (SO-CI) calculations have been carried out for the first time for

TeX (X=F, Cl, Br, and I) radicals by employing relativistic effective core potentials

(RECPs). The methods employed are particularly well suited for computing energy-

related quantities and determining electric-dipole transition moments. A large number

of such applications have already been reported [15-19,21-24]. Energetic properties,

dipole transition moments and radiative lifetimes have been computed for a number

of low-lying states which have been studied experimentally [7-12], and predictions re-

garding the strongest transitions in the low-energy spectra of these systems have been

made which should be useful for future spectroscopic investigations.

The remainder of this dissertation is organised as follows. In Chapter 1, the

salient features of the theoretical methods employed in the present studies have been

described. Results obtained from the present calculations, their interpretation, and

comparisons with available experimental data for TeF, TeCl, TeBr, and TeI are reported

in Chapters 2, 3, 4, and 5, respectively.
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Chapter 1

Theoretical Background

1.1 Born-Oppenheimer Approximation

The wave function |Ψ(r, R)〉, obtained as a solution of the time-independent

Schrödinger equation:

(Ĥ(r, R)− E)Ψ(r, R) = 0 (1.1)

describes an atom or a molecule in non-relativistic quantum mechanics. Here r and

R are the coordinates of the electrons and the nuclei of the system, respectively. The

non-relativistic Hamilton operator Ĥ can be written as:

Ĥ(r, R) = T̂N(R) + Ĥel
R (r) (1.2)

where

T̂N ≡ T̂N(R) = −1

2

∑
K

1

MK

∇2
K
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Ĥel
R (r) = −1

2

∑
i

∇2
i −

∑
i,K

ZK

riK

+
∑
i<j

1

rij

+
∑
K<L

ZKZL

RKL

=
∑

i

[
−1

2
∇2

i −
∑
K

ZK

riK

]
+

∑
i<j

1

rij

+
∑
K<L

ZKZL

RKL

≡
∑

i

ĥel(i) +
∑
i<j

1

rij

+
∑
K<L

ZKZL

RKL

and

~ri ≡




xi

yi

zi


 , ~RK ≡




XK

YK

ZK


 ,

∇2
i =

∂2

∂x2
i

+
∂2

∂y2
i

+
∂2

∂z2
i

∇2
K =

∂2

∂X2
K

+
∂2

∂Y 2
K

+
∂2

∂Z2
K

riK ≡ |~ri − ~RK |, rij ≡ |~ri − ~rj|, RKL ≡ |~RK − ~RL|

It is obvious that atomic units are used. Here T̂N is the kinetic energy operator of the

nuclei and Ĥel
R (r) is the non-relativistic electronic Hamiltonian operator (for fixed nu-

clear coordinates R). The nuclear mass and charge are represented by MK and ZK ,

respectively 1 . The position vectors of ith electron and the Kth nucleus in the system

are ~ri and ~RK , respectively . It is assumed that electrons and the nuclei are point

mass/charges. Also, all the nuclear and electronic coordinates have been referred to

the centre of mass of the system. The total energy of an atom can be seen as that of

the electrons relative to a stationary center of mass. In a molecule, the energy consists
1Block letters have been used to label the nuclear terms and small letters for the electronic terms.
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of contributions from several different types of motion, namely, that of the electrons,

vibrational motion of the nuclei, and rotational motion of the nuclei. To make matters

more complex, all these motions couple with each other, making the solution of equa-

tion (1.1) a challenging problem.

A starting point for computational, structural tools is the Born-Oppenheimer ap-

proximation. It is an extremely significant concept, because it is only within the Born-

Oppenheimer separation of electronic and nuclear motion that a potential energy sur-

face exists. The equilibrium structure of a species corresponds to a minimum on such

a surface. Moreover, the approximation reduces the complete quantum mechanical

problem to one of electronic structure, as shall be discussed later, in this section.

According to Born and Oppenheimer [25] , the solutions of the Schrödinger equa-

tion (1.1) can be expanded in a power series in the quantity M−1/4 (where M is the

average mass of the nuclei). If this function is very much smaller than unity, then one

can approximate solutions to equation (1.1) by first solving the wave equation for a

series of fixed nuclear positions, thus obtaining the electronic energy for a particular

arrangement of nuclei. This electronic energy (which depends on the nuclear posi-

tions) can then be used as the potential energy for the wave function involving the

nuclei alone.

The Born-Oppenheimer approximation in simple quantitative terms amounts to

separating off the nuclear kinetic energy terms from the total Hamiltonian, and con-

sidering only the part which depends on the positions but not on the momenta of the

nuclei. The physical picture leading to this approximation is quite simple. Both elec-

trons and nuclei experience forces of equal magnitude (F = ma). Due to their heavier

mass, the nuclei move much more slowly in the center-of-mass coordinate system as
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compared to the electrons of the system. Hence, it is possible to approximate the real

system to be one in which the electrons move in the field of fixed nuclei.

According to this approximation then, one can write the total wave function as

Ψ(r, R) = ΦR(r)χ(R), (1.3)

where ΦR(r) is an electronic wave function for fixed nuclear coordinates and χ(R) are

the corresponding nuclear wave functions, and

Ĥel
R (r)Φ(r, R) = Eel(R)Φ(r, R), (1.4)

where Eel(R) is the electronic energy and depends on the nuclear coordinates. The

total energy for fixed nuclei also includes the constant nuclear repulsion term

M∑
A=1

M∑
B>A

ZAZB

RAB

RAB being the internuclear separation between nuclei A and B, and M is the total

number of nuclei in the system.

Once the electronic problem has been solved, one can subsequently solve the

nuclear Schrödinger equation using the same assumptions which were used to formu-

late the electronic problem. Since the motion of the electrons is much faster than that of

the nuclei, in equation (1.2) the electronic coordinates can be replaced by their values

obtained by averaging over the electronic wave function. The nuclear Hamiltonian thus
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generated is:

Ĥnucl = −
M∑

A=1

1

MA

∇2
A +

〈
−

N∑
i=1

1

2
∇2

i −
N∑

i=1

M∑
A=1

ZA

riA

+
N∑

i=1

N∑
j>i

1

rij

〉
+

M∑
A=1

M∑
B>A

ZAZB

RAB

= −
M∑

A=1

1

MA

∇2
A + Eel(R) +

M∑
A=1

M∑
B>A

ZAZB

RAB

= −
M∑

A=1

1

MA

∇2
A + Etot(R) (1.5)

where N is the total number of electrons in the system. The total energy Etot(R) pro-

vides a potential for the nuclear motion that constitutes a potential energy surface. The

nuclei in the Born-Oppenheimer approximation move on a potential surface obtained

by solving the electronic Schrödinger equation.

1.2 Hartree-Fock Approximation

Another approximation central to solving the many-electron problem in quantum

chemistry is the Hartree-Fock approximation. The basic idea underlying this approach

is to treat the relatively complicated many-electron interaction as a one-electron prob-

lem in which electron-electron repulsion is treated in an average way. Physically, the

approximation is a neglect of instantaneous electron-electron repulsions. Within it elec-

trons see each other as distributions in space rather than as individual particles.

It is assumed that each electron is described by a Schrödinger equation for an

electron moving in an effective field. This effective field includes the field arising from

the nuclei of the molecule, as well as the average field created by the other electrons.

Following separation of the many-electron Schrödinger equation (as discussed above),
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the one-electron Schrödinger equation can be written as

(hi + ui)φi = Eiφi, (1.6)

where ui is the average field and hi is the one-electron operator

hi = −1

2
∇2

i +
M∑

A=1

(
−ZA

riA

)
, (1.7)

and the wave function φi depends on the coordinates of a single electron i only. The

difficulty here is that the potential ui is unknown and depends on the one-electron

wave functions of all the other electrons in the molecule. An initial guess has to be

then made for ui. The one-electron Schrödinger equation (1.6) is then solved for this

ui to obtain a set of orbitals which are then used to construct an improved potential ui.

The one-electron Schrödinger equations are then solved repeatedly to obtain improve-

ments over the intial guess. The process is continued until the orbitals describing the

movement of the electrons do not change. Each electron is then said to be moving in

a self-consistent field (SCF).

It is to be noted that the spin of the electrons has to be taken into consideration, as

well as the condition that the wave function for the N -electron system be antisymmet-

ric with respect to permutation of both the spin and space coordinates of the electrons.

The wave function of the N -electron system is, hence, represented by an antisym-

metrized product of spin orbitals ψ such that

ψi = φiα
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or,

ψi = φiβ,

where α and β are two spin functions, corresponding to spin up and down, respectively.

The total wave function can be written as a Slater determinant [26]:

Φ = (N !)−1/2

∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(τ1) ψ2(τ1) · · · ψN(τ1)

ψ1(τ2) ψ2(τ2) · · · ψN(τ2)
...

ψ1(τN) ψ2(τN) · · · ψN(τN)

∣∣∣∣∣∣∣∣∣∣∣∣

(1.8)

where the τi is the space coordinate of the ith electron.

The best solution of equation (1.8) is chosen by invoking the variational theorem

according to which the Rayleigh quotient:

〈Φ|Ĥ|Φ〉
〈Φ|Φ〉 =

∫ ∫ · · · ∫ Φ∗ĤΦdτ1dτ2 · · · dτN∫ ∫ · · · ∫ Φ∗Φdτ1dτ2 · · · dτN

(1.9)

provides an upper bound to the exact solution of the Schrödinger equation for any

choice of approximate wave function Φ. A wave equation of the form (1.8) is associ-

ated with a total energy, in this case the electronic energy:

Eel = 2
∑

i

Hcore
ii +

∑
i,j

(2Jij −Kij) (1.10)

where Hcore
ii is the core Hamiltonian matrix element, Jij is the Coloumb integral, and
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Kij is the exchange integral, defined as follows:

Hcore
ii =

〈
ψi

∣∣∣∣∣−
~2

2m
∆1 −

∑
A

ZA

r1A

∣∣∣∣∣ψi

〉
(1.11)

Jij =

〈
ψi(r1)ψj(r2)

∣∣∣∣
1

r12

∣∣∣∣ ψi(r1)ψj(r2)

〉
= (ii, jj) (1.12)

Kij =

〈
ψi(r1)ψj(r2)

∣∣∣∣
1

r12

∣∣∣∣ ψi(r2)ψj(r1)

〉
= (ij, ij) (1.13)

Minimising the electronic energy , as given in equation (1.10) with respect to ψi, leads

to the Hartree-Fock equations and the determination of the orbital energies εi:

F̂ψi = εiψi (1.14)

εi = Hcore
ii +

∑
i

(2Jij −Kij) (1.15)

where F̂ is the Fock operator . It has a very complicated form in general and, hence,

is used mostly for atomic calculations only.

1.3 Roothaan SCF-LCAO-MO Method

Roothaan [27] showed that instead of solving the Hartree-Fock equations nu-

merically, one can put them in matrix form by expansion into a basis of atomic orbital

functions and then utilise the standard matrix techniques to solve the equations. The

basic idea involved in the method is:
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1. the many-electron wavefunction is described as a Slater determinant of one-electron

wave functions (1.8),

2. the interelectronic interactions are considered as an average electrostatic field,

and

3. equation (1.4) is solved in an one-dimensional space which is formed from a given

basis set of atomic orbitals (LCAO-approximation).

The unknown molecular orbitals ψi are expanded in terms of a set of K known basis

functions {φµ(r)|µ = 1, 2, . . . , K} in the linear expansion

ψi =
K∑

µ=1

cµiφµ , i = 1, 2, . . . , K (1.16)

A complete set {φµ} would lead to an exact expansion and any such basis could be

used. But in practice one is restricted to using a finite set of functions and, hence, it

is important to choose the basis functions in such a manner that they provide the best

possible expansion for the exact molecular orbitals (MOs) {ψi}. The indices i, j, k, `, · · ·
correspond to the molecular orbitals (MOs), and indices µ, ν, λ, σ, · · · correspond to the

atomic orbitals (AOs).

Substitution of (1.16) in (1.11)-(1.13) leads to (for closed shells):

Hcore
ij =

∑
µ

∑
ν

cµicνjH
core
µν (1.17)

(ij, k`) =
∑

µ

∑
ν

∑

λ

∑
σ

cµicνjcλkcσ`(µν, λσ) (1.18)

Hcore
µν =

〈
φµ

∣∣∣∣∣−
~2

2m
∆1 −

∑
A

ZA

r1A

∣∣∣∣∣ φν

〉
(1.19)
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(µν, λσ) =

〈
φµ(1)φν(1)

∣∣∣∣
1

r12

∣∣∣∣ φλ(2)φσ(2)

〉
(1.20)

Eel =
∑

µ

∑
ν

PµνH
core
µν +

1

2

∑
µ

∑
ν

∑

λ

∑
σ

PµνPλσ

[
(µν, λσ)− 1

2
(µλ, νσ)

]
(1.21)

Pµν = 2

occupied∑
i

cµicνi (1.22)

In the expression for energy (1.21), the Hcore
µν , (µν, λσ) and (µλ, νσ) integrals have a

constant value for a given basis of atomic orbitals (AOs) φ. The electronic energy Eel

is thus only dependent on the density matrix elements Pµν and, hence, on the LCAO-

coefficients cµi (1.22).

Using the variation theorem to minimise the energy Eel with respect to the coeffi-

cients cµi the Roothaan equations are obtained [27]:

∑
ν

FµνCνi = εi

∑
ν

SµνCνi , i = 1, 2, · · · , K (1.23)

The Fock matrix elements Fµν are defined as follows:

Fµν = Hcore
µν +

∑

λ

∑
σ

Pλσ

[
(µν, λσ)− 1

2
(µλ, νσ)

]
(1.24)

and the overlap integrals Sµν are defined as:

Sµν = 〈φµ|φν〉 (1.25)
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The equations above are valid for closed-shell systems, but modified sets for various

combinations of open shells are also known.

At the completion of the SCF calculations, one has K orbitals ψi (which depend

on the coefficients cµi (1.16)), with the lowest n orbitals doubly occupied and the rest of

the orbitals unoccupied. The SCF calculations also provide K orbital energies εi and

the electronic energy Eel.

1.4 Configuration Interaction

The SCF method ignores the instantaneous part of the electron-electron inter-

action (electron correlation). Correlation energies and correlation effects are required

for improvement of the corresponding SCF results. Mathematically this can be done

by configuration mixing, which simply means allowing the wave functions to be a linear

combination of electronic structures (configurations).

The configuration interaction (CI) method is an attempt to determine the correla-

tion energies and correlation effects. The basic idea involved in the CI method is the

diagonalization of the N -electron Hamiltonian in a basis of N -electron functions (Slater

determinants). In other words, it involves a representation of the exact wave function

as a linear combination of N -electron trial functions followed by application of the linear

variational method. Though theoretically the CI method can yield the exact solution of

a many-electron problem, restrictions are imposed due to enormous determinants in-

volved in the calculation process even for small molecules.
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1.5 MRD-CI Method

These restrictions lead to development of various truncated CI methods. The

Multi-Reference-Double-Excitation-Configuration-Interaction (MRD-CI) method devel-

oped by Buenker and Peyerimhoff [28] is found to yield very good results in practice

and the results obtained for the systems discussed in the following chapters confirm

this. The MRD-CI method includes single and double excitations relative not only to the

Hartree-Fock wave function but also relative to other important configurations (which

may themselves be doubly excited with respect to the HF wavefunction). Thus, the

method effectively takes into account higher than double excitations from the HF wave

function.

The MRD-CI method has the following algorithm:

1. All the singly and doubly excited (with respect to the main or leading configurations)

symmetry adapted functions (SAFs) are generated.

2. The CI-secular matrix generated on the basis of the main configuration is diago-

nalised.

3. Since the size of such matrices is of the order of 105 − 107 a selection is made for

each configuration generated, based on the energy lowering caused by each configu-

ration with respect to the lowest-lying root of the CI matrix.

4. The final CI-secular matrix includes only those SAFs which cause an energy lower-

ing greater than a given threshold energy T .

5. The contribution of the unselected SAFs is taken into account by employing an en-

ergy extrapolation technique. A correction is also made for triple or higher excitations

with respect to the main configuration.

The molecular orbitals (MOs) resulting from the SCF calculations are used for
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constructing determinantal trial functions employed in the ensuing CI calculations.

Each configuration is described separately from the others in the restricted Hartree-

Fock (RHF) method. In order to account for the correlation effects, the configuration

interaction (CI) method describes the electronic states for a many-electron system as

a linear combination of determinants Ψ =
∑

i

Φi, where Φi are deteminants that re-

sult from single- and double-excitations of the HF ground state configuration. The

electronic-state wave functions are then determined by variational calculations in the

linear space of the excited determinants. If one considers all the resulting excitations

from the ground state configuration, then it is a Full-CI (FCI) calculation. A FCI calcu-

lation leads to very large eigenvalue problems even for very small molecules. Hence,

it is necessary to select only those excitations that are really important. The Multi-

Reference-Double-Excitation-Cofiguration-Interaction (MRD-CI) method uses the fol-

lowing strategies to choose the important excitations:

1. Use of orthogonal single-determinant state functions causes all configuration in-

teractions between states that differ by more than two excitations to disappear.

Thus, in the following direct CI one can limit oneself to only single and double ex-

citations.

2. In order to take into consideration the interaction of higher excited determinants

with the ground state configuration, those single- and double- excitations that inter-

act most strongly with the ground state or excited state of interest are put together

in a so called “reference space”. From this reference space the final configuration

space is determined once again through single- and double- excitations (substi-

tutions). All these excitations which are generated need not be taken into the
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configuration space, however. Instead all the generated excitations are tested to

determine the lowering in energy caused by them relative to the reference space.

Those excitations that cause an energy lowering greater than a certain limit T are

included in the final CI-space.

3. A correction term is used to consider those excitations that have been ignored.

The correction formula

ET=0 = ET + λ

n∑
i=1

∆Ei

helps in estimating that energy contribution due to the excitations ignored because

the energy lowering ∆Ei caused by them was less than T (λ is a linear extrapola-

tion parameter). The so called Davidson-Correction [29]

∆EDavidson =

(
1−

n∑
i=1

c2
i

)
(ERef − ET=0)

helps estimate the energy contribution due to excitations not considered in the

FCI-method (originating just from a single reference configuration). The ci’s are

the expansion coefficients of the reference configurations and (ERef − ET=0) is

the energy difference for a given root between that for reference space and the

corresponding extrapolated energy.

A word about the choice of basis sets used in the calculations discussed in the follow-

ing chapters also should be given. There are two types of basis functions commonly

employed in quantum chemistry calculations, namely exponential-type functions and

Gaussian-type functions. The exponential-type functions have the form
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Nnrn−1exp(−ζr)Y`m (1.26)

where Nn is a radial normalization factor and Y`m is a (normalized) spherical harmonic.

These functions provide a realistic representation of the wave function in the region of

space close to the nucleus upon which they are centered as well as in the long-range

region. They are not prefered, however, because accurate evaluation of integrals over

such functions is quite difficult in the multicenter case.

The most widely used basis functions are the Gaussian-type functions. They have

the form

Nnr
n−1exp(−ζr2)Y`m (1.27)

where Nn is again a normalization constant and Y`m is a spherical harmonic. The inte-

grals over Gaussian-type basis functions are easily evaluated because of the Gaussian

product theorem which states that the product of two Gaussians on different centres is

itself a Gaussian with a center somewhere on the line joining these centres [30].

1.6 Pseudopotential Theory

The starting point for the pseudopotential theory is the assumption that the na-

ture of the bond is mostly determined by the valence electrons involved in its formation.

This allows for the assumption that the electrons close to the nuclei can be considered

23



as having a constant potential (frozen-core), so that in the quantum mechanical cal-

culations only the valence electrons are treated explicitly. In order to construct these

“frozen-core” potentials, one has to take into consideration the effect of such a core on

the valence electrons. The first effect is the electrostatic repulsion that each electron

has for the other electrons present. The second effect is due to the Pauli principle,

which states that no two electrons can exist in the absolutely identical quantum me-

chanical states. The Pauli principle is satisfied in that only those wave functions are

allowed for the valence electrons that are orthogonal to those of the core electrons.

1.7 Pseudopotentials in Molecular Calculations

The concept of a frozen core leads to division of the electrons in a molecule into

two types. One type is that comprising the valence electrons of all the atoms involved,

and the second group is that comprised of the core electrons. The valence electrons

can be treated by the usual electronic calculations. The core electrons allow for the

following approximations:

1. The core electron charge distribution of different atoms do not overlap with each

other. This results in elimination of exchange integrals between their state func-

tions on various nuclei.

2. The Coulomb-interaction between core electrons of different nuclei can be consid-

ered as point potentials concentrated only on the corresponding atoms.

∫
ψa(τ1)

∗ψa(τ1)ψb(τ2)
∗ψb(τ2)

(r1 − r2)
dτ1dτ2 =

e1e2

|RA −RB| =
1

|RA −RB|

The effect of the core electrons on the nucleus-nucleus interaction is therefore that

of a shielding effect,
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ZAZB

RAB

→ (ZA −NA)(ZB −NB)

RAB

.

Using these assumptions, the Hamilton operator for a molecule consisting of M atoms

with N valence electrons and
M∑

A=1

NA core electrons can be written as:

Ĥ = −
N∑

i=1

1

2
∇2

i −
N∑

i=1

M∑
A=1

ZA

r −RA

+
M∑

A=1

ÛA

+
N∑

i>j

1

rij

+
M∑

A=1

ĤA +
∑
A<B

(ZA −NA)(ZB −NB)

RAB

(1.28)

This is the usual HF-Hamiltonian with additional terms:

1.
M∑

A=1

ÛA

where

ÛA = ULA+1(r −RA)

+
L∑

`=0

∑̀

m=−`

|`AmA〉(U`A
(r −RA)− ULA+1(r −RA))〈`AmA| (1.29)

L is generally taken to be one greater than the largest ` quantum number among

the core electrons. The operator ÛA is the sum over all the projections of the pseu-

dopotentials of the core electrons of all the M atoms.

2.
M∑

A=1

ĤA
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where

ĤA = −
NA∑
i=1

1

2
∇2

i −
NA∑
i=1

ZA

ri −RB

+

NA∑
i>j

1

rij

This is the sum over all the constant HF-energies of the core electrons of all the

nuclei.

3.
∑
A<B

(ZA −NA)(ZB −NB)

RAB

is the sum over the shielding effect of the core electrons on the nuclei. It is a

measure of the lowered nucleus-nucleus repulsion.

The additional terms 2 and 3 contribute a constant value to the Hamilton operator. The

term 1 leads to additional one-electron integrals. The pseudopotentials U`A
(r−RA) are

a sum over radial Gaussian functions. Hence, for the basis functions ψA and ψB the

following new integrals are obatined:

χAB =

∫ ∞

−∞
ψA(τ)(r −RC)n−2exp(−η(r −RC)2)ψB(τ)dτ (1.30)

and

γ`
AB =

∑̀

m=−`

∫ ∞

0

(r −RC)nexp(−η(r −RC)2)

∫ 2π

0

∫ π

0

ψA(θC , ϕC)Y`m(θ, ϕ)dθdϕdτ

×
∫ 2π

0

∫ π

0

ψB(θC , ϕC)Y`m(θ, ϕ)dθdϕ . (1.31)

The basis functions are localised on nucleus A and nucleus B, respectively. The algo-

rithm for the explicit calculations of integrals (in the case that ψA and ψB are Cartesian

Gaussian functions) can be found in reference [31].
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1.8 Relativistic Effects

The following reasons can be given for considering relativistic effects in quantum

chemistry:

1. The velocities of the electrons close to the nuclues lie in the range ≈ Z

137
c (SI

units), and therefore we can expect that relativistic effects are quite important in

the chemical behaviour of heavy atoms.

2. The relativistic treatment of electrons allows that the electron spin can be ac-

counted for without assuming the Pauli approximation. It also provides for a quali-

tatively better description of electron properties such as spin, shape of the orbitals,

and existence of states with negative energies (Positrons).

The most important effects on the chemical properties are:

1. Due to the dependence of relativstic mass on velocity, the mass of the electrons

close to the nucleus increases. This leads to orbital contraction and stabilisation

of s− and p− orbitals.

2. An indirect effect of the s− and p− orbital contraction is the increased shielding

which leads to expansion and destabilisation of d− and f− orbitals.

3. The relativistic treatment of an electron in a hydrogen atom type system leads

directly to a coupling term between spin and orbital angular momentum. This

spin-orbit splitting is ∝ Z4 and leads, especially in the case of heavy atoms, to

destabilisation of all orbitals with ` > 0.
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1.9 Spectroscopic Properties using the CI Wave Functions

In order to calculate the spectroscopic properties of a molecule it is necessary to

solve the Schrödinger equation for the nuclei. The nuclear Schrödinger equation can

be written as follows for a diatomic molecule:

− 1

2µ

∂2

∂R2
RΨ(Q) +

1

2µR2
Ĵ2Ψ(Q) + V (R)Ψ(Q) = EΨ(Q) (1.32)

where Q(R, ϕ, θ) are the internal coordinates of the nuclei, and the square of the angu-

lar momentum operator (Ĵ2) is:

Ĵ2 = −
(

1

sin2θ

∂2

∂ϕ2
+

1

sinθ

∂

∂θ
sinθ

∂

∂θ

)
(1.33)

In the above equations, µ is the reduced mass, V (R) is the potential energy of the elec-

trons (obtained from the MRD-CI calculations), Ψ(Q) is the vibrational wave function,

and E is the corresponding energy eigenvalue.

Equation (1.32) is a simple second order differential equation which may be

solved using the Numerov-Cooley methods [32,33] for a given analytical potential func-

tion. The vibrational levels which are the eigenvalue of eq. (1.32) can be written as:

Ev = Te + ωe(v +
1

2
)− ωexe(v +

1

2
)
2

+ · · ·+ EJ , (1.34)

and the rotational levels can be written as:

EJ = Bv[J(J + 1)]−Dv[J(J + 1)]2. (1.35)
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The energy difference of two neighbouring vibrational levels is:

Ev+1 − Ev = ωe − 2(v + 1)ωexe , (1.36)

and that between two neighbouring rotational levels is:

EJ+1 − EJ = 2(J + 1)Bv − 4(J + 1)3Dv . (1.37)

One can determine the vibrational frequency ωe, the anharmonicity constant ωexe, and

the rotational constant Bv with the help of the above equations.

The lifetime (τn) of a non-degenerate electronic state is inversely proportional to

the Einstein coefficient for spontaneous emission. Thus, for a transition n → m:

τn =
∑

Em<En

1

Anm

(1.38)

The Einstein coefficient mentioned above relates to the transition moment according to

the following equation:

Anm = 2.026× 10−6 ∆Ē3
nm |〈Ψn|~r|Ψm〉|2 (1.39)

According to the Born-Oppenheimer approximation the complete wave function can be

written as a product of the electronic and nuclear wavefunction

Φ(R, q) = Ψ(R)ψ(q). (1.40)
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This helps in establishing following relationship between the Einstein coefficient and

the electronic transition moment µelc
nm = 〈ψn(q)|~r|ψm(q)〉 R :

Anm = 2.026× 10−6 ∆Ē3
nm

∣∣〈Ψn(R)|µelc
nm(R)|Ψm(R)〉

∣∣2 , (1.41)

where ∆Ē is in the units of cm−1 and µ is in the units of ea0 [15]. The n×m integrals

〈Ψn(R)|µelc
nm(R)|Ψm(R)〉

can be determined numerically.
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Chapter 2

Tellurium Fluoride (TeF)

The theoretical methods described in Chapter 1 have been used extensively to

study the electronic states and transitions of the lightest tellurium monohalide, namely,

tellurium fluoride (TeF). Details of the calculations, results obtained and their compar-

ison with available experimental data, as well as predictions and conclusions derived

therefrom are presented in the present Chapter.

2.1 Details of the Theoretical Treatment

The 16-electron core potential as reported by La John et. al [34] has been em-

ployed to describe the inner shells of the Te atom. The original (3s3p4d) atomic orbital

(AO) basis set given in ref. [34] was used to treat explicitly the 4d, 5s, and 5p valence

electrons with the (4d)/[1d] contraction applied. It was further augmented by one d and

two f polarization functions with optimized exponents of 0.46, 3.4 and 1.1 a−2
0 , respec-

tively. Two diffuse exponents, s (0.021 a−2
0 ) and p (0.016 a−2

0 ) were also added, resulting

in a (4s4p5d2f )/[4s4p2d2f ] basis set for the Te atom. A core-potential was used to de-

scribe the 1s electrons of the fluorine atom [35]. The AO basis of (4s4p) type from ref.
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[35] was used in uncontracted form and was augmented by single d and f polarization

functions with optimized Gaussian exponents of 0.7 and 1.5 a−2
0 , respectively.

The starting point for the present studies, SCF calculations, were performed for

the neutral molecule in its first excited state 4Σ− (σ2π4π∗2σ∗), for the ground state 2Π

(σ2π4π∗3), and for the corresponding cation in the 3Σ− (σ2π4π∗2) state. The latter two

electronic configurations result in the breaking of the px,y symmetry and thus creating

some SCF convergence problems for certain internuclear distances. However, such

problems did not exist for the 4Σ− SCF and therefore, these MO’s were conveninetly

chosen for final investigations.

The SCF calculations provide the symmetry adapted molecular orbitals for the

construction of configurations to be used in the CI calculations. Details of the MRD-CI

treatment of TeF, without the spin-orbit (SO) interaction, are given in Table 2.1 for the

equlibrium bond length of 3.65a0 for the ground state. The calculations were performed

in formal C2v symmetry, but the one-electron basis, which is employed to construct

the various configurations, transforms according to the irreducible representations of

the linear C∞v point group. The configuration selection threshold was selected at T =

2.0× 10−6 Eh. Typically 6− 8 roots of each C2v irreducible representation are obtained

for the doublet states. For the quartet states a lesser number of roots, 2 − 5, were

calculated. The number of roots calculated are more than actually required. This was

done to ensure as complete a description of the states of interest as possible. The

leading electronic configurations for the lowest roots of each symmetry are also listed

in Table 2.1 in terms of the linear MO notation. The generated configuration spaces are

of the order (12− 13)× 106 symmetry adapted functions (SAFs) amd result from 110−
170 reference configurations. At the selection threshold chosen, the number of SAFs

included in the final secular equations falls uniformly in the range of 50 000−60 000. For
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the 4A1 symmetry somewhat smaller numbers are obtained, but only two states have

been treated in this irreducible representation and they are satisfactorily described.

A standard perturbative procedure [28], has been used to estimate the total CI

energy eigenvalues at the unselected (T = 0) level of treatment. In addition, the mul-

tireference Davidson correction [29,36] is used to estimate the energy of each state

at the full CI level of treatment, i.e., by taking into account the effects of higher than

double excitations with respect to the reference configurations. The
∑

c2
i

1 values for

the reference configurations (Table 2.1) are seen to fall in the range of 0.92−0.94. Such

high values are achieved due to the fact that the tellurium 4d-type MOs are treated as

a frozen core in the CI treatment and only 13 electrons are available for the excitation

process. The present theoretical work aims at providing the best possible description

of the low-lying states of the TeF radical and hence placing the tellurium 4d-electrons

in the CI core was considered acceptable. A series of calculations were carried out for

the internuclear distance range of 3.0−10.0a0, with varying increments of 0.05−0.25a0,

depending on the region of interest.

The variational wave functions themselves are used to compute properties such

as electric dipole and also radiative lifetimes. These functions are also employed in the

second step of the LSC-SO-CI procedure [37] to form a matrix representation of the full

relativistic Hamiltonian including SO-coupling. Since TeF has an odd number of elec-

trons , each spatial symmetry contributes to the spin-mixed wave functions (Ω-states).

There are two degenerate sets [38], with one Ms function included for each doublet

and two for each quartet Λ − S eigenfunction. Both sets of degenerate functions are

required to obtain quantities such as the perpendicular (x, y) transition moments. All

Ω values (1/2, 3/2, 5/2, and 7/2) result from each of the secular problems and thus
1
P

c2i is the total contribution of the reference configurations in the final wave function.
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Table 2.1: Technical details of the MRD-CI calculations of TeF.a

C2v Nref/Nroot SAFTOT/SAFSEL C∞v Leading conf. Σc2
i

2B1,2 164/8 13969769/61565 12Π σ2π4π∗3 0.940
22Π σ2π4π∗σ∗2 0.934
32Π σ2π3π∗4 0.920
42Π σ2π4π∗2π∗∗ 0.929
12Φ σ2π4π∗2π∗∗ 0.929
52Π σ2π4π∗2π∗∗ 0.929

2A1 174/8 12726534/48992 12∆ σ2π4π∗2σ∗ 0.940
12Σ+ σ2π4π∗2σ∗ 0.943
22Σ+ σπ4π∗4 0.934
22∆ σ2π4π∗2σ∗∗ 0.939
32Σ+ σ2π4π∗2σ∗∗ 0.929

2A2 129/6 13553228/56831 12Σ− σ2π4π∗2σ∗ 0.939
12∆ σ2π4π∗2σ∗ 0.941
22Σ− σ2π4π∗2σ∗∗ 0.939
22∆ σ2π4π∗2σ∗∗ 0.939
32Σ− σ2π4π∗2σ∗∗∗ 0.936

4B1,2 131/4 12682493/50972 14Π σ2π4π∗2π∗∗ 0.928
24Π σπ4π∗3σ∗ 0.922

4A1 73/2 7374825/15966 14∆ σ2π3π∗3σ∗ 0.918
14Σ+ σ2π3π∗3σ∗ 0.918

4A2 110/5 13129232/53304 14Σ− σ2π4π∗2σ∗ 0.940
24Σ− σ2π4π∗2σ∗∗ 0.928
34Σ− σ2π4π∗2σ∗∗∗ 0.928
14∆ σ2π3π∗3σ∗ 0.924

a The number of selected SAFs and the Σc2
i values over reference configurations are given for r =

3.65 a0. SAFTOT designates the total number of generated, SAFSEL the number of selected SAFs,
Nref and Nroot refer to the number of reference configurations and roots treated, respectively.
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it is necessary to examine the coefficients of the eigenvectors to assign them to defi-

nite symmetries. This procedure has the disadvantage of delivering eigenfunctions of

mixed symmetry. However, in the present study this was not a major problem as the

attention was focused mainly on the low-lying states which are seen to be energetically

well separated except near the dissociation limit.

The final spin-mixed functions are then combined with the Λ − S transition mo-

ments to obtain the corresponding Ω-state electronic transition moments at each r

value. The Numerov-Cooley numerical integration procedure [32,33] was employed to

solve the nuclear Schrödinger equations in order to obtain the corresponding vibra-

tional energies and wave functions.

2.2 Potential Curves

Fig. 2.1 shows the computed potential curves for all the 23 Λ − S states corre-

sponding to the three lowest dissociation limits,namely Te(3P )+F(2P o), Te(1D)+F(2P o),

and Te(1S)+F(2P o). The symmetry of the ground state was found to be 2Π(σ2π4π∗3) as

predicted experimentally. The first excited state is the A4Σ− state generated from the

π∗ → σ∗ electronic transition. The electronic configuration of this state is σ2π4π∗2σ∗.

This result is analogous to the case of oxygen monohalides [39-51] and does not

agree with the suggested experimental assignment as 2Π [7]. The cause for the mis-

assignment by experimentalists could be that in OX radicals the observed transition is

a 22Π ← X2Π transition, the first excited state 4Σ− being repulsive. Moreover, both 2Π

and 4Σ− undergo SO interactions to produce 1/2 and 3/2 Ω states, which could also

have been the cause for confusion. The σ∗ MO, occupied in the A 4Σ− state, is local-

ized mostly on the Te-atom in the FC region of the ground state and thus is only weakly
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antibonding, in sharp contrast to what is found in the case of IO [14], for which the

electronegativity difference between the constituent atoms is much less. The equilib-

rium bond length of A 4Σ− is slightly larger than that of the ground state. This increase

is only about half as great in TeF as in IO [14]. The 2 2Π excited state actually has a

smaller re value than X2Π (Fig. 2.1), but it corresponds to a Rydberg π∗ → 6pπ state

near its potential minimum and lies about 6.5 eV higher in energy than the X 2Π. Its

potential curve is cut by several other 2Π states near this minimum. Hence, experi-

mental observation of this state should be difficult. Besides the 2 2Π mentioned above,

the 2 4Σ− and 2 2Σ− states also have a potential minimum at ≈ 3.5 a0 and correspond

to Rydberg states. The 2 4Σ− occupies the Rydberg 5s orbital and thus has a similar

potential curve to the of X 3Σ− for TeF+. They do not dissociate directly to the first

dissociation limit and their potential curves are eventually crossed by repulsive states

of similar symmetry.

The second excited state is computed to be a 2Σ−. It is generated by the same

electronic transition (π∗ → σ∗) as the A 4Σ− state. The B 2Σ− state is even more weakly

bound because it dissociates to the first atomic limit (Fig. 2.1). The 2∆ state generated

by the same electronic transition mentioned above, referred to as the C 2∆ state, lies

above the B state. The corresponding 2Σ+ lies slightly above the Te(3P ) asymptote. All

other quartet states that go on to this limit are computed to have repulsive potentials.

These include two 4Π, a 4∆, and a 4Σ+ as well as the 2 4Σ− state mentioned above.

The 23 Λ− S states dissociating to the first three atomic limits (Fig. 2.1) undergo

SO-coupling to generate a total of 45 Ω states. Calculations have been performed for

the first 27 Ω states dissociating to the first limit, namely, Te(3P )+F(2P o). Fig. 2.2 shows

the computed potential curves converging to the first limit of Te(3P2)+F(2P o
3/2). In the

present study we will concentrate on the lowest five states which have been studied
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Figure 2.1: Computed potential energy curves for the low-lying Λ − S states of TeF obtained without

inclusion of spin-orbit interaction.
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Table 2.2: Calculated (this work) and experimental spectroscopic properties of 130TeF (transition energy

Te, bond length re, and vibrational frequency ωe).

Te/cm−1 re/Å ωe/cm−1

State calc. exp. calc. exp. calc. exp.

X1
2Π3/2 0 0 1.929 1.90675 [12] 605 616.3 [12]

X2
2Π1/2 4382 4183 [11] 1.924 1.90155 [12] 612 624.3 [12]

A1
4Σ−

1/2 12164 13262 [12] 2.094 2.08876 [12]a 428 432.0 [12]

A2
4Σ−

3/2 13054 14160 [12] 2.087 2.07870 [12] 434 435.8 [12]

B2Σ−
1/2 23189 21579 [12] 2.178 - 321 384.5 [12]

C1
2∆5/2 24816 22992 [52] 2.167 - 342 403 [52]

C2
2∆3/2 24964 23036 [52] 2.127 - 378 408 [52]

a An r0 value.

experimentally [7,8,10-12]. The computed dissociation energy is 25480 cm−1 (3.16 eV ),

as compared to 25740 cm−1 at the Λ− S level, and corresponds to the results obtained

for calculations at an internuclear distance of 10.0 a0. The corresponding LSC-SO-CI

value for IO at a similar level of treatment is 9500cm−1 [14] lower. This is consistent with

the fact that the π∗ MO is less antibonding in TeF, being mostly concentrated on the Te

atom, and the molecular bonding is notably more ionic in this case. There is, however,

no experimental result available for comparison. A few states converging to the second

limit Te(3P2)+F(2P o
1/2) are also included in Fig. 2.2. Most of the 27 Ω states calculated

are repulsive and have not been included in Fig. 2.2. The computed spectroscopic

constants, along with the available experimental data are listed in Table 2.2.

The X 2Π ground state splits as a result of SO coupling into 1/2 and 3/2 Ω states,
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Figure 2.2: Computed potential energy curves for the low-lying Ω states of TeF: ◦-Ω = 1/2 states;

•-Ω = 3/2 states; ×-Ω = 5/2 states; and ∗-Ω = 7/2 state.
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with the 3/2 component lying lower in energy. The re value of the X1
2Π3/2 ground state

is overestimated by ≈ 0.02Å at the present level of treatment. The computed ωe fre-

quency is 11 cm−1 (≈ 2 %) too small (Table 2.2), consistent with the bond length result.

The computed SO splitting is 4382 cm−1 and is about 199 cm−1 higher than the experi-

mentally measured value [12]. The overestimation of this quantity is in agreement with

the fact that the π∗ open-shell MO has predominantly tellurium character. This is to be

expected from the fact that the fluorine atom is much more electronegative. The IO

ground state splitting is considerably lower (2091 cm−1), even though the correspond-

ing spin-orbit matrix element for the heavy atom in this molecule, iodine, is notably

larger than that for tellurium, 2534 vs 2136 cm−1. This is again a clear indication of the

composition of the π∗ MO in IO, specifically that it has a fairly large amount of oxygen

character because of the much smaller electronegativity difference in this system as

compared to TeF. The re value of the X2
2Π1/2 state is 0.0055 Å shorter than that of

the X1
2Π3/2. This shortening of bond length is in almost perfect agreement with that

observed experimentally.

The first excited state, 4Σ−, shows a much smaller SO splitting. The Ω =1/2 com-

ponent is lower in energy than the corresponding 3/2 component, despite the fact that

it is repelled more by the X2
2Π1/2 component than the other by X1. This can be ex-

plained by the presence of the B 2Σ− state, which lies only 7000 cm−1 above the A 4Σ−

and counteracts the upward repulsion due to the X2 state. For the A2
4Σ−

3/2 state there

is no such counteracting repulsion relative to the X1 state. The A1 and A2 states cross

each other at r = 4.6 a0, at which point the X2 state lies much closer than the B state,

resulting in a net upward repulsion of the A1 state. The A 4Σ− bond lengths determined

experimentally are ≈ 0.16Å larger than those for X1 and X2 states, which result is in

very good agreement with the present calculations (Table 2.2). This difference is much

smaller than for IO. The A1 − A2 splitting is computed to be 890 cm−1and agrees well
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with the experimental value of 897 cm−1 [12]. The emission spectra for transitions from

the A 4Σ− components are expected to contain shorter progressions than in IO be-

cause of the smaller A−X re difference. There should also be more bound vibrational

levels from which emission can occur, although this distinction is somewhat offset by

the lower ωe value of the IO A state [14]. These frequencies have been calculated for

TeF and the values are in good agreement with those measured experimentally (Table

2.2). The Te values of the A 4Σ− states are underestimated by about ∼ 1100 cm−1 in

the present work.

The B 2Σ−
1/2 state shows a potential maximum at r ≈ 5.8 a0. We know that there

are four Ω =1/2 states converging to the Te(3P2) atomic limit, and the highest one

comes from the 2Σ+ state, which is repulsive at large distances. The B 2Σ− state has a

deeper minimum but it also appears to have a repulsive limb starting much farther out

than 2Σ+, although the effect could also be due to deficiencies in the present theoreti-

cal treatment. The B state has been observed experimentally [7-9,12]. The computed

Te value is about 1600 cm−1 higher than that measured (Table 2.2). This is probably an

indication that the higher-lying Ω =1/2 states which tend to interact with the B state are

not very well described. This presumption is supported by the fact that the error in the

computed ωe value for the B state is greater than for the X and A Ω components. The

longer re value is consistent with the fact that its potential well is shallower than for the

A states. No experimental results are available for comparison of the re value.

Above the B state lie the two bound Ω components of the C 2∆ state, namely

C1
2∆5/2 and C2

2∆3/2, with a quite small SO splitting between them. The computed Te

values for the C states are about 1824 cm−1 higher than that measured during recent

experiments [52]. Due to the small SO splitting the assignment as the 3/2 and 5/2 Ω

states should be considered as tentative. Both components show an avoided crossing
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with the higher-lying repulsive states of similar Ω symmetry. The maxima at r ≈ 5.0 a0

also support this conclusion. Though the C1 and C2 states are shallow, their poten-

tial wells nonetheless support quite a few vibrational levels and, hence, their discrete

spectra should be experimentally observable. The computed spectroscopic constants

for these states are also listed in Table 2.2. The 1 2Σ+ state lying above the C states

has a potential minimum at ≈ 4.15 a0. It has a very shallow potential well and supports

a single vibrational level.

2.3 Transition Moments and Radiative Lifetimes

In order to calculate the transition moment between the various Ω states, it is

necessary to know their composition in terms of Λ − S eigenfunctions. The c2 per-

centage contributions of the various Λ − S states in the eight lowest Ω states of TeF

are listed in Table 2.3 for various internuclear distances. The calculation of transition

moments also requires the electric dipole and transition moments between the various

Λ− S eigenfunctions. From Table 2.3 it is clear that in the Franck-Condon (FC) region

of the ground state, there is very little mixing and the states are predominantly Λ − S

in character. The A1
4Σ−

1/2 state is, however, seen to have a 3.4 − 4.0 % admixture of

the 2Σ+ state in the FC region of the ground state. There is a gradual increase in X 2Π

character, being 3.0 % at r = 3.95 a0 ≈ re (A1), 9.7 % at r = 5.0 a0, and 29.3 % at

r = 6.25 a0. The A2 wavefunctions also show a gradual increase in X 2Π character, but

mixing with other Λ−S states at r ≤ 5.0a0 does not occur. The B 2Σ−
1/2 state mixes over

the whole internuclear distance range rather strongly with 2Σ+. At longer bond lengths

it also mixes with the X 2Π and from r = 6.25 a0 onwards the SO mixing is quite strong.

The C1
2∆5/2 exhibits almost pure 2∆ Λ−S character in the FC region. From r = 5.0 a0

the SO mixing becomes obvious in this state. The C2
2∆3/2 mixes to a small extent with
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the 2Π Λ−S states throughout the FC region. From r = 5.0 a0 onwards it shows strong

mixing with various Λ − S states. The 12Σ+ state is predominantly 4Σ− in character

at very short internuclear distances. In the FC region of the ground state, however, it

has mostly 2Σ+ character with small admixtures of the 2Σ− and 4Σ− Λ − S states. For

r ≥ 5.0 a0 this state exhibits the strongest SO mixing of all the states discussed here.

In the present system it is found that the perpendicular transitions are more in-

tense than the parallel (∆Ω = 0) ones, which is the oppposite of the usual situation

for the diatomic molecules. This behaviour can be very simply explained from the fact

that there are only two allowed Λ − S transitions among the low-lying states, namely,

B 2Σ− − X 2Π and C 2∆ − X 2Π, and they are both perpendicular. The 12Σ+ − X 2Π,

which also plays a small role, is also perpendicular. The parallel (µz) low-lying transi-

tions are quite weak and arise mainly from the dipole moment values that come into

play because both upper and lower Ω states involved have contributions from the same

Λ − S state. The computed parallel and perpendicular transition moments are shown

in Figs. 2.3 and 2.4, respectively.

The parallel transition moments for TeF are quite small at short internuclear dis-

tances because the Ω states are of almost pure Λ − S character and even dipole mo-

ment contributions are negligible. As the SO mixing starts becoming significant, it is

mostly the dipole moment difference between the states involved that determine the

magnitude of the parallel transition moments. For example, the X 2Π and A 4Σ− dipole

moments values are 1.09 and 1.13 ea0 at r = 3.65 a0, 1.35 and 1.49 ea0 at r = 3.95 a0,

and 1.45 and 1.65 ea0 at r = 4.10 a0. Hence, parallel transition moments in the FC

region of the ground state are quite small (Fig. 2.3). As the internuclear distance

increases (r ≥ 5.0 a0), the two values change in the opposite direction and their differ-

ence increases. At the same time, the mixing between the corresponding Λ− S states
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Table 2.3: Composition of the eight lowest Ω states of TeF (c2, %) at various bond distances r. Entries
are only made for contributions with c2 ≥ 1.0 %.

State r/a0 X2Π B2Σ− 12Σ+ 12∆ A4Σ− 14Σ+ 14Π 14∆

X1
2Π3/2 3.00 98.0

3.65a 96.8 2.5
3.95 94.2 1.0 4.6
4.00 93.8 1.0 5.0
4.10 92.5 1.2 6.1
4.15 91.7 1.3 6.9
5.00 70.5 1.6 27.0
6.25 55.2 1.6b 38.5

X2
2Π1/2 3.00 98.0

3.65a 98.2 1.3
3.95 96.0 3.4
4.00 95.3 4.0
4.10 93.4 6.0
4.15 92.0 7.6
5.00 10.0 1.5 85.3
6.25 1.4 2.9 3.7b 74.0 12.9b

A1
4Σ−1/2 3.00 2.9 96.0

3.65 1.0 3.5 95.0
3.95a 3.0 3.7 92.6
4.00 3.6 3.8 92.0
4.10 5.4 4.0 90.0
4.15 7.0 4.2 89.0
5.00 84.0 3.0 2.7b 9.1
6.25 29.3 50.0 2.5 1.5 14.4

A2
4Σ−3/2 3.00 99.0

3.65 2.4 97.1
3.95a 4.5 94.8
4.00 5.0 94.8
4.10 6.0 94.0
4.15 6.8 93.1
5.00 25.4 70.4
6.25 24.6 3.4 30.5 5.7 32.7

Continued · · ·
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Table 2.3:Composition of the eight lowest Ω states of TeF (c2, %) at various bond distances r. Entries
are only made for contributions with c2 ≥ 1.0 %.

State r/a0 X2Π B2Σ− 12Σ+ 12∆ A4Σ− 14Σ+ 14Π 14∆

B2Σ−1/2 3.00 92.2 6.3
3.65 91.1 7.6
3.95 91.0 7.4
4.00 90.8 7.5
4.10a 90.7 7.4
4.15 90.5 7.6
5.00 2.9 82.8 7.8
6.25 3.2b 31.8 31.3 15.1 14.3

C1
2∆5/2 3.00 99.6

3.65 99.5
3.95 98.7
4.00 99.2
4.10a 98.8
4.15 98.2
5.00 73.6 21.1 3.8
6.25 43.0b 46.3 7.2

C2
2∆3/2 3.00 99.4

3.65 1.3b 98.4
3.95 1.3b 97.9
4.00a 2.4b 97.2
4.10 2.7b 97.0
4.15 2.3b 97.0
5.00 13.1b 70.7 3.3b 6.1 4.9
6.25 30.5b 17.3 29.6b 20.4

12Σ+
1/2 3.00 3.0b 5.0b 91.4b

3.65 8.3 87.7 2.7
3.95 1.5b 8.0 87.0 2.7
4.00 1.6b 8.2 86.6 2.8
4.10 1.9b 8.1 86.1 2.8
4.15a 2.0b 8.2 85.5 2.8
5.00 3.5b 20.7b 38.0b 9.8b 25.0b

6.25 31.2b 9.3 10.6 15.3b 16.2 10.1b

a An approximate equilibrium distance for this state.
b Contributions from the higher-lying roots of this symmetry are included.
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Table 2.4: Partial and total radiative lifetimes (in s) for transitions from the v ′ = 0 level of the TeF excited
states to the X1

2Π3/2 (τ1) and X2
2Π1/2 (τ2) states.

State τ1 τ2

τtot

τ⊥ τ‖ τ

X2
2Π1/2 8.2 (-3)a 8.2 (-3)

A1
4Σ−

1/2 7.2 (-3) 91.4 (-3) 2.5 (-3) 2.4 (-3) 1.8 (-3)

A2
4Σ−

3/2 217 (-6) 63.7 (-3) 216 (-6)

B2Σ−
1/2 9.5 (-6) 36.1 (-6) 149 (-6) 29.1 (-6) 7.2 (-6)

C1
2∆5/2 14.5 (-6) 14.5 (-6)

C2
2∆3/2 18.6 (-3) 24.5 (-6) 24.5 (-6)

a Numbers in parentheses indicate powers of ten.

increases (Table 2.3) and the parallel transition moments increase sharply (Fig. 2.3)

for both Ω =1/2 and 3/2 A − X transitions. The B − X2 transition is quite weak as

expected from the composition of these states (Table 2.3). These two states have no

common Λ−S components other than contributions from 2Σ+ and 4Σ− states at larger

r values. The C2 − X1 and X2 − 12Σ+ prallel transitions are also quite weak for the

same reason. Since all these states dissociate to the same atomic limit, the transition

moments connecting them fall off to zero at the dissociation limit.

The partial and total radiative lifetimes for the v′ = 0 levels of the various excited

states of TeF discussed in the present work are given in Table 2.4. The X2 − X1 fine

structure transition is very weak, as is obvious from Fig. 2.4. The computed lifetime is

8.3 ms. The A1 −X1 transition is of comparable strength, whereas the parallel A1 −X2
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Figure 2.3: Computed electric dipole moments for parallel transitions from the A1
4Σ−1/2, A2

4Σ−3/2, and

B 2Σ−1/2 states to the X1
2Π3/2 and X2

2Π1/2 states of TeF.
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Figure 2.4: Computed electric dipole moments for perpendicular transitions from the X2
2Π1/2, A1

4Σ−1/2,

A2
4Σ−3/2, B 2Σ−1/2, C1

2∆5/2, and C2
2∆3/2 states to the X1 and X2 states of TeF.
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Table 2.5: Calculated partial (τ⊥, τ‖, τ ) and total (τtot) radiative lifetimes (in µs) for the B → X1, X2

transitions from the v ′ = 0− 5 vibrational levels of the upper state.

v ′ B → X1 B → X2 B → X1, X2

τ⊥ τ⊥ τ‖ τ τtot

0 9.5 36.1 149 29.1 7.2

1 9.1 32.7 134 26.3 6.8

2 8.7 30.1 113 23.8 6.4

3 8.3 27.9 108 22.2 6.0

4 7.9 26.0 113 21.1 5.7

5 7.5 24.2 117 20.1 5.5

transition has a lifetime about 3 times shorter, resulting in a total lifetime of 1.8ms for the

A1 state. The A2 lifetime is much shorter than that of the A1 state. Its measured lifetime

is 44 µs [12]. The present calculations show that the A2 − X1 partial lifetime is 217 µs

which is still about 5 times longer than that reported experimentally. The disagree-

ment could be due to the problematics arising in calculations of such small transition

moments, but it may also be due to experimental difficulties in measuring such weak

transition.

The strongest low-energy transition in the present study of TeF is calculated to

be B − X1. Both the X1 and X2 states are accessible for the B state via ∆Ω = ±1

transitions. Though most of the computed perpendicular transition moment values are

quite small (≤ 0.04ea0), the values corresponding to the B−X transitions are relatively

large. The composition of the B and X wave functions (Table 2.3) shows that the

allowed B 2Σ− − X 2Π transition at the Λ − S level is responsible for the computed Ω
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transition moments. The transition moments drop fairly quickly towards the dissociation

limit. To explain this, it is to be noted that in this region the leading configuration for

X 2Π changes from σ2π4π∗3 to σπ4π∗3σ∗. The latter configuration corresponds to neutral

atoms, which means that the charge distribution is very compact and hence there is

little possibility of overlap. In the FC region the charge is more delocalized and the

transition moment values increase rapidly. Such rapid changes cause strong variations

in the radiative lifetimes with vibrational quantum number. This can be seen from the

values listed in Table 2.5. There is a decrease of 21 % in lifetime from v′ = 0 to 5

for the B → X1 transition and 33 % for the B → X2 transition. The computed partial

radiative lifetime is 9.5 µs for the B → X1 transition, but no experimental result is as

yet available for comparison. The B → X2 transition moment has both a parallel and

a perpendicular component, with the parallel transitions about 4− 5 times longer lived

than their perpendicular counterparts (Table 2.4). The partial lifetime of the B − X2

transition is about four times longer than that of B − X1 (Table 2.4). Both B → X

transitions have the same Λ− S origin, the difference in their lifetimes is mainly due to

the ∆Ē3 [see equation (1.41)] factor involved in the lifetime calculation. The measured

B −X2 transition would include both parallel and perpendicular transitions and should

have a radiative lifetime of 29.1µs according to the present calculations. This value has

been obtained by adding the two Einstein coefficients and then taking the reciprocal.

The total lifetime of the B state also includes a contritbution from the B−X1 transition.

Calculating similarly, the value obtained as the total radiative lifetime of the B state is

7.2µs. Meanwhile new experimental studies have been carried out on TeF [52] and the

radiative lifetime of the B state has been observed to be 8.5 ± 0.5 µs, which is in very

good agreement with the value obtained from the theoretical computations.

The calculated partial radiative lifetimes for transitions from the C1 and C2 states

are also listed in Table 2.4. The corresponding perpendicular transitions are of compa-
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Table 2.6: Partial and total radiative lifetimes (in s) for transitions from the v ′ = 0 level of the TeF C1,2

states to the X1,2 states at various internuclear distances.

r/a0 C1 → X1 C2 → X1 C2 → X2

τ⊥ τ‖ τtot

3.85 5.3 (-6)a 234 (-6) 395 (-3) 234 (-6) 99.6 (-6)

3.95 11.1 (-6) 25 (-6) 27.7 (-3) 24.9 (-6) 21.4 (-6)

4.00b 9.5 (-6) 1.28 (-3) 11.9 (-3) 1.28 (-3) 18.8 (-6)

4.05 12.9 (-6) 178 (-6) 13.5 (-3) 175 (-6) 25.5 (-6)

4.10c 15.2 (-6) 467 (-6) 714 (-6) 282 (-6) 31.8 (-6)

4.15 26.9 (-6) 66 (-6) 228 (-6) 51.1 (-6) 51.5 (-6)

4.25 37.9 (-3) 116 (-6) 324 (-6) 85.3 (-6) 85.9 (-6)

a Numbers in parantheses indicate powers of ten.
b approximate re for C2 state.
c approximate re for C1 state.
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rable strength to those from the B state. The calculated Ω transition moments are also

shown in Fig. 2.4 and it is clear that the values are relatively large though smaller than

that for the B−X transitions. There is a change of sign in the transition moment at the

approximate re value for the upper C2 state in the case of the C2 − X1 perpendicular

transition (Fig. 2.4). The swift change in the transition moment values for this process

results in a change of radiative lifetime values with internuclear distance (Table 2.6).

Recent experiments carried out on TeF report the radiative lifetimes of the C1 and C2

states to be 7 ± 1 µs [52]. The lifetime for the C states measured is shorter than that

for the B state, whereas the calculated lifetimes have the opposite trend.
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Chapter 3

Tellurium Chloride (TeCl)

This chapter describes a series of ab initio spin-orbit configuration interaction

(SO-CI) calculations carried out for the TeCl radical by employing relativistic effective

core potentials (RECPs). Various energetic properties, dipole transition moments and

radiative lifetimes have been computed for the low-lying valence states and predictions

about the strongest transitions in the low-energy spectra of these systems have been

made.

3.1 Details of the Theoretical Treatment

The (4s4p5d2f )/[4s4p2d2f ] basis set for Te, as described in the previous chap-

ter, has been used to treat the 4d, 5s, and 5p electrons of the Te atom in the present

theoretical treatment. For the chlorine atom only seven outer electrons have been

treated explicitly. The inner shells were treated by employing the RECP of ref. [35]. A

(7s7p3d1f ) basis set for the Cl atom has been taken from ref. [53].

The theoretical treatment follows a Λ − S contracted spin-orbit CI (LSC-SO-CI)
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scheme, [37,54] taking into account the relativistic effects at a correlated level and

hence allowing a simple calculation and analysis of the one-electron properties. The

calculations have been carried out employing the Table-Direct CI version [55,56] of

the MRD-CI program package including configuration selection and perturbative cor-

rections [28]. As explained in the previous chapter, the SCF calculations have been

carried out for the first excited state 4Σ−(σ2π4π∗2σ∗) in order to obtain the MOs to be

used at the CI level of calculations.

Details of the multireference CI treatment for the Λ − S states (without inclusion

of the spin-orbit interaction) are given in Table 3.1 for the TeCl equilibrium distance.

The calculations have been carried out in C2v symmetry. The configuration selection

threshold T was set to be 1.0 × 10−6 Eh. To estimate the full CI energy at T = 0, the

generalized Davidson correction [29,36] which takes into account the effects of higher

than double excitations with respect to the reference configurations, was applied to the

extrapolated energies at T = 0 for each root. The total number of symmetry adapted

functions (SAFs) lies in the range of (8 − 35) × 106 and are generated from 56 − 178

reference configurations, depending on the Λ − S symmetry. For the doublet states

of each C2v irreducible representation six to nine roots have been calculated. For the

quartet the number of roots is between two and five. The
∑

c2
i values over reference

configurations fall in the 0.88 − 0.91 range in each case. The leading electronic con-

figurations are also given in Table 3.1. The calculations have been carried out over a

distance range of 3.5 a0 to 10.0 a0, with a typical increment of 0.1 a0 in the FC region.

The 4d electrons of the tellurium atom have been treated as a frozen core in the CI and

spin-orbit calculations because they are not very important for describing the low-lying

states that are of interest in the present work. Thus only 13 electrons are involved in

the CI excitation process.
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Table 3.1: Technical details of the MRD-CI calculations of TeCl.a

C2v Nref/Nroot SAFTOT/SAFSEL C∞v Leading conf. Σc2
i

2B1,2 178/7 35147942/149440 12Π σ2π4π∗3 0.91
22Π σ2π3π∗4 0.88
32Π σ2π4π∗σ∗2 0.90
42Π σ2π4π∗2π∗∗ 0.88
12Φ σπ4π∗3σ∗ 0.88
52Π σ2π4π∗2π∗∗∗ 0.88
62Π σ2π4π∗2π∗∗ 0.88

2A1 160/7 25146740/128899 12∆ σ2π4π∗2σ∗ 0.90
12Σ+ σ2π4π∗2σ∗ 0.90
22Σ+ σπ4π∗4 0.89
22∆ σ2π4π∗2σ∗∗ 0.89
32∆ σ2π3π∗3σ∗ 0.89
32Σ σ2π3π∗3σ∗ 0.88
42∆ σ2π3π∗3σ∗ 0.88

2A2 113/7 25896632/114143 12Σ− σ2π4π∗2σ∗ 0.90
12∆ σ2π4π∗2σ∗ 0.90
22Σ− σ2π4π∗2σ∗∗ 0.89
32Σ− σ2π3π∗3σ∗ 0.88
22∆ σ2π4π∗2σ∗∗ 0.89
42Σ σ2π4π∗2σ∗∗∗ 0.89
32∆ σ2π3π∗3σ∗ 0.89

4B1,2 129/2 31704976/50702 14Π σπ4π∗3σ∗ 0.90
24Π σ2π4π∗2π∗∗ 0.89

4A1 102/2 21646934/33745 14∆ σ2π3π∗3σ∗ 0.89
14Σ+ σ2π3π∗3σ∗ 0.89

4A2 109/3 24622451/81434 14Σ− σ2π4π∗2σ∗ 0.91
24Σ− σ2π4π∗2σ∗∗ 0.89
14∆ σ2π3π∗3σ∗ 0.89

a The number of selected SAFs and the Σc2
i values over reference configurations are given for r = 4.4

a0 ≈ re. SAFTOT designates the total number of generated, SAFSEL the number of selected SAFs,
Nref and Nroot refer to the number of reference configurations and roots treated, respectively.
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The Λ−S eigenfunctions are then used as a basis for the final spin-orbit CI calcu-

lations. Since TeCl is a system with an odd number of electrons, all Λ− S symmetries

contribute to the spin-mixed Ω states in the C2v double group. The actual symmetry

is higher, however, which allows a realtively simple assignment of definite Ω values to

the resulting eigenvectors. The eigenvectors obtained are of mixed-spin symmetry, the

spin-orbit mixing being very weak for the low-lying states of interest in the FC region,

and it becomes relatively strong only near the dissociation limit. Hence, the symmetry

analysis in this case, as in that of TeF, is fairly easy.

Finally, the calculated potential energy curves for the Ω states employed to solve

one-dimensional nuclear motion Schrödinger equations by means of the Numerov-

Cooley method [32,33]. The electronic transition moments are averaged over various

pairs of vibrational functions and combined with transition energy data to compute Ein-

stein emission coefficients with all lower-lying vibrational states and then inverting to

obtain the radiative lifetime value.

3.2 Potential Curves

Potential energy curves have been calculated for all 23 Λ−S states converging to

the three lowest dissociation limits, Te(3P )+Cl(2P o), Te(1D)+Cl(2P o), and Te(1S)+Cl(2P o).

Most of the states are repulsive, however, and therefore only the 12 states going

to the lowest Te(3P ) limit and three of the nine states correlating with the second

Te(1D) asymptote are shown in Fig. 3.1. The ground state symmetry is found to

be 2Π(σ2π4π∗3), simliar to TeF. The ground state dissociation energy calculated without

inclusion of spin-orbit coupling is 19440 cm−1. The lowest excited states are A 4Σ−,
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Figure 3.1: Computed potential energy curves for the low-lying Λ − S states of TeCl obtained without

inclusion of the spin-orbit interaction.
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B 2Σ−, C 2∆, and 1 2Σ+ in ascending order of energy. All these states have the same

σ2π4π∗2σ∗ leading configuration in the FC region, which corresponds to the π∗ → σ∗

excitation relative to the ground state. As can be seen in Fig. 3.1, the 1 2Σ+ is repulsive

as opposed to the slightly bound character found in TeF. This is an indication of the

trend to be continued as we move on to the heavier systems, namely the states grad-

ually lose their bound character and become increasingly more repulsive. The trend

can be quite simply explained looking at the nature of the MOs. The π∗ → σ∗ excitation

involves a transition from the lone-pair π∗ orbital, which is almost completely localized

on the Te atom, to the antibonding σ∗ orbital. The antibonding character increases

in the heavier TeX systems as the electronegativity difference between the Te and X

atom becomes smaller, and this in turn leads to a decrease in bonding for the states

generated from π∗ → σ∗ excitation as we move down the halide group.

The full spin-orbit Hamiltonian was diagonalised in the basis of Λ−S states given

in Table 3.1. The calculated potential energy curves for the resulting Ω are given in

Fig. 3.2. The first ten Ω states dissociate to the Te(3P2)+Cl(2P o
3/2) atomic limit. The

computed De value for the X1
2Π3/2 ground state is obtained from calculations carried

out for r = 9.0a0 and is found to be 19100cm−1. The lowering in the dissociation energy

caused due to SO coupling is ≈ 340 cm−1. The SO effect is not very large for TeCl

because the open-shell π∗ orbital has almost pure Te character, as already mentioned

above, and thus its effect on the energy of this state is only weakly dependent on r.

There are five Ω states that dissociate to the second atomic limit, Te(3P2)+Cl(2P o
1/2).

They are all repulsive and only three have been included in Fig. 3.2. Two Ω states

converge to the third Te(3P0)+Cl(2P o
3/2) dissociation limit and one of them, a 1/2 state

possesses a shallow minimum at re = 6.48 a0. The calculated spectroscopic constants

for TeCl are listed in Table 3.2 along with the available experimental data. The X2Π
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Figure 3.2: Computed potential energy curves for the low-lying Ω states of TeCl: ◦-Ω = 1/2 states;

•-Ω = 3/2 states; ×-Ω = 5/2 states; and �-Ω = 7/2 state.
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Table 3.2: Calculated (this work) and experimental spectroscopic properties of 130TeCl (transition energy

Te, bond length re, and vibrational frequency ωe).

Te/cm−1 re/Å ωe/cm−1

State calc. exp. calc. exp. calc. exp.

X1
2Π3/2 0 0 2.349 2.3206 [10] 374 386 [10]

X2
2Π1/2 4303 4022 [10] 2.342 2.3132 [10] 382 391 [10]

A1
4Σ−

1/2 10792 - 2.622 - 311 -

A2
4Σ−

3/2 11584 - 2.632 - 254 -

B2Σ−
1/2 18624 - 2.821 - 153 -

spin-orbit splitting of the ground state is overestimated by 281 cm−1. The re values are

calculated to be ≈ 0.03 Å larger than the corresponding experimental results. The vi-

brational frequencies are underestimated by ca. 10 cm−1. This indicates a slight under-

estimation of bonding strength in the present study. The reason could be the freezing

of d-electrons at the CI stage and incompleteness of the AO basis sets employed. That

the relative accuracy of the calculations is good can be demonstrated by the fact that

the X2 equilibrium value is calculated to be 0.007 Å shorter than that of X1 state and this

is in almost perfect agreement with the shortening observed experimentally [10]. The

sign and strength of the vibrational frequency change from X1 to X2 is also correctly

predicted by the calculations.

The A 4Σ− state shows a much smaller SO splitting (792 cm−1) than that of the

X2Π ground state. The A1
4Σ−

1/2 component is lower in energy and exhibits an avoided

crossing with X2
2Π1/2, resulting in a steep attractive branch of the A1 branch, and as
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a consequence, in a significantly larger ωe value for the A1 state than that of A2. The

repulsion between these two states also reveals itself through a slight shoulder in the

X2 potential curve in the 5.2 − 5.5 a0 distance range. This distortion should be experi-

mentally observable as irregular behaviour in the X2 vibrational level spacings.

The next higher-lying state is B 2Σ−. This state has a shallow minimum at re =

5.3 a0. At an internuclear distance of approximately 6.2 a0, it undergoes an avoided

crossing with the repulsive 1/2 state which leads the formation of a barrier on the B

potential curve and causes the slightly bound 1/2 state to dissociate to the third limit.

The C1
2∆5/2 and C2

2∆3/2 states, which are bound in TeF, are repulsive in TeCl. The

C2
2∆3/2 state shows a slight minimum but is not deep enough to support any vibra-

tional levels. The 1 2Σ+
1/2 state shows no potential minimum in TeCl.

The Λ− S compositions of the five lowest Ω states of TeCl are listed in Table 3.3.

As was observed for TeF, the SO mixing in this case is also not very strong in the FC

region of the ground state, but increases notably towards the dissociation limit.

3.3 Transition Moments and Radiative Lifetimes

As discussed in the previous chapter, the low-energy spectrum of the TeF radical

is dominated by the allowed perpendicular transitions, B 2Σ−, C 2∆ → X 2Π. For TeCl

there are fewer bound states taking part in the transition process, however.

The calculated transition moments for parallel and perpendicular transitions of

TeCl have been plotted in Figs. 3.3 and 3.4, respectively. The X2 − X1 fine structure

transition is quite weak (Fig. 3.4). The corresponding lifetime for the X2 state is calcu-
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Table 3.3: Composition of the five lowest Ω states of TeCl (c2, %) at various bond distances r. Entries
are only made for contributions with c2 ≥ 1.0 %.

State r/a0 X2Π B2Σ− 12Σ+ 12∆ A4Σ− 14Σ+ 14Π

X1
2Π3/2 4.2 98.3 1.2

4.4a 97.4 1.9
5.0 90.9 7.6
5.3 84.1 13.8
5.5 76.9 19.4
6.5 60.5 33.6

X2
2Π1/2 4.2 98.9

4.4a 98.7
5.0 87.5 11.3
5.3 44.7 1.0 52.6
5.5 18.0 1.7 77.4
6.5 3.9 1.9 2.9 82.8 2.4

A1
4Σ−

1/2 4.2 4.2 94.8
4.4 4.2 94.4
5.0a 10.7 4.7 83.4
5.3 52.5 3.9 41.7
5.5 76.9 3.3 16.8
6.5 39.4b 42.3 4.4 5.8

A2
4Σ−

3/2 4.2 1.2 98.4
4.4 1.8 98.0
5.0a 7.3 91.4
5.3 13.1 84.8
5.5 19.6 77.4
6.5 27.4 2.9 55.9b 2.6 12.5

B2Σ−
1/2 4.2 91.4 7.2 1.1

4.4 91.1 7.3
5.0 89.9 7.1 1.1
5.3a 88.4 7.0 1.0
5.5 86.7 6.8
6.5 6.1b 25.9b 36.1 17.8b 9.1

a An approximate equilibrium distance for this state.
b Contributions from the higher-lying roots of this symmetry are included.
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Figure 3.3: Computed electric dipole moments for parallel transitions from the A1
4Σ−1/2, A2

4Σ−3/2, and

B 2Σ−1/2 states to the X1
2Π3/2 and X2

2Π1/2 states of TeCl.
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Table 3.4: Partial and total radiative lifetimes (in s) for transitions from the v ′ = 0 level of the TeCl excited

states to the X1
2Π3/2 (τ1) and X2

2Π1/2 (τ2) states.

State τ1 τ2

τtot

τ⊥ τ‖ τ

X2
2Π1/2 18.3 (-3)a 18.3 (-3)

A1
4Σ−

1/2 70.0 (-3) 46.2 378 (-6) 378 (-6) 376 (-6)

A2
4Σ−

3/2 29.4 (-6) 0.77 29.4 (-6)

B2Σ−
1/2 6.8 (-3) 467 (-3) 106 (-6) 106 (-6) 104 (-6)

a Numbers in parentheses indicate powers of ten.

lated to be 18.3 ms (Table 3.4) and is quite similar to the value of 8.2 ms obtained for

TeF. The A1 −X1 perpendicular transition has a longer lifetime than that of the A1 −X2

transition. The parallel component of the A1 − X2 transition is significantly stronger

than the corresponding perpendicular component. Similarly, the perpendicular A2−X2

has a longer lifetime than the corresponding parallel transition. Figs. 3.3 and 3.4 show

the parallel transition moments for A1 − X2 and A2 − X1 to be more than an order of

magnitude larger than the respective perpendicular transition moments. In the case of

TeF the difference is somewhat smaller. The magnitudes of the A1 − X2 and A2 − X1

µz transition moments (Fig. 3.3) are comparable near the equilibrium distance of the

A1,2 states (≈ 4.96 a0). The difference in lifetimes is mostly due to the difference in their

transition energies.

Qualitatively, the two molecules, TeF and TeCl, seem to be very similar. Viewed

from the quantitative perspective, however, the systems are seen to have some impor-

64



Figure 3.4: Computed electric dipole moments for perpendicular transitions from the X2
2Π1/2, A1

4Σ−1/2,

A2
4Σ−3/2, and B 2Σ−1/2 states to the X1 and X2 states of TeCl.
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tant differences. The B − X transitions in the two systems demonstrates this optimally.

In TeF, the perpendicular transitions B − X1(1/2 − 3/2) and B − X2(±1/2 − ∓1/2)

are found to be quite strong, with lifetimes in the microsecond range and both had a

Λ − S origin. In the case of TeCl the situation is significantly different. A look at the

compositions of the various Ω states (Table 3.3) explains why. Around 5.3 a0, the ap-

proximate equilibrium distance of the B state, the Λ− S composition of the X1 and X2

states changes rapidly. This occurs due to the crossing of the X 2Π and A 4Σ− states

in this distance range and their strong spin-orbit coupling. The effect is particulary pro-

nounced for the X2 and A1 states, which undergo an avoided crossing at r ≈ 5.3a0 (Fig.

3.2). This leads to a change in character of the X2 state from X 2Π to A 4Σ− This in turn

causes a rapid fall in the B −X1,2 µx,y transition moment values and even a change in

sign (Fig. 3.4), and as a consequence the lifetime is increased (Table 3.4). It is to be

noted that such a change in the behaviour of the B −X1,2 transition moments near the

equilibrium distance of the B state makes the corresponding τ values very sensitive to

the quality of the calculations. Thus the accuracy may not be as good as that for the

strong transitions. In the case of TeF the spin-orbit mixing occurs much closer to the

dissociation limit and hence does not cause nearly as much irregular behaviour for the

B → X1,2 transitions.
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Chapter 4

Tellurium Bromide (TeBr)

The present chapter deals with the results of ab initio multireference configuration

interaction calculations including spin-orbit coupling for valence electronic states of tel-

lurium bromide (TeBr). The results obtained are compared with those for the isovalent

TeF and TeCl systems obtained earlier at a similar level of theoretical treatment and

also with the available experimental data.

4.1 Details of the Theoretical Treatment

The (4s4p5d2f )/[4s4p2d2f ] basis set for Te, as described in Chapter 2, has been

used to treat the 4d, 5s, and 5p electrons of the Te atom in the present theoretical treat-

ment. For the bromine atom only seven outer electrons have been treated explicitly.

The 28-electron RECP of ref. [57] was employed to describe the inner shells of the

bromine atom. The basis set for Br is of the (5s6p2d1f ) type and has been taken from

ref. [21], with omission of the (1s1p1d) diffuse functions.

The theoretical treatment is essentially the same as in the previous cases. The
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first step is the construction of molecular orbitals (MOs), as linear combinations of

atomic orbitals (LCAOs) by an SCF calculation which is performed for the first excited

state ,4Σ−(σ2π4π∗2σ∗), of the neutral TeBr radical. The π and π∗ MOs are found to

be predominantly Br(px,y) and Te(px,y) in character resepctively throughout the inter-

nuclear distance range considered which varies from 3.4 a0 to 8.5 a0. The σ MO has

predominantly Te(s) character in the FC region and towards longer internuclear dis-

tance becomes pure Te(pz) in character. The σ∗ MO has a mixed character of Te(s),

Te(pz), Br(s) and Br(pz) atomic orbitals at short internuclear distances and in the FC

region. Towards the dissociation limit it is almost a pure Br(pz) atomic orbital.

Prior to beginning the CI level of treatment, the 4d electrons of Te were frozen

as a core since they are not of much significance in the present studies of the low-

lying states of the molecule and besides, this procedure simplifies the calculations.

The details of the multireference CI treatment for the Λ − S states are presented in

Table 4.1 for the approximate equilibrium distance of the TeBr molecule (≈ 4.70 a0).

The calculations are carried out in formal C2v symmetry. The configuration selection

threshold T was set to be 2.0 × 10−6 Eh. The total number of generated symmetry

adapted functions (SAFs) lies in the range of (11−26)×106 , of which about (2−13)×104

are selected at the set T value. The number of roots calculated for the doublet states

is six to nine, whereas for the quartet states the number of roots calculated is less

and varies from two to five. The number of reference configurations lies in the range,

55−148, depending on the Λ−S symmetry. The
∑

c2
i values over the chosen reference

space are seen to fall uniformly in the 0.90 − 0.92 range in each case. The leading

electronic configuration for each root has also been listed in Table 4.1.

The Λ − S eigenfunctions are then used as a basis for the final spin-orbit CI cal-

culations. The spin-eigenfunctions thus obtained are then combined with the Λ − S
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Table 4.1: Technical details of the MRD-CI calculations of TeBr.a

C2v Nref/Nroot SAFTOT/SAFSEL C∞v Leading conf. Σc2
i

2B1,2 148/9 25879663/132931 12Π σ2π4π∗3 0.91
22Π σ2π3π∗4 0.90
32Π σ2π4π∗σ∗2 0.90
12Φ σπ4π∗3σ∗ 0.89
42Π σ2π4π∗2π∗∗ 0.90
52Π σ2π4π∗2π∗∗ 0.90
62Π σ2π4π∗2π∗∗ 0.90
72Π σ2π3π∗2σ∗2 0.90
82Π σ2π4π∗2π∗∗ 0.90

2A1 84/8 13276005/87805 12∆ σ2π4π∗2σ∗ 0.91
12Σ+ σ2π4π∗2σ∗ 0.90
22Σ+ σπ4π∗4 0.90
22∆ σ2π3π∗3σ∗ 0.90
32Σ+ σ2π3π∗3σ∗ 0.90
32∆ σ2π3π∗3σ∗ 0.90
42∆ σ2π4π∗2σ∗∗ 0.90
42Σ+ σ2π3π∗3σ∗ 0.90

2A2 114/6 24804685/77340 12Σ− σ2π4π∗2σ∗ 0.92
12∆ σ2π4π∗2σ∗ 0.92
22Σ− σ2π3π∗3σ∗ 0.92
32Σ− σ2π4π∗2σ∗∗ 0.91
22∆ σ2π3π∗3σ∗ 0.92
32∆ σ2π3π∗3σ∗ 0.92

4B1,2 119/3 28446770/66356 14Π σπ4π∗3σ∗ 0.91
24Π σ2π4π∗2π∗∗ 0.91
34Π σ2π3π∗2σ∗2 0.91

4A1 55/2 11635838/29968 14∆ σ2π3π∗3σ∗ 0.90
14Σ+ σ2π3π∗3σ∗ 0.90

4A2 56/5 11161682/91955 14Σ− σ2π4π∗2σ∗ 0.91
14∆ σ2π3π∗3σ∗ 0.91
24Σ− σ2π4π∗2σ∗∗ 0.90
34Σ− σ2π3π∗3σ∗ 0.90
44Σ− σ2π4π∗2σ∗∗∗ 0.90

a The number of selected SAFs and the Σc2
i values over reference configurations are given for r = 4.7

a0 ≈ re. SAFTOT designates the total number of generated, SAFSEL the number of selected SAFs,
Nref and Nroot refer to the number of reference configurations and roots treated, respectively.
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transition moment data to determine the corresponding Ω − state electronic transi-

tion moments at each r value. The Numerov-Cooley numerical integration procedure

[32,33] was employed to solve the nuclear Schrödinger equations in order to obtain the

corresponding vibrational energies and wave functions.

4.2 Potential Curves

Potential energy curves have been calculated for the three lowest dissociation

limits, Te(3P )+Br(2P o), Te(1D)+Br(2P o), and Te(1S)+Br(2P o). Most of the states are

seen to be repulsive in nature (Fig. 4.1). The ground state symmetry is found to be
2Π(σ2π4π∗3). The dissociation energy calculated without inclusion of spin-orbit coupling

is 17360cm−1 for the ground state. The lowest excited states are A4Σ−, B2Σ−, C2∆, and

12Σ+ in ascending order of energy. All these states have the same σ2π4π∗2σ∗ leading

configuration in the FC region, which corresponds to the π∗ → σ∗ excitation relative to

the ground state. As can be seen in Fig. 4.1, only the ground and the first excited state

show a well-defined potential minimum. The other states are repulsive. This confirms

the remark made in the previous chapter regarding the smaller number of bound states

as one moves to the heavier monohalides of tellurium.

The calculated potential energy curves for the Ω states resulting after the diag-

onalisation of the full SO Hamiltonian in the basis of the Λ − S states are shown in

Fig. 4.2 Only states converging to the two lowest limits have been included in the fig-

ure. The valence states dissociating to the higher limits are repulsive and have been

omitted. The computed De value for the X1
2Π3/2 ground state is obtained from calcu-

lations carried out for r = 8.50 a0 and is found to be 16000 cm−1. The lowering in the

dissociation energy caused due to SO coupling is ≈ 1360 cm−1, which is larger than in
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Figure 4.1: Computed potential energy curves for the low-lying Λ − S states of TeBr obtained without

inclusion of spin-orbit interaction.
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Table 4.2: Calculated (this work) and experimental spectroscopic properties of 130TeBr (transition energy

Te, bond length re, and vibrational frequency ωe).

Te/cm−1 re/ Å ωe/cm−1

State calc. exp. calc. exp. calc. exp.

X1
2Π3/2 0 0 2.494 - 250 -

X2
2Π1/2 4311 4067 [10] 2.491 - 257 -

A1
4Σ−

1/2 9756 - 2.774 - 221 -

A2
4Σ−

3/2 10592 - 2.805 - 181 -

the previous two cases by virtue of the much stronger spin-orbit contribution from the

heavier halogen atom at the dissociation limit.

There are five Ω states that dissociate to the second atomic limit, Te(3P2)+Br

(2P o
1/2). They are all repulsive and only two have been included in Fig. 4.2. The calcu-

lated spectroscopic constants for TeBr are listed in Table 4.2 along with the available

experimental data. The X2Π spin-orbit splitting of the ground state is overestimated by

244cm−1. A similar overestimation has been observed in the present calculations for all

the TeX systems. Our test calculations for the free Te atom have shown that this error

arises partly from RECP spin-orbit operator deficiencies as well as from the Te basis

set incompleteness. The re value of the X2 state is calculated to be ≈ 0.03 Å larger

than the corresponding value for the X1 state. No experimental results are available for

comparison purposes, however.

As in the previous cases, A 4Σ− state shows a much smaller SO splitting (836cm−1)
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Figure 4.2: Computed potential energy curves for the low-lying Ω states of TeBr: ◦-Ω = 1/2 states;

•-Ω = 3/2 states; ×-Ω = 5/2 states; and �-Ω = 7/2 state.
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than the X2Π ground state. This splitting is comparable to that calculated for TeF

(890cm−1) and TeCl (792cm−1), emphasising the dominant role of the Te atom in this

effect. As in TeCl, the A1
4Σ−

1/2 component is lower in energy and exhibits an avoided

crossing with X2
2Π1/2, resulting in a steep attractive branch of the A1 potential, and as

a consequence, in a significantly larger ωe value for the A1 state than for the A2 state,

similarly as in the case of TeCl. The next excited state is the B 2Σ−, also as in the pre-

vious cases. It has a very shallow minimum at about 5.6 a0. The C 2∆ Ω components

and the 1 2Σ+
1/2 state are also repulsive in the case of TeBr (Fig. 4.2).

4.3 Transition Moments and Radiative Lifetimes

The c2 percentage contributions of the various Λ − S states in the five lowest Ω

states of TeBr are listed in Table 4.3 for various internuclear distances. From this table

it is clear that in the FC region of the ground state, there is very little mixing and the

states are predominantly Λ − S in character.The A1
4Σ−

1/2 state is, however, seen to

have a 4.8 % admixture of 2Σ+ state in the FC region of the ground state. There is an

admixture of X 2Π, reaching 6.5 % at r = 5.20 a0 ≈ re (A1). At an internuclear distance

of 5.72 a0 the composition of the X2
2Π1/2 and A1

4Σ−
1/2 states changes completely, the

former now exhibiting about 71 % 4Σ− character and only 23 % 2Π character. The A1

state at 5.72 a0 is an admixture of 73 % 2Π, 22 % 4Σ− and about 2 % 2Σ+ Λ − S states.

The A2 wavefunction also shows a gradual increase in X 2Π character, but mixing with

other Λ − S states is insignificant. The complete change of character observed for

the 1/2 components of the X and A states is not found in the corresponding 3/2 Ω

components (Table 4.3).

The calculated transition moments for parallel and perpendicular transitions in
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Table 4.3: Composition of the five lowest Ω states of TeBr (c2, %) at various bond distances r. Entries
are only made for contributions with c2 ≥ 1.0 %.

State r/a0 X2Π B2Σ− 12Σ+ 12∆ A4Σ− 14Σ+ 14Π 14∆

X1
2Π3/2 4.50 98.0 1.0

4.70a 97.5 1.7
5.20 93.3 5.1
5.72 82.7 14.3
5.74 81.9 15.0
6.25 67.3 27.0
7.00 53.5 36.5b 1.5 2.1

X2
2Π1/2 4.50 98.0 1.0

4.70a 98.1 1.0
5.20 91.1 6.8
5.72 23.1 71.0
5.74 20.2 1.1 2.2 73.8
6.25 5.2 1.0 3.8b 85.0
7.00 2.7 1.8 2.9b 75.4 13.4b

A1
4Σ−

1/2 4.50 4.8 94.1
4.70 4.8 93.5
5.20a 6.5 4.8 86.5
5.72 72.9 2.1 21.7
5.74 74.2 1.1 1.8 19.0
6.25 72.0 12.3 6.8b

7.00 27.5b 42.1b 4.9b 3.5 16.1b

A2
4Σ−

3/2 4.50 98.0
4.70 1.6 97.6
5.20a 5.1 93.7
5.72 13.4 83.0
5.74 14.0 82.3
6.25 23.7 66.9b 1.2 3.5
7.00 23.5 3.1b 41.2b 6.0 21.4b

B2Σ−
1/2 4.50 90.0 8.0 1.2

4.70 90.0 7.8 1.2
5.20 1.2b 88.1 7.7 1.1
5.72a 3.2b 82.4 7.9 1.0
5.74 3.4b 81.7 8.1 1.0 2.1
6.25 8.8 53.0b 18.5 3.7b 8.2b

7.00 3.6b 31.9b 31.7 12.3b 15.5

a An approximate equilibrium distance for this state.
b Contributions from the higher-lying roots of this symmetry are included.
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Table 4.4: Partial and total radiative lifetimes (in s) for transitions from the v ′ = 0 level of the TeBr excited
states to the X1

2Π3/2 (τ1) and X2
2Π1/2 (τ2) states.

State τ1 τ2

τtot

τ⊥ τ‖ τ

X2
2Π1/2 29.9 (-3)a 29.9 (-3)

A1
4Σ−

1/2 18.4 (-3) 0.97 396 (-6) 396 (-6) 388 (-6)

A2
4Σ−

3/2 17.3 (-6) 5.2 17.3 (-6)

B2Σ−
1/2 511 (-6)b 306 (-3)b 294 (-6)

a Numbers in parentheses indicate powers of ten.
b An estimate at re (B).

TeBr are plotted in Figs. 4.3 and 4.4, respectively. The X1 − X2 transition is quite

weak, as for TeF and TeCl, with a radiative lifetime of 29.9 ms (Table 4.4) for the X2

state.

The parallel A2 − X1 and A1 − X2 transition moment values are much larger than

that of their perpendicular counterparts, and, hence, their lifetimes are much shorter.

The perpendicular transition A1 − X1 has a (partial) lifetime of 18.4 ms, comparable to

that of TeF (7.2 ms). The transition moment values for the perpendicular A1 − X1 tran-

sition are quite similar in the two cases, being 0.01 ea0 and 0.007 ea0 at the approximate

equilibrium bond length of the X1 state for TeF and TeBr, respectively. The correspond-

ing values at the equilibrium bond length of the A1 state in TeF (≈ 3.95 a0) and TeBr

(≈ 5.20 a0) are 0.007 ea0 in both cases. The shorter radiative lifetime in the case of TeF

is mainly due to the ∆Ē3 factor [see equation (1.41)] that is present in the formula for

these quantities. The transition moment values for TeCl are about ten times smaller
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Figure 4.3: Computed electric dipole moments for parallel transitions from the A1
4Σ−1/2, A2

4Σ−3/2, and

B 2Σ−1/2 states to the X1
2Π3/2 and X2

2Π1/2 states of TeBr.
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Figure 4.4: Computed electric dipole moments for perpendicular transitions from the X2
2Π1/2, A1

4Σ−1/2,

and A2
4Σ−3/2 states to the X1 and X2 states of TeBr.
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than that in TeF and TeBr and hence the corresponding lifetime for this transition is

comparatively longer (70 ms) in TeCl (Table 3.4). The A1 −X2 perpendicular transition

is calculated to have a partial lifetime of 0.97 s, which is quite long compared to that

in TeF (91.4 ms) but shorter than that calculated for TeCl (46.2 s), the reason being the

same as discussed in the above case for the A1 − X1 perpendicular transition. The

parallel A1−X2 transitions have comparable partial lifetimes in TeCl and TeBr, however,

and are much shorter than in TeF. The explanation for this is simple, namely, as can be

seen from Tables 3.3 and 4.3, the A1 and X1 states in TeCl and TeBr have contributions

from the same Λ − S states near re of the A1 state, whereas in the case of TeF (Table

2.3) mixing at such short internuclear distances is negligible.

The B state in TeBr has a very shallow minimum at re ≈ 5.72 a0. The radiative

lifetime for this state have been calculated at this re value. It is about 13 times shorter

than for TeCl due to the significantly larger value of the B − X1 transition moment in

TeBr. The B − X2 transitions have comparable lifetimes in TeCl and TeBr.
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Chapter 5

Tellurium Iodide (TeI)

Tellurium iodide is the only monohalide of tellurium mentioned on the internet

[58]. The webpage refered to describes tellurium iodide as being a black solid. The

melting and boiling points, as well as the density are said to be unknown at the present

time.

5.1 Details of the Theoretical Treatment

The (4s4p5d2f )/[4s4p2d2f ] basis set for Te, as described in Chapter 2, has been

used to treat the 4d, 5s, and 5p electrons of the Te atom in the present theoretical treat-

ment. For the iodine atom, as in the case of the previously discussed halides, only

seven outer electrons have been treated explicitly. The 46-electron RECP of LaJohn et

al. [34] was employed to describe the inner shells of the I atom. The basis set for iodine

is of the type (5s6p2d1f ), similar to that used for the Br atom, and has been taken from

ref. [21], except for the omission of the (1s1p1d) diffuse functions.

The theoretical treatment follows a Λ−S contracted spin-orbit (LSC-SO-CI) scheme

[37,54]. The SCF calculations, performed for the first excited state (4Σ−) of TeI, gen-
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erate the molecular orbitals (MOs) to be used in the CI stage of the calculation. As

in other cases, the π and π∗ MOs are found to be predominantly I(px,y) and Te(px,y)

in character, respectively, throughout the internuclear distance range considered. The

σ MO has predominantly Te(s) character in the FC region, but towards longer internu-

clear distances becomes pure I(pz) in character, whereas in the other cases it assumes

pure Te(pz) character towards the dissociation limit. The σ∗ MO has a mixed character

of Te(s), Te(pz), I(s) and I(pz) atomic orbitals at short internuclear distances and in the

FC region. Towards the dissociation limit it is almost a pure Te(pz) atomic orbital.

Details of the multireference CI treatment for the Λ − S states (without inclusion

of the spin-orbit interaction) are given in Table 5.1 for the calculated equilibrium bond

length of 5.05 a0. Calculations were carried out in C2v symmetry, as in the other cases.

The configuration selection threshold T was set to be 2.0 × 10−6 Eh. The number of

symmetry adapted functions selected at this threshold lies in the (17−71)×10−3 range,

stemming from 66 − 102 reference configurations, depending on the Λ − S symmetry.

For the doublet states of each C2v irreducible representation six roots were calculated,

whereas for the quartet states 2− 4 roots were calculated (Table 5.1). The
∑

c2
i values

over the reference configurations are found to fall in the 0.89−0.91 range for each case.

The leading configuration for each root is also listed in Table 5.1. The 4d electrons of

Te were treated as a frozen core in TeI as for the other three halides.

The Λ − S eigenfunctions are employed as a basis for the final spin-orbit CI cal-

culations. The spin-eigenfunctions thus obtained are then combined with the Λ − S

transition moment to obtain the corresponding Ω− state electronic transition moments

at each r value. The Numerov-Cooley numerical integration procedure [32,33] was em-

ployed to solve the nuclear Schrödinger equations in order to obtain the corresponding

vibrational energies and wave functions.
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Table 5.1: Technical details of the MRD-CI calculations of TeI.a

C2v Nref/Nroot SAFTOT/SAFSEL C∞v Leading conf. Σc2
i

2B1,2 102/6 11535337/71476 12Π σ2π4π∗3 0.91
22Π σ2π3π∗4 0.90
32Π σ2π4π∗σ∗2 0.90
12Φ σπ4π∗3σ∗ 0.89
42Π σ2π4π∗2π∗∗ 0.89
52Π σ2π3π∗2σ∗2 0.90

2A1 98/6 9877459/42122 12∆ σ2π4π∗2σ∗ 0.91
12Σ+ σ2π4π∗2σ∗ 0.90
22Σ+ σπ4π∗4 0.90
22∆ σ2π3π∗3σ∗ 0.90
32Σ+ σ2π3π∗3σ∗ 0.90
42∆ σ2π3π∗3σ∗ 0.90

2A2 71/6 9932446/49915 12Σ− σ2π4π∗2σ∗ 0.90
12∆ σ2π4π∗2σ∗ 0.91
22Σ− σ2π3π∗3σ∗ 0.90
22∆ σ2π3π∗3σ∗ 0.90
32Σ− σ2π4π∗2σ∗∗ 0.90
42Σ− σ2π3π∗3σ∗ 0.90

4B1,2 162/3 23493624/43821 14Π σπ4π∗3σ∗ 0.90
24Π σ2π3π∗2σ∗2 0.90
34Π σ2π4π∗2π∗∗ 0.89

4A1 66/2 8823549/17891 14∆ σ2π3π∗3σ∗ 0.90
14Σ+ σ2π3π∗3σ∗ 0.90

4A2 89/4 11551848/46137 14Σ− σ2π4π∗2σ∗ 0.91
14∆ σ2π3π∗3σ∗ 0.89
24Σ− σ2π3π∗3σ∗ 0.89
34Σ− σ2π4π∗2σ∗∗ 0.90

a The number of selected SAFs and the Σc2
i values over reference configurations are given for r = 5.05

a0 ≈ re. SAFTOT designates the total number of generated, SAFSEL the number of selected SAFs,
Nref and Nroot refer to the number of reference configurations and roots treated, respectively.
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5.2 Potential Curves

Potential energy curves have been calculated for all 23 Λ−S states converging to

the three lowest limits of Te(3P )+ I(2P o), Te(1D)+ I(2P o), and Te(1S)+ I(2P o). Most of

them are repulsive and hence only 12 states going to the lowest Te(3P ) limit and two of

the nine states correlating with the Te(1D) asymptote are shown in Fig. 5.1. The ground

state symmetry is found to be 2Π (σ2π4π∗3), as in the other monohalides.The ground

state dissociation energy calculated without inclusion of the spin-orbit interaction is

14430 cm−1. The potential well for the ground state is shallower than in previous three

cases and the equilibrium bond length is longer than in each of these cases. This trend

is consistent with the increase in the size of the halogen atom radius and weakening of

the bond relative to lighter TeX systems.

The lowest excited states are again A 4Σ−, B 2Σ−, C 2∆, and 1 2Σ+ in order of

increasing energy, all arising from the π∗ → σ∗ excitation relative to the ground state.

In TeI, only the ground state and the first excited states are seen to have a well defined

potential minimum (Fig. 5.1), all other low-lying excited states having a repulsive po-

tential.

Inclusion of the spin-orbit interaction yields the Ω states (Fig. 5.2). The ground

state is an inverted 2Π. The ground state bonding in TeI (12100 cm−1) is found to be

the weakest of all the monohalides discussed in this work. The SO interactions lower

the dissociation energy by 2300 cm−1 and are caused by the large contribution of the

heavy I atom. The calculated spectroscopic constants for TeI, along with the available

experimental results, are listed in Table 5.2. Except for the ground state splitting, no

other experimental data are available for comparison.
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Figure 5.1: Computed potential energy curves for the low-lying Λ − S states of TeI obtained without

inclusion of the spin-orbit interaction.
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Table 5.2: Calculated (this work) and experimental spectroscopic properties of 130TeI (transition energy

Te, bond length re, and vibrational frequency ωe).

Te/cm−1 re/Å ωe/cm−1

State calc. exp. calc. exp. calc. exp.

X1
2Π3/2 0 0 2.697 - 196 -

X2
2Π1/2 4348 4130 [10] 2.689 - 202 -

A1
4Σ−

1/2 9239 - 3.019 - 178 -

A2
4Σ−

3/2 10082 - 3.081 - 125 -

As in the case of the other halides, the X2
2Π1/2 component has a shorter re

(≈ 0.008 Å) than the X1 state. The ground state splitting is overestimated by about

218 cm−1. The SO splitting of the A 4Σ− (843 cm−1) state is much smaller than that

of the X state. The A1
4Σ−

1/2 component is lower in energy and exhibits an avoided

crossing with X2
2Π1/2, just as for TeCl and TeBr. Since the excitation energy of the A

state is the lowest for TeI, this avoided crossing occurs much closer to the A1 equilib-

rium distance than for either TeBr or TeCl. As a result of this avoided crossing the ωe

value of the A1 state is much larger than that of the A2 state. Both the A1 and A2 Ω

states have longer re values than the X1,2 states, which is consistent with their shallow

potential wells. Most other states are calculated to be repulsive (Fig. 5.2) in TeI.

The c2 percentage contributions of the various Λ − S states in the four lowest Ω

states of TeI are listed in Table 5.3 for various internuclear distances. As observed

for the lighter monohalides, the SO effects in the FC region of the ground state are

negligible. Also, as in the other monohalides, the 1/2 Ω components of the X and
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Figure 5.2: Computed potential energy curves for the low-lying Ω states of TeI: ◦-Ω = 1/2 states; •-
Ω = 3/2 states; ×-Ω = 5/2 states; and �-Ω = 7/2 state.
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A states tend to have more SO mixing than the corresponding 3/2 components. The

A1
4Σ−

1/2 state has 11 % 2Π and about 5.4 % 2Σ+ admixture at its potential minimum. At

r ≈ 6.10 a0 the A1 state has predominently 2Π Λ − S character with admixture of 31 %

4Σ−, 2 % 2Σ−, and 1.6 % 2Σ+. The X2 state takes on predominantly 4Σ− Λ−S character

at the same internuclear distance.

It is interesting to note that the second dissociation limit for the TeI radical is

Te (3P0) + I (2P o
3/2) rather than Te (3P0) + I (2P o

1/2) as in the lighter systems. This is a

result of the very strong I (2P o
1/2 − 2P o

3/2) splitting, but it has no serious consequences

for the behaviour of the low lying states in this system.

5.3 Transition Moments and Radiative Lifetimes

The calculated parallel and perpendicular transition moments for TeI are shown

in Figs. 5.3 and 5.4, respectively. As already mentioned, only the ground and the first

excited states have attractive potentials, hence the variety of transitions expected in

TeF should not be observed in TeI.

As for the lighter halides, the X1 − X2 fine structure transition is quite weak, with

the calculated radiative lifetime for the transition being 62.9 ms. The other calculated

radiative lifetimes are listed in Table 5.4.

The A1 − X2 and A2 − X1 parallel transitions are of comparable strength as in

TeCl and TeBr. The parallel transition moment (µz) values for the two transitions at the

re for X and A states are larger than the corresponding values for TeBr and TeCl, but

the ∆Ē values are smaller than in latter two radicals. Hence, the overall effect is that

the computed lifetime is nearly the same as in TeCl and TeBr. As already mentioned
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Table 5.3: Composition of the four lowest Ω states of TeI (c2, %) at various bond distances r. Entries are
only made for contributions with c2 ≥ 1.0 %.

State r/a0 X2Π B2Σ− 12Σ+ 12∆ A4Σ− 14Σ+ 14Π

X1
2Π3/2 4.70 99.0

5.05a 98.0

5.30 96.6 1.3

5.70 93.0 3.4

6.20 81.9 10.2 2.0

7.75 50.2 28.1b 4.5 3.7b

X2
2Π1/2 4.70 98.3

5.05a 97.4

5.30 95.8 1.3

5.70 83.7 10.8

6.20 14.4 1.5 4.8b 72.3

7.75 3.4 3.8b 3.0b 57.3b 25.8b

A1
4Σ−

1/2 4.70 7.0 91.3

5.05 6.4 91.4

5.30 1.4 6.3 90.2

5.70a 11.3 5.4 79.9

6.20 66.1 6.9 17.4b 1.0

7.75 23.6b 38.5b 6.1b 4.8 26.5b

A2
4Σ−

3/2 4.70 98.8

5.05 97.6

5.30 1.2 96.5

5.70a 3.2 93.1

6.20 8.8 80.1b 5.9b

7.75 19.0b 31.0b 7.5 37.6b

a An approximate equilibrium distance for this state.
b Contributions from the higher-lying roots of this symmetry are included.
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Figure 5.3: Computed electric dipole moments for parallel transitions from the A1
4Σ−1/2 and A2

4Σ−3/2

states to the X1
2Π3/2 and X2

2Π1/2 states of TeI.
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Figure 5.4: Computed electric dipole moments for perpendicular transitions from the X2
2Π1/2, A1

4Σ−1/2,

and A2
4Σ−3/2, states to the X1 and X2 states of TeI.
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Table 5.4: Partial and total radiative lifetimes (in s) for transitions from the v ′ = 0 level of the TeI excited

states to the X1
2Π3/2 (τ1) and X2

2Π1/2 (τ2) states.

State τ1 τ2

τtot

τ⊥ τ‖ τ

X2
2Π1/2 62.9 (-3)a 62.9 (-3)

A1
4Σ−

1/2 22.2 (-3) 2.4 302 (-6) 302 (-6) 298 (-6)

A2
4Σ−

3/2 25.2 (-6) 29.7 25.2 (-6)

a Numbers in parentheses indicate powers of ten.

for the case of TeBr, the A1 −X2 perpendicular transition is stronger than in the case of

TeCl but relatively weak compared to TeF. The reason is the same as for TeBr, namely

the µx values are comparable in TeF, TeBr and TeI and the difference in the lifetimes is

mostly due to the larger ∆Ē values in the case of TeF.

Since other states in TeI do not possess potential wells deep enough to support

any vibrational states, other transitions possible for the lighter monohalides should not

be observed in this case.
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Conclusion

The series of ab initio calculations carried out for the tellurium monohalides, and

the analysis of the data thus obtained lead to interesting observations. For example,

the first excited state primarily thought of as 2Π by experimentalists is found to be a
4Σ−, explaining the low intensity of the bands observed; and the B state is actually a
2Σ− instead of 2Σ+. Also, the four radicals seem to be almost identical in their char-

acter on the surface. They have the same ordering of electronic states, the potential

curves are nearly identical in each case, as are the electronic configurations for each

state and the excitations leading to them. With so many obvious similarities one would

expect hardly any difference to occur in their behaviour.

That the radicals do have significant differences due to the smaller excitation en-

ergies in the heavy radicals and the increasing spin-orbit coupling is demonstrated very

clearly by the compositions of the various Ω-states obtained after the SO calculations.

It is found that the SO coupling has a negligible effect for the low-lying bound states of

TeF. The SO effect of the heavy tellurium atom in this case makes itself felt only at large

internuclear distances, producing a simple Λ − S character of the electronic states in

the FC region of TeF. This fact is also reflected in the transition moment values for TeF.

For diatomic molecules the parallel transitions (∆Ω = 0) are generally more intense

than perpendicular transitions. TeF is an exception to this rule because of the almost

negligible SO mixing in the FC region. There are only two allowed Λ − S transitions
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among the low-lying states, namely B 2Σ−, C 2∆ → X 2Π and they are perpendicular.

The difference between TeF and other monohalides of tellurium becomes evident as

soon as one looks at the composition of the Ω states in TeCl, which already exhibits the

increasing influence of SO mixing. In the case of the TeCl, TeBr, and TeI radicals, the

low-lying electronic states are found to have mixed Λ − S character in the FC region.

The transition moments corresponding to parallel transitions (∆Ω = 0) are found to be

much larger than that for perpendicular transitions in these radicals.

A very clear proof of the difference is seen from the B → X1,2 transitions. The

strongest transition in TeF is found to be the perpendicular B 2Σ−
1/2 → X1

2Π3/2. In TeI

the B state has a repulsive potential and hence this transition is absent. In TeCl and

TeBr the B state has a shallow minimum and the B → X transitions should give rise to

a discrete spectrum. The nature of the transition is, however, quite different from that

in TeF. In the heavier monohalides it is the parallel B 2Σ−
1/2 → X2

2Π1/2 transition which

is the strongest. The A1,2 → X1,2 spectra are dominated by parallel transitions, with the

A2 → X1 being the strongest. The A and B states have been experimentally observed

in TeF, whereas for TeCl, TeBr, and TeI they are as yet unobserved.

The calculated results are seen to be in very good agreement with the available

experimental data. This work has provided a great deal of new information about these

lesser-known monohalides. It will be interesting to compare the results reported in the

present study with experimental results which hopefully will become available at a later

period.
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